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Abstract

In this thesis, we investigate mixtures of quantum degenerate Bose and
Fermi gases of neutral atoms in threedimensional optical lattices. Fesh-
bach resonances allow to control interspecies interactions in these systems
precisely, by preparing suitable combinations of internal atomic states and
applying external magnetic fields. This way, the system behaviour can be
tuned continuously from mutual transparency to strongly interacting cor-
related phases, up to the stability boundary. The starting point for these
investigations is the spin-polarized fermionic band insulator. The properties
of this non-interacting system are fully determined by the Pauli exclusion
principle for the occupation of states in the lattice. A striking demonstra-
tion of the latter can be found in the antibunching of the density-density
correlation of atoms released from the lattice. If bosonic atoms are added to
this system, isolated heteronuclear molecules can be formed on the lattice
sites via radio-frequency stimulation. The efficiency of this process hints
at a modification of the atom number distribution over the lattice caused
by interspecies interaction. In the following, we investigate systems with
tunable interspecies interaction. To this end, a method is developed which
allows to assess the various contributions to the system Hamiltonian both
qualitatively and quantitatively by following the quantum phase diffusion
of the bosonic matter wave. Besides a modification of occupation num-
ber statistics, these measurements show a significant renormalization of the
bosonic Hubbard parameters. The final part of the thesis considers the im-
plications of this renormalization effect on the many particle physics in the
mixture. Here, we demonstrate how the quantum phase transition from a
bosonic superfluid to a Mott insulator state is shifted towards considerably
shallower lattices due to renormalization.



Zusammenfassung

In dieser Arbeit untersuchen wir Mischungen quantenentarteter Bose- und
Fermigase neutraler Atome in dreidimensionalen optischen Gittern. Dabei
erlauben Feshbach-Resonanzen, die Interspezies-Wechselwirkung in diesen
Systemen prazise durch Praparieren geeigneter Kombinationen atomarer
Zustande und Anlegen externer Magnetfelder zu kontrollieren. Damit lasst
sich das Systemverhalten stetig von wechselseitiger Transparenz zu stark
wechselwirkenden korrelierten Phasen bis hin zur Grenze der Stabilitat ein-
stellen. Den Ausgangspunkt der Untersuchungen bildet der spinpolarisierte
fermionische Bandisolator, ein wechselwirkungsfreies System, dessen Eigen-
schaften allein durch das Pauli-Prinzip bei der Besetzung der zur Verfiigung
stehenden Zustande im optischen Gitter bestimmt sind, Dieses lasst sich
eindrucksvoll anhand des Antibunching in der Dichte-Dichte-Korrelation
aus dem Gitter frei gelassener Atome beobachten. Fiigt man dem System
bosonische Atome hinzu, so lassen sich durch Radiofrequenzstimulation auf
den Gitterplatzen isolierte heteronukleare Molekiile bilden. Die Effizienz
dieses Prozesses gibt Hinweise darauf, dass die Atomzahlverteilung iiber
das Gitter aufgrund der Interspezies-Wechselwirkung deutlich modifiziert
sein konnte. Im folgenden werden Systeme mit einstellbarer Interspezies-
Wechselwirkung untersucht. Dabei wird zunachst eine Methode entwick-
elt, die unterschiedlichen Beitrige des System-Hamilton-Operators anhand
der Quantenphasendiffusion der bosonischen Materiewelle qualitativ und
quantitativ zu erfassen. Dabei zeigt sich neben der Modifikation der Beset-
zungszahlstatistik eine signifikante Renormierung der bosonischen Hubbard-
Parameter. Diese kann anhand der wechselwirkungsinduzierten Anderung
der Wannier-Orbitale verstanden werden. Die Arbeit schlieft mit einer
Untersuchung der Auswirkung dieses Renormierungseffekts auf die Viel-
teilchenphysik des Mischungssystems. Dabei wird gezeigt, wie sich der
Quantenphaseniibergang zwischen dem bosonischen Superfluid und dem
Mott-Isolator-Zustand aufgrund der Renormierung zu wesentlich flacheren
Gittern hin verschiebt.
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Introductory remarks

Degenerate Bose-Fermi mixtures

In recent years, quantum physics has made remarkable progress on the way
from a somewhat obscure way of calculating properties of the microcosm,
to mainstream technology. Manifestly quantum systems can nowadays be
prepared in many laboratories all around the world, they can be manipu-
lated coherently, and their behaviour can be analyzed in great detail. Much
has been learned from these systems about basic ingredients of quantum
physics, such as superposition, coherence, entanglement and many more.
Interacting quantum many-body systems are of special interest in this con-
text, due to the striking effects that strong correlations of the components
may have on the behaviour of the total system. The new field of quan-
tum simulation has emerged in this context, which aims at gaining under-
standing about many-body quantum systems with strong correlations from
experiments under suitably tailored and well-controlled conditions, where
reliable approximative theoretical treatments are rare, and full numerical
calculations hit the wall of practical feasibility in terms of computational
complexity.

The ability to experimentally create and control such quantum systems
is strongly linked to the progress in the field of cooling and trapping of
neutral atoms in recent years. Ultracold atoms seem to be ideal candidates
for quantum simulation, as they allow to reproducibly prepare systems of
adjustable size, ranging from the single-particle level all the way to truly
mesoscopic samples. Furthermore, they offer enough internal degrees of
freedom to build highly nontrivial model systems, yet still few enough to
maintain full control over the initial quantum state of the system. Even bet-
ter, they often come with tunable interactions, and the associated timescales
are very convenient from an experimental point of view. Finally, a well-
equipped toolbox of manipulation and detection techniques exists for these
systems, while new methods allowing for ever more insight are still being
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developed on a regular basis.

An additional twist has been added to the field with the introduction of
optical lattices, which are periodic potentials created by light intensity pat-
terns. These periodic potentials lead to the emergence of a band structure
and thereby open up the way to quantum simulation of condensed matter
physics, which naturally plays on a lattice structure, namely the crystal
lattice. An important step on the way towards this goal has been the
realization of the Bose-Hubbard model Hamiltonian with neutral bosonic
Rubidium atoms in a threedimensional optical lattice potential.

In the beginning, experimental research has focussed exclusively on
bosonic quantum gases. As experimental capabilities have evolved, fermionic
quantum gases, and, more recently, mixed species systems have come into
reach experimentally. In this work, we combine a resonantly interacting
Bose-Fermi mixture with a threedimensional optical lattice. Thereby, we
realize for the first time an instance of the Bose-Fermi-Hubbard model sys-
tem with tunable interactions. On the way, we clarify the roles of intra-
and interspecies interactions, occupation numbers of individual lattice sites,
inhomogeneiety and three-body losses, revealing the importance of effects
beyond the usual single-band approximation. We demonstrate how these
effects can, to a large degree, be understood in terms of a renormalized
effective single-band Bose-Fermi-Hubbard system.

vi



Outline of the thesis

In the first chapter of this thesis, we will describe the experimental appara-
tus and procedure needed for the preparation, manipulation and detection
of ultracold Bose-Fermi mixtures made up of 8’ Rb and “°K atoms. Chap-
ter two introduces the basic concepts needed to understand the physics
in optical lattices. Starting from a non-interacting perspective, we derive
the single-particle band-structure. Next, we present two experiments that
can be understood within this context, namely the demonstration of free
fermion antibunching for atoms released from an optical lattice, and the
radio-frequency association of heteronuclear molecules near a Feshbach res-
onance. We then proceed to consider interactions and introduce the funda-
mental Bose-Fermi Hubbard model. The chapter ends with the introduction
of self-consistent Wannier functions, and a simple model describing their
consequences for the many-body system, the most important one being
a significant renormalization of all Bose-Hubbard parameters. The third
chapter presents experiments suitable to demonstrate and quantitatively
evaluate the renormalization effects and changes in the filling statistics in-
duced by Bose-Fermi interactions, making use of the Quantum phase diffu-
sion induced by a sudden quench of the system Hamiltonian that freezes out
the atom number distribution. The fourth chapter investigates the mod-
ification of the many-body physics in the presence of tunable Bose-Fermi
interactions. After a short survey of the relevant theoretical predictions, we
present experiments demonstrating the dominant role of renormalization of
bosonic Hubbard parameters. The thesis ends with a short outlook on open
questions and possible future directions of research.
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One

Preparation of ultracold mixtures

This chapter describes the experimental apparatus constructed
in the course of this work as well as the experimental methods
relevant for the preparation, manipulation and detection of the
quantum gas mixture. We focus here on aspects of particular
relevance for the experiments presented in later chapters of this
thesis. A first version of the laser-cooling setup has been de-
scribed previously in [11].

1.1 Atom sources and laser cooling

Laser cooling constitutes the initial step in all experiments on degener-
ate quantum gases. This can conveniently be accomplished in a magneto-
optical trap (MOT) [121, 106] which captures atoms from vapour [109].
In our case, both atomic species are trapped in a common MOT, which
is loaded from dispenser sources'. This kind of dispenser-based common
MOT setup has been demonstrated previously in [56]. The dispensers are
heated at currents in the range of 5 to 7.5 A for several seconds. A Peltier
element attached to the dispenser mount on the outside of the vacuum
chamber, backed by a water cooling facility, assures fast cool-down as soon
as the currents are switched of. Therefore, the dispensers essentially work
as switched atomic beam sources with switch-on/off times of few seconds
[129]. Figure 1.1 shows the dispenser sources in action. The cooling light
for both Rubidium and Potassium atoms is provided by home-built tapered

DWhile Rb dispensers are commercially available, the low natural abundance of the
fermionic Potassium isotope forbids the use of standard Potassium sources. Therefore,
Potassium dispensers had to be home-built from isotope-enriched material. See [35,
129] for details.
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Figure 1.1: Dispenser atom sources for Potassium and Rubidium. Both
the Potassium (inner) and Rubidium (outer) dispensers are provided re-
dundantly. This picture shows the uppermost dispenser in operation, at a
current slightly exceeding the normal operation current.

amplifier systems seeded by grating-stabilized diode lasers? in Littrow con-
figuration [125]. Repumping light, which is needed to close the cooling cycle
transition, is provided by a second diode laser, which seeds a second tapered
amplifier in the case of Potassium, where large amounts of repumping light
are mandatory due to the small excited state hyperfine splitting [25]. In
the case of Rubidium, an injection-locked slave diode provides sufficient re-
pumping power. A schematic of the laser system can be found in appendix
C, for more details see reference [11].

The Rubidium cooling laser as well as both cooling and repumping
laser for Potassium are frequency-offset locked to additional reference lasers,
which in turn are stabilized using saturated-absorption frequency modula-
tion spectroscopy [13, 65]. In the case of Rubidium, the F' =2 — F' = (3,1)
crossover is used for locking the reference laser. Light for optical pumping
and imaging can then be derived straightforwardly from this laser using
acousto-optic modulators for frequency shifting. In the case of “°K, the sit-

2)diode types are Sharp GH0781 series for Rb and Eagleyard EYP-RWE-0770 series for

Potassium
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uation is slightly more complicated, as the low abundance of the fermionic
isotope does not permit detection of the corresponding transitions in a
standard vapor cell. Therefore, we reference our laser to the F' = (2,1)
groundstate crossover feature in the most abundant °K isotope. As this
feature is more than 600 MHz away from either of the transitions of interest,
an additional diode laser is used to provide optical pumping and imaging
light. The locking scheme for this laser can be found in appendix C. The fre-
quency offset locking relies on detection of a beat node with the respective
reference laser on a fast photodiode®. The feedback signal is then derived ei-
ther using an interferometric setup of Grimm type [139], or direct electronic
frequency-to-voltage conversion of a prescaled* intermediate frequency rep-
resentation of the beat node signal. These setups are capable of providing
up to 1 GHz lock range. The detunings of all offset locks can be changed on
the fly by computer control. It is therefore straightforward to use the exist-
ing setup for laser cooling of either isotope of Potassium simply by changing
the detuning values, and magneto-optical trapping of both **K and 'K has
been demonstrated. The magneto-optical trap for 8Rb can be loaded to
saturation in less than five seconds, while the “°K MOT takes longer to col-
lect atoms. During the time when both MOTs are operated simultaneously,
considerable losses of trapped Potassium atoms can be observed, which are
probably due to light-assisted collisions. A similar behaviour has also been
reported in reference [145]. We therefore start cooling the Potassium first
and only add Rubidium cooling light after ten seconds, thus keeping the
time window of simultaneous operation short. After three more seconds,
the dispensers are switched off and the pressure starts dropping. We leave
the cooling light on for two more seconds, the last 500 ms of which are dedi-
cated to a bright MOT phase for the Potassium atoms in which the cooling
laser is tuned very close to resonance. This phase presumably compresses
the Potassium cloud [82] and yields an increase of approximately 50% in
atom number that can be trapped in the magnetic trap. Afterwards, a short
optical molasses further cools the Rubidium atoms. Figure 1.2 shows typi-
cal MOT loading fluorescence traces recorded with two photodiodes behind
narrow spectral filters for the Rubidium and Potassium D2 wavelength, re-
spectively. Subsequently, an offset magnetic field of approximately 1G is
applied, which serves to spin-polarize both species with a short light pulse
onthe ot F=2 > F' =2and F = g — F' = g transitions, respectively.

3)Type Hamamatsu G4176-03 on a Kuhne KU0180A broadband amplifier

YA prescaler is a fast digital circuit, which will provide at its output a low-to-high

transition for every 2™-th transition at the input. Prescalers exist as integrated circuit
components and are widely used in telecommunication applications
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Figure 1.2: MOT fluorescence of Rubidium (red) and Potassium (blue)
atoms. The traces show the full range of values observed in five subsequent
experimental runs. The green curve denotes the dispenser preheating (with
no laser light present), heating, and switch-off. The loss of K atoms at
the onset of the 8"Rb MOT phase is clearly visible. The large increase in
Potassium fluorescence at the end of the MOT phase and the corresponding
slight loss of Rubidium atoms is due to the reduced detuning in the bright
MOT phase.

The number of atoms of both species that can be cooled and trapped in
the two-species MOT is limited by interspecies loss processes, as can clearly
be seen from figure 1.2. Presumably, such losses are due to light assisted
collisions. It turns out that optimum performance of the two-species MOT
is obtained if the two clouds are spatially separated on a millimeter scale
by means of radiation imbalance along one cooling beam axis.

1.2 Magnetic trapping and transport

The spin-polarized mixture is captured in a magnetic quadrupole trap. To
this end, the coils which provide the magnetic field for the MOT are instan-
taneously switched on again. In order to achieve a fast rise of the magnetic
field, a pulsed current source is used, which mainly consists of a large capac-

4



1.2. Magnetic trapping and transport

Figure 1.3: Experimental apparatus in the construction phase, without
surrounding optics. The additional coils used for background field cancel-
lation, Bias offset fields and Stern-Gerlach detection are not yet mounted.
The magnetic transport of the atoms starts in the MOT region [, through
a tube containing the differential pumping section [, bends around the
corner [J, to end up in a glass cell . The coils needed for the transport
and the subsequent magnetic trapping are mounted on the inside of the
monolithic brass blocks above and below the vacuum chamber, which also
contain a water cooling pipeline.

itor discharging into the coil through a small damping resistor upon closing
of a FET switch®. In this case, the discharging of the capacitor during the
rise time 7y can essentially be neglected, and we have 7 ~ %, where L is
the coil inductance and R the series resistance. While the capacitor is dis-
charged on a longer time scale 7, =~ R C, a programmable power supply can
gradually take over the current. By careful choice of the precharging value
for the capacitor, and the capacitance and resistance values, a rise time
7+ < 300 ps, and thus a speed-up by more than two orders of magnitude,
can be achieved. The gradient of the resulting magnetic trap is roughly
2x10% G/cm. The trapped atoms are then magnetically transported into an
optical quality glass cell where evaporative cooling takes place. To this end,
overlapping pairs of coils in quadrupole fiel configuration are placed along

S)FET = Field effect transistor. Switching of currents is usually accomplished using
Enhancement type MOSFET devices, such as STE180N10. In the following, these are
always referred to as FETs
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the transport path. By smoothly ramping the currents in neighbouring coil
pairs, the trap center can be made to move with the atoms following adia-
batically. The procedure is analogous to the one demonstrated first for cold
Rubidium atoms [59]. In our case, the transport sequence involves 13 pairs
of coils, driven by four programmable power supplies®. The whole transport
procedure takes 2.5 seconds, until the atoms end up in the glass cell. No
attempt has been made to calibrate the atom loss and heating caused by
the transport systematically, since the atom clouds after transport are both
too large and too dilute to be amenable to standard absorption imaging.
However, from the fact that a slower transport is slightly less efficient, we
conclude that this is currently not a limiting factor for the experiments.
Figure 1.3 shows the setup during the construction phase, without any sur-
rounding optics, where the transport system is clearly visible.

1.3 Trapping and evaporation of mixtures

At the end of the transport, the atoms are held in a magnetic quadrupole
trap. Forced evaporative cooling is then carried out in a two-step procedure,
which was developed in the course of this work. In a first step, radio-
frequency forced evaporative cooling of the bosons takes place in an optically
plugged magnetic quadrupole trap. The mixture is then transferred into a
crossed optical dipole trap, where further evaporation leads to simultaneous
quantum degeneracy of the two species.

Optically plugged quadrupole trap and evaporation
therein

After transport, the atoms are trapped in a magnetic quadrupole trap,
approximately 4 mm and 9 mm from the surfaces of an optical-quality glass
cell. This kind of trap allows efficient forced evaporative cooling via radio-
frequency induced spin-flips [32]. Unfortunately, magnetic quadrupole traps
are not suitable for cooling into the quantum degenerate regime due to losses
occuring near the zero crossing of the magnetic field due to Majorana spin
flips [100]. Therefore, in previous experimental setups similar to the one
presented in this work, the quadrupole trap was smoothly converted into a
QUIC trap [43]. While this kind of trap is very robust and easy to use, it
breaks the cylindrical symmetry of the original quadrupole trap and shifts

6)Delta SM15-100



1.3. Trapping and evaporation of mixtures

the trap center closer to the surface of the glass cell, approximately 5 mm
away from the geometrical center.

The experiments described in this thesis require a very high degree of
control over both travelling and standing light waves. This can not be
achieved close to the surface of the glass cell in which the experiments take
place, as parasitic reflections on the glass-vacuum interface will lead to ad-
ditional interference patterns’. Therefore, it is desirable to trap the atoms
in the center of the glass cell. Also, as we will see in section 1.5, in the
context of interspecies Feshbach resonances, a natural way to produce the
necessary high magnetic fields is by inverting the current in one coil of the
quadrupole trap pair, thus essentially creating a Helmholtz field. Unfor-
tunately, as soon as one goes away from the symmetry axis of the trap, a
strong field gradient arises in the horizontal direction, making it hard or
even impossible to hold atoms in a dipole trap. Again, these issues are
solved as soon as the trapped atoms are located in the center of the glass
cell, which is on the quadrupole symmetry axis. These considerations led
to the development of a new trapping scheme for the Rubidium-Potassium
mixture. To overcome the Majorana losses while avoiding the geometrical
problems outlined above, an optically plugged quadrupole trap can be used.
This trap design has been used in the early days of Bose-Einstein conden-
sation [31], but was given up soon after for the limitations the plug beam
imposed on experiments with the BEC. However, in the present setup, the
plugged trap is only an intermediate cooling stage, thus these limitations
do not apply here®. The optical plug is provided by P = 600 mW of blue
detuned light at a wavelength A = 760 nm, focussed down to a Gaussian
beam waist wy = 15 um. The resulting effective potential is visualized in
Figure 1.4. The plug beam points along the vertical symmetry axis of the
quadrupole trap. After a coarse initial alignment, the presence of the plug
results in substantially higher atom numbers and lower temperatures after
some evaporation in the quadrupole trap. These quantities can then be used
as a benchmark for further precision alignment. Figure 1.5 shows the out-
come of such a procedure, demonstrating the need for alignment precision
on a few-micron level, which in our case can be obtained through the use of
a piezo-controlled mirror mount. The fact that the plug wavelength is closer
to resonance for the Potassium atoms compensates for the a priori stronger

)'The outer surface of the glass cell has a broadband anti-reflection coating, yet this
coating is not suitable for the dipole trap wavelength. The inner surfaces are uncoated.

8)To our knowledge, this is the first time that optical plugging has been used for a two-

species mixture. The success of the method in the present setup has inspired several
other laboratories to build up optically plugged traps for mixtures.
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Figure 1.4: Optically plugged quadrupole trap. (a) Effective potential in
the radial direction. The plug beam repulsive potential (blue) prevents spin
flips from the trapping (black) to the antitrapping (dashed grey) Zeeman
level at the position of the Majorana hole (M). (b) The geometry can be
visualized using insitu imaging of a cloud of Rubidium atoms (top view).
The depletion at the cloud center due to the presence of the optical plug is
clearly visible. The dark feature in the lower-left part of the image is due to
local saturation of the CCD camera by the light from the plug beam. The
apparent off-center position of this saturation feature is due to a chromatic
shift in the imaging system, which is important to take into account in the
alignment procedure. (c) Spectrum of the tapered amplifier laser system
providing the plug light, with and without filtering. The light-shaded area
is cut away by the filter, yielding a suppression by up to 30 dB at the atomic
D-line resonance wavelengths (dashed lines). (d) Schematic of the optical
setup used for the plug beam. The optical fiber is necessary for spatial
filtering of the TA mode profile. The final steering mirror is equipped with
remotely controlled piezo actuators to allow precision alignment.
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Figure 1.5: Precision alignment scan of the optical plug beam. Both the
temperature (left-hand panel) and the atom number (right-hand panel) at
the end of the evaporation sequence give a clear indication of the optimum
lateral position of the plug. The lines are Gaussian fits to the data, with a
FWHM of 1.1 and 0.7 um respectively, significantly smaller than the plug
beam waist.

Majorana losses of this lighter atom. We have measured the efficiency of
the optical plug in terms of remaining atom numbers for both Potassium
and Rubidium atoms. The results are shown in figure 1.6. Although a
saturation effect is reached slightly earlier for Rubidium, both species are
clearly saturated at optical powers of no more than 400 mW, a level which
can be obtained from a standard tapered amplifier setup coupled through a
polarization-maintaining single-mode optical fiber (see also figure 1.4 (d)).
However, care must be taken in order to reduce the spectral background of
the tapered amplifier, which reaches well into the region of the D-line reso-
nances of our atoms. This task can be accomplished using an angle-tuned
edge filter, as can be seen in figure 1.4 (c¢). The optical setup for the plug
is described in more detail in [17]. After an initial compression of the trap
to a gradient of about 3 x 10?> G /cm, which increases the collision rate, we
perform radio-frequency forced evaporative cooling down to approximately
2 uK in 9 seconds. It is essential to obtain high densities especially in the
temperature regime around 100 uK to maintain interspecies thermalization
in this regime, as the interspecies collisional cross-section was found to be
suppressed by a Ramsauer-Townsend type resonance [122, 134, 6]. As the
evaporation proceeds, we gradually decrease the magnetic field gradient by
about 20%, until, at temperatures below 5 uK, the trap is decompressed
rather quickly in approximately 0.2s by a factor of 15 to 20 in order to
prevent three-body collisions. At such low gradients, gravity leads to a
substantial tilt of the potential around the minimum in the vertical axis.
It has turned out that the parameters of this decompression procedure can
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Figure 1.6: Efficiency of optical plug for two atomic species. The red and
blue points correspond to Rubidium and Potassium atoms, respectively.
With ample power requirements, saturation of the atom numbers of both
species can be reached, indicating that the Majorana hole is fully plugged.

serve as a sensitive control knob in order to tune the ratio of Potassium and
Rubidium atoms at constant final temperature.

The efficiency of radio-frequency forced evaporation in the optically
plugged trap potentially suffers from a spatially varying coupling between
the atomic spins and the oscillating magnetic field. For a transition to an
untrapped Zeeman state to happen, it is necessary that the magnetic field
vector be perpendicular to the quantization axis, i.e. the static trapping
field. However, in a quadrupole type trap, there is no unique field direc-
tion, instead, atomic spins point radially outwards in a ring around the field
minimum. Even more complicated, as atoms sag in the combined potential,
they see an increasing vertical field component. The situation is sketched in
figure 1.7. In the experiment, the RF field is created by a three-loop spiral
antenna, the field vector being essentially parallel to the antenna axis, which
is almost radial in the horizontal x-y-plane. As it turns out, the efficiency
of the process vanishes gradually at very low temperatures. To understand
this behaviour, it is important to note that the region where atoms are cut
away by the RF knife is a circle in a plane below the trap center. As the
evaporation progresses, the knife moves upwards, accompanied by a change

10
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Figure 1.7: Coupling to the RF knife in the plugged quadrupole trap. (a)
Sketch of the geometry of RF antenna, oscillating magnetic field (in blue),
the atomic cloud (in green) and the local spatial orientation of the atomic
spin (red arrows). Dark and light shaded regions indicate atoms experi-
encing good or poor coupling to the RF field, respectively. (b) Vectorial
representation of the precondition for efficient RF coupling. For a transition
to be allowed, a torque must be exerted on the atom’s magnetic moment.
(c) Absorption image of a cloud of Rubidium atoms at the end of the RF
evaporation procedure, for a very low final RF frequency of 300 kHz. The
regions of good and bad coupling from part (a) can be identified qualita-
tively. The slight asymmetry stems from the fact that in contrast to (a), the
RF antenna is slightly tilted in the real system, and the atoms are therefore
located off-axis.

in the static field direction. Towards the end of the evaporation procedure,
the dominant field component is pointing radially outwards. In this situ-
ation, the coupling to the RF field varies between full strength and zero
as one goes around the ring. At the same time, the symmetry of the trap
hinders thermalization along the ring, as the trapping frequency vanishes
along the ring. Therefore, thermal equilibrium is only reached locally in
this situation. This effect leads to a dramatic apparent increase in tem-
perature in the first few hundred milliseconds after the end of evaporation,
due to the delayed thermalization. In fact, it is possible to observe this
effect in absorption images taken from Rb clouds shortly after release from
the trap, see figure 1.7 (b). From such images, it it can be seen, that for
very low temperatures, thermal equilibrium takes hundreds of milliseconds
to establish after the end of forced evaporation. In previous experiments
with optically plugged quadrupole traps, this effect did not come into play
as the circular symmetry was broken either by gravity [31] (the plug beam
was transversal to the trap symmetry axis in this configuration) or by the
use of an elliptical plug beam [111].

In order to avoid such complications as the thermalization issue and the

11



1. PREPARATION OF ULTRACOLD MIXTURES

fading away of the couling efficiency, we stop the RF evaporation procedure
well above the critical temperature for Bose condensation, and transfer
the precooled atoms into an optical dipole trap for the final evaporation
step. This trap, the evaporation procedure therein, and the actual transfer
procedure will be discussed in the following sections.

Optical dipole trap and evaporation to degeneracy
Optical dipole potentials

Optical trapping of atoms or molecules does not require for the particles
to be in a low-field-seeking Zeeman state, thus providing more flexibility
than magnetic trapping. Instead, the trapping effect relies on the optical
dipole force. This force can be thought of as the interaction of the electric
part of the light field with the electric dipole moment which it induces in
the atom. Fundamentally, an off-resonant light field € leads to an atomic
dipole moment

d=aWw)€ (1.1)

which can be described by the frequency-dependent polarizability « (w).
The induced dipole moment has a potential energy in the light field of
intensity Z () given by [62]

AEgy = —51

2¢epC

Rla (W) Z(7) (1.2)

Therefore, it is possible to trap atoms or molecules inside a Gaussian beam
profile, provided that [« (w)] < 0. This is the operating principle of the
optical dipole trap®.

For a quantitative understanding of dipole potentials, we need to know the
atomic polarizability. For a two-level atom, the dipole moment induced by
an electric field € which harmonically oscillates at a frequency w somewhere
in the vicinity of an atomic resonance frequency wy is given by [2]

d(t) = £, (1.3)

mwi —w?+iwl

where I' denotes the natural damping of the oscillation due to decay of the
excited state. Therefore, the real part of the atomic polarizibility can be

9Tt is worth mentioning that the same line of arguments holds for a macroscopic po-
larizability of non-atomic objects. The so-called optical tweezers [5] which can trap
and manipulate objects such as polystyrol balls, viruses or even living cells, are by no
means different from a dipole trap as described here.

12



1.3. Trapping and evaporation of mixtures

expressed as
e wi — w?
m (w3 — w?)? +w?l?’

Rl (w)] = (1.4)
The most relevant situation in practice is the case of large detuning, char-
acterized by the hierarchy

I' < < w,wy, (1.5)

where § = w — wyp is the detuning from resonance. In this case, we may
assume that w &~ wy, and Wi — w? ~ —2wyd. With these approximations,
we can simplify our result to read

Rl (w)] o< —%. (1.6)
The energy of the atom is thus upshifted in the presence of blue-detuned
light (0 > 0) and lowered in a red-detuned light field (6 < 0). Therefore,
red-detuned laser beams can be used for dipole-trapping of effective two-
level atoms. If several excited states need to be considered, their individual
contributions can be summed up to give the total energy shift. In the case
of alkali atoms, the dominant contribution to the polarizability is related
to the D-line doublet. The resulting ground state energy shift in the case
of linearly polarized light becomes [62]

AE =1 (AEp +2AEp). (1.7)

A crossed dipole trap

The optical dipole trap used in the experiments described in this thesis
is formed by the intersection of two laser beams crossing under an angle
of almost 90° in the horizontal plane. The light is derived from a single
Yb:YAG laser'? operating at a wavelength of A = 1030 nm, yielding almost
identical AC Stark shifts for both species. The main design criterion in the
context of this thesis was to make the dipole trapping potential as flat as
possible in order not to introduce inhomogenieties. Essentially, this can be
achieved by chosing large beam waists for the trapping beams. However,
the trap can not be made arbitrarily flat in the vertical axis, as it still needs
to hold atoms against gravity. Therefore, the trap is formed by elliptical
beams with an aspect ratio of almost four to one. The dipole beams have

10)ELS Versadisc 18W
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1. PREPARATION OF ULTRACOLD MIXTURES

(a) (b) (©)
£

Figure 1.8: Effective potentials of the crossed dipole trap in the vertical
direction in the presence of gravity for both Rubidium and Potassium, (a)
for maximum compression, (b) for intermediate compression still above the
Rubidium trap bottom, and (c) for very weak compression, in between the
trap bottoms of the two species. The mass ratio of the two species provides
a straightforward mechanism for species-selective evaporation.

orthogonal polarization and are frequency offset with respect to each other
by 20 MHz using acousto-optic modulators (AOMs). This prevents Raman
transitions between the two beams. The beam waists are w;, = 150 pm and
w, = 45 pm in the horizontal and vertical direction, respectively, leading to
a minimum Rayleigh length

2
W,
2R = TO (1.8)

on the order of 6 mm, which allows to neglect the longitudinal contributions
for all practical purposes. The resulting potential in the case of a symmetric
trap (equal confinement in x and y directions) thus essentially takes the form

Vi = Vo (727 e/} e g (19)

This effective potential is visualized in figure 1.8. Figure 1.9 shows the
resulting trap depths and harmonic trap frequencies for both the horizontal
and vertical axes and both species. It should be pointed out that while the
crossed structure can easily be visualized with thermal clouds on the order of
10 uK (see Figure 1.10), the trap can be considered perfectly ellipsoidally
symmetric in the ultracold regime. This can be seen from the harmonic
approximation

Ay, (2_20)2) (1.10)

" O( wp  x(20) W
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Figure 1.9: Parameters of the crossed dipole trap. (a) Effective trap depth
in the presence of gravitational sag for Rubidium (red curve) and Potassium
atoms (blue curve). The inset shows the definition of the trap depth in
turn of the barrier height in the vertical direction. For intensities above
approximately twice the respective trap bottom value, the depth linearly
increases with intensity. (b) Effective trap frequency in the vertical direction
for Rubidium (solid red curve) and Potassium atoms (solid blue curve). The
dashed lines show the harmonic approximation in the absence of gravity.

where —% w, < zg < 0 is the equilibrium position in the presence of gravita-
tional sag!!, and x(zp) < 1 parametrizes the local minimum in the vertical
direction, the trap frequency of which is always reduced as compared to the

sag-free case.

Evaporation in the dipole trap

Evaporative cooling in the dipole trap is achieved by symmetrically ramp-
ing down both dipole beams, thus reducing the effective trap depth. The
rampdown is exponential and takes 4s. As can be seen from figure 1.8,
the trap is always deeper for Potassium as compared to Rubidium due to
the higher mass, thus this process selectively only expels Rubidium from
the trap. However, significant amounts of Potassium are lost due to in-
elastic interspecies collisions upon the density increase associated with the
formation of a BEC.

Using the evaporation procedure outlined above, we regularly achieve
BEC of up to 4 x 10° Rb atoms in the |F' = 1, mp = 1) state coexisting with

D The Gaussian potential features a maximum restoring force at half the waist away
from the center, where the function changes curvature. For larger excursions from
the center, the restoring force gradually drops to zero, and no equilibrium exists for a
constant external driving force, such as gravity.
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1. PREPARATION OF ULTRACOLD MIXTURES

(@) (e)

Figure 1.10: Visualization of the dipole trap isopotential surfaces with ther-
mal atoms. (a)-(d) horizontal view along one dipole beam. Starting from a
single-beam dipole trap (a), the relative alignment of the beams is improved
(b) to (d) resulting in a final aspect ratio of approximately 1 : 4. During
this process, less and less atoms escape along the beam axes, where the con-
finement is weakest. (e) vertical view, revealing the cross structure. The
asymmetry in the image reveals a slight intensity imbalance between the
two dipole beams. The picture has been subjected to a 5 px Gaussian blur,
in order to suppress imaging artifacts. Note that once the temperatures are
low enough, the atoms sample only a very small region of the trap, which
then appears perfectly round.

a degenerate Fermi gas of up to 3 x 10° K atoms in the |F = 9/2, mp =
—9/2) state at T =~ 0.2Tp, where Tr is the Fermi temperature in the
system. Lower temperatures down to 7'~ 0.15 Ty can be obtained at lower
fermion-to-boson ratios.

After reaching degeneracy with the two-species mixture, it is possible
to recompress the trap by increasing the trapping beam intensities. It
should be noted that this rampup also decreases the sag of the clouds and
improves their spatial overlap. Figure 1.11 shows the gravitational sag for
both species as a function of the dipole trap depth. From this measurement,
the existence of a regime of good spatial overlap is clear, as well as the
significant difference in the trap bottom for the two species, which allows
the controlled removal of all bosons for experiments on pure Fermi gases
[131, 138, 64, 137]. Furthermore, we can make use of the gravitational sag in
order to calibrate the harmonic trapping frequencies of our dipole trap. To
this end, the trap is strongly compressed adiabatically, such that the atom’s
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Figure 1.11: Gravitational sag for the two species for various depths of the
dipole trap. The solid lines are calculated using a harmonic approximation
above the respective trap bottom, with a global intensity scaling factor as
the only free parameter. The relative vertical position of the experimental
curves has been corrected for chromatic aberrations of the imaging system.

center of mass moves upwards. If the intensity is then suddenly lowered, the
atoms fall back towards the center and a vertical center of mass oscillation
sets in. As the plane defined by the dipole beams slightly deviates from the
horizontal by about two degrees, such an oscillation can also couple to the
transverse degrees of freedom, such that all trap frequencies can in principle
be measured by this single excitation.

Rampover procedure from quadrupole to dipole trap

In the process of transfering the atoms from the plugged quadrupole trap
to the crossed optical dipole trap, the most important issue is to preserve
the spin polarization of the atomic sample. This is complicated by the fact
that in the quadrupole trap, there exists no globally defined quantization
axis. Instead, the orientation of the atomic spins is prescribed by the local
magnetic field, pointing along the radial direction in the horizontal plane,
but displaying also a finite axial component away from this plane. At the
end of the transfer procedure, however, we want to have a well-defined
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1. PREPARATION OF ULTRACOLD MIXTURES

quantization axis throughout the whole sample.

Maintaining spin polarization

The basic idea to perform the required breaking of the symmetry in a way
which will preserve the spin polarization of the atoms is guided by the obser-
vation that the magnetic field configuration created by the quadrupole coils
does provide a rather well-defined field orientation, in the region around the
vertical axis, sufficiently far away from the magnetic field minimum which
provides the actual trap. We will therefore try to pull the magnetic field
zero out of the sample along the vertical axis, in a controlled way, leaving
the atoms in this region of well-defined field orientation. To this end, we
ramp on the crossed dipole trap to a high intensity. Thereby, we pin the
atomic position to the center of the coil geometry'?. Subsequently, part
of the current which creates the quadrupole field is made to bypass the
upper coil through a variable shunt'®. Thereby, the magnetic field mini-
mum (and thus the Majorana hole) moves upwards. At the same time, the
strong vertical confinement of the crossed dipole trap prevents the atoms
from following. Thus, by choosing suitable shunt currents, we can make
sure that the zero of the magnetic field is located well above the trapping
volume. Therefore, the magnetic field is now pointing in the vertical direc-
tion at the position of the cloud. To maintain the spin polarization upon
switchoff of the magnetic trap, an additional offset field is applied in the
horizontal direction. This has to be done adiabatically with respect to the
local Larmor frequencies. The additional offset field is created by a pair
of helper coils with the trapped atoms in the symmetry center, therefore,
no additional gradients are introduced by this field at the position of the
atoms. The magnetic field minimum however will be pulled further up-
wards along the offset field axis. This makes sure that the minimum does
not cross the cloud position at the moment the quadrupole trap is switched
off. This is especially important as we cannot exclude eddy currents in the
first few hundred microseconds of the switchoff process, which might cause
the actual field minimum to wiggle around in a rather uncontrolled way.
The currents in the quadrupole coils are then quickly ramped to zero, and
subsequently switched off alltogether. At the same time, the role of the

12)In fact, it has turned out to be favorable to align the dipole trap a few micron below
this position, which might be due to the role of gravity.

13)This shunt consists of a FET with a linearizing analogue driving circuit in series with

a small resistor. Typically, we sent less then 2 A through this shunt, so heat dissipation
is not a serious issue.
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1.4. State preparation and analysis

offset field to define the quantization axis is taken over adiabatically by
an additional pair of coils with their symmetry axis along the horizontal
x-axis. This step is needed for technical reasons only, as the helper offset
coils in the preceeding step consist of ordinary wire and lack any cooling,
mainly due to space constraints. They would therefore overheat and even-
tually burn through within few seconds. The second pair of coils taking
over the job is water-cooled and can stand the necessary currents indefi-
nitely. The adiabaticity of this rotation of the quantization axis is trivially
fulfilled in a simple make-before-break switch-on/off configuration, as the
current rise timescale dictated by the coil inductance is slow compared to
the sub-microsecond Larmor period. As a final step, the plug is switched
off instantaneously'*, and the dipole trap evaporation procedure described
in the previous section starts immediately afterwards. The whole procedure
is illustrated in figure 1.12.

1.4 State preparation and analysis

An important point to keep in mind in the preparation of a two-component
mixture is stability with respect to relaxation of the internal states of the
atoms. Whether or not a particular mixture of hyperfine states is stable
depends on multiple factors. Relaxation mechanisms which have to be taken
into account are hyperfine relaxation, dipolar relaxation or spin exchange.
These mechanisms provide ways for energy stored in the internal states of
the atoms to be transferred into the external degrees of freedom. Typically,
the energy released in this process is large enough to lead to particle loss
from the trap. It is therefore necessary to work with a combination of states
in which these processes are suppressed. This suppression is provided by
approximately or perfectly conserved quantities. These can be

e Total angular momentum. Although the spin angular momentum
of each individual atom is usually not a good quantum number in
an interatomic collision event, the total angular momentum of the
pair and it’s projection are always conserved. The same holds to
a good approximation for the total spin angular momentum of the
pair, as the release of orbital angular momentum from an incoming
s-wave is suppressed due to the near-perfect spherical symmetry of

1) Adiabatic rampdown, which intuitively seems more favorable, was experimentally
found to result in lower atom numbers and higher temperatures in the transferred
sample. This might be due to spontaneous scattering of photons, which counter-
intuitively may increase for a weaker plug.
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Figure 1.12: Mlustration of the ramp-over from the plugged quadrupole
trap to the optical dipole trap, in the x-z plane, with a schematic (not to
scale) representation of the magnetic field (black arrows), the currents in
the quadrupole, helper, and polarization offset coils, the laser beams for the
optical plug (blue) and the x-axis dipole trap (red). The overall potential
minimum always remains within the central green ellipse. The magnetic
field minimum (if any) is indicated by the green cross. (a) Tightly com-
pressed quadrupole magnetic trap for RF evaporation. (b) Decompressed
quadrupole trap. (c) Dipole trap beams are ramped up. (d) The upper
quadrupole coil is partially shunted, and the magnetic field minimum is
vertically pulled out of the cloud, which remains pinned by the dipole
trap. (e) A vertical offset field is applied to maintain spin polarization.
(f) Quadrupole coils are switched off, the magnetic field minimum disap-
pears along the vertical axis. (g)-(h) Horizontal offset field is gradually
ramped up, adiabatically rotating the quantization axis into the horizontal
x direction. (i) The plug beam is switched off, transfer is complete.

20



1.4. State preparation and analysis

the system!. In our case, a safe haven would be the fully stretched
state |F = 2,mp = +2) @ |[F = 2, mp = +3), which are used in
the magnetic trap, or the opposite state |F' = 2, mp = —2) ®@ |F =
%, mp = —g), which is of limited use as it is hard to prepare from the
magnetically trappable states without transient occupation of instable

state combinations.

Energy. Alternatively, it is possible to construct a safe haven from
the conservation of energy. To this end, it has to be made sure that
either the state combination of interest is the absolute ground state of
the system!®, namely the combination of the lowest two Zeeman states
|[F'=1,mp=+1)®|F =5, mp = —5). This combination of states is
used for most of the experiments described in this work, as it has the
additional benefit of featuring a practically usable interspecies Fesh-
bach resonance, see section 1.5. However, one also finds good stability
of the mixture in any combination of states where ' Rb is in it’s lowest
Zeeman state, while “°K is in any state of the F' = 2 hyperfine man-
ifold. This is due to the fact that both species have different Landé
factors, which makes the Zeeman splitting between the mp states of
the bosons larger than the corresponding splitting for the fermions by
a factor of approximately two at any (reasonably small) magnetic field.
This means that in any possible spin exchange process, the amount of
Zeeman energy released by the fermion would be much smaller than
what the boson needs to pick up, and the kinetic energies in the sample
are insufficient to provide for the missing energy. These state combi-
nations are used transiently in the state preparation procedure, and
one of them, namely the |[FF =1, mp = +1) +|[F =9/2,mp = —7/2),
which is the second-lowest in terms of Zeeman energy, is used in the
interaction switching procedure described in section 1.6.

Figure 1.13 shows the lifetime for various combinations of hyperfine states
at a magnetic bias field of 13.4G. The efficiency of the protection via

15)Non-spherically symmetric interactions, such as direct magnetic coupling between the
spins, can safely be neglected. However, it is interesting to note that in a deep optical
lattice, the contribution of higher order partial waves to the scattering event can not
be neglected a priori, as both rotational symmetry is broken and kinetic energies are
high enough for penetration of angular momentum barriers.

16)Clearly, the absolute ground state for two atoms would be the rovibrational ground
state of a singlet molecule. However, we do not deal with deeply bound molecules
in this work, they are nothing but a loss channel to the metastable absolute Zeeman

ground state |[F'=1,mp =+1)® |F = %7mF =9,

2
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Figure 1.13: Comparison of stability for various combinations of hyperfine
states. The shaded areas correspond to purely exponential decay, with
lifetimes of 10, 2.2, and 0.08 s respectively, assuming 5% shot-to-shot atom
number fluctuations and a lifetime uncertainty of 25%.

conserved quantities is easily seen, as compared to the disastrous behaviour
of the worst case scenario of preparing Potassium in its absolute ground
state, while leaving Rubidium in the |F' = 2, mpr = +2) initial state, giving
rise to hyperfine relaxation. Within the experimental uncertainties, the
lifetimes for all protected state combinations can be considered the same.
Therefore, for all experiments presented in the remainder of this work, we
transfer both atomic species into their respective Zeeman ground state.
This state preparation procedure can in principle take place at any time
during the evaporation ramp, still, we found it advantageous to prepare
the Rubidium ground state right after transfer from the quadrupole trap'’.
The transfer of the Potassium is delayed for 3.5s to minimize interspecies

losses'®.

17) Condensation of Rubidium works best in the F = 1 manifold already in the absence
of Potassium.

18)Strictly speaking, the above arguments only hold at very low temperatures. For hotter
samples, the energy-conservation approach to suppression of bad collisions works less
well, giving rise to more losses.
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1.4. State preparation and analysis

Preparation of Rubidium in the ground state

First, Rubidium is transferred to the F' = 1, mp = 41 state by means of
microwave rapid adiabatic passage (RAP). Using a 250 kHz wide, 10 ms
linear frequency sweep, we achieve transfer efficiencies better than 0.97. To
prevent the remaining F' = 2 atoms from fatal collisions with the F' = 1
atoms, we apply a few millisecond resonant light cleaning pulse on the
5S1pF = 2 — 5P3 F' = 3 o" transition. We have not observed any
I = 2 atoms after application of this cleaning pulse, which leaves the
I =1 atoms unaffected.

Preparation of Potassium in the ground state

The absolute ground state of “°K atoms in the presence of a magnetic
field is the |F = 2, mp = —2) state. This state features a practically
useful interspecies Feshbach resonance with the Rb |F = 1, mp = +1)
state at 547 Gauss [117, 86]. Therefore, we transfer the Potassium atoms
all the way from mp = +% to mp = —% by radio frequency adiabatic
passage in a single 60 ms long, 400 kHz wide downward sweep. Within our
detection limits, this process has unit efficiency!'®, also, it can be stopped
at any point in between to prepare moderately pure samples of any of the
ten F' = g Zeeman components. If preparation of other Zeeman states
is required with higher fidelity, this can be achieved using RF RAP at a
higher magnetic offset field, where the quadratic Zeeman shift allows for
better state-selectivity, or using Raman hyperfine transfer to be discussed
in section 1.6.

Detection of internal states

Spin state analysis can be achieved in a Stern-Gerlach type experiment
[55, 144]. After switchoff of the trap, the free-falling atomic cloud is sub-
jected to a pulsed magnetic gradient field for a few milliseconds. The atoms
experience a force, depending on the strength of the field gradient and the
magnetic moment of their internal states. The predominant field gradient is
oriented orthogonally both to the vertical falling direction of the atoms and
the offset magnetic field providing the quantization axis. The atoms will

19 A fraction of ~ 5% of the Potassium atoms initially in the mp = +% state ends up in
the mp = f% state at the end of the RAP. These atoms can in principle be removed
from the trap using a combination of microwave excitation to the F' = é hyperfine
state, and subsequent optical push-out. In the context of this work, we have not used
such a procedure in order to avoid associated heating processes.
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Figure 1.14: All Zeeman components of *°K atoms revealed in a Stern-
Gerlach experiment during time of flight.

thus aquire a transversal velocity component depending on their magnetic
moment. Thereby, the internal state of the atom is encoded in the position
of the atomic cloud after time of flight, which can then be evaluated using
absorption imaging (see section 1.7). A sample picture showing all Zeeman
components of the ' = % groundstate hyperfine manifold of “°K atoms can
be seen in figure 1.14.

For Rubidium, the usual imaging procedure only detects atoms in the
F = 2 hyperfine manifold. However, most experiments presented in this
thesis are carried out using Rubidium atoms in the lower F' = 1 manifold.
In order to detect these atoms, they are optically repumped to the F' = 2
manifold by a short light pulse at the end of time of flight expansion. This
repumping pulse can easily be combined with the aforementioned Stern-
Gerlach technique. Moreover, it is possible to take two subsequent pictures
of the same Rubidium cloud with a repumping pulse in between the pictures,
thus selectively detecting the population of one hyperfine manifold on either

picture?.

1.5 Ultracold collisions, and tuning via
Feshbach resonances

Ultracold collisions

The predominant interactions between neutral ground state atoms are elas-
tic two-body collisions. While in principle, the physics of scattering pro-
cesses from interatomic Born-Oppenheimer potentials is quite complex,
there are some particularities of ultracold collisions, which in effect will
allow us to ignore many of the details, and come to a very simple effec-

20)The atoms that were detected in the first picture are usually no longer present when

the second picture is taken, unless the time between images is very short, because of
the recoil momentum the atoms aquire by scattering photons from the imaging beam.
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1.5. Ultracold collisions, and tuning via Feshbach resonances

tive description of interactions. Specifically, the following points need to be
taken into account:

e Typical particle densities are on the order of 103 cm = for a standard
BEC, and 10 cm™ on a single site of an optical lattice. Usually,
the mean interparticle distance is larger than the typical scale of the
interaction potential by at least one order of magnitude. It is there-
fore reasonable to assume that two-body collisions are the dominant
process, while three-body collisions are significantly less frequent.

e Once the temperature is low enough, the kinetic energy at the begin-
ning of the collisions can safely be neglected, that is, the collisions
happen right at the threshold of the respective scattering channel.

e As hardly any kinetic energy can be redistributed in the collision,
elastic collisions dominate, unless a change of scattering channel is
resonant, i.e. the difference in total energy between the two channels
is smaller than the very small kinetic energy spread in the sample.
Otherwise, inelastic processes only happen in three-body collisions,
where they are almost always accompanied by trap loss of one or
more of the atoms involved?!.

e The interaction potentials in question are spherically symmetric?2.
Therefore, total angular momentum is conserved, and it is useful to
treat the scattering process in a partial-wave expansion [27]. Due to
the lack of kinetic energy, high partial waves do not contribute to
the outcome of the collision process, as the corresponding rotational
barrier effectively hinders the incoming wave from entering the central
region where it could be affected by the interaction potential. Thus,
only the lowest partial waves contribute, and in the ultracold limit,
we only need to consider s-wave contributions.

e Quantum statistics needs to be taken into account properly. If a col-
lison is to happen between indistinguishable particles, then the total
wavefunction needs to be symmetric (antisymmetric) with respect to

2D The molecular energies released in such processes in the form of kinetic energy are
almost always orders of magnitude larger than the trap depth.

22)Strictly speaking, there is a very weak anisotropy both due to direct magnetic dipole-
dipole coupling and molecular hyperfine structure. These effects are too small to be of
any importance in the present context. See e.g. [91] for the observation of such effects
and [57] concerning their possible consequences in optical lattice systems.
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Figure 1.15: Ultracold short-range s-wave collisions. (a) The occurence
of scattering spheres in the collision of two momentum components of a
Bose-Einstein condensate mapped to real space in time of flight expansion
demonstrates the predominant s-wave character of ultracold collisions (See
main text for details). (b) The s-wave scattering length can be interpreted
as an effective radius of hard spheres possessing the same total scatter-
ing cross section. (c) Interpretation of the scattering length in terms of
the asymptotic phase shift. The real scattering wavefunction (red curve)
for the short-range Born-Oppenheimer potential (black curve) looks like a
phase-shifted free wave (dashed green curve) at large internuclear distances.
The s-wave scattering length can be understood as the extrapolated inner-
most node of the phase-shifted wave (indicated by green arrows), which
can be either negative (upper panel), corresponding to effective attractive
interactions, or repulsive (lower panel, where the potential depth has been
increased slightly in order to accomodate a bound state), yielding an effec-
tive repulsive interaction, albeit from a binding molecular potential curve.

particle exchange for bosons or fermions, respectively. More specif-
ically, bosons in the same hyperfine state can only collide in even
partial waves, while fermions are restricted to odd partial waves, and
thus do not collide at all in the zero-kinetic-energy limit.

From the considerations above, we know that we need to take into account
elastic s-wave collisions between two bosons, or between one boson and one
fermion. In either case, the outcome of the collision can be described by a
single parameter, the collisional phase shift ¢ aquired by the outgoing s-
wave, or more conveniently and more commonly, the corresponding s-wave
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1.5. Ultracold collisions, and tuning via Feshbach resonances

scattering length a, defined in the zero kinetic energy limit by

1 .

2=—1 t 1.11

L= — Jim cot . (1.11)
where k is the modulus of the incoming wavevector. The physical mean-
ing of the s-wave scattering length a is illustrated in figure 1.15 (¢). The
collisional cross section is given by

o =4ma? (1.12)

which gives rise to a nice intuitive notion of the scattering length: We can
think of it as the radius of a hard sphere for which the collisional cross
section would be the same, i.e. the simplest classical analogon to the range
of the interaction potential, see figure 1.15 (b). The s-wave character of in-
teractions can be demonstrated in a simple, yet beautiful collisional exper-
iment. Starting from a BEC at momentum zero, we transfer some fraction
of the atoms to momentum 4+ 2 hk by means of Bragg diffraction from a
pulsed standing wave. After this pulse, the various momentum components
propagate freely and separate during some time of flight. However, due
to the high initial density, some collisions take place in the center of mass
frames moving with velocities + % Due to the elastic s-wave character of
these processes, the relative momenta of the outgoing atoms are distributed
isotropically on spheres of radius A k respectively. After time of flight, this
momentum distribution is converted into a spherical density distribution,
as can be observed in figure 1.15 (a).

The Fano-Feshbach resonance mechanism

One of the most striking assets in experiments with ultracold quantum gases
is the ability to tune interatomic interactions. This possibility goes back
to the Fano-Feshbach resonance mechanism, which shall be outlined very
briefly here. More details, both on theoretical and practical aspects, can be
found in a detailed review [88]. The basic mechanism behind a Feshbach
resonance is depicted in figure 1.16. For a resonance to occur, we need
at least two distinct channels in which the collision may take place, which
at asymptotic internuclear separations would correspond to two different
combinations of atomic quantum numbers. For the alkali atoms of interest,
these typically correspond to a different hyperfine state for one of the col-
lision partners. The quantum numbers used for the description of binary
molecules with short internuclear separation are different from the atomic
ones. As a consequence, the coupling scheme of angular momenta changes
with the internuclear distance, and the two atomic channels are coupled at
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Energy
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Internuclear distance

Figure 1.16: Feshbach resonance mechanism. The basic ingredients are two
scattering channels with different Born-Oppenheimer potentials, asymptot-
ically connected to different hyperfine states of one of the atoms. At in-
termediate internuclear distances, the recoupling from atomic to molecular
hyperfine structure mixes the channels, leading to a resonant contribution
to the scattering phase (and hence the scattering length) in the vicinity of
a bound state in the closed channel.

intermediate distance. Therefore, some fraction of the incoming wave in the
input channel of the collision may leak into the second channel, where it
will pick up a collisional phase different from the one acquired in the input
channel. However, the effect of such interchannel coupling will in general be
small, unless resonantly enhanced by the appearance of a bound state in the
second channel close to the threshold defined by the kinetic energy of the
collision, which, for the cases of interest here, can safely be set to zero. In
the vicinity of such a resonance, the scattering length will show a pole, going
to negative (positive) infinity when approaching the bound state from be-
low (above). Fano-Feshbach resonances have first been observed in collision
experiments with nuclear matter, where the kinetic energies are substantial
and largely tunable. The appearence of a Feshbach resonance feature in ul-
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1.5. Ultracold collisions, and tuning via Feshbach resonances

tracold collisions however would require a bound state in the second channel
very close to threshold, which rarely happens in nature. However, the two
channels in question often correspond to different magnetic moments, al-
lowing for tuning of the energy offset between the different potential curves
exploiting the Zeeman effect. Therefore, it is often possible to continously
tune over the resonance feature by applying appropriate magnetic fields.
In many situations, a parametrisation of the resonant enhancement of the
scattering length of the form

a(B) = ay, (1 - = _ABO) (1.13)

is possible, with ay, the off-resonant background scattering length of the in-
put channel, By the resonance center position, and A the resonance width,
which is affected both by the strength of the interchannel coupling and
the differential Zeeman sensitivity of the two channels. For a resonance
to be of interest in the experiment, both the resonance position and the
quality factor A/Bj need to fall into practical windows. In order to detect
the presence of Feshbach resonances, particle loss rates can be observed for
varying magnetic fields. In the vicinity of the resonance, the interchannel
coupling opens an additional loss channel due to resonantly enhanced for-
mation of molecules. This technique, known as Feshbach spectroscopy, has
been performed for many atomic species and scattering channels, yet, new
resonances are still being found on a regular basis, and serve to improve the
knowledge about the interatomic potentials.

Heteronuclear Feshbach resonances in the 8"Rb*'K
mixture

A practically useful Feshbach resonance for pure 8"Rb gases is known to
exist at 1007 G [101], which is beyond the field range which can easily be
covered with our apparatus. A very narrow resonance exists at 551.5G
[101], and can be used for calibration purposes. The observation of this
high quality factor (BAO ~ 4 x 107%) resonance in the loss of Rubidium
|FF = 1,mp = +1) atoms (see figure 1.17) also serves as a benchmark for
the magnetic field short term stability and long term reproducibility. How-
ever, such extremely narrow resonances are usually not suitable for tuning
of interactions. In the context of this thesis, we are primarily interested in
tuning the interspecies interaction. Several Feshbach resonances have been
predicted and observed for the combination of 8"Rb and °K [140, 76, 86].

The most useful resonance occurs in the absolute ground state channel
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Figure 1.17: Feshbach spectroscopy on a pure bosonic 8’Rb quantum gas.
(a) Atom loss feature induced by a Feshbach resonance in the ground state
|FF'=1,mp = +1) ® |[FF = 1,mp = +1) collision channel. The observed
width indicates a magnetic field stability better than 50 mG. (b) Reso-
nantly enhanced three-body loss mechanism close to the two-body avoided-
crossing. The third atom involved in the collision carries away the excess
kinetic energy and is usually lost from the trap.

|[F=1,mp=+1)Q|F =%, mp = —3) and is located at By = 546.9 G with
a width of 2.9 G [86]. This resonance has previously been exploited to tune
interspecies interactions in bulk [117]. In order to locate the resonance, we
perform Feshbach spectroscopy with the mixture in the absolute hyperfine
ground state. To this end, we expose the mixture in the dipole trap to a
homogeneous magnetic field for 500 ms, and measure the number of remain-
ing atoms after this hold time. The results can be normalized to the atom
numbers obtained without the magnetic field present to yield the resonant
loss feature, which is shown in figure 1.18. From this measurement, we
obtain the resonance position By = 546.97 + 0.09 G and an experimental
width? of 2.04+0.2 G, in good agreement with the data from reference [86].

In the course of these investigations, a smaller loss feature could some-
times also be observed, which we attribute to a small admixture of Ru-
bidium atoms in the |F' = 1, mp = 0) state?’. Some evidence of a similar

23)The experimentally observed width in loss-based Feshbach-spectroscopy depends on

details of the specific experimental situation, such as the particle density or the trap
depth, and should therefore not be compared with the theoretical width, which solely
depends on the molecular physics of the colliding pair.

24)This admixture can be caused by Raman transitions driven by the two beams of the

dipole trap, the frequency difference between which becomes resonant to the |F =
1,mp =+1) = |F = 1,mp = 0) Zeeman transition at intermediate magnetic fields
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Figure 1.18: Feshbach spectroscopy on mixture of 8Rb and “°K atoms in
the collision channel |[F ' =1,mp = +1) ® |F =, mp = —2) in the crossed
dipole trap. The resonance features for fermions (upper panel) and bosons
(lower panel) coincide within the experimental resolution. The left-right
asymmetry around the resonance is due to losses during the relatively slow

ramp through the resonance field region.

feature at the same field can be found in works both by the Hamburg and
Florence groups (see e.g. figure 4.8 in [116] and figure 6 in [107]). A Fes-
hbach resonance in the [F = 1,mp = 0) ® |F = %,mp = —3) collision
channel has been predicted in [140]. However, previous attempts to cleanly
demonstrate this feature were hindered by complications in the state prepa-
ration [36]. We have been able to prepare a mixture of these states with
a purity exceeding 90% of the mp = 0 component. To this end, we have
ramped up the magnetic field to approximately 206 G with the atoms still
in the fully stretched spin state. After transferring the Rubidium atoms
to the |FF = 1,mp = 1) state by means of microwave frequency RAP,
we lower the field to 132 G, where we prepare a fifty-fifty mixture of the
mp = +1 and mprp = 0 state by RF excitation at 91 G, with a pulse du-
ration far beyond the coherence time given by the magnetic field stability.
Although this scheme halves the number of available mp = 0 atoms, it is
relatively stable, which allows a reasonable signal-to-noise ratio with few
measurements. Next, we need to clean away the residual |F' =1, mp = +1)

around 28 G in our case.
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Figure 1.19: Feshbach spectroscopy on mixture of 8’Rb and “°K atoms in
the |F'=1,mp = 0) ® |F = 3, mp = —3) collision channel in the crossed
dipole trap. (a) The atom loss signature (shown for fermionic component)
is obscured by instabilities in the corresponding state preparation sequence.
(b) The resonance can be observed more clearly by observing the increased
heating in the vicinity of the resonance (shown for the bosonic component).
The dashed line indicates the extracted resonance position, while the dotted
line represents the closeby resonance in the |F' = 1,mp = +1) ® |F =
9

2, mp = —35) channel.

population. In order to do this, we lower the magnetic field to 49 G, which
allows us to transfer these atoms into the |F' = 2, mpr = +1) state by means
of microwave frequency RAP. Finally, we lower the field further to approx-
imately 31 G, where we clean away these atoms by a resonant light pulse of
approximately 1ms duration, which leaves the |F' = 1, mr = 0) population
unaffected. Finally, we transfer the Potassium atoms to the mp = —g state
by RF RAP and ramp the magnetic field back up. Using this sequence, we
were able to observe the Feshbach resonance in the corresponding channel
cleanly, as can be seen in figure 1.19. While loss data are still a bit obscured
by residual instabilities in the preparation sequence, the resonance can very
clearly be observed in the heating rates of the mixture in the dipole trap.
The observed resonance position is located at By = 546.0 £ 0.1 G. An in-
dependent confirmation of this resonance has also been reported soon after
this measurement in reference [86].

Feshbach offset field

As outlined above, the Feshbach resonance of practical interest for our
experiments is located around By = 546.9G. Such strong homogeneous
magnetic fields are hard to realize in the experiment unless the distance
from the current-carrying coils to the trap position is small. The coils
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1.5. Ultracold collisions, and tuning via Feshbach resonances

of the quadrupole trap are located closest to the atoms, they provide a
good approximation of an anti-Helmholtz-field configuration. Therefore,
the straightforward approach here is to invert the current in one of these
coils?®. Using this configuration, the interspecies Feshbach resonance can be
addressed using currents as low as 35 A, which is a big advantage in terms of
power dissipation and thermal stability. Also, the corresponding currents
can be switched using power MOSFETs. The current is derived from a
regulated power supply?®. We have set up an external feedback loop con-
trolling the voltage programming port of the power supply. The error signal
is derived from a current measurement using a high-sensitivity compensat-
ing inductive current sensor?’. Additionally, the current programming port
is used to limit the step response of the power supply during ramp-up of the
magnetic field, thus preventing overshoots, ringing and oscillations which
may occur due to the complex interplay between coil and wire inductance,
output capacitance of the power supply, and the phase reserve of the power
supply’s internal feedback loop.

Calibration of magnetic fields and precision of
Feshbach control

In principle, magnetic fields can be calibrated very sensitively via microwave
spectroscopy on the F' =1 — F = 2 hyperfine transitions of 8Rb. Atoms
transferred to the F' = 2 manifold are detected state-selectively by imaging
without repumping light. This approach is however technically limited to
fields of up to approximately 200G, due to the finite bandwidth of our
microwave power amplifier. Above this value, we remove the Rubidium
atoms from the trap and perform radio frequency spectroscopy on the |F' =
Somp = —2) = |F = 2, mp = —I) transition in Potassium. A Stern-
Gerlach detection scheme is then applied in order to determine the transfer
into the mp = —% state as a function of the applied radiofrequency. A
typical calibration spectrum, taken with 100 ms square pulses with a power
level of —5 dBm is shown in figure 1.20. The line center position of 80.5563+
0.0002 MHz corresponds to a magnetic field of 553.907 + 0.005 G. From the
linewidth of 3.7 + 0.3 kHz, we deduce a magnetic field stability over 100 ms

of ~ 55mG@ at these high fields, corresponding to a noise level of 1 x 1074,

25)This can be accomplished using MOSFETSs as multiplexing elements in combination
with an external break-before-make logic.

20)FUG NLN750M15, with a current rating of 50 A and a noise level below 5 x 10~%.
2T)Danphysik Ultrastab 860R
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Figure 1.20: Radiofrequency spectrum of “K |F = %, mp = —3|F =
g,mF = —%) transition at high magnetic field. The solid line is the re-

sult of a Gaussian fit, displaying a linewidth of 3.7 & 0.3kHz. The finite
off-resonant background is due to both imperfect initial-state preparation
and signal-to-noise issues in the absorption images. The inset shows the
magnetic field sensitivity of the transition, given by the Breit-Rabi formula.

The day-to-day reproducibility is beyond our measurement resolution. An
additional calibration point in the direct vicinity of the resonance position
of interest is obtained by the homonuclear Rubidium Feshbach resonance
in the |[F = 1,mF = 1) + |F = 1,mF = 1) channel mentioned above.
By comparison of the resonance position reported in reference [101] with
our data, we can estimate the absolute accuracy of our calibration to be
better than 50 mG. With these values, and using the parametrization of
the interspecies Feshbach resonance from reference [86], we expect a noise-
limited programming resolution and an accuracy both on the order of 3 ag
around the zero-crossing of the interspecies scattering length. For repulsive
interactions, the precision is slightly worse. We therefore believe that the
largest uncertainty in determining the scattering length for our experiment
is in fact given by the limited precision of the parametrization.
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1.6. Raman interaction switching

1.6 Raman interaction switching

Raman switching of interspecies interactions

For many experiments, it is crucial to be able to change the interspecies
interaction abruptly. While a Feshbach resonance does allow for tunability,
a fast change of the scattering length requires fast changes of the magnetic
field, which can be hard to achieve due to induction effects in the coils pro-
viding the field. Also, power supplies connected to a non-ohmic load tend to
start oscillating upon fast changes of the programming value. These effects
limit the timescale on which the interaction strength can be changed deter-
ministically in our experiment to about ten milliseconds, which is clearly not
fast enough in some circumstances. An alternative approach for switching
the interaction strength makes use of the fact that the interspecies s-wave
scattering length is in general dependent on the hyperfine and Zeeman state
of the atoms. This effect can be largely enhanced if one of the states features
a closeby Feshbach resonance. In this case, switching between an almost
arbitrary scattering length in the resonant channel and the background
scattering length in the other channel becomes possible, if a hyperfine or
Zeeman transition is driven at a suitable magnetic field. In our experi-

mental situation, the tunable state is the |F = 3, mp = —3) state, which

can be coupled to the |F = % mp = —%) state. While it2 is possible to
directly drive the magnetic dipole transition between these two states via
radio-frequency, far stronger couplings (and thus faster interaction switch-
ing) can be achieved with a stimulated optical Raman transition close to
the D2 transition. In the vicinity of the Feshbach resonance of interest,
this transition needs a two-photon detuning in the range of 78 MHz to
81 MHz. It is therefore possible to derive both light fields from a single
diode laser, using acousto-optic modulators to imprint the frequency dif-
ference 2. The frequency of the diode laser itself is referenced to a cavity
using a Pound-Drever-Hall locking scheme[41]. In order to eliminate fre-
quency drifts caused by thermal fluctuations of the cavity length, the cavity
is temperature-stabilized on the 1072 K level. Both the absolute detuning

with respect to the D2 line and its stability over time is monitored using

28)Both AOM drivers are fed by analog synthesizers, both referenced to a common
10 MHz master clock, in order to stabilize the difference frequency. An alternative
scheme using phase-locked voltage-controlled oscillators (VCOs) also works, but at
the prize of relatively poor tunability. Two independent VCOs show an instantaneous
linewidth of the beat note of ~ 1kHz, with a drift of up to 10 kHz/min, prohibitive to
use in the experiment.
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a high-resolution wavemeter?. Both Raman beams are recombined with

orthogonal polarization into a single-mode polarization-maintaining optical
fibre. It is then possible to measure the beat note between the two Raman
beams by inserting a polarizer turned by 45° into the beam path after the
fiber. To this end, a fast amplified photodiode®® is connected to a spectrum
analyzer. The result of this measurement can be seen in figure 1.21. The
instantaneous linewidth is below the 3 Hz resolution limit of the spectrum
analyzer used, with no observable drift. Still, the spectrum of the beat note
shows non-negligible components at even multiples of the 50 Hz power line
frequency. These could be due to fluctuations of the RF power in the AOMs
caused by the typically poor supply rejection of broadband RF amplifiers.
While these frequency components are irrelevant in the context of the ex-
periments in this thesis, where the spectrum is effectively Fourier-limited,
they could become an issue in high-resolution spectroscopy. The total power
level (i.e. the sum of the two beam intensities) is stabilized using a pick-
up photodiode after the fiber output and feedback via a common AOM in
front of the initial beam splitter, allowing both the compensation of shot-
to-shot variations and the temporal shaping of pulses on a few-microsecond
scale3!. After the fiber, the beams propagate towards the atoms on the
y-axis, under a small angle with both the dipole trap beam and the lattice
beam to be discussed in the next chapter, and orthogonal to the direction
of the Feshbach magnetic field. The chosen beam waist of wy = 160 um is
large enough to provide an essentially homogeneous intensity profile over
the extent of the atomic cloud, while still delivering the necessary intensity
needed for a strong coupling. The detuning with respect to the D2 tran-
sition can be found by scanning the Raman reference cavity length using
a piezo actuator on one of the cavity mirrors. We then monitor the atom
loss caused by shining in the Raman beams on a pure Potassium cloud in
the dipole trap for a fixed time. The corresponding spectrum can be seen
in figure 1.22. Three resonances are clearly visible. The relative strength
of these resonances can be manipulated by turning the polarization of both

29)HighFinesse Angstrom, with a nominal resolution of 100 MHz

30)Hamamatsu PD on Kuhne broadband amplifier

3D)This setup can not compensate the aforementioned power-line-induced fluctuations,

as it stabilizes the sum of the individual intensities, while the physically more relevant
quantity would be their product. Therefore, the stabilization crucially relies on the fact
that fluctuations in both beams preserve their power ratio. Individual stabilization of
the two beams on the level required to eliminate the residual power line components
seems challenging in the present configuration. However, it would be straightforward
if a different (e.g. counterpropagating) beam geometry was used.
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Figure 1.21: Beat note of the two Raman beams after the optical fiber.
recorded with (a) 300 Hz and (b) 3 Hz resolution bandwidth, averaged over
ten sequential sweeps. Apart from the very narrow resolution-limited cen-
tral peak, a progression of sidebands at even multiples of the powerline
frequency is visible, at a suppression of approximately 30 dB.

Raman beams simultaneously using a A\/2-waveplate. To understand the
triple resonance structure, it is important to note that while the hyper-
fine ground state as a stretched state experiences a linear Zeeman effect
at all magnetic fields, the excited 5P/, state has a hyperfine splitting of
only few MHz. Therefore, it is already deeply in the Paschen-Back regime
at the magnetic fields of interest and has to be analyzed in a decoupled
|J,my, I, my) basis. The D2 transition connects J = % —J = % as always.
Being a stretched state, the initial state has maximum allowed projection
quantum numbers m; = —%, my; = —4. Recalling that electric dipole tran-
sitions do not change the nuclear spin, we therefore obtain three allowed
transitions, namely

— 1 ! 3
1 ! 1
+ . 1 / 1

giving rise to the observed resonance structure. While all of the above-
mentioned transitions may account for spontaneous scattering of a sin-
gle photon and therefore necessitate a sufficient detuning, only two of
them are actually contributing to the Raman process, as the conservation
of nuclear spin projection quantum number allows coupling only to the
m’y = —i—%,m’l’ = —4 component of the mp = —Z state, thereby suppress-

2
ing contributions from the above-listed ¢~ transition®?. The two possible

32)Clearly, the same reasoning applies if the two-photon transition is analyzed in the
coupled basis.
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Figure 1.22: Single-photon spectrum of Potassium atoms in their hyper-
fine ground state at a magnetic field of 525.90 G. The atomic cloud was
illuminated for 100 us with the full available power. The triplet structure of
the resonance can be traced back to the Paschen-Back effect of the excited
state.

two-photon pathways are thus

T\ my=—
AR my = -

In our setup, the orthogonal polarization of the two beams emanating from
the fiber yields the combination of one o*- and one m-photon required by
the selection rules, as the propagation direction of the Raman beam is or-
thogonal to the magnetic field. It should however be noted that half of the
power of the light which is linearly polarized in the direction orthogonal to
the magnetic field is wasted, as it could only drive the ¢~ transition. In
order to obtain optimal two-photon coupling at the given laser power, the
intensity balance between the two Raman beams has been adapted to com-
pensate for this effect. Next, we analyze the resulting Raman coupling. At
a given intermediate-state detuning, we can induce Rabi flopping between
the two coupled ground states for some time, and subsequently measure the
fraction of atoms in either of the two states using Stern-Gerlach detection.
Figure 1.23 shows Rabi oscillations recorded this way at an intermediate
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state detuning of approximately 400 MHz. The observed Rabi frequency is
48 kHz. The amplitude is only slightly above 70% of the theoretical value,
which is mostly due to a finite initial population in the mp = —% state of
about 5% and unequal detection probabilities for the two Zeeman states.
Correcting for these systematic errors, we can infer a two-photon detuning
of about 10kHz for the trace in question, leaving us with a bare (resonant)
Rabi frequency of 46 kHz, corresponding to a m-pulse duration of 11 us. Al-
though the signal to noise ratio of these oscillations is rather good, we still
decided to use a RAP sequence instead of a m-pulse for practical interaction
switching in the experiments, in order to avoid complications with possibly
inhomogeneous interaction shifts of the transition frequencies. To this end,
we scan one of the AOM-frequencies in a linear ramp over 500 kHz, thereby
changing the two-photon detuning, while keeping the intermediate state de-
tuning essentially fixed. We find that efficient transfer can be achieved for
RAP durations as short as 50 yus.
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Figure 1.23: Raman Rabi oscillation between the mp = —% and mp = —%

states, at an intermediate-state detuning of approximately 400 MHz.
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1.7 Absorption imaging

Information on ultracold quantum gases is almost exclusively obtained by
optical imaging techniques®*. The most common imaging method, which
was also used for all the work presented in this thesis®*, is based on the
absorption of resonant light by the atomic cloud. To this end, the atoms
are illuminated by a resonant laser beam, with a beam waist large compared
to the extension of the atomic cloud. The shadow cast by the atoms due
to resonant absorption is then recorded on a CCD?® camera, resulting in
a signal image ps(x,y), where (z,y) denote the pixel coordinates (not to
be confused with the physical x and y directions), which is related to the
atomic density integrated along the line of sight (so-called column density)
via the law of Lambert and Beer

ps(r,y) = To(w,y) e 7S ew2)ds. (1.14)

where o is the resonant absorption cross section. A reference image p,.(x, )
is taken after the atoms are out of sight, recording the bare intensity dis-
tribution Zy(z,y). Finally, a darkground image pq(x,y) is recorded without
any illumination, in order to cancel the CCD background, and the inte-
grated atomic density is calculated as

_ 1, ps(y) = palz,y)
/n(x,y,z) dz = = log o (@0) = palzy)’ (1.15)

For sufficiently long time of flight, the initial cloud size in the trap can be
neglected, and the resulting atomic density after time of flight directly repre-
sents the momentum distribution at the moment of release. By virtue of the
Fourier-transform pair relationship between momentum and position, small
spatial structures in the trapped system translate into a large-scale pattern
during TOF, while large-scale structures give rise to sharp features. The
smallest structure which can be resolved in the TOF-expanded absorption
images is limited both by the bare optical resolution, given by the numerical
aperture of the imaging system, and the recoil-induced momentum diffusion
which tends to smear out the atomic density distribution during the finite

33)For interesting alternative approaches, see e.g. references [16, 23, 28, 54].

34)The experimental apparatus presented in this work is also equipped with a phase-
contrast imaging system suitable mainly for potassium atoms, which has been crucial
in recent work on fermionic spin mixtures [138, 64], but which will not be discussed
here. See [137, 155] for details.

35)CCD = Charge coupled device
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exposure time. These limitations will be of particular interest in section
2.4, where we consider the extraction of correlation information from the
atomic shot noise in the TOF images.
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Two

Noninteracting ultracold atoms in
optical lattices

This chapter reviews the essential concepts of optical lattice po-
tentials as far as necessary for the experiments presented in this
thesis. We calculate the relevant experimental parameters and
motivate the choices taken in the design of the experimental ap-
paratus. We also demonstrate the central properties of noninter-
acting Bosons and Fermions in the optical lattice. Among these
are the anticorrelations that have been observed in the density
of a single-species Fermi gas, a result which has been published
in reference [131].

2.1 Blue-detuned optical lattices

Standing wave optical lattices

Once we have prepared an ultracold ensemble in the dipole trap, we can
impose a threedimensional (3d) optical lattice on the atoms. An optical
lattice is a periodic dipole potential. It is usually created by overlapping two
or more coherent laser beams, which then form a standing wave intensity
pattern. The simplest configuration of an optical lattice can be obtained
by retro-reflecting a laser beam from a high-quality mirror, leading to a
standing wave along the optical axis. This results in a potential

Vi(z) = Vp - sin® (kg @), (2.1)

where k;, = 27/\p is the wavenumber of the light field of wavelength Aj.
Obviously, the resulting potential is periodic with a period of A;,/2. A vari-
ety of geometries is conceivable for higher-dimensional optical lattices, most
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2. NONINTERACTING ULTRACOLD ATOMS IN OPTICAL LATTICES

3d optical lattice experiments however work with a simple cubic lattice ge-
ometry, made up of three independent and pairwise orthogonal standing
waves, mainly due to the relative simplicity of this setup. The same con-
figuration was chosen in the present experiment.

Lattice wavelength

The second important choice in constructing an optical lattice experiment
is the wavelength of the lattice light. For a mixture experiment, this is a
relatively subtle question, in contrast to the case of a single atomic species,
where usually the availability of a suitable laser source is the main criterion!.
In the mixture case, however, both species will in general have a different
AC polarizability a(w). However, as the D-lines of Potassium and Rubid-
ium atoms are relatively close to one another, we can hope for a wavelength
which produces a sizeable AC Stark shift in both species, such that optical
lattices of comparable strength can be tailored. On the other hand, this
close proximity renders species-specific optical lattice schemes, as described
e.g. in reference [93], rather unfavourable. Figure 2.1 shows the polarizabil-
ity of both species over the interesting wavelength range, normalized by the
respective recoil energy

h2k?
b, = , (2.2)
2m
where k = 27 is the wavenumber of the lattice light. This normalized
quantity is directly proportional to the dimensionless lattice depth
)
Vo= —. 2.3
o= o 23)

In principle, both the wavelength range above the Rubidium D1 line at
795.0 nm and below the Potassium D2 line at 766.7 nm can be used. While
the former range has been used for many previous experiments on Rubid-
ium atoms in optical lattices, it clearly offers very limited tunability of the
lattice depth ratio between the two species, i.e. the relative mobility, as the
optical lattice experienced by the Rubidium atoms is always deeper than
the Potassium lattice (by a factor between 3.3 and 2.2 for realistic detun-
ings?). The latter blue-detuned wavelength range is more favorable in terms
of tunability, as it features a magic wavelength at approximately 755.5 nm,

U Another important trade-off might be between finite tunneling timescales and suffi-
ciently large spacing to optically resolve individual lattice sites.

2 At very large detuning, such as can be realized using YAG or fiber lasers, the ratio
tends towards the mass ratio mp/my ~ 2.2 .
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2.1. Blue-detuned optical lattices

where both species experience the same optical lattice. Around this point,
it is possible to realize lattice depth ratios between approximately 0.7 and
1.6. Furthermore, this whole tuning range lies within the operating win-
dow of a standard CW TiSa laser. At this point, it is important to note
that in a standing wave optical lattice, the relatively small detuning with
respect to the Potassium D2 resonance is not a serious issue, as the atoms
are effectively pushed into the antinodes of the light field and thus see a
significantly reduced light intensity®. An additional interesting effect of the
blue-detuned optical lattice is the global anticonfinement, which we will
discuss later in this section. First, however, we shall have a look at the
actual optics setup for the optical lattice.

Optical setup

We shall shortly discuss the optics arrangement used in the experiments.
A schematic representation can be found in appendix C. The laser beams
for all individual lattice axes are derived from a single tunable laser*. The
light is divided between the different axes via polarization optics. Each axis
uses its own acousto-optical modulator both for intensity regulation and fre-
quency shifting. By running the modulators at different driving frequencies
and making use of both first positive and negative diffraction orders, fre-
quency offsets between the different axes of a least 20 MHz can be achieved,
effectively averaging out interference between the axes on sub-microsecond
timescale. Additionally, the polarization is chosen orthogonally for the dif-
ferent axes. The light is delivered to the experiment via single mode polar-
ization maintaining optical fibers, followed by a Faraday isolator in order
to prevent backreflection of the retro beam from the fiber facet. The beam
waist and longitudinal focus position on the atoms are ensured by two se-
quential telescopes, with the atomic cloud situated roughly in the focus of
the second telescope. On both horizontal axes, dichroic mirrors are used
to separate the lattice light from the dipole beams, while the imaging light
is separated via the polarization degree of freedom. An additional lens of
short focal length is used to build a cat’s eye configuration retro mirror.
This ensures good matching of the beam waist of the incoming and retrore-
flected beams at the position of the atoms. Finally, pickup photodiodes are
used to regulate the lattice intensity on a 10~* stability level. To this end,

3)Interestingly, spontaneous scattering rates can actually be suppressed when the inten-
sity of the lattice beams is increased, due to the localization in the antinodes.

4)Coherent MBR Ti:Sa system, pumped by Verdi V18
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Figure 2.1: Optical lattice depth in units of the recoil energy, for Rubidium
(red curve) and Potassium (blue curve), as a function of lattice wavelength.
The dashed lines indicate the positions of the D2 and D1 resonances of the
two species. The shaded areas in between the respective D2 and D1 line
give rise to spin-dependent optical lattices and are of no practical use in
the context of this work. The remaining wavelength ranges fall into three
intervals, labelled by I, IT and III. Intervals I and III correspond to blue-
and red-detuned optical lattices. Interval II is red-detuned with respect
to Potassium, but blue-detuned with respect to Rubidium, and is also not
useful in this context. The region around the magic wavelength at 755.5 nm,
which allows to tune the relative mobility of the two species, is shown with
higher resolution in the inset.
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2.1. Blue-detuned optical lattices

feedback is given onto the driver providing the RF power for the AOM in
front of the optical fiber.

(Anti-)confinement

Most optical lattice experiments to date have been working with red-detuned
optical lattices, in which atoms are attracted to the intensity maxima, and
the standing wave is truly trapping the atoms, i.e. the intensity maxima
constitute the global minima of potential energy. In contrast, for a blue-
detuned optical lattice, the atoms are attracted to the intensity nodes, the
potential energy of which is equal to the asymptotic value for an atom far
out of the Gaussian beam, if the standing wave pattern is maximally modu-
lated. However, in the real experimental situation, perfect modulation can
never be achieved, because of intensity losses of the retro-reflected beam,
as well as slight mismatches of the polarization, beam waist, or focal point,
between the incoming and reflected beam. Therefore, we always have some
travelling-wave component present, which energetically lifts the intensity
minima above the asymptotic potential energy value. Thereby, atoms can
no longer truly be trapped in the lattice beam, although, depending on the
height of the potential barriers, they can still remain in a kind of metastable
trapping state for considerable time. The potential energy of the individ-
ual lattice sites follows an anticonfining Gaussian shape transversely to the
beam. Besides this technical limitation, there is a second, more funda-
mental reason for transversal anticonfinement from a blue-detuned lattice,
which can be associated with kinetic rather than potential energy. The
appearance of the standing wave potential leads to the formation of band
structure, as will be detailed in the following section. As a consequence,
the lowest bound state in the standing wave potential is elevated above
the bottom of the potential by a zero point energy ;. However, the depth
of the periodic potential varies transversally across the beam. The zero
point energy varies correspondingly, being largest in the beam center. For
sufficiently deep periodic potentials, a scaling ey ~ /V(r) can reasonably
be assumed, where V(r) is the standing wave (intensity) amplitude, which
varies with the transversal coordinate as

V(r) = Vye 27/ (2.4)

for a beam waist w. Usually, a combination of both effects will be present,
making quantitative estimates of the anticonfining potential V, () relatively
difficult. Close to the center of the beam, where the anticonfining potential
can be approximated harmonically, it can be characterized by an antitrap-
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ping frequency w,, given by
Vo(r) = —s mwlr? + O(r?), (2.5)
and scaling as

for the bare pot. energy effect
we ~ V¥ where = { P &Y ’

= N

for the bare kin. energy effect at large Vj

In the presence of an external confinement, e.g. the optical dipole trap,
which can be approximated by a harmonic potential of trapping frequency
wp, the total confinement is reduced to

Wef = \/wd — w2 for wy > w,. (2.6)

For weak dipole traps, even a fully anticonfining potential is possible. In
the presence of a higher-dimensional optical lattice, the same reasoning ap-
plies, and the antitrapping frequencies have to be added up quadratically
for all lattice axes transversal to a given direction. Experimentally, we can
measure the anticonfining frequencies indirectly as a reduction of the trap-
ping frequencies in the presence of a transversal optical lattice according
to equation 2.6, and find scaling exponents on the order of 5 ~ 0.3. How-
ever, these values should be taken cum grano salis, as they are expected to
depend extremely sensitively on the optical alignment.

2.2 Band structure

Periodic potentials and Bloch’s theorem

The threedimensional lattice geometry realized in our experiment is of sim-
ple cubic type. Therefore, the quantum-mechanical problem of determining
the eigenstates of the atoms in the lattice is fully separable, and we can re-
strict our discussion to the one-dimensional case. According to Bloch’s the-
orem [84], the periodic potential given by equation 2.1 supports eigenstates
of the form

Ui o(7) = 1 - @) (2.7)
labelled by the positive integer band index ¢ and the quasi-momentum ¢ €
[—hk,+hk], where k = )\L/Q is the primitive vector of the reciprocal lattice,
and ¢ is periodic with

¢i(z + 3) = ¢i(2). (2.8)
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2.2. Band structure

The details of a specific situation will only manifest themselves in the shape
of the functions ¢;. These can easily be calculated by the following proce-
dure: We take the Hamiltonian

p? 2 2mx

HL:%*FVL(ZL‘):Qp—m+‘/Q sin2 T (29)

for a single particle in the periodic potential and decompose the correspond-
ing stationary Schrodinger equation

HLui,q = €i,qUiq (210)

into Fourier components. For a generic periodic potential, this would lead
to an infinite set of equations

h2 (]2
2m

400
clg)+ > Virelqg—vk) = e,clq) (2.11)

V=—00

for every given quasi-momentum ¢, where the V,, denote the coefficients in
the discrete Fourier series

—+00
Vi(z) = ) Vigerhe (2.12)

V=—0

The problem thereby corresponds to finding the eigensystem of an infinite
symmetric matrix. In the case of optical lattices, which we will restrict
ourselves to in the following, the potential is perfectly sinusoidal, thus, it’s
Fourier series only consists of a constant offset % and the only nonzero

off-diagonal components Vi o) = V_ o) = %. The matrix thus takes the
tridiagonal form:
TpatVo  Vo/2_ 0O 0 0
5 B2 TtV W2 0 0
=3 0 W2 T4V Vo/2_ 0
0 0 Vo/2 Tyw+Ve  Vo/2
0 0 0 To/2  Tyron+ Vo

where for compactness, we have introduced x = 2 A k, and the dimensionless
quantities Ty4,, = 2 (¢ £2v)* and ¢ = ¢/hk.
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Figure 2.2: Dispersion relation for a particle in a sinusoidal potential, re-
stricted to the first Brillouin zone, for lattice depths of (a) 5E,, (b) 15E,
and (c) 25 E,. As the potential depth increases, more and more bands are
bound in the lattice potential, i.e. their energy falls below the continuum
(shaded in grey), and the lower-lying bands become increasingly flat. The
forbidden regions in between the bands tend towards equidistand separa-
tion of bound states, which is characteristic for the limiting case of a simple
harmonic oscillator on each site, as depicted in the inset of (a).

Band structure

We can solve the above eigenvalue problem for a suitably truncated matrix
for any given value —2 < ¢ < +2 and end up with the dispersion relation
€,(q), where the band index n counts the possible eigenvalues in ascending
order. This dispersion relation is also known as the band structure of the
optical lattice potential. The name reflects the central feature, which can
be seen in figure 2.2. The possible eigenenergies form a band, the width of
which is

D = |e(hk) — €(0)] (2.13)

and monotonically decreases as the depth of the potential increases. For
suitably deep potentials, the bands can be considered essentially flat. This
effect is known as quenching of kinetic energy. The forbidden regions in
between the bands are termed band gaps. Their width

A = €ni1(q) — €nlq) (2.14)
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2.2. Band structure

Band energy (E,)

Lattice depth (E,)

Figure 2.3: Bound states in the periodic potential of an optical lattice. As
the lattice depth is increased, more bound Bloch bands (red, blue, orange
and green shaded areas) appear at the positions indicated by the triangles
on the abszissa. The quenching of kinetic energy is also clearly visible,
especially for the lowest band. The black dashed line indicates the bottom
of the potential. By ¢;, A and D, we denote the zero point energy, band
gap, and band width respectively, as defined in the main text. The dashed
colored lines indicate the corresponding eigenstates of the approximative
harmonic well potential, as depicted in the inset.

increases for deeper potentials, and the dependence on ¢ becomes negligible
due to kinetic energy quenching. We shall therefore only refer to the band
gap A in the following, neglecting the ¢ dependence altogether®.

5)In more complicated potentials, such as arising in real material crystals, overlapping
bands may exist, as well as a strong dependence on ¢, making band gaps a much more

complex matter.
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Figure 2.4: Illustration of the band-mapping technique used for the visual-
ization of Fermi surfaces. For vanishing lattice depth, the quasi-momentum
associated with the Bloch states forming the bands (a) is adiabatically con-
verted into real momentum (b), allowing the identification of the various
band contributions in TOF images.

2.3 Non-interacting quantum gases in
optical lattices

Fermionic band insulator in optical lattices

When we fill the states in an optical lattice with spin-polarized Fermions one
after another, and the total number of Fermions is lower than the number
of states within the first Bloch band®, we will start at the center of the first
Brillouin zone (i.e. ¢ = 0) and then fill up states more towards the border.
The surface defined by the outermost occupied states is usually referred to
as the Fermi surface.

Probing Fermi surfaces in time of flight

It is indeed possible to make these Fermi surfaces visible in the experiment,
which has first been acccomplished in [87]. To illustrate the procedure,
we consider now a switchoff of the optical lattice potential which is adia-
batic (with respect to the band gap) instead of instantaneous. This way,
the quasimomentum ¢ is adiabatically converted into real momentum p
while the band structure is morphed into the familiar free-space dispersion
parabola. After sufficient time of flight, the original quasimomentum is
then encoded in the particle positions. This technique, known as Brillouin
zone mapping, is illustrated in figure 2.4. Experimentally, this method al-
lows to estimate the filling factor of a noninteracting degenerate Fermi gas

6In a solid, the number of states is usually considered to be countably infinite, corre-
sponding to infinite extension of the potential. This assumption is certainly invalid
for optical lattices.
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Figure 2.5: Fermi surface for atoms in a 3d optical lattice, with varying
filling, visualized using the band-mapping technique. As the dipole trapped
is compressed, the system evolves from a metallic state characterized by a
partly filled first Brillouin zone (a)-(c) towards a band insulator (d). For
stronger compression (e), the first Brillouin zone is populated perfectly
homogeneously, but the higher bands also start to get populated. For very
strong compression, (f), many bands are populated.

in an optical lattice. Figure 2.5 shows images of the Fermi surface for a
fixed number of Fermions, but varying compression of the dipole trap po-
tential, corresponding to a reduction of the effective system size and thereby
a decrease in the number of available states. A quantitative evaluation of
the corresponding TOF images is shown in figure 2.6. We evaluate the
atomic density at different positions in the Brillouin zone. As the gas is
compressed, the density in the center decreases, while the edge and corner
of the first Brillouin zone see an increase in density. Upon formation of
the band insulator, the density saturates at all positions within the first
Brillouin zone, albeit not to a constant value. The resulting pattern can be
understood if the true dispersion relation of the fermion system, including
both the lattice and the dipole trap, is taken into account [137]. In this case,
the quasimomentum is no longer the correct quantum number to label the
eigenstates of the system, and the sharp zone edges are softened.

2.4 A Hanbury-Brown Twiss experiment
with free Fermions

Hanbury-Brown Twiss effect for fermions

The image of a Fermi surface which reaches out to the band edge is by
no means sufficient to verify the existence of a fermionic band insulator’.

n fact, similar pictures could arise for a thermal gas, with D < kT < A in a deep
optical lattice, the only difference being that the filling factor in this situation would
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Figure 2.6: Formation of the band-insulating state in the combined optical
lattice and external confining potential, measured using a Brillouin zone
mapping technique. As the dipole trap is compressed, the center of the
first Brillouin zone is depleted (red circles), while the density at the edges
and in the corners of the first Brillouin zone increases (blue and green
circles, respectively). Saturation occurs at around 45% of the maximum
dipole power, indicating the formation of the band insulator. The density
in higher Brillouin zones (orange circles) increases smoothly over the whole
range of compressions. The inset shows a typical BZM imaging, where the
dashed line indicates the extension of the first Brillouin zone. The circles
indicate the regions where the individual contributions have been measured.

Instead, it would be desirable to demonstrate the action of Pauli’s exclusion
principle more directly. If the temperature is low enough that atoms only
occupy the lowest band, this amounts to showing that two particles can not
have the same quasimomentum. To address this problem, we ask for the
probability to detect two fermions at positions x; and x5 in the time-of-
flight image. As our images do not show individual particles, but particle
densities, this leads us to consider the density-density correlation function

G(Z)(:pl, x9) = (n(xy) n(xq)), (2.15)

be significantly smaller than 0.5.
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2.4. A Hanbury-Brown Twiss experiment with free Fermions

or its normalized counterpart

(n(z1) n(x2))
n(x1)) - (n(x2))

For photons, i.e. bosonic particles, this kind of correlation function has been
probed in the spectacular Hanbury-Brown and Twiss (HBT) experiment
(66, 67, 68]. The probability to find two bosons in coincidence is found to be
strongly enhanced at small detector separations. The technique has recently
been extended to massive particles, i.e. bosonic atoms [3, 48, 136, 119].
Besides the fundamental interest in the demonstration of this intriguing
quantum interference effect, a broad range of applications for the detection
of nontrivial quantum many-body states has been suggested in references |3,
102, 124] and many others since. For fermionic particles, one expects to find
anticorrelated behaviour in a HBT type experiment, due to Pauli blocking.
This is especially intriguing as such anticorrelations can not be explained
in a classical theory (¢ (x; — x5 = 0) > 1 for any classical field), thus
the observation of antibunching (g* (x; — v, = 0) < 1) is a clear signature
of quantum physics at work. However, the effect has been rather elusive
so far, mainly due to the fact that most fermionic particles occuring in
nature are electrically charged and thus show strong long-range interactions
which complicate the observation [70]. Only very recently, evidence for
antibunching of free fermions has been found in experiments with thermal
neutrons [75]. Starting from an optical lattice, we expect antibunching of
particles not only at x; — x5 = 0, but also at all distances

g9 (w1, 22) = < (2.16)

Tl — X = vl with (= % tTOFa (217)

where v is an integer number, k is the reciprocal lattice vector and trop the
time of free flight after release from the lattice potential. This can easily
be understood from Pauli’s exclusion principle, as all of these positions can
be reached by a particle starting from the same Bloch state in the optical
lattice. As the Bloch state can only be singly occupied, the detection of
a particle at a given position x; suppresses the possibility of detecting a
second particle at any position xo = x; £ v£. This scenario is illustrated
in figure 2.7 (¢). The detailed behaviour of the density-density correlation
function in between the dips predicted by the above argument will depend
sensitively on the many-body quantum state in question. This dependence
is expected to enable the detection of exotic quantum phases such as an an-
tiferromagnetic [154] or supersolid state [135], although some complications
have recently been pointed out [58]. In a first proof of principle experiment,
an artificially engineered density wave of bosonic atoms in an optical lattice
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Figure 2.7: Principle of Hanbury-Brown Twiss type experiment. Basic HBT
configuration for bosons (a) and fermions (b). The two different pathways to
coincident detection are related by the particle exchange operator, leading
to an additional minus sign in the case of fermions. (¢) HBT experiment
starting from an optical lattice. During time of flight, initially different
momenta (depicted in the extended zone scheme of the lowest Bloch band
of the optical lattice) are converted into spatial distances in real space. This
leads us to expect bunching (for bosons) or antibunching (for fermions) at
position distances corresponding to integer multiples of % tToF-

has successfully been detected in a Hanbury-Brown Twiss type correlation
analysis experiment [47].

Shot noise correlation analysis

In order to detect the above-mentioned anticorrelations in the experiment,
it is important to understand that these occur on the basis of individual
detection events and will be washed out for repeated detection events, as
the decisions which detector will actually detect the particles, can be con-
sidered statistically independent. In the experiment, the detection of an
atom is equivalent to the detection of photon scattering by this atom out
of the detection laser beam on a CCD camera, provided that photon shot
noise can be neglected. The individual pixels of the CCD chip take the role
of the detector units in the above discussion. Under typical conditions, each
pixel will record on the order of 100 atoms. While the expectation value for
the atom number on each pixel can be traced back to the momentum ex-
pectation value in the initial trapped state after sufficiently long expansion
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2.4. A Hanbury-Brown Twiss experiment with free Fermions

time®, the interesting (anti-)correlations are to be searched in the atomic
shot noise fluctuations. It is thus clear that there exists a distinct window
in which a signal can be detected: On the one hand, the atomic signal must
be strong enough to overcome the technical noise level of the camera. On
the other hand, if the atom number per pixel becomes too large, the atomic
shot noise vanishes within the finite dynamic range of the pixels. Luckily,
typical quantum gas experiments are mesoscopic just to the right degree to
fall into the detection window.

In order to obtain the density-density correlation function from the im-
ages, we need to calculate for each TOF image the correlator

Cpde,dy) = (p(x,y) - px + dp,y + dy)) (2.18)
= Y n(z,y) - n(x+dy,y+dy) (2.19)

for all distance steps d,, d,, where z,y are the row and column index of the
CCD camera and p(zx,y) is the observed optical density signal. Although
the above calculation looks straightforward, it is in practice a tedious task,
with a computational effort of order O(L*), where L is the extension of
the image (or the region of interest within it). Fortunately, the correlator
can be related to the Fourier power spectrum of the image by means of the
Wiener-Khintchine theorem [104], leading to

Cplds, dy) = F (|17 (p(,9)) [*) (2.20)

which in turn can be calculated using Fast Fourier Transform with effort
O(L -log L). Finally, the normalization can be obtained from an average
over multiple images taken under the same experimental conditions, leading

to
~ (Cp' (dmv dy))@'
C,(dy,dy) = FH———,
8 ! C<P>¢ (drv dy)

where p; is the optical density of the i-th image, and (-); denotes the average
over all images.

(2.21)

Experimental observation

As the initial state, we prepare a band insulator of fermionic atoms. To this
end, we remove all bosonic atoms from the trap at the end of the sympa-
thetic cooling procedure in the dipole trap. The resulting fermion cloud in

8)We assume here that collisions within the sample occuring during time of flight can be

neglected, which for a single-component degenerate fermi gas is trivially fulfilled.

o7



2. NONINTERACTING ULTRACOLD ATOMS IN OPTICAL LATTICES

these experiments contains around 2.8 x 10° “°K atoms and reaches temper-
atures down to T'/Tr ~ 0.2. The band insulator condition can be fulfilled by
tuning the compression of the dipole trap, while the atom number is max-
imized in order to achieve a reasonable signal-to-noise ratio with respect
to technical noise sources?. The atoms are then adiabatically loaded into a
threedimensional optical lattice. The horizontal lattice depth is increased
further in order to squeeze the Wannier function, leading to a broader en-
velope in the time of flight image. The cloud is then released from the
optical lattice and imaged along the vertical axis after 10 ms of free ex-
pansion. Typically, 200 individual images are recorded for a given set of
experimental parameters. After rejection of shots suffering from technical
artefacts', we are usually left with approximately 70% of the images, which
are then subjected to the evaluation procedure outlined above. A typical
result of such a measurement is displayed in figure 2.8. At d, = d, = 0, we
find the autocorrelation peak, the width of which gives an estimate of the
point spread function of our imaging system [48]. Due to the finite imaging
resolution, which in our case is limited both by the numerical aperture of
the imaging system and a blurring due to momentum diffusion arising from
the recoil momentum of the scattered photons, we can not expect to ob-
serve any features narrower than approximately 5.6 ym, corresponding to
approximately 1.6 pixels on our CCD chip. The eight dips, which can be ob-
served in a perfectly regular structure centered around the autocorrelation
feature, are therefore also broadened far beyond their natural width, due
to convolution with the point spread function. Nevertheless, the observed
correlation signals C' (dy,d,) < 1 are a clear and unmistakable signature
of fermionic antibunching. From the correlator C/(d,, d,), we can extract
the correlation signal strength. To this end, we fit the neighbourhood of
the peaks by inverted two-dimensional Gaussians, on top of a linear slope,
which locally accounts for the additional structure in the correlator. In
a first step, we evaluate three correlators taken at 7/Tr = 0.23(3), from
which we determine the width and positions of the dip features. Subse-
quently, all features were fitted fixing these width and position values. The
correlation signal amplitude is then given as the average over the four dips
corresponding to the principal reciprocal lattice vectors in the horizontal
plane. Using this procedure, we can characterize the signal-to-noise ratio
as a function of the number of images used in the correlation analysis. In

9Important noise sources in this context are inhomogenieties and interference fringes in

the imaging laser beam, background light and dark counts of the CCD camera.
10)e. g. interference fringes on the imaging beam, mostly due to intensity or frequency

fluctuations in between the signal and reference frame.
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Figure 2.8: Free fermion antibunching. (a) Single absorption image of K
cloud of about 2.8 x 10° atoms after 10 ms of free expansion, released from a
V., =19E,)V, =21E, )V, = 10 E, deep lattice. (b) One-dimensional profile
through the same picture (black) together with a Gaussian fit (red). (c)
Spatial noise correlations obtained from an analysis of 158 independent im-
ages, showing an array of eight dips, at the positions corresponding to the
reciprocal lattice vectors (marked by blue circles). The additional struc-
tures close to the central autocorrelation peak (marked by green circle) are
technical artefacts caused by e.g. readout crosstalk of the CCD chip. (d)
Horizontal profile through the correlation image. The profile has been high-
pass filtered to suppress a broad Gaussian background that we attribute to
shot to shot fluctuations in the atom number. Image adapted from reference
[131].
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Figure 2.9: Signal-to-noise ratio of the anticorrelation signal, as the number
of individual images contributing to the analysis of the correlation function
is increased. The line marks the expected square-root behaviour.

figure 2.9, we show the ratio of the fitted correlation signal amplitude to
the root-mean-square (RMS) level of the background noise in the vicinity
of the dip features. The observed increase of the signal-to-noise ratio with
the number of images is consistent with a 1/4/# images scaling of the RMS
noise under the assumption that the signal amplitude stays constant. We
conclude that on the order of 50 images are needed for a reliable fit of the
correlations dips, if width, position and amplitude of the features are free
parameters.

Temperature dependence of the anticorrelation dips

So far, our arguments have built upon a zero-temperature analysis of the
system. However, especially in the case of Fermions, it is of great impor-
tance to also consider the influence of finite temperature (and hence finite
entropy). For simplicity, we will only consider a one-dimensional model
system here, but the basic results can easily be generalized to three dimen-
sions. Our system consists of a finite number Ny of fermionic atoms, which,
in addition to the periodic potential by the optical lattice, are subjected
to a harmonic confining potential V; = 2w?(A;/2)%?, where the index i
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2.4. A Hanbury-Brown Twiss experiment with free Fermions

labels individual lattice sites. Furthermore, we assume that both tunneling
and the population of higher bands can be neglected. In that case, every
lattice site can accomodate at most one atom, and the occupation statistics
is described by a Fermi-Dirac distribution of the form

1
i, T) = - , 2.22
M) = g @ atgre - pieny O
where p is the chemical potential, fixed by the implicit condition
> il T) = Ny (2.23)

Under these assumptions, the system constitutes a real-space Fermi sea,
which can be characterized by its zero-temperature extension. In analogy
to the the Fermi momentum in the case of the usual momentum-space Fermi
sea, we define the Fermi radius

Rp = 1Ny 2L, (2.24)

The Fermi radius can be connected to the Fermi temperature in the optical
lattice via

kpTr = 2 w’Ry. (2.25)
At finite temperature, the effective system radius will be larger than Rp,
because entropy can only be accomodated by introducing holes in the Fermi
sea, while at the same time promoting atoms to energies (and thus posi-
tions) outside the zero-temperature Fermi sea, again, in full analogy to the
finite temperature softening of band edges in the case of a momentum-space
Fermi sea. It should first be pointed out that the quantum-statistical an-
ticorrelations which we expect to see at integer multiples of the distance ¢
should theoretically remain completely unaffected by any change in the sys-
tem temperature. However, this is not true at distances away from ¢, and
the detailed peak shape will indeed depend on the system size. The finite
system size R will reflect itself in oscillations of the momentum correlation
which scales as R~!. This oscillatory behaviour is again known from mo-
mentum space Fermi seas, where it is also known as Friedel oscillations [45].
It can be understood as an instance of Gibb’s phenomenon!!. As tempera-
ture increases, so will the effective system radius. Therefore, the periodicity

1) Gibb’s phenomenon denotes the fact that the Fourier transform of a function which
changes non-smoothly at some point, will not converge uniformly, but display a char-
acteristic ripple structure. In our case, the zero-temperature distribution function can
be understood as a box-function of dimension 2 Rp. It is therefore not surprising
that the theoretical shape of the momentum correlation, and thus of our correlation
function, should take the form of a sinc function, the periodicity of which scales as
R
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of the real-space Friedel oscillations is expected to decrease, and, most im-
portantly, the central feature will become more narrow. Unfortunately,
however, the detailed shape of the correlation signal can not be observed
under realistic experimental conditions to date, but is obscured by convo-
lution with the point spread function of the imaging system [47]. Still, this
convolution process preserves the signal volume. Therefore, although the
theoretical correlation function preserves its amplitude and narrows down
its width, the experimentally observable signal will predominantly decrease
in amplitude as the temperature increases, the width of the dips staying
essentially constant as they are dominated by the finite optical resolution.

In order to observe this temperature dependence, we have prepared the
Fermi gas in the dipole trap at different temperatures by varying the end
point of the evaporation ramp in the dipole trap. We subsequently ramp
the dipole trap back up to the same high compression for all temperatures
of the gas. The optical lattices are then ramped up as described before.
As the variation of the evaporation ramp causes only little change in the
fermion number, the temperature (and thus the entropy carried in the sam-
ple) will define the effective width of the cloud in the combined dipole trap
and lattice. We take a series of absorption images at each temperature
and subsequently perform the correlation analysis. Indeed, we find a de-
crease of the correlation amplitude with increasing initial temperature, as
can be seen in figure 2.10. We currently have no means of independently
determining the temperature of the fermions in the optical lattice, there-
fore all quoted temperatures are measured without the lattice present, by
the usual fit of a Fermi-Dirac distribution to the TOF images after release
from the dipole trap. We would like to point out that this might give rise
to systematic errors, e.g. due to nonadiabaticity of the lattice loading, or
a systematic over-estimation of the temperature of the fermionic cloud in
the degenerate regime. In particular, these effects might account for the
systematic deviation towards stronger signals on the low-temperature side
of figure 2.10.

After the completion of this work, antibunching of free ultracold neu-
tral *He atoms has also been demonstrated with a bulk sample, using a
position- and time-sensitive highly efficient single-particle detector based
on a microchannel plate [78].
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Figure 2.10: Dependence of the HBT antibunching signal strength on the
temperature of the fermionic cloud prior to lattice loading. The error bars
denote statistical errors of typically four experimental runs, each evaluated
independently. The shaded area denotes the theoretical prediction, with
the uncertainty stemming mainly from the atom number calibration.

2.5 Heteronuclear long-range molecules

Why molecules in a lattice

In recent years, ultracold molecules have raised increasing interest (see e. g.
(88, 80]. Heteronuclear molecules made of different atomic species are par-
ticularly interesting because their rovibronic ground state features a large
permanent electric dipole moment. Polar molecules are useful candidates for
precision experiments (see e.g. [90, 74]) and universal quantum computing
[34]. If polar molecules can be produced at significant phase space densi-
ties, they can form dipolar quantum gases'?. These dipolar ensembles have
properties fundamentally different from usual quantum gases, due to both
the relatively long range and the anisotropy of their interactions. The most

12)The only dipolar quantum gases realized so far are made from Chromium atoms, whose
high magnetic moment yields an appreciable dipole-dipole coupling, especially when
s-wave interactions can be Feshbach-tuned to zero. See reference [91] and references
therein for details.
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promising scenario for the production of heteronuclear ultracold molecules
to date is the controlled association from a binary quantum gas mixture.
The stimulated association of heteronuclear molecules from a quantum gas
mixture of bosonic Rubidium and fermionic Potassium atoms in the vicin-
ity of a Feshbach resonance has recently been demonstrated in an optical
lattice [115] and in a bulk sample [162]. In the latter experiment, vibra-
tional de-excitation of the molecules has been achieved [118, 112]. However,
neither of these experiments was able to reach sufficiently high phase space
densities to produce a degenerate dipolar gas. Theoretical modelling of
the experiments in reference [115] has led to the conclusion that the main
limitation in this respect is the initial phase space overlap, while the asso-
ciation process itself, where it takes place, has essentially unit efficiency at
sufficiently small molecular binding energies [37]. Conceptually, the forma-
tion of heteronuclear molecules in an optical lattice is more promising than
in the bulk sample, as it suppresses collisions with residual atoms, which
are the major limitation to molecular lifetimes in the existing experiments
[161]. Very high conversion efficiencies have been achieved for the formation
and de-excitation of homonuclear molecules from single-component quan-
tum gases in optical lattices [130, 153, 158]. Motivated by these results, we
have conducted some experiments to investigate the formation of heteronu-
clear molecules in our optical lattice along the lines of the work presented
in reference [115], which shall be summarized in the following.

Radio-frequency association near a Feshbach
resonance

The method of choice to make heteronuclear molecules near a Feshbach
resonance is radio-frequency association, which has been developed in ref-
erence [115]. To understand the concept, we need to come back to the
avoided crossing picture of the Feshbach resonance. The resonance of inter-
est for us occurs between atoms in the hyperfine states |F' = 1, mp = +1)
and | L) = |F = 2, mp = —32), respectively. Assume that we start with
the Potassium atom in the | 1) = |F = 2, my = —I) state. In the absence
of a Rubidium atom, we can flip the spin of the Potassium atom into the
| 1) state by a radio-frequency photon, the energy of which is equal to the
Zeeman splitting between the two states. This splitting can be obtained
from the Breit-Rabi formula, and corresponds to approximately 80 MHz in
the vicinity of our Feshbach resonance. In the presence of the Rubidium
atom, the same transition would simply be shifted by the differential inter-

action energy between the two atoms, if we are far away from any Feshbach
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resonance. This feature has been extensively used for both fermionic and
bosonic atoms in optical lattices (see e.g. [22, 81] in order to detect the
presence of more than one atom on a lattice site. If we go closer to the
Feshbach resonance, we need to take into consideration the avoided cross-
ing between the closed and the open collisional channel. As a result, it is
possible to flip the atomic spin to end up in a state which adiabatically
connects to a molecular bound state. For the sake of energy conservation,
we now need a blue-shifted radio-frequency photon in order to accomodate
the binding energy. It is thus possible to create a long-range molecule from
a Rubidium and a Potassium atom by driving the spin flip transition with
the correct blue-detuning in the vicinity of the Feshbach-resonance. By
recording the transition frequency versus the magnetic field, it is thus pos-
sible to map out the eigen-energies of the strongly interacting two-particle
system in the optical lattice [115], and confirm the avoided crossing struc-
ture. In order to associate molecules in our experiment, we prepare the
atoms in a threedimensional optical lattice. It is favourable to work in
deep optical lattices in order to protect the resulting molecules from colli-
sions with remaining atoms. The magnetic field is set to a point slightly
above the Feshbach resonance'®. We then use a pulse of radio-frequency
radiation to drive the spin-flip transition. By scanning the radio-frequency,
we can observe the resonance frequency both for single Potassium atoms
and for Potassium atoms sitting together with a Rubidium atom. The re-
sults of such an experiment can be seen in figure 2.11, for lattice depths of
Vo = 30 E; and V = 20 E,, respectively. The spectra show a clear signature
of radio-frequency association of heteronuclear molecules from onsite atom
pairs. However, the signal is relatively weak, a fact that can not be fully
accounted for by a suppression of coupling (see footnote), which should not
yet be very important for the magnetic field chosen. Instead, it is most
probably due to a lack of pair sites in the optical lattice in the first place.
This is consistent with the strength of the single-atom peak, which still con-
tains the majority of Potassium atoms in the sample. It should be noted
that in principle, radio-frequency association should also occur on lattice
sites containing a fermion and two or more bosons, albeit at a different

13)Tt should be noted that while the final state becomes more and more molecule-like
as one approaches and eventually crosses the free-particle Feshbach resonance, the
coupling of the radio-frequency radiation to the transition is continuously suppressed,
therefore the efficiency of the process (related to the strength of the spectroscopic
signal) is gradually lost [85]. This is mainly due to the recoupling from the atomic
to the molecular hyperfine structure. The pathway towards making tightly-bound
molecules therefore would include an additional adiabatic magnetic field sweep away
from the resonance, once the RF-induced transition to the bound state has taken place.
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Figure 2.11: Radio-frequency association of molecules at a magnetic field
of 546.75 G in a threedimensional optical lattice. Association spectra for
lattice depths of Vy = 30 E, (upper panel) and V; = 20E, (lower panel).
The left and right peak correspond to the atomic and molecular signal,
respectively. The inset shows the shift of the molecular resonance with
increasing depth of the optical lattice (in atomic recoil units), relative to
the position observed for vanishing lattice depth. The square root behaviour
(red line) can be explained by the differential zero-point energy, as explained
in the main text.

detuning, due to the additional interaction energy contributions. We do
not expect to observe these processes in the experiment however, due to
the expected very short lifetime of these molecules [161]. A second point of
interest lies in the clear blue-shift of the observed transition frequency with
increasing lattice depth. Experimentally, the shift A f is found to scale
with the lattice depth in recoil units Vj as

Af \/;0 (2.26)

to very high precision, especially for deep lattices. If we assume that in this
regime, a harmonic approximation of the lattice wells is valid, this scaling
corresponds to a linear increase with the trap frequency. We would like
to point out that quite generally for a weakly bound long-range molecule,
the molecular AC polarizability is close to the sum of the individual polar-
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izabilities of the atomic constituents. Therefore, we expect the molecules
to see an optical lattice of depth V™ = V" + Vi where V" are the
potential depths experienced by the two atomic species. The trap frequency
corresponding to this lattice is given by

hk)?

(hwmot)® = 4 V" % (2.27)
where M = my + my is the molecular mass, and the second term is simply
the molecular recoil energy. In the case of homonuclear molecules, this
leads t0 Wioi = Watom, Which has been verified experimentally [130]. In the
generic scenario however, we have that m,,, = (1 + ) m;, where 8 = &
is the mass ratio. Without loss of generality, we assume m; < may, and
thus f < 1. The magic wavelength condition \70(1) = 170(2) = %(awms),
can be expressed as a;(AM))m; = a(A®)my, where a;,(A\¥) are the
respective AC polarizabilities, and A*) is the magic wavelength. This yields
a molecular potential depth

Vi ocag +ag = ay - (14 8) = (14 8) VY, (2.28)
and, by normalizing to recoil units
Vi o M (1 + B) Vo). (2.29)
Comparing to the atomic case, we find

. M - M -
‘/E](mol) _ 0(1) N ‘/0(2)’ (230)
" H

where g is the reduced mass of the pair. For the case of interest here,
M ~ 4.6, which means that the molecule sees a significantly deeper poten-
tial than the individual atoms, and for all practical purposes, can always
be considered immobile. Evaluation of equation 2.28 yields that the trap

frequencies of molecules and atoms are related by

Wimot = 1+ Bway = 1/1+ 5 we). (2.31)

The zero point energy of two atoms is given approximately by %‘(w(l) +
wz)). We therefore find a differential zero point energy between atoms and

molecules of
Aeg=twm (1+vB—1+8), (2.32)

v

with the numerical factor v &~ 0.47 for our mixture, comparing to an ex-
perimentally observed value of v ~ 0.50. We therefore interpret the shift
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displayed in the inset of figure 2.11 as the differential zero point energy
between atoms and molecules. The residual discrepancy with the experi-
mentally observed scaling of the binding energies will be partly due to inac-
curacies of the approximations underlying our simple model, but mostly to
the neglect of interactions in the initial two-particle state and the shifting
of the Feshbach-resonance position in the optical lattice. The good overall
agreement with our model confirms that the molecules are in fact produced
in the lowest band of a deep optical lattice.

Mbolecule lifetime

We have also investigated the lifetime of the heteronuclear molecules formed
via radio-frequency association. To this end, we include an additional hold-
time in between the association pulse and the detection. During this time,
the molecules can decay, both radiatively via the absorption of photons from
the lattice or dipole trap beams, or via collisions with remaining atoms or
other molecules. In bulk experiments, collisions with residual atoms have
been identified as the most important loss channel [161]. Previous exper-
iments in optical lattices observed molecular lifetimes on the order of few
milliseconds, which was significantly reduced as the molecules were pro-
duced with increasing binding energies [115]. Our lifetime measurements
on even more strongly bound molecules, which are displayed in figure 2.12,
are consistent with these findings. The order of magnitude of the observed
lifetimes is consistent with the residual tunneling rates for atoms at the
given lattice depth (1/(6.J;) ~ 2.6ms and 1/(6.J,) ~ 5.6ms). We have
compared lifetimes with and without the presence of the dipole trap and
found no significant difference. We therefore conclude that far off-resonant
radiative stimulation is not an important decay channel, in agreement with
previous observations. We currently have no means to directly measure the
influence of lattice light on the lifetime; still, there is strong evidence that
collisions with remaining atoms can account for most of the loss processes.

Efficiency considerations

To date, most experiments on ultracold heteronuclear molecules are severely
limited by the production efficiency of the molecules. Unlike in the case of
homonuclear molecules made from bosonic atoms, where in a 3D optical
lattice, the initial state can relatively easily be tailored such that most lat-
tice sites are occupied by exactly two atoms and the molecule production
efficiency solely depends on the adiabaticity of the actual association pro-
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Figure 2.12: Lifetime of heteronuclear molecules in a deep (Vo = 30E,)
optical lattice, without removal of remaining atoms. The inset shows the
experimental sequence used for this measurement.

cess (see e.g. [130, 42]), the efficient production of heteronuclear molecules
also requires a procedure to prepare the non-trivial initial state with one
atom per species on each lattice site. As we do not have a handle in the
experiment to manipulate the atom numbers on individual sites, the easiest
way to influence the production efficiency of molecules is via the mean filling
of lattice sites. One obvious way to influence this builds upon compression
of the dipole trap before loading the atoms into the optical lattice. The
experimental result, which is shown in figure 2.13 (a), displays an optimum
compression, presumably coinciding with a maximum amount of pair sites.
We have also investigated the dependence on the rampup timescale for the
3D optical lattice. As can be seen in figure 2.13 (b), there again exists an
optimum, which clearly corresponds to slightly non-adiabatic loading. This
might be due to the fact that the relatively strong background interspecies
attraction in the initial state during the lattice loading gives rise to higher
boson numbers on lattice sites occupied by fermions, i.e. occupation by
two or more bosons, such that the radio-frequency association process is no
longer resonant, or the lifetime of the resulting molecule vanishes due to the
presence of an additional particle on the same lattice site. In conclusion,
the experiments reported in this section indicate that albeit possible, radio-

69



2. NONINTERACTING ULTRACOLD ATOMS IN OPTICAL LATTICES

S 1.0 . S 1.0

3 N @ o (b)

= 08} H & = 08} *+

3 4 4| B f 2 S

o 06 F 1 ¢ o 0.6 + 3.

) | n ‘~+

g 04Ff : g 04¢f

g o2p g o2

§ 0.0 | L L L § 0.0 1 1
00 02 04 06 08 1.0 0 50 100 150
Dipole trap compression (a.u.) Lattice rampup time (ms)

Figure 2.13: Efficiency of radiofrequency association in an optical lattice.
(a) Amplitude of molecular signal versus compression of the dipole trap.
The shaded area on the left hand side indicates the regime where the dipole
trap is not strong enough to hold both species against gravity. The dashed
vertical line indicates the point at which 8"Rb atoms are lost from the trap.
(b) Amplitude of molecular signal versus time scale for the rampup of the
optical lattice potential. The optimum efficiency clearly corresponds to
non-adiabatic lattice loading.

frequency association in our optical lattice setup is not efficient enough to
allow for further experiments on the heteronuclear molecules. This lack of
efficiency is probably due to the number statistics inside the optical lattice,
and can in principle be dealt with by tailoring of the initial state. How-
ever, the possible gain observed so far using straightforward manipulation
techniques is relatively poor.
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Three

Physics of Bose-Fermi Hubbard

systems

In this chapter, we present the Hubbard model for interacting
quantum gases in optical lattices. We discuss the self-consistency
condition on the onsite wavefunctions and the consequences in
terms of renormalization of the effective Hubbard model. Fi-
nally, we give an overview of existing theoretical approaches and
their predictions for the many-body physics of the Bose-Fermi
Hubbard model.

3.1 The Wannier picture and Hubbard’s
model

Tight binding and the Wannier picture

In situations, where local effects are to be described, Bloch waves are not
very convenient to work with. A more natural description arises when we
consider the periodic potential as a regular array of micro-wells, each of
which can support a progression of bound states. These so-called Wannier
states are spatially localized on individual lattice sites and thus naturally
lend themselves to describing local physics. They are related to the Bloch
states considered earlier via the Fourier transform:

w(x —x;) = Z e 1y (1) (3.1)

where x; denotes the position of the specific potential well, and we have
restricted ourselves to the first Bloch band for simplicity. Figure 3.1 (a)
shows Wannier functions obtained from the single-particle band structure,
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for increasingly deep optical lattices. It should be noted that as the poten-
tial depth is increased, the individual potential wells can be approximated
with increasing accuracy by a harmonic potential. Therefore, the Wannier
functions tend towards a Gaussian shape. However, it should be noted
that the numerical accuracy of this description is poor apart from the case
of extremely deep lattices, especially in the wings of the density profile.
Figure 3.1 (b) compares the width of the harmonically approximated wave
functions with the width of the real Wannier functions’. We have also in-
cluded measurements of the envelope of the time of flight pattern, which,
if rescaled accordingly, correspond surprisingly well to the inverse of the
Wannier widths.
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Figure 3.1: Wannier functions. (a) Theoretical single-particle Wannier func-
tions for lattice depth of 3 (red), 10 (blue) and 20 E, (green curve), showing
the trend to an asymptotic Gaussian as Vy — oo. (b) Width of Wannier
functions, in units of the lattice period. The red curve denotes the oscillator
length of the Gaussian ground state in the harmonic approximation. This
can be compared to Gaussian fits to the real single-particle Wannier func-
tions (blue curve), which agree with measured data of yo~! (blue points),
where o is the envelope width after TOF and v is a prefactor accounting
for the time of flight expansion.

Hubbard’s model

In 1963, Hubbard [73] came up with a conceptually very simple model for
the behaviour of electrons in the conduction band of transition metal oxide
crystals, building on ideas by Mott [110]. Empirically, it had been discov-
ered [33] that these materials were rather good insulators, although their

UThe Wannier width was extracted using Gaussian fits.
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band structure had led people to expect a conductor. The basic idea behind
Hubbard’s model, is that the electrons in these materials could best be de-
scribed in a Wannier basis of orbitals well localized at the positions of the
individual ions. Within each orbital, the strong repulsive interaction be-
tween electrons of opposite spin needs to be taken into account?. Electrons
within the material can propagate by hopping from one ion to the next,
however, this process can be strongly suppressed if the destination site is
already occupied by another electron of opposite spin. This way, the mobil-
ity of electrons vanishes at half filling of the band, giving rise to insulating
behaviour of the material, whereas a normal band insulator would only be
formed at filling one. Hubbard’s model has received a lot of attention over
the years, and can be considered a generic model for strongly correlated in-
teracting many-particle systems. Formally, the model Hamiltonian is given
by:

H=-J Z GJ;JGJJ‘,U + UZ”i,Tni,i (32)

(i.j),0 i

where az’a (a;,) is the operator for creating (annihilating) an electron of

spin ¢ =1, | at site 4, and n;, are the corresponding number operators,
J is the amplitude for hopping between adjacent sites, U is the on-site
interaction energy between two electrons, and the summation index (i, j)
is assumed to run over all next-neighbour sites.

In 1989, Fisher was able to show that the bosonic analogon of the Hub-
bard model at integer filling n,;, features a quantum phase transition between
a conducting and an insulating state, based on the interplay between tun-
neling and interaction [46]. The phase diagram of the model is governed
by the ratio U/(z J), and the critical value at which the phase transition
occurs depends solely on the coordination number z for the geometry in
question.

The Bose-Fermi Hubbard model in optical lattices

In 1998, Jaksch and coworkers pointed out that something similar to the
Hubbard model could indeed be realized with ultracold atoms in optical
lattices [77]. As the only ultracold gases available by that time were bosonic,
this quickly led to an experimental realization of the Bose-Hubbard model
[46] and the observation of the corresponding superfluid to Mott insulator
transition [60]. Both static and dynamic properties of this model have been

2)The Coulomb interaction between electrons is in general not long-ranged inside a ma-

terial, due to shielding, therefore, interactions between electrons in orbitals located at
different sites can be neglected.
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Figure 3.2: Physical meaning of the control parameters of the Bose-Fermi-
Hubbard model in the presence of an external confining potential. Bosonic
and fermionic atoms are depicted in red and blue, respectively.

studied in great detail since (see e.g. reference [14] for a recent review).
Very recently, a fermionic Hubbard model could finally be realized in a
balanced mixture of the two lowermost spin states of ultracold “°K atoms
(81, 138].

The Hubbard Hamiltonian can easily be generalized to describe mixtures
of quantum gases. For the case of interest in this work, namely a mixture of
bosons and spinpolarized fermions, the corresponding Bose-Fermi-Hubbard
Hamiltonian takes the form

H=—-J azaj—J'Zc;rcj
(3,9) (3,9)
+%ani(nbi_1)+%f aninfi (3.3)

+ Z €Ny + Z €ng.,
: i

Here, a;, az and ¢;, c;-r are the annihilation and creation operators at lattice

site 4 for bosons and fermions, respectively, and n;; and ny; are the corre-
sponding number operators. We shall now discuss the control parameters
of the model, which are visualized in figure 3.2.

e J and J' denote the tunneling amplitude of bosons and fermions re-
spectively, where tunneling is understood to happen between adjacent
sites only. In the limits J < J’' or J > J’, which can be realized by
tuning the wavelength of the optical lattice, one species is mobile
while the other one is frozen out. In such a situation, it is possible
to come up with effective models for the remaining mobile species.
However, in the context of the experiments reported in this work, we
always have J/J' ~ O(1). More specifically, for the magic wavelength
identified in section 2.1, J/J' is given by the mass ratio of the two
species.
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3.1. The Wannier picture and Hubbard’s model

e Uy is the on-site interaction energy of two bosons. If more than
two bosons are present on one side, the total interaction energy is
assumed to be the single-pair energy times the number of pairs, which
is ny, - (ny, — 1)/2 3. Generally, we will have Uy, > 0, i.e. repulsion
between the bosons, as attractively interacting BEC above a very
small particle number are instable with respect to a mean field induced
collapse [128].

o Vs is the strength of the interspecies interaction, which can be both
repulsive or attractive. Unlike the interboson repulsion, this term
is linear in the boson occupation number ny, it should therefore be
absorbed in a global energy offset if all sites available to the bosons
are filled with a fermion.

e Note the absence of an interfermion interaction term. This lack of
symmetry stems from the Pauli exclusion principle, which in this spin-
polarized scenario does not allow two fermions to occupy the same site
and interact.

e ¢; and €, denote a site-specific energy offset for the bosons and fermions,
respectively. These terms may account for disorder on top of the pe-
riodic potential [46]. However, in the present case, we only need to
deal with the large-scale inhomogeneity introduced into the system by
the presence of an overall confining potential, and therefore ¢; ~ 2.
Due to a convenient separation of energy scales, it is often possible to

ignore these terms altogether.

Relating Hubbard Parameters with Wannier functions

In order to apply Hubbard-type models to quantum gases in optical lattice,
we have to clarify the relationship between the parameters J,.J', Uy, and
Vi on the one hand, and the microscopic properties of the ultracold atoms
on the other hand. The main arguments here go back to Jaksch [77] and
Dickerscheid [39]. Assuming that we know the Wannier functions ®, and
4 for a boson or a fermion respectively, we can define the amplitude for a

3)With experiments similar to the ones described in the following chapter, it is actually
quite easy to observe the breakdown of this assumption. See [155, 157] for details.

It should be noted though that these terms are absolutely crucial in allowing the

observation of Mott-insulating behaviour at incommensurate filling, by the formation
of the so called shell structure [77].
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tunneling event between adjacent sites as the matrix element
Jik = /(I)b<l’ — ;) Hpy Oy (x — :L’j)dV (3.4)

and

! = /cpf(x—xi) Hy @ (z —a;)dV . (3.5)
Often, the definition

Dy = 4es(0) — en(n )] (3.6)

S = A

and an analogous relation for the fermions are used instead (and will be
used throughout this work). The two definitions are not strictly equivalent,
as the latter also incorporates tunneling processes over arbitrary distances,
however, the difference is negligible for practical purposes. Due to the short
range of molecular potentials as compared to the optical wavelength, the
interaction energy can be treated in using a Fermi contact pseudopotential
approximation, leading to the expressions

2 pp h
Uy, = |y [*dV (3.7)
my
and
4ab h
Vi = =22 [ o2 v (35)
for intraspecies and interspecies interaction, respectively, where p4, = 721%

is the reduced mass of the boson-fermion-pair, and ay, and ay; are the corre-
sponding s-wave scattering length. In the course of this work, a, ~ +100 ag
is fixed, while ays is tunable with the help of the interspecies Feshbach res-
onance presented in section 1.5. It has been pointed out that the accurate
microscopic description of atoms interacting in the vicinity of a Feshbach
resonance is highly nontrivial in an optical lattice, especially for atoms with
different masses, where a coupling between center-of-mass and relative mo-
tion occurs. Nevertheless, as long as molecule formation can be neglected, it
is always possible to work in an effective interaction framework where such
complications do not matter [38, 40]. For deep optical lattices, the overlap
integrals can be approximated as Gaussian integrals, yielding a scaling

Usp, Vg ~ Vo' (3.9)
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Figure 3.3: Tunneling strength in an optical lattice potential. The ratio
between the boson and fermion tunneling rates is affected both by the po-
tential depth V[ in recoil units experienced by the two species, and thus
by their AC polarizabilities, as discussed in the previous chapter, and
by the mass ratio. The blue curves correspond to lattice wavelengths of
760 nm, 755 nm, 738 nm and 730nm (from top to bottom), thus covering
the practically accessible range of blue-detuned lattice wavelength derived
from our Ti:Saphire laser. For comparison, we have also included curves
corresponding to lattices at wavelengths of 850nm, 1064 nm and 532 nm
(dark red, faint red and green curve, respectively). Most theory predictions
on the mixture are valid in the limit of fast fermions only. The inset displays
the universal scaling relation between the normalized tunneling amplitude
and potential depth (solid line). The dashed line in the inset indicates the
corresponding tunneling amplitude for a lattice depth reduced by a factor
of 2/3. It can be seen, that at any given fixed ratio of lattice depths for
the two species (i.e. at a fixed wavelength) the tunneling ratio increases
strongly for increasingly deep lattices.
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Figure 3.4: Limiting cases of the pure bosonic Hubbard model. (a) In
the non-interacting limit % < 1, the system is superfluid, with a coherent
state on every lattice site. (b) In the zero-tunneling limit &% — oo, a Mott
insulator is formed, with a well defined integer occupation on all sites.

The bosonic superfluid to Mott insulator transition

The Bose-Hubbard model can be thought of as the limiting case of the
Bose-Fermi-Hubbard model both for a vanishing Fermion number or for a
vanishing interspecies interaction. The quantum phase transition between
the bosonic superfluid and the Mott insulator has been demonstrated in
threedimensional [60] and twodimensional [141, 142] optical lattices. For
Jy > Uy, we recover the superfluid macroscopic matter wave described
earlier, i.e. a Poissonian probability distribution of lattice site occupation,
and a well-defined macroscopic phase. On the other hand, if Uy, > J,, we
find a well-defined site occupation, depending on the atom number and the
external confinement potential. The phase coherence in the system is lost,
the system turns into a bosonic Mott insulator. These two limiting cases of
Bose-Hubbard physics are depicted schematically in figure 3.4. The critical
ratio Uy/J, can be calculated within a mean-field approximation [151],
yielding

(U /2 Jp)e = 270 + 1+ /(27 +1)2 — 1, (3.10)

which amounts to (Uy/Jy). = 35 for the simple cubic threedimensional
case (z = 6) with unity filling. A more accurate value of (Up/Jp). =~ 29.3
has recently been found for the case z = 6 using a Quantum Monte Carlo
treatment [24]. Experimentally, the ratio Uy/.J, can be translated into
a depth V; of the optical lattice potential, given the scaling implied by
the inset of figure 3.3 and equation 3.9, respectively. The experimental
sequence for the observation of the superfluid to Mott insulator quantum
phase transition therefore typically relies on adiabatically changing U,b/J,
by slowly increasing the depth of the optical lattice potential. A similar
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3.2. Self-consistent Wannier functions

procedure is also followed in this work, and the phase transition is thereby
associated with a critical lattice depth V.

3.2 Self-consistent Wannier functions

Interactions and self-consistency

The considerations in the previous sections are only accurate within the
single-band approximation, i.e. they are valid as long as the interaction
energies Vir, Uy, satisfy

Vel Usp

Werl Yo 11
A A S (3.11)

where A is the bandgap. However, the interaction energies are by no means
a small perturbation in practice. Instead, they can reach a significant frac-
tion of the band gap. Therefore, the Wannier wavefunctions of the inter-
acting ground state are different from the single-particle ground state wave
functions, and admixtures from higher Bloch bands are necessary to de-
scribe it. In the case of repulsive interactions, we might be tempted to stop
at this point and content ourselfs with leading-order perturbative correc-
tions to the Wannier orbitals, as we expect the orbitals to broaden, whereby
the onsite density overlap and thus the interaction energy contribution are
reduced. In the case of attractive interactions however, the corrected or-
bitals will give rise to higher onsite density overlap, resulting in stronger
interactions. Therefore, the correction can only be applied iteratively, until
convergence is reached. The resulting orbitals, which can be regarded as
eigenfunctions of the full interacting Hamiltonian, are commonly termed
self-consistent. In a sense, self-consistent orbitals are the natural basis for
the investigation of strongly correlated many-body systems, where proper-
ties of individual constituents are no longer defined independently from the
surrounding particles. In the following, we will investigate the modification
of the Wannier wavefunctions from single-particle to self-consistent orbitals,
and the consequences of this effect for the Hubbard-type many-body quan-
tum system.

A variational estimate

In order to understand the consequences of the modification of Wannier
functions by interactions, we investigate a simple model system, which can
be treated analytically. In the limit of infinitely deep lattices, the lattice
sites are effectively isolated harmonic potential wells, and the Wannier func-
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tions in the lowest Bloch band are the ground state wave functions of these
harmonic wells, i.e. take the form:

1 2
()= —e /2 3.12
() =+ (312
where j%/ is a suitable normalization constant, i.e. N' = (g)B/ ? for one

particle per well. For noninteracting particles, we know that a = o2,

where
h
o9 =1\ — 3.13
0 mw (3.13)
is the usual oscillator length, for a harmonic oscillator of frequency w/(2 )
for a particle of mass m. We expect an attractive interparticle interaction
to narrow the width of the wave function, while repulsion will broaden it.
This leads us to the formulation of a variational® Wannier wavefunction,
for the energy functional

1
E[®y, ®¢,np,np| =np (<Tb> + 5 M Wg<7“§>>

g ({27 + 3y w2) (3.14)

nb(nb — 1)

5 (Up) +npnyg (Vig),

where @, ; are the test wave functions for bosons and fermions respec-
tively, for positive integers ny, and ny € {0, 1} are the atom numbers within
the well, m,, s the corresponding masses, and wy, /(2 7) the respective trap
frequencies. As motivated above, we use Gaussian test functions, with in-
dependent dimensionless variational parameters

T0.d VTS B f (3.15)
v i .

The kinetic energy takes the usual form

By =

2

h2
mb7f

h
/ Z7fv§’f®b7fd3r = 2 /(vb,be,f)2d3r7 (316)

T = —
(Th5) 5 s

51t is not a priori clear that the variational approach yields a reasonable approximation
to the shape of ground state Wannier orbitals. Kohn [89] has shown that for suitably
chosen test functions, this is indeed the case.
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3.2. Self-consistent Wannier functions

where we have used integration by parts and assumed that the test wave
functions are real-valued. Uy, and Vj are given by formulae 3.7 and 3.8, re-
spectively. Clearly, all integrals occuring in the evaluation of the functional
3.14 on Gaussian test functions can be brought into the form

o 2 1
/ 2V e ? dz=1"< ;V), (3.17)

which allows us to calculate the total energy

3(n n
Eror[ By, By = - (—;’ howy, + —fhwf +ny B Bwy +ng 6?7%@)

4\ 52 B3
Ll l) 2v2 1y (3.18)
2 ﬁ ﬁg’ 0'071,
4\/§ 1 Qpf
: : : I
+npny JT (5[3 n XBJ%)3/2 o0y Wy,
o2 m . ..
where x = % and § = T - At our magic wavelength, this is further
0,b

simplified, as ’X = 1. By the variational principle [134], we have to find a
minimum of functional 3.18 in order to estimate the ground state energy of
the system. Figure 3.5 shows the energy landscape for one boson coexisting
with a fermion on a lattice site of depth Vj,, s = 12 £, at the background
interspecies scattering length a,; = —185ag. The energy minimum is found
using a standard optimization algorithm®. We can vary the interspecies
interaction strength, and obtain Wannier functions whose width depends
on the interaction strength, see figure 3.6.

Onsite-collapse and enhancement of three-body losses

From the results presented in figure 3.6, we find that for any reasonable bo-
son number, there exists a critical interspecies attractive scattering length
beyond which the onsite density collapses. At this point, one might argue
that the model clearly becomes invalid. Nevertheless, the collapse can be
considered physical for more than two particles per site, as the tremen-
dous increase in onsite density in the vicinity of the collapse will give rise
to enhanced three-body losses. Similar behaviour has been observed in a
macroscopic harmonic trap [108, 117, 10, 9], and can be considered a gen-
eralization of the well-known bose-nova effect [128].

6)Downhill-Simplex minimization as implemented in the SciPy library, www.scipy.org.
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Figure 3.5: Minimization of the total energy. (a) Energy landscapes for one
fermion interacting via the background scattering length a,y = —185 ay,
with a single boson in an optical lattice at a wavelength of 755.5nm and
at a lattice depth of 12 F,.. The Wannier function corresponding to the
new minimum of the total onsite energy (crossing of red and blue line) is
squeezed together with respect to the single-particle state characterized by
the oscillator length (dashed lines) in the harmonic approximation. The
dotted line indicates the magic relation o, = o;. (b) Associated modifi-
cation of the bosonic Wannier orbital in the harmonic approximation (red
curve), as compared to the single-particle orbital (grey curve). (c) Energy
change with varying width of the bosonic wavefunction, for a site with two
bosons and one fermion. The fermionic orbital is kept fixed at the optimum
value. The red and blue curve show the energy contributions of the inter-
boson and interspecies interaction, respectively. The dashed green curve
indicates the sum of all interaction contributions. The green curve yields
the change in total energy, as compared to the energy of the non-interacting
three-particle ground state. All energies are given in units of the bosonic
trap frequency.
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Figure 3.6: Wannier width for bosons (red) and fermions (blue) at lattice
depths of 10, 20 and 30 E, (from top to bottom row) versus interspecies
scattering length a,f, for one, two and three bosons (from left to right
column) coexisting with one fermion. Beyond a critical scattering length
indicated by the dashed vertical lines, there exists no minimum of the energy
functional at any finite width of the Wannier functions. Physically, for more
than two particles on a site, this is expected to result in a collapse of the
onsite density.

Renormalization of interaction energies

The most important consequence of the appearance of self-consistent Wan-
nier functions is the resulting energy change. At a first glance, one might
be tempted to redefine the interaction energy of the system in analogy to
the naive single-band Hubbard case, i.e. for species x and y, we would have

A h?
v, = 2Ty / a(r)2 0, (x) AV, (3.19)
Hay

parametrized by the respective reduced mass and s-wave scattering length,
where the self-consistent Wannier function w(r) replaces its single-particle
counterpart. However, this description is rather poor, owing to the change
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in potential and kinetic energy associated with any modification of the
Wannier function. Intuitively, it is clear that this contribution to the total
energy can never be neglected, as, after all, it is the reason why the interac-
tion correction to the single-particle Wannier functions is usually finite. In
other words, if there were no significant change of the single-particle contri-
butions to the total energy, the self-consistent wave-functions would either
collapse or broaden without end, depending on the sign of the interaction.
It is therefore crucial to include the change in potential and kinetic energy,
leading to an alternative definition of the renormalized interaction energy:

Eint(np,np) = Epor(np, ng) — Eyor(np - €+ ny - e?). (3.20)

That is, the interaction energy is the energy difference between the actual
system of interacting particles and a corresponding (hypothetical) system
of non-interacting particles, i.e. the sum of all single-particle energies in
the system?. It is interesting to note that for the mixture, it is in general
not possible to exactly separate the contributions of intra- and interspecies
interactions, as the change in the boson kinetic and potential energy has to
be attributed in parts to either the inter- and the intraspecies interaction.
If we assume this correction to be small compared to the contribution of
the aforementioned density overlap integrals 3.19, and distribute the energy
corrections accordingly, we arrive at effective values

20[77,5, 56{,

Uy (n , M = Uw(np,ns) + —— 3.21
b (1, 107 ) o (1, 1)  (y — 1) ( )
~ neder + (1 — a)ny de

Vop(np,ng) = Vig(ng,mg) + ——1 :Lbnf )™ a3 (3.22)

where Uy, Vis are the contributions from equation 3.19, €, €7 are the

single-particle energy corrections for Bosons and Fermions, respectively,
[Vorl
Upp

Uy, for two Bosons in the presence of a Fermion, for different values of the
lattice depth and interspecies scattering length. For repulsive interspecies
interactions, the bosonic repulsion is slightly reduced, while for interspecies
attraction, a significant increase in the effective interboson repulsion can
be seen. At lattice depths in the vicinity of the usual bosonic superfluid to
Mott insulator transition, the enhancement can be on the order of twenty
percent at the background Bose-Fermi interaction. The resulting bending
of the isometric lines visible in figure 3.7 may lead us to expect a shift

and o = Figure 3.7 shows values for the effective interboson repulsion

Dn fact, this is the basic definition for any interaction energy, for which the formulas
usually adopted in the realm of cold atom Hubbard physics are an approximation.
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Figure 3.7: Effective interboson onsite repulsion in the presence of a
Fermion, depending on the interspecies scattering length and the lattice
depth. The bending of the isometrics (dashed lines) indicates a shift of the
bosonic Mott insulator transitions towards deeper (shallower) lattices for
attractive (repulsive) interspecies interactions.

of the bosonic Mott insulator transition in the presence of fermions, to-
wards deeper or shallower lattices, for attractive or repulsive interspecies
interaction, respectively. We can now write the total interaction energy
approximately as

W Ubb(nb, nf) + Ty nff/bf(nb) (323)

Eipi(ny,ng) =
The explicit n,-dependence of the interaction energy parameters gives rise
to contributions of order O(n}) and O(n?) and higher to the intra- and inter-
species interaction energy, respectively. It has been pointed out [79] in the
case of pure bosonic systems, that such contributions can be interpreted as
effective many-particle interactions, and the same line of arguments readily
holds in the mixture case. We can thus conclude that the renormalization of
the Hubbard parameters occuring due to the self-consistency condition can
be understood in terms of an extended Hubbard model including effective
many-particle onsite interactions.

Renormalized tunneling

Now that we have established a renormalization of the interaction energy
due to the appearance of self-consistent Wannier orbitals, it is natural to ask
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Vo

mean field
Figure 3.8: Effective lattice depth determining the renormalization of the
bosonic tunneling. (a) Lattice potential (grey) of depth V; and harmonic
approximation (dashed line) for a single lattice site. The lowest bound state
(green line) has a zero point energy ¢, and a binding energy €,. (b) The
mean field interaction with a fermionic onsite density (blue) gives rise to
an effective potential, which, in case of an attractive interaction, is deeper
than the bare lattice potential. (c) The effective potential is approximated
by a pure sinusoidal potential of depth Vj = Vi + A, such that the binding

energy of the lowest bound state is shifted according to the Bose-Fermi
interaction energy V.

for consequences with respect to the other central parameter of Hubbard-
type models, i. e. the hopping J. As we know that an attractive interaction
tends to shrink the Wannier function while a repulsive interaction broadens
it, we expect the tails of the wavefunction to extend less (more) deeply into
the intersite tunneling barrier for attractive (repulsive) onsite interaction.
Thus, the overlap with the Wannier function localized on the neighbouring
site, and thus the hopping strength, is reduced for attractive onsite inter-
action, and enhanced for onsite repulsion. A numerical estimate however
is hard to get from the variational model used so far, as the Gaussian trial
wavefunction is supposed to be a good approximation to the true orbital
in the center of the site, where the potential is more harmonic, while it is
poor in describing the wings in the strongly anharmonic part of the po-
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tential®. We therefore have to resort to a different approximation in order
to estimate the correction to the tunneling. This can be done as follows:
The single-particle orbitals are known from the band-structure calculation
outlined in section 2.2. From the point of view of a single particle, and
within the mean-field approximation, the presence of other particles, with
which it interacts, will give rise to another periodic potential (in addition
to the optical lattice), the shape and amplitude of which are given by the
density associated with the self-consistent Wannier orbitals, and the inter-
action strength, respectively. In total, the particle will see a flattened or
deepened periodic potential, depending on the sign of the interaction. Its
effective tunneling can therefore be obtained from the calculation of the
band structure of this effective periodic potential, analogously to equation
3.6. This scheme can be largely simplified by observing that the change in
shape of the resulting potential is minor, and the change in depth largely
dominates (see also figure 2 in reference [98]). Therefore, we can neglect all
higher Fourier components and solve the well-known bandstructure prob-
lem from section 2.2, for an effective lattice depth. A better estimate can
be obtained by including the Fourier components of the Fermion density
into the matrix 2.11, and subsequent diagonalization [96].

In order to estimate the change in the effective lattice depth, we consider
a chimera model, assuming that the potential is sufficiently well described
by a harmonic approximation close to its bottom, and that the lowest band
can be treated in the harmonic approximation. This would be the case in
the absence of interactions for lattice depths exceeding approximately 5 F,.,
as can be seen from figure 2.3. The zero point energy of the lowest band
above the trap bottom is then given by

Hew N
€ = 70 —\/ Vo E,, (3.24)

On the other hand, the lattice is only finitely deep, giving rise to a binding
energy

&= (Vo — /W) E, (3.25)

For an effective lattice depth Vi + AV, the corresponding binding energy

8)This is of course true even in the absence of any interaction.
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would be

¢ = (%+A%—V%+A%) E,
= (170+Af/0— \/%\/1+Af/0/f/0) E, (3.26)
~ ~ ~ ~ -\ 2
= <V0+AVO—\/VO <1+§—§g+0<<ﬁv—?) ))) E,

Rearranging terms, we obtain

~ 1
Ubfzﬁg—Eb:A% 1—7~ Er-
2V W
Thus, the effective increase in the lattice depth Af/o is on the order of Uyy.
Figure 3.9 shows the change in the tunneling timescale estimated using a
band structure calculation based on equation 3.2.

Exact diagonalization

It is important to note that the variational model used so far has only qual-
itative prediction power. Quantitatively reliable results can be obtained
from an exact diagonalization calculation®, where the eigensystem of a suit-
ably truncated version of the Hamiltonian matrix is found numerically using
sparse-matrix tools such as the Lanczos algorithm. These inherently brute-
force approaches have the advantage that they do not rely on a very smart
choice of a basis set, allowing e.g. for the use of computationally handy
Harmonic oscillator eigenfunctions. Also, for large enough basis sets, the
results always become exact within the numerical accuracy!®.

While direct exact diagonalization also trivially works for a single fermion,
it is usually prohibitive to use it for the mixture, as the calculation would
have to be performed on the tensor product of the basis sets used for the in-
dividual species!!. Instead, exact diagonalization is performed on one single

9 A different approach, which is however inherently limited to single-component Bose
gases and weak interactions, has been proposed in reference [95].

10Tt should be noted that in this limit, exact diagonalization in the harmonic oscillator
basis is equivalent to the perturbative expression for a single-component Bose gas given
in reference [79], when the perturbation series is taken to infinite order.

WFor each individual species, the required basis set scales as the third power of the
number of orbitals included. Including only bound orbitals in a reasonably deep lattice
already produces a total dimensionality in excess of 4 x 103. Realistic basis sets include
also orbitals which energetically belong to the continuum.
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Figure 3.9: Effective bosonic tunneling in the presence of one Fermion per
site, depending on the interspecies scattering length. The different curves
correspond to bare lattice depths of 5 E, (blue), 10E, (red), 15 E, (green)
and 20 E, (orange). The inset shows the increase (or decrease, for repulsive
interspecies interactions) AV, of the effective potential depth with respect
to the bare lattice depth V. All data assume a single Boson interacting
with a Fermion.

species after the other, with the complimentary species providing a mean-
field potential, and iterated in a self-consistency loop until convergence is
found.

Exact diagonalization calculations for some parameters used in this work
have been performed by D.-S. Lithmann [97, 98]. A comparison with the
variational results presented earlier indicates that the corrections predicted
by these are typically too small by a factor of approximately two. The
qualitative predictions of the variational model have been validated in all
situations where direct comparison was feasible. Therefore, the variational
method is to be preferred in many situations where numerical accuracy is
not of large concern, due to the vast saving of computational time!2.

12)The practical difference in our situation can be between few seconds for a variational
calculation on the one hand and hours for the exact diagonalization on the other hand.
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3.3 Predictions based on the Bose-Fermi
Hubbard model

In this section, we shortly review some of the most important theoretical
predictions in the context of the Bose-Fermi Hubbard model, and comment
on the underlying assumptions.

Effective interactions

The complexity of the full Bose-Fermi Hubbard Hamiltonian has so far
forced theory work to concentrate on effective models, which arise within
certain parameter limits. These fall into two main classes, depending on
the assumed importance of the interspecies interaction. We shall discuss
both limits shortly in the following section.

Weak coupling regime

If the interspecies interaction can be considered small compared to the
energy scales of the bare Boson system, a perturbative approach to the
Bose-Fermi Hubbard problem is possible. It is important to keep in mind
however, that this treatment is inherently limited to the case where the
Bose-Fermi interaction is weak enough that no new bound (localized) states
can be formed. More specifically, it is not sufficient for the Bose-Fermi
interaction to satisfy |Vi¢| << U, but we also need |Vy¢| < A, = 4 J,, which,
when dealing with the bosonic Superfluid to Mott insulator transition, is a
much stronger condition.

Biichler and Blatter [20, 19] have considered a linear response treatment
of the Bose-Fermi interaction. Hereby, the fermions respond to a density
fluctuation dn, of the bosons with a density change

the strength of which is governed by the interspecies interaction energy V.
The susceptibility xy mainly depends on the density of states near the Fermi
energy. The back-action of the fermions on the bosons results in an energy

shift
~ L2 52

and thus an effective interboson attraction. The phase diagram of the
mixture is then dominated by the interplay between this effective attraction
and the native repulsion between the bosons. In particular, reference [19]
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highlights the importance of van Hove type singularities in the fermionic
density of states in the case of a two-dimensional system, resulting in a
strong temperature-dependence of the fermion response function and thus
the strength of the effective attraction.

Screening of interboson repulsion

The fermionic screening of the interbosonic interactions, as it arises from
equation 3.28, is predicted to be independent of the sign of the interspecies
interaction. Moreover, it has been argued that due to this screening of in-
teractions, the presence of fermions suppresses the formation of the bosonic
Mott insulator, which would only occur at larger values of the bare interac-
tion to tunneling ratio as compared to the pure bosonic case (see reference
[146] and references therein). However, these arguments are based on the
idea of instantaneous or static screening, which may in fact not be appli-
cable. It has been pointed out recently [123] that the ability of the Fermi
gas to react to an external perturbation (as induced by the bosons), is
largely limited by the antisymmetrization principle. If we consider a single
particle-hole excitation on top of a Mott insulating region of bosons, the
situation looks like a localized impurity potential from the fermions’ point
of view, which affects all occupied states in the Fermi sea. If the boson
wants to tunnel to an adjacent site, all fermionic states will have to adjust
to the new impurity configuration. As a consequence, the bare tunneling
amplitude J, will be replaced by an effective amplitude taking into account
the overlap of the initial and final many-body wavefunction of the fermions.
Although the modification of any individual state might be small, the to-
tal many-body suppression factor, which arises from the product of O(Ny)
individual overlap contributions (where Ny is the number of fermions in
the system), can deviate significantly from one, and in fact vanishes in the
macroscopic limit Ny — oo, a behaviour known from electrons in traditional
solid-state physics under the term orthogonality catastrophe [4, 133]. The
role of Anderson’s orthogonality catastrophe in mesoscopic systems, where
the suppression factor always remains finite, has been established recently
in [71]. The importance of the orthogonality catstrophe argument has been
shown to depend largely on the fermionic tunneling in comparison to the
other energy (time) scales in the problem: If the fermions can be considered
fast, i. e. the width of the fermion band is large compared to the interaction
energy scale Uy, then the screening can again be considered instantaneous
and the previous conclusions can be recovered, however, if the fermions are
slow, i.e. the width of their band is significantly smaller than both Uy, and
Vis, then the static screening is not present, and the dominant effect of
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the fermions is a suppression of bosonic tunneling. If this dynamical char-
acter of the fermionic screening is taken into account in the framework of
mean-field theory, a suppression of the bosonic superfluid density and an
enhancement of the Mott-insulating regions may result [123].

It should, however, be noted that a different approach, employing per-
turbation theory to arrive at an effective field theory for the bosons, and
including a correction to account for the dynamical nature of the screening,
still concludes that the Mott insulator transition for the bosons should be
suppressed [99], unless the single-band approximation is to be lifted, as our
results in the previous chapter and the theoretical work in reference [98]
clearly suggest. In the context of an extended multi-band Hubbard model,
the same theoretical approach predicts an enhancement of the Mott insu-
lator regions in the phase diagram, albeit for either sign of the Bose-Fermi
interaction [146]. It has also beeen conjectured, again in the limit of weak
Bose-Fermi interactions, that the character of the quantum phase transi-
tion between the bosonic superfluid and Mott insulator might be altered. In
particular, the well-known Mott lobes in the phase diagram should only be
affected near their tip, where the phase transition happens at fixed chemical
potential [160].

Strong coupling regime

If the tunneling of both fermions and bosons is assumed to be weak com-
pared to the interactions, it is instructive to first consider the zero-tunneling
limit. This situation has been considered e. g. by Lewenstein and coworkers
[94]. Departing from V,; = 0, where the familiar bosonic Mott insulator is
unaffected by the underlying Fermi sea, they predict that the regime which
can be treated perturbatively is limited to

n— (T_lb — 1) Uy, < be < b — 1y Uy, (329)

where g is the boson chemical potential, and ny the filling of the Mott insu-
lator. If the interspecies interaction becomes more attractive, the fermions
will attract additional bosons to the sites they occupy, if it is more re-
pulsive, they will push them away (i.e. attract bosonic holes). Thereby,
fermionic composite particles are formed, consisting of one fermion and a
certain number of bosonic particles or holes. The zero-tunneling phase dia-
gram will then be divided into distinct regions, each of them corresponding
to a well-defined number of bosons or bosonic holes as part of the composite
particle!’®. In the case of finite, yet small tunneling J = J; = .J,, second

13)This also gives an indication that the strongly interacting system is asymmetric with

respect to the sign of the interspecies interaction. Clearly, the number of bosons per
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order degenerate perturbation theory leads to an effective model of spinless
fermionic quasiparticles with nearest-neighbour interactions [94]

(4.4 (4.4

where ﬁ, ﬁ are the creation and annihilation operators of the composite
particles on a site 7, and m; = f; f; is the corresponding density operator. It
should be noted that this model is quite distinct from the usual fermionic
Hubbard model, both in the lack of a second spin component, and thus
an onsite interaction term, and in the appearance of the next-neighbour
interaction term. Also, the compounds of the fermionic quasiparticles have
been fully absorbed in the model parameters. For a given ratio Yt and

U,
chemical potential ;, the basic scaling of the effectiv interaction is gi{)fben by

2
K x — 3.31
i (3.31)

highlighting the exchange character, although it is important to note that K
can be both attractive or repulsive. The effective tunneling is less universal
in that respect, and has to be calculated individually for each region of the
zero-tunneling phase diagram (i. e. each type of possible composite particle).
The resulting spinless fermion model with repulsive interactions is known
to contain both Fermi liquid and density wave phases at half filling of the
Fermions, depending on the ratio K / J. For weak attractive interactions,
the composite fermions may form a BCS-superfluid, while sufficiently large
attractive interactions may lead to a ferromagnetic domain insulator [94].
A similar situation, albeit in the limit of heavy Fermions, namely

Jf < Jb < Ubb7 be (3.32)

has been investigated by Mering and Fleischhauer [105]. In this case,
the fermions constitute a binary disorder'*. Partially compressible gap-
less phases similar to the Bose glass [44] may appear. In the case of finite
fermionic tunneling the results for the annealed case qualitatively agree
with those obtained in the composite fermion framework discussed above.

composite is a priori only limited by the boson to fermion ratio in the system (for a
homogeneous system), and may be even larger in the inhomogeneous case, whereas
the number of holes is stricly limited by 7.

14) At small, but finite fermionic tunneling, the disorder may appear quenched or an-
nealed, depending on the observation time scale.
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Numerical results

Several efforts have been made to solve the Bose-Fermi Hubbard prob-
lem numerically. Most of these studies restrict themselves to the one-
dimensional problem, where powerful calculational techniques exist. How-
ever, it is in general not clear whether it is possible to generalize the ob-
tained results to higher dimensions. Exact diagonalization studies of small
systems with repulsive interspecies interactions [132] provided evidence for
the existence of three distinct insulating states in the system, namely the
bosonic Mott insulator, a crystalline density wave phase where bosons and
fermions occupy adjacent sites, and a phase consisting of separated domains
of bosons and fermions. For Vi ~ Uy, the fermions tend to suppress the
bosonic Mott insulator and restore superfluidity, while for V,s > Uy, the
competing unmized insulating phases may appear. For deep optical lattices
with strong interactions, quasi-disordered states have been found, similar to
the Bose glass [1]. Unlike in the pure bosonic case, where such phases arise
from a disordered potential, in the case of the mixture, they can be traced
back to the large number of quasi-degenerate configurations energetically
accessible to the mixed system, such as a single Fermion on a background
of lattice sites filled with bosonic atoms.

Supersolidity

A particularly interesting exotic quantum phase termed supersolid has been
predicted to occur in bosonic systems with an effective next-neighbour inter-
action [152], which may arise due to dipolar interactions [57] or via coupling
to a second species, either bosonic [103] or fermionic [19]. The supersolid
phase is characterized by the presence of both diagonal and off-diagonal
long range order at the same time, i.e. the system displays both long-range
phase-coherence (and hence superfluidity), and non-trivial density-density
correlations, which is typical for crystalline order, at the same time. In
a two-dimensional system, the picture of a checkerboard is often invoked
to describe the situation, where the black and white fields correspond to
lattice sites occupied by Bosons and Fermions, respectively. The role of the
Fermions in the system can be thought of as restricting access to the white
fields for the Bosons. The emergence of the density wave is thus easily
seen. The coherence stems from the fact that any assignment of black and
white labels to the lattice sites is of course arbitrary. Therefore, we have
to consider the superposition of the black-and-white checkerboard and its
inverted counterpart, leading to an atom number uncertainty on all lat-
tice sites, and thereby to a finite value of the off-diagonal long-range order
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(al a;)iz;. While the argument given so far critically relies on half filling for
both Bosons and Fermions, DMFT? calculations have shown that depend-
ing on the filling factors of Bosons and Fermions, slightly more complicated
phases meeting the supersolidity criterion can emerge, in which the density
wave structure shows a much smaller modulation [148, 149]. On the one
hand, this enhances the probability that supersolid phases may exist in real
systems, where the filling can not be controlled with very good accuracy. On
the other hand, the detection of this low-amplitude density wave is challeng-
ing with experimental methods at hand. The question whether the delicate
checkerboard order, which always has to compete with phase separation in
order to exist (see e.g. [20, 19]), will survive in a trapped, and thereby nec-
essarily inhomogeneous and finite system, is still unresolved [69], although
recent real-space DMFT calculations seem to suggest it [147]. However, no
experimental evidence of supersolidity in optical lattices has been found to
date!®.

Adiabatic heat exchange

It has also been argued that for finite temperature systems, the dominant
effect may be of thermodynamic origin. If we assume that the atoms are
transferred from some trapping potential which is approximately harmonic
into the optical lattice periodic potential in an adiabatic way, then the
total entropy of the system must be conserved. However, if the two compo-
nents in the mixture interact, they may exchange heat, and their individual
entropies need not be conserved. Instead, it is to be assumed that if the in-
teractions are sufficiently strong, the two components will eventually reach
the same temperature in the optical lattice. Taking into account the initial
and final density of states for both species, Cramer and Eisert [30] suggest
that in this process, the bosons are heated with respect to their reduced
temperature 7'/T,. Therefore, an apparent reduction of superfluidity in the
system might in fact be due to a reduction of the degree of degeneracy of
the Bose gas [120]. The strength of the effect largely depends on the de-
tails of the trapped system, and calculations taking into account realistic
experimental parameters for the setup presented in this work are currently
being carried out [29].

15)Dynamical mean field theory, see e. g. reference [72].

16) Evidence for supersolidity has been reported from torsional oscillator experiments in
Helium [83, 127], but the interpretation of these experiments is not yet fully clear, and
the observed strength of the effect disagrees with standard theory [15, 126].
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Four

Probing interaction effects via
quantum phase diffusion

This chapter presents experiments aiming at demonstration as
well as quantitative measurement of effects induced by the inter-
species attraction, making use of the well-known quantum phase
diffusion dynamics of a bosonic matter wave in an optical lat-
tice. Parts of the results presented here have been published in
references [157] and [156].

4.1 Quantum phase diffusion of the
macroscopic matter wave

Time evolution of coherent states

We will first consider a coherent state within an individual well of the lattice
potential. This state is characterized by a complex number «, which is
related to the mean bosonic particle number i, = (a|fy|a) = |a|*. Without
loss of generality, we can assume that « is real at time ¢ = 0. It is convenient
to write this initial state in the local Fock basis:

o) = eoP2 . 37 ) (4.1)

nb!

ny
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If we neglect interactions, the Hamiltonian is linear in the particle number,
i.e. H=ny - hw, and the time evolution is given by:

2 o™ .
o) = a(t)) = e T2 % - —=em " )
nzb nb!
(4.2)

—iwt)”b

—|a|? (04'6 —iw
=e Py Tb,\nb):e “lov).

np

The coherent state is thus an eigenstate of the noninteracting Hamiltonian,
or quite generally any Hamiltonian which is strictly linear in the boson num-
ber n,. As a consequence, the coherent macroscopic matter wave remains
stable as long as interactions can be neglected.

Time evolution with interactions

Now, we introduce interactions. We will first review the basic dynamics
neglecting orbital effects altogether. The interboson repulsion term in the
Hamiltonian is nonlinear in n,, and the coherent state will therefore not
persist under the full Hamiltonian. On the other hand, each Fock state |n;)
clearly is an eigenstate of the interaction term with eigenenergy

U

5 g (nb — 1) (43)

We therefore obtain the full time evolution as

la) = |a(t)) = e~ e/ ez Dty (4.4)

g
- nb!

The macroscopic matter wave can be characterized by the expectation value
of the boson annihilation operator a, yielding

(@) = (a(t)]a]a(t))

/= \nptn) i
— e—ﬁb Z ( nb) b b e—ﬁ M(nb(nb—l)—ng(ng—l))< (45)

my| &)
and, with the well-known matrix elements (n;|&|n,) = \/np 0(ny, ny — 1),
. ny® i
(@) = Ve ™ Yy Loemnmtnt (4.6)

nb!
np

Clearly, the individual Fock components of the initially coherent state
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Accumulated phase Accumulated phase Accumulated phase

Figure 4.1: Phase evolution of individual Fock states. (a) Evolution as-
sumed in usual single-band Hubbard model. All energies are harmonics of
the interaction parameter U. (b) Evolution with renormalized interaction
energies, as obtained from self-consistent bosonic Wannier orbitals. Effec-
tively, the time evolution is slowed down as compared to the harmonic case
(Indicated by the shaded areas). (c¢) Evolution in the presence of Fermions,
assuming attractive Bose-Fermi interaction, obtained from self-consistent
bosonic and fermionic orbitals. In this case, the time evolution is speeded

up.

will dephase under the interboson interaction!, as illustrated in figure 4.1
(a), and the macroscopic matter wave field will collapse. The dynamics
can be visualized using the Q-function, defined on the complex plane as
Q(B,t) = £ [(Bla(t))|* [113]. However, as all energies occuring in the time
evolution are integer multiples of U, the Fock states will always rephase after
a time ¢, = % and the macroscopic matter wave will revive. This dynamical
evolution of the matter wave is visualized in figure 4.2. The time scale of
the collapse decreases with increasing mean occupation number. We can
understand this behaviour if we consider

@l _ | - NS T i Y Gy (= 1)~ (1) (mp—2))

T ™ nb!
) .
_ 7'7Lb I nb 7}% Ubb nbt 4 7
= e "/ —re (4.7)
Ny
np

= le7" /Ty, exp (7 6_%Ubbt)|

= [V, exp (7 (e 7 U " — 1))]

DThe situation is very much analogous to the Kerr effect in quantum optics.
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Figure 4.2: Collapse and revival of the macroscopic matter wave. (a)-(c)
show the normalized expectation value of the matter wave field evolving
in time, for mean occupation numbers of n = 0.5, 1.5 and 2.5, respectively.
Both the time scale of the collapse and the minimum value decrease strongly
for higher filling. (d) Q-function plot for time steps of %t =v-5,v=
0...8, corresponding to the first collapse and revival cycle in (b). Note the
appearance of a Schrodinger cat state corresponding to the collapse of the

matter wave field.

and expand the exponent to second order in time

2 _
= |V o7 Uit e‘%tﬂ
= (4.8)
Upb b 42
T_lb 67 2 K2

In the vicinity of each revival, the expectation value of the macroscopic
matter wave therefore behaves as a Gaussian, with a collapse time scale
given by h/(y/n, Uy,). Before we proceed to a more accurate picture of
the time evolution, it is worthwhile to explain how this collapse and revival
dynamics can be triggered and monitored in an experimental situation. This
experiment in a pure bosonic quantum gas was first performed by Greiner
et al. [61], and we shall essentially follow the same procedure.

The experiment starts with an adiabatic ramp into a shallow optical
lattice. If we assume interaction effects to be small, we will thus have a
coherent state with a Poissonian atom number distribution on every lattice
site. A fast increase in lattice depth then freezes out this distribution. At
the same time, the interaction energy becomes important, and the time
evolution given by equation 4.6 is triggered. After some hold time, the
lattice and the confining potential are instantaneously switched off, and the
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Figure 4.3: Experimental observation of collapse and revival dynamics of
the macroscopic matter wave field in a pure bosonic sample. (a) Ramp
sequences for dipole trap (red curve) and optical lattice (blue curve). Both
curves are not drawn to scale. (b) Observed visibility vs. hold time, for a
lattice depth ramp from 8 E; to 22 E, in 50 us. Also shown are the extraction
of the mean interaction energy (red) and the collapse time (blue) from
the measured traces. (c) Representative TOF images corresponding to the
measurements in (b), for times ¢ = 50...100 us, in steps of 50 us from left
to right.

atoms are imaged after TOF. The contrast of the resulting matter wave
interference pattern is then measured in terms of the visibility
y="2_"0 (4.9)
ng +no
where ng and ng are the atom numbers within the boxes at the expected
peak positions and suitable reference positions, analogous to the definition
in [52]. Figure 4.3 illustrates the procedure and shows the result of a mea-
surement of the dynamics at 22 E, with a pure bosonic sample. In the
experiment, the dynamics reveals to be damped on a timescale of several
revival periods. We have verified that the decay is hindered by increasingly
deeper final lattice potentials. This example demonstrates that we can
measure the revival time scale and thus the interaction energy with high
precision using the procedure outlined above. It should be noted however,
that this way, we only obtain an averaged interaction energy, neglecting
the intrinsic particle number dependence. In the following sections, we will
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explore what can be learned from this averaged information. Finally, in the
last section of this chapter, we will go beyond this and try to identify the
individual frequency components.

4.2 Changing the interaction energy

As we now have at hand a tool for precise measurements of the interaction
energy, we can try to elucidate the effects of a fermionic admixture to the
system. For simplicity, we will start in a scenario where essentially all
bosons sit on lattice sites occupied by a fermion. For attractive interactions
and suitable atom numbers, this assumption will be validated a posteriori,
see section 4.3. In case interactions are weakly attractive or even repulsive,
or the atom numbers are not suitable to fulfill this condition, additional
effects will have to be taken into account, which we will defer until section
4.5.

Shift of the mean interaction energy

What kind of modifications have to be expected upon addition of fermions
to the system? Within the theoretical framework given in section 4.1, the
only measurable modification should be a change in the interboson interac-
tion energy due to the adaption of the self-consistent Wannier functions as
described in section 3.2. The additional interspecies interaction contribu-
tion to the Hamiltonian given by 3.3 will not contribute to the experimental
signature, but is absorbed in a non-measurable global phase, as any other
energy contribution which is linear in the bosonic atom number (see equa-
tion 4.2). In order to verify the expected change in the revival timescale,
we use an experimental sequence similar to the one in the previous section,
however, adding fermions to the mixture this time. Right before the rapid
change in lattice depth which triggers the collapse and revival dynamics,
we may now blast the fermions out of the system using a short pulse of
resonant light. We have verified that this procedure has negligible effect
on the coherence of the bosonic matter wave. Furthermore, the pulse is
short as compared to the bosonic tunneling timescale, so the atom number
distribution of the bosons can not adapt to the new situation. This way,
we can make sure that the initial state, i.e. the atom number distribution
is the same, whether or not the fermions participate in the actual collapse
and revival experiment. We can then measure the revival timescale with or
without the fermions. The result of this experiment can be seen in figure
4.4. As expected, the interspecies attraction leads to a shrinking of the
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Figure 4.4: Shift of effective interaction due to an attractive interspecies in-
teraction. Comparing the measured frequencies in the presence (red points)
and absence (blue points) of Fermions, we find that the Bose-Fermi attrac-
tion indeed enhances the effective Bose-Bose repulsion, leading to a speed-
up of the collapse and revival dynamics. The lines are just a guide to the
eye.

bosonic Wannier function, which in turn enhances the interboson repul-
sion. Therefore, the collapse and revival dynamics is clearly accelerated as
compared to the pure boson case. Furthermore, we observe an enhanced
damping of the dynamics in the presence of fermions. This damping can at
least partly be attributed to a finite tunneling of the fermions during the
hold time, opening a way towards relaxation of the system. Moreover, we
will have to consider the role of dependence of the Wannier function on the
actual atom number, as described in section 4.6.

4.3 Probing interaction-induced changes of
filling

In section 4.1, we have shown how the collapse part of the dynamics yields
information on the filling in the system. Under the assumption of a Poisso-
nian distribution, the decay shows a Gaussian shape, and the mean atom
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Figure 4.5: [Initial collapse of bosonic matterwave in the presence of
fermions, at an interspecies scattering length of 0aq (red points), —160 ag
(green points) and —300 ag (blue points). The lines are Gaussian fits to the
data for ¢t > 50 us.

number can be related to the Gaussian FWHM via equation 4.8. We shall
now make use of this relation in order to investigate the effect of inter-
species interactions on the atom number distribution in the optical lattice.
To this end, we use the Feshbach resonance described in section 1.5 in or-
der to tune the interspecies scattering length a;f in the dipole trap. The
mixture is loaded into a shallow optical lattice. Before triggering the col-
lapse and revival dynamics, we use Raman interaction switching, bringing
the potassium atoms in the |mp = —%> Zeeman state, such that the ac-
tual phase evolution always takes place at the corresponding background
scattering length. We then observe the initial decay of the matter wave
field and extract the corresponding time scale via a Gaussian fit. Fig-
ure 4.5 shows the experimental sequence, together with exemplary results.
The time scale is found to decrease significantly for increasing interspecies
attraction, pointing to a larger variance of the occupation number, asso-
ciated to an increasing mean occupation number under the assumption of
a poissonian distribution, according to equation 4.8. For large attractive
interactions, however, we find a significantly reduced initial contrast of the
matterwave interference pattern, while at the same time, the goodness of
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fit for the Gaussian model of the revival peak decreases. Although such
deviations could also be caused by multi-orbital effects as demonstrated in
section 4.6, the fact that the effective width decreases instead of increases
can be interpreted as evidence for the onset of a sub-poissonian number
state distribution.

4.4 QPD at varying interspecies scattering
length

In order to extend our analysis beyond the simple all-black-and-white ex-
periment presented in section 4.2, we use an experimental sequence which
is essentially the inverse of the procedure used in the previous section. We
start out by preparing the potassium atoms in the |[F' = %,mF = —%)
state by means of radio-frequency RAP. We then apply a magnetic field
such that the interspecies scattering length in the resonant channel can be
tuned. Next, we load the non-resonantly interacting mixture into the shal-
low optical lattice. Right before the jump in lattice depth, we make use of
rapid Raman interaction switching in order to bring the Potassium atoms
into the resonant collision channel. This way, we ensure equivalent initial
states for all experimental runs, maintaining at the same time the ability to
measure QPD dynamics at varying interspecies interaction strength. The
results of this experiment can be seen in figure 4.6.

4.5 Probing co-occupation of sites by
heterodyne QPD

An intriguing feature in the outcome of the experiment shown in figure 4.6,
is the modulation of the revival amplitudes, depending on the interspecies
interaction. This effect can nicely be seen in figure 4.7, where we directly
compare QPD traces for interspecies scattering lengths of ayr = —55 ap and
apy = —85ap, respectively.  To understand the mechanism behind this
suppression, we have to relax our initial assumption, that bosons always sit
together with fermions. Instead, we assume that the optical lattice contains
two kinds of sites: The ones that are occupied by a fermion and those that
are not. Clearly, these two subsystems experience different time evolutions.
This is true even within the single-band Bose-Fermi-Hubbard model, due to
the interspecies interaction term. As we now have two different subsystems,
the linear time evolution becomes measurable, as a difference in the global
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Figure 4.6: QPD dynamics for varying interspecies interaction strength.
Bright and dark areas indicate high and low visibility of the interference
pattern, respectively. The experimental data has been interpolated lin-
early along the scattering length axis. For this series of measurements, the
mixture system is prepared in the nonresonant |mp = —I) + |mp = 1)
channel, and rapidly transferred to the resonant channel via Raman inter-
action switching right before the QPD dynamics is triggered. Depending on
the interspecies scattering length, a suppression of the first (second, third)

revival can be observed.

phases of the two systems. Figure 4.8 shows the Q-function within the
single-band Hubbard model, for the two subsystems as well as the whole
system?. It is thus possible to reproduce a strong suppression of any of the
revival peaks depending on the choice of parameters, i. e. the relative weight
of the two subsystems, and the ratio of the interspecies and intraspecies
interaction strengths. More explicitly, a suppression of the first revival
takes place if the timescale of the dephasing between the two subsystems is
close to the revival time t, = % of the individual systems. The differential
phase between the subsystems is given by

i

O(t) m emn e (4.10)

2)The Q-function is defined on the phase space of the system and can therefore easily be
defined for mixed states, see e.g. [113].
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Figure 4.7: Suppression of the first revival peak. The measured points
correspond to apy = —55ag (red diamonds, first peak strongly suppressed)
and a,y = —85ag (blue circles, usual damping). Both traces were recorded
after a 50 us lattice depth jump from 7 to 32 E,. for Rubidium, using Raman
interaction switching into the resonant channel right before the jump.

leading to the suppression condition
Ubb ~ 2 %fﬁb- (411)

Inserting the standard expressions for the interaction energies, we obtain
the condition

1
Gof _ = Hof (4.12)
py 27N b

where 1y, and pp are the respective reduced masses, and v is the ratio
of the density overlap integrals, with 1.0 < v < 1.5 for the parameters
of this experiment. Inserting numbers, we find that the experimentally
observed ratio of Z%’; 2 % is consistent with our model, if we assume low
Rubidium filling n, < 1.5 for these measurements. The peak suppression
can therefore be identified with the relative evolution of the global phase
of the two subsystems. In a sense, this experiment can thus be considered
a heterodyne measurement of the Bose-Fermi interaction, where the lonely
bosons serve as a reference clock.
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Figure 4.8: Mechanism behind the suppression of revivals in the Q-function
picture. The rows represent the subsystems with (upper) and without (mid-
dle) fermions, and the total (mixed) system (lower).
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4.6 Analysis of Fourier components

So far, we have only looked at the average interaction energy, and its modi-
fication by the presence of a fermion. However, it is clear from the consider-
ations in the previous chapter that the interaction energy will also depend
on the boson number. This is even true for a pure bosonic sample, where we
were able to make use of this fact both for a direct observation of number
squeezing as a precursor of the superfluid to Mott insulator transition and
the verification of the numerical accuracy of exact diagonalization calcula-
tions in our system [157]. The details of this analysis are beyond the scope
of this work, and we will here restrict ourselves on applications to mixtures.
More details about this and related topics can be found in reference [155].

If we assume that the interaction energies for different boson numbers
are in general not integer multiples of the two-boson interaction energy, we
expect a dephasing of the collapse and revival signal in the QPD exper-
iments on a time scale related to the difference frequencies. Clearly, the
experimentally observed damping could be caused partially by such a de-
phasing, provided that the frequency differences would be on the order of
10% to 30% of the average frequency. By carefully adjusting the dipole trap
depth during the jump, and thus eliminating additional inter-site dephasing
due to spatially varying energy offsets, we can extend the timetraces of the
QPD dynamics to significantly longer timescales, such that we can observe
several tens of revivals. For the right choice of parameters, we can thus
obtain a clear signature of a beating between multiple frequencies in a pure
bosonic sample, which can be verified using a discrete Fourier transform of
the trace, see upper part of figure 4.9. Once established on the pure bosonic
sample, this method of analysis can be extended straightforwardly to the
Bose-Fermi mixture. The experimental sequence is very simple, with the
lattice loading and the QPD dynamics taking place at the same scattering
length. The traces are recorded over a timescale of typically 6 ms, and then
subjected to a discrete Fourier transform. The result of this experiment
can be found in figure 4.9, where we compare the Fourier spectra obtained
for a jump in lattice depth from 6 to 32 E,, with and without Fermions
present. The first thing to observe is the occurence of additional frequency
components of order O(Uy,), at frequencies larger than those measured in
the pure bosonic case. These correspond to the modification of the interbo-
son interaction energy Uy, by self-trapping, as observed previously already
for the average interaction energy (see figure 4.4). Secondly, there appears
an additional frequency component at a frequency significantly lower than
the Uy, components, corresponding to about one third of the mean bosonic
interaction energy in the situation shown in figure 4.9. In the timetrace,
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Figure 4.9: Multiorbital structure revealed in long traces of QPD dynamics.
Long QPD visibility trace (a) and corresponding Fourier power spectrum
(b) for a pure Rubidium system. The spectrum essentially consists of two
groups of features, at frequencies of order O(U) and O(2U), marked by
the shaded areas. (c) Long QPD trace in the presence of fermions, at an
interspecies scattering length ayy = —115ay. Besides the stronger damping
of the dynamics, a significant suppression of the second revival peak (indi-
cated by yellow arrow) is clearly visible. (d) Fourier power spectrum of the
mixture QPD trace. The most prominent new features are the suppression
peak (indicated by the yellow arrow) and new spectral components above
the O(U) spectrum (green arrow). Note that the vertical axis has been
enlarged by a factor of two with respect to (b) in order to compensate for
the stronger damping. The DC component has been removed from both
spectra for clarity.
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4.6. Analysis of Fourier components

this feature corresponds to a modulation of the QPD signal on a timescale
of several revivals. Both from the observed frequency and by direct in-
spection of the timetraces, we can identify this extra modulation with the
peak suppression observed in the previous section. Thereby, the frequency
of this peak is related to the difference in the time evolution between the
bare bosonic and the mixed Bose-Fermi subsystems. This spectral feature
thus allows, at least in principle, to extract the interspecies interaction en-
ergy. In order to verify this assumption, we compare the Fourier spectra for
different values of the interspecies scattering length in figure 4.10. We ob-
serve a shift which increases linearly with the interspecies scattering length
within the measurement precision. We therefore conclude that this fre-
quency component is a direct signature of the differential global phase for
the two subsystems with and without fermions, as explained in the previous
section.

111



4. PROBING INTERACTION EFFECTS VIA QUANTUM PHASE DIFFUSION

1.0

Spectral power (a.u.)

0 1 2 3 4 5 6 7 8 9 10
Frequency (kHz)

Figure 4.10: Fourier power spectra of QPD traces for mixtures of varying
interspecies interaction strength. The individual traces are vertically offset
by an amount corresponding to the individual interspecies scattering length,
as indicated with each trace. Besides the group of spectral features of order
O(Uy,) and O(2 Uy), an additional strong feature can be observed at smaller
frequencies. This peak, which shifts with interspecies scattering length
approximately linearly (dashed line), is identified with the peak suppression
feature observed earlier, and can be explained as the differential phase shift
between the subsystems with and without fermions. The DC component
has been removed from all spectra for clarity.
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Five

Role of interspecies interactions in the
many-body system

We investigate the loading of an interacting mixture of quantum
gases into a threedimensional optical lattice. It is shown how the
many-body dynamics is modified due to renormalization effects
and changes in filling demonstrated earlier. The main results of
this chapter have been published in reference [12].

5.1 Symmetry between attractive and
repulsive interactions

For a homogeneous system!, it is to be expected from the arguments given in
the previous section that the system behaves identically for both attractive
and repulsive interactions. However, there are several caveats, all of which
can play a role in the real system, namely:

e Non-linearity of the Bose-Fermi interaction strength V' with respect
to the interspecies scattering length ar, due to the self-consistency
condition on the interacting Wannier functions, as described in section
3.2.

e Change of the interboson repulsion U with a¢ due to self-trapping,
as discussed in section 3.2.

e Modified effective tunneling due to interactions. The effective poten-
tial is increased for attractive interactions, while it is decreased for

DNote that a homogeneous system is understood to be infinite.
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repulsive interactions. Clearly, this also means that an effective ex-

. . 2 . .
change interaction, of the form J., = JV, tends to be significantly
weaker for attractive than for repulsive interactions.

e The overal trapping potential (which is confining for fermions, but
anticonfining for holes). A very strong trap can therefore break the
symmetry, enforcing boson-fermion co-occupation of sites in a repul-
sive regime where it would be avoided in the homogeneous system.

e The fixed finite atom number (instead of a well-defined filling in the
homogeneous case) also breaks the symmetry, provided that N, /Ny >
1. This stems from the fact that the interaction energies for a fermion
sitting with one, two or three bosons are all different, while from
the point of view of a hole, these cases are all degenerate (up to the
interboson interaction energy).

We therefore conclude that for the symmetry to be observable, the inter-
species interaction needs to be weaker than the interboson repulsion, such
that renormalization effects can be neglected. Furthermore, it is necessary
that the confining potential in which the mixture is trapped is not too
strong, and that the bosonic filling is not too high, in order to preserve the
symmetry between particle- and hole-based composite particles.

5.2 Previous experimental work

Recently, degenerate mixtures of bosonic *’Rb and fermionic “°K atoms in
three-dimensional optical lattices have been investigated at a fixed attrac-
tive background scattering length in two independent experiments [63, 114].
The authors found a shift of the visibility loss of the 8"Rb interference pat-
tern towards shallower lattices, which has been interpreted as a shift of the
bosonic superfluid to Mott insulator transition?. Several mechanisms have
been put forward to explain this shift, including those presented in section
3.3; however, none could clearly be identified.

5.3 Experimental sequences

In order to clarify the physics behind the visibility loss, we have prepared
a degenerate Bose-Fermi mixture with magnetically tunable interactions.

2)See also reference [26] for related work on a Bose-Bose mixture.
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5.3. Experimental sequences

Thereby, we can investigate the coherence properties of the bosonic compo-
nent in the presence of fermions over a wide range of interspecies interac-
tions, from strongly attractive to strongly repulsive, for varying admixture
of fermions. The experiment starts with approximately 4 x 10° 8Rb atoms
and up to 3 x 10° *°K atoms in their respective hyperfine ground states
| = 1,mp = +1) and |F = §,mp = —5). The mixture is held in the
crossed dipole trap while a homogeneous magnetic field is adiabatically
applied in order to address the interspecies Feshbach resonance described
in section 1.5. We can continuously tune the interspecies s-wave scatter-
ing length a,; between —170 ay and +800 ag below the Feshbach resonance.
After a fast jump over the resonance, we can also address attractive scatter-
ing length values between —800ag and —200 ag. After 50 ms settling time
for the magnetic field, a three-dimensional optical lattice is adiabatically
ramped up to a final depth in the range of Vj = 2...17 E,. within 100 ms
using an s-shaped ramp, similar to those investigated in reference [53] 3.
The lattice wavelength A = 755 nm in this experiment is chosen such that
the lattice depths, as measured in units of the respective recoil energies, are
equal for both species. This ensures maximum overlap of the single-particle
Wannier functions, while the ratio of the tunneling is expected to be given
by the mass ratio Z—i After a hold time of 100 ms, which is long compared
to the tunneling time for any lattice depth used, all traps as well as the
magnetic field are instantaneously switched off?, and the atom clouds are
allowed to expand during 18 ms time of flight. The resulting interference
pattern of the 8Rb atoms is recorded using standard absorption imaging.
From these images, we extract the contrast in terms of the visibility, defined
as in the previous chapter, see equation 4.9.

3Tt should be noted that due to the shorter lattice wavelength, in our work, the optimal

timescales are expected to be slightly shorter than those reported in reference [53]. On
the other hand, the weaker overall confinement necessitates a stronger redistribution
of the boson density in our experiment, if we neglect the influence of the fermions.
Experimentally, the 100 ms ramp times used in this work were found to produce the
least heating.

) The shutdown timescales of the optical potentials (mainly due to finite turn-off times

of acousto-optical modulators) are negligible, while the magnetic field shows a decay
timescale of approximately 400 us. We can not exclude slight distortions of the cloud
shape due to inhomogeneous magnetic forces during this time. However, due to the
high quality factor of 2 x 102 of the Feshbach resonance, these effects will essentially
be constant over the whole range of our measurement.
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Figure 5.1: Visibility of Rubidium interference pattern, versus interspecies
scattering lengths, for (a) high, (b) intermediate and (c) low fermion num-
ber. Darker colours correspond to deeper lattices. The points and error
bars represent actual measurements. The dashed lines are guides to the
eyes.

5.4 Visibility of bosonic interference
pattern mixture

By varying both the lattice depth and the magnetic field, we can probe the
phases of the mixture. We have analyzed scenarios with low (N ~ 0.25 Ny),
intermediate (Ny ~ 0.5 N,), and high (N; ~ 0.75 N,) fermion numbers.

In figure 5.1, we show representative profiles of the visibility versus in-
terspecies scattering length, for various values of the lattice depth, and
various fermion numbers. For shallow lattices of less than 3 E,, we find
a high visibility, which is almost independent of the interaction strength.
Also, for deeper lattices, at ay; ~ 0, we recover a monotonic decay of the
visibility versus lattice depth compatible with the superfluid to Mott in-
sulator transition in a pure ®'Rb sample [52, 51]. This demonstrates that
the fermion cloud becomes fully transparent for the bosons. For small ab-
solute values of a,s, we observe a decrease of visibility which is symmetric
around ayy = 0 within our measurement accuracy. This symmetry persists
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Figure 5.2: Visibility of Rubidium interference pattern for high Fermion
numbers, versus interspecies scattering lengths. (a) Individual visibility
trace at a lattice depth of 9.3 E,. The red and blue points are taken above
and below the Feshbach resonance, respectively. Note that the region very
close to the Feshbach resonance, where particle loss is observed in the dipole
trap, is located outside the range boundaries of this graph. The shaded
regions qualitatively indicate the different regimes discussed in the main
text. (b) Detail trace taken at a lattice depth of 11E,, illustrating the
symmetry of the central feature. The line is a Gaussian fit to the data. The
shaded region represents the center position and uncertainty as derived from
the fit.

within an interval |Uys| < |Uy|, where the interboson repulsion is strong
enough to effectively hinder bosonic double occupation of sites. Depart-
ing from this symmetry peak, we see a further decay of visibility, which
is significantly stronger for intermediate attractive than for comparable re-
pulsive scattering lengths. This suggests a fundamental difference in the
underlying mechanisms on either side. The behaviour in the vicinity of
the attractive background scattering length as we observe it is similar to
earlier measurements [63, 114]. Towards very strong attraction, we find a
significant loss of bosonic atoms, accompanied by an increase of visibility.
For strongly repulsive interactions, the visibility remains almost constant
on a high level. This could be an indication that bosons and fermions do
not occupy the same lattice sites in this regime, a situation which we shall
examine more closely in the following sections. For az; > 400 ag, we ob-
serve significant atom losses. However, these are found to be essentially
independent of the hold time in the lattice, suggesting their occurrence
early during lattice loading, when the mixture is held just below the Fes-
hbach resonance, such that the loss channel given by collisional formation
of molecules becomes accessible. Based on the observations outlined above,
we qualitatively identify five distinct regimes, i.e., (i) lossless coexistence
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in very shallow lattices for all scattering lengths, and regimes characterized
by very (ii) strong interspecies attraction, (iii) intermediate attraction, (iv)
weak interaction (of either sign), and (v) very strong repulsion for deeper
lattices, where the latter one might be connected with phase demixing of
some kind. This classification qualitatively holds for all fermion numbers
investigated in this work, although the symmetric feature around a,; ~ 0
might be most pronounced for the highest fermion numbers. Figure 5.2 (a)
presents an individual visibility profile taken at high Fermion number, with
the regimes (ii)-(v) highlighted. In part (b) of this figure, a detail scan of
regime (iv) is shown, demonstrating the symmetry of the effect with respect

to the sign of interactions in this narrow regime®.

5.5 Reversibility and the role of loss
processes

In order to distinguish dissipative and adiabatic effects, we investigate the
reversibility of the visibility loss. For a dissipative process, we expect the
loss be irreversible, while any adiabatic effect can in principle be undone
when the dynamics is reversed. It should be pointed out in this context
that adiabatic heating effects as considered in reference [30] are expected
to be perfectly reversible, as they only arise from the modification of the
density of states during the lattice rampup. In the experiment, we charac-
terize the reversibility as follows: After the usual hold time in the optical
lattice, we ramp back the magnetic field to the value where the mixture
becomes non-interacting within 50 ms. After a short additional hold time,
we adiabatically ramp down the optical lattice to approximately 8 E;, in
order to obtain a decent degree of visibility. We then consider the visibility

improvement, given by
Uy

v = o 1, (5.1)
where v, and vy are the visibility with and without the ramp-back proce-
dure, respectively. The results can be seen in figure 5.3, together with a
sketch of the corresponding ramps. At scattering length of +100 ag, the
visibility loss can be considered mostly reversible for lattice depths of 8.5 E,
and below. Reversibility is then gradually lost in deeper lattices. At a lat-
tice depth of approximately 15 E,, the loss is completely irreversible within

5)The small deviation of the symmetry center from zero, of 9.7+1.0 ag visible in figure 5.2
is perfectly compatible with the true a;y = 0 within the uncertainties of the magnetic
field calibration and the parametrization of the Feshbach resonance.
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Figure 5.3: Visibility improvement for attractive (blue points) and repulsive
(red points) interspecies interactions. The measured points are averaged
over typically four independent runs. For lattice depths below approxi-
mately 5 E,, the reversibility is almost perfect within the measurement un-
certainty. The inset shows the corresponding ramps of the optical lattice
potentials (upper curve) and magnetic field (lower curve). The colors have
the same meaning as in the main graph. The dashed lines denote the refer-
ence ramps without ramp-back. The dotted vertical lines indicate the end
of the usual lattice hold time (left) and the time when the mixture becomes
non-interacting (right).

the measurement uncertainty. Such apparent irreversibility can be caused
in two very different ways. First, the microscopic dynamics might still be
reversible, but the timescales may become so slow that our ramp-back is
simply non-adiabatic. As we have only limited flexibility in the ramp-back
timescale®, it is not easy to verify this hypothesis. However, it should be
noted that while the single-particle tunneling is fast with respect to our
ramp-back, this need not be the case for the effective tunneling in the pres-
ence of interactions, and even less, if we consider pair tunneling processes,

6)Faster ramps can not be controlled accurately enough due to current ringing, while for

signgificantly slower ramps, technical noise and heating become an issue.
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Figure 5.4: Correspondence of visibility increase and boson loss. (a) Ex-
perimentally determined visibility minimum and (b) simultaneous 8"Rb loss
feature at a lattice depth of 9E, for intermediate fermion number. Solid
lines are guides to the eye.

which scale as

Jop = (5.2)

v
Although this interaction induced slowing-down of adiabatic time scales (see
also [123]) may account for parts of the irreversibility in deep optical lattices,
we have to consider the fact that the microscopic dynamics itself may be
irreversible. In particular, this is to be expected as soon as particle loss
processes become important. Experimentally, we do observe particle loss,
mainly of Rubidium atoms, which does not exceed 10% of the particles for
most measurements. However, we find that at any given lattice depth, there
is a maximum attractive interspecies scattering length beyond which losses
become dominant. This critical scattering length shows a tendency towards
smaller absolute values for deeper lattices. At the same time, we note an
increase of the visibility towards very strong attraction, i.e. a visibility
minimum around the drop in remaining atom fraction. Despite the visibility
increase, no condensate is discernible in the corresponding TOF images.
These findings are summarized in figure 5.4. We can extract the value
of the scattering length at which the visibility minimum is observed by
fitting the decreasing and increasing slope to either site of the minimum and
calculating their intersection point. This critical scattering length shows a
tendency towards weaker attraction for deeper lattices, irrespective of the
fermion number in the system. In fact, there is no systematic difference in
the critical values observed at low, intermediate and high fermion number,
respectively. This points to the fact that the underlying mechanism can
be tracked back to onsite physics exclusively. The correspondence with
the increase in Rubidium losses in the vicinity of this minimum reminds of
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Figure 5.5: Onset of the loss-dominated regime. The points indicate the
critical a;¢ determined from the visibility data, versus lattice depth for high,
intermediate and low fermion number N (darker colors for higher Ny). The
shaded area gives an estimate of the scattering length at which the bosonic
three-body loss timescale becomes shorter than the experimental hold time,
based on our variational model. The dashed lines indicate the background
scattering length for the hyperfine combinations used in this work (upper
line) and previous experiments by other groups ([63, 114]), indicating that
Feshbach control of interactions might be crucial in order to avoid the loss-
dominated regime.

the conjecture in section 3.2, namely that there exists a critical attractive
scattering length beyond which the onsite density becomes instable. In the
vicinity of this critical scattering length, there is a very strong increase
in density and hence in the three-body loss rates. In principle, we may
encounter two types of three-body loss processes:

e [oss of two bosons and one fermion.
e Loss of three bosons.

As we find the boson number loss to exceed the fermion number loss by
a factor of three to four in our measurements, we believe that the latter
process is the dominant one here. The former process should be perfectly
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allowed though, and should be equally important judging from the densities
and the known rate coefficients. However, it should be pointed out that
this process has also not been observed in a recent measurement, where the
contribution of different occupation numbers to the total loss in the system
was identified by the different time scales [63]. Therefore, it is conceivable
that the rate coefficient for the former process is in fact smaller than the
value given in reference [21].

We shall restrict ourselves to the latter scenario, and try to understand
these loss processes using our simple variational model. To this end, we
minimize the total onsite energy with respect to the width o3, and o of the
bosonic and fermionic Gaussian density profiles for a given lattice depth Vj
and boson occupation number N, in the presence of a fermion. Recalling
that the three-boy loss rate for the bosons is given by

Ny = —Ky- N°. / ny(r)® dr, (5.3)

where N is the boson filling and n,(r) is the self-consistent single-particle
density, and inserting our variationally determined wave functions, we find
that the loss rate scales as

N3 o 0, 6. (5.4)

In other words, an decrease in the width o, by 5% will yield one third
increase in the loss rate, which doubles for a change in width of as few as
12%.

For practical purposes, a site can be considered lost when Ny > 1,
where 7 is the experimental hold time. Assuming a loss coefficient for
collisions of three 'Rb atoms in the range K3 =4...7 x 107 cm®/s [21],
we find that lattice sites with four or more bosons will be lost on time scales
faster than our hold time even in the absence of fermions. Therefore, we
focus our attention on sites occupied by three bosons and one fermion.

The critical scattering length for bosonic three-body losses derived from
our variational model shows good agreement with the experimentally ob-
served onset of the loss-dominated regime, as can be seen in figure 5.5. We
therefore conclude that for strong attraction, the dominant process is the
three-body loss of highly occupied sites enhanced by the interaction-induced
density accumulation, commonly referred to as self-trapping [98, 18]. The
associated increase of the visibility may be thought of as the removal of
strongly localized atoms on highly occupied sites from the system, and thus
a reduction of the bosonic filling in the system. The absence of a condensate
in this loss-dominated parameter regime hints to the non-equilibrium char-
acter of the final system. Therefore, it seems that the strongly attractive
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Figure 5.6: Loss of bosonic atoms induced by the presence of fermions. (a)
Lifetime of bosons in a deep threedimensional optical lattice with (blue)
and without (red points) fermions present. (b) The extra loss, defined as
the difference in atom number with and without fermions, saturates on a
timescale of less than half a second.

system is not suitable for quantum simulation applications, unless very low
fillings (i.e. boson occupation numbers less than two) can be ensured.

The onsite loss model outlined above is further supported by compar-
ative lifetime measurements of 8’Rb atoms in a threedimensional optical
lattice with or without the presence of fermions interacting through the
background scattering length. The result of this measurement is shown
in figure 5.6. A clear reduction of the boson lifetime is visible with the
fermions present. The extra loss due to the presence of fermions however
is found to cease on a time scale of less than half a second, as we would
expect for the scenario discussed above.

5.6 Shift of the superfluid to Mott
insulator transition

Condensate fraction

So far, we have focussed on the visibility of the bosonic matter wave in-
terference pattern. While this quantity has the advantage that it can be
extracted relatively easily both from theoretical calculations and experi-
mental data, its interpretation is not straightforward and has been debated
controversely even in the pure bosonic case’. Therefore, we move on to
a different observable of the experiment, namely the Bose-condensed frac-

"See the work by Gerbier and coworkers [50] and references therein.
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tion. For the homogeneous case, it is known that the condensate in the
periodic potential has quasi-momentum zero. As we go to a finite system,
we obtain the condensate peak around zero, the width of which is linked to
the coherence length in the system. After sudden release from the lattice
and time of flight, the condensate atoms can be found in peaks at positions

. - fiko . hk ..
corresponding to (izﬁ + jﬁ) -tror, where 7, 7 € Ny. Therefore, we can

calculate the condensed fraction in the system by determining the atom
numbers ; ; in all peaks as well as the total atom number Ny, yielding

N, _ Zz; Nm
Ntot Ntot '

(5.5)

Determination of condensate atom number from peak
fits

In our case, the peak atom numbers are obtained from independent two-
dimensional bi-Gaussian fits to all first-order peaks. Higher-order peaks
can savely be neglected, as the cloud envelope is narrower than the peak
separation for the parameter range of interest.

In contrast to the pure bosonic case, where depletion of the condensate
occurs predominantly through thermal excitation, we expect to have signif-
icant quantum depletion of the condensate in the presence of fermions. The
resulting quasimomentum distribution is not known in detail, we therefore
do not try to model the complete cloud shape. However, we do know that
the envelope is dominated by the Wannier function, and can, to a good
approximation, be described by a Gaussian. This envelope is determined
from the low-optical density part of the TOF images, i.e., by masking the
peaks. After substraction of this envelope, the peaks have a bimodal shape,
the narrow and broad component of which represent the condensed and
thermal part of the bosonic subsystem. We model the peaks by the sum
of two two-dimensional concentric Gaussians, the widths and amplitudes of
which can be indepently fitted, i.e.

7(z,zi)27(y7yj)2 7(1711-)27(11*?/]')2

nij(z,y) = ace 7 W 4ae 0F (5.6)

We then use a constrained Levenberg-Marquart type nonlinear regression
to fit the above model to neighbourhood regions of the zero- and first-
order peaks. Constraints are imposed on all width values during the fitting
procedure, which is necessary due to the a priori degeneracy of the coherent
and incoherent part of the fitting function. We have verified that all fitting
results are well within the constraints imposed at the end of the procedure,
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5.6. Shift of the superfluid to Mott insulator transition

(b)

Figure 5.7: Bimodal peak fits. (a) original image data for the center and first
order peaks, at a lattice depth of approximately 9 E,. and a weak interspecies
attraction of —35ag, (b) corresponding fit result. The peak distances are
not to scale.

the precise values of the constraints hence do not play a role. For the zero-
order peak, it is necessary to exclude regions of optical density OD > 2.5,
where the dynamic range of the CCD camera is insufficient to produce
reliable image data (so-called blacking out effect), from the analysis. The
condensate atom number in each peak is then given by

Nij=ma.0,0y. (5.7)

The total atom number is determined from a sum over all pixels within
the image, and corrected for blacking out, using the fitted instead of the
recorded optical densities within the blacked-out regions. The fitting result
are shown exemplarily in figure 5.7.

Quantum depletion in the superfluid to Mott
insulator transition

We can thus obtain the condensate fraction at a given interspecies inter-
action strength, as we vary the lattice depth. Clearly, as we increase the
lattice depth towards the critical U,/ Jp, we observe quantum depletion of
the condensate. In the vicinity of the critical lattice depth, the decay of the
condensate fraction is found to be linear within the measurement accuracy.
Beyond the critical lattice depth, the condensate fraction vanishes. Hence,
it is possible to determine the transition point®, i.e. the lattice depth for

8)Strictly speaking, the notion of a transition point is ill-defined in a finite-temperature
system, where the quantum phase transition is smoothed out and no sharp phase
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Figure 5.8: Vanishing of the condensate due to quantum depletion in the
bosonic superfluid to Mott insulator transition. The blue and red points
represent measurements with a,y = —293ay and ay = +233 ag, respec-
tively. The lines are linear slope fits to the first points. The triangles on
the lattice depth axis indicate the resulting transition points.

which Uy /J, > 29.3, by fitting a straight line to the condensed fraction in
shallow lattices, and extracting the intersection point with the N, = 0 axis.
The behaviour of the quantum depletion with increasing lattice depth and
the extraction of the transition point are shown exemplarily in figure 5.8.

Shift of the superfluid to Mott insulator transition

As can be seen from figure 5.8, the Mott insulator transition may show
a pronounced shift in the presence of interspecies interactions. A similar
shift has previously been observed in references [63, 114], for a Bose-Fermi
mixture interacting at the attractive background interaction. We have eval-
uated the shift of the transition point obtained for different strengths of the
interspecies interaction. For intermediate to high fermion numbers, we ob-

boundaries exist between the superfluid and the Mott insulating phase. Also, in the in-
homogeneous (i. e. trapped) system, the transition happens at slightly different points
depending on the position within the trap. However, these effects can still savely be
neglected for the given level of precision of our measurement.
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serve a pronounced shift of the transition point towards shallower lattices
with increasing attractive interspecies interaction. On the repulsive side
however, the data is consistent with no shift at all. This behaviour is to
be anticipated if we assume that for the parameters of these measurements,
essentially all bosons may sit together with fermions. In the absence of
fermions, we expect the formation of a bosonic Mott insulator of filling one
at a critical ratio Uy,/J, ~ 29.3 [24], which can be calculated using exact
diagonalization to correspond to a lattice depth of 12.97 E,.. The critical
U/ Jy of a Mott insulator of filling two is unfortunately not known with
the same precision from ab initio theory, but we can get a reasonable guess
by applying the scaling

Jy U 3+2v2

which arises from second-order perturbation theory [150], yielding a critical
value (Up/H Jp)e(v = 2) &~ 1.89 x (Up/HJp)c(v = 1) & 56.7 corresponding
to a lattice depth of 14.96 E,., which again is calculated using exact diago-
nalization. In order to understand the observed shift, we will again resort
to self-consistent Wannier functions. As we have shown in section 3.2, these
give rise to renormalized values for the Bose-Hubbard parameters Uy, and
Jp, depending on the strength of the interspecies interaction. Clearly, we
will also have a renormalized Uy, /J,. If we assume an attractive interspecies
interaction, the bosonic Wannier functions will shrink, yielding an increase
in Uy, and a decrease in J,, thus, we are left with a strong net increase of
U/ Jy, and therefore will reach the critical value already for shallower lat-
tice potentials. On the other hand, interspecies repulsion tends to spread
the Wannier function, which results in decreasing Uy, and increasing J,,
thus Up,/J, decreases and the transition point should be shifted towards
deeper lattice depths. The effects can qualitatively be understood using
the variational model. However, for a good numerical agreement, we once
again have to use exact diagonalization. Figure 5.9 shows the experimental
data points for intermediate and high fermion numbers, together with the
predictions from the variational and exact diagonalization model. From the
comparison to these theory curves, we can also infer the transition from a
Mott insulator of filling one for weak interspecies interaction, to a Mott
insulator of filling two for stronger interspecies attraction. Here, we en-
counter the same filling increase, which we have observed more directly in
the quantum phase diffusion measurement in figure 4.5, albeit in a true
strongly correlated many-body scenario.
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Figure 5.9: Shift of the Mott insulator transition with interspecies scatter-
ing length. Blue circles and yellow diamonds indicate the experimentally
determined critical point (see also 5.8), for high and intermediate Fermion
numbers, respectively. The error bars indicate the uncertainties from the
slope fits described in the main text. The solid lines indicate exact diago-
nalization results for the critical points incorporating the renormalization
of both tunneling and interboson repulsion, for the case of boson fillings
n, = 1 (green line) and n, = 2 (red line) on the attractive side. On the
repulsive side, the lines indicate the non-interacting result, which would
correspond to a demixing scenario for repulsive interspecies interactions.

5.7 Phase demixing

Evidence for phase demixing

Theories based on renormalization due to self-consistent Wannier orbitals
predict that as interspecies interactions become repulsive, the onsite den-
sities spread out, leading to decreased effective interaction energies and
increased tunneling rates for the bosons. By this argument, we would ex-
pect a shift of the bosonic Superfluid to Mott insulator transition towards
deeper lattice potentials. However, no significant shift is observed in the
experiment for repulsive interspecies interactions. As only the strength of
the effect, but not the qualitative behaviour depends on the calculational
method employed, this suggests that the basic assumption underlying this
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5.7. Phase demixing

Figure 5.10: Possible scenarios for phase demixing. (a) Fully disordered
state, particles avoid each other locally. (b) Domain formation. (¢) Macro-
scopic phase separation. (d) Density wave.

kind of models breaks down for sufficiently strong interspecies repulsion,
namely that bosons and fermions do no longer occupy the same lattice
sites. The saturation behaviour observed in the visibility data over a wide
range of lattice depths could also be explained by this hypothesis. Thus, we
have strong evidence for a phase demixing at sufficiently strong interspecies
repulsion, where the visibility data suggest that the critical interaction
strength could be around Uy,s ~ Uy.

Demixing scenarios

Assuming that in the case of very strong interspecies repulsion, bosons and
fermions tend not to occupy the same lattice sites, we have to ask ourselves
what the resulting particle distribution looks like. A couple of scenarios are
conceivable and have been discussed previously in the literature. It should
be pointed out that all of these suggestions have neglected the presence of
an external trapping potential, which may very well tip the scales in favour
of one or the other scenario. The suggested phases can be categorized as
follows (see figure 5.10 for a schematic representation):

e Disordered phase. Bosons and fermions are arbitrarily placed on lat-
tice sites, with no regard to the neighbouring sites. This phase should
be entropically favoured for J < kpT' < Upy.
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e Clustered phase. For finite tunneling, it is favourable to delocalize
particles over a few neighbouring lattice sites. This may result in
clustered phases, as has been described in [105].

e Macroscopic phase separation. This is the phase separation scenario
encountered most often in the case of inmiscible fluids in the macro-
scopic classical world.

e Density wave phases. At sufficiently low temperatures, ordering might
occur, giving rise to a density wave, i. e. an extra density-density corre-
lation at a length scale larger than the lattice spacing. In the extreme
case, this state might consist of an alternating occupation of lattice
sites by a boson and a fermion, in the 3D analogon to a checkerboard
pattern. However, there may also exist smaller amplitude density
modulations. It should be noted that this kind of ordering relies on
an effective interaction between neighbouring sites, similar to the case
of antiferromagnetism, where the quantum-mechanical spin exchange
interaction takes this role. A particularly interesting representative
of this class of phases is the supersolid, which can be thought of as a
superfluid coexisting with a density wave structure.

From the data presented so far, it is not possible to distinguish between the
aforementioned scenarios. However, we can most probably exclude a density
wave phase on the basis of theoretical arguments. This phase is supposedly
quite sensitive to the filling in the system. As we observe demixing for any
number of fermions in the system, this would probably spoil the emergence
of the density wave.

While all the other phases should still be possible, we strongly suspect
macroscopic phase separation to take place, as it is promoted by the external
trapping potential. Clearly, there is a finite differential sag between the
two components for the parameters of the experiment, albeit significantly
smaller than the respective cloud sizes. If we assume that bosons and
fermions repel each other, it is easily conceivable that a further separation
of their respective centers of mass occurs along the vertical direction. In
the limit of infinitely strong repulsion, this might result in a situation where
the fermion cloud floats on top of the boson cloud due to its lower specific
weight. This scenario would in a sense be equivalent to the classical phase
separation between two inmiscible fluids inside a container, like water and
oil in a glass, where the lighter componenent floats on top of the heavier
one.
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The two-dimensional situation

Fortunately, it is possible to suppress this kind of macroscopic phase sepa-
ration by going to an effective two-dimensional system. This can easily be
achieved by applying a very deep optical lattice in the vertical direction,
such that tunneling is effectively suppressed on the relevant time scales of
the experiment, and the clouds are sliced into several mutually decoupled
disk-shaped systems. In this case, phase separation is only possible within
the disks. Therefore, global phase separation is suppressed as it would re-
quire a spontaneous breaking of the rotational symmetry. To realize such a
situation in the experiment, we first tune the interspecies scattering length
in the dipole trap as we did before. Then, we ramp up the vertical optical
lattice to a Vi = 45 Er in 100 ms in order to slice the cloud into indepen-
dent horizontal planes. Next, we ramp up the horizontal optical lattices to
Vo = 8 Er in 100 ms. After a hold time of 50 ms, we release the atoms from
the trap. We then evaluate the visibility of the TOF images recorded along
the vertical axis. The result of this measurement is shown in figure 5.11.
While an asymmetry between attractive and repulsive interaction remains
(which might again be due to renormalization effects), we now observe a
clear decrease of visibility for strong repulsive interspecies interactions. This
suggests that demixing does not occur in the two-dimensional case, which
supports the interpretation of gravity-promoted global phase separation in
the three-dimensional case as outlined in the previous paragraphs.
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Figure 5.11: Visibility decrease with increasing attractive or repulsive inter-
species interaction, as observed in an effective two-dimensional horizontal
disk-shaped system, for lattice depths of V; = 8(45) Er in the horizontal
and vertical directions, respectively.
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An outlook

The experiments described in this thesis have important implications for fu-
ture research on mixed-, but also on single-species quantum gases. On the
one hand, the correlation analysis of atomic shot noise, which was demon-
strated here for the first time for fermionic atoms in an optical lattice, is
an important new tool that may be very helpful to reveal interesting or-
dering phenomena, as was already demonstrated in the case of bosons [48].
Also, the demonstrated tunability of interspecies interactions which allows
to dynamically make the components of the mixture perfectly transparent
to each other, promises to be useful for quantum simulation, e.g. in the
sense of tunable impurities [18].

Yet, especially in the context of quantum simulation of complex many-
body systems, the renormalization effects manifest in this thesis impose a
serious caveat on the exploration of phase diagrams, especially when quanti-
tative results for the phase boundaries in terms of experimental parameters
are requested. Clearly, the mapping between experimentally controllable
knobs and the model parameters of the Hamiltonian in question can be
far more complicated than previously anticipated, and an interesting, yet
complicated interplay between different parameters may arise. In the Bose-
Fermi-Hubbard example considered in the last chapter of this thesis, this is
the case for the interboson repulsion Uy, and the boson tunneling .J,, which
both react strongly to a tuning of the interspecies scattering length ayy,
contrary to the usual assumptions. On the other hand, the effective many-
body character of the onsite interactions which was pointed out in reference
[79], might be considered an interesting target of quantum simulation in its
own right.

The results obtained in this thesis also indicate a strong dependence of
the atom number statistics on interspecies interactions. A more detailed
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analysis of these effects in a spatially resolved way would clearly be desir-
able, which might be possible along the spirit of previous quasi-tomographic
investigations [49, 22|, or using the recently developed concepts of in situ
imaging with singe-site resolution, by means of optical [7, 8] or non-optical
probing [50, 159]. This would be even more interesting as many interest-
ing many-body states are very sensitive to the filling fraction and could
thus exist locally in a trapped system, yet be hard to detect without the
coresponding spatial resolution.

So far, we have not been able to observe any of the more exotic quantum
phases predicted in the context of a Bose-Fermi Hubbard model, such as
charge density waves or supersolidity, which would demonstrate an effec-
tive next-neighbour interaction in the optical lattice mediated by the other
species (see e.g. reference [20]). Besides the aforementioned possibility that
due to the inhomogeniety introduced by the external trap, these phases ex-
ist locally and ask for more sophisticated detection schemes, other reasons
are also conceivable. Little is known in general about their chances of sur-
vival at finite temperature, or in the presence of particle loss processes. It is
therefore possible that further entropy reduction of the mixture is necessary
in order to be able to observe such delicate quantum phases. Finally, there
is an ongoing search for suitable observables, as some of the proposals made
so far are not practical. One example here would be the detailed shape of
shot noise correlation features or interference patterns, which to date are
still very much limited by the finite imaging resolution, finite time of flight,
or residual collisions in the inital expansion phase.

One way of circumventing some of these problems would consist in mov-
ing from threedimensional to twodimensional systems living in horizontal
planes, e.g. by slicing the cloud with a deep vertical optical lattice, such that
tunneling in the vertical direction is efficiently suppressed on the timescale
of the experiments. In the horizontal direction, the effective trap frequency
in the radial direction can then be lowered in order to make the system
even more homogeneous. One obvious drawback inevitable in this case is
the fact that only one species can presently be imaged along the vertical
symmetry axis in every experimental run, whereas the other species would
have to be imaged from the side, which would probably yield less useful
information. However, we are convinced that the investigation of twodi-
mensional systems will yield interesting insight, and enhanced chances of
observing exotic quantum phases, especially given that the phase separation
mechanism driven by gravitation is suppressed in this constellation.

Finally, we would like to point out one interesting direction for future ex-
periments, which arises from consideration of the tunneling ratio between
the species, as depicted in figure 3.3. If we assume an effective twodi-
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mensional system, in which tunneling in the vertical direction is effectively
suppressed, and now choose different wavelengths for the x- and y-lattice
axes, respectively (e.g. 730nm vs. 760nm, then at a given lattice depth
for one species (i.e. the same in both horizontal axes), the other species
can only move along one axis (but relatively fast), or vice versa. Thus,
effectively, the one component would essentially only be able to move along
a onedimensional tube, yet, the other species could couple these tubes on
an intermediate timescale, with a coupling possibly tunable via the inter-
species Feshbach resonance. Also, less extreme versions of this constellation
are conceivable, where both species have the same tunneling timescale along
one axis, but vastly differing ones along the other axis.

The door to the field of Bose-Fermi mixtures in optical lattices has just
been pushed open. We may expect the significantly larger parameter space
compared to the single-species case to contain a large variety of many-body
phenomena as yet undiscovered, including, but not limited to the scenarios
listed in section 3.3.
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Appendix

A: Some properties of ¥Rb and *’K atoms

Atomic mass
Natural abundance
Nuclear spin

Ground state electronic configuration

Ground state hyperfine splitting
D1 resonance wavelength

D2 resonance wavelength

D1 resonance frequency

D2 resonance frequency

D1 natural line width

D2 natural line width

Table 1: Properties of Rubidium 87 and Potassium 40 isotopes (adapted

from references [143] and [92])
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APPENDIX

B: Hyperfine structure in magnetic fields

Energy shift / h (GHz)

-0 1000 2000 3000 4000 5000

Magnetic field (G)

Figure 1: Breit-Rabi diagram for 3’Rb. The experimentally accessible
range of magnetic fields (lightly shaded area) lies well in the linear Zee-
man regime. The black curves correspond to the states of interest in the
experiment, namely the uppermost |F' = 2, mp = +2) state (for laser cool-
ing, magnetic trapping and absorption imaging) and the absolute ground
state |F' = 1,mp = +1), which is used for most of the actual measure-
ments. This state features the interspecies Feshbach resonance marked by
the black arrow. The actual range of magnetic fields used to tune the in-
terspecies scattering length in the vicinity of this resonance lies well within
the shaded bar, demonstrating the need for excellent field stability.
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Figure 2: Breit-Rabi diagram for “°K. The experimentally accessible range
of magnetic fields (lightly shaded area) and also the tuning range (dark
shaded area) around the interspecies Feshbach resonance (marked by the

black arrow) in the absolute ground state |F = §, mp = —52) reach well
into the hyperfine Paschen-Back regime. Beside the lowermost state, the
experimentally interesting states are the |F = 2, mp = —=F) (second-

lowest, used for radio-frequency molecule association and Raman interac-

tion switching, as well as the actual field calibration spectroscopy), and the
|[F =2, mp = —£2) (uppermost state of lower hyperfine manifold), which
is used for laser cooling and magnetic trapping. The |F' = %, mp = —_75)

state (dashed curve) is useful in the context of experiments on fermionic
spin mixtures, which are beyond the scope of this thesis, see e.g. [137] and
references therein.
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APPENDIX

C: Laser systems for cooling and imaging

Laser system for cooling 8’Rb and °K atoms. (a) The light is derived from
external-cavity Littrow-type diode lasers which are referenced to saturated
absorption frequency modulation spectroscopy setups for both species, ei-
ther directly, or via offset frequency locking. A slave laser diode and three
tapered amplifier systems help to boost the available output power. (b) The
laser beams that serve analogous purposes for the two species are combined
into a common single-mode polarization maintaining optical fiber, thereby
largely reducing the need for alignment on the experiment side. Lossless
overlapping of the two beams is achieved using special waveplates, which
only turn the polarization for one of the two wavelengths in question, while
leaving the other unaffected.
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C: Laser systems for cooling and imaging
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D: Optical lattice setup
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Figure 3: Simplified schematic of the optics setup used to provide the opti-
cal lattice. (a) All three lattice axes are derived from the same Ti:Sa laser
(Coherent MBR), which is pumped by a Verdi V18 Yb:YAG laser. The
beams for the individual axes are individually frequency-shifted and inten-
sity controlled via acousto-optic modulators, and coupled into polarization-
maintaining single-mode fibers. (b) Each lattice axis essentially consists
of a beam-shaping telescope, followed by a second telescope, the focus of
which is at the position of the optical lattice, and a retro-mirror in cat’s
eye configuration. A piezo-controlled mirror in conjunction with the retro
mirror are used for alignment of the optical lattice. A pickup photodiode
provides the feedback signal for light intensity regulation
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