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Zusammenfassung

CIGS-Dünnschichtsolarzellen verbinden hohe Effizienz mit niedrigen Kos-
ten und sind damit eine aussichtsreiche Photovoltaik-Technologie. Das Ver-
ständnis des Absorbermaterials CIGS ist allerdings noch lückenhaft und be-
nötigt weitere Forschung. In dieser Dissertation werden Computersimulatio-
nen vorgestellt, die erheblich zum besseren Verständnis von CIGS beitragen.

Es wurden die beiden Systeme Cu(In,Ga)Se2 und (Cu,In,Vac)Se betrach-
tet. Die Gesamtenergie der Systeme wurde in Clusterentwicklungen ausge-
drückt, die auf der Basis von ab initio Dichtefunktionalrechnungen erstellt
wurden. Damit war es möglich Monte Carlo (MC)-Simulationen durchzufüh-
ren.

Kanonische MC-Simulationen von Cu(In,Ga)Se2 zeigen das temperatur-
abhängige Verhalten der In-Ga-Verteilung. In der Nähe der Raumtemperatur
findet ein Übergang von einer geordneten zu einer ungeordneten Phase statt.
Unterhalb separiert das System in CuInSe2 und CuGaSe2. Oberhalb exis-
tiert eine gemischte Phase mit inhomogen verteilten In- und Ga-Clustern.
Mit steigender Temperatur verkleinern sich die Cluster und die Homogenität
nimmt zu. Bei allen Temperaturen, bis hin zur Produktionstemperatur der
Solarzellen (≈ 870 K), ist In-reiches CIGS homogener als Ga-reiches CIGS.

Das (Cu,In,Vac)Se-System wurde mit kanonischen und großkanonischen
MC-Simulationen untersucht. Hier findet sich für das CuIn5Se8-Teilsystem
ein Übergang von einer geordneten zu einer ungeordneten Phase bei T0 =
279 K.

Großkanonische Simulationen mit vorgegebenen Werten für die chemi-
schen Potentiale von Cu und In wurden verwendet, um die Konzentrations-
Landschaft und damit die sich ergebenden Stöchiometrien zu bestimmen.
Stabilitätsbereiche wurden für stöchiometrisches CuInSe2 und für die Defekt-
phasen CuIn5Se8 und CuIn3Se5 bei einer Temperatur von 174 K identifiziert.
Die Bereiche für die Defektphasen sind bei T = 696 K verschwunden.

Die Konzentrations-Landschaft reproduziert auch die leicht Cu-armen
Stöchiometrien, die bei Solarzellen mit guten Effizienzen experimentell be-
obachtet werden. Die Simulationsergebnisse können verwendet werden, um
den industriellen CIGS-Produktionsprozess besser zu verstehen und zu opti-
mieren.
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Abstract

CIGS thin-film solar cells are a promising photovoltaic technology. They
provide high efficiencies at comparably low production costs. However, the
knowledge about CIGS is fragmentary and more research is necessary to bet-
ter understand the material. This dissertation presents computer simulations
that help to improve the comprehension of CIGS.

The two systems Cu(In,Ga)Se2 and (Cu,In,Vac)Se were considered. The
total energy of the systems was expanded into the contribution of clusters
and the coefficients were determined by a fit to ab initio density functional
calculations. This expression for the energy was used in Monte Carlo (MC)
simulations.

Canonical MC simulations of Cu(In,Ga)Se2 reveal the In-Ga distribu-
tion for various temperatures. An order-disorder transition takes place close
to room temperature. Below this, the system separates into CuInSe2 and
CuGaSe2. Above the transition, a mixed phase exhibits clusters of In and
Ga that are distributed inhomogeneously. The clusters shrink with rising
temperatures and the homogeneity increases. At all considered tempera-
tures, up to the production temperature of solar cells (≈ 870 K), In-rich
CIGS exhibits a greater homogeneity than Ga-rich CIGS.

The (Cu,In,Vac)Se system was studied through canonical and grand-
canonical MC simulations. The CuIn5Se8 subsystem shows an order-disorder
transition at T0 = 279 K.

Grand-canonical simulations were performed with given values for the
chemical potentials of Cu and In to calculate the concentration landscape
(i.e. a map of resulting stoichiometries). Stability regions for stoichiometric
CuInSe2 and the defect phases CuIn5Se8 and CuIn3Se5 were determined at
a temperature of T = 174 K. At an elevated temperature of T = 696 K, the
regions of stable defect phases vanish.

The concentration landscape reproduces the slightly Cu-deficient stoi-
chiometries that are experimentally observed in solar cells with good efficien-
cies. The simulation results can be used to better understand and optimise
the industrial CIGS production process.
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Abbreviations, Units,
and Constants

Å Ångström, 10−10 m
β 1

kBT

CBM conduction band minimum
Cd cadmium
CE cluster expansion

CIGS Cu(In,Ga)Se2

CIS CuInSe2

Cu copper
CVS cross-validation score
DFT density functional theory
E energy or electric field
ECI effective cluster interaction
eV electron volt, unit of energy
η efficiency
FF fillfactor

FWHM full width at half maximum
Ga gallium

GGA generalised gradient approximation
Γ phase space
I electric current
In indium
ISC short-circuit current
K kelvin, unit of temperature
k electron momentum
kB Boltzmann constant
LDA local density approximation
m metre, unit of length
MC Monte Carlo, simulation technique
Mo molybdenum
µ chemical potential
N number of particles
n electron density
n nano, 10−9
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Na sodium
Ni nickel
NN nearest neighbour
p probability
Ry Rydberg, unit of energy, 13.6056923 eV
S entropy
S sulphur
Se selenium
T temperature
T tera, 1012

TCO transparent conductive oxide
Te tellurium
U (configurational) energy or voltage

UOC open-circuit voltage
V volume
Vac vacancy
VBM valence band maximum
W watt, unit of power
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Chapter 1

Introduction

1.1 Motivation

At the beginning of the 21st century, numerous different energy sources are
used to satisfy the world’s need for electricity. The biggest contributions are
made by fossil fuels (coal, oil, natural gas) and uranium. Regenerative energy
sources (water, wind, solar) provide ca. 15% of the electricity in Germany.

Since the reserves of fossil fuels and uranium are limited, they cannot
be used forever. Furthermore, their utilisation has detrimental effects on the
environment. The combustion of carbon-based fuels produces carbon dioxide
and promotes global warming through the green-house effect. Nuclear fission
of uranium produces radioactive waste that has to be stored securely for
thousands of years. It also leads to the continuous threat of a catastrophic
failure of nuclear power plants. Due to emerging industrial nations like China,
the need for electricity will increase dramatically during the next decades.
If mankind continues to rely on fossil fuels and uranium, it will soon be left
with depleted reserves and a polluted planet.

To avoid this scenario, it is imperative to promote the usage of regenera-
tive energy sources, like water power, wind power, and solar energy. Further
sources, such as geothermal and biomass, will most likely make only a small
contribution to the energy mix of the future.

Solar energy has the greatest potential of all regenerative sources. The
power of global incident sunlight is about 125000 TW, whereas the global
energy consumption in the year 2050 is projected to be a mere 30 TW [1].
Only a small fraction of the incident sunlight would have to be converted to
electricity to satisfy global demand.

However, solar cells are still more expensive than other sources of en-
ergy. Crystalline silicon absorbers need thick layers (300 nm) to absorb the
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2 CHAPTER 1. INTRODUCTION

incident light. Thin-film technologies use amorphous silicon or other mate-
rials, such as CuInSe2 (chalcopyrite) or CdTe. Due to better absorption, the
layer thickness can be reduced, which directly decreases the production costs.
These technologies do not achieve the high conversion efficiency of crystalline
silicon, but a lot of effort is being put into improving the efficiency, further de-
creasing the layer thickness, and transferring gained knowledge to industrial
processes. However, chalcopyrites seem to be better positioned for diffuse
light, whereas silicon based cells perform better under direct irradiation.

1.2 Cu(In,Ga)(S,Se)2 Solar Cells

During the past years, chalcopyrites such as Cu(In,Ga)(S,Se)2 (CIGS) have
been shown to be promising absorber materials for thin-film solar cells
with high conversion efficiencies and low production costs. These attrac-
tive prospects motivated big international companies like IBM to conduct
research in the field [2, 3]. A conversion efficiency of 20.3% has been achieved
on a lab scale [4] and commercial modules reach 10− 12%.

For many years, our knowledge of the material has been gained almost
exclusively by trial-and-error experiments. Empirical recipes for good CIGS
solar cells are known, but the theoretical understanding is fragmentary. For
instance, Na at the CIGS-CdS heterojunction is beneficial for cell perfor-
mance, but the reason for that is not yet known.

Today, there is a growing interest in investigating the properties of the
material through computer simulation and theoretical methods. The goal is
to achieve a fundamental understanding of the material. This knowledge can
then be used in several ways.

Firstly, with comprehensive knowledge of the processes that take place in
a CIGS solar cell, one can identify those properties that have to be optimised
to achieve greater efficiency. More importantly, it is possible to find ways to
optimise these properties without changing others that need to be kept con-
stant. In computer simulations, parameters can be controlled independently,
whereas in experiments, the parameters are hardly ever independent from
each other.

Secondly, comprehensive knowledge enables us to find substitutes for ma-
terials that need to be replaced. One example for such a material is CdS.
This is used as a buffer layer in the CIGS solar cell, but Cd is toxic and its use
will certainly soon be prohibited. All efforts to find a suitable replacement
have failed up to now because it is not understood why CdS is such a good
buffer material.
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This thesis presents computer simulation studies of CIGS absorber ma-
terial are presented. A combination of Monte Carlo simulations and ab ini-
tio density functional electronic structure calculations is used to investigate
structural properties. The connection between the two methods is made by
a cluster expansion of the configurational energy. The results are interpreted
with a focus on the implications for industrial CIGS solar cell production
processes.

The first theoretical investigation of chalcopyrite semiconductors was pub-
lished by Jaffe and Zunger in 1983 [5]. They calculated lattice parameters,
tetragonal distortions, anion displacements and band-structures of CuGaS2,
CuInS2, CuGaSe2, and CuInSe2. Their paper established the foundations for
all subsequent computer simulations of CIGS material, but it took a while
for computational studies to gain momentum.

In 1992, Wei, Ferreira, and Zunger used ab initio electronic structure cal-
culations, the cluster expansion technique, and Monte Carlo simulations to
calculate the order-disorder transition temperature for CuInSe2 [6]. Their re-
sults agree well with experiments and prove that this particular combination
of methods can accurately describe the complex behaviour of solids.

In the mid-1990s, the simulations were extended beyond the absorber
material. Wei, Zhang, and Zunger looked at the CuInSe2/CdS heterojunction
of CIGS solar cells [7]. They calculated the band offsets for this essential part
of the cell. Subsequently, Wei and Zunger added the investigation of optical
bowing parameters [8]. In 2005, Gloeckler and Sites found in numerical
studies that band gap grading can have a beneficial effect on the solar cell
[9].

In 1997 and 1998, Zhang, Wei, and Zunger published fundamental papers
on defects in CuInSe2 [10, 11]. They contain the calculation of defect levels
and formation energies of defect complexes. The defect complex 2VacCu +
InCu is found to have an exceptionally low formation energy and to stabilise
the Cu-poor CuIn5Se8 material. A subsequent study by the same authors
focused on the influence of Na on the electrical and structural properties of
CuInSe2 [12].

In 1998, Wei, Zhang, and Zunger dealt with the issue of Ga addition to
CuInSe2 [13], providing a comprehensive picture of how Ga influences the
band gap. The topic was recently revisited and extended by Huang [14]. He
used computer simulations to show that a band gap of 1.5 eV should lead
to the greatest efficiency and explains why record efficiency CIGS solar cells
have a much lower band gap of about 1.15 eV. The reason is that the open-
circuit voltage does not increase with increasing Ga content above a gap of
1.15 eV.
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After the year 2000, the interest in defects increased and more phenom-
ena were studied. Jaffe and Zunger investigated how a surface reconstruction
in chalcopyrite semiconductors leads to the polar (112) surface being more
stable than nonpolar surfaces [15]. Their prediction is today’s predominant
opinion amongst experts in the field. Subsequently, Lany and Zunger investi-
gated the influence of anion vacancies on photoconductivity, a crucial factor
for solar cell performance [16].

A crucial question for all semiconductor material is: how can it be doped?
This question is of course closely related to the question of defects. CIGS
is intrinsically p-type. Persson et al. explain why CuInSe2 can readily be
doped n-type, and CuGaSe2 cannot [17].

The fact that the absorber material of high-efficiency solar cells is Cu-poor
and In-rich has led to a recent interest in Cu-poor phases, such as CuIn3Se5

or CuIn5Se8. These phases are suspected of playing a role at the CIGS/CdS
interface. Chang et al. calculated several low-energy structures for the 1-3-5
and 1-5-8 stoichiometries and compared their simulation results with X-ray
absorption data [18]. They find experimental evidence that CuIn3Se5 can
best be described by structures containing 20% (2Cu+ 2 In) tetrahedra and
40% each of (VacCu + Cu + 2 In) and (VacCu + 3 In) tetrahedra. This is
consistent with the suggestions of Zhang, Wei, and Zunger [11].

Lately, a lot of studies have been dedicated to grain boundaries. They
seem to be important for good solar cells, because cells made from monocrys-
talline CIGS perform less well than polycrystalline cells [19]. In 2005, Gloeck-
ler et al. studied the recombination of charge carriers at grain boundaries
with two-dimensional simulations [20]. Based on their calculations, they ex-
plain how record efficiencies of 20% are possible despite the abundant pres-
ence of grain boundaries in CIGS.

An important step towards cheaper solar cells would be the replacement
of In and Ga by cheaper materials. In 2005, Raulot, Domain, and Guille-
moles studied potential In- and Ga-free absorbers with ab initio methods
[21]. They investigated In-isoelectric couples, such as (Zn,Sn), and explored
the most important point defects and defect complexes. Compounds such as
Cu2ZnSnSe4 exhibit striking similarities to CuInSe2.

All the aforementioned studies focused on limited aspects of the solar cell.
The complete description of a cell through ab initio methods is not feasible,
but there are device simulators that can predict the approximate behaviour
of solar cells. For instance, Bouloufa, Djessas, and Zegadi used this type of
simulator to determine key parameters such as UOC or ISC [22], for CIGS
with an In2S3 buffer layer.

Of course, there are limits to the optimisation efforts. The efficiency
of solar cells is limited first and foremost by the Carnot-efficiency, but also
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by other factors that were investigated by Werner, Mattheis, and Rau in
2005 [23]. They conclude that for an increase in efficiency above 20%, it
will be necessary to focus on decreasing electronic inhomogeneities. The
upper efficiency limit of 33% for an ideal black body cell with infinitely large
mobility and only radiative recombination [23] is still far away.

1.3 Numerical Methods for Studying CIGS

1.3.1 Computational Materials Science

The term “computational materials science” was coined to describe the pro-
cess of developing new materials, not in a laboratory, but with numerical
calculations and theoretical studies. The advantages are numerous.

First of all, candidate materials do not have to be synthesised. This saves
money for expensive elements, but also a lot of time. It becomes unneces-
sary to find good synthesis recipes and temper and characterise the samples,
only to find out that the compound does not have the desired properties.
Computer simulations make it possible to scan hundreds of compounds for
their suitability. One example for this type of investigation is the study of
the band gaps and lattice parameters of 648 half-Heusler compounds with
the objective of finding a suitable buffer material for CIGS solar cells [24].

Beside the abovementioned advantage of not having to synthesise a ma-
terial in computer simulations, one has perfect control over all parameters.
Stoichiometry, lattice constants, atomic positions, interaction potentials, and
many more can be varied independently. This allows a highly systematic ap-
proach to materials science. The influence of variations can be observed
directly and very accurately. Certain types of defects can be completely ex-
cluded from or specifically introduced into the material. The stoichiometry
can be adjusted perfectly. Even contributions to the interaction energy such
as spin-orbit coupling can be switched on and off at will.

Additionally, the theoretical approach to materials science allows the in-
vestigation of compounds in unlikely or even unphysical regions of phase
space. These compounds might not occur in nature or might not be pro-
ducable in the lab, but their investigation can help to gain fundamental
understanding. For instance, it is possible to displace an atom in a crystal
and calculate the resulting force.

In the following, some examples are given to illustrate the work that has
been done in the field of computational materials science. The focus is on
contributions of IBM, who supported this thesis.
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One incentive for studies in the field of condensed matter was and still
is the investigation and development of materials for the next generation of
IBM computers. Even though the semiconductor technology is still largly
based on silicon, many other semiconducting elements and compounds are
used nowadays (e.g. Ge, GaAs, AlN, ZnO, CdTe, just to name a few). The
combinatorial possibilities are endless and many compounds have desirable
properties.

An early example for the investigation of a semiconductor heterostructure
by IBM is the work of Andreoni, Baldereschi, and Car from the year 1978
on GaAs–AlAs [25]. They performed electronic structure calculations to
study the effects of cation order in GaAs–AlAs heterostructures. It should
be mentioned that both, ordering of elements and heterojunctions between
different semiconductor materials, are important in CIGS solar cells.

Further examples for condensed matter studies by IBM are the calculation
of self-diffusion constants in silicon [26] and the determination of the Al-Li
interaction in organic light-emitting diodes by means of molecular dynamics
[27].

A very hot topic that was acknowledged with the Nobel Prize in Physics
in 2010 is graphene. These planar sheets of carbon with a thickness of only
one atom motivated computational studies at the IBM Thomas J. Watson
Research Center in Yorktown Heights, New York [28, 29].

Some investigations of IBM go beyond condensed matter systems. For
instance, a study with relevance more towards engineering dealt with the
numerical simulation of aircraft wakes at high Reynolds numbers [30]. And
other studies, residing in the field of biophysics, deal with fullerenes (C60

molecules) and their derivatives [31].
One basic question in materials science, which is also relevant for the

fullerene studies, is: which crystal structures of a material with a given sto-
ichiometry are possible? Experimentally, the answer to that question may
depend on the sample preparation process. Different approaches could lead to
different crystal structures. Computer simulations can give the total energy
of all possible structures and thus find the ground state.

The computational effort for simulations can be very high, depending on
the degrees of freedom and the number of atoms involved. Fast computers
are essential for this task. A lot of different machines are available and only
a few can be highlighted here.

The IBM System p series (e.g. IBM System p5 590) is based on POWER
architecture. Its strengths are dynamic logical partitioning and micro-
partitioning, which means that hardware ressources (CPUs and memory)
can be reallocated while the machine is up and running. It is possible to
create partitions with any amount of memory, which makes the p series suit-
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able for memory-intensive calculations. A SuSE linux operating system can
be installed to enable the compilation of established electronic structure cal-
culation software packages. A p590 was used for the ABINIT calculations in
this thesis.

The flagship of IBM is the Blue Gene series. Blue Gene machines are
regularly ranked at the top of the TOP500 list of supercomputers. They
provide a huge number of processors for massively parallelised calculations.
However, the amount of memory per processor is limited. For this reason,
Blue Gene machines are best suited for the electronic structure calculation
of a large number of k-points (in the case of k-point parallelisation, e.g. one
k-point per core) or a large number of atoms (in the case of parallelisation
over atoms, e.g. one atom per core). A Blue Gene/p was used for the
PWSCFcalculations in this thesis.

The requirements for calculations can be very different. A modular archi-
tecture has the advantage that it can be adapted to the specific needs. One
such modular architecture is the IBM BladeCenter. Arbitrary numbers of
blades can be combined in racks to form an integrated supercomputer that
fits exactly the specified needs and budget.

It is very expensive to purchase and operate a supercomputer. Coop-
eration between universities and industry can help to make such machines
available to the scientists who need them. For instance, the Johannes Guten-
berg university was awarded the IBM Shared University Research Grant in
2010, consisting of a BladeCenter that is now used in the field of computa-
tional materials science.

Another noteworthy cooperation is the development of the Car-Parrinello
molecular dynamics (CPMD) programme by IBM and the MPI Stuttgart.
Programming a reliable and accurate electronic structure software costs a lot
of time and money. For the development of a programme that is optimised
for a certain computer type, a profound knowledge of that computer type
is necessary. CPMD is an established standard programme for molecular
dynamics simulations that is optimised for massive parallelisation and Blue
Gene machines. It is used not only by IBM and the MPI Stuttgart, but all
over the world.

1.3.2 Tools of Computational Materials Science

All computer programmes in materials science use one of two different ap-
proaches: they either make use of variable, experimentally determined input
parameters or they do not do so. Nowadays, practically all simulations of
solids and molecules are undertaken from first principles (ab initio). This
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means that the Schrödinger equation is solved without making use of vari-
able parameters which influence the result of the calculation.

Tool: Density Functional Theory

The year 1964 was the beginning of a new era for computational materials
science, as Hohenberg and Kohn published their paper on density functional
theory (DFT) [32]. Their theorems made it possible to treat complex systems
with a functional that depends only on the electron density and not on the
positions and momenta of all electrons individually. For the development of
DFT, Walter Kohn was awarded the Nobel Prize for Chemistry in 1998.

DFT tells us that a universal functional of the electron density exists, but
not how it looks. In 1965, Kohn and Sham developed a method of approx-
imating the functional and solving the Schrödinger equation in a rigorous,
self-consistent way [33]. Their method is the basis for all current DFT com-
puter programmes.

Tool: Monte Carlo Simulations

The electronic properties of a system can be predicted by DFT, but the
computational cost of studying a large system with more than a couple of
100 atoms is immense and makes such studies very time-consuming or even
impossible. For the investigation of large systems and great length scales, as
is necessary for homogeneity studies, other methods have to be used.

The Monte Carlo (MC) method can be utilised to treat systems with
thousands of atoms. The term was introduced by John von Neumann, in
reference to the Monte Carlo casinos, because of the random nature of the
method. One special kind of MC simulation samples the phase space of a
system by randomly exchanging particles in the simulation volume. These
particles can for instance be atoms, colloids, or spins.

Metropolis et al. invented a criterion that ensures that the ensemble
follows a Boltzmann distribution [34]. The exchanges are accepted with a
probability that depends on the energy difference between the configurations
(before and after the exchange) and the temperature.

Tool: Cluster Expansions

MC simulations are widely used in the fields of soft matter and solids. The
combination with ab initio electronic structure calculations is problematic as
the energy calculations for the configurations before and after the exchange
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are very time consuming. An ab initio energy calculation at every MC step
is impossible.

A way around this problem is the cluster expansion (CE) technique
[35, 36]. The total energy of a configuration is expanded into contributions
of cluster figures. The coefficients of this expansion are determined by a fit
to the energies of a small number of configurations. These configurations
contain only a few atoms and have to be calculated ab initio. The expansion
can then be used to calculate the total energies of arbitrary configurations
in MC simulations.

In addition to configurational energy, other energy contributions may be
relevant. Volume deformation and relaxation of atomic positions and lattice
parameters contribute to the total energy [37] and have to be included in the
CE if they cannot be neglected.

1.3.3 Investigating Structure and Homogeneity

Of all the endless possibilities that computational materials science offers,
two will be highlighted in the following: i) finding the ground state crystal
structure of a compound and ii) investigating the homogeneity of a material.

i) When dealing with new compounds, at first, the crystal structure has
to be determined. Only if the symmetry of the structure is known, properties
can be calculated and experimental data can be interpreted accurately. The
crystal structure of an arbitrary combination of elements is a priori unknown.
Furthermore, multiple crystal structures could be possible, depending on
temperature, pressure, or other parameters.

The task becomes a lot easier if the search is restricted to ground states
on a predefined lattice. Now only the distribution of the atoms on the lattice
sites has to be considered.

The CE method can be used to find the ground state configuration. After
the creation of the CE, the total energy of all possible configurations can
be calculated. The ground state is the structure with the lowest energy.
Other configurations with comparably low energies could be relevant at finite
temperatures.

ii) The homogeneity of a material is a crucial parameter in many appli-
cations. One example is multinary absorber materials for solar cells. Only
a homogeneous material has a constant band gap. Inhomogeneities lead to
band gap fluctuations that decrease cell efficiency [23]. Other areas in which
homogeneity is important include thermoelectrics, batteries, micro- and na-
noelectronics, and many others.

Materials in batteries need to be homogeneous, because the capacity of
NiCd batteries is decreased through the crystallisation of the constituents.
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On the other hand, in thermoelectrics, a certain degree of inhomogeneity is
desirable to minimise the phonon conductivity.

Homogeneity studies can be performed with MC simulation. It is possible
to identify clusters of atoms, regular patterns, and regions with an excess of
one atomic species. The time-consuming part of these MC simulations is the
energy calculation, for which a CE can be used.

A limiting factor for this kind of investigation is the number of partic-
ipating species. To this day, most studies considered two atom types and
only a few considered three. The calculation of CIGS properties, taking into
account Cu, In, Ga, Se, S, vacancies and doping with Na, Cd, and others is
not feasible. The corresponding CE would need a large number of cluster
figures and a forbidingly great number of huge ab initio calculations.

The structure of the thesis is as follows:
Chapter 2 explains the theoretical concepts that have been used through-

out this thesis. It covers DFT, MC simulations, and the CE formalism, in
addition to a description of solar cells in general and CIGS cells in particular.

Chapter 3 introduces the software that has been used. This includes the
ab initio electronic structure programmes ABINIT and QUANTUM ESPRESSO,
the programme package ATAT for the creation of CEs, and the MC code
written in C++.

Chapter 4 includes the results of all simulations that have been performed.
The focus is on the MC simulations of two different systems: Cu(In,Ga)Se2

and (Cu,In,Vac)Se.
Chapter 5 provides a summary of this thesis and illustrates the relevance

of the results for industry. Additionally, an outlook is given on what needs to
be undertaken in the future to achieve a greater efficiency of thin-film solar
cells.



Chapter 2

Theory

2.1 The Working Principle of Solar Cells

A photovoltaic cell (solar cell) is a device that creates electrical power from
sunlight. Figure 2.1 shows a schematic overview. Like in a photo-diode, a p-n
junction is used to create a space charge region and thus an electric field E.
When sunlight is absorbed and creates electron-hole pairs, the electric field
separates the charges and drives the electrons to the anode and the holes to
the cathode. The result is a current I.

I

charge separation
due to electric field

n−type region

p−type region

E

Figure 2.1: The working principle of a solar cell.

11
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2.2 Structure of Cu(In,Ga)(S,Se)2 Solar Cells

CIGS is the leading technology for thin-film solar cells. It reaches high
efficiencies of over 20% [4] and has the potential to become cheaper than
silicon-based photovoltaic technology. In this section, the structure and the
properties of CIGS thin-film solar cells will be discussed in detail.

The CIGS solar cell is made of several layers as can be seen in Figure
2.2. Sunlight is absorbed in the CIGS layer. The overall Cu content of
high-efficiency absorber material is usually lower than stoichiometric and the
In:Ga ratio is 7:3. Ga increases the band gap, leading to better utilisation of
the solar spectrum, but too much Ga is detrimental [13, 14]. A contribution
to this effect is discussed in Section 4.1.

CIGS can be grown monocrystalline [19], but polycrystalline absorbers
yield more efficient cells. This shows that a certain amount of grain bound-
aries and defects is crucial for cell operation [20, 38]. Results of defect sim-
ulations with a focus on Cu-poor structures are presented in Section 2.3.

The absorber of CIGS solar cells is grown on a layer of Mo. This layer
creates a good bonding to the glass substrate and serves as the back side
electric contact. It also serves as a diffusion barrier that controls the diffusion
of elements from the glass into the absorber.

The front side electric contact is formed by a transparent conductive
oxide (TCO), usually ZnO. Obviously, it needs to be transparent to allow the
sunlight to reach the absorber and has to be a good conductor to minimise
ohmic losses.

A buffer layer aligns the conduction band minimum (CBM) of the TCO
and the absorber. A substantial misalignment of the two reduces the solar
cell performance [39]. The most efficient CIGS cells use CdS as a buffer
material.

The interface between the CdS buffer layer and the CIGS absorber is of
particular importance [7, 40]. It forms the p-n junction of the solar cell.
Despite its importance, knowledge about the interface is fragmentary and
mostly qualitative. It is known that Na at the interface increases the solar
cell efficiency [12], but the reason for this is unknown. The glass substrate
usually contains Na which diffuses through the Mo and CIGS layers to the
CdS–CIGS interface. It is also known that the CIGS at the interface to CdS
is Cu-poor or even Cu-free [41, 42], but the structure of this Cu-poor CIGS
is unknown. Finally, it is suspected that Cd diffuses from the CdS into the
CIGS, but this hypothesis could not yet be proven.

Computer simulation can shed light on these open questions. Cd and Na
diffusion can be investigated with ab initio molecular dynamics simulations
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Figure 2.2: Scanning electron microscope image of a CIGS solar cell (source:
Helmholtz-Zentrum für Materialien und Energie, Berlin). The different layers are

clearly distinguishable, as are the grains in the CIGS layer.

and static calculations can find Cu-poor structures that are candidates for
the Cu-poor CIGS at the interface.

2.3 CuInSe2 and Defects

CuInSe2 (CIS) crystallises in the chalcopyrite space group 122 with symmetry
I 4̄2d [5, 43]. Cu occupies the lattice sites 4a, In 4b, and Se 8d. Figure 2.3
displays the tetragonal unit cell and Table 2.1 lists the positions of all atoms.
The tetragonal unit cell has 16 symmetry operations, whereas the primitive
cell has 8.

Ga is added to the system to increase the band gap [13, 14]. It replaces
parts of the In on lattice site 4b (CuInxGa1−xSe2). The distribution of In
and Ga on the four 4b sites is random. The sites are still equivalent and
the symmetry is not changed. The addition of S leads to S and Se sharing
the lattice site 8d in a similar way. For the sake of simplicity, the following
discussion will focus on CIS.

CuInSe2 is a direct semiconductor with a band gap of 1.0 eV [5]. The
experimental lattice parameters are a = 0.57840 nm for the two short axes
and c = 1.16142 nm for the long axis [43]. The tetragonal distortion is thus
c
2a

= 1.004.
The Se atoms are closer to the Cu atoms than to the In atoms. This is due

to the larger size of In compared to Cu. The displacement is characterised
by the anion displacement parameter x. It is equal to the first reduced
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Figure 2.3: Tetragonal unit cell of CuInSe2

coordinate of the Se closest to the origin (x, 0.25, 0.125). The positions of
the other Se atoms are determined through symmetry. The experimental
value for the displacement is x = 0.224 [43] for CuInSe2, where a value of
x = 0.25 would corresponds to a central position between Cu and In.

The anion displacement and tetragonal distortion are free parameters in
the space group 122. These can be varied without changing the symmetry.
The values for CuInSe2 are given above, but those values change with the
addition of Ga and S. For instance, CuGaSe2 has a tetragonal distortion of
0.9825 and an anion displacement of 0.250 [43]. Furthermore, the lattice
parameter a is reduced to 0.56140 nm and the band gap is 1.7 eV [5].

Investigations of the CdS–CIS interface indicate that CIS close to the in-
terface has a CuIn3Se5 stoichiometry [44]. This observation can be explained
by a CuIn3Se5 surface phase with a thickness of some unit cells. However, re-
cent results by Souilah et al. from the year 2010 point towards a continuous
evolution of the stoichiometry without distinct phases [45]. Other experi-
ments and calculations suggest that the Cu-poor region at the interface is a
very thin, completely Cu-depleted surface reconstruction [15, 41, 46, 47]. The
true nature of the Cu-poor region is still unclear and a subject for debate.
Cu depletion can also be observed at grain boundaries in the bulk material
of CIGS [38].
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Table 2.1: Positions of all atoms in the tetragonal unit cell of CuInSe2, given in re-
duced coordinates. Cartesian coordinates are retrieved by multiplying the reduced
coordinates with the lattice constants. x is the anion displacement parameter.

Element Reduced coordinates

Cu (0, 0, 0), (0.5, 0.5, 0.5),
(0, 0.5, 0.25), (0.5, 0, 0.75)

In (0.5, 0.5, 0), (0, 0, 0.5),
(0, 0.5, 0.75), (0.5, 0, 0.25)

Se

(x, 0.25, 0.125), (1− x, 0.75, 0.125),
(0.25, 0.5 + x, 0.375), (0.75, 0.5− x, 0.375)

(0.25, 1− x, 0.875), (0.75, x, 0.875),
(0.5− x, 0.25, 0.625), (0.5 + x, 0.75, 0.625)

The observation of Cu-poor CIS has raised a lot of interest. The most
significant theoretical studies were published by Zhang, Wei, and Zunger in
1997 and 1998 [10, 11] who investigated defect levels and formation energies
of defect complexes in CuInSe2. The building block for the considered de-
fect compounds is the defect complex 2VacCu + InCu. It consists of two Cu
vacancies and one In on a Cu site. The complex has an exceptionally low
formation energy. By adding j defect complexes to i CuInSe2 unit cells, all
stoichiometries along the Cu2Se–In2Se3 tie-line are accessible. For instance,
i = 1, j = 1 leads to CuIn5Se8 and i = 5, j = 4 leads to CuIn3Se5. The
structures can be described by a weighted distribution of three different types
of local tetrahedra around the Se atoms: 2 Cu + 2 In (denoted as k = 8),
VacCu + Cu + 2 In (k = 7), and VacCu + 3 In (k = 9). Here, k is the sum of
valence electrons of nearest neighbour cations around Se. CuIn3Se5 can be
described as having 20% of k = 8 and 40% each of k = 7 and k = 9 clusters,
CuIn5Se8 has 50% k = 7 and 50% k = 9 clusters.

CuIn3Se5 and CuIn5Se8 are the two stoichiometries on the Cu2Se–In2Se3

tie-line that have been investigated most frequently. A great number of ex-
periments have been performed to find their ground state structures under
normal conditions. Most of them find that Cu-poor CIS forms a stannite
structure with I 4̄2m symmetry [48–54]. This structure features the same
lattice positions as the chalcopyrite structure, but the occupation of lat-
tice sites is different. However, some experiments come to different conclu-
sions, including thiogallate (for CuIn3Se5) and hexagonal (for CuIn3Se5 and
CuIn5Se8) lattices [55–57]. Obviously, the observed structure depends on the
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sample preparation and measurement technique. Computer simulation can
shed light on this issue due to the perfect control over all parameters.

2.4 Density Functional Theory
Density functional theory (DFT) [32] is a method that can be applied to cal-
culate the electronic properties of solids. It is very popular in computational
materials science due to its accuracy and simplicity.

To solve a quantum mechanical problem, it is necessary to solve the
Schrödinger equation ĤΨ = EΨ. All electronic structure methods apply
the Born-Oppenheimer approximation [58] to simplify the problem. In this
approximation, the location of the nuclei is kept fixed while the electronic
Schrödinger equation is solved. This is an acceptable simplification because
the electrons are more than a thousand times lighter and thus much faster
than the nuclei. They respond almost instantly to any change of the atomic
positions. The Schrödinger equation can then be written as

ĤΨ(r, r2, r3, ..., rN) = [T̂e + V̂eN + V̂ee]Ψ(r, r2, r3, ..., rN)

= EΨ(r, r2, r3, ..., rN), (2.1)

with the kinetic energy of the electrons T̂e, the Coulomb interaction be-
tween electrons and nuclei V̂eN , and the electron-electron interaction V̂ee. Ψ̂ is
the stationary electronic wave function and N the number of electrons.

The central quantity in DFT is the electron density

n(r) = N

∫
dr2

∫
dr3 . . .

∫
drN |Ψ(r, r2, r3, ..., rN)|2, (2.2)

which is much easier to handle than the full many-body wave function.

2.4.1 Hohenberg-Kohn Theorems

Hohenberg and Kohn proved two important theorems [32].

1. The ground state electronic density n0(r) of an electronic system is a
unique functional of the external potential v(r).

2. For a given electronic system, the lowest energy is obtained with the
ground state electronic density n0(r). Minimising E[n(r)] with respect
to n(r) yields n0(r), which can be used to obtain all properties of the
system.
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The external potential v(r) includes the effect of the nuclei on the elec-
trons. Hohenberg and Kohn also derived the general form of the functional
which will be discussed in Section 2.4.3.

2.4.2 Kohn-Sham Equations

In 1965, Kohn and Sham developed a self-consistent scheme to solve the
Schrödinger equation [33]. They replaced the system of interacting electrons
by a system of non-interacting quasi-particles in an effective potential v̂eff ,
which includes all quantum mechanical many-body interactions. This leads
to a set of single particle equations of the form

[− 1

2m
∇2 + v̂eff (r)] ψi(r) = εi ψi(r). (2.3)

ψi(r) are the wave functions of the non-interacting quasi-particles and εi

the corresponding energies. The effective potential is given by

veff (r) = veN +

∫
n(r′)
|r− r′|dr

′ + vXC(r). (2.4)

The first term is the previously mentioned electron-nuclei interaction.
The second term is the Hartree potential which is the mean-field Coulomb
interaction of a single electron with the charge of all other electrons. The
last term is the exchange-correlation potential. It includes all many-body
interactions, such as exchange interaction and correlation effects.

Equation 2.3 can be rewritten in terms of the electron density n(r). This
is stated by the first Hohenberg-Kohn theorem. Combining this with a single-
particle version of Equation 2.2 yields the coupled Kohn-Sham equation sys-
tem

[− 1

2m
∇2 + v̂eff (n(r))] ψi(r) = εi ψi(r) (2.5)

n(r) =
N∑

i=1

|ψi(r)|2. (2.6)

This system can be solved iteratively. Starting with an educated guess
for the electron density n1(r), the single-particle wave functions ψ1

i (r) are
calculated with Equation 2.5. Then Equation 2.6 is used to calculate the
electron density n2(r) from the wave functions ψ1

i (r). The new electron
density is in turn used to calculate new wave functions and the process is
repeated until self-consistency is achieved (i.e. |nj−1(r) − nj(r)| ≤ δ, where
δ is the convergence criterion).
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No experimental parameters are needed to solve the Kohn-Sham equa-
tions. Any such method is called ab initio or first-principles method. In
practice however, to solve the Kohn-Sham equations on a computer, a num-
ber of calculation parameters are needed.

Firstly, a basis set has to be chosen. Common choices are plane waves
or atomic orbitals. Plane waves are suitable for periodic systems and atomic
orbitals can accurately describe wave functions close to the atoms. For these
reasons, some methods combine both basis sets.

All of the established electronic structure programmes work in the recip-
rocal k-space. In this case, not the positions x of the electrons but their
momenta k are used as variables. The k-points, for which the Kohn-Sham
equations should be solved, have to be chosen.

Furthermore, for crystalline solids, the unit cell of the structure has to be
defined and periodic boundary conditions are used to find a solution.

Some programmes do not use the full-potential of the Schrödinger equa-
tion, but work with pseudopotentials. These pseudopotentials are created to
reproduce the physical behaviour of the system, but avoiding strong fluctu-
ations of the wave function close to the nuclei which makes them computa-
tionally easier to handle.

One other thing that has to be chosen is the explicit form of the exchange-
correlation potential vXC, which is discussed in the following section.

2.4.3 Exchange-Correlation Potential

The Kohn-Sham equations yield exact solutions for the electronic Schrödinger
equation, assuming that the exchange-correlation potential vXC is exactly
known. Unfortunately, this is not the case.

Common approximations for vXC are the local density approximation
(LDA) and the generalised gradient approximation (GGA), which are both
included in the original works of Hohenberg and Kohn [32].

LDA

LDA approximates the local electron density by the density of the ho-
mogeneous interacting electron gas. If the exchange-correlation potential is
written as

vXC(r) =
δE[n(r)]

δn(r)
, (2.7)

the corresponding energy functional is
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EXC [n(r)] =

∫
n(r) εXC(n(r)) dr. (2.8)

εXC(r) is the exchange-correlation energy of the homogeneous interact-
ing electron gas with density n(r). It can be split into contributions from
exchange and from correlation.

εXC = εX + εC (2.9)

The exchange part is equal to

εX(n(r)) = −3

4

(
3

π
n(r)

)1/3

(2.10)

and can be derived analytically (e.g. see [59]). For the correlation part,
accurate values have been calculated by Ceperley and Alder using quantum
Monte Carlo simulations [60].

GGA

LDA only takes into account the local density n(r). GGA is an extension
of LDA that also uses the gradient of the local density ∇n(r). This slightly
changes the exchange-correlation energy in Equation 2.8.

EXC [n(r)] =

∫
n(r) εXC(n(r), ∇n(r)) dr. (2.11)

Nowadays, even higher derivatives [∇2n(r)] are used in so-called meta-
GGA functionals.

2.5 Monte Carlo Simulations

Monte Carlo (MC) simulation is an integration technique based on the draw-
ing of random numbers. It is used in cases where analytical solutions are
complicated or impossible to achieve. Due to the law of large numbers, MC
simulation can be very accurate. Various MC variants that are used in con-
densed matter physics will be described in the following.

2.5.1 Canonical and Grand-Canonical Ensemble

In statistical mechanics, a variety of different ensembles is used to describe
the properties of systems. Each ensemble corresponds to a specific physical
situation.
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In the canonical ensemble, the number of particles N , the volume V , and
the temperature T are constant. For this reason, this is also called NV T -
ensemble. The corresponding physical situation is a box of a fixed size that is
coupled to a heat bath. No particles can enter or exit the box, but heat can
be exchanged and the heat bath keeps the temperature of the box constant.

Another important ensemble is the grand-canonical ensemble. Here, the
particle number is no longer constant, but is regulated by the fixed chemi-
cal potential µ of the particle reservoir. Volume and temperature are kept
constant, as in the canonical ensemble. Accordingly, the grand-canonical
ensemble is also called µV T -ensemble.

A state that is characterised by the exact positions (and momenta) of all
particles in the system is called a microstate γ. A macrostate on the other
hand is only characterised by the parameters of the ensemble. For instance,
in the canonical ensemble a system could be in a macrostate with N = N0,
V = V0, and T = T0. All microstates that result in these parameter values
contribute to the macrostate.

The central quantity in statistical mechanics is the partition function
Z which can be used to derive all other thermodynamic quantities. The
partition function of the canonical ensemble is

Zc =
∑

i

exp[−βU(γi)], (2.12)

which is the total number of microstates with a fixed stoichiometry D,
each weighted with a Boltzmann factor. U(γi) is the energy of microstate
γi and β is equal to 1

kBT
, with kB = 8.617 · 10−5 eV

K being the Boltzmann
constant and T the temperature. The sum is over all possible microstates
of the system that exhibit stoichiometry D (the total phase space Γ). On a
lattice, the set of all microstates γi is given by all possible permutations of
NA atoms of type A, NB atoms of type B,... on N = NA + NB + ... lattice
sites.

The partition function includes only the potential energy term. The ki-
netic energy term drops out.

In the partition function of the grand-canonical ensemble, the Boltzmann
factor gains an additional term −µjNj.

Zgc =
∑

i

exp{−β[U(γi)−
∑

j

µjNj(γi)]}. (2.13)

µj is the chemical potential and Nj(γi) is the number of particles of
type j in microstate γi. The sum is over all microstates with all possible
stoichiometries. In the grand-canonical case, the set of all microstates on a
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lattice is given by the abovementioned permutation, with the extension that
NA, NB,... can be between 0 and N and N = NA + NB + ....

Usually, the partition function of a system is a priori unknown and the
summation cannot be carried out explicitly.

2.5.2 Detailed Balance and Metropolis Criterion

Expectation values of observables can be calculated by sampling the phase
space Γ. In the canonical ensemble, the expectation value of an observable
is

〈O〉c =

∑
i exp[−βU(γi)]O(γi)

Zc

, (2.14)

In principal, the sum in the numerator has to be evaluated for the com-
plete phase space Γ, but the sampling usually focuses on the relevant regions
with non-negligible contributions to the expectation value. The task can be
performed with MC simulations. This is done by setting up the system in
an arbitrary state and starting the simulation. With a suitable algorithm,
the system will move through the accessible phase space Γ and sample the
regions ∆Γ according to the probability density of Γ. A suitable algorithm
is described in the following.

A MC step (also called MC move) in condensed matter physics is usually
the addition, removal, or displacement of one or more particles of random
choice. The moves are accepted or rejected with a certain probability by
drawing a random number. The probabilities only depend on the current
state and not on the history of the system. Hence, the moves form a Markov
chain.

The probability of finding the system in microstate γi is given by

pc(γi) =
1

Zc

e−β[U(γi)]. (2.15)

The Markov chain needs to follow a Boltzmann distribution to create a
series of states in thermal equilibrium. A common way of achieving this is
to use the Metropolis algorithm [34]. The probability of the system moving
from a microstate γi to a microstate γj and the probability of the reverse
process are then interrelated by

pc(γi → γj)

pc(γj → γi)
= e−β[U(γj)−U(γi)]. (2.16)

The metropolis algorithm fulfils detailed balance which means that the
probability of finding the system in microstate γi times the transition prob-
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ability from γi to γj is equal to the probability of finding the system in
microstate γj times the transition probability from γj to γi. A derivation of
the Metropolis algorithm can be found in [61].

In the grand-canonical ensemble, the particle number is no longer fixed.
This gives rise to an additional term µN in the Boltzmann factor in Equation
2.15. If the system contains several different types of particles, the term
µmNm is added for every type of particle. The probability for a microstate
γi is then

pgc(γi) =
1

Zgc

e−β[U(γi)−
P

m µm Nm] (2.17)

and the ratio of transition probabilities is

pgc(γi → γj)

pgc(γj → γi)
= e−β[U(γj)−U(γi)−

P
m µm ∆Nm]. (2.18)

The energy gain for adding one atom of type m is given by the chemical
potential µm and ∆Nm is +1(−1) for adding (removing) one atom of type
m.

When adding an atom to the system, the energy gain will vary depending
on the environment in which the atom is placed. Therefore, the chemical
potential is the average energy gain of all possible environments, weighted
by their probability.

It is important to note that the calculation of chemical potentials via
DFT yields values that correspond to the chemical potentials measured in
experiment up to a constant. This constant depends on the DFT method[62].

2.5.3 Multi-Histogram Simulations

For any system, the stable macrostate for a certain temperature T is the state
with the lowest free energy F . The free energy not only takes into account
the configurational energy, but also the entropy of the system (F = U−TS).
Alternatively, the free energy can be written as the partition function of
the microstates contributing to a macrostate. Let λ be a quantity that is
chosen as an order parameter of the system. The Landau free energy of a
macrostate, characterised by λ, is

F (λ) = −kBT ln Z(λ). (2.19)

Z(λ) is the partition function of all states with an order parameter λ. For
a countable number of microstates γi, it is
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Z(λ) =
∑

i

δ[λ− λ(γi)] e−βU(γi). (2.20)

λ(γi) is the order parameter value of microstate γi.
The Landau free energy F (λ) is closely related to the probability to find

the system in a macrostate with a specific λ.

p(λ) =
Z(λ)∑

i Z[λ(γi)]
. (2.21)

Figure 2.4 shows a typical free energy landscape and the corresponding
probability distribution for a system with two (meta)stable states that are
characterised by the order parameter λ. Maxima in the probability distribu-
tion p(λ) coincide with minima in the free energy F (λ). Sampling the phase
space will lead to numerous data points within the regions of the two minima
of F (λ) and only few data points within the region of the free energy barrier
between them. The barrier will not be sampled sufficiently. In addition, λ
will vary only slightly between two consecutive data points in the Markov
chain, thus it is very unlikely for the system to move from one minimum over
the barrier to the other minimum.

Figure 2.5 shows schematic free energy landscapes for different tempera-
tures. At the critical temperature T0 (transition temperature), both minima
are equally low (the corresponding peaks in the probability distribution are
equally high) and the two macrostates are equally likely. Below T0, the state
corresponding to the left minimum in F (λ) is more likely and above T0 the
right one is more likely.

If the system is in the low-temperature state and the temperature is
increased to T = T0, the system will remain in the low-temperature state
if the free energy barrier is too high. In general, a temperature T > T0 is
necessary to enable the system to overcome the barrier and reach the high-
temperature state. On the other hand, a temperature T < T0 is necessary to
bring the system from the high-temperature to the low-temperature state.
This effect is called hysteresis.

In addition to these two issues—the sufficient sampling of unlikely con-
figurations and the overcoming of potential barriers—a further aspect must
be considered. In general, absolute values of free energy cannot be mea-
sured directly. All of these issues can be resolved through multi-histogram
simulations [63] which will be introduced below.

To calculate the free energy landscape F (λ) at a fixed temperature T , a
bias potential Ubias(λ, λi) is introduced for a set of supporting points {λi}.
For each supporting point, a system is simulated whose biased free energy
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Figure 2.4: a) Schematic free energy landscape. b) Corresponding probability
distribution.
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Figure 2.5: Schematic free energy landscape for a temperature a) below, b) equal
to, and c) above the critical temperature T0.
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Figure 2.6: a) Schematic free energy landscape. b) Free energy landscape and
parabolic bias potentials for multi-histogram sampling.
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Fi(λ) differs from the free energy of the original system by Ubias(λ, λi). The
bias potential is chosen in such a way that a minimum of the free energy
arises in the vicinity of λi and the simulation windows for neighbouring λi

overlap [Figure 2.6 b)].
For every supporting point, Fi(λ) can be constructed from a histogram

hi(λ). The number of entries in the histogram bins is proportional to the
probability distribution

pi(λ) =
Zi(λ)∑
j Zi(λj)

=
hi(λ)∑
j hi(λj)

. (2.22)

The biased partition function is

Zi(λ) =
∑

j

δ[λ− λ(γj)] e−β{U(γj)+Ubias[λ(γj),λi]}. (2.23)

The sum
∑

j δ[λ−λ(γj)] is over all microstates γj with an order parameter
value λ(γj) which is equal to λ.

The biased free energy is

Fi(λ) = −kBT ln Zi(λ) = −kBT ln hi(λ) + Ci. (2.24)

The free energy profile F (λ) can be constructed piecewise from the prob-
ability distributions around the supporting points by subtracting Ubias(λ, λi)
from Fi(λ). The constant contributions Ci are not determined explicitly,
but from vertical adjustments of the free energy parts to obtain a smooth
function in λ.

In this thesis, the configurational energy U is used as an order parameter
and the parabolic bias potential is

Ubias = a(U − Ui)
2. (2.25)

The free energy F (U) without bias potential can be recovered piecewise
for all free energy parts Fi(U) as follows:

F (U) = −kBT ln Z(U)

= −kBT ln
∑

j

δ[U(γj)− U ] exp{−β[U + a(U − Ui)
2 − a(U − Ui)

2]}

= −kBT ln Zi(U)− kBT ln {exp[+βa(U − Ui)
2]}

= −kBT ln(hi(U)) + Ci − a(U − Ui)
2. (2.26)
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2.6 Cluster Expansions
To perform a MC simulation, the energies of atomic configurations must be
calculated. Configurational energies can be calculated ab initio with elec-
tronic structure methods, but this is a time-consuming process. The energy
is needed in every MC step and typically millions of steps are required for a
single calculation. A solution is to expand the energy in a power series.

Cluster expansions (CEs) for condensed matter systems were first pro-
posed by Mayer and Montroll in 1941 [64]. The configurational energy (or
any other extensive quantity) can be written as a sum of cluster figure con-
tributions

E(s) = J0 +
∑

i

Ji si +
∑
i1<i2

Ji1i2 si1si2 + ...

+
∑

i1<i2<...<im

Ji1i2...im si1si2 ...sim + ... (2.27)

This is very similar to the energy of an Ising-spin system [65]. J are the
coefficients of the cluster figures and are called effective cluster interactions
(ECI). The indices i run over all lattice sites and thus tuples of indices form all
possible cluster figures (single atoms, pairs, triples,...). The vector s contains
one entry per lattice site of the system. The value of si depends on the atom
type on lattice site i. For instance, in a system with two components, the
usual convention is that si = ±1 for the two possible occupations of lattice
site i. Detailed descriptions of the two-species CE method can be found in
[36].

The CE technique can be generalised for systems with more than two
components [35]. This results in the following equation.

E(s) = J0 +
∑
i,α

JiαΘα(si) +
∑

i1<i2,α

Ji1i2αΘα(si1)Θα(si2) + ... (2.28)

The products of si are now replaced by products of the cluster functions
Θα(si). The parameter α can assume integer values within the interval [0, n−
2], where n is the number of components.

For a three-component system, the possible values of si can for instance
be chosen as −1, 0, +1 to denote the three possible occupations of lattice site
i. The two cluster functions Θ1(si) and Θ2(si) form a unit vector, where
~Θ(si) and ~Θ(sj) are at an angle of 120◦ for i 6= j.

The expansions in Equations 2.27 and 2.28 are exact. However, for an
implementation, it is necessary to reduce the enormous number of terms.
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Negligible cluster figures are those with a low associated value of J . These
usually contain a high number of member atoms or a big distance between
cluster members. CEs commonly include cluster figures with up to four
member atoms that have a maximum distance of no more than the third-
nearest neighbour distance.

For the implementation of a CE into MC simulations, the relevant cluster
figures have to be chosen and the coefficients J must be determined. To this
end, a least-squares fit of the coefficients J to a limited number of ab initio cal-
culated configurational energies is performed. If more than two components
are considered in the CE, the number of energies needed increases strongly.
Additionally, bigger unit cells have to be taken into account. The reason for
this is the increased number and complexity of possible configurations.

Ultimately, the goal is to apply the CE to unknown structures and deter-
mine their energy. A common criterion for the measurement of the predictive
power of a set X of structural energies is the cross-validation score (CVS)
which is defined as

C2
CVS =

1

N

N∑
i=1

(EDFT
i − ECE

(i) )2. (2.29)

N is the number of ab initio calculated energies and EDFT
i is the ab initio

energy of structure i. ECE
(i) is calculated by a CE that is created without struc-

ture i, using the N − 1 other structures of set X. The CVS is an estimation
of the error made when predicting the energies of unknown structures.

Frequently, instead of the total configurational energy, the formation en-
ergy per atom is used. For a binary A−B system, this is defined as

Ef (s
m) = E(sm)− xE(sa)− (1− x)E(sb). (2.30)

sm gives the lattice occupations of configuration m, for which the forma-
tion energy per atom is to be calculated. The configurations sa and sb are the
pure A and B compounds. The concentrations x and (1−x) are the fractions
of compounds A and B that are needed to achieve the stoichiometry of the
structure sm. All energies in Equation 2.30 are per atom.

For instance, let the stoichiometry of sm be A0.5B0.5. The formation
energies of sa and sb are both zero (in all cases) and x = (1 − x) = 0.5. If
the formation energy Ef (s

m) is negative, then energy is gained by forming
sm and the configuration is stable. If Ef (s

m) is positive, then energy has to
be spent to form sm and, at low temperatures, spontaneous decomposition
into an A phase and a B phase is expected.

For ternary systems, the formation energy per atom is
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Ef (s
m) = E(sm)− xE(sa)− yE(sb)− (1− x− y)E(sc), (2.31)

and this can easily be generalised for any number of components.
In addition to the configurational energy, there are a few other effects that

also contribute to the formation energy of a solid. The subsequent discussion
of these effects follows [37].

The system in this discussion is a pseudo-binary AC−BC system. Atoms
A and B can swap their positions, while atoms C are fixed. An example for
this type of system is InAs, GaAs, and the mixture InxGa1−xAs.

One possible decomposition of the complete formation energy of a binary
AC −BC system would be

Ef (s
m, V ) = ∆EV D(x, V ) + δEUR(sm, V ) + δEC(sm, V )

+δEint
A,B(sm, V ) + δEext(sm, V ). (2.32)

The first term ∆EV D(x, V ) is the volume deformation energy that is
needed to change the volume of AC from VAC to V , and that of BC from
VBC to V . This directly depends on the concentration parameter x. The
contribution is big for systems where the lattice constants of AC are very
different from the lattice constants of BC. It is calculated by

∆EV D(x, V ) = x[E(AC, V )− E(AC, VAC)]

+(1− x)[E(BC, V )− E(BC, VBC)]. (2.33)

The second term in Equation 2.32, δEUR(sm, V ), is the configurational
formation energy from Equation 2.30 with all atoms sitting on the ideal
lattice sites which can be handled with the CE approach.

The third term δEC(sm, V ) is the energy gain from the relaxation of the
C atoms, while holding A and B fixed at the ideal lattice sites. Reference
[37] states that δEC is the dominant relaxation in AC − BC semiconductor
alloys.

The fourth term δEint
A,B(sm, V ) is the energy gained when all A and B

atoms are allowed to relax, but the unit cell vectors are kept constant. The
last term δEext(sm, V ) gives the energy gain from the relaxation of the unit
cell vectors.

The CEs in this thesis are created by using fully relaxed structures (posi-
tions of all atoms, angle and length of unit cell vectors). Consequently, they
include all energy contributions, except ∆EV D(x, V ).
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Software

3.1 ATAT

The Alloy Theoretic Automated Toolkit (ATAT ) is a software package that
was developed by Axel van de Walle [66, 67]. It runs on Linux systems and
allows the automated generation of CEs.

ATAT uses a collection of programmes and bash-scripts to perform the
necessary steps towards the creation of a CE. Firstly, input files have to
be provided that define the lattice and the possible site occupations. From
these input files, the MAPS-script which is part of ATATautomatically creates
structures.

In the next step, an electronic structure programme (DFT-code) has to
be chosen. The communication between the DFT-code and ATAT is managed
by bash-scripts. A variety of different scripts exists for different codes. For
this thesis, the DFT-codes ABINIT and QUANTUM ESPRESSO were used. The
existing communication scripts for these had to be modified for the specific
needs of the investigation.

The communication script translates the MAPS-generated structures into
input files that are readable by the chosen DFT code. This is performed
using an additional user-generated input file which contains necessary input
parameters such as the number of k-points.

After the DFT code has calculated the energy (and other necessary prop-
erties), the MAPS script generates a CE from all the energies of structures
that have been calculated so far. It also calculates the CVS. Then it sys-
tematically creates new structures that are expected to improve the CE and
reduce the CVS. MAPS continues to improve the CE until the user is satisfied
and stops the procedure. A good CE not only needs a low CVS, but more
importantly, the structures that are predicted by ATAT to be ground states

31
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have to have the lowest energies for the specific stoichiometry. Otherwise the
CE needs more improvement.

The information for the CE is written into a number of output files. The
file clusters.out contains all cluster figures that are not neglected, eci.out
contains the corresponding coefficients, and sym.out contains the symmetry
operations that have to be applied to a cluster figure to obtain all sym-
metrically equivalent cluster figures. The file fit.out includes the calculated
ab initio formation energies for all configurations and the corresponding CE
energies.

3.2 ABINIT

ABINIT [68–70] is an ab initio electronic structure programme that uses plane
waves as a basis set and pseudopotentials. It was run on a p590 machine that
was provided by IBM. In the following, the tests are described that were
performed to find a suitable parameter set for the ABINIT calculations.

In MC simulations, only the energy differences are relevant. The task for
ABINIT is thus to calculate accurate configurational energy differences. In
a first step, it was tested whether the pseudopotentials yield reasonable re-
sults. This was done by calculating the energy difference of two typical CIGS
structures with ABINIT and the electronic structure programme WIEN2K [71].
WIEN2K serves as a full-potential high-accuracy reference. Table 3.1 sum-
marises the results (and includes PWSCF results that are discussed in Section
3.3). Two typical cases for an atom-swap are considered. In both cases the
programmes yield comparable energy differences. More importantly, the cor-
responding Boltzmann factors e−β∆E are in good agreement at T = 300 K.
These factors are the acceptance probability according to the Metropolis
criterion, which is used in the MC simulations.

The energy differences between regular CuInSe2 and CuInSe2 with one
Cu and one In swapped lead to a probability of over 99% that the MC move
is rejected and the energetically more favourable structure is preserved. The
three programmes agree on this. In the case of Cu(In,Ga)Se2, the energy
differences are much smaller. The ABINIT and the WIEN2K values differ by
only 0.8 meV per atom, which is a reasonable accuracy for DFT calculations.

The chosen pseudopotentials are of the Troullier-Martins-type (norm-
conserving) [72] and use the generalised gradient approximation of Perdew,
Burke, and Ernzerhof [73].



3.3. QUANTUM ESPRESSO 33

Table 3.1: Converged energy differences for ABINIT, PWSCF, and WIEN2K. The
CuInSe2-difference is the energy difference between the usual CuInSe2 unit
cell and a cell where a Cu and an In atom are exchanged. The Cu(In,Ga)Se2-
difference is for a relaxed CuIn0.5Ga0.5Se2 cell and a relaxed cell where an
In and a Ga atom are exchanged. The exponential is the probability of
accepting a MC move (Metropolis criterion) from the low-energy structure

to the structure with higher energy at a temperature of T = 300 K.

CuInSe2- Cu(In,Ga)Se2-
Programme difference e−β∆E difference e−β∆E

[meV/atom] [meV/atom]
WIEN2K 123.5 0.008 1.8 0.933
ABINIT 129.4 0.007 2.6 0.904
PWSCF 130.5 0.006

3.3 QUANTUM ESPRESSO

Like ABINIT , QUANTUM ESPRESSO [74] is an ab initio electronic structure
programme that uses plane waves as a basis set and pseudopotentials. It is
also referred to as PWSCF after its main executable. The programme was
run on a Blue Gene/p machine at the IBM T.J. Watson Research Center in
Yorktown Heights, New York, USA. Up to 1024 processors could be utilised
at the same time.

Ultra-soft Vanderbilt-type pseudopotentials [75] were chosen and tested
against WIEN2K and ABINIT (cf. Table 3.1). All three programmes yield
comparable energy differences.

3.4 Monte Carlo Code

The code for the MC simulations was developed within the scope of this
thesis. It is written in C++ and runs in serial mode on ordinary Linux systems.
The random number generator that was used is a Mersenne twister which
was developed by Makoto Matsumoto and Takuji Nishimura [76]. In all
simulations, periodic boundary conditions are used.

In a first step, the programme reads the ATAT files clusters.out, eci.out,
and sym.out. All symmetrically equivalent cluster figures are created by
applying the symmetry operations from sym.out to the figures in clusters.out.
After that, all duplicate figures are removed.
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Figure 3.1: Magnetisation M versus temperature kBT for a system of 30 ×
30 × 30 Ising-spins. MC runs with increasing temperature (red) and decreasing
temperature (green) show a hysteresis. Cubic splines have been fitted to the data

to guide the eye.

In the next step, every lattice site is associated with a list of cluster figures
that include this site and the respective ECIs. This guarantees quick access
to all relevant figures when the site occupation is changed. The energy is
calculated according to Equation 2.27 or 2.28 respectively.

The correctness of the code was tested thoroughly. Configurations were
chosen from the ATAT configuration set and their energy was calculated with
the MC code. The MC-calculated energies and the energies given by ATAT
match exactly. This proves the correct implementation of the energy calcu-
lation.

Furthermore, the code was used to simulate an Ising-spin system [65].
This system has been thoroughly investigated before and the results can
easily be compared with literature to validate the MC code. The only relevant
cluster figures are nearest-neighbour pair-interactions with an equal value for
the ECIs. Figure 3.1 shows the temperature dependence of the magnetisation
for a system of 30× 30× 30 Ising-spins.

At low temperatures, all spins point in the same direction and the mag-
netisation is 1. At the phase transition temperature, the magnetisation de-
creases strongly and above kBT = 5, the direction of the spins is equally
distributed (M = 0). The transition point for a run with a decreasing tem-
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perature is slightly shifted, compared to a run with an increasing tempera-
ture, due to hysteresis.

The exact transition point was determined using the Binder cumulant
[77]

U4 = 1− 〈M4〉
3〈M2〉2 . (3.1)

This is calculated for various system sizes. According to theory, the plots
of U4 for these different system sizes intersect at the transition point. Due
to the hysteresis effect, the transition points for increasing and decreasing
temperatures are slightly different as can be seen in Figure 3.2.

The arithmetic mean of the two transition points is an estimate for the
equilibrium transition temperature. It is at kBT = 4.50 which is in good
agreement with the literature value of kBT = 4.51 [78]. Hence, the MC code
runs properly and can be used to investigate CIGS based on a CE.
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Chapter 4

Simulations

In this chapter, the results of the DFT and MC simulations will be discussed.

4.1 In-Ga Cluster Expansion

The following results were published in Physical Review Letters [79].
A Cu(In,Ga)Se2 CE was created to investigate the spatial distribution of

In and Ga in CIGS. ATAT (cf. Section 3.1) was used to create 32 structures.
The structures are up to two unit cells big (the unit cell structure is described
in Section 2.3). Cu and Se are kept fixed. In and Ga are distributed on the
remaining lattice sites.

The total energies of all structures were calculated with the ab initio
electronic structure programme ABINIT (cf. Section 3.2). The cut-off energy
for the plane waves was set to 140 Ry and a k-point grid of 3×3×3 or bigger
was used. The positions of all atoms were relaxed until the maximum force
on atoms was less than 10−3 hartree/bohr and all three lattice parameters
were relaxed until the stress was less than 10−5 hartree/bohr3.

The first studied structures are the CuInSe2 structure (cf. Figure 2.3) and
the CuGaSe2 structure. Table 4.1 lists some parameters of the structures
and compares them with experimental values and other calculations. The
table also includes the CuInSe2 values that were obtained with QUANTUM
ESPRESSO (Section 4.2).

The calculations reproduce the experimental c
a
ratio and the anion dis-

placement very well. The lattice constant a is 2.2% (CuInSe2) and 1.5%
(CuGaSe2) bigger than the experimental value. These deviations are still
within a reasonable range. The calculated parameter values from Reference
[80] are better (closer to experiment) in the case of the lattice constant and
worse in the case of c

a
ratio and anion displacement. Their smaller lattice
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Table 4.1: Comparison of calculated parameters of CuInSe2 and CuGaSe2 with
literature values.

Lattice constant c
a ratio Anion

a [Å] displacement
CuInSe2
ABINIT calculations 5.9109 2.011 0.220
PWSCF calculations (Section 4.2) 5.8612 2.009 0.217
Reference [43] (experiments) 5.7841 2.008 0.224
Reference [80] (calculations) 5.733 1.988 0.250
CuGaSe2
ABINIT calculations 5.6967 1.977 0.247
Reference [43] (experiments) 5.6141 1.965 0.250
Reference [80] (calculations) 5.542 1.957 0.260

constant is due to the use of LDA potentials. The ABINIT calculations used
GGA potentials which typically yield bigger lattice constants (e.g. see [81]).

The formation energies, calculated ab initio and with the CE that was
fitted to the 32 ABINIT energies, are given in Figure 4.1. The agreement
is very good which is reflected by the low CVS of CCVS = 1.3 meV. The
representative cluster figures of the CE are given in Table 4.2.

The multiplicity is the number of distinct cluster figures that result from
the representative by applying the 16 symmetry operations of the unit cell
(I 4̄2d) to it. The total number of distinct cluster figures is 137.

The In-Ga CE not only includes the configurational energy δEUR(sm, V )
of Equation 2.32, but also includes the relaxation terms δEC(sm, V ),
δEint

A,B(sm, V ), and δEext(sm, V ). This is due to the fact that all atoms and
lattice vectors were relaxed in the ABINIT calculations.

The only energy contribution that is not taken into account is the volume
deformation energy ∆EV D(x, sm). However, this term only plays a role if the
concentration x (stoichiometry) is changed during a MC run. For a fixed con-
centration, ∆EV D(x, sm) is just a constant (under the reasonable assumption
that the effect of the configuration sm is negligible). All simulations that used
the In-Ga CE were canonical (fixed concentration).

Canonical MC simulations were performed for In-rich CIGS
(CuIn0.75Ga0.25Se2) and for Ga-rich CIGS (CuIn0.25Ga0.75Se2). One
MC move consists of exchanging the position of two active atoms (In/Ga).
The simulation box contains 16×16×8 tetragonal CIGS unit cells (8192
active atoms). Simulations were run at fixed temperatures between 290 K
(corresponding to a energy of 25 meV) and 870 K (corresponding to 75 meV,
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Figure 4.1: Formation energies of 32 Cu(In,Ga)Se2 structures, calculated with
ABINIT and the CE.

approximately the production temperature of CIGS solar cells) for 106 MC
sweeps. Relaxation to the equilibrium state took fewer than 105 MC sweeps.

For data analysis, the simulation box was divided into cubic segments of
16 active lattice sites (occupied by In or Ga). The number of In (Ga) atoms
b in each segment was counted and histograms were plotted. A schematic
explanation of how the histograms are created is given in Figure 4.2.

Figure 4.3 shows the simulation data for various temperatures. The his-
tograms display the number of Ga atoms (yellow) in In-rich CIGS and the
number of In atoms (blue) in Ga-rich CIGS. The arithmetic mean for the
distributions is always 4. The standard deviation σ of the histograms can be
computed to have a measure for the homogeneity. σ increases with decreasing
homogeneity. All computed values are compiled in Table 4.3.

At 290 K [Figure 4.3 a)], the histograms have two maxima: one at the
lower and one at the higher end of the scale. The majority of the segments
contain very few or no In (Ga) atoms, but the small maximum indicates that
a certain fraction of segments contain a large fraction of In (Ga) atoms. This
means that there are two phases: an In phase and a Ga phase. The snapshots
in Figure 4.4 a) and b) illustrate this conclusion.

Both maxima in Figure 4.3 a) are higher for Ga-rich CIGS. Close to
the mean value of 4, the values for In-rich CIGS are higher, therefore the
distribution is narrower. This is reflected by the standard deviation σ which
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Figure 4.2: Scheme for the creation of histograms. The simulation volume is
divided into segments with 16 atoms each. The number of blue atoms b in each
segment is counted and the histogram reflects the frequency of all possible values
of b. The arrow indicates that a segment with 4 blue atoms leads to an entry in

bin 4 of the histogram.
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Table 4.2: Representatives of cluster figures and ECIs for the In-Ga CE. Figures
with an ECI of zero are not listed.

Reduced coordinates Multiplicity ECI [meV]
Empty figure − 1 78.985
Point figure (0.5, 0.5, 1) 4 0.909
Pair figures (1, 1, 0.5), (1, 0.5, 0.75) 8 0.650

(0.5, 1, 0.25), (1.5, 1, 0.25) 8 −4.412
(0.5, 1, 0.25), (1.5, 1.5, 0) 16 −2.238

(0.5, 0.5, 1), (0, 0, 1.5) 16 −2.258
(0.5, 1, 0.25), (1.5, 0, 0.25) 8 −0.295
(0.5, 1, 0.25), (0, 1, −0.5) 8 0.091

(1, 1, 0.5), (1, 1, 1.5) 4 0.658
(1, 1, 0.5), (1, 0, 1.5) 16 1.006

Triple figures (0.5, 1, 0.25), (1, 1, 0.5),
8 −0.607

(0.5, 1, 0.25)
(0.5, 1, 0.25), (0.5, 1.5, 0),

16 0.114
(1.5, 1.5, 0)

Quadruple figures (0.5, 1, 0.25), (0.5, 1.5, 0),
8 −0.377

(1.5, 1, 0.25), (1.5, 1.5, 0)
(0.5, 1, 0.25), (0.5, 1.5, 0),

16 0.395
(0.5, 2, 0.25), (1.5, 1.5, 0)

is 3.8% higher for Ga-rich CIGS, indicating a lower homogeneity (higher
disorder).

At a temperature of 406 K [Figure 4.3 b)], the system has undergone a
phase transition to a mixed, disordered phase. The histograms have changed
drastically and show one broad peak with a long tail towards higher atom
numbers. This is accompanied by a big change of σ to smaller values for
both systems. Snapshots are shown in Figure 4.4 c) and d). The difference
in homogeneity is very pronounced; σ is 9.2% higher for Ga-rich CIGS, the
largest difference for all considered temperatures.

At higher temperatures [Figures 4.3 c) and d)] the shape of both his-
tograms becomes narrower and the difference between In-rich and Ga-rich
CIGS becomes smaller.

Table 4.3 contains the σ values for more temperatures. It can be seen that
σ is smaller for In-rich CIGS at all temperatures and σ decreases with tem-
perature for In-rich and Ga-rich CIGS. The relative difference in σ between
the two is largest at 406 K, close to the phase transition.
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Figure 4.3: Histograms of the In distribution in Ga-rich CIGS (blue) and the Ga
distribution in In-rich CIGS (yellow) at temperatures of a) 290 K, b) 406 K, c)

580 K, and d) 870 K.
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a) b)

c) d)

Figure 4.4: Snapshots of a) Ga-rich CIGS at 290 K, b) In-rich CIGS at 290 K,
c) Ga-rich CIGS at 406 K, and d) In-rich CIGS at 406 K.

It is interesting to compare the simulation results with recent photolu-
minescence (PL) experiments by Gütay and Bauer, who measured the local
band gaps on an In-rich CIGS surface. Scanning 40000 pixels of 200 nm
width, they found a Gaussian-like distribution of band gaps with a FWHM
(full width of half maximum) of 8 meV [82].

The histograms of the simulation data can be translated into band gap
distributions using the band gaps of the respective Ga concentrations [8]. If
the size of the segments (i.e. the number of atoms in it) is increased by a
factor of N , the relative width w of the histograms decreases approximately as
1/
√

N . To compare with the abovementioned experiment, the width from the
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Table 4.3: σ (inhomogeneity) for In-rich and Ga-rich CIGS and relative difference.

Temperature σ (In-rich) σ (Ga-rich) σ(Ga−rich)
σ(In−rich)

− 1

290 K 4.97 5.16 3.8%
348 K 3.96 4.24 7.1%
406 K 2.39 2.61 9.2%
464 K 2.18 2.31 6.0%
522 K 2.07 2.19 5.8%
580 K 2.03 2.10 3.4%
638 K 1.99 2.06 3.5%
696 K 1.96 2.01 2.6%
754 K 1.93 1.97 2.1%
812 K 1.91 1.95 2.1%
870 K 1.90 1.93 1.6%

simulation results has to be extrapolated to a segment size that is comparable
to the scan-pixels.

A length of 200 nm corresponds to roughly 346 CIGS unit cells in the
direction of lattice constant a. The scan-pixels can be approximated by
segments of 346× 346× 1 unit cells which contain 478864 active lattice sites
(occupied by In or Ga). The relative FWHM (full width at half maximum)
of the histograms is determined for segment sizes of 16, 128, and 1024 active
lattice sites. The relative FWHM is defined as the FWHM divided by number
of bins in the histogram.

In-rich CIGS at 870 K has relative widths of 29.4% (16 active sites),
10.1% (128 active sites), and 3.4% (1024 active sites) respectively. Using the
dependence of the relative width w on the segment size N , the data points
can be fitted with the model function w = AN−m. A simple least squares fit
yields A = 123 and m = 0.515. For an infinitely large system, an exponent m
of 0.5 would be expected. The fitted value is higher due to finite size effects.

Using the fitted parameters in the model function yields a relative width
w = 0.145% for N = 478864 active sites. Applying this to the band gap
range of 0.7 eV (gapCuGaSe2−gapCuInSe2) results in band gap fluctuations of
1.01 meV (FWHM).

In-rich CIGS at 406 K has relative widths of 35.3% (16 active sites),
14.0% (128 active sites), and 4.8% (1024 active sites) respectively. The same
reasoning as for the 870 K case leads to band gap fluctuations of 2.20 meV
(FWHM).
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In the temperature region between 406 K and 870 K, the band gap fluc-
tuations due to In-Ga disorder grow strongly with decreasing temperature.
The experimental FWHM of 8 meV includes surface and volume defects that
are not considered in the calculations. Nevertheless, the In-Ga disorder con-
tributes significantly to band gap fluctuations.

For further analysis, clusters of In (Ga) are defined as a number of con-
nected In (Ga) atoms. A low number of clusters with a high average cluster
size is a sign for high disorder. Only clusters of the minority atom species
are considered; Ga in In-rich CIGS and In in Ga-rich CIGS. Figure 4.5 shows
the average number of clusters and cluster size for In-rich and Ga-rich CIGS.
Data were taken at several temperatures between 290 K and 870 K. At all
temperatures, the number of clusters is higher and the size of clusters is lower
for In-rich CIGS, confirming the fact that Ga-rich CIGS is more disordered
and inhomogeneous. The data show a continuous increase in the average
number of clusters with temperature for both systems, apart from a small
peak at 350 K (near the phase transition). The increase is rapid below 350 K
and slower above 400 K. The average size of clusters shows the opposite
trend: rapid decrease below 350 K, a dip at 350 K and a slower decrease
above 400 K. The horizontal lines in both graphs mark the limits that were
obtained in simulations with infinite temperature.

Calculations with larger simulation boxes (24 × 24 × 12 unit cells) show
that finite size effects do not play a role for these results. The size of the
clusters is independent of the volume, as is the ratio number of clusters :
volume.

Conclusion

The MC simulations of CuInxGa1−xSe2 reveal strong fluctuations in the
spatial In-Ga distribution, caused by a demixing transition near room tem-
perature. The In-Ga disorder contributes significantly (up to 25%) to band
gap fluctuations.

In-rich CIGS exhibits a higher homogeneity than Ga-rich CIGS at all
considered temperatures between room temperature and the production tem-
perature of solar cells. This is in agreement with the experiments of Gütay
and Bauer [83]. The effect of cluster size dependence on Ga content provides
a possible explanation for the relatively low efficiency of CIGS with high Ga
content (low as compared to what could be excepted from their band-gap in
the homogeneous case).

The results show that inhomogeneities become strongly pronounced as
the material is slowly cooled down to room temperature, undergoing the
demixing transition. The lack of phase separation in solar cells shows that
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Figure 4.5: a) Average number of clusters and b) average cluster size for In-rich
and Ga-rich CIGS for various temperatures. The red horizontal line marks the

limit that was obtained in simulations with infinite temperature.
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the In-Ga distribution is “frozen” in a high-temperature state. In order to
minimise band gap fluctuations, a frozen state corresponding to a rather high
temperature value is desirable. Thus, higher production temperatures and
reasonably fast cooling will lead to better efficiencies which has recently been
shown experimentally [84].
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4.2 Cu-In-Vac Cluster Expansion
The following results were published in Physical Review B [85].

A (Cu,In,Vac)Se CE was created to investigate the Cu-poor stoichiome-
tries of CIS. ATAT (cf. Section 3.1) was used to create 133 structures. The
structures are up to two unit cells big (the unit cell structure is described in
Section 2.3). In the following, unit cell always refers to the lattice sites of the
16-atom unit cell in Figure 2.3. Se is kept fixed and Ga is not considered.
The remaining lattice sites can be occupied by Cu, In, or a vacancy. This
changes the symmetry to F 4̄3m.

All generated structures lie on the Cu2Se–In2Se3 tie-line and can be con-
structed from stoichiometric CuInSe2 by removing n times three Cu atoms
and adding n times one In atom. This defect complex is exceptionally stable,
as was discussed in Section 2.3. More importantly, it keeps the number of
valence electrons constant. This means that charges and the formation of
dipoles do not have to be considered. The final CE includes 11 structures
with CuInSe2 stoichiometry, 63 structures with Cu5In9Se16 stoichiometry,
and 59 structures with CuIn5Se8 stoichiometry.

The total energies of all structures were calculated with the ab initio
electronic structure programme QUANTUM ESPRESSO / PWSCF (cf. Section
3.3). The cut-off energy for the plane-waves was set to 70 Ry and a k-point
grid of 3× 3× 3 or bigger was used. The positions of all atoms were relaxed
until the maximum force on atoms was less than 2 · 10−3 rydberg/bohr and
all three lattice parameters were relaxed until the pressure was less than
0.5 kbar.

The first structure studied is CuInSe2 (cf. Figure 2.3). In Table 4.1, its
calculated lattice constant (5.8612 Å), c

a
ratio (2.009), and anion displace-

ment (0.217) are compared with values from literature and from ABINIT
calculations. All values correspond favourably to literature.

The representative cluster figures of the CE fitted to the 133 PWSCF
energies are given in Table 4.4. This CE is used for all MC simulations
of Cu-poor CIS. For every representative, the clusters have to be created
by applying the 64 symmetry operations of the 16-atom unit cell (F 4̄3m).
The number of resulting clusters from one representative is equal to the
multiplicity and the total number of distinct cluster figures is 841.

The cluster functions in Table 4.4 and Equation 2.28 are

Θ0(sm) = − cos(
2

3
πsm) (4.1)

Θ1(sm) = − sin(
2

3
πsm), (4.2)
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Table 4.4: Representatives of cluster figures and ECIs for the (Cu,In,Vac)Se CE.
Cluster functions are given for all coordinates in the respective line. Figures with

an ECI of zero are not listed.
Reduced coordinates Multi- cluster ECI

plicity functions [meV]
Empty figure − 1 − −546.827
Point figures (1, 1, 1) 8 0 111.070
Pair figures (1, 0.5, 0.75), (1.5, 0, 0.75) 16 0, 0 0.011117

(1, 0.5, 0.75), (1.5, 0, 0.75) 32 1, 0 −0.058693
(1, 0.5, 0.75), (1.5, 0, 0.75) 16 1, 1 0.182630

(1, 1, 1), (1.5, 1, 1.25) 32 0, 0 −0.001612
(1, 1, 1), (1.5, 1, 1.25) 64 1, 0 −0.059065
(1, 1, 1), (1.5, 1, 1.25) 32 1, 1 0.183560

(0.5, 1, 0.75), (1.5, 1, 0.75) 16 0, 0 6.399
(0.5, 1, 0.75), (1.5, 1, 0.75) 32 1, 0 1.090
(0.5, 1, 0.75), (1.5, 1, 0.75) 16 1, 1 52.347
(1, 0.5, 0.75), (1, 0.5, 1.25) 8 0, 0 5.700
(1, 0.5, 0.75), (1, 0.5, 1.25) 16 1, 0 −0.159
(1, 0.5, 0.75), (1, 0.5, 1.25) 8 1, 1 49.034
(1, 0.5, 0.25), (1.5, −0.5, 0) 64 0, 0 −1.826
(1, 0.5, 0.25), (1.5, −0.5, 0) 64 1, 0 −3.774
(1, 0.5, 0.25), (1.5, −0.5, 0) 64 1, 1 13.868
(0.5, 1, 0.75), (1, 1.5, 0.25) 32 0, 0 −0.158
(0.5, 1, 0.75), (1, 1.5, 0.25) 32 1, 0 −1.009
(0.5, 1, 0.75), (1, 1.5, 0.25) 32 1, 1 11.234

Triple figures (1, 1, 1), (1.5, 1.5, 1),
32

0, 0 −3.026
(1.5, 1, 1.25) 0

(1, 1, 1), (1.5, 1.5, 1),
64

1, 0 −4.890
(1.5, 1, 1.25) 0

(1, 1, 1), (1.5, 1.5, 1),
32

1, 1 −26.996
(1.5, 1, 1.25) 0

(1, 1, 1), (1.5, 1.5, 1),
32

0, 0
6.230

(1.5, 1, 1.25) 1
(1, 1, 1), (1.5, 1.5, 1),

64
1, 0 −25.099

(1.5, 1, 1.25) 1
(1, 1, 1), (1.5, 1.5, 1),

32
1, 1 −47.214

(1.5, 1, 1.25) 1
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with the lattice site occupation sm being equal to 0 for Cu, 1 for In, and
2 for Vac.

The (Cu,In,Vac)Se CE not only includes the configurational energy
δEUR(sm, V ) of Equation 2.32, but also includes the relaxation terms
δEC(sm, V ), δEint

A,B(sm, V ), and δEext(sm, V ). This is due to the fact that
all atoms and lattice vectors were relaxed in the PWSCF calculations. The
volume deformation energy ∆EV D(x, sm) was neglected to keep the calcula-
tion time reasonable.

The generation of structures with ATAT was only possible up to a certain
point. The generation of further structures took an unreasonably long time.
Additional structures were created by hand.

For an accurate CE, it is especially important to correctly predict the
energies of low energy structures because these structures will most likely
occur in the MC simulations. Such structures were identified by simulated
annealing with the MC method.

First, a preliminary CE is created from the structures generated by hand
and with ATAT. Then for simulated annealing, a MC simulation is started
with an arbitrary 6×6×6 unit cell configuration and at a high temperature.
The system is slowly cooled down and, at low temperatures, finds itself in
a low-energy state. Local, low-energy structures that are compatible with
the periodic boundary conditions are identified. They are subsequently cal-
culated ab initio and used to improve the CE. With the improved CE, the
process is repeated until no new low-energy structure can be identified.

By using the abovementioned iterative approach to create the CE, eight
noteworthy CuIn5Se8 structures with low energies were found (cf. Figures
4.6 and 4.7). Six of these structures were mentioned before in [18], where
they are denoted as Type-A - Type-F. Of these six—the one with the lowest
energy (Type-D)—had already been discovered in 1997 by Zhang, Wei, and
Zunger [10].

Table 4.5 shows the energies for the eight low-energy CuIn5Se8 structures.
The ab initio energies agree well with the energies from [18] and the order-
ing with respect to the energy is correctly reproduced. An additional two
structures with low energy are found. The first one (New-1) has the lowest
energy of all eight structures and P 4̄n2 symmetry. The energy of New-1 is
about 0.2 meV/atom lower than that of the Type-D structure.

The energies from the CE do not yield the same order as the ab initio
energies, but the state with the lowest energy is correctly predicted and the
structures Type-C, Type-D, New-1, and New-2 with particularly low energy
are distinguished from the structures Type-A, Type-B, Type-E, and Type-F
with higher energy.
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New-1 New-2

Type-A Type-B

Figure 4.6: Low-energy crystal structures of CuIn5Se8. Cu atoms are blue
spheres, In atoms are green spheres, and vacancies are small red spheres. Se atoms

are not shown.
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Type-C Type-D

Type-E Type-F

Figure 4.7: Low-energy crystal structures of CuIn5Se8. Cu atoms are blue
spheres, In atoms are green spheres, and vacancies are small red spheres. Se atoms

are not shown.
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Table 4.5: Energies for eight low-energy CuIn5Se8 structures (cf. Figures 4.6 and
4.7). The energies are given relative to the energy of Type-D.

Structure Energy in [18] Ab initio energy CE energy
[meV/atom] [meV/atom] [meV/atom]

Type-A 4 4.7 5.7
Type-B 4 5.9 7.3
Type-C 1 2.9 0.4
Type-D 0 0.0 0.0
Type-E 6 10.1 5.9
Type-F 8 12.1 7.7
New-1 - −0.2 −1.3
New-2 - 1.2 −0.2

4.2.1 Canonical Monte Carlo for CuIn5Se8

At low temperatures, CuIn5Se8 forms an ordered defect structure with a
tetragonal unit cell. At high temperatures, the material becomes disordered.
This is an important observation, because disorder will influence the elec-
tronic properties and thus the solar cell performance.

The order-disorder transition can be observed in several observables. In
the following, the nearest neighbour (NN) pair correlations and the configu-
rational energy of the system are discussed.

The z-axis of the coordinate system is parallel to the long axis of the
tetragonal unit cell. A Cu atom in the CIS structure has 12 NNs, 4 in the
x–y plane and 8 in the planes above and below. az is defined as the fraction
of In atoms on the 8 NN sites in the planes above and below. The fraction
of In atoms on the 4 NN sites in the x–y plane is denoted by axy.

The behaviour of axy, az, and the configurational energy U has been
studied with MC simulations of 12× 12× 6 tetragonal 16-atom unit cells at
different temperatures (Figure 4.8). Starting with an ordered structure at
T = 220 K, the temperature was increased stepwise to T = 325 K.

At low temperatures, axy is equal to 1, meaning that all Cu atoms are
surrounded by four In atoms in the x–y plane. In the same temperature
regime, az is equal to 0.5, which means that four of the eight corresponding
NNs are In atoms. The energy U is approximately 20 eV.

At T ≈ 300 K, the three quantities change rapidly as the system switches
to a disordered phase. axy drops from 1 to about 0.6 and az increases from
0.5 to 0.7, indicating that the order around Cu atoms changes drastically.
As the temperature is decreased, the system returns to the ordered state at
T ≈ 250 K, so that the system shows a strong hysteresis.
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Figure 4.8: a) Average pair correlation functions axy and az, and b) average con-
figurational energy 〈U〉 of CuIn5Se8 for increasing and decreasing temperature T .
The low-temperature phase is ordered, the high-temperature phase is disordered.

Cubic splines have been fitted to the data to guide the eye.



56 CHAPTER 4. SIMULATIONS

The order around the Cu atoms can be analysed more closely. Figure 4.9
shows the average number of Cu atoms in the simulation volume that have a
very specific environment around them. They have four In atoms as NNs in
the x–y plane and the remaining NN are four In atoms and four vacancies.
The six atoms in the next-NN shell are all In atoms. This ordering is called
environment I. It is the characteristic Cu environment of the low-energy
structures Type-D and New-1 in Figures 4.6 and 4.7.

At low temperatures, all 864 Cu atoms in the simulation volume show
the same ordering (environment I), which leads to a minimal configurational
energy. The number decreases to approximately 300 at T ≈ 300 K when
increasing the temperature, and increases back up to 864 at T ≈ 250 K
when decreasing the temperature. In the disordered phase, a high number
of Cu atoms is not surrounded by environment I, but by a mix of other
environments that lead to higher energies.

The hysteresis prevents us from directly measuring the transition tem-
perature T0 of the ordered and the disordered phase. The exact T0 can be
determined by analysing the free energy of the system with multi-histogram
simulations (cf. Section 2.5.3).

The multi-histogram simulations use 106 MC sweeps and a simulation
volume of 6×6×6 tetragonal 16-atom unit cells. The configurational energy
U of the ordered phase is approximately 5 eV and that of the disordered
phase is 11.5 eV. The value of U unambiguously determines the order of a
configuration. For this reason, U was chosen as an order parameter. Simu-
lations were carried out with the parabolic bias potential Ubias = a(U −Ui)

2.
Ui was varied from 5 eV to 13 eV in steps of 0.5 eV. The parameter a was
selected at 0.8 1

eV , which keeps the energy of the system within the vicinity
of Ui and leads to an overlap of successive runs.

Figure 4.10 shows the results of the MC simulations. The curve fragments
are from MC runs with different parabola minima Ui. Configurations with
a lower energy than that of the ordered state are not possible which is why
the plots end abruptly at U = 5 eV.

At a temperature of 267 K, the state with the lower configurational energy
U = 5 eV (ordered state) has a lower free energy than the disordered state
with U = 11.5 eV [Figure 4.10 a)]. The ordered state is stable and the
disordered state is metastable. At a temperature of 290 K, the situation is
reversed [Figure 4.10 c)]. The disordered state has a lower free energy than
the ordered state and is thus stable, while the ordered state is metastable. At
279 K, both states have the same free energy and are equally likely [Figure
4.10 b)]. T0 = 279 K is the order-disorder transition temperature.

It is noteworthy that T0 = 279 K is below the typical temperature of
solar cells in operation. Consequently, the absorber material of solar cells
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Figure 4.9: Average number of Cu atoms in CuIn5Se8 with environment I (see
text for definition) for increasing and decreasing temperature T . a) Hysteresis
region. The low-temperature phase is ordered and all 864 Cu atoms have the
same environment. The high-temperature phase is disordered. Only some Cu
atoms retain environment I. Cubic splines have been fitted to the data to guide
the eye. b) The yellow area marks the hysteresis region. Above the transition
temperature, the number of Cu atoms with environment I decreases continuously

with temperature.
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Figure 4.10: Results of multi-histogram simulations for the free energy F as a
function of the configurational energy U . The curve fragments of F from different
runs are shifted vertically to produce a smooth function. a) 267 K: Global minimum
at low configurational energy. b) 279 K: Both minima are of equal depth and both
states are equally likely. c) 290 K: Global minimum at high configurational energy.
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Figure 4.11: Average frequency of k = 7 tetrahedra (c7) and k = 9 tetrahedra
(c9) for increasing and decreasing temperature. Above T = 300 K, c7 decreases

continuously with temperature, while c9 stays almost constant.

will only contain disordered defect structures. However, interface and grain
boundary effects are not included in the simulations. They might influence
T0 in experiment.

In the ordered CuIn5Se8 phase below the transition temperature T0, the
distribution of local tetrahedra around Se atoms (cf. Section 2.3) matches
the results of Zhang, Wei, and Zunger [10]. The fraction of k = 7 clusters
(Vac + Cu + 2 In) will be denoted as c7 and the fraction of k = 9 clusters
(Vac + 3 In) as c9. In the ordered phase, c7 = 0.5 and c9 = 0.5.

Figure 4.11 shows results of simulations with 12 × 12 × 6 tetragonal 16-
atom unit cells. In the disordered state, c7 becomes temperature dependent.
At T ≈ 300 K, c7 and c9 are 0.5. At higher temperatures, c7 decreases contin-
uously with temperature, while c9 stays almost constant. When comparing
the results for a run with increasing temperature and a run with decreasing
temperature, no difference can be observed.

At the first order phase transition, the pair correlation functions axy, az,
and the configurational energy U change discontinuously, while the tetra-
hedra frequencies c7 and c9 do not change notably. This indicates that the
clusters of atoms around Se are more stable than the clusters of atoms around
Cu and that the system retains a certain degree of order up to high temper-
atures.
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The last conclusion is backed by data of the Cu environment from the
same MC runs (Figure 4.9). At temperatures above the order-disorder tran-
sition, the number of Cu atoms with environment I decreases continuously
with temperature from about 250 to below 100. This behaviour is similar to
that of the tetrahedron frequency c7.

Conclusion

The canonical MC simulations have revealed several interesting facts.
1. The first order phase transition temperature from ordered to disor-

dered CuIn5Se8 is T0 = 279 K. It has been determined through multi-
histogram simulations.

2. Above the order-disorder transition the system retains a certain de-
gree of order. This degree of order decreases continuously, as can be
observed in the frequency of k = 7 tetrahedra around Se atoms and
in the frequency of Cu environments corresponding to the CuIn5Se8

structure with the lowest energy.

3. When increasing/decreasing the temperature, the order-disorder tran-
sition shows a strong hysteresis between 250 K and 300 K.

4.2.2 Canonical Monte Carlo for CuIn3Se5

CuIn3Se5 is a compound that has been investigated experimentally [18, 48,
55], but ab initio computer simulations are difficult due to the necessity of a
large unit cell with 80 atoms (cf. Section 2.3). MC simulations on the basis
of a CE are however feasible.

Figure 4.12 displays the results of canonical MC simulations with a sim-
ulation volume of 10× 10× 5 tetragonal 16-atom unit cells and a CuIn3Se5

stoichiometry. The two simulation runs started with the same configuration
and differ only by the seed of the random number generator.

The red data points show a quick relaxation to an ordered state. This
state can be characterised by the neighbours of the Cu atoms (pair cor-
relations). Table 4.6 lists the Cu environments in ordered CuIn3Se5 and
CuIn5Se8. The NNs in the x–y plane are 4 In atoms for both cases. In the
planes above and below, both the 8 NNs and the 6 next-NNs are different.

The second MC simulation with the green data points in Figure 4.12
shows a different behaviour. Even though the energy fluctuates strongly at
all considered temperatures, the system is stuck in a metastable state and
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Figure 4.12: Configurational energy of CuIn3Se5 from two MC runs that differ
only by the seed of the random number generator. The temperature was decreased

every 105 MC sweeps.

does not reach the low-energy state. The types of neighbour atoms fluctuate
and differ greatly from the ones in the low-energy simulation.

The frequencies of tetrahedra around Se atoms for CuIn3Se5 is c7 = 40%,
c8 = 20%, and c9 = 40% (cf. Section 2.3). c8 is the frequency of k = 8
tetrahedra. This result is identical for the metastable high-energy state and
for the low-energy state and it is in agreement with literature [11].

Table 4.6: Number and type of neighbours of Cu atoms in low-energy, ordered
CuIn3Se5 and CuIn5Se8.

Type of neighbour Number of Cu neighbours in
CuIn3Se5 CuIn5Se8

NNs in x–y plane 4 In 4 In
NNs below/above x–y plane 2 Cu, 4 In, 2 Vac 4 In, 4 Vac
next-NN 0.1 Cu, 3.95 In, 1.95 Vac 6 In
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Conclusion

Configurations with CuIn3Se5 stoichiometry have not been included ex-
plicitly in the CE due to the required big size of the unit cell. This makes it
difficult to find an ordered ground state and leads to non-ergodicity, a com-
mon problem in MC simulations. Therefore, all results of simulations with a
CuIn3Se5 stoichiometry have to be interpreted with care.

4.2.3 Grand-Canonical Monte Carlo

The following section will answer the question under which conditions the
CuIn3Se5 and the CuIn5Se8 stoichiometries are achieved. A method to deter-
mine the chemical potentials for a given stoichiometry is the particle insertion
method (often referred to as the Widom method [86]). In this method, the
energy gain for a particle insertion is sampled in thermal equilibrium.

When using the particle insertion method, a canonical MC simulation
is run. In addition to the usual MC moves, test particles are added to the
system. In this step, a random vacancy is chosen and either Cu or In is
inserted temporarily. The energy before (U0) and after the insertion (U1) is
calculated and the Boltzmann factor

wi = e−β(U1−U0) (4.3)

is calculated for test insertion i. wi gives the acceptance probability of
the insertion. Then, before the MC simulation continues, the test particle
is removed. While sampling thermal equilibrium, the probabilities wi are
summed up for Cu and In independently.

WCu =
∑

i

wi , sum over all i where Cu was inserted and (4.4)

WIn =
∑

i

wi , sum over all i where In was inserted. (4.5)

If NCu is the number of Cu insertions and NIn is the number of In inser-
tions, then the ratios WCu

NCu
and WIn

NIn
give the average acceptance probability

of a Cu/In insertion. The following discussion will show how to relate the
fraction W

N
to chemical potentials.

Let γN be a state with N particles. An insertion leads to γN+1, a state
with N + 1 particles. The total differential of the free energy is

dF = −SdT − pdV + µdN. (4.6)

Accordingly, the chemical potential is given by
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µ =
dF

dN
≈ F (γN+1)− F (γN)

∆N
. (4.7)

F (γN) is the free energy of the state with N particles and ∆N = +1. In
the case of high N , the difference quotient is a good approximation to the
derivation. Using Equation 2.19 leads to

µ = F (γN+1)− F (γN)

= −kBT ln Z(γN+1) + kBT ln Z(γN)

= −kBT ln
Z(γN+1)

Z(γN)

e−βµ =
Z(γN+1)

Z(γN)
, (4.8)

where β = 1
kBT

as usual.
Let Zid

1 be the partition function of one particle in an ideal gas reservoir.
It follows

e−βµ =
Zid

1 Z(γN+1)

Zid
1 Z(γN)

e−β(µ+kBT ln Zid
1 ) =

Z(γN+1)

Zid
1 Z(γN)

. (4.9)

µ0 := −kBT ln Zid
1 is the ideal part of the chemical potential. It provides

a constant shift of the chemical potential values.
The partition functions can be expressed as integrals

e−β(µ−µ0) =

∫
drN+1 e−βU(γN+1)

∫
dr

∫
drN e−βU(γN )

=

〈∫
dr e−β∆U

∫
dr 1

〉

N

. (4.10)

U(γN) is the configurational energy of the system with N particles and
∆U is the energy gain due to the particle insertion. In a system with discrete
lattice sites, the integrals become sums over all lattice sites. MC simulations
do not evaluate the sum directly, but sample the lattice sites statistically.

The numerator of Equation 4.10 can be determined by simple sampling
and is proportional to W in Equation 4.4 for large N and high numbers of MC
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sweeps. The denominator is proportional to the number of test insertions.
Hence, the fraction in Equation 4.10 is equal to WCu/In

NCu/In
and with µCu/In =

(µ− µ0), the chemical potentials can be calculated by

βµCu = − ln
WCu

NCu
and (4.11)

βµIn = − ln
WIn

NIn
. (4.12)

In a grand-canonical MC simulation with these values for the chemical
potentials, there is no preference for adding or removing a particle and the
average stoichiometry will be constant.

The equilibrium chemical potentials in CuIn3Se5 and CuIn5Se8 have been
determined after relaxing the system for 106 MC sweeps and averaging over
the next 6 · 105 sweeps. The determined values are

CuIn3Se5 : µCu = (0.73± 0.01) eV µIn = (2.21± 0.01) eV, (4.13)

CuIn5Se8 : µCu = (0.57± 0.01) eV µIn = (1.94± 0.01) eV. (4.14)

The scheme can be modified to calculate the equilibrium chemical poten-
tials for CuInSe2. Due to the lack of vacancies in stoichiometric CuInSe2,
atom removals have to be used instead of insertions. The calculation yields

CuInSe2 : µCu = (0.79± 0.01) eV µIn = (2.36± 0.01) eV. (4.15)

The chemical potentials measured in experiment correspond to those used
in the MC calculations up to a constant that depends on the DFTmethod[62].
Thus, the positive values of the chemical potentials do not imply instability
of the material.

To find other equilibrium stoichiometries for different chemical potentials,
grand-canonical MC simulations were performed. During the simulations,
the number of Cu and In atoms is changed independently. Accordingly, the
number of vacancies in the system changes. The energy costs of removing a
Cu (In) atom is given by the chemical potential µCu (µIn) and the configura-
tional enerrgy difference. Se atoms are kept fixed at their lattice sites which
corresponds to a high µSe. Since the number of Se atoms does not change
throughout the simulations, values for atomic concentration refer only to the
cation sites. For instance, c(Cu) denotes the fraction of cation sites occupied
by Cu. The sum of c(Cu), c(In), and c(Vac) is equal to 1.
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After choosing fixed chemical potential values for the reservoirs of Cu
and In, the system assumes a stoichiometry that is in equilibrium with the
reservoirs. In experiments (e.g. a physical vapor deposition process), the
different chemical potentials can be realized by adjusting the partial vapor
pressures for the elements. Dynamical effects in this type of process are
neglected in our simulations.

In a first step, a fine µ-mesh of chemical potentials was defined. The
range of this mesh is µCu ∈ [−0.7 eV, 1.8 eV] and µIn ∈ [−0.2 eV, 3.2 eV]
and the step size is 0.02 eV. This produces a total of 21546 µ-mesh points. A
grand-canonical MC simulation was performed for each of these points, using
an ordered low-energy CuIn5Se8, CuIn3Se5, or CuInSe2 structure as starting
configuration. A simulation volume of 6×6×6 tetragonal 16-atom unit cells
was used for CuIn5Se8 and CuInSe2 starting configurations. The CuIn3Se5

simulations use a volume of 10×10×5 tetragonal 16-atom unit. The increased
volume compared to the simulations with a CuIn5Se8 and CuInSe2 starting
configuration is necessary to allow an exact CuIn3Se5 stoichiometry.

The number of MC sweeps per run was chosen to be only 1000 which
makes the total number of 21546000 MC sweeps for the whole µ-mesh feasible.
An increase of the number of MC sweeps is desirable, but greatly increases
the time needed for the calculations.

The simulations are suitable for determining the stoichiometry for a set
of chemical potentials because the stoichiometry of a single grand-canonical
simulation generally converges very rapidly. The MC runs are however too
short to be used for sampling other observables in thermal equilibrium.

Figures 4.13 and 4.14 illustrate the quick convergence of the concentra-
tions towards an equilibrium value for three different pairs of chemical po-
tentials. The starting configuration was chosen to be CuIn5Se8 and the tem-
perature was set to 174 K. The equilibrium stoichiometries are reached well
within 1000 MC sweeps. No change of these stoichiometries was observed
within the next 106 sweeps.

Exceptions to the quick convergence are the CuIn3Se5 and the CuIn5Se8

stoichiometries. The non-ergodicity of canonical CuIn3Se5 simulations was
already discussed in Section 4.2.2. Further effects will be discussed in the
following sections.

CuIn5Se8 Starting Configuration

Figure 4.15 a) shows the concentration landscape that was calculated with
a CuIn5Se8 starting configuration for a section of the µ-mesh at a temperature
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Figure 4.13: Cu and In concentration for typical chemical potentials resulting
in a) CuInSe2 (µCu = 1.0 eV, µIn = 2.4 eV) and b) Cu0.31In0.50Se1.00 (µCu =
0.5 eV, µIn = 1.5 eV). The concentrations relax to an equilibrium value well within

1000 MC sweeps. The starting configuration was CuIn5Se8.
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Figure 4.14: Cu and In concentration for typical chemical potentials resulting
in a) CuInSe2 (µCu = 1.0 eV, µIn = 2.4 eV) and b) Cu0.31In0.50Se1.00 (µCu =
0.5 eV, µIn = 1.5 eV). No significant change in the concentrations is visible beyond

1000 MC sweeps. Only every 1000th data point is plotted.
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a) starting configuration CuIn5Se8, 174 K
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Figure 4.15: Landscape of the a) Cu concentration and b) In concentration versus
the chemical potentials at T = 174 K with a CuIn5Se8 starting configuration.
Chemical potential values from simulations correspond to the values measured in

experiment up to a constant. Positive values do not imply instability.



4.2. CU-IN-VAC CLUSTER EXPANSION 69

a)

In [eV]

Cu [eV]µ

µ
11.21.41.61.822.22.42.6

0

0.2

0.4

0.6

0.8

1

1.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

c(Cu)

0.05 0.15

0.25

0.35

0.45

0.55

0.65

b)

In [eV]

Cu [eV]

11.21.41.61.822.22.42.6
0

0.2

0.4

0.6

0.8

1

1.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

c(In)

0.650.65

0.55

0.45
0.35

0.25

µ

µ

Figure 4.16: Contour plot of the a) Cu concentration and b) In concentration
versus the chemical potentials at T = 174 K with a CuIn5Se8 starting configuration.
The red star marks the equilibrium chemical potentials for CuIn5Se8 that have been
determined with the particle insertion method. Chemical potential values from
simulations correspond to the values measured in experiment up to a constant.

Positive values do not imply instability.
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of 174 K. At this low temperature, the configurational energy is dominant and
structures are very sharp. Blurring effects due to temperature are suppressed.

The concentration of Cu is plotted against the chemical potentials µCu

and µIn. The concentration c(Cu) denotes the fraction of cation sites occupied
by Cu. The In concentration c(In) is plotted in the same way in Figure 4.15
b). The same data are displayed in contour plots in Figures 4.16 a) (Cu) and
4.16 b) (In).

For low µCu and high µIn, a Cu-poor phase can be observed, and for
high µCu and low µIn, an In-poor phase can be observed. The latter is
contradictory to experiment, where Cu-rich CIS is not observed and any
excess of Cu above the CuInSe2 stoichiometry segregates as Cu2Se [87, 88].
The region with c(Cu) > 0.5 results from the restriction to the chalcopyrite-
like lattice in the simulations. This prohibits the formation of Cu2Se or
similar structures.

The region of high µCu and high µIn is dominated by a plateau of
Cu0.5In0.5Se [green area in Figures 4.15 a) and 4.16 a)]. This is exactly the
CuInSe2 stoichiometry of the defect-free chalcopyrite. The region extends to
much higher values of µCu and µIn than shown in the plot, indicating that
CuInSe2 is the stable phase for a wide range of experimental conditions. This
resilience of CuInSe2 is also observed in experiment [87, 88].

By starting in the CuInSe2 region and reducing µCu and µIn simultane-
ously, a path is created that is displayed in Figure 4.15 a). It forms a ramp
and is denoted as such in the following discussion.

Along the ramp, the Cu concentration decreases while the In concentra-
tion increases slightly (Figure 4.17). This observation shows that CIS can
occur in a multitude of stoichiometries which is consistent with literature
[10, 11].

The existence of the ramp proves the general tendency of the CIS material
towards Cu-depletion. Cu readily leaves the system in small or large quan-
tities, depending on the conditions. This behaviour leads to Cu-poor phases
(with a slightly increased In concentration), which have been observed ex-
perimentally. All high-efficiency CIS and CIGS solar cells feature a Cu-poor
bulk composition of the absorber layer [47, 89].

Cu-depletion is especially important at any kind of surface [41, 42], in
particular at the interface to the buffer layer and at grain boundaries [38].

The simulations are bulk calculations and as such not suited to describe
scenarios with any kind of interface. An adequate description in the formal-
ism of a CE would require many more structures to be calculated because
interactions at the interface have to be taken into account. Additionally, the
structures need to be much bigger to prevent the interaction of the interface
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Figure 4.17: A cut of the ramp in the concentration landscape along the line
through µCu = 0.2 eV / µIn = 1.1 eV and µCu = 1.0 eV / µIn = 2.4 eV. Small step-
like structures are visible in the Cu concentration. Chemical potential values from
simulations correspond to the values measured in experiment up to a constant.

Positive values do not imply instability.

with itself due to the periodic boundary conditions. The exploration of these
possibilities is up to future investigations.

The next prominent feature in the concentration landscape is a region
with CuIn5Se8 stoichiometry around µCu = 0.5 eV and µIn = 2.0 eV [cyan
area in Figures 4.15 a) and 4.16 a)]. The Cu concentration on this plateau
is equal to 0.125. The corresponding In concentration, in the upper part
of the orange region in Figures 4.15 b) and 4.16 b), is equal to 0.625. The
red star in Figures 4.16 a) and b) marks the chemical potential values that
have been determined for CuIn5Se8 with the particle insertion method. This
resides on the extreme right side of the CuIn5Se8 plateau. Consequently,
when one starts with the equilibrium chemical potential values for CuIn5Se8

and increases µIn while simultaneously decreasing µCu, the system will keep
the CuIn5Se8 stoichiometry. On the other hand, if µIn is decreased and µCu

is increased simultaneously, the concentration of In will drop sharply from
0.625 to 0.5 and the concentration of Cu will quickly increase from 0.125 to
about 0.3.

The simulations with a CuIn5Se8 starting configuration did not reveal a
distinct plateau for the CuIn3Se5 stoichiometry.
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Figures 4.15 and 4.16 show data at a temperature of 174 K. The low
temperature was chosen to reveal sharp structures in the landscape plots
and to suppress temperature effects. Experimental devices will typically be
exposed to much higher temperatures.

Figures 4.18 a) and b) show the Cu and In concentration for T = 696 K
which is close to the typical production temperature for solar cell in a physi-
cal vapour deposition process. The plots looks similar to Figures 4.15 a) and
b), but the CuIn5Se8 plateau has vanished. Instead, Figure 4.18 a) shows
a continuous increase in the Cu concentration from the yellow region to-
wards the ramp. Figure 4.18 b) exhibits a comparable behaviour of the In
concentration in the corresponding (orange) region.

The CuIn5Se8 plateau is the only feature in the landscapes that vanishes
at high temperatures. The CuInSe2 plateau and the ramp in the Cu concen-
tration hardly change at all. The implications of this observation are twofold:
firstly, during the production process at high temperatures, the formation of
a CuIn5Se8 defect phase is very unlikely. Secondly, after significantly cooling
down the absorber, a CuIn5Se8 defect phase could form due to the large sta-
bility region at low temperatures. The formation of a CuIn5Se8 defect phase
will then again influence the efficiency of the CIS solar cell.

CuIn3Se5 Starting Configuration

Figures 4.19 and 4.20 show the concentration landscapes and contour
plots that were calculated with a CuIn3Se5 starting configuration at a tem-
perature of 174 K.

The CuIn3Se5 starting configuration leads to a plateau with CuIn3Se5

stoichiometry around µCu = 0.7 eV and µIn = 2.3 eV [c(Cu) = 0.2 and
c(In) = 0.6]. The plateau includes the chemical potential values that have
been determined for CuIn3Se5 with the particle insertion method (red star
in Figure 4.20).

The CuIn3Se5 plateau does not show up in the simulations with a
CuIn5Se8 starting configuration. On the other hand, Figures 4.19 and 4.20 do
not show a plateau for CuIn5Se8. The chemical potential regions of the two
plateaus from the different simulations overlap, which is due to hysteresis.
The other features in the landscape plots (CuInSe2 plateau, ramp) visible in
Figures 4.15 and 4.16 are also found in Figures 4.19 and 4.20.

To summarise, with the limited amount of MC sweeps, the defect phase
plateaus of CuIn5Se8 and CuIn3Se5 are only found when using the correspond-
ing starting configuration. The size of the resulting plateaus is overestimated:
this can be concluded due to the overlap of the CuIn3Se5 and CuIn5Se8 re-
gions from the different simulations. In the µCu–µIn plane, the coexistence
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a) starting configuration CuIn5Se8, 696 K
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Figure 4.18: Landscape of the a) Cu concentration and b) In concentration versus
the chemical potentials at T = 696 K with a CuIn5Se8 starting configuration.
Chemical potential values from simulations correspond to the values measured in

experiment up to a constant. Positive values do not imply instability.
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a) starting configuration CuIn3Se5, 174 K
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Figure 4.19: Landscape of the a) Cu concentration and b) In concentration versus
the chemical potentials at T = 174 K with a CuIn3Se5 starting configuration.
Chemical potential values from simulations correspond to the values measured in

experiment up to a constant. Positive values do not imply instability.
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Figure 4.20: Contour plot of the a) Cu concentration and b) In concentration
versus the chemical potentials at T = 174 K with a CuIn3Se5 starting configuration.
The red star marks the equilibrium chemical potentials for CuIn3Se5 that have been
determined with the particle insertion method. Chemical potential values from
simulations correspond to the values measured in experiment up to a constant.

Positive values do not imply instability.
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region of two phases must be a line. The equilibrium transition between the
CuIn3Se5 phase and the CuIn5Se8 phase lies within the overlap region. Fur-
ther investigations of the transition were employed with a CuInSe2 starting
configuration and will be covered in the following section.

It is noteworthy that a stability region for CuIn3Se5 was found, even
though the CE does not include structures with a CuIn3Se5 stoichiometry.
This confirms the predictive power of the CE.

Simulations at a temperature of T = 696 K (Figure 4.21) reveal a picture
that is similar to the simulations with a CuIn5Se8 starting configuration at
the same temperature. In both cases, the plateau of the Cu-poor defect phase
vanishes.

CuInSe2 Starting Configuration

Figures 4.22 and 4.23 show the concentration landscapes and contour
plots that were calculated with a CuInSe2 starting configuration at a tem-
perature of 174 K.

The landscapes show the CuInSe2 plateau and the ramp: these features
do not depend on the starting configuration. The CuIn5Se8 and CuIn3Se5

plateaus are not found due to the limited number of MC sweeps.
Calculating the landscapes with more MC sweeps (i.e. longer relaxation

times) is not feasible. The simulations would take prohibitive amounts of
time. Another approach needs to be used to check whether the CuIn5Se8

and CuIn3Se5 plateaus can be recovered from a CuInSe2 starting configura-
tion. The concentrations for 61 pairs of chemical potentials were calculated
along a cut through both plateaus, starting with a CuInSe2 configuration and
relaxing for 106 MC sweeps with a temperature of 174 K. The line of the cut
goes through µCu = 0.3 eV / µIn = 1.7 eV and µCu = 0.9 eV / µIn = 2.6 eV
and is shown in Figure 4.25.

Figure 4.24 shows the Cu and In concentrations along the cut. As ex-
pected, both concentrations are 0.5 above µCu = 0.8 eV where the cut goes
through the CuInSe2 plateau. Between µCu = 0.4 eV and µCu = 0.6 eV,
the concentrations of Cu is 0.125 and that of In is 0.625. This indicates
the recovery of the CuIn5Se8 plateau and confirms the stability of CuIn5Se8

within this region. In the intermediate region where the CuIn3Se5 plateau is
expected, the results are not as clear. Above µCu = 0.6 eV, the Cu concentra-
tion is higher than below µCu = 0.6 eV, yet it does not reach the expected 0.2
and some outliers are visible. This can be explained with the difficulties in
forming CuIn3Se5 ground state structures that have already been discussed
in Section 4.2.2.
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a) starting configuration CuIn3Se5, 696 K
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Figure 4.21: Landscape of the a) Cu concentration and b) In concentration versus
the chemical potentials at T = 696 K with a CuIn3Se5 starting configuration.
Chemical potential values from simulations correspond to the values measured in

experiment up to a constant. Positive values do not imply instability.
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a) starting configuration CuInSe2, 174 K
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Figure 4.22: Landscape of the a) Cu concentration and b) In concentration
versus the chemical potentials at T = 174 K with a CuInSe2 starting configuration.
Chemical potential values from simulations correspond to the values measured in

experiment up to a constant. Positive values do not imply instability.
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Figure 4.23: Contour plot of the a) Cu concentration and b) In concentration
versus the chemical potentials at T = 174 K with a CuInSe2 starting configuration.
Chemical potential values from simulations correspond to the values measured in

experiment up to a constant. Positive values do not imply instability.
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Figure 4.24: Cut through the concentration landscape along the line through
µCu = 0.3 eV / µIn = 1.7 eV and µCu = 0.9 eV / µIn = 2.6 eV, calculated with
T = 174 K and a starting configuration of CuInSe2. The blue lines mark the values
that correspond to specific Cu and In concentrations: 0.125, 0.625 (corresponding
to CuIn5Se8) and 0.2, 0.6 (corresponding to CuIn3Se5). Chemical potential values
from simulations correspond to the values measured in experiment up to a constant.

Positive values do not imply instability.

Conclusion

The grand-canonical MC simulations have revealed stability regions for
CuInSe2, CuIn3Se5, and CuIn5Se8. These stoichiometries all lie on the
Cu2Se–In2Se3 tie-line and have the same total number of valence electrons.

The CuInSe2 plateau is always present and large in the concentration
landscape, no matter what starting configuration or simulation temperature
is chosen. This implies that CuInSe2 is very resilient and can form under a
great variety of experimental conditions and at a wide range of temperatures.
Due to this flexibility, the process parameter window for the production of
CIS solar cells is quite large, thereby opening up the possibility of adjusting
parameters in order to optimise the process.

The CuIn3Se5 and CuIn5Se8 plateaus are not as broad as the CuInSe2

plateau and are susceptible to the starting configuration and the temperature
of the simulation. At low temperatures, the plateau is only found with a
starting configuration of the same stoichiometry. This reveals the difficulty
of reaching thermal equilibrium in certain cases. At high temperatures, the
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plateaus vanish and there is no distinct stability region for CuIn3Se5 and
CuIn5Se8.

Based on our results, we constructed a schematic phase diagram. Figure
4.25 shows the approximate locations of the CuInSe2 phase, the CuIn5Se8

phase, the intermediate phase, and the cut. The intermediate phase is prob-
ably CuIn3Se5, because it is positioned where a CuIn3Se5 plateau was found
in the simulations with a CuIn3Se5 starting configuration.

Interestingly, the CuIn3Se5 separates the other two phases and it is not
possible to reach CuIn5Se8 directly from CuInSe2. It can be expected that
local chemical potential values vary continuously in bulk CIS and that neigh-
bouring phases in the material are also adjacent in the phase diagram. Since
the bulk of the absorber exhibits CuInSe2 stoichiometry (with a slight Cu
deficiency), it is reasonable to assume that a Cu-poor region in the bulk will
have CuIn3Se5 stoichiometry and not CuIn5Se8.

These insights can help to control a production process for solar cells. For
instance, in a physical vapour deposition process, the chemical potentials can
be influenced by adjusting the partial vapour pressures of Cu and In. This
directly influences the position in the µCu–µIn concentration landscape and
the formation of different phases.

High production temperatures can be used to avoid Cu-poor defect
phases. However, the Cu-poor stoichiometries on the ramp are still possible.
The ramp can be avoided through the regulation of the chemical potentials
to provide defect-free CIS absorbers. Upon cooling down, given the right
conditions, defect phases can form in the solar cells. This degradation will
influence the cells’ performance during their lifetime.

The ramp is a region with continuously decreasing Cu concentration and
almost constant In concentration. This result allows stoichiometries with
small Cu deficiency like those used in high-efficiency CIS and CIGS solar
cells [47, 89]. It also shows that Cu readily leaves the system in small or
large quantities, while the In concentration is hardly affected.

A further important conclusion is revealed by the relative positions of the
defect phase plateaus. To get from the CuIn3Se5 to the CuIn5Se8 plateau,
µCu and µIn both have to be decreased. A decrease in the chemical potential
should in general lead to a decrease in the corresponding concentration which
is the case for the Cu concentration. The In concentration on the other hand
is higher at the CuIn5Se8 plateau than at the CuIn3Se5 plateau. The direct
influence of µIn on the In concentration is dominated by the influence of Cu.
In other words, for a given Cu concentration on the CuIn5Se8 plateau, the
In concentration will increase to a value that stabilises the defect structure
despite the lower µIn.
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Figure 4.25: Schematic phase diagram with stability regions of CuInSe2,
CuIn5Se8, and an intermediate phase at T = 174 K. Chemical potential values
from simulations correspond to the values measured in experiment up to a con-

stant. Positive values do not imply instability.

This observation can easily be understood. The CuIn3Se5 stoichiometry is
stable, which prevents additional In atoms from occupying vacancies, despite
the relatively high chemical potential of In. Now, let µCu decrease and µIn

stay constant. A removal of Cu from the CuIn3Se5 system breaks down the
stable structure and leaves vacancies that are now readily occupied by In. In
fact, the high µIn leads to In forcing all other Cu atoms out of the system and
the CuIn5Se8 concentration is not achieved. To prevent this, it is necessary
to decrease µIn and µCu simultaneously.
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4.3 In-free Absorbers
Indium and gallium are expensive elements. For this reason, potential In/Ga-
free absorber materials have been investigated in the past [21, 90]. One
common method of replacing the In in CuInSe2 is to take out the 3-valent
In and replace it with 50% of a 2-valent element (e.g. Zn) and 50% of a
4-valent element (e.g. Sn). Zn and Sn are commonly chosen because Sn is
a direct neighbour of In and Zn is a direct neighbour of Ga in the periodic
table. Additionally, S is used instead of Se, leading to CuZn0.5Sn0.5S2.

Formation energies for different configurations of CuZn0.5Sn0.5S2 have
been calculated to see whether the creation of a cluster expansion and the
investigation of Zn-Sn disorder analogue to Section 4.1 could be promising.
Figure 4.26 shows two structures that have been calculated: they differ only
by the position of one Zn and Sn atom which are swapped in Figure 4.26 b)
with respect to Figure 4.26 a).

The structure in Figure 4.26 a) has the lower configurational energy. The
energy difference between the two is 146 meV and, as such, 15 times higher
than the typical energy difference in Cu(In,Ga)Se2 of 10 meV. As a result,
much higher temperatures are necessary to perturb the ordered groundstate
of CuZn0.5Sn0.5S2. In the temperature range that is relevant for solar cells,
CuZn0.5Sn0.5S2 will show no significant Zn-Sn disorder. For this reason, no
further investigations were undertaken.
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a)

b)

Figure 4.26: Two possible structures for CuZn0.5Sn0.5S2.



Chapter 5

Summary and Outlook

Computer simulations are a suitable tool to improve the understanding of
the solar cell absorber material CIGS. For a comprehensive description, it is
necessary to combine several methods, because no single method alone can
accurately describe the complex CIGS system. In this thesis, computer sim-
ulation results have been presented and compared with experimental data.
Additionally, the implications for industrial CIGS solar cell production pro-
cesses have been discussed.

The employed method is a combination of Monte Carlo (MC) simulations
and density functional theory (DFT). The latter is used to generate a cluster
expansion (CE) of the configurational energy which is in turn used to calcu-
late the energies in the MC simulations. Two CEs were constructed for this
thesis.

The first one yields configurational energies for CuInxGa1−xSe2 in which
Cu and Se are kept fixed and In and Ga are distributed arbitrarily on the
remaining lattice sites. The In concentration x can assume values between 0
and 1.

The second CE describes the configurational energy of Cu-poor
(Cu,In,Vac)Se structures. For this creation, only structures that are part
of the Cu2Se–In2Se3 tie-line were used. The structures can be generated
from CuInSe2 by adding (2VacCu + InCu) defect complexes.

The MC simulations of CuInxGa1−xSe2 reveal that In and Ga do not
form a well-ordered structure in the material. Below a demixing transition
close to room temperature, the material separates into a CuInSe2 phase and a
CuGaSe2 phase. Above the transition temperature, In and Ga are distributed
randomly and the homogeneity of the distribution increases with increasing
temperature.

The distribution of In and Ga has a direct influence on the band gap of the
material. Band gap fluctuations are detrimental for solar cell performance.
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The homogeneity of In-rich CIGS is higher than the homogeneity of Ga-
rich CIGS at all considered temperatures between room temperature and the
production temperature of CIGS solar cells. This observation contributes to
the relatively low efficiency of CIGS solar cells with a high Ga content.

The simulation results are compared with photoluminescence experiments
by Gütay and Bauer [82]. The experimentally observed band gaps in CIGS
samples follow a Gaussian distribution with a FWHM of 8 meV. The his-
tograms of the simulation data are translated into band gap distributions
and the results are extrapolated to the scan-pixel size of the experiments
in Reference [82]. According to the calculations, the contribution of In-Ga
disorder to the total band gap fluctuations is 2.20 meV at a temperature of
406 K and 1.01 meV at 870 K.

The results show that CIGS phase separates at low temperatures. How-
ever, no phase separation is observed experimentally. It can be concluded
that the In-Ga distribution is “frozen” in a high-temperature state. Conse-
quently, the absorber material of CIGS solar cells is not in thermal equilib-
rium, but in a glassy state.

The simulations with the (Cu,In,Vac)Se CE yielded equally interesting
results. The focus of the investigations was on the experimentally observed
stoichiometries CuInSe2, CuIn3Se5, and CuIn5Se8.

CuIn5Se8 is the simplest Cu-poor structure, because the stoichiometry
can be realised with a single 16-atom unit cell. The CE included 8 CuIn5Se8

structures with particularly low energy. Only 6 of these have been reported
before in [18].

At low temperatures, CuIn5Se8 forms an ordered state. Above the order-
disorder transition temperature of T0 = 279 K, the cations become disor-
dered. The exact value of the order-disorder transition temperature was
determined by multi-histogram simulations.

Even though the system starts to become disordered above T0, it retains
a certain degree of order up to high temperatures. This can be seen in the
frequencies of k = 7 and k = 9 tetrahedra around Se atoms. These decrease
continuously (k = 7) or even stay constant (k = 9). k is equal to the number
of valence electrons of the four nearest neighbour atoms of Se.

The canonical simulations of CuIn3Se5 find an ordered ground state at
low temperatures. Additionally, they reveal a meta-stable state that exists
at the same temperatures and exhibits the same frequency of k = 7, k = 8,
and k = 9 tetrahedra around Se atoms. The meta-stable state does not relax
to the stable state within as many as 3.5 million MC sweeps and the two
states can evolve from the same starting configuration only by applying a
different random seed. This hints at a complex free energy landscape with
high barriers.
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Grand-canonical MC simulations reveal regions of chemical potential val-
ues µCu and µIn that correspond to CuInSe2, CuIn3Se5, and CuIn5Se8 sto-
ichiometries. All three phases can be clearly identified and have distinct
stability regions. At a high temperature (696 K), the stability regions of
CuIn3Se5 and CuIn5Se8 disappear, whereas CuInSe2 is still stable.

The landscape plots of the Cu concentration show a ramp: a continuous
decrease of Cu content. In the same region, the In concentration is almost
constant. The decrease in Cu content is not linear, but shows small step-like
structures. These hint at possible stable stoichiometries that are not part of
the Cu2Se–In2Se3 tie-line. The ramp also illustrates that Cu readily leaves
the system in small or big amounts given the right conditions. Cu vacancies
can be either occupied by additional In or, close to the CdS–CIGS interface
of solar cells, by Cd that diffuses into the CIGS absorber. A first indication
for Cd occupying Cu vacancies is given in [91].

The results of this thesis are not only of academic interest, but also have
important implications for industrial solar cell production processes. First of
all, the CuInxGa1−xSe2 simulations show that the In–Ga distribution is frozen
in a state that corresponds to a high temperature. Furthermore, the homo-
geneity of the material increases with higher temperatures. It is therefore
obvious that a higher production temperature in conjunction with a reason-
ably fast cooling will lead to a more homogeneous absorber material and in
consequence to an improved efficiency. This conclusion has recently been
proved experimentally [92]. It should however be noted that the increased
temperature not only affects the In–Ga distribution, and that increased ho-
mogeneity is not the only contribution to the increased cell efficiency.

A source of degradation for CIGS solar cells could be the relaxation of
the frozen high-temperature state of the absorber towards thermal equilib-
rium. This would lead to clustering and even phase separation, resulting in
a decrease of the cell efficiency. It is up to further investigations to study
ways of preventing this degradation.

The (Cu,In,Vac)Se simulations revealed an order-disorder transition in
CuIn5Se8 at T0 = 279 K. Typically, solar cells do not operate at such low
temperatures. Consequently, CuIn5Se8 defect phases that could occur in
solar cells will not assume an ordered state (e.g. one of the 8 low-energy
structures that have been found), but will be disordered. It is thus not
sufficient to consider small unit cells of ordered structures for the theoretical
description of the electronic properties of defect phases in operational solar
cells.

Increasing the temperature to the production temperature of solar cells
leads to the disappearance of the CuIn5Se8 and CuIn3Se5 defect phases. Con-
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sequently, during the production process, the defect phases are unlikely to
occur. However, experimental evidence points at grain boundaries and the
buffer–absorber interface being Cu-poor. These are the locations where de-
fect phases will preferably form after the absorber material has cooled down.

Cu-poor defect phases can form in the bulk absorber during the lifetime
of a solar cell if the conditions are such that Cu leaves the absorber material.
In this case, the formation of CuIn5Se8 or CuIn3Se5 in the bulk CIGS will
contribute to degradation of the cell.

The production process for CIGS solar cells can be controlled by adjusting
the chemical potentials µCu and µIn. In a physical vapour deposition process,
this can be realised by adjusting the partial vapour pressures of Cu and In.
This way, the position of the process in the µCu–µIn concentration landscape
can be controlled. The CuInSe2 stability region in the concentration land-
scape is large at all considered temperatures. This implies that it can form
under a great variety of experimental conditions and at a wide range of tem-
peratures. Due to this exceptional resilience, there is an extensive window of
process parameters within which the production conditions for CuInSe2 can
be optimised.

The best CIGS solar cells have a slightly Cu-poor absorber layer. It is thus
desirable to choose chemical potentials that guarantee CuInSe2 stoichiometry
with a slight Cu-deficiency. According to the simulation results, this can
best be achieved at the upper end of the ramp (µCu ≈ 0.8 eV and µIn ≈
2.1 eV). At that point, the stoichiometry is relatively insensitive to µIn. It
does not change significantly between µIn = 2.0 eV and µIn = 2.3 eV. On the
other hand, it is crucial to accurately choose the right value for µCu. The
stoichiometry is very sensitive to changes, especially towards lower values of
µCu. This would affect the cell efficiency.

In a typical vapour deposition process, the vapour pressures are not con-
stant. The timing of adjusting the vapour pressures of the various elements
is very delicate. There is a stage where only In/Ga and Se are evaporated.
After that comes a stage where In/Ga is replaced by Cu evaporation. This
stage has to be stopped at the CuInSe2 stoichiometric point. The measure-
ment of this point is indirect and subject to inaccuracy. This timing issue can
be avoided by choosing constant vapour pressures for all elements according
to the simulation results.

There are still numerous unanswered questions that need to be investi-
gated in future studies.

To compare experimental production conditions with the results of the
grand-canonical simulations, it is necessary to translate the vapour pres-
sures into chemical potentials. Since the vapour pressures are usually not
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constant, the production process follows a path in the concentration land-
scape. A determination of this path will help to better improve the under-
standing of typical production processes (e.g. physical vapour deposition
and co-evaporation). This comparison could explain why solar cells from
physical vapour deposition typically yield higher efficiencies than cells from
co-evaporation.

A desirable follow-up to the presented simulations would be an extension
of the CE to interfaces. This would increase the computational effort, because
more ab initio energies would have to be calculated and larger unit cells used.
However, this would shed light on the Cu-deficiency at locations where it is
most prominently observed: grain boundaries and the CdS–CIGS interface
[38, 41, 42].

Another possible extension would be the inclusion of more atomic species.
For instance, Se could be included. Se defects play an important role and re-
cent experiments have shown that the vapour pressure of Se has a significant
effect on the efficiency of the solar cell [93].

Additional interesting extensions would be the inclusions of Na and Cd,
but their concentrations are typically low. Huge unit cells are necessary to
realise the experimentally observed concentrations in the order of 1%. Within
this context, one hypothesis that can be tested is, whether Cd diffuses into
the CIGS absorber at the CdS–CIGS interface and forces Cu out.

The presented results show a ramp in the Cu concentration landscape,
which is very resilient to changes in the starting configuration and tempera-
ture. To gain better understanding of this particular region, the correspond-
ing stoichiometries will have to be studied with ab initio methods. This
requires large unit cells. It is possible that the CIGS lattice structure with
its I 4̄2d symmetry is not the ground state structure for these stoichiometries.
This possibility could be investigated with molecular dynamics simulations.

The simulations of Cu(In,Ga)Se2 show that after the production process,
the absorber is frozen in a state corresponding to a high temperature. This
hypothesis could not be studied further within the scope of this thesis. Test-
ing is up to future investigations.

A related issue turns up in the (Cu,In,Vac)Se simulations. At high tem-
peratures, no regions of CuIn5Se8 and CuIn3Se5 defect phases can be ob-
served. However, cooling down can lead to the formation of defect phases
if the system reaches thermal equilibrium. Alternatively, the system could
also be frozen in a state corresponding to a high temperature, which would
inhibit the formation of defect phases. The question which possibility reflects
reality will have to be answered by future studies.
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