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Zusammenfassung

Diese Arbeit stellt Algorithmen zur Berechnung der elektrostatischen Wechselwirkung
in partiell periodischen System vor. Als Rahmen für diese Verfahren dient das Sim-
ulationsprogramm ESPResSo, an dessen Entwicklung der Autor maßgeblich beteiligt
war. Die wesentlichen Merkmale des Programms werden aufgezählt und der innere
Aufbau des Programms erläutert.

Im Anschluss werden Algorithmen für die Berechnung der Coulomb–Summe in
dreidimensional periodischen Systemen besprochen. Diese Methoden bilden die Basis
für die im folgenden beschriebenen Verfahren für partiell periodische Systeme.

Für Systeme mit einer nichtperiodischen Koordinate wird, ausgehend von der
MMM2D Methode, die ELC Methode entwickelt. Diese erlaubt es, mit Hilfe eines
Korrekturterms Methoden für dreidimensional periodische Systeme auch bei nur zwei
periodischen Koordinaten zu verwenden. Dabei ist die für die Korrektur benötigte
Rechenzeit für große Teilchenzahlen vernachlässigbar. Die Leistungsfähigkeit von
MMM2D und ELC wird anhand der Implementierungen in ESPResSo demonstri-
ert. Es wird erläutert, wie sich verschiedene dielektrische Konstanten innerhalb und
ausserhalb der Simulationsbox realisieren lassen.

Schließlich wird die MMM1D Methode für Systeme mit einer periodischen Koor-
dinate entwickelt. Diese Methode wird auf das Problem der Anziehung gleichnamig
geladener Stäbe in der Anwesenheit von Gegenionen angewandt und Ergebnisse der
Strong–Coupling–Theorie für die Gleichgewichtsdistanz der Stäbe bei unendlicher
Gegenionen–Kopplung mit Hilfe von Computersimulationen überprüft. Der Grad
der Übereinstimmung zwischen Simulation bei endlicher Kopplung und Theorie kann
durch einen Parameter γRB charakterisiert werden.

Im Spezialfall T = 0 finden sich unter gewissen Umständen flache Konfigurationen,
in denen alle Gegenionen in der Stab–Stab–Ebene liegen. Von diesen Konfiguratio-
nen wird analytisch die energetisch günstigste und deren Stabilität bestimmt, was
von nur einem Parameter γz ähnlich γRB abhängt. Diese Ergebnisse können durch
Computersimulationen bestätigt werden.
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Summary

This work presents algorithms for the calculation of the electrostatic interaction in
partially periodic systems. The framework for these algorithms is provided by the
simulation package ESPResSo, of which the author was one of the main develop-
ers. The prominent features of the program are listed and the internal structure is
described.

In the following, algorithms for the calculation of the Coulomb sum in three dimen-
sionally periodic systems are described. These methods are the foundations for the
algorithms for partially periodic systems presented in this work.

Starting from the MMM2D method for systems with one non–periodic coordinate,
the ELC method for these systems is developed. This method consists of a correc-
tion term which allows to use methods for three dimensional periodicity also for the
case of two periodic coordinates. The computation time of this correction term is
negligible for large numbers of particles. The performance of MMM2D and ELC are
demonstrated by results from the implementations contained in ESPResSo. It is also
discussed, how different dielectric constants inside and outside of the simulation box
can be realized.

For systems with one periodic coordinate, the MMM1D method is derived from
the MMM2D method. This method is applied to the problem of the attraction of
like–charged rods in the presence of counterions, and results of the strong coupling
theory for the equilibrium distance of the rods at infinite counterion–coupling are
checked against results from computer simulations. The degree of agreement between
the simulations at finite coupling and the theory can be characterised by a single
parameter γRB .

In the special case of T = 0, one finds under certain circumstances flat configura-
tions, in which all charges are located in the rod–rod plane. The energetically optimal
configuration and its stability are determined analytically, which depends on only one
parameter γz, similar to γRB . These findings are in good agreement with results from
computer simulations.
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Introduction

The computer industry is the fastest growing industry nowadays. Similarly, compu-
tational physics is one of the youngest fields and fastest growing branches of physics.
The first electronic computers were build during the second world war to perform
heavy computations involved in the development of nuclear weapons and code break-
ing. In the early 1950’s, the first computers became partially available for civilian use,
and one of the first applications were computer simulations. The MANIAC, built by
Nick Metropolis for the Los Alamos National Laboratory in the USA, was one of the
first of these computers. The laboratory was interested in finding as many applica-
tions of their machine as possible, and one of these was the Metropolis Monte–Carlo
algorithm for problems in statistical mechanics. Today the range of applications for
computers has grown beyond any bounds, and even a standard home PC is many
orders of magnitude faster than the MANIAC. According to Moore’s law the number
of transistors in a processor doubles every four years, which has proven to be true for
now four decades, and similarly the speed of modern computers continues to grow.

But what is the physical use of computer simulations? Only a very small portion
of the problems arising in physics can be solved analytically. Even the equations of
motion for three bodies in simple Newtonian mechanics are essentially unsolvable.
The properties of everyday’s materials are often determined by the complex interplay
of thousands of atoms. Solving the equations of motion exactly for a such a complex
system using only pencil and paper is beyond hope, and one has to find different ways
to predict the properties of these materials.

Before computer simulations were known, there was only one way to investigate
such problems, namely deriving a good theory for an approximative description of
the material. However, only very few systems can be treated exactly, such as the
ideal gas, the harmonic oscillator and a number of lattice models, e. g. the Ising
model. Therefore most properties of real materials were predicted by approxima-
tive theories like the Debye–Hückel theory or the Poisson–Boltzmann equation for
electrolytes. Given sufficient information on the intermolecular interactions, these
theories often give good estimates for the relevant observables and insight into the
underlying physical mechanism, but their range of applicability is limited. For exam-
ple, in chapter 7 a problem will be presented, where the Poisson–Boltzmann theory
fundamentally fails.

If theory and experiment disagree, two sources of error are possible: either the model
system does not represent the experiment correctly, or the theory does not describe
the model system correctly (or both, in the worst case). Here computer simulations
can be extremely helpful by providing essentially exact results for a model system,
provided the simulation was done properly. If the simulation results agree with the
experiment, but not the theory, the theory does not even describe the model system
correctly. If the simulation cannot reproduce the experiment, the model system misses
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Introduction

some fundamental features of the experiment. In this sense a computer simulation
is an experiment on a theoretical model and provides a link between theory and
experiment. This explains to some extent the speed at which the field of computer
simulations grows in today’s physics.

Another reason for the importance of computer simulations is that some model
systems can describe the reality well enough to replace experiments. Three popular
examples are the computer aided design (“CAD”) of pharmaceuticals, applications of
CAD in the automotive industry and weather forecasts. Nowadays pharmaceuticals
can be designed to fit, for example, a specific receptor. To this aim basically a large
pool of possible candidate substances has to be tested for the binding characteristics
to the binding site in mind. Real experiments would take weeks, while powerful
computers can give a good estimate of the binding rate within hours. Besides this,
computer simulations are often cheaper than real experiments. The latter reasoning is
especially important in the car industries. Finite element methods allow for a new car
design to go through several hundred simulated crash tests before the first prototype is
built, and most parts of the engine are optimised using computer simulations. Today
the weather forecast is usually reliable for at least one day, although the underlying
physical equations are extremely complicated and the system to simulate is incredibly
large.

These examples also show the large range of length scales on which computer simu-
lations are used today. From the submolecular level to the macroscopic level of whole
cars or even the global climate. And finally new theories in astronomy can only be
tested using computer simulations. Interestingly, the latter type of computer simula-
tions is often more similar to calculations on the microscopic level than for example
to finite element methods.

This work is dedicated to simulations of this type, where particles are essentially
sphere–like and the interactions are long ranged. The length scales we are interested
in range between 1nm and 10µm, which are the relevant length scales for a class of
materials collectively called “soft matter”.

Soft matter is a term for materials in states that are neither simple liquids nor
hard solids of the type studied, for example, in solid state physics. Examples are
polymers, colloids, liquid crystals, glasses, and dipolar fluids. Familiar examples of
such materials are glues, paints, soaps or baby diapers. Others are important in
industrial processes, such as polymer melts that are molded and extruded to form
plastics [46]. Most biological materials are soft matter as well — DNA, membranes,
filaments and other proteins belong to this class.

All these materials have in common that a wide range of length and time scales
is important for their microscopic behaviour as well as their macroscopic properties.
Typical energies between different structures are comparable to thermal energies.
Hence, Brownian motion or thermal fluctuations play a prominent role. Another key
feature of soft matter systems is their propensity to self-assemble. This often results
in complex phase behaviours yielding a rich variety of accessible structures which
form spontaneously. Most of the biological systems are usually not even in thermal
equilibrium but evolve among switchable steady states.

Many properties of soft matter emerge on the molecular rather than the atom-
istic level. The elasticity of rubber is the result of entropy of the long polymers
molecules, and the hygroscopic materials used in modern diapers store water inside a
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Introduction

polyelectrolyte network. In both examples the important properties — elasticity rsp.
hygroscopy — are not the result of a chemical process, but rather of physical inter-
play of the involved molecules. To reproduce this physical interplay in a computer
simulation on the atomistic level, one would have to incorporate several millions of
atoms, which is only possible on very small time scales even with the most powerful
modern computers. But since the properties of these materials do not emerge on
the atomistic level, a simpler description of the material is often sufficient. Polymers
such as polyelectrolytes or rubber often can be modelled by bead–spring models, i. e.
(charged) spheres connected by springs. Each of the spheres stands for several atoms,
often a complete monomer or even larger compounds. Although this model hides
most of the chemical properties, it is quite successful in the description of polymers.
Nevertheless, computer simulations on the bead–spring level still incorporate several
thousands of spheres and springs and require an efficient simulation software.

For computer simulations of soft matter a large number of program packages ex-
ist, for example polyMD [82], BALL [13], OCTA [24], GISMOS [54], GROMACS [97],
GROMOS [98], Amber [77], NWChem [91], DL Poly [89], LAMMPS [79] or NAMD [71].
These simulation packages feature a large set of physical interactions, constraints and
other ingredients, however, the computer simulation of a specific problem often re-
quires some features not yet implemented. Examples are newly developed potentials
or constraints.

So far in the author’s work group this problem was solved by hard coding these fea-
tures directly into existing simulation codes. This is highly ineffective, as these codes
were not well documented and not designed to allow easy modification. Moreover
there were several code trees which were not compatible. Often one feature needed
for a new project was implemented in one code tree, while another feature was added
to another tree. So although both features were already implemented and tested, they
had to be implemented again in a new hybrid code.

In 2002, the author’s work group decided on using one single code base for all
future simulations. Looking at the simulation packages existing so far, we did not
find a package that seemed to meet all our expectations. Some of the codes, e. g.
GROMACS or NAMD, have a different focus, namely the atomistic level, while we are
primarily interested in simulations of bead–spring models. For these models packages
like polyMD or LAMMPS are well suited, but our efforts to add new features to these
codes soon failed because of the complex and not well documented structure of these
programs. Elementary features such as force calculation routines were deeply inter-
woven with the integrator code for code optimisation reasons, which makes adding for
example a new method for the calculation of the electrostatic interaction a demanding
task.

To improve on this situation, a new simulation package was started, ESPResSo [8,9].
The main goal of ESPResSo is to present state of the art algorithms for simulations
of bead–spring models in a parallel code that is extensible. This extensibility ex-
presses mainly in that readability is preferred over code optimisations in ESPResSo,
and that for many of the basic tasks, such as force calculations, standardised inter-
faces exist. The lack of optimised code is compensated by the use of state of the
art algorithms. The main features of ESPResSo are also expressed by the acronym:
Extensible Simulation Package for Research on Soft matter.

The extensibility of ESPResSo enables all scientists within our work group to con-
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tribute their own code for reuse by others. But even more important is that researchers
from other work groups and institutions can contribute as well. To this aim ESPResSo
is published under the GNU public license, and is available through our web page [27].
A welcome side effect of the unoptimised and comparatively simple C–code is that
ESPResSo is easily portable to other hardware platforms. In chapter 1 the basics of
an MD simulation using ESPResSo are described.

A special focus of the author’s work group is on the research of charged systems.
However, in computer simulations the calculation of the electrostatic interaction re-
quires highly complex algorithms. Therefore a special focus of ESPResSo and also this
work is on state of the art algorithms for the calculation of the Coulomb potential
under various types of periodic boundary conditions. Chapter 2 gives an overview of
methods that can be used under periodic boundary conditions in all spatial dimen-
sions, which are widely applied to simulate bulk systems.

Chapter 3 deals with the case of periodic boundary conditions in only two of the
spatial dimensions, as is used for example for studies on membranes or thin films. This
case is algorithmically much harder to treat since the spatial symmetry is broken,
which is employed at prominent positions in nearly all methods for fully periodic
systems, and consequently only a few methods were known so far. Moreover the
computationally efficiency of these methods was worse than in the three dimensionally
periodic case. In this work a new method for the calculation of electrostatic interaction
for such systems, ELC, is developed in chapter 4. Chapter 5 briefly outlines how to
deal with different dielectric constants inside and outside of a thin film, which is
important for aqueous solutions where one does not treat the water explicitly.

Chapter 6 treats the even more demanding problem of one–dimensionally periodic
systems, which can be used in studies of nano–pores or long linear polymers like DNA.
Only a few methods for this kind of periodicity are known so far, and their compu-
tationally efficiency is even worse than in the two dimensionally periodic case. In
that chapter a new method MMM1D is presented, which is derived from the MMM2D
method and is fast enough at least for small scale simulations of a few hundred par-
ticles.

The last chapter of this work is devoted to an application of MMM1D. It is long
known the DNA strands can attract each other although they are highly charged in the
presence of multivalent counterions. Mean field theories such as Poisson–Boltzmann
fail to predict this attraction, which is generally attributed to counterion correlations.
A particularly successful theory in predicting the attractive interaction is the strong
coupling theory by A. Moreira and R. Netz. In this work the predictions of the strong
coupling theory are compared to computer simulations. These simulations show that
the strong coupling theory is valid even for realistic parameters and describes correctly
the attraction of two like–charged rods, even though the theory was developed for
the limit of infinite coupling. A special case of infinite coupling is the limit of zero
temperature. Computer simulations as well as a direct calculation are used to identify
the range of validity in the case of zero temperature.

Parts of this thesis have been published in [5, 16] (ELC) and [18, 69] (attraction of
like–charged rods).
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1 MD-Simulations — ESPResSo

In the second half of 2002, Hanjo Limbach and
the author of this work started with the imple-
mentation of the simulation core of ESPResSo,
half a year later the code was undergoing its
first test simulations. The author developed
and implemented many of the fundamental
parts of the code, such as the particle data or-
ganisation, the file I/O or the multiprocessor
communication scheme. Especially the parti-
cle organisation of ESPResSo has proven to be
highly efficient in terms of computational speed.

In the mean time, ESPResSo has been im-
proved dramatically, currently about ten de-
velopers work on different parts of ESPResSo,
and use the simulation code for research topics
as different as biological membranes, polyelec-
trolytes or polymer networks. The code is used on many different hardware platforms
such as PCs (GNU/Linux on IA32 and AMD64 processors), Workstations (MacOS on
PowerPC processors and Tru64 on Alpha processors) and high performance servers
(AIX on Power4 processors).

The wide field of simulation topics investigated by ESPResSo requires a high flex-
ibility of the simulation code, which in ESPResSo is obtained by a script language
which is used to control the simulation process. The simulation control script deter-
mines all simulation parameters such as the number and type of particles, the type
of interactions between these particles and how the system is propagated. The script
language used in these scripts allows to change most of the parameters even during the
simulation. This flexibility makes it possible to perform highly complex simulation
procedures, such as adapting the interaction parameters to the current configuration
during the simulation, cooling down the system in a simulated annealing process,
or applying or removing a constraint. An example simulation control script will be
discussed in the first section of this chapter.

The following sections deal with the internals of ESPResSo. Sec. 1.3 discusses the
particle data organisation scheme of ESPResSo and its advantages. The heart of the
simulation is the integrator, which propagates the system in time. Sec. 1.4 describes
the velocity Verlet integrator that is used in ESPResSo. The following two sections
deal with some of the short and long ranged interactions between particles that are
currently implemented in ESPResSo. The long ranged interactions will be discussed
in more detail in chapters 2 to 6. Sec. 1.7 finally describes some of the commands
that ESPResSo provides for the analysis of the data produced in a simulation.

ESPResSo is not a self contained code, but relies on other open source packages.
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1 MD-Simulations — ESPResSo

Most prominent is the use of the Tcl [93] script language interpreter for the simulation
control. For the parallelisation standard MPI routines are used, which on Linux and
MacOS are provided e. g. by the LAM/MPI [51] implementation, or MPICH [68].
The P3M method for the electrostatic interaction and the mode analysis tool for
membranes rely on the FFTW [30]. Besides this libraries, which are needed to get
ESPResSo running at all, the development process is supported heavily by the use of
the CVS version control system [14], which allows a large number of developers to
work simultaneously on the code.

This chapter gives only an overview of the current features of ESPResSo. The
list is by no means complete as there is still a lot of work in progress. This overview
focuses on features that are either unique to ESPResSo or will be used in the computer
simulations shown in chapters 3 through 7. This chapter is not meant to present all
the details of a MD simulation. For this refer e. g. to the textbooks of Allen and
Tildesley [3] or of Frenkel and Smit [31].

1.1 Simulation control

A simulation is not only determined by some simple numerical parameters, but by the
complete program flow. For example the simulated annealing to zero temperature is
done by heating up and cooling down the system several times, and it is often necessary
to gradually turn on interactions at the beginning of a simulation to equilibrate the
system smoothly. In ESPResSo this problem is solved by means of a script control
language. ESPResSo uses Tcl as command language, since Tcl integrates smoothly
with C–code and is easy to learn.

To demonstrate the use of the script language, now an ESPResSo control script
for the NVT simulation of a Lennard-Jones liquid is given. With a small additional
header (a she–bang, “#!”) the script can even be called directly from the command
line like any other program, which is very convenient for submitting several jobs at
once.

In the example script, first some Tcl variables are set which will be used later in
the program to determine the simulation parameters (lines starting with a “#” are
Tcl comments):

# size of the cubic simulation box

set box_length 10.7437

# density of the liquid

set density 0.7

The next lines define some parameters of the simulation, the time step, box length
and the skin depth. The latter parameter is needed for the link cell algorithm (see
Sec.1.3), but has no influence on the physics of the simulated liquid.

setmd time_step 0.01

setmd skin 0.4

setmd box_l $box_length $box_length $box_length

Now particles are put into the simulation box. The first two lines show how mathe-
matical expressions can be used inside Tcl. Here the number of particles is determined
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1.1 Simulation control

from the box size and the density. The particles are added particle for particle at ran-
dom positions in a loop, using the builtin random number generator of ESPResSo. In
this example only the properties “position” and “type” are set, other properties are
e. g. velocity or charge.

set volume [expr $box_l*$box_l*$box_l]

set n_part [expr floor($volume*$density)]

for {set i 0} { $i < $n_part } {incr i} {

set posx [expr $box_l*[t_random]]

set posy [expr $box_l*[t_random]]

set posz [expr $box_l*[t_random]]

part $i pos $posx $posy $posz type 0

}

The Langevin thermostat (see Sec. 1.4) is activated for a temperature of 1kT and a
friction constant Γ = 1/τ by the command

set temp 1

set gamma 1

thermostat langevin $temp $gamma

A purely repulsive Lennard-Jones interaction (see Sec. 1.5) between all particles of
type 0, which are all in our case, is defined by

set lj1_eps 1.0

set lj1_sig 1.0

set lj1_cut 1.12246

set lj1_shift [expr 0.25*$lj1_eps]

inter 0 0 lennard-jones $lj1_eps $lj1_sig $lj1_cut $lj1_shift 0

This interaction is used widely in computer simulations and is a smooth approximation
of a hard core interaction between two spheres of diameter 1.

Now a simulation loop for 1 million time steps could look like

for {set i 0} { $i < 1000 } { incr i} {

puts "step $i ftime=[setmd time] energy=[analyze energy total]"

puts "temp = [expr [analyze energy kinetic]/(1.5*[setmd n_part])]"

integrate 1000

}

Every thousand time steps the simulation time, total energy and the current tempera-
ture are printed out. Of course this is not enough for a real simulation, as one normally
wants to write out simulation data to configuration files. To this aim ESPResSo has
commands to write simulation data to a Tcl stream. The format written by these
commands is called blockfile in the following. One could add the following lines into
the simulation loop to write configuration files “config 0” through “config 999”:

set f [open "config_$i" "w"]

blockfile $f write variable {time_step skin}

blockfile $f write tclvariable {box_length density}

set temp [expr [analyze energy kinetic]/(1.5*[setmd n_part])]

puts $f "\{energy [analyze energy total] $temp\}"

blockfile $f write particles {id pos type}

close $f
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1 MD-Simulations — ESPResSo

The created files “config ...” look like

{variable

{time_step 0.01}

{skin 0.4}

}

{tclvariable

{box_length {10.7437}}

{density {0.7}}

}

{energy 5380.6 1.00005}

{particles {id pos type}

{0 11.5573 8.87179 4.80079 0}

{1 7.04209 2.96786 3.74511 0}

{2 8.08042 4.91621 6.53135 0}

.

.

.

{864 3.64869 8.02398 3.13255 0}

{865 7.66632 14.4887 1.31884 0}

{866 -0.654808 11.9669 0.43845 0}

{867 6.43409 5.75895 5.46044 0}

}

As one can see, the format of a blockfile corresponds to Tcl list of tagged data sets,
which are called blocks, and allows for adding own data sets like the “energy” block
in this case. Depending on the simulation, much more complex observables can be
written out here for an easy inspection during the simulation run.

Reading in the blockfiles is automated in ESPResSo. The tagged structure of a
blockfile allows an easy identification of the portions ESPResSo knows about and
proper parsing. The command

set f [open "config_999" "w"]

while { [blockfile $f read auto] != "eof" } {}

close $f

will read in the variables time step and skin and the Tcl variables box length and
density back in, as well as all particles positions and types. The “energy” block is not
a standard ESPResSo block and ignored by the read loop.

The simulation as presented above will very likely not run smoothly, since the
particles are placed randomly and therefore could overlap. The Lennard–Jones po-
tential is singular for vanishing particle distance, therefore overlapping particles have
an extremely high interaction energy. The high initial potential energy will in turn
accelerate the particles to velocities larger than what can be treated with the chosen
time step, and the simulation might crash. To avoid this, ESPResSo allows to cap
the Lennard–Jones interaction, i. e. below a certain distance the potential only grows
linearly while the Lennard–Jones force is constant. This force cap is gradually raised
in an equilibration loop which might look like

set cap 10

while {[analyze mindist] < 0.95} {

inter ljforcecap $cap

16



1.2 Internal program flow

integrate 1000

incr cap 30

}

inter ljforcecap 0

This loop will gradually increase the force cap until the minimal distance is larger
than 0.95 and then switches off the force cap.

The code example given before is obviously a very simple one. More complicated
simulation scripts like the ones used for the data presented in chapter 7 can easily
extend over hundreds of code lines. This simulations calculate the parameters for
about 10000 simulations by a bisection algorithm implemented in Tcl. Of course this
could also have been done using any other simulation package, but the implementation
of uncritical parts like the bisection in a script language is much easier compared to
a modification of the core simulation program. The necessity to access the average
forces on some of the particles would have made the implementation of the bisection
in polyMD or LAMMPS a formidable task. The possibility to perform non–standard
simulations without the need of modifications to the simulation core was one of the
main reasons why we decided to use a script language for controlling the simulation
core.

1.2 Internal program flow

The Tcl script is interpreted by an Tcl interpreter on exactly one of the nodes, called
the master node or node 0 in the following. All other nodes are called slaves and just
wait for commands from the master node. The Tcl interpreter will call C–procedures
on the master node, which in ESPResSo by convention have the same name as the
corresponding Tcl command, i. e. setmd will call the C–procedure “setmd()”, with
the variable name and value as (string) parameters. The C–procedure then parses
the input and does something appropriate, in this case setting the value of a global
variable. But this is not all — in a multiprocessor environment the change of a
parameter has to be communicated to all nodes. Therefore the master node issues
an command to the slaves to change the value of the corresponding variable, too.
Since the number and order of commands issued by the master node is not known at
compile time, the communication during the script execution is asynchronous.

Another important point is that ESPResSo allows changing parameters at any time,
even during the simulation run, which might require additional work to be done to
ensure consistency. Changing the processor grid for example might change the asso-
ciation of the particles to the different nodes and therefore requires a reorganisation
of the internal particle structures. If the Bjerrum length is changed, the currently
used method for the calculation of the electrostatic interaction has to be reinitialised.
Moreover, if this happens during the simulation, the forces stored in the particles for
the current configuration are invalid and have to be recalculated.

Because of the large number of algorithms implemented in ESPResSo, the depen-
dencies are actually much more complex. They are resolved by handler procedures,
for example “on_parameter_change()”, which is called whenever a parameter such
as the box length changes, or “on_coulomb_change()”, which is called every time a
parameter of an electrostatic method is changed (inside “on_parameter_change()”).
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To keep the number of these handlers small, they are written in a quite general fash-
ion and often reinitialise more than would be necessary. This small drawback in time
is more than compensated by the ease with which changes can be propagated safely
through the code and the great flexibility at the script level this allows for.

One of the asynchronous commands starts the propagation of the system in time,
the integration. During the integration, however, ESPResSo uses a synchronous com-
munication scheme as any other simulation program for efficiency reasons. Syn-
chronous communication means that every node has to know without prior request
which MPI communication follows, i. e. the codes running on all nodes have to be
synchronised. This is less robust than the asynchronous communication scheme, but
the request–answer structure creates too much overhead and is not needed in the
integration when the implementation has been done properly.

1.3 Data organisation — Link cells and Verlet lists

The data ESPResSo uses during the integration are mainly particles, interactions and
constraints. While the number of interactions and constraints is normally small and
simple lists are efficient enough for their storage, the particle data needs some more
elaborate organisation, which will be presented here as it is unique for ESPResSo. A
particle itself is represented by a structure consisting of several substructures, which in
turn represent basic physical properties such as position, force or charge. The particles
are organised in one or more particle lists on each node, called cells. The cells in turn
are arranged by several possible systems, which are called cell systems in the following.
A cell system defines a way the particles are stored in ESPResSo, i. e. how they are
distributed onto the processor nodes and how they are organised on each of them.
ESPResSo currently knows three cell systems, namely an N 2–model, a layered model
and the domain decomposition model, which is used in most simulations. The cell
models will be discussed in more detail in the following.

Technically, a cell is organised as a dynamically growing array, not as a list. This
ensures that the data of all particles in a cell is stored contiguously in the memory.
The particle data is accessed transparently through a set of methods common to all
cell systems, which allocate the cells, add new particles, retrieve particle information
and are responsible for communicating the particle data between the nodes. Therefore
most portions of the code can access the particle data safely without direct knowledge
of the currently used cell system. Only the force, energy and pressure loops are
implemented separately for each cell model, as one can draw significant advantage
in the calculation from the particle organisation. For example the computation of
the pair forces can be implemented in linear computation time using the domain
decomposition method, which will be explained now.

The domain decomposition cell system is based on the link cell algorithm [37], which
will be briefly reviewed now. Many pairwise interactions, such as the Lennard–Jones
interaction, are short ranged, i. e. their value is small enough to be neglected at a
distance much smaller than the size of the simulated system. Therefore the interac-
tions have to be calculated only with particles close by, but since one has to check
the particle distance for every pair of particles, this would still result in a algorithm
with a computation time scaling of O(N 2), i. e. the number of necessary operations
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Figure 1.1: Schematic description of the particle data organisation using the domain
decomposition cell system within ESPResSo. The simulation box is split up into
equally sized regions assigned to a single processor each. These regions are in turn
split up into cells (dark blue squares). Around the cells the ghost shell is wrapped,
which contains data from the neighbouring processors (light blue squares). The cells
are simple arrays of particles, which finally consist of several substructures containing
the position, force and other particle data.

grows quadratically with the number of particles. But one can do better: At the
beginning of the simulation, so called link cells are set up. These cells cover the entire
simulation box and contain links to all particles in their spatial domain. Their size
is chosen slightly larger than the maximal interaction range. In the force calculation
only interactions between particles in adjacent cells have to be calculated, so that one
only has to run through the 27 neighbours for each cell (in three dimensions). At
constant density and interaction ranges, the average number of particles in a cell is
constant and therefore the overall algorithm has order N (since we run once through
all cells and therefore all particles).

The force calculation for this system can easily be parallelised as well: First the sim-
ulation box is split up equally into as many smaller boxes as processors are available,
and each of these boxes is assigned to a processor. The particles are then assigned to
the processor that is responsible for the box they are located in. Now these processor
boxes are divided up into cells as described above. Each node calculates the interac-
tions for all particles assigned to it. But to do this, the particles located in the cells
adjacent to the processor box are needed, too. This shell of cells around a proces-
sor box is called the ghost shell, and the particles in the ghost shell are called ghost
particles. The ghost particles have to be communicated between the nodes, while
all other particles have to be known only on their respective node. For a schematic
representation of the particle organisation used for the domain decomposition, see
Fig. 1.1.

After propagating the system by one time step, some particles may have moved
out of their cell, which would require to update the cell lists. In a multiprocessor
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skinrinterr

Figure 1.2: Scheme of the link cell and
Verlet list algorithm in two dimensions. In-
teractions with the red particle occur only
within the inner, solid circle. However,
the Verlet list for the red particle contains
all particles inside the dotted circle. The
link cell algorithm will consider all parti-
cles shown in the figure as candidates for
the Verlet list of the red particle, but no
other particles.

simulation, that could even mean shifting around particles from processor node to
processor node. To reduce the number of particle reorganisations, one can exploit
that the cell size is slightly larger than the maximal interaction range. The difference
between cell size and maximal interaction range is called the skin distance rskin. As
long as no particle has moved further than rskin/2, the distance of two particles did
not increase by more than rskin, so that adjacent cells still contain all interacting
particle pairs, and the link cells do not have to be updated. Therefore, with each
particle one stores the position where the last sorting process took place, and checks
whether this position is further away from the current position than rskin/2. If this
happens, the link cells are rebuild. The optimal value of rskin is hardware dependent
as it reflects the tradeoff between having to treat more particles pairs due to the
increased cells size versus having to update the link cells. The skin can be as large
as 20 − 40% of the maximal interaction range, and normally the lists are updated
about every 20− 40 time steps using ESPResSo on a Linux PC. The skin value has to
be determined manually by e. g. running several integrations at different skin values,
since the optimal value depends heavily on the underlying hardware, especially on the
performance of the inter–node communication.

Another trick to further speed up the force calculation are Verlet lists. For short
range interactions, the possible interaction partners of a single particle are located
in a sphere inside the cells surrounding the particle. The size of this sphere is 80%
smaller than the size of the full 27 boxes. Therefore it is advantageous to determine
all particle pairs within the maximal interaction range plus the skin once, and store
a list of these pairs to be used until the next sorting procedure takes place. These
particle pair lists are called Verlet lists.

The domain decomposition cell system of ESPResSo implements the link cell algo-
rithm. But instead of just having links to the particles in the cells, the cells contain
the particles themselves in an array. For an example let us assume that the simulation
box has size 20×20×20 and that we assign 2 processors to the simulation. Then each
processor is responsible for the particles inside a 10 × 20 × 20 box. If the maximal
interaction range is 1.2, the minimal possible cell size is 1.25 for 8 cells along the
first coordinate, allowing for a small skin of 0.05. If one chooses only 6 boxes in the
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first coordinate, the skin depth increases to 0.467. In this example we assume that
the number of cells in the first coordinate was chosen to be 6 and that the cells are
cubic. ESPResSo would then organise the cells on each node in a 6 × 12 × 12 cell grid
embedded at the centre of a 8 × 14 × 14 grid. The additional cells around the cells
containing the particles represent the ghost shell in which the information of the ghost
particles from the neighbouring nodes is stored. Therefore the particle information
stored on each node resides in 1568 particle lists of which 864 cells contain particles
assigned to the node, the rest contain information of particles from other nodes.

If one particle has moved further than the rskin/2, all particles have to be sorted
into their correct cells, as discussed above. In the case of ESPResSo, this does not only
mean to change the pointers in the cells, but the particle data has to be physically
moved to another particle list. This creates obviously considerably more overhead
than just changing link pointers.

The advantages of this data organisation become clear in the context of modern
computers. Most modern processors have a clock frequency above 1GHz and are able
to execute nearly one instruction per clock tick. In contrast to this, the memory runs
at a clock speed around 200MHz. Modern double data rate (DDR) RAM transfers up
to 3.2GB/s at this clock speed (at each edge of the clock signal 8 bytes are transferred).
But in addition to the data transfer speed, DDR RAM has some latency for fetching
the data, which can be up to 50ns in the worst case. Memory is organised internally
in pages or rows of typically 8KB size. The full 2 × 200 MHz data rate can only be
achieved if the access is within the same memory page (page hit), otherwise some
latency has to be added (page miss). The actual latency depends on some other
aspects of the memory organisation which will not be discussed here, but the penalty
is at least 10ns, resulting in an effective memory transfer rate of only 800MB/s. To
remedy this, modern processors have a small amount of low latency memory directly
attached to the processor, the cache.

The processor cache is organised in different levels. The level 1 (L1) cache is built
directly into the processor core, has no latency and delivers the data immediately on
demand, but has only a small size of around 128KB. This is important since modern
processors can issue several simple operations such as additions simultaneously. The
L2 cache is larger, typically around 1MB, but is located outside the processor core
and delivers data at the processor clock rate or some fraction of it.

In a typical implementation of the link cell scheme the order of the particles is fairly
random, determined e. g. by the order in which the particles are set up or have been
communicated across the processor boundaries. The force loop therefore accesses the
particle array in arbitrary order, resulting in a lot of unfavourable page misses. In
the memory organisation of ESPResSo, the particles are accessed in a virtually linear
order. Because the force calculation goes through the cells in a linear fashion, all
accesses to a single cell occur close in time, for the force calculation of the cell itself
as well as for its neighbours. Using the domain decomposition cell scheme, two cell
layers have to be kept in the processor cache. For 10000 particles and a typical cell
grid size of 20, these two cell layers consume roughly 200 KBytes, which nearly fits
well into the L2 cache. Therefore every cell has to be read from the main memory
only once per force calculation.

Since ESPResSo does not feature a standard implementation of the link cell scheme,
the improvements due to our data organisation in comparison to the conventional
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structure can only be be estimated. PolyMD as well as LAMMPS run about 2–3 times
slower than ESPResSo for a simple Lennard–Jones liquid, but of course the completely
different implementations make it impossible to attribute the speed gain to any special
feature. However, the force loop and the integrator are much more optimised in the
other codes than in ESPResSo, which makes it unlikely that ESPResSo gains it speed
through these program parts.

The other programs choose a higher rate of particle resorts than ESPResSo, which
can be easily understood since ESPResSo trades speed at the force evaluation for speed
at the resorting. For the Lennard–Jones liquid a Verlet update occurs every 40 time
steps in ESPResSo with the optimal setting the skin depth, and every 20 time steps
in the other programs.

Another effect of this data organisation is a slightly better readable code. The stan-
dard link cell algorithm requires a lot of indirect accesses to the particles through the
cell pointers in the particle resorting procedures, which are not needed in ESPResSo.
On the other hand the transfer of a particle from one cell to another is not more
complicated than the update of a link address in the code, as this is handled by a
separate subroutine.

The other two cell systems, namely the N 2 cell system and the layered cell system,
are not as efficient as the domain decomposition and only have to be used with certain
potentials. The N 2 cell system will calculate the interactions for all particle pairs.
This is necessary e. g. for MMM1D, as will be described in chapter 6, or for the
calculation of the electrostatic interaction with no periodic boundary conditions, e. g.
in the cell model. Since all interactions have to be calculated anyway, a domain
decomposition is unnecessary. Instead of this, the particles are load balanced at the
beginning of the simulation, i. e. the particle number does not differ by more than one
from the average particle number on each node. Once this load balancing is achieved,
the particles are not resorted again. This method require only one particle list per
node on each node.

The layered cell system is very special and is a combination of the domain decom-
position and the N 2–method. The system is split up into cells or layers only along the
z–coordinate. Interactions are treated with all particles in the adjacent layers. This
cell system probably only makes sense in combination with the MMM2D method as
presented in chapter 3.

The concept of cell systems allow for quite different data organisations within
ESPResSo, as is needed for some state of the art algorithms. The way that ESPResSo
stores the particle data is to our knowledge unique to ESPResSo and highly efficient.
In addition the program code is somewhat easier to read instead of more complex. It
is easy to add new cell systems if a new algorithm requires a different particle organ-
isation. Therefore this data model fits optimally to our main goals: readable code,
state of the art algorithms and of course extensibility.

1.4 The velocity Verlet integrator and the Langevin

thermostat

ESPResSo features a velocity Verlet integrator, which is widely used for computer
simulations since it is easy to implement, but fast and most importantly does not show
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long–time energy drift. Besides the intrinsic NVE ensemble, the integrator can be used
for NVT simulations with a Langevin thermostat or a dissipative particle dynamics
(DPD) thermostat. For NPT simulations an isotropic box rescaling algorithm exists
with an appropriate isotropic thermostat. The integrator can handle particles that are
not rotationally invariant, which occur for example in liquid crystal models. Finally
systems under shear stress can be simulated using an NEMD integration scheme.

The velocity Verlet integrator

The simulations presented in this work all use the plain velocity Verlet integrator in
combination with a Langevin thermostat. Let r(t) denote the positions and v(t) the
velocities and a(t) the forces of the particles at time t. If all involved potentials are
sufficiently smooth, the velocities can be expanded into an Taylor series around t rsp.
t+ δt and we obtain v(t+ 1

2δt) as:

v(t+
1

2
δt) = v(t) +

1

2
a(t)δt+ ȧ(t+

1

2
δt)δt2 + O(δt3) rsp.

v(t+
1

2
δt) = v(t+ δt) − 1

2
a(t+ δt)δt + ȧ(t+

1

2
δt)δt2 + O(δt3) .

(1.1)

Subtraction of the equations gives

v(t+ δt) = v(t) +
1

2
(a(t) + a(t+ δt)) δt+ O(δt3)

= vt+δt + O(δt3) ,
(1.2)

where

vt+δt := vt+ 1

2
δt +

1

2
a(t+ δt)δt and

vt+ 1

2
δt := v(t) +

1

2
a(t)δt .

(1.3)

The introduction of the formal half step velocities vt+ 1

2
δt is very convenient for the

implementation of the algorithm, as we will see in a moment. The positions are
obtained similarly as

r(t+ δt) = r(t) + v(t)δt +
1

2
a(t)δt2 + O(δt3)

= rt+δt + O(δt3) ,
(1.4)

where
rt+δt = r(t) + vt+ 1

2
δtδt . (1.5)

The presentation above shows that the velocity Verlet algorithm has an numerical
error which scales like at least O(δt3). A slightly more involved derivation shows that
the error order in the positions is actually O(δt4). But since the usual implementation
of the Langevin thermostat results in a truncation error of order O(δt3) as will be
discussed below, there is no point in a higher accuracy of the integration scheme. The
velocity Verlet algorithm is time–reversible, i. e. inverting the sign of the momenta the
algorithm will trace back the positions of the particles up to numerical precision. More
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importantly, the algorithm is area preserving, i. e. it will leave the size of any volume
element in phase space unchanged [31]. Both time–reversibility and area preservation
are necessary for long time energy conservation, which is probably the most important
advantage of the velocity Verlet algorithm, especially in NVE simulations.

Using the formal half step velocities, the velocity Verlet algorithm can be imple-
mented such that at no time the position, velocity or force of particle is needed for
more than one simulation time step. In pseudo code the propagation from t = t0 to
t = t1 with a time step of δt looks like this

t = t0

calculate accelerations a

while t < t1

v = v + 1
2δta v = vt+ 1

2
δt

r = r + δtv r = rt+δt

calculate accelerations a

v = v + 1
2δta v = vt+δt

t = t+ δt

end

The Langevin thermostat

The integrator as presented is only capable of simulating a system in the microcanon-
ical or NVE ensemble. However, the simulations presented later in this work study
the behaviour of certain systems in the canonical or NVT ensemble, i. e. at constant
temperature. Therefore a thermostat is needed to drive the system into the canonical
state, e. g. by introducing artificial degrees of freedom or by coupling the system
to a heat bath via stochastic methods [31]. For the simulations a thermostat of the
second class was chosen, the Langevin thermostat [38]. Instead of solving Newton’s
equations of motion, one solves the Langevin equations

ai = −∇U((ri)i) + Γ/mivi + ξi(t)/mi (1.6)

where ri is the position of particle i, vi its velocity, ai its acceleration and mi its mass.
Γ is a friction coefficient, and the xi(t) are Gaussian random variables with

〈ξi(t)〉 = 0 and
〈

ξi(t) · ξj(t′)
〉

= 6kBTΓδijδ(t − t′) (1.7)

i. e. random variables which are uncorrelated both among the particles and in time.
The friction term can be interpreted as the dragging of a surrounding viscous medium
consisting of considerably smaller molecules, the random term as “kicks” exerted by
this medium onto the particles. It can be proven that the Gaussian random variables
can be replaced by uniformly distributed ones such as generated by a standard random
number generator having the same variance [25].

One tricky point in the combination of the Langevin thermostat with the velocity
Verlet integrator arises from the fact that the friction force is velocity dependent.
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However, when the forces for time t+ δt are computed, only the positions belong to
time t + δt, while the velocities still belong to t + δt/2. It can be shown that this
introduces an error of order O(δt) in the forces [17], so the combination of Langevin
thermostat and velocity Verlet algorithm has an order of O(δt3) in the positions and
of order O(δt2) in the velocities.

Another point is even more subtle. The Langevin thermostat evaluates the force
at each time step only once, although they are used twice, as a(t + δt) and then
again in the next time step as a(t). Particularly the random forces ξi of the Langevin
thermostat are equal for both evaluations. But if the forces are recalculated at the
beginning of the integration loop, the random forces will differ, since different random
numbers will be drawn. This can happen in ESPResSo because of a crucial change,
e. g. adding a single particle or modification of a constraint, since ESPResSo will
always recalculate the forces for all particles for the sake of simplicity.

The random contributions enter linearly into v(t) and therefore r(t), so that the
two random contributions simply add up. While for using two times the same random
value the variance is

〈

(2ξi)
2
〉

= 4
〈

ξ2i
〉

, (1.8)

calculating the random value twice results in the two values being independent and a
variance of

〈

(ξi + ξ′
i)

2
〉

=
〈

ξ2i
〉

+ 2
〈

ξiξ
′
i

〉

+
〈

ξ′
i
2
〉

= 2
〈

ξ2i
〉

. (1.9)

Therefore the average amplitude of the random forces is reduced by a factor of
√

2,
resulting in a lowered temperature. Of course the thermostat will correct for this,
however, this may take a few hundred time steps. Simulations, in which critical
changes occur at a higher rate, as may happen when bonds are broken and formed
anew, will therefore suffer a severe temperature loss.

In ESPResSo this problem is remedied by increasing the amplitude of the random
force used when entering the integration loop by a factor of

√
3, so that the total

amplitude of the random contribution is the same:

〈

(ξi +
√

3ξ′
i)

2
〉

=
〈

ξ2i
〉

+ 2
√

3
〈

ξiξ
′
i

〉

+ 3
〈

ξ′
i
2〉

= 4
〈

ξ2i
〉

. (1.10)

1.5 Short ranged interactions

ESPResSo features several short ranged interactions. In principal two different types
of short ranged interactions are possible: nonbonded and bonded interactions. The
nonbonded interactions are calculated for all pairs of particles within a certain dis-
tance, as described above. The parameters of the interaction depend only on the type
of both particles but not on the specific particles. Examples are the Lennard–Jones
potential, a Lennard-Jones potential with a cosine tail, the Gay–Berne potential and
tabulated potentials given by a freely definable, piecewise linear radial potential.

Bonded interactions occur only between particles for which they were explicitly
defined. One example of a bonded interaction is the finite extension nonlinear elastic
(FENE) bond, i. e. a simple spring that is normally used as bond in the bead–
spring model. Other bonded interactions implemented in ESPResSo are a bond with
a harmonic potential and again tabulated bonded potentials. Besides these pair bonds,
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Figure 1.3: The Lennard–Jones po-
tential ULJ(r). The solid black line
gives the purely repulsive Lennard–
Jones potential, while the dotted curve
shows the attractive tail of the plain
Lennard–Jones potential. The inter-
action energy is infinite at r = 0.5σ,
but already at r = 0.8σ it is as large
as 44ε.

in which only two particles occur, ESPResSo also has an angle potential, aiming to keep
the angle between three particles at a definable value. ESPResSo can handle bonded
interactions of arbitrarily many particles. The implementation of both nonbonded and
bonded interactions is well documented and only requires a few trivial additions in the
code, so that also more complicated potentials as they arise in atomistic simulations
could be implemented easily on demand.

The only short ranged potential that will be used in the simulations presented here
is the generalised Lennard–Jones potential, which is given by

ULJ(r) =



















∞ ∀r ≤ r0

4ε

(

(

σ
r−r0

)12
−
(

σ
r−r0

)6
− γshift

)

∀r0 < r < rc

0 ∀rc ≤ r ,

(1.11)

where γshift is chosen such that the potential is continuous in rc, i. e. γshift =
(

σ
rc−r0

)12
−
(

σ
rc−r0

)6
. r0 is called the hard core radius; two particles cannot get

closer than this, since the energy at this radius is infinite. r0 +σ is the soft Lennard–
Jones diameter, since here the interaction energy is ε, which in general is chosen to
be 1kT , i. e. equal to the average thermal energy of a particle. Therefore particles
interacting through this potential will not come much closer than r0 +σ in general. rc
is a cutoff to avoid the calculation of the potential at unnecessary large distance, since
it decays extremely fast. The potential has one and only one extremum, a minimum
at r = 6

√
2, i. e. the potential has an attractive tail, but is highly repulsive for smaller

r. If rc is finite, the force is only continuous if the potential is cut off in the minimum,
in which case the shift is γshift = −1/4ε and the potential is purely repulsive. This is a
common choice to model a hard core interaction in a molecular dynamics simulation,
and is also called the Weeks–Chandler-Anderson (WCA) potential [99]. Fig. 1.3 shows
a typical repulsive Lennard-Jones interaction as is used for the simulations presented
here.

In MD simulations, energies are often measured in multiples of the Lennard–Jones
energy at contact, ε. Lengths are measured in multiples of the Lennard–Jones radius
σ. Time finally is measured in multiples of the relaxation time of the Lennard–Jones
potential, τLJ = σ

√

m/ε. This unit system is known as Lennard–Jones units and is
also used for the simulations presented in chapter 7.
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1.6 Long ranged interactions — the electrostatic interaction

The research in the work group developing ESPResSo is focused on polyelectrolytes,
i. e. charged polymers. Therefore the calculation of the electrostatic interaction
plays an important role in ESPResSo. Despite its simple form the calculation of the
plain Coulomb potential is computationally very demanding and can consume up to
60% of the total computation time in a typical simulation. Unlike the short ranged
potentials described before, the plain Coulomb potential is long ranged, i. e. in general
the interaction cannot be cutoff within the simulation box without severe artifacts,
especially in dilute systems. Therefore the Coulomb interaction has to be taken into
account for all pairs of charged particles, resulting in an unfavourable O(N 2) force
loop. Although the potential itself is very simple and easy to compute, no more than
a few thousand charges can be treated efficiently this way. For the case of a system
without periodic boundary conditions this is the only way to calculate the electrostatic
interaction in ESPResSo.

With periodic boundary conditions the direct calculation of the electrostatic in-
teraction is impossible already with only a few particles, since many thousands of
periodic images need to be considered and deliver considerable contributions. For-
tunately, there exist complex, but efficient algorithms for the calculation of the elec-
trostatic interaction in arbitrary periodic boundary conditions. The most common
case is periodicity in all three spatial dimensions, which is used in simulations of bulk
systems like liquids. Consequently for this kind of periodicity a broad range of highly
efficient and well studied algorithms such as the particle–mesh Ewald methods exists.
In ESPResSo currently only P3M, a O(N logN) mesh–based Ewald method is imple-
mented. This method is well understood in terms both of computational accuracy
and efficiency, and fits optimally the systems that are researched using ESPResSo.
Chapter 2 presents an overview over a broad range of methods for the calculation of
the electrostatic interaction in fully periodic systems.

Periodicity in only two of the three spatial dimensions is appropriate for the sim-
ulation of interfaces such as membranes or thin films. These kinds of simulations
become more and more important with the growing interest in biological membranes.
Until recently, for this kind of periodicity only a few algorithms existed, with a com-
putational efficiency not remotely comparable to the methods available for three di-
mensional periodicity. This work presents two recently developed algorithms for two
dimensionally periodic boundary conditions which are comparable to the methods for
three dimensional periodicity, namely MMM2D and ELC. MMM2D uses a convergence
factor approach to achieve a computational scaling of O(N 5/3) and is suitable for small
numbers of particles below 1000 particles, while ELC is not a method itself, but rather
utilises parts of MMM2D to allow the use of any method for three dimensional pe-
riodicity. The computational order of the ELC correction term is O(N), so that it
does not destroy the scaling of the currently known methods for three dimensional
periodicity. Both algorithms are implemented in ESPResSo. They will be discussed
to some extent together with an overview over the other methods known in chapters
3 and 4.

For the case of periodicity in only one dimension only few even less efficient algo-
rithms exist. ESPResSo uses MMM1D for this kind of periodicity, a method which
is of computational order O(N 2), but fortunately with a small prefactor. Therefore
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MMM1D can still be used for up to 400 particles, which is sufficient for many ap-
plications. MMM1D and the possible alternatives will be discussed in chapter 6, an
application of MMM1D in chapter 7.

For nonperiodic boundary conditions, ESPResSo uses a trivial pairwise potential
summation, which is sufficient for up to 1000 particles due to its simple 1/r–form.
All the algorithms presented so far are methods to calculate the plain Coulomb sum.
But for example charges in a solute containing salt interact effectively through an ex-
ponentially screened Coulomb potential e−κr/r, the Debye–Hückel potential. κ is the
inverse screening length and is determined by the salt concentration. ESPResSo also
contains such a Debye–Hückel potential to allow simulations of such systems without
adding real salt particles. This speeds up simulations at high salt concentrations in
two ways: first of all the number of particles is considerably smaller since the salt
particles are omitted, and second the screened potential is short ranged, allowing for
a calculation by the standard link cell algorithm in a computation time of O(N).

This section only briefly listed the methods ESPResSo uses for the calculation of the
electrostatic interaction. The following chapters will be devoted solely to the presen-
tation of these and other algorithms and discuss their advantages and disadvantages,
and the last chapter will bring forward investigations on one of the puzzling effects of
the electrostatic interaction, that were performed by the MMM1D implementation in
ESPResSo.

1.7 Analysis

A computer simulation itself produces only configurations, i. e. particle positions,
velocities and forces. For most applications other analysis tools are needed. Some
of these are not only of interest after the simulation is done, but are also useful
for checking the consistency of a simulation during runtime. Therefore the analysis
tools are integrated into ESPResSo itself and can be called at any time outside or
during the integration. One example of such an online analysis is the printing of the
measured temperature in the example script in Sec. 1.1. In production simulations
writing out the energies can help to detect problems because of a too large time step,
for example. One can easily stop the simulation and restart it with more reasonable
values without having to wait for the simulation to finish. Except for very time
consuming analyses such as the calculation of structure factors, it has proven to be
advantageous to calculate most observables online, i. e. during the integration. In
ESPResSo this can be done easily, and preliminary results are available long before
the simulation actually terminates.

The list of analysis tools is quite long and rapidly growing. Currently ESPResSo
can calculate the energy and pressure in detail, or the radial distribution function
for arbitrary particle types. For linear molecules ESPResSo can measure the average
end–to–end distance rE, the radius of gyration rG, the hydrodynamic radius rH , the
average bond length, the internal distance distribution and the mean square displace-
ments g1 of the particles, g2 of the particles within their chains and g3 of the canter
of mass. For comparison with scattering experiments ESPResSo is able to calculate
structure factors. One of the most recent analysis tools in ESPResSo is a fluctuation
mode analysis for membrane systems [75].
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Analysis tools in ESPResSo are implemented in two different ways: The energy
and isotropic pressure calculations are parallelised and handled similarly to the force
calculation. All other implementations are not parallelised. Therefore all particle
data is first transferred to the master node and then analysed there, allowing for
simpler analysis procedures. Since an analysis typically takes place every 1000 time
steps or less frequent, the time penalty for this strategy is almost negligible. But the
formulation of many of these analyses is much easier on a single data structure, and
often the analysis cannot be parallelised efficiently at all.

For the present work only one of the analysis tools was used, the energy calculation,
which allows for kind of a quality control. All other presented observables such as
radial or azimuthal particle distributions were written directly in Tcl, since they have
to take into account the unusual cylindrical geometry of the simulation space. For
small numbers of particles, Tcl is efficient enough to perform the analysis in reasonable
time, and the analysis can be implemented much easier than plugging it directly into
the simulation core.

1.8 Other features

In a simulation nonperiodic dimensions need a constraint, otherwise particles might
diffuse away. Constraints in ESPResSo can have arbitrary shape, for example walls,
cylinders, or spheres. They have a particle type and interact with the particles through
a Lennard–Jones interaction which parameters depend on the particle’s type and
the constraint’s type. This allows for different particles to react differently to the
constraint. Writing these constraints is easy, allowing for more exotic constraints like
a maze (a system of hollow spheres connected by cylinders).

A plane parallel to the periodic coordinates in a system where the electrostatic
interaction is treated via MMM2D can be charged in ESPResSo. Similarly, a rod
parallel to the periodic coordinate in a one dimensionally periodic system can be
charged, too. Besides the constraints, ESPResSo also allows to directly apply arbitrary
external forces to particles, or fix them in some of the spatial coordinates, for example
to graft a polymer on a surface. For the simulations presented here only the (charged)
cylinder constraint is used.

The integration process can be visualised in real time using the IMD interface, which
is used by VMD [45]. VMD is a visualisation tool developed for proteins, but also other
molecules including bead–spring models can be displayed. ESPResSo in this case acts
as an IMD server. If VMD connects to the simulation, the current positions of the
particles are sent to VMD any time the Tcl commando imd positions is executed.
This handy feature allows to start a simulation and occasionally check visually if
everything is going well.

The features of ESPResSo used in the integrator, the cell systems, potentials and
constraints, as well as IMD or the analysis are all implemented in C. But some parts
of ESPResSo itself are written in Tcl, e. g. most parts of the file I/O, i. e. of the
blockfile command. This enables the use of the powerful string parsing commands of
Tcl and results in highly flexible but still readable functions for the file I/O. Moreover
one can easily add parsers for additional block types, such as the “energy” block in
the example script, even in the simulation script. Other Tcl helper functions allow
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the automated writing of checkpoint blockfiles or the creation of pdb files, a format
commonly used by programs for the visualisation of molecules such as VMD or rasmol.
A small set of mathematical functions allows basic vector calculations and statistical
operations such as calculation of averages and standard deviations or linear regression.
Other routines automatically create polymer systems such as networks.

The extensibility of ESPResSo allows for a large community of programmers to add
new features. To ensure the compatability of recent changes with the rest of the code,
ESPResSo has a test suite which contains example scripts for each of the features
of ESPResSo. These example scripts assure that ESPResSo is still able to reproduce
a result that is assumed to be correct up to numerical errors. Each the scripts is
executed on 1-8 nodes, so that the test suite allows to test the full functionality of
ESPResSo on a single as well as on many processors.

For an early status report on ESPResSo, see Ref. [8], while a publication describing
ESPResSo and its features is currently in progress [9].
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2 Calculating the Coulomb interaction

under periodic boundary conditions

This chapter presents methods to calculate the electrostatic interaction under periodic
boundary conditions. Three aspects of such an algorithm are of special importance,
namely the existence of error estimates, the computational scaling, and parallelisation
strategies. From time to time methods are put forward for which no error estimates
exist and probably cannot be derived at all. Such methods can introduce any kind of
errors in a simulation, making the results of the simulation unreliable at best. More-
over, additional accuracy of an algorithm usually causes additional computational ef-
fort; error estimates allow to keep the computational effort as small as possible, while
still producing reliable results. Therefore methods, for which no error estimates are
known nor will never be found to all likeliness, are ignored in the following. Knowing
the scaling of the computation time as well as the possibility of parallelisation helps
with the choice of the algorithm to be used in a simulation. Most of the techniques
described here are highly involved and their implementation might take several weeks
of manpower, and one is probably not willing to implement a whole set of different
methods and then choose only one of them. An overview of the available methods
for the calculation of the electrostatic interaction is therefore useful in finding the
optimal algorithm for a specific simulation problem.

The methods for the calculation of the electrostatics can be divided into different
classes of algorithms, which each have their advantages and disadvantages. The classes
are

The Ewald method The Ewald method dates back to the early 1920’s and was first
used for the calculation of the electrostatic energy of crystals. The idea of this
method is to split the Coulomb potential into two parts, one short ranged, but
singular, and a long ranged, but smooth part. The latter part can be treated
efficiently in Fourier space. By far the most computer simulations nowadays still
use the classical Ewald method for the calculation of the electrostatic interaction.
The method can be implemented such that the computational complexity scales
as O(N3/2). The Ewald method is the method of choice for systems with low
accuracy requirements and less than 500 particles. Because of the Fourier space
calculations the standard Ewald method cannot be trivially extended to other
boundary conditions; one has to go through the full derivation of the method
again, and the scaling may be worse, see chapters 3 and 6. One disadvantage of
all Ewald type methods is that an artificial splitting parameter α is introduced,
on which the computational accuracy depends crucially, and therefore has to
be chosen very carefully. Moreover increasing the accuracy is computationally
expensive.

Mesh–based Ewald methods A better scaling than the plain Ewald method can be
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2 Calculating the Coulomb interaction under periodic boundary conditions

obtained if the Fourier space part is calculated using fast Fourier transforms.
To this aim the charges have to be interpolated onto a mesh. There are different
ways to do this, and consequently different methods can be obtained, namely the
particle–particle particle–mesh method (P3M), the particle–mesh Ewald (PME)
and the smooth PME (SPME). They all scale like O(N logN) and are faster
than the plain Ewald method for more than about 1000 particles, but the other
drawbacks of the Ewald methods, namely the crucial parameter α and the bad
scaling with the error estimate, also apply to the mesh–based Ewald methods.
Nevertheless for low accuracy requirements and 1000 to 106 particles, a mesh–
based Ewald method is optimally suited.

Multipole methods These methods are based on a multipole expansion of the elec-
trostatic interaction, allowing for a product decomposition. Since the multipole
expansion is calculated in real space, the periodicity only enters through the
coefficients in the expansion. Therefore multipole methods are not restricted
to a special kind of periodicity as are other kinds of methods. Depending on
the implementation the computational order of these methods is O(N logN)
(Barnes–Hut tree codes) or O(N) (fast multipole method, FMM). Increasing
the error bounds is not expensive, but these methods suffer from large prefac-
tors and are only competitive for particle numbers above 106.

Lekner method These methods are based on a screening approach, i. e. the elec-
trostatic interaction is calculated analytically for an exponentially screened
Coulomb interaction, then the limit of infinite screening length is considered.
This approach leads to results which differ from the results of the Ewald meth-
ods or the FMM by some multiple of the square of the dipole moment. Again
the situation is different for partially periodic systems, as we will see in the fol-
lowing chapters. The Lekner method has a computational scaling of O(N 2) and
is therefore suitable only for small numbers of particles. One advantage is that
the computational error is proportional to the logarithm of the error bound. For
small numbers of particles and high accuracy goals the Lekner method may be
optimal.

MMM Sperb and Strebel modified the Lekner sum such that in three dimensional
periodic boundary conditions a scaling of O(N logN) can be achieved, with a
prefactor similar to the mesh–based Ewald methods. This method was termed
MMM. MMM maintains the favourable scaling with the logarithm of the error
bound. For high accuracy goals and 1000 to 106 particles, MMM is the optimal
method.

Two other algorithms, that are still under development and therefore are not men-
tioned in the list above, are the local algorithm for Coulomb interactions by T.
Maggs [61] and the finite difference scheme method of I. Tsukerman [96]. The Maggs
method is based on the introduction of a propagating field E, which is nothing but
a discretised version of the electric field. For this field the propagation rules are only
local, so that the computation time scales with the number of grid points and should
therefore be linear with the number of particles. The method has two advantages: it
allows for a locally changing dielectric constant, which is impossible to achieve with
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the other approaches presented here, and it integrates nicely into other lattice meth-
ods such as lattice–Boltzmann. Because of the complex physical background of the
method so far no error estimates exist. Currently, the Maggs method is implemented
into ESPResSo.

The approach of Igor Tsukerman is based on solving the Poisson equation for the
simulation box on a grid. To this aim, the singular parts close to the point charges
are taken out and solved analytically, while the rest of the potential is solved by using
a finite difference scheme on the grid. Finite difference schemes are local methods,
making this approach computationally efficient. Errors arise only from the interpola-
tion of the potential on a grid and from the finite difference scheme, for which error
estimates exist. Like the Maggs method, this method takes advantage of the fact that
in a MD simulation a good approximation of the current electrostatic potential is
given simply by the potential of the last time step. Finite difference schemes solve the
differential equation iteratively, so having a good starting point reduces the compu-
tation time considerably. The method of Tsukerman has not yet been implemented,
but it is planned to include it into ESPResSo.

This chapter and the two following try to give an overview over the most widely
used methods for both fully and partially periodic boundary conditions. Besides
the algorithmic and mathematical details of these methods, also some mathematical
aspects of the calculation of the electrostatic interaction are discussed. The Coulomb
sum is mathematically more complex than its simple formulation suggests. The main
reason for this is that the Coulomb sum is only conditionally convergent so that the
order of summation is important. This restricts the mathematical arsenal drastically
since many mathematical devices require absolute convergence, and is the source of
many other unusual properties of the electrostatic interaction in periodic boundary
conditions, for example the electrostatic interaction depends on the dielectric constant
surrounding the infinite (!) periodic system.

This chapter gives an overview over the methods that can be used in three dimen-
sionally periodic boundary conditions. The first section of this chapter deals with
the general prerequisites and the strict mathematical definition of the problem. The
second section will shortly recall the details of some of the Ewald type methods,
especially of P3M, which is used in ESPResSo. The next sections treat multipole
methods and the Lekner type methods. The final section is devoted to MMM, which
is the foundation of the methods ESPResSo uses for partially periodic systems and
are presented in the following two chapters.

2.1 General prerequisites

We consider a system of N particles with charges qi ∈ R and pairwise different
coordinates pi = (xi, yi, zi)

T ∈ B0, i = 1, . . . , N , where

B0 =

(

−λx
2
,
λx
2

]

×
(

−λy
2
,
λy
2

]

×
(

−λz
2
,
λz
2

]

(2.1)

is the primary simulation box. Furthermore it is assumed that the system is charge
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Figure 2.1: Schematic represen-
tation of the periodically repli-
cated system. The black box is
the primary box, the grey boxes
are the images. The arrows de-
note the interactions that have
to be taken into account in the
lower three boxes. The interaction
shown with a solid line is taken
into account with weight 1, the
dashed lines have weight 1/2. For
the upper three boxes no other in-
teractions occur.

neutral, i. e.
N
∑

i=1

qi = 0 . (2.2)

Now we replicate this system regularly along all spatial dimensions, as shown in
Fig. (2.1) for a two dimensional system. Since we treat the primary box as our
“probe”, one has to take care that only the energies associated with the particles
inside the primary box are considered. The energy of the primary simulation box
divided by its volume then gives the average energy density of the full infinite system,
which is what one is interested in.

The interactions of two particles in the primary simulation box are taken into
account with a weight of 1. Interactions between a particle of the primary simulation
box and a particle in a periodically replicated box are taken into account with a weight
of 1/2, as only the particle of the primary simulation box belongs to the probe region.
The interactions between particles in two periodically replicated boxes are ignored.

We introduce some notations that will be used frequently in the following. The real
space lattice vectors are

nklm := (kλx, lλy,mλz)
T ,nkl := nkl0 and nk := nk0 (2.3)

for k, l,m ∈ Z. The inverse box dimensions are

ux =
1

λx
, uy =

1

λy
, and uz =

1

λz
. (2.4)

The relative particle positions are

pij = (xij , yij , zij) = pi − pj . (2.5)

For r = (x, y, z) the distances from the origin to the (k, l,m)–th periodic image are

rklm = |r + nklm| =
√

(x+ kλx)2 + (y + lλy)2 + (z +mλz)2 ,

rkl = rkl0 , rk = rk0 and r = r0 ,
(2.6)
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and the yz–plane distances are

ρlm =
√

(y + lλy)2 + (z +mλz)2 , ρl = ρl0 , and ρ = ρ0 . (2.7)

Using these notations, the electrostatic problem in periodic boundary conditions is
given by

E =
1

2

∑

(k,l,m∈Z3

∑′

i,j

qiqj
|pij + nklm| .

The prime at the inner sum denotes that the summand for i = j has to be omitted
for (k, l,m) = 0. Although this formula looks fine, it is not a strict mathematically
definition. The reason is that the sum is only conditionally convergent, so the order
of summation has to be defined. Usually a spherical limit is applied, i. e.

E =
1

2

∞
∑

S=0

∑

k2+l2+m2=S

∑′

i,j

qiqj
|pij + nklm| . (2.8)

In chapter 4 we will have to deal with a different order of summation. If one adds
up the particles along z slabwise, i. e. ordered by increasing z–distance, but radially
in x and y, Smith has shown [88] that

−1

2

∞
∑

µ=0

∑

m=±µ

∞
∑

S=0

∑

k2+l2=S

N
∑′

i,j=1

qiqj
|pi − pj + nklm| = E + 2πM 2

z − 2πM2

3
. (2.9)

where

M = (Mx,My,Mz) =

N
∑

i=1

qipi (2.10)

is the net dipole moment of the primary simulation box. We will see below that the
Ewald–sum contains a summand 2πM 2/3, which is just exchanged by 2πM 2

z by this
change of order.

The term 2πM 2/3 is called the dipole term. Besides determining the order of
summation, it has another interesting property. The spherical summation order is
equivalent to the limit of a large, spherically bounded regular grid of images of the
simulation box embedded in vacuum, basically a crystalline ball (although for many
particles the “crystal” may be quite complex). If the surrounding space is filled by a
homogenous medium with a dielectric constant ε′, the particles of the ball will feel a
polarisation force. It can be shown that this leads to an additional contribution that
will not vanish even in the limit of an infinite ball, even though then the complete
space is filled by copies of the simulation box. The additional contribution for the
infinite ball is again given by a modification of only the dipole term, which then reads

2πM2

2ε′ + 1
. (2.11)

This again shows that even in the limit of a fully filled space the Coulomb sum
“remembers” the way the summation was done, which is of course only possible due
to its conditional convergence.
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2.2 The Ewald method

Ewald developed this method in the early 1920’s to analytically calculate the energy
contained in simple salt crystals [29]. The basic idea in deriving the Ewald sum is to
split the potential into a short ranged part and a long ranged part by using

1

r
=

erf(αr)

r
+

erfc(αr)

r
, (2.12)

where

erf(x) =
2√
π

x
∫

0

e−t
2

dt

is the error function and
erfc(x) = 1 − erf(x)

its complement. α is the Ewald splitting parameter and can be chosen arbitrarily.
The complementary error function drops exponentially with increasing x, so that by
choosing α properly the contribution of the second summand is negligible even for
distances much smaller than the box length. The first, long ranged part on the other
hand still has to be evaluated over long distances, but is now smooth everywhere,
especially at 0, so that it is accessible to a broader range of transformations. The
Ewald formula is obtained by performing a three dimensional Fourier transform on
the long ranged part. Because the long ranged part of the potential sum is smooth
everywhere, the Fourier sum is very well convergent and allows for a small cutoff. The
final result is given by

E =
1

2

∑

i,j

∑′

k,l,m∈Z3

qiqj
erfc(α|r + nklm|)

|r + nklm| +

1

2πλxλyλz

∑

(p,q,r)∈Z3

∑

i,j

qiqj
4π2

k2
pqr

e−
k2pqr

4α2 cos(kpqrpij)−

α√
π

N
∑

i=1

q2i +
2πM2

3

(2.13)

where kpqr = (uxp, uyq, uzr).
The first sum is called the real space sum and accounts for the short ranged part

of the split Coulomb potential. The second sum is called the Fourier space sum as
it accounts for the long ranged part in the Fourier space, and the third summand is
called the self energy, which accounts for the contribution of the long range part for
i = j in the primary simulation box. This contribution is artificially added to allow
the application of the Fourier transform and therefore has to be subtracted again.
The last term of Eqn. (2.13) is the dipole term as discussed in the previous section.
Note that the right hand side does not dependent on α, since the left hand side is
independent of α.

The Ewald summation formula has two computational advantages. First of all,
the involved sums are all well convergent and can therefore be cut off to obtain an
affordable computational effort. Second, the far formula can be evaluated in linear
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time with respect to N by means of a product decomposition, as can be seen from
the addition theorem for the cosine, which leads to

1

2πλxλyλz

∑

(p,q,r)∈Z3

∑

i,j

qiqj
4π2

k2
pqr

e−
k2pqr
4α cos(kpqrpij) =

1

2πλxλyλz

∑

(p,q,r)∈Z3

4π2

k2
pqr

e−
k2pqr
4α

(

(

∑

i

qicos(kpqrpi)

)(

∑

j

qjcos(kpqrpj)

)

+

(

∑

i

qisin(kpqrpi)

)(

∑

j

qjsin(kpqrpj)

)

)

.

(2.14)

One only has to calculate the sums over the cosines rsp. sines for each (p, q, r)–
vector, which can be clearly done in linear time. The advantage of such a product
decomposition is not only the foundation for the improved computational scaling of
the Ewald sum, but also for many other methods like the multipole methods and the
MMM algorithm.

Still, the evaluation of the near formula needs an N 2–loop. Now the unspecified
parameter α comes into play. It can be shown [48], that the RMS (root mean square)
force error of the near formula will be constant if the cutoff radius is chosen pro-
portional to 1/α, while the Fourier space cutoff has to be chosen proportional to α.
This leads to an computational effort of O(N 2/α3) + O(Nα3), which is minimal for
α ∼ N1/6, in which case the overall scaling is O(N 3/2). α has to grow with increasing
N , as this basically puts more and more effort from the real space into the computa-
tionally favourable Fourier space. Therefore one can safely retreat to the assumption
that the cutoff of the near formula is smaller than the box lengths, such that each
particle interacts with no more than one copy of each other particle, i. e. a minimum
image convention can be applied. In practical applications the cutoff will be even
smaller, such that for an efficient implementation tricks like the link cell algorithm
can be used.

Although the parameter α is crucial for the tuning of the Ewald summation, it
also has a severe drawback: If α is not chosen properly with respect to the other
parameters, the computational accuracy may drop considerably. Moreover the com-
putational effort to calculate the Ewald sum grows rapidly with increasing accuracy
requirements. Therefore accurate error estimates are required, which were given by
Kolafa and Perram in 1992 [48], and can be used to tune α and the real and Fourier
space cutoffs.

2.3 A mesh–based Ewald method — P3M

To speed up the Ewald summation even further, one can improve the computation
speed of the far formula by using a fast Fourier transform. This requires the charges to
be located on a regular grid, which is obviously not the case in general. Therefore the
charges are replaced by a charge distribution on a regular grid. For this interpolation
of the discrete charges onto this grid several possibilities exist like splines or Lagrange
interpolation. The forces are obtained from the energy by differentiation, which can
be done either in real space or in the Fourier space. These choices lead to several FFT
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based extensions of the Ewald summation, although not all combinations are possible
due to mathematical restrictions.

The particle mesh Ewald method (PME) uses a Lagrange interpolation scheme
combined with an Fourier space differentiation [15]. The smooth particle mesh Ewald
method (PME) uses cardinal B–splines and an analytical differentiation in real space
[28]. The P3M method of Hockney and Eastwood [43] is the oldest one and uses
cardinal B–splines and a Fourier space numerical real space differentiation on the
neighbouring grid points. In [19] one can find a detailed discussion of the different
methods and the involved subtleties. It turns out that the oldest method, P3M, is
actually the best one to use. ESPResSo uses the P3M method, but instead of the
numerical real space differentiation, a Fourier space differentiation is used.

To understand the basic principles of all the mesh–based Ewald methods, we define
g̃(k) = 4π/k2, which is nothing but the Fourier transformed Green’s function of the
Coulomb potential, γ̃(k) = e−k2/(4α2), and ρ̃(k) as the Fourier transformed charge
distribution ρ. Then the Fourier space energy can be rewritten as

EFourier =
1

2λxλyλz

∑

j

qj
∑

k 6=0

g̃(k)γ̃(k)ρ̃(k)eikrj .

I. e. the energy can be obtained by Fourier transforming the charge distribution,
multiplication with the function G = g̃(k)γ̃(k) and transforming back. In other words,
the energy is actually the Coulomb energy of ρ convoluted with γ(k). Since γ is a
Gaussian, ρ is basically smeared out. As said before, the evaluation of the formula can
be accelerated considerably by the use of fast Fourier transforms for charges located
on a regular grid. All grid methods more or less adhere to this scheme, although G is
chosen differently. The reason for this is that by shifting onto a grid the continuum
Green’s function is no longer optimal with respect to the obtained force error due
to the interpolation [19]. Hockney and Eastwood calculated the optimal influence
function G and give its Fourier transform as

G̃(k) =
D̃(k)

∑

m∈Z3 Ũ2(k + 2π
h m)R̃(k + 2π

h m)

|D̃(k)|2
(

∑

m∈Z3 Ũ2(k + 2π
h m)

)2 ,

where D̃(k) denotes the differentiation operator used, e. g. −ik in the case of
ESPResSo, Ũ = W̃ (k)/Vm are the Fourier transformed interpolation coefficients di-
vided by the mesh cell size, and R̃(k) = −ikg̃(k)γ̃(k) is the Fourier transform of the
exact force.

In pseudo code, the force evaluation looks as follows, assuming that G̃(k) and D̃(k)
have been calculated once before the integration starts:

interpolate charges onto the grid

Fourier transform ρ

multiply by G̃(k)

for each coordinate d

multiply by D̃d(k)

Fourier transform back to obtain Fd
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2.4 The fast multipole method

Hence for the forces a total of four Fourier transformations are needed. Using the
isometry of the Fourier transform, the energy calculation can be performed with only
the Fourier transformation of the charge distribution.

Although the mesh–based Ewald methods are mathematically much more involved
compared to the classical Ewald sum, and new sources of errors arise from the inter-
polation of the charges, rigorous error bounds for all methods exist [78,43,48]. These
error estimates are computationally unwieldy, but the error depends as crucial on
α as for the plain Ewald method, therefore using these error estimates to tune the
parameters is mandatory. Quite some effort has been put into the efficient evaluation
of the error measures [20]. The dependency of the computation time on the required
accuracy is even worse compared to the Ewald method, and increasing the accuracy
above a relative RMS force error of about 10−5 is impossible within reasonable com-
putational effort.

2.4 The fast multipole method

The key to the improved scaling of the Ewald method is a product decomposition of
the Fourier space sum. The multipole methods are based on a product decomposition
in real space. Let x = (r, θ, φ) and y = (r ′, θ′, φ′) be the spherical coordinates of two
points, r′ < r. Let γ = ∠(x, y) be the angle between the origin and x and y. Then
|x − y| = r2 + r′2 − 2rr′ cos γ and cos γ = cos θ cos θ′ + sin θ sin θ′ cos(φ − φ′). The
multipole expansion of 1/|x− y| is then given by

1

|x− y| =
∞
∑

n=0

r′n

rn+1
Pn(cos γ) , (2.15)

where the Pn are the Legendre polynomials. This is not yet a product decomposition
since γ is a mix of coordinates of both points. We separate them using the addition
theorem for the Legendre polynomials

Pn(cos γ) =
n
∑

m=−n
Y −m
n (θ′, φ′)Y m

n (θ, φ) ,

where Y m
n are the surface harmonics of the first kind, see [1]. The final product

decomposition is given by

1

|x− y| =
∑

n,m

(

Y −m
n (θ′, φ′)r′n

)(

Y m
n (θ, φ)

rn+1

)

, (2.16)

Because of the requirement r′ < r, we cannot use a single origin for all interactions,
and also the interactions of particles close together have to be calculated directly
because of the bad convergence of the multipole expansion. This problem is similar
to the problem of the short ranged forces, where only the interactions with close by
cells have to be treated. In the case of the multipole method, we treat all cells not
adjacent using the multipole expansions, while the adjacent cells are treated using the
standard pairwise Coulomb sum. But to gain anything from the multipole expansion,
we have to be able to combine the multipole expansion from the remote cells to a
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2 Calculating the Coulomb interaction under periodic boundary conditions

multipole expansions of larger clusters. This requires a procedure to shift the origin
of a multipole expansion, which can be achieved by simple linear recombinations of
the coefficients (Y −m

n (θ′, φ′)r′n) and is called a translation operation. During the
expansion process, it is advantageous to be able to exchange the roles of the particles
during a shift, i. e. translate the origin of the expansion from the vicinity of one
of the particles to the other, which is similarly possible. This procedure is called a
conversion operation.

Now let us assume that the number of cells per simulation box side is a power of
two, S = 2L, where L is termed the number of levels. Always 8 of the cells of the
lowest level are combined to form a division of the simulation box into 2L−1 larger cells
per side, and so on. We can combine the multipole expansions of eight neighbouring
of level L cells through translations into one multipole expansions for the cell of level
L − 1 formed by the eight original cells. This procedure can be continued again to
obtain multipole expansions for all cells on each level. Once we have arrived at the
bottom level L = 1 we convert the expansion to local expansions in all three other
top level cells and distribute them up to the higher levels again until for all cells the
multipole expansion of the full system is available. The multipole expansion for the
top level are used to calculate the electrostatic interaction. Graphically this looks like
this:

The dotted lines represent the calculation of the multipole expansion and the cal-
culation of the energy rsp. the forces, the solid lines translations and conversions.
Here only the data flow from one cell to another is shown, in a real simulation this
flow occurs for all pairs of cells, and of course the number of cells is much larger. In
pseudo code the energy rsp. force calculation looks like this:
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2.5 The Lekner sum

for each particle i

add contribution of particle p to the

local multipole expansion of its cell

end

for each l = L . . . 2

for each cell c of level l

add multipole expansion to expansion of the

level l − 1 supercell, translated to its center

end

for each cell c of level 1

for each cell c′ of level 1

add converted contribution of cell c to the

local expansion for cell c′

for each l = 2 . . . L

for each cell c of level l

calculate local multipole expansion from the

translated expansions of same level neighbors

and of the level l − 1 supercell

end

The algorithm as presented here is called the fast multipole method [57,56,36]. The
number of terms needed in the multipole expansion only depends on the precession
requirement and the number of particles in a cell. At constant density and constant
number of particles per cell the number of operations therefore only depends on the
loops shown above, which are all either of order N or S3(1+1/8+1/64+ . . .) = O(N),
such that the overall computational order is O(N). One drawback of the method is
that all the intermediate multipole expansions have to be stored, since they are needed
in the last loop. This can use a considerable amount of memory, since the number of
terms in the multipole expansion can be large.

Tree codes or Barnes–Hut methods [11] work similar with respect to the generation
of the multipole expansions, but use a different algorithm for spreading them to the
other cells. This algorithm is not strictly hierarchically and therefore reduces the
computational order to O(N logN), but considerably less memory is consumed. The
algorithms presented so far are only suitable for the nonperiodic case, but modifica-
tions for arbitrary periodic boundary conditions exist in terms of modified coefficients
of the multipole expansion.

2.5 The Lekner sum

Both the fast multipole methods and the Ewald type of methods adhere to the spheri-
cal summation order for the electrostatic interaction. In contrast to this, Lekner came
up with a different formula [55], which is based on transforming the force sum along
only one coordinate into a rapidly converging sum. Naturally, the summation order
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2 Calculating the Coulomb interaction under periodic boundary conditions

is rodwise, along the transformed coordinate first. This alone is no problem, since the
difference to the spherical limit is given by a multipole of the dipole moment, very
similar to the slabwise summation [87]. Also the change to forces instead of energy is
problematical, since it is equivalent to changing the order of differentiation and sum-
mation in the only conditionally convergent Coulomb sum. Nevertheless the Lekner
summation has been used frequently in recent computer simulations [60,65,90], mainly
because of its extremely good convergence, which makes it very favourable for small
numbers of particles.

We treat the summation along the z axis as a function of z and expand this function
in a Fourier series. This results in the force formula

F̃i = 8π
∑

j 6=i
qiqj

∑

l,m∈Z

∑

p≥1

pK0 (2πuxpρlm) cos(2πuxpx) , (2.17)

The tilde on the forces denotes that this force is different from the forces obtained
by using the spherical summation limit. The representation is nevertheless well con-
vergent, at least if all charges qj are well separated in y and z from qi, i. e. if ρlm
is large enough for all l,m. By spatial symmetry we can choose the coordinate of
closest approach as the x–coordinate. For particles close together in all coordinates
one has to employ a different method to calculate the electrostatic interaction, see for
example Sperb [90], who suggests the following formula

F̃i = 8π
∑

j 6=i
qiqj

∑

l,m∈Z

(

z
(

ρ2
lm + z2

)
3

2

−

∞
∑

k=0

(−3
2

k

)

r2k
(

ψ2k+p(1 + z) − ψ2k+p(1 − z)
)

)

.

(2.18)

This version in contrast only converges for small ρlm, but again very fast. Like we can
choose the Fourier transformed coordinate freely in Eqn. (2.17), we also can choose
between inner sum of Eqn. (2.17) and the alternative form of Eqn. (2.18), depending on
the distance of the particles. Therefore for all values of ρlm a well convergent formula
exists. For particles sufficiently far away, Eqn. (2.17) is used, while for particles too
close together Eqn. (2.18) is used. Consequently the formulas are called far rsp. near
formula in the following. This concept is also used in the MMM, MMM2D, MMM1D
and the ELC methods presented in the following.

For the Lekner method upper error bounds can be given easily since the Bessel func-
tions drop essentially exponentially fast, allowing for a simple approximation of the
sum by an integral. This error estimates are much less sharp than the error estimates
for the Ewald type methods, but here the error bound only enters logarithmically into
the computation time, so that excessive accuracy has only small impact on the overall
performance.

2.6 MMM

Yet another approach to tackle the conditionally convergent Coulomb sum is used for
MMM1. Instead of defining the summation order, one can also multiply each summand

1Even the authors of the method have no idea what this acronym stands for.
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2.6 MMM

by a continuous factor c(β, rij , nklm) such that the sum is absolutely convergent for
β > 0, but c(0, ., .) = 1. The energy is then defined as the limit β → 0 of the sum, i. e.
β is an artificial convergence parameter. For a convergence factor of e−βn2

klm the limit
is the same as the spherical limit, and one can derive the classical Ewald method quite
conveniently through this approach [87]. To derive the formulas for MMM, one has to
use a different convergence factor, namely e−β|rij+nklm|, which defines the alternative
energy

Ẽ =
1

2
lim
β→0

∑

k,l,m∈Z

N
∑′

i,j=1

qiqje
−β|pij+nklm|

|pij + nklm| =:
1

2
lim
β→0

N
∑

i,j=1

qiqjφβ(xij , yij, zij) . (2.19)

φβ is given by

φβ(x, y, z) = φ̃β(x, y, z) +

{

e−βr

r (x, y, z) 6= (0, 0, 0)

0 (x, y, z) = (0, 0, 0)
(2.20)

where

φ̃β(x, y, z) =
∑

(k,l,m)6=0

e−βrklm

rklm
. (2.21)

The limit Ẽ exists, but again differs by some multiple of the square of the dipole
moment from the spherical limit as obtained by the Ewald summation [87]. From the
physical point of view the Coulomb interaction is replaced by a screened Coulomb
interaction with screening length 1/β. Ẽ is then the energy in the limit of infinite
screening length. But because of the conditional convergence of the electrostatic sum,
this is not necessarily the same as the energy of an unscreened system. Since the
difference to the Ewald methods only depends on the dipole moment of the system,
the correction can be calculated easily in linear time and can be ignored with respect
to accuracy as well as to computation time.

Starting from this convergence factor approach, R. Strebel and R. Sperb constructed
a method of computational order O(N logN), MMM [92]. The favourable scaling is
obtained, very much like in the Ewald case, by technical tricks in the calculation of
the far formula. The far formula has a product decomposition and can be evaluated
hierarchically similarly to the fast multipole methods.

For particles sufficiently separated in the z–axis one can Fourier transform the
potential along both x and y. We obtain the far formula as

φ(x, y, z) =uxuy
∑

p,q 6=0

e2πfpqz + e2πfpq(λz−z)

fpq
(

e2πfpqλz − 1
) e2πiuyqye2πiuxpx+

2πuxuy

(

uzz
2 − z +

λz
6

)

,

(2.22)

where

fpq =
√

(uxp)2 + (uyq)2 , fp = uxp , fq = uxq ,

ωp = 2πuxp and ωq = 2πuyq .
(2.23)
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2 Calculating the Coulomb interaction under periodic boundary conditions

The advantage of this formula is that it allows for a product decomposition into
components of the particles. For example

e2πfpqz = e2πfpq(zi−zj) = e2πfpqzie−2πfpqzj

etc. Therefore one just has to calculate the sum over all these exponentials on the left
side and on the right side and multiply them together, which can be done in O(N)
computation time. As can be seen easily, the convergence of the series is excellent as
long as z is sufficiently large. By symmetry one can choose the coordinate with the
largest distance as z to optimise the convergence. Similar to the Lekner sum, we need
a different formula if all coordinates are small, i. e. for particles close to each other.
For sufficiently small uyρ and uxx we obtain the near formula as

φ̃(x, y, z) = 2uxuy
∑

p,q>0

cosh(2πfpqz)

fpq
(

e2πfpqλz − 1
)e2πiuyqye2πiuxpx+

4ux
∑

l,p>0

(K0(2πuxpρl) + K0(2πuxpρ−l)) cos(2πuxpx)−

2ux
∑

n≥1

b2n
2n(2n)!

Re
(

(2πuy(z + iy))2n
)

+

ux
∑

n≥0

(−1
2

n

)

(

ψ(2n)(1 + uxx) + ψ(2n)(1 − uxx)
)

(2n)!
ρ2n−

2 log(4π) .

(2.24)

Note that this time we calculate φ̃ instead of φ, i. e. we omit the contribution of the
primary simulation box. This is very convenient as it includes the case of self energy
and makes φ̃ a smooth function. To obtain φ one has to add the 1/r contribution of
the primary box. The self energy is given by

φ̃(0, 0, 0) =2uxuy
∑

p,q>0

1

fpq
(

e2πfpqλz − 1
) + 8ux

∑

l,p>0

K0(2πuxλypl)+

2uxψ
(0)(1) − 2 log(4π) .

(2.25)

Eqn. (2.24) is derived using the same convergence factor approach as used for
Eqn. (2.22), and consequently the same singularity in β is obtained. This is im-
portant since otherwise the charge neutrality argument does not hold and the limit
β → 0 could not be performed.

A simple implementation segments the simulation box in B = S3 smaller boxes or
cells. For all particles the interactions within the cell itself and the 26 neighbouring
cells are treated using the near formula, while for the rest the far formula is used. In
two dimensions this looks like this:

= +
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2.6 MMM

The interactions of the red cell with the light green cells is done via the near formula,
while all the dark blue cells are treated using the far formula. One first determines
the product decomposition components for each cell and then adds them up over all
pairs of cells which are not neighbours.

Of course the infinite sums have to be cut off at some radius. The cutoff radii can
be determined using error formulas, for example the maximal error of φ, calculated
summing the far formula up to a pq–cutoff of R, is

τφ ≈ e−2πRr

r
, (2.26)

where r the distance between the particles. The error formula reflects the condition
that two particles have to be separated to efficiently use the far formula. The error
estimates are similar to those that will be presented for MMM2D later.

Using the algorithm described above, the minimal distance of two particles calcu-
lated with the far formula is λz/S. Therefore for a constant pairwise error the Fourier
space cutoff R has to be chosen proportional to S. This leads to a calculation time
for the far formula of O(NS2). The near formula has to be used for O(N 2S−3) par-
ticle pairs. Since the calculation time for the near formula is practically parameter
independent, this is also the scaling of the calculation time. The total computation
time has a minimum for S ∼ N 1/5, resulting in an overall computation time scaling
of O(N

7

5 ).
To decrease the computational effort of MMM down to O(N log(N)) we use the

periodicity of the axis which dominates the error, i. e. in which the particles are
closest. Since the far formula error of MMM2D is dominated by the error in the non–
periodic direction, the following cannot be transferred to MMM2D, and i unique to
the MMM method.

In the following we assume that the number of cells per side is a power of 2, i.
e. S = 2L. The main idea is to increase λz/S not by decreasing S, but rather by
increasing λz. This is possible due to the periodic boundary conditions, as we will see
now.

Again the idea will be presented graphically in two dimensions, and again we cal-
culate the interactions with the small red cell. First the primary simulation cell will
be divided into small cells along the x–coordinate:

= +

The particles in the right part are far away and can be calculated using the far formula
with a reasonably small cutoff.

The other half will now be calculated using a cell length of λx/2. This introduces
artificial particles in the right part, which are just copies of the particles in the left
side. Their contribution can be subtracted easily together with the contribution of
the real particles in the right half.
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2 Calculating the Coulomb interaction under periodic boundary conditions

= −

Now we are left with a cell containing roughly N/2 particles (provided the simulation
cell is filled homogeneously) and cell dimensions λx/2 × λy × λz. For this system we
apply the same trick again to one of the other axes, e. g. y, then to z and again to x,
and so on until the calculation using the near formula is more efficient than another
subdivision. The subdivision occurs in the coordinate which occurs in the exponential.
Therefore the shift of the particle coordinates is actually only a multiplication.

In pseudo code the algorithm for a subdivision step looks like this

for each (p, q)

for each cell c

calculate the coefficients σc of the product decomposition

of cell c

end

for each row r

calculate the sum Σr of all coefficients from the σc

in row r

end

for each row r

calculate the sum Φr of the Σr of the rows more far away

than λz/2 for row r

add to Φr the Σr of the rows closer than λz/2

but not adjacent for row r multiplied by the shift factor

end

for each cell c

use the Φr and the σc of the adjacent rows of all

cells c′ not adjacent to cell c multiplied by the shift factor

to calculate the contribution to the energy from the

far particles and the artificial images

end

end

This algorithm can be further optimised with respect to computation time, but
even in the present form one can see that it its implementation is more demanding
than the Ewald or multipole methods. The implementation is even more complex
as the presented code should work with all three coordinates symmetrically for reuse
in the subdivision steps. The calculation time for each of the subdivision steps is
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2.6 MMM

proportional to half of the number of particles left, i. e. N/2, N/4, N/8, . . .. To
maintain a constant calculation time of the near formula, one has to ensure that 2L ∼
N or L ∼ logN . Therefore the overall computation time is O(NL) = O(N logN).

Upper error bounds can be found easily by approximating the sums by integrals,
see [92]. As for the Lekner sum, additional accuracy has to be paid with only a small
decrease of computational performance, therefore MMM is the method of choice if
high accuracy is required.
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2 Calculating the Coulomb interaction under periodic boundary conditions
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3 Two dimensional periodicity

Often one is interested in slab-like systems which are only periodic in two space dimen-
sions and finite in the third, for example in problems involving electrolyte solutions
between charged surfaces, proteins near charged membranes, thin films of ferrofluids,
Wigner crystals, charged films, membranes, solid surfaces decorated with dipoles etc.
The list of methods suitable for this case is considerably shorter:

Ewald type methods The same process leading to the Ewald method for fully peri-
odic systems can also be used to obtain a method for two dimensional period-
icity, the 2d–Ewald sum. The resulting Fourier space sum does not allow for a
product decomposition, therefore the method has a computational order of only
O(N2). Moreover only crude “a priori” error estimates exist, making the choice
of the correct α a nontrivial task.

An alternative path in the derivation leads to the method of Hautman and
Klein. This method is only suitable for small separations in the non–periodic
coordinate. It is considerably faster than the 2d–Ewald method, but also for
this method no error estimates exist.

Multipole methods As said in the last chapter, multipole methods can be used for
any kind of periodicity, and therefore are also usable for two dimensionally
periodic systems. The efficiency is equal to the efficiency in the fully periodic
case, and the methods are only competitive for more than a million particles.

Lekner sum Since the Lekner sum us obtained by transforming only one of the spatial
coordinates, it can also be applied to the cases of two and one dimensional
periodicity. The Lekner sum is an O(N 2) method, although much faster than
the 2d–Ewald method, and therefore suitable only for small numbers of particles.

MMM2D MMM can be easily adapted to the case of two dimensional periodic-
ity. Because of the missing spatial symmetry, this method cannot achieve the
O(N logN) scaling of MMM, but has a computation time of O(N 5/3) which
is at least better than the 2d–Ewald or Lekner methods. Like for the origi-
nal MMM, the computation time grows only with the logarithm of the error
bound, so that MMM2D is suitable for small numbers of particles below 1000
and high accuracy requirements. The MMM2D algorithm, error estimates and
some numerical results are presented in detail in Sec. 3.3.

ELC Instead of using a specially designed method for two dimensionally periodic
systems, one could replicate the system along the non–periodic coordinate. In
an attempt to decouple the interactions in the third dimension, one fills only
parts of the simulation box with charges and leaves some space empty. Now a
standard method for three dimensional periodic systems such as P3M or MMM

49



3 Two dimensional periodicity

can be used for the calculation of the electrostatic interaction. The size of the
empty region has to be comparatively large, about 4 − 5 times larger than the
height of the simulation box, which slows down the methods considerably. To
avoid this, the electrostatic layer correction (ELC) can be used to subtract the
contribution of the image layers again. The computation time for the ELC term
is only O(N) and therefore does not destroy the scaling of any of the known
methods for three dimensional periodicity. Error estimates similar to MMM2D
can be obtained. ELC will be presented in detail in chapter 4.

Method of Nijboer and de Wette Nijboer and de Wette put forward a method to
calculate the interaction between particles well separated in the non–periodic
dimension in computational order O(N) [73]. Although the derivation of Ni-
jboer and de Wette follows a completely different line, the resulting formula is
identical to the far formula of MMM2D. Since Nijboer and de Wette employ the
standard spherical summation, the 2d–Ewald sum is suitable as near formula.
The combination of these methods was first reported by Smith [88]. Since the
far formula is identical to MMM2D, but the near formula is less efficient, the
combination method is also less efficient then MMM2D, and the sensitivity to
α is another drawback, therefore MMM2D should be superior to this method in
all applications.

Again, not all known methods have been presented. For example, Kawata et al
recently proposed a method using yet another Ewald approach which allows a prod-
uct decomposition, but at the cost of a numerical integration of different oscillating
functions with a large, fixed step size [47]. This results in essentially uncontrollable
errors, and no error estimates for the method exist.

In the first section of this chapter, the mathematical foundations of the Coulomb
sum for two dimensionally periodic systems will be laid. The second section of this
chapter will briefly show the formulas for the two Ewald type methods, the 2d–Ewald
method and the Hautman and Klein method. The third section reviews the MMM2D
method. In this work the focus lies on the parallelisation of the MMM2D algorithm,
which has not been addressed so far, and a detailed discussion of the computation
time scaling. Using the MMM2D formulas, the ELC method will be derived in the
following chapter.

3.1 General prerequisites

Without loss of generality, we assume that the simulated system is periodic in only
the first two of the three spatial dimensions, namely x and y, so that the primary
simulation box is

B0 =

(

−λx
2
,
λx
2

]

×
(

−λy
2
,
λy
2

]

×
(

−∞,∞) . (3.1)

Note that since the primary simulation box contains only N < ∞ particles, one can
nevertheless define a system height h such that 0 ≤ zi < h for all particles i = 1, . . . , N .
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3.2 Ewald type methods

The Coulomb energy of this system is given by

E =
1

2

∞
∑

S=0

∑

k2+l2=S

∑′

i,j

qiqj
|pij + nkl|

, (3.2)

using the notations introduced in Eqns. (2.3) through (2.7). Note that the summation
again occurs in spherical order in the hyper–geometric sense. Instead of adding up the
contributions of larger and larger spherical shells, here the summation occurs in the
order of increasing rings. It can be shown easily, that 1/|r+nk|+1/|r−nk|−2/|nk| =
O(|nk|3), so that for a two dimensionally periodic system the Coulomb sum the order
of summation is unimportant as long as it is symmetric. Consequently, there is no
shape–dependent term in the two dimensional Coulomb energy.

3.2 Ewald type methods

In this section, it is assumed that the simulation box is quadratic, i. e. λx = λyλ.
Both Ewald methods do not allow a product decomposition or similar tricks, therefore
the resulting formulas have to added up for all pairs of particles, with an unfavourable
scaling of O(N 2). Moreover no error estimates exist which are as robust and accurate
as the error estimates of Kolafa and Perram for the classical Ewald sum.

In the 2d–Ewald sum, the electrostatic interaction is calculated as

E =
1

2

∑

i,j

qiqj

(

∑′

n

erfc(α|rij + λn|)
|rij + λn| +

π

λ

∑

m

e2πiρijmF (π|m|, zij , α)−

√
π

λ2α
e−α

2z2 + z erf(αz)

)

,

(3.3)

where ρij = (xij , yij), m is two dimensional reciprocal space vector and

F (u, z, α) =
e2uz erfc( uα + αz) + e−2uz erfc( uα − αz)

2u

are the coefficients of the Fourier transformation along only x and y. The formula
clearly resembles the classical Ewald sum in that it splits up into a real space part,
a Fourier space part and a self energy contribution, but does not allow the same
efficient treatment as the classic Ewald sum. The 2d–Ewald sum is also known as the
method of Heyes, Barber and Clarke or the method of de Leeuw and Perram. There
exist crude error estimates [88], but they are not precise enough to tune the critical
parameter α “a priori”, and extensive numerical tests are necessary.

The Hautman and Klein method is only valid for small z, but converges there much
faster than the 2d–Ewald sum. The key idea is to expand the 1/rij interaction as

1

rij
=

(

1

rij
−

P
∑

k=0

akz
2
ijk

ρ2k+1
ij

)

+

(

P
∑

k=0

akz
2
ijk

ρ2k+1
ij

)

,
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3 Two dimensional periodicity

where ak = (−1)k(2k)!/(22k(k!)2) are the coefficients of a binomial expansion of 1/rij
in terms of zij/ρij , i. e. the first few terms of a Taylor expansion of 1/rij are extracted
and treated separately. For each level of the expansion separate splitting functions
are used, namely

h0(s, α) = erf(s/(2α))

hk(s, α) =
(−1)ks2k+1

ak(2k)!
∇2k h0(s, α)

s
.

Using this, the electrostatic interaction is given by

E =
1

2

∑

i,j

qiqj

(

∑′

n

(

1

|rij + n| −
P
∑

k=0

akz
2k
ij hk(ρij , α)

|ρij + n|2k+1

)

+

2π

λ2

P
∑

k=0

akz
2k
ij

∑

m

gk(m,α)m2k−1e−imρij

)

−

1

2
√
πα

∑

i

q2i ,

(3.4)

where the second, long ranged part has been Fourier transformed, with

g0(m,α) = erfc(α|m|)

gk(m,α) =
g0(m,α)

ak(2k)!

being the 2d Fourier transforms of the screening functions. For the method of Haut-
man and Klein no error estimates are known so far, but numerical tests have shown a
good convergence of the method [100]. The convergence of the method only for small
z is no real drawback, as it could be combined with the method of Nijboer and de
Wette. Although this combination would be probably more efficient than with the
2d–Ewald sum, it has not been reported so far.

3.3 MMM2D

The MMM2D method [4,6,7] will be repeated here briefly, since it forms the founda-
tions for the ELC method developed in the next chapter as well as for the MMM1D
method. Moreover the parallelisation of MMM2D has not been addressed so far and
will be discussed in Sec. 3.3.3. Sec. 3.3.4 investigates the computation time scaling of
ESPResSo more closely than the previous works, namely with respect to the number
of processors in a parallel implementation and to geometrical aspects. In Sec. 3.3.5
numerical results from the (parallel) implementation of MMM2D in ESPResSo are
presented.

3.3.1 The MMM2D Method

In this subsection we repeat the derivation of the formulas needed for MMM2D briefly.
Similar to MMM, MMM2D uses an exponential convergence factor, i. e. the image
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3.3 MMM2D

contribution to the potential in two dimensionally periodic boundary conditions reads

φ̃β(x, y, z) =
∑

(k,l)6=(0,0)

e−βrkl

rkl
, (3.5)

while Ẽ and φβ are still defined by Eqns. (2.20) and (2.19), i. e.

Ẽ =
1

2
lim
β→0

∑

k,l,m∈Z

N
∑′

i,j=1

qiqje
−β|pij+nklm|

|pij + nklm| =:
1

2
lim
β→0

N
∑

i,j=1

qiqjφβ(xij , yij, zij) ,

where

φβ(x, y, z) = φ̃β(x, y, z) +

{

e−βr

r (x, y, z) 6= (0, 0, 0)

0 (x, y, z) = (0, 0, 0)
.

It can be shown that E = Ẽ, i.e. the convergence factor approach gives the same
result as the spherical summation, in contrast to the situation for three dimensional
periodicity. For a proof of the equality of the convergence factor approach and the
spherical summation order see Refs. [4, 6]. The proof for the case of one dimensional
periodicity given in chapter 6 is also very similar.

Transformation of φβ for z 6= 0 — the far formula

First we concentrate on developing an absolutely and rapidly converging formula for
φβ . Then we can easily form the limit β → 0 and obtain a formula for φ. For z 6= 0
and β > 0 the sum in φβ is an absolutely convergent sum of Schwartz class functions.
Therefore for δ > 0 and x ∈ R, we can apply the Poisson formula:

∑

k∈Z

f(x+ δk) =
1

|δ|
∑

p∈Z

F(f)
(p

δ

)

e2πi
p
δ
x , (3.6)

where F denotes the Fourier transformation. Furthermore we will be using the for-
mulas

F
(

e−β
√
α2+· 2

√
α2 + · 2

)

= 2K0

(

α
√

β2 + (2π ·)2
)

,

F
(

K0

(

α
√

z2 + · 2
))

= π
e−z

√
α2+(2π ·)2

√

α2 + (2π ·)2

(3.7)

which are valid for α, z ∈ R and can be found, for example, in [74]. K0 is called the
modified Bessel function of order 0. For properties of the Bessel functions, see [1].

Using the same notations as for MMM (see Eqns. (3.9)) we obtain after two Fourier
transformations

φβ(x, y, z) =
∑

k,l∈Z

e−βrkl

rkl
=
∑

l∈Z

(

∑

k∈Z

e−βrkl

rkl

)

= 2ux
∑

p∈Z

(

∑

l∈Z

K0 (βpρl)

)

e2πiuxpx

= 2πuxuy
∑

p,q∈Z

e−βpq |z|

βpq
e2πiuxpxe2πiuyqy .
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3 Two dimensional periodicity

Expanding the term for p = q = 0 we find e−β|z|

β = β−1 −|z|+ O
β→0

(β), and obtain our

final formula

φβ(x, y, z) = 8πuxuy
∑

p,q>0

e−βpq |z|

βpq
cos(2πuxpx) cos(2πuyqy)+

4πuxuy
∑

q>0

e−βq |z|

βq
cos(2πuyqy) + 4πuxuy

∑

p>0

e−βp|z|

βp
cos(2πuxpx)−

2πuxuy|z| + 2πuxuyβ
−1 + O

β→0
(β) ,

(3.8)

where

βpq =
√

β2 + (2πuxp)2 + (2πuyq)2 ,

βp =
√

β2 + (2πuxp)2 and βq =
√

β2 + (2πuyq)2 .
(3.9)

It has a singularity of 2πuxuyβ
−1 which is independent of the particle coordinates.

Therefore, once the sum of φβ is taken over all particles, the singularity vanishes via
the charge neutrality condition. For the other parts of Eqn. (3.8) taking the limit
β → 0 is trivial. The sum converges well as the summands decay exponentially, but
for small z the convergence becomes poor and for z = 0 the sum is not defined. Thus
we will need an alternative method for small z.

Transformation of φ̃β for z ≈ 0 — the near formula

For small particle distances, the term for k = l = 0 is dominant (and must be omitted
for the interaction of a particle with its own images). Therefore we leave it out for
now and concentrate on a rapidly convergent formula for φ̃β(x, y, z). This requires a
little more work. For a more detailed derivation see [92, 4].

Since we omit the k = l = 0 term, the area to sum over has a hole. To efficiently
treat the sum over this area we split φ̃β(x, y, z) = Σ1 + Σ2 where

Σ1 =
∑

l 6=0

∑

k∈Z

e−βrkl

rkl
and Σ2 =

∑

k 6=0

e−βrk0

rk0
.

Graphically this can be displayed like that:

l

k

Σ Σ
Σ

Σ

22

1

1

We start by calculating Σ1. Using the same argument as for formula (3.8) we obtain

Σ1 =
∑

l 6=0

∑

k∈Z

e−βrkl

rkl
= 2ux

∑

l 6=0

∑

p∈Z

K0(βpρl)e
2πiuxpx

= 2ux
∑

l,p6=0

K0(βpρl)e
2πiuxpx + 2ux

∑

l 6=0

K0(βρl) .
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3.3 MMM2D

While the first sum converges fast, the second one is still singular in β and has to
be investigated further:

2ux
∑

l 6=0

K0(βρl) = 2ux
∑

l∈Z

K0(βρl) − 2ux K0(βρ)

= 2ux
∑

l∈Z

K0(βρl) − 2ux(log 2 − γ − log(βρ)) + O
β→0

(β2)

where we have used the asymptotic behaviour K0(x) = − log x
2 −γ+O(x2) for x → 0.

The first sum can now be Fourier transformed again:

∑

l∈Z

K0(βρl) = πuy
∑

q>0

e−βq |z|

βq

(

e2πiuyqy + e−2πiuyqy
)

+ πuy
e−β|z|

β

= 2πuy Re





∑

q>0

e−2πuyq|z|

2πuyq
e2πiuyqy



+ πuy(β
−1 − |z|) + O

β→0
(β) .

If we set ζ := 2πuy(|z| + iy), we obtain

2πuy
∑

q>0

e−2πuyq|z|

2πuyq
e2πiuyqy =

∑

q>0

e−qζ

q
= − log(ζ) +

ζ

2
−
∑

n≥2

bn
nn!

ζn

where bn are the Bernoulli numbers. This series expansion is valid only for |ζ| ≤ 2π,

which is fulfilled if |z| ≤ λy
2 . The last equality is found by integration from

d

dz
log

(

1 − e−z

z

)

= z−1

(

z

ez − 1
− 1

)

= z−1

( ∞
∑

n=0

bn
n!
zn − 1

)

= −1

2
+

∞
∑

n=1

b2n
(2n)!

z2n−1 ,

where the defining series z
ez−1 =

∑∞
n=0

bn
n! z

n for the Bernoulli numbers was used.

Using Re(− log ζ) = − log |ζ| = − log(2πuyρ) and Re
(

ζ
2

)

= πuy|z| we obtain

∑

l∈Z

K0(βρl) = −
∑

n≥2

bn
nn!

Re (ζn) − log(2πuyρ) + πuyβ
−1 + O

β→0
(β) .

It is easy to see that ζ can be replaced by ξ := 2πuy(z + iy) without changing the
value of the sum. This is of advantage for the calculation of the forces by differentia-
tion.

Combining everything we obtain

Σ1 =2ux
∑

l,p6=0

K0(βpρl)e
2πiuxpx − 2ux

∑

n≥2

bn
nn!

Re
(

(2πuy(z + iy))n
)

−

2ux log(4πuy) + 2ux log(β) + 2πuxuyβ
−1 + 2uxγ + O

β→0
(β) .

(3.10)
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Now we concentrate on Σ2 =
∑

k>0
e−βrk

rk
+
∑

k<0
e−βrk

rk
. It is sufficient to investigate

the first of the two sums, because by replacing x by −x the value of the second sum
can be obtained.

We start with

∑

k>0

e−βrk

rk
=
∑

k>0

e−βrk
(

1

rk
− 1

kλx

)

+
∑

k>0

e−βrk

kλx

=
∑

k>0

(

1

rk
− 1

kλx

)

+ O
β→0

(β) +
∑

k>0

e−βrk

kλx
.

Details about the precise derivation of the equation can again be found in [92, 4].

Moreover by rk − kλx = O
k→∞

(1) and log (1 − e−α) = log α+ O(α) we obtain

∑

k>0

e−βrk

kλx
=
∑

k>0

e−βkλx

kλx

(

1 + O
β→0

(β)

)

= −ux log(λxβ) + O
β→0

(β log β)) .

To evaluate the sum
∑

k>0

(

1
rk

− 1
kλx

)

, we consider a Nψ such that Nψ > uxρ+ 1.

Then for k ≥ Nψ we have ρ/|x + kλx| ≤ 1 and therefore we can use the binomial

series for
√

1 + ρ2

|x+kλx|2 to obtain

∑

k≥Nψ

(

1

rk
− 1

kλx

)

=
∑

k≥Nψ

(

1

|x+ kλx|
− 1

kλx

)

+
∑

n>0

(−1
2

n

)

∑

k≥Nψ

ρ2n

|x+ kλx|2n+1

= −uxψ(0)(Nψ + uxx) − uxγ − ux
∑

n>0

(−1
2

n

)

ψ(2n)(Nψ + uxx)

λ2n
x (2n)!

(uxρ)
2n

where ψ(n) are the polygamma functions. For details on these functions, see [1].

In summary we obtain for Σ2:

Σ2 = −ux
∑

n≥0

(−1
2

n

)

(

ψ(2n)(Nψ + uxx) + ψ(2n)(Nψ − uxx)
)

(2n)!
(uxρ)

2n−

2uxγ + 2ux log(ux) − 2ux log(β) +

Nψ−1
∑

k=1

(

1

rk
+

1

r−k

)

+ O
β→0

(β log β)) .

Combining the formulas for Σ1 and Σ2 we obtain, for |x| ≤ λx
2 , |y|, |z| ≤ λy

2 and Nψ
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such that Nψ > uxρ+ 1, the final formula

φ̃β(x, y, z) =4ux
∑

l,p>0

(K0(βpρl) + K0(βpρ−l)) cos(2πuxpx)−

2ux
∑

n≥1

b2n
2n(2n)!

Re
(

(2πuy(z + iy))2n
)

+

Nψ−1
∑

k=1

(

1

rk
+

1

r−k

)

−

ux
∑

n≥0

(−1
2

n

)

(

ψ(2n)(Nψ + uxx) + ψ(2n)(Nψ − uxx)
)

(2n)!
(uxρ)

2n−

2ux log(4π
uy
ux

) + 2πuxuyβ
−1 + O

β→0
(β log β) .

(3.11)

Of course this formula leads to the same singularity in β as formula (3.8) and the
charge neutrality argument also holds for any combination of the two formulas as long
as the sum is performed over all particles.

Energy expressions

For the implementation the formulas after taking the limit β → 0 are needed, which
will be given now. For z 6= 0 we obtain the far formula in two dimensions

φ(x, y, z) = 4uxuy
∑

p,q>0

e−2πfpq |z|

fpq
cos(ωpx) cos(ωqy)+

2uxuy





∑

q>0

e−2πfq |z|

fq
cos(ωqy) +

∑

p>0

e−2πfp|z|

fp
cos(ωpx)



 − 2πuxuy|z| , (3.12)

where fpq etc. are defined as for MMM by Eqn.(2.23).

For |x| ≤ λx
2 , |y|, |z| ≤ λy

2 and Nψ such that Nψ > uxρ+1, the near formula in two
dimensions is given by

φ̃(x, y, z) = 4ux
∑

l,p>0

(K0(ωpρl) + K0(ωpρ−l)) cos(ωpx)−

2ux
∑

n≥1

b2n
2n(2n)!

Re
(

(2πuy(z + iy))2n
)

+

Nψ−1
∑

k=1

(

1

rk
+

1

r−k

)

−

ux
∑

n≥0

(−1
2

n

)

(

ψ(2n)(Nψ + uxx) + ψ(2n)(Nψ − uxx)
)

(2n)!
(uxρ)

2n−

2ux log

(

4π
uy
ux

)

.

(3.13)

Finally the self–energy in two dimensions is

φ̃(0, 0, 0) = 8ux
∑

l,p>0

K0(2πuxλypl) + 2uxψ
(0)(1) − 2ux log

(

4π
uy
ux

)

. (3.14)

57



3 Two dimensional periodicity

As said before, the far formula was derived previously in a completely different way
for a conventional spherical limit by Nijboer and de Wette [88,73], which requires an
Ewald method for two dimensional periodicity as counterpart. The evaluation of the
near formula (3.13) is significantly faster and rigorous error estimates exist, therefore
MMM2D should be faster than any method using an Ewald type near formula.

Force expressions

Since the sums in equations (3.12) rsp. (3.13) converge absolutely, the electrostatic
force Fi = −∇piE can be derived by simple term-wise differentiation and the force
can be calculated as

Fi =
N
∑

j=1

qiqjF (xi − xj , yi − yj, zi − zj)

where for z 6= 0 we obtain F = (Fx, Fy, Fz)
T where

Fx(x, y, z) = 8πu2
xuy

∑

p,q>0

p
e−2πfpq |z|

fpq
sin(ωpx) cos(ωqy)+

4πuxuy
∑

p>0

e−2πfp|z| sin(ωpx) ,

Fy(x, y, z) = 8πuxu
2
y

∑

p,q>0

q
e−2πfpq |z|

fpq
cos(ωpx) sin(ωqy)+

4πuxuy
∑

q>0

e−2πfq |z| sin(ωqy)
(3.15)

and

Fz(x, y, z) = 8π sign(z)uxuy
∑

p,q>0

e−2πfpq |z| cos(ωpx) cos(ωqy)+

4π sign(z)uxuy
∑

q>0

e−2πfq |z| cos(ωqy)+

4π sign(z)uxuy
∑

p>0

e−2πfp|z| cos(ωpx) + 2π sign(z)uxuy .

For |x| ≤ λx
2 , |y|, |z| ≤ λy

2 and Nψ such that Nψ > uxρ+ 1, we have

F (x, y, z) = F̃ (x, y, z) +







1

(x2+y2+z2)
3
2

(x, y, z)T (x, y, z) 6= (0, 0, 0)

0 (x, y, z) = (0, 0, 0)
(3.16)
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where

F̃x(x, y, z) = 8πu2
x

∑

l,p>0

p (K0(ωpρl) + K0(ωpρ−l)) sin(ωpx)+

Nψ−1
∑

k=1

(

x+ kλx
r3k

+
x− kλx
r3−k

)

+

u2
x

∑

n≥0

(−1
2

n

)

(

ψ(2n+1)(Nψ + uxx) − ψ(2n+1)(Nψ − uxx)
)

(2n)!
(uxρ)

2n ,

F̃y(x, y, z) = 8πu2
x

∑

l,p>0

p

(

(y + lλy)K1(ωpρl)

ρl
+

(y − lλy)K1(ωpρ−l)

ρ−l

)

cos(ωpx)−

4πuyux
∑

n≥1

b2n
(2n)!

Im
(

(2πuy(z + iy))2n−1
)

+

Nψ−1
∑

k=1

(

y

r3k
+

y

r3−k

)

+

u3
xy
∑

n≥1

(−1
2

n

)

(

ψ(2n)(Nψ + uxx) + ψ(2n)(Nψ − uxx)
)

(2n− 1)!
(uxρ)

2(n−1)

and

F̃z(x, y, z) = 8πu2
x

∑

l,p>0

p

(

zK1(ωpρl)

ρl
+
zK1(ωpρ−l)

ρ−l

)

cos(ωpx)−

4πuyux
∑

n≥1

b2n
(2n)!

Re
(

(2πuy(z + iy))2n−1
)

+

Nψ−1
∑

k=1

(

z

r3k
+

z

r3−k

)

+

u3
xz
∑

n≥1

(−1
2

n

)

(

ψ(2n)(Nψ + uxx) + ψ(2n)(Nψ − uxx)
)

(2n− 1)!
(uxρ)

2(n−1) .

Here K1 is the modified Bessel function of order one.

3.3.2 Error Estimates

For an implementation which is of practical use, error estimates are needed. Since we
calculate the energy (forces) by summing up pairwise contributions qiqjφ(xij , yij, zij)
(their differential), it is reasonable to derive an upper bound for the error of φ. The
maximal pairwise error of the pair energy is induced by the calculation of the formulas
(3.12) and (3.13) with finite cutoffs. Likewise we can derive an maximal pairwise error
εF for the pair forces by formulas (3.15) and (3.16). From this one can give an upper
bound for the commonly used RMS error of the forces. We will show later that the
error distribution for MMM2D is highly non–uniform, and leads typically to an RMS
error that is much lower than our bound. Thus the RMS error is not the optimal
error measure. Furthermore our implementation shows that an increase in precision
has little impact on the calculation time of MMM2D, quite contrary to mesh based [19]
and other methods [100].

For the far formula given by (3.12) and (3.15), respectively, we use a radial cutoff.
So the summation is not performed over all (p, q) 6= 0, but only for those (p, q) ∈ ΓR
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where

ΓR =
{

(p, q) ∈ Z
2 | p, q > 0, u2

x(p− 1)2 + u2
y(q − 1)2 < R2

}

∪
{(p, 0) ∈ Z × {0} |uxp < R}
{(0, q) ∈ {0} × Z |uyp < R} .

(3.17)

The three sets correspond to the three sums over the (p, q)–vectors. The somewhat
complicated form of ΓR is necessary to obtain a strict, but sharp upper bound. By a
simple approximation of the sums by integrals it is easy to derive upper bounds on
the remainder of the sum. For the potential φ we find the estimate

|φ(x, y, z) − φ(R, x, y, z)| ≤ τ farφ :=

(

1 +
ux + uy
πR

)

e−2πR|z|

|z| . (3.18)

This upper bound is not valid for the forces. For all three components Fx, Fy and Fz
of the forces we find the upper bound

|F (x, y, z) − F (R, x, y, z)| ≤ τ farF =
e−2πR|z|

|z|

(

2πR+ 2(ux + uy) +
1

|z|

)

. (3.19)

This value is precise only for Fz. The other force components show a better conver-
gence. Note that τφ ≤ τF , so that the potential is at least as precise as the force
components. Common to both error formulas is the exponential decrease of the error
with R|z|.

The near formula given by equations (3.13) rsp. (3.16) contains three sums with
different cutoffs. For the first sum containing Bessel functions it is reasonable to sum
over all (p, q) ∈ ΩL where

ΩL :=

{

(p, l)

∣

∣

∣

∣

0 < p <
L

πux
and 0 < l <

L

ωp
+ 1

}

. (3.20)

Again the form is dictated by the requirements of a strict, but sharp upper bound.
The Bessel functions are replaced according to K0(u) < K1(u) < K1(u0)e

u0e−u for all
u ≥ u0. Let L ≥ πux + uy, |x| ≤ λx/2, |y|, |z| ≤ λy/2, then the upper bound

τBesselE = 8ux K0(λyL)

(

eπuxλy

πuxλy
+

d L
πux

e−1
∑

p=1

pe−πuxλyp
)

(3.21)

for the potential can be found again by an approximation of the sum by an integrals.
The prefactor K1(λyL)eλyL is smaller than 1 for L ≥ 3uy. Similarly the upper bound

τBesselF = 16πu2
x K1(λyL)

(

eπuxλy

πuxλy

(

L+ uy
πux

− 1

)

+

d L
πux

e−1
∑

p=1

pe−πuxλyp
)

for all force components can be obtained. Again max(1, 1/(2πux))τ
Bessel
F is a uniform

upper limit for both the potential and the force components. Note that K1 drops
faster than exponentially and therefore also both error limits. The Gaussian bracket
d·e denotes rounding up.
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3.3 MMM2D

For the second sum in (3.13) containing the Bernoulli numbers we use the estimate

|b2n| ≤ 4 (2n)!
(2π)2n [1] to obtain the error estimates

τBernoulliE = 16ux(uyρ)
2N ≤ 16ux2

−N (3.22)

and
τBernoulliF = 16uxuy(uyρ)

2N−1 ≤ 16
√

2uxuy2
−N (3.23)

for the summation of this sum up to N . Note that this sum does not contribute to Fx,
due to the artificially broken symmetry in the derivation. The error estimate contains
the particle position dependent term ρ. By using a table lookup scheme for N(ρ) one
can chose the appropriate cutoff at runtime to speed up the calculation.

For the last sum containing the polygamma functions there is no error estimate
necessary, as it is a Leibniz sum. The cutoff is determined at runtime by adding up
terms until they are smaller than a threshold τψE,F . The overall maximal error of the

near formula is then τnearE,F = τBesselE,F + τBernoulliE,F + τψE,F .
Note that although the use of the RMS force error may be misleading as the error

distribution is non–homogenous, it is still possible to obtain a weak upper bound on
the RMS force error. Following the arguments presented in [20], one can see that the
RMS force error is given by

∆FRMS =

∑N
i=1 q

2
i√

N
χ , (3.24)

where χ is assumed to be the RMS force error introduced by the algorithm to the
pair interaction of two particles. For Eqn. (3.24) to hold one assumes a homogenous
particle distribution and that the particle pair errors are statistically independent.
Obviously in the case of MMM2D χ ≤

√
3τF , where τF = max(τ farF , τnearF ), which

then gives

∆FRMS ≤
√

3

N

N
∑

i=1

q2i τF . (3.25)

This means that for a system of 500 unit charges and 500 negative unit charges
∆FRMS ≤ 54.78τF , so that tuning the pairwise error to 10−4 results in a RMS force
error less than 5 · 10−3, which is sufficient for most applications.

3.3.3 Parallel Implementation

In [4,6] one can find an algorithm for implementing Eqns. (3.12) and (3.13) efficiently

such that the computation time scales like O(N
5

3 ). However, the parallelisation of
the MMM2D algorithm has not been addressed so far, and will be discussed here, as
well as the integration into a standard MD integration scheme.

Because of the broken symmetry of the two dimensional periodic problem the two
periodic coordinates needed for the far formula are necessarily x and y, and particles
with a similar z–coordinate have to be treated using the near formula, even if they are
well separated in x or y. Therefore instead of dividing the simulation box into cells
in all spatial dimensions as for the standard linked–cell structure, we divide it into B
equally sized layers only along the z–axis, of which each has a height of b = h/B. h
is an artificial box height large enough to contain all the particles.
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3 Two dimensional periodicity

We assume that a layer will be treated by only one processor, although a processor
might deal with several layers. In general the optimal number of layers is larger than
eight, therefore using two processors per layer requires at least 16 processors, which
is normally unacceptable for systems with less than 10000 particles.

The processors are basically stacked up along the z–axis, so that they have a spatial
ordering. We assume that the nproc processors are numbered according to the z–
coordinate of their dedicated layers, so that processor 1 is the bottom processor and
processor nproc the top processor. As already described for MMM we use the near
formula for adjacent layers, while for the rest the far formula is used.

Treatment of the near formula

In the following we assume that for the short ranged interactions a link cell algorithm
(see Sec. 1.3) is used, where the cells are the layers described here, e. g. the layered cell
system of ESPResSo. In this case, the maximal distance of two particles in adjacent
layers is dnear = 2b+rskin, while the minimal distance of two particles in non–adjacent
layers is dfar = b−rskin. The near formula interaction can be treated as a short ranged
interaction in which case b must be larger or equal to the maximal interaction range
of the other short ranged interactions. Moreover for the the near formula to be valid
we need |zi − zj| ≤ λy/2 for particles i and j located in adjacent layers. This gives
the constraint

2b =
2h

B
≤ λy

2
. (3.26)

Therefore λy should be as large as possible and it might be necessary to exchange
the x– and y–axis if λx >> λy. If the maximal interaction range of any other short
ranged interaction is larger than 1/4max(λx, λy), the treatment of the short–ranged
interactions and the treatment of the near formula have to be decoupled. Since the
near formula has to added up over all particles in the adjacent layers, a Verlet list is
of little use in combination with MMM2D.

The self energy
∑N

i=1 q
2
i φ̃(0, 0, 0) should be added separately, as normally the sum

over all charges squares does not change.

Treatment of the far formula

The calculation of the far formula consists of summing up terms with frequencies (p, q)
in the Fourier space. By virtue of a product decomposition this can be done such that
the computing time is O(N). The algorithm presented can easily be adapted for the
calculation of the sums with only a single Fourier frequency and the |z|–sum. The
same holds for the calculation of the forces.

In the beginning we concentrate on a single particle i located in layer Si. The far
formula is used to calculate the contributions from all particles in non–adjacent layers,
i. e. layers Sj where |Sj − Si| > 1. First we restrict attention to the particles j in
layers Sj < Si − 1, that is, to the particles in the set

⋃

S<Si−1 IS . The cosine terms
are separable via the addition theorem and since |zi − zj | = zi − zj for these layers,
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3.3 MMM2D

we have

∑

j∈IS
S<Si−1

qiqj
e−2πfpq |zi−zj |

fpq
cos(ωp(xi − xj)) cos(ωq(yi − yj)) =

qi
e−2πfpqzi

fpq
cos(ωpxi) cos(ωqyi)

∑

j∈IS
S<Si−1

qje
2πfpqzj cos(ωpxj) cos(ωqyj)+

qi
e−2πfpqzi

fpq
cos(ωpxi) sin(ωqyi)

∑

j∈IS
S<Si−1

qje
2πfpqzj cos(ωpxj) sin(ωqyj)+

qi
e−2πfpqzi

fpq
sin(ωpxi) cos(ωqyi)

∑

j∈IS
S<Si−1

qje
2πfpqzj sin(ωpxj) cos(ωqyj)+

qi
e−2πfpqzi

fpq
sin(ωpxi) sin(ωqyi)

∑

j∈IS
S<Si−1

qje
2πfpqzj sin(ωpxj) sin(ωqyj) .

(3.27)

The sum for the S > Si+1 is very similar, just the sign of the zi and zj is exchanged.
For all particles j only the eight terms

ξ
(±,s/c,s/c)
j = qje

±2πfpqzj sin / cos(ωpxj) sin / cos(ωqyj) (3.28)

are needed. The upper index describes the sign of the exponential term and whether
sine or cosine is used for xj and yj in the obvious way. These terms can be used for all
expressions on the right hand side of Eqn. (3.27). Moreover it is easy to see from the
addition theorem for the sine function that these terms also can be used to calculate
the force information up to simple prefactors that depend only on p and q.

Every processor starts with the calculation of the terms ξ
(±,s/c,s/c)
j and adds them

up in each layer, so that one obtains

Ξ(±,s/c,s/c)
s =

∑

j∈Ss
ξ
(±,s/c,s/c)
j . (3.29)

Now we calculate

Ξ(l,s/c,s/c)
s =

∑

t<s−1

Ξ
(+,s/c,s/c)
t and

Ξ(h,s/c,s/c)
s =

∑

t>s+1

Ξ
(−,s/c,s/c)
t ,

(3.30)

which are needed for the evaluation of Eqn. (3.27). While the bottom processor

can calculate Ξ
(l,s/c,s/c)
s directly, the other processors are dependent on its results.

Therefore the bottom processor starts with the calculation of its Ξ
(l,s/c,s/c)
s and sends

up Ξ
(l,s/c,s/c)
s and Ξ

(+,s/c,s/c)
s of its top layer s to the next processor dealing with

the layers above. Simultaneously the top processor starts with the calculation of the

Ξ
(h,s/c,s/c)
s and sends them down. In total nproc − 1 communication rounds with two
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3 Two dimensional periodicity

independent communications are needed. Now every processor can use the Ξ
(l/h,s/c,s/c)
j

and the ξ
(±,s/c,s/c)
j to calculate the force rsp. energy contributions for its particles.

One should make sure that the Fourier cutoff R is not too large. Otherwise the

ξ
(±,s/c,s/c)
j –terms might get too large rsp. too small to be represented by a regular

double precision floating point number. For a 16–bit exponent the limit is above
R = 100uz . This is uncritical since even for a few hundred particles R > 100uz
results in an unacceptable computation time.

Finally here is the complete algorithm for the calculation of the contribution of one
(p, q)–vector of the far formula on a single node in pseudo code:

for each layer s = 1 . . . S

Ξ
(±,s/c,s/c)
s = 0

for each particle j in layer s

calculate ξ
(±,s/c,s/c)
j

Ξ
(±,s/c,s/c)
s + = ξ

(±,s/c,s/c)
j

end

end

Ξ
(l,s/c,s/c)
3 = Ξ

(+,s/c,s/c)
1

for each layer s = 4 . . . S

Ξ
(l,s/c,s/c)
s = Ξ

(l,s/c,s/c)
s−1 + Ξ

(+,s/c,s/c)
s−2

end

Ξ
(l,s/c,s/c)
S−2 = Ξ

(−,s/c,s/c)
S

for each layer s = (S − 3) . . . 1

Ξ
(l,s/c,s/c)
s = Ξ

(l,s/c,s/c)
s+1 + Ξ

(−,s/c,s/c)
s+2

end

for each layer s = 1 . . . S

for each particle j in layer s

calculate particle interaction from

ξ
(+,s/c,s/c)
j Ξ

(l,s/c,s/c)
s and ξ

(−,s/c,s/c)
j Ξ

(h,s/c,s/c)
s

end

end

For multiple processor nodes only the two middle loops have to be modified such
that the sums are transferred across the processor boundaries. Because the index

of the added Ξ
(±,s/c,s/c)
t and of the Ξ

(l/h,s/c,s/c)
s differ by two, two of the Ξ

(l/h,s/c,s/c)
s

depend on data from the neighbour node, so that one has to transfer both the current
sum and the last summand or something similar.
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3.3 MMM2D

3.3.4 Efficiency

The same calculation as was done for the computation time of MMM can be done for
MMM2D. We assume that N/B particles are located in every layer, e. g. a homogenous

particle distribution. The calculation of the ξ
(±,s/c,s/c)
j , the Ξ

(±,s/c,s/c)
j and the final

contributions of the far formula use a computation time of O(λxλyR
2N/nproc). The

calculation of the Ξ
(l/h,s/c,s/c)
j consumes a computation time of O(λxλyR

2B). The

prefactor λxλyR
2 accounts for the number of (p, q) vectors used.

The near formula needs a computation time of O(TnN
2/B/nproc), where Tn is the

computation time of a single evaluation of the near formula. Unfortunately Tn shows
a very complex behaviour with respect to the B and the dimensions. For example,
the computation time of the Bernoulli sum depends on the fraction uyh/B, since this

fraction determines the maximal size of uyρ ≤ uy/2
√

h2 + λ2
y. The convergence speed

of the polygamma sum depends on uxρ, and if this value is large, a considerably large
number of terms have to be added until the exponential convergence breaks through.
Note that these are all logarithmic dependencies, so as long as uyh/B is not close to
the limit B ≥ 4uyh (see Eqn. (3.26)), the computation time of the near formula is
practically constant. The calculation of the self–energy needs a computation time of
O(N/nproc log ε−1), if one neglects the calculation of the single particle self–energy,
which is done only once.

The minimal distance of two particles that are treated by the far formula is b = h/B,
omitting an eventually skin from the link–cell algorithm. From the error estimates
(3.18) we obtain for the potential using the far formula a scaling of

R ∼ B

h
log

(

B

ε h

)

. (3.31)

For the force the log term has a more complex dependence on λx, λy and h, which
cannot be given explicitly, as the error estimate is not analytically invertible. But
because for real applications the error bound ε is much smaller than the other factors
contained in the log term, namely B and h, the term is practically constant for a real
system both for the force and the potential evaluation. Therefore it will be neglected
in the following.

Assuming a nearly constant computation time for the near formula, i. e. a not too
small number of layers B, the box dimensions enter the computation time primarily
through the number of (p, q) vectors πλxλyR

2 as a prefactor

θ = λxλy/h
2 . (3.32)

We obtain the full asymptotic computation time as

O
(

θNB2

nproc

)

+ O
(

θB3
)

+ O
(

N2

Bnproc

)

+ O
(

N

nproc

)

, (3.33)

where the first term accounts for the calculation of the ξ
(±,s/c,s/c)
j and the final con-

tributions of the far formula, the second term accounts for the calculation of the

Ξ
(l/h,s/c,s/c)
j including the communication, the third term accounts for the near for-

mula and the last term accounts for the calculation of the self energy. Note that
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3 Two dimensional periodicity

the second term O(θB3) is much smaller than the other terms since the number of
layers should be much smaller than the number of particles. Consequently, this term
is ignored in the following.

The scaling of a method is normally given for a constant number of processors and
box dimensions. In this case Eqn. (3.33) is minimised by

Bideal(N) = O
(

N1/3
)

, (3.34)

yielding the optimal computation time

Tideal(N) = O
(

N5/3
)

. (3.35)

As B/h scales like N 1/3, it will be small compared to ε. In our implementation for
10000 particles and a box length of h = 10 we find the optimal B ∼ 30, so that we
can safely ignore the additional log term at reasonable precision settings. Also the
number of layers is much larger than the allowed minimum, so that the assumption
of a nearly constant computation time for the near formula is justified.

To improve the scaling, one can increase the number of processors, which enters
as 1/nproc in all the relevant contributions to Eqn. 3.33. Therefore the computation
time scales ideally as

T
nproc
ideal (N) = O(N 5/3/nproc) . (3.36)

Recalling the discussion in the parallelisation section, a typical implementation will
not allow the number of processors to be larger than the number of particles. From
this one obtains a lower bound for the computation time scaling of a parallel imple-
mentation of MMM2D, which is given by

Tmaxideal(N) = O(N 4/3) . (3.37)

The Ewald type methods for two dimensional periodicity consist of plain particle
pair force evaluations. A parallelisation of these methods requires a full communica-
tion of the particle data from all nodes to all nodes, which makes a parallelisation
ineffective at all.

However, for the 3d–Ewald method one can make a similar estimation. If the link
cell algorithm is used for the short ranged part, the number of processors will be
smaller than the number of cells. The number of cells scales like

√
N , therefore the

maximal possible number of processors that can be used effectively is
√
N , leading

to a linear computation time. This shows again that the case of three dimensional
periodicity allows for more efficient algorithms than the case of two dimensional pe-
riodicity.

Two dimensionally periodic boundary conditions are used primarily for studying
surface effects. Therefore the box form plays an important role and the shape factor θ
might be quite different from 1. One expects a strong dependency of the computation
time on θ, as e. g. for θ = ∞, i. e. a planar system, the scaling of the method
increases to O(N 2). For a constant number of particles the second term of Eqn. (3.33)
is dominant for large B. But since all other terms have a prefactor of N at least, and
N >> B for reasonable parameters (since otherwise the first two terms scale like
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3.3 MMM2D

worse than O(N 3)), this term will be small compared to the others. Therefore the
important contributions to the computation time are

O
(

θB2
)

+ O(1/B) , (3.38)

which is minimised by
BN
ideal(θ) = O(θ−1/3) . (3.39)

The resulting computation time for a constant number of particles is

TNideal(θ) = O(θ1/3) . (3.40)

Note that this calculation leaves out the fact that for very large θ the far formula will
no longer be used, so that the computation time does not diverge with increasing θ
as the scaling suggests. On the other hand for small θ B might reach the lower limit
given by Eqn. (3.26), so that the scale is only valid for intermediate values of θ.

For a real simulation the simulation box size is normally not fixed, but instead one
keeps the density of the system constant. In two dimensional periodic systems, this
means that λx and λy both scale like O(

√
N), since the height of the system is deter-

mined by physical constraints, e. g. the film thickness of a thin film. Unfortunately
this leads to a scaling of

O(B2N2) + O(B3) + O(N2/B) + O(N) , (3.41)

which is optimised by a constant layer number B leading to a unfavourable scaling
of O(N2). Even worse, using multiple processors will not improve the scaling as
the number of nodes is bounded by the constant B. For increasing all three spatial
dimensions simultaneously, θ is invariant and therefore the scaling stays the same.

The Ewald type methods for two dimensionally periodic systems do not show a
similar effect, since the computation time does not depend critically on the shape of
the box. Especially the computation time scaling for constant box size or constant
density is identical, namely O(N 2).

Although we know the optimal proportionality of B, its prefactor has to be tuned
to the underlying hardware. One can choose the optimal B by measuring the compu-
tation time spent for a fixed number of time steps during the simulation. From time
to time one increments or decrements B to see whether a better performance can be
achieved. The error formulas assure that this will not have any negative impact on
the precision of the method.

In the considerations above it was also not taken into account that the height of the
layers has to be larger than the range of the other short ranged interactions, especially
the diameter of the involved particles. This poses an upper bound on the number of
layers. In a typical simulation of a thin film or membrane the system will be between
20 and 100 particle diameters high, so that this limit is not critical.

3.3.5 Numerical Demonstration

In this section we give some numerical results from the implementation of the MMM2D
algorithm used in the ESPResSo simulation package. The code implements the paral-
lelised algorithm as described. The cell structure and the link–cell structure coincide,
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Figure 3.1: Absolute force component error ∆F∞ = max(|∆Fx|, |∆Fy|, |∆Fz |) (tri-
angles) and energy error ∆φ (circles) as a function of the z–position of the randomly
placed particle. For both the force and energy error the open symbols give the maxi-
mal error that occurred, the filled symbols the average error. The solid line shows the
force error estimate given by Eqn. (3.19), the dashed line the energy error estimate
given by Eqn. (3.18).

i. e. the code cannot handle interaction ranges larger than 1/4max(λx, λy). All sin-
gle node computations presented in the following were performed on a single AMD
Athlon64 3000+ processor with 512 MB DDR400 RAM. The parallel computations
were performed on an IBM Regatta pServer using up to 16 Power4 1.4 GHz processors.

2–particle systems

The first presented here is the non–uniform error distribution of MMM2D that was
stated in Sec. 3.3.2. For Figure 3.1 we used a cubic simulation box of unit length
containing two particles, one located at (0, 0, 0.5), the other randomly placed in the
box. The electrostatic interaction was calculated 100000 times, using MMM2D tuned
to an maximal force component error of 10−2 with B = 8 layers, and using MMM2D
with an error 10−17 and B = 4 layers. The results of the second calculation were
used as “exact” results to compare with. Due to the different numbers of layers for
z ∈ [0.25, 0.375) or z ∈ [0.75, 1) for the exact calculation the near formula is used and
for the other the far formula. This demonstrates that the far formula and the near
formula indeed coincide up to numerical errors.

Fig. 3.1 shows clearly that the error distribution is highly non–uniform. While the
near formula due to its adaptive implementation of the Bernoulli and polygamma sums
as described in Sec. (3.3.2) has a nearly uniform error distribution with a maximal
error close to the limit, the far formula reaches its maximal error only at the point
of closest approach 0.375. From this point down the error drops exponentially as
predicted. The steepness of the exponential drop is given by R, which is the reason
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Figure 3.2: Same as Fig. 3.1, but here the error distribution is given as a function
of the x–coordinate (left) and y–coordinate (right).

why a precision of only 10−2 was chosen, since otherwise the exponential drop would
not have been visible anymore. At the right side, at 0.75, the situation is even worse,
since the fixed particle is placed as far as possible from the upper border of its layer. If
the fixed particle were placed close to 0.625, the situation would have been exchanged,
i. e. the error for small z would be excessively small. In principle it would be possible
to take less (p, q)–vectors into account for higher z–distances, but this would actually
increase the computation time as the calculation of the Ξ(l/h,s/c,s/c) gets more complex.
The Ξ(±,s/c,s/c) would not only have to be summed up, but also some from lower layers
would have to be subtracted again. To this aim additional communications between
non–adjacent processors would be necessary, which is clearly unfavourable.

The error in the potential is lower than the error of the forces by an order of magni-
tude as predicted. The plateau reached at a precision of 5 · 10−8 reflects the precision
of the self–energy. One should be aware that the error distribution does not average
out since for particles near the z–borders of the simulation box more interactions will
be treated by the far formula with excessive precision than for a particle in the centre,
so that the overall precision is better for the particles at the z–borders. As long as the
errors are tuned to be sufficiently low (e. g. an order of magnitude below the thermal
energy), this will not do any harm. The error distribution along the y–axis is also
non–uniform due to the asymmetric construction of the near formula. But since this
error is translationally invariant in a periodic coordinate, it averages out, and will not
bias the results.

In the time scale considerations above, the error estimate for the far formula has a
central place. Fig. (3.1) shows that the estimates τF (for the forces) and τE (for the en-
ergy) are accurate. They both slightly overestimate the maximal errors as measured,
but are close enough to the numerical results. Therefore the timing considerations
should not be affected.

Many particle systems

Having laid the theoretical foundations of the time scaling in Sec. 3.3.3, it will be
shown now that the theoretical scaling can be achieved in a real computation. The
timings presented in the following always give the time for a single force evaluation.
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3 Two dimensional periodicity

The computational structure of the potential evaluations is identical, although the
final summation for the far formula uses three times less operations. In general the
time for a potential evaluation is around 75% of the computation time of a force
evaluation.

Three different scalings with the number of particles were presented in the previous
section: For constant box length a computation time scaling of O(N 5/3) is expected,
while for constant density the scaling is O(N 2), and finally the minimal O(N 4/3)
scaling on a multiprocessor system. To check these, three corresponding force com-
putations were performed using MMM2D tuned to a maximal pairwise force error of
10−4.

Run 1: N particles of unit charge, half of them with positive sign and half of them
with negative sign, are placed randomly in a simulation box of constant size
10 × 10 × 10. The simulation was performed on a single Athlon64 processor.

Run 2: The N particles are placed randomly in a simulation box of constant box
height h = 10 and constant density ρ = 0.5. The simulation was performed
again on the single Athlon64 processor.

Run 3: The same as run 1, but instead of the single AMD processor, 1, 2, 3, . . . 16
processors of the IBM pServer were used.

Fig. (3.3) shows the computation time for different numbers of layers and particles
from run 1. One can see that the computation time shows a clean shallow minimum,
which can be easily found during a production run by e. g. increasing the number
of layers until the performance drops. Note that for 1000 particles the minimal com-
putation time is obtain for 15 layers, but the computation time for 14 and 16 layers
differs from the minimal computation time by less than the accuracy of the time
measurements. Therefore numerical simulations can determine the optimal number
of layers only up to a certain range. For practical applications this is very convenient
since one does not necessarily have to determine the optimal number of layers, and
still obtains a nearly optimal computation time.

Figs. (3.4) and (3.5) show the computationally optimal number of layers and the
achievable computation time for different numbers of particles for runs 1 and 2. The
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Figure 3.4: Optimal number of layers B of MMM2D for different numbers of
particles N . The filled red circles denote results from run 1, the open blue ones results
from run 2. The solid red line marks a fit of Bideal(N) = O(N 1/3) (see Eqn. (3.34))
to the corresponding data. The errorbars denote the range of numbers of layers for
which the computation time is at most 10ms larger than the optimum, which is the
resolution of the time measurement.

computation time predictions of the previous sections, and to a lesser extent also the
predictions for the optimal number of layers, fit well to the numerical results.

However, above 3000 particles, for both runs the number of layers shifts to a lower
value, while the computation time shifts to slightly higher prefactor. This can be
understood from the fact that the L2 cache of the Athlon64 is 512k large, which is
equivalent to 3000 particles in ESPResSo. For more than 3000 particles, more and
more parts of the particle data have to be loaded from the slower main memory
instead of the processor cache, which hits primarily the calculation of the far formula,
which has to access the particle data O(R2)–times. The algorithm responds to this
by decreasing the amount of computation time spent in the far formula.

For small numbers of particles in run 2 the optimal number of layers B in-
creases. This can be understood from Eqn. (3.26), which gives the lower limit
4uyh = 4h/

√

N/ρ/h for the near formula to be valid. For 1000 particles this gives
B > 3, which is far from the optimal number of layers B = 12, but for 100 particles,
the limit is B > 9. Close to this limit the computation time of the near formula starts
to increase, which the algorithm compensates by increasing the number of layers.

The results from run 3 are shown in Figs 3.6 and 3.7. Note that the single pro-
cessor computation times of the Power4 processor are roughly 80% higher than the
computation times using the AMD processor for large particle numbers. For small
numbers of particles, which fit into the L2 cache of the Athlon64, the computation
time is even 125% higher. This difference is even higher than what could be ex-
pected from the processor clocks, which are 2GHz for the Athlon64 and 1.3GHz for
the Power4. Since similar differences have been obtained also for other simulations
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Figure 3.5: Computation times of MMM2D in milliseconds using the optimal num-
bers of layers as shown in Fig. 3.4. The symbols are the same as in Fig. 3.4, the lines
are fits of the predicted scaling of the computation time Tideal(N) = N5/3 (solid red,
see Eqn. (3.35)) for constant box size and N 2 (dotted blue) for constant density to
the corresponding data.

using ESPResSo, e. g. a simple Lennard–Jones fluid [9], this has to be addressed to
fundamental architectural differences between the two processor types.

Nevertheless, on the IBM pServer MMM2D still scales as O(N 5/3), and one can see
that minimal achievable computation time scales as O(N 4/3), although the overhead
for small numbers of particles is comparatively large. This is simply due to the fact
that the minimal computation time is achieved with the minimal possible number of
layers, i. e. a single cell per processor. For the calculation of the near formula, the
particle data of each processor has to be communicated to its neighbor. In total, nearly
the full particle data has to communicated once per energy evaluation, generating a
large communication time overhead.

The efficiency of an parallel algorithm is the total computation time of all proces-
sors divided by the computation time of one processor, i. e. Tcpunproc/Tcpu,nproc=1.
Theoretically, the computation time scales like 1/nproc (see Eqn. 3.36), so that the
efficiency should be 1. The efficiency obtained from run 3 is nearly as good, roughly
90% with 16 processors. For 10000 particles on two processors the efficiency is roughly
100%.

The predicted logarithmic dependency of the computation time from the error
bound is shown in Fig. 3.8. Here 500 particles were placed randomly in a 10×10×10
simulation box and the force calculated using MMM2D at varying error bounds. The
number of layers was chosen separately for each error bound such that the computa-
tion was minimal. Since the computation of both the near formula and the far formula
depend logarithmically on the error bound, one expects the number of layers to be
constant with respect the error bound. Indeed the number of layers was 10 except for
small error bounds below 1e-6, where the optimal number of layers gradually increases
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Figure 3.6: Optimal number of layers B of MMM2D for different numbers of particles
N and numbers of processors. The numbers of processors were 1 (red plusses), 2 (green
stars), 3 (blue stars), 4 (magenta squares), 8 (cyan circles), 12 (black triangles up) and
16 (orange triangle downs). The implementation of MMM2D in ESPResSo requires
an equal number of cells per processor, so that for 16 processors the number of layers
is necessarily a multiple of 16. The black line marks the predicted optimal scaling of
the number of layers Bideal(N) = O(N 1/3) (see Eqn. (3.34)).

to 14 for 10−2. The reason for this is that the far formula with its single cutoff R
can be tuned much more precisely than the near formula. Therefore with decreased
error bound the computation time decreases more for the far formula than for the
near formula, which leads to a higher optimal number of layers.

In Fig. 3.9 we demonstrate the scaling of the optimal computation time with in-
creasing box length at constant particle number. Fig. 3.9 shows the computation time
and number of layers of a simulation with 1000 randomly placed particles in a box
with fixed λx = λy = 10 and various h. For large h and therefore B the computation
time does no longer scale as predicted, since here the O(B3) part of the layer com-
munication becomes visible. The obvious wave structure on top of the scaling in the
optimal layer number cannot be explained easily.

The predicted computation time scalings can be reproduced well by the implemen-
tation of MMM2D in ESPResSo. The optimal B only loosely follows the predicted
scalings, so that its value cannot be determined a priori very well. The suggested
trial and error method seems to be the only viable method. This is supported by
the fact that the computation time minimum in B is very shallow and the existence
of rigorous error bounds, which asserts that changing the number of layers will not
influence the outcome of the simulation.

In [4, 6] it was shown that MMM2D is faster than all other methods for two di-
mensionally periodic systems known so far, and is the first one featuring a rigorous
error bound. Together with the parallelisation this method is the method of choice
for high precision requirements (e. g. below 10−8) or moderate numbers of particles.
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Figure 3.7: Computation times of MMM2D in milliseconds using the optimal number
of layers as shown in Fig. 3.6. The symbols are the same as in Fig. 3.6, the black line
marks the predicted minimal computation time scaling O(N 4/3).

On a single processor for around 500 particles the computation time grows above
0.1s. For a real simulation, the computation time should not be much larger, since a
million time steps will take around one day. For low precision requirements and large
numbers of particles, another method, ELC, will be presented in the following.
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Figure 3.8: Computation times
of a MMM2D force evaluation with
different error bounds ∆F∞ for
the force. The solid line is a fit
of − log(ε) to the data.
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Figure 3.9: Optimal setting of the number of layers B (right graph) and the
corresponding computation times (left graph) for different box lengths h for 1000
particles on a single processor. The solid lines are fits of the predicted relations
BN
ideal(θ) = θ−1/3 ∼ h2/3 (right graph, see Eqn. (3.39)) and TNideal(θ) = h−2/3 (left

graph, see Eqn. (3.40)).
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4 ELC — fast electrostatics for two

dimensional periodicity

For a large number of particles the computation time scaling should not have a power
of N larger than 1. So far such a scaling is only known for methods for three di-
mensional periodicity. Therefore early attempts tried to use such a method for the
case of two dimensional periodicity. Since the system is overall charge neutral, it is
obvious to replicate the system also in the non–periodic axis and leave a sufficiently
large gap. This approach was seen early to produce significant errors [102]. Yeh and
Berkowitz [102] suggested to change the summation order to a summation layer by
layer, which indeed gives a reliable method.

In the following a new expression, called the electrostatic layer correction (ELC)
term, for the error produced by the artificial images will be derived. From this ex-
pression one can estimate the error produced by the method proposed by Yeh et al.,
and one can tune the gap size according to the desired accuracy. But that is only
a byproduct. Its primary advantage is that it can be used to subtract the contri-
butions of the unwanted image layers, which can be evaluated with a computation
time proportional to N . Therefore it can be combined with any conventional method
for three dimensions without decreasing the computation time scaling, allowing one
to use a much smaller gap between the layers, thereby speeding up the computation
time considerably. The ELC method has been published previously in Refs. [5, 16].

4.1 Changing the summation order

We consider the same system of two dimensional periodicity contained in a box of
dimension λx × λy × h. So far the particles are only replicated periodically in x and
y. The basic idea is now to expand this slab system in the non-periodic z–coordinate
to a system with periodicity in all three dimensions, with a period of λz > h, which
leaves an empty gap of height δ = λz − h above the particles in the simulation box.
Fig. 4.1 shows a schematic view of the resulting system. δ will be called gap size in
the following.

Since the electrostatic potential is only finite if the total system is charge neutral,

Replicated slab system

Slab system

Replicated slab system λ

 h λz

x/y

Figure 4.1: Schematic representa-
tion of a fully periodically replicated
slab system
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Figure 4.2: Schematic view of two different summation orders.

the additional image layers (those layers above or below the original slab system) are
charge neutral, too. Now let us consider the nth image layer which has an offset of
nλz to the original layer. If nλz is large enough, each particle of charge qj at position
(xj , yj, zj + nλz) and its replicas in the x, y-plane can be viewed as constituting a
homogeneous charged sheet of charge density σj =

qj
λxλy

. The potential of such a

charged sheet at distance z is 2πσj |z|. Now we consider the contribution from a pair of
image layers located at ±nλz, n > 0 to the energy of a charge qi at position (xi, yi, zi)
in the central layer. Since |zj − zi| < nλz, we have |zj − zi + nλz| = nλz + zj − zi
and |zj − zi − nλz| = nλz − zj + zi, and hence the interaction energy from those two
image layers with the charge qi vanishes by charge neutrality:

2πqi

N
∑

j=1

σj(|zj − zi + nλz| + |zj − zi − nλz|) = 4πqinλz

N
∑

j=1

σj = 0 . (4.1)

The only errors occurring are those coming from the approximation of assuming ho-
mogeneously charged, infinite sheets instead of discrete charges. This assumption
should become better when increasing the distance nλz from the central layer.

However, in a naive implementation, even large gap sizes will result in large errors
[102]. This is due to the order of summation for the standard Ewald sum, which is
spherical. This order implies that with increasing shell cutoff S the number of image
shells grows faster than the number of shells of the primary layer, namely O(S 3) versus
O(S2) (see Fig. 4.2(a)). In other words, we include the unwanted terms faster than
the actually wanted terms. Also the image layers are not really infinite charged sheets
but are truncated due to the cut-off. Yeh and Berkowitz [102] already suggested that
this problem can be solved by changing the order of summation. Smith has shown
that by adding to the Ewald energy the term

Ec = 2πM2
z − 2πM2

3
, (4.2)

where M is the total dipole moment as given by Eqn. (2.10), one obtains the result
of a slab–wise summation instead of the spherical limit [87]. Slab–wise summation
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4.2 The electrostatic layer correction term

refers to the sum
∑

|n|≥0El(n), where El(n) denotes the energy, calculated in spherical
summation order (in the generalised sense), resulting from the image layer with shift
nλz in the z–coordinate. Technically this is the order where one treats the original
layer first and then add the image layers grouped in symmetrical pairs (see Fig. 4.2(b)).
Obviously this summation order fits much better to the charged sheet argument given
above. Although this is a major change in the summation order, the difference given by
Eqn. (4.2) is a very simple term. In fact, Smith shows that changes of the summation
order always result in a difference that depends only on the total dipole moment.

Applying this slab–wise summation order, Yeh and Berkowitz stated that a gap size
of at least h is normally sufficient to obtain an moderately accurate result. Therefore
the result of a standard Ewald method plus the shape–dependent term given by
Eqn. (4.2), which will be called the slab–wise method, can be used to obtain a good
approximation to the result for the slab geometry with the same computational effort
as for the underlying 3d–Ewald method (no matter if a simple or sophisticated method
is used). One drawback is that no theoretical estimates exist for the error introduced
by the image layers. Therefore one might be forced to use even larger gaps to assure
that no artifacts are produced by the image layers. One simple deducible artifact
is that the pairwise error will be position dependant. Particles in the middle of the
slab will see no effect of the image layers due to symmetry, and particles near the
surface will encounter for the same reason the largest errors, which is definitely an
unwanted feature for studying surface effects. Therefore averaging error measures like
the commonly used RMS force error should not be applied without additional checks
for the particles near the surfaces.

The other drawback is that normally the box now will have a significantly larger
λz/λx rsp. λz/λy. But for Ewald methods the computation time is proportional
to these fractions [16]. This is easy to see as the number of k–space vectors in the
z direction must be proportional to λz to maintain a fixed resolution and therefore
error. It is verified experimentally that a gap of at least h is needed for a nearly cubic
simulation box. For a cubic system h = λx = λy therefore the computation time will
be increased by a factor of around two.

Nevertheless because of the bad scaling of other methods for slab geometries which
is at best O(N 5/3) as for MMM2D, for particle numbers above N ≈ 1000 using slab–
wise methods is a great improvement.

4.2 The electrostatic layer correction term

We will now derive a term that allows to calculate the exact contribution of the image
layers very efficiently, which will be called the electrostatic layer correction (ELC) in
the following. The layer correction itself will be using the far formula of MMM2D.
For the following analysis there is no special restriction on h except for h < λz, which
is always true for a finite number of particles.

We start with the formal definition of the Coulomb energy of the slab system

E =
1

2

∞
∑

S=0

∑

k2+l2=S

N
∑′

i,j=1

qiqj
|pi − pj + nkl|

. (4.3)
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4 ELC — fast electrostatics for two dimensional periodicity

We now expand the system to a fully three-dimensional periodic system, where λz
determines the period in the z-coordinate as for a truly three dimensional periodic
system. We can rewrite the energy as

E = Es +Ec +Elc , (4.4)

where

Es =
1

2

∞
∑

S=0

∑

k2+l2+m2=S

N
∑′

i,j=1

qiqj
|pi − pj + nklm| . (4.5)

denotes the standard three-dimensional Coulomb–sum with spherical limit. To eval-
uate this expression one can use any of the efficient algorithms, starting with the
classical Ewald summation up to modern methods like fast multipole methods [57]
or mesh based algorithms [19]. Ec again denotes the shape–dependent term given by
Eqn. (4.2) and finally

Elc = −1

2

∑

m>0

∑

m=±m

∞
∑

S=0

∑

k2+l2=S

N
∑

i,j=1

qiqj
|pi − pj + nklm| . (4.6)

denotes the contribution of the image layers, for which we are going to derive a new
expression in the following.

We start with the expression for the energy induced by an image layer at z–offset
m 6= 0:

El(m) = −1

2

∞
∑

S=0

∑

k2+l2=S

N
∑

i,j=1

qiqj
|pi − pj + nklm| . (4.7)

Since m 6= 0 this expression can be easily evaluated using the far formula, and we
obtain

Elc(m) = −1

2

N
∑

i,j=1

qiqjφ(pi − pj + n00m) , (4.8)

where φ is given by

φ(x, y, z) = 4uxuy
∑

p,q>0

e−2πfpq |z|

fpq
cos(ωpx) cos(ωqy)+

2uxuy
∑

p>0

e−2πfp|z|

fp
cos(ωpx) + 2uxuy

∑

q>0

e−2πfq |z|

fq
cos(ωqy) − 2πuxuy|z| . (4.9)

For now we only have a formula for the contribution of one image layer, so we still
have to sum over all m. This task can be performed analytically. The terms 2πuxuy|z|
can be omitted since they are exactly the homogeneous sheet potential and we have
seen before that this cancels out for charge neutral systems (see Eqn. (4.1)). The
summation over m of the remaining sums over (p, q) is performed using the geometric
series (as these sums are absolutely convergent, exchanging the summation over m
and the summations over (p, q) is possible). For m > 0 we obtain, ignoring the terms
independent of m,

∑

m≥1

e−2πfpq |z+mλz | =
e−2πz

e2πfpqλz − 1
, (4.10)
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for m < 0

∑

m≤−1

e−2πfpq |z+mλz | =
e2πz

e2πfpqλz − 1
(4.11)

since |z| ≤ λz.

Combining the terms for ±m again we obtain

Elc =
N
∑

i,j=1

qiqjψ(pi − pj) , (4.12)

where

ψ(x, y, z) =4uxuy
∑

p,q>0

cosh(2πfpqz)

fpq(e2πfpqλz − 1)
cos(ωpx) cos(ωqy)+

2uxuy
∑

p>0

cosh(2πfpz)

fp(e2πfpλz − 1)
cos(ωpx)+

2uxuy
∑

q>0

cosh(2πfqz)

fq(e2πfqλz − 1)
cos(ωqy) .

(4.13)

The forces can be obtained from that by simple differentiation since the sums are
absolutely convergent. Although the form in Eqn.(4.13) has a much better conver-
gence than the original form in Eqn.(4.6), its main advantage is a linear computation
time with respect to the number of particles N . This is achieved similar to the far
formula of MMM2D, using the addition theorems for the cosine rsp. sine hyperbolicus.

4.3 Implementation

The implementation is very similar to MMM2D. This time the per–particle–terms are

χ
(c/s,c/s,c/s)
i = qi cosh / sinh(2πfpqzi) cos / sin(ωpxi) cos / sin(ωqyi) (4.14)

for the (p, q) vectors with p, q 6= 0 and

χ
(x,c/s,c/s)
i = qi cosh / sinh(2πfpzi) cos / sin(ωpxi) ,

χ
(y,c/s,c/s)
i = qi cosh / sinh(2πfqzi) cos / sin(ωqyi)

(4.15)

for the (p, 0) and (0, q) vectors. The indices in the obvious way determine which of
the functions cosine (hyperbolicus) or sinus (hyperbolicus) are used. For the energy
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4 ELC — fast electrostatics for two dimensional periodicity

one has to evaluate

Elc = 4uxuy

∑

p,q>0

N
∑

i,j=1

1

(e2πfpqLz − 1)fpq

(

χ
(ccc)
i χ

(ccc)
j + χ

(csc)
i χ

(csc)
j + χ

(ccs)
i χ

(ccs)
j + χ

(css)
i χ

(css)
j −

χ
(scc)
i χ

(scc)
j − χ

(ssc)
i χ

(ssc)
j − χ

(scs)
i χ

(scs)
j − χ

(sss)
i χ

(sss)
j

)

+

2ux

∑

p>0

N
∑

i,j=1

1

(e2πfpLz − 1)fp

(

χ
(xcc)
i χ

(xcc)
j + χ

(xcs)
i χ

(xcs)
j − χ

(xsc)
i χ

(xsc)
j − χ

(xss)
i χ

(xss)
j

)

+

2uy

∑

q>0

N
∑

i,j=1

1

(e2πfqLz − 1)fq

(

χ
(ycc)
i χ

(ycc)
j + χ

(ycs)
i χ

(ycs)
j − χ

(ysc)
i χ

(ysc)
j − χ

(yss)
i χ

(yss)
j

)

.

(4.16)

Similar to MMM2D the summations over i rsp. j can be calculated beforehand.
To this aim every node calculates the sum over the local particles, then this value is
added up over all nodes and then the sum distributed back. The latter is necessary
for the force calculation, where no summation over i occurs, for the potential it is
sufficient to only gather the data on the master node and do the final summation over

(p, q) only there. The summation and distribution of the χ
(c/s,c/s,c/s)
i is implemented

efficiently in MPI, where it is termed a reduce all operation. Together with a fast
method for three dimensional periodicity such as P3M or MMM we have a parallel
algorithm for two dimensional periodicity with a scaling of O(N logN).

In pseudo code the calculation for one (p, q) vector of the ELC term on a single node
looks like this:

χ(s/c,s/c,s/c) = 0

for each particle j

calculate χ
(s/c,s/c,s/c)
j

χ(±,s/c,s/c)+ = χ
(±,s/c,s/c)
j

end

for each particle j

calculate particle interaction from χ
(s/c,s/c,s/c)
j χ(s/c,s/c,s/c)

end

In a multiprocessor environment the reduce all operation would be placed between
the two loops.
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4.4 Error estimates

4.4 Error estimates

The next step to do is the adaption of the error formulas for the far formula to our
newly developed ELC formula given by Eqn. (4.13). We will show that using ELC the
errors will be highest for the particles near the borders of the simulation box instead
of lowest as for MMM2D. Therefore again the maximal pairwise error seems a more
reasonable error estimate than the conventionally used RMS force error. But since for
the widely used Ewald methods the RMS force error is the standard error measure,
this error measure plays a more prominent role for ELC. It was already described for
MMM2D how such an error measure can be estimated from the maximal pairwise
error.

While the error bounds for MMM2D were only used to tune the algorithm, the
error estimates for ELC can also be used to obtain an error bound for the slab–wise
method from Ref. [102], and hence one can determine “a priori” the necessary gap
size to reach a preset precision. Therefore we also have to deal with small cutoffs,
especially the case when no terms of Elc are added.

The summation is performed only over all (p, q) vectors contained in ΓR as defined
in Eqn. (3.17). An upper bound for the absolute value of the summands is

∣

∣

∣

∣

cosh(2πfpqz)

fpq(e2πfpqλz − 1)
cos(ωpx) cos(ωqy)

∣

∣

∣

∣

≤

e−2πfpqλz cosh(2πfpqz)

fpq(1 − e−2πfpqλz)
≤ e−2πfpqλz cosh(2πfpqh)

fpq(1 − e−2πfpqλz )
. (4.17)

The sum over all these upperbounds can then be performed similar to the error es-
timate for MMM2D. Of course because the cosine hyperbolicus is monotonous, one
could use any larger value for h. This is for example necessary in a priori estima-
tions. Using this we find the upper bound for the maximal pairwise error similar to
Eqn. (3.18) as

τE :=
1/2 +

ux+uy
πR

e2πRλz − 1

(

exp(2πRh)

λz − h
+

exp(−2πRh)

λz + h

)

, (4.18)

and the error estimate for the forces is given by

τF :=
1

2(e2πRλz − 1)

(

(

2πR + 2(ux + uy) +
1

λz − h

)

exp(2πRh)

(λz − h)
+

(

2πR + 2(ux + uy) +
1

λz + h

)

exp(−2πRh)

(λz + h)

)

,

(4.19)

which again is also a weaker bound for the potential.
The error produced by the method of Yeh and Berkowitz can be obtained by using

a small R, and adding the upper bound for the (p, q) not yet covered by ΓR separately.
R = 0 cannot be used since the error estimates are both obviously singular for R → 0.
This is due to the fact that fpq is replaced by its lower limit R during the estimation.
But R ∼ max(ux, uy) is sufficient for the error estimate to be of practical use.

Note that Eqn.(4.17) shows that the error in the potential or the force for a single
particle will be largest if it is located near the gap, since there |zij | will be maximal.
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4 ELC — fast electrostatics for two dimensional periodicity

This effect will increase with increasing R. Therefore when using the layer correction
one must apply non–averaging error estimates such as the maximal pairwise error.
Averaging error estimates such as the RMS force error might be misleading about the
error of the particles near the gap, which often are of special interest in simulations
of surfaces or thin films.

All our error estimates show that the error drops exponential both with R and
λz. The decay in R means that it is easy to achieve high accuracies with our layer
correction formula, while the decay in λz shows that slab–wise methods can achieve
good accuracies without increasing λz too much. But the error formulas also show
that for λz >> h not the fraction λz/h dominates the error, but rather Rλz. From
the form of ΓR one can see that for R scales like uz rsp. uy. Therefore the actually
important fractions are λz/λx and λz/λy and not λz/h as is commonly believed.
Also the extreme case of h = 0 immediately shows that this cannot be true, as a
conventional method for three dimensional periodicity will not deliver exact results
for a purely planar system.

If one assumes an Ewald type of method to be used for the three dimensional
periodic system, one can estimate the optimal λz as follows. The computation time
of the Ewald type method is proportional to λxλyλz. R is proportional to 1/(λz −h),
therefore the computation time spent with ELC is proportional to λxλy/(λz−h)2. The
total computation time is therefore minimised by a constant gap size independent of
the box dimensions.

4.5 Numerical demonstration

In this section results from the implementation of the layer correction ELC within
ESPResSo are shown. As method for the three dimensionally periodic system always
P3M is used, tuned to an RMS force error of less than 10−4. Our implementation of
P3M is limited to cubic simulation boxes, therefore the simulation box is always cubic
in the following with a box length of λ. This also does not allow to present numerical
results for a plain implementation of the Yeh and Berkowitz method, as this requires
λz to be at least four times larger that λx or λy. But using the argument above the
number of k–vectors of P3M will be four times larger so that also the computation
time will be around four times larger than the values presented here for the plain
P3M.

The robustness of the error estimates was already shown for MMM2D and will
therefore not be addressed here again. What will be shown is the predicted error
accumulation at the borders of the simulation box. To this aim a cubic simulation
box of side length 10 is filled randomly with 1000 charged particles as before, but the
z–coordinates range only from 0 to 9, i. e. a gap of size 1 is left empty in the z–
direction. For this system the electrostatic interactions were calculated 50 times and
compared to a MMM2D calculation tuned to a maximal pairwise error below 10−15.
Fig. 4.3 shows the resulting error distribution along the z–axis for different cutoffs R
of ELC. Comparing the h = 9 and the h = 5 case one can see that the overall maximal
error drops for all error bounds. But still the error for the R = 0 case is unacceptable
high. Since our implementation is limited to λx = λy = λz, this is no wonder.
More interesting is the fact that the error of the cut off layer correction increases
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Figure 4.3: Absolute force error ∆F∞ as a function of the particle z–coordinate
for a homogeneous random system of 1000 particles in a box of size 10 × 10 × h with
a system height h = 9 (left graph) and 5 (right graph). The red rectangles denote
results for R = 0, the green circles for a maximal error of 10−2, corresponding to
R = 1 for h = 9 and R = 0.1 for h = 5, and the blue triangles for a maximal error of
10−4, corresponding to R = 1.8 rsp. R = 0.3. Open symbols show the maximal error
that occurred within all particles with similar z–coordinates, the filled symbols show
the RMS force error of these particles.

exponentially with decreasing distance to the borders, even in the case where no ELC
terms are added. This strongly supports our warning to choose the error bound for
ELC rsp. the Yeh and Berkowitz method small enough. For the calculation presented
here, at a maximal pairwise error of 10−4 the error is smaller than the P3M maximal
error.

Fig. 4.4 shows the computation time results for a system as described above with
ELC tuned to an maximal pairwise error of 10−6, while P3M is still tuned for a RMS
force error of 10−4. With this combination of error bounds, even for 10000 particles
no visible error accumulation near the borders occur. Additionally δ = 0.2λ and
δ = 0.05λ were used. The computation time for P3M was equal for all settings of δ
up to time measurement errors. At 3000 to 5000 particles the L2 cache limit causes
a transition to a higher prefactor for ELC similar to MMM2D. At 6000 particles P3M
changes the mesh grid size from 32 to 64 mesh points per side, which results in a jump
in the computation time. The computation time of MMM2D is considerably higher,
so that MMM2D is only useful if excessive precision is needed or for small particle
numbers below 200.

The crossover of the computation time between ELC and P3M occurs for δ around
0.2λ. A computation using the plain Yeh and Berkowitz method requires a simulation
box with λz = 4λ or larger for the same precision. As was argued before, the compu-
tation time for P3M scales linearly with λz, so that the computation time for a plain
Yeh and Berkowitz type calculation can be estimated by multiplying the computation
times of P3m as given in Fig. 4.4 by a factor of four. For h = 0.5λ, i. e. a simulation
box filled with particles up to a height half as large as the other box sides, ELC is
around 5 − 7 times faster than P3M, leading to an overall computation time around
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Figure 4.4: Computation times of ELC for systems of N particles and different gap
sizes δ = 0.5λ (cyan triangle downs), δ = 0.2λ (violet triangle ups), δ = 0.1λ (blue
circles) and the δ = 0.05λ (green rectangles). The red plusses show the computation
time of P3M, the yellow filled circles show the timings of MMM2D. The stippled line
is a linear fit to the δ = 0.5λ curve.

6/5 of the computation times of P3M, which is more than three times faster than the
estimated computation time of the Yeh and Berkowitz method.

Due to the fact that our current implementation of P3M only allows for a cubic
simulation box, the fraction λ/λz will always be one, which results in a large error for
all possible values of the slab height. Even for a system with particles only in a slab
of height h = 0.1λ simulations the error of the energy may be larger than the energy
itself. Therefore using a method for three dimensionally periodic boundary conditions
in two dimensional periodicity requires the use of ELC in ESPResSo, plain Yeh and
Berkowitz calculations are not possible with reasonable error bounds. But also if
one has an implementation of a method for three dimensional periodicity which can
handle arbitrary box dimensions, the combination together with ELC should be faster
than a method using the plain Yeh and Berkowitz approach, since the theoretical
prediction for the optimal gap size is constant, so that the optimal cutoff for the ELC
term will always be quite different from zero. This in turn means that the plain Yeh
and Berkowitz method is never optimal.
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5 Different dielectric constants

A special problem in the calculation of the electrostatic interaction arises from the
fact that in the non periodic direction one often has materials with different dielectric
constants inside the simulation space and outside. For example water has a dielectric
constant around ε = 80, while vacuum has ε = 1. Therefore a thin film of water con-
taining charged particles will have non–negligible polarisation effects. Similar effects
occur at a metallic surface, such as found in catalysators.

Technically, one has to deal with the situation were on either one or both sides of
the simulation box in the nonperiodic direction the dielectric constant is different from
the one inside the simulation box (see Fig. 5.1). The resulting polarisation effects can
be handled using image charges. The following two sections show briefly how this can
be handled by MMM2D rsp. ELC, following the approach presented by Smith for the
method of Nijboer and de Wette [88].

5.1 Single surface

In the case of a single surface the image charges are just a mirrored picture of the
charges in the simulation box itself, where every charge is multiplied with the factor

∆ =
εo − εi
εo + εi

= 1 − 2
1

1 + εo
εi

∈ [0, 1] . (5.1)

εi denotes the dielectric constant in the simulation region, εo denotes the dielectric
constant outside, i. e. inside the wall. If the wall is metallic as in the first example
above, εo = ∞ and ∆ = 1, i. e. the image charges have full charge. These image
charges are treated identically to the image charges in the periodic direction in that
they only contribute through their potential on the charges inside the simulation box,
but do not interact with other image charges.

With MMM2D the treatment of this case is fairly easy. Assume that the surface is
the bottom border of the simulation box with a z–coordinate of z = 0, as shown on
the right of Fig. 5.1. Except for the lowest layer, the image particles are all sufficiently

iε=ε

oε=ε

q

−∆q
−∆q

q ε=εi

oε=ε

oε=ε

∆ q2

−∆q

q2∆ Figure 5.1: Schematic representation
of the two systems with different dielectric
constants as described in the text, on the
left with two interfaces, on the right with
only one. In the cyan regions ε = εi, in
the white regions ε = εo. The solid lines
represent the surfaces, the dashed lines are
periodic replications of the surfaces.
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5 Different dielectric constants

far away from the layers of the simulation box that their interaction can be calculated
using the far formula. This means that they occur only as additional contributions to

the Ξ
(l,s/c,s/c)
s as defined in Eqn. (3.30). Since the mirroring just exchanges the signs of

the z–coordinates of the particles, the additional contribution is given by Ξ
(h,s/c,s/c)
B+1 ,

which the top processor node can calculate easily. This value is then broadcasted to

all other nodes and added to all Ξ
(l,s/c,s/c)
s . Since some of the particles in the lowest

layer may be closer to their images then allowed for the far formula, the interaction
between the lowest layer has be calculated using the near formula. Therefore for this

layer Ξ
(−,s/c,s/c)
0 has to be subtracted from Ξ

(l,s/c,s/c)
0 again, so that these interactions

are not treated by the far formula, and the interactions of the particles of the lowest
layer with their mirrored images have to be calculated by the near formula explicitly.

With ELC the treatment of this case is in general difficult. The additional image
charges cannot be treated like real charges since then their interactions with each
other will be calculated as well. This is fine if one is interested in the force, but
for the energy there is no simple way of subtracting the unwanted contribution of
the images charges again. ELC can only be used if the real charges are kept away
from the surface by some distance, for example by their finite volume. In this case
the interactions with the images can be treated by the far formula alone (of course
this also holds for MMM2D, but is not necessary there). In typical simulations the
minimal distance to the border will be around 1/100 of the other dimensions, so that
the calculation of the image charges will need a considerable amount of computation
time. A calculation using the plain Yeh and Berkowitz approach is not possible, since
from the image particles some interactions have to be taken into account and some
not. This cannot be achieved with e. g. the Ewald method, so that ELC is still the
best approach for large numbers of particles.

5.2 Two surfaces — thin films

The case of a two surfaces, i. e. a thin film, is more complex. The reason is that not
only the particles in the primary simulation box generate image charges, but also the
image charges themselves at the opposite surface. This leads to an infinite array of
charges with exponentially decaying charge, as shown in Fig. 5.1. We assume that
the surface are at z = 0 and z = λz. The image charges of a single charge qi located
at pi are located at

p2m−1 = −pi + n0,0,2m , q2m−1 = −∆|2m−1|qi and

p2m = pi + n0,0,2m , q2m = ∆|2m|qi ∀n ∈ Z .
(5.2)

If ∆ = 1, i. e. if metallic boundary conditions are applied, the sum equals to the
standard sum with three dimensional periodic boundary conditions, except for the
alternating signs. By expanding the system to contain one of the generated images
charges, i. e. double λz, one can use any method for three dimensional periodicity.
The order of summation does not matter, which is reflected by the fact that the
resulting system necessarily has a net dipole moment of 0.

If ∆ < 1, the problem is very similar to ELC. The prefactors ∆2|m| rsp. ∆|2m−1|

can be treated easily together with the factors e2πfpq |m|λz that occur in Eqn. (4.10).
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5.2 Two surfaces — thin films

If we again assume that the particles are kept sufficiently far away from the border,
the calculation is identical to the ELC algorithm except for some prefactors, which we
will now derive. We start with m ≥ 1, i. e. layers above the primary simulation box.
We obtain in analogy to Eqn.(4.10)

−
∑

m≥1

∆|2m−1|e2πfpq |−zi−zj+2mλz | = − e2πfpq(−zi−zj)

∆
(

∆2e4πfpqλz − 1
) (5.3)

and
∑

m≥1

∆|2m|e2πfpq |zi−zj+2mλz | =
e2πfpq(zi−zj)

∆2e4πfpqλz − 1
. (5.4)

For m ≤ −1 we obtain

−
∑

m≤−1

∆|2m−1|e2πfpq |−zi−zj+2mλz | = − ∆e2πfpq(zi+zj)

∆2e4πfpqλz − 1
(5.5)

and
∑

m≤−1

∆|2m|e2πfpq |zi−zj+2mλz | =
e2πfpq(−zi+zj)

∆2e4πfpqλz − 1
. (5.6)

Now not only zi − zj occurs in the exponents, but also zi + zj , and the prefactors are
different than in Eqn. (4.10), but the resulting formula can be treated algorithmically
identical as for ELC with the same computational efficiency.

If the particles can get arbitrarily close to the surfaces, only MMM2D can

be used. This time for every layer s one needs all sums
∑

t<s−1 Ξ
(±,s/c,s/c)
t ,

∑

s−1≤t≤s+1 Ξ
(±,s/c,s/c)
t and

∑

t>s+1 Ξ
(±,s/c,s/c)
t instead of only Ξ

(l,s/c,s/c)
s =

∑

t<s−1 Ξ
(+,s/c,s/c)
t and Ξ

(h,s/c,s/c)
s =

∑

t>s+1 Ξ
(−,s/c,s/c)
t as needed for the plain

MMM2D method. They can be obtained in the same sequential communication as
described for MMM2D, just the data amount doubles, since now both the terms with
positive and negative sign in the exponential have to be communicated up and down.
The prefactors are determined by adding up the prefactors obtained from the far for-
mula of MMM2D, which are just ±1 or 0, and the prefactors obtained from Eqns. (5.3)

through (5.6), which are of the form ±∆ν
(

e4πfpqλz − 1
)−1

. The signs of the prefactors
have to be obtained from the addition theorems for sine and cosine.

Similar to the single surface case, for the lowest layer s = 0 and the highest layer
s = B − 1 the prefactors are different than for the other layers, since the interaction
with their own mirrored image layers has to be done using the near formula, as
particles can be arbitrarily close to their images (and probably will be, as the image
charges have opposite sign). In this case, the sum over m ≥ 1 rsp. m ≤ −1 of the
odd terms turns into a sum over m ≥ 2 rsp. m ≤ −2, raising an additional prefactor
of ∆−2e4πfpqλz rsp. ∆2e4πfpqλz .

The computation time of both MMM2D rsp. ELC will increase considerably if the
algorithms given above for treatment of different dielectric constants are implemented.
Nevertheless the algorithmic details remain, therefore the overall computation time
scaling is still valid, i. e. O(N 5/3) for MMM2D and O(N) for the ELC term. Moreover
due to the different approach, an adaption of the Ewald type methods especially to the
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5 Different dielectric constants

case of two surfaces cannot be done as easily. For these methods, the contributions of
the images cannot be calculated analytically, and consequently no adaption of these
methods for the case different dielectrica has been reported so far.
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6 One dimensional periodicity

After treating the case of two dimensionally periodically replicated systems it is only
naturally to turn to the case of one dimensionally periodic systems. Such a periodicity
is useful e. g. in researching properties of long stiff polymers such as DNA or nano–
pores. The DNA is modelled as an infinitely long rod or helix, which is obtained again
by periodic replication. This will be illuminated in the following chapter. In general
a one dimensionally periodic system is suitable if the problem in question is locally
translationally invariant in exactly one of the coordinates.

So far only a few methods for this periodicity are known. Besides the multipole
methods for large numbers of particles and the Lekner method, which are suitable
for all kinds of boundary conditions, the only method specifically aimed at systems
with one dimensional periodicity is the 1d–Ewald sum. This method has the same
two drawbacks as the 2d–Ewald method: it is computationally slow to evaluate and
no accurate error estimates exist.

The formulas from MMM2D can easily be reused for one dimensional periodicity.
In this case, not even the algorithmic tricks of MMM2D cannot be applied, since the
obtained far formula does not allow a simple product decomposition at all. Therefore
MMM1D has a complexity of O(N 2), but small problems can still be tackled since
the prefactor is small. For MMM1D rigorous error bounds similar to MMM2D exist.
The unfavourable scaling of the methods for this periodicity is remedied by the fact
that the number of particles needed to avoid finite size effects is much smaller than
for three dimensionally periodicity; most simulations can be performed with less than
500 particles.

The first section of this chapter will present a proof that also in one–dimensionally
periodic systems the convergence factor approach is equivalent to the spherical sum-
mation approach. In the following sections the MMM1D formulas are derived and the
corresponding error formulas, and finally some timing results are given, showing that
the method can be used efficiently for up to 300 particles on a single processor.

6.1 General prerequisites

Without loss of generality, we assume that the periodic coordinate is z. The particles
are assumed to reside in a primary simulation box of dimensions

B0 =

(

−∞,∞) ×
(

−∞,∞) ×
(

−λz
2
,
λz
2

]

. (6.1)
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6 One dimensional periodicity

Since now the only periodic coordinate is z, the notations differ slightly from the
notations given in Sec. 2.1, as used in chapters 2 and 3. Here we use the notation

ρ :=
√

x2 + y2 rsp. ρij :=
√

x2
ij + y2

ij (6.2)

for the projection of the (particle) coordinates onto the (x, y)–plane.

nk = (0, 0, kλz) (6.3)

denotes the base vector of the k–th periodic image, and

rk := |r + nk| =
√

ρ2 + (z + kλz)2 (6.4)

the distance from the origin to the k–th periodic image of position r.

Using this notations, we can write down the Coulomb energy of a system with
periodicity only along the z–axis as

E =
1

2

∞
∑

S=0

∑

k=±S

∑′

i,j

qiqj
|pij + nk|

. (6.5)

Again, the order is spherical in the hypergeometric sense, although this order this time
reduces to adding up the contributions symmetrically. Using the same argument as
given in chapter 3 one can see that the Coulomb sum in a one dimensionally system is
absolutely convergent as long as the contributions are added symmetrically. Therefore
again no shape–dependent term occurs.

6.2 1d–Ewald method

The Ewald method for a one dimensionally periodic system was described first by M.
Porto [81]. Similar to the two dimensional periodicity case, the formula does not allow
a product decomposition and therefore has to be calculated with an unfavourable
O(N2) loop. Moreover no accurate error bounds have been reported so far. The
energy is calculated as follows:

E =
1

2

∑

i,j

qiqj





∑′

k

erfc(α|rij + nk|)
|rij + nk|

+
1

2λz

∑

m6=0

Gm(ρij , α)eimzij



+

1

2λz

∑

i,j
ρij 6=0

qiqj
(

−γ − Γ(0, α2(ρ2
ij)) − log(α2(ρ2

ij))
)

+
α√
π

∑

i

q2i ,

(6.6)

where Γ(n, x) denotes the incomplete gamma function [1] and γ Euler’s constant. The
coefficients of the Fourier transformation are given by

Gm(ρ, α) =











∑

k≥0

(−1)km2k

4kk!
ρ2kΓ

(

−k, m2

4α2

)

for ρ 6= 0

Γ
(

0, m
2

4α2

)

for ρ = 0
.
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6.3 Equivalence of the convergence factor approach and the spherical summation

The additional sum of k inside the Gm(ρ, α) generates an additional cutoff besides the
Fourier and real space cutoffs with which one has to deal. Since no error estimates
are known, using of this method requires extensive numerical tests to tune α and
the cutoffs. Moreover typically 100-200 terms of the Fourier space sum have to be
included, which makes the method quite slow because the evaluation of the incomplete
gamma function in software is slow.

6.3 Equivalence of the convergence factor approach and the

spherical summation

Like in MMM and MMM2D, for MMM1D the Coulomb sum is modified by the ap-
plication of a convergence factor e−βr, i. e. the image contribution to the potential
reads

φ̃β(x, y, z) =
∑

k 6=0

e−βrk

rk
, (6.7)

while the total energy Ẽ is defined identically to the three dimensional case, see
Eqn. (2.20). Similar to the two dimensionally periodic case it can be proven that
E = Ẽ, i. e. that the convergence factor is equivalent to the generalised spherical
summation order. To this aim, we look at the difference between E and Ẽ as given
by

2(Ẽ −E) =
∑

k>0

∑

i,j

qiqj

(

e−β|rk| − 1

|rk|
+
e−β|r−k| − 1

|r−k|

)

. (6.8)

To show that this difference is zero, we insert the terms e−β|nk|/|r±k|, i. e. we introduce
a different convergence factor e−β|nk|. Then the difference is given by

2(Ẽ −E) =
∑

k>0

∑

i,j

qiqj

(

e−β|rk| − e−β|nk|

|rk|
+
e−β|r−k| − e−β|nk|

|r−k|

)

+

∑

k>0

∑

i,j

qiqj

(

e−β|nk| − 1

|rk|
+
e−β|n−k| − 1

|r−k|

)

.

(6.9)

We show that both sums vanish in the limit β → 0, i. e. that the convergence factors
e−β|rij+nk| and e−β|nk| are equivalent and that the latter one is equivalent to the
spherical summation order in turn.

Although the difference between e−β|rk| and e−β|nk| is small, Smith showed that
the convergence factor e−β|nk| leads to the same result as a spherical summation even
with three dimensional periodicity, in contrast to the factor e−β|rk| [87]. For the case
of one and two dimensional periodicity it is sufficient to know that 1/|r+nk|+1/|r−
nk| − 2/|nk| = O(|nk|3). Then because of charge neutrality, we can add the −2/|nk|
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6 One dimensional periodicity

term needed inside the i, j–sum without changing the value and obtain

∑

k>0

∑

i,j

qiqj

(

e−β|nk| − 1

|rk|
+
e−β|nk| − 1

|r−k|

)

=
∑

k>0

(

e−β|nk| − 1
)

∑

i,j

qiqj

(

1

|rk|
+

1

|r−k|
− 2

1

|rk|

)

=
∑

k>0

(

e−β|nk| − 1
)

O
(

|nk|−3
)

= O(β) ,

(6.10)

which shows that the second sum in Eqn. (6.9) vanishes in the limit β → 0.

However the first sum of Eqn. (6.9) is more delicate. For β|rk − nk| < 1

e−β(|r±k |−|nk|) − 1

|r±k|
=

1

|r±k|

∞
∑

l=1

(−1)l

l!
βl(|r±k| − |nk|)l

= β

( |nk|
|r±k|

− 1

)

+ θ(β, |r±k|, |nk|) ,

(6.11)

where |θ(β, |r±k|, |nk|)| ≤ 1
2
β2(|r±k|−|nk|)2

|r±k| . Inserting this into the first sum of Eqn. (6.9)

leads to

∣

∣

∣

∣

∣

∣

∑

k>0

e−β|nk|∑

i,j

qiqj

(

e−β(|rk|−|nk|) − 1

|rk|
+
e−β(|r−k|−|nk|) − 1

|r−k|

)

∣

∣

∣

∣

∣

∣

≤
∑

k>0

e−β|nk|∑

i,j

|qiqj|
∣

∣

∣

∣

∣

β

rk

( |nk|
|rk|

− 1

)

+
β

r−k

( |nk|
|r−k|

− 1

)

+

θ(β, |rk|, |nk|) + θ(β, |r−k|, |nk|)
∣

∣

∣

∣

∣

≤
∑

k>0

e−β|nk|∑

i,j

|qiqj|O
(

β

|nk|2
)

+
∑

k>0

e−β|nk|∑

i,j

|qiqj|O
(

β2

|nk|

)

= O(β) .

(6.12)

This argument still holds if the summation over k is replaced by a two dimensional
lattice, but for the three dimensional lattice the argument is not valid.

6.4 MMM1D

For ρ > 0 and β > 0, we can Fourier transform the sum in Eqn. (6.7) to a sum over
Bessel functions as was also done in the near formula (3.11) of MMM2D. This gives
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6.4 MMM1D

the far formula

φβ(ρ, z) =
∑

k∈Z

e−βrk

rk

= 2uz
∑

p∈Z

K0(
√

β2 + (2πuzp)2ρ)e
2πiuzpz

= 4uz
∑

p6=0

K0(2πuzpρ) cos(2πuzpz)−

2uz log(λzβ) − 2uz log(ρ/(2λz)) − 2uzγ + O(β) .

For ρ ≤ 1/2λz , uzρ < Nψ − 1/2 we can use

φ̃β(ρ, z) =
∑

k 6=0

e−βrk

rk

= −uz
∑

n≥0

(−1
2

n

)

(

ψ(2n)(Nψ + uzz) + ψ(2n)(Nψ − uzz)
)

(2n)!
(uzρ)

2n−

2uzγ − 2uz log(λzβ) +

Nψ−1
∑

k=1

(

1

rk
+

1

r−k

)

+ O(β)) ,

which is the same formula as used in the one dimensional sum occurring in the near
formula of MMM2D. The tilde again denotes the regularised potential omitting the
central box interaction.

The self energy for a particle is

∑

k 6=0

e−β|kλz|

|kλz|
= −2uz log(1 − e−βλz) = −2uz log(λzβ) + O(β) ,

i. e. there is no contribution except the singularity and the self energy will not occur
in the numerical evaluation.

We define ω = 2πuzp. For ρ > 0 the far formula in one dimension is given by

φ(ρ, z) = 4uz
∑

p6=0

K0(ωρ) cos(ωz) − 2uz log

(

ρ

2λz

)

− 2uzγ

Fρ(ρ, z) = 8πu2
z

∑

p6=0

pK1(ωρ) cos(ωz) +
2uz
ρ

Fz(ρ, z) = 8πu2
z

∑

p6=0

pK0(ωρ) sin(ωz) .

(6.13)

From φ the energy is obtained as

E =
1

2

∑

i,j

qiqjφ(ρij , zij) . (6.14)

Similarly the force exerted on particle i is given by

Fi = qi
∑

j

qjF (ρij , zij) (6.15)
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where F (ρ, z) = (Fρ(ρ, z)x/ρ, Fρ(ρ, z)y/ρ, Fz(ρ, z)).

For small ρ we obtain the near formula in one dimension

φ̃(ρ, z) = −uz
∑

n≥0

(−1
2

n

)

(

ψ(2n)(Nψ + uzz) + ψ(2n)(Nψ − uzz)
)

(2n)!
(uzρ)

2n − 2uzγ+

Nψ−1
∑

k=1

(

1

rk
+

1

r−k

)

F̃ρ(ρ, z) = −u3
z

∑

n≥0

(−1
2

n

)

(

ψ(2n)(Nψ + uzz) + ψ(2n)(Nψ − uzz)
)

(2n)!
(uzρ)

2n−1+

Nψ−1
∑

k=1

(

ρ

r3k
+

ρ

r3−k

)

F̃z(ρ, z) = −u2
z

∑

n≥0

(−1
2

n

)

(

ψ(2n+1)(Nψ + uzz) + ψ(2n+1)(Nψ − uzz)
)

(2n)!
(uzρ)

2n+

Nψ−1
∑

k=1

(

z + kλz
r3k

+
z − kλz
r3−k

)

,

(6.16)

where the tilde denotes that the interactions in the primary simulation box are left
out and have to be added separately. Otherwise the expressions of the near and far
formula can be exchanged freely.

6.5 Error estimates

An upper bound on the absolute errors of the energy of the far formula for the
summation up to but not including the finite cutoff P is

|φ(ρ, z) − φ(P, ρ, z)| ≤ 4uz K0(2πuzPρmin)
e2πuzρmin

2πuzρmin

rsp. for the forces

|Fρ(ρ, z) − Fρ(P, ρ, z)|∞ ≤ 8πu2
z K1(2πuzPρmin)

e2πuzρmin

2πuzρmin

(

P − 1 +
1

2πuzρmin

)

provided that ρ ≥ ρmin. This formulas are obtained similarly to Eqn.(3.21). ρmin
will in general be the radius where the calculation switches from the far to the near
formula.

The near formula can be treated by the Leibniz criterion as usual and no further
error analysis is needed. Note that for the simplicity of the implementation one will
normally choose a fixedNψ. Moreover for (uzρ)/(Nψ−1/2) → 1 the convergence of the
polygamma series will become poor. Therefore one will check that ρ < θλz(Nψ−1/2)
where 0 < θ < 1 is a constant which determines the number of polygamma terms
calculated. The larger θ is, the larger ρ may be, but more polygamma terms have
to be calculated in the worst case. In the implementation of MMM2D Nψ is fixed
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Figure 6.1: Computation time of MMM1D in milliseconds for varying number of
particles N (left graph) and varying force error bounds ∆F∞ (right graph). The
straight line gives a fit of O(N 2) (left graph) rsp. −log(ε) to emphasise the scaling.

to a value of 2 to avoid the additional summation of direct interactions. Numerical
tests show that the optimal computation time is achieved for ρ << λz. Therefore in
ESPResSo θ is fixed to 2/3, which allows ρ to take any value between 0 and λz.

Because the error estimates are the same as for MMM, MMM2D and ELC, it is
unnecessary to show the error dependencies here again. The same warning as for the
other methods holds: the error drops exponentially outside the switching radius. On
the other hand since the formulas are radially invariant, the radial error distribution
is uniform.

Although MMM1D has a clearly unfavourable scaling of O(N 2), it still can be used
effectively in a simulation, especially because of its small prefactors. The evaluation
of the incomplete gamma function and the Bessel function consume a similar amount
of computation time, but instead of 100-200 Fourier space terms, the far formula
achieves good precision with less than 20 terms of the Bessel sum.

The left graph in Fig. 6.1 shows the computation time of the implementation of
MMM1D in ESPResSo for the force calculation. The test system consists of randomly
positioned unit charges in a simulation box of fixed size 10 × 10 × 10, MMM1D was
tuned to a maximal pairwise force error of 10−4. The computations were performed
on a single AMD Athlon64 3000+ processor. One can see clearly the expected com-
putation time scaling of O(N 2). The second graph in Fig. 6.1 shows the computation
time for 100 particles at various error bounds. The scaling is logarithmic, similar to
MMM2D(see Fig. 3.8) or MMM. Using again the criterion of less than 0.1s per time
step, MMM1D can be used efficiently for up to 400 particles.

6.6 Formulas for rods

For the problem we want to investigate in the next chapter we need the Coulombic
forces exerted by a charged rod both on a particle and on another charged rod.
To be able to combine these potentials with the MMM1D method, they have to be
calculated using the same convergence factor. Especially it is important to see that
the rod potential generates the same singularity in β, so that for a system of charges
and rods the singularity still vanishes if the overall system is charge neutral.
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6 One dimensional periodicity

The energy between a rod of line charge density τ and a particle of charge q is

λz
∫

0

∑

k∈Z

qτφβ(ρ, z − z̃)dz̃

=

λz
∫

0

qτ

(

4uz
∑

p6=0

K0(2πuzpρ) cos(2πuzp(z − z̃))

− 2uz log(λzβ) − 2uz log(ρ/(2λz)) − 2uzγ

)

dz̃ + O(β)

= −2qτ (log(λzβ) + log (ρ/(2λz)) + γ) + O(β) ,

(6.17)

which recovers the classical textbook result up to the constant term qτγ and the
singularity. Note that the charge of the rod section inside the simulation box is
Q = τλz, so that the singularity in Eqn. (6.17) is −2uzqQ log(λzβ), which is consistent
with the singularity found in the particle–particle energy formulas.

For two rods of line charges τ and τ ′ the interaction energy is therefore

−2ττ ′λz (log(λzβ) + log (ρ/(2λz)) + γ) + O(β) . (6.18)

As one can see clearly, the rod–rod energy diverges as the rods get close, especially the
self energy of a rod is infinite has to be omitted from any energy calculation. Similar
to the rod–particle energy, the singularity has a form consistent with the singularity
of the MMM1D particle–particle energy formulas, so that the singularity vanishes in
a charge neutral system consisting of charged particles and rods.

As usually, we finally give the energies and forces after the limit β → 0. For the
interaction between a rod and a particle we have

Erod(ρ, z) = −2qτ log (ρ/(2λz)) − 2qτγ

F rodρ (ρ, z) = 2qτ/ρ

F rodz (ρ, z) = 0

(6.19)

and for the interaction of two rods

Erod,rod(ρ) = −2ττ ′λz log (ρ/(2λz)) − 2ττ ′λzγ

F rod,rodρ (ρ) = 2ττ ′λz/ρ .
(6.20)
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7 Applications of MMM1D: The two rod

system

In a polar solvent, macromolecules possessing dissociable groups can acquire a charge
by dissociation like a normal salt. These charged polymers, called polyelectrolytes,
or charged colloids are then surrounded by a layer of oppositely charged counterions.
It is well known that sufficiently strong electrostatic interactions lead to behaviour
which cannot be described on the mean-field level. It can be proven rigorously that the
standard mean field Poisson–Boltzmann theory will predict repulsion between like–
charged macroions, regardless of their shape [72,95,94,85]. But attractive interactions
and other non–mean–field phenomena like overcharging have been confirmed by a
large number of computer simulations [40, 41, 58, 59, 39, 22, 53]. Experiments have
shown that DNA, a stiff, highly negatively charged polyelectrolyte, can be condensed
by multivalent counterions [101, 80, 12]. This correlation–induced attraction is for
instance believed to be important for the compaction of DNA inside viral capsids
[50, 33]. In this chapter we deal with the case of two infinitely long, charged rigid
rods, which can be regarded as simple DNA models or more generally as a good
approximation for studying the ion distribution around semi–flexible polyelectrolytes.

The experimental as well as the theoretical observations indicate that attraction of
like–charged objects occurs in highly charged systems, i. e. when multivalent coun-
terions are present, the macroions are highly charged, or if the strength of the elec-
trostatic interaction is increased, for example at low temperatures. Often attractive
interactions go along with a strong correlation hole in the radial distribution func-
tion of the counterions and interlocking patterns along the parallel rods [18]. Several
attempts have been made to go beyond the Poisson–Boltzmann mean field theory,
using integral equations [34, 23], density functional theories [10], field theoretical cal-
culations [65, 67, 66] or other approaches [42, 86, 49]. For a general overview on the
topic see the articles of Deserno, Jönsson, Kjellander and Netz in [44].

In Sec. 7.1, the classical Poisson–Boltzmann theory for a single rod and the concept
of Manning condensation are briefly reviewed. Sec. 7.2 presents the strong coupling
(SC) theory and its application to the problem of two like–charged rods. In contrast
to the Poisson–Boltzmann theory, the strong coupling theory is aimed at the limit
of infinite counterion–counterion coupling and is able to predict attraction between
the charged rods. Sec. 7.3 compares results for the equilibrium surface to surface
distance of two rods and the counterion distribution from computer simulations using
MMM1D to the predictions of the strong coupling theory. The numerical data fits
well to the SC prediction, although the simulations are performed at only moderately
high coupling. It is shown that the Rouzina–Bloomfield parameter γRB can be used
to quantify the degree of agreement between the simulation and the theory.

In Sec. 7.4 the problem is viewed in the special case of zero temperature. This limit
is identical to the limit of infinite Bjerrum length, and therefore infinite counterion–
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7 Applications of MMM1D: The two rod system

counterion coupling, compared to the thermal energy. The SC theory predicts attrac-
tion of the two like–charged rods for all distances, so that their equilibrium position is
side by side. The counterions are predicted to line up in the gap between the two rods.
Some simple analytical calculations using the MMM1D formulas will demonstrate that
this is not true in general, and a parameter similar to the Rouzina–Bloomfield pa-
rameter is identified which determines whether the counterions will accumulate in the
gap. Moreover, the counterions are located in the plane spanned by the two rods
for a larger range of this parameter, until ultimately they leave the plane. These
predictions are confirmed by simulation results presented in Sec. 7.6.

7.1 Poisson–Boltzmann Theory

Consider a system consisting of N counterions of charge qe and mass m, and a fixed
charge distribution ρf (r)e. Note that both the counterion charge and the fixed charge
density are given in multiples of the unit charge e. The potential energy of this system
is given by

βU =
∑

i<j

q2`B
|ri − rj |

+

∫

r

∑

i

qρf (r)`B
|r − ri|

dr +
1

2

∫

r

∫

r′

ρf (r)ρf (r
′)`B

|r − r′| dr′dr , (7.1)

where β = 1/(kBT ), and `B is the Bjerrum length

`B :=
e2

4πεε0kBT
, (7.2)

which measures the distance at which the interaction energy between two unit charges
is equal to the thermal energy. Assuming a surface charge density of σs for the
fixed charge distribution, the interaction of the counterions with the fixed charge
distribution can be quantified by the Gouy–Chapman length [35]

µ = − 1

2πqσs`B
, (7.3)

which measures the distance from a charged plane of charge density σs at which a
particle of charge q has an effective interaction of kBT with the plane. Note that due
to charge neutrality, either σs or q have to be negative. It will prove convenient to
rescale the coordinates by µ via r̃ = r/µ, which gives the electrostatic energy of the
system the following simple form:

Ũ = βU =
∑

i<j

Ξ

|r̃i − r̃j |
− 1

2π

∫

r̃

∑

i

ρ̃f (r̃)

|r̃ − r̃i|
dr̃ +

1

8π2Ξ

∫

r̃

∫

r̃′

ρ̃f (r̃)ρ̃f (r̃
′)

|r̃ − r̃′| dr̃′dr̃ , (7.4)

where ρ̃f (r) = µσ(r)/σs is the rescaled charge density and

Ξ :=
q2`B
µ

= −2πq3`2Bσs . (7.5)

The dimensionless quantity Ξ is called the coupling parameter , since it determines
the strength of the counterion–counterion interaction [67]. From the rescaled repre-
sentation of the electrostatic energy Ũ one can see that in the limit of vanishing Ξ
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counterion–counterion correlations, which are given by the first term in Eqn. (7.4),
only play a minor role, while they dominate for large Ξ. We start with presenting
the Poisson–Boltzmann theory, which is the mean field theory appropriate for weak
counterion–counterion coupling.

Poisson–Boltzmann theory

The Hamilton operator for this system is given by H =
∑

i
p2i
2m + U , from which the

partition function is obtained as

Z =
µ3N

N !(2π~)3N

∫

r̃1,...,r̃N

∫

p1,...,pN

e−βHdp1 · · · dpNdr̃1 · · · dr̃N , (7.6)

where the coordinates r̃1, . . . , r̃N are integrated only over the space accessible to par-
ticles. The momentum part factorises nicely into independent contributions of the
single particles which can be calculated analytically, and one obtains

Z =
1

N !λ̃3N
T

∫

r̃1,...,r̃N

e−Ũdr̃1 · · · dr̃N , (7.7)

where λ̃T = 2π~/(µ
√

2πmkBT ) is the rescaled thermal wavelength. However,
the positional part of the integral cannot be separated into single particle con-
tributions, since the particle coordinates are coupled in Ũ . The main idea of
the mean–field treatment is to replace the original N–particle distribution function
pN = e−Ũ(r̃1,...,r̃N )/(

∫

e−Ũ(r̃1,...,r̃N )) by a product of single particle distribution func-
tions pp := p1(r̃1) · · · p1(r̃N ), where p1(r̃) is the one–particle distribution function.
p1(r̃) is the distribution, which is obtained if a particle interacts with the other par-
ticles only through their mean field, i. e. their equilibrium particle distribution. The
product particle distribution allows to treat the positional integrals particle by particle
again.

Although the product distribution is different from the exact Boltzmann–
distribution in general, it still gives an upper bound to the exact free energy through
the Gibbs–Bogliubov-inequality [21],

F ≤ 〈H〉p − TSp = µ3N

∫

r̃1,...,r̃N

pH dr̃1 · · · dr̃N + kBTµ
3N

∫

r̃1,...,r̃N

p log p dr̃1 · · · dr̃N

(7.8)
which holds for any particle distribution function p. Inserting p = pp gives after some
simple calculations the Poisson–Boltzmann free energy functional

FPB(ρ̃) = kBT

∫

r̃

ρ̃(r̃)

(

1

2
ψ̃i(r̃) + ψ̃f (r̃) + log(ρ̃(r̃)λ̃3

T ) − 1

)

dr̃ , (7.9)

where ρ̃(r̃) = Nµ3p1(r) is the rescaled particle density,

ψ̃i(r̃) =

∫

r̃′

Ξρ̃(r̃′)
|r̃ − r̃′|dr̃

′ (7.10)
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2L 2R

y
x

Figure 7.1: Schematic view of
the one rod system along the rod
axis. The inner circle represents
the rod of radius R and line charge
density τ , the outer circle a cylin-
drical compartment of radius L.
The particles of charge −q can
only access the region enclosed by
the two circles.

is the rescaled electrostatic potential due to the particle density ρ̃, and

ψ̃f (r̃) = − 1

2π

∫

r̃′

ρ̃f (r̃
′)

|r̃ − r̃′|dr̃
′ (7.11)

is the rescaled electrostatic potential due to the fixed charge density ρ̃f . Note that the
constant self energy of the fixed charge distribution is ignored throughout this section.
FPB(ρ̃) is an upper bound to the free energy for any normalised p1 rsp. ρ̃, therefore
we are interested in smallest possible upper bound. From a functional minimisation
of FPB(ρ̃) with respect to ρ̃ we obtain

ρ̃(r̃) = ρ̃0e
−ψ̃(r̃) , (7.12)

where ψ̃(r̃) = ψ̃i(r̃) + ψ̃f (r̃) is the total electrostatic potential, and ρ̃0 is chosen such
that ρ̃ is normalised, i. e.

∫

r̃ ρ̃(r̃)dr̃ = N . ρ̃0 is determined most easily be finding an

r̃0 with ψ̃(r̃0) = 0, since then ρ̃0 = ρ̃(r̃0). Inserting this into Poisson’s equation for ψ̃,

∆r̃ψ̃(r̃) = 2 (2πΞρ̃(r̃) − ρ̃f (r̃)) , (7.13)

which is equivalent to Eqn. (7.10), one obtains the Poisson–Boltzmann equation

∆r̃ψ̃(r̃) = 2
(

2πΞρ̃0e
−ψ̃(r̃) − ρ̃f (r̃)

)

. (7.14)

Since the key approximation in the Poisson–Boltzmann theory is the decoupling of
the particles by using a product particle distribution, the Poisson–Boltzmann theory
is only applicable to the case of small counterion–counterion coupling, i. e. small Ξ,
see also the discussion in Ref. [66].

Application to a charged rod

Now we consider an infinitely long rod, which is neutralised by charged particles or
counterions. We assume that the rod has a line charge density of τ < 0 and radius R,
and that the counterions have a charge of q > 0. The whole system is enclosed by a
cylindrical simulation box of radius L (see Fig. 7.1). For this system, the fixed charge
distribution is given by

σ(r) =
τ

2πR
δ(|r| −R) ,
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which assumes that the rod is centred at (0, 0). Rescaling the coordinates by the
Gouy–Chapman length of the rod surface

µ = − R

q`Bτ
(7.15)

leads to the following dimensionless coordinates and parameters

R̃ = −`Bqτ and Ξ = −q3`2Bτ/R . (7.16)

Note that the rescaled rod radius r̃ is not dependent on the rod radius itself.

Due to the radial symmetry, the Poisson–Boltzmann equation for this system is
effectively one dimensional and reads for R̃ < r̃ < L̃ in the radial direction

d2

dr̃2
ψ̃(r̃) +

1

r̃

d

dr̃
ψ̃(r̃) = κ2eψ̃(r̃) , (7.17)

where κ =
√

4πΞρ̃(L̃), which enforces ψ̃(L̃) = 0 as the normalisation. The rod charge
enters only via the boundary conditions, which are obtained from Gauss’ theorem as

d

dr̃
ψ̃(R̃) = −2 and

d

dr̃
ψ̃(L̃) = 0 . (7.18)

The Poisson–Boltzmann equation can be solved exactly [32, 2], yielding

ψ̃(r̃) = −2 log

(

r̃

L̃

√

1 + C−2 cos

(

C log
r̃

R̃M

))

, (7.19)

which can be verified easily by insertion. κ is related to C through the simple equation
κ2L̃2 = 2(1+C2), but C and R̃M have to be determined from the boundary conditions
(7.18), which leads to two coupled transcendental equations:

tan

(

C log
R̃

R̃M

)

=
1 − R̃

C
and tan

(

C log
L̃

R̃M

)

=
1

C
, (7.20)

which result in the equation

C log
L̃

R̃
= arctan

1

C
+ arctan

R̃− 1

C
(7.21)

for C. The fraction of counterions found in the region from radius R̃ to radius r̃ is
given by

φ(r̃) =
1

τ̃

r̃
∫

R̃

2πr̃′ρ̃(r̃′)dr̃′ = 1 − 1

R̃
+
C

R̃
tan

(

C log
r̃

R̃M

)

, (7.22)

where τ̃ = τµ is the rescaled line charge density. Note that φ(R̃M ) = 1 − 1/R̃, which
is an important quality of R̃M , that will be described now.
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Manning condensation

In the limit of infinite dilution, i. e. L̃ → ∞, the partition function for a single
counterion is given up to some factors by

∞
∫

R̃

e−2R̃ log(r̃)2πr̃dr̃ = 2π

∞
∫

1

x1−2R̃dx , (7.23)

which only exists for R̃ > 1. Therefore the distribution function p1 cannot be nor-
malised for R̃ ≤ 1, and all particles diffuse away from the rod in the limit of infinite
dilution. In contrast, rods with R̃ > 1 are able to localise counterions. This led
Oosawa [76] and Manning [62, 63, 64] to the idea that such rods condense a certain
fraction of the particles, so that the counterions together with the rod form a larger
rod of a smaller line charge density . With a fraction of condensed counterions equal
to 1 − 1/R̃, the charge parameter R̃ of the resulting rod is 1, and consequently the
remaining counterions diffuses away.

This concept has become known as Manning condensation, the charge parameter
R̃ is called the Manning parameter and R̃M the Manning radius. The Manning
parameter R̃ is commonly denoted by ξ in the literature and determines the strength
of the counterion–rod interaction, as one can see from its definition R̃ = q`Bτ . It can
be proven strictly that in the Poisson–Boltzmann theory any fraction of the particles
below 1−1/ξ will stay within a finite radius around the rod, while any fraction larger
than 1 − 1/ξ spreads over the full space in the limit of infinite dilution [52].

A similar argument can be made for charged planes and charged spheres. In the first
case, the counterions never diffuse away independently of the surface charge density,
since the electrostatic potential of the plane, z̃, increases stronger than the logarithmic
potential of the rod. In the case of a charged sphere the counterions cannot be bound
at all, since the potential −1/(2πr̃) approaches a constant for r̃ → ∞. In this way the
infinite rod case represents the transition between full or no counterion condensation,
and the behaviour becomes dependent on the prefactors.

Using the concept of counterion condensation, the following simple argument states
that attraction between two parallel like–charged rods can only occur if the combined
charge parameter 2ξ of the two rods is larger than one [83]. From large distances,
the two rods appear as one rod with twice the line charge density of a single rod.
If the charge parameter of this double rod is smaller than one, the counterions will
diffuse away in the limit of infinite dilution, and the two rods will only feel their bare
repulsion. Although this provides some argument that attraction can occur only for
ξ > 1/2, if at all, this argument cannot predict attraction directly.

Besides this simple argument of Manning, one can apply the Poisson–Boltzmann
theory to the problem of attraction between like–charged macroions. However, also
the Poisson–Boltzmann theory is not able to predict attraction [72, 95, 94, 85]. The
Poisson–Boltzmann theory can give predictions for the particle density which are too
low to compensate for the pure electrostatic repulsion of the rods, so that no attraction
can occur at all. However, having sufficiently many particles close to the rods does
not necessarily mean attraction in turn, and indeed the prediction of attraction is
only possible, if counterion–counterion correlations are included.
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The Poisson–Boltzmann theory is only valid for weak counterion–counterion cou-
pling, in which case one does not expect attraction of the rods anyways. In contrast to
this, the strong coupling theory is now presented, which is exact only in the opposite
limit of infinite coupling parameter and is therefore better suited to predict attraction
between like–charged objects.

7.2 Strong Coupling Theory

The strong coupling (SC–) theory of A. Moreira and R. Netz is obtained from a
systematic expansion of the grand canonical free energy in inverse powers of Ξ [65].
Originally the SC theory was developed for the case of infinitely large charged planes,
and tested extensively by Monte Carlo simulations [67], but recently the strong cou-
pling theory was applied also to the case of two charged rods rsp. spheres, neutralised
by their counterions [70, 69]. The derivation of the SC theory is fairly involved and
will not be repeated here; for details on the SC theory, see Ref. [66]. Now only the
main results will be given, namely the strong coupling free energy approximation and
the predicted particle distribution.

The total potential energy of the system given in Eqn. (7.4) is split up into three
parts, namely

Ũ =
∑

i<j

Ξ

|r̃i − r̃j |
+
∑

i

ũ(r̃i) +
Ũ0

πΞ
, (7.24)

where the interaction of a particle with the fixed charge density is given by

ũ(r̃) = − 1

2π

∫

r̃′

ρ̃f (r̃)

|r̃ − r̃′|dr̃
′ , (7.25)

and the self interaction of the fixed charge density is

Ũ0 =
1

8π

∫

r̃

∫

r̃′

ρ̃f (r̃)ρ̃f (r̃
′)

|r̃ − r̃′| dr̃′dr̃ . (7.26)

The rescaled total charge of the system is given by

Q̃ :=

∫

r̃

ρ̃f (r̃)dr̃ = −2πΞN , (7.27)

where the second equality follows from the charge neutrality condition. Using these
notations, the strong coupling free energy is given by

FSC =
F1

Ξ
, (7.28)

where

F1 =





Ũ0

π
− Q̃

2π
log

∫

r̃

e−ũ(r̃) +
Q̃

2π
log Q̃− Q̃

2π



 (7.29)

is the leading order coefficient of a formal expansion of the free energy in terms of
inverse powers of Ξ. Therefore the strong coupling energy should be exact in the limit
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of infinite Ξ. But unlike F1, all higher order coefficients (which are not shown here),
dependent on Ξ; the expansion is not a power series in the strict sense. For the SC
free energy to be exact in this limit it is sufficient if these coefficients are bounded
for Ξ → ∞. For the case of two charged planes this can be proven rigorously, but for
other cases such as two rods or spheres this is unknown so far.

One should notice that F1 only contains the macroion–macroion and macroion–
counterion interactions, but not the counterion–counterion interactions, although the
strong coupling theory is derived for the limit of infinite counterion coupling. In fact,
due to the infinite counterion coupling, there is a huge correlation hole around each of
the counterions, so that the concrete nature of the counterion–counterion interactions
becomes unimportant. For example, at a charged surface the counterions will form
a quasi crystal parallel to the charged plane. However, perpendicular to the plane,
the counterion–counterion correlations only play a minor role, since the perpendicular
distance of the counterions is small compared to their lateral distance. Therefore the
particle density will not depend on the individual nature of the counterion–counterion
correlations in the strong coupling limit. A similar argument can be formulated for
the case of two charged rods or spheres.

To renormalise the potential energy contributions, one chooses a convenient fixed
reference position r̃0 and replaces Ũ0 by

Ũ s0 =
1

8π

∫

r̃

∫

r̃′

ρ̃f (r̃)ρ̃f (r̃
′)

|r̃ − r̃′| dr̃′dr̃ − Q̃

4π

∫

r̃

ρ̃f (r̃)

|r̃ − r̃0|
dr̃ (7.30)

and ũ by

ũs(r̃) = − 1

2π

∫

r̃′

ρ̃f (r̃)

(

1

|r̃ − r̃′| − 1

|r̃0 − r̃′|

)

dr̃′ . (7.31)

As one can see clearly from Eqn. (7.31), the additional contribution is the interaction
of the fixed charge density with all particles located at r̃0. These modifications cancel
in the total electrostatic energy (7.24) since

1

πΞ

(

Ũ s0 − Ũ0

)

= − Q̃

4π2Ξ

∫

r̃

ρ̃f (r̃)

|r̃ − r̃0|
dr̃

= −N

2π

∫

r̃

ρ̃f (r̃)

|r̃ − r̃0|
dr̃ = −

∑

i

(ũs(r̃i) − ũ(r̃i)) .

(7.32)

Therefore Ũ0 and ũ can be replaced by Ũ s0 and ũs in Eqn. (7.29) without changing
the value.

Similarly to the free energy, one can obtain the particle distribution in the limit of
infinite Ξ, the strong coupling particle distribution, as

ρ̃(r̃) =
e−ũ(r̃)

∫

r̃ e
−ũ(r̃′)dr̃′ (7.33)

for all r̃ which are accessible to the particles. The particle distribution depends
only on the macroion–counterion interactions, but not on the counterion–counterion
interactions, which is in correspondence with the free energy, see the discussion above.
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Figure 7.2: Schematic view of
the two rod system from along the
z–axis. R is the radius of the rod.
In the simulations it consists of
the offset radius R0 plus the soft
repulsion radius σ. The centre–
centre distance of the rods is D,
the cylindrical simulation cell has
radius L.

Application to the two–rod problem

For the two–rod problem the fixed charge density of two rods of radius R and line
charge density τ < 0 is given by

σ(r) = τ(δ(ρ1 −R) + δ(ρ2 −R)) ,

where the radial distances to the rod centres are

ρ1,2 =
√

(x±D/2)2 + y2 .

D = 2R+∆ is the centre–centre distance of the two rods (see Fig.7.2), ∆ their surface
to surface distance. The particles have charge q and live in a region outside the two
rods, but inside a cylindrical compartment of radius L. The strong coupling theory
was applied to the two rod problem first by Naji and Netz [70].

The Gouy–Chapman length of this system is the same as for the single rod, µ =
−R/(q`Bτ), and the rescaled coordinates are the same as in Sec. 7.1. Choosing r̃0 = 0,
we obtain the self interaction of the fixed charged density per rescaled length of the
rod H̃, as

Ũ s0
H̃

= −2πR̃2 log D̃ + 2
Q̃

H̃
log

(

D̃

2

)

= 6πR̃2 log D̃ − 8πR̃2 log 2

up to the irrelevant self interactions of both rods. Note that due to the choice of r̃0,
Ũ s0 corresponds to the electrostatic energy of the macroions with themselves and all
the counterions are located at the centre of the system between the two rods (compare
Eqn. (7.30)). For this configuration, the electrostatic energy Ũ so is attractive. The
particle–rod interactions are given by

ũs(r̃) = −2R̃
(

log ρ̃1 + log ρ̃2 − log(∆̃2/4)
)

.

The leading order coefficient of the free energy is up to an irrelevant additive con-
stant given by

F1

H̃
= −2R̃2 log D̃ − 2R̃ log I , (7.34)
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Figure 7.3: SC prediction for
the threshold of attraction in the
case of infinite L̃. The graph
shows the equilibrium surface to
surface distance ∆̃∗ as a function
of the rescaled rod radius R̃−2/3.
The dotted line marks the asymp-
totic curve (R̃− 2/3)−3/2.

where the first term represents the bare rod–rod repulsion, while

I =

∫

r̃

e−2R̃(log ρ̃1+log ρ̃2)dx̃dỹ =

∫

r̃

(ρ̃1ρ̃2)
−2R̃ dx̃dỹ (7.35)

represents the counterion–rod correlations. I is integrated over the rather complex
area accessible to the particles and therefore can be calculated numerically only. Nev-
ertheless some general arguments on its scaling are possible. For a charge parameter
of ξ = R̃ < 1/2 the integral is divergent in the limit of infinite dilution, and no attrac-
tion between the rods occurs. This is in agreement with the simple argument using
the concept of Manning condensation presented in Sec 7.1.

For large D̃ we rescale the coordinates in I by D̃, obtaining

I = D̃2−4R̃

∫

r̃

((

(

x̃d +
1

2

)2

+ ỹ2
d

)(

(

x̃d − 1

2

)2

+ ỹ2
d

))−R̃

dx̃ddỹd ,

where the integral is bounded in D̃. Therefore

F1

H̃
= −2R̃(2 − 3R̃) log D̃ + OD̃(1) . (7.36)

From this immediately follows that attraction occurs for all R̃ > 2/3. A more involved
calculation shows that for R̃ close to 2/3, the equilibrium surface to surface distance
is of order ∆̃∗ = O(R̃− 2/3)3/2 [70].

While Eqn. (7.35) shows that attraction can only occur in the presence of condensed
counterions, i. e. R̃ = ξ > 1/2, Eqn. (7.36) shows that counterion condensation is not
sufficient for attraction to occur. For all R̃, F has at most one minimum with respect
to ∆̃ (so for R̃ > 2/3 precisely one). Therefore for all R̃ > 2/3 attraction between
the rods occurs, and the equilibrium distance between them is finite. The threshold
of attraction has to be determined by numerical integration and is show in Fig. 7.3.

The SC counterion distribution is given by

ρ̃(r̃) =
(ρ̃1ρ̃2)

−2R̃

∫

r̃′ (ρ̃′
1ρ̃

′
2)

−2R̃ dr̃′
(7.37)
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Figure 7.4: SC prediction for the counterion density for R̃ = 0.6, ∆̃ = 2 (left) and
R̃ = ∆̃ = 2 (right). The black circles mark the rods. The density increases from green
to red, i. e. the particles accumulate on the rod surfaces in the gap between the rods.
The colour scale is the same for both graphs, i. e. for R̃ = 2 the particles are much
closer to the rods than for R̃ = 0.6; for R̃ = 2 about 95% of the particles are located
in the red region, while for R̃ = 0.6 this fraction is only about 20%.

for all positions r̃ accessible to the counterions. Two resulting counterion densities
are shown in Fig. 7.4. As one can see, the counterions accumulate primarily on the
rod surfaces pointing towards the opposite rod. For sufficiently large R̃, even in the
limit of infinite dilution almost all counterions can be found close to the rod surfaces
and in the gap between the rods. Therefore although the SC theory is obtained in the
limit of infinite counterion coupling, the counterions are packed quite densely onto
the rod surfaces. This can be understood from the fact that counterion correlations
perpendicular to the macroion–surfaces are unimportant in the strong coupling limit,
provided the higher coefficients F2, . . . of the strong coupling expansion do not con-
tribute in the limit of infinite Ξ, see the discussion above. Therefore in this direction
the macroion–counterion correlations dominate, which attract the counterions to the
rod surfaces.

It is not yet known how the higher order coefficients in the expansion of the free
energy, i. e. F2, F3, . . ., are bounded or not. However, these higher order terms are
only of importance if counterion–counterion interactions are non-negligible. Rouzina
and Bloomfield [84] suggested as a simple criterion for the importance of counterion–
counterion interactions the parameter

γRB = −q/(τ∆) < 1 . (7.38)

In other words, counterion–counterion interactions become important if the average
counterion–counterion distance along the rod axis, −q/(2τ), is of the same order as
the surface to surface distance of the rods ∆ or even smaller. This is reasonable,
since in the strong coupling limit, the counterions are correlated strongly along the
rod axes. For large Rouzina–Bloomfield parameter, the lateral distance of the coun-
terions in the gap between the rods is therefore much larger than their perpendicular
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Figure 7.5: Example rescaled
force F̃ curves as a function of ∆̃
for R̃ = 0.5 (solid red), R̃ = 1
(dashed green), R̃ = 2 (dashed
blue) and R̃ = 4 (dotted ma-
genta). For R̃ = 0.5 no sec-
ond zero exists. These curves are
sampled in the numerical simula-
tions and their positive zero deter-
mined.

distance, so that the counterion–counterion interactions are indeed unimportant for
the perpendicular particle distribution, see also the discussion of F1 above.

For real DNA with trivalent counterions, such as spermidine, the average
counterion–counterion distance along the rod axis is q/(2τ) ≈ 2.5Å, so that the strong
coupling theory is only valid if two DNA strands are much closer than 5Å. But since
water at room temperature has a Bjerrum length of `B ≈ 7Å and the DNA radius is
R ≈ 10Å, DNA has a Gouy–Chapman length of µ ≈ 0.8Å and a rescaled rod radius
of R̃ ≈ 12.6. For this high rescaled rod radius, the predicted equilibrium surface to
surface distance is below µ, i. e. well in the range of a high Rouzina–Bloomfield–
parameter, so that the strong–coupling theory is valid, and indeed can be used to
predict attraction between like–charged rods.

Interestingly we have

Ξ = −q3`2Bτ/R = γRBR̃∆̃ , (7.39)

so that for fixed R̃ and D̃ γRB determines Ξ. We will see later that γRB can be used
as a parameter to describe the ability of the SC theory to predict the equilibrium
distance of two rods at finite Ξ.

7.3 Comparison with numerical results

This section presents results of computer simulations for the equilibrium surface to
surface distance as well as for the particle distribution which are compared to the
predictions of the strong coupling theory.

Simulation method

To obtain the equilibrium rescaled surface to surface distance, i. e. the distance with
zero average force between the rods, a series of simulations with either fixed R̃ or
fixed ∆̃ was done. While fixing R̃ and varying ∆̃ allows to sample the equilibrium
surface to surface distance for larger R̃, since the curve is more or less constant there,
for R̃ → 2/3 the curve is to steep (compare Fig. 7.3). Here the sampling with fixed
∆̃ and varying R̃ is more robust.
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Figure 7.6: Example of the bisection and interpolation for parameters ∆ = 0.5,
q = 3, τ = 0.1 and R̃ = 3. The data points give the measured force F as function of
∆̃. The left graph shows the data points acquired during the bisection, the coloured
bars denote the generated intervals starting at the bottom. The right graph shows
the points used during the interpolation, including the results of two additional runs
(circles).

In the previous section it was discussed that the energy curve has at most one
minimum. The force curve has at most two zeros, one at zero, which is of little
interest here, and eventually a second one at the equilibrium rescaled surface to surface
distance (rsp. the equilibrium rescaled radius if the rescaled surface to surface distance
was kept fixed). Since the average force between the rods is continuous with respect
to R̃ rsp. ∆̃, there are many methods to determine its zero, the most prominent ones
are the bisection method and the regula falsi.

In general, the regula falsi is faster than the bisection method. However, between
the two zeros there is a maximum, which comparatively close to the two zeros (see
Fig. 7.5). This situation is inconvenient for the regula falsi, since it tends to overshoot
when close to the maximum. This problem is enhanced by the fact that the data points
are not exact. The overshooting can be reduced by damping, at the expense of slower
convergence. Moreover, there is no simple way to keep the regula falsi from converging
to R̃ = 0, which we are not interested in.

Therefore in this work, the bisection algorithm was used. It is simple, robust, and
cannot converge to R̃ = 0 by construction, which more than compensates for its
weak convergence. Whenever the sign of the force at a bisection point is positive, the
bisection algorithm assumes that the zero cannot below the bisection point, which
inhibits the convergence to R̃ = 0. For the bisection algorithm only the sign of the
force is needed, for which the probability of a wrong value is highest close the correct
zero, assuming a practically constant force error width.

Therefore the result interval of the bisection algorithm should be close to the R̃0.
In the vicinity of R̃0, the force is reasonably linear, which allows to use a generalised
form of the regula falsi to improve on the zero. In this work, in an interval of width
0.25 around the resulting zero of the bisection algorithm, additional data points were
generated. To all data points in this interval, a straight line was fitted via weighted
linear regression, and its zero used as improved guess. The errorbars of the resulting
zero guesses were calculated from the error estimates for the linear regression via error
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7 Applications of MMM1D: The two rod system

propagation. See Fig. 7.6 for an example of the combined bisection and regula falsi.

The data points, i. e. the average forces between the two rods, were obtained from
NVT MD simulations. These simulations as well as the bisection algorithm were
performed by a single ESPResSo script. The interpolation and additional simulations
were also performed by ESPResSo/Tcl scripts, which again demonstrates the power of
the scripting concept. Simulations and analysis were run on single AMD MP 2000+
processors, accumulating a computation time of around 8000 hours. The compressed
configuration data amounts to about 6 Gigabyte.

For the simulations the standard Verlet integrator combined with a Langevin ther-
mostat were used, see Sec. 1.4. The electrostatic interactions were calculated using
the MMM1D formulas tuned to a maximal pairwise force error of 10−4, see Sec. 6.4.
The excluded–volume interactions between the rods and the point–like counterions
were modelled using the purely repulsive Lennard–Jones potential with a fixed soft
repulsion radius of σ = 1 and a variable offset R0, see Sec. 1.5. Assuming that
the counterions cannot penetrate the Lennard–Jones potential by more than σ, the
effective rod radius is R = R0 + σ, as shown in Fig. 7.2.

Since the first few data points generated in the bisection algorithm are probably far
away from the force zero, they will not be used for the linear regression, and even with
a high force error the force sign will probably be correct. Therefore for the first centre
point of the bisection only 100 configurations were generated, for the next centre
points 600, 1100, 1600 and 2000 for the fifth one and all following. The additional
simulation runs in the vicinity of the bisection guess for the zero all generated 20000
configurations.

The number of counterions in the simulations was 24. Since the simulations
were performed with small line charge densities τ to achieve a reasonably high
γRB = q/(τ∆), one doesn’t expect strong ion–ion correlations along the axis par-
allel to the rods and therefore a large number of counterions is not necessary. This
was confirmed by a test simulation using 48 counterions which showed no abnormal
deviations from the 24 counterion simulations. On the other hand, increasing the
number of counterions increases the computation time dramatically, since MMM1D is
a N2–method and cannot be parallelised efficiently.

For a single run the surface to surface distance ∆, the counterion charge q and line
charge density τ were fixed, i. e. the Rouzina–Bloomfield parameter γRB was constant.
Then for the bisection the rod radius R and Bjerrum length `B were calculated from
R̃ and ∆̃ using the Eqns. 7.16, which give

`B = R̃/(−qτ) and R = ∆
R̃

∆̃
(7.40)

∆̃ is used to determine R instead of ∆ to ensure that ∆ does not become too small,
even if ∆̃ is small. If ∆ is much smaller than the soft repulsion radius σ, the soft
nature of the Lennard–Jones potential would come into play. More importantly, both
Ξ and γRB are not constant throughout the simulation if for example the rod radius
is changed. In this way one could not expect any agreement between theory and
simulations. In fact, we will see in a moment that indeed simulations at constant Ξ
show strong deviations from the theoretical prediction.

The radius of the cylindrical simulation box was chosen to be L = 4D. The SC
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Figure 7.7: Simulation results for the equilib-
rium surface to surface distance ∆̃∗ as a function
of the rescaled rod radius R̃− 2/3 at various pa-
rameters, see the table to the right. The solid
line gives the SC prediction. Error bars are only
shown if they are larger than the symbol.

system ∆ τ q γRB
1 1 1 3 3
2 1 0.33 3 9.1
3 1 0.1 1 10
4 2 0.1 3 15
5 1 0.1 3 30
6 2.5 0.1 10 40
7 1 0.1 5 50

results for this choice differ from the results at infinite simulation box radius by at
most 5%, so that this choice is close to an infinite simulation box.

The soft potential implies that R ≥ σ = 1, so that the additional constraint

R̃∆/∆̃ = R ≥ σ rsp. ∆̃ ≤ ∆R̃/σ (7.41)

arises. This leads to the requirement that ∆ is not too small, although this decreases
the Rouzina–Bloomfield parameter and has to be compensated by a higher counterion
charge or smaller line charge density.

Onset of attraction results

Fig. 7.7 shows the simulation results for the equilibrium surface to surface distance
for various parameters, each with fixed γRB . One can see that indeed γRB determines
the level of agreement between the simulation curve and the theoretical prediction.
Low values of γRB correspond to curves far away from the SC prediction, while the
curves with γRB > 40 are already close the strong coupling curve.
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Figure 7.8: Data points from
Fig. 7.7 with |Ξ − 50| ≤ 5. The
solid line gives again the SC pre-
diction.

r

α

Figure 7.9: Schematic view of the
paths along which the densities are mea-
sured. The coordinate system is cylindri-
cal around the left rod, with angle α = 0
pointing towards the right rod. Radial den-
sities are measured in two sectors ranging
from −π/4 to π/4 (red area) and from 3π/4
to 5π/4 (blue area), i. e. pointing towards
the other rod and away from it. Azimuthal
densities are measured in the radius ranges
R + ∆/4 to R + 3∆/4, R + ∆ ± ∆/4 and
R + 4∆ ± ∆/4. The dotted arrows denote
the direction along which the densities are
measured.

Similar γRB , for example γRB = 9 and γRB = 10 or γRB = 40 and γRB = 50,
produce similar curves. For this it is unimportant how the value of γRB is obtained,
whether by changing the line charge density, counterion charge or surface to surface
separation. The latter pair of curves do not differ much, although the counterion
charge differs by a factor of 2, as well as the surface to surface distance.

The computer simulations therefore strongly support γRB as a measure for the
degree of validity of the SC theory at finite Ξ rsp. for the importance of counterion
correlations, as proposed by Rouzina and Bloomfield. Interestingly, Ξ is not an equally
good measure of the fit, although Ξ is the expansion parameter. Since Ξ = γRB∆̃R̃,
constant Ξ results in γRB ∼ 1/(R̃∆̃), i. e. lower γRB for higher R̃. Fig. 7.8 shows
selected data points from Fig. 7.7, for which |Ξ − 50| ≤ 5. The resulting ∆̃∗ grows
with R̃, which is reasonable, since γRB decreases. Therefore Ξ does not determine the
size of the higher order corrections alone, which shows that the prefactors of Ξ in the
expansion cannot be constant, i. e. that the expansion is not a strict power series.

114



7.3 Comparison with numerical results

 0.01

 0.1

 0  0.1  0.2  0.3  0.4  0.5

~ ρ(
~ r,

0)

(~r-~R)/~∆

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0  0.5  1  1.5  2  2.5  3  3.5  4

~ ρ(
~ r,

π)

~r-~R

Figure 7.10: Rescaled radial ion distributions ρ̃(r̃, α) in directions α = 0 (top, red
area in Fig. 7.9) and α = π (bottom, gree area) as a function of the distance to the
rod surface r̃−R̃. For α = 0 the distance is given in multiples of the surface to surface
distance ∆̃. The simulation data represented by the symbols is taken from the run
with ∆ = 1, τ = 0.1 and q = 5, the lines give the SC predictions. The parameters
are: R̃ = 7, ∆̃ = 5 (magenta triangle ups), R̃ = 0.5, ∆̃ = 0.5 (red crosses), R̃ = 4,
∆̃ = 0.5 (green circles), R̃ = 1, ∆̃ = 1 (blue squares), R̃ = 0.85, ∆̃ = 2 (cyan triangle
downs).
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Figure 7.11: Azimuthal particle distribution ρ̃(r̃, α) as a function of the angle to the
rod–rod axis α for R̃ = 0.5, ∆̃ = 0.5 (top left), R̃ = 7, ∆̃ = 5 (top right), R̃ = 4,
R̃ = 0.5 (bottom left) and R̃ = 0.85, ∆̃ = 2 (bottom right). The densities are given
for radii r̃ = R̃ + ∆̃/2 ± ∆/4 (red plusses), r̃ = R̃ + ∆̃ ± ∆/4 (green crosses) and
r̃ = R̃ + 4∆̃ ± ∆/4 (blue stars). Again the symbols denote results from computer
simulations, the lines show the corresponding SC predictions.
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Figure 7.12: Radial density
ρ̃(∆/4, 0) at a distance of ∆/4
from the centre towards one of the
rods (i. e. (r̃ − R̃)/∆̃ = 0.25 in
Fig. 7.10), as a function of ∆̃. Red
crosses denote simulation data for
R̃ = 4, green circles for R̃ = 2,
blue squares for R̃ = 1 and ma-
genta triangles for R̃ = 0.5. The
lines give the SC predictions as
usual.

Particle density results

The strong coupling particle distribution (see Fig. 7.4) shows an accumulation of the
particles around the rods and especially in the gap between the two rods. Since
one is interested in how well this accumulation is reproduced in the simulation, the
density results of the simulations were compared to the strong coupling theory in
three sections, as depicted in Fig. 7.9. The directions of the radial particle densities
were chosen to cover both the region of highest particle density between the rods and
the region of lowest particle density on the opposite side. The azimuthal densities
compare the particle distribution both in the close vicinity of the rods as well as at a
moderately high density.

Fig. 7.10 and 7.11 compare the strong coupling particle density to the densities
obtained from the simulation with ∆ = 2.5, q = 10 and τ = 0.1, i. e. γRB = 40.
Although the density in the systems varies by several orders of magnitude, the results
fit well to the SC predictions, with the exception of the particle densities for R̃ = 4,
∆̃ = 0.5 and, to less extent, also R̃ = 0.5, ∆̃ = 0.5, which will be discussed in a
moment. The decreased counterion density close to the rod surface (the very left data
points in Fig. 7.10) are an artifact of the soft repulsion potential between the rods
and the particles.

Fig. 7.12 shows the particle density for a fixed point in the gap between the rods
for various values of R̃ and ∆̃. For ∆̃ < 1 the behaviour of the particle densities
differs qualitatively between the SC prediction and the simulation results. While in
the strong coupling theory the particle density monotonously grows with decreasing
∆̃, the particle distribution obtained from the simulations have a maximum and drop
again for small ∆̃. This deviation cannot be attributed to the soft repulsion potential,
since the coordinates are chosen such that the surface to surface distance in the
simulations is constant, while the rod radius grows, see Eqn. 7.40.

To understand the difference at small ∆̃, one has to remember that the strong
coupling theory ignores counterion–counterion correlations in the directions perpen-
dicular to the rod surfaces, as they are unimportant in the strong coupling limit.
However, for finite coupling parameter they do play a role, preventing large local
counterion densities. Therefore at small gap sizes ∆̃ the density in the gap cannot
grow as large as predicted by the strong coupling theory, while in the rest of the
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7 Applications of MMM1D: The two rod system

system the density has to be higher to compensate for this.

These deviations in the particle densities become strong only below ∆̃ = 3/4, which
is about the order of the predicted equilibrium surface to surface distance, so that
the equilibrium system is described reasonably well by the strong coupling theory,
although Ξ is only 40. For the case of two planes a similar agreement can only be
achieved for Ξ larger than 104 (see Ref. [66]).

7.4 Zero Temperature

The limit of zero temperature corresponds to an infinite Bjerrum length and therefore
infinite Ξ as well as infinite R̃ and ∆̃ = R̃∆/R. In this limit the Strong Coupling
Theory predicts attraction for all parameter values at zero temperature, and the
equilibrium surface to surface distance is 0. This is consistent with the simulations
presented in the next section and can be easily understood from Earnshaw’s theo-
rem1. To further test the SC predictions, we again look at the counterion distribution
function. The SC theory predicts that all particles will line up between the rods at
zero temperature, since the exponent of the particle distribution in Eqn. (7.37) tends
to infinity, resulting in a peak where both surfaces coincide.

Computer simulations, such as the ones presented later, show a more complex be-
haviour. Depending on the parameters, the particles can line up between the rods
(see Fig. 7.20) or populate more space on the rod surfaces (see Figs. 7.23 and 7.24).
Between these two extremes an interesting intermediate state exists where the parti-
cles are not lined up between the rods, but still do not leave the rod–rod plane (see
Figs. 7.21 and 7.22). This planar state will be investigated in detail in the following.
In the formulation of this model, the SC Theory prediction is that at zero temperature
for all parameter values, α = 1 is optimal.

The discrepancy between simulation results and the SC prediction can be attributed
again to the neglected higher order terms of the particle density expansion. Obviously,
the Rouzina–Bloomfield parameter γRB = −q/(τ∆) cannot be used to quantify the
importance of these terms as it is infinite. In this section, a simple analytic approach
is used to investigate the planar state and a replacement for the Rouzina–Bloomfield
parameter for small ∆ will be derived.

7.5 Analytical calculation

To study the planar state, which contains the lined–up state of the SC theory as a
special case, we use a simplified model as shown in Fig. 7.13. We consider systems
where all counterions are located in three rods, one in the middle between the two
rods with a line charge density 2ατ and two rods of line charge density (1 − α)τ at
the opposite sides of the rods. In the following the rods of line charge τ will be called
macroion–rods, while the rods representing the particles will be called particle–rods.

The interactions between two different particle–rods are highly complex, since for
arbitrary α the particles will not be equally spaced in the ground state. The MMM1D

1Earnshaw’s theorem states that a collection of point charges cannot be kept in equilibrium by pure
electrostatic interactions [26]. Therefore the rods have to be located surface to surface, so that
the excluded volume interaction counters the electrostatic interactions.
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y
x

τ−(1−α)τ τ −(1−α)τ−2ατ

2R 2R

Figure 7.13: Schematic view
of the simplified model as used in
Sec. 7.5. The grey circles show the
particle lines, which are treated
as rods of the same line charge
density, which is given below each
rod. Unlike shown, the counteri-
ons have zero size and therefore
the surfaces of the rods touch.

far formula (6.13) shows that the interaction between two particles is essentially rod–
like plus a sum of Bessel terms, which drop faster than exponentially with increasing
distance. Therefore it is reasonable to approximate the interactions of two different
particle–rods by the interaction of homogeneously charged rods of equal charge.

This approximation is not valid for the interaction of a particle–rod with itself, i. e.
the self energy of the particle–rods. Assuming that the charges are equally spaced,
the self interaction of the particle–rod can be easily calculated using the MMM1D
near formula (6.16), which will be used as the self energy of the particle–rods in this
model, even though they may not be equally spaced in the correct ground state.

In the following it will be determined under which circumstances these configu-
rations are stable and which value of α is optimal, i. e. has minimal energy. The
stability of the configuration requires that the net force between the macroion–rods is
attractive, so that they do not move apart, and that a particle in both the outer and
the inner particle–rods is in a local energy minimum, so that none of the particles is
able to move. However, this does not assure that the configuration with the optimal
α is a global minimum of the original two rod problem. The computer simulations
presented in the following section show similar approximate ground states, so that
energies calculated using the simplified model seem to be at least close to the real
ground state.

Force between the rods

In the planar model, the total force between the two macroion–rods is

2τ2/(2R) +
4(1 − α)τ 2

R
− 4(1 − α)τ 2

3R
− 8ατ2

R
= −(32α − 11)τ 2

3R

where the terms give the macroion–rod–rod repulsion, the attraction between the
macroion–rods and the adjacent ions on its outer side, the attraction of the ions on
the outer side of the opposite macroion–rod and the attraction of the inner ions, in this
order. For α ≥ 11/32 attraction occurs, while for α < 11/32 the force is repulsive, i. e.
the rods would drift apart, and the planar configuration cannot be a global minimum.

Stability of the particle–rods

The next thing to look at is the stability of the particle–rods. Therefore we deter-
mine the second order coefficient of the energy if we move a single particle out of
the macroion–rod plane into the y–dimension (for symmetry reasons the first order
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7 Applications of MMM1D: The two rod system

coefficient is zero). As the potential has a local minimum around both macroion–rods,
the particle will stick to the rod surface, and move on a circle.

For the interaction of a single particle with a line of particles at distance Rδ we
obtain from the near formula (6.16)

∆Epp(q, l, R; δ) =
q2

2l3
ψ(2)(1)R2δ2 + O(δ4) . (7.42)

l denotes the charge separation of the particles within the line, i. e. l = −q/(2ατ)
for the inner particle–rod. The presented formula corresponds to the near formula
for ψ̃, i. e. the line of particles has a gap at the position of the removed particle, as
necessary. Note that ψ(2)(1) < 0, so that this is a repulsive potential as expected.

For the interaction between a single particle, moving on a circle R(cos δ − 1, sin δ)
around (−R, 0), and a rod at position (d, 0), we obtain

∆Erp(q, τ, R, d; δ) = −qτ log
(d+R cos δ −R)2 +R2 sin2 δ

d

= qτ
R(d−R)

d2
δ2 + O(δ4) .

(7.43)

Combining this, we obtain for an inner particle moving on the surface of the right
macroion–rod an energy difference of

∆Ei = ∆Epp(q,−q/(2ατ), R; δ) + ∆Erp(q, τ, R,R; δ) + ∆Erp(q, τ, R,−R; δ)+

∆Erp(q,−(1 − α)τ,R, 2R; δ) + ∆Erp(q,−(1 − α)τ,R,−2R; δ)

= −qτ
(

2 − 1

2
(1 − α) + 4α3γ−2

z ψ(2)(1)

)

δ2 + O(δ4) ,

(7.44)

where we introduced the dimensionless parameter

γz := − q

τR
> 0 , (7.45)

which essentially measures the ratio between the average charge separation parallel
to the rods and the rod radius, similar to the Rouzina–Bloomfield parameter. Large
γz corresponds to a large distance of the charges within the particle–rod compared
to their distance to the rods. Therefore one will expect stable particle–rods only for
large γz, which will be shown rigorously now.

Since a configuration is only stable if δ = 0 is a local minimum and since due to
charge neutrality −qτ > 0, we obtain an implicit upper limit for α from the condition

(

3

2
+

1

2
α

)

γ2
z + 4α3ψ(2)(1) > 0 . (7.46)

Inequality 7.46 is an upper bound on α, since ψ(2)(1) is negative, so that for sufficiently
large α the second, negative term will dominate. Therefore α = 1 is stable if and only
if γz >

√

−2ψ(2)(1) =: γ0 ≈ 2.19.
A similar calculation gives for the stability of the outer particle–rod

∆Eo = −qτ
(

−2

9
+

3

16
(1 − α) +

α

2
+

1

2
(1 − a)3γ−2

z ψ(2)(1)

)

, (7.47)
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which gives an implicit lower limit on α from the condition

5

16

(

α− 1

9

)

γ2
z − 1

2
(1 − a)3ψ(2)(1) > 0 . (7.48)

Therefore α ≤ 1/9 is never stable, i.e. not all ions can leave the gap between the
macroion–rods, as one would have expected.

The energetically optimal α

Now that we know which for which values of α the planar configurations are stable, we
compare their energies to determine the lowest energy state. To this aim we calculate
the energy difference to the α = 1 state of a finite size portion of the system along
the z–axis of length λz.

For the energy between a rod and a particle we have

Erp(q, τ, d) = −2qτ

(

γ + log
d

2λz

)

.

The self energy of the particle–rods we can obtain from the MMM1D self energy. Let
N = λz/l be the number of particles of the rod per one box length. Then we would
have to add up a lot of two particle interactions with ρ = 0 and varying γz, resulting
in an intractable sum of polygamma terms. To avoid this, we use the self energy
formula of MMM1D for a box length of l instead of λz to treat the interaction of a
single particle with the complete rod at once. N–times this value then gives twice the
self energy of the particle–rod per box length λz. We obtain the self energy

1

2
N

(

−2q2

l
log(βl)

)

+ O(β) =
λzq

2

l2

(

− log(βλz) + log
λz
l

)

+ O(β)

with the correct singularity −N 2/2q2/λz log(βλz). In the limit β → 0 we obtain

Epp(q, l) =
λzq

2

l2
log

λz
l

. (7.49)

We obtain the total energy difference to the α = 1 configuration as

∆E = Epp(q,−q/(2ατ)) + 2Epp(q,−q/((1 − α)τ)) −Epp(q,−q/(2τ))

+
2λz

−q/(2ατ) (Erp(q, τ, R) + 2Erp(q,−(1 − α)τ, 2R]) − 2λz
−q/(2τ)Erp(q, τ, R)

+
2λz

−q/((1 − α)τ)
(Erp(q, τ, R) +Erp(q, τ, 3R))

+
λz

−q/((1 − α)τ)
Erp(q,−(1 − α)τ, 4R)

= 2τ2λz

(

−γ + log
9

2
−
(

2γ + log
9

4

)

α+ (3γ − log 2)α2

+ (1 − α)(1 + 3α) log
λz
R

− 2 log

(

−2λzτ

q

)

+ (1 − α)2 log
−(1 − α)λzτ

q
+ 2α2 log

−2αλzτ

q

)

.
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Figure 7.14: Theoretical predic-
tions for α and γz. The grey area
marks the values for α for which
either the inner particle line is in-
stable (right of peak) or the outer
one (left of the peak). The solid
line marks the local extremum of
∆E(α, γz) with respect to α. On
the inset one can see that each
γz > γsplitz (dotted line) is for two
values of α a local minimum.

The sum of the prefactors of the logarithmic terms is zero. Therefore we can
multiply in a constant factor −q/(τλz) inside the logarithms and obtain for the energy
difference per length

∆E/λz = 2τ2

(

−γ + log
9

8
−
(

2γ + log
9

4

)

α+ (3γ + log 2)α2

+ (1 − α)2 log(1 − α) + 2α2 log(α) + (1 − α)(1 + 3α) log(γz)

)

.

(7.50)

We are interested in the minimum of this function with respect to 1/9 < α ≤ 1, which
is either at α = 1 with an energy difference of 0 or where

0 = ∂α∆E/λz = −2τ2

(

− 1 − 2γ − log
9

4
+ α (3 + 6γ + log 2)

− 2(1 − α) log(1 − α) + 4α log α+ (2 − 6α) log(γz)

)

.

This equation can be solved easily for γz, which gives

γz = e
1

6α−2
(−1−2γ−log 9

4
+α(3+6γ+log 2)−2(1−α) log(1−α)+4α logα) . (7.51)

Obviously γz(α) has a divergence at α = 1/3. The part not dependent on γz has
a negative sign for α < 0.4, so that for α → 1/3+, the exponent diverges to −∞,
while γz tends to 0. Fig. 7.14 shows α(γz) for α between 1/3 and 1, Fig. 7.15 the
corresponding energy difference at the free minimum. Values of α below 1/3 are
unimportant, since for these the energy at the local minimum is positive, i. e. larger
than for α = 1, and therefore cannot be global minima.

Fig. 7.15 shows that the energy difference is smaller than zero only for α < αmax ≈
0.927. Therefore larger values of α do not occur as local minima. However, α = 1 can
occur as global boundary minimum.

Looking at the local minima with respect to γz, the situation is more complicated.
Each γz > γsplitz ≈ 3.398 is a local minimum for two values of α, see Fig. 7.14. However,
the larger of these α values is always larger than αmax, and therefore cannot be the
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Figure 7.15: Energy difference
∆E/(λzτ

2) in the local extremum
γoptz as shown in Fig. 7.14. For
values larger than 0, α = 1 is en-
ergetically favourable. Therefore
with increasing γz the global min-
imum grows until it reaches αmax
and jumps up to 1.

global minimum. But even the lower one of these α values is larger than αmax for
γz > γcritz ≈ 3.451, so that for these γz values there is no local minimum, and therefore
α = 1 is the global minimum.

Below γz = γminz ≈ 1.175 the free minimum lies outside of the stability region for
the planar configuration. Therefore it is energetically more favourable for particles
of the outer particle–rod to leave the rod–rod plane and sit somewhere else on the
macroion–rod surfaces.

We obtain the following picture of the system configurations for different values of
γz:

• For γz ≥ γcritz , the optimal α is one, so that the particles are lined up in the
centre of the gap between the rods, and the strong coupling picture holds.

• For γz below γcritz , but above γminz , the optimal α value is smaller than one,
however, the particles are still located in the rod–rod plane. The particles
arrange in two counterion–rods on the outside and one counterion–rod on the
inside.

• Below γminz , the outer counterion–rod breaks up first, while the inner particle
rod is still stable.

• For very small γz, even the inner particle–rod becomes instable, and the particles
distribute nearly regularly on the rod surfaces.

These qualitatively different groundstate types are sketched in Fig. 7.16.

γ
z
crit γ

z
min γ

z
min<< Figure 7.16: Cartoon of the

different groundstate types devel-
oped with decreasing γz. particles
are represented by blue circles, the
macroion–rods by red ones.
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Figure 7.17: Simulation results for two simulation runs with R = 1 and R = 2.
Again the grey area denotes values of α for which the particle rods get instable; below
the bottom line the outer particle–rods are instable, above the top line the inner rod.
The filled squares denote the α value of the approximated ground state as a function
of γz for R = 1, the filled triangles for R = 2. The open symbols show the average
distance ȳ of the particles to the rod–rod plane in multiples of the rod radius R.

Note that both the constraints for possible values of α obtained from the stabil-
ity considerations for the particle–rods and the position of the free minimum of the
energy only depend on α and γz. Since α is determined by optimisation, the only
parameter left in the formulas is γz, which alone determines the behaviour of the
system. For γz > γcritz the system should behave according to the strong coupling
theory, while for smaller γz a planar behaviour is predicted. The transition from the
strong coupling configurations to the planar configurations is discontinuous, particle
fractions between αmax and 1 cannot be obtained as ground states. For γz < γminz ,
the planar configurations are no longer stable, and three dimensional configurations
are energetically more favourable.

7.6 Comparison with numerical results

To determine the ground state numerically, MD simulations of a system of 48 coun-
terions and 2 rods were done. The particles were placed initially in particle rods with
α = 0.5 as described above. Then the system was continously heated up and cooled
down again, until the energy gain between two cycles was smaller than 0.1%. The
peak temperature was 1kT for the first cycle and reduced by a factor of 0.5 for every
following cycle, each cycle consists of 80000 integrator steps. As ground state the
configuration with the lowest potential energy is used. In addition to these configu-
rations, the α = 1 configuration was generated manually and used if the energy was
lower than for the simulation configurations.

Note that for the hard core interactions between the rods and the counterions
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Figure 7.18: The same as Fig. 7.17, but for ∆ = 0.5. Here γz = −q/(τ(R + ∆/2))
was used (see text).
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Figure 7.19: The same as Fig. 7.17, but for ∆ = 2. Here γz = −q/(τ(R + ∆/2))
was used (see text). Note that the values below 1.5 are not meaningful; as one can see
e. g. in Fig. 7.24, most of the particles are located close to the dividing plane between
inner and outer ions, so that α cannot be measured reasonably from the simulation.
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again a purely repulsive Lennard–Jones potential was used (see Sec. 1.5). To be able
to obtain the flat configurations described above, there has to be a line between the
rods on which the soft repulsion potential does not act on the particles. Therefore in
the simulations the gap size was increased slightly by 0.245.

Due to the fixed number of particles, only regular patterns consisting of
1, 2, 3, 4, 6, . . . , 48 particles can be formed. Therefore ground states patterns with
for example two counterions on each outer rod and three counterions on the inner
rod are not accessible, which may lead to frustration. However, the system energy
is dominated by the rod–rod interaction both of the macroion– and counterion–rods,
so that the placing of the particles within the particle rods only plays a minor role.
Therefore the obtained optimal value of α is close to the correct value, although the
particle distribution may not have the correct regular pattern. The mentioned seven–
particle–pattern from above is for example approximated by a mix of six and eight
particle patterns.

Fig. 7.17 shows the optimal α from two simulation runs with q = 3 and R = 1 rsp.
R = 2; τ was calculated from γz via τ = −q/(Rγz). One can see that the approximated
ground state configurations obtained from the simulation for γz > 1.6 are indeed flat
as assumed in the previous section. The particles leave the rod–rod plane when for
the optimal α the flat configuration is no longer stable. Interestingly, although the
assumptions for the theoretical calculations are no longer valid for γz < 1.6, the
predictions for α still fit quite well. This shows again that the total energy of the
system is determined primarily by the counterion fractions in the gap between the
rods and outside of it, and not as much by the exact location of the counterions.

Note that the obtained α value is slightly lower than the theoretical prediction,
especially for α between 0.7 and 1, which can be understood as follows:

The only approximation in the theoretical calculations is the approximation of the
particle–particle interactions for different particle rods by a continuous rod. For real
particles one can see from the far formula of MMM1D that for an optimal placement
the energy will be lower than for a rod. Therefore the repulsion induced by the
particle–particle interactions between different particle rods is lower than the one
obtained from the rod model, so that the real α will be closer to α = 1/2. Moreover,
the slightly increased gap size also allows the particles in the gap to place further
away from each other by adopting a zig–zag pattern, so that the self–energy of the
inner counterion–rod is lower than for ∆ = 0. Of course this argument does not hold
for α = 1, since in this case the approximations are exact.

Fig. 7.18 and Fig. 7.19 show the same as Fig. 7.17, but this time for a gap size
larger than zero, namely of half the rod radius and twice the rod radius. The radii are
again increased by 0.245 for comparability. One can see that the optimal value of α
drops further, which supports the arguments of the previous paragraph. Nevertheless
the flat configurations still seem to form the ground states as long as they are stable.
Especially the ∆ = 2 case is far from the assumptions made in the previous section;
remarkably though, the optimal α differs only by at most 30% from results for ∆ = 0.

Figs 7.20 through 7.24 show snapshots of the above mentioned simulations from all
the different groundstate types discussed in the previous section:

• Fig. 7.20 shows a groundstate for γz ≥ γcritz , for which the strong coupling
picture holds.
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• For Figs. 7.21 and 7.22, γminz < γz < γcritz . The particles are organised in
particle–rods, in the case of both figures with α = 1/2, however at different
surface to surface distances.

• Fig. 7.23 shows a snapshot for which γz < γminz , so that the outer counterion–rod
has split up. However, the inner particle rod is still stable.

• Fig. 7.24 finally shows a snapshot where the particles are distributed nearly
regularly around both rod surfaces.
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Figure 7.20: Snapshot
of a simulated ground
state for ∆ = 0,R = 2
and γz = 4.60, i. e. in the
SC regime. Note that the
counterions and rods are
shown much smaller than
they really are for better
visibility.

Figure 7.21: Snapshot
of a simulated ground
state for ∆ = 0,R = 1
and γz = 1.6, i. e. below
γcritz . The charge frac-
tions inside and outside
are equal, so that α =
1/2.

Figure 7.22: Snapshot
of a simulated ground
state for ∆ = 0.5,R = 1
and γz = 4, again with
α = 1/2. Due to the
larger surface to surface
distance, the configura-
tion differs from Fig. 7.21.
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Figure 7.23: Snapshot
of a simulated ground
state for ∆ = 0,R = 1
and γz = 1.25, where
the outer particle–rods
have broken apart, how-
ever the inner particle
rods are still stable.

Figure 7.24: Snapshot
of a simulated ground
state for ∆ = 2,R =
1 and γz = 1. Here
the particles are spread
equally on the surfaces of
the rods.
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8 Conclusions

The simulation package ESPResSo presented at the beginning of this work provides
an extensible, reliable and computationally efficient framework for MD simulations
that makes the implementation of new algorithms as easy as possible. The computa-
tional efficiency of ESPResSo is primarily due to its flexible, but efficient particle data
organisation scheme.

Two methods for the calculation of the electrostatic sum in two dimensionally
periodic systems have been implemented in ESPResSo, MMM2D and ELC. MMM2D
has been parallelised for the implementation in ESPResSo, achieving a good efficiency
and a minimal scaling of O(N 4/3). On a single processor, MMM2D can be used
efficiently for up to 400 particles.

The ELC correction term derived in this work allows to use methods for three
dimensionally periodic systems also for the case of only two periodic coordinates. This
is achieved by replicating the system periodically along the nonperiodic coordinate
and correcting for the additional contributions again, which can be done in linear
computation time. Currently ELC is the fastest method for two dimensionally periodic
systems with less than 106 particles which features a rigorous error bound.

In this work it has been described how MMM2D and ELC can be modified to treat
different dielectric constants inside and outside of the simulation box, as one will
typically have in the simulation of a thin film of water or a metallic surface.

Starting from MMM2D, MMM1D for systems with only one periodic coordinate was
developed. MMM1D is the fastest method for one dimensionally periodic systems with
a rigorous error bound. The computation time of MMM2D scales quadratically with
the number of particles, but the prefactor is small enough to allow efficient simulations
with up to 400 particles.

Using MMM1D, the problem of the attraction of two like–charged rods was ad-
dressed. Results of computer simulations showed a good agreement with the strong–
coupling theory of R. Netz. As a measure of agreement between the simulation at
finite coupling parameter and the theory for infinite coupling parameter, the Rouzina–
Bloomfield parameter was confirmed. The Rouzina–Bloomfield parameter is a mea-
sure for the importance of counterion–counterion correlations, which are ignored in
the strong–coupling theory.

At zero temperature, the SC theory predicts a zero surface to surface distance of
the rods, with the particles lined up in the gap between the rods. While the zero
surface to surface distance can be confirmed by computer simulations, the particle
distributions shows a more complex behaviour. For certain parameters planar config-
urations occur, for which the stability was determined and an analytic approximation
of the potential energy was derived. Both the stability and the minimum of the energy
are described by a single parameter γz similar to the Rouzina–Bloomfield parameter.
These results were confirmed by computer simulations, even at comparatively large
surface to surface distances.
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Contents of the attached CD

The attached compact disc contains the sources of Espresso in the 1.6.1d version
and the scripts used to generate the data presented in this work, plus two example
simulation directories. The disc is formatted according to the ISO9660 format with
Joliet and Rockridge extensions.

ESPResSo

The attached version 1.6.1d is the most current version of ESPResSo that was used
to produce the data presented in this work. It resides in the directory Espresso. The
HTML documentation of Espresso can be found in Espresso/doc/html, the latex doc-
umentation in Espresso/doc/latex/refman.dvi. However, the HTML documentation
is much more comfortable and allows to traverse from a Tcl–command to its source
code with a few mouse clicks.

To build Espresso, the following software has to be installed:

MPI: For GNU/Linux and MacOS the LAM/MPI is recommended, on AIX and
Tru64 you can use the native MPI library. LAM/MPI is available via the URL
http://www.lam-mpi.org/.

Tcl/Tk 8.4 or newer: Tcl/Tk is needed on all platforms and available via the URL
http://tcl.activestate.com. Most modern operating systems contain a suf-
ficiently recent version of Tcl.

FFTW 2.1.x: FFTW is needed on all platforms and available via the URL
http://www.fftw.org/.

For details on installing and testing the ESPResSo installation, see the README
file or the HTML documentation on the disc. Additional information can be found
via the ESPResSo web page http://www.espresso.mpg.de.

Scripts

The scripts specific to this thesis reside in the scripts directory. The directory
scripts/timings and errors contains the scripts used to test the performance of
MMM1D, MMM2D and ELC. The sample_* scripts were used to generate the error
distributions, the timing_* scripts the computation times.

The scripts in scripts/two rod problem were used to produce and analyse the data
for chapter 7. In the directory a README file is included that contains details on
the use of the scripts. Sample data can be found in the simulations subdirectory.

133



Contents of the attached CD

The biro diss.tcl script is the simulation script which performs the bisection algo-
rithm, biro diss redo.tcl generates the data for a Newton step. After the simulation,
the data has to be condensed into a packed trajectory format by the script repack.tcl.
interpol.tcl uses this trajectory format and calculates the improved zero guess by linear
interpolation. The results are written into result.log, which is used by biro diss redo.tcl
to determine its sampling points. Therefore one can simple start biro diss redo.tcl sev-
eral times to obtain several Newton steps.

The particle distributions were generated using the calc ion distribution.tcl script.
For details on the usage, see the comments at the beginning of the scripts.
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[44] C. Holm, P. Kékicheff, and R. Podgornik, editors. Electrostatic Effects in Soft
Matter and Biophysics, volume 46 of NATO Science Series II - Mathematics,
Physics and Chemistry. Kluwer Academic Publishers, Dordrecht, Nl, December
2001.

[45] W. Humphrey, A. Dalke, and K. Schulten. VMD: Visual molecular dynamics.
Journal of Molecular Graphics, 14:33–38, 1996.

[46] R. A. L. Jones. Soft Condensed Matter. Oxford University Press, Great Claren-
don Street, Oxford OX2 6DP, 2002.

141



Bibliography

[47] M. Kawata and U. Nagashima. Particle mesh ewald method for three-
dimensional systems with two-dimensional periodicity. Chem. Phys. Lett.,
340:165–172, 2001.

[48] J. Kolafa and J. W. Perram. Cutoff errors in the ewald summation formulae for
point charge systems. Molecular Simulation, 9(5):351–68, 1992.

[49] A. A. Kornyshev and S. Leikin. Theory of interaction between helical molecules.
J. Chem. Phys., 108:7035, 1998.

[50] O. Lambert, L. Letellier, W. Gelbart, and J. Rigaud. Dna delivery by phage as a
strategy for encapsulating toroidal condensates of arbitrary size into liposomes.
Proc. Natl. Acad. Sci. (USA), 97(13):7248–7253, 2000.

[51] LAM/MPI. Homepage, 2004. http://www.lam-mpi.org/.

[52] M. Le Bret and B. Zimm. Distribution of counterions around a cylindrical
polyelectrolyte and manning’s condensation theory. Biopolymers, 23:287, 1984.

[53] M. Le Bret and B. Zimm. Monte carlo determination of the distribution of ions
about a cylindrical polyelectrolyte. Biopolymers, 23:271, 1984.

[54] C. J. Lejdfors. Gismos home page, 1998. http://www.teokem.lu.se/gismos/.

[55] J. Lekner. Summation of dipolar fields in simulated liquid vapor interfaces.
Physica A, 157:826, 1989.

[56] L.Greengard. The Rapid Evaluation of Potential Fields in Particle Systems.
MIT Press, Cambridge, MA, 1988.

[57] L.Greengard and V. Rhoklin. A fast algorithm for particle simulations. J.
Comp. Phys., 73:325, 1987.

[58] A. P. Lyubartsev and L. Nordenskiöld. Monte carlo simulation study of dna
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