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Find the right way down through the maze, to the food, then find
the exit. Push the exit button. If the food tastes awful, don’t eat it,

go back and try another way.

They want the same thing that you do, really, they want a path,
just like you. You are in a maze in a maze, but which one counts?
Your maze, their maze, my maze. Or are the mazes all the same,

defined by the limits of their paths?

Existence is simple: find the food, push the button, hit the treadmill.

But sometimes it gets much harder. Sometimes the food makes you
sick, or you can hear nearby feet racing you, urging you on.
Sometimes the button only gets you landed right back in the

beginning of the maze again, and the food won’t satisfy.

There is only one path and that is the path that you take,
but you can take more than one path.

Cross over the cell bars, find a new maze, make the maze from
its path, find the cell bars, cross over the bars, find a maze,

make the maze from its path, eat the food, eat the path.
Marathon Infinity, Rage: Eat the Path
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Overview

The increasing precision of current and future experiments in high-energy physics requires
a likewise increase in the accuracy of the calculation of theoretical predictions, in order to
find evidence for possible deviations of the generally accepted Standard Model of elemen-
tary particles and interactions. Such evidence could pave the way for a more fundamental
and comprehensive theory and, ultimately, a deeper understanding of nature.

Calculating the experimentally measurable cross sections of scattering and decay processes
to a higher accuracy directly translates into including higher order radiative corrections in
the calculation. The large number of particles and interactions in the full Standard Model
results in an exponentially growing number of Feynman diagrams contributing to any
given process in higher orders. Additionally, the appearance of multiple independent mass
scales makes even the calculation of single diagrams non-trivial. For over two decades now,
the only way to cope with these issues has been to rely on the assistance of computers.

The aim of the xloops project is to provide the necessary tools to automate the calculation
procedures as far as possible, including the generation of the contributing diagrams and
the evaluation of the resulting Feynman integrals. The latter is based on the techniques
developed in Mainz for solving one- and two-loop diagrams in a general and systematic
way using parallel/orthogonal space methods.

These techniques involve a considerable amount of symbolic computations. During the
development of xloops it was found that conventional computer algebra systems were not
a suitable implementation environment. For this reason, a new system called GiNaC has
been created, which allows the development of large-scale symbolic applications in an
object-oriented fashion within the C++ programming language. This system, which is also
in use for other projects besides xloops, is the main focus of this thesis.

The structure of this work is as follows: In chapter 1 we give an introduction to the
Feynman diagram formalism and the history of xloops, including the problems encountered
that led to the creation of GiNaC.

Chapter 2 describes the design and implementation of the GiNaC C++ library in detail,
starting with the guiding design principles and covering all classes and methods that
constitute the general symbolic manipulation facilities of GiNaC, and their integration
into the C++ language. The functions that were implemented specifically for xloops, such
as indexed objects and non-commutative algebras, are then discussed in chapter 3.

In chapter 4 we summarize the current status of GiNaC and list some ideas for further
enhancements.

Chapter 5 returns to the topic of xloops, documenting the library of Feynman integral
functions that have been reimplemented based on GiNaC. This is followed by two one-
loop sample calculations performed using these functions.

An analysis of our achievements and an outlook on the future of xloops and GiNaC in
chapter 6 conclude this work. Three appendices provide information on notational con-
ventions, on the transformation rules of GiNaC’s special algebras, and on the relation of
the xloops integral functions to the ones used in the literature, respectively. A glossary
explains some terms (marked with an arrow ⇒ in the text) from the fields of computer
science and object-oriented programming that may not be familiar to physicists.
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1 An Introduction to xloops

I can’t understand how anyone can write without rewriting
everything over and over again.

Leo Tolstoy

In this chapter, we will give a brief overview of the motives and goals of the xloops project,
and of the results obtained in the past.

1.1 Feynman Diagrams

In order to test a physical theory one has to compare experimentally measurable quantities
with the values predicted by the theory in question. In the field of elementary particle
physics, the most basic experiment is a scattering between Ni (usually one or two) particles
in the initial state |q1 . . . qNi〉in which by interaction produce Nf particles in the final state
out〈qNi+1 . . . qNi+Nf

|.
Assuming an ideal experiment with perfectly prepared and detected initial and final states
which are asymptotically independent of each other in the remote past (for the initial state)
and future (for the final state), the transition amplitude is given by the time-evolution
operator, whose matrix elements define the S (scattering) matrix:

out〈qNi+1 . . . qNi+Nf
|q1 . . . qNi〉in = lim

t→∞
〈qNi+1 . . . qNi+Nf

|e−iHt|q1 . . . qNi〉

:= 〈qNi+1 . . . qNi+Nf
|S|q1 . . . qNi〉.

(1.1)

In a quantum field theory, the S-matrix elements can be expressed in terms of truncated
Green functions Gtrunc by means of the LSZ reduction formula:

〈qNi+1 . . . qNi+Nf
|S|q1 . . . qNi〉 =

Ni+Nf∏
n=1

√
Zn

Gtrunc(q1, . . . , qNi+Nf
)
∣∣
q2
n=m2

n
, (1.2)

where the
√
Zn are the wave-function renormalization factors and the mn the masses of

the respective particle types.

The Green functions, which are generally defined as the vacuum expectation values of time-
ordered products of field operators, can be approximated perturbatively in a systematic
way using the method of Feynman diagrams. For a given process, one draws graphs
consisting of external nodes representing the initial and final particles, internal nodes
(vertices) representing interaction points, and lines (propagators) representing the free
propagation of fields. Each graph is then translated into a mathematical expression by

3



1 An Introduction to xloops

applying the Feynman rules of the theory, assigning symbolic factors to each node and
line of the graph. To calculate a Green function to a given order of the coupling constants,
one takes the sum over all topologically distinct graphs that can be constructed from the
possible fields and interactions of the theory, and the required powers of the coupling
constants. For example, omitting symmetry factors, minus signs for closed fermion loops
and the like, the Green function for electron-positron pair production γ → e+e− in QED
is represented by the series

= + + + · · ·

Truncated Green functions are represented by truncated Feynman diagrams that have
their external nodes and the subgraphs attached to external nodes that are connected to
the rest of the graph only by a single line removed:

→

Because of momentum conservation at each vertex and along each line of a Feynman
diagram, the only arbitrary momenta in a graph are those appearing in closed loops,
one per loop; these have to be integrated over. All other internal momenta are fixed
by the values of the external momenta and the momentum-conserving delta functions on
the vertices and lines. Feynman diagrams are typically characterized by the number of
external field points (or points for short) and the number of internal loops.

It is characteristic for quantum field theories in general that loop diagrams can yield
integrals which are divergent for arbitrarily large (“ultraviolet”) loop momenta. These
divergences are absorbed into a redefinition (renormalization) of unobservable quantities
like bare masses (as opposed to measurable effective masses), coupling constants, and the
fields themselves (these are the Z-factors in eq. (1.2)). For this purpose, the divergent
integrals are parametrized in terms of a regularization parameter. In the commonly used
framework of dimensional regularization, the parameter is the dimensionality D of the
space of the loop momenta, usually expressed in terms of

ε =
4−D

2
. (1.3)

The UV divergences of integral functions then appear as poles at ε = 0 (corresponding to
D = 4).

1.2 Automated Calculation of Feynman Diagrams

In the described perturbative approach, a high-precision calculation of a given process
requires including radiative corrections, i. e. higher-order contributions in terms of loop

4



1.3 The History of xloops

and bremsstrahlung diagrams. Due to the large number of fields and possible interactions
in the full Standard Model, and even in the electroweak sub-sector only, the number of
Feynman diagrams to be considered for a single process can easily exceed one hundred at
the two-loop level. The occurrence of multiple independent mass scales (as opposed to
only one scale in pure QCD calculations) further complicates the matter.

It is obvious that calculations of this complexity can’t reasonably be done without some
degree of automatization, and the systematics of the Feynman diagram formalism make
it well suited for implementation on a computer. One characteristic of these calculations
is that they demand a high level of symbolic manipulations for decomposing the Lorentz
and Dirac structure of the occurring integrals and for reducing them to a set of basic
expressions. This is opposed to purely numeric computations as they appear, for example,
in materials physics.

Computers have been employed for doing symbolic calculations since the late 1950s. In
fact, one of the incentives for the creation of the LISP programming language by John
McCarthy, ca. 1958, was to have a language in which symbolic expression manipulation,
starting with symbolic differentiation, could be implemented [Stoy 2004]. The first system
specialized in calculations in high-energy physics was Schoonschip, developed in 1963 by
Martinus Veltman. Later symbolic programs stemming from physics applications include
Anthony Hearn’s Reduce, written in LISP in the 1960s, SMP (the precursor to Math-
ematica), developed by Stephen Wolfram, and FORM by Jos Vermaseren, both written
in C [Wein 2002].

Programs for the automatic calculation of general elementary particle processes using
the method of Feynman diagrams have been under development since the late 1980s.
Examples for such programs are Grace [IKKKST 1993], CompHEP [BDIPS 1994] and
FeynCalc [MBD 1991], which were at first limited to the tree level or a restricted set of
one-loop diagrams.

1.3 The History of xloops

In 1991, Dirk Kreimer described a way to efficiently calculate the massive two-loop two-
point master integral by decomposing the integration space into parallel and orthogonal
(PO) components (a technique that had been used for one-loop integrals before), obtain-
ing a two-fold integral representation that allowed a straightforward numerical integra-
tion [Krei 1991]. The same method was later applied to two-loop three-point functions of
arbitrary tensor degree [Krei 1992a] [Krei 1993a] [Krei 1994] [CKK 1995].

The calculation of factorizing two-loop topologies (those that can be written as a product of
one-loop integrals) and two-loop diagrams of higher tensor rank also requires the evaluation
of one-loop functions. In 1994, Lars Brücher, Johannes Franzkowski, and Dirk Kreimer
released a library for the automatic calculation of one-loop one-, two-, and three-point
integrals using PO decomposition and recurrence relations between R functions, instead
of the usual Feynman parametrization [Krei 1992b] [Krei 1993b] [Fran 1992] [Brüc 1993]
[BFK 1994] [BFK 1995]. This library, called oneloop [BFK 1997], was written in the
language of the computer algebra system Maple.

5



1 An Introduction to xloops

Figure 1.1: Graphical user interface of xloops 1.0

Later, it was decided to use this library as the basis for an implementation of the two-loop
methods devised in Mainz [Frin 1996] [Krec 1997] [Fran 1997] [Post 1997] [Brüc 1997], and
to create an integrated program package for the automatic calculation of physical processes
at up to two-loop level. Thus xloops was born.

The goal of xloops was to have a single program covering the entire calculation proce-
dure, including graph generation, insertion of Feynman rules, decomposition into form
factors, reduction to basic integrals, and numeric and symbolic evaluation of these inte-
grals [BFFK 1997]. The 1997 release of xloops [BFK 1998], written in a mix of Maple and
Tcl/Tk code, lacked the graph generator but included a graphical user interface (shown
in fig. 1.1), and could calculate single one-loop one-, two- and three-point, and two-loop
two-point Feynman diagrams.

1.4 Shortcomings of the Maple-based xloops

During the attempted implementation of two-loop three-point functions in xloops in the
context of [Frin 2000] it became apparent that it was more reasonable to rewrite the

6



1.5 The Creation of GiNaC

program, putting it on more solid grounds, rather than trying to extend the existing code.

The gradual evolution of xloops from a one-loop library to an integrated Feynman diagram
calculation package resulted in a large amount of “grown” code that was not flexible
enough for supporting higher-order topologies without a major redesign. Also, as the
original programmers left the group, succeeding students assigned to the project had a
hard time becoming acquainted with the existing code base due to lack of documentation
and the (in some places) convoluted design of the program. Bugs found in the code such
as in the sunrise two-loop two-point topology (see [Do 2003]) were difficult to track down.

Once it was decided to rewrite xloops, the suitability of Maple and Tcl/Tk as the im-
plementation environment was scrutinized. The shortcomings of the Maple language for
developing large-scale packages like xloops have already been demonstrated in [Frin 2000,
section 2.1] and [Krec 2002, section 3.1]. In particular, the lack of stability in the language
itself (routines written for one version of Maple required changes to run under newer ver-
sions) and the lack of support for modern software design (no composite data types except
for arrays and lists, inadequate support for writing reusable modules, only rudimentary
debugging aids, etc.) led to a search for a better alternative.

Other commercial computer algebra systems like Mathematica, Reduce, MuPAD, and
FORM1 were reviewed but found to have similar drawbacks. In addition, requiring po-
tential xloops users to purchase one of these systems was considered unfavorable for a
wide-spread adoption of the program.

In the end, we decided to abandon “traditional” interactive computer algebra systems
in favor of rewriting the entire xloops package in an established programming language,
namely C++ (the reasons for choosing C++ in particular will be given in section 2.1).

1.5 The Creation of GiNaC

The typical computer algebra system is designed for interactive use. It comes with a
graphical “worksheet” interface for entering formulae, presents results in the standard
mathematical notation, offers graphing capabilities, and includes an extensive library of
functions from all fields of pure and applied mathematics. It also features a built-in
programming language allowing the user to automate tasks.

If the user is lucky, this language is powerful yet elegant, usually a Lisp variant, owing
to the history of computer algebra. Quite often however, especially in the more prevalent
systems, it is a dynamically scoped, interpreted language originally conceived for writing
down 20-line procedures, built on top of a symbolic kernel and growing along with it from
release to release. Such a language is useful for small applications, but not for writing and
maintaining programs that comprise of several thousand lines of code.

In the case of xloops, interactivity is rarely needed. All symbolic calculations are performed
under the control of established algorithms. Also, only a fraction of the capabilities of a
system like Maple is actually used. In particular, xloops requires

• working with expressions consisting of symbolic indeterminates, numeric constants,
1 FORM is no longer commercial, but it was at the time.
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sums, products, powers, and functions,

• basic manipulation and simplification of expressions,

• arbitrary-precision complex arithmetic,

• symbolic differentiation,

• constructing and normalizing rational functions,

• expanding functions into Laurent series,

• special functions like the Euler Γ function and polylogarithms,

• solving linear systems of equations, and

• special algebras like Lorentz tensors and Dirac matrices.

It appeared feasible to develop a symbolic manipulator fulfilling these requirements our-
selves. Since available symbolic libraries such as SymbolicC++ [ShSt 1998] were geared
more towards academic research and not “real world” calculations like the ones performed
by xloops, we resolved upon creating our own C++ library for symbolic computation.

Additionally, we perceived the need within the scientific community for a symbolic engine
that could be embedded into larger application frameworks, and that was both powerful as
well as “open” in the sense that users were free to examine, extend, and modify the system
themselves. At that time, most development in computer algebra took place behind closed
doors on proprietary systems, and the algorithms and assumptions used in these systems
were often insufficiently documented, requiring a certain amount of faith in trusting the
results of calculations.

Eventually, a separate project called GiNaC 2 was brought into being, with the aim of
creating an Open Source C++ library for symbolic computation that would primarily
function as the basis for the new xloops program, but that would also be general enough
to be reusable for other applications.

1.6 Design of the GiNaC-based xloops

The experience with xloops has shown that programs used for physics calculations should
not only produce correct results, but should also have a well thought-out design from the
very beginning. There are a couple of reasons for this:

1. No piece of software, no matter how small, is ever finished. Eventually it will have to
be maintained, ported to a new environment, or parts of it will be reused for a new
application. Designing the software in terms of independent, reusable components
facilitates this.

2 A recursive acronym for GiNaC is not a CAS (Computer Algebra System), emphasizing the fact that
GiNaC takes a different approach from traditional computer algebra systems.
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Figure 1.2: Components of xloops, and their relations

2. Software for research projects is often being worked on by people who stay with the
project for only a limited amount of time, such as during the course of postgraduate
studies. The more time their successors have to spend figuring out the workings of
the existing code, the less time they have to advance the project.

3. Scienctific research is supposed to yield reproducible results. When those results
are obtained from comprehensible, well-designed software, the research work will
become more transparent.

With this in mind, a revised concept for the re-implementation of xloops has been worked
out, shown in fig. 1.2 (with dashed lines indicating items that do not exist yet).

Given a description of a process in terms of incoming and outgoing particles (such as
γ → e+e−) and additional information like the maximum loop order to calculate or pos-
sible constraints on the momenta of particles, a graph generator will produce a list of
all contributing Feynman diagrams based on a description of the physical model under
consideration (such as QED, electroweak theory, or the full Standard Model).

By inserting the model’s Feynman rules for vertices and propagators, each diagram
is converted to a symbolic expression which is then fed into the xloops routines for
one- and two-loop integration. These routines make use of third-party libraries: Ve-
gas/PVegas [Lepa 1978] [Krec 1998] or ParInt [DGBEG 1996] for the numeric integra-
tion of irreducible two-loop functions, and nestedsums [MUW 2002] for performing the
ε-expansion of certain hypergeometric functions.

The output of the loop integration is a complex amplitude, represented by its symbolic
or numeric finite part, and its divergent part in terms of a Laurent series expansion in
the regularization parameter ε (cf. eq. (1.3)). In order to obtain physically measurable
quantities like cross sections and decay widths, further processing such as squaring the
obtained matrix elements, and performing polarization sums and phase space integration

9
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is required, possibly by interfacing with an existing package like CompHEP.

The new xloops program is entirely written in C++ , with all symbolic operations handled
by the GiNaC library. All components are designed to also be usable (and testable)
separately from each other. It should, for example, be possible to just obtain the list of
contributing graphs for a given process, or, if the set of graphs to be calculated is known
beforehand, to bypass the graph generator and start at the Feynman rule insertion stage.

The central goals of the xloops project have not changed:

• The program should be able to automatically calculate processes in the Standard
Model and related theories (such as supersymmetric extensions) at up to two-loop
order.

• No restrictions should be imposed upon masses or momentum configurations.

• It should be possible to return results in analytic form, e. g. to test Ward identities
and gauge invariance.

At the time of this writing, xloops is still under development. Following the first stable ver-
sions of GiNaC, the one-loop one-, two-, and three-point functions have been implemented
in [Baue 2000] and [BaDo 2002], and the two-loop self-energy functions in [Do 2003]. One-
loop four-point and two-loop three-point functions, as well as the Feynman rule insertion
module are currently being worked on. The development of the graph generator has not
been a part of this thesis.
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2 GiNaC – Object-Oriented Computer
Algebra

Creation takes time. Time is limited. For you, it is limited by the
breakdown of the neurons in your brain. I have no such limitations.
I am limited only by the closure of the universe.

Durandal, Autonomous Functions AI, U. E. S. C. Marathon

GiNaC [BFK 2002] is a C++ library for symbolic computations. While it was primarily
intended as a replacement for Maple for the reimplementation of xloops, we also realized
that a high-performance general-purpose symbolic computation engine would be of use to
other projects as well, not only in the field of high-energy physics.

This chapter starts with an outline of the reasons for choosing C++ as the language basis.
We will then discuss a few of the peculiarities of C++ with respect to symbolic computing,
and give a list of the design principles that guided the development of GiNaC.

After some general remarks on object-oriented programming with respect to computer
algebra, we will briefly summarize GiNaC’s basic features and give an overview of the class
hierarchy. The run-time structure of expressions and the underlying memory management
issues are then discussed extensively, before delving into some selected parts of GiNaC that
were developed in the course of this thesis, such as the class registry, the expression output
mechanism, and the pattern matching algorithms. Other aspects of the implementation
of GiNaC have already been described in [Frin 2000], [Krec 2002], and [Baue 2000]. For
a complete account on GiNaC’s functionality, the reader is invited to consult the GiNaC
documentation [BFKV 2004].

All following sections refer to GiNaC version 1.2, which was current at the time of writing.

2.1 Why C++?

C++ was choosen as the implementation language of GiNaC for several reasons:

• The language is standardized [ISO 1998] which protects the project against changes
in the implementation environment, a problem that had severely hampered the de-
velopment of xloops in the past.

• C++ compilers are available for practically any platform that could be considered for
running xloops. In particular, there are free compilers of high quality, such as the
GNU Compiler Collection (GCC), available for Unix-like systems which are prevalent
in the scientific community.
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• There is a broad range of development tools available for C++ ranging from powerful
source-level debuggers to version control and documentation systems.

• Operator overloading in C++ allows writing down symbolic expressions in a way
that is very close to their natural mathematical notation, e. g. 4*x+y instead of
add(mul(4,x),y) or similar constructs.

• A large number of modern scientific libraries are written in C++ and can thus
easily be used by GiNaC or in conjunction with it. Examples are the CLN li-
brary [HaKr 2000] which GiNaC uses internally for complex arithmetic, and the
ROOT framework for data analysis [BrRa 1997].

• C++ allows highly efficient numeric computations which supports writing applica-
tions that combine symbolic and numeric calculations, as is frequently the case in
high-energy physics where computer algebra systems are often used to generate op-
timized C or Fortran code for subsequent numeric integration.

The nature of C++ as a statically typed, compiled language and its historic roots as a
language for systems development bring about some peculiarities when one attempts to
employ it as an environment for symbolic computation, as will be illustrated in the next
section.

2.2 Numeric vs. Symbolic Computing in C++

Although intended as a general-purpose programming language, C++ is at its core based
upon numeric calculations. With the exception of the “non-type” void, all fundamental
data types provided by C++ are integral or floating-point arithmetic types, or, as in the
case of bool, behave as such. A variable in C++ is a named storage for a value, and
operations on the values stored in variables are described by arithmetic expressions which
themselves can’t be used as ⇒ first-class objects. This also implies that C++ expressions
can’t be created dynamically at run time.

Consider the following code snippet which calculates the value of y = ex−1 for the specific
value of x = 3.5:

1 double x = 3.5;
2 double y = exp(x)-1;

After compilation, both the names of the variables as well as the arithmetic expression
itself are no longer available for programmatic manipulation. Writing

1 double x;
2 double y = exp(x)-1;

is a programming error because the variable x, not being initialized, takes on an undefined
value which is then used in the calculation of the value of y. The result is therefore also
undefined, of course. C++ is not able to keep a representation of the unevaluated expression
ex − 1 in y.

12
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The primary function of GiNaC is to provide symbolic expressions as first-class objects
which can be stored in variables, passed to and from functions, and generated dynamically.
Using GiNaC classes it is possible to write

1 symbol x("x");
2 ex y = exp(x)-1;

to make the variable y hold an object representing the unevaluated expression ex−1 which
can then be further manipulated or evaluated numerically.

This example demonstrates the important distinction between

a) C++ variables, x and y in this case,

b) symbolic indeterminates (in the following called symbols for short) appearing in
algebraic expressions which are represented by GiNaC’s symbol class, of which the
variable x is an instance,

c) the names of symbols, in this case the string "x", which are only used for the purpose
of expression output in GiNaC.

Variables that are not of type symbol are not symbolic indeterminates, so, for example,
executing the line

3 ex z = y+1;

makes the variable z hold the expression ex, not y + 1. There is no way to “quote” y to
allow it to be used as an indeterminate.

Along the same lines, symbols in GiNaC can’t be assigned values; only variables can.1 It
is not possible to write code such as

1 symbol x("x");
2 ex y = exp(x)-1;
3 x = 3.5; // compile-time error

to evaluate y at the point x = 3.5. And, as indicated in the previous paragraph,

1 symbol x("x");
2 ex t = x;
3 ex y = exp(t)-1;
4 t = 3.5; // no error, but this only changes ‘t’
5 // ‘y’ remains exp(x)-1

won’t work either. It is of course possible to evaluate expressions for specific values of
their symbols in GiNaC, but this requires the use of the subs() method to substitute all
occurrences of a symbol by its intended value:

1 symbol x("x");
2 ex y = exp(x)-1;
3 y = y.subs(x == 3.5); // y now holds the expression 32.11545...

1 That’s not strictly true. There is a mechanism to assign expressions to symbols which is used by the
interactive GiNaC frontend ginsh to simulate the behavior of traditional computer algebra systems.
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In GiNaC, the name of a symbol is only used for printing expressions, and it has to be
specified explicitly upon symbol creation because variable names are not accessible at run
time in C++ . Two symbols that happen to have the same name are not treated as being
identical. So, for example, writing

1 symbol x("x"), y("x");
2 ex e = x-y;

creates two different symbols x and y that look identical in the output. The expression
e = x − y is printed as x-x which may look like GiNaC failed to perform the obvious
simplification e = x− x = 0, but there are actually two very different symbols inside e:

3 ex a1 = e.subs(x == 1); // yields 1-y, printed as 1-x
4 ex a2 = e.subs(y == 1); // yields x-1, printed as x-1

The described behavior differentiates GiNaC from most symbolic computation systems
and is a result of the static nature of variables in C++ . However, for the non-interactive
applications envisaged for GiNaC this does not constitute a significant restriction.

For completeness, and to avoid confusion, a discussion of symbolic computation in C++

should also mention ⇒ function objects (or functors) as featured by the C++ Standard Li-
brary [ISO 1998], and the technique of expression templates ([Veld 1995] and [LaKr 2003]).
Both allow passing expressions as arguments to functions, with the intent to provide a
more efficient replacement for the use of callback functions that is so pervasive in pure C
code.2

For example, to evaluate the integral

5∫
0

(2x− 1) dx,

a generic “black-box” function integrate(f, lo, hi) that calculates the numeric inte-
gral of a function f in the specified interval, which would typically be passed a pointer to
the integrand function in a C library would be invoked like this using STL functors:

1 integrate(compose1(bind2nd(minus<double>(), 1.0),
2 bind2nd(multiplies<double>(), 2.0)), 0.0, 5.0);

and like this using the more powerful expression templates, which effectively hide the
explicit creation and composition of function objects from the user:

1 Identity<double> x;
2 integrate(2*x-1, 0.0, 5.0);

In both cases, code for the numeric evaluation of the supplied expression is compiled
into a template instantiation of the integrate() function. Neither STL functors nor

2 Expression templates are also employed to generate optimized code for numerical scientific applications.
Blitz++ [Veld 2002] is an example of a C++ class library that provides high-performance vector and
matrix operations based on template techniques.
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expression templates make symbolic expressions available as first-class C++ types and
expression manipulation is only possible at compile time.3 These techniques are therefore
not immediately useful for purely symbolic computations. Still, expression templates may
be of use in a system like GiNaC, as we will illustrate in section 4.5.

2.3 Design Principles of GiNaC

Apart from following object-oriented design rules, the development of GiNaC was guided
by these requirements:

• Universality:
While intended for a very specific application, namely the calculation of radiative
corrections in perturbative Quantum Field Theory, GiNaC should not be locked
into that niche. The capabilities of the library are held as general as possible,
as long as this can reasonably be achieved without sacrificing efficiency or ease-
of-use. For example, GiNaC handles generic mathematical expressions. It is not
restricted to operations in polynomial rings or a certain class of representations
(e. g. completely expanded) for polynomials, even if such restrictions would permit
faster implementations of polynomial arithmetic. This allows GiNaC to serve as
a general-purpose symbolic computation engine for projects other than xloops that
may or may not be related to high-energy physics. Examples of such projects will
be given in chapter 4.

• Extensibility:
Understandably, we don’t have the resources to furnish GiNaC with the entire range
of capabilities from all fields of pure and applied mathematics that is typically offered
by commercial computer algebra packages. What we can do, however, is to see to
it that any functionality that might be missing for a particular application can be
easily added by the user without requiring changes to the library. GiNaC therefore
supports user-defined symbolic functions and classes (see sections 2.6.6 and 2.13).

• Locality:
The results of calculations in GiNaC should not depend on any kind of global state,
as this is a frequent source of bugs. Any information about an expression should be
contained in a single expression object, and all parameters of operations on expres-
sions should be supplied explicitly.4

• Integration with C++:
The classes and functions provided by GiNaC should integrate well with the C++

language, and especially the C++ Standard Library. This includes the use of STL
types and container classes where possible, and the interoperability of GiNaC classes
with STL algorithms. Not only does this simplify the development of GiNaC itself
by enabling the use of the pre-built STL components, but it also makes it easier to

3 One could argue, though, that expression templates are first-class objects for template metaprograms.
4 There is only one exception to this rule in GiNaC 1.2: Similar to Maple, the precision of numeric

calculations is determined by a global object called Digits.
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combine GiNaC with other projects written in C++ . This topic will be discussed in
more detail in section 2.16.

• No static or artificial limits:
All memory management should be completely dynamic, and the user should not
have to configure any buffer or table sizes. The only limitations of the system should
be the available memory space and computation time. For example, subexpressions
in GiNaC are enumerated with variables of type size_t because this type is guar-
anteed to hold the size of the largest possible object, including containers of objects,
which also makes it the logical choice for counting objects. Restrictions like the
upper limit of 216 − 1 terms in sums in the 32-bit versions of Maple V are not
acceptable.

• Handle large expressions:
Intermediate expression swell is a general problem in computer algebra sys-
tems [GCL 1992]. The number of terms in typical xloops two-loop calculations can
easily exceed O(104) [Do 2003]. GiNaC must therefore be able to store and manip-
ulate expressions of this size efficiently. Not only does this put high demands on the
memory management, it also means that the asymptotic behavior of the employed
algorithms is often more important than the run time for small input sets.

2.4 Applying the Object-Oriented Paradigm to Computer
Algebra

Most computer algebra systems follow a functional paradigm that stems from their math-
ematical origin. Expressions are viewed as compositions of functions, and computations
are done by applying functions to expressions. For example, the expression x2 − 1 might
be represented as the nested composition

1 add(power(x,2),-1)

and calculating the derivative with respect to x is then achieved by applying another
function diff() like this:

2 diff(add(power(x,2),-1),x)

which (hopefully) evaluates to something like

3 mul(x,2)

The knowledge of how to compute derivatives is thus embedded in the universal diff()
function.

In GiNaC, an expression is a composition of objects, and computations are done by invoking
methods of the objects’ classes. On paper, an expression such as x2−1 might look identical
to the representation in the functional paradigm:

1 add(power(x,2),-1)
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but the interpretation is fundamentally different. In the functional approach, the notation
A(B) means “the function A is applied to B”. Here, it means “the object A contains an
instance of, or a reference to an instance of, object B”. The derivative is computed by
calling the diff method of the outer add object:

2 add(power(x,2),-1).diff(x)

The add class knows that it should compute its derivative by propagating the invocation
of the diff method to all its child objects, and summing the results. Ultimately, it is the
implementation of the diff method in the power class that returns the object

3 mul(x,2)

as the result. In the object-oriented paradigm, it is the algebraic classes themselves that
know how to compute their own derivatives.

GiNaC still doesn’t entirely abandon the functional approach. One key characteristic
that is retained is the non-mutability of expressions. With the exception of lists and
matrices, it is not possible in GiNaC to change the constituents of composite algebraic
objects. All operations on expressions always return their result as a newly created object,
or possibly as a revised copy of the original expression. In this respect, most of the
GiNaC methods behave much like mathematical functions. Of course, all these objects
should eventually be freed when they are no longer used, so some kind of automatic
⇒ garbage collection mechanism is needed. GiNaC utilizes a simple reference counting
garbage collector, explained in section 2.9.1.

A second characteristic of the object-oriented paradigm is the expression of common func-
tionality by class inheritance. As an example, consider the similarity of the distributive
law of products and powers:

ab+ ac = a(b+ c)

abac = abc

which is even more apparent when written as the composition of objects:

1 add( mul(a,b), mul(a,c)) -> mul(a,add(b,c))
2 mul(power(a,b),power(a,c)) -> power(a,mul(b,c))

GiNaC exploits this and other similarities between the add and mul classes by making
them inherit from a common superclass expairseq.

In general, the object-oriented paradigm makes it easier to add components to an existing
system, and to reuse components in different contexts. This facilitates the “extensible
library” concept of GiNaC, which is one of the stated development goals.

There are of course cases where an algorithm can’t be implemented in a natural way as
a set of methods distributed over a collection of symbolic classes as elemental as those in
GiNaC. Many polynomial algorithms such as polynomial division and GCD computation
fall into this category. In a polynomial-oriented system they could possibly be implemented
as methods on polynomial and monomial classes, but these don’t exist in GiNaC.
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2.5 Basic Features of GiNaC

Before discussing advanced features of GiNaC and details of its implementation we will
give an overview of its basic capabilities.

GiNaC provides arbitrary-precision integer, rational, floating-point, and complex arith-
metic based on the CLN library [HaKr 2000]. Additionally, it allows the definition of
symbolic indeterminates (class symbol) and the use of symbolic constants such as π,
which by default behave like complex numbers.

Arbitrary mathematical expressions (class ex) can then be constructed from sums, prod-
ucts, powers, and functions of numbers, symbols and other expressions. Many symbolic
functions including trigonometric functions (sine, cosine, etc., as well as inverse and hy-
perbolic functions), transcendental functions (exp, log, ζ, etc.), and some other common
functions like absolute value and factorial are pre-defined by the library.

Expressions can be output in a variety of formats, including plain text, LATEX notation,
and C source code. It is also possible to use the plain text notation for run-time expression
input.

The basic operations available on expressions along with their associated methods are:

• symbolic (eval()) and numeric (evalf()) evaluation

• subexpression and operand access (op() and nops())

• finding the degree (degree()) and low degree (ldegree()) of polynomials, and the
asymptotic degree of rational functions

• extracting coefficients from polynomials (coeff())

• expanding expressions (expand()) and collecting coefficients of like powers
(collect())

• normalizing rational expressions (normal())

• finding the numerator (numer()) and denominator (denom()) of rational expressions

• finding the unit (unit()), content (content()), and primitive part (primpart()) of
polynomials

• complex conjugation (conjugate())

• symbolic differentiation (diff())

• expansion into Taylor and Laurent series (series())

In addition to this, there are some operations which, as explained, are not implemented as
methods, such as polynomial division (divide()), polynomial GCD calculation (gcd()),
and square-free decomposition (sqrfree()).
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2.6 The GiNaC Class Structure

The hierarchy of algebraic classes in GiNaC follows the Composite design pattern
[GHJV 1995]. There is an abstract class basic that serves as the base class for all other
algebraic classes and defines their common interface. The classes derived from basic are
either terminal classes (atoms, or primitives) such as symbol and numeric, or non-terminal
classes (containers) such as add, mul and power. Deriving them from a common base class
allows atoms and containers to be treated in a uniform way which often simplifies the
algorithms operating on symbolic objects.

Non-terminal classes contain references to other basic objects, so an entire symbolic
expression can be recursively composed, forming a tree structure with terminal classes as
the leaves and container classes as the branches of the tree.

The class ex of expressions is implemented as a handle to an object of class basic. It acts
both as a proxy that delegates method invocations to the referenced object as well as a
⇒ smart pointer that automatically manages the life time of its basic object (ex objects
don’t have pointer semantics, though). The ex class is light-weight in the sense that it
doesn’t augment its handled object by additional attributes.

The references to the children of non-terminal classes are also ex objects, which lets the
user treat them in a natural way as subexpressions and also extends the automatic memory
management to entire expression trees.

Fig. 2.1 illustrates the interplay between ex, basic, and a selection of the most frequently-
used classes derived from basic, and, as an example, shows the implementation of the
degree() function which returns the degree of its argument (see appendix A for a summary
of how to interpret this and subsequent diagrams).

The ex class defines methods for all symbolic operations on expressions. In the case
of degree() it simply forwards the method invocation to the handled object which is
referenced by the bp member, a pointer to an instance of the abstract basic class. basic
defines degree() as a virtual member function, so the actual method invoked depends
on the dynamic type of the object pointed to by bp. The degree() method is suitably
implemented by the classes derived from basic. An add object, for example, will return
the maximum of the degrees of its individual terms, while a symbol object will return 1 if
it is identical to the argument to degree(), and 0 otherwise.

All methods of an ex object can be called uniformly without requiring knowledge of the
actual expression tree that is handled by it. All symbolic expressions are thus accessible
in a consistent way by the user of GiNaC.

We will now discuss some algebraic classes in more detail.

2.6.1 The symbol Class

As mentioned in section 2.2, symbols in GiNaC have a name (an STL string) that is,
however, used for expression output only. So how does GiNaC actually tell symbols apart?
Every symbol object carries a unique serial number that is assigned when a symbol is first
created. Symbols with the same number are treated as mathematically equal.
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symbol objects also have some additional attributes such as a special name for LATEX
output and information about whether a symbol represents a real number or a non-
commutative value, which is used by functions like complex conjugation.

2.6.2 The constant Class

The constant class implements numerical constants that are represented by a symbolic
name. Three constants are predefined by GiNaC: π = 3.14159 . . . (Pi), Catalan’s con-
stant G = 0.9159655 . . . (Catalan), and the Euler-Mascheroni constant γE = 0.577216 . . .
(Euler).

Constants are similar to symbols in that they have a name, a LATEX name, and a serial
number. But a constant also stores a pointer to a C++ function for calculating its numeric
value, which is called when an expression containing the constant is to be numerically
evaluated.

It should be noted that the imaginary unit i defined by i2 = −1 and called I in GiNaC is
not implemented as a constant but as a non-mutable const numeric object.

2.6.3 The numeric Class

Computations with numbers in GiNaC are delegated to the C++ library CLN which
defines a class cl_N that provides highly efficient arithmetic operations on real, complex,
and exact integer and rational numbers of arbitrary size and precision. The task of the
numeric class is mainly to act as an adapter that converts the interface of CLN to that
of GiNaC.

GiNaC provides implicit conversions from the C++ numeric types int, long, and double
to numeric objects and to expressions holding a single numeric object. This makes it
possible to use number literals directly in symbolic expressions.

2.6.4 The add and mul Classes

Since subtraction and division can be represented as addition and multiplication with the
respective inverse elements, it is sufficient to implement just one class for sums (add) and
one for products (mul).

Due to the mathematical similarities between addition and multiplication the add and mul
classes are derived from a common abstract base class called expairseq. For reasons of
efficiency which are presented in-depth in [Frin 2000] and [Krec 2002], the expairseq class
represents sums and products as a vector seq[] of pairs of symbolic terms and numeric
coefficients, with a separate purely numeric term overall_coeff.

For example, the polynomial 3x− yz − 2 would be stored in an add object with seq[]=
{(x, 3), (yz,−1)} and overall_coeff= −2, while the expression x2y3

3z would be represented
by a mul object with seq[]= {(x, 2), (y, 3), (z,−1)} and overall_coeff= 1

3 (see fig. 2.2).

This implementation detail is hidden inside the library. To the user, GiNaC presents sums
and products as straight sequences of individual terms and factors. We will, however, get
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2 GiNaC – Object-Oriented Computer Algebra

Figure 2.2: Sums and products in GiNaC are stored as a sequence (seq[]) of expression pairs
with separated numeric coefficients or exponents, respectively, plus a purely numeric term (oc ≡
overall coeff). The representations of 3x− yz − 2 (left) and x2y3

3z (right) are shown.

back to their internal representation when we discuss the run-time structure of expressions
in section 2.7.

add and mul objects are rarely created directly. Instead, they are constructed using the
overloaded arithmetic operators +, -, * and /.

2.6.5 The power Class

Generic powers are represented by objects of class power that store the base and expo-
nent expressions. It should be noted that GiNaC doesn’t provide an overloaded operator
for powers because the only intuitive choice, the exclusive-or operator ^, has the wrong
precedence with respect to + and *. For consistency with the C++ numeric types, GiNaC
overloads the pow() function for expressions.

2.6.6 The function Class

There is only one function class. Individual mathematical functions (sin, cos, etc.) are not
represented by subclasses of function but are differentiated by a unique serial number
that is assigned upon library initialization. This was done to avoid an inflation in the
number of defined classes for the expected high number of available symbolic functions, to
allow adding functions at run time, and because inheritance of properties is rarely useful
for mathematical functions.

The function class is derived from a class called exprseq that stores a vector of expres-
sions representing the function arguments (it is essentially an STL vector<ex> packaged
as an algebraic GiNaC class).

In addition to the functions built into the GiNaC library, a user can also define new
functions. xloops, for example, defines a set of functions representing various types of
loop integrals (listed in section 5.5). A symbolic function is defined with the aid of two
preprocessor macros: 5

• DECLARE_FUNCTION_nP(name)
5 While the use of preprocessor macros in C++ is generally frowned upon, in this case the gains in

convenience outweigh the drawbacks such as the lack of proper namespacing.
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2.6 The GiNaC Class Structure

Figure 2.3: All symbolic functions are represented by one function class, differentiated by a per-
function serial number. A vector of function options objects stores the name and attributes of
each function, including pointers to C++ callback functions, e. g. for numeric evaluation (evalf()).
The representation of the expression sin(x) is shown as an example.
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2 GiNaC – Object-Oriented Computer Algebra

This macro declares a symbolic function with the given name and n parameters. It
defines

1. a class name_SERIAL that stores the serial number of the function, and

2. a C++ function name(...) taking n expressions and returning a function
object with the proper serial number and arguments. This is the C++ function
that GiNaC applications call when creating symbolic expressions containing
this particular function.

• REGISTER_FUNCTION(name, options)
This macro generates code that registers the function with GiNaC, assigning the
unique serial number to the name_SERIAL object. The options parameter specifies
any number of function attributes, such as

– C++ callback functions that implement algebraic and numeric evaluation, par-
tial derivatives, series expansion, and complex conjugation of this function,

– a name for LATEX output,

– symmetry properties of the function with respect to its arguments,

– non-commutativity of the function value,

– specifications of printing methods for the various output formats offered by
GiNaC (see section 2.14).

The name, number of arguments, and attributes of each function are stored in an object of
class function_options. GiNaC maintains a global vector of function_options objects,
indexed by the function serial number, from which all information about a function can
be retrieved when needed (see fig. 2.3).

Not having a separat class for each function has, however, one serious drawback: There
is no easy way from C++ to refer to a certain function in itself, as opposed to a concrete
function object that appears as a part of an expression. A function such as sin is neither
usable as first-class data nor as a template parameter. The only function-specific object
that is accessible from C++ is the function’s serial number.6 On the other hand, defining
a function as a class prohibits overloading the same name for C++ functions. For instance,
a class sin with a constructor sin(ex) would clash with both the function sin(numeric)
defined by GiNaC, as well as the C++ standard function sin(double) (if they are imported
into the same namespace).

While all built-in GiNaC functions implement some sort of algebraic functionality, this
needs not necessarily be the case. It is absolutely possible, and often useful, to define
“dumb” functions that merely act as named containers for their arguments, which can
then later be retrieved from an expression, or be replaced with some other objects. This

6 For example, the operation is_ex_the_function(e, name) which returns true when the expression e
is an instance of the function name can only be implemented as a preprocessor macro since it has to
construct the name of the object holding the function’s serial number from the supplied function name.
If each function were a separate class, its class name would simply be passed to is_ex_the_function()

as a template parameter.
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is of particular interest because, unlike user-defined algebraic classes, user-defined func-
tions are accessible from GiNaC’s input parser, and can thus be constructed from textual
representations of expressions, either interactively or from files (see sections 2.22 and 4.3).

2.6.7 Other Classes

Fig. 2.4 shows the entire hierarchy of algebraic classes defined in GiNaC. Most of the
remaining ones will be explained in chapter 3.

The class matrix implements dense matrices and some common operations like inversion
and calculating the determinant. It is also the basis for GiNaC’s linear equation systems
solver.

A relational object holds a relation (=, 6=, >,<,≥, or ≤) between two expressions. This
is used to represent equations and inequalities in GiNaC. The C++ relational operators ==,
!=, >, <, >=, and <= are overloaded for expression operands to return relational objects.
Using a relational in the C++ conditional statements if and while will try to evaluate
the relation and return a bool value. If the relation can’t be determined, such as a > b
for indeterminate a and b, it will always yield false.

Truncated power series (Taylor and Laurent series) as they result from the ε-expansion of
the xloops loop integral functions are represented by objects of class pseries which store
the expansion variable, the expansion point, and the coefficients of the series.

Of special interest is the template class container<T> which wraps STL containers of ex-
pressions into GiNaC objects and serves as the base for both the GiNaC expression list class
lst (=container<std::list>) and the class exprseq (=container<std::vector>)
which in turn is the base class for functions, indexed expressions (indexed) and non-
commutative products (ncmul).

2.7 Run-Time Structure of Expressions

To the user of the library, GiNaC presents expressions as trees of individual symbolic
objects. For example, the expression 1

2x
2 + 2x+ 1 appears as shown in fig. 2.5(a).

The subtrees of such an expression tree make up the expression’s subexpressions. In our
example, x2 and 2x are two possible subexpressions of 1

2x
2 + 2x + 1, but 2x + 1 is not a

subexpression. This will become important in the discussion of GiNaC’s pattern matching
and substitution algorithms in section 2.21. The immediate subexpressions of an algebraic
object (i. e. its direct children in the tree) can be accessed with the op(i) method which
returns the (i + 1)-th subexpression or operand. The number of subexpressions of an
object can be determined with the nops() method.

The actual object structure of an expression such as the one given is, however, decidedly
different as demonstrated in fig. 2.5(b). Not only are sums and products stored in a
special prefactored format as described in 2.6.4, but GiNaC also tries to conserve memory
by sharing common subexpressions between objects, even on a single-object basis, thus
changing the structure of expressions from trees to directed acyclic graphs (DAGs). The
graph structure is obtained by the use of reference counting, ⇒ flyweights, and active
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2 GiNaC – Object-Oriented Computer Algebra

Figure 2.4: Overview of the hierarchy of algebraic classes in GiNaC 1.2
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2.7 Run-Time Structure of Expressions

(a) Logical tree structure of 1
2
x2 + 2x + 1

(b) Object graph representation in GiNaC

Figure 2.5: The actual in-memory representation (b) of an expression such as 1
2x

2 + 2x + 1 is
different from the tree structure (a) that GiNaC “simulates” to the outside. The sharing of common
subexpressions changes the run-time structure from a tree to a graph.
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2 GiNaC – Object-Oriented Computer Algebra

fusion of subexpressions, all of which will be explained in section 2.9.

Each arrow in fig. 2.5(b) corresponds to one ex object embedded in an algebraic object. As
shown, GiNaC only maintains references to an object’s children, but not to its parent(s)
or siblings. Cyclic references are not allowed. It should also be noted that although the
expression 1

2x
2 + 2x + 1 contains products, no explicit mul objects appear in its actual

representation. This is an effect of the pair-wise representation of sums in GiNaC.

GiNaC converts the internal object graph to the external tree representation on demand.
For example, when the user asks for the second term of the sum 1

2x
2 + 2x+ 1 by invoking

op(1), GiNaC will return an expression containing a newly created mul object storing the
result 2x.

Sharing objects not only saves memory, it also speeds up comparing (sub)expressions with
each other. When two expressions point to the same object or subtree in memory they
are immediately known to be equal without having to compare the individual nodes of the
expression trees (see section 2.11).

2.8 Automatic Evaluation of Expressions

Like virtually all computer algebra systems, GiNaC performs some automatic transforma-
tions and canonicalizations on expressions. This allows for a more compact and efficient
representation of mathematically equivalent expressions (such as 3x+ 2x ≡ 5x), helps in
determining equalities (for instance, the products xyz and yzx are not only algebraically
but also syntactically equal when their factors have been brought into a fixed canonical
order), and usually yields some immediate simplifications (such as sin(x−x) = sin 0 = 0).

These transformations happen automatically when expressions are created. This is also
referred to as anonymous evaluation because it occurs without being explicitly initiated by
the user by invoking a special method on an expression. Nevertheless, such a method exists
in GiNaC because in the majority of cases these kind of evaluations can’t be performed
inside the constructors of algebraic objects as the resulting evaluated expression is of a
different class (for example, the sum 3x+ 2x evaluates to the product 5x).

GiNaC’s anonymous evaluator is therefore implemented as a method eval() which is called
automatically whenever an expression is created from an algebraic object, i. e. whenever
an object of a subclass of basic or a tree of such objects is bound to an ex. The imple-
mentation of eval() in the respective class will then perform any desired transformations
and return the evaluated expression as a new ex object. If no (further) transformations
are possible, the object sets a flag member evaluated which prevents further invocations
of eval(), and returns an ex referring to itself (see fig. 2.8 on page 33).

The exact kind of automatic evaluations carried out depend on the class and are too
many to list them all here. In general, sums and products reorder their children into
a canonical sequence which is not lexicographic or otherwise intuitively predictable but
deterministic (it relies on hash values calculated for the subexpressions to which we will
return in section 2.11), and will combine terms that only differ in a numerical coefficient
or exponent (so, for example (4x−2x)3

(x+x)2
→ (2x)3

(2x)2
→ 2x ).7 More examples for anonymous

7 This is where the pair-wise representation of sums and products described in section 2.6.4 is
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evaluation will be given in the discussion of symmetries (section 3.1) and non-commutative
algebras (section 3.4).

GiNaC only automatically performs transformations which are

a) local, i. e. which don’t require knowledge about an object’s parent or higher-level
children in the expression tree.

b) mathematically invalid for at most a set of measure zero for the values of symbols.
For example, GiNaC transforms x0 → 1 even though this is wrong for x = 0. This
matches the behavior of most other algebraic manipulation systems.

c) whose algorithmic complexity doesn’t exceed that of sorting (O(N logN)).

It is usually not necessary (but possible) for a user of GiNaC to call eval() explicitly.

2.9 Memory Management

The storage space for symbolic expressions is managed by GiNaC in a completely au-
tomatic and transparent fashion. There is never a need for the user of the library to,
for example, explicitly free the tree of objects associated with an expression. This both
simplifies usage and eliminates the main possible source of memory leaks.

As C++ doesn’t feature automatic memory management for objects, this has to be imple-
mented by GiNaC. While this complicates the design of the library to some extent it also
enables experimenting with some low-level optimizations that would otherwise not have
been possible.

For a system with such a fine granularity of objects as GiNaC (every single symbol and
number in an expression is, after all, a separate object) keeping the overall number of
objects in memory small reduces both the memory footprint of GiNaC applications and
the overhead associated with keeping track of large numbers of objects. It is therefore
advantageous to share as many objects between expressions as possible.

The techniques employed by GiNaC’s memory manager are reference-counting, copy-on-
write, cloning of stack-allocated objects, the use of flyweights, and defensive fusion of
redundant subtrees.

2.9.1 Reference Counting

An ex object maintains ownership of its referenced algebraic object and is responsible
for its deletion. To conserve storage space, the same algebraic object can be referenced
by more than one ex, as has already been mentioned. Each object contains a reference
counter that tracks the number of ex instances pointing to it. Making the object into a
new expression increases the counter, destroying an ex referencing it decreases it. When
the counter reaches zero, the object is deleted.

advantageous.
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2 GiNaC – Object-Oriented Computer Algebra

Figure 2.6: Expressions in GiNaC are reference-counted. Reassigning an expression removes the
reference to the previous object tree, possibly deleting it, and adds a reference to the new one
without having to copy any objects.

This mechanism is implemented in GiNaC in a generic fashion with the help of two classes,
the ⇒ mixin class refcounted that manages the reference counter and the smart pointer
template ptr<T> that manages the storage space of its pointee object. The basic class
then inherits from refcounted while ex contains a ptr<basic>, as illustrated in fig. 2.6.

As an example, consider this code sequence:

1 symbol x("x");
2 ex e1 = pow(x, 2);
3 {
4 ex e2 = sin(e1);
5 e1 = 0;
6 }

In line 2, first a new power object is created (and its reference counter initialized to zero)
and then e1 is set up to point to this object, which increments the counter to 1. When e2
is constructed in line 4, the argument of the sine function points to the same power object
as e1 and the counter is incremented to 2. Reassigning e1 in line 5 removes its reference
to the object and decrements the reference counter back to 1. Lastly, when the end of the
block is reached in line 6 and e2 goes out of scope and is destroyed, the counter is further
decreased to zero (this actually happens during the destruction of the sine function object)
whereupon the power object is finally deleted.

The reference-counting mechanism implemented in GiNaC is very simple and efficient.
It has no provisions for dealing with cyclic references but these don’t appear in GiNaC
expressions anyway. One drawback, however, is that every single algebraic object needs
to contain a reference counter which again slightly increases the storage space required by
expressions.
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2.9 Memory Management

Figure 2.7: Copy-on-write: Attempting to modify an object that is referenced by more than one
expression will create an exclusive duplicate first.

2.9.2 Copy-on-Write

The reference counting in GiNaC works well because expressions in GiNaC are generally
non-mutable, i. e. the attributes and operands of algebraic objects can’t be changed once
they have been created. It is only possible to generate modified copies of expressions.

The lst (list) and matrix classes are the only two exceptions. List elements can be
inserted or removed, and matrix elements changed without having to create new objects.
This poses a problem for sharing objects between expressions because it is usually not
desired that changing an object in one expression also modifies other expressions that
happen to reference that same object.

The solution is called copy-on-write: When an object that is about to be modified (written
to) is referenced by more than one ex instance, it is cloned (copied) first, and the modifi-
cation carried out in the copy only. This is realized in a method makewriteable() which
is called by every ex member function that potentially modifies its referenced object, and
a polymorphic cloning function duplicate() defined by basic and implemented by each
algebraic class (see fig. 2.7).

One expression-modifying method is let_op(i) which lets users modify list elements (as
opposed to op() which only provides read-only access):

1 ex e1 = lst(1, 2, 3);
2 ex e2 = e1;
3 e1.let_op(1) = 0;

e1 is first initialized with the list {1, 2, 3}, and after line 2 e2 will point to the same object,
as described. Calling let_op() in line 3 will make a copy of that list, change the second
element, remove e1’s reference to the original list, and make e1 point to the modified list.
The original list is now referenced by e2 only, which remains {1, 2, 3} while e1 is now
{1, 0, 3}:
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2.9.3 Cloning of Stack-Allocated Objects

Memory management in GiNaC is further complicated by the fact that C++ actually does
have one kind of automatically managed storage space: the stack on which local variables
and temporary objects are allocated.

Objects on the stack must of course not be deleted when the last expression referring to
them goes away. In fact, they can’t reasonably be referenced by ex objects at all because
this will leave dangling references when they are deallocated by C++ .

Consider the following function which returns a newly created list:

1 ex f()
2 {
3 return lst(1, 2, 3);
4 }

In this case, the lst is an anonymous temporary object that is deleted when the function
f() exits. If the returned ex contained a reference to that object, it would point to a no
longer accessible memory location after returning from the function.

GiNaC handles this by asserting that ex instances always point to heap-allocated objects.
If an expression is created from a stack-allocated object, GiNaC will first make a copy
of that object (using the same duplicate() method that is used by the copy-on-write
mechanism) and initialize the ex with a reference to the copy.

Thus, in a simple sequence such as

1 symbol x("x");
2 ex e = x;

GiNaC actually first clones the symbol x on the heap, and then makes e point to the clone
which is now completely under its ownership. Even if the variable x goes out of scope, the
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Figure 2.8: Binding a stack-allocated algebraic object (either a local variable or a temporary
object) to an expression creates a dynamically allocated copy. At the same time, GiNaC performs
an automatic symbolic evaluation.

expression e still references a valid symbol (which in turn gets deleted when e is destroyed
or reassigned).

Unfortunately, in C++ it is not possible in a portable fashion to automatically determine
whether an object lives on the stack or on the heap; some manual assistance is required.
In GiNaC, all algebraic objects contain a flag dynallocated that needs to be set for all
heap-allocated objects (those created with the new operator). When an object is bound
to an ex, this flag is checked and the object cloned if the flag is not set (see fig. 2.8). The
flag is then of course set in the clone.

Having to manually set this flag for every dynamically allocated object may sound cumber-
some (and it is, to some extent), but it is normally not necessary for the user to explicitly
allocate algebraic objects with the new operator. Most dynamic memory allocation hap-
pens inside the GiNaC library itself as part of the automatic memory management.

2.9.4 Flyweights

Sharing objects between expressions via the reference counting mechanism only works for
objects that already exist. Keeping the number of newly-created objects down requires
different strategies.
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This problem is particularly obvious in the case of numbers. Every numeric literal that
appears in a C++ expression that is in turn part of a GiNaC expression must first be
converted to a numeric object before it can be part of the expression. For example, for
an expression like x2 + 2x+ 2 which would be entered as

1 symbol x("x");
2 ex e = pow(x, 2) + 2*x + 2;

GiNaC would have to create three separate instances of numeric objects representing the
number 2 that could easily be shared.

To mitigate this situation, GiNaC keeps around a pool of preallocated numeric objects for
some commonly-used numbers. When one of these numbers is needed for an expression,
a reference to the existing object is then returned, instead of creating a new one.8 This
mechanism corresponds to the Flyweight pattern described in [GHJV 1995]. The construc-
tors of ex from built-in C++ integral types (which are also called for implicit conversions
to ex) assume the role of flyweight factories.

The expression resulting from the above code fragment thus actually only contains three
references to one preallocated numeric object for the number 2.

2.9.5 Fusion of Redundant Subtrees

As a last measure to reduce the number of objects in expressions, GiNaC 1.2 implements
the idea of defensive fusion presented in [Krec 2002, section 3.2].

When during the comparison of two (sub)expressions they are found to be equal but are
actually two separate subtrees, GiNaC will change the reference to one of the trees (the
one with the lower reference count) to point to the other one, thereby possibly deleting one
redundant subtree in the process (when it is no longer referenced by any other expressions).

As an example, consider the following code sequence which creates a list containing 2x
twice, as different objects, and then sorts it:

1 symbol x("x");
2 lst l(pow(x, 2), pow(x, 2));
3 l.sort();

Creating the list in this fashion will not only construct two different power objects but it
will also make two distinct clones of the symbol x (only the flyweight numeric 2 is shared).
When the list is being sorted in line 3, the two elements will be compared, found to be
equal, and one of the two redundant expression trees will be deleted:

8 An alternative approach would have been to set up a cache for recently-used numbers that is consulted
every time a new numeric is about to be created.
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Whether the subtree fusion yields any advantages is highly dependent on the type of cal-
culation being performed. Considering the standard GiNaC 1.2 regression test and bench-
mark suite, the total memory savings as well as the reduction in the number of allocated
objects are well below 1%. Of course, the benchmark suite consists of many independent
routines between whom no objects are shared (with the exception of flyweights). Longer,
more continuous calculations such as those performed in [BKK 2002] show better effects
(approx. 15% reduction in memory usage, according to [Krec 2002]).

In any case, the main benefit of the method comes from the decrease in run-time (up
to 8% for some of the GiNaC benchmark tests) by cutting down the number of required
explicit comparisons between subtrees by nearly one-half (cf. section 2.11 below).

2.10 Run-Time Type Information

While an ideal object-oriented design is supposed to hide implementation-specific details
of different classes behind abstract interfaces, it is occasionally necessary to determine the
dynamic types of the objects contained in an expression.

C++ supports run-time information on types via the typeid operator and the associated
type_info class. For reasons of efficiency, however, GiNaC implements its own light-
weight run-time type information (RTTI) system based on integer type ID values stored
directly in each algebraic object in a member variable tinfo_key. With the exception
of the structure<T> template (see section 2.13), the actual ID values are predefined
constants, one for each class, which makes comparisons of type IDs very fast as they are
known at compile time.

On the downside, such hard-coded ID values pose a problem for users extending the library
with new classes, because a value used for one class may already be in use for a different
class from another developer. Moreover, it is the responsibility of each class to correctly set
its tinfo_key attribute upon construction. Lastly, this scheme only allows determining
the exact type of an object, without respect for class inheritance.
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Figure 2.9: Comparing expressions relies largely on hash values that are cached inside algebraic
objects.

GiNaC thus provides two functions for determining the dynamic type of expressions:

• is_exactly_a<T>(e) uses the described custom type ID mechanism to check
whether the object pointed to by the expression e is an instance of the class T,

• is_a<T>(e) relies on the slower dynamic_cast operator to test whether the refer-
enced object is an instance of T or one of its subclasses.

For example, is_a<exprseq>(sin(x)) would return true (because function is a subclass
of exprseq) while is_exactly_a<exprseq>(sin(x)) would yield false.

The type ID values in algebraic objects are also employed for the table look-ups in GiNaC’s
implementation of double dispatch described in section 2.14, for specifying the commu-
tation properties of objects (see section 3.4), and for the calculation of hash values for
expressions, which will be explained in the next section.

2.11 Comparing Expressions

Profiling typical GiNaC applications reveals that up to 30% of their execution time is spent
on comparing expressions, whether it be in the sorting of terms during the canonicalization
of sums and products or by direct comparisons, usually with some fixed values like 0 or 1.
It is therefore imperative that comparisons be as fast as possible.

The principal function of the ex::compare() method is to establish a canonical ordering
relation on expression objects.9 Comparisons between two expressions are carried out in

9 As opposed to, say, the arithmetic ordering of real numbers. Even for arbitrary expressions a and b for
which the truth of the relation a > b is undetermined, GiNaC still needs to be able to put them into a
canonical order when sorting expression vectors.
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four steps:

1. If both expressions reference the same object, they are immediately known to be
equal. This is why effective sharing of objects between expressions also helps speed-
ing up comparisons.

2. If the objects are different, GiNaC computes a hash value for each expression,
typically using the referenced object’s type ID value and the hash values of any
subexpressions the object may have (see [Frin 2000, section 2.2.4] for details about
the computation and the advantages of using hash values). Once computed, the
hash value is cached inside the object in a member variable hashvalue and a flag
hash_calculated is set to indicate that a hash value for that object has already
been calculated and can be used in subsequent comparisons without the need to
recompute it (see fig. 2.9).10

3. If the hash values match, GiNaC compares the numeric type ID values stored in the
referenced objects.

4. If the type IDs are the same, both objects are known to be instances of the same
class and thus have the same set of attributes. GiNaC then invokes the method
compare_same_type() which is implemented by each algebraic class to individually
compare all attributes and subexpressions of the two objects (which are now known
to belong to the exact same class).

Since it is often sufficient to compare two expressions for equality, without determining
an order between them, GiNaC also provides a method ex::is_equal() (with an asso-
ciated is_equal_same_type()) that works similar to ex::compare() but is often much
faster. Algebraic classes are not required to implement is_equal_same_type() since this
operation falls back to compare_same_type() by default.

Experiments show that, running the standard GiNaC benchmark suite, about 14% of all
comparisons are settled by comparing the expressions’ object pointers (step 1 above), and
another 79% are reduced to comparing hash values (step 2). Only in the remaining 7%
of all comparisons do algebraic objects need to be compared individually (without object
fusion, this number nearly doubles to 13%).

Also, in 93% of the cases a hash value for an object is needed, it is taken from the cache
without having to be recomputed.

2.12 Class Registry

GiNaC maintains a run-time database of all defined algebraic classes called the class
registry. This database is set up at library initialization time via static member objects
defined in each class, and is mostly used for internal functions of GiNaC.

The registry stores the following data for each class which can be looked up specifying a
class name (see fig. 2.10):
10 Any method such as let_op() that modifies an algebraic object must, of course, clear this flag.
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Figure 2.10: GiNaC maintains a registry of all defined algebraic classes. There exists one static
registered class info object per class storing class-specific data such as the name of the class
and its superclass, the type ID, and a pointer to an unarchiving function.

• the names of the class and its superclass as strings,

• the type ID for the class,

• a pointer to the unarchive() method that is used for restoring expressions from
archives (see section 2.15),11

• the method table for the print() double dispatch mechanism (see section 2.14).

A similar database is maintained for the hierarchy of print_context classes that play a
role in specifying expression output formats, which will also be considered in section 2.14.

2.13 Adding New Algebraic Classes

A slightly awkward consequence of GiNaC’s type information system and class registry is
that defining a new algebraic class (which, as outlined in the development goals, has to be
possible without recompiling the library) is a little more involved than just deriving a new
class from basic. To simplify the process, GiNaC provides three preprocessor macros:

• GINAC_DECLARE_REGISTERED_CLASS(name, super)
This macro is invoked in the first line of a class definition. It defines

1. the static reg_info object and associated helper access methods such as
get_class_info() for the class registry,

11 Having a way to obtain the unarchive() method of a class from its name was in fact the original reason
for the implementation of the class registry.
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2. the duplicate() method for cloning objects, and

3. the nested visitor class and the accept() method for the visitor mechanism
(see section 2.18).

It also declares

1. the default constructor,

2. the constructor and the archive() and unarchive() methods used by GiNaC’s
object persistence model (see section 2.15), and

3. the compare_same_type() method.

• GINAC_IMPLEMENT_REGISTERED_CLASS(name, super) and
GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(name, super, options)
One of these two macros usually appears in the source file that contains the class
implementation, and defines the static reg_info object. The second form allows
specifying additional class options which are stored in the registry, such as specifi-
cations of printing methods (see section 2.14).

Additionally, the programmer must pick an integer constant to be used as the type ID for
the new class, which must follow the naming scheme TINFO classname.

A minimal example for the definition of a new algebraic class foo would then look like
this:

In a file foo.h:

1 const unsigned TINFO_foo = 0x42420001;
2

3 class foo : public basic {
4 GINAC_DECLARE_REGISTERED_CLASS(foo, basic)
5

6 public:
7 // any additional constructors and methods
8

9 private:
10 // any class attributes
11 };

In a file foo.cpp:

1 GINAC_IMPLEMENT_REGISTERED_CLASS(foo, basic)
2

3 // default constructor
4 foo::foo() : basic(TINFO_foo) {}
5

6 // archiving method
7 void foo::archive(archive_node &n) const
8 {
9 basic::archive(n);

10 // store class attributes in archive_node
11 }
12

13 // unarchiving constructor
14 foo::foo(const archive_node &n, lst &sym_lst) : basic(n, sym_lst)
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15 {
16 // retrieve attributes from archive_node
17 }
18

19 // unarchiving method
20 ex foo::unarchive(const archive_node &n, lst &sym_lst)
21 {
22 return (new foo(n, sym_lst))->setflag(status_flags::dynallocated);
23 }
24

25 // comparison method
26 int foo::compare_same_type(const basic &other) const
27 {
28 // compare attributes of *this and other
29 ...
30 }

This represents the minimal set of methods that must be implemented by an algebraic
class in GiNaC. Any useful class will, of course, also override additional methods from
basic, like eval() and calchash(), and provide new methods for accessing class-specific
attributes and functions.

To further simplify the creation of classes for users of the library, GiNaC 1.2 provides a
template class structure<T> that wraps any C++ class T into an algebraic GiNaC class,
as long as T has value semantics (i. e. variables of type T can be assigned and passed to and
from functions like any built-in C++ data type). To make expression comparisons work,
the user must also provide == and < operators for T. Any basic methods of structure<T>
can be overridden via template specialization. The type ID for the new class is dynamically
allocated from a range of reserved values.

A definition of foo using the structure template might look like this:

1 struct foo_T {
2 foo_T() {}
3

4 // any class attributes
5 };
6

7 bool operator==(const foo_T &lhs, const foo_T &rhs)
8 {
9 // determine whether lhs == rhs

10 }
11

12 bool operator<(const foo_T &lhs, const foo_T &rhs)
13 {
14 // determine whether lhs < rhs
15 }
16

17 typedef structure<foo_T, compare_std_less> foo;

The ⇒ policy class parameter compare_std_less informs the structure template that
the == and < operators are available for the foo_T class. It can be omitted, but then
GiNaC would treat all foo objects as identical.

The observant reader will have noticed that in the examples given there are no methods
defined for expression output. While there is a print() method in the basic class that
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Figure 2.11: Prior to GiNaC 0.8.1, each expression output format was implemented as a separate
method.

can be overridden by subclasses to implement the specific way in which an object should
print itself, the preferred way to specify output formats in GiNaC is a much different one,
and will be explained in the next section.

2.14 Expression Output

GiNaC allows printing expressions in a variety of different formats, including

• a Maple-like textual form (e. g. 1/4*abs(x)*y^2),

• LATEX source code (e. g. \frac{1}{4} {|x|} y^{2}),

• C source code for numeric evaluation (e. g. (1.0/4.0)*fabs(x)*(y*y)).

• a “raw expression tree” text format for debugging.

It also permits defining new output formats and modifying existing ones.

The implementation of expression output in GiNaC went through several iterations. In
versions of GiNaC up to and including 0.8.0, it was done in the straightforward object-
oriented way by defining virtual methods like print(), printlatex()12, printcsrc(),
etc. in the basic class, which were then implemented by each algebraic class to provide
the output in the specific way required for each class (see fig. 2.11), so in effect each object
knew how to print itself in the various formats.

This worked reasonably well but had the critical disadvantage that creating a new output
format, even if it was just a slight modification of an existing one, required adding a new
12 LATEX output didn’t actually exist in GiNaC 0.8.0 but was being considered at the time, which eventually

led to the reimplementation of expression output.
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Figure 2.12: In GiNaC 0.8.1 and later versions, the output format is selected in a single print()
method based on the dynamic type of an object belonging to the print context hierarchy.

print*() method to basic and then implementing that method in every single algebraic
class. It was also somewhat awkward to have to call a different method to get a different
output representation.13

To improve upon this situation, GiNaC 0.8.1 introduced a hierarchy of classes correspond-
ing to the different output formats, rooted in a class named print_context, and replacing
the various print*() methods with a single print() that takes a print_context object
as an argument (see fig. 2.12). The print_context classes don’t implement any logic
themselves but only serve for selecting a specific format inside the print() implemen-
tations of the algebraic classes. In addition, they can also store any contextual state
information that a specific output format might need, such as the indentation level in the
“tree” format.

While this implementation neatly expressed the relationships between the different output
formats and had the advantage of providing some sort of fallback mechanism (for exam-
ple, numeric is the only class that needs to distinguish between the different subclasses
of print_csrc, so adding a new format that is a subclass of print_csrc only requires
changing numeric::print()), in effect it only converted the various print*() methods
into conditional statements inside the print() implementations of all classes. Adding a
new printing format was slightly easier as it didn’t change the interface of the basic class,
but it was still not possible without recompiling the library.

Using this interface, printing an expression in LATEX format requires writing code like

1 ex e = ...
2 e.print(print_latex(cout));

13 In anticipation of section 2.18 we should note that applying the Visitor pattern to the print() methods
would solve the problem of adding new output formats (simply define a new visitor class for the new
format) but would complicate the creation of new algebraic classes since the visitors for the existing
formats would have to be extended by a new visit() method for the new class.
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Figure 2.13: Double dispatch for basic::print() in GiNaC 1.2. The GiNaC class registry is used
to obtain a class-specific method table from which a function is selected according to the dynamic
type of the passed print context object. Information about the print context hierarchy is
maintained in a separate class registry. The method tables can be changed at run time.

GiNaC 1.1 made this slightly more convenient by providing stream manipulators for all
built-in formats which allows writing this in a more C++-like fashion:

1 ex e = ...
2 cout << latex << e;

Having the output format selected by a print_context class proved advantageous for this
since the << operator for expressions only needs to call the expression’s print() method
passing a print_context object that is created by one of the manipulators.

Given the mentioned disadvantages, a complete rewrite of the expression output system
was undertaken for GiNaC 1.2. Upon closer examination it is apparent that what is really
needed here is a⇒ double dispatch mechanism, i. e. the ability to determine which method
to call given the dynamic type of two objects, one belonging to the basic hierarchy and
the other one belonging to the print_context hierarchy. The C++ language only supports
single dispatch (via its virtual function feature), so some manual work is needed.

Logically, the printing methods are stored in an asymmetric matrix of (possibly empty)
references to functions which is initialized on startup but can also be manipulated at run
time. Physically, the GiNaC class registry maintains for each algebraic class a dispatch
table of function references corresponding to the different print_context types, as il-
lustrated in figs. 2.13 and 2.14. These tables are indexed by type ID values which are
dynamically allocated for the print_context classes. For this purpose, there is a second
class registry for the print_context hierarchy, similar to the one for algebraic classes, that
also stores information about the inheritance relationships of the classes. Both registries
use templates to share common code and data structures between them.

The entries in the dispatch tables can be pointers to member functions, pointers to global
functions, or null pointers representing unspecified methods. The syntactic differences in
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print context print dflt print csrc print csrc cl N print latex . . .
basic • ← ← ← ←
power ↑ • • ← •

add • ← • ← •
mul • ← • ← •

symbol • ← ← ← •
numeric • ← • • •

idx • ← ← ← •
varidx • ← ← ← ↑

. . .
Figure 2.14: The output methods of algebraic objects are arranged in a matrix. For every
combination of object class and output format a handler method can be specified (•). Unassigned
methods fall back to assigned methods in the same class (←) or a superclass (↑).

the specification and invocation of these are encapsulated by the class print_functor.

basic::print() first obtains a pointer to the printing dispatch table of the actual dynamic
class of the object it is invoked on. Next it looks up the method in the table using the
type ID of the supplied print_context object obtained from the print_context class
registry. If a method has been specified it is called, otherwise GiNaC determines the
type ID of the print_context object’s superclass and consults the dispatch table again,
etc. until either a method is found or it arrives at the base of the print_context class
hierarchy. If this is the case, basic::print() gets a pointer to the dispatch table of the
algebraic object’s superclass and retries the process. This provides the desired fallback
behavior for the method dispatch while still allowing (best-case) constant-time dispatch,
and also distinguishes the GiNaC implementation from, for example, the multiple-dispatch
techniques presented in [Alex 2001, chapter 11].

The printing methods for an algebraic class are specified via the options parameter of the
GINAC_IMPLEMENT_REGISTERED_CLASS_OPT macro. As described, GiNaC allows passing
member functions as well as global functions. In the latter case, the first parameter of
the function will be a pointer to the algebraic object. Both types of functions also receive
a reference to the print_context object of the original print() request. Templates are
used to allow some flexibility in the argument types of the functions. For example, the
method called for LATEX output can accept a reference to either a print_latex or a
print_context object.

Printing methods can also be changed at run-time by calling the global function
set_print_func(). This works for both newly defined algebraic classes as well as built-in
classes provided by GiNaC.

To exemplify, the power class implementation specifies its output methods like this:

1 GINAC_IMPLEMENT_REGISTERED_CLASS_OPT(power, basic,
2 print_func<print_dflt>(&power::do_print_dflt).
3 print_func<print_latex>(&power::do_print_latex).
4 print_func<print_csrc>(&power::do_print_csrc))

where do_print_dflt(), do_print_latex(), and do_print_csrc() are member func-
tions of power. When print() is invoked on a power object with a print_latex

44



2.15 Object Persistence

context GiNaC will call power::do_print_latex(), when it is invoked with a
print_csrc_double or print_csrc_cl_N context it will call power::do_print_csrc(),
and with a print_tree context it will fall back to the do_print_tree() method defined
by the basic class.

A GiNaC user can also define a new printing context class, say print_fortran, and use
set_print_func() to specify how a power object should print itself in this format. The
way of defining print_context classes is similar to that of algebraic classes, relying on
GINAC_DECLARE_PRINT_CONTEXT and GINAC_IMPLEMENT_PRINT_CONTEXT macros.

GiNaC’s expression output mechanism thus achieves its three main goals:

1. it provides an efficient and easy-to-use implementation of double dispatch in which
methods can be assigned both at compile time and at run time, and that features
an inheritance system similar to ordinary virtual function dispatch in C++ ,

2. new print_context classes for user-defined output formats can be easily added
without recompiling the library, and

3. the ability to add new algebraic classes is unaffected.

Essentially the same mechanism is used for symbolic functions to allow the specification
of different output formats for them. For example, the absolute value function prints
itself as abs(x) in the default format, as fabs(x) in the C source format, and as |x|
in the LATEX format. The method dispatch tables of functions are kept in the associ-
ated function_options objects, and function overrides basic::print() (it is the only
algebraic class to do so) to perform the lookup and dispatch.

2.15 Object Persistence

For some applications it is useful to be able to store GiNaC expressions in a persistent
location such as a file on disk so they can be read back at a later time or by a different
program.

While it is possible to output expressions in text format and read them back using GiNaC’s
input parser, this approach has a couple of drawbacks:

• Not all attributes of GiNaC objects appear explicitly in the output and would thus
become lost in the process. For example, commutation properties of symbols and
the dimensionality of indices are hidden in the default output format.

• The input parser reconstructs expressions from scratch, undoing the graph structure
and any shared subexpressions the original object tree might have had.

• Storing more than one expression in the same file requires some manual parsing to
discern the individual expressions.
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GiNaC implements a more advanced method of achieving object persistence, referred to as
archiving.14 One or more expressions can be stored in an archive object which converts
them to a sequence of archive_nodes, each one holding the attributes and sequence indices
of subexpressions of one algebraic object as property-value pairs.15. The contents of an
archive can then be written to a data stream (such as a file or a network connection) in
a platform-independent, binary format.

To retrieve an expression, the file is read back into an archive object, and the expression’s
object graph reconstructed from the stored archive_nodes. The mechanism preserves the
expression graph structure even for objects shared between multiple expressions, as long
as they are stored in the same archive object.

Internally, the archiving subsystem relies on the two methods archive() and unarchive()
implemented by each algebraic class to store and retrieve all object attributes to and from
an archive_node, respectively. An object’s class is encoded by storing the class name
as a string, because the names were deemed to be more long-lasting than the type IDs.
Upon unarchiving, GiNaC retrieves a pointer to the unarchive() function of a class via
its name, by looking it up in the class registry (see above).16 This part of the archiving
system thus acts as an object factory.

Symbols and numeric values (i. e. values of numeric objects) are also stored as strings
(symbols by their name, and numerics in a special integer-decoded format that preserves
all information about a number). For efficiency reasons, all strings in archives are repre-
sented by unique ID numbers, a concept that is inspired by the X Window System’s use
of atoms [Gett 1989].

2.16 GiNaC Expressions and the C++ Standard Library

With versions 1.1 and 1.2, increasing importance was attached to having GiNaC interop-
erate seamlessly with the C++ Standard Template Library (STL). The three main groups
of components provided by the STL are

1. container classes,

2. generic algorithms,

3. iterators connecting the algorithms with the containers.

This section focuses on STL containers. The use of iterators in GiNaC will be discussed
in the next section.

Storing GiNaC expressions, i. e. objects of type ex, in STL containers is mostly straight-
forward, as they have value semantics; expressions can be copied, assigned, etc. like any

14 The terminology and parts of the implementation concept are taken from the object persistence model
of the Be Operating System [Be 1997, chapter 6].

15 In the language of [GHJV 1995], an archive_node acts as a Memento of an algebraic object.
16 The BeOS doesn’t have a class registry; it obtains a pointer to the unarchiving function by accessing

the application’s symbol table directly. While this approach has been successfully tested with GiNaC
(under Linux, using dlopen()/dlsym()), it was deemed too platform-specific for general use.
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built-in type. However, sorted associative containers like set and map require that a strict
weak ordering relation exists for the association keys. By default, STL containers will fall
back to the C++ < operator to establish the ordering but, as explained, this operator is
overloaded by GiNaC for expressions to return relational objects which do not define
a strict weak ordering (in particular, they do not guarantee that exactly one of a < b,
a > b and a == b is true).

Instead, GiNaC provides a comparison functor called ex_is_less that employs the
ex::compare() method described in section 2.11 to establish a proper strict weak or-
dering on expressions. This functor has to be supplied to STL containers as a template
parameter, like this:

1 map<ex, ex, ex_is_less> m;

The same ex_is_less functor must also be specified for STL algorithms that require a
comparison function object, like sort() and next_permutation(). For example, to sort
a vector of GiNaC expressions one would use

1 vector<ex> v;
2 // fill v with values...
3 sort(v.begin(), v.end(), ex_is_less());

To speed up STL algorithms, GiNaC overloads the STL swap() and iter_swap() func-
tions for ex arguments. Two GiNaC expression objects can be swapped much more effi-
ciently by just exchanging their basic pointers, than by the standard swapping algorithm
using a temporary variable (ex t = e1; e1 = e2; e2 = t;) which involves some redun-
dant reference counter manipulations. Measurements show that the overloaded swapping
operations bring about a 10% speedup for an STL sort() of a vector<ex> with GCC
3.3.2.

2.17 Iterators

The purpose of iterators is to allow access to the elements of a container or a composite
structure in a generic way without requiring knowledge of its underlying representation.

Since its very beginnings, GiNaC implemented the method op(i) to retrieve the (i+1)-th
subexpression of a container object such as a sums or a list. This method emulates the
behavior of the op(i,e) function in Maple, and provides random element access.

There are, however, data structures that are not designed for particularly efficient random
access. A prominent example is the doubly-linked list, such as implemented by the STL
list<T> container, which only guarantees constant-time access to its first and (usually)
last elements, and to any element’s immediate predecessor and successor, but not to
arbitrary elements.

This implies that the implementation of op() for GiNaC’s list class lst, which is basically
a list<ex>, requires on average N

2 steps to retrieve an element from a list of length N ,
which makes it an O(N) operation:

1 ex lst::op(size_t i) const
2 {
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3 list<ex>::const_iterator p = seq.begin();
4 advance(p, i); // advance iterator by i elements
5 return *p;
6 }

But this in turn makes iterating over the elements of a list with op(), as in

1 lst l = ...
2 for (size_t i=0; i<l.nops(); ++i) {
3 // call l.op(i) which is O(N)
4 // ++i is O(1)
5 }

an operation of order O(N2) because each of the N invocations of l.op() is itself of order
O(N).

Given the commonness of iterating over lists in GiNaC applications and the library itself
this of course constitutes a severe performance problem (in section 2.21 we will demonstrate
the impact of this on substitution operations in GiNaC 1.0).

To improve upon this, GiNaC provided constant-time bidirectional iterators for lists
starting with version 1.1, in the easiest possible way by simply exporting the STL
list<ex>::const_iterator type via the lst class. Iterating over the elements of a
list using this iterator then becomes a linear-time operation:

1 lst l = ...
2 for (lst::const_iterator i=l.begin(); i!=l.end(); ++i) {
3 // use *i which is O(1)
4 // ++i is also O(1)
5 }

Since the list iterators are ordinary STL iterators, they can also be used with all STL
algorithms. For example, to add up the elements of a list one can use

1 lst l = ...
2 ex sum = std::accumulate(l.begin(), l.end(), ex(0));

Starting with GiNaC 1.2, iterators are available for all expressions, not just for lists. The
class const_iterator17 wraps the op(i) interface into an STL compatible random access
iterator, with the associated ex::begin() and ex::end() methods working in the usual
way. For instance, to print the individual operands of a GiNaC expression, each on a line
of its own, one could write

1 ex e = ...
2 std::copy(e.begin(), e.end(), std::ostream_iterator<ex>(cout, "\n"));

As const_iterator relies on op(), it shares with it the efficiency problems with lists
(note that lst::const_iterator is a different class, taken directly from STL). It would
of course have been possible to use polymorphism to allow algebraic classes to provide their
own iterator subclasses suited to the individual data structures employed by them, but
17 Keeping in line with the general non-mutability of expressions, GiNaC’s iterators only provide read

access.
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(a) Preorder (b) Postorder

Figure 2.15: The order in which the nodes of a tree are visited during preorder (left) and postorder
(right) traversal.

that would incur a performance penalty for all iterator operations. Since lists in GiNaC
are usually not used as parts of complex expressions but rather as separate objects to
manage a collection of other expressions, requiring the user to utilize a special iterator
class for lists to get optimum efficiency was deemed an acceptable inconvenience.

One additional advantage of using iterators in an object-oriented design is that they can
encapsulate different iteration algorithms instead of just allowing sequential element ac-
cess. A common algorithm for composite structures like GiNaC expressions is the tree
traversal. With op(), this typically leads to recursive functions like

1 void f(ex e)
2 {
3 // do something with e
4 // ...
5

6 for (size_t i=0; i<e.nops(); ++i)
7 f(e.op(i));
8 }

that throw the iteration logic together with the actual operation implemented by f().

GiNaC 1.2 defines two special iterator types, const_preorder_iterator and
const_postorder_iterator, that provide the two most common tree traversal algorithms
(see fig. 2.15) with an interface compatible to STL forward iterators. For these types, the
standard increment operator ++ actually performs a tree recursion instead of just advanc-
ing the iterator to the next operand. Internally, both iterator types use a stack to keep
track of the current position inside the expression tree.

Using traversal iterators and the STL for_each() function, the code example above would
be written as

1 void f(ex e)
2 {
3 // do something with e
4 // ...
5 }
6

7 std::for_each(e.preorder_begin(), e.preorder_end(), f);
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2.18 Visitors

In section 2.4 we exemplified how algorithms in an object-oriented design like GiNaC are
usually expressed as a set of methods distributed over a class hierarchy and implemented
in an appropriate way for each individual class.

Since, however, classes in C++ can’t be augmented by additional methods once they are
defined, a user of GiNaC can’t actually write his own symbolic algorithms in this fashion,
because he can’t add new methods to the GiNaC classes. Class-specific behavior in an
application using GiNaC would thus have to be implemented with type switches, which
is exactly the kind of construct that the object-oriented programming paradigm aims to
avoid.

The solution to this dilemma comes in the form of the Visitor pattern [GHJV 1995]. In
this design, instead of representing operations as individual methods on the classes of an
element hierarchy (in the case of GiNaC, the algebraic class hierarchy), the classes provide
only one generic accept(v) method taking a visitor object as its argument. visitor
is an abstract class defining exactly one visit() method for each element class. The
accept() operations in the element classes invoke their associated visit() methods in
the visitor. Subclasses of visitor override the visit() methods to provide the desired
class-specific behavior (see fig. 2.16):

The Visitor pattern thus effectively pulls methods out of the element class hierarchy and
puts them into a separate visitor hierarchy, now grouped by function. To add a new
operation to the element hierarchy, one defines a new subclass of visitor with appropriate
implementations of the various visit() methods, without the need to change the interface
of the element classes themselves.

This approach would work fine with GiNaC, were it not for the fact that one of the design
goals of GiNaC is to also allow extending the hierarchy of algebraic classes. Adding a
new algebraic class, however, would require changing the visitor interface to add a new
visit() method for the new class. But this is precisely the problem we had in the first
place.

A slight modification to the Visitor pattern, the acyclic visitor presented in [Mart 1998]
solves this issue. This pattern avoids the dependency cycle of the original Visitor pattern
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Figure 2.16: The Visitor pattern moves operations on the elements of a class hierarchy into a
separate visitor hierarchy. Defining a new operation requires adding a new visitor subclass, but
leaves the interface of the element classes unchanged.

Figure 2.17: In the acyclic visitor pattern, a concrete visitor (myVisitor) inherits from the
associated visitor classes of all the element classes it is interested in, as well as the global, degenerate
visitor class. Adding a new element class does not require changes in the existing visitor classes.
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(visitor depends on all element classes for the visit() methods, but at the same time
all element classes depend on visitor for accept()) by defining separate visitor classes,
one for each element type, with each one having only one single visit() method for
its associated type. The visitor class that appears as the argument to accept() is a
completely separate, degenerate class (i. e. one without any methods or attributes). A
concrete visitor class inherits from all the element-specific visitor classes it is interested in,
as well as the global, degenerate visitor (see fig. 2.17). The accept() method of each
element class performs a cross-cast from visitor (which is the static type of the argument
to accept()) to its specific visitor class (the one that declares the appropriate visit()
method) and then inkoves visit().

In GiNaC, the element-specific visitor classes are nested inside the element classes them-
selves, and are automatically defined by the GINAC_DECLARE_REGISTERED_CLASS macro,
along with the accept() method. In addition to that, GiNaC implements a simple
method-propagation system for its visitors: If the cross-cast in accept() fails, i. e. if
the actual visitor object passed has not been derived from the element-specific visitor
class, GiNaC will forward the request to the element’s superclass.

Visitor objects are often used to traverse all nodes of an expression. This can be achieved
in a number of ways:18

a) Manually recursing over subexpressions and calling accept() on each. GiNaC pro-
vides two methods, ex::traverse_preorder() and ex::traverse_postorder(),
both taking a visitor object as an argument, that automate this process.

b) Manually iterating over all subexpressions with a preorder_iterator or
postorder_iterator and calling accept() on each.

c) Putting the traversal algorithm inside the visitor by having the visit() methods of
container classes call accept() on their subexpressions.

A visitor object can also store state which is accumulated during the expression traver-
sal, and that would otherwise have to be passed around between method invocations on
algebraic objects.

As a simple example, consider the definition of a visitor class that collects the set of all
indices appearing in an expression, ignoring index variances so the contravariant µ and
the covariant µ will be treated as the same index (see section 3.2.1 for more information
about indices in GiNaC):

1 class gather_indices
2 : public visitor, public idx::visitor, public varidx::visitor {
3

4 void visit(const idx & x)
5 {
6 s.insert(x);
7 }
8

9 void visit(const varidx & x)

18 The accept() method itself does not automatically make a visitor visit an object’s children. This
allows more flexibility in the choice of the traversal algorithm.
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10 {
11 s.insert(x.is_covariant() ? x : x.toggle_variance());
12 }
13

14 public:
15 set<ex, ex_is_less> s;
16 };

Inheriting from idx::visitor and varidx::visitor indicates that this visitor class has
visit() operations for the idx and varidx index classes but no others. If the visitor
encounters a spinidx which is a subclass of varidx, the visit(varidx) method will be
called.

An instance of the gather_indices class can then be sent over an expression using an
iterator or one of the traverse() methods:

17 ex e = ...
18 gather_indices v;
19 e.traverse_preorder(v);

The set of indices is then collected in the member variable v.s. Without visitors, this
operation would typically be implemented using a recursive function and a type switch
such as

1 void gather_indices(ex x, set<ex, ex_is_less> &s)
2 {
3 if (is_a<varidx>(x)) {
4 // insert contravariant version of index into s
5 } else if (is_a<idx>(x)) {
6 s.insert(x);
7 } else {
8 // recurse into subexpressions
9 }

10 }

which is prone to a subtle programming error: One has to check for the subclass (varidx)
before the superclass (idx). When the order is reversed, the if (is_a<idx>) branch
would also be executed for varidx instances.

The version of this algorithm using a visitor is about 20% slower than the recursive func-
tion, which is largely due to the expensive cross-cast operation in accept() (the C++ run-
time system has to dynamically check whether the visitor object passed to accept()
is also a subclass of either idx::visitor or varidx::visitor). But the performance
of visitors gets better with larger numbers of element classes because each visit() has
constant-time dispatch, whereas a type switch is effectively a linear search.

2.19 Applying Functions on Subexpressions

The visitor objects described in the last section are most useful for collecting information
about expressions, or for extracting subexpressions matching some given criteria. For
transforming expressions, especially in cases where the resulting expression is syntactically
similar to the original one, GiNaC offers a mechanism that is very common in the functional
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Figure 2.18: The default implementation of the matrix-evaluation method evalm() in the basic
class uses map() to forward the operation to subexpressions.

paradigm: applying a function on all children of an object. For example, applying the
function f() on the expression a+2b− 1 in this way would result in f(a)+ f(2b)+ f(−1).
Characteristic for this operation is that the type and attributes of the top-level object
remain unchanged (in the example, both the original and resulting expressions are sums).

In GiNaC, a function is applied by calling the method ex::map(f), where f is either a
pointer to a C++ function taking and returning an expression, or a map_function object.
map_function is a functor class that in some respects behaves similar to a visitor. It lacks
the element type dispatch of the Visitor pattern but it also represents related operations
in a single object and can accumulate state while traversing the nodes of an expression.

map() typically operates by duplicating the object it is called upon, and replacing its
subexpressions with the transformed ones. Because they return modified expressions,
map_function objects usually implement their own tree traversal.

GiNaC frequently uses map() internally to propagate methods to the elements of container
classes, especially “passive” ones like lst that only store individual elements without
defining any relation between them. One example of such an operation is evalm() which
evaluates sums, products, and powers of matrices in expressions.19

Only the add, mul, ncmul, power, and matrix classes have special implementations of
evalm(). The default behavior, defined in basic::evalm() is to map the evalm() method
on the object’s subexpressions (see fig. 2.18) which is usually the desired behavior. In this
way, invoking evalm() on a list will return a list of evaluated elements, invoking it on
a relation will apply the evaluation to the expressions on both sides of the relation, etc.
Note that the matrix class provides its own implementation of evalm() returning the
unmodified matrix object. If it didn’t, basic::evalm() would invoke the evaluation on

19 Since these operations are of a complexity equal to or higher than O(N2) for matrices of size N they
are not carried out by GiNaC’s anonymous evaluator eval().
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all individual matrix elements, which is usually a waste of time since the elements of a
matrix are rarely themselves matrices. But if required, the user can always manually map
evalm() on a matrix to evaluate the elements.

An interesting application of map() is the implementation of active object fusion, i. e.
combining all redundant subexpressions of an expression by searching through the entire
object tree:

1 class map_fuser : public map_function {
2 set<ex, ex_is_less> s;
3

4 public:
5 ex operator()(const ex &e)
6 {
7 ex f = e.map(*this);
8 s.insert(f);
9 return f;

10 }
11 };
12

13 int main()
14 {
15 symbol x("x");
16 ex e1 = x/(1-x) + pow(1-x, 2);
17

18 map_fuser fuse;
19 ex e2 = fuse(e1);
20 }

e1 contains three instances of the symbol x, and two instances of the sum 1 − x. e2
contains only one of each.

This implementation works because, as described in section 2.9.5, GiNaC fuses equivalent
expression trees when comparing them, and inserting an expression into a set<ex> will
result in a comparison with an existing equivalent expression if it is already in the set. The
expression f returned from map_fuser::operator() will thus always refer to one of the
objects that are already in the set of subexpressions s, as will any equivalent subexpressions
encountered subsequently in the traversal.

Because the fuse object retains its state, it can be used multiple times to fuse the objects
from different expressions.

2.20 Hash Maps

In GiNaC applications, and in GiNaC itself, expressions are frequently used as keys of
associative containers such as the C++ Standard Library set<ex> and map<ex, T> types.
These are sorted associative containers, i. e. they rely on an ordering relation between their
keys, in this case the one provided by the ex_is_less functor, to guarantee logarithmic
complexity (worst case) for inserting, erasing, and looking up elements.

⇒ Hash tables achieve (on average) constant complexity for these operations by storing the
associated values in a table indexed by hash values computed for the keys. Since GiNaC
already calculates hash values for its expressions it made sense to provide as a part of
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GiNaC a generic hash table implementation, called a hash map, that acts as a drop-in
replacement for the STL map<> type.20

One of the key issues in implementing a hash table is how to deal with hash collisions, i. e.
the case where two different keys have the same hash value and would thus point to the
same table entry. Time-tested strategies include

• Chaining:
Resolve the ambiguity by making each bucket (table entry) contain not a single value,
but a list of (key,value) pairs for all keys having the same hash value. A look-up
operation searches the list to retrieve the correct value.

• Probing:
Each table entry contains only one value. When a collision happens the new value is
stored in the next free table entry instead. There are different ways to determine a
suitable “next” entry, such as linear probing (constant table index increments) and
quadratic probing (linearly increasing increments). This is actually very similar to
chaining, but it keeps the hash chains inside the table itself. Special care has to be
taken when removing elements so as not to lose access to elements further down the
chain.

• Rehashing:
Upon finding a collision, change the hash function (hopefully to a more optimized
one), recompute all hash values, and recreate the table. Since the hash function for
expressions in GiNaC is fixed, this is not an option.

• Enlarging the table:
As the distribution of occupied entries in a hash table is (ideally) stochastic, a larger
table will lower the probability for collisions. Resizing a partially filled table also
requires rehashing.

A hash table implementation usually employs a combination of several of these strategies.

For GiNaC’s hash maps, three different implementations were tested:

I) Fixed table size (which has to be specified when creating the map) and chaining,
with each bucket being a sorted list to minimize look-up times.

II) Same as I, but with a hash table that grows and shrinks dynamically when the ratio
of used to unused entries reaches certain thresholds. The table size is always a power
of 2, and the initial size can be specified upon construction.

III) Same as II, but with quadratic probing instead of chaining. Also, the table size in
this implementation is always a prime number.

To compare these implementations, the time required to
20 The C++ Standard Library as specified in [ISO 1998] does not provide hashed associative containers.

They exist in some C++ implementations, including GCC, but we wanted to avoid any dependance on
compiler-specific language extensions.

56



2.20 Hash Maps

 0.01

 0.1

 1

 10

10000 100000 1000000

R
un

 ti
m

e 
t [

s]

Number of elements N

I
II

II*
III

III*
STL map

(a) Inserting elements

 0.01

 0.1

 1

 10

10000 100000 1000000

R
un

 ti
m

e 
t [

s]

Number of elements N

I
II

II*
III

III*
STL map
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Figure 2.19: Comparison of different hash map implementations: fixed size (216) with chaining
(I), dynamic size with chaining (II = initial size 32, II* = initial size 216), dynamic size with
quadratic probing (III = initial size 31, III* = initial size 98317). Implementation III is used in
GiNaC. For reference, the performance of the STL map<> container of GCC 3.3.2 is also included.
(cont. on next page)
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1. insert N key-value pairs into the map,
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was measured for different values of N for each of the implementations and for the STL
map<> container. The results are shown in fig. 2.19.

All hash map implementations have faster element look-up than the tree-based STL maps,
which is of course the desired property of a hashed container. The implementations with
dynamic table sizes show the expected performance hit when the number of inserted
elements exceeds the initial table size (visible in fig. 2.19(a) for II* and III* at N =
100000). However, the look-up times (fig. 2.19(b)) which are the most important measure
of performance are asymptotically better for dynamically-sized tables due to the reduction
of hash collisions. Also, all three diagrams show the overhead of implementation II with
respect to implementation III caused by the hash chain lists.

Based on these results, implementation III was chosen for GiNaC’s exhashmap<T>
class template. With minor exceptions21 it supports the same set of operations as
map<ex, T, ex_is_less>.

21 exhashmap doesn’t provide reverse iterators, the lower_bound() and upper_bound() methods, nor the
< comparison operator between maps.
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2.21 Substitutions and Pattern Matching

“Find” and “find-replace” operations are common for applications that maintain and
manipulate composite object structures, whether they be word processors or symbolic
calculation systems. The functionality of these operations has evolved significantly over
the course of GiNaC’s history. Although they still don’t play as important a role in GiNaC
as they do, for example, in FORM where substitutions consitute the basic building blocks
of symbolic manipulation, GiNaC now has many features in common with it.

2.21.1 Simple Substitutions

Since its very first versions, GiNaC provided two methods for finding and replacing (sub-
stituting) elements of expressions:

• has(s) returns true if the expression it is invoked upon is equal to s or contains s
as one of its subexpressions, and false otherwise.

• subs(s == r) returns a newly constructed expression in which all occurrences of
s are replaced by r.22 There is another variant, subs(ls, lr), that simultane-
ously replaces all occurrences of elements of the list ls with their corresponding
elements in the list of equal length lr. Recent versions of GiNaC offer a third
variant, subs(m), where m is a mapping ex→ex, currently implemented as an STL
map<ex, ex, ex_is_less>, and with the same semantics as the two-list version of
subs(). The reason for this will be explained in section 2.21.3.

Originally, subs() only allowed substituting symbols and indices, albeit by arbitrary ex-
pressions. In GiNaC version 0.8.1, this was generalized to permit substituting entire
subexpressions. With this, it was possible to, for instance, replace all occurrences of cosx
in an expression with

√
1− sin2 x:

1 symbol x("x");
2 ex e = pow(sin(x), 2) + pow(cos(x), 2);
3 e = e.subs(cos(x) == sqrt(1-pow(sin(x), 2)));
4 // e gets simplified to 1

However, the subexpressions have to match exactly. When invoked in this way, the substi-
tution is only performed when the argument of the cosine function is precisely the symbol
x. To replace expressions like cos(x−1) or cos y, one would have to call subs() again with
different arguments. It was not possible to replace all instances of the cosine function,
independently from their arguments.

2.21.2 Pattern Matching

Recognizing that a more flexible substitution feature would be useful, GiNaC 0.9.0 imple-
mented pattern matching to allow substituting patterns of expressions. A pattern is any

22 The notation with the == operator is a leftover from Maple.
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symbolic expression containing one or more wildcard objects, with each wildcard acting
as a placeholder for an arbitrary expression. This makes it possible to replace functions
with arbitrary arguments:

1 ex e = pow(sin(x-1), 2) + pow(cos(x-1), 2);
2 e = e.subs(cos(wild()) == sqrt(1-pow(sin(wild()), 2)));

Wildcards can be numbered, allowing the use of more than one wildcard in a pattern, each
one representing a different subexpression:

1 ex e = pow(x, 2) + pow(x-1, -2*y);
2 e = e.subs(pow(wild(1), wild(2)) == wild(1)*wild(2));
3 // e is now 2*x-2*(x-1)*y

Wildcards appearing in the replacement expression of a subs() call will themselves be
replaced by the subexpressions matching the corresponding wildcards in the substitution
pattern. It is not necessary, however, that all wildcards in the pattern also appear in the
replacement expression. For example, the following code will replace all occurrences of the
cosine function with 1 (which is a useful approximation if it is known that the arguments
of the cosine are close to 0):

1 ex e = cos(x) + cos(1/y);
2 e = e.subs(cos(wild()) == 1);
3 // e is now 2

In addition to extending has() to also allow patterns as its argument, two new methods
were added to GiNaC:

• match(s) works like has() but doesn’t recurse into subexpressions. For example,
1 + x2 has x? (with ? = 2) but it doesn’t match x? (but x2 does). Essentially, it is a
version of is_equal() that accepts patterns. There is a second variant, match(s, l)
that returns the list l of wildcard replacements necessary for the match. In the
example, the returned list would contain the single element wild() == 2.

• find(s, l) appends all subexpressions matching the pattern s to the list l. It
returns true if any matches were found, and false otherwise.

An application of find() that is used frequently in xloops is to assemble a list of all ap-
pearances of a certain function (or a set of functions) in an expression. The expression can
then be collected in terms of these functions so each function will only appear once, mak-
ing series expansion more efficient (this is, for example, used by the Diagram1LoopNPt()
functions described in section 5.5.4).

One characteristic of the implementation of pattern matching in GiNaC is that it is still
entirely syntactic, i. e. the object structure of the expression to be matched has to be the
same as that of the pattern. For example, in the substitution

1 ex e = 1 + x + pow(x, 2) + pow(x, 3);
2 e = e.subs(pow(x, wild()) == pow(y, wild()));
3 // e is now 1+x+y^2+y^3
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the term x is not substituted because, although algebraically equal to x1 it doesn’t match
the pattern syntactically as it is not a power object.23

Sums and products are an exception to the strict syntactic matching. Since both the
pattern and the expression to be matched are subject to automatic and unpredictable
term reordering, it was deemed impractical if, for instance, x+y couldn’t match x+wild()
just because the latter might be rewritten as wild()+x by GiNaC.

The fundamental pattern-matching method which all other methods (has(), find(), and
subs()) build upon is match(), which employs a simple, recursive algorithm. Its default
operation, implemented in basic::match(s, l), can be outlined as follows:

1. If the pattern s is a single wildcard object, check the replacement list l for an
occurrence of this wildcard. If one is found, its associated replacement expression
must be equal to the current expression (so once a wildcard in the pattern has
matched a certain subexpression, all further occurrences of the wildcard must always
refer to the same subexpression). If the wildcard doesn’t appear in l, append a new
element of the form s == *this to l and return true.

2. If the pattern is not a single wildcard, compare the type IDs of the current expression
and the pattern. If they are not equal, return false.

3. Next, check whether the current expression and the pattern have the same number
of subexpressions (possibly zero). If they don’t, return false.

4. If there are no subexpressions, return the result of is_equal(s).

5. If there are subexpressions, check whether the attributes of the current object
and the pattern object are equal. This is accomplished by calling the method
match_same_type() which operates like is_equal_same_type() but doesn’t com-
pare subexpressions.

6. If the attributes are the same, check whether all of the current expression’s subex-
pressions match the corresponding subexpression of the pattern. If this is the case,
return true, otherwise false.

There are only two classes that override basic::match(): Firstly, the wildcard class
itself requires matches to always be exact, i. e. wild(1) only matches wild(1) but not
wild(2) etc. This is necessary for subs() to be able to re-substitute the wildcards by
their matching expressions in its final step.

Secondly, expairseq overrides match() to account for the commutativity and term re-
ordering of sums and products, as described. GiNaC allows for one “global” wildcard in
a sum or product pattern, i. e. one term that consists only of a single wildcard object,
that is first set aside. Next, GiNaC tries to find a matching term in the expression for
every term in the pattern. If a term can’t be matched, it returns false. Otherwise, the
remaining unmatched terms are either “gobbled up” by the global wildcard if there is one,
or else all terms must have been accounted for. If neither is the case, the match fails.
23 Chris Dams has implemented some algebraic substitution capabilities for GiNaC which we will not

discuss here but which are documented in section 5.4.4. of the GiNaC tutorial [BFKV 2004].
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This algorithm allows, for example, to match x+y+z+t*u with t*wild(1)+x+wild(2):

1. The global wildcard wild(2) is removed from the pattern (and stored in a local
variable), and both the pattern and the expression are decomposed into their indi-
vidual terms. The list of terms in the pattern is {t*wild(1), x}, and the one of
the expression is {x, y, z, t*u}.

2. GiNaC then looks for a term matching t*wild(1), the first term of the pattern,
in the expression by searching through the list of terms. The last term t*u of
the expression matches with wild(1) == u, so both terms are removed from their
respective lists, which are now {x} and {x, y, z}.

3. The same is done with the second term (x) of the pattern, which matches the first
term of the expression. Again, both terms are removed, leaving {} and {y, z}.

4. Since the pattern term list is now empty, the sum of the remaining unmatched terms
({y, z}) is assigned to the global wildcard wild(2), and the match succeeds with
wild(1) == u and wild(2) == y+z.

However, the algorithm has no provisions for coping with ambiguities, and no way to
backtrack its state once a wildcard-to-subexpression mapping has been established. For
instance, calling

1 (x+y).match(wild(1)+wild(2), l);

might end up with either wild(1) == x and wild(2) == y, or with wild(1) == y and
wild(2) == x. Consequently, the result of

1 ((x+y)*x).match((wild(1)+wild(2))*wild(1), l);

is undefined. If matching the first factor results in wild(1) == y and wild(2) == x,
the match for the second factor will fail. A more robust implementation would have to
consider both possible matches of the first factor and let subsequent operations decide
which is the correct one.24 As this hadn’t led into any problems in practice, however, the
current implementation was deemed sufficient.

find() and has() simply call match() first before recursively invoking themselves on
the object’s subexpressions. The implementation of subs() is a little more involved. It
uses postorder recursion to first substitute in any subexpressions. It then calls match()
sequentially on each element of the list of substitutions and, if a match is successful, returns
the corresponding replacement expression in which all wildcards are re-substituted with
their matching subexpressions. This last step requires temporarily disabling the pattern
matching mechanism to ensure proper operation. For example, consider

1 ex e = cos(x);
2 e = e.subs(cos(wild()) == 1-pow(wild(),2)/2);

24 A similar problem occurs in regular expression matching when, for example, the input aab is to be
matched against a∗ab.
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In the recursion step, subs() tries to match x against cos(wild()) which is unsuccessful.
Then it tries to match the whole expression cos(x) which yields wild() == x. Next it
calls subs(wild() == x) on 1-pow(wild(),2)/2) to obtain the final replacement expres-
sion. But this substitution must only replace the one actual instance of wild() (to get
1-pow(x,2)/2), not perform another pattern matching (which would yield x).

The subs() method therefore has an options argument by which a flag can be passed
to disable the pattern matcher (subs_options::no_pattern). This also speeds up the
operation of subs() when patterns are not used, as we will show in the next section.

2.21.3 Performance Issues

The performance of subs() can be crucial, especially when the number of subexpressions
to be substituted gets large.

Fig. 2.20 compares the run times for substituting all symbols in expressions of different
sizes with GiNaC versions 1.0, 1.1, and 1.2, with enabled and disabled pattern matching,
for two types of expressions:

a) Binary trees of alternating sums and products containing 2N symbols {a1, . . . , a2N }
on their leaf nodes.

b) Linear expressions of the form
∑N

i=1

∏i
j=1 aj containing N symbols {a1, . . . , aN}.

GiNaC 1.0 and 1.1 internally used two lst objects to store the substitution and replace-
ment expressions. In GiNaC 1.0, this list was searched linearly using op() which, as
explained in section 2.17, is an O(N2) operation for lists. Changing this to use list it-
erators in GiNaC 1.1 resulted in a speed-up of one to two orders of magnitude. GiNaC
1.2 replaced the dual lists with a single ex→ex map to further reduce the look-up time
which is especially apparent when no pattern matching is required. In some cases, subs()
operations in GiNaC 1.2 are over 1000 times faster than in version 1.0. Since subs() is
also used internally as a part of other algorithms such as rational function normalization
and fraction-free matrix elimination, these too benefit from faster substitutions.

2.22 Using GiNaC in Interactive Applications

Although GiNaC was primarily designed for non-interactive use, it is occasionally useful
to be able to create expressions from user input at run time. It is also convenient during
development to have an interactive interface to GiNaC instead of having to go through
repeated edit-compile-test cycles.

One possible approach is to use GiNaC from a C++ interpreter such as CINT [Goto 2002]
which is part of the ROOT framework. This works reasonably well, but introduces some
inconveniences due to restrictions in CINT and incompatibilities to the C++ standard
(see [Krec 2002, section 5.2] for a detailed discussion). The gTybalt system developed
by Stefan Weinzierl [Wein 2004b] integrates GiNaC, CINT, the TeXmacs editor, and
ROOT to provide an interactive interface and graphical capabilities similar to traditional
computer algebra systems.
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Figure 2.20: Comparison of run times of subexpression substitutions in different GiNaC versions
with two types of expressions
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GiNaC itself comes with an interactive shell application called ginsh (GiNaC interactive
shell) that emulates the behavior of interpretive-language algebra systems (i. e. symbols
are used as variables which can be assigned values, etc.), and that is mainly intended for
demonstration and debugging purposes. It only supports a subset of the capabilities of
GiNaC (in particular, indexed expressions can’t be used in ginsh) and has neither loop
constructs nor conditional statements.

The central component of ginsh is an expression parser written using the scanner generator
lex and the compiler-compiler yacc [LMB 1992] that is also accessible from C++ to allow
constructing GiNaC expressions from their textual representation, like this:

1 symbol x("x"), y("y");
2 ex e("2*sin(x+y)", lst(x, y));

The list of symbols that can appear in the expression has to be supplied explicitly to enable
GiNaC to utilize the exact same symbols (with their unique serial numbers) in the created
expression. If GiNaC created new symbols, they wouldn’t be immediately accessible by
the program.25

Of course, the first argument to this ex constructor doesn’t have to be a string literal.
It might as well be an expression typed in by the user, for example via an HTML form.
xloops uses the input parser to read the definitions of Feynman rules from a user-supplied
model definition text file.

25 The same is true for archives. Consequently, the unarchive() method also gets passed a symbol list
as its second argument.
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A novice programmer was once assigned to code a simple financial
package.
The novice worked furiously for many days, but when his master
reviewed the program, he discovered that it contained a screen editor,
a set of generalized graphics routines, an artificial intelligence
interface, but not the slightest mention of anything financial.
When the master asked about this, the novice became indignant.
“Don’t be so impatient,” he said, “I’ll put in the financial stuff
eventually.”

Geoffrey James, The Tao of Programming [Jame 1987]

While in the previous chapter we gave an overview of the basic design principles of GiNaC
and some details of its implementation, we will now discuss some of the features that
were specifically added for carrying out calculations in the Standard Model and related
theories.

In particular, we will describe the role and treatment of symmetries, the handling of
indexed objects and the spaces they live in, and non-commutative algebras like the Dirac
algebra.

3.1 Symmetries

In general, a symmetry is the property of an entity to remain unchanged under a certain
operation or set of operations. In mathematics and physics, these operations typically
form a group.

In the terminology of GiNaC, an expression is considered symmetric when it remains
algebraically equivalent under the exchange of two objects. For example, the function
f(x, y) = (x− y)2 is symmetric with respect to swapping its arguments: f(x, y) = f(y, x).

Taking advantage of the symmetry properties of objects often leads to dramatic simplifi-
cations in a calculation. In our example, we can immediately deduce f(x, y)− f(y, x) = 0
from the symmetry of f , without any knowledge about the exact definition of the function.
It is thus desirable that GiNaC permits defining and handling symmetries of expressions.

GiNaC is unable to recognize symmetries by itself; it relies on the user to specify them for
the objects involved. Functions and objects which are predefined by GiNaC, such as the
Minkowski metric tensor, already possess their correct symmetry properties, of course.

There are three basic kinds of symmetries handled by GiNaC. An expression e[x0, . . . , xn−1]
containing the n subexpressions x0 . . . xn−1 is
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• symmetric, denoted as +(0, . . . , n− 1), when

e[x0, . . . , xn−1] = e[xπ(0), . . . , xπ(n−1)]

for any permutation π.

• antisymmetric, denoted as −(0, . . . , n− 1), when

e[x0, . . . , xn−1] = sgnπ · e[xπ(0), . . . , xπ(n−1)]

for any permutation π, where sgnπ is the sign of the permutation. This implies that

xi = xj , i 6= j ⇒ e[x0, . . . , xn−1] = 0.

• cyclic-symmetric, denoted as @(0, . . . , n− 1), when

e[x0, . . . , xn−1] = e[x1, . . . , xn−1, x0].

If e does not have any of these three symmetries, we will write this as !(0, . . . , n− 1).

In addition to these basic types, GiNaC allows specifying more complex, mixed symmetries
by arranging these types into a symmetry tree. For example, the property of the Riemann
curvature tensor

Rαβµν = −Rβαµν = −Rαβνµ = Rµναβ

of being antisymmetric in the first and second pair of indices, and symmetric under ex-
change of the two pairs, would be denoted as

+(−(0, 1),−(2, 3)).

Symmetry trees can be arbitrary, as long as they adhere to the following two constraints:

1. No subexpression x0 . . . xn−1 may be referenced more than once.

2. Each child of a +, − or @ node must reference the same number of subexpressions.

These constraints remove the major source of ambiguities and drastically simplify the
sorting algorithm described below.

Two classes of algebraic objects in GiNaC contain symmetry attributes:

• Functions can have a symmetry with respect to permutations of their arguments. In
this case, the expression e is the function and the subexpressions x0 . . . xn−1 are the
arguments of the function.1

• Indexed objects can have a symmetry with respect to permutations of their indices.
In this case, the expression e is the indexed object and the subexpressions x0 . . . xn−1

are the individual indices.
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Figure 3.1: Class structure (left) and object structure (right) of symmetry trees. The indices
set of each non-leaf node is the set union of the indices of the node’s children.

Internally, GiNaC represents symmetry specifications as a tree of symmetry objects (see
fig. 3.1). Although these objects don’t normally appear as part of expressions, the
symmetry class is derived from basic to take advantage of the automatic memory man-
agement and convenient composition facilities of algebraic objects.

Each symmetry object contains a type attribute that specifies which of the four kinds of
symmetries the object represents (symmetric, antisymmetric, cyclic, and none, corre-
sponding to +, −, @, and !, respectively), and the set of the indices2 of all subexpressions
referenced by the object, including all its children. The leaf nodes of a symmetry tree
consist of objects with type = none and exactly one index.

The construction of symmetry trees is supported by the four helper functions sy_symm(),
sy_anti(), sy_cycl(), and sy_none() that create and connect the nodes, and also vali-
date the index constraints. For example, an expression representing the Riemann curvature
tensor Rαβµν could be written like this (omitting the definition of the indices):

1 ex e = indexed(symbol("R"), sy_symm(sy_anti(0, 1), sy_anti(2, 3)),
2 alpha, beta, mu, nu);

If a symmetry has been specified for a function or indexed object, GiNaC will automati-
1 Functions can of course have other types of symmetries, like sin(−x) = − sin x, but these have to be

implemented in the numeric or symbolic evaluation routines that are specific to that function. There
is no general mechanism in GiNaC that handles such symmetries.

2 The use of the term index may be confusing. Here, it refers to the index numbers of the subexpressions
x0 . . . xn−1. These subexpressions may or may not be actual index (idx) objects.
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cally reorder its arguments or indices into a canonical order as a part of the anonymous
evaluation of expressions (see section 2.8). This reordering yields some immediate simpli-
fications like

f(x, y)− f(y, x) = f(x, y)− f(x, y) = 0,
gµν + gνµ = 2gµν ,

εµ1µ2µ3µ4 + εµ3µ2µ1µ4 = εµ1µ2µ3µ4 − εµ1µ2µ3µ4 = 0,
εijj = 0,

as long as they follow from local transformations, i. e. transformations of single objects.
At this stage, GiNaC doesn’t yet consider symmetries involving two or more objects.

The key operation of the reordering process is the function

int canonicalize(vector<ex>::iterator v, symmetry s)

which employs the Interpreter pattern [GHJV 1995] to sort the elements of an expression
vector, designated by an iterator v pointing to its first element, according to the rules
specified by the symmetry tree s. The return value of this function is the overall sign
introduced by the permutation, or zero if an antisymmetric object is found to have two
identical subexpressions.

The operation of canonicalize() can be outlined as follows:

1 int canonicalize(vector<ex>::iterator v, symmetry s)
2 {
3 if (s has less than two indices)
4 return 1;
5

6 int sign = 1;
7 forall children c of s {
8 sign *= canonicalize(v, c);
9 }

10

11 switch (s.type) {
12 case symmetric:
13 sort elements of v referenced by s.indices;
14 break;
15 case antisymmetric:
16 sort elements of v referenced by s.indices;
17 sign *= permutation sign of the sort;
18 break;
19 case cyclic:
20 determine the smallest element of v referenced by s.indices;
21 rotate this element to the front;
22 break;
23 }
24

25 return sign;
26 }

After first recursively descending into the symmetry tree, multiplying all the signs accu-
mulated in the application of the subsymmetries, canonicalize() reorders a subset of
the elements of the expression vector using one of three sorting algorithms, according to
the type of the current symmetry node.
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These algorithms are implemented as generic functions, parametrized by both a compar-
ison functor and a swapping functor. The comparison functor performs the resolution
of the subexpression indirection in the indices attribute of the symmetry objects (i. e.
it extracts the subexpressions from the expression vector and compares them), while the
swapping functor exchanges the vector elements referred to by two symmetry nodes. Un-
like conventional sorting algorithms, the functors allow treating sets of elements as if they
were single elements. For example, in the final step of canonicalizing the indices of a Rie-
mann tensor Rαβµν , GiNaC must compare, and eventually swap, the two blocks of indices
αβ and µν .

Since all of the indirection resolution is encapsulated in the functors, the sorting functions
are passed the range of symmetry objects that apply, instead of the range of vector elements
to be sorted:

1 sort(s.children.begin(), s.children.end(), sy_is_less(v), sy_swap(v));

Effectively, canonicalize() is a recursive sorting function controlled by the “symmetry
language” defined by the recursive composition of symmetry objects.

Reordering function arguments and indices is not the only way in which GiNaC exploits
symmetries. Other uses such as calculating contractions between symmetric tensors will
appear in the following sections.

3.2 Special Algebras

The fundamental algebra implemented by GiNaC is that of the field of complex numbers.
Symbols in GiNaC represent complex quantities by default, and the operators + and *
perform the operations which define this field.

In physics, and especially in high-energy physics, there is frequently a need to calculate
with elements of different algebras. In particular, the calculation of Feynman amplitudes
in the Standard Model as implemented by xloops requires

• matrices,

• Lorentz vectors and tensors,

• the algebra of Dirac matrices,

• algebras of objects related to symmetry groups, such as the structure constants and
generators of the Lie algebra of SU(N).

An implementation of Lorentz vectors and the SU(3) color algebra has already been de-
veloped in [Frin 2000, section 2.4]. For this thesis, the implementation was generalized by
allowing more universal types of indexed expressions and indices, and by moving calcula-
tion and transformation rules out of the specific Lorentz and color classes into common,
reusable base classes and functions. Furthermore, higher-order tensors and the Dirac al-
gebra have been added, and the matrix class implemented in [Krec 2002, section 4.7] has
been extended to integrate seamlessly with the index mechanism described in the next
section.
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3.2.1 Indexed Expressions

All of the algebras listed above commonly involve the use of indices. From GiNaC’s point of
view, an index is at first simply a subscript or superscript to an expression.3 Semantically,
the presence of an index signifies that the indexed expression represents a collection of
objects, selected by individual values of the index, but treated as a single entity, without
the need to list the components of that collection individually.

For example, an element x of a three-dimensional vector space can, after choosing a
coordinate system, be represented by three components x1, x2, and x3, which in turn can
be combined to xi with the index i running over the index set {1, 2, 3}. The expression
xi now stands for the individual components of x (for a specific value of i) as well as x
itself, if i is interpreted as an indeterminate.

Modern mathematics favors the index-free notation x because it allows talking about the
properties of elements of vector spaces (and other classes of objects, in general) without re-
sorting to a specific representation for them. But in physics, indices are often written down
explicitly because concrete calculations typically require working with specific represen-
tations anyway. Feynman rules in particular are usually given with indices because their
presence simplifies the step of assembling a Feynman amplitude to a plain multiplication
of individual factors, mitigating the need for additional calculation prescriptions.4

For this reason, GiNaC supports the use of explicit indices. Any algebraic expression e can
be augmented by an arbitrary number of indices i1 . . . in to yield the indexed expression
ei1...in . Although xloops only uses indices which are simple symbols or integer numbers,
such as in pµ or g11, the value of an index in GiNaC can itself be an arbitrary expression.
This allows the user to work with more complex indices like 2n− 1, if desired.

In addition to its value, an index in GiNaC carries a dimension, which for a finite index
set Ik, ik ∈ Ik is the cardinality of the set, dim(ik) := |Ik|. A physical four-momentum pµ,
for example, has a four-dimensional index µ, dim(µ) = 4. In general, the index dimension
specifies the dimension of the (sub)space the indexed object “lives” in with respect to the
index, and to some extent characterizes that space. Since the technique of dimensional reg-
ularization generalizes the four-dimensional loop momentum space to a Minkowski space
with unspecified dimensionality D, and the parallel/orthogonal decomposition procedure
described in section 5.2 requires working with D‖- and (D − D‖)-dimensional subspaces
of this momentum space (D‖ being the number of independent external momenta), in-
dex dimensions in GiNaC can also be arbitrary expressions. Because the dimension may
appear in the result of a calculation with indexed expressions (typically when computing
traces), and because an object may have more than one different type of index (such as
Lorentz and spinor indices) with different dimensions, the dimension is stored as a part of
the index.

Fig. 3.2 shows the fundamental classes for handling indices in GiNaC. The indexed class,
derived from exprseq which stores a vector seq[] of subexpressions, represents an object
carrying indices. The base expression, i. e. the expression being indexed, is stored in the

3 Exponents such as the 2 in x2 are not indices in GiNaC, although they are also written as superscripts.
4 As we shall see in section 3.4.1, however, GiNaC makes some compromises here, for example by omitting

spinor indices and requiring explicit traces of Dirac strings.
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Figure 3.2: Class structure of indexed objects and indices, and the member functions that play
a role in the simplification of indexed expressions.

first element seq[0] of the vector, while the subsequent elements seq[1]. . . seq[n] hold
the indices. It is possible for an indexed object to have no indices, in which case the
vector only contains the base expression. Such degenerate indexed expressions are used in
the implementation of the Dirac algebra (see section 3.4.1 for details).

Indices must belong to the class idx5 or a subclass, which is enforced by the constructors
of indexed. idx stores the index value as a subexpression, but the dimension, though also
of type ex, as an attribute.

Subclasses of idx add further attributes. The varidx class stores a flag which marks
the index as either co- or contravariant, which makes it print itself as a sub- or a su-
perscript, respectively (indices without variance are always printed as subscripts). The
method varidx::toggle_variance() returns a new index with the same value but op-
posite variance. Indices of class varidx are used in xloops for Lorentz indices.

The class spinidx represents spinor indices in the Weyl-van-der-Waerden formalism
[Ditt 1998]. In addition to being co- or contravariant, a spinidx can be dotted or undot-
ted, with the dot representing complex conjugation of the associated spinor.6

Fig. 3.3 illustrates the object structure of an indexed expression considering as example
the four-momentum pµ.

5 The name idx was chosen to avoid a clash with the the BSD C library function index() in an early
version of GiNaC, before the proper use of namespaces.

6 The spinidx class is not currently used in xloops.
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Figure 3.3: Possible representation of the four-momentum pµ in GiNaC

3.2.2 Predefined Tensors

Some frequently-used tensors are built into the GiNaC library. These are all derived from
the common abstract base class tensor:7

• tensdelta

The Kronecker delta δij representing the identity matrix, defined by

δij =

{
0 i 6= j

1 i = j

• tensmetric

A general (symmetric and regular) metric tensor gij without any specific matrix
representation.

• minkmetric (derived from tensmetric)
The Minkowski metric tensor ηµν , with user-selectable, positive or negative signa-
ture, the latter being the default. Its matrix representation is diag(−1, 1, 1, . . . ) or
diag(1,−1,−1, . . . ), respectively.

• spinmetric (derived from tensmetric)
The antisymmetric Weyl spinor metric εAB defined by the matrix representation

εAB = εȦḂ = εAB = εȦḂ = iσ2 =
(

0 1
−1 0

)
.

This is used in conjunction with the spinidx class.

7 The term tensor is used loosely here. Objects of class tensor are not required to obey tensor transfor-
mation rules.
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• tensepsilon

The totally antisymmetric Levi-Civita tensor εi1...in , where the number n of indices
is equal to the dimension of the space. In a four-dimensional Minkowski space,
ε0123 = −ε0123 = 1.

Instances of these classes are always used as base expressions of indexed objects. For the
most common uses of these tensors, utility functions are provided that construct a proper
composite indexed expression. For example, the function lorentz_g(i1, i2) constructs
and returns an indexed object with a minkmetric object as its base, the supplied varidx
indices i1 and i2, and the symmetry +(0, 1). To keep the total number of objects in
expressions involving many metric tensors small, both the minkmetric object and the
symmetry tree are created as flyweights and reused in subsequent calls of lorentz_g().

Reviewing the GiNaC class hierarchy displayed in fig. 2.4, the reader will notice that there
are many more classes derived from tensor. These belong to the implementation of the
Dirac and SU(3) algebras and will be described in sections 3.4.1 and 3.4.2, respectively.

Furthermore, matrix objects can be used with indices to allow writing matrix expressions
in tensor notation (with explicit indices), and to allow substituting symbolic vectors and
second-rank tensors with their matrix representations, if desired.

There are many calculation and simplification rules built into the predefined tensors, such
as

ηµν − ηνµ = 0,
gµνpν = pµ,

gµ
µ = δµ

µ = dim(µ),
εµνρσp

µpν = 0.

See appendix B.1 for a complete list. The first rule is a direct result of the index symmetry
of the η tensor, as explained in section 3.1. In the next section we will discuss how the
other rules are implemented.

3.3 Simplifying Indexed Expressions

Expressions containing indexed objects can often be brought into a more compact form
by applying certain transformation rules and exploiting symmetry properties, especially
when these expressions are obtained by assembling generic factors, as is the case when
constructing the Feynman amplitude for a diagram from general Feynman rules for vertices
and propagators.

In GiNaC, this is carried out in two stages. The automatic expression evaluation method
eval() (see section 2.8) performs operations on individual indexed objects that are at
most of complexity O(N logN), with N being the number of indices of the object:

• Indexed objects whose base expression is zero evaluate to zero. This allows simpli-
fications like (p− q)µ|p=q= 0.
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• Numeric factors in the base expression are pulled out, so e. g. (p+ q)µ|p=q= (2p)µ =
2 pµ.

• The indices are sorted according to the symmetry specified for the object, as de-
scribed in section 3.1.

• Matrices and built-in tensors perform traces, contractions and (for tensors with
matrix representations) evaluate to individual elements when all indices are numeric.
Examples for these transformations are

δii = dim(i),
εµµρσ = 0,
η22 = −1.

Transformations of higher complexity that typically involve more than one indexed object
are not carried out automatically but have to be initiated by the user, by invoking the
method simplify_indexed(). These transformations include:

• Evaluating contractions like δijXj = Xi and γµγαγµ = (2− dim(µ))γα.

• Evaluating sums, contractions (products), and multiplications with scalars of in-
dexed matrices.

• Detecting contractions that vanish for symmetry reasons (contracting an antisym-
metric expression with a symmetric one), such as gµν(pµqν − pνqµ) = 0.

• Canonicalizing summation indices, for example xiyi + xjyj = 2xiyi.

• Recognizing scalar products and optionally replacing them by user-supplied values.
For example, if p and q are known to be perpendicular, then GiNaC can substitute
pµqµ with 0.

The implementation of these transformations in GiNaC is designed to encapsulate tensor-
specific behavior in member functions of the respective tensor classes, but to provide
general algorithms such as index canonicalization in base classes like indexed. In this
way, new tensors with their own algebraic rules can be added without requiring changes
to existing tensor classes, but also without having to duplicate rules that are valid for any
calculation with indexed objects.

Most of the transformations performed by simplify_indexed() involve summations over
index sets, which leads to the concept of dummy indices.

3.3.1 Dummy Indices

To all indexed expressions GiNaC applies the Einstein summation convention, i. e. re-
peated indices imply a sum over all elements of the index set:

XiYi ≡
∑
i∈I

XiYi.
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Indices with variance are only summed over when they are of opposite variance:8

XµY
µ ≡

∑
µ

XµY
µ, but XµYµ 6≡

∑
µ

XµYµ.

Following the parlance of [Capr 1999], we will refer to summation indices as dummy indices,
and to indices that are not summed over as free indices.

An expression can have both free and dummy indices. For example, in

εµνρσp
µqν

the indices {µ, ν} are dummy indices while {ρ, σ} are free indices. The method
ex::get_free_indices() returns the set of free indices of an arbitrary expression and
also checks the consistency of the indices of terms in sums. Adding two expressions with
different sets of free indices, such as pµ + qν , is invalid and reported as an error.

GiNaC only considers pairs of dummy indices. Summing indices that are repeated more
than once, as in XiYiZi, is not properly supported. Also, both indices must be idx objects.
Expressions like the general form of a polynomial P (x) = anx

n where the n in xn is an
exponent can be created but are not treated as implicit sums.

Two indices form a dummy index pair when

1. They are of the same class.

2. They have the same value.

3. That value is a single symbol. This naturally excludes numeric indices like p0q0,
but also indices that are composite expressions like a2n+1b2n+1 because there is no
trivial way for GiNaC to deduce the effective summation range of such indices.

4. They have opposite variance if they are of class varidx.

5. Their dimensions are comparable.

This last point plays a role when considering contractions between tensors in different
subspaces. For example, contracting a D-dimensional loop momentum lµ with a four-
dimensional external momentum pµ results in a four -dimensional scalar product

lµ[D]pµ[4] =
4∑
µ

lµpµ = lµ[4]pµ[4]

(the values in square brackets denote the index dimensions). In general, a contraction of
two indices i1, i2 with different dimensions dim(i1) 6= dim(i2) is treated as a summation
over the minimum of dimensions min(dim(i1),dim(i2)).9 GiNaC thus effectively projects

8 This behavior can be used to turn off the summation for indices without variance, by defining them as
variant indices and giving them all the same variance.

9 This is of course not correct in the general case. The summation should run over the intersection of
the index sets of i1 and i2, but since GiNaC has no way of specifying explicit index sets we assume
that one of the sets is a subset of the other, which is always true for the indices used by xloops.
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the higher-dimensional object down to the lower-dimensional space.10 For instance, mul-
tiplying a D-dimensional vector pµ with a four-dimensional metric tensor yields a four-
dimensional covector:

gµ[4]ν[4]p
ν[D] = pµ[4].

GiNaC therefore needs a way to determine the minimum of the dimensions of any two
indices. While this is obvious for numeric dimensions, it could potentially get quite in-
volved for an arbitrary number of symbolic dimensions, requiring the user to explicitly
define the nesting of subspaces (A < B < C). Since, however, calculations in dimen-
sional regularization only involve one symbolic dimension D for an arbitrary number of
loop momenta, GiNaC takes a shortcut here by treating symbolic dimensions as hav-
ing a positive value larger than any numeric dimension. This yields the correct or-
dering of dimensions for xloops without having to give details about D. The method
idx::minimal_dim(idx other) returns the minimum of the dimensions of the invoked-
on index and the passed second one.

3.3.2 Automatic Evaluation

As described in section 2.8, the anonymous evaluator eval() only performs local transfor-
mations on individual objects. This constitutes a problem for indexed expressions, since,
for example in the case of the trace of the delta tensor

δii = dim(i),

the “knowledge” about this rule should reside inside the tensdelta class (as it is specific
to the delta tensor), but the tensdelta instance is wrapped inside the outer indexed
object, and so tensdelta::eval() has no access to the indices.

The solution is to have indexed::eval() invoke another method, eval_indexed(i), on
its base expression after performing index canonicalizations, passing a reference to itself as
an argument (see fig. 3.2). tensdelta::eval_indexed() can then examine the indices and
act accordingly. All predefined tensors and the matrix class implement eval_indexed()
to compute traces and contractions, and to provide access to individual tensor or matrix
components when all of their indices are numeric.

3.3.3 Manual Evaluation

As mentioned, complex transformations of an expression containing indices are carried out
by the simplify_indexed() method which first expands the expression to ensure that all
products don’t have any sums as factors, and then works through the expression in a
recursive fashion.

Two key operations performed by simplify_indexed() are the renaming and reposition-
ing of dummy indices. Since the names of summation indices can be changed arbitrarily,
canonicalizing their names allows immediate simplifications based on purely syntactic
comparisons.
10 Alternatively, this can be viewed as embedding the lower-dimensional object in the higher-dimensional

space, and treating the extra components as zero.
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Consider, for example, the expression

XµνYµν −XµρYµρ

which, by substituting ρ→ ν in the second term, is obviously equivalent to

XµνYµν −XµνYµν = 0.

To achieve this equivalence, GiNaC keeps track of the set G (the “global” set) of previously
encountered dummy indices and compares it with the set Li (the “local” set) of dummy
indices of each subsequent term i. If |Li| > |G|, the extra indices in Li are added to G.
GiNaC then computes the two sets UL := Li \ G of unique local and UG := G \ Li of
unique global indices, and renames all indices in UL to the corresponding indices in UG.

In the example, starting with G = {} we get L0 = {µ, ν} for the first term. |G| = 0, so
we add all indices from L0 to G to get G = {µ, ν}. Since G and L0 are now identical,
UL = UG = {}, and no renaming takes place. The second term has the local set L1 = {µ, ρ}
and because |L1| = |G|, no indices are added to G. The set differences yield UL = {ρ} and
UG = {ν}, hence we rename ρ→ ν in the second term. Subsequent automatic evaluations
in the add class will then yield the final result 0.

Dummy index repositioning takes advantage of the fact that

pµqµ = gµρp
µqρ = gρµp

µqρ = pρq
ρ = pµq

µ

for any symmetric metric g, to canonicalize the variance of dummy index pairs and obtain
simplifications like

pµqµ + pµq
µ = pµqµ + pµqµ = 2pµqµ

by placing the contravariant index in a pair first.11

The main operation of simplify_indexed() on products of indexed objects is to evaluate
contractions. Both commutative and non-commutative products are first “flattened” to a
single vector of factors (because non-commutative products are grouped by the types of
the objects being multiplied, see section 3.4). Then, GiNaC looks for all possible pairs
of factors that are contracted with each other (i. e. those which share a dummy index
pair) and invokes the method contract_with(it1, it2, v) on the base expression of
the first object. This method takes two mutable iterators it1 and it2 pointing to the
first and second indexed expression and a reference to the entire vector of factors v, and
returns a bool value indicating whether the contraction could be successfully evaluated. If
it returns false, GiNaC calls contract_with() again, this time on the base expression of
the second contracted object. This allows contractions between different classes of objects
to be implemented in one class only, without requiring knowledge of the other class.

For example, given the product
pµηµν

simplify_indexed() first invokes contract_with() on p, a symbol. The symbol
class doesn’t know anything about indices, so symbol::contract_with() falls back to
basic::contract_with() which does nothing and returns false. GiNaC then invokes
11 This transformation is not performed for spinidx indices as the spinor metric is antisymmetric.
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contract_with() on η, which is a minkmetric object. minkmetric::contract_with()
evaluates the contraction by replacing the dummy index µ in pµ with its free index ν
(taking care of inserting the proper index dimension) and replacing its own indexed object
ηµν by 1, yielding

pν · 1

which evaluates to pν in mul::eval().

Each predefined tensor class overrides contract_with() to implement tensor-specific be-
havior. The matrix class performs matrix and vector multiplications for indexed matrices.
It is also the only class that implements the two additional methods add_indexed() and
scalar_mul_indexed() which are called by simplify_indexed() to evaluate sums of
indexed objects and products of indexed objects with scalars, respectively. This allows
evaluating expressions containing indexed matrices with simplify_indexed() in a way
similar to the evaluation of non-indexed matrix expressions with evalm(), as described in
section 2.19.

In addition to the contraction algorithm just detailed, simplify_indexed() provides
another mechanism that allows replacing scalar products of indexed objects (i. e. con-
tractions with no free indices) with user-supplied values without requiring the involved
objects to override contract_with(), but by looking them up in a table passed to
simplify_indexed(). This is particularly useful when ordinary symbols are used to
denote vectors, as in

(pµ + qµ)(lµ + qµ).

If it is known that q is light-like and that the product of p and l is p0l0, the user can pass
the set of scalar products

q · q → 0
p · l→ p0l0

to simplify_indexed() to obtain the result

p0l0 + qµlµ + pµqµ.

The scalar product definitions are stored in an object of class scalar_products as a
mapping (e1, e2, D) 7→ e3 (symmetric in e1 and e2), where D is the (possibly unspecified)
effective dimension of the contraction.

The final task of simplify_indexed() is to detect terms that vanish or cancel each other
out due to symmetry reasons. In this step, GiNaC only considers symmetries with respect
to dummy indices. By symmetrizing all terms containing contractions over the involved
dummy indices and combining the resulting terms, most cancellations in contractions can
be found easily, since any indexed expression is supposed to be symmetric under exchange
of its dummy indices.

For example, in
εµνρσ(pµqν + pνqµ)

simplify_indexed() first expands the product to get

εµνρσp
µqν + εµνρσp

νqµ.
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Both terms are then symmetrized over {µ, ν}, yielding

1
2
(εµνρσp

µqν + ενµρσp
νqµ) +

1
2
(εµνρσp

νqµ + ενµρσp
µqν)

=
1
2
(εµνρσp

µqν − εµνρσp
νqµ) +

1
2
(εµνρσp

νqµ − εµνρσp
µqν)

by canonicalizing the indices of the ε tensor and using its antisymmetry. Re-expanding
the expression then gives the result 0.

Other kinds of symmetries such as Jacobi or Bianchi identities are not handled by
simplify_indexed(), but those do not appear in the calculations performed by xloops.

3.4 Non-Commutative Algebras

There are three classes of objects with non-commutative products built into GiNaC 1.2:

• matrices (class matrix),

• elements of the Dirac algebra γµ and related items like γ5 and slashed momenta
p/ ≡ γµpµ (class clifford),

• the generators Ta of the Lie algebra of SU(3) (class color); other objects associated
with this algebra, like the structure constants fabc, are commutative.

Most of the basic classes and algorithms for dealing with non-commutative products in
GiNaC have already been described in [Frin 2000] and [Krec 2002] and shall only be briefly
summarized here (see also fig. 3.4).

Non-commutativity in GiNaC is a property of the algebraic objects. The * operator figures
out by itself whether its factors commute and either creates a mul container for a commu-
tative product or an ncmul container for a non-commutative one. The ncmul class stores
its factors in a simple expression vector (unlike the pair-wise representation employed by
mul which we descibed in section 2.6.4) and also doesn’t automatically canonicalize the
order of the factors.

The commutation properties of an algebraic class are implemented in the two methods
return_type() and return_type_tinfo(). return_type() returns one of three values:

• commutative

An object that commutes with any other object.

• noncommutative

A non-commutative object of a “pure” type.

• noncommutative_composite

A non-commutative object of composite type.

The return value of return_type_tinfo() is an ID that determines which “type” a non-
commutative object belongs to. For simplicity, the matrix, clifford, and color classes

81



3 GiNaC for Physics Calculations

Figure 3.4: Classes and methods for non-commutative algebras

return their integer type ID here (see section 2.10), or, for clifford and color objects
with different representation labels, a variation thereof (see below). Objects of different
type are assumed to commute with each other. Products of such objects are considered
as being of composite type, and don’t commute with any other non-commutative objects.

The commutation properties of a container object don’t need to be related to that of
its subexpressions. For example, while a matrix object A is non-commutative (with a
return_type_tinfo() of TINFO_matrix), an indexed matrix Aij , which is an indexed
object with a matrix as its base expression, is commutative. Symbolic functions (see
section 2.6.6) can also be defined as non-commutative. By default, they inherit the com-
mutation properties of their first argument.

GiNaC automatically groups products involving non-commutative factors by their type.
For example, the expression

γµiTb eγ
νTa

containing two clifford objects γµ and γν , two color objects Ta and Tb, and two com-
mutative objects i and e, is rearranged to

i e (γµγν)(TbTa) (3.1)

which is a commutative product (mul) of four factors, the last two factors being non-
commutative products (ncmul) of two clifford and two color objects, respectively. The
entire expression is then of composite type. Note that the relative order of the non-
commuting factors has not changed.
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This grouping is one of the automatic evaluation rules implemented in ncmul::eval().
As a consequence, non-commutative products only contain objects of one single type,
or of composite type. In the following, we will refer to single-type products as strings.
Expression (3.1) thus contains two strings: the Dirac string γµγν and the color string
TbTa.

Within each string, GiNaC performs class-specific canonicalizations, such as anticommut-
ing γ5 to the front of Dirac strings. These are implemented by the method eval_ncmul()
in the respective classes, which is invoked by ncmul::eval() as its last step.

After these general remarks we will now discuss the Dirac and color algebras in more
detail.

3.4.1 The Dirac Algebra

The matter part of the Standard Model consists of a set of spin-1
2 fermions represented

by four-component fields ψA(x) satisfying the Dirac equation

(iγµ
AB∂µ −m1AB)ψB(x) = 0 (3.2)

where m is the mass of the field and 1AB ≡ δAB is the Kronecker delta which we write as
1 here because it is represented by a different class than tensdelta in GiNaC.

The objects γµ, defined by

γµ
ABγ

ν
BC + γν

ABγ
µ
BC = 2ηµν

1AC , (3.3)

are called Dirac matrices and can be represented by complex 4 × 4 matrices. γµ also
behaves as a vector under Lorentz transformations. The set of 16 objects

1, γ0, γ1, γ2, γ3,

γ0γ1, γ0γ2, γ0γ3, γ1γ2, γ1γ3, γ2γ3,

γ0γ1γ2, γ0γ1γ3, γ0γ2γ3, γ1γ2γ3,

γ0γ1γ2γ3

(3.4)

forms a basis of the Clifford algebra C(M4) of the four-dimensional Minkowski space M4

with regard to the metric ηµν (in the matrix representation, it also forms a basis of all
complex 4× 4 matrices). See [Pert 2001] for a discussion of the general definition and the
properties of Clifford algebras.

In a free field theory, the equation of motion (3.2) can be derived from the dynamic term

LF = ψ̄A(iγµ
AB∂µ −m1AB)ψB

in the Lagrangian by standard methods (see, for example [BDJ 2001, chapter 2]
and [PeSc 1995, chapter 9]). Its two-point Green function is the fermion propagator

iSF (p,m)AB =
i(γµ

ABpµ +m1AB)
p2 −m2 + iρ

.
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Contractions such as γµpµ are usually abbreviated using the “slash” notation

p/ := γµpµ

so the propagator takes the form

p

A B i(p/AB +m1AB)
p2 −m2 + iρ

. (3.5)

Similarly, taking QED as the simplest interacting theory, an interaction term of the form

LI = −eAµψ̄Aγ
µ
ABψB

yields the factor
−ieγµ

AB (3.6)

for the Feynman rule of the ψψ̄A interaction vertex.

Additionally, the Standard Model of the electroweak interaction contains couplings that
are different for the left-handed and right-handed components of Dirac fields. We introduce
the projection operators

γL =
1
2
(1− γ5), γR =

1
2
(1 + γ5),

with (in a four-dimensional Minkowski space)

γ5 := iγ0γ1γ2γ3 = − i

4!
εµνρσγ

µγνγργσ (3.7)

having the anticommutation property12

γ5γµ = −γµγ5, γ5γ5 = 1. (3.8)

The components of a Dirac field ψA(x) are

ψL
A = γL

ABψB, ψR
A = γR

ABψB.

The factor for the ψψ̄A vertex (where A = γ, Z,W±) then takes the general form

µ

B

A

ieγµ
AB(cLγL + cRγ

R) (3.9)

12 This property is retained even for D 6= 4 dimensions (see below).
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with coefficients cL, cR that depend on the nature of the gauge field A.

Using the Feynman rules (3.5), (3.6), and (3.9) in the given form, with explicit spinor
indices, the amplitudes for arbitrary processes could be constructed by simply multiplying
all the individual factors for the vertices and propagators. The factors themselves are
commutative since the individual components of γµ

AB are simply complex numbers.

xloops applies a slightly different set of Feynman rules that gets by without explicit spinor
indices at the cost of some additional, but straightforward, bookkeeping. As the factors
in this set of rules contain the non-commutative objects γµ, γL, γR, and slashed momenta
in their numerators, one has to keep track of the order they are assembled in.

For a single fermion line, the factors are strung together as they appear along the line. By
convention, the line is followed in the direction of particle-number flow, which for electrons,
muons, and taus is the direction of negative charge flow (here and in the following we only
write out the numerator of the truncated Feynman diagram and omit purely commutative
factors like i, e, and the metric tensor ηµν):

p1 p2γµ γν γρ

With spinor indices:

γµ
AB(p/1 +m1)BCγ

ν
CD(p/2 +m1)DEγ

ρ
EF

Without spinor indices:

γµ(p/1 +m1)γν(p/2 +m1)γρ

Virtual gauge boson exchanges involve Lorentz contractions between Dirac matrices that
can be simplified using the algebraic property (3.3) of the Dirac matrices (working in D
space-time dimensions and the Feynman gauge):

ηµν

p

γµ γν

With spinor indices:

γµ
AB(p/+m1)BC(γµ)CD

Without spinor indices:

γµ(p/+m1)γµ = (2−D)p/+Dm1

Other possibilities are contractions of Dirac matrices with external or loop momenta.

If one has two or more unconnected fermion lines, only those Dirac objects belonging
to the same line are multiplied. In the index-free notation it is therefore necessary to
distinguish multiple sets of Dirac objects belonging to different fermions. In GiNaC this
is achieved by assigning a representation label (an integer number) to every Dirac object:

p1

p2

γµ γν

γρ γσ

With spinor indices:

γµ
AB(p/1 +m1)BCγ

ν
CD γ

ρ
EF (p/2 +m1)FGγ

σ
GH

Without spinor indices:[
γµ

(1)(p/1(1) +m1(1))γ
ν
(1)

][
γρ

(2)(p/2(2) +m1(2))γ
σ
(2)

]
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Objects or strings of objects with different representation labels such as the two brackets
in the last expression commute. This expression therefore actually contains two separate
Dirac strings.

Finally, a closed fermion loop corresponds to a trace over the Dirac matrices:
p1

p2

γµ γν

With spinor indices:

γµ
AB(p/2 +m1)BCγ

ν
CD(p/1 +m1)DA

Without spinor indices:

Tr[γµ(p/2 +m1)γν(p/1 +m1)]

In the case of multiple fermion loops, traces are taken separately for each Dirac string with
a different representation label. Traces also appear in the calculation of squared matrix
elements.

In four space-time dimensions, or in the absence of axial couplings which involve γ5 it does
not matter at which point in the loop one starts assembling the factors since the trace
operation is symmetric with respect to cyclic permutations of the factors in its argument.
We will come back to the problems appearing with γ5 in dimensional regularization later
in this section.

The xloops graph generator is responsible for obeying all these rules and for generating
the appropriate representation labels and traces.

We can now give a list of the requirements for the implementation of the Dirac algebra in
GiNaC:

• objects representing the Dirac matrices 1, γµ, γ5, γL, and γR,

• objects representing slashed expressions like p/,

• representation labels for the above objects,

• the ability to construct non-commutative strings of objects with the same label,

• simplifications such as Lorentz contractions, and some degree of canonicalization of
strings,

• the Dirac trace operation.

Although we call them Dirac matrices, they are not represented by matrix objects in
GiNaC, but by a separate clifford class that is derived from indexed, completely in-
dependent of any explicit matrix representation (see fig. 3.5). The base expressions and
indices of the objects are different for each type of Dirac matrix (γµ, 1, Dirac slash, etc.),
as shown in fig. 3.6.

The clifford class augments indexed by an unsigned char attribute that stores
the object’s representation label (an integer number in the range [0, 255]). Because
its return_type() is noncommutative and its return_type_tinfo() is the sum of

86



3.4 Non-Commutative Algebras

Figure 3.5: Classes implementing the Dirac algebra. The class of Dirac matrices clifford
augments the indexed class by a representation label.

Figure 3.6: Examples for the representation of Dirac matrices in GiNaC
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TINFO_clifford and the representation label, GiNaC automatically groups products of
Dirac matrices into separate non-commutative Dirac strings for each label.

A couple of subclasses of tensor are defined corresponding to the different types of Dirac
matrices which are used as the base expressions of clifford objects. However, users of
the GiNaC library will usually construct Dirac matrices with one of the following helper
functions:

• dirac_ONE(r)

Returns 1(r), constructing a clifford object with the specified representation label,
a diracone tensor as the base expression, and no indices.

• dirac_gamma(mu, r)

Returns γµ
(r), constructing a clifford object with the specified label, a diracgamma

as the base expression, and the supplied index µ which can be co- or contravariant
and of arbitrary numeric or symbolic dimension.

• dirac_gamma5(r), dirac_gammaL(r), dirac_gammaR(r)
Return γ5

(r), γ
L
(r), or γR

(r), respectively, constructing a clifford object with the
specified label, a diracgamma5, diracgammaL, or diracgammaR object as the base
expression, and no indices.

• dirac_slash(p, dim, r)

Returns p/(r) with dim being the dimension of the suppressed contraction index. This
is stored as a clifford object with the base expression p and a placeholder index
of value 0 storing the supplied index dimension.

For all functions, the representation label r can be omitted, in which case it is assumed to
be 0. As with lorentz_g() and related functions, the tensors diracone etc. are created
as flyweights and shared between Dirac objects.

As an example for using Dirac matrices in GiNaC, consider the one-loop diagram

p2

q + p1

p1

q

q − p2

µ

ν

ρ

which, if we assume all vertices to have the same general coupling (3.9), has the numerator
structure

N = γν(cLγL + cRγ
R)(q/+ p/1 +m1)γµ(cLγL + cRγ

R)

· (q/− p/2 +m1)γρ(cLγL + cRγ
R)ηρν .

This would be entered in the following way using GiNaC:
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1 // declare symbols and indices
2 symbol p1("p_1"), p2("p_2"), q("q"), m("m"), D("D");
3 symbol cL("c_L"), cR("c_R");
4 varidx mu(symbol("mu"), D), nu(symbol("nu"), D), rho(symbol("rho"), D);
5

6 // assemble numerator
7 ex N = dirac_gamma(nu) * (cL*dirac_gammaL() + cR*dirac_gammaR())
8 * (dirac_slash(q, D) + dirac_slash(p1, 4) + m * dirac_ONE())
9 * dirac_gamma(mu) * (cL*dirac_gammaL() + cR*dirac_gammaR())

10 * (dirac_slash(q, D) - dirac_slash(p2, 4) + m * dirac_ONE())
11 * dirac_gamma(rho) * (cL*dirac_gammaL() + cR*dirac_gammaR())
12 * lorentz_g(rho.toggle_variance(), nu.toggle_variance());

For the sake of simplicity, we will also assume the fermion to be massless (m = 0). Lorentz
contractions and canonicalizations can then be carried out with

13 N = N.subs(m == 0).simplify_indexed();

The resulting numerator contains various terms. It can be decomposed into a left-handed
part and a right-handed part

N = γLNL + γRNR ⇒ NL = γLN, NR = γRN

by multiplying it with γL and γR, respectively:

14 ex NL = (dirac_gammaL()*N).expand();
15 ex NR = (dirac_gammaR()*N).expand();

To get a concise result, we will collect NL and NR in terms of the various appearing Dirac
strings with the aid of a visitor (cf. section 2.18):

16 class collect_strings : public visitor,
17 public add::visitor,
18 public mul::visitor,
19 public ncmul::visitor {
20 public:
21 // gather all strings in the set strings
22 void visit(const ncmul & e)
23 {
24 strings.insert(e);
25 }
26

27 // visit all terms of a sum, then collect the sum in terms of the
28 // strings we have gathered
29 void visit(const add & e)
30 {
31 for (const_iterator i = ex(e).begin(); i != ex(e).end(); ++i)
32 i->accept(*this);
33 result = e.collect(lst(list<ex>(strings.begin(), strings.end())));
34 }
35

36 // visit all factors of a product
37 void visit(const mul & e)
38 {
39 for (const_iterator i = ex(e).begin(); i != ex(e).end(); ++i)
40 i->accept(*this);
41 }
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42

43 // return result to caller
44 ex get_result() const { return result; }
45

46 private:
47 set<ex, ex_is_less> strings; // set of strings gathered so far
48 ex result; // returned expression
49 };
50

51 // create two visitors and send one each over NL and NR
52 collect_strings NL_visitor, NR_visitor;
53 NL.accept(NL_visitor);
54 NR.accept(NR_visitor);
55

56 // get the collected results and also pull out common scalar terms
57 NL = collect_common_factors(NL_visitor.get_result());
58 NR = collect_common_factors(NR_visitor.get_result());

The final result is then

NL = c3R
(
2γLp/2γ

µp/1 − 2γLq/γµp/1 + 2γLp/2γ
µq/+ (2−D)γLq/γµq/

− (4−D)γLp/1γ
µp/2 + (4−D)γLp/1γ

µq/− (4−D)γLq/γµp/2

)
,

NR = NL(L↔ R).

Automatic simplifications of Dirac strings are handled in clifford::eval_ncmul(), as
explained, while contractions are evaluated in diracgamma::contract_with() (since γµ

is the only Dirac object with a proper index). The exact rules implemented in GiNaC are
given in appendix B.2.

To perform the trace operation, the user calls the function dirac_trace(e, rl, trONE)
which takes the trace over all Dirac strings with the representation label(s) rl (either a
single label, or a set or list of multiple labels) in the expression e. The trace of the identity
matrix 1 can be specified in trONE which defaults to 4.

In D 6= 4 dimensions, traces containing γ5 pose a problem. Obviously, the definition (3.7)
is no longer applicable as the Lorentz vector γµ doesn’t contain exactly four components.
It is possible to take the anticommutation property (3.8) as the definition of γ5 but this
turns out to be incompatible with the four-dimensional definition of the trace operation
(see [Jege 2001] for a complete discussion).

GiNaC implements the scheme proposed in [Krei 1990] and [KKS 1992] of replacing the
trace operation with a linear functional Tr[ ] that only corresponds to the ordinary matrix
trace in D = 4 dimensions. In general, the Tr[ ] operator projects out the coefficient
proportional to 1 in the expansion of a Dirac string S in a basis such as (3.4):

Tr[S = a01+ (a1)µγ
µ + · · · ] := a0 Tr[1] (3.10)

For a string containing γ5 (because of (3.7) any string can be rewritten with either one or
no γ5), Tr[ ] acts as a projection on the γ5 term:

Tr[γ5(a01+ (a1)µγ
µ + · · ·+ a4γ

5 + · · · )] := a4 Tr[1] (3.11)
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Tr[ ] can be computed in terms of the ordinary four-dimensional trace tr[ ] as follows:

Tr[S] = tr[S],

Tr[γ5S] =
i

4!
ε(0123)
µ1µ2µ3µ4

tr[γµ1γµ2γµ3γµ4S]
(3.12)

where ε
(0123)
µ1µ2µ3µ4 is a four-dimensional antisymmetric tensor that corresponds to

εµ1[4]µ2[4]µ3[4]µ4[4] in GiNaC.

The trace operation defined by these properties is not cyclic in D 6= 4 dimensions for
strings containing six or more Dirac matrices and one γ5. For example,

ηµ5µ6(Tr[γ5γµ1γµ2γµ3γµ4γµ5γµ6 ]− Tr[γµ6γ5γµ1γµ2γµ3γµ4γµ5 ])

computed by the program

1 symbol D("D");
2 varidx mu1(symbol("mu1"), D), mu2(symbol("mu2"), D), mu3(symbol("mu3"), D),
3 mu4(symbol("mu4"), D), mu5(symbol("mu5"), D), mu6(symbol("mu6"), D);
4

5 ex S = dirac_gamma5() * dirac_gamma(mu1) * dirac_gamma(mu2)
6 * dirac_gamma(mu3) * dirac_gamma(mu4) * dirac_gamma(mu5);
7

8 ex e = lorentz_g(mu5.toggle_variance(), mu6.toggle_variance())
9 * (dirac_trace(S * dirac_gamma(mu6))

10 - dirac_trace(dirac_gamma(mu6) * S));
11

12 cout << collect_common_factors(e.simplify_indexed()) << endl;

yields

8i(D − 4)εµ1µ2µ3µ4

which only vanishes for D = 4.

The non-cyclicity of the trace implies that one has to choose a specific reading point when
constructing the Feynman amplitude for a diagram with fermion loops in the presence
of axial couplings. The xloops graph generator needs to implement rules such as given
in [KKS 1992] to ensure correct results for these diagrams.

Unfortunately, the complexity of the Dirac trace algorithm implemented in GiNaC is
O(N !!), which limits the length N of strings whose traces can be computed in reasonable
time to N = 12 (see fig. 3.7). Special provisions for more efficient calculations of products
of traces with contracted indices such as those described in [Chis 1963] are not currently
in place.

One additional operation available on expressions containing Dirac matrices is
canonicalize_clifford() which uses the commutation relation (3.3) to bring the el-
ements of Dirac strings into a canonical order. This function will, for example, convert
one of γµγν and 2ηµν

1− γνγµ into the other form (depending on the internal ordering of
µ and ν), allowing to compare them for equality.
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Figure 3.7: Run times for computing Tr[γµ1 . . . γµN ], depending on the number N of Dirac ma-
trices.

3.4.2 The Color Algebra

The handling of the SU(3) color algebra,13 although conceptually quite different from the
Dirac algebra, bears remarkable similarities in its implementation in GiNaC.

A multi-component14 fermion field ψi(x) that transforms locally under a symmetry group
G represented by a set of infinitesimal generators Ta, a = {1, . . . ,dimG} as

ψi(x)→ ψ′i(x) =
(
eiθa(x)Ta

)
ij
ψj(x)

gives rise to a gauge field Aµ(x) belonging to the Lie algebra of G if the Lagrangian is
supposed to be invariant under this transformation. The gauge field can be expanded in
terms of the generators:

Aµ(x) = gAµ,a(x)Ta.

The corresponding covariant derivative is then

Dµ = ∂µ1C − iAµ(x),

with 1C being the unit element of the Lie algebra. The field strength tensor is given by

Fµν,a(x) = ∂µAν,a(x)− ∂νAµ,a(x) + gfabcAµ,b(x)Aν,c(x)

13 An extension to SU(N) for an arbitrary symbolic N is planned for a future version of GiNaC.
14 The index i is not a spinor index, which is left out in this discussion.
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where fabc are the structure constants of the Lie algebra of G, defining the algebraic
properties of the generators Ta by the commutation relation

[Ta, Tb] = ifabcTc. (3.13)

As in the case of the Dirac algebra, the generators Ta can be represented by matrices Ta,ij ,
but this representation is not used by GiNaC, and the matrix indices i, j (whose index set
in general differs from the group index a) are not written down explicitly in the Feynman
rules.

In QCD, the symmetry group is G = SU(3),dimG = 8 acting on three-component quark
spinor fields ψi(x), one per quark flavor. From the gauge-covariant fermion part

LF = ψ̄(iγµDµ −m11C)ψ

and the gauge-field part

LG = −1
4
Fµν,aF

µν
a

of the Lagrangian one can derive the expressions for the quark propagator

p

i(p/+m1)1C

p2 −m2 + iρ
(3.14)

and the gluon propagator which in the Feynman gauge reads

pµ, a ν, b −iηµνδab

p2 + iρ
(3.15)

The ψψ̄A vertex yields a factor

µ, a
igγµTa (3.16)

Additionally, there are three-gluon

µ1, a1, p1

µ3, a3, p3

µ2, a2, p2

gfa1a2a3

(
ηµ1µ2(p1 − p2)µ3

+ηµ2µ3(p2 − p3)µ1

+ηµ3µ1(p3 − p1)µ2
)

and four-gluon vertices
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µ2, a2

µ1, a1

µ4, a4

µ3, a3

−ig2
(
fa1a2bfa3a4b(ηµ1µ3ηµ2µ4 − ηµ1µ4ηµ2µ3)

+fa1a3bfa4a2b(ηµ1µ4ηµ3µ2 − ηµ1µ2ηµ3µ4)
+fa1a4bfa2a3b(ηµ1µ2ηµ4µ3 − ηµ1µ3ηµ4µ2)

)
which do not appear in an abelian gauge theory like QED due to the structure constants
fabc being zero.15

As with the Dirac matrices, the factors of a Feynman amplitude have to be multiplied
following quark lines (we will omit the Dirac structure in the following examples):

Ta Tb Tc
Ta1CTb1CTc = TaTbTc

There also appear contractions between objects carrying color indices (Ta, fabc, δab), such
as

δab

Ta Tb Ta1CTbδab = TaTa =
4
3
1C

Multiple quark lines are distinguished by color matrices carrying different representation
labels:

Ta Tb

Tc Td

[
T (1)

a 1
(1)
C T

(1)
b

][
T (2)

c 1
(2)
C T

(2)
d

]

and closed quark loops amount to a trace over the generators Ta:

Ta Tb Tr[TaTb]

15 They do appear in the non-abelian electroweak theory but do not carry a special Dirac structure which
is why we omitted them in our discussion in section 3.4.1.
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Figure 3.8: Classes implementing the SU(3) color algebra

The features required for the color algebra in GiNaC are thus:

• objects representing the non-commutative generators Ta and the unit 1C , and the
commutative δab and the antisymmetric structure constants fabc; for completeness,
GiNaC also provides the symmetric structure constants dabc defined by

TaTb + TbTa =
1
3
δab + dabcTc

• representation labels for the Ta and 1C ,

• the ability to construct non-commutative strings of Ta and 1C ,

• simplifications such as contractions between Ta, fabc, dabc, and δab,

• color traces.

Fig. 3.8 shows the classes implementing the color algebra, which look very similar to those
for the Dirac algebra (cf. fig. 3.5). The color class which stores the representation label
is only used for representing the non-commutative Ta and 1C .16 The structure constants
fabc and dabc are stored in normal indexed objects, and δab is just the ordinary Kronecker
delta tensor already described in section 3.2.2. All color indices have dimension 8.

The color algebra objects are constructed by the following helper functions:
16

1C commutes with all Ta but this is handled separately in color::eval_ncmul(). To GiNaC, 1C is a
non-commutative object.
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• color_ONE(r)

Returns 1(r)
C , constructing a color object with the specified representation label, an

su3one tensor as the base expression, and no indices.

• color_T(a, r)

Returns T (r)
a , constructing a color object with the specified label, an su3t as the

base expression, and the supplied index.

• color_f(a, b, c)

Returns fabc as an indexed object with an su3f as the base expression, the symmetry
−(0, 1, 2), and the three specified indices.

• color_d(a, b, c)

Returns dabc as an indexed object with an su3d as the base expression, the symmetry
+(0, 1, 2), and the three specified indices.

• color_h(a, b, c)

Returns the sum habc := dabc + ifabc.

The simplification rules implemented for color algebra objects in GiNaC are listed in
appendix B.3. In contrast to the Dirac algebra, the rules for the color algebra deal mostly
with contractions between the different types of objects.

Traces of color strings are computed by the function color_trace(e, rl) according to
the following rules:

• Tr[1C ] = 3,

• Tr[Ta] = 0,

• Tr[TaTb] = 1
2δab,

• Tr[TaTbTc] = 1
4habc,

• Tr[Ta1 . . . Tan ] = 1
6δan−1an Tr[Ta1 . . . Tan−2 ] + 1

2han−1ank Tr[Ta1 . . . Tan−2Tk].

The last rule allows computing traces of four or more elements by recursively reducing
them to traces of shorter strings. As fig. 3.9 shows, this is roughly an O(2N ) operation.

Concluding this chapter with an example, consider the process uū→ uū on the tree level.
The squared matrix element contains an interference term between the s- and t-channel
contributions ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

δab

ūk

ui

ūl

uj

Ta

Tb

+
δcd

ūk

ui

ūl

uj

Tc Td

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2
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Figure 3.9: Run times for computing Tr[Ta1 . . . TaN
], depending on the number N of color matri-

ces.

which receives a color factor by averaging over the initial colors and summing over the
final colors equal to

C =
(

1
3

)2∑
ijkl

Ta,jiTa,klT
∗
c,kiT

∗
c,jl

=
1
9

Tr[TaTcTaTc]

which can be computed using GiNaC with

1 idx a(symbol("a"), 8), c(symbol("c"), 8);
2 ex C = color_trace(color_T(a)*color_T(c)*color_T(a)*color_T(c)) / 9;
3 cout << C.simplify_indexed() << endl;

yielding C = − 2
27 (= 1

N2 (CF − 1
2CA)CF Tr[1C ] = 1−N2

4N3 for N = 3).
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Experienced object-oriented designers will tell you that a reusable
and flexible design is difficult if not impossible to get “right” the
first time.

Erich Gamma et al., Design Patterns [GHJV 1995]

When you do things right, people won’t be sure you’ve done anything
at all.

Futurama Episode 3.20 “Godfellas”

In the past five years, GiNaC has reached a mature state and offers all the features required
for the reimplementation of xloops carried out in [Baue 2000], [BaDo 2002], and [Do 2003].
It is also efficient and flexible enough to be used by other researchers for projects in
physics and other fields. For example, in [BKK 2002] a program has been developed
based on GiNaC for the automatic calculation of counter terms for multi-loop diagrams
in massless Quantum Field Theory. A two-loop calculation of MSSM corrections to the
relation between the pole mass and the running mass of the b quark performed with GiNaC
has been presented in [BeSh 2004].

The table below lists some other projects using GiNaC that we are aware of.

Name Maintainer Description

nestedsums S. Weinzierl Library for symbolic expansion of certain
classes of transcendental functions, used by
xloops [MUW 2002] [Wein 2004a]

gTybalt S. Weinzierl Combines GiNaC with ROOT and the TeX-
macs editor into an interactive computer al-
gebra system [Wein 2004b]

feelfem H. Fujio,
NEC Japan

Finite Element Method code generator

PURRS R. Bagnara,
Univ. of Parma

Library for solving recurrence relations
[BaZa 2004] (http://www.cs.unipr.it/
purrs/)

MBDyn P. Mantegazza,
Politecnico di Milano

Multibody dynamics analysis software
(http://www.mbdyn.org)

Ecco Kai Ludwig,
Univ. of Tübingen

Compiler for the simulation of electrochemi-
cal reaction kinetics, part of the EChem++
package (http://echempp.sf.net)

For a comparison of GiNaC to other symbolic manipulators in terms of efficiency and
memory usage, we refer the reader to [Krec 2002, section 5.1].
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There is always room for improvement, of course. In the following sections we will take
up some areas in which further development may be worthwhile.

4.1 Efficient Allocation of Small Objects

As a consequence of the fine granularity of objects in GiNaC, a large amount of small
objects are continually allocated and deallocated when working with expressions. To give
an impression of the “smallness” of GiNaC’s objects: GCC/i386 allocates 20 bytes for
each basic object, 24 bytes minimum for each numeric object (large numbers take up
more space), 36 + 8n bytes minimum for each add with n terms (not counting the space
taken up by the terms), and 48 bytes minimum for a symbol (plus the space required to
store the symbol’s name).

Of course, each allocation and deallocation request incurs some overhead, both in CPU
time and in memory requirement, that for the most part depends on the implementation of
memory management in the C++ run-time library and the underlying operating system.
For each new operation, the C++ memory allocator has to find a suitable free memory
block (possibly requesting more storage space from the operating system) and mark it as
used. A subsequent call to delete needs to relinquish the block to the memory allocator.
Assuming an 8-byte overhead for each block (enough for a 4-byte block size and a link
pointer) that is typical for simple memory allocation implementations, a GiNaC program
would end up wasting about 20% of its available memory, not to mention the extra CPU
cycles used up in the process.

Although GiNaC employs lots of techniques to decrease overall memory usage by sharing
objects between expressions, as detailed in section 2.9, and modern C++ compilers now
do a better job on small-object allocation than they did years ago when they inherited
the malloc()/free()-based memory management scheme from C that is typically opti-
mized for larger memory blocks (at least several KB), there is potentially some room for
improving the general performance of GiNaC here.

A custom memory allocator could be implemented in GiNaC by overloading the new and
delete operators in the basic class. All allocations and deallocations of algebraic objects
would then use the new routines. The hard part is of course writing and benchmarking
memory management algorithms that are optimized to the usage patterns in GiNaC.

The Loki library [Alex 2001] contains a complete and portable implementation of a small-
object memory allocator that is supposedly faster than that offered by most C++ compilers.
At least for GCC 3.x, this claim is demonstrably false. Utilizing the Loki allocator with
GiNaC led to a dramatic decrease in overall performance (up to 50% increase in run time
for the standard GiNaC benchmark suite).

4.2 Virtual Memory

The implementation of expressions in GiNaC as a tree of pointers to subexpressions as-
sumes that each object is directly addressable. While this guarantees fast access to all
objects, it also means that the maximum expression size is limited by the address space
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of the CPU running the code.1

It is not uncommon nowadays for computers to be equipped with several gigabytes of RAM,
but a 32-bit architecture is typically still limited to 232 addressable memory locations.
While this is more than enough for the algorithms used in xloops, for some applications in
particle physics whose calculation procedures produce intermediate results with billions of
terms it is far from sufficient.

One of the key features of FORM is its ability to work with expressions that exceed the
addressable memory space by buffering them in disk files. This works very well since
FORM internally uses flat data structures for representing expressions (at the cost of
restricting the possible set of expressions it can handle), and mostly algorithms traversing
them in a linear fashion.

A similar scheme could be implemented in GiNaC by making certain algebraic classes like
add or mul (or even ex) act as proxies to data that is stored on disk and retrieved when
subexpressions are accessed via op(). Whether this is feasible remains debatable. The
intrinsically hierarchical structure of expressions would require clever storage and access
mechanisms (basically, a hierarchical database) to achieve satisfactory performance. A
GiNaC expression is not a simple stream of bytes that can be directly written to disk.

Although converting expressions to and from byte streams is possible with GiNaC’s object
persistence system which we described in section 2.15, it is not particularly suited for this
task, at least not in its current implementation. The construction of the archive_node tree
actually takes up even more temporary memory space, and retrieving object attributes by
name is not exactly the fastest possible way of data access. GiNaC’s archiving system was
designed with data exchange and long-term storage in mind, not for swapping expressions
to disk on the fly.

Since 64-bit architectures are expected to enter the commodity PC market within the
next two years, we don’t see GiNaC’s limitation as the most pressing issue. With a 64-bit
address space, one could again delegate the problem of virtual memory management to
the underlying operating system, as GiNaC has done in the past.

4.3 Expression Input

While GiNaC offers a comprehensive dynamic mechanism for printing expressions, with
the ability to add user-defined algebraic classes and output formats (see section 2.14), the
facilities for expression input are somewhat impoverished in comparison.

The yacc-based input parser described in section 2.22 is completely static. There is neither
a way to define new input formats nor to make user-added algebraic classes parseable.2

Also, since due to its C roots, yacc only performs textual manipulations on source code
fragments that implement the parser actions, its use in the context of a C++ library feels
somewhat “alien”.

GiNaC’s expression input parser should eventually be replaced by an implementation that
1 It may be further limited by parts of the address space being reserved by the operating system.
2 A workaround is to parse instances of user-defined classes as symbols or symbolic functions, and sub-

stituting them by the proper objects in the parsed expression.
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stores the grammar in dynamic data structures, thus enabling new classes to add their own
parsing rules. A possible candidate for such an implementation is Spirit [Guzm 2002], a
C++ template library that allows writing rules in an EBNF-like form using C++ syntax,
hooking callback functions to the rules, and parsing an input data stream according to the
supplied rule set. It also has some support for creating and modifying rules at run time.

4.4 Graph Algorithms

As explained in section 2.7, the run-time structure of a GiNaC expression is that of a
directed acyclic graph, but to the outside, for example in the op() method or the tree
traversal iterators from section 2.17, GiNaC presents an expression as a tree, corresponding
to its logical structure.

While the idea is to hide implementation details like subexpression sharing from the user,
this is suboptimal from a performance point of view. On the one hand, operations on
objects should be done only once, even if the object is referenced multiple times in the
same expression. For example, expanding an expression such as

e = af(x) + bf(x) + cf(x)

containing multiple instances of a function f(x) into a power series in x will call the
(possibly costly) series expansion routine of f three times, regardless of whether there
might be only one actual function object in the expression.

On the other hand, algorithms that employ tree traversal to transform expressions have
a tendency to “rip apart” the expression graph structure unless they are implemented
very carefully. Consider, for instance, the following seemingly obvious implementation of
power::subs() (leaving out some details which are unnecessary to this discussion):

1 ex power::subs(const exmap & m) const
2 {
3 // recursion into subexpressions
4 ex t = power(basis.subs(m), exponent.subs(m));
5

6 // check for substitution of this node
7 return t.subs_one_level(m);
8 }

This works, but creates a new power object for every invocation of subs(), even if
the operation didn’t do any changes to the expression. The actual implementation of
power::subs() in GiNaC therefore looks something like this, avoiding the creation of a
new object unless the basis or exponent have changed:

1 ex power::subs(const exmap & m) const
2 {
3 ex new_basis = basis.subs(m);
4 ex new_exponent = exponent.subs(m);
5

6 if (new_basis == basis && new_exponent == exponent)
7 return this->subs_one_level(m);
8 else
9 return power(new_basis, new_exponent).subs_one_level(m);

10 }
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Algorithms like these might benefit from changing from tree traversals to proper graph
traversals that visit each node at most once. This would of course involve keeping track of
the nodes that have already been visited, and remembering the results of the operations
performed on them (since GiNaC’s algorithms are non-mutating). The map() method
is one possible place where a graph traversal could be implemented. However, whether
graph traversals actually bring about any benefits in the light of the run-time and memory
overhead caused by the node-tracking would have to be examined carefully.

4.5 Expression Construction

GiNaC overloads the arithmetic operators +, -, *, /, and the + and - prefix operators to
allow writing down symbolic expressions in the standard C++ notation.

The C++ arithmetic operators are, however, strictly binary, i. e. they only work on two
operands at a time. For GiNaC, this means that expressions are constructed part-by-
part, with a lot of intermediate expressions being created and deleted along the way. For
example, the single line

1 ex e = a - b - c - d;

sets off the following series of operations:

1. operator-(a,b)

first constructs a temporary mul object holding (−1) · b, then an add object from
the terms a and −b, which is canonicalized and returned, and deletes the temporary
mul object,

2. operator-(a-b,c)

constructs a mul object holding (−1) · c, then an add from the terms a− b and −c,
which is canonicalized and returned, and deletes the mul and the intermediate a− b
add object,

3. operator-(a-b-c,d)

constructs a mul object holding (−1) · d, then an add from the terms a− b− c and
−d, which is canonicalized and returned, and deletes the mul and the intermediate
a− b− c add object.

There is clearly a lot of redundancy here. One possible solution is to use the expression
templates technique mentioned in section 2.2 to generate a compile-time representation
of the expression to be constructed using nested template classes, which compiles into
optimized code for creating the expression at run time. High-performance scientific C++

matrix libraries such as Blitz++ [Veld 2002] use this technique to allow writing down
matrix arithmetic in the usual C++ notation without generating intermediate objects or
multiple loops.

As an experiment, we have implemented a different, but related technique in an attempt
to cut down on the number of temporary objects in the creation of GiNaC expressions,
that doesn’t rely that much on templates.
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Expression Change Expression Change

x+ y +56% x · y +43%
x− y −26% x/y +3%

x+ y + 4 +25% x · y · 4 +24%
x+ y − 4 −27% x · y/4 −13%
x− y + 4 −31% x/y · 4 −1%
x− y − 4 −48% x/y/4 −25%

a+ b+ c+ d+ e+ f −11% a · b · c · d · e · f −11%
a− b− c− d− e− f −58% a/b/c/d/e/f +15%

Table 4.1: Changes in run time for the creation of expressions using temporary objects to collect
terms of sums and factors of products, compared to the default arithmetic operators of GiNaC 1.2.

The basic idea is to make operator+(ex,ex) and operator-(ex,ex) return not an ex-
pression but an instance of a special class te_add that stores the terms of the sum as a
vector of expression pairs ready for the creation of an add object. te_add in turn overloads
the + and - operators to collect any additional terms. It is not until the te_add is used in
a context where an expression (an ex object) is expected that it finally creates an add from
its assembled terms. This is achieved by providing a casting operator operator ex() for
the te_add class.

With this intermediate class, our example runs as follows:

1. operator-(a,b)

constructs and returns a te_add object holding the two pairs (a, 1) and (b,−1),

2. te_add::operator-(c)

appends the pair (c,−1) to the existing te_add,

3. te_add::operator-(d)

appends the pair (d,−1) to the existing te_add,

4. te_add::operator ex()

invoked from the ex(const ex &) copy constructor, creates an add object from the
collected pairs {(a, 1), (b,−1), (c,−1), (d,−1)}, which is canonicalized and returned.

A similar class, te_mul handles products and the * and / operators. There are also some
specializations of the operators in place to provide additional shortcuts when symbols or
numbers are used as operands.

Tests have shown mixed results with this approach. In general, it works better with
subtraction and division, and with expressions containing sums and products of more
than three terms. Table 4.1 lists the changes in run time for the creation of certain sample
expressions.

Based on these observations, we modified the implementation to only employ te_add and
te_mul objects for the - and / operators, and compared the run times of the tests in
the standard GiNaC benchmark suite. All tests run faster with the modified arithmetic
operators, typically by about 10%, but by up to 20% in some cases (in particular the
matrix-based tests).
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While the results look very promising, there is one fundamental problem with this imple-
mentation: Methods defined for expressions can’t directly be invoked on the introduced
temporary objects. One is no longer able to, for example, write

1 ex frac = (a/b).normal();

because the result of a/b is a te_mul, not an ex. The te_add and te_mul classes would
have to reimplement every single public member function of ex, forwarding them to the
ex class after creating a proper expression from the collected list of terms. Also, having
specialized operators for, e. g. ex-ex, numeric-numeric (these two are in GiNaC 1.2),
ex-numeric, and ex-int introduces ambiguities for other combinations of classes such as
numeric-int (which could resolve to either ex-int or numeric-numeric via the implicit
conversions numeric→ex and int→numeric.

For these reasons, the described optimized expression construction mechanism has not yet
been officially included in GiNaC.

4.6 Multithreading

With the increasing prevalence of affordable multiprocessing-capable computers in the
form of multi-CPU machines and machines with one or many multi-core CPUs, it makes
sense to consider the use of GiNaC in multithreaded programs.

Programming with multiple threads of execution requires a high amount of diligence in
coordinating the access of threads to shared data. Due to the object-sharing techniques
employed by GiNaC (described in section 2.9), such coordination is required even when
threads operate on disjunctive sets of expressions.

Currently, GiNaC has no support for multithreading, but such support should be relatively
easy to add, thanks to the abdication of global state affecting calculations, and the general
non-mutability of expressions in GiNaC. The three key areas of the library that would have
to be revised are:

1. The reference counting mechanism needs to implement proper locking to ensure
the atomicity of its operations. The state of the reference counters needs to be
consistent even when multiple threads add or remove references to the same object
simultaneously.

2. Similar locking needs to be provided for the places where GiNaC uses static variables
for caching data. For example, Bernoulli numbers (which are used in the calculation
of dilogarithms and the Zeta function) are computed using a recursion relation, so
to speed up the process all previously calculated numbers of the sequence are stored
in a table. Access to this table would need to be protected so that either one thread
is modifying it, or one or more threads are reading from it at the same time (single-
writer/multiple-reader locking).

3. The fusing of subexpressions during comparisons makes the use of C++ pointers or
references to algebraic objects that are part of an expression even more dangerous
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than in the single-threaded case, because these references could become invalid as
soon as another thread operates on an expression that happens to contain the same
object. But direct references to objects are required every time a class-specific
member function is to be invoked. For this purpose, GiNaC provides a template
function ex_to<T>(ex) returning a reference to the object of class T pointed to by
the specified expression.3 For instance, the numeric class has a method to_int()
that converts the stored number to the C++ int type, if possible:

1 ex e = ...
2 if (is_exactly_a<numeric>(e)) {
3 int i = ex_to<numeric>(e).to_int();
4 // do something with i
5 }

In a multithreaded application it might occur that the reference returned by
ex_to<numeric>() gets invalid before the invocation of to_int() because of the
numeric object getting deleted by another thread, thus leading to undefined behav-
ior. The only solution to this problem is to require that all references to algebraic
objects go through the reference-counting mechanism. ex_to<T>() would then have
to return a ptr<T> (see section 2.9.1) or a similar object.

Of course, all of this causes additional overhead, especially the locking required for the
reference counting. Whether it is still worthwhile to be able to use GiNaC in multithreaded
applications remains to be studied.

4.7 Polynomial Factorization

One important algebraic algorithm that is missing in GiNaC is the ability to decompose
arbitrary multivariate polynomials into a product of irreducible factors (i. e. polynomials
that can’t themselves be represented as a product of two or more polynomials).

Such a factorization not only often leads to a more compact and readable representation
of an expression. It is also a prerequisite for other important algorithms such as the
Risch algorithm for indefinite integration [GCL 1992, chapter 12] and partial fraction
decomposition of rational functions.

The standard algorithm for factoring polynomials with rational coefficients, used by many
modern computer algebra systems, is the one presented by Mark van Hoeij in [Hoei 2002].
It replaces the Berlekamp-Zassenhaus algorithm [Zass 1969] which for certain sets of input
polynomials has a time complexity that is exponential in the degree of the polynomials.

An implementation of polynomial factorization for GiNaC need not be done entirely from
scratch. The gTybalt system [Wein 2004b] provides a routine for factoring univariate
polynomials in GiNaC by passing them to the NTL library [Shou 2002] which implements
the van Hoeij method, converting the input and output polynomials to and from the
NTL representation in the process. Based on this routine, multivariate polynomials could
then be factored by projecting them to the univariate domain and reconstructing the
multivariate solution from the univariate one by Hensel lifting [GCL 1992, chapter 6].

3 Due to lack of run-time type checking in this function, it is effectively an empty operation.
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4.8 Algebraic Capabilities

Apart from polynomial factorization there are many other algebraic algorithms missing
from GiNaC 1.2 which are generally considered as belonging to the standard repertoire of
a computer algebra system. As they are not required by xloops we have not yet made any
efforts at implementing them.

These algorithms include:

• Limits
For analytic functions, limits at finite points like limx→0

sin x
x can be computed by

series expansion (which yields 1 + O(x2) in this case). But for other classes of
functions, or limits at infinity, different techniques are needed (see [Grun 1996] for
an overview).

• Symbolic summation and series
Except for dummy indices, GiNaC has no notion of symbolic sums such as

∑n−1
i=0 i

2 =
n3

3 −
n2

2 + n
6 . For definite sums where the (bounded) summation interval is explicitly

given, these could of course be summed explicitly although this may not be the
most efficient way of computing them. There exist algorithms for obtaining closed
expressions for various types of definite and indefinite sums [Gosp 1978] [PWZ 1997].

• Integration
It may appear absurd, but although GiNaC was created for developing a pro-
gram whose main purpose is the calculation of certain integral functions, it com-
pletely lacks any symbolic or numeric integration capabilities. For numeric inte-
grations, there are of course many established packages to choose from, such as
Vegas [Lepa 1978] and ParInt [DGBEG 1996], which are also used by xloops. The
complexity of symbolic integration algorithms ranges from trivial (polynomials) to
highly involved, depending on the nature of the integrand [GCL 1992, chapters 11
and 12]. GiNaC 1.3 will feature some basic symbolic and numeric integration meth-
ods.

• Gröbner bases
Gröbner bases (bases of ideals in polynomial rings) [GCL 1992, chapter 10] have
important uses in many symbolic algorithms including simplification of expressions
and solving systems of equations. Their integration in GiNaC has not yet been
investigated.

• Solving non-linear and differential equations
Presently, GiNaC can only solve linear systems of equations via its matrix class.
Solving differential equations symbolically is still a very active field of research but for
applications in physics, solutions obtained by numerical methods are often sufficient.
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5 xloops One-Loop Integral Functions

Den ernsten Leser bitten wir, die letzten Witzeleien dieses
Handbuchs zu entschuldigen und versichern ihm, daß es ab hier
nichts mehr zu lachen gibt.

From the CBM 8050 manual

The central part of xloops is a library of functions for calculating one-loop one-, two-, and
three-point, and two-loop two-point Feynman integrals.1 In this chapter, we will mainly
focus on the one-loop functions as they are the most complete. A full description of the
two-loop algorithms can be found in [Do 2003].

5.1 Loop Integrals

The expression obtained for the truncated Green function of a single Feynman diagram
with one or more closed loops in the Standard Model and related theories can be written
in the general form

Gtrunc(q1, q2, . . . ) =
∫
dDl1
(2π)D

∫
dDl2
(2π)D

· · · N(l1, l2, . . . , q1, q2, . . . )∏n
i Pi(Q2

i ,m
2
i )

(5.1)

with each
Pi(Q2

i ,m
2
i ) = Q2

i −m2
i + iρ (5.2)

corresponding to the propagator of a particle with mass mi on an internal line carrying
the momentum Qi which is a linear combination of the loop momenta lm and the external
momenta qn. Each UV-divergent loop integral is taken over D = 4 − 2ε space-time
dimensions (for finite integrals, one can set D = 4 before or after the integration).

The numerator N of the integrand consists of components and squares of internal and
external momenta, scalar products of momenta, numeric constants including coupling
strengths and mixing angles, and elements of special algebras like Dirac matrices. By
moving all objects that do not depend on the integration variables out of the integrals,
the expression can be decomposed into a linear combination of tensor integrals

Tµ1µ2...;ν1ν2...
(n) =

∫
dDl1

∫
dDl2 · · ·

lµ1
1 lµ2

1 . . . lν1
2 l

ν2
2 . . .∏n

i Pi(Q2
i ,m

2
i )

. (5.3)

The tensor degree of such an integral is defined as the total number of Lorentz indices
appearing in the numerator of the integrand.

1 One-loop four-point and two-loop three-point functions are still under development.
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The one-loop n-point tensor integrals

Tµ1µ2...
(n) =

∫
dDl

lµ1 lµ2 . . .∏n
i Pi(Q2

i ,m
2
i )
. (5.4)

have been solved in a general way by ’t Hooft, Passarino, and Veltman in the
1970s [PaVe 1979, tHVe 1979]. The conventional technique for evaluating these integrals
can be outlined as follows:

1. Due to the Lorentz covariance and symmetry of the integral with respect to the
tensor indices µk, eq. (5.4) can be decomposed into a linear combination of symmetric
tensors constructed from the Minkowski metric tensor ηµν and the external momenta
qµ
n. For example, the two-point integral of degree 2 with one external momentum qµ

is decomposed into
Tµ1µ2

(2) = ηµ1µ2T00 + qµ1qµ2T11. (5.5)

2. The coefficient functions of the tensor decomposition (Trs in the above example) are
further reduced to scalar integrals by expressing squares of l and scalar products of l
with the external momenta in terms of the propagators Pi, cancelling propagators in
the integrands as far as possible, and solving the resulting system of linear equations
for the coefficients.

3. The integrands of the remaining scalar integrals

S(n) =
∫
dDl

1∏n
i Pi

. (5.6)

are transformed into rational functions quadratic in l by Feynman parametrization

1∏n
i Pi

= (n− 1)!

1∫
0

dx1 . . . dxn
δ(1−

∑n
i xi)

(
∑n

i Pixi)
n (5.7)

and shifting the loop momentum in the denominator.

4. By performing the Wick rotation

l0 → il0 (5.8)

and changing the variable of the l0 integration
∞∫

−∞

dl0 → i

∞∫
−∞

dl0 (5.9)

the integrand is made spherically symmetric in Euclidean space and the integration
can be split into a one-dimensional integral over the radius l, and the constant
integral over the surface of the D-dimensional unit sphere:∫

dDl f(l2) =
2πD/2

Γ(D/2)

∞∫
0

dl lD−1f(l2). (5.10)
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5. The remaining integrations over l and the Feynman parameters xi can then be
performed analytically.

Trying to apply this method to the general case of two-loop tensor integrals one runs into
problems, especially for massive integrals with more than two external momenta:

• The tensor reduction in step 2 can’t be done completely since there are not enough
propagators available for rewriting all scalar products, leaving the linear system of
equations to be solved under-determined.

• Most integrations can no longer be performed analytically. For divergent integrals,
one has to find suitable subtraction terms to obtain numerically integrable, finite
integrals.

• The Feynman parametrization in step 3 introduces additional integration variables,
which reduces the performance and stability of the numeric integration.

In the light of these problems, several alternative approaches to solving two-loop (and
higher) integrals have been developed, such as partial integration [ChTk 1981] and asymp-
totic expansions in external momenta [DaT 1992].

The algorithms implemented in xloops don’t use Feynman parametrization but are instead
based on parallel/orthogonal decomposition of the loop integration space, discussed in the
next section. For reasons of consistency, the same method is also applied to the evaluation
of one-loop integrals (which appear in the reduction of two-loop functions).

5.2 Parallel/Orthogonal Decomposition

The idea of parallel/orthogonal (PO) decomposition (see [Coll 1984, chapter 4]) is to in-
crease the applicability of eq. (5.10) in the presence of external momenta in the integrand
by splitting the integration space into the D‖-dimensional parallel space spanned by the
external momenta, and the D⊥ = (D − D‖)-dimensional orthogonal space, the orthogo-
nal complement of the parallel space. Since the external momenta are four-dimensional,
the parallel space has integer dimension and can be chosen to be minimal by a suitable
Lorentz transformation, with the minimum dimension depending on the number of linearly
independent external momenta.

Splitting all loop momenta

l = lµ = (l0, . . . , lD‖−1, l⊥) (5.11)

and external momenta
q = qµ = (q0, . . . , qD‖−1,0 ) (5.12)

into their parallel and orthogonal components, scalar products between the momenta
can be written explicitly in terms of individual parallel components and orthogonal loop
momentum vectors:

l2 = l20 − · · · − l2D‖−1 − l2⊥, (5.13)

l · q = l0 q0 − · · · − lD‖−1 qD‖−1. (5.14)
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5 xloops One-Loop Integral Functions

The integrand of a loop function is then spherically symmetric with respect to the (Eu-
clidean) vector l⊥, and eq. (5.10) can be applied to it, yielding2

∫
dDl f(l) =

2πD⊥/2

Γ(D⊥/2)

∫
dD‖ l‖

∞∫
0

dl⊥l
D⊥−1
⊥ f(l) (5.15)

This reduces the set of integration variables to the parallel components of the loop mo-
menta, the absolute values of the orthogonal components, and (for diagrams with more
than one loop) the angles between the loop momenta.

For example, in a two-point diagram there is only one independent external momentum
q due to momentum conservation. Assuming that q is time-like (q2 > 0) one can always
choose a frame of reference in which

qµ = (q0,0 ), (5.16)

corresponding to a one-dimensional parallel space. Any loop momentum l can then be
written as

lµ =
l0 q0
q2

qµ + lµ⊥. (5.17)

Likewise, for the three-point case with two external momenta q1, q2 we can choose a two-
dimensional parallel space (assuming that q1 is time-like) with

qµ
1 = (q10, 0,0 ),
qµ
2 = (q20, q21,0 ).

(5.18)

The loop momentum is then

lµ =
l0 q10

q21
qµ
1 +

l0 q20 − l1 q21
q22

qµ
2 + lµ⊥. (5.19)

By inserting (5.17) or (5.19) into (5.4) it is easy to see that after performing the Lorentz
decomposition of step 1 above, any one-loop tensor integral can be written as a linear
combination of PO-decomposed one-loop tensor integrals of the form

T
p0...pD‖−1p⊥

(n)t1...tn
=
∫
dDl

lp0
0 . . . l

pD‖−1

D‖−1 l
p⊥
⊥∏n

i P
ti
i

, (5.20)

with non-negative integer powers pj of the loop components. Here we also allow arbitrary
positive integer powers ti of the propagators Pi, which appear in the evaluation of two-loop
functions and the tensor reduction of one-loop functions.

Note that (5.20) vanishes for odd p⊥ because the denominator of the integrand is symmetric
in l⊥.

2 Equation (5.15) can be considered the definition of D-dimensional integration.
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5.3 Tensor Reduction

All PO-decomposed tensor integrals (5.20) can be reduced to scalar integrals of the form

S(n)t1...tn =
∫
dDl

1∏n
i P

ti
i

(5.21)

by expressing the loop momentum components in terms of the propagators in a way similar
to step 2 of the conventional method.

5.3.1 One-Loop Two-Point Integrals

For the two-point tensor integral with one time-like external momentum q (one parallel
dimension) one can choose the internal momenta so the integral takes the form

T p0p⊥
(2)t1t2

=
∫
dDl

lp0
0 l

p⊥
⊥

P t1
1 P

t2
2

(5.22)

with

P1 = (l0 + q0)2 − l2⊥ −m2
1 + iρ,

P2 = l20 − l2⊥ −m2
2 + iρ.

(5.23)

In the general case where q0 6= 0 one can rewrite the numerator of the integrand in terms
of the propagators by recursively substituting

l0 =
1

2q0
(P1 − P2 − q20 +m2

1 −m2
2),

l2⊥ = l20 − P2 −m2
2 + iρ,

(5.24)

converting the integral into a sum of the form

T p0p⊥
(2)t1t2

=
p0+p⊥∑
i1,i2

Ci1i2

∫
dDl P i1−t1

1 P i2−t2
2

=
p0+p⊥∑
i1,i2

Ci1i2

∫
dDl Pn1

1 Pn2
2

(5.25)

with coefficients Ci1i2 that can be calculated explicitly as functions of q, m1, and m2,
without solving linear equations.

The sum in (5.25) contains three types of integrals, depending on the signs of n1 = i1− t1
and n2 = i2 − t2:

1. n1 ≥ 0 and n2 ≥ 0: ∫
dDl Pn1

1 Pn2
2 = 0

because
∫
dDl (l2)α = 0 for any value of α in dimensional regularization, and because

of the linearity of the D-dimensional integral.
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5 xloops One-Loop Integral Functions

2. n1 < 0 and n2 < 0: ∫
dDl

1
P−n1

1 P−n2
2

This is a scalar two-point function of the form (5.21).

3. n1 ≥ 0 and n2 < 0, or n1 < 0 and n2 ≥ 0:∫
dDl

Pn1
1

P−n2
2

or
∫
dDl

Pn2
2

P−n1
1

These are one-point functions which can be decomposed into integrals of the type

T p
(1)t =

∫
dDl

(l2)
p
2

(l2 −m2 + iρ)t
(5.26)

which are evaluated explicitly (they could in turn be reduced to scalar one-point
functions but it is more efficient to calculate them directly).

In the case q0 = 0, the propagators (5.23) take the form

P1 = l20 − l2⊥ −m2
1 + iρ,

P2 = l20 − l2⊥ −m2
2 + iρ.

(5.27)

For m1 = m2 the propagators are equal and (5.22) takes the form of a one-point function
with one parallel dimension T p0p⊥

(1)t1+t2
.

For m1 6= m2 one can perform a partial fraction decomposition in the masses to obtain

T p0p⊥
(2)t1t2

∣∣∣
q0=0

=
1

(t1 − 1)!
dt1−1

d(m2
1)t1−1

(
1

(m2
1 −m2

2)t2

∫
dDl

lp0
0 l

p⊥
⊥

P1

)
+

1
(t2 − 1)!

dt2−1

d(m2
2)t2−1

(
1

(m2
2 −m2

1)t1

∫
dDl

lp0
0 l

p⊥
⊥

P2

) (5.28)

which again is a combination of one-point functions.

If the external momentum q is not time-like, it can no longer be brought into the
form (5.16). It is, however, always possible to find a Lorentz transformation to a two-
dimensional parallel space in which q takes the form

qµ = (q0, q1,0 ). (5.29)

As described in [BaDo 2002], the corresponding integral function

T p0p1p⊥
(2)t1t2

=
∫
dDl

lp0
0 l

p1
1 l

p⊥
⊥

P t1
1 P

t2
2

(5.30)

can be reduced to scalar functions by our method only for certain configurations of the
internal momenta. It can, however, be calculated for all cases by performing suitable
Lorentz transformations.

The two-point function with two parallel components (5.30) also appears during the re-
duction of three-point integrals.
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5.3.2 One-Loop Three-Point Integrals

After choosing the specific frame of reference (5.18) and a two-dimensional parallel space,
the one-loop three-point integral reads

T p0p1p⊥
(3)t1t2t3

=
∫
dDl

lp0
0 l

p1
1 l

p⊥
⊥

P t1
1 P

t2
2 P

t3
3

(5.31)

with

P1 = l20 − l21 − l2⊥ + 2l0q10 + q210 −m2
1 + iρ,

P2 = l20 − l21 − l2⊥ + 2l0q20 − 2l1q21 + q220 − q221 −m2
2 + iρ,

P3 = l20 − l21 − l2⊥ −m2
3 + iρ.

(5.32)

Applying the same method as in the two-point case, one finds the substitutions

l0 =
1

2q10
(P1 − P3 − q210 +m2

1 −m2
3),

l1 =
1

2q21
(P3 − P2 + 2q20l0 −m2

2 +m2
3 + q220 − q221),

l2⊥ = l20 − l21 − P3 −m2
3 + iρ,

(5.33)

which, in the general case q10 6= 0, q21 6= 0, converts the integral into a sum of the form

T p0p1p⊥
(3)t1t2t3

=
p0+p1+p⊥∑

i1,i2,i3

Ci1i2i3

∫
dDl P i1−t1

1 P i2−t2
2 P i3−t3

3

=
p0+p1+p⊥∑

i1,i2,i3

Ci1i2i3

∫
dDl Pn1

1 Pn2
2 Pn3

3 .

(5.34)

This time, there appear four types of integrals depending on the powers of the propagators
in the integrands:

1. Integrals with entirely positive powers that vanish.

2. Scalar three-point integrals of the form∫
dDl

1
P−n1

1 P−n2
2 P−n3

3

.

3. Two-point integrals of the form ∫
dDl

PnA
A

P−nB
B P−nC

C

.

4. One-point integrals of the form ∫
dDl

PnA
A PnB

B

P−nC
C

.
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The resulting one- and two-point integrals (types 3 and 4) are in turn treated as before.

In the case q10 = 0, the propagators (5.32) become

P1 = l20 − l21 − l2⊥ −m2
1 + iρ,

P2 = l20 − l21 − l2⊥ + 2l0q20 − 2l1q21 + q220 − q221 −m2
2 + iρ,

P3 = l20 − l21 − l2⊥ −m2
3 + iρ.

(5.35)

For m1 = m3 the first and third propagators are equal and (5.31) becomes a two-point
function with two parallel dimensions T p0p1p⊥

(2)t1+t3,t2
.

For m1 6= m3 one can again perform a partial fraction decomposition to reduce the integral
to a sum of two-point functions:

T p0p1p⊥
(3)t1t2t3

∣∣∣
q10=0

=
3∏

i=1

(
1

(ti − 1)!
dti−1

d(m2
i )ti−1

)[
1

m2
1 −m2

3

(∫
dDl

lp0
0 l

p1
1 l

p⊥
⊥

P1P2
−
∫
dDl

lp0
0 l

p1
1 l

p⊥
⊥

P2P3

)]
(5.36)

If q21 = 0, the external momenta are qµ
1 = (q10,0 ), qµ

2 = (q20,0 ) and the parallel space is
thus only one-dimensional. Defining the new orthogonal loop momentum component as
l′2⊥ = l21 + l2⊥ the integral becomes

T p0,p1+p⊥
(3)t1t2t3

=
∫
dDl

lp0
0 l

′p1+p⊥
⊥

P t1
1 P

t2
2 P

t3
3

(5.37)

with the propagators

P1 = (l0 + q10)2 − l′2⊥ −m2
1 + iρ,

P2 = (l0 + q20)2 − l′2⊥ −m2
2 + iρ,

P3 = l20 − l′2⊥ −m2
3 + iρ.

(5.38)

This integral can be reduced to a set of one-, two-, and scalar three-point functions with
substitutions similar to those of the two-point case:

l0 =
1

2q10
(P1 − P3 − q210 +m2

1 −m2
3),

l′2⊥ = l20 − P3 −m2
3 + iρ.

(5.39)

With the exception of the two-point function with a two-dimensional parallel space (5.30),
all other two- and three-point tensor integrals can be reduced to linear combinations of
scalar functions for which explicit analytical results are well-known.

The same approach as outlined here for the one-loop integrals can also be applied to reduce
two-loop functions to a set of basic (but not necessarily scalar) integrals, as described
in [Do 2003, chapter 4].
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5.4 Evaluation of the Basic One-Loop Integrals

The output of the one-loop tensor reduction algorithm of the previous section is an ex-
pression containing the following five basic integrals:

T p
(1)t =

∫
dDl

(l2)
p
2

P t
,

T p0p⊥
(1)t =

∫
dDl

lp0
0 l

p⊥
⊥

P t
,

S(2)t1t2 =
∫
dDl

1
P t1

1 P
t2
2

,

T p0p1p⊥
(2)t1t2

=
∫
dDl

lp0
0 l

p1
1 l

p⊥
⊥

P t1
1 P

t2
2

,

S(3)t1t2t3 =
∫
dDl

1
P t1

1 P
t2
2 P

t3
3

,

(5.40)

which are the tensor one-point functions with zero and one parallel dimension, the scalar
two-point function with one parallel dimension, the tensor two-point function with two
parallel dimensions, and the scalar three-point function, respectively.

xloops is able to perform the ε-expansion of these integrals by means of R func-
tions [BFK 1994]. The one-point and the scalar two- and three-point functions have been
reimplemented using GiNaC in [Baue 2000], while the two-point function with two par-
allel dimensions has been implemented in [Do 2003]. The calculation methods are based
on [Brüc 1997].

The result of the expansion is a Laurent series (a GiNaC pseries object) with coefficients
containing analytical functions like logarithms and dilogarithms.

5.5 The Hierarchy of One-Loop Integral Functions in xloops

The one-loop integral functions in xloops comprise of both C++ and symbolic GiNaC func-
tions which are arranged in several “levels” (see fig. 5.1). They do not form a hierarchy by
means of any inheritance relationships but by the higher level functions being expressible
in terms of the lower ones.

The main difference between these functions is the form of the numerator of the integrand.
We will explain them in the following sections, starting at the bottom of the hierarchy.

Appendix C gives the relationship of the xloops integral functions to the ones commonly
used in the literature (A0, B0 etc.).

5.5.1 The Scalar Functions ScalarNPt()

The scalar functions Scalar1Pt(), Scalar2Pt(), and Scalar3Pt() are symbolic functions
which can appear in GiNaC expressions. They represent scalar integrals of the form (5.21)
and are defined as follows:
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Figure 5.1: The hierarchy of one-loop integral functions in xloops. The functions in the upper
groups can in general be represented in terms of those in the lower groups.

One-Point Function

l,m

Scalar1Pt(m, ρ, ε) := S(1)1 =
∫
dDl

1
l2 −m2 + iρ

(5.41)

Two-Point Function

q

l + q,m1

l,m2

q

Scalar2Pt(q0,m1,m2, t1, t2, ρ, ε) := S(2)t1t2

=
∫
dDl

1
((l + q)2 −m2

1 + iρ)t1(l2 −m2
2 + iρ)t2

(5.42)

with
q = (q0,0 )
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Three-Point Function

q1

l + q1,m1

l + q2,m2

q1 − q2

l,m3

q2

Scalar3Pt(q10, q20, q21,m1,m2,m3, t1, t2, t3, ρ, ε) := S(3)t1t2t3

=
∫
dDl

1
((l + q1)2 −m2

1 + iρ)t1((l + q2)2 −m2
2 + iρ)t2(l2 −m2

3 + iρ)t3
(5.43)

with
q1 = (q10, 0,0 ),
q2 = (q20, q21,0 )

5.5.2 The PO-decomposed Tensor Functions OneLoopNPt()

The three functions OneLoop1Pt(), OneLoop2Pt(), and OneLoop3Pt() represent PO-
decomposed tensor integrals of the form (5.20) in their respective minimal parallel spaces.
The additional functions SOneLoop1Pt() and S322Pt() with a higher parallel space appear
in the output of the tensor reduction algorithm described in section 5.3. These functions
are also implemented as symbolic GiNaC functions.

The C++ function

ex tensor_reduction(const ex & e, const ex & eps)

can be called to explicitly reduce all tensor integral functions appearing in the given
GiNaC expression e to scalar functions as far as possible (with the exception of one-
point functions). This is mainly useful for testing and instructional purposes because the
reduction is also performed automatically during the ε-expansion of the tensor functions.

One-Point Functions

OneLoop1Pt(p,m, t, ρ, ε) := T p
(1)t =

∫
dDl

(l2)
p
2

(l2 −m2 + iρ)t
(5.44)

SOneLoop1Pt(p0, p⊥,m, t, ρ, ε) := T p0p⊥
(1)t =

∫
dDl

lp0
0 l

p⊥
⊥

(l2 −m2 + iρ)t
(5.45)

Two-Point Functions

OneLoop2Pt(p0, p⊥, q0,m1,m2, t1, t2, ρ, ε) := T p0p⊥
(2)t1t2

=
∫
dDl

lp0
0 l

p⊥
⊥

((l + q)2 −m2
1 + iρ)t1(l2 −m2

2 + iρ)t2
(5.46)
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with
q = (q0,0 ) (5.47)

S322Pt(p0, p1, p⊥, q10, q20, q21,m1,m2, t1, t2, ρ, ε) := T p0p1p⊥
(2)t1t2

=
∫
dDl

lp0
0 l

p1
1 l

p⊥
⊥

((l + q1)2 −m2
1 + iρ)t1((l + q2)2 −m2

2 + iρ)t2
(5.48)

with

q1 = (q10, 0,0 ),
q2 = (q20, q21,0 )

Three-Point Function

OneLoop3Pt(p0, p1, p⊥, q10, q20, q21,m1,m2,m3, t1, t2, t3, ρ, ε) := T p0p1p⊥
(3)t1t2t3

=
∫
dDl

lp0
0 l

p1
1 l

p⊥
⊥

((l + q1)2 −m2
1 + iρ)t1((l + q2)2 −m2

2 + iρ)t2(l2 −m2
3 + iρ)t3

(5.49)

with

q1 = (q10, 0,0 ),
q2 = (q20, q21,0 )

5.5.3 The Lorentz Tensor Functions OneLoopTensNPt()

The C++ functions OneLoopTens1Pt(), OneLoopTens2Pt(), and OneLoopTens3Pt() rep-
resent conventional Lorentz tensor integrals (5.4) with loop momentum Lorentz indices
µi. The external momenta are, however, still kept in a PO-decomposed form with explicit
components.

One-Point Function

OneLoopTens1Pt(n,m, t, ρ, ε, C, {µ1 . . . µn}) := Tµ1...µn

(1)t =
∫
dDl

lµ1 . . . lµn

(l2 −m2 + iρ)t
(5.50)

Two-Point Function

OneLoopTens2Pt(n, q,m1,m2, t1, t2, ρ, ε, C, {µ1 . . . µn}) := Tµ1...µn

(2)t1t2

=
∫
dDl

lµ1 . . . lµn

((l + q)2 −m2
1 + iρ)t1(l2 −m2

2 + iρ)t2
(5.51)

Three-Point Function

OneLoopTens3Pt(n, q1, q2, q20, q21,m1,m2, t1, t2, t3, ρ, ε, C, {µ1 . . . µn}) := Tµ1...µn

(3)t1t2t3

=
∫
dDl

lµ1 . . . lµn

((l + q1)2 −m2
1 + iρ)t1((l + q2)2 −m2

2 + iρ)t2(l2 −m2
3 + iρ)t3

(5.52)
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The Lorentz tensor functions return two items: The first is the Lorentz decomposition
of the tensor as a GiNaC expression in a form similar to (5.5) with symbolic coefficients.
The second is a list C of definitions for these coefficients in terms of the PO-decomposed
tensor integral functions OneLoopNPt(). This list can be directly passed to the subs()
method to replace the coefficients in the returned Lorentz decomposition by their actual
values.

To calculate the coefficients, xloops first constructs the most general symmetric tensor
from combinations of the metric and the external momenta. Then it extracts all possible
individual components of the tensor in the PO-decomposed space-time. The resulting
linear system of equations can be solved iteratively because the external momenta have
been chosen so their higher components vanish.

5.5.4 The Loop Diagram Functions Diagram1LoopNPt()

The C++ functions Diagram1Loop2Pt() and Diagram1Loop3Pt() are an attempt at a
high-level frontend for the xloops one-loop library and an interface between it and the
graph generator. These functions calculate a one-loop truncated Green function of the
form (5.1) with an arbitrary numerator N that may contain scalar terms, indexed loop
momenta (lµ), slashed loop momenta (l/), and scalar products of loop and/or external
momenta (l2, l · qi), calling the corresponding OneLoopTensNPt() functions for each case.
They also post-process the result to bring it into an easily readable form.

The numerator N will eventually be assembled automatically via insertion of the Feynman
rules in the output of the xloops graph generator. Currently this has to be done by hand,
however.

Two-Point Function

Diagram1Loop2Pt(N, q,m1,m2, l)

= µ4−D

∫
dDl

(2π)D

N

((l + q)2 −m2
1 + iρ)(l2 −m2

2 + iρ)
(5.53)

Three-Point Function

Diagram1Loop3Pt(N, q1, q2,m1,m2,m3, l)

= µ4−D

∫
dDl

(2π)D

N

((l + q1)2 −m2
1 + iρ)((l + q2)2 −m2

2 + iρ)(l2 −m2
3 + iρ)

(5.54)

To keep intermediate expressions compact, the loop diagram functions store them as ex-
pression pairs (two-element GiNaC lists) {c, n(l)} := c · n(l) with c being independent of
the loop momentum l. Results are also returned in this format. For example, the expres-
sion iel/−4iem1 may be represented as the sum {ie, l/}+{−4iem1, 1} or as the single pair
{ie, l/− 4m1}.
Diagram1Loop2Pt() and Diagram1Loop3Pt() perform the following steps:
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1. The numerator N is converted to a {c, n} pair. The overall factor µ4−D

(2π)D is also
multiplied into c.

2. simplify_indexed() (see section 3.3) is run over n to perform Lorentz contractions
and to bring all scalar products into a canonical form.

3. n, which in general is a sum, is split into terms, with each term (plus the common
factor c) being converted to an individual {c, n} pair.

4. All occurrences of the loop momentum l in each n are rewritten with explicit (tem-
porary) indices (for example l/ → lµγµ, l2 → lµlνηµν), to bring them into a form
suitable for calling the tensor integral functions.

5. The appropriate OneLoopTensNPt() or ScalarNPt() function is called for each
term.

6. Factors of 1
D⊥

appearing in the results are expanded up to order O(ε0).

7. simplify_indexed() is run again to contract indices of the external momenta and
the metric tensor.

8. The terms are added up to a single {c, n} pair. n is collected in terms of the xloops
scalar and tensor integral functions.

9. The Lorentz decomposition and contractions may result in factors containing D =
4− 2ε in the numerator which cancel poles in the integral functions. Such cancella-
tions are detected and calculated explicitly.

10. Any remaining common factor in the result is again divided out and moved to c.

11. The coefficients of the loop integral functions in n are brought into a normalized
rational form by invoking normal().

12. The final {c, n} pair is returned as the result of the function.

We will give an example for the use and the internal operation of the loop diagram functions
in the next section.

The Diagram1LoopNPt() functions are not yet completely general as they still assume the
external momenta to be in a PO-decomposed form with a minimal parallel space. This
especially limits their usefulness for three-point calculations. Expressing the results in
terms of invariants will be the subject of future work.

5.6 Sample Calculations

We conclude this chapter with two examples for one-loop calculations which, except for
the generation of the contributing graphs and the insertion of the Feynman rules, can be
performed in a fully automated manner by xloops.

For the used Feynman rules and other conventions like the definition of the proper self-
energy we follow [BDJ 2001, appendix A].
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5.6.1 QED Electron Self-Energy

The lowest contribution to the electron self-energy Σ(q) in QED results from the diagram

Σ(q) = −i


ψ(q)

ψ(l + q)

A(l)

ψ(q)

µ ν



(5.55)

and can be decomposed into a vector and a scalar part

Σ(q) = ΣV (q2)q/+ ΣS(q2)m1. (5.56)

Both parts are computed in a straightforward way by the following program fragment:

1 // definitions of momenta, electron charge and mass, and indices
2 symbol l("l"), q("q"), e("e"), m("m");
3 varidx mu(symbol("mu"), D), nu(symbol("nu"), D);
4

5 // construct numerator of integral from Feynman rules
6 ex N = -I;
7 N *= I * e * dirac_gamma(nu.toggle_variance());
8 N *= I * (dirac_slash(l, D) + dirac_slash(q, 4) + dirac_ONE()*m);
9 N *= I * e * dirac_gamma(mu.toggle_variance());

10 N *= -I * lorentz_g(mu, nu);
11

12 // call two-point diagram function
13 ex dia = Diagram1Loop2Pt(N, q, m, 0, l);
14

15 // extract parts
16 ex Sigma_V = dia[0] * dia[1].expand().coeff(dirac_slash(q, 4));
17 ex Sigma_S = dia[0] * dia[1].expand().coeff(dirac_ONE()).coeff(m);

which yields the well-known result (cf. [BDJ 2001, eq. (2.5.97)])

ΣV = − e2

16π4
(2πµ)2ε

(
2iScalar2Pt(q,m, 0) + 2i

OneLoop2Pt(1, 0, q,m, 0)√
q2

+ π2

)

= − α

4π

(
A0(m2)− (q2 +m2)B0(q2;m, 0)

q2
+ 1
)
,

ΣS =
e2

16π4
(2πµ)2ε

(
4iScalar2Pt(q,m, 0) + 2π2

)
= − α

4π
(
4B0(q2;m, 0)− 2

)
,

in the limit ε→ 0.
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5 xloops One-Loop Integral Functions

The Diagram1Loop2Pt() function first (step 1) separates the constant factor c =
e2

16π4 (2πµ)2ε from the numerator which then reads

(γν(il/+ iq/+ im1)γµ)ηµν .

Performing the index simplification and expansion (steps 2 and 3) results in the five terms

imD1+ 2iq/− iDq/− iDl/+ 2il/.

The first three terms correspond to scalar integrals which are directly converted to
Scalar2Pt() functions. The two remaining terms are integrals proportional to l/ for which
invoking OneLoopTens2Pt() (steps 4–7) returns the result q/√

q2
OneLoop2Pt(1, 0, q,m, 0).

The factor D arises from the contractions γµl/γµ and γµq/γµ. After recombining the five
individual terms, the total O(ε1) term is calculated as

ε

(
2i

q/√
q2
OneLoop2Pt(1, 0, q,m, 0) + 2i(q/−m1)Scalar2Pt(q,m, 0)

)
= π2(2m1− q/) +O(ε1)

by series expansion of the loop integral functions up to order O(ε−1) (step 9). Inserting
this and omitting higher-order terms gives the final result

Σ =
e2

16π4
(2πµ)2ε

(
2i(2m1− q/)Scalar2Pt(q,m, 0)

− 2i
q/√
q2
OneLoop2Pt(1, 0, q,m, 0) + π2(2m1− q/)

)
from which the form factors can be directly extracted as shown in the program above.

5.6.2 Non-Diagonal Contributions to the Quark Self-Energy

Due to mixing, the proper self-energy of quarks contains terms which are non-diagonal
in a basis of mass eigenstates (physical fields), and which arise from diagrams containing
virtual charged bosons [DeSa 1990].

In the Standard Model, there are two contributions, one from the W boson exchange

Σ(1)
ij = −i


di(q)

ul(k + q)

W (k)

dj(q)

µ ν



, (5.57)
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and one from the charged Higgs exchange

Σ(2)
ij = −i


di(q)

ul(k + q)

φ(k)

dj(q)



, (5.58)

where di and ul indicate down- and up-type quark fields with flavor indices i and l,
respectively.

The total non-diagonal self-energy Σ′ij resolves into left-handed, right-handed, and scalar
parts:3

Σ′ij = Σ(1)
ij + Σ(2)

ij = ΣL
ijq/γL + ΣR

ijq/γR + ΣS
ij(mjγL +miγR)

These parts can be computed with a program similar to the one given above for the
electron self-energy. In an Rξ gauge with an unspecified gauge parameter ξ, the result is

ΣL
ij =

ie2

32π4s2w
V +

jl Vli (2πµ)2ε·

·

[
iπ2 +

1√
q2

(
2 OneLoop2Pt(1, 0, q,MW ,ml) +

m2
l

M2
W

OneLoop2Pt(1, 0, q,
√
ξMW ,ml)

)
+

1
M2

W

(
− OneLoop2Pt(2, 0, q,ml,MW ) + OneLoop2Pt(2, 0, q,ml,

√
ξMW )

− OneLoop2Pt(0, 2.q,ml,MW ) + OneLoop2Pt(0, 2, q,ml,
√
ξMW )

+
1√
q2
OneLoop2Pt(1, 2, q,ml,MW )− 1√

q2
OneLoop2Pt(1, 2, q,ml,

√
ξMW )

− 1√
q2
OneLoop2Pt(3, 0, q,ml,MW ) +

1√
q2
OneLoop2Pt(3, 0, q,ml,

√
ξMW )

)]
,

ΣR
ij =

ie2

32π4s2w
V +

jl Vli (2πµ)2ε mimj

M2
W

1√
q2
OneLoop2Pt(1, 0, q,

√
ξMW ,ml),

ΣS
ij =

ie2

32π4s2w
V +

jl Vli (2πµ)2ε m2
l

M2
W

Scalar2Pt(q,ml,
√
ξMW ),

(5.59)

with sw being the sine of the Weinberg angle, Vij the quark mixing matrix, and V +
ij its

adjoint.
3 The W contribution only has a left-handed part.
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5 xloops One-Loop Integral Functions

In the Feynman gauge (ξ = 1) this simplifies to

ΣL
ij =

ie2

32π4s2w
V +

jl Vli (2πµ)2ε·

·

[
iπ2 +

(
2 +

m2
l

M2
W

)
1√
q2
OneLoop2Pt(1, 0, q,MW ,ml)

]

= − α

8πs2w
V +

jl Vli

[
1 +

(
2 +

m2
l

M2
W

)
B1(q2;ml,MW )

]
,

ΣR
ij =

ie2

32π4s2w
V +

jl Vli (2πµ)2ε mimj

M2
W

1√
q2
OneLoop2Pt(1, 0, q,MW ,ml)

= − α

8πs2w
V +

jl Vli
mimj

M2
W

B1(q2;ml,MW ),

ΣS
ij =

ie2

32π4s2w
V +

jl Vli (2πµ)2ε m2
l

M2
W

Scalar2Pt(q,ml,MW )

= − α

8πs2w
V +

jl Vli
m2

l

M2
W

B0(q2;ml,MW ),

(5.60)

in accordance with the analytical results of [DeSa 1990, eq. (3.8)] for a single intermediate
quark flavor l. Explicit expressions for the divergent and finite parts of the result can be
obtained by invoking series() and extracting the coefficients of ε−1 and ε0.

These three functions and their derivatives enter into the calculation of the wave-function
renormalization constants of the quark fields (for non-vanishing neutrino masses this ex-
tends to all fermions).
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Help, Mr. Wizard!

Tooter Turtle

The first public release of GiNaC in 1999 filled the demand for an extensible symbolic
manipulation engine that was both available in source code form, as well as comparable
in performance to established proprietary systems that often bind the user by highly
restrictive licenses. Since that time, a number of other programs and libraries related
to computer algebra such as Axiom, NTL, Pari, and Singular have been (re-)released
under the Open Source model.1

The implementation of GiNaC as a C++ library certainly sets it apart from other algebraic
systems. Our results prove that a highly efficient symbolic manipulator can be designed in
an object-oriented fashion, and that having a very fine granularity of objects is also feasible.
The loss in raw speed due to this approach is clearly made up for by the flexibility gained
on the user side. To extend the library one can simply add one’s own customized classes
to it. In traditional systems, the user first has to work out a suitable data representation
in terms of the types and structures offered by the system.

In earlier versions, the design of GiNaC was not as consistent as it could or should have
been. Its original conception as a “Maple emulator” led to some compromises such as the
lack of iterators that have been largely amended as a part of this work. There are more
opportunities left for additional future design adjustments. For example, GiNaC still uses
lists in some places where vectors or sets would be more appropriate. Ideas for possible
performance and feature enhancements of GiNaC have been discussed in chapter 4.

The xloops-related parts of this work consist of a new implementation, based on GiNaC, of
functions that already existed in the original xloops as well as the addition of supplementary
functions such as Diagram1LoopNPt() which belong to the interface between the library
of integral functions and the graph generator. There are also many new modules for xloops
under development or nearing completion. These include the mentioned graph generator,
routines for a set of two-loop three-point topologies, and the one-loop four-point functions
which are presently undergoing testing.

Higher-order loop integrals as well as the complete automatization of the entire computa-
tion chain from the description of processes up to the calculation of cross-sections will be
future challenges. One option would be to delegate some of these tasks by interoperation
with other existing program packages such as CompHEP.

Eventually, the problem of an appropriate user interface for xloops will have to be tack-
led. While controlling the system from C++ offers the maximum amount of power and
flexibility, it may be too cumbersome for the casual user. Another major problem is the

1 According to personal communication with Jos Vermaseren, this is also planned for FORM.
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comprehensible presentation of results, since the symbolic expressions returned by the
current xloops are often far from being in the most “simple” (or intuitive) form. This is,
however, an issue that GiNaC shares with every other computerized algebra system.
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A Notation

To document the relationships between classes and objects we use a diagrammatic rep-
resentation based on a simplified version of the Unified Modeling Language (UML)
[Rati 1997] (see also appendix B of [GHJV 1995]).

A.1 Class Diagrams

A class diagram (fig. A.1) illustrates the relationships between classes. Each class is
represented by a box with the class name at the top. Below the name, the class attributes
and operations (if any) are listed. As in C++ , the types of attributes, operations, and
parameters are put before their respective identifier. Type names and method parameters
are usually omitted if they are not relevant. Names of abstract classes or operations are
set in an oblique typeface. Different kinds of arrows indicate inheritance, aggregation, and
association between classes. Dog-eared boxes contain annotations on the implementation
of operations in plain text or pseudocode.

A.2 Object Diagrams

An object diagram (fig. A.2) shows instances of classes in memory. Each rounded box
represents one object, with its class name at the top and the values of its attributes below.
Arrows point to aggregated or referenced objects.

A.3 Interaction Diagrams

A sequence of events such as object construction/deletion and method invocations are
recorded in an interaction diagram (fig. A.3). To every participating object there belongs
one lifeline on which time flows from top to bottom. A dashed lifeline indicates that the
object does not yet or no longer exist at that point. The scope of a request is represented
by a vertical box, and solid arrows show the invocation of methods. A request for the
construction of an object is indicated by a dashed arrow.
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Figure A.1: Class diagram

Figure A.2: Object diagram

Figure A.3: Interaction diagram
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B Simplification Rules

B.1 Predefined Tensors

The following simplification rules are implemented by the predefined tensor classes listed
in section 3.2.2. Only rules specific to the respective tensors are given. Generic transfor-
mation rules implemented by GiNaC such as the canonicalization of summation indices
(see section 3.3) are omitted.

In this section, we use small Roman letters to denote arbitrary indices (class idx), Greek
letters for indices with variance (class varidx), and capital Roman letters for spinor indices
(class spinidx). Values in square brackets [ ] indicate index dimensions.

B.1.1 The Kronecker delta δij (tensdelta)

The Kronecker delta δij is defined by

δij =

{
0 i 6= j

1 i = j
(B.1)

Rules implemented in tensdelta::eval_indexed():

• δi[Di]j[Dj ] → δi[D]j[D] with D = min(Di, Dj) (δij is made square)

• δi[D]i[D] → D (trace of identity matrix)

• i, j ∈ Z⇒ δij →

{
0 i 6= j

1 i = j
(explicit components)

Rules implemented in tensdelta::contract_with():

• δij[Dδ ]Xj[DX ] → Xi[D] with D = min(Dδ, DX)

B.1.2 The general metric tensor gµν (tensmetric)

The tensmetric class represents a symmetric, regular metric tensor that can be used to
raise and lower tensor indices.

Rules implemented in tensmetric::eval_indexed():

• gµ[Dµ]ν[Dν ] → gµ[D]ν[D] with D = min(Dµ, Dν) (gµν is made square)
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• gµ
ν → δµ

ν , gµ
ν → δµ

ν

Rules implemented in tensmetric::contract_with():

• gµν[Dg ]X
ν[DX ] → Xµ[D] with D = min(Dg, DX), except when X ≡ δ, so gµνδ

ν
ρ

produces gµρ, not δµρ

B.1.3 The Minkowski metric tensor ηµν (minkmetric)

The Minkowski metric tensor inherits the simplification rules of the tensmetric class,
plus the following matrix representations:

ηµν =


1 0 0 · · ·
0 −1 0
0 0 −1
...

. . .

 (negative signature) (B.2)

ηµν =


−1 0 0 · · ·
0 1 0
0 0 1
...

. . .

 (positive signature) (B.3)

which are inserted when both indices have nonnegative integer values.

B.1.4 The spinor metric tensor εAB (spinmetric)

The antisymmetric spinor metric tensor εAB defines a Lorentz-invariant spinor product
in the Weyl-van-der-Waerden formalism [Ditt 1998] and can be used to raise and lower
spinor indices. Its matrix representation is

εAB = εȦḂ = εAB = εȦḂ = iσ2 =
(

0 1
−1 0

)
. (B.4)

Rules implemented in spinmetric::eval_indexed():

• εAA → 0, εAA → 0 (contractions vanish)

• A,B ∈ {0, 1} ⇒ εAB →
(

0 1
−1 0

)
AB

(explicit components)

Rules implemented in spinmetric::contract_with():

• εABε
AC → δB

C (other contractions follow from the antisymmetry of ε)

• εABXB → XA, εABX
B → −XA, except when X ≡ δ
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B.1.5 The Levi-Civita tensor ε (tensepsilon)

The tensor εijk... can be defined by

επ(0)π(1)π(2)... = sgnπ (B.5)

for any permutation π of index values. Components with one or more equal index values
are zero. The number of indices must be equal to the index dimension (the cardinality of
the index set) which implies that the index dimension must be a positive integer.

In a Minkowski space, one also has to observe that

ε0123 = η0µεµ123 = η00ε0123 = −ε0123 (B.6)

for ηµν = diag(−1, 1, 1, 1) (for ηµν = diag(1,−1,−1,−1) the sign change appears in the
other three components).

Rules implemented in tensepsilon::eval_indexed():

• εµµ... → 0 (contractions vanish)

• If all indices are nonnegative integers, the tensor is evaluated according to (B.5)
and (B.6).

Rules implemented in tensepsilon::contract_with():

• Contractions between two ε tensors are evaluated as a determinant, for example in
three dimensions

εijkεlmn =

∣∣∣∣∣∣
δil δjl δkl

δim δjm δkm

δin δjn δkn

∣∣∣∣∣∣ , (B.7)

which can be generalized to arbitrary dimensions. In the case of indices with
variance, the δij are replaced by the appropriate metric tensors gµν or ηµν . In a
Minkowski space, there also appears an additional minus sign because of (B.6).

B.2 Dirac Algebra

The simplification rules implemented by the Dirac algebra objects 1, γµ, γ5, γL = 1
2(1−γ5),

γR = 1
2(1 + γ5), and p/ described in section 3.4.1 fall into two categories: canonicalization

of Dirac strings and contractions of Dirac matrices.

The following set of rules is applied in clifford::eval_ncmul() to canonicalize Dirac
strings:

1. All occurrences of 1 are removed.

2. Occurrences of γ5, γL, and γR are moved to the beginning of the string using the
(anti)commutation relations

γµγ5 = −γ5γµ, γµγL = γRγµ, γµγR = γLγµ,

p/γ5 = −γ5p/, p/γL = γRp/, p/γR = γLp/,

γLγ5 = γ5γL, γRγ5 = γ5γR.
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3. Squares of Dirac matrices are removed using

γ5γ5 = 1, γLγL = γL, γRγR = γR,

γµγµ = ηµµ
1, p/p/ = pµpµ1.

4. Remaining products of γ5, γL, and γR are simplified using

γ5γL = −γL, γ5γR = γR, γLγR = γRγL = 0.

The string now has either exactly one instance of γ5, γL, or γR as its first element,
or none at all.

5. Commutative factors like ηµµ, pµ, and accumulated minus signs are pulled out of
the string.

6. If no Dirac matrices are left in the resulting string it is replaced by a single 1.

If necessary, the rules are applied repeatedly until a stable state is reached.

The only Dirac object implementing contractions is γµ as it is the only one with a proper
index. The following rules are implemented in diracgamma::contract_with():

• γµγµ → dim(µ)1

• γµγαγµ → (2− dim(µ))γα

• In four dimensions: γµSoddγµ → −2SR
odd and γµSoddγ

αγµ → 2γαSodd + 2SR
oddγ

α for
any string Sodd containing an odd number of Dirac matrices. SR

odd is the reversed
string.

• γµSγαγµ → 2γαS − γµSγµγ
α for any string S. The remaining contraction γµSγµ is

then evaluated recursively.

• γµpµ → p/ if p is a symbol

Contractions between Dirac matrices are only carried out when their representation labels
are equal.

The eval_indexed() method is not used by any of the Dirac classes.

B.3 Color Algebra

The simplification rules for the color algebra objects 1C , Ta, fabc, and dabc described in
section 3.4.2 refer almost exclusively to contractions of color objects. The rules for the
Kronecker delta δab have already been listed in appendix B.1.1.

The only simplification performed on color strings in color::eval_ncmul() is to remove
instances of 1C unless the string only contains one single 1C .

The rules implemented for the generators Ta of the fundamental representation of SU(3)
in su3t::contract_with() are:
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• TaTa → 4
31C (= CF1C , the Casimir operator of SU(3) in this representation)

• TaTbTa → −1
6Tb

• TaSTa → 1
2 Tr[S]1C − 1

6S for any string S with two or more elements

All contractions are only carried out when the representation labels of the objects are
equal.

The indices of the symmetric and antisymmetric structure constants dabc and fabc are
automatically brought into a canonical order in indexed::eval() according to the sym-
metry properties attached to them (see section 3.1). Additionally, both objects evaluate
to numbers when all indices are numeric, like f246 → 1

2 , d338 → 1√
3
. This is implemented

in su3d::eval_indexed() and su3f::eval_indexed().

Finally, the following contraction rules are applied in su3d::contract_with() and
su3f::contract_with():

• dabcdabc → 40
3

• daijdbij → 5
3δab

• dabcTbTc → 5
6Ta

• fabcfabc → 24

• faijfbij → 3δab (= CAδab, the Casimir operator in the adjoint representation of
SU(3))

• fabcTbTc → 3i
2 Ta

All rules also apply for different orders of the indices. Contractions between fabc and dabc

that vanish for symmetry reasons are handled by simplify_indexed().
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C Relation of xloops Functions to Standard
One-Loop Integrals

The functions implemented in the xloops library (cf. section 5.5) are related to, but not
identical to the standard one-loop integral functions commonly found in the literature (see,
for example [BDJ 2001]). Aside from the PO decomposition of the external momenta and
factors like iπ2, the momenta along the internal propagators are also assigned in a different
way.

In this appendix, we will illustrate the differences between the two definitions considering
some exemplary scalar and tensor functions. For simplicity, higher powers of propagators
and the causality term iρ are omitted.

One-Point Functions

A0(m2) =
(2πµ)4−D

iπ2

∫
dDl

1
l2 −m2

= m2

(
1
ε

+ 1− γE + log 4π − log
m2

µ2
+O(ε)

)
Scalar1Pt(m) =

∫
dDl

1
l2 −m2

= iπ2m2

(
1
ε

+ 1− γE − log π − logm2 +O(ε)
)

=
iπ2

(2πµ)4−D
A0(m2)

Two-Point Functions

B0(q2;m2
1,m

2
2) =

(2πµ)4−D

iπ2

∫
dDl

1
(l2 −m2

1)((l + q)2 −m2
2)

=
1
ε

+ 2− γE + log 4π − log
m1m2

µ2
+
m2

1 −m2
2

q2
log

m2

m1

+
1
2

(
1 +

m2
1 −m2

2

q2

)
x1(log(1− x1)− log(1 + x1) + iπ)

+
1
2

(
1− m2

1 −m2
2

q2

)
x2(log(1− x2)− log(1 + x2) + iπ)

= B0(q2;m2
2,m

2
1)

with x1 =
√

1− 4m2
1q2

(m2
1−m2

2+q2)2
, x2 =

√
1− 4m2

2q2

(m2
2−m2

1+q2)2
.
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Bµ(q2;m2
1,m

2
2) =

(2πµ)4−D

iπ2

∫
dDl

lµ

(l2 −m2
1)((k + q)2 −m2

2)

= qµB1(q2;m2
1,m

2
2)

B1(q2;m2
1,m

2
2) =

1
q2
qµB

µ(q2;m2
1,m

2
2)

=
1

2q2
(
A0(m2

1)−A0(m2
2)− (q2 +m2

1 −m2
2)B0(q2;m2

1,m
2
2)
)

= −B0(q2;m2
1,m

2
2)−B1(q2;m2

2,m
2
1)

Scalar2Pt(q,m1,m2) =
∫
dDl

1
((l + q)2 −m2

1)(l2 −m2
2)

= iπ2

(
1
ε

+ 2− γE − log π + . . .

)
=

iπ2

(2πµ)4−D
B0(q2;m2

1,m
2
2)

OneLoop2Pt(p0, p⊥, q,m1,m2) =
∫
dDk

lp0
0 l

p⊥
⊥

((l + q)2 −m2
1)(l2 −m2

2)

OneLoopTens2Pt(1, q,m1,m2) =
∫
dDl

lµ

((l + q)2 −m2
1)(l2 −m2

2)

=
qµ√
q2
OneLoop2Pt(1, 0, q,m1,m2)

=
qµ

2q2
(
Scalar1Pt(m2)− Scalar1Pt(m1)

− (q2 −m2
1 +m2

2)Scalar2Pt(q,m1,m2)
)

=
iπ2

(2πµ)4−D
qµB1(q2;m2

2,m
2
1)

Three-Point Functions

C0(q21, q
2
2, q

2
3;m

2
1,m

2
2,m

2
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double dispatch: Run-time polymorphism, i. e. the ability to choose one of possibly sev-
eral functions to call based on the dynamic type of some or all function arguments,
is a feature provided to some degree by all object-oriented programming languages.

C++ only offers single dispatch as a part of the language. The virtual member
function mechanism selects a method at run time according to the dynamic type
of one (implicit) function argument: the receiving object (as opposed to ordinary
function overloading where the selection takes place at compile time based on the
static types of the arguments).

It is often useful, however, to have a virtual function chosen by the dynamic types
of two (double dispatch) or, in general, all of its arguments (multiple dispatch),
especially in cases where it is not obvious whether an interaction between two objects
A and B should be implemented as a method of A or a method of B.

Some languages such as the Common Lisp Object System provide built-in support
for multiple dispatch. In C++ this has to be recreated manually (see [Alex 2001,
chapter 11] for some example implementations).

first-class: In a programming language, a data type is said to be first-class when objects
of the type can be created and manipulated at run time. This also usually implies
that values of this type can be stored in variables, passed to and from functions,
etc. but the exact set of operations available for first-class objects depend on the
language being used.

For example, in C++ functions are not first-class objects but pointers to functions
are. The only operations possible on functions in C++ are invocation, and taking
their address. Other programming languages such as Smalltalk and Lisp allow
the use of functions (or closures, i. e. functions together with their set of variable
bindings) as first-class data.

flyweight: A shared object used simultaneously in multiple contexts but acting as an
independent object in each one.

function object/functor: In C++ , an object that can be called as a function. This includes
proper C++ functions, function pointers, constructors, and instances of classes over-
loading operator() (the function-call operator). Sometimes, the use of the term is
limited to the latter kind.

garbage collection: The process of automatically reclaiming the memory space taken up
by objects which are no longer referenced. There exist many different methods of
determining for which objects this is the case, and when to reclaim the memory used
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by these objects. GiNaC utilizes a reference counting garbage collector for algebraic
objects in which each object contains a counter of the number of references to it.
Once this number reaches zero, the object is deleted.

hash table: A hash table is an implementation of an associative array (a key→value map-
ping) with on average constant-time complexity for element insertions, deletions,
and look-ups. The (key,value) pairs are stored in a linear table, indexed by a hash
value obtained by applying a hash function h : K → N to the keys k ∈ K. Each
table entry is called a bucket.

The hash function can be arbitrary, but should be chosen in a way as to reduce the
frequency of hash collisions (h(k1) = h(k2) for k1 6= k2) as far as possible. Also, if
the calculation of the hash function is expensive compared to comparisons of the key
values, a linear or binary search in a (key,value) table may offer better performance
than a hash table for small numbers of elements.

There is extensive literature dealing with hash tables. See, for example [Knut 1973,
chapter 6].

mixin class: A class intended to be composed with other classes through inheritance.

policy class: By encapsulating a family of related algorithms sharing a common interface
(the policy) in separate classes, one for each algorithm, the behavior of a client object
or class template can be customized simply by selecting the appropriate policy class.
This corresponds to the Strategy pattern of [GHJV 1995].

smart pointer: In a language such as C++ that requires manual management of the storage
space occupied by objects it is often desirable to lower the chance of memory leaks
and other programming errors by creating classes that behave syntactically and
semantically like built-in pointers but implement some kind of automated resource
management behind the scenes. The STL auto_ptr<> template is an example for
such a “smart” pointer.

Smart pointers can implement a variety of storage management policies such as
deep copy (copying the pointer also copies the pointed-to object), destructive copy
(copying the pointer relinquishes the ownership of the pointed-to object from the
original pointer; used by auto_ptr), and reference counting.
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