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Abstract

Due to open problems in theory and unresolved anomalies in various oscilla-
tion experiments, neutrino physics appears to be an excellent starting point in
the quest for physics beyond the Standard Model (SM). The 3 + 1 framework
featuring an additional, sterile neutrino mixing with the known neutrinos, is a
minimalist extension of the SM which can account for oscillation phenomenology
beyond the standard three flavor paradigm. However, two orthogonal arguments
militate against this model.

First, the increasing amount of ambiguous experimental results makes a con-
sistent interpretation of the data in the 3 + 1 framework appear unlikely. In this
regard, global fits provide a useful tool to investigate this objection. This thesis
reports on the results of an up-to-date global fit to all relevant, available datasets,
including the data corresponding to the reactor antineutrino anomaly (RAA),
the gallium anomaly and the short baseline (SBL) anomaly. The reactor data
as a special case can plausibly be explained by the hypothesis of a misprediction
of the reactor antineutrino flux. Therefore, this hypothesis is tested against the
3 + 1 framework. Both hypotheses are found to be similarly likely, with a slight
preference for the 3 + 1 framework, mainly driven by the data from DANSS and
NEOS, which measure antineutrino spectra. However, a combination of both
hypotheses fits the data best, with the hypothesis of a mere misprediction of
the reactor flux rejected at 2.9σ. Despite mild tensions, adding the remain-

ing datasets in the
(–)

ν e disappearance channel increases the evidence for the
3 + 1 framework to 3.2σ. This result is independent from any prediction on

the reactor flux. Similarly, the data taken in the
(–)

ν e appearance channel favor
the 3 + 1 framework with a significance of up to 6.5σ, depending on the LSND
datasets included, although the goodness of fit (GOF) is poor. These results
are in strong contrast to the lack of evidence for the 3 + 1 framework in the
(–)

ν µ disappearance channel. Especially driven by the new results from IceCube
and MINOS, this allows for rigorous constraints on the parameter space in the
(–)

ν µ disappearance channel. The combined fit to the global data proves that
the different subsets are incompatible with each other at the 4.7σ level. This
tension is in particular driven by LSND and robust with regard to the choice of
the fitted dataset and the underlying reactor flux model.

The second objection to the 3 + 1 framework are the strong constraints on
the effective number Neff and the sum of masses

∑
mν of neutrino-like parti-
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cles implied by different cosmological probes. These constraints are in conflict
with the presence of an additional, sterile neutrino species in the early universe.
However, if their production was prevented throughout the evolution of the uni-
verse, the constraints from cosmology would not apply for sterile neutrinos. The
generation of sterile neutrinos can be suppressed by a new type of interaction,
termed “secret interaction”. Still, as this thesis confirms, the secret interaction
model is disfavored in all of the viable parameter space. Therefore, inverse sym-
metry breaking, additional sterile neutrinos, additional free-streaming particles
or neutrino decay are proposed as potential extensions of the secret interaction
model.
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1 Introduction: boring and annoying?

Leaving the introduction to the topic of this thesis, neutrinos, to somebody who
knows very well how to write about physics, these elementary particles can be
characterized as follows:

“Many a time I have stressed [. . . ] that neutrinos are boring, though
I should specify that they are boring from the point of view of a
theoretical physicist.” [1]

This description of neutrinos was penned by the physicist Adam Falkowski,
who writes as “Jester” in his witty, illuminating and knowledgeable blog “Ré-
sonaances” about various topics affecting the high energy physics community.
While the above quotation quite probably should be taken as an humorous
exaggeration, he certainly has a point there: On the event display of a particle
detector, for example at the large hadron collider (LHC), neutrinos leave no
tracks, they cause no spectacular jets or showers. They are light and stable
on large timescales, they do not decay. Most of the time, neutrinos do not
do anything at all, but traverse idly throughout the universe. Hence indeed,
neutrinos appear rather boring.

Nevertheless, in the last decades, huge efforts have lead to sophisticated ex-
periments that can actually measure the properties these particles, despite the
rarity of interactions used to detect them. However, also from an experimental
point of view, neutrinos do not seem to be very favorable objects, or, quoting
once again “Jester”:

“For experimentalists, on the other hand, neutrinos are first of all
annoying. Indeed, taking part in a neutrino experiment seems the
shortest path to trouble, because of weird anomalies affecting every
other experiment.” [1]

In conclusion, the topic of this work could polemically be described as “boring
and annoying”. This, of course, does not seem like a promising starting point.
Yet, this thesis subscribes to a different point of view. The very properties
that make neutrinos appear boring, the rarity of their interactions together
with their tiny masses, are on the other hand properties that make neutrinos
unique and interesting in the context of the SM. For instance, neutrinos are
the only elementary particles for which the phenomenon of oscillations has been
observed. The measurement of these oscillations, with ever increasing precision,
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1 Introduction: boring and annoying?

has evolved into a fruitful field of research. The respective oscillation parameters
may be related to questions as profound as why the universe consists mainly of
matter and not equal parts antimatter. The properties of the neutrino also assign
it a special role in the later history of the universe, because it is for example the
only massive particle that becomes free-streaming very early on, which crucially
impacts the formation of structures. Without neutrinos, the universe would not
have evolved to the state we know. Furthermore, while neutrinos might feature
fewer characteristic properties than other elementary particles, the theoretical
modeling of these properties is much less well established. For example the exact
mechanism that endows neutrinos with their tiny mass is currently not known
and is almost inevitably related to new physics beyond the SM.

Quite contrary to the first quotation, it is hence very likely that neutrinos have
the potential to reveal much about the universe and the law of physics governing
it. However, to explore this potential, experiments need to measure neutrino
properties to a high level of precision. Yet, while many great experimental
results were achieved over the last decades, it is also true what is stated in the
second quotation: there are indeed several experiments – both old and new –
that apparently contradict the standard picture which can be extracted from
the remaining data. While the cause for any of these anomalous results could in
principal be something as annoying as a mere statistical fluke or a loose cable,
it is also true that it is the unexpected results which often turn out to be the
most interesting ones. Therefore, instead of considering them as an annoyance,
in this work, the anomalies in various neutrino oscillation experiments are taken
as an opportunity to develop and test new models beyond the SM.

Hence, countering the humorous quotations above, this thesis takes a stab
at proving that neutrinos are neither boring nor annoying, but offer interesting
opportunities for both theoretical and experimental exploration. This endeavor
is organized as follows: chapter 2 introduces neutrinos in the context of the SM
and presents their characteristic oscillation phenomenology. Furthermore, some
open questions in the current theory of neutrinos, like the origin of the neutrino
masses and the number of neutrino species are briefly discussed. Chapter 3 gives
a short overview of the thermal history of the universe with a special regard to
the crucial role of neutrino-like particles. Moreover, the most important cos-
mological probes and their sensitivity to characteristic neutrino properties are
described. Chapter 4 reviews in detail the anomalies detected in various oscil-
lation experiments. Motivated by these observations, the 3 + 1 framework is
introduced as a minimal extension of the SM. Based on the publications [2] and
[3], this framework is subsequently tested on various subsets of the global oscil-
lation data. The chapter concludes with a global fit of all datasets in the 3 + 1
framework, revealing strong tensions among the different subsets. Irrespective
of these tensions, the 3 + 1 framework is also in conflict with the constraints
on various properties of neutrinos imposed by cosmological probes. Based on
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the publication [4], chapter 5 reviews an extension of the 3 + 1 model featuring
an additional, “secret” interactions among the right-handed neutrinos. Sub-
sequently, the incompatibility of this model with constraints arising from cos-
mological probes is carefully examined. The chapter concludes by proposing
several extensions of the secret interaction scenario that potentially reconcile
the 3 + 1 model with cosmological constraints. Finally, chapter 6 provides a
short summary of the results presented in this thesis.
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2 Neutrino phenomenology

2.1 Neutrinos in the Standard Model

The SM describes three generations of neutrinos, labeled electron, muon and
tau neutrino. Their interactions are specified by the terms

L ⊃ g

2 cos θW

∑
α=e,µ,τ

ν̄αγ
µPLναZ

0
µ +

g√
2

∑
α=e,µ,τ

¯̀
αγ

µPLναW
+
µ + h.c. (2.1)

in the Lagrangian L. These terms express the weak interaction of leptons,
parametrized by the coupling constant g and the Weinberg angle θW . The weak
interaction is mediated by the three gauge bosons Z0, W+ and (W+)† = W−,
where the terms involving Z0 are usually called neutral current (NC) interactions
and the terms involving W+ and W− are usually called charged current (CC)
interactions. The NC interaction couples two neutrino fields of the same type,

denoted by
(–)

ν α in eq. (2.1), while the CC interactions couple a neutrino field to

a charged lepton field of the same type, denoted by
(–)

` α eq. (2.1). Remarkably,
the weak interaction is maximally parity violating, to be specific, it couples only
to left-handed fields or to the respective right-handed conjugated fields. This is
reflected by the projection operator PL in eq. (2.1), defined by

PL :=
1− γ5

2
, (2.2)

which projects out the left-handed component of a field or the right-handed
component of its conjugated field. The corresponding operator projecting out
the right-handed component of a field or the left-handed component of its con-
jugated field is given by

PR :=
1 + γ5

2
. (2.3)

The weak interaction of neutrinos can equivalently be written as

L ⊃ g

2 cos θW

∑
i

ν̄iγ
µPLνiZ

0
µ +

g√
2

∑
i

∑
α=e,µ,τ

¯̀
αγ

µPLUαiνiW
+
µ + h.c.. (2.4)

Compared to the form given in eq. (2.1), in the above expression eq. (2.4), the
vector ν = (νe, νµ, ντ )T is transformed to the new basis B = (ν1, ν2, ν3) by means

5



2 Neutrino phenomenology

of the unitary transformation matrix U , such that each field να is given by the
linear combination να =

∑
i Uαiνi. Any general complex unitary matrix can be

parametrized in terms of three angles and six phases as follows: [5, 6]

U =

1 0 0

0 ei(ε−γ) 0

0 0 ei(ζ−γ)


 c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


eiα 0 0

0 eiβ 0
0 0 eiγ ,


(2.5)

where the definitions cij := cos θij and sij := sin θij have been used. However,

considering only the interaction Lagrangian eq. (2.1), each of the six fields
(–)

` α,
(–)

ν i is invariant under the multiplication by a phase. Hence, by redefining these
fields, the five phases factored out to the left and right in eq. (2.5) and parame-
tized by α, β, γ, ε and ζ can be absorbed. After this transformation U is hence
given given by

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

,
= O23(θ23)V13(θ13, δ)O12(θ12) (2.6)

where Oij(θij) denotes a real rotation matrix corresponding to a rotation in
the (ij)-plane parametrized by the rotation angle θij , and V13 denotes a com-
plex rotation matrix parametrized by the angle θ13 and a phase δ. While it
is not unique, the particular parametrization in terms of three real parameters
expressed by angles and one complex parameter expressed by a phase, as given
in eq. (2.6), is convenient and widely used [7].

At this point, the transformation performed in eq. (2.4) is arbitrary, since in
the absence of further terms in the Lagrangian, the only physically observable
entities are the fields να, because these couple to the weak interaction. However,
if further terms, which couple to the fields νi, are introduced in the Lagrangian,
these fields also correspond to physical observables. Indeed, as the following
section illustrates, the fields νi can be identified with fields of definite mass. In
that case, the matrix U given in eq. (2.6) is usually called Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) or leptonic mixing matrix, and becomes in principal
measurable by experiments.
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2.2 Neutrino mass

2.2 Neutrino mass

Unlike the interaction terms in the SM Lagrangian reviewed above, the form of
the neutrinos mass terms is not established. While the discovery of neutrino
oscillations, awarded with the Nobel Prize in Physics 2015 for Takaaki Kajita
and Arthur B. McDonald [8], proves that neutrinos indeed have masses, their
values have neither been measured nor is the mechanism known that generates
them. Arguably the most straightforward approach to give masses to neutrinos
would be to adopt the same model as in the case of the other fermions, which
leads after electroweak symmetry breaking (EWS) to a Dirac mass term∑

α,β=e,µ,τ

Yαβ
v√
2
ναRνβL + h.c. =

∑
α,β

∑
i

Vαim
D
iiU
†
iβ

v√
2
ναRνβL + h.c.

=:
∑
i

mD
ii (νiRνiL + νiLνiR),

where the variables ναL and ναR denote the left- and right-handed components of
the field να, given by PLνα and PRνα, respectively, with the projection operators
PR and PL defined in eqs. (2.2) and (2.3), and similarly for the conjugated fields.
Furthermore, in the above equation, Y denotes the neutrino Yukawa matrix,
which is a general, complex 3× 3 matrix and v is the vacuum expectation value
(vev) of the Higgs field. The diagonal, positive definite Dirac mass matrix mD =
diag(m1,m2,m3) derives from the Yukawa matrix Y through the transformation
Y v/
√

2 ≡MD = V mDU †, where V and U † are two unitary matrices. Note that
such a transformation is always possible. In the last line of eq. (2.7) the definition

νiL =
∑
α

U †iαναL (2.7)

νiR =
∑
α

V †iαναR (2.8)

were used [9]. Hence, identifying the fields νi in eq. (2.7) with the corresponding
fields in eq. (2.4), the matrix U † in eq. (2.7) can be recognized as the adjugate
of the matrix defined in eq. (2.6).

However, as can be seen in eq. (2.1), the right-handed fields ναR do not appear
in the SM interaction Lagrangian describing the neutrino interactions, because
the weak interaction is found to be maximally parity violating. This implies that
the right-handed fields do not interact in the SM, hence they are called “sterile”.
Since they do not interact in SM, there is no definite evidence that these fields
actually exist, much less if the mechanism described above indeed generates
the neutrino masses. Furthermore, experimental efforts to directly measure the
neutrino mass have so far only resulted in upper limits. These limits, however,
restrict neutrinos to be lighter than ∼ 2 eV [7, 10], which is orders of magnitude
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2 Neutrino phenomenology

lower than the masses of all other SM particles. This implies that also the
Yukawa coupling constants for neutrinos, which encode their interaction with
the Higgs field, are much smaller than the corresponding coupling constants for
all other SM particles. While this fact might just be a lusus naturae, it is often
considered “unnatural”.

Irrespective of these considerations, the extension of the SM particle content
by the right-handed neutrino fields ναR allows for a new term in the Lagrangian,
given by [9] ∑

s,s′

1

2
νsRM

R
ss′(νs′R)c + h.c. (2.9)

In the above expression, the superscript c denotes the charge-conjugation op-
eration, which converts a particle into its antiparticle. Furthermore, MR is a
complex matrix, which has to be symmetric, due to the properties of the charge
conjugation [9]. The term given in eq. (2.9) is called Majorana mass term,
because it can be constructed for particles which obey the Majorana condition

ψ = ψc, (2.10)

that is, particles and antiparticles cannot be distinguished. This condition is
fulfilled for right-handed neutrinos νsR and their left-handed antiparticles (νsR)c,
because they are assigned no quantum number that might distiguish particles
from antiparticles [9]. Unless applying additional arguments, as for instance
imposing further symmetries, the term eq. (2.9) is hence expected to contribute
to the neutrino phenomenology. The two terms, eqs. (2.7) and (2.9) combined
can be recast into a single term, as follows

∑
s,α

νsRM
D
sαναL +

Ns∑
s,s′

1

2
νsRM

R
ss′(νs′R)c + h.c.

=
1

2

∑
s,α

νsRM
D
sαναL +

1

2

∑
s,α

(ναL)c(MD)Tαs(νsR)c +

Ns∑
s,s′

1

2
νsRM

R
ss′(νs′R)c + h.c.

=:
1

2
(nL)cMD+MnL + h.c., (2.11)

where in the last line the column vector

nTL := (νeL, νµL, ντL, (νs1R)c, . . . , (νNsR)c) (2.12)

was introduced. In the definition eq. (2.12), the expression (νsiR)c denotes the
left-handed, sterile antiparticles of the right-handed sterile neutrinos νsiR. Here,
the number of SM neutrino species and the number of sterile neutrinos, Ns, are

8



2.2 Neutrino mass

allowed to differ. Hence, unlike in eq. (2.7), the matrix MD
sα is not required to

be of square shape. Lastly, in the third line, the complex, symmetric (3 +Ns)×
(3 +Ns) matrix was defined according to

MD+M :=

(
0 (MD)T

MD MR

)
. (2.13)

The matrix MD+M can be diagonalized with the unitary transformation matrix
U , which results in the expression

1

2
(nL)c(U †)TMD+MU †nL + h.c.

=
1

2

3+Ns∑
i

miiνiRνiL + h.c. =
1

2

3+Ns∑
i

miiNiNi. (2.14)

In the last line the definitions

νiL :=

3+Ns∑
n

U †in nnL (2.15)

νiR :=

3+Ns∑
n

(nnL)c (U †)Tni =

3+Ns∑
n

(nnLUni)
c (2.16)

and

Ni := νiL + νiR = (U †nL)i + ((U †nL)c)i (2.17)

were used. The fields Ni correspond to fields of definite mass mi := 1/2mii and
the fields νiL and νiR are their left- and right-handed components, respectively.
Inserting the definition of the vector of left-handed fields, nL, into eq. (2.15)
gives

νiL =

3+Ns∑
n

U †innnL =
∑

β=e,µ,τ

U †iβνβL +
∑

s′=s1...sNs

U †(νs′R)c. (2.18)

Hence, the fields with definite mass are linear combinations of the fields νβ, νs′ ,
which are the fields determined by the weak interaction. This equation can be
inverted as follows

3+Ns∑
i

UniνiL = nnL =

{
ναL n ≤ 3, α ∈ {e, µ, τ}
(νsR)c n > 3, s ∈ {s1 . . . sNs}

. (2.19)

Thus, the three left-handed SM neutrino field να and the Ns left-handed, sterile
neutrino fields (νsR)c, are linear combinations of the corresponding left-handed

9



2 Neutrino phenomenology

fields νiL with definite mass. The respective equations for the antiparticles hold
analogously. Similar equations could be listed for the right-handed fields as
well. However, as noted above, these fields do not interact in the SM, and
hence the corresponding expressions are irrelevant. Again, the fields νi in the
above expression eq. (2.18) can be identified with the corresponding fields in the
interaction Lagrangian eq. (2.4). In this case, the 3× 3 sub-matrix (U †)ij with
1 ≤ i, j ≤ 3 of the matrix U † in eq. (2.18) is given by conjugate of the matrix U
defined in eq. (2.5).

The mixing of different fields, expressed in eq. (2.19) can give rise to oscilla-
tions involving sterile neutrinos. This potential phenomenon is an interesting
scenario beyond the SM. In fact, the neutrino oscillations in the presence of
one sterile neutrino are a central part of this work and are discussed in detail in
chapter 4.

Each of the fields Ni fulfills the Majorana condition eq. (2.10) [9]. Hence,
although in the case at hand the SM model neutrinos feature a Dirac mass
term, the Majorana mass term for the sterile neutrinos given in eq. (2.9) leads
also to the Majorana term given in eq. (2.14) for fields of definite mass Ni.
However, any field which obeys the Majorana condition given in eq. (2.9) is not
invariant under the multiplication with a phase, since

ψ →ψ′ = e−iφψ

ψc →ψ′c = (e−iφψ)c = eiφψc, (2.20)

and hence ψ′ = ψ′c only for φ = 0. But this in turn implies, that if neutrinos
indeed have a Majorana mass term, the PMNS matrix introduced in section 2.1
features two additional phases, called Majorana phases. This is because out of
the six generic phases of a complex unitary matrix, as parametrized in eq. (2.5),
in this case only three phases can be absorbed by redefinition of the charged
lepton fields.

Finally, while the model outlined above was introduced just as a straightfor-
ward implementation of a mass term for neutrinos, it furthermore might hint
at an explanation for the peculiar fact that the neutrino masses are so much
smaller than the masses of the other particles in the SM. As noted above, the
term given in eq. (2.9) is expected to appear in the Lagrangian when right-
handed neutrinos are introduced, unless explicitly forbidden by some additional
constraints. However, this term is a priori not connected to a particular scale,
by contrast to the Dirac mass term given in eq. (2.7), which is related to the
value of the vev of the Higgs field. Hence, the entries of the matrix MR in
eq. (2.9) can exhibit arbitrary values. Furthermore, this term could arise due to
some physical processes at very high energy scales. In this case the entries of the
matrix MR in eq. (2.9) are expected to be large compared to the entries of the
Dirac mass matrix MD, whose entries could be of the same order of magnitude

10



2.3 Vacuum oscillations

as the corresponding matrix for the quarks. Then, the matrix MD+M can be
block-diagonalized according to [9]

W TMD+MW '
(
Mlight 0

0 Mheavy,

)
(2.21)

with a unitary transformation matrix W . The block-matrices in eq. (2.21) are
given by

Mlight '− (MD)T (MR)−1MD, (2.22)

Mheavy 'MR. (2.23)

If the entries of MR are very large, the entries of (MR)−1 are expected to be
very small, and hence the entries of Mlight are also expected to be accordingly
small. The mechanism described above is one particular implementation of a
general class of models, which are known by the name “see-saw” models.

2.3 Vacuum oscillations

As discussed above, the three generations of neutrinos stand out from the other
elementary particles in the SM because of their tiny mass. While this peculiar
fact might hint at some interesting underlying physics, the most important con-
sequence from a phenomenological point of view is the occurrence of neutrino
oscillations. This importance derives on the one hand from the crucial knowl-
edge on neutrino properties provided by the measurement of oscillations, on the
other hand oscillations are specific to neutrinos and are not observed with other
elementary particles.

Physically, neutrino oscillations can be understood as interference phenom-
ena between coherent superpositions of mass eigenstates. The superpositions of
mass eigenstates come about in weak interactions, whose eigenstates are flavor
eigenstates. Since in physical situations the production of a neutrino should
be considered within a finite volume of space and during some finite time, the
respective canonical conjugate variables momentum and energy feature an in-
trinsic uncertainty. The differences between the neutrino masses are so small
that they are well within these uncertainties and hence the superposition of mass
eigenstates has to be treated coherently.

Although neutrino oscillations are experimentally well established [7], their
theoretical description is subtle and details are still debated on [11]. The stan-
dard approach, employed by many textbooks and introductory articles1 is very
convenient, because it allows to arrive straightforwardly at a result which turns
out to be correct in all situation of current practical interest. However, this

1A couple of exemplary references employing the standard approach are enlisted in [11]
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2 Neutrino phenomenology

method relies on a number of assumptions, which are not necessarily satisfied.
The usual starting point is to express a neutrino flavor state |να〉 as a linear com-
bination of mass eigenstates |pmi〉, that is eigenstates of the free Hamiltonian,
as follows:

|να〉 =
∑
i

U∗αi |pmi〉, (2.24)

where |να〉 is the one-particle eigenstate corresponding to the flavor α and |pmi〉
is the one-particle eigenstate corresponding to the mass mi and momentum pmi .
U denotes the unitary PMNS matrix introduced in eq. (2.4) in section 2.1. The
amplitude for a neutrino to be detected again as flavor eigenstate at some space-
time point x = (T,L) is given by

〈0|ψα(x)
∑
i

U∗αi |pmi〉,

where ψα(x) is the neutrino field operator corresponding to the flavor eigenstate
α. Since neutrinos are fermions, ψα(x) should be a Dirac field. Yet, neutrinos
of experimental interest are usual ultrarelativistic, such that up to corrections
of order O(m/E) all but one of the spinor components are zero for a free par-
ticle [12]. Thus only one row of the above equation needs to be considered.
Dropping therefore the spinor structure and treating ψα(x) as a scalar field
ψα(x)→ φα(x) the amplitude becomes

〈0|φα(x)
∑
i

U∗αi |pmi〉 =〈kmj |
∫

d3k

(2π)32Ek

∑
i,j

U∗αiUβje
−ikmjx |pmi〉

=
∑
i

U∗αiUβi e
−ipmix (2.25)

and hence the probability reads

|〈0|φα(x)
∑
i

U∗αi |pmi〉|2 =
∑
i,k

U∗αiUβiUαkU
∗
βk e

−ipmixeipmkx

=
∑
i,k

U∗αiUβiUαkU
∗
βk e

−i(Emi−Emk )T+i(pmi−pmk )L.

(2.26)

To arrive at the “standard oscillation formula”, at this point further assumptions
are needed. For instance, the “equal energy prescription” requires all mass
eigenstates to have the same energy, that is Emk = E holds for all mk. With
this prescription the time-dependence drops out. Assuming furthermore that
pmi is parallel to pmk for all i, k and taking L in the direction of pmi , pmk , gives

12



2.3 Vacuum oscillations

the standard oscillation formula

Pαβ(L) ≡

∣∣∣∣∣∑
i

U∗αiUβi e
i|pmi |L

∣∣∣∣∣
2

=
∑
i,k

U∗αiUβiUαkU
∗
βk e

i(|pmi |−|pmk |)L

'
∑
i,k

U∗αiUβiUαkU
∗
βk e

−i∆m2
ikL

2E , (2.27)

where ∆m2
ik is defined by ∆m2

ik := m2
i −m2

k, and L = |L|. In the second line, the

expression |pmi |−|pmk | =
√
E2 −m2

i−
√
E2 −m2

k has been expanded assuming

that the masses are small compared to E � mi, mk.
For antineutrinos, using the linear decomposition of a flavor eigenstate

|ν̄α〉 =
∑
i

Uαi |pmi〉, (2.28)

an analogue calculation yields

Pᾱβ̄(L) =
∑
i,k

UαiU
∗
βiU

∗
αkUβk e

−i∆m2
ikL

2E . (2.29)

The above expressions of the “standard oscillation probability” depend on the
four parameters of the PMNS matrix and two mass-squared differences, since
the third mass-squared difference can be expressed in terms of the remaining
two. The current best fit values for these six parameters are summarized in
table 2.1. Since the above formula depends only on mass-squared differences,
the absolute neutrino masses cannot be determined from oscillation experiments
in principle. However, from measurements of neutrinos from the sun undergoing
the Mikheyev-Smirnov-Wolfenstein (MSW) effect (c.f. section 2.4) it is known
that the mass eigenstate m1 is lighter than the mass eigenstate m2. For the
third mass eigenstate, m3, it is currently not resolved if it is lighter or heav-
ier than the other two mass eigenstates. Since m1 consists mostly of electron
flavor, by analogy to the charged leptons, it would be “normal” that it was
the lightest state. This hypothesis is therefore dubbed normal hierarchy (NH).
The inverse case, where m3 would be the lightest state, accordingly is dubbed
inverted hierarchy (IH).

The oscillation probabilities given in eqs. (2.27) and (2.29) are obviously in-
variant under the transformation [9]

Uαi → e−iφαUαie
iφi (2.30)

of each entry Uαi of the PMNS matrix U . This implies in particular that the
oscillation probability is not sensitive to the additional phases that cannot be
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2 Neutrino phenomenology

parameter value NH value IH

∆m2
21 7.37× 10−5 eV2

sin2 θ12 0.297
|∆m2

31| 2.56× 10−3 eV2 2.54× 10−3 eV2

sin2 θ23 0.425 0.589
sin2 θ13 0.0215 0.0216
δ/π 1.38 1.31

Table 2.1: Best fit values of the oscillation parameters [7]. According to the
convention followed here, ∆m2

31 always refers to difference between
the mass eigenstate consisting mostly of the electron flavor state,
defined to be m1, and the mass eigenstate m3.

absorbed in the case discussed in section 2.2, where the fields of definite mass
are Majorana fields. Thus, as respects the oscillation probability, only one phase
is observable, and hence the parametrization given in eq. (2.6) is sufficient to
fully characterize the PMNS matrix.

As stated above, the “standard oscillation formulas” eqs. (2.27) and (2.29)
have been well confirmed in experiments [7], yet the above derivation should
be taken with great caution. First, the “equal energy prescription” employed
in eq. (2.27) is not fulfilled in most experimental situations, that is, there is no
definite reason to assume that all mass eigenstates are produced with exactly
the same energy. The argument could thus be adapted by taking into account
that the production time and the production energy are not very well measured,
such that the appropriate prescription is in fact averaging over these quanti-
ties. The second point is more profound. Treating the neutrino states as plane
waves is actually contradicting the concept of oscillations in space, as a particle
with definite momentum pmi would not be localized at all. Furthermore, be-
cause the uncertainty on the momentum for a plane wave is zero, no coherent
superposition of such states would be possible. Therefore a theoretically much
more convincing formalism is to describe the particles by quantum-mechanical
wave packages. However, in this formalism the form of the wave packages has
to be postulated, since the production of a particle can not be modeled in such
a quantum mechanical approach [13]. Hence the most consistent description
needs to be done in the full quantum field theory (QFT) framework. In this
case, the particle production, propagation and detection are treated as one pro-
cess. If the neutrinos are ultrarelativistic and their relative momenta are small
compared to the momentum uncertainty, the respective amplitude factorizes. In
this case, the amplitude corresponding to the propagation between the source
and the detector, and hence the oscillation probability, can be extracted [13].
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2.3 Vacuum oscillations

Since this work explores (new) phenomenology of neutrinos analyzing data
from existing experiments or from cosmology, establishing a consistent theoret-
ical framework for neutrino oscillations is beyond its scope. For a review of the
different approaches to neutrino oscillations, their range of validity and possibly
new phenomenology in future types of experiments c.f. for example [14]. Within
this work, the “standard oscillation formulas” for neutrinos and antineutrinos,
established in eq. (2.27) and eq. (2.29) are assumed to hold to very good approx-
imation. Accordingly, the respective expressions previously dubbed “standard
oscillation probabilities”, are just called oscillation probabilities below.

When studying the phenomenology of neutrino oscillations, a useful way to
recast the oscillation probability is given by

P
(–)

α
(–)

β
= δαβ − 4

∑
i>j

Re
[
(Wαβ

ij )(∗)
]

sin2

(
∆m2

ijL

4E

)

+2
∑
i>j

Im
[
(Wαβ

ij )(∗)
]

sin

(
∆m2

ijL

2E

)
, (2.31)

where Wαβ
ij corresponds to the neutrino case, and (Wαβ

ij )∗ to the antineutrino

case and Wαβ
ij = (U∗αiUβiUαjU

∗
βj) denotes the product of elements of the PMNS

matrix, appearing in eq. (2.27). From this parametrization it is obvious that the
oscillatory behavior of the detection probability is governed by the mass-squared
differences ∆m2

ij , while the respective amplitudes are determined by (Wαβ
ij )(∗)

and thus by the entries of the mixing matrix.
The parametrization given in eq. (2.31) furthermore reveals that a difference

between the probability for an oscillation of a state of flavor α to a flavor β and
the probability for an oscillation of the respective antiparticles, that is Pαβ−Pᾱβ̄,
is only different from zero if

Jαβij := Im[(Wαβ
ij )] 6= 0 α 6= β, i 6= j, (2.32)

where J is known as Jarlskog invariant in the literature [15]. This case would im-
ply CP violation. In the parametrization of the PMNS matrix given in eq. (2.6),
J reads

J = cos θ12 sin θ12 cos θ23 sin θ23 cos2 θ13 sin θ13 sin δ, (2.33)

thus, if any of the mixing angles or the phase is zero, J is zero, and hence CP is
conserved. Since J is invariant under rephasing of the neutrino field, the above
statement is actually independent of the parametrization of the PMNS matrix.

In genuine experimental situations, it is often impossible to resolve all six pa-
rameters on which the oscillation probability depends. Therefore it is often justi-
fied to make further approximations that lead to simplifications of the expression
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2 Neutrino phenomenology

for the oscillation probability. For example, as can be seen in table 2.1, |∆m2
31|

is much larger than |∆m2
21|. If L/E is of order O(L/E) . 1, |∆m2

21| can be ne-
glected compared to |∆m2

31| := ∆m2 and |∆m2
32| = |∆m2

31| − |∆m2
21| ' |∆m2|,

which gives the effective probability

P
(–)

α
(–)

β
= δαβ − 4|Uα3|2|Uβ3|2 sin2

(
∆m2L

4E

)
. (2.34)

Examining once again table 2.1, sin2 θ13 is observed to be small compared to
the other parameters of the PMNS matrix. Approximating sin2 θ13 therefore by
zero leads to an effective two-flavor oscillation probability expressed by

P 2ν
(–)

µ
(–)

τ
= P 2ν

(–)

τ
(–)

µ
=1− sin2(2θ) sin2

(
∆m2L

4E

)
P 2ν

(–)

µ
(–)

µ
= P 2ν

(–)

τ
(–)

τ
= sin2(2θ) sin2

(
∆m2L

4E

)
, (2.35)

where θ ≡ θ23 is the only parameter the mixing matrix U2ν depends on in this
case. Explicitly, U2ν = (U2ν †)T is given by

U2ν ≡
(

cos θ sin θ
− sin θ cos θ

)
. (2.36)

This approximation describes very well experiments measuring muon neutrinos
produced in the atmosphere. For different experimental situations, and thus for
example different settings of the parameter L/E, different approximations are
appropriate, leading to different versions of the two-flavor limit.

2.4 Oscillations at finite temperatures and densities

Since neutrinos infamously interact only weakly, it might seem a hopeless venture
exploring the interactions of a test neutrino propagating through a background
of finite density, unless considering very high energies. Interestingly, this is not
necessarily the case when considering forward scattering between background
particles and a test neutrino, as will be outlined below.

In contrast to the discussion in section 2.3, the phase-space is now popu-
lated by background particles of finite temperature and density (FTD). Typical
examples for these background particles include electrons and nucleons for a
test neutrino propagating through the earth or the sun. In astrophysical en-
vironments, also backgrounds made up by neutrinos of the same or a different
flavor possibly need to be taken into account. For each background species, the
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Figure 2.1: Diagrams contributing to the scattering of a test electron neutrino
off a background electron due to CC (a) and NC (b) interactions2

respective temperature specifies the distribution function given by

n±f (p) =
[
e(|p·u|∓µ)/T + 1

]−1

n±b (p) =
[
e(|p·u|∓µ)/T − 1

]−1
, (2.37)

with µ the chemical potential. The above equations determine the probability
of a state being occupied. The subscript f (b) refers to fermions (bosons) and
the superscript + (−) refers to particles (antiparticles). The variable u denotes
the 4-momentum of the heat bath of the respective particle species [16]. The
test neutrino can interact with the background particles by exchange of a gauge
boson. In the SM, this would be the W or Z boson, yet the concept remains
valid also for a new, heavy vector mediator, as will be discussed in chapter 5.

A particular case is an interaction, at which the pair of ingoing and outgoing
test neutrino and background particle each have exactly the same momentum,
corresponding to forward scattering of the test neutrino. But such an interaction
implicates that it cannot be resolved on which of the background particles the
scattering event happens. Therefore in order to calculate the probability that
a test neutrino interacts with a background particle at a point through forward
scattering, one needs to sum up the scattering off any background particle at
that point coherently. Thus the interaction probability in the case of forward
scattering is proportional to the number density of background particles squared,
in contrast to scattering with momentum transfer, where the interaction prob-
ability increases only linearly with the number density [17].

As a case study, let the test neutrino be an electron neutrino moving through a
background of electrons, with the energies of the particles being small compared
to the weak interaction gauge boson masses mi, with i = W,Z. The boson
propagator can then be expanded to give [16]

Dµν(∆) ' gµν
m2
i

+
gµν∆2 −∆µ∆ν

m4
i

, (2.38)

2The Feynman diagrams shown in this thesis were produced with the LaTeX feynMP package.
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2 Neutrino phenomenology

with ∆ denoting the momentum transferred, and mi denoting the gauge boson
masses. Using only the lowest order term of the expansion eq. (2.38), the tree-
level matrix element for the interaction between a test neutrino of momentum
k and a background electron of momentum p is given by

M = − g2

8m2
W

[ū(k)γµ(1− γ5)u(p)] [ū(p)γµ(1− γ5)u(k)]

= −GF√
2

[ū(k)γµ(1− γ5)u(k)] [ū(p)γµ(1− γ5)u(p)] (2.39)

for a CC interaction, where g is the weak coupling constant and m2
W is the

mass of the W . In the second line, the definition of the Fermi constant GF :=√
2g2/(8m2

W ) has been inserted and a Fierz transformation has been applied. In
the case of a NC interaction, the matrix element reads

M =
GF

2
√

2
[ū(k)γµ(1− γ5)u(k)]

[
ū(p)γµ(1− γ5 − 4 sin2 θW )u(p)

]
, (2.40)

with θW denoting the Weinberg angle. The tree-level diagrams corresponding
to these matrix elements are shown in fig. 2.1.

As discussed above, to calculate the scattering amplitude, the matrix elements
for all background particles need to be summed up coherently. These background
particles are distributed among the states |p〉, corresponding to their respective
momentum p, according to eq. (2.37). The orientation of the spins of the par-
ticles follows some distribution f(s). Therefore summing over all background
particles amounts to calculating

− GF√
2

∫
d3p

(2π)32Ep
n+
f (p)

∑
s

f(s) [ūs(k)γµ(1− γ5)us(k)] [ū(p)γµ(1− γ5)u(p)]

=− GF√
2

∫
d3p

(2π)32Ep
n+
f (p)

1

2
4pµ [ū(k)γµ(1− γ5)u(k)] (medium unpolarized)

=− GF√
2
Ne [ū(k)γ0(1− γ5)u(k)] , (medium isotropic)

(2.41)

for the CC matrix element given by eq. (2.39). In the equation above, Ne

denotes the electron number density, defined by Ne =
∫
n+
f (p)D(p)d3p, with

D(p) the density of states. The second line follows assuming that the electron
background is not polarized, i.e. f(s) = 1/2. The equality in the third line
holds assuming that the momenta of the background electrons are distributed
isotropically. Repeating the calculation for the NC matrix element, given by
eq. (2.40), yields

GF

2
√

2
(1− 4 sin2 θW )Ne [ū(k)γ0(1− γ5)u(k)] . (2.42)
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2.4 Oscillations at finite temperatures and densities

In the discussion so far, only the lowest order of the expansion of the boson
propagator has been considered. Taking into account the next order in the
expansion eq. (2.38) and assuming relativistic electrons, the term

−7
√

2π2GFEν
90m2

W

T 4 [ū(k)γ0(1− γ5)u(k)] (2.43)

needs to be added [16]. Interestingly, the expression above explicitly depends
on the temperature T of the background medium, an effect that will become
important in the framework to be discussed in chapter 5.

The expressions derived above can of course be evaluated. Yet, for the fol-
lowing discussion, it is more interesting to focus on a different point of view.
In fact, the expressions eq. (2.41) and eq. (2.42), leaving aside the higher order
term eq. (2.43) for the sake of clarity, can be interpreted as the matrix element
describing the effective interaction corresponding to the Lagrangian [18]

Leff ⊃
∑
α,β

√
2GF

(
1
2 + 2 sin2 θW

)
Neδαeδβeν̄αLγ0νβL

=
∑
i,j

∑
α,β

√
2GF

(
1
2 + 2 sin2 θW

)
Neδαeδβeν̄iLU

∗
iαγ0UβjνjL

=:
∑
i,j

∑
α,β

U∗iα(−b̃)αβUβj ν̄iLγ0νjL =:
∑
i,j

(−b)ij ν̄iLγ0νjL

'− bν̄1Lγ0ν1L. (2.44)

The first line in the expression above is denoted in the flavor basis, which was
used implicitly above, whereas from the first to the second line, the basis is
changed to the mass basis. The approximation in the last line relies on the fact
the state corresponding to the mass eigenstate m1 consists predominantly of
electron flavor and U1e � U2e, U3e ∼ 0.

Consistent with the discussion above, this Lagrangian denotes an instance of
forward scattering of a test neutrino off a background of electrons. Yet, by the
very same line of argument as before, it cannot be determined how often the
test neutrino scatters along its trajectory through the medium. Therefore, to
calculate the amplitude for a test neutrino to propagate through the medium,
the amplitude for propagation without scattering, the amplitude for propagation
with scattering at one point, up to the amplitude of propagation with scattering
at each point of the trajectory need to be summed up coherently, which can be
expressed as follows:3

i(/p+m)

p2 −m2
+
i(/p+m)

p2 −m2
(ibγ0PL)

i(/p+m)

p2 −m2
+ · · · = i

/p−m+ bγ0PL
, (2.45)

3The following expression applies only if the density of the background particles is constant.
If the density is varying in space, one would formally need to transform to position space[19]
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Figure 2.2: Diagrams contributing to the self-energy of an electron neutrino:
bubble diagram (a) and tadpole diagram (b).

for a neutrino of momentum p and mass m, where the projection operator on
left-handed states is denoted by PL := 1/2(1 − γ5). The equality follows from
inserting the limit of the geometric series [19].

Equation (2.45) exhibits the modified propagator of an electron neutrino due
to forward scattering in a bath of electrons at FTD. In the case at hand, the
neutrino self-energy is given by

Σ = m− bγ0PL = m− b/uPL, (2.46)

where the second equality holds in the rest frame of the background bath, such
that u = (1, 0, 0, 0). Repeating the calculation in eq. (2.45) for antineutrinos
gives an additional minus-sign for the self-energy. The dispersion relation, given
by

det
[
/p− Σ

]
= 0, (2.47)

can be expanded in the ultrarelativistic limit |b|, m� |p| ≈ p0 to give

p0 = |p| ± m2

2|p|
∓ b, (2.48)

where the upper sign refers to neutrinos and the lower sign to antineutrinos.
This equation manifests that the term b just adds to the total energy of the test
particle, thus b acts as an effective potential

Veff ≡ ∓b = ±
√

2GF
(

1
2 + 2 sin2 θW

)
Ne. (2.49)

The different sign for neutrinos and antineutrinos can be understood from the
fact that a force between two fermions of like charges, mediated by a vector
boson, is repelling, while a force between two fermions of unlike charges is at-
tractive [16].

The discussion so far was only concerned with the change in the self-energy
due to scattering off the thermal background. But in fact the self-energy also
receives contributions in vacuum, which are given by the loop corrections to the
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2.4 Oscillations at finite temperatures and densities

propagator. Two of the relevant diagrams at one loop order are depicted in
fig. 2.2. Writing out the contribution ΣCC

0 of the first diagram fig. 2.2 (a) to the
vacuum self-energy Σ0 explicitly gives

−iΣCC
0 = −GF√

2

∫
d4p

(2π)4
γµ(1− γ5)

i(/p+m)

p2 −m2
γµ(1− γ5)

= −GF√
2

∫
d4p

(2π)4
γµ(1− γ5)iS0(p)γµ(1− γ5), (2.50)

where again the low energy expansion of the W propagator eq. (2.38) was used.
iS0 denotes the fermion propagator in vacuum. Formally, the expressions found
above for the scattering matrix elements at FTD can be brought into a form
similar to the one loop self-energy in vacuum. Considering for instance the CC
interaction term, eq. (2.41) can be rearranged as follows:

− GF√
2

∫
d3p

(2π)32Ep
n+
f (p)

1

2
4pµ [ū(k)γµ(1− γ5)u(k)]

=ū(k)

[
−GF√

2

∫
d4p

(2π)4
γµ(1− γ5)n+

f (p)i22πδ(p2 −m2)(/p+m)γµ(1− γ5)

]
u(k)

≡ū(k)

[
−GF√

2

∫
d4p

(2π)4
γµ(1− γ5)i∆SFTD(p)γµ(1− γ5)

]
u(k). (2.51)

The term in square brackets can now straightforwardly be interpreted as a con-
tribution to the self-energy at FTD. Adding eqs. (2.50) and (2.51) gives the
following contribution to the self-energy:

−iΣCC
FTD = −GF√

2

∫
d4p

(2π)4
γµ(1− γ5)iSFTD(p)γµ(1− γ5), (2.52)

and similarly, considering the NC terms in the scattering matrix and the vacuum
self-energy, respectively, gives

−iΣNC
FTD =

GF

2
√

2
γµ(1− γ5)

∫
d4p

(2π)4
tr
[
γµ(1− γ5 − 4 sin2 θW )iSFTD(p)

]
,

(2.53)

where iSFTD(p) denotes the fermion propagator at FTD in the real time for-
malism given by [16]

SFTD(p) = S0(p) + ∆SFTD(p)

:= (/p+m)

[
1

p2 −m2
+ i2πδ(p2 −m2)

[
θ(p0)n+

f + θ(−p0)n−f

]]
.

(2.54)
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Thus the fermion propagator iSFTD(p) at FTD is just the usual vacuum prop-
agator iS0, supplemented by the thermal correction i∆SFTD. Below it shall
be deemed that all quantities are renormalized such that the contributions due
to loop corrections in vacuum exactly vanish at one loop order for an on-shell
neutrino. Thus the neutrino propagator eq. (2.45) and the dispersion relation
eq. (2.47) are not affected by loop corrections in vacuum.

The conclusion of the discussion above is that obviously two different ap-
proaches lead to the same result for the self-energy of the neutrino at FTD to
lowest order: on the one hand, these corrections can be calculated directly by
considering scattering off background particles at tree level and subsequently
summing coherently over all background states. Alternatively, the same result
can be obtained by calculating the one-loop corrections to the neutrino propaga-
tor and using the FTD correction i∆SFTD for the internal fermion propagator.

Of course this correspondence between the two approaches is no coincidence.
Comparing the diagrams in fig. 2.1 and fig. 2.2, obviously the scattering diagrams
fig. 2.1 (a) and (b) can be produced from the respective loop diagrams in fig. 2.2
by cutting the electron propagator. This equivalence has to be understood
by analogy with the optical theorem, which relates the imaginary part of the
matrix element of a loop diagram to the combination of the two subdiagrams
resulting from cutting the loop [20]. The imaginary part of the matrix element
can be obtained by replacing in the internal propagators 1/(p2

i − m2
i + iε) by

delta functions −2iπδ(p2
i −m2

i ). Physically, this can be interpreted as setting
the internal particles on shell. The optical theorem thus states that a loop
process with the internal particles set on shell can equivalently be considered as
two consecutive processes, where the initial particles go to some intermediate
state particles which then in a second process go to the final particles, and the
contribution of all possible intermediate particles are summed over.

Since the thermal part of the propagator, i∆SFTD, is defined such that the
usual denominator of the propagator is substituted by 2iπδ(p2

i −m2
i ) times the

distribution function n±f , a similar line of argument as for the optical theorem
can be used to relate the loop diagrams in fig. 2.2 to the scattering diagrams
in fig. 2.1. In fact, calculating the matrix element for the diagrams in fig. 2.2,
using i∆SFTD for one of the propagators, sets the respective particle on shell.
The matrix element can then be equivalently understood as a sum, weighted
by n±f , over all possible states corresponding to these particles, which are now
considered external. This discussion demonstrates the physical implication of
the thermal propagator defined in eq. (2.54), yet it is intended to motivate
rather than to derive the expression for the thermal propagator. For a more
complete treatment of the thermal propagator within the framework of the real
time formalism c.f. for example [21].

The above analysis of the effect of a thermal background on the propagation
of a test neutrino was restricted to the case of the test electron (anti)neutrino
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2.4 Oscillations at finite temperatures and densities

forward scattering off a background of electrons. Of course the scattering of neu-
trinos of any flavor off any kind of backgrounds is equally interesting. Repeating
the above calculations for these cases is straightforward. However, starting from
general considerations on Lorentz invariance, it can be derived that at one-loop
level, the self-energy is given by [22]4

±Σ(p) = m− (a/p+ b/u)PL, (2.55)

where a, b are Lorentz-invariant functions, and the upper sign refers to neu-
trinos while the lower sign refers to antineutrinos, which generalizes the result
eq. (2.46).

Evaluating the dispersion relation eq. (2.47) for the general self-energy eq. (2.55)
in the ultrarelativistic limit |b|, |a|, m� |p| ≈ p0 to lowest order in small quanti-
ties does not alter the result found in eq. (2.48). This means, to lowest order, also
in the general case given in eq. (2.55), the dispersion relation of a (anti)neutrino
gets corrected only by a potential energy term Veff ≡ ∓b, where b can be ex-
tracted from the general self-energy eq. (2.55) by the following equation:

b =
1

2p2

[[
(p0)2 − p2]tr

(
/uΣ(p)

)
− p0tr

(
/pΣ(p)

)]
. (2.56)

The change in the dispersion relation at FTD is very sensitively probed by
neutrino oscillations. As discussed in section 2.3, neutrino oscillations are an
interference phenomenon due to slightly different dispersion relations of the dif-
ferent mass eigenstates. Therefore a change in the dispersion relation changes
the interference pattern, and thus the oscillations. However, this effect only
occurs if the dispersion relation is not changed uniformly for all states, since
this would just give rise to an overall phase in the transition amplitude, which
is not observable in the oscillation probability. This condition is fulfilled for
many situations of experimental interest, for instance in the common case when
the background consists of atoms. While the interaction with the nucleons is
the same for all flavor states, the interaction with the electrons in the atoms is
different for electron neutrinos and neutrinos of different flavors. In fact, the
case of an electron neutrino scattering off a background of electrons has been
calculated in detail above,5 with the respective Feynman diagrams depicted in
fig. 2.1. For a neutrino of different flavor, the interaction shown in fig. 2.1 (a) is
suppressed due to lepton family number conservation. Therefore the only con-
tribution to Veff relevant to oscillations at FTD in ordinary matter is due to the
CC interaction depicted in fig. 2.1 (a), given by

V e
eff = −b =

√
2GFNe. (2.57)

4If CP violation is not maximal, as it can be the case for Beyond Standard Model (BSM)
scenarios, similar terms proportional to PR need to be added.

5The calculation was done assuming a free Fermi gas for the electrons, which is only an
approximation for electrons bound in matter.
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2 Neutrino phenomenology

Neglecting again the subtleties discussed in section 2.3, the time-independent
oscillation probability given in the first line of eq. (2.27) still holds, yet |pmi | is
now given in the ultrarelativistic limit by

|pmi | ' E2 − m2
i

2E
− Ṽ e

eff,i, (2.58)

where Ṽ e
eff,i is the effective potential in the mass basis. Inserting now this relation

into the first line of section 2.3 gives

Pαβ(L) '

∣∣∣∣∣∑
i

U∗αiUβi e
i(E2−m

2
i

2E
−Ṽ eeff,i)L

∣∣∣∣∣
2

=

∣∣∣∣∣ exp

[
−iU(diag

(
m2
i

2E

)
+ Ṽ e

eff)U †L

]
α,β

∣∣∣∣∣
2

=

∣∣∣∣∣ exp

[
−i(Ueff diag

(
m2

eff,i

2E

)
U †eff)L

]
α,β

∣∣∣∣∣
2

=
∑
i,k

U∗eff,αiUeff,βiUeff,αkU
∗
eff,βk exp

[
−i∆m2

eff,ikL

2E

]
, (2.59)

where Ueff, U †eff are the transformation matrices that diagonalize the matrix

U(diag(m2
i /2E) + Ṽ e

eff)U † appearing in the second line, and m2
eff,i are its eigen-

values.
As discussed in section 2.3, it is often justified to work in a two-flavor ap-

proximation, where the two dimensional matrix U2ν defined in eq. (2.36) can
be used for U . In cases where such an approximation is legitimate, also the
transformation matrices Ueff and U †eff can be cast into this form by defining an
effective mixing angle θeff at FTD as follows:

sin2 2θeff :=
sin2 2θ0(

cos 2θ0 + 2E
∆m2Veff

)2
+ sin2 2θ0

, (2.60)

where θ0 is the corresponding two-flavor mixing angle in vacuum. Accordingly,
the mixing matrix Ueff = (U2ν †

eff )T then reads

U2ν
eff =

(
cos θeff sin θeff

− sin θeff cos θeff

)
. (2.61)

The respective two-flavor probability at FTD can be readily inferred to be

P 2ν
(–)

α
(–)

α
=1− sin2(2θeff) sin2

(
∆m2

effL

4E

)
P 2ν

(–)

α
(–)

β
= sin2(2θeff) sin2

(
∆m2

effL

4E

)
, (2.62)
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where ∆m2
eff can be calculated to be

∆m2
eff = 2E

√(
∆m2

2E cos 2θ0 + Veff

)2
+
(

∆m2

2E

)2
sin2 2θ0. (2.63)

Equation (2.62) is again of the same form as the corresponding two-flavor limit
in vacuum, which has been derived for α, β = µ, τ in eq. (2.35). However,
unlike in the vacuum case, where the amplitude of the oscillation, sin2(2θ0), is
solely dependent on the entries of the PMNS matrix and thus determined by
nature, the amplitude in eq. (2.62) in addition depends via eq. (2.60) on Veff and
the energy E of the neutrino. Since Veff is in turn determined by the physical
properties of the background and E is determined by the neutrino source, the
oscillation amplitude at FTD can in principal be explored experimentally. In
particular, eq. (2.60) states that however small, yet non zero, the vacuum mixing
angle θ0 might be, if the resonance condition

cos 2θ0 = − 2E
∆m2Veff (2.64)

holds, the amplitude of the mixing probability will always be maximal. Since
neutrinos emitted by some source often follow a distribution, it is very likely that
some of them will hit the resonance condition eq. (2.64) if the spectrum lies in the
right range. Conversely, Veff depends on the properties of the background, like
the temperature or the electron number density for example in the case of the
effective potential given in eq. (2.57). But it is usually not possible to prepare the
background at scales necessary for oscillation experiments on earth. However,
in astrophysical environments, different backgrounds are naturally provided. A
special case is the sun, which produces electron neutrinos. It offers a special
environment with very high pressure in the center slowly decreasing towards its
outside. A neutrino produced at the center of the sun can be described as a
state in the effective mass basis, which is the basis in which the Hamiltonian
including Veff at this point is diagonal. Thus an electron neutrino is given by

|νe〉 =
∑
i

U∗eff,ei |pmeff,i
〉, (2.65)

where in the two-flavor approximation, U∗eff is given by the transpose of eq. (2.61).
At the center of the sun, Veff is large, and hence cos2 2θeff approaches one, while
sin2 2θeff can be neglected. Thus, at the center of the sun, the effective mass
basis and the flavor basis can considered to be aligned, and the electron state
coincides with one of the effective mass eigenstates. But if Veff changes adia-
batically, the initial eigenstate will stay an eigenstate of the Hamiltonian up to
small corrections proportional to the rate of change of the effective mixing angle
defined in eq. (2.61). However, its flavor composition slowly changes because
θeff evolves into θ0. In the center of the sun, |(Veff2E)/∆m2| is much larger
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2 Neutrino phenomenology

than 1 ≥ cos 2θ0, while outside the sun, |(Veff2E)/∆m2| is zero. Therefore, for
Veff varying continuously, the resonance condition eq. (2.64) is met if ∆m2 > 0
somewhere along the trajectory of a neutrino from the center to the outside
of the sun. In that case, the validity of the adiabatic approximation depends
on the size of the region where the resonance condition is fulfilled compared to
the oscillation length, and thus the neutrino energy. Measurements of energy
spectra of solar neutrinos demonstrated that adiabatic as well as non-adiabatic
flavor conversions occur in the sun. These are well in agreement with theory
beyond the adiabatic approximation and reveal that solar neutrinos indeed meet
the resonance condition eq. (2.64) while propagating through the sun, and hence
the sign of ∆m2 > 0 could be determined, as was mentioned in section 2.3 [7].

The various implications of a thermal background on neutrino mixing dis-
cussed in the above section commonly go under the name Mikheyev-Smirnov-
Wolfenstein (MSW) effect [23, 24].

2.5 Experimental evidence for neutrino oscillations

Having set up the stage by recapitulating the phenomenology of the SM neutrino
oscillations, it is now time to confront these predictions with the reality in the
form of data taken in numerous experiments around the globe. Since the first
compelling evidences for neutrino oscillations from the measurements of solar
and atmospheric neutrino fluxes, numerous experiments probing the SM oscil-
lation hypothesis have been conducted. These experiments have measured for
neutrinos from as different sources as reactors, the atmosphere, the sun as well
as beams produced in laboratories. The initial neutrino species in the different
types of experiments have either been particles or antiparticles of electron or
muon flavor. Neutrinos of all three flavors have been registered. Between the
experiments, the length of the baseline from the source to the detector ranges
from O(100m) to the distance between the earth and the sun, and the energy
of the neutrino ranges from O(1MeV ) to O(100GeV ). Lastly, neutrinos which
have propagated through vacuum as well as matter have been studied [25]. The
crucial question obviously is if all these experimental data match the oscillation
formulas eq. (2.27) and eq. (2.29), and if all results can be fitted with the same
values for the PMNS matrix. The Review of Particle Physics, which features
a comprehensive review of the experimental data in particle physics, states on
that matter:

“With the exception of a few possible anomalies such as LSND, cur-
rent neutrino data can be described within the framework of a 3× 3
mixing matrix between the flavor eigenstates νe, νµ, and νµ and the
mass eigenstates ν1, ν2, and ν3.” [7]
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2.5 Experimental evidence for neutrino oscillations

It seems therefore justified to conclude that the standard oscillation picture dis-
cussed in this chapter indeed exhibits a valid model. However, there are few
experiments reporting data that cannot be fitted satisfyingly with the param-
eters preferred by the majority of experiments. Even more intriguing, these
anomalies occur in experiments using different channels, techniques and base-
lines. Therefore a common explanation of these anomalies, which is independent
of the experimental systematics of the respective experiments, seems to suggest
itself. In this regards, an interesting idea is the extension of the three-flavor
oscillation model to a 3 + 1 model, which incorporates a fourth, light, “sterile”
state. This theory will be explored extensively in chapter 4.
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3 Brief introduction to the early
universe

3.1 Thermal history of the early universe

Following up on the summary of the characteristic properties of neutrinos given
in the last chapter, the current chapter discusses how particles with these prop-
erties impact the evolution of the universe. In this regard, sections 3.2.2 to 3.2.4
explain how various cosmological probes require very specific values for several
characteristic properties of neutrinos or other neutrino-like particles that were
present throughout the thermal history of the universe. To illustrate how these
constraints come about, the following section provides a short review of the
standard picture of the evolution of the early universe.

The universe at large scales is dominated by gravity. At these scales, gravity is
described by general relativity (GR). In this theory, Einstein’s equations, given
by [26]

Rµν −
1

2
R gµν = 8πGNTµν + Λgµν , (3.1)

with GN Newton’s gravitational constant, express the fundamental relations be-
tween matter, energy and space-time. In detail, in eq. (3.1) gµν denotes the
metric tensor associated with space-time. The terms Rµν and R refer to geo-
metrical measures which quantify how much an arbitrary Riemannian manifold
differs from flat Euclidean space [27]. Tµν represents the energy-momentum
tensor, which measures the flux of the µth component of the four-momentum
through a surface of fixed ν-coordinate. Hence for example T00 corresponds to
the energy density of the respective object described by Tµν whereas the diag-
onal entries Tii correspond to the pressure on the surface perpendicular to xi .
Finally Λ is a constant called cosmological constant. Λgµν can be interpreted
as a second energy-momentum tensor. Since the case of Tµν = 0 corresponds to
vacuum, Λgµν has then to be taken as the energy-momentum tensor associated
with the vacuum.

Despite the beautifully simple form of eq. (3.1), Einstein’s equations are only
solvable in special cases. The universe with its vast amount of matter clustered
in complex structures does not appear to be predisposed for being solvable.
However, to good approximation, the universe in fact is such a special case, due
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3 Brief introduction to the early universe

to the cosmological principal. This principal expresses the notable experimental
observation that at large scales, the universe is homogeneous and isotropic. This
implies that the metric tensor gµν has to equal the diagonal Robertson-Walker
metric

gµν = diag

(
1,
−a(t)

1− kr2
,−a(t)r2,−a(t) sin2 θ

)
, (3.2)

where k ∈ {−1, 0, 1} is the curvature constant, which determines the geometry
of 3-dimensional space to be either closed, open or spatially flat. The factor a(t)
represents the scale factor of the universe. Imposing also isotropy and homo-
geneity on the energy-momentum tensor Tµν leads to significant simplifications:
all off-diagonal entries have to vanish to leave Tµν invariant in a rotated ref-
erence frame. Furthermore, the energy density ρ and the pressure p cannot
depend on the spacial coordinate. This particular form of Tµν corresponds to
a perfect fluid1, which is a fluid characterized by vanishing viscous shear and
vanishing heat flux. In the rest frame of the perfect fluid the energy-momentum
then reads [26]

Tµν = −pgµν + (p+ ρ)g00. (3.3)

with gµν the Robertson-Walker metric defined in eq. (3.2). There are two note-
worthy special cases: [26]

p = 0 dust (3.4)

p =
1

3
ρ radiation (3.5)

The special case of zero pressure, eq. (3.4) is called dust. It corresponds to an
ideal gas in the limit of low velocities and is thus a good approximation for non-
relativistic matter. Since ρ = 3p is the equation of state for a relativistic gas, the
corresponding energy-momentum tensor using the relation eq. (3.5) is a good
approximation for radiation. In general, the universe contains both, dust and
radiation. However, it turns out that to good approximation at each moment of
time one particular component dominates.

The perfect fluid form of Tµν can be considered as a global picture of the
dynamical degrees of freedom (DOFs), which applies to the universe on average.
Locally, there are small deviations in Tµν probably initiated at very early times in
the universe. Therefore, the dynamical DOFs of the universe are usually modeled
as a background described as perfect fluid with small, local perturbations δTµν
to the energy-momentum tensor. These can be differentiated into perturbations

1Strictly speaking, a collisionless set of particles, as for example cold dark matter or neutrinos
after decoupling, do not constitute a fluid, however formally, the fluid form of Tµν can still
be used to model these “collisionless fluids” [28].
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that preserve the perfect fluid form of Tµν and perturbations that do not preserve
it, which are called anisotropic stress [29]. Since anisotropic stress involves p,
only relativistic particles can contribute to it. However, it turns out that for
strongly coupled particles the effect is negligible, because in this case variations
in the distribution function are small on length scales comparable with the mean
free path [30]. By contrary for free-streaming relativistic particles Tµν receives
local contributions of anisotropic stress. This applies in particular to neutrinos,
which decouple quite early and consequently become free-streaming while the
universe is still radiation dominated.

Inserting the perfect fluid energy-momentum tensor for the background, eq. (3.3),
and the Robertson-Walker metric eq. (3.2) in Einstein’s equations eq. (3.1) re-
sults in the Friedmann equations [26]

H2 :=

(
ȧ

a

)2

=
8πGNρ

3
− k

a2
+

Λ

3
(3.6)

ä

a
=

Λ

3
− 4πG

3
(ρ+ 3p) , (3.7)

where the variable H defined in eq. (3.6) is called the Hubble parameter. In
addition, accounting for local energy conservation, gives a third equation

ρ̇ = −3H(ρ+ p). (3.8)

Up to this point, all considerations solely relied on the cosmological principal.
From now on, the discussion is restricted to the ΛCDM framework, which is
the standard model of cosmology. This model combines GR including a small
but non-zero cosmological constant Λ with the particle content from the Stan-
dard Model of particle physics. In addition, one particle species beyond SM is
required, which is collisionless and cold. This new particle is called cold dark
matter (CDM). It is of minor importance for this thesis, and hence not discussed
in detail here. In the ΛCDM framework, assuming sharp transitions from rel-
ativistic to nonrelativistic velocities, essentially all particles can be assumed to
be either dust or radiation, as defined in eqs. (3.4) and (3.5). In addition, Λgµν
corresponds to a fluid with p = −ρ. This follows from interpreting Λgµν again
as the energy-momentum tensor for the vacuum. The equation of state p = −ρ
then derives from comparing the terms proportional to Λ with the corresponding
terms originating from Tµν in eqs. (3.6) and (3.7).

The Hubble parameter was measured to be positive. This implies that the
universe is expanding, because the scale factor increases. But from eq. (3.7)
follows, using the experimental fact that Λ is small2, that the change in the

2This holds only in the early universe. Since the energy density of matter and radiation con-
stantly decreases due to the expansion of the universe, Λ, which is constant, will eventually
be larger than the term proportional to (ρ+ p) in eq. (3.6).
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expansion rate constantly decreases. In turn this means that the expansion rate
has always been positive and the universe has always been expanding. Reversing
this argument the only logical solution then is that the universe earlier on was
very small and due to the laws of thermodynamics much denser and hotter than
it is today. In particular, there seems to have been a singularity of space-time,
usually called “the Big Bang” from which the expansion started.

Almost the complete history of the universe since the Big Bang can be de-
scribed quite accurately by the Friedmann equations eqs. (3.6) and (3.7) and
the laws of thermodynamics as demonstrated in the following very brief review.
The Friedmann equations encode the evolution of the universe in terms of the
energy density ρ. The energy density for a single particle species i can in turn
be calculated according to

ρ =
g

(2π)3

∫
d3pE(p)n±f/b(p) (3.9)

where g is the number of internal DOFs for this particle, and n±f/b(p) are the

distribution functions defined in eq. (2.37). In the ultrarelativistic limit, eq. (3.9)
can be evaluated to [26]

ρi '


7
8
π2

30 gT
4 fermions

π2

30 gT
4 bosons

. (3.10)

On the other hand, in the nonrelativistic limit, ρ is expressed by [26]

ρi ' g
(
miT

2π

)3/2

e−(mi−µ)/T

(
mi +

3T

2

)
, (3.11)

with µ the chemical potential and mi the mass of the particle. The total energy
density is just the sum of the individual ρi, that is ρ =

∑
i ρi.

Leaving aside the speculative first moments of the universe including possible
inflation and the electroweak phase transition, the thermal history revised here
starts at a very high temperatures T ∼ 100 GeV some picoseconds after the
Big Bang. Due to the extreme hot and dense environment, all particle species
are initially relativistic and in thermal equilibrium, and their respective energy
densities are given by the expressions in eq. (3.10). At this epoch, the universe
is radiation dominated. Hence, the approximation eq. (3.5) is legitimate and the
total energy density is given by [26]

ρ =
∑
i

ρi '
∑
j

gfj
7

8

π2

30
T 4
j +

∑
k

gbk
π2

30
T 4
k

=
π2

30
g∗(T )T 4, (3.12)
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with the effective number of degrees of freedom, g∗(T ), is defined by

g∗(T ) :=
∑
j

gbj

(
Tj
T

)4

+ 7/8
∑
k

gfk

(
Tk
T

)4

, (3.13)

where the gbj and gfk are the numbers of internal DOFs for bosons and fermions,
respectively, and the Tj/k are the individual temperatures of the particles. As
long as all particles are in thermal equilibrium, their respective temperatures
are the same, Tj = Tk = T . Usually the photon temperature Tγ is taken as
reference temperature T . Therefore, T denotes the photon temperature in what
follows.

During radiation domination, using eq. (3.12), eq. (3.8) can be integrated to
give the relation between the energy density and the expansion rate, [26]

ρ =
π2

30
g∗(T )T 4 ∝ a−4 (radiation domination). (3.14)

Thus, according to this equation T ∝ a−1. This proofs that the universe cools
down as it expands. During this process, its temperature gradually drops below
the rest mass of the heavier particles. This implies that the respective particles
become nonrelativistic and annihilate with the respective antiparticles. At the
same time, these particles are no longer recreated efficiently by pair produc-
tion from the vacuum. The energy due to potentially heavy particles remaining
after the annihilation is negligible at high temperatures as can be seen from
comparing eq. (3.10) and eq. (3.11). Consequently the total energy density is
still given by eq. (3.12), whereas g∗ reduces whenever T drops below the rest
mass of a particle. This process continues with the slight complication of the
quantum chromodynamics (QCD) phase-transition, during which hadrons form
from previously free quarks and gluons. Finally, the only remaining relativistic
particles are electrons, positrons, neutrinos and photons, which gives four inter-
nal fermion DOFs for the charged leptons, two internal fermion DOFs for each
of the three SM neutrino species as well as two internal boson DOFs for the
photon, and hence g∗ = 2 + 7/8× 4 + 7/8× 6 = 10.75.

As the universe expands further, it becomes less and less likely that two par-
ticles meet. If this probability becomes too small for a specific particle, its
reaction rate becomes virtually zero. However, interactions are necessary to
establish thermal equilibrium. Consequently, a particle that does not interact
with the bath of remaining particles drops out of thermal equilibrium. As a
minimal condition for a particle i to be in thermal equilibrium it is usually re-
quired to react on average at least once during the history of the universe [26].
This condition is expressed by

Γi ∼ ni〈σv〉 > H, (3.15)
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where Γi is the interaction rate, ni is the number density and 〈σv〉 is the ther-
mally averaged cross section. For neutrinos, which only interact through the
weak interaction with small cross section, the condition eq. (3.15) is no longer
fulfilled around T ∼ 1 MeV. Hence, neutrinos at this temperature cease to be
in thermal equilibrium with the bath of particles and decouple or “freeze out”.
From this moment on, neutrinos essential stream freely, only their momentum p
redshifts by the factor a/afreeze out. Since only the ratio p′/Tν = pa/(Tνafreeze out)
appears in the distribution function defined in eq. (2.37), equivalently the tem-
perature Tν can be considered to scale with the inverse factor afreeze out/a.

Soon after the decoupling of the neutrinos, the temperature drops below the
rest mass of the electron and thus the electrons and positrons become nonrela-
tivistic. The only remaining relativistic species in the SM are therefore photons
and neutrinos. The subsequent annihilation of electrons and positrons into pho-
tons enhances the temperature of the photon bath. However, neutrinos are no
longer in thermal contact with the photons and therefore the photon tempera-
ture T and the neutrino temperature Tν differ after the annihilation of electrons
and positrons. The ratio between the two temperatures can be calculated by
imposing entropy conservation,

d(sa3) = 0, (3.16)

where s = S/V is the entropy density. This is justified because the increase in
entropy in any single process is negligible compared to the total entropy of the
universe [31]. The entropy density si due to a specific particle species, in the
limit of vanishing chemical potential, is given by [31]

si =
Si
V

=
ρi + pi
Ti

. (3.17)

Accordingly, the total entropy density for relativistic particles reads

s =
∑
i

si =
2π2

30
g∗sT

3, (3.18)

where g∗s is by analogy to eq. (3.13) defined as [31]

g∗s(T ) :=
∑
j

gbj

(
Tj
T

)3

+
7

8

∑
k

gfk

(
Tk
T

)3

. (3.19)

Applying entropy conservation to the total entropy density eq. (3.18) results
in [31]

g∗s(T )T 3a3 = const. (3.20)
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On the other hand, as argued above, the neutrino temperature Tν scales with
a−1, and hence also

T 3
ν a

3 = const (3.21)

holds. Combining these relations results in [31]

g∗s(T )

(
T

Tν

)3

= const, (3.22)

Before electrons and positrons become nonrelativistic, they contribute to g∗s,
which hence amounts to

g∗s = g∗ =2 + 3.5 + 5.25 = 10.75 (before e− e+ annihilation). (3.23)

After this process, inserting the photon and neutrino DOFs and Tν into eq. (3.19)
g∗s gives

g∗s =2 + 5.35

(
Tν
T

)3

(after e− e+ annihilation). (3.24)

Evaluating the condition eq. (3.22) for the situation at a temperature T0 before
neutrino decoupling and at a temperature T after electrons and positrons have
annihilated finally results in

10.75

(
T0

T0,ν

)3

=

(
2 + 5.35

(
Tν
T

)3
)(

T

Tν

)3

⇒ Tν
T

=

(
4

11

) 1
3

, (3.25)

using that before neutrino decoupling T0 = T0,ν .
The evolution of the universe, its scale factor and expansion rate are corre-

lated with the energy density, as expressed by the Friedmann equations eqs. (3.6)
to (3.8). Hence, the result eq. (3.25) derived above is very important, because
it allows to calculate g∗ according to eq. (3.13), and consequently the impor-
tant energy density in relativistic DOFs. Explicitly, using eq. (3.12), ρ can be
estimated according to

ρ ' π2

30
g∗(T )T 4 =

π2

30

(
2 +

7

8
× 2× 3×

(
Tν
T

)4
)
T 4

=
π2

30

(
2 +

7

4
× 3×

(
4

11

) 4
3

)
T 4. (3.26)
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The above equation does not hold exactly. This is on the one hand due to the
relativistic approximation eq. (3.10), on the other hand the above derivation
of the ratio Tν/T relied on the assumption that neutrinos are completely de-
coupled at the time of the electron-position annihilation. However, since the
neutrino momenta are distributed according to eq. (2.37), the decoupling con-
dition eq. (3.15) is not met simultaneously by all neutrinos and a small fraction
is still in thermal contact with the photon bath at the time of electron-position
annihilation. Taking into account these effects as well as corrections due to fla-
vor oscillations, the energy density can be calculated to higher accuracy. In that
case, it is convenient to parametrize the energy density due to relativistic DOFs
by analogy to eq. (3.26) as [31]

ρ :=
π2

30

(
2 +

7

4
×Neff ×

(
4

11

) 4
3
)
T 4, (3.27)

whereNeff is the effective number of relativistic species beyond the well-established
photons. Neff is thus measured in units of the number of SM neutrino species
in the limit of instantaneous decoupling [32]. It is currently calculated to [33]

Neff = 3.045. (3.28)

Any measurement of an excess of this number would hint at additional relativis-
tic species in the early universe.

After the decoupling of the neutrinos and the annihilation of electrons and
positrons, the universe expands and cools further. So far neutrons and protons
are converting constantly in one another other, with an inter-conversion rate
of Γp↔n ∼ G2

FT
5. Hence, neutrons and protons are in thermal equilibrium,

with their respective number densities distributed according to the ratio n/p =
e−Q/T , with Q = 1.293 MeV denoting the mass difference between neutrons and
protons [34]. On the other hand, in the early universe, the Hubble parameter
can be estimated from the first Friedmann equation eq. (3.6) to give

H2 ' 8πGNρ

3
'
√
g∗GNT

2, (3.29)

neglecting the small cosmological constant Λ and the term ka−2 � ρ ∝ a−4,
which is legitimate for the small a in the early universe. Comparing eq. (3.29) to
the inter-conversion rate Γp↔n, reveals that the equilibrium condition eq. (3.15)
ceases to hold at some temperature [34]

Tp/n ∼ (g∗GN/G
4
F)

1
6 ∼ 1 MeV. (3.30)

Thus, the ratio n/p = e−Q/Tp/n at this point is sensitive to g∗ and hence Neff.
Since from the point when Tp/n is reached neutrons and protons are no longer in
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3.1 Thermal history of the early universe

equilibrium, neutrons decay and consequently the ratio n/p = e−Q/Tp/n reduces
further. However, as the temperature of the universe continues to decrease, at
some point it drops below the nuclear binding energy ∼ 0.1 MeV. As a conse-
quence, light nuclei form from the previously free protons and neutrons. This
process is known by the name of Big Bang nucleosynthesis (BBN). The ratio
between the various light elements produced during BBN depends on the rela-
tive densities of protons and neutrons. These initial ratios are still correlated
with the fractions of the respective light elements measured today. In partic-
ular, BBN is the only notable source of deuterium. Therefore, the deuterium
abundance today is directly linked to the densities of protons and neutrons at
the time of BBN [34].

As the temperature falls well beneath the ionization energy of hydrogen at
about 300.000 years after the Big Bang, electrons and protons in the plasma
recombine to hydrogen atoms. Since up to this point, the dominant interaction
process for photons is Thompson scattering on free electrons, the interaction
rate of photons is drastically reduced after recombination because virtually no
more free electrons and protons are existent. Hence, photons from that moment
on start streaming freely and light can spread for the first time. This also im-
plies that all photons present at that moment essential travel without change
of polarization and direction from the point of their last scattering during re-
combination up to date. Along the way their temperature changes according
to T ∝ a−1 due to redshift in the same way as explained for neutrinos above,
because the universe continues to expand. Consequently these photons today
have wavelengths in the microwave range and are hence known by the name
cosmic microwave background (CMB). Neglecting secondary effects impacting
the photons since decoupling, the CMB photons measured today arrive from a
shell consisting of the points where the last scattering event before decoupling
happened, called “last scattering surface”. In the limit of instantaneous decou-
pling, all the photons in the CMB were released at the same moment in time,
hence by looking at these today, one sees a redshifted “snapshot” of the universe
at the time of recombination.

The CMB measured today exhibits an almost perfect blackbody spectrum.
Since each photon essentially points back to the last scattering event, this implies
that the universe was extremely isotropic at the time of recombination. However,
an expansion of the CMB power spectrum in spherical harmonics reveals small
but very important features. In particular, traces of small fluctuations in the
matter density can be observed. These are the seeds for the complex structures
observed today, because overdense regions are the source of slightly stronger
gravitational potentials which attract matter from slightly underdense regions.
As a result initially overdense regions accredit more and more matter. For
ordinary matter this process could only start after photon decoupling, because
it was previously inhibited by radiation pressure. Before photon decoupling,
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3 Brief introduction to the early universe

the counteracting impulses of gravity and pressure induce oscillations in the
plasma, which give rise to sound waves. The pattern of the sound waves of
various modes translates to the CMB power spectrum, because areas of different
densities in the plasma have slightly different temperatures. After decoupling,
these variations result in peaks at certain values of the multipoles in the power
spectrum of the CMB, known as acoustic peaks. These peaks correspond to
maximally overdense or underdense regions in the plasma and hence accord with
those modes of the plasma oscillation, which exhibit a maximum or minimum
at the time of decoupling [35]. Sticking with the metaphor of a photograph, the
“snapshot” of the universe at the time of recombination is “blurred” because
of a long “exposure time” [31]. This is because the decoupling of the photons
from the plasma did not happen instantaneously but in fact their coupling to
the plasma first decreased, leading to an intermediate phase where photons
would diffuse rather than freestream. This makes the “snapshot” “blurred”,
since this diffusion phase washes out small scale structures and hence suppresses
anisotropies at high multipoles. This effect is known as Silk damping [36].

Of course the history of the universe does not end after recombination and
the release of the CMB. However, the details of the physical processes happen-
ing at later times are less important in the context of this work and therefore
not included in this short review. Based on evolution of the early universe pre-
sented here, the next sections give a more detailed analysis of the specific role
of neutrinos and more generally light, weakly-interacting species.

3.2 Cosmological probes sensitive to neutrino-like
particles

3.2.1 Neutrinos and neutrino-like particles

The short review in the previous section revealed in particular the crucial im-
pact of relativistic species on the evolution of the early universe. For most of
this epoch, neutrinos and photons are the only relativistic species in the ΛCDM
framework. In particular, neutrinos constitute 40% of the total energy den-
sity during radiation domination [37]. Neutrinos in addition decouple early on,
therefore, besides being a dominant ingredient they are also a very peculiar
case, as their evolution is significantly different from other particles. Therefore,
it does hardly come as a surprise that various cosmological probes proved very
efficient in constraining neutrino parameters. The set of parameters cosmology
is sensitive to is, however, different to that measured in direct neutrino detection
experiments. This is because cosmology is dominated by gravity, whereas grav-
ity is negligible in earthbound neutrino experiments. In particular, cosmological
probes are not very sensitive to SM neutrino oscillations and they are less sen-

38



3.2 Cosmological probes sensitive to neutrino-like particles

sitive to cross sections. By contrary, as discussed in the following sections, very
stringent bounds on the sum of neutrino masses and the number of neutrinos can
be derived from various cosmological probes, assuming the ΛCDM framework.
Therefore, the results from earthbound neutrino experiments and cosmology are
vastly complementary.

It is, however, very important to note that the constraints from cosmology
are based on the underlying model. In particular, going beyond the ΛCDM
model adopted so far, it is not straightforwardly provided that the two sets
of constraints actually apply to the same particles. For instance, it would in
principal be conceivable that neutrinos were not produced in the early universe
for some unknown reason or decayed, which would imply that the bounds from
cosmology would not apply to neutrinos measured for example in oscillation
experiments [32]. However, there are three characteristic parameters that can
be probed independently using cosmological observables, as will be discussed in
the following sections: the value Neff, the existence of a free-streaming species
during recoupling and the smallness of the corresponding mass-parameter. The
combination of the results on each of these characteristic parameters from var-
ious cosmological probes confine the most likely interpretation to neutrino-like
particles [32]. These particles share some fundamental features with the SM
neutrinos. In detail, these features comprise a very low mass, such that the
particles are relativistic at least during radiation domination. Furthermore the
coupling to other species has to be small enough, such that the particles de-
couple very early on and become free-streaming, but strong enough such that
they were in thermal equilibrium initially. To keep agnostic about the nature of
the particles probed by cosmological observables as well as to stay as general as
possible, the following analysis refers to neutrino-like particles, defined by the
features described above.

3.2.2 Constraints based on Neff

This section discusses constraints on Neff, defined in eq. (3.27). As explained
above, this number is a measure for the number of relativistic species except
photons during radiation domination. According to the ΛCDM model, this
number is associated with the number of SM neutrino species and expected to
be 3.045. Different cosmological probes are sensitive to this value and can hence
provide constraints, as reviewed in what follows.

The first bound is established by the CMB. As stated in eq. (3.29), the Hubble
rate is directly related to g∗ and hence Neff. The main effect of increasing (de-
creasing) H on the CMB power spectrum is due to an increase (decrease) of the
Silk damping scale. In principal, varying Neff has further and more drastic effects
on the CMB spectrum, but these are degenerate with the impact of varying other
parameters. Thus, to avoid these drastic effects on the CMB spectrum, which
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would be strongly disfavored, the degenerate parameters can be varied simulta-
neously. This applies for example for the density of dark matter: to compensate
for the effect of Neff on the CMB spectrum, a higher dark matter density has
to be assumed. However, an increased dark matter density impacts structure
formation, which induces secondary effects on the CMB spectrum through weak
lensing [32]. The current bound from the Planck measurement of the CMB, in-
cluding weak lensing effects, is 3Neff = 3.11+0.44

−0.43, in agreement with the ΛCDM
expectation [38].

The second constraint derives from BBN. As discussed previously, the relative
abundance of light elements measured today is still correlated with the relative
abundance of these elements produced during BBN. However, this relative abun-
dance depends on the temperature at which the inter-conversion ceased being
efficient. This temperature Tp/n was estimated above according to eq. (3.30),
which depends explicitly on g∗ and hence Neff [34]. Adding results from the
measurements of the primordial light element abundances to the result from
CMB measurements quoted above reduces the error by up to 30% compared to
the value quoted above, to give 4Neff = 3.06+0.26

−0.28 [38].

The correlation between Neff and the dark matter density imposed by the
CMB spectrum finally gives rise to a third constraint which is due to the angu-
lar matter power spectrum. This spectrum is a power spectrum of the matter
density in universe as a function of scale. It provides a measure of how matter
structures formed from initial perturbations. Before photon decoupling, dark
matter and baryonic matter behave differently, and hence their impact on the
early structure formation is different: baryons exhibit acoustic oscillations as de-
scribed previously, while dark matter falls unimpededly into gravitational wells
and starts building up structure earlier on. Therefore, increasing the dark mat-
ter density as required due to the degeneracy with Neff, while leaving the density
of baryonic matter fixed, changes the matter power spectrum. However, con-
straints derived from the analysis of large scale matter structure are not very
restrictive and hence combining these data with the datasets discussed above
has little impact [32].

In conclusion, the different cosmological observables reviewed above favor
ranges of Neff in precise agreement with the expectation from the ΛCDM model
for the SM neutrinos. This result makes the existence of an additional neutrino-
like particle very unlikely.

3This number includes additional information measured in galaxy redshift surveys to break
some of the degeneracies between parameters constrained by the CMB.

4This number includes in addition to the results on light element abundances also information
obtained from the polarization of the CMB.
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3.2.3 Constraints based on free-streaming

So far the analysis only required the neutrino-like particles to be relativistic
until recombination. However, as mentioned above, neutrinos are furthermore
a special case, because they decouple early on and subsequently become free-
streaming. As discussed above, this implies that the corresponding energy-
momentum tensor locally receives contributions of anisotropic stress. This is a
distinct feature, which is not shared by other relativistic but interacting species,
like photons. It implies that unlike in the case of a perfect fluid, perturbations in
the neutrino density are damped inversely proportional to time. Furthermore,
since neutrinos move at the speed of light by the time of decoupling, perturba-
tions in the neutrino density propagate much further than perturbations in the
plasma, which are transferred through acoustic oscillations moving at the speed
of sound. Lastly, adding anisotropic stress to the energy-momentum tensor as a
source of gravity quite generally leads to a richer structure of metric perturba-
tions compared to the energy-momentum tensor corresponding to a perfect fluid.
All three phenomena have via gravitational interaction a small but measurable
effect also on the other particles [37], which can in particular be observed in
the CMB spectrum. Measurements by Planck [39] indeed find for the parameter
c2

vis, which quantifies anisotropic stress, a value of 0.327 ± 0.037. This value is
well in agreement with the prediction of 1/3 for SM neutrinos in the ΛCDM
model. In the case of interacting neutrino-like particles the value of is expected
to be zero, c2

vis = 0.

3.2.4 Constraints based on the sum of masses

SM neutrinos are furthermore required to have a small mass due to highly signifi-
cant evidence for non-zero mass-squared differences from oscillation experiments,
as reported in chapter 2. The effect of a non-zero mass can also be constrained
by cosmological probes as summarized in this section.

For neutrino-like, and hence free-streaming particles, probes on large scale
structure (LSS) formation provide strong constraints on the mass. This is be-
cause these particles virtually do not see potential wells smaller than their free-
streaming scale, which roughly corresponds to the distance traveled during a
Hubble time scale tH = (a/ȧ). Therefore, they do not contribute to poten-
tial wells smaller than this scale. Hence, LSSs at scales smaller than the free-
streaming length lack the contribution due to massive neutrino-like particles.
The heavier the neutrino-like particle is compared to the total matter structure,
the larger the deficit. On the other hand, free-streaming particles fall into wells
larger than their free-streaming length. However, their contribution to these
large structures is very small. A second effect is due to the impact massive,
free-streaming particles have on the balance between the gravitational forces
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driving structure formation and the expansion parametrized by H. This is be-
cause massive neutrino-like particles contribute to the total background density
which determines H in terms of eq. (3.6), but they do not contribute to density
fluctuations, because they are free-streaming. In combination, these effects re-
sult in a suppression of small structures below the free-streaming length, which
are imprinted in the angular matter power spectra measured today [32].

However, this transformation of the matter power spectrum would impact
other parameters which would result in drastic modifications of the CMB spec-
trum. By the same line of argument employed in section 3.2.2, these unrea-
sonable effects on the well-measured CMB spectrum can be avoided by varying
simultaneously degenerate parameters. The corresponding parameter in this
case is the Hubble rate H. Varying H suppresses, however, the structures at
high scales. Therefore, the effect of a combined analysis of the mass of the
neutrino-like particle and H is an almost uniform suppression of LSSs at all
scales [32].

Neutrino-like particles also contribute to the late background evolution, be-
cause due to its mass it eventually becomes nonrelativistic at late times in
the history of the universe. Therefore, the CMB spectrum itself is also sen-
sitive to the mass of the neutrino-like particle due to the late integrated Sachs-
Wolfe (ISW) effect. This effect is caused by changes in the gravitational potential
along the line of travel of a CMB photon. On the one hand, photons experience
an effective change of frequency when traversing a potential well which changes
meanwhile. This is because the initial blueshift from falling in is not compen-
sated by the redshift from climbing out. On the other hand, when a potential
perturbation decays, the space-time smoothens and hence a photon moving in
the space-time suffers a blueshift [40].

Lastly, the suppression of structures generate weak lensing effects, which im-
pact the measurement of the CMB spectrum. In particular the reduction of
structures at large scales caused by varying H in combination with the mass
of the neutrino-like particle decreases weak lensing effects on the CMB spec-
trum [32].

So far, the discussion neglected the case of multiple neutrino-like particles
each having a different mass. In principal different masses would imply different
free-streaming scales for each of the neutrino-like particles. However, for small
differences in the masses, this effect is small. The other effects leaving imprints
on cosmological probes only depend on the total mass of all neutrino-like parti-
cles, which is comprehensible from the discussion above. Therefore, cosmological
probes in the main provide an upper bound to the total mass of neutrino-like
particles with little sensitivity to the individual masses.

The latest Planck results constrain the sum of neutrino-like particles to 5
∑
mν <

5c.f. footnote 3.
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0.13 eV[38]. This is compatible with bounds coming from measuring the matter
power spectrum, which are, however, much more difficult to interpret [38].

If the three SM neutrinos were indeed the only neutrino-like particles in
the early universe, their minimum masses would be constrained by the mass-
squared differences measured in oscillation experiments. Assuming that the
lowest mass eigenstate was exactly zero, the two massive mass eigenstate would

be
√

2.56× 10−3 eV2 ≈ 0.051 eV and
√

3.73× 10−5 eV2 ≈ 0.009 eV, using the
best-fit values for the mass-squared differences given in table 2.1. In NH, the
sum of the neutrino masses would hence be

∑
mν ≈ 0.06 eV, whereas in IH it

would be
∑
mν ≈ 0.1 eV. Thus, current cosmological data are once again in

agreement with the prediction from the ΛDCM model. By contrary, the param-
eter space for an additional neutrino-like particle is very narrow, in particular
assuming IH.
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4 Analysis of neutrino oscillations in a
3 + 1 framework

4.1 Introduction of the 3 + 1 framework: motivation and
theoretical background

From the discussion in chapter 2, the three-flavor oscillation paradigm emerges as
a largely consistent framework, in which most of current data can be interpreted
compellingly. On the other hand, a number of apparently independent anomalies
continue to impugn this paradigm. A desirable goal is therefore to find a new
model that excels the three-flavor model by matching also the datasets which
seem anomalous in the standard approach, while still fitting equally well the
majority of data which seem to be in agreement with the three-flavor model.
One model that has been tipped for quite a while as promising candidate is
the 3 + 1 model, c.f. for instance [41]. This model is a rather straightforward
generalization of the three-flavor oscillation model, where in addition to the three
SM neutrinos a fourth neutrino takes part in the oscillations. The idea is then
that the 3 + 1 framework is required to fit all the data including the anomalies,
just like the two-flavor limit fits a subset of the data well, but to fit all the data
– excepting the anomalies – the three-flavor framework is required.

However, the number of neutrinos subject to the weak interaction and lighter
than the Z boson has been determined in the SLC and LEP experiments to
be three. Hence, the fourth, light neutrino has to be a singlet under the weak
interaction, thus the name “3 + 1”, referring to the three SM model plus the
fourth singlet – or “sterile” – neutrino. But as has been discussed in section 2.2,
supplementing the SM Lagrangian by a term for the neutrino mass by analogy
to the other fermions necessarily calls for at least one “sterile” right-handed
field. The charge-conjugated sterile left-handed field naturally mixes with the
active neutrinos. As has been argued in section 2.2, the mass scale for such
sterile neutrinos is not related to the mass scale of the other fields in the SM.
There are no definite theoretical arguments requiring sterile neutrinos to be of
small masses around O(1 eV). In particular, the seesaw-mechanism would favor
the sterile fields to be heavy. However, there is no fundamental obstacle that
prevents the SM from containing a sterile neutrino that is light enough such that
a flavor eigenstate produced in some neutrino source is a coherent superposition
of four mass eigenstates.

45



4 Analysis of neutrino oscillations in a 3 + 1 framework

While it is reassuring to note that the implementation of sterile neutrinos
could be achieved straightforwardly, the exact theoretical model is not required
to study the phenomenology of neutrino oscillations in the 3 + 1 framework. In
particular, as has been noted in section 2.3, possible Majorana phases do not al-
ter the phenomenology of oscillations. Therefore, the only additional parameters
needed to describe oscillations in the 3+1 framework are the third mass-squared
difference ∆m41 and the parameters describing the mixing between the sterile
state and mass eigenstates. The leptonic mixing matrix in the 3 + 1 framework
is of dimension 4× 4. Including the new entries, it can be parametrized by

U3+1 = O34(θ34)V24(θ24, δ24)O14(θ14)O23(θ23)V13(θ13, δ13)V12(θ12, δ12),
(4.1)

where, as in eq. (2.6), Oij(θij) denotes a real rotation matrix corresponding to a
rotation in the (ij)-plane parametrized by the rotation angle θij , and Vij denotes
a complex rotation matrix parametrized by the angle θij and a phase δij . This
parametrization of the mixing matrix will be used without further notification
whenever it is explicitly needed in what follows. Because the derivation of the
vacuum oscillation formulas eqs. (2.27), (2.29) and (2.31) given in section 2.3
never relies on the number of neutrino states, but only on the fact that a mass
eigenstate can be written as a coherent superposition of flavor eigenstates, the
corresponding oscillation probabilities in the 3+1 framework are readily obtained
by inserting the respective elements of the mixing matrix eq. (4.1) into the
standard oscillation formulas eqs. (2.27), (2.29) and (2.31).

Since the mixing matrix in eq. (4.1) features two additional phases and three
additional angles, one might expect a clear improvement of the fit to global os-
cillation data. This should be especially true for a subset of experiments, whose
parameters allow for the SBL approximation, which holds for ∆m2

ijL/4E � 1

and ∆m2
4i ≈ ∆m2

41, with i, j ∈ {1, 2, 3}, j < i. Using this approximation, the
oscillation probability depends only on the column U3+1

α4 , thus not on the well-
measured entries of U3×3:

P SBL
(–)

α
(–)

α
= 1− 4|Uα4|2(1− |Uα4|2) sin2

(
∆m2

41L

4E

)
P SBL

(–)

α
(–)

β
= 4|Uα4|2|Uβ4|2 sin2

(
∆m2

41L

4E

)
(α 6= β). (4.2)

However, it is extremely challenging to fit the data reasonably well, even when
restricting the dataset solely to the subset of experiments which the above SBL
approximation applies to. The reason for that is that the SBL approximation is
legitimate to experiments that call for rather pronounced mixing with the fourth
mass eigenstate, as well as to experiments which exclude such a strong mixing.
The picture becomes more complicated when considering the full dataset and
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going beyond the SBL approximation in eq. (4.2). For instance at long base-
line (LBL), oscillations involving the mass-squared differences ∆m2

4i average out,
resulting in a constant, overall reduction of the flux, which in some experiments
is degenerate with uncertainties. Furthermore, at least two effects beyond the
pure oscillation phenomenology constrain the 3+1 scenario. The first is that for
certain parameters, a MSW resonance should be detectable for neutrinos propa-
gating through matter. The second is that the oscillation probability should not
depend on the neutrino source. On the other hand, within certain individual

channels, the “
(–)

ν e →
(–)

ν e” or “
(–)

ν e disappearance” channel, the “
(–)

ν µ →
(–)

ν µ” or

“
(–)

ν µ disappearance” channel and the “
(–)

ν µ →
(–)

ν e” or “
(–)

ν e appearance” channel,
rather consistent fits are possible using the 3 + 1 framework.

Due to this entanglement of inconsistent evidences it is necessary to evaluate
all the available data carefully to allow for conclusions about the potential of the
3 + 1 framework. In the following sections, such an evaluation of the global data
is performed by reviewing the global fits in the individual channels as well as of
all channels combined, based on the references [2] and [3]. The implementations
of the analyses of the individual experimental results are in large part based on
adaptions of GLoBES [42, 43]. GLoBES is a publicly available software package
designed for the simulation of long baseline neutrino oscillation experiments.
Details on the implementations of the respective analyses can be found in dif-
ferent publications, quoted in the captions of the tables 4.2, 4.4 and 4.5, which
enlist the corresponding experiments. The analysis in the 3 + 1 framework is
preceded by a short review of the parameter goodness of fit (PG) test, a sta-
tistical measure specifically designed to quantify the amount of tension between
subsets of the total dataset. This measure will prove essential in disentangling
the various evidences from the different channels.

4.2 Interlude: parameter goodness of fit

The original motivation for the introduction of the PG method as a statistical
test actually arose in the context of the analysis of neutrino data in the context
of 3 + 1 models. Therefore it is not surprising that the PG test continues up to
date being an important statistical tool to this effect, albeit its practicality is
not restricted to this specific application [44].

The PG test is potentially superior to classic statistical tests, most notably
the widely used GOF test, in the context of global fits, when a large dataset
comprising the data measured by various experiments is fitted with many pa-
rameters. The well-known cause for the weak performance of the GOF test
can be inferred from the following typical scenario: within a global fit, usually
any of the investigated parameters is only constrained by a small subset of the
complete dataset. Conversely, the remaining fraction of the data points is not
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sensitive to this particular parameter, therefore these can be fitted rather well,
regardless of the concrete value of that parameter. If this part of the dataset
is large, possible stringent constrains from the small fraction of data points ac-
tually sensitive to the parameter in question can get “washed out” completely.
On the other hand, as the authors of [44] argue, the PG is based on parameter
estimation and consequently the problem of possible constraints on a parameter
from a small subset of data being “diluted” by the overwhelming majority of
many insensitive data points is evaded.

The PG test provides a statistical measure that allows to test for the compat-
ibility of different datasets within the framework of a given theoretical model.
This is achieved by dividing the total dataset in two statistically independent
subsets A and B. A test statistic χ2

PG then measures how well the datasets A and
B, fitted independently, match a certain hypothesis compared to the combined
fit to the united dataset A ∪B. Concretely, χ2

PG is defined by

χ2
PG ≡ χ2

min,global − χ2
min,A − χ2

min,B = ∆χ2
A + ∆χ2

B, (4.3)

where χ2
min,global is the minimum of the χ2-function, obtained from the fit to the

complete dataset A∪B, and χ2
min,A and χ2

min,B are the corresponding minima of

the fit to the datasets A and B, respectively. The ∆χ2
i introduced in the second

equality are defined as the respective differences between the minimum of the
χ2 function χ2

i , which corresponds to the subset i ∈ {A,B}, and the value of χ2
i

evaluated at the global best fit point (BFP),

∆χ2
i ≡ χ2

i (BFP)− χ2
min,i, (4.4)

which is obviously always greater or equal to zero, ∆χ2
i ≥ 0. It is shown in [44]

that χ2
PG itself follows a χ2 distribution with NPG degrees of freedom, where the

number NPG is given by

NPG ≡ PA + PB − P, (4.5)

and PA and PB are the numbers of parameters constrained by the subset A and
B, respectively, whereas P is the total number of parameters of the model with
PA, PB ≤ P . Accordingly, the respective p-value can be calculated in the usual
way by

p =

∫ ∞
χ2

PG

dx fχ2(x;NPG), (4.6)

where fχ2(x;NPG) denotes the probability density function of the χ2 distribution
corresponding to χ2

PG. Hence the PG test quantifies the compatibility of the two
subsets A and B by the p-value given in eq. (4.6). A formal derivation of this
statistical measure and more details are given in [44].
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4.3.1 Reactor experiments

1Preceding the combined fit to the global data in the
(–)

ν e disappearance channel,
this section is dedicated to the analysis of the data measured by reactor experi-
ments. The common denominator of this subset of experiments is that nuclear
reactors, utilizing nuclear fission, provide the source of antineutrinos detected in
the respective experiments. These antineutrinos are produced as byproducts in
the reactors, because every fission is usually followed by a chain of beta decays,
each releasing one electron antineutrino. Since the chemical elements created as
fission products and thus the starting point of these decay chains are not deter-
mined definitely but follow a distribution, the antineutrino flux produced in a
reactor is actually the superposition of the antineutrino beta spectra from thou-
sands of possible decay branches [45]. This flux can be detected experimentally
through inverse beta decay (IBD), where either the total rate of antineutrinos
is registered, or the number of antineutrinos per energy bin, that is, an energy
spectrum is measured.

The reason for going the extra mile and analysing the reactor data separately

is that on the one hand the global fit in the
(–)

ν e disappearance channel is largely
dominated by the reactor data, in particular NEOS, DANSS and the latest data
from Daya Bay2. On the other hand, the interpretation of the reactor data cru-
cially relies on the theoretical prediction of the flux generated by the respective
reactor, which is, however, a non-trivial phenomenon, as explained above. Re-
cent re-calculations of these fluxes in 2011 [46, 45] have resulted in an increased
prediction compared to earlier publications. Taking these new calculations as a
basis, the data measured by the reactor experiments on average lie below their
respective predicted values. This discrepancy is known by the name reactor an-
tineutrino anomaly (RAA). In the context of the 3+1 model, the RAA could be
explained by oscillations of electron antineutrinos into sterile neutrinos. How-
ever, the validity of the flux predictions is challenged by two recent experimental
results. First, very precise measurements of the energy spectra exhibit a fea-
ture in the data, often described as “bump” or “shoulder”, around Eν ∼ 5 MeV
which cannot be explained within the available theoretical models of these spec-

1The results presented in the current section, section 4.3, are mainly based on [2] and to some
extent on [3]. Significant parts of these results were contributed by Álvaro Hernández-
Cabezudo and the author. In particular, all plots containing only reactor data, figs. 4.1
and 4.2 as well as the corresponding statistical parameters, were provided by Álvaro

Hernández-Cabezudo. The combined fit to the global data in the
(–)

ν e disappearance channel
resulting in fig. 4.3 and the corresponding statistical parameters were contributed by the
author.

2For references to the individual experiments used in this section, c.f. table 4.2.
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tra [47]. Second, the Daya Bay collaboration explored the time-dependence of
the IBD yield σf , which is a measure of the antineutrino detections per fission.
The rate of change in the IBD yield is reported to be different from the rate of
change theoretically expected due to the time-dependence of the fuel composi-
tion. Furthermore, the deviation from the theoretical predictions is different for
the individual fission isotopes [48]. The latter result in particular, independent
of the significance of the RAA, questions also the sterile neutrino oscillation
hypothesis as is explained below.

Obviously without addressing the issues concerning the correct prediction of
the reactor antineutrino flux and spectrum raised above, a sensible answer to
the question whether reactor data can be fitted within the 3 + 1 framework is
not possible. Therefore, this section reviews the strategy on how to treat the
reactor data consistently, which was developed in [2] an followed in [3]. This

strategy is the basis for the global fit in the
(–)

ν e disappearance channel, reported
on in section 4.3.2.

Concerning the reactor spectra, according to the point of view taken in [2],
the data suggest that the theoretical model might be insufficient. Therefore the
strategy is to eliminate the dependence on the disputed theory prediction by
comparing spectral data to measured spectra at a different baseline. In table 4.2
it is indicated in the comments column whenever spectral information is used
and the respective reference spectrum is given. For Bugey-3, which consists of
three detectors at different baselines, the strategy is to introduce a free nuisance
parameter for each energy bin. These nuisance parameters are then correlated
one by one between the three detectors (for details, c.f. [2]). However, a small
dependence on predicted spectra remains, encoded in the energy integral needed
to predict total rates and for averaging each energy bin over the resolution
function.

For the reactor rates, in principal the same strategy could be employed, that
is a free nuisance parameter could be used such that the normalization of the
fluxes from the reactors are completely unconstrained. However, it is not obvious
whether this approach is justified. On the one hand, as for example the authors
of [47] stress, a distortion of the spectrum does not necessarily imply a wrong
prediction of the rate. In particular, these two effects should a priori be treated
as two separate phenomena. On the other hand, the evidence for a nonuniform
discrepancy between the fluxes coming from different fuel components and the
respective predictions, as provided by the Daya Bay collaboration, seems to
point in the direction of an inadequacy of the theoretical model.

Hence within the context of the 3 + 1 model two hypotheses need to be con-
trasted in order to decide upon a prescription which determines what the reactor
data should be compared to. The first or “fixed fluxes” hypothesis, H0, states
that the current predictions of the fluxes are correct and the mismatch with
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data is due to oscillations into sterile neutrinos. The second or “free fluxes”
hypothesis, H1, states that the normalization of the reactor fluxes is not mod-
eled adequately for one or more of the fuel components and the mismatch with
data can be resolved by solely rescaling the fluxes. A third hypothesis, stating
that the flux predictions are modeled insufficiently and oscillations into sterile
neutrinos occur, is possible yet neglected for the moment.

If H0 turns out to be more likely then H1, the appropriate strategy would be to
take the flux predictions at face value, thus use “fixed fluxes”. By contrast, if H1

is more probable, the appropriate strategy would be to implement “free fluxes”
in form of unconstrained priors for the individual flux components. The different
potential of H1 and H0 to describe the Daya Bay dataset can be quantified by
a test statistic T , defined by

T = χ2
min(H0)− χ2

min(H1). (4.7)

The respective χ2 functions for H0 and H1 need to be constructed according to
the experimental details of the Daya Bay flux measurement. The collaboration
provides the data in eight bins labeled by a ∈ {1 . . . 8}. Each bin a is char-
acterized by the composition of the reactor fuel in fractions F ai of the primary
fission isotopes 235U, 238U, 241Pu and 239Pu, where i ∈ {235, 238, 239, 241}. The
predicted IBD yield in each bin a is given by

σapred =
∑
i

P ioscξiF
a
i σ

HM
i . (4.8)

Since the fractions F a238 and F a241 were measured to be relatively small compared
to the other two fractions, the contributions of 238U and 241Pu can be considered
subleading below. In eq. (4.8), σHM

i denotes the IBD yield expected according
to the references [46, 45]. P iosc is the oscillation probability at the detector,
averaged over energy. It has to be evaluated according to the hypothesis under
consideration, that is it depends on the 3 + 1 oscillation parameters for H0

and on the standard oscillation parameters for H1. The four ξi are nuisance
parameters which tune the normalization. Each of these nuisance parameters is
associated with a prior χ2

flux(ξi). The value of each prior χ2
flux(ξi) again depends

on the hypothesis. In the case of the hypothesis H0, the four χ2
flux(ξi) encode

the systematic uncertainties on the fluxes, provided in [46, 45]. In the case of
H1, ξ235 and ξ239 are allowed to vary freely, that is the respective priors are zero,
χ2

flux(ξ235) = χ2
flux(ξ239) = 0. However, also in the case of H1 a weak 1σ prior

of 10%3 relative to [46, 45] is imposed on the flux normalizations ξ238 and ξ241,
corresponding to the subleading isotopes, to avoid unphysical results.

3This number was chosen to match the analysis of the Daya Bay collaboration. In the global
fits, these priors on the subleading isotopes are set to the more conservative value of 20%.
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The χ2 functions can then be specified by

χ2 =
8∑

a,b=1

(σaobs − σapred)V −1
ab (σbobs − σbpred) + χ2

flux(ξi), (4.9)

where Vab is a covariance matrix encoding statistical and correlated systematic
errors. σaobs is the observed IBD yield in the a-th F239 bin, and σapred is the re-
spective prediction according to eq. (4.8). With this definition, the test statistic
T defined in eq. (4.7) can be evaluated. The result is

Tobs = 6.3 , p-value = 0.7% (2.7σ) , (4.10)

where the p-value is evaluated by Monte Carlo simulation [2]. This result implies
that the hypothesis H0 is rejected with respect to H1 at 99.3% confidence level
(CL), which is in qualitative agreement with the value of T = 7.9 reported
in [48]. As has been argued in [2], the reason for the slightly different results
is that in eq. (4.9), the uncertainties on the flux predictions are included as
described above, whereas these are neglected in [48].

The result given in eq. (4.10) is plausible according to physical reasoning.
Pursuant to H0, the fluxes from the individual isotopes are fixed within the re-
spective uncertainties to the corresponding predictions. Therefore, to minimize
the χ2-function eq. (4.9), the only term that can be fitted without constraints
is the oscillation probability P iosc contributing to the predicted IBD yield σapred

given in eq. (4.8). However, P iosc has only a weak dependence on the isotope i
due to the slightly different antineutrino spectra for each isotope. In the region
∆m2

41 & 0.05 eV2, oscillations can be considered to be averaged out completely
and therefore being independent of the energy spectrum. Accordingly, P iosc be-
comes independent of the isotope i and acts just as a global normalization factor,
P iosc ≈ 1− 1

2 sin2 2θ14 ≡ P glob
osc . By contrast, pursuant to H1, the fluxes from the

individual isotopes are allowed to vary without constraints within their respec-
tive physical range, while P iosc ≡ P SM

osc is a constant in this scenario. Comparing
the impact of these two hypotheses on the fit to the data showing nonuniform de-
viations from the theoretically expected value σHM

i , it is obvious that a uniform
normalization factor is not expected to give a fit as good as adapted normaliza-
tion factors for each of the fluxes might do.

The result for T , given in eq. (4.10), seems to imply that considering only
the Daya Bay flux measurement, H0 is rejected with respect to H1. However,
within both hypotheses, the data can be fitted very well, with a GOF p-value
of 73% and 18%, respectively, as can be seen from table 4.1. It is therefore in
particular advantageous that due to its precise measurement, it is possible to
extrapolate from the Daya Bay data the predicted IBD yield in terms of various
fractions of fission isotopes in the reactor fuel also for different reactor experi-
ments. Combining this information with the knowledge about the composition
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Analysis χ2
min/DOF GOF sin2 2θBFP

14 ∆χ2(no osc)

H0: fixed fluxes + νs 9.8/(8− 1) 18% 0.11 3.9
H1: free fluxes (no νs) 3.6/(8− 2) 73%

Table 4.1: Fits to the Daya Bay flux measurements based on the hypotheses
H0 and H1. For H0, the fluxes from the individual isotopes are
fixed within the respective uncertainties to the corresponding pre-
dictions [46, 45] and ν̄e can oscillate into sterile neutrinos νs. Here,
it is assumed that ∆m2

41 & 0.05 eV2 holds, such that oscillations are
expected to average out. Hence, the fit is performed with a single
free parameter in the form of the mixing parameter sin2 2θ14, and the
number of DOFs is one. The result of the fit for this parameter is
given at the BFP. For H1, the fluxes from the leading isotopes are
allowed to vary without constraints, but θ14 is set to zero. Hence,
in this scenario the fit is performed with two free parameters in the
form of the nuisance parameters ξ235 and ξ239. The GOF p-values are
calculated by Monte Carlo simulation. They can be reproduced quali-
tatively assuming that the respective χ2-functions defined in eq. (4.9)
follow a χ2-distribution.
Table taken from [2] (wording slightly modified).

of the reactor fuel for the individual experiments, for each experiment the corre-
sponding χ2-function can be evaluated once for H0 and once for H1. This allows
for a comparison between H0 and H1 beyond the Daya Bay data set. This
comparison can be complemented by the spectral ratios measured in reactor
experiments, which constrain the oscillation probability into sterile neutrinos at
various baselines independent from the predicted rates. Using this information,
the above evaluation of the test statistic T can be extended to the global reactor
data. The respective experiments are given in the first block of table 4.2. The
only difference between the dataset presented in [2] compared to the dataset
presented in [3] is that instead of the data set shown in March 2017 [49], the
recent preliminary results from the DANSS experiment presented in December
2017 [50] are used. The exposure times between the two DANSS data sam-
ples approximately increased by a factor of four. The numerical values for T
calculated in the respective references are

T obs = 2.9 [2] (all reactors, 2017) (4.11)

T obs = −1.3 [3] (all reactors, 2018), (4.12)

where for the combined analysis within the “flux free” approach correlations
among the different rate measurements have been taken into account, that is,
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the nuisance parameters ξi introduced in eq. (4.8) are fitted globally, and the
corresponding priors χ2

flux(ξi) are added only once to the global χ2-function.
Correlations between the analyses of the spectra are not taken into account, ex-
cept between Daya Bay and NEOS, which are both evaluated with respect to the
same near detector. This approach can be considered slightly overconservative.

The results given in eqs. (4.11) and (4.12) imply that the initial preference for
H1 over H0 of the Daya Bay only analysis decreases in the light of global reactor
data. In particular the negative value for T in eq. (4.12) even expresses a slight
preference of H0 over H1. The reason for these results can be understood from
the spectral data, especially from DANSS and NEOS, depicted in fig. 4.1. Each
of these spectra features modest distortions – less pronounced for DANSS (a)
than for NEOS (b) – which can be fitted better by an oscillating function than
by a constant. This is illustrated by the sample fit functions plotted on top of
each set of data points. Already by eye it can be estimated that for instance
the dashed lines, which correspond to the respective BFP of the individual fit to
each of the spectra within the 3 + 1 framework, reproduce the spectral features
quite well. The numerical evaluation gives a difference of ∆χ2 = 13.6 in the
χ2-functions between the BFP in the 3 + 1 framework and the BFP assuming
no oscillations involving the sterile state for the combined datasets from DANSS
and NEOS. This corresponds to a rejection of the no-oscillation hypothesis at
the 3.3σ significance level, as can be seen in the first row of table 4.3.

In summary this careful evaluation of the two hypotheses H0 and H1 on the
basis of the global reactor data shows that neither of them can be rejected
definitively. Furthermore, still another valid option is to leave the priors on the
individual fluxes free and additionally allow for oscillations into sterile neutrinos.
The corresponding hypothesis was previously called H2 and not tested explicitly.
However, since H1 has proved valid, this applies all the more to H2, because H1

can be considered to be just a special case of H2. Given that result, the ap-
propriate strategy according to [2] is to consider two scenarios whenever reactor
rates are involved: on the one hand, this is the scenario underlying H0, that is,
the rate predictions are taken at face value within the quoted uncertainties, and
oscillations are calculated within the 3+1 framework. On the other hand, within
the second scenario, the flux normalizations for the two main fission isotopes are
treated as free parameters and additionally oscillations into sterile neutrinos are
also allowed.

With this strategy the reactor data can finally be evaluated within the 3 + 1
framework. The relevant parameters to fit the data can be inferred from the vac-
uum survival probability Pēē in the 3+1 framework. It is obvious from eq. (2.29)
that Pēē only depends on the squared entries |Uei|2 of the first row of the mix-
ing matrix, and hence the angles θ12, θ13 and θ14. In the SBL approximation
eq. (4.2), applicable to most of the reactor experiments, all mass-squared differ-
ences except ∆m2

41 are effectively zero. This approximation is not justified for
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(a) (b)

Figure 4.1: Observed spectra for the DANSS (a) and NEOS (b) experiments
compared to the predicted spectra at the individual best fit points
(dashed) and the best fit point from a global analysis of all reactor
data (solid). The left panel shows the ratio of the observed event
rates at the two detector locations in DANSS (24 bins). The right
panel shows the NEOS spectral data relative to the prediction ex-
trapolated from the measured Day Bay spectrum (60 bins). The
best fit points are ∆m2

41 = 1.32 eV2, sin2 θ14 = 0.012 for DANSS,
∆m2

41 = 1.78 eV2, sin2 θ14 = 0.013 for NEOS + Daya Bay, and
∆m2

41 = 1.29 eV2, sin2 θ14 = 0.0089 for the fit to all reactor data,
assuming a free normalization for the neutrino fluxes from the four
main fissible isotopes.
Figure and caption taken from [3].

LBL reactor experiments and KamLAND, which are instead sensitive to ∆m2
31

and ∆m2
21 respectively. Since on the other hand ∆m2

21 and θ12 are not properly
constrained by the reactor experiments alone but only in combination with solar
data, they are fixed in the current fit to avoid unphysical values. Furthermore
also ∆m2

31 is fixed, thus the remaining parameters eventually used in the fit are
θ13, θ14 and ∆m2

41, and additionally the individual normalization parameters of
the fluxes from 235U and 239Pu in the case of the “flux-free” scenario. Of course
the oscillation probability is always calculated in terms of all relevant parame-
ters, irrespective of whether these are free or fixed and at no point any (SBL-)
approximation of the full oscillation probability is used. The result of the fit is
shown in fig. 4.2 [3].

55



4 Analysis of neutrino oscillations in a 3 + 1 framework

★★★★

�������
��% (� ���)

��� ���� ��� �����

���� ���

�����

����+
���� ���

��� ����
��� �����

��-� ��-� ��-�
��-�

�

��

|���|
�

Δ
�
�
�
�
[�
�
�
]

Figure 4.2: Allowed regions at 95% CL (2 DOF) from reactor data. The solid
curves correspond to Daya Bay spectral data (black), NEOS + Daya
Bay (green), and DANSS (orange); they are independent of assump-
tions on fluxes because they are only based on spectral ratios. The
light-shaded areas labeled “old” correspond to all data from table 4.2
except Daya Bay, DANSS, NEOS, and they are shown for the flux-
free analysis making no assumptions about flux normalization and
spectra (light green), as well as for the flux-fixed analysis (light or-
ange), assuming reactor flux predictions and their published uncer-
tainties. The blue shaded regions correspond to all reactor data
from table 4.2 for the flux-free analysis, whereas the dashed ma-
genta contours indicate the global data for the flux fixed analysis.
The white (pink) star indicates the best fit point ∆m2

41 = 1.29 eV2,
sin2 θ14 = 0.0089 (∆m2

41 = 1.29 eV2, sin2 θ14 = 0.0096) for free
(fixed) reactor fluxes.
Figure and caption taken from [3].
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In fig. 4.2, the shaded regions refer to the “old data”, predating the summer
conferences 2016, once evaluated within the “flux-free” scenario, and once within
the “flux-fixed” scenario. In the “flux-fixed” analysis, the RAA can be observed
for the “old data”, that is at the 95% CL, sterile oscillations are preferred over
no oscillations. In the “flux-free” analysis, this preference for sterile neutrinos
disappears, however, the preferred parameter space in the “flux-fixed” scenario
is consistent with the allowed parameter spaces in the “flux-free” scenario.

The recent spectral data from DANSS, NEOS and Daya Bay are shown as
solid lines in fig. 4.2. The NEOS data are fitted together with the Daya Bay
data, because the spectrum measured by NEOS is compared to spectra at the
Daya Bay near detectors (NDs). While this combination of data leads to a
closed region in the parameter space, the Daya Bay spectral data at the far
detector compared to the same near detectors exclude the corresponding BFP
below ∆m2

41 ' 0.1 eV2. The DANSS spectral data show a preference for the
sterile neutrino oscillation hypothesis, while the Daya Bay spectral data as well
as the combination of the NEOS and Daya Bay spectral data do not confirm this
result. However, their limits exhibit pronounced, sinuous features, which can be
traced back to the spectral features observed in fig. 4.1. These sinuous features
are partly consistent with the regions preferred by DANSS. The DANSS BFP
at ∆m2

41 = 1.78 eV2 is compatible with a local minimum ∆m2
41 = 1.3 eV2 in the

combined NEOS and Daya Bay fit.

Finally fig. 4.2 shows that the parameter regions preferred by the “old data”
using the “flux-fixed” approach are in mild tension with the preferred param-
eter regions of the recent spectral data from DANSS, NEOS and Daya Bay.
Nevertheless, a combined fit to the global reactor data within the “flux-fixed”
scenario increases the significance of the preference for sterile neutrino oscilla-
tions to 3.5σ compared to 3.3σ for the combined datasets of DANSS and NEOS
quoted above, as can be seen from the third row in table 4.3. Using the “flux-
free” approach, the significance decreases slightly to 2.9σ. The corresponding
BFP is in good agreement with the DANSS data, as can be observed in fig. 4.1
(a). In this figure, the red, dashed line, representing the BFP found in the fit
to the DANSS data only, is very close to the green, solid line representing the
BFP of the combined fit to global reactor data. For the NEOS data shown in
fig. 4.1 (b) the respective curves seem to differ significantly. However, the NEOS
dataset is statistically dominated by the low energy part, where the two lines
representing the different BFPs match actually rather well.

In conclusion, the result of the combined fit to the global reactor data is
that oscillations into sterile neutrinos are preferred over no oscillations with a
significance of ∼ 3σ, independent from the assumption on the flux uncertainties.
This indication for sterile neutrinos is driven by distortion in the various reactor
spectra [3].
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4.3.2 Global
(–)

ν e disappearance analysis

In this section, the detailed analysis of the global reactor data and the RAA
reviewed in section 4.3.1 is put in the broader context of the global data in the
(–)

ν e disappearance channel. This is particularly interesting, because this dataset
includes measurements that exhibit unresolved anomalies. In previous works,
for example [51], it has been shown that these “gallium anomalies” can be fitted
within the 3+1 framework. These fits resulted in parameter spaces preferred by
the reactor experiments and by the “gallium anomalies”, which only partially

overlap. However, the global data in the
(–)

ν e channel could be fitted rather
consistently. This analysis has been repeated on the basis of recent reactor data
in [2] and updated in [3] using the newest results from DANSS. After a short
introduction of the non-reactor dataset going into these analyses, the results of
the works cited above are reviewed in what follows.

A complete list of the experiments used in this section, including the refer-
ences to the corresponding publications, is given in table 4.3. In this table,
the experiments are grouped into blocks according to the respective neutrino
source. Two experiments, SAGE and GALLEX, are enlisted twice. The reason
for this is, that the calibration measurements of these experiments featured the
“gallium anomalies” quoted above. Hence the calibration measurements and
the measurements during the proper runtime of these experiments are treated
separately.

The first block of table 4.3 is constituted by the reactor experiments already
discussed in the previous section.

The second block of table 4.3 consists of solar neutrino experiments, which
detect neutrinos produced in the sun. The results of these experiments can be
impacted by two effects due to light sterile neutrinos. On the one hand, the
mixing with sterile neutrinos would reduce the number of neutrinos measured
on earth compared to what is theoretically expected within the Standard So-
lar Model. Hence, when measuring electron neutrinos, the mixing with sterile
neutrinos would be detected as an overall flux reduction, proportional to Ue4.
When measuring other neutrino flavors through NC interactions as for exam-
ple in SNO, the impact on the normalization of the solar flux is affected also
by other active-sterile mixing parameters, in particular θ24 and θ34. On the
other hand, also the MSW effect inside the sun, described in section 2.4 for SM
neutrinos, receives corrections from the mixing with sterile neutrinos within the
3+1 framework, c.f. [89]. This leads to a non-trivial dependence of the detection
probability on all the six active-sterile mixing parameters in the 3+1 framework,
including the complex phases.

The third block of table 4.3 comprises experiments measuring electron neu-
trinos originating from the decay of intermediate particles, which are produced
when a proton beam is directed onto a target. This production mechanism
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Experiment References Data points Comments (
∑

Data points)

Reactor experiments (233)
ILL [52] 1 rate
Gösgen [53] 3 rates
Krasnoyarsk [54, 55, 56] 4 rates
Rovno [57, 58] 5 rates
Bugey-3 [59] 35 spectra at 3 distances with

free bin-by-bin normalization
Bugey-4 [60] 1 rate
SRP [61] 2 rates
NEOS [62, 63] 60 ratio of NEOS and Daya Bay

spectra
DANSS [50] 24 ratios of spectra at two base-

lines (updated w.r.t. [2])
Double
Chooz

[64] 1 near detector rate

RENO [65, 66] 2 near detector rate
Daya Bay
spectrum

[67] 70 spectral ratios EH3/EH1 and
EH2/EH1

Daya Bay
flux

[48] 8 individual fluxes for each iso-
tope (EH1, EH2)

KamLAND [68] 17 very long-baseline reactor ex-
periment (L� 1 km)

Solar neutrino experiments (325)
Chlorine [69] 1 rate
GALLEX/
GNO

[70] 2 rates

SAGE [71] 1 rate
Super-
Kamiokande

[72, 73, 74, 75] 165 Phases I–IV

SNO [76, 77, 78] 75 Phases 1–3 (CC and NC data)
Borexino [79, 80, 81] 81 Phases I and II

νe scattering on carbon (νe + 12C→ e− + 12N) (32)
KARMEN [82, 83, 84] 26
LSND [85, 84] 6

Radioactive source experiments (gallium) (4)
GALLEX [86, 70] 2 νe from 51Cr source
SAGE [87, 88] 2 νe from 51Cr and 37Ar sources

Table 4.2: Experimental datasets included in the
(–)

ν e disappearance analysis.
The total number of data points is 594. More details can be found in
ref. [2]; the only update with respect to [2] is new data from DANSS
[50].
Table and caption taken from [3] (wording for both slightly modified).
Note added by the author: technical details on the implementa-
tion of the respective experiments can be found in the appendix of [2]
for Daya Bay, Neos and DANSS, and in the appendix of [51] for the
remaining experiments.
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of a neutrino source is described in more detail in section 4.4. Inside the
detector, an electron neutrino can react with a carbon nucleus according to
νe + 12C → e− + 12N. The detection signature comes from the decay of the
very short-lived nitrogen atom back to carbon, 12N→ νe + 12Ce+, where both,
the electron and the positron, are registered, allowing for a precise background
rejection. Since these experiments are conducted at SBL where standard os-
cillations have not yet developed, they constrain the oscillation probability of
electron neutrinos into sterile neutrinos.

Lastly, the fourth block contains the calibration measurements of SAGE and
GALLEX, as mentioned above. These were performed twice for both experi-
ments. In each round, a probe of a radioactive element – 37Ar and 51Cr in the
case of SAGE, and both times 51Cr in the case of GALLEX – was placed inside
of the respective detector as a neutrino source providing a precisely known flux.
The detector material in both cases is gallium. The detection principle exploits
the radioactivity of the isotope 71Ge: since 71Ge is produced by electron neutri-
nos from the gallium inside the detector according to νe + 71Ga → e− + 71Ge,
counting the decays of 71Ge reveals the number of neutrinos interacting in the
detector. In all four calibration runs a rate 10% to 20% less than theoreti-
cally expected was measured, a finding known by the name “gallium anomaly”.
While it is established that transitions of the gallium atoms into two excited
states of 71Ge besides the ground state are possible, their impact has been up
for debate. However, as the authors of [90] argue, even assuming no contri-
bution at all from the disputed excited states of 71Ge cannot compensate for
the measured deficit. Independent of this argument, recent measurements of
the Gamov-Teller strength entering the theoretical predictions have confirmed
previous experimental results [90]. Within the 3 + 1 framework, the gallium
anomaly can be explained by SBL oscillations of the electron neutrinos into
sterile neutrinos within the respective detector volume.

Although the exploited source of neutrinos is different for each of the set of
experiments subsumed above under the tags reactor, solar, scattering on carbon
and radioactive source, uncertainties of the individual experiments within one
category might not be independent from one another. For the global analyses
performed in [2, 3], these correlations among the experiments within each cat-
egory have been taken into account. Nevertheless, such correlations could in
principle as well occur between experiments assigned to different categories. In
particular, such correlations are obviously expected for the calibration runs of
SAGE and GALLEX and their actual measurements of solar neutrinos. How-
ever, as reported in [2], the different spectra of the neutrinos measured during
calibration and at runtime introduce different systematic errors. This is be-
cause the neutrinos detected at runtime induce mainly transition of 71Ga to
the ground state of 71Ge, whereas the main source of uncertainty during the
calibration runs is due to the transitions of 71Ga into excited states. Therefore
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it was argued in [2] that correlations between experiments assigned to different

categories within the
(–)

ν e disappearance channel can be neglected.

The result of the fit to these experiments is shown in fig. 4.3 and the cor-
responding statistical quantities are enlisted in table 4.3 [3]. The parameters
which have been scanned in the fit are given in the first row of table 4.6. Com-
pared to the set of parameters discussed above, which were used to fit the reactor
data, the previously fixed parameters θ12, ∆m2

21 and ∆m2
31 need to be added.

This is because by including the results from the solar experiments the dataset
becomes sufficiently sensitive to these additional parameters. The solar data
are furthermore sensitive to θ24, θ34 as well as to the complex phases as has
been discussed above. However, the impact of the phases has been found to be
marginal, therefore these are not counted as extra DOFs. On the other hand, θ13

is now fixed to reduce the complexity of the fit. This is justified because the un-
certainties on θ13 are very small, and furthermore it has been shown in [51] that
the determination of θ13 is not impacted by the existence of sterile neutrinos.

In fig. 4.3, the light and dark blue shaded areas refer to the parameter regions
preferred by the reactor data in the “flux free” scenario at 95% and 99% CL,
respectively. These regions are virtually congruent with the regions shown in
fig. 4.2. Since the corresponding preferred parameter regions in the “flux-fixed”
scenario are very similar at low ∆m2

41 but shifted somewhat to lower values of
the mixing parameter |Ue4| for higher ∆m2

41 as can be observed in fig. 4.2, the
“flux free” scenario depicted in fig. 4.3 corresponds to the more conservative
result in this case. The black, dashed lines correspond to the limits of the solar
data on high values of the mixing parameter |Ue4|. Since for solar neutrinos to
good approximation ∆m2

21×L/E is of order O(∆m2
21×L/E) . 1, the oscillatory

factors due to the other mass parameters ∆m2
i1 ≈ ∆m2

i2 can be safely assumed
to average out, since ∆m2

i1 ×L/E ≈ ∆m2
i1/m

2
21 →∞ for i > 1. Because of this

approximation, the limit obtained from the solar data is independent of ∆m2
41.

The main tension of the solar data with the sterile neutrino hypothesis is due to
the fact that the mixing with the sterile neutrino would effectively reduce the
solar neutrino flux. However, in particular the flux originating from the decay
of 8B in the sun is in very good agreement with theoretical calculations, which
sets an upper bound on |Ue4|. This limit is complemented at high ∆m2

41 by the
limits of LSND and KARMEN, shown as brown, dot-dashed lines, which did
not report any deviations from the standard oscillation scenario.

For comparison, also the limits from the atmospheric neutrino experiments
SuperKamiokande (SK), IceCube (IC) and DeepCore (DC) are shown, although

they are not included in the global fit to the
(–)

ν e disappearance data. Similar to
the case of the solar data discussed above, the main impact of sterile neutrino on
the low-energy atmospheric data from SK and DC is a constant reduction of the
muon and electron neutrino survival probabilities [91]. In the analysis of these
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Figure 4.3: Constraints derived in the
(–)

ν e disappearance channel, projected onto
the plane spanned by the mixing matrix element |Ue4|2 and the mass
squared difference ∆m2

41. The parameter space to the left of the thin
lines and inside the light-shaded regions is allowed at 99% CL while
the parameter space inside the dark-shaded regions and to the left
of the thick lines is allowed at 95% CL. The reactor analysis, shown
in blue, relies on the assumption of “flux-free” normalizations. For
comparison the green curves indicate the limits on |Ue4|2 obtained
from the atmospheric neutrino experiments SK, IC and DC. These
experiments are discussed in more detail in section 4.5. The red
regions represent the constraints from all data combined, excepting
the atmospheric experiments SK, IC and DC. The corresponding
experiments are enlisted in table 4.2.
Figure taken from [3]

62



4.3
(–)

ν e disappearance data

data, a correlated uncertainty on the normalization of the muon neutrino flux
and the electron neutrino flux is imposed. However, from the high-energy data
from IC, the reduction of the muon flux due to sterile neutrinos is independently
strongly constrained, as will be discussed in section 4.5. Therefore the combina-
tion of these three experiments imposes a constraint on the mixing parameter
|Ue4| which is comparable to the constraint from the solar data (c.f. [3] for fur-
ther details on the argument). By contrast to the scenario shown in fig. 4.3, all
the limits discussed above would be fully consistent with the regions preferred
by reactor data in the case of the “flux-fixed” analysis.

The parameter region shown in yellow is preferred at 95% CL by the data mea-
sured by the radioactive source experiments to resolve the “gallium anomaly”.
At 99% CL, these data do not result in closed contours and are thus compatible
with the no-oscillation hypothesis. The parameter regions preferred by the ra-
dioactive source data and by the reactor data, respectively, overlap only partly.
A combined fit to these two datasets converges to the parameter region around
∆m2

41 ∼ 4.5 eV2 allowed by both, which is, however, disfavored by the limits
from solar data and the dataset obtained from LSND and KARMEN.

Finally the light and dark red shaded areas display the parameter regions

preferred by the combined fit to the global data in the
(–)

ν e disappearance channel
at 95% and 99% CL, respectively. Since the constraint on small mixing due to the
dataset from the radioactive source experiments is rather weak, with zero mixing
being allowed at 99% CL, the fit is dominated by the reactor data. Consequently,
the region preferred by the global fit as well as the BFP are actually disjoint to
the region preferred by the GALLEX and SAGE dataset. At the BFP, the PG
test, reviewed in section 4.2, gives a p-value of pPG = 3.1% for the comparison of
data from the radioactive source experiments and the reactor experiments, which
indicates a minor tension between these datasets. Nevertheless, the significance
of the preference for oscillations of electron (anti)neutrinos into sterile neutrinos
increases slightly compared to the reactor only fit in the previous section, as
can be seen in the last column of table 4.3. In the “flux-fixed” scenario, this
significance is as high as 3.8σ, for the more conservative “flux-free” scenario, it
is still well above 3σ.
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Analysis ∆m2
41 |U2

e4| χ2
min/DOF ∆χ2(no-osc) significance

DANSS
+NEOS

1.3 eV2 0.00964 74.4/(84− 2) 13.6 3.3σ

Reactor fluxes floating freely
all reactor 1.3 eV2 0.00887 185.8/(233− 5) 11.5 2.9σ
(–)

ν e disap-
pearance

1.3 eV2 0.00901 542.9/(594− 8) 13.4 3.2σ

Reactor fluxes fixed at predicted value ± quoted uncertainties
all reactor 1.3 eV2 0.00964 196.0/(233− 3) 15.5 3.5σ
(–)

ν e disap-
pearance

1.3 eV2 0.0102 552.8/(594− 6) 17.5 3.8σ

Table 4.3: Best fit values and statistical parameters obtained in the
(–)

ν e disap-
pearance channel, sorted by the datasets underlying the analysis. The

global reactor dataset and the full
(–)

ν e disappearance dataset with the
corresponding experiments enlisted in table 4.2, include rate measure-
ments. Therefore, for these data, the fit is performed one time with
fluxes fixed and one time with fluxes floating freely. In each of the
fits, θ14 and ∆m2

41 are free parameters. In addition, θ13 is a free pa-
rameter in the fits to the “all reactor” dataset, while in the analyses

of the “
(–)

ν e disappearance” data, the parameters listed in the first
row of table 4.6 are fitted, see text for explanations on the choice of
parameters. Furthermore, as explained in section 4.3.1, in the “flux-
free” approach, the normalization of the 235U and 239Pu fluxes are
treated as free parameters, while a prior is imposed on these parame-
ters in the “flux-fixed” approach. For each of the fits, the next-to-last
column enlists the difference ∆χ2(no-osc) between the χ2 function at
the respective BFP and the χ2 function evaluated for no oscillations.
The last column gives the significance at which the no-oscillation hy-
pothesis is disfavoured for each dataset, assuming that ∆χ2(no-osc)
is distributed according to a χ2 distribution with two degrees of free-
dom.
Table (slightly modified) taken from [3].
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4.4
(–)

ν e appearance data

4As stated above, the term “
(–)

ν e appearance channel” refers to the specific set-
ting of neutrino experiments, where the initial particles are muon neutrinos or
antineutrinos whereas the detector is sensitive to electron neutrinos or antineu-
trinos. Consequently this channel is in fact sensitive to the process

(–)

ν µ →
(–)

ν e
and hence the detection of the respective (anti)particle effectively measures the
probability of a flavor change from muon to electron flavor. A potential deviation
from the probability predicted in the standard three-flavor scenario can in the
3+1 framework be interpreted as an oscillation of the initial muon (anti)neutrino
into a sterile neutrino which then oscillates into an electron (anti)neutrino. Con-

sequently, the process
(–)

ν µ →
(–)

ν e measured in the
(–)

ν e appearance channel is of-
ten parametrized by an effective muon-electron mixing parameter sin2 2θµe (c.f.
eq. (4.13)).

The
(–)

ν e appearance channel adds an interesting aspect to the complex pic-
ture of neutrino oscillations. On the one hand, the first and since then long
withstanding hint of oscillations beyond the standard three-flavor paradigm has

been measured by LSND5 using the
(–)

ν e appearance channel. This unresolved
anomaly is complemented by the enigmatic data from the MiniBooNE experi-
ment, reporting an excess in the low-energy bins, which is, however, not perfectly
compatible with LSND [51]. While furthermore earlier results from MiniBooNE
could not be fitted very compellingly within the 3 + 1 framework, leading to a
rather poor GOF, new results dating from 2018 can be fitted with a perfectly
reasonable GOF of ∼ 20%. The combination of the LSND dataset and these re-
cent results from MiniBooNE imply that the hypothesis of oscillations involving
one sterile neutrino are preferred over the no-oscillation hypothesis at the 6.1σ
CL [92]6. On the other hand, other experiments, which – partly motivated by
the LSND anomaly – probed similar ranges of L/E ∼ 1 MeV/m, did not con-
firm the preference for oscillations involving sterile neutrinos. In this section, the

global dataset in the
(–)

ν e appearance channel is evaluated in detail by reviewing
the combined fit to these data in the 3 + 1 framework performed in [3].

4The results presented in the current section, section 4.4, as well as sections 4.5 to 4.7, are
mainly based on [3]. Significant parts of these results were contributed by the author. In
particular, all plots shown in sections 4.4 to 4.7 as well as the corresponding statistical
parameters and the PG analyses were provided by the author. This includes running
the simulations of the underlying data on a high performance computing cluster. For
descriptions of the individual analyses of the experimental results and acknowledgment of
the respective authors, c.f. the references in the captions of tables 4.2, 4.4 and 4.5.

5For references to the individual experiments used in this section, c.f. table 4.4.
6Because this chapter is mainly based on [3], predating the newest publication of the Mini-

BooNE collaboration, the results presented here and especially in the global analysis sec-
tion 4.7 still rely on the older data reported in [93, 94] if not stated otherwise.
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Experiment References Data points Comments

LSND [95] 11 ν̄µ from stopped pion source
(DaR)

LSND [95] N/A combined DaR and DiF data
(

(–)

ν µ →
(–)

ν e)
MiniBooNE [93, 94] ([92]) 22 νµ and ν̄µ from high-energy

Fermilab beam

KARMEN [96] 9 ν̄µ from stopped pion source
NOMAD [97] 1 νµ from high-energy CERN

beam
E776 [98] 24 νµ and ν̄µ from high-energy

Brookhaven beam
ICARUS [99, 100] 1 νµ from high-energy CERN

beam
OPERA [101] 1 νµ from high-energy CERN

beam

Table 4.4: Experimental datasets included in the
(–)

ν e appearance analysis. As
explained in more detail in the text, the LSND data consist of the two
subsets called DiF data and DaR data. For the analysis of the full
LSND dataset, a χ2 table provided by the collaboration is used. This
χ2 table cannot be associated with a number of data points. When
using LSND DaR data only, the total number of data points in the
(–)

ν e appearance is 69. Technical details on the implementation of the
respective experiments listed above, except for OPERA, can be found
in [51], and references therein.
Table (wording/ order of columns slightly modified) taken from [3].
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The experiments used in this analysis are enlisted in table 4.4, where also
references to the original publications of the respective collaborations are given.
The individual experiments share the basic principle of a proton beam which
is directed onto a target, such that the energetic beam protons interact with
the target material. In this process, secondary particles, essentially mesons and
(anti)muons are created as parent material. In the subsequent decay of these
particles muon (anti)neutrinos are produced.

In the case of LSND and KARMEN, the intended parent particles were pos-
itive muons, which decay into muon antineutrinos and hence provided the ex-
periments with the desired antineutrino source. The electron neutrinos which
are produced in the same decay were used in the LSND experiment to explore

neutrino oscillations in the
(–)

ν e disappearance channel, as has been described in
section 4.3.2. The parent muons themselves were produced from the decay of
positive pions. The major fraction of both parent particles, the positive pions
and the positive muons, came to a halt in the beam stop and decayed subse-
quently. Since the decay spectra of both parent particles are well-known and
the kinematics of the decay are particularly simple because the process occurs
at rest, the resulting spectrum of the muon antineutrinos can be predicted quite
accurately. This dataset, corresponding to the channel ν̄µ → ν̄e, is known under
the name of “decay at rest (DaR) data”. However, the LSND collaboration has
also exploited the flux of muon neutrinos from negative pions. These cannot
decay at rest, because they get absorbed by the nuclei in the target material as
soon as they are slow enough. However, a small fraction of these negative pions
decays into muon neutrinos while still in flight. Using this process, the LSND
detector can also record data in the channel νµ → νe, known under the name
“decay in flight (DiF) data”. Since the uncertainties are higher in this channel,
the bounds are less stringent. The global fit [3] reviewed below takes two differ-
ent approaches to the LSND results: whenever a dataset is tagged “DaR” a full
implementation of the LSND measurement of the DaR data is used and analyzed
within the full 3+1 framework. Conversely, whenever a dataset is tagged “DiF”,
the respective χ2 values are extracted from a table kindly provided by the LSND
collaboration. This table corresponds to an analysis of the combined DaR and
DiF datasets, using however a two-flavor framework. Therefore, in order to uti-
lize the information extracted from this table, the full oscillation probability in
the 3 + 1 framework is reduced to an effective two flavor oscillation formula in
this case.

The MiniBooNE experiment measures also both, the ν̄µ → ν̄e and νµ → νe
channel. Its detector cannot distinguish ν̄e from νe on an event-by-event basis.
The sensitivity to the respective channels is instead achieved by filtering the
beam of secondary mesons by a magnetic horn with variable polarity such that
either a beam of positive mesons decaying predominantly to muon neutrinos or
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a beam of negative mesons decaying predominantly to muon antineutrinos is
selected. The high energy of the parent particles in combination with a rather
short length of the decay pipe suppresses the (anti)neutrino flux from the decay
of muons relative to the flux from the decay of mesons due to the longer lifetime
of muons.

Similarly, the older E776 experiment was operated in νµ → νe mode as well as
in ν̄µ → ν̄e mode, which could be selected by adapting the polarity of a magnetic
horn filtering the parent mesons. Since the experiment exhibited a rather large

intrinsic background of
(–)

ν e due to contamination of the neutrino beam, for a
consistent interpretation within the 3 + 1 framework also potential oscillations
of that background with sterile neutrinos need to be accounted for, as explained

in [51]. To disentangle the effect of potential background oscillations
(–)

ν e →
(–)

ν e

from oscillations in the signal channel
(–)

ν µ →
(–)

ν e, a reasonable strategy is to
analyze the E776 data in combination with a different dataset, which provides for

an independent constraint on
(–)

ν e →
(–)

ν e oscillations. In the analysis performed in
[3], which this section is based on, the results of E776 have hence been combined
with the data from solar experiments discussed in the previous section. This

external constraint is redundant when the global data in the
(–)

ν µ →
(–)

ν e channel
are analyzed simultaneously, because the combination of these results provides
enough constraints on background oscillations by itself.

The experiments NOMAD, ICARUS and OPERA all utilized a high-energy
proton beam produced by the Super Proton Synchrotron (SPS) at CERN. In
all cases, the beam of secondary particles was filtered for positive charge. The
remaining mesons subsequently decayed in a decay pipe producing a fairly pure
muon neutrino beam. While the NOMAD detector was located several hundred
meters away from the neutrino source, the ICARUS and OPERA experiments re-
side in the Gran Sasso Laboratory, which is situated underground near L’Aquila,
Italy, ∼ 730 km from the source at CERN.

For most of the experiments described above, the SBL approximation intro-
duced in eq. (4.2) is legitimate, which depends on the product of the mixing

parameters 4|Uα4|2|Uβ4|2, where α, β = e, µ for the
(–)

ν e appearance data. It is
useful to absorb the product of the two matrix elements into a single parameter
as follows

sin2 2θµe ≡ 4|Ue4|2|Uµ4|2, (4.13)

because with this definition the probability for the process
(–)

ν µ →
(–)

ν e can be
written as

P SBL
(–)

µ
(–)

e
= sin2 2θµe sin2

(
∆m2

41L

4E

)
. (4.14)
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This expression is formally equivalent to a two-flavor picture, where the two
flavor eigenstates are transformed to the respective mass eigenstates by the two-
dimensional mixing matrix U(θµe), which depends solely on the mixing angle
θµe. The respective mass eigenstates in this two-flavor picture are split by the
mass-squared difference ∆m2

41. However, of course taking into account the global
data, which are widely consistent with the three-flavor picture, it is obvious that
there are no two flavor eigenstates which would correspond to the states result-
ing from the transformation of the mass eigenstates with the two-dimensional
transformation matrix U(θµe). In particular, the effective mixing parameter
given in eq. (4.13) should not be mistaken for a measure of the composition of
for instance the mass eigenstate m1 in terms of the electron and muon flavor
states.

For the ICARUS and OPERA experiments, the SBL approximation eq. (4.2)
discussed above is not applicable, because the baseline is so long that also oscilla-
tions due to the standard mixing are important. In particular, these experiments
are sensitive to ∆m2

31 and θ13 as well as the complex phase δ13. However, in the

combined fit to global data in the
(–)

ν e appearance channel, ∆m2
31 and θ13 are

kept fixed, since their effect might be partly degenerate with the effect of oscil-
lations in the presence of sterile neutrinos which cannot be resolved within that
dataset. The complex phase is scanned, but its impact on the fit was found to be
of minor importance, hence it is not counted as additional DOF. The remaining
parameters of the fit are therefore ∆m2

41 as well as Ue4 and Uµ4. However, as per
eqs. (2.27) and (2.29) the oscillation probability only depends on the product
U∗e4Uµ4 or Ue4U

∗
µ4 of these mixing parameters. Since furthermore the experi-

ments in the
(–)

ν e appearance channel are to very good approximation insensitive
to the complex phase δ24, the two sole remaining parameters are thus ∆m2

41 and
|Ue4Uµ4|, as stated in table 4.6. The latter parameter can be converted to the
effective mixing parameter defined in eq. (4.13) without loss of generality. Since
the parametrization in terms of sin2 2θµe is very common in the literature, this

convention is followed in the discussion of the
(–)

ν e appearance dataset below.
The fit was performed with only the two parameters discussed above left free,
while the relevant phases were scanned but not counted as DOFs due to their
minor contribution. Note however, that the effective two-flavor probability given
in eq. (4.14) was not explicitly employed, except for the LSND “DiF” dataset,
as discussed above. Instead, the remaining oscillation parameters were fixed to
their respective BFPs, and the oscillation probability was always calculated on
the basis of all parameters.

The results of the combined fit to the global data in the
(–)

ν e appearance
channel is depicted in fig. 4.4. The first two plots (a) and (b) in fig. 4.4, taken
from [3], are based on the dataset predating the new results from the MiniBooNE
collaboration on the νµ → νe channel, published in May 2018. For reference, in
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Figure 4.4: Constraints derived in the
(–)

ν e appearance channel, projected onto
the plane spanned by the effective mixing angle sin2 2θµe, defined
in eq. (4.13) and the mass squared difference ∆m2

41. As explained
in the text, the LSND data consist of two separate datasets called
“DaR” and “DiF” data. The plots on the left are obtained from
a dataset including only the DaR subset of the LSND data. The

plots on the right are obtained from the complete
(–)

ν e appearance
data, including both, the LSND DiF as well as DaR data. The
first row, panels (a) and (b), are based on the MiniBooNE data
on νe appearance published in 2012. The corresponding constraint
at 99% CL is shown by a black line. The second row, panels (c)
and (d), are based on the new data on νe appearance, released by
the MiniBooNE collaboration in 2018. The corresponding allowed
parameter space at 99% CL is represented by the light cyan region.
Differences with regard to the official results presented in [92] are due
to new Monte Carlo predictions and covariance matrices, which have
not been provided by the collaboration yet. Instead, the MiniBooNE
results shown in the panel (c) and (d) are based on the rescaled
Monte Carlo predictions and covariance matrices released in 2012.
Panels (a) and (b) taken from [3].
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fig. 4.4 (c) and (d) the analysis including the new MiniBooNE data is shown.
The plots in the left column are exploiting an implementation of the LSND
DaR dataset, while the plots in the right column rely on tabulated χ2 values
corresponding to a combined analysis of the DaR and DiF data, as has been
explained earlier in this section. The corresponding statistical parameters are
given in the first two rows of table 4.7. As has been described in [3], for the DiF
dataset the number of data points cannot be specified. Consequently it is not
possible to associate a GOF to any fit involving the DiF analysis. As can be
seen from table 4.7, for the fit including the DaR analysis the GOF, being ∼ 3%,
is rather poor. This is on the one hand due to the spectrum measured by E776,
which cannot be fitted well in the 3 + 1 framework. On the other hand, the
MiniBooNE dataset contributes to the low GOF value, because, as explained
earlier, it exhibits a pronounced excess in the first few low-energy bins in both,
the νµ → νe channel and the ν̄µ → ν̄e channel. However, each of these spectra
cannot be fitted very compellingly in the 3+1 framework. Furthermore, the two
spectra differ from one another in the low energy bins. This feature cannot be
explained within the 3+1 framework, because it does not allow for CP violation
at SBL. This can be seen from the SBL limit given in eq. (4.2) and holding to
very good approximation for MiniBooNE, which does not contain any phases
that could be fitted to CP violating data.

Despite the low GOF, the data in the
(–)

ν e appearance channel allow for a
fairly consistent interpretation in the 3 + 1 framework as can be observed from
fig. 4.4. The colored lines show the regions disfavored by KARMEN, NOMAD,
OPERA and ICARUS at 99% CL. The green line represents the limit from the
combined fit to E776 and solar data, which are included to constrain background
oscillations, as explained above. For the MiniBooNE dataset dating from 2012,
which the analysis [3] is based on, the results in the νµ → νe mode also do
not lead to a preference for oscillations involving sterile neutrinos, because the
corresponding spectrum cannot be fitted well enough based on an oscillatory
pattern. By contrast, the newly published results dating from 2018 feature a
less pronounced excess in the low energy bins, such that the spectrum is more
compatible with oscillations in the 3 + 1 framework. This leads also to a closed
region favored by the MiniBooNE neutrino appearance data, shown in light cyan
in fig. 4.4 (c) and (d). This parameter region is widely consistent with the region
preferred by the MiniBooNE antineutrino data.

The limit by ICARUS shown in dark cyan and the somewhat stronger limit
by OPERA shown in purple are almost independent from the mass squared dif-
ference ∆m2

14 because to good approximation oscillations corresponding to this
parameter are averaged out due to the very long baseline of these experiments.
Nevertheless, these data were analyzed assuming two DOFs in order to allow
for comparability with the remaining datasets. As has been noted in [3], the re-
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sulting limits deviate slightly from the ones presented in the respective original
publications given in table 4.4, because in contrast to the original analyses, for
the limits shown in fig. 4.4, oscillations of the background have been accounted
for.

At high values of ∆m2
14, the strongest limit is provided by KARMEN, repre-

sented by a dark blue, dashed line. While the contour of KARMEN resembles
that of LSND, KARMEN is compatible with zero mixing at 99% CL and hence
could not confirm the strong preference of LSND for oscillations involving sterile
neutrinos.

The orange shaded area is the parameter region preferred by the MiniBooNE
antineutrino appearance data. This region is largely consistent with the region
preferred by the LSND data.

The parameter region preferred by LSND is colored in brown. The impact
of including the DiF data compared to the DaR only analysis on the favored
region, shown in fig. 4.4 (a)/(c) and (b)/(d), respectively, is relatively small. In
the main, the preferred parameter space broadens when including the DiF data,
except for a small region around & 2 eV. Most notably, the DiF datasets are
compatible with slightly smaller mixing especially for ∆m2

14 ∼ 1 eV. In both

cases the LSND datasets dominate the analysis of the
(–)

ν e appearance channel,
disfavoring the no-oscillation hypothesis by ∆χ2 = 44 based on the DaR data
and still by ∆χ2 = 29 including the DiF data [3].

Finally the result of the combined fit to the global data in the
(–)

ν e appearance
channel is represented by the red shaded areas in fig. 4.4. The respective BFPs
are marked by a black star. The size, position and shape of the preferred param-
eter region as well as the position of the BFPs are relatively independent from
the inclusion of the LSND DiF data. Furthermore the impact of the new Mini-
BooNE neutrino appearance data is small. The reason is that the upper bound
on the mixing parameter sin2 2θµe is dominated by MiniBooNE, especially the
neutrino appearance data. However, this bound is not changed noticeably by
the newly published results. The lower limit on sin2 2θµe is dominated by the
respective LSND data. But the combined datasets favor rather low ranges of
∆m2

14 . 1 eV where the impact of the inclusion of the LSND DiF data is small.
The respective preference for oscillations involving sterile neutrinos increases to
χ2 = 46 and χ2 = 35 when adding the DaR only data or the combined DaR and
DiF data, respectively, to the global dataset, in the case of the old MiniBooNE
data [3]. This is because the MiniBooNE antineutrino data support the hint of
LSND in favor of oscillations with sterile neutrinos, yet the fit is dominated by
LSND.
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4.5
(–)

ν µ disappearance data

7The data measured in the
(–)

ν µ disappearance channel do not feature any sig-
nificant anomaly that would call for an explanation beyond the three flavor
paradigm. Instead, the great consistency of the results in this channel with the
standard oscillation theory allows to set strong limits on the parameters in the
3 + 1 framework. This section provides a detailed review of the limits obtained

from the global data in the
(–)

ν µ disappearance channel as well as the result of
the combined fit, again based on [3]. The experimental data contributing to this
analysis including the respective references to the original publications are given
in table 4.5.

Out of these experiments, Super-Kamiokande, DeepCore and IceCube mea-
sure atmospheric neutrinos. These are for the most part muon (anti)neutrinos
which are produced naturally in the atmosphere from cosmic radiation. There-
fore the measurement comprises the whole solid angle. The two experiments
Super-Kamiokande and DeepCore, which is a subdetector of IceCube, both mea-
sure low energy atmospheric neutrinos. The dataset of neutrinos measured in
these experiments can be divided into two subsets, tagged “down-going” and
“up-going”. The events measured in the “down-going” dataset correspond to
neutrinos which were produced in the atmosphere above the horizon and trav-
eled downwards to the respective experiment. For this dataset, the survival
probability for muon (anti)neutrinos can be approximated by

PD
(–)

µ
(–)

µ
=
(
1− |Uµ4|2

)2
+ |Uµ4|4, (4.15)

which follows from the SBL approximation eq. (4.2) in the limit ∆m2
14L/4E � 1,

such that oscillations are averaged out. By contrast the events measured in the
“up-going” dataset correspond to neutrinos which were produced in the atmo-
sphere beneath the horizon and traveled upwards through the body of the earth
to the respective experiment. Therefore these neutrinos travel long distances,
such that the SBL approximation eq. (4.2) or eq. (4.15) do not hold. Further-
more, the up-going neutrinos encounter finite temperatures and densities (FTDs)
along their trajectory through the body of the earth. As explained in section 2.4,
coherent forward scattering off background particles at FTD results in an effec-
tive potential Veff which modifies the dispersion relation. However, a change in
the dispersion relation of one state relative to another state impacts the inter-
ference between these states and hence the oscillation probability changes. As
discussed in section 2.4, this scenario is fulfilled for the SM neutrinos travers-
ing ordinary matter, because of an additional contribution to Veff for electron
neutrinos due to CC-mediated scattering off electrons. The contribution to Veff

7c.f. footnote 4.
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Experiment References Data points Comments

IceCube [102, 103, 104] 189 MSW resonance in high-
energy atmospheric ν̄µ

CDHS [105] 15 accelerator νµ
MiniBooNE [106, 107, 108] 15 + 42 accelerator νµ and ν̄µ ( +Sci-

BooNE data)
Super-Kamiokande [109, 110] 70 low-energy atmospheric neu-

trinos
DeepCore [111, 112] 64 low-energy atmospheric neu-

trinos
NOνA [113] 1 accelerator νµ, NC data
MINOS/MINOS+ [114] 108 accelerator νµ, CC & NC

event spectra

Table 4.5: Experimental data sets included in the
(–)

ν µ disappearance analysis.
The total number of data points in this channel is 504.
Table and caption taken from [3] (order of columns and wording of
table/caption slightly modified).
Note added by the author: technical details on the implementa-
tion of the CDHS and MiniBooNE can be found in the appendix of [2].
Furthermore, in the same place, the formalism applied in the analysis
of the atmospheric experiments Super-Kamiokande and DeepCore is
explained. The appendix of [3] contains technical details on the im-
plementation of the IceCube experiment used to produce the results
in section 4.5, as well as details on an independent technical approach
used to cross-check these results.

due to scattering off nuclei as well as NC-mediated scattering off electrons intro-
duces a collective offset in the dispersion relation of all the SM neutrinos. This
contribution, given by [3]

V s
eff ∼ 1.9× 10−14 eV × [ρ⊕/(g/cm3)], (4.16)

with ρ⊕ the mass density of the earth, results in an unobservable phase in
the standard scenario. However, sterile neutrinos do not interact and hence
for them V s

eff is zero. Thus in the 3 + 1 framework, the contribution given in
eq. (4.16) leads to a relative shift in the dispersion relation of the active neutrinos
compared to the sterile neutrino. Consequently by analogy with the standard
MSW effect discussed in section 2.4, an additional matter effect due to V s

eff

modifies the oscillation probability compared to the vacuum case. Inserting V s
eff
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in the dispersion relation eq. (2.48) such that b ∼ 1.9×10−14 eV× [ρ⊕/(g/cm3)],
it becomes obvious that for sterile neutrinos with masses ms ∼ 1 eV the matter
effect is negligible for the average energies Eν ∼ O(10 − 100 GeV) measured
in the low-energy atmospheric experiments Super-Kamiokande and DeepCore.
Using this approximation in combination with the limit ∆m2

41 → ∞ [91], in
[115] the lower bound

PU
(–)

µ
(–)

µ
≥ |Uµ4|4 (4.17)

was derived for the survival probability of up-going muon (anti)neutrinos. The
evaluation of the ratio between up-going and down-going atmospheric neutrinos
effectively probes the ratio between the probabilities eq. (4.15) and eq. (4.17).
The precise measurement of this ratio thus tightly constrains |Uµ4|.

IceCube is sensitive to atmospheric neutrinos of high energies Eν ∼ O(0.5 −
50 TeV). For these energies, the term m2

4/2E is of the same order as V s
eff in the

dispersion relation and hence a significant impact on the oscillation probability
is expected, as has been noted in [116]. To assess qualitatively the matter effect
due to V s

eff, the approximation m2
i → 0 with i ∈ {1, 2, 3} can be employed, which

is legitimate for L/2E ' O(1) which holds for the very long baselines and high
energies at IceCube. The survival probability in matter in the 3 + 1 framework,
by analogy with eq. (2.59) is

P(–)

µ
(–)

µ
(L) =

∣∣∣∣∣ exp

[
−i
(
Udiag

(
0, 0, 0,

m2
4

2E

)
U † ± diag(V e

eff, 0, 0, V
s

eff)

)
L

]
µ,µ

∣∣∣∣∣
2

=

∣∣∣∣∣ exp

[
−i
((

m2
4

2E

)
UUT ± diag(V e

eff, 0, 0, V
s

eff)

)
L

]
µ,µ

∣∣∣∣∣
2

, (4.18)

with the definition UT ≡ (Ue4, Uµ4, Uτ4, Us4) [117]. Approximating furthermore
the mixing parameter Ue4 � 1 by zero renders the matrix in the exponent of
eq. (4.18) block diagonal, such that for calculating P(–)

µ
(–)

µ
only the 3 × 3 sub-

matrix ((m2
4/2E)U(3)U(3)T ± diag(0, 0, V s

eff)) with U(3)T ≡ (Uµ4, Uτ4, Us4) is
relevant. As derived in [117], the strongest bound on Uµ4 can be established by
setting θτ4 to zero. In that particular case, the survival probability in matter is
given by the effective two-flavor probability

P 2ν
(–)

µ
(–)

µ
=1− sin2(2θeff) sin2

(
∆m2

effL

4E

)
, (4.19)

with ∆m2
eff defined by analogy with eq. (2.63) and using ∆m2 = ∆m2

41 and Veff =
V s

eff as well as sin2(2θeff) defined by analogy with eq. (2.60), using sin2(2θ0) =
sin2(2θ24). Considering in particular the expression eq. (2.60), which determines
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4 Analysis of neutrino oscillations in a 3 + 1 framework

the amplitude in the limit where the two-flavor approximation eq. (4.19) holds,
it follows that the disappearance probability in a certain range of energy can get
enhanced for negative V s

eff, which applies for antineutrinos, assuming ∆m2
41 > 0.

In principle the opposite case, ∆m2
41 < 0, would also be possible, and it would

not alter the vacuum oscillation phenomenology discussed previously. However
that mass ordering, implying more heavy neutrino states, is in strong tension
with data from cosmology, which set an upper bound on the sum of the neutrino
masses. Therefore in this work only the possibility ∆m2

41 > 0 is considered. In
the case of neutrinos traversing matter at FTD, V s

eff is positive and hence the
disappearance amplitude is reduced for neutrinos.

For antineutrinos crossing the inner mantle of the earth, assuming parameter

values ∆m2
41 ∼ 1 eV2 and sin2 2θ14 ∼ 0.04, roughly compatible with the

(–)

ν e

disappearance and
(–)

ν e appearance channels discussed above, the resonance con-
dition eq. (2.64) implies that the disappearance probability is maximal for neu-
trinos with energies around the resonance energy Eres ' 5.3 TeV× (5g/cm2/ρ⊕)
(∆m2

41/1 eV2) [3]. This energy is well within the sensitive region of the IceCube
detector. However, the detector cannot distinguish between neutrino and an-
tineutrino events. Furthermore the detection cross section is about three times
higher for neutrinos than for antineutrinos. Therefore the effect of the resonant
enhancement of the disappearance probability of the antineutrinos is washed out
by a large background of neutrinos. The width of the resonance, which can be
estimated at [3]

∆Eres '
∆m2

41 sin2 2θ24

2V s
eff

, (4.20)

is narrow for small values of sin2 2θ24. This means that only antineutrinos from
a minor fraction of the atmospheric spectrum feature a resonantly enhanced dis-
appearance probability, such that the impact on the event rate further decreases.
Due to the form of the resonance given in eq. (4.20), the IceCube detector is
furthermore sensitive only to a limited range of values for ∆m2

41. This is because
for larger values of ∆m2

41, the resonance moves to high energies, for which the
flux of atmospheric neutrinos is low, thus the impact of the resonance decreases
significantly. For small values of ∆m2

41, the resonance width becomes very nar-
row, and the effect on the event rate again reduces. For even lower values of
∆m2

41, the resonance energy shifts below the threshold of the detector. These
considerations further point to the importance of the detector systematics, as
for example the potential to detect narrow dips in the neutrino flux depends
crucially on the detector. In the appendix of [3] details are given on the im-
plementation8 of the IceCube results used in the analysis below, including the
modeling of systematics.

8The implementation of the IceCube analysis underlying the results presented in this thesis
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As mentioned above, the discussion so far was restricted to the case Uτ4 = 0.
When accounting for the possibility Uτ4 > 0, the survival probability by analogy
with eq. (2.59) takes the form

P(–)

µ
(–)

µ
(L) =

∑
i,k

|Ueff,µi|2|Ueff,µk|2 exp

[
−i∆m2

eff,ikL

2E

]
, (4.21)

where the effective mixing matrix now depends on the two parameters θ24 and
θ34, as well as the complex phase δ24. Furthermore, the probability given in
eq. (4.21) now depends on two independent effective mass-squared parameters,
given by [117]

m2
eff,1/2 =

∆m2
41

2

1 +
2EV s

eff

∆m2
41

±

√(
1 +

2EV s
eff

∆m2
41

)2

− 4
(
U2
τ4 + U2

µ4

) 2EV s
eff

∆m2
41

 .

(4.22)

Hence the survival probability eq. (4.21) in the case of Uτ4 > 0 is a superpo-
sition of the oscillations due to the modes corresponding to the effective mass
parameters given in eq. (4.22). As shown explicitly in [117], the effect of Uτ4 > 0
compared to the two-flavor probability eq. (4.19) is on the one hand that the
resonance peak is reduced, and hence the potential signature is weakened. Yet
on the other hand, the width of the resonance enlarges and the reduction of the
survival probability due to the tails of the resonance becomes significant. The
authors of [117] argue that the latter effect dominates, and hence the bound on
Uµ4 is the stronger the smaller Uτ4 is. It is furthermore shown in [117] that the
impact of the complex phase δ24 on the detection probability is correlated with
Uτ4, but subleading with respect to its effect. As in the case of Uτ4, the bound
on Uµ4 is the stronger the smaller the complex phase is.

For the sake of clarity in the above discussion of the atmospheric experiments
the approximation ∆m2

4iL/2E � ∆m2
jiL/2E ≈ 0 was made. Likewise, the frac-

tion of electron (anti)neutrinos in the atmospheric flux was neglected. In that
limit, the atmospheric experiments are sensitive to Uµ4 and ∆m2

41, as well as
to Uτ4 and δ24 in the case of IceCube, due to matter effects. However, these
approximations are not always justified. For example for neutrinos originating
from near the horizon, the baseline is long enough such that oscillations due
to ∆m2

31 ≈ ∆m2
32 are significant. Therefore atmospheric experiments are in

addition sensitive to these mass-squared differences as well as to θ23. Further-
more, taking into account an additional mass-squared parameter another com-

was provided by the author. Ivan Martinez-Soler contributed a second, independent imple-
mentation used to cross-check and validate the author’s implementation. In particular, the
comparison of both implementations allows to assess the impact of different approaches to
the systematics of the IceCube experiment.
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plex phase emerges in the expression for the survival probability in matter. In ad-
dition, the electron (anti)neutrinos in the atmospheric flux potentially contribute
to the signal in the muon (anti)neutrino channel through oscillations Peµ/Pēµ̄ as
well as through misidentified detections of electron (anti)neutrinos. This effect
is not very important for IceCube, since the atmospheric electron (anti)neutrino
flux is very low at the high energies measured at IceCube. Moreover, oscillations
into muon (anti)neutrinos are suppressed due to matter effects [117]. However,
the electron (anti)neutrino flux does impact the results of Super-Kamiokande
and DeepCore. In the analysis of the ratio between down-going and up-going
(anti)neutrinos, the lower bound on up-going (anti)neutrinos, eq. (4.17), still
holds, while for the down-going (anti)neutrinos, the events correlated with the
electron (anti)neutrino flux need to be accounted for [115]. Therefore the low-
energy atmospheric experiments are in particular also sensitive to Ue4.

The remaining experiments in table 4.5, CDHS, MiniBooNE, NOνA and MI-

NOS/MINOS+, utilize a
(–)

ν µ source originating from the decay of mesons. The
technology used to produce these mesons from a high-energy proton beam is also

used by several experiments investigating the
(–)

ν e appearance channel and has
been explained in greater detail in section 4.4 where these experiments are in-
troduced. In particular the MiniBooNE collaboration measured both channels,

the
(–)

ν µ →
(–)

ν e as well as the
(–)

ν µ →
(–)

ν µ channel, within a single experimental
setup, using the same (anti)neutrino source and detector. The primary detection
principal is based on charged-current quasi-elastic (CCQE) scattering, produc-
ing a charged (anti)lepton of the same flavor as the (anti)neutrino. Since the
flavor of the charged (anti)leptons is correlated with a characteristic signature
in the photomultiplier tubes (PMTs) of the MiniBooNE detector, the experi-
ment is sensitive to both channels independently. For the data taken within

the
(–)

ν µ →
(–)

ν µ channel relevant for this section, two analyses have been per-
formed by the MiniBooNE collaboration. First, the spectrum recorded by the
MiniBooNE detector was tested for deviation of the shape expected from the
standard three flavor theory [106, 108]. In the second approach, the results of
MiniBooNE were combined with the results of the SciBooNE experiment, which
was originally build to measure the cross sections of neutrino interactions with
carbon and iron nuclei. Since SciBooNE was located upstream in the same neu-
trino beam as MiniBooNE, the sensitivity of their combination is comparable to
an experiment consisting of a designated near and far detector. In particular,
the joined SciBooNE and MiniBooNE dataset allowed for a combined rate and
shape analysis [107].

The CDHS experiment consisted of two detectors exposed to a low-energy
muon neutrino beam. Both detectors were located close to the neutrino source,
such that the SBL limit of the oscillation probability, eq. (4.2), holds to very good
approximation. Thus from the fit to the ratio between the spectra measured at
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the two detectors limits on the νµ disappearance probability in the presence of
a sterile neutrino can be derived.

The two experiments MINOS and MINOS+ share the same setup consisting
of a ND and a far detector (FD) at a distance of 735 km. The beam supplying
the experiments with muon neutrinos is called Neutrinos at the Main Injec-
tor (NuMI) beam. It is produced at the site of Fermilab. In the MINOS con-
figuration, the NuMI beam was peaked at ∼ 2 GeV, which is close to the value
of ∼ 1.6 GeV corresponding to the maximum disappearance probability in the
three-flavor oscillation framework. By contrast, in the MINOS+ configuration
the NuMI beam was peaked at ∼ 7 GeV. Hence MINOS+ was tuned to be more
sensitive to spectral distortions that might be caused by phenomena beyond the
three-flavor oscillation paradigm [114]. In the detectors of MINOS/MINOS+,
muon neutrinos can be identified by CC interactions. In addition, due to a
distinct signature, a separate sample of NC events can be recorded in the de-
tectors. These NC events correspond to interactions of active neutrinos of any
flavor. Therefore this dataset probes effectively the probability that a muon
neutrino does not convert into a sterile neutrino, in addition to the νµ → νµ
probability probed by the CC dataset. The potential signature of oscillations
involving a sterile neutrino depend on the value of ∆m2

41. In the range of low
∆m2

41 ∼ 10−3−10−1 eV2, oscillatory features are expected in the spectrum mea-
sured by the FD, while the baseline to the ND is too short for oscillations to
develop due to this small mass-squared difference. For slightly higher ranges of
0.1 eV2 . ∆m2

41 . 1 eV2, oscillations at LBLs average out thus resulting in an
overall flux reduction at the FD, while still no effect would be expected at the
ND. Still at higher ranges of 1 eV2 . ∆m2

41 . 100 eV2, the oscillatory features
are now expected in the spectrum measured by the ND in addition to the re-
duced flux expected at the FD. Lastly, at very high ranges of 100 eV2 . m2

41,
oscillations due to this mass-squared difference are expected to average out at
both baselines, leading to an overall flux reduction at the ND as well as the
FD. In particular the last scenario cannot be explored by the usual approach of
analyzing the ratio between the spectrum measured at the FD and the spectrum
measured at the ND. This is because in this “Far-over-Near ratio” the overall
flux reduction at both detectors would just cancel out. In order to capture the
full range of the possible oscillations signatures discussed above, in [114] the
MINOS/MINOS+ collaboration therefore provides a two-detector fit. The re-
sults discussed here are based on an implementation of the MINOS/MINOS+
analysis, following closely the approach presented in [114]. However, these re-
sults have been questioned in [118]. Yet as argued in [3], within the range of
∆m2

41 . 100 eV2 relevant here, the limit obtained from the MINOS/MINOS+
analysis is robust irrespective whether there is indeed a problem with the flux
normalization or not. For details, c.f. [3], especially footnote (4).

The NOνA experiment consists of a ND and a FD at a distance of 810 km.
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4 Analysis of neutrino oscillations in a 3 + 1 framework

Both detectors are located in the same beamline as MINOS/MINOS+, however
each detector is displaced by 14.6 mrad with respect to the beam axis. There-
fore the energy distribution of the neutrinos is very narrow compared to the
energy distribution in the center of the beam. While this design is very use-
ful for background reduction, in the context of probing oscillation in the 3 + 1
framework a narrow energy distribution implies that only a small range of the
mass parameter 0.05 eV2 . ∆m2

41 . 0.5 eV2 is accessible. As in the case of MI-
NOS/MINOS+ separate datasets are taken, which correspond to CC and NC

events, respectively. For the analysis in the
(–)

ν µ disappearance channel presented
in this section, the results published by the NOνA collaboration in [113], based
on a rate only evaluation of the NC data sample, were implemented.

The beam experiments presented above are differently sensitive to the pa-
rameters in the 3 + 1 framework. For the SBL experiments MiniBooNE and
CDHS the two-flavor limit in eq. (4.2) holds to good approximation, therefore
in the main these experiments are only sensitive to the two parameters ∆m2

41

and |Uµ4|. The LBL beam experiments MINOS/MINOS+ and NOνA are in
addition sensitive to oscillations due the smaller mass-squared parameter ∆m2

31

and to the mixing parameter θ23. Since the NuMI beamline crosses the crust
of the earth, the survival probability is impacted by matter effects. Therefore
similar to IceCube, the LBL beam experiments are also sensitive to Uτ4, Ue4 and
the complex phases. In table 4.6, the parameters fitted in the following analysis

of the global data in the
(–)

ν µ disappearance channel are enlisted. The complex
phases discussed above were also scanned in this analysis, however, as in the
other channels, their impact was found to be of minor significance. Hence they
are not counted as DOFs and consequently do not appear in table 4.6. All other
parameters relevant for calculating the muon (anti)neutrino probability in the
3 + 1 framework are fixed to their respective best fit values in what follows.

The result of the combined fit to the data recorded by the experiments dis-
cussed above is presented in fig. 4.5. The corresponding statistical parameters
are given in the third row of table 4.7. The values quoted in table 4.7 were
obtained from a full fit to the set of parameters given in table 4.6 supplemented
by the complex phases. For the contours shown in fig. 4.5 Ue4 is set to zero, in
order to disentangle the impact of Ue4 from the impact of Uµ4.

The vast accordance of the data in the
(–)

ν µ disappearance channel with the
predictions of the standard three-flavor model allows to set strong bounds on
the parameters of the 3 + 1 model. In fig. 4.5, these limits are shown in the
plane spanned by the mixing parameter |Uµ4|2 and the mass-squared parameter
∆m2

41 [3]. Almost independent of ∆m2
41, a tight upper limit of |Uµ4|2 . 10−2 is

established at 99%CL, represented by a black line in fig. 4.5. At high values of

∆m2
41, this limit is dominated by the results of the fit to the MiniBooNE

(–)

ν µ
disappearance and CDHS data, depicted by a dashed, dark green and solid light
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Figure 4.5: Constraints derived in the
(–)

ν µ disappearance channel, projected onto
the plane spanned by the mixing matrix element |Uµ4|2 and the mass
squared difference ∆m2

41. The black line shows the constraint from

all datasets in the
(–)

ν µ disappearance channel combined, with the
corresponding experiments enlisted in table 4.5. Colored lines depict
the constraint from subsets of this dataset. The limit from NOνA
alone is not yet compatible and hence not shown separately in the
plot. The NOνA data are, however, taken into account in the fit to

the combined data in the
(–)

ν µ disappearance channel. In the fit to
the atmospheric neutrino data, represented by the cyan line, the pa-
rameters θ12, θ13 and θ14 were kept fixed, while all other parameters,
including phases, were scanned. See text for details on the choice of
parameters and their relevance for counting DOFs. For comparison,

the parameter regions favored by
(–)

ν e disappearance and
(–)

ν e appear-
ance data including LSND DaR as well as DiF data are also shown.
The red shaded regions represent these parameter spaces using the
“flux-free” approach, while the pink-hatched regions represent these
parameter spaces obtained in the “flux-fixed” approach.
Figure taken from [3].
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4 Analysis of neutrino oscillations in a 3 + 1 framework

green line, respectively. At lower values of ∆m2
41, the bound due to the atmo-

spheric experiments dominates, represented by a cyan line. The limit on |Uµ4|2 is
especially strong at mass-squared values in the range 10−1 eV2 . ∆m2

41 . 1 eV2.
This is because that range of ∆m2

41 corresponds to the parameter region where
the IceCube detector would measure a resonantly enhanced antineutrino dis-
appearance as explained above. The absence of this signature reported by the
IceCube collaboration thus enforces a particularly tight upper limit on |Uµ4|2.
As described above, the strongest bound on |Uµ4|2 is expected for θ34 = 0. How-
ever, Uτ4 is already restricted by the atmospheric dataset itself [3], so that such
an additional constrain is not necessary here. As discussed above, the sensitivity
of IceCube rapidly decreases for higher or lower values of ∆m2

41. Therefore in
these parameter regions, the limit from the atmospheric dataset is dominated
by the low-energy experiments Super-Kamiokande and DeepCore. As expected
from the discussion of these experiments above, the limit is to good approxima-
tion independent from ∆m2

41. The dark blue line shows the strong limit from
MINOS/MINOS+, which is rather uniform across the range of the analyzed
∆m2

41. The result from NOνA is not competitive with the other limits yet due
to low statistics and large systematics, therefore it does not appear in fig. 4.5.
The NOνA data are, however, included in the global dataset resulting in the
bound on |Uµ4|2 shown in black. The numbers quoted in table 4.7 also refer
to the analysis of the complete dataset, including the results from NOνA. The
significance of the results from NOνA are expected to improve as its runtime
increases.

For comparison, in red the result of a fit to the dataset consisting of the

combination of all data outside the
(–)

ν µ disappearance channel is shown. This

dataset hence includes the anomalous results reported in the
(–)

ν e disappearance

channel as well as the
(–)

ν e appearance channel. These anomalous measurements
cause a preference of the fit to that combined dataset for the 3+1 framework over
the standard three flavor framework. However, the corresponding parameter
space is clearly excluded by the tight limits obtained from the analysis of the
(–)

ν µ disappearance channel. The incompatibilities between the results obtained
in the three different channels is discussed in detail in section 4.7, where also a
combined analysis of the complete global data is presented.

4.6 Constraints on |Uτ4|
9In the previous sections, constrains on various parameters of the 3 + 1 frame-
work were reviewed. In particular constrains on the entries of the mixing matrix
given in eq. (4.1) are possible, because these parameters are correlated with the

9c.f. footnote 4.
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amplitude of potential oscillations in the 3 + 1 framework. However, in vacuum,
the amplitude of the oscillation probability, given in eqs. (2.27) and (2.29) only
depends on the entries of the mixing matrix corresponding to the flavor of the

initial neutrino and the detected neutrino, respectively. Thus within the
(–)

ν µ and
(–)

ν e disappearance channels limits were set on Ue4 and Uµ4 respectively, while

within the
(–)

ν e appearance channel bounds on both matrix elements simultane-
ously were derived. However, Uτ4 cannot be constrained in the same way. On
the one hand, no source of tau neutrinos exists10, therefore for tau neutrino
neither the survival probability nor the oscillation into a different flavor can be
measured. On the other hand, tau neutrino appearance is highly challenging to
measure. This is because the corresponding signature, the production of a tau
particle in a CC interaction, has a very high energy threshold, due to the large
mass of the tau. Hence, while tau neutrinos have been measured [119], the low
statistics do not allow for constraining Uτ4.

Nevertheless, limits on |Uτ4| can be derived indirectly. On the one hand, NC
interactions are equally sensitive to all active neutrino flavors although it is not
possible to determine the flavor of the detected neutrino on an event-by-event
basis. Thus using NC data, only a combination of |Uτ4| and the remaining
mixing parameters can be constrained. NC events are measured in the solar
neutrino experiment SNO, as described in section 4.3.2, as well as in the beam
neutrino experiments MINOS/MINOS+ and NOνA as described in section 4.5.
On the other hand, oscillation probabilities gain sensitivity to |Uτ4| due to matter
effects as explained in section 4.5. Therefore, the data from the atmospheric ex-
periments IceCube, DeepCore and Super-Kamiokande can be additionally used
to constrain |Uτ4|. However, as both methods are indirect measurements, the
bounds on |Uτ4| are in particular entangled with the other active-sterile mix-
ing parameters Ue4 and Uµ4. Therefore, |Uτ4| is far less constrained than the

other parameters, for which bounds can be derived directly in the
(–)

ν µ and
(–)

ν e
disappearance channel, respectively.

The result of the analysis of the NC data as well as the data sensitive to matter
effects is shown in fig. 4.6 [3]. Each plot depicts the constrains on the param-
eter space spanned by |Uµ4|2 and |Uτ4|2 for a fixed value of the mass-squared
parameter ∆m2

41, given in the legends in the left corner of the plots. Parameters
which the respective experiments are not sensitive to were fixed to their best fit
value. By contrast, all parameters which the respective experiments are sensitive
to were scanned and marginalized over. A detailed discussion on the counting
of relevant parameters can be found in the description of the experiments in
section 4.3.2 for the solar data and section 4.5 for the remaining datasets. The
contours in each plot are drawn with respect to the local minimum correspond-

10In the atmosphere and also in beam experiments, tau neutrinos are produced, however, their
contribution to the total flux is negligible.
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Figure 4.6: Constraints on the mixing of sterile neutrinos with muon and tau
neutrinos, parameterized by the corresponding elements |Uµ4| and
|Uτ4| of the leptonic mixing matrix. In each panel, ∆m2

41 has been
fixed to a different value, while ∆m2

31, θ23, θ12 and θ14, as well as
complex phases have been profiled out in those experiments where
they have a significant impact. Exclusion contours are drawn rela-
tive to the minimum χ2 in each panel; the difference to the global
minimum χ2 is indicated in each plot. Grayed out areas show the pa-
rameter region incompatible with the unitarity of the leptonic mixing
matrix.
Figure and caption taken from [3].
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4.7 Global fit in the 3 + 1 framework

ing to the respective fixed value of ∆m2
41. For every plot, the difference of each

local minimum to the global minimum is given in the respective legend of the
plot. However, this difference is small for all the values of ∆m2

41 explored in
fig. 4.6, because all individual BFP are close to zero mixing, and thus almost do
not depend on ∆m2

41.

Contours are shown at 90% CL in dark shades and at 99% CL in lighter
shades. The gray band covers the area excluded by the unitarity constrain
|Uτ4|2 + |Uµ4|2 ≤ 1. Solar data provide the weakest bound on |Uτ4|2 for all
four values of ∆m2

41 explored. By contrast, the strongest bound on |Uτ4|2 is
set by the atmospheric dataset. The limit from the LBL beam experiments MI-
NOS/MINOS+ and NOνA on |Uτ4|2 is somewhat weaker than that from the
atmospheric experiments for all four panels in fig. 4.6. However, the respective
limits on |Uµ4|2 are slightly stronger, except in the last plot for the smallest
value of ∆m2

41 = 0.1 eV2, which is near the resonance region of IceCube, as
explained in section 4.5. The SBL beam experiments CDHS and MiniBooNE
are not sensitive to |Uτ4|2, since for these experiments to very good approxi-
mation eq. (4.2) holds, which only depends on |Uµ4|2. Nevertheless, the results
from these experiments could potentially add valuable information, since they
provide the strongest limit on |Uµ4|2 for high ∆m2

41 & 1 eV2, as discussed in
section 4.5. These limits are shown in red in the first two panels of fig. 4.6.
However, since the preferred parameter spaces of the other experiments mea-

suring
(–)

ν µ disappearance are rather flat in |Uτ4|2, the impact of the SBL beam
experiments on the combined limit is rather low. The result of this combined fit
is represented by the blue shaded area, which features no strong dependence on
∆m2

41. Indeed, marginalizing over the mass-squared parameter sets the limit

|Uτ4|2 < 0.13 (0.17) at 90% (99%) CL. (4.23)

on |Uτ4|2.

4.7 Global fit in the 3 + 1 framework

11In the previous sections of this chapter, the various neutrino oscillation exper-
iments were categorized by channel. The datasets in each channel were analyzed
separately. In each channel, the data can be fitted rather consistently within
the 3 + 1 framework, which can be seen for example from the relatively high
GOF values given in table 4.7. An exception is the relatively low value for the
(–)

ν e appearance channel, which can be understood from the arguments given
in section 4.4. However, the individual channels are not independent from one
another. While according to eqs. (2.27) and (2.29) the vacuum disappearance

11c.f. footnote 4.
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4 Analysis of neutrino oscillations in a 3 + 1 framework

probability Pαα/Pᾱᾱ in a specific channel indeed depends only on the entries
Uαi with i ∈ {1, 2, 3, 4}, matter effects introduce a dependence on further ele-
ments of the mixing matrix, as discussed in general in section 2.4 and for the

specific case of IceCube in section 4.5. Furthermore, the datasets labeled “
(–)

ν e
disappearance” and “

(–)

ν µ disappearance” above, actually each contain in addi-

tion to the respective
(–)

ν α →
(–)

ν α data also NC data, measuring
(–)

ν α →
(–)

ν i with
i ∈ {1, 2, 3}. This implies that the datasets assigned to the individual channels
are to some extent sensitive to more mixing parameters than the respective vac-
uum oscillation probabilities imply. This is the reason why atmospheric data
can constrain Ue4 as discussed in section 4.3.2, or why constrains on Uτ4 are
possible as discussed in section 4.6.

More importantly, the vacuum appearance probability Pαβ/Pᾱβ̄ depends on
two rows Uαi and Uβi of the mixing matrix simultaneously. This implies a strong

interdependency between the results from the
(–)

ν α and
(–)

ν β disappearance chan-

nels on the one hand and the results from the
(–)

ν α →
(–)

ν β appearance channel
on the other hand. In the limit where the SBL approximation eq. (4.2) holds,
and thus the respective probabilities depend solely on Uα4 and Uβ4, the cor-
relation between the channels becomes particularly evident. Therefore, LSND

and MiniBooNE
(–)

ν e appearance data are especially critical. On the one hand
they are SBL experiments and hence the corresponding oscillation probability to
good approximation depends only on the product |Uα4||Uβ4|. On the other hand
they feature anomalous results which exhibit a preference for this product in the
effective mixing parameter sin2 2θµe ≡ 4|Uα4|2|Uβ4|2 > 0 defined in eq. (4.13) to

be non-zero. As discussed in section 4.3.2, the data in the
(–)

ν e disappearance
channel prefer a small, yet non-zero value for |Ue4|, given in table 4.7. But for
all datasets to be compatible in the 3 + 1 framework, also |Uµ4| would need to
be non-zero and not too small, such that the product 4|Uα4|2|Uβ4|2 would be
in accordance with the parameter region preferred by LSND and MiniBooNE.
However, no evidence of |Uµ4| being greater than zero was found in the analysis

of the
(–)

ν µ disappearance channel in section 4.5 and hence the value of |Uµ4| is
constrained to be very low. From these conflicting results emerges a strong and
long withstanding tension within the global data in the 3 + 1 framework [120].
This tension could already be observed in fig. 4.5 where the strong exclusion

limits from the experiments measuring the
(–)

ν µ disappearance channel were con-
fronted with the parameter region preferred by the combined results from the
(–)

ν e disappearance and
(–)

ν e appearance channel. Here, based on [3], a detailed
analysis of the global data in the full 3 + 1 framework is presented, taking into
account all the experiments discussed previously and summarized in tables 4.2,
4.4 and 4.5.

The result of the global analysis is given in table 4.7, which summarizes the
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4.7 Global fit in the 3 + 1 framework

Data set Reference Data points Relevant parameters

(–)

ν e disappearance Table 4.2 594
∆m2

31, ∆m2
41,

θ12, θ14, θ24, θ34
(–)

ν µ →
(–)

ν e appearance
(w/o LSND DiF)

Table 4.4 69 ∆m2
41, |Ue4Uµ4|

(–)

ν µ disappearance Table 4.5 504
∆m2

31, ∆m2
41,

θ23, θ14, θ24, θ34

Total number of data points: 1167

Table 4.6: Number of degrees of freedom and parameters relevant to the count-
ing of degrees of freedom for each data set. More details on the
individual experiments are given in the corresponding tables. The
number of degrees of freedom for the LSND decay-in-flight analysis is
not available. Thus, in the sum of degrees of freedom for appearance
and all datasets, the LSND decay-at-rest number is used.
Table and caption (slightly modified) taken from [3].
Note added by the author: In most fits, additional parameters
were used, which were not counted as DOFs. Explanations on the
choice of parameters and a detailed discussion on the impact of addi-
tional parameters is given in the respective sections 4.3.2, 4.4 and 4.5.

results in the individual channels discussed previously as well as the result of
the combined fit. The global analysis was performed for fixed as well as for free
reactor fluxes, for the reasons discussed in sections 4.3.1 and 4.3.2. Furthermore
the two approaches on the LSND data discussed in section 4.4, tagged DiF and
DaR, were used.

In table 4.7, for reference the GOF values are included. These are calculated
on the basis of the counting of parameters provided in table 4.6. In addition to
the parameters enlisted there, the flux normalization in the IceCube implemen-
tation as well as the normalization priors of the reactor fluxes from the two main
fission isotopes in the “flux free” approach were counted as DOFs. However, the
GOF values might not be a very reliable measure for the reasons explained in
section 4.2. Therefore, in addition a PG analysis was performed, which serves
as a basis for the following discussion. The corresponding test statistic χ2

PG was

evaluated for a comparison between the
(–)

ν e appearance dataset and the dataset

containing all disappearance data, that is the
(–)

ν µ disappearance channel and

the
(–)

ν e disappearance channel combined:

χ2
PG = ∆χ2

app + ∆χ2
disapp. (4.24)
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Analysis ∆m2
41 [eV2] |Ue4| |Uµ4| χ2

min/DOF GOF χ2
PG PG

appearance
(DaR)

0.573
4|Ue4|2|Uµ4|2
= 6.97× 10−3 89.8/67 3.3%

appearance
(DiF)

0.559
4|Ue4|2|Uµ4|2
= 6.31× 10−3 79.1/−

(–)

ν µ disapp 2× 10−3 0.12 0.039 468.9/497 81%

Reactor fluxes fixed at predicted value ± quoted uncertainties
(–)

ν e disapp 1.3 0.1 − 552.8/588 85%

Global
(DiF)

6.03 0.2 0.1 1127/− 25.7 2.6× 10−6

Global
(DaR)

5.99 0.21 0.12 1141/1159 64% 28.9 5.3× 10−7

Reactor fluxes floating freely
(–)

ν e disapp 1.3 0.095 − 542.9/586 90%

Global
(DiF)

6.1 0.20 0.10 1121/− 29.6 3.7× 10−7

Global
(DaR)

6.0 0.22 0.11 1134/1157 68% 32.1 1.1× 10−7

Table 4.7: Best fit values and statistical parameters obtained for the full, global
dataset and various subsets. For each dataset, the χ2 per DOF at the
BFP as well as the corresponding GOF values are enlisted. The re-
spective DOFs can be calculated counting the numbers of data points
and the parameters fitted in the analyses of the individual datasets.
These numbers are summarized in table 4.6. Furthermore, for the
global fit, the results of the parameter PG test [44], reviewed in sec-
tion 4.2, is indicated. As explained in section 4.4, the labels “DaR”
and “DiF” refer to the respective subsets of data underlying the LSND
analysis. As noted previously, the number of DOFs for the LSND DiF
data is not available. Therefore, the corresponding GOF values are
not listed for fits including this dataset.
Table taken from [3].
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Figure 4.7: Appearance versus disappearance results in the plane spanned by
the effective mixing angle sin2 2θµe ≡ 4|Ue4Uµ4|2 and the mass
squared difference ∆m2

41. The blue curves show limits from the dis-
appearance data sets using free reactor fluxes (solid) or fixed reactor
fluxes (dashed), while the shaded contours are based on the appear-
ance data sets using LSND DaR+DiF (red) and LSND DaR (pink
hatched). All contours are at 99.73% CL for 2 DOF.
Figure and caption (wording slightly modified) taken from [3].

The particular choice used in eq. (4.24) is arbitrary. However, if the data were
consistent in the 3 + 1 framework, the PG test for any subdivision of the data
should yield a reasonable p-value. Now the particular choice in eq. (4.24) results
in very low PG values ≤ 10−5 as listed in table 4.7, which is enough to proof
that the data actually exhibit a strong tension. Nevertheless, as a cross-check,
in [3] the PG value was also evaluated for a different choice of subdividing the

data into
(–)

ν µ disappearance versus the combination of
(–)

ν e disappearance and
(–)

ν µ appearance. The result was found to be slightly better, but still very small,
thus supporting the results quoted in table 4.7.

Figure 4.7 constitutes the graphical counterpart of the PG analysis given in
table 4.7. The global data is divided in the same two subsets “appearance”
and “disappearance” used also in eq. (4.24) for the PG test. The result of the
separate fit to the two datasets is projected on the plane spanned by ∆m2

41 and
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4 Analysis of neutrino oscillations in a 3 + 1 framework

the effective mixing parameter sin2 2θµe, where again the flux-free and the flux-
fixed scenario and the inclusion and exclusion of DaR data is considered. The
resulting contours shown in fig. 4.7 reveal that at 99.73% CL, the parameter
spaces preferred by the two subsets of data are in essence mutually exclusive.

Furthermore, it can be observed in fig. 4.7 that the distance between the
contours corresponding to the appearance dataset and disappearance dataset,
respectively, are smallest for the combination of including DiF data in the ap-
pearance data set and using the flux-fixed approach for the analysis of the dis-
appearance data. This is because relatively large |Ue4| values at high ∆m2

41 are
in conflict with the results from atmospheric data in the case of the flux-free
scenario as can be seen in fig. 4.3, but not for the flux-fixed scenario. However,
this combination of relatively large |Ue4| and high ∆m2

41 is preferred by both, the
flux-free as well as by the flux-fixed scenario, as can be noted in fig. 4.2. Hence,
on the one hand the disappearance dataset allows for slightly higher values of
|Ue4| at high ∆m2

41 in the flux-fixed case. On the other hand, as fig. 4.4 reveals,
the LSND analysis including DiF data results in a broadening of the preferred
parameter space towards somewhat smaller values of the effective mixing pa-
rameter sin2 2θµe in the same range of relative high ∆m2

41. These observations
are supported by the PG values given in table 4.7. However, even in the least
constraining scenario, the appearance dataset and disappearance dataset are
incompatible within the 3 + 1 framework at the 4.7σ level [3].

While this result impressively demonstrates that the 3 + 1 framework fails
to explain the global neutrino oscillation data consistently, it is still worthwhile
investigating the robustness of this prediction. As has been noted above, the

results in the
(–)

ν e appearance channel at SBL, given in table 4.4, are especially
critical. Therefore, if the results reported by one or more of these experiments
proved erroneous, the conclusion about the 3+1 framework might change. Thus,
in conclusion of the global analysis, reviewing the approach in [3], the impact of
various datasets is examined by excluding these one after another from the fit.
The various scenarios taken into account are enlisted in table 4.8. Again the PG
value, calculated for the subdivision of the respective data into appearance and
disappearance datasets, is used as a basis for the discussion below. Furthermore,
this analysis is restricted to the least constraining scenario represented by the
flux-free approach for the reactor data and the inclusion of the DiF data for
LSND.

The first block of table 4.8 lists the resulting values of the relevant statistical
parameters when one of the datasets considered anomalous is removed. Out
of these results, the only significant improvement of the PG value is achieved
when LSND is removed. The remaining tension corresponding to a PG value of

1.6 × 10−3 is mainly driven by the anomalous MiniBooNE
(–)

ν e appearance re-
sults. Comparing this to the very low PG value, when by contrast MiniBooNE
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Analysis χ2
min,global χ

2
min,app ∆χ2

app χ2
min,disapp ∆χ2

disapp χ2
PG/DOF PG

Global 1120.9 79.1 11.9 1012.2 17.7 29.6/2 3.71× 10−7

Removing anomalous data sets
w/o
LSND 1099.2 86.8 12.8 1012.2 0.1 12.9/2 1.6× 10−3

MiniBooNE 1012.2 40.7 8.3 947.2 16.1 24.4/2 5.2× 10−6

reactors 925.1 79.1 12.2 833.8 8.1 20.3/2 3.8× 10−5

gallium 1116.0 79.1 13.8 1003.1 20.1 33.9/2 4.4× 10−8

Removing constraints
w/o
IceCube 920.8 79.1 11.9 812.4 17.5 29.4/2 4.2× 10−7

MINOS/
MINOS+

1052.1 79.1 15.6 948.6 8.94 24.5/2 4.7× 10−6

MiniBooNE
disap.

1054.9 79.1 14.7 947.2 13.9 28.7/2 6.0× 10−7

CDHS 1104.8 79.1 11.9 997.5 16.3 28.2/2 7.5× 10−7

Removing classes of data
(–)

ν e disapp.

vs
(–)

ν e app.
628.6 79.1 0.8 542.9 5.8 6.6/2 3.6× 10−2

(–)

ν µ disapp.

vs
(–)

ν e app.
564.7 79.1 12.0 468.9 4.7 16.7/2 2.3× 10−4

(–)

ν µ disapp.
+ solar
vs

(–)

ν e app.

884.4 79.1 13.9 781.7 9.7 23.6/2 7.4× 10−6

Table 4.8: Results of the PG test described in section 4.2, applied to appear-
ance and disappearance data taken from various subsets of the global
data. The first row presents the results from the global fit to the full
dataset. The rows below indicate the results obtained in fits leav-
ing out various datasets from both, individual experiments, as well
as combinations of experiments. All datasets were analyzed using
the “flux-free” approach introduced in section 4.3.1. The number of
DOFs is not listed in this table, because all analyses but the one listed
second include LSND DiF data, for which the number of data points
is not available as explained in section 4.4. The columns 2–8 enlist
the parameters χ2

min,global, χ
2
min,app and χ2

min,disapp, corresponding to

the χ2 function at the respective BFPs in the fit to all data, the ap-
pearance only data and the disappearance only data. Furthermore,
the columns headed “∆χ2

app” and “∆χ2
disapp” indicate the difference

between the χ2 function evaluated at the global BFP and the respec-
tive BFPs obtained in a fit to the appearance and disappearance data
only. Finally, the last two columns list the χ2 per DOF resulting from
the PG test computed according to eq. (4.3)), and the resulting p-
value given by eq. (4.6).
Table taken from [2] (wording slightly modified).
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is removed, allows to conclude that the tension between the appearance and dis-
appearance data is driven by LSND rather than by the excess in the low energy
bins reported by MiniBooNE. The PG value improves only slightly when leav-
ing out reactor data, rendering the question of the cause of the reactor anomaly
discussed in detail in section 4.3.1 less important within the 3 + 1 framework.
When the gallium data are removed, the PG value declines by almost a factor

of ten. This can be understood from the analysis of the
(–)

ν e disappearance data
depicted in fig. 4.3. While the reactor data prefer somewhat lower values of
Ue4, the gallium data drive the preferred parameter space towards somewhat
higher values of Ue4, and thus in the direction preferred by the appearance data,
given that Uµ4 is very small. Thus, leaving out this pull towards higher Ue4, the
tension between disappearance and appearance data increases and consequently
the PG value declines.

The second block of table 4.8 lists the resulting values of the relevant statistical
parameters when one of the datasets contributing to the strong bound on Uµ4

is removed. None of the these scenarios improves the PG value significantly, in
accordance with fig. 4.5 which shows that the bound on Uµ4 does in essence not
depend on a single experiment in the relevant parameter space. Only leaving
out MINOS/MINOS+, which provides a rather constant strong limit across the
parameter space, a slight improvement is observed.

Lastly the third block of table 4.8 lists the resulting values of the relevant
statistical parameters when a whole set of experiments is removed. As discussed
previously, the results from the datasets corresponding to the disappearance
channels are relatively independent, because essentially separate rows of the
mixing matrix are probed in each of these channels. The interdependency of the
constraints on the parameters comes about through the appearance channels,
which are sensitive to a combination of parameters from different rows of the
mixing matrix. Therefore, a significant improvement of the PG value is expected
when for example the set of parameters corresponding to a specific channel is
removed. This can indeed be observed when the data from the experiments mea-

suring the
(–)

ν µ disappearance channel are neglected. On the other hand, leaving

aside the data from the experiments measuring the
(–)

ν e disappearance channel
improves the PG value only slightly. This is because some of the experiments

in the
(–)

ν µ disappearance channel still provide considerable constraints on Ue4
due to matter effects and the evaluation of NC events, as discussed above. In

particular, the combination of the data of the
(–)

ν µ disappearance channel with
solar data already causes incompatibilities in the data on a level comparable to
the tension in the full dataset.

From the review presented in this chapter follows that a consistent interpre-
tation of the global neutrino oscillation data the 3 + 1 framework is excluded.
In particular, it is not possible that all anomalies are due to oscillations within
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the 3 + 1 framework, given that most of the results from the remaining exper-

iments prove correct. If there was a reason to discard all results in the
(–)

ν µ
disappearance channel, the 3 + 1 framework could be considered a viable op-
tion to explain the remaining data. However, at present there is no indication
that any experiment should be excluded, let alone a whole set of experiments.
The above conclusion is very robust and rather independent from the impact of
any particular single dataset. An exception is LSND, which is the main cause
of the preference for high values of the effective mixing parameter sin2 2θµe in

the
(–)

ν e appearance channel, incompatible with the results from the remaining
experiments. By contrast the conclusion does in particular not depend on the
reactor experiments and the corresponding arguable flux predictions. A poten-
tial scenario rendering oscillations in the 3 + 1 framework viable again would

be if the anomalies observed by LSND and MiniBooNE in the
(–)

ν e appearance
channel were resolved in terms of a different explanation. Then the remaining
experiments including in particular the anomalous results from the reactor and

radioactive source experiments in the
(–)

ν e disappearance channel could be fit-
ted consistently in the 3 + 1 framework, as can be seen for example in fig. 4.3.
As argued in [3], these conclusions are expected to hold qualitatively for more
complicated models including a higher number of sterile neutrinos.

Finally the validity of the conclusions drawn in this chapter are strongly cor-
related with the interpretation of cosmological data. As discussed in section 3.2,
these data constrain in particular the number of neutrino-like species and their
total mass. The bounds on these characteristic parameters are in very good
agreement with the predictions for SM neutrinos in the ΛCDM model. How-
ever, in the 3 + 1 model the prediction of the number of neutrino species and
the sum of neutrino masses significantly differs from the SM prediction. This
implies that the various constraints discussed in section 3.2 strongly disfavor the
3+1 model, completely independent from the tensions discussed here. However,
as described above, the 3 + 1 framework remains a possible scenario to explain
at least a subset of the oscillation data. Therefore, the next chapter discusses
possible scenarios which might relax or refute the constrains from cosmology.
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5 Sterile neutrinos with secret
interactions

5.1 Basic principal

1The previous chapter introduced the 3 + 1 framework as a well-motivated,
minimal extension of the SM. In particular, this model features a light, sterile
neutrino taking part in neutrino flavor oscillations parametrized by a mixing
parameter of the order ∼ O(0.1). However, including the 3 + 1 framework in
the thermal history of the early universe results in the production of thermally
distributed sterile neutrinos due to the oscillations of SM neutrinos. Therefore
this scenario implies the existence of a fourth neutrino-like species in the early
universe. But as discussed in section 3.2.2, various cosmological probes strongly
disfavor an additional neutrino-like particle. Furthermore, also the sum of the
masses of neutrino-like particles is tightly bound by cosmological observables. In
particular, even a single neutrino-like particle species with a mass of ∼ 1 eV, as
preferred by the anomalous oscillation experiments, is already in strong tension
with the bounds from cosmology reviewed in section 3.2.4.

Irrespective of the tensions discussed in chapter 4, these bounds from cosmo-
logical data conflict with the hints for sterile neutrinos measured by earthbound
oscillation experiments. Yet, very importantly, this statement depends on the
assumption that the mixing angles stay constant over the thermal evolution of
the universe. Recalling the discussion of matter effects in section 2.4, it be-
comes clear that this condition does not need to be fulfilled. Whenever there
is an effective potential affecting one flavor but not a second, the mixing an-
gle between the two flavors is changed compared to the vacuum mixing angle
due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. In particular, if this
effective potential was temperature-dependent, the mixing angle between ac-
tive and sterile flavors could be very small at high temperatures. If the initial
abundance of sterile neutrinos is negligible, they would not be produced in the
early universe, assuming that they are produced predominantly by oscillations
or interactions proportional to the mixing angle. Consequently sterile neutrinos

1The results presented in this chapter, chapter 5, are based on [4]. The author contributed to
this publication by deriving numerically the temperature interval used in the multi-flavor
evolution described in section 5.2. Furthermore, in figs. 5.2 and 5.5, the author graphically
processed parts of the results.
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A′

νs

νs νs

(a)

νs

A′

νs

νs νs

(b)

Figure 5.1: Diagrams contributing to the self-energy of a sterile neutrino coupled
to a new, heavy gauge boson A′: bubble diagram (a) and tadpole
diagram (b).

would be absent in the early universe and thus they could not leave any imprint
on cosmological probes. On the other hand at low temperatures, the mixing
angle could be larger, as it is required to explain the short baseline anomalies
through active-sterile neutrino oscillations.

Indeed, such a temperature-dependent effective potential, proportional to the
term given in eq. (2.43), exists due to the active neutrino self-interaction and
interactions with background fermions as discussed in section 2.4. However,
inserting this term for b in the dispersion relation eq. (2.48) reveals that it is
already negligible when the temperature is still very high, T ∼ 10 GeV. There-
fore this SM potential cannot suppress oscillations efficiently enough, resulting
in the bounds discussed in section 3.2. It seems therefore a logical step to mir-
ror this mechanism in the sterile sector. In the basic scenario, by analogy to
the active sector, an interaction between sterile neutrinos is mediated by a new
U(1)′ gauge boson A′ with a mass M . 1 MeV [121]. For obvious reasons, A′ is
often dubbed “dark photon”, the interaction is called “secret interaction” and
can be expressed by the following interaction term [4]

Lint = esν̄sγ
µPLνsA

′
µ, (5.1)

where es is the U(1)′ coupling constant. PL denotes the projection operator onto
left-chiral fermion states, which can be expressed as PL = 1

2(1− γ5). Following
the approach of [4], the mass of the gauge boson A′ is introduced ad hoc, without
specifying how the U(1) symmetry gets broken and neglecting any potential
additional DOFs associated with this breaking.

The secret interaction term eq. (5.1) gives rise to two types of processes: scat-
tering between two sterile neutrinos mediated by the secret interaction, similar
to Bhabha and Møller in the SM, as well as scattering between a sterile neutrino
and a dark photon A′ similar to Compton scattering in the SM. Considering
a background of sterile neutrinos and dark photons of finite temperatures and
densities (FTDs), by analogy to the discussion in section 2.4, these scattering
processes due to the new interaction, given in eq. (5.1), induce corrections to
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the sterile neutrino self-energy Σ. These corrections can be calculated in the
real-time formalism in thermal field theory, as mentioned in section 2.4. The
corresponding diagrams depicted in fig. 5.1 are very similar to the diagrams pre-
sented in the discussion of the SM MSW effect in section 2.4. As derived there,
due to the corrections to Σ at FTD, the expansion of the dispersion relation in
the ultrarelativistic limit exhibits a shift in the energy of the respective particle
compared to the vacuum case. This shift corresponds to the effective potential
Veff. It is related to Σ by eq. (2.56), where b = −Veff. Similar calculation as in
the SM case result in an analytical expression for Veff in two limiting cases:

Veff '


−7π2e2

sET
4
s

45M4
for Ts �M

+
e2
sT

2
s

8E
for Ts �M

, (5.2)

where Ts is the common temperature of the sterile neutrino and the gauge boson
A′ and E is the energy of the sterile neutrino. Of course numerically, Veff can be
determined for all ranges of Ts and E. The low temperature limit in eq. (5.2) is
exactly of the same form as the term quoted in eq. (2.43) for electron neutrinos
scattering off a background of electrons, which motivated the introduction of the
secret interaction eq. (5.1). However unlike the SM term, which is suppressed
by the fourth power of the SM gauge boson mass m4

W ' (80 GeV)4, in the case
of the secret interaction the suppression goes only with the fourth power of the
secret gauge boson mass M � mW . Therefore the effective potential due to
the secret interaction is significant at lower temperature potentially beyond SM
neutrino decoupling and BBN, when the SM effective potential is already negli-
gible. In the high temperature limit, the low-energy expansion eq. (2.38) is not
valid anymore. Instead, the structure of Veff corresponds to the massless limit
of quantum electrodynamics (QED) [22]. In fig. 5.2, the absolute value of Veff is
plotted for two different combinations of the mass M of A′ and the secret fine
structure constant αs ≡ e2

s/(4π). From both, the analytical expressions in the
limit of high and low Ts as well as the numerical evaluation of Veff presented
graphically in fig. 5.2, can be seen that the absolute value of effective poten-
tial is large for large values of Ts. On the other hand it approaches zero for
temperatures near zero, which applies for neutrino oscillation experiments on
earth.

From the discussion in section 4.7 followed the conclusion that one conceivable
scenario is that the anomalies in the

(–)

ν e appearance channel are due to some un-
known origin different from oscillations involving sterile neutrinos. By contrary,
the remaining results could be explained in the 3 + 1 framework. In particular,

the anomalies in the
(–)

ν e disappearance channel could be accounted for by oscil-
lations into sterile neutrinos. In that case, in the limit ∆m2

4i � ∆m2
ji → 0 with

97



5 Sterile neutrinos with secret interactions

i, j ∈ {1, 2, 3} the only relevant mixing parameter would be Ue4. This scenario is
effectively described by a 1 + 1 system consisting of one sterile neutrino νs mix-
ing with one active neutrino νa. Then for the oscillation probability in matter,
given by eq. (2.59), a two-flavor approximation is legitimate with the two-flavor
mixing angle in matter being given by eq. (2.60) with θ0 = θ14. Clearly this
angle becomes very small for large absolute values of Veff and hence at high
temperatures. Qualitatively, the effect does not change even when the sterile
neutrino mixes with more than one active neutrino [4].

In this picture, sterile neutrinos might originate at very high temperatures
T � TeV, possibly due to some new interaction in the context of a grand unified
theory (GUT). The corresponding abundance of sterile neutrinos at these high
temperatures gives rise to high values of Veff, which efficiently shuts off any
interaction with SM neutrinos. Subsequently, the sterile neutrinos decouple
at still very high temperatures T � TeV. Hence, they are not affected by
multiple reheating processes occurring in the beginning of the thermal history
of the universe due to the annihilation of various particle species, as described
in section 3.1. Therefore, the sterile neutrino temperature Ts after some time is
significantly lower than the temperature T of the thermal bath. The exact ratio
between T and Ts depends on the physics at very high temperatures, which is not
explored here. Instead, the ratio Tini,s/Tini at an arbitrary reference temperature
Tini = 1 TeV is treated as an initial condition. In [4], the two different initial
conditions Tini,s/Tini = 0.3 and Tini,s/Tini = 1 were considered.

Thus, with a small abundance of sterile neutrinos produced in the early uni-
verse which decouple at very early times, the thermal history proceeds very sim-
ilar to the case of the ΛCDM described in section 3.1. Only at later times, when
Veff finally vanishes, oscillations between active and sterile neutrinos emerge. Al-
though neutrinos have long decoupled at that time, Neff then decreases slightly,
because sterile neutrinos are nonrelativistic at temperature T ∼ 1 eV. Likewise,
the sum of the neutrino masses increases. Nevertheless, taking only oscillations
with mixing parameter O(0.1) into account, the effect is expected to be small
and still compatible with the bounds from cosmology. As explained below, this
simple picture, taking into account only oscillations, is not sufficient.

Already at this stage, however, a critical feature of the Veff becomes apparent
from the expressions given in eq. (5.2): the different sign of the two limiting
cases describing Veff in the low and high temperature limit implies that Veff is
exactly zero at one point even for a non-zero temperature T ∼ M . Since the
suppression of oscillations is only effective as long as

|Veff| >
∆m2

2E
(5.3)

holds, this suppression is potentially interrupted, if Veff crosses zero at high
temperatures. This could result in a production of sterile neutrinos efficient
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enough to conflict with bounds from cosmology. Taking into account this critical
feature as well as further effects which challenge the secret interaction scenario
results in very tight constraints, as discussed in the following section.

5.2 Constraints on sterile neutrinos with secret
interactions

The above discussion of the basic principal of the secret interaction scenario
neglected a small but very important detail. As described above, as soon as
the condition in eq. (5.3) ceases to hold, the mixing between active and sterile
neutrinos is no longer suppressed. Consequently, neutrinos start oscillating,
as stated above. But furthermore, also scattering events increase the sterile
neutrino abundance as soon as the mixing parameter is no longer reduced due
to the MSW effect. This can be understood from the interaction Lagrangian
eq. (5.1) in the mass basis,

Lint =
∑
ij

esν̄iUsiγ
µPLU

∗
sjνjA

′
µ, (5.4)

which gives rise to the following processes in the 1 + 1 framework,

ν̄4 + ν1 → ν̄4 + ν4 diagram (a)&(b) in fig. 5.3 (5.5)

ν4 + ν1 → ν4 + ν4 diagram (c)&(d) in fig. 5.3, (5.6)

with the corresponding Feynman diagrams depicted in fig. 5.3. In addition, the
respective CP -conjugate processes contribute equally. As long as the mixing
parameter Us1 is small due to the MSW effect, the corresponding scattering
processes eqs. (5.5) and (5.6) are suppressed. When Veff approaches zero and
the condition eq. (5.3) is no longer fulfilled, these processes become efficient. If
this happens while SM scattering processes are not yet frozen-out, in addition
to the processes described in eqs. (5.5) and (5.6), similar processes due to W±

and Z induced scattering need to be accounted for. Furthermore, the scattering
processes due to the secret interaction can encounter a resonance. If the energy
of the neutrinos is high enough, the intermediate A′ is produced on shell. This
results in a resonance in the s-channel. In the t-channel, assuming A′ to be
relatively light, scattering is enhanced in the forward direction. Due to these two
effects, the impact of incoherent scattering can be significant, although according
to the discussion in section 2.4, coherent forward scattering was expected to
dominate.

In combination with oscillations, the scattering processes described above lead
to an effective production due to the Dodelson-Widrow mechanism [122], as
noted for instance in [123]. This mechanism works as follows: active neutrinos
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(a) (b)

Figure 5.2: Absolute value of the effective potential Veff as a function of the (ac-
tive) neutrino temperature Tν , for two different choices of the me-
diator mass M and the secret fine structure constant αs ≡ e2

s/(4π).
Positive (negative) values of Veff are indicated by solid (dashed) lines.
The vacuum oscillation frequency ∆m2/(2E) is displayed as a black
line. The temperatures at which |Veff| and the vacuum oscillation
frequency intersect are highlighted in red. The temperature of the
last (left-most) intersection is denoted as “last crossing” tempera-
ture. For some choices of M and αs, intersections between |Veff| and
∆m2/(2E) also occur around the temperature where Veff changes
sign, as can be observed in the right panel. In this case, the short
time interval in which |Veff| < ∆m2/(2E) is denoted “zero-crossing”
interval. In the multi-flavor simulations, the sterile neutrino produc-
tion is assumed to be zero when |Veff| > ∆m2/(2E), and Veff is set
to zero, Veff = 0, whenever |Veff| > ∆m2/(2E).
Figure and caption (slightly modified) taken from [4]
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Figure 5.3: Scattering diagrams due to the secret interaction term given in
eq. (5.1). Equivalent diagrams exist for the CP -conjugate processes.
For illustration purposes, the dependence of the depicted processes
on the mixing parameter Us1 is indicated. For high temperatures,
Us1 → 0, and hence the above scattering processes are suppressed.
For low temperatures, T → 0, Us1 ∼ 0.1 in accordance with the
RAAs and gallium anomalies discussed in section 4.7.

start oscillating and thus at some distance have to be considered as superposi-
tions of flavor-eigenstates. Whenever a scattering event occurs, it virtually acts
as a quantum-measurement, which projects the interacting neutrinos on flavor
eigenstates with a probability according to the respective mixing parameter. In
this manner, scattering produces an increasing abundance of sterile neutrinos.
As long as this abundance is smaller than the abundance of active neutrinos,
the back-reaction is less likely. This process continues until active and sterile
neutrinos are in thermal equilibrium. By contrary, if the scattering rate is very
high compared to the oscillation frequency, the Dodelson-Widrow mechanism
does not work and sterile neutrino production is suppressed by the quantum
Zeno effect. This effect occurs when a neutrino has no time to evolve into a su-
perpositions of flavor-eigenstates by the time a quantum-measurement occurs in
form of a scattering event, because its scattering length Lscat is short compared
to the oscillation length Losc. In this case, the neutrino remains a pure flavor-
eigenstate and the measurement does not produce a projection on a different
flavor.

Thus, if the neutrino temperature Tν is below the quantum Zeno regime but
above the temperature at which the scattering rate falls below the Hubble rate
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and becomes inefficient, sterile neutrinos recouple with the active neutrinos and
thermal equilibrium is established between the two species. The authors of [124]
showed that recoupling necessarily occurs at some temperature. This recoupling
leads to conflicts between the basic sterile interactions scenario drafted in sec-
tion 5.1 and constraints from cosmology, presented in section 3.2. Following [4],
these constraints are reviewed below.

In detail, the constraints depend on the temperature at which the recoupling
happens. If recoupling occurs before SM neutrinos freeze out from the thermal
bath at a temperature T ∼ MeV, sterile neutrinos represent an additional rela-
tivistic DOF. This implies an increase of Neff by approximately one unit, which
is severely disfavored by cosmological probes as discussed in section 3.2.2. Fur-
thermore, the sum of the neutrino masses in that case would be increased by the
mass of the sterile neutrino, m4 ∼ 1 eV, which is in tension with the bounds dis-
cussed in section 3.2.4. If recoupling between sterile and active neutrinos occurs
after the active neutrinos have already decoupled from the other species, Neff

cannot change anymore, since the neutrinos constitute an isolated system. How-
ever, also in this case sterile neutrinos would be tightly constrained by the upper
limit set by cosmological probes on the sum of neutrino masses. Nevertheless, as
explained in section 3.2.4, the bounds on sum of the masses of neutrino-like par-
ticles depend in parts on its free-streaming length. If the secret interaction were
so strong that sterile neutrinos could not free stream during structure formation,
these bounds could be weakened. But since the secret interaction also affects
active neutrinos due to mixing, this would imply that also the free-streaming
length of active neutrinos would reduce. However, this is again in conflict with
the results from cosmology presented in section 3.2.3 [125]. Lastly, as mentioned
above, the transition between the two regimes where the high temperature limit
and the low temperature limit of Veff hold can occur at high temperatures. This
implies that in addition to the production by the Dodelson-Widrow mechanism,
a high abundance of sterile neutrinos could arise due to oscillations during the
temperature interval near the zero crossing of Veff.

The various constraints discussed above are caused by distinct cosmological
probes and are hence qualitatively different. While it is arguable less important
why the basic secret interaction scenario is disfavored at each parameter point,
this information is potentially decisive when constructing extensions of the basic
model. Based on the analysis presented in [4], the constraints on the secret
interaction scenario are investigated using two different approaches below.

In the first approach, the recoupling temperature Trec is determined directly
by calculating the temperature corresponding to the scattering rate at which the
production of sterile neutrino becomes efficient. According to the condition given
in eq. (3.15), the minimal condition for a particle to be in thermal equilibrium
is that its scattering rate is higher than the Hubble rate. Assuming quasi-
instantaneous recoupling, Trec can then be calculated as the temperature where
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Figure 5.4: Dominant scattering channel for collisional νs production at Trec as
a function of M and αs. Here, ms = 1 eV, and Ts,ini = Tγ . The
mixing angle suppression is common to all processes.
Figure and caption (slightly modified) taken from [4].

the scattering rate Γs becomes equal to the Hubble rate, [4]

H
!

= Γs = cQZ

[
〈σv〉ee→14

n2
e

nν
+ 〈σv〉e1→e4 ne + 〈σv〉11→14 nν + 〈σv〉14→44 ns

]
.

(5.7)

In the above expression for Γs, the terms in angle brackets denote thermally
averaged cross sections, where the subscripts 11 → 14 and 14 → 44 refer to
the scattering processes described in eqs. (5.5) and (5.6), respectively. The
subscripts ee → 14 and e1 → e4 refer to the corresponding SM scattering off
electrons2. In fig. 5.4, the respective scattering process dominant at the time of
recoupling is shown in the plane spanned by the secret fine structure constant αs
and the mediator mass M . As can be seen for example from eq. (5.4) for scatter-
ing mediated by A′, the corresponding cross sections depend on the active-sterile
mixing, and hence Veff. In the currently discussed approach based on eq. (5.7),
the absolute value of the effective potential, |Veff|, is approximated by stitching
together the absolute values of the two limiting cases given in eq. (5.2). Further-
more, in eq. (5.7), ne, nν and ns denote the electron, active and sterile neutrino
number densities, which are normalized such that each term in eq. (5.7) gives
the sterile neutrino production rate per active neutrino. Lastly, the prefactor
cQZ represents the function [4]

cQZ =
(Lscat/Losc)2

1 + (Lscat/Losc)2
, (5.8)

2For analytical expressions for all relevant cross sections, c.f. the appendix of [4].
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5 Sterile neutrinos with secret interactions

which determines the suppression due to the quantum Zeno effect discussed
above.

However, the approach presented above relies on several approximation. There-
fore it is complemented by a second approach which numerically simulates the
flavor evolution in a 2+1 model, in which the sterile neutrino mixes with two ac-
tive neutrinos. Determining Tdec in this approach would in principal require the
simulation of the flavor evolution throughout the history of the universe. Yet,
such a full simulation would be numerically highly challenging. Nevertheless,
even without a full simulation, investigating the flavor evolution probes features
of the decoupling process which cannot be assessed by the approach discussed
above. In detail, these features are the precise dynamics of recoupling including
the effect of oscillations, a full calculation of Veff including the effect of a possible
zero-crossing at high temperatures, a more accurate treatment of the quantum
Zeno effect and lastly a more general 2+1 framework, instead of the 1+1 model
adapted above.

The basic object in the flavor evolution approach is the density matrix (ρ)αβ,
or (ρ̄)αβ for antineutrinos [126], where α, β ∈ {e, µ, s} in the case under consid-
eration. The diagonal entries ραα (ρ̄αα) in the density matrix are the number

densities of the (anti)neutrino species α, while the off-diagonal entries
(–)

ρ αβ en-
code the mixing between the species α and β. The evolution of the density

matrix
(–)

ρ is governed by the equation3

i
d

(–)

ρ

dt
= [Ω,

(–)

ρ ] + C[
(–)

ρ ], (5.9)

where the t denotes the comoving observer’s proper time. Ω corresponds to
the Hamiltonian in flavor-space. Hence the first term encodes the flavor oscil-
lations. The matrix C describes collisions due to interactions with the thermal
background. In detail, C is given by

C[
(–)

ρ ] = CSM[
(–)

ρ ] + CA′ [
(–)

ρ ], (5.10)

where CSM corresponds to SM scattering processes and CA′ to the scattering
processes due to the secret interaction, given in eqs. (5.5) and (5.6).

As stated above, a full simulation of the flavor evolution is numerically highly

challenging. Therefore, following [4], the evolution of
(–)

ρ is presented in the
particular regime where Veff becomes small compared to ∆m2/2E, such that
eq. (5.3) does not hold anymore and hence active-sterile conversions are no
longer suppressed. This is exactly the regime in which the multi-flavor evolution
approach can provide details not accessible by the approach discussed above.

There are potentially two cases where the condition eq. (5.3) ceases to hold.
On the one hand, as can be seen from the low temperature limit given in

3See [4] and references therein for details on the evolution equation.
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5.2 Constraints on sterile neutrinos with secret interactions
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Figure 5.5: Evolution of the neutrino density matrix as a function of the (SM)
neutrino temperature. The panels show the temperature dependence
of the νe abundance (ρee), the νµ abundance (ρµµ), and the νs abun-
dance (ρss) in the 2+1 scenario for three different parameter points
as indicated in the plots. The gray bands delimit the temperature
ranges in which the system is evolved numerically. Panel (a) corre-
sponds to evolution beyond the last crossing temperature, panels (b)
and (c) correspond to evolution within the zero-crossing interval.
Figure and caption (slightly modified) taken from [4].

eq. (5.2), Veff approaches zero as the temperature approaches zero, while the
term m/2E ∝ m/2T increases for low temperatures. Therefore, Veff inevitably
drops below m/2E at low temperatures. The respective temperature at which
this happens is denoted by “last crossing” temperature below. On the other
hand, as mentioned above, Veff changes sign at some temperature Ts ∼M , and
hence necessarily crosses zero. If this zero crossing occurs at a higher tempera-
tures than the last crossing temperature, |Veff| ≤ m/2E holds in a short interval,
called “zero crossing” interval below. The two scenarios are illustrated in fig. 5.2:
in both panels, the last crossing temperature is marked by a dashed, red line. In
addition, in fig. 5.2 (b) the zero crossing occurs at a higher temperature than the
last crossing temperature. The corresponding zero crossing interval is marked
by two solid, red lines. Adopting the simplifying assumption from [4], the effect
of Veff is considered so strong that no sterile neutrinos are produced as long as
eq. (5.3) holds, while Veff is considered negligible as soon as eq. (5.3) ceases to
hold.

Three representative results of the flavor evolution are shown in fig. 5.5, with
the corresponding parameter values given in the legend in the respective plot.
In each panel, the state of the system as a function of the active neutrino tem-
perature Tν is represented in terms of the number densities of each neutrino
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species i, given by the diagonal entries of ρ. The evolution of ρ in terms of t,
given in eq. (5.9), was mapped on the corresponding temperature Tν(t). The
temperature ranges in which eq. (5.3) holds, and hence active-sterile conversions
are prevented, are masked by a light gray layer. The first plot, fig. 5.5 (a) de-
picts the evolution of the number densities near the last crossing temperature,
while the other two panels show the evolution of the number densities within
the zero crossing interval. For the specific parameter values chosen in fig. 5.5
(a), the last crossing happens already at a high temperature Tν ' 12 MeV, and
hence before the active neutrinos decouple from the thermal bath. Clearly, very
rapidly flavor equilibrium is reached in this case, that is, all number densities
converge to the same value. Since the active neutrinos are still coupled to the
thermal bath, any active neutrino that converts into a sterile neutrino gets re-
placed because the active neutrino density is fixed by the thermal equilibrium.
The situation is different in fig. 5.5 (b), where the evolution is shown at a tem-
perature Tν ' 0.8 MeV, and hence after the decoupling of active neutrinos from
the thermal bath. While also in this plot the flavor equilibrium is reached quasi-
instantaneously, active neutrinos cannot be replenished anymore, and hence the
number density in each active species decreases by one third, while the number
density of the sterile neutrinos only increases to two thirds. Lastly, in fig. 5.5 (c),
the evolution of the ρii is shown for a value of the secret fine structure constant
αs, which is three orders of magnitude higher than in the previous panel fig. 5.5
(b). For this rather strong secret interaction, no flavor equilibrium is reached
within the zero crossing interval depicted in fig. 5.5 (c) due to the quantum Zeno
effect discussed above.

Irrespective of whether the active neutrinos are decoupled from the thermal
bath at the corresponding temperature, the simulations presented in [4] prove
that flavor equlibrium is always reached below the last crossing temperature.
Regarding the zero crossing intervals, for a few cases the interval is either so
short or the quantum Zeno effect is so strong, that flavor equilibrium is pre-
vented. However, at most of the parameter points full flavor equilibrium is
reached within the zero crossing interval. Hence, the recoupling temperatures
calculated according to the first approach described above are potentially too
low, because in that approach the zero crossing interval can not be accounted
for. Therefore in [4], at each parameter point the recoupling temperature was
compared to the result from the flavor evolution. If flavor equilibrium had been
found due to the zero crossing of Veff at a higher temperature than Trec calcu-
lated in the first approach, that Trec would have been corrected. However, no
such case was found in [4]. Hence, although at almost all points of the parame-
ter space effective production of sterile neutrinos occurs within the zero crossing
interval, this effect is negligible when determining the recoupling temperature.

The result of the analysis drawing mainly on the first of the two approaches
discussed above is presented in fig. 5.6. The three panels correspond to three
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(a) (b)

(c)
Figure 5.6: Parameter space spanned by he secret gauge boson mass M and the

secret fine structure constant αs, characterizing the secret interac-
tions model defined in eq. (5.1). The panels present three different as-
sumptions on the ratio of the sterile and active sector temperatures,
which quantifies the initial conditions at very high temperatures. In
this figure, the sterile neutrino mass is set to ms = 1 eV, and the
vacuum mixing angle is set to θ0 = 0.1. The cross-hatched, brown
region is ruled out because these parameters lead to recoupling at
Tγ > 1 MeV, and hence before the active neutrinos decouple from
the SM plasma. Therefore, also the sterile neutrinos thermalize with
the SM plasma and need to be counted as an additional species of
neutrino-like particles, conflicting the constraints on Neff. Further-
more, in this case the assumption ms = 1 eV for sterile neutrinos
challenges the constraint on the sum of masses for neutrino-like par-
ticles. The vertically striped, blue and orange region is ruled out for
the same reason, although here the constraints on Neff do not apply,
because recoupling occurs at Tγ < 1 MeV, and hence after the SM
neutrinos have decoupled from the plasma [127]. The color gradient
in this parameter region encodes the recoupling temperature ranging
from 0.05 MeV shown in dark blue to 1 MeV shown in orange. In all
of this parameter region, sterile neutrinos are still compatible with
the bounds on the sum of neutrinos masses, if their mass is small
enough, obeying ms . 0.2 eV. The red shaded region at the top left
of the plots is, according to the findings of [125], in conflict with
constraints from CMB data on active neutrino free-streaming. Com-
bining all results rules out the complete parameter space, because at
no point recoupling can be evaded. This applies in particular for the
two parameter points marked by red stars, although these were con-
sidered as favorable benchmark points in a previous publication [128]
Figure taken from [4]
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different initial conditions for the sterile neutrino temperature. The third pos-
sibility, denoted by Ts ≡ Tν , refers to the situation that the sterile neutrino
temperature stays identical to the active neutrino temperature during the ther-
mal history of the universe. This can be considered as a conservative limiting
case. In all three panels, the mass of the sterile neutrino is assumed to be 1 eV,
and the mixing angle is taken to be θ0 = 0.1. As already mentioned above, all the
parameter points of the basic scenario are disfavored. However, the results pre-
sented in fig. 5.6(a) - (c) go beyond this simple statement to the extend that the
cosmological measure conflicting with the basic scenario is determined at each
parameter point in the plane spanned by αs and M . The blue-yellow, vertically
hatched regions in fig. 5.6 correspond to the parameter points at which mixing
is efficiently suppressed until after active neutrino decoupling. In that case, Neff

is hardly affected by the presence of sterile neutrinos, however, the bounds on
the sum of neutrino-like particles, including the sterile neutrino, strongly disfa-
vor this region. The cross-hatched regions correspond to the parameter points
at which recoupling occurs before active neutrinos decouple from the thermal
bath. In that case, in addition to the constraints due to the bound on the
combined mass of neutrino-like particles, Neff is in strong tension with cosmo-
logical probes. Finally the red-shaded regions correspond to regions which are
in tension with constraints on free-streaming according to a global fit performed
in [125]4. Comparing these results with fig. 5.4 reveals that much of the pa-
rameter space is actually excluded because of A′-mediated s-channel scattering,
which can be resonantly enhanced, or A′-mediated t-channel scattering, which
can be enhanced in the forward direction for low M , as discussed above.

The results presented in fig. 5.6 where cross-checked by the flavor-evolution
approach. In particular, the flavor evolution proved the quasi-instantaneous
recoupling limit, supplemented by the phenomenological formula eq. (5.8) to
account for the quantum Zeno, effect to be a legitimate approximation. Lastly,
no qualitative difference between the 1 + 1 and the 2 + 1 framework were found.
Hence in conclusion, the sensitivity of the parameter space to the constraints
from different cosmological observables presented in fig. 5.6 is robust with regard
to the detailed method.

5.3 Extended scenarios with secret interactions

As described in the above section, the basic secret interaction scenario intro-
duced in section 5.1 is excluded for all parameters explored in fig. 5.6. However,

4This global fit was performed for a value of 2.7 for Neff, while Neff is not expected to differ too
much from 3 in the case at hand, because recoupling of the sterile neutrinos happens after
the SM neutrinos have decoupled from the plasma. In the more recent publication [129],
the respective limit is tightened by approximately a factor of two compared to the limit
shown in fig. 5.6
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there are many conceivable extensions of the basic scenario which are possibly
less constrained. The following section briefly reviews several of these extended
scenarios, which are discussed in greater detail in [4].

Since the bounds from cosmological probes apply to sterile neutrinos only once
they are produced after recoupling with the active species, a straightforward
scenario exempt from these bounds is one where the recoupling is prevented.
This can be achieved by the mechanism of inverse symmetry breaking [130, 131,
132], where symmetries are intact at low temperatures while they get broken at
high temperatures due to thermal corrections. If this mechanism is applied to
the gauge boson corresponding to a Dirac-type mass term for sterile neutrinos,
a high vev for the boson leads to a high mass for the sterile neutrino at high
temperatures. If the sterile neutrino mass is high enough, this prevents their
production possibly until after the rates of the processes that led to recoupling in
the basic scenario have frozen out. At low temperatures, the thermal corrections
to the gauge boson potential vanish, and hence the sterile neutrino looses its high
mass due to the vev of the gauge boson field. Therefore at low temperatures, as
for example during the oscillation experiments on earth, the phenomenology is
the one discussed in chapter 4 for a light sterile neutrino. A toy model for such
a scenario is explicitly constructed in [4], for a secret interaction mediated by a
scalar mediator instead of the vector boson A′ considered in the basic scenario
above. This new secret interaction term then also serves as a Dirac-type mass
term as long as the symmetry is broken at high temperatures. However, it was
shown there that this particular toy model requires rather peculiar values for
the respective model parameters. Nevertheless the calculations in [4] serve as a
proof of principal that inverse symmetry breaking can indeed provide a model
involving eV-scale sterile neutrinos which is compatible with constraints from
cosmology.

A complementary idea to extend the basic scenario is to actually allow recou-
pling and hence the production of sterile neutrinos, but to evade constraints from
cosmology due to additional processes occurring subsequently. As can be seen
from fig. 5.6, there exists a considerable part of the parameter space which is
compatible with the bounds on Neff because recoupling happens after the active
neutrinos have decoupled from the thermal bath. In particular, the vertically
hatched region in fig. 5.6 conflict solely bounds on the sum of neutrino-like par-
ticles. However, as discussed in section 3.2, these bounds are to a large extend
due to cosmological probes on structure formation. In detail, the evolution of
LSS depends on the energy density in the respective states corresponding to a
specific mass. If the energy density of the sterile neutrinos is very small, ac-
cordingly their impact on structure formation is small. A scenario encoding this
possibility comprises several additional sterile neutrino states, all charged under
the new gauge group U(1)′ and mixing with the active neutrinos. At recoupling,
the energy is shared evenly between all neutrinos, and hence the energy density
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corresponding to each individual species is smaller. In particular it was shown
in [4] that the energy density for each state after recoupling is 3ρSM/(4+n), with
n the number of additional sterile neutrinos and ρSM the energy density of the
three active neutrinos before recoupling. Accordingly, assuming these additional
sterile neutrinos to be quasi-massless, the bounds on the sum of the masses of
the neutrino-like particles would be weakened by the factor 3/(4 + n)

Furthermore, an idea similar to the one outlined above can be evoked to rec-
oncile secret interactions with the red shaded region in fig. 5.6. This region
is disfavored by constraints on how much neutrino free-streaming may be re-
duced due to self-interaction. However, these bounds apply, as discussed in
section 3.2.3, to any neutrino-like particle species. Therefore in models cor-
responding to this region of the parameter space, a second, very light sterile
neutrino species or the secret gauge boson A′ itself, if it is light enough, could
partially thermalize before the heavier sterile neutrinos recouple. These addi-
tional light particles would then free-stream to some extent, and hence make up
for the loss of free-streaming due to strong secret interaction.

Finally, an interesting extension of the basic scenario is the possibility of
sterile neutrino decay, which is also motivated in the context of the anomalies
in oscillation experiments [133]. If the decay was fast enough and the final
particles were nearly massless, constraints on sterile neutrinos due to the bound
on the sum of neutrino-like particles coming from probes on structure formation
would not apply. An obvious candidate for such a decay process would be a
three-body decay of the sterile neutrino of mass ∼ 1 eV associated with the
oscillation experiment anomalies into a lighter sterile neutrino ν ′s via νs → 2ν ′s+
ν̄ ′s or νs → ν ′s + γ. However, these processes, mediated by the secret gauge
boson A′ cannot provide for sufficiently high decay rates. Nevertheless, replacing
the secret interaction term eq. (5.1) by the interaction term yφ(ν̄sγ5ν

′
s), with

coupling y & 10−13 and the pseudo-Goldstone boson φ, constitutes a viable
model, where the lifetime of the eV-scale sterile neutrino is shorter than the
time elapsed until recombination. Hence in such a scenario, bounds from the
CMB or LSS formation on both, Neff and the sum of masses of neutrino-like
particles to not apply to the eV-scale neutrino, which has virtually decayed
away by the time these probes are established.

In summary, the basic secret scenario described in section 5.1 can indeed
suppress the production of sterile neutrinos in the early universe possibly until
after the decoupling of the SM neutrinos, such that Neff cannot change anymore.
However, as discussed in section 5.2, even in that case the secret interactions
lead to recoupling of the sterile neutrinos, mainly due to resonant s-channel and
collinearly enhanced t-channel processes. This means that subsequent processes,
in particular structure formation, are affected by the presence of the sterile
neutrinos. This is, however, disfavored by cosmological probes, either because
the sum of neutrino-like particles would be to high, or because the free-streaming
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bounds would be violated. The various cosmological constraints disfavor the
complete parameter space, as can be observed in fig. 5.6. Nevertheless, although
being less puristic, several possible extensions of the basic scenario have the
potential of reconciling light sterile neutrinos with the bounds from cosmological
probes. Therefore, from the perspective of cosmology the 3 + 1 model discussed
in chapter 4 cannot be considered to be excluded definitively. Moreover, some
of these possible extensions of the secret interaction scenario might even provide
auspicious models for decreasing the tensions observed within the oscillation
data in the 3 + 1 model.

This aspect is put into broader context in the next chapter, which provides
a concluding discussion of the main results of this work, presented in the last
chapter, chapter 4, and the current chapter, chapter 5.
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6 Summary and conclusions

This work started out with the claim that neutrinos are very interesting objects
to study, both theoretically and experimentally. As discussed in the introduc-
tion, open theoretical problems and unresolved experimental anomalies desig-
nate neutrinos as promising starting point in the search for new physics. Moti-
vated especially by recent, rather ambiguous experimental reports, the investiga-
tions presented in this work align with that quest for new physics with neutrinos.
In the following sections, the results of these investigations are summed up to
arrive at the conclusions of this thesis.

Neutrinos are the only elementary particles for which the phenomenon of
oscillations has been observed. The standard theory of neutrino oscillations,
discussed in section 2.3 is in very good agreement with experimental results, as
reported in section 2.5. Nevertheless, several apparently independent anomalies
in different oscillation channels challenge the standard paradigm. In any case,
however, the observed neutrino oscillations imply that the differences between
the masses of at least three neutrino species have to be non-zero. Hence, at least
two neutrinos are known to have mass. However, the SM provides no mechanism
which would endow neutrinos with a mass. The development of a theoretical
framework explaining neutrino masses is hence an important problem of the-
oretical physics. Section 2.2 presents a rather straightforward and minimalist
model, which provides, however, the interesting possibility of neutrino oscilla-
tions involving, a fourth, sterile species. This model is called 3 + 1 framework.
It provides a theoretically well-motivated, straightforward extension of the SM
which can account for oscillation phenomenology beyond the standard three
flavor paradigm.

The question if the 3+1 framework is a viable model beyond the SM, consistent
with all data, including the anomalies quoted above, is a central part of this
thesis. Based on the publications [3] and [2], chapter 4 provides a detailed
analysis of neutrino oscillation data in the 3 + 1 framework.

At first, this analysis is confined to the data from reactor experiments. This
is because the result of that subset of experiments can rather plausibly be at-
tributed to a misprediction of the reactor antineutrino flux, as described in
section 4.3.1. The explanation in terms of the 3 + 1 model and the explanation
in terms of a misprediction of the reactor antineutrino flux are cast into two
hypotheses, which are subsequently tested against each other. This is possible
because the precise measurement of the correlation between the composition of
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the reactor fuel and the detected rate reported by the Daya Bay collaboration
allows for a disentanglement of the two hypotheses. In conclusions, the hypoth-
esis of a wrong flux prediction is preferred over the 3 + 1 framework when only
considering a single rate measurement like Daya Bay. But also in this case, both
hypotheses fit the data with a high GOF value. However, including experiments
measuring spectra instead of mere rates drastically reduces this preference. Us-
ing the most recent, preliminary results from DANSS [50] even reverses the
conclusion. However, on the basis of reactor data only, the most likely scenario
is an improved reactor flux model in combination with the 3+1 framework. Ac-
cordingly, when the flux model is left free to the fit in the “flux-free” approach
explained in section 4.3.1, oscillations into sterile neutrinos are favored over the
best fit flux model without such oscillations at the 2.9σ CL. This conclusion
is mainly driven by the measurements of reactor spectra. Since the analysis of
spectra is solely based on ratios, this result is independent from any concrete
flux model. On the other hand, comitting to the flux predictions at face value
would increase the evidence to 3.5σ.

The inclusion of the remaining data in the
(–)

ν e disappearance channel still
allows for a rather consistent fit, although the reactor data and the data cor-
responding to the gallium anomaly are in slight tension quantified by a p-value

of pPG = 3.1%. Nevertheless, the evidence for the 3 + 1 framework in the
(–)

ν e
channel is between ∼ 3σ and ∼ 4σ, depending on the reactor flux model. In this
channel, the preferred parameters of the 3 + 1 framework are ∆m2

41 ∼ 1.3 eV2

and |Ue4| ∼ 0.1.

Similarly, the combined fit to the global data in the
(–)

ν e appearance channel
favors the 3 + 1 framework over the standard oscillation model with a very high
significance of up to 6.5σ, depending on which of the LSND datasets are included
in the fit. The corresponding preferred parameters of the 3 + 1 framework are
∆m2

41 ∼ 0.6 eV2 and 4|Ue4|2|Uµ4|2 ∼ 7 × 10−3. Despite the strong evidence for
the 3 + 1 framework, a GOF value of 3.3% indicates, however, that this model
cannot reproduce particular features of the data, especially in the MiniBooNE
spectra.

By contrast, the
(–)

ν µ channel provides no evidence at all for oscillations in-
volving sterile neutrinos. Instead, in particular the most recent MINOS and
IceCube data allow to derive stringent constraints on the parameter space of the

3 + 1 framework in the
(–)

ν µ channel. In this channel, almost uniformly across
the valid range of ∆m2

41, the parameter |Uµ4| is limited to less than |Uµ4| . 0.1.
Obviously this strong limit in combination with the rather small value favored

by the analysis in the
(–)

ν e disappearance channel is in conflict with the pro-

nounced preference of the data in the
(–)

ν e appearance channel for a comparably
high value of the product 4|Ue4|2|Uµ4|2.

Indeed, the combined fit to the global data presented in section 4.7 proves
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that the different subsets are incompatible with each other at the 4.7σ CL.
This conclusion is examined in detail by fitting various combination of exper-
imental results. The corresponding PG values are reported in table 4.8. This
table illustrates that neither removing individual datasets considered anomalous
nor removing individual datasets contributing to the strong constraints on the
3 + 1 framework relaxes this tension completely. Furthermore, as a compari-
son to table 4.7 reveals, the tension is rather independent from the underlying
reactor flux model. The only experiment that leads to a significant improve-
ment of the PG value when excluded from the global fit is LSND. On the other

hand, discarding all data in the
(–)

ν µ disappearance channel would also result
in an acceptable PG value. However, no theoretical or experimental indication
justifies the exclusion of this channel. Hence in conclusion, the tension in par-

ticular between the
(–)

ν µ disappearance channel on the one hand and the
(–)

ν e

appearance and
(–)

ν e disappearance channels on the other hand is mainly driven
by LSND. However, even when the LSND data are discarded, significant tension
remains due to the MiniBooNE results. This conclusion is robust with regard
to the choice of the underlying dataset and the underlying reactor flux model.
Therefore, the 3 + 1 framework provides no consistent model for all the data
measured in neutrino oscillation experiments. However, it provides a viable
model for the global data, in particular including the gallium anomalies and

the RAAs if the anomalies in the
(–)

ν e appearance channel are resolved indepen-

dently. An investigation of these anomalies in the
(–)

ν e appearance channel, in
particular with regard to the background estimation in MiniBooNE, is currently
under way in the “Short-Baseline Neutrino Program” at Fermilab [134]. Hence
new results expected in the next years might indeed resolve the anomalies in the
(–)

ν e appearance channel, which would require a stringent re-examination of the
3 + 1 framework as fiducial model for neutrino oscillations.

While the 3 + 1 framework thus still provides an interesting and viable model
for at least a significant subset of the global data measured in neutrino oscillation
experiments, the sterile neutrino introduced in this framework is in conflict with
the constraints from cosmology. This is because the mixing parameter |Ue4| ∼
0.1 required to explain the RAA in the 3 + 1 framework would result in an initial
thermal equilibrium between the sterile neutrinos and the SM particles. Hence
in this case, an additional species of neutrino-like particles exists in the early
universe, which is in conflict with the bounds on Neff reviewed in section 3.2.2.
Similarly, the preferred mass parameter ∆m2

41 ∼ 1 eV2 is in significant tension
with the limits on the sum of masses of neutrino-like particles,

∑
mν , reviewed

in section 3.2.4.

However, the various cosmological probes can only constrain the properties
of particles that were present during the periods of time associated with these
probes. Hence if the production of sterile neutrinos in the early universe was
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prevented, the tension with constraints on Neff and
∑
mν could be resolved.

A rather minimalist mechanism that indeed can significantly suppress the pro-
duction of sterile neutrinos is the secret interaction scenario introduced in sec-
tion 5.1. In this scenario, by analogy to the SM MSW effect, coherent sterile
neutrino scattering processes due to the secret interaction induce a temperature
dependent, effective potential. This effective potential Veff drastically decreases
the mixing between SM neutrinos and sterile neutrinos at high temperatures.
Consequently, the production of sterile neutrinos in the early universe is inhib-
ited. However, as described in section 5.2, as soon as Veff gets smaller, inco-
herent scattering processes and oscillations are no longer suppressed efficiently.
The combination of these two processes gives rise to the Doddelson-Widrow
mechanism, which brings sterile neutrinos into thermal equilibrium with the
active neutrinos. Depending on when this recoupling occurs, different cosmo-
logical probes on Neff and

∑
mν are affected by the presence of sterile neutrinos

and their corresponding constraints are no longer evaded. On the other hand,
increasing the secret interaction strength, which decreases the effect of sterile
neutrinos on the probes on Neff and

∑
mν , reduces the free-streaming of active

neutrinos due to the active-sterile mixing. But the free-streaming property of
active neutrinos is also constrained tightly by cosmology, as explained in sec-
tion 3.2.3, resulting again in strong tension with the secret interaction model.
Thus, it was argued in the literature that the secret interaction scenario is ruled
out at all points of parameter space.

Based on the publication [4], a major part of this thesis is dedicated to the
reinvestigation of the secret interaction scenario. To this end, the recoupling
of active and sterile neutrinos is explored by two complementary approaches.
In the first approach, the recoupling temperature is explicitly calculated using
analytic expressions for the scattering processes involving sterile neutrinos. Be-
cause this temperature determines when recoupling happens and hence which
cosmological probes are affected, this approach allows to examine which con-
straint applies at a particular parameter point of the secret interaction scenario.
The conclusion of this approach is that the secret interaction scenario is indeed
ruled out at each point of the parameter space. In large parts this result is
driven by the amplification of incoherent scattering due to a resonance in the
s-channel and due to efficient collinear scattering in the t-channel. However,
the particular constraints leading to the exclusion of an individual parameter
point vary across the parameter space. The multi-flavor evolution used as the
second approach provides a cross-check of these results. It is a numerically sim-
ulation of the evolution of the active and sterile neutrinos including oscillations
and scattering. Hence, this approach captures the dynamics of the recoupling
process, in particular its time dependence and the quantum Zeno effect. Both
approaches are found to be in good agreement. Based on the combined results
of both approaches the parameter space of the secret interaction model is classi-
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fied into three regions which are ruled out due to constraints on free-streaming,
constraints on

∑
mν and constraints on

∑
mν in combination with Neff, respec-

tively, as presented in fig. 5.6. This result provides a guideline indicating what
extensions of the secret interaction model might still be compatible with the
different cosmological constraints. Finally, the reinvestigation of the secret in-
teractions scenario concludes by proposing three such potential extensions that
could reconcile this scenario with cosmological constraints.

As cosmological probes constraining Neff and
∑
mν are only sensitive to ster-

ile neutrinos after recoupling, these constraints can be avoided if recoupling is
inhibited until very late times. This is possible in scenarios with inverse symme-
try breaking, where a gauge symmetry is broken at high temperatures, resulting
in a vev for the corresponding boson. At low temperatures the symmetry is
restored and the vev vanishes. If the secret interaction is mediated by a scalar
mediator instead of a vector mediator, the secret interaction term can serve as
a Dirac mass term for the sterile neutrino at high temperatures. If the mass of
the sterile neutrinos is high enough, their production is kinematically forbidden
at high temperatures. On the other hand, sterile neutrinos could still be as light
as required to explain the anomalies in the 3 + 1 framework framework once the
symmetry is restored at low temperatures. In conclusion, a very simplistic im-
plementation of this model indeed prevents recoupling. However, the parameter
values required in this model seem rather unnatural.

The secret interaction scenario is also reconciled with cosmological constraints
if additional processes compensate or at least dilute the effect of sterile neutrinos
on cosmological probes. Hence, a second extension of the secret interaction
scenario introduces additional relativistic DOFs. These additional DOFs can
be free-streaming and thus compensate for the reduction of free-streaming in
the regions of the parameter space where the secret interaction would else be
ruled out. On the other hand, the conflict of the secret interaction scenario with
the constraints on

∑
mν is mainly correlated with the energy density in the

comparably heavy sterile neutrinos. Hence, if this energy density in the sterile
neutrinos was very small, the bound on

∑
mν would not be violated. This would

be the case if the energy density in the neutrino sector was spread among a couple
of additional, very light particles. This can be realized invoking additional sterile
neutrinos charged under the secret gauge group. All sterile neutrinos would
recouple only with the active neutrinos once these have decoupled from the
thermal bath, such that the total energy density in the neutrino sector cannot
change anymore. Thus, the energy density in each of the neutrino species, and
consequently also in the critical sterile neutrino with m ∼ 1 eV2 would be small
and bounds on

∑
mν could be evaded.

Finally, the possibility of sterile neutrino decay can potentially reconcile the se-
cret interaction scenario with cosmological probes. If the decay was fast enough,
no sterile neutrinos would exist throughout most of the thermal history of the
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6 Summary and conclusions

universe. Consequently, similar to the inverse symmetry scenario, sterile neu-
trinos would not leave any imprints on cosmological probes. Independent from
these considerations, sterile neutrino decay can be used to explain the SBL

anomalies in the
(–)

ν e appearance channel, as was shown for example in [133].
In conclusion the investigations presented in this thesis prove that while new

physics seems to be necessary in the neutrino sector, some of the most straight-
forward extensions of the SM are excluded by results in oscillation experiments
and cosmological data. Within the 3 + 1 framework the datasets corresponding
to different oscillation channels are incompatible with each other. Furthermore,
this model is in conflict with various constraints from cosmological probes. The
secret interaction scenario, a minimalist extension that suppresses the produc-
tion of sterile neutrinos in the early universe is not sufficient to reconcile active-
sterile neutrino oscillations with cosmological constraints. Nevertheless, these
models remain interesting, because the 3 + 1 framework could serve as a consis-
tent explanation for at least a subset of the global oscillation data, while several
possible extensions of the secret interaction scenario could diminish the tensions
with constraints from cosmology. In this regard it is particularly notable that
the 3 + 1 framework could provide a viable framework for the global oscillation

data if the SBL anomalies in the
(–)

ν e channel measured by LSND and Mini-
BooNE could be accounted to a different physical process. Such a process could
be fast sterile neutrino decay. On the other hand, sterile neutrino decay is one of
the processes that can reconcile sterile neutrinos with cosmological constraints.
Upcoming experimental results for example from the Short-Baseline Neutrino
Program at Fermilab as well as new cosmological data will probe this scenario.

In summary the analyses presented in this thesis reject some straightforward
and simplistic new physics models in the neutrino sector, whereas no evidence for
a consistent theory of neutrino physics explaining all data was found. Therefore,
neutrinos continue to be interesting objects to study, both, from a theoretical as
well as from an experimental point of view. Finally, from a subjective perspec-
tive, the remaining open problems do not make neutrinos boring or annoying,
but maybe the most exciting particles in the SM.
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