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Chapter 1

Introduction

It is hard to overestimate the importance of extremum principles in mathematics and physics. The
idea that "every effect in nature follows a maximum or minimum rule’, as formulated by Leonhard
Euler in 1744 [29], was a guiding light in the development of various theories in geometry and
physics, starting from the famous least action principle of Fermat and Maupertuis. Geodesics, mini-
mal surfaces, integral curves in Hamiltonian mechanics and stationary states in quantum mechanics,
all these share the property of being a critical point of some functigrifined on a suitable man-
ifold M. However, while minimization problems have a history prior to the 18th century, the search
for unstable extrema is a more recent topic. Presumably, Birkhoff [14] was the first to introduce a
minimax principlefor a critical levellarger than the global minimum, proving the existence of one
closed geodesic on a surface of gefiusThe main idea behind minimax principles for nonlinear
problems is the observation that critical levels often reveal a change in the topology of the corre-
sponding sublevel set. This idea was set on a strong foundation by Ljusternik and Schnirelman [54],
who where also the first to observe that a symmetryp ahder the action of a compact topological
group is reflected by a richer topology of sublevel sets. In the particular case wheren even
functional defined on the unit sphefg of some Hilbert spac@{, theLjusternik-Schnirelman levels
cp = inf supv(u) (n € N) (1.2)

Aex(Sy) uEA

v(A)>n
arise as natural candidates for critical valuesjofcf. [77]). HereX(S;) denotes the system of
closed and symmetric subsets $f, and~y denotes the Krasnosel'skii genus. The relation (1.1)
bears a resemblance to the Courant-Fischer principle, which states that under local compactness
conditions a selfadjoint semibounded operataon # has a sequence of eigenvalues given by

A (A):= inf  sup (Av|v), (1.2)
V<D(A) yeVvnS,
dimV>n

with (-|-) denoting the scalar product iH. Indeed, if we consider the energy functional—

P(u) := §(Aulu) associated with the eigenvalue probletn = \u, then a comparison of (1.1)

and (1.2) yields:,, = %un. Therefore the values, generalize the notion of a minimax eigenvalue

for nonlinear problems, and this property has been stressed especially by Zeidler [77], [78]. Inspired
by this observation, one might ask if even a form of 'nonlinear spectral theory’ exists. For instance,
the following questions may arise in this context:
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(i) Can one characterize solutions to samoalinearproblems using the spectral theory of related
linear problems ?

(i) Is it possible to extend the notion of a spectral projection or a generalized eigenspace in a
meaningful way ?

Considerations like this have motivated the present thesis, which pursues a 'spectral theoretic’ ap-
proach to semilinear problems with variational structure. Such an approach has been proposed
recently by Heid and Heinz [33], and the thesis is strongly influenced by their work. Let us explain
the main idea in light of the following Dirichlet problem:

(—A + f(z, |u|)>u =u, ueW Q). (1.3)

Here W12(Q2) denotes the usual Sobolev space on a dorfiaic RY, and f is a real-valued
continuous function. Moreover we assume that the nonlinearity in (1.3) is definite, precisely:

(M) f(z,-) :[0,00[— R is either nondecreasing for all€ €2, or nonincreasing for alt € €.

In the first case, equation (1.3) is callegblinear and in the second case it is callegperlinear

To describe the spectral aspects of this equation, we cast it in an abstract functional analytic frame-
work. For this replacd.?(Q2) by an arbitrary real Hilbert spack, W'2(2) by a dense subspace

X C H and—A by a semibounded selfadjoint operatty having X as its form domain. Suppose

that for each: € X we are given a symmetrid,-form compact perturbatiof (=) which depends
continuously oru in the sense of quadratic forms and such tBé&t) = B(—wu). Then we may

build the form sumA(u) of Ay andB(u) and consider the equation

A(u)u = Au u € D(A(u)) C X. (1.4)

Actually one has to impose certain growth conditionsfoio treat (1.3) as a special case of (1.4),
but we omit the details at this point. Moreover we just remark that, by generalizing condition
(M) in a suitable way, we adapt the notion of sub- and superlinearity to this abstract context (cf.
Sec. 6). Finally we assume that (1.4) is of variational type. By this we mean that the nonlinear
operatoru — A(u)u, extended as a map froi to its dual X *, arises as derivative of a functional

¢ € C'(X). As a consequence, (1.4) is precisely the Euler-Lagrange equation of the functional
¥y € CH(X) defined by

Yalw) = () — ul? (e X)

(here and in the following|| - || denotes the norm ift{). We now introduce, for given € N, the
following spectral characterizatioproblem:

(SC),, Find a solution, of (1.4) such that = \,(A(u)), i.e. A equals then-th minimax eigenvalue
of the operatord (u).

In the sequel, we abbreviate, (A(u)) to A, (u). Of course, some justifications are needed to pose
this problem in a precise way, and the appropriate framework is developed in Chapter 5. The
fundamental interest of this characterization lies in the fact that solutionis(SC'),, share any
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property enjoyed by an-th eigenfunction of a relatelihear problem. Depending on the precise
framework, this gives rise to certain geometric properties of the funatiéfor instance, for elliptic
PDEs of the type (1.3), every solutiamof (SC'),, n > 2 changes signFurthernodal propertieof

u may be deduced from famo@ourant’s nodal domain theore(uf. [22] and section 14.3), which
states that the number of nodal domains (i.e. of connected components of{thess@{u(x) # 0})

of then-th eigenfunction is bounded above by Moreover, refined information on the number of
nodal domains is available in the one-dimensional or radially symmetric case.

Nodally characterized solutions to equations like (1.3) received much attention in recent years. This
interest is mainly due to the fact that in c&3e= R" these solutions describe 'standing’ or 'travel-

ing’ waves arising in nonlinear equations of the Sxdinger or Klein-Gordon type, see for instance
[9],[11],[23],[41] and the references therein. In particular it is worth reviewing briefly the relation-
ships between nodal properties and minimax energy levels which are already knowsupEor

linear Sturm-Liouville problems, Nehari [57] introduced a minimax principle involving functions
with a fixed number of zeroes whose position is varied. His method was extended to problems on
unbounded intervals by Ryder [62], and versions suitable for higher dimensional radially symmetric
problems were developed in [69] and [9]. As a matter of fact, the characteristic energies defined
by Nehari coincide with Ljusternik-Schnirelman levels on an appropriate manifold, see Section 8.3.
Coffman [18] was the first to observe a relationship of this kind, but he identified Nehari’s numbers
with the Ljusternik-Schnirelman levels ofdifferentauxiliary functional.

Forsublinearproblems on a compact interval, Hempel [37] proved the existence of nodal solutions
also using a variational principle which involves the position of zeroes, and his critical levels were
subsequently identified with Ljusternik-Schnirelman levels (cf. [19]). Sublinear problems on un-
bounded intervals and radially symmetric problems were treated by Heinz [35],[36] with the help
of refined versions of Ljusternik-Schnirelman theory.

For equations like (1.3) in higher dimensions without any symmetry assumptions, sign properties
of solutions are far from being well understood. In fact, even the nodal structure of the Dirichlet
eigenfunctions of the Laplacian on an arbitrary donfainas not been clarified satisfactorily so far.
Moreover, all nodal constructions available on intervals run up against serious handicaps in higher
dimensions. Results establishing the existencgigif changingsolutions have been obtained just
recently (cf. [7],[10],[11],[15],[23]). In particular we mention tleeitical point theory on partially
ordered Hilbert spaceas developed by Bartsch [7], which yields promising general results on sign
changing solutions. This method strongly relies on the fact that for a large class of superlinear
eqguations the negative gradient flow of the associated energy functional leaves the cone of positive
functions inC' (Q2) invariant.

Equation (1.4) may also be considered together witmtirenalizationcondition
lull = R, (1.5)

for given R > 0, which amounts to an isoperimetric side condition for equation (1.3). The case
R = 1 is especially interesting for problems arising in quantum mechanics, where such solutions
describe the density of stationary states. The standard variational procedure to obtain normalized
solutions is the investigation of the functionalrestrictedto the sphere

Sg:={u € H ||u| = R}
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Indeed, ifu is a critical point ofy|s,, thenu solves (1.4), but in this case the corresponding
‘eigenvalue’) enters as an unknown Lagrangian multiplier. As a consequence, weatyagscribe

A, which is the prize we pay by imposing condition (1.5). Nevertheless, we might still be able to
establishA = X, (u) for givenn € N, so thatu is a solution of our spectral characterization
problem.

Heid and Heinz [33] already examined such a variant of proll€di),,, however they could only

treat the sublinear case under considerably strong restrictions. In [34] we removed some of these
restrictions and presented new applications.

In this thesis, the arguments are worked out in an again more comprehensive and unified way.
Moreover, we consider the sublinear tygpewell asthe superlinear type of (1.4), and we construct
solutions(u, ) of (SC),, eitherwith prescribed eigenvaluweor with prescribed nornfju||. Besides,

we constructminimizing setxorresponding to minimax characterizations of the form (1.1) with

the help of spectral projections, and we derive useful inequalities relating the égviglsfrozen
Rayleigh quotients’ of the forn&% for u,v € X.

In the second part of the thesis, we apply our results to elliptic PDEs of second order, moreover we
consider integro-differential equations withnanlocal nonlinearityof convolution type. Beyond

mere existence results for these problems, we derive a deeper understanding of the solution set in
view of nodal properties. Moreover, new connections between the existence of nodally characterized
solutions and the nondegeneracy of Ljusternik-Schnirelman levels are derived, generalizing results
from the linear theory.

Finally, the thesis provides affirmative and clarifying answers to the questions raised in [33, p.49].

We now briefly review our abstract results, considering first the sublinear problem together with
the normalization condition (1.5). The basic idea is to detect solutiofi§ @,, as elements of a
spectral fixed point seMore precisely, define

P:={u€ X|P,(u)u=u},

whereP, (u) denotes the generalized eigenprojection associated with the féigenvalues of the
operatorA(u). HenceP may be regarded as some kind of 'generalized eigenspace’ for the nonlinear
problem. Indeed, ifA(u) = A does not depend om, thenP is the usual generalized eigenspace
associated with the first eigenvalues ofdi. However, in generdP is not a vector space, and there
even is no immediate evidence thlatcontains some nonzero element at all. However, assuming
that

An(u) < Apy1(uw) (u € X) (1.6)
and considering? = 1 for simplicity, we show the following property:

P NSy iscompacty(PNSy) =n (Inparticular,? N S; is nonempty.
(CP) ¢, = max (P N Sy)
Everyu € P N S, satisfying¥(u) = ¢, solves problen{SC),,.

(cf. Sec. 6.1). In particular, this property provides solution$36¢’),,, but the assertion is much
stronger. In fact(C'P) naturally extends fundamental features of a generalized eigenspae
sociated with the first eigenvalues of some semibounded selfadjoint operatdvioreover, (CP)
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asserts thaP N Sy is aminimizing setn view of the minimax characterization (1.1).
In the superlinear casewe prove properties dual to those listed in (CP). Recall that, equi-
valently to (1.2), the values, (A) are also given by

An(A) = su inf (Av|v 1.7
W)= s e (Aol (1.7)
codimV<n—1

A similar complementary description exists for the valagsinvolving the dual genus*(cf. Sec.
3.2). Setting
Q:={ueX|(I-P_1)(u)u=u},

and assuming
An—1(u) < Ap(u) (u € X) (1.8)
as well as a certain boundedness condition (cf. p. 50), we establish the following:

QN Syisclosedy*(Q@NS;) <n-—1
(CP)” ¢n, = infp(Q N S1), and this infimum in attained
Everyu € QN S; satisfying¥(u) = ¢, solves problen{SC),,.

Again solutions tq.SC),, are provided, and features of spectral subspaces are regained. We remark
that, in contrast to the sublinear cagk, S; is notcompact, hence local compactness of minimizing
sequences has to be ensured. We will prove this compactness with the help of elementary spectral
estimates. We also note that the assumption (1.8) may be weakened in applications, cf. Chapter 9.
The strategy to solve proble(w(),, for fixed\ is similar, However, to explore minimax principles,

we now replace the functionat by ¢,, and we relate the corresponding valugsto a different
'manifold’ in place ofS; in (1.1). The appropriate choice of this manifold depends on the position

of A with respect to the spectrumof A(0). If A\ < inf o, then we consider thdehari manifold

N = {u € X\ {0} | (A(w)ulu) = Aull*},

which is a closed subset &f containing all solutions of (1.4). If on the other hakd> inf o, then
we use the set
S:={ue€ X |\(u) =M},

which to our knowledge has not been considered before for constrained minimax principles. Note
that in generalS is not a differentiable manifold. Nevertheless, either referring/tor to S, we
show properties similar to (CP) att@'P) .

We now give an outline of how the thesis is organized. In Chapter 2 we commence by proving an
analog of Courant’s nodal theorem for unconstraiseperlinearequations. By this we extend and
complement known results based on Morse-theoretic arguments. Moreover, the proof gives a first
view on how linear and nonlinear minimax principles may be compared with the help of condition
(M).

In the subsequent chapter we turn to the abstract part of our thesis, starting with the investigation
of even and continuous maps from a Banach space into the associated Grassmannian manifold. To
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these maps we assign special fixed point sets whose topological properties are explored. As a pre-
requisite, we recall basic properties of the Grassmannian manifold and relatively compact subsets.
In Chapter 4 we establish the continuous dependence of eigenvalues and spectral projections for
families of form compact perturbations. This is necessary to apply the results of Chapter 3 to our
spectral fixed point sef® and Q as given above.

The examination of semilinear eigenvalue problems starts in Chapter 5, where we give a precise def-
inition of problem(SC),,. The Chapters 6 and 7 contain our most important results in the abstract
functional analytic’ framework. In particular we provide criteria for the solvability of problem
(SC),, and we establish the above-mentioned prope(tieB), (CP) .

The second part of the thesis, starting with Chapter 8, is devoted to applications to elliptic differ-
ential (and integro-differential) equations of second order. First we deal with a periodic boundary
value problem involving nonlinear Hill's equation, which features the interesting phenomena of
persistent eigenvalue gaps. More precisely, & N is odd, then

>\n (u) < >\n+1 (u)

for everyu € X, and therefore all of our abstract results apply in full strength. On the other hand,

in view of the occurrence of double eigenvalues topological degree methods and, in particular, the
global bifurcation results of Rabinowitz [58] dwot apply here. The chapter closes with a brief

note on nonlinear Sturm-Liouville problems, in particular including the announced identification of
Nehari’'s characteristic numbers.

In Chapters 9-11 we consider three different types of superlinear problems defifRd¥l. dirst we

are concerned withormalizedsolutions to superlinear Saddinger equations, and we derive new
results on nodal solutions for the radéaldnonradial case. In particular we complement results de-
rived for unconstrainecequations (cf. [9] and [21] for the radial case, [11] for the nonradial case).

In Chapter 10 we then turn teonlocal superlinear equations of Choquard type, where the non-
linearity is given by a convolution integral. For this type of equation Lions [50] established the
existence of infinitely many radial solutions, but every nodal information on these solutions is new.
Note in particular that allocal reasoning is doomed to fail, and therefore nodal propertiesioain

be shown neither by ODE dynamics nor by local variational techniques. Our method does not rely
on locality, and therefore we derive existence and characterizations of nodal solutions.
Subsequently we treat a generalized Emden-Fowler equation, which might be seen as the limit case
of a superlinear Schroedinger equation approaching the infimum of the essential spectrum. A vari-
ational framework for this equation is naturally given on the spgaté(R”). This space doesot

arise in classical selfadjoint eigenvalue problems, and at first glance this seems to be an obstacle for
our approach. We circumvent this problem by considering a family of reladethdedoperators
DY2(RY). Actually this family shows even nicer uniform properties than semibounded operators
arising in anL?-theory. In the radial case, our work improves results of Chabrowski [17] and Naito
[56], whereas in the nonradial case our results seem to be basically new.

The final two chapters are concerned with sublinear equatiofisarwhich are mainly considered

in approximations for quantum mechanical systems of many electrons (see [52] and the references
therein). Nodal solutions for these kind of equations have been found so far either by bifurcation
arguments (cf. [70] and [71]) or by a fixed point approach (see [76] and [52, Sec. I11.3] for an
improved version). Compared to these techniques, our approach gives additional information on
minimax values and permits a relaxation of the growth conditions imposed on the nonlinearity.
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Finally the thesis contains a rather extensive appendix. In the first three parts we furnish prerequi-
sites from the theory dinear elliptic PDEs. Most of these are known or at least not surprising, but

in standard references the assumptions on the coefficients are too restrictive for our purposes. In the
last part we collect recent results on compact embeddings of Sobolev spaces in welgbpeates,

and we deduce compactness properties of nonlinear operator valued maps.

We remark that we mainly restricted our attention to problems posed on the whole space, but in
general our results carry over boundeddomains2 ¢ RY. However, in view of nodal properties

the casef2 = R™ is more interesting, since many of the available methods encounter (at least
technical) obstacles in this case.

Closing this introduction with a short outlook, we like to suggest a further investigation of spec-
tral characterizations for nonlinear elliptic equations which goes beyond the scope of the present
thesis. In view of our method, it remains to clarify to which extend our evenness and nondegener-
acy assumptions (cf. (1.6) and (1.8)) can be relaxed. In addition, it is also interesting to examine
eigenvalues positioned mapsof the essential spectrum. Indeed, minimax principles for this type

of eigenvalues have been developed very recently (see [32] and [26]), and maybe there exists an
analogous connection with certain minimax values of the assocgttexgly indefinitenonlinear
functional. For instance, one might think of the variational values defined by Benci [12].

Beside from such abstract extensions, many different applications of the present method are con-
ceivable. As an example we mention fourth order elliptic equations which on intervals also exhibit
nice nondegeneracy properties. Moreover one may consider second order systems of ordinary dif-
ferential equations, as done in [33] for the sublinear case.

We finally mention the open question whether an odd superlinear problem pode®, @ither of

local or of nonlocal nature, has an infinite humbesigh changingsolutions. We guess that this
guestion can be answered by some form of spectral investigation.

1.1 Notation and conventions

General conventions

Supposing that the underlying space and the notion of distance is undeBig@d, represents an
open ball of radiusk centered at. The notions 'measurable’ and 'measure’ stand for 'Lebesgue-
measurable’ and ’'Lebesgue-measure’, respectively. All considered functionearealued
Moreover we call a functiorf : RV — R analyticin case that it iseal analytic Unless otherwise
stated, all occurring vector spaces are understoodadsector spaces.

Abstract notions

If (X,] - ||) is a Banach space, we denote BY* the topological dual of X and by
(-,-) : X* x X — R the dual pairing.



To a functional¥ : X — R we assign the sublevel sets
UVe={ueX|¥(u) <ctCX

for eachc € R.
We write ¥ € C'(X) in case thatt is Fréchet differentiable with continuous derivativ@ : X —
X*. Supposing that this is true, we call the equation

d¥(u) =0 ueX (1.9)

the Euler-Lagrange equationf . Conversely, being given an equation of the form (1.9), we say
that ¥ is the correspondingnergy functional

Finally, ¥ satisfies thePalais-Smale conditioffPS conditionin short) at a levelc € R if any
sequencéuy, )nen in X with ¥ (u,) — candd¥(u,) — 0in X* admits a convergent subsequence.
If Ais a densely defined (unbounded) linear OperataoX jrwe denote byD(A) the domain ofA.
Moreover we assign tal the seto(A) (resp. o,(A), oess(A) ando.(A)) defined as thepectrum
(resp. thepoint spectrumessential spectrurandcontinuous spectrujrof the complexificationof

A.

Foré > 0, thed-neighborhood of a set C X is writtenUs(A), i. e. we have

Us(A) := {z € X|dist(z,A) < 0},

and similarly for subsets of any other metric space. Moreover, for a sub%pateX andR > 0

we write BV in place of Bg(0) NV

For a subseD C X we denote byD resp.dD the closure resp. the boundary of

We briefly write D < X to express thab is asubspacef X.

We say thatD is weakly compacif every sequencéu,), C D contains a subsequence which
converges weakly to somee D (Strictly speakingD is weaklysequentialljcompact in this case,
but for simplicity we allow this slight abuse of notation ).

As usual, letC(X) be the space of bounded linear operator&inMore generally, for two normed
spacest, F' the normed space of bounded linear operafors> F will be denoted byL(E, F').
ForT € L(E, F), we shall write\ (T') resp.R(T') for the kernel resp. the range of the linear map
T. Moreover, the lette?™ € L(F*, E*) stands for the dual operator ot

Finally, a (nonlinear) mav : £ — F is calledcompletely continuoui$ N is compact and contin-
uous.

Moreover,N is calledstrongly continuousf N(u,) — N(u) in F whenevew,, — u in E.

Although inconsistent, the latter notation is not common practice in the speciaFcaséR. In-
stead, it is customary to caN weakly (sequentially) continuous in this case, hence we will do so as
well. Furthermore we calV weakly lower semicontinuous provided that= R and thatu,, — u
impliesu < liminf N (uy,).

We remark that ifE is reflexive then the strong continuity oV implies that it is completely con-
tinuous. If in additionNV is linear, then both properties are equivalent to the mere compactness of
N.

Elementary notions

The letterR ™ (resp.R ™) denotes the set of positive (resp. negative) real numbers. Moreover, we
denote byO(-) ando(-) the usual Landau symbols.
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Forz € R™ we write|z| for the Euklidian norm of:. An open and connected sub$ebf RN is
called adomain For domaing,, Q5 we write); CC €5 in case thaf); is compact an€; C Q.

If f:Q — Ris continuous, aodal domainN; of f is defined as a connected component of the
set

{z € Q] f(z) #0}.
HenceN; is open and connected, and there hqlds) = 0 for everyz € ON; N Q.

Functions and spaces of functions

LetQ c RY denote a measurable subset.
For an arbitrary subsét’ C Q we denote byl :  — R thecharacteristic functiorof ', that is

Loy () = 1 for =z e
TV 00 for oz e\

A function f : Q x R — R is called aCaratheodory functioif f(z,-) : R — R is continuous for
a.e.x € Qandf(-,t) : @ — R is measurable for atl € R.

Forl < p < oo we denote by’ € [1,o0] the conjugate exponent, i.¢! = I%. Moreover, let
LP(€2) be the usual Lebesgue space which norm is denotéfd iy independently of2. Moreover
we use the symbad}|-) for the scalar product ifi?(2).

In the following let c RY be a domain, and lef's°(£2) stand for the vector space 6f*°-
functions with compact support in. We denote fok € N by W*?(2) the usual Sobolev space of
functionu € LP(Q2) possessing distributional derivatives*u € LP(Q2) for « € NYY, |a| < k. If

1 < p < oo, thenWk?(Q) is a reflexive, separable Banach space with nfprriy, «.» given by

I Byes = D 1D ully.

|| <k

Moreover, if f : © — R is a measurable function, we sfye L () resp. f € W P(Q) if for
everyn € C5°(92) the function f defines an element df?(Q), W*?(Q), respectively.
Next we define fol < p < oo andk € N the spaceWé“’p(Q) as the closure af5°(Q2) in Wk»(Q),
henceW(f”’(Q) is a reflexive separable Banach space as well.
Finally we focus on the cage = R".
For N > 3 we defineD"?(RY) as the space of functions ¢ L~ with first distributional
derivatives belonging td.2(R"). By Sobolev's inequality,D'?(R") becomes a Hilbert space
with the scalar product

(uv) = VuVo.

RN

For a given measurable a.e. positive function RY — R andl < p < oo we will denote by
L%, (RN) the space of measurable functiansatisfying

1
lully i= [ i)l = s ull < .
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where a.e. coinciding functions are identified. Ify Holder’s inequality can be written as usual,
that is

/ w(@)ur (@) - .- un(@)] < ullgos - o ]z,
RN

k
whenevery” p; = landu; € L, i =1,..., k.

i=1
If a :]0,00[— R is an a.e. positive measurable function, we will also wikifein place 0fLZ(|~|) for
simplicity.
Finally, calling a functionf : R — IR rapidly decreasingwe mean that it is a Schwartz function.

Conventions on Sobolev embeddings, weak solutions and elliptic regularity

In the sequel lef2 be a domain.
Let f € Wz]f)’f(m for somek € N, 1 < p < co. Saying that some property gfis a consequence
of Sobolev embeddingae refer to the following well known facts (see e.g. [1, Theorem 5.4]):

(i) Suppose thakp < nandl < ¢ < nff,’cp. Thenf € L] (). Moreover, the spacWé“”’(Q)

is continuously embedded ¥ (€2) (W(f’p(Q) — L49(2) in short).

(i) Suppose that < m < k — 7 < m + 1. Thenf is represented by an element@f*(2)

(which we denote by the same lettg. MoreoverWé“’p(Q) — C™(Q).

Being given a Caratheodory functigh: Q x R — IR, we consider the equation
—Au = f(z,u) x € (. (2.10)

A function u € W,>*(Q) is called a weak solution of (1.10) jf(-,u(-)) € L},.(%) and for all
@ € C§°(Q) the following identity holds:

/QVquo:/Qf(x,u)go.

Unless otherwise stated, the term 'solution’ always means a 'weak solution’.
Finally, suppose that € L? () for somel < p < oo, and that: € W,.*(12) is a (weak) solution
of the equation

—Au = f.

Thenu € Lfo’f:’(Q) (cf. [40, p. 214]), and we will refer to this property efas a consequence of
elliptic regularity.

12



Chapter 2

A Courant type nodal theorem for
unconstrained superlinear problems

We consider the Dirichlet problem
—Au = f(z,|u])u ue X = WOI’Q(Q), (2.1)

whereQ c RY is a (not necessarily bounded) domai,> 2 and f : Q x [0,c0[— R is a real
valued Caratheodory function satisfying

(M) f(z,-) is nondecreasing o, oo[ for a.e.z € Q.

(G) There are constanise]0, =], C > 0 such thatf(z,t)| < C(1+ [¢|%) (resp.g €]0, oo in
caseN = 2).

With F': Q2 x [0, o[ defined by

F(z,t) :/0 f(x,s)sds,

the energy functionap : X — R corresponding to equation (2.1) is given by
vla) = [ V(@) do— [ Pla,lula)) da.
Q Q

Indeed, standard arguments (cf. [68, Theorem C.1]) show/thatC''(X) and that critical points
of 9 solve (2.1) weakly. Moreover, each one of these solutions is continuous and bourieléeg in
Lemma 2.3 below. As a consequence, the nodal domainsaoé defined in a meaningful way, see
Sec. 1.1. Consider the increasing sequ€iig,, of minimax values given by

B = inf supy(V) €]0,00].
V<X
dimV>n

The following theorem relates these values to the number of nodal domains of solutions to (2.1).

13



Theorem 2.1. Suppose that is a weak solution of (2.1) such tha (u) < f,, for somen € N.
Thenwu has at most, nodal domains.

Remark 2.2. (a) Equation (2.1) has been considered by many authors in view of existence and
multiplicity of solutions. Early results are due to Ambrosetti and Rabinowitz [3], who have shown
that+ possesses infinitely many critical points provided thas bounded and in addition to (G)
there holds

() ¢< 55
(i) There exists; > 2 andR > 0 such tha0 < nF(z,t) < f(z,t)t>fort > Rand a.ex € Q.

More precisely, they introduced an increasing sequébgk, of critical values given by an appro-
priate minimax principle (see [3, p.357]), and they show that for ewegyN the sublevel sef’~
contains at least critical points ofiy. As a matter of fact, it is easy to check tigt< 3, for every

n. Hence a combination of the Ambrosetti-Rabinowitz result and Theorem 2.1 yields a sequence
(un)n Of solutions to (2.1) such that, has at mosk nodal domains.

(b) To the authors knowledge, nodal estimates for solutions to superlinear PDEs without symmetry
were first considered by Benci and Fortunato, cf. [13]. They used information on the Morse in-
dex of certain critical points which can be obtained by involved deformation type arguments. It is
worth discussing the necessary requirements for such an approach. Very often (cf. [13], [8], [7]) an
equation of the form

—Au = g(z,u) (2.2)
is considered, whereas the following assumptions are made
() g€ C'(Q,RY)

(i) g(z,0) = 0, anddsg(z,t) > 2% for everyz € Q, ¢ # 0.

While (i) ensures that the corresponding energy functional is of €I4si) implies that the Morse

index of a solution is an upper bound for the number of nodal domains (cf. [13]).

However, ifg is odd and satisfies (i) and (ii), then one can easily wiite,t) = f(z, |¢|)t with a
function f satisfying (M), hence Theorem 2.1 is applicable as well. Indeed, we claim that, for odd
superlinear equations, Theorem 2.1 is a simpler and more general tool to derive upper estimates on
nodal domains than Morse theory. Note in particular the following:

(i) While Morse type arguments show that, on a suitable minimax leveffahere is at least
onesolution with the desired nodal information, Theorem 2.1 provides this information for
all solutions on this level and below.

(ii) In some cases (cf. [8], [7]), Morse theory requires that solutiongsatated(resp. it requires
that minimax values ansondegenerale which is very difficult to check.

(i) To apply Morse theory, one needs thatis of classC?, whereas Theorem 2.1 applies for
C'-functionals.

14



We finally mention that Theorem 2.1 immediately furnishes the nodal properties proven in [13].
Moreover, the assumptions concerning isolation in Theorem 1.1. and Theorem 7.3 of [7] seem to
be superfluous.

The proof of Theorem 2.1 requires the following two lemmas.
Lemma 2.3. Every weak solutiom € X of (2.1) is (globally) bounded and continuous{in

Proof. Combining (G) with Sobolev embeddings, we infer thaf-, [u(-)|)| < C + a(-) with a
suitably chosen positive functiom € L%(Q). Hence Lemma 14.2 yields € L9(2) for every
2 < ¢ < oo. In particular there is a number> % such thatf (-, |u(-)|) € L*(2N By (x)) for every
z € , and theL*(Q N By(z))-norm of f(-, |u(-)|) does not depend an. An application of [49,
Theorem 13.1] now yields that € L>°(©2 N Bi(x)), and that sup |u(z)| does not depend

z€QNB1 ()
onz (here the boundary conditiom '= 0 on 992’ enters in an essential way). Henees globally
bounded in2, and the continuity ofi now easily follows by virtue of Lemma 14.1. O
Lemma 2.4. For z € Q ands, t € [0, co[ there holds
(F(x,s) — F(z,t) > f(x,t)(s2 — t2). (2.3)

Proof. Putf(xz,t) := f(z,Vt) forz € Q,t € [0, 00[ as well as

t
F(z,t) ::/ f(z,7)dr (x € Q,t €10,00])
0
Then differentiation shows
F(z,t%) = 2F (z,t) (x € Q, t €]0,0]).

Moreover, sincef (z, -) is increasing oif0, oo|, the functionF'(z, ) is convex on0, co[. In partic-
ular there holds

2F(z,s) — F(z,t)) = F(z,s?) — F(z,t?) > 0oF(z,t*)(s* — 1?)
= fla,t*)(s* — t?)
= f(z,t)(s* —t?) (2.4)

for s,t € [0,00[ and a.ex € . O

In fact an inequality of the form (2.3) is crucial for all applications to be considered in this thesis.
We now may complete the

Proof of Theorem 2.1PutV (z) := f(z, |u(x)|) for z € . Then Lemma 2.3 yield¥” € L>(Q),
in particularV is al¥ -admissible potential, see Section 14.3.1. Heace— V' is uniquely given as
a selfadjoint semibounded operator b(2) with form domainX (cf. Remark 14.6). Moreover,
every eigenfunction of A — V is continuous by standard elliptic regularity (cf. Lemma 14.1).
Now consider ) )

Ap = inf sup IVollz + fQ Vo

dim ¥ = n VEV HUH%

?
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and assume that, contrary to our claimhas more tham nodal domains. Then Theorem 14.7
forces

An < 0. (2.5)
Choose am-dimensional subspad® C X such that

[V0l + fo Vo* _ A
veV ||’U||% T2

In particular,||Vw||2 < ||V ||collwl|3 for everyw in W, and therefore Lemma 2.4 yields

/Q|Vu(3:)|2dx—/QV(x)u2(x) da —
([ 1vatoPds- [ Vit )
(/|Vw |2dx—/ V(2)w (x)dm)

——||w||2

v

2(¢p(u) = (w))

Vv

> cllwll3,

- |>\n

where|| - ||, denotes the usud¥ !?(92)-norm andc := min{1, ”V” } > 0. As a consequence,

C
Plu) > p(w) + 5 [wl2
for everyw € W. From this we conclude(u) > sup (W), sincet is continuous inX and

supyp(W) > B, > 0 = ¢(0). In particular this forces)(u) > £,, contrary to our assumption.
Henceu has at most: nodal domains, as claimed. O
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Chapter 3

Topological properties of families of
subspaces

In this chapter, letX, || - ||) denote a real Banach space, and|ldt also stand for the induced norm

in £(X'). We are concerned with continuous and even map& avhich take either projections or
subspaces oK as values. To each of these maps we assign a special fixed point’éetaimd we

aim to show that this set has a 'sufficiently rich’ topology. A precise formulation will be given with
the help of the Krasnosel'kii genus and a related dual genus. Dealing with systems of subi&gts of
we in particular consider the Hausdorff distante Recall that for two subsetd, B ¢ X we may
write dj, (A, B) in the form

dn(A,B) = inf{s > 0| A C Us(B) andB C Us(A)}.

3.1 The Grassmannian manifold and relatively compact subsets

We first recall basic facts on projections. As usual, we denote a linear opdtatorL(X) a
(continuous) projection ifP? = P, which implies thatX splits in a topological direct sulY =
N (P) & R(P). The following observation is standard.

Lemma3.1. If P,Q € L(X) are projections with|P — Q|| < 1, then there exists a topological
isomorphism (i.e. a linear homeomorphisie £(X) such thatl' ' PT = Q.

Proof. SettingT' := PQ — (I — P)(I — Q) € L(X), we immediately verifyPT = PQ = TQ.

Moreover there holdg” = P + Q — I and hencd™ = I — (P — Q)2. Since||P — Q|| < 1, the
operator] — (P — Q)? is a topological isomorphism, and therefarés one as well. O

We restrict our attention to projections of finite rank. In particular we denote for arbitrariN by
I1,,(X) the set of all projection$’ € £(X) of rank n, and we infer:

Lemma 3.2. IT,(X) is a closed subset af(X), hence it becomes a complete metric space with
the metric induced by the norm 6{X).
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Proof. Consider a sequendd’;) C II,(X) and P € L£(X) such thatP, — P in L(X). Since
(A, B) — AB defines a continuous bilinear m#&gX) x £(X)—L(X), there holdsP? = P,
henceP is a projection. For sufficiently large we have||P, — P| < 1 which by Lemma 3.1
implies thatP has the same rank &%, that isP € II,,(X). O

Next we introduce theGrassmannian manifolds,, (X), which is defined as the set of all-

dimensional subspaces &f. We endowG,, (X) with thegapmetric

OV, W) :=dn(B1V,B1W) = max{ max dist(v, BiW), max diSt(v,BlV)}.
veV,[lvfI<1 wEW, ||w||<1

It is well known that(G,,(X), ©) is a complete metric space (see [42, pp. 197] as well as [27, p.
17]). Moreover we have

Lemma3.3. (a) If VIV € G,(X) and P,Q € L(X) are projections withR(P) = V and
R(Q) = W, then®(V, W) < 2||P - Q.

(b) If X is a Hilbert space and/, W € G,(X), then®(V,W) = ||Py — Pw ||, wherePy resp.
Py, denote the orthogonal projections &hresp. W.

(c) If X is finite dimensional, the&,,(X') is compact.

Proof. (a): Forv € V, |lv|| < 1 there holds

disi(v, BiW) = inf v —wl <2 inf [lo—wl < 2o - Qv < 2|Pv - Qul| <2|P - Q.

and in the same way digt, B1V) < 2|Q — P| for w € W, [w] < 1. Thus
OV, W) <2|P -Q|.
(b): If X is a Hilbert space, the® can obviously be written as

oWV, W)= max{ max |lv— Pyv|, max [w-— PVw||}.
veV,|lvl|=1 wEW,||w||=1

Combining this identity with the argument carried out in [2, pp.96], we deduce the assertion.
(c): By passing to an equivalent nortki, becomes a Hilbert space, and by (b) we may view X)
as a closed bounded subsetfX'). Hence it is compact. O

We also remark that obviously

dn(BrV, BRW) = RO(V. W)
forR > 0,V,W € G,,(X). As a consequence of Lemma 3.3(a) we deduce
Lemma 3.4. The mapR : I1,,(X) — G, (X) defined byP — R(P) is continuous.

Dealing with the Grassmannian manifold, we also introduceuttieersal n-plane bundlg,, over
G (X) which total space is
{(V,v) € Gp(X) x X |veV}.
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Hence,y, is a continuous:-dimensional subbundle of the trivial vector bundlg(X) x X (see

[46, p.97]), and its projection is induced by the canonical projealighiX) x X — G, (X). Inthe

next section we will use some basic properties of vector bundles for which we refer the reader to the
books by Atiyah [5] and Husemoller [38]. We close this preliminary section with a note on relative
compactness, but for this we have to impose an additional assumption on the Banack space

Definition 3.5. The Banach spac¥ is said to have th@-property if for every compact sét C X
and arbitrarye > 0 there is a projection)) € £(X) of finite rank such thafjv — Qv|| < ¢ for all
veC.

It should be noted that every Hilbert space obviously hag#moperty, moreover every separable
Banach space with a Schauder basis. Banach spaces withpgheperty allow the following useful
characterization of relatively compact subset&qf X ).

Lemma 3.6. Suppose thaK has theP-property and letR > 0. Consider a subset C G,,(X)

and putMpr := |J BgrV C X. Then the following statements are equivalent:
VeEM

(i) M is relatively compact iz, (X).
(i) Mp is relatively compact inX .

(iii) For everye > 0 there is a projectior) € £(X) of finite rank such that
QM ={Q(V) |V e M} C GR(R(Q)) andO(V,Q(V)) < ¢ for everyV € M.

n
Proof. (i) = (ii): Let e > 0. By assumption, there a#g, ..., V,, € M suchthatm C |J B

=1

(Vi)

o

(hereB- (V;) denotes a ball in the opening metric). Defiieas the span of ) V;, thenW is finite

=1
dimensional. Consider arbitratye Mpz. Thenv € BrV for someV € /\il and there id/; such
that
diSt(U,BRVi) < dh(BRV, BRVZ) =R @(V, Vz) <E.

ThereforeM  C U.(BrW). Sinces > 0 was arbitrary, we infer that1, is relatively compact.
(i) = (ii)): Without loss, let0 < ¢ < 2. Since X has theP-property, there is a projection
Q € L(X) of finite rank such thafjQv — v|| < £ for all v € Mp. In particular, ifv € Mg
and||v|| = R, then||Qu|| > R(1 — £) > & > 0. HenceQ|y is injective for everyV’ € M, and
thereforeQ M C G,,(R(Q)). Moreover, for everyy’ € M there holds

OW,QWV) = =du(BsV,ByW)

4 . .
< —
< 3 max{vgjlgaﬁxvdlst(v,BR(W)), wg?aﬁxwdlst(w,BR(V))}
2 2
4
< = — —
< gpmax{ max o= Qul, max Qv = o)
< 4R
R 4
= €
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(i) = (i): Let e > 0 and choos&) as provided by (iii). SinceR(Q) is finite dimensional,
G (R(Q)) is compact by Lemma 3.3(c). Moreovant C U.(G,(R(Q))) by (iii), with both sets
being viewed as subsets Gf, (X ). HenceM is relatively compact. O

3.2 The Krasnosel'skii genus of fixed point sets

If a variational problem shows invariance under the free action of a compact Lie ¢ipthpen
a detailed analysis of the arising level sets requires tools furnished by the assecjaieatiant
topology (see [6] for a general framework). We will make use of this in the simplesttasé.,
acting onX by reflection at the origin, and we recall some corresponding notations. A stilidet
X is calledsymmetridf it is invariant under this action, i. e. if

Vr: z€Ad=— —zc A.

Amaph : A — B, whereA, B C X are symmetric subsets, is calleddif it is equivariant with
respect to this action, i. e. if
h(—z) = —h(z) Ve A

We denote by the family of all closed and symmetric subsetsXf\ {0}, and for everyA € X
we define theKrasnosel'skii genus(A) in the following way (cf. [68, p. 94]): IfA # (), then

inf{n € N | There is a continuous and odd map A — R" \ {0}}
YA =1 o, if {} =0

moreovery(()) = 0. Equivalently, some authors definey

inf{n € N | There is a continuous and odd miap A — S"~!}

v(4) :{ 00, if {.} = 0

for A # (), whereS™" ! := {z € R"||z| = 1}. We remark that ford, B € 3, h : X — X odd and
continuous there holds (cf. [68, p.95]):

1,) 7(4) > 0. Moreovery(A) =0 <= A=0.

~

2,) ACB = 4(4) <y(B)

(1,)
(2,)
(3,) Y(AUB) <~v(A) +~(B)
(4,) 7(4) <~(h(A))

(5,)

If Ais compact, thery(A) < oo and there is a neighborhodd of A in X such thatV € &
andy(A) = y(N).

~

5

5

Thatis,y : ¥ — Ny U oo is adefinite, monotone, sub-additive, supervariant and “semicontinuous”
map. To put the definition of into perspective, we recall the following classical theorem (see e.g.
[66, p. 266]):

Lemma 3.7. There is no odd and continuous map — S™ for m > n.
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As a consequence, we infeS"~!) = n for everyn € N. In the following Proposition we
calculate the Krasnosel'skii genus of a fixed point set involving the Grassmannian manifold.

Proposition 3.8. Let X have theP-property and considef € X bounded and such that for every
finite-dimensional subspaéé of X there is an odd homeomorphigirof SN U onto the unit sphere
in U. Fix a numbern € N, and consider a continuous mdp : [0,1] x S — G, (X) having the
following properties:
() H(t,—y) = H(t,y)for0 <t < 1andeveryy € S,

(i) H(0,-) is constant orf,

(i) the range H ([0, 1] x S) is a relatively compact subset &f,(X).
PutV(y) := H(1,y) and

K:={yeSlyeV(y}

ThenK € X, K is compact, and/(K) = n. In particular, K # ).

Remark 3.9. Proposition 3.8 is an extension of [33, Proposition 2.1] which was restrictddkert
spacesX . We also remark that in [33] the homotoplywas supposed to factorize continuously via
orthogonalprojections. Even though we will still apply Proposition 3.8 only to Hilbert spacés

this thesis, we nevertheless consider familieaaiorthogonalprojections which arise naturally in
Chapter 5. In combination with Lemma 3.4, Proposition 3.8 will prove useful for the treatment of
these families.

Proof of Prop. 3.8 Fix R > 0 such thatS C BrX. Because of (i) the sek is symmetric.
Moreover, K is closed. Indeed, ify;) C K converges tg) € X, theny € S and

dist(y, BRV (y)) = jlgrgo dist(y;, BrV (y))
< jlifélodh(BRV(yj)aBRV(y))

— RjETo@(V(yj),V(y))
— 0,

AN

since the mag/ : S — G,(X) is continuous. Hencg € V(y), andK is closed. Moreover,
K is compact. To see this, note thd(S) C H([0,1] x S) is relatively compact irG,,(X) by

assumption (i), hence Lemma 3.6 implies thig} BrV (y) is relatively compact inX. This set
yeSs
containsK, and thereforeX is compact.

Next we show
Y(K) <n. (3.1)

The compactness ak implies that, identifying antipodal points iRk, we get a compact (and
Hausdorff) topological spack’. Because of (i), the restrictioR of H to [0, 1] x K factors in the
form

H:[0,1] x K -2 [0,1] x K’ 1 Gy (X),
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wherea(t,y) := (t,[y]), and whereH is a continuous function (here and in the following we put
ly] := {y, —y}). Hence o
V:i=H(l,): K' = Gp(X)

is anullhomotopicmap by (i), which implies that the pull-bagk:= V*yn is a trivializable vector
bundle (see [38, p. 29], actually only the paracompactneds’ a$ required !). Observe that the
total spacel of £ can be written as

{(ly)v) e K'x X |y e K,v e V(y)}
Let7: E — K' x R"™ be atrivialization of¢, and define a map : K — R" as the composition
v: K- FE- K'xR" — R",
whereo is given by

o(y) == [yl v),
and where the last arrow is canonical projection. Singelinear on fibers, it clearly follows that
is oddand continuous. Moreoveg(y) # 0 forally € K. Thusy(K) < n, i.e. (3.1) holds.
It remains to show
v(K) > n, (3.2)

which however is the most difficult part. We will prove this in two steps: First we assumeXthat
is finite-dimensional, and afterwards we treat the general case by an approximation argument based
on assumption (iii).

First step The caselim X < co.

Assume thatlim X = N+ 1 > n. Passing to an equivalent norm if necessary, we may suppose that
X is a Hilbert space. By assumption there is an odd homeomorphisfrS onto the unit sphere
SNin X. Forz € X \ {0}, we denote byz) the span ofz, considered as a point of real projective
N-spaceRP” . Because of assumption (i) the mApnow factors in the form

H:[0,1] x § -2 [0,1] x RPN L @, (x),

wherea(t,y) := (t,(h(y))), and whereH is continuous. Now, let;- be theorthogonal com-
plement ofy,, in the trivial bundleG,,(X) x X. Thus, the total space of- consists of the pairs
(V,v) € Gn(X) x X such thaw € V', and the projection is induced by the canonical projection
Gn(X) x X — G,(X). By assumption (i), the map

V():=H(@1,"): RPN = G,(X)

is nullhomotopic, hence the pull-bagk= f/*y,f is trivializable. Note that the total spaceféan
be written as

E = {(p,v) eRPY x X |veV(p)*t}
= {((h(y),v) ly € S,v e V(y) ).
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DenoteP(y) € L(X) the orthogonal projection o¥i (y) for y € S, and observe that by Lemma
3.3(b) the mapP : S — II,,(X) is continuous. Lef : £ — RPY x RN+1—" pe a trivialization
of ¢, and define amap : S — RN+~ as the composition

3:8 -2 BT RPN x RVt — RN+Ln
whereg is given by

a(y) == ((h(y),y — P(y)y)

and where the last arrow is canonical projection. Sinceodd andP(—y) = P(y) by assumption,
it clearly follows thatg is odd and continuous. Now considds € ¥ such thatB C S and
BN K = (. Then, for everyy € B, we havey — P(y)y # 0 and hences(y) # 0. Thus the
restriction of to B is an odd mag — RY+1=7\ {0} and hence we find

v(B)< N+1—n. (3.3)

By property(5,) it follows that there existd > 0 such that

Y(Us(K)) = v(K).
We choose such&> 0 and takeB := S \ Us(K) (in caseK = () we takeB = S). ThenB € ©
andB N K = (), so we have (3.3). Moreove§ C B U Us(K) andvy(S) = y(SV) = N + 1
because of the odd homeomorphiadmThus by property3. ) we obtain

N +1=7(5) <v(B) +7(Us(K)) =v(B) +7(K) < N + 1 —n+y(K),
and hencey(K) > n. Thus we have proved (3.2) in the finite-dimensional case.

Second stepThe general case.

Choose a strictly decreasing null sequerieg); C]0,00[. Since X has theP-property and
H([0,1] x §) C Gn(X) is relative compact, we may choose projectigps € L£(X) of finite
rank such that the condition (iii) of Lemma 3.6 is satisfied corresponding; to- 0. More-
over defineH; : [0,1] x S = G,(R(Q;)) by H;(t,y) = Q;(H(t,y)). ThenH; is continu-
ous for every; € N, as follows directly from the definition of the opening metric. Set finally
Vi(:) := Hj(1,-) : § = G,(R(Qj)) andK; := {y € SNR(Q;) | v € V;(y)}. According to the
finite-dimensional version of Prop. 3.8 which has already been established, we knd; thak

is compact and that

V(Kj) =n (3.4)
for everyj. To complete the proof, we claim:

(%) M = _UNV]-(S) is relatively compact iz, (X).
JE

Indeed,V (S) is relatively compact, an¥f;(S) C G,(R(Q;)) is relatively compact for every by
Lemma 3.3(c). Moreover,

M C U, (V(S) U O Vi(S)>,

=1
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for everyj, which yields the relative compactness/ef.

By (x) and Lemma 3.6 we conclude thatlr := |J BgVj(y) is relatively compact inX,
JjEN,yes

henceZ := Mz NS C X is compact. Moreoverk; € Z for everyj € N. Now let Z be the
metric space of all non-empty closed subsets of the compact shasguipped with the Hausdorff
distanced),. As is well known (see e.g. [53]), this space is again compact. Thus, after passing to a
suitable subsequence, we may assume that we have a limit

Ko = lim K;

J—00

with respect to the Hausdorff distance. Since reflection at the origin induces a homeomorphism
Z — ZandX N Z is the fixed point set of that homeomorphisii Z is closed inZ, and, in
particular, K, € ¥. Moreover it follows from(5,) and the definition ofl;, that

Y(Kso) > n.
Thus the desired result follows from
K D K. (3.5)

To see this, consider an arbitragye K., and note that by definition of the Hausdorff distance
there existy; € K;, j € N such thaty = lim y;. Hence alsd’/(y) = lim V(y;) in G,(X) and
J—00 J—00

therefore

distly, BRV (y)) = jligzdis'[(yj,BRV(y))
< jli)r&dh(BRVj(yj)aBRV(y))
_ leiTOG(‘G(yj),V(y))
< leirglo [@(Vj(yj),V(yj)) +®(V(yj),V(y))]
< R lim [sj + G)(V(yj),V(y))]
= 0.

Thusy € V(y), i.e.y € K. Sincey € K, was arbitrary, we established (3.5) and therefore (3.2)
as well. This finally completes the proof. 0

Corollary 3.10. LetS; := {v € X|||v|]| = 1} be the unit sphere, and let
p: X\ {0} =S v = v/||v]

be the radial projection. The assertions of Prop. 3.8 remain true whesireplaced by a closed
subsetS of X \ {0} such thafp restricts to a homeomorphis$ — S;.
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Proof. Leth : S — S1_be the odd homeomorphism obtained by restrictintp S. Given a
continuousH : [0,1] x S — G,(X) satisfying conditions (i) — (iii) from Prop. 3.8, we define

H:[0,1] x 81 = G,(X) by
H(t, z) == H(t,h ' (z)).

Then obviouslyS = $; and H satisfy all the assumptions of Prop. 3.8, and hence the set
K:={z€S|ze H(1,2)}

has the desired properties. But the relations

ye H(l,y)NnS
and .
VS H(l,z) NSy

are evidently equivalent via the substitutien= (y). This means thak = h~!(K), whence the
result. O

The final part of this section is concerned with properties mbacompacftixed point set involving
the kernels of finite-range projections. As an appropriate topological measure we condigdr a
genus. For this, fi§ € ¥ and putX(S) := {4 € ¥ | A C S}. ForA € %(S) we define

v*(A) :==sup{y(B) | B € %(S),BNA=0} €NUooc.

Clearly the values of* depend crucially on the special choice$f However, in our applications
the role of S will be clear, hence we do not express this dependency in our notation. A basic
observation is the following:

Lemma 3.11. LetS € .
If W C X is a closed subspace of codimensigrthenW N S € (S) andy*(W N S) < n.

Proof. By assumption, there exists a continuous projectfore 1T, (X) such that\ (P) = W.
For arbitraryB € %(S), BN W = {) the restrictionP|s : B — P(X) is odd and symmetric,
andP(y) # 0 for everyy € B. Sincedim P(X) = n, this forcesy(B) < n, and we conclude
YW nNS) <n. O

Proposition 3.12. LetS € 3. Fixanumbem € IN and consider a continuous map: [0, 1]x.S —
I1,(X) having the following properties:

() H(t,—y) = H(t,y)for0 <t < 1andeveryy € S,
(i) H(0,-) is constant orf.

PutP := H(1,-) and
K:={yeS|yeN(P(y)}

ThenK € ¥(S) andy*(K) < n.
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Proof. Clearly K € 3(S). To provey*(K) < n, we proceed similar as in the proof of Proposition
3.8. Since digD, S) > 0, a topological Hausdorff spac¥® is built by identifying antipodal points
in S. Moreover, sinceS is paracompact (as a metric subspace of X)is paracompact as well.
Now H factors in the form

H:[0,1] xS % [0,1] x 8" L5 T,(X),

with a(t,y) := (¢, [y]) and a continuous maH. Defines : [0,1] x S’ — G, (X) by

Mi(t,p) == R(H(t,p)).

Theni is continuous by virtue of Lemma 3.4. Hence (ii) implies that

A~

Vi=0(1,"): 8" — Gp(X)

is nullhomotopic Hence the paracompactnessSéimplies that the pull-back := V*'yn is trivial-
izable (see [38, p.29] again). The total spacé o&n be written as

E = {([yl,v)ly € S,v € R(P(y))}-

Using a trivializationr : E — S’ x R" of ¢, we define an odd and continuous map S — R"™ as
the composition
p: 8- E -8 xR — R”,

whereo(y) := ([y], P(y)y), and where the last arrow is canonical projection.
By construction,P(y)y # 0 whenever ¢ K. Hencey(K) < n — 1, as claimed.
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Chapter 4

Uniform perturbation theory for
selfadjoint operators

Let 7 denote areal infinite-dimensional Hilbert space with scalar pradiugaind norm||- ||, and let

Ag : D(Ap) C H — H be alinear operator il which is selfadjoint and bounded from below. Let
X be the form domain ofly, and letX* be its topological dual. Since the range of the inclusion
i : X — H is dense inH, the canonical identification of with its dual leads to the following
embeddings:

XSHS xe
We therefore regard all the vector spaces defined above as subspacedroparticular that means
that if v € H, we refer tov also as an element & * instead of writingi*v.
Putm := —info(Ag) + 1, and denote byV the square root of the selfadjoint positive operator

Ao+ ml : D(Ay) C H — H. ThenW is selfadjoint on{ with domainD(W) = X, and X
becomes a Hilbert space with the scalar product

(ulv) y = (Wu|lWo) (u,v € X).

Speaking of the Hilbert spac¥, we always refer to this inner product. With the notatiéft :
H — X* for the dual of W, the canonical isometric isomorphidm X — X™* can be written as
J = W*W. Indeed, foru,v € X we have

(W Wu,v) = (Wu, Wov) = (u,v),,
where(-,-) : X* x X — R stands for the dual pairing. Moreover, note that
lullx = fJull  VueX

and

[[ull = [lul VueH.

xX*

Finally we remark that the operatek := J — mI : X — X* is precisely the unique continuous
extension of the continuous densely defined operidtds : D(Ay) C X — X*.
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4.1 Families of form compact perturbations

In the sequel lekCs (X, X*) denote the closed subspaceompacbperatorsB € L(X, X*) which
in addition satisfy

(Bv,w) = (Bw,v) forallv,w € X. (4.2)

We endowlCs (X, X*) with the norm of£(X, X*), in this way it becomes a real Banach space. To
eachB € Kg(X, X*) we assign the quadratic forfn -], : X x X — R defined by

[v,w], = ((fl + B)v,w) = (v|w), —m(v|w) + (Bv,w).

The following Lemma provides uniform bounds for the forims|, related to a compact subset of
Ks(X, X*).

Lemma 4.1. Consider a compact subséff C Kg(X,X*). Then there are positive constants
a, b, c € R such that

allvll < v, 0], +elloll® < blloll% (4.2)
forall Be M, ve X.
Proof. First we claim that for every > 0 there exists a numbet := K (M, ¢) such that
|(Bv,v)| < €||v||i + K||v||? VBe M, veX. (4.3)

Assuming in contrary that this is false, we would fisgd> 0 and sequenced3,,),, C M as well as
(vn)n C X such that|v,||, =1 and

(Bnvn, vp)| > o + nl|vn||? Vn. (4.4)

for all n. Passing to suitable subsequences, we may assumBthat T € Kg(X, X*) and that
Tv, — w € X*. Hence

lim sup [(Bpvn, vp)| < limsup [(Tvp, vp)| < w4, (4.5)
neN neN

and thereforé|v, || — 0 by (4.4). Since the range ¢f : H — X* is dense inX*, we inferv,, — 0
in X, and this forcess = lim Tv, = 0 by the compactness @f. This however contradicts (4.4)

and (4.5) for sufficiently IZ@E, and therefore (4.3) holds true.
Now, applying (4.3) with) < £ < 1, we infer

ol = [v,0], — (Bv,v) +mlv|?

[v, 0] + [(Bv, v)| + m|v]?
[v, 0] + llv[% + (K + |m])||v]|>.
and hence

allolly < [v,0], + cllol®
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with ¢ := 1 — ¢ andc := K + |m|. Moreover

[v,0], < [oll} + [(Bo,0)| + m]v]|?
< ol + ellolly + (K + [m])||o]®
< (T4+e+ K+ |m|)|v]%.
Therefore
[v, 0], + cllv]|* < blloll,
with b := 1 + ¢ + K + ¢ + m, and this completes the proof. O

In particular Lemma 4.1 asserts that for evétye KCgs(X, X*) the quadratic form:, -], is closed,
symmetric and bounded from below # with domainX. Hence there exists a unique selfadjoint
operator4 , in H with form domainX and such that

(Agv|w) = [v,w], forallv,w € D(A,).

By slight abuse of notations, we will sometimes call this operator the form su#naosfd B (even
thoughB is not given as an operator # !).
Next we define the nondecreasing sequence of values

pr(B) :== inf sup[v’U]B

dim v =  VEV (v]v) ’

for eachB € Kg(X, X*) and set
Poo := Inf oess(A,)

with the additional conventiop., = oo if o.55(A,) is void. Indeedg.s5(A,) only depends on
Ay, as asserted by the following Lemma.

Lemma 4.2. For everyB € Kg(X, X*) there holds
Oess(Ap) = Oess(A0) ={A € R A— )M :X — X*is nota Fredholm operatof (4.6)

Proof. For everyB € Kg(X,X*) the operatordA — A\I : X — X* is Fredholm if and only if
A+ B — X\l : X — X*is. Hence it suffices to show

Oess(Ay) = {A € R| A + B — X is not Fredholm} (4.7)

for every B € Kg(X,X™*). Applying Lemma 4.1 to the singletofd := {B}, we may pick
¢ = ¢(B) > 0 such thatd , + cI is a strictly positive operator ifl. Now it is easy to verify that

1
Cess(Ay) = (AER|A> —cands—— € ou((4, +el) 1)

= {AeR|A>—c and)\ i CI — (A, +cI)"tis not Fredholm},  (4.8)

since(A, +cI)~! : H — H is boundedand symmetric. Moreover the following identity holds:
1 _ 1 “loera _1
A+CI— (A, +cI)™! = A—H[(AB +c)T2 ) [A+ B — M|(A, + )™ 2.

Here(A, +cI)*§ : H — X andits dua[(A, +cI)*§]* : X* — H are topological isomorphisms
because of (4.2), and hence (4.7) follows from (4.8). O
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Next we observe:
Lemma 4.3. For everyn € N the functionu, (-) : Ls(X, X*) — R is continuous.

Proof. ConsiderB;, B € Ks(X,X*), j € N such thatB; — B. SinceM := {B;,B |j € N} is
compact, we may choose positive constants, ¢ such that (4.2) holds with respecté. Now if
0 < 6 <aandj € N are such that

IB — Bjl| <4, (4.9)
we have
[v,0]B; = [v,0]5 +((Bj — B)v,v)
< o, 0], + 0ol
< [o,lp + > (0,0], + cllo]?)
and hence

a—90 o 9
< -
o, < ool + 2ol

for all v € X. It now follows from the definition of:,, that

a co
) < .
pin(Bj) < a_(s,un(B) + PR

Interchanging the roles a8 andB; we see that (4.9) implies

(4.10)

co
a—39’

a
n(B) < n(B;
pn(B) < —un(B;) +

hence

“ 0 (B - 2. (4.11)

a a

ll’n(Bj) >
Combining (4.10) and (4.11) we conclude

lim yin(Bj) = pin(B).

J—00
O

Now fix B € Kg(X, X*) and recall that ifs,, (B) < poo, thenu, (B) is an eigenvalue aofl ,. More
precisely, two different cases occur (see e.g. [24, p.90]):

() pr(B) < poo forallk € N andklim ur(B) = us. Moreover, all theu, (B) are eigenvalues
—00
of A, each repeated a number of times equal to its multiplicity.

(Il) Either ux(B) = poo for all k, or there is a numbeky € N such thatu,(B) < peo and
pr(B) = poo for k > ko. Thenuy(B), ..., uk, (B) are eigenvalues oft ,, each repeated a
number of times equal to its multiplicity.
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Now, for arbitraryB € Kg(X, X*) andn € N we denote byP,(B) € L(X) resp.Q,(B) € L(X)
the spectral projections associated with the operdtprnd the interval — oo, i, (B)] resp. the
interval [, (B), 00| (More precisely,P,(B) and Q,(B) are defined as theestrictions of these
spectral projections to the form domaih C H of A,). Moreover we denote

Note that, if B andn are such that

pin(B) < pint1(B), (4.12)

then the numberg, (B), ..., u, (B) are eigenvalues oA ,, andV,,(B) is the span of the correspond-
ing eigenvectors. In particular there hol®s(B) € I1,(X) andV,,(B) € G,(X). Moreover we
haveR(Qn+1(B)) = N(P,(B)) = V,(B)* N X in this case, where. denotes the orthogonal
complement irH (not in X).

Proposition 4.4. Considern € N and D C Kg(X, X™) such that (4.12) holds for evedy € D.
Then we have:

(@) The mapP, : D — II,,(X) is continuous.

(b) If D is relatively compact iCs (X, X*) and

sup fin(B) < poo; (4.13)
BeD

then the seV,, (D) C G,,(X) is relatively compact.

We remark that, in case that (4.12) even holds for evérin the closureD of D, then (b) is an
immediate consequence of (a) and Lemma 3.4. The general case is slightly more involved.

Proof of Proposition 4.4 (a) ConsiderB;, B € D, j € N such thatB; — B. HenceM :=
{B;j,B|j € N} is compact inCs(X, X*), and we may choose positive constamts$, c such that
(4.2) holds with respect td/. Now fix a closed Jordan cuniéin the complex plane surrounding
p1(B), ..., un (B) but no other eigenvalue of,. Then (4.12) and Lemma 4.3 imply that fpfarge
enough we have
1
Py(Bj) = — I—A )" 4.14
A(B)) = 5 [ O 4,)7" da (4.14)

(Actually this is true for the complexification aP,(B;), but for the sake of brevity we do not
express this in the notation). The convergei;¢3;) — P, (B) now follows provided that

M—-A4,) ' = -4)"  (j—= o)

uniformly in A € T" with respect to the norm af(H, X). By [59, Theorem VI11.25(c)], this uniform
convergence holds with respect to the normC¢f7). To establish the stronger convergence, note
that

A=A, ) = (A, +c)TH (T = (c+ N - A4,)7Y),
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and the same holds true férin place ofB;. Thus it suffices to show
(Ay, +e) ' = (Ay+cD) b (= o) (4.15)

in L(H, X). To prove this, recall that (4.2) implies that , + cI)'/? : X — H is an isomorphism.
Hence, forj large enough we have

1> H[(AB +cI)"VF(B; - B)(A, + cI)*l/QHE(H)—> 0.
As a consequence,
(I +[(Ay + D) 2 (B; — B)(Ag + cI)*l/Z)_1—> I
in L(H). Using now
(Ag, +eD)™ = (Ag +eD)™ 2 (T4 [(Ay +eD) (B = B) (A +eD) ™) (A, +eD) ™2,

we conclude that (4.15) holds. Thus (a) is proven.

(b) Consider an arbitrary sequen@®;); C D. We have to show thgl/, (B;)); contains a subse-
quence which is converging i, (X).

First we may assume that, by passing to a subsequence, therefjoldsB € Kg(X, X*). By
Lemma 4.3 and (4.13) we ha\;@& pn(Bj) = pn(B) < oo, In particular i, (B) < pim11(B)

for some numbefn > n. This forcesy, (B;) < pm+1(Bj) for j > jo, provided thatj, € N is
chosen large enough. Applying (a) we conclude
and hence
Vin(Bj) = Vin(B) (4 — 00,7 > Jo)-

by Lemma 3.4. Now fixR > 0. Then the set

Mp = | ) BrVim(B;)

J>Jjo

is relatively compact inX by Lemma 3.6, hence also the set

U BRVn(B]’) C Mg.

J>jo
Again by Lemma 3.6 we conclude th@,,(B;) | 7 > jo} C Gn(X) is relatively compact. Thus
(Va(Bj)); contains a convergent subsequence, as required. O

Corollary 4.5. Considerm,n € N, m > n > 2andD C Kg(X,X*) such that for allB € D
there holds

pin—1(B) < pin(B) < pim(B) < pim41(B).

Denote byP(B) the spectral projection associated with), and the intervalu, (B), um(B)]. Then
the mapP : D — II,;,_,,+1(X) is continuous.
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Proof. This holds sinceP? = P,, — P, 1, whereasP,, and P, _; are continuous by Proposition
4.4, O

We close this section with a note on weak lower semicontinuity.

Lemma 4.6. Let\ < po. Then the functional
w = (Aw,w) = Afw|”
is weakly lower semicontinuous of.

Proof. Put
n:=max{j € N|pu;(0) <A} < oco.

Thenu, (0) < pne1(0), henceP, (0) and@,+1(0) are complementary projections ¥.. Moreover,
for w € D(Ap) there holds

(A = AD)Qp41(0)w, w) = ((Ag — AT)Qn41(0)w|w) > 0,

and by continuity we infer that — ((A — AI)Q,,+1(0)w, w) defines the square of a seminorm in
X; in particular this fuqctional is weakly lower semicontinuous. Moreover;if—~ w in X, then
(A= AP, (0)w; — (A — X)P,(0)w in X*, hence also

(A = A1) Py (0)ws, wj) = (A = M) P, (0)w, w).
The assertion now follows from the decomposition
(Aw, w) = N|w||* = (A = X) Py (0)w, w) + (A = ML) Q1 (0)w, w)

which holds for everyw € X. O

4.2 Remarks on the bounded case

Having examined the continuous dependence of eigenvalues and spectral projections associated with
semibounded operators 7, we will now state related results fboundedsymmetric operators in
X. Indeed, in some of the following chapters we are naturally led to study opefGtersC(X)
which are symmetric with respect to the scalar prodiict. However, the following resultdo not
rely on the fact thafX is the form domain of some semibounded operatgri.e., they hold forX
being an arbitrary (infinite-dimensional) real Hilbert space.
DenoteLs(X) C L(X) the real Banach space of bounded symmetric operatoks iffor each
G € Ls(X) there is adecreasingsequence of values

. Golv
ok(G) := sup ;g‘f;w
diIX‘S/X: k X

(k € N), (4.16)

as well aso(G) = supo.ss(G). Moreover, for fixG € Lg(X), we have the following two
alternatives:
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() ok(G) > 00(G) forall k € N andklim 0;x(G) = 0x(G). Moreover, all thesy,(G) are
—00
eigenvalues of7, each repeated a number of times equal to its multiplicity.

() Eitheroy(G) = o foreveryk € N, or there is anumbéf, € N such thavy, (G) > 0. (G)
ando(G) = 05 (G) for k > k. Theno (G), ..., ok, (G) are eigenvalues @, each repeated
a number of times equal to its multiplicity.

We denote by?, (G) € Ls(X) resp.Q,(G) € Lg(X) the spectral projections associated with the
operatorG and the intervalo,, (G), o1 (G)] resp. the interval — co, o, (G)]. Note that, ifG andn
are such that

Un(G) > 0n+1(G)7 (4.17)

then the numbers, (G), ..., 0, (G) are eigenvalues daf. MoreoverP, (G) € II,,(X) in that case,
andR(Qn11(G)) = N (P, (G)) = R(P,(G))*, whereL now denotes the orthogonal complement

in X. In view of the considerations of the previous section is is no surprise that the following three
statements hold.

Lemma 4.7. For everyn € N the functiono,, () : L5(X) — R is continuous.

Proposition 4.8. Considern € N andD C Ls(X) such that
on(G) > 0p11(G)
holds for everyG € D. Then the mag’, : D — II,(X) is continuous.

Corollary 4.9. Considerm,n € N, m > n > 2andD C Lg(X) such that for allu € D there
holds

O'nfl(G) > O'n(G) > O'm(G) > O'm+1(G).

Deno~teI5(G) the spectral projection associated withand the intervalo,,(G), o, (G)]. Then the
mapP : D — I,,_,+1(X) is continuous.

We omit the proofs.
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Chapter 5

Introducing a spectral characterization
problem

We keep using the notations introduced in Chapter 4. In addition, we now consider a (nonlinear)
mapB : X — L(X, X*) which satisfies the fundamental hypothesis:

(H1) Bis continuous, ané(0) = 0.
(H2) B(u) € L(X, X*) is a compact operator for everyc X.
(H3) (B(u)v,w) = (B(u)w,v) for all u,v,w € X.

We may summarize these hypothesis by assumingBhaX — Kg(X, X™) is a continuous map
satisfying B(0) = 0. Hence, for everyu € X, we may buildA,, ,, as in the previous chapter,
but from now on we will simply writeA(u) for this operator. Moreover we writg, -], pn (),
Py (u), Va(u) inplace of[-, -], ., #n(B(u)), Pr(B(u)), Va(B(u)), respectively. We now define a
nonlinear eigenvalue problem featuring a spectral characterization:

Definition 5.1. Letn € N. A vectoru € X is called a solution of problergiSC),, if u € D(A(u))
and
A(u)u = pin(u)u

We remark that, € X is a solution of ProblengSC),, if and only if
(A+ B(u)u = pn(u)u,

both sides being viewed as elementsXof. Before we turn to this problem directly, we state some
direct implications of Lemma 4.3, Proposition 4.4 and Corollary 4.5.

Lemma 5.2. For everyn € N the functionu,,(-) : X — R is continuous. 1B : X — L£(X, X*)
is strongly continuous, them, () : X — R is weakly sequentially continuous.

Proposition 5.3. Considern € N and D C X such that

fin (1) < pint1(w)
holds for every, € D. Then:
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(@) The mapP, : D — II,,(X) is continuous.

(b) If DisboundedinX, B : X — £(X, X*) is compact and

sup fin (u) < 0o,
ueD

then the seV,,(D) C G,,(X) is relatively compact.

(c) If D is a weakly compact iX andB : X — L(X, X*) is strongly continuous, then the set
Vn(D) C Gy (X) is compact.

Corollary 5.4. Considerm,n € N, m >n > 2andD C X such that for alk: € D there holds

pin—1(1) < pn(u) < pim(u) < pmy (w)-

Denote byP(u) the spectral projection associated witt{«) and the intervalu,, (u), pm (v)]. Then
the mapP : D — II,;,_,,+1(X) is continuous.

Note that, ifu € X is a solution of(SC),, for givenn € N, then in particular
u € Vy(u). (5.1)

We suspect that in general the set ofiakk X satisfying (5.1) has a very complicated topological
structure. However, in case that

(H4) B(u) = B(—u) for everyu € X,

we get some view on this structure by applying the results from Section 3.2. Ouir first result in this
spirit is the following.

Theorem 5.5. Assume that in addition to (H1)- (H4) the m&p: X — L£(X, X*) is compact, and
let n € N. Moreover consider an open, bounded and symmetric subsetX containing0 € X
and such that

pin (1) < ping1(u)
forall w € D and

sup pin () < poo-

ueD
Finally suppose that for every finite dimensional subsgaad X the setoD NU is homeomorphic
to the unit sphere itV by radial projection.
Then the seK := {u € 9D |u € V,(u)} has the following properties:
K € ¥, K is compact, and/(K) = n. In particular K is nonempty.

Note that ifn. = 1 in Theorem 5.5, thei& consists of solutions t6SC),,.

Proof of Theorem 5.5DenotingS := 9D we infer thatS € %, i.e. S is a closed and symmetric
subset ofX \ {0}. Now define amagd : [0,1] x S — G,(X) by

H(t,u) := V,(tu).
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In view of Proposition 5.3, Lemma 3.4 and our assumptions we infeffhatcontinuous, and that
H([0,1] x S) is relatively compact irt7, (X ). FurthermoreH (¢t,u) = H (¢, —u) by (H4). Finally,
H(0,-) : S — G,(X) is constant. Therefore the assumptions of Proposition 3.8 are satisfied, and
an application of this Proposition yields precisely the assertion. O

Next we note that the conclusions of Theorem 5.5 also hold under slightly different assumptions.
More precisely:

Theorem 5.6. Assume that in addition to (H1)- (H4) the md&p: X — L(X, X*) is strongly
continuous, and let. € N. Moreover consider an open, bounded and symmetric subset X
such that) € D, D is weakly compact and

P (1) < pipg1(w) forall u € D.

Finally suppose that for every finite dimensional subsgaad X the seto.D NU is homeomorphic
to the unit sphere iV by radial projection.

Then the seK := {u € 9D |u € V,,(u)} has the following properties:

K € ¥, K is compact, and/(K) = n. In particular K is nonempty.

This is proven by the same arguments as above, with Proposition 5.3(c) now yielding the desired
relative compactness property.

Closing this section, we state a basic observation which we will use frequently in the following
chapters.

Lemma5.7.

(@ If B: X — L(X, X*) is acompactmap (i.e., it is completely continuous in view of (H1)),
then the nonlinear operatoB : X — X* defined byB(u) := B(u)u is completely continu-
ous as well.

(b) If B: X — L(X, X™) is strongly continuous, theR is strongly continuous as well.

Proof. (a) ObviouslyB is continuous. To see thd is compact, consider an arbitrary bounded
sequencéu, ), C X. Passing to a subsequence, we may assumethat u € X and thatB(u,,)
converges to an operatd € Kg(X, X*). In particularByu,, — Bou in X* and therefore

1B(un) — Boul

x+ S IB(un) = Bolllluallx + [|Bo(un = u)l . = 0.

ThereforeB is compact, as claimed.
(b) Similar. O
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Chapter 6

Abstract sublinear equations

So far we did not impose any sign condition on the nonlinearity. In other words, aBmafi —
L(X, X*) satisfies (H1)-(H4) if and only if B does. However, in the sequel we suppose tha
nonnegativan a certain sense. Precisely we impose the following hypothesis:

(CC) (Comparison Condition’) There isa map: X — R such that for arbitrary vectoig v € X
there holds

2(p(v) = p(u)) = (B(u)v,v) = (B(u)u, u).
We assume that (H1)-(H4) and (CC) are in force throughout this chapter.
To put (CC) into perspective, we first derive basic consequences. Observe that, by adding a suitable
constant, we can normalizeso as to have
Moreover, using (H1) and taking = 0 in (CC), we obtain
p(v) 20 (v e X), (6.2)

whereas the choice = 0 in (CC) leads to

(B(u)u,u) (u € X). (6.3)

DN | =

0<opu) <
As indicated by the following Lemma, condition (CC) also forcesmdational framework.
Lemma 6.1. There holdsy € C'(X), and

dp(u) = Blu)u: X — X* (u € X). (6.4)
However, in the following we will not use the differentiability of(at least not explicitly), since our

approach does not rely on arguments based on deformations or general gradient flow investigations.
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Proof of Lemma 6.1Since the map. — B(u)u is continuous by (H1), it suffices to show that
is Gateaux differentiable with Gateaux derivative given by (6.4). Therefore consider X and
t > 0. Then, using (CC) and (H3), we infer

2P =P L)t o), (4 1) — (B, )]
= 2B(u)u,v) + t{B(u)v, )
as well as
pPlu st “;) —elw) % [(B(u+ tv) (u + tv), (u + tv)) — (B(u + to)u, u)]
= 2(B(u+ tv)u,v) + t{(B(u + tv)v, v).
Passing to the limit — 0 we derive (6.4). 0

We remark that (6.1) and Lemma 6.1 imply

for everyu € X, and therefore
(B(u)u,uy >0 <<= ¢(u) >0 (6.5)

by virtue of (6.3). In applications to differential equations we will see that (CC) is closely related to
convexity We also state an abstract criterion in this spirit, which however is too restrictive for most
of our applications.

Lemma 6.2. [33, p. 32] Consider aconvexfunctional of the form
p=>ogq,
where® € C''(X) and wherey is a continuousX -valued quadratic form orX, i. e.

q(y) = b(y,y) (y € X)

for a unique symmetric continuous bilinear mapX x X — X.
Then, ifB: X — L(X, X*) is given by

(B(y)v, w) := 2(d®(q(y)), b(v, w))
for v, w,y € X, there holds (CC) fo® and B.

Now observe that condition (H4) and (CC) in particular imply thas even that is,p(u) = ¢(—u)
for everyu € X. The same is true for the functional: X — R defined by

~

P(u) = 5 {Au, u) + p(u) = %(HUIIi = ml|ul]?) + p(u).

N | =
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By Lemma 6.1 we infer thap € C'(X) with derivative given by
dip(u) = (A + B(u))u (6.6)
for u € X. An important tool for the upcoming investigations is the inequality
2h(v) — p(u) > [v,0]y — [,y (w0 € X), (6.7)
which is an immediate consequence of (CC). DefiningRhgleigh quotient at: € X by

pulo) = we X\ (o)

we can reformulate inequality (6.7) as

2((v) = 9(u) = [vlPPpu(v) = lul*pu(w) — (u,v € X\ {0}), (6.8)

and this will be the more suitable form for comparing linear and nonlinear minimax principles.
Moreover we remark that

pAwZ2ﬁﬁ)ZWW)ZmM@%) (6.9)

for everyu € X \ {0} by (6.3).
In the following sections we investigate the level setg afs well as of

Paw) = 9(w) = Sl (e X)

for A € R. To treat these cases simultaneously, we define for an arbitrary even and continuous
functional ¥ : X — IR together with an arbitrary closed and symmetric sulsset X \ {0} the
Ljusternik-Schnirelmatevelsc, (¥, S) by

cn(¥,S):= inf sup¥(u) € RU{xoo}.
AES(S) yeA
v(A)zn

Note thatc, (¥, S) also has @ual characterization given by

cn(V,S)=sup inf ¥(u). (6.10)
AEes(S) ucA
v*(A)<n—1

This is due to the easily-verified identity
cn (¥, S) =inf{c € R|y(SNTY) >n} =sup{c € R|y(SNT°) < n},

where¢ is defined as the sublevel setf cf. Section 1.1. In the following two sections we will
pursue the search for solutions(sfC'),, which satisfy additional side conditions.
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6.1 Spectrally characterized solutions with prescribed norm

We fix R > 0,n € N for this section. In the following we are concerned with solutiansf
problem(SC),, satisfying the additional side condition

lull = R.

For this we define
Sgr:={u € X| ||u| = R}

and
K :={ueSg|ueV,(u)}

In order to simplify the notation, we just writg, in place ofc, (1, Sg) in this section. Our aim is
to establish the following property:

(CP) K is compactyy(K) = n, ¢, = nlea,[)(w(u) and everyu € 9 !(c,) N K is a solution of
u
(SC)p.

In particular this property furnishes solutions(sfC),,. First we observe that by (6.2) there holds

1
ull2 > < lull?, (6.11)

m, o 1
_ > Z
) + Fllul > 3

in particularc,, > % for everyn. Moreovere,, < oo, sinceSg contains compact subsets of
genusn.
Proposition 6.3. Letu € X.

(@) If u € Sg, then

2
P(u) — ¢y < R7 (pu(u) - un(u)> (6.12)

(b) Ifu € K, theny(u) < ¢p.
(©) If|ul] < Randu € V,(u), theny(u) < max{c,,0}.
(d) Ifu € 9~(c,) N K, thenu is a solution of problen{SC),,.

Proof. We prove (a),(b) and (c) simultaneously. For thisdix X with ||u|| < R, and suppose first
thatu, (u) is an eigenvalue aofl (u) (which implies thaj (u), ..., un—1(u) are eigenvalues as well).
Choose pairwise orthogonal eigenvectors. .. , u,—; corresponding t@u (u), ... , up—1(u). Let
W C V,(u) be the span ofi, ... ,u, 1, and putiW' := {v € X | (v|w) = 0Vw € W}. Then
clearly
pin(u) = inf  py(v),
vESRNWL
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whereasy*(Sg N W) = n — 1. By (6.10) and (6.8) we therefore obtain

e () > _inf  2Ap(o) ~ h(w)
> dnf Rpu(0) = [ulPpuw)

vESRNWL
> Rpin () — [Jull®pu(u)

Now if eitheru € Sg or p,(u) > 0, then (6.12) follows. If moreover € V,,(u), then (6.12)
evidently yieldsy(u) < ¢,, sincep,(u) < pn(u) in this case. On the other hand,pif (u) < 0,
theniy(u) < 0 by virtue of (6.9). This establishes (a), (b) and (c).

Now consider the case that,(u) is not an eigenvalue ofi(u), henceu, (u) = oo € oc(A(u)).
We then defind¥ just as the span of all eigenvectorsAfu) corresponding to eigenvalues below
liso, SO that there holds: := dim W + 1 < n. Observe that again we have

u) = inf V),
i (u) UesmeLpu( )

whereas now

inf  Pv) <em <ecp,
veESRNWL

hence (a), (b) and (c) are derived as in the first case.
Finally, to prove (d), suppose thatc K N~!(c,). Then (a) yieldso,(u) = pn(u), which is
possible only ifu is an eigenvector ofl (u) with eigenvalueu,, (u). O

Corollary 6.4. ConsiderR > 2[max{c,,0} + mR?] and
D(R,R) := {u € X||jul| < Rand|u|, < R}.
ThenK = {u € dD(R, R) | u € Vy(u)}.

Proof. Fix u € X satisfyingu € V,,(u) and|lul| < R. Theny(u) < max{c,,0} by Prop. 6.3(c),
and thereford|u||, < R in view of (6.11). Hence

uwedD(R,R) <<=  ue€Sg
and from this the assertion follows. O

Combining these observations with Proposition 5.6, we how may formulate the main result of this
section.

Theorem 6.5. Suppose thaB? : X — L(X, X*) is strongly continuous. Moreover assume that
there isR > 2[max{c,,0} + mR?] such that

Hn (u) < Hn+1 (u)

forall u € D(R, R). Then condition(C'P) holds true.
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Proof. SetD := D(R, R). Clearly0 € D, andD is open, bounded and symmetric. Moreover,
is closed, bounded and convex, hence it is weakly compact. Figdllyis homeomorphic to the
unit sphere inX by radial projection, sincéD is the unit sphere with respect to some equivalent
norm onX. Hence an application of Theorem 5.6 yields the following properties for the set
K ={u€dD |u € Vy(u)}:

K € %, K is compact and/(K) = n.

But actually K coincides withK by Corollary 6.4, so the same holds for K. In particulamttains
its maximum onk’, and by definition ot,, there hOldSna[}(( ¥(u) > ¢,. But actually equality holds
ue

by virtue of Prop. 6.3(b). Finally, Prop. 6.3(d) ensures that every ¢~'(c,) is a solution of
(SC),. Hence(C P) holds true. O

6.2 Spectrally characterized solutions with prescribed eigenvalue

Fixn € N and\ € R with
pn(0) < A < pioo- (6.13)
We are now interested in solutiomsof problem(SC'),, which in addition satisfy
pin(u) = A.
In particular, such a solution is a critical point ofyyy. We need the following further assumptions:

(CC); For arbitraryu,v € X the functiont — (B(tu)v,v) is nondecreasing o), oo[ and strictly
increasing once it takes positive values.

(FG) There holds
(A = () [v]|* < Jim (B(tv)v,v) < oo
o

forallv € X \ {0}.

(UC) If u,v € X are such thaB(u) # 0 andv # 0 is an eigenfunction afi(u), then(B(u)v,v) >
0.

We remark that, in applications to differential equations, (UC) can easily be derived from unique
continuation properties. Conditidi@'C'); implies that for every, € X the function

t = pn(tu)
is nondecreasing 0§, oo[. We set
Sy :={u € X |pp(u) =}

and we claim that the valueg := ¢, (1), S)) contain solutions ofSC),, in theiry-level set. More
precisely, setting
Ky:={ue€ Sy|u € V,(u)},

we will prove, under appropriate assumptions, the following property:
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(CP)x K is compacty(Ky) =n, ¢, = max ¥x(u) and everyu € zp;l(cn) N K, is a solution of
UC Ky
(SO)n.

Note that (6.13) and Lemma 5.2 imply th& is a closed and symmetric subset’of\ {0}. More-
over:

Lemma 6.6. The radial projectionS, — S := {w € X | ||w||, = 1} is injective.

Proof. (a) Suppose in contradiction that thereiig€ X \ {0} and0 < ¢ < 1 such thatu, tu € S),
i.e. up(u) = pn(tu) = A. In particularB(u) # 0, since otherwise., (u) = u,(0) < A. Denote by
v1, ..., v, @ choice of orthonormalized eigenvectors corresponding; fe), ..., s, (1), and define
V C X as the span afy, ..., v,. Now consider arbitrary € V, ||v|| = 1. If

[v,v]u = pn(u), (6.14)
thenv € D(A(u)) andA(u)v = py,(u)v. Hence(B(u)v,v) > 0 by (UC), and therefore
(B(tu)v,v) < (B(u)v,v)
by (CC);. As a consequence,
[0, 0] < fn(w). (6.15)

On the other hand, {v, v], < un(u), then (6.15) holds as well. By a simple compactness argument
we conclude

pn (tu) < sup [0, 0] < pn(u),

veV, ||’UHX:1

which is a contradiction. This proves the claim. O

Next we prove an inequality similar to Proposition 6.3(a):
Proposition 6.7. Letu € S,. Then

[

Pa) = en < 125 (ouw) = ).

Proof. By (6.13) we infer that\ = pu,(u) is an eigenvalue ofA(u), henceu(u), ..., in—1(w)

are eigenvalues as well. Let, as in the proof of Prop. 68, C V,(u) be the
span of of pairwise orthogonal eigenvectors correspondingt@), ... , u,—1(u), and denote
Wt:={veX|(vly)=0Vyec W} Then

pu(®) >N VoeW, (6.16)

whereasy* (W N Sy) < n — 1 by virtue of Lemma 3.11. Therefore (6.10) and (6.8) yield
2(cn —a(w)) = inf  2(hx(v) — Pa(u))

veSNw+t
> inf 20y (v) = N) = [|Jul|?(py (1) = X
> nt ol (pu(o) = ) = el (eu(w) = )
> —[lull(pulu) — ),
which shows the assertion. O
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Corollary 6.8. Letu € K). Then:
(a) ,Qb/\(u) <cp
(b) If ¥\(u) = ¢, thenu is a solution of problentSC),,.

Proof. (a) Sinceu € V,(u), there holdsp,(u) < pp(u) = A. Hence Proposition 6.7 yields

rl/’)\(y) <cp.
(b) If ¥x(u) = ¢, thenpy,(u) = X = p,(u) by Proposition 6.7, which is possible onlyifis an
eigenvector ofd (u) with eigenvalueu,, (u).

U

Using assumption (FG), we now ensure that, at least for certain vectorX’, the valueu,, (u) is
pushed up to the level.

Lemma6.9.If B: X — L£(X, X*) is strongly continuous, then the set
C:={ueX|ueVy(u), pun(u) <A}

is bounded inX.
Proof. Assume in contradiction thafu;||, — oo for a sequence(u;); C C. Since
po(uj) < pn(uj) remains boundedy; := ”Z—J” defines a sequende;),; which is bounded inX
J
and normalized i, i.e. |lv;|| = 1 for all . Moreover, sinces; € V,(u;), there are numbers

Aj € [11(0), A] such that )
(Avj,vj) + (B(uj)vj,vj) = Aj.
Passing to a subsequence, we may assumethatv in X and\; — . Using (FG),(CC), and
Lemma 5.7(b), we also find> A — 11 (0) and¢ > 0 such that
limsup(B(uj)v;,v;) > limsup(B(tvj)v;,v;)
J J

= (B(tv)v,v)

[

Y

cllv

Now picke > 0 such that\+¢ < p0o. Then the functional — (Aw, w) — (A +¢)|jw]|? is weakly
lower semicontinuous oX by Lemma 4.6, and therefore

0 > ¢|v||—¢
> (Av,v) = A[v||” = liminf[(Av;,v;) — (A + e)[|v;]|*] — €
j

(v, v) = Aljol® — lim inf[—(B (u;)vj, v;)]

(Av,v) = X|ol|? + lim sup[(B (u;)v;, v;)]
J

> (Av,v) + (¢ — N|o|?

However, sincéc — A) > —u1(0), the last expression is nonnegative, and it vanishes if and only if
v = 0. This forces a contradiction, and thus the lemma is proved. O
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Theorem 6.10. Suppose thaB : X — £(X, X™) is strongly continuous, and that for all € X
with g, (u) < X there holds

pin () < pint1(u).
Then condition(C P) holds true.

Proof. In view of Lemma 6.9 we may chooge > 0 such thatl’ C B(0) C X. PutD := {u €

X | pn(u) < A, |Jull, < R}. ThenD is an open, bounded and symmetric subseX afontaining

z = 0. Moreover, by virtue of CC); there holdsD = {u € X | p,(u) < A, ||lull, < R}, hence
Lemma 5.2 implies thab is weakly compact. Hence, in order to apply Theorem 5.6, we just need
to ensure the following

(x) If U C X is afinite dimensional subspace, theh N U is homeomorphic to the unit sphere
Sy in U by radial projection.

To prove(x), note that for every, € Sy there is a numbet < R such thatu € 9D, hence the
radial projectionU N 9D — Sy is surjective. To show injectivity, suppose in contradiction that
there would exist, tu € dD, t < 1. In particular|u|, < R and therefored|tu|| < R. Hence
pn(tu) = X > u,(0), and Lemma 6.6 now implies that,(u) > u,(tu) = A. This however
contradictsu € D. We conclude noting thaly N 9D is compact, hence the fact that the radial
projectionU N 9D — S is continuous and bijective implies that it has a continuous inverse.

In view of () Theorem 5.6 now yields that the s&t:= {u € dD | u € V,(u)} has the following
properties:

K € %, K is compact and/(K) = n. (6.17)
Moreover, sincek C C' C B X, there holdsk C K. On the other hand,
K CS,\QCCS,\QBRX C 0D,

the last inclusion being a consequence of Lemma 6.6. Hence<also K, and therefore both sets

coincide. As a consequence, (6.17) is also thijein place of K, and in particular), attains its

maximum onK . By the very definition of;, there holdsma,[)é ¥x(u) > ¢, hence equality holds
ue

by virtue of Corollary 6.8(a). Finally, Corollary 6.8(b) ensures that evegys) ! (c,) is a solution
of (SC)p.
Hence,(C P), holds true and the Theorem is proved. O
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Chapter 7

Abstract superlinear equations

We now deal with equations where, compared to the previous chapter, the nonlinear part carries the
opposite sign. More precisely, assuming that X — £(X, X*) satisfies (H1)-(H4),(CC) and

being given some € N, we now intend to find vectors € X N D(Afs(@) with the property

u € DA and A_, u=pn(—B(u))u, (7.2)

B

or, equivalently, .
(A — B(u))u = pn(~B(u))u

in X* (Here we used the notations of Chapter 4). The investigation of ssapexlinearproblem
has to be done in an essentially different way, nevertheless we will recognize some Hunalityf
to the sublinear case. In order to keep the notation simple, waeasfinesome of the symbols we
used in Chapter 6 such that they fit in the present context. To be precise, we put

P = gl — plw)  (we X),
and
Ya) =) ~ Sl (weX), (72)

for A € R. Moreover we will writeA(u), [, “Ju, pin (), Po(u), Qn(u), Vi (u) in place ofA_,
[ ] -5y Bn(=B(u)), Po(—B(u)), Vo (—B(u)), respectively. Finally we put

o [v,v]y
Pul) = e

foru € X,v € X \ {0}, and we say that € X N D(A(u)) is a solution of problen{SC),, if v
satisfies (7.1), that is, if
u € D(A(u)) and A(u)u = pup(u)u.

As a consequence of Lemma 6.1, there holds

~

dip(u) = (A — B(u))u (ue X) (7.3)
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and
dipy(u) = dip(u) — du (u € X). (7.4)
Clearly the inequalities (6.7) resp. (6.8) now have to be replaced by
2((v) — P(w) < [v,0]y — [wuly (w0 € X) (7.5)
resp.
2((v) — (u) < o]pu(v) = ul®pu(u)  (u,0 € X\ {0}). (7.6)
Considering the superlinear case, we require the additional assumption
(H5) (B(u)v,v) > 0forallu,v € X.

However, in case that (CC) is already satisfied, (H5) does not seem to be a strong further restriction.
Indeed, in our applications (CC) and (H5) are always satisfied simultaneously. Note that (H5) in
particular implies

pn (1) < pp(0) Vue X, neN. (7.7)

7.1 Spectrally characterized solutions with prescribed norm

Let R > 0 be given. Conside$r = {u € X | ||u|| = R} ande,, := ¢, (1, Sg) Similar as in Section
6.1. We define
K :={u€ Sr|Qn(u)u =u},

suppressing the dependency one N in our notation. Our aim is to establish the following
property:
(CP)~ K~ € ¥(Sr), v (K7) < n—1, 1 takes its minimum oK ~, ¢,, = m[i(n ¥ (u) and every
ucK~
u € P~(e,) N K~ is a solution of( SC),,.

Note that this property reveals some kind of duality to condition (CP) from Section 6.1. In particular
it provides solutions ofSC),, again. In addition to (H1)-(H5) and (CC) we require the following
condition:

(BB) There are constants< a < 1, b > 0 such that
(B(wyu,u) < allul® +b

foru € Sg.

Remark 7.1. A sufficient condition for (BB) is the existence of number® > 0,q € [0, 2] such
that

(B(u)u,u) < aflull +b (7.8)

for u € Sg.
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As a matter of fact, a growth condition like (BB) is usually imposed for the variational treatment of
superlinear problems on spheres in #enorm (cf. [74, p.413] and the references quoted there).
In particular it guarantees thdtis bounded from below 08y, hencec,, > —oo for everyn € N.

More precisely there holds

Lemma 7.2. ) )
R b+mR
blu) > puln) >~

for all u € Si. Moreovery© N Sk is bounded inX for everyc € R.
Proof. Combining (6.3) and (BB), we deduce
1

P = Ll —mR) — o)
2
> 5 (I~ = (B ) = Tout
> [0 )l —mR b (7.9)
_b+mR2

>
- 2

for u € Sg. Moreover, sincéd < a < 1, (7.9) implies that)¢ N Sr is bounded inX for every
c e R. O

Now, as a first step to establish propeftyP)~, we observe:
Lemma7.3. K~ € ¥(Sg).

Proof. Evidently K~ is symmetric, hence it remains to show tléat is closed. For this consider
a sequencéu)r, C K~ such thatu, — w in X. In particularu € Sg, sinceSg is closed. Pick
J € N minimal such thaf;(uv) = p,(u). If j = 1, then clearlyu € K~. Hence consider
the casel < j < n. From Proposition 5.3(a) we infer th&t_; (u;) — Pj—i(u) in £(X), and
consequently?; _; (u)u = klggo Pj_q(ug)uy = 0, sinceu, € K~. We conclude thaf), (u)u =

(I = Pj_1(u))u = u, henceu € K. O
Next we show an inequality analogous to Proposition 6.3(a).

Proposition 7.4. Letu € Sg, n € N. Then

50 = 0 2 2 (o) = ().

Proof. We first consider the case that(u) is an eigenvalue ofi(u). Choose pairwise orthogonal
eigenvectorsiy, . . . ,u, corresponding t@ (u), ... ,u,(u), and letW be the span ofiq, ... , uy,.
Then clearly

pn(u) = sup pyu(v),
veESRNW
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whereasy(Sr N W) = n. By (7.6) we therefore obtain

2(cn —9(u)) < sup  2(4p(v) — ¥(u))

veSrNW

< sup R? (pu(v) — pu(w))
veSrNW

R*(pin () = pu(u)).

To complete the proof, consider the case fhatu) is not an eigenvalue ofl(u), henceu, (u) =
Poo € 0c(A(u)). Then, for arbitrarye > 0, we may still pick anm-dimensional subspadé” such
thatp, (v) < peo + € for all v € W. In the same way as above we now have

VAN

2cn —p(u)) < sup 2(P(v) —9(u))

vESRNW
< sup R*(pu(v) — pu(u))
vESRNW
< Rz(ﬂn(u) + £ — pulu))
Lettinge — 0, we again obtain the assertion. O

Corollary 7.5. Letu € K. Then:

@) ¢(u) > cn
(b) If 4(u) = ¢, thenu is a solution of(SC),,.

Proof. (a) Sinceu € R(Qn(u)), there holdsp,(u) > wu,(u). Hence Proposition 7.4 yields
P(u) > cp.
(b) If ¥(u) = ¢y, thenp,(u) = uy(u) by Proposition 7.4, which is possible only:ifis an eigen-
vector of A(u) with eigenvalueu,, (u).

]

Lemma 7.2 and Prop. 7.4 also yield

2 b+ mR?
() > (e — () =

for uw € Sk and everyn € N. In particular we infer that the functions, are bounded from below

on a constraint sublevel sét N Sk, ¢ € R arbitrary. Hence they remain bounded by virtue of
(7.7), and combined with the following estimate this fact proves useful for investigating minimizing
sequences fop in K.

Lemma 7.6. There holds
1

dp(u) — pn (el < RCL+ ] + [ () )2 (mu) - un(m) © (710

forue K.
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We postpone the proof until the end of the section, exploiting first the benefits of this inequality.

Proposition 7.7. Suppose that

Y(K7)<n-1. (7.11)
ThenK~ # () and
inf 9(u) = cp. (7.12)
ueEK~

Moreover, if(u;); C K~ is a minimizing sequence fgrin K, then(u;); C X and (u, (u;)); C
R are bounded sequences, atiagh ||dy(u;) — pn(uj)ull,.. = 0.
Jj—00

Proof. First, (7.12) follows directly from a combination of Corollary 7.5(a) with the relations (7.11)
and (6.10). Moreover, ifu;); is a minimizing sequence faf in K ~, then Lemma 7.2 implies that
(uj); is bounded, and so are the sequengggu;)); and (u1(u;));. Moreover, Proposition 7.4
yields

R2
o(1) =9(uj) —cn = —(pu; (u5) — pin(u;)) 20, (7.13)
2
hence lim [py;(u;) — pn(uy)] = 0. By virtue of (7.10) we conclude that
J—00
lim ||dv(uj) — pn(uj)ugll . = 0, as claimed. O
J—00

Theorem 7.8. Suppose that (7.11) is valid, and that: X — £(X, X*) is a compact map. Finally
assume that,, < RTZMOO.

Then ConditionC' P)~ holds true.

Proof. In view of Corollary 7.5(b) and (7.12) we only need to insure thadttains its minimum

on K~. To this end, consider a minimizing sequer{eg); for 4/ in K~. Then the sequences
(uj); C X and(un(uj)); C R are bounded by Prop. 7.7. In view of Lemma 5.7(a) we therefore
may assume that, passing to a subsequenge,) — X andB(u;)u; — w € X*. Hence also

(A= ADuj = dip(u) — pn(u) + Bluj)uj + (inug) — Nuj — w
again by Prop. 7.7. Moreover

A= lim pp(uy)
J—00

= jlirgo Pu; (Uj)

. 2
< jgf&ﬁlb(“j)
2

Rz

< oo

By virtue of Lemma 4.2 we conclude that the operator A : X — X* is Fredholm, in particular
it is proper when restricted to a bounded subset. Hence, passing again to a subsequence, we may
assume that; — w € K, andy|,._ attains its minimum af. O
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Finally we give a criterion for (7.11) to hold:

Proposition 7.9. Suppose thati,,—;(u) < pn(u) forallu € D := {y € X | |ly]| < R}. Then
Y(K7)<n-1.

Proof. By assumption and Proposition 5.3, the funct®p_, : D — II,,_; (X) is well defined and
continuous. Hencéf : [0,1] x Sg — II,,_1(X), defined byH (¢, u) := P,,_1(tu) is well defined
and continuous as well. Sindé(t,u) = H (¢, —u), the assertion follows from Proposition 3.12 and
the fact that\' (P, 1 (u)) = R(Qn(u)) for u € D. O

We close the section with the
Proof of Lemma 7.6Fix u € K. In order to keep the notation simple, put := 1 (u), gy =
pn(u) and @y, := Qy(u). We show

I(A = Bu))w = pawll . < Jll(1 + m] + jar )72 (pu<w> - un)2 (7.14)

for everyw € R(Q), which in particular implies (7.10). However it suffices to ensure (7.14) for
w € R(Qn) ND(A(u)), since this space is densef((Q,,) and both sides of (7.14) are continuous
real-valued functions im € X. Therefore we have

I(A-B@w)~puDwly. =  sup  {(A-B(w) -pal)w,v) =  sup  (Aw) ~ paD)wlo)
veEX,||v|| =1 veEX,||v|| =1

Again by continuity we may take the supremum over vectorse D(A(u)), and from
((A(w) = pal)w,v) = ((A(w) = pnl)w, Qo) we infer

I(A = B(u) = puD)wlly. < sup ((A(u) = ppl)w|Qno).
vED(A(w))
ol =1
Note that((A(u) — unI) - |-) defines a semidefinite scalar product on the subsR4¢g, ), and the
corresponding Cauchy-Schwarz inequality implies
((A(w) = pal)w|Quo) < ((A(u) = pal)w|w) *((A(u) = pnl)Qnv|Quv)) />,

However, for every € X we have
((A(w) = pnD)Quv|Quv) = ((A(u) — pnl)v|v) = ((A(u) = p D) (I = Qu)o|(I — Qn)v)
< ((A(u) = pd)v]v) + (pn = p1) (L = @n)v|(I = Qn)v)
< llly = (Bu)v,v) = (m+ o) |0l + (pn — 1) 0]
< (LA fml + ) lloll

by virtue of (H5). We conclude that
I(A = B(u) = paD)wll . < ((A(w) = paDywlw) > (1 + [m] + |pa|) /2

2

Foll(L+ ] 4 [ )2 (pu(uo - un) .
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7.2 Spectrally characterized solutions with prescribed eigenvalue

Considern € N, A € R fixed We now intend to find solutiona of problem (SC),, which in
addition satisfy

pin(u) = A. (7.15)

We will be able to give reasonable criteria for the existence of such solutions. However, prov-
ing those criteria seem to require a different approach involveigted eigenvalue problems for
boundedinear operatorsn X. Let us motivate this: Note that an estimate in the spirit of Proposi-
tion 7.4 always involves the norip- || = || - || z. This did not cause any problem since we imposed
the constrainfu|| = R. However, to detect solutions ¢§C'),, satisfying (7.15), we have to replace
this constraint. Indeed, if

A < pi(0) (7.16)
for instance, we rather explore minimax principles on ehari manifold

N = {ue X \{0}]pu(u) =} (7.17)
= {ue X\ {0} [u,ulu = Allul},

which then is aclosedand symmetric subset &f \ {0} containing all such solutions. However we

are not able to control the norn|| on A/ without further unpleasant restrictions. To circumvent this
problem, we will replace the operatadgu), v € X by a family of bounded symmetric operators on
X. We first illustrate the general procedure for the special dase) andm = 0 (i.e.,inf o (Ag) =

1): In this case, for every € X there holds

u € D(A(u)), A(u)u = 0. (7.18)
if and only if
Ju = B(u)u in X*, (7.19)
that is, if and only ifu is an eigenfunction of the eigenvalue problem
J'B(u)v = ov in X (7.20)

associated with the eigenvalue = 1. We remark that by (H2), (H3) and (H5), the operator
J71'B(u) € L(X) is compact, synmetric and nonnegative for everg X, therefore its spec-
trum consists of aecreasingsequence of eigenvalues given by

-1
Uk(u) = sup inf M = sup inf (B(u)v,v)
et (v]v) x Wrex eV (v]v) x
Moreover, it is easy to see that
pn(u) =0 = on(u)=1 (u€X). (7.21)
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Hencew is a solution of(SC),, with u,(u) = 0 if and only ifu = v solves (7.20) withr =

on(u) = 1. This justifies the study of the operatals ' B(u) € L£(X) instead of our original
operator familyA(u), v € X. Furthermore we may treat eigenvalue problems of the form (7.20) in

a more general frameworkot assuming thaX arises as the form domain of some semibounded
selfadjoint operator,. Indeed, in order to study equations of theden-Fowletype (see Chapter

11), we need to consider the Hilbert space= D'?(R") which is not of this form.

The plan to proceed is as follows: First we reformulate the results of Section 4.2 for operator-valued
maps in order to treat a related eigenvalue problem in a more general setting. Equipped with the
appropriate tools, we then return to the problem of finding solutiori§ €8),, which satisfy (7.15).

7.2.1 On arelated eigenvalue problem

Only for this subsection let us assume tikats anarbitrary real Hilbert space with scalar product
(-]-)x,and letJ : X — X* denote the canonical isometric isomorphism. We consider a nonlinear
mapB : X — L(X, X*) satisfying (H1)-(H4), (CC) and the following assumptions:

(CC); For arbitraryu,v € X, the functiont — (B(tu)v,v) is nondecreasing off), co[ and in-
creases strictly once it takes positive values.

(CC)2 Thereis am > 2 such that) < ne(u) < (B(u)u,u) forallu € X.

Note that(C'C'); and (H1) also imply (H5). Referring to the notations of Section 4.2, we define a
continuous magy : X — Lg(X) by G(u) := J 'B(u) for everyu € X. Indeed, (H3) implies
that G(u) is asymmetricoperator for every:, moreover it is compact and nonnegative in view of
(H2) and (H5). Hence the nonzero eigenvalug$u) := o (G(u)), k € N are given by (4.16),
which now may be written as

op(u) = sup inf M
wls e o)k

For the sake of brevity, we also wrif@, (u), Q,(u) in place of P, (G(u)), Qn(G(u)), respectively
(cf. Section 4.2).
In the rest of the section we are interested in elemerdsX satisfying

G(u)u =u (7.22)
as well as
on(u) = 1. (7.23)

Since this problem corresponds, in a vague sense, to protdén, for the special caser = 0, it
is consistent to define

[V, W]y 1= (v|w) — (B(u)v, w) (u,v,w € X)
andy : X — R by X
Y(u) = Slull —elw)  (weX).
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From Lemma 6.1 we infer
dip(u) = (J — B(u))u  (u € X),

hence (7.22) holds if and only ifyy(u) = 0, and every nontrivial solution of (7.22) is contained in
the set
N :={ue X\ {0}|[u,u], =0}.

Clearly N is symmetric, moreover it islosedin X, sinceB is continuous and3(0) = 0. In the
sequel we explore the minimax valugs:= ¢, (¢, N') on . For this we remark thap is positive
on, more precisely

b0 2 (3- 1) Il (7.20

for u € N by virtue of (CC)s,. In particular we infer that,, > 0 for all n» € N. Moreover we recall
the standard estimate

o(tu) > t"p(u) forue X, t> 1 (7.25)
The following Lemma gives some view on the geometn\af

Lemma 7.10. If V' C X is a finite dimensional subspace such that for eveeyV' \ {0} there is a
numbert > 0 such that{B(tv)v,v) > 0, thenV N A is homeomorphic to the unit sphefg- C V'
by radial projection. In particulary(V N N) = dim V.

Proof. First observe that the radial projectidhn N' — Sy is injective by(C'C');. Moreover, by
assumption and (6.5) we find for everge Sy a positive numbet such thatp(w) > 0 for w = tv,
hence(C'C); and (7.25) yield

(B(sw)sw, sw) > 2s"Tp(w) > ||sw||i (7.26)

for s = s(w) > 0 large enough. In particular there is a unigye> 0 such that,v € . SinceSy
is compact and3 is continuous, the sdt, |v € Sy} is bounded. Henc& N A is compact and
the radial projection is continuous and bijective considered as alimap\" — Sy. Thusitis a
homeomorphism. O

Now, to derive a spectral estimate analogous to Prop. 7.4, we need the following further assumption:

(CC)s If u,v € X are such that is a finite sum of eigenvectors 6f(u) corresponding t@ositive
eigenvalues, the(B(tv)v,v) > 0 for somet > 0.

Using this and Lemma 7.10, we derive

Proposition 7.11. Letu € N with o,,(u) > 1. Then

d2

$(w) = e > S oulw) = 1),

whered := inf |jul|, > 0.
ueEN
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Proof. Sinceu € N, (7.5) implies

2 (v) — Y(u)) < [v,0]u (7.27)
for everyv € X. Now choose pairwise orthogonal eigenvectors .. ,v, € X corresponding to
G(u) and the eigenvalues (u), ... ,o,(u), and letV be the span ofy, ..., v,. Sinceo;(u) > 1

fori =1,...,n, a simultaneous view ofCC)3 and Lemma 7.10 ensures thdt’ NN') = n. From
this we infer

20cn —p(u)) < 2 sup (P(v) —9(u))
vENNV
< sup [U,U]u
vENNV
< (U=ou(w) inf loll}
= (1 - 0n(u)),
using again thad, (u) > 1. O

We now fixn € N, and we introduce the spectral fixed point set
Ky == {u € N'| Qu(u)u = u}.

Not surprisingly,Kxs has similar properties & — in Section 7.1. In particular, the following three
assertions are to be compared with Corollary 7.5, Lemma 7.3 and Lemma 7.6.

Lemma 7.12. For u € K there holds:
(@ P(u) > cy
(b) If ¥(u) = ¢y, thenu satisfies (7.22) and (7.23).

Proof. Note thatu € K implieso,(u) > 1, therefore (a) follows directly from Proposition 7.11.
Moreover, if in additior)(u) = c,, then Proposition 7.11 implies,(u) = 1, and by combining
the relationy G (u)ulu) , = oy, (u|u) , andu € R(Qy(u)) we concludeG (u)u = u. O

Lemma 7.13. K € Z(N).

Proof. Evidently K, is symmetric. The closedness &fy, is seen similarly as in Lemma 7.3:
Consider a sequendei;), C Ky such thatu, — w in X. In particularu € N, sinceN is
closed. Pickji € N minimal such that;(u) = o,(u). If j = 1, then clearlyu € K. Hence
consider the casé < j < n. By Proposition 4.8 we infer thal; ; (u;) — P;_1(u) in £(X),
and thereforeP;_; (u)u = Jim. P;_1(ug)up = 0, sinceuy, € K. We conclude thaQ,, (u)u =

(I — Pj_i(u))u = u, henceu € K. O

Lemma 7.14. There holds

1) (w)ul

o < Nlully [ (@n(w) = 1) + [(on () — o (w)]2
for everyu € K.
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Proof. Fixu € K. Then clearlyr,,(u) > 1, andoy, (u)(+|-) x — (G(u)-|-) , defines a (semidefinite)
scalar product on the subspaRéQ,(u)) C X. Setw = u — G(u)u € R(Qn(u)), then the
corresponding Cauchy-Schwarz inequality yields

on(u)(ulw); — (Guulw), < lon(wllull} - (Glu)ulu)]z x

(o) Jo]2. = (G uwyuwlw) ]2

< [(on(u) = D)l lon (w)lw]2]2
<l [(on(w) = Do (w)]2]|w] .
Therefore
lwl} = (ulw)x — (Glu)ulw)
< on(u)(uw) — (G(u)ulzf)x + |1 = op(u)|(ulw)
< lullc[(on(u) = Don(u)]2 lwllx + (on(w) — Dljull c[lwllx,
hence

ldp(wyull . =17 = B@)ully. = ol < lully|(on(u) = 1) + [(on(w) = Don(w)]? .

U
In view of the preceding considerations we are in a position to prove
Proposition 7.15. Assume thaf(N') > n and that
Y (Ky) <n-—1. (7.28)
ThenK s # () and
inf ¥(u) = c,. (7.29)

ue€Kn

Moreover, if(u;) C K is a minimizing sequence forin Ky, then||dy(u;)|,.. — 0.

I

Proof. First, (7.29) follows directly from (7.28), (6.10) and Corollary 7.12(a). [ef); be a mini-
mizing sequence fop in K. By (7.24) we observe thdi:;); is bounded. Moreover Proposition

7.11 yields
2

of1) = () ~ en > T (ou(us) ~ 1) 2

hencelim o,(u;) = 1. The assertion now follows from Lemma 7.14. O

J—00

Now we easily deduce our main theorem.

Theorem 7.16. Assume thay(N') > n and that (7.28) is valid. Moreover suppose thiasatisfies
the PS condition at the leve},. Thent attains its minimunt,, on K, and every minimizet
satisfies (7.22) and (7.23).
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Proof. In view of Proposition 7.15 every minimizing sequence {foin K is a PS sequence at

the levelc,, hence it contains a convergent subsequence by assumption. /Sinee closed, the

corresponding limit is a minimizer fap in K. Now the assertion follows from Corollary 7.12(b).
]

Corollary 7.17. Assume thaty(N) > n and that (7.28) is valid. Moreover assume that
B: X — L(X,X*) is compact. Ther attains its minimuny,, on K, and every minimizet
satisfies (7.22) and (7.23).

Proof. Consider a minimizing sequen¢e;); for 4 in K. Then(u;) is bounded by (7.24), hence

B(uj)u; — w € X* after passing to a subsequence. Siwéu;) = (J —B(u;))u; for all j, Prop.

7.15yields lim u; = J~lw. In view of Lemma 7.13 we conclude thﬁtKN attains its minimum
J—00

at.J ! (w). Again the assertion now follows from Corollary 7.12. O

7.2.2 The case\ < y;(0)

We now return to probleniSC'),,, as introduced on page 49. For this we fixvith (7.16), and we
consider\ as defined in (7.17). Moreover we pyt := ¢, (¥, '), and we aim to establish the
existence of solutions of (SC'),, such thaiu, (u) = X andyy(u) = c,.

First we remark that (7.16) implies that

(ulv)y == (Au, v) — A(u|v) (u,v € X)

defines a scalar product ok which is equivalent to the original scalar prodyet) ., i.e. the
induced normdg - ||, and|| - ||, are equivalent. The idea is now to apply the results of Section 7.2.1

to the Hilbert spacd.X, (-|-)»]. To this end, we assume that (H1)-(H4), (CQ),C); and(CC)2

hold. Note that these assumptions stay invariant under a change to an equivalent scalar product.
However, the canonical isometric isomorphistn— X * is now given by.J, := A — I in place

of J. As a consequence, we have to consider the oper&tors := J; ' B(u) € £(X) which are
compact and symmetrigith respect td-|-),. Denoting by

d“)<‘/ = ( |/U)A V<X veV (U|U))\
i k dimV =k

the nonzero eigenvalues 6f(u), the fundamental relationship to problgi$iC'),, is given as fol-
lows.

Lemma 7.18. Letu,v € X. Then:
() v € D(A(u)), A(u)v = X if and only if G(u)v = v.
(i) pn(uw) = Xifand only ifo, (u) = 1.
Proof. This is a simple consequence of the definition of the vajugs) andoy, (+). O

60



As a consequence, is a solution of(SC'),, satisfyingu, (v) = X if and only if
Gu)u=u and oy,(u) =1

Moreover, in view of (7.2) there holds

1
Pau) = 3 ull} — pw),
whereas\/ can be written as
N ={u € X \{0}|[u,u]; =0}

with
[U,w];) = (v|w)y — (B(u)v,w) (u,v,w € X).

Consequently, we put, := ¢, (1x,N') and denote by), (u) the spectral projection associated
with the operatoiG(u) and the interval0, o, (v)]. Moreover, considering € N fixed, we define
Ky :={u €N |Qu(u)u =u}.

Now we apply the results of Section 7.2.1, repladifg (-|-) | by [X, (:]-)»] andt) by ¢,. Recall
that for this we finally require the following assumption:

(CC)s If u e X and0 # v € X are such that is a finite sum of eigenvectors 6f(u) corresponding
to positiveeigenvalues, the(B(tv)v,v) > 0 for somet > 0.

We obtain the following results analogous to Proposition 7.11, Theorem 7.16 and Corollary 7.17.

Proposition 7.19. For v € N with o, (u) > 1 there holds

2
Paw) = 0 > D ou(w) 1),

whered, := inf [v]lx > 0.
v

Theorem 7.20. Assume thaty(N) > n and thaty*(K,) < n — 1. Moreover suppose thaf),
satisfies the PS-condition at the leegl ThenK y is nonempty, and

inf = Cp.
ug}(Nw(U) c

Moreover,, attains its minimunz,, on K, and every minimizet is a solution of(SC'),, with
pin(u) = A.

Corollary 7.21. Assume that(N) > n and thaty*(K,) < n — 1. Moreover assume thds :
X — L(X, X™)is compact. Then the assertions of Theorem 7.20 hold true again.
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7.2.3 The case\ > y;(0)

Letn € N, A € R be fixed. Again we intend to find solutiomsof problem(SC),, with p,, (u) = A,
but in place of (7.16) we now suppose

11(0) <A < pn(0). (7.30)

Throughout this subsection we assume that (H1)-(H4), (CC) and the following (slightly stronger)
variant of(C'C) is in force:

(CC)} For arbitraryu,v € X, the functiont — (B(tu)v,v) is nondecreasing off), oo[. More-
over, if (B(tu)v,v) > 0 for somet > 0, then this function increases strictly ¢hoo[ and
li)m (B(su)v,v) = 0.
§—00

We remark thatC'C') and (H1) imply (H5) in particular. Setting now
Sy :={u € X |pp(u) =}

we infer thatS, C X \ {0} is closed and symmetric by Lemma 5.2. In the following we analyze
the minimax values,, := ¢, (¢, Sx) for ¢, on the setS,. To this end, consider for eache X
the operator

Gu) :==J Y (Bw) +(m+NI): X = X.

By (H2), (H3), (H5) and (7.30) we infer tha¥(u) is a bounded selfadjoint arbsitive definite
linear operator in the Hilbert spacé. Moreover, the mafs : X — L£(X) is continuous. Now
define the decreasing sequenceaositivevalues

(G(u)olv) ¢

= s inf X g inf 7.31
ok (u) sup - lnf (00) Sup Ulgvpu(v), (7.31)
dimV =k dimV =k

where i .
fu(v) = ([B(u) +(E)T|IZ)+ Vv, v)

Similar as in Section 7.2.2, a simple comparison of minimax values shows, ika solution of
(SC),, satisfyingu, (u) = X if and only if

Gu)u=u and o,(u)=1 (7.32)

Moreover we haves, = {u € X | o,,(u) = 1}. To proceed, we require the following additional
assumptions:

(UC) If u,v € X are such thaB(u) # 0 andv # 0 is an eigenfunction off (), then(B(u)v, v) >
0.

(UC), If W, C X is an subspace spanned by finitely many eigenfunctiold oj for someu € X,
then for allv, w € W, \ {0} there ist > 0 with (B(tv)w,w) > 0.
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As already mentioned in Section 6.2, (UC) &iidC), are closely related to unique continuation
properties in applications to differential equations. In the following Lemma we use (UGarith
to establish crucially important topological propertiesSqf

Lemma 7.22.
(a) The radial projectionSy — S := {w € X | |w|, = 1} is injective.

(b) Consider am-dimensional subspadd” C X such that for allu,v € W \ {0} there exists
t > 0 with (B(tu)v,v) > 0. TheniW N S is homeomorphic to the unit sphesg, in W by
radial projection. In particulary(W N Sy) = n.

(c) If W, C X is an subspace spanned hylinearly independent eigenfunctions G{u) for
someu € X, theny(W,, N Sy) =n.

Proof. (a) Suppose in contradiction that thereuiss X \ {0} and¢ > 1 such thaw,tu € S, i.e.
on(u) = o, (tu) = 1. In particularB(u) # 0, since otherwise,,(u) = ﬁ(o) < 1 by (7.30). De-
note byw, ..., v, a choice ofX-orthonormalized eigenfunctions correspondingt6u), ..., oy, (u),

and letV C X be the span 01, ..., v,. Consider arbitrary € V, ||v]|, = 1. If
(Gw)olv) = on(u),
thenG(u)v = oy, (u)v. Hence(B(u)v,v) > 0 by (UC), and(CC)] yields
(B(tu)v,v) > (B(u)v,v)
and therefore
(G(tu)v|v), > op(u). (7.33)
On the other hand, ifG(u)v|v), > opn(u), then (7.33) holds as well. By a simple compactness

argument we conclude

on(tu) > inf  (G(tu)v|v), > op(u),
veV, ||’UHX:1
in contradiction. This proves (a).
(b) Consider arbitrary € Sy,. Then we may pick > 0 such that
inf (B(tv)w,w) > 0.

weSw

From (CC)} we infer that

on(sv) > wierng(B(sv)w + (m + XN)w,w) — oo (s = o0),

whereasr,, (0) = u%(o) < 1. Hence there is = s, > 0 such thatr,,(s,v) = 1, i.e.,syv € S).
Moreover, the sefs, |v € Sy } is bounded, sinc8y is compact and,(-) : X — R is continuous
(cf. Lemma4.7). Henc® N S, is compact, and the radial projecti®¥ N S, — Sy is continuous
and bijective. Thus it is a homeomorphism.

(c) This follows immediately from (b) anfU C');. O
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Proposition 7.23. Letu € S). Then

lull?
da(u) = en 2 =2 (1 = pu(u))-
Proof. By (7.5) we have

242 (v) = a(w)) < o, 0]y = Aloll* = (fu, uly — Nul?)
= [Jvll3 (1 = pu(v)) = llull% (1 = pu(w)) (7.34)

for u,v € X. Now sinceuy,(u) = A < p,(0) < ps, We infer thatu, (u) = A is an eigenvalue of
A(u). Henceo,,(u) = 1 is an eigenvalue off(u), andoy (u), ..., 0,1 (u) are eigenvalues af(u)
as well (cf. Section 4.2). Choose pairwiZeorthogonal eigenvectors, . .. , v, corresponding to
o1(u),... ,on(u), and let be the span ofi, ... ,u,. Then

pu(v) > 0u(u) =1 YveWw\ {0},
whereas Lemma 7.22(c) yieldgW N S,) = n. Using (7.34) we conclude

2(cp —Pa(u)) < sup 2(pa(v) — Pa(u))

vESNNW
< s IR (L= (o) — (1 = ()
< —lull% (1 - puluw)).
O

Let, as usual(, (u) stand for the spectral projection associated with the ope€atoy € Lg(X)
and the interval0, o, (u) = 1] (cf. Section 4.2 again). Moreover set

K, = {u € S| Qn(u)u = u}.

ThenK, € X(S,), which follows similarly as Lemma 7.13. Moreover we infer from Proposition
7.23:

Corollary 7.24. If u € K, , then
(@) ¥a(u) = max{0,cp}
(b) If \(u) = ¢, thenw is a solution of(SC),, satisfyingu, (u) = A.

Proof. (a) Sinceu € R(Qn(u)) N Sy, there holdsj, (u) < 1. Hence Proposition 7.23 yields
¥x(u) > ¢,. Moreover, applying (7.5) to = 0 yields

2px () > [Jull3 (1 = pu(u)) > 0.

(b) If 9 (u) = ¢, thenp, (u) = 1 by Proposition 7.23, which is possible onlyuis an eigenvector
of G(u) with eigenvaluer,,(u) = 1. Thus the assertion follows. O
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Similar as in the preceding sections, we also need an estimade fior K, .

Lemma 7.25. For u € K, there holds

. 1
ldpa(u)ll o < llullx (1 = pulw))>.
Proof. Fix u € K, and note tha/ ~'di\ (u) = v — G(u)u € X, hence
lda(u)ll . = llu = G(w)ully-

Sinceo,,(u) = 1, we can define a semidefinite scalar product on the subspéQe (u)) C X by
(1) — (G(u) - |') 5. Setw = u — G(u)u € R(Qn(u)), then the corresponding Cauchy-Schwarz
inequality implies

lu — G (u)ull%

(uw)y = (G(u)ulw)y

lwll%

1 1
< [l = (Guulu) JE{lwly = (Gu)w|w) ]2
~ 1
< ully (T = pu(u)) 2 lwl] -
Therefore .
lda(w)ll . = llwlly < flullx (1 = pulu))>.
U
The preceding observations furnish the tools for proving the following.
Proposition 7.26. Suppose thaf(.S)) > » and that
Y(Ky)<n—1 (7.35)
ThenK, # () and
inf y(u) =¢, > 0. (7.36)

Moreover, if(u;) C K, is a minimizing sequence fgr, in K, , then||dyy (u;)|| . — 0.

I

Proof. First, (7.36) follows directly from (7.35), (6.10) and Corollary 7.24. [#f); be a minimiz-
ing sequence fop, in K, . Proposition 7.23 and Lemma 7.25 yield

- a2
o(1) = ¢a(uj) —cn > T(l — pu(w))
i ()12
= fa
hencel|dyy (u;)]l . — 0. O
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Theorem 7.27. Suppose that(Sy) > n andy*(K, ) < n — 1. Moreover assume that, satisfies
the Palais-Smale condition at the levgl Then

inf ’I/J/\(’U/) =Cp Z 03
ueEK,

1 takes its minimum ok, , and every minimizer is a solution {(§C'),, with i, (u) = A.

Proof. In view of Corollary 7.24 and (7.36) we only need to insure thiqtattains its minimum
on K, . Indeed, if(u;); is a minimizing sequence fap, in K, , then||dy(u;)|. — 0 by
Proposition 7.26, wheredg, (u;)); remains bounded by (7.36). By assumption,— v € K,
after passing to a subsequence. H@m*}; attains its minimum at:. O

Finally we give a criterion for (7.35) to hold:

Proposition 7.28. Suppose that,,—1(u) > on(u) forall u € D := {u € X | oy (u) < 1}. Then
YH(Ky) <n—L

Proof. Denote P, _; (u) the spectral projection associated with tNeselfadjoint operatoG(u)
and the eigenvalues, (u), ..., 0, —1(u). ThenP,_; : D — II,,_1(X) is continuous by Lemma 4.8.

HenceH : [0,1] x Sy — II, (X) defined byH (t,u) := P, 1(tu) is continuous as well. Since
H(t,u) = H(t, —u), the assertion follows from Proposition 3.12 and the fact.¥ab, 1 (u)) =
R(Qn(u)) foru € D. O
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Chapter 8

Periodic solutions of a nonlinear Hill's
equation

In this chapter we consider a one-dimensigretiodic equation, i.e. we are interestedli#periodic
solutions of the equation

(NH+) — (p(@)u) + q(z)u £ f(z,[u))u = M,  z€R,

wherep, ¢ : R — R are given 1-periodic continuous functionse C'(R) being positive every-
where. Moreoverf : R x [0,00[— R is continuous and 1-periodic in thevariable. As a matter
of convenience, we assume

f(z,0) =00nRR, (8.1)
which can be arranged by takiggappropriately. We also need the following crucial condition:
(M) Foreveryz € R, f(z,-) is nondecreasing 0, ocol.
To cast this problem in the framework of our abstract considerationsf pet L2 ([0, 1]) and
X = {u € WH([0,1]) | u(0) = u(1)}

(by Sobolev embeddings¥ *2([0, 1]) consists of continuous functions). In view of our assump-
tions, the operatod, := —%(p%) + ¢ with domain

D(Ag) = {u € W22([0,1]) | u(0) = u(1), v'(0) =u'(1)} Cc H

is selfadjoint an bounded from below. Moreovét,is precisely the form domain ofg. In accor-
dance to Chapter 4 we put := —inf o(Ap) + 1, and we endowX with the scalar product

(u|v), = /Ol[pu'v' + (g + m)uv] (u,v € X). (8.2)
Note that the induced norif- ||, is equivalent to the standaié ([0, 1])-norm. Define
F(z,t) ::/Otf(x,s)sds (z € R,t>0).
Then we have:
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Lemma8.1. (a) The mapB : X — L(X,X™*) given by

u)v, w) / f(z, |u(z))v(z)w(z)dz (8.3)

is stronglycontinuous, and3(u) € L(X, X*) is a compact linear operator for eache X.

(b) The functionalp : X — IR defined by

1
() = / Flou@)) de  (ue X)

is continuous. Moreovey; and B satisfy (CC).

Proof. (a) Denote byC' the space of continuouk-periodic functions equipped with the- ||oo-
norm, and denote by: X — C the Sobolev embedding which is strongly continuous. CleBrly
factorizes in the form _ .

xS o0 ox, x0,

whereC* denotes the dual af', ; maps an operatdr € £(C,C*) toi*hi and(b(u)v, w) is given
by the right hand side of (8.3) far,v,w € C. It therefore suffices to prove thatis continuous.
This however follows from the estimate

[{(b(u1) = b(uz))v, w)| < If G fur (D) = FCs fua () lol[vlloollwll oo

and the fact thayff is uniformly continuous on subsets of the forjy 1] x [0, K] with K > 0
arbitrary.
(b) As in the proof of Lemma 2.4 one uses (M) to deduce the inequality

2[F (. [v(2)]) — F(z, |u(z))] > f(z, |u(@)])(v* (z) - u?(z)) (8.4)
for u,v € X andz € [0, 1]. Integrating (8.4) yields precisely (CC). O

8.1 The sublinear case

We conside{ N H+). Thus, we are dealing with a sublinear equation, and we introduce the func-
tionalsy, ¢, : X — X* defined by

1

40 =3 [ (oo @ + a(a1i2e)) o + o).

and

Ya(u) = () — >l

1
Here|| - || denotes the norm if, i.e. ||u||> = [w? for u € H. As a consequence of Lemma 8.1,

0
the abstract conditions (H1)-(H4) and (CC) are satisfied. Hence we may dgfinel[-, -], n(u),
P, (u), V,(u) as well as probleniSC),, as in Chapter 6.
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Remark 8.2. (a) Note thatD(A(u)) = D(Ap) for everyu € X. Moreover, ifu € D(Ay) satisfies

A(u)u = Au for some) € R, thenu can be extended todassicalsolution of(N H+), as follows

from the assumptions imposed prny and f. In this case we identify, with its extension and call
u a solution of( N H+).

(b) A well known fact on this periodic problem is that there holds

pi(u) < po(u) < ps(u) <pa(u) <., (u€X) (8.5)

i.e., un(u) < pp+1(u) if n € N is odd Moreover, every eigenfunction corresponding:tg, () or
pom+1(u) has exactly2m simple zeroes if0, 1[, m = 1, 2, ... (for a proof of these assertions, see
e.g. [28]). Finally we have, = oo, since the operatady has compact resolvent.

8.1.1 Solutions with prescribed norm

Let R > 0 be given. We are now concerned with solutigas)) to (N H+) which satisfy

/1 u?(z) do = R, (8.6)
0

i.e. |lu]| = R. PuttingSg := {u € X | |lu|]| = R} andc, := ¢, (¢, Sr) for n € N, we have:
Theorem 8.3. Letn € N beodd Then

(@) cn < cnyr

(b) There is a solutiofu, A\) € Sg x R of (N H+) such that)(u) = ¢, andu has exactly, — 1
simple zeroes ifD, 1[.

(¢) If (u,\) € Sgr x Ris asolution of( N H+) with ¢)(u) > ¢, thenu has at least: + 1 simple
zeroes in0, 1[.

Proof. Sincen is odd, there holdg,(u) < pn+1(u) for everyu € X. Moreover,B is strongly
continuous by Lemma 8.1(i). Hence we may apply Theorem 6.5 which implies that property (CP)
holds fory and the sef := {u € Sg |u € V,(u)}. In particular K contains a solution; of
(SC),, satisfyingy(u) = ¢,. By Remark 8.2 we conclude thathas precisely. — 1 simple zeroes,

as claimed in (b). Moreover, singg,(u) = pn(u) < pnt1(u), we inferc, = (u) < c¢,41 from

Prop. 6.3(a). Hence (a) holds true as well.

Finally, suppose thatu, \) € Sk x R is a solution of(N H+) with at mostn — 1 simple zeroes.
Thenp,(u) = A < p,(u), and therefore)(u) < ¢, again by Prop. 6.3(a). This yields (c), and the
proof is complete. O

8.1.2 Solutions with prescribed eigenvalue

Next we are concerned with solutiongo (N H+) for givenparametei. Therefore fixn € N and
A > un(0). PutSy :={u € X | up(u) = A} andey, := ¢, (9a, Sy). We are in a position to prove:

Theorem 8.4. Suppose that € N is odd and that in addition to (M) the nonlinearity satisfies
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(i) Forall = € [0, 1] there holds

A /1'1(0) < tllf&f(xat) 00

(i) If x €0,1], t € [0,00] are such thatf (z,t) > 0, thenf(z, -) is strictly increasing o, co|.
Then there is a solution of (N H+) such that)(u) = ¢, andu has exactly: — 1 simple zeroes in
[0, 1].

Proof. We apply the results from Section 6.2. For this we remark that (i) yields (FG) by virtue of
Lebesgue’s monotone convergence theorem. To glo®), note that ifv # 0 is an eigenfunction
of someu € X with B(u) # 0, thenv solves the equation

(p(z)v") + q(z)v + f(z, |u])v = po,

for somey € R, which implies thaty € Cz(IR), andwv can only vanish on a discrete subsefRaf
Hence(B(u)v,v) > 0, and (UC) holds. FinallC'C), is a direct implication of (ii).

In view of (8.5) we may now apply Theorem 6.10, which yields propéfty?), for ¢, and the set
Ky :={u € S\ |u € V,(u)}. InparticularK, contains a solutiom of (SC),, with ¢, (u) = ¢y,
andu has the desired nodal property. O

8.2 The superlinear case

We now consider (NH-), and we introduce the functionalg, : X — X* defined by

1

w0 = [ (o™ + o) - ol

and \
Pau) = P(u) — §|IUIIZ-

As a consequence of Lemma 8.1, the abstract conditions (H1)-(H4) and (CC) are satisfied.
Hence we may defined(u), [, ]u, pn(w), Pu(u), Vi(u) as well as problemSC), as in
Section 7, that is with respect to the superlinear case. Note that Remark 8.2 is still valid with
respect to this notations.

8.2.1 Solutions with prescribed norm

Let R > 0 be given. We are concerned with solutiofag \) to (VH —) which satisfy the side
condition (8.6). Therefore plir := {u € X | ||u|| = R} andc, := ¢, (¢, Sr). The following
result reflects some kind of duality to the sublinear case, see Theorem 8.3:

Theorem 8.5. Letn € N beeven Moreover assume that there are numbers > 0 and0 < ¢ < 4
such that

|f(z,t)] < at? +b. (8.7)

Then
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@) cn > cpoa.

(b) There is a solutiorfu, \) € Sg x R of (NH—) such thaty)(u) = ¢, andu has exactlyn
simple zeroes ifD, 1[.

(¢) If (u,\) € Sgr x Ris asolution of( N H—) with ¢)(u) < ¢,, thenu has at most, — 2 simple
zeroes in0, 1[.

Proof. We apply the results from Section 7.1, showing first that condition (BB) is satisfied.
Fix u € Sgr. From 8.7 we deduce

1 1
(Bluuu) = [ floluh? ds <o [ Jult? 408 < @lullf, + DR (89)
0 0

Now consider arbitrary € R andt — 1 < s < ¢ such that:?(s) = minw?. Then

20(t) = w’(t) +u(t—1)

t—1 t
m%ﬁ+2/’ w@m@wm+2/zmomod£

t

2 !
%($+2[ ! (€)]u€) | de

-1
2R% + 2R||u ||

IA

AN

Hencel|u||2, < R(R + ||ul|y), and combining this with (8.8) yields
q ~
(B(uw)u,u) < allul|3 +b

with @, b only depending o, b and R. Sinced < 2 by assumption, we derive (BB) in view of
Remark 7.1.

Now, sincen is even, there holds,_i(u) < p,(u) for everyu € X. Applying Proposition 7.9,
we thus infer thaty*(K~) < n — 1 for the setK~ := {u € Sg | Qn(u)u = u}. Noting thatB

is compact by Lemma 8.1(i) and that, = oo, we may apply Theorem 7.8 which yields property
(CP)~ for ¢y and K. In particular K contains a solution: of (SC),, satisfyingy(u) = c,.

By Remark 8.2 we conclude thét, 1, (u)) has the properties claimed in (b). Moreover, since
pu(u) = pin(u) > pp—1(u), we inferc, = 9(u) > c,—; from Prop. 7.4. Hence (a) holds true as
well.

Finally, suppose thdtu, A) is an arbitrary solution of N H—), (8.6) withat leastn simple zeroes.
Thenp,(u) = A > up(u), and therefore)(u) > ¢, again by Prop. 7.4. This yields (c), and the
proof is complete. O

8.2.2 Solutions with prescribed eigenvalue: The case> p;(0).

Next we are concerned with solutiomsto (IVH —) for givenparameterx > p;(0), and we fix
n € N such thafu,, (0) > X. Moreover we define

Sy :={u € X |pn(u) =A}

and considet;, := ¢, (¢, S)).
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Theorem 8.6. Suppose that € N is even and that in addition to (M) the nonlinearity satisfies
t
(i) Thereis any > 2 such thad) < n [ f(z,s)s ds < f(z,t)t* for all z, t.
0

(i) If z €10,1], t € [0, 00[ is such thatf(x,t) > 0, thenf(z, ) is strictly increasing orjt, oo|.
(i) f#0,ie.thereisr € R, t € (0,00) with f(z,t) > 0.

Then there is a solution of (N H—) such thaty,(u) = ¢,, andu has exactlyr simple zeroes in
[0, 1[.

We will prove this result with the tools from Section 7.2.3. In view of (8.2) the canonical isometric
isomorphismJ : X — X* equals, in distributional sense, the map

u = —(pu')' + (¢ +m)u.
Moreover, the operator-valued mép: X — L(X) considered in Section 7.2.3 is given by
G(u) := J7B(u) + (m + NI (u € X).

We recall that for all: € X the operatoiG(u) is bounded, symmetric amubsitive definite More-
over, since the embeddings— H— X* arecompactwe deduce that’(u) is compact as well. As
a consequence, the numbesg«) defined by (7.31) are all eigenvalues@®@fu).

Lemma 8.7. If n € N is even, thew, (u) < o,_1(u) for everyu € X.

Proof. Note thato is an eigenvalue of7(u) if and only if 7 = % is an eigenvalue of weighted
problem

—(pv") + qu = (), (8.9)

with a uniformly positive weight:(z) = f(z,|u(x)|) + m + A. Hence the assertion follows from
[28, Theorem 2.3.1]. O

Combining Lemma 8.7 and Proposition 7.28, we deduce
Y(Ky) <n-—1, (8.10)

for K" being defined as in Section 7.2.3. Next we establish a unique continuation property for sums
of eigenfunctions o7 (u).

n

Lemma 8.8. Letu € X, and consider a finite sum = ) v; of (nonzero) eigenfunctions of
i=1

G(u) corresponding to pairwise different eigenvalugs

Thenv does not vanish on any open subsejot |.
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Proof. We recall that¢; > 0 for i = 1,...,n, sinceG(u) is positive definite. Hence, evety is a
classical solution of

(o)’ + qui = é[f(x, w@))) +mt Ay (= 1,.m).

In particularv € C2(]0,1[). Moreover, assuming in contradiction that= 0 on an open subset
M c]o, 1], we would have

n

0=—(p') +qu=" [-(pv) +qu] = [f( [u()]) + m+ A Y %Ui on M
=1 i=1 >

n
This however impliesy | %vz = 0 on M. Iterating this argument, we derive
i=1

n

1
Z—juizo onM forall j € N,
i=1 Si

which impliesv; = 0 on M for ¢ = 1,...,n. However, sincey; solves a linear ODE with regular
coefficients, we infep; = 0 for all 7. Hencev = 0, as claimed. O

Now we are prepared for the

Proof of Theorem 8.6As a consequence of Lemma 8.8 and (iii), the conditions (UC)(&rd),
from Section 7.2.3 are satisfied. In order to estahiSh’)| we have to use (i) and (ii): For arbitrary
u,v € X the functionr : [0, co[— [0, co[ given by7(t) := (B(tu)v,v) is nondecreasing in view
of (M). Now suppose that

7(to) > 0 (8.11)

for somet, > 0, i.e. the functionf (-, tou(-))v(-) does not vanish identically. In view of (ii) we then
infer thatr increases strictly ofty, oo[, hence it remains to show thdtm 7(s) = co. For this we
§—00

pick s1, so > 0 sufficiently large such that
Qu = {z € 0,1] | f(z,51]) > 0, v(z) £0, salu(z)| > 51}

is a set of positive measure. Now a standard upshot of (i) isAtiat st) > s"F(z,t) fort > 0,
s > 1, cf. (7.25). Combining this with (ii), we get far € Q, ands > s

F(e.sfu(s)) 5
su(@) C @

slu(z)]

f(@,|su(@)])o* (@) >

v

n( )" F (2, 51)0° (@),

S1

hence
(B(su)v,v) > n(-=-)"? / ()72 F(z, 51)0* (z) da.

S1

U
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Sincen > 2 and the integral on the right hand side is positive, we COﬂClliﬂET(S) = oo. Hence
(CC)} is valid.
Next we show

v(Sy) > n.

For this pick am-dimensional subspadé C X of analytic functions (e.g. trigonometric polyno-
mials). Using (iii), we find for every nonzero € V' a numbert > 0 such that B(tu)v,v) > 0 for

allv € V, v # 0. In view of Lemma 7.22(b) we infey(V N Sy) = n, hencey(Sy) > n.

Sincey, satisfies the PS condition by virtue of the subsequent Lemma, we now may apply Theorem
7.27. This in particular yields a solutianof (SC),, with p,(u) = X andy(u) = ¢,, andu has
preciselyn zeroes by Remark 8.2. O

Lemma 8.9. v, satisfies the PS condition.
Proof. Let (u,) C X be a sequence such that
Px(up) = c € R, diy(ug,) = 0 € X*.

We first show tha{u,, ), possesses a subsequence which is boundéd iithis is somewhat in-
volved due to our (weak) growth assumptions and the fact haight be an eigenvalue of.
Note first that for every € X, n € N there holds

(B (un)un,v)

IA

1
||v||oo/0 [ (@, un (@)])|un ()] dz

IA

Clllvllx(/o1 f (@, |un () |)up () dz + Ca)
= Chllvllx ((B(un)un, un) + C2),
with constantg’;, Cy > 0, hence
1B (un)tn| . < CL(B(un)un, un) + Co). (8.12)
On the other hand, we have
(B(un)un,un) = —(dipr(un), un) + 2¢x(un) + 2¢(un)
< oDl + O(1) + (Bl )

and therefore

(B (un)un; un) < o(1)[lun||, +O(1), (8.13)
sincen > 2. Combining (8.12) and (8.13) we get

1B (tn)un|l - < o()[unllx + O(1). (8.14)

Now picke > 0 such thaj\ — ¢, A + ¢[ contains no eigenvalue of,, differentfrom A. Denote by
Q*, P,Q the spectral projections associated withand the setf— oo, A — €], {\}, [\ + ¢, 0],
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respectively. Moreover pup := Q~ + Q* andA, := A — A\l : X — X* for the sake of brevity.
Then spectral theory yields

1Qual®: = 1Q unll + |QF unl:
= (A\Q un, Q" un) + (m + N|Q un|l® + (ArQ T un, @ un) + (m + N)[|QF un?

(1 - mT—+—>\> <A)\Q_una Q un) + (1 + mT—+—>\> <A>\Q+un’ Q+u">
(1 — _m :— >\> <A)\Un7 Qiun> + (]- + mTH> (AXU%? Q+Un>

C3<A)\una _qu” + Q+un>
C3||A/\Un||x*||Qun||X

with a constant’; > 0. This implies

IN

VARPAN

1Qually < Cyll Avua
< Csl|dprun| <+ T ||B(un)un||x
< O(1) + o(D)lJunl
by (8.14). Now assume thdtu,|, — oo. Then, puttingu,, := ﬁ we have||v,||, = 1
nllx

for all n and ||Qu,||, — 0. SinceR(P) is finite dimensional, we infer that, — v € R(P),
|lv||, = 1 after passing to a subsequence. By (iii) and Lemma 8.8 there éxjst® such that
Cy := (B(tv)v,v) > 0. Hence we conclude that for sufficiently largeve have

C
(B (un)tn, un) > ||un||§(<B(tvn)vnavn> > 74||un||§(
Combining this again with (8.13), we infer
lunll < o(1)]lunllx +O(1),

hence this subsequence is bounded’iras desired.
Extracting an appropriate subsequence, we now liave, )u, — w € X* (cf. Lemma 5.7), and
therefore

Ay, = dipy(un) + B(un)u, — w.

SinceA) : X — X* is a Fredholm operator by Lemma 4.2, it is a proper map when restricted to
a bounded subset. Hence, passing again to a subsequence, we may assumethate X, as
required. O
8.2.3 Solutions with prescribed eigenvalue: The case< p;(0).

We now assume that < u1(0), and we consideN := {u € X \ {0} | pu(u) = A} andc, :=
cn(1hy, N') as in Section 7.2.2. With this notations there holds:

Theorem 8.10. Considern € N even, and suppose that in addition to (M) the nonlineayity
satisfies the assumptions (i)-(iii) of Theorem 8.6. Then:
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@) cn > cp1.

(b) There is a solutioru, \) of (N H—) such that), (u) = ¢, andu has exactly simple zeroes
in [0, 1[.

(c) Ifuisasolution of NH —) with ¢, (u) < ¢, thenu has at most — 1 simple zeroes ifD, 1[.

We prove this theorem by applying Section 7.2.2. For this recall that condit@é69, and(CC),
are immediate consequences of (i) and (ii). Moreover, note that the scalar pfddwdhtroduced
in Section 7.2.2 can be written as

1
(ufv)x ::/0 [p(u'v") + (¢ — Nuv] de.

Denoting by.J, the canonical isometric isomorphis® — X * associated with this scalar product,
the operator family under consideration is given®u) := J;lB(u) (v € X). Now observe that
condition(CC)s is ensured by the following Lemma.

Lemma8.11. Letu € X, and consider a finite sum = >  of (nonzero) eigenfunctions; of
i=1

G(u) corresponding to pairwise different positive eigenvalues. Thepes not vanish on the set

I(f) :={z €[0,1] | 3¢ > 0 with f(z,t) > 0}.

Proof. Suppose in contradiction that = 0 on I(f). By a similar argument as in the proof of
Lemma 8.8 this forces; = 0 on the sef{z € [0,1] | f(z,|u(z)|) # 0} fori = 1,...,n. Hence
G(u)v; = 0fori =1,...,n in contradiction to the assumptions. O

Now fix n € N even, and definf:)n(u) as in Section 7.2.2. We recall that our abstract results
involved the se&yy := {u € N'| Q,(u)u = u}. In the present situation we observe:

Lemma 8.12. v*(Kxr) <n — 1.

Proof. First note that, ifu € AV, thenf (-, |u|) #Z 0 on|0,1]. Thus, testing with am-dimensional
subspace oK consisting of analytic functions (e.g. trigonometric polynomials), we infgt.) >
0. We claim

on(u) < op_1(u) (8.15)

for everyu € N. If in contradictiono, (u) = o,_1(u), then alsou, (A(u)) = pnii(A(u)) = A
for the operator

1
Alu) = —(p=— - — :H C D(A H.
(u) = 5-(p5-) +4 Un(u)f(x, lul) : H C D(Ag) —
This however contradicts [28, Theorem 2.3.1]. As a consequence of (8.15), theréhplds{u €
X |u € N(P,-1(u))}. Hence we may deduce the assertion from Proposition 3.12, once we have
shown that?, | : NV — II,,_;(X) is homotopic to a constant map via an even homotopy. To this

end, denote fot € [0,1], uw € X by Hy(t,u) € L(X) the spectral projection associated with the
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operatorGy(u) := Jy ' (B(u) + tI) and the intervalo,,_1 (G(u)), oo[ (now using the notation of
Section 4.2). Fot > 0 andu € X the operatol=;(u) is strictly positive, hence we conclude

on(Gi(u)) < on-1(Gi(u)) (8.16)

as in the proof of Lemma 8.7. However, in view of (8.15), we infer that (8.16) holds for also for
t = 0andu € N. Hence Lemma 4.8 implies thaf, : [0,1] x N — II,(X) is continuous. Next
we defineH; : [0,1] x N — II,,(X) by

Hy(z,s) = P,—1(G1(su)).

Then H, is also continuous by virtue of (8.16) and Lemma 4.8. Piecing togefherand
Hi(-,-) := Hi(1 —-,-), we get a homotopy{ : [0,2] x N — II,(X) with H(0,:) = const €
I,(X)andH(2,-) = P,_1(-) : N' = II,(X). SinceH is even in the second variable, the assertion
follows from Proposition 3.12. O

Next we assert that
Y(N) = oo. (8.17)

This is easily seen by Lemma 7.10. Indeed/let N be given, and consider agairt:alimensional
subspace consisting of analytic functions. Then, for eaehV” \ {0}, assumption (iii) furnishes a
numbert > 0 such that B(tv)v,v) > 0. Hencey(V N N') = k, and thereforey(N') > k.

We now may easily complete the

Proof of Theorem 8.10n view of (8.17) and Lemma 8.12 we may apply Corollary 7.21, which in
asserts thakys contains a solution of (SC'),, satisfyingy,(u) = ¢,. By Remark 8.2 we conclude
thatu has precisely: simple zeroes, as claimed in (b). Moreover, siage;(u) > o,(u) = 1 by
(8.15), we inferc,, = 15 (u) > c,—1 from Prop. 7.19. Hence (a) holds true as well.

Finally, suppose that is an arbitrary solution of NH—) with at leastn simple zeroes. Then

u € N ando,(u) > 1, hencey, (u) > ¢, again by Proposition 7.19. This yields (c), and the proof
is complete. O

8.3 Remarks on nonlinear Sturm-Liouville problems and character-
istic numbers

In this section we make some comments on the Dirichlet problem

(SL+) — (p(z)u) + q(z)u £ f(z,|u|)u = Au, z € [0,1]

u(0) = u(l) =0, (8.18)

where we are given continuous functiops [0,1] — R andf : [0, 1] x [0,00[— R as well as an
everywhere positive functiop € C''([0, 1]). Moreover we assume

(M) f(0) =0, andf(x,-) is nondecreasing 0, oo for a. e.z € [0, 1].
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Hence we consider the same class of second order ODEs as in the preceding sections, but now
the periodicity assumptions are replaced by Dirichlet boundary conditions. Consequently we now
considerH := L2[0,1] andX := W,’*([0,1]), then the operataty := — -2 (p-L) + g with domain

D(Ag) = W>2([0,1]) N Wy *([0,1])

is selfadjoint and bounded from below#), and X is precisely the form domain of,. Note that,

by virtue of the assumptions imposed on the data, weak solutioas X of (SL+) are in fact
classical C? solutions. The main difference to the periodic problem lies in the fact that now all
eigenvalues are nondegenerate, i. e. that

N’n(u) < NnJrl(u) (819)

for everyn € N and everyu € X. Moreover, the corresponding-th eigenfunctions possesses
preciselyn — 1 simple zeroes if0, 1] (cf. Remark 8.2(b)). This is true irrespectively of whether the

1y, are defined according to the sub- or to the superlinear case. Therefore we may evidently repeat
all the preceding considerations farbitrary n € N. We omit the details and just give a view on
some of the arising results. Therefore put

1

= g [ (e + oo + ot

and \
Py (u) =™ (u) — §IIUII2
foru € X, wherey : X — R is given by

1 rlu(z)]
o(u) ::/0/0 f(x,s)sdsdz.

Then there holds:

Theorem 8.13.LetR > 0, n € N and putSg := {u € X|||u|| = R} (]|-|| denoting thel.?-norm).
Moreover set; := ¢, (1*, Sg). Then

@ ¢f <cfyy

(b) There is a solutiofu, \) € Sk x R of (SL+) such thaty* (u) = ¢, andu has exactly
n — 1 simple zeroes ifD, 1].

(c) If (u,\) € Sg x R is a solution of(SL+), with ¢* (u) > ¢}, thenu has at least: simple
zeroes in0, 1].

Moreover, if there are numbers b > 0 and0 < g < 4 such that
|f(z,t)] <at?+b

for z € [0,1], t € [0, 00[, then also
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d) cn <cup

(e) Thereis a solutioffwu, \) € Sk x R of (SL—) such that)~ (u) = ¢, andu has exactlys — 1
simple zeroes if0, 1].

(f) If (u,\) € Sg x Ris asolution of(SL—) with~ (u) < ¢, , thenu has at mosk — 2 simple
zeroes in0, 1[.

Theorem 8.14. Suppose thaf satisfies the additional conditions
t
(i) Thereis am > 2 suchthat) < [ f(z,s)sds < f(z,t)t* for all z, t.
0

(i) If z €10,1], ¢t € [0,00[ is such thatf (x,t) > 0, thenf(z, -) is strictly increasing orjt, co|.
(i) f#£0,i.e. thereisr € [0,1],t € (0,00) with f(z,t) > 0.

ConsiderA < inf o(A4y) and

1 1
N:i={ueX)\{0}| /0 [pu'2+(q—>\)qu2]:/o f (@, Jul)u?}

as well asc,, := ¢, (¢, , V). Then for every, € N there holds

(@) cn < ey

(b) There is a solutiorfu, A) of (SL—) such thaty, (u) = ¢, andu has exactlyr — 1 simple
zeroes in0, 1[.

(c) If u is a solution of(NH—) with 1), (u) < c,, thenu has at most — 1 simple zeroes in
10, 1[.

Remark 8.15. (a) In view of global bifurcation results due to Rabinowitz [58], the above-stated
Theorems presumably do not contain any rexistenceresult for nodal solutions. However, the
nodal characterization by Ljusternik-Schnirelman levels complements results of Coffman (cf. [20]
and [18]) in a clarifying way. In particular we infer that Nehari’s characteristic numbers defined by

= AR

coincide with the Ljusternik-Schnirelman levels := ¢, (¢, , V) of ¢ on the Nehari manifold

N (at least under the stronger assumptions which Nehari originally imposed on the problem, cf.
[57]). We recall that, as defined by Nehdri, denotes the class of all continuous and piecewise
differentiable functions: € X such that

(i) v hasatleast — 1 zeroesu; < a3 < ... < ap—1 in J0, 1] and
(i) w- 144, € N forj=0,..,n, witha := 0 anda, := 1
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Nehari [57] in particular proves the existence ofap-minimizeru, € I', which solves(SL—),

and from Theorem 8.14(c) we deduce that= 1/, (u1) > c,. Onthe other hand, Theorem 8.14(b)
yields a solutioru of (SL—) such thatu, € I';, ande); (u2) = ¢,, and therefore;,, > 7, by the

very definition ofr,,.

Note that Coffman [18] first observed a relationship between Ljusternik-Schnirelman theory and
Nehari's method, but he identified the characteristic numbers with Ljusternik-Schnirelman levels of
adifferentauxiliary functional.

(b) Clearly one obtains analogous results replacing the Dirichlet conditions (8.18) by a general set
of separated boundary conditions

af + a3 > 0,
BE + B2 > 0.

a1u(0) + asu’(0)
Bru(l) + Bou'(1)
Indeed, in this case proble($ L+) can again be formulated via a family of selfadjoint operators

with nondegenerate eigenvalues and such thattiheeigenfunctions possesses exaatlyl simple
zeroes. Hence we may repeat the preceding reasonings once more.

=0,
=0,
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Chapter 9

Normalized solutions to superlinear
Schrodinger equations

We are interested in solutioris, A) of the equation
(NS) — Au — f(z, |u))u = Au, u€ WH2(RN)

satisfying the additional side condition
[ull2 = R,

R > 0 being given.
We assume that : 2 x [0, 00]— R is a Caratheodory function satisfying

(M) £(0) =0, andf(z, -) is nondecreasing di, co[ for a. e.z € RV.
Concerning the regularity of weak solutions to (NS) there holds:

Lemma 9.1. Suppose that there $ €]0, ﬁ[ andC > 0 such that
flz,t) < C(1+1¢%) (9.1)

fora.e.z € RY, t > 0, and suppose that ¢ WH?(R") is a weak solution of (NS) for some
A € R. Thenu € W2 (RN) N CH(RN) for everys < .

Proof. Using (9.1) and Sobolev embeddings, we easily derive ffat|u(-)) € Li (RY)

for someq > % hencewv is continuous in view of Lemma 14.1. As a consequence,
g=u+ f(-,|u))u € L2 (RY) N L?(RY), whereas: weakly solves

loc

—Au=g.

Hence standard elliptic regularity yields € W2*(RN) for all s > 1. However, W2’ (RYN) is
embedded irC'* (RY) for sufficiently larges. O
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9.1 The radial case

In this section we assume in addition to (M) thét > 2 and thatf is radially symmetric, i.e. it
can be written in the fornf (z,t) = (||, t) with a Caratheodory functiop: [0, co[x[0, co[— R.
Moreover we assume

(G) There are numbers;, 3> €]0, +[ andC > 0 such thatf(z,t) < C(t%t + %) for a.e.
r € RN, t>0.

There exist positive constants ¢, 7o and numberd < 7 < 2,0 < o < ( 7) such that
(D) p

f(r,t) > Ar7t% for 0<t<ty, r>rp.

Now define?, X as the closed subspaces consisting of radially symetric functiofg(iR"),
WL2(RY), respectively. TherX is precisely the form domain of the selfadjoint operatby :
D(Ap) C H — H defined by

D(4y) = {uec W**(RY)|uradially symmetrig
Agu = —Au. (9.2)

F(rt) ::/0 f(r,s)s ds

We furthermore consider

for r,t € [0, 00].

Lemma 9.2. Set
u)v, w) = /RN f(lz], lu(z)[)v(z)w(z) dz

for u,v,w € X. Then:

(a) B is a well defined strongly continuous map— £(X, X*). Moreover,B(u) € L(X, X™)
is compact for every, € X.

(b) Foreveryu € X the integral

o= [ PllalJu(o)]) do

exists. Moreoverp : X — R and B satisfy(CC).

Proof. (a) Let us first assume that
flz,s)<Cs®  Vs>0,zeRY (9.3)

with a constan®3 €]0, +[. Since2 < B < 2%, the Sobolev embedding: X — LA*3(RY) is
compact (see [51, Proposition 1.1]). MoreovBrfactorizes in the form

X S LPRY) L L RY) D L@ RY), 10 (RY) L £(XX7). (94)
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Here f, andb are given byf.(u)(z) := f(z,u(z)) andb(u)v := uv respectively, andg maps
alinear operatoh € L(LAT2(RN), LA+2 (RN)) to i*hi. By (G) the substitution operatdf, is
bounded, hence it is continuous (see [47, Theorem 2.1]). Mordpiges, continuous linear operator

by Hélder’s inequality, and evidently is continuous as well. Hence (9.4) shows tBais strongly
continuous and thaB(u) € £(X, X*) is acompactinear operator for every € X.

In the general case, note that (G) permits to wfite f1 + f5, wheref; and f, satisfy (9.3) with

B = p1 andB = [, respectively. According to this decompositioB, splits in a sumB; + B,

where the operatotB; have the desired properties by the argument from above. Hence the assertion
is true for B as well.

(b) As in the proof of Lemma 2.4 one uses (M) to deduce the inequality

2(F(|96|a lv(z)]) — F(|2l, |U(1L')|)> > f(|z], [u(z)]) (v*(z) — v?(2)) (9.5)
foru,v € X andz € R". Integrating (9.5) oveR" yields precisely (CC). O

As a consequence of Lemma 9.2, the nizpatisfies (H1)-(H5) and (CC), hence we may consider

A(u), pn(u), Qn(u), p, and problem SC),, as defined in Chapter 7. We observe that solutions of

(SC),, carry nodal information, more precisely:

Lemma9.3. (a) For everyu € X the eigenvalues ofi(u) are nondegenerate. Moreover, if
un(u) is an eigenvalue ofi(u) andv a corresponding eigenfunction, therhas precisely,
nodal domains.

(b) Ifu € X is a solution of(SC),, for somen € N, thenu solves (NS) weakly with = 1, (u),
andwu has precisely: nodal domains.

Proof. (a) The assertion follows from Theorem 14.8 as soon as we have establishdd that
(-, Ju(-)|) is aradial W-admissible potentia(cf. Definition 14.5). For this note that, by virtue
of (G) and Lemma 14.16(b), the relation (14.9) holds for any. 0. Therefore the admissibility

follows in view of Lemma 9.2(a).
(b) This follows from (a) and the very definition of probleifiC),,. O

Now define the functionap : X — R by

P(w) = 5 IVul ~ o)
and consider the minimax values := ¢, (v, Sg) for 1) on the sphere
Sr:={u € X |||lul2 = R}.
The main result of this section reads as follows.
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Theorem 9.4. Let R > 0. Then
(@) cp < cpyq for everyn € N.

(b) There exist (radial) solution&:,,, \,) € Sg x R~ of (NS) such that(u, ) = ¢,, andu,, has
preciselyn. nodal domains.

(c) If (u,\) € Sgp x R~ is aradial solution of (NS) with)(u) < ¢, for somen € N, thenu has
at mostn — 1 nodal domains.

Remark 9.5. (a) While standard Ljusternik-Schnirelman theory on the splSgrgields the mere
existence of infinitely many normalized radial solutions to (NS) under the above conditions, the
nodal information provided by Theorem 9.4 is new. In fact, we are only aware of a related result of
Heinz [35] referring to aublinearequation.
(b) Condition (D) is closely related to the existence of normalized solutions to (NS)switil
prescribedZ?-norm. Indeed, [72, Theorem 4.8] asserts that a conditionZlike necessary in case
that R is small. To illustrate this, let us consider the nonlinearity

t(T

) =—-— (t M.
Fatl=13pmr (>0 weRY)

Then, if N > 3 ando > M—JQT) > (2 — 7)max{+, g}, there is a constar@® > 0 such that
llullo > C wheneveru solves (NS) weakly with somg < 0 (C' does not depend ok, cf. [72,
Theorem 4.8]). Moreover, a similar result holds fér= 2.

In the rest of the section we prove Theorem 9.4 with the tools supplied by Section 7.1. For this we
first need to ensure:

Lemma 9.6. For arbitrary R > 0 there holds condition (BB), i.e., there are constamts [0, 1]
andb > 0 such that
(B(uw)u,u) < allul]? +b.

for everyu € Si.

Proof. We use the well known multiplicative Sobolev inequality due to Gagliardo, Nirenberg and
Golovkin, which asserts that fgrc)2, 2| there is a constark = K (p, N) such that

' N—2
lully < K[IVull3full;™ (9.6)
with = N(3 — 1—1)) (see [73] and the references therein). Indeed, in vie®fwe deduce with
p= max Bi
(Bwu,u) < C(lullf + el 3213)
< 20(|lullg + ul?)
< 20(KPH2REFDO-0) )y P+ 1 R2)
whereaq s + 2)6 < 2. Hence (BB) follows from Remark 7.1. O
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By Lemma 7.2 we now infer thap is bounded from below o'z, hencec, > —oc for every

n € N. Next we show that these values are strictly smaller than zero, which is the infimum of the
essential spectrum ofy. This is of crucial importance to ensure local compactness (cf. the proof
of Theorem 7.8).

Lemma 9.7. For arbitrary R > 0, n € N there holds;, < 0.

Proof. Pick ann-dimensional subspacg C X consisting of bounded continuous functions with
support inRY \ B,,(0). Forv € Z definejrv € X by jpv(z) := k‘%v(%), and note that
ljxvll2 = ||v||2 for everyv € Z. PutZg := {v € Z|||v|| = R}, and observe that there is a number
ko € N such thatl|jxv||e < to forallv € Zg, k > k. For these values df andv assumption
(D) implies

likv ()]
o(jrv) > A/ |x|_T/ o dt dx
RN\ By, (0) 0

A / —T| o+2
= z| 7"k (x dx
753 Jov 7 i)

A
_ k—%(a-ﬂ)/ |$|—T|,U(§)|O'+2 dz
o+2 RN\ By, (0) k
A
_ k—%)/ || (2)|7+2 da
o+2 R¥\Brg (0)
A —No—r —T o+2
> k> |z Tl (z) | da (9.7)
o+2 ]RN\BTO(O)

Note that the integral in (9.7) is positive for evesye Zi. Using this and the fact thaty is
compact, we find constants, c, > 0 such that for every € Zp there holds
o(jkv) > ek 27T
as well as
IVirv]l3 = &2 Vol|? < c2k ™.
Now £ + 7 < 2 by assumption, hence

) 1 ) )
sup (jev) = sup | [ Visvll3 = @(ikv)
vEZR VEZR

< 22T
2
< 0.

for k large enough. Since({jxv |v € Zr}) = n, we conclude:, < 0, as claimed. O

Now fix n € N and putK— := {u € Sk |Qn(u)u = u} as in section 7.1. Recall that, in order

to apply Theorem 7.8, we have to show thatK) < n — 1. However, since the 'unperturbed
operator' Ao = —A has no eigenvalues, Prop. 7.9 does not apply in the present situation. Instead,
we proceed by a direct construction which involves the evaluation of (continuous) eigenfunctions at
z = 0.
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Lemma 9.8. Consideri € N and D C X such that foru € D there holdsu;(u) < 0, which by
Lemma 9.3(a) implies that;(u) is a nondegenerate eigenvalueAxu). DenoteP;(u) the spectral
projection associated with this eigenvalue. Then the function

D — R
u»—>P()u|x0

is odd and continuous.

Proof. Oddness is clear. To show continuity, consider asequ@n()e: D suchthatu; — u € D.

To abbreviate the notation, we writg := P;(u;)u; andh := P;(u)u. As an easy consequence

of Corollary 4.5 we infer that; — h in X. Denoteld := {h,h; | j € N}, in particular/

is bounded inX. Moreover, using (G) and Sobolev embeddings, we infer that the sequence of
functionsV; := f(-, |u;|(-)) — ui(uj), 7 € N is bounded inL¢(B,(0)) for someg > . Applying
Lemma 14.1(b) t&2 = B(0), Q" = B;(0) in particular yields that;(0) — h(0), as claimed. O

Lemma9.9.v*(K~) <n—1.

Proof. Setting©; := {u € Sg |ui(u) < O,H(u)u|x:0 # 0} fori = 1,...,n — 1, we infer by
Lemma 9.8 that); is openand symmetric and tha(C') < 1 for every closed and symmetric
subsetC C O,. Moreover,

Pi(u)ulp—o =0 <= Pi(u)u=0

n—1
by virtue of Lemma 14.3, which implies thdz \ K~ c |J O;.
i=1

-1
Now consider an arbitrary closed and symmetric suldset S \ K—. ThenA C U O;. More-

over, sinceA is paracompact, this coverlng can be shrunk, i.e. there are open and symmetric subsets

O, such that(’),» C O;and A C U O;. Recalling thaty((’)i) < 1 for eachs, we conclude
i=1
v(A) <n—1. Thusy*(K~) < n — 1, as claimed. O

We now have all necessary tools for the

Proof of Theorem 9.4We start with the proof of (b), which we deduce from Theorem 7.8. For this
let n € N be given, and recall that the relation (7.11) holds by Lemma 9.9. Morepyer=
hence Lemma 9.7 ensures thgt < fg lhoo, @S required. Recalling finally tha is compact by
Lemma 9.2, we may apply Theorem 7.8 which yields conditi6f) . In particular there is a
solutionw,, € K- C Sgr of (SC),, and by virtue of Lemma 9.3(b) we conclude thgt has
preciselyn nodal domains, as claimed in (b).

Moreover, suppose thét, \) € S x R is a solution of (NS) having more thannodal domains.
Thenp,(u) = A = pn4j(u) for somej € N, whereagu,;j(u) > p,(u) by Lemma 9.3(a). By
Proposition 7.4 we infer thap(u) > cp4; > 41 as well asy(u) > ¢,. Hence, every solution
(u, X) of (NS) satisfyingeitheri(u) < ¢, or ¢(u) < ¢,+1 has at most nodal domains. Hence (c)
holds in particular, but combined with (b) this also forces (a). O
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9.2 The nonradial case
In this section we assume that in addition to (M) there holds the following assumption:

(G’) There is a numbed < 3 < 3 and a functionw € L>(RY) such that lim w(z) = 0 and

|x|—00

f(z,t) <w(z)(1 +1t9) fora.e.x € RN, ¢t >0.

The behavior at infinity is required to overcome the lack of compactness which is an inconvenient
feature of thenon-symmetrietting. As in the radial case, we also require lower bounds on the
growth of f, precisely we assume:

(D") There exists positive constamds ¢y, d as well as numbers < 2,0 < o < % and a point

zo € RY such thajz,| > d and

f(z,t) > Alz| 7t for 0<t<ty, zeC:={sy|s>1,|y—zo| <d}.

We emphasize that, as in the radial case, a growth condition in the form of (D) is necessary for
the existence of normalized solutions to (NS) wsthall prescribedZ?-norm (cf. Remark 9.13 and

[72, Theorem 4.8]). For this reason, condition (D’) is familiar in the context of bifurcation from the
essential spectrum, see [74, p. 431].

We now putX := WH2(R"), and as in the radial case we have

Lemma 9.10. Define

(B(u)v, w) := /}RN f (@, lu(@))v(z)w(z) dz

for u,v,w € X. Then:

(i) B is awell defined strongly continuous map— £(X, X*). Moreover,B(u) € L(X, X*)
is compact for every € X.

(i) Foreveryu € X the integral

lu(z)]
o(u) := /sz/o f(z,t)tdt dz

exists. Moreoverp : X — R and B satisfy(CC).

Proof. Note that by (G’) we may writg = f; + f9 such that
filz,s) < w(z)s® (xRN, s € 0,00, i =1,2)

with 81 = 0 andpgs = . Hence the assertion follows from Lemma 14.22 and the remark following
it. O
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Again we infer that the conditions (H1)-(H5) and (CC) are valid. Setting
Ag = —A: W?HRY) ¢ LA(RY) - L*(RN)
we therefore may considet(u), pn(u), Qn(u), p, etc. as defined in Chapter 7.

Now fix u € X arbitrary. Note that (G’) and Sobolev embeddings yield that

V= f(, u()) € Lj

loc

(RY)  for someq > %

and in view of Lemma 9.10(a) we deduce théatis a W-admissible potential (cf. Sec. 14.3.1).
Hence Theorem 14.7 yields that every eigenfunctiom6d) associated withu, (u) has at most

n nodal domains (note that every such eigenfunction is continuous by virtue of Lemma 14.1). In
particular, every eigenfunction associated witl{u) does not change sign, hence it is positive by
the strong Harnack inequality, see [67, Theorem C.1.3]. This immediately implies that

p(u) < po(u) whenever 1 < pioo, (9.8)
and that every eigenfunction associateg {¢u), n > 2 changes sign. In particular we have proven:

Lemma 9.11. If u € X is a solution of(SC),, for somen, thenu has at most: nodal domains. If
n > 2, thenu changes sign.

In our main theorem we state relationships between nodal properties of solutions
u€ Sp={u€ X||ulls =R}
of (NS) and the minimax values, := ¢, (1, Sg) for the functionak) : X — R defined by

1
P(u) = §||Vu||% —p(u)
(cf. Sec. 7.1).
Theorem 9.12.LetR > 0. Then:

(@) If (u,\) € Sg x R is a weak radial solution of (NS) satisfying eithefu) < ¢, or ¢ (u) <
cnt1 for somen € N, thenu hasat mostn nodal domains.

(b) Forn = 1,2 there are solutiongu,,, A\,) € Sg x R of (NS) such that)(u,) = ¢, andu,
has precisely, nodal domains.

(€) c1 <co

Remark 9.13. (a) As a matter of fact, (NS) has infinitely many normalized solutions under the
above conditions, as can be deduced by standard Ljusternik-Schnirelman theory on theSgphere

In contrary, nodal information on normalized solutions is new. However, in addition to our upper
bounds on nodal domains, we can only prove the existence obignechangingsolution. We
nevertheless suspect that (NS) possesses an infinite number of normalized sign changing solutions.
This guess is encouraged by results of Bartsch [7], who established the existence of infinitely many
sign changing solutions fainconstrainedsolutions of a similar equation ontoundeddomain.

Note also that, in thenconstraineccase, Bartsch and Wang [11] proved the existence of one sign
changing solution to (NS), whereas they do not nged be even.
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In the rest of this section we prove Theorem 9.12, noting that some arguments work similar as in
the radial case. Indeed, the proof of Lemma 9.6 just carries over, hence we infer

Lemma 9.14. Condition (BB) is satisfied for arbitraryz > 0.
Again we conclude;,, > —oo for everyn € N. Moreover:
Lemma 9.15. For arbitrary R > 0, n € N there holds:, < 0.

Proof. We may proceed similar as in the radial case: ik N, R > 0, and pick am-dimensional
subspaceZ C X consisting of rapidly decreasiranalytic functions (e.g. a span of Hermite func-
tions). Forv € Z definejyv € X by jrv(z) := kf%?)(%), and note thaljjyv||2 = ||v||2 for every

v € Z. PutZr := {v € Z||v|| = R}, and observe that there is a numldgre N such that
l7kv]|co < to forallv € Zg, k > ky. For these values df andv assumption (D’) implies

likv(@)]
o(jrv) > A/|$|_T/ tot dt dz
C 0
A N T
_ —5(0+2) =T, (2 \|0+2
st Ee el o) da
A
= e [ el ) de
U+2 k—1¢C
A
> e el o) do (9.9)
U+2 C

The latter inequality follows sincé—'C D C. Note that the integral in (9.9) is positive for every
v € Zg. Using this and the fact th@ty is compact, we find constants, ¢, > 0 such that for every
v € Zg there holds N
o(jkv) > ek 277
as well as
IVikoll3 = &2 Vol|* < e2k ™.
As in the radial case we concludg < 0. O

Lemma9.16. Letn € {1,2}. Theny*(K~) < n — 1 for the set
K™ :={u € Sg|Qn(u)u = u}.

Proof. The assertion is trivial fon = 1, sinceK~ = Sk in this case.
In casen = 2 defineO := {u € Sg |u1(u) < 0}. Sinceus = 0, there holdsSr \ K~ C O. By
(9.8), 41 (u) is anondegenerateigenvalue for: € O. Hence 4.8 yields that the spectral projection
Py (u) € L£L(X) onto the eigenspace of (u) depends continuously ane O. (here® is endowed
with the topology ofX). Now pick an everywhere positive functiene X and define hO — R
by

uly vPy(u)u.

RN

Clearlyh is odd and continuous, and farc O there holds

h(u) =0 <= weK .
Hencey*(K ) < 1, as claimed. O
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In view of the above considerations we may easily complete the

Proof of Theorem 9.4Starting again with the proof of (b), we apply Theorem 7.8/for 1,2. To
this end, note that (7.11) holds by Lemma 9.16, whergas RTZMOO by Lemma 9.15. We conclude
that property(C P)~ is valid forn = 1,2. Hence there are solutions, € K~ C Sg of (SC),,
which in particular are weak solutions to (NS) corresponding\ te- p,(u). Moreover,u, has
preciselyn nodal domains by Lemma 9.15, hence (b) holds.

Next, letn € N and suppose thdt, A) is a solution of (NS) with more than nodal domains.
Thenp,(u) = X = pnyj(u) for somej € N, whereagu,;(u) > p,(u). By Proposition 7.4 we
infer thaty(u) > cpqj > ¢y as well asy(u) > ¢,. This shows (a), and (c) is an immediate
consequence of (a) and (b). d
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Chapter 10

Equations of Choquard type

In this chapter we are concerned with a general forrece€alledChoquard’s equation
(CH) —Au— (u?+V)u=2>u, ucW"2(R3),

where we assume thét is a radially symmetric measurable function satisfying

(V1) V € LY(R3) + LP(R3) for somel < p < oo.

(Vo) [ (&*V)(2)&(z) dz > 0 for everyé € CE°(R?).
R3

(V3) V>0,V #£0.

Note that if V' (viewed as a tempered distribution) has a positive Fourier transform, then (V2) is
satisfied. This follows from the identity

[vege= [ wroi=en [ i

Important examples for potentials satisfying(Vy) — (V3) areV (z) := ﬁ with constants’' >
0, a €]0,3[, as well ag/ (z) := e~ #*l with C, u > 0 (see [50] and the references quoted there).

x|

Note that for every sucly equation (CH) remains invariant under the action of the noncompact
group of translations ~ u(- + 7), 7 € R3. To avoid problems arising from this noncompactness,
we focus on radially symmetric solutions of (CH). Denoting Hyresp. X the Hilbert spaces
consisting of the radially symmetric functions if(R?) resp. W 12(R?), we observe:

Lemma 10.1.

(i) There is astronglycontinuous (nonlinear) operataX — £(X, X*) defined by

(B(u)v,w) = / (u? « V) (z)v(z)w(z) dz (10.1)

R3
(i) For u,v € X there holds

(B(uw)v,v) < (B(u)u,u)? (B(v)v,v)z.
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(iii) Definey : X — R by

Theny and B satisfy(CC).

Proof. (i) Without loss, we may assume thite LP(R?) for somep € [1, oo[. Settingg = %,
we infer that the linear operatoy : LY — L?? defined by

w—w*xV

is continuous by convolution inequalities. liet X — L?? denote the Sobolev embedding, which
is strongly continuous since< 2q < 6 (see [51, Proposition 1.1]). Now factorizes in the form

X & L2010 o 2R3 L (12, L0y L (X, X7, (10.2)

Here the second arrow is given by the continuous mag «?, and thelinear mapsb and j are
defined by

b(u)v := uv
and

J(u) = isuiy
(i* : 29" — X* denoting the dual of). By Holder’s inequality is well defined and continuous.
Thus the factorization shows tha& is strongly continuous an®(u) € £(X, X*) is acompact

linear operator for every € X.
(if) Since B is continuous, it suffices to prove the assertion for

u,v € C := {w € C§°(R?) | w radially symmetrig.
Note that(V5) implies that

@le). = [ [ a@eamvie-y da

defines a semidefinite scalar productnThe associated Cauchy-Schwarz inequality yields

(B(u)v,v) = (u?,0%). < V/(02,u2)or/(v2,07), = (B(w)u,u)2 (B(v)v,v)?,

as claimed.
(iii) By (ii) there holds

2p(v) — 2¢(u)

AVARLYS

Hence (CC) is satisfied by and B. O
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The following Lemma provides more detailed information on the 'convolution operater u=*V .

Lemma 10.2. (a) There is a constant; > 0 such that

0 V) ()] < clnuui(l n ﬁ) (10.3)

for everyz € R?\ {0}, u € X.
(b) Ifu € X N L>®(R?), thenu? * V € L*(R3).
() Ifue X NCYR?) and L£u € X N L®(R?), thenu? x V € C'(R?).

Proof. We may writeV = V; + V5 with radially symmetric function¥; € L>*(RR3), V, € L' (R?).
Then
[(u? * V1) ()] < [Villoollulls < [Villoollull%,

for all z, and by (14.18) there holds far# 0

1)@ < [ -Vl

1
< C? 2/ — |V d
< llully o |m_y|l 2(y)| dy
1
= 02u2/7Vy dy (10.4)
s s mancqial oy )
C?|lull%

Here (10.4) is established by carrying out the spherical integration and using the radial symmetry
of |[Va(-)|. We conclude that (a) holds with := ||Vl + C?||V2|l1. Moreover, if in addition
u € L®(R3), then|(u? * V5)(z)| < ||lull% ||V2]|: for all z, henceu? x V € L™, as claimed in (b).
Assertion (c) follows by similar arguments, since the assumptions allow to 'differentiate under the
integral’. O

We point out that Lemma 10.1(i) and Lemma 10.2(a) in particular ensure that forewedyf the
functionw? « V is a radiallW -admissible potential, which is required to apply the nodal criteria of
Sec. 14.3.1.

Moreover, Lemma 10.1 implies the validity of (H1)-(H5) and (CC), as usual. Hence, defigiag

in (9.2), we may treat equation (CH) in the framework of Section 7.2.2. In particular we refer freely
to the notationsA(u), uy, (u), etc.. We are interested in solutions(6fC),,, since we expect them

to carry nodal information. Indeed:

Lemma10.3.1f v € X is a solution of problem(SC), for somen € N, then
u € W22(R3) N C?(R?), andu is a classical solution of (CH). Moreover,has precisely: nodal
domains.
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Proof. Clearlyu is a weak solution of (CH). Since® « V' € LE’OC(]R3) for someg > % by Lemma
10.2(a), we inferu € C(R?) from Lemma 14.1. In view of 14.18 we dedueec L*°(RR?),
henceu + (u? * V)u € L?(R3) N L*(R?) by Lemma 10.2(b). Now standard elliptic regularity
yieldsu € W2?(R?) n W2P(R?) for everyl < p < oo, and in particulars € C'(R?) by
Sobolev embeddings. Moreover,e W22(IR?) implies that the radial derivativé v is an element
of X. In view of (14.18) we infer thatg%u € L*®(R?), and therefore Lemma 10.2(c) yields
Mu+(u?+V)u € CH(IR3). Applying elliptic regularity once more, we finally establighe C?(R?),
moreovery solves (CH) classically.

The nodal property now follows from Theorem 14.8. O

Remark 10.4. In [50, p. 1064] it is asserted thate C°(IR?) for every weak solution, € X of
(CH).

In our main theorem below we relate the existence of solutions with prescribed nodal properties to
minimax values of the functional

1

i) =5 [ (V=3 —pte) (e X)

on the Nehari set
N o= {uem [ vu = xa?) = [ (uzmu?}—w}-
R3 RR3

As usual we focus on the Ljusternik-Schnirelman levgls= c, (¢, V).
Theorem 10.5.Fix A < 0. Then
(@) ¢ < cpyq forallm € N.

(b) There exist classical radial solutiong, € X, n € N of (CH) such that)) (u,) = ¢, andu,
has precisely, nodal domains.

(c) Ifu € X is a weak radial solution of (CH) satisfyingy(u) < ¢,+1 for somen € N, thenu
hasat mostn nodal domains.

Remark 10.6. The mere existence of infinitely many radial solutions to (CH) has been established
by Lions [50], whereas nodal information on solutions is a basically new feature. In view of the
nonlocal nature of (CH) allocal reasoning fails, and therefore any techniques relying on ODE
dynamics (cf. for instance [41]) and also local variational methods (see [9] and [21]) do not apply
here.

The proof of Theorem 10.5 is based on abstract results stated in Section 7.2.2. We start with the
following observation:

Lemma 10.7. There holdsy(N) = oo.
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Proof. We prove this by constructing for given € N anm-dimensional subspadé, C X such
that for everyv € V;,, \ {0} there holds

(B(v)v,v) >0, (10.5)

which impliesy(N N'V,,) = m by Lemma 7.10. To this end, choose linearly independent
functionsw; : [0,00[— R which are real analytic of0, oo, rapidly decreasing at infinity and
satisfyingw’(0) = 0 (e.g. one can take linear combinations of Hermite functions). Defire X
by v;(z) := w;(]z|) and defineV;,, C X as the span of the;. Since any € V,,, \ {0} can only
vanish on a set of measure zero, there holds (10.5) by virtue of (V3). This proves the Lenitha.

Next we remark that conditiong'C'); and(CC'), are obvious features of this special nonlinearity
(with n = 4). Moreover, since\ < 0, we may pass to an equivalent scalar prodyet, on X given

by
(uv)y == VuVuv — )\/ uv.
R3 R3

Denoting (in accordance to Section 7.2.2).by: X — X* the canonical isometric isomorphism
with respect to this scalar product, we consider the symmetric oper@tars := J;lB(u) €
L(X), and we use the corresponding notatien$u), Q,,(u) andp(u) for u € X as defined in this
section. Next observe that conditiofiC')5 follows directly from Lemma 10.1(ii) and the following
Lemma.

n

Lemma 10.8. Letu € X, and consider a finite sum = ) v; of (nonzero) eigenfunctionsg of
i=1

G(u) corresponding to pairwise differepbsitiveeigenvalues;.

Then(B(u)v,v) # 0.

Proof. Everyv; is a weak solution to

—Av; — v = gl(u2 * V) (z)v; (1=1,..,n). (10.6)

)

Recalling thatu? «+ V € L (R?) for someq > 2, we infer thatv; is continuous by Lemma

14.1. Hence; € Wﬁ;q(]Ri*) for every: by elliptic regularity, and (10.6) holds pointwise a.e.. Now

C

suppose in contradiction théB (u)v, v) = 0. Thenv(z) = 0 a.e. on
M :={z € R®*| (u® + V)(z) > 0}

and by virtue of [31, Lemma 7.7] we deduce that

0= —Av(z) — Mofz) = (u? « V)(2) 3 2 vil2)

n
fora.e.x € M, hence)_ %vi(x) = 0 for a.e.z € M. lterating this argument, we derive for all
i=1""

j € N the relation

n

Z = i(z) =0 fora.e.x € M.

—j’U
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This clearly yieldsy;(z) = 0 for a.e.z € M, i =1,...,n. In view of (10.6) we conclude
—Avi(z) — Mvi(z) =0 foraes € R3 i=1,..,n
Hencev; = 0 for all 4, which contradicts the assumptions. O

We proceed by exploring the spectral fixed point&gt := {u € N |Qn(u)u = u}. To this end,
we denote byP; (u) the eigenprojection associated the operétou) and the eigenvalue,, (u) (cf.
Lemma 4.9). The following assertions should be compared with Lemma 9.8.

Lemma 10.9.

(i) Foreveryu € N, i € N there holdsy;(u) > 0, ando;(u) is a nondegenerate eigenvalue of
G(u).

(ii) For everyi € N the map

- R
u = Piluhuleeg (10.7)

is odd and continuous.

Proof. (i) Since for everyu € A the functionu? + V does not vanish identically, we infef(u) > 0

by testing with ani-dimensional subspacdé C X as constructed in the proof of Lemma 10.7.
Moreover,o;(u) is nondegenerate in view of Theorem 14.9.

(i) Oddness is clear. To prove continuity, consider a sequé¢age C D such thatu; — u € D.
Puth; := P,(u;)u; andh := P,(u)u. Sinceo; 1(u) > oi(u) > oiy1(u) by (i), Corollary 4.9
implies thath; — hin X. By Lemma 10.2(a) and the continuity of the functien we infer that
the set

1 1
Vi={—ul«V -X|j e NJU{—u’*V —X|j € N}
On On

is a bounded subset @ (B(0)) for someq > 2, wheread/ := {h,h; | j € N} is a compact

subset ofi 1:2(R?). Applying Lemma 14.1(b) t62 = B»(0) andQ)’ = B;(0), we in particular
infer h;(0) — h(0), as desired. O

Corollary 10.10. v*(Kx) <n — 1.
Proof. Define amag : N' — R"~! by
g(u) = (Pr(u)ulz=0, -, Pr—1(w)u|z=0)-
Theng is odd and continuous by Lemma 10.9(b), moreover
g(u) =0 = Pi(u)u fori=1,...,n—1

by Lemma 14.3. Hencg(u) # 0 whenevers € N\ K, and from this we conclude*(K ) <
n— 1. ]
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We now easily complete the proof of

Proof of Theorem 10.5We start with (b), lettingn € N be given. Note that the assumptions

of Corollary 7.21 are satisfied in view of Lemma 10.7 and Corollary 10.10. Hence we infer the
existence of a solution,, € Kxr C N of (SC),,, which by virtue of Lemma 10.3 has the properties
asserted in (b).

Moreover, suppose thatis a solution of C H) having more tham nodal domains. Then Theorem
14.9yieldsp, (u) = 1 = 0,4 j(u) for somej € N, whereasr,, ;(u) < oy, (u). By Proposition 7.19

we infer thatyy(u) > ¢4 (N) > cpp1(N) as well asyy(u) > ¢, (N). Hence, every solution

u of (E'F) satisfyingeither ¢ (u) < ¢, (N) or ¢\ (u) < ¢,41(N) has at mosk nodal domains.
Hence (c) holds in particular, and combined with (b) this also forces (a). O

10.1 Remarks on the normalized case

We now turn to the question if, for prescrib&d> 0 andn € N, there exists a radial solutiqm, \)
of (CH) such that

Jullz = R (10.8)

andu has precisely: nodal domains. Note that the caBe= 1 is of special interest for applications
in quantum mechanical models involving many bosons (cf. [30]).

We first remark that i/ has a specigdiomogeneitythen equation (CH) has nice scaling properties
which we summarize in the following lemma.

Lemma 10.11. (cf. [50])
Suppose that' (z) = C|z|~* withC > 0 anda €]0, 3], and consider a solutiofu, A) € X x R~
of (CH). Then for every3 > 0 the pair (ug, 32)) is a solution of (CH) as well, where € X is

defined byug(z) = 8= u(Bx).

Combining this observation with Theorem 10.5(b), we estahlidbifurcation of infinitely many
continuous branches (classified by the number of nodal domains) from the(pgiat 0, Ay = 0)
in casea €)0, 2[, whereas in case €]2, 3] those branches emanate (in a vague sense) (fugre=
0, —00). In either case all branches cross the spitgfe= {u € X | ||ull2 = R} for everyR > 0,
hence the following is an immediate consequence:

Corollary 10.12. Let R > 0 and suppose that (z) = C|z|~* with C > 0 anda €]0, 3[, o # 2.
Then there exists a solutidn, \) of (CH) such thaf|u||» = R andu has precisely: nodal domains.

To deal with inhomogeneous potentidfs we have to strengthen our assumptions. In the sequel we
will impose (V2), (V3) and the following stronger version ¢V ):

(V{) V € LP1(R?) + LP2(IR?) for somepy, p, €]3, ool
Without loss we assume that < po. Moreover we require the condition

lim r2V (r) = oo (10.9)

T—00
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Note that these assumptions are in particular satisfied’fbehaving essentially like a Coulomb
potential. Now consider the functional

p) = [ IV —p) (e X)
and the Ljusternik-Schnirelman levels := ¢, (4, Sg) on the sphere
={u € X [|lullz = R}
for R > 0. Then we have the following analog of Theorem 9.4.
Theorem 10.13.Fix R > 0. Then
(@) ¢ < cpyq foralln € N.

(b) There exist classical radial solutiorig,,, \,) € Sg xR, n € N of (CH) such that)(u,,) =
¢, andu,, has precisely, nodal domains.

(©) If (u,\) € Sgp x R~ is a weak radial solution of (CH) withy(u) < ¢, for somen € N,
thenwu hasat mostn nodal domains.

Remark 10.14. Asin the unconstrained case, Lions [50] established the mere existence of infinitely
manynormalizedsolutions, whereas the nodal information supplied by Theorem 10.13 is a basically
new feature.

Proof of Theorem 10.13First observe that condition (BB) from Section 7.1 is satisfied. Indeed,
writing V = V; + Vo with V; € LP1(R3) andV; € LP2(RR3), we deduce

(B(u)u,u) < !|V1*u2||2p1!|u2|| oy A (Va0 oy ]| 20y
pp—1 2py—1
Villp, llw? ||22p1 + [1Vallps 0?17 20,

2p1—1 2py—1

Vil lall sy 4 1Vllps el ap,
2p1—1 2pa—1

AN

from convolution inequalities, noting that< 4”1 ; < 3fori=1,2by(V/). Therefore 9.6 yields
constants’, Cy > 0 such that for every, € SR there holds

(B(u)u,u) < CL([Vallp, + [[Vallpo) IIVull2” + Co

with 0 < 0 := N( — 2.—) < §. Hence (BB) follows in view of Remark 7.1.

As a consequence (cf. Lemma 7.2)is bounded from below 08, and hence,, > oo for every
n € N. Moreover, in [50, Corollary 3] it is shown that (10.9) implies

cn <0 for everyn € N.

Hence we may deduce Theorem 10.13 from Theorem 7.8 and Proposition 7.4 in precisely the same
way as done in Section 9.1. Indeed, note that prowin@X ) < n — 1 only requires that the
regularity and uniqueness criteria from Sections 14.1 and 14.2 are applicable. In other words, we
require that the functions? « V are radiall’’ -admissible potentials belonging 1(500(11{3) for some

q> % This however has already been ensured in the previous subsection. O
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Chapter 11

Generalized Emden-Fowler equations

We consider the semilinear elliptic equation
(EF) —Au= f(z,|u|)u u € DY2(RN)
for N > 3. We assume that : RY x [0, oo[— R is a Caratheodory function which satisfies

(F1) Fora.e.z € RY there holdsf(z,0) = 0, moreoverf(z, ) is nondecreasing off), co| and
strictly increasing once it takes positive values.

t
(F») Thereisy > 2 such that) < 7]/ f(z,s)sds < f(z,t)t* for t > 0.
0

(F3) f#£0,i.e., the set
I(f) ={z e RV |3t > 0s.t f(x,t) > 0}

has positive measure.

11.1 The radial case

In this section we assume thdt is radially symmetric, i.e. it can be written in the form
f(z,t) = (x|, t). Moreover we assume in addition (& )-(F3) that

(A) §(-,t) € Ly3.(]0, 00]) for everyt > 0, and there ig > 0 such that

f(r,t) o r—0
th = o(r®) { r — 00

uniformly in¢ > 0 with o = %(N —-2)—2.

Note that condition (A) admits both suandsupercritical nonlinearities, depending on the behavior
in the radial space variable. We restrict our attention to radially symmetric solutiohéEF), and

we denote byX the Hilbert space consisting of radially symmetric functionsbih?(R"Y). The
following is a mere reformulation of Lemma 14.18.
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Lemma 11.1. Define

(B(u)v,w) := /E{Nf(lxl,lu(w)l)v(x)w(w) dx (11.1)
for u,v,w € X. Then:

(a) B is a well defined strongly continuous map— £(X, X*). Moreover,B(u) € L(X, X*)
is compact for every € X.

(b) B satisfiesC'C') with respect to the functiona : X — IR given by

Ju(z)|
p(u) :/]RN/O f(|z|, 1)t dt da.

As a consequencé? and satisfy (H1)-(H5) and (CC), and we may considi{u), o,, (v), Qy (1),
P as defined in Section 7.2.1 fare X. The next lemma asserts that nodal solutions of (EF) arise
as solutions of the spectral characterization problem posed by the relations (7.22) and (7.23).

Lemma 11.2. If v € X satisfies (7.22) and (7.23) for somec N, thenu solves (EF) weakly.
Moreover,u € NC(RYN) N CY(RN \ {0}), andu has precisely: nodal domains.

Proof. The relations (7.22) and (7.23) in particular imply that
Vquz/ fCs ul)up
RN RN

forall o € X. Using the radial symmetry gf, we infer that this also holds for evegye C°(RY),
henceu is a weak solution of (EF). Sincg(, |u(+)]) € L2, (RN \ {0}) by (A) and (14.18), elliptic
regularity yieldsu € W29(RY \ {0}) for everyl < ¢ < oo, and therefore: € C' (R \ {0}) by

oc

virtue of Sobolev embeddings. Now pick numbéts: > 0 such that
f(lzl. [u(z)]) < Clz|®fu(z)]®  for s € B,(0). (11.2)

Using again (14.18), we obtain far< p < 4 the relation
/ umwmws<ﬂ/ 2P ()PP
B (0) B1(0)

< Ol [ falpie P da
X
B (0)

— C*||uy|§fl/ z| % dx
B, (0)
< 00,

hencef (-, |u(-)]) € L¥ (RYN), and therefore, € W2*(RN) by elliptic regularity. This yields

u € L (RN) for everyl < s < oo by Sobolev embeddings. Combining this with (11.2) and
recalling thate < 2, we infer thatf (-, |u(-)|) € L{, .(RY) for someq > & . Henceu € Wli’cq(IRN)
again by elliptic regularity, and is continuous by Sobolev embeddings.

The nodal characterization now follows from Theorem 14.15, applidd t& f(-,|u(-)|). Indeed,
note thatV’ satisfies (14.15) by (A) and the continuity @fand combined with Lemma 11.1(a) this

ensures that” is a radialD-admissible potential, as required in this theorem. O
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As in Chapter 10, the nodal structure of solutions to (EF) is related to the Ljusternik-Schnirelman
levelsc,, := ¢, (1, N') of the energy functionap on the Nehari set/. We recall that in the present
situationsy) and " are given as follows (cf. Section 7.2.1):

) = SIVuld-p) (weX),

v o= uexrol [ 1w = [ el |

Now our main theorem has the same form as in Chapter 10.
Theorem 11.3.
(@) ¢ < cpyq foralln € N.

(b) There exist (radial) solutions,, € X, n € N of (EF) s. t.4(u,) = ¢, andu, has precisely
n nodal domains.

(c) Ifu € X is a solution of (EF) with)(u) < c¢,+1 for somen € N, thenu hasat mostn nodal
domains.

Remark 11.4. In view of the mere existence of nodal solutions, Theorem 11.3(b) improves results
of Naito [56] and Chabrowski [17], who have considered the following (special) form of (EF):

—Au—q(|z))h(u) =0  (u € DY2(RYN)). (11.3)

In [56] the attention is restricted to homogeneous nonlinearities = |u|®~'u, whereg > 1 and

q € C[0,00[NC(]0,00]) q(r) > 0forr >0 (11.4)
as well as
.. .rq(r) N+2—-pB(N —-2)
ll?ilglf o) > — 5 (11.5)
limsup L) o _NF+2=BN=2) (11.6)
r—oo  q(r) 2

Using ODE-techniques, Naito showed that if (11.4)-(11.6) hold, then for givenN there exists

a radial solutionu with preciselyn nodal domains (cf. [56, Theorem 7]). Note that (11.4)-(11.6)
imply (F1), (F2), (F3) and (A). On the other hand, if a nonlinearity of the fogthe|)|u|?~"u, 8 > 1
satisfies (A), we only require

q € Ly, (]0,00[) , ¢ >0, ¢ Z0 (11.7)

instead of (11.4) to ensurér(), (F2), (F3). In particular we cover cases wheyés singular at the
origin, or where, for instance, supgs contained in a very small intervdl C]0, oo]. In the latter
case we conclude that the nodal solutians= u,,(r) found by Theorem 11.3 only change sign in
1. This follows sinceu,, satisfies

(rN ) =0, wul,(0)=0 rllglo un(r) =0,
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on [0, o[\, hence it can not change sign in this region.

Furthermore, we admit non-homogeneous nonlinearities (11.3). These are also considered in
[17], but there it is assumed thatat least is not supercritical, achas to be continuous df, oo]
with ¢(r) > 0 for all positiver as well asq(0) = 0 andrlggo g(r) = 0. Note moreover that the

methods of [17] do not carry over to growth conditions of the form (11.7). Nevertheless we also
remark that in [17] no oddness afis assumed, and in [56] also the c@ise S < 1 is considered,
which can not be handled by our method.

(b) The growth rate imposed by (A) or equivalently by (11.5), (11.6) is optimal in a certain sense.
Indeed, for the cask(u) = |u|?~'u, > 1, Kusano and Naito [43],[44] proved that if

rq' (1) S _N+2-B(N -2
q(r) — 2

then any classical radial solution of (11.3) does not change sign. Moreover they show that if

r >0,

rq' (1) < _N+2-B(N-2)
q(r) 2

any classical radial solution of (11.3) has an infinite humber of nodal domains.

r >0,

To prove Theorem 11.3 we use the tools provided in Section 7.2.1, checking first that conditions
(CC); — (CC)3 are fulfilled. Indeed(CC); and(CC), are immediate consequences &t ) and

(F2). To ensurgCC)3, suppose that, v € X are such that is a finite sum of eigenfunctions of
G(u) corresponding to positive eigenvalues. Then there is som@ such that

(B(u)v,v) = (G(u)v|v)x = c(v|v)x >0,

which implies that/ (f) N supgv) is a set of positive measure. Hen@@(tv)v,v) > 0 for¢ > 0
large enough, as required far'C')s.

Although the nonlinearity does not vanish identically du¢fg), it may vanish on large subsets of
R" x R. Hence the Nehari manifol/ is not spherelike in general. Nevertheless there holds:

Lemma 11.5. y(NV) = oo

Proof. For givenm € N define ann-dimensional define the subspdég C X just as in the proof
of Lemma 10.7. Sincé(f) is a set of positive measure, anyc V;,, \ {0} cannot vanish ot (f),
and we conclude that there is a number 0 such that

(B(tv)v,v) > 0. (11.8)

This impliesy(N NV,,) = m by virtue of Lemma 7.10, and sinee was arbitrary, we conclude
¥(N) = o0, as claimed. O

Now fix n € N and putKy := {u € N |Q, (u)u = u}. In order to apply Corollary 7.17, we need
to ensure

Y (Ky) <n— 1 (11.9)
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For this we defind%(u) as the spectral projection associated the oper@fa) and the eigenvalue
oi(u). One might try to establish (11.9) as in Chapter 10, using the mapsP; (u)u|,—o. How-
ever, assumption (A) doemtguarantee that eigenfunctions@fu) are continuous i = 0, which
is an essential requirement to define these maps properly.
We will circumvent this problem in the following way: ¥ C N\ K is an arbitrary odd and sym-
metric subset, we first deform carefully such thatt ¢ L>°(R"). Then we showy(A) < n — 1
using the maps proposed above.
As a helpful tool we introduce for arbitrary > 0 the ‘cutoff map’j. : X — X, which is defined
by

Je(uw)(z) := min{c, max{—c,u(z)}}.
Indeedj.(u) € X for everyu € X, as can be deduced from [48, p. 54] for instance. Moreover,
(14.18) implies that

lim j.(u) > u inX (11.10)

c— 00

for everyu € X. Now we are ready to prove
Lemma 11.6. v*(Kx) <n — L.

Proof. Consider an arbitrary closed and symmetric subset A/ \ K . We have to show(A4) <
n —1,i.e. thereisamap: A — R" ! such that

g isodd and continuous, andg(u) # 0 for everyu € A. (11.11)

First note thatu € A C N implies thatf(-,|u(-)|) # 0 does not vanish identically oR".
Moreover, the se@ := {u € X | Q,(u)u = u} is a closed subset of, which can be seen by the
same reasoning as in the proof of Lemma 7.13. Hence, using (11.10) and (14.18) we find for every
u € A a symmetric neighborhood,, C A and a constant > 0 such that

je(w) €Q and  f(,[je(v)()]) #0

for everyv € U, andd’ > c¢. Using a partition of unity consisting of even functions and subordinated
to the thus-defined covering df, we easily construct a continuous and even funcatiosl —]0, co|
such that for every, € A there holds

() Jequy(u) € Q
(i) £ lequy (@) ()]) #Z 0.
This gives rise to an odd and continuous functjanA — X defined by

Indeed, in view of [48, p.54, Cor. A.6], the continuity ¢fis evident. Note that;(v) > 0 for
everyv € j(A), ¢ € N, which in view of (ii) can be derived by testing with ardimensional
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subspacé’; C X defined as in the proof of Lemma 10.7. Moreover, every eigenfundtionG(v)
associated witlr; (v) weakly solves

1
—AV = ——

Syl @),

whereaslin%) (lmurf”) = 0inview of (A). Hence Lemma 14.3 yields thétis uniquely determined
T—r

up to a constant, which implies thaf(v) is nondegenerate. Next we show:

(*) Foreveryi € N the map

R
Py (v)vlao

v
iS continuous.
To this end, consider a sequer(eg) C j(A) such that; — v € j(A). To abbreviate the notation,
we write h; := P,(vj)v; andh := P,(v)v. Sinceo;_i(v) > o;(v) > oi41(v), Corollary 4.9
implies thath; — h in X. Denoteld := {h,h; | j € N}. Moreover, since the sequenge) is
bounded inL>(R"), condition (A) yields a constardt > 0 such that

flz], [vj(2)]) < Clal®

for z € B»(0) and everyj. Choosingg > & such thaya > —N, we infer that

[t lnahirds<cr [ ol < o,
B (0)

B2(0)

and the same can be shown foin place ofv;. Furthermore, sincdim o;(v;) = o;(v) > 0, we
J—00

infer that the set
1

oi(v)

Vi={

FCsloil()) 17 € N} UL—==F(:|v[(-))}

o
oi(vj)
is a bounded subset @f(B5(0)), whereas the set

U:= {hj|B2(0)a h|B2(0) |.7 € ]N}

is compact in¥ 12 (B3(0)). Hence, applying Lemma 14.1(b) b= B»(0) andQ’ = B;(0), we in
particular inferi;(0) — h(0), and this establishes (*).
We complete the proof noting that

v € j(A) = gi(v) #0 forsomei € {1,...,n — 1},

which follows immediately from Lemma 14.3 and the fact that)nQ = (. Henceg : A — R},
defined by its components

gi:=G;oJ (i=1,....,n—1),
has the property (11.11), as required. Thus the assertion follows. O
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It remains to complete the

Proof of Theorem 11.3We check the hypothesis of Corollary 7.17 for givere IN: First, B is
compact by Lemma 11.1(a). Moreover, Lemma 11.5 yielg§) > n, whereas (7.28) holds by
Lemma 9.9. Hence Corollary 7.17 applies, and in particular it yieldss Ky C N satisfying
7.22 and 7.23. By Lemma 11.2, the functianshave the properties claimed in (b).

Moreover, suppose thatis a solution of( £ F') having more tham nodal domains. Then Theorem
14.15 implies thap,(u) = 1 = o,4;(u) for somej € N, whereaso,;;(u) < o,(u). By
Proposition 7.11 we infer that(u) > ¢,4; > cp41 as well asy(u) > c¢,. Hence, every solution

of (E'F) satisfyingeither(u) < ¢, or ¢(u) < c,41 has at most nodal domains. Thus (c) holds
in particular, but combined with (b) this also forces (a). O

11.2 The nonradial case

In this section we assume in addition(t6, )-(F3) that

(B) There are constants€|0, 2] andC, g > 0 such that for > 0

1
z,t) < C—n— 1P, zeRY, t>0R
and
4—2a<ﬁ< 4
N -2 N -2

Condition (B) implies that the nonlinearity sibcritical Moreover, for every, € D™?(RY) and

g€ &, 5(1%7{2)[ there holds

(s u()) € LYRY). (11.12)
More precisely, setting := 2, we have
1
q < Ba
[ @b < ¢ [ @) s
1 T'aq 71’

< Ba :
< Ol (/RN(1+|$|) > d (11.13)

wherer’ is the conjugate exponent of:= % > 1. Hence

N 2a

P _
p—ﬁq_ga%—ﬁ(z\r—m ZI-B(N—2)

N > N.

'aq = aq

which implies the existence of the integral on the right hand side of (11.13).
Setting nowX := DY“2(R"), we may prove that the nonlinearity has almost the same general
properties as in the radial case (cf. Lemma 11.1).
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Lemma 11.7. Consider

wW)v, w) = /]RN F (@, [u(@))o(@)w(z) do
for u,v,w € X. Then:

() B: X — L(X,X")is a well defined continuous map. Moreov8f{u) € L(X,X") is
compact for every, € X.

(i) Foreveryu € X the integral

|u(z
/ / (z,t)t dt dx
IRN

exists. Moreovek : X — R and B satisfy(CC).

Since the nonlinearity isubcritical andvanishing at infinity one might expect thaB is strongly
continuousas in the radial case. Indeed, this is suggested by results of Schneider [64], but we did
not examine this in detail. Instead, a local compactness property derived by Tshinanga [75] will be
sufficient for our purposes.

Proof of Lemma 11.7a) Set agaip := % and consider the following factorization fé:

x <& P®RY) L L3 ®RY) 5 £(LP(RY), 1P (RY)) 5 £(X, X*)

Here: denotes the Sobolev embedding, &rid«))(x) := f(z, |u(x)|). Moreoverb is defined by
b(v)w = vw for v € L= (RY), w € LP(RY), while h maps a linear operatd € L= (RV) to

i*Si (i* denoting the dual of). Obviouslyi,g andh are continuous linear operators. Moreover,
(11.13) implies thatf, is a bounded substitution operator, hence it is continuous as well (cf. [47,
p.22]). It remains to show thak(u) € L(X, X*) is compact for every, € X. Since the compact
linear operators form a closed subspace& ok, X*), it suffices to consider € C5°(R”Y). There-

fore suppose that vanishes oRM \ ©2, © c RY a smooth bounded domain. In this ca3¢u)
factorizes in the form

X S wi2@) Lo r2@) o p2) © x

wherer denotes the canonical restrictionthe compactSobolev embedding, an, is given by
ky(v) := f(-,|u(-)|)v. HenceB(u) is compact.
b) There holds

(@) c .
/0 Flant)tdt € e u(a) ™ (11.14)

where the right hand side of (11.14) is ah-function. Hencep is well defined. Condition (CC)
follows as usual fron{F;) (cf. Lemma 2.4). O

By virtue of Lemma 11.7, conditions (H1)-(H5) and (CC) are satisfieddfand ¢, and we may
consider the compact opera@fu) as well asr,, (u), @, (u), p, as introduced in Section 7.2.1.
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As a further consequence of Lemma 11.7(a) and (11.12) we infer that for ever) the 'frozen
potential’ V' := f(-, |u(-)|) is D-admissible(cf. Sec. 14.3.2).
Now fix u € X arbitrary, and suppose that (u) > 0 for somen € N. If v € X is an eigenfunction
of G(u) corresponding to,(u), thenv solves the equation

1
—Av = T(u)f(x’ lu(z)|)v
in distributional sense. Hence, by virtue of (11.12) and Lemma 14.1 (applied to an arbdtarged
domainQ ¢ RY), we infer thatv is continuous. Hence Theorem 14.7 yields thatas at most
n nodal domains. In particular, every eigenfunction(ifu) associated wittr; (u) > 0 does not
change sign, and this implies

o1(u) > oz(u) whenever o (u) > 0. (11.15)

Indeed, suppose in contrary that there are fv@rthogonal eigenfunctions,; , vy associated with
o1(u), then

0 = oi(vi|v2)x = (G(u)vi|ve) y = (B(u)vy,v2)
= / [z, Ju(x)|)vi (z)ve(z) de.

However, by virtue of unique continuation properties,andvs do not vanish on a set of positive
measure (More precisely, this follows by a combination of [25, Prop. 3] and [39, Theorem 6.3]).
This forcesf (-, |u|(-)) = 0, contrary too (u) > 0.

A similar argument also shows that, far > 2, every eigenfunction of7(u) associated with
on(u) > 0 changes sign.

The above considerations in particular give rise to the following Lemma.

Lemmal11.8.If v € N satisfies (7.22) and (7.23) for some € N, then
u € WEP(RN) N CH(RN) for 1 < p < co. Moreover,u has at mosk nodal domains. If > 2,
thenu changes sign.

Proof. It only remains to prove that € W.2*(RN)n C'(RY) for 1 < p < oo. However, we have

already seen that is continuous, hence we infgi(-, [u()|) € L (RY) from (B). Now elliptic
regularity yieldsu € W2”(RN) for 1 < p < oo, and therefore, € C''(RY) by virtue of Sobolev
embeddings. O

As usual, we now relate nodal properties of solutions to the Ljusternik-Schnirelman vglues
cn (N, 1) for the energy functionap on the Nehari manifoldV'.

Theorem 11.9.

(@) Ifu € X is a weak radial solution of (EF) such that eithe¢fu) < ¢, or ¢(u) < ¢,41, then
u hasat mostn nodal domains.

(b) Forn = 1,2 there exist solutions,, € X of (EF) such that)(u,,) = ¢, andu,, has precisely
n nodal domains.
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(€) ci <c

Remark 11.10. Under the assumptions stated above, it is already known (cf. [75]) that (EF) has
an infinite number of solutions. However, the nodal information provided by Theorem 11.9 is new.
As in Section 9.2, we can only prove the existence of siga changingsolution. We nevertheless
suspect that (EF) possesses an infinite number of signh changing solutions.

In the remainder of this section we establish Theorem 11.9, following a similar strategy as in the
radial case. However, the proof is simpler now, since condition (B) prevents from the regularity

problems we had to encounter in the radial case. The following assertion is again easily derived
from Lemma 7.10 by testing with (rapidly decreasing) analytic functions.

Lemma 11.11. There holdsy(N) = oo.
Lemma 11.12. ConsiderKy := {u € N'| Qz(u)u = u}. Theny*(Ky) < 1.

Proof. For everyu € N the function (-, |u(-)|) does not vanish identically oR”", hence we
deducer;(u) > 0 for everyi € N by testing with analytic functions. In view of this we infer from
(11.15) and 4.8 that the spectral projectiBnu) € £(X) onto the eigenspace of (1) depends
continuously o € A. Now pick a positive rapidly decreasing functione X and observe that

the maph : N — R defined by

u sy vP (u)u
RN

is odd and continuous. Moreover, sinPg(u)u does not change sign, there holds

h(u) =0 <= wuekK.
This impliesy*(K) < 1, as claimed. O
We close the section with the

Proof of Theorem 11.3 To prove (b), we apply Theorem 7.17 in the casesc 1,2. To
this end, note thaty(N') > 2 by Lemma 11.11. Moreover, Lemma 11.12 yields (7.28) in
casen = 2, whereas this relation holds trivially in case = 1. Finally, as proved in
[75, Lemma 2.2.], the functiona) satisfies the PS condition (Note that even though in [75] it
is supposed that € C(RY x R), the proof also works if is just a Caratheodory function). There-
fore, forn = 1,2 Theorem 7.17 in particular provides solutiansto (7.22) and (7.23). By Lemma
11.8 these solutions have the properties asserted in (b).

Now suppose thai is a solution of( EF’) having more tham nodal domains. By Theorem 14.13
we infer thatp,(u) = 1 = o,4j(u) for somej € N, whereaso,,j(u) < op(u). Therefore
Proposition 7.11 yield$)(u) > c,4; > cp41 as well asy(u) > ¢,. This shows (a), and (c) is an
immediate consequence of (a) and (b). O
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Chapter 12

Sublinear Schrodinger equations

We consider the radially symmetric semilinear elliptic equation
—Au+ q(|z)u + (||, ju)u = Au,  we WRRY), N >2 (12.1)
together with the constraint
lull> = R (12.2)
for given R > 0. For thelinear potentialg :]0, co[— R we assume

(I,) qis a continuous function o}, co[ satisfying

lim ¢(r) =0, (12.3)
r—00
but also
0 > lim supg(r)r” > —oo (12.4)
r—00

for somev €]0, 2], as well as
3
/ r|q(r)| dr < oo in caseN > 3 resp.
0

/ r|ln(r)q(r)| dr < co in caseN = 2.
0

A typical example is a potential of Coulomb type, i.ieN = 3 andq¢(r) = —%, cf.
Chapter 13.
We furthermore assume thiaf|0, oo[x[0, co[— R is a Caratheodory function satisfying

(M) For a.e.r €]0, oo[ there holdg(r, 0) = 0, andf(r, -) is nondecreasing o, co|.

Concerning the existence of nodal solutions to (12.1), (12.2) we have:
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Theorem 12.1. Suppose thait :]0, co[x [0, co[— R is continuous and that (M),/,,) and the fol-
lowing condition hold:

(J,) There are numbersy, 5,c > 0 anda € R such that
I§(r, t)| < er®t? fort > 0,7 >y
as well as one of following relations is valid:
0) a<0 and a-NZ< -y
(ii) a>0 and a-(N-1)8 < Nzl

Then, for everyR > 0 and everyn € N there is a radially symmetric weak solutid¢a, \) of
(12.1),(12.2) such that < 0, € C(RY) nC?*(R™ \ {0}), andu has precisely. nodal domains.

Remark 12.2. (a) Whereas on bounded subsetsay grow arbitrarily fast, conditiofZ, ) controls

the growth of at infinity. This is required to ensure that the corresponding 'frozen’ linear eigenvalue
problems have infinitely many eigenvalues below the essential spectrum (cf. Lemma 12.5).

(b) 1t is elucidating to consider the autonomous case=Q) in particular. Then there must hold

2v | . . 2 .
8> WV i.e. the order of the nonlinearity near zero mustabéeast1l + WV In the special case

N =3,q(r) = —ZR (i.e. v = 1), we recover the bound + 1 > % imposed by Lions [52, p. 36].
However, fora > 0 the fixed point approach of [52, Sec. III.3] does not work any more, since in
this casel.?-estimates are not enough to keep the corresponding eigenvalues away from zero.

We are not able to prove Theorem 12.1 directly, hence we will first introduce more restrictive growth
conditions which allow us to cast the problem in the abstract setting of Section 6.1. In this setting
we state a theorem which gives more detailed information on the solution set of (12.1), (12.2), and
afterwards we will deduce Theorem 12.1 very easily by a priori estimates.

Note that conditior{],,) guarantees that€ K, the Kato class, henagis — A-form bounded with
relative bound zero (cf. [4, Theorem 4.7]). Therefore, by the KLMN-Theorem (cf. [60]), the form
sum—A + ¢ is a well defined selfadjoint and semi-bounded operatd?({R ") with form domain
WL2(RY). Moreover, the essential spectrum of this operatdd,iso[ as a consequence of (12.3),
see [63, p. 218] for instance.

In the following letH, X, D(A,) denote the closed subspaces consisting of the radially symmetric
functions inL2(RY),WL2(RYN), D(—A + q), respectively. We define the operatdy : D(Aq) C

H — H as the restriction of A 4+ ¢ to D(Ay), henceA, is selfadjoint and bounded from below. In
accordance with Section 6.1 we put= — inf o(A4) + 1, and we endowX with the scalar product

(ulv) = VuVu +/ (g(z) + m)uv,
RN RN
We introduce the following condition:

(J) For everyt > 0 there holdsf(-,t) € L;j>.(]0,00[), andf can be written as a sum of
Caratheodory functioris satisfying (M) and

fz-(r,t)_o N {r—>0
=0(r?)

th r — 00

uniformly in¢ > 0 for numbers3 > 0 anda €]2(N —2) — 2, 2(N - 2)].
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Note that, by virtue of Lemma 14.19 and the remark following it, assumption (J) ensurds that
X — L(X, X*) defined by

(B(w)v, w) = /RNf(le, u(z)Jv(z)w(z)dz  (u,0,w € X)

is a strongly continuous map satisfying (H1)-(H4). Moreover, (CC) hold€5f@ndy : X — R

given by
lu(z)]
o= [ [ iel e deda,
RN JO

Therefore we may refer to the notation$(u), p,(u), p, and V,(u) as well as toy) and
cn = cn (1), Sgr) as introduced in Section 6.1. We in particular recall that

Sk ={u € X[ |ull2 = R}
in the present context. Now there holds:

Theorem 12.3. Suppose that assumptios,), (M), (J) and(J,) are satisfied, and let € N,
R > 0. Then:

(a—) Cn < Cp+1

(b) There is a solution(u,A) € Srp x R~ of (12.1) such thaty(u) = ¢,
u € C(RN)n CHRN \ {0}), andu has precisely: nodal domains.

(c) Every solution(u,\) € Sk x R of (12.1) withe)(u) > ¢, has at least: + 1 nodal domains.

Assuming that we had already proved this, we easily complete the
Proof of Theorem 12.1For arbitraryc > 0 define the functiof, :]0, co[x[0, co[— R by

min{c,f(r,s)} 0<r<mry

Jelr;s) = { f(r,s) ro <1 < 00

Clearlyj, satisfies (M),(J) and.J,. Therefore, in view of Theorem 12.3, to evaty> 0 there
corresponds a weak radial solutiom., A.) € Sp x R~ of (12.1), (12.2) with, in place off, and
such thatu. has precisely: nodal domains. In particular. weakly solves

(—A + Vo)u. =0,

with V,(z) := —X. + q(|z|) +f.(Jz], |uc(7)|) for z € RN . However, by virtue of (M) the negative
partV_~ of V. only depends og, hence it isuniformly bounded in the norm of the Kato cla&Sy .

By [67, Theorem C.1.2] we conclude tHat ()| is uniformly bounded ir.*°(B,,(0)) independent

of ¢. Hence, forc > 0 large enoughy is the desired solution of (12.1), (12.2). It remains to show
thatu. € C?(RY \ {0}). However this clearly follows since,, viewed as a function of = |z|
solves on0, oo[ an ordinary differential equation of second order with continuous coefficiefts.

The proof of Theorem 12.3 will occupy the rest of the section, and from now on we always assume
that(7,), (M), (J) and(.J,)) are satisfied.
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Lemma 12.4. Put M := {z € R" | |z| > ro}. Thenu € X implies thaff, (u) € LV (M), where
fra(w) (@) :=§(2, [u(2)]) for z € M.

Proof. First we recall that. € X implies thatu|,, € LY(M) for every2 < ¢ < oco.
If « > 0, then Lemma 14.16(b) yields

(2, [u(2)])| >

IN
o
N
—~
=3
Q
<
—~~
8
=~
=
~—
<]

< cv KN-1

for a.e.z € M with r = |z|. However,(8 — 22:)& > 2 by (1,), hence the assertion follows in
this case.
Next we assume th&t > « > —v. By (I,) we then may picks < —*— (resp.s < oo in case

v+a
a = —v) such tha’2* > 2. Hences’ > —Z, and therefore

N N alN BN
/If(w,lul)lv < / )%
M M

N s'aN s BNs %
< v (/ rov > < |u| > > < 0o
M M

by Hélder's inequality. Finally, ifa < —v, then

N N alN BN
/If(w,lul)lv < / %
M M

N o BN
< ([ e <.
M

Thus the assertion follows. O

Lemma 12.5. There holds

fin (1) < foo (12.5)

for everyu € X andn € N.

. K
Proof. Putg :=f§,,(u) € L%(M), and pickK > 0, Ry > max{ro, 1} such thay(r) < - for
r > Ry. Consider am-dimensional spact C C§° of functions with support in

{r e RN |1 < |z| <2}
ForR > Ry andy € V definey,(z) := R~N/?¢(z/R), which implies that|¢z |2 = |[|¢[|2 and
suppy, C {z € RN | R < |z| < 2R}.
We claim

sup (A(w)yrlYr) <0 (12.6)
llll2=1
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for R large enough, which clearly yields the assertion. To establish (12.6), note thak, implies

(Al = =D+t + [ ot

< (CAP) + / (—Kla| ™ + g(2))Wh(2) de
R<[z|<2R
< R?(—A¢,¢>+R"(R" [ @ik |x|”¢2dx)
1<lzj<2 I 1<[z|<2

hence (12.6) follows once we have shown that

T

limR”/ g(=)?(x) dz =0

uniformlyin ¢ € V| ||4|2 = 1. However, all norms oV being equivalent, it suffices to ensure

x
limR”/ g(=)dx =0,
a3 S

and this is true since

R”/ g(ﬁ)dx = R”_N/ g(z) dx
1<fej<2” B R<[z|<2R

N—v
N
< RV ( / dx) N
R<|z|<2R HgHLJ'Y (|z[>R)
for R — oco. Thus (12.6) holds, and the proof is complete. O

Summarizing the preceding lemmas, we now complete the

Proof of Theorem 12.3 etn € N, R > 0 be given. We commence with the proof of (b):
Recalling thatB is strongly continuous by Lemma 14.19, we may apply Theorem 6.5 once we have
shown

Hn (u) < Pn+1 (u) (127)

for everyu € X. For this note thaj,(u) is an eigenvalue ofi(u) by Lemma 12.5, and every
corresponding eigenfunctiof weakly solves

AV =V

with V(z) := —g(|z|) — f(|=], |u(z)]) + un(u). By Lemma 14.3 we now infer thal is continuous
and uniquely determined up to a constant . Indeed, (J) and (14.19) ensured¢hBe, (RN \ {0})
and that (14.2) holds for some> —2, as required. Thug, (u) is nondegenerate, and (12.7) holds.
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Now Theorem 6.5 yields the validity of property (CP), in particular there exists a weak solution
of (SC),, with ¢(u) = ¢,. In particular,u solves

—Au=Vu

with V' defined as above. Recalling th8(u) € L(X, X*) is compact, the above stated proper-
ties ensure thal’ is a radiallW -admissible potential. Hence Theorem 14.8 establishesutisat
continuous function having precisetynodal domains. Since € C'(RN \ {0}) by elliptic regu-
larity, the proof ofb is complete. Moreover, singe, (v) = pp(u) < pp+1(u), Prop. 6.3(a) yields
cn = Y(u) < cpt1, as claimed in (a).

To prove (c), suppose thét, A) € Sk x R is a solution of (12.1) with at most nodal domains.
Thenp,(u) < pp(u) by Theorem 14.8, and heneggu) < ¢, by Prop. 6.3(a). Thus the proof is
complete. O
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Chapter 13

The Hartree equation and the TFW
equation

As in the previous chapter we still consider a radially symmetuiglinearequation. However, we
now focus on the cast¥ = 3, and we are concerned with the eigenvalue problem

@FW) (A= G+fllelu) +u? s Hlu=du  we W2(RY)  Jul =R

|z

Here we assume that is a positive constant. We emphasize the particular cases for vithiehl
and

(i) f=0.Then (TFW) is known as theestricted Hartree equatian

(i) f(r,t) = AP, A,p > 0. Then we are dealing with the so call@homas-Fermi-Von
Weizcker equatio(TFW equation in short).

Both equations occur in approximative models for quantum mechanical systems involving many
electrons.
As in the previous chapter, we assume thad, co[x [0, co[— R is a Caratheodory function satis-

fying

(M) For everyr €]0, 00| there holdg(r,0) = 0, andj(r,-) is monotonically nondecreasing on
[0, 0.

We will be concerned with radial solutions only, and we have the following result:
Theorem 13.1. Suppose that (M) holds, thjis continuous and that
(J1) There are numbers, 3,¢ > 0 anda € R such that
f(r,t)] < er®t?  fort>0,r >
as well as one of following conditions hold:

0] a<0 and a—%/3<—1
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(i) a>0 and a—,ﬁﬁ—%

Then, for eveny) < R < /Z and everyn € N there is a radially symmetric solutiofu, \) of
(TWF) such that < 0, u € C(R?) N C%(R3 \ {0}), andu has precisely: nodal domains.

Remark 13.2. (a) As in the previous chaptdr/;) controls the growth gfonly at infinity. However,

only in case thaR < v/Z we can ensure that the frozen’ linear eigenvalue problems have infinitely
many eigenvalues below zero (cf. Lemma 13.5). For the Basey/Z, a separate limiting argument

is needed.

(b) The comments made in Remark 12.2(b) are also valid in the present case.

We now proceed as in the previous chapter: First we introduce more restrictive growth conditions
which allow to cast the problem in the abstract setting of Section 6.1. Then we state an analog of
Theorem 12.3, and afterwards we will deduce Theorem 13.1 very easily by a priori estimates.

Note that, concerning the linear part of problem (TWF), we are just dealing with the special case
N =3 andq(r) = —% in the notation of Chapter 12. Hence we keep using the symhgl${, X

andm without further comment, and we recall how condition (J) can be written in the special case

N =3:

(J) For everyt > 0 there holdsf(-,t) € L;j>.(]0,00[), andf can be written as a sum of
Caratheodory functions satisfying (M) and

fi(r,t) _ o(r®) { r—0

8 r — 00

N[

uniformly in¢ > 0 for numbers > 0 anda €] — 2, 4].
Then we have
Lemma 13.3. Suppose that (J) is satisfied.

(a) There is a strongly continuous map: X — L(X, X*) given by
(B(u)o, w) = /}R (il @) + @ « =) @) )o@ (@) do

such thatB(u) € L(X, X*) is a compact linear operator for eache X.

(b) Condition (CC) is satisfied faB and the functional : X — IR given by
|u(z)| 2 2
o(u) ::/ / f(lz), £)t dtdz+l/ / @YW gy (e X)),
RN Jo 4 Jry Jry |z -yl

Proof. SinceV := |i satisfies the conditiond/; ) — (V3) from Chapter 10, the assertion follows by
combining Lemma 10.1 and Lemma 14.19. O

As a consequence of Lemma 13.3, (H1)-(H4) and (CC) are satisfied, and we may refer to the no-
tations A(u), pn(u), Vo(u), ¥ ande, := c,(¢, Sr) as defined in Section 6.1. We now have an
analog of Theorem 12.3:
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Theorem 13.4. Suppose that assumptions (M), (J) apt]) are satisfied, and led < R < v/Z,
n € N. Then:

(@) cn < cpy1

(b) There is a solution(u,A\) € Sr x R~ of (TFW) such thaty(u) = ¢,
u € C(RY)nCY RN \ {0}), andu has precisely. nodal domains.

(c) Every solutionu, \) € Sk x R of (TFW) withy(u) > ¢, has at least + 1 nodal domains.

The remainder of the section is devoted to the proofs of Theorem 13.4 and Theorem 13.1. For this
we assume that (M), (J) ar{d; ) are in force from now on.

Lemma 13.5. Suppose thal < R < v/Z, and letu € X with ||jull2 < R. Then

pin (1) < 0. (13.1)
for everyn € IN.
Proof. Sinceu is radially symmetric, spherical integration yields

1 1
u?(y) dy = / W (y)——— dy
/;N |z — y| RN max{ |z, |y|}
1

2
< mllﬂllz
R2
J]
for everyz € R3, which implies that
(Alu)pl9) < (A(w)plp) (13.2)
for all v € C§°(IR3), where
P Z — R?

However, sinceZ > R?, the results of Chapter 12 apply to the operator valued mégith v = 1).
Hence the assertion is a consequence of (13.2) and Lemma 12.5.
O

We now may complete the

Proof of Theorem 13.4Ne proceed along the lines of the proof of Theorem 12.3:

Fix R > 2[max{c,,0} + mR?] and conside) := D(R,R) C X. Thenu,(u) < 0 for every
v € D by Lemma 13.5, and we again deduce thgfu) is a nondegenerate eigenvaluévlore
precisely, now the corresponding 'frozen potential’ can be written as

V() = = = f(lz], Ju(z)]) — (u? * L)(96) + pin (),

] |-
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and convolution inequalities yield® « ﬁ € L>(IR3) for the additionally occurring term. Indeed,

this follows from the fact thaﬁ—‘ € L2(R3) + L*(R?), whereas:? € L2(R®) N L3 (R?) for every
u € X. We again conclude th&f is a radiall’ -admissible potential, and in particular Lemma 14.3
implies that

fin (1) < pin1(u)

for everyu € D, as claimed. Recalling tha® is strongly continuous, we may apply Theorem
6.5 to deduce the validity of property (CP). In particular this furnishes a solutioin(SC'),, with
¥ (u) = ¢,. As in the proof of Theorem 12.3 we now derive the properties claimed ioK(b), and
also (a) and (c) follow precisely by the same reasoning. O

We close the chapter with the

Proof of Theorem 13.11f Z > R?, then we easily deduce the assertion along the lines of the
proof of Theorem 12.1. Using this, we now treat the cZse: R? by a limiting argument which
essentially is due to Lions (cf. [52]):

Consider a positive sequen¢s;); such that; — 0. Then, for everyj € N, we already have a
solution (uj, pr, (u5)) of (TFW) with Z replaced byZ + ¢; and such thafju;||, = R. From the
equation we deduce th@Vu;||2); is a bounded sequence, i.€y;); is bounded inX. Passing

to a subsequence, we may assume that~ u in X. Then Lemma 5.2 and the strong continuity
of B yieldsjliréloun(uj) = pp(u), moreoverB(u;)u; — B(u)u in X* by Lemma 5.7(b). As a

consequencey weakly solves

(=8 = 2+ Gal ) 0 Y = g

It remains to prove thdiul|2 = R. For this note that
pn(w)R? = Tim iy (uj) R?
J

= 1i]mMn(Uj)IIUj|I%

) Z +¢€;
= 11]1.1f1<||Vuj||§—/]R3 JU§+(B(UJ')UJ',W>>

]

A
znw%—/-—f+wwmm
R3 |=’13|

= pa(wlul3,

hence eitheflu|ls = R or p,(u) > 0. However,||u||2 < R would forceu,, (u) < 0 by Lemma 13.5
(applied toR' := ||ul|z < v/Z), and thus we concludéu||, = R in either case. O
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Chapter 14

Appendix

14.1 Notes on regularity

Lemma 14.1. Suppose thav > 2 andq > &.
Consider a domaif2 ¢ R, aboundedsubsety C L4(f2) and aboundedsubset/ C W'2(Q)
with the following property:

e For eachu € U there isV € V such thatu is a distributional solution of

—Au=Vu in Q.

Theni/ C WZQO’C‘](Q), and everyu € U is continuous ). Moreover, ifQ)’ CC , then

(@) Ulor := {uloy | u € U} is bounded iV 24('), andU|g == {ulg | u € U} is relatively
compact inC'(').

(b) If (un), C U is a sequence such that, — u € U in the W2(Q)-norm, thenu,, — u in

o).

Proof. As noted in [67, p.457]L4(R") is continuously embedded iy, the Kato class (for the

definition of K and its norm see [67, p. 453]). Hence [67, Theorem C.1.1] implies that every

u € U is continuous ir2.

To prove (a), consider the special cd3e= Br(0), Q' = B,(0) first, where0 < r < R. Pick

ro €]r, R[ and denote&y := B,,(0). PutC; := ‘s}u?/HVHLq(Q). By [67, Theorem C.1.2] we
€

infer thati{|q, is boundedin L*°(£)), that is,C; := Su|p [V[zoo(0p) < oco. However, for

uEU|q

everyu € U|q, there isV € V such that—-Au = Vu in doistributional sense ofYy, whereas

IVl ey < CiC2. Hencel|q is a bounded subset &724(€Y') by the Calderon-Zygmund

inequality[40, p.214]. SincdV2¢(Y') is compactly embedded ifi(’), we conclude thal/ | is

relatively compact irC'(§').

Now consider general choices 8f and)’. Note that for eaclx € ' there is a numbeR =

R(z) > 0 such thatBg(z) C Q. Since{Y is compact, there are finitely many points € €/,
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j = 1,...,n and corresponding positive numbérs. r; < R; such that

n n
@ c | By, (z) c | Bg,(z)) c .
=1 i=1

In view of the first case the set$|m are relatively compact if€'(B,, (z;)) for eachi €
’V‘]‘ J

{1,...,n}. From this one easily concludes tli#t; is relatively compact inC'(Q'). In the same
way the boundedness ol in W4(QY') is derived from the boundedness on the bélls(x;)
which we have established already.

(b) Since{u,|q | n € N} is relatively compact irC('), it suffices to show, (z) — u(z) for
everyz € (). Assume in contradiction that therezig € O, ¢ > 0 and a subsequeneg,, such that
|tn, (o) — u(zo)| > e. Without loss, we may assume,, — u pointwise almost everywhere on
QY. However, sinceu,, is equicontinuousthis impliesu,, (o) — u(zo) in contradiction. Hence
(b) is proved. O

Lemma 14.2. LetQ2 be a domain iR, N > 2,a € L%(Q) andC > 0. Ifu € WOI’Q(Q) satisfies

/QVquo < C’/Q|u<p| ~|—/Qa(x)|u<p| (14.1)

for everyy € WOI’Q(Q), thenu € L1(Q2) for every2 < g < oc.

Proof. If N = 2, the assertion is just a consequence of Sobolev embeddings. Therefore suppose
N >3, and letL, s > 0. Applying (14.1) top = umin{|u|?, L2} € W,"*(Q) yields

/|Vu|2min{|u|25,L2}+23/ |Vu|2|u|25:/VuV<p
Q (@)|°<L Q
SC/ |u|? min{|u|25,L2}+/ a(z)|u|? min{|u|?, L?}.
Q Q

Now suppose that € L?*2(Q). Then we infer, with constants depending on thé.?**2-norm
of u, that

[ Vmingu, )P = [ [VuP minglup 224 [ Pl
Q Q

(z)|°<L

IA

q+@/@wmﬁmmmﬁiﬂ
Q

IN

01+02K/ |u|2 min{|u|25,L2}+02/ (z(:1c)|u|2 min{|u|2s,L2}
Q a(z)>K
N-—2

c3(1+K)+c (/(L(I)>K |a($)|]§> ~ (/Q |umin{|u|5,L}|%> N

03(1+K)+6(K)/Q|V(umin{|u|s,L})|2

IN

IN
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for everyK > 0, where

N‘Z
N——
S
1
]

e(K) = e ( / e

for K — oo. Fix K such that(K) = 3, then

/Q |V (w min{|u|s,L})|2 <2c3(1 + K)

for every L, and hence
2N
/ lwmin{|ul®, L}|¥2 < ¢4
Q

by Sobolev’s inequality. Letting — oo, we deduce that|u|® € Lfgjfvz, and hencey €
(2s+2)N : . . . .
L ~-2(Q). The conclusion now follows by an iteration, starting with= 0. O

14.2 A uniqueness lemma for a linear radial problem with singularity
at the origin

Dealing with radially symmetric measurable functians RV — R in the sequel, we will freely
write u(r) = u(x) for r € [0, 00, |z| = r, i.e., we identifyu with the associated function on the
half-line. The next lemma is our main tool for showing that a radially symmetric setting provides
nondegeneracyf eigenvalues.

Lemma 14.3. ConsiderN > 2 and and a radially symmetric functiod € L (RY \ {0}) such
that

lim sup Vi)l < 00 (14.2)

z—0 |<’If|a

for somex > —2. Then every distributional solutiom € Wlf)f(]RN) of the equation
—Au=Vu (14.3)

is continuous. Moreover, for giveh € R, equation (14.3) hast most oneadially symmetric
distributional solutionu € W, (RN) with u(0) = .

In particular, the trivial solutionu = 0 is the only continuous radially symmetric weak solution with
u(0) = 0.

Proof. From (14.2) we easily infer thdt” € LfOC(IRN) for somep > % Therefore every dis-

tributional solutionu € W *(RY) of (14.3) is continuous ofRY by Lemma 14.1, moreover

loc

u € W2PRN) N W2IRN \ {0}) for everyg < oco. Hence, ifu is radially symmetric, then

oc oc

u € C(]0, 00]) N C1(]0, 0o[) with absolutely continuouderivativeu’, and

(erlu')' = —erlV(r)u, (14.4)
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holds as an equation iy, (]0, co[). We now claim

q:= limrV 1/ (r) = 0. (14.5)

r—0

Indeed, note thalﬁmsup|rN W (r)u(r)| < oo by virtue of (14.2) and Lemma 14.16(b). Hence

(14.4) implies that +—> rN ! (r) is uniformly continuous near = 0, in particular the limit (14.5)
exists. Using this, we deduce

1 r
¢ = lim— [ (sV"'/(s))%ds
r=071 Jo
,
< limsuprN_z/ sV (5))? ds

r—0 0

= limsuprNQ/ |Vu)?
r—0 +(0)

= limsupr™ 2||ul|?

r—0

= 0,

henceg = 0.
As a consequence, we may write

w'(s) = s~ (V=D / stN_1V(t)u(t) dt
0

for s > 0. Now for s > 0 put p(u,s) := sup |u(t)] andC(s) := sup “ft# Using the

0<t<s 0<t<s

=

assumptionsy > —2 andN > 2, we infer

1

/0 VOl ult) dt < sV C()o(u, )

for everys > 0, hence

/OT ! ()| ds

IN

/OSUVU/O NNV ()| |u(t)] dt ds

1 T
< N+a/0 s*eC(s)p(u, s) ds
1

S Wroi+a)

r?teC(r)p(u, ) (14.6)

for everyr > 0. In particularu is absolutely continuous df), oo, and the relation
T
u(r) = u(0) +/ u'(s)ds (14.7)
0
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holds for every positive. The proof is complete once we have shown th@) = 0 impliesu = 0.
Indeed, ifu(0) = 0, then (14.6) and (14.7) yield the inequality

fu(s)| < 290 (s)p(u, 5)

(N 4+ a)(2+ «)

1

)

]' «

< WramTatowe)

whenever) < s < r. For sufficiently small this impliesp(u,r) < dp(u,r) with some number
d = d(r) < 1, hencep(u,r) = 0. In other wordsu vanishes in a neighborhood of the origin.
We concludeu = 0, since on every compact subintervall |6f co| the functionu solves a linear
ordinary differential equation with bounded coefficients.

U

14.3 Nodal properties of eigenfunctions

As in the previous section, we frequently writér) in place ofu(x) in case that = |z| andu is a
radially symmetric function.

14.3.1 Operators with form domainiV,"*()

We start by stating a fundamental prerequisite to derive nodal estimates:
Lemma 14.4. Consider a domai2 ¢ R”" and a continuous function € WOI’Z(Q). If Q' is nodal

domain ofu, thenv € W, *(2) for the functionv : @ — RR given by

o(w) = { u(z) for z e

0 for ze RN\
and the weak derivative ofis given by
Vv = 1o/ Vu,
Proof. This is a special case of [55, Lemma 1]. O

In the following we considefN > 2 and an arbitrary (not necessarily bounded) donaia R .
To shorten the notation, we plit,” := W,*(2). Moreover, in case th&t = RY, we set

Wh? = {u € WH2(RY) | u radially symmetrig.
We introduce the notion diV-admissible potentials
Definition 14.5.

(&) A measurable functiol : 2 — R is called al¥ -admissible potentiaf V' can be written as
asumV = V; + V5 such thatl; € L°*°(Q) andV; satisfies the following two conditions:
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() Forall v,w € WOI’2 there exists
(Vau, w) := / Vou(z)w(x) (14.8)
Q

and the thus defined operat®s : W,"* — (W, *)* is compact.

N
(i) EitherVs € L2 () or V3 is bounded on compact subsetsxf I', wherel is a closed
subset of measure zero such tkat I' is connected.

(b) In case2 = RY we call a radially symmetric functiolr € L (RN \ {0}) a radial W-

loc

admissible potentiaf V' can be written as a suivi = 1 + V5 of radially symmetric functions
such thatl; € L>*(R") andV; satisfies the following two conditions:

(i) Restricted to radial functions, (14.8) defines a compact opefgoriv, > — (W,2)*.
(i) There isa > —2 such that

lim sup |V2(z)| < 00. (14.9)

z—0 |<’If|

Remark 14.6. (a) W-admissible potential¥” are interesting for the following reasons. As a con-
sequence of (i), the quadratic formdefined on its domai®(q) = W, by

q(u,v) ::/QVU(QU)VU(:E) dm—%—/ﬂV(w)u(w)v(m) dz,

is closed, symmetric and bounded from belowL#{2) (cf. Lemma 4.1 and the remarks following
it). Hence, tog corresponds a (unique) selfadjoint operatbr.= —A + V with D(H) C WOI’Z.
Furthermore, condition (i) implies that eigenfunctionsof H have (at least) theveak unique
continuation propertyi.e. if u vanishes on an open subsetifthenu = 0. For a proof of the latter
assertion, see [39, Theorem 6.3] and [67, p. 519] (cf. also [61, p. 240]).

(b) Analogous implications hold if2 = RY andV is aradial W-admissible potential Then
H := —A + Vis given in a natural way as a selfadjoint operator in the Hilbert space

L% := {u € L*(R") | u radially symmetric}

with form domainW,"*2. In addition, every eigenvalue @f is nondegeneratby virtue of Theorem
14.3, and eigenfunctions @&f still have the weak unique continuation property.

Theorem 14.7. Suppose that” is a W -admissible potential. Then,qfis a continuous eigenfunc-
tion of H = —A + V associated with an eigenvalyg, of the form

Vo3 + [, Vv?
R Sup” 15+ o

v<wd? peV HUH%
dimV =n

, (14.10)

the functionu has at most nodal domains.
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Proof. Assume in contradiction that has at least. + 1 nodal domaing?,, ..., 2,.1. Recall that
the (); areopenby the continuity ofu, and in view of Lemma 14.4 we may define functiapse
W2, i=1,..,nby

Ul((I,‘) = { u($) for x €

0 for ze RN\
LetY denote the span af;, ..., v,. Thendim Y = n, and a direct calculation shows
(Hov|v)s = pnlv]|3 forallv e Y (14.11)

Now choose orthonormalized eigenfunctioss ..., u,_1 of H corresponding to the eigenvalues
M1, - bn_1, and letZ denote the span afy, ...,u, 1. SincedimZ = n — 1, there existe €
Y N Z+,v # 0, which by (14.11) has to be an eigenfunctionfbicorresponding te:,,. However,
there holds(x) = 0 for z € Q,,11, hencev = 0 on2 by the weak unique continuation property of
v. Since this is a contradictiom, has at most nodal domains. O

In the radial case, Theorem 14.7 can be refined by using the separation properties furnished by
Lemma 14.10 below.

Theorem 14.8. Suppose tha® = R and thatV is a radial W -admissible potential. Then every
eigenvalue of the selfadjoint operatetA + V, defined on radial functions as in Remark 14.6(b), is
nondegenerate. Moreoveryifis an eigenfunction corresponding g given by (14.10) (witrW,«l’2

in place ofi¥,*), thenu has precisely: nodal domains.

Proof. Every eigenfunction ol corresponding te, is a weak radial solution of
—Au = (:U'n - V)’LL,

hencew is continuous and unique up to a constant in view of Lemma 14.3. By an analogous
reasoning as for proof of Theorem 14.7 (now respecting the rotational invariance of the problem),
we infer thatu has at most. nodal domains. Moreover, if,, _; is an eigenfunction associated with
on_1 > oy, thenu,,_, weakly solves

—Au, g = (anl - V)unfl-
SinceV € L} (RN \ {0}) by (14.9), Lemma 14.10 ensures thahas at least one more zero than

loc

un_1. The assertion now follows by an inductive argument. O

For the next result fiA < 0 andQ = RY, and endov\W,«l’2 with the scalar product
(u,v)y = VuVov — )\/ uv.
RN RY

Moreover denote by, : W;? — (W;?)* the canonical isometric isomorphism with re-
spect to this scalar product, and for a radiFadmissible potential” consider the operator
V e L(W2, (W?)*) given by

(Vo,w) == /]RN Vo(z)w(z).

Then we have:
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Theorem 14.9. Suppose tha2 = R and thatV’ is anonnegativeadial ¥ -admissible potential.
Then for then-th eigenvalue

op:= sup inf (Gulv)

vewnz €V (v[v)x

dimV =n

of the operatoiG := J, 'V € £(W,"?) there holds:
If o, > 0, theno,, is nondegenerate, and the associated (up to a constant) unique eigenfunction has
preciselyn nodal domains.

Proof. Note thatu is an eigenfunction o& corresponding te, > 0 if and only if A is then-th
eigenvalue of the operatéf := —A— iv (restricted to radial functions), ands a corresponding
eigenfunction. Hence the assertion follows directly from Theorem 14.8. O

We close this subsection by proving separation properties of Sturm type.

Lemma 14.10. Consider? = R" and radial W -admissible potential§;, V> such thatl; < Vs
on |0, oo and

(%) Vi(r) < Va(r) wheneveVy(r) #0  (r €]0, oo]).
Moreover suppose that;, u, € WH2(RY) are radially symmetric weak solutions of the equations
—Au; = Viu; (1=1,2).
Then the following implications hold:

(i) If 0 <ry <ry < oo satisfyu; (r1) = uy(ry) = 0as well asuy () # 0for ry < r < ry, then
there is7 € (r1,r2) such thatus(7) = 0.

(i) If 0 < 7is such thatu, (7) = 0 as well asu,(r) # 0 for 7 < r < oo, then there ig" € (7, 00)
such thatus (7) = 0.

(iii) If 0 < 7is such thatu;(r) = 0 as well asu;(r) # 0 for 0 < r < 7, then there is" € (0, 7)
such thatus (7) = 0.

(iv) If uy(r) #0for 0 < r < oo, then there ig > 0 such thatus(7) = 0.

Proof. As in the proof of Lemma 14.3 we deduce thate C([0, oo[) N C(]0, oo[) with absolutely
continuous derivatives;, and that

(rV ) = =N g (), (i=1,2)

considered as equations i (0, co).
Suppose in contradiction that (i) is false. Then we may assurw > 0, r €]ry, 2] as well as
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us(r) > 0, r €]ry,r2[. Moreover, the functions — =1/ (r)uy(r) andr — rN=1ul (r)u (1)
are absolutely continuous ¢, o[ and there holds:

r2
0 <

1

|
= [erug(r)ul(r) — eru’l(r)uz(r)]

T2

1

- [ [(rN—lug(r»'ul(r) RS (r))'uzm] dr

T2

= / NV () = Va(r)]ug (r)ug(r) dr. (14.12)
T1

SinceV; < Vs, we conclude that; = V, on|ry, ro[. HenceVy = 0 on|rq, ro[ by assumptiorix),

and therefordr™Y =1/ (r))’ = 0 on]ry, m2[. This however contradicts(r;) = u(ry) = 0, and thus

(i) holds true.

(ii) Note first that, by Lemma 14.4p := u; - lg;| >0, defines an element d;*(RY).

Moreover, without loss we have,;(r) > 0, r €|r,00[, hence there exists a sequence

(tx) C]7, 00, tx, — oo such thats (t;) < 0 for all k. Now suppose in contradiction thas(r) > 0,

r € [, 00[. Then for eaclk there holds

17
/| |>~V1(|5E|)U1(x)u2($) = Jim [NV (s (r)ua(r) dr
z|>7 7
12
= Dm0 () () dr
tr th
= o [ / PNl () (r) de — N () ua(r) | ]
tr "
> klgilo ~ NN (r)uly (r) drr

r

= Vug(z)Vuy () dx
|| >7

= Vuo(z)V(x) de
RN

- / Va|alJuz(2)p () de da
RN

= /||>~V2(|x|)u2($)u1($) dz.

Again we conclude thdt; = V; on|7, oo[, which, similar as in the proof of (i) yields a contradiction
to (x) and the fact that(7) = 0. Hence (ii) is true as well.
(i) and (iv) can be proved by similar arguments, using in addition that

N—-1,.1

lim 7Y = ) (r)ug (r) = 0 = lim V!
r—0 r—0

ug(r)u (r),

cf. (14.5). O
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14.3.2 Eigenvalue problems oD'?(RY)

Throughout this subsection, we assunie> 3. We consider eigenvalue problems defined on the
Hilbert spacesD™2 := DL2(RY) andD;? := {u € D2 |y radially symmetrig respectively. We
recall that these spaces carry a canonical scalar product given by

(ulv) = VuVv
RN

Referring to this scalar product, we denote.by D2 — (D'2)* the canonical isometric isomor-
phism.
We have the following analog of Lemma 14.4.

Lemma 14.11. Consider a continuous functiane D2, If Q' is nodal domain ofi, thenv € D12
for the functionv : RV — R given by

(z) = u(z) for z e
Vi) = 0 for ze RN\,

and the weak derivative ofis given by
Vv =1/ Vu, (14.13)

Proof. We apply Lemma 14.4 to the functiong € W?(R") defined by

(@) = e” nu(z) for z e
0 for z € RV\Q

whereas their weak derivatives write as

Von(@) = lor(x) (u(m) 2 " s e’”nzvu(:p)> .

n

Since the sequend&v,),, converges to the right hand side of (14.13) in fitfenorm, we deduce
the assertion. O

Next we redefine the notion of an admissible potential in a way that it suits to the present context.
Definition 14.12.

(@) A measurable functiol : RV — R is called a D-admissible potentiaf the following two
conditions hold
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(i) Forall v,w € D2 there exists
Vo, w) := / Vo(z)w(x) (14.14)
RN

and the thus defined operat®t : D2 — (D2)* is compact.
N

(i) EitherV € L2 (RY) or V is bounded on compact subsetsRt \ T', wherel is a

loc

closed subset of measure zero such R4t \ I' is connected.

(b) A radially symmetric functiof € L (RY \ {0}) is called aradial D-admissible potential

loc

if the following two conditions hold

(i) Restricted to radial functions, (14.14) defines a compact opefidto, > — (Dy?)*.
(ii) Thereisa > —2 such that

lim sup V()]

x —0 |x|a

< 0. (14.15)

We remark that, in contrast to Section 14.3.1,/aR-potential is notD-admissible in general. We
have a nodal estimate in the spirit of Theorem 14.7.

Theorem 14.13. Suppose thal” is a nonnegativeD-admissible potential. Then, if € le is
a continuous eigenfunction of the compact, symmetric and nonnegative op@raterJ 'V ¢
L(D"?) corresponding to the eigenvalue

op:= sup inf (Gulv) (14.16)
veplz VEV (U|U)
dimV =n

such thato,, > 0, thenu has at most: nodal domains.

Proof. We just have to adjust the proof of Theorem 14.7 to the present situation. Indeed, assume
in contradiction that. has at least. + 1 nodal domaing}, ..., Q,1. Using now Lemma 14.11,

we define am-dimensional subspadé C D'? spanned by the functiong € D2, i =1,....n

given by

vi(x) =

u(z) for zeQ;
0 for zeRM\Q,.

Since again

(Gu|v) = oy |v]? forallv €Y,
there exists an eigenfunction ofe Y of G associated te,,. Moreovers,, > 0 by assumption,
hencev is a weak solution of

1
Ay = —Vu. (14.17)

On

SinceV is D-admissiblep has the unique continuation property. Hence the factthat = 0 for
x € Q41 forcesv = 0, and this is a contradiction. Thushas at most. nodal domains. O
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Again Theorem 14.13 can be refined in tlaglial case, now using the following analog of Lemma
14.10.

Lemma 14.14. Consider) = R and radial D-admissible potential§;, V> such thatV; < V»
on |0, oo and

(%) Vi(r) < Va(r) wheneveV(r) #0  (r €]0, co]).
Moreover suppose that;, us € D'? are radially symmetric weak solutions of the equations
—Au; = Vu; (1=1,2).
Then the assertions (i)-(iv) of Lemma 14.10 hold true again.

Theorem 14.15. Suppose that” is a nonnegative radiaD-admissible potential.

Then for the eigenvalue,, (defined as in (14.16) witth"? replaced byD%’Z) of the operator

G := J 'V € £(D;*?) there holds:

If 0, > 0, theno,, is nondegenerate, and the associated (up to a constant) unique eigenfunction has
preciselyn nodal domains.

Proof. Every eigenfunction oy corresponding te,, > 0 is a weak solution of

—Au = iVu,
On
henceu is continuous and unique up to a constant in view of Lemma 14.3. By analogous arguments
as in the proof of Theorem 14.13 (now respecting the rotational invariance of the problem), we
infer thatu has at most nodal domains. Finally, let,,_; denote an eigenfunction associated with
on_1 > oy, henceu, 1 weakly solves

1

On—1

—Aun,1 == V’u,nfl.

SinceV € L} (RN \ {0}) by (14.15), Lemma 14.14 shows thahas at least one more zero than

loc

un_1. The assertion now follows by an inductive argument. O

14.4 Compact maps involving Sobolev spaces and weightéé-spaces

14.4.1 Radial functions

In the sequel we denotd,”” := {u € W12(RY) | u radially symmetri, and forN' > 3 we put
DP? := {u € D"2(R") | u radially symmetri¢. We recall the following pointwise estimates:

Lemma 14.16. (a) If N > 3, then everyu € D;*? is continuous ofRY \ {0}, and there holds
lu(r)| < C1[Vullar™= (14.18)

with a constantC; = C;(N) > 0. Moreover, if 0 < 7y < 71 < oo, thenD;? is compactly
embedded i@ ([ry, 1]) via the identificatioru(r) = u(z) for r = |z|.
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(b) Everyu € W,"% is continuous oiR™ \ {0}, and if N > 2, then for everyr € [1, 2] there is
a constantC, = Cy(7, N) > 0 such that

[u(r)] < Co(lVulla + [lull2)r = (14.19)

Moreover, if0 < oy < r; < oo, thenW; is compactly embedded ii([ro,r,]) via the
identificationu(r) = u(x) for r = |z|.

For the proof of this Lemma we refer to [45, pp. 55] and [51]. We now formulate two results
on compact embeddings. More general assumptions providing compact embeddm]gzs refsp.
W2 are given in [65] and [16].

Lemma 14.17. (a) ConsiderN > 3, 3 > 0, and pute = Y325 — 2. If a € L32,(]0,00[) is a
positive function satisfying

lim r “a(r) =0, (14.20)
0

thenD,"*(RY) is compactly embedded itf, 2.

(b) ConsiderN > 2, 8 > 0, anda €]8:238 — 2, ¥=28[ If a € L,(]0,00]) is a positive
function satisfying
lim r~ “a(r) =0,

T— 00
r—0

thenW,"?(R") is compactly embedded irf 2.

Proof. (a) This has been proven in [65, Corollary 2.7].

(b) For N > 3 this follows from [65, Corollary 2.8], hence we restrict our attention to the case
N = 2 here. Without loss, we may assume théat) = r*, « €] — 2,0[. Hencea € L*(B;(0))

for somes > 1. Now consider the Banach space := LA*+2(R?) n L¥'(#+2)(R?), naturally
endowed with the nortiu||c == [|ullg12+]|ully (542)- By [51, Proposition 1.1]i%;"* is compactly
embedded irC. Moreover, foru € C there holds

N
afL‘UlEﬁ2x ax’U,fII’BszI afL‘UlEﬁ2III
/R<>|()|+d S/Bm)”'”'”*/ (#)|u(e) 2 d

RN\ B (0)

+2 +2
< MNallzsonlul’i2, g + Il 52,

AN

hence C is continuously embedded ih?™?(R2?). Hence W,? is compactly embedded in
LI (R?), as claimed. O

Lemma 14.18. ConsiderN, 8 and« as in Lemma 14.17(a) and suppose that
f:=]0, 00[x[0, co[— R is a Caratheodory function satisfying

(i) f(r,-) is nondecreasing of), oo for a.e.r €]0, oo|.

(ii) §(-,t) € L;5.(]0, 00[) for everyt > 0.
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(ii)) lim 01 — o uniformly int > 0.
r—0

Then:

(&) The relation
(B(u)v,w) = / f(lz], lu(z)v(z)w(z) dz (u,v,w € D;?) (14.21)
RN
defines a strongly continuous map : Df* —  L(Dy? (Dr?)*).  Moreover,
B(u) € L(DF?, (Dy?)*) is compact for every € D}

(b) The integral

(@)
o(u) = /}R ) /0 Hlal, £)t dt dz (14.22)

exists for every, € D}, Moreover there holds
2(p(v) = p(v)) 2 (B(u)v,v) — (B(u)u,u) (14.23)

foru,v € Di?.

Proof. (a) Consider an arbitrary bounded subget c D;?. Using (i)-(iii) and (14.18),
we find a positive functiona € L*(]0,00[) with the property (14.20) and such that
I§(r, |u(r)])| < a(r)|u(r)|? for everyu € M,r > 0. By virtue of Lemma 14.17 we have a compact
embedding

D} s [5+2, (14.24)
B+2
In particular the range of the mgp: M — L,”° defined byf, (u)(r) = (’";L‘E‘r()’"m is boundedn
B+2
B

L,” . Now consider a sequende,) C M andu € M such thatu,, — u. By Lemma 14.16
we inferu, (r) — u(r) a. e. on|0, co[, hencef, (u,)(r) — f.(u)(r) a. e. on|0,oc0[ as well. By
Lebesgue’s Theorem, we conclude

[ alleD )@ @) F de o

~

o+
that is.f, (u,) — f, (u) strongly inL,” . Now since fory € M andv,w € D;* there holds

(Bly)o,w) = / al|z])f. (y)ow dz,

RN

the compact embedding (14.24) andoléEr’s inequality show thatB(u,) — B(u) in
L(D?, (DF*)*), and thatB(y) is a compact linear operator for everye M. However,M C D}
was chosen as an arbitrary bounded subset, and therefore (a) holds true.
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(b) Fixu € D2 Using (i)-(iii) and (14.18) again, we find a positive functiere L°(]0, oo[) with
the property (14.20) and such thigiz|, t)| < a(|z|)t® wheneveb < ¢ < |u(z)| andz € RV \{0}.

Hence @)
o Ju(z) |+ N
Htdt < _ for R 0
| el e < ael) M2 v e RV {0},
and now the existence of the integral (14.22) follows by Lemma 14.17(a). Moreover, using (i), we

derive foru,v € D,;* andz € RV \ {0} the inequality

|v(z)| B |u(z)| ) i
2(/ (ol i~ [ f(|x|,t>tdt)Zf(|x|,|u(x>|>(v (0)— () (14.25)

by the same argument as in the proof of Lemma 2.4. Integrating (14.25)R¥Vatirectly leads to
(14.23). O

Lemma 14.19. ConsiderN, 8 and« as in Lemma 14.17(b), and suppose that
§ :=]0, 00[x[0, co[— R is a Caratheodory function satisfying conditions (i)-(iii) from Lemma 14.18.
Then:

(@) The relation
(B(u)v, w) := / Hlzl, lu(@))o(@)w(z) de (u,0,w € WH?) (14.26)
RN

defines a strongly continuous map : W,”> — L(W.? (W,%)*). Moreover,
B(u) € LW.2, (W,2?)*) is compact for every. € W,

(b) For everyu € W,"? there exists the integrab(u) as given in (14.22). Moreover, (14.23)
holds for every, v € W2

Proof. This can be derived from Lemma 14.17(b) in precisely the same way as in the proof of
Lemma 14.18. O

Remark 14.20. Evidently the assertions of Lemma 14.18 and Lemma 14.19 remain valid under the
weaker assumption thatan be written as a sum of Caratheodory functigrsatisfying conditions
(i)-(iii) with differentconstantsy;, ;.

14.4.2 Nonradial functions

Lemma 14.21. Considerp € [2, %[ and a positive functionrw € L*(RY) such that

lim w(z) = 0. ThenW2(RY) is compactly embedded itf,(RY).

|z| =00

Proof. By assumption,L?(R") c L, (R"). Hence the ordinary Sobolev embedding extends to
an embedding : WH2(RY) — L%, (RY). We show that is strongly continuous. For this suppose
thatu, — win WL2(RY) and lete > 0. PutM := sup ||uy,||,, then by assumption there /&> 0

neN

133



such thatw(z) < +; for |z| > R. Moreover there holds,|g, o) — ©|px(0) in LP(Br(0)), hence
there isny € N such that

/ w(z)|un(z) —u(z)|P de < e. (14.27)
Br(0)
For thesen we infer

| wlln) —u@p s < [ B —u@P d
oy W) ) e

VAN

8+—/ (|un(z) — u(z)|P dz
<
Sincee > 0 was arbitrary, we conclude, — v in LL,(RY). Hencei is strongly continuous, as

claimed. O

In the following we abbreviatéy 1:2(RY) to W2, and from Lemma 14.21 we derive an analog of
Lemma 14.19 for the nonradial situation.

Lemma 14.22. Considerw as in Lemma 14.213 € [0, +*[ and suppose that
f: RN x [0,00[— R is a Caratheodory function satisfying

[f(z,t) Sw(z)t’  (zeRN, t>0) (14.28)
. Then:
(&) The relation
w)v,w) = / [z, Ju(z)|)v(x)w(z) de (u,v,w € WhH?) (14.29)
RN
defines a strongly continuous map : W% — L(WY2 (W52)*). Moreover,

B(u) € L(W2 (W12)*) is compact for every € W12,

(b) For everyu € W2 there exists the integral

p(u) :/]RN /OW)f(x,t)tdt dz.

Moreover, iff(z, -) is nondecreasing off), oof for a.e.z € R", then
2(e(v) — p(u) = (B(u)v,v) — (B(u)u, u)
for everyu,v € W2,
Proof. Again, this can be deduced from Lemma 14.21 by a similar reasoning as in the proof of
Lemma 14.18. O

Remark 14.23. Evidently the assertion of Lemma 14.22 remain valid under the weaker assump-
tion that f can be written as a sum of Caratheodory functignsatisfying condition (14.28) with
differentconstantss; € [0, |-
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List of symbols

dn(A, B) 17 Ls(X) 33 Ky 58
1L, (X) 17 or(G) 33 ([)a 60
G (X) 18 000 (@) 33 I 60
oV, W) 18 P, (G) 34 G(u) 56
Tn 18 Qn(G) 34,61 ['7 ]ﬁ 61
Mp 19 A(u) 35, 49 fu 62
5 20 [ u 35, 49 Ky 64
v(A) 20 fin(w) 35, 49

%(S) 25 Qn(u) 35, 49

*(A) 25 P, (u) 35, 49

H 27 Vi (u) 35, 49

Ay 27 (SC), 35, 49

m 27 W 40, 49

(1) 5 27 Pu 41, 49

-1l 27 P 41,49

J 27 cn (T, S) 41

[ 27 Sk 42

A 27 K 42

Ks(X,X*) 28 Sy 44, 62

[ ]s 28 K\ 44

A, 29 K~ 50

1 (B) 29 (CP)~ 50

fioo 29 N 55, 57, 61

P,(B) 31 G(u) 56, 60, 62

Qn(B) 31 o () 56, 60, 62

Vo (B) 31 P, (u) 56

Abstract conditions and properties

P-property 19 (cC), 44,56 (BB) 50
(H1)-(H3) 35 (FG) 44 (CC), 56
(H4) 36 (UC) 44, 62 (CC); 57,61
(CC) 39 (CP)y 44 (ccy, 62
(CP) 42 (H5) 50 veC), 62
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