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SUMMARY

This work investigates the influence of chain branching of various chain topolo-
gies on the static properties of polymers. These investigations are done with the
aid of Monte-Carlo and Molecular-Dynamics simulations. Theoretical concepts and
models for the description of polymer systems on mesoscopic length scales are
introduced. Several important quantities that are suitable for the quantitative char-
acterization of branched polymer structures are discussed. Different optimization
techniques that were used in the implementation of the computer code are expati-
ated. Besides linear polymer chains we investigated various topologies: Star poly-
mers with different number of arms, a transition from a linear chain to a star poly-
mer, chains with a varying number of side chains, regular dendrimers and hyper-
branched structures. All investigations considered the effects of different solvent
qualities. At first, a thorough analysis of the used simulation model with very long
linear chains is performed. The scaling properties of linear chains are investigated
for a variety of different solvent qualities, ranging from an athermal good solvent to
a very bad one where the chains are compact globules. An important result of this
work is the confirmation of the corrections to scaling of the hydrodynamic radius
which is ��������� and not �	�
������
 , with � being the scaling exponent of the radius
of gyration and � being the degree of polymerization. We argue that this result
is obtained, because of the consideration of very long chain lengths and the high
quality of the obtained data. This correction to scaling is not only verified for linear
chains, but also for star polymers with different arm numbers. For linear chains, the
influence of polydispersity was investigated. It was shown, that a unique mapping of
experimental length scales onto the simulation data is not possible, because the di-
mensionless quantity that is used to perform this mapping turns out to be too weekly
dependent on the degree of polymerization. A comparison of simulation data with
experimental data of industrial Low Density Polyethylene (LDPE) reveals that LDPE
used in industry has a highly branched structure (multi-arm stars or hyperbranched
polymers). This is another important result of this work. For regular dendrimer
topologies it could be shown that there is a strong tendency of a back-folding of
arms into the central core region.
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ZUSAMMENFASSUNG

Die vorliegende Arbeit beschäftigt sich mit dem Einfluß von Kettenverzweigungen unterschiedlicher
Topologien auf die statischen Eigenschaften von Polymeren. Diese Untersuchungen werden mit
Hilfe von Monte-Carlo- und Molekulardynamik-Simulationen durchgeführt. Zunächst werden einige
theoretische Konzepte und Modelle eingeführt, welche die Beschreibung von Polymerketten auf
mesoskopen Längenskalen gestatten. Es werden wichtige Bestimmungsgrößen eingeführt und erläutert,
welche zur quantitativen Charakterisierung von Verzweigungsstrukturen bei Polymeren geeignet sind.
Es wird ebenso auf die verwendeten Optimierungstechniken eingegangen, die bei der Implemen-
tierung des Computerprogrammes Verwendung fanden. Untersucht werden neben linearen Polymer-
ketten unterschiedliche Topologien – Sternpolymere mit variabler Armzahl, Übergang von Sternpoly-
meren zu linearen Polymeren, Ketten mit variabler Zahl von Seitenketten, reguläre Dendrimere und
hyper-verzweigte Strukturen – in Abhängigkeit von der Lösungsmittelqualität. Es wird zunächst
eine gründliche Analyse des verwendeten Simulationsmodells an sehr langen linearen Einzelket-
ten vorgenommen. Die Skalierungs-Eigenschaften der linearen Ketten werden untersucht in dem
gesamten Lösungsmittel-Bereich vom guten Lösungsmittel bis hin zu weitgehend kollabierten Ket-
ten im schlechten Lösungsmittel. Ein wichtiges Ergebnis dieser Arbeit ist die Bestätigung, daß die
Korrekturen zum Skalenverhalten des hydrodynamischen Radius nicht proportional zu � ������
 , son-
dern zu � ����� sind, wobei � der Skalenexponent für den Gyrationsradius und � der Polymerisa-
tionsgrad ist. Dieses Ergebnis war möglich aufgrund der großen gewählten Kettenlängen und der
hohen Qualität der erhaltenen Daten in dieser Arbeit, insbesondere bei den linearen Ketten, und es
steht im Widerspruch zu vielen bisherigen Simulations-Studien und experimentellen Arbeiten. Diese
Korrekturen zum Skalenverhalten wurden nicht nur für die linearen Ketten, sondern auch für Stern-
polymere mit unterschiedlicher Armanzahl gezeigt. Es wurde für die linearen Kettensysteme der Ein-
fluß von Polydispersität untersucht. Hierbei konnte gezeigt werden, daß eine eindeutige Abbildung
von Längenskalen zwischen Simulationsmodell und Experiment nicht möglich ist, da die zu diesem
Zweck verwendete dimensionslose Größe eine zu schwache Abhängigkeit von der Polymerisation
der Ketten besitzt. Der Vergleich mit industriellem Low-Density-Polyäthylen (LDPE) zeigt, das
LDPE in Form von hochgradig verzweigten Ketten (Multi-Arm-Sterne oder “Hyperbranches”) vor-
liegt. Dies ist ein weiteres wichtiges Ergebnis dieser Arbeit. Für Dendrimere konnte ein hochgradiges
Zurückfalten der Arme in die innere Kernregion nachgewiesen werden.
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Chapter 1

Polymer Physics – An introduction

Das Schönste, was wir erleben können,
ist das Geheimnisvolle. Es ist das

Grundgefühl, das an der Wiege von
Kunst und Wissenschaft steht.

Albert Einstein [98]

A Polymer is a large molecule, that is composed of many small chemical constitutional (repeat-
ing) units which are covalently bound to each other. The largest constitutional unit contributed by a
single molecule in a polymerization process is called a monomer unit 1.

Polyethylene (PE) (CH3 � � CH2 � N � CH3), proteins and DNA are typical examples of such long,
chain-like molecules, which are composed of a large number of single constituents.

Such macromolecular substances are naturally occurring in living organisms and are also synthet-
ically produced, e.g. in the form of plastic or rubber. Most of the synthetic polymers are produced by
repetitively connecting particular constitutional units � , such that they finally build a long sequence
of units of the form ����� � � � � � � � � � � � ����� . The number of repetitive units is called degree
of polymerization � . Usually a molecule is called a polymer, once its properties do not change any-
more when continuously adding repeating units [115]. In nature there are polymers with a degree of
polymerization of up to  "!$# .

Due to their large masses, polymers possess an enormous variety of conformations 2 with different
sizes and shapes. The study of these conformations is a key to understanding the diverse properties
of macromolecules.

Branching occurs naturally in polymer systems and usually cannot be completely avoided in the
commercial fabrication of polymers. Depending on the polymerization process of low molecular
weight compounds to high molecular weight polymers, the synthesis of macromolecules usually leads
to a broad distribution of molecular weights [104, 122].

1Note that the monomer unit can be quite different from the constitutional unit.
2In [89] a distinction between conformations and configurations is made in the sense that the latter only refers to the

arrangement of electrons in their shells. In this work, however, no such distinction will be made and the two terms will be
used interchangeably.
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The synthesis of Low Density Polyethylene (LDPE) with radical polymerization is a typical ex-
ample of an important polymerization process that leads to a strong, mainly uncontrollable chain
branching [10, 22, 40, 49, 121, 180, 194]. On the other hand, the properties of polymer compounds
are greatly influenced by this topological variety [42, 84], see Fig. 1.1.

brush polymer

regular dendrimer

comb polymer

star polymer

linear polymer

hyperbranched polymer

polymer network

Figure 1.1: Schematic examples of different polymer topologies.

Further complications arise when – in addition to chain branching – monomers of different types
are combined in a macromolecule and build a copolymer [59].

The sum of macromolecules of a polymer system constitute a complex many-particle system with
a very high number of degrees of freedom. Hence, for the theoretical description of such systems
one has to fall back upon the resources of statistical mechanics. By this turning away from the
attempt to formulate theories that are based directly on the electronic and chemical structure, one
can introduce simplified models which provide insight into macroscopic properties of polymers that
depend universally on only a few parameters such as the chain length or interaction strength.

Usually, experiments with polymers are done in solvents of variable qualities which gives rise
to solvent-polymer interactions. These interactions can be characterized by a Flory parameter %
[56] which depends on temperature & . For many systems (e.g. polystyrene-cyclohexane) %'�(&)� is a
decreasing function of temperature. The phase diagram of experimental solvent-polymer systems is
given in terms of concentration * and temperature & . When one introduces an effective length per
monomer, + , and the volume fraction of monomers, ,
-.*/+10 , the phase diagram assumes a universal
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structure as described in Figure 1.2.
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Figure 1.2: Phase diagram of a polymer-solvent system according to [56]. A solvent is referred to as “good”
if the effective interaction between chain segments is repulsive. The effective interaction is summarized in
one dimensionless parameter 2 in Flory-Huggins-Theory [56]. At lower 2 -values, steric interaction dominates.
The chains tend to swell. One enters this good solvent regime when one crosses a certain crossover line which
defines a region of crossover between ideal and swollen chains. This crossover line is not a sharp boundary
and is approximately defined by the condition 3547698;:=<�>?2�@ [56]. In usual cases such as polystyrene-
cyclohexane, 2 is a decreasing function of temperature A ; high temperatures correspond to the lower part of
the figure. When 2.BC:EDF> , the solvent is referred to as being “poor” and there is a two-phase region and
a critical point G as indicated in the figure. The critical point occurs at very low concentrations. Polymers
and solvents segregate and the polymer chains collapse to compact coils. The condition 2IHJ:ED?> defines the
“ K -condition” at “ K -temperature” ALHLA1M , also called “ K -point” which corresponds to an exact cancellation
between steric repulsion and van der Waals attraction between monomers. At A�HNAOM polymer chains possess
a Gaussian conformation at all concentrations.

The universal behavior along with the statistical nature of polymer systems is the reason why
computer simulations are useful for the investigation of structural properties. Due to the ever increas-
ing performance of modern computers it is possible to investigate the detailed structure of polymer
models explicitly by numerical integration of the many-particle equations of motion. However, sim-
ulations test only model-systems of reality and their outcome has to be validated against both, theory
and experiments. One great advantage with computer simulations is the possibility to study model
systems of polymers without the typical errors and restrictions that one has to deal with when per-
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forming real experiments. Instead, one can systematically alter single parameters that govern the
behavior of the systems and can study the consequences thereof.

In this work, linear chains and also several differently branched polymer systems are investigated
systematically with the aid of high performance computer simulations and it is revealed how various
kinds of branching influence their properties. Moreover, these results are compared with experimental
data and theory.

The outline of this work is as follows: In Chapter 2 many formulas and the terminology pertain-
ing to the description of polymer systems are introduced. The following chapter discusses in detail
various methods for the simulation of polymer systems. Different algorithmic optimizations that were
used in the coding of this work are illustrated. It also introduces the model that was used in this work.
Chapter 4 is devoted to a thorough discussion of the properties of the chosen model for linear chain
systems. Finally, in Chapter 5, the model is applied to a variety of differently branched chain systems.



Chapter 2

Theoretical and experimental background

Table of Contents

2.1 Modeling a polymer chain on different length and time scales . . . . . . . . . . 5

2.2 The extension of a polymer chain . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Linear macromolecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Branched macromolecules . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 The stiffness of a chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 The gyration tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Shape analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Chain crossover and entanglement . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 The influence of concentration – blob picture . . . . . . . . . . . . . . . . 16

2.5.2 The influence of solvent quality on chain conformations – excluded volume 16

2.6 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6.1 Scattering methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6.2 Viscometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

This chapter provides a summary of some of the most important features of polymer systems and
theoretical models of polymers insofar as they are needed for an understanding of the subsequent
chapters. Also some basic definitions, formulas and terminology, that will later be used extensively,
will be introduced. This chapter is finished by a short discussion of the two most important experi-
mental techniques to obtain information on the shape and conformation of macromolecular systems.

2.1 Modeling a polymer chain on different length and time scales

The majority of most commonly used synthetic polymers, as well as all protein molecules, possess
a hydrocarbon backbone, that is they have single covalent P � P -bonds along their main chains. On
a short length scale, flexibility is hardly noticeable, as the locations of the backbone atoms appear to
be fixed. As the energy of a typical covalent bond is of the order of  -  "! eV, but the thermal energy
at room temperature only is of order Q9&5R5!TSU!WV eV, there are only small thermal vibrations of the
bond lengths X(Y . Hence, these fluctuations are limited and hardly affect the overall conformation of a
chain. On a larger length scale however, all different possible rotations about the P � P -bonds add
up along a chain and finally may alter the chains’ shape completely. These many different rotational
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Figure 2.1: Schematic picture of a polyethylene chain with carbon backbone of average bond length Z\[ , bond
angle K and torsion angle ] . The rotations of angle ] about the ^
<_^ -bonds, caused by thermal motions, give
rise to different rotational isomers. In the energetically most favorable trans state, all the ^
<_^ -bonds lie in
one plane whereas in the two possible meta-stable gauche states one bond is turned about ]�H�`a:E>?b$c .
isomers are determined by Boltzmann statistics and correspond to different potential energies of the
chain.

While a description of a polymer chain on this level of accuracy can be done in atomistic com-
puter simulations by taking explicitly into account different bond angle potentials between individual
atoms, the disadvantage with this kind of simulations is that one is restricted to a very small time
scale of the systems. Typical P � P -oscillations are in the infrared regime which corresponds to a
time scale of the order dFeaR7 "! ���gf s. Therefore, many properties that depend on a global relaxation
of the chain, are not accessible, because this would involve time scales that are out of the scope of the
atomistic description. Besides, an analytical, concise treatment, taking into account many different
atomistic potentials in most cases is impossible.

When discussing structural properties of polymer chains on a lowered resolution of the order of
several nanometers, polymer chains exhibit universality. This is achieved by omitting the explicit
chemical details such as bond angles, or rotational potentials.

One global aspect of chains in such a coarse-grained picture is the distribution function of chain
conformations. In a discussion of these properties one can make use of one of the simplest depictions
of a polymer chain: The chain is modeled as a succession of rigid rods, each of length X which are
fully flexible in every direction at their connection points, see Fig. 2.2. The connection points have
zero volume and the segment directions are not correlated. This depiction of an ideal chain is called
freely jointed chain and mathematically corresponds to a perfect random walk (RW) of uncorrelated
steps in three dimensions.

Taking into account the eigenvolume of the connected monomer points changes the distribution
function and results in a chain expansion, which was derived by de Gennes [56]. He noticed a fun-
damental equivalence between the motion of long chains and an already solved problem in the field
of critical phenomena when magnetic movements undergo a phase transition. Mathematically, this
situation can be modeled by considering self avoiding walks (SAW).

Another depiction of a polymer chain on a coarse-grained level is that of an elastic thread. This
continuous depiction of a chain is called a worm-like chain model [111] as displayed in Fig. 2.2.
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Figure 2.2: Different stages of a coarse-grained view of a polymer chain.

a) ideal freely jointed chain.
The chain is a sequence of rigid rods, called segments, each of length Z [ , joined together with freely rotating
hinges. The connection points of the segments have no eigenvolume. Such a chain corresponds to a perfect
uncorrelated random walk (RW) in three dimensions.

b) excluded volume chain.
This is a more realistic chain model as it takes into account the ever present proper volume of the junction
points. The excluded volume interaction leads to an expansion of a polymer chain which can be modeled by a
self-avoiding walk (SAW) .

c) worm-like chain.
The polymer is modeled as a continuous elastic string which owes its flexibility to the small thermal vibrations
about the equilibrium. These vibrations add up along the chain over large distances. Rotational isomers do not
exist in this basic notion of a chain. However, if one zoomed in on the filament, all the chemical details would
be regained.
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2.2 The extension of a polymer chain

2.2.1 Linear macromolecules

When considering a linear chain, its overall extension is preferably discussed in terms of the

mean-square end-to-end distance hji�)k 
�l or the mean-square radius of gyration hmi�an 
�l [56, 59,

72, 223]. For very long chains ( �poq ) these two properties are related to each other as

h i� k 
 lsr -.t h i� n 
 lurwv (2.1)

where the brackets x�SySyS{z indicate an ensemble average and the subscript
r

denotes ideal chain
behavior. The simplest quantity that determines the size of a polymer chain is, see Fig. 2.3:

hmi�)k 
 l -}|F� i��~ � i� � � 
�� S (2.2)

The dependence of h i� k 
 l on � and on the bond lengths X�Ya-�� iX�Y���-�� i�"Y�� � � i�"Y�� is yielded by

considering ������ F� monomers of an ideal freely jointed chain (simple RW) connected by � bond
vectors iX Y :hmi� k 
 l r -C��� ~ ���� Y�� r iX�Y\� 
�� - ~ ���� Y�� r h iX�Y 
 l ��� ~ �1
� Y�� r ~ ����� ��Y�� � h iX�YsiX � l -�� h ��iX�Y�� 
 l -���X�� 
 S (2.3)

There is no correlation between any bonds iX�Y and iX � along the chain. The term X���- h � iX�Y�� 
�l ����
 is the

average bond length of the chain.

There are many different possible configurations of a chain leading to the same value of h�i� k 
�l .

Hence, it is not possible to extract information on the actual overall shape of a chain when knowing� k - hmi� k 
�l ����
 alone. Another crucial point is that the end-to-end distance becomes ambiguous

when the macromolecule is branched, and it is even undefined when the macromolecule is cyclic. In

all cases, however, the radius of gyration � n - hmi� n 
�l ����
 remains well defined.

For a rigid set of ( ���� ) monomers, indexed by � running from ! to � and with particle �
weighted as  _Y it is defined as

hmi� n 
 l - � ~� Y�� r  ¡Y i¢ Y 
"£ ~� Y�� r  ¡Y � v (2.4)

where i¢ Y -¤� i� Y � i� CM �¥-¦� ¢ Y�§ v¨¢ Y�© v¨¢ Y�ª � and i� CM denotes the vector to the center of mass, expressed
in the same coordinate system used for the vector i��Y to atom � .

The introduction of weighting factors  «Y is useful in the study of copolymers, especially so, when
the effective scattering contrast strongly differs for the various components of the macromolecule.
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Figure 2.3: Illustration of the end-to-
end distance ®¯¥° and the radius of gyra-
tion

¯�±
for a given chain with ( ²L³�: )

monomers and ² segments.

Here, however, it will be assumed that these differences are not important and thus one will adopt a
simpler definition that arises when all of the  «Y are identical 1:

hji� n 
 l -  �7�� ~� Yy� r | i¢ Y 
�� -  �s���7�. F� � �r/´ Y�µ � ´ ~ | � i�?Y � i� � � 
�� S (2.5)

This quantity is directly available in static scattering experiments (SANS or SAXS, see Subsection
2.6.1).

By itself, h�i�an 
�l or hji�=k 
�l does not provide information about the shape of the distribution func-

tion. In particular it does not reveal, whether the distribution is sharp with only a few conformations
populated by the chain or whether it is broad, implying that the macromolecule can take many con-
formations of very different extensions. This information can be obtained by considering the higher
even moments.

The distribution function ¶·��� k 
 � of a RW chain in ¸ dimensions is given by:

¶·���)k 
 ��-º¹ ¸��»¼�«X(� 
T½¿¾ ��
¼ÀEÁTÂ ¹ � ¸9� k 
���«X(� 
Ã½ v (2.6)

and any moment ( ��  ) is calculated by:

hji�=k?Ä 
�ÅÇÆ l r -
ÈÉ r i� k?Ä 
�ÅÇÆ ¶·��� k 
 �Ê¸ 0EËÈÉ r ¶·���)k 
 �Ê¸ 0 Ë S (2.7)

The width of the distribution function is obtained from h i� n f l rÍÌ h i� n 
 l 
r . If only one single

conformation is accessible, this dimensionless ratio is one. For any value of � , one yields [136]

1In simulations, reduced units are used in which all monomer masses ÎÐÏ�Ñ
Ò and hence the molecular weight ÓpÑÔÖÕÏØ×sÙ Î Ï Ñ_Ú . Therefore, the terms Ú and Ó will be used interchangeably in this work, unless explicitly stated otherwise.
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h�i� n fWl rh�i� n 
 l 
r -  ?Û���0��ÝÜ$Þ�� 
 ��V���� � t ?Þ��Ý���ß�à F�E���ß�
�W� S (2.8)

Equation (2.8) yields  for �º-á and is larger than 1 for ��âã� . The limiting value for ( � ��äæå )
is  ?Û Ì  ?Þj-á �Sç��tWè9SySyS [71].

The distribution function for the end-to-end distance is larger than the one for � n [71]:

é�ê�ë~íì È h i� k f lurh i� k 
 l 
r - é�ê�ë~íì È Þ�� � �V�� -.Þ Ì V�-á �Sçt�t�tÃSySySyS (2.9)

Another quantity that describes the size of a polymer chain is the hydrodynamic radius �m� . It
is experimentally determined by dynamic light scattering [20] and describes the equivalent radius of
a polymer chain in a flow field. In computer simulations it can be measured as a static quantity. It is
defined as [223]: î  �)��ï -  � 
 � Y;ð� �

î  � i�?Y � i� � �Êï S (2.10)

De Gennes noticed a fundamental analogy between polymer statistics and the theory of critical
phenomena. This analogy is obtained by taking the ( ñ ä ! )-limit in the n vector model (c.f. [56])
which serves for the description of magnetic atoms on a periodic lattice. Universality in this model
can be seen by all critical exponents depending only on dimension ¸ and the number of equivalent
components ñ . Likewise, universality of polymer chains is expressed in universal power laws of the
form

h i� n 
 l·ò � 
�� v (2.11)

or � ò � ¾¨ó (2.12)

with the exponent ¸Tô being the fractal dimension of the chain. Fractals and fractal behavior are
abundant in nature [50, 89], with polymers being only one of many examples [4, 41, 47].

Table 2.1 gives values of � , associated with different conformations.

2.2.2 Branched macromolecules

The average extension of the ( ���} ) monomers of a chain can be reduced by changing their
connectivity. A common experimental means of characterizing the influence of branched molecular
architectures on the mean square dimensions is designated by a branching factor õ that is defined as
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Conformation �
globule 1/3
random coil ( � -solvent) 1/2
random coil (SAW) R.V Ì Þ
rigid rod 1
dendrimers (good solvent) 0.15-0.21

Table 2.1: Scaling exponents ö for various con-
formations. The best estimate for linear random
coils in good solvent according to renormalization
group computations is öIHábW÷ùø?ú�úÇ`NbW÷ bFb$: [131],
[147], [154]. Monte-Carlo simulations with walks
of up to ²ûHJúFb$÷ b�bFb gave ö_Hüb$÷ øFú�ýFý¥`IbW÷ bFb�bFþ
[125]. The results for dendrimers are taken from
Ref. [132].

the ratio of the radii of gyration of a branched and a linear molecule at the same solvent conditions
and containing the same number of monomers � [234]:

õ�- |�� n 
 � ��ÿ������ � k ¾� �an 
��
	 Y � k ��ÿ S (2.13)

In an � -functional star branched polymer, the macromolecule contains � branches ��� zà�W� , each
with � Ì � bonds that emanate from a common center. The center can be either a single atom or an
extended collection of atoms that are constrained to remain close together, so that all the branches

emanate from a volume much smaller than |¨� n 
 � 0 ��
 , see Fig. 1.1.

The application of random flight statistics leads to a very simple expression for õ [234]:

õm-  � 0 � � ô�� � � �\V�� � 
 � � ��� � 0 � v (2.14)

with � � indicating the number of bonds in branch 
 . When one assumes that each branch contains
the same number � Ì � of bonds one yields:

õm- V�� � �� 
 S (2.15)

Myake and Freed [143] performed renormalization-group calculations and obtained the branching
factor õ in an � -expansion as:

õm- V�� � �� 
 �  � � Ì����  ?Vs��� �  F�E��� � �W��s�\V�� � �W� � Ü1��� �  F�E�\V�� � ÞW� é�� �V�� � � � é�� ��� ���¡��� 
 ���=S (2.16)

As � approaches infinity, the õ -value approaches zero, which implies an infinitely dense globular
state. Hence, upon increasing � , at some point, the assumption of random flight statistics breaks
down due to the increasing density of arms at the branch point. Deviations from the prediction of
Eq. (2.15) have been seen in experiments with many-arm stars ( �ãzC "! 
 ) [171, 219]. These highly
branched structures have been called fuzzy spheres [219], as a comparison of the hydrodynamic radii



12 Theoretical and experimental background

from transport measurements with the thermodynamic radii deduced from equilibrium measurements
suggests that these molecules behave like spheres with a hydrodynamically penetrable surface layer.
The experimental problem of incomplete coupling of the star arms to their central vertex is discussed
in [45]. For more complicated branched polymer structures, such as comb polymers or randomly
branched polymers, õ -factors have been calculated and can be found in [172].

2.3 The stiffness of a chain

The flexibility of a chain is not very noticeable at small scales, but it starts showing up as the scale
increases. Thus, there exists an upper limit of length for the chain segments X
� at which a chain can be
considered as stiff. This length is called effective segment length or Kuhn length and is accessible by
experiments. A chain with total mass � and contour length L contains ���.- � Ì X!� Kuhn segments.
Since they are not correlated, one can use the freely jointed chain model with Eq. (2.3) to obtain

X!�.- h i� k 
 l� - h i� k 
 l��� �  F�ÊX(� S (2.17)

For many synthetic polymers, Kuhn lengths of about  nm are typical, whereas DNA’s Kuhn length
is Þ�!�! nm. For a perfect stiff stain X � - � .

A different parameter, which cannot be measured easily in experiments, is the persistence lengthX#" of a chain, defined implicitly by the equation�%$'&)( �1� ¢ � � - ÀEÁTÂ ¹ � ¢X " ½ v (2.18)

which is obtained from the worm-like chain model when considering consecutive unit tangent vectors
which include an angle � . The parameter ¢ denotes the length along the chains’ contour and the inverse
decay constant defines the persistence length X " . The memory of chain direction is retained on length
scales shorter than X " , but completely lost, once X " is exceeded. Because the memory extends to both
directions along a chain, the following equation holds

X " Ì X!�.-á Ì � v (2.19)

which is also approximately valid for other chain models. In the limit of large values of � one defines
the characteristic ratio of a chain as [73]:

é�ê�ë~¥ì È hmi� k 
�l r��� �  F�ÊX(� 
 -+* È v (2.20)

which is experimentally determined by viscosity measurements on polymers dissolved in � -solvents
[188]. The characteristic ratio is a measure of the effective minimum random walk step length of a
chain. For an ideal freely jointed chain, * È -û which is not the case with real flexible polymers
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polymer solvent &-,/. C] C È
polybutadiene decalin 55 4.9
polyisobutylene (atactic) benzene 24 6.6
polyethylene dodecanol-1 138 6.8
polypropylene cyclohexane 92 6.8
polymethylmethacrylate (atactic) various solvents 4-70 6.9
polystyrene (atactic) cyclohexane 35 10.2

Table 2.2: Examples of characteristic ratios G10 for some selected polymer-solvent systems under K -
conditions. All values are taken from Ref. [42].

under � -conditions 2. The restrictions in bond and rotation angles in real polymers lead to larger
dimensions of the chains than expected from the random flight model. Table 2.2 includes some
examples of * È for different polymer-solvent systems.

2.4 The gyration tensor

When the components & § 
 , & © 
 , & ª 
 of hmi�an 
�l of some individual chains are taken along the

axes of some arbitrary orthogonal coordinate system, then on average, one expects to find | & § 
 � -| & © 
 � - | & ª 
 � - hmi� n 
�l32 V , as there is no preference in direction or orientation in space. After

averaging over a large number of conformations, a polymer chain therefore may be considered to be
a spherical object.

In 1934, it was pointed out by Kuhn that this is not true for the instantaneous shape of individual
chains when observed without orientational averaging [116]. Much later, the foundations of the inves-
tigation of the shape of polymers were laid by Sǒlc and Stockmayer [182, 183]. They introduced the
concept of analyzing the principal moments of the gyration tensor 4 , defined as the outer product of
the above defined vector i¢ Y for a fixed conformation of the chain

4L-  �7�à ~� Y�� r � i¢ Y65 i¢ Y�� S (2.21)

Since then, many investigations by theoretical [9, 18, 58, 67, 79, 105, 177, 185, 212, 213] and numer-
ical approaches [102, 123, 135, 190, 229, 231] for a variety of different chain topologies and spatial
dimensions have been performed. While the size of a polymer chain � k for linear random walks [73],
as well as for star branched random walks [184, 228] could be treated theoretically, exact analytical
results are available only for very few characteristic quantities of polymer shapes [173, 182, 213].

In some arbitrary chosen coordinate system the averaged components
� & Å � � of 4 can be written

in the form of a matrix 7 :� & Å � � - �  �7�� ~� Y�� r ¢ Y Å ¢ Y � �   v ñ�-} v � v V v (2.22)

2The term “ 8 -condition” corresponds to the 9 Ñ�Ò;:=< condition in Flory-Huggins-Theory, c.f. Fig. 1.2 on Page 3.
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Architecture | � 
 
 � r Ì | � 0 
 � r | � � 
 � r Ì | � 0 
 � r
linear chain 0.23 0.08
star ���Ö-.VW� 0.33 0.12
macro cycle 0.36-0.37 0.15-0.16
star ���Ö-àÜ9� 0.39-0.41 0.15-0.16

Table 2.3: Examples of dimensionless ratios of the principal moments at K -conditions. Values for the stars
and macro cycles are taken from [136] and [184]. The number of beads per star arm is the same. Data for the
linear chain from [182].

with the brackets indicating an average over all equilibrium conformations of a chain of length ( �7� F� .
The individual components of this matrix are dependent upon the particular choice of the reference

system. The radius of gyration however is just a number and therefore the first invariant 3 that can be
gained by the trace of 7 :

| � n 
�� ->7@?T��7�� - � & §"§ � � � & ©¨© � � � & ª�ª � S (2.23)

The eigenvalues �¥Y 
 of 7 are the principal moments of the equivalent ellipsoid. In this work, the
subscripts of the components �íY 
 are assigned such that � � 
BA � 
 
BA � 0 
 . The shape of a chain can
be characterized by various manipulations of the principal moments.

2.4.1 Shape analysis

The asymmetry of chain conformations is characterized by the dimensionless ratios  Ðâ�� 
 
 Ì � 0 
 â� � 
 Ì � 0 
 â.! [182, 183]. Spherical symmetry requires � 
 
 Ì � 0 
 -C� � 
 Ì � 0 
 -� . Averaging of the
respective principal moments over many conformations obtained at equilibrium allows for a discus-
sion of the asymmetry of conformations in terms of | � 
 
 � Ì | � 0 
 � and | � � 
 � Ì | � 0 
 � . Table 2.3
presents some examples of these dimensionless ratios for differently branched structures under � -
conditions.

Several additional measurements are useful to investigate other types of symmetries. These can
be derived from the traceless form of the tensor 4 :7ED)F#GIH)J K
L
G�MON �QP -+7RD)F#GIH �  V 7@?T��7��
S v (2.24)

3The T'UWV invariant of a tensor X of rank 2 with eigenvalues Y Ù�Z Y�[ and Y�\ is defined as the sum of all sub-determinants
of order T , that is: ] Ù	Ñ Y9Ù_^`Y [ ^aY \ ÑcbQd�e�b@f] [ Ñ Y9ÙgY [ ^aY [ Y \ ^aY \ Y9Ù] \ Ñ Y Ù Y�[OY�\ Ñch_i�j'e�b@f
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where S is the unit tensor. Following Mortensen’s treatment of the polarizability tensor [181], one can
find another traceless tensor which is split into two terms, each consisting of a scalar and a constant
numerical tensor:7RD)F#GIH)J K�L
G�MON �QP ->kQ7RD)F#GIH1�\� Ì V v �  Ì V v �  Ì VW����*Q7ED)F#GIHO��! v  Ì � v  Ì �W� S (2.25)

By comparison of Eq. (2.24) and (2.25), one yields definitions for the asphericity k and the
acylindricity * as kÇ- | � � 
 � �  �ml | � 
 
 � � | � 0 
 �'n v k=â
! v (2.26)

and * - l |�� 
 
�� � |=� 0 
��'n v *Ðâ
!TS (2.27)

The value of k is zero if the considered chain has a tetrahedral or higher symmetry, otherwise k zà! .
For very long linear SAW chains,

� k � Ì | � n 
 � r -ß!TSçt�t [196]. For shapes of cylindrical symmetry*¿-�! , otherwise *)z
! . For long linear random walk chains,
� * � Ì |/� n 
 � r -�!TS� � [196].

Another definition of the asphericity which is most frequently used in literature was introduced
by Rudnick and Gaspari [173] and Aronowitz and Nelson [9] and is defined as follows:dIoÐ-L � V

îqp 
p � 
 ï -á � V
î � � 
 � 
 
 �q� 
 
 � 0 
 �r� 0 
 � � 
��� � 
 �-� 
 
 �-� 0 
 � 
 ï v (2.28)

where the quantities

p Y are the respective invariants of 4 . For rod-like molecules, d o takes a value
of 1 and it vanishes for molecules with spherical symmetry. The analytical evaluation of d o however
is very difficult because the averaging of a ratio of fluctuating quantities is involved. Theoretical
expressions are so far only available for linear chains. For linear random walks Diel and Eisenriegler
[58] found d o -	!TSçV�Û�Ü$�Wè9SySyS in a  Ì ¸ expansion, where ¸ is the dimension of space in which the
polymer is embedded. Jagodzinski et al [105] calculated the ratio d o with renormalization group
methods and obtained d o -.!TSùÜu ?Þ and d o -�!TSçV�Û�Ü in a good and � -solvent respectively.

Due to the above said, often a quantity d is considered, instead of d o :d)-} � V �
p 
 �� p � 
�� S (2.29)

In Eq. (2.29) the denominator and numerator are averaged separately. Therefore, theoretical expres-
sions could be derived for this definition of asphericity, both, for linear [173] and star branched chains
[212]. For infinitely large star branched random walk chains with � arms Wei and Eichinger found
[212]: dÐ-  ?Þ�!)� ��� �  EÜW!)� �1
 ?V�Þ �  ?��!)� ��� �ÝÜs� �1
 v (2.30)

which is a generalization of the treatment by Rudnik and Gaspari [173] and reduces to d R¦!TSçÞ���t�V
with � -C for linear chains. By use of an � -expansion [9] a slightly higher value of dm-}!TSçÞ�V�Ü has
been found for self-avoiding random walks.

For a perfect sphere one gets | � � 
 � Ì | � 0 
 � - | � 
 
 � Ì | � 0 
 � -	 which immediately yields� k � - � * � - � d � - � d o � -�! .
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ξ

Figure 2.4: Blob picture of polymer chains in dilute and semi-dilute solution. On distances t smaller than
the screening length u the chain exhibits RW-behavior, whereas on length scales larger than u the concentration
fluctuations have decreased so much that the excluded volume interactions do not play any role anymore and
the chain behaves in an ideal (Gaussian) manner.

2.5 Chain crossover and entanglement

2.5.1 The influence of concentration – blob picture

Polymer solutions are liquid mixtures of long polymer chains and small, light solvent molecules.
Solvents interact with polymer molecules which generates additional varieties of sizes and shapes. In
melts, macromolecules are “solvents” for their own kind. The conformation of a chain in solution is
affected by temperature & just as much as by concentration * . The latter can be classified in three
categories [192]: the dilute solution *�v , the semi-dilute solution * o and the concentrated solution *�vwv .

These three regimes are characterized by three important quantities: The number of elements �
per chain, the segment density � and the correlation length x .

In a dilute solution, polymer chains behave like single blobs of radius �æ-yx ò �Ý0 ��z . The
concentration * v is simply � Ì � , and the chains are separated from each other.

In the range between concentrated and dilute solutions there is a wide crossover concentration
region at which the chain behavior can be appropriately described by the blob picture [56], see Fig.
2.4 and c.f. Fig. 1.2.

For a concentration just slightly above * o , the coils become entangled and a network of mesh sizex is formed. An individual chain can then be divided into a sequence of blobs of radius x . At distances
larger than x ò * � 0 �Êf , that is, outside the blobs, the chains behave in a Gaussian fashion, whereas
inside the blobs the sub-chains obey SAW-statistics, as shown in Fig. 2.4.

2.5.2 The influence of solvent quality on chain conformations – excluded volume

A solvent is referred to as good when the prevailing form of the effective interaction between
chain segments is the repulsive part of the potential energy at shorter distances. The chains tend to
swell. In the opposite case of a poor solvent, polymers tend to shrink. The focus for the description
of chains in different solvents is on an expansion factor that can be defined as
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{ 
 - h�i�an 
 lhNi� n 
 l r v (2.31)

where hNi� n 
 l without the subscript
r

denotes the mean squared radius of gyration in the presence of

excluded volume interactions. As � increases, { grows as � ����z .
At the very point were the second virial coefficient � 
 intersects zero, the repulsive and attractive

interactions just cancel each other which defines the � –point and � –temperature, respectively (c.f.
Fig. 1.2 on Page 3). There are still three-body and higher interactions present in a � –solvent, but their
contribution to the free energy is negligibly small [56, 89].

To describe the distance of temperature & from the � –temperature, a dimensionless parameter is
used, the reduced temperature | which is defined as:

|�- & � &~}&Q} for &�z &~} v (2.32)

and

|{- &~} � &&~} for &Lx &~}�S (2.33)

The argument of the crossover scaling function � is given by |�� � .

At � –temperature, ����| � � ���á v | � ���q v � ò � r ò � ����
 S (2.34)

At &�x�&Q} , ����| � � ���}��| � �I� ��� 0 v | � �ºoq v � ò � ��� 0 | ��� 0 S (2.35)

At &�z�&Q} , ����| � � ���}��| � �I� 0 ��z v | � � zü v � ò � 0 ��z S (2.36)

2.6 Experimental methods

2.6.1 Scattering methods

Scattering methods are the most important methods for the direct determination of polymer shapes
and dimensions. In particles, the incoming waves keep shifting electrons and nuclei relative to each
other. This shifting creates induced dipoles which follow the oscillating electric field with the same
frequency and produce scattered radiation. The more dipoles are generated per particle, i.e. per its
mass or molar mass, the higher is the scattering intensity. The theory of scattering applies to any
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wavelength. Most important for polymer science are visible light ( ��R¤V�!�! nm � è�!�! nm), neutron
beams ( �üR !TS� nm �  nm), X-rays ( �üR !TSU!W� nm � � nm) and electron beams ( ��R�!TSU!s nm).
Static light scattering depends on the difference in polarizabilities of polymers and solvents. Small
Angle X-ray Scattering, SAXS, registers differences in electron densities of solvents and polymers
and Small Angle Neutron Scattering , SANS, differences in coherent neutron scattering lengths of,
e.g. deuterated monomeric units and undeuterated solvent molecules. Static light scattering is the
most affordable method, small angle neutron scattering the most expensive. An overview of these
methods can be found in standard textbooks, e. g. [113, 188].

2.6.2 Viscometry

Dimensions of polymer molecules are not only obtainable by scattering experiments but also
from the response of molecules to hydrodynamic forces, for example, during diffusion (see Sec. 4.2.4
for more details) and viscous flow. Viscometry of dilute solutions allows one to determine specific
volumes of macromolecules that are directly related to the shape and dimensions of the dissolved
molecules and indirectly to their molar masses. The viscosity � of dispersions of small spheres
in solvents of viscosity ��� can be described by a power series with respect to the volume fraction� -à*/���~�6� Ì � occupied by the spheres with volume �~�à- fO�0 �)��0 :��- �)�F�� í�-� � � �r� 
 � 
 �à�����Ø� S (2.37)

The coefficient � � was calculated by Albert Einstein as � � -¤Þ Ì � for unsolvated, rigid spheres
which is confirmed by experiment. The extension of the theory by E. Guth furnished � 
 R} EÜsS� [38].
Equation (2.37) can be applied to any polymer solutions, since macromolecules, being hydrodynam-
ically impermeable, behave like hard spheres with volumes as given by the hydrodynamic radius ��� .
The following definitions are useful in the context of polymer solutions:

relative viscosity � ÿ - � Ì � � v (2.38)

specific viscosity ��� " - ��� � �)� � Ì �)� v (2.39)

reduced viscosity �Wÿ k ¾ -  * �)� " S (2.40)

The reduced viscosity of Eq. (2.40) is a quantity characteristic for a solute, which describes the
soluted individual particles if they can move independently in the solvent. This usually is only the case
for strongly diluted solvents which are easy to achieve with low-molecular substances. However, the
dissolved coils of macromolecules on the other hand comprise almost all of the total available volume
even at very high dilutions. The values obtained for �Ãÿ k ¾ for such solutions are therefore not charac-
teristic for the individual macromolecules, but they also contain contributions from interactions. In
order to obtain information about size and shape of solvated macromolecules one has to perform an
extrapolation to * -�! . This limiting value is called intrinsic viscosity and is defined as:, �s��- é�ê�ë� ì r ��ÿ k ¾ - é�ê�ë� ì r  * � � �)� "�)� " - Þ� ������� Ì �«S (2.41)

For the extrapolation of the reduced viscosity to zero concentration there exist several empirical
equations, e.g. the Huggins equation for non-electrolytes:
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object { ¸Ãô
swollen chain 0.8 5/3
ideal chain 0.5 2.0
hollow sphere 0.5 2.0
solid sphere 0.0 3.0
thin disk 0.5 2.0
thin rod 2.0 1.0

Table 2.4: Examples of fractal di-
mensions ��� of several important par-
ticle shapes.

��ÿ k ¾ -�, �s�s� Qs��, �s� 
 � �W��� (2.42)

The Huggins constant Q_� is a measure for the interaction of the solute particles with the solvent
and usually has values between !TSçV�V and !TS � .

The dependence of intrinsic viscosities , �)� on molecular masses can often be described by the
empirical Kuhn-Mark-Houwink-Sakurada equation:, �)��->������� v (2.43)

where �a� and { are system specific constants that depend on constitution, configuration and molar
mass distribution of the polymer as well as on the solvent and temperature.

As by definition, the hydrodynamic volume scales as ��� ò �)� 0 ò � 0 � ¾ ó one obtains

, �)� ò �6�� ò � 0 � Ä ¾ ó ����Æ v (2.44)

which means that when using { -.V Ì ��¸sô �  F� and measuring , �s� as a function of � , one can determine
the fractal dimension of a polymer which is an important information about shape and conformation.
Table 2.4 summarizes fractal dimensions for a variety of particle shapes.
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Chapter 3

Software design, algorithms and computer polymers
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This chapter first gives a short introduction of the two simulation techniques that were used in this
work. It proceeds with a description of the implemented algorithmic optimizations that were used to
speed up the integration scheme. This chapter ends with an illustration and discussion of the actual
choice of the polymer model that was used and implemented on the computer. An annotated version
of the simulation code that was written completely from scratch for this work can be found in the
Appendix D.1.

3.1 Introduction

Computer simulations nowadays play a decisive and indispensable role as a helpful tool in many
branches of science. In particular in polymer physics the use of computers proves very helpful due to
the statistical nature of the investigated systems [26]. With many-particle systems which one usually
has to deal with in polymer science, the use of computational methods allows one to test models by
explicitly solving the appropriate equations of motion.
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When performing simulations, usually a certain number � of particles are distributed in a cu-
bic box [3]. The hyper surface of the potential among the particles generally is a function of the
coordinates i� of all particles and may be expressed by the following equation [108, 119, 130]:� ���W� - � Y�� � � i�"Y;� � � Y � ��� Y�� 
 � i�?Y v i� � � � � Y � ��� Y �� �9�I� Y � 0 � i�?Y v i� � v i� � �¼�à�"�"�ÍS (3.1)

The terms � � v � 
 v � 0 , etc. are contributions due to external forces, pairwise and triple interactions.
Mostly one assumes that the total potential can be written as a sum of simple pair-potentials. The
term � 
 then can be considered to be an effective potential which, in the sum, contains many-particle
contributions.

In essence, two different simulation methods have been developed: Monte-Carlo (MC) and
Molecular Dynamics (MD). Both are based on methods of statistical physics and probability theory
and both were used in this work.

3.2 Monte-Carlo simulations

As the name implies, random processes, respectively random numbers, play a major role in this
sort of simulation procedure. The MC-method allows one to change the location of a system in phase
space in a stochastic way: With the aid of random numbers a specific coordinate in phase space is
chosen and then changed according to certain side conditions. When using a good random number
generator 1, see e.g. [157], the system thus will explore all available points in phase space after a long
enough period of time.

In this work an implementation of ”RAN1” of Ref. [157] was used for all computations that
involved random numbers. In [78] there is an extensive test of RAN1, among several other pseudo-
random number generators.

While there are many different variations of the MC-method, it can generally be divided into two
groups which are described subsequently.

3.2.1 Simple sampling

The simulations of interacting many-particle systems are generally focused on the determination
of ensemble averages, which represent the averages of physical thermodynamic quantities. For an
observable � such averages can be written as many-dimensional integrals of the formÉ5É �j��� v� Ív e��g����� v� Ív e��Ê¸   ¸s� v (3.2)

with � being the phase density of the corresponding statistical ensemble and   and � being the phase
space coordinates. Characteristic of these ensemble averages is:

1Today, the most convenient and most reliable method of obtaining random numbers in practice is the use of a determin-
istic algorithm. Such a numerical method produces a sequence of pseudorandom numbers (PRNs) that mimic the statistical
properties of true random numbers in the best possible manner.



3.2 Monte-Carlo simulations 23¡ they are high-dimensional integrals, which in essence are dependent upon all coordinates and
velocities of the considered � -particle system, e.g. ( � � t ) – dimensional for a mono-atomic
gas;¡ they vary over many orders of magnitude, but only very small regions of phase space contribute
to the averages.

Considering a canonical ���¢�Ð& – � ensemble, the corresponding average of some quantity � is
given by � � � -¤£�£ �j��� v�  ��¥ �§¦ � Ä©¨ J " Æ ¸   ¸s�£ª£ ¥ �§¦ � Ä©¨ J " Æ ¸   ¸s� v (3.3)

with «I- ��=¬ and the Hamiltonian­
�  Ív �W� -  ��  ~� Y�� � � i  Y�� 
 �¯®j���W� S (3.4)®j���W� is the total potential energy and i  Y is the momentum vector of the � -th particle. For an

ideal gas ®j���W� -C! and integration over   yields a factor of �\��»¼ ÖQ§°w&Ð� ����
 per degree of freedom.
Consequently, the MC-method considers only configuration space, having eliminated the momentum
part of phase space. The calculation of averaged quantities, such as

� � � , is thus reduced to the
calculation of the configurational part which in turn is determined by the form of ®j���W� :� � � - £a£ �����W��¥ �§¦)± Ä²¨ Æ ¸s�£�£ ¥ �§¦)± Ä²¨ Æ ¸s� S (3.5)

In general, Eq. (3.5) will be unsolvable for most considered systems, however,
� � � can be ap-

proximated by replacing the phase space integrals by sums over a finite set of states ³ :

� � � Rµ´��- ¶·Yy� � ���%³�Y;��¥ �§¦)± Ä ¶ Ï Æ¶·Y�� � ¥ �§¦)± Ä ¶ Ï Æ S (3.6)

Clearly, certain sets of states ³ will give a more accurate approximation of
� � � than others.

The simple sampling MC-method [26] uses equally distributed random numbers to select the ³
sampled states in phase space. Typical applications of this method in mathematics or physics are
the calculation of volumes or surfaces by numerically calculating high-dimensional integrals [150],
the numerical treatment of algebraic and differential equations or the simulation of lattice-systems,
which is fundamental for many problems in solid state physics, e.g. the Ising-model or spin-systems.
In combination with Percolation Theory 2 [187] the latter allows for the description of structural and
transport properties as well as opening a door to the understanding of critical phenomena [31].

2This theory investigates the behavior of clusters on lattices and provides connections between cluster properties and
lattice site distributions.
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3.2.2 Importance sampling

The simple sampling MC-method has a severe drawback when the observable � is a strongly
fluctuating function over the integration range. Any sharp peak in � will be missed by the simple
sampling method. To overcome this problem, another Monte-Carlo method has been developed which
is called importance sampling: One uses distributions of weighted random numbers, which allow
for a shifting of sampled phase space points towards the areas where the function � changes the most.
As a result, mostly those areas which contribute most to the phase space integral and hence are the
most important ones, are sampled. This gives rise to the name importance sampling. The method of
importance sampling was developed by Metropolis, Rosenbluth et al. [139] and yields the equation:

� � � - ¶·Y�� � �j�%³�Y �Ê¶ ��� �%³�Y ��¥ �§¦)± Ä ¶ Ï Æ¶·Y�� � ¶ ��� �%³�Y\��¥ �§¦�± Ä ¶ Ï Æ v (3.7)

with ¶·�%³ Y � being the pre-defined probability with which states are chosen (importance sampling),
such that the desired mean value is given by:� � � -  ³ ¶� Yy� � �j�%³ Y � S (3.8)

Clearly, for this to be true one requires ¶·�%³ÍY;�·-º¶ k ¨ �%³�Y � ò ¥ �§¦)± Ä ¶ Ï Æ and much of the art of
MC-methods is to ensure that states are actually chosen with this probability [23], [24], [26].

Because ¶ k ¨ �%³�Y;� at equilibrium is not explicitly known, one constructs a random flight of points³�Y in phase space – a Markov Chain – in such a way that ¶·�%³ÍY � ä ¶ k ¨ �%³�Y\� for ³ äæå . A sufficient
condition for this to hold is that the transition probability &j�%³ Y ä ³ Y²¸ � for the transition from state ³ Y
to state ³ Y ¸ fulfills the condition of detailed balance:

¶ k ¨ �%³�Y\� &��%³�Y ä ³ Y ¸�� -�¶ k ¨ �%³ Y ¸�� &��%³ Y ¸ ä ³�Y\� S (3.9)

This is the requirement of reversibility of states on a microscopic scale. From Eq. (3.9) one
yields: &��%³�Y ä ³ Y ¸��&��%³ Y ¸ ä ³�Y;� ->¥ �§¦�¹O± v (3.10)

with d�®J-º®j�%³ Y ¸�� � ®m�%³�Y\� . The ratio of transition probabilities is only dependent upon the difference
of the potential energy of configurations ³ÍY and ³ Y ¸ . This does not specify &��%³¼Y ä ³ Y ¸�� in a unique
way. According to Metropolis, one takes a convenient choice of & which is consistent with the
principle of detailed balance:

&��%³�Y ä ³ Y ¸ ��-¼» ¥ �§¦�¹�± d�®}z
! v otherwise S (3.11)
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Figure 3.1: The Metropolis algorithm as it was used in this work.
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Figure 3.2: Illustration of a pivot move. The grey-shaded part of the chain is rotated about a randomly
chosen normal vector ®½ .

The proof of convergence to the average of the desired canonical ensemble can be done with
the aid of the central limit theorem, see e.g. [69]. Metropolis et al. give reasons for the correct
convergence behavior on physical grounds [139]. In [204] it was shown that valid Monte-Carlo
simulations can be obtained by sampling schemes that do not obey strict detailed balance as long
as the set of Monte-Carlo moves leaves the Boltzmann distribution invariant and therefore leads to
regular sampling. An overview of the Metropolis algorithm is given in the flow diagram of Fig. 3.1
on Page 25.

3.2.3 The pivot algorithm

Chain polymers were among the first objects simulated on electronic computers and they still
present a challenge, because of the particular structure of this problem which involves the relaxation
of the chain on different length scales. Straightforward algorithms such as simple sampling are often
inefficient and a whole host of methods has been proposed, all with certain merits and disadvan-
tages [23, 25, 26]. One very efficient method to obtain equilibrium samples on a simple-cubic lattice
was proposed in [82, 83]. This method combines the Rosenbluth-Rosenbluth method with recursive
enrichment and is called PERM (Pruned-Enriched Rosenbluth Method).

Today it seems that the pivot algorithm, which was proposed by M. Lal in 1969 [118] is the most
popular one in order to gain equilibrium samples of single chains in the continuum or on a lattice.

Pivoting a chain in its configuration space proved to be most efficient for relatively open, dilute
systems such as isolated linear chains [129, 227], but also for self-avoiding star-branched polymers
[224, 225], where the segment density near the branching point is relatively large in comparison with
the linear chain. The algorithm proved very efficient for both, lattice and continuum models [24].
However, it becomes inefficient in dense or constrained systems where most of the global moves
(which make it fast in dilute systems) are rejected due to overlaps with other chains.

An illustration of a pivot move with a linear chain is given in Fig. 3.2: A configurational change
of the chain is achieved by rotating one part of the chain around a randomly selected bond. This
new configuration undergoes a Metropolis algorithm according to which the new configuration is
either accepted or rejected. Thus, the pivot algorithm fits perfectly into the scheme of the Metropolis
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Figure 3.3: Acceptance rate of pivot moves for lin-
ear chains as a function of the molecular weight ² and
the interaction strength ¾ during a hybrid-simulation
in which pivot moves were used alternately with MD
simulation steps. Only for very dense systems and
very long chains the pivot algorithm does become in-
efficient.
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Figure 3.4: Time evolution of ¿ ¯¥±ÁÀÃÂ 8!Ä @ for an en-
semble of :/bFb star polymers with ÅmHÇÆ and ²ÉÈ;Ê
ËÝHø?b monomers per arm. Time is displayed in Lennard-
Jones units (see Section 3.4 on Page 40 for details).
The upper curve displays ¿ ¯ ± À Â 8ÌÄ @ of the whole star.
The lower curve corresponds to ¿ ¯�±'À�Â 8ÌÄ @ averaged
over the individual star-arms. After : b�Í integration
steps the pivot moves were switched off and only
Stochastic Dynamics simulation (see Section 3.3.1.2)
steps were performed.

algorithm with the only difference being that a whole part of the chain is moved in phase space as
opposed to a single particle in the original scheme.

The pivot algorithm was applied in all simulations of single chains in this work: After having
chosen at random a particle Q with coordinate i� r of the chain as spin center, all the rest of the chain
(to say, all particles with indices larger than Q ) is rotated about this particle Q . To achieve this, a
random rotation matrix Î is calculated for each pivot move such that for the new positions i�1v of the
rotated part the following equation holds:

i� v - i� r �rÎÇÏ�sJ � � i� � i� r � S (3.12)

The random rotation matrix Î is given by a normal vector iñ - iñw��Ð v=Ñ � in spherical coordinates
and a rotation angle { . Î applied to a vector i� yields:Î Ï��J � i� - i� $'&)( { �.� iñ i�W�E�� � $'&)( { � iñ ��� iñÇÒ i�W� ( êÌ� { v (3.13)

where {�v=Ñ and
$'&)( Ð are chosen equally distributed from the interval , ! v ��»�� and , �  v  Á� , respectively.

A derivation of Eq. (3.12) can be found in Appendix C on Page 165.

The global moves of the pivot algorithm allow for a fast relaxation of a chain on large length
scales. To speed up the relaxation on short length scales, too, MD simulation steps were also per-
formed at certain time intervals. In Fig. 3.3 the efficiency of the pivot moves when applying this
hybrid-algorithm is shown for different chain lengths and different values of the interaction param-
eter � which will be defined in a subsequent chapter. The acceptance rate is well above 50% for
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smaller systems and also under � – conditions, in the vicinity of � R�!TSçt�Þ , one still has a high enough
acceptance of global moves to relax the chains very efficiently.

The fast relaxation by pivot moves is displayed in Fig. 3.4 which shows the time evolution of| � n 
 � for a branched system at equilibrium. As long as pivot moves are performed the radius of
gyration fluctuates very fast about an average value. As soon as no pivot moves are done anymore the
autocorrelation function of the system is increased.

3.3 Molecular Dynamics simulations

In MD simulations, random numbers, if at all, are only used to set the initial conditions of a
system or when one uses a heat bath to which the investigated system is to be coupled. Other than
that the MD-approach evolves the considered system in phase space in a quasi-deterministic manner.

The MD-method was first proposed by Alder and Wainwright [5, 6]. They investigated a liquid
of hard spheres. The first simulation of a more realistic continuous model of a liquid was published
by Raman in 1964 [159]. He simulated liquid Argon using a set of Lennard-Jones particles. In
1971 it followed the investigation of a liquid – melted Carbon-Chloride – with coulomb interactions
by Woodcock [221]. Shortly after this, Rahman and Stillinger reported on the simulation of water
[160]. Influenced by these first successes the field of computer simulation developed rapidly and has
been extended to many fields of interest, such as biology, bio-physics, chemistry and branches of
engineering [106, 153].

A MD simulation program can generally be divided into three main parts, see Fig. 3.5.

1. The initialization of chains with coordinates and velocities.

2. Calculation of all forces acting upon each single particle.

3. Integration of the equations of motion using the positions, coordinates and
forces of all particles.

force calculationand velocities

one timestep

Particles with coordinates 

integration

Figure 3.5: General scheme of a Molecular Dynamics simulation.
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3.3.1 Integration scheme

Usually, in MD simulations, the classic equations of motion for the movement of a system of
interacting point particles are solved numerically for many successive time steps Óje 3 with fixed
boundary conditions. The individual particles of the considered system interact via phenomenological
potentials which are to be as realistic as possible, but also numerically simple. In the simplest case
one considers the Newtonian equations of motion for a system in a cubic simulation box.

The cubic box is used almost exclusively in MD simulations, due to its simple geometry in com-
parison to the other space-filling bodies, among which the Dodecahedron and the Octahedron are
used particularly [3]. Spherical boundary conditions have also been investigated, with which the
three-dimensional system is treated as surface of a hyper sphere [112].

3.3.1.1 Integration scheme for a NVE-ensemble

As for integration schemes, many different methods for different ensembles have been proposed
[8, 80, 81, 90, 91, 97, 99, 161]. Quite common in simulations are different versions of the Verlet algo-
rithm [205, 206].

In this work, a particular implementation of the Verlet algorithm, the velocity-Verlet algorithm
[193], was used, which calculates the positions i� and velocities i� of � particles, exerted to external
forces iÔ Y , as follows (see Fig. 3.6):

i�"Y���eÍ�-Óje�� - i�?Y���e�� �qÓje i� Y���e�� � Óje 
�� ¡Y iÔ Y���e�� v (3.14)i� Y���eÍ�-Óje�� - i� Y���e��Í� Óje�� ¡YÉÕ iÔ Y���e�� � iÔ Y���e �qÓje��
Ö S (3.15)

This algorithm is very apt for the simulation of a micro canonical ensemble as it is time-reversible
and keeps the total energy constant. Generally, when using a simulation box with hard walls, neither
the total linear momentum i¶ , nor the total torque i� are constants of motion. However, due to the
use of periodic boundary conditions in the system (for details see Section 3.3.3.2), i¶ becomes a
conserved quantity. By rescaling the velocities of the particles at the beginning of the simulation such
that i¶û- i�á- i! , one avoids artificial movements of the system. If, in the following, no energy is
added to or removed from the system, e.g. by velocity-dependent external forces, it follows × �×�Ø -�!and hence energy conservation.

The system is simulated at the desired temperature & by rescaling the particle velocities at the
beginning of the simulation in a way such that the classic partition theorem

��Ù � Y � � - �  � ~� Y�� �  ¡Y � Y 
 � - V� �IQs° & (3.16)

3Unless otherwise stated, all time units are given in reduced Lennard-Jones units ÚÇÑ�ÛQÜ ÎÝ:�Þ . For further details refer
to the comments on Page 40 in Section 3.4.
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Figure 3.6: Illustration of the velocity-Verlet integration scheme. The initial conditions are given by posi-
tions ®ß 8!Ä @ , velocities ®à 8ÌÄ @ and forces ®á 8ÌÄ @ at time Ä . In Lennard–Jones units (see bottom of Page 40 for more
details), the force is identical with acceleration ®á . In the first step, the new velocities after a time ÄT³�âÉÄ D?> are
calculated. In the second step, the new positions ®ß after a full timestep Ä1³ãâäÄ are determined along with the
new forces acting upon the particles at their new positions. In the closing third step the new velocities ®à 8ÌÄ"³RâÉÄ @
of the particles are calculated.

is fulfilled. This integration scheme is rather stable at a timestep Óme in the range of Óje=R¦!TSU!�!W� �!TSU!�!WÞæå .
The disadvantage of this integration scheme lies in the rather slow dynamics due to the small

timestep, and, even more critical, the fact that the energy conservation impedes the system from
attaining its equilibrium state.

3.3.1.2 Integration scheme for a NVT-ensemble

To simulate a canonical ensemble one has to couple the system to a heat bath. This can be done in
several ways. A method was developed by Nosé, which couples the system to a heat bath by enlarging
the degrees of freedom of phase space [151, 152] and a modified version was introduced in [220].

For the implementation in this work, a different coupling-method was chosen which controls the
energy fluctuations on a local scale by splitting the force iÔ ��e�� into a slowly changing friction forceiÔèç of Stoke’s type and a fast fluctuating stochastic force iÔ ¶ . This leads to integrating a Langevin
Differential Equation: éwé

i�m��e�� - �ëê i� ��e�� � i� ��e�� � iì ��e�� v (3.17)

with �ëê i� ��e���- iÔ ç Ì   , i����e���- iÔ Ì   , iì ��e���- iÔ ¶ Ì   and ê being the friction coefficient.

This kind of integration schemes is generally called Stochastic Dynamics (SD) or Brownian
Dynamics (BD) simulations 4.

4In [90] a distinction between SD and BD simulations is made in terms of the latter referring only to stochastic forces
which are void of space and time correlations. Sometimes the term BD simulations is used in literature referring to the
over-damped case only. In this work no distinction will be made and both terms are used interchangeably.
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One considers a Gibbs Ensemble of many identically prepared systems which consist of � particles
each. For each one of these systems there is a Langevin-force iì Y���e�� , the properties of which follow
from the fluctuation-dissipation theorem [59, 162]:

ê -  t�Qs°�& ÈÉ� È h iì Y���!$�Wiì � ��e�� l ¸We/S (3.18)

Eq. (3.18) elucidates the connection between the energy dissipation of a system due to a frictional
force with coefficient ê and the thermal fluctuations due to the influence of the surrounding.¡ iì Y���e�� is as often positive as negative, such that the average vanishes:h iì Y���e�� l -�!TS¡ The time-correlation of iì Y ��e�� is a d –function:h�iì Y���e�� iì � ��e v � l - h�iì Y���!$� iì � ��e � e v � l -.t ê Q�°w&=dÃ��e � e v ��d/Y � S¡ There is no correlation of iì Y���e�� with velocities at an earlier time:h i� Y���!$��iì � ��e�� l -.! for eíâã! .¡ There also is no correlation of iì Y���e�� with other external forces iÔ ��e�� :h�iÔ Y ��!$��iì � ��e�� l -�! for eíâã! .

The above properties of the forces can be fulfilled by Gaussian distributed random numbers.
In [85] it was shown that also equally distributed numbers can be used which is numerically more
advantageous. Integrating Eq. (3.17) after introducing the stochastic forces iì Y ��e�� requires changing
the integration algorithm according to the following equations:

i� Y ��e �qÓje�� - i� Y ��e��¼��Óje i� Y ��e�� �  ��ê Óme�� ¡Y � � Óje 
�� ¡Y i& Y ��e�� v (3.19)

i� Y���e �qÓje�� - i� Y���e�� �  �ãê Óje�� ¡Y � � Óme�� ¡Yîí i&�Y���e�� ��i&�Y���e ��Óje��gï ¥� ê Óme�� ¡Y v (3.20)

with total force i&�YÍ- iÔ Ys� iì YgS (3.21)

The use of a stochastic term in the equations of motion explicitly destroys time-reversibility and
avoids ergodicity problems of micro-canonical simulation schemes. It allows for a larger time stepÓje â7!TSU!�!WÞæå in the simulation as the coupling to a heat bath generally makes a simulation more
stable. In this work, for all simulations a timestep of Óme�-�!TSU!s ~å and a friction coefficient of ê -á �SU!
were used. On the other hand, with stochastic simulations, it is not possible to investigate properties
depending on long range correlations such as hydrodynamic interactions.
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Figure 3.7: Illustration of the back-
wards excluded volume of the initial
chain generation.

3.3.2 Setup of chains

The initial configuration of chains in the simulation box is generated one particle at a time by
means of a random-process. The first monomer is chosen at random in the simulation volume. The
second one is chosen in the same manner with a step length of X �{-C!TSçÛWè , the equilibrium distance
of Eq. (3.22). The location of the third and all subsequent particles, however, are only accepted if¸�z¦� excl -û �SU!W��ð 
 , see Fig. 3.7. By way of this process, a random walk of monomers is created
which corresponds to the static properties of polymers in a dense melt.

The manner in which the chains are initially generated, leads to possible singularities in the po-
tential at the beginning of a simulation run, due to overlapping monomers. Therefore, one has to
perform a warmup procedure which gradually switches on the full excluded volume interaction. This
is done in the following manner: First of all, the absolute minimum distance ¸ min between all parti-
cles is calculated. Then the system is integrated for 1.000 time steps. However, instead of taking the
actual, calculated distance � for the potential of Eq. (3.23), the distance � v -}�a�ñÓ�¸ � ñ�Óm¸ Ì  "!�!�!
is used in each time step ñ with Óm¸m-�� cutmax � ¸ min. By this shifting of distances during the warmup
integration one gradually moves along the potential curve of Eq. (3.23) with more and more particles
gradually being exposed to their actual potential, until, after  �SU!�!�! steps the full excluded volume is
effective for all particles. This method has been tested extensively and works very well for all types
of systems, e.g. linear or branched chains in a melt or in dilute solution.

In Figures 3.8 to 3.11 the instantaneous minimum squared distance ¸ 
 min of various systems dur-
ing the warmup procedure and the first following-up 1000 MD-steps are displayed. At the beginning,¸ 
 min in all cases expect for the linear chain in dilute solution is very small and the particles are only
exerted to a very small effective potential.

After about t�!�! warmup integration steps the monomers start to ”feel” the excluded volume forces
which leads to a continuous increase of ¸ 
 min until at  "!�!�! MD steps all particles are exerted to the
full excluded volume forces. This is reflected in the saturation of ¸ 
 min after the warmup procedure.
The value at which ¸ 
 min saturates, will, of course, be dependent upon the density of the monomers
in the considered system. Due to this, ¸ 
 min after saturation is the lowest for the dense melt system in
Fig. 3.11, and the largest for the linear chain in dilute solution.
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Figure 3.9: Instantaneous squared minimum dis-
tance of all particles during the warmup procedure for
regular dendrimers in dilute solution. After 1000 inte-
gration steps the full LJ-potential acts upon all parti-
cles.
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Figure 3.10: Instantaneous squared minimum dis-
tance of all particles during the warmup procedure for
star polymers in dilute solution. After 1000 integra-
tion steps the full LJ-potential acts upon all particles.
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1000 integration steps the full LJ-potential acts upon
all particles.
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a) b) c)

Figure 3.12: Different approaches to the force calculation in a Molecular Dynamics simulation according
to [161]. For clarity, the situation in two dimensions is shown. The color-coded regions display the size of the
area that is scanned for interacting atom pairs

3.3.3 Optimizations

3.3.3.1 The search-algorithm for the forces

In MD simulations, more than ÛWè�ó of computation time is used up for the force calculations.
Therefore all optimization efforts are usually devoted to the search-algorithm that determines the
interacting particle-pairs. In [8] and [161], one finds a compilation of different strategies which are
sketched in Fig. 3.12.

a) � 
 -loop approach. This is the ”brute-force” approach. The distances between all particle pairs
in the central simulation box are calculated. It is the most costly method and only suitable for systems
of up to a few hundred particles.

b) Linked-cell-method. The linked-cell algorithm owes its name to the way in which the particle
data are arranged in computer memory, namely as linked-list. The central box is divided into sub-cells
which have a length of at least one interaction cutoff � cut. Thus, the number of distance calculations
is restricted to those particle pairs of neighboring cells only.

For this method to function the size of the simulation box has to be at least V�� cut. For simulations
of dense melts with many particles, this requirement is usually met. By this method, the search-loop
effort is reduced to �¡��� � , but with a pre-factor that still can be very large, depending on the density
of particles � and the interaction range � cut.

c) Linked-cell-method with neighbor-lists. In addition to the cell subdivision there is a neighbor
list of potentially interacting atom pairs. Only the atom pairs within the inner circle of radius � cut

actually interact with each other. However, the area between the outer circle of radius ��� cut �
�Ã� kin �
and the smaller one is also covered by the neighbor list for one of the atoms. Thus, this list contains
not only actually interacting particles at some specific time, but it also contains all atoms that might
enter the interaction range of the inner circle within the next few time steps. This greatly speeds up
the simulation, because the list of potentially interacting particles will be valid for several time steps,
in the order of Þ –  ?Þ , before it has to be rebuilt. The interval, at which list-reconstruction has to be
done, depends upon � cut, the particle density � and the skin radius � skin. Once a particle has moved

a distance larger than ¸ 
 - Õ � skin� Ö 
 , the update is due. The accumulated distance that each particle

moved can be readily monitored during the distance calculation. Extensive tests of the implementation
of this work with � cut -5 �SçÞ�ð and ��- !TS � Þ�ð , which were used throughout all simulations, showed
that a radius of � skin R�!TSçV�Þ�ð to !TSùÜW!�ð is the optimal choice, see Fig. 3.13.
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The length ¸9Y of the sub-cells in each direction is given by �ÇY Ì modulo ����Y Ì � cutmax � with ��Y being
the box size in each direction and � cutmax being the largest cutoff of all potentials that are used. The
sub-cells are numbered, beginning with the one in the lower left corner of the simulation box where
the origin of the coordinate system is located. Each time when an update of the verlet list is due,
the particles are periodically back-folded into the simulation box and then sorted into the different
sub-cells according to their coordinates. Subsequently, only the distances of particles of neighbor
cells are calculated, with each sub-cell having 26 neighbors in three dimensions. Due to Newton’s
third law only half of them have to be considered. Fig. 3.14 displays the division of the simulation
box into ñ¼Y sub-cells in each direction � and how these different sub-cells are scanned through. The
search algorithm, as it was implemented in this work, first considers all particles of the cell itself and
then scans through all remaining 13 neighbor cells.

1 2 3
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7 8 9

10 11 12
13 14 15

16 17 18

19
22 2423

2120

6

25 26 27

Figure 3.14: Dividing the simulation box into sub-cells and scanning through them. All particles of the
neighboring 14 sub-cells (including the cell itself) of cell number 5 are considered in this example. If one gets
beyond the simulation box boundaries when scanning through cells with this algorithm, the particles of the
corresponding periodic sub-boxes are considered instead.
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3.3.3.2 Ghost particles

In a MD simulation one can only investigate the properties of a relatively small number of particles
compared to a real system. Therefore one introduces periodic boundary conditions for the volume
in which the system is located. By way of performing this, the anisotropic forces that are ”felt” by
particles close to the surface are suppressed. Thus, surface effects are removed and the overall density
of the system is kept constant. One only measures properties of ”bulk” particles which are far away
from the surface.

1st 2nd 3rd

m

m

m m

mmm

x x x

z y y y

ghost layer ghost layer ghost layer

Figure 3.15: Construction of the different ghost cell layers.

The periodic boundary conditions are realized by performing distance calculations taking into ac-
count the minimum image convention according to which the real distance between any two particles
is given by the shortest distance of any of their images. Once a particle has crossed the boundaries it
is periodically back-folded into the simulation box. In the language C this can be conveniently done
by the following lines of code:¸ Ë � - � §Éôöõ�÷ùø�÷�ú ��¸ Ë Ì � § �=û¸sü � - � ©ýôþõ6÷ÿø�÷�ú ��¸sü Ì � © �=û¸�� � - � ª@ôþõ�÷ùø�÷�ú ��¸�� Ì � ª �=û
whereõ6÷ÿø ÷�ú � Ë �E�s��¸�����k X�¥��E�s���;ñ�e��E�s��� Ë ��� !TSçÞW� � ��� Ë �¡x � !TSçÞW�s�s�s�
returns the next positive integer. This periodic wrap-around is done in the innermost loop of the force
calculation and therefore is extremely expensive in terms of simulation time.

Consequently, another method of gaining speed in a MD simulation is to remove any mentioning
of periodic boundaries in the force calculations. This can be done by using the concept of ghost
particles, see e.g. [161].

With this concept, there are two sets of coordinates. The back-folded periodic coordinates which
are used to sort the particles into the sub-cells and the free coordinates which are not back-folded at
all and which are the ones used for later calculations of observables.

The idea with the ghost particles is the following: All particles that are in sub-cells which are on
the surface of the simulation box are being duplicated right away into the extra ghost cells surrounding
the whole box. These ghost particles are now used for distance calculations instead of the original
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coordinates. As a result, the periodic back-folding only has to be done for a relatively small number
of surface particles in the outermost sub-cells, but not anymore for the many particles in the force
calculations.

As a result of Newton’s third axiom, one actually needs only half of the ghost cells surround-
ing the original box. Figure 3.15 displays how the individual ghost layers in each direction are set
up in the implementation of this work: An individual sub-cell can be identified by three integers
(   § v   © v   ª ). First of all, all particles of sub-cells with (   § -} v   © -} v SyS v ñ © v   ª -  v SyS v ñ ª ) are
duplicated into the appropriate ghost cells. The second ghost layer contains particles pertaining to
(   § -C v SyS v ñ § v   © -7 v   ª -C v SyS v ñ ª v ) including the ghost particles of the first layer. Finally, the
third ghost-layer contains particles with (   § -} v SyS v ñ § v   © -} v SyS v ñ © v   ª -} ) including the ghost
particles of layers 1 and 2.

The number of adjacent neighbor cells now depends upon the location of the considered cell. In
a cube there are 18 different cases and according to Newton’ s third law only half of them need to be
considered. The sub-routine that contains the search algorithm which examines adjacent cells makes
provision for all 9 different cases. The number of adjacent cells for these different cases is fixed,
see Fig. 3.16, and can be written in a static array. The location of the respective adjacent cells can
be found by using exactly the same search algorithm as before (see Fig. 3.14), only considering the
following simple but crucial restriction:

All ghost cell pairs of the same ghost layer have to be left out.

������������������������������������������������������������������������������������������������������������
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Figure 3.16: Illustration of the search-algorithm for ghost particles with a fixed number of neighbor cells
depending upon the location of the considered cell. The lowest square depicts the

	
possible cases of cell

locations and displays the respective number of neighbor cells, always including the cell itself. For clarity,
some of the cell locations are colored. Two layers of the simulation box are displayed along with the numbering
of the sub-cells. The ghost cells are color-coded. As an example, the locations of the adjacent sub-cells that are
scanned by the search-algorithm are displayed for three different sub-cells.
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Figure 3.17: Scaling of CPU-time
with the size ² of the system when us-
ing ghost particles.

The implementation of ghost particles in this work lead to a considerable speed-up of a factor
of 2. On the fastest available workstation, a Compaq Professional WS XP 1000, the code performs
approx. 380,000 particle updates per second for a system of 100,000 particles, arranged in a linear
topology of ��!�! chains of length � -5Þ�!�! in a dense melt with �N-5!TS � Þ�ð � 0 and ��-ß!TSU! . This
performance is fast enough to simulate systems of a size that is relevant for comparison with experi-
ment. For branched systems the performance decreases with the number of branch points, because of
the additional checking of cross links, but still is above 300,000 updates per second for a system of
the same size with each chain having 10 branch points. Figure 3.17 displays the scaling of simulation
time å with system size � when using ghost particles. As a reference time e ref the time needed for
the smallest system with �q-  "!�!�! was used. The scaling is almost perfectly linear ( å ò � ��
 r 

� )
which indicates a very efficient implementation of the data structure. The additional advantage of
using ghost cells lies in the fact, that the effort of setting up the cells and the effort of book-keeping
decreases with system size, as the number of cells in the outermost layers of the simulation box de-
crease. E.g., for a system with � -p "!�!�! particles, on average R è�V)ó of all particles are ghosts,
whereas this number has decreased to an average value of Rá ?V)ó for a system with the same density,
but �û-.��!�! v !�!�! .

The very efficient concept of ghost particles is realized only in few existing simulation codes.
These codes are often highly optimized for very specific hardware architectures, by e.g. using 64-
bit masks for variables which can be advantageous on hardware platforms such as a Cray T3E, or by
optimizing the data structures and memory handling for certain chain topologies, c.f. [158]. However,
a high optimization makes a code very sensitive to small changes in the underlying data structure,
so that often adoptability to new demands, e.g. a variety of chain topologies, can pose a problem
here. Additionally, in practice, one usually runs code on a variety of different hardware platforms.
Therefore, a compromise between high performance on the one hand and high flexibility in the coding
on the other hand is needed. These requirements are met by the design and implementation of the
simulation code for this work which was performed from scratch. A more detailed description of the
developed software can be found in Appendix D.1 on Page 168.
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3.4 Characterization of the simulation model

When looking for a suitable model for the simulation of polymer chains one has to make up one’s
mind about how many microscopic details one wants to incorporate into it. To study the long-time
dynamics of polymers in dilute solution, coarse-grained models are used because atomistic models
of long polymer chains are intractable even numerically with present-day computer equipment. For
many purposes it is sufficient to model just a few basic properties of polymer systems such as the
connectivity of monomers, the non-crossability of different chains (topological constraints) and the
flexibility of the monomer segments. The main advantage of this approach is that one has to deal with
only few simulation parameters which in turn allows one to choose the model that is most convenient
in terms of computational expenditure. Coarse-grained models are able to reproduce experimentally
known parameters which appear in universal scaling laws. The fact that polymeric systems at various
length and time scales show such common universal behavior makes this approach feasible.

A common class of such models are the so-called bead-spring models which are used in many
variations see e.g. [27, 85, 88], where coarse-graining is achieved by replacing a sub-chain of a real
polymer by a soft bead and a spring with a suitable force elongation law. Friction and mass of the
sub-chains are lumped into the beads as depicted in Fig. 3.18. The excluded volume of the beads is
modeled by a shifted Lennard-Jones potential (cf. Fig. 3.19 on Page 40) and Eq. (3.23)).

Figure 3.18: Sketch of the coarse-grained procedure leading to the bead-spring model.

For the intermolecular repulsion between beads there exists an empirical exponential decay law
which is also suggested by quantum mechanical calculations. For numerical reasons one prefers a
form of the potential of the following kind: ®j���W� ò �ÿ�� with ñãâ¤ "! . Very popular is the choice ofñ�-} ?� , because this is just the squared Van–der–Waals attractive power law and therefore again has
numerical advantages. Numerically simplest is the 6–12– or Lennard–Jones potential, which is also
well known and widely used in Solid State Physics:� ������� Ï�� ���W� -àÜ��æ» Õ ð � Ö �Ê
 � Õ ð � Ö ��� S (3.22)

The latter term in Eq. (3.22) describes the Van–der–Waals–attraction, and the former – the repul-
sive part – is often preferred to an exponential function due to its numerical advantages. The quantity�¥-.Q�° & determines the energy scale and ð the length scale accordingly.
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Figure 3.19: Bead-spring model depicting the excluded volume interactions. Monomers along a single
chain are connected with anharmonic springs and the excluded volume (red arrows) between monomer beads
is modeled by a Lennard-Jones potential.

For simulation purposes one introduces dimensionless reduced or Lennard–Jones units which
have the advantage of being independent of any specific unit system and which also avoid numerical
errors when processing very small numbers on computers. For further details, see e.g. Appendix B
of Ref. [8] and the footnote on Page 9. In these units �¿-áQ§° &�-� , ð -� and time is measured in

units of å·-�� Å�� [� .

For reasons of efficiency, a potential that is to be used in simulations should be short-ranged in
order to keep force calculations at a minimum. Therefore, instead of using the above original form of
the Lennard–Jones potential it is common to use a slightly modified version: The potential is cut off
at its minimum value � -¤� Å Y � -¦� ��� � ð and shifted to positive values such that it becomes purely
repulsive and smoothly approaches zero.

The expression for this WCA (Weeks-Chandler-Andersen) potential [211] reads

�§� ��������- !"$# Ü%��» Õ ð � Ö �Ê
 � Õ ð � Ö ��� �&� � A � ��� � ð v! otherwise S (3.23)

In order to be able to simulate systems at varying solvent qualities one has to add smoothly an
attractive term to the potential in Eq. (3.23). This is done by a potential of the following form:� �(' �?���W� - �  � � $'&)( � { � 
 �r« �{� ê �)� � Å Y � xã��xã� �+* Ø S (3.24)

The parameters { , « and ê are obtained by demanding that the cosine part fits smoothly to the
Lennard-Jones-Potential at the minimum value of � Å Y � -û� Ù, ð and that the combined potential is
zero at the chosen cutoff � �+* Ø -L �SçÞæð . Demanding this, one yields the following set of equations:{ � 
Å Y � �-«�- { \� � �r« - » v (3.25){ � 
�+* Ø �r« - { �ÃSç��Þ¿�r« - ��» v (3.26) � $'&)( � { � 
Å Y � � « � �� - �ëê v (3.27)
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Figure 3.20: Combined Lennard-Jones and cosine potential of non-bonded particles at different depths.
This range of ¾ is the one for which the simulation code was tested for stability.

which finally yields: { - VÃS� Fè�V�!$è�� � tWè � v (3.28)« - � !TS � Þ�t���� � t�Ü$Þ v (3.29)ê - � !TSçÞÃS (3.30)

The total form of the unbounded potential reads (see Fig. 3.20)

�6��� �(' ��������- !" # � ��� ���W� � �-� !mxã��x � ��� � ð v�É� �(' ������� � ��� � ð A � xã� �+* Ø vå otherwise v (3.31)

where � is a newly introduced dimensionless parameter which determines the depth of the used po-
tential. Instead of varying the solvent quality by changing temperature & directly, allowing for a
phase transition of the system, the very same effect is achieved by varying the interaction parameter� between particles. �I-á!TSU! corresponds to the athermal case (ideal solvent), and values of �NzJ!
correspond to decreasing solvent quality. Therefore, in all simulations, the temperature parameter &
can be kept at a constant value Q�° &�-} �SU!.� and only the parameter � is varied.

Since chemical bonds have a fixed length, real polymers are rather inextensible. This can be mod-
eled by a nonlinear spring law which keeps the stretching of the springs small even for large forces.
Rather common in simulations is the phenomenological FENE (Finitely Extendable Nonlinear Elastic)
potential which is
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butions to the total potential. ¾ was chosen as :F÷ b .
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Figure 3.22: Total potential for various values of ¾ .
The minimum of the potential is not shifted for differ-
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�1032 ~ 2Ç���W��- � � �
54 � 
r éÌ� �� � ÿ [6 [7 � �jx
� r vå otherwise S (3.32)

The values for the parameters are chosen as � r -C �SçÞæð and 4 -}V�!.� Ì ð 
 which have proven to
be useful in practice [85].

The total potential finally is given by the following equation (see Fig. 3.22):� Ø ' Ø � 	 ������->� � � �(' � ���W�¼��� 032 ~ 2 ���W� S (3.33)

The density �j-�� Ì � of the systems is chosen as ��-�!TS � Þæð � 0 throughout all simulations. This
is the density of liquid polymer systems for which the potential parameters have been optimized. The
code can be used for simulations of polymers in a melt, as well as for the simulation of single chain
systems by switching off the inter-chain interaction. The latter allows for simulating large systems of
isolated chains and, as a result, improves statistics considerably.
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Simulation results of linear chain systems
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Prior to the study of more complicated systems it is necessary to analyze the used model via the
simulation data of single linear chain systems. This analysis gives a complete set of reference data
for the chosen model with which the data of branched systems can be compared. It also includes a
new result for the scaling property of the hydrodynamic radius �j� of linear model chains which was
possible because of the high statistical quality of the obtained data. This is the first study that system-
atically investigates the properties of the previously described chain model. It will be shown that this
model is suitable for the description of polymers on a coarse-grained level as it not only reproduces
well-established theoretical results for certain limiting cases but also can be used to simulate model
polymers under solvent conditions that are close to experimental systems.

4.1 Simulation results: 9 – transition

In this section, the influence of temperature, respectively solvent quality on dilute solution proper-
ties of flexible linear chains will be studied over a wide temperature interval ranging from the athermal
limit to far below the � –temperature. In this analysis it was gone beyond most previous investigators
who mostly concentrated on simulations of rather short chains in the vicinity of the � –point. In this
study, the whole temperature range from an ideally good solvent to a very bad solvent is covered with
chain lengths of up to � -L��!�!�! . Simulations of chain lengths of � -LÞ�!�!�! were also done for the
athermal case and at the � –point.

The collapse transition of chains was subject of much theoretical work [61, 63–65, 72]. The type
of transition in the limit of infinite chain length was discussed in [60, 126, 145, 175]. It was pointed
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out by de Gennes [53] that the � –point is a tri-critical point and that mean field theory can be applied,
except for logarithmic corrections. Some early studies were done in [16] and [114]. An overview
of early studies is given in [218]. Numerous simulations have been performed, mainly focusing on
the use of various MC-methods both, on lattices [44, 138, 156, 186, 217, 230] and in the continuum
[82, 83, 141, 174].

In experiments, it is difficult to obtain complete and conclusive results in the study of the collapse
transition of chains, because one is restricted to solutions of extremely dilute polymer concentrations
[48].

At the � –temperature the chains behave as |¨� n 
 � ò | � k 
 � ò ��� �  F� 
���: with ��}¿-.!TSçÞ besides
logarithmic corrections in ¸Ý-pV . Therefore, one expects that a plot of | � 
 � Ì ��� �  F� vs. & for
different values of � shows a common intersection point at &�- &æ} where the curvature changes: for&�zJ&Q} the larger � , the larger the ratio | � 
 � Ì ��� �  F� has to be, while for &Cxü&�} the larger � ,
the smaller the ratio |¨� 
 � Ì ��� �  F� has to be. In our case, instead of varying temperature, different
solvent qualities were obtained by tuning the interaction parameter � .

The corresponding transition curves are displayed in Fig. 4.2 and 4.1 which show a clear inter-
section point at roughly �¡-º��}¿RJ!TSçt�Þ . Moreover it can be seen that the transition becomes sharper
with increasing chain length � in agreement with other investigators [141, 208]. The shape of the
curves is in agreement to those obtained by numerical studies and experiments [191, 217].
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Figure 4.1: Plot of ¿ ¯¥±IÀ Â D�8(² < :E@ À<; vs. interaction parameter ¾ for linear chains. The points represent the
simulated data and the dotted lines are guides to the eye. öÐH�ö M H b$÷ ø . The inset shows an enlargement of the
region around the K -point which is located at ¾{HNbW÷ þ�ø .

The different curves do not intersect exactly at one single point, but there is an extended region
in which the chains behave in a Gaussian manner. The size of this region is ò � ������
 [56]. There is
a very slight drift of the intersection point towards a smaller value of � with increasing chain length.
Therefore, to obtain a more precise estimate of the � –temperature in the limit of ( � äqå ), one has
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to chose a different graph that allows an appropriate extrapolation. If one draws straight horizontal
lines in Fig. 4.1 and 4.2, the intersection points of these lines with the curves are points at which the
scaling function ��� � �ã|9� of Eq. (2.36) is constant. Plotting different intersection points over � ������

should therefore yield different straight lines that intersect each other exactly at &�-ü&þ} and ��- �6}
respectively. This extrapolation to ( � ä å ) is displayed in Fig. 4.3 and 4.4. The different lines do
not intersect at � ������
 -ü! which is due to the finiteness of the chains. As a result of these plots one
yields �§}¿-.!TSçt�ÞDC !TSU!W�ÃS (4.1)

In principle, the hydrodynamic radius �{� should follow the same scaling laws as �Ðn and �)k .
It turns out however, that � � is not suited for a similar analysis of the � –point, because of huge
corrections to scaling. A detailed discussion and analysis of these finite size effects is included in
Section 4.2.4.
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4.2 Scaling analysis

This section provides an analysis of the scaling properties of the investigated systems.

4.2.1 Structure functions

An important property of individual chains is the structure factor ³Ç�\Qu� which is defined in its
spherical average as [59]

³Ç�\Qu� - �  � 
FEEEEE
~� Yy� � ¥ � Y Ï� Ïÿ Ï EEEEE


 �HG Ï� G v (4.2)

with subscript � iQ � denoting the average over all iQ -vectors of the same magnitude Q . The importance
of ³Ç�\Qu� lies in the fact that it is directly measurable in scattering experiments. For ideal linear chains
the function ³Ç�\Qu� can be explicitly calculated and is given by the monotonously decreasing Debye
function [223]

³Ç� Ë � - �Ë 
 l Ë �  í�q¥ � § n v (4.3)

where the quantity Ë is given by Ë - Q 
 | � n 
 � r . For small values of Ë , corresponding to large
distances between scattering units, the Debye function ³Ç� Ë � also gives a good description of a linear
chain in a good solvent with the scaling variable Ë describing the expansion of the chain. For very
small scattering vectors Q one obtains the Guinier approximation by an expansion of ³Ç�\Qu� , which is
used in experiments to calculate the radius of gyration |�� n 
 � . In the intermediate regime of scattering
vectors, ³Ç�\Qu� obeys a scaling law which, in a double-logarithmic plot, should yield a slope of �  Ì � .
For large Q -values finally, ³Ç�\Qu� is expected to behave as  Ì � . The overall expected behavior of ³Ç�\Qu�
can be summarized as follows

³ �\Qu� - !" # l  �  Ì V�Q 
 | � n 
 �'n � �\��»Í� 
 Ì |¨� n 
 � o	Q 
 vQ ������� �\��»Í� 
 Ì | � n 
 � �	Q 
 � �\��»Í� 
 Ì X(� 
�v Ì � �\��»Í� 
 Ì X�� 
 �	Q 
 S (4.4)

Very good agreement with Eq. (4.4) is displayed in Fig. 4.5 for ³ �\Qu�Ã� for all investigated chain
lengths at infinite temperature (athermal case). For large and intermediate Q -values, the curves are
independent of � and fall onto one single curve.

For chains under � –conditions, ³ �\Qu� provides a direct insight into the length scale on which
the excluded volume interaction is screened. Figure 4.6 displays the static structure functions of all
investigated linear chain lengths at the � –point and elucidates that the chains do not display a perfect
Gaussian behavior. The shape of the curves corresponds to the one expected by theory. The solid
lines represent the Debye approximation for different chain lengths whereas the data points represent³Ç�\Qu� obtained from simulations.



48 Simulation results of linear chain systems

0.01 0.10 1.00 10.00

k/σ−1

0

1

10

100

1000

10000

S(
k)

*N

N = 50
N = 100
N = 200
N = 400
N = 800
N = 1000
N = 2000
N = 5000

slope s = − 0.59
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0.01 0.10 1.00 10.00

 k/σ−1

0

1

10

100

1000

10000

S
(k

)*
N

 N = 50
 N = 100
 N = 200
 N = 400
 N = 800
 N = 1000
 N = 2000
 N = 5000
 S(x=k2<Rg

2>0, N=50)
 S(x=k2<Rg

2>0, N=100)
 S(x=k2<Rg

2>0, N=200)
 S(x=k2<Rg

2>0, N=400)
 S(x=k2<Rg

2>0, N=800)
 S(x=k2<Rg

2>0, N=1000)
 S(x=k2<Rg

2>0, N=2000)
 S(x=k2<Rg

2>0, N=5000)

Figure 4.6: Structure function I�8NJ$@\² at the K –point for chains of different lengths ² and ¾�HJbW÷ þ�ø in a
double-logarithmic data representation. The data points represent the simulated data and the solid lines display
the Debye function for different lengths, with ¿ ¯¥±IÀIÂ
O taken from the simulations.



4.2 Scaling analysis 49

For small Q –values the lines correspond very well to the data points, up to a value of QNR5!TSçV ,
except for the largest systems which already exhibit deviations at a value of Q_RJ!TS� . In general, the
Debye function tends to systematically overestimate the radius of gyration.

For large Q -values, ³ �\Qu� displays the local structure of the chain with a first peak at ��» Ì XÊ� R7è
which corresponds to the average nearest neighbor distance ¸ � R�!TSçÛWè of particles in the chain. The
deviations from the Debye-curves increase with increasing chain length. This might be due to a worse
statistics of the largest simulated systems compared to the smaller systems with chain lengths of up
to �û-} "!�!�! . In the previous section it was shown that the � –point is shifted slightly to a lower value
of � for increasing chain lengths. Therefore, the chosen data points with �¡-ü!TSçt�Þ might correspond
to a | � n 
 � value that is already below the actual � –point. For very large chains a small increase in �
leads to a considerably different | �an 
 � value. This might account for the fact that the data points in
the intermediate Q -range of Fig. 4.6 do not perfectly lie on top of each other, decreasing with a slope¢ - �  Ì �·- � � .

In the vicinity of the � -region, the scaling exponent equals ��-û�_}_- !TSçÞ . Therefore Q 
 ³Ç�\Qu� ,
plotted against wave vector Q should approach a constant value. Figures 4.7 to 4.13 display this be-
havior for the different investigated chain lengths with a high resolution in terms of � . The respective
dotted horizontal lines are a guide to the eye. For the longer chains there is a small shift of the � –point
towards a slightly smaller value of � in accordance with the results of the previous chapter. This shift
however is small and still within the error of Eq. (4.1). The larger the chains the smaller is the � -
range at which the chains display Gaussian behavior. As a result, these Kratky plots are in very good
agreement with the obtained result for the � –point in the previous Section.
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Figure 4.7: Kratky plot of I�8NJ$@ of linear chains
for different values of the interaction parameter ¾ .²}H�ø?b .
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Figure 4.8: Kratky plot of I�8KJ$@ of linear chains
for different values of the interaction parameter ¾ .² H�:/bFb .

For large values of � the chains are collapsed and form compact globules the local structure of
which is also reflected in the structure function by several distinct peaks for larger Q -values. These
peaks become the more pronounced the longer the chains are, reflecting the fact that the transition
curves become ever sharper with increasing chain length. Hence, longer chains are already in the
collapsed regime for values of � at which the smaller chains still exhibit Gaussian behavior. The
structure function of the largest system in Fig. 4.13 for ��-  �SU! already resembles very much the
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Figure 4.9: Kratky plot of I�8NJ$@ of linear chains
for different values of the interaction parameter ¾ .²}H�>?b�b .
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Figure 4.10: Kratky plot of I�8KJ$@ of linear chains
for different values of the interaction parameter ¾ .² H¢Æ�bFb .
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Figure 4.11: Kratky plot of I�8NJ$@ of linear chains
for different values of the interaction parameter ¾ .²}HNúFb�b .
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Figure 4.12: Kratky plot of I�8KJ$@ of linear chains
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scattering pattern of a sphere.

When varying the size of a chain at fixed temperature, in our case for a fixed value of � , one
expects ³Ç�\Qu� to be a function of the scaling variable �ã-	QT� � only, see e.g. [17]. Figure 4.14
displays plots of this type for the athermal case and in the vicinity of the � –point. The expected
scaling of ³Ç�\Qu� is verified for several chain lengths. In the latter three figures it can be seen that a
value of �_-J!TSçt�Þ is closer to the asymptotic � –point for � ä å than the other two values of � for
which deviations from the expected scaling are detected for the largest chains. These deviations are
due to the fact that the crossover of long chains from an expanded coil to a collapsed globule is very
sharp compared to the ones of short chains (cf. Fig. 4.1 and 4.2).

4.2.2 Tri-critical scaling

We next consider the tri-critical scaling of | � k 
 � and |¨� n 
 � as a function of the normalized
temperature distance | from the � point which in our case in terms of � is defined as:x - � �%� � �§}?� Ì �6}F�"�ØS (4.5)

According to the crossover scaling description of polymer chains by de Gennes [54, 55] and
Daoud and Jannink [51], |¨�)k 
 � behaves as|¨�)k 
�� ò � 
�� U �SRí��� x ���
¦ U � v (4.6)

where « Ø is a crossover exponent with subscript e denoting the tri-criticality of the exponents.

The scaling function ��R'� Ë � exhibits the following asymptotic behavior:

� R � Ë � - !"$# Ë 
 Ä ���1� : Æ for &�z�&~} v
constant for &�-à&~} vË 
 Ä � 7 �1� : Æ for &Lx &~}�S (4.7)

It should be noted that Eq. (4.6) and (4.7) also hold for the radius of gyration � n .
Figure 4.15 displays the data of |¨�)k 
 � according to Eq. (4.7). The crossover exponent was chosen

as « Ø -¦!TSçÞ which is the well established value of de Genne’s Blob scaling picture, c.f. Subsection
2.5.1 on Page 16. The expected scaling laws are drawn as straight lines and it can clearly be noted
that the overall scaling is fairly good in the regime �Iz>�~} . For the case ��x+��} there are deviations
from the expected asymptotic scaling behavior. This result can be accounted for by the fact that the
above equations hold only exactly in the limit ( x ä ! ) and ( � ä å ) with Ë -J� x ���
¦ U finite. In the
case of �ÖR �6} the relation �ÖR¦ Ì & is valid. However, in our simulations, the maximum value of x
is one and the chain length � is a finite number. Therefore, the term x is not small anymore and this
leads to the observed deviation from the expected scaling.

In MC simulations on a lattice with a different model [114] and [138] this problem is dealt with
by replacing « Ø by « eff. In these studies however, only the good solvent case and only the scaling of� n was investigated.

In general, the scaling is in good agreement with theory for the case ��z¯�è} . As for the collapsed
state, there is a larger slope of |¨� 
 � Ì ��� �  F� 
�� : than the expected asymptotic scaling law Ë ����� 0 at
intermediate x-values which was also observed in [29] and [201].
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Summary
A detailed analysis of the simulation model has been performed. It has been shown that the chosen

simulation model is capable of simulating a phase transition of polymer model-chains from the good
solvent regime to the collapsed regime. The � -point, as a characteristic quantity of this transition
has been determined for the used model with very large chain lengths of up to � -�Þ�!�!�! which is
well beyond the range of � of most previous investigations of � -points for various chain models in
literature. The collapse transition of chains approaches a step-function with increasing chain length� as is expected from theory. The capability of the exploited model to include a variety of solvent
conditions is also important in light of the fact that most experiments are done in a variety of solvent
qualities.

The measurements of the structure functions of this model for linear chains which lead to a value
of �6} which is in excellent agreement with the value obtained from � n and � k measurements. In
contrast to many other investigators, in this analysis, also the bad solvent case (collapsed state) of the
model chains is included which is reflected in the changing scattering pattern of ³Ç�\Qu� for decreasing
solvent quality.

A scaling analysis of the obtained simulation data has been performed. It was first shown that the
structure function obeys the scaling laws expected from theory. By making use of an appropriate scal-
ing variable one can make all curves of different � collapse onto one single master curve, exhibiting
the correct scaling exponent as suggested by theory. The scaling gave the best result for the systems
that correspond to a � -solvent which is yet another confirmation of the correct determination of the� -conditions of this polymer model.

It was then shown that also the results for � n and � k obey respective crossover scaling laws
according to a theory by Daoud and Jannink. This was also done for the simulated chains in bad
solvent conditions.

As a result one can conclude that the considered chain lengths in our study are obviously large
enough for the systems to exhibit scaling law properties which are strictly only valid in the limit of
( � ä å ). Therefore these considered chain lengths are suitable for comparisons with experimental
systems.
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4.2.3 Chain expansion

We next study the chain length dependence of the coil size at several fixed temperatures, re-
spectively solvent qualities in order to determine the different scaling exponents directly from the
simulation data.

It has been observed that even in the best experimental good solvent systems the excluded volume
effect is often surprisingly small [95]. An example for this apparent weakness of excluded volume
effects even in the best of good experimental solvents is given in Fig. 4.16. The experimentally deter-
mined scaling exponent of � n for Density Polyethylene (LDPE) in a good solvent (tri-chlorobenzene
(TCB)) [194] is displayed along with the respective exponents obtained from the simulation data.
Compared with the used simulation model this exponent corresponds to a value of � that is closer to� -conditions than to the athermal limit. This has to be taken into account when trying to compare
experimentally determined static properties with the chosen simulation model.
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Figure 4.16: Log-log plot of ¿ ¯ ± À�Â vs. ² at different solvent qualities as displayed. Straight lines indicate
effective exponents >�ö eff 8 ¾Ã@ . The exponent obtained for LDPE in tri-chlorobenzene [194] (dashed line) which
is a good solvent is shown in comparison with the simulated systems. In the extremely collapsed regime with
values of ¾\[�b$÷ùý the chains exhibit a slightly larger slope than >�öÐHN>�D"6 , c.f. Figure 4.18.

Figure 4.17 shows the scaling exponents of the model-chains based on simulation data of the
end-to-end distance.

Figure 4.18 shows the obtained effective exponents � eff �%��� for �an and �)k . One can see a smooth
variation of the exponent with solvent quality, as one expects, since � eff �%�O� has been determined from
a fit of all chain lengths including the short ones. The sensitivity of our model with respect to solvent
quality - expressed by the effective exponents � eff - is the largest in the vicinity of the � -point. Here,
a small change of � leads to very different effective scaling exponents. On the other hand, there is
an extended region of � in the good and bad solvent regime where large changes of � lead to almost
the same effective exponents. A step-function-like variation of � eff �%�O� is expected only in the true
asymptotic limit of infinite chain lengths for which the � –transition becomes a true phase transition.
Hence, the data provided in Figure 4.18 allow for a direct comparison of any experimentally deter-
mined effective exponents � eff with the respective parameter � that determines the solvent quality of
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the generated chains in our simulation model. A comparison of our model with LDPE in TCB, which
is a good solvent, is displayed in Figure 4.18 by straight lines. For this system one yields �¡R�!TSçÞ�!WÞ .

In [125] it has been reported that � eff �%�«-�!TSU!$� is overestimated in simulations of smaller chains
and decreases towards the expected value � eff -.!TSçÞ � è�è (cf. Table 2.1 on page 11) as the chain length
increases. To obtain the scaling exponent � in the long chain limit with such high precision chain
lengths larger than ��ÜsSU!�!�! have to be considered [24]. If one only takes the first four lengths � -Þ�! v SyS v ÜW!�! of our simulation data into account one yields � eff -á!TSçt�!s instead of � eff -L!TSçÞ�Û�V � . The
deviation of the latter value from the expected � eff -L!TSçÞ � è�è is less than  Ãó . Hence, our simulation
results yield a reasonable approximation for the length-size relationship in the athermal case. For the� –point the deviations of � eff from the expected value  Ì � are less than  Ãó . The explicit numerical
values of the obtained � eff �%��� are listed in Table A.18 in Appendix A on page 149.

Figure 4.19 shows the mean-square radius of gyration as a function of chain length � at � - �ù} -!TSçt�Þ . These values were obtained with particular high accuracy as they are used for the calculation of
size expansion factors {w
 of the chains.

Figures 4.20 and 4.21 display the rescaled chain length dependence of |¨� k 
 � and |¨� n 
 � respec-
tively, for various simulated solvent qualities. The deviations of the exponents obtained for � n and� k are obviously very small. However, the data for | � n 
 � generally can be computed more accu-
rately than the ones for |¨� k 
 � . In the vicinity of the � –point the chains exhibit the expected scaling
independent of chain size with an effective exponent � eff -á!TSçÞ . This behavior provides yet another
determination of the � –condition which is in accordance with the results of the previous sections.

For very long chains the slopes of |¨� k � n 
 � Ì ��� �  F� of different curves approach the same slope
independent of � which allows one to find a master curve representation of these static properties by
rescaling all distances � . These master curve plots are shown in Figures 4.22 and 4.23 using the
same shift factors � o for rescaling the chain length � . The superposition was obtained as follows:
The data points of the system with � -¦!TSçt�! was used as a reference system and the data points of
the other systems were shifted in a way such that they visually showed the best superposition with the
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Figure 4.18: Dependence of the effective exponent >Fö eff 8!¾T@ of linear chains on the simulation parameter ¾ .
Dotted and dashed lines are a guide to the eye, connecting the data points and straight dashed lines indicate>Fö eff 8!¾ãH ¾ M @mHû: which yields another estimate of the K –point in close correspondence of the previous
sections. The straight lines indicate the exponent of an experimental system [194] and the corresponding ¾ -
value of our simulation model.

reference curve.

Fig. 4.26 displays the expansion factor { 
 , according to Eq. (2.31), as a function of chain length.
This quantity shows the same convergence behavior for long chain lengths � in the good solvent
regime. The corresponding master curve for { 
 , again using the same shift factors for � , is displayed
in Fig. 4.28.

The scaling of � n 
 and � k 
 can be used to obtain the * È -value of the simulated model-chains in
the following way: From Figures 4.30 and 4.31 one can read off |¨� n � k 
 � Ì ��� �  F� at �¡-+�6} in units
of average squared bond length X�� 
 . Using Eq. (2.20) one obtains as a result

� n 
 Ì ��� �  F��-+* È X�� 
 -�!TSç�Wè � ð 
 v (4.8)

which is consistent with the value obtained from the extrapolation in Fig. 4.19. The average squared
bond length X(� 
 of the simulated chains has been measured for different solvent qualities and the
average over all chain lengths is displayed in Fig. 4.32. From this plot one obtains at the � –point a
value of X(� 
 -�!TSçÛ�Ü$��Þ .

Thus, according to Eq. (2.1) the value for � k 
 Ì ��� �  F� in units of X(� 
 is

tÐ�?� n 
 Ì ��� �  F�¥-L �Sçt�t � ð 
 v (4.9)

which is in exact agreement with the one obtained from the scaling plot in Fig. 4.31 directly.

Thus, according to Eq. (2.20) the characteristic ratio of the model-chains in the long chain limit
is
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Figure 4.22: Master curve for the end-to-end dis-
tance in the good solvent regime.
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Figure 4.23: Master curve for the radius of gyra-
tion in the good solvent regime.
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Figure 4.24: Master curve for the end-to-end dis-
tance in the bad solvent regime.
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Figure 4.26: Size expansion factor W À as a function
of chain length for various values of ¾ .
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Figure 4.27: Hydrodynamic size expansion factorW 8 À as a function of chain length for various values of¾ .
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Figure 4.28: Master curve for the size expansion
factor W À in the good solvent regime.
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Figure 4.29: Master curve for the hydrodynamic
size expansion factor W 8 À in the good solvent regime.
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* È -.tI�?!TSç�Wè � ð 
 Ì X�� 
 -á �SØè�è�! v (4.10)

and according to Eq. (2.17) one obtains for the corresponding Kuhn length

X K ->* È X(��-á �SØèÃ � ð�S (4.11)

The corresponding Kuhn steps � K per chain are hence given by

� K -.� Ì * È -�!TSçÞ�t�Þw�«S (4.12)
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Figure 4.32: Average bondlength Z [ À
of the simulated systems vs. interac-
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Summary
By direct comparison with an experimental system it was shown that the experimentally obtained

good solvent regimes are far from being close to the ideal athermal case in the exploited simulation
model. The static scaling properties of the simulation data were then used to show that it is possible to
combine all data points of the good solvent regime into a master curve by appropriately rescaling the
lengths � . The superposition of data points is generally very good. The assignment of well-defined
shift factors for the data in the vicinity of the � -point is very difficult as they depart only slightly from
a horizontal slope. For the data points in the collapsed regime, shift factors can be found as well which
cause the data to collapse in a master curve representation. However, in experiments, these solutions
are handled with great difficulty. The reduction of the extension of the chain requires that the quality
of the solvent must be so poor that suppression of aggregation due to intermolecular attractions,
and maintenance of stable solutions with measurable concentrations of the homopolymer, becomes
a formidable challenge. Consequently, virtually no data of such systems can be found in literature.
For the case of a good solvent many experimental data are scattered throughout literature, however,
very often results are reported without providing the explicit numerical data so that an appropriate
analysis is hardly possible. For �Ðn the experimental data can be plotted in the same manner as in
the master curve representations of Figure 4.23. In [95] this representation was done in essence for
numerous data collected from different sources for the expansion factor { 
 of � n and showed that
also for experimental systems in good solvents such a master curve representation of data is possible.
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4.2.4 Corrections to scaling: The hydrodynamic radius ]m�
In the interpretation of dynamic light scattering experiments the hydrodynamic radius ��� of a

polymer is determined via the Stokes-Einstein Equation:^ r - Qs°w&t�»~�
î  �)�wï (4.13)

where � is the viscosity of the solvent and
^ r

is the translational diffusion coefficient at zero con-
centration. It is this diffusion coefficient that is actually measured in a dynamic experiment, e.g. by
observing the relaxation time of the dynamic scattering function ³ ��� v e�� for small momentum trans-
fers ��� n �  . The quantity � � may be interpreted as an equivalent radius, when the polymer is
visualized as a rigid sphere with stick boundary conditions, obeying Stoke’s law.

According to [56], � � should follow the same scaling law as � k or � n , i. e.

�)� ò � k ò � n ò � � (4.14)

with �·R�!TSçÞ�Û in a good solvent and � -�!TSçÞ in a � -solvent.

However, it has long been observed that the experimentally determined effective exponent of ���
in good solvent is � k § " R�!TSçÞ�Þ_C_!TSU!W� [1, 2, 203]. In order to account for the non-asymptotic exponent� k § " in the experimental molecular range, a theory was introduced by Weill and des Cloizeaux [215]
that is based on the blob model, in which the short segments (blobs) exhibit ideal scaling, and only
segments larger than some critical size are swollen. Thus, the observed exponent for a finite length
chain will be somewhere between ideal �\�·-�!TSçÞW� and swollen �\� -�!TSçÞ ��� � .

The main point is that the exponent characterizing � � does not reach its asymptotic value, as
predicted by theory, within the range of experimental values of molecular weight ` Rp "! f �  "!5a
[21, 148]. The reason for this slow convergence of the exponent lies in the fact that the definition of�=� , see Eq. (2.10) gives a very large weight on short distances which, however, have large corrections
to scaling. In [117] it was estimated that molecular weights of at least of the order of ` R} "! � would
be necessary to reach the asymptotic regime for ��� .

In [13] it was shown in simulations of SAW on a fcc-lattice that the data fitted the relation

�)��� �1� -à�
�-�j�cb (4.15)

where �ã-º!TSçÞ�Û was used and the exponent Ó - �  Ì � was found empirically. However, in this
analysis only very short chains ���ºRàÜW!�!$� were simulated.

A simple argument was proposed in [66] which yields an exponent of Ó¤-}�\� �  F� for the leading
correction to scaling instead of �  Ì � . This exponent could be verified by the simulation data of very
long chains in this work and is shown in Fig. 4.33 using the asymptotic exponent � -C!TSçÞ ��� . The
correlation coefficient for a linear fit is %I-�!TSçÛ�Û�Û�Ü$Þ . For comparison, in Fig. 4.34 the very same data
are plotted versus an exponent of Ó¤- �  Ì � as suggested in [13] and show a much worse scaling, in
particular for the longest investigated chain lengths. A linear data fit in this case yields a correlation
coefficient of %I-�!TSçÛ�ÛWè�t . Hence, the simulation results obtained in [13] with rather short chains give
rise to an incorrect exponent Ó .
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Figure 4.33: Scaling plot of the corrections to scaling of the hydrodynamic radius
¯ 8

with an exponentâCH�8�ö <�:"@ and ö�HLbW÷ùø?ú�ú . The solid line is a linear fit of the simulation data according to the equationÅ�8 ß @ÍH�8�b$÷ Æ�bFþ `�bW÷ bFb�ø�@ ß ³.b$÷ 6$: 6Fú�`�bW÷ bFbFb�ø and a correlation coefficient 2·HNbW÷ 	d	d	 Æ�ø .
A derivation of the exponent Ó¤-}�\� �  F� can be found in Appendix E.

In Fig. 4.36 the dimensionless ratioe -}|¨� n 
�� ����
 Ì | �)� ����� ��� (4.16)

of the obtained simulation data is plotted for the full range of simulated solvent qualities, ranging from
the athermal limit to the collapsed regime. The effective exponents � eff of �an which were obtained in
Section 4.2.3 (cf. Fig. 4.16 and Fig. 4.18) were used for these plots. The overall agreement with the
expected corrections to scaling is very good.

The ratio

e
can be used for comparisons with experiments, as it is a dimensionless quantity. For

experimental systems of comparable solvent quality one should expect similar values of

e
. However,

as Figure 4.36 elucidates,

e
strongly depends on both, the solvent quality, and the molecular weight� . In Fig. 4.37

e
is plotted only for the three limiting cases of an athermal solvent ( �à-û!TSU! ), a� -solvent ( �¡-�!TSçt�Þ ), and a poor solvent, using the limiting values of � for the ( � ä å ) chain limit,�·-�!TSçÞ ��� , �·-á Ì � , and �·-} Ì V . From this Figure, one obtains limiting values of

e -á �Sçt�V�ÜfC�!TSU!�!WÞ
for the athermal case,

e -á �SùÜ$VT gC !TSU!�!$è for a � -solvent and

e -�!TSçÛWèÃ hC !TSU!�!s , respectively.

In experiments, the � -values are usually not extrapolated but simply taken as the ratio ��n Ì �=� ,
where �)� is determined via Equation 4.13 from the extrapolated translational diffusion coefficient in
the limit of zero scattering vector Q and zero concentration * . Typical experimental values of

e
range

from

e RC �SùÜ � to  �SçÞT for polyisoprenes in good solvent (cyclohexane) [202] and from

e R5 �Sç��t to �Sç��Û for various polymers in � –solvents [110].

The simulation data that are displayed in Figure 4.36 can be extrapolated to ( � äæå ). One then
obtains the limiting values e È - é�ê�ë~íì È e

(4.17)
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Figure 4.34: Scaling plot of the corrections to scaling of the hydrodynamic radius
¯i8

with an exponentâ�H�:"D?> and öãH bW÷ùø?ú�ú . The solid line is a linear fit of the simulation data according to the equationÅ�8 ß @ÍH�8�b$÷ øF6Fú `�bW÷ bW:�Æ�@ ß ³.b$÷ 6�>?b `Öb$÷ b�bW: and a correlation coefficient 2·HNbW÷ 	d	 ý"þ .
for the simulated chains for the whole range of solvent qualities. The scaling exponents in the scaling
law of � n and �Ð� are the same in the limit of infinite chain length. Therefore, only the pre-factors��+ Ì *?� remain in the quantity

e
to give

e È -q��+ Ì *?� . This ratio is displayed in Figure 4.35. The
theoretical limit in the bad solvent case is given by a hard sphere which yields

e -�!TSØè�è�Þ . The
quantity

e È undergoes a smooth transition from the good solvent to the bad solvent regime which
is an effect of the finiteness of the chains. In the limit ( � ä å ) one would expect a step-function-
like behavior of ( + Ì * ). In experimental systems, in addition to the finiteness of the chain lengths
one has polydispersity effects, which also have an effect on the quantity

e
. Therefore, in order to

perform a unique mapping of experimental length scales onto the simulated model system of chains
experimental systems, one has to consider polydispersity effects as well.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

λ

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

(a
/c

)

good solvent limit

θ − solvent limit

hard sphere limit
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Figure 4.36: Dimensionless ratio l'Hnm o ¯ ± À�p D ¿ ¯h8 =@? Â =1? of the simulated linear chains for different good
solvent qualities using the effective exponents ö eff obtained in Section 4.2.3 from Fig. 4.16.
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Figure 4.37: Dimensionless ratio l H m o ¯ ± À�p D ¿ ¯h8 =@? Â =@? of the simulated linear chains. The upper solid
curve represents a linear fit of the data points according to the equation Å�8 ß @¼H�< 8 :F÷ 	 þ�`'bW÷ b�Æ�@ ß ³�:F÷ þF6�ÆW`'b$÷ b�b�ø
and a correlation coefficient 2·HNbW÷ 	d	V	d	 b . The dotted line is a linear fit according to Å�8 ß @¼H
< 8(>W÷ b 	 ` b$÷ bÃÆ�@ ß ³:F÷ Æ�6W: `NbW÷ bFb�ý and has a correlation coefficient 2�H�b$÷ 	V	 ú 	 6 . The dashed line for the bad solvent data is a
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4.3 Polydispersity

In our simulations, all individual runs are done with only one chain length at a time which corre-
sponds to a polydispersity index ®L-J! (see Eq. (4.22)) which means that one has exactly monodis-
perse chains. In experiments, however, this is usually not the case. Depending on the polymerization
process and the synthesis method which is used to obtain the respective polymers under investigation
one obtains a more or less broad molecular weight distribution (MWD). These distributions can be
determined by Gel Permeation Chromatography (GPC) experiments. GPC measurements however
are error prone as it is not an absolute method like static light scattering, but it needs calibration with a
well known polymer sample. Therefore it is often difficult to obtain conclusive results with unknown
polymer samples, because the equilibration will usually only work among polymers of the same ho-
mology class. Another experimental problem is the fact that from the MWD alone one does not get
any information about the kind of branching that might be present in a polymer sample. Very often,
however, this is of considerable interest in industrial applications because branching has an important
influence on the properties of polymeric materials.

Relatively broad MWDs are usually obtained when performing step polymerizations where the
polymer chain grows stepwise by reactions that can occur between any two molecular species � and� in the reaction mixture, e.g.:

�=���-� � ä �=�É��� v (4.18)

�=�ä� �ü� �=� ä �=�É���j�=�{S (4.19)

Typical products obtained by step growth polymerization are polyester, polycarbonate, polyamide
and polyurethane. The relationship between the average molecular weight

� ` � � or the average poly-
merization degree

� � � � and the conversion   is described by the Carothers Equation� � � � -   �   v (4.20)

where   is the fraction of functional groups that have reacted. Equation 4.20 is derived under the
assumption of equal reactivity of the functional groups, i.e. the reactivity of the functional group is
independent of the length of the chain and unaffected by the reaction of other functional groups in the
monomer or polymer.

A reasonable representation of the obtained MWDs in experiments is given by the Zimm-Schulz-
Distribution. The latter can be formulated in terms of the degree of polymerization � and is given
by:   ���I��-  ì � « � ¹ «� � � ��½ ¦ � ¦9��� ÀEÁTÂ ¹ � «��� � � ��½ S (4.21)

This function includes the two parameters « , which determines the shape, and
� � � � , which denotes

the number average of the degree of polymerization.
ì

is the gamma-function. The parameter « is
related to the polydispersity index ®
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®.- � �%q �� � � � �  (4.22)

by ®.-  « v (4.23)

with
� �%q � being the weight average of the degree of polymerization. For values « Rq�ÃSU! , Eq.

(4.21) often provides a reasonable data fit for experimental data [188]. In many experimental studies,� �rq � Ì � � � � -values vary a great deal, usually between  �S� and �ÃSùÜ (see e.g. [155]). Figure 4.38
displays different examples of   ��� � , according to Eq. (4.21), each one with one particular value of� �rq � Ì � � � � . Therefore, in order to systematically investigate the influence of polydispersity on the
static properties of the simulated polymer systems, Eq. (4.21) was used as a distribution function.
The results for � n and �)� were then recalculated, assuming the distribution   ���I� for the different
chain lengths � .
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Figure 4.38: Schulz-Zimm MWD for various polydispersities as displayed.

With the Ansatz |¨�an 
�� ���I��-.+ 
 � 
 � (4.24)

and
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�B� ���I�.s |¨� ���� � ��� ��� � -�*�� ¾ v (4.25)

one obtains for the radius of gyration:

|¨� n 
 � - ÈÉ r   ��� ��|/� n 
 � ���I�Ã¸9��-á Ì ì � «w� ¹ «� � � � ½ ¦ + 
 ÈÉ r �NÄ 
 � � ¦9����Æ ÀEÁTÂ ¹ � «Í�� � � � ½t uYv wì �\��k � « �¹ «� � � ��½ Ä 
 � � ¦�Æ
¸$�

-�+ 
 ì �\��k � « �ì � «w� � ¹ «� � � ��½ �1
 � -�+ 
 � � � � 
 � ¹ ì �\��k �r« �ì � «w� ��« �1
 � ½ S
(4.26)

The analogous calculation for �E� yields:

�B��-�* ì ��¸Ð�r« �ì � « � � ¹ «� � � � ½ � ¾ -�* � � � � � ¾ ¹ ì ��¸Ð�r« �ì � « � �Ã« � ¾ ½ (4.27)

The general expression for

e - | � n 
 � ����
�B� reads:e - e � � � � � v « v k v ¸T��-û+ Ì * ¹ «� � � � ½ Ä ¾ � � Æ ¹ ì � « � ì �\��k¥�r« �, ì ��¸Ð�r« �g� 
 ½ Ä ����
¨Æ S (4.28)

In Equation (4.28), there is no explicit � -dependence of

e
anymore, however, an � -dependence

comes in by the effective exponents ¸ and k , which, in experiments and simulations, are a function of� . Asymptotically, ¸j->k , so that the � -dependence of

e
vanishes completely for ( � äæå ). In this

case one yields: e - e � « v k"��-º+ Ì * ¹ ì � « � ì �\��k �r« �, ì ��k��r« �g� 
 ½ Ä ����
¨Æ S (4.29)

In Eq. (4.29),

e
is only a function of the polydispersity parameter « and the asymptotic scaling

exponent k which is !TSçÞ ��� in a good solvent and !TSçÞ in a � -solvent, respectively. For all other solvent
qualities in between these two limiting cases one can use effective exponents, obtained from a log-log
plot of �=n vs. � . The ratio ( + Ì * ) can be obtained from simulation data by extrapolating the obtained
e
-values to the limit ( � ä å ).

Using different asymptotic values for k in Eq. (4.29) one obtains a set of curves

e - e � « v k"� .
Inserting the value kÇ-�!TSçÞ for a � -solvent simplifies Eq. (4.29) further and one obtains:
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Figure 4.39: Plot of l�8xXzy�{�H�bW÷ùø�@
according to Eq. (4.30).

e - e ��« v k -�!TSçÞW��-�+ Ì *@« ����
 ì � « �ì � «¡�� Ì �W� S (4.30)

This function is plotted in Figure 4.39 and exhibits the following limiting behavior:é�ê�ë|~}.�� } 7 , e Ì ��+ Ì *?�g� -á v (4.31)

é�ê�ë|~} 7� }�� , e Ì ��+ Ì *?�g� äæå (4.32)

The simulation data quantitatively exhibit the same limiting behavior. This is shown in Figures
4.40 and 4.41 where the function

e
is plotted for four different polydispersities « . The function

e
diverges with increasing polydispersity index ® and it approaches the finite limiting value ( + Ì * ) as® approaches zero. The limiting values of monodisperse chains have been determined in a previous
plot.

The calculation of the * È -value of our simulation model allows one to perform a minimal map-
ping of length scales onto experimental systems. * È expresses the stiffness of a polymer chain in
a dimensionless parameter. Thus, this is the smallest length scale at which a polymer chain exhibits
flexibility. A mapping of * È of our simulation model onto PS (see Table 2.2 on Page 13), which
has long been regarded as the best model polymer of linear flexible chains, yields a ratio of  ���t .
However, for lengths larger than the persistence lengths, one has freedom in this rescaling of lengths,
as was demonstrated in Section 4.2.3. This is valid as long as one does not leave the universality class
of the chains, e.g. the good solvent or � -solvent limit.

A potential uniqueness of a mapping of length scales is provided by the � -, respectively � � -
dependence of the dimensionless quantity

e
. This dependence occurs because of the huge corrections

to scaling that were subject of a previous chapter. We tested this mapping idea by taking into account
polydispersity in our linear chains as described above. We used experimental data obtained by Park
et al [155] for several polydispersities of PS in cyclohexane ( � -solvent) at V��ÃSçÞ§. C. In performing this
mapping we try to make use of the � -dependence of the corrections to scaling of the quantity

e
.

The results are displayed in Figure 4.42 and Table 4.1 and clearly reveal that this mapping procedure
does not work. If it worked, then the obtained ratios in Table 4.1 for different polydispersities would
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Figure 4.40: Dimensionless ratio l for various
polydisperse linear chains in athermal solvent condi-
tions.
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Figure 4.41: Dimensionless ratio l for various
polydisperse linear chains in K -solvent condition.
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Table 4.1: Mapping of experimental PS in a K -solvent onto the simulation model in this work. The errors
of ò H ¯¥± D ¯ 8 were calculated by using the errors of

¯í±
( `í6�� ) and

¯ 8
( `'>V� ) as given in Ref. [155]. The

errors of o�²i� p sim were obtained by taking into account the errors of ò in Figure 4.42. If this mapping worked,
the obtained ratios o�²i� p exp D5o�²D� p sim for various polydispersities should be the same. The obvious large scatter
of ratios reveals that the experimental data scatter is too large in order to perform a unique mapping of length
scales.� �rq � Ì � � � �  �S�  �SùÜ  �SçÞ �ÃSU!

sample � 2N F-3 F-2 x� � � � exp in experiment �  Fè v V�!$è è�� v  � ?Þ  � ?V v Ü$tT  � � v è�Þ�!� in experiment �  �SçV�Ü�C !TSU! �  �SùÜW!�C !TSU! �  �SùÜ�Ü�C !TSU!WÛ  �SùÜ�Ü�C !TSU!WÛ� � � � sim in simulation � VT ?VDC � !�! �T ?tiC� ?��t ����ÛiC� � EÜ  ?Û�ViC
è�Þ� � � � exp
Ì � � � � sim Þ�Þ V�V�Ü V�t�V tT ?Þ� Data taken from Ref. [155]. PS in cyclohexane ( � -solvent).

� � � � -values are
displayed as multitudes of PS-repeat units.� According to the data in Figure 4.42.

be more or less the same. However, they deviate strongly, which means, that no unique mapping of
length scales can be performed.

The main reason why this approach to mapping length scales fails, lies in the fact that the quan-
tity

e
is only very slightly dependent upon

� � � � . Therefore, the quantity

e
changes only slightly

while there is a huge change in
� � � � , and as a result, making the mapping of

� � � � -values arbitrary.
In principle, when going from

� � � � -ûÞ�! to
� � � � ä å the change in

e
is roughly 30% for the

monodisperse system, cf. Fig. 4.40, but the change in
� � � � is arbitrarily large. This effect de-

creases with increasing polydispersity, because then the curves in Figures 4.40 and 4.41 have a larger
increase. This can be clearly seen in the corresponding errors of

� � � � in Table 4.1. The larger the
polydispersity, the smaller is the error in the determination of

� � � � . For the smallest considered poly-
dispersity (

� ��q � Ì � � � � -¦ �S� ) one obtains an uncertainty in the determination of
� � � � that is more

than 2 times larger than the actually determined value which makes the result meaningless. Therefore,
the main problem in this failure of the attempt to perform a mapping lies in the large data scatter of
experimentally determined � n - and �)� -values and the resulting uncertainty in the calculation of � .

As a test of the good solvent regime we used experimental data [202] of PIP in cyclohexane, which
is a good solvent at ��Þ . C. In Ref. [202], practically monodisperse ( `&q Ì ` � A  �S� ) polymers were
synthesized. As example we give the results for a mapping with two samples of Ref. [202], namely
L-14 and L-12. For these two samples,

e
was determined as

e -û �SçÞT and

e -û �SùÜ � , respectively.
The � � -values of their samples, expressed in multitudes of PIP monomer units, was Þ�Ü$V�V and Û�Ü$t�t ,
respectively. Both samples are monodisperse and our mapping yields a ratio of 1:22 for L-14 and 1:56
for L-12, which clearly demonstrates again, that the quantity

e
is not suitable for a unique mapping

of lengths due to experimental data scatter.
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4.4 Shape analysis

This section provides a shape analysis of the simulated linear chains. In performing this analysis
we go beyond any previous studies which usually concentrated on very short linear chains simulated
on various lattices. To the best of our knowledge this is the first study of shape properties of the
chain-model introduced in Section 3.4. No experimental data are available on shape properties and
only few MC-studies of rather short linear chains have been performed.

The only results of shapes of linear chains obtained in MD simulations to the best of our knowl-
edge, are a series of investigations published by Bishop and various co-workers. In each publication
the results for d were different and always larger than the value suggested by theory, see Table 4.2.
These systematic deviations could be due to the nearest neighbor harmonic spring forces which are
used in this series of publications having an equilibrium distance of  �SU! as opposed to !TSçÛWè in our
model. In [35] their model was applied to the simulation of star branched systems as well. However,
there is a discrepancy between their obtained raw data for linear chains in Tables I and II of Ref. [35].
For the largest investigated linear chain length �p-ü��!�! they give values of | � n 
 � -  ?V�tÃSçÛ�t�C�!TSçÛ�!
in Table I and | � n 
 � -� ?ÞT �S� EÜrCü �S � è in Table II. This discrepancy of more than  "!só for the same
quantity is not resolved and therefore the results of this publication are at least questionable. In the
first publication [32] in this series of papers, no extrapolation of the obtained values to ( � äæå ) was
done. However, our simulations clearly show that this has to be done, as there are rather large finite
size effects, cf. Figure 4.43.

Batoulis and Kremer [13] performed MC simulations on a fcc lattice and performed an extrapo-
lation of the obtained data to ( � ä å ). They obtained a value for d which is ÜsSçÞ)ó larger than the
one expected from theory. As their maximum chain length was � -ßÜW!�! this discrepancy can be
explained by finite size effects.

Zifferer et al [226, 231] performed MC simulations both, on- and off-lattice, with up to �û-} "!�!�!
monomers and yielded values for d and d o which are slightly higher, respectively lower than the one
that theory suggests, cf. Table 4.2.

Our simulations were performed with much longer chains than where used by either of these
researchers. Furthermore, we obtained simulation data with a higher accuracy than in previous inves-
tigations of shape properties. The results of d and d o in an extrapolation to ( � ä å ) are listed in
Table 4.2 along with the results of other publications. Our result for d is V)ó larger than the theoret-
ical value. Along with the results of other researchers this indicates that theory underestimates the
influence of excluded volume on the shape of chains and that higher order terms should be taken into
account in the � -expansion of Ref. [9]. All other shape parameters listed in Table 4.2 are in fairly
well agreement with theory. A complete overview of the obtained results of the asphericities is given
in Fig. 4.43 according to the definitions in Section 2.4.1.

For the quantity k no theoretical values are available in literature. An extrapolation of the sim-
ulation data of b for the good solvent case and at the � -point yields k - !TSçt�Þ�Û�Û�Cá!TSU!�!�!$è andk -.!TSçt���Þ�Þ�C !TSU!�!�!WÞ , respectively. In [196] a shape analysis of MC-simulated polypropylene chains
using the rotational isomeric state model with excluded volume yielded k -ü!TSçt�tiC !TSçV�V in excellent
agreement with our result. From Figure 4.43 one can conclude that the quantity k is the most sensitive
to both, solvent quality and chain length, and d o , the average of two fluctuating quantities, is the least
sensitive one. As further illustration of this fact, the influence of finite size is displayed as well in
Figure 4.43 by an extrapolation of ( � äæå ) for two solvent qualities.

The quantity d o has been determined in only very few MC simulation studies which considered
only very short chains. In these simulations, finite size effects might contribute a systematic bias to
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Table 4.2: Table of extrapolated asphericities � and �k� of linear chains obtained in this work in comparison
with results obtained by other investigators.

Reference d (good solvent) d o (good solvent) d ( � –point) d o ( � –point)

theory !TSçÞ�V�Ü�� !TSùÜu ?Þ�� !TSçÞ���t�V�� !TSçV�Û�ÜS�
this work !TSçÞ�Ü$��Þ�C�!TSU!�!�! � !TSùÜ$V�Ü�C�!TSU!�!�Ü !TSçÞ����T �C !TSU!�!s ?V !TSçV�Û�Ü�C !TSU!�!WV
Batoulis and Kremer � !TSçÞ�Þ �
�
� �
�ã� �ã�
�
Bishop and Michels � !TSçÞ�Þ � CÝ!TS� "!�! �
�
� !TSçÞT � C !TSU!WÛ�Þ �ã�
�
Bishop and Clarke � !TSçÞWè�!�CÝ!TSU!WV�Þ �
�
� !TSçÞ��T gC !TSU!�Üu �ã�
�
Bishop and Smith � !TSçÞ�Þ�V�CÝ!TSU!W��Þ �
�
� �
�ã� �ã�
�
Bishop et al � !TSçÞ�Ü$V�CÝ!TSU!�!WV !TSùÜ$��ÛiC !TSU!�!W� !TSçÞ���Û�C !TSU!�!s !TSçV�ÛWèiC !TSU!�!s 
Cannon et al � !TSçÞ�Ü$V�CÝ!TSU!�!W� �
�
� �
�ã� �ã�
�
Jagodzinski et al. � �
�
� !TSùÜ$VT �
�ã� !TSçV�Û�t
Zifferer� �
�
� �
�
� !TSçÞ���tWè !TSçV�Û�Ü$Þ
Zifferer � !TSçÞ�Ü$tWè !TSùÜ$Þ � Þ �
�ã� �ã�
�� According to [212] and [9].� [105]. Renormalization group calculations.� [13]. MC simulations of short chains on a fcc lattice. ��� A ÜW!�!$� .� [32]. BD simulations of very short chains in the continuum.( � A Ü � ).� [34]. BD simulations of very short chains in the continuum. ( � A ÛWè ).� [35]. BD simulations of short chains in the continuum. ( � A ��Þ�! ).� [36]. Off-lattice MC simulations of very short chains. ��� A ��!�!$�

with an error of !TSU!W� � !TSU!WÞ %.� [46]. Off-lattice MC simulations.� [105]. MC Simulations on a simple cubic lattice. ( � A ����! ).� [231]. Off-lattice MC simulations. ( � A Û�t�V ).� [226]. MC Simulations on a tetrahedral lattice. ( � A  "!�!�! ).
the obtained extrapolated values. In order to perform very precise measurements of shapes of chains
one should best refer to d o rather than k or d . One the other hand, in literature, mostly the the latter
quantity has been used.

Our study gives a complete account of d , d o and k for many different solvent qualities. In Figure
4.44 the results of an extrapolation of all obtained asphericity values to ( � ä å ) are displayed.
As one expects, all definitions yield the same values in the collapsed regime ( �Jâ7!TS � ), gradually
approaching a value of d·-¦d o - k{-¤! . An extrapolation of the obtained curve indicates that zero
would be obtained at ��R� �S� but more likely the different curves will level off into a saturation just
above zero due to the excluded volume effect.

In order to compare the results obtained for chains containing different number of beads, the
normalized principal moments (shape factors)¢ ��Y�- | � Y 
 � Ì | � n 
 � (4.33)

and ¢ ��Y o -}|=� Y 
 Ì � n 
�� (4.34)

were measured.
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Figure 4.45 displays the determined values of ¢ �9Y versus the interaction parameter � . For ¢ � oY
very similarly shaped curves are obtained. For highly symmetric (spherical) configurations ¢ �uY�R} Ì V
whereas for rodlike molecules ¢ � 0 - ¢ � 
 -�! and ¢ � � -á . Apart from these limiting values no exact
analytical expressions are available for these quantities. In the three figures displaying ¢ �uY one can
clearly see that the curves exhibit a long plateau at high temperature which is only slightly dependent
upon � . The changes in shape for larger values of � are the more pronounced the longer the chains
are and reach a value of Rß Ì V for the longest investigated chain lengths. This behavior fits well to
the observed sharp collapse transition of long chains in Section 4.1.

The extrapolation of all shape factors to ( � ä å � is displayed in Figure 4.46. In the collapsed
regime all definitions, independent of the averaging process, approach the same value of  Ì V . There
is only a slight difference between ¢ �$Y and ¢ � oY in the good and � -solvent regime, which diminishes
for collapsed chains.

In Figure 4.47 the results of the extrapolated ratios of principal moments are displayed, indicating
the gradual transition of the chains from a rod-like object to a more spherical object as the solvent
quality decreases. In their original paper, Sǒlc and Stockmayer [183] performed MC simulations on
a lattice and found a ratio of | � 0 
 � � | � 
 
 � � | � � 
 � -� � �SØè��1�ÃSØè��  for unrestricted random walks
on a cubic lattice. Recent MC simulations with simple cubic lattice chains and polymer-polymer
interactions were performed by Tanaka and Mattice [195] and resulted in a ratio of  ?Þ���V��Ç for
athermal chains to  � �Sç��� �ÃSçt��  for chains under � -conditions to  �SçÛ��  �SùÜ��w for collapsed chains
in the low temperature regime. All of these data points are below our measurements. This might
indicate effects of the used lattice models and also finite size effects, as the used chain lengths in
these investigations were only �û-ü��!�! and �º-á "!�!�! , respectively.
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Figure 4.43: Asphericites of linear chains of all investigated solvent qualities and chain lengths ² and their
extrapolation to ( ²��¡  ) in a good solvent and a K -solvent.
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Figure 4.44: Extrapolated ( ²¢�£  ) asphericities of linear chains for different solvent qualities.
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Figure 4.45: Shape factors L'Åd¤ of linear chains of all investigated solvent qualities.



78 Simulation results of linear chain systems

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

 λ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ex
tr

ap
ol

at
ed

 s
ha

pe
 fa

ct
or

s

 sf1

*

 sf1

 sf2

*

 sf2

 sf3

*

 sf3
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4.5 Simulation details: 9 – transition

Starting from the athermal case with �}-æ!TSU! , the systems were allowed to equilibrate for a
long time, typically ten times the relaxation time and statistical averages were then taken from runs
extending typically over a time interval of about ten times the characteristic relaxation time. The
last configuration was then used as starting point for the next run at a lower temperature. By this
procedure the systems were gradually annealed to temperature below the � –temperature. Snapshots
of equilibrated linear chains at three different solvent qualities are displayed to scale in Fig. 4.48 to
4.50.

Figure 4.48: Snapshot of a linear chain under athermal conditions. The first and last bead have a red color.¾ H b$÷ b , ² H >FbFb .

Figure 4.49: Snapshot of a linear chain under K -
conditions. ¾{H b$÷ þ�ø , ² H >FbFb . Figure 4.50: Snapshot of a collapsed linear chain

far below the transition point.¾ H�:F÷ b , ² H�>?b�b .
To obtain statistically independent samples, the systems were started using the MD procedure de-

scribed in Section 3.3. This was done for about 50.000 integration steps to allow for a first relaxation
of the chains on a small length scale. Then every 1.000 integration steps a series of pivot moves –
usually about 100-500 attempted moves – was included, in order to also relax the chains on a large
length scale. The pivot moves also decorrelate the consequtive configurations of the chains. In the
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Figure 4.51: Time evolution of ¿ ¯ ± À Â for three different values of ¾ and two different initial configurations
of the chain configuration. Time is displayed in Lennard–Jones units with integration time step âÉÄ�HNbW÷ bW: . For
the systems with ¾ H b$÷ þ�ø and ¾ H
:F÷ b the fluctuations of

¯ ± À
are displayed as well.

production runs, snapshots of the whole systems were then taken every 500-5.000 integration steps,
depending upon the length of the chains. As a criterion for a system having reached its equilibrium
state, �=n 
 ��e�� , �)k 
 ��e�� and �)�u��e�� were monitored. Tests of the implementation of this work, in terms
of the chains reaching their equilibrium state, did not show any significant dependence on the ratio �
of MD steps to pivot moves. Tests of different initial configurations of linear chains with, on the one
hand, random walks generated by the procedure described in Section 3.3.2, and on the other hand,
fully stretched chains with the monomers being set at their equilibrium distance of ¸
-º!TSçÛWè , are
displayed in Fig. 4.51 and 4.52 for the end-to-end distance and the radius of gyration.

These figures elucidate that the choice of a random walk setup of chains is more favorable than
starting with an elongated chain as in the former case the chains are much closer at their final equilib-
rium configuration. On the other hand, the different curves converge very quickly on a time scale of
roughly 1.000-2.000 LJ-timesteps, so that this gain in speed is not as crucial for single chain systems
as it is for chains in a melt, where slow reptation dynamics due to the presence of many other chains
slows down the ralaxation behavior of each individual chain.

The figures also display the much larger fluctuations of the chain extensions at the � –point com-
pared to the collapsed globular state. The exact measured values of the fluctuations of | � k 
 � and|¨� n 
 � of all single chain systems are listed in the tables of Appendix A.
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Summary
In Section 4.2.4 the obtained simulation data were used to demonstrate that the corrections to

scaling of �Ð� are different from the ones for � k and � n . The reason for experiments to fail showing
the limiting scaling behavior is due to the experimental systems exploiting too short chain lengths.
With the simulation data in this work the correct scaling behavior of �m� could be demonstrated and
is published for the first time.

Taking into account polydispersity with linear chain systems revealed that the quantity

e
is not

suitable for a unique mapping of length scales between experimental systems and simulation systems.
It was shown that this is due to the small sensitivity of the quantity

e
to the degree of polymerization

when using experimental data. of this scatter of data a unique mapping cannot be performed.

In Section 4.4 an extensive shape analysis of the linear model-chains was performed, including
an extrapolation of three different definitions of asphericity to the � ä å ) limit. The relative
sensitivity of these quantities to finite size effects was demonstrated in dependence of the solvent
quality, covering the whole range from good solvents to bad solvent conditions. It was found that the
asphericity of linear chains decreases with chain length.
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Simulation results of branched chain systems
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The properties of a polymer system can be significantly modified by a variation of the molecular
architecture. As a result of topological constraints caused by branching or even loops, the local aver-
age polymer density increases relative to that of a linear chain. This effect is particularly important
in the study of dilute solution properties of single chains as well as in polymer melt systems where
branching has a major influence on the rheological properties.

This chapter gives a summary of the results obtained from simulations of single branched chain
systems with a variety of different topologies.
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5.1 Simulation of stars

5.1.1 Introduction

During the initial period of the development of theories concerning polymer chains and their
solutions, star-branched polymers were used as the simplest idealized model of branched polymers
[43]. For the theoretical description of this model, several techniques based on de Gennes’ blob theory
[56] were applied [28, 30]. Daoud and Cotton [52] introduced a model for the conformation of star
polymers that is based on the blob concept. Their model assumes the blob size and consequently the
monomer concentration to be a monotonically decreasing function of the distance from the center
of the star. This scaling theory is strictly only valid in the limit of long enough chains focusing on
scaling exponents and completely ignoring any pre-factors.

Other theoretical approaches were based on the renormalization group (RG) theory [143, 144].
For random flight chains some parameters which describe the influence of the presence of a branch
point on the size and shape of macromolecules could be calculated [42].

Experimental progress in polymer chemistry allows for the preparation of regular many-arm stars,
and stars with up to �N-7 ?� � arms have been synthesized [171, 219]. These many-arm star systems
are used as ideal models for polymeric micelles. Light and neutron scattering have been useful in
obtaining new insight into how the size of a star depends on the functionality, arm molecular weight,
and solvent quality.

Many numerical simulations, both MC and MD, have been done [13, 34, 36, 86, 87, 178, 179] to
test scaling predictions and to determine other properties such as structure factors. However, many
studies included only a few arms or very short arm-lengths. In light of this, it is interesting to perform
a systematic study of stars with our model-chains for different numbers of arms � and longer arm-
lengths than were used in most of these studies.

By use of lattice-models, it is possible to investigate not only the properties of linear chains but
also of star-branched chains in a highly efficient manner. Usually, the chains are generated by use
of biased sampling methods, originally invented by Rosenbluth et al. [165] for linear chains, or by
multimerization [13] of arms, which is a modification of the dimerization method by Alexandrowicz
[7]. In our simulations of star systems, we applied the same MD/MC-method as was described for
the linear chains in Section 4.5 on Page 79. The only difference is, that we apply the pivot algorithm
to each individual arm of the stars.

Grest and Kremer [86] investigated many arm-systems with up to �.-ºÞ�! and a constant arm
length of � � -¦Þ�! was simulated using MD. Also stars with ��-ß "! and � � -¤��!�! were included
in this study which was focused on the investigation of scaling properties of the structure function in
light of the scaling theory. No calculations of shape factors or characteristic ratios such as

e
or õ were

done in this study.

Sikorski et al [178], performed MC simulations on a simple cubic lattice, where only ( �Ö-üV )-arm
stars were considered and no shape factors were determined. Two years later, they performed another
MC study [179], again only with ( �N-¦V )-arm stars of the same length � � Å � § -¦��t�t , including an
analysis of d and d o , including the effect of different solvent qualities. However, no extrapolation of
the obtained values to ( � ä å ) was done.

Such an extrapolation was performed by Zifferer and Olaj [229] in a MC-study of shape factors
and the asphericity of stars of constant arm-length � � -á ?t�! with �¡- �\V � Û�tW� arms. Later, Zifferer
[231] performed another MC-study of stars of constant arm-length � � -àÜ � ! with �Ö- �\V �  ?�W� arms
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and determined the same properties. In these simulation studies only RW-chains were considered and
no õ - or ¨ -factors were calculated and no analysis of scaling properties was performed.

In [13], a systematic investigation of scaling properties of stars has been performed, including
some results on the asphericity d . However, in this study only very short arm lengths and only stars
with � A t arms were considered. In the previous chapter, we demonstrated that in [13] a wrong
exponent for the correction to scaling of �{� was confirmed ( Ó -æ Ì � instead of Ó - �\� �  F� ).
In light of this new result it is interesting to perform a systematic simulation study of star systems,
including effects of solvent quality and with arm-lengths that exhibit the correct scaling behavior. Up
to date, to the best of our knowledge, no systematic study of shape factors of stars for many different
arms, including different solvent qualities has been done. To our knowledge, this is the first systematic
study of branched systems using the simulation model described in Section 3.4.

5.1.2 Simulation results: © – transition of stars

The ideal solvent case and the � –point are the two most important limiting cases of polymer
solutions which can be treated in theoretical investigations. As most experiments are usually done in
solvents of either quality, the simulations of branched systems will focus on polymers in the athermal
limit and at the � –point. The purpose of this section is to analyze star branched polymer chains in
order to reveal a possible shift of the � –point of the used model due to chain branching. The question
whether there exists a possible shift of the � –point was not only raised in the context of stars [52, 107],
but also for cyclic chains the experimental data for different systems [168] have shown a depression
in the � –temperature of up to � ó with respect to those obtained for linear chains.

The � -state is experimentally attained at the temperature at which the second virial coefficient� 
 vanishes, that is, when the molecules are non-interacting in pairs. Since the repulsive three-body
interactions between two molecules must be compensated for by temperature-dependent two-body
attractions, it turns out that in a star polymer the � -temperature must be lower than in a linear chain
even more so the larger is � or the smaller is � Ì � . In fact, because of its topology, the star has a
larger multiplicity of three-body repulsions between two molecules than a linear chain. However, if
the molar mass is very large (i.e. � fixed and ( � ä å )), the region close to the branch point has a
negligible effect and a universal asymptotic � -temperature is reached.

Only very few simulation studies, mostly using lattice models, of the transition behavior of stars
have been done, see e.g. [75, 107]. These studies focused on few physical quantities and did not
include any shape analysis. In [14] one of the most detailed MC-study of arm lengths of up to �Ö- �
was performed. The simulation data obtained in this study suggest that the asymptotic � –temperature
of stars on a fcc-lattice is the same as for linear chains. However, in this study only a maximum arm
length of � � -á "!�! was considered.

In the following, the results of a � –point analysis of star polymers with varying number of arms� and lengths � are displayed. In our investigation we simulated much larger chains than in previous
studies. Figure 5.1 exhibits the appropriate scaling plots of stars with arm numbers � - V v Ü v Þ .
Figures 5.2 and 5.3 exhibit the same scaling plots for stars with �_-á "! and �_-á ?� arms.

The determination of the respective � –points was done as described in Section 4.1. The results
are given in Table 5.1 on Page 88. Within the error-bars of the simulation data, there is no detectable
shift of the � –point for star branched systems when compared with the linear chains. The observed
systematic decrease of ��} with � A  "! can be easily explained as a finite size effect, because the
effective arm length � � decreases in our simulations with increasing number of arms � . The star
system with �}-q ?� arms however has been simulated with a larger arm length than the  "! -arm
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Figure 5.1: Determination of the K -point for different stars. Left: ¿ ¯ ± À Â D�8(²_<Ç:E@ À<; vs. interaction parameter¾ . Right: ¾ vs. ²�=1?�A À for different constant values of the scaling function. The extrapolations yield slightly
smaller values of ¾9M , compared to the corresponding plot of linear chains in Figure 4.3 on Page 45.
a) ÅjH 6 , b) Å�H¢Æ , c) Å H�ø .
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� �§} � � -�� Ì �
2 !TSçt�Þ�!�C !TSU!W��! 2000
3 !TSçt�Ü$Û�C !TSU!s "! 300
4 !TSçt�Ü � C !TSU!s � 200
5 !TSçt�Ü$t�C !TSU!�!$è 160

10 !TSçt�Ü$V�C !TSU!s "! 80
12 !TSçt�Ü$Þ�C !TSU!s ?� 120

Table 5.1: Table of ( ²«�¬  ) extrapolated K –points of the
simulation model described in Section 3.4 for different stars.
The extrapolation shows that the K -point for star branched sys-
tems approaches the one of linear chains with increasing effec-
tive arm length ² È . The apparent shift of the K -point with stars
thus is only a finite size effect which is due to small effective
arm lengths. The deviations for the considered ²ÝÈ -values in
this work are within the statistical errors of the K -point deter-
mination.

Reference
�V Ü Þ t  "!  ?�  �

this work !TSçV�Ü$��Ü !TSç��V � Þ !TS� � !WV !TS� EÜ�Ü$V !TSU!$è�! � !TSU!WtT ?� !TSU!WV�!�!
Bishop et al [36] !TSçV�Ü$Þ !TSç��Ü$V !TS� � Þ � � � � � � �{�
Bishop and Smith [35] !TSçV�Þ�V !TSç��Ü�Ü !TS� Fè�è � � !TSU!$è�! � � � �
Batoulis et al [13] !TSçV�Ü�Ü !TSç��Ü$Þ !TS� � è !TS� ?Þ�! �{� � � � �
Cannon et al [46] !TSçV�Ü$Þ !TSç��Ü$V !TS� � Þ � � � � � � �{�
Zifferer [231] !TSçV�Ü$VWè !TSç��Ü$V � � � !TS� EÜ � V !TSU!$è�è�Û !TSU!WtT ?t � �

Table 5.2: Table of extrapolated asphericities � for the simulated star-branched chains of this work compared
to other publications. Athermal chains with ¾mHÝbW÷ b . The results of our study are in excellent agreement with
results of other researchers.

system and shows a slight increase of �Q} . The � -point obtained by averaging over all systems of
Table 5.1 is:

�6} -�!TSçt�Ü$ÞiC�!TSU!s "!TS (5.1)

From this systematic investigation one can draw the conclusion that the � –point for star branched
systems is not shifted within the statistical errors of the simulation and that the observed small shift
is only due to the finite length of the star arms. This interpretation can also be applied to the experi-
mentally observed apparent shift of � -points for branched macromolecular systems. Additionally, as
there is no shift of the � –point with stars where all the arms emanate from one high-functional center
with very high density, one can expect that this will also not be the case for other types of branched
chains with a much lower monomer density in the vicinity of the branch point. Thus, the � –point of
linear chains that was determined in our study in Section 4.1 can also be used to simulate branched
chains under � –solvent conditions.

5.1.3 Shape analysis of stars

This section provides an analysis of the shape properties of the simulated star systems. No ex-
perimental data at all are available on shape properties of stars and only very few simulation studies
have been done, e.g. [13, 179, 226, 230, 232]. To the best of our knowledge, in all studies of shapes
of chains, pure MC-methods were employed.
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Figure 5.4: Extrapolated ( ²­�®  ) asphericities �
for symmetric star polymers with Å�HN65y Æ�yÊø5ygþ�y¨: b�y¨:E>
and : ú arms under athermal conditions. Straight lines
are linear fits to the data points. A comparison with
results of other investigators is given in Table 5.2.¾ H b$÷ b .
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Figure 5.5: Extrapolated ( ²­�¬  ) asphericities �
for symmetric star polymers with Å�H 6�ygÆ�y�øSyÊþ5y¨:/b5y :/>
and :/ú arms under K -conditions. As expected, the stars
exhibit an increasing spherical structure with an in-
creasing number of arms. A comparison with results
of other investigators is given in Table 5.3. ¾{H b$÷ þ�ø .

In one of the first more extensive studies on stars, Batoulis and Kremer [13] investigated the
quantity d with MC-simulations on a fcc-lattice and performed an ( � ä å ) extrapolation. However,
they only considered stars with very few arms � A t .

Zifferer [226] used MC-simulations on a tetrahedral lattice to investigate d , d o and the shape
factors ¢ ��Y for stars with � A  ?� . However, they only focused on stars in a good solvent and did not
perform an extrapolation of the obtained data to ( � ä å ).

Zifferer and Olaj [232] performed MC-simulations on various lattices and extrapolated the ob-
tained data to ( � ä å ). In their study, only linear chains with � A  "!�!�! were considered. Their
determined results for d and the shape factors ¢ �$Y turned out to be dependent upon the lattice type for
finite chain lengths.

In [230], Zifferer considered shape factors and the asphericities d o of stars with � A  ?� in a MC
study using a tetrahedral lattice. Athermal and � -solvents were considered, but no extrapolation of
the obtained data to ( � äæå ) was performed.

In a MC-study on a cubic lattice by Sikorski and Romiszowski [179], d and ¢ �TY of stars were
considered for various solvent qualities. However, this study focused entirely on V -arm stars and no
extrapolation of the obtained quantities to ( � ä å ) was done.

In our study, we extrapolated all quantities d , d o , k , the shape parameters ¢ ��Y and ¢ � oY to ( � äæå )
in order to account for finite size effects of the simulated chains. We also used longer arm lengths
of the stars and a larger number of arms ( �
-ßV v Ü v Þ v t v  "! v  ?� v  � ) than have been used in most of
the previous studies. Additionally, our results on shape parameters are very accurate, exhibiting an
uncertainty only in the fourth digit.

The results of an extrapolation to ( � äqå ) of the asphericity parameter d are shown in Figures
5.4 and 5.5 for the two most important limiting cases, the athermal solvent limit and the � -point. The
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Figure 5.6: Extrapolated ( ²­�®  ) asphericities �
for symmetric star polymers with Å�HN65y Æ�yÊø5ygþ�y¨: b�y¨:E>
and : ú arms under athermal conditions. Straight lines
are linear fits to the data points. ¾�H b$÷ b .
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Figure 5.7: Extrapolated ( ²­�¬  ) asphericities �
for symmetric star polymers with Å�H 6�ygÆ�y�øSyÊþ5y¨:/b5y :/>
and : ú arms under K -conditions. ¾ H bW÷ þ�ø .

Reference
�V Ü Þ t  "!  ?�  �

this work !TSçV�Ü$Û�� !TSç�WèÃ Fè !TSç����!�Ü !TS� ?t � t !TS� "!�!W� !TSU!WÛ�V�V !TSU!WÞT ?�
Bishop et al [36] !TSçV�t�! !TSç�Wè�Ü !TSç�T � �{� � � �{� � �
Cannon et al [214] !TSçV�t�!WÛ !TSç�Wè�V�� !TSç�T ?Û�Þ !TS� � V�Ü � � !TSU!WÛ���� � �
Zifferer [231] !TSçV�Þ�Þ � !TSç��t�Û�� � � !TS� Fè�è � !TS� "!Wt�V !TSU! � t � � �

Table 5.3: Table of extrapolated asphericities � for the simulated star-branched K -chains of this work. The
results are in very good agreement with other publications. Our simulation study is the most extensive one,
covering the whole range from few arm stars to highly symmetrical many-arm stars.

obtained results are summarized in Tables 5.2 and 5.3. A comparison with the few data available in
literature is displayed in these tables.

The extrapolations of d o and k are shown in Figures 5.6 to 5.9. Figure 5.11 displays the extrap-
olations of the shape factors ¢ �WY of the different stars. Such an extrapolation was also done for the
shape factors ¢ � oY which look very similar. Probably the most extensive series of investigations of
shape factors ¢ � Y in literature have been done so far by Zifferer in a series of papers [228, 229, 231].
Therefore, our obtained results are compared with these references in Table 5.4 on Page 94.

Generally, the results in this table are in excellent agreement with the values obtained in the studies
by Zifferer. The agreement of the good solvent data is better than for the � -chains. As for most data
only finite chains were considered without extrapolation, there is less agreement with our results.
Those values by Zifferer which were obtained by an extrapolation of chain lengths to ( � ä å ) are
in better agreement with our data. This shows the importance of finite size effects for this quantity
and the high quality of data of our simulation study.

Extrapolations of data for ¢ � oY were performed as well and look similar to the ones displayed
in Figure 5.11. The obtained results from these extrapolations for � -chains and athermal chains are



5.1 Simulation of stars 91

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014

N
−1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60
 a

sp
h

er
ic

it
y 

b

good solvent

 f = 3
 f = 4
 f = 5
 f = 6
 f = 10
 f = 12
 f = 18

Figure 5.8: Extrapolated ( ²¯�°  ) asphericities{ according to Eq. (2.26) for symmetric star poly-
mers with Å
H�65y Æ�y�øSygþ�y¨:/b5y¨:E> and :/ú in good sol-
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Figure 5.9: Extrapolated asphericities { accord-
ing to Eq. (2.26) for symmetric star polymers withÅjH 6�ygÆ�y�øSyÊþ5y¨:/b5y :/> and : ú in a K -solvent. ¾ H bW÷ þ�ø .

summarized in Table B.26 in the Appendix B. In this table, a comparison with simulation data by
Zifferer [229] is done. There are some small deviations present in the third digit of most star data
in this table. This can be explained however, by the fact that the obtained data in [229] were not
extrapolated to infinite chain length.

In general, the results show that the size and the shape of molecules are closely related to each
other. The global dimensions of symmetric configurations are small, whereas un-symmetric confor-
mations are of extended size. The shape asymmetry of star-branched chains decreases clearly with
increasing arm number. The chain-length dependence of the asphericities is very weak as the ex-
trapolation reveals. However, finite size effects become more dominant with increasing arm number.
The quantity k exhibits the largest sensitivity to this effect. Interestingly, we find that – except for
the V -arm star – the star polymer in a good solvent is more spherical than in a � -solvent. This effect
becomes stronger with increasing arm number. This is just the opposite behavior that was found for
the asphericity of linear chains, cf. Fig. 4.43 on Page 76. Unlike the linear chain, the asphericity of a
star increases with � .

The same change in the � -dependence from the linear chain to stars can be observed with the
shape factors: While ¢ � � of linear chains decreases with � and ¢ � 
 and ¢ � 0 increase (cf. Fig. 4.45),
the opposite is true for stars. Also the dependence of the shape factors on chain length is much larger
than for the different asphericities and this dependence increases with the number of arms.

Hence, it appears, as if the influence of the topological constraint of a star, which is given by the
central core, is more important than any local effects which cause short linear chains to be stiffer.
Because the influence of the star core diminishes in the limit ( � ä å ), the symmetry of star-
branched chains decreases with chain length.

Another interesting quantity is the scaling behavior of d9��� � . In [13] an exponent of �Ð-} �S� ?Û was
determined for stars in a � -solvent. However, only stars with up to �Ö-.t arms were considered. Our
simulation data are displayed in Figure 5.10 and we obtain the equations
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d ò � ����
 0�0 (5.2)

and d ò � ����
 r � (5.3)

for an athermal and � -solvent, respectively.
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Figure 5.11: Extrapolated shape factors of stars in the good and K solvent limit.
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Table 5.4: Table of extrapolated shape-factors L'ÅV¤ obtained in this work, compared with other publications.
Our study covers the largest range of arm numbers Å and all results were obtained by an ( ²±�²  ) extrapola-
tion.

Reference
�� V Ü Þ t  "!  ?�  �¢ � � good solvent

this work !TSØè�è�Û�� !TSçt �  Fè !TSçt�� ��� !TSçÞWè � Ü !TSçÞ�Ü � Þ !TSùÜ � ��� !TSùÜ9è�!W� !TSùÜ$��Û��
Zifferer � !TSØè � !$è !TSçt � VWè !TSçt���V�V � � !TSçÞ�Þ�Ü$Þ !TSùÜ$Û�!W� !TSùÜ9è���! � �
Zifferer � !TSØè � !�Ü !TSçt � ��t !TSçt���VWè !TSçt��T ?Þ � � !TSùÜ � V � !TSùÜ9èÃ "! � �¢ � 

this work !TS� ?t�V�V !TSç��Ü$VWè !TSç�Wè�è�� !TSç��Û�Þ�! !TSçV�!�Ü�Ü !TSçVT EÜ � !TSçV���! � !TSçV���t�Û
Zifferer � !TS� ?t�V�Û !TSç��Üu EÜ !TSç�Wè�Ü$t !TSçV�!s ?V � � !TSçVT Fè�Û !TSçV��T EÜ � �
Zifferer � !TS� ?t�Üu !TSç��Ü$�Wè !TSç�Wè�Ü$Þ � � !TSçV�!WV�t !TSçVT ?Û�Û !TSçV��T ?Û � �¢ � 0
this work !TSU!WÞWè�Þ !TSU!$è�Ü$� !TS� "!�ÜW! !TS� ?��t�t !TS� ?V � Ü !TS� ?Û�Û�! !TSç��!$è�! !TSç����!$è
Zifferer � !TSU!WÞ�Þ�V !TSU!$è�Ü$Û !TS� "!W��! � � !TS� EÜ�Ü$� !TS� ?ÛT ?Û !TSç��!Wt�t � �
Zifferer � !TSU!WÞ�Þ�Þ !TSU!$è�Ü9è !TS� "!s ?Û � � !TS� EÜ$tT !TS� ?Û�t�V !TSç��!$èÃ � �¢ � � � -solvent
this work !TSØè�V �  !TSçt�Û�!W� !TSçt�Üu ?� !TSçt�!WtWè !TSçÞ � Ü$� !TSçÞT EÜ$Û !TSçÞ�!$è�Û !TSùÜ$Þ � è
Zifferer � !TSØè�tT ?� !TSçt � è�� !TSçt�V ��� � � !TSçÞWè �  !TSçÞT ?Û�t !TSçÞ�!�!Wt � �
Zifferer � !TSØè�t�Ü$t !TSçt�Û�!WÞ !TSçt�Üu ?t � � !TSçÞ � ��t � � !TSçÞ�!Wt�V � �¢ � 

this work !TSç�T ?Û�Û !TSç����Û�Û !TSç��Þ�VWè !TSç�Wè���t !TSç� ����� !TSçV�!WÞ�t !TSçV�!WÛ�t !TSçV����T 
Zifferer � !TS� Fè�ÜW! !TSç����Û�t !TSç��ÞWè � � � !TSç� � t�Þ !TSçV�!WtWè !TSçVT ?��� � �
Zifferer � !TS� Fè��T !TSç��� �  !TSç��Þ�t�Û � � !TSç� � Ü�Ü � � !TSçVT "!�! � �¢ � 0
this work !TSU!Wt�t�Þ !TSU! � Û�Û !TS� "!�Ü$Û !TS� ?��!$è !TS� EÜ$Þ�Ü !TS� Fè�Ü � !TS� � Þ � !TSç�����T 
Zifferer � !TSU!Wt�Ü � !TSU! � V�V !TS� "!WV�Ü � � !TS� ?V�Þ�Ü !TS� Fè�VWè !TS� � èÃ � �
Zifferer � !TSU!Wt�V�V !TSU! �  EÜ !TS� "!s ?Þ � � !TS� ?V�V�! � � !TS� � VWè � �� [229]. MC simulation of stars of one single arm length � � - Ü � ! on a tetrahedral

lattice.� [228]. Off-lattice MC simulation of stars with � max� -�Ü � ! on a tetrahedral lattice.
The displayed results for the �ü-�� v Ü v  ?� -arm stars were obtained by an ( � ä å )
extrapolation.� [231]. MC simulation of stars with � max� -ß ?t�! . No extrapolation to ( � ä å ) was
performed.
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5.1.4 Scaling and branching factors of stars

In this section we investigate the scaling properties of the simulated stars and calculate important
branching factors, that can be used for comparisons with theory and experiments.

In Figure 5.12 the scaling of |¨� n 
 � as a function of � is displayed. From this double-logarithmic
plot one obtains the scaling exponents of � n for stars with different numbers of arms. The linear
chain is displayed as well, for which the largest chain lengths were simulated. Within the errors of
the simulation, the exponents do not depend on the number of arms, as expected. The exponents are
summarized in Table 5.5 and exhibit a reasonable agreement with theory.
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Figure 5.12: Log-Log plot of ¿ ¯ ± À Â vs. ² of stars with different arm numbers Å . For comparison, the
linear chain data ( Å�H > ) are displayed as well.� � V Ü Þ t  "!  ?�  �� !TSçÞ�Û � Û !TSçt�!s !TSçt�!WV !TSçtT EÜ !TSçtT Fè !TSçt�!WV !TSçÞ�Û�Û !TSçt�!s 

Table 5.5: Obtained scaling exponents ö for different numbers Å of star arms.

In Figure 5.13 we plotted the corrections to scaling of the radius of gyration for the systems with
different arm numbers, including the linear chain ( ��-ü� ). In Figure 5.14 we demonstrate, that these
corrections are ò � ��� . A plot with exponents � � and �  Ì � led to worse correlation coefficients. The
best linear fit of all data points was obtained with the exponent shown in Figure 5.14. In a lattice-MC
simulation study [13] there were no corrections to scaling of � n on a fcc-lattice.

Having determined the corrections to scaling of � n , a linear regression analysis of the values
of the branching factor õ 1 for chains of different lengths vs.  Ì � allows to give an extrapolated
estimation of õ for a given topology in the limit ( � ä å ). This has been done in Figures 5.15 and
5.16 for two limiting solvent qualities, the athermal solvent and the � -solvent. Obviously, in both
solvents, the data points exhibit only very small deviations which display the excellent quality of our
obtained data.

1For the definition of the branching factor ³ , see Section 2.2.2 on Page 10.
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Figure 5.13: Corrections to scaling of ¿ ¯¥±'À�Â 8 Åu@ with different arm numbers Å . Good solvent limit. ¾{H b$÷ b .ö)HNbW÷ùø?ú�ú .
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Figure 5.15: Extrapolated ´ -factors of stars in the good solvent limit. ¾ H bW÷ b .
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Figure 5.16: Extrapolated ´ -factors of stars in a K -solvent limit. ¾ H bW÷ þ�ø .
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The extrapolated values of õ are displayed in Figures 5.17 and 5.18, again for a � -solvent and the
good solvent case, respectively. A comparison with data available in literature is displayed in these
figures as well.

Our simulation data of � -chains in Figure 5.17 reveal that the mean dimensions of � -stars, ex-
pressed in the ratio õ)} of branched to linear chains, are greater than predicted by the RW theory.
Additionally, the ratio õs} is always larger than õ , cf. Figure 5.18 and the corresponding tables. The
observed deviations grow with increasing arm number � . This is also seen with experimental data of
PIP and PS in � -solvents. Note that the deviations from the Zimm-Stockmayer approach tend to occur
for �ÝâüÞ . For our largest considered star, the deviation from RW theory is about Þ�!só . For � -}t�Ü
polybutadiene stars [171] the deviation has increased to  "!�!só ( õ�}j-�!TSU!WÛ�� in the experiment com-
pared to !TSU!�Ü$t of RW theory). Many previous simulations were done with only a few arm numbers
and did not exhibit this effect as clear as our simulation data. For large arm numbers the experimental
data of õ�} scatter considerably, indicating that these ratios may no longer be universal numbers for
larger arm numbers.
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Figure 5.17: Extrapolated ´ -factors of stars in a K -solvent, obtained in this work, compared with theory,
experiments and other simulations. ¾ HãbW÷ þ�ø . Scaling theory, RW theory and RG calculations are presented.
Two other simulation studies are displayed. In our study we used longer chains and more arms than most
previous investigators. Experimental values of PIP and PS are displayed as well. The experimental data by
Zilliox were obtained with multibranched star-like chains with arm numbers Å HNúW÷Uý�y : bW÷Uý�y :/>W÷ 6 and :/øW÷ 6 .

At the � -temperature, by definition, two-arm attractions are effectively canceled. Therefore, the
experimental findings along with the results of simulations suggest that residual many-body interac-
tions become relevant for many-arm stars because of the overcrowded core. In particular, three-body
repulsions among three atoms on three different arms are inherently non-compensated by two-body
attractions, since no intermolecular counterpart exists. If two or three atoms belong to the same arm,
they can be included in a coarser grained description, and the interaction reduces to an effective two-
body interaction. No such renormalization is possible if the three atoms belong to to three different
arms. As a result, the star has a finite expansion and one always has õ }=z�õ .

It has long been observed that the õ -ratio for experimental good solvent systems closely coincide
with the predictions of Gaussian chain statistics, see Figure 5.18. Further amplification of this ob-
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Table 5.6: Table of extrapolated ´ -factors of stars in a K -solvent, obtained in this work, compared to other
publications.

Reference
�V Ü Þ t  "!  ?�  �

this work !TSØè�è�è�t !TSçt�Ü$V�! !TSçÞ�Þ�Ü�Ü !TSùÜ$Û�Þ�Ü !TSçV�Ü9è�! !TSçVT ?Þ�Û !TSç��V�Û��
Batoulis and Kremer � !TSØè�Û !TSçt � !TSçÞ�Þ � � � � � � �{�
Freire et al � � � � � � � !TSùÜ$Û � � !TSçV�V !TSç�T 
Zimm and Stockmayer � !TSØè�è � !TSçt���Þ !TSçÞ���! !TSùÜ�Ü�Ü !TSç� � ! !TSç��V�t !TS� ?t�!
Myake and Freed � !TSØè�Û � Þ !TSçt�t�t � !TSçÞWè�Û�Û !TSçÞT ?Û�V !TSçV�Û�Ü$� !TSçV�t�� � !TSçVT � EÜ
Experiments � � � � �{� !TSùÜ$t � � � !TSç�Wè�tV� !TSç��� � �
Experiments � � � � � � � !TSùÜ$t � � !TSçV�V !TSç��Û
Experiments � � � !TSçt�Ü � � !TSùÜ$V � � � � �{�
Experiments � � � !TSçt�� � � !TSùÜ9è � � � � �{�� [13]. MC simulations on a fcc-lattice.� [76]. MC off-lattice simulations with � � A Þ�Þ .� Theory in the framework of Gaussian models for stars with � infinitely long arms.� Renormalization group results according to Eq. (2.16).� [167]. Atactic PS in cyclohexane at V�ÜsSçÞ . C.� [169]. Atactic PS in cyclohexane at V�ÜsSçÞ . C.� [15]. Polyisoprene in dioxan at V�Ü�. C.� [140]. Atactic PS in cyclohexane at V�ÜsSçÞ . C.� [166]. Atactic PS in cyclohexane at V�ÜsSçÞ_. C.
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Figure 5.18: Extrapolated ´ -factors of stars in a good solvent, obtained in this work, compared with theory,
experiments and other simulations. ¾mHÝbW÷ b . For comparison, the obtained ´ -factors in a K -solvent along with
scaling theory are displayed as well. Our simulation study used larger arm lengths Å than almost all previous
studies. It is interesting that the simulation of the athermal solvent follows the curve of the RW theory almost
perfectly, whereas the K -chains are more expanded.
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Table 5.7: Table of extrapolated ´ -factors of stars in an athermal solvent, obtained in this work, compared to
other publications.

Reference
�V Ü Þ t  "!  ?�  �

this work !TSØè�è�! � !TSçt�����! !TSçÞ�!WÛ�� !TSùÜ$V�t�Û !TSç��t���V !TSç��V��T !TS� ?ÞWèÃ 
Experiments !TSØè�è � !TSçt�Þ � � � !TSùÜ�Ü � �{� !TSç��Ü$V�� !TSç��! �
Batoulis and Kremer � !TSØè�t�t !TSçtT � !TSçÞ�! � !TSùÜ$V�Û �{� � �  �
Zifferer � !TSØè�t�V !TSçt�!WÛ � � !TSùÜ$VT !TSç�Wè�Ü !TSç��V�Ü � �
Rey et al � � � � � � � !TSùÜ$t �{� !TSç� � !TSç�T Fè� [15]. Bauer et al. PS in Toluene.� [166]. Roovers and Bywater. PS in Toluene.� [167]. Roovers and Bywater. PS in Toluene.� [169]. Roovers et al. PS in Toluene.� [168]. Roovers and Toporowski. PS in Toluene.� [13]. MC simulation results on a fcc-lattice with � � A  "!�! .� [226]. MC simulation on a tetrahedral lattice.� [163]. MC simulation of very short arm lengths � � A Þ�Þ .

servation is provided by the RG group calculations by Douglas and Freed [61] and by simulations.
RG calculations by Myake and Freed [144] showed, that chains are more expanded with increasing �
due to the excluded volume in the inner region, rather than in the outer region where each chain end
behaves almost like a linear chain end. Application of the RG theory should be restricted to few arm
numbers, as the perturbation of the excluded volume interaction, relative to a linear chain becomes
large for many-arm systems, so that RG theory no longer provides a useful description. The large �
limit needs to be treated by separate methods such as mean-field theory [223] or scaling theory [52].

In the Daoud-Cotton blob-theory [52], one introduces a model with a central close-packed core.
Then one invokes a surrounding inner region where the chains are unextended because of screening of
the excluded volume due to the higher segmental density. In the outer region the chains are assumed
to be swollen because of the geometrical conditions on the blob size with an increase in the distance
from the star center. This model predicts that in the limit of large � and large � �

õ ò � Ä �¨� 0 �?Æ (5.4)

with �·-á Ì � for a � -solvent and �·R�!TSçt for self-avoiding chains in a good solvent.

The usefulness of scaling theory is limited by the uncertainty in the pre-factor. In our simulations,
in the large � limit we obtain pre-factors of  �Sçt�Þ and  �SU!Wt in the good and � -solvent, respectively.
Both pre-factors are smaller than predicted by theory for the ( � ä å ) limit. In [62] a modified
version of the classical two-parameter Flory theory [223] is given which derives the Daoud-Cotton
scaling result for õ along with the pre-factor as

õj-á �SçÛ�Üþ��Ä �uf¨��z¨Æ for ��� äæå � (5.5)

MC simulation estimates of Wittington et al [222] and of Barrett and Tremain [12] deduced a pre-
factor of  �S � t and  �S � V , respectively. Another mean-field calculation by Di Marzio and Guttman
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Table 5.8: Table of extrapolated µ -factors of stars in a good solvent, obtained in this work, compared to other
publications.

Reference
�V Ü Þ t  "!  ?�  �

this work !TSçÛ �  !TSçÛ�V�V !TS ��� Þ !TS �  ?Þ !TSØè���V !TSçt � Û !TSçÞ ���
Batoulis and Kremer � !TSçÛ�t !TSçÛ�� !TS � è !TS � è � � �{� � �
Experiments �{� !TSçÛ�V � �{� !TS � t � � � !TSØè�!�� !TSçt � �
Experiments �{� !TSçÛ�� � �{� � � � � !TSØè�V � !TS � V � !TSçt�Ü �
Experiments �{� � � � � �{� � � !TSØè�è � !TSçt � �� [13]. MC simulations on a fcc-lattice.� [167]. Roovers and Bywater. PS in toluene at V�Þ_. C.� [168]. Roovers and Toporowski. PS in toluene at V�Þ . C.� [169]. Roovers et al. PS in toluene at V�Þ�. C.� [15]. Bauer et al. PI in toluene at V�Þ . C.� [100]. Huber et al. PS in toluene at V�Þ . C.� [170]. Roovers et al. PBd in dioxane at ��t�. C.

[134] which is based on geometrical arguments obtained a pre-factor of  �SØè�Ü . In [77] a pre-factor of �S� ?Þ was obtained for � -chains by a fit to PIP experimental results.

The insensitivity of õ to excluded volume (above the � -point) can be understood in RG theory.
In [61] it is shown by Douglas and Freed that an arbitrary radial polymer property ¶ , scaling as¶ ò � " , has a universal scaling function as a function of excluded volume

¶J-¸·�¹_|¨� n 
�� r " ��
 Ù " �º� 
 �Ê¶»¹ �º� 
 � (5.6)

where |¨� n 
 � r " ��
 is the radius of gyration of a Gaussian chain and ·�¹ is a pre-factor obtained by
calculating ¶ in the Gaussian chain limit, where the excluded volume parameter � 
 vanishes and
where by definition

Ù " �º� 
 -p!$�¡-  and ¶»¹¿�º� 
 - !$� -  . The function
Ù " �º� 
 � depends only

on � 
 and the power   of the radial property and contains most of the excluded volume dependence.
The function ¶»¹Ç�º� 
 � depends on the details of the particular measure of the mean dimensions on the
branching architecture and varies only weakly with excluded volume. The crucial point is, that by
forming a dimensionless ratio between measures of polymers for a branched and linear polymer at
the same molecular weight, one obtains

õS¹ - �(¶ branched
Ì ¶ linear ��-}��¶»¹ �º� 
 � branched

Ì ¶»¹Ç�º� 
 � linear �$õ . ¹ v (5.7)

with õ . ¹á-5õS¹Ç�º� 
 -�!$� . Thus, the predominant contribution to the variation of ¶ with excluded
volume, i.e. the

Ù "T�º� 
 � factor, exactly cancel when forming the ratio õ ¹ . The remaining ratio of the¶ -function represents the variation of ¶�¹ due to a variation of branching architecture, and this ratio
is even more slowly varying than is either ¶�¹Ç�º� 
 � branched or ¶¼¹Ç�º� 
 � linear alone. This insensitivity is
predicted to apply to a wide class of dimensionless ratios of the type õ1¹ [61].

Another quantity that is often considered is the ratio ¨ - ^
branched

Ì ^
linear of diffusion coefficients

of star-branched and linear polymers (of the same molecular weight ` ). The theoretical value of ¨
was calculated by Stockmayer and Fixman for a RW chain as [189]:
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Figure 5.19: ( ²��¡  ) extrapolated µ -factors of stars in good ( ¾ H b$÷ b ) and K -solvent ( ¾{HNbW÷ þ�ø ), obtained
in this work, compared with theory, experiments and other simulations. Open symbols are experimental data.

Table 5.9: Table of extrapolated µ -factors of stars in a K -solvent, obtained in this work, compared to other
publications.

Reference
�V Ü Þ t  "!  ?�  �

this work !TSçÛ�ÞWè !TSçÛ���! !TS ��� � !TS � ÞT !TSØè�Þ�Þ !TSØè�!WÞ !TSçtT ?�
Freire et al � � � �{� � � !TSçÛ�V �{� !TS � � !TSØè�è
Rey et al � � � �{� � � !TSçÛT �{� !TS �  !TSØè�V
Experiments � � !TSçÛ�Ü5� � � !TS � Û � �{� !TS �  Y� !TSØè�t��
Experiments � � � � � � � � � � !TS �  Y� !TSØè����� [76]. MC simulations with very short chains ( � � A Þ�Þ ).� [163]. MC simulations.� [167]. Roovers and Bywater. PS in cyclohexane at V�Þ . C.� [168]. Roovers and Toporowski. PS in cyclohexane at V�Þ�. C.� [169]. Roovers et al. PS in cyclohexane at V�Þ . C.� [100]. Huber et al. PS in cyclohexane at V�Þ . C.� [170]. Roovers et al. PBd in dioxane at ��t�. C.
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¨ RW ->� ����
 í � � �m��� ����
 ��� �  F�gï ��� S (5.8)

In simulations, the parameter ¨ can be calculated in a different way as a ratio of appropriate
hydrodynamic radii:

¨¡- � �)� � branched� �)� � linear
(5.9)

Experimental values of ¨ and õ are substantially higher than the corresponding RW calculations.

Theoretical predictions of the ratios ¨ (and õ ) in the good solvent limit are very difficult because of
two effects, excluded volume and hydrodynamic interactions between segments of the chain, should
be considered. The former effect may be treated by the RG theory [143]. However, the � -expansion
method sometimes produces erroneous results because of its poor convergence.

Figure 5.19 displays our simulation results for ¨ , obtained by an extrapolation of the data to
( � äqå ). Both, the good and � -solvent are displayed. Our data exhibit again, that the � -chains are
more swollen than the chains in a good solvent. ¨ -values of both solvents are always larger than the
ones of RW theory. This effect increases with larger arm number. Again, our simulation data exhibit
this effect much clearer than most previous MC-simulations of only a few arms. The deviations from
experimental PS data are increasing with larger arm number. However, the scatter between different
experimental data of the same solvent/polymer systems is large.

We also calculated the dimensionless ratioe ��� ��- | �an 
 � ������
� �)� ���Á� ��� (5.10)

for all simulated stars. For random walks one obtainse ��� ��- ¹ V�� � ���» ½ ����
 �F½ � � �j�
� ����
 ��� �  F�B¾V�� (5.11)

In Figures 5.20 and 5.21 we demonstrate that the leading exponent in the corrections to scaling
for �)� is Ó�-p�\� �  F� not only for linear chains, but also for stars. Both figures display the same
data, plotted vs. Óß-C�\� �  F� and Ó5- �  Ì � . For all star arms we determined a higher correlation
coefficient of a linear regression when using the exponent Ó7-¤�\� �  F� . This finding is summarized
in Table 5.10.

We obtained our

e
-values by an extrapolation of the data to ( � ä å ), plotted vs. � ����� , using

the leading exponent in the corrections to scaling. These extrapolations are displayed in Figures 5.22
and 5.23 for all simulated arm numbers. The linear chain data are included again for comparison.

All obtained extrapolated values for

e
are finally plotted in Figure 5.24 in comparison with other

simulations, RW theory and experiment. The agreement with MC-simulations on a lattice by Batoulis
and Kremer is reasonable, but their values are systematically too low. The agreement of RW theory
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Figure 5.20: Corrections to scaling of
¯ 8

for different topologies with an exponent â Hã8(öÍ< :E@ , ö)HNbW÷ùø?ú�ú .
For comparison, the linear chain is displayed as well. ¾{HNbW÷ b .
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Figure 5.22: Extrapolated ratios l of stars in a good solvent with ¾·HãbW÷ b . The stars become increasingly
compact with the number of arms. For comparison, the linear chain Å�HN> is displayed as well.
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Figure 5.23: Extrapolated ratios l of stars in a K -solvent. ¾�H b$÷ þ�ø . The stars become increasingly compact
with the number of arms. For comparison, the linear chain Å�HN> is displayed as well.
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2 !TSùÜW!Wt�CÝ!TSU!�!WÞ !TSçVT ?V � C !TSU!�!�!WÞ 0.9995 !TSçÞ�V � C�!TSU!s EÜ !TSçV���!�C !TSU!�!s 0.9976
3 !TSçV�! � CÝ!TSU!�!W� !TSçV�VT �C !TSU!�!�Ü 0.9994 !TSçVT EÜ�C !TSU!WV !TSùÜ$t � C !TSU!�!W� 0.9982
4 !TSç��ÛWè�V�CÝ!TSU!�!�! � !TSç��t�ÜHC !TSU!�!$è 0.9991 !TSçV�!WV�Û�C�!TSU!�!�!WV !TSçV���ÛiC !TSU!�!�Ü 0.9981
5 !TSç� � ÞWè�CÝ!TSU!�!�! � !TSç����V�t�C !TSU!�!�!$è 0.9934 !TSç� � ÛiC�!TSU!�!�Ü !TSç��ÛWèDC !TSU!�!WV 0.9913
6 !TSç�Wè�Þ�!�CÝ!TSU!�!�!s !TS� Fè � C !TSU!�!W� 0.99995 !TSç� � !�C�!TSU!�!s !TSç�T ?tiC !TSU!�!W� 0.9990
10 !TSç��VWè�CÝ!TSU!�!�Ü !TS� ?����C !TSU!�!s 0.9885 !TSç��V�ÛiC�!TSU!�!WV !TS� ?t�Ü�C !TSU!�!WV 0.9825
12 !TSç����V�CÝ!TSU!�!W� !TS� "!WÞ�C !TSU!�!s 0.9785 !TSç����t�V�C !TSU!�!W� !TS� "!WtiC !TSU!�!WV 0.9743
18 !TS� ��� CÝ!TSU!�!W� !TS� EÜ$t�C !TSU!�!W� 0.9673 !TSç�T � C�!TSU!�!W� !TS� � ÛiC !TSU!�!WV 0.9605

Table 5.10: Quality of a linear regression of the data displayed in Fig. 5.20 and 5.21 with an exponent ofâáHL8�ö <N:E@ ( Å�8 ß @�HÀ¿ ß ³ÂÁ ) vs. â HJ<Ç:EDF> ( Å�8 ß @�HÀ¿ c ß ³ÂÁ c ). The correlation coefficient 2 is in all
cases larger for an exponent â�H�8(ö=<�:E@ .
with the good solvent data is much better than with the � -solvent data. For large arm numbers, the
simulation data reach a

e
-value which indicates a shape of the stars that corresponds to a compact

structure. However, there is a striking deviation of our simulation data with experimental data on
PS in a � -solvent, which exhibits a much lower

e
-value. Also, data obtained from very early MC-

simulations in the 1980’s by Freire et al and Rey et al exhibit huge deviations. Neither in these
simulations, nor in the experiments however, were the results extrapolated to ( � ä å ) in the way as
we suggest above. Due to the extremely slow convergence of ��� to the asymptotic scaling behavior,
these deviations arise. Our simulations, to the best of our knowledge, are the first ones which obtained
data for

e
of many-arm stars in an extrapolation to infinite chain lengths, that takes into account the

correct leading exponent ( � �  ) in the corrections to scaling.

As conclusion, we have presented a detailed analysis of stars with a variety of different arms.
In our study, we obtained data with higher precision and for more star arms than in most previous
investigations.

Important results of our star-simulations are:¡ The � -point of stars for the exploited simulation model is not shifted within the accuracy of the
simulation data.¡ The finite size effects of asphericities and shape parameters become more dominant with the
arm number. The behavior of shape factors and asphericities is just opposite to that of linear
chains. The asphericity of a star increases with the degree of polymerization � .¡ The compactness of stars, expressed in the asphericity parameters, increases with arm number� . The asphericity of stars in a � -solvent is larger than in a good solvent.¡ The leading exponent Ó in the corrections to scaling of ��� is in accordance with Ó ò �\� �  F�
also for many-arm stars.¡ Due to the slow convergence of � � to the asymptotic scaling behavior, the branching ratio

e
of experimental systems and all previous simulations of many-arm stars show huge deviations
from our obtained simulation data. We argue that one should extrapolate obtained data in the
way we suggested above to correct for finite size effects.¡ There is a decrease of õ and ¨ upon chain expansion when going from � to good solvent stars
which is explained in RG theory. One can understand this basic trend as arising from the
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decreasing influence of ternary interactions on the mean dimensions. This has been seen in
previous simulation studies of few arm numbers � and also in experiments, but our data of
many arm-stars exhibit this effect more distinct.
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5.2 Simulation of other branched topologies

In this section the influence of branching on the static properties of a variety of chains with
different topologies is investigated.

5.2.1 Introduction

When introducing branching, starting from a linear chain, the effect of a non-linear connectivity
tree is governed by both, the number of additional side branches attached to the initial linear backbone
chain and the specific location on the backbone where these side chains are attached. In industrial
polymer production, anionic polymerization is an example of an important process which produces
branches with a very narrow MWD which, for all practical purposes, is equal to ®C-  �SU! . A post-
polymerization involving the still active chain ends can then be performed to produce branched poly-
mers with a predetermined number of arms [164]. These species of polymers are excellent model
compounds for testing theories and simulations, as was demonstrated in the previous section on
star polymers. However, in many polymerization processes, the occurrence of branched polymers
in a random fashion is common. E.g., the high-pressure polymerization of LDPE leads to short-
and long-chain branching in the resulting product. The polymerization process is a radical-chain-
polymerization, usually initiated by an Oxide or Peroxide, and the occurrence of mainly uncontrol-
lable chain transfer reactions leads to the typical Ethyl- and Butyl side chains of LDPE. In [194],
two industrially produced samples of LDPE in a good solvent (Iupac Alpha and NBS 1476) where
investigated by light scattering and a GPC analysis. In this investigation, several typical quantities
describing the degree of branching where determined. Besides the branching parameter õ as defined
in Eq. 2.13 on Page 11, the analogous quantity

õ v - , �)����ÿO�;���;� k ¾, �)� 	 Y � k ��ÿ S (5.12)

was measured. From the knowledge of these two quantities, the exponent k of the equation õQv=-õ � was calculated. The figures displaying these quantities have been obtained from [194] and are
displayed in Figure 5.25.

GPC experiments in principle give little to no insight into the kind of branching that is present in
a polymer sample, because the equilibration of the GPC-columns is usually done with linear polymer
standards. With light scattering methods on the other hand, one is restricted to systems where one
still has enough contrast for receiving signals in order to resolve the branched structures. For these
two industrial polymer samples, it was argued that there are probably only a few branches every few
thousand repeat units along the backbone and therefore light scattering fails to give further insight
into the exact structure. However, from the knowledge of dimensionless branching parameters, such
as õ and õ�v , it is possible to perform simulations of sample topologies of chains and compare the
experimentally determined branching parameters with the ones obtained in simulations. Hence, by
performing simulations of various well-defined topologies of chains, one obtains information as to
what kind of branching might be prevalent in the above polymer samples. This simulation study not
only tests the assumption of the above LDPE samples having a structure which corresponds to a long
backbone chain and several short or long side chains, but it also gives a set of reference data for a
variety of different interesting topologies which are useful for further experimental studies in this
direction.
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Figure 5.25: Several branching indices of two samples of industrially produced LDPE. Displayed are the
branching parameters ´ and ´5Ã and the exponent { of the relation ´5Ã¼HÄ´ [ . Left: Iupac Alpha sample. Right:
NBS 1476 sample. Figure taken from from [194].

5.2.2 Description of the branched topologies

Two particular classes of topologies were chosen for this study of branching effects that are, on
the one hand, non-trivial, but on the other hand, allow for a systematic variation of parameters that
govern the connectivity of monomers.

The first class of topologies, see Figure 5.26, focuses on the number of arms added to a backbone
chain of constant length.

Starting from a star polymer with �à-�V arms, one arm is then splitted in two halves of equal
length and attached to the same backbone in a symmetric manner. This procedure then continues,
yielding polymer chains with two, four and ten side chains attached to a backbone chain of constant
length. Three different chain lengths were simulated for this kind of topology in order to allow for an
extrapolation of the measured properties to ( � ä å ). The above described branched topology can
be characterized by two parameters X%� and   . The former is the number of monomers in a side chain
and the latter is the monomer distance between consecutive side chains along the main backbone. For
each branched structure all side chains have the same number of monomers X
� and the distance   is
taken to be constant. The respective parameters are displayed in Table 5.11.

Topology star ( �Ö-.V ) side2 H-molecule side4 side10
Parameters X�� /   /   � X � /   /   � X � /   /   � X � /   /   � X � /   /   �
N = 301 100 / 0 / 33 50 / 67 / 33 50 / 99 / 33 25 / 40 / 33 10 / 17 / 33
N = 601 200 / 0 / 33 100 / 133 / 33 100 / 199 / 33 50 / 79 / 33 20 / 36 / 33
N = 901 300 / 0 / 33 200 / 199 / 33 200 / 299 / 33 100 / 119 / 44 40 / 54 / 44

Table 5.11: Values of topological parameters for the first category of branched structures. The length of the
sidearms ZxÅ and the arm distance Æ along the main chain are displayed for the three different simulated chain
lengths ² . Additionally, the percentage of monomers of the whole molecule that are contained in side chainsÇ Å is displayed. See Figure 5.26 for an explanation of the topology.

The second investigated class of topologies keeps the number of branches constant, only shifting
them along the backbone, see Figure 5.27.
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We started out with a four-arm star polymer and then shifted the arms apart along the backbone
chain. By performing this procedure, we investigate a transition from a star polymer to a linear
chain. One detail has to be taken into account, when performing this procedure: As a backbone
of a branched polymer chain one considers that part of the chain which has the largest number of
consecutively linked monomers with each monomer having two bonds connecting it with two direct
neighbors (except for the first and last monomer). By shifting the side chains apart, according to the
procedure described above, one changes the monomer connectivity in such a way, that a different
subchain of monomers becomes a new backbone chain. This is illustrated in Figure 5.27.

ls

m

ls

m

ls

m

ls

ls

l    = N/6s

N/6 m = N/3 N/6

2

Figure 5.26: Schematic pictures (left) and snapshots (right) of the simulated branched topologies according
to Table 5.11. The snapshots are taken from systems with ² H�6�bW: and ¾�H¤b$÷ b . Starting from the top
with a three-arm star, the red-colored side chain is splitted in two individual arms of equal length, leading to a
backbone chain with two arms attached to it at equal distances from the center. Additionally, the topology of
a so-called H-polymer has been modeled. Then the branching process continues, again dividing each side arm
into two parts of equal length, resulting in a backbone chain with four and ten side chains, respectively.

Table 5.12 gives an overview of the parameters characterizing the second class of branched sys-
tems. For this topology, four different chain lengths were simulated in order to detect possible finite
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size effects and to allow for an extrapolation ( � äæå ).

Topology 10% 20% 40% star ( �Ö-�Ü )
Parameters X v� / X � /   /   � X v� / X � /   /   � X v� / X � /   /   � X v� / X � /   /   �
N = 101 25 / 5 / 39 / 10 25 / 10 / 29 / 20 25 / 20 / 9 / 40 25 / 25 / 0 / 50
N = 201 50 / 10 / 79 / 10 50 / 20 / 59 / 20 50 / 40 / 19 / 40 50 50 / 0 / 50
N = 401 100 / 20 /159 / 10 100 / / 40 / 119 /20 100 / 80 / 39 / 40 100 / 100 / 0 /50
N = 801 200 / 40/ 319 / 10 200 / 80 / 239 / 20 200 / 160 / 79 / 40 200 / 200 / 0 / 50

Table 5.12: Values of topological parameters for the second category of differently branched structures.
The number of monomers Z ÃÅ in side chains is displayed along with the actual values Z Å and Æ that correspond
to the lowest pictures in Figure 5.27. The length of the sidearms ZNÅ and the arm distance Æ along the main
chain are displayed for the four different simulated chain lengths ² . Additionally, the percentage of monomers
contained in side chains Ç Å is displayed.

Simulations have been performed for the described two topologies, both, in a good solvent regime
and at the � -point and the corresponding branching parameters have been determined. To our knowl-
edge, this is the first simulation study that investigates the described different kind of topologies in a
systematic manner including the effect of solvent quality.

The data of the performed simulations are summarized in the tables in Appendix B starting on
Page 161.

5.2.3 Simulation results and discussion

5.2.3.1 Scaling properties

As an example, Figures 5.28 to 5.31 display the scaling exponents � of the end-to-end distance
and the radius of gyration for two different topologies: One system is referred to as ”10%” in Table
5.12 and the second one is a system with 10 side chains attached to a backbone. Additionally to|¨� n 
 � of the total molecule, the averaged values | � k � n 
 � are displayed for the backbone and side
chain monomers. The obtained exponents of all sub-units of the molecules are summarized in Table
5.13. Scaling plots of other types of topologies yield similar results of the exponents which are in
reasonable agreement with the ones expected from theory. This is further exemplified in Figure 5.33
which displays ³Ç�\Qu� for a 10% system in a good solvent. When using the scaling variable �{-üQT� � ,
the curves of different � collapse into a single curve which exhibits the expected slope ò � ������� for
intermediate � -values. In Figure 5.33 a more sensitive Kratky-plot is shown for ³Ç�\Qu� of different
topologies but constant polymerization � . At small Q values, the Guinier Law is valid and ³Ç�\Qu�
changes according to: ³Ç�\Qu� -�� ½  �  Ì V�Q 
 | � n 
�� ���¡�\Q f | � n 
�� � ¾ S (5.13)

Hence, at the same � , the different topologies of systems become apparent in a varying negative
slope of ³Ç�\Qu� due to different radii of gyration. The curves then follow the scaling law ³ �\Qu� ò Q ������� ,
which, close at the � point should result in a set of horizontal curves with slope zero. Finally, the
curves level off for large Q -values where local structures become apparent. These differences in the
structure function should be detectable in a light scattering experiment.
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Figure 5.27: Sketch of the simulated topologies with the same number of arms shifted along the initial
backbone. As an example, a system with ²�H�>FbW: is shown. All side chains (red color) are connected with
the backbone via an additional crosslink monomer. Starting from the top, two of the star arms are shifted
apart such that either one has an offset of : b , >?b , and Æ�b percent of the backbone length. Consequently, these
new topologies are called Æ�b�� , >Fb�� and :/b�� respectively. As the total number ² of monomers is kept at a
constant value for all topologies, this branching procedure actually leads to a new backbone chain for each new
connectivity of monomers, with the backbone having the largest number of consecutive monomers. The new
backbone is yellow-colored and the side-chains are depicted in red in the three lowest figures which show the
actual variation of the topology of the systems.

side 10 10% offset

Quantity good solvent � -solvent good solvent � -solvent| � k 
 backbone
� !TSçt�!W��CÝ!TSU!�!WV !TSùÜ$Û���C�!TSU!�! � !TSçt�!WViC !TSU!�!WV !TSçÞ�!�!�C !TSU!�!$è| � k 
 side chains
� !TSçt�!WÞ�CÝ!TSU!�!�Ü !TSùÜ$Û�V�C�!TSU!�! � !TSçtT EÜ�C !TSU!�!s !TSùÜ$Û�t�C !TSU!�! �| � n 
 total

� !TSçt�!WÛ�CÝ!TSU!�! � !TSùÜ$Û���C�!TSU!�! � !TSçt�!W�iC !TSU!�!W� !TSùÜ$Û � C !TSU!�!WÞ|¨� n 
 side chains
� !TSçtT � �CÝ!TSU!�!�Ü !TSùÜ$Û�Þ�C�!TSU!�!Wt !TSçt�!WÞiC !TSU!�!$è !TSçÞ�!�Ü�C !TSU!�!Wt|¨�an 
 backbone
� !TSçtT ?Þ�CÝ!TSU!�!WÛ !TSçÞ�!�!�C�!TSU!�!WÞ �
�
� �ã�
�

Table 5.13: Scaling exponents of
¯ °

and
¯¥±

for two branched topologies at different solvent qualities.
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5.2.3.2 Determination of branching parameters

In Figure 5.34 the õ -factors are displayed for all different topologies and for two limiting solvent
qualities, the � -point and the good solvent case.

Generally, the finite size effects are not very large, but seem to be bigger in the � -solvent. The
largest deviation between the asymptotic õ -factor õ È - é�ê�ë~¥ì È õ���� � and the one obtained from the

smallest simulated system is about t)ó for the side4-system in a � -solvent.

We now discuss the branched topology in a) of Figure 5.34.
It is interesting that it is the õ -factor of the H-molecule that has the closest vicinity to the linear chain
– corresponding to õ�-� – and that the chain with four side chains has the lowest asymptotic õ -
value. This is the case in both, the good and the � -solvent. In the side4- and side10-chains, 44% of all
monomers are located in the branches but in the system with ten arms the side chains are much shorter
and the system is less compact as can be seen from õ . From this result we conclude that apparently
not only the number and location of arms in a branched structure is crucial for the chain extension
expressed by õ , but also the individual arm lengths. Many short side chains cause a system to be more
expanded than a system with the same molecular weight, but only a few long side chains.

The topologies in b) of Fig. 5.34 exhibit a clear, distinctive behavior. When switching the side
chains towards the ends of the backbone, one observes a shift from low to high õ -values. The most
compact structure with the highest segment density at the branch-point is the four-arm star, which is
the limiting case for two side chains being moved along a backbone. It is not possible to get lowerõ -values with only two side chains in a system when keeping the molecular weight � constant which
is an important result on its own.
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Figure 5.34: Branching factors ´ for two solvent qualities in an extrapolation ( ²¥�²  ).
a) Topologies with a backbone of constant length and a variable number of side chains.
b) Transition from a linear chain to a four-arm star.
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All õ -values have been determined in the good and � -solvent regime. It was shown, that the
obtained scaling exponents correspond to the ones that one expects from theory for solvents of either
quality. On the other hand, almost all experimental systems are synthesized in solvents of a quality
that ranges anywhere between an athermal and a � -solvent. Therefore, all experimentally investigated
branched systems with a topology similar to the ones that were used in our study, have to have õ -
values that are in the range between õ È } and õ È good, provided by our systematic investigation. The
experimental õ -values obtained in Ref. [194] are below our obtained values within the whole range
from the athermal to � -solvent regime.
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Figure 5.35: Branching factors µ for two solvent qualities in an extrapolation ( ²��¡  ).
a) Topologies with a backbone of constant length and a variable number of side chains.
b) Transition from a linear chain to a four-arm star.

We now consider the numerical values of õ .
All of our determined õ -values are larger than the ones obtained in Ref. [194]. Furthermore, our
simulation study shows, that finite size effects do not influence õ much, whereas in [194], the õ -value
very strongly depends on the polymerization ` . It remains unresolved in [194] whether this is due to
an effect of polydispersity present in the samples or to a decreasing solvent quality with increasing ` .
In Ref. [194] it is argued that the branching parameters mainly are depending on chain architecture
at the same temperature. This is in agreement with our simulations which show that the effect of
solvent quality for the same polymer/solvent system has small influence on õ . It is mainly the chain
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architecture that leads to changes in õ .
In order to further directly compare the experimental data with our simulation, we also calculated

the ratios ¨ , õ v -È¨ 0 of all topologies. All calculated õ v -values are larger than the experimental values
for LDPE. The smallest õ_v -value in the simulation is the one for a system with 10 sidechains in a � -
solvent ( õ�vO-.!TS ��� ). The largest value in Ref [194] however is about !TSØè in the low molecular weight
regime. The discrepancy between simulation and experiment is obvious.
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Figure 5.36: Ratio ´5Ã for two solvent qualities extrapolated to ( ²¢�¡  ).
a) Topologies with a backbone of constant length and a variable number of side chains.
b) Transition from a linear chain to a four-arm star.

Finally, we determined the dimensionless parameters

e
for all of our sample topologies in both

solvents, which can be used for comparisons with experiments. For monodisperse branched exper-
imental systems, for which both, �{� and �an were determined, one could use these data of

e
for a

mapping procedure of our simulation beads onto the monomer units in a real chemical compound. In
Ref. [194], such data are not provided. It would be interesting to perform systematic experimental
studies in this direction.

Summary
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Figure 5.37: Dimensionless ratio l for a transition
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0.00 0.05 0.10 0.15

N(ν−1)

1.00

1.10

1.20

1.30

1.40

1.50

 <
R

g

2 >
1/

2 /<
R

h

−
1 >

−
1

 θ−solvent

 linear chain
 10 % offset
 20 % offset
 40 % offset
 50 % offset (stars, f=4)

Figure 5.38: Dimensionless ratio l for a transi-
tion from a linear chain to a star with ÅãH¼Æ arms.¾ H bW÷ þ�ø .
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In this section, our simulation model has been applied to a variety of differently branched struc-
tures. For these well-defined topologies, branching factors have been determined. A comparison
of these branching factors with industrial LDPE revealed that non of these investigated structures is
present in the experimental system. All branching parameters obtained in simulations are larger than
the ones obtained for LDPE. With a four-arm star we obtain a value of õ R�!TSçt�� in the good solvent
regime which, for LDPE is the upper limit for g. Our study shows that the lowest g-value which can
be obtained by shifting two side chains along a backbone is the one of a four arm star. Using more
than two arms, keeping the overall molecular weight constant, eventually leads to shorter side chains
and hence larger õ -values.

We conclude that in industrial LDPE hyper branched structures must be the prevalent form of
branching. Only by hyper branching or by multi-arm stars with ( �ÝâJÞ ) it is possible to get into the
regime of experimental õ -values that were obtained with LDPE. In light of the fact that our study
provided important data on a variety of different topologies, it would be interesting to perform further
experimental studies in this direction with well-defined architectures.
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5.3 Simulation of dendritic polymer structures

5.3.1 Introduction

The chemical synthesis of dendritic polymers 2, which is a relatively new class of branched macro-
molecules, has been the subject of intense research. The number of publications in this research area
has undergone an exponential increase in recent years.

Dendritic polymer structures are built from x-functional ABx-1 monomers where each B-group
may be connected to an A-group of another monomer. The perfect representatives of this group of
materials are the (regular) dendrimers, which are built layer-wise in generations · around a central
core unit with all functional groups of each generation reacted before adding a new generation. As the
molecule is built by adding one complete generation after another, a perfect dendrimer is monodis-
perse. All but the outermost repeat units continue in (x-1) branches of the same length giving rise
to a tree-like structure that resembles a Cayley tree, see Fig. 5.41. The branching structure of den-
drimers is characterized by the number of generations · which they contain, the functionality Ë of
the end-groups, and the number of monomer (spacer length)   between the functional groups.

G = 0 G = 1 G = 2

Figure 5.41: Schematic diagram of different dendrimer generations É with a functionality ß HÝ6 . Consec-
utive generations are added layer-wise around a central core unit.

Since their discovery in 1985 [197], the initial research in the field of dendrimers was primarily
devoted to synthetic strategies to create these highly architectured macromolecules without defects.
For the synthesis of dendrimers constructed by a step-by-step process, two different strategies, the
divergent approach (from the inside out) [197, 198] and the convergent approach (from the outside
in) [94] were employed. A large number of synthesized dendrimers has been presented in litera-
ture [94, 120, 142, 197, 199] with maybe one of the most frequently studied dendrimers being the
polyaminoamide (PAMAM) molecule which is built from a trivalent nitrogen atom core [197], see
Fig. 5.42.

2From Greek Ê�Ë�ÌdÊ�ÍkÎ�Ì =tree. Common notions of dendritic polymer structures in literature are arborols, cascade-,
cauliflower-, or star-burst polymers.
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Figure 5.42: The PAMAM dendrimer according to [103]. This is one of the most frequently studied den-
drimer structures in literature.

In contrast to dendrimers, hyper-branched polymers are usually synthesized in a one-pot reaction
of x-functional ABx-1 monomers (x â�V ) leading to a highly disperse mixture of variably sized,
randomly branched macromolecules. Hence, the resulting structures of this synthesis are usually
imperfect and the control over layers or generations vanishes. Experimental methods to prepare
dendrimers efficiently or hyper-branched macromolecules with more regular structures have been
explored by many researchers and some recent reviews on these different synthesis strategies can be
found in [70, 149]. Fewer experimental studies are available on the spacial structure of dendrimers in
solution, in bulk or at surfaces.

As the total mass ` of a dendritic molecule increases exponentially with the number of gener-
ations · , it grows faster than the available volume � ò · 0 . The spacial structure therefore must
saturate at a given number of generations. At low generation numbers one expects that the struc-
tures will be related to those of star polymers or lightly branched polymers with a large number of
available conformations and will thus present strongly fluctuating structures in solution. When, on
the other hand, the number of generations is increased, steric interactions between groups located at
the periphery of the molecule must result, leading to a densely packed spherical structure with much
less degrees of internal freedom. Therefore, dendrimers bridge the gap between strongly fluctuating
polymer structures and dense colloidal particles. An understanding and a precise tuning of the con-
formational freedom of dendritic molecules is a prerequisite for all applications discussed so far in
literature.

The physical properties and consequences of the particular architecture of dendrimers are now
being explored because several dendrimers and hyper-branched polymers are now available, some
dendrimers even commercially. Many useful applications have been proposed that exploit their topo-
logical characteristics. In particular, many dendritic supra-molecular complexes have been devised
with possible uses as drug controlled-release systems, as sensors, as surface and rheology modifiers
or as gene transfection agents [103].

An early theoretical attempt to analyze the structure of dendrimers was presented by de Gennes
and Hervet [57]. They considered the problem in the limit of long flexible spacers between tri-
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functional monomers, in an athermal solvent with each generation having fully reacted. Their self-
consistent field analysis concluded that dendrimers have a minimum of the radial monomer density
distribution �����W� near the center of the molecule and increases monotonically to the outer edge. They
found an effective fractal dimensionality of ¸1ôÝ-�Þ and a limiting generation number of · max R�ÃS ��� � é��  ã�I �SçÞW� up to which a perfect dendrimer can be grown. This model however suffers from the
deficiencies that it assumes that all subsequent bonds point to the periphery of the molecule and that
the monomers of each generation lie in concentric shells of their own which seems to be an erroneous
assumption.

There are only very few simulation studies of flexible dendrimers in solution. One of the first
simulation studies was performed by Lescanec and Muthukumar [124]. They performed a three-
dimensional off-lattice simulation with a ball-and-stick model of starburst polymers using a kinetic
growth algorithm for a SAW. They found a density profile that decreases monotonically outward from
the center of the molecule. However, their simulation did not allow the structures to relax to more
entropically favorable configurations. Thus their model is non-equilibrium in nature and it is not
clear, whether their results hold for equilibrium dendrimers.

When comparing our simulation data with the ones obtained in very often cited MC-study of
dendrimers by Mansfield and Klushin [132] we noticed considerable deviations that could not be
explained by data scattering. In [207] it was recently shown that the simulation scheme, that was used
in [132] was completely erroneous because it did not obey detailed balance and hence did not obtain
correct equilibrium properties of polymers. In [207] a modification to this scheme was introduced
which corrected for this problem.

A MD simulation study by Murat et al [146] gave evidence of a density distribution function
which is maximal at the core and decays to the edge of the dendrimer.

Experimentally, small-angle scattering methods, such as SAXS and SANS are suitable to inves-
tigate the radial structure of dissolved dendrimers. Up to now, however, SANS- and SAXS-studies
of dendrimers in solution did not come to a final conclusion regarding the average radial density
distribution. A survey of literature may be found in [11].

In light of the fact that the analytical results by de Gennes and Hervet, and the findings of numer-
ical studies conflict fundamentally, a self-consistent mean field model of dendrimers was developed
by Boris and Rubinstein [39]. Their model allows to calculate the overall density profile of any gen-
eration · of interest in the system. However, this theory has all the inherent assumptions of any mean
field theory, since they calculate the excluded volume interaction of a test branch with a mean density
field found by pre-averaging over configurations of all the other monomers. In particular, they ignore
all correlations along the branch. In addition, they assume the dendrimer molecules to be spherically
symmetric with the center of mass at the core monomer and that the mass of each individual shell
is uniformly distributed in the respective shell. With this model they obtained a density profile of
dendrimers with features that supports the findings of the very few available simulation studies which
found the density being the largest at the core and decaying to the edge.

The synthesis of high molecular weight dendrimers is expensive due to the many synthetic steps
involved. The question therefore arises, whether irregular hyper-branched polymers that can be ob-
tained in one single-pot reaction would show similar properties. Currently, there is little experimental
evidence concerning the intrinsic viscosity , �)� of hyper-branched polymers. Fréchet et al [74] claim
that , �)� always increases, but less rapidly than for equivalent linear chains whereas it was shown by
Hobson and Feast [96] that certain hyper-branched polymers exhibit a dendrimer-like behavior in that, �)� passes through a characteristic maximum and then decreases with increasing molecular weight.
Since experimental results are not consistent and there is no general theoretical explanation for the
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Figure 5.43: Different types of repeat units present in a hyper-branched AB À -polymer according to [172].

behavior of dendritic systems, computer simulations appear to be an appropriate way to obtain insight
into these kind of problems.

5.3.2 Description of the degree of branching with dendritic macromolecules

In a perfectly branched dendrimer, only one type of repeat-unit can be distinguished, apart from
the terminal units carrying the chain ends. In an imperfect hyper-branched dendrimer one can distin-
guish three different repeat units as depicted in Figure 5.43. These repeat units are terminal units & ,
having the two B-groups unreacted, linear units � , having one B-group unreacted and the dendritic
units

^
which are fully reacted AB § monomers. The linear units are generally called defects.

The degree of branching DB is often used to characterize hyper-branched structures. It is tradi-
tionally defined by [171]

^ � - � ^ � � &� ^ � � & � � � S (5.14)

This definition however, has the disadvantage that it overestimates the degree of branching of dis-
tributions of small molecules since unreacted monomers are counted as terminal units and contribute
to the degree of branching. Another drawback is the fact that the degree of branching of linear chains
is never zero but  Ì � as linear chains always have a terminal group.

A better definition of
^ � is given by the ratio of the actual number of dendritic units,

^
, to

the maximum number of dendritic units for a given molecular weight. Since two linear units � can
always be rearranged to give one dendritic unit this leads to^ � -.� � ^ Ì Õ � � ^ � � �þÖ�S (5.15)
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W   = 909
a) DB = 1

W   = 1101
b)DB = 1

W   = 1771
d)           DB = 2 x 5/(2 x 5 + 10) = 0.5 

W   = 1123

c) DB = 0

Figure 5.44: Four different dendritic structures that contain the same number of AB À -monomers ( ²¤HÝ>�> )
as the regular dendrimer of generation É7H}6 (a). (b) Random (hyper-branched) dendrimer with the same
degree of branching as (a), containing no linear units. (c) Linear chain containing only linear units with ÏHÁãHNb
(minimal) and Ð H�:Eý�ý�: (maximal). (d) Another random structure containing several linear and dendritic
units. The core B Ñ -units of the different structures are emphasized by circles and the color coding to distinguish
different units is done according to Figure 5.43. Examples are taken from Ref. [209].

Terminal units do not contribute to
^ � in this definition, thereby avoiding the above mentioned

disadvantages of Eq. (5.14). In the trivial case of unreacted monomer units (
^ ->� -.! ), Eq. (5.15)

is defined as
^ �}-.! . The ABx-1-monomer of the focal point is counted as being linear if ( Ë � � ) of

its B-groups have reacted. If all B-groups have reacted it is dendritic and in the case of zero B-groups
having reacted it is counted as terminal unit.

Although Eq. (5.15) yields a better characterization of branching in terms of
^ � it still has the

drawback that hyper-branched molecules with significantly different topologies may have the same^ � value as displayed in Fig. 5.44.

A yet even more discriminating structural index is the Wiener index Ò which was introduced
by H. Wiener [210]. He defined the connectivity index of a graph as the sum of distances between
all pairs of vertices of the graph. As the molecules obtained from sequential polymerization are like
trees and contain no rings or multiple connections between any two bonds one can adopt the same
method to determine Ò as in the original paper [210]. Each bond, regardless of its branching status
or molecular structure, is considered as a vertex of the graph. For each bond k of an � -vertex tree the
product of the number of vertices on the “left” ( � 	 ) and on the “right” ( � ÿ ) side of k is calculated and
summed up, leading to the definition:

Ò - ~ ���� � � � � 	 � ÿ S (5.16)
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 � r simulation | � n 
 � r according to Eq. (5.20)

50  ?VÃSçt�ÜHCÝ!TSU!W� 13.89
100 � � Sç��CÝ!TSùÜ 27.80
200 Þ�tÃSçt�CÝ!TSçV 55.60
400  � ?�DC� 111.2
800 ����Ü�C�V 222.4

1000 ��V�tDC�Þ 238
2000 Þ�Þ�Û�Cà ?Þ 556
5000  ?V � Ü�C�V�Û 1390

Table 5.14: Comparison of ¿ ¯ ± À�Â
O measured in simulations with Eq. (5.20) using the Wiener index.

This definition, applied to linear chains with � segments, where each chain segments represents
a vertex of the graph, the Wiener index is simply:Ò linear ��� � -�� ��� 
 �  F� Ì t v (5.17)

and for dendrimers of generation · with tri-functional repeat units (  -¦V ) where each of the � -Vs�\�SÓ �  F� �� branch points represents a vertex, the Wiener index is [176]:Ò dendrimer, p=3 �(· ��-.ÛÐ�"Ü Ó �V· �  ?Þ)�"Ü Ó �. � ��� Ó � VÃS (5.18)

For symmetric star-branched chains with � ( ��âüV ) arms and � � monomers per arm the Wiener
index is given by:

Ò���� v � � � ->�ÕÔ ô ���� Y�� � �¨����� � � �g��Ö �q����� �  F�Ê� � S (5.19)

For graphs with the same number of vertices, Ò is always minimal for the most compact, den-
dritic structure and maximal for a linear structure with the same number of vertices � . E.g. for aè Ø � generation regular dendrimer, the value obtained for Ò from Eq. (5.18) is about 12 times smaller
than for a linear chain with the same number of vertices � . Structures that have the same degree
of branching

^ � can usually be distinguished by their corresponding Wiener indices, see Fig. 5.44.
Although some very small graphs may have the same Ò , even if their connectivity is different, the
Wiener index is a good quantitative measure for characterizing the shape of larger connectivity trees
of molecules. Ò reflects the actual surface-to-volume ratio of a structure and in [92] it was shown
that it is related to physical and chemical properties depending on this ratio such as molar volume,
viscosity or refractive index.

For linear ideal chains with � segments there is a simple connection between |¨� n 
 � r and Ò ,
because the pair summation over the number of segments in Eq. (5.16) is equal to the Wiener index.
Therefore, � n can be rewritten using the Wiener index in the following form:

| � n 
�� r - * È X(� 
� 
 Ò (5.20)
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A comparison of |¨� n 
 � r , that were measured directly in simulations and are listed in the tables
in Appendix A on pages 143 to 148, and | � n 
 � r according to Eq. (5.20), using the measured X\� 
 and* È for this model, is given in Table 5.14.

5.3.3 Simulations of dendrimers

In this work we concentrate on dendritic polymers built from tri-functional AB 
 monomers
around a B 0 core with a spacer length of   -ûV . The total number of monomers ��×total of such a
perfect dendrimer structure is determined by   and the generation number · :

� ×total -.VÐ�? C�$�\� Ó � � �  F� �� �S (5.21)

An example for   -pV and ·�-û� is given in Fig. 5.45 which also shows the numbering of the� -5� × total - t�Ü monomers, as it is done in the simulation. The dendrimer starts with the ! Ø �
generation at the central core unit (label 0) with three spacers of length V . Each of these spacers has
a tri-functional end-monomer continuing into two daughter spacers which define the next generation.
This process continues until the desired generation number, with each spacer of one generation having
two daughter spacers of the same length. In this work we considered dendrimers in an athermal
solvent and under � -conditions. Sample snapshots from real simulations of regular dendrimers can be
found in the Appendix F on Page 175.

5.3.4 Simulations of hyper-branched polymers

Hyper-branched monomers of tri-functional AB 
 monomers were simulated in this work for sev-
eral spacer lengths   and different generations · . We focused on the simulation of a perfect hyper-
branched structure which contains no linear repeat units and where all B-groups in each generation
have fully reacted, expect for the terminal units. Such a perfect hyper-branched structure is known
in literature as Fréchet dendrimer. A chemical realization of this type of hyper-branched structure is
given in Fig. 5.46.

The total number of monomers � 0
total in a Fréchet-type dendron is given by
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Figure 5.46: Experimental realiza-
tion of a Fréchet dendrimer as a sec-
ond generation dendritic alcohol. Taken
from [103].

� 0
total -}�\� Ó � � �  F�E�� í��V� �� S (5.22)

For simulational purposes this structure can be viewed as a backbone chain with a total of

� 0
back - ��Ü�· ���W�w�? ¤�.�\�5·ã�� F� (5.23)

monomers and a number of regularly attached side chains of various lengths which, depending on
generation number · , have themselves attached side chains, see Fig. 5.47.

5.3.5 Simulation results

Figure 5.48 displays the variation of | � n 
 � for regular dendrimers as a function of the generation
number · for two considered solvent qualities, an athermal solvent ( �I-}!TSU! ) and a � -solvent ( � -!TSçt�Þ ). The difference in size between dendrimers in both solvents becomes more apparent with an
increase of the generation number · . Figure 5.48 suggests that a dendrimer can be grown to an
infinite size. However, at some critical generation number, a dendrimer can be grown only in an
imperfect manner anymore. Therefore one would expect � n to saturate eventually which is not yet
the case for the generations that were simulated. In Figure 5.49 the same quantities are shown on
a double-logarithmic scale as a function of the number of monomers � in the system. The solid
lines are linear fits of the data points according to | �¿n 
 � ò � 
�� and using only generations V toè . The scaling exponent � is not a constant as it is for other connectivities of monomers such as
linear chains or stars, but it decreases with generation number. This means that self-similarity of
dendrimers of different generations is restricted to much smaller length scales than for objects with
a simpler branching structure. The results for � taking into account different numbers of generations
are listed in Table 5.15.

As the fractal dimension of an object in Euclidian space is limited by the dimensionality of the
space we consider the fractal dimensionality of our model dendrimers to be ¸�ô
-�VÃSU! within the
accuracy of the simulation data in both considered solvents. The slightly larger values than ¸¼ô -¦V
are probably due to the finite size of our chains. As mentioned above, scaling laws of the form
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Figure 5.47: Schematic picture of the simulated Fréchet dendrimers. For simulation purposes the branched
structure can be visualized as a backbone chain with side chains attached to it in a symmetric manner. De-
pending on generation number, the side chains themselves have branches. The central B Ñ core-monomers of
the AB À -units are depicted as circles. The spacers of length Æ are depicted as separate lines. In the simula-
tion, only two parameters determine the whole connectivity tree completely: the number of monomers Æ per
spacer and the generation É . Each B Ñ core-monomer of the branched structure is taken account of by one extra
monomer in the simulation.

| � n 
 � ò � � are strictly only valid in the ( � ä å )-limit. Hence we obtain the observed deviations.
Thus, according to our results, dendrimers are very dense, completely space-filling objects.

Mansfield determined the fractal dimension of dendrimers by using the box method [133]. In this
study, a range of ¸Tô was determined as ¸Tô·-¤�ÃSùÜ$Þ � �ÃSØè�t . These results are not consistent with our
study.

A determination of ¸sô by Murat and Grest gave ¸Tô{-üVÃS� and ¸Ãô{-.VÃSU! for the good and athermal
case, respectively. The result of this publication is in accord with our ¸�ô -value of V .

Finally we present in Figure 5.50 the time evolution of � n with simulation time. To ensure
equilibration of the systems, �Ðn and �)� were monitored and production runs were started only when
these quantities had saturated to a common mean value from different initial conditions.

5.3.5.1 Monomer density distribution �����W�
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Figure 5.48: Size of regular dendrimers. ¿ ¯ ± À Â
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Figure 5.49: Log-log plot of ¿ ¯�±IÀ�Â vs. the number
of monomers ² . Two solvent conditions are consid-
ered. The straight lines are best linear fits to the data
points taking into account only generations 6 to ý .

· considered � �%�¡-�!TSU!$� ¸TôÖ�%�¡-�!TSU!$� �N�%� -�!TSçt�ÞW� ¸ÃôÖ�%�¡-�!TSçt�ÞW� � è !TSçV�V�tiC !TSU!s ?� �ÃSçÛWè !TSçVT ?ViC !TSU!�!WÞ VÃSç��!� � è !TSçVT EÜ�C !TSU!s "! VÃS� � !TSçV�!WViC !TSU!�!WV VÃSçV�!V � è !TSçV�!�Ü�C !TSU!�!Wt VÃSç��Û !TSç��Û�ÞiC !TSU!�!WÞ VÃSùÜW!
Table 5.15: Scaling exponents ö obtained for regular dendrimers in a good and K -solvent. The correspondent
fractal dimensions ��� are displayed as well.
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Figure 5.50: Time evolution of ¿ ¯¥±'À�Â of various dendrimer systems starting from different initial configu-
rations. É HÇÆ , ¾ H b$÷ b . Time is displayed in LJ-units.

In this section we focus on the average radial monomer density, �����W� , which is calculated by
counting the number Ø of monomers whose centers of mass are located within a spherical shell of
radius r and thickness Óm� . We used a typical value of Óm��-ü!TS� Ið . Integration over � yields the total
number of monomers as:

Ø ���W��-àÜW» ÈÉ r � v 
 ����� v �Ã¸$� v (5.24)

The rheological and thermodynamic properties of dendrimers in solution depend on the location
of the end-groups and the density distribution in the molecule. A very recent experimental study of è Ø �
generation dendrimers [200] concluded that the internal structure of the molecule is rather uniform,
with the end groups being preferably located at the periphery of the molecule. This result is in
contradiction with a number of simulation studies on the structure of dendrimers [124, 127, 146, 216].
A self-consistent mean-field theory developed by Boris and Rubinstein [39] predicts a monotonic
decrease of � from the center of the molecule.

On the other hand, in [37], a study of dendrimers with deuterated end-groups shows a rather
uniform overall density distribution, suggesting that the end groups can significantly penetrate the
interior of the molecule.

As the experiments concerning radial density distributions are rather contradictory it must be
concluded, that the question of the overall structure of dissolved dendrimers has not yet found a
generally accepted answer.

In our simulation study we consider the density � Ó ���W� of generation ·}-  � è dendrimers. We
analyze the overall density of all monomers and the individual contributions of the monomers of each
generation. The results of this study are displayed in Figures 5.51 to 5.57.

The influence of solvent quality is displayed as well. The shape of the curves for both solvent
conditions look very similar for small generation ( · Å � § A V ) dendrimers. For higher generation
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Figure 5.51: Radial monomer densities of a regular dendrimer. The contributions of the monomers pertain-
ing to consecutive generations are shown. É max H�: .
dendrimers, the athermal chains become more extended in space, with the density � of all monomers
exhibiting an extended plateau. Interestingly, in the athermal solvent in Fig. 5.58, which displays the
contributions of all monomers for the different generations, one can see, that a local minimum in � is
developing when going from generation ·¦-C � t . With generation è this local minimum has dis-
appeared. For both solvent qualities, one can see that the end-groups of the different sub-generations
of a given dendrimer are almost completely flexible and interpenetrate the whole molecule. In par-
ticular, the end-groups of higher sub-generations come very close to the core of the molecule. This
effect increases with the total number of generations · Å � § and is stronger in the � -solvent. Here, for·J-.Þ , the end-groups of sub-generation Þ come closer to the central core than the end-groups of the
first sub-generation. In the athermal solvent, this effect is clearly seen in Figure 5.56 in which the core
is excluded by the monomers of the first sub-generation but not by the monomers of the outermost
region.

With increasing sub-generation, the density becomes more and more uniform within the whole
dendrimer, down to the core region, where even monomers of the innermost sub-generation are ex-
cluded.

Finally, in Fig. 5.59, we have displayed the measured bondlengths X � 
 of regular dendrimers for
various sub-generations ·E� . This Figure elucidates, that the segments of inner monomers are more
stretched on average than the segments at the periphery of the dendrimers. This effect increases with
increasing dendrimer size, respectively with increasing maximum generation · Å � § . The larger a
dendrimer, the more stretching of the inner segments. This effect is stronger at the athermal case
and decreases with solvent quality. The effect of stretching of inner bonds of a dendrimer might
be a possible explanation for the strong back-folding of outer end-groups into the core region of
dendrimers.

5.3.5.2 Branching factors

In Figures 5.60 and 5.61 we display the õ -factors for regular dendrimers as a function of · and
of molecular weight � , respectively. The branching factor õ for dendrimers is defined according to
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Figure 5.52: Radial monomer densities of a regular dendrimer. The contributions of the monomers pertain-
ing to consecutive generations are shown. É max HN> .
Eq. 2.13 on Page 11. The most interesting point in the functionality of õÖ-áõ����I� is the fact, that õ
is a strongly monotonously decreasing function of � , just like the õ -factors of industrial LDPE that
were investigated in Section 5.2. In that section, a comparison of the monotonously decreasing LDPEõ -values with various branched structures resulted in the conclusion that hyper-branched structures
must be prevalent in the experimental systems of Ref. [194]. Figures 5.60 and 5.61 strongly support
our conclusions of Section 5.2.

The � -solvent õ -value is larger than the one for the athermal solvent, in accordance with the
behavior of õ with star-branched polymers. The õ -value in the athermal case however, is much smaller
than the smallest one obtained with stars in study. The overall structure therefore is very compact.
The numerical value of õ for the � -case is of the order of the one obtained for an  � -arm star. This
suggests a similar overall structure of many-arm stars and a regular dendrimer under � -conditions.

Finally, the dimensionless values

e
were calculated from the simulation data and are displayed in

Figures 5.62 and 5.63. No simple scaling form of

e
can be found anymore. Interestingly,

e
approaches

a maximum with increasing polymer size before leveling off to a long plateau with

e
-values that

indicate a globular structure.

5.3.5.3 Shape analysis of the dendrimers

The asphericities of dendrimers in Figures 5.64 and 5.65 reveal a strongly globular structure of
dendrimers, approaching a saturation value very close to zero. The dendrimers are by far the most
compact objects of all topologies that were investigated in this study, reaching the lowest values for
asphericities.

The corresponding asphericities of a hyper-branched polymer, displayed in Figure 5.66, are not
quite as low which leads to the conclusion that regular dendrimer structures are on average slightly
less aspherical than hyper-branched ones.
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Figure 5.53: Radial monomer densities of a regular dendrimer. The contributions of the monomers pertain-
ing to consecutive generations are shown. É max H 6 .
5.3.5.4 Structure functions

As further illustration of the dendrimer structure, the structure function ³ �\Qu� is displayed in Fig-
ures 5.67 to 5.72. ³Ç�\Qu� vs. scattering vector Q is shown, as well as the more sensitive Kratky-Plot
for both simulated solvent qualities. Finally, in Figures 5.71 and 5.72 we have plotted the rescaled
Kratky representations of the data in order to compare systems of different sizes. In Figure 5.72 the
scattering factor of a solid sphere is displayed as well. It can readily be seen that the dendrimers
approach a sphere-like structure with increasing generation.
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Figure 5.54: Radial monomer densities of a regular dendrimer. The contributions of the monomers pertain-
ing to consecutive generations are shown. É max H¢Æ .

0 1 2 3 4 5 6 7 8 9 10

r/σ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 ρ
(r

) 
σ

3

 athermal solvent

Gmax = 5 (all monomers)��

54321

0

0 1 2 3 4 5 6 7 8 9 10

r/σ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 ρ
(r

) 
σ

3

  θ−solvent

 Gmax = 5 (all monomers)

5

4
32

0

1

Figure 5.55: Radial monomer densities of a regular dendrimer. The contributions of the monomers pertain-
ing to consecutive generations are shown. É max HNø .



136 Simulation results of branched chain systems

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

r/σ

0.0

0.1

0.2

0.3

0.4

0.5

 ρ
(r

) σ
3

 athermal solvent

Gmax = 6 (all monomers)

0

1
2 3

4 5

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

r/σ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 ρ
(r

) σ
3

  θ−solvent

Gmax= 6 (all monomers)

5

6

4
32

0

1

Figure 5.56: Radial monomer densities of a regular dendrimer. The contributions of the monomers pertain-
ing to consecutive generations are shown. É max H þ .
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Figure 5.57: Radial monomer densities of a regular dendrimer. The contributions of the monomers pertain-
ing to consecutive generations are shown. É max H�ý .
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Figure 5.58: Total radial monomer densities of a regular dendrimer vs. generation number É .
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Figure 5.69: Structure function S(k) for regular
dendrimers of different generations É . ¾ H b$÷ þ�ø .
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Summary
In conclusion, we can state the following points:¡ Dendrimers are the most spherical objects of all topologies that were investigated in this study.¡ The branching factor õ for � -chains is larger than the one in good solvent conditions. This

behavior was also observed with the stars.¡ Not all the end-groups of dendrimers lie near the exterior of the molecule. In contrast to this,
they are almost completely dispersed throughout the molecule and can even be found in close
proximity to the core.¡ There is a range of generation numbers for which some hollowness in the molecule is present.
This is indicated by a relative minimum of the density distribution.¡ The segments of monomers pertaining to the inner generations are more expanded than the ones
at the periphery of the molecule. This effect increases with solvent quality and with the total
number of generations in the molecule. This stretching of monomer bonds can be understood
as a consequence of molecular crowding in the core region.¡ The structure functions of dendrimers exhibit a structure that approaches the one of a solid
sphere with increasing generation number.



Appendix A

Data of linear single chains

The following tables list the measured static properties of the linear single chains. These data were
used for the determination of the � -point of the linear chains as well as for comparisons with branched
chain systems. The data were achieved by simulating at least 20 chains in parallel, with the inter-chain
interaction being switched off. For the smaller systems, at least 200.000 statistically independent
snapshots were averaged, for systems larger than �û-á "!�!�! at least 5.000 independent samples were
averaged. The errors of the smaller systems are well below 1%.� � � k 
 � � � n 
 � � �)� ��� � Ù 6-Ú [�ÛÙ 6 � [ Û Ù 6-Ú�Ü ÛÙ 6-Ú [ Û [ Ù 6 � Ü ÛÙ 6 � [ Û [ Ù 6 � [�Û ÙKÝ [Ù 6 V�Þ Ù Û Þ Ù

0.00  ?ÞT �SçÞ�C !TSØè ��VÃSç��V�C !TS� ?t !TSç��Þ�Ü�C !TSU!�!$è tÃSçÞ��  �SùÜu  �S� ?V  �Sç����Þ
0.20  ?V � SU!�C !TSùÜ �T �Sç��Û�C !TSU!WV !TSç��t���C !TSU!�!Wt tÃSùÜ �  �SùÜ$�  �S� EÜ  �Sç�T � 
0.40  � � SØèiC !TSçV  � Sçt � C !TSU!WV !TSç�Wè�t�C !TSU!�!WÞ tÃSçV�Þ  �SùÜ$Þ  �S� ?Þ  �S� ?Û�V
0.60 ÛT �SùÜ�C !TSç�  EÜsSçÛ�!�C !TSU!WV !TSçV�!�!�C !TSU!�!WÞ tÃS� ?V  �SçÞ��  �S� Fè  �S� ?Þ�t
0.61 � ÛÃSùÜ�C !TSç�  EÜsSçt�Þ�C !TSU!W� !TSçV�!W��C !TSU!�!�Ü tÃS� "!  �SçÞ�Þ  �S� Fè  �S� ?Þ��
0.62 � è9SØèiC !TSçV  EÜsSçV�Û�C !TSU!WV !TSçV�!�Ü�C !TSU!�!s tÃSU!WÛ  �SçÞ�t  �S� Fè  �S� ?ÞT 
0.64 � VÃSçÛ�C !TSçV  ?VÃS � Û�C !TSU!W� !TSçV�!$èiC !TSU!�!W� tÃSU!�Ü  �Sçt�!  �S� �  �S� EÜ$Þ
0.65 � �ÃSç��C !TSç�  ?VÃSçt�Ü�C !TSU!W� !TSçV�!WÛ�C !TSU!�!W� tÃSU!WV  �Sçt��  �S� �  �S� EÜu 
0.66 è�ÛÃSçÛ�C !TSçV  ?VÃSçV�!�C !TSU!W� !TSçV�!WÛ�C !TSU!�!s tÃSU!s  �SçÞ�Þ  �S� �  �S� ?V�Û
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Table A.1: Data of static properties of simulated linear chains. ² H�ø?b with different values of the potential
depth ¾u÷ Ensembles of at least : b�b chains were simulated in parallel and averages were taken from at least6FbFb$÷ b�bFb statistically independent configurations.
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Table A.2: Data of static properties of simulated linear chains. ² H�: b�b with different values of the
potential depth ¾1÷ Ensembles of at least :/bFb chains were simulated in parallel and averages were taken from at
least 6Fb�bW÷ bFb�b statistically independent configurations.

� � �)k 
 � � �an 
 � � �)� ��� � Ù 6-Ú [
ÛÙ 6 � [ Û Ù 6-Ú<Ü ÛÙ 6 Ú [ Û [ Ù 6 � Ü ÛÙ 6 � [ Û [ Ù 6 � [ Û ÙKÝ [Ù 6 V�Þ Ù Û Þ Ù
0.00 � !WtiC�Û  ?�Wè9SçÛ�C !TSçt !TS� ?��ViC !TSU!�!WÞ tÃSçV�Þ  �SùÜ$t  �S� ?t  �SçV�Û�t
0.20 è�� � C� ?�  � ?ÞÃSç��C !TSùÜ !TS� ?� � C !TSU!�!Wt tÃSçV��  �SùÜ$Þ  �S� ?t  �SçVWè�Þ
0.40 tT ?ÞiC�t Û � Sç��C !TSçV !TS� ?VWèDC !TSU!�!�Ü tÃSç��t  �SùÜ$Û  �S� Fè  �SçV�t�!
0.60 Üu � hC�t tWè9Sçt�C !TSç� !TS� ?Þ�ÛiC !TSU!�!WÞ tÃSU! �  �SçÞ �  �Sç�T  �SçVT � 
0.61 V�Û � CÝÜ t�ÞÃSçÛ�C !TSç� !TS� ?tT hC !TSU!�!WÞ tÃSU!�Ü  �SçÞ �  �Sç�T  �SçV�!$è
0.62 V � ViC�Þ t�VÃSçt�C !TSç� !TS� ?t�ViC !TSU!�!�Ü tÃSU!W�  �Sçt�!  �Sç�T  �SçV�!�!
0.64 V�Þ�ViC�� Þ�ÛÃS� gC !TSçV !TS� ?tWèDC !TSU!�!WÞ ÞÃSçÛWè  �SçÞ �  �Sç���  �Sç� � è
0.65 V�VWèDC�� Þ�tÃSçt�C !TSçV !TS� Fè�!�C !TSU!�!WÞ ÞÃSçÛ�Þ  �SçÞ �  �Sç���  �Sç� � !
0.66 VT � C�� Þ�VÃSØèiC !TSç� !TS� Fè�Ü�C !TSU!�!�Ü ÞÃSçÛ��  �Sçt�!  �Sç��Ü  �Sç�Wè�è
0.67 ��Û � C� Þ�!TSçÛ�C !TS� !TS� Fè�èDC !TSU!�!WÞ ÞÃS � Þ  �Sçt�V  �Sç��Þ  �Sç��t�V
0.68 �Wè�èDC� Ü$tÃS � C !TS� !TS� �  hC !TSU!�!�Ü ÞÃSØè�t  �SçÞ �  �Sç��Ü  �Sç��V�t
0.69 ��Þ�Ü�C� Ü�ÜsSØèiC !TS� !TS� � ÞiC !TSU!�!WÞ ÞÃSçt �  �SçÞ �  �Sç�T  �Sç��V�t
0.70 ���WèDC� Üu �Sç��C !TS� !TS� ?Û�!�C !TSU!�!�Ü ÞÃSçÞT  �SçtWè  �Sç��!  �Sç�T �
0.80 � ÛÃS� hC� �S� ���ÃSçV�C !TS � !TSç��V�tiC !TSU!�!WÞ ÜsSçVT  �S � Þ  �S� EÜ  �S� � ?t
0.90 t � SçÞiC� �SU!  ?tÃSùÜ�C !TS� !TSç��t�tiC !TSU!�!Wt ÜsS� �  �S � t  �SU!W�  �SU!�Ü$Þ
1.00 VWè9S� hC !TSçÛ  � �Sçt���C !TSU!WÞ !TSç�Wè�ÛiC !TSU!�!WÞ VÃS� ?Û  �SØè�Þ  �SU!s !TSçÛ�Þ�!

Table A.3: Data of static properties of simulated linear chains. ²qHß>?b�b with different values for the
potential depth ¾1÷ Ensembles of at least : bFb chains were simulated in parallel and 300.00 independent snapshots
were taken.
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�p-���Üu � � k 
 � � � n 
 � � �)� ��� � Ù 6 Ú [ ÛÙ 6 � [ Û e�¡-�!TSU!  "!WV�!�C� �  ?t���C�� !TS� � "!�C !TSU!�!W� tÃSçV�V  �SùÜW!WÞ�¡-�!TSçt�Þ V�Û�ViC
è t�ÜsSçÞDC !TSçt !TS� ?t�!�C !TSU!�!s tÃSU!WV  �Sç� � V
Table A.4: Data of linear chains with the same molecular weights as the simulated stars. C.f. Table B.19.�p-�V�!s � � k 
 � � � n 
 � � �)� ��� � Ù 6 Ú [
ÛÙ 6 � [ Û e�¡-�!TSU!  ?V�VT hC� ?Þ �T � gC� !TSU!WÛ�Û�C !TSU!�!s tÃSçV�!  �SùÜ$V�Û�¡-�!TSçt�Þ Þ���!�C. ?Û � tÃS� �C !TSØè !TS� EÜu �C !TSU!�!WV tÃSU!�Ü  �SçVT � 
Table A.5: Data of linear chains with the same molecular weights as the simulated stars. C.f. Table B.1.� � � k 
 � � � n 
 � � �=� ��� � Ù 6 Ú [ ÛÙ 6 � [ Û Ù 6 Ú Ü ÛÙ 6-Ú [ Û [ Ù 6 � Ü ÛÙ 6 � [ Û [ Ù 6 � [�Û ÙKÝ [Ù 6 V�Þ Ù Û Þ Ù

0.00  ��� ÞiC�V�! V�!WViC�V !TSU! � ÞiC !TSU!�!WV tÃSç���  �Sçt�Ü  �S� ?t  �SùÜ9è�Û
0.20  ?t�!$èDC���� ��Þ�ÛiCÝÜ !TSU! ��� C !TSU!�!W� tÃSç��!  �SçÞ�!  �S� Fè  �SùÜu ?Û
0.40  ?V�t � C���t ���T hC�V !TSU!WÛ�ÞiC !TSU!�!W� tÃS� ?Û  �SùÜ$Û  �S� Fè  �SùÜu "!
0.60 � t�t�C� EÜ  EÜ$ViC� !TS� � EÜ�C !TSU!�!W� tÃSU!Wt  �SØè�Û  �Sç�T  �SçV�Þ�Û
0.61 � V�V�C� ?t  ?VWèDC� !TS� � ?tiC !TSU!�!W� tÃSU! �  �SØè�Û  �Sç���  �SçV�Ü$Þ
0.62 � !�!�C� �  ?V��iC� !TS� � FèDC !TSU!�!W� tÃSU!Wt  �SØè �  �Sç��t  �SçV�Ü9è
0.64 èÃ "!�C� ?t  � � C� !TS� ?��ViC !TSU!�!W� tÃSU!W�  �SØè�Þ  �Sç��Ü  �SçV�V�Ü
0.65 tWè�Ü�C� �  � ?�iC� !TS� ?��tiC !TSU!�!s tÃSU!W�  �SØèÃ  �Sç���  �SçV���Û
0.66 Þ � !�C� EÜ Û�ÛiCà !TS� ?VT hC !TSU!�!W� ÞÃS � V  �SØè�!  �Sç��Ü  �SçV�!Wt
0.68 Ü$����C� "! è � SçV�C !TSçt !TS� EÜ$ViC !TSU!�!W� ÞÃSçt�t  �Sçt �  �Sç��V  �Sç��t�t
0.70 � � è)CÝÜ Þ�ÛÃSùÜ�C !TSùÜ !TS� EÜ9èDC !TSU!�!W� ÞÃSùÜ$V  �SùÜ$V  �S� Fè  �Sç��V��
0.80  ?ÛWè)CÝÜ V�ÛÃSçV�C !TSç� !TS� �  hC !TSU!�!W� ÞÃSU!s  �SçV��  �S� ?t  �S� ?V�Ü
0.90  "!s �C�� ���ÃSçV�C !TSç� !TS� ?Û�ÛiC !TSU!�!W� ÜsSçÞ�V !TSçÛ�Ü  �SU!s !TSçÛ�Üu 
1.00 � �DC�  � SçV�C !TSç� !TSç��! � C !TSU!�!W� ÜsSùÜ � !TSçÛ�Ü  �SU!�! !TSçÛWè�Ü

Table A.6: Data of static properties of simulated linear chains. ²qH Æ�b�b with different values for the
potential depth ¾ . Ensembles of at least : b�b chains were simulated in parallel and at least 200.000 independent
snapshots were taken.�p- Ü �  � � k 
 � � � n 
 � � �)� ��� � Ù 6 Ú [ ÛÙ 6 � [ Û e�¡-�!TSU! ��Üu ?Þ�CÝÜ�Ü VWè�Û�C�Þ !TSU!$è�t�C !TSU!�!s tÃSç��V  �SùÜ � V�¡-�!TSçt�Þ � !WÞiC� ?t  ?V���C� !TS� � FèiC !TSU!�!s tÃSU!W�  �SçV�V�!
Table A.7: Data of linear chains with the same molecular weights as the simulated stars. C.f. Table B.20.�º-.t�!s � � k 
 � � � n 
 � � �)� ��� � Ù 6 Ú [
ÛÙ 6 � [ Û e� -�!TSU! V�!WV�Ü�C Ü$t Ü � èiC�t !TSU!WtWè�èiC !TSU!�!�! � tÃSç�T  �SùÜ$Û�V� -�!TSçt�Þ Û��T hCà Fè  ?Þ�Ü�C� !TS� "!$èiC !TSU!�!s ÞÃSçÛ �  �SçV�V��
Table A.8: Data of linear chains with the same molecular weights as the simulated stars. C.f. Table B.2.
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�p-.è��T � � k 
 � � � n 
 � � �)� ��� � Ù 6 Ú [ ÛÙ 6 � [ Û e�¡-�!TSU! VWè�Û�Ü�C
è�Ü tT � gC�Û !TSU!WtT gC !TSU!�!W� tÃSç�T  �SùÜ$Û ��¡-�!TSçt�Þ  "!W��Ü�C� Fè  Fè�t�C� !TS� "!s gC !TSU!�!s ÞÃSçÛ�Ü  �SçV�Ü�Ü
Table A.9: Data of linear chains with the same molecular weights as the simulated stars. C.f. Table B.21.

� � � k 
 � � � n 
 � � �=� ��� � Ù 6 Ú [ ÛÙ 6 � [ Û Ù 6 Ú Ü ÛÙ 6-Ú [ Û [ Ù 6 � Ü ÛÙ 6 � [ Û [ Ù 6 � [�Û ÙKÝ [Ù 6 V�Þ Ù Û Þ Ù
0.00 Ü$�T ?�iC�t�Ü t � !�Cà ?� !TSU!WÞ � C !TSU!�!WÛ tÃS� ?Û  �SùÜ �  �S� ?t  �SçÞ�!W�
0.20 V �  ?tiC�Þ�V t��T hCà � !TSU!WÞ�ÛiC !TSU!�!WÛ tÃS� EÜ  �SùÜ$Û  �S� Fè  �SùÜ9è�Û
0.40 VT ?t�ÛiC�Þ�Þ ÞT ?ÞiC � !TSU!Wt�ÞiC !TSU!�! � tÃS� ?Þ  �SçÞT  �S� �  �SùÜ$t�!
0.60  � ÛWèDCÝÜ$Û VT ?�iC�t !TSU! � !�C !TSU!�!$è tÃS� "!  �Sçt��  �Sç�T  �SùÜW!$è
0.61  Fè�ÛWèDCÝÜ�Ü ��Û�tiC�Þ !TSU! � �iC !TSU!�!Wt tÃSU!$è  �Sçt�!  �Sç��V  �SùÜW!WV
0.62  ?t � èDC�V�V � � !�C�Þ !TSU! � Ü�C !TSU!�!WÞ tÃSU!WV  �Sçt�!  �Sç��V  �SùÜW!s 
0.64  EÜ$��!�C� ?Û ��V�ViC�V !TSU! � ÛiC !TSU!�!Wt tÃSU!WÛ  �SçtWè  �Sç��t  �SçV�t �
0.65  ?V�Þ�ViC� Fè ����Ü�C�V !TSU!WÛ�ViC !TSU!�!W� ÞÃSçÛ�Û  �Sçt��  �Sç��Þ  �SçV�Þ �
0.66  "!WÞ��iC� ?t  Fè�ÞiC�� !TS� "!W�iC !TSU!�!WV tÃSU!s  �SçÞ�Þ  �Sç��Þ  �SçV���t
0.68 tT ?Þ�C� ?V  ?V�Ü�C�� !TS� � � hC !TSU!�!s ÞÃSùÜW!  �SùÜ �  �Sç��Ü  �Sç� ���
0.70 Ü$V�Ü�C� "! Û��iCà !TS� ?V�!�C !TSU!�!s VÃSç�Wè  �SùÜW!  �S� "!  �Sç��Ü �
0.80  ?tT �C�t Ü9èDCà !TS� ?t�Ü�C !TSU!�!s ÜsSç�T  �SçV�!  �S� ?t  �S� ?�T 
0.90  ?��!iC�� V��iC !TSùÜ !TS� FèÃ hC !TSU!�!s VÃSØè�Þ  �S � t  �SU!�! !TSçÛ�t�Ü
1.00 t � SU!�C�� ��tÃSçV�C !TS� !TS� � Ü�C !TSU!�!s �ÃSçÞ�Û  �SØè�Þ  �SU!s !TSçÛ�Ü9è

Table A.10: Data of static properties of simulated linear chains. ²�H¤úFb�b with different values for the
potential depth ¾ . Ensembles of at least >?bFb chains were simulated in parallel and at least 40.000 independent
snapshots were taken.

�û-üÛ�!s � � k 
 � � � n 
 � � �)� ��� � Ù 6 Ú [ ÛÙ 6 � [ Û e� -.!TSU! Ü$Û���Ü�Cà � ?� è�Û�VDC�Û !TSU!WÞ�V�Û�C !TSU!�!�! � tÃS� �  �SçÞT �� -.!TSçt�Þ  ?V � tiC
��V ��V�!iC�Þ !TSU!WÛ�!�C !TSU!�!s tÃSU!W�  �SçV�t�!
Table A.11: Data of linear chains with the same molecular weights as the simulated stars. C.f. Table B.3.
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� � � k 
 � � � n 
 � � �)� ��� � Ù 6 Ú [ ÛÙ 6 � [ Û Ù 6 Ú Ü ÛÙ 6fÚ [ Û [ Ù 6 � Ü ÛÙ 6 � [ Û [ Ù 6 � [
Û ÙKÝ [Ù 6 V�Þ Ù Û Þ Ù
0.00 Þ�ÞT ?��C�tWè � Û��iCà ?Û !TSU!WÞT gC !TSU!�!WÛ tÃS� �  �SùÜ$t  �S� ?Û  �SçÞ���V
0.20 Ü9è�t�Þ�C
è�Þ è�ÛWèDC �T !TSU!WÞ�V�C !TSU!�!WÛ tÃS� �  �SùÜ$Þ  �S� ?Û  �SùÜ$Û��
0.40 Ü$��� � C�t � t�Û�ÛiCà EÜ !TSU!WÞWèiC !TSU!�! � tÃSU!WÞ  �SùÜ$Û  �Sç��!  �SùÜ9è�Ü
0.60 ��t�V�t�C�t�Þ Ü$V�ViCà ?V !TSU!Wt � C !TSU!�! � tÃSU!WÛ  �SçÞ �  �Sç�T  �SùÜu ?Þ
0.61 ��ÜW!W��CÝÜ$Þ V�Û�ÞiCà ?� !TSU!$è�V�C !TSU!�! � tÃSU! �  �SçÞ �  �Sç��Ü  �SùÜ$t �
0.62 ����Þ�!�CÝÜW! V�Þ � C � !TSU!$è�Ü�C !TSU!�!$è tÃSU!W�  �Sçt�!  �Sç��Þ  �SçV�Û�t
0.64  Fè���!�C�V�t � � tiC
è !TSU! �  gC !TSU!�!WÞ tÃSU!s  �SçÞ �  �Sç���  �SçVWè�Ü
0.65  EÜu ?Þ�C���Û ��V�tiC�Þ !TSU! � V�C !TSU!�!WÞ ÞÃSçÛ�Û  �SçÞ �  �Sç���  �SçV�t��
0.66 � ÞWè)C�� �  ?t�tiCÝÜ !TSU!WÛ�V�C !TSU!�!�Ü ÞÃS� ?t  �Sçt�!  �Sç��Ü  �SçV�V�Ü
0.68 è�Þ�tDC� EÜ  ?Þ�ViC�� !TS� "!WÞ�C !TSU!�!�Ü ÜsSçÛ�Ü  �SçÞ �  �Sç��Ü  �Sç��Û�Ü
0.70 V�t�ÞDC� � Û�ViC � !TS� ?V�!�C !TSU!�!W� VÃSçÛ��  �SçVWè  �Sç���  �Sç��Þ�Þ
0.80  � ��CÝÜ Þ�!TSçViCÝ!TSç� !TS� ?t�!�C !TSU!�!W� VÃSçV��  �SçV�Þ  �S� "!  �S� ?V�V
0.90  � ?Þ�C�Þ V�ÞiCà !TS� ?V�!�C !TSU!�!W� VÃSç� �  �SçVT  �Sç��Ü  �SU!s Fè
1.00  "!WÞ�C�� V�ViCà !TS� ?t � C !TSU!�!s VÃS� �  �S� ?Þ  �SU!�! !TSçÛWè

Table A.12: Data of static properties of simulated linear chains. ² H :/bFb�b with different values for the
potential depth ¾ . Ensembles of at least >?bFb chains were simulated in parallel and at least 20.000 independent
snapshots were taken.

�p-á ?��Üu � � k 
 � � � n 
 � � �)� ��� � Ù 6 Ú [<ÛÙ 6 � [ Û e�¡-�!TSU! t � ÛWèDC. ?Þ�t  � ?��Û�C ��Þ !TSU!�Ü$t�CÝ!TSU!�! � tÃS� "!  �SçÞ�� ��¡-�!TSçt�Þ ���Wè�ÞiC. � ?V VWè � C. "! !TSU!$èÃ gCÝ!TSU!�!WÛ tÃSU!W�  �SçVWèÃ 
Table A.13: Data of linear chains with the same molecular weights as the simulated stars. C.f. Table B.22.� � � k 
 � � � n 
 � � �)� ��� � Ù 6 Ú [�ÛÙ 6 � [ Û Ù 6 Ú Ü ÛÙ 6-Ú [ Û [ Ù 6 � Ü ÛÙ 6 � [ Û [ Ù 6 � [�Û ÙKÝ [Ù 6 V�Þ Ù Û Þ Ù

0.0  ?��V��T �C�Þ�Ü$Þ ��!s "!�C� � ?Þ !TSU!WV�Ü�C !TSU!�!Wt tÃS� ?V  �SçÞ�!  �S� Fè  �SçÞ�Ü$�
0.20  � � ?Þ�!�CÝÜu �  � ÞWèiC�Û�V !TSU!WV�Þ�C !TSU!�!WÞ tÃSU!WÛ  �SçÞT  �S� �  �SçÞ���!
0.40 Û�Ü$VWè£C�V�Ü�Ü  ?Þ �  gCÝÜ$� !TSU!WV � C !TSU!�!WÞ tÃSU!WÞ  �SçÞ�!  �S� �  �SùÜ$Û�Û
0.60 Þ�V���tiC��T "! ��� �iC� ?Þ !TSU!�Ü$Û�C !TSU!�!WÞ tÃSU!�Ü  �SØè�t  �Sç���  �SùÜ�ÜW!
0.62 ÜW! �  hC� ?tWè tWè�tiC� ?Þ !TSU!WÞ�Þ�C !TSU!�!$è tÃSU!�Ü  �SçÞ�t  �Sç��V  �SùÜ$�T 
0.64 V�Þ�V�tiC�����t Þ � èDC�V�Þ !TSU!WÞ � C !TSU!�!WÞ tÃSU!WV  �SØè�t  �Sç��Ü  �SçV�Û�Û
0.65 V�V�VT hC� � ?t Þ�ÞWèDC� ?Þ !TSU!Wt���C !TSU!�!WÞ ÞÃSçÛ�Û  �SØè�t  �Sç��t  �SçV � Û
0.66  ?V � t�C�ÛWè V�t�tiC� Fè !TSU!$è�!�C !TSU!�!WÞ VÃSØè�Û  �SØè�t  �Sç��Ü  �SçV�Ü$V
0.68 ÛWè��iCÝÜu V�!W��C
è !TSU!$è�Þ�C !TSU!�!�Ü VÃSç��V  �SØè�t  �S� ?t  �SçV�!s 
0.70 ÞWè � C�V��  � t�C�Û !TSU!WÛ���C !TSU!�!WV VÃS� "!  �SØè�t  �SU! �  �Sç��Þ�Û
0.80  ?t�Þ�C
è è�ÞÃSçÞiCÝÜ !TS� ?VT gC !TSU!�!$è �ÃS� ?Û  �SùÜ$�  �SU!W�  �S� EÜ�Ü
0.90  ?V�!�C�Þ Þ � SçViCÝÜ !TS� ?V�V�C !TSU!�!Wt �ÃSç��V  �SùÜW!  �SU!W�  �SU!s Fè
1.0  "!WÞ�CÝÜ Þ�!TSØèDC !TSØè !TS� ?V�t�C !TSU!�!WV �ÃSU!$è  �SçVWè  �SU!s !TSçÛWèÃ 

Table A.14: Data of static properties of simulated linear chains. ² H�>FbFb�b with different values for the
potential depth ¾ . Ensembles of at least >?bFb chains were simulated in parallel and at least 5.000 independent
snapshots were taken.
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� � � k 
 � � � n 
 � � �)� ��� � Ù 6 Ú [�ÛÙ 6 � [ Û Ù 6 Ú Ü ÛÙ 6 Ú [ Û [ Ù 6 � Ü ÛÙ 6 � [ Û [ Ù 6 � [�Û ÙKÝ [Ù 6 V�Þ Ù Û Þ Ù
0.0 V�Þ�V�V�Þ�C � Û�! ÞWè�Û � C� � ?Þ !TSU!W�T gC !TSU!�!W� tÃSU!WÛ  �SçÞ �  �S� ?Û  �SçÞ�tT 
0.65 �  ?Û�ÞiC� ?�Wè  ?V�t�Ü�C�V�! !TSU!WV � C !TSU!�!WV tÃSU!s  �SçV�Ü  �S� "!  �SùÜu "!

Table A.15: Data of static properties of simulated linear chains. ² H�øFbFb�b with different values for the
potential depth ¾1÷

� � � k 
 � � � n 
 � � �)� ��� � Ù 6 Ú [ ÛÙ 6 � [ Û e Ò linear� � t�ÛÃSçÛ�C !TSçÛ  "!TSçt�C !TSç� !TSçV�Ü$�iC !TSU!�!W� tÃSçtT  �S� � V��Wè�tt�Ü ��!WtiCãè VT �SçÞ�C !TSç� !TSç����ÞiC !TSU!�!WV tÃSçÞ�Ü  �Sç��t�V Üu ?t�t�Ü ?V�t Þ��T gC� Fè �  �C� !TS� ?ÞT hC !TSU!�!W� tÃSùÜ$V  �SçV�ÞWè Üu "!�!�ÜW!� � !  � ?t � C Ü$t  ?Û�Ü�CÝÜ !TS� "!W�iC !TSU!�!WV tÃSç�Wè  �SùÜu ?Û V�tT ?Û�Þ�t�!Þ�t � ��ÛT EÜ�Cãè�! Ü$tT �CÝÜ !TSU!Wt � C !TSU!�!s tÃSçV��  �SùÜ$t�t V�!WV � !WtT ?t � EÜ�Ü t�Þ�tT gC�� � !  "!WÞ�t�CÝÜ !TSU!�Ü9èDC !TSU!�!s tÃS� �  �SçÞ��Wè ��Ü ��� è � V�Ü�Ü����Û�t  ?Þ���V�Ü�C Ü � Û ��Ü$Þ � CÝÜu !TSU!WVT hC !TSU!�!s tÃS� Fè  �SçÞ�Ü9è ��!s EÜ$t�V�t�t � !
Table A.16: Simulation data of linear single chains with the same number of monomers as the simulated
regular dendrimers. C.f. Table B.27. ¾ H b$÷ b .

� � � k 
 � � � n 
 � � �)� ��� � Ù 6 Ú [ ÛÙ 6 � [ Û e Ò linear� � Ü$�ÃSçViC !TSØè è9SU!�!�C !TSU!W� !TSçV�Û�ÞiC !TSU!�!WV tÃSU!�Ü  �SU!�Ü$t V��Wè�tt�Ü  "!�Ü�CÝÜ  Fè9SçViC !TS� !TSç� �  hC !TSU!�!�Ü tÃSU!s  �S� ?t � Üu ?t�t�Ü ?V�t ��� � C�Û VWè9S � C !TSùÜ !TSç��!WViC !TSU!�!�Ü tÃSU!WV  �Sç��Ü9è Üu "!�!�ÜW!� � ! Ü$t�ÞDC� ?Û è�è)C� !TS� EÜ � C !TSU!�!WÞ tÃSU!�Ü  �Sç��ÛWè V�tT ?Û�Þ�t�!Þ�t � ��� ÞDC�V��  EÜ9èiC�V !TS� "! � C !TSU!�!�Ü tÃSU!W�  �SçV�! � V�!WV � !WtT ?t � EÜ�Ü  EÜ$Û�V�C�Þ�� ��Þ�!�CÝÜ !TSU! � èDC !TSU!�!WV ÞÃSçÛWè  �SçVWè�! ��Ü ��� è � V�Ü�Ü����Û�t ��Þ�V��iC� "!�! Ü�Ü$tiC� EÜ !TSU!WtWèDC !TSU!�!WV ÞÃSçÛ�Û  �SçV�Û�� ��!s EÜ$t�V�t�t � !
Table A.17: Simulation data of linear single chains with the same number of monomers as the simulated
regular dendrimers. C.f. Table B.28. ¾ H b$÷ þ�ø .
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� ��� eff � � � n 
 � � ��� eff � � � k 
 � �!TSU!�!  �S� ?ÛWè�è  �S� � è�t!TSç��!  �S� ?Û�Ü �  �S� � Þ��!TSùÜW!  �S� ?Û���V  �S� � VWè!TSçt�!  �S� � "!$è  �S� "! �  !TSçt��  �SU!WÞ � !  �SU!WÞ�!$è!TSçt�Ü  �SU!s "!�!  �SU!�! � !!TSçt�Þ !TSçÛ�Û�Þ�t !TSçÛ�Û�t�V!TSçt�t !TS ��� Û�Û !TS � è ���!TSçt � !TSØèÃ ?Û�t !TSçt�Û�!WÛ!TSØè�! !TSçtWè�!WÛ !TSçt�Þ�Û��!TS � ! !TSçt�ÞWè � !TSçt�Þ�Üu !TSçÛ�! !TSçt�Þ�!WÛ !TSçt�Ü$Û�Û �SU!�! !TSçt�ÜW!WÛ !TSçt�V�ÜW!
Table A.18: Effective exponents >Fö eff

of ¿ ¯ ° A ± À�Â determined from Figures
4.16 and 4.17.



Appendix B

Data of branched chain systems

�º-.V�!s � � k 
 � � � n 
 � arms

� � n 
 � � �)� ��� � e� -�!TSU!�! ÜW!WÛDC�V Þ � S � C !TSçÞ  ?t�Ü�C� !TS� "!W�iC !TSU!�!s  �SçV�! �� -�!TSçt�! ��!s �C�� V�VÃSç��C !TSç� � VÃSçtiC !TSçV !TS� ?V�tiC !TSU!�!s  �Sç��Ü �� -�!TSçtT  ?Û�ÞDC� VT �Sçt�C !TSç� è�ÛÃSU!iC� !TS� ?V � C !TSU!�!W�  �Sç��Ü$�� -�!TSçt��  ?ÛT �C� VT �SU!�C !TS� è�ÞÃSØè)C� !TS� EÜ$�iC !TSU!�!W�  �Sç��V�Þ� -�!TSçt�V  �  �C� ��ÛÃSØèiC !TSç� è��ÃSçÛDC� !TS� EÜ�C !TSU!�!W�  �Sç����Û� -�!TSçt�Ü  Fè�è)C� ��ÛÃSçV�C !TSç� t�ÛÃSçÞDC� !TS� EÜ9è���C !TSU!�!W�  �Sç���Wè� -�!TSçt�Þ  ?t � C� � � SçV�C !TS� t�ÞÃSçtiC !TS� !TS� ?ÞT hC !TSU!�!s  �Sç�T �� -�!TSçt�t  ?Þ�tDC� ��tÃSçÛ�C !TS� tT �Sç�DC� !TS� ?Þ�Ü�C !TSU!�!s  �Sç��!$è� -�!TSçtWè  ?Þ��DC� ��tÃSç��C !TS� Þ�ÛÃSçÞDC� !TS� ?Þ�tiC !TSU!�!s  �Sç��!WÞ� -�!TSçt �  EÜW!iC� ��ÞÃSU!�C !TS� Þ�VÃSçÞDC� !TS� ?t��iC !TSU!�!W�  �S� ���� -�!TSçt�Û  ?� � SØèDC !TSØè ��VÃSØèiC !TS� Ü$ÛÃSØè)C� !TS� ?tWèDC !TSU!�!W�  �S� Fè�Ü� -�!TSØè�!  "!WÞÃSç�iC !TSçV ��VÃSU!WÞ�C !TSU!WÛ Ü9è9Sç�DC� !TS� ?t�ÛiC !TSU!�!W�  �S� ?t�Ü
Table B.1: Data of star polymers under various solvent conditions. ÅjHN6 , ²}H 6�bW: .�û-üt�!s � � k 
 � � � n 
 � arms

� � n 
 � � �)� ��� � e�¡-à!TSU!�! Û�V � CÝÜ  ?V�tÃSùÜ�C !TSçt VWè�Ü�C�� !TSU!$è�!�C !TSU!�!s  �SçV�Ü$V�¡-à!TSçt�! Ü$VT �C�� t � SùÜ�C !TSçt  Fè�ÞiC� !TS� "!�!�C !TSU!�!W�  �Sç� � V�¡-à!TSçtT Ü$��VDC�� t�tÃSçt�C !TSçt  ?tWèDC� !TSU!WÛ�ÛiC !TSU!�!W�  �Sç� � è�¡-à!TSçt�� V � !iC�� t�VÃSçt�C !TSçt  ?Þ�!�C� !TS� "!�Ü�C !TSU!�!W�  �Sç�Wè�V�¡-à!TSçt�V VWè�Ü�C�� tT �Sç��C !TSùÜ  EÜ$ÞÃSçÛ�C !TS � !TS� "!WÞiC !TSU!�!W�  �Sç��t�t�¡-à!TSçt�Ü V�Þ�ÞDC� Þ�ÛÃS � C !TSçÞ  EÜu �SU!�C !TSçÛ !TS� "!WtiC !TSU!�!W�  �Sç��t�V�¡-à!TSçt�Þ V���Ü�C�� Þ�ÞÃSùÜ�C !TSçÞ  ?��tÃSçÞ�C !TS � !TS� � � hC !TSU!�!W�  �Sç��Ü$Û�¡-à!TSçt�t �Wè�tDC�� Ü9è9Sçt�C !TSùÜ Û � SØè)C !TSØè !TS� ?���iC !TSU!�!s  �Sç��!$è�¡-à!TSçtWè ��t � C�� Ü$ÞÃS� gC !TSçÞ ÛT �S� �C !TSØè !TS� ?��tiC !TSU!�!s  �S� ?Û ��¡-à!TSçt � ��ÞWè)C�� Ü�ÜsSçÞ�C !TSùÜ Û�ÜsSØè)C !TSØè !TS� ?��Ü�C !TSU!�!s  �S� ?Û�Ü�¡-à!TSçt�Û ��Ü$ÞDC�� Ü$VÃSØèiC !TSçÞ � VÃSçVDC !TSØè !TS� ?V�!�C !TSU!�!WV  �S� � Þ�¡-à!TSØè�! ����ÞDC� V � S � C !TSçÞ Þ�tÃSU!iC !TSçÞ !TS� ?V��iC !TSU!�!s  �SU!WÛ�V
Table B.2: Data of star polymers under various solvent conditions. ÅjHN6 , ²}H þ�bW: .



151�º-.Û�!s � � k 
 � � � n 
 � arms

� � n 
 � � �)� ��� � e� -�!TSU!�!  ?Þ�V�!�C� ?� ����Ü�C�� tT ?tiC � !TSU!WÞ�ÞiC !TSU!�!W�  �SçV�tWè� -�!TSçt�! t�Û�ViC�Þ  � ?ÞDC� ��t�Ü�CÝÜ !TSU! �  hC !TSU!�!W�  �SçV�!$è� -�!TSçtT t�Ü$ÞiC�Þ  "!WVDC� ��t��iC� !TSU! � !�C !TSU!�!W�  �Sç��Û��� -�!TSçt�� Þ��T hCÝÜ Û�ÜsS� hC. ��!WÞiC� !TSU! � ÛiC !TSU!�!WV  �Sç�Wè�Û� -�!TSçt�V Ü9è � C� �  �SØèDC.  � èDC� !TSU!WÛ�ViC !TSU!�!�Ü  �Sç��t �� -�!TSçt�Ü Ü$ÞWèDC� è��ÃSçÞiC.  Fè�Ü�C� !TSU!WÛ�tiC !TSU!�!W�  �Sç��t�Þ� -�!TSçt�Þ Ü$V�tiC� t � SØèDC.  ?t�tiC� !TSU!WÛ � C !TSU!�!W�  �Sç��t�!� -�!TSçt�t Ü$��ÞiC� t�ÜsSç�iC�!TS �  ?tT hC� !TSU!WÛ � C !TSU!�!W�  �Sç��V�Û� -�!TSçtWè V�Û�ÛiC� t��ÃS� hC.  ?Þ�Ü�C� !TSU!WÛWèDC !TSU!�!W�  �Sç��!Wt� -�!TSçt � ��t�ÛiC� t�!TSçViC�!TS �  ?��tiC� !TS� "!$èDC !TSU!�!W�  �Sç��!WV� -�!TSçt�Û ��t�!�C� Þ�ÞÃSU!�C�!TSçt Û�ViC !TSØè !TS� ?��ViC !TSU!�!W�  �S� ?Û�!� -�!TSØè�! ��Þ�tiC� Ü$ÛÃS� hC�!TSùÜ � ÛÃSçtiC� !TS� ?��Ü�C !TSU!�!s  �S� ?t�!
Table B.3: Data of star polymers under various solvent conditions. ÅjHN6 , ²}H 	 bW: .�p-á "!s � � k 
 � � � n 
 � arms

� � n 
 � � �)� ��� � e�¡-�!TSU!�! è�tÃS � C !TSçÞ  "!TSçt�Þ�C !TSU!W� V�VÃS� � CÝ!TSU! � !TS� ?ÛWèiC !TSU!�!Wt  �S� ?V�Ü�¡-�!TSçt�! Ü9è9SçVT hC !TSU!WV è9SçV�ViC !TSU!W� ��!TSçt � CÝ!TSU!WV !TSç��Üu gC !TSU!�!WÛ  �SU!WÛWè�¡-�!TSçtT Ü$tÃSØè��iC !TSU!WV è9Sç��tiC !TSU!s ��!TSçV�Û�CÝ!TSU!WV !TSç��Ü$V�C !TSU!�!WÛ  �SU!WÛ�t�¡-�!TSçt�� Ü$ÞÃSØè � C !TSU!WV è9S� ?ÞiC !TSU!W�  ?ÛÃSçÛ�Ü�CÝ!TSU!WV !TSç��Ü$Þ�C !TSU!�!s  �SU!WÛ�V�¡-�!TSçt�V Ü�ÜsSØè�ÛiC !TSU!WV è9SU!WÞiC !TSU!s  ?ÛÃSçt�!�CÝ!TSU!WV !TSç��Ü9èiC !TSU!�!s  �SU!WÛT �¡-�!TSçt�Ü Ü$VÃSçÛ�ÛiC !TSU!W� tÃSçÛWèDC !TSU!s  ?ÛÃSç�T gCÝ!TSU!WV !TSç��Ü$Û�C !TSU!�!s  �SU! � Û�¡-�!TSçt�Þ Ü$VÃS� "!�C !TSU!W� tÃS ��� C !TSU!s  � S � Ü�CÝ!TSU!W� !TSç��ÞT gC !TSU!�!s  �SU! � è�¡-�!TSçt�t Ü$�ÃSçV�!�C !TSU!W� tÃSØè�ÛiC !TSU!s  � SùÜ$��CÝ!TSU!W� !TSç��Þ�V�C !TSU!�!s  �SU! � Þ�¡-�!TSçtWè Üu �SçÞT hC !TSU!W� tÃSØè�!�C !TSU!s  � S� EÜ�CÝ!TSU!W� !TSç��Þ�Ü�C !TSU!�!s  �SU! � V�¡-�!TSçt � ÜW!TSùÜ�Ü�C !TSU!W� tÃSçÞ�ÛiC !TSU!s  Fè9Sçt�Ü�CÝ!TSU!W� !TSç��ÞWèiC !TSU!�!s  �SU! � !�¡-�!TSçt�Û V�ÛÃSçÞ�!�C !TSU!W� tÃSçÞ�!�C !TSU!s  Fè9Sç��V�CÝ!TSU!W� !TSç��t�!�C !TSU!�!s  �SU!$è�è�¡-�!TSØè�! V � SçÞ � C !TSU!W� tÃSùÜW!�C !TSU!s  ?tÃSØè�èiCÝ!TSU!W� !TSç��t���C !TSU!�!s  �SU!$è�V�¡-á �SU!�!  ?tÃSçV��iC !TSU!s ÜsSçV�Ü�C !TSU!s è9SçÛT gC !TSU!s !TSçV�V�t�C !TSU!�!$è !TSçÛ�Ü$t
Table B.4: Data of star polymers under various solvent conditions. ÅjHÇÆ , ²}H�:/bW: .�û-.��!s � � k 
 � � � n 
 � arms

� � n 
 � � �)� ��� � e� -�!TSU!�!  �  �C !TSùÜ ��ÞÃSçV�C !TS� è�è9SçÛ�C !TSç� !TS� ?V�Þ�CÝ!TSU!�!s  �S� ?Û�Ü� -�!TSçt�� Û�tÃSùÜ�C !TS�  ?ÞÃS� gC !TS� Üu �SØèiC !TSç� !TS� Fè � CÝ!TSU!�!WV  �S� ?Þ�V� -�!TSçt�V Û��ÃSùÜ�C !TS�  EÜsS � C !TS� V�ÛÃSçÛ�C !TSç� !TS� �  gCÝ!TSU!�!WV  �S� EÜ$t� -�!TSçt�Ü Û�!TS � C !TS�  EÜsSØèiC !TS� V � SçÛ�C !TSç� !TS� � V�CÝ!TSU!�!WV  �S� EÜ$V� -�!TSçt�Þ � è9SU!�C !TS�  EÜsSçV�C !TS� VWè9SùÜ�C !TSç� !TS� � t�CÝ!TSU!�!WV  �S� ?V �� -�!TSçtWè � !TSØèiC !TS�  ?VÃSçÞ�C !TS� V�ÜsSçt�C !TSç� !TS� ?Û���CÝ!TSU!�!WV  �S� ?� �� -�!TSçt � è � S� gC !TS�  ?VÃSç��C !TS� V�VÃSçt�C !TSç� !TS� ?Û�Þ�CÝ!TSU!�!WV  �S� ?�Wè� -�!TSçt�Û è�ÞÃSçÛ�C !TS�  ?VÃS� gC !TS� V��ÃSçt�C !TSç� !TS� ?ÛWèiCÝ!TSU!�!WV  �S� ?��V� -�!TSØè�! èÃ �Sç��C !TS�  ?�ÃSùÜ�C !TS� V�!TSØèiC !TSç� !TSç��!s gCÝ!TSU!�!�Ü  �S� � ?Þ� -á �SU!�! ��VÃSØè���C !TSU!W� è9S� ?ÛiC !TSU!�Ü  � �Sç��Ü�C !TSU!W� !TSç� � !�CÝ!TSU!�!s !TSçÛ�V �
Table B.5: Data of star polymers under various solvent conditions. ÅjHÇÆ , ²}HN>FbW: .
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�û-�ÜW!s � � k 
 � � � n 
 � arms

� � n 
 � � �)� ��� � e� -.!TSU!�! Ü$��Ü�C !TSçÞ Þ�ÛÃSçÛiCÝ!TSùÜ  � �DC� !TSU!WÛ���C !TSU!�!s  �Sç��Üu � -.!TSçt�! ��!WÛÃSçÞ�C !TSçV V��ÃS � CÝ!TSçV Û�!TSØèDC !TSùÜ !TS� ?��t�C !TSU!�!W�  �S� ?Û�t� -.!TSçtT ��!WÞÃS � C !TSç� V��ÃSçÞiCÝ!TSç� � è9SØèDC !TSùÜ !TS� ?� � C !TSU!�!W�  �S� ?Û�V� -.!TSçt�� ��!�!TS� �C !TSç� V��ÃSç�iCÝ!TSçV � tÃSU!�C !TSçÞ !TS� ?��Û�C !TSU!�!WV  �S� ?Û�t� -.!TSçt�V  ?ÛT �SU!�C !TSç� V�!TSùÜ�CÝ!TSç� � �ÃSU!�C !TSùÜ !TS� ?V���C !TSU!�!W�  �S� ?Û�!� -.!TSçt�Ü  Fè�è9SçÛ�C !TSç� ��ÛÃS� hCÝ!TSç� è�tÃSçÞiC !TSùÜ !TS� ?V�Þ�C !TSU!�!W�  �S� � �� -.!TSçt�Þ  Fè�!TSçÛ�C !TSç� � � SçtiCÝ!TSç� è�ÜsSU!�C !TSùÜ !TS� ?VWèiC !TSU!�!W�  �S� Fè�t� -.!TSçt�t  ?tWè9SçÛ�C !TSç� �Wè9SçÛiCÝ!TSç� èÃ �SØèDC !TSùÜ !TS� ?V�Û�C !TSU!�!W�  �S� Fè�V� -.!TSçtWè  ?Þ�!TSçÛ�C !TSç� ��tÃSçÞiCÝ!TSçV t�ÞÃSùÜ�C !TSùÜ !TS� EÜ�Ü�C !TSU!�!WV  �S� ?t�Ü� -.!TSçt �  EÜ � SùÜHC !TSç� ��ÞÃSç�iCÝ!TSç� tT �SU!�C !TSùÜ !TS� EÜ � C !TSU!�!WV  �S� ?Þ�t� -.!TSçt�Û  ?V�tÃS� �C !TSç� ��ÜsSç�iCÝ!TSç� ÞWè9SØèDC !TSçV !TS� ?ÞT gC !TSU!�!WV  �S� EÜ �� -.!TSØè�!  � ?ÛÃSç��C !TSç� ��ÜsSU!�CÝ!TSç� ÞT �SçÛiC !TSùÜ !TS� ?Þ � C !TSU!�!WV  �S� ?V�Þ
Table B.6: Data of star polymers under various solvent conditions. ÅjHÇÆ , ²}H¢Æ�bW: .
�û- � !s � � k 
 � � � n 
 � arms

� � n 
 � � �)� ��� � e� -.!TSU!�!  "!�!�Ü�C�V  EÜ$�ÃSçtiC��ÃSØè ÜW!�!iC�Þ !TSU!Wt�Ü�C !TSU!�!W�  �Sç�Wè�è� -.!TSçt�! Ü$V�VDC� t � SçtiC� �SçÞ  � ÛDC�V !TSU!WÛ�!�C !TSU!�!WÞ  �Sç��V�Ü� -.!TSçt�� V�ÛWè)C� t�ÜsSØèDC !TSçt  FèÃ �C� !TSU!WÛ�Ü�C !TSU!�!W�  �Sç���T � -.!TSçt�Ü V�V � C� Þ � Sç�iC !TSùÜ  EÜu �SçtiC !TSçt !TS� "!�!�C !TSU!�!s  �Sç��!W�� -.!TSçt�Þ V�V�Ü�C� ÞWè9S� hC !TSùÜ  EÜ$�ÃSØèDC !TSçt !TS� "!s hC !TSU!�!W�  �Sç�T � � -.!TSçt�t �Wè�ÞÃSçÛiC. Þ�!TSØèDC !TSùÜ  � "!TSçtiC !TSçt !TS� � ?�iC !TSU!�!WV  �S� Fè�t� -.!TSçt � ��V�tDC� Ü$VÃSç�iC !TSçt  "!WVÃSçÞiC !TSçÛ !TS� � ?ÞiC !TSU!�!W�  �S� Fè�!� -.!TSØè�!  ?t��DC� V�ÞÃS � C !TSçV t�ÞÃSU!�C !TSçV !TS� ?V�Ü�C !TSU!�!W�  �SU! �  � -} �SU!�! Þ��ÃSùÜ�C !TSçÞ  ?ÛÃSØèDC !TS� ��ÞÃSçÞ���C !TSU!s !TS� � ÞiC !TSU!�!WV !TSçÛ�V�t
Table B.7: Data of star polymers under various solvent conditions. ÅjHÇÆ , ²}H ú�bW: .
�û-á "!s � � k 
 � � � n 
 � arms

� � n 
 � � �)� ��� � e� -�!TSU!�! t�!TS� gC !TS� � Sç��!�C !TSU!$è �Wè9S� ?Þ�C !TSU! � !TSç��! � CÝ!TSU!�!WV  �SU! � Ü� -�!TSçt�! V � SØèÃ �C !TSU!$è ÞÃS � ViC !TSU!Wt  Fè9SØè���C !TSU! � !TSç��Þ�V�CÝ!TSU!�!WÞ  �SU!WtWè� -�!TSçtT VWè9SçÞ���C !TSU!$è ÞÃSØè�ÞiC !TSU!Wt  Fè9SçV�Þ�C !TSU! � !TSç��Þ�Ü�CÝ!TSU!�!WÞ  �SU!WÞ�t� -�!TSçt�� VWè9SU! � C !TSU!$è ÞÃSçtWèDC !TSU!Wt  Fè9SU!WV�C !TS� � !TSç��Þ�t�CÝ!TSU!�!WÞ  �SU!WÞ�Þ� -�!TSçt�V VWè9SU!�ÜHC !TSU!$è ÞÃSçt�tiC !TSU! �  ?tÃS � t�C !TS� "! !TSç��Þ�t�CÝ!TSU!�!$è  �SU!WÞ�V� -�!TSçt�Ü V�ÞÃSçÞ�Û�C !TSU!$è ÞÃSçÞ�ViC !TSU!Wt  ?tÃSç�WèiC !TSU!WÛ !TSç��t�!�CÝ!TSU!�!WÞ  �SU!�Ü �� -�!TSçt�Þ V�ÞÃSU!WÞ�C !TSU!$è ÞÃSçÞT hC !TSU! �  ?tÃS� ?t�C !TS� ?t !TSç��t�!�CÝ!TSU!�!WÞ  �SU!�Ü�Ü� -�!TSçt�t V�ÜsSU!$è�C !TSU!$è ÞÃSùÜ$�iC !TSU! �  ?tÃSU!�!�C !TS� ?V !TSç��tT gCÝ!TSU!�!$è  �SU!WÞ�!� -�!TSçtWè V�VÃS � è�C !TSU!Wt ÞÃSçV � C !TSU!WÞ  ?ÞÃSçt � C !TSU!WÛ !TSç��t�Ü�CÝ!TSU!�!WÞ  �SU!�Ü$t� -�!TSçt � V��ÃSçt�ÜHC !TSU!Wt ÞÃSç��ÞiC !TSU!WÞ  ?ÞÃS� � C !TSU!WÛ !TSç��t � CÝ!TSU!�!WÞ  �SU!�Ü$�� -�!TSçt�Û V��ÃSçÛT �C !TSU!Wt ÞÃSç� � C !TSU!WÞ  ?ÞÃSU!�!�C !TSU!WÛ !TSç��t � CÝ!TSU!�!WÞ  �SU!�Ü�Ü� -�!TSØè�! VT �SçÛ�V�C !TSU!Wt ÞÃS� EÜ�C !TSU!WÞ  EÜsS � V�C !TSU! � !TSç�Wè�!�CÝ!TSU!�!WÞ  �SU!�ÜW!� -á �SU!�!  ?tÃSç� � C !TSU!WV VÃSçt � C !TSU!WV è9S �  hC !TSU!WV !TSçV�VWèiCÝ!TSU!�!WV !TSçÛ�Ü$�
Table B.8: Data of star polymers under various solvent conditions. ÅjH�ø , ²}H�:/bW: .



153�û-ü��!s � � k 
 � � � n 
 � arms

� � n 
 � � �)� ��� � e� -.!TSU!�!  EÜ9è)C.  ?ÛÃS � C !TSçV t�ÞÃS� hC !TSçÞ !TSç�Wè�ViC !TSU!�!�Ü  �S� EÜ$t� -.!TSçtT è�ÛÃS � C !TSçV  ?�ÃS� hC !TSç� V�t v ��C !TSçV !TS� � ÞiC !TSU!�!Wt  �S� "!WÛ� -.!TSçt�V è � SØè)C !TS�  � �SçÛiC !TSçV V�ÞÃSùÜ�C !TSçV !TS� � ÛiC !TSU!�!Wt  �S� � "!� -.!TSçt�Ü è�!TSçVDC !TS�  � �SØèDC !TSç� V�ÜsSØèDC !TSçV !TS� � èDC !TSU!�!Wt  �S� "!�!� -.!TSçt�Þ è�ÞÃSØè)C !TSç�  � �SçtiC !TSçV V�ÜsSU!�C !TSçV !TS� � ÞiC !TSU!�!Wt  �S� � ?�� -.!TSçt�t èÃ �SU!iC !TS�  � �SçViC !TSç� VT �SçÛiC !TSçV !TS� Fè�ÛiC !TSU!�!Wt  �S� "!W�� -.!TSçtWè t�tÃSØè)C !TS�  "!TS � C !TSç� V�!TS� hC !TSçV !TS� Fè�èDC !TSU!�!Wt  �SU! � Û� -.!TSçt�Û t�ÜsS� �C !TS�  "!TSØèDC !TSç� � � S � C !TSçV !TS� Fè�!�C !TSU!�!Wt  �SU!WÛ�!� -.!TSØè�! Þ�ÛÃSùÜ�C !TS�  "!TSç�iC !TSç� ��tÃSçtiC !TSçV !TS� ?t��iC !TSU!�!Wt  �SU!$è�Û
Table B.9: Data of star polymers under various solvent conditions. ÅjH�ø , ²}HN>FbW: .�º-àÜW!s � �)k 
 � � �an 
 � arms

� �an 
 � � �)� ��� � e�¡-�!TSU!�! V�V�tiC
� Ü$tÃSU!�C !TSùÜ  EÜ$ÛÃS � C !TS � !TSU!WÛWèiC !TSU!�!s  �S� � t�¡-�!TSçt�!  FèÃ �SçtiC�!TS � ��tÃSçt�C !TSùÜ è�tÃSçtiC !TSùÜ !TS� ?V���C !TSU!�!WV  �S� ?Þ�Ü�¡-�!TSçt��  ?t�VÃSçtiC�!TSØè ��ÞÃSçÛ�C !TSçV è�VÃSç�iC !TSçÞ !TS� ?V�Ü�C !TSU!�!WV  �S� EÜ$Û�¡-�!TSçt�V  ?Þ�ÜsSçViC�!TSØè ��ÜsSçÞ�C !TSçV è�!TSùÜ�C !TSçÞ !TS� ?VWèiC !TSU!�!WV  �S� EÜ$t�¡-�!TSçt�Ü  EÜ9è9SùÜ�C�!TSØè ��VÃSçt�C !TSçV t�tÃSØèDC !TSçV !TS� EÜW!�C !TSU!�!WV  �S� ?V�Û�¡-�!TSçt�Þ  ?V�ÛÃSçÞiC�!TSØè ���ÃSçÛ�C !TSç� t��ÃS � C !TSçV !TS� EÜ�Ü�C !TSU!�!WV  �S� ?V ��¡-�!TSçt�t  ?V�!TS � C�!TSçt ���ÃS� gC !TSç� Þ�ÛÃSçÞiC !TSçV !TS� EÜ9èiC !TSU!�!WV  �S� ?V�!�¡-�!TSçtWè  ?��ÞÃSçÞiC�!TSçt �T �SçV�C !TSçV ÞWè9SçÞiC !TSùÜ !TS� EÜ$Û�C !TSU!�!�Ü  �S� ?�Wè�¡-�!TSçt �  � "!TSçtiC�!TSçÞ ��!TS � C !TSç� V � SØèDC !TSçV !TS� ?Þ�Þ�C !TSU!�!WV  �SU!$è�Þ�¡-�!TSçt�Û  "!�ÜsSU!�C�!TSùÜ ��!TSç��C !TSç� Ü$�ÃSçÛiC !TSçV !TS� ?t�t�C !TSU!�!�Ü  �SU! � Þ�¡-�!TSØè�!  "!�!TSØèDC�!TSçÞ  ?ÛÃS� gC !TSç� Ü$�ÃS� hC !TSçV !TS� ?t�Û�C !TSU!�!WV  �SU!WÛ�t
Table B.10: Data of star polymers under various solvent conditions. Å H�ø , ² HãÆ�bW: .�û- � !s � � k 
 � � � n 
 � arms

� � n 
 � � �)� ��� � e� -�!TSU!�! è�è�è)C�Þ  "!$è9SùÜ�CÝ!TSçÛ V�V�ÞiC � !TSU!Wt�t�CÝ!TSU!�!s  �Sç�T ?Û� -�!TSçt�! V�t��DC� Þ�tÃSçV�C !TSçÞ  ?t��ÃSçÛ�CÝ!TSØè !TSU!WÛ�V�CÝ!TSU!�!s  �S� � �� -�!TSçt�� V�Üu �C� Ü � S� gC !TSùÜ  ?��ÛÃSçÛ�CÝ!TSçt !TS� "!�Ü�CÝ!TSU!�!W�  �S� � !� -�!TSçt�Ü ��Û�ÛDC� Ü$ÛÃSU!�C !TSçV  ?V�!TSç��CÝ!TSØè !TS� "!W��CÝ!TSU!�!W�  �S� ?t �� -�!TSçt�Þ � � tDC� Ü9è9SùÜ�C !TSçÞ  ?��VÃSç��CÝ!TS � !TS� "!WÞ�CÝ!TSU!�!W�  �S� ?t �� -�!TSçt�t ����ÞDC� V�ÛÃSçt�C !TSçÞ Û�ÞÃSçV�C !TSØè !TS� � � CÝ!TSU!�!WV  �S� ?Þ��� -�!TSçt � ��!WÞDC� V�ÛÃSU!�C !TSçV � è9Sçt�C !TSùÜ !TS� ?��!�CÝ!TSU!�!W�  �S� ?��V� -�!TSØè�!  ?��ÛÃSçÛiC !TSç� ��ÛÃSçV�C !TSçV Þ�tÃSç��C !TSçV !TS� EÜu gCÝ!TSU!�!W�  �SU!WÞ�Ü� -á �SU!�! Ü�ÜsS � è�C !TSU!WÞ  � SçÞ�C !TS� ��ÞÃSùÜ$��C !TSU!W� !TS� � Þ�CÝ!TSU!�!s !TSçÛ�V�Þ
Table B.11: Data of star polymers under various solvent conditions. Å H�ø , ² H ú�bW: .�û-á ?�T � � k 
 � � � n 
 � arms

� � n 
 � � �)� ��� � e� -�!TSU!�! t��ÃSU!�C !TS� � Sç� � C !TSU!WV � � SçtWèiC !TSU!WÞ !TS� ?Û�Û�CÝ!TSU!�!s  �SU!Wt�Ü� -�!TSçt�Þ V�tÃSçV�ÜHC !TSU! � ÞÃSçÞ � C !TSU!WV  Fè9Sç��Ü�C !TSU!�Ü !TSç�Wè�!�CÝ!TSU!�!WÞ  �S� ?�T 
Table B.12: Data of star polymers under various solvent conditions. Å HNþ , ² H :E>�: .
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�û-ü��Üu � � k 
 � � � n 
 � arms

� � n 
 � � �)� ��� � e� -.!TSU!�!  EÜ � SçÛ�C !TSùÜ  ?ÛÃS � CÝ!TS� t � Sç�iC !TSçV !TS� ?V�Þ�C !TSU!�!s  �S� � �� -.!TSçt�Þ è�!TSØèDC�!TSç�  � �SçViCÝ!TS� V�VÃSçViC !TSç� !TS� � èiC !TSU!�!�Ü  �SU!$è�è
Table B.13: Data of star polymers under various solvent conditions. Å HNþ , ² H >�Æ$: .
�º-á ?��!s � �)k 
 � � �¿n 
 � arms

� �¿n 
 � � �=� ��� � e� -�!TSU!�! èÃ ?�iC� "!  EÜ$VDC� Ü$t�ÛiCÝÜ !TSU!WÞ�ÞT �C !TSU!�!s  �S� ?Û�Ü� -�!TSçt�Þ ��Û�t�C�V Þ�ÞÃSçÛiCÝ!TSçÛ  ?�T hC� !TS� "!WVT �C !TSU!�!W�  �S� ?V�Ü
Table B.14: Data of star polymers under various solvent conditions. Å�H þ , ² H�:E>?bW: .
�p-á "!s � � k 
 � � � n 
 � arms

� � n 
 � � �)� ��� � e�¡-�!TSU!�! � � S �  hC !TSU!WÞ VÃSØè�Ü�C !TSU!s  EÜsS� ?�iC !TSU!s !TSç��Þ�Û�C !TSU!�!s !TSçÛWè�ÜW!�¡-�!TSçt�! ��!TSùÜ � C !TSU!�Ü �ÃSçÛ��iC !TSU!s  "!TSçÞ�ÞiC !TSU!s !TSç��Û�t�C !TSU!�!s !TSçÛ�tT ��¡-�!TSçt�� ��!TS� EÜ�C !TSU!WV �ÃSçÛ�!�C !TSU!WÞ  "!TSùÜ$ViC !TSU!�Ü !TSç��Û � C !TSU!�!W� !TSçÛ�t�V�V�¡-�!TSçt�V  ?ÛÃS � ÛiC !TSU!WV �ÃS � èDC !TSU!s  "!TSç��ÛiC !TSU!s !TSç��Û�Û�C !TSU!�!s !TSçÛ�t�!�Ü�¡-�!TSçt�Ü  ?ÛÃSØè��iC !TSU!WV �ÃS � ÞiC !TSU!s  "!TSç���iC !TSU!s !TSçV�!�!�C !TSU!�!W� !TSçÛ�Þ�Û�Û�¡-�!TSçt�Þ  ?ÛÃSùÜ � C !TSU!WV �ÃS � ViC !TSU!s  "!TS� ?�iC !TSU!W� !TSçV�!W��C !TSU!�!W� !TSçÛ�Þ�Û�Þ�¡-�!TSçt�t  ?ÛÃSçV�ÞiC !TSU!WV �ÃS �  hC !TSU!s  "!TSU!WViC !TSU!W� !TSçV�!WV�C !TSU!�!W� !TSçÛ�Þ � Þ�¡-�!TSçtWè  ?ÛÃSU!WÞiC !TSU!WV �ÃSØè�ÛiC !TSU!s ÛÃSçÛ�ÞiC !TSU!W� !TSçV�!�Ü�C !TSU!�!W� !TSçÛ�Þ � ��¡-�!TSçt �  � S � ÞiC !TSU!WV �ÃSØè�èDC !TSU!s ÛÃS � tiC !TSU!s !TSçV�!WÞ�C !TSU!�!W� !TSçÛ�ÞWè�è�¡-�!TSçt�Û  � Sç��tiC !TSU!s �ÃSØè�tiC !TSU!s ÛÃSØè�tiC !TSU!W� !TSçV�!Wt�C !TSU!�!W� !TSçÛ�Þ�tWè�¡-�!TSØè�!  � SùÜ�Ü�C !TSU!s �ÃSØè�ViC !TSU!s ÛÃSçt � C !TSU!s !TSçV�!$èiC !TSU!�!s !TSçÛ�Þ�t�V
Table B.15: Data of star polymers under various solvent conditions. Å�H�:/b , ²}H�:/bW: .
�p-.��!s � � k 
 � � � n 
 � arms

� � n 
 � � �)� ��� � e�¡-�!TSU!�! t�ÛÃSØèiC !TS� � S � C !TS� V�VÃSçtiCÝ!TS� !TS� Fè�èiC !TSU!�!W�  �SU!W��Ü�¡-�!TSçt�! Ü$VÃS � Þ�C !TSU! � tÃS� ?t�C !TSU!WÞ ���ÃSç��!�CÝ!TSU!Wt !TSç�T ?Þ�C !TSU!�!W�  �SU!s � �¡-�!TSçtT Ü$�ÃSU!Wt�C !TSU! � tÃSU!WV�C !TSU! � �T �SçÞiCÝ!TS� !TSç�T FèiC !TSU!�!�Ü  �SU!�!$è�¡-�!TSçt�� Ü$�ÃSØèÃ �C !TSU! � tÃSU!WÞ�C !TSU! � �T �SùÜ�CÝ!TS� !TSç�T FèiC !TSU!�!�Ü  �SU!�!WÛ�¡-�!TSçt�V Üu �S� Fè�C !TSU!$è ÞÃSçÛ�Ü�C !TSU! � �T �SU!�CÝ!TS� !TSç����!�C !TSU!�!�Ü  �SU!�!$è�¡-�!TSçt�Ü Üu �SçÞ�ÜHC !TSU! � ÞÃSçÛT gC !TSU! � �T �S� hCÝ!TS� !TSç����!�C !TSU!�!�Ü  �SU!�!WÛ�¡-�!TSçt�Þ ÜW!TSçVWè�C !TSU!$è ÞÃS � Ü�C !TSU! � ��!TSçtiCÝ!TS� !TSç������C !TSU!�!�Ü  �SU!�!$è�¡-�!TSçtWè V � SØè � C !TSU!$è ÞÃSØèÃ gC !TSU! �  ?ÛÃS � CÝ!TS� !TSç����Þ�C !TSU!�!�Ü  �SU!�!WV�¡-�!TSçt � VWè9SùÜ9è�C !TSU!$è ÞÃSçÞ�Û�C !TSU! �  ?ÛÃSùÜ�CÝ!TS� !TSç���WèiC !TSU!�!�Ü  �SU!�!s �¡-�!TSçt�Û VWè9Sç� � èDC !TSU!$è ÞÃSçÞ���C !TSU!WÞ  ?ÛÃSç��C !s !TSç����Û�C !TSU!�!WV  �SU!�!�!�¡-�!TSØè�! V�tÃSçV�t�C !TSU!$è ÞÃSùÜ$t�C !TSU! �  � S � CÝ!TS� !TSç��VT gC !TSU!�!�Ü !TSçÛ�Û�Þ�¡-á �SU!�!  ?ÛÃSçÞ�Þ�C !TSU!�Ü VÃSçÛWèiC !TSU!WÞ  � �SùÜ$Þ�CÝ!TSU!�Ü !TSç�Wè�Û�C !TSU!�!WV !TSçÛ�Ü�Ü
Table B.16: Data of star polymers under various solvent conditions. Å�H�:/b , ²}HN>FbW: .



155�û-àÜW!s � � k 
 � � � n 
 � arms

� � n 
 � � �)� ��� � e� -�!TSU!�!  ?t�VÃSçÛ�C !TSØè ��!TSçtiC !TSùÜ è � SçtiC !TSçÞ !TS� ?��!�C !TSU!�!WV  �SU!WtT � -�!TSçt�! Û��ÃSçÞiC !TSùÜ  ?VÃS� hC !TS� Ü$tÃSùÜ�C !TSç� !TS� ?Þ�Ü�C !TSU!�!W�  �SU!�Ü �� -�!TSçtT ÛT �S� hC !TSùÜ  ?�ÃSçÛiC !TSç� Ü$ÞÃSçÞiC !TSç� !TS� ?Þ�ÞiC !TSU!�!WV  �SU!�Ü$t� -�!TSçt�� � tÃS� hC !TSçÛ  ?�ÃSùÜ�C !TSç� Ü$VÃSùÜ�C !TSç� !TS� ?Þ�ÛiC !TSU!�!WV  �SU!�Ü$V� -�!TSçt�V � ÞÃSçtiC !TSçÛ  ?�ÃSç�iC !TSç� Ü$�ÃSØèDC !TSç� !TS� ?t�!�C !TSU!�!WV  �SU!�ÜW!� -�!TSçt�Ü � !TSùÜ�C !TSùÜ  � �SçÛiC !TSç� Üu �SU!�C !TSç� !TS� ?t��iC !TSU!�!W�  �SU!WV�Û� -�!TSçt�Þ è�ÛÃSçtiC !TSùÜ  � �SØèDC !TS� ÜW!TSçÞiC !TSç� !TS� ?t�ViC !TSU!�!WV  �SU!WVWè� -�!TSçt�t è � SØèDC !TSùÜ  � �SçÞiC !TS� V�ÛÃSçÛiC !TSç� !TS� ?t�ÞiC !TSU!�!WV  �SU!WV�Ü� -�!TSçtWè è�VÃSùÜ�C !TSùÜ  � �SçViC !TS� VWè9Sç�iC !TSç� !TS� ?t�ÛiC !TSU!�!WV  �SU!WV��� -�!TSçt � è��ÃSU!�C !TSùÜ  � �Sç�iC !TSçV VWè9S� hC !TSç� !TS� ?t�ÛiC !TSU!�!WV  �SU!WVT � -�!TSçt�Û t�ÛÃSçÛiC !TSùÜ  � �SU!�C !TSç� V�ÞÃSçÞiC !TSç� !TS� Fè��iC !TSU!�!WV  �SU!W� �� -�!TSØè�! Ü$ÛÃSç�iC !TSùÜ  "!TSçÞiC !TSç� V�ÞÃSU!�C !TSç� !TS� Fè�Ü�C !TSU!�!W�  �SU!WV��� -á �SU!�! � � SçtiC !TS� tÃSçÛWèDC !TSU!WÛ  ?tÃS ��� C !TSU!�Ü !TSç����ÛiC !TSU!�!W� !TSçÛ�V�ÛT 
Table B.17: Data of star polymers under various solvent conditions. Å�H�:/b , ²}H¢Æ�bW: .
�p- � !s � � k 
 � � � n 
 � arms

� � n 
 � � �)� ��� � e�¡-�!TSU!�! V � Ü�C�� Ü$ÛÃSU!�C !TSçt  Fè�!�C !TS � !TSU! � ViC !TSU!�!s  �SU!WÛ�!W��¡-�!TSçt�!  ?Û�Ü�C� �Wè9SçÛiC !TSùÜ ÛWè9SùÜ�C !TSçÞ !TS� "!WÛiC !TSU!�!s  �SU!$è�è�¡-�!TSçt��  ?t�Û�C� ��tÃSçViC !TSùÜ � VÃSU!�C !TSùÜ !TS� � FèDC !TSU!�!W�  �SU!Wt�Û�¡-�!TSçt�Ü  ?t���C� ��ÜsSçÞiC !TSçV � !TSùÜ�C !TSùÜ !TS� � ?ÛiC !TSU!�!W�  �SU!Wt ��¡-�!TSçt�Þ  EÜ9èiC� ��ÜsS� hC !TSç� èÃ �SçÛiC !TSç� !TS� ?��tiC !TSU!�!W�  �SU!WtWè�¡-�!TSçt�t  ?V�Þ�C� ��VÃSç�iC !TSçV t�ÞÃSU!�C !TSçV !TS� ?VT hC !TSU!�!WV  �SU!Wt�!�¡-�!TSçt �  ?��Ü�C� �T �SçtiC !TSçV t�VÃSç�iC !TSçV !TS� ?V��iC !TSU!�!W�  �SU!�Ü ��¡-�!TSØè�! Û�ÛÃSçÛiC !TSçt �T �SçÞiC !TSçV Þ�!TS� hC !TSçV !TS� EÜ$ÞiC !TSU!�!W�  �SU!W��t�¡-á �SU!�! ÜW!TS � ViC !TSU!WÞ  ?VÃSùÜ�C !TS� ��ÞÃSç��V�C !TSU!W� !TS� � t�C !TSU!�!�!Wt !TSçÛ�V�Þ
Table B.18: Data of star polymers under various solvent conditions. Å�H�:/b , ²}H ú�bW: .
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�p-.��Üu � � k 
 � � � n 
 � arms

� � n 
 � � �)� ��� � e�¡-�!TSU!�! è��ÃSçÞ�C !TS� ?Þ � SçÛ�tiC !TSU!WÞ V�ÞÃSùÜ$ViC !TSU!Wt !TS� Fè�!�C !TSU!�!s  �SU!s ?V�V�¡-�!TSçt�! Ü$ÞÃSùÜ$ÞiC !TS� "! tÃSç��Ü�C !TSU!�Ü ��VÃSçV��iC !TSU!WÞ !TSç��!$èiC !TSU!�!W� !TSçÛ�Û�Û�Ü�¡-�!TSçt�� Ü�ÜsSØè�!�C !TS� "! tÃS� � C !TSU!�Ü ��VÃSU!�!�C !TSU!�Ü !TSç�T "!�C !TSU!�!W�  �SU!�!WÞ�Ü�¡-�!TSçt�V Ü$VÃS� ?tiC !TS� "! tÃSU!�Ü�C !TSU!�Ü ���ÃSçV��iC !TSU!WÞ !TSç�T � gC !TSU!�!W� !TSçÛ�ÛWè�è�¡-�!TSçt�Ü Ü$�ÃS� ?ÞiC !TSU!WÛ ÞÃSçÛ�Ü�C !TSU!�Ü �T �S � Ü�C !TSU!WÞ !TSç�T ?V�C !TSU!�!W� !TSçÛ�Û�t�!�¡-�!TSçt�Þ Üu �SçÞ�ÛiC !TSU!WÛ ÞÃSçÛ�!�C !TSU!�Ü �T �Sçt�ViC !TSU!WÞ !TSç�T EÜ�C !TSU!�!W� !TSçÛ�Û�Þ�Û�¡-�!TSçt�t ÜW!TSçÞ�tiC !TSU!WÛ ÞÃS � ViC !TSU!�Ü �T �S� ?ÞiC !TSU!�Ü !TSç�T ?t�C !TSU!�!W� !TSçÛ�Û�ÜW!�¡-�!TSçtWè V�ÛÃSçÛ � C !TSU!WÛ ÞÃSØè�Ü�C !TSU!�Ü ��!TS � èDC !TSU!WÞ !TSç�T FèiC !TSU!�!W� !TSçÛ�Û�V���¡-�!TSçt � V�ÛÃSçÞ�ÛiC !TSU! � ÞÃSØè��iC !TSU!�Ü ��!TSçt��iC !TSU!WÞ !TSç�T ?Û�C !TSU!�!W� !TSçÛ�Û�VT �¡-�!TSçt�Û V � SçV�ÛiC !TSU! � ÞÃSçt�!�C !TSU!�Ü ��!TS� FèDC !TSU!�Ü !TSç���T gC !TSU!�!W� !TSçÛ�Û�!$è�¡-�!TSØè�! VWè9S � ÞiC !TSU! � ÞÃSçÞ�ViC !TSU!�Ü  ?ÛÃS � ÛiC !TSU!�Ü !TSç������C !TSU!�!W� !TSçÛ � Û�Û�¡-á �SU!�! ��!TSçt��iC !TSU!�Ü ÜsSU!$èDC !TSU!WV  ?�ÃSùÜW!�C !TSU!W� !TSç��tWèiC !TSU!�!s !TSçÛ�V�Û�t
Table B.19: Data of star polymers under various solvent conditions. Å�H�:E> , ²}HN>�Æ$: .
�û-.��!s � � k 
 � � � n 
 � arms

� � n 
 � � �)� ��� � e� -�!TSU!�!  Fè�!TS � C !TSùÜ �T �S� gC !TS� � VÃSçÞ�C !TSç� !TS� � ?Þ�CÝ!TSU!�!W�  �SU!�Ü9è� -�!TSçt�! Û�ÞÃSU!�C !TSç�  ?VÃSç��C !TS� Ü � S� gC !TS� !TS� EÜ$Û�CÝ!TSU!�!W�  �SU!WV��� -�!TSçt�� � ÛÃSçÛ�C !TSç�  ?�ÃSçt�C !TS� Ü$ÞÃSçÛ�C !TSç� !TS� ?Þ���CÝ!TSU!�!�Ü  �SU!W��Û� -�!TSçt�Ü � VÃSØèiC !TSç�  ?�ÃSç��C !TS� Ü$VÃS� gC !TS� !TS� ?Þ�t�CÝ!TSU!�!�Ü  �SU!W��t� -�!TSçt�Þ � �ÃSùÜ�C !TSç�  ?�ÃSU!�C !TS� Ü$�ÃSØèiC !TS� !TS� ?ÞWèiCÝ!TSU!�!�Ü  �SU!W��Ü� -�!TSçt�t è�ÛÃSçÛ�C !TSç�  � �SØèiC !TS� Üu �S� gC !TS� !TS� ?t�!�CÝ!TSU!�!�Ü  �SU!W��V� -�!TSçt � è�VÃSØèiC !TSç�  � �SçV�C !TS� V � SçV�C !TS� !TS� ?t�Þ�CÝ!TSU!�!�Ü  �SU!s ?Û� -�!TSØè�! tWè9S � C !TSç�  "!TS � C !TS� V�ÞÃSØèiC !TS� !TS� Fè�!�CÝ!TSU!�!�Ü  �SU!s EÜ� -á �SU!�! ��ÛÃSç��Û�C !TSU!Wt è9Sç��ViC !TSU!WÞ  � Sçt�Þ�C !TSU!Wt !TSç�T FèiCÝ!TSU!�!�Ü !TSçÛ�V �
Table B.20: Data of star polymers under various solvent conditions. Å�H�:E> , ²}H¢Æ�úW: .
�p-üè��T � �)k 
 � � �an 
 � arms

� �an 
 � � �)� ��� � e�¡-�!TSU!�! � � !�C�� V�ÜsSçÞ�C !TSçt  ?V�tÃSçÞ�C !TSØè !TSU!WÛT gC !TSU!�!W�  �SU!WtT �¡-�!TSçt�!  EÜW!TSçt�C !TSç� ��!TSçt�C !TSç� è9SØèiC !TSç� !TS� ?��V�C !TSU!�!s  �SU!WÞ�!�¡-�!TSçt��  ?V��ÃSØè�C !TSç�  ?ÛÃSç��C !TSç� tWè9SçÛiCÝ!TSçV !TS� ?�WèiC !TSU!�!W�  �SU!�Ü$V�¡-�!TSçt�Ü  � Fè9SçÛ�C !TS �  ?ÛÃSçÞ�C !TSçV Þ�ÛÃSU!�CÝ!TSçÞ !TS� ?VWèiC !TSU!�!WÞ  �SU!�Üu �¡-�!TSçt�Þ  ?�T �SùÜHC !TSç�  � SçV�C !TS� tT �SçÛiCÝ!TSç� !TS� ?V���C !TSU!�!s  �SU!�ÜW!�¡-�!TSçt�t  � Fè9SØè�C !TSç�  Fè9SùÜ�C !TS� Þ�ÛÃSùÜ�CÝ!TS� !TS� ?V�Þ�C !TSU!�!s  �SU!WVWè�¡-�!TSçt �  "!W�ÃS � C !TSç�  ?tÃSçV�C !TS� Þ�VÃSçÛiCÝ!TS� !TS� EÜW!�C !TSU!�!W�  �SU!W� ��¡-�!TSØè�! � è9SØèDC !TSç�  ?tÃSU!�C !TS� Ü9è9SçÞiCÝ!TS� !TS� EÜ � C !TSU!�!W�  �SU!s ?Û�¡-á �SU!�! V � SùÜ$ÛiC !TSU!$è  "!TS � Þ�C !TSU! � ��VÃS � V�CÝ!TSU!W� !TS� ?Û���C !TSU!�!�Ü !TSçÛ�VWè
Table B.21: Data of star polymers under various solvent conditions. Å�H�:E> , ²}H�ýF>�: .



157

�û-} ?��Üu � � k 
 � � � n 
 � arms

� � n 
 � � �)� ��� � e� -.!TSU!�! Þ�V � C�� tWè9SùÜ�CÝ!TS � ��Þ�t�C�� !TSU!Wt � C !TSU!�!s  �SU! � !� -.!TSçt�! ��t�ViC� VWè9SùÜ�CÝ!TSçÞ  ?V�VÃS � C !TSçt !TSU!WÛ�ViC !TSU!�!s  �SU!$è�è� -.!TSçt�� ��� � C� V�ÞÃSU!�CÝ!TSùÜ  � EÜsSçÛ�C !TSùÜ !TS� "!�!�C !TSU!�!W�  �SU!$èÃ � -.!TSçt�Ü ��!WÛiC� V�VÃSùÜ�CÝ!TSçV  "!WtÃSØèiC !TSçÞ !TS� "!WViC !TSU!�!s  �SU!Wt�Þ� -.!TSçt�Þ  ?ÛWèDC� V��ÃSùÜ�CÝ!TSç� Û�ÛÃSU!�C !TSùÜ !TS� "!$èDC !TSU!�!W�  �SU!Wt��� -.!TSçt�t  ?tT �S� �C !TSçÛ V�!TS� hCÝ!TSçV è�è9SçtiC !TSùÜ !TS� ?��!�C !TSU!�!WV  �SU!WV �� -.!TSçt �  EÜ � SØè�C !TS � ��ÛÃSçViCÝ!TSçV è�tÃSU!�C !TSùÜ !TS� � ?ÛiC !TSU!�!W�  �SU!WVWè� -.!TSØè�!  EÜ�ÜsSU!�C !TSçt ��ÛÃSU!�CÝ!TSçV tT �SU!�C !TSùÜ !TS� ?VT hC !TSU!�!W�  �SU!W�T � -} �SU!�! Þ�ÜsSçViC�!TSùÜ  Fè9SçViCÝ!TS� V�ÜsSU!�C !TSç� !TS� ?tT hC !TSU!�!W� !TSçÛ�Üu 
Table B.22: Data of star polymers under various solvent conditions. ÅjH :E> , ² H :E>IÆ$: .
�û-�Ü$ÞT � � k 
 � � � n 
 � arms

� � n 
 � � �)� ��� � e� -.!TSU!�!  "!$è)C�  ?�ÃSçÞiC !TSç� Þ�VÃSç�iC !TS � !TS� ?VWèDC !TSU!�!W�  �SU!�!W�� -.!TSçt�Þ Þ � SU!�C !TSçÞ è9S � Ü�C !TSU! � VT �Sç����C !TSU!$è !TS� Fè�èDC !TSU!�!W�  �SU!W��!
Table B.23: Data of star polymers under various solvent conditions. Å�H�:/ú , ²}H¢Æ�ø�: .
�º-.Û�!s � � k 
 � � � n 
 � arms

� � n 
 � � �)� ��� � e� -�!TSU!�! ��V � C�V � � Sçt�CÝ!TSçÛ  ?��!�C�� !TSU!WÛ�V�C !TSU!�!WV  �SU!W���� -�!TSçt�Þ  "!$èDC. "!  ?tÃSçV�CÝ!TSçV Þ�tÃSU!iC !TSùÜ !TS� ?V�Þ�C !TSU!�!WV  �SU!�!$è
Table B.24: Data of star polymers under various solvent conditions. Å�H�:/ú , ²}H 	 bW: .
�û-} ?V�ÞT � � k 
 � � � n 
 � arms

� � n 
 � � �)� ��� � e�¡-à!TSU!�! ÜW!�Ü�CÝÜ Ü9è9SçÛiC !TSçt ��!�!iC�� !TSU!$è�V�!�C !TSU!�!$è  �SU!WVWè�¡-à!TSçt�Þ  EÜ$tiC� ��ÞÃS � C !TSùÜ è�ÞÃSçV�C !TSçV !TS� � � C !TSU!�!W�  �SU!s ?Þ
Table B.25: Data of star polymers under various solvent conditions. ÅjH :/ú , ² H :/6�ø�: .
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Table B.26: Table of extrapolated shape-factors L'Å1�¤ obtained in this work, compared with literature values.
Our study covers the largest range of arm numbers Å and all results were obtained by an ( ²£�ß  ) extrapo-
lation. The small deviations of data are probably due to the results in [229] not being extrapolated to infinite
chain lengths.
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· � � � n 
 � � �)� ��� � � õ Ò
1 � � ÞÃSçÞWè � C�!TSU!�!WÛ !TSçV�Û�Û�CÝ!TSU!�!W� !TSçÛ�Üu ?� !TSçÞ��Wè � Û
2 t�Ü  � �SçÛ�ÜHC !TSU!s !TSç� � Þ�CÝ!TSU!�!s !TSçÛ � Üu !TSçVWè�ÛWè  � Fè
3  ?V�t ��!TSçÛ�! � C !TSU!�!$è !TSç�T ?Þ�C !TSU!�!�!WV !TSçÛ � Ü � !TSç��ÞWè�Û Û�!WÛ
4 � � ! V�VÃSØè���C !TSU!WÞ !TS� ?tWèiCÝ!TSU!�!s !TSçÛWèÃ ?Þ !TS� Fè�Þ�! Þ�t�tT 
5 Þ�t � Þ��ÃSçt�V�C !TSU!Wt !TS� ?V���CÝ!TSU!�!Wt !TSçÛ�Þ � Û !TS� � EÜ$� VT ?��Û�V
6  � EÜ�Ü è�ÛÃSçÞ � C !TSU!WÛ !TS� "!Wt�CÝ!TSU!�!Wt !TSçÛ�Ü ��� !TSU!$è�Þ�t  ?t�! � Û�V
7 ����Û�t  � ?tÃSçÛiC�!TSç� !TSU! ��� CÝ!TSU!�!Wt !TSçÛ�Ü9è�t !TSU!WV���t è ��� è�V�V

Table B.27: Simulation data of regular dendrimers, ( ¾ H b$÷ b ).
· � � �an 
 � � �)� ��� � � õ Ò
1 � � ÜsSùÜ�Ü$Þ�C !TSU!�! � !TSùÜ$VWèiC !TSU!�!W� !TSçÛ��T ?Þ !TSçt�V�Þ�Û Û
2 t�Ü � SùÜ$t�Þ�C !TSU!�! � !TSçV�V�Ü�C !TSU!�!s !TSçÛWè�!WV !TSùÜ � Û�t  � Fè
3  ?V�t  EÜsSU!$èDC�!TSU!s !TSç��t�!�C !TSU!�! � !TSçÛWè � Û !TSçVWè���t Û�!WÛ
4 � � ! �T �SØè�Ü�C�!TSU!WÞ !TSç��!WÛ�C !TSU!�!WV !TSçÛWè���t !TSç� � ��Ü Þ�t�tT 
5 Þ�t � V��ÃSØèÃ hC�!TSU!�Ü !TS� ?t � C !TSU!�!WÛ !TSçÛ�tT ?Þ !TSç�T � Ü VT ?��Û�V
6  � EÜ�Ü Ü � SçÛ�ÛiC�!TSU! � !TS� ?V�t�C !TSU!�!WÛ !TSçÛ�Þ�V�� !TS� ?Û�Þ �  ?t�! � Û�V
7 ����Û�t è�ÞÃSU!iC�!TS� !TS� � "!�C !TSU!�!$è !TSçÛ�Þ���V !TS� ?tWè�Û è ��� è�V�V

Table B.28: Simulation data of regular dendrimers, ( ¾�H bW÷ þ�ø ).� -�!TSU! · max -á · max -.� · max -.V · max -àÜ· sub -�! !TSçÛ�Ü$Þ � C !TSU!�!�!W� !TSçÛ�Ü$Þ�!�C�!TSU!�!�!W� !TSçÛ�Ü$Þ�t�C�!TSU!�!�!W� !TSçÛ�Ü$Þ�ÛiC !TSU!�!�!Wt· sub -á !TSçÛ�Ü$V�Þ�C !TSU!�!�!W� !TSçÛ�Ü�Ü$Þ�C�!TSU!�!�!s !TSçÛ�Ü�Ü$t�C�!TSU!�!�!Wt !TSçÛ�Ü�Ü�Ü�C !TSU!�!�!�Ü· sub -.� – !TSçÛ�Ü$VWèiC !TSU!�!�!s !TSçÛ�Ü�Ü$V�t�C !TSU!�!�!�!WÞ !TSçÛ�Ü�Ü$ÞiC !TSU!�!�!W�· sub -.V – – !TSçÛ�Ü$V�Þ�!�C !TSU!�!�!�!WÞ !TSçÛ�Ü�Ü$tiC !TSU!�!�!s · sub -àÜ – – – !TSçÛ�Ü$V�t�C !TSU!�!�!s 
Table B.29: Averaged squared bondlength Z�[ À of dendrimers in good solvent ( ¾ H b$÷ b ). The bondlengths of
the monomers pertaining to each sub generation É sub are displayed for generations : to Æ .�¡-�!TSU! · max -.Þ · max -.t · max -üè· sub -�! !TSçÛ�Ü � ��C !TSU!�!�!Wt !TSçÛ�Þ�V�Þ�C !TSU!�!�! � !TSçÛ�t�Û�Û�C�!TSU!�!s ?Þ· sub -á !TSçÛ�Ü$Þ�Þ�C !TSU!�!�!WV !TSçÛ�Þ�!Wt�C !TSU!�!�!WÞ !TSçÛ�ÞWè�Þ�C�!TSU!�!�!WÛ· sub -.� !TSçÛ�Ü$Þ�V�C !TSU!�!�!W� !TSçÛ�Ü$t�Û�C !TSU!�!�!�Ü !TSçÛ�Þ���t�C�!TSU!�!�!Wt· sub -.V !TSçÛ�Ü�Ü9è�C !TSU!�!�!s !TSçÛ�Ü$Þ�ÜHC !TSU!�!�!W� !TSçÛ�Ü � Ü�C�!TSU!�!�!�Ü· sub -àÜ !TSçÛ�Ü�Ü$Þ�C !TSU!�!�!s !TSçÛ�Ü$Þ���C !TSU!�!�!W� !TSçÛ�Ü$t�V�C�!TSU!�!�!s · sub -.Þ !TSçÛ�Ü$V�V�V�C !TSU!�!�!�! � !TSçÛ�Ü�Ü$��C !TSU!�!�!s !TSçÛ�Ü�Ü�Ü�C�!TSU!�!�!W�· sub -.t – !TSçÛ�Ü$V�Þ�C�!TSU!�!�!s !TSçÛ�Ü�Ü$��C !TSU!�!�!s · sub -üè – – !TSçÛ�Ü$V�Ü�C !TSU!�!�!s 
Table B.30: Averaged squared bondlength Z�[ À of dendrimers in good solvent ( ¾ H b$÷ b ). The bondlengths of
the monomers pertaining to each sub generation É sub are displayed for generations ø to ý .
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� -�!TSçt�Þ · max -L · max -.� · max -.V · max -àÜ· sub -�! !TSçÛ�Ü$��Þ�C !TSU!�!�!WV !TSçÛ�Ü$��Ü�ÜrCÝ!TSU!�!�!W� !TSçÛ�Ü$��ÜHC !TSU!�!�!W� !TSçÛ�Ü$� � C�!TSU!�!�!WÛ· sub -á !TSçÛ�Ü$��Ü�C !TSU!�!�!s !TSçÛ�Ü$��Ü � C !TSU!�!�!�!WÛ !TSçÛ�Ü$����C !TSU!�!�!s !TSçÛ�Üu ?ViC�!TSU!�!�!WÞ· sub -.� – !TSçÛ�Ü$��V�V�C�!TSU!�!�!�!WÞ !TSçÛ�Ü$����C�!TSU!�!�!WV !TSçÛ�Ü$�T hC !TSU!�!�!W�· sub -.V – – !TSçÛ�Ü$V�Þ�!�C�!TSU!�!�!�!WÞ !TSçÛ�Ü�Ü$tiC !TSU!�!�!s · sub -àÜ – – – !TSçÛ�Ü$�T hC !TSU!�!�!W�
Table B.31: Averaged squared bondlength Z [ À of dendrimers in good solvent ( ¾ H�bW÷ þ�ø ). The bondlengths
of the monomers pertaining to each sub generation É sub are displayed for generations : to Æ .

�¡-�!TSçt�Þ · max -.Þ · max -.t · max -üè· sub -�! !TSçÛ�Ü$��Þ�C !TSU!�!�!WÞ !TSçÛ�Ü�Ü$V�C !TSU!�!�!WÛ !TSçÛ�Ü$ÛiC�!TSU!�!s · sub -á !TSçÛ�Üu ?Þ�C !TSU!�!�!WV !TSçÛ�Ü$VT �C !TSU!�!�!WÞ !TSçÛ�Ü�Üu gC�!TSU!�!�! �· sub -.� !TSçÛ�Ü$�T �C !TSU!�!�!W� !TSçÛ�Üu � C !TSU!�!�!WV !TSçÛ�Ü$V�Ü�C�!TSU!�!�!WÞ· sub -.V !TSçÛ�Ü$�T �C !TSU!�!�!W� !TSçÛ�Üu ?Þ�C !TSU!�!�!WV !TSçÛ�Ü$��Þ�C�!TSU!�!�!W�· sub -àÜ !TSçÛ�Üu ?Û�C !TSU!�!�!s !TSçÛ�Üu ?Þ�C !TSU!�!�!WV !TSçÛ�Üu � C�!TSU!�!�!W�· sub -.Þ !TSçÛ�Üu ?t�C !TSU!�!�!�Ü !TSçÛ�Üu ?Û�C !TSU!�!�!s !TSçÛ�Ü$�T gC�!TSU!�!�!W�· sub -.t – !TSçÛT ?Þ�V�C�!TSU!�!�!WÛ !TSçÛ�Üu � C !TSU!�!�!s · sub -üè – – !TSçÛ�Ü$�T gC !TSU!�!�!W�
Table B.32: Averaged squared bondlength Z [ À of dendrimers in good solvent ( ¾ H�bW÷ þ�ø ). The bondlengths
of the monomers pertaining to each sub generation É sub are displayed for generations ø to ý .
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Topology Quantity �º-á "!s �º-.��!s �û-�ÜW!s �º- � !s |¨�)k 
 � backbone  ?t�ÛDC�� ÜW!�!iC�V Û�V�ÞiC� � �T ?t��iCà �|¨� k 
 � arms è��ÃSç�DC !TSçÞ  FèÃ �SùÜ�C !TS � V�ÛWèDCÝÜ Û�V�!�C� ?V "!só | � n 
 � back ��ÞÃS� ?ÛiC !TS� ?V Þ�ÛÃS � C�!TSùÜ  EÜW!TSçÞ�C !TS � V��WèDC �| � n 
 � arms  "!TSçV � C !TSU! � ��ÜsSØè � C�!TS� ?V ÞWè9SçÛWèiC !TSU! �  ?V�tiCà |¨� n 
 � total Þ�!TSçÞDC !TSçt  � ?ÛÃSçtiC !TSçt �Wè�ÞiCÝÜ t�V�t�C� ?�| �)� ��� � !TS� � ��C !TSU!�!s !TS� ?��Þ�C !TSU!�!W� !TSU! � t�C !TSU!�!s !TSU!WÞ � C !TSU!�!WVõ !TSçÛ�!W� !TSçÛ���� !TSçÛT ?Û !TSçÛ�V�Þ¨ !TSçÛWè�Þ !TSçÛ � t !TSçÛ�Û�V !TSçÛ�Û�Þõ v !TSçÛ��Wè !TS � t�Þ !TSØè �  !TSØè�V�Þ| � k 
 � backbone  ?t�tDC� V�Û�Ü�C�� � ÛWèDC � �T EÜ$tiCà ?Û|¨�)k 
 � arms è��ÃSçt�ÛiC !TSU!WÛ  Fè�VDC� ÜW!WtiC�V Û�����C� ?V| �an 
 � backbone ��ÞÃS� FèDC !TSU!Wt t�!TSç��tiC�!TSU!Wt  ?V�ÛiC�� V�V�ÛiC Þ��!só |¨� n 
 � arms  "!TSùÜu hC !TSU!�Ü ��ÜsSØè � C�!TSU!�Ü Þ � SçÞiC !TS �  ?V�tÃSç��CÝ!TS �|¨� n 
 � total Ü�ÜsSçÛT hC !TSU!$è  "!WÞÃSØèDC !TSçt ��Ü�Ü�C�� ÞWè��iC Þ|¨�)� ��� � !TS� � t�C !TSU!�!s !TS� ?� � C !TSU!�!W� !TSU! ��� C !TSU!�!W� !TSU!WÞ�ÛiC !TSU!�!W�õ !TS � !WÞ !TS � �Wè !TS � !�Ü !TS � Üu ¨ !TSçÛ�Þ�V !TSçÛ�t�� !TSçÛWè�� !TSçÛWè �õsv !TSçÛ�Þ � !TS � ÛT !TS � !WV !TSØè�Þ�Ü|¨� k 
 � backbone  ?t�ÞÃSçt�C !TS � V�ÛT �C�V Û�! � C� ?� �T ?V�tiCà ?Û| � k 
 � arms è�VÃSØè)C !TS �  Fè�Ü�C� Üu EÜ�C�Þ Û���Û�C� ?Þ| � n 
 � backbone ��ÞÃSçÞ�Ü�C !TSU! � t�!TSùÜ�C�!TSØè  EÜ$�iC� V�VWèDC ÞÜW!só |¨�an 
 � arms  "!TSùÜ � C !TSU!$è ��ÜsS ��� C�!TSU!Wt Þ � SçÛiC !TS �  ?V�tÃSçÞ�CÝ!TS �|¨� n 
 � total V�ÞÃSçÛDC !TSç� � ÜsSç�DC�!TSùÜ  ?Û�ÛiC� Ü$Þ�ViC Þ| �)� ��� � !TS� ?Û�V�C !TSU!�!s !TS� ?V���C !TSU!�!W� !TSU!WÛ�!�C !TSU!�!s !TSU!WtT hC !TSU!�!W�õ !TSçt�Ü$V !TSçt�Þ�Û !TSçt�Þ�Þ !TSçt�t�t¨ !TSçÛ��T !TSçÛ�V�! !TSçÛ�Ü$V !TSçÛ�Ü$tõsv !TSçÛ � Ü !TSçÛT � !TS � ÜW! !TSØè ���| � n 
 � V�VÃS� � C !TSU! � è�è9S � C�!TSçÞ  � �iC� Ü$� � C Þ| � n 
 � arms  "!TSçt�ÞiC !TSU!W� ��ÞÃSçVDC�!TS� Þ�ÛÃSçÛiC !TSùÜ  EÜ$�ÃSçt�C �ÃSØèÞ�!só |¨�)� ��� � !TS� ?ÛWèDC !TSU!�!�!Wt !TS� ?V�Þ�C !TSU!�!s !TSU!WÛ���C !TSU!�!s !TSU!Wt��iC !TSU!�!s õ !TSçÞ�Û�Þ !TSçt�!$è !TSçt�!s !TSçtT ?t¨ !TSçÛ�!W��V !TSçÛT ?V !TSçÛ���Ü !TSçÛ���tõ v !TSçÛ � Û !TSçÛ�VWè !TS � Ü$t !TSØè�Û�Þ
Table B.33: Data of macromolecules of different topologies according to Figure 5.27 and Table 5.12 in
Section 5.2. ¾ H bW÷ b . Values obtained by averaging over the backbone monomers and the monomers of side
arms are displayed, as well as the calculated ´ , µ and ´ Ã values. The øFb�� -systems correspond to stars withÅ�H¢Æ .
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Topology Quantity �º-á "!s �û-.��!s �º-àÜW!s �p- � !s | �=k 
 � backbone
� tÃSçÞDC !TSØè  FèÃ �C
� V���tiC�Þ t�Ü$Û�C �| � k 
 � arms Ü$�ÃSU!iC !TSçV � ÜsSçtiC !TSùÜ  ?t�tiC�V VT "!�C
è "!só | � n 
 � back  EÜsS� � C !TSU!$è � � SçÞT �C !TSU! � Þ�VÃS � C !TS �  "!WÛ�C� | � n 
 � arms tÃS � !�C !TSU!WÞ  ?VÃSçÛWè�C !TSU! � �Wè9S � Ü�C !TSU! � Þ�ÜsS� hC !TSçÞ| � n 
 � total ��tÃSU!WtiC !TSU!Wt ÞT �SçViC !TS � Û � SçÞ�C !TSØè  ?Û�t�C��| �=� ��� � !TSç��V�Þ�C !TSU!�!s !TS� Fè�ÞiC�!TSU!�!W� !TS� ?V��iC !TSU!�!s !TSU!WÛ � C !TSU!�!s õ !TSçÛ���Ü !TSçÛT ?V !TS ��� ! !TS � è�Þ¨ !TSçÛWè�Û !TSçÛWè�� !TSçÛ�ÞWè !TSçÛ�Ü �õ v !TSçÛ�V � !TS � è�t !TS � ! � !TSØè�è�Þ| � k 
 � backbone
� tÃS� �C !TSçt  Fè�è)C. V�ÞWèDCÝÜ ÞT � C �| �=k 
 � arms Ü$�ÃSU!WÛiC !TSU!WÛ � ÞÃSçÞiC !TSçÛ  ?t � C�� V � !�C
è| �¿n 
 � backbone  EÜsSç� � C !TSU!Wt ��ÛÃSç��tiC�!TSU! Þ � S� gC !TSçt è � SØèDC !TSçt��!só | � n 
 � arms tÃS �  gC !TSU!�Ü  EÜsSU!WÞ�C !TSU!WV � � SçV���C !TSU! � Þ�tÃS� hC !TS �| � n 
 � total ��VÃSçV�ÛiC !TSU!$è Ü$tÃSçÛ�ÜHC !TSU!WÛ Û�ÜsSç��C !TS �  � èiC��| �=� ��� � !TSç��Üu �C !TSU!�!s !TS� Fè � C�!TSU!�!W� !TS� ?VT hC !TSU!�!s !TS� "!$èiC !TSU!�!s õ !TS � ��Û !TS � V�Þ !TS � V�� !TS � V�Þ¨ !TSçÛ�ÞWè !TSçÛ�Þ�t !TSçÛ�tT !TSçÛ�t�!õ�v !TSçÛT Fè !TS � è�Ü !TSØè � Û !TSØè�t�!| � k 
 � backbone
��� SçVDC !TS �  � ÞDC
V V�V�ViC
è èÃ "!iC� ?�| � k 
 � arms è�Ü$�ÃSç��C !TSùÜ � VÃSØèDC !TSçÞ  Fè��iC�V V�!W�DC� � | � n 
 � backbone  EÜsSØè�ViC !TSU!Wt V�!TSçViC !TSØè ÞWè9SU!�C !TSçV  � ?�ÃSçÞ�C !TSØèÜW!só | �¿n 
 � arms tÃS � V�C !TSU!WÞ  ?VÃS � V�C !TSU!WÞ � � SçÞ�C !TSØè Þ�VÃSçViC !TSùÜ| � n 
 � total  ?ÛÃSçÛ��iC !TSU!Wt V�ÛÃS� hC !TSØè è � SØèiC !TS �  ?Þ�t�C� | �=� ��� � !TSç��Ü9è�C !TSU!�!s !TS� � Ü�C�!TSU!�!W� !TS� ?V�ÞiC !TSU!�!s !TS� "!�!�C !TSU!�!s õ !TSçt�Û�V !TSçt�Û�t !TSçt�Û�Þ !TSçt�Û�t¨ !TSçÛ�VT !TSçÛ���Û !TSçÛ�V�! !TSçÛ�VT õ�v !TS � è � !TS ��� Û !TSçÛ�!Wt !TSØè�è�Þ| � n 
 � Ü$VÃS� gC !TSU!W� � è9SU!�C !TS�  Fè�!TSçÛ�C !TSç� V�V�Ü�C� | � n 
 � arms tÃS ��� C !TSU!s  EÜsSçViC !TS� � � Sçt�C !TSç� ÞWè9S� hC !TSùÜÞ�!só | �=� ��� � !TSç��ÞT �C !TSU!�!�! !TS� � tiC�!TSU!�!s !TS� ?VWèDC !TSU!�!s !TS� "!s gC !TSU!�!W�õ !TSçt�Þ � !TSçt�Ü$Û !TSçt�V�Û !TSçt�VT ¨ !TSçÛT � !TSçÛT ?� !TSçÛT ?Û !TSçÛT ?tõ v !TS � Þ�V !TS � ÞT !TS � !$è !TSØè�t �

Table B.34: Data of macromolecules of different topologies according to Figure 5.27 and Table 5.12 in
Section 5.2. ¾�HÝb$÷ þ�ø . Values obtained by averaging over the backbone monomers and the monomers of side
arms are displayed, as well as the calculated ´ , µ and ´ Ã values. The øFb�� -systems correspond to stars withÅ�H¢Æ .
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Topology Quantity �p-.V�!s �p-�t�!s �º-.Û�!s |¨� k 
 � backbone
� t��iC�Þ ��!s ?V�C�V V�Ü$V�t�C��T | � k 
 � arms  Fè�ViC�V ÜW! � CÝÜ t�t�Ü�C
è

side 2 |¨� n 
 � back  ?VWèDC�� V���ÞiC�Þ V�ÞWèiCÝÜ|¨� n 
 � arms ��ÜsSØè�tiC�!TSU!WÞ Þ � SçÛ�C !TSçt Û�tÃSç�iC !TSçÞ| � n 
 � total  ?Þ�ViC�V V�ÞWèDC�t Þ � ��CÝÜ| �)� ��� � !TS� "!WÞ�C !TSU!�!s !TSU!$èÃ hC !TSU!�!s !TSçÞ�tT gC !TSU!�!s õ !TSØè���Þ !TSØè�V�V !TSØè�V�Ü¨ !TSçÛ�Ü$t !TSçÛ�Þ�t !TSçÛ�t��õ v !TS � Ü � !TS � èÃ !TS ��� è| � k 
 � backbone Û�Ü � C�Þ ��! � �iC� ?Þ V�t�Þ�V�C���t|¨�)k 
 � arms è�VÃS � C�!TSçÛ  Fè��iC� � � Ü�C�V|¨� n 
 � backbone  EÜ$tÃSçt�C !TSçÛ V���ÞiCÝÜ Þ�ÞWèiCÝÜ
side 4 |¨� n 
 � arms  "!TSùÜ$ÛiC�!TSU!WÞ ��ÜsSØè���C !TSU! � Üu �S� hC !TS �| � n 
 � total  ?ÞT �SØè�C !TSçÛ V�Þ�tiC�Þ ÞWè�Þ�C�t| �)� ��� � !TS� "!Wt�C !TSU!�!s !TSU!$è��iC !TSU!�!W� !TSU!WÞWèiC !TSU!�!W�õ !TSØèÃ ?Û !TSØèÃ ?Þ !TSØè���Þ¨ !TSçÛ���! !TSçÛ���Û !TSçÛ�V�!õsv !TS �  Fè !TS � �T !TS � Ü�Ü|¨� k 
 � backbone Û����iC �  ?Û�Û�Ü�C�Û V�VWè � C� ?Û| � k 
 � arms  Fè�!�CÝÜ ÜW!W�iC�V t�Þ � C�Þ|¨�an 
 � backbone  EÜu hC�� VT ?tiCÝÜ Þ�� � C�Þ

H-molecule | �an 
 � arms ��ÜsSçÞ�tiC�!TSU!$è Þ � S� gC !TS � Û�tÃSU!�C !TS �| � n 
 � total  ?t�tiC�� V � �iCÝÜ t���Þ�C�V|¨�)� ��� � !TS� "!�Ü�C !TSU!�!s !TSU!$è�!�C !TSU!�!W� !TSçÞ�Þ�t�C !TSU!�!s õ !TSØè � è !TSØè � Þ !TSØè ���¨ !TSçÛ�Þ�tWè !TSçÛ�t�� !TSçÛ�t�Ûõsv !TS � è�Þ !TS ��� Û !TSçÛT "!|¨� k 
 � backbone  "!�!�!�C
Û ����Û�ViC� ?V VWè�t���C���!|¨� k 
 � arms ���ÃSçÞ�ÛiC�!TSU!Wt Þ�ÞÃSç��C !TSçt Û��ÃSçViC !TS �| � n 
 � backbone  ?Þ�ÞiC�� V�Þ�ÞiC�Þ Þ �  gC�Þ
side 10 | � n 
 � arms VÃSç��Û�C !TSU!�Ü è9S � tiC !TSU!$è  ?VÃS� EÜ�C !TSU!Wt|¨�an 
 � total  ?Þ�tiC�� V�Þ�ÛiC�Þ Þ � V�C�Þ|¨�)� ��� � !TS� "! � C !TSU!�!s !TSU!$è�ViC !TSU!�!W� !TSU!WÞ � C !TSU!�!W�õ !TSØè�VWè !TSØè�VWè !TSØè�V�Û¨ !TSçÛ�V�Ü !TSçÛ�ÜW! !TSçÛ�Ü$Þõsv !TSØè�è�Û !TSØè�ÛWè !TS � !Wt|¨� n 
 � total  ?t�Ü�C� VWè�Ü�C�� tT ?t�C �|¨� n 
 � arms Þ � S � C�!TSçt  ?V�tÃSùÜ�C !TSØè ����Ü�C��

stars, (f=3) | �)� ��� � !TS� "!W��CÝ!TSU!�!�!Wt !TSU!$è�!�C !TSU!�!s !TSU!WÞ�Þ�C !TSU!�!s õ !TSØè�è�è !TSØè�è�Ü !TSØè�è�t¨ !TSçÛ�tWè !TSçÛWè�Þ !TSçÛWè�èõsv !TSçÛ�!Wt !TSçÛ���! !TSçÛ�VWè
Table B.35: Data of macromolecules of different topologies according to Figure 5.26 and Table 5.11 in
Section 5.2. ¾ H bW÷ b . Values obtained by averaging over the backbone monomers and the monomers of side
arms are displayed, as well as the calculated ´ , µ and ´�Ã values.
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Topology Quantity �p-.V�!s �û-üt�!s �º-.Û�!s | � k 
 � backbone V��WèDC�V t�Ü$Þ�CÝÜ � VWè)C�Û| � k 
 � arms
� ÜsSçÛiC�!TSØè  ?t�V�C�� ��Þ�!iC�V

side 2 | � n 
 � back Þ�tÃSç��C���!TSçt  "!WVÃS � C !TSØè  EÜ � SØèDC !TS �| � n 
 � arms  EÜsSU!�!�C�!TSU!WÞ � � Sç� � C !TSU!TS � Ü$VÃSçV�tiC !TSU!TS �| � n 
 � total t��ÃSçViC�!TSçt  � ?Þ�C�  ?t�VDC��| �)� ��� � !TS� ?Þ�V�C !TSU!�!s !TS� � � �CÝ!TSU!�!s !TS� "!�!�C !TSU!�!s õ !TSØè���V !TSØèÃ Fè !TSØè�! �¨ !TSçÛT � !TSçÛ�VT !TSçÛ�V�Võ v !TSØè ��� !TS ��� Û !TS � !s | � k 
 � backbone V�Þ�ÞiCÝÜ tWè�Ü�C�Û Û�!WÞiC� "!| �)k 
 � arms Ü$�ÃSùÜ�C�!TSçÛ � è9SØèDC !TSçÞ  ?�Wè)C��| � n 
 � backbone t�!TSU!�C�!TSçÞ  � ?VÃSùÜ�C !TSçt  ?Þ � C�V
side 4 | � n 
 � arms tÃS � Ü�C !TSU!Wt  EÜsSç��tiC !TSU!Wt �T �SçV���C !TSU!Wt| � n 
 � total t�VÃSç�iC�!TS �  � ?ÛÃSç��C !TSçt  ?tWè)C��| �)� ��� � !TS� ?Þ�V�C !TSU!�!s !TS� � EÜHCÝ!TSU!�!W� !TS� "!�!�C !TSU!�!W�õ !TSçt�ÛWè !TSçt � Ü !TSçtWè �¨ !TS � è�t !TS � è�t !TS � è�Ûõ�v !TSØèÃ � !TSçt�t � !TSçt�t�Þ| � k 
 � backbone V�t�ViC�� Þ�Þ�t�C�Þ � Þ�tDC
è| � k 
 � arms

� ÜsSØèDC�!TS �  Fè�t�C�� ��Þ�ÞDC�V| �an 
 � backbone t�!TSçtiC�!TSùÜ  "!WtÃS� gC !TSçt  EÜW!iC� 
H-molecule | �an 
 � arms  ?VÃSçÛ�ÛiC�!TSU!$è ��ÛÃSç���iC !TSU!$è Ü$�ÃSçViC !TS �| � n 
 � total è�!TSùÜ�C�!TSçÞ  ?��V�C�  �  �C��| �)� ��� � !TS� EÜ � C !TSU!�!s !TS� � ?V�CÝ!TSU!�!W� !TSU!WÛWèiC !TSU!�!s õ !TSØè�Û � !TSØè�Û�Û !TSØè�Û�t¨ !TSçÛ���V !TSçÛ�ÜW! !TSçÛ�Ü$Võ�v !TS � t�Ü !TS � Ü$Û !TSØè�Û�t| � k 
 � backbone V�Ü$ViC�� Þ�Ü$��C�Þ � Ü � C�Û| � k 
 � arms  ?ÞÃS �  hC�!TSU!Wt V�VÃSØèDC !TSçt ÞT �SçÛiC !TS �| � n 
 � backbone ÞWè9S � C�!TS � Û�ÜsSU!�C !TSçÞ  ?V � C� 

side 10 | � n 
 � arms �ÃSçÞ�t�C !TSU!WV ÞÃSùÜu � hC !TSU!WÞ � SçV�ÞiC !TSU!Wt| �an 
 � total t�!TSU!    _!TSùÜ ÛWè9SçÞiC !TSçÞ  EÜ$�DC� | �)� ��� � !TS� ?Þ � C !TSU!�!s !TS� ?��V�CÝ!TSU!�!W� !TS� "!WV�C !TSU!�!s õ !TSØè���V !TSØèÃ Fè !TSØè�!WÛ¨ !TSçÛ�!�Ü !TSçÛT ?Þ !TSçÛT �õ�v !TSØè � V !TS �  "! !TS � !WV| � n 
 � total t�ÞÃSçtiC�!TS�  ?��tÃSçÞ�C !TS �  � � �C� | � n 
 � arms � � SçViC�!TS� Þ�ÞÃSùÜ�C !TSçÞ t � SØèDC !TS �
stars, (f=3) | �)� ��� � !TS� ?Þ�Ü�C !TSU!�!s !TS� � � �CÝ!TSU!�!s !TS� "!WÛ�C !TSU!�!W�õ !TSØè�V�Ü !TSØè�V�Þ !TSØè���t¨ !TSçÛ�V�Û !TSçÛ�Þ�Ü !TSçÛ�Þ �õ�v !TSØè�è � !TSØè�è�V !TSØè�è�Ü

Table B.36: Data of macromolecules of different topologies according to Figure 5.26 and Table 5.11 in
Section 5.2. ¾�HÝb$÷ þ�ø . Values obtained by averaging over the backbone monomers and the monomers of side
arms are displayed, as well as the calculated ´ , µ and ´�Ã values.



Appendix C

Rotation matrix of a vector

In a coordinate system with unit vectors ( i¥ � v i¥ 
 v i¥ 0 � where i¥ 0áà i� , i� arbitrary, the expression for the
rotation matrix M for a rotation of a vector i� about the i¥ 0 –axis with angle { is:
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Thus, for the expression of the spinned vector one yields:i� v - i¥ � , $'&)( { � i� i¥ � � � ( ê�� { � i� i¥ 
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The individual unit vectors i¥ Y can be expressed in terms of i� and i� :i¥ 0 - i� � - i� �i¥ 
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With these results one finally yields:i� v - $'&)( { � i� i¥ � � i¥ � � ( ê�� { � i� i¥ � � i¥ 
 �.� i� i¥ 0 � i¥ 0- $'&)( { � i� � i� � � i� � i����� � ( êÌ� { � i� � Ò i���Í� i� � � i� i� � �- i� $'&)( { �ü� i� � Ò i�W� ( ê�� { � i� � � i� � i���E�� � $'&)( { �
which corresponds to Eq. (3.13) on page 27.



Appendix D

The simulation code

One aim of this work was the development of a code for the simulation of polymer chains with
variable topologies and molecular weights � . The code should be able to perform simulations of
single isolated chains as well as of chains in a dense melt. Moreover, it should be designed in a style
that allows for further changes without having to change the whole concept.

These objectives require a modular code design, as there are different functional units which
crucially influence the performance of the code. A modular structure not only simplyfies the opti-
mization of individual parts of the code, but also the exchanging of single modules during the test
stage of development. The principal design of a simulation program, independent of the particular
implementation, is sketched in Fig. D.1 on Page 168.

The individual parts of the code design are as follows:¡ Initialization: The initialization routine. It initializes all independent parameters that charac-
terize the respective physical system. The specific values are given by the initial conditions.
This routine is done only once in a simulation and hence is not time critical.¡ Integration: The integration routine. It contains the numerical part of the simulation. A
particular implementation of the used algorithm for the integration of the equations of motion
is included in this routine. It is the most time critical part of the whole simulation and requires
special attention in particular when including long-range interactions, such as coulomb forces
or when using very large systems. Virtually all efforts for code optimization deal with this
particular part of the code.¡ Output: The output routine. It stores the obtained simulation data on a hard disk medium
to enable a later analyzing and grafic presentation of the results. The actual visualization is
usually done with other commercial tools.

There is a hole host of languages of the third generation available for an implementation. How-
ever, in simulations speed is the most crucial criterion for the choice of a specific language. This
immediately rules out Java, an object-oriented language, perfectly portable on any operating system,
but usually not available on super computers. As the interpretation of byte code upon run time de-
creases the performance considerably, this language is not suitable for high performance simulations.
C++, on the other hand, is available on most super computer facilities but has the disadvantage of
lacking a standard. At present, there is only a provisional ANSI-standard which is not being abided
by by all manufacturers. Because extensive use was made of dynamic memory allocation, C was used
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start

end

initialization

integration

output

Figure D.1: Principal design of a
simulation code.

for an implementation of the model described in Chapter 3.4 and C++ for all others, not time critical
tools.

The main code consists of approx. 15.000 lines of code 3 and is fully documented. Another
approx. 4.000 lines pertain to the tool that contains all analyze routines for calculating static, dynamic
or structural properties. Further 1.000 lines went into coding the tool that sets up the configuration
files which contain all relevant simulation parameters and which are read upon starting the main
simulation. Finally another approx. 1.000 lines are contained in the tool that prepares the data for
being processed by commercial visualization tools such as xmol, insightII or VMD.

D.1 Code documentation

In the following, the different modules of the main simulation code are described in some more detail
to elucidate the functionality of the code and to clarify how the modules are related to each other (see
Fig. D.3 on Page 170 for a complete overview).

First of all, the different initialization routines parse the command-line arguments (init arguments),
the parameters of the configuration file (init param.c), check them for consistency (init paramCheck.c),
then allocate all needed memory (init allocation.c) and finally calculate often used lemma variables
that never change throughout the simulation such as the number of ghost cells or the size of sub-cells
in each direction (init calculateConstants.c).

The next module (init.c) sets up the polymer chains in the simulation box by means of a process
that is described in detail in Section 3.3.2 on Page 32.

The properties of individual particles are stored in a C-structure that contains all topological
information that is necessary for unambiguously identifying the individual particles, see Fig. D.2.
The advantage of this topology structure is, that any desired topology can be accommodated in the
simulation code without having to change anything in the main code. The parameters of the simulation
are set appropriately by the configuration tool.

Due to possible singularities in the potential because of overlapping monomers one has to perform
a warmup procedure (warmup.c) which gradually switches on the full excluded volume interaction.

3All figures including documentation.
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Figure D.2: Members of the data structure that contains all information of the particles. The individual
particle data are stored consequtively in computer memory and can be accessed by making use of the respective
particle index.

This warmup procedure is annotated in Section 3.3.2. After the particles are set in the simulation box,
the structures to accommodate the neighbor-list tables (verletTables.c) and ghost particles (ghosts.c)
are allocated and initialized.

The actual integration loop begins with calculating the forces (forces.c) on the particles according
to the used potentials (lennard cosinus.c), (fene.c). In addition to the actually used potentials, there
is another module (coulomb.c) which contains an implementation of the Ewald summation technique
[68], [128] and allows for the individual assignment of electric charges to the monomers.

The integrator is implemented in (bd verlet.c). Pivot moves (pivot.c) can be used in addition
to MD-steps. After the last integration step, but also during the simulation run, the system data are
stored on hard disk for later analysis (file handling.c).
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Figure D.3: Float diagram displaying the order at which different modules of the main simulation code are
called.
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As a summary, the most important features of the developed simulation code are as follows:¡ Portability on many different architectures due to strict usage of ANSI-C.¡ Suitability for simulations of single chains as well as of chains in a dense melt.¡ Feasibility of simulations of branched chains, as well as of mixtures of different topologies.¡ Good scalability of the code of approx. 380.000 particle updates per second.¡ Full documentation.¡ Easy adaptation to special needs due to a strict modular code-structure with well defined inter-
faces.
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Appendix E

Derivation of the leading corrections to scaling for

the hydrodynamic radius

The following simple derivation is proposed in [66].

In principle, the whole information about chain configurations is stored in the static structure
factor ³Ç�\Qu� which is just the e�-�! value of ³ �\Q v e�� . The approach we are taking here is to consider a
very simple model function for ³Ç�\Qu� , which should contain all the important physical features, scaling
behavior as well as the finiteness of �Ðn and of + . ³ �\Qu� has the well–known properties [56]¡ ³Ç�\Qu� ä � for Q ä ! ,¡ ³Ç�\Qu� ä  for Q äæå and¡ ³Ç�\Qu�Ç-L�)Q ������� in the scaling regime � ���n �qQc� + ��� . Here the prefactor � is independent

of chain length.

Hence, we choose the following highly oversimplified function for ³Ç�\Qu� :
³ �\Qu� - !" # � ! A Q A ��» Ì � r�=Q ������� ��» Ì � r A Q A ��» Ì + ��» Ì + A Q_x å S (E.1)

Here � r is some measure of the size of the chain which scales in the same way as the radius of
gyration. Continuity of ³Ç�\Qu� requires � r -�+Ã� � (E.2)

and

�ü- Õ +��» Ö ������� S (E.3)

In order to calculate the hydrodynamic radius from the structure factor, we integrate the relation
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³Ç�\Qu� �  � -  � 
 � Y ð� �
î ( êÌ� �\QT�"Y � �QT�?Y � ï (E.4)

over Q . In every term, the integration variable can be changed from Q to Ë -.QT�WY � and henceÉ Èr ¸ÃQ ³Ç�\Qu� �  � -  � 
 � Y ð� �
î  � Y � É Èr ¸ Ë ( ê�� ËË ï - » �

î  �)� ï S (E.5)

Inserting our model function from above, one straightforwardly obtainsî  �)��ï - Ü�� � �1�Ê+ ¹  � � �  � ½ (E.6)

or

� �1� | � ���� � ��� - +Ü �� � �1� l  � � �F��� n ��� v (E.7)

giving the leading correction to scaling as

� �1� |¨� ���� � ��� - +Ü �� � �1�E�� ¥��� ����� � v (E.8)

which is the functional form anticipated above (cf. Eq. 4.15) on Page 63.



Appendix F

Snapshots of the dendrimers

This appendix contains a series of representative snapshots of symmetric dendrimers taken from sim-
ulation runs. Snapshots of all simulated generations ( ·�-  � è ) are displayed. The color code
is such that monomers belonging to the spacers of endgroups are displayed in red whereas all other
monomers are displayed in grey. The snapshots are ordered such that good solvent dendrimers are
always displayed on the left side and corresponding snapshots in a � -solvent are displayed on the right
side for each generation.

Figure F.1: Snapshot of a regular dendrimer. É H
: , ²}HN>?ú .
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Figure F.2: Snapshot of a regular dendrimer. É H�> , ²}H þ�Æ .

Figure F.3: Snapshot of a regular dendrimer. É HN6 , ² H
: 6�þ .
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Figure F.4: Snapshot of a regular dendrimer. É HÇÆ , ² H�>?ú�b .

Figure F.5: Snapshot of a regular dendrimer. É H�ø , ² H�ø?þ�ý .
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Figure F.6: Snapshot of a regular dendrimer. É
H þ , ² H
:F:�Æ Æ .

Figure F.7: Snapshot of a regular dendrimer. É
H�ý , ² H�>F> 	 þ .
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[27] R. B. Bird, H. C. Öttinger: Transport properties of polymeric liquids.
Annu. Rev. Phys. Chem. 43, 371 (1992).

[28] T. M. Birshtein, E. B. Zhulina: Conformations of star-branched macromolecules.
Polymer 25, 1453 (1984).

[29] T. M. Birshtein, S. V. Buldyres and A. M. Elyashevitch: Monte-Carlo simulation of the
collapse transition of a two-dimensional polymer.
Polymer 26, 1814 (1985).



BIBLIOGRAPHY 181

[30] T. M. Birshtein, E. B. Zhulina, O. V. Borisov: Temperature concentration diagram for a
solution of star-branched macromolecules.
Polymer 27, 1078 (1986).

[31] J. J. Binney, N. J. Dowrick, A. J. Fisher and M. E: J. Newman: The theory of critical
phenomena.
Oxford University Press, (1992).

[32] M. Bishop and J. P. J. Michels: Polymer shapes in three dimensions.
J. Chem. Phys. 85, (10), 5961 (1986).

[33] M. Bishop and Saltiel: .
J. Chem. Phys. 88, 6594 (1988).

[34] M. Bishop and J. H. R. Clarke: Brownian Dynamics study of the shape of star and linear
polymers in different regimes.
J. Chem. Phys. 90, (11), 6647 (1989).

[35] M. Bishop, W. Smith: Brownian Dynamics simulation of linear and star polymers.
J. Chem. Phys. 95, (5), 3804 (1991).

[36] Marvin Bishop, J. H. R. Clarke, A. Rey and J. J. Freire: Shape of linear and star polymers
with and without excluded volume.
J. Chem. Phys. 94, (5), 4009 (1991).

[37] I. Bodnar, A. S. Silva, R. W. Deitcher, N. E. Weisman, Y. H. Kim, N. J. Wagner: Structure
and rheology of hyperbranched and dendritic polymers. I. Modification and characterization of
poly(propyleneimine) dendrimers with acetyl groups. J. Polym. Sci. 38, 857 (2000).

[38] M. Bohdanecki, J. Kovar: Viscosity of polymer solutions.
Elsevier, Amsterdam (1982).

[39] D. Boris, M. Rubinstein: A self-consistent mean field model of a starburst dendrimer: Dense
core vs. dense shell.
Macromolecules 29, 7951 (1996).

[40] D. C. Bugada and A. Rudin: Sizes of long branches in low density polyethylenes.
J. Appl. Polym. Sci. 33, 87 (1987).

[41] A. Bunde: Fractals in science.
Springer Verlag, Heidelberg (1994).

[42] W. Burchard: Static and dynamic light scattering from branched polymers and bio-polymers.
Adv. Polym. Sci. 48, 1 (1983).

[43] W. Burchard, M. Schmidt and W. Stockmayer: Information on polydispersity and branching
from combined quasi-elastic and integrated scattering..
Macromolecules 13, 1265 (1980).

[44] Bruns, W. Carl: Relations between averaged configurational properties of linear and starlike
polymer models at the theta-temperature.
Macromolecules 24, (1), 209 (1991).

[45] Bywater, S.: Preparation and properties of star branched polymers.
Adv. Polym. Sci. 30, 89 (1979).



182 BIBLIOGRAPHY

[46] J. W. Cannon, J. A. Aronovitz and P. Goldbart: Equilibrium distribution of shapes for linear
and star macromolecules.
J. Phys-Paris 1, 629 (1991).

[47] G. Cherbit: Non-integral dimensions and applications.
John Wiley & Sons, New York (1991).

[48] B.Chu, R. L. Xu, J. Zuo: Transition of polystyrene in cyclohexane from the theta to the col-
lapsed state.
Macromolecules 21, (1), 273 (1988).

[49] U. Dayal: High-temperature SEC copupled with MALLS detector for evaluating the end-use
performance of LDPE.
J. Appl. Polym. Sci. 53, 1557 (1994).

[50] M. Daoud, C. E. Williams: La juste argile.
Les Editions de Physique, Paris 1995.

[51] M. Daoud, G. Jannink: Temperature concentration diagram of polymer solutions.
J. Phys-Paris 37, 973 (1976).

[52] M. Daoud, J. P. Cotton: Star shaped polymers: A model for the conformation and its concen-
tration dependence.
J. Phys-Paris 43, 531 (1982).

[53] G. P. de Gennes: Giant fluctuations and critical phenomena.
Recherche 5, (51), 1022 (1974).

[54] G. P. de Gennes: Collapse of a polymer chain in poor solvents.
J. Phys. Lett-Paris 36, L55 (1975).

[55] G. P. de Gennes: Collapse of a flexible polymer chain II.
J. Phys. Lett-Paris 39, L299 (1978).

[56] P. G. de Gennes: Scaling concepts in polymer physics.
Cornell University Press, Ithaca, London (1979).

[57] P. G. de Gennes and H. Hervet: Statistics of starburst polymers.
J. Phys-Paris 44 (9), L351 (1983).

[58] H. W. Diehl: Universal shape ratios for open and closed random-walks – exact results for all
dimensions.
J. Phys. A 22, (3), L87 (1989).

[59] M. Doi, S. F. Edwards: The Theory of Polymer Dynamics.
Clarendon Press, Oxford (1986).

[60] C. Domb: Phase-transition in a polymer chain in dilute solutions.
Polymer 15, 259 (1974).

[61] J. F. Douglas and K. F. Freed: Polymer contraction below the � –point: A renormalization
group description.
Macromolecules 18, 2445 (1985).



BIBLIOGRAPHY 183

[62] J. F. Douglas, J Roovers and K. F. Freed: Characterization of branching architectures through
”universal” ratios of polymer solution properties.
Macromolecules 23, 2168 (1990).

[63] B. Duplantier: Tricritical polymer chains in or below 3 dimensions.
Europhys. Lett. 1, (10), 491 (1986).

[64] B. Duplantier: Direct or dimensional renormalizations of the tricritical polymer theory.
J. Phys-Paris 47, (5), 745 (1986).

[65] B. Duplantier: Geometry of polymer chains near the theta-point and dimensional regulariza-
tion.
J. Chem. Phys. 86, (7), 4233 (1987).

[66] B. Dünweg, M. Steinhauser, D. Reith, K. Kremer: Corrections to scaling in the hydrodynam-
ics of dilute polymer solutions.
To be published in Macromolecules.

[67] B. E. Eichinger: Shape distributions for Gaussian molecules.
Macromolecules 18, (2), 211 (1985).

[68] P. Ewald: Die Berechnung optischer und elektrostatischer Gitterpotentiale.
Ann. Phys. 64, 253 (1921).

[69] W. Feller: An introduction to probability theory and its applications.
Wiley, New York (1950).
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[183] K. Sǒlc and W. H. Stockmayer: Shape of a random-flight chain.
J. Chem. Phys. 54, (6), 2756 (1970).
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[185] K. Sǒlc and W. H. Stockmayer: Ellipsoidal model of polymer coils and its applications.
J. Chem. Phys. 7, 814 (1974).

[186] C. C. Sorensen, J. Kovac: Role of attractive forces in the dynamics of polymer chains near
the � –point.
Macromolecules 24, (13), 3883 (1991).

[187] D. Stauffer, A. Aharony: Introduction to Percolation Theory.
Taylor & Francis, London, Washington (1991).

[188] G. Strobel: The physics of polymers.
Springer Verlag, Berlin, Heidelberg, New York (1996).

[189] W. H. Stockmayer, M. Fixman: Dilute solutions of branched polymers.
Ann. NY. Acad. Sci. 57 (4), 334 (53).

[190] S. J. Su, J. Kovac: Concentration dependence of shape-fluctuations of uniform star polymers.
J. Chem. Phys. 96, (10), 3931 (1992).

[191] S. T. Sun, I. Nishio, G. Swislow and T. Tanaka: Coil-globule phase-transition in a single
polystyrene chain in cyclohexane.
J. Chem. Phys. 73, 5971 (1980).

[192] S. F. Sun: Physical Chemistry of macromolecules.
John Wiley & Suns, New York (1994).

[193] W. C. Swope, H. C. Andersen, P. H. Behrens, K. R. Wilson: A computer simulation method
for the calculation of equilibrium constants for the formation of physical clusters of molecules:
application to small water clusters.
J. Chem. Phys. 76, 637 (1982).

[194] P. Tackx and J. C. J. F. Tacx: Chain architecture of LPDE as a function of molar mass using
size exclusion chromatography and multi-angle laser light scattering (SEC-MALLS).
Polymer 39, (14), 3109 (1998).

[195] G. Tanaka and W. L. Mattice: Chain collapse by lattice simulation.
Macromol. Theory Simul. 5, (3), 499 (1996).

[196] D. N. Theodorou and U. W. Suter: Shape of unperturbed linear polymers: polypropylene.
Macromolecules 18, 1206 (1985).

[197] D. A. Tomalia, D. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, J.
P. Smith: A new class of polymers - starburst dendritic macromolecules.
Polym. J. 17, 117, (1985).

[198] D. A. Tomalia, D. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, J.
P. Smith: Dendritic macromolecules - synthesis of starburst dendrimers.
Macromolecules 19, 2466, (1986).

[199] D. A. Tomalia, D. M. Hedstrand and L. R. Wilson: Encyclopedia of Polymer Science and
Engeneering.
Wiley, New York, p. 46 (1990).



192 BIBLIOGRAPHY

[200] A. Topp, B. J. Bauer, Ty. J. Prosa, R. Scahrrenberg and E. J. Amis: Size change of den-
drimers in concentrated solution.
Macromolecules 32, 8923, (1999).

[201] A. M. Torres, A. M. Rubio, J. J. Freire, M. Bishop, J. H. R. Clarke: Theta state and
collapse of off-lattice chains in two dimensions.
J. Chem. Phys. 10, 100, 7754 (1994).

[202] Y. Tsunashima, M. Hirata, N. Nemoto and M. Kurata: Dynamic light scattering studies of
polymer solutions. 5. Universal behavior of highly swollen chains at infinite dilution observed
for Polyisoprenes in Cyclohexane.
Macromolecules 20, 1992, (1987).
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