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Acknowledgements

For reasons of privacy protection, it is not allowed to state the names of

others here. The acknowledgements are therefore left blank in this electronic

version of the thesis.





Abstract

In the present thesis, the variation of closed subspaces of a Hilbert space

associated with isolated components of the spectra of linear self-adjoint op-

erators under a bounded additive perturbation is studied. Of particular

interest is the least restrictive condition on the norm of the perturbation

that guarantees that the difference of the corresponding orthogonal projec-

tions is a strict norm contraction. An overview on the results obtained so

far is given.

Based on an iteration approach, a general bound on the variation of

the subspaces is obtained for perturbations depending smoothly on a real

parameter. The result is applied to the case of additive perturbations by in-

troducing a coupling parameter on the perturbation. In this way, previously

known results are strengthened.

In the case of additive perturbations, the bounds on the variation of

the subspaces are sharpened further by an optimization procedure for the

choice of the supporting points in the iteration approach. The corresponding

results are the best ones obtained so far.



Zusammenfassung

In der vorliegenden Arbeit wird die Variation abgeschlossener Unterräume

eines Hilbertraumes untersucht, die mit isolierten Komponenten der Spek-

tren von selbstadjungierten Operatoren unter beschränkten additiven Stö-

rungen assoziiert sind. Von besonderem Interesse ist hierbei die am wenig-

sten restriktive Bedingung an die Norm der Störung, die sicherstellt, dass die

Differenz der zugehörigen orthogonalen Projektionen eine strikte Normkon-

traktion darstellt. Es wird ein Überblick über die bisher erzielten Resultate

gegeben.

Basierend auf einem Iterationsansatz wird eine allgemeine Schranke an

die Variation der Unterräume für Störungen erzielt, die glatt von einem

reellen Parameter abhängen. Durch Einführung eines Kopplungsparameters

wird das Ergebnis auf den Fall additiver Störungen angewendet. Auf diese

Weise werden zuvor bekannte Ergebnisse verbessert.

Im Falle von additiven Störungen werden die Schranken an die Variation

der Unterräume durch ein Optimierungsverfahren für die Stützstellen im

Interationsansatz weiter verschärft. Die zugehörigen Ergebnisse sind die

besten, die bis zum jetzigen Zeitpunkt erzielt wurden.
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Introduction

One of the fundamental problems in operator perturbation theory is the

subspace perturbation problem, in which the variation of invariant subspaces

for a self-adjoint or normal operator under a bounded additive perturbation

is studied, see, e.g., [11, 12,21] and the references therein.

The simplest particular case in this context is the study of one-dimen-

sional eigenspaces: Let A be a self-adjoint operator on a Hilbert space with

an isolated simple eigenvalue λ. It is well known that if V is a bounded

self-adjoint operator with sufficiently small operator norm ‖V ‖, then the

perturbed operator A+V also has an isolated simple eigenvalue µ in a small

neighbourhood of λ, and it is natural to ask how the respective eigenspaces

for A and A+ V differ. Since eigenvectors are determined only up to phase

factors, it is more suitable to study the variation of the eigenspaces in terms

of the corresponding eigenprojections P and Q for A and A+V , respectively,

rather than in terms of the eigenvectors, cf. [20].

It is well known that the operator norm of the difference P −Q cannot

exceed 1, and it turns out that it equals 1 if and only if the corresponding

eigenvectors for A and A+V are orthogonal to each other. However, if these

eigenvectors are not orthogonal to each other, then Q does not vanish on

the eigenspace for A. In this case, the norm of the difference P −Q can be

expressed as (see [21])

(1) ‖P −Q‖ = ‖x−Qx‖ = sin θ < 1 ,

where x is a normalized eigenvector for A associated with λ and θ is the

angle between x and Qx, that is,

cos θ =
〈
x,

Qx

‖Qx‖
〉
= ‖Qx‖ > 0 .

vii



viii Introduction

In this regard, an eigenvector for A + V can be obtained by rotating the

eigenvector x through the angle θ < π/2.

Another advantage of the use of projections rather than vectors is that

the relation (1) can be studied in a much more general setting, such as eigen-

values of higher multiplicity or clusters of different eigenvalues, whereas the

consideration of vectors here would have further complications if the eigen-

values are closely bunched, cf. [21]. Also more general invariant subspaces

can be considered in terms of orthogonal projections. In these more general

situations, instead of the angle θ in (1), an operator-valued analogue enters

the considerations, the so-called operator angle Θ. This is a self-adjoint

operator which is associated with the corresponding subspaces for the un-

perturbed and perturbed operators, respectively, and whose spectrum lies

in the interval
[
0, π2

]
. Suitable norms of it, or of trigonometric functions

thereof, serve as a measure for the difference between the subspaces, and

the main objective is to obtain efficient estimates on these norms in terms

of the strength of the perturbation.

Usually, estimates of the mentioned sort require that associated parts of

the spectra of the corresponding operators are separated from each other,

and distances between these spectral parts typically enter the estimates. The

four angle theorems by Davis and Kahan [21], namely sinΘ, sin 2Θ, tanΘ,

and tan 2Θ, represent the pioneering work in this direction. Each of these

four theorems is suited for a different situation with certain assumptions

on the spectra and/or on the perturbation. Extensions and generalizations

of the Davis-Kahan angle theorems have been considered in several recent

works such as [7, 8, 28,30,31,40].

In this thesis, besides providing a generalization of the Davis-Kahan

sin 2Θ theorem, we focus on the following more specific problem:

Let A be a possibly unbounded self-adjoint operator on a Hilbert space

H such that the spectrum of A contains an isolated component σ, that is,

d := dist
(
σ, spec(A) \ σ

)
> 0 ;

one may think of σ as a cluster of isolated eigenvalues such as in the case

of matrices or the quantum harmonic oscillator (see, e.g., [8, Section 6]),

or as a cluster of bands in the spectrum such as in the case of Schrödinger

operators with periodic potentials, see, e.g., [44, Section XIII.16]. Let V be
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a bounded self-adjoint operator on H. We then ask for the least restrictive

condition on the norm of V , independent of A and V , which guarantees that

(2) ‖EA(σ)− EA+V

(
Od/2(σ)

)
‖ < 1 .

Here, EA and EA+V denote the spectral measures for the self-adjoint op-

erators A and A + V , respectively, and Od/2(σ) stands for the open d/2-

neighbourhood of σ. This problem has initially been discussed by Kostrykin,

Makarov, and Motovilov in [26], but earlier works by Langer and Tretter [32],

Adamjan, Langer, and Tretter [4], and Albeverio, Makarov, and Motovilov

[5] are closely related. In the framework of the present thesis, we refer to

the problem of establishing (2) also as the subspace perturbation problem.

It is well known that the norm of the difference EA(σ)−EA+V

(
Od/2(σ)

)

agrees with the norm of the operator sinΘ, where Θ is the operator an-

gle associated with the subspaces RanEA(σ) and RanEA+V

(
Od/2(σ)

)
, see

[21]. In this sense, inequality (2) is a more or less direct extension of (1).

Here, the strict inequality in (2) ensures that the spectral projections EA(σ)

and EA+V

(
Od/2(σ)

)
are unitarily equivalent, see [25, Theorem I.6.32]. The

spectral subspace RanEA+V

(
Od/2(σ)

)
for the perturbed operator A+V can

then be understood as a rotation of the unperturbed subspace RanEA(σ),

and the associated operator angle Θ plays the role of a rotation angle. The

norm of the difference of the projections EA(σ) and EA+V

(
Od/2(σ)

)
serves as

a measure for this rotation, so that one is interested not only in establishing

the inequality (2) but also in obtaining sharp estimates on the left-hand side

of (2). Equivalently, one searches for estimates on the norm ‖Θ‖ < π/2.

Clearly, the condition (2) implies that the operator A+ V has spectrum

in the neighbourhood Od/2(σ) of σ. Since (2) is supposed to hold for all

choices of A and V simultaneously, this, in turn, requires that ‖V ‖ < d/2,

cf. [25, Theorem V.4.10]; in this case, the intersection spec(A+V )∩Od/2(σ)

even is an isolated component of spec(A + V ). The main question that

arises now is whether the bound ‖V ‖ < d/2 is sufficient for inequality (2) to

hold or if one has to impose a stronger condition on ‖V ‖ in order to ensure

(2). Under certain additional assumptions on the spectrum of A such as

that the convex hull of σ is disjoint from the remainder of the spectrum,

that is, conv(σ) ∩
(
spec(A) \ σ

)
= ∅, the answer to this question is known

to be positive; this is a consequence of the Davis-Kahan sin 2Θ theorem in
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[21]. It has been conjectured that the answer is positive also if no additional

assumptions on the spectrum of A are imposed (see [8]; cf. also [26] and

[31]), but no proof for this is available so far.

The principal result in this thesis is that (2) holds whenever

(3) ‖V ‖ < ccrit · d with ccrit =
1

2
− 1

2

(
1−

√
3

π

)3
= 0.4548 . . . ,

see Theorem 8.9 below. Together with a corresponding estimate on the norm

of the operator angle, this result is the best one obtained so far.

The problem of establishing (2) has also been discussed under the addi-

tional assumption that the perturbation V is off-diagonal with respect to the

decomposition of the Hilbert space H induced by the orthogonal projection

EA(σ), see [31] and also [5, Remark 3.11 and Theorem 7.6]. This particular

structure of the perturbation allows to obtain results substantially stronger

than (3). The present thesis also contains contributions to this case, see

Theorem 6.15 (b) and Section 8.3 below, and the corresponding results are

the best ones obtained so far for this situation.

Another class of perturbations that lead to results stronger than (3) are

semidefinite ones, that is, perturbations V with V ≥ 0 or V ≤ 0. Although

such kind of perturbations are rather prominent in general perturbation

theory, it seems that they have not explicitly been studied in the context of

inequality (2) before. In the present thesis, this situation is discussed briefly

in the form of an outlook for future research, see Section 2.4 below.

The key idea in the approach of the present thesis to the problem of

establishing (2) is to iterate the bound on the rotation of the correspond-

ing subspaces. To this end, a coupling parameter on the perturbation is

introduced, namely

Bt := A+ tV , Dom(Bt) := Dom(A) , t ∈ [0, 1] ,

and this parameter is increased in small steps according to a suitably chosen

partition of the interval [0, 1]. Of particular importance here is that the norm

of the associated operator angle satisfies a triangle inequality with respect to

the subspaces (see [16, Corollary 4]), and this triangle inequality is stronger

than the one for the usual operator norm for the difference of the projections.

The approach of iterating the rotation bound leads to the study of
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smooth variations of spectral subspaces, where partitions of the interval

[0, 1] with arbitrarily small mesh size are considered. The main result in

this context is the estimate

‖Θ‖ = arcsin
(
‖EA(σ)− EA+V

(
Od/2(σ)

)
‖
)
≤ π

2

∫ 1

0

‖Ḃτ‖
dist(ωτ ,Ωτ )

dτ ,

where Ḃτ = d
dτBτ and ωτ and Ωτ are suitably chosen spectral components of

the perturbed operator Bτ . The corresponding considerations in Chapter 6

below deal with the more general situation of smooth paths of arbitrary self-

adjoint operators Bt with appropriately separated spectra. This represents

one of core parts of the present thesis.

However, for the particular problem of establishing inequality (2), it

turns out that partitions with small mesh size do not give the best results.

Albeverio and Motovilov observed in [8] that in the case of general pertur-

bations one can obtain a stronger result with a particular finite partition.

This requires an estimate on the norm of the associated operator angle that

is more accurate for perturbations with small norm than the previously

known bounds. Albeverio and Motovilov provided such a bound in form

of the generic sin 2θ estimate, which resembles the bound from the Davis-

Kahan sin 2Θ theorem in [21]. The present author has noted that there is

a better choice for the finite partition and has formulated an optimization

problem to obtain the best possible choice. This optimization problem is

solved explicitly in Chapter 8 below, and the solution yields the result (3).

Similar considerations for off-diagonal perturbations lead to an optimization

problem that is more difficult to deal with and that is not solved explicitly

yet. Nevertheless, numerical evaluations yield a result stronger than the

previously known ones, see Corollary 8.26 below.

The thesis is organized as follows:

In Chapter 1, we fix the standard notations used throughout this thesis.

We also recall and discuss some basic notions such as the operator angle,

graph subpaces, and reducing subspaces.

Chapter 2 provides an overview on the subspace perturbation problem

for self-adjoint operators. Here, we discuss which particular cases are already

solved and what kind of results have been achieved for the general problem so

far. An outlook on the case of semidefinite perturbations for future research

is also provided here.
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Chapter 3 is devoted to so-called operator Sylvester equations of the

form XA0 − A1X = K, which are a main tool in this thesis. Here, it is

explained how Sylvester equations are related to the subspace perturbation

problem, the central existence and uniqueness result is recalled, and some

consequences of this result are discussed, including a variant of the Davis-

Kahan symmetric sinΘ theorem.

In Chapter 4, we revisit the block diagonalization of self-adjoint 2 × 2

block operator matrices with respect to reducing graph subspaces. This has

previously been discussed in [5, Section 5], and the material here fills in a

gap in reasoning in the proof of [5, Lemma 5.3]. This chapter is based on

the joint work [38] with K. A. Makarov and S. Schmitz.

Chapter 5 provides an alternative proof for the fact that the norm of the

operator angle defines a metric on the set of orthogonal projections, which

is essential for the considerations in the following Chapters 6 and 8. This

alternative proof is based on parts of the joint work [36] with K. A. Makarov.

Chapter 6 forms the main part of this work. Here, we discuss smooth

variations of spectral subspaces for self-adjoint operators with separated

spectra. The corresponding result is applied to the problem of establishing

inequality (2). This chapter is based on the joint work [37] with K. A.

Makarov published in Journal für die reine und angewandte Mathematik

and also extends the considerations there to unbounded operators.

In Chapter 7, an analogue of the Davis-Kahan sin 2Θ theorem under a

general spectral separation condition is established. This extends the generic

sin 2θ estimate recently shown by Albeverio and Motovilov in [8]. The corre-

sponding material is taken with only small changes from the author’s article

[50] published in Integral Equations and Operator Theory.

Based on the sin 2θ estimate, in Chapter 8 we formulate an optimization

problem, whose solution yields the result (3). The corresponding material is

taken from the author’s preprint [51]. An analogous optimization problem

for off-diagonal perturbations is also discussed here.

Finally, Appendix A is devoted to some elementary inequalities used in

Chapter 8. Except for minor changes, it agrees with the appendix in the

author’s preprint [51].



Chapter 1

Preliminaries

In this first chapter, we introduce the basic notations used in the present

thesis and recall some fundamental notions and concepts.

1.1 Basic notations and general assumptions

Notations. Throughout this thesis, N denotes the set of positive integers

and N0 the one of non-negative integers. Moreover, R and C stand for the

sets of real and complex numbers, respectively. The Euler number is denoted

by e, and i stands for the complex unit.

Given a subset ∆ ⊂ R, the open r-neighbourhood of ∆ with r ≥ 0 is de-

noted by Or(∆), that is, Or(∆) := {λ | dist(λ,∆) < r}. We write dist(Λ,∆)

for the distance between two subsets Λ and ∆ of R, which is understood as

the infimum of the distances between points from the respective sets.

Given a Hilbert space H, 〈 ·, · 〉H and ‖ · ‖H stand for the correspond-

ing inner product and norm, respectively, where the subscript H is usually

omitted. The space of bounded linear operators from a Hilbert space H
to a Hilbert space K is denoted by L(H,K), and ‖ · ‖ stands for the usual

operator norm on L(H,K). If H = K, we simply write L(H) := L(H,H).

The identity operator on H is denoted by IH. Multiples λIH of this operator

are usually abbreviated by λ.

Unless stated otherwise, every operator in this thesis is allowed to be

unbounded. The domain of a linear operator A is denoted by Dom(A), and

its range by Ran(A). The restriction of A to a given subspace U is written

as A|U with Dom(A|U ) := Dom(A) ∩ U . Given another linear operator B,

1
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we write the extension relation A ⊂ B (or B ⊃ A) if B extends A, that

is, if one has Dom(A) ⊂ Dom(B) and Ax = Bx for x ∈ Dom(A). The

operator equality A = B means that A ⊂ B and A ⊃ B. Note that sums

and products of operators are always understood on their natural domains.

If A is a closed densely defined operator on a Hilbert space, its adjoint

operator is denoted by A∗, its spectrum by spec(A), and its resolvent set by

ρ(A). If A is self-adjoint, then EA stands for its spectral measure.

For a self-adjoint operator A and λ ∈ R we write A ≥ λ (or λ ≤ A) if

〈x,Ax〉 ≥ λ‖x‖2 for all x ∈ Dom(A). For simplicity, we write A ≤ λ (or

λ ≥ A) instead of −A ≥ −λ.

Finally, if P is an orthogonal projection in the Hilbert space H, that

is, P ∈ L(H) with P 2 = P = P ∗, then we write P⊥ := IH − P for the

orthogonal projection onto the orthogonal complement (RanP )⊥ of RanP .

The orthogonal projection onto a given closed subspace U ⊂ H is denoted

by PU .

General assumptions. For convenience, every Hilbert space in this thesis

is tacitly assumed to be complex. However, except for Theorem 3.2 and

Corollary 3.5 below, the statements of all results presented here make perfect

sense also if the underlying Hilbert space is real, and it is straightforward

to extend them to this case, either directly or by complexification (see, e.g.,

[57, Abschnitt 4.4] and [56, Exercises 5.32 and 7.25]).

Every Hilbert space may also be assumed to be separable. This is done

in many of the cited works. However, the results obtained in the present

thesis do not need this assumption, so that we do not impose it explicitly

here.

1.2 Invariant and reducing subspaces

For the concepts of invariant and reducing subspaces for a linear operator,

we mainly rely on [49, Section 1.4], [56, Exercise 5.39 and Theorem 7.28],

and [57, Satz 2.60].

Let A be a linear operator on the Hilbert space H. A closed subspace

U ⊂ H is called invariant for A if A maps the intersection Dom(A)∩U into

U . The subspace U is called reducing for A if both U and its orthogonal
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complement U⊥ are invariant for A and the domain Dom(A) splits as

(1.1) Dom(A) =
(
Dom(A) ∩ U

)
+
(
Dom(A) ∩ U⊥) .

Clearly, the subspace U is reducing for A if and only if U⊥ is. In this

case, the operator A can be represented as the direct sum A = A0 ⊕ A1

with respect to the orthogonal decomposition H = U ⊕ U⊥, where A0 and

A1 are the restrictions of A to U and U⊥, respectively, that is, A0 = A|U
and A1 = A|U⊥ . In particular, one has Dom(A) = Dom(A0) ⊕ Dom(A1).

Equivalently, A can be written as the diagonal 2× 2 block operator matrix

A =

(
A0 0

0 A1

)

with respect to H = U ⊕ U⊥. The operators A0 and A1 are called the parts

of A associated with U and U⊥, respectively.

If, in addition, A is a closed operator, then the parts A0 and A1 of A are

closed as well and the spectrum of A decomposes as

spec(A) = spec(A0) ∪ spec(A1) ,

see [57, Satz 5.11].

If A is a bounded self-adjoint operator, then every invariant subspace

for A is automatically reducing. If A is unbounded, then this is in general

not the case, see [49, Example 1.8] for a counterexample. In this respect,

the splitting property (1.1) is not self-evident in the case of unbounded

operators.

The property of a closed subspace to be reducing for a linear operator A

can also be characterized in terms of the corresponding orthogonal projec-

tion. Namely, a closed subspace U ⊂ H is reducing for A if and only if the

orthogonal projection P = PU onto U commutes with A, that is, if

(1.2) PA ⊂ AP .

This means that one has Px ∈ Dom(A) and PAx = APx for x ∈ Dom(A).

In this regard, important examples of reducing subspaces for a self-adjoint

operator A are provided in terms of its spectral measure EA.
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Example 1.1 (cf. [56, Theorem 7.28]). Let A be a self-adjoint operator. Then,

for every Borel set ∆ ⊂ R the subspace RanEA(∆) is reducing for A, and

the part A0 of A associated with RanEA(∆) is self-adjoint with spectrum

spec(A0) = spec(A) ∩∆ .

In view of the preceding example, the orthogonal projection EA(∆) with

∆ ⊂ R a Borel set is called a spectral projection for A, and RanEA(∆) is

called a spectral subspace for A.

The characterization (1.2) of reducing subspaces combined with the func-

tional calculus for self-adjoint operators also yields the following well-known

result.

Lemma 1.2 (see [57, Satz 8.23]). Let A be a self-adjoint operator, and let

P be an orthogonal projection onto a reducing subspace for A. Then, for

every Borel-measurable function g : R → C, the subspace RanP is reducing

for the operator g(A).

Remark 1.3. In the situation of Lemma 1.2, it is easy to verify that if A0

is the part of A associated with RanP , then g(A0) is the part of g(A)

associated with RanP .

1.3 Graph subspaces

A closed subspace G of the Hilbert space H is said to be a graph subspace

associated with a closed subspace N ⊂ H and a bounded operator X from

N to its orthogonal complement N⊥ if

G = G(N ,X) := {x ∈ H | PN⊥x = XPNx} .

Here, X is identified with its trivial continuation to the whole Hilbert space

H. An equivalent representation for the graph subspace G(N ,X) is given

by

G(N ,X) = {g ⊕Xg | g ∈ N} .

The operator X is called the associated angular operator.

In the context of the present thesis, we are interested only in graph

subspaces that are associated with bounded operators X. A discussion of

a more general concept of graph subspaces where the angular operator is
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allowed to be unbounded or even non-closable, especially in the context of

operator Riccati equations (see Section 1.4 and Chapter 4 below), can be

found in [27] and [29].

One can easily check that

G(N ,X)⊥ = G(N⊥,−X∗) .

Moreover, the orthogonal graph subspaces G(N ,X) and G(N⊥,−X∗) can

be represented as

(1.3) G(N ,X) = Ran(T |N ) and G(N⊥,−X∗) = Ran(T |N⊥) ,

where the operator T ∈ L(H) is given by the 2× 2 block operator matrix

T =

(
IN −X∗

X IN⊥

)

with respect to the decomposition H = N ⊕N⊥. In particular, one has

QT = TP ,

where P := PN and Q denotes the orthogonal projection onto G(N ,X).

The operator T is normal, more precisely

(1.4) T ∗T = TT ∗ =

(
IN +X∗X 0

0 IN⊥ +XX∗

)
.

It is also easy to see that the operators T and T ∗ each have a bounded

inverse. Indeed, the spectrum of the skew-symmetric operator

Y :=

(
0 −X∗

X 0

)

is a subset of the imaginary axis, so that zero belongs to the resolvent sets

of T = IH+Y and T ∗ = IH−Y , cf. [5, Theorem 5.5 (i)]. Hence, the partial

isometry U from the polar decomposition T = U |T | is unitary and can be
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represented as

(1.5) U =

(
(IN +X∗X)−1/2 −X∗(IN⊥ +XX∗)−1/2

X(IN +X∗X)−1/2 (IN⊥ +XX∗)−1/2

)
.

In particular, U takes N to G(N ,X) and N⊥ to G(N⊥,−X∗), respectively,

and the orthogonal projection Q onto G(N ,X) can be represented as

Q = UPU∗ =

(
(IN +X∗X)−1 X∗(IN⊥ +XX∗)−1

X(IN +X∗X)−1 XX∗(IN⊥ +XX∗)−1

)
,

cf. [27, Remark 3.6] and also [49, Exercise 3.5.1].

A well-known characterization of the pairs of orthogonal projections P

and Q inH for which RanQ = G(RanP,X) for someX ∈ L(RanP,RanP⊥)

is given in Proposition 1.13 below.

1.4 Operator Riccati equations

There exist various approaches to studying operator Riccati equations, see,

e.g., [6, Section 5] and references therein. In the framework of the present

thesis, operator Riccati equations appear when considering graph subspaces

which are reducing for a self-adjoint operator, see, e.g., [5, Section 5]. The

corresponding results have valuable applications in perturbation theory for

subspaces in general and throughout this thesis in particular. These results

are revisited in Chapter 4 below.

In this section, we briefly recall the concept of strong solutions to oper-

ator Riccati equations.

Definition 1.4. Let A0 and A1 be closed densely defined operators on

Hilbert spaces H0 andH1, respectively. A bounded operator X ∈ L(H0,H1)

is called a strong solution to the operator Riccati equation

(1.6) XA0 −A1X +XDX − E = 0 , D ∈ L(H1,H0) , E ∈ L(H0,H1) ,

if

Ran
(
X|Dom(A0)

)
⊂ Dom(A1)

and

XA0g −A1Xg +XDXg − Eg = 0 for g ∈ Dom(A0) .
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Along with (1.6), we also introduce the dual equation

(1.7) Y A∗
1 −A∗

0Y + Y D∗Y − E∗ = 0 ,

for which the notion of strong solutions is analogous to that in Definition

1.4.

We have the following relationship between the Riccati equation (1.6)

and the dual equation (1.7).

Lemma 1.5 ([6, Lemma 5.3]). Let A0 and A1 be as in Definition 1.4. A

bounded operator X ∈ L(H0,H1) is a strong solution to the Riccati equation

(1.6) if and only if the operator Y = −X∗ is a strong solution to the dual

Riccati equation (1.7).

1.5 Separation of two closed subspaces

In this section, we recall the notions of the operator angle and a direct

rotation associated with a pair of closed subspaces. A more detailed discus-

sion on this material can be found in [8, 19,21,24,27,40] and the references

therein.

1.5.1 The operator angle

This subsection agrees, in essence, with parts of Section 2 of the author’s

article [50].

Let P and Q be two orthogonal projections in the Hilbert space H.

Following [19], we introduce the closeness operator

C := C(P,Q) := PQP + P⊥Q⊥P⊥

and the separation operator

S := S(P,Q) := PQ⊥P + P⊥QP⊥ .

Since P and Q are self-adjoint, C and S are self-adjoint as well. Moreover,

one has

(1.8) 0 ≤ C ≤ 1 , 0 ≤ S ≤ 1 , and C + S = IH .



8 Chapter 1. Preliminaries

The operator angle with respect to P and Q can now be introduced via

the functional calculus as follows.

Definition 1.6. Let P and Q be two orthogonal projections in a Hilbert

space H. Then, the operator

(1.9) Θ := Θ(P,Q) := arccos
(√

C(P,Q)
)

is called the operator angle associated with the subspaces RanP and RanQ.

Clearly, the operator angle Θ is self-adjoint and its spectrum lies in

the interval
[
0, π2

]
. Furthermore, taking into account (1.8) and (1.9), the

operators C and S can be represented as

(1.10) C = cos2 Θ and S = sin2 Θ .

Note that one has C(P,Q) = C(P⊥, Q⊥), so that Θ(P,Q) = Θ(P⊥, Q⊥).

It should be mentioned that in many works such as [27] and [30] the

operator angle is introduced in a slightly different way. There, instead of Θ

in (1.9), its restriction to RanP , or even to the maximal subspace of RanP

where it has trivial kernel, is considered. The above definition follows the

approach by Davis and Kahan (cf. [21, Eqs. (1.16) and (1.17)]; see also [21, p.

17]) and provides a generalization of their notion of the operator angle. In

fact, the definition (1.9) is universal in the sense that it does not require

that a unitary operator taking RanP to RanQ exists.

As in [2, Section 34], one has

P −Q = P (IH −Q)− (IH − P )Q = PQ⊥ − P⊥Q = Q⊥P −QP⊥ ,

so that
(P −Q)2 =

(
PQ⊥ − P⊥Q

)(
Q⊥P −QP⊥)

= PQ⊥P + P⊥QP⊥ = S = sin2Θ ,

that is,

(1.11) |P −Q| = sinΘ .

In particular,

(1.12) ‖P −Q‖ = ‖sinΘ‖ = sin‖Θ‖ ≤ 1 .
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Thus, suitable norms of the operator angle Θ or of trigonometric functions

thereof can be used to measure the difference between the subspaces RanP

and RanQ.

The operator norm of the angle operator is of particular importance in

the present thesis.

Definition 1.7. Let P and Q be as in Definition 1.6. The quantity

θ(P,Q) := ‖Θ(P,Q)‖ = arcsin
(
‖P −Q‖

)

is called the maximal angle between the subspaces RanP and RanQ.

The concept of the maximal angle between two closed subspaces has a

long history. A short survey of this topic can be found, for example, in

[8, Section 2].

In the framework of this thesis, one of the most important properties of

the maximal angle is that it satisfies a triangle inequality: If P , Q, and R

are orthogonal projections in a Hilbert space, then

(1.13) θ(P,Q) ≤ θ(P,R) + θ(R,Q) ,

see [16, Corollary 4] and also [8, Lemma 2.15]. As already observed in [16],

this inequality is stronger than the triangle inequality for the operator norm

since sin(θ1 + θ2) < sin(θ1) + sin(θ2) unless θ1 or θ2 is 0.

As a consequence of (1.13), the maximal angle defines a metric on the

set of orthogonal projections, the so-called angular metric. An alternative

proof of the corresponding triangle inequality (1.13) based on the joint work

[36] with K. A. Makarov is provided in Chapter 5 below.

1.5.2 Direct rotations

The concept of direct rotations from one closed subspace of a Hilbert space

to another was suggested by Davis [19] and Kato [25, Sections I.4.6 and

I.6.8], but can yet be traced back to Sz.-Nagy [45, §105]. We adopt the

following definition.

Definition 1.8 (cf. [21, Proposition 3.3]; see also [8, Definition 2.9]). Let

P and Q be two orthogonal projections in the Hilbert space H. A unitary
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operator U ∈ L(H) is called a direct rotation from RanP to RanQ if

QU = UP , U2 = (Q−Q⊥)(P − P⊥) , and ReU ≥ 0 ,

where ReU = (U + U∗)/2 denotes the real part of U .

Surely, a direct rotation exists only if dimRanP = dimRanQ and

dimRanP⊥ = dimRanQ⊥, but this is not sufficient if RanP and RanP⊥

are both infinite-dimensional, see Proposition 1.10 below and the remark to

Proposition 3.2 in [21]. We introduce the following notions.

Definition 1.9 ([19], [21, Definition 3.2], [8, Definition 2.5]). Let P and Q

be two orthogonal projections in the Hilbert space H. The subspaces RanP

and RanQ are said to be equivalently positioned if

dim
(
RanP ∩RanQ⊥) = dim

(
RanP⊥ ∩ RanQ

)
,

and they are in the acute case if

RanP ∩RanQ⊥ = RanP⊥ ∩ RanQ = {0} .

Finally, RanP and RanQ are said to be in the acute-angle case if the cor-

responding maximal angle satisfies θ(P,Q) < π/2, that is, if

‖P −Q‖ < 1 .

Clearly, if RanP and RanQ are in the acute-angle case, then they are

in the acute case, and if they are in the acute case, then they are equiv-

alently positioned. It should also be mentioned that the relation of being

equivalently positioned is not transitive if the underlying Hilbert space is

infinite-dimensional, see the discussion at the end of Section 3 in [19]. Sim-

ilarly, the other two notions in Definition 1.9 are not transitive as well.

We have the following result due to Davis and Kahan.

Proposition 1.10 ([21, Propositions 3.1 and 3.2]; cf. [40, Theorem 2.14]).

Let P and Q be two orthogonal projections in the Hilbert space H. Then, a

direct rotation from RanP to RanQ exists if and only if RanP and RanQ

are equivalently positioned. The direct rotation is unique if and only if RanP

and RanQ are in the acute case.
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Remark 1.11. If RanP and RanQ are in the acute-angle case, then the

operator C = cos2 Θ has a bounded inverse. In this case, the direct rotation

U from RanP to RanQ is explicitly given by

U = C−1/2 ·
(
QP +Q⊥P⊥) ,

cf. [25, Theorem I.6.32]. This representation extends to the acute case. It

is also the core of Davis’ construction of a direct rotation in the case where

RanP and RanQ are equivalently positioned, see [19, Section 3].

From a geometric point of view, direct rotations are of great importance.

For instance, of all unitariesW taking RanP to RanQ, direct rotations differ

least from the identity, that is, the quantity ‖IH−W‖ is minimized if W is a

direct rotation, see [19, Theorem 7.1]. Moreover, direct rotations allow one

to interpret the operator angle Θ = Θ(P,Q) as an operator-valued rotation

angle: Let U be a direct rotation from RanP to RanQ. Upon observing

that

(Q−Q⊥)(P − P⊥) + (P − P⊥)(Q−Q⊥) = 2C(P,Q)− 2S(P,Q) ,

it is straightforward to verify that

(1.14) ReU =
√
C = cosΘ .

It is also easy to see that the skew-symmetric operator (U − U∗)/2 has a

polar decomposition
1

2
(U − U∗) = J sinΘ ,

where J is a skew-symmetric partial isometry such that J∗J is the orthogonal

projection onto Ran sinΘ = RanΘ, cf. [25, Section VI.2.7]. Moreover, J is

off-diagonal with respect to the decomposition H = RanP ⊕ RanP⊥, that

is,

PJP = P⊥JP⊥ = 0 .

In addition, J commutes with sinΘ and therefore also with Θ. Altogether,

one concludes that U can be represented as

(1.15) U = cosΘ + J sinΘ = exp(JΘ) ,
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where JΘ is skew-symmetric, satisfies |JΘ| = Θ, and is off-diagonal with

respect to the decomposition H = RanP ⊕ RanP⊥, cf. [21, Eq. (1.18)]. In

particular, the operator angle Θ = Θ(P,Q) has indeed a natural interpreta-

tion as a rotation angle if RanP and RanQ are equivalently positioned, cf.

[50, Remark 2.1].

The following example illustrates that (1.15) characterizes the form of a

direct rotation.

Example 1.12. Let P be an orthogonal projection in a Hilbert space H, and

let Y ∈ L(H), ‖Y ‖ ≤ π/2, be skew-symmetric and off-diagonal with respect

to the decomposition H = RanP ⊕ RanP⊥, that is,

Y ∗ = −Y and PY P = P⊥Y P⊥ = 0 .

Then, the unitary operator U := exp(Y ) is a direct rotation from RanP to

Ran(U |RanP ), and the associated operator angle Θ(P,UPU∗) is given by

Θ(P,UPU∗) = |Y | .

Proof. Denote the orthogonal projection onto Ran(U |RanP ) by Q := UPU∗.

By definition, one has QU = UP . Moreover, one observes that

(1.16) 2ReU = U + U∗ = exp(Y ) + exp(−Y ) = 2 cos|Y | ≥ 0 ,

where we have taken into account that Y 2 = −Y ∗Y = −|Y |2. Using the

identities PY = Y P⊥ and P⊥Y = Y P , a straightforward computation

shows that

(P − P⊥)U∗ = U(P − P⊥) ,

so that

(Q−Q⊥)(P − P⊥) = U(P − P⊥)U∗(P − P⊥) = U2 .

Thus, U is a direct rotation from RanP to RanQ = Ran(U |RanP ).

For the associated operator angle Θ = Θ(P,Q) one concludes from (1.14)

and (1.16) that

cosΘ = ReU = cos|Y | .

Hence, Θ = |Y | since ‖Y ‖ ≤ π/2. This completes the proof.



1.5. Separation of two closed subspaces 13

Using the representations

Θ =

(
Θ0 0

0 Θ1

)
and J =

(
0 −J∗

0

J0 0

)

with respect to the decomposition H = RanP ⊕RanP⊥, the direct rotation

(1.15) may be written as

(1.17) U =

(
cosΘ0 −J∗

0 sinΘ1

J0 sinΘ0 cosΘ1

)

with J∗
0 sinΘ1 = (sinΘ0)J

∗
0 , cf. [21, Section 3]. In particular, one has

‖sinΘ0‖ = ‖sinΘ1‖ and, therefore, ‖Θ0‖ = ‖Θ1‖ = ‖Θ‖.
Taking into account representation (1.17), one clearly has

RanQ = Ran
(
U |RanP

)
= {cosΘ0x⊕ J0 sinΘ0x | x ∈ RanP} .

Moreover, if the subspaces RanP and RanQ are in the acute-angle case,

then ‖Θ0‖ = ‖Θ‖ < π/2, so that the operator cosΘ0 has a bounded inverse.

In this case,

RanQ = {x⊕ J0 tanΘ0x | x ∈ RanP} ,

that is, RanQ is the graph of the bounded operator

(1.18) X := J0 tanΘ0 ∈ L(RanP,RanP⊥) .

In particular, one has

‖X‖ = tan‖Θ0‖ = tan‖Θ‖ = ‖tanΘ‖ .

Conversely, if RanQ = G(RanP,X) for some X ∈ L(RanP,RanP⊥),

then one can show that RanP and RanQ are in the acute-angle case, see,

e.g., [18, Theorem 1]. In view of (1.12), this leads to the following well-

known result.

Proposition 1.13 ([27, Corollary 3.4]). Let P and Q be two orthogonal

projections in the Hilbert space H. The subspaces RanP and RanQ are in

the acute-angle case if and only if one has RanQ = G(RanP,X) for some
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X ∈ L(RanP,RanP⊥). In this case,

‖P −Q‖ =
‖X‖√

1 + ‖X‖2

and, equivalently,

‖X‖ =
‖P −Q‖√

1− ‖P −Q‖2
.

Remark 1.14. In view of (1.18) and representation (1.17), it is easy to verify

that in the situation of Proposition 1.13 the unitary operator (1.5) agrees

with the direct rotation (1.17) from RanP to RanQ.

1.6 Smooth paths of operators

Given fixed Hilbert spaces H and K and some bounded or unbounded inter-

val I ⊂ R, we consider operator-valued functions

I ∋ t 7→ Bt ,

where each Bt is a densely defined operator fromH to K on the same domain,

that is,

(1.19) Dom(Bt) = Dom(Bs) for s, t ∈ I .

The condition (1.19) ensures that the identity Bs = Bt+(Bs−Bt) holds

for all s, t ∈ I as an operator equality. This allows to introduce the standard

notions of continuous, uniformly continuous, C1-smooth, and piecewise C1-

smooth paths of operators with respect to the operator norm on the dense

subspace Dom(Bt). Here, every piecewise C1-smooth path is supposed to

be continuous, and every continuous path clearly is uniformly continuous

on compact subintervals. In particular, for a continuous path t 7→ Bt the

difference Bt − Bs is always bounded. The derivative of a (piecewise) C1-

smooth path t 7→ Bt at t ∈ I is denoted by Ḃt with Dom(Ḃt) := Dom(Bt).

Sometimes, we also write d
dtBt instead of Ḃt. Note that Ḃt is bounded on

Dom(Bt), so that its closure satisfies Ḃt ∈ L(H,K) with
∥∥Ḃt

∥∥ = ‖Ḃt‖.
The following examples of C1-smooth paths play a distinguished role

throughout this thesis. Another, yet more technical, example is discussed

in Lemma 3.12 below.
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Example 1.15. Let H be a Hilbert space and I ⊂ R an arbitrary interval.

(a) For every densely defined operator A on H and every V ∈ L(H) the

path

I ∋ t 7→ A+ tV

is C1-smooth with d
dt(A+ tV ) = V |Dom(A).

(b) For every Y ∈ L(H) the path

I ∋ t 7→ exp(tY ) =
∞∑

k=0

tk

k!
Y k ∈ L(H)

is C1-smooth with d
dt exp(tY ) = Y exp(tY ) = exp(tY )Y .

We need the following standard estimate for C1-smooth paths. For the

sake of completeness, a short proof is provided.

Lemma 1.16. Let I ∋ t 7→ Bt be a C1-smooth path of densely defined

operators between Hilbert spaces H and K. Then

‖Bt −Bs‖ ≤
∫ t

s
‖Ḃτ‖dτ whenever s ≤ t .

Proof. For arbitrary x ∈ Dom(Bt) and y ∈ K, the scalar function

I ∋ τ 7→ 〈y,Bτx〉

is C1-smooth with d
dτ 〈y,Bτx〉 = 〈y, Ḃτx〉. For s ≤ t this implies that

〈y, (Bt −Bs)x〉 =
∫ t

s
〈y, Ḃτx〉dτ ,

so that

|〈y, (Bt −Bs)x〉| ≤
∫ t

s
|〈y, Ḃτx〉| dτ ≤ ‖x‖ ‖y‖

∫ t

s
‖Ḃτ‖dτ .

This proves the claim.

In the framework of the present thesis, smooth paths of orthogonal pro-

jections are of particular interest. For those paths, a considerably stronger

estimate than the one in Lemma 1.16 is available, which is closely related to
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the fact that the maximal angle satisfies a triangle inequality (see equation

(1.13)). This is discussed in detail in Chapter 5 below.

1.7 Perturbation of the spectrum

We close this chapter with a detailed discussion of the variation of the spec-

trum of a self-adjoint operator under a bounded additive perturbation. The

following well-known lemma represents the main result in this context.

Lemma 1.17 (see [25, Theorem V.4.10]). Let A be a self-adjoint operator

on a Hilbert space H, and let V ∈ L(H). Then, the spectrum of the perturbed

operator A+V is contained in the closed ‖V ‖-neighbourhood of the spectrum

of A, that is,

spec(A+ V ) ⊂ O‖V ‖
(
spec(A)

)
.

The property of the spectrum described by Lemma 1.17 is called the

upper semicontinuity of the spectrum, see [25, Section IV.3.1–IV.3.2]. It

implies that the spectrum of A does not expand by much when A is subjected

to a small bounded perturbation. But, as described in [25, Section IV.3.2],

the spectrum is not lower semicontinuous in general, so that it may very

well shrink suddenly. However, if, in addition to the hypotheses of Lemma

1.17, the perturbation V is assumed to be self-adjoint as well, then the roles

of A and A+V can be switched via the identity A = (A+V )−V , so that the

spectrum does also not shrink by much under the perturbation. Hence, the

spectrum changes continuously when A varies over self-adjoint operators, cf.

[25, Remark V.4.9].

Isolated parts of the spectrum

In the situation of Lemma 1.17, suppose that the spectrum of A contains

an isolated component σ that has distance d > 0 from the remainder of the

spectrum. In this case, it is a natural question whether the spectrum of the

perturbed operator A + V also has an isolated component, provided that

the norm of the perturbation is small enough. More specifically: Is the set

spec(A+V )∩Od/2(σ) nonempty if V satisfies ‖V ‖ < d/2 ? In the case where

the perturbation V is assumed to be self-adjoint as well, this question can

be answered affirmatively. More precisely, by switching the roles of A and
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A+ V via A = (A+ V )− V , we have the following well-known corollary to

Lemma 1.17.

Corollary 1.18. Let A be a self-adjoint operator on a Hilbert space H such

that the spectrum has an isolated component σ that has distance d > 0 from

the remainder spec(A) \ σ of the spectrum. Moreover, let V ∈ L(H) be

self-adjoint. If ‖V ‖ < d/2, then

spec(A+ V ) ∩ Od/2(σ) = spec(A+ V ) ∩ O‖V ‖(σ)

is a nonempty isolated component of the spectrum of A+ V .

As a consequence of Corollary 1.18, the perturbation V does not close

gaps in the spectrum of A that are larger than 2‖V ‖. Recall that by a gap of

a closed set ∆ ⊂ R one means an open interval in R that does not intersect

∆ but the endpoints of which belong to ∆. The gap is said to be finite if

this interval is bounded.

Clearly, the gap non-closing condition ‖V ‖ < d/2 is sharp in the following

sense: If in the situation of Corollary 1.18 one has ‖V ‖ ≥ d/2 instead of

‖V ‖ < d/2, then the set spec(A+V )∩Od/2(σ) may be empty or may not be

separated from the remainder of the spectrum of A+V . In fact, in this case,

the spectrum of A+ V may in general even have no isolated components at

all.

However, under certain additional assumptions on the perturbation V ,

the gap non-closing condition ‖V ‖ < d/2 can be relaxed considerably. This

is the case, for example, if V is semidefinite, that is, if V ≥ 0 or V ≤ 0, or if

V is off-diagonal with respect to the decomposition H = RanEA(σ)⊕EA(Σ),

Σ := spec(A) \ σ, that is, if

EA(σ)V EA(σ) = 0 = EA(Σ)V EA(Σ) .

These particular cases are discussed in the remaining part of this section.

We begin with the following well-known, yet remarkable, result, which

applies in the case where V is off-diagonal and the convex hulls of the spectral

components σ and Σ are disjoint, that is, supσ < inf Σ or vice versa.

Proposition 1.19 ([1, Theorem 2.1]; see also [21, Theorem 8.1]). Let A be

a self-adjoint operator such that its resolvent set contains an interval (a, b),

a < b. Moreover, let V ∈ L(H) be off-diagonal with respect to the orthogonal
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decomposition H = RanEA

(
(−∞, a]

)
⊕ RanEA

(
[b,∞)

)
. Then, the interval

(a, b) also belongs to the resolvent set of the perturbed operator A+ V .

The preceding proposition is surely of interest on its own, but it also

plays a crucial part in obtaining the following two results.

The first one deals with the case of semidefinite perturbations and is

extracted from the more general statement [55, Theorem 3.2]; cf. also [13, Eq.

(9.4.4)].

Proposition 1.20. Let A be as in Proposition 1.19, and let V ∈ L(H)

be positive (resp. negative) semidefinite. If ‖V ‖ < b − a, then the interval

(a+ ‖V ‖, b) (resp. (a, b−‖V ‖)) belongs to the resolvent set of the perturbed

operator A+ V .

Proof. For the sake of completeness, we reproduce the proof.

Let ‖V ‖ < b − a and assume that V is positive semidefinite. The case

where V is negative semidefinite can be treated analogously.

Denote H− := RanEA

(
(−∞, a]

)
and H+ := RanEA

(
[b,∞)

)
, and de-

compose V = Vdiag + Voff into the sum of a diagonal part Vdiag = V− ⊕ V+

and an off-diagonal part Voff with respect to H− ⊕H+. Let A± := A|H± be

the parts of A associated with H±.

Since V is positive semidefinite, the diagonal part Vdiag is also positive

semidefinite, so that V± ≥ 0. Thus,

A− + V− ≤ a+ ‖V ‖ < b ≤ A+ + V+ .

In particular, the subspaces H− and H+ are spectral subspaces for A+Vdiag

associated with the sets
(
−∞, a + ‖V ‖

]
and [b,∞), respectively. Applying

Proposition 1.19, one concludes that the interval (a+ ‖V ‖, b) belongs to the

resolvent set of A+ V = A+ Vdiag + Voff.

The second result treats the general case of off-diagonal perturbations

without any additional assumptions on the disposition of the spectral com-

ponents σ and Σ.

Proposition 1.21 ([54, Proposition 2.5.22]; see also [31, Theorem 1.3]).

Let A, V , and σ be as in Corollary 1.18. Suppose, in addition, that V is

off-diagonal with respect to the decomposition H = RanEA(σ)⊕Ran EA(Σ),
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Σ := spec(A) \ σ. Denote

δV := ‖V ‖ tan
(1
2
arctan

2‖V ‖
d

)
, d = dist(σ,Σ) > 0 .

Then, the spectrum of A+ V is contained in the closed δV -neighbourhood of

the spectrum of A, that is,

spec(A+ V ) ⊂ OδV

(
spec(A)

)
.

Moreover, if ‖V ‖ <
√
3d/2, that is, δV < d/2, then

spec(A+ V ) ∩Od/2(σ) = spec(A+ V ) ∩ OδV (σ)

is a nonempty isolated component of the spectrum of A+ V .

The following example of 4 × 4 matrices illustrates the statement of

Proposition 1.21 and shows that the gap non-closing condition ‖V ‖ <
√
3d/2

for off-diagonal perturbations is sharp.

Example 1.22 (cf. [31, Example 1.5]). On H = C4 consider the 4×4 matrices

A =




2 0

0 4

0 0

0 0

0 0

0 0

1 0

0 3




and V =




0 0

0 0

α 0

0 α

α 0

0 α

0 0

0 0




, α ∈ R .

Set σ := {2, 4} and Σ := spec(A) \ σ = {1, 3}, so that d := dist(σ,Σ) = 1.

Taking into account the identities

δV = α tan
(1
2
arctan(2α)

)
=

1

2

√
1 + 4α2 − 1

2
,

it is straightforward to verify that the eigenvalues of the matrix A+ V are

given by spec(A+ V ) = ω ∪Ω with

ω := {2 + δV , 4 + δV } ⊂ OδV (σ) and Ω := {1− δV , 3− δV } ⊂ OδV (Σ) .

In particular, if α =
√
3/2, that is, δV = 1/2, then ω = {5/2, 9/2} and

Ω = {1/2, 5/2}. In this case, the intersection spec(A + V ) ∩ O1/2(σ) is

empty, and one has dist(ω,Ω) = 0. The latter can be interpreted as the fact

that the original gap between the components σ and Σ has been closed by
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the perturbation V .

Remark 1.23. Suppose, in addition to the hypotheses of Proposition 1.21,

that the convex hull of σ is disjoint from the remainder of the spectrum,

that is,

conv(σ) ∩ Σ = ∅ .

It this case, one has the following stronger result: If ‖V ‖ <
√
2d, that is,

δV < d, then

spec(A+ V ) ∩Od(σ) = spec(A+ V ) ∩ OδV (σ)

is a nonempty isolated component of the spectrum of A+V , see [54, Propo-

sition 2.5.22 (iii)] and also [31, Theorem 1.3 (iii)]. This stronger result is

sharp in the same sense as Proposition 1.21 above, which can be seen from a

suitable example of 3×3 matrices, see [54, Example 1.3.8] and [31, Example

1.6].



Chapter 2

The subspace perturbation

problem. An overview

In the present chapter, an overview on the subspace perturbation problem

for self-adjoint operators previously discussed in [7, 8, 26, 30, 31, 37, 51] is

given. The problem is described in detail, and the main cases that appear

in this context are introduced. For each of these cases, the results obtained

so far are presented and discussed briefly. In particular, it is explained what

contributions are made in this thesis.

Throughout this chapter, let A be a possibly unbounded self-adjoint

operator on a Hilbert space H such that its spectrum is separated into two

disjoint components, that is,

(2.1) spec(A) = σ ∪Σ with d := dist(σ,Σ) > 0 .

Moreover, let V ∈ L(H) be self-adjoint.

Under suitable additional assumptions on the operator V (see below),

it can be guaranteed that the spectrum of the perturbed operator A+ V is

likewise separated into two disjoint components,

(2.2) spec(A+ V ) = ω ∪Ω with dist(ω,Ω) > 0 ,

where ω and Ω are contained in certain disjoint neighbourhoods of σ and

Σ, respectively. In this sense, ω and Ω can be understood as perturbations

of the original unperturbed components of spec(A), and the corresponding

spectral subspaces RanEA+V (ω) and RanEA+V (Ω) can likewise be consid-

21
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ered as perturbations of the unperturbed spectral subspaces RanEA(σ) and

Ran EA(Σ), respectively.

Conditions on V guaranteeing (2.2) are well understood in principle.

They usually relate the norm of V and the distance d between the unper-

turbed spectral components σ and Σ. These conditions may depend on the

disposition of the sets σ and Σ as well as on certain additional assumptions

on the form of the perturbation, see below.

In this chapter, we focus on the problem under what possibly stronger

conditions on V it can be ensured that the spectral subspaces RanEA(σ) and

Ran EA+V (ω) are in the acute-angle case, that is, ‖EA(σ) − EA+V (ω)‖ < 1

or, equivalently,

(2.3) θ = arcsin
(
‖EA(σ)− EA+V (ω)‖

)
<

π

2
,

where θ = θ(EA(σ),EA+V (ω)) is the maximal angle between the subspaces

Ran EA(σ) and RanEA+V (ω), cf. Definition 1.7. In this concrete form, this

problem has initially been discussed by Kostrykin, Makarov, and Motovilov

in [26], but earlier works such as [21] by Davis and Kahan, [32] by Langer

and Tretter, [4] by Adamjan, Langer, and Tretter, and [5] by Albeverio,

Makarov, and Motovilov are closely related to this matter.

If inequality (2.3) holds, then a unique direct rotation U = exp(JΘ) from

Ran EA(σ) to RanEA(ω) exists, see Proposition 1.10 and equation (1.15).

In this case, the associated operator angle Θ = Θ(EA(σ),EA+V (ω)) can

be interpreted as an operator-valued rotation angle between the subspaces

Ran EA(σ) and RanEA(ω), and the corresponding maximal angle θ = ‖Θ‖
serves as a measure for this rotation. As a consequence, one is not only

interested in establishing (2.3), but also in sharp bounds on the maximal

angle. Bounds of this sort usually have the form

θ ≤ f
(‖V ‖

d

)

with some function f independent of A and V .

Another perspective on the problem to establish (2.3) is given by the

fact that (2.3) holds if and only if the subspace RanEA+V (ω) is the graph

of a bounded linear operator X from the unperturbed subspace RanEA(σ)
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to its orthogonal complement RanEA(Σ), that is,

(2.4) RanEA+V (ω) = G(Ran EA(σ),X) ,

see Proposition 1.13. This operator X satisfies

(2.5) ‖X‖ =
‖EA(σ)− EA+V (ω)‖√

1− ‖EA(σ)− EA+V (ω)‖2
= tan θ .

Let A0 and A1 be the parts of A associated with RanEA(σ) and RanEA(Σ),

respectively, and let

(2.6) V =

(
V0 W

W ∗ V1

)

be the representation of V as a 2× 2 block operator matrix with respect to

the decomposition H = RanEA(σ) ⊕ RanEA(Σ). Taking into account that

Dom(A0 + V0) = Dom(A0), Dom(A1 + V1) = Dom(A1), and

(2.7) A+ V =

(
A0 + V0 0

0 A1 + V1

)
+

(
0 W

W ∗ 0

)
,

it follows from [5, Lemma 5.3] (see also Corollary 4.9 below) that the oper-

ator X is a strong solution to the operator Riccati equation

(2.8) X(A0 + V0)− (A1 + V1)X +XWX −W ∗ = 0 .

This immediately widens the range of available methods to establish in-

equality (2.3) such as fixed point methods for the Riccati equation, see, e.g.,

[5, Section 3]. This connection to the operator Riccati equation also yields

an explicit block diagonalization for the operator A+V with respect to the

decomposition H = RanEA(σ)⊕ RanEA(Σ), see Chapter 4 below.

The identity (2.7) illustrates a very important technique in the present

context. Based on the representation (2.6), the perturbation V can be de-

composed into the sum of a diagonal part Vdiag and an off-diagonal part Voff,

namely

(2.9) V = Vdiag + Voff :=

(
V0 0

0 V1

)
+

(
0 W

W ∗ 0

)
.
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Clearly, the subspaces RanEA(σ) and RanEA(Σ) are invariant for Vdiag,

so that the diagonal part of the perturbation only perturbs the spectrum

and does not affect the subspaces. The off-diagonal part Voff, however,

does change the subspaces and may also perturb the spectrum. Thus, the

decomposition (2.9) can be used to reduce the consideration of V to the

treatment of the off-diagonal part Voff provided that one has sufficient control

over the spectrum of A+Vdiag, see, e.g., Section 2.4 below; see also the proofs

of Proposition 1.20 and Proposition 7.9 in Chapter 7 below. In this sense,

off-diagonal perturbations, that is, perturbations V with Vdiag = 0, play a

very distinguished role when studying the rotation of spectral subspaces.

In what follows, the general separation condition (2.1) for spec(A) with-

out any additional assumptions is referred to as the generic case or the case

of generic disposition. We also discuss particular cases where additional as-

sumptions on the mutual disposition of the spectral components σ and Σ

are imposed, namely (see Fig. 2.1):

(1) The two components σ and Σ are subordinated in the sense that their

convex hulls are disjoint, that is, supσ < inf Σ or vice versa.

or

(2) The two components σ and Σ are annular separated, that is, one of

the components lies in a finite gap of the other one.
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d

(2)

(1)

σ Σ σ Σ σ Σ

d

(3)

Fig. 2.1: Illustration of the three cases of spectral dispositions: (1) subor-
dinated spectra with supσ < inf Σ; (2) annular separated spectra where σ
lies in a finite gap of Σ; (3) generic case.

The two particular dispositions (1) and (2) are the cases of favourable
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geometry, see [11, Section 3]. They play a very distinguished role in the

context of this chapter since, in these cases, the problem of establishing

inequality (2.3) has already been solved for a large class of perturbations,

see Sections 2.1, 2.2, and 2.4 below. Note that in case of disposition (2)

the assumption on the gap to be finite is needed to distinguish this case

from the one of subordinated spectra. In fact, both dispositions (1) and (2)

can be covered by the single condition that the convex hull of one of the

components is disjoint from the other component, that is, conv(σ) ∩Σ = ∅
or vice versa.

In the following sections we now discuss each of the three spectral dis-

positions in detail. Here, we distinguish between off-diagonal perturbations

and general perturbations without any additional assumptions. Once the

components ω and Ω of spec(A+ V ) have been chosen appropriately, θ and

Θ always denote the maximal angle and the operator angle, respectively,

associated with the subspaces EA(σ) and EA+V (ω). Each section is closed

with a concluding summary of the results. Finally, semidefinite perturba-

tions are briefly discussed in the separate Section 2.4 as an outlook for future

research.

2.1 Subordinated spectra

We begin with the case of subordinated spectra. For definiteness, assume

that supσ < inf Σ.

Off-diagonal perturbations

Suppose that the perturbation V is off-diagonal with respect to the decom-

position H = RanEA(σ) ⊕ EA(Σ). Then, regardless of the norm of V , the

interval (supσ, inf Σ) belongs to the resolvent set of the perturbed operator

A+V , see Proposition 1.19. In this case, the spectrum of A+V is separated

as in (2.2) with

ω = spec(A+ V ) ∩ (−∞, supσ] and Ω = spec(A+ V ) ∩ [inf Σ,∞) ,

and the Davis-Kahan tan 2Θ theorem from [21] states that

‖tan 2Θ‖ ≤ 2
‖V ‖
d

.



26 Chapter 2. The subspace perturbation problem. An overview

This estimate is sharp (see [20, Theorem 5.1]) and can equivalently be rewrit-

ten as

(2.10) θ ≤ 1

2
arctan

(
2
‖V ‖
d

)
<

π

4
,

see [21, Theorem 8.1]. In view of relation (2.5), the inequality θ < π/4 in

this situation also follows from the independent result [1, Theorem 2.3] by

Adamjan and Langer, who proved that there is an operator X with ‖X‖ < 1

satisfying (2.4).

Of the four angle theorems by Davis and Kahan in [21], the tan 2Θ the-

orem is probably the most studied one. Extensions to some unbounded

off-diagonal perturbations V and even form perturbations have been con-

sidered in [40] and [23], respectively. The tan 2Θ theorem has also been

discussed under a relaxed condition on the subordinated spectral compo-

nents allowing supσ = inf Σ, see [28] for the case of bounded perturbations

and [48] for the case of form perturbations; see also [4] and [39].

General perturbations

If no additional assumptions on the perturbation V are imposed, the optimal

condition on ‖V ‖ that guarantees a spectral separation of the form (2.2) is

‖V ‖ < d/2, see Corollary 1.18 and the discussion thereafter. In this case,

(2.11) ω = spec(A+ V ) ∩Od/2(σ) = spec(A+ V ) ∩ O‖V ‖(σ)

and

(2.12) Ω = spec(A+ V ) ∩ Od/2(Σ) = spec(A+ V ) ∩ O‖V ‖(Σ) ,

and it is a natural question whether the bound ‖V ‖ < d/2 is sufficient to

ensure (2.3). In the current situation, the answer to this question is affir-

mative. Indeed, the Davis-Kahan symmetric sinΘ theorem [21, Proposition

6.1] states that

(2.13) ‖sinΘ‖ ≤ ‖V ‖
min{dist(σ,Ω),dist(Σ, ω)} .
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In view of the inequalities dist(σ,Ω) ≥ d − ‖V ‖ and dist(Σ, ω) ≥ d − ‖V ‖,
this yields that

(2.14) θ ≤ arcsin
( ‖V ‖
d− ‖V ‖

)
<

π

2
for ‖V ‖ <

d

2
.

This bound was obtained in [26, Lemma 2.3 (i)] for the case where the op-

erator A is additionally assumed to be bounded.

Nevertheless, there are stronger bounds on the maximal angle available.

For instance, with the decomposition V = Vdiag + Voff as in equation (2.9),

set

ω̃ := spec(A+ Vdiag) ∩Od/2(σ) and Ω̃ := spec(A+ Vdiag) ∩Od/2(Σ) .

Since ‖Vdiag‖ ≤ ‖V ‖ < d/2, the sets ω̃ and Ω̃ are likewise subordinated

with dist(ω̃, Ω̃) ≥ d − 2‖V ‖. Moreover, Vdiag does not change the spectral

subspaces RanEA(σ) and RanEA(Σ), that is, one has EA+Vdiag
(ω̃) = EA(σ)

and EA+Vdiag
(Ω̃) = EA(Σ). The tan 2Θ theorem therefore implies that

(2.15) θ ≤ 1

2
arctan

(
2‖Voff‖

dist
(
ω̃, Ω̃

)
)

≤ 1

2
arctan

( 2‖V ‖
d− 2‖V ‖

)
<

π

4

for ‖V ‖ < d/2, see [26, Lemma 2.3 (ii)]. Note that estimate (2.15) is consid-

erably stronger than (2.14) if the quotient ‖V ‖/d is not to small. If ‖V ‖/d
is small, then (2.14) gives slightly more accurate results.

However, an even stronger estimate on the maximal angle is provided by

the Davis-Kahan sin 2Θ theorem in [21], which states that

(2.16) ‖sin 2Θ‖ ≤ 2
‖V ‖
d

.

This estimate is sharp (see [20, Theorem 5.1] and also Remark 7.8 below)

and can equivalently be rewritten as

(2.17) θ ≤ 1

2
arcsin

(
2
‖V ‖
d

)
<

π

4
for ‖V ‖ <

d

2
,

see [21, Theorem 8.2]; cf. also Lemma 7.5 below. Note that the proof of the

sin 2Θ theorem in [21, Section 7] essentially uses the sinΘ theorem, see also

the proof of Theorem 7.1 in Chapter 7 below.
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Conclusion

In the case of subordinated spectral components σ and Σ, the problem to

find the least restrictive condition on the norm of V that establishes (2.2) and

(2.3) is completely solved for both off-diagonal and general perturbations. It

turns out that the condition on ‖V ‖ that guarantees (2.2) also implies (2.3).

Moreover, sharp a priori bounds on the maximal angle are available, namely

(2.10) for off-diagonal perturbations and (2.17) for general perturbations.

In either case, the maximal angle is strictly less than π/4.

2.2 Annular separated spectra

In this section, we discuss the case of annular separated spectral components

σ and Σ. For definiteness, assume that σ lies in a finite gap of Σ.

Off-diagonal perturbations

Suppose that V is off-diagonal with respect to H = RanEA(σ)⊕RanEA(Σ).

In contrast to the case of subordinated spectra, now a smallness assumption

on ‖V ‖ is required in order to ensure a spectral separation of the form (2.2).

By Remark 1.23, the optimal condition here is ‖V ‖ <
√
2d. In this case,

one can choose

ω = spec(A+ V ) ∩ Od(σ) = spec(A+ V ) ∩ OδV (σ)

with

(2.18) δV = ‖V ‖ tan
(1
2
arctan

2‖V ‖
d

)
< d

and

Ω = spec(A+ V ) \ ω .

In this situation, it follows from the a posteriori tanΘ theorem in [30],

a generalization of the Davis-Kahan tanΘ theorem, that

(2.19) ‖tanΘ‖ ≤ ‖V ‖
dist(ω,Σ)

,

see also [31, Lemma 2.3 and Theorem 2.4]); note that the quantity dist(ω,Σ)

here cannot be replaced by dist(σ,Ω), see [30, Remark 4.1].
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Using the inequality dist(ω,Σ) ≥ d− δV , one obtains from (2.19) that

θ ≤ arctan
( ‖V ‖
d− δV

)
<

π

2
for ‖V ‖ <

√
2d ,

see [31, Theorem 2.6]; cf. also [30, Theorem 5.1].

Recently, Albeverio and Motovilov have proved in [7] an a priori variant

of the tanΘ theorem. This variant yields the stronger sharp estimate

(2.20) θ ≤ arctan
(‖V ‖

d

)
< arctan

√
2 for ‖V ‖ <

√
2d .

In particular, one has θ < π/4 if ‖V ‖ < d; in the case where A is additionally

assumed to be bounded, the latter also follows from [30, Theorem 1 (ii)].

Note that for ‖V ‖ < d, the bound (2.20) has already been shown in [40,

Theorem 2].

General perturbations

For general perturbations V , the case of annular separated spectra is very

similar to the case of subordinated spectra. Indeed, as long as ‖V ‖ < d/2,

the components ω and Ω of spec(A + V ) can be chosen as in (2.11) and

(2.12), respectively, and this condition on ‖V ‖ is optimal. Moreover, the

sinΘ and sin 2Θ theorems remain valid in exactly the same form, so that

one still has the bounds (2.14) and (2.17), and the latter is still sharp. Of

course, the bound (2.15) is not available any more since the tan 2Θ theorem

does not apply for annular separated spectra. One can use the a posteriori

tanΘ theorem instead to obtain a bound on the maximal angle based on the

decomposition V = Vdiag + Voff, but the resulting estimate will be weaker

than (2.17), so that we omit the details here. However, a similar reasoning

is used for semidefinite perturbations in Section 2.4 below.

Conclusion

Also in the case of annular separated spectral components σ and Σ, the

discussed problem is completely solved for both off-diagonal and general

perturbations. Again, the condition on ‖V ‖ guaranteeing (2.2) also implies

(2.3), and sharp a priori bounds on the maximal angle are available, namely

(2.20) for off-diagonal perturbations and (2.17) for general perturbations.

This time the inequality θ < π/4 can be guaranteed only for general per-
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turbations to the whole extent. However, for off-diagonal perturbations the

maximal angle is known to be less than arctan
√
2 and is thus still bounded

away from π/2. The inequality θ < π/4 here requires the stronger condition

‖V ‖ < d.

2.3 The generic case

We now turn to the case where the unperturbed spectral components σ and

Σ are in generic disposition, that is, no additional assumptions on σ and

Σ other than (2.1) are imposed. This is the case the contributions in the

present thesis deal with. Unlike the two preceding sections, we begin with

general perturbations.

General perturbations

As before, for general perturbations the optimal condition on ‖V ‖ that guar-
antees a spectral separation of the form (2.2) is ‖V ‖ < d/2 and, in this case,

the components ω and Ω of spec(A + V ) can be chosen as in (2.11) and

(2.12), respectively.

One of the main differences between the generic case and the case of

subordinated or annular separated spectra can be seen at the form of the

symmetric sinΘ theorem. In fact, the bound (2.13) is not available any

more, but it does hold with an additional factor π/2, that is,

(2.21) ‖sinΘ‖ ≤ π

2

‖V ‖
min{dist(σ,Ω),dist(Σ, ω)} ,

see the discussion in Section 3.2 below. In the same way as in (2.14), this

yields that

(2.22) θ ≤ arcsin
(π
2

‖V ‖
d− ‖V ‖

)
<

π

2
for 0 ≤ ‖V ‖ <

2d

2 + π
.

For the case where the operator A is additionally assumed to be bounded,

the latter result was obtained in [26, Lemma 2.2].

Similarly, the bound from the sin 2Θ theorem turns into

(2.23) ‖sin 2Θ‖ ≤ π

2
· 2 ‖V ‖

d
,
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see Theorem 7.1 below. A related estimate with the left-hand side of (2.23)

replaced by sin 2θ has previously been shown by Albeverio and Motovilov

in [8, Corollary 4.3], see also Proposition 7.9 and the discussion in the in-

troduction to Chapter 7 below.

In the current situation, the bound (2.23) can equivalently be rewritten

as

(2.24) θ ≤ 1

2
arcsin

(
π
‖V ‖
d

)
≤ π

4
for 0 ≤ ‖V ‖ ≤ d

π
,

see Corollary 7.2 below; cf. also [8, Remark 4.4].

In view of the bounds (2.22) and (2.24) and the inequalities 1
π < 2

2+π < 1
2 ,

it is unclear whether the condition ‖V ‖ < d/2 this time is sufficient for the

subspaces EA(σ) and EA+V (ω) to be in the acute-angle case. Basically, the

following problem arises:

What is the best possible constant copt ∈
(
0, 12
]
such that (2.3) holds

whenever ‖V ‖ ≤ copt · d ?
This constant copt is supposed to be universal in the sense that it is

independent of the operators A and V .

It has been conjectured that copt = 1/2 (see [8]; cf. also [26] and [31]),

but there is no proof available for this guess yet. So far, only lower bounds

on copt can be given. For instance, it follows from (2.22) that

copt ≥
2

2 + π
= 0.3889845 . . .

In the joint work [37] with K. A. Makarov, a coupling parameter on the

perturbation was introduced,

Bt := A+ tV , Dom(Bt) := Dom(A) , t ∈ [0, 1] ,

with the idea to increase this parameter in small steps according to a suitably

chosen partition of the interval [0, 1] and, thus, to iterate the estimate on

the maximal angle by locally using the bound (2.22). Based on the triangle

inequality for the maximal angle (equation (1.13); see also Chapter 5 below),

the (more general) considerations in Chapter 6 yield the a posteriori bound

(2.25) θ ≤ π

2
‖V ‖

∫ 1

0

dt

dist(ωt,Ωt)
,
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where

ωt := spec(Bt) ∩ Od/2(σ) and Ωt := spec(Bt) ∩ Od/2(Σ) ,

see equation (6.18) in Section 6.2 below; this result corresponds to the con-

sideration of partitions of the interval [0, 1] with arbitrarily small mesh size,

cf. Remark 8.2. The author’s guess is that estimate (2.25) is optimal in gen-

eral, but a rigorous proof for this guess is not available yet, see Conjecture

6.19 below and the corresponding discussion at the end of Chapter 6.

Taking into account the a priori type inequality dist(ωt,Ωt) ≥ d−2t‖V ‖,
one obtains from (2.25) that

(2.26) θ ≤ π

4
log
( d

d− 2‖V ‖
)
<

π

2
for 0 ≤ ‖V ‖ <

sinh(1)

e
· d

and, therefore,

copt ≥
sinh(1)

e
= 0.4323323 . . . ,

see Theorem 6.15 (a) below and also [8, Theorem 3.5]; the case where A is

additionally assumed to be bounded has previously been discussed in The-

orem 3.2 of the joint work [37] with K. A. Makarov. Note that not only the

lower bound on copt obtained from (2.26) is sharper than the one obtained

from (2.22), but also estimate (2.26) on the maximal angle is stronger than

(2.22), see Remark 6.16 below.

Although estimate (2.24) is valid only for 0 ≤ ‖V ‖ ≤ d
π < 2d

2+π , the

obtained bound on the maximal angle is substantially stronger than (2.22)

and (2.26), that is, one has

1

2
arcsin

(
π
‖V ‖
d

)
<

π

4
log
( d

d− 2‖V ‖
)

for 0 < ‖V ‖ ≤ d

π
,

see Remark 7.7 below. In fact, for perturbations V satisfying ‖V ‖ ≤ 4d
4+π2 ,

the bound (2.24) on the maximal angle is the strongest one available so far,

cf. Remark 8.11 below and also [8, Remark 5.5].

At this point, Albeverio and Motovilov noticed in [8] that partitions of

the interval [0, 1] with small mesh size do not give the best results. With

a particular finite partition and a local use of the estimate (2.24), they
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obtained in [8, Theorem 5.4] that

(2.27) θ ≤ M∗
(‖V ‖

d

)
<

π

2
for 0 ≤ ‖V ‖ < c∗ · d ,

where

(2.28) c∗ = 16
π6 − 2π4 + 32π2 − 32

(π2 + 4)4
= 0.4541692 . . .

and

M∗(x) =





1
2 arcsin(πx) , 0 ≤ x ≤ 4

π2+4
,

1
2 arcsin

(
4π

π2+4

)
+ 1

2 arcsin
(
π (π2+4)x−4

π2−4

)
, 4

π2+4
< x ≤ 8π2

(π2+4)2
,

arcsin
(

4π
π2+4

)
+ 1

2 arcsin
(
π (π2+4)2x−8π2

(π2−4)2

)
, 8π2

(π2+4)2
< x ≤ c∗ .

Albeverio and Motovilov also showed that estimate (2.27) is stronger than

(2.26), see [8, Remark 5.5].

The present author noticed that there is a better choice for the finite

partition of the interval [0, 1] and has formulated an optimization problem

to obtain the best possible choice. The explicit solution to this optimization

problem yields the bound

(2.29) θ ≤ N
(‖V ‖

d

)
<

π

2
for 0 ≤ ‖V ‖ < ccrit · d ,

where

ccrit =
1

2
− 1

2

(
1−

√
3

π

)3
= 0.4548399 . . . ,

N(x) = M∗(x) = 1
2 arcsin(πx) for 0 ≤ x ≤ 4

π2+4
, and

N(x) =





arcsin
(√

2π2x−4
π2−4

)
for 4

π2+4
< x < 4 π2−2

π4 ,

arcsin
(
π
2 (1−

√
1− 2x )

)
for 4 π2−2

π4 ≤ x ≤ κ ,

3
2 arcsin

(
π
2 (1− 3

√
1− 2x )

)
for κ < x ≤ ccrit ,

see Theorem 8.9 below. Here, κ ∈
(
4π2−2

π4 , 2π−1
π2

)
is the unique solution to

the equation

arcsin
(π
2

(
1−

√
1− 2κ

))
=

3

2
arcsin

(π
2

(
1− 3

√
1− 2κ

))
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in the interval
(
0, 2π−1

π2

]
. This choice of the constant κ ensures that the

function N is continuous and as small as possible. In particular, one has

N(x) < M∗(x) for
4

π2 + 4
< x ≤ c∗

with c∗ and M∗ as in (2.27), see Remark 8.12 below. However, estimate

(2.29) remains valid if κ is replaced by any other constant within the interval(
4π2−2

π4 , 2π−1
π2

)
, see Remark 8.10 below. Numerical calculations yield that

κ = 0.4098623 . . .

From (2.29) one immediately deduces that

copt ≥ ccrit > c∗ .

Together with the bound (2.29) on the maximal angle, this result is the

strongest one obtained so far in the context of the generic spectral disposition

(2.1) and general perturbations V . Since it corresponds to the solution of a

suitable optimization problem, it is also best possible within the framework

of iterating the estimate on the maximal angle with a local use of (2.24).

As a consequence, one has to find an estimate substantially stronger than

(2.24), at least for perturbations V with sufficiently small norm, in order to

improve on the bound (2.29), see Remark 8.11 below.

Off-diagonal perturbations

One can refine the above considerations for general perturbations if more

information on the variation of the spectrum under the perturbation is avail-

able. In particular, this is the case if the perturbation V is off-diagonal with

respect to the decomposition H = RanEA(σ)⊕Ran EA(Σ). For those pertur-

bations V , the optimal condition on ‖V ‖ guaranteeing a spectral separation

of the form (2.2) reads ‖V ‖ <
√
3d/2, see Proposition 1.21 and Example

1.22. In this case, one can choose

ω = spec(A+ V ) ∩ Od/2(σ) = spec(A+ V ) ∩ OδV (σ)

and

Ω = spec(A+ V ) ∩ Od/2(Σ) = spec(A+ V ) ∩ OδV (Σ)

with δV as in (2.18). Recall that δV < d/2 for ‖V ‖ <
√
3d/2.
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It is again a natural question whether the condition ‖V ‖ <
√
3d/2 is

sufficient for (2.3) to hold. Similar to the case of general perturbations,

introduce the best possible constant copt-off ∈
(
0,

√
3
2

]
such that (2.3) holds

for all off-diagonal perturbations V with ‖V ‖ < copt-off · d. It has been

conjectured that

copt-off =

√
3

2
= 0.8660254 . . . ,

see [31], but there is no proof available for this yet.

Based on fixed point theorems for the operator Riccati equation (2.8), it

was shown in [5, Theorems 3.6 (i) and 7.6] that for 0 < ‖V ‖ < d/π there is

X ∈ L(RanEA(σ),Ran EA(Σ)) satisfying RanEA+V (ω) = G(Ran EA(σ),X)

and

‖X‖ ≤ d

‖V ‖

(
1

π
−
√

1

π2
− ‖V ‖2

d2

)
< 1 .

Taking into account (2.5), it is straightforward to verify that this estimate

agrees with the bound (2.24) obtained from the sin 2Θ theorem.

In contrast to the pure a priori result (2.24), the other results dis-

cussed for general perturbations can benefit from the additional knowledge

on the perturbed spectral components ω and Ω. For instance, the symmetric

sinΘ theorem in the form (2.21) remains valid. In view of the inequalities

dist(σ,Ω) ≥ d− δV and dist(Σ, ω) ≥ d− δV , it yields that

(2.30) θ ≤ arcsin
(π
2

‖V ‖
d− δV

)
<

π

2
for 0 ≤ ‖V ‖ < cπd ,

where

cπ =
3π −

√
π2 + 32

π2 − 4
= 0.5032886 . . .

This result was obtained in [31, Theorem 2.2] for the case where the operator

A is additionally assumed to be bounded.

Similar to the case of general perturbations, the approach to iterate the

bound on the maximal angle by introducing a coupling parameter on the

perturbation can be used to get a result stronger than (2.30). This time, the

spectral components ωt and Ωt in (2.25) admit the a priori type inequality

dist(ωt,Ωt) ≥ d− 2δtV , so that

(2.31) θ ≤ π

2

∫ ‖V ‖
d

0

dτ

1− 2τ tan
(
1
2 arctan(2τ)

) <
π

2
for 0 ≤ ‖V ‖ < coffd ,
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where coff = 0.6759893 . . . is given by

∫ coff

0

dτ

1− 2τ tan
(
1
2 arctan(2τ)

) = 1 ,

see Theorem 6.15 (b) below. The case where the operator A is additionally

assumed to be bounded can also be found in Theorem 3.3 of the joint work

[37] with K. A. Makarov.

Not only are the constants cπ and coff above greater than 1/π, this time

also the bounds (2.30) and (2.31) are stronger than the a priori result (2.24)

obtained from the sin 2Θ theorem, cf. Lemma 8.23 (a) below. However, the

bound (2.24) still plays an important role when considering a corresponding

optimization problem for the choice of the partition of the interval [0, 1],

see Section 8.3 below for details. For now, it suffices to note that this

optimization problem is much harder to handle and is not solved explicitly

yet. Nevertheless, based on numerical experiments, one can guarantee that

(2.32) copt-off ≥ 0.6940725 ,

see Corollary 8.26. A corresponding bound on the maximal angle is given

in Example 8.25 below.

Conclusion

In contrast to the cases of subordinated and annular separated spectra dis-

cussed in Sections 2.1 and 2.2, respectively, the generic case is solved neither

for off-diagonal perturbations nor for general ones. For the latter, the cur-

rently best known result is provided by (2.29). Since it corresponds to the

solution of a suitable optimization problem, it is also best possible within

the approach to iterate the bound on the maximal angle with a local use of

(2.24).

For off-diagonal perturbations, the situation is more delicate. Estimate

(2.31) provides a fairly reasonable bound on the maximal angle. A stronger

but more technical and more involved result is available in form of (2.32)

and the respective bound on the maximal angle discussed in Example 8.25

below. However, until the corresponding optimization problem can be solved

explicitly, this should be considered only as an interim solution.

Note that, except for the bound (2.24), all results discussed in this section
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are derived from a posteriori type estimates using a priori knowledge on the

perturbed spectrum. This is a potentially weak point in the whole approach

of iterating the bound on the maximal angle, see the discussion at the end

of Chapter 6. Nevertheless, the obtained results are the strongest ones

obtained so far.

2.4 Semidefinite perturbations. An outlook

Suppose that V is positive semidefinite, that is, V ≥ 0. The case where V

is negative semidefinite can be treated analogously.

From Proposition 1.20 one concludes that the perturbation V moves the

spectrum of A on the real axis only to the right and not to the left. As

a consequence, the optimal condition on ‖V ‖ that guarantees a spectral

separation of the form (2.2) reads ‖V ‖ < d. In this case, the spectrum of

A+ V is separated as

spec(A+ V ) = ω ∪ Ω with dist(ω,Ω) ≥ d− ‖V ‖ > 0 ,

where ω and Ω are chosen as certain “right-side” neighbourhoods of σ and

Σ, respectively. Namely,

(2.33) ω =
{
λ ∈ spec(A+ V ) | σ ∩ [λ− ‖V ‖, λ] 6= ∅

}
,

and analogously for Ω.

In the same way, with the decomposition V = Vdiag + Voff (cf. equation

(2.9)) and ‖Vdiag‖ ≤ ‖V ‖ < d, the spectrum of A+ Vdiag is separated as

spec(A+ Vdiag) = ω̃ ∪ Ω̃ with dist(ω̃, Ω̃) ≥ d− ‖V ‖ > 0 ,

where ω̃ and Ω̃ are chosen analogously to ω and Ω above.

At first sight, the purely a priori type sin 2Θ theorem does not benefit

from the semidefiniteness of the perturbation. Also the a posteriori type

sinΘ theorem does not seem to gain anything from this additional knowledge

on the perturbation. However, some of the results discussed above may be

used to obtain a stronger bound on the maximal angle in this particular

situation.

If the unperturbed spectral components σ and Σ are subordinated, then
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the components ω̃ and Ω̃ are also subordinated. Thus, analogously to (2.15),

the tan 2Θ theorem yields that

θ ≤ 1

2
arctan

(
2‖Voff‖

dist(ω̃, Ω̃)

)
≤ 1

2
arctan

( 2‖V ‖
d− ‖V ‖

)
<

π

4
for ‖V ‖ < d .

If the spectral components σ and Σ are annular separated, say, σ lies in

a finite gap of Σ, then ω̃ and Ω̃ are annular separated as well. Moreover, the

component ω lies in a finite gap of Ω̃ with dist(ω, Ω̃) ≥ d−‖V ‖. In this case,

it follows from the a posteriori tanΘ theorem [30, Theorem 2] (see equation

(2.19)) that

θ ≤ arctan

( ‖Voff‖
dist(ω, Ω̃)

)
≤ arctan

( ‖V ‖
d− ‖V ‖

)
<

π

2
for ‖V ‖ < d .

Thus, for subordinated or annular separated spectral components the

condition ‖V ‖ < d ensures that (2.2) and (2.3) hold. However, it deserves

further studies to determine whether the corresponding bounds on the max-

imal angle are sharp and, if this is not the case, to obtain sharp bounds.

Matters change, again, in the generic case. Similar to the considerations

in the preceding section, here it is yet unclear whether the condition ‖V ‖ < d

is sufficient to ensure (2.3). Nevertheless, some bounds on the maximal angle

stronger than (2.29) can be obtained with the same techniques as for general

perturbations. For example, one can use (2.25) with appropriately chosen

spectral components ωt and Ωt satisfying dist(ωt,Ωt) ≥ d − t‖V ‖ to infer

that

θ ≤ π

2
‖V ‖

∫ 1

0

dt

d− t‖V ‖ =
π

2
log
( d

d− ‖V ‖
)
<

π

2

for ‖V ‖ < (1 − e−1)d. An even stronger bound can be obtained with a

suitable finite partition of the interval [0, 1]. In the same way as for (2.29)

one can define an optimization problem for the choice of this partition, and

this optimization problem also seems to be explicitly solvable with basically

the same technique. However, the corresponding considerations seem to be

even more technical and more extensive than the ones for (2.29), see the

separate discussion in Section 8.4 below. The explicit computation for this

problem is therefore omitted and is left for future studies.



Chapter 3

Operator Sylvester equations

and the sinΘ theorem

Because of their great importance in various fields of mathematics, operator

Sylvester equations have been studied extensively over the decades. In the

context of this thesis, we point out the works [5, 6, 9, 11, 46]; see also the

survey article [12] and the references therein.

In the present chapter, we collect the material on operator Sylvester

equations that is needed throughout this thesis. Of particular importance

here is the existence and uniqueness result in Theorem 3.2 below. A block

variant of this result is formulated in Corollary 3.5, which proves useful, for

instance, in Chapter 6. As the main application of these considerations, we

have a variant of the Davis-Kahan symmetric sinΘ theorem, see Section 3.2

below. Finally, in Section 3.3 we discuss a condition in terms of Sylvester

equations which guarantees that a bounded operator on a Hilbert space is

also bounded with respect to the graph norm topology of a given closed

operator.

Most of the material presented in this chapter is essentially well known.

However, to the author’s best knowledge the results obtained in Section 3.3

below are new.

3.1 Strong solutions to Sylvester equations

We start with recalling the well-known concept of strong solutions to oper-

ator Sylvester equations. Here, we mainly follow [6, Section 4].

39
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Definition 3.1. Let A0 and A1 be closed densely defined operators on

Hilbert spaces H0 andH1, respectively. A bounded operator X ∈ L(H0,H1)

is called a strong solution to the operator Sylvester equation

(3.1) XA0 −A1X = K , K ∈ L(H0,H1) ,

if

Ran
(
X|Dom(A0)

)
⊂ Dom(A1)

and

(3.2) XA0g −A1Xg = Kg for g ∈ Dom(A0) .

Operator Sylvester equations are closely related to operator Riccati equa-

tions discussed in Section 1.4. Indeed, the Sylvester equation (3.1) corre-

sponds to the Riccati equation (1.6) with D = 0 and E = K. Conversely,

the Riccati equation (1.6) can be rewritten as

XA0 −A1X = E −XDX ∈ L(H0,H1) ,

which can be interpreted as an implicit Sylvester equation in the sense that

the right-hand side depends on the operator unknown.

In this regard, as a particular case of Lemma 1.5, we have that an op-

erator X ∈ L(H0,H1) is a strong solution to the Sylvester equation (3.1) if

and only if Y = −X∗ is a strong solution to the dual equation

(3.3) Y A∗
1 −A∗

0Y = K∗ ,

see also [6, Lemma 4.3].

Existence of strong solutions

There are a number of existence results for strong solutions to Sylvester

equations. In the case where the operators A0 and A1 are both assumed to be

self-adjoint, a necessary and sufficient condition for the existence of a strong

solution to (3.1) can be found in [47]. Cases of more general operators A0

and A1 in the context of strongly continuous semigroups have been discussed

in [42].

Unlike these conditions in [42] and [47], more applicable sufficient con-
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ditions for the existence of strong solutions usually require that the spectra

of the operators A0 and A1 are separated. Although this alone is not suf-

ficient if the operators A0 and A1 are just closed and both are unbounded

(see [42] for a counterexample), the separation of the spectra guarantees the

existence of a strong solution under certain additional assumptions on the

(unbounded) operators A0 and A1, see, e.g., [5, Lemma 2.18] and [6, Lemma

4.8].

In the particular case where both operators are assumed to be self-

adjoint, we have the following well-known result essentially due to Bhatia,

Davis, and McIntosh [11]. Basically all results mentioned in Section 2.3, in

particular the main results obtained in Chapters 6–8 below, can be traced

back to this theorem. It therefore plays a crucial role in our considerations.

Theorem 3.2. Let A0 and A1 be two self-adjoint operators on Hilbert spaces

H0 and H1, respectively, such that

(3.4) d := dist
(
spec(A0), spec(A1)

)
> 0 .

Then, the operator Sylvester equation (3.1) has a unique strong solution X

in L(H0,H1). This solution admits the representation

(3.5) X =

∫

R

eitA1Ke−itA0fd(t) dt ,

where the integral is understood in the weak sense1 and fd is any function

in L1(R), continuous except at zero, such that

f̂d(λ) :=

∫

R

e−itλfd(t) dt =
1

λ
whenever |λ| ≥ d .

In particular, X satisfies the norm bound

(3.6) ‖X‖ ≤ c
‖K‖
d

,

where

(3.7) c = inf
{
‖f‖L1(R)

∣∣∣ f ∈ L1(R) , f̂(λ) =
1

λ
, |λ| ≥ 1

}
=

π

2
.

1This means that X is given by 〈h,Xg〉 =
∫
R
〈h, eitA1Ke−itA0g〉fd(t) dt for g ∈ H0 and

h ∈ H1.
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Proof. This is obtained by combining [5, Theorem 2.7] and [6, Lemma 4.2];

cf. also [5, Remark 2.8], [8, Theorem 3.2], and [11, Theorem 4.1]. Note that

the last equality in (3.7) goes back to Sz.-Nagy and Strausz [52], [53].

The constant c = π/2 in estimate (3.6) is optimal. This was shown

by McEachin [33] by means of suitable finite-dimensional examples. These

examples can be directly extended to the infinite-dimensional case, which

leads to the following (stronger) sharpness result.

Remark 3.3. The estimate given by (3.6) and (3.7) is sharp in the sense that

equality can be attained:

Let ℓ2 = ℓ2(N) denote the Hilbert space of square-summable sequences,

and let {ek}k∈N ⊂ ℓ2 be the standard orthonormal basis of ℓ2. On ℓ2 define

the (unbounded) self-adjoint operators A0 and A1 by

A0ek := 2kek and A1ek := (2k − 1)ek , k ∈ N ,

with

Dom(A0) := Dom(A1) :=
{
(xk) ∈ ℓ2

∣∣∣
∞∑

k=1

k2|xk|2 < ∞
}
.

Clearly, the spectra of A0 and A1 consist of the even and odd numbers in

N, respectively, so that

(3.8) d := dist
(
spec(A0), spec(A1)

)
= 1 .

Define operators K and X from the finite sequences in ℓ2 to ℓ2 by

Kek :=
∑

j∈N

ej
2(k − j) + 1

and Xek :=
∑

j∈N

ej
(2(k − j) + 1)2

for k ∈ N. One easily verifies that

(3.9) 〈ej ,XA0ek〉 − 〈A1ej ,Xek〉 = 〈ej ,Kek〉 for j, k ∈ N .

One can show that both K and X extend to bounded operators on ℓ2,

which we again denote by K and X, respectively. In fact, it follows from
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the considerations in the proofs of [33, Proposition 2 and 3] that

(3.10) ‖K‖ =
π

2
and ‖X‖ =

π2

4
.

Hence, the identity (3.9) extends to

〈h,XA0g〉 − 〈A1h,Xg〉 = 〈h,Kg〉 for g, h ∈ Dom(A0) = Dom(A1) ,

that is, X is a so-called weak solution to the Sylvester equation (3.1), see,

e.g., [6, Definition 4.1]. Applying [6, Lemma 4.2] yields that X is also a

strong solution to (3.1), which, in view of (3.8) and (3.10), shows that the

estimate given by (3.6) and (3.7) is sharp.

The finite-dimensional examples originally discussed by McEachin in [33]

can be recovered from this example by truncating it to the finite-dimensional

case.

Although the estimate given by (3.6) and (3.7) is sharp by Remark 3.3,

in some cases a better constant than π/2 is available. If, for example, the

convex hull of one of the sets spec(A0) and spec(A1) is additionally assumed

to be disjoint from the other set, that is, conv
(
spec(A0)

)
∩ spec(A1) = ∅ or

vice versa, then the constant c = π/2 in the bound (3.6) can be replaced by

1, that is, in this case one has

(3.11) ‖X‖ ≤ ‖K‖
d

.

This follows from corresponding alternative representation formulae for the

solution, see [11, Theorem 3.3] and [12, Theorem 9.1]; cf. also [11, Theo-

rem 3.1]. Other improvements on the constant may be available for small

dimensions of the underlying Hilbert spaces, see [35].

Note that the estimate (3.11) is sharp even in the case of bounded op-

erators A0 and A1, which can be seen from the case where both H0 and H1

are one-dimensional.

The bound (3.11) has originally been obtained directly for normal op-

erators A0 and A1 under suitable assumptions on the disposition of their

spectra. With slight modifications, a variant of Theorem 3.2 for normal

operators is also valid:
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Remark 3.4. A statement analogous to Theorem 3.2 holds if the operators

A0 and A1 are assumed to be just normal and their spectra are separated as

in (3.4). In this case, the solution to (3.1) admits a representation similar to

(3.5), and the constant c in (3.6) has to be replaced by some constant less

than 2.91, see [10] and [11, Theorem 4.2]. Note that the exact value of the

optimal constant here is still unknown.

The following corollary to Theorem 3.2 is a very useful block variant of

that result. It is extracted from a more specialized version in the proof of

Proposition 4.1 in the author’s article [50].

Corollary 3.5. Let A = A0⊕A1 and B = B0⊕B1 be self-adjoint operators

on Hilbert spaces H = H0⊕H1 and K = K0⊕K1, respectively. Suppose that

there is d > 0 such that

dist
(
spec(A0), spec(B1)

)
≥ d and dist

(
spec(A1), spec(B0)

)
≥ d ,

and let K ∈ L(K,H) have the off-diagonal representation

K =

(
0 K1

K0 0

)
, K0 ∈ L(K0,H1) , K1 ∈ L(K1,H0) ,

as an operator from K = K0 ⊕K1 to H = H0 ⊕H1.

Then, the Sylvester equation

(3.12) XB −AX = K

has exactly one strong solution X ∈ L(K,H) of the form

X =

(
0 X1

X0 0

)
, X0 ∈ L(K0,H1) , X1 ∈ L(K1,H0) .

This solution admits the representation

(3.13) X =

∫

R

eiτAKe−iτBfd(τ) dτ ,

where the integral is understood in the weak sense and fd ∈ L1(R) is any

function as in Theorem 3.2.
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Proof. One easily verifies that the Sylvester equation (3.12) splits into the

pair of Sylvester equations

(3.14) X0B0 −A1X0 = K0

and

(3.15) X1B1 −A0X1 = K1 .

Since, by hypothesis, the spectra of the parts A1 and B0, respectively

A0 and B1, are separated with distance at least d, the claim now follows by

applying Theorem 3.2 to each of these two Sylvester equations. In particular,

taking into account that

eiτAKe−iτB =

(
0 eiτA0 K1 e

−iτB1

eiτA1 K0 e
−iτB0 0

)
,

representation (3.13) is obtained by combining the corresponding represen-

tations for X0 and X1.

It should be emphasized that, in contrast to Theorem 3.2, the spectra

of the operators A and B in Corollary 3.5 are not assumed to be separated.

Moreover, the spectra of A0 and A1, respectively B0 and B1, are allowed to

overlap. However, if the spectra of A0 and A1 are separated, then also the

case K = H and B = A can be treated by Corollary 3.5.

In the situation of Corollary 3.5, representation (3.13) implies the esti-

mate

(3.16) ‖X‖ ≤ π

2

‖K‖
d

,

cf. Theorem 3.2. Taking into account the Sylvester equations (3.14) and

(3.15) and that ‖X‖ = max{‖X0‖, ‖X1‖} and ‖K‖ = max{‖K0‖, ‖K1‖},
this estimate also follows from the corresponding estimates for K0 and K1

obtained from Theorem 3.2. Nevertheless, representation (3.13) has its own

right. It is used, for instance, in the proof of Lemma 6.7 in Chapter 6 below.

It also allows to extend estimate (3.16) very easily to unitary invariant norms

other than the usual operator norm, cf. [50, Section 4]. To the author’s best

knowledge representation (3.13) has not been stated anywhere before.
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3.2 The symmetric sinΘ theorem

In this section, we discuss a variant of the Davis-Kahan symmetric sinΘ

theorem from [21, Proposition 6.1]. The corresponding material is taken

from the author’s article [50].

We start with the following essentially well-known observation, see, e.g.,

[11, Section 2] and [34, Section 2]; see also the proof of [8, Proposition 3.4].

Lemma 3.6. Let A be a self-adjoint operator on a Hilbert space H, and let

V ∈ L(H) be self-adjoint. Moreover, suppose that P and Q are orthogonal

projections onto reducing subspaces for A and A+ V , respectively. Then

(3.17) X = P −Q = PQ⊥ − P⊥Q

is a strong solution to the Sylvester equation

(3.18) X(A+ V )−AX = PV Q⊥ − P⊥V Q .

Proof. Since RanP is reducing for A, the projection P commutes with A,

that is, one has Px ∈ Dom(A) and PAx = APx for all x ∈ Dom(A), see

Section 1.2. Analogously, Q⊥ commutes with A + V . Hence, PQ⊥ maps

Dom(A) = Dom(A+ V ) into Dom(A) and satisfies

(3.19) PQ⊥(A+ V )x−APQ⊥x = P (A+ V )Q⊥x− PAQ⊥x = PV Q⊥x

for x ∈ Dom(A). Analogously, P⊥Q maps Dom(A) into Dom(A) and satis-

fies

(3.20) P⊥Q(A+ V )x−AP⊥Qx = P⊥V Qx for x ∈ Dom(A) .

Combining (3.19) and (3.20), one concludes that (3.17) is a strong solution

to (3.18).

Clearly, the operators X = P−Q = PQ⊥−P⊥Q and PV Q⊥−P⊥V Q in

Lemma 3.6 can be represented as off-diagonal 2× 2 block operator matrices

from RanQ ⊕ RanQ⊥ to RanP ⊕ RanP⊥, so that Corollary 3.5 can be

applied. Since

‖PV Q⊥ − P⊥V Q‖ ≤ ‖V ‖ ,

estimate (3.16) and the identity |P−Q| = sin
(
Θ(P,Q)

)
(see equation (1.11))
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then lead to the following variant of the Davis-Kahan symmetric sinΘ the-

orem.

Proposition 3.7 (The symmetric sinΘ theorem; see [50, Propositions 2.3

and 4.1]). Let A be a self-adjoint operator on a Hilbert space H, let V ∈ L(H)

be self-adjoint, and suppose that P and Q are orthogonal projections onto

reducing subspaces for A and A+V , respectively. Let A0 and A1 denote the

parts of A associated with RanP and RanP⊥, respectively, and let B0 and

B1 likewise be the parts of A+ V associated with RanQ and RanQ⊥.

Assume that there is d > 0 such that

dist
(
spec(A0), spec(B1)

)
≥ d and dist

(
spec(A1), spec(B0)

)
≥ d .

Then, the operator angle Θ = Θ(P,Q) associated with the subspaces RanP

and RanQ satisfies the bound

‖sinΘ‖ = ‖P −Q‖ ≤ π

2

‖V ‖
d

.

Note that in Proposition 3.7 information on the spectrum of both A and

A+ V is required.

Remark 3.8. In the original version of the symmetric sinΘ theorem [21,

Proposition 6.1] by Davis and Kahan, it is additionally assumed that for

each of the pairs
(
spec(A0), spec(B1)

)
and

(
spec(A1), spec(B0)

)
the convex

hull of one of the sets is disjoint from the other set. As a consequence, instead

of π/2, the constant 1 appears in the resulting estimate, cf. the discussion

after Remark 3.3 above. Note that this original version of the symmetric

sinΘ theorem is formulated in [21] for arbitrary unitary-invariant norms. A

corresponding extension of Proposition 3.7 is discussed in Proposition 4.1 of

the author’s article [50].

Although not stated in this explicit way, Proposition 3.7 is present in

several recent works. For example, in the case where the operator A is

assumed to be bounded, it is used to prove [26, Theorem 1] and [31, Theorem

1 (ii)]. In the unbounded setting, it appears, for instance, in the proof of

[8, Theorem 3.5]. In each of these cases, the estimate on ‖P−Q‖ is obtained

by the identity

‖P −Q‖ = max{‖PQ⊥‖, ‖P⊥Q‖}
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and the corresponding estimates on ‖PQ⊥‖ and ‖P⊥Q‖ given by Theorem

3.2, cf. the discussion after Corollary 3.5.

3.3 Sylvester equations and graph norm topology

In this last section of the chapter, we consider the particular case of H0 = H1

and A := A0 = A1, and study solutions to the corresponding Sylvester

equation in the graph norm topology of the operator A. Note that in the

case in question the spectra of the coefficients coincide and a strong solution

does therefore not exist in general. Nevertheless, relevant cases where a

solution does exist arise in the context of Corollary 3.5.

To the author’s best knowledge, the obtained results (Lemma 3.9 and

Corollary 3.10 below) are new. They turn out to be quite useful, see Lemma

3.12 below and also the discussion at the end of Chapter 4.

Recall that for a closed operator A on a Hilbert space H its domain

Dom(A) can be equipped with the inner product

(3.21) 〈x, y〉A := 〈x, y〉+ 〈Ax,Ay〉 , x, y ∈ Dom(A) ,

which makes (Dom(A), 〈 ·, · 〉A) a Hilbert space. The corresponding norm is

equivalent to the graph norm 9 ·9A on Dom(A) defined by

9x9A := ‖x‖+ ‖Ax‖ , x ∈ Dom(A) .

It is a natural question when a bounded operator Y ∈ L(H) that maps

Dom(A) into itself is also bounded with respect to the graph norm 9 ·9A.

The following lemma provides a sufficient condition for this property in

terms of strong solutions to operator Sylvester equations.

Lemma 3.9. Let A be a closed densely defined operator on a Hilbert space

H, and suppose that Y ∈ L(H) is a strong solution to the Sylvester equation

Y A−AY = K , K ∈ L(H) .

Then, Y is bounded on Dom(A) with respect to the graph norm topology for

A, and the corresponding spectral radius does not exceed ‖Y ‖.
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Proof. By hypothesis, one has AY x = Y Ax−Kx for x ∈ Dom(A). Thus,

‖AY x‖ ≤ ‖Y ‖ ‖Ax‖+ ‖K‖ ‖x‖ , x ∈ Dom(A) ,

and, therefore,

(3.22) 9Y x9A = ‖Y x‖+ ‖AY x‖ ≤ ‖Y ‖9x9A + ‖K‖ ‖x‖

for x ∈ Dom(A). In particular, since ‖x‖ ≤ 9x9A for x ∈ Dom(A), this

yields that Y |Dom(A) is bounded with respect to the graph norm 9 ·9A, and

the corresponding operator norm satisfies the estimate 9Y 9A ≤ ‖Y ‖+‖K‖.
By induction, it easily follows from (3.22) that for all n ∈ N one has

9Y nx9A ≤ ‖Y ‖n 9x9A + n‖K‖ ‖Y ‖n−1‖x‖ , x ∈ Dom(A) .

This implies that 9Y n9A ≤ ‖Y ‖n + n‖K‖‖Y ‖n−1 for n ∈ N. The corre-

sponding spectral radius rA(Y ) := limn→∞9Y n9
1/n
A can then be estimated

as

rA(Y ) ≤ lim
n→∞

(
‖Y ‖n + n‖K‖ ‖Y ‖n−1)1/n = ‖Y ‖ ,

which completes the proof.

Corollary 3.10. Let A and Y as in Lemma 3.9. Then, for every scalar

power series h(z) =
∑∞

n=0 anz
n with radius of convergence greater than

‖Y ‖, the operator h(Y ) =
∑∞

n=0 anY
n maps Dom(A) into itself. Here, the

series is understood in the operator norm topology of L(H).

Proof. Taking into account that the operator A is closed, it follows from

Lemma 3.9 that the series
∑∞

n=0 an(Y |Dom(A))
n converges in the operator

norm topology with respect to the graph norm 9·9A. Moreover, since one

has ‖x‖ ≤ 9x9A for x ∈ Dom(A), the corresponding limit agrees with the

restriction of h(Y ) ∈ L(H) to Dom(A). This proves the claim.

Remark 3.11. In the situation of Corollary 3.10, it is straightforward to

verify that there is some H ∈ L(H) such that the operator Z = h(Y ) is a

strong solution to the Sylvester equation

ZA−AZ = H .
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We close this section with the following application of Lemma 3.9 and

Corollary 3.10 in the context of C1-smooth paths of operators, cf. Section

1.6. The result is used in the forthcoming Chapter 6, see Lemma 6.11 below.

Lemma 3.12. Let A be a closed densely defined operator on a Hilbert space

H, and let Y ∈ L(H) be a strong solution to the Sylvester equation

Y A−AY = K , K ∈ L(H) .

Then, for every interval I ⊂ R, the path

I ∋ t 7→ exp(tY )A exp(−tY )

is C1-smooth on Dom(A) with

d

dt

(
exp(tY )A exp(−tY )

)
= exp(tY )K exp(−tY )|Dom(A) .

Proof. For t ∈ I define

Bt := exp(tY )A exp(−tY ) on Dom(Bt) := Ran
(
exp(tY )|Dom(A)

)
.

By Corollary 3.10, the operators exp(tY ) and exp(tY )−1 = exp(−tY ) map

Dom(A) into itself, so that exp(tY ) maps Dom(A) onto itself. Hence, one

has

Dom(Bt) = Dom(A) , t ∈ I .

Moreover, the formal derivative of the path t 7→ Bt at t ∈ I is given by

(3.23)

d

dt
Bt = exp(tY )

(
Y A−AY

)
exp(−tY )

= exp(tY )K exp(−tY )|Dom(A) ,

cf. Example 1.15 (b). If A is bounded, this already completes the argument.

However, if A is unbounded, then we have to justify that the path I ∋ t 7→ Bt

is indeed C1-smooth in norm with Ḃt = exp(tY )K exp(−tY )|Dom(A).

To do this, consider the Hilbert space (HA, 〈 ·, · 〉A) := (Dom(A), 〈 ·, · 〉A)
with 〈 ·, · 〉A as in (3.21). By Lemma 3.9, the restriction Y |Dom(A) lies in

L(HA), so that the path I ∋ t 7→ exp(−tY |Dom(A)) = exp(−tY )|Dom(A) is

C1-smooth in norm with respect to HA, see Example 1.15 (b). The corre-
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sponding derivative is given by

d

dt
exp(−tY )|Dom(A) = −Y exp(−tY )|Dom(A) , t ∈ I .

With this, it is straightforward to verify that for arbitrary x ∈ Dom(A) and

y ∈ H the scalar function

I ∋ t 7→ 〈y,Btx〉

is C1-smooth with derivative d
dt〈y,Btx〉 = 〈y,Ktx〉, where

Kt := exp(tY )K exp(−tY ) ,

cf. equation (3.23). Therefore,

〈
y,
(Bt −Bs

t− s
−Ks

)
x
〉
=

1

t− s

∫ t

s
〈y, (Kτ −Ks)x〉dτ for s 6= t .

This implies that

(3.24)
∣∣∣
〈
y,
(Bt −Bs

t− s
−Ks

)
x
〉∣∣∣ ≤ ‖x‖ ‖y‖ sup

τ∈[s,t]
‖Kτ −Ks‖ for s < t,

and a similar inequality holds for s > t. Taking into account that the

path τ 7→ Kτ is continuous, one concludes from (3.24) that the operator

(Bt − Bs)/(t − s) converges to Ks in norm as t approaches s. Hence, the

path τ 7→ Bt is C1-smooth in norm with Ḃt = Kt|Dom(A).





Chapter 4

Reducing graph subspaces

and block diagonalization

In this chapter, we address the problem of block diagonalization for possibly

unbounded operator matrices in a Hilbert space H of the form

B =

(
A0 W

W ∗ A1

)
=

(
A0 0

0 A1

)
+

(
0 W

W ∗ 0

)
=: A+ V

with respect to a given orthogonal decomposition H = H0 ⊕H1. Here, the

diagonal part A of B is a self-adjoint operator on

Dom(A) = Dom(A0)⊕Dom(A1) ,

the off-diagonal part V is assumed to be bounded on the whole Hilbert space

H, and B is understood as the operator sum

B = A+ V on Dom(B) = Dom(A) .

In the particular case where one of the diagonal entries A0 and A1 is

bounded, the block diagonalization of operators of this form has already

been discussed by Adamjan, Langer, and Tretter in [4, Section 2]; cf. [54,

Proposition 2.9.12]. Also the case where the spectra of the diagonal entries

are additionally assumed to be subordinated has been studied in detail, see,

e.g., [1, Theorem 2.3] and [32, Sections 3 and 4].

53
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The situation described above without any additional assumptions on the

self-adjoint diagonal entries A0 and A1 has been investigated by Albeverio,

Makarov, and Motovilov in [5, Section 5]. In particular, it has been stated

in [5, Lemma 5.3] that a graph subspace G(H0,X) with X ∈ L(H0,H1)

is reducing for the operator B = A + V if and only if the bounded skew-

symmetric operator Y given by the 2× 2 block operator matrix

Y =

(
0 −X∗

X 0

)

is a strong solution to the operator Riccati equation

(4.1) Y A−AY + Y V Y − V = 0 .

In this case, it follows from [5, Theorem 5.5] that the operator B = A+ V

admits the block diagonalization

(4.2) (IH+Y )−1(A+V )(IH+Y ) = A+V Y =

(
A0 +WX 0

0 A1 −W ∗X∗

)
.

In particular, one has

spec(B0) = spec(A0 +WX) and spec(B1) = spec(A1 −W ∗X∗) ,

where B0 and B1 denote the parts of B associated with G(H0,X) and

G(H0,X)⊥, respectively. Moreover, the operator A+ V is unitarily equiva-

lent to a block diagonal operator with respect to the orthogonal decompo-

sition H = H0 ⊕H1, namely

U∗(A+ V )U =

(
Λ0 0

0 Λ1

)
,

where U := (IH + Y )|IH + Y |−1 is the unitary operator from the polar

decomposition for the isomorphism IH + Y and the diagonal entries Λ0 and

Λ1 are similar to A0 +WX and A1 −W ∗X∗, respectively, see [5, Theorem

5.5 (iii)].

However, there is a gap in reasoning in the proof of [5, Lemma 5.3]. More

precisely, the inclusion Ran(Y |Dom(A)) ⊂ Dom(A), which is required for Y

to be a strong solution to (4.1), has been taken for granted. At the same
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time, the domain splitting

Dom(A) =
(
Dom(A) ∩ G(H0,X)

)
+
(
Dom(A) ∩ G(H0,X)⊥

)
,

which is needed for G(H0,X) to be not only invariant but also reducing for

A+V , has not been discussed. Neither of these two properties is self-evident

(cf. Section 1.2), and discussions with K. A. Makarov confirmed that they

indeed need a careful justification.

The present author has found a way to close this gap in reasoning, and

the corresponding argument is given in this chapter. For completeness of the

presentation, the whole statement including the block diagonalization (4.2)

is shown, see Theorem 4.7 below. In fact, the proof presented here does not

allow to establish [5, Lemma 5.3] in its whole extent without discussing this

block diagonalization, see Remark 4.8 below.

Corollary 4.9 provides a reformulation of [5, Lemma 5.3]. Here, the

Riccati equation (4.1) for Y is replaced by a Riccati equation for the operator

X alone.

Finally, at the end of the chapter, we discuss alternative arguments for

the part of [5, Lemma 5.3] that states that Y is a strong solution to (4.1) if

G(H0,X) is reducing for A+ V .

The presented proof of Theorem 4.7 can be modified to extend [5, Lemma

5.3] to unbounded off-diagonal parts V with a sufficiently small relative

bound with respect to A. This has been done in the joint work [38] with

K. A. Makarov and S. Schmitz; see also Chapter 4 of the Ph.D. thesis [48]

by the latter author. The presentation of the current chapter is based to a

large extent on this joint work but is adapted to the easier case of bounded

off-diagonal parts V as discussed in [5]. The main difference to the approach

in [38] is briefly discussed in Remark 4.4 below.

Closing the gap in reasoning

For the rest of this chapter we make the following assumptions.

Hypothesis 4.1. Let H = H0 ⊕H1 be a Hilbert space decomposed into the

sum of two orthogonal subspaces H0 and H1. Let A be a self-adjoint operator
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on H given by the representation

A =

(
A0 0

0 A1

)
, Dom(A) = Dom(A0)⊕Dom(A1) ,

with respect to the decomposition H = H0 ⊕H1. Moreover, let V ∈ L(H) be

given by the 2× 2 block operator matrix

V :=

(
0 W

W ∗ 0

)
, W ∈ L(H1,H0) .

In the situation of Hypothesis 4.1, the first step towards a block di-

agonalization for A + V with respect to a reducing graph subspace is the

consideration of an invariant graph subspace G(H0,X) such that its orthog-

onal complement G(H0,X)⊥ = G(H1,−X∗) is also invariant. In the setting

of unbounded operators A, this requires to consider the intersections of the

invariant subspaces with the operator domain. It is therefore convenient to

fix the following additional assumptions.

Hypothesis 4.2. Assume Hypothesis 4.1. Let X ∈ L(H0,H1), and define

Y ∈ L(H) by

Y :=

(
0 −X∗

X 0

)
.

Finally, set

D := {x ∈ Dom(A) | Y x ∈ Dom(A)} = D0 ⊕D1 ,

where

D0 := {g ∈ Dom(A0) | Xg ∈ Dom(A1)}

and

D1 := {h ∈ Dom(A1) | X∗h ∈ Dom(A0)} .

By definition, the set D in Hypothesis 4.2 is the maximal linear subset

of Dom(A) that Y maps into Dom(A).

We have the following invariance criterion for graph subspaces, which is

extracted from the proofs of [5, Lemma 5.3 and Theorem 5.5]. The corre-

sponding reasoning is taken over and repeated briefly.
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Lemma 4.3. Assume Hypotheses 4.1 and 4.2. The following are equivalent:

(i) The graph subspaces G(H0,X) and G(H1,−X∗) are invariant for the

operator A+ V .

(ii) The operator Y satisfies the Riccati equation

(4.3) Y Ax−AY x+ Y V Y x− V x = 0 for x ∈ D .

(iii) One has

(4.4) (A+ V )(IH + Y )x = (IH + Y )(A+ V Y )x for x ∈ D .

Proof. Observing that

(4.5) Dom(A) ∩ G(H0,X) = {g ⊕Xg | g ∈ D0}

and that

(A+ V )

(
g

Xg

)
=

(
A0g +WXg

W ∗g +A1Xg

)
for g ∈ D0 ,

one concludes that the graph subspace G(H0,X) is invariant for A + V if

and only if the equation (W ∗+A1X)g = X(A0+WX)g holds for all g ∈ D0.

This, in turn, can be rewritten as

(4.6) XA0g −A1Xg +XWXg −W ∗g = 0 for g ∈ D0 .

In view of

(4.7) Dom(A) ∩ G(H1,−X∗) = {−X∗h⊕ h | h ∈ D1} ,

the analogous reasoning yields that the graph subspace G(H1,−X∗) is in-

variant for the operator A+ V if and only if X∗ satisfies

(4.8) X∗A1h−A0X
∗h−X∗W ∗X∗h+Wh = 0 for h ∈ D1 .

Thus, both subspaces G(H0,X) and G(H1,−X∗) are invariant for the

operator A + V if and only if the pair of Riccati equations (4.6) and (4.8)
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hold. This pair of equations can be rewritten as the single Riccati equation

(4.3), which proves the stated equivalence of (i) and (ii).

Finally, equation (4.4) is just a reformulation of the Riccati equation

(4.3), so that (iii) is equivalent to (ii).

Remark 4.4. It is easy to verify that each of the statements (i)–(iii) in Lemma

4.3 is equivalent to

(4.9) (IH − Y )(A+ V )x = (A− Y V )(IH − Y )x for x ∈ D .

This latter equation has been used in the joint work [38] with K. A. Makarov

and S. Schmitz to extend [5, Lemma 5.3] to certain unbounded off-diagonal

parts V that are relatively bounded with respect to A. In fact, if V is allowed

to be unbounded with Dom(A) ⊂ Dom(V ), then the natural domain of the

operator A+V Y depends on the choice of Y , whereas the operator A−Y V

still has natural domain Dom(A). Equation (4.9) is therefore better to

handle than (4.4) in this situation. This is discussed in detail in [38, Remark

2.4 and Section 2.6].

However, with V being assumed to be bounded here, we follow [5, Section

5] and consider equation (4.4) instead of (4.9). In view of the representations

for the graph subspaces given by (1.3), this equation appears to be more

natural than (4.9) when dealing with invariant graph subspaces.

In the original proof of [5, Lemma 5.3], it has implicitly been assumed

that the set D coincides with Dom(A). Furthermore, the condition for

G(H0,X) to be reducing for A + V has implicitly been replaced by the

condition for G(H0,X) and G(H0,X)⊥ = G(H1,−X∗) to be invariant for

A+ V . In this sense, Lemma 4.3 sums up what has essentially been proved

in [5, Lemma 5.3 and Theorem 5.5 (ii)].

Note that the operator A+ V Y is block diagonal, namely

A+ V Y =

(
A0 +WX 0

0 A1 −W ∗X∗

)
,

and recall that the operator IH + Y has a bounded inverse, see Section 1.3.

It is therefore natural to use the similarity transformation given by IH + Y

to block diagonalize the operator A+V , cf. equation (4.4). However, unless

IH + Y maps Dom(A) onto itself, the operator (IH + Y )−1(A+ V )(IH + Y )
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does not agree with A+V Y with respect to its natural domain. As it turns

out in the proof of Theorem 4.7 below, this desired property of IH + Y is

closely related to the implicit assumptions in the proof of [5, Lemma 5.3].

Our approach to close this gap in reasoning and to obtain the actual

statement of [5, Lemma 5.3] is based on the following elementary observa-

tion.

Lemma 4.5 ([49, Lemma 1.3]). Let T and S be linear operators such that

S ⊂ T . If S is surjective and T is injective, then S = T .

Proof. For the sake of completeness, we reproduce the proof from [49].

Let y ∈ Dom(T ) be arbitrary. Since S ⊂ T and S is surjective, one can

choose x ∈ Dom(S) ⊂ Dom(T ) such that T y = Sx = T x. The injectivity

of T now implies that y = x ∈ Dom(S). Thus, Dom(T ) = Dom(S) and,

hence, S = T .

The preceding lemma is used in the following more specialized form.

Corollary 4.6. Let K and L be closed linear operators on Hilbert spaces K
and L, respectively, and let S : K → L be an isomorphism. Suppose that

SK ⊂ LS .

If the resolvent sets of K and L are not disjoint, that is, ρ(K)∩ρ(L) 6= ∅,

then

SK = LS

holds as an operator equality.

Proof. By a standard shift argument, one may assume that 0 ∈ ρ(K)∩ρ(L).

In this case, since S is an isomorphism, the operators SK and LS are both

bijective. The operator equality SK = LS then follows from Lemma 4.5.

We are now ready to prove [5, Lemma 5.3]. In fact, we combine the

statements of [5, Lemma 5.3] and [5, Theorem 5.5 (ii)] to obtain a result

analogous to Lemma 4.3. This is not just for reasons of convenience but

is also essential part of our way to prove [5, Lemma 5.3], see Remark 4.8

below.
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Theorem 4.7. Assume Hypotheses 4.1 and 4.2. The following are equiva-

lent:

(i) The graph subspace G(H0,X) is reducing for the operator A+ V .

(ii) The operator Y is a strong solution to the operator Riccati equation

(4.10) Y A−AY + Y V Y − V = 0 .

(iii) The operator A+ V admits the block diagonalization

(IH + Y )−1(A+ V )(IH + Y ) = A+ V Y =

(
A0 +WX 0

0 A1 −W ∗X∗

)
.

Proof. First, observe that the resolvent sets of the two operators A+V and

A + V Y are not disjoint, that is, ρ(A + V ) ∩ ρ(A + V Y ) 6= ∅. Indeed, the

spectrum of A + V is real since A + V is self-adjoint, and by Lemma 1.17

the spectrum of A+ V Y is contained in the closed ‖V Y ‖-neighbourhood of

spec(A).

Denote

T := IH + Y =

(
IH0 −X∗

X IH1

)
.

This operator T ∈ L(H) has a bounded everywhere defined inverse (see

Section 1.3), and one has

(4.11)
(
Dom(A) ∩ G(H0,X)

)
+
(
Dom(A) ∩ G(H1,−X∗)

)
= Ran(T |D) ,

cf. equations (4.5) and (4.7).

Suppose that (i) holds. In particular, the graph subspaces G(H0,X) and

G(H1,−X∗) are invariant for A+ V . Thus, Lemma 4.3 implies that

(4.12) (A+ V )Tx = T (A+ V Y )x for x ∈ D .

Furthermore, it follows from equation (4.11) that Dom(A) = Ran(T |D), that
is, Ran(T−1|Dom(A)) = D ⊂ Dom(A). Equation (4.12) can then be rewritten

as T−1(A+ V )y = (A+ V Y )T−1y for y ∈ Dom(A), so that

T−1(A+ V ) ⊂ (A+ V Y )T−1 .
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Since ρ(A+V )∩ρ(A+V Y ) 6= ∅ as stated above, Corollary 4.6 implies that

the identity

T−1(A+ V ) = (A+ V Y )T−1 .

holds as an operator equality. This yields (iii).

Now, suppose that (ii) holds. In particular, one has D = Dom(A) in this

case, so that Ran(T |Dom(A)) ⊂ Dom(A). Moreover, Lemma 4.3 implies that

(A+ V )Tx = T (A+ V Y )x for x ∈ Dom(A) = Dom(A+ V Y ). Hence,

T (A+ V Y ) ⊂ (A+ V )T .

Again, it follows from Corollary 4.6 that the identity

T (A+ V Y ) = (A+ V )T

holds as an operator equality, which yields (iii).

Finally, suppose that (iii) holds, that is,

(A+ V )T = T (A+ V Y ) .

In this case, one has

Dom(A) = Dom
(
T (A+ V Y )

)
= Dom

(
(A+ V )T

)
= Ran

(
T−1|Dom(A)

)
,

which is equivalent to Dom(A) = Ran(T |Dom(A)). Since Y = T − IH, this

implies that D = Dom(A). The statement (ii) then follows by Lemma 4.3.

Moreover, taking into account (4.11), Lemma 4.3 also yields that (i) holds.

This completes the proof.

Remark 4.8. Not only is the equivalence of (i) and (ii) in Theorem 4.7

established by the equivalence to (iii), the presented proof also requires

equation (4.4), which is extracted from [5, Theorem 5.5 (ii)]. In other words,

our proof of [5, Lemma 5.3] requires some elements of [5, Theorem 5.5]. In

this sense, the two results [5, Lemma 5.3] and [5, Theorem 5.5 (ii)] should

not be considered as separate statements, which is why Theorem 4.7 has

been formulated as a combination of them.

The following reformulation of [5, Lemma 5.3] is an immediate conse-

quence of Theorem 4.7 and Lemma 1.5. It replaces the Riccati equation for
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the operator Y by an Riccati equation for X and, thus, does not involve the

adjoint operator X∗.

Corollary 4.9. Assume Hypothesis 4.1, and let X ∈ L(H0,H1). Then, the

graph subspace G(H0,X) is reducing for the operator A + V if and only if

X is a strong solution to the operator Riccati equation

(4.13) XA0 −A1X +XWX −W ∗ = 0 .

Proof. Let Y ∈ L(H) be given as in Hypothesis 4.2. Then, one has the inclu-

sion Ran(Y |Dom(A)) ⊂ Dom(A) if and only if Ran(X|Dom(A0)) ⊂ Dom(A1)

and Ran(X∗|Dom(A1)) ⊂ Dom(A0), and it is easy to verify that the Riccati

equation (4.10) for Y splits into the Riccati equation (4.13) for X and its

dual equation

ZA1 −A0Z + ZW ∗Z −W = 0

for Z = −X∗. Note that A0 and A1 are both self-adjoint. It now follows

from Lemma 1.5 that Y is a strong solution to (4.10) if and only if X is a

strong solution to (4.13). Applying Theorem 4.7 then proves the claim.

Alternative arguments

The technique used above to prove Theorem 4.7 appears to be a reasonable

way to establish the equivalence stated in [5, Lemma 5.3]. Yet, if one is

interested only in the statement that Y is a strong solution to (4.10) if

G(H0,X) is reducing for A+V , that is, the implication (i)⇒(ii) in Theorem

4.7, then one can also use other methods that are not based on Lemma 4.5.

For the converse implication (ii)⇒(i), however, the author is not aware of

any alternative way of reasoning.

The main issue in the proof of the implication (i)⇒(ii) is to show that

D = Dom(A). A direct way to prove this, that is, one that does not consider

the block diagonalization (4.10), can be extracted from the proof of [32,

Theorem 4.1]; cf. also [54, Theorem 2.7.21 (iii)]. In fact, the argument there

works without any essential modifications in the current situation as well. It

even allows to extend the implication (i)⇒(ii) to the same relatively bounded

off-diagonal parts V discussed in [38, Section 4]. A similar reasoning can

also be found in the proof of [58, Proposition 7.5].

We now present another alternative way to prove (i)⇒(ii). This one
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replaces the use of Corollary 4.6 by an argument based on Corollary 3.10.

This proof, however, seems to work only for bounded perturbations V .

Alternative proof of the implication (i)⇒(ii) in Theorem 4.7.

Suppose that G(H0,X) is reducing for A + V . In this case, as in the

proof of Theorem 4.7, one has

T−1(A+ V ) ⊂ (A+ V Y )T−1 with T := IH + Y .

We show that the operator

Z := IH − T−1 ∈ L(H)

is a strong solution to the operator Sylvester equation

Z(A+ V )− (A+ V )Z = V T ∗T−1 ∈ L(H) .

Indeed, one has

Ran(Z|Dom(A)) ⊂ Dom(A)

since Ran
(
T−1|Dom(A)

)
⊂ Dom(A), and for x ∈ Dom(A) one computes

Z(A+ V )x− (A+ V )Zx = (A+ V )T−1x− T−1(A+ V )x

= (A+ V )T−1x− (A+ V Y )T−1x

= V (IH − Y )T−1x = V T ∗T−1x .

Clearly, one has Z = IH −T−1 = T−1(T − IH) = (IH +Y )−1Y . Since Y

is skew-symmetric, in particular normal, by spectral mapping theorem this

implies that ‖Z‖ < 1. It then follows from Corollary 3.10 that the operator

∞∑

n=0

Zn = (IH − Z)−1 = T

maps Dom(A) = Dom(A+ V ) into itself. Thus, Y = T − IH maps Dom(A)

into itself, so that D = Dom(A). By Lemma 4.3, one concludes that Y is a

strong solution to (4.10).





Chapter 5

The angular metric on the

set of orthogonal projections

In this chapter, we show that the maximal angle between closed subspaces

of a Hilbert space indeed defines a metric on the set of orthogonal projec-

tions, the so-called angular metric, cf. Definition 1.7 in Chapter 1 and the

discussion thereafter. An elementary proof for the corresponding triangle

inequality has already been provided by Brown [16]. Here, we use a different

technique that relies on tools from geometric perturbation theory. Although

the corresponding material can essentially also be found in the joint work

[36] with K. A. Makarov, the reasoning here is substantially simpler than

the one in [36].

Let t 7→ Pt be a piecewise C1-smooth path of orthogonal projections. The

main object of our studies in the present chapter is the following inequality,

which we refer to as the arcsine law :

(5.1) arcsin
(
‖Pt − Ps‖

)
≤
∫ t

s
‖Ṗτ‖dτ whenever s ≤ t .

Note that (5.1) is stronger than the standard estimate from Lemma 1.16

since x ≤ arcsin(x) for 0 ≤ x ≤ 1. Moreover, inequality (5.1) is sharp in

the sense that equality can be attained, see [16, Proposition 5]; see also

[36, Lemma 3.5] and Lemma 5.5 below.

The arcsine law is closely related to the triangle inequality for the max-

imal angle. Indeed, if this triangle inequality is taken for granted, then

inequality (5.1) can easily be shown by using the standard estimate from

65
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Lemma 1.16 in combination with partitions of the interval [s, t] with arbi-

trarily small mesh size, see Remark 5.9 below.

However, in this chapter we proceed the other way around: An alter-

native proof for inequality (5.1) is presented that uses perturbation results

for graph subspaces and that does not rely on the triangle inequality for

the maximal angle, see Proposition 5.4 below. In turn, this inequality and

the corresponding sharpness result are used to show that the maximal angle

indeed defines a metric on the set of orthogonal projections, see Proposition

5.8 below.

5.1 Variation of graph subspaces

In this section we study how angular operators (cf. Section 1.3) vary with

their corresponding graphs. Although these considerations aim for the proof

of the arcsine law in Section 5.2, they may also be of interest on their own,

see, e.g., Remark 5.2 below.

We begin with the following purely algebraic observation.

Lemma 5.1. Let P , Q1, and Q2 be orthogonal projections in a Hilbert space

H such that

RanQj = G(RanP,Xj) , j = 1, 2 ,

for some Xj ∈ L(RanP,RanP⊥). Then

(5.2) X2 −X1 = P⊥T ∗
1 (Q2 −Q1)T2P |RanP ,

where Tj ∈ L(H) is given with respect to H = RanP ⊕ RanP⊥ by

(5.3) Tj =

(
IRanP −X∗

j

Xj IRanP⊥

)
, j = 1, 2 ,

and the right-hand side of (5.2) is understood as an operator from RanP to

RanP⊥.

Proof. Clearly, the identity Q1T1 = T1P holds (cf. Section 1.3), so that

T ∗
1Q1 = PT ∗

1 . Hence, taking into account that Ran(T2P ) = RanQ2, one

concludes that

P⊥T ∗
1 (Q2 −Q1)T2P = P⊥T ∗

1Q2T2P = P⊥T ∗
1 T2P .
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Since

(5.4) T ∗
1 T2 =

(
IRanP +X∗

1X2 X∗
1 −X∗

2

X2 −X1 IRanP⊥ +X1X
∗
2

)
,

this proves the claim.

Remark 5.2. In the situation of Lemma 5.1, recall that T1 has a bounded

inverse and, thus, a polar decomposition T1 = U1|T1| with a unitary operator

U1 ∈ L(H). Define the orthogonal projection Q := U∗
1Q2U1. If, in addition,

RanQ = G(RanP,Z) for some Z ∈ L(RanP,RanP⊥), then one has

(5.5) X2 −X1 =
(
IH1 +X1X

∗
1

)1/2
Z
(
IH0 +X∗

1X1

)−1/2 ·
(
IH0 +X∗

1X2

)

with H0 := RanP and H1 := RanP⊥, see the following paragraph. In

view of equation (1.18), this identity resembles the tangent angle addition

formula

tan θ2 − tan θ1 = tan(θ2 − θ1) · (1 + tan θ1 tan θ2) .

In this sense, (5.5) can be interpreted as a non-commutative variant of this

trigonometric addition formula, cf. [36, Remark 2.3].

The identity (5.5) was proved in [36, Corollary 2.2] under the additional

assumption that the operator IH0 + X∗
2X1 has full range. The preceding

Lemma 5.1 allows a reasoning that does not require this additional assump-

tion and that is simpler than the one in [36]. Indeed, identifying Z with

its trivial continuation to an operator on the whole Hilbert space H, the

relation RanQ = G(H0, Z) means that

P⊥Q = ZPQ .

Moreover, the projections P and P⊥ commute with the operator |T1| since
the latter is block diagonal with respect to H = H0 ⊕H1. Hence,

P⊥T ∗
1Q2 = |T1|P⊥U∗

1Q2 = |T1|P⊥QU∗
1 = |T1|ZPQU∗

1 = |T1|ZPU∗
1Q2

= |T1|Z|T1|−1PT ∗
1Q2 .

SinceQ2T2P = T2P , one arrives at P⊥T ∗
1 T2P = |T1|Z|T1|−1PT ∗

1 T2P , which,

in view of (5.4), agrees with (5.5).
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An immediate corollary to Lemma 5.1 is the following result. It combines

the statements of Lemmas 3.2 and 3.3 in [36]. Here, the use of the more

general identity (5.2) instead of (5.5) makes the corresponding proof shorter

and more transparent.

Corollary 5.3. Let P be an orthogonal projection in a Hilbert space H, and

let I ⊂ R be an arbitrary (bounded or unbounded) interval. Furthermore, let

Pt, t ∈ I, be an orthogonal projection in H such that

RanPt = G(RanP,Xt) , t ∈ I ,

for some Xt ∈ L(RanP,RanP⊥).

(a) If I ∋ t 7→ Pt is continuous in norm, then so is I ∋ t 7→ Xt.

(b) If I ∋ t 7→ Pt is a C1-smooth path, then so is I ∋ t 7→ Xt. In this case,

one has

‖Ẋt‖ ≤
(
1 + ‖Xt‖2

)
‖Ṗt‖ , t ∈ I .

In particular, the path I ∋ t 7→ Xt is piecewise C1-smooth if I ∋ t 7→ Pt is.

Proof. Let s ∈ I be arbitrary. By Lemma 5.1, the identity

(5.6) Xt −Xs = P⊥T ∗
s (Pt − Ps)TtP |RanP

holds for all t ∈ I, where Ts and Tt are defined analogous to (5.3). Moreover,

one has

‖Tt‖ = ‖ |Tt| ‖ =
(
1 + ‖Xt‖2

)1/2
, t ∈ I .

Suppose that I ∋ t 7→ Pt is continuous in norm. Since ‖Pt − P‖ < 1 for

t ∈ I and

‖Xt‖ =
‖Pt − P‖√

1− ‖Pt − P‖2
,

see Proposition 1.13, one concludes that Tt is uniformly bounded for t in a

(compact) neighbourhood of s. It then follows from (5.6) that Xt converges

to Xs in norm as t approaches s. This proves claim (a).

Now suppose that I ∋ t 7→ Pt is C1-smooth in norm. In this case, it

follows from part (a) that I ∋ t 7→ Tt is continuous. Equation (5.6) then

implies that

Ẋs = P⊥T ∗
s ṖsTsP |RanP ,
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so that I ∋ t 7→ Xt is C1-smooth. In particular, one has

‖Ẋs‖ ≤ ‖Ts‖2‖Ṗs‖ =
(
1 + ‖Xs‖2

)
‖Ṗs‖ .

This proves claim (b) and, hence, completes the proof.

5.2 The arcsine law

We are now in position to prove the arcsine law (5.1) for piecewise C1-smooth

paths of orthogonal projections without using the triangle inequality for the

maximal angle.

Proposition 5.4 ([36, Lemma 3.4]; cf. [37, Theorem 1]). Let I ∋ t 7→ Pt be

a piecewise C1-smooth path of orthogonal projections. Then

arcsin
(
‖Pt − Ps‖

)
≤
∫ t

s
‖Ṗτ‖ dτ whenever s ≤ t .

Proof. Fix arbitrary s, t ∈ I with s < t. Clearly, we may assume that∫ t
s ‖Ṗτ‖ dτ < π

2 . Set

γ := sup
{
r ∈ [s, t] | ‖Pτ − Ps‖ < 1 whenever s ≤ τ ≤ r

}
.

We show that

(5.7) arcsin
(
‖Pr − Ps‖

)
≤
∫ r

s
‖Ṗτ‖ dτ <

π

2
whenever s ≤ r ≤ γ .

By the continuity of the path I ∋ r 7→ Pr and the definition of γ, we then

deduce that γ = t, which proves the claim.

Since I ∋ r 7→ Pr is continuous, one has γ > s. Moreover, the strict

inequality ‖Pr − Ps‖ < 1 holds whenever s ≤ r < γ, so that the range of

each Pr is the graph of a bounded operator Xr ∈ L(RanPs,RanP
⊥
s ), that

is,

RanPr = G(RanPs,Xr) for s ≤ r < γ ,

see Proposition 1.13. Define the piecewise C1-smooth function F : [s, γ) → R

by

F (r) :=

∫ r

s

(
1 + ‖Xτ‖2

)
‖Ṗτ‖ dτ , s ≤ r < γ .

Let s = τ0 < · · · < τn+1 = t be a partition of the interval [s, t] such that
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[τj , τj+1] ∋ τ 7→ Pτ is C1-smooth for each j. By Corollary 5.3 (b), also each

path [τj , τj+1] ∋ τ 7→ Xτ is C1-smooth and satisfies ‖Ẋτ‖ ≤
(
1+‖Xτ‖2

)
‖Ṗτ‖.

In view of Lemma 1.16, one obtains

‖Xr −Xτj‖ ≤
∫ r

τj

‖Ẋτ‖ dτ ≤
∫ r

τj

(
1 + ‖Xτ‖2

)
‖Ṗτ‖ dτ = F (r)− F (τj)

for r ∈ [τj, τj+1], j = 0, . . . , n. Since Xτ0 = Xs = 0, iterating this estimate

via the triangle inequality for the operator norm yields

(5.8) ‖Xr‖ = ‖Xr −Xτ0‖ ≤ F (r)− F (τ0) = F (r) for s ≤ r < γ .

For τ ∈ (τj, τj+1), this implies that

F ′(τ) =
(
1 + ‖Xτ‖2

)
‖Ṗτ‖ ≤

(
1 + F (τ)2

)
‖Ṗτ‖ ,

so that

arctanF (r)− arctanF (τj) =

∫ r

τj

F ′(τ)
1 + F (τ)2

dτ ≤
∫ r

τj

‖Ṗτ‖ dτ

for r ∈ [τj , τj+1]. Iterating this estimate and taking into account that

F (τ0) = 0, one gets

arctanF (r) ≤
∫ r

s
‖Ṗτ‖ dτ for s ≤ r < γ .

In view of arcsin
(
‖Pr − Ps‖

)
= arctan‖Xr‖ ≤ arctanF (r) by (5.8), one

concludes that

arcsin
(
‖Pr − Ps‖

)
≤
∫ r

s
‖Ṗτ‖dτ ≤

∫ t

s
‖Ṗτ‖ dτ <

π

2
for s ≤ r < γ .

By continuity, this inequality also holds for r = γ, which proves (5.7) and,

hence, completes the proof.

The next lemma provides a non-trivial example for the fact that the

estimate in Proposition 5.4 is sharp. It is essentially a reformulation of

[16, Proposition 5] and [36, Lemma 3.5]. In its current formulation, this

result will also be of interest in the forthcoming Chapter 6, see Lemma 6.11

below.
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Lemma 5.5. Let P be an orthogonal projection in a Hilbert space H, and

let Y ∈ L(H), ‖Y ‖ ≤ π/2, be skew-symmetric and off-diagonal with respect

to the orthogonal decomposition H = RanP ⊕ RanP⊥, that is,

Y ∗ = −Y and PY P = 0 = P⊥Y P⊥ .

Then, the path [0, 1] ∋ t 7→ Pt := exp(tY )P exp(−tY ) of orthogonal projec-

tions in H is C1-smooth and satisfies

(5.9) arcsin
(
‖Pt − Ps‖

)
=

∫ t

s
‖Ṗτ‖dτ = ‖Y ‖ (t− s) whenever s ≤ t .

Proof. Clearly, the operator exp(tY ) is unitary for every t ∈ [0, 1]. Hence,

each Pt is indeed an orthogonal projection in H. Moreover, taking into

account that Y satisfies PY = Y P⊥, the path [0, 1] ∋ t 7→ Pt is C1-smooth

with

Ṗt = exp(tY )(Y P − PY ) exp(−tY ) = exp(tY )Y (P − P⊥) exp(−tY ) ,

cf. Lemma 3.12. Since exp(tY ) and P −P⊥ are both unitary, one concludes

that

(5.10) ‖Ṗt‖ = ‖Y ‖ for t ∈ [0, 1] .

This proves the second equality in (5.9).

Now fix s and t with s < t. We show that the operator angle associated

with the subspaces RanPs and RanPt is given by Θ(Ps, Pt) = (t− s)|Y |, so
that

(5.11) arcsin
(
‖Pt − Ps‖

)
= ‖Y ‖ (t− s) .

Combining (5.10) and (5.11) then proves the claim.

Clearly, the operator Y commutes with exp(sY ) and exp(−sY ). With

this, it is straightforward to verify that Y is off-diagonal also with respect

to the decomposition H = RanPs ⊕ RanP⊥
s , that is,

PsY Ps = 0 = P⊥
s Y P⊥

s .

In view of Example 1.12, one arrives at the conclusion that the unitary
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operator

exp(tY ) exp(−sY ) = exp
(
(t− s)Y

)

is a direct rotation from RanPs to RanPt. In particular, the associated

operator angle is given by Θ(Ps, Pt) = (t−s)|Y |, which completes the proof.

Remark 5.6. In Lemma 5.5, the restriction to the interval [0, 1] is necessary

to ensure that (t−s)‖Y ‖ ≤ π/2. However, by reparametrization the inequal-

ity in Proposition 5.4 is sharp also for any other interval: If I ⊂ R is an

arbitrary (bounded or unbounded) interval, then choose a C1-smooth func-

tion γ : I → [0, 1] with γ̇ > 0. In this situation, the path I ∋ t 7→ Qt := Pγ(t)

with Pτ as in Lemma 5.5 is C1-smooth and satisfies

arcsin
(
‖Qt −Qs‖

)
=

∫ t

s
‖Q̇τ‖dτ = ‖Y ‖

(
γ(t)− γ(s)

)

whenever s ≤ t.

We have the following immediate corollary to Lemma 5.5.

Corollary 5.7 ([16, Proposition 5]; see also [36, Lemma 3.5]). Let P and

Q be two orthogonal projections such that RanP and RanQ are equivalently

positioned, that is,

dim
(
RanP ∩RanQ⊥) = dim

(
RanP⊥ ∩ RanQ

)
.

Then there is a C1-smooth path [0, 1] ∋ t 7→ Pt of orthogonal projections such

that P0 = P , P1 = Q, and

arcsin
(
‖P −Q‖

)
=

∫ 1

0
‖Ṗτ‖ dτ .

Proof. Since RanP and RanQ are equivalently positioned, there is a direct

rotation U = exp(JΘ) taking RanP to RanQ, where Θ is the operator

angle associated with RanP and RanQ and J is a suitable partial isometry,

see Proposition 1.10 and equation (1.15). In particular, the operator JΘ

is skew-symmetric, satisfies ‖JΘ‖ = ‖Θ‖ ≤ π/2, and is off-diagonal with

respect to RanP ⊕ RanP⊥. Now, set Y := JΘ and apply Lemma 5.5.

The triangle inequality for the maximal angle between closed subspaces

is now to a direct consequence of Proposition 5.4 and Corollary 5.7.
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Proposition 5.8 ([16, Corollary 4]; see also [8, Lemma 2.15] and [36]). Let

P , Q, and R be orthogonal projections in a Hilbert space H. Then

(5.12) arcsin
(
‖P −Q‖

)
≤ arcsin

(
‖P −R‖

)
+ arcsin

(
‖R−Q‖

)
.

Proof. Clearly, we may assume that the right-hand side of (5.12) is less than

π/2. In particular, RanP and RanR, as well RanR and RanQ, are in the

acute-angle case (see Definition 1.9) and, therefore, equivalently positioned.

Hence, by Corollary 5.7 there exist C1-smooth paths [0, 1] ∋ t 7→ Rt and

[0, 1] ∋ t 7→ Qt of orthogonal projections such that R0 = P , R1 = R = Q0,

and Q1 = Q, as well as

(5.13) arcsin
(
‖P −R‖

)
=

∫ 1

0
‖Ṙτ‖ dτ , arcsin

(
‖R−Q‖

)
=

∫ 1

0
‖Q̇τ‖dτ .

Set Pt := Rt for t ∈ [0, 1] and Pt := Qt−1 for t ∈ [1, 2]. Then, the path

[0, 2] ∋ t 7→ Pt is piecewise C1-smooth with P0 = P and P2 = Q. Thus,

Proposition 5.4 implies that

arcsin
(
‖P −Q‖

)
≤
∫ 2

0
‖Ṗτ‖dτ =

∫ 1

0
‖Ṙτ‖ dτ +

∫ 1

0
‖Q̇τ‖ dτ ,

which, in view of (5.13), proves inequality (5.12).

For the sake of completeness, we close this chapter by discussing the

converse line of reasoning, which establishes the arcsine law by use of the

triangle inequality for the maximal angle. In this sense, the arcsine law and

the triangle inequality for the maximal angle turn out to be equivalent.

Remark 5.9. If the triangle inequality for the maximal angle is taken for

granted, Proposition 5.4 can also be shown directly by using the stan-

dard estimate from Lemma 1.16. Indeed, fix an arbitrary α > 1. Since

arcsin(x)/x → 1 as x → 0, one has arcsin(x) ≤ αx for sufficiently small

x ≥ 0. Hence, taking into account that the path τ 7→ Pτ is uniformly

continuous on [s, t], one can choose a partition s = τ0 < · · · < τn+1 = t,

n ∈ N0, of the interval [s, t] with sufficiently small mesh size such that

[τj, τj+1] ∋ τ 7→ Pτ is C1-smooth and

arcsin
(
‖Pτj+1 − Pτj‖

)
≤ α‖Pτj+1 − Pτj‖ for j = 0, . . . , n .
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The triangle inequality for the maximal angle and Lemma 1.16 then imply

that

arcsin
(
‖Pt − Ps‖

)
≤

n∑

j=0

arcsin
(
‖Pτj+1 − Pτj‖

)
≤ α

n∑

j=0

‖Pτj+1 − Pτj‖

≤ α

n∑

j=0

∫ τj+1

τj

‖Ṗτ‖dτ = α

∫ t

s
‖Ṗτ‖ dτ .

Since α > 1 has been chosen arbitrarily, this proves the arcsine law.



Chapter 6

Smooth variations of spectral

subspaces

The present chapter is based on the joint work [37] with K. A. Makarov

published in Journal für die reine und angewandte Mathematik. The con-

siderations there are directly extended to unbounded operators here. Some

material has also been added, and some proofs have been modified.

We study the variation of spectral subspaces associated with self-adjoint

operators depending smoothly on a parameter. More precisely, let

I ∋ t 7→ Bt

be a C1-smooth path of possibly unbounded self-adjoint operators (cf. Sec-

tion 1.6) such that the spectrum of each Bt is separated into two disjoint

components, that is,

spec(Bt) = ωt ∪ Ωt with dist(ωt,Ωt) > 0 .

Under the additional assumption that the spectral components depend up-

per semicontinuously on the parameter (see Definition 6.2 below), based on

the arcsine law for C1-smooth paths of orthogonal projections discussed in

Chapter 5, we obtain the following a posteriori type bound on the maxi-

mal angle between the corresponding spectral subspaces (see Theorem 6.10

75
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below):

arcsin
(
‖Pt − Ps‖

)
≤ π

2

∫ t

s

‖Ḃτ‖
dist(ωτ ,Ωτ )

dτ whenever s ≤ t .

In the setting of unbounded operators Bt, this bound turns out to be sharp in

the sense that equality can be attained, see Lemma 6.11 below. However, the

constant π/2 in the estimate above is still optimal if the considerations are

restricted to bounded operators Bt, see Remark 6.12. Corollary 6.13 below

treats the particular case where the spectral components are additionally

assumed to be subordinated or annular separated.

Finally, in Section 6.2 below, the above result is applied in the situation

of the subspace perturbation problem discussed in Chapter 2. A conjecture

on the optimality of the above estimate in this situation is also formulated

there, see Conjecture 6.19 below and the corresponding discussion.

6.1 Paths of self-adjoint operators with separated

spectra

In this section, we study paths of spectral projections associated with iso-

lated components of the spectra of self-adjoint operators depending smoothly

on a parameter. The objective is to obtain efficient estimates on the corre-

sponding maximal angles in terms of the evolution of the operator path and

the distance between the spectral components.

For notational setup we fix the following assumptions.

Hypothesis 6.1. Let I ∋ t 7→ Bt be a continuous path of self-adjoint opera-

tors on a Hilbert space H. Suppose that the spectrum of each Bt is separated

into two disjoint components, that is,

spec(Bt) = ωt ∪ Ωt with dist(ωt,Ωt) > 0 .

Finally, denote by Pt := EBt(ωt), t ∈ I, the spectral projection for Bt asso-

ciated with the set ωt.

Due to the upper semicontinuity of the spectrum (see Lemma 1.17),

spec(Bt) does not change by much for small variations of the parameter t.

In view of Corollary 1.18, it is natural to require that the same holds for the
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spectral components ωt and Ωt. In this regard, we recall the concept of an

upper semicontinuous family of sets depending on a parameter.

Definition 6.2. A family of sets {∆t}t∈I , ∆t ⊂ R, with I ⊂ R an interval

is said to be upper semicontinuous if for every ε > 0 and every s ∈ I there

is δ > 0 such that

∆t ⊂ Oε(∆s) for t ∈ I with |t− s| < δ .

It turns out that, in the situation of Hypothesis 6.1, the upper semi-

continuity of the families {ωt}t∈I and {Ωt}t∈I is necessary and sufficient for

the corresponding path t 7→ Pt of spectral projections to be continuous in

norm, see Lemma 6.6 below and the discussion thereafter; see also Lemma

6.7. Note that the family {spec(Bt)}t∈I is, by Lemma 1.17, upper semicon-

tinuous in the sense of Definition 6.2. However, this does not guarantee that

the two families {ωt}t∈I and {Ωt}t∈I are upper semicontinuous as well. This

depends on the choice of the components ωt and Ωt.

A corresponding choice of the spectral components is demonstrated in

the following lemma, the proof of which is purely technical.

Lemma 6.3. Let I ∋ t 7→ Bt be a continuous path of self-adjoint operators.

Suppose that for some s ∈ I the spectrum of Bs is separated into two disjoint

components, that is,

spec(Bs) = ωs ∪ Ωs with dist(ωs,Ωs) > 0 .

Moreover, assume that for all t ∈ I there is rt with 0 < rt < dist(ωs,Ωs)/2

and

(6.1) spec(Bt) ⊂ Ort

(
spec(Bs)

)
.

Then:

(a) The spectrum of each Bt is separated as

spec(Bt) = ωt ∪ Ωt ,

where

(6.2) ωt := spec(Bt) ∩ Ort(ωs) and Ωt := spec(Bt) ∩ Ort(Ωs)
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are nonempty closed sets.

(b) The two families {ωt}t∈I and {Ωt}t∈I are upper semicontinuous.

Proof. (a). In view of (6.1), it remains to show that ωt and Ωt are nonempty.

Suppose that ωt = ∅ or Ωt = ∅ for some t > s. The case t < s can be

treated analogously. Define

τ0 := inf{τ ∈ [s, t] | ωτ = ∅ or Ωτ = ∅} ≤ t .

It follows from Corollary 1.18 and the continuity of the path τ 7→ Bτ that

τ0 > s. In particular, one has ωτ 6= ∅ 6= Ωτ whenever s ≤ τ < τ0.

Let ε > 0 such that rτ0+ε < dist(ωs,Ωs)/2, and choose τ with s ≤ τ < τ0

and ‖Bτ − Bτ0‖ < ε. The upper semicontinuity of the spectrum (Lemma

1.17) implies that

ωτ ∪ Ωτ ⊂ Oε(ωτ0) ∪ Oε(Ωτ0) .

By (6.2) one has Oε(ωτ0) ⊂ Orτ0+ε(ωs) and Oε(Ωτ0) ⊂ Orτ0+ε(Ωs). Since

rτ0 +ε < dist(ωs,Ωs)/2 and the sets ωτ and Ωτ are nonempty, one concludes

that ωτ0 and Ωτ0 are nonempty as well. In particular, one has τ0 < t.

Now, choose an arbitrary τ ∈ (τ0, t) with ‖Bτ − Bτ0‖ < ε. Taking into

account that rτ0 + ε < dist(ωs,Ωs)/2, Corollary 1.18 then implies that

ωτ = spec(Bτ ) ∩ O‖Bτ−Bτ0‖(ωτ0) and Ωτ = spec(Bτ ) ∩O‖Bτ−Bτ0‖(Ωτ0)

are nonempty. We have thus shown that there is τ1 > τ0 such that ωτ and

Ωτ are nonempty whenever s ≤ τ ≤ τ1, which is a contradiction to the

definition of τ0. Hence, ωt and Ωt are nonempty for all t, so that (a) holds.

(b). Let t ∈ I be arbitrary, and choose ε > 0 with rt+ε < dist(ωs,Ωs)/2.

By hypothesis, there is δ > 0 such that ‖Bτ −Bt‖ < ε whenever |τ − t| < δ.

It then follows from the upper semicontinuity of the spectrum (Lemma 1.17)

that

ωτ ∪ Ωτ ⊂ O‖Bτ−Bt‖(ωt ∪ Ωt) ⊂ Oε(ωt) ∪ Oε(Ωt) , |τ − t| < δ .

By (6.2) one has Oε(ωt) ⊂ Ort+ε(ωs) and Oε(Ωt) ⊂ Ort+ε(Ωs). Taking

into account the inequality rt + ε < dist(ωs,Ωs)/2, one deduces from the

definition of ωτ and Ωτ that ωτ ∩ Oε(Ωt) = ∅ = Ωτ ∩ Oε(ωt) whenever
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|τ − t| < δ. Hence,

ωτ ⊂ Oε(ωt) and Ωτ ⊂ Oε(Ωt) whenever |τ − t| < δ ,

which proves (b).

In the situation of Hypothesis 6.1, the family {spec(Bt)}t∈I even is con-

tinuous in the following sense: For arbitrary s ∈ I and ε > 0 there is δ > 0

such that

spec(Bt) ⊂ Oε

(
spec(Bs)

)
and spec(Bs) ⊂ Oε

(
spec(Bt)

)

for all t ∈ I with |t− s| < δ, see Lemma 1.17 and the discussion thereafter.

If, in addition, the families {ωt}t∈I and {Ωt}t∈I are assumed to be upper

semicontinuous, then the following observation shows that these two families

are continuous in the same sense as well.

Remark 6.4. In addition to Hypothesis 6.1, suppose that the families {ωt}t∈I
and {Ωt}t∈I are upper semicontinuous. Let s ∈ I and 0 < ε < dist(ωs,Ωs)/2

be arbitrary. Choose δ > 0 such that for all t ∈ I with |t − s| < δ one has

‖Bt −Bs‖ < ε, as well as

ωt ⊂ Oε(ωs) and Ωt ⊂ Oε(Ωs) .

The upper semicontinuity of the spectrum (Lemma 1.17) implies that

ωs ∪ Ωs ⊂ O‖Bt−Bs‖(ωt ∪ Ωt) ⊂ Oε(ωt) ∪ Oε(Ωt) , |t− s| < δ .

Taking into account that 2ε < dist(ωs,Ωs), the inclusions Oε(ωt) ⊂ O2ε(ωs)

and Oε(Ωt) ⊂ O2ε(Ωs) yield that ωs∩Oε(Ωt) = ∅ = Ωs∩Oε(ωt). Therefore,

one has

ωs ⊂ Oε(ωt) and Ωs ⊂ Oε(Ωt) whenever |t− s| < δ .

The preceding observation can be used to show that the choice (6.2) of

the components ωt and Ωt in Lemma 6.3 is unique in the following sense: In

the situation of Lemma 6.3, let {σt}t∈I and {Σt}t∈I be upper semicontinuous
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families such that

spec(Bt) = σt ∪Σt and dist(σt,Σt) > 0 for t ∈ I .

If σs = ωs and Σs = Ωs, then one has σt = ωt and Σt = Ωt for all t ∈ I.

This can be shown with a technique similar to the one used for Lemma

6.3 (a). We omit the proof here since we do not really need this statement.

Nevertheless, the inclusion (6.1) can locally always be satisfied for continuous

paths of operators with separated spectra, so that Lemma 6.3 describes the

typical situation for our considerations.

One immediate advantage of upper semicontinuous separated compo-

nents is that the distance between the components depends continuously on

the parameter.

Lemma 6.5 (cf. [36, Lemma C.1]). Assume Hypothesis 6.1. Suppose, in ad-

dition, that the two families {ωt}t∈I and {Ωt}t∈I are upper semicontinuous.

Then, the mapping I ∋ t 7→ dist(ωt,Ωt) is continuous.

Proof. Let s ∈ I and 0 < ε < dist(ωs,Ωs)/2 be arbitrary. Taking into

account Remark 6.4, there is δ > 0 such that for all t ∈ I with |t − s| < δ

one has

(6.3) ωt ⊂ Oε(ωs) and Ωt ⊂ Oε(Ωs)

as well as

(6.4) ωs ⊂ Oε(ωt) and Ωs ⊂ Oε(Ωt) .

Combining (6.3) and (6.4) yields that

dist(ωs,Ωs)− 2ε ≤ dist(ωt,Ωt) ≤ dist(ωs,Ωs) + 2ε

whenever |t− s| < δ, which proves the claim.

For the study of the variation of the spectral subspaces RanPt in Hypoth-

esis 6.1, it is natural to require that the path t 7→ Pt of spectral projections

is C1-smooth in norm, or at least continuous. The following lemma shows

that this is the case only if the corresponding separated spectral components

depend upper semicontinuously on the parameter.
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Lemma 6.6. Assume Hypothesis 6.1. If the path I ∋ t 7→ Pt is continuous

in norm, then the families {ωt}t∈I and {Ωt}t∈I are upper semicontinuous.

Proof. Let s ∈ I and 0 < ε < dist(ωs,Ωs)/2 be arbitrary. By hypothesis,

there is δ > 0 such that for all t ∈ I with |t− s| < δ one has

(6.5) ‖Bt −Bs‖ <
ε

2
and ‖Pt − Ps‖ ≤

√
2

2
.

Fix an arbitrary t ∈ I with |t− s| < δ, and set V := Bt −Bs ∈ L(H). Let

V =

(
V0 W

W ∗ V1

)
and Bs =

(
A0 0

0 A1

)

with Dom(Bs) = Dom(A0)⊕Dom(A1) be the representations of V and Bs as

2× 2 block operator matrices with respect to the orthogonal decomposition

H = RanPs ⊕ RanP⊥
s . In particular, one has

ωs = spec(A0) and Ωs = spec(A1) .

Since ‖Pt − Ps‖ ≤
√
2/2 < 1 by (6.5), it follows from Proposition 1.13

that there is a unique operator X ∈ L(RanPs,RanP
⊥
s ) such that RanPt is

the graph of X, that is, RanPt = G(RanPs,X). This operator X satisfies

(6.6) ‖X‖ =
‖Pt − Ps‖√

1− ‖Pt − Ps‖2
≤ 1 .

As a spectral subspace the graph G(RanPs,X) = RanPt is reducing for

Bt. Considering Dom(A0+V0) = Dom(A0), Dom(A1+V1) = Dom(A1), and

Bt = Bs + V =

(
A0 + V0 0

0 A1 + V1

)
+

(
0 W

W ∗ 0

)
,

it then follows from Theorem 4.7 that the operator Bt is similar to a block

diagonal operator Λ = Λ0⊕Λ1 with respect to H = RanPs⊕RanP⊥
s , where

ωt = spec(Λ0) = spec(A0 + V0 +WX)

and

Ωt = spec(Λ1) = spec(A1 + V1 −W ∗X∗) .
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Since by (6.5) and (6.6) one has

‖V0 +WX‖ ≤ ‖V0‖+ ‖W‖ ‖X‖ ≤ 2‖V ‖ < ε ,

the upper semicontinuity of the spectrum (Lemma 1.17) yields that

ωt = spec(A0 + V0 +WX) ⊂ Oε

(
spec(A0)

)
= Oε(ωs) .

Analogously one obtains that

Ωt = spec(A1 + V1 −W ∗X∗) ⊂ Oε(Ωs) .

Since t ∈ I with |t − s| < δ has been chosen arbitrarily, this proves the

claim.

The sinΘ theorem guarantees that the converse of Lemma 6.6 is also

valid, that is, the path t 7→ Pt is continuous if the families {ωt}t∈I and

{Ωt}t∈I are upper semicontinuous. Indeed, let s ∈ I and 0 < ε < dist(ωs,Ωs)

be arbitrary. The upper semicontinuity then implies that there is δ > 0

such that ωt ⊂ Oε(ωs) and Ωt ⊂ Oε(Ωs) for t ∈ I with |t − s| < δ. In

particular, for those t one has dist(ωt,Ωs) ≥ d and dist(Ωt, ωs) ≥ d, where

d := dist(ωs,Ωs)− ε > 0. It now follows from the symmetric sinΘ theorem

(Proposition 3.7) that

(6.7) ‖Pt − Ps‖ ≤ π

2

‖Bt −Bs‖
dist(ωs,Ωs)− ε

, |t− s| < δ ,

from which one concludes that ‖Pt −Ps‖ → 0 as t → s. A similar reasoning

can be found in the proof of the particular case discussed in [8, Theorem

3.5].

If, in addition, the two paths t 7→ Bt and t 7→ Pt are assumed to be

C1-smooth, then one obtains from (6.7) the estimate

(6.8) ‖Ṗs‖ ≤ π

2

‖Ḃs‖
dist(ωs,Ωs)

, s ∈ I .

This follows by dividing both sides of (6.7) by |t − s|, taking the limit as

t → s, and finally letting ε approach zero.

A closer look at the proof of the sinΘ theorem shows that the upper

semicontinuity of the separated components ωt and Ωt does not only yield
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the continuity of the path t 7→ Pt, it is also sufficient for this path to inherit

smoothness of the path t 7→ Bt.

Lemma 6.7. In addition to Hypothesis 6.1, suppose that the two families

{ωt}t∈I and {Ωt}t∈I are upper semicontinuous. If the path I ∋ t 7→ Bt is

C1-smooth, then so is I ∋ t 7→ Pt, and for each t the derivative Ṗt is off-

diagonal with respect to the decomposition H = RanPt⊕RanP⊥
t . Moreover,

Y = Ṗt is a strong solution to the Sylvester equation

(6.9) Y Bt −BtY = P⊥
t Ḃt Pt − Pt Ḃt P

⊥
t .

Proof. Taking into account that Bs = Bt + (Bs − Bt) = Bt + Bs −Bt with

Bs −Bt ∈ L(H), it follows from Lemma 3.6 that for all s, t ∈ I the operator

Z = Pt − Ps is a strong solution to the Sylvester equation

(6.10) ZBs −BtZ = PtBs −Bt P
⊥
s − P⊥

t Bs −Bt Ps .

Let t0 ∈ I and 0 < d < dist(ωt0 ,Ωt0) be arbitrary. Since the families

{ωt}t∈I and {Ωt}t∈I are upper semicontinuous by hypothesis, there is δ > 0

such that for all s, t ∈ (t0 − δ, t0 + δ) ∩ I one has

dist(ωt,Ωs) ≥ d and dist(Ωt, ωs) ≥ d .

Furthermore, the difference Pt − Ps = PtP
⊥
s − P⊥

t Ps has an off-diagonal

representation as an operator from RanPs ⊕ RanP⊥
s to RanPt ⊕ RanP⊥

t .

Hence, for s, t ∈ (t0 − δ, t0 + δ) ∩ I, Corollary 3.5 implies that

(6.11) Pt −Ps =

∫

R

eiτBt
(
Pt Bs −Bt P

⊥
s −P⊥

t Bs −Bt Ps

)
e−iτBsfd(τ) dτ ,

where the integral is understood in the weak sense and fd ∈ L1(R) is any

function as in Corollary 3.5.

We already know that Pt converges to Ps in norm as t approaches s,

cf. inequality (6.7) above. Moreover, it follows from the classic theory of

strongly continuous semigroups that for all τ ∈ R the unitary operator eiτBt

converges to eiτBs in norm as t approaches s, see, e.g., [41, Corollary 3.1.3]

and [43, Theorem VIII.7]; this also follows from the more recent results on

operator continuous functions due to Aleksandrov and Peller, see [3, Section

8]. Taking into account that fd ∈ L1(R), one now concludes from (6.11) by
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Lebesgue’s dominated convergence theorem that the derivative Ṗs exists in

norm sense with

(6.12) Ṗs =

∫

R

eiτBs

(
P⊥
s Ḃs Ps −Ps Ḃs P

⊥
s

)
e−iτBsfd(τ) dτ , |s− t0| < δ ,

cf. also the proofs of Lemmas 1.16 and 3.12.

One verifies by inspection that Ṗs is off-diagonal with respect to the

decomposition H = RanPs⊕RanP⊥
s . Moreover, comparing (6.12) with the

representation (3.13) in Corollary 3.5, one infers that Y = Ṗs is a strong

solution to (6.9) with s instead of t; this also follows by dividing both sides

of (6.10) by t− s and taking the limit as t approaches s.

Finally, again by Lebesgue’s dominated convergence theorem, one de-

duces from representation (6.12) that the path t 7→ Ṗt is continuous in norm

on (t0 − δ, t0 + δ) ∩ I, so that t 7→ Pt is C1-smooth. This completes the

proof.

Remark 6.8. Taking into account the Sylvester equation (6.9) in Lemma 6.7,

inequality (6.8) now also follows from the corresponding representation of

the derivative given by Corollary 3.5.

Remark 6.9. Lemma 6.7 can also be shown by means of the Daleckĭı-Krĕın

differentiation formula from [17], see [37, Theorem 2.2 and Corollary 2.4].

The corresponding proof is more elegant, but requires the double operator

integral calculus. A survey on this topic can be found, for example, in [14].

Yet another proof is available if the family {ωt}t∈I (resp. {Ωt}t∈I) con-
sists of bounded sets. In this case, the projection Pt (resp. P⊥

t ) can be

represented as a contour integral for the resolvent of Bt, see [36, Lemma

D.1]. The corresponding reasoning is essentially the same as the one in

[25, Theorem II.5.4].

We are now ready to turn to the main result of this chapter.

Theorem 6.10 (see [37, Theorem 2.2]). Assume Hypothesis 6.1. Suppose,

in addition, that the families {ωt}t∈I and {Ωt}t∈I are upper semicontinuous

and that the path I ∋ t 7→ Bt is C1-smooth in norm. Then

arcsin
(
‖Pt − Ps‖

)
≤ π

2

∫ t

s

‖Ḃτ‖
dist(ωτ ,Ωτ )

dτ whenever s ≤ t .
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Proof. By Lemma 6.7, the path I ∋ t 7→ Pt is C1-smooth. The claim then

follows by combining the arcsine law (Proposition 5.4) and inequality (6.8).

The following lemma shows that the estimate in Theorem 6.10 is sharp

in the sense that equality can be attained. The corresponding example is

based on Lemma 5.5 with a suitable choice of the operator Y ∈ L(H).

Lemma 6.11 (cf. [37, Remark 2.3]). Let I ⊂ R be an arbitrary interval.

Then, there exist non-empty closed subsets ω and Ω of R with dist(ω,Ω) = 1

and a C1-smooth path I ∋ t 7→ Bt of (unbounded) self-adjoint operators such

that

(i) the spectrum of each Bt is separated as

spec(Bt) = ω ∪ Ω ;

and

(ii) one has

arcsin
(
‖Pt − Ps‖

)
=

π

2

∫ t

s
‖Ḃτ‖ dτ whenever s ≤ t ,

where Pt := EBt(ω), t ∈ I, denotes the spectral projection for Bt asso-

ciated with the spectral component ω.

Proof. By reparametrization we may restrict the considerations to the case

I = [0, 1], cf. Remark 5.6.

Let A0, A1, X, and K be as in Remark 3.3, and set ω := spec(A0) and

Ω := spec(A1). In particular, one has

dist(ω,Ω) = 1 .

On H := ℓ2 ⊕ ℓ2 define the self-adjoint operator A := A0 ⊕ A1 with

Dom(A) := Dom(A0) ⊕ Dom(A1). Moreover, let the bounded operators Y

and R on H be given by

Y :=
2

π
·
(

0 −X∗

X 0

)
and R :=

2

π
·
(

0 K∗

K 0

)
.
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Since X is a strong solution to the Sylvester equation XA0−A1X = K, the

operator Z = −X∗ is a strong solution to ZA1 − A0Z = K∗, cf. equation

(3.3). Thus, in view of (3.10), one concludes that Y is a strong solution to

the Sylvester equation

Y A−AY = R

satisfying

(6.13) ‖Y ‖ =
π

2
‖R‖ =

π

2
.

It then follows from Lemma 3.12 that the path

[0, 1] ∋ t 7→ Bt := exp(tY )A exp(−tY ) , Dom(Bt) := Dom(A) ,

is C1-smooth with Ḃt = exp(tY )R exp(−tY )|Dom(A).

Since exp(tY ) is unitary, the spectrum of each Bt clearly is separated as

spec(Bt) = spec(A) = ω ∪Ω, so that (i) holds. Moreover, one has

(6.14) ‖Ḃt‖ = ‖R‖ , t ∈ [0, 1] .

On the other hand, Lemma 5.5 implies that the corresponding path of

spectral projections

[0, 1] ∋ t 7→ Pt = EBt(ω) = exp(tY )EA(ω) exp(−tY )

is C1-smooth with

(6.15) arcsin
(
‖Pt − Ps‖

)
=

∫ t

s
‖Ṗτ‖dτ = ‖Y ‖ (t− s) whenever s ≤ t .

The claim (ii) now follows by combining (6.13)–(6.15).

Remark 6.12. For paths t 7→ Bt of bounded self-adjoint operators, the con-

stant π/2 in the estimate in Theorem 6.10 is still optimal. This can be seen

by truncating the above example to the finite-dimensional case, cf. Remark

3.3.
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Favourable geometry

Although the estimate in Theorem 6.10 is optimal in the sense of Lemma 6.11

and Remark 6.12, one may obtain a stronger result if additional information

on the mutual disposition of the spectral sets ωt and Ωt is available. Using

the original Davis-Kahan symmetric sinΘ theorem (see Remark 3.8), we

immediately arrive at the following corollary to Theorem 6.10; in fact, it is

a corollary rather to the proof of Theorem 6.10 than to its actual statement.

Corollary 6.13. In addition to the hypotheses of Theorem 6.10, assume

that for all t ∈ I the convex hull of one of the spectral components ωt and

Ωt is disjoint from the other component, that is, conv(ωt) ∩ Ωt = ∅ or vice

versa. Then

arcsin
(
‖Pt − Ps‖

)
≤
∫ t

s

‖Ḃτ‖
dist(ωτ ,Ωτ )

dτ whenever s ≤ t .

As in Lemma 6.11, the result of Corollary 6.13 is sharp, but this time

also in the setting of bounded self-adjoint operators Bt. In the particular

case where the spectral components ωt and Ωt are subordinated, that is,

supωt < inf Ωt or vice versa, we even have the following illustrative example

(see [37, Remark 2.5]):

Let [0, 1] ∋ t 7→ Pt be a C1-smooth path of orthogonal projections as in

Lemma 5.5, and set Bt := Pt, ωt := {1}, and Ωt := {0}. Then, one has

spec(Bt) = ωt ∪ Ωt, dist(ωt,Ωt) = 1, and

arcsin
(
‖Pt − Ps‖

)
=

∫ t

s
‖Ṗτ‖ dτ =

∫ t

s

‖Ḃτ‖
dist(ωτ ,Ωτ )

dτ

whenever s ≤ t.

6.2 Application to the subspace perturbation prob-

lem

In this section, we apply Theorem 6.10 in the context of the subspace per-

turbation problem discussed in Chapter 2.

For convenience, we recall the following assumptions.

Hypothesis 6.14. Let A be a self-adjoint operator on a Hilbert space H
such that the spectrum of A is separated into two disjoint components, that
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is,

spec(A) = σ ∪ Σ with d := dist(σ,Σ) > 0 .

Let V ∈ L(H) be self-adjoint. Finally, denote by

P := EA(σ) and Q := EA+V

(
Od/2(σ)

)

the spectral projections for A and A + V associated with the sets σ and

Od/2(σ), respectively.

The main idea for applying Theorem 6.10 in the situation of Hypothesis

6.14 is to introduce a coupling parameter on the perturbation, that is, to

consider the C1-smooth path

[0, 1] ∋ t 7→ Bt := A+ tV , Dom(Bt) := Dom(A) ,

cf. Example 1.15 (a). Recall that Ḃt = V |Dom(A). For t ∈ [0, 1] define

(6.16) ωt := spec(Bt) ∩Od/2(σ) and Ωt := spec(Bt) ∩ Od/2(Σ) ,

and set Pt := EBt(ωt).

Under the additional assumption that for all t ∈ [0, 1] there is rt with

0 < rt < d/2 and

(6.17) spec(Bt) ⊂ Ort(spec(A)) ,

the spectrum of each Bt is separated as spec(Bt) = ωt ∪ Ωt, and the two

families {ωt}t∈[0,1] and {Ωt}t∈[0,1] are upper semicontinuous, see Lemma 6.3.

In this case, the path [0, 1] ∋ t 7→ Pt is C1-smooth by Lemma 6.7, and,

taking into account that P0 = P and P1 = Q, Theorem 6.10 yields that

(6.18) arcsin
(
‖P −Q‖

)
≤ π

2
‖V ‖

∫ 1

0

dτ

dist(ωτ ,Ωτ )
.

The author’s guess is that estimate (6.18) is sharp in the sense that

equality can be attained, or that at least the constant π/2 in (6.18) is opti-

mal. Yet, no rigorous proof of this guess is available so far. This is discussed

in more detail after Remark 6.17 below.

Using a priori knowledge on the distance between the spectral compo-

nents ωt and Ωt, we arrive at the following result.
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Theorem 6.15 ([37, Theorems 3.2 and 3.3]; see also [8, Theorem 3.5]).

Assume Hypothesis 6.14.

(a) If V satisfies ‖V ‖ < cgend, where cgen := sinh(1)
e < 1

2 is the root of the

equation
π

4
log
( 1

1− 2x

)
=

π

2
,

then

arcsin
(
‖P −Q‖

)
≤ π

4
log
( d

d− 2‖V ‖
)
<

π

2
.

(b) Suppose, in addition, that the perturbation V is off-diagonal with re-

spect to the orthogonal decomposition H = RanEA(σ) ⊕ RanEA(Σ),

that is,

EA(σ)V EA(σ) = 0 = EA(Σ)V EA(Σ) .

If ‖V ‖ < coffd, where coff <
√
3/2 is the unique root of the equation

(6.19)

∫ x

0

dτ

1− 2τ tan
(
1
2 arctan(2τ)

) = 1 ,

then

arcsin
(
‖P −Q‖

)
≤ π

2

∫ ‖V ‖
d

0

dτ

1− 2τ tan
(
1
2 arctan(2τ)

) <
π

2
.

Proof. (a). Let ‖V ‖ < cgend < d/2. Then, the inclusion (6.17) above

holds with rt = t‖V ‖ < d/2, see Lemma 1.17. In particular, the spectral

components ωt and Ωt in (6.16) satisfy dist(ωt,Ωt) ≥ d − 2t‖V ‖ > 0. In

view of estimate (6.18), it remains to observe that

∫ 1

0

‖V ‖
d− 2τ‖V ‖ dτ =

1

2
log
( d

d− 2‖V ‖
)
<

1

2
log
( 1

1− 2cgen

)
= 1 .

(b). Since the improper integral

∫ √
3

2

0

dτ

1− 2τ tan
(
1
2 arctan(2τ)

) = ∞

diverges, the root coff of equation (6.19) is well defined and less than
√
3/2.

Thus, if ‖V ‖ < coffd <
√
3d/2, Lemma 1.21 implies that the inclusion (6.17)
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holds with rt = δtV < d/2, where

δtV = t‖V ‖ tan
(1
2
arctan

2t‖V ‖
d

)
.

In particular, the components ωt and Ωt satisfy dist(ωt,Ωt) ≥ d−2δtV . Now,

observe that

∫ 1

0

‖V ‖
d− 2δtV

dτ =

∫ ‖V ‖
d

0

dτ

1− 2τ tan
(
1
2 arctan(2τ)

)

<

∫ coff

0

dτ

1− 2τ tan
(
1
2 arctan(2τ)

) = 1 .

In view of estimate (6.18), this proves (b).

Remark 6.16 (cf. [37, Section 3]). The estimates obtained in Theorem 6.15

are stronger than the previously known estimates (2.22) and (2.30) derived

from the sinΘ theorem. Indeed, one has

π

4
log
( d

d− 2‖V ‖
)
< arcsin

(π
2

‖V ‖
d− ‖V ‖

)

for 0 < ‖V ‖ ≤ 2d
2+π < cgend, as well as

π

2

∫ ‖V ‖
d

0

dτ

1− 2τ tan
(
1
2 arctan(2τ)

) < arcsin
(π
2

‖V ‖
d− δV

)

for 0 < ‖V ‖ ≤ cπd < coffd with δV = ‖V ‖ tan
(
1
2 arctan

2‖V ‖
d

)
and cπ as

in (2.30). The corresponding proofs of these inequalities are elementary, so

that we omit them. They can be found in [37, Proposition A.1].

Remark 6.17. It is clear from Corollary 6.13 that the estimates in Theorem

6.15 can be strengthened if the spectral components σ and Σ are additionally

assumed to be subordinated or annular separated. However, the resulting

estimates are weaker than the ones discussed in Chapter 2 for these cases,

so that we omit the details here.

On the optimality of estimate (6.18)

The presented way to obtain estimate (6.18) (resp. Theorem 6.10) essentially

consists of two steps: the arcsine law for the path t 7→ Pt (Proposition
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5.4) and the bound (6.8) on the norm of the derivative Ṗt. Especially the

accuracy of the latter influences the quality of the whole estimate. Thus,

in order to conclude that (6.18) is sharp, or that at least the constant π/2

there is optimal, one has to find examples of operators A and V for which the

bound (6.8) on the corresponding derivative Ṗt is accurate simultaneously

for all t. At this point, it is natural to start with the consideration of

parameters t close to 0.

Recall that, in the current situation, for t = 0 the operator Y = Ṗ0 is a

strong solution to the Sylvester equation

(6.20) Y A−AY = P⊥V P − PV P⊥ ,

see Lemma 6.7. Moreover, Ṗ0 is off-diagonal with respect to the decompo-

sition H = RanP ⊕ RanP⊥. In view of Corollary 3.5, this again motivates

to consider the sharpness example for the Sylvester equation discussed in

Chapter 3:

Let A0, A1, X, and K as in Remark 3.3. On H := ℓ2 ⊕ ℓ2 define

(6.21) V :=
2

π
·
(

0 K∗

K 0

)
and A :=

(
A0 0

0 A1

)

with Dom(A) := Dom(A0)⊕Dom(A1). For this choice of A and V , it follows

from the Sylvester equation (6.20) and Corollary 3.5 that

Y = Ṗ0 =
2

π
·
(
0 X∗

X 0

)
,

with

‖Ṗ0‖ =
π

2
=

π

2
‖V ‖ =

π

2
‖Ḃ0‖ ,

cf. the proof of Lemma 6.11. Hence, in this case, the bound (6.8) on the

derivative Ṗt is sharp at least for t = 0. However, so far nothing is known

on the accuracy of the bound for t > 0.

Nevertheless, motivated by Remark 6.12, we can truncate the above

example to the finite-dimensional case and use numerical calculations to get

an impression of the accuracy of the bound (6.8) and the resulting estimate

(6.18) in this case. To this end, let Qn := EA([1, 2n]), n ∈ N, be the spectral
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projection for A associated with the interval [1, 2n]. Define

A(n) := A|RanQn and V (n) := QnV Qn|RanQn ,

and set B
(n)
t := A(n) + tV (n) for t ∈ [0, 1]. Furthermore, let

σ(n) := {2j | j = 1, . . . , n} and Σ(n) := {2j − 1 | j = 1, . . . , n} ,

so that

spec(A(n)) = σ(n) ∪ Σ(n) with dist(σ(n),Σ(n)) = 1 .

Numerical calculations suggest that the spectrum of each B
(n)
t is sepa-

rated as

spec(B
(n)
t ) = ω

(n)
t ∪ Ω

(n)
t ,

where ω
(n)
t ⊂ Ot/2(σ(n)), Ω

(n)
t ⊂ Ot/2(Σ(n)), and

(6.22) dist(ω
(n)
t ,Ω

(n)
t ) ≥ 1 .

Remark 6.18. One can show that the spectrum of each B
(n)
t is symmetrically

distributed around n + 1/2 and that the sum of two opposite eigenvalues

equals 2n+1. Moreover, numerical calculations suggest that the eigenvalues

of B
(n)
t corresponding to 1, . . . , n are shifted to the left as t increases, whereas

the ones corresponding to n + 1, . . . , 2n are shifted to the right. However,

for large n, the perturbation of most of the eigenvalues seems to be almost

negligible, so that dist(ω
(n)
t ,Ω

(n)
t ) is close to 1.

Based on inequality (6.22), it follows from estimate (6.18) that

(6.23) arcsin
(
‖EA(n)(σ(n))− EA(n)+tV (n)

(
O1/2(σ

(n))
)
‖
)
≤ π

2
‖V (n)‖t ≤ π

2
t

for 0 ≤ t ≤ 1, where we taken into account that ‖V (n)‖ ≤ ‖V ‖ = 1. Further

numerical calculations suggest that the left-hand side of (6.23) gets close to

πt/2 uniformly in t as n gets large, which would mean that the constant π/2

in estimate (6.18) is optimal.

The author’s guess is that the non-truncated example with A and V

as in (6.21) even yields equality in (6.18). However, at this moment, this

is pure speculation, so that the author contents himself with the following
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educated guess summarizing the preceding considerations.

Conjecture 6.19. Let ε > 0 be arbitrary. Then, there is a self-adjoint

operator A on some Hilbert space H with its spectrum separated as

spec(A) = σ ∪ Σ , dist(σ,Σ) = 1 ,

and a bounded self-adjoint operator V ∈ L(H), ‖V ‖ ≤ 1, such that for each

t ∈ [0, 1] the following holds:

(a) The spectrum of A+ tV is separated as

spec(A+ tV ) = ωt ∪Ωt ,

where ωt ⊂ Ot/2(σ), Ωt ⊂ Ot/2(Σ), and

dist(ωt,Ωt) ≥ 1 .

(b) One has

(π
2
− ε
)
t ≤ arcsin

(
‖EA(σ)− EA+tV

(
O1/2(σ)

)
‖
)
≤ π

2
t .

In particular, the constant π/2 in (6.18) is optimal.

Based in Conjecture 6.19, we have the following two closing observations:

First, the maximal angle for the rotation of the spectral subspaces can

be near π/2 and, at the same time, the gap in the spectrum of the perturbed

operator does not shrink. In fact, allowing parameters t > 1, one can observe

numerically in the above examples that it may happen that the gap size

in the spectrum of A + tV is still at least 1, whereas the maximal angle

between the corresponding spectral subspaces equals π/2. This behaviour is

rather unexpected and seems to be distinctive for the case of generic spectral

disposition; a similar behaviour cannot be observed in the particular case of

subordinated or annular separated spectral components, cf. [30, Theorem 2].

However, this does not contradict the conjectures on the optimal constants

copt and copt-off mentioned in Chapter 2 since in the examples above the norm

of the perturbation exceeds
√
3/2 considerably when the maximal angle gets

close to π/2.
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Second, the rotation of the spectral subspaces can be strong when at the

same time the perturbation of the spectrum is rather weak. Conversely, the

following example suggests that the rotation of the subspaces tends to be

rather weak if the perturbation of the spectrum is strong:

Let A, V , σ, and Σ as in Example 1.22. Set d := dist(σ,Σ) = 1, and

suppose that 0 < ‖V ‖ = α <
√
3/2. In this case, one can easily verify that

RanEA+V

(
O1/2(σ)

)
= G(Ran EA(σ),X)

with

X =
1

‖V ‖ ·
(

0 δV

δV 0

)
, δV = ‖V ‖ tan

(1
2
arctan

(
2‖V ‖

))
,

so that

arcsin
(
‖EA(σ)− EA+V

(
O1/2(σ)

)
‖
)
= arctan‖X‖ <

1

2
arctan

√
3 <

π

4
.

This observation together with Conjecture 6.19 reveals a potential dis-

advantage in the approach to combine a posteriori type estimates on the

rotation of subspaces with a priori bounds on the perturbation of the corre-

sponding spectral components. Both type of estimates may be optimal by

themselves, but it is unlikely that they are optimal at the same time. In

this regard, Conjecture 6.19 deserves further studies in order to shed some

light on this matter.



Chapter 7

The sin 2Θ theorem

In the present chapter, an analogue to the Davis-Kahan sin 2Θ theorem from

[21] is proved under a general spectral separation condition. This extends

the generic sin 2θ estimates recently shown by Albeverio and Motovilov in

[8]. The result is applied to the subspace perturbation problem discussed

in Chapter 2. The material here is taken to a large extent from Sections

1–3 of the author’s article [50] published in Integral Equations and Operator

Theory.

7.1 Introduction and main results

The main objective in this chapter is to show the following variant of the

Davis-Kahan sin 2Θ theorem.

Theorem 7.1. Let A be a self-adjoint operator on a Hilbert space H such

that the spectrum of A is separated into two disjoint components, that is,

spec(A) = σ ∪ Σ with d := dist(σ,Σ) > 0 .

Moreover, let V be a bounded self-adjoint operator on H, and let Q be an

orthogonal projection in H onto a reducing subspace for A + V . Then, the

operator angle Θ = Θ(EA(σ), Q) associated with the subspaces RanEA(σ)

and RanQ satisfies

(7.1) ‖sin 2Θ‖ ≤ π

2
· 2 ‖V ‖

d
.

95
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It should be emphasized that the projection Q in Theorem 7.1 is not

assumed to be a spectral projection for A+ V . It is also worth mentioning

that the bound (7.1) is of an a priori type since the spectral separation

condition is imposed on the unperturbed operator A only. By switching

the roles of A and A + V , one may impose the analogous condition on the

perturbed operator A + V instead, which results in the corresponding a

posteriori type estimate.

Theorem 7.1 is a direct analogue of the Davis-Kahan sin 2Θ theorem

from [21]. There, it is additionally assumed that the convex hull of one

of the spectral components σ and Σ is disjoint from the other component,

that is, conv(σ) ∩ Σ = ∅ or vice versa. The corresponding estimate is the

same as (7.1), except for the constant π/2 being replaced by 1, cf. estimate

(2.16). Note that the Davis-Kahan sin 2Θ theorem is formulated in [21] for

arbitrary unitary-invariant norms including the standard Schatten norms.

A corresponding extension of Theorem 7.1 is discussed in Section 4 of the

author’s article [50].

An immediate consequence of Theorem 7.1 is the generic sin 2θ estimate

recently proved by Albeverio and Motovilov in [8],

(7.2) sin 2θ ≤ π
‖V ‖
d

with θ = ‖Θ‖ = arcsin
(
‖EA(σ)−Q‖

)
.

This is due to the elementary inequality sin(2‖Θ‖) ≤ ‖sin 2Θ‖. In this

respect, we may call (7.1) the generic sin 2Θ estimate. It should be empha-

sized that, in contrast to (7.1), no extension of (7.2) to norms other than

the usual operator norm is at hand.

Clearly, the estimates (7.1) and (7.2) provide no useful information if

‖V ‖ ≥ d/π. On the other hand, for perturbations V satisfying ‖V ‖ < d/π,

the sin 2Θ estimate (7.1) implies that ‖sin 2Θ‖ < 1, so that the spectrum

of Θ has a gap around π/4. This means that there is an open interval

containing π/4 that belongs to the resolvent set of Θ, namely

(
α,

π

2
− α

)
⊂
[
0,

π

2

]
\ spec(Θ) with α :=

1

2
arcsin

(
π
‖V ‖
d

)
<

π

4
.

Note that Θ may a priori have spectrum both in [0, α] and
[
π
2 −α, π2

]
. This

depends on the reducing subspace for A+V that is considered, see Remark

7.4 below.
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In this regard, Theorem 7.1 is in general stronger than the corresponding

result of the sin 2θ estimate (7.2) since the latter provides information only

on the maximal angle θ = ‖Θ‖ between the subspaces Ran EA(σ) and RanQ,

cf. [8, Remark 4.2]. However, if it is known that θ ≤ π/4, then one has

‖sin 2Θ‖ = sin 2θ, so that, in this case, both estimates agree.

As an application to the subspace perturbation problem, we obtain the

following bound on the maximal angle between the corresponding spectral

subspaces for the unperturbed and perturbed operators A and A + V , re-

spectively. It plays an important role in the forthcoming Chapter 8.

Corollary 7.2 (cf. [8, Remark 4.4]). Let A and V be as in Theorem 7.1. If

‖V ‖ ≤ d/π, then

(7.3) arcsin
(
‖EA(σ)− EA+V

(
Od/2(σ)

)
‖
)
≤ 1

2
arcsin

(
π
‖V ‖
d

)
≤ π

4
.

The bound (7.3) in Corollary 7.2 is not optimal if ‖V ‖ > 4d
π2+4

, see

Theorem 8.9 below and also [8]. However, for perturbations V satisfying

‖V ‖ ≤ 4d
π2+4

, this bound on the maximal angle is the strongest one available

so far, cf. [8, Remark 5.5] and also Remark 8.11 below.

The present chapter is organized as follows: The proofs of Theorem

7.1 and Corollary 7.2 are given in Section 7.2. A variant of Corollary 7.2

corresponding to the original Davis-Kahan sin 2Θ theorem is also discussed

there, see Remark 7.8.

Section 7.3 is devoted to an alternative, straightforward proof of the

sin 2θ estimate (7.2) that is not based on Theorem 7.1 and is more direct

than the one by Albeverio and Motovilov in [8].

7.2 Proof of Theorem 7.1 and Corollary 7.2

We start with the following result, which has already played a crucial role

in the proof of the original Davis-Kahan sin 2Θ theorem in [21]. It is one of

the key ingredients for our proof of Theorem 7.1 as well.

Lemma 7.3 (cf. [21, Section 7]). Let P and Q be two orthogonal projections

in a Hilbert space H, and denote K := Q−Q⊥. Then

sin
(
2Θ(P,Q)

)
= sin

(
Θ(P,KPK)

)
.
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Proof. For the sake of completeness, we give a proof in the current notations.

In view of (1.10), one computes

(7.4)

sin2
(
2Θ(P,Q)

)
= 4S(P,Q)C(P,Q)

= 4
(
PQ⊥P + P⊥QP⊥)(PQP + P⊥Q⊥P⊥)

= 4PQ⊥PQP + 4P⊥QP⊥Q⊥P⊥ .

Denote R := KPK. Clearly, R is again an orthogonal projection in H since

K is self-adjoint and unitary. Using K = IH−2Q⊥ = 2Q−IH, one observes

that

(7.5)
4PQ⊥PQP = −4PQ⊥P⊥QP = P

(
IH − 2Q⊥)P⊥(2Q− IH

)
P

= PKP⊥KP = PR⊥P

and, similarly, that

(7.6) 4P⊥QP⊥Q⊥P⊥ = P⊥RP⊥ .

Combining (7.4)–(7.6) yields

sin2
(
2Θ(P,Q)

)
= PR⊥P + P⊥RP⊥ = S(P,R) = sin2

(
Θ(P,R)

)
,

which proves the claim by taking the square roots.

The preceding lemma can now be used to deduce the generic sin 2Θ

estimate from the symmetric sinΘ theorem discussed in Section 3.2.

Proof of Theorem 7.1. In essence, we follow the proof in [21, Section 7].

As in Lemma 7.3, let K denote the self-adjoint unitary operator on H
given by

K := Q−Q⊥ .

Since RanQ is reducing for A+ V , the splitting property

(7.7) Dom(A+ V ) =
(
Dom(A+ V ) ∩ RanQ

)
+
(
Dom(A+ V ) ∩RanQ⊥)

implies that K maps Dom(A + V ) = Dom(A) onto itself. It also follows

from (7.7) and the invariance of the subspaces RanQ and RanQ⊥ that one

has K(A+V )Kx = (A+V )x for x ∈ Dom(A), so that K(A+V )K = A+V .
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The operator

D := KAK on Dom(D) := Dom(A)

is therefore self-adjoint and satisfies

(7.8) D = K(A+ V )K −KVK = A+ V −KVK .

Clearly, the spectra of A and D coincide, that is,

spec(D) = spec(A) = σ ∪ Σ .

In particular, one has

(7.9) ED(σ) = KEA(σ)K and ED(Σ) = KEA(Σ)K .

Considering D by (7.8) as a perturbation of A, and taking into account

that dist(σ,Σ) = d > 0, it now follows from the symmetric sinΘ theorem

(Proposition 3.7) that

‖sin
(
Θ(EA(σ),ED(σ))

)
‖ ≤ π

2

‖V −KVK‖
d

≤ π

2
· 2 ‖V ‖

d
,

where the last inequality is due to the fact that ‖KVK‖ = ‖V ‖ since K is

unitary. In view of (7.9) and Lemma 7.3, this proves the claim.

If, in the situation of Theorem 7.1, it is known that θ = ‖Θ‖ ≤ π/4,

then one has ‖sin 2Θ‖ = sin 2θ. In this case, taking into account (1.12), the

bound (7.1) can equivalently be rewritten as

(7.10) θ = arcsin
(
‖EA(σ)−Q‖

)
≤ 1

2
arcsin

(
π
‖V ‖
d

)
,

see also [8, Remark 4.2].

However, the condition θ ≤ π/4 does not need to be satisfied for arbitrary

reducing subspaces for A+ V , even if the perturbation V is small in norm.

In fact, although the spectrum of Θ is known to have a gap around π/4

whenever ‖V ‖ < d/π, the following observation illustrates that the operator

angle Θ may a priori have spectrum everywhere else in the interval
[
0, π2

]
.
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Remark 7.4. In addition to the hypotheses of Theorem 7.1, assume that

‖V ‖ < d/π and that ‖Θ(P,Q)‖ < π/4, where P := EA(σ). Estimate (7.10)

then implies that

(7.11) spec
(
Θ(P,Q)

)
⊂ [0, α] with α :=

1

2
arcsin

(
π
‖V ‖
d

)
<

π

4
.

Taking into account that S(P,Q⊥) = C(P,Q), one has the identity

sin
(
Θ(P,Q⊥)

)
= cos

(
Θ(P,Q)

)
. It therefore follows from (7.11) that

(7.12) spec
(
Θ(P,Q⊥)

)
⊂
[π
2
− α,

π

2

]
.

Now, suppose that R is an orthogonal projection onto a reducing sub-

space for A+ V such that

RanR ∩ RanQ 6= {0} 6= RanR ∩RanQ⊥ .

Let x ∈ RanR∩RanQ with ‖x‖ = 1. Using the identity (P−R)x = (P−Q)x

and the inclusion (7.11), one observes that

(7.13)
〈x, sin2

(
Θ(P,R)

)
x〉 = 〈x, (P −R)2x〉 = 〈x, (P −Q)2x〉

= 〈x, sin2
(
Θ(P,Q)

)
x〉 ≤ sin2 α .

Taking into account (7.12), for y ∈ RanR ∩ RanQ⊥, ‖y‖ = 1, one obtains

in a similar way that

(7.14) 〈y, sin2
(
Θ(P,R)

)
y〉 = 〈y, sin2

(
Θ(P,Q⊥)

)
y〉 ≥ sin2

(π
2
− α

)
.

Combining (7.13) and (7.14) yields that Θ(P,R) has spectrum both in [0, α]

and
[
π
2 − α, π2

]
.

Thus, depending on the reducing subspace for A+ V that is considered,

the operator angle has spectrum in [0, α],
[
π
2 − α, π2

]
, or both.

In the situation of Corollary 7.2, the projection Q is chosen very specif-

ically, namely Q = EA+V

(
Od/2(σ)

)
. It turns out that, in this case, the con-

dition θ ≤ π/4 is automatically satisfied whenever ‖V ‖ ≤ d/π. Indeed, the

mapping [0, 1] ∋ t 7→ EA+tV

(
Od/2(σ)

)
is continuous in norm for ‖V ‖ < d/2

(see Section 6.2 and also [8, Theorem 3.5]), so that Corollary 7.2 is a direct

consequence of the following more general statement.
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Lemma 7.5 (cf. [21, Theorem 8.2]). Let A, V , and Q be as in Theorem 7.1,

and suppose that V satisfies ‖V ‖ ≤ d/π. If there is a norm continuous path

[0, 1] ∋ t 7→ Pt of orthogonal projections in H with P0 = EA(σ) and P1 = Q

such that RanPt is reducing for A+ tV for all t ∈ [0, 1], then

arcsin
(
‖EA(σ)−Q‖

)
≤ 1

2
arcsin

(
π
‖V ‖
d

)
≤ π

4
.

Proof. In view of Theorem 7.1 (or more precisely, estimate (7.10)), it suffices

to show the inequality

(7.15) arcsin
(
‖EA(σ)−Q‖

)
≤ π

4
.

Assume that (7.15) does not hold. Then, since the path [0, 1] ∋ t 7→ Pt

is assumed to be norm continuous with P0 = EA(σ) and P1 = Q, there is

τ ∈ (0, 1) such that

(7.16) arcsin
(
‖EA(σ)− Pτ‖

)
=

π

4
.

On the other hand, taking into account that RanPτ is reducing for A+ τV

and that τ‖V ‖ < d/π, it follows from inequality (7.10) that

arcsin
(
‖EA(σ)− Pτ‖

)
≤ 1

2
arcsin

(
π
‖τV ‖
d

)
<

π

4
,

which is a contradiction to (7.16). This shows inequality (7.15).

Remark 7.6. The bound (7.3) from Corollary 7.2 has already been men-

tioned in [8, Remark 4.4], but only for the particular case of perturbations

V satisfying ‖V ‖ ≤ e−1
2e d, where 4

π2+4
< e−1

2e < 1
π . There, the condition

θ ≤ π/4 has been ensured by use of the bound from Theorem 6.15 (a).

Remark 7.7 (cf. [8, Remark 5.5]). The bound from Corollary 7.2 is stronger

than the one from Theorem 6.15 (a). More precisely, one has

1

2
arcsin

(
π
‖V ‖
d

)
<

π

4
log
( d

d− 2‖V ‖
)

whenever 0 < ‖V ‖ ≤ d

π
.

Indeed, it is straightforward to verify that the difference

π

4
log
( 1

1− 2x

)
− 1

2
arcsin(πx) , 0 ≤ x ≤ 1

π
,
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attains its positive maximum at x = 4
π2+4

and its (unique) minimum at

x = 0.

We close this section with a discussion of Theorem 7.1 and Corollary 7.2

under the additional spectral separation conditions from [21].

Remark 7.8. In addition to the hypotheses of Theorem 7.1, assume that the

convex hull of one of the sets σ and Σ is disjoint from the other set. In

this case, the constant π/2 in the bound (7.1) can be replaced by 1, see

Remark 3.8. The resulting estimate is the bound from the Davis-Kahan

sin 2Θ theorem in [21], that is,

‖sin 2Θ‖ ≤ 2
‖V ‖
d

.

For the particular case of Q = EA+V

(
Od/2(σ)

)
, as in Corollary 7.2 (see also

[21, Theorem 8.2]) this bound can equivalently be rewritten as

(7.17) arcsin
(
‖EA(σ)− EA+V

(
Od/2(σ)

)
‖
)
≤ 1

2
arcsin

(
2
‖V ‖
d

)
<

π

4

whenever ‖V ‖ < d/2. It has already been stated by Davis in [20, Theorem

5.1] that this estimate is sharp in the sense that equality can be attained.

This can be seen from the following example of 2× 2 matrices: Let

A :=

(
1 0

0 −1

)
with σ := {1} and Σ := {−1} .

Obviously, one has d := dist(σ,Σ) = 2. For arbitrary x with 0 < x < 1 = d/2

consider

V :=

(
−x2 x

√
1− x2

x
√
1− x2 x2

)
.

It is easy to verify that ‖V ‖ = x and that spec(A+ V ) = {±
√
1− x2}.

Denote α := 1
2 arcsin(x) <

π
4 . Then, one has

(7.18)
1−

√
1− x2

x
=

1− cos(2α)

sin(2α)
= tanα and

1 +
√
1− x2

x
= cotα .

Using (7.18), a straightforward computation shows that

U∗(A+ V )U =

(√
1− x2 0

0 −
√
1− x2

)
where U =

(
cosα − sinα

sinα cosα

)
.
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In particular, this implies that

EA+V

(
O1(σ)

)
=

(
cosα

sinα

)(
cosα sinα

)
=

(
cos2 α sinα cosα

sinα cosα sin2 α

)
,

so that ‖Θ‖ = α and, therefore,

arcsin
(
‖EA(σ)− EA+V

(
O1(σ)

)
‖
)
=

1

2
arcsin(x) =

1

2
arcsin

(
2
‖V ‖
d

)
.

Hence, inequality (7.17) is sharp.

7.3 The generic sin 2θ estimate

In this section, we present an alternative, straightforward proof of the generic

sin 2θ estimate (7.2) that uses a different technique than the one presented

for Theorem 7.1 and, at the same time, is more direct than the one in [8].

It is worth mentioning that inequality (7.10), and therefore also Corollary

7.2, can be deduced from estimate (7.2) as well since ‖sin 2Θ‖ = sin 2θ

whenever θ = ‖Θ‖ ≤ π/4. An immediate advantage of the sin 2θ estimate

is that it can be formulated without the notion of the operator angle, see

Proposition 7.9 below.

In contrast to the proof of the a priori sin 2θ estimate (7.2) presented in

[8], the one given below is direct and is not deduced from the corresponding

a posteriori estimate. In addition, the key idea of the argument presented

here can easily be reduced to one single equation, namely equation (7.23)

below, which makes this proof very transparent.

Proposition 7.9 ([8, Corollary 4.3]). Let A, V , and Q be as in Theorem

7.1. Then

sin 2θ ≤ π
‖V ‖
d

,

where θ = arcsin
(
‖EA(σ) −Q‖

)
is the maximal angle between the subspaces

RanEA(σ) and RanQ.

Proof. The case θ = π/2 is obvious. Assume that θ < π/2, that is,

(7.19) ‖EA(σ)−Q‖ < 1 .
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Denote H0 := RanEA(σ) and H1 := H⊥
0 = RanEA(Σ), and let

V =

(
V0 W

W ∗ V1

)
and A =

(
A0 0

0 A1

)

with Dom(A) = Dom(A0)⊕Dom(A1) be the representations of V and A as

2×2 block operator matrices with respect to the decompositionH = H0⊕H1.

In view of inequality (7.19), Proposition 1.13 implies that there is a

unique operatorX ∈ L(H0,H1) such that RanQ = G(H0,X). This operator

X satisfies

(7.20) arctan(‖X‖) = arcsin
(
‖EA(σ)−Q‖

)
= θ .

Moreover, taking into account the identities Dom(A0 + V0) = Dom(A0),

Dom(A1 + V1) = Dom(A1), and

A+ V =

(
A0 + V0 0

0 A1 + V1

)
+

(
0 W

W ∗ 0

)
,

it follows from Corollary 4.9 that X is a strong solution to the operator

Riccati equation X(A0 + V0)− (A1 + V1)X +XWX −W ∗ = 0, that is,

Ran
(
X|Dom(A0)

)
⊂ Dom(A1)

and

(7.21) X(A0 + V0)g − (A1 + V1)Xg +XWXg −W ∗g = 0

for g ∈ Dom(A0).

Defining T ∈ L(H) by

T :=

(
IH0 −X∗

X IH1

)
,

a straightforward calculation shows that

(7.22) T ∗V T =

(
∗ ∗

V1X −XV0 −XWX +W ∗ ∗

)
.
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Denote P := EA(σ). Equations (7.21) and (7.22) then imply that

(7.23)
XA0g −A1Xg = V1Xg −XV0g −XWXg +W ∗g

=
(
P⊥T ∗V TP |H0

)
g

for g ∈ Dom(A0), where the restriction P⊥T ∗V TP |H0 is understood as an

operator from H0 to H1. Comparing equation (7.23) with the Sylvester

equation (3.2), it follows from the bound in Theorem 3.2 given by (3.6) and

(3.7) that

‖X‖ ≤ π

2

‖P⊥T ∗V TP‖
d

≤ π

2

(
1 + ‖X‖2

)‖V ‖
d

,

where we have taken into account that ‖T‖ = ‖T ∗‖ =
√

1 + ‖X‖2, cf.

equation (1.4). Since 2‖X‖/(1 + ‖X‖2) = 2 tan θ/(1 + tan2 θ) = sin(2θ) by

(7.20), this proves the claim.





Chapter 8

An optimization problem

In this chapter, we discuss a way to optimize the approach of iterating the

estimate on the maximal angle thus strengthening the results from Theorem

6.15. The corresponding material in Sections 8.1 and 8.2 is taken with only

minor changes from the author’s article [51], whereas the material in Sections

8.3 and 8.4 is new.

The main focus of this chapter is on general perturbations, which are

discussed in Sections 8.1 and 8.2 below. There, a constrained optimization

problem is formulated, whose solution provides an estimate on the maximal

angle between the corresponding spectral subspaces, see Definition 8.6 and

Proposition 8.7 below. The explicit solution to this problem is given in

Proposition 8.8, which leads to the main result of this chapter, Theorem 8.9.

The proof of Proposition 8.8 is provided in the separate Section 8.2. The

technique used there involves variational methods and may also be useful

for solving optimization problems of a similar structure. Problems of this

sort appear, for instance, when off-diagonal or semidefinite perturbations

are considered. These particular cases are discussed in Sections 8.3 and 8.4,

respectively.

8.1 Formulation of the optimization problem

For notational setup, we fix the following assumptions.

Hypothesis 8.1. Let A be as in Hypothesis 6.14, and let V ∈ L(H), V 6= 0,

107
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be self-adjoint. For 0 ≤ t < 1
2 , introduce

Bt := A+ td
V

‖V ‖ , Dom(Bt) := Dom(A) ,

and let Pt := EBt

(
Od/2(σ)

)
denote the spectral projection for Bt associated

with the open d
2-neighbourhood Od/2(σ) of σ.

Under Hypothesis 8.1, one has ‖Bt−A‖ = td < d
2 for 0 ≤ t < 1

2 . Hence, it

follows from Corollary 1.18 that the spectrum of each Bt is likewise separated

into two disjoint components, that is,

spec(Bt) = ωt ∪ Ωt for 0 ≤ t <
1

2
,

where

ωt = spec(Bt) ∩ Otd(σ) and Ωt = spec(Bt) ∩ Otd(Σ) ,

cf. Section 6.2. In particular, one has

(8.1) δt := dist(ωt,Ωt) ≥ (1− 2t)d > 0 for 0 ≤ t <
1

2
.

Moreover, the path
[
0, 12
)
∋ t 7→ Pt is continuous in norm, see, e.g., Lemma

6.7 and also [8, Theorem 3.5]; recall that by Lemma 6.3 (b) the spectral

components ωt and Ωt depend upper semicontinuously on the parameter.

Let t ∈
(
0, 12
)
be arbitrary, and let 0 = t0 < t1 < · · · < tn+1 = t with

n ∈ N0 be a finite partition of the interval [0, t]. Using the triangle inequality

for the maximal angle (Proposition 5.8), we obtain

(8.2) arcsin
(
‖P0 − Pt‖

)
≤

n∑

j=0

arcsin
(
‖Ptj − Ptj+1‖

)
.

Clearly, we can consider Btj+1 = Btj + (tj+1 − tj)d · V/‖V ‖ as a per-

turbation of Btj . Taking into account the a priori bound (8.1), we observe

that

(8.3)
‖Btj+1 −Btj‖
dist(ωtj ,Ωtj )

≤ tj+1 − tj
1− 2tj

=: λj <
1

2
, j = 0, . . . , n .

In particular, it follows from Corollary 1.18 that ωtj+1 is exactly the part of
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spec(Btj+1) that is contained in the open δtj/2-neighbourhood of ωtj , that

is,

ωtj+1 = spec(Btj+1) ∩ Oδtj /2
(ωtj ) , j = 0, . . . , n .

Thus, each summand of the right-hand side of (8.2) can be treated in the

same way as the maximal angle in the general situation discussed in Section

2.3. For example, combining (8.3) with the bound (2.22) derived from the

symmetric sinΘ theorem, one gets for each j that

(8.4) arcsin
(
‖Ptj − Ptj+1‖

)
≤ arcsin

(π
2

λj

1− λj

)
,

provided that λj ≤ 2/(2 + π). If partitions of the interval [0, t] with arbi-

trarily small mesh size are considered, this once more leads to the bound

(2.26) obtained in Theorem 6.15 (a):

Remark 8.2. Clearly, one has

λj

1− λj
=

tj+1 − tj
1− tj − tj+1

≤ tj+1 − tj
1− 2tj+1

≤ tj+1 − tj
1− 2t

.

Hence, if the mesh size of the partition of the interval [0, t] is sufficiently

small, then for each j the right-hand side of (8.4) is small as well. At the

same time, the corresponding Riemann sum

n∑

j=0

tj+1 − tj
1− 2tj+1

is close to the integral
∫ t
0

1
1−2τ dτ . Considering partitions with arbitrarily

small mesh size and taking into account that arcsin(x)/x → 1 as x → 0, one

then concludes from (8.2) and (8.4) that

(8.5) arcsin
(
‖P0 − Pt‖

)
≤ π

2

∫ t

0

1

1− 2τ
dτ =

π

4
log
( 1

1− 2t

)
,

which agrees with the bound from Theorem 6.15 (a). A similar, yet more

technical, argument can also be used to prove the bound from Theorem

6.15 (b) for off-diagonal perturbations and even the general result from The-

orem 6.10. This line of reasoning does not require the smoothness of the

path τ 7→ Pτ , but it is less elegant than the one presented in Chapter 6

above.
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Albeverio and Motovilov demonstrated in [8] that a result stronger than

(8.5) can be obtained from (8.2). They considered a specific finite parti-

tion of the interval [0, t] and used the a priori generic sin 2θ estimate (more

precisely estimate (7.3)) to bound each summand of the corresponding right-

hand side of (8.2). We follow this approach here. To this end, we require

that the given partition of the interval [0, t] additionally satisfies

(8.6) λj =
tj+1 − tj
1− 2tj

≤ 1

π
, j = 0, . . . , n .

In this case, it follows from (8.2), (8.3), and Corollary 7.2 that

(8.7) arcsin
(
‖P0 − Pt‖

)
≤ 1

2

n∑

j=0

arcsin(πλj) .

Note that the identity 1−2τ = 1−2tj−2(τ−tj) for tj ≤ τ ≤ tj+1 guarantees

that

(8.8)

∫ tj+1

tj

dτ

1− 2τ
=

∫ λj

0

dτ

1− 2τ
, j = 0, . . . , n .

Therefore, taking into account Remark 7.7, the bound from Corollary 7.2

is for each summand of the right-hand side of (8.2) more accurate than the

one from Theorem 6.15 (a). This justifies the approach (8.7).

Along with a specific choice of the partition of the interval [0, t], esti-

mate (8.7) is the essence of the approach by Albeverio and Motovilov in [8].

For future reference, we recall their choice of the partition in the following

remark.

Remark 8.3. Let 0 < t ≤ c∗ < 1/2 be arbitrary with c∗ as in (2.28). We

distinguish between three cases for t:

If t ≤ 4
π2+4

, then choose the trivial partition 0 = t0 < t1 = t, so that

λ0 =
t− t0
1− 2t0

= t .

If 4
π2+4 < t ≤ 8π2

(π2+4)2 , then consider the partition 0 = t0 < t1 < t2 = t with

t1 =
4

π2+4 . In this case, one has

λ0 =
4

π2 + 4
and λ1 =

t− t1
1− 2t1

=
(π2 + 4)t− 4

π2 − 4
≤ 4

π2 + 4
.
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Finally, for 8π2

(π2+4)2
< t ≤ c∗ consider 0 = t0 < t1 < t2 < t3 = t with

t1 =
4

π2+4
and t2 =

8π2

(π2+4)2
. Then,

λ0 = λ1 =
4

π2 + 4
and λ2 =

t− t2
1− 2t2

=
(π2 + 4)2t− 8π2

(π2 − 4)2
<

4

π2 + 4
.

In each of these cases, it is easy to verify that the corresponding right-

hand side of (8.7) agrees with M∗(t), where M∗ : [0, c∗] →
[
0, π2

]
is the

function from (2.27).

We now optimize the choice of the partition of the interval [0, t] such that

for every fixed parameter t the right-hand side of inequality (8.7) is mini-

mized. An equivalent and more convenient reformulation of this approach

is to maximize the parameter t in estimate (8.7) over all possible choices of

the parameters n and λj for which the right-hand side of (8.7) takes a fixed

value.

Obviously, we can generalize estimate (8.7) to the case where the finite

sequence (tj)
n
j=1 is allowed to be just increasing and not necessarily strictly

increasing. Altogether, this motivates the following considerations.

Definition 8.4. For n ∈ N0 let Dn denote the set of sequences (λj)j∈N0

satisfying

0 ≤ λj ≤
1

π
for j ≤ n and λj = 0 for j ≥ n+ 1 ,

and set D :=
⋃

n∈N0
Dn.

Every finite partition of the interval [0, t] that satisfies condition (8.6)

is related to a sequence in D in the obvious way. Conversely, the following

lemma allows to regain the finite partition of the interval [0, t] from this

sequence.

Lemma 8.5.

(a) For 0 ≤ x < 1
2 the mapping

[
0, 12
]
∋ τ 7→ τ + x(1 − 2τ) is strictly

increasing.

(b) For every λ = (λj) ∈ D the sequence (tj) ⊂ R given by the recursion

(8.9) tj+1 = tj + λj(1− 2tj) , j ∈ N0 , t0 = 0 ,
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is increasing and satisfies 0 ≤ tj < 1/2 for all j ∈ N0. Moreover, one

has tj = tn+1 for j ≥ n+1 if λ ∈ Dn. In particular, (tj) is eventually

constant.

Proof. The proof of claim (a) is straightforward and is hence omitted.

For the proof of (b), let λ = (λj) ∈ D be arbitrary and let (tj) ⊂ R be

given by (8.9). Observe that t0 = 0 < 1/2 and that (a) implies that

0 ≤ tj+1 = tj + λj(1− 2tj) <
1

2
+ λj

(
1− 2 · 1

2

)
=

1

2
if 0 ≤ tj <

1

2
.

Thus, the two-sided estimate 0 ≤ tj < 1/2 holds for all j ∈ N0 by induction.

In particular, it follows that tj+1 − tj = λj(1 − 2tj) ≥ 0 for all j ∈ N0, so

that the sequence (tj) is increasing. Let n ∈ N0 such that λ ∈ Dn. Since

λj = 0 for j ≥ n+ 1, it follows from the definition of (tj) that tj+1 = tj for

j ≥ n+ 1, that is, tj = tn+1 for j ≥ n+ 1. This completes the proof.

It follows from part (b) of the preceding lemma that for every λ ∈ D

the sequence (tj) given by (8.9) yields a finite partition of the interval [0, t̃]

with t̃ := maxj∈N0 tj < 1/2. In this respect, the approach to optimize the

parameter t in (8.7) with a fixed right-hand side can now be formalized in

the following way.

Definition 8.6. Let W denote the (non-linear) operator on D that assigns

λ = (λj) ∈ D the corresponding increasing and eventually constant sequence

given by the recursion (8.9). Moreover, let the function M :
[
0, 1

π

]
→
[
0, π4

]

be given by

M(x) :=
1

2
arcsin(πx) .

Finally, for θ ∈
[
0, π2

]
define

D(θ) :=

{
(λj) ∈ D

∣∣∣∣
∞∑

j=0

M(λj) = θ

}
⊂ D

and

(8.10) T (θ) := sup
{
maxW (λ)

∣∣ λ ∈ D(θ)
}
,

where maxW (λ) := maxj∈N0 tj with (tj) = W (λ).

For every fixed θ ∈
[
0, π2

]
, it is easy to verify that indeed D(θ) 6= ∅.
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Moreover, one has 0 ≤ T (θ) ≤ 1/2 Lemma 8.5 (b), and T (θ) = 0 holds if

and only if θ = 0. In order to compute T (θ) for θ ∈
(
0, π2

]
, we have to

maximize maxW (λ) over λ ∈ D(θ) ⊂ D. This constrained optimization

problem is the central part in the approach presented here.

The following proposition shows how this optimization problem is related

to the problem of estimating the maximal angle between the corresponding

spectral subspaces.

Proposition 8.7. Assume Hypothesis 8.1. Let

[
0,

π

2

]
∋ θ 7→ S(θ) ∈

[
0, S

(π
2

)]
⊂
[
0,

1

2

]

be a continuous, strictly increasing (hence invertible) mapping with

0 ≤ S(θ) ≤ T (θ) for 0 ≤ θ <
π

2
.

Then

arcsin
(
‖P0 − Pt‖

)
≤ S−1(t) for 0 ≤ t < S

(π
2

)
.

Proof. Since the mapping θ 7→ S(θ) is invertible, it suffices to show the

inequality

(8.11) arcsin
(
‖P0 − PS(θ)‖

)
≤ θ for 0 ≤ θ <

π

2
.

Considering T (0) = S(0) = 0, the case θ = 0 in inequality (8.11) is

obvious. Let θ ∈
(
0, π2

)
. In particular, one has T (θ) > 0. For arbitrary t

with 0 ≤ t < T (θ) choose λ = (λj) ∈ D(θ) such that t < maxW (λ) ≤ T (θ).

Denote (tj) := W (λ). Since tj < 1/2 for all j ∈ N0 by Lemma 8.5 (b), it

follows from the definition of (tj) that

tj+1 − tj
1− 2tj

= λj ≤
1

π
for all j ∈ N0 .

Moreover, taking into account that t < maxW (λ) = maxj∈N0 tj , there is

k ∈ N0 such that tk ≤ t < tk+1. In particular, one has

t− tk
1− 2tk

<
tk+1 − tk
1− 2tk

= λk ≤ 1

π
.

Considering the partition 0 = t0 ≤ · · · ≤ tk ≤ t of the interval [0, t], one now
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obtains from estimate (8.7) that

arcsin
(
‖P0 − Pt‖

)
≤

k−1∑

j=0

M(λj) +M
( t− tk
1− 2tk

)
≤

∞∑

j=0

M(λj) = θ ,

that is,

(8.12) arcsin
(
‖P0 − Pt‖

)
≤ θ for all 0 ≤ t < T (θ) .

Since S(θ) < S
(
π
2

)
≤ 1

2 and the mapping
[
0, 12
)
∋ τ 7→ Pτ is continuous in

norm, estimate (8.12) also holds for t = S(θ) ≤ T (θ). This shows (8.11)

and, hence, completes the proof.

One can show that the mapping
[
0, π2

]
∋ θ 7→ T (θ) is continuous and

strictly increasing without having computed T (θ) explicitly. This mapping

therefore satisfies the hypotheses of Proposition 8.7. However, we omit the

corresponding argument here since this is also obtained from the explicit

computation of T (θ) in Section 8.2 below. For convenience, the following

proposition states the result of this computation in advance.

Proposition 8.8. In the interval
(
0, π2

]
the equation

(
1− 2

π
sinϑ

)2
=

(
1− 2

π
sin
(2ϑ

3

))3

has a unique solution ϑ ∈
(
arcsin

(
2
π

)
, π2
)
. Moreover, the quantity T (θ) de-

fined in (8.10) has the representation

(8.13) T (θ) =





1
π sin(2θ) , 0 ≤ θ ≤ 1

2 arcsin
(

4π
π2+4

)
,

2
π2 + π2−4

2π2 sin2 θ , 1
2 arcsin

(
4π

π2+4

)
< θ < arcsin

(
2
π

)
,

1
2 − 1

2

(
1− 2

π sin θ
)2

, arcsin
(
2
π

)
≤ θ ≤ ϑ ,

1
2 − 1

2

(
1− 2

π sin
(
2θ
3

))3
, ϑ < θ ≤ π

2 .

The mapping
[
0, π2

]
∋ θ 7→ T (θ) is strictly increasing, continuous on

[
0, π2

]
,

and continuous differentiable on
(
0, π2

)
\ {ϑ}.

We are now able to turn to the main result of this chapter.
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Theorem 8.9. Assume Hypothesis 6.14. Suppose, in addition, that V sat-

isfies ‖V ‖ < ccrit · d with

(8.14) ccrit =
1

2
− 1

2

(
1−

√
3

π

)3
= 0.4548399 . . .

Then

(8.15) arcsin
(
‖P −Q‖

)
≤ N

(‖V ‖
d

)
<

π

2
,

where the function N : [0, ccrit] →
[
0, π2

]
is given by

(8.16) N(x) =





1
2 arcsin(πx) for 0 ≤ x ≤ 4

π2+4 ,

arcsin
(√

2π2x−4
π2−4

)
for 4

π2+4 < x < 4 π2−2
π4 ,

arcsin
(
π
2 (1−

√
1− 2x )

)
for 4 π2−2

π4 ≤ x ≤ κ ,

3
2 arcsin

(
π
2 (1− 3

√
1− 2x )

)
for κ < x ≤ ccrit .

Here, κ ∈
(
4π2−2

π4 , 2π−1
π2

)
is the unique solution to the equation

(8.17) arcsin
(π
2

(
1−

√
1− 2κ

))
=

3

2
arcsin

(π
2

(
1− 3

√
1− 2κ

))

in the interval
(
0, 2π−1

π2

]
. The function N is strictly increasing, continuous

on [0, ccrit], and continuously differentiable on (0, ccrit) \ {κ}.

Proof of Theorem 8.9. As stated in Proposition 8.8, the mapping θ 7→ T (θ)

is strictly increasing and continuous. Hence, its range is the whole interval

[0, ccrit], where ccrit = T
(
π
2

)
is given by (8.14). Moreover, using the rep-

resentation (8.13) in Proposition 8.8, it is easy to verify that the inverse

N = T−1 : [0, ccrit] →
[
0, π2

]
is given by (8.16). In particular, the constant

κ = T (ϑ) = 1
2 − 1

2

(
1 − 2

π sinϑ
)2 ∈

(
4π2−2

π4 , 2π−1
π2

)
is the unique solution

to equation (8.17) in the interval
(
0, 2π−1

π2

]
. Furthermore, it is clear from

Proposition 8.8 that the function N = T−1 is strictly increasing, continuous

on [0, ccrit], and continuously differentiable on (0, ccrit) \ {κ}.
It remains to show that estimate (8.15) holds. The case V = 0 is obvious.

Assume that V 6= 0. Then, Bt := A+ td ·V/‖V ‖, Dom(Bt) := Dom(A), and

Pt := EBt

(
Od/2(σ)

)
for 0 ≤ t < 1

2 satisfy Hypothesis 8.1. Moreover, one has

P = P0, as well as A + V = Bτ and Q = Pτ with τ = ‖V ‖
d < ccrit = T

(
π
2

)
.
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Applying Proposition 8.7 to the mapping θ 7→ T (θ) finally gives

arcsin
(
‖P −Q‖

)
= arcsin

(
‖P0 − Pτ‖

)
≤ N(τ) = N

(‖V ‖
d

)
,

which completes the proof.

Remark 8.10. Numerical evaluations give ϑ = 1.1286942 . . . < arcsin
(

4π
π2+4

)

and κ = T (ϑ) = 0.4098623 . . . < 8π2

(π2+4)2 .

However, estimate (8.15) remains valid if the constant κ in the explicit

representation for the function N is replaced by any other constant within

the interval
(
4π2−2

π4 , 2π−1
π2

)
. This can be seen by applying Proposition 8.7 to

each of the two mappings

θ 7→ 1

2
− 1

2

(
1− 2

π
sin θ

)2
and θ 7→ 1

2
− 1

2

(
1− 2

π
sin
(2θ
3

))3

.

These mappings indeed satisfy the hypotheses of Proposition 8.7. Both are

continuous and strictly increasing, and, by suitable choices of λ ∈ D(θ), it

is easy to see that they do not exceed T (θ), cf. equation (8.22) in Section

8.2 below.

The statement of Proposition 8.8 actually goes beyond that of Theorem

8.9. As a matter of fact, instead of equality in (8.13), it is sufficient for the

statement of Theorem 8.9 to hold that the right-hand side of (8.13) does not

exceed T (θ). This, in turn, is rather easy to establish by suitable choices of

λ ∈ D(θ), see Lemma 8.15 and the proof of Lemma 8.18 below.

However, Proposition 8.8 states that the right-hand side of (8.13) pro-

vides an exact representation for T (θ), and most of the considerations in

Section 8.2 are required to show this stronger result. As a consequence, the

bound from Theorem 8.9 is optimal within the framework of the approach

based on estimate (8.7).

In fact, the following observation shows that one requires a bound sub-

stantially stronger than the one from Corollary 7.2, at least for perturbations

small in norm, in order to improve on Theorem 8.9.

Remark 8.11. One can modify the approach (8.7) by replacing the term

M(λj) =
1
2 arcsin(πλj) with N(λj), where N is the function from Theorem

8.9. In this case, the condition (8.6) can be relaxed to λj ≤ ccrit. Yet, the

corresponding optimization problem has exactly the same solution given by
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(8.13). This can be seen from the fact that each N(λj) is of the form of the

right-hand side of (8.7) (cf. the computation of T (θ) in Section 8.2 below), so

that we are actually dealing with essentially the same optimization problem.

In this sense, the function N is a fixed point in the approach presented here.

We close this section with a comparison between the bound from Theo-

rem 8.9 and the strongest previously known one (2.27), proved by Albeverio

and Motovilov in [8].

Remark 8.12. The function M∗ : [0, c∗] →
[
0, π2

]
from (2.27) agrees on the

interval
[
0, 4

π2+4

]
with N . For 4

π2+4 < t ≤ c∗, however, the strict inequality

N(t) < M∗(t) holds. Indeed, it follows from the computation of T (θ) in

Section 8.2 that

t < T (M∗(t)) ≤ ccrit for
4

π2 + 4
< t ≤ c∗ ,

see Remark 8.22 below. Since the function N = T−1 : [0, ccrit] →
[
0, π2

]
is

strictly increasing, this implies that

N(t) < N
(
T (M∗(t))

)
= M∗(t) for

4

π2 + 4
< t ≤ c∗ .

8.2 Proof of Proposition 8.8

We split the proof of Proposition 8.8 into several steps. We first reduce

the problem of computing T (θ) to the problem of solving suitable finite-

dimensional constrained optimization problems, see equations (8.18) and

(8.20) below. The corresponding critical points are then characterized in

Lemma 8.15 using Lagrange multipliers. The crucial tool to reduce the set

of relevant critical points is provided by Lemma 8.16. Finally, the finite-

dimensional optimization problems are solved in Lemmas 8.18, 8.20 and

Proposition 8.21.

Throughout this section, we make use of the notations introduced in

Definitions 8.4 and 8.6. In addition, we fix the following notations.

Definition 8.13. For n ∈ N0 and θ ∈
[
0, π2

]
define Dn(θ) := D(θ) ∩ Dn.

Moreover, let

Tn(θ) := sup
{
maxW (λ)

∣∣ λ ∈ Dn(θ)
}

if Dn(θ) 6= ∅ ,
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and set Tn(θ) := 0 if Dn(θ) = ∅.

Since D(0) = Dn(0) contains only the sequence identical to zero, one

has T (0) = Tn(0) = 0 for every n ∈ N0. Let θ ∈
(
0, π2

]
be arbitrary. In

view of the inclusions D0(θ) ⊂ D1(θ) ⊂ D2(θ) ⊂ . . . , the sequence (Tn(θ))n

is increasing, that is,

T0(θ) ≤ T1(θ) ≤ T2(θ) ≤ . . .

Moreover, we observe that

(8.18) T (θ) = sup
n∈N0

Tn(θ) .

In fact, we show below that Tn(θ) = T2(θ) for every n ≥ 2, so that T (θ)

agrees with T2(θ), see Proposition 8.21.

Let n ∈ N be arbitrary and let λ = (λj) ∈ Dn. Denote (tj) := W (λ). It

follows from Lemma 8.5 (b) that maxW (λ) = tn+1. Moreover, we have

1− 2tj+1 = 1− 2tj − 2λj(1− 2tj) = (1− 2tj)(1− 2λj) , j = 0, . . . , n .

Since t0 = 0, this implies that

1− 2tn+1 =
n∏

j=0

(1− 2λj) .

In particular, we obtain the explicit representation

(8.19) maxW (λ) = tn+1 =
1

2

(
1−

n∏

j=0

(1− 2λj)

)
.

An immediate conclusion of representation (8.19) is the following state-

ment.

Lemma 8.14. For λ = (λj) ∈ Dn the value of maxW (λ) does not depend

on the order of the entries λ0, . . . , λn.

Another implication of representation (8.19) is that maxW (λ) = tn+1

can be considered as a continuous function of the variables λ0, . . . , λn. Since

the setDn(θ) is compact as a closed bounded subset of an (n+1)-dimensional

subspace of the sequences with finite support, we deduce that Tn(θ) can be
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written as

(8.20) Tn(θ) = max
{
tn+1

∣∣ (tj) = W (λ) , λ ∈ Dn(θ)
}
.

Hence, Tn(θ) is determined by a finite-dimensional constrained optimization

problem, which can be studied by use of Lagrange multipliers.

Taking into account the definition of the set Dn(θ), it follows from (8.19)

and (8.20) that there is some point (λ0, . . . , λn) ∈
[
0, 1

π

]n+1
satisfying

Tn(θ) = tn+1 =
1

2

(
1−

n∏

j=0

(1− 2λj)

)
and

n∑

j=0

M(λj) = θ ,

where M(x) = 1
2 arcsin(πx). In particular, if (λ0, . . . , λn) ∈

(
0, 1

π

)n+1
, then

the method of Lagrange multipliers gives a constant r ∈ R, r 6= 0, with

∂tn+1

∂λk
= r ·M ′(λk) = r · π

2
√

1− π2λ2
k

for k = 0, . . . , n .

Hence, in this case, for every k ∈ {0, . . . , n − 1} we obtain

(8.21)

√
1− π2λ2

k√
1− π2λ2

k+1

=

∂tn+1

∂λk+1

∂tn+1

∂λk

=

n∏
j=0

j 6=k+1

(1− 2λj)

n∏
j=0
j 6=k

(1− 2λj)

=
1− 2λk

1− 2λk+1
.

This leads to the following characterization of critical points of the mapping

λ 7→ maxW (λ) on Dn(θ).

Lemma 8.15. For n ≥ 1 and θ ∈
(
0, π2

]
let λ = (λj) ∈ Dn(θ) satisfy

Tn(θ) = maxW (λ). Assume that λ0 ≥ · · · ≥ λn. If, in addition, λ0 < 1
π

and λn > 0, then one has

λ0 = · · · = λn =
1

π
sin
( 2θ

n+ 1

)
,

so that

(8.22) maxW (λ) =
1

2
− 1

2

(
1− 2

π
sin
( 2θ

n+ 1

))n+1

,
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or there is l ∈ {0, . . . , n − 1} with

(8.23)
4

π2 + 4
> λ0 = · · · = λl >

2

π2
> λl+1 = · · · = λn > 0 .

In the latter case, λ0 and λn satisfy

(8.24) λ0 + λn =
4α2

π2 + 4α2
and λ0λn =

α2 − 1

π2 + 4α2

with

(8.25) α =

√
1− π2λ2

0

1− 2λ0
=

√
1− π2λ2

n

1− 2λn
,

and α lies within the bounds

1 < α < m :=
π

2
tan
(
arcsin

( 2
π

))
.

Proof. Let λ0 < 1
π and λn > 0. In particular, the point (λ0, . . . , λn) lies in(

0, 1
π

)n+1
. Hence, it follows from (8.21) that

(8.26) α :=

√
1− π2λ2

k

1− 2λk

does not depend on k ∈ {0, . . . , n}.
If λ0 = λn, then all λj coincide and one has θ = (n + 1)M(λ0), that is,

λ0 = · · · = λn = 1
π sin

(
2θ
n+1

)
. Inserting this into (8.19) yields representation

(8.22).

Now assume that λ0 > λn. A straightforward calculation shows that

x = 2/π2 is the only critical point of the mapping

(8.27)
[
0,

1

π

]
∋ x 7→

√
1− π2x2

1− 2x
,

cf. Fig. 8.1. The image of this point is
(
1 − 4

π2

)−1/2
= m > 1. Moreover, 0

and 4
π2+4

are mapped to 1, and 1
π is mapped to 0. In particular, every value

in the interval (1,m) has exactly two preimages under the mapping (8.27),

and all the other values in the range [0,m] have only one preimage. Since

λ0 > λn by assumption, it follows from (8.26) that α has two preimages.

Hence, α ∈ (1,m) and 4
π2+4

> λ0 > 2
π2 > λn > 0. Furthermore, there is
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l ∈ {0, . . . , n − 1} with λ0 = · · · = λl and λl+1 = · · · = λn. This proves

(8.23) and (8.25).

Finally, the equation
√
1−π2z2

1−2z = α can be rewritten as

0 = z2− 4α2

π2 + 4α2
z+

α2 − 1

π2 + 4α2
= (z−λ0)(z−λn) = z2−(λ0+λn)z+λ0λn ,

which shows the relations (8.24).

Fig. 8.1: The mapping
[
0, 1

π

]
∋ x 7→

√
1−π2x2

1−2x .

The preceding lemma is one of the main ingredients for solving the con-

strained optimization problem that defines the quantity Tn(θ) in (8.20).

However, it is still a hard task to compute Tn(θ) from the corresponding

critical points. Especially the case (8.23) in Lemma 8.15 is difficult to han-

dle and needs careful treatment. An efficient computation of Tn(θ) therefore

requires a technique that allows to narrow down the set of relevant critical

points. The following result provides an adequate tool for this and is thus

crucial for the remaining considerations.

Lemma 8.16. For n ≥ 1 and θ ∈
(
0, π2

]
let λ = (λj) ∈ Dn(θ) satisfy

Tn(θ) = maxW (λ). Then, for every k ∈ {0, . . . , n} one has

maxW
(
(λ0, . . . , λk, 0, . . . )

)
= Tk(θk) with θk :=

k∑

j=0

M(λj) ≤ θ .

Proof. The case k = n agrees with the hypothesis that Tn(θ) = maxW (λ).
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Let k ∈ {0, . . . , n − 1} be arbitrary and denote (tj) := W (λ). It follows

from Lemma 8.5 (b) that tk+1 = maxW
(
(λ0, . . . , λk, 0, . . . )

)
. In particular,

one has tk+1 ≤ Tk(θk) since (λ0, . . . , λk, 0, . . . ) ∈ Dk(θk).

Assume that tk+1 < Tk(θk), and choose γ = (γj) ∈ Dk(θk) such that

maxW (γ) = Tk(θk). Denote µ := (γ0, . . . , γk, λk+1, . . . , λn, 0, . . . ) ∈ Dn(θn)

and (sj) := W (µ). Again by Lemma 8.5 (b), sk+1 = maxW (γ) > tk+1 and

sn+1 = maxW (µ) ≤ Tn(θn). Taking into account Lemma 8.5 (a) and the

definition of the operator W , one concludes that

tk+2 = tk+1 + λk+1(1− 2tk+1) < sk+1 + λk+1(1− 2sk+1) = sk+2 .

Iterating this estimate eventually gives tn+1 < sn+1 ≤ Tn(θn), which con-

tradicts the case k = n from above. Thus,

maxW
(
(λ0, . . . , λk, 0, . . . )

)
= tk+1 = Tk(θk)

as claimed.

Lemma 8.16 states that if a sequence λ ∈ Dn(θ) solves the optimiza-

tion problem for Tn(θ), then every truncation of λ solves the corresponding

reduced optimization problem. This allows to exclude many sequences in

Dn(θ) from the considerations once the optimization problem is solved for

small n. The number of parameters in (8.20) can thereby be reduced con-

siderably.

The following lemma demonstrates this technique. It implies that the

condition λ0 < 1
π in Lemma 8.15 is always satisfied except for one single

case, which can be treated separately.

Lemma 8.17. For n ≥ 1 and θ ∈
(
0, π2

]
let λ = (λj) ∈ Dn(θ) satisfy

Tn(θ) = maxW (λ) and λ0 ≥ · · · ≥ λn. If θ < π/2 or n ≥ 2, then λ0 < 1/π.

Proof. Suppose that λ0 = 1/π. We have to show that θ = π/2 and n = 1.

Define θ1 := M(λ0)+M(λ1) ≤ θ. It is clear that λ ∈ D1

(
π
2 ) is equivalent

to θ1 = θ = π/2. Assume that θ1 < π/2. Then, one has θ1 ≥ M(λ0) = π/4

and λ1 =
1
π sin

(
2θ1 − π

2

)
= − 1

π

(
1− 2 sin2 θ1

)
∈
[
0, 1

π

)
. Taking into account
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representation (8.19), for µ := (λ0, λ1, 0, . . . ) ∈ D1(θ1) one computes

maxW (µ) =
1

2
− 1

2
(1− 2λ0)(1 − 2λ1) = (λ0 + λ1)− 2λ0λ1

=
2

π
sin2 θ1 +

2

π2

(
1− 2 sin2 θ1

)
=

2

π2
+

2π − 4

π2
sin2 θ1 .

Since arcsin
(

1
π−1

)
< π

4 ≤ θ1 <
π
2 , it now follows from Lemma A.1 (a) that

maxW (µ) <
2

π

(
1− 1

π
sin θ1

)
sin θ1 =

1

2
− 1

2

(
1− 2

π
sin θ1

)2
≤ T1(θ1) ,

where the last inequality is due to representation (8.22). This is a contradic-

tion to Lemma 8.16. Thus, θ1 = θ = π
2 and, in particular, λ = µ ∈ D1

(
π
2

)
.

Obviously, one has D1

(
π
2

)
=
{(

1
π ,

1
π , 0, . . .

)}
, so that λ =

(
1
π ,

1
π , 0, . . .

)
.

Taking into account that sin
(
π
3

)
=

√
3
2 , it follows from representations (8.19)

and (8.22) that

maxW (λ) =
1

2
− 1

2

(
1− 2

π

)2
<

1

2
− 1

2

(
1−

√
3

π

)3

≤ T2

(π
2

)
.

Since maxW (λ) = Tn(θ) by hypothesis, this implies that n = 1, which

completes the proof.

We are now able to solve the finite-dimensional constrained optimization

problem in (8.20) for every θ ∈
[
0, π2

]
and n ∈ N. We start with the case

n = 1.

Lemma 8.18. The quantity T1(θ) has the representation

T1(θ) =





T0(θ) =
1
π sin(2θ) for 0 ≤ θ ≤ 1

2 arcsin
(

4π
π2+4

)
,

2
π2 + π2−4

2π2 sin2 θ for 1
2 arcsin

(
4π

π2+4

)
< θ < arcsin

(
2
π

)
,

1
2 − 1

2

(
1− 2

π sin θ
)2

for arcsin
(
2
π

)
≤ θ ≤ π

2 .

In particular, if 0 < θ < arcsin
(
2
π

)
and λ = (λ0, λ1, 0, . . . ) ∈ D1(θ) with

λ0 = λ1, then the strict inequality maxW (λ) < T1(θ) holds.

The mapping
[
0, π2

]
∋ θ 7→ T1(θ) is strictly increasing, continuous on[

0, π2
]
, and continuously differentiable on

(
0, π2

)
.

Proof. Since T1(0) = T0(0) = 0, the representation is obviously correct for

θ = 0. For θ = π
2 one has D1

(
π
2

)
=
{(

1
π ,

1
π , 0, . . .

)}
, so that representation
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(8.19) gives T1

(
π
2

)
= 1

2 − 1
2

(
1− 2

π

)2
. This also agrees with the claim.

Now let θ ∈
(
0, π2

)
be arbitrary. Obviously, D0(θ) contains only the

sequence
(
1
π sin(2θ), 0, . . .

)
if θ ≤ π

4 , and one has D0(θ) = ∅ if θ > π
4 .

Hence,

(8.28) T0(θ) =
1

π
sin(2θ) if 0 < θ ≤ π

4
,

and T0(θ) = 0 if θ > π/4.

By Lemmas 8.14, 8.15, and 8.17 there are only two sequences in the set

D1(θ) \ D0(θ) that need to be considered in order to compute T1(θ). One

of them is given by µ = (µ0, µ1, 0, . . . ) with µ0 = µ1 = 1
π sin θ ∈

(
0, 1

π

)
. For

this sequence, representation (8.22) yields

(8.29) maxW (µ) =
1

2
− 1

2

(
1− 2

π
sin θ

)2
=

2

π

(
1− 1

π
sin θ

)
sin θ .

The other sequence in the set D1(θ) \D0(θ) that needs to be considered

is λ = (λ0, λ1, 0, . . . ) with λ0 and λ1 satisfying 4
π2+4

> λ0 > 2
π2 > λ1 > 0

and

(8.30) λ0 + λ1 =
4α2

π2 + 4α2
, λ0λ1 =

α2 − 1

π2 + 4α2
,

where

(8.31) α =

√
1− π2λ2

0

1− 2λ0
=

√
1− π2λ2

1

1− 2λ1
∈
(
1,

π

2
tan
(
arcsin

2

π

))
.

It turns out shortly that this sequence λ exists if and only if θ satisfies the

two-sided estimate arctan
(
2
π

)
< θ < arcsin

(
2
π

)
.

Using representation (8.19) and the relations in (8.30), one obtains

(8.32)

maxW (λ) =
1

2
− 1

2
(1− 2λ0)(1 − 2λ1) = (λ0 + λ1)− 2λ0λ1

= 2
α2 + 1

π2 + 4α2
.

The objective is to rewrite the right-hand side of (8.32) in terms of θ.

It follows from

(8.33) 2θ = arcsin(πλ0) + arcsin(πλ1)
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and the relations (8.30) and (8.31) that

(8.34)

sin(2θ) = πλ0

√
1− π2λ2

1 + πλ1

√
1− π2λ2

0

= απλ0(1− 2λ1) + απλ1(1− 2λ0)

= απ (λ0 + λ1 − 4λ0λ1) =
4απ

π2 + 4α2
.

Taking into account that sin(2θ) > 0, equation (8.34) can be rewritten as

α2 − π

sin(2θ)
α+

π2

4
= 0 .

In turn, this gives

α =
π

2 sin(2θ)

(
1±

√
1− sin2(2θ)

)
=

π

2

1± |cos2 θ − sin2 θ|
2 sin θ cos θ

,

that is,

(8.35) α =
π

2
tan θ or α =

π

2
cot θ .

We show that the second case in (8.35) does not occur.

Since 1 < α < π
2 tan

(
arcsin

(
2
π

))
< π

2 , by equation (8.34) one has

sin(2θ) < 1, which implies that θ 6= π
4 . Moreover, combining relations (8.30)

and (8.31), λ1 can be expressed in terms of λ0 alone. Hence, by equation

(8.33) the quantity θ can be written as a continuous function of the sole

variable λ0 ∈
(

2
π2 ,

4
π2+4

)
. Taking the limit λ0 → 4

π2+4
in equation (8.33)

then implies that λ1 → 0 and, therefore, θ → 1
2 arcsin

(
4π

π2+4

)
< π

4 . This

yields θ < π
4 for every value of λ0 in

(
2
π2 ,

4
π2+4

)
by continuity, that is, the

sequence λ can exist only if θ < π
4 . Taking into account that α satisfies

1 < α < π
2 tan

(
arcsin

(
2
π

))
, it now follows from (8.35) that the sequence λ

exists if and only if θ satisfies arctan
(
2
π

)
< θ < arcsin

(
2
π

)
, and, in this case,

one has

(8.36) α =
π

2
tan θ .

Combining equations (8.32) and (8.36) finally gives

(8.37) maxW (λ) =
1

2

4
π2 + tan2 θ

1 + tan2 θ
=

2

π2
+

π2 − 4

2π2
sin2 θ
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for arctan
(
2
π

)
< θ < arcsin

(
2
π

)
.

As a result of Lemmas 8.14, 8.15, and 8.17, the quantities (8.28), (8.29),

and (8.37) are the only possible values for T1(θ), and we have to determine

which of them is the greatest.

The easiest case is θ > π
4 since then (8.29) is the only possibility for

T1(θ).

The quantity (8.37) is relevant only if arctan
(
2
π

)
< θ < arcsin

(
2
π

)
< π

4 .

In this case, it follows from parts (b) and (c) of Lemma A.1 that (8.37) gives

the greatest value of the three possibilities and, hence, is the correct term

for T1(θ) here.

For 0 < θ ≤ arctan
(
2
π

)
< 2 arctan

(
1
π

)
, by Lemma A.1 (d) the quantity

(8.28) is greater than (8.29). Therefore, T1(θ) is given by (8.28) in this case.

Finally, consider the case arcsin
(
2
π

)
≤ θ ≤ π

4 . It follows from Lemma

A.1 (e) and the inequality 2 arctan
(
1
π

)
< arcsin

(
2
π

)
that (8.29) is then greater

than (8.28) and, hence, coincides with T1(θ).

Upon observing the identity arctan
(
2
π

)
= 1

2 arcsin
(

4π
π2+4

)
, this completes

the computation of T1(θ) for θ ∈
[
0, π2

]
. In particular, it follows from the dis-

cussion of the two cases 0 < θ ≤ arctan
(
2
π

)
and arctan

(
2
π

)
< θ < arcsin

(
2
π

)

that maxW (µ) is always strictly less than T1(θ) if 0 < θ < arcsin
(
2
π

)
.

The piecewise defined mapping
[
0, π2

]
∋ θ 7→ T1(θ) is continuously dif-

ferentiable on each of the corresponding subintervals. It remains to show

that the mapping is continuous and continuously differentiable at the points

θ = arctan
(
2
π

)
= 1

2 arcsin
(

4π
π2+4

)
and θ = arcsin

(
2
π

)
.

Taking into account that sin2 θ = 4
π2+4

for θ = 1
2 arcsin

(
4π

π2+4

)
, the con-

tinuity is straightforward to verify. The continuous differentiability follows

from the relations

π2 − 4

π2
sin θ cos θ =

2

π

(
1− 2

π
sin θ

)
cos θ , θ = arcsin

( 2
π

)
,

and

2

π
cos(2θ) =

π2 − 4

2π2
sin(2θ) =

π2 − 4

π2
sin θ cos θ , θ =

1

2
arcsin

( 4π

π2 + 4

)
,

where the latter is due to

cot
(
arcsin

( 4π

π2 + 4

))
=

√
1− 16π2

(π2+4)2

4π
π2+4

=
π2 − 4

4π
.

This completes the proof.
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So far, Lemma 8.16 has been used only to prove Lemma 8.17. Its whole

strength becomes apparent in connection with Lemma 8.14. This is demon-

strated in the following corollary to Lemma 8.18. It states that in (8.23) the

sequences with l ∈ {0, . . . , n− 2} do not need to be considered.

Corollary 8.19. In the case (8.23) in Lemma 8.15 one has l = n− 1.

Proof. The case n = 1 is obvious. For n ≥ 2 let λ = (λ0, . . . , λn, 0, . . . ) be a

sequence in Dn(θ) with

4

π2 + 4
> λ0 = · · · = λl >

2

π2
> λl+1 = · · · = λn > 0

for some l ∈ {0, . . . , n − 2}. In particular, one has 0 < λn−1 = λn < 2/π2,

which implies that 0 < θ̃ := M(λn−1) + M(λn) < arcsin
(
2
π

)
. Hence, it

follows from Lemma 8.18 that

maxW
(
(λn−1, λn, 0, . . . )

)
< T1(θ̃) .

By Lemmas 8.14 and 8.16 one concludes that

maxW (λ) = maxW
(
(λn−1, λn, λ0, . . . , λn−2, 0, . . . )

)
< Tn(θ) ,

which leaves l = n− 1 as the only possibility in (8.23).

We now turn to the computation of T2(θ) for θ ∈
[
0, π2

]
.

Lemma 8.20. In the interval
(
0, π2

]
the equation

(8.38)
(
1− 2

π
sinϑ

)2
=

(
1− 2

π
sin
(2ϑ

3

))3

has a unique solution ϑ ∈
(
arcsin

(
2
π

)
, π2
)
. Moreover, the quantity T2(θ) has

the representation

T2(θ) =





T1(θ) for 0 ≤ θ ≤ ϑ ,

1

2
− 1

2

(
1− 2

π
sin
(2θ
3

))3

for ϑ < θ ≤ π
2 .

In particular, one has T1(θ) < T2(θ) if θ > ϑ, and the strict inequality

maxW (λ) < T2(θ) holds for θ ∈
(
0, π2

]
and λ = (λ0, λ1, λ2, 0, . . . ) ∈ D2(θ)

with λ0 = λ1 > λ2 > 0.
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The mapping
[
0, π2

]
∋ θ 7→ T2(θ) is strictly increasing, continuous on[

0, π2
]
, and continuously differentiable on

(
0, π2

)
\ {ϑ}.

Proof. Since T2(0) = T1(0) = 0, the case θ = 0 in the representation for

T2(θ) is obvious. Let θ ∈
(
0, π2

]
be arbitrary. It follows from Lemmas

8.14, 8.15, and 8.17 and Corollary 8.19 that there are only two sequences in

D2(θ) \ D1(θ) that need to be considered in order to compute T2(θ). One

of them is µ = (µ0, µ1, µ2, 0, . . . ) with µ0 = µ1 = µ2 = 1
π sin

(
2θ
3

)
. For this

sequence representation (8.22) yields

(8.39) maxW (µ) =
1

2
− 1

2

(
1− 2

π
sin
(2θ
3

))3

.

The other sequence in the set D2(θ) \D1(θ) that needs to be considered is

λ = (λ0, λ1, λ2, 0, . . . ), where
4

π2+4 > λ0 = λ1 >
2
π2 > λ2 > 0 and λ0 and λ2

are given by (8.24) and (8.25). Using representation (8.19), one obtains

(8.40) maxW (λ) =
1

2
− 1

2
(1− 2λ0)

2(1− 2λ2) .

According to Lemma A.3, this sequence λ can exist only if θ satisfies the two-

sided estimate 3
2 arcsin

(
2
π

)
< θ ≤ arcsin

(
12+π2

8π

)
+ 1

2 arcsin
(
12−π2

4π

)
. However,

if λ exists, combining Lemma A.3 with equations (8.39) and (8.40) yields

maxW (λ) < maxW (µ) .

Therefore, in order to compute T2(θ) for θ ∈
(
0, π2

]
, it remains to compare

(8.39) with T1(θ). In particular, for every sequence λ = (λ0, λ1, λ2, 0, . . . ) in

D2(θ) with λ0 = λ1 > λ2 > 0 the strict inequality maxW (λ) < T2(θ) holds.

According to Lemma A.2, there is a unique ϑ ∈
(
arcsin

(
2
π

)
, π2
)
such that

(
1− 2

π
sin θ

)2
<

(
1− 2

π
sin
(2θ
3

))3

for 0 < θ < ϑ

and (
1− 2

π
sin θ

)2
>

(
1− 2

π
sin
(2θ
3

))3

for ϑ < θ ≤ π

2
.

These inequalities imply that ϑ is the unique solution to equation (8.38) in

the interval
(
0, π2

]
. Moreover, taking into account Lemma 8.18, equation

(8.39), and the inequality ϑ > arcsin
(
2
π

)
, it follows that T1(θ) < maxW (µ)
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if and only if θ > ϑ. This proves the claimed representation for T2(θ).

By Lemma 8.18 and the choice of ϑ it is obvious that the mapping[
0, π2

]
∋ θ 7→ T2(θ) is strictly increasing, continuous on

[
0, π2

]
, and continu-

ously differentiable on
(
0, π2

)
\ {ϑ}.

In order to prove Proposition 8.8, it remains to show that T (θ) coincides

with T2(θ).

Proposition 8.21. For every θ ∈
[
0, π2

]
and n ≥ 2 one has the identities

T (θ) = Tn(θ) = T2(θ).

Proof. Since T (0) = 0, the case θ = 0 is obvious. Let θ ∈
(
0, π2

]
be arbitrary.

As a result of equation (8.18), it suffices to show that Tn(θ) = T2(θ) for all

n ≥ 3. Let n ≥ 3 and let λ = (λj) ∈ Dn(θ) \Dn−1(θ). The objective is to

show that maxW (λ) < Tn(θ).

First, assume that λ0 = · · · = λn = 1
π sin

(
2θ
n+1

)
> 0. We examine the

two cases λ0 < 2
π2 and λ0 ≥ 2

π2 . If λ0 < 2
π2 , then 2M(λ0) < arcsin

(
2
π

)
. In

this case, it follows from Lemma 8.18 that maxW
(
(λ0, λ0, 0, . . . )

)
< T1(θ̃)

with θ̃ = 2M(λ0). Hence, by Lemma 8.16 one has maxW (λ) < Tn(θ). If

λ0 ≥ 2
π2 , then

(n+ 1) arcsin
( 2
π

)
≤ 2(n + 1)M(λ0) = 2θ ≤ π ,

which is possible only if n ≤ 3, that is, n = 3. In this case, one has

λ0 = 1
π sin

(
θ
2

)
. Taking into account representation (8.22), it follows from

Lemma A.4 that

maxW (λ) =
1

2
− 1

2

(
1− 2

π
sin
(θ
2

))4

<
1

2
− 1

2

(
1− 2

π
sin
(2θ
3

))3

≤ T2(θ) .

Since T2(θ) ≤ Tn(θ), one concludes that maxW (λ) < Tn(θ) again.

Now, assume that the sequence λ = (λj) ∈ Dn(θ) \ Dn−1(θ) satisfies

λ0 = · · · = λn−1 > λn > 0. Since, in particular, λn−2 = λn−1 > λn > 0,

Lemma 8.20 implies that

maxW
(
(λn−2, λn−1, λn, 0, . . . )

)
< T2(θ̃) with θ̃ =

n∑

j=n−2

M(λj) .
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It follows from Lemmas 8.14 and 8.16 that

maxW (λ) = maxW
(
(λn−2, λn−1, λn, λ0, . . . , λn−3, 0, . . . )

)
< Tn(θ) ,

that is, maxW (λ) < Tn(θ) once again.

Hence, by Lemmas 8.14, 8.15, and 8.17 and Corollary 8.19 the inequality

maxW (λ) < Tn(θ) holds for all λ ∈ Dn(θ) \ Dn−1(θ), which implies that

Tn(θ) = Tn−1(θ). Now the claim follows by induction.

We close this section with the following observation, which, together with

Remark 8.12 above, shows that the estimate from Theorem 8.9 is indeed

stronger than the best previously known estimate from [8].

Remark 8.22. It follows from the previous considerations that

t < T (M∗(t)) for
4

π2 + 4
< t ≤ c∗ ,

where M∗ : [0, c∗] →
[
0, π2

]
is the function from the bound (2.27). Indeed, for

4
π2+4

< t ≤ c∗, set θ := M∗(t), and let λ = (λj) ∈ D(θ) be given according

to Remark 8.3. In particular, one has t = maxW (λ). One then observes

by inspection that only λ =
(

4
π2+4

, 4
π2+4

, 0, . . .
)
for t = 8π2

(π2+4)2
is one of the

critical points in Lemma 8.15, so that maxW (λ) < T (θ) for t 6= 8π2

(π2+4)2
.

If, however, t = 8π2

(π2+4)2
, then θ = M∗(t) = arcsin

(
4π

π2+4

)
> ϑ (cf. Remark

8.10), and it follows from Lemma 8.20 that maxW (λ) ≤ T1(θ) < T2(θ). So,

in either case one has t = maxW (λ) < T (θ) = T (M∗(t)).

8.3 Off-diagonal perturbations

In this section, we discuss the particular case of off-diagonal perturbations V .

In this situation one has additional a priori knowledge on the components

of the spectrum of the perturbed operator A + tV , and the optimization

problem from Definition 8.6 can be modified accordingly, see Definition 8.24

below. However, it turns out that the treatment of this problem is more

difficult. Not only is an explicit representation of the critical points for

the associated finite-dimensional problems not at hand, but also the supre-

mum corresponding to (8.10) is not attained this time, see Definition 8.24

below and the discussion thereafter. In fact, the optimization problem for

off-diagonal perturbations is not solved explicitly yet. Nevertheless, by a
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suitable choice of the parameters involved, a lower bound on the optimal

constant copt-off can be obtained that is stronger than the previously known

bounds, see Example 8.25 below. A corresponding estimate on the maximal

angle is also given there.

Throughout this section, assume, in addition to Hypothesis 8.1, that the

perturbation V is off-diagonal with respect to the orthogonal decomposition

H = RanEA(σ) ⊕ RanEA(Σ). In this situation, we extend the definition of

the operator Bt and the orthogonal projection Pt to parameters t satisfying

0 ≤ t <
√
3/2. It follows from Proposition 1.21 that the spectrum of each

Bt is separated as spec(Bt) = ωt ∪ Ωt with

ωt = spec(Bt) ∩Oδt·d(σ) and Ωt = spec(Bt) ∩ Oδt·d(Σ) ,

where

δt := t tan
(1
2
arctan(2t)

)
=

1

2

√
1 + 4t2 − 1

2
<

1

2
.

In particular, for 0 ≤ t <
√
3/2 one has Pt = EBt(ωt) and

(8.41) dist(ωt,Ωt) ≥ (1− 2δt)d =
(
2−

√
1 + 4t2

)
d .

One of the main differences to the situation discussed in the preceding

sections is that the function τ 7→ 1 − 2δτ from the lower bound (8.41) is

not affine, in contrast to the function τ 7→ 1 − 2τ in the case of general

perturbations. This corresponds to the fact that for Bt = Bs + (Bt − Bs)

with 0 < s < t the perturbation Bt−Bs does not need to be (and usually is

not) off-diagonal with respect to H = RanPs ⊕RanP⊥
s . As a consequence,

an identity analogous to (8.8) is not at hand in the case of off-diagonal

perturbations; recall that (8.8), in combination with Remark 7.7, justified

the approach (8.7). The following lemma illustrates the importance of this

observation very clearly.

Lemma 8.23.

(a) One has

π

2

∫ t

0

dτ

1− 2δτ
<

1

2
arcsin(πt) for 0 < t ≤ 1

π
.

(b) For every 0 < s <
√
3/2 there is ε with 0 < ε ≤ (1 − 2δs)/π and
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s+ ε <
√
3/2 such that

1

2
arcsin

(
π

t− s

1− 2δs

)
<

π

2

∫ t

s

dτ

1− 2δτ
whenever s < t ≤ s+ ε .

Proof. Let s with 0 ≤ s <
√
3/2 be arbitrary, and define

hs(t) :=
π

2

∫ t

s

dτ

1− 2δτ
− 1

2
arcsin

(
π

t− s

1− 2δs

)
.

Taking into account that 1− 2δτ = 2−
√
1 + 4τ2, one computes

h′s(t) =
π

2

(
1

2−
√
1 + 4t2

− 1√(
2−

√
1 + 4s2

)
2 − π2(t− s)2

)
.

First, suppose that s = 0. In this case, the inequality h′0(t) < 0 is

equivalent to
√
1− π2t2 < 2 −

√
1 + 4t2, and it is easy to verify that the

latter is valid for 0 < t ≤ 1/π. Since h0(0) = 0, this implies that h0(t) < 0

for 0 < t ≤ 1/π, which proves (a).

Now, let s > 0. In this case, the inequality h′s(t) > 0 is equivalent to

(
2−

√
1 + 4s2

)2 − π2(t− s)2 >
(
2−

√
1 + 4t2

)2
,

which, in turn, can be rewritten as

4(t2 − s2)
( 4√

1 + 4s2 +
√
1 + 4t2

− 1
)
> π2(t− s)2 .

Dividing the latter inequality for t > s by t− s and then letting t approach

s, one arrives at the inequality

8s ·
( 2√

1 + 4s2
− 1
)
> 0 ,

which is obviously valid for 0 < s <
√
3/2. Hence, by continuity, one

concludes that h′s(t) > 0 if t > s is sufficiently close to s. Since hs(s) = 0,

this proves (b).

Part (a) of the preceding lemma implies that the bound from Theorem

6.15 (b) is stronger than the one from Corollary 7.2 derived from the generic

sin 2Θ estimate. However, part (b) of Lemma 8.23 indicates that the situa-
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tion somehow changes when the estimate on the maximal angle is iterated.

More precisely, for given 0 < s < t <
√
3/2, the bound on the maximal

angle arcsin
(
‖Pt − Ps‖

)
obtained from Corollary 7.2 is more accurate than

the one obtained from Theorem 6.15 (b), provided that t is sufficiently close

to s. In fact, even if t is not close to s, a deeper analysis of the proof of

Lemma 8.23 (b) shows that one has sufficient control over the quantity ε to

find a finite partition s = τ0 < · · · < τl+1 = t, l ∈ N0, such that

(8.42)
1

2

l∑

j=0

arcsin
(
π
τj+1 − τj
1− 2δτj

)
<

π

2

∫ t

s

dτ

1− 2δτ
.

Let t ∈
(
0,

√
3
2

)
be arbitrary, and let 0 = t0 < · · · < tn+1 = t, n ∈ N0, be

a finite partition of the interval [0, t]. Analogously to (8.3), define

λj :=
tj+1 − tj
1− 2δtj

, j = 0, . . . , n .

Now, Lemma 8.23 (a) and inequality (8.42) motivate to consider the ap-

proach

(8.43) arcsin
(
‖P0 − Pt‖

)
≤ π

2

∫ λ0

0

dτ

1− 2δτ
+

1

2

n∑

j=1

arcsin(πλj) ,

provided that λ0 = t1 ≤ coff with coff from Theorem 6.15 (b) and that

λj ≤ 1/π for j = 1, . . . , n.

Yet, there is one difficulty in this approach: Whenever λ0 > 0, one can

write

(8.44)
π

2

∫ λ0

0

dτ

1− 2δτ
=

π

2

∫ λ′
0

0

dτ

1− 2δτ
+

π

2

∫ λ0

λ′
0

dτ

1− 2δτ

with 0 < λ′
0 < λ0. In this case, one obtains a more accurate estimate in

(8.43) if the summand π
2

∫ λ0

λ′
0

dτ
1−2δτ

in (8.44) is replaced with a suitable term

of the form of the left-hand side of (8.42). In other words, one can find

another partition of the interval [0, t] for which the corresponding estimate

(8.43) is tighter. In fact, iterating this argument, it is easy to see that the

inequality (8.42) can be ensured also if s = 0, so that one does not benefit

substantially from using the bound from Theorem 6.15 (b) at all.

As a consequence, we do not modify the set D(θ) from Definition 8.6
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for the optimization problem for off-diagonal perturbations, but only the

operator W .

Definition 8.24. Let W̃ denote the (non-linear) operator on D that assigns

λ = (λj) ∈ D the sequence (tj) given by the recursion

(8.45) tj+1 := tj + λj(1− 2δtj ) , j ∈ N0 , t0 = 0 .

For θ ∈
[
0, π2

]
set

(8.46) T̃ (θ) := sup
{
max W̃ (λ) | λ ∈ D(θ)

}
.

One can show in a way completely analogous to the proof of Lemma

8.5 that every sequence (tj) defined by (8.45) is increasing and eventually

constant with 0 ≤ tj <
√
3/2 for all j ∈ N0. In particular, the quantity

max W̃ (λ) = maxj∈N0 tj is well defined and less than
√
3/2. One can also

show that the mapping
[
0, π2

]
∋ θ 7→ T̃ (θ) ∈

[
0,

√
3
2

]
is continuous and

strictly increasing and that a corresponding variant of Proposition 8.7 is

valid. We omit the details here. For now, it suffices to note that T̃
(
π
2

)

yields a lower bound on the optimal constant copt-off introduced in Section

2.3, that is, one has copt-off ≥ T̃
(
π
2

)
.

It is a direct consequence of the preceding considerations (in particular

Lemma 8.23 (a) and inequality (8.42) with s = 0) that, in contrast to the

case of general perturbations, the supremum in (8.46) is not attained. This

is one of the fundamental differences between the optimization problems

defined by (8.10) and (8.46).

Another important difference between these two problems is that for

λ = (λj) ∈ Dn no explicit representation for max W̃ (λ) as in (8.19) is at

hand, which makes it hard to characterize the corresponding critical points

on Dn(θ) in form of an analogue to Lemma 8.15. Moreover, in contrast to

Lemma 8.14, one has to expect that the value of max W̃ (λ) depends on the

order of the entries λ0, . . . , λn.

In fact, the optimization problem given by (8.46) is not solved explicitly

yet. So far, the author can only guess a choice of λ ∈ D
(
π
2

)
guaranteeing that

T̃
(
π
2

)
> 0.694, see Example 8.25 below. This guess is based on the approach

(8.43). It seems to be a reasonable compromise between the complexity of

the choice of the parameters and the strength of the result.
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Example 8.25. Choose a > 0 such that

π

2

∫ a

0

dτ

1− 2δτ
=

1

3

and b ∈
(
0, 1

π

]
such that 2 arcsin(πb) = π

2 − 1
3 , that is,

b =
1

π
sin
(3π − 2

12

)
= 0.1846204 . . .

Define λ = (λj) ∈ D4 by

λ = (a, b, b, b, b, 0, . . . ) .

For this choice of λ, the right-hand side of (8.43) equals π/2, and one easily

concludes from inequality (8.42) (for s = 0) that there is θ < π/2 and some

µ ∈ D(θ) with max W̃ (µ) = max W̃ (λ). Hence, T̃
(
π
2

)
> T̃ (θ) ≥ max W̃ (λ).

We now estimate the value of max W̃ (λ) = t5, where (tj) := W̃ (λ).

Numerical calculations give

t1 = a ≥ 0.2062031 .

Upon observing that the mapping
[
0,

√
3
2

]
∋ t 7→ t + x(1 − 2δt) is strictly

increasing for all 0 ≤ x < 1/2 (cf. Lemma 8.5 (a)), one verifies that

t2 = t1 + λ1(1− 2δt1) ≥ 0.3757396

and, in the same way, that

t3 ≥ 0.5140409 , t4 ≥ 0.6184976 ,

and

t5 ≥ 0.6940725 .

These considerations also yield a corresponding estimate on the maximal

angle. Namely, in view of (8.43), one has

arcsin
(
‖P0 − Pt‖

)
≤ π

2

∫ t

0

dτ

1− 2δτ
for 0 ≤ t ≤ t1 ,
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and

arcsin
(
‖P0 − Pt‖

)
≤ 1

3
+ (j − 1)

3π − 2

24
+

1

2
arcsin

(
π

t− tj
1− 2δtj

)

for tj < t ≤ tj+1 with j ∈ {1, . . . , 4}, where we have taken into account that

arcsin(πb) = (3π− 2)/12. Numerical calculations suggest that this bound is

indeed stronger than the one from Theorem 6.15 (b).

Corollary 8.26. The optimal constant copt-off for off-diagonal perturbations

satisfies the lower bound copt-off > 0.6940725.

Despite the mentioned difficulties of computing T̃ (θ), Example 8.25 and

Corollary 8.26 demonstrate that the approach based on the optimization

problem defined by (8.46) has great potential and deserves to be studied in

future research.

8.4 Semidefinite perturbations. An outlook

In this final section, we briefly discuss how the optimization problem can

be modified in the case of semidefinite perturbations; computing the corre-

sponding solution is left for future studies.

To this end, in addition to Hypothesis 8.1, suppose that V ≥ 0. The

case V ≤ 0 can be treated analogously. We extend the definition of Bt to

parameters t satisfying 0 ≤ t < 1. Then, it follows from Proposition 1.20

that the spectrum of each Bt is separated as spec(Bt) = ωt∪Ωt with ωt and

Ωt defined analogously to (2.33). In particular, one has

(8.47) dist(ωt,Ωt) ≥ (1− t)d for 0 ≤ t < 1 .

Since the inclusion ωt ⊂ Od/2(σ) does not need to hold anymore for t ≥ 1/2,

we replace the definition of the spectral projection Pt by Pt := EBt(ωt),

0 ≤ t < 1.

In view of (8.47), let Ŵ denote the (non-linear) operator on D that

assigns λ = (λj) ∈ D the sequence (tj) given by the recursion

tj+1 := tj + λj(1− tj) , j ∈ N0 , t0 = 0 .

The optimization problem for semidefinite perturbations can then be defined
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by

T̂ (θ) := sup
{
max Ŵ (λ) | λ ∈ D(θ)

}
.

For λ = (λj) ∈ Dn, in a way analogous to (8.19), one obtains the explicit

representation

max Ŵ (λ) = tn+1 = 1−
n∏

j=0

(1− λj) .

In particular, Lemma 8.14 remains valid for Ŵ instead of W . Moreover,

from the explicit representation for tn+1, one infers that the condition for

the critical points of the mapping λ 7→ max Ŵ (λ) on Dn(θ) analogous to

(8.21) now reads

√
1− π2λ2

k√
1− π2λ2

k+1

=
1− λk

1− λk+1
for k = 0, . . . , n− 1 .

This allows to obtain a corresponding variant of Lemma 8.15, which has

been one of key ingredients in Section 8.2. The other main tool, Lemma

8.16, also remains available, provided that W is replaced with Ŵ . Thus, the

optimization problem for semidefinite perturbations can be handled essen-

tially in the same way as in the case of general perturbations. Yet, numerical

experiments suggest that one will need more than three parameters for the

solution, so that the problem here seems to be more involved than the one

for general perturbations. The author hopes to return to this matter in

future research.





Appendix A

Proof of some inequalities

Lemma A.1. The following inequalities hold:

(a) 2
π2 + 2π−4

π2 sin2 θ < 2
π

(
1− 1

π sin θ
)
sin θ for arcsin

(
1

π−1

)
< θ < π

2 ,

(b) 1
π sin(2θ) < 2

π2 + π2−4
2π2 sin2 θ for arctan

(
2
π

)
< θ ≤ π

4 ,

(c) 2
π

(
1− 1

π sin θ
)
sin θ < 2

π2 + π2−4
2π2 sin2 θ for θ 6= arcsin

(
2
π

)
,

(d) 2
π

(
1− 1

π sin θ
)
sin θ < 1

π sin(2θ) for 0 < θ < 2 arctan
(
1
π

)
,

(e) 2
π

(
1− 1

π sin θ
)
sin θ > 1

π sin(2θ) for 2 arctan
(
1
π

)
< θ < π .

Proof. One has

2

π

(
1− 1

π
sin θ

)
sin θ −

( 2

π2
+

2π − 4

π2
sin2 θ

)

= −2(π − 1)

π2

(
sin2 θ − π

π − 1
sin θ +

1

π − 1

)

= −2(π − 1)

π2

((
sin θ − π

2(π − 1)

)2
− (π − 2)2

4(π − 1)2

)
,

which is strictly positive if and only if

(
sin θ − π

2(π − 1)

)2
<

(π − 2)2

4(π − 1)2
.

A straightforward analysis shows that the last inequality holds for θ with
arcsin

(
1

π−1

)
< θ < π

2 . This proves (a).

For θ0 := arctan
(
2
π

)
= 1

2 arcsin
(

4π
π2+4

)
one has sin(2θ0) = 4π

π2+4
and

sin2 θ0 = 4
π2+4

. Thus, the inequality in (b) becomes an equality for θ = θ0.
Therefore, in order to show (b), it suffices to show that the corresponding
estimate holds for the derivatives of both sides of the inequality, that is,

2

π
cos(2θ) <

π2 − 4

2π2
sin(2θ) for θ0 < θ <

π

4
.
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This inequality is equivalent to tan(2θ) > 4π
π2−4

for θ0 < θ < π
4 , which, in

turn, follows from tan(2θ0) =
2 tan θ0

1−tan2 θ0
= 4π

π2−4
. This implies (b).

The claim (c) follows immediately from

2

π2
+

π2 − 4

2π2
sin2 θ − 2

π

(
1− 1

π
sin θ

)
sin θ =

1

2

( 2
π
− sin θ

)2
.

Finally, observe that

(A.1)
1

π
sin(2θ)− 2

π

(
1− 1

π
sin θ

)
sin θ =

2

π

(
cos θ − 1 +

1

π
sin θ

)
sin θ .

For 0 < θ < π, the right-hand side of (A.1) is positive if and only if the term
1−cos θ
sin θ = tan

(
θ
2

)
is less than 1

π . This is the case if and only if θ satisfies
θ < 2 arctan

(
1
π

)
, which proves (d). The proof of claim (e) is analogous.

Lemma A.2. There is a unique ϑ ∈
(
arcsin

(
2
π

)
, π2
)
such that

(
1− 2

π
sin θ

)2
<

(
1− 2

π
sin
(2θ
3

))3

for 0 < θ < ϑ

and (
1− 2

π
sin θ

)2
>

(
1− 2

π
sin
(2θ
3

))3

for ϑ < θ ≤ π

2
.

Proof. Define u, v, w : R → R by

u(θ) := sin
(2θ
3

)
, v(θ) :=

π

2
− π

2

(
1− 2

π
sin θ

)2/3
, w(θ) := u(θ)− v(θ) .

Obviously, the claim is equivalent to the existence of ϑ ∈
(
arcsin

(
2
π

)
, π2
)

such that w(θ) < 0 for 0 < θ < ϑ and w(θ) > 0 for ϑ < θ ≤ π
2 .

Observe that u′′′(θ) = − 8
27 cos

(
2θ
3

)
< 0 for 0 ≤ θ ≤ π

2 . In particular, u′′ is
strictly decreasing on the interval

[
0, π2

]
. Moreover, u′′′ is strictly increasing

on
[
0, π2

]
, so that the inequality u′′′ ≥ u′′′(0) = − 8

27 > −1
2 holds on

[
0, π2

]
.

One computes

(A.2) v(4)(θ) =
2π1/3

81

p(sin θ)

(π − 2 sin θ)10/3
for 0 ≤ θ ≤ π

2
,

where

p(x) = 224 − 72π2 + 27π3x− (160 + 36π2)x2 + 108πx3 − 64x4 .

The polynomial p is strictly increasing on [0, 1] and has exactly one root in
the interval (0, 1). Combining this with equation (A.2), one obtains that
v(4) has a unique zero in

(
0, π2

)
and that v(4) changes its sign from minus to

plus there. Observing that v′′′(0) < −1
2 and v′′′

(
π
2

)
= 0, this yields v′′′ < 0
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on
[
0, π2

)
, that is, v′′ is strictly decreasing on

[
0, π2

]
. Moreover, it is easy

to verify that v′′′
(
π
3

)
< v′′′(0), so that v′′′ ≤ v′′′(0) < −1

2 on
[
0, π3

]
. Since

u′′′ > −1
2 on

[
0, π2

]
as stated above, it follows that w′′′ = u′′′ − v′′′ > 0 on[

0, π3
]
, that is, w′′ is strictly increasing on

[
0, π3

]
.

Recall that u′′ and v′′ are both decreasing functions on
[
0, π2

]
. Observing

the inequality u′′
(
π
2

)
> v′′

(
π
3

)
, one deduces that

(A.3) w′′(θ) = u′′(θ)− v′′(θ) ≥ u′′
(π
2

)
− v′′

(π
3

)
> 0 for θ ∈

[π
3
,
π

2

]
.

Moreover, one has w′′(0) < 0. Combining this with (A.3) and the fact that
w′′ is strictly increasing on

[
0, π3

]
, one concludes that w′′ has a unique zero

in the interval
(
0, π2

)
and that w′′ changes its sign from minus to plus there.

Since w′(0) = 0 and w′(π
2

)
= 1

3 > 0, it follows that w′ has a unique zero
in
(
0, π2

)
, where it changes its sign from minus to plus. Finally, observing

that w(0) = 0 and w
(
π
2

)
> 0, in the same way one arrives at the conclusion

that w has a unique zero ϑ ∈
(
0, π2

)
such that w(θ) < 0 for 0 < θ < ϑ

and w(θ) > 0 for ϑ < θ < π
2 . As a result of w

(
arcsin

(
2
π

))
< 0, one has

ϑ > arcsin
(
2
π

)
.

Lemma A.3. For x ∈
(

2
π2 ,

4
π2+4

)
let

(A.4) α :=

√
1− π2x2

1− 2x
and y :=

4α2

π2 + 4α2
− x .

Then, θ := arcsin(πx) + 1
2 arcsin(πy) satisfies the inequalities

(A.5)
3

2
arcsin

( 2
π

)
< θ ≤ arcsin

(12 + π2

8π

)
+

1

2
arcsin

(12− π2

4π

)

and

(A.6)

(
1− 2

π
sin
(2θ
3

))3

< (1− 2x)2(1− 2y) .

Proof. One has 1 < α < m := π
2 tan

(
arcsin

(
2
π

))
, as well as y ∈

(
0, 2

π2

)

and α =

√
1−π2y2

1−2y , cf. Lemma 8.15. Moreover, taking into account that

α2 = 1−π2x2

(1−2x)2
by (A.4), one computes

(A.7) y =
4− (π2 + 4)x

π2 + 4− 4π2x
.

Observe that α → m and y → 2
π2 as x → 2

π2 , and that α → 1 and y → 0
as x → 4

π2+4
. With this and taking into account (A.7), it is convenient to

consider α = α(x), y = y(x), and θ = θ(x) as continuous functions of the
variable x ∈

[
2
π2 ,

4
π2+4

]
.
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Straightforward calculations show that

1− 2y(x) =
π2 − 4

π2 + 4− 4π2x
· (1− 2x) for

2

π2
≤ x ≤ 4

π2 + 4
,

so that

y′(x) = − (π2 − 4)2

(π2 + 4− 4π2x)2
= −(1− 2y(x))2

(1− 2x)2
for

2

π2
< x <

4

π2 + 4
.

Taking into account that α(x) = α
(
y(x)

)
, that is,

√
1−π2x2√

1−π2y(x)2
= 1−2x

1−2y(x) , this

leads to

(A.8)

θ′(x) =
π√

1− π2x2
+

πy′(x)

2
√

1− π2y(x)2

=
π

2
√
1− π2x2

(
2 +

1− 2x

1− 2y(x)
· y′(x)

)

=
π

2
√
1− π2x2

(
2− π2 − 4

π2 + 4− 4π2x

)

=
π

2
√
1− π2x2

· 12 + π2 − 8π2x

π2 + 4− 4π2x
.

In particular, x = 12+π2

8π2 is the only critical point of θ in the interval(
2
π2 ,

4
π2+4

)
and θ′ changes its sign from plus to minus there. Moreover,

using y
(

2
π2

)
= 2

π2 and y
(

4
π2+4

)
= 0, one has

θ
( 2

π2

)
=

3

2
arcsin

( 2
π

)
< arcsin

( 4π

π2 + 4

)
= θ
( 4

π2 + 4

)
,

so that

3

2
arcsin

( 2
π

)
< θ(x) ≤ θ

(12 + π2

8π2

)
for

2

π2
< x <

4

π2 + 4
.

Since y
(
12+π2

8π2

)
= 12−π2

4π2 , this proves the two-sided inequality (A.5).

Further calculations show that

(A.9) θ′′(x) =
π3

2

p(x)

(1− π2x2)3/2 (π2 + 4− 4π2x)2
,

2

π2
< x <

4

π2 + 4
,

where

p(x) = 16− 4π2 + (48 + 16π2 + π4)x− 8π2(12 + π2)x2 + 32π4x3 .

The polynomial p is strictly negative on the interval
[

2
π2 ,

4
π2+4

]
, so that θ′

is strictly decreasing.
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Define w :
[

2
π2 ,

4
π2+4

]
→ R by

w(x) := (1− 2x)2 ·
(
1− 2y(x)

)
−
(
1− 2

π
sin
(2θ(x)

3

))3

.

The claim (A.6) is equivalent to the inequality w(x) > 0 for 2
π2 < x < 4

π2+4
.

Since y
(

2
π2

)
= 2

π2 and, hence, θ
(

2
π2

)
= 3

2 arcsin
(
2
π

)
, one has w

(
2
π2

)
= 0.

Moreover, a numerical evaluation gives w
(

4
π2+4

)
> 0. Therefore, in order to

prove w(x) > 0 for 2
π2 < x < 4

π2+4
, it suffices to show that w has exactly

one critical point in the interval
(

2
π2 ,

4
π2+4

)
and that w takes its maximum

there.

Using (A.8) and taking into account that
√
1− π2x2 = α(x)(1−2x), one

computes

d

dx
(1− 2x)2

(
1− 2y(x)

)
= −4(1− 2x)

(
1− 2y(x)

)
− 2(1 − 2x)2y′(x)

= −2(1− 2x)
(
1− 2y(x)

)(
2 +

1− 2x

1− 2y(x)
· y′(x)

)

= − 4

π
(1− 2x)2

(
1− 2y(x)

)
α(x)θ′(x) .

Hence, for 2
π2 < x < 4

π2+4
one obtains

w′(x) = − 4

π
θ′(x) ·

(
u(x)− v(x)

)
,

where u, v :
[

2
π2 ,

4
π2+4

]
→ R are given by

u(x) := α(x)(1 − 2x)2
(
1− 2y(x)

)

and

v(x) :=

(
1− 2

π
sin
(2θ(x)

3

))2

cos
(2θ(x)

3

)
.

Suppose that for all x ∈
(

2
π2 ,

4
π2+4

)
the difference u(x)− v(x) is strictly

negative. In this case, w′ and θ′ have the same zeros on
(

2
π2 ,

4
π2+4

)
, and

w′(x) and θ′(x) have the same sign for all x ∈
(

2
π2 ,

4
π2+4

)
. Combining this

with (A.8), one concludes that x = 12+π2

8π2 is the only critical point of w in
the interval

(
2
π2 ,

4
π2+4

)
and that w takes its maximum in this point.

Hence, it remains to show that the difference u − v is indeed strictly
negative on

(
2
π2 ,

4
π2+4

)
. Since α

(
2
π2

)
= π

2 tan
(
arcsin

(
2
π

))
, y
(

2
π2

)
= 2

π2 , and

θ
(

2
π2

)
= 3

2 arcsin
(
2
π

)
, it is easy to verify that one has u

(
2
π2

)
= v

(
2
π2

)
and

u′
(

2
π2

)
= v′

(
2
π2

)
< 0. Therefore, it suffices to show that u′ < v′ holds on the

whole interval
(

2
π2 ,

4
π2+4

)
.
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One computes

(A.10) u′′(x) =
(π2 − 4)q(x)

(1− π2x2)3/2(π2 + 4− 4π2x)3

where

q(x) = (128 − 80π2 − π6) + 12π2(π2 + 4)2x− 12π2(7π4 + 24π2 + 48)x2

+ 32π4(5π2 + 12)x3 + 24π4(π4 + 16)x4 − 96π6(π2 + 4)x5 + 128π8x6 .

A further analysis shows that q′′, which is a polynomial of degree 4, has
exactly one root in the interval

[
2
π2 ,

4
π2+4

]
and that q′′ changes its sign from

minus to plus there. Moreover, q′ takes a positive value in this root of q′′,
so that q′ > 0 on

[
2
π2 ,

4
π2+4

]
, that is, q is strictly increasing on this interval.

Since q
(

4
π2+4

)
< 0, one concludes that q < 0 on

[
2
π2 ,

4
π2+4

]
. It follows

from (A.10) that u′′ < 0 on
(

2
π2 ,

4
π2+4

)
, so that u′ is strictly decreasing. In

particular, one has u′ < u′
(

2
π2

)
< 0 on

(
2
π2 ,

4
π2+4

)
.

A straightforward calculation yields

(A.11) v′(x) = −2

3

(
1− 2

π
sin
(2θ(x)

3

))
· θ′(x) · r

(
sin
(2θ(x)

3

))
,

where r(t) = 4
π+t− 6

π t
2. The polynomial r is positive and strictly decreasing

on the interval
[
1
2 , 1]. Furthermore, taking into account (A.5), θ(x) satisfies

1
2 < sin

(2θ(x)
3

)
< 1. Combining this with equation (A.11), one deduces that

v′(x) has the opposite sign of θ′(x) for all 2
π2 < x < 4

π2+4 . In particular, by

(A.8) it follows that v′(x) ≥ 0 if x ≥ 12+π2

8π2 . Since u′ < 0 on
(

2
π2 ,

4
π2+4

)
, this

implies that v′(x) > u′(x) for 12+π2

8π2 ≤ x < 4
π2+4

. If 2
π2 < x < 12+π2

8π2 , then

one has θ′(x) > 0. In particular, θ is strictly increasing on
(

2
π2 ,

12+π2

8π2

)
. Re-

call, that θ′ is strictly decreasing by (A.9). Combining all this with equation

(A.11) again, one deduces that on the interval
(

2
π2 ,

12+π2

8π2

)
the function −v′

can be expressed as a product of three positive, strictly decreasing terms.
Hence, on this interval v′ is negative and strictly increasing. Recall that
u′ < u′

(
2
π2

)
= v′

(
2
π2

)
on
(

2
π2 ,

4
π2+4

)
, which now implies that

u′(x) < u′
( 2

π2

)
= v′

( 2

π2

)
< v′(x) for

2

π2
< x <

12 + π2

8π2
.

Since the inequality u′(x) < v′(x) has already been shown for x ≥ 12+π2

8π2 ,
one concludes that u′ < v′ holds on the whole interval

(
2
π2 ,

4
π2+4

)
. This

completes the proof.
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Lemma A.4. One has

(
1− 2

π
sin
(2θ
3

))3

<

(
1− 2

π
sin
(θ
2

))4

for 0 < θ ≤ π

2
.

Proof. The proof is similar to the one of Lemma A.2. Define u, v, w : R → R

by

u(θ) := sin
(θ
2

)
, v(θ) :=

π

2
− π

2

(
1− 2

π
sin
(2θ
3

))3/4

,

and
w(θ) := u(θ)− v(θ) .

Obviously, the claim is equivalent to the inequality w(θ) < 0 for 0 < θ ≤ π
2 .

Observe that u′′′(θ) = −1
8 cos

(
θ
2

)
< 0 for 0 ≤ θ ≤ π

2 . In particular, u′′′ is
strictly increasing on

[
0, π2

]
and satisfies u′′′ ≥ u′′′(0) = −1

8 .
One computes

(A.12) v(4)(θ) =
π1/4

54

p
(
sin
(
2θ
3

))

(
π − 2 sin

(
2θ
3

))13/4 for 0 ≤ θ ≤ π

2
,

where

p(x) = 45 − 16π2 + 4π(1 + 2π2)x− (34 + 20π2)x2 + 44πx3 − 27x4 .

The polynomial p is strictly increasing on
[
0,

√
3
2

]
and has exactly one root in

the interval
(
0,

√
3
2

)
. Combining this with equation (A.12), one obtains that

v(4) has a unique zero in the interval
(
0, π2

)
and that v(4) changes its sign from

minus to plus there. Moreover, it is easy to verify that v′′′
(
π
2

)
< v′′′(0) < −1

8 .
Hence, one has v′′′ < −1

8 on
[
0, π2

]
. Since u′′′ ≥ −1

8 on
[
0, π2

]
as stated above,

this implies that w′′′ = u′′′−v′′′ > 0 on
[
0, π2

]
, that is, w′′ is strictly increasing

on
[
0, π2

]
.

With w′′(0) < 0 and w′′(π
2

)
> 0 one deduces that w′′ has a unique

zero in
(
0, π2

)
and that w′′ changes its sign from minus to plus there. Since

w′(0) = 0 and w′(π
2

)
> 0, it follows that w′ has a unique zero in

(
0, π2

)
, where

it changes its sign from minus to plus. Finally, observing that w(0) = 0 and
w
(
π
2

)
< 0, one concludes that w(θ) < 0 for 0 < θ ≤ π

2 .
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Birkhäuser, Basel, 2001, pp. 331–358.

[33] R. McEachin, A sharp estimate in an operator inequality, Proc. Amer.
Math. Soc. 115 (1992), 161–165.

[34] R. McEachin, Closing the gap in a subspace perturbation bound, Linear
Algebra Appl. 180 (1993), 7–15.

[35] R. McEachin, Analyzing specific cases of an operator inequality, Linear
Algebra Appl. 208/209 (1994), 343–365.

[36] K. A. Makarov, A. Seelmann, Metric properties of the set of orthogonal
projections and their applications to operator perturbation theory, e-
print arXiv:1007.1575v1 [math.SP] (2010).

[37] K. A. Makarov, A. Seelmann, The length metric on the set of orthog-
onal projections and new estimates in the subspace perturbation prob-
lem, J. Reine Angew. Math. (2013). DOI: 10.1515/crelle-2013-0099



150 Bibliography

[38] K. A. Makarov, S. Schmitz, A. Seelmann, Reducing graph sub-
spaces and strong solutions to operator Riccati equations, e-print
arXiv:1307.6439 [math.SP] (2013).

[39] R. Mennicken, A. A. Shkalikov, Spectral decomposition of symmetric
operator matrices, Math. Nachr. 179 (1996), 259–273.

[40] A. K. Motovilov, A. V. Selin, Some sharp norm estimates in the sub-
space perturbation problem, Integral Equations Operator Theory 56
(2006), 511–542.

[41] A. Pazy, Semigroups of Linear Operators and Applications to Partial
Differential Equations, Appl. Math. Sci., vol. 44, Springer, New York,
1983.
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