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Abstract

This thesis addresses the development and improvement of linear scaling algo-
rithms for electronic structure based molecular dynamics.

Molecular dynamics is a method for computer simulation of the complex in-
terplay between atoms and molecules at finite temperature. Important advan-
tages of this method are its high accuracy and predictive power. But the com-
putational effort, which generally scales cubically with the number of atoms,
hinders its applications to large systems and long time scales.

With a new formalism, based on the grand-canonical potential and a factor-
ization of the density matrix, the diagonalization of the corresponding Hamil-
tonian matrix is avoided. It exploits the fact that the Hamiltonian and the
density matrix are sparse due to localization. This reduces the complexity
of the calculations, so that linear scaling with respect to the system’s size is
achieved.

To demonstrate its efficiency, the resulting algorithm is applied to a system of
liquid methane, exposed to extreme pressure (around 100 GPa) and tempera-
ture (2000 - 8000 K). In the simulations, methane dissociates at temperatures
exceeding 4000 K. The formation of sp?-bonded polymeric carbon is observed.
The simulations provide no evidence for the formation of diamond and there-
fore have an impact on the hitherto planetary models of Neptune and Uranus.
As the circumvention of the diagonalization of the Hamiltonian entails the in-
version of matrices, the problem of calculating the (inverse) p-th root of a given
matrix is further addressed. It results in a new formula for symmetric posi-
tive definite matrices that generalizes the Newton-Schulz iteration, Altman’s
scheme for bounded and non-singular operators, and Newton’s method for find-
ing roots of functions. The proof is furnished that the order of convergence is
always at least quadratic and that adaptively adjusting a parameter ¢ leads in

all cases to a better performance.






Zusammenfassung

Die vorliegende Arbeit behandelt die Entwicklung und Verbesserung von linear
skalierenden Algorithmen fiir Elektronenstruktur basierte Molekulardynamik.
Molekulardynamik ist eine Methode zur Computersimulation des komplexen
Zusammenspiels zwischen Atomen und Molekiilen bei endlicher Temperatur.
Ein entscheidender Vorteil dieser Methode ist ihre hohe Genauigkeit und Vor-
hersagekraft. Allerdings verhindert der Rechenaufwand, welcher grundsétzlich
kubisch mit der Anzahl der Atome skaliert, die Anwendung auf grofte Systeme
und lange Zeitskalen.

Ausgehend von einem neuen Formalismus, basierend auf dem grofskanonischen
Potential und einer Faktorisierung der Dichtematrix, wird die Diagonalisie-
rung der entsprechenden Hamiltonmatrix vermieden. Dieser nutzt aus, dass
die Hamilton- und die Dichtematrix aufgrund von Lokalisierung diinn besetzt
sind. Das reduziert den Rechenaufwand so, dass er linear mit der Systemgrofse
skaliert.

Um seine Effizienz zu demonstrieren, wird der daraus entstehende Algorith-
mus auf ein System mit fliissigem Methan angewandt, das extremem Druck
(etwa 100 GPa) und extremer Temperatur (2000 - 8000 K) ausgesetzt ist. In
der Simulation dissoziiert Methan bei Temperaturen oberhalb von 4000 K. Die
Bildung von sp?-gebundenem polymerischen Kohlenstoff wird beobachtet. Die
Simulationen liefern keinen Hinweis auf die Entstehung von Diamant und wir-
ken sich daher auf die bisherigen Planetenmodelle von Neptun und Uranus
aus.

Da das Umgehen der Diagonalisierung der Hamiltonmatrix die Inversion von
Matrizen mit sich bringt, wird zusétzlich das Problem behandelt, eine (inver-
se) p-te Wurzel einer gegebenen Matrix zu berechnen. Dies resultiert in einer
neuen Formel fiir symmetrisch positiv definite Matrizen. Sie verallgemeinert
die Newton-Schulz Iteration, Altmans Formel fiir beschrankte und nicht sin-
guldre Operatoren und Newtons Methode zur Berechnung von Nullstellen von
Funktionen. Der Nachweis wird erbracht, dass die Konvergenzordnung immer
mindestens quadratisch ist und adaptives Anpassen eines Parameters ¢ in allen

Féllen zu besseren Ergebnissen fiihrt.
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Chapter 1
Introduction

Ab initio molecular dynamics is a method for computer simulation of the com-
plex interplay between electrons, atoms, and molecules at finite temperature.
To achieve this, the time evolution of atoms is calculated by solving Newton’s
equations of motion. In contrast to molecular dynamics simulations with em-
pirical interaction potentials, the forces are obtained "on the fly" with the aid
of parameter-free electronic structure calculations. Two key advantages of this
method are transferability and high accuracy, which are important, if aiming
to make predictions for unknown systems under conditions where experimental
information is not yet available.

The main challenge, when performing ab initio molecular dynamics calcula-
tions, is that a huge Hamilton matrix has to be diagonalized in every time
step in order to extract the energy eigenvalues. The computational effort is
generally of order O(N?), where N denotes the number of atoms. Developing
new methods that scale linearly with respect to the size of the system is there-
fore a desirable aim. The central question in this work is to circumvent this
computationally expensive operation of diagonalizing, and to demonstrate its
capability in selected applications.

To achieve this, we use an alternative field-theoretic method suitable for lin-
ear scaling molecular dynamics simulations using forces from self-consistent
electronic structure calculations. It is based on an exact decomposition of
the grand-canonical potential for independent fermions and does not rely on
either the ability to localize the orbitals or whether the Hamilton operator

is well-conditioned. We compute the finite-temperature density matrix, or



Fermi matrix, by a hybrid approach. Taking inspiration from the Fermi op-
erator expansion method, the Fermi operator is decomposed into a sum of
matrices, which have to be inverted. The inversion of these matrices is done
by Chebyshev polynomial expansion for the large number of well-conditioned
matrices and Newton-Schulz iteration for the few remaining ill-conditioned
matrices. Our method enables highly accurate all-electron linear scaling calcu-
lations, including for metallic systems. The problem of inherent energy drift
of Born-Oppenheimer molecular dynamics simulations, arising from an incom-
plete convergence of the self-consistent field cycle, is solved by using a properly
modified Langevin equation. In this way, we reduce the complexity of the cal-

culations so that linear scaling with respect to the system size is achieved.

We illustrate the predictive power of this approach using the example of lig-
uid methane at planetary conditions. Methane occurs in the middle ice layer
of the giant gas planets Uranus and Neptune. In this layer, at a depth of one-
third of the planetary radius, pressure and temperature range from 20 GPa
and 2000 K to 600 GPa and 6000 K, which we simulate by means of large-scale
electronic structure based molecular dynamics using our method. We address
the controversy of whether or not the interior of Uranus and Neptune consists
of diamond. We find no evidence for the formation of diamond, but rather car-
bon chains and sp?-bonded polymeric carbon. Furthermore, we predict that

at high temperature hydrogen may exist in its mono-atomic and metallic state.

A time consuming step in our linear scaling scheme is the part, where ill-
conditioned matrices have to be inverted. We present here a new iteration
scheme to calculate the inverse p-th root of symmetric positive definite matri-
ces. We show that the order of convergence is always quadratic and that in
the case p = 1 we have an arbitrary order of convergence, contingent upon a
parameter q. By choosing ¢ adaptively, better results than with before known
formulas of this type can be achieved as less iterations and matrix-matrix mul-
tiplications are required. This iteration scheme emerges as a generalization
of the Newton-Schulz iteration, Altman’s method, and Newton’s method for
finding roots of functions. Its performance is evaluated by a MATLAB code

using random matrices with different spectral radii.



The present work is organized as follows. In Chapter 2, we introduce the
principles of electronic structure calculations and explain two methods that
are important in this work, i.e. density functional theory and tight-binding.
An introduction to linear scaling methods is presented in Chapter 3. Chapter
4 explains the field-theoretic approach to linear scaling and its implementation.
The application to liquid methane at planetary pressure and temperature con-
ditions as well as the corresponding results and discussion can be found in
Chapter 5. Chapter 6 is dedicated to the determination of the inverse p-th
root of a symmetric positive definite matrix in an efficient way. The last chap-
ter contains the conclusion of our work and gives an outlook to possible future

projects.

Publications

The following results of this work have been published in peer reviewed jour-

nals.

Chapter 4: D. Richters and T. D. Kiihne. "Self-consistent field theory
based molecular dynamics with linear system-size scaling", J. Chem. Phys.,
140(13):134109, 2014.

Chapter 5: D. Richters and T. D. Kiihne. "Liquid methane at extreme
temperature and pressure: Implications for models of Uranus and Neptune'",
JETP Lett., 97(4):184-187, 2013.

The following result is expected to be published soon.

Chapter 6: D. Richters and T. D. Kiihne. "An algorithm to calculate the

inverse principal p-th root of symmetric positive definite matrices"






Chapter 2

Density Functional Theory and
Tight-Binding

In this chapter, we describe the essential theory for quantum mechanical cal-
culations that will be employed in this work.

The main objective in quantum mechanics is to solve the Schréodinger equation

HU = EU (2.1)

for the system of interest. When dealing with a complex system, a series of
approximations becomes essential. This is due to the fact that solving this
equation (2.1) for a given many-electron wavefunction ¥ is so complex that
it is analytically impossible and even numerically intractable. With these ap-
proximations, algorithms can be designed in order to perform numerical calcu-
lations. For electronic structure calculations, density functional theory (DFT)
is a method that provides a good balance between efficiency and accuracy,
making it possible to handle more than just a handful of electrons, while still

providing reasonable accuracy.

If a system is too large for DF'T calculations, one can use the so-called tight-
binding (TB) method, which is a less costly method that enables the modelling
of larger systems. It can be derived from DFT through the the Harris-Foulkes
functional |34, 48|, which allows to get an estimate for the energy of a molecule
from the electronic structure of its atoms with computational cost less than

DFT. In the TB method, the eigenstates of the Hamiltonian are written in an
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atomic-like basis and the true Hamiltonian is replaced by a parametrized and
simplified one [44]. These two techniques, DFT and TB, are described in the

following subsections.

2.1 The Born-Oppenheimer Approximation

The Hamiltonian H of a system for representing the interaction of nuclei and

electrons can be written in the following way
H=Tx+T. +Vyy + Vie + Vive, (2.2)

where Ty and 7T, are the kinetic energies of the nuclei (N) and the electrons
(e) and Vi, Ve and Vi, are the potential energies of the repulsion of the
nuclei (NN) and the electrons (ee) and the attraction between the nuclei and
the electrons (Ne).

The Born-Oppenheimer approximation [14] is based on the observation that
the nuclei are around 2000 times heavier than the electrons. In a classical
picture, this means that the time scales on which electrons and nuclei move
are significantly different and the velocities of the electrons are much larger
than those of the nuclei. The nuclei can be treated as fixed while solving the
electronic problem. This leads to the possibility to factorize the wavefunction
V(Ry,...,Rp,r1,...,7r,) as a product of a nuclear wavefunction x(Ry,... Ry),
depending only on the positions R; of the I nuclei and an electronic wavefunc-
tion. The electronic wavefunction ®(rq,---7,; Ry, -+ Ry) is a function of the
positions r; of the n electrons whereas the positions of the nuclei are parame-

ters. So we get

U({ R} A{ri}) = x{R D) O{ri}; {12s}). (2.3)

2.2 Density Functional Theory

DFT is a quantum mechanical method for correlated many-body systems. The
properties of a such a system can be determined by using a functional of the
electron density [56]. DFT emerged as an important tool for quantitative

studies of molecules and the calculation of electronic structure in condensed



matter physics. In the following subsection, we describe the two theorems of
Hohenberg and Kohn (HK) that build the foundation of DFT and allow us
to find the ground state properties of a given system by just dealing with the
ground state density. Thereafter, we introduce the Kohn-Sham (KS) equations
that provide a practical approach to DFT. They open up the possibility to
accurately determine the ground-state density of particles interacting with
each other by calculating the ground-state density of an auxiliary system of

non-interacting particles.

2.2.1 The Hohenberg-Kohn Theorems

The principle that makes DFT so useful is that the properties of a many-
electron system can be determined by evaluating a functional of the ground
state density po(r) [101]. The uniqueness of such a functional and therefore
the concept of DFT is justified by the two theorems of Hohenberg and Kohn
[56]. They were the first to describe DFT as a formal exact theory that can be
applied to any system of particles interacting in an external potential [101].
The first HK theorem states that the density is up to a trivial constant uniquely
determined for any system of interacting particles in an external potential
Vext (7). This is the basis for reducing the N-electronic many-body problem
with 3NV spatial coordinates to the three spatial coordinates that the electron
density depends on.

The second HK theorem affirms that one can define a universal functional of the
density p(r) for the energy E[p(r)] and that its global minimum value matches
with the exact ground state. So for an arbitrary density p/'(r) with p'(r) > 0
for all position vectors r and [ p/(r)d*(r) = N, we have always Ey < E[o/(r)]
[56]. While the uniqueness of such a functional of the ground state density has
been proven, the exact construction is only solved for one-electron systems.
We also have the problem of representability in DFT. If we have N particles,

we want to write the particle density as follows

p(r) :N//.../\If*(r,rg,...,rN)\If(r,rg,...,rN)d3r2d3r3...d3rN. (2.4)

The question whether one can write an arbitrary density in this above pre-
sented way, meaning that this density arises from an antisymmetric N-body

wavefunction, is called N-representability problem. The question if a density



written in the above manner is corresponds to the ground-state density of a
local external potential vey () is called v-representability problem. While the
question of N-representability has received a favourable answer, there is no
known solution to the problem of v-representability [20, 101|. We can deduce
from the first HK theorem that the potential for any density is unique but we
have no evidence of its existence. However, the constrained search algorithm
of Levy [89] and Lieb [93] shows that this is not necessary in the proof of the
HK theorem|20)].

In principle, we can summarize the concept of DFT as follows. The know-
ledge of the density entails the knowledge of the wavefunction W(ry,...ry)
and the potential. Thus we can calculate all other observables [20]. From this,

it follows that we can write the total energy as

Elp(r)) = [ o)t () + Flo(r)], 25)

where
Flp(r)] = Tp(r)] + Vee[p(r)] (2.6)

is a universal functional which does not explicitly depend on the external
potential. The two HK theorems yield a framework for obtaining the ground

state properties. Hereby, an approximation for F[p(r)] has to be found.

2.2.2 The Kohn-Sham Equations

In this subsection, we explain the method of Kohn and Sham |75, presented in
1965. Their idea was to construct a fictitious non-interacting system that has
exactly the same electron density p(r) as the system of interacting electrons.

As the kinetic energy of a non-interacting system Ts[p(r)] is known

L) =33 [V =TlubON, )

where 1; are the fictitious single-particle wavefunctions or KS orbitals, more
accurate DF'T calculations can be performed. The challenge hereby is to find
this fictitious system. Then, the wavefunction of the non-interacting electrons
can be computed and the ground-state density po(r) can be built from the

resulting molecular orbitals. With that, the ground-state energy F[p(r)] can



be computed [83].

The bright idea of Kohn and Sham was to write the energy functional of

the electronic problem

Elp(r)] = T[p(r)] + Ve[p(r)] + Veelp(r)] (2.8)
Exs|p(r)] = Exs[{¢ilp(r)]}]
(2.9)
= Ts[{eilp(r)]}] + Unlp(r)] + Vielp(r)] + Exc[p(r)],
where

= %// %dr’dr (2.10)

Exelp(r)] = Tlp(r)] = Ts[{ilp(r)I}] + Veelp(r)] = Unp(r)] (2.11)

is the Hartree energy, and

is the exchange-correlation energy functional. It is important to notice that
this results in a formally exact theory, provided that Ey.[p(r)] is known.
Now, the aim is to minimize equation (2.9). As this is not straightforward, we

make it stationary with the help of an Euler-Lagrange equation [83]

 OExs|p(r)] (SEKS[{wZ[p( )1}
0 - el G (2.12)
_ T, [{wl P} | 0Unlp(r)] | Vielp(r)] | 0Exc[p(r)]
So(r) ' oplr) () o0(r) =
[{% [p(r)1}] + 0 (1) + Vext (1) + Uxe(1), (2.14)

op(r)

where 5 denotes the functional derivative with respect to the electron den-

sity p(r). Furthermore,

2.15
|T_T/| ( )

is the Hartree potential, v (r) is the external potential and v..(r) is the

exchange-correlation potential. If we consider a non-interacting system, the
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Euler-Lagrange equation is simplified as the derivatives with respect to p(r) of

the Hartree energy and the electron-ion interaction energy vanish. We get

o = ITHilp(r)]}]
op(r)

where v,(r) is the effective potential of the non-interacting system. By solving

+ vs(1), (2.16)

the latter equation, we solve the non-interacting one particle system to get
the solution of the interacting many-body system. We take a fictitious single-

particle sytem, called the KS system, with an effective potential

Vs (1) = v (1) + Vext (1) + Vxe (), (2.17)

called KS potential. The KS potential is chosen such that its density is the
same as the density of the interacting system. The equations that result from

this approach are known as the KS equations

(=57 + oslr)) i) = st (215)

ps(r) = Z fibi(r)yi(r) = p(r), (2.19)

where N, is the number of occupied orbitals, and { fz}f\ﬁl are the correspond-

ing occupation numbers fulfilling

Nocc

> fi=N.. (2.20)
=1

and ¢; are the KS eigenvalues. Then, the total energy can be calculated from

the energy functional

Noce /
Exslp(r)] = Zfiéi — %// %dr’dr - /ch(r)p(r)dr + Eyc[p(r)].

- (2.21)
The direct calculation of the energy by the solution of the Schrodinger equation
for the non-interacting KS orbitals v; scales cubically with the size of the sys-
tem. However, the KS equations provide a method for finding the ground state
energy of an interacting system. It is an exact method, assumed that Fy.[p(r)]
is known, which is in general not the case. However, very useful approxi-
mations do exist |[126]. In electronic structure calculations, the local density
approximation or the generalized-gradient approximation are often used to get

an approximate exchange-correlation functional.
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2.3 Tight-Binding

In this section, we describe the TB bond model, which is the basis for the
Hamiltonian set-up in our calculations. TB is, in comparison with ab initio
methods, computationally less expensive, but comes along with a decrease
in transferability. In contrast to pure empirical methods, TB preserves the
quantum mechanical structure of bonding, but is computationally less efficient
[44]. TB can be derived from DFT through the Harris-Foulkes functional
[34, 48], which yields an approximation for the energy without solving the
KS equations. Hereby, the electronic density is written as a superposition
of atomic charge densities and the energy is only calculated in terms of this
density.

The cubic scaling of the diagonalization of the Hamiltonian is the bottleneck
in electronic structure calculations, and it is therefore desirable to reduce the
computational effort. TB is a simplified approach to the electronic problem
and a central advantage is the fact that the diagonalization can be effectuated
relatively easy, so that linear scaling can be achieved. The first attempt to
reduce the complexity is to neglect the core electrons which play only a minor
role in chemical bonding and replace them, together with the nucleus, with a
pseudopotential or by an effective charge distribution. Additionally, one can
use a minimal basis set. This leads to a reduction of the size of the Hamiltonian,
which considerably lowers the computational cost of the diagonalization [72].
In the second step, the construction of the Hamiltonian can be simplified.
Hereby, the exact many-body Hamiltonian is replaced by a Hamiltonian that
depends only parametrically on the nuclear positions. In this approach, one
deals with an atomic-like basis set that has the same symmetry properties as

the atomic orbitals.

2.3.1 The Tight-Binding Hamiltonian

As its name already indicates, the electrons in the TB model are supposed to
be tightly bound to the atom to which they belong. The interaction of the elec-
trons with neighbouring atoms is limited. This entails that the wavefunction

of the electron resembles the atomic orbital of the atom.
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We now want to find the electronic band-structrure of the system by solving

the Schrédinger equation
HY(r) = B(k)Wy(r), (2.22)

where H is the Hamiltonian, ¥ (r) is the wavefunction and k the wave vector

[134]. To solve this, one can write ¥y (r) according to Bloch’s theorem [13] as
1 .
() = — 3 e*Ro(r — R), (2.23)
N g

where N is the number of unit cells and R is a lattice vector. This wavefunction

has the periodicity of the lattice, and therefore it fulfils for an arbitrary R
Ui(r) = Yi(r + R). (2.24)

In equation (2.23), ®(r) is the wavefunction on a unit cell of the system, which
can be constructed as a sum of a set of selected orbitals of the atoms in the
unit cell .
O(r) = > oi(r). (2.25)
i=1 a=1
Thereby, ¢ (r) refers to the a-th orbital of atom ¢ in the unit cell, and ¢ are
the corresponding coefficients. This is known as linear combination of atomic
orbitals (LCAO). If only one orbital per atom is used, equation (2.25) reduces

to
n

O(r) =Y cioi(r). (2.26)

=1

Now, we consider the Hamiltonian itself

N 1 9
H = —§V +XR:Uat(T_R)a (2.27)

where U, (+) is a rotation symmetric atomic potential. If we apply this Hamil-

tonian to the atomic orbital ¢, we get

> Uu(r—R)

R#0

Hoe = el + o (2.28)

7
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where €% is the solution of the atomic Hamiltonian
- 1
Hatqbf‘(r) = {—§V2 + Uat(r):| gb? = 8?@5?. (229)

By multiplying equation (2.28) on the left by <¢f |, we can calculate the matrix

elements of the Hamiltonian as [100]
Hy® = (0] | H | 7). (2:30)
and the overlap matrix S as
S = (@] 165). (231)
The energy of the electron described by Wy (r) can be calculated through

E(k) = (U, | H | ). (2.32)

The breakthrough for the TB method was provided by Slater and Koster in
1954 [143]. They proposed a modification of the LCAO method, and showed
that the large number of integrals that have to be evaluated to calculate the
Hamiltonian matrix elements, can be replaced by a parametrized form depend-
ing only on the internuclear distances and the symmetries of the orbitals.

By using Lowdins method [98], we replace the orbitals ¢ by wavefunctions x¢
that have the same symmetry properties but are mutually orthogonal [44]

X =D (ST 6 (2.33)
As described in the previous section, we can describe the system by a set of non-
interacting single-particle wavefunctions, which, according to Bloch’s theorem,

can be written as a Bloch sum [124]
(X)k( Z eF Y (r — R — Ry), (2.34)
3 \/_ K3

where R; are the positions of the atoms within the unit cell. The sum runs
over all periodic images of the orbital. Then, the Hamiltonian elements can

be evaluated as a function of k as

Hf"B ZeZkR/ “(r— R— R)HX] (r — R;)dr. (2.35)
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In the TB model, the matrix elements between two atomic orbitals on neigh-
bouring atoms play an important role. The two-center approximation pre-
sented by Slater and Koster replaces the integrals in (2.35) by a parameter

that depends only on the displacement | R; — R; | between the two atoms.

2.3.2 The Tight-Binding Bond Model

In this subsection, we describe the TB model developed by Sutton, Finnis,
Pettifor, and Ohta [146]. Their work is based on the idea of Harris [48] and
Foulkes and Haydock [34], where they made use of DFT’s variational principle
to get an expression for the total energy that is correct up to second order
with respect to the error in the charge density.

Let pf be a trial charge density that is a sufficiently good approximation to the
exact charge density p*. Then, we write the effective single-particle potential,

or KS potential, of the KS equations as

gs(r) =v(r) + qu(r) + vic(r), (2.36)

where v(r) is the total ionic potential, v, (r) is the Hartree potential and vf_(r)
is the exchange and correlation potential, all expressed as a functional of pf.

With 0ks(r), one constructs an approximative single-particle Hamiltonian

~ 1
H = 5?4 dgs(r) = T + s (r). (2.37)

We define the output charge density p°' as the density that is formed from
the eigenstates solving the Schrodinger equation for H once. By the work of
Harris and Foulkes, we get an approximate expression for the total energy as

a functional of p' and p°ut

ErY i [00) (G0 )t B -

+ Eii + O(pSC _ pf)2 + O(psc . pout)Q‘

Here &,, are the eigenvalues of H, a, the corresponding occupation numbers,

and FEj; is the internuclear interaction. From the variational principle follows
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that the error in the total energy is second order with respect to the error in
the charge density p*°. The output charge density can be constructed from the

eigenstates |n) of the Hamiltonian H
P = ag|n)(nl, (2.39)
and we have furthermore

> ang, = tr[p™ H]. (2.40)

n

This leads to a basis-independent form of equation (2.38)
E = tr[p™ H] — tr[p (05 /2 + vio)] + Exe[p'] + B (2.41)

which is correct to the second order in the difference between the exact charge
density and the trial charge density. According to Harris [48]|, we express the

approximate charge density p' as a superposition of atomic charge densities p;

o= Zpi. (2.42)

Furthermore, we can write the full Hartree potential as a superposition of the
Hartree potentials (vf;); of the non-interacting atomic charge densities at site
i
v =Y (vh);- (2.43)
i

We recall the definition of the approximative single particle Hamiltonian (2.37)
H=T+vh +v, +0.

Using equations (2.42) and (2.43), and adding and subtracting tr[p!H] from

equation (2.41), leads to the following expression for the total energy

E ~tr ((pout — pf)ﬁ) + tr (Z i (Z (U%)j/Q + Uj>> + By + Ey[p']

J#i

)

=2 Exclpd + 37 (1 (pu(T + (vh)i/2 + ) + Exclpd))

(2.44)
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which is also correct to the second order. Here, v; is the pseudopotential of
the ionic core at site j.
Finally, we get the binding energy Ep by subtracting from (2.44) the total

energy of the isolated atoms
Ep ~ tr ((,00“t - ,of)lfl> + AE[p"] + AE,[p"]. (2.45)

Each of the terms in the sum has a clear physical meaning. Hereby, AFE[p’]
is the change in the electrostatic energy and AFE,.[p’] is the change in the
exchange-correlation energy. Both are expressed as functionals of a superposi-
tion of the atomic charge densities p;. The term tr(p°™ —p')H is the sum of the
occupied eigenstates in the system minus the sum of occupied eigenstates in
the free atoms and comes from the formation of bonds and the resulting charge
redistribution. By further approximations, one can write the total energy as
the sum of the eigenstates of a TB Hamiltonian and a sum of pair terms. This
leads to the TB bond model and a physically clear form for the TB energy
(2.45), which is correct to the second order |44, 146].

2.3.3 A Self-Consistent Tight-Binding Model for Hydro-

carbons

In their work [57|, Horsfield, Godwin, Pettifor, and Sutton presented a TB
scheme for hydrocarbons, which turned out to agree very well with experi-
ments as well as related calculations for hydrocarbons and the hydrogenated
surface of diamond. Their model follows the work by Sutton et al. [146], with
the difference that the repulsive energy is not given by a pair potential but by
a pair functional of the charge density. One relevant feature of Sutton’s model
is that it brings along a form of self-consistency. Without self-consistency, TB
suffers from large errors as the is no charge conservation and no considerations
regarding the potential variations due to charge distribution. The easiest ap-
proach to self-consistency is local charge neutrality (LCN).

The concept of LCN is perfectly suitable for hydrocarbons, as they come along
with only little charge transfer. LCN is hereby achieved by shifting the diago-
nal elements of the Hamiltonian until the number of electrons of every atom is
equal to the number of its valence electrons. The off-diagonal elements, how-

ever, are calculated as the product of the angular factors and the two-center
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integrals by Slater and Koster [143].
Details can be found in section 4.4, where we explain explicitly how LCN can

be implemented.



18



Chapter 3
Linear Scaling Methods

The calculation of the electronic structure of materials is a task that is computa-
tionally very expensive. This results from the fact that solving the Schrédinger
equation typically scales cubically with the size of the system as the diagonal-
ization of the Hamiltonian corresponds to the solution of a high-dimensional
eigenvalue problem. Thus, methods that scale linearly with the size of the sys-
tem are desirable as they provide the possibility to treat considerably larger
systems. However, for developing a computational chemistry method that

scales linearly with the size of a system, one is in the need of approximations.

Several linear scaling methods have been developed |9, 16, 17, 35, 40, 70,
73, 90, 105, 120-122, 153, and they are all based on the concept of locality
or nearsightedness which comprehends that a small disturbance in one part of
the system has only a local effect on the electron density. It is based on the
observation that the interaction between electrons occurs only within a finite
distance from the nuclei. For insulators, we have an exponential decay of the
density matrix. This enables the introduction of a localization region. The
interaction is evaluated only in this region and is assumed to be zero outside.
Like this, we have more vanishing matrix elements, a necessity to achieve linear

scaling 40|, and the matrices become sparse at last.

In traditional TB, the Schrodinger equation is solved in the reciprocal space
by diagonalization of the Hamiltonian matrix. This entails a cubic scaling. In

order to achieve linear scaling, the sparsity of the Hamiltonian and overlap ma-
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trix is an important aspect. With the above described approximation, where
only the local environment influences the bonding [15], both matrices are as-
sumed to have non-zero elements only within a finite range.

Linear scaling methods, which have been developed in the last decades, calcu-
late the band energy in real space. A sparse Hamiltonian can be constructed if
the basis functions are localized to regions that are significantly smaller than
the size of the system. The most intuitive basis functions are hereby local

orbitals, on which almost all linear scaling methods rely on.

Another important criterion for the efficiency of a linear scaling algorithm
is its parallelizability. Intrinsically parallel algorithms that do not need much

all-to-all communication are suitable for achieving a favourable scalability.

The fundamental quantity in linear scaling techniques is the density matrix
and the property that is to be exploited is its sparsity. A suitable localized basis
set is needed to get a sparse representation. There are different approaches to
find the density matrix, among them are minimization methods and recursive

or stochastic approaches.

3.1 Minimization Methods

One approach towards linear scaling is based on efficient minimization methods.
They can be direct or iterative, but they all have the same goal to minimize
the total energy with respect to the density matrix so that the ground state
is found. A small selection of minimization methods are presented in the

following subsections.

3.1.1 Orbital Minimization

The concept of orbital minimization has been developed by different research
groups |70, 105, 120, 121]. The idea is to circumvent the computationally
expensive orthonormalization of the orbitals. This can be done by not directly
calculating the inverse overlap matrix but to replace it with its Neumann series

up to a predefined order M. For a system with N electrons and N/2 orbitals
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{|10s)}, we can calculate the energy by minimizing

E=2tr(QH) —n(2tr(QS) — N), (3.1)
where y
Q=> I-89)"~s" (3.2)

and 7 is a constant [17, 121]. The orbitals are expressed in a basis {|¢,)}
n

and minimized with respect to the coefficients C;,. If the orbitals are localized,
linear scaling can be achieved. An issue of this method is that it suffers from
local minima if a too small set of orbitals is used. Furthermore, the method
suffers from fluctuations in the total energy when it is used in the context of
self-consistent calculations [104]. There are two attempts to parallelize the
orbital minimization method [19, 65|, but both require a considerable amount

of communication between the processors [41].

3.1.2 Penalty Method

Another method to find the ground-state density is based on the idea of using
penalty functionals in total energy calculations. It has been developed by Wal-
ter Kohn [73]. He described the method in the context of the nearsightedness

principle, which applies to the one-particle density matrix
N
p(r,r') = Z V5 (r)w;(r'), (3.4)
j=1

where {¢;} are the KS orbitals. The idea is to use penalty functionals in total
energy calculations. One adds a functional P[-] of Hermitian trial functions

p(r,r") to the energy functional. The functional

Pla(r,r')] = \/ / P, ) (1 = plr,r))2dr > 0 (3.5)

is composed in such a way that, when inserting the density matrix P, that
fulfils the idempotency condition P?(r,7") = P(r,7’), it is equal to zero. Thus,
P[] is a measure for the idempotency of P. We define the functional Q[p(r,7”)]
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for the ground state search by the help of the grand-canonical potential (GCP)
Q= E[p(r)] = uN[p(r)]

Qlp(r,r")] = E[p(r)] — uN[p(r)] + aP[p(r, 7). (3.6)

Thereby, E|[p(r)] is the KS energy functional, p the chemical potential,
Nip(r)] = [p(r)dr = [ p(r,r"))dr corresponds to the number of electrons
and « > 0 is a parameter. The matrix p(r) = p*(r,7’) is non-negative with
eigenvalues greater than zero. As the penalty functional P[-] is a summand
in equation (3.6), a trial density, that is not the (idempotent) ground state
density leads to a larger value of @)[-]. The ground state can consequently be
found by varying the density and seeking the lowest value of Q[-]. Hereby, it
is important to notice that @[-] can, in contrast to the GCP, be minimized
without constraints.

The determination of the best value of the parameter « is challenging, but if it
is found, we can only get as a result the correct ground state density, and idem-
potency is achieved automatically without imposing the constraint in advance.
The optimal « is chosen such that it is larger than a critical value a,. which
can unfortunately not be predicted exactly. If a < «., one might fall into a
local minimum, but if « is chosen too large, this leads to slow convergence.
One issue of the penalty functional method is the branch point of the square
root, which is attained at its minimum. The functional is not analytic, and
therefore the variational principle can not be exploited. Thus, this method
can not be used in practice [49].

Instead, one can use the functional P?[-], see [50]. Here, the idempotency con-
dition is not exactly imposed, so that the energy has to be corrected. This is

simple for occupied bands but challenging for unoccupied ones [16].

3.1.3 Density Minimization Method

In their work [90|, Li, Nunes, and Vanderbilt introduced the idea of density
matrix minimization (DMM). This is a linear scaling method that is based
on a variational solution for the density matrix. The off-diagonal elements of
the density matrix are truncated with respect to a cut-off parameter R.. For
R. — 00, in the adopted level of theory, the method remains exact, but can

no more have a linear scaling.
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The idea of DMM is to minimize the energy E by the help of the density matrix
P and the GCP for the electrons. We have

N, = tr[P] = Zpii, (3.7)
where N, is the number of electrons of the system and

1]

for a Hamiltonian matrix H. The density matrix P has to fulfil the idempo-
tency condition P = P2 This ensures that it is the matrix representation
of the operator which projects onto the subspace of occupied states. Another
condition that has to be satisfied is to have either constant electron number
N, or constant chemical potential u. Li et al. state that it is more convenient

to keep the chemical potential u fixed and minimize the GCP
Q=FE—uN, =tr[P(H — ul)]. (3.9)

A complication is that one has to make sure that the eigenvalues of P lie in
the interval [0, 1]. To overcome this problem and to satisfy the idempotency

condition, as well, they replace P by a trial density matrix
P =3P? — 2P°, (3.10)

which is known as the McWeeny purification transformation [106].

The density matrix is therefore obtained by minimizing

Q = te[P(H — pul)] (3.11)

with respect to P. This ensures that, if the eigenvalues of P are either close
to 0 or 1, the eigenvalues of P are even closer to those values.

As DMM approximates through the above-described cut-off radius R., the
sparsified density matrix is no longer idempotent. The McWeeny transforma-
tion, however, reduces this error. Regarding the question of parallelizability,
one notes that DMM is not intrinsically parallel. Thus, it would become less
efficient as there is a considerable amount of all-to-all communication that has
to be realized [15].
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3.2 Fermi Operator Expansion

A completely different approach to linear scaling is the idea of Fermi operator
expansion (FOE), which has been developed by Goedecker, Colombo, and
Teter [40, 42, 43]. It is based on the expression of the density matrix P as a

matrix functional f(-) of the Hamiltonian matrix H
P =f(H), (3.12)

where

1
fle) = e (Z;%>

Thereby, ¢ is an eigenvalue of H, p the chemical potential, kg Boltzmann’s

(3.13)

constant, and T the electronic temperature. The functional f(-) is called the
Fermi distribution. The idea of FOE consists of a series expansion of the
Fermi operator, that is to say the Fermi distribution of the system’s Hamilto-
nian, f(H). The easiest way is to approximate with a polynomial p(H) with

coefficients a;
n

Prp(H) =) aH (3.14)

i=0
but this entails numerical instability for a high polynomial degree n [40]. This
can be circumvented by using Chebyshev polynomials 7;(X) for matrices,

which are defined as follows

T(X)=X (3.15)
T (X) =2XTy(X) = T;_1(X) fori=23,...

Thereby, X is a matrix whose spectrum lies in the interval [—1, 1]. The Cheby-

shev polynomials are orthogonal so that it holds

0, i F ]
T ={r  i=j=0 (3.16)
/2, i=7%#0.

The set {7}, forms a basis of the linear vector space of all polynomials with

degree < m. So, we can write our polynomial p(-) from (3.14) as a linear
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combination of this basis with known coefficients ¢; [39]
Co ~
p(H) = §[+;cﬂ}(H). (3.17)

Goedecker [40] shows that such an expansion of a matrix in Chebyshev poly-
nomials scales quadratically with the number of basis functions and therefore
with the number of atoms in the system. He further explains how a localization
region for each column of the Hamiltonian can be introduced. So, a truncated
Hamiltonian is used and linear scaling is achieved.
For our tight-binding scheme [57]|, where local charge neutrality is enforced,
the degree n of the polynomial of the Chebyshev expansion must be higher to
reach the same high accuracy as in the non-self-consistent tight-binding case.
It holds

(Emax = Emin) (3.18)

no —————>,

Ae

where e, and ey, is the largest and smallest eigenvalue, respectively, and

Ac is the spectrum width of the Hamiltonian.

It remains to be answered why one should use the FOE method for the cal-
culation of the density matrix. To answer this question, we look again at the
work of Goedecker [40]. One clear advantage is that the generation of density
matrix requires only matrix-vector multiplications and is therefore computa-
tionally very efficient. Additionally, only FOE scales linearly with respect to
the size of the localization region. In the important 3-dimensional case, it has
both, the best asymptotic scaling behaviour and the smallest prefactor with
respect to the accuracy. There is no initial guess for the density matrix needed

and it is intrinsically parallel so that a good speed-up can be achieved.
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Chapter 4

Self-Consistent Field Theory
Based Molecular Dynamics with

Linear System-Size Scaling

In this chapter, we present a field-theoretic method suitable for linear scal-
ing molecular dynamics simulations using forces from self-consistent electronic
structure calculations. It is based on an exact decomposition of the grand-
canonical potential for independent fermions and does neither rely on the abil-
ity to localize the orbitals nor that the Hamiltonian operator is well-conditio-
ned. Hence, this scheme enables highly accurate all-electron linear scaling
calculations even for metallic systems. The inherent energy drift of Born-
Oppenheimer molecular dynamics simulations, arising from an incomplete con-
vergence of the self-consistent field cycle, is solved by means of a properly mod-
ified Langevin equation. The predictive power of this approach is illustrated

using the example of liquid methane under extreme conditions.

This work has been presented up to minor changes in a publication by
Dorothee Richters and Thomas D. Kiihne [136]. The sections 4.1-4.5 are the
sections I-IV, VI of [136], section V of this publication is integrated into section
5.3, where we present the results of the application of our method to liquid

methane.

27
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4.1 Introduction

Ab initio molecular dynamics (AIMD), where the forces are calculated on-
the-fly by accurate electronic structure methods, has been very successful in
explaining and predicting a large variety of physical phenomena and guiding ex-
perimental work [102]. However, the increased accuracy and predictive power
of AIMD simulations comes at a significant computational cost, which has lim-
ited the attainable length and time scales in spite of recent progress [62, 85]. As
a consequence, Hartree-Fock (HF), density functional theory (DFT) [66, 74],
and even the semi-empirical tight-binding (TB) approach [140, 143] are to
date the most commonly used electronic structure methods in conjunction
with AIMD. However, for large systems the calculation of the electronic struc-
ture and hence total energies as well as nuclear forces of atoms and molecules
is still computationally fairly expensive. This is due to the fact that solv-
ing the Schrédinger equation is a high-dimensional eigenvalue problem, whose
solution requires diagonalizing the Hamiltonian of the corresponding system,
which typically scales cubically with its size. Therefore, a method that scales
linearly with the size of the system would be very desirable, thus making a new
class of systems accessible to AIMD that were previously thought not feasible.
For that reason, developing such methods is an important objective and would
have a major impact in scientific areas such as nanotechnology or biophysics,

just to name a few.

Several so called linear scaling methods have been proposed |9, 16, 35, 41,
90, 105, 122, 153] to circumvent the cubic scaling diagonalization that is the
main bottleneck of DFT and TB. Underlying all of these methods is the con-
cept of "nearsightedness" [73, 130], an intrinsic system dependent property,
which states that at fixed chemical potential the electronic density depends
just locally on the external potential, so that all matrices required to compute
the Fermi operator will become sparse at last. Together with sparse matrix
algebra techniques linear scaling in terms of memory requirement and compu-
tational cost can be eventually achieved. However, the crossover point after
which linear scaling methods become advantageous is still rather large, in par-

ticular for metallic systems or if high accuracy is needed.
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Therefore another method, based on the grand-canonical potential (GCP) for
independent fermions, has been recently developed [1, 2|. Krajewski and Par-
rinello demonstrated that by decomposing the GCP it is possible to devise an
approximate stochastic linear scaling scheme [78-80|. Since this approach does
not rely on the ability to localize the electronic wavefunction, even metals can
be treated. However, due to its stochastic nature extending such a method

towards self-consistent TB, DFT or HF is far from straightforward.

This is where we start in this work. Following previous work of Ceriotti,
Kiihne, and Parrinello [27, 28], we compute here the finite-temperature density
matrix, or Fermi matrix, in an efficient, accurate, and in particular determin-
istic fashion by a hybrid approach. Inspired by the Fermi operator expansion
method pioneered by Goedecker and coworkers [40-42|, the Fermi operator
is described in terms of a Chebyshev polynomial expansion, but in addition
is accompanied by fast summation as well as iterative matrix inversion tech-
niques. The resulting algorithm has several important advantages. As before,
the presented scheme does not rely on the ability to localize the orbitals, but
requires only that the Hamiltonian matrix is sparse, a substantially weaker
requirement. As a consequence not only metals, but even systems for which
the Fermi matrix is not sparse yet can be treated with a linear scaling compu-
tational effort. Another advantage is that the algorithm is intrinsically parallel
as the terms resulting from the decomposition of the GCP are independent of
each other and can be separately calculated on different processors.

But, at variance to the original approach [78-80|, the addition of Chebyshev
polynomial expansion and fast summation techniques leads to a particularly
efficient algorithm that obeys a sub-linear scaling with respect to the width of
the Hamiltonian’s spectrum, which is very attractive for all-electron calcula-
tions or when a high energy resolution is required. Since the present method
allows for an essentially exact decomposition of the GCP, without invoking any
high-temperature approximation, it facilitates highly accurate linear scaling ab
initio simulations. However, the main advantage lies in the deterministic na-
ture of the hybrid approach, which enables self-consistent electronic structure
calculations. The fact that the present scheme is based on the GCP inherently

entails finite electron temperature, which is not only in line with finite temper-
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ature simulations such as AIMD, but furthermore also allows for computations
of systems with excited electrons [141, 142]. We have thus put particular em-
phasis on adopting the hybrid approach within AIMD. Specifically, the modi-
fied Car-Parrinello-like propagation of the self-consistent Hamiltonian matrix
[85] and how to accurately sample the Boltzmann distribution with noisy forces
[79, 85| are discussed in detail. Beside describing the method itself, we will
show that it is indeed possible to perform fully self-consistent AIMD simu-
lations and demonstrate the present scheme on liquid methane at planetary

pressure and temperature conditions in Chapter 5.

4.2 Basic Methodology

In this section, we summarize the basic methodology, first proposed by Kra-
jewski and Parrinello [78-80]. We begin with the generic expression for the
total energy E of an effective single-particle theory, such as HF, DFT or TB

N
E=2) &+ V. (4.1)
=1

The first term denotes the so-called band-structure energy, which is given by
the sum of the lowest NV doubly occupied eigenvalues ¢; of an arbitrary Hamil-
tonian H. In DFT, for instance, H is the KS matrix, while V. accounts for
double counting terms as well as for the nuclear Coulomb interaction. In TB
and other semi-empirical theories, H depends parametrically only on the nu-
clear positions and V. is a pairwise additive repulsion energy. While in either
case it is well known how to calculate V. with linear scaling computational
effort, the computation of all occupied orbitals by diagonalization requires
O(N?) operations. Due to the fact that the band-structure term can be equiv-
alently expressed in terms of the density matrix P, the total energy can be
written as

N

E=2) ¢+ Vo =tr[PH| + V. (4.2)

i=1
As a consequence, the cubic scaling diagonalization of H can be bypassed by
directly calculating P rather than all ¢;’s.

To that extend, we follow Alavi and coworkers [1, 2| and consider the following
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(Helmholtz) free energy functional
F=Q+ uN, + Vg, (4.3)

where p is the chemical potential, N, = 2N the number of electrons and 2 the

GCP for non-interacting fermions

Q = —% In det (1 + ®#5=)

2
= —gw In (1 + PWs=H)) (4.4)

Here, S stands for the overlap matrix, which is equivalent to the identity
matrix [ if and only if the orbitals are expanded in mutually orthonormal
basis functions. In the GCP, the electronic temperature is finite and given by

B~ = kgT.. However, in the low-temperature limit

N
lim Q=2 & — uN,, (4.5)

B—00

the band-structure energy can be recovered and limg_,o, F = £ holds. In order
to make further progress, let us now factorize the operator of equation (4.4)
into P terms. Given that P is even, which we shall assume in the following,

Krajewski and Parrinello |79, 80| derived the following identity

< i (9]-1) P(quH)>

P/2
H M; M, (4.6)

[ + eﬁ(quH) —

(-
I

where the matrices M;, with [ =1,..., P are defined by
M, :=1— e%@l_l)e%(“s_m, (4.7)

and * denotes complex conjugation. Similar to numerical path-integral calcu-
lations, it is possible to exploit the fact that if P is large enough so that the

P (nS—H) can be

effective temperature /P is small, the exponential operator e?
approximated by a Trotter decomposition or simply by a high-temperature

expansion, i.e.

M, =1— P <I + g(us - H)) +0 (;2) : (4.8)
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However, as we will see, here no such approximation is required, which is
in contrast to the original approach [78-80]. In any case, the GCP can be

rewritten as

2 r 9 P2
QO = —Bln det [ [ M, = —Blanet (M; M)
=1 =1
9 P/2
= -3 > In det (M; M)
A P/2 )
= BZln (det (M;M;)) "= . (4.9)

=1

As is customary in lattice gauge field theory [110, p. 17|, where the minus
sign problem is avoided by sampling a positive definite distribution, the inverse
square root of the determinant can be written as an integral over a complex

field ¢, which has the same dimension M as the full Hilbert space, i.e.
* -1/2 1 —LorMr Mo
det (M M,) = )" e 22O d ey (4.10)
T2

Inserting equation (4.10) into equation (4.9) we end up with the following
field-theoretic expression for the GCP:

O = ﬁZ] /e—édh*Ml*Ml(ﬁz d¢l]
Pk

= Zln /6_%¢7M1*Ml¢l dg; +c, (4.11)

4 P2

where ¢; are appropriate vectors and c is an additive constant.

All physical relevant observables can be computed as functional derivatives
of the GCP with respect to an appropriately chosen external parameter. For
example, N, = —0€Q/0p and limg_, o Q@ + pN, = 2 ZZN:1 €4, SO that

(B  aQ

E:lim}"—QZ Ve = — 5 o

[B—00

+ V. (4.12)

Since the functional derivative of the constant in equation (4.11) is identical
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to zero, all physical interesting quantities can be computed analogue to

00 % 390 (WAM”)@e*%ﬂﬁ?MfMl@d@
N B BT M7 MG g g,

(4.13)

o2 50 (s (PR (onemteinianen g
. i,j=1 )
o Z fe—§¢l Ml*Ml¢l d¢l

_ 22& DM M)\ [ ()il dn)ye 9NN dgy
O y [ e 29 MiMisn g

S EE () e

M} (4.15)

2 * - l

N
I

—
T

O\

-
_ —%Ztr M; 18Ml} (4.16)

Thereby, equation (4.14) holds because of Montvay and Miinster [110, p. 18],
while equation (4.15) is due to the fact that MM, is symmetric positive defi-
nite.

Unlike equation (4.9), the determination of Q = 9(52)/08 does no longer
require to calculate the inverse square root of a determinant, but only the in-
verse of M;. But, since the inversion usually has to be performed P times, the
computational scaling has presumably a rather large prefactor. Nevertheless,
as we will see later this can be much ameliorated and all but very few matrix
inversions can be avoided. On the other hand, M, is not only very sparse,
since it obeys the same sparsity pattern as H, but is furthermore also always
better conditioned as the latter, so that all Mz_l matrices are substantially
sparser than the finite temperature density matrix and thus can be efficiently
determined |27, 28]. Solving the N, sets of linear equations Ml‘bg = 1);, where
{1} is a complete set of basis functions, the inverse can be exactly computed
as M; ' = Z;VZI @hapl within O(N?) operations.
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Comparing equation (4.2) with equation (4.5) it is easy to see that the GCP
and similarly all physical significant observables can be written as the trace of a
matrix product consisting of the Fermi matrix p, which in the low-temperature
limit is equivalent to P. Specifically, Q = 9(52)/98 = tr[pH]| — uNe, but be-

cause at the same time N, = tr[pS] holds, the former can be simplified to
Q = tr[p(H — pS)), (4.17)

where S = —0H /0 and p = 0Q0/OH. As a consequence, the GCP and all its
functional derivatives can be reduced to evaluate p based on equation (4.16)
with A = H;;. Using the standard basis {e;} and the identity [80]

o0 2 . B 2 (& B
Pz’j:aHij :FZGJ ([—Ml l)ei:F (Z([—Ml 1)>”’
7t

=1

P/2 P/2

_ %Z (1 _ (Ml*Ml)l>ji _ %Z (I . (Ml*Ml)l)ij, (4.18)

=1

get

= (I—M1). (4.19)

In other words, the origin of the method is the notion that the density matrix,
the square of the wavefunction at low temperature and the Maxwell-Boltzmann
distribution at high temperature, can be decomposed into a sum of Ml_1 matri-
ces, each at higher effective temperature 3/P and hence always sparser than
p. Yet, contrary to the original approach [78-80|, neither a Trotter decom-
position nor a high-temperature expansion for equation (4.7) has been used,
so far everything is exact for any P. Nevertheless, beside the aforementioned
reduction from cubic to quadratic scaling no computational savings have been
gained either. Quite the contrary, at first sight it might even appear that this
scheme, which requires to invert P matrices, is less efficient than explicitly

diagonalizing H. However, as already mentioned, in the next section we are
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going to demonstrate that this can be circumvented for the most part by ex-
pressing all but very few matrix inversions through a Chebyshev polynomial

expansion.

4.3 The Hybrid Approach

In this section, we describe the novel hybrid approach in order to make further
progress and to achieve an even more favourable scaling. For that purpose,

F(uS—H) f equation (4.7), or ex-

one can either approximate the propagator e
ploit the fact that by increasing P in equation (4.19) the matrix exponential
and hence Mz_l can be ever simpler exactly calculated. Specifically, we em-
ployed the squaring and scaling technique to compute matrix exponentials, i.e.
e = (eA™)™ [109], where we exploit the fact that e?/™ is trivial to compute
whenever m is large. In an analysis of the M; matrices, we found that every M,
matrix is throughout better conditioned than H [27]. From this follows that
for all [, Mz_l always exhibits less non-zero entries and is therefore much easier
to compute than the inverse of H, which would correspond to the complexity
of calculating p directly.

In addition, the method can be even more improved by recognizing that H is

real as well as symmetric and that the equality
M= Mp_,,, (4.20)

holds. Using equation (4.20) and the fact that w;, := ¢? =Y denotes a point
on the unit circle of the complex plane, we show that only the real parts of

the M; matrices are required to compute p
MM, = (I - wle%(“S_H)Y (I — wle%(“S_H))
— (B (uS—H)\* B(us—H
= (I—wl(el’(“ )) > (I—wleP(“ )>

= I—(+ Wl)G%(MS_H) + (Wwy) P (S—H)

— ] —2Rew epWS—H) L FuS—H)
= (I +e7H1S) _ 9 Rew, 6%(H_“S)> eF (nS—H)

—: Ny (S—H) ¢ RMxM (4.21)
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where M is the number of basis functions and therefore the dimension of the
real matrix M} M;.
The latter proof entails substantial savings in terms of computational cost and
memory requirement. From this it follows that equation (4.19) can be further
simplified to
o P2 B
p:FZ(I—ReMl ), (4.22)

=1

where the upper limit of index [ is henceforth restricted to P/2. Moreover, it
has been observed that just a handful of M; matrices, where [ is close to P/2,
are ill-conditioned and only for them the inversion is computationally cumber-
some. All other M; matrices having a smaller index are rather well-conditioned,
so that the matrix inversion can be very efficiently performed by a Chebyshev
polynomial expansion [27]. This is to say that p can always be written as a
sum of Mfl matrices, which are throughout pretty much sparser than p itself.
The latter is in fact true, even if p is rather full, so that metallic systems can

be very efficiently treated.

These complementary properties of the M; matrices immediately suggest
the following hybrid approach. Thereby, an optimal [ is chosen such that
1 < I < P/2, where all M; matrices with [ < [ are inverted by a Chebyshev
polynomial expansion and only otherwise for [ > [ by an iterative Newton-
Schulz matrix inversion. As long as M; is not ill-conditioned, the former has
the advantage of being essentially independent of P, so that increasing P
will not increase the computational cost. Together with the fact that the
number of ill-conditioned M; matrices depends only on the particular system
and [, but again not on P, the present hybrid approach allows to employ an
arbitrary large P at basically no additional computational cost. In this way,
the decomposition of the GCP in equation (4.9) can be made exact in any
order essentially for free. From this it follows that the electronic temperature
B~! can be chosen to be rather low and is typically identical with the nuclear
temperature.

Furthermore, it is possible to rewrite Re .Ml_1 in the following way:

1
Re M = = (I+ (%W — )N, (4.23)
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where NV, is the real valued matrix defined in equation (4.21). That is to say,
the whole problem can be reduced to invert NN;. Pretty much as for the M,
matrix, if /V; is well-conditioned, its inverse can be expressed by a Chebyshev
expansion. For this purpose let us rewrite N; in terms of a shifted and scaled

auxiliary matrix
L(H-pS) _
X = %7 (4.24)

whose spectrum lies between —1 and 1. The corresponding shifting and scaling
parameters zy = (e“mex/P 4 eemin/P) /2 and ( = (esmex/F — e=uin/P) /2 are ex-
pressed in terms of the maximum and minimum eigenvalues of H = H — uS in
unit of kgT, i.e. by €max and enin [28]. Since a rather crude estimate for &«
and ey, is sufficient, they can be efficiently approximated using Gershgorin’s

circle theorem [37| as

Emax 2 max (ﬁm + Z |[~{z]’> ) (425)

i#]

min < min (ﬁu -> |I~{U|) : (4.26)
i#]

The difference Ae = €,2x — Emin corresponds to the spectral width of H. The

condition number k(N;) ~ 1+ Ae?r2(P — 2[)~? is somewhat higher than

k(M;) =~ 1+ Aex ! (P —20)~!, but is more rapidly declining with decreasing [.

Therewith, for [ < [, we can approximate Nl_1 as a sum of Chebyshev polyno-

mials of X by

me(l)

N'R D) aTi(X), (4.27)

i=0

where T;(X) are the Chebyshev polynomials as defined in equation (3.15) and
¢i(1) the corresponding coefficients. Note that 7;(X) are independent of [ so
that they have to be calculated only once. The upper bound m¢(l) and thus
the number of terms in the summation to achieve a relative accuracy of 10~

on Nl_1 is approximately

mo(l) ~ = + 2 (4.28)
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After having computed the inverse of all the well-conditioned N; matrices,
we have to deal with the very few ill-conditioned ones. As already indicated

this is accomplished by the following Newton-Schulz iteration
Agr1 = 24 — AgNJAy, k=0,1,..., (4.29)

which converges quadratically to Nl_1 given that Ag is within the respective

area of convergence [139]|. Even though for
. -1
Ao = N7 (INl [ Nillo) (4.30)

equation (4.29) is already guaranteed to converge [123], but the computation
of Nfl becomes even more efficient with the availability of a good initial guess

for the matrix inverse. Fortunately, we can make use of Nz’:Lln—l as an initial

guess for Nz’:rlm n € {0,...,P/2 — [} that is good enough to even converge
rather ill-conditioned matrices usually within a few iterations. The number of
matrix multiplications required to obtain a relative accuracy of 107" on N;

starting from N;_; that has already been calculated by equation (4.27) is

B il In(1 —x(l)) —DIn10
T2 In x (1) ’

m (1) (4.31)
AP +1—21)

where x(1) =~ 0T (Pri_a))”

(4.32)

Hence, the optimal value of [ can be found by minimizing the estimated total
number of matrix multiplications

P/2
Mot (1) = me (1) + Z m (1) (4.33)

under variation of . In general, P/2 — [ is rather small and only weakly de-
pendent on 3, which implies that just a few /N; matrices needs to be explicitly

inverted using equation (4.29), regardless of the electronic temperature.

However, the matrix-matrix multiplications of equation (4.29) causes that
limy,_, o Ajy1 eventually becomes fairly occupied. For this reason in order to
sustain linear scaling the intermediate matrices are truncated. Nevertheless,

as already mentioned, the condition number of N; is always lower than the one
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of H and typically even rather well-conditioned, so that N[l is by definition
substantially sparser than p. From this it follows that the necessary truncation
cut-off is relatively mild and the approximation therefore very small, so that

highly accurate linear scaling electronic structure calculations are still possible.

4.4 Performing Self-Consistent Molecular Dyna-

mics Simulations

In this section, we describe the implementation of the above presented hybrid
approach within a self-consistent AIMD framework. Its chief advantage is not
only that it allows for accurate linear scaling calculations, but is furthermore
also deterministic. Hence, at variance to the original approach [78-80|, where
the corresponding matrices are inverted by an approximate stochastic method,
it is now possible to perform calculations using Hamiltonian operators of fully
self-consistent mean-field theories, such as HF, DFT, and self-consistent TB
(SCTB) [32, 146].

We have tested the method in the context of electronic structure based MD us-
ing a SCTB model [57] and implemented it in the CMPTool program package
[59, 107]. In the self-consistent field (SCF) optimization loop, self-consistency
is realized by imposing local charge neutrality (LCN), to account for charge
transfer processes, as well as bond breaking and formation. This means that
the number of electrons of every atom « has to be equal to the number of its va-
lence electrons ¢° within an adjustable tolerance, which we named Agpay. To
that extend, during the SCF loop the diagonal elements of H are varied using
a linear response function © until local charge neutrality is achieved. Specifi-
cally, in each MD step first H is built up, whereas in every SCF iteration we
calculate the shift-vector Ay to the diagonal elements of H. The latter are the
so called on-site energies ¢; = H;;, while the diagonal elements of pS represents
the occupancy of the corresponding orbital, hence N, = tr[pS]. Summing over
all orbitals centred on any particular atom «, one obtains the associated on-
site charge q,. LCN is enforced by calculating A% = (g~ —¢°) for every SCF
iteration k and shifting the on-site energies using e¥™ = ¢; + A% So adapted,
H* is diagonalized using the above formalism until max, |¢a — ¢°| < Agmax-

In that case, instead of being grand-canonical the simulation is performed at
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However, as already recognized by Kress et al. [82] using the present SCTB
model [57], the SCF cycle is very slowly converging and the number of necessary
iterations depends critically on Agua.x. Nevertheless, this can remedied by
adapting the method of Kiihne et al. [85] in such a way that instead of a
fully coupled electron-ion MD only the modified predictor-corrector integrator
is used to propagate Ay in time. In the framework of DFT, this scheme has
shown to be particularly effective for a large variety of different systems [22—
25, 30, 33, 96, 97, 99, 154|. Inspired by the original scheme of Kolafa [76, 77|
here

S (x20)
Ap(ty)’ = Z(_l)mHm (2K—TZ)
m=1 K-1

is used as a modified predictor, where Ag(t,)P is an estimate for Ay(t,) of

Ap(tn-m) (4.34)

the next MD time step ¢, and is approximated using the weighted shifts of the
K previous time steps. We claim that the weights

(5,
Wiy = (=)™ m S5 4.35
(=1) (51) (4.35)

always add up to 1. Thus, we show the following

K K ( 2K )
D wn =D (-1 mog =1 (4.36)
m=1 m=1 (Kfl)
by making use of the Appendix of [76] and write
K
2K
-1 m+1 4.
() (4.57)
K 2K — 2 2K — 2 2K — 2
_ _1 m+1 2
mZ::l< ) [(K—m) + (K—m—l) + (K—m—z)]
m(2K — 2)!

-

(=1 [(K —m)|(K 4+ m — 2)!

3
I

+

2m(2K — 2)! m(2K — 2)! ] (4.38)

K-m-(K+m—1) (K —m— 2K +m)]
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All but the first summand cancels out so that we get

S 2 )= (0D (430

m=1

which after inserting it into equation (4.36) equals to
K -1
2K — 2 2K — 1)
m = . =1. 4.40
mzzlw <K—1) <K—1) (4.40)
As special case for K = 1, we have w; = 1, i.e. Ag(t,)P = Ay (tn_1).

However, contrary to the second generation Car-Parrinello MD approach
of Kiihne et al. [85], where in each MD step only a single preconditioned
electronic gradient calculation is required as the corrector, here the predicted
Ap(t,)? is only used as an initial guess for the SCF cycle, which requires at
least a single if not multiple diagonalizations. That is to say that instead of a
genuine Car-Parrinello-like dynamics [21, 85], a less efficient accelerated Born-
Oppenheimer MD (BOMD) [3, 6, 52, 119, 132, 149] is performed.
Nevertheless, in this way the convergence rate of the SCF cycle is much in-
creased, while at the same time even allowing for a rather tight tolerance
threshold. In fact, comparing with the employed convergence criterion of Kress
et al. [82], here Agpax can be chosen to be at least one to two orders of mag-

nitude smaller without requiring numerous SCF iterations.

Due to the fact that the present scheme is equivalent to diagonalizing H,
as for any SCF theory based BOMD simulation, the interatomic forces thus
calculated are affected by a statistical noise =V, except for the unrealistic case
that Agmax = 0. Hence, instead of the exact forces Fj, merely an approxi-
mation FPOMD = F; 4+ Z¥ is computed, where FPOMP are the BOMD forces
calculated by an arbitrary SCF based theory. Even though, Z¥ can, to a very
good approximation, be assumed as white |31, 62, 79|, the line integral defin-
ing the net work is always positive and thus entails an energy drift during a
microcanonical MD simulation. While the noise may be tiny and the forces
highly accurate, as far as static calculations such as geometry optimization are
concerned, the resulting energy drift is way more critical. An energy drift of

as small as 1 peV /atom/ps grows to an aberration of 10 K/ns and may cause
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that liquid water, for instance, evaporates within a couple of nanoseconds sim-
ply because of the energy drift immanently present in any BOMD simulation
[69, 84, 86, 87, 125]. Therefore, at least in principle, it is no longer guaranteed
that by solving Newton’s equation of motion the correct Boltzmann averages
are obtained.

Fortunately, only based on the assumption that =V is unbiased, this can be
rigorously corrected by devising a modified Langevin equation [79, 85|. Specifi-
cally, taking cue from the work of Krajewski and Parrinello |78, 79|, we sample

the canonical distribution using the following equation

M]R[ = F] + Eﬁv - ’}/NM[R] (441)

= FPOMD _ o MRy, (4.42)

where R; are the positions of the nuclei, M; their nuclear masses and vy a

friction coefficient to compensate for the noise Z). The latter has to obey
(Fr0O=7 (1) = 0, (4.43)
as well as the so called fluctuation-dissipation theorem
(EX0)EN®)) = 2yvkTMi(t). (4.44)

If we would know vy such that equation (4.44) is satisfied, a genuine Langevin
equation is recovered, which guarantees for an accurate canonical sampling
of the Boltzmann distribution. However, at first sight this may look like an
impossible undertaking, since we neither know Fy, nor =¥ from which y can
be deduced. Nevertheless, it is possible, even without knowing =V except
that it is approximately unbiased, to determine vy directly by simply varying
it in such a way that the equipartition theorem <%M1R%> = %kBT holds.
Once 7y is determined, it must be kept constant for the whole simulation.
But then it is possible to exactly and very efficiently calculate static and even
dynamic observables without knowing F;, but just FEMP, Due to the fact that
the same also holds for the noise introduced by truncating the intermediate
matrices of equation (4.27), as well as using finite-precision arithmetic and

a non-vanishing integration time step, the corresponding noise terms can be

simply added to Z¥.
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4.5 Conclusion

In conclusion, we would like to mention that the here presented method can
be directly applied to fully self-consistent DFT calculations by writing V. of

equation (4.1) as
Valptr)) == 5 [ [ 2 avar

50
— xe O + B
/p(r)ép(r) dr + Qe + By,

(4.45)

where the first term on the right hand side is the double counting correction
of the Hartree energy, while €),. is the finite-temperature exchange and cor-
relation grand-canonical functional and Fj; the nuclear Coulomb interaction.
Except for the latter term, equation (4.45) accounts for the difference between
the GCP for independent fermions 2 and the GCP for the interacting spin—%
Fermi gas |2]

2
Qint[p(r)] = — = Indet (] + 6B(uS*H))

B
L[ o

As before, in the low-temperature limit ;,¢[p(r)] + N, equals to the band-

(4.46)

structure energy, whereas €),. corresponds to the familiar exchange and corre-
lation energy, so that in this limit F = Q4 uNe 4+ Vie = Qine[p(r)] + N+ Ej is
equivalent to the Harris-Foulkes energy functional [34, 48]. Such as the latter,
F is explicitly defined for any p(r) and obeys exactly the same stationary point

as the finite-temperature functional of Mermin [108].

The formal analogy of the decomposition to the Trotter factorization im-
mediately suggests the possibility to apply some of the here presented ideas
with benefit to numerical path-integral calculations [26]. The same applies for
a related area where these methods are extensively used, namely the lattice
gauge theory to quantum chromodynamics [71], whose action is rather similar

to the one of equation (4.10).
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Chapter 5

Liquid Methane at Extreme
Temperature and Pressure:
Implications for Models of Uranus

and Neptune

In this chapter, we present a study on liquid methane (CH,) at extreme condi-
tions, meaning high pressure and temperature. Methane occurs in the middle
ice layer of the giant gas planets Uranus and Neptune. In this layer, at a
depth of one-third of the planetary radius, pressure and temperature range
from 20 GPa and 2000 K to 600 GPa and 8000 K, which we simulate by means
of large-scale electronic structure based molecular dynamics. In doing so, we
employ the method described in Chapter 4 to illustrate its predictive power.
We address the controversy of whether or not the interior of Uranus and Nep-
tune consists of diamond. We show that there is no evidence for the formation
of diamond, but rather carbon chains and sp?-bonded polymeric carbon. We
predict that at high temperature hydrogen may exist in its mono-atomic and

metallic state.

This work has been presented up to minor changes in a publication by
Dorothee Richters and Thomas D. Kiihne [135]. We merge this with section

V of [136], where results on methane have been presented, as well.

45
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5.1 Introduction

Being the most abundant organic molecule in the universe, liquid CH,4 at high
temperature and pressure is of great relevance for planetary science. The here
considered pressure and temperature conditions follow the isentrope in the
middle ice layers of Neptune and Uranus at a depth of one-third the plane-
tary radius below the atmosphere. The gravity fields and mean densities of
the outer gas giants Neptune and Uranus allude to a three-layer model: a
relatively small central rocky core composed of iron, oxygen, magnesium and
silicon, followed by an ice mantle and a predominantly hydrogen atmosphere.
The middle ice layer consists of CH,, NH3 as well as H,O and, in spite of its
name, is not solid but gaseous in the outer atmospheres and a hot liquid in the
interior [129]|. At variance to the planetary models of Saturn and Jupiter, the
observed values for mass and radius indicate that hydrogen cannot be an inte-
gral part of either Neptune and Uranus. Since it is moreover not primordial,
the detected abundance of hydrogen in the atmospheres of both planets implies
that it may initially originate from deep within the planets and brought to the
outmost layer by convection, where it does not substantially contribute to the
total mass [60]. It has to be mentioned that there is an uncertainty on the
relative masses of the ice layer with respect to the rocky core [128|. However,
we do not rely on any of these planetary models but only on the occurrence of
a sizeable amount of ammonia, which most planetary models have in common
[60, 128, 129].

In any case, information on the interior structure of Neptune and Uranus
are scarce and experimentally only indirectly accessible by means of Voyager I1
flyby measurements [51, 61, 112|, shock-wave compression [113, 114], as well
as laser-heated diamond anvil cell experiments [11]. Even though CH, is the
most stable hydrocarbon at ambient conditions, based on these shock-wave
experiments as well as theoretical ground state calculations [133], it has been
suggested that CH, may dissociate around P = 20 GPa and 7" = 2000 K into
H, and diamond [137|. While there is little doubt that in the cores of Uranus
and Neptune CHy dissociates into diamond, this would be anyhow rather con-

sequential as it implies that in the interiors of these giant planets there is no
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CHy at all, but a huge diamond mine instead.

On the other hand, ab initio molecular dynamics (AIMD) simulations pre-
dicted that the formation of diamond is preempted by the appearance of hy-
drocarbons [5]. Notwithstanding that their finding had been subsequently
confirmed by laser-heated diamond anvil cell experiments, which, at pressure
P =19 GPa and temperature 7' = 2000-3000 K, indicate the presence of both
polymeric carbon as well as diamond [11]. This view was further strengthened
by subsequent AIMD simulations, even though none of them found any evi-
dence for diamond formation [81, 82, 145|. Nevertheless, AIMD simulations are
particularly appropriate to directly probe CH, under the extreme pressure and
temperature conditions predominating in the middle ice layer, in particular as
here in either case covalent bonds are broken and formed. Moreover, all of
the AIMD simulations show that the intricate interplay between temperature
and pressure is essential to grasp CH,4 at planetary conditions, where covalent
C-H bonds are broken by heat, while compression favours condensation of the
dissociated carbon atoms. It is therefore suggestive that in AIMD simulations
at even higher pressure, but still in the middle ice layer, carbon may nonethe-
less spontaneously transform into diamond. However, what causes the large
discrepancy in the pressure between theory and experiment when diamond is

formed is unknown.

5.2 The Setting

In this and the following section, we revisit the behaviour of liquid CH, by
means of the field-theoretic approach presented in Chapter 4. However, con-
trary to previous AIMD simulations, where the considered systems sizes have
been rather small (16-128 CH, molecules) |5, 82, 145|, here we use as many as
1000 CH, molecules in a periodic cubic simulation box of length L = 25.55 A
as our unit cell. All of our calculations have been performed in the canonical
ensemble at 7' = 2000 - 8000 K and volume V' = 10.04 ¢cm?/mol, which cor-
responds to the second-shock at P = 92 GPa and 7" = 4000 K of a two-stage
light-gun shock compression experiment [114]. The agreement with the time-
averaged pressure (P) = 72 GPa of our AIMD simulation at 7' = 4000 K, as
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calculated using the Nielsen-Martin stress-theorem [118], is more than satisfac-
tory.

For all of our large scale MD simulations we have employed the self-consistent
tight-binding model for hydrocarbons [57] as implemented in the
CMPTool code [59]. The atoms are propagated by integrating the equation
of motion of the modified Langevin equation (4.42) using a discretized time
step of At = 0.5 fs [85, 86]. The LCN threshold of the SCF loop is chosen
A¢max = 0.05.

Well-equilibrated and long trajectories are essential to ensure an accurate
sampling. To that extend we have at first carefully equilibrated each of our
simulations at T" = 2000, 4000, 6000, and 8000 K, before accumulating statis-
tics for overall 50 ps. Even though dissociation processes typically happen on
rather short timescales, it is important to note that the temperature for dis-
sociation and dehydrogenation as determined by direct MD simulations only
represents an upper bound. A major advantage of our novel grand-canonical
simulation technique is that, at variance to conventional ground-state AIMD
simulations, excited electrons can be employed. Due to the fact that they are
known to dramatically weaken covalent bonds [141, 142, and therefore may
facilitate the dissociation of CHy, we have hence chosen the electronic temper-
ature to be identical with the nuclear temperature. Nuclear quantum effects,
such as zero-point energies, are less important for the high temperature regime
examined here and are therefore neglected. However, entropy effects have been
shown to be very relevant, so that the dissociation of CHy is supposedly much

more sensitive to temperature than it is to pressure [145].

By following the approach described in Chapter 4, the GCP for the electrons
(4.19) had been decomposed using P = 10000. The minimization of equa-
tion (4.33) with respect to [ yields [ = P/2 — 2, which implies that all except
for two N; matrices can be efficiently computed by a Chebyshev polynomial
expansion with an estimated m¢ () < 61. Nevertheless, since equation (4.33)
is merely an approximation, in practice the overall efficiency can be further
increased by reducing [. Here we have employed [ = P/2 — 4, which results in

me(l) = 30.
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Figure 5.1: Partial pair-correlation functions g(r) of liquid CHy at 2000 K.

In order to sustain linear scaling in terms of computational cost and at
the same time and memory requirement, all sparse matrices are stored in the
common Compressed Row Storage (CRS) format. Due to the fact that the
algorithm heavily relies on the multiplication of sparse matrices, we have put
particular emphasis on an efficient parallel implementation. In that the data
are distributed to the individual processor cores by employing a space-filling
Hilbert curve to keep the load balanced [18]. While for solid state systems
a very good scalability has been observed, for disordered liquids studied here
the situation is substantially less favourable. A more efficient scheme, which
dynamically rearranges the matrices between the various processor cores, or

even distributes them fully at random is a desirable aim and future work.

5.3 Results and Discussion

In this section, we investigate the dissociation of methane and its implications

for giant gas planets such as Uranus and Neptune at different temperatures.
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Furthermore, we show that the algorithms scales linearly with the system size.
To assess the accuracy of our method, we study a sample comprising of 1000
CH, molecules (2x2x2 the size of our unit cell) at T = 2000 K and compare
the partial pair-correlation functions, as obtained by the present scheme, with
the results of Kress et al. [82] using exactly the same model [57]. As can be

seen in Figure 5.1, the agreement is excellent.

To demonstrate that linear system size scaling is indeed attained, in Figure
5.2 the average runtime for a complete SCTB MD step at T" = 2000 K is shown
for various system sizes using a single core of a 2.40 GHz Intel Westmere pro-
cessor. Specifically, we have considered eight different systems, with 40, 320,
625, 2560, 5000, 16875, 40000, and 78125 atoms, respectively. As can be seen
in Figure 5.2, the scaling is essentially linear with system size. Comparing the
runtime with a divide and conquer diagonalization algorithm unveils that the
crossing point, after which the linear scaling algorithm becomes computation-
ally more favourable, is at Ng & 425 atoms.

To assess the almost perfectly linear scaling, we use linear regression. This
means that we assume to have linear scaling and then we test this hypothesis
a posteriori. The best possible linear function to the given values is fitted
through the least squares approach. We evaluate the coefficient of determina-

tion
2 Z?:l(f(xl) - 37)2
Sy (e >4

where f : R — R is our regression line, (z;,y;) are the pair of variates of the

number of atoms and the corresponding computational time, and ¥ is the av-
erage of all values y;. The coefficient of determination is a statistical measure
of how well the regression line approximates the given data. If R? = 1, the
regression line fits the data perfectly. We did regression analysis with both
all data points and the data points from 2560 atoms on. In the first case, we
get R? = 0.995 and in the second case, we get R? = 0.998. So, our scaling
is almost perfectly linear. The regression line for the full set can be found in

Figure 5.2.

However, beside the formal scaling with system size, the corresponding pref-

actor is also rather important and depends on the spectral width of the Hamil-



ol

8000

6000

me [s]

.= 4000
=

2000

| | -
40000 60000 80000

Atoms

|
0 20000

Figure 5.2: The average walltime for a single SCTB MD step versus the number
of atoms on a single core of a 2.40 GHz Intel Westmere processor. The walltime
using a divide and conquer diagonalization algorithm is shown in red, while
the present linear scaling scheme is denoted in black. The dashed green line is

the regression line and illustrates perfect linear system size scaling.



5 T | T T T T | T
- ‘ — 2000 K B
!! - = 4000 K
4 i =+ 6000 K _
i _
X
3+ i |
= | 1
[o1))]
2_ —
1+ —
0 Il 1 | 1 |
0 10 12

Distance [A]

Figure 5.3: Comparison of the C-C PCF at 2000 K (solid red line), 4000 K
(dashed blue line), and 6000 K (dot-dashed black line).

tonian Ae. In the case of Chebyshev polynomial based Fermi operator expan-
sion methods, the computational cost to achieve an accuracy of 107" has been
found to scale like DFAe [8] as described in Chapter 4. Apparently, this en-
tails a fairly large prefactor if either high accuracy is required, or the electronic
temperature is low, or when Ac is large. The latter is typically the case for an
all-electron calculation, or if a plane wave basis set is employed. Nevertheless,
the usage of fast polynomial summation methods leads to the more favourable
scaling +/BAe [91, 92, 148]. For the present hybrid approach this results in
an even better sub-linear scaling of /3Ae [28], which makes it particularly at-
tractive for highly accurate all-electron ab initio calculations, or when a high
energy resolution is required. Together with the methods proposed by Lin et
al. (94, 95|, this is the best scaling with respect to 5 and Ae reported so far.
Based on a multipole representation of the Fermi operator, the latter scales
as In(fAe) In(In(5Ae)), which depending on the actual value of SAe is either

slightly lower or larger than the present cubic root scaling.
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Figure 5.4: Partial pair-correlation functions g(r) of liquid CHy at 8000 K.

The fact that even metallic systems can be treated with linear system size
scaling is demonstrated on exactly the same system, though at 7" = T, =
8000 K. We find that at this temperature the CH4 molecules are partially dis-
sociated, as indicated by the reduced intramolecular C-H peak in Figure 5.4.
Similar, from the first C-C and H-H peaks, the occurrence of covalent C-C
bonds and Hy, molecules can be deduced. Moreover, a noticeable fraction of
monoatomic hydrogen can be identified, which immediately suggests that hy-
drogen is on the verge of a liquid-liquid phase transition into an atomic fluid
phase that is in agreement with recent AIMD calculations [111, 147|. Even-
tually, the electronic band-gap is vanishing, which is most likely due to the

emergence of monoatomic hydrogen.

Now, we study the behaviour of liquid methane at 4000 and 6000 K and
discuss its implications. The partial pair correlation functions (PCF) of our
simulations are shown in Figures 5.3-5.6. As can be seen in Figure 5.3, as well
as Figure 5.6, at T' = 2000 K essentially no covalent C-C and H-H bonds are
present. The only remaining significant peaks at 2.81 A and 1.74 A repre-

sent the average C-C and H-H distances between two adjacent CH, molecules,
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Figure 5.5: Comparison of the C-H PCF at 2000 K (solid red line), 4000 K
(dashed blue line), and 6000 K (dot-dashed black line).

respectively. The insignificant peaks at 1.47 A in Figure 5.3 and 0.75 A in
Figure 5.6 do not point to an onset of dissociation, as proposed by experiment
[11, 137], but are rather due to fleetingly broken C-H bonds caused by finite
temperature. Consequently, the sharp intramolecular peak in Figure 5.5 at
around 1.075 A can be ascribed to covalent C-H bonds. The corresponding
coordination numbers, as obtained by integrating the associated PCFs up to
their first minima, are shown in Table 5.1. In the case of C-H the partial
coordination number is 3.984, which indicates that the liquid at 7" = 2000 K,
except for single fleetingly broken C-H bonds, is nearly exclusively made up of
undissociated CH, molecules. This view is consistent with other AIMD stud-
ies |5, 82, 145|, but at variance to theoretical ground-state calculations [133],
as well as experimental measurements [11, 113, 137], no signs for dissociation

have been found.

For the most relevant case at T'= 4000 K and P ~ 100 GPa, the situation is

much different and evidences for dissociation can indeed be observed. As can
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be seen in Figure 5.3, covalent C-C bonds are appearing as well as covalently
bonded Hy dimers, as shown in Figure 5.6. As a consequence, the height of the
intramolecular C-H peak in Figure 5.5 is much reduced, though still existing.
From Table 5.1 it can be deduced that nearly half of the covalent C-H bonds
are broken, which indicates that methane does dissociate only partially to form
hydrocarbon chains with mainly two and three carbon atoms, as well as Hs.
More precisely, the CH4 molecules dissociate and recombine to form CoHg and
to a smaller extend CsHg, which is in agreement with previous AIMD stud-
ies |5, 82, 145]. However, we find no sustained sign for the presence of CyHa,
which has been detected in the atmosphere of Neptune [29]. But, we do find
seeds of somewhat longer sp?-bonded chains and ring-like carbon structures,
but definitely no sign of sp® carbon bonds, i.e. no diamond-like carbon. This
is consistent with the computed vibrational density of states of Spanu et al.
[145], who reported a noticeable feature at 1600 cm™! that can be attributed
to threefold coordinated carbon atoms in graphite-like configurations. That is
to say that on the one hand our calculations are in agreement with experiment
by implying that in the middle ice layer CH, molecules itself are not present,
but merely its dissociated constituents, which confirms that the interior chem-
istry of Uranus and Neptune is more complex than previously assumed. On
the other hand, our results differ in the sense that at 7" = 4000 K we do not
find any evidence for diamond-like carbon, as reported by the very same ex-
periments [11, 113, 137].

Even deeper within the planet at even higher temperature of 7' = 6000 K,
the remaining CH, have fully dissociated as indicated by the vanishing in-
tramolecular C-H peak in Figure 5.5. On the other hand, the first peak in
Figure 5.3, which is due to C-C bonds, as well as the covalent H-H peak in
Figure 5.6 are even more pronounced as is the case for 7" = 4000 K. As shown
in Table 5.1, the partial C-H coordination number is rather small, which en-
tails that contrary to 7' = 4000 K hydrocarbon chains are no longer present,
but have completely dehydrogenated into polymeric carbon and hydrogen. As
before, no evidence for sp>-bonded diamond could be found, which indicates

that even higher pressures are required to condense carbon into diamond.
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Figure 5.6: Comparison of the H-H PCF at 2000 K (solid red line), 4000 K
(dashed blue line), and 6000 K (dot-dashed black line).

Table 5.1: Partial coordination numbers, as obtained by integrating the asso-

ciated PCFs up to their first minima, for all investigated temperatures.

Temperature C-C C-H H-H
2000 K 0.080 3.984 0.004
4000 K 1.244 2.298 0.408
6000 K 2.556 0.417 1.115
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However, in contrast to previous AIMD simulations [5, 82, 145] we find for
the first time that at 7" = 6000 K hydrogen is no longer solely molecular, but
a noticeable fraction of monoatomic hydrogen can be identified. This imme-
diately suggests that at T = 6000 K the present hydrogen molecules are on
the verge of a liquid-liquid phase transition into an atomic fluid phase, which
is in agreement with recent calculations [111, 147]. In our calculations we
find that the band gap is rapidly decreasing with temperature and vanishing
at T = 6000 K. Together with the fact that dissociation has shown to be
accompanied with the metallization |7, 138], our prediction of liquid atomic
hydrogen may lead to an explanation for the large magnetic fields of planets
such as Uranus and Neptune through a dynamo-like mechanism by electrical
currents in the liquid metallic regions of their interiors [116, 117]. Since we
find that liquid CHy, where it is stable at 7" = 2000 K, is a wide band-gap insu-
lator, it can only fully dehydrogenated contribute to the magnetic field in the
form of metallic hydrogen, which indeed has been established experimentally at
rather similar conditions by shock-compression experiments [115, 152]. More-
over, the motion of charged particles trapped in such magnetic fields causes
the generation of radio waves. In fact, planetary radio experiments aboard the
Voyager II flyby mission detected a wide variety of radio emissions for both
planets [150, 151].

If large enough, amorphous or crystalline carbon clusters precipitate and
sink towards the planetary center as sediment via gravitational settling. The
corresponding release of energy has been estimated to be a substantial fraction
of the internal heat production, which would explain for instance why Neptune
radiates more than twice the energy it receives from the sun [11|. It is also
likely the cause for the externally observed high luminosity and could even con-
tribute to the convective motions of its fluid interior of Neptune. The reason
why Uranus does not have such internal heat flow mechanism is still unknown
[61]. Nevertheless, the similarity of the internal structures of these two planets
suggests that the suppressed convection of Uranus may be a consequence of
its closer proximity to the sun. In contrast, saturated hydrocarbons such as
CsHg and Hs, being the products of the above ascertained decomposition of

CHy4 at T' = 4000 K, do not precipitate and instead rather rise to join the atmo-
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sphere. As a consequence, this process could be responsible for the anomalous
abundance of Hy in the atmospheres of both planets, and in the case of Nep-
tune may also account for the observed wealth of atmospheric CoHg, where it
might be brought up from the deep interior by the afore-elucidated convection
process. Therefore, the present results imply that chemical processes such as
phase transformations at extreme temperatures and pressures must be consid-
ered in order to provide a more realistic model of the interiors of giant gas

planets.

5.4 Conclusion

Even though our calculations provide a consistent picture of the deep chem-
istry of Neptune and Uranus, the remaining question is why no diamond for-
mation could be observed, whereas experimentally it is reported to occur from
P = 20 GPa and T = 2000 K on. Due to the fact that liquid methane is
optically transparent and can not simply be heated by a laser beam, it is there-
fore common practice to include a noble metal absorber within laser-heated
diamond anvil cell experiments. Spanu et al. reported that without a metallic
absorber no formation of complex hydrocarbons and Hy at 7' = 2000 K could
be determined, which not only agrees with the findings of the present work but
also indicates that liquid CHy resides in a metastable state. On the contrary,

at the presence of a nobel metal, liquid CH, readily dissociates [145].

We conclude by noting that another possibility to explain the discrepancy
between theory and experiment may be the existence of a homogeneous nucle-
ation mechanism, similar to the one recently proposed by Khaliullin et al. for

the direct graphite-to-diamond transition |38, 67, 68|.



Chapter 6

An Algorithm to Calculate the
Inverse Principal p-th Root of
Symmetric Positive Definite

Matrices

In this chapter, we address the general mathematical problem of computing
the p-th root of a given matrix in a fast way by the help of an iteration func-
tion. As we have seen in Chapter 4, where we explained the Newton-Schulz
iteration to compute the inverse of a given matrix, this problem directly affects
our computations.

We present a new iteration function that enables calculating the inverse p-th
root of a given matrix for an arbitrary p. We evaluate the order of convergence
contingent upon a parameter q. By choosing ¢ adaptively, better results than
with before known formulas of this type can be achieved as less iterations and
matrix-matrix multiplications are required.

The performance is evaluated by a MATLAB code using symmetric positive
definite random matrices with various densities, condition numbers and spec-

tral radii.

29
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6.1 Introduction

The first attempts to calculate the inverse of a matrix by the help of an iter-
ative scheme were amongst others made by Schulz [139] in the early thirties
of the last century. This resulted in the well-known Newton-Schulz iteration
scheme that is widely used to approximate the inverse of a given matrix. One
of the advantages of this method is that for a particular start matrix as initial
guess convergence is guaranteed [123|. The convergence is of order two, which
is already quite satisfying, but there were a lot of attempts to speed up this
iteration scheme and to extend it to a formula to calculate not only the inverse
but a general inverse p-th root of a given matrix |12, 54, 63, 64, 144]. This is
an important task because, besides the pure mathematical interest, in many
applications in physics or chemistry one needs efficient methods to calculate
the (inverse) square root or the inverse of a matrix. An example is our lin-
ear scaling scheme presented in Chapter 4, or Lowdin’s method of symmetric
orthogonalization [98]|. The latter transforms the eigenvalue problem for over-
lapping orbitals into an equivalent problem with orthogonal orbitals, whereby
the inverse square root of the overlap matrix has to be calculated. This is
for instance necessary in the extended Hiickel method [55], and also used in
tight-binding |44, 124|.

Common problems in the attempts cited above are the stability of the iter-
ation formula and its convergence. For p # 1, most of the iteration schemes
have quadratic order of convergence, a rare exception is for instance Halley’s
method [45, 47, 64|, which is of order three. Altman [4] however generalized the
Newton-Schulz iteration to an iterative method of inverting a linear bounded
operator in a Hilbert space. He constructed the so called hyperpower method
of any order of convergence and proved that the method of degree three is the
optimum one, as it gives the best accuracy for the same number of multiplica-
tions.

Here, we describe an iteration function for the calculation of the inverse p-th
root of a given matrix A. In this scheme, we have two variables, the natu-
ral p and another natural ¢ > 2 that represents the order of expansion. We

show that two special cases of this formula are Newton’s method for matrices
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[12, 45, 46, 58, 63, 64, 144] and Altman’s hyperpower method [4].

6.2 Previous Work

The study of the calculation of the inverse p-th root, where p is a natural,
has been treated prevalently by various authors. The characterization of the
problem is quite simple, in general, for a given matrix A, one wants to find a
matrix B that fulfils B7? = A. If A is non-singular, one can always find such a
matrix B, but B is not unique. The problem of computing the p-th root of a A
is strongly connected with the spectral analysis of A. If, for example, A is a real
or complex matrix of order n with no eigenvalues on the closed negative real
axis, B can be uniquely defined [12]. As we deal only with symmetric positive
definite matrices, we can restrict ourselves to this unique solution, which is

called the principal p-th root and guaranteed by the following theorem.

Theorem 1 (Higham [53], 2008). Let A € C™*™ have no eigenvalues on R™.
There is a unique p-th root B of A all of whose eigenvalues lie in the segment
{z: =n/|p| < arg(z) < 7/|p|}, and it is a primary matriz function of A. We
refer to B as the principal p-th root of A and write B = AY?. If A is real then

AYP s real.

Remark 1. Here, p < 0 s also included, so that Theorem 1 holds also for the

calculation of inverse p-th roots.

The calculation of such a root is usually done by the help of an iteration func-
tion, as computation by brute force is computationally very demanding or even
infeasible for large matrices. Iteration functions can also be very helpful if the
scaling of the computation for sparse matrices should be reduced because the
intermediately occurring matrices can be truncated. One should always keep
in mind that the inverse p-th roots of sparse matrices are in general not any-

more sparse but usually full matrices.

One of the most discussed iteration schemes for computing the p-th root of
a matrix is based on Newton’s method for finding roots of functions. One can

approximate the root & of f: R — R, meaning that we have f(z) = 0, by the
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iteration

Tp41 = T — .
f'(@r)
Here, x;, — @ for k — oo if x( is an appropriate initial guess. If one chooses

f(z) = 2P — a for an arbitrary a, then we get

Tyl = ]19 ((p— Dy, + az, ?). (6.2)
One can also deal with matrices and study the resulting rational matrix func-
tion FI(X) = X? — A [58], where F' : C™*" — C™™ and F' is the Fréchet
derivative of F', see [144]. This has been the subject of a not so unimportant
number of papers [10, 12, 45-47, 53, 54, 58, 63, 64, 838, 123, 127, 131, 144]. It is
clear that this iteration converges to the p-th root of the matrix A if Xy is cho-
sen close enough to the true root. Mathematically, this means that we need to
fulfil the condition ||/ —AX{|| < 1. The convergence is quadratic as soon as the
iterates are close enough to limit of the iteration [58]. Smith [144] also shows
that Newton’s method for matrices has some issues concerning numerical sta-

bility for not so well-conditioned matrices, but this is not the topic of this work.

In their paper [12], Bini, Higham, and Meini proved that the matrix iteration
1

By =~ [(p+1)B, — BT 4], B, e R™™" (6.3)
p

converges quadratically to the inverse p-th root A=Y/P if ||[I — BSA|| < 1,
ByA = ABj and p(A) < p+ 1 hold. Here, p(A) is the spectral radius, which

is defined as the largest absolute eigenvalue of A.

In his work dated by 1959, Altman described the hyperpower method [4].
Let V be a Banach space and A : V — V a linear, bounded, and non-singular
operator and B, an approximate reciprocal of A satisfying ||/ — ABy|| < 1. For

the iteration
Biyi =Byl + R+ R +...+ RI™Y), ByeV, (6.4)

the sequence (By)ken, converges towards the inverse of A. Here, R, = [ —BL A
is the k-th residual.

Altman proved that the natural ¢ corresponds to the order of convergence
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of (6.4) so that in principle a method of any order can be constructed. He
described the optimum method as those who gives the best accuracy for the
same number of multiplications, and demonstrated that the optimum method

is obtained for ¢ = 3.

To close this section, we recall some basic definitions, which are crucial for
the next section. In the following, the iteration function ¢ : C**" — C"*" is

assumed to be sufficiently often continuously differentiable.

Definition 1. Let ¢ : C"*"™ — C™*" be an iteration function. The process
Bk+1 = (,O(Bk), k= O7 1, ce (65)

is called convergent to Z € C™*™ if it exists a constant 0 < ¢ < 1 so that for
all start matrices By € C™*" with ||I — BoZ|| < ¢, we have ||By, — Z|| — 0 if
k — oo.

Definition 2. A fixed point Z of the iteration function (6.5) is such that
©(Z) = Z and is said to be attractive if ||¢'(Z)| < 1.

Definition 3. Let ¢ : C**"™ — C™*™ be an iteration function with fived point
Z € C™™. The process (6.5) is called convergent of order ¢ € N if it exists a
constant 0 < ¢ < 1 so that for all start matrices By € C"*™ with || — By Z|| < ¢
we have

|Bri1— Z|| < C||By — Z||? for k=0,1,..., (6.6)

where C' > 0 s a constant with C' < 1 if ¢ = 1.

We also want to remind a well-known theorem concerning the order of conver-

gence.

Theorem 2. Let f(x) be a function with fized point x*. If f(x) is q-times
continuously differentiable in a neighbourhood of x* with ¢ > 2 then f(x) has

order of convergence q if and only if

f@)=...= fe V) =0and f9*) #0. (6.7)

Proof. The proof can be found in the book of Gautschi [36, pp. 235-236]. O
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6.3 Generalization of the Problem

In this section, we present a new iteration scheme to compute the p-th root
of a matrix which contains Newton’s method for matrices and the hyperpower
method as special cases. Thus, we study a general expression to compute
the p-th root of a matrix which comes along with variable ¢ as the order of
expansion. In Altman’s case, ¢ is the order of convergence, but as we will
see, this does not hold generally for our formula. Nevertheless, choosing ¢
larger than two leads often to an increase in performance, meaning that less
multiplications, iterations, and computational time are required. We discuss
in the next section how ¢ can be chosen adaptively. The central message of

this chapter is the following

Theorem 3. Let A € C™*™ be a matriz, and p, ¢ € N with ¢ > 2. We define

the function

()0 CTLXTL - C’VZX’VZ

Xt | (p— 1)1 - i (q)(_l)i(XpA)i‘l X, o8
p — \i
where X has to be fulfil AX = XA, and the iteration
Bii1 = ¢(Bg), ByeC™™. (6.9)
If |I — BYA|| < 1 and ByA = ABq, then it holds
lim B, = AP, (6.10)

k—o0

If p > 1, the order of convergence of (6.8) is quadratic. If p =1, the order of

convergence of (6.8) is equal to q.

Remark 2. One can use the same formula to calculate the p-th root of A
where p is negative or even choose p € Q\ {0}. But this is not a competitive
method because for negative p, one has to compute inverse matrices in every
iteration step and for non-integers the binomial theorem and the calculation of

powers of matrices are not that simple anymore.

Proof. Now, we prove Theorem 3. To make the representation of (6.8) more

convenient, we rearrange the following term
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ql (q) (—1)i(XPA) (6.11)

— (I = XPA)" — 1)) (X" A) ™, (6.12)
so that we finally get

e(X)=-[p— )X —((I—-XPA)I—T)X"PA™"]. (6.13)

iR

Due to Definition 2, one can easily see that A~'/? is an attractive fixed point

of (6.20) by calculating ¢(A~Y/?) and ¢/ (A~V/P)

PATI) = = [(p = DA — (I = (AP AYT = D)) (A7) 747

[(p— 1)ATHP 4 A7) = A7MP, (6.14)

"= B

P'(X) = q(I = XPA)"
(6.15)

+ ]% (I = XPA)" — ) (XPA)~ 4 1) |

/(A7) = 0. (6.16)

To apply Theorem 2, we calculate for our iteration

p(X) =~ [(p = D)X — (I - XPA)' = I) (XPA) ' X]

D=

not only the first (cf. equation (6.15)) but also the second derivative
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e P(X) = —pglg — X" TA(I — XPA)T?

+q(1 —p) X1 — XPA)T!
(6.17)
+(p— )X P A - XPA)1

—(p—1)X AL

We have already seen that ¢/'(A~'/?) = 0 for every p, but for the second

derivative holds

PPD(AP) =0 = p=1. (6.18)

One can also show that ¢ (A=) =0 ifand only ifp=1forj =3,...,¢—1
because we have
PI(X) =" Jiy(I = XPA) 4 (p— 1) X PIAY (6.19)
i=0
where J; ; and J; are rational non-zero numbers. So, we have convergence of

an arbitrary order.

This implies that according to the Theorem 2, the convergence of the presented
formula (6.8) is exactly quadratic for any ¢ if p # 1. For p = 1, we have that
the order of convergence is identical with the chosen ¢. This is what had to be

demonstrated. O

As a trivial consequence, we conclude that a larger ¢ does in general not
lead to a higher order of convergence. However, we make several tests with
the help of MATLAB [103], to get the number of iterations, matrix-matrix
multiplications, and the computational time needed to obtain the p-th root of
a given matrix within a predefined accuracy contingent upon g. We find that
a higher order of expansion in the sum (6.11) leads in almost all cases to a

better performance. Details are presented in the next section.

From now on, we deal with equation (6.13) for the iteration of matrices
By € C"" and define Bry1 = ¢(By). We assume that the start matrix By
satisfies ByA = ABj and ||I — B A|| < 1. One can show that in that case, it
holds ByA = ABj, for every k € N, see [144]|. Thus, we have
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1 o
By = ) [((p—1)By — (I - BA)" — 1) B, PA™'],

(6.20)
By e C™",

For p = 1 and ¢ = 2, we get the already mentioned Newton-Schulz iteration

that converges quadratically to the inverse of A

By =— (I —ByA? —1) A7
= (—(BrA)?* + 2B, A)A™?

= 2B, — B A. (6.21)

For ¢ = 2 and any p, we get the iteration

B = [(p = 1By = (1 = BLAP — 1) BL7A™]
_ % ((p— 1)By, — ((BYA)? — 2B7A) BL7AY]
— o= 1B~ (B A~ 2B)
_ 1_1) ((p+1)B, — BI™A] . (6.22)

This is exactly the matrix iteration (6.3) that has been discussed in the work
of Bini, Higham, and Meini [12].

We now proceed by dealing with the iteration formula in the case p = 1 for
higher orders (¢ > 2) and show that it converges faster. For that purpose, we
take equation (6.20) and calculate for p =1

B =~ [(p = 1)Br — (I = BLA)" = ) B, PA™']

SR N

PZHI — (I — BLA)Y A (6.23)

We now prove that this is convergent of order ¢ in the sense of Definition 3.
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1Bt — A7 = (I = (I = BAY)A™ — A7
— (1 — BeAyA™
— (I - BuAy AT A0
< Al (T - BeAy (A1)
< A - AT = Byl (6.24)

Now, we show why iteration (6.20) coincides for p = 1 with Altman’s work on
the hyperpower method [4]. For that purpose, we rewrite the (k+ 1)-st iterate
Bj41 in terms of the powers of the k-th residual R, = I — B A.

Buos = [0 1B (1~ gAY - 1) (BB
_ ]1) [(p— 1)By — (RE = I)(I — R) ™ By
- 11? [(p = DB+ (R + R + ...+ Ry + 1) By
e ()]

Altman however proved convergence of any order of the iteration scheme (6.4)
Biyi=By(I + R+ R+ ...+ RIY), ByeV

for the calculation of the inverse of a given linear, bounded, and non-singular
operator A € V. If we take for the Banach space V' = C"*", this is exactly
equation (6.25) with p = 1.

6.4 Numerical Results

Even if the mathematical analysis of our iteration function results in the aware-
ness that larger ¢ does not lead to a better order of convergence, we make nu-
merical tests by varying p and ¢. Concerning the matrix A whose inverse p-th
root should be determined, we take real symmetric positive definite random

matrices with different densities and condition numbers. We do this by the
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help of MATLAB [103] and elaborate the computational time in seconds (time),
the number of iterations (#it) and matrix-matrix multiplications (#mult) un-
til the calculated inverse p-th root is close enough to the true inverse p-th

root.

6.4.1 The Scalar Case

First, we run the program in the scalar case. As the computation of roots
of matrices is strongly connected with its eigenvalues, it is logical to study
the formula for scalar quantities A\ first. Thus, we have n = 1 in equation
(6.20). We take values \ varying from 107" to 1.9 and choose by = 1 as start
value. For that choice of by, we have guaranteed convergence for A € (0,2).
We calculate the inverse p-th root of A, thus A=*/?. We set the threshold ¢
for the exit of the program to 10™® and the maximum number of iterations to
35. Usually, a smaller tolerance ¢ should be sufficient but to see differences in
the computational time, we choose this small threshold. Here, one should note
that in the scalar case the computational time is not very meaningful due to
its small differences for varying ¢. In the scalar case, we do not consider, as
in the matrix case, the norm of the residual r, = 1 — b} - A to compute the
error, but the difference between the k-th iterate and the correct inverse p-th
1)1/13.

root, thus 7, = by — (X

one can easily get (%)1/ ” by a straightforward calculation. Note that we have

This is due to the fact that in the scalar case,

not necessarily |7;| < 1, but only |r;| < 1. For better distinguishing the scalar

from the matrix case, we write in the scalar case, as above, by, A, 7, and 7
instead of By, A, and Rjy.

The range of ¢ is chosen rather wide to see the influence of this value on the
number of iterations and the computational time. In agreement with our ob-
servations in the matrix case, which we describe in the next subsection, there
is a coherence between the choice of ¢, the number of multiplications, the num-
ber of iterations, and the computational time. In the following, we elaborate
general rules for the optimal choice of q.

For a certain number of iterations needed, the number of multiplications and
divisions is always lowest for the lowest ¢ that entails this specific number of

iterations. But it can happen that the number of iterations is not steadily
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Table 6.1: Results for p =2, A = 1.5. Optimal values in bold.

time #it | #mult | ¢
1.7e—05 5 37 2
1.9e—05 | 4 34 3
1.7e—05 | 3 29 4
1.8e—05 | 4 42 5
1.6e—05 | 3 35 6
1.9e—05 | 4 50 7
1.7e—05 | 4 54 8

Table 6.2: Results for p = 2, A = 107Y. Optimal values in bold.

time #it | #mult
2.7e—05 | 27 191
3.4e—05 | 17 138
2.9e—05 | 14 128
2.6e—05 | 12 122
2.2e—05 | 11 123
2.1e—05 | 10 122
2.6e—05 | 10 132

o g O Ot = W N R

decreasing, as one can see in the case for computing the inverse square root of
A = 1.5 (Table 6.1). Nevertheless, we conclude that the best choice is ¢ = 4,
as we have the lowest number of iterations and multiplications and almost the

lowest computational time.

In other cases, the evaluation is simpler. For example for computing the
inverse square root of A = 107, we have, when varying ¢ from 2 to 8 clearly
the best result for ¢ = 7, as in that case, the number of iterations, the number

of multiplications as well as the computational time is lowest (Table 6.2).
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In most of the cases, it is not that easy to decide which ¢ is the best for
a certain tuple (p, A). It can also happen that lowest number of iterations is
attained for really large ¢, meaning ¢ > 20. To present a general rule of thumb,
we pick ¢ from 3 to 8 as this usually gives a good and fast approximation of
the inverse p-th root of a given A € (0,2). Hereby, we observe that for values
close to 1, the optimal choice is in most, but not all cases, ¢ = 3 and for values
close to the borders of the interval, mostly ¢ = 6 is the best choice. This
implies that the further the value of A is away from 1, the more important
it is to chose a larger ¢q. This can also be explained by the fact that in the

scalar case, we start with by = 1 as a first initial guess for the inverse p-th root.

Nonetheless, as one can see in Figure 6.1 for the exemplary case p = 1,
A = 107°% a larger ¢ causes the iteration to enter after less iterations the
quadratic convergence in each of the cases (cf. Appendix A for detailed results).

This is due to the fact that in every iteration it is calculated

b :}3 [(p—1) = ((1 = A — 1) /(BEN)] b

1 (&

i=1

It can be seen that a larger ¢ leads to more summands in (6.26) and therefore
to larger steps and variation of by,;. This holds also for negative ry, as we
have rj, € (—1,1) and therefore |ri"'| < |ri|. But a larger value for ¢ obviously
increases the performance just up to a certain limit. This is due to the fact
that a larger value of ¢ implies that b7\ is raised by larger exponents. There-
fore the number of multiplications increases, what is, especially in the matrix
case, the time consuming part. This is why we take into account the number

of multiplications, the computational time, and the number of iterations.

6.4.2 The Matrix Case

For evaluating the performance of our formula for matrices, we make different

set-ups by varying the variables p, ¢, the density d and the condition number
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Residuals
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Figure 6.1: Residuals for p =1 and A\ = 1075,
Optimal choice is here ¢ = 5, as ¢ = 7 and ¢ = 8 require less iterations but

more multiplications.
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c. The density of a matrix is defined as the number of its non-zero elements
divided by its total number of elements. The condition number of a normal
matrix, for which AA* = A*A holds, is defined as the quotient of its largest
absolute eigenvalue and its smallest absolute eigenvalue. The bigger the con-
dition number is, the more ill-conditioned A is. Well-conditioned matrices
have condition numbers close to 1. For each set-up, we take ten symmetric
positive definite matrices A € R!909x100 with random entries, generated by
the MATLAB [103] function sprandsym. This yields matrices with a spectral
radius p(A) < 1. We store the number of iterations that the iteration needs
to converge, the number of matrix-matrix multiplications as well as the com-
putational time for each random matrix. Then, we average this values over
the number of random matrices. The threshold is set to ¢ = 10™* and the
maximum number of iterations ¢ to 100. The maximum number of iterations
has never been reached, so that setting ¢ = 30 would have been sufficient. We
choose g varying from 2 to 6, as for ill-conditioned matrices larger ¢ sometimes
causes divergence in the cases p =4 and p = 5 due to numerical errors. In all
other cases, where no divergence occurred, ¢ > 6 was never the best choice as
the number of iterations decreases not further, but the number of multiplica-

tions increases. Thus, this choice is not a restriction.

By using the sum representation like presented in (6.8)

Biy1 = % [(p —1)I - ZZ:: (3) (—1)i(BPA)~

and by temporarily saving By A, we minimize the number of multiplications.

By, (6.27)

It is evident that the number of matrix-matrix multiplications for the same
number of iterations is lowest for smallest ¢. But a larger ¢ can also mean less
iterations, so usually the best ¢ is the smallest ¢ for the lowest possible number
of iterations for a certain set-up.

In general, one can determine the number of matrix-matrix multiplications m

as a function of p, ¢ and the number of iterations j. We have

m=m(p,q,j) =p+ ((¢—1)+p)J. (6.28)
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We want to find out which parameters are decisive for the optimal choice

of ¢, so we fix p and figure out which ¢ is the best for

e sparse (d € {0.001,0.003}) and well-conditioned matrices (¢ = 1.25),
e sparse and ill-conditioned matrices (¢ € {10,50,500}),

e 1ot so sparse (d = 0.01) and well-conditioned matrices,

not so sparse and ill-conditioned matrices,

full (d € {0.1,0.8}) and well-conditioned matrices,

e full and ill-conditioned matrices.

It is not recommended to choose matrices with much larger condition number

(¢ > 500), as this may lead to divergence due to very small eigenvalues.

To fulfil the conditions of Theorem 3, we claim that the start matrix B
commutes with the given matrix A. If By is chosen as a plus-signed multiple
of the identity matrix or the matrix A itself, By = al or By = aA for a > 0,
then it is obvious that it holds ABy = BgA and AB; is symmetric positive
definite.

In the first part of the calculations, we deal only with matrices A that have a
spectral radius smaller than 1. If we take By = I, then we have ||/ —ByAl|2 < 1
due to the following

Lemma 1. Let C' € C"*" be a Hermitian positive definite matriz with ||C|ly <
1. Then, it holds ||I — C||s < 1.

Proof. 1t is clear that [|I||; = 1. Let U be the unitary matrix such that
UCU = diag(u, - .., ftn), where p; € (0, 1] are the eigenvalues of C. Then

we have
I =Clla = U = C)U|2
= |1 — diag(pa, - -, pn) |2
= [[diag(1 = pur, ..., 1 = )2

=1 = fiin < 1, (6.29)
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where i, is the smallest eigenvalue of C'. O

We examine here a couple of exemplary cases. As they interest us most, we
first choose sparse, ill-conditioned matrices A with d = 0.003 and cond(A) =
500 and obtain the following results. For p = 1, the number of matrix-matrix
multiplications it lowest for ¢ = 3, but concerning the number of iterations
and the computational time, ¢ = 6 is best. As one can see in Table 6.3, one
needs 24% more matrix-matrix multiplications, but only 62.5% of the number
of iterations. Every iteration is time consuming as intermediate results and
the residuals have to be calculated and stored. Thus, one would conclude that
for 1000 x 1000 matrices, the optimal method entails ¢ = 6 but the situation
is most probably different for larger matrices. For p = 2, the situation is sim-
ilar, the least number of multiplications is reached in the case ¢ = 3, but the
computational time and the number of iterations are optimal for ¢ = 5 (cf.
Table 6.4). One should here note that the computational time is, contrary to
the other two criteria, not a fully reliable quantity as the attended time can
be influenced by the workload of the computer. As the differences concerning
the number of multiplications are not so significant, ¢ = 5 is best for those
and also for reasonable larger matrices. In the other cases, optimal ¢ is easy
to determine. As one can see in Table 6.5, for p = 4, the number of iterations,
multiplications as well as the computational time is lowest for ¢ = 4. The
situation is similar for p = 3 and ¢ = 5, where ¢ = 3 and ¢ = 4 respectively

are optimal.

We now consider another example to show that also in the matrix case,
quadratic convergence is reached after less iterations for ¢ > 2. We take again
ill-conditioned matrices (¢ = 500), as hereby the differences in the iteration
schemes occur more clearly. We take p = 3 and d = 0.003. As can be seen
in Figure 6.2, the lowest number of matrix-matrix multiplications is clearly
achieved for the case ¢ = 3. Even if the cases ¢ = 5 and ¢ = 6 require one iter-
ation less, they come along with considerably more multiplications. A larger ¢
causes the iteration scheme to reach quadratic convergence after less iterations
in the matrix case, as well. This can be seen in Figure 6.3 and in the Appendix,
where the residuals are presented in detail. The optimal choice is here ¢ = 3,

as it is also the method that is computationally the least demanding.
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Table 6.3: Results for ¢ = 500, p =1, d = 0.003.

Optimal values in bold.

time | #it | #mult | ¢
72.65 13 27 2
51.673 | 8 25 3
51.52 7 29 4
48.807 | 6 31 5
43.393 | 5 31 6

Table 6.4: Results for ¢ = 500, p = 2, d = 0.003.

Optimal values in bold.

time | #it | #mult | ¢
71.23 | 11 35 2
52213 | 7 30 3
48.593 | 6 32 4
44.23 5 32 5
47353 | 5 37 6

However, after having studied a few exemplary cases, we want for a general
rule to decide which method should be used for different types of matrices.
Comparing all studied cases, we notice that the density does only slightly in-
fluence the choice of the optimal q. The important parameter for determining
the optimal ¢ is the condition number of the matrices. This can be explained
by the fact that the condition number is strongly connected with the spectrum
of the matrix. We have already seen in the scalar case how the efficiency of

different values of ¢ varies with the (eigen-)value.

For well-conditioned matrices, we have a clear result. For p = 1, the optimal

value is ¢ = 6 and in all other cases, ¢ = 3 is best. For ill-conditioned matrices,
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Table 6.5: Results for ¢ = 500, p =4, d = 0.003.

Optimal values in bold.

time | #it | #mult | ¢
74.35 | 10 54 2
50.013 | 6 40 3
44.4 5 39 4
48.263 | 5 44 5
52.72 | 5 49 6

M Iterations E Multiplications
50

47

Figure 6.2: Number of iterations and multiplications for ¢ = 500, p = 3, and
d = 0.003.
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Figure 6.3: Residuals for ¢ = 500, p = 3, and d = 0.003.

the results are ambiguous in a few cases, like already shown in Tables 6.3 and
6.4. For p € {1,2,3}, we often have that a smaller ¢ (¢ = 3) requires the
lowest number of multiplications but a larger ¢ (¢ = 5 or ¢ = 6) requires less
iterations and is therefore the better choice for the studied size of matrices.

The complete results for all studied cases are presented in Table 6.6, where we

point out both ¢ in these ambiguous cases.

6.4.3 General Matrices and Applications

For the type of applications in chemistry and physics that are the subject of
this thesis, the most interesting are sparse and ill-conditioned matrices with
an arbitrary spectral radius. For obtaining a code that scales linearly with the
number of rows/columns of the occurring matrices, it is crucial to have sparse
matrices. For well-conditioned matrices, various methods for calculating their
root already exist, as for example the expansion in Chebyshev polynomials for
inverting matrices as described in Chapter 3 and Chapter 4. The problem of

ill-conditioned matrices consists of a large quotient of its largest and smallest
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Table 6.6: Results for p(A) < 1. Best ¢ is outlined for different p and c.

Pl 2 3 4 5

C
125 6 3 3 3 3
0| 5 3 35 3 3
50 | 3/5 3 3/5 4 4
50 | 3/6 5 3 4 4

eigenvalue and the resulting issue of error propagation. We have already seen
in the scalar case that the number of iteration steps needed until quadratic
convergence is achieved as well as the total number of iteration steps varies

significantly with the (eigen-)value.

As aforementioned, matrices coming from applications have generally a spec-
tral radius that is larger than 1. This is in contrast to the fact that we dealt
so far only with matrices A with p(A) < 1. In [12], Bini et al. proved the

following

Proposition 1. Suppose that all the eigenvalues of A are real and positive.
The iteration (6.3)

Byy1 = [(p +1)B), — BiﬂA} )

=

with By = I converges to A™Y? if p(A) < p+ 1. If p(A) = p+ 1 the iteration

does not converge to the inverse of any p-th root of A.

As already discussed, if we take ¢ = 2 in (6.20), the iteration coincides with
Bini’s iteration (6.3). Numerical investigation provides that the analogue of
Proposition 1 is also true for (6.20) in the case g # 2, apart from a few random
matrices for p = 1 and varying ¢ where the iteration converges. But this is so

erratically occurring that we are not able to present a general rule.

However, we want to deal with matrices having a spectral radius larger than

1, as well. To present a solution to this problem, we assert first that for deal-
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ing with general matrices A, one can either scale the matrix such that is has
a spectral radius p(A) < 1 or choose the matrix B, such that || — BJA|| < 1
is satisfied. We pursue the latter approach.

In Chapter 4, we dealt with the problem of inverting large, sparse matrices.
For well-conditioned matrices, this problem was solved by Chebyshev poly-
nomial expansion and for the occurring ill-conditioned matrices the Newton-
Schulz iteration, so our iteration for p = 1 and ¢ = 2, was used. As already
explained, the Newton-Schulz iteration is in most of the cases not the optimal
choice, so there is room for improvement. The IV, matrices that have to be
inverted in Chapter 4 are all real and symmetric positive definite and have
therefore only positive real eigenvalues. Thus, we can in principle apply itera-
tion (6.20) but as the spectral radius of these matrices is larger than p+1 = 2,
we need to be careful with the initial guess. For the Newton-Schulz iteration,

we can take
By = ([[All1[|A]lc) A (6.30)
as start matrix, as Pan and Reif proved that then convergence is guaranteed

[123]. We solve the problem for an arbitrary ¢ by the following

Proposition 2. Let A be a symmetric positive definite matriz with p(A) > 1
and By like in equation (6.30). Then, ||[I — By Alls < 1 is guaranteed.

Proof. As A is symmetric positive definite, we have ||Alls = Apax. We also
remind the relationship ||Alls < +/||A|1]|A|cc- Furthermore, we make use of

Lemma 1 and have therefore just to show that
1B5All2 = [[ (Al ]| Alloe) A7) All2 < 1. (6.31)

As A is symmetric, we have AT = A and therefore commutativity of By and

A. Additionally, the relation

_ 1
(1Al l1All) ™" < 13 (6.32)
holds. So we have
1 1
1B A2 < e )pllA”Hllz < 2 A5
1 1
= o Mx = 51 < L, (6.33)

2p max p—1
)\max )\max
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as we deal with matrices with p(A4) > 1. O

Remark 3. By replacing AT with A* in equation (6.30), Proposition 2 is also

true for Hermitian positive definite matrices.

Consequently, the initial guess (6.30) fits also for the general case, and not
only for the Newton-Schulz iteration. We have therefore convergence in (6.20)
for any p > 1 and ¢ > 2, regardless of the spectral radius.

Let us hereby note that the calculations are done in the spectral norm, as the
guess by Pan and Reif works only for this norm. One issue is that in MATLAB,
the spectral norm is not available for sparse matrices. Practical calculations
show that the initial guess and use of the infinity norm leads also to conver-
gence with the same number of iterations, and requires only about half of the
computational time. But then, we can not guarantee that || — By Al < 1,
as requested in Theorem 3, and therefore the residuals do not form a mono-
tonically decreasing sequence. Therefore, it might happen that the iteration

diverges but this never occurred in practice.

We perform calculations using matrices A having the same densities and
condition numbers as in the case p(A) < 1, except for d = 0.001. We scale
the matrices such that we have p(A) € {10,50} and use the initial guess by
Pan and Reif (6.30). We observe also in the general case that the best ¢ is
independent of the density of the matrix and depends only on the condition
number. Nevertheless, it is important to consider matrices of different densities
to find the general rule. As an example, we study ill-conditioned matrices
(¢=500) with spectral radius p(A) = 10 for the case p = 3. It can be seen
that the number of matrix-matrix multiplications is always lowest for the case
g = 5. Also the computational time is lowest for the case ¢ = 5. The number
of iterations decreases further with ¢ so that the lowest number of iterations is
always achieved for the case ¢ = 6. But this is not a better choice as we have
to build more matrix-matrix products which is the more an issue, the larger
the matrices are. The complete results can be found in table 6.8, where the

optimal choices are highlighted in bold.
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Table 6.7: Results for the case p = 3, p(A4) = 10, ¢ = 500.

Optimal values in bold.

d time #it #mult
406.29 | 55.333 | 224.33
189.68 | 22.667 | 116.33

0.003 | 167.94 18 111
152.86 15 108
153.05 14 115

417.93 | 55.667 | 225.67
198.37 | 23.333 | 119.67

0.01 | 170.63 18 111
155.33 15 108
158.54 14 115
429.66 | 57.333 | 232.33
219.35 25 128

0.1 189.38 19 117
179.09 16 115
187.66 15 123
5929.29 | 61.667 | 249.67
277.02 27 138

0.8 | 247.98 | 20.667 127
235.74 | 17.667 | 126.67
237.65 16 131

S UL = W NN U = W NN O = W N[O O e W N

All the other cases can be studied in the same way. The decision is not
always as clear as in the above considered case. An example is the calculation
of the inverse 4-th root of matrices with spectral radius p(A) = 50 and condi-
tion number ¢ = 10. We have hereby that for sparse matrices the choice ¢ =5
is optimal, but for more dense matrices ¢ = 6 is the optimal value. However,
q = 6 is also an acceptable choice for sparse matrices, so that we can choose

q = 6 as the best option if we want a general rule. The complete results can
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be found in Table 6.8, where the optimal choices are highlighted in bold.

Table 6.8: Results for the case p = 4, p(A) = 50, ¢ = 10.

Optimal values in bold.

d time it #mult
240.52 | 32.333 | 165.67
154.84 | 18.333 114
0.003 | 132.94 | 14.333 | 104.33
119.96 12 100
120.04 11 103
251.14 | 33.667 | 172.33
161.69 | 19.333 120

0.01 | 140.19 15 109
134.29 13 108
131.08 12 112
286.65 37 189
187.38 | 20.667 128

0.1 167.03 16 116
164.89 14 116

161.47 | 12.333 | 115
391.31 | 42.667 | 217.33

S U e W N[O U e W N[O O e W N[O O e W (R

258.66 24 148
0.8 224.17 18 130
225.29 16 132
216.07 14 130

By doing the complete analysis for all chosen densities, condition numbers,
and values of p, we are able to formulate general results for both cases, p(A4) =
10 and p(A) = 50. These are presented in Tables 6.9 and 6.10, respectively.

We focused primarily on the number of matrix-matrix multiplication as this
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Table 6.9: Results for p(A) = 10. Best ¢ is outlined for different p and c.

Pl 1 2 3 4 5

C
125 | 4 3 3 4 4
03 3 5 4 6
50 |3 4 5 6 6
50 |3 4 5 6 6

Table 6.10: Results for p(A) = 50. Best ¢ is outlined for different p and c.

Ply 2 3 4 5

C
1253 3 3 4 4
013 3 5 6 6
50 |3 4 5 6 6
50 |3 3 5 6 6

is the most significant criterion. In the cases where the decision was not clear,
like in the above presented example, we looked in detail at the time and the
number of iterations. Fortunately, this happens only a few cases. Also for
matrices with a larger spectral radius, we have no configuration where ¢ = 2
is the best choice. On the contrary, as one can see in Tables 6.7 and 6.8, the
evaluation of the inverse p-th root with ¢ = 2 requires generally up to two times
the computational time and number of matrix-matrix-multiplications, and up
to three times the number of iterations, compared to the optimal choice of q.
One notices that the tables look rather similar but are not identical. Generally,
it can be said that the larger p is, the more profitable it is to choose a larger q.

A broader classification for matrices with general spectral radii is future work.
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6.4.4 Non-Commutative Matrices

The method presented here works well if the given matrix A and the start ma-
trix By commute, which can be easily achieved by using equation (6.30) as an
initial guess. However, we note that the proof of Theorem 3 does not work for
non-commutative matrices, as we can not make use of the binomial theorem.

In the case of the calculation of inverse matrices, we have shown that our
formula coincides with Altman’s work. Altman however does not assume com-
mutativity in his iteration (6.4). Thus, we have an iteration scheme that also
works for the inversion of matrices that do not commute with the start matrix.
This might be important in our linear scaling algorithm presented in Chapter
4, where we use the Newton-Schulz iteration with a start matrix that does not
commute with the matrix that has to be inverted, but is very close to the true
inverse. It remains for future work to investigate to what extent our method

is improved when using our iteration scheme with a larger q.

6.5 Conclusion

We presented a new general iteration scheme to calculate the inverse p-th root
of symmetric positive definite matrices. It includes as special cases the methods
of Altman [4| and Bini [12]. The variable ¢ that in Altman’s work equals the
order of convergence for the iterative inversion of matrices, represents here the
order of expansion. We figured out that ¢ > 2 does not lead to a higher order of
convergence in the case p # 1. However, the iteration converges while less iter-
ations and matrix-matrix multiplications are needed, as quadratic convergence
is reached faster. The computational time and the number of matrix-matrix
multiplications is up to two times lower, and the number of iterations is up to
three times lower.

To decide which order of expansion is optimal for matrices with different densi-
ties and condition numbers, one has always to take into account the condition
number of the matrix whose inverse p-th root is to be calculated. Also the
parameter p is decisive, whereas the density of the given matrix only affects
the results slightly. As we have seen in Tables 6.6, 6.9, and 6.10, ¢ = 2 is
not optimal for any of the studied configurations. Thus, we have described a

considerable amelioration to the previously known methods.
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Chapter 7
Conclusion and Outlook

In this thesis, we presented a linear scaling approach to Fermi operator expan-
sion. The approach is hybrid for the inversion of sparse matrices, as we distin-
guished between well- and ill-conditioned matrices. For the well-conditioned
matrices, the inversion can be done easily using Chebyshev expansion. For
the ill-conditioned matrices, the Newton-Schulz iteration was employed. This
method is not necessarily the optimal choice, as we have seen in Chapter 6,
where we generalized the problem of finding inverse p-th roots of matrices. We
suggest that there is still room for improvement in the calculations.

We presented a new iteration scheme to calculate the inverse p-th root of
symmetric positive definite matrices. Our method is more efficient and more
general than before known formulas, which emerge as special cases. The it-
eration converges with less iterations and matrix-matrix multiplications, as

quadratic convergence is reached faster.

The efficiency and accuracy of our linear scaling approach has been illus-
trated by the application to liquid methane at planetary conditions. We used
a cubic simulation cell with periodic boundary conditions containing of 1000
methane molecules and simulated the extreme conditions (2000 — 8000 K and
20 — 600 GPa) of the middle ice layer of the giant gas planets Uranus and
Neptune. At 4000 K and more, we found no evidence of diamond but large
carbon clusters and ring-like carbon structures. We also detected molecular
and atomic hydrogen as well as small hydrocarbons like ethane and propane.

We so were able to explain the Voyager II fly-by measurements but are left with

87
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the question as to why no diamond has been found. One possible explanation
is that diamond formation requires even higher pressures.

Following the research line in this work, a future perspective is to apply our
method to other interesting and relevant problems in chemistry and physics.
One of the possible tasks is the large scale simulation of liquid water using our

linear scaling method, which is a current work in progress.
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Residuals

We present the residuals for two exemplary cases. We show that we enter the
quadratic convergence after less iterations if we choose ¢ > 2, as presented in
Figures 6.1 and 6.3. Where we have quadratic convergence, is highlighted in
bold.

Table A.1: Residuals for the scalar case p =1 and A = 107°

by — (1/ )|

L=

it

9.999800e+04
9.999600e+04
9.999200e+04
9.998400e+04
9.996800e+04
9.993602e+04
9.987208e+04
9.974433e+04
9.948931e+04
9.898122e+-04
9.797282e+04
9.598673e+04
9.213453e+04
8.488771e+04
7.205924e-+04

9.999800e—01
9.999600e—01
9.999200e—01
9.998400e—01
9.996800e—01
9.993602e—01
9.987208e—01
9.974433e—01
9.948931e—01
9.898122e—01
9.797282e—01
9.598673e—01
9.213453e—01
8.488771e—01
7.205924e—01
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Table A.1 — Continued from previous page

[ — (1/2)'/7]

1= A

it

5.192534e-+04
2.696241e-+04
7.269715e+03
5.284876e-+02
2.792991e+00
7.800796e—05
1.455192e—11

5.192534e—01
2.696241e—01
7.269715e—02
5.284876e—03
2.792991e—05
7.800797e—10
0.000000e+00

20

9.999700e+04
9.999100e+04
9.997300e+04
9.991903e+04
9.975729e+04
9.927365e+04
9.783673e+04
9.364957e+04
8.213294e+04
5.540541e-+04
1.700813e+04
4.920050e+02
1.190991e—02
1.455192e—11

9.999700e—01
9.999100e—01
9.997300e—01
9.991903e—01
9.975729e—01
9.927365e—01
9.783673e—01
9.364957e—01
8.213294e—01
5.540541e—01
1.700813e—01
4.920050e—03
1.190991e—07
0.000000e+00

12

9.999600e+04
9.998400e+04
9.993602e+04
9.974433e+04
9.898122e+-04
9.598673e+04
8.48877T1le+04
5.192534e-+04
7.269715e+03
2.792991e-+00

9.999600e—01
9.998400e—01
9.993602e—01
9.974433e—01
9.898122e—01
9.598673e—01
8.488771e—01
5.192534e—01
7.269715e—02
2.792991e—05
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[br — (1/2)'/7]

1 — b

Yt

0.000000e+00

1.110223e—16

9.999500e+04
9.997500e+04
9.987508e+04
9.937695e+04
9.692331e+04
8.553447e+04
4.578316e+04
2.011540e-+03
3.293392e—04
0.000000e+00

9.999500e—01
9.997500e—01
9.987508e—01
9.937695e—01
9.692331e—01
8.553447e—01
4.578316e—01
2.011540e—02
3.293392e—09
1.110223e—16

9.999400e+04
9.996401e+04
9.978423e+-04
9.871236e+04
9.251861e+04
6.271545e+04
6.084814e+03
5.075559e—03
0.000000e+00

9.999400e—01
9.996401e—01
9.978423e—01
9.871236e—01
9.251861e—01
6.271545e—01
6.084814e—02
5.075559e—08
1.110223e—16

9.999300e+04
9.995101e+04
9.965759e+04
9.762758e+04
8.452940e+04
3.083574e+04
2.650820e-+01
0.000000e+00

9.999300e—01
9.995101e—01
9.965759e—01
9.762758e—01
8.452940e—01
3.083574e—01
2.650820e—04
1.110223e—16

9.999200e+04
9.993602e+04
9.948931e+04

9.999200e—01
9.993602e—01
9.948931e—01
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Table A.1 — Continued from previous page

be— WV ] L —wpA ] s
9.598673e+04 | 9.598673e—01
7.205924e+04 | 7.205924e—01 6

7.269715e+03
7.800797e—05

7.269715e—02
7.800798e—10

Table A.2: Residuals for the matrix case p = 3, d = 0.003, and ¢ = 500

q Residuals #it
9.980000e—01
9.952664e—01
9.888193e—01
9.737193e—01
9.389248e—01
2 | 8.617598e—01
7.051328e—01
4.445128e—01
1.591981e—01 | 8
1.811528e—02
2.205411e—04
4.700491e—08
9.980000e—01
9.907740e—01
9.579903e—01
3| 8.196543e—01
3.947808e—01 | 4
1.011714e—02
3.476818e—05
9.980000e—01
9.840957e—01
8.786780e—01




Table A.2 — Continued from previous page

Residuals

it

3.199332e—01
3.883428e—02
4.796801e—04
7.665675e—08

3

9.980000e—01
9.748093e—01
7.125061e—01
2.083850e—01
1.209819e—02
4.814179e—05

9.980000e—01
9.624980e—01
4.222389e—01
1.024713e—01
3.140923e—03
3.277028e—06
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