Ruthenium-based Light Harvesting Complexes

Dissertation zur Erlangung des Grades "Doktor der Naturwissenschaften" im Promotionsfach Chemie

am Fachbereich Chemie, Pharmazie und Geowissenschaften der Johannes Gutenberg-Universität in Mainz

Aaron Breivogel

geboren in Mainz

Mainz, 2014

Die vorliegende Arbeit wurde in der Zeit von August 2009 bis Mai 2014 am Institut für Anorganische Chemie und Analytische Chemie der Johannes Gutenberg-Universität Mainz unter Anleitung von Prof. Dr. angefertigt. Mainz, Mai 2014

Dekan:

Tag der mündlichen Prüfung: 25.07.2014

Kurzzusammenfassung

Polypyridylkomplexe von Ruthenium(II) besitzen eine Vielzahl von Anwendungen, z. B. in Farbstoffsensibilisierten Solarzellen und als Photokatalysatoren. $[Ru(bpy)_3]^{2+}$ ist einer der prominentesten Ruthenium(II)-Komplexe und besitzt langlebige angeregte ³MLCT-Zustände mit einer Lebensdauer von 1 µs und einer Lumineszenz-Quantenausbeute von 10%. $[Ru(bpy)_3]^{2+}$ ist chiral und kann Stereoisomere bilden, wenn die Liganden unsymmetrisch substituiert sind oder im Falle von oligonuklearen *rac/meso*-Komplexen. Bis-tridentate Komplexe wie $[Ru(tpy)_2]^{2+}$ sind achiral und umgehen damit unerwünschte Stereoisomere. $[Ru(tpy)_2]^{2+}$ besitzt jedoch enttäuschende photophysikalische Eigenschaften mit einer ³MLCT-Lebensdauer von nur etwa 0.2 ns und einer Quantenausbeute von $\leq 0.0007\%$. Die Anbringung von Substituenten an $[Ru(tpy)_2]^{2+}$ sowie die Aufweitung der Liganden-Bisswinkel auf 90° bewirken deutlich verbesserte Eigenschaften der emittierenden ³MLCT-Zustände.

Dieser Strategie folgend wurden in der vorliegenden Arbeit neue bis-tridentate Ruthenium(II)-Komplexe entwickelt, synthetisiert und charakterisiert. Durch Anbringen von Ester-Substituenten und Verwenden von Liganden mit erweiterten Bisswinkeln konnten ³MLCT-Lebensdauern von bis zu 841 ns und Quantenausbeuten von bis zu 1.1% erreicht werden. Die neuen bis-tridentaten Komplexe weisen eine deutlich erhöhte Photostabilität im Vergleich zu tris-bidentatem [Ru(bpy)₃]²⁺ auf.

Die Komplexe wurden als Emitter in Licht-emittierenden elektrochemischen Zellen eingebaut und zeigen Elektrolumineszenz mit einer tiefroten Farbe, die bis ins NIR reicht. Ebenso wurden die Komplexe als Lichtsammler in Farbstoff-sensibilisierten Solarzellen getestet und erreichen Licht-zu-Energie-Effizienzen von bis zu 0.26%.

Dinukleare, stereochemisch einheitliche Ruthenium(II)-Komplexe wurden oxidiert um die Metall-Metall-Wechselwirkung zwischen Ru(II) und Ru(III) in der einfach oxidierten Spezies zu untersuchen. Die unterschiedlichen Redoxeigenschaften der beiden Rutheniumzentren in den verwendeten dinuklearen Verbindungen führt zu einer valenzlokalisierten Situation in der keine Metall-Metall-Wechselwirkung beobachtet wird. Ebenso wurde die Oxidation eines einkernigen Ruthenium(II)-Komplexes sowie dessen spontane Rückreduktion untersucht.

Energietransfersysteme wurden mittels Festphasensynthese hergestellt. Dabei ist ein Bis(terpyridin)ruthenium(II)-Komplex als Energie-Akzeptor über eine unterschiedliche Anzahl an Glycineinheiten mit einem Cumarin-Chromophor als Energie-Donor verknüpft. Bei einer kleinen Zahl an Glycineinheiten (0, 1) findet effektiver Energietransfer vom Cumarin- zum Ruthenium-Chromophor statt, wogegen bei zwei Glycineinheiten ein effektiver Energietransfer verhindert ist.

Licht-induzierte Ladungstrennung wurde erreicht, indem Bis(terpyridin)ruthenium(II)-Komplexe als Chromophore in einem Donor-Chromophor-Akzeptor-Nanokomposit eingesetzt wurden. Dabei wurde ein Triphenylamin-enthaltendes Blockcopolymer als Elektronendonor und ZnO-Nanostäbchen als Elektronenakzeptor verwendet. Bei Bestrahlung des Chromophors werden Elektronen in die ZnO- Nanostäbchen injiziert und die Elektronenlöcher wandern in das Triphenylamin-enthaltende Blockcopolymer.

Abstract

Polypyridyl complexes of ruthenium(II) have a plethora of applications, e.g. in dye-sensitized solar cells and as photocatalysts. $[Ru(bpy)_3]^{2^+}$ is one of the most prominent ruthenium(II) complexes featuring long-lived ³MLCT excited states with a lifetime of 1 µs and a luminescence quantum yield of 10%. $[Ru(bpy)_3]^{2^+}$ is chiral and can form stereoisomers when the ligands are substituted unsymmetrically or in the case of oligonuclear *rac/meso*-complexes. Bis(tridentate) complexes such as $[Ru(tpy)_2]^{2^+}$ are achiral and thus, circumvent stereoisomers. However, $[Ru(tpy)_2]^{2^+}$ features disappointing photophysical properties with a ³MLCT lifetime of around 0.2 ns and a quantum yield $\leq 0.0007\%$. The attachment of substituents on $[Ru(tpy)_2]^{2^+}$ as well as the enlargement of ligand bite angles to 90° provide considerably improved properties of the emitting ³MLCT states.

Following this strategy, novel bis(tridentate) ruthenium(II) complexes were developed, synthesized and characterized in this work. The attachment of ester substituents and the use of ligands with enlarged bite angles lead to ³MLCT lifetimes of up to 841 ns and quantum yields of up to 1.1%. The novel bis(tridentate) complexes feature a significantly higher photostability compared to tris(bidentate) [Ru(bpy)₃]²⁺. The complexes were used as emitter in light-emitting electrochemical cells and show electroluminescence with a deep red color reaching into the NIR. Likewise, the complexes were tested as light harvesters in dye-sensitized solar cells and achieve light-to-energy efficiencies of up to 0.26%. Dinuclear, stereochemically defined ruthenium(II) complexes were oxidized in order to study the metal-metal interaction between Ru(II) and Ru(III) in the one-electron oxidized species. The different redox properties of the two ruthenium centers in the dinuclear compounds lead to a valence-localized situation with no metal-metal interaction observed. Alike, the oxidation of a mononuclear ruthenium(II) complex and its spontaneous back reduction were studied.

Energy transfer systems were synthesized via a solid-phase synthesis. A bis(terpyridine) ruthenium(II) complex serves as energy acceptor and is connected via a different number of glycine units to a coumarin chromophore serving as energy donor. Efficient energy transfer from the coumarin to the ruthenium chromophore is feasible for a small number (0, 1) of glycine units while two glycine units prevent efficient energy transfer.

Light-induced charge separation was achieved when a bis(terpyridine) ruthenium(II) complex was used as chromophore in a donor-chromophore-acceptor nanocomposite. A triphenylamine-containing block-copolymer was used as electron donor and ZnO nanorods as electron acceptor. Upon irradiation of the chromophore electrons are injected into the ZnO nanorods and electron holes are transferred to the triphenylamine-containing block-copolymer.

Content

1	Abbreviations
2	Introduction
3	Physicochemical Properties of Bis(tridentate) Ruthenium(II) Polypyridine Complexes10
4	Strategies Towards Long-Living and Highly Emissive Excited States
5	Amide Formation and Solid-Phase Peptide Synthesis
6	Applications
7	Dye-Sensitized Solar Cells
7.1	Basic Principles
7.2	Dye Design for DSSCs
8	Light-Emitting Electrochemical Cells
9	Publications and Manuscripts
9.1	Contributions of Aaron Breivogel to the following manuscripts and publications
9.2	Thermal and Photo Reactivity of a Donor-Acceptor-Substituted Bis(terpyridine)Ruthenium(III) Complex in Acidic Solutions
9.3	Dinuclear Bis(terpyridine)ruthenium(II) Complexes by Amide Coupling of Ruthenium Amino Acids: Synthesis and Properties
9.4	Light-induced Charge Separation in a Donor-Chromophore-Acceptor Nanocomposite Poly[TPA-Ru(tpy) ₂]@ZnO
9.5	A Heteroleptic Bis(tridentate)ruthenium(II) Polypyridine Complex with Improved Photophysical Properties and Integrated Functionalizability
9.6	Excited State Tuning of Bis(tridentate) Ruthenium(II) Polypyridine Chromophores by Push- Pull Effects and Bite Angle Optimization: A Comprehensive Experimental and Theoretical Study
9.7	Push-Pull Design of Bis(tridentate) Ruthenium(II) Polypyridine Chromophores as Deep Red Light Emitters in Light-Emitting Electrochemical Cells
9.8	Anchor-Functionalized Push-Pull-Substituted Bis(tridentate) Ruthenium(II) Polypyridine Chromophores: Photostability and Evaluation as Photosensitizers

10 Supporting Information
10.1 Explanatory Notes for the Supporting Information
10.2 Thermal and Photo Reactivity of a Donor-Acceptor-Substituted Bis(terpyridine) Ruthenium(III) Complex in Acidic Solutions
10.3 Dinuclear Bis(terpyridine)ruthenium(II) Complexes by Amide Coupling of Ruthenium Amino Acids: Synthesis and Properties
10.4 Light-induced Charge Separation in a Donor-Chromophore-Acceptor NanocompositePoly[TPA-Ru(tpy)2]@ZnO183
10.5 A Heteroleptic Bis(tridentate)ruthenium(II) Polypyridine Complex with Improved Photophysical Properties and Integrated Functionalizability
10.6 Excited State Tuning of Bis(tridentate) Ruthenium(II) Polypyridine Chromophores by Push-Pull Effects and Bite Angle Optimization: A Comprehensive Experimental and Theoretical Study
10.7 Push-Pull Design of Bis(tridentate) Ruthenium(II) Polypyridine Chromophores as Deep Red Light Emitters in Light-Emitting Electrochemical Cells
10.8 Anchor-Functionalized Push-Pull-Substituted Bis(tridentate) Ruthenium(II) Polypyridine Chromophores: Photostability and Evaluation as Photosensitizers
11 Summary and Outlook
12 List of Publications
13 Oral and Poster Presentations
Acknowledgment/Dank
15 Literature

1 Abbreviations

δ	chemical shift
З	molar extinction coefficient
λ	wavelength
η	efficiency
τ	lifetime
$\tilde{\upsilon}$	wave number
Φ	quantum yield
Ac	acetyl
AM	air mass
a.u.	arbitrary units
bpy	2,2°-bipyridine
Bu	butyl
CIE	Commission International de l'Éclairage, International Commission on Illumination
COSY	correlated spectroscopy
d	day
DCC	N,N [•] -dicyclohexylcarbodiimide
ddpd	N,N ⁴ -dimethyl-N,N ⁴ -dipyridin-2-ylpyridine-2,6-diamine
DIC	N,N ⁴ -diisopropylcarbodiimide
DFT	density functional theory
DMF	N,N-dimethylformamide
DSSC	dye-sensitized solar cell
$E_{1/2}$	half wave potential
EPR	electron paramagnetic resonance
em	emission
equiv	equivalent
ESI	elektro spray ionisation
Et	ethyl
EQE	external quantum efficiency
exc	excitation
Fc	ferrocene
ſſ	fill factor
Fmoc	9-fluorenyl-methoxycarbonyl
Gly	glycine
GS	ground state
h	hour/ planck constant

HMBC	heteronuclear multiple bond correlation
HOBT	1-hydroxybenzotriazole
НОМО	highest occupied molecular orbital
HR	high resolution
IEFPCM	integral equation formalism polarizable continuum model
IL	intraligand
IPCE	incident photon-to-current conversion efficiency
ISC	intersystem crossing
IVCT	intervalence charge transfer
IQE	internal quantum efficiency
J	coupling constant
LEC	light-emitting electrochemical cell
LED	light-emitting device
LLCT	ligand-to-ligand charge transfer
LMCT	ligand-to-metal charge transfer
LUMO	lowest unoccupied molecular orbital
М	molar (mol l^{-1})
max	maximum
MC	metal-centered
Me	methyl
min	minute
MLCT	metal-to-ligand charge transfer
mpp	maximum power point
MS	mass spectrometry
m/z	mass per charge
NIR	near infrared
NMR	nuclear magnetic resonance
NOESY	nuclear Overhauser effect spectroscopy
OLED	organic light-emitting device
Ph	Phenyl
phen	1,10-phenanthroline
рру	2-phenylpyridine
РуВОР	benzotriazole-1-yl-oxy-trispyrrolidino-phoshponium hexafluorophosphate
rac	racemic
RT	room temperature
SCE	saturated calomel electrode
SPPS	solid-phase peptide synthesis

^t BOC	tert-butyloxycarbonyl
^t Bu	<i>tert</i> -butyl
TFA	trifluoroacetic acid
THF	tetrahydrofurane
TPA	triphenylamine
tpy	2,2':6',2''-terpyridine
UV	ultraviolet
Vis	visible
VS.	versus
WOC	water oxidation catalyst

2 Introduction

Polypyridine complexes of ruthenium(II) provide a unique class of complexes with unprecedented photophysical, chemical and electrochemical properties.^[1] There is a plethora of applications dealing with polypyridine complexes of ruthenium(II) such as dye-sensitized solar cells,^[2–4] light-emitting devices,^[5-8] anticancer and photodynamic therapy,^[9-11] sensing of ions,^[12-14] sensing of small neutral transfer.^[18-20] molecules.^[15–17] mixed valency,^[21–26] triplet-triplet energy annihilation upconversion,^[27-30] and molecular data storage.^[31-33] Applications also involve photocatalytic reactions such as splitting of H₂O,^[34,35] generation of H₂,^[36-40] reduction of CO₂,^[38-40] and photocatalysis of organic redox reactions.^[39,41–45] $[Ru(bpy)_3]^{2+}$ is one of the most prominent ruthenium(II) complexes (bpy = 2,2'-bipyridine). The absorption of a photon populates an excited ¹MLCT state (MLCT = metal-to-ligand charge transfer; Figure 1a). From this state quantitative intersystem crossing (ISC) into a ³MLCT state occurs.^[1] The long excited state lifetime ($\tau \approx 1 \mu s$) of the ³MLCT state at room temperature in solution renders $[Ru(bpy)_3]^{2+}$ highly suitable as photoredox catalyst (Table 1).^[39,46,47] The ³MLCT state is emissive with a high luminescence quantum yield ($\Phi \approx 10\%$) which favors the application in light-emitting devices, as luminescent sensor or as imaging agent.^[47]

Figure 1. Qualitative Jablonski diagrams of a) $[Ru(bpy)_3]^{2+}$ and b) $[Ru(tpy)_2]^{2+}$ (MLCT = metal-toligand charge transfer, ISC = intersystem crossing, MC = metal-centered, bpy = 2,2'-bipyridine, tpy = 2,2';6',2"-terpyridine).

The properties of $[Ru(bpy)_3]^{2+}$ can be fine tuned via ligand design. However, the chirality of $[Ru(bpy)_3]^{2+}$ is a drawback when the bpy ligands are substituted unsymmetrically or in the case of oligonuclear *rac/meso*-complexes because stereoisomers are formed which have to be separated or avoided by complicated synthetic procedures.^[48–50] Bis(tridentate) coordination as in $[Ru(tpy)_2]^{2+}$ ([1]²⁺, Figure 2) can avoid stereoisomers even in the case of heteroleptic complexes with 4',4'-substitution (tpy = 2,2';6',2"-terpyridine).^[51] Furthermore, the stronger chelate effect of tridentate compared to bidentate ligands is favorable in terms of complex stability.^[52,53] Despite the similar

absorption characteristics and redox potentials of $[Ru(bpy)_3]^{2+}$ and $[1]^{2+}$ the excited state properties differ significantly (Table 1). Unfortunately, $[1]^{2+}$ has a dramatically reduced lifetime of the lowest excited ³MLCT state ($\tau \approx 0.1 - 0.2$ ns) and quantum yield ($\Phi \le 0.0007\%$; Table 1).^[54–56] The reason for the poor excited state photophysical properties is an effective radiationless deactivation via ³MC states which are thermally populated from ³MLCT states (MC = metal-centered; Figure 1b). $[Ru(bpy)_3]^{2+}$ features three ligands which can create a coordination sphere that corresponds more to an ideal octahedron than in the case of $[Ru(tpy)_2]^{2+}$ with two constrained ligands. Therefore the overlap between the pyridine nitrogen lone pairs and the e_g^* orbitals of Ru is higher in $[Ru(bpy)_3]^{2+}$. As a result the ligand field splitting is stronger in $[Ru(bpy)_3]^{2+}$ inducing less accessible ³MC states with a higher ³MLCT-³MC energy difference compared to [Ru(tpy)₂]²⁺ (Figure 1).^[54-56] In order to improve ground and especially excited state photophysical properties of bis(terpyridine) ruthenium(II) complexes extensive efforts have been made in the last two decades. Long-lived and highly emissive excited states in bis(tridentate) complexes of ruthenium(II) can be obtained by the introduction of substituents in the 4'-position of the tpy ligand.^[51] Electron-withdrawing substituents stabilize the ³MLCT state compared to the ³MC state while electron-donating substituents destabilize the ³MC state compared to the ³MLCT state. Both effects increase the ³MLCT-³MC state energy difference and can avoid radiationless deactivation via the ³MC state.^[57] In 4'-substituted $[(EtOOC-tpy)Ru(tpy)]^{2+}$ ([2]²⁺, Figure 2) prepared by Bolink the electron-withdrawing character of the ester group leads to a less accessible ³MC state and a significantly higher lifetime ($\tau = 32$ ns) and a higher quantum yield ($\Phi = 0.041\%$) compared to unsubstituted $[1]^{2+}$ (Table 1).^[8] Furthermore, $[2]^{2+}$ has a red-shifted absorption maximum ($\lambda_{max} = 485$ nm; $\varepsilon_{max} = 18140$ M⁻¹ cm⁻¹) and higher extinction coefficients compared to $[Ru(bpy)_3]^{2+}$ ($\lambda_{max} = 452$ nm; $\varepsilon_{max} = 13000$ M⁻¹ cm⁻¹) and $[1]^{2+}$ ($\lambda_{max} = 474$ nm; $\varepsilon_{\rm max} = 10400 \text{ M}^{-1} \text{ cm}^{-1}$) which is beneficial for efficient light harvesting in dye-sensitized solar cells, especially in the low energy part of the electromagnetic spectrum (Table 1).^[8]

72+

complex	absorption	emission		electrochemistry		
	λ_{\max} [nm]	λ_{\max}	Φ	τ	$E_{\frac{1}{2}}(\mathrm{Ru}^{\mathrm{II}}/\mathrm{Ru}^{\mathrm{III}})^{[a]}$	$E_{\frac{1}{2}}^{\mathrm{red}[a]}$
	$(\varepsilon [M^{-1} cm^{-1}])$	[nm]	[%]	[ns]	[V]	[V]
$[Ru(bpy)_3]^{2+[47]}$	452 (13000)	615	9.4 ^[58]	1100	+0.89	-1.73
$[1]^{2+[51]}$	474 (10400)	629	$\leq 0.0007^{[b]}$	$0.1 - 0.2^{[55,c]}$	+0.92	-1.67
[2] ^{2+ [8]}	485 (18100)	667	$0.041^{[d]}$	32	$+0.96^{[e]}$	$-1.27^{[e]}$
$[3]^{2+[59,60]}$	479 (19500)	$637^{\left[f ight]}$	$0.02^{\left[\mathrm{f},\mathrm{g}\right]}$	-	+0.91	-1.69
[4] ^{2+ [61]}	502 (19100)	734	$0.27^{[d]}$	34	+0.68	-1.54
[5] ^{2+ [61,62]}	501 (20700)	739	$0.18^{\left[d,h ight]}$	26 (92%), 4 (8%)	+0.66	-1.60
[6] ^{2+ [63]}	491 (21600)	690	$0.24^{[d]}$	22	+0.85	-1.55
[7] ^{2+ [51]}	490 (16800)	706	$0.07^{[b]}$	50	+0.92	-1.53
$[8]^{2+[51]}$	487 (26200)	715	$0.006^{[b]}$	1.0	+0.90	-1.66
[9] ^{2+ [62]}	502 (35600)	707	$0.053^{[d]}$	23	-	-
[10] ^{2+ [62]}	501 (24700)	659	$0.053^{[d]}$	21 (3%), 3 (97%)	-	-
$[11]^{2+[62]}$	498 (26600)	664	$0.030^{[d]}$	23 (96%), 2 (4%)	-	-
[12] ^{2+ [64,65]}	495 (31300)	713	0.13 ^[b]	200	+0.95	-1.32
[13] ^{2+ [65]}	506 (42000)	705	$0.17^{[b]}$	231	+0.99	-1.29
[14] ^{2+ [66,67]}	511 (44800)	698	$0.76^{[d]}$	580	-	-
[15] ^{2+ [68]}	500 (25000)	710	$0.3^{\left[g,i ight]}$	2500	+0.94	-1.49
[16] ^{2+ [69]}	463 (10000)	643 ^[j]	11.4 ^[g,j]	385 ^[j]	+0.60	-1.95
[17] ^{2+ [69]}	473 (10000)	694 ^[j]	$1.7^{[g,j]}$	7900 ^[j]	+0.58	-1.88
[18] ^{2+ [70]}	491 (14000)	700 ^[j]	3.2 ^[j,k]	3000 ^[j]	+0.71	-1.73
[19] ^{2+ [71]}	553 (10000)	693 ^[j]	$11.2^{[j,k]}$	5500 ^[j]	+0.82	-1.52
[20] ^{2+ [72]}	522 (6425)	608	30 ^[g]	3300	+1.11	-1.36
[21] ^{2+ [57]}	517 (7500)	729	$0.45^{[d]}$	722 ^[i]	+0.81	-1.47
[22] ^{2+ [57]}	539 (6360)	744	$1.1^{[d]}$	841 ^[i]	+0.92	-1.25
[23] ^{2+ [57]}	525 (8230)	762	$0.042^{[d]}$	149 ^[i]	+0.64	-1.50
[24] ^{2+ [57]}	546 (7810)	788	$0.052^{[d]}$	136 ^[i]	+0.73	-1.32

Table 1. Photophysical and electrochemical properties of ruthenium(II) polypyridine complexes in CH_3CN at 295 K. See Figures 2 and 11 for complex numbering (bpy = 2,2'-bipyridine).

[a] Versus FcH/FcH⁺. [b] Recalculated from previously used value $\Phi = 0.028$ for [Ru(bpy)₃]Cl₂ in H₂O to the updated [Ru(bpy)₃]Cl₂ standard $\Phi = 0.040$ in H₂O.^[58] [c] Various solvents. [d] Recalculated from previously used value $\Phi = 0.062^{[73]}$ for [Ru(bpy)₃]Cl₂ in CH₃CN to the updated [Ru(bpy)₃]Cl₂ standard $\Phi = 0.094$ in CH₃CN^[58]. [e] No solvent denoted. [f] In DMF. [g] As given in the reference. [h] In acetone. [i] In PrCN. [j] In EtOH/MeOH (4:1, ν/ν). [k] Recalculated from previously used value $\Phi = 0.059$ for [Ru(bpy)₃]Cl₂ in CH₃CN to the updated [Ru(bpy)₃]Cl₂ standard $\Phi = 0.094$ in CH₃CN.^[58]

3 Physicochemical Properties of Bis(tridentate) Ruthenium(II) Polypyridine Complexes

The physicochemical properties of bis(tridentate) ruthenium(II) polypyridine complexes will be discussed exemplarily in more detail on the donor-acceptor substituted bis(terpyridine)complex $[4]^{2+}$ (Figure 2) prepared by Hempel and Heinze.^[61] Heteroleptic complexes such as $[4]^{2+}$ are readily synthesized in a stepwise approach. First one tpy ligand (tpy¹) coordinates to RuCl₃ forming the ruthenium(III) complex (tpy¹)RuCl₃ which can be isolated. Then the ruthenium center is reduced by *N*-ethylmorpholine from Ru^{III} to Ru^{III} in a microwave assisted reaction which enables coordination of the second tpy ligand (tpy²) resulting in the desired heteroleptic complex [(tpy¹)Ru(tpy²)]²⁺ with *meridional* coordination.^[61] The ester group of $[4]^{2+}$ can be hydrolyzed to the carboxylic acid derivative $[5]^{2+}$ by refluxing the complex in 20% sulfuric acid which offers the possibility of orthogonal functionalization either on the acid or on the amino group. The harsh reaction procedure also underlines the high thermal and chemical stability of bis(tridentate) complexes such as $[4]^{2+}$ and $[5]^{2+}$.^[61]

Breivogel and Heinze showed that $[5]^{2+}$ is water soluble in the presence of NO₃⁻ ions enabling pH-dependent measurements. The Pourbaix diagram of $[5]^{2+}$ shows the redox potential $E_{\frac{1}{2}}$ of the $Ru^{II}\!/\!Ru^{III}$ couple at different pH values (Figure 3) starting with 0.5 $\,M$ HNO_3 in H_2O and stepwise titration with saturated aqueous NaOH. At pH = 0 – 1.6 the redox potential amounts to $E_{\frac{1}{2}} = 0.79$ V. Between pH 1.6 and 2.7 the redox potential drops to $E_{\frac{1}{2}} = 0.74$ V which is due to deprotonation of the carboxylic acid group $(pK_a = 2.7)$.^[61,74] For a proton-coupled electron transfer the expected slope of the redox potential is given by $-(m/n) \times 59$ mV per pH unit (m = number of transferred protons, n = number of transferred electrons).^[75] The experimental slope amounts to approximately 46 ± 10 mV per pH unit suggesting that the electron transfer is indeed coupled to proton transfer in this pH region. The drop of the redox potential between pH 1.6 and 2.7 is rationalized by the fact that the deprotonated carboxylate group is a stronger electron donor than the protonated carboxyl group. Thus, the former can be oxidized at lower potential. From pH 2.7 - 9.5 the redox potential features a plateau with $E_{\frac{1}{2}} = 0.74$ V. At pH > 10 the redox potential again drops due to deprotonation of the amino group which is converted into an even stronger electron donor by deprotonation.^[61,74] Oxidation is reversible at pH < 10 and irreversible at pH > 10. DFT-calculated spin densities of ruthenium(III) complexes $[5]^{3+}$, $[5 - H]^{2+}$ and $[5 - 2 H]^{+}$ are depicted in Figure 4. For $[5]^{3+}$ the spin density is located at the ruthenium center with a smaller contribution at the amino nitrogen atom. The Mulliken spin densities on Ru and on the amino nitrogen atom are calculated as 0.76 and 0.11, respectively. Similarly, for onefold deprotonated $[5 - H]^{2+}$ Mulliken spin densities amount to 0.78 and 0.10, respectively. Thus, when $[5]^{3+}$ is deprotonated at the carboxylic acid group the oxidation remains ruthenium-centered and reversible. The second deprotonation takes place at the amino group. The resulting species $[5 - 2 \text{ H}]^+$ features Mulliken spin densities on Ru and the amino nitrogen atom of 0.36 and 0.51, respectively (Figure 4). Thus, oxidation takes place at the deprotonated amino group which induces the irreversibility of the oxidation. In summary, at pH < 10 $[5]^{2+}$ is reversibly oxidized at the ruthenium center while at pH > 10 the amino group is irreversibly oxidized.^[74]

Figure 3. Pourbaix diagram of $[5](PF_6)_2$ in 0.5 M HNO₃ in H₂O and stepwise titration with saturated aqueous NaOH.^[74] *E* (vs. SCE) – 0.16 \approx *E* (vs. FcH/FcH⁺).^[76] p*K*_a values are denoted by vertical dotted lines.

Figure 4. DFT-calculated spin density of ruthenium(III) complexes $[5]^{3+}$, $[5 - H]^{2+}$ and $[5 - 2 H]^{+}$ (B3LYP/LANL2DZ, IEFPCM, H₂O, contour value 0.01, CH hydrogen atoms omitted).^[74]

The reversible one-electron oxidation of $[4]^{2^+}$ is found at $E_{\frac{1}{2}} = 0.68$ V vs. FcH/FcH⁺.^[61] The EPR spectrum of $[4]^{3^+}$ in frozen solution shows a rhombic signal with $g_{1,2,3} = 2.347$, 2.178, 1.843 ($\Delta g = 0.504$) confirming a characteristic Ru^{III} signature.^[57,77] The reversible one-electron reduction of $[4]^{2^+}$ occurs at the COOEt-substituted tpy ligand.^[57,61] The EPR spectrum of the N-acetylated analogue $[6]^+$ (Figure 2) in frozen solution shows a less rhombic signal with $g_{1,2,3} = 2.005$, 1.989, 1.955 ($\Delta g = 0.050$) which is in accord with a ligand-based reduction with some ruthenium admixture.^[57] The DFT-calculated spin density of $[4]^+$ confirms that oxidation takes place at the ruthenium center

(Mulliken spin density on Ru = 0.76) with some admixture from the amino nitrogen atom (Mulliken spin density on N = 0.11) while reduction is essentially localized at the tpy-COOEt ligand (Mulliken spin density on Ru = 0.10, Figure 5).

Figure 5. Spin densities of a) $[4]^{3+}$ and b) $[4]^{+}$ in CH₃CN calculated by DFT (B3LYP/LANL2DZ, IEFPCM, contour value 0.01 a.u., CH hydrogen atoms omitted).^[20]

Breivogel and Heinze probed the stability of ruthenium(III) complex $[4]^{3^+}$ in the presence of water and coordinating OH⁻ ions by spectroelectrochemical measurements. The ruthenium(II) complex $[4]^{2^+}$ is reversibly oxidized to the ruthenium(III) complex $[4]^{3^+}$ by gradually increasing the potential and then reduced back to $[4]^{2^+}$ by gradually lowering the potential (Figure 6). Upon oxidation the MLCT band of $[4]^{2^+}$ at $\lambda = 502$ nm disappears while a LMCT band of $[4]^{3^+}$ at $\lambda = 729$ nm rises. Seven isosbestic points are observed and confirm the clean conversion from $[4]^{2^+}$ to $[4]^{3^+}$. Upon back reduction the initial spectrum is fully recovered and the same isosbestic points are observed clearly demonstrating the stability of the ruthenium(II/III) complexes $[4]^{2^+}$ and $[4]^{3^+}$ in the presence of water and coordinating OH⁻ ions.^[78]

Figure 6. UV/Vis spectra during a) the electrochemical oxidation ($E = 600 \rightarrow 1000 \text{ mV}$) and b) back reduction ($E = 1000 \rightarrow 600 \text{ mV}$) of [4]²⁺ in an OTTLE cell in 10⁻³ M NaOH and 0.1 M [*n*-Bu₄N](PF₆) in CH₃CN:H₂O (98:2, *v*%). Black arrows indicate isosbestic points.^[78]

The absorption spectrum of $[4]^{2+}$ features $\pi \to \pi^*$ transitions below $\lambda = 400$ nm and a characteristic metal-to-ligand charge transfer band (MLCT) with a maximum at $\lambda_{max} = 502$ nm ($\varepsilon_{max} = 19100 \text{ M}^{-1} \text{ cm}^{-1}$; Figure 7).^[61] TD-DFT calculations (B3LYP/LANL2DZ, IEFPCM, CH₃CN) confirm the ligand-centered character of the $\pi \to \pi^*$ transitions at $\lambda < 400$ nm and the MLCT character of the transitions at $\lambda > 400$ nm.

Figure 7. UV/Vis spectrum (black) and emission spectrum (red) of [4](PF₆)₂ in CH₃CN at 295 K.

Relevant Kohn-Sham frontier molecular orbitals of $[4]^{2+}$ are depicted in Figure 8. HOMO-2, HOMO-1, HOMO, LUMO and LUMO+1 represent the participating molecular orbitals in transitions

with $\lambda > 400$ nm. HOMO to HOMO-2 correspond to the t_{2g} orbitals in O_h symmetry and are mainly ruthenium-centered with a small contribution from the amino nitrogen atom. The contribution of the amino group is experimentally verified by Resonance Raman experiments involving the MLCT excitation.^[63] LUMO and LUMO+1 are located on the acceptor-functionalized tpy ligand. Thus, absorption is best described by a mixed ¹MLCT/¹LLCT character (LLCT = ligand-to-ligand charge transfer). LUMO+9 and LUMO+13 correspond to the higher energy e_g orbitals and do not participate in the MLCT absorption process (Figure 8).

Figure 8. DFT-calculated Kohn-Sham frontier molecular orbitals (contour value 0.06 a.u.) of $[4]^{2+}$ (B3LYP/LANL2DZ, IEFPCM, CH₃CN; CH hydrogen atoms omitted).

After population of the initial ¹MLCT/¹LLCT state ISC into the emissive ³MLCT state occurs. Breivogel and Heinze have experimentally probed excited state dynamics of $[4]^{2+}$ on the ps timescale by transient absorption measurements. When excited at $\lambda_{exc} = 400$ nm the transient absorption spectra of $[4]^{2+}$ show an instant ground state bleach at $\lambda = 509$ nm together with a photoinduced absorption at $\lambda = 565 - 960$ nm (Figure 9). The region of the photoinduced absorption reveals a process with a time constant of 7.2 ps at 295 K before reaching the thermalized ³MLCT state. This dynamics might be associated with localization of the excited electron on the tpy-COOEt ligand, intersystem crossing or vibrational relaxation within ^{1/3}MLCT states.^[57]

Figure 9. Transient absorption spectra of $[4]^{2+}$ (pulse $\lambda_{exc} = 400$ nm, 2600 nJ) in PrCN at 295 K.^[57]

At 295 K complex $[4]^{2+}$ shows room temperature phosphorescence from the ³MLCT state at $\lambda_{\text{max}} = 734 \text{ nm}$ with a ³MLCT lifetime of $\tau = 34 \text{ ns}$ and a quantum yield of $\Phi = 0.27\%$ (Figure 7).^[57] The emitting ³MLCT state as well as the deactivating ³MC state were modeled by DFT calculations by Breivogel and Heinze. The ³MC state of $[4]^{2+}$ is higher in energy by 26.8 kJ mol⁻¹ relative to the ³MLCT state (Figure 10). In comparison, the corresponding triplet states of unsubstituted $[1]^{2+}$ are found to be essentially isoenergetic. While the geometry of the ${}^{3}MLCT$ state of $[4]^{2+}$ differs only slightly from the ¹GS geometry the ³MC geometry is significantly distorted from that of the ¹GS (GS = ground state). For example, the bond lengths between Ru and the central N atom of EtOOC-tpy amount to 1.99, 2.04 and 2.17 Å for the ¹GS, the ³MLCT and the ³MC state, respectively. The N-C-C-N dihedral angle of the EtOOC-tpy ligand amount to 0°, 0° and 13° for the ¹GS, the ³MLCT and the ³MC state, respectively, showing that the EtOOC-tpy ligand loses its planarity in the ³MC state. The spin density of the ³MLCT state is localized on the ruthenium center as well as on the EtOOC-tpy ligand while for the ³MC state the spin density is confined to the ruthenium center (Figure 10). The connecting transition state (³TS) between the ³MLCT and the ³MC state is calculated with an energy 31.7 kJ mol⁻¹ higher than the ³MLCT state. Concerning the energy, spin density and geometry the transition state resembles more the ³MC than the ³MLCT state (Figure 10).^[57]

Figure 10. DFT-calculated geometries, relative energies, and spin densities of triplet states (³MLCT and ³MC) and the transition state (³TS) of $[4]^{2+}$ (B3LYP/LANL2DZ, IEFPCM, CH₃CN; contour value 0.015 a.u.; energies in kJ mol⁻¹; CH hydrogen atoms omitted).^[57]

4 Strategies Towards Long-Living and Highly Emissive Excited States

In the bis-4'-substituted heteroleptic complex $[(EtOOC-tpy)Ru(tpy-NH_2)]^{2+}$ ([4]²⁺, Figure 2) the electron-donating NH₂ group destabilizes the ³MC state compared to the ³MLCT state leading to a further improvement of the excited state properties ($\tau = 34$ ns; $\Phi = 0.27\%$) compared to [2]²⁺ ($\tau = 32$ ns; $\Phi = 0.041\%$; Table 1; Figure 1).^[61] The push-pull substitution of [4]²⁺ induces a small HOMO-LUMO energy gap which red-shifts the absorption maximum ($\lambda_{max} = 502$ nm). In addition, the NH₂ group in [4]²⁺ enlarges the chromophoric system and raises the extinction coefficient ($\varepsilon_{max} = 19080 \text{ M}^{-1} \text{ cm}^{-1}$).^[61] In push-pull substituted [7]²⁺ (Figure 2) the combination of an OH donor group and a SO₂Me acceptor group enables similar excited state properties ($\tau = 50$ ns; $\Phi = 0.07\%$; Table 1).^[51]

Enlargement of the chromophoric system stabilizes the ³MLCT state relative to the ³MC state. [Ru(Ph-tpy)₂]²⁺ ([**8**]²⁺, Figure 2) features phenyl groups appended to the 4'-positions of the tpy ligands. The ³MLCT lifetime ($\tau = 1$ ns) and quantum yield ($\Phi = 0.006\%$) of [**8**]²⁺ are substantially enhanced compared to [**1**]²⁺ (Table 1).^[51] The combination of donor-acceptor functionalization and an enlarged chromophoric system has been realized in complexes [**9**]²⁺ – [**11**]²⁺ featuring *para*-phenylene spacers between the 4'-substituents and the tpy ligands (Figure 2). However, this combination does not lead to a synergetic effect: [**9**]²⁺ features a lower ³MLCT lifetime ($\tau = 23$ ns) and a lower quantum yield ($\Phi = 0.053\%$) compared to the phenylene-free analogue [**4**]²⁺ (Table 1). [**10**]²⁺ and [**11**]²⁺ also have inferior excited state properties compared to the phenylene-free analogue [**5**]²⁺ (Figure 2).^[61,62] The ring planes of the phenylene ring and the central pyridyl ring of a tpy ligand are twisted. Thus, the reduced π -conjugation dilutes the effect of donor-acceptor substitution.^[62] Coplanarity in extended ligands could be achieved by replacing the *para*-phenylene rings with pyrimidine groups such as in complexes [**12**]²⁺ and [**13**]²⁺ (Figure 2). In these complexes the enhanced π -conjugation efficiently stabilizes the ³MLCT state compared to the ³MC state which was shown by high excited state lifetimes up to $\tau = 231$ ns and quantum yields up to $\Phi = 0.17\%$ (Table 1).^[64,65]

High excited state lifetimes can also be achieved via the so-called multichromophore approach: Further chromophores such as pyrene and anthracene can have ³IL states with energies similar to the ³MLCT state (IL = intraligand). In this case a triplet-triplet equilibrium between these triplet states can significantly enhance the excited state lifetime.^[79] Deactivation from the triplet state of the organic chromophore is slow due to the spin-forbidden nature such that the organic chromophore acts as an excited state reservoir for the emitting ³MLCT state.^[80] Complexes [**14**]²⁺ and [**15**]²⁺ (Figure 2) feature a pyrene unit as organic triplet reservoir and reach lifetimes of τ = 580 and 2500 ns, respectively.^[66–68]

A pronounced push-pull situation is also present in complexes $[16]^{2+}$ and $[17]^{2+}$ (Figure 11) prepared by Schubert and Berlinguette where an electron accepting tpy ligand is used in combination with a strongly σ -donating carbene ligand [2',6'-bis(3-methyl-1,2,3-triazol-4-yl-5-idene)-pyridine] with CNC coordination. Unprecedented high excited state lifetimes and quantum yields up to $\tau = 7900$ ns and $\Phi = 11.4\%$ have been obtained at room temperature (Table 1).^[69] Carbene donor ligands and their ruthenium complexes will not be discussed here in more detail.^[81–83]

Figure 11. Bis(tridentate) complexes of ruthenium(II).

A further strategy to improve the excited state properties in (bis)tridentate complexes is the optimization of N-Ru-N bite angles. All complexes $[1]^{2+} - [17]^{2+}$ feature five-membered chelates and N-Ru-N bite angles of around 79°. The cyclometalated ligands in $[16]^{2+}$ and $[17]^{2+}$ have even smaller C-Ru-N bite angles of 77°.^[8,61,69] An ideal octahedral coordination sphere with bite angles of 90° would afford a stronger ligand field due to maximization of the overlap between the pyridine nitrogen lone pairs and the e_g^* orbitals of Ru. A stronger ligand field splitting increases the energy difference between ³MLCT and ³MC states which again hampers radiationless deactivation via the latter state (Figure 1).^[56] Hammarström et al. introduced bite angles of 90° by using six-membered chelates in $[Ru(dpq)_2]^{2+}$ ([18]²⁺, Figure 11) leading to high room temperature lifetime ($\tau = 3000$ ns) and quantum yield ($\Phi = 3.2\%$) of the excited state (dqp = 2,6-di(quinolin-8-yl)pyridine).^[70,84] The homoleptic complex $[Ru(EtOOC-dpq)_2]^{2+}$ ([19]²⁺, Figure 11) features even higher values ($\tau = 5500$ ns; $\Phi = 11\%$, Table 1).^[71] Ruben et al. introduced $[Ru(dcpp)_2]^{2+}$ ([**20**]²⁺, Figure 11) featuring 90° bite angles and sixmembered chelates by formal insertion of carbonyl spacers between the pyridine rings of the parent $[Ru(tpy)_2]^{2+}$ complex (dcpp = 2,6-di(2-carboxypyridyl)pyridine). [20]²⁺ has a long lived ³MLCT state ($\tau = 3300$ ns) and the highest room temperature quantum yield ($\Phi = 30\%$) reported to date among bis(tridentate) ruthenium(II) complexes (Table 1).^[72]

Six-membered chelates such as in $[18]^{2+}$ and $[19]^{2+}$ are highly flexible and this can lead to undesired stereoisomers (*mer*, *cis-fac*, *trans-fac*).^[85] The mixed-ligand complex [(EtOOC-tpy)Ru(ddpd)]²⁺ ([21]²⁺, Figure 11) by Breivogel and Heinze overcomes the problem of stereoisomers by using the combination of a five-membered tpy and a six-membered ddpd chelate ligand (ddpd = N,N-dimethyl-N,N-dipyridin-2-ylpyridine-2,6-diamine).^[57,86] [21]²⁺ can be prepared in a stepwise synthesis by first

introducing the tpy ligand to obtain the ruthenium(III) complex (EtOOC-tpy)RuCl₃ which is converted to the final, pure meridional complex $[21]^{2^+}$ by treating with the ddpd ligand. The tpy ligand only adopts a *meridional* coordination, thus forcing the ddpd ligand to adopt the *meridional* coordination as well. The bite angles of the ddpd ligand amount to 88°. Despite the presence of a tpy ligand with only 79° bite angles a quantum yield of $\Phi = 0.45\%$ and a remarkable high ³MLCT lifetime of $\tau = 722$ ns were obtained for complex $[21]^{2^+}$ at room temperature (Table 1). The synergy of the electronaccepting tpy ligand and the electron-donating ddpd ligand containing NCH₃ groups ($[21]^{2^+}$) creates a push-pull situation and shifts the maximum absorption wavelength further to lower energy ($\lambda_{max} = 517$ nm) compared to $[2]^{2^+}$ ($\lambda_{max} = 485$ nm) where the NCH₃ groups are lacking (Figure 2, Table 1). In complex $[22]^{2^+}$ the two outer pyridine rings of the tpy ligand are functionalized by additional ester groups. The maximum absorption wavelength of $[22]^{2^+}$ (Figure 11) is further redshifted ($\lambda_{max} = 539$ nm) and even higher values for the ³MLCT lifetime ($\tau = 841$ ns) and the quantum yield ($\Phi = 1.1\%$) are obtained.^[57]

However, the increase of ³MLCT lifetimes and quantum yields by push-pull substitution tuning has a limit. A pronounced push-pull situation leads to small energy differences between the ³MLCT state and the singlet ground state (¹GS). According to the energy gap law a small ³MLCT-¹GS energy difference induces fast radiationless deactivation into the ground state.^[73,87,88] Such a strong push-pull situation is given in complexes $[23]^{2+}$ and $[24]^{2+}$ (Figure 11), prepared by Breivogel and Heinze, which feature an additional NH₂ group on the electron-donating ddpd ligand compared to their NH₂-free counterparts $[21]^{2+}$ and $[22]^{2+}$, respectively. The push-pull character of $[23]^{2+}$ and $[24]^{2+}$ manifests itself by the red-shifted absorption maximum and by electrochemical data when compared to $[21]^{2+}$ and $[22]^{2+}$, respectively (Table 1). However, the NH₂ group dramatically reduces the ³MLCT lifetimes of $[23]^{2+}$ and $[24]^{2+}$ by a factor of about 5 – 6 and quantum yields are reduced by an even higher factor compared to the NH₂-free analogues (Table 1). The faster excited state deactivation in $[23]^{2+}$ and $[24]^{2+}$ is induced by high energy oscillators (N–H). This is shown by (NH₂ \rightarrow ND₂) deuteration experiments with the deuterated complexes $[23^{D}]^{2+}$ and $[24^{D}]^{2+}$ featuring higher quantum yields than non-deuterated $[23]^{2+}$ and $[24]^{2+}$, respectively.^[57] However, deuteration has only a small effect on the quantum yield. Hence, also the above mentioned ³MLCT-¹GS energy gap is responsible for radiationless deactivation of the ³MLCT state.

The tris(bidentate) benchmark complex $[Ru(bpy)_3]^{2+}$ has been reported to be photolabile in the presence of coordinating anions such as Cl⁻, Br⁻, Γ , SCN⁻ or NO₃⁻. In its excited state $[Ru(bpy)_3]^{2+}$ is prone to photoinduced ligand substitution, photooxygenation and photoracemization.^[89-93] In contrast, Breivogel and Heinze showed that bis(tridentate) ruthenium(II) complexes such as $[4]^{2+}$ and $[21]^{2+}$ feature significantly higher photostabilities compared to $[Ru(bpy)_3]^{2+}$ which is obviously favorable for photo applications of all kind.^[71,78]

5 Amide Formation and Solid-Phase Peptide Synthesis

Amino acid $[5]^{2+}$ and its ester $[4]^{2+}$ (Figure 2) have been introduced as building blocks in peptide synthesis by coupling 1) in solution and 2) via solid-phase peptide synthesis. Photo-induced electron transfer in derivatives of $[4]^{2+}$ with amide-appended ferrocenyl substituents has been reported.^[61] The dinuclear complex $[29]^{4+}$ is synthesized by Hempel and Heinze in solution by DCC/HOBT activation of $[28]^{2+}$ and treatment with $[4]^{2+}$ under basic conditions (Figure 12).^[26]

Figure 12. Synthesis of dinuclear $[29]^{4+}$ (DCC = N,N° -dicyclohexylcarbodiimide, HOBT = 1-hydroxybenzotriazole, P_1 -'Bu = (Me₂N)₃P=N'Bu).^[26]

Electrochemical measurements of $[29]^{4+}$ reveal different redox potentials for the two ruthenium(II) centers with $E_{\frac{1}{2}} = 0.68$ and 0.91 V vs. FcH/FcH⁺. Breivogel and Heinze studied the metal-metal interaction in the mixed valence complex $[29]^{5+}$ by UV/Vis/NIR spectroscopic measurements which indicate that one-electron oxidation of $[29]^{4+}$ to $[29]^{5+}$ is localized on the (tpy)Ru(tpy-'Bu₃) part of $[29]^{5+}$. The locus of oxidation can be explained by the electron-donating positive inductive effect of the 'Bu substituents. The lack of an IVCT band (IVCT = intervalence charge transfer) in the spectrum of $[29]^{5+}$ up to $\lambda = 3000$ nm reveals a negligible metal-metal interaction.^[26] Thus, $[29]^{5+}$ can be assigned to the Robin-Day-Class I.^[94] This is also confirmed by DFT-calculated spin densities with a Mulliken spin density on the Ru atom of the (tpy)Ru(tpy-'Bu₃) part of 0.86 and of 0.00 for the second Ru atom (Figure 13a). In summary, the different environments of the two ruthenium(II) centers of $[29]^{4+}$ lead to a redox asymmetry which prevents metal-metal interaction. In addition, a metal-metal interaction is prevented by the *para*-phenylene bridge which enhances the distance between the metal

centers and is responsible for a poor π -orbital overlap of the *para*-phenylene ring to the amide and to the pyridine plane.^[26]

Figure 13. Spin densities of a) [**29**]⁵⁺ and b) [**31**]⁵⁺ in CH₃CN calculated by DFT (B3LYP/LANL2DZ, IEFPCM, contour value 0.004 a.u.). CH hydrogen atoms omitted.^[26]

Hempel and Heinze realized a smaller redox asymmetry in the dinuclear dipeptide $[31]^{4+}$ (Figure 14). The redox potentials for the two ruthenium(II) centers are $E_{\frac{1}{2}} = 0.80$ and 0.90 V vs. FcH/FcH⁺. $[31]^{4+}$ is synthesized by PyBOP activation of $[30]^{2+}$ and treatment with $[4]^{2+}$ under basic conditions (PyBOP = benzotriazole-1-yl-oxy-trispyrrolidino-phoshponium hexafluorophosphate). After amide bond formation the 'BOC and ethyl ester protecting groups are removed by aqueous acidic treatment to obtain $[31]^{4+}$ (Figure 14).^[26] The amide bond induces a coplanar bridging ligand allowing for a better π -orbital overlap. In addition, the lack of the para-phenylene spacer provides a shorter metal-metal distance compared to $[29]^{4+}$. However, UV/Vis/NIR spectroscopic measurements of $[31]^{5+}$ by Breivogel and Heinze are analogue to the situation with $[29]^{5+}$. The spectra indicate that the NH₂-substituted bis(tpy) moiety is oxidized. This can be explained by the strong electron-donating character of the NH₂ group.^[26,61] Still no IVCT is seen, so $[31]^{5+}$ can also be assigned to the Robin-Day-Class I.^[94] The DFT-calculated spin density of $[31]^{5+}$ confirms the valence-localized situation showing spin density only on the *N*-terminal site. Mulliken spin densities of the Ru atom of the NH₂-substituted bis(tpy) moiety, the NH₂ nitrogen atom and the second Ru atom amount to 0.76, 0.11 and 0.00, respectively (Figure 13b).^[26,57]

Figure 14. Synthesis of the dinuclear dipeptide $[31]^{4+}$ (PyBOP = benzotriazole-1-yl-oxy-trispyrrolidino-phoshponium hexafluorophosphate, P₁-'Bu = (Me₂N)₃P=N'Bu).^[26]

The introduction of $[5]^{2+}$ by solid-phase peptide synthesis has been reported by Hempel and Heinze.^[18] A general strategy is as follows: A TentaGel S resin^[95,96] with a Wang linker^[97] (**32**) is functionalized with Cl-Gly-Fmoc (Figure 15, Fmoc = fluorenylmethoxycarbonyl). The Fmoc group is cleaved by piperidine to obtain the free NH₂ group (**33**). The carboxylic acid group of $[5]^{2+}$ is activated by PyBOP and connected to the solid support via an amide bond to obtain $[34]^{2+}$ (PyBOP = benzotriazole-1-yloxy-tripyrrolidino-phosphonium hexafluorophosphate). Protection of the *N*-terminus of $[5]^{2+}$ is unnecessary due to the weak nucleophilicity of the aromatic NH₂ group of $[5]^{2+}$.^[18,63] For the activation of the NH₂ group of $[34]^{2+}$ strong coupling reagents such as acid chlorides are necessary in order to form an amide bond such as in $[35]^{2+}$. The aliphatic NH₂ group of $[35]^{2+}$ readily forms amide bonds with carboxylic acids R-COOH by PyBOP activation. Several acids R-COOH have been used, e.g. $R = CH_3$, CF₃ and coumarin-3-carboxylic acid.^[18] Finally, peptide $[36]^{2+}$ is cleaved from the solid phase by TFA to obtain the desired product $[37]^{2+}$ (TFA = trifuoroacetic acid).

Figure 15. Solid-phase peptide synthesis including the ruthenium(II) amino acid $[5]^{2+}$.^[18]

6 Applications

Polypyridine complexes of ruthenium(II), especially $[Ru(bpy)_3]^{2+}$ type complexes, are suitable compounds for directional energy transfer and can act as donors and acceptors for photoinduced energy transfer.^[98] Bis(tridentate) complexes of ruthenium(II) have been incorporated into energy transfer systems using ethynyl spacers between the $[Ru(tpy)_2]^{2+}$ donor and thiophene units as acceptors.^[99] Hempel and Heinze have connected the donor-acceptor substituted complex $[5]^{2+}$ to organic chromophores by amide bridges via SPPS with a different number of glycine units in between (Figure 16). The use of one or none glycine unit with n = 0 ([38]²⁺) or 1 ([39]²⁺) allows for coplanarity of the coumarin dye and the adjacent tpy ligand which is favorable for efficient energy transfer via a Dexter mechanism.^[18] In the case of short bridges excitation of the coumarin ([39]²⁺, n = 1, $\lambda_{\rm exc} = 422$ nm) induces energy transfer to the [Ru(tpy)₂]²⁺ core while the coumarin fluorescence is efficiently quenched.^[18,20] Breivogel and Heinze measured excitation emission matrices of complexes $[39]^{2+}$ - $[41]^{2+}$. The excitation emission matrix of $[39]^{2+}$ clearly shows that upon excitation at $\lambda_{\rm exc} = 400 - 500$ nm, emission occurs at $\lambda_{\rm em} = 670$ nm which corresponds to the wavelength of the coumarin-free reference $[41]^{2+}$ (Figure 17). For a longer bridge ($[40]^{2+}$, n = 2, Figure 16) efficient energy transfer is no more feasible. Excitation of the organic coumarin chromophore leads to fluorescence of the coumarin at $\lambda_{exc} = 465$ nm while emission from the $[Ru(tpy)_2]^{2+}$ core is not observed (Figure 17).^[20]

Figure 16. Bis(terpyridine) ruthenium(II) complexes for studying energy transfer.^[18,20]

Figure 17. Excitation emission matrices of a) $[39]^{2+}$ (n = 1), b) $[40]^{2+}$ (n = 2) and c) reference complex $[41]^{2+}$. The color bar indicates the emission intensity. $* = 2\lambda_{exc}$.

Amino acid $[5]^{2^+}$ has been used as chromophore in a donor-chromophore-acceptor electron transfer nanocomposite by zur Borg, Domanski, Breivogel, Bürger, Heinze and Zentel in order to probe light-induced charge separation.^[100] As electron donor a polymer with triphenylamine units and as electron acceptor ZnO nanorods were used. $[5]^{2^+}$ was converted to tripeptide $[42]^{2^+}$ by a SPPS and the amino group of $[42]^{2^+}$ forms an amide bond with the pentafluorophenol activated carboxylic acid of block-copolymer 43 to give $[44]^{(2m)^+}$ (Figure 18). The free COOH group in $[44]^{(2m)^+}$ acts as anchor to ZnO nanorods. Upon excitation of the $[Ru(tpy)_2]^{2^+}$ chromophore by irradiation ($\lambda_{exc} = 488$ nm) into its absorption band ($\lambda_{max} = 498$ nm) excited electrons are injected into the ZnO nanorods and electron holes are generated in the triphenylamine-containing polymer. The phosphorescence of the $[Ru(tpy)_2]^{2^+}$ core was completely quenched. Under irradiation a significant change of the surface potential of the polymer-coated nanorods is observed via Kelvin probe force microscopy and confirms the positive charge in the polymer.^[100]

Figure 18. Synthesis of $[44]^{(2m)+}$ by coupling of $[42]^{2+}$ to 43 ($n \approx 50, m \approx 10$).^[100]

Bis(tridentate) complexes [**5**]²⁺, [**25**]²⁺, [**26**]²⁺, [**27**]²⁺, [**45**]²⁺ and [**46**]²⁺ (Figure 2, 11 and 19) have been adsorbed to TiO₂ and tested as sensitizers in dye-sensitized solar cells with an I⁻/I₃⁻ redox electrolyte by Breivogel and Heinze. The complexes feature absorption spectra comparable to the one of the standard ruthenium(II) sensitizer N719. However, the twofold positive charge of the complexes increases the I₃⁻ concentration near the TiO₂ electrode due to electrostatic interactions favoring electron recombination. Consequently, low cell power conversion efficiencies up to $\eta = 0.26\%$ were obtained with the twofold positively charged complexes. In contrast, N719 is twofold negatively charged and reaches a power conversion efficiency of $\eta = 5.03\%$ in cells under the same conditions.^[78] The charge of bis(tridentate) complexes of ruthenium(II) can be reduced by introduction of negatively charged ligands such as pyrazolyl or cyclometalated ligands such as in complexes 52 and 53 reaching power conversion efficiencies up to $\eta = 10.7\%$ (Figure 23).^[101–103] Another approach would be the use of other redox electrolytes such as positively charged metal complexes, e.g. $[Co(4,4'-(Bu)_2bpy)_3]^{2+/3+}$.[104]

Figure 19. Complexes [45]²⁺ and [46]²⁺.^[77,105]

Breivogel and Heinze employed bis(tridentate) complexes $[4]^{2+}$, $[21]^{2+}$ and $[22]^{2+}$ as emitters in lightemitting electrochemical cells (LECs). A simple device structure of ITO/PEDOT:PSS/ruthenium(II) complex/Ag is used and characterized by AFM (ITO = indium tin oxide, PEDOT = 3,4-ethylenedioxythiophene, PSS = poly(styrenesulfonate), AFM = atomic force microscopy). Deep red light emission up to a maximum emission wavelength of 755 nm is achieved. To the best of our knowledge this is the lowest emission energy for LECs containing bis(tridentate) ruthenium(II) complexes.^[7,8,106] For such a low emission energy the energy gap law^[73,87,88] predicts enhanced radiationless deactivation of the excited state explaining the small external quantum efficiencies. However, dilution of the ruthenium(II) complexes in PMMA enhances the external quantum efficiencies due to less radiationless excited state deactivation.^[107]

7 Dye-Sensitized Solar Cells

7.1 **Basic Principles**

Dye-sensitized solar cells (DSSCs) were first reported in 1991 by O'Regan and Grätzel and provide a low cost alternative to widely used silicon-based solar cells.^[2–4] The working principle and the schematic structure of a conventional DSSC are depicted in Figure 20. A DSSC consists of a mesoporous semiconductor layer of TiO₂ (anatase) on a transparent anode such as fluorine-doped tin oxide (FTO). Molecular sensitizers are adsorbed on top of the TiO₂ particles. The porous TiO₂ structure ensures a high surface area which allows for efficient light harvesting. The porous TiO₂ network is penetrated by a liquid redox electrolyte, typically the Γ/I_3^- system in CH₃CN, which is in contact to the cathode. When light passes through the transparent anode a sensitizer is excited (S \rightarrow S^{*}) and injects an electron into TiO₂ (k_1). The electrons percolate the TiO₂ network and are collected at the anode (k_2). The oxidized sensitizer (S⁺) is regenerated by the redox electrolyte (k_3). The redox electrolyte diffuses to the cathode where it is reduced (k_4). The maximum attainable voltage V_{OC} is given by the potential difference between the Fermi level of TiO₂ and the redox potential of the electrolyte, hence it is independent of the sensitizer.^[4]

Figure 20. a) Schematic device structure and b) working principle of a DSSC. S denotes a sensitizer.

The efficiency η of a DSSC is defined by equation 1 with P_{out} being the maximum power per area that can be extracted and P_{in} being the power per area of the irradiated light.

(1)
$$\eta = \frac{P_{\text{out}}}{P_{\text{in}}}$$

Usually, efficiencies are referred to standardized conditions with an irradiation power of $P_{\rm in} = 1000 \text{ W m}^{-2}$ and a sample temperature of 25 °C. The standardized irradiation spectrum is the air mass (AM) 1.5 spectrum (Figure 21).^[108] The factor "1.5" indicates that the solar light passes the thickness of 1.5 atmospheres which corresponds to a zenith angle of 48.2°.

Figure 21. AM 1.5 spectrum of the sunlight reaching the surface of the earth under a zenith angle of 48.2° .^[109]

Figure 22 shows the typical behavior of a current density-voltage (*I-U*) curve of a DSSC. I_{sc} is the maximum current density under short circuit conditions and U_{oc} is the maximum photovoltage at open circuit conditions. At a certain point, the maximum power point (mpp), the product of the current density and the photovoltage is maximal. This point defines the maximum output power P_{out} (equation 2).

(2)
$$P_{\text{out}} = U_{\text{mpp}} \times I_{\text{mpp}}$$

Figure 22. Current density-voltage (*I-U*) curve and indication of the short circuit current density (I_{sc}), the current density at the maximum power point (I_{mpp}), the open circuit voltage (U_{oc}) and the voltage at the maximum power point (U_{mpp}). The grey rectangle illustrates the maximum output power P_{out} .

The fill factor ff of a DSSC is given by equation 3 and describes the shape of the *I*-*U* curve. A rectangular shape of the *I*-*U* curve corresponds to a fill factor of ff = 1.

(3)
$$ff = \frac{U \operatorname{mpp} \times I \operatorname{mpp}}{U \operatorname{oc} \times I \operatorname{sc}}$$

The incident photon-to-current conversion efficiency IPCE(λ) is defined by the number of collected electrons under short circuit conditions per number of incident photons at a given wavelength λ (equation 4).

(4) IPCE =
$$\frac{\# \text{electrons out}}{\# \text{ photons in}} = \frac{\frac{I_{\text{SC}}(\lambda)}{e}}{\frac{P_{\text{in}}(\lambda)}{hv}} = \frac{hc}{\lambda e} \times \frac{I_{\text{SC}}(\lambda)}{P_{\text{in}}(\lambda)}$$

h denotes the Planck constant, *c* the velocity of light and *e* the elementary charge. Despite the defined DSSC parameters (equation 1 - 4) DSSC measurements of different laboratories are not directly comparable to each other because a manifold of other conditions is not standardized such as cell building procedures, solvents, additives, chemical and morphological nature of TiO₂, electrolyte compositions and electrode materials. For a better comparison standard dyes such as N719 should generally be employed as a reference under the used conditions and compared to the investigated dyes.^[108]
7.2 Dye Design for DSSCs

Dyes for DSSCs should have a broad and intense absorption in order to efficiently harvest the sun light. Dyes should be photochemically, thermally and electrochemically stable to avoid degradation. For the immobilization on the nanoporous semiconductor anchor units such as carboxylic acids are advantageous. The LUMO of the dye needs to be higher in energy than the conduction band of TiO₂ while the HOMO of the dye needs to be lower in energy than the potential of the redox electrolyte. A high electronic directionality of the excited states is necessary for efficient electron injection into TiO₂. This means the HOMO of the dye is located remote from TiO₂ and the LUMO is in close contact to TiO₂.^[3] Polypyridine complexes of ruthenium(II) have been shown to be excellent sensitizers for DSSCs. Two of the best performing and most prominent complexes are the so called black dye (Bu₄N)₃[Ru(Htctpy)(NCS)₃] (47)^[110] and N719 (Bu₄N)₂[Ru(Hdcbpy)₂(NCS)₂] (48)^[111,112] (Figure 23) reaching DSSC efficiencies of $\eta = 10.4$ and 11.2% under full air mass 1.5 (AM 1.5), respectively (tctpy = 4,4',4"-tricarboxy-2,2';6',2"-terpyridine, dcbpy = 4,4'-dicarboxy-2,2'-bipyridine).^[4] Both, N719 and the black dye feature carboxylic acid/carboxylate anchor groups with a LUMO located on the anchoring ligand while the HOMO is located on the ruthenium center and the remote NCS⁻ ligands.^[78,113]

Figure 23. DSSC sensitizers 47 – 56.

In order to improve DSSC characteristics a manifold of different design strategies for sensitizers has emerged in the last two decades. Complex 49 (Figure 23) is a derivative of N719 with thiophene units which extend the conjugated systems and significantly increase the extinction coefficients.^[114] This is beneficial as more photons can be harvested by this dye compared to N719. In addition, the long alkyl chains prevent interfacial electron recombination leading to cell efficiencies of $\eta = 11.4\%$ under full AM 1.5.^[4,114] Monodentate ligands such as NCS⁻ and pyridine are regarded as a drawback concerning the long term stability of sensitizers. Thermal- and photo-induced isomerization and ligand exchange has been reported for monodentate ligands leading to dye species with lower cell efficiencies.^[115-122] Attempts to avoid monodentate ligands include the use of tris(bidentate) and bis(tridentate) complexes such as 50 (Figure 23).^[4,123,124] 50 can also be seen as a derivative of N719 where both NCS⁻ ligands have been replaced by a bidentate cyclometalated 2-phenylpyridine ligand. DSSCs with 50 reach efficiencies of $\eta = 10.1\%$ under full AM 1.5.^[4,124] Typically, the cyclometalated ligand contributes to the HOMO of ruthenium(II) complexes while the LUMO resides on the anchor ligand. A favorable electronic directionality is thus induced when the anchor ligand is situated opposite to the cyclometalated ligand.^[125,126] Complex 51 (Figure 23) features a dcbpy ligand and two 2-pyridylpyrazole ligands. DSSCs with this complex reach efficiencies of $\eta = 9.5\%$ under full AM 1.5.^[127] However, also complexes with bidentate ligands such as bpy or 4,4'-bi-1,2,3-triazolate are prone to photo-induced ligand loss and isomerization.^[78,128,129] Furthermore, tris(bidentate) complexes of ruthenium(II) are chiral which complicates synthetic procedures as discussed above.^[48-50] In contrast, bis(tridentate) complexes are achiral and feature higher stability constants compared to their bidentate analogues.^[52,53] Bis(tridentate) complexes of ruthenium(II) have already been incorporated into DSSCs. Berlinguette et al. have employed complex 52 (Figure 23) featuring a tctpy anchor ligand and a cyclometalated pbpy ligand with an efficiency of $\eta = 8.0\%$ (pbpy = 6-phenyl-2,2'-bipyridine). The appended triarylamine moiety avoids electron recombination because after injection of an electron into TiO₂ the positive charge is shifted towards the triarylamine moiety and away from the TiO₂ surface.^[101] Chi et al. reported the neutral bis(tridentate) ruthenium(II) complex 53 (Figure 23) with a dianionic donor ligand (2,6-bis(5-pyrazolyl)pyridine) and a tctpy acceptor ligand with DSSC efficiencies up to $\eta = 10.7\%$.^[102,103] Again, the thiophene unit in 52 and 53 extends the conjugated system and increases the extinction coefficients. Bis(tridentate) coordination of ruthenium(II) leads to more robust sensitizers concerning photostability and long term stability of DSSCs.[3,78,130,131]

To date, the highest DSSC efficiency of $\eta = 12.3\%$ could be obtained with a zinc porphyrin (54) in combination with 55 as organic cosensitizer (Figure 23).^[132] Also metal-free all-organic sensitizers alone can reach high DSSC performances with $\eta = 10.1\%$ being the top efficiency obtained with dye 56 (Figure 23).^[4]

Future work about DSSCs is headed towards solid-state DSSCs. In these cells the liquid electrolyte is substituted by a solid hole transporting material, typically spiro-OMeTAD (2,2'-7,7'-tetrakis(*N*,*N*-di-*p*-methoxyphenylamine)-9,9'-spirobifluorene). Solid-state DSSC are more robust than DSSCs containing

a liquid electrolyte because of leaking problems with the liquid electrolyte. However, solid hole transport materials have several drawbacks such as low hole mobility, increased charge recombination between the semiconductor and the hole transporting material and low interfacial contact areas between dye molecules and the solid electrolyte resulting from incomplete penetration of the hole transport material into the pores of the semiconductor.^[48] Nevertheless, new techniques in solid-state sensitized solar cells are very promising. The replacement of molecular sensitizers by perovskite (CH₃NH₃)(PbX₃) (X = I, Cl) has lead to new record efficiencies of 14 - 15%.^[133-136]

8 Light-Emitting Electrochemical Cells

Light-emitting electrochemical cells (LECs) were introduced in 1995 by Pei and provide a low-cost alternative to conventional organic light-emitting devices (OLEDs).[137,138] The main difference between OLEDs and LECs is the nature of the light-emitting layer which is neutral in OLEDs and ionic in LECs.^[5,139–143] In principle, an LEC can simply consist of an ionic emitting layer between two electrodes (Figure 24a). Typically, the anode material is transparent (e.g. indium tin oxide) in order to enable light output while the cathode material can be nontransparent and reflective such as silver. When a voltage is applied ions in the emitting layer start to migrate. Cations migrate towards the cathode and anions towards the anode creating ionic layers at the electrodes (Figure 24b). These charge layers efficiently lower the injection barriers for electrons and holes at the interface which allows for low turn-on and driving voltages. Electrons and holes recombine in the emitting layer forming excited electron-hole pairs, called excitons which can degrade by emitting light. In contrast, high charge injection barriers are typically present in OLEDs due to the neutral emitting layer leading to high turn-on and driving voltages. Therefore OLEDs require additional ionic layers enabling electron and hole injection and controlling electron and hole transport, thus making OLED structures more complicated and cost-intensive (Figure 24a). Furthermore, OLEDs require air-sensitive low work function metals as cathode materials such as calcium or barium in order to allow electron injection which again raises fabrication costs due to expensive encapsulation. LECs offer the possibility to be essentially independent of electrode materials due to the ionic emitting layer.^[5,139–143]

Figure 24. a) Structure of an LEC and a conventional OLED. b) Working principle of an LEC. C^+ denotes a cation and A^- an anion.

Important physical quantities in LECs are the internal quantum efficiency (IQE) which is the ratio of the number of generated photons per number of electrons passing through the cell (equation 5).

(5)
$$IQE = \frac{\# \text{generated photons}}{\# \text{ electrons}}$$

Not all generated photons leave the cell due to photon reabsorption at the cathode, the emitting layer or the anode, reflection at the interface between the anode and the emitting layer or other loss mechanisms. The external quantum efficiency EQE defines the ratio of the number of photons coming out of the cell per number of electrons passing through the cell (equation 6).

(6)
$$EQE = \frac{\# \text{photons out}}{\# \text{ electrons}}$$

A human eye has three color receptors. The normalized sensitivity curves $X'(\lambda)$, $Y'(\lambda)$ and $Z'(\lambda)$ of these receptors are illustrated in Figure 25.^[144]

Figure 25. Integral-normalized sensitivity curves X'(λ), Y'(λ) and Z'(λ) of the three color receptors of the human eye.

The color impression of an emission spectrum to the standard human eye can be defined by the CIE coordinates x and y (CIE = commission international de l'éclairage). x and y are defined by equations 7.

(7)
$$x = \frac{X}{X + Y + Z};$$
 $y = \frac{Y}{X + Y + Z};$ $z = \frac{Z}{X + Y + Z};$ $x + y + z = 1$

X, *Y*, and *Z* denote the overlap of the emission spectrum with the sensitivity curve $X'(\lambda)$, $Y'(\lambda)$ and $Z'(\lambda)$, respectively. The sum of the three resulting coordinates *x*, *y* and *z* equals 1. For given values of *x* and *y* the value of *z* is predetermined. Therefore, the coordinates can be reduced to *x* and *y*. Figure 26 illustrates a chromaticity diagram which is the plot of *x* versus *y* and the corresponding colors. At $x = y = z = \frac{1}{3}$ the color impression is white. Outside of the colored area there is still a color impression to the human eye. The color merely appears with lower intensity.

Figure 26. Chromaticity diagram.^[145]

While CIE coordinates define the color impression of a spectrum to the human eye, the luminance *L* describes how bright a light source appears to the human eye. The sensitivity of the human eye is wavelength-dependent and is described by the human eye response curve V(λ) (Figure 27) with a maximum at $\lambda_{max} = 555$ nm. Two light sources might send out the same amount of photons but with different energy (spectrum 1 and 2 in Figure 27). The light source with spectrum 1 has a larger spectral overlap with the human eye response curve than the light source with spectrum 2. Therefore, the light source with spectrum 1 appears brighter to the human eye than the light source with spectrum 2.

Figure 27. The human eye response curve $V(\lambda)$ has a larger overlap with spectrum 1 (red) than with spectrum 2 (green). The overlap is illustrated by red and green hatchures, respectively.

The luminance *L* is defined by equation 8 where $K_{\rm m} = 683 \text{ Im W}^{-1}$ at 555 nm, *I* is the current density, *R* is the distance between the LEC and the photodiode, $A_{\rm LEC}$ is the area of the limiting aperture, $A_{\rm photodiode}$ is the area of the photodiode, $S_{\rm emission}(\lambda)$ is the emission spectrum and $S_{\rm responsivity}(\lambda)$ is the responsivity of the photodiode.^[146,147]

(8)
$$L = \frac{K_{\rm m} \cdot I_{\rm photodiode} \cdot R^2}{A_{\rm LEC} \cdot A_{\rm photodiode}} \times \frac{R^2}{R^2} \times \frac{\frac{1}{360 \, \rm nm} V(\lambda) \cdot \frac{S_{\rm emission}(\lambda)}{S_{\rm responsivity}(\lambda)} \, d\lambda}{\frac{360 \, \rm nm}{360 \, \rm nm}} S_{\rm emission}(\lambda) \, d\lambda}$$

Simple spin statistics predict that 25% of the excitons are singlet excitons and 75% are triplet excitons. However, organic materials can only convert singlet excitons into photons while triplet excitons only produce heat.^[148–151] The first LECs contained organic polymers as emitters, thus limiting the IQE to a theoretical maximum of 25%.^[137,138] Instead, when transition metal complexes are used as emitters spin-orbit coupling enables the generation of photons from both singlet and triplet excitons which raises the theoretical limit for the IQE up to 100%. The first LEC with a transition metal complex was introduced by Lee in 1996 using a [Ru(phen)₃]²⁺ derivative as emitter.^[152] Among ruthenium complexes, the most efficient LECs (EQE = 6.4%) were obtained by using [Ru(bpy)₃]²⁺ as emitter.^[153] However, the chirality of substituted tris(bidentate) complexes of ruthenium(II) is problematic as discussed above. Furthermore, [Ru(bpy)₃]²⁺ type complexes suffer from ligand loss in LECs which leads to degradation products in the presence of water such as [Ru^{II}(bpy)₂(H₂O)₂]²⁺ and the oxidobridged dimer [{Ru^{III}(bpy)₂(H₂O)}₂O]^{4+.[143,154-156]} In order to enhance the emitter stability bis(tridentate) complexes of ruthenium(II) have already been used in LECs.^[7,8,107] However, EQE

values for LECs with bis(tridentate) ruthenium(II) complexes remain low which is attributed to the lower solution quantum yields of these complexes compared to $[Ru(bpy)_3]^{2+}$ as discussed above.

Reasons for low EQEs in LECs are manifold: 1) Intrinsic properties of the emitter molecules such as too long luminescence lifetimes leading to saturation effects, low solution quantum yields due to deactivation via ³MC states and vibrational coupling of the excited state to the ground state. 2) Energy transfer to impurities such as O_2 . 3) The wrong choice of cell components and high applied biases can lead to charge imbalance, saturation effects due to triplet-triplet annihilation and losses due to inefficient light outcoupling (self-absorption of the emitted light, reflection at the transparent electrode).^[157] Self-quenching of excited emitter molecules can be decreased by passivation with sterically demanding substituents^[6,158] or dilution in polymeric matrices such as PMMA (PMMA = poly(methylmethacrylate).^[107]

To date research for ionic emitters for LECs is focused on charged iridium(III) complexes such as [Ir(ppy)₂(bpy)]⁺ ([**57**]⁺, Figure 28).^[140] Iridium(III) complexes have a stronger ligand field compared to ruthenium(II) complexes as the ligand field strength increases with the quantum number in the row 3d < 4d < 5d. Additionally, the higher charge of iridium(III) compared to ruthenium(II) also strengthens the ligand field of the former. The strong ligand field of iridium(III) complexes leads to less accessible dissociative ³MC states and higher photostabilities compared to ruthenium(II) complexes. The lower accessibility of the ³MC states also reduces radiationless deactivation into the ground state. Thus, solution quantum yields of iridium(III) complexes are generally higher than those of comparable ruthenium(II) complexes.^[140] For example, the use of neutral fac-Ir(ppy)₃ (58, Figure 28) as emitter in OLEDs can be explained by its high room temperature solution quantum yield of $\Phi = 97\%$ (ppy = 2-phenylpyridine).^[159] Furthermore, iridium(III) complexes of the [Ir(ppy)₂(bpy)]⁺ type have spatially separated frontier orbitals with the HOMO residing on the cyclometalated ppy ligands and the LUMO on the bpy ligand. This offers the possibility to separately fine tune HOMO and LUMO energies by simple ligand modifications and has lead to iridium(III) complexes with emission maxima in the entire visible spectrum.^[140] However, iridium is rare and expensive. The amount of iridium in the earth crust is around 1 ppb and the current price for 1 g iridium (99.9%) is around 70 €.

Figure 28. Iridium(III) complexes [57]⁺ and 58 for light-emitting devices.

9 **Publications and Manuscripts**

9.1 Contribution of Aaron Breivogel to the Following Manuscripts and Publications

Prior to reproduction of the manuscripts and publications of my doctoral thesis I hereby clarify which contributions stem from other collaborators and which contributions stem from my own work. My contributions will be indicated by the initials "AB". Compounds mentioned herein refer to the compound numbering in the respective manuscript or publication.

Thermal and Photo Reactivity of a Donor-Acceptor-Substituted Bis(terpyridine) Ruthenium(III) Complex in Acidic Solutions: all ligand and complex syntheses, all spectroscopic and analytical measurements (NMR, MS, UV/Vis, EPR) and all DFT calculations were conducted by AB. EPR simulations were performed by **Example 1** (group of Prof. Dr. **Example 1**). The manuscript was written by AB.

Dinuclear Bis(terpyridine)ruthenium(II) Complexes by Amide Coupling of Ruthenium Amino Acids: Synthesis and Properties: the ruthenium complexes **1a** and **1b** were synthesized by AB and Dr. (group of Prof. Dr. (group of Pro

Light-induced Charge Separation in a Donor-Chromophore-Acceptor Nanocomposite Poly[TPA-Ru(tpy)_2]@ZnO: the ruthenium complex A was synthesized and spectroscopically and analytically characterized by AB. Polymer syntheses and characterizations were conducted by Dr. (group of Prof. Dr. (group of Prof. Dr. (Free Conducted D)). Emission spectroscopy and quantum yield determinations were done by AB and Dr. (Free Conducted D). KPFM measurements were conducted by (group of Dr. (20%) and AB (~ 20%).

The emission lifetimes were measured by Dr. (group of Dr.) The manuscript was written by AB.

Excited State Tuning of Bis(tridentate) Ruthenium(II) Polypyridine Chromophores by Push-Pull Effects and Bite Angle Optimization: A Comprehensive Experimental and Theoretical Study: all novel compounds were synthesized and spectroscopically and analytically characterized by AB. The crystal structures were solved by Dr. (group of Prof. Dr. (group of Dr. (group of Dr. (group of Dr. (group of Prof. Dr. (

). All DFT calculations were conducted by AB. The manuscript was written by AB.

Push-Pull Design of Bis(tridentate) Ruthenium(II) Polypyridine Chromophores as Deep Red Light Emitters in Light-Emitting Electrochemical Cells: all ruthenium complexes were synthesized by AB. After instruction from **Sector**, **Sector** (both from the group of Prof. Dr. **Sector**) and Prof. Dr. **Sector** the LECs were built and characterized by AB. AFM measurements were performed by **Sector** (group of Prof. Dr. **Sector**). All DFT calculations were conducted by AB. The manuscript was written by AB.

Push-Pull-Substituted *Bis(tridentate)* Ruthenium(II) Anchor-Functionalized Polypyridine Chromophores: Photostability and Evaluation as Photosensitizers: complexes $[1]^{2^+} - [4]^{2^+}$ were synthesized and spectroscopically and analytically characterized by AB. Complexes $[5]^{2+}$ and $[6]^{2+}$ were synthesized and spectroscopically and analytically characterized by (group of Prof. Dr.). All photostability tests of the complexes were performed by AB. After instruction from (group of Prof. Dr.) and Prof. Dr. the DSSCs were built and characterized by AB. The electron recombination lifetimes were measured by (group of Prof. Dr.). All DFT calculations were conducted by AB. The manuscript was written by AB.

9.2 Thermal and Photo Reactivity of a Donor-Acceptor-Substituted Bis(terpyridine) Ruthenium(III) Complex in Acidic Solutions

A. Breivogel, K. Heinze.

-to be submitted-

Thermal and Photo Reactivity of a Donor-Acceptor-Substituted Bis(terpyridine) Ruthenium(III) Complex in Acidic Solutions

Aaron Breivogel, and Katja Heinze*

Introduction

Polypyridine complexes of ruthenium(II) feature outstanding optical and electrochemical properties^[1] and are applied in a manifold of research fields: as sensitizers in dye-sensitized solar cells (DSSCs),^[2–5] phosphors in light-emitting electrochemical cells (LECs),^[6–9] molecular catalysts for water oxidation,^[10,11] hydrogen generation^[12–15] and CO₂ reduction^[12,14,16] and molecular mixed valence compounds.^[17–22] Many complexes possess mono and bidentate ligands such as NCS⁻, pyridine and bpy (bpy = 2,2'-bipyridine). The use of these mono and bidentate ligands renders the complexes prone to thermal and photo induced isomerization and ligand exchange reactions leading to undesired side products.^[23–30]

Bis(tridentate) ruthenium(II) complexes are known for their high chemical and photochemical stability which is a consequence of the bis(tridentate) chelate effect.^[3,5,3]-35] [Ru(tpy)₂]²⁺ is the prototype of bis(tridentate) ruthenium(II) complexes (tpy = 2,2'; 6',2"-terpyridine). However, poor photophysical properties prevent its use in optoelectronic applications. Excited ³MLCT states are efficiently depopulated via low lying ³MC states which leads to radiationless deactivation into the ground state ($\tau \approx 0.1 - 0.2$ ns, $\Phi \le 0.0007\%$]³⁶], MLCT = metal-to-ligand charge transfer, MC = metal-centered).^[37-39] Electron withdrawing substituents on the 4'-position of the tpy ligand lower the energy of the ³MLCT state compared to ³MC state which is beneficial for the excited state properties. Exemplarily, 4'-ester-substituted [(EtOOC-tpy)Ru(tpy)]²⁺ features a ³MLCT lifetime of $\tau = 32$ ns and a quantum yield of $\Phi = 0.041\%$.^[36] Addition of an electron donating substituent on the 4'-position of the unsubstituted tpy, e.g. [(EtOOC-tpy)Ru(tpy-NH₂)]²⁺ ([1^{E+}]²⁺, Figure 1) further enhances the lifetime ($\tau = 34$ ns) and the quantum yield of $\Phi = 0.27\%$ ^[36].^[40,41] Such a push-pull strategy is also applied in the combination of an electron accepting tpy ligand and a strong electron donating carbene ligand leading to unprecedented emission lifetimes of up to $\tau = 7.9$ µs and quantum yields of up to $\Phi = 17.3\%$ ^{[36],[42] 3}MC state energies can also be shifted to higher values by using ligands with $\approx 90^{\circ}$ bite angles which allow for a better overlap between metal d orbitals and the pyridine lone pairs.^[43,47] [1^{E+}]²⁺ has been shown to be highly photostable under conditions where tris(bidentate) [Ru(by)₃]²⁺ (d_{max} = 476^[39]) = 502 nm^[40]). [1^{E+}]²⁺ and similar complexes have been used as emitters in LECs and to the best of our knowledge show the lowest emission energy for bis(tridentate)ruthenium(II) emitters in LECs.^[9] [1^{E+}]²⁺ has been tested as photosensitize

Figure 1. Bis(terpyridine)ruthenium(II) amino acid $[1](PF_6)_2$ and its ester $[1^{Et}](PF_6)_2$. Atom numbering for NMR assignments.

The oxidation of $[1]^{2+}$ to $[1]^{3+}$ is ruthenium-centered and has been reported previously.^[21,43] The stability of oxidized state is particularly important for molecular ruthenium water oxidation catalysts (WOCs) which feature high metal oxidation states during the catalytic cycle.^[52] Two main degradation pathways have been reported for molecular ruthenium WOCs: 1) Oxidative ligand degradation^[53,54] and the formation of CO and CO₂ as

decomposition products of $[Ru(bpy)_3]^{3+}$ and other ruthenium complexes.^[52,55,56] 2) Ligand loss: monodentate ligands such as 4-picoline and isoquinoline are prone to ligand dissociation.^[55,57] Even bidentate bpy is oxidized to 2,2'-bipyridine-*N*,*N*'-dioxide from $[Ru(tpy)(bpy)(OH_2)]^{2+}$ under catalytic conditions while no dissociation or degradation was observed for the tridentate tpy ligand.^[54,56] This indicates that the chelate effect can significantly enhance stabilities of WOCs.^[54,57]

Our work aims at maximizing the chelate effect in polypyridine complexes of ruthenium and describes the stability of the bis(tridentate) ruthenium(III) complex $[1]^{3+}$. The $[1^{Et}]^{2+/3+}$ couple is stable in the presence of potentially coordinating OH⁻ ions. However, a different reactivity is observed at low pH (in trifluoricacetic acid, H₂SO₄ and HNO₃) often in conjunction with the oxidant Ce^{IV}. After oxidation of $[1]^{2+}$ to $[1]^{3+}$ in acidic media an unexpected back reduction to $[1]^{2+}$ is observed and described herein by means of UV/Vis, NMR and ESR spectroscopy, electrochemistry, mass spectrometry and DFT calculations.

Discussion

The ruthenium(II) complex [1](PF₆)₂ (Figure 1) can be oxidized with (NH₄)₂[Ce(NO₃)₆] in 0.5 M trifluoroacetic acid in CH₃CN.^[21] Upon oxidation the MLCT band at $\lambda_{max} \approx 500$ nm disappears and a LMCT band at $\lambda_{max} \approx 750$ nm appears with a concomitant color change from orange to green.^[21] Figure 2 compares experimental UV/Vis spectra of [1]²⁺ and [1]³⁺ in 0.125 M H₂SO₄ in H₂O with calculated stick spectra (TD-DFT, IEFPCM, H₂O). The experimental spectrum of [1]²⁺ features a characteristic MLCT band at $\lambda = 499$ nm ($\varepsilon = 17170 \text{ M}^{-1} \text{ cm}^{-1}$). Similarly, when oxidized with Ce(SO₄)₂ in 0.125 M H₂SO₄ in H₂O the MLCT band disappears and a LMCT band at $\lambda = 751$ nm ($\varepsilon = 6830 \text{ M}^{-1} \text{ cm}^{-1}$) appears.

Figure 2. Experimental UV/Vis spectra of $[1](PF_6)_2$ before (black) and directly after addition of Ce(SO₄)₂ (red) in 0.125 M H₂SO₄ in H₂O and calculated stick spectra (TD-DFT, B3LYP/LANL2DZ, IEFPCM, H₂O) of $[1]^{2+}$ (black) and $[1]^{3+}$ (red). For experimental details see *Oxidation 1* in the Experimental Section.

The experimental MLCT band of $[1]^{2^+}$ is nicely reproduced by the TD-DFT calculated stick spectrum with transitions at $\lambda = 487$ (f = 0.1455), 452 (f = 0.0721), 443 (f = 0.0831), 439 (f = 0.0399) and 431 nm (f = 0.1498). These transitions originate from ruthenium-centered orbitals HOMO to HOMO-2 corresponding to t_{2g} orbitals in O_h symmetry into ligand-centered orbitals LUMO to LUMO+3 residing on both tpy ligands (Figure S1 in the Supporting Information). The " e_g " orbitals LUMO+9 and LUMO+13 are found at higher energy. In contrast, the calculated stick spectrum of $[1]^{3^+}$ lacks transitions between $\lambda = 400$ and 650 nm with oscillator strengths $f \ge 0.01$. Instead, transitions are predicted at $\lambda = 684$ (f = 0.1535) and 668 nm (f = 0.0118). These transitions have predominantly LMCT character with the largest contribution stemming from the transition of molecular orbital 141 β into 144 β (Figure 3). Electron density is mainly shifted from the amino-substituted tpy ligand to the ruthenium(III) center. For more detailed results of the TD-DFT calculations of $[1]^{2^+}$ and $[1]^{3^+}$ see Figures S1 and S2 in the Supporting Information.

Figure 3. Relevant DFT-calculated Kohn-Sham frontier molecular orbitals of $[1]^{3+}$ (B3LYP/LANL2DZ, IEFPCM, H₂O, contour value 0.06 a. u., CH hydrogen atoms omitted).

The EPR spectrum of $[1]^{3+}$ (Figure 4) in 0.5 M trifluoroacetic acid in H₂O at 77 K is very similar to the one of its ester derivative $[1^{Et}]^{3+}$ which has already been reported.^[16] It shows a rhombic signal ($g_{1,2,3} = 2.323, 2.175, 1.865; \Delta g = 0.458$ by spectral simulation) and reveals that the oxidation is mainly located at the ruthenium center which is in full accordance with similar complexes of Ru^{III}.^[16,43]

Figure 4. X-band EPR spectrum of $[1]^{3+}$ in 0.5 M trifluoroacetic acid in H₂O at 77 K. Black: experimental spectrum; red: simulation. For experimental details see *Oxidation 2* in the Experimental Section.

The DFT calculated spin density of the ruthenium(III) complex $[1]^{3+}$ is located at the ruthenium center with a smaller contribution at the amino nitrogen atom (Figure 5). The Mulliken spin densities on Ru and on the amino nitrogen atom are calculated as 0.76 and 0.11, respectively. Thus, DFT calculations substantiate the experimental finding of a largely ruthenium-centered oxidation.

Figure 5. DFT-calculated spin density of ruthenium(III) complexes $[1]^{3+}$, $[1 - H]^{2+}$ and $[1 - 2 H]^{+}$ (B3LYP/LANL2DZ, IEFPCM, H₂O, contour value 0.01,CH hydrogen atoms omitted).

[1](PF₆)₂ is water soluble in the presence of NO₃⁻ ions enabling pH-dependent measurements. The Pourbaix diagram of [1](PF₆)₂ shows the redox potential $E_{\frac{1}{2}}$ of the Ru^{II}/Ru^{III} couple at different pH values (Figure 6) starting with 0.5 M HNO₃ in H₂O and stepwise titration with saturated aqueous NaOH. At pH = 0 – 1.6 the redox potential amounts to $E_{\frac{1}{2}}$ = 0.79 V. Between pH 1.6 and 2.7 the redox potential drops which is due to deprotonation of the carboxylic acid group (pK_a = 2.7).^[40] For a proton-coupled electron transfer the expected

slope of the redox potential is given by $-(m/n) \times 59$ mV per pH unit (m = number of transferred protons, n = number of transferred electrons).^[52] The experimental slope amounts to approximately 46 ± 10 mV per pH unit suggesting that the electron transfer is indeed coupled to proton transfer in this pH region. The drop of the redox potential between pH 1.6 and 2.7 is rationalized by the fact that the deprotonated carboxylate group is a stronger electron donor than the protonated carboxyl group. Thus, the former can be oxidized at lower potential again drops due to deprotonation of the amino group which is converted into an even stronger electron donor by deprotonation.^[40] Oxidation is reversible at pH < 10 and irreversible at pH > 10. Similar to $[1]^{3+}$ for one-fold deprotonated $[1 - H]^{2+}$ Mulliken spin densities on Ru and the amino nitrogen atom amount to 0.78 and 0.10, respectively (Figure 5). Thus, when $[1]^{3+}$ is deprotonated at the carboxylic acid group the oxidation remains ruthenium-centered and reversible. However, the second deprotonation takes place at the amino group. The resulting species $[1 - 2 \text{ H}]^+$ features Mulliken spin densities on Ru and the amino nitrogen atom of 0.36 and 0.51, respectively (Figure 5). Thus, oxidation takes place at the deprotonated amino group which induces the irreversibility of the oxidation. In summary, at pH < 10 $[1]^{2+}$ is reversibly oxidized at the ruthenium center while at pH > 10 the amino group is irreversibly oxidized.

Figure 6. Pourbaix diagram of $[1](PF_6)_2$ in 0.5 M HNO₃ in H₂O and stepwise titration with saturated aqueous NaOH. E (vs. SCE) – 0.16 $\approx E$ (vs. FcH/FcH⁺).^[58]

The ruthenium(III) complex $[1]^{3^+}$ is stable for at least several minutes or hours in 0.5 M trifluoroacetic acid. The slow decay/back reduction of $[1]^{3^+}$ can be followed by monitoring the decrease of the LMCT band. $[1](PF_6)_2$ was oxidized in 0.125 M H₂SO₄ in H₂O with Ce(SO₄)₂ • 4 H₂O as oxidant. Figure 7a shows solution UV/Vis spectra of $[1](PF_6)_2$ before and after the addition of 1.1 equiv Ce(SO₄)₂ in 0.125 M H₂SO₄ in H₂O. For experimental details see *Oxidation 1* in the Experimental Section. The MLCT band of $[1](PF_6)_2$ at $\lambda = 499$ nm ($\varepsilon = 17170 \text{ M}^{-1} \text{ cm}^{-1}$) immediately disappears upon addition of 1.1 equiv Ce(SO₄)₂. $[1]^{3^+}$ features a LMCT band at $\lambda = 751 \text{ nm}$ ($\varepsilon = 6830 \text{ M}^{-1} \text{ cm}^{-1}$). Upon standing the UV/Vis spectra of the solution change. After seven days the MLCT band is largely recovered ($\varepsilon = 15850 \text{ M}^{-1} \text{ cm}^{-1}$ at $\lambda = 499 \text{ nm} \approx 92\%$ recovery) and the LMCT band essentially disappeared. Isosbestic points at $\lambda = 585$, 432 and 342 nm clearly indicate the recovery of $[1]^{2^+}$ by conversion from $[1]^{3^+}$. Possible side products seem to be optically transparent in the observed spectral region. The addition of another 1.1 equiv Ce(SO₄)₂ again leads to the same color change with disappearance of the MLCT band and appearance of the LMCT band at $\lambda = 751 \text{ nm}$ ($\varepsilon = 6250 \text{ M}^{-1} \text{ cm}^{-1}$). The UV/Vis spectrum changes in the same manner as before. After four days the MLCT band is again largely recovered ($\varepsilon = 13500 \text{ M}^{-1} \text{ cm}^{-1}$ at $\lambda = 499 \text{ nm} \approx 85\%$ recovery with respect to the extinction coefficient before the second addition of Ce(SO₄)₂) and the LMCT band has nearly vanished (Figure 7b). The same isosbestic points are observed at $\lambda = 583$, 433 and 342 nm.

Figure 7. UV/Vis spectra of $[1](PF_6)_2$ before and after oxidation with a) 1.1 and b) 2.2 equiv Ce(SO₄)₂ in 0.125 M H₂SO₄ in H₂O. For experimental details see *Oxidation 1* in the Experimental Section.

 $[1](PF_6)_2$ can also be oxidized in 0.125 M H₂SO₄ in H₂O:CH₃CN (1:1) with $(NH_4)_2[Ce(NO_3)_6]$ as oxidant showing the same spectral behavior as in *Oxidation 1* (see *Oxidation 3* in the Experimental Section).

An excess of Ce(SO₄)₂ (20 equiv) was added to a solution of $[1](PF_6)_2$ (*Oxidation 4*) in 0.125 M H₂SO₄ in H₂O. The orange solution of $[1](PF_6)_2$ immediately turned green upon addition of the Ce^{IV} salt. After 1 day the solution had a yellow color. UV/Vis spectra revealed that no absorption band above $\lambda = 400$ nm was present. No ruthenium complex could be detected in an ESI mass spectrum. Thus, complete degradation seems to have occurred under these conditions.

[1](PF₆)₂ was oxidized in 0.5 M trifluoroacetic acid in CH₃CN:H₂O (49:1) in an OTTLE cell (see *Oxidation 5* in the Experimental Section). Upon oxidation of [1]²⁺ the intensity of the MLCT band is lowered (Figure 8a, $\varepsilon = 19300 \rightarrow 11900 \text{ M}^{-1} \text{ cm}^{-1}$ at $\lambda_{max} = 499 \text{ nm}$). Applying higher potentials does not lead to a further decrease of the MLCT band due to diffusion in the OTTLE cell solution. The LMCT band of [1]³⁺ appears at $\lambda_{max} = 733 \text{ nm}$ ($\varepsilon = 2620 \text{ M}^{-1} \text{ cm}^{-1}$). During the oxidation isosbestic points are observed at $\lambda = 554$, 428, 340, 292, 282, 269, 241 and 231 nm. Upon back reduction new isosbestic points appear at $\lambda = 606$, 430, 342, 292, 283, 271, 242 and 219 nm (Figure 8a). After reaching the initial potential the MLCT band is not fully recovered ($\varepsilon = 17600 \text{ M}^{-1} \text{ cm}^{-1}$ at $\lambda_{max} = 499 \text{ nm}$, 91% recovery) even when the potential is further decreased. A new shoulder is observed at $\lambda = 572 \text{ nm}$ ($\varepsilon = 2540 \text{ M}^{-1} \text{ cm}^{-1}$). The appearance of this shoulder might be due to reduction of an intermediate species that is not reduced under the conditions with Ce(VI) as oxidant. These results are at odds with the high redox stability of the corresponding ester [1^{Et}](PF₆)₂ in the presence of OH⁻ reported by our group.^[5] However, the redox stability of [1^{Et}](PF₆)₂ was measured under basic conditions while here 0.5 M trifluoroacetic acid was used. Thus, the strong acidic conditions seem to be responsible for the redox instability of the [1]³⁺ complex.

Figure 8. UV/Vis spectra during a) the electrochemical oxidation (500 \rightarrow 1000 mV) and b) back reduction (1000 \rightarrow 500 mV) of [1](PF₆)₂ in an OTTLE cell in 0.5 M trifluoroacetic acid in CH₃CN:H₂O (49:1). Black arrows indicate isosbestic points.

In an NMR experiment [1](PF₆)₂ was oxidized with 2.0 equiv (NH₄)₂[Ce(NO₃)₆] in 0.5 M trifluoroacetic acid in CH₃CN. Immediately after the addition of (NH₄)₂[Ce(NO₃)₆] and the concomitant color change from orange to green the solvent was removed under reduced pressure and D₂O was added. For experimental details see *Oxidation 6* in the Experimental Section. ¹H-NMR spectra were recorded at selected time intervals after the oxidation (Figure 9). In the fresh D₂O solution no sharp resonances could be obtained in the ¹H-NMR spectrum due to the paramagnetic nature of $[1]^{3^+}$. Within 13 d resonances appear fitting excellently to pure $[1]^{2^+}$ in D₂O. Resonances for the NH₂ group are not observed due to deuteration to ND₂. The self-exchange reaction $[1]^{2^+} + [1]^{3^+} \rightleftharpoons [1]^{3^+} + [1]^{2^+}$ is expected to be fast and leads to averaged NMR resonances in the spectra after 17 h to 13 d (Figure 9). No hint for new signals could be detected at $\delta < 6.5$ ppm within the sensitivity of the ¹H NMR experiments.

Figure 9. ¹H-NMR spectra of [1](PF₆)₂ in D₂O after oxidation with 2.0 equiv (NH₄)₂[Ce(NO₃)₆] (freshly oxidized to 13 days after oxidation). The ¹H-NMR spectrum of pure [1](PF₆)₂ in D₂O is shown at the bottom for comparison. For experimental details see *Oxidation* 6 in the Experimental Section.

After 13 days an ESI mass spectrum of the D₂O solution was recorded and showed signals with isotope distributions excellently fitting to the theoretical values for threefold deuterated $[1]^{2^+}$ at m/z = 315.1 (100%) $[M - 2 \text{ PF}_6]^{2^+}$, 628.1 (8%) $[M - 2 \text{ PF}_6 - D]^+$ and 775.1 (70%) $[M - \text{PF}_6]^{2^+}$ where *M* is [(DOOC-tpy)Ru(tpy-ND₂)](PF₆)₂ (Figure 10). A signal at m/z = 606.1 (4%) with ruthenium isotope pattern was additionally found in the mass spectrum. This signal does not appear in the mass spectrum of neat $[1](\text{PF}_6)_2$ in D₂O. So far this signal could not be assigned to a structure. In summary, the nearly quantitative reformation of $[1]^{2^+}$ by conversion from $[1]^{3^+}$ could be shown by UV/Vis, NMR and mass spectra. The question arises which reducing agent is responsible for the reduction of $[1]^{4^+}$. [Ru(bpy)₃]^{3^+} and other ruthenium polypyridine complexes are reported to oxidize water to O₂.^[10,11,59] However, the exact mechanism for the reduction of [Ru(bpy)₃]^{3^+} to [Ru(bpy)₃]^{2^+} is still under debate. The attack of a H₂O or OH⁻ molecule to the ruthenium.^[59] Ghosh et al. support the attack of water on a bpy ligand with further degradation of the ligand to CO₂. The thereby generated electrons enable 92 – 95% of [Ru(bpy)₂]^{3⁺} to be reduced thermally or photochemically to [Ru(bpy)₃]^{2⁺}.^[56] In the presence of colloidal RuO₂ or Co²⁺ ions [Ru(bpy)₃]^{3⁺} efficiently catalyses the photo-oxidation of H₂O to O₂.^[60] [Ru(tpy)(bpy)(H₂O)]²⁺ and [Ru(tpy)(py)(H₂O)]²⁺ are efficient WoCs and already contain a water molecule in the octahedral coordination sphere (py = pyridine).^[61,62] Other ruthenium polypyraidie catalysts expand their coordination sphere to a heptacoordinate pentagonal bipyramid in order to bind a water molecule because no linear arrangement of the axial N-Ru-N bonds can be formed as is the case for bis(tridentate) complexes of ruthenium(II) with expanded ligands. This is regarded to be the rea

(equation 1) $4 [1]^{3+} + 2 H_2O \rightarrow 4 [1]^{2+} + O_2 + 4 H^+$

(equation 2)
$$2 [1]^{3+} + 2 H_2O \rightarrow 2 [1]^{2+} + H_2O_2 + 2$$

$$\downarrow \text{ attacks } [\mathbf{1}]^{2+} \text{ or } [\mathbf{1}]^{3+}$$

Oxidation of $[1]^{2+}$ to $[1]^{3+}$ and back reduction to $[1]^{2+}$ was conducted in closed reaction vessels and the gas phases above the reaction solutions were tested for O₂ via two methods: The gas phase was bubbled slowly through a solution of IrCl(PEt₃)₃ in d₈-THF. Ir(O₂)(PEt₃)₃Cl should be formed in the presence of O₂ which was monitored by ³¹P-NMR spectroscopy.^[66] The second method is based on a ZrO₂-based oxygen sensor which measures the concentration of O₂ in the gas phase. Both methods reveal that no O₂ is produced during the reformation of $[1]^{2+}$ from $[1]^{3+}$ (Oxidations 7 and 8). H₂O₂ as possible intermediate in the oxidation of H₂O to O₂ is metastable in acidic solution with respect to disproportionation into H₂O to O₂. A solution of $[1](PF_6)_2$ (1.2 ×10⁻⁴ M) in 35% H₂O₂ in water is stable for at least 3 h (no changes in the UV/Vis spectra over time, stable MLCT band at 493 nm). However, in the presence of acid (0.1 M TFA) the ruthenium complex decomposes

within 3 h which can be seen by the absence of any UV/Vis signal above 400 nm. The theoretical maximum amount of H_2O_2 would be half the amount of $[1]^{3+}$ according to equation 2. It is yet unclear whether H_2O_2 is produced during the reaction and which reaction products result from the reaction of H_2O_2 with $[1]^{2+}$ or $[1]^{3+}$. If H_2O_2 is produced quantitatively (0.50 equiv compared to 1.00 equiv of $[1]^{2+}$), then less than 0.12 equiv (of 1.00 equiv) of $[1]^{2+}$ are destroyed by 0.50 equiv of H_2O_2 (calculated from the observed 88% recovery of the MLCT band).

Figure 10. a) ESI⁺ mass spectrum of [1](PF₆)₂ in D₂O 13 days after oxidation with 2.0 equiv (NH₄)₂[Ce(NO₃)₆] in 0.5 M trifluoroacetic acid in CH₃CN (See *Oxidation 6* for experimental details). b) c) and d) show the respective signals with ruthenium isotope patern. $M = [(DOOC-tpy)Ru(tpy-ND_2)](PF_6)_2$.

Further experiments are necessary to clarify whether H_2O_2 is indeed formed intermediately and subsequently consumed e.g. by oxygenation of a ligand to *N*-oxides or if other electron sources are responsible for the reduction of $[1]^{3^+}$. For example a small part of the oxidized complex $[1]^{3^+}$ could decompose and generate enough electrons to reduce the majority of $[1]^{3^+}$ according to equation 3.

(equation 3) $n [1]^{3+} + [1]^{3+} \rightarrow n [1]^{2+} + \text{decomposition products}$

We tried to optimize a heptacoordinate species with one H_2O molecule coordinated to the ruthenium center of $[1]^{3+}$ via DFT calculations. However, no energy minimum was found for a heptacoordinate species. Instead, only "[Ru(κ^3 -H₂N-tpy)(κ^3 -HOOC-tpy)]³⁺ hexacoordinate complexes +H₂O" the and $[Ru(\kappa^2-H_2N-tpy)(\kappa^3-HOOC-tpy)(H_2O)]^{3+}$ lead to energy minima in the DFT calculations (Figure 11). In the latter the amino substituted ligand coordinates to ruthenium(III) in a bidentate κ^2 -fashion via two pyridine nitrogen atoms while one outer pyridine nitrogen atom is involved in a hydrogen bond with a proton from the H₂O molecule. Indeed, the pyridine is protonated and the H_2O molecule deprotonated to OH^- , a well known phenomenon of H_2O ligands coordinated to metal centers with high oxidation states.^[10,11] The bond length between the central pyridine nitrogen atom of the κ^2 -H₂N-tpy ligand and the ruthenium atom is increased (2.20 Å) compared to the bis(tridentate) complex (1.97 Å). The N-C-C-N dihedral angles of the κ^2 -H₂N-tpy ligand amount to 13° and 48°, respectively. In contrast the N-C-C-N dihedral angles of the κ^3 -HOOC-tpy ligand amount to $\approx 0^{\circ}$, similar to the bis(tridentate) complex " $[Ru(\kappa^3-H_2N-tpy)(\kappa^3-HOOC-tpy)]^{3+} + H_2O$ " where the dihedral angles of both tpy ligands are $\approx 0^{\circ}$. Hence, $[Ru(\kappa^2 - H_2N - tpy)(\kappa^3 - HOOC - tpy)(H_2O)]^{3+}$ is highly distorted and activated towards potential chelate ligand loss. The bis(tridentate) complex has been calculated to be 35 kJ mol⁻¹ more stable than $[Ru(\kappa^2-H_2N-tpy)(\kappa^3-HOOC-tpy)(H_2O)]^{3+}$. Thus, our DFT calculations support the above conclusion that bis(tpy) complexes of ruthenium(II) are not suitable for H₂O oxidation. $[1]^{3+}$ is unable to adopt a heptacoordinate coordination with one H₂O molecule while the decoordination of an outer pyridine ring to form a free coordination site for H₂O is thermodynamically unfavorable. However, an energy barrier of 35 kJ mol⁻¹ can be overcome at room temperature. Especially at low pH the protonation of pyridine is favored. $[Ru(\kappa^2-H_2N-tpy)(\kappa^3-HOOC-tpy)(H_2O)]^{3+}$ might be prone to loss of the H₂N-tpy ligand. Under acidic conditions H₂N-tpy ligand loss is irreversible due to protonation of the pyridine nitrogen atoms. Even if the reaction of " $[Ru(\kappa^3-H_2N-tpy)(\kappa^3-HOOC-tpy)]^{3+} + H_2O$ " to $[Ru(\kappa^2-H_2N-tpy)(\kappa^3-HOOC-tpy)(H_2O)]^{3+}$ is slow the irreversible H_2N -tpy ligand loss of the latter is a competing pathway to the back reduction to $[1]^{2+}$.

Figure 11. DFT (B3LYP/LANL2DZ, IEFPCM, H₂O, irrelevant CH hydrogen atoms omitted) optimized structures of a) $[Ru(\kappa^2-H_2N-tpy)(\kappa^3-HOOC-tpy)(H_2O)]^{3+}$ and b) " $[Ru(\kappa^3-H_2N-tpy)(\kappa^3-HOOC-tpy)]^{3+}$ + H₂O". Indicated bond lengths are given in Å.

In order to detect side products in the back reaction of $[1]^{3+}$ to $[1]^{2+}$ ESI mass spectra were conducted also in non-deuterated solvents before and after oxidation with $(NH_4)_2[Ce(NO_3)_6]$ in 0.5 M TFA in $H_2O:CH_3CN$ (1:200;

Figure S3 and S4). The signal at m/z = 249.1 (50%) is observed before and after the oxidation and corresponds to the protonated ligand [tpy-NH₂ + H]⁺. An unknown signal at m/z = 605.1 (40%) with ruthenium isotope pattern is observed besides the known signals with ruthenium isotope pattern at m/z = 313.6 (9%) $[M - 2 \text{ PF}_6]^{2+}$, 582.2 (6%) $[M - 2 \text{ PF}_6 - \text{CO}_2 - \text{H}]^+$, 626.1 (100%) $[M - 2 \text{ PF}_6 - \text{H}]^+$ and 772.1 (19%) $[M - \text{PF}_6]^+$ where M is [(HOOC-tpy)Ru(tpy-NH₂)](PF₆)₂. The signal at m/z = 605.1 does not appear in the ESI mass spectra before addition of (NH₄)₂[Ce(NO₃)₆] (*Oxidation 9*, Figure S3 and S4). The signal at m/z = 606.1 which was observed in D₂O (*Oxidation 6*) indicates that one of the protons can be exchanged by deuteration. One could assume that the COOH-substituted tpy ligand is still intact while the NH₂-substituted tpy ligand underwent a structural change. The signal at m/z = 605.1 would fit to a complex where the tpy-NH₂ ligand has been substituted by two CF₃COO⁻ anions, namely [(HOOC-tpy)Ru(CF₃COO)₂]⁺. However, the signal at m/z = 605.1 was also found when the oxidation and back reduction of [1]²⁺ were performed in 0.5 M HNO₃ or 0.1 M H₂SO₄ instead of 0.5 M TFA (*Oxidation 10 and 11*, Figure S5 – S8). Thus, so far no complete structural assignment could be made to the signal with m/z = 605.1.

The reduction of $[1]^{3^+}$ back to $[1]^{2^+}$ was found to be faster in the presence of UV light ($\lambda_{emiss} = 254$ and 366 nm, Figure 12a, *Oxidation 12*). Upon oxidation the initial value of the extinction coefficient ε_{500} at $\lambda = 500$ nm dropped from $\varepsilon_{500} = 16440$ to 2330 M⁻¹ cm⁻¹ while the extinction coefficient ε_{760} at $\lambda = 760$ nm rose from $\varepsilon_{760} = 20$ to 6480 M⁻¹ cm⁻¹. After exposing the solution to UV light ($\lambda_{emiss} = 254$ and 366 nm) for 10 min the MLCT band was largely recovered ($\varepsilon_{500} = 15490 \text{ M}^{-1} \text{ cm}^{-1}$, 94% recovery) and the LMCT band disappeared nearly completely ($\varepsilon_{760} = 390 \text{ M}^{-1} \text{ cm}^{-1}$). In a reference measurement in the darkness a much smaller part of the MLCT band was recovered after 10 min ($\varepsilon_{500} = 5420 \text{ M}^{-1} \text{ cm}^{-1}$, 33% recovery) and the LMCT band still featured a pronounced intensity ($\varepsilon_{760} = 4950 \text{ M}^{-1} \text{ cm}^{-1}$). Hence, the back reduction is significantly accelerated by UV light irradiation. This points to the existence of a dissociative rate-determining step in the back reduction of $[1]^{3^+}$ back to $[1]^{2^+}$. The loss of the κ^2 -H₂N-tpy ligand of the above mentioned $[Ru(\kappa^2-H_2N-tpy)(\kappa^3-HOOC-tpy)(H_2O)]^{3^+}$ might be the responsible dissociative rate-determining step which is accelerated by light.

In a second experiment five cycles of Ce^{IV} addition and UV light treatment were conducted. The extinction coefficients ε_{500} and ε_{760} are depicted in Figure 12b (*Oxidation 13*). The initial value of ε_{500} drops upon oxidation with 1.3 equiv Ce^{IV} from $\varepsilon_{500} = 16840$ to 1050 M⁻¹ cm⁻¹ with a concomitant rise of ε_{760} from $\varepsilon_{760} = 110$ to 6790 M⁻¹ cm⁻¹. After irradiation with UV light for 10 min the extinction coefficients go back to $\varepsilon_{500} = 14740 \text{ M}^{-1} \text{ cm}^{-1}$ (88% recovery) and $\varepsilon_{760} = 450 \text{ M}^{-1} \text{ cm}^{-1}$. For both, ε_{500} and ε_{760} , the initial values are not reached quantitatively under these conditions. The second addition of 1.3 equiv Ce^{IV} lets ε_{500} and a drop of ε_{760} . This procedure was conducted five times and in each step the respective starting values were not reached quantitatively (86 – 93% recovery) which is assigned to unknown side reactions such as ligand dissociation and decomposition as discussed above.

Figure 12. a) UV/Vis spectra of $[1](PF_6)_2$ before and after oxidation with 1.1 equiv $(NH_4)_2[Ce(NO_3)_6]$ in 0.11 M H_2SO_4 in $H_2O:CH_3CN$ (15:85) and treatment with UV light. For experimental details see *Oxidation 12* in the Experimental Section. b) Extinction coefficients at $\lambda = 760$ and 500 nm after alternating treatment with 1.3 equiv Ce^{IV} and UV light. For experimental details see *Oxidation 13* in the Experimental Section.

The reduction rate of $[1]^{3+}$ to $[1]^{2+}$ was also found to be higher in the presence of standard laboratory light conditions (mixture of fume hood light and scattered day light passing through the windows) than under darkness. After oxidation with 2.0 equiv (NH₄)₂[Ce(NO₃)₆] in 0.5 M TFA in H₂O the temporal evolution of the extinction coefficients ε_{499} at $\lambda = 499$ nm and ε_{751} at $\lambda = 751$ nm is shown in Figure 13 (*Oxidation 14*). Under standard laboratory light conditions ε_{499} approaches ~17800 M⁻¹ cm⁻¹ after ~12 h. In the darkness ε_{499} approaches the same value after ~100 h. In both cases the initial value of $\varepsilon_{499} = 19600$ M⁻¹ cm⁻¹ is not fully recovered (91% recovery). ε_{751} shows a similar behavior with the difference that the LMCT band vanishes nearly completely. The temporal evolution of ε_{499} and ε_{751} nicely fits to first order (or pseudo first order) rate laws with rate constants amounting to $k(\varepsilon_{499,light}) = 20.2$ h⁻¹, $k(\varepsilon_{499,dark}) = 5.2$ h⁻¹, $k(\varepsilon_{751,light}) = 18.4$ h⁻¹ and $k(\varepsilon_{751,dark}) = 4.9$ h⁻¹. Thus, under our conditions the reaction rate is four-fold increased under standard light conditions compared to darkness.

Figure 13. Temporal change of extinction coefficients at a) $\lambda = 499$ (MLCT) and b) $\lambda = 751$ nm (LMCT) after oxidation of [1](PF₆)₂ with 2.0 equiv (NH₄)₂[Ce(NO₃)₆] in 0.5 M TFA in H₂O. The solid black and red lines are monoexponential fits, respectively. For experimental details see *Oxidation 14* in the Experimental Section.

Furthermore, excited state redox potentials differ from their respective ground state redox potential by the energy of the 0–0' emission energy E_{00} and might be responsible for the faster back reduction in the presence of light.^[67] For [1](PF₆)₂ the 0–0' emission energy was obtained by the crossing point of the normalized absorption and emission spectra at a wavelength of $\lambda = 626$ nm which corresponds to a redox potential shift of $\Delta E = \pm 1.98$ V. [Ru(bpy)₃]²⁺ features a comparable redox potential shift of $\Delta E = \pm 2.13$ V.^[68] Similarly, [1]³⁺ features excited state redox potentials that differ from its ground state redox potentials. Thus, [1]^{3+*} is oxidized at lower potential than [1]³⁺ which might be the reason for the decomposition of [1]^{3+*}. In analogy to the slow decomposition of [1]^{3+*} in the absence of light (equation 3), the decomposition of [1]^{3+*} is faster and could generate electrons that reduce the majority of [1]³⁺ according to:

(equation 4) $n [1]^{3+} + [1]^{3+*} \rightarrow n [1]^{2+} + \text{decomposition products}$

Conclusion

The donor-acceptor-substituted bis(terpyridine)ruthenium(II) complex $[1](PF_6)_2$ (Figure 1) can be chemically oxidized in acidic media by Ce^{IV}. The one electron oxidation of $[1]^{2+}$ to $[1]^{3+}$ is well understood and was characterized by UV/Vis and ESR spectroscopy, electrochemistry and DFT calculations. The generated $[1]^{3+}$ undergoes slow spontaneous back reduction to $[1]^{2+}$ without addition of a reducing agent. This was shown by UV/Vis and NMR spectroscopy and mass spectrometry. The rate of the back reaction depends on the used conditions like solvent and can be accelerated by light. However, the responsible reducing agent is yet unknown. Water as reducing agent would lead to the formation of O₂ or H₂O₂. H₂O₂ is unstable under the used conditions and would also form O₂ or lead to further side reactions. O₂ was not detected by trapping with IrCl(PEt₃)₃ and by gas phase measurements with a ZrO₂-based oxygen sensor. The ruthenium complex itself ($[1]^{3+}$) is assumed to behave as reducing agent as the full amount of $[1]^{2+}$ is not recovered ($\approx 91 \pm 3\%$ recovery) in the back reaction

of $[1]^{3^+}$ to $[1]^{2^+}$. $[Ru(\kappa^2-H_2N-tpy)(\kappa^3-HOOC-tpy)(H_2O)]^{3^+}$ could be calculated by DFT and is 35 kJ mol⁻¹ higher in energy than bis(tridentate) " $[Ru(\kappa^3-H_2N-tpy)(\kappa^3-HOOC-tpy)]^{3^+}$ + H_2O ". Under acidic conditions $[Ru(\kappa^2-H_2N-tpy)(\kappa^3-HOOC-tpy)(H_2O)]^{3^+}$ might be prone to decomposition initiated by protonation of the κ^2-H_2N -tpy ligand and subsequent irreversible ligand loss which could explain the non-quantitative recovery of $[1]^{2^+}$.

Experimental Section

General Procedures. CH₃CN was distilled from CaH₂ and THF from potassium under an argon atmosphere. All reagents were used as received from commercial suppliers (Acros and Sigma-Aldrich). IrCl(PEt₃)₃ was prepared according to a literature procedure (see the Supporting Information).^[69] [1](PF₆)₂ was prepared as reported by Heinze et al.^[40] NMR spectra were recorded on a Bruker Avance DRX 400 spectrometer at 400.31 MHz (¹H) and 162.05 MHz (${}^{31}P{}^{1}H{}$). All resonances are reported in ppm versus the solvent signal as an internal standard $[D_2O(^{1}H, \delta = 4.80 \text{ ppm}; d_8\text{-THF}(^{1}H, \delta = 1.24, 3.57 \text{ ppm})]$ or versus external H₃PO₄ (85%; ³¹P, $\delta = 0 \text{ ppm}).$ Electrochemical experiments were carried out on a Bio Logic SP-50 voltammetric analyzer using platinum wires as counter and working electrodes and a saturated calomel electrode as reference electrode. The measurements were carried out at a scan rate of $50 - 100 \text{ mV s}^{-1}$ for cyclic voltammetry experiments and at $50 - 200 \text{ mV s}^{-1}$ for square-wave voltammetry experiments using 0.5 M HNO_3 as the supporting electrolyte and a 10^{-3} M solution of the analyte in degassed H₂O. Potentials are referenced to the saturated calomel electrode. UV/Vis/near-IR spectra were recorded on a Varian Cary 5000 spectrometer using 1.0 cm cells (Hellma, Suprasil). ESI MS spectra were recorded on a Micromass Q-TOF-Ultima spectrometer. X-band CW ESR spectra were measured on a Miniscope MS 300 (Magnettech GmbH, Germany). g values are referenced to external Mn^{2+} in ZnS (g = 2.118, 2.066, 2.027, 1.986, 1.946, 1.906). Measurements were conducted at 77 K and simulations were performed with the program package EasySpin. Irradiation experiments were performed with a UV lamp (Benda, NU-4 KL, 0.18 W, $\lambda_{\text{emiss}} = 254$ and 366 nm). Solutions of (NH₄)₂[Ce(NO₃)₆] and Ce(SO₄)₂ always were freshly prepared and used directly after complete dissolution of the salts. Dissolution was achieved via ultrasonication. Oxygen measurements were conducted with a TOS 3.0 sensor (Ionic Systems).

DFT calculations were carried out with the *Gaussian09*/DFT^[70] series of programs. The B3LYP formulation of DFT was used by employing the LANL2DZ basis set.^[70] No symmetry constraints were imposed on the molecules. The presence of energy minima or first order saddle points was checked by analytical frequency calculations. For solvent modeling, the integral-equation-formalism polarizable continuum model (IEFPCM, H₂O) was employed. In general, data obtained including solvent modeling reproduced the experimental results better than those without solvent modeling. Therefore, solvent modeling is included in all calculations in this paper. For time-dependent DFT (TD-DFT) calculations at least 50 singlet transitions ($n \ge 50$) were used. All calculations were performed without explicit counterions.

Oxidation 1. A solvent mixture of 0.125 M H_2SO_4 in H_2O was used. A solution of $[1](PF_6)_2$ (3.58 × 10⁻⁵ M, 9 ml) was prepared and a solution of $Ce(SO_4)_2 \cdot 4 H_2O$ (5.33 × 10⁻⁴ M, 0.74 ml, 1.1 equiv) was added. The orange solution of $[1](PF_6)_2$ immediately turned green after the addition of the $Ce(SO_4)_2 \cdot 4 H_2O$ solution. Within 7 d the color of the solution turned back to orange. A fresh solution of $Ce(SO_4)_2 \cdot 4 H_2O$ (5.51 × 10⁻⁴ M, 0.71 ml, 1.1 equiv) was added. Again, the solution immediately turned green and then slowly changed its color to orange. The measurement was made under normal laboratory light conditions (mixture of artificial light and sunlight passing through the window).

Oxidation 2. A solvent mixture of 0.5 M trifluoroacetic acid in H₂O was used. To a solution of $[1](PF_6)_2$ (3.21 × 10⁻⁴ M, 1.0 ml) a solution of $(NH_4)_2[Ce(NO_3)_6]$ (3.43 × 10⁻² M, 34.6 µl, 3.7 equiv) was added. The dark red-brown solution immediately turned dark green upon addition of the cerium salt. The mixture was frozen directly after preparation (77 K). The oxidation was performed under normal laboratory light conditions (mixture of artificial light and sunlight passing through the window).

Oxidation 3. A solvent mixture of 0.125 M H₂SO₄ in H₂O:CH₃CN (1:1) was used. A solution of [1](PF₆)₂ (4.26 × 10⁻⁵ M, 10 ml) was prepared and a solution of $(NH_4)_2[Ce(NO_3)_6]$ (5.62 × 10⁻⁴ M, 0.84 ml, 1.1 equiv) was added. The orange solution of [1](PF₆)₂ immediately turned green after the addition of the $(NH_4)_2[Ce(NO_3)_6]$ solution. Within 18 h the color of the solution turned back to orange. 9.85 ml of the resulting solution were taken and a fresh solution of $(NH_4)_2[Ce(NO_3)_6]$ (4.39 × 10⁻⁴ M, 0.97 ml, 1.1 equiv) was added. Again, the solution immediately turned green and then slowly changed its color to orange. After 6 d a fresh solution of $(NH_4)_2[Ce(NO_3)_6]$ (4.64 × 10⁻⁴ M, 0.92 ml, 1.1 equiv) was added. Again, the solution immediately turned green and then slowly changed its color to orange. The measurement was made under normal laboratory light conditions (mixture of artificial light and sunlight passing through the window).

Figure 14a shows solution UV/Vis spectra of $[1](PF_6)_2$ before and after the addition of 1.1 equiv $(NH_4)_2[Ce(NO_3)_6]$ in 0.125 M H_2SO_4 in $H_2O:CH_3CN$ (1:1). The MLCT band of $[1](PF_6)_2$ at $\lambda = 501$ nm ($\varepsilon = 16920 \text{ M}^{-1} \text{ cm}^{-1}$) immediately disappears upon addition of 1.1 equiv $(NH_4)_2[Ce(NO_3)_6]$. $[1]^{3+}$ features a LMCT band at $\lambda = 753$ nm ($\varepsilon = 6670 \text{ M}^{-1} \text{ cm}^{-1}$). The UV/Vis spectrum rapidly changes within minutes. After 18 h the MLCT band is largely recovered ($\varepsilon = 15910 \text{ M}^{-1} \text{ cm}^{-1}$ at $\lambda = 500 \text{ nm}$, 94% recovery) and the LMCT band essentially disappeared. Isosbestic points at $\lambda = 586$, 433 and 341 nm reveal the clean recovery of $[1]^{2+}$ by conversion from $[1]^{3+}$. The addition of another 1.1 equiv $(NH_4)_2[Ce(NO_3)_6]$ again leads to the same color change with the disappearance of the MLCT band and the appearance of the LMCT band at $\lambda = 753$ nm ($\varepsilon = 6020 \text{ M}^{-1} \text{ cm}^{-1}$). The UV/Vis spectrum then changes in the same manner as before. After 6 days the MLCT band is recovered ($\varepsilon = 16140 \text{ M}^{-1} \text{ cm}^{-1}$ at $\lambda = 500 \text{ nm}$, 101% recovery) and the LMCT band at $\lambda = 753 \text{ nm}$ ($\varepsilon = 4070 \text{ M}^{-1} \text{ cm}^{-1}$) and a recovery of the MLCT band at $\lambda = 500 \text{ nm}$, 101% recovery) and the LMCT band at $\lambda = 753 \text{ nm}$ ($\varepsilon = 4070 \text{ M}^{-1} \text{ cm}^{-1}$) and a recovery of the MLCT band at $\lambda = 500 \text{ nm}$, 101% recovery.

Figure 14. UV/Vis spectra of $[1](PF_6)_2$ before and after oxidation with a) 1.1 and b) 2.2 equiv $(NH_4)_2[Ce(NO_3)_6]$ in 0.125 M H₂SO₄ in H₂O:CH₃CN (1:1).

Oxidation 4. A solvent mixture of 0.125 M H_2SO_4 in H_2O was used. A solution of $[1](PF_6)_2$ (3.94 × 10⁻⁴ M, 1 ml) was prepared and a solution of $Ce(SO_4)_2 \cdot 4 H_2O$ (8.11 × 10⁻² M, 98.1 µl, 20 equiv) was added. The orange solution of $[1](PF_6)_2$ immediately turned green after the addition of the $Ce(SO_4)_2 \cdot 4 H_2O$ solution. Within 1 day the color of the solution turned yellow. The measurement was made under normal laboratory light conditions (mixture of artificial light and sunlight passing through the window).

Oxidation 5. A solvent mixture of 0.5 M trifluoroacetic acid in CH₃CN:H₂O (49:1) was used. A solution of $[1](PF_6)_2$ (1.20 × 10⁻⁴ M, 0.3 ml) was prepared and oxidized in an OTTLE cell by gradually increasing the potential and then reduced back by gradually lowering the potential. UV/Vis spectra were recorded during this procedure. The measurement was made under normal laboratory light conditions (mixture of artificial light and sunlight passing through the window).

Oxidation 6. A solvent mixture of 0.5 M trifluoroacetic acid in CH_3CN was used. To a solution of $[1](PF_6)_2$ $(6.44 \times 10^{-4} \text{ M}, 2.5 \text{ ml})$ a solution of $(NH_4)_2$ [Ce $(NO_3)_6$] $(3.51 \times 10^{-3} \text{ M}, 0.92 \text{ ml}, 2.0 \text{ equiv})$ was added. The dark red-brown solution immediately turned dark green upon addition of the cerium salt. The solvent was removed under reduced pressure. The green solid was dissolved in D₂O (0.8 ml) and ¹H NMR spectra were recorded. The dark green color of the solution slowly turned dark red-brown. After 17 h the dark red-brown color of the starting solution is seen. After 13 days an ESI mass spectrum was recorded (Figure 10). The measurements were made under normal laboratory light conditions (mixture of artificial light and sunlight passing through the window).

Oxidation 7. The whole procedure was conducted in an Ar-filled glove box. $[1](PF_6)_2$ (102 mg, 0.111 mmol, 1.00 equiv) was dissolved in degassed 0.5 M trifluoroacetic acid in H₂O:CH₃CN (200:1; 10 ml). A flask was filled with (NH₄)₂[Ce(NO₃)₆] powder (57 mg, 0.104 mmol, 0.94 equiv) and closed with a septum (total volume: 86 ml). The dark red-brown solution of $[1](PF_{6})_{2}$ was added through the septum and the mixture was shaken thoroughly. The color turned to dark green upon dissolution of the cerium salt after shaking for a few seconds. After 5 h the solution had a dark brown color and after 17 h the solution again had the initial dark red-brown color. 24 ml of the gaseous phase were extracted by a gas-tight syringe and bubbled very slowly through a red d₈-THF solution of IrCl(PEt₃)₃ (55 mM, 2.0 ml, 0.11 mmol). No color change occurred during and after the bubbling of the gaseous phase, indicating that no oxygen was present in the gaseous phase. The measurement was made under normal laboratory light conditions (mixture of artificial light and sunlight passing through the window).

For the calculation the following assumptions were made:

1) $[1]^{3+}$ reacts quantitatively with water according to the equation 1. This assumption is reasonable because after oxidation the MLCT band regained 88% of its initial intensity.

2) The equilibrium between O_2 in the gas phase and in solution is totally on the side of the gas phase. This is reasonable due to literature known solubilities of O_2 in CH₃CN at 25 °C which amount to 8.1 mM O_2 at 1 atm (O_2 atmosphere) and 2.4 mM O_2 at 1 atm (air atmosphere).^[71,72]

3) The mixing of Ar and O_2 is ideal. This assumption is surely wrong due to different densities of Ar and O_2 $(\rho_{273K}(Ar) = 1.78 \text{ kg m}^{-3}, \rho_{273K}(O_2) = 1.43 \text{ kg m}^{-3})$. However, gas samples from the top of the reaction vessels were used for the attempted oxygen detection. The detected value for the O_2 concentration would then be an overestimation of the O₂ content.

4) The oxidative addition of O_2 by IrCl(PEt₃)₃ is quantitative. To ensure this the gas sample was bubbled very slowly through the solution of IrCl(PEt₃)₃. The reaction equation is: IrCl(PEt₃)₃ + $O_2 \rightarrow$ IrCl(O_2)(PEt₃)₃.

 $(NH_4)_2$ [Ce(NO₃)₆] is the limiting factor and its amount is n(Ce) = 0.104 mmol. According to the equation "2 H₂O \rightarrow O₂ + 4 H⁺ + 4 e⁻" four electrons are produced per molecule O₂. The reduction of [1]³⁺ requires one electron. Hence, the total amount of O₂ is $n(O_2, \text{total}) = \frac{1}{4} \times n_{Ce} = 0.026$ mmol which corresponds to a volume of $V(O_2, \text{ total}) = n(O_2, \text{ total}) \times 22.4 \text{ l mol}^{-1} = 0.58 \text{ ml}$. A sample of $V_1 = 24 \text{ ml}$ was taken out of the gas phase through the septum by a syringe. The total volume of the gas phase was V(gas phase) = 76 ml. This should correspond to maximum theoretical O₂ amount of $n(O_2 \text{ in } V_1) = n(O_2, \text{ total}) \times V_1 \times [V(\text{gas phase})]^{-1} =$ 8.2×10^{-3} mmol.

A d_8 -THF solution of IrCl(PEt₃)₃ (55 mM) was prepared (see the Supporting Information). An NMR tube was filled with 2.0 ml of the IrCl(PEt₃)₃ solution and the sample was bubbled very slowly through the solution. ³¹P-NMR spectra of the sample solution and of a blind sample (without cerium salt) were measured and the integrals I_x (x = 1 - 4, see Figure S9 of the Supporting Information) of the four relevant ³¹P resonances were determined.

The amount of produced O_2 was calculated by the following procedure:

$$n(0_{2}) = \Delta n(\text{IrCl}(\text{PEt}_{3})_{3}) = n_{\text{sample}}(\text{IrCl}(\text{PEt}_{3})_{3}) - n_{\text{blind}}(\text{IrCl}(\text{PEt}_{3})_{3})$$

$$= n(\text{total amount of Ir}) \times \left[\frac{I_{1,\text{sample}}+I_{2,\text{sample}}}{I_{1,\text{sample}}+I_{3,\text{sample}}+I_{4,\text{sample}}} - \frac{I_{1,\text{blind}}+I_{2,\text{blind}}}{I_{1,\text{blind}}+I_{3,\text{blind}}+I_{4,\text{blind}}}\right]$$

$$= 1.1 \times 10^{-4} \text{ mmol} \times \left[\frac{0.968+2.000}{0.968+2.000+0.077+0.144}} - \frac{0.975+2.000}{0.975+2.000+0.072+0.149}}\right]$$

 $= 3.1 \times 10^{-7}$ mmol

Thus, the experimental amount of produced O_2 was $n(O_2) = 3.1 \times 10^{-7}$ mmol. This corresponds to 0.0037% of the expected amount. Within the experimental error no oxygen was detected. In a positive sample 0.4 ml air $(3.8 \times 10^{-3} \text{ mmol } O_2)$ were bubbled very slowly in an Ar atmosphere through a d₈-THF solution of IrCl(PEt₃)₃ (55 mM, 0.7 ml, 39 µmol). The full conversion of IrCl(PEt₃)₃ into its oxygen adduct IrCl(O₂)(PEt₃)₃ was observed via ³¹P-NMR spectra.

Oxidation 8. The amount of produced O_2 was also measured with a ZrO_2 -based sensor. The oxidation was performed exactly as described above (*Oxidation 7*) but in a reaction vessel with a total volume of 41 ml (instead of 86 ml) equipped with a septum, i.e. the volume of the gas phase was $V_1 = 31$ ml. After 17 h a sample with $V_2 = 12$ ml was taken out of the gas phase by a syringe and injected into a reaction vessel which had a volume of $V_3 = 81$ ml. The theoretical amount of generated O_2 is again $V(O_2, \text{ total}) = 5.8$ ml.

The theoretical maximum concentration of produced O_2 is (with the same assumptions as for *Oxidation 7*):

 $c(0_2) = \frac{V(0_2, \text{total})}{V_1} \times \frac{V_2}{V_3} \times 10^6 \text{ ppm} = \frac{5.8 \text{ ml}}{31 \text{ ml}} \times \frac{12 \text{ ml}}{81 \text{ ml}} \times 10^6 \text{ ppm} = 2782 \text{ ppm}$

The experimentally determined concentration of produced O_2 was 0.6 ± 1.0 ppm. In a blind sample (without cerium salt) the concentration of produced O_2 was 1.5 ± 1.0 ppm. Again within experimental error no oxygen was detected.

Oxidation 9. A solvent mixture of 0.5 M TFA in H₂O:CH₃CN (1:200) was used. A solution of $[1](PF_6)_2$ (2.95 × 10⁻⁴ M, 1.0 ml) was prepared and a solution of $(NH_4)_2[Ce(NO_3)_6]$ (8.19 × 10⁻³ M, 72 µl, 2.0 equiv) was added. The orange solution of $[1](PF_6)_2$ immediately turned green after addition of the $(NH_4)_2[Ce(NO_3)_6]$ solution. Within 2 days the color of the solution turned back to orange.

Oxidation 10. A solvent mixture of 0.5 M HNO₃ in H₂O was used. A solution of $[1](PF_6)_2$ (8.00 × 10⁻⁴ M, 1.5 ml) was prepared and a solution of $(NH_4)_2[Ce(NO_3)_6]$ (1.51 × 10⁻² M, 159 µl, 2.0 equiv) was added. The orange solution of $[1](PF_6)_2$ immediately turned green after addition of the $(NH_4)_2[Ce(NO_3)_6]$ solution. Within 2 days the color of the solution turned back to orange.

Oxidation 11. A solvent mixture of 0.1 M H₂SO₄ in H₂O was used. A solution of $[1](PF_6)_2$ (1.1×10^{-3} M, 1.0 ml) was prepared and a solution of Ce(SO₄)₂ • 4 H₂O (16 mM, 1.34 ml, 2.0 equiv) was added. The orange solution of $[1](PF_6)_2$ immediately turned green after addition of the Ce(SO₄)₂ • 4 H₂O solution. Within 2 days the color of the solution turned back to orange.

Oxidation 12. A solvent mixture of 0.11 M H₂SO₄ in H₂O:CH₃CN (15:85) was used. A solution of [1](PF₆)₂ (9.69 × 10⁻⁵ M, 5 ml) was prepared and a solution of $(NH_4)_2[Ce(NO_3)_6]$ (1.70 × 10⁻³ M, 0.314 ml, 1.1 equiv) was added. The orange solution of [1](PF₆)₂ immediately turned green after the addition of the $(NH_4)_2[Ce(NO_3)_6]$ solution. The freshly oxidized solution was filled into a 2 mm quartz cuvette and treated with UV light (Benda, NU-4 KL, 0.18 W, $\lambda_{emiss} = 254$ and 366 nm) and UV/Vis spectra were recorded. In a reference experiment the cuvette with the reaction mixture was kept in the dark.

Oxidation 13. A solvent mixture of 0.11 M H₂SO₄ in H₂O:CH₃CN (15:85) was used. A solution of [**1**](PF₆)₂ (9.69 × 10⁻⁵ M, 0.5 ml) was prepared and a solution of (NH₄)₂[Ce(NO₃)₆] (2.56 M, 33 µl, 1.3 equiv) was added. The orange solution of [**1**](PF₆)₂ immediately turned green after addition of the (NH₄)₂[Ce(NO₃)₆] solution. The freshly oxidized solution was filled into a 2 mm quartz cuvette and treated with UV light (Benda, NU-4 KL, 0.18 W, $\lambda_{exc} = 254$ and 366 nm) for 10 min. Then a second portion of the same Ce^{IV} solution (2.56 M, 33 µl, 1.3 equiv) was added and again the solution was treated with UV light for 10 min. The procedure was repeated until five portions of Ce^{IV} and five periods of UV light treatments were conducted. UV/Vis spectra were recorded before, freshly after addition of Ce^{IV} and after treatment with UV light.

Oxidation 14. A solvent mixture of 0.5 M TFA in H₂O was used. A solution of $[1](PF_6)_2$ (1.10×10^{-4} M, 3.0 ml) was prepared and a solution of $(NH_4)_2[Ce(NO_3)_6]$ (6.09×10^{-3} M, 109 µl, 2.0 equiv) was added. The orange solution of $[1](PF_6)_2$ immediately turned green after addition of the $(NH_4)_2[Ce(NO_3)_6]$ solution. The freshly oxidized solution was filled into a 10 mm quartz cuvette and exposed to standard fume hood light conditions. In a reference experiment the cuvette with the reaction mixture was kept in the dark.

Acknowledgements

This work was supported by the International Research Training Group (IRTG 1404): Self Organized Materials for Optoelectronics supported by the Deutsche Forschungsgemeinschaft (DFG). We thank Anica Wünsche von Leupoldt for the EPR simulations.

Literature

- [1] S. Campagna, F. Puntoriero, F. Nastasi, G. Bergamini, V. Balzani, *Top. Curr. Chem.* 2007, 280, 117–214.
- [2] B. O'Regan, M. Grätzel, *Nature* **1991**, *353*, 737–740.
- [3] J.-F. Yin, M. Velayudham, D. Bhattacharya, H.-C. Lin, K.-L. Lu, Coord. Chem. Rev. 2012, 256, 3008– 3035.
- [4] P. G. Bomben, K. C. D. Robson, B. D. Koivisto, C. P. Berlinguette, Coord. Chem. Rev. 2012, 256, 1438–1450.
- [5] A. Breivogel, S. Wooh, J. Dietrich, T. Y. Kim, Y. S. Kang, K. Char, K. Heinze, *Eur. J. Inorg. Chem.* 2014, 2720–2734.
- [6] R. D. Costa, E. Ortí, H. J. Bolink, F. Monti, G. Accorsi, N. Armaroli, Angew. Chem. 2012, 124, 8300– 8334; Angew. Chem. Int. Ed. 2012, 51, 8178–8211.
- [7] H. J. Bolink, E. Coronado, R. D. Costa, P. Gaviña, E. Ortí, S. Tatay, *Inorg. Chem.* 2009, 48, 3907– 3909.
- [8] H. J. Bolink, L. Cappelli, E. Coronado, P. Gaviña, Inorg. Chem. 2005, 44, 5966–5968.
- [9] A. Breivogel, M. Park, D. Lee, S. Klassen, A. Kühnle, C. Lee, K. Char, K. Heinze, *Eur. J. Inorg. Chem.* **2014**, 288–295.
- [10] R. H. Crabtree *Energy Production and Storage: Inorganic Chemical Strategies for a Warming World*; Wiley-VCH: Weinheim, Germany, **2010**.
- [11] X. Liu, F. Wang, Coord. Chem. Rev. 2012, 256, 1115–1136.
- [12] M. Schulz, M. Karnahl, M. Schwalbe, J. G. Vos, Coord. Chem. Rev. 2012, 256, 1682–1705.
- [13] W. T. Eckenhoff, R. Eisenberg, *Dalton Trans.* **2012**, *41*, 13004–13021.
- [14] A. Inagaki, M. Akita, Coord. Chem. Rev. 2010, 254, 1220–1239.
- [15] T. Stoll, M. Gennari, I. Serrano, J. Fortage, J. Chauvin, F. Odobel, M. Rebarz, O. Poizat, M. Sliwa, A. Deronizer, M.-N. Collomb, *Chem. Eur. J.* 2013, 19, 782–792.
- [16] J. Dietrich, U. Thorenz, C. Förster, K. Heinze, Inorg. Chem. 2013, 52, 1248–1264.
- [17] S. Roeser, M. Z. Ertem, C. Cady, R. Lomoth, J. Benet-Buchholz, L. Hammarström, B. Sarkar, W. Kaim, C. J. Cramer, A. Llobet, *Inorg. Chem.* 2012, 51, 320–327.
- [18] L.-Z. Sui, W.-W. Yang, C.-J. Yao, H.-Y. Xie, Y.-W. Zhong, Inorg. Chem. 2012, 51, 1590–1598.
- [19] O. S. Wenger, *Chem. Soc. Rev.* **2012**, *41*, 3772–3779.
- [20] H.-J. Nie, X. Chen, C.-J. Yao, Y.-W. Zhong, G. R. Hutchison, J. Yao, *Chem. Eur. J.* **2012**, *18*, 14497–14509.
- [21] A. Breivogel, K. Hempel, K. Heinze, *Inorg. Chim. Acta* 2011, 374, 152–162.
- [22] C.-J. Yao, Y.-W. Zhong, J. Yao, Inorg. Chem. 2013, 52, 4040–4045.
- [23] T. P. Brewster, W. Ding, N. D. Schley, N. Hazari, V. S. Batista, R. H. Crabtree, *Inorg. Chem.* 2011, 50, 11938–11946.
- [24] S. Betanzos-Lara, L. Salassa, A. Habtemariam, O. Novakova, A. M. Pizarro, G. J. Clarkson, B. Liskova, V. Brabec, P. J. Sadler, *Organometallics* 2012, *31*, 3466–3479.
- [25] S. Kämper, A. Paretzki, J. Fiedler, S. Záliš, W. Kaim, Inorg. Chem. 2012, 51, 2097–2104.
- [26] G. Xue, Y. Guo, T. Yu, J. Guan, X. Yu, J. Zhang, J. Liu, Z. Zou, Int. J. Electrochem. Sci. 2012, 7, 1496–1511.
- [27] A. Bahreman, B. Limburg, M. A. Siegler, E. Bouwman, S. Bonnet, *Inorg. Chem.* 2013, 52, 9456–9469.
- [28] P. T. Nguyen, B. X. T. Lam, A. R. Andersen, P. E. Hansen, T. Lund, Eur. J. Inorg. Chem. 2011, 2533– 2539.
- [29] C. Dragonetti, A. Valore, A. Colombo, D. Roberto, V. Trifiletti, N. Manfredi, M. M. Salamone, R. Ruffo, A. Abbotto, J. Organomet. Chem. 2012, 714, 88–93.
- [30] M. M. R. Choudhuri, R. J. Crutchley, *Inorg. Chem.* 2013, 52, 14404–14410.
- [31] C.-W. Hsu, S.-T. Ho, K.-L. Wu, Y. Chi, S.-H. Liu, P.-T. Chou, *Energy Environ. Sci.* **2012**, *5*, 7549–7554.
- [32] B. Schulze, D. Escudero, C. Friebe, R. Siebert, H. Görls, S. Sinn, M. Thomas, S. Mai, J. Popp, B. Dietzek, L. González, U. S. Schubert, *Chem. Eur. J.* 2012, 18, 4010–4025.
- [33] R. Hogg, R. G. Wilkins, J. Chem. Soc. 1962, 341–350.
- [34] R. H. Holyer, C. D. Hubbard, S. F. A. Kettle, R. G. Wilkins, *Inorg. Chem.* 1966, 5, 622–625.

- [35] M. Abrahamsson, M. Jäger, R. J. Kumar, T. Österman, P. Persson, H.-C. Becker, O. Johansson, L. Hammarström, J. Am. Chem. Soc. 2008, 130, 15533–15542.
- [36] Recalculated from a previous value for [Ru(bpy)₃]Cl₂ to the updated [Ru(bpy)₃]Cl₂ standard according to A. Breivogel, C. Kreitner, K. Heinze, *Eur. J. Inorg. Chem.* **2014**, accepted.
- [37] J.-P. Sauvage, J.-P. Collin, J.-C. Chambron, S. Guillerez, C. Coudret, V. Balzani, F. Barigelletti, L. D. Cola, L. Flamigni, *Chem. Rev.* 1994, 94, 993–1019.
- [38] L. Hammarström, O. Johansson, Coord. Chem. Rev. 2010, 254, 2546–2559.
- [39] Y. Liu, R. Hammitt, D. A. Lutterman, R. P. Thummel, C. Turro, Inorg. Chem. 2007, 46, 6011–6021.
- [40] K. Heinze, K. Hempel, M. Beckmann, Eur. J. Inorg. Chem. 2006, 10, 2040–2050.
- [41] K. Heinze, K. Hempel, A. Breivogel, Z. Anorg. Allg. Chem. 2009, 635, 2541–2549.
- [42] D. G. Brown, N. Sanguantrakun, B. Schulze, U. S. Schubert, C. P. Berlinguette, J. Am. Chem. Soc. **2012**, 134, 12354–12357.
- [43] A. Breivogel, M. Meister, C. Förster, F. Laquei, K. Heinze, Chem. Eur. J. 2013, 19, 13745–13760.
- [44] M. Abrahamsson, M. Jäger, T. Österman, L. Eriksson, P. Persson, H.-C. Becker, O. Johansson, L. Hammarström, J. Am. Chem. Soc. 2006, 128, 12616–12617.
- [45] M. Abrahamsson, M. Jäger, R. J. Kumar, T. Österman, P. Persson, H.-C. Becker, O. Johansson, L. Hammarström, J. Am. Chem. Soc. 2008, 130, 15533–15542.
- [46] F. Schramm, V. Meded, H. Fliegl, K. Fink, O. Fuhr, Z. Qu, W. Klopper, S. Finn, T. E. Keyes, M. Ruben, *Inorg. Chem.* 2009, 48, 5677–5684.
- [47] G. A. Parada, L. A. Fredin, M.-P. Santoni, M. Jäger, R. Lomoth, L. Hammarström, O. Johansson, P. Persson, S. Ott, *Inorg. Chem.* 2013, 52, 5128–5137.
- [48] J. Dietrich, A. Wünsche von Leupoldt, M. Grabolle, U. Resch-Genger, K. Heinze, Eur. J. Inorg. Chem. 2013, 3009–3019.
- [49] K. Heinze, K. Hempel, Chem. Eur. J. 2009, 15, 1346–1358.
- [50] L. zur Borg, A. L. Domanski, A. Breivogel, M. Bürger, R. Berger, K. Heinze, R. Zentel, J. Mater. Chem. C 2013, 1, 1223–1230.
- [51] C. Kreitner, K. Heinze, to be submitted.
- [52] M. D. Kärkäs, T. Åkermark, H. Chen, J. Sun, B. Åkermark, Angew. Chem. 2013, 125, 4283–4287; Angew. Chem. Int. Ed. 2013, 52, 4189–4193.
- [53] B.-L. Lee, M. D. Kärkäs, E. V. Johnston, A. K. Inge, L.-H. Tran, Y. Xu, Ö. Hansson, X. Zou, B. Åkermark, *Eur. J. Inorg. Chem.* **2010**, 5462–5470.
- [54] D. J. Wasylenko, C. Ganesamoorthy, B. D. Koivisto, M. A. Henderson, C. P. Berlinguette, *Inorg. Chem.* **2010**, *49*, 2202–2209.
- [55] M. D. Kärkäs, E. V. Johnston, E. A. Karlsson, B.-L. Lee, T. Åkermark, M. Shariatgorji, L. Ilag, Ö. Hansson, J.-E. Bäckvall, B. Åkermark, *Chem. Eur. J.* **2011**, *17*, 7953–7959.
- [56] D. Kotkar, V. Joshi, P. K. Ghosh, Inorg. Chem. 1986, 25, 4334–4335.
- [57] L. Duan, F. Bozoglian, S. Mandal, B. Stewart, T. Privalov, A. Llobet, L. Sun, Nat. Chem. 2012, 4, 418– 423.
- [58] N. G. Connelly, W. E. Geiger, Chem. Rev. 1996, 96, 877–910.
- [59] P. A. Lay, W. H. F. Sasse, Inorg. Chem. 1985, 24, 4707–4710.
- [60] A. Harriman, G. Porter, P. Walters, J. Chem. Soc., Faraday Trans. 2 1981, 77, 2373–2383.
- [61] N. Kaveevivitchai, R. Zong, H.-W. Tseng, R. Chitta, R. P. Thummel, *Inorg. Chem.* 2012, 51, 2930–2939.
- [62] N. Kaveevivitchai, L. Kohler, R. Zong, M. E. Ojaimi, N. Mehta, R. P. Thummel, *Inorg. Chem.* 2013, *52*, 10615–10622.
- [63] L. Duan, L. Wang, A. K. Inge, A. Fischer, X. Zou, L. Sun, *Inorg. Chem.* 2013, 52, 7844–7852.
- [64] L. Wang, L. Duan, B. Stewart, M. Pu, J. Liu, T. Privalov, L. Sun, J. Am. Chem. Soc. 2012, 134, 18868– 18880.
- [65] H.-W. Tseng, R. Zong, J. T. Muckermann, R. Thummel, Inorg. Chem. 2008, 47, 11763–11773.
- [66] S. W. Kohl, L. Weiner, L. Schwartsburd, L. Konstantinovski, L. J. W. Shimon, Y. Ben-David, M. A. Iron, D. Milstein, *Science* **2009**, *324*, 74–77.
- [67] A. A. Vlcek, E. S. Dodsworth, W. J. Pietro, A. B. P. Lever, *Inorg. Chem.* 1995, 34, 1906–1913.
- [68] C. R. Bock, J. A. Connor, A. R. Gutierrez, T. J. Meyer, D. G. Whitten, B. P. Sullivan, J. K. Nagle, J. Am. Chem. Soc. 1979, 101, 4815–4824.
- [69] A. L. Casalnuovo, J. C. Calabrese, D. Milstein, J. Am. Chem. Soc. 1988, 110, 6738–6744.
- [70] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.

Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox Gaussian 09, revision A.02, Gaussian, Inc.: Wallingford CT, 2009. J. M. Achord, C. L. Hussey, *Anal. Chem.* **1980**, *52*, 601–602.

- [71] [72] C. Franco, J. Olmsted III, Talanta 1990, 37, 905–909.

9.3 Dinuclear Bis(terpyridine)ruthenium(II) Complexes by Amide Coupling of Ruthenium Amino Acids: Synthesis and Properties

A. Breivogel, K. Hempel, K. Heinze, Inorg. Chim. Acta 2011, 374, 152–162.

DOI: 10.1016/j.ica.2011.03.046

Reprinted with permission from Elsevier, Copyright © 2011.

Inorganica Chimica Acta 374 (2011) 152-162

FISEVIER

Contents lists available at ScienceDirect

Inorganica Chimica Acta

journal homepage: www.elsevier.com/locate/ica

Dinuclear bis(terpyridine)ruthenium(II) complexes by amide coupling of ruthenium amino acids: Synthesis and properties

Aaron Breivogel^a, Klaus Hempel^b, Katja Heinze^{a,*}

^a Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany ^b Department of Inorganic Chemistry, Ruprecht Karls-University of Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany

ARTICLE INFO

Article history: Available online 27 March 2011

Dedicated to Prof. Dr. Wolfgang Kaim on the occasion of his 60th birthday

Keywords: Amino acids Charge transfer Donor-acceptor systems Mixed-valency Ruthenium Terpyridine

1. Introduction

The controlled assembly of multinuclear metal complexes in a precise fashion is a challenging task although several elegant solutions have been proposed, e.g. a chemistry-on-a-complex approach (complexes as ligands/complexes as metals) [1–4], solid-phase syntheses procedures [5] or supramolecular approaches [6,7]. For the first mentioned strategies rather stable metal complexes are needed while programmable labile systems can be employed in self-assembly processes.

Natural oligomeric systems often rely on directional connectors, e.g. sugar-phosphate esters in DNA/RNA or amide groups in peptides. Natural and artificial peptides with a precise amino acid sequence can be easily prepared employing adequate protection/ deprotection and coupling techniques – even in an automated fashion on solid supports (solid-phase peptide synthesis) [8]. Amide connectors have been increasingly used to assemble multinuclear metal complexes in a controlled fashion [5,9–11]. As useful building blocks for metallo peptides metallo amino acids (e.g. **A** [9,12], **B** [13,14]; Scheme 1) have been developed.

Based on bis(terpyridine)ruthenium(II) fragments the ruthenium amino acid **1b** and its phenyl-elongated homologues **A** have been devised and realized (Scheme 1) [9,12]. Using ferrocene amino acid **B** [13,14] we have also reported amide bridged bis- and

E-mail address: katja.heinze@uni-mainz.de (K. Heinze).

ABSTRACT

Two redox-asymmetric amide-bridged bis(terpyridine)ruthenium(II) complexes (**3a**, **3b**) have been prepared by amide coupling of a carboxylic acid functionalized complex with an amine substituted complex and they were fully characterized by spectroscopic analyses. They emit at 692 and 750 nm at room temperature in fluid solution with quantum yields larger than 10⁻³ and ³MLCT lifetimes of 22 ns. Ru…Ru distances were estimated from DFT models as 17.7 and 13.4 Å for **3a** and **3b**, respectively. Cyclic voltammetry gives two oxidation potentials for the differently substituted ruthenium sites with splittings of 0.10 and 0.23 V for **3a** and **3b**, respectively. Oxidation of **3b** with Ce^{IV} ions gives the corresponding mixed-valent Ru^{II}–Ru^{III} system which is valence-localized according to NIR spectroscopic and theoretical analyses.

© 2011 Elsevier B.V. All rights reserved.

tris-ferrocenes **C** and their oxidized counterparts C^{x*} (Scheme 1) [10,11,15,16]. The neutral and the oxidized systems are potentially useful as molecular wires and as ion sensors [10,11,15–17]. Amide linked conjugates of the ruthenium amino acid **1b** and ferrocene derivatives have been shown to exhibit photoinduced electron transfer provided matching redox potentials are employed at the ferrocene electron donor site [9]. Energy transfer is observed in amide-linked conjugates of the ruthenium amino acid **1b** and matching organic chromophores (e.g. coumarins) [18].

We were then interested to study the interaction between two ruthenium centers in dinuclear systems based on ruthenium amino acid **1b**. Such long-range communication pathways in multimetallic assemblies are of fundamental importance and are furthermore of potential usage in molecular electronics. Oligonuclear ruthenium complexes have been proposed as components in photochemical molecular devices, for molecular recognition, information storage, energy conversion and catalysis applications [19,20].

Mixed-valence compounds containing metallic centers in different formal oxidation states $(M^{n+}/M^{(n+1)+})$ have been widely employed to study intramolecular electron transfer (ET) processes between donor and acceptor sites and several review articles have been published [21–36]. Robin and Day classified mixed-valence systems as a function of the strength of the electronic interaction (coupling) between donor and acceptor sites [37]. Species of Class I essentially exhibit negligible metal–metal interaction while Class II compounds include species with a nonzero barrier for valence exchange. Class III systems feature fully delocalized valencies.

^{*} Corresponding author. Fax: +49 6131 3927277.

^{0020-1693/\$ -} see front matter \circledcirc 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.ica.2011.03.046

Scheme 1. Bis(terpyridine)ruthenium(II) amino acids **A** [9,12], ferrocene amino acid **B** [13,14] and oligoferroceneamides **C** [10,11,15,16].

A multitude of experimental and theoretical studies, especially on symmetrical systems with the textbook prototype being the Creutz–Taube ion $[(NH_3)_5Ru(pz)Ru(NH_3)_5]^{5+}$ (py = pyrazine) [38,39], have established that the molecular architecture – mainly the distance between redox sites and the bridging ligand planarity – controls the through-bond electronic coupling [21–36].

Directional electron transfer might be achieved using slightly asymmetric systems in terms of local redox potentials. This is an advanced extension of symmetrical homodinuclear systems possessing zero driving force for ET which have been thoroughly studied and are well understood [21–36]. Asymmetry can be introduced by differing metal centers (M, M'), differing terminal ligands (L, L') or asymmetrical bridging ligands (L–L'). The amide bridge considered here naturally introduces an aspect of asymmetry and directionality in oligoamides and peptides (*N*-terminal end \rightarrow *C*-terminal end).

The dinuclear complex [(tpy) Ru (tpy-Ph-NHCO-Ph-tpy) Ru (tpy)]⁴⁺ **D** with an amide bridge and two para-phenylene units has been reported by Colbran (Scheme 2) [40]. As compared to mononuclear models an approximately doubled extinction coefficient (at $\lambda_{max} = 487$ nm, $\varepsilon = 50800 \text{ M}^{-1} \text{ cm}^{-1}$) and an unshifted absorption MLCT maximum were observed. No splitting of the (two-electron) Ru^{II}/Ru^{III} couple at 1.25 V versus SCE in CH₃CN was reported. The data suggest that the ruthenium centers in **D** are isolated and electrochemically independent in the ground state. This is possibly due to the "dilution" with non-planar para-phenylene spacers [40]. However, no emission data has been reported to access the excited state properties. Similarly, the "expanded leucines" **E** [41] display additive extinction at 494 nm (unshifted λ_{max}) and one single Ru^{II}/Ru^{III} redox couple at +1.26 V versus SCE (Scheme 2). Again, these observations are very likely due to the separation of the redoxactive $[(tpy)Ru(tpy)]^{2+}$ units by non-planar paraphenylene and leucine spacers. Based on the observation of a single oxidation wave in electrochemical experiments metal-metal interaction in dinuclear complexes **F** with 'back-to-back' terpyridine and para-phenylene bridged bis-terpyridines seems to be absent (Scheme 2). However, in spite of the non-planar bridging ligand spectroelectrochemical investigations revealed a weak electronic interaction in the mixed-valent systems F⁺ [42-44]. Complexes of type **F** are non emissive at room temperature similar to the parent mononuclear complex [(tpy)₂Ru]²⁺ [44]. Campagna and Hannan recently managed to planarize the briding π -system by replacing two CH groups by nitrogen atoms which allows for favourable CH...N interactions within the bridge (Scheme 2, G) [4]. The planarized bridge of G enhances the metal-metal interaction and two Ru^{II}/Ru^{III} oxidation processes were observed with $\Delta(E_{1/2}) = 90 \text{ mV}$ giving a comproportionation constant $K_{\rm C} \sim 33$ for the mixed-valent cation G^+ . In addition a long-lived ³MLCT emission has been observed for **G** [4]. A different successful strategy to planarize the bridging ligand in terpyridine-type ruthenium complexes has been introduced by Harriman using tethers of differing lengths within the bridge (Scheme 2, H). Although negligible Ru^{II}/Ru^{III} redox separations were found spectroelectrochemical studies revealed a weak electronic coupling (weakly coupled Class II) [45].

As an amide bridge allows for a rather coplanar arrangement of connected Ru(tpy) moieties we wish to address the question

Scheme 2. Selection of linear oligonuclear bis(terpyridine)ruthenium(II) complexes D-H (tpy = 2,2':6',2''-terpyridine, R-tpy = 4'-p-tolyl-2,2':6',2''-terpyridine or tpy).

Scheme 3. *N*-Acylation of ruthenium amino acid ester 1a and ruthenium amino acid 1b-2a [46] and 2b and Boc protection of 1a-2c and atom numbering for NMR assignments.

whether metal-metal communication across an amide linkage is possible in dinuclear bis(terpyridine)ruthenium complexes. We report the synthesis of two amide bridged bis(terpyridine)ruthenium(II) complexes with one single *para*-phenylene spacer (3a) and without any *para*-phenylene spacers (**3b**) in addition to the connecting amide unit. The synthetic starting point is the bis (terpyridine)ruthenium(II) amino acid 1b and its ethyl ester 1a [9]. The para-phenylene spacer of **3a** is expected to disrupt any π -conjugation pathway, similar to the **D** case (Scheme 2), while in **3b** the bridge is expected to be rather planar. For comparison of optical and electrochemical data the mononuclear N-acetyl protected bis(terpyridine)ruthenium(II) amino acid 2b and its ethyl ester 2a [46] are reported together with the N-Boc protected bis(terpyridine)ruthenium(II) amino carboxylate 2c as versatile synthetic intermediate for the construction of dinuclear amide linked bis(terpyridine)ruthenium(II) complexes.

2. Experimental

2.1. General procedures

Chemicals were obtained from commercial suppliers and used without further purification. Bis(terpyridine)ruthenium(II) complexes **1a**, **1b** [9] and **2a** [46] were synthesized as reported. [Ru(t-py-C₆H₄-COOH)(tBu₃tpy)](PF₆)₂ has been prepared by Prof. Dr.

Sven Rau [47] IR spectra were recorded on a BioRad Excalibur FTS 3000 spectrometer using caesium iodide disks. UV/Vis spectra were recorded on a Perkin-Elmer Lambda 19 or on a Varian Cary 5000 spectrometer in 1.0 cm cells (Hellma, suprasil). FAB mass spectra were recorded with a Finnigan MAT 8400 mass spectrometer. ESI⁺ mass spectra were recorded with a Finnigan TSQ 700 triple-quadrupole or a Q-Tof Ultima API mass spectrometer (Micromass/Waters) with analyte solutions in acetonitrile. NMR spectra were obtained on a Bruker Avance DPX 200 (200 MHz, ¹H) or a Bruker Avance II 400 (400 MHz, ¹H) at 30 °C. Chemical shifts (δ /ppm) are reported with respect to residual solvent peaks as internal standards: CD₃CN $\delta(^{1}H) = 1.94$ ppm, $\delta(^{13}C) = 1.24$ ppm. Cyclic voltammetry was performed on a Metrohm "Universal Mess- und Titriergefaess", Metrohm GC electrode RDE 628, platinum electrode, SCE electrode, Princeton Applied Research potentiostat Model 273; in 0.1 m nBu₄NPF₆/CH₃CN. Potentials are given relative to that of SCE. Emission spectra were recorded on a Varian Cary Eclipse spectrometer. Quantum yields were determined by comparing the areas under the emission spectra on an energy scale [cm⁻¹] recorded for optically matched solutions of the samples and the reference $\{\phi([Ru(bpy)_3]^{2+}) = 0.062 \text{ in } CH_3CN\}$ [48]; experimental uncertainty 15%. Luminescence lifetimes were determined on a PicoQuant FluoTime 100 time-correlated singlephoton counting unit. Criteria for the best fit were the values of χ^2 ; experimental uncertainty 10%. Density functional calculations were carried out with the GAUSSIAN03/DFT [49] series of programs. The B3LYP formulation of density functional theory was used employing the LanL2DZ basis set [49]. All structures were characterized as minima by frequency analysis ($N_{\text{imag}} = 0$). No symmetry constraints were imposed on the molecules.

2.2. Synthesis of 2b

Acid **1b** (150 mg, 0.16 mmol) was dissolved in acetvl chloride (20 mL) and the solution was heated under reflux for 2 h. After cooling to room temperature and removal of the solvent in vacuo the residue was dissolved in acetonitrile and the product was precipitated by the addition of diethyl ether. The product was collected by filtration, dissolved in hot water and precipitated by the addition of NH₄PF₆ (78 mg, 0.48 mmol) in water (1 ml). The product was collected by filtration and dried in vacuo to give a red powder. Yield 51% (80 mg, 0.08 mmol). Anal. Calc. $C_{33}H_{25}N_7O_3RuP_2F_{12}$ (958.60)·4H₂O: C, 38.46; H, 3.23; N, 9.51. Found: C, 38.63; H, 3.13; N, 9.68%. MS (FAB⁺): m/z (%) = 814 (16) [M+PF₆]⁺. ¹H NMR (CD₃CN, 200 MHz): δ = 9.46 (s, 1H, NH), 9.19 (s, 2H, H²), 8.96 (s, 2H, H²), 8.64 (d, ³J_{HH} = 8.0 Hz, 2H, H⁵), 8.39 (d, ³J_{HH} = 8.0 Hz, 2H, H⁵), 7.86–7.98 (m, 4H, H^{6,6'}), 7.45 (d, ³J_{HH} = 5.2 Hz, 2H, H⁸), 7.19–7.28 (m, 4H, H^{7,7'}), 7.11 (ddd, ³J_{HH} = 6.6 Hz, ⁴J_{HH} = 1.20 Hz, 2H, H^{8'}), 2.37 (s, 3H, H^{9'}). ¹³C NMR (CD₃CN, 50 MHz): δ = 159.4, 159.3, 158.1, 156.6 (4 s, C^{3,3',4,4'}), 154.4 (s, C^{8'}), 154.0 (s, C⁸), 154.4 (s, C^{1'}), 139.9 (s, C^{6'}), 139.7 (s, C⁶), 137.0 (s, C¹), 129.4 (s, C⁷), 129.1 (s, C^{7'}), 126.4 (s, C⁵), 126.1 (s, C^{5'}), 124.6 (s, C²), 114.5 (s, C^{2'}), 25.5 (s, C^{9'}), COOH and NHCO were not observed. IR (CsI): v = 3454 (OH, NH), 3085 (CH_{arvl}), 2936 (CH_{alkvl}), 1711 (C=O), 1689 (amide I), 1525 (amide II), 1563 (C=N, C=C), 1246 (C-O), 841 (PF) cm⁻¹.

2.3. Synthesis of 2c

Ester **1a** (200 mg, 0.21 mmol) and di-*tert*-butyldicarbonate (231 mg, 1.06 mmol) were dissolved in dry acetonitrile (15 mL) and phosphazene base P_1 -*t*Bu¹ [51,52] (229 mg, 0.98 mmol) was added. The solution was heated under reflux for 2 h. After the

¹ Phosphazene base P_1 -*t*Bu = tert-butylimino-tris(dimethylamino)-phosphorane.

Scheme 4. Amide coupling of amino acid ester 1a and [Ru(tpy-C₆H₄-COOH)(tBu₃tpy)](PF₆)₂ to 3a and atom numbering for NMR assignments.

addition of water (5 mL) the mixture was heated under reflux for 2 h. After cooling to room temperature and removal of the solvent in vacuo the residue was dissolved in acetonitrile and the product was precipitated by the addition of diethyl ether. The product was collected by filtration, dissolved in water and precipitated by the addition of NH₄PF₆ (78 mg, 0.48 mmol) in water (1 ml). The product was collected by filtration and dried in vacuo to give a red powder. Yield 93% (172 mg, 0.20 mmol). Anal. Calc. C₃₆H₃₀N₇O₄RuPF₆ (870.70) 4H₂O: C, 45.86; H, 4.06; N, 10.40. Found: C, 45.99; H, 4.16; N, 10.71%. MS (FAB⁺): m/z (%) = 726 (8) [M]⁺. ¹H NMR (CD₃CN, 200 MHz): δ = 10.30 (s, 1H, NH), 9.32 (s, 2H, H²), 9.26 (s, 2H, H^{2'}), 8.61 (d, ${}^{3}J_{HH}$ = 8.0 Hz, 2H, H⁵), 8.52 (d, ${}^{3}J_{HH}$ = 8.0 Hz, 2H, H⁵), 7.86–7.93 (m, 4H, $H^{6,6'}$), 7.44 (d, ${}^{3}J_{HH}$ = 5.5 Hz, 2H, H^{8}), 7.37 (d, ${}^{3}J_{\rm HH}$ = 5.5 Hz, 2H, H⁸'), 7.11–7.19 (m, 4H, H^{7,7'}), 1.68 (s, 9H, CH₃). 13 C NMR (CD₃CN, 50 MHz): δ = 167.0 (s, COO), 158.8 (s, C³), 158.5 (s, C^{3'}), 156.5 (s, C⁴), 155.6 (s, C^{4'}), 153.3 (s, CO^{Boc}), 153.2 (s, C^{8'}), 152.8 (s, C⁸), 148.4 (s, C¹), 143.7 (s, C^{1'}), 138.7 (s, C^{6'}), 138.4 (s, C⁶), 128.0 (s, C⁷), 127.9 (s, C^{7'}), 125.1 (s, C²), 124.6 (s, C⁵), 123.8 (s, C^{5'}), 112.7 (s, C^{2'}), 82.7 (s, C_q^{Boc}), 28.0 (s, CH₃). IR (CsI): v = 3431 (OH, NH), 3094 (CH_{aryl}), 2980 (CH_{alkyl}), 1722 (C=O), 1651 (amide I), 1564 (C=N, C=C), 1528 (amide II), 1249 (C-O), 843 (PF) cm^{-1} .

2.4. Synthesis of 3a

[Ru(tpy-C₆H₄-COOH)(*t*Bu₃tpy)](PF₆)₂ (150 mg, 0.13 mmol), DCC (46 mg, 0.22 mmol) and HOBt (30 mg, 0.22 mmol) were dissolved in dry acetonitrile (15 mL) and stirred for 45 min at room temperature to activate the carboxylic acid. **1a** (140 mg, 0.15 mmol) and phosphazene base P₁-*t*Bu (229 mg, 0.98 mmol) dissolved in acetonitrile (5 mL) were added and the solution was stirred for 8 h. The solution was filtered over Celite and the solvent was removed in vacuo. The residue was dissolved in hot ethanol (5 mL) and NH₄PF₆ (78 mg, 0.48 mmol) in water (1 ml) was added. After addition of excess water the precipitated product was collected by filtration. Recrystallization from ethanol/CH₂Cl₂ and drying in vacuo gave **3a** as a red powder. Yield 46% (125 mg, 0.06 mmol). *Anal.* Calc. C₈₂H₇₅N₁₃O₃Ru₂P₄F₂₄ (2072.56)·H₂O: C, 47.11; H, 3.71; N, 8.71. Found: C, 46.99; H, 3.71; N, 8.88%. MS (ESI⁺): *m/z* (%) = 497.5 (100) [M–H]³⁺, 373.4 (18) [M]⁴⁺. ¹H NMR (CD₃CN, 200 MHz):

 δ = 10.07 (s, 1H, NH), 9.33 (s, 2H, H²'), 9.21 (s, 2H, H²''), 9.11 (s, 2H, H²), 8.81 (s, 2H, H²'''), 8.63–8.70 (m, 4H, H⁵'', H⁵), 8.41–8.52 (m, 8H, H⁵', H⁵''', H¹0'', H¹1''), 7.97–7.99 (m, 6H, H€, H€'', H⁵''), 7.53 (d, ³J_{HH} = 5.0 Hz, 2H, H⁸), 7.25–7.31 (m, 10H, H⁷, H7'', H8', H8'''), 7.15–7.22 (m, 4H, H7'', H7'''), 4.64 (q, ³J_{HH} = 6.8 Hz, 2H, CH₂), 1.77 (s, 9H, CH₃'), 1.59 (t, ³J_{HH} = 6.8 Hz, 3H, CH₃), 1.33 (s, 18H, CH₃''). ¹³C NMR (CD₃CN, 50 MHz): δ = 166.8 (s, CONH), 164.5 (s, COOEt), 163.5 (s, C^{12''}), 162.0 (s, C^{9'}), 158.6, 158.5, 158.3, 158.1, 156.6, 156.3, 155.5, 155.3 (8 s, C^{3,3',3'',3'',44',4'',4''')}, 153.3, 152.8, 152.7, 152.2 (4 s, C^{8,8',8'',8'''}), 147.6 (s, C^{1'}), 146.4 (s, C^{1''}), 141.6 (s, C¹), 138.9, 138.6, 138.3 (3 s, C^{6,6',6''}), 136.7 (s, C^{1'''}), 135.3 (s, C^{6'''}), 129.7, 128.7, 128.3, 128.0 (4 s, C^{7,7,7'',7'''}), 125.3, 125.0, 124.9, 124.7 (4 s, C^{5,5',5'',5'''}), 123.2 (s, C²), 122.4 (s, C^{2''}), 122.2, 121.7 (2 s, C^{1''',11''}), 114.3 (2C) (s, C^{2',2'''}), 63.3 (s, CH₂), 36.8 (s, C_q'), 35.7 (s, C_q''), 30.6 (s, CH₃'), 29.9 (s, CH₃''), 14.9 (s, CH₃). IR (Csl): ν = 3453 (OH, NH), 3076 (CH_{aryl}), 2968 (CH_{alkyl}), 1689 (C=O, amide I), 1612 (C=N, C=C), 1526 (amide II), 1255 (C–O), 841 (PF) cm⁻¹.

2.5. Synthesis of 3b

Boc protected 2c (100 mg, 0.11 mmol) and PyBOP (72 mg, 0.14 mmol) were dissolved in acetonitrile (15 mL) and stirred at room temperature for 45 min to activate the carboxylic acid. 1a (109 mg, 0.12 mmol) and phosphazene base P_1 -tBu (229 mg, 0.98 mmol) dissolved in acetonitrile (5 mL) were added and the solution was heated under reflux for 2 h. Water (5 mL) was added and the mixture was heated under reflux for further 2 h. After cooling to room temperature the solvents were removed in vacuo and the residue was dissolved in acetonitrile (2 mL). Acetic acid (0.5 mL) was added and the product was precipitated by the addition of excess water. The product was collected by filtration and recrystallized from acetone/water to give a red powder. Yield 82% (170 mg, 0.09 mmol). Anal. Calc. $C_{62}H_{44}N_{14}O_3Ru_2P_4F_{24}$ (1815.10)·C₃H₆O: C, 41.68; H, 2.69; N, 10.47. Found: C, 41.53; H, 2.85; N, 10.22%. MS (ESI⁺): m/z (%) = 309.0 (100) [M]⁴⁺, 411.6 (94) $[M-H]^{3+}$. ¹H NMR (CD₃CN, 200 MHz): δ = 11.30 (s, 1H, NH), 9.51 (s, 2H, $H^{2'}$), 9.45 (s, 2H, $H^{2''}$), 9.24 (s, 2H, H^2), 8.77 (d, ${}^{3}J_{\text{HH}}$ = 7.8 Hz, 2H, H⁵"), 8.69 (d, ${}^{3}J_{\text{HH}}$ = 7.8 Hz, 2H, H⁵), 8.61 (d, ${}^{3}J_{HH} = 7.8 \text{ Hz}, 2H, H^{5'}$), 8.33 (d, ${}^{3}J_{HH} = 7.8 \text{ Hz}, 2H, H^{5''}$), 7.86–8.07 (m, 10H, $H^{2'''}$, H^{6} , $H^{6''}$, $H^{6'''}$), 7.65 (d, ${}^{3}J_{HH} = 7.2 \text{ Hz}, 2H, H^{8}$),

Scheme 5. Amide coupling of amino acid ester 1a and and Boc protected 2c to give fully deprotected 3b and atom numbering for NMR assignments.

Fig. 1. Partial CH-COSY spectrum of 3a in CD₃CN.

7.57 (ddd, ${}^{3}J_{HH} = 5.2$ Hz, ${}^{4}J_{HH} = 1.20$ Hz, 2H, H^{8"}), 7.29–7.37 (m, 8H, H⁷, H^{7"}, H^{8"}, H^{8""}), 7.08–7.22 (m, 2H, H^{7"}, H^{7""}), 5.83 (bs, 2H, NH₂). 1³C NMR (CD₃CN, 50 MHz): $\delta = 165.0$ (s, COOH), 159.4, 159.0, 158.8, 158.7, 158.1, 157.4, 156.3, 155.0 (8 s, C^{3.3',3",3",4.4',4",4"',1")}, 157.1 (s, C^{1"}), 153.8 (s, C^{8"}), 153.7 (s, C^{8""}), 153.4 (s, C^{8"}), 153.2 (s, C⁸), 147.9 (s, C^{1'}), 139.4, 139.2, 139.2, 138.8 (4 s, C^{6.6',6'',6''"}), 138.9 (s, C¹), 137.3 (s, C^{1""}), 128.9, 128.8, 128.6, 128.0 (4 s, C^{7.7',7'',7'''}), 125.9, 125.6, 125.5, 124.9 (4 s, C^{5.5',5'',5'''}), 124.0 (s, C²), 122.6 (s, C^{2"}), 115.3 (s, C^{2'}), 109.7 (s, C^{2'''}), CONH not observed. IR (Csl): v = 3458 (OH, NH), 3077 (CH_{aryl}), 1687 (C=O, amide I), 1562 (C=N, C=C), 1526 (amide II), 1245 (C–O), 838 (PF) cm⁻¹.

2.6. Oxidation of 1b

A solution of **1b** $(3.9 \times 10^{-5} \text{ M})$ was titrated stepwise with a solution of $(NH_4)_2$ Ce $(NO_3)_6$ $(4.1 \times 10^{-3} \text{ M})$. A solution of trifluoro-

acetic acid in acetonitrile (0.5 M) was used as solvent. During titration the colour of the solution turned from orange to yellow and finally to green. UV/Vis spectra revealed a decreasing band (MLCT) at 500 nm, an increasing band at 729 nm (LMCT) and isosbestic points at 432 und 578 nm.

2.7. Oxidation of 3a

A solution of **3a** $(1.5 \times 10^{-5} \text{ M})$ was titrated stepwise with a solution of $(NH_4)_2Ce(NO_3)_6$ $(1.8 \times 10^{-3} \text{ M})$. A solution of trifluoro-acetic acid in acetonitrile (0.5 M) was used as solvent. During titration the colour of the solution turned from orange to yellowish brown. UV/Vis spectra revealed a decreasing band (MLCT) at 492 nm, an increasing band at 705 nm (shoulder, LMCT) and isosbestic points at 418 und 574 nm.

Fig. 2. ¹H NMR spectrum of **3b** in CD₃CN (bottom); aromatic region (top).

2.8. Oxidation of 3b

A solution of **3b** $(2.0 \times 10^{-5} \text{ M})$ was titrated stepwise with a solution of $(NH_4)_2Ce(NO_3)_6$ $(2.4 \times 10^{-3} \text{ M})$. A solution of trifluoro-acetic acid in acetonitrile (0.5 M) was used as solvent. During titration the colour of the solution turned from orange to yellowish brown. UV/Vis spectra revealed a decreasing band (MLCT) at 504 nm, an increasing band at 733 nm (LMCT) and isosbestic points at 436 und 583 nm.

3. Results and discussion

3.1. Syntheses of mono- and dinuclear amides

One challenge when using ruthenium amino acid 1b or its ester **1a** in amide coupling reactions is the extremely poor nucleophilicity of the pyridylamine coordinated to the cationic ruthenium(II) center. We have tackled this problem by using a strong base to deprotonate the NH₂ group [9] or by employing highly reactive acid chlorides as acylating agents [18]. The mononuclear *N*-acetyl derivatives 2b and 2a [46] were prepared by acylation of the amino acid **1b** and its ester **1a**, respectively. The latter is acylated using acetic anhydride and activation of the unreactive amino group of **1a** by the phosphazene base P₁-*t*Bu (*tert*-butylimino-tris(dimethylamino)-phosphorane) [51,52] in 96% isolated yield [46] while amino acid 1b is acyclated by acetyl chloride in 51% isolated yield (Scheme 3). The Boc protected derivative **2c** is prepared by activation of **1a** with P₁-tBu and reaction with Boc₂O (di-tert-butyl dicarbonate). As traces of water inevitably result in hydrolysis of the ester function under these alkaline conditions water was added on purpose after the Boc protection step and the carboxylate derivative 2c was isolated in 93% yield and high purity (Scheme 3). 2c is an excellent starting material for the construction of dinuclear ruthenium complexes from **1b** as the Boc group is compatible with the activation of NH₂ groups by strong bases.

When using amino acid ester **1a** as the amine part and a COOHfunctionalized bis(terpyridine)ruthenium(II) complex without any further NH₂ group as the acid part no protection groups are necessary. Thus, coupling of **1a** with [Ru(tpy-C₆H₄-COOH)(tBu₃tpy)] (PF₆)₂ [47] (tBu₃tpy = 4,4',4''-tri-*tert*-butyl-2,2':6',2''-terpyridine) is accomplished by activation of **1a** with P₁-tBu and activation of

Fig. 3. ESI⁺ mass spectrum of 3b and isotopic pattern of relevant peaks.

Table 1	
Optical properties of mononuclear 2a, 2b, 2c and dinuclear	ar 3a and 3b in CH ₃ CN at
room temperature.	

	Abs: λ_{max} (nm) (ϵ/M^{-1} cm ⁻¹)	Emission: λ _{max} (nm)	$\Phi/{ imes}10^4$	τ/ns (%) ^a
2a	491 (21 600) [46]	690 [46]	16 [46]	21.7 (100) [46]
2b	493 (22 210)	699	13	21.3 (95) 4.1 (5)
2c	489 (19 990)	699	1.0	20.9 (92) 1.1 (8)
3a	496 (46 550)	692	14	21.6 (100)
3b	522 (50 620)	750	16	22.4 (99) 1.8 (1)

^a $\lambda_{\text{exc}} = 500 \text{ nm}.$

Fig. 4. Absorption spectra (top) and emission spectra (bottom) of 3a and 3b in CH₃CN at room temperature.

Electrochemical data of 2	a, 2c, 3a and 3b in <i>n</i> B	u_4NPF_6/CH_3CN at room temperature.

	$E_{\rm ox}^{\rm a}$ (V)	$E_{\rm p,red}^{\rm a,b}$ (V)
2a	1.25	-1.15; -1.73
2c	1.27	-1.39; -1.66
3a	1.18; 1.28	-1.11; -1.24; -1.57; -1.87
3b	1.06: 1.29	-1.10: -1.32: -1.53

^a vs. SCE; $E_{\frac{1}{2}}(FcH/FcH^{+}) = 0.38 V.$

Table 2

^b Pseudoreversible or irreversible reductions; peak potential given.

the acid by DCC/HOBt (DCC = N,N'-dicyclohexylcarbodiimide, HOBt = 1-hydroxybenzotriazole) to give dinuclear **3a** in 46% isolated yield (Scheme 4).

More challenging is the amide coupling of **1a** and **2c**. Activation of the carboxylate group of **2c** as benzotriazole ester requires slightly acidic conditions when using the standard DCC/HOBt protocol but these conditions would result in Boc deprotection. However, installing an acid-stable but base-labile Fmoc group (Fmoc = fluorenylmethoxycarbonyl) instead of Boc is prohibited as the coupling conditions with **1a** require a strong base. This dilemma is circumvented by using PyBOP (benzotriazole-1-yl-

Fig. 5. Cyclic voltammogram of 3b in CH₃CN/nBu₄NPF₆.

Fig. 6. UV/Vis/NIR spectra of 1b during oxidation with Ce^{IV} in 0.5 M TFA/CH₃CN.

oxy-tris-pyrrolidino-phosphonium hexafluorophosphate) as the carboxylate activating agent for **2c** as PyBOP is compatible with the carboxylate group (Scheme 5). Thus the amino group of **1a** is activated by P₁-*t*Bu and the carboxylate group of **2c** is activated by PyBOP to give a fully protected dinuclear complex. Addition of water hydrolyzes the ester of the dinuclear complex and acidification with acetic acid removes the Boc group giving fully deprotected **3b** in 82% overall yield (Scheme 5).

3.2. Characterization of mono- and dinuclear amides

The successful amide coupling reactions yielding the monouclear complexes **2a–2c** are easily evidenced in the proton NMR spectra of the acetyl derivatives **2a** and **2b** as the resonances of the protons H2' are significantly shifted to lower field by about one ppm as compared to those of the starting materials **1a/1b** [9] (see Scheme 3 for atom numbering). The amide protons of **2a/2b** resonate around δ = 9.4 ppm and the protons of the methyl group H9' at δ = 2.37 ppm. The Boc protected derivative **2c** is characterized by the carbamate NH resonance at δ = 10.30 ppm, the signal of the *tert*-butyl protons H9' at δ = 1.68 ppm and the downfield shifted H2' proton resonances at δ = 9.26 ppm. All other proton resonances are found at typical chemical shifts. In these mononuclear complexes the ¹³C resonances are easily assigned by CHcorrelation spectroscopy (see Section 2). The FAB⁺ mass spectra

158

Fig. 7. UV/Vis/NIR spectra of **3b** during oxidation with Ce^{IV} in 0.5 M TFA/CH₃CN.

of **2b** and **2c** show peaks for the compounds devoid of one hexafluorophosphate counter ion (see Section 2). As the complexes **2a–2c** tend to adsorb water (see Section 2) the IR spectra are little informative concerning characteristic NH stretching frequencies. However, characteristic group frequencies are observed for CH_{aryl} , CH_{alkyl} , C=O, amide I, amide II, C–O and P–F stretching vibrations of **2b** and **2c** (see Section 2).

As expected the ¹H NMR spectra of the dinuclear species **3a** and **3b** are somewhat more complicated and many multiplet signals are overlapping. However, 2D correlation spectroscopy allowed assigning all signal groups (Figs. 1 and 2). The amide resonances are found at $\delta = 10.07$ ppm (**3a**) and $\delta = 11.30$ ppm (**3b**) and the characteristic H2' resonances are observed at $\delta = 9.33$ ppm (**3a**) and $\delta = 9.51$ ppm (**3b**). In the high field region **3a** shows the expected triplet/quartet pattern for the ethyl ester at $\delta = 1.59$ ppm and $\delta = 4.64$ ppm as well as the singlet resonances for the different *tert*-butyl groups of the terpyridine ligand at $\delta = 1.77$ ppm and $\delta = 1.33$ ppm. The amine protons of fully deprotected **3b** resonate at $\delta = 5.83$ ppm.

The ESI + mass spectra of the dinuclear complexes **3a** and **3b** display signals corresponding to quadruply charged $[M]^{4+}$ ions and triply charged $[M-H]^{3+}$ ions with correct isotopic patterns and signal spacings of $\Delta(m/z) = 0.25$ (tetracation) and $\Delta(m/z) = 0.33$ (trication) confirming the product identity and purity (Fig. 3).

IR spectroscopy confirms the presence of aliphatic CH groups in **3a** (ethyl, *tert*-butyl) and the absence of aliphatic CH groups in fully deprotected **3b**. Characteristic signatures of expected functional groups (CO, amide, PF; see Section 2) further corroborate the constitution of **3a** and **3b**.

Fig. 8. Relevant DFT calculated metrical parameters of a model of **3a** (red) and **[3a]**⁺ (green, in parentheses) (distances in Å). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Relevant DFT calculated metrical parameters of a model of **3b** (red) and **[3b]**⁺ (green, in parentheses) (distances in Å). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3.3. Optical and redox properties of mono- and dinuclear amides

The mononuclear bis(terpyridine)ruthenium(II) complexes 2a-2c display the expected ¹MLCT absorption band at around $\lambda_{\text{max}} = 490 \text{ nm} \ (\varepsilon \approx 20\ 000\ \text{M}^{-1}\ \text{cm}^{-1})$ slightly hypsochromically shifted relative to the maximum of the amino acid 1b and its ester 1a [9,46]. For the dinuclear complexes 3a and 3b the extinction coefficients are more than twice as large (Table 1, Fig. 4). For 3b a significant bathochromic shift of the ¹MLCT absorption band to λ_{max} = 522 nm is noted, together with a strong hyperchromic effect (Table 1). Thus, the optical properties of **3b** appear not as a simple superposition of individual spectra (e.g. of amide **2b** and ester **1a**). A straightforward explanation would be a cooperative effect of the electron donating character of the NH₂ group paired with the strong electron accepting character of the amide linked cationic bis(terpyridine)ruthenium(II) moiety (push-pull chromophore). In 3a the electron donating effect of tert-butyl substituents is weaker than that of an NH₂ group and the electron accepting effect of the attached $[Ru(tpy)_2]^{2+}$ unit is attenuated by the additional para-phenylene spacer resulting in unremarkable absorption properties.

In contrast to the parent $[(tpy)_2Ru]^{2+}$ complex all compounds **2** and **3** show room temperature emission around $\lambda_{max} \approx 700$ nm in CH₃CN due to the favorable donor–acceptor substitution pattern [46,53]. The emission of **3b** is bathochromically shifted to 750 nm parallel to its low-energy absorption maximum (Table 1, Fig. 4). All compounds feature similar quantum yields (except for the carboxylate derivative **2c**, see Table 1) and ³MLCT excited state lifetimes $\tau \approx 20$ ns. For carboxylic acids and carboxylate compounds **2b**, **2c** and **3b** a biexponential decay is observed which might be a result of an additional deactivation pathway to a non-emissive state, e.g. by excited state proton transfer [54,55]. Biexponential rate laws have been observed consistently in several luminescent COOH substituted derivatives of bis(terpyridine) ruthenium(II) complexes [12,18].

The cyclic voltammograms of mononuclear **2a** and **2c** (the poor solubility of the acid **2b** prevented recording of reliable CVs) show very similar reversible Ru^{II}/Ru^{III} couples at ca. 1.26 V versus SCE, similar to comparable systems [53]. Two couples (pseudoreversible or irreversible) are assigned to terpyridine reductions (Table 2). The dinuclear complexes **3a** and **3b** can be oxidized twice (Fig. 5) – first at a lower potential round 1.1 V versus SCE and secondly at around 1.28 V versus SCE. The difference in oxidation potentials (0.10 V for **3a** and 0.23 V for **3b**) can be largely ascribed to the different substitution pattern and is not necessarily a sign of electronic communication or electrostatic interaction of the metal sites. However, electronic communication of the redox sites in **3b** cannot be excluded at this stage of the investigation and spectroscopic and theoretical investigations were performed.

Fig. 10. MO scheme of 3b (contour level 0.07 a.u.).

3.4. Oxidation to mixed-valent cations

In order to elucidate a possible electronic communication between ruthenium centers **3b** was titrated with diammonium cerium(IV) hexanitrate (NH₄)₂Ce(NO₃)₆ in 0.5 M TFA/CH₃CN solution. The potential of Ce^{IV} could be sufficient for the oxidation of Ru^{II} depending on the solvent employed (E_{V_2} (HClO₄) = 1.3 V, E_{V_2} (H₂O) = 0.88 V versus FcH/FcH⁺) [56]. For comparison the acetylated derivative **2b** and the amino acid **1b** were also treated with Ce^{IV} under the same conditions. The extremely weak basic amine function of **1b** is not protonated under these conditions [9]. In order to observe possible IVCT bands UV/Vis/NIR spectra were recorded during oxidation.

The *N*-acetylated derivative **2b** is resistant towards oxidation with Ce^{IV} under these conditions as its MLCT absorption band (λ_{max} = 492 nm) remains unchanged upon addition of up to 7.2 equivalents Ce^{IV} and no new bands arise.

The amino acid **1b**, however, is oxidized by Ce^{IV} ions to the corresponding green Ru^{III} complex **[1b]**⁺. The MLCT band of **1b** ($\lambda_{max} = 500$ nm, $\varepsilon = 18\ 230\ M^{-1}\ cm^{-1}$) decays while a new LMCT band (**[1b]**⁺) at 729 nm ($\varepsilon = 6810\ M^{-1}\ cm^{-1}$) rises (Fig. 6). Isosbestic points are observed at 432 and 578 nm. The oxidation has to be done quite fast as the TFA solution of **[1b]**⁺ changes with time (within hours). The nature of this slow reaction of **[1b]**⁺ and the products are currently investigated in greater detail.

The data show that the *amino* functionalized Ruthenium complex **1b** can be oxidized by Ce^{IV} while the *amido* functionalized Ruthenium complex **2b** is resistant towards Ce^{IV} oxidation. Thus, it is expected that Ce^{IV} oxidizes the dinuclear NH₂ substituted complex **3b** only once – namely at the *N*-terminal end. Treating **3b** with Ce^{IV} in 0.5 M TFA solution decreases the MLCT absorption band at 504 nm from ε = 52 690 to 35 350 M⁻¹ cm⁻¹ (now at 497 nm) and a new LMCT band at 733 nm (ε = 8720 M⁻¹ cm⁻¹) rises (Fig. 7). Two isosbestic points are observed at 436 and 583 nm. Addition of excess Ce^{IV} does not further change the spectrum. Thus, the data supports the interpretation that the tetracation of **3b** is oxidized to the mixed-valent pentacation [**3b**]⁺ by Ce^{IV}. No bands assignable to intervalence charge transfer bands (IVCT) are observed up to 3000 nm for [**3b**]⁺. The UV/Vis/NIR data allow us to describe the mixed-valent cation [**3b**]⁺ as largely localized system (Class I) as no IVCT could be observed. The valence trapping is likely due to the quite substantial redox asymmetry at the *N*- and *C*-terminal site (estimated as 0.15–0.20 V from mononuclear model compounds).

Similarly, **3a** has been oxidized to [**3a** $]^*$ by Ce^{IV}. During oxidation isosbestic points are observed at 418 and 574 nm. The LMCT band of [**3a** $]^*$ is found at 705 nm together with a remaining MLCT band at 492 nm, very similar to the observations made during the **3b** \rightarrow [**3b**]* oxidation. Up to 3000 nm no bands attributable to IVCT have been observed also suggesting trapped valences in [**3a**]*.

3.5. Theoretical calculations

The ground state geometric structures of models of the dinuclear complex tetracations **3a** and **3b** were optimized at the B3LYP/ LanL2DZ level and the calculated molecular structures are depicted in Fig. 8 and 9. In order to save computational costs the alkyl periphery of **3a** (*tert*-butyl and ethyl groups) has been replaced by hydrogen atoms in the model complex. The Ru-Ru distance increases from 13.4 Å in **3b** to 17.7 Å in **3a** due to the additional *para*phenylene spacer. The calculations show that the amide linker in **3b** is almost perfectly planar and also co-planar to both adjacent pyridine rings so that π -conjugation is principally possible. In **3a**, however, the *para*-phenylene spacer is twisted relative to the amide plane by 17° and also relative to the pyridine plane by 35° suggesting only poor π -orbital overlap (Fig. 8).

The molecular orbital schemes of **3a** and **3b** are depicted in Fig. S1 (Supporting Information) and Fig. 10. The occupied " t_{2g} " orbitals of both ruthenium sites are well separated from the π^*

terpyridine orbitals in both dinuclear systems. The highest occupied molecular orbital is centered on the *C*-terminal site for **3a** (see Supporting Information; MO 297-299) and on the *N*-terminal site for **3b** (MO 283, Fig. 10) suggesting differing sites of oxidation for **3a** and **3b**. The participation of the nitrogen p-orbital in the HOMO of amino-substituted ruthenium complex **1b** has been previously suggested on the basis of Resonance Raman spectroscopic results.[46] This feature is also seen here for **3b** (MO 283, Fig. 10). Fully analogous observations have been made for amino substituted free-base porphyrins and zink(II) porphyrinato complexes [57]. In order to clarify the site of oxidation (*N*-terminus, *C*-terminus) open-shell calculations on the oxidized complexes [**3a**]⁺ and [**3b**]⁺ have been performed.

No dramatic metrical changes are observed in the redox pairs **3a**/ [**3a**]⁺ and **3b**/[**3b**]⁺ (Figs. 8 and 9) which is within expectation for Ru^{II/III} complexes with polypyridine ligands.[50] For the **3a**/[**3a**]⁺ model some differences in Ru–N(py) distances are calculated at the *C*-terminal site (from 2.008 to 2.035 Å) while for **3b**/[**3b**]⁺ two Ru–N(py) distances at the *N*-terminal site are influenced (from 1.992 to 2.040 Å and from 2.032 to 1.992 Å). In addition, the *C*– N(amine) bond length varies from 1.365 to 1.354 Å, similar to the changes calculated for the pair **1b**/[**1b**]⁺ (Fig. S2, Supporting Information).

These DFT data suggest that the site of oxidation is mainly localized on the "*C*-terminal" ruthenium complex in the model of **3a** and on the "*N*-terminal" ruthenium site in **3b**. In amine substituted Ru^{III} complexes **[3b]**⁺ and **[1b]**⁺ a significant part of the additional positive charge is delocalized onto the NH₂ substituent strengthening the intrinsic iminium-like structure. This $[Ru^{II}-{Ru^{III}-NH_2}]^{5+}/[Ru^{II}-{Ru^{II}-NH_2}]^{5+}$ description supports the class I assignment based on spectroscopic data (see Section 3.4).

4. Conclusions

Asymmetrically substituted dinuclear terpyridine ruthenium complexes 3a and 3b have been synthesized by amide coupling with Ru[…]Ru distances of 17.7 and 13.4 Å, respectively. The differences in the local redox potentials in the dinuclear complexes should increase the barrier for (thermal and optical) electron transfer in singly oxidized mixed-valent complexes. In the mixed-valent complex [3b]⁺ with relatively small Ru⁻⁻Ru distance and a rather planar bridging ligand no communication is observed by spectroscopic analysis. This finding is likely due to the redox asymmetry (ca. 0.15–0.20 V) featured in these systems with directional amide units. Future studies will focus on systems based on ruthenium amino acids with less differing redox potentials, e.g. by adjusting the substituents to -C(O)-NHR at the C-terminus and to NH-C(O)R at the N-terminus. This should result in similar redox potentials of the individual ruthenium centers due to the similar substitution pattern [(RHN-(O)C-tpy)Ru(tpy-NHC(O)-tpy)Ru(tpy-NHC(O)R)]⁴⁺ but simultaneously preserve the directionality of oligoamides and peptides (N-terminus/C-terminus).

Acknowledgments

This work was financially supported by the Deutsche Forschungsgemeinschaft (Grant No. HE 2778/5-1). We thank Prof. Dr. Sven Rau for the generous donation of a sample of $[Ru(tpy-C_6H_4-COOH)(tBu_3tpy)](PF_6)_2$.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.ica.2011.03.046.

References

- S. Campagna, G. Denti, S. Serroni, M. Ciano, A. Juris, V. Balzani, Inorg. Chem. 31 (1992) 2982.
 K.O. Johansson, J.A. Lotoski, C.C. Tong, G.S. Hanan, Chem. Commun.
- (2000) 819.
- [3] Y.-Q. Fang, M.I.J. Polson, G.S. Hanan, Inorg. Chem. 42 (2003) 5.
 [4] M.I.J. Polson, F. Loiseau, S. Campagna, G.S. Hanan, Chem. Commun. (2006) 1301
- [5] K. Heinze, M. Beckmann, K. Hempel, Chem. Eur. J. 14 (2008) 9468.
- [6] U.S. Schubert, H. Hofmeier, G.R. Newkome, Modern Terpyridine Chemistry, Wiley-VCH, 2006.
- [7] H. Hofmeier, U.S. Schubert, Chem. Soc. Rev. 33 (2004) 373.
- [8] W.C. Chan, P.D. White (Eds.), Fmoc Solid Phase Peptide Synthesis, Oxford University Press, Oxford, 2000.
- [9] K. Heinze, K. Hempel, M. Beckmann, Eur. J. Inorg. Chem. (2006) 2040.
- [10] K. Heinze, U. Wild, M. Beckmann, Eur. J. Inorg. Chem. (2007) 617.
- 11] K. Heinze, M. Schlenker, Eur. J. Inorg. Chem. (2005) 66.
- [12] K. Heinze, K. Hempel, A. Breivogel, Z. Anorg. Allg. Chem. 635 (2009) 2541.
- [13] L. Barišić, V. Rapić, V. Kovač, Croat. Chem. Acta 75 (2002) 199.
- [14] K. Heinze, M. Schlenker, Eur. J. Inorg. Chem. (2004) 2974.
 [15] D. Siebler, M. Linseis, T. Gasi, L.M. Carrella, R.F. Winter, C. Förster, K. Heinze,
- Chem. Eur. J. 17 (2011) 4540.
- [16] K. Heinze, D. Siebler, Z. Anorg. Allg. Chem. 633 (2007) 2223
- [17] D. Siebler, C. Förster, K. Heinze, Eur. J. Inorg. Chem. (2010) 523.
- [18] K. Heinze, K. Hempel, Chem. Eur. J. 15 (2009) 1346.
- [19] V. Balzani, A. Juris, M. Venturi, S. Campagna, S. Serroni, Chem. Rev. 96 (1996) 759.
- [20] J.-P. Sauvage, J.-P. Collin, J.-C. Chambron, S. Guillerez, C. Coudret, V. Balzani, F. Barigelletti, L. De Cola, L. Flamigni, Chem. Rev. 94 (1994) 993.
- [21] C. Creutz, Prog. Inorg. Chem. 30 (1983) 1.
- [22] D.E. Richardson, H. Taube, Coord. Chem. Rev. 60 (1984) 107.
- [23] R.J. Crutchley, Adv. Inorg. Chem. 41 (1994) 273.
 [24] M.D. Ward, Chem. Soc. Rev. 24 (1995) 121.
- [25] D. Astruc, Acc. Chem. Res. 30 (1997) 383.
- [26] J.A. McCleverty, M.D. Ward, Acc. Chem. Res. 31 (1998) 842.
- [27] W. Kaim, A. Klein, M. Göckle, Acc. Chem. Res. 33 (2000) 755
- [28] K.D. Demadis, C.M. Hartshorn, T.J. Meyer, Chem. Rev. 101 (2001) 2655.
- [29] J.-P. Launay, Chem. Soc. Rev. 30 (2001) 386.
- [30] B.S. Brunschwig, C. Creutz, N. Sutin, Chem. Soc. Rev. 31 (2002) 168.
- [31] J.T. Hupp, in: J.A. McCleverty, T.J. Meyer (Eds.), Comprehensive Coordination Chemistry II, Elsevier Science, Amsterdam, 2003, p. 709.
- [32] R.J. Crutchley, in: J.A. McCleverty, T.J. Meyer (Eds.), Comprehensive Coordination Chemistry II, Elsevier Science, Amsterdam, 2003, p. 235.
- [33] D.M. D'Alessandro, F.R. Keene, Chem. Soc. Rev. 35 (2006) 424.
 [34] D.M. D'Alessandro, F.R. Keene, Chem. Rev. 106 (2006) 2270.
- [35] (a) W. Kaim, G.K. Lahiri, Angew. Chem. 119 (2007) 1808;
- (b) W. Kaim, G.K. Lahiri, Angew. Chem., Int. Ed. 46 (2007) 1778.
- [36] W. Kaim, B. Sarkar, Coord. Chem. Rev. 251 (2007) 584.
- [37] M.B. Robin, P. Day, Adv. Inorg. Chem. Radiochem. 10 (1968) 247.
- [38] C. Creutz, H. Taube, J. Am. Chem. Soc. 91 (1969) 3988.
- [39] C. Creutz, H. Taube, J. Am. Chem. Soc. 95 (1973) 1086.
- [40] G.D. Storrier, S.B. Colbran, Inorg. Chim. Acta 284 (1999) 76.
- [41] T. Okamura, T. Iwamura, S. Seno, H. Yamamoto, N. Ueyama, J. Am. Chem. Soc. 126 (2004) 15972.
- [42] E.C. Constable, M.D. Ward, J. Chem. Soc., Dalton Trans. (1990) 1405.
- [43] J.-P. Collin, P. Lainé, J.-P. Launay, J.-P. Sauvage, A. Sour, J. Chem. Soc., Chem. Commun. (1993) 434.
- [44] S. Vaduvescu, P.G. Potvin, Inorg. Chem. 41 (2002) 4081.
- [45] A.C. Benniston, A. Harriman, P. Li, C.A. Sams, M.D. Ward, J. Am. Chem. Soc. 126 (2004) 13630.
- [46] K. Heinze, K. Hempel, S. Tschierlei, M. Schmitt, J. Popp, S. Rau, Eur. J. Inorg. Chem. (2009) 3119.
- [47] A sample of this ruthenium(II) complex has been kindly donated by Prof. Dr. Sven Rau, University of Erlangen-Nürnberg, Germany.
- [48] J.V. Caspar, T.J. Meyer, J. Am. Chem. Soc. 105 (1983) 5583.
- [49] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, GAUSSIAN 03, Revision B.03, Gaussian, Inc., Pittsburgh PA, 2003.
 [50] M. Biner, H.-B. Bürgi, A. Ludi, C. Röhr, J. Am. Chem. Soc. 114 (1992) 5197.
- [50] (a) R. Schwesinger, C. Hasenfratz, H. Schlemper, L. Walz, E.-M. Peters, K. Peters, H. C. von Schwesing, Angew. Chem. 105 (1993) 1420.
 - H.G. von Schnering, Angew. Chem. 105 (1993) 1420; (b) R. Schwesinger, C. Hasenfratz, H. Schlemper, L. Walz, E.-M. Peters, K. Peters, H.G. von Schnering, Angew. Chem., Int. Ed. 32 (1993) 1361.

162

- [55] C. Turro, S.H. Bossmann, Y. Jenkins, J.K. Barton, N.J. Turro, J. Am. Chem. Soc. 117 (1995) 9026.
 [56] N.G. Connelly, W.E. Geiger, Chem. Rev. 96 (1996) 877.
 [57] K. Heinze, A. Reinhart, Dalton Trans. (2008) 469.
- [52] R. Schwesinger, Nachr. Chem. Tech. Lab. 38 (1990) 1214.
 [53] M. Maestri, N. Armaroli, V. Balzani, E.C. Constable, A.M.W. Cargill Thompson, Inorg. Chem. 34 (1995) 2759.
 [54] G. Ulrich, F. Nastasi, P. Retailleau, F. Puntoriero, R. Ziessel, S. Campagna, Chem. Eur. J. 14 (2008) 4381.

9.4 Light-induced Charge Separation in a Donor-Chromophore-Acceptor Nanocomposite Poly[TPA-Ru(tpy)₂]@ZnO

L. zur Borg, A. L. Domanski, A. Breivogel, M. Bürger, R. Berger, K. Heinze, R. Zentel, J. Mater. Chem. C 2013, 1, 1223–1230.

DOI: 10.1039/c2tc00535b

Reprinted with permission from The Royal Society of Chemistry, Copyright © 2013.

Journal of Materials Chemistry C

PAPER

RSCPublishing

View Article Online

Cite this: J. Mater. Chem. C, 2013, 1, 1223

Received 31st October 2012 Accepted 29th November 2012

DOI: 10 1039/c2tc00535b

www.rsc.org/MaterialsC

Introduction

Since O'Regan and Grätzel reported the first dye-sensitised solar cells (DSSCs) in 1991,1 much effort has been devoted to enhancing their efficiency. The benefit to our environment is obvious, but the DSSCs suffer from the possibility of leaking of the I_3^-/I^- hole conductor dissolved in a liquid solvent. To avoid leaking, solid state dye-sensitised solar cells (ssDSSCs) were introduced in 1996.² Oligoethylene glycol methacrylate doped with lithium ions was used as a p-type conductor. In the following years, different polymers were used to improve the efficiency.3,4 Conducting polymers like poly(vinyltriphenylamine) (PTPA), poly(para-phenylene vinylene) (PPV) or poly-

Light-induced charge separation in a donor-chromophore-acceptor nanocomposite poly[TPA-Ru(tpy)₂]@ZnO† Lisa zur Borg,^a Anna L. Domanski,‡^b Aaron Breivogel,‡^c Mareike Bürger,^a Rüdiger Berger,^b Katja Heinze^{*c} and Rudolf Zentel^{*a} The synthesis and characterisation of a new donor-chromophore-acceptor system based on poly(vinyltriphenylamine) as the electron donor and a glycine-functionalised bis(2,2';6',2''-terpyridine) ruthenium(II) complex acting both as a chromophore and as an anchor group attached to ZnO

develops a positive charge and thus efficient charge separation between ZnO and the polymer is achieved. (3-hexylthiophene) (P3HT) have been used as hole transporting layers.5 Transient absorption spectroscopy studies showed that the dye regeneration in ssDSSCs was at least one order of magnitude faster than in conventional DSSCs. However, the efficiencies of ssDSSCs remained low. The major drawback in this system is the low penetration rate of the polymer within the mesoporous film of TiO₂ nanoparticles. Several approaches were reported to increase the penetration. P3HT with carboxylate end groups has been synthesised and was used as a sensitiser in ssDSSCs.⁶ A higher adsorption of the polymer onto the TiO₂ was observed compared to methyl terminated P3HT. Oligotriarylamine groups were directly bound to ruthenium(II) polypyridine dyes, enhancing the contact between the donor and the chromophore.7-11 Furthermore, it has been shown that these systems show higher extinction coefficients compared to standard polypyridine complexes.12 To further improve the ssDSSCs, a tris(2,2'-bipyridine) ruthenium(II) dye was incorporated directly inside a hole transporting PTPA and indeed these devices showed enhanced performances.13 However, they carry only a single ruthenium (π) complex within each polymer chain. To increase the amount of the chromophore in each polymeric chain, block copolymers with the first block based on a semiconducting PTPA and a second block with perylene units as chromophores and separated dopamine units as anchor groups were synthesised.14 These polymers were attached to ZnO nanorods and characterised by Kelvin probe force microscopy (KPFM) on the level of the individual nanoparticle. A negative

nanorods as the electron acceptor are described. The TPA-containing block copolymer was synthesised by Reversible Addition Fragmentation Chain Transfer (RAFT) polymerisation and the ruthenium complex glycine conjugates prepared by Solid Phase Peptide Synthesis (SPPS) were attached via postpolymerisation esterification. GPC, NMR, IR and UV-Visible spectroscopy were used to characterise the multifunctional chromophore-donor polymer. Zinc oxide nanorods were functionalised with the block copolymer by multisite adsorption via the glycine COOH groups. The functionalised nanoparticles were

well dispersible in organic solvents. Photoluminescence studies showed a complete guenching of the

phosphorescence of the ruthenium chromophore (³MLCT state). Kelvin probe force microscopy (KPFM)

was used to confirm that under continuous excitation of the Ru^{II} complex (¹MLCT) the polymer corona

^aInstitute of Organic Chemistry, Johannes Gutenberg-University, Duesberweg 10-14, 55099 Mainz, Germany. E-mail: Zentel@uni-mainz.de; Fax: +49-6131-3924778; Tel: +49-6131-3920361

^bMax Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. E-mail: berger@mpip-mainz.mpg.de; Fax: +49-6131-379100; Tel: +49-6131-379114

^{&#}x27;Institute of Analytical and Inorganic Chemistry, Johannes Gutenberg-University, Duesberweg 10-14, 55128 Mainz, Germany. E-mail: katja.heinze@uni-mainz.de; Fax: +49-6131-3927277; Tel: +49-6131-3925886

[†] Electronic supplementary information (ESI) available: FTIR of A, P2, P3a and P3b, ¹⁹F NMR spectra of P2 and P3a, AFM of P3a@ZnO and KPFM of P3b@ ZnO, atom numbering of A used for NMR assignment, UV-vis spectrum of P3b. See DOI: 10.1039/c2tc00535b

[‡] These authors contributed equally to this work.

charging of the inorganic nanoparticles and a positive charging of the polymer corona were observed upon laser irradiation.¹⁴ However, a more proximate contact of the dye with the ZnO is desirable for a more efficient electron injection.

Herein, we present the synthesis of a nanoscale donorchromophore-acceptor (D–C–A) system with a PTPA based block copolymer carrying several directional bis(terpyridine) ruthenium(π) side groups in the second block. A carboxyl group is attached to each Ru^{II} dye which binds to the oxidic surface of ZnO nanorods. This allows for a large amount of dyes in proximity to the surface of the ZnO with the direct binding of the dye to the acceptor being beneficial for an efficient electron injection and charge separation. The TPA polymer acts as a hole transporting matrix and the directional ruthenium complexes act both as light harvesting units and as anchor groups. Upon irradiation into the dye MLCT absorption band, charges are created and separated, as proven by photoluminescence (PL) spectra and KPFM measurements.

Experimental

Materials

Unless otherwise mentioned, all chemical reagents were used as purchased without any further purification. Pentafluorophenol was obtained from Fluorochem (UK). Anhydrous THF and dioxane were freshly distilled from sodium. DMF was freshly distilled from calcium hydride and not exposed to light until it was used. 2,2'-Azobis(isobutyronitrile) (AIBN) was recrystallised from diethyl ether and stored at -18 °C. Diphenyl-(4-vinylphenyl)-amine^{15a} and ZnO nanorods^{15b} were synthesised as reported in the literature.

Instrumentation

¹H NMR spectra were recorded on a Bruker 300 MHz FT NMR spectrometer. Chemical shifts (δ) are given in parts per million relative to TMS. Samples were prepared in deuterated solvents and their signals referenced to residual nondeuterated solvent signals. ¹⁹F NMR spectra were recorded on a Bruker 400 MHz FT NMR spectrometer. The molecular weight of the polymers was determined by gel permeation chromatography (GPC) in THF as the solvent and with the following equipment: pump PU 1580, auto sampler AS1555, UV detector UV 1575 (detection at 254 nm), RI detector RI 1530 from JASCO. Columns were used from MZ-Analysentechnik: MZ-Gel SDplus 10 2 Å and MZ-Gel SDplus 10 6 Å. Calibration was done using polystyrene standards purchased from Polymer Standard Services. IR spectra were recorded on a Perkin-Elmer 100 FTIR spectrometer using an ATR unit. UV-Vis spectra were recorded using a Jasco V-630 spectrophotometer (1 cm \times 1 cm quartz cell). Emission spectra were recorded on a Varian Cary Eclipse spectrometer. Quantum yields were calculated by comparing the areas under the emission spectra on an energy scale/cm⁻¹ recorded for optically matched solutions of the sample and the reference $[Ru(bpy)_3]$ $Cl_2 = 0.094$ in CH_3CN .¹⁶ ESI MS spectra were recorded on a Micromass Q-TOF-Ultima spectrometer. TEM pictures were taken on a Philips EM-420: 120 kV with a CCD-Camera.

KPFM measurements were performed at a MFP-3D standalone setup (Asylum Research, Santa Barbara). In order to prevent any degradation of the sample during the KPFM measurements the setup was placed in a glove box that was continuously purged with dry nitrogen ($H_2O < 0.1\%$, $O_2 < 0.01\%$). For simultaneous sample illumination during the KPFM measurement the setup was equipped with a diode laser (Point Source, iFLEX2000) with a wavelength of 488 nm, an intensity of 13.3 mW on the sample, and a spot diameter of 640 µm.^{17a} We used Pt/Ir coated cantilevers with a nominal vertical resonance frequency of 70 kHz (Nanosensors, PPP-EFM). The measurements were performed in the dual pass mode at a lift height of 5 nm and with an AC voltage of 1.5 V. In KPFM, the contact potential difference (CPD) is measured which is defined as the difference in the work function between the tip and sample. By using the amplitude modulation mode for KPFM both the tip apex and the cantilever contribute to the measured CPD.^{17b} Thus, local changes in the CPD are not exclusively related to the sample area underneath the tip apex but also to the one underneath the cantilever. In case the work function of the tip remains constant, it is possible to attribute changes in the measured CPD owing to sample illumination to changes in the surface potential of the sample.20 However, studies on P3HT:PCBM blends have shown that the CPD changes significantly for consecutive scanning on the same position. These shifts of the measured CPDs can be attributed to changes in the cantilever tip, such as coating thickness and adsorbates. Thus, it is important to have one surface within the scan area that does not participate in the photo-induced reaction and can therefore serve as an internal reference.^{21,22} For sample preparation, glass substrates were coated with 100 nm of ITO (99.9%, MaTeck GmbH) and cleaned in Ar plasma (PDC-002, Harrick plasma) for 2 min prior to their usage. The ITO surface acted as a reference surface for the KPFM study. A highly diluted dispersion of P3a@ZnO in THF was spin cast on the substrates.

Synthesis of chromophore A

The ruthenium dye [(H2N-CH2-CONH-tpy)Ru(tpy-CONH- CH_2 -COOH)](PF₆)₂ (A) was synthesised from [(H₂N-tpy)Ru(tpy-COOH](PF₆)₂ according to a solid phase peptide synthesis procedure.18,19 After cleavage from the TentaGel S Wang solid phase chromophore A was precipitated as its PF₆ salt by adding aqueous NH₄PF₆ to give A as a dark red powder. $\nu_{\rm max}/{\rm cm}^{-1}$ 3090w (=C-H), 2920w (C-H), 1717m (C=O(acid)), 1663m (amide I), 1603m (C=C stretching), 1528s (amide II), 1477s (C= C stretching), 1427s, 1354s, 1289s, 1260, 1095m, 1028s, 826vs (PF₆), 789s, 752s, 555s (see Fig. S1[†]). ¹H NMR: $\delta_{\rm H}$ (600 MHz; CD₃CN; Me₄Si) 9.09 (s, 2H, H²), 9.05 (s, 2H, H²), 8.59 (s, 1H, NH^b), 8.59 (m, 2H, H⁵), 8.41 (m, 2H, H⁵), 8.16 (m, 1H, NH^a), 7.95 (m, 2H, H⁶), 7.93 (m, 2H, H⁶), 7.44 (m, 2H, H⁸), 7.31 (m, 2H, $H^{8\prime}$), 7.21 (m, 2H, H^{7}), 7.12 (m, 2H, $H^{7\prime}$), 4.32–4.30 (m, 2H, CH_2^{a}), 4.32–4.30 (m, 2H CH_2^{b}), NH₂ not observed probably due to protonation (for atom numbering see ESI[†]). $\lambda_{abs,max}(DMF)/$ nm ($\epsilon/dm^3 \text{ mol}^{-1} \text{ cm}^{-1}$) 279 (87 900, $\pi \to \pi^*$), 311 (72 600, $\pi \to$ π^*), 498 (29 400, MLCT), $c = 0.09 \text{ mg mL}^{-1}$. $\lambda_{\text{em.max}}$ (DMF)/nm 667 (λ_{ex} /nm 498). Quantum yield $\Phi = 1.4 \times 10^{-3}$). MS (ESI⁺): m/z = 370.6 (22%) [M - (PF₆)₂]²⁺, 886.1 (100%) [M - PF₆]⁺.

Synthesis of P1

Paper

Diphenyl-(4-vinyl-phenyl)-amine (1.71 g, 6.3 mmol), dithiobenzoic acid benzyl ester (6.6 mg, 0.03 mmol), and 2,2'-azobis(2methylpropionitrile) (AIBN) (0.6 mg, 4.5 µmol) were placed in a Schlenk tube and equipped with a stir bar. Dioxane (9 mL) was added and the solution was degassed by three freeze–pumpthaw cycles. The flask was then immersed in a preheated oil bath at 75 °C and the polymerisation was carried out for 42 h. The polymer was precipitated in methanol, collected by centrifugation, redissolved in THF and reprecipitated in methanol. This procedure was repeated three times. The light yellow powder **P1** (540 mg, 32%) was dried at 45 °C under reduced pressure for 12 h. λ_{max} (THF)/nm 300 (ε /dm³ mol⁻¹ cm⁻¹ 205 800, c = 0.13 mg mL⁻¹). GPC: $M_n = 12,800$, $M_w = 15,600$, PDI: 1.2.

Synthesis of P2

P1 (180 mg, 0.01 mmol), pentafluorophenyl acrylate (90 mg, 0.4 mmol) and AIBN (0.2 mg, 1.5 µmol) were placed in a Schlenk tube and equipped with a stir bar. Dioxane (2 mL) was added and the solution was degassed by three freeze-pump-thaw cycles. The flask was then immersed in a preheated oil bath at 80 °C and the polymerisation was carried out for 48 h. The polymer was precipitated in methanol, collected by centrifugation, redissolved in THF and reprecipitated in methanol. This procedure was repeated three times. The light yellow powder (171 mg) was dried at 45 °C under reduced pressure for 12 h. To remove the end group, the polymer (171 mg) was dissolved in dioxane (2 mL) and AIBN (47 mg, 0.28 mmol) was added. The solution was immersed in a preheated oil bath at 80 °C and stirred for 4 h. The polymer was precipitated in methanol, collected by centrifugation, redissolved in THF and reprecipitated in methanol. This procedure was repeated three times. The light yellow powder P2 (151 mg) was dried at 45 °C under reduced pressure for 12 h. ν_{max}/cm^{-1} 3082w (=C-H), 2914w (C-H), 1784m (COOR), 1587vs, 1515vs (Ar-F), 1507vs, 1489vs, 1312s, 1272s, 1175s, 1029s, 835s, 750vs, 692vs, 623vs. ¹H NMR: $\delta_{\rm H}$ (300 MHz; CDCl₃; Me₄Si) 1.55 (br, s), 1.97 (br, s), 6.54 (br), 6.87 (br). ¹⁹F NMR $\delta_{\rm F}$ (400 MHz; CDCl₃; Me₄Si) –153.21 (2F, br, s, Fortho), -157.36 (1F, br, d, Fpara), -164.28 (2F, br, s, Fmeta). GPC: $M_{\rm n} = 14,900, M_{\rm w} = 19,000,$ PDI: 1.3.

Synthesis of P3a

P2 (37 mg, 2.8 μmol) was dissolved in dry THF (0.5 mL) in a nitrogen atmosphere. **A** (88 mg, 90 μmol) was dissolved in dry DMF (0.5 mL) in a nitrogen atmosphere and triethylamine (0.01 mg, 10 μmol) was added. The solutions were combined and stirred at 45 °C for 90 h. A white precipitate was observed after some time. The polymer was precipitated in methanol, redissolved in THF and reprecipitated in methanol seven more times until the supernatant was colourless. The dark red polymer **P3a** (18 mg) was dried under reduced pressure at 45 °C for 12 h. λ_{max} (THF)/nm 300, 498 (MLCT). ν_{max} /cm⁻¹ 3082w (=C-H),

rulate (00 mg 0.4 Functionalisation of ZnO with P3a and P3b

For both polymers P3a and P3b the same procedure was applied. P3a (15 mg) or P3b (15 mg) and ZnO nanorods (15 mg) were dispersed in THF (1 mL) in a Schlenk tube and degassed by three freeze-pump-thaw cycles. The tube was then immersed in a preheated oil bath at 65 °C and stirred for 18 h. The dispersion was then centrifuged at 4000 rpm for 5 min to remove the nonfunctionalised nanorods which precipitated. A few drops of ethanol were then added to the supernatant and the dispersion was centrifuged at 13 000 rpm for 5 min. The supernatant was removed and the precipitate redispersed in THF (0.5 mL). The washing cycle was repeated four more times. The functionalised nanoparticles P3a@ZnO and P3b@ZnO were dispersed in 1 mL anhydrous THF and kept under nitrogen and in the dark until they were used. P3a@ZnO: λ_{max} (THF)/nm 300, 498 (MLCT). $\lambda_{em,max}$ (DMF)/nm practically no emission observed (λ_{ex} /nm 498).

Results and discussion

Polypyridine complexes of ruthenium(II) have been extensively used as photoactive compounds in light to energy conversion devices. Compared to organic dyes they exhibit higher photo and thermal stabilities.²³ In many cases, ruthenium(II) polypyridine complexes contain bidentate (e.g. 2,2'-bipyridine) and monodentate ligands (e.g. pyridine, NCS⁻). Especially monodentate ligands are believed to cause long term stability problems because of photo-induced and thermal ligand dissociation and degradation.²⁴⁻²⁶ We employed tridentate 2,2';6',2"-terpyridine (tpy) ligands in the ruthenium complex A which imparts high photo and thermal stability because of the chelating effect.^{19,27,28} In addition, the 4'-substituents on the $[Ru(tpy)_2]^{2+1}$ core lead to a push-pull system with the two amide substituents pointing in the same direction. This vectorial arrangement is beneficial for charge separation and charge injection into inorganic semiconductors like ZnO or TiO2.

Synthesis of P3b

P2 (300 mg, 0.02 mmol), 4-(aminomethyl)benzoic acid (139 mg, 0.9 mmol) and triethylamine (0.1 mL, 0.9 mmol) were placed in a Schlenk tube and dispersed in anhydrous DMF (2 mL). The suspension was stirred for 21 h at 80 °C in a nitrogen atmosphere and the resulting polymer was purified by dialysis against methanol (molecular weight cut off of 3.500 g mol⁻¹). **P3b** (275 mg) was obtained as a light brown powder after drying in vacuum at 45 °C for 12 h. λ_{max} (THF)/nm (ε /dm³ mol⁻¹ cm⁻¹) 301 (102 400), c = 0.16 mg mL⁻¹. ν_{max} /cm⁻¹ 3082w (=C-H), 2914w (C-H), 1700m (amide I), 1655m (amide I), 1587vs (amide II), 1507vs, 1489vs, 1312s, 1272s, 1175s, 1029s, 835s, 750vs, 692vs, 623vs. ¹⁹F NMR $\delta_{\rm F}$ (400 MHz; CDCl₃; Me₄Si) no signal.

The ruthenium dye conjugate $[(H_2N-CH_2-CONH-tpy)]$ $Ru(tpy-CONH-CH_2-COOH)](PF_6)_2$ (A) was obtained via a solid phase peptide synthesis (SPPS) (Scheme 1) with a TentaGel S Wang resin used as the solid phase and an Fmoc protecting group strategy.¹⁸ SPPS allows high yield and high purity over several reaction steps because the reagents can be used in excess and purification is done by a simple washing procedure. A glycine unit was attached to the resin before the ruthenium (π) complex [(H₂N-tpy)Ru(tpy-COOH)](PF₆)₂ was anchored to the solid support by an amide bond. As aromatic amino groups are known to be less reactive towards activated esters²⁹ the amino group of the complex was decorated with a further glycine at the N-terminus which provides a reactive aliphatic amine functionality. In the last step the complex was cleaved from the solid phase by trifluoroacetic acid and precipitated by addition of an aqueous NH₄PF₆ solution.

The polymer poly(vinyltriphenylamine) PTPA (P1) was prepared by Reversible Addition Fragmentation Chain Transfer (RAFT) polymerisation from vinyltriphenylamine (Scheme 2). PTPA is well known as a p-type semiconducting polymer and has already been used in solar cells.³⁰ The controlled radical polymerisation allows a good control of the molecular weight, a narrow polydispersity index (PDI) and the possibility to synthesise block copolymers. P1 had a molecular weight of 13,000 g mol^{-1} (by GPC, polystyrene standard) and a PDI of 1.2. The second block was subsequently grafted onto P1, using pentafluorophenyl acrylate as the monomer and giving the block copolymer P2. Characterisation of P2 by GPC (Fig. 1) showed a small shift to higher molecular weight and by referring it to the polystyrene standard, the degree of polymerisation of the first block was calculated to be around 50 ($n \approx 50$) and of the second block around 10 ($m \approx 10$). The ¹⁹F NMR spectrum shows the expected resonances of the five fluorine nuclei attached to the aromatic ring (Fig. S2⁺). The activated pentafluorophenyl ester of P2 can subsequently be treated with primary amines to

Scheme 1 Synthesis of directional chromophore A by SPPS.

Paper

Scheme 2 Synthesis of P1 and P2 by RAFT polymerisation

Fig. 1 GPC traces of P1 (red), P2 (blue) and P3a (black)

introduce functionalities in quantitative yields.^{31,32} The activated ester block was chosen to be relatively short ($m \approx 10$), since short anchor blocks were shown to bind the most effectively to ZnO surfaces.³³

In order to attach the ruthenium dye A to polymer P2 a polymer analog reaction was carried out. The amine functionality of dye A readily reacts with the activated ester moieties of P2 (Scheme 3). An excess of the dye and the polymer were dissolved in *N*,*N*'-dimethylformamide and heated to 45 °C for 90 h. Excessive washing by precipitation/dissolving yielded the pure dark red block copolymer P3a. Characterisation by Fourier transform infrared (FT-IR) spectroscopy showed the absence of the ester band at 1784 cm⁻¹ and the new band of amide bonds at 1664 cm⁻¹ (Fig. S2⁺). Additionally, a ¹⁹F NMR spectrum proves that all pentafluorophenyl groups were removed from the polymer (Fig. $S3^+$). Furthermore, the PF₆ counterions were exchanged by other anions as judged by the absence of a resonance at 73.2 ppm. A significantly higher molecular weight of P3a was observed by GPC (Fig. 1) compared to the block copolymer P2, so that the covalent attachment of the dye to the polymer is proven. As a control, P2 was treated with 4-(aminomethyl)benzoic acid giving P3b. The synthesis and characterisation of P3b are analogous to the reaction of P2 with A. The

P3b

Scheme 3 Functionalisation of P2 with A to give P3a (top) and with 4-(aminomethyl)benzoic acid to give P3b (bottom).

carboxyl groups of **P3b** can also adsorb to ZnO surfaces but no charge generation is expected under irradiation with visible light.

UV-Visible and photoluminescence (PL) measurements were carried out (Fig. 2). In the absorption spectrum of **P3a** the bands at 250–350 nm arise from $\pi \rightarrow \pi^*$ transitions mainly of the triphenylamine groups and a small contribution from the ruthenium dye. The absorption of the dye in the visible region was observed at 498 nm and is attributed to the characteristic metal-to-ligand charge transfer (MLCT) of the complex.¹⁸ For **P3b** no absorption is observed in that spectral region (Fig. S8[†]). Photoluminescence measurements in THF ($\lambda_{exc} = 498$ nm) show that the dye functionalised polymer **P3a** emits at 667 nm, which is the same value as for the pristine dye **A** (667 nm in DMF). Thus the emission of the dye is not reductively quenched by the TPA polymer.

ZnO nanorods were synthesised according to the literature with a size distribution of several hundreds of nanometers to two micrometers.^{15b} For functionalisation with polymers **P3a** and **P3b**, the nanorods were dispersed in a small amount of THF and the respective polymer was added subsequently. The dispersion was stirred at 65 °C overnight under an inert atmosphere. Centrifugation (4000 rpm) for 2 min removed all insufficiently functionalised nanoparticles. Ethanol was then added to the clear dispersion to precipitate the nanocomposite.

View Article Online

Journal of Materials Chemistry C

Fig. 2 UV-Vis spectra of P2 in THF (black), P3a in THF (blue) and A in DMF (red) (top) and PL spectrum of P3a in THF at 498 nm excitation (bottom).

Subsequent centrifugation, redispersion and repetition of the washing cycle for several times gave the pure hybrid materials **P3a@ZnO** and **P3b@ZnO**, respectively. **P3a@ZnO** was a stable red dispersion, which showed some scattering of the light due to the large nanoparticles (length >800 nm). TEM images drop cast from the THF dispersion showed that **P3a@ZnO** nanoparticles were well dispersed and did not aggregate. In contrast, the as-synthesised sample of pristine ZnO showed strong aggregation (Fig. S4[†]).

The Jablonski diagram of the nanocomposite (Fig. 3) shows the estimated energy levels of the system **P3a@ZnO** together with the possible charge separation/recombination pathways in the D–C–A array.⁴² Irradiation of ZnO– $\langle Ru \rangle^{2+}$ –TPA at 498 nm leads to the singlet MLCT excited state ZnO– $^1\langle Ru \rangle^{2+}$ –TPA

Fig. 3 Jablonski diagram of P3a@ZnO.

(2.49 eV), which subsequently undergoes intersystem crossing (ISC) to the triplet excited state ³MLCT ZnO-³ (Ru)^{2+*}-TPA (1.86 eV) typically with unit efficiency. Both MLCT states are thermodynamically competent to inject an electron into ZnO or to accept an electron from TPA. Photoluminescence measurements show that the phosphorescence of **P3a@ZnO** is indeed efficiently quenched as compared to **P3a** lacking the ZnO acceptor. From the singlet and triplet MLCT excited states $ZnO-^{1}\langle Ru \rangle^{2+*}-TPA/ZnO-^{3}\langle Ru \rangle^{2+*}-TPA$ the fully charge separated state $ZnO(e^{-})-\langle Ru \rangle^{2+}-TPA(h^{+})^{14,34}$ can principally be populated *via* the partially charge separated states $ZnO-\langle Ru \rangle^{4+}$ -TPA(h⁺) (1.45 eV) or $ZnO(e^{-})-\langle Ru \rangle^{3+}-TPA$ (1.57 eV).¹⁸ In the fully charge separated state $ZnO(e^{-})-\langle Ru \rangle^{2+}-TPA(h^{+})$ (0.88 eV), the ZnO carries the negative and the TPA the positive charge.

By performing PL measurements the quantum yield of P3a was determined to be $\Phi = 2.0 \times 10^{-3}$ which is very similar to the value of **A** without TPA attachment ($\Phi = 1.4 \times 10^{-3}$).¹⁸ This shows that no luminescence quenching occurs when the dye is bound to the polymer backbone, *i.e.* photo-induced electron transfer from TPA to the excited ruthenium units 1 (Ru)^{2+*} and 3 (Ru)^{2+*} is inefficient in this polymer. However, after anchoring of P3a to ZnO, the quantum yield of the hybrid P3a@ZnO drops below $\Phi = 6.5 \times 10^{-5}$. This low quantum yield clearly corroborates the efficiency of the oxidative quenching in the system, *i.e.* the first electron transfer step after excitation is electron injection into ZnO, likely followed by dye regeneration by TPA.

In order to study the photo-induced interfacial charge transfer in more detail on a single particle level KPFM measurements were carried out in analogy to the measurements we performed on the D-C-A system consisting of a PTPA-perylene block copolymer covalently bound to a ZnO system.¹⁴ KPFM is a very powerful tool to detect local variations of the surface potential in the nanometer regime.³⁵ Illuminating samples with light allows studying the photo-response of optoelectronic materials.³⁶⁻⁴¹ Sample illumination of P3a@ZnO is realised from underneath the sample through transparent indium tin oxide (ITO) (Fig. 4a) The surface potential was first measured without illumination (Fig. 4b) on a single particle with a length of around 1 μ m and a diameter of approximately 120 nm (Fig. S5[†]). The particle displays an approximately 45 mV higher surface potential than the surrounding ITO substrate. By subsequently comparing that to the surface potential recorded under illumination with $\lambda = 488$ nm (Fig. 4c), the photoinduced change in the surface potential of the P3a@ZnO particles is determined. Upon illumination, the surface potential on the P3a@ZnO particle increases. This effect was completely reversible after switching off the laser and could be observed for all particles at different positions. Upon laser illumination at a wavelength of 488 nm an electron of the chromophore is excited. Charge separation occurs at the interface of the ZnO particle by transfer of the electron to the conduction band of the ZnO. The oxidised ruthenium dye regenerates by collecting an electron from the HOMO level of the TPA polymer.

In order to quantitatively discuss this photo-response, the surface potential profile was analyzed in detail across the particle as indicated by the blue and red line for laser off and on Paper

Fig. 4 Study of interfacial charge transfer by KPFM on **P3a@ZnO** spun cast from THF in the dark and under laser illumination ($\lambda = 488$ nm). (a) Schematic of the KPFM measurement on the D–C–A system (TPA in blue, Ru(tpy)₂ in red and ZnO in grey) under laser illumination through the ITO coated glass substrate. The surface potential on the functionalised ZnO particle upon illumination is qualitatively depicted in the upper graph. (b) and (c) Surface potential maps measured in the dark and under illumination on the same position. The measured potential values were adjusted relative to the constant potential value of the ITO at a large distance from the **P3a@ZnO**. (d) Line profiles of the surface potentials taken across the particle show an increase in surface potential of around 20 mV upon illumination.

in the corresponding surface potential images (Fig. 4d). The increase in surface potential of around 20 mV on the **P3a@ZnO** particle and up to a distance of around 100 nm around the particle was attributed to the build-up of positive charges in the TPA block as a consequence of the charge separation at the interface. Negative charges of the ZnO particle could not be detected by KPFM. This observation indicates a high grafting density of the **P3a** to the ZnO and therefore results in a densely packed and thick polymer layer. Thus, the effect of the build-up of electrons inside the ZnO on the surface potential change is shielded by the positive charges of the TPA.⁴³

The estimated energy level difference of 0.88 eV between the ground state $\text{ZnO}-\langle \text{Ru} \rangle^{2+}$ -TPA and the charge separated state $\text{ZnO}(e^{-})-\langle \text{Ru} \rangle^{2+}$ -TPA(h⁺) (Fig. 3) is significantly larger than the value obtained by KPFM. We attribute this difference to the screening of the positively charged TPA by the counter ions of the $\langle \text{Ru} \rangle^{2+}$ which diffuse from the D-A interface into the polymer matrix. Finally, an additional control experiment performed on **P3b@ZnO** showed no photo-response under irradiation with $\lambda = 488$ nm (Fig. S6†). Without the chromophore as the anchoring group at the interface between ZnO and TPA no excitons can be generated under similar conditions. Thus, for an efficient charge transfer the complete donor-chromophore-acceptor system is required.

Conclusions

Herein we demonstrated the synthesis and characterisation of a new nanoscale D–C–A system with polytriphenylamine as the electron donor (D) and a directional $[Ru^{II}(tpy)_2]^{2+}$ complex as the chromophore (C) which is directly bound to ZnO nanorods as the electron acceptor (A).

The ruthenium complex $[Ru^{II}(tpy)_2]^{2+}$ with tridentate ligands has a higher thermal and photostability compared to organic dyes or 2,2'-bipyridine ruthenium(II) complexes. Additionally, the push-pull substituted terpyridine ligands induce spatially separated frontier orbitals which support the charge separation at the interphase. Since the polymer carries several chromophores within each chain, the local concentration of the light harvesting units at the ZnO surface is very high. The chromophore-acceptor contact is very intimate through the direct attachment *via* the carboxyl groups of the Ru^{II} complex. The donor-chromophore contact on the other side is enhanced by the covalent binding of the triphenylamine polymer to the chromophores. Charge separation occurs under light excitation of the chromophore and was proven by phosphorescence quenching and KPFM measurements. Based on these results, we believe that the system is especially suitable to build high performance ssDSSCs.

Acknowledgements

This work was financially supported by the International Research Training Group (IRTG): Self Organized Materials for Optoelectronics supported by the Deutsche Forschungsgemeinschaft (DFG). We thank Dr Stefan Frank for the synthesis of the ZnO nanorods and Gabi Herrmann for the preparation of the ITO coated glass substrates. In addition, we thank Esha Sengupta and Stefan Weber for discussions and the BMBF (contract # 03SF0334) for partial financial support in building up the photo-KPFM.

Notes and references

- 1 B. O'Regan and M. Grätzel, Nature, 1991, 353, 737-740.
- 2 M. Matsumoto, H. Miyazaki, K. Matsuhiro, Y. Kumashiro and Y. Takaoka, *Solid State Ionics*, 1996, **89**, 263–267.
- 3 U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer and M. Grätzel, *Nature*, 1998, **395**, 583–585.
- 4 J. Boucle and J. Ackermann, Polym. Int., 2012, 61, 355-373.
- 5 W. Zhang, Y. Cheng, X. Yin and B. Liu, *Macromol. Chem. Phys.*, 2011, **212**, 15–23.
- 6 R. H. Lohwasser, J. Bandara and M. Thelakkat, *J. Mater. Chem.*, 2009, **19**, 4126–4130.
- 7 K. C. D. Robson, B. D. Koivisto, T. J. Gordon, T. Baumgartner and C. P. Berlinguette, *Inorg. Chem.*, 2010, **49**, 5335–5337.
- 8 K. C. D. Robson, B. Sporinova, B. D. Koivisto, E. Schott, D. G. Brown and C. P. Berlinguette, *Inorg. Chem.*, 2011, 50, 6019–6028.
- 9 C. S. Karthikeyan, K. Peter, H. Wietasch and M. Thelakkat, *Sol. Energy Mater. Sol. Cells*, 2007, **91**, 432–439.
- 10 J.-H. Yum, S.-J. Moon, C. S. Karthikeyan, H. Wietasch, M. Thelakkat, S. M. Zakeeruddin, M. K. Nazeeruddin and M. Grätzel, *Nano Energy*, 2012, 1, 6–12.
- 11 Z. Jin, H. Masuda, N. Yamanaka, M. Minami, T. Nakamura and Y. Nishikitani, *Chem. Lett.*, 2009, **38**, 44–45.
- 12 H. J. Snaith, C. S. Karthikeyan, A. Petrozza, J. Teuscher, J. E. Moser, M. K. Nazeeruddin, M. Thelakkat and M. Grätzel, *J. Phys. Chem. C*, 2008, **112**, 7562–7566.
- 13 K. Peter and M. Thelakkat, *Macromolecules*, 2003, 36, 1779– 1785.

- 14 M. Zorn, S. A. L. Weber, M. N. Tahir, W. Tremel, H. J. Butt, R. Berger and R. Zentel, *Nano Lett.*, 2010, **10**, 2812–2816.
- 15 (a) M. Behl, E. Hattemer, M. Brehmer and R. Zentel, *Macromol. Chem. Phys.*, 2002, 203, 503–510; (b) B. Cheng, W. Shi, J. M. Russell-Tanner, L. Zhang and E. T. Samulski, *Inorg. Chem.*, 2006, 45, 1208–1214.
- 16 K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi and S. Tobita, *Phys. Chem. Chem. Phys.*, 2009, **11**, 9850–9860.
- 17 (a) S. L. Weber, H.-J. Butt and R. Berger, Electrical Characterization of Solar Cell Materials Using Scanning Probe Microscopy in Nanoscience and Nanotechnology 3, ed. B. Bhushan, Springer Berlin Heidelberg, 2013, pp. 551–573; (b) S. V. Kalinin and D. A. Bonnell, Phys. Rev. B: Condens. Matter Mater. Phys., 2001, 63, 125411.
- 18 K. Heinze and K. Hempel, *Chem.-Eur. J.*, 2009, **15**, 1346-1358.
- 19 K. Heinze, K. Hempel and M. Beckmann, *Eur. J. Inorg. Chem.*, 2006, **2006**, 2040–2050.
- 20 V. Palermo, M. Palma and P. Samorì, *Adv. Mater.*, 2006, **18**, 145–164.
- 21 E. Sengupta, A. L. Domanski, S. A. L. Weber, M. B. Untch, H.-J. Butt, T. Sauermann, H. J. Egelhaaf and R. Berger, *J. Phys. Chem. C*, 2011, **115**, 19994–20001.
- 22 A. L. Domanski, E. Sengupta, K. Bley, M. B. Untch, S. A. L. Weber, K. Landfester, C. K. Weiss, H.-J. Butt and R. Berger, *Langmuir*, 2012, 28, 13892–13899.
- 23 A. Reynal and E. Palomares, *Eur. J. Inorg. Chem.*, 2011, 2011, 4509–4526.
- 24 P. T. Nguyen, B. X. T. Lam, A. R. Andersen, P. E. Hansen and T. Lund, *Eur. J. Inorg. Chem.*, 2011, 2011, 2533–2539.
- 25 T. P. Brewster, W. Ding, N. D. Schley, N. Hazari, V. S. Batista and R. H. Crabtree, *Inorg. Chem.*, 2011, **50**, 11938–11946.
- 26 S. Kämper, A. Paretzki, J. Fiedler, S. Záliš and W. Kaim, *Inorg. Chem.*, 2012, **51**, 2097–2104.
- 27 A. Breivogel, C. Förster and K. Heinze, *Inorg. Chem.*, 2010, **49**, 7052–7056.
- 28 A. Breivogel, K. Hempel and K. Heinze, *Inorg. Chim. Acta*, 2011, **374**, 152–162.
- 29 K. Nilles and P. Theato, J. Polym. Sci., Part A: Polym. Chem., 2010, 48, 3683–3692.
- 30 M. Sommer, S. M. Lindner and M. Thelakkat, *Adv. Funct. Mater.*, 2007, 17, 1493–1500.
- 31 M. Eberhardt, R. Mruk, R. Zentel and P. Théato, *Eur. Polym.* J., 2005, **41**, 1569–1575.
- 32 M. Eberhardt and P. Theato, *Macromol. Rapid Commun.*, 2005, 26, 1488-1493.
- 33 M. Zorn, S. Meuer, M. N. Tahir, Y. Khalavka, C. Sonnichsen,
 W. Tremel and R. Zentel, *J. Mater. Chem.*, 2008, 18, 3050– 3058.
- 34 E. Hattemer, Synthesen und Charakterisierungen Arylaminhaltiger Polymere: Multifunktionelle hoch-T_g-Copolymere für photorefraktive Anwendungen, Johannes Gutenberg-Universität, Mainz, 2000.
- 35 M. Nonnenmacher, M. P. O'Boyle and H. K. Wickramasinghe, *Appl. Phys. Lett.*, 1991, 58, 2921–2923.

Journal of Materials Chemistry C

- 36 J. M. R. Weaver and H. K. Wickramasinghe, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.-Process., Meas., Phenom., 1991, 9, 1562–1565.
- 37 H. Hoppe, T. Glatzel, M. Niggemann, A. Hinsch, M. C. Lux-Steiner and N. S. Sariciftci, *Nano Lett.*, 2005, **5**, 269–274.
- 38 J. Cao, J.-Z. Sun, J. Hong, X.-G. Yang, H.-Z. Chen and M. Wang, *Appl. Phys. Lett.*, 2003, **83**, 1896–1898.
- 39 V. Palermo, G. Ridolfi, A. M. Talarico, L. Favaretto,
 G. Barbarella, N. Camaioni and P. Samorì, *Adv. Funct. Mater.*, 2007, 17, 472–478.
- 40 S. Sadewasser and M. C. Lux-Steiner, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.-Process., Meas., Phenom., 2010, 28, C4D29-C24D33.
- 41 E. J. Spadafora, R. Demadrille, B. Ratier and B. Grevin, *Nano Lett.*, 2010, **10**, 3337–3342.
- 42 The energy levels of the Jablonski diagram were estimated from the absorption and emission maxima

 $(ZnO^{-1}(Ru)^{2+*}-TPA: 498 nm; 2.49 eV; ZnO^{-3}(Ru)^{2+*}-TPA:$ 667 nm; 1.86 eV) as well as from potential differences of literature known energy levels and redox potentials. The conduction band of ZnO is at -4.4 eV vs. vacuum.¹⁴ The oxidation potential of the TPA units in P3@ZnO is estimated to be +0.84 V vs. NHE which is the oxidation potential of monomeric tolyldiphenylamine.³⁴ The oxidation and reduction potentials of the $\langle Ru \rangle$ unit in P3(a)ZnO were estimated to be +1.285 and -0.850 V vs. SCE, respectively, from the values of the molecular [(H₃C-CONH-tpy)Ru(tpy-CONH-CH₂ruthenium dve COOH)](PF6)₂.¹⁸ With E(vacuum)/eV = -4.44 - E(NHE) = -4.68 - E(SCE) we estimate ZnO- $\langle Ru \rangle^+$ -TPA⁺ at +1.45 eV, $ZnO(e^{-})-\langle Ru \rangle^{3+}$ -TPA at +1.565 eV and $ZnO(e^{-})-\langle Ru \rangle^{2+}$ - TPA^+ at 0.88 eV.

43 S. V. Kalinin and D. A. Bonnell, *Nano Lett.*, 2004, 4, 555–560.

9.5 A Heteroleptic Bis(tridentate)ruthenium(II) Polypyridine Complex with Improved Photophysical Properties and Integrated Functionalizability

A. Breivogel, C. Förster, K. Heinze, Inorg. Chem. 2010, 49, 7052-7056.

DOI: 10.1021/ic1007236

Reprinted with permission from the American Chemical Society, Copyright © 2010.

A Heteroleptic Bis(tridentate)ruthenium(II) Polypyridine Complex with Improved Photophysical Properties and Integrated Functionalizability

Aaron Breivogel, Christoph Förster, and Katja Heinze*

Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany

Received April 15, 2010

The synthesis and photophysical properties of a ruthenium(II) complex bearing an electron-accepting 2,2';6',2''terpyridine ligand and an electron-donating N, N-dimethyl-N, N-dipyridin-2-ylpyridine-2, 6-diamine (ddpd) ligand are presented. The heteroleptic complex is easily prepared isomerically pure and features intense low-energy metal-toligand charge-transfer (MLCT) absorption bands and intense room temperature ³MLCT emission with a long ³MLCT lifetime. The favorable photophysical properties are due to the strong ligand field imposed by the ddpd ligand.

Introduction

Meridional-coordinating tridentate ligands are preferred over bidentate ligands because of increased (photo)stability, absence of chirality (Δ and Λ), and simple functionalization in central mutually trans positions. For example, switching from tris(bidentate) [Ir(ppy)₂(bpy)]⁺ to bis(tridentate) [Ir- $(phbpy)_2$ ⁺ has been beneficial in terms of the stability and excited-state lifetime (ppy = 2-phenylpyridine; bpy = 2,2'bipyridine; phbpy = 6-phenyl-2,2'-bipyridine).¹ However, in ruthenium oligopyridine chemistry, $[Ru(tpy)_2]^{2+}$ (1) shows disappointing photophysical properties [essentially nonluminescent at room temperature and a low triplet-state metal-toligand charge-transfer (³MLCT) lifetime] compared to [Ru- $(bpy)_3]^{2+}$ (2). Thermal population of a low-lying ³MC state of 1 provides an efficient deactivating pathway.²⁻⁴

Two strategies have emerged to improve the excited-state properties of bis(tridentate) ruthenium complexes: (i) increasing the M-L orbital overlap by adjusting the bite angles from N-Ru-N $< 80^{\circ}$ in five-membered chelate rings to $\sim 90^{\circ}$ in

six-membered chelate rings, which raises the energy of the ${}^{3}MC$ state relative to that of the ${}^{3}MLCT$ state, ${}^{5-10}$ and (ii) attaching an electron-withdrawing substituent to lower the oligopyridine π^* orbitals and thus the energy of the MLCT states relative to the deactivating ³MC state (which should overcompensate for the effect of increased nonradiative de-cay at low emission energies).^{11–14} Concomitant attachment of an electron-donating substituent at the second chelate ligand further improves the emission properties.^{14,15} These effects are clearly seen in the series $[\text{Ru}(\text{tpy})_2]^{2+}$ (1; $\lambda_{abs/emiss} = 474/629 \text{ nm}^{11}) \rightarrow [\text{Ru}(\text{EtOOC-tpy})(\text{tpy})]^{2+}$ (3; 485/667 nm¹³) \rightarrow $[\text{Ru}(\text{EtOOC-tpy})(\text{H}_2\text{N-tpy})]^{2+}$ (4; 500/744 nm^{14,15}) (Chart 1). At room temperature, the luminescence quantum yield increases from $< 5 \times 10^{-6}$ to 2.7×10^{-4} to 1.8×10^{-3} and the excited-state lifetime from 0.25 to 32 to 34 ns.^{11,13-15} Hammarström et al. have switched five-membered chelate rings to six-membered chelate rings by employing (bipyridylpyridyl)methane derivatives (bpy-CR₂-py) instead of terpyridine.⁵ The homoleptic

Thompson, A. M. W. *Inorg. Chem.* **1995**, *34*, 2759. (12) Schubert, U. S.; Hofmeier, H.; Newkome, G. R. *Modern Terpyridine*

(14) Heinze, K.; Hempel, K.; Beckmann, M. Eur. J. Inorg. Chem. 2006, 2040

(15) Heinze, K.; Hempel, K.; Tschierlei, S.; Schmitt, M.; Popp, J.; Rau, S. Eur. J. Inorg. Chem. 2009, 3119.

^{*}To whom correspondence should be addressed. E-mail: katja.heinze@ uni-mainz.de. Fax: +49-6131-39-27277.
(1) Tinker, L. L.; Bernhard, S. *Inorg. Chem.* 2009, *48*, 10507.
(2) Sauvage, J.-P.; Collin, J.-P.; Chambron, J.-C.; Guillerez, S.; Coudret,

C.; Balzani, V.; Barigelletti, F.; De Cola, L.; Flamigni, L. Chem. Rev. 1994, 94, 993.

⁽³⁾ Winkler, J. R.; Netzel, T. L.; Creutz, C.; Sutin, N. J. Am. Chem. Soc. 1987, 109, 2381.

⁽⁴⁾ Siemeling, U.; Vor der Brüggen, J.; Vorfeld, U.; Neumann, B.; Stammler, A.; Stammler, H.-G.; Brockhinke, A.; Plessow, R.; Zanello, P.; Laschi, F.; Fabrizi de Biani, F.; Fontani, M.; Steenken, S.; Stapper, M.; Gurzadyan, G. *Chem.—Eur. J.* 2003, *9*, 2819.
(5) Abrahamsson, M.; Wolpher, H.; Johansson, O.; Larsson, J.; Kritikos,

M.; Eriksson, L.; Norrby, P.-O.; Bergquist, J.; Sun, L.; Åkermark, B.; Hammarström, L. *Inorg. Chem.* 2005, 44, 3215.
(6) Abrahamsson, M.; Jäger, M.; Österman, T.; Eriksson, L.; Persson, P.;

Becker, H.-C.; Johansson, O.; Hammarström, L. J. Am. Chem. Soc. 2006, 128, 12616.

⁽⁷⁾ Abrahamsson, M.; Jäger, M.; Kumar, R. J.; Österman, T.; Persson, P.; Becker, H.-C.; Johansson, O.; Hammarström, L. J. Am. Chem. Soc. 2008, 130, 15533.

⁽⁸⁾ Jäger, M.; Kumar, R. J.; Görls, H.; Bergquist, J.; Johansson, O. Inorg. Chem. 2009, 48, 3228.

⁽⁹⁾ Kumar, R. J.; Karlsson, S.; Streich, D.; Rolandini Jensen, A.; Jäger, M.; Becker, H.-C.; Bergquist, J.; Johansson, O.; Hammarström, L. Chem.

Eur. J. **2010**, *16*, 2830. (10) Jäger, M.; Smeigh, A.; Lombeck, F.; Görls, H.; Collin, J.-P.; Sauvage, J.-P.; Hammarström, L.; Johansson, O. *Inorg. Chem.* **2010**, *49*, 374. (11) Maestri, M.; Armaroli, N.; Balzani, V.; Constable, E. C.; Cargill

Chemistry; Wiley-VCH: Weinheim, Germany, 2006.

⁽¹³⁾ Bolink, H. J.; Cappelli, L.; Coronado, E.; Gaviña, P. Inorg. Chem. 2005, 44, 5966

Chart 1. Bis(tridentate) Ruthenium(II) Oligopyridine Complexes

bis[(bipyridylpyridyl)methane]ruthenium complex 5 features $\tau = 15$ ns and $\Phi = 10^{-3} (\lambda_{abs/emiss} = 477/655$ nm; Chart 1). However, the values are still well below those of the tris-bpy complex $2(\tau = 1 \ \mu s, \Phi = 8.9 \times 10^{-26.7})$, and 5 is still chiral. These properties have been surpassed by the homoleptic complex $[\hat{R}u(\hat{d}qp)_2]^{2+}$ (6, Chart 1). Almost 90° N-Ru-N bite angles are observed and excellent photophysical properties are achieved ($\Phi = 2 \times 10^{-2}$; $\tau = 3 \,\mu$ s; $\lambda_{abs/emiss} = 490/700$ nm). Further enhancement is achieved by COOEt substitution (7, Chart 1; $\Phi = 7 \times 10^{-2}$; $\tau = 5.5 \,\mu$ s; $\lambda_{abs/emiss} = 553/693$ nm).^{6,7}

However, these homoleptic dqp complexes show fac/mer stereoisomerism because of the flexible six-membered chelate rings (the fac isomers even come in cis-fac and trans-fac isomers), and, in addition, N5Cl-coordinated complexes $[RuCl(dqp)_2]^+$ are formed.⁸ Heteroleptic-type 6 complexes with $X \neq Y$ (e.g., donor/acceptor substitution) are quite difficult to obtain,⁸ but very recently Hammarström et al. succeeded in incorporating dqp complexes in donor/chromophor/acceptor triads.9

Results and Discussion

Here we describe the synthesis and properties of the heteroleptic ruthenium oligopyridine complex 8 (Chart 1), which has several beneficial features: a 2-fold rotation axis, setup for simple functionalization in the direction of this C_2 axis,¹⁶ absence of *fac/mer* stereoisomerism, an electron-donating N, N'-dimethyl-N, N'-dipyridin-2-ylpyridine-2,6-diamine (ddpd) ligand forming six-membered chelate rings together with an electron-withdrawing 4'-(ethylcarboxy)terpyridine ligand (push-pull substitution). The methyl substituents of ddpd are necessary because tripyridyldiamines lacking alkyl groups at the amine are easily deprotonated, yielding chain complexes that are interesting by themselves for other reasons but undesirable for our purposes.¹

First, we performed quantum chemical calculations on the homoleptic complex $[Ru(ddpd)_2]^{2+}$ (9). The calculations suggest that *fac/mer* stereoisomers are analogous to those of 6, with mer-9 being more stable than trans-fac-9 (31 kJ mol⁻

⁽¹⁶⁾ Heinze, K.; Hempel, K. *Chem.—Eur. J.* 2009, *15*, 1346.
(17) Yin, C.; Huang, G.-C.; Kuo, C.-K.; Fu, M.-D.; Lu, H.-C.; Ke, J.-H.; Shih, K.-N.; Huang, Y.-L.; Lee, G.-H.; Yeh, C.-Y.; Chen, C.-h.; Peng, S.-M. J. Am. Chem. Soc. 2008, 130, 10090.

Figure 1. DFT (B3LYP, LANL2DZ)-optimized geometry of 8 (inset: Newman projection viewed approximately along the C_2 axis; tpy-COOEt ligand omitted). Hydrogen atoms are omitted for clarity. The arrow indicates an interligand NOE contact between protons.

and cis-fac-9 (34 kJ mol⁻¹). Attempts to synthesize and purify 9 are indeed complicated because of the formation of fac/mer isomers and N₅Cl coordination. Coordinated chloride is easily removed by silver cations, but heating (dimethyl sulfoxide, reflux, microwave, 10 h) does not furnish pure mer-9. The photophysical properties of the fac/mer mixture were also disappointing ($\lambda_{abs/emiss} = 393/468$ nm, very weak emission). Thus, we switched to the mixed donor/acceptorsubstituted ruthenium(II) complex 8 with an electron-donating ddpd ligand and an electron-withdrawing EtOOC-tpy ligand. 8 is easily prepared from $RuCl_3(EtOOC-tpy)^{18-2}$ and ddpd in a microwave-assisted synthesis at 80 °C (after chloride abstraction with silver nitrate and precipitation with NH_4PF_6) as a purple powder in 62% yield.

High-resolution electrospray ionization [(HR)ESI] mass spectrometry (MS), IR spectrometry, multinuclear and correlation NMR spectroscopy, and elemental analysis are consistent with the formulated structure of 8. Because the tpy ligand only coordinates in a meridional fashion, fac/mer stereoisomers are absent. A single resonance is observed for the N-CH₃ hydrogen, carbon, and nitrogen nuclei, respectively (Supporting Information). Singlet ground-state density functional theory (DFT) calculations on 8 reveal that the N-Ru-N angles involving the ddpd ligand are around 88° while the corresponding angles involving the tpv ligand are around 79° (Figure 1). The six-membered chelate rings of the ddpd ligand form boat conformations, resulting in an overall small twist of the ddpd ligand, with one terminal pyridine ring pointing up and the other one pointing down relative to the plane of the central pyridine ring (Figure 1, inset). Similarly, the N-CH₃ groups point up and below the central pyridine plane $(H_3C-N2-C14-N3/H_3C-N4-C14'-N3 = 150.4^{\circ})$ 150.2°), which allows for an nuclear Overhauser enhancement (NOE) contact to the tpy proton H8 vis-à-vis (indicated by an orange-colored arrow, Figure 1). Gratifyingly, the DFT-calculated metrical parameters match those obtained from a single-crystal X-ray diffraction analysis of 8 [triclinic, $P\overline{1}$; N1-Ru-N3/N5-Ru-N3 = 87.5°/87.7°; N6-Ru-N7/ $N7-Ru-N8 = 79.6^{\circ}/79.7^{\circ}; H_{3}C-N2-C14-N3/H_{3}C-N4 C14'-N3 = 156.2^{\circ}/153.2^{\circ}$; the atom numbering refers to that used in Figure 1 for the sake of comparison].

⁽¹⁸⁾ Fallahpour, R.-A. Synthesis 2000, 8, 1138.

⁽¹⁹⁾ Fallahpour, R.-A. *Eur. J. Inorg. Chem.* 1998, 1205.
(20) Fallahpour, R.-A.; Neuburger, M.; Zehnder, M. *New J. Chem.* 1999, 23, 53.

Figure 2. Molecular orbital diagram of 8 and some relevant molecular orbitals (contour value 0.06 au).

Figure 3. Experimental electronic absorption spectrum of 8 in CH₃CN (top) and calculated stick spectrum (TD-DFT, IEFPCM, CH₃CN) of 8 (the intensity of the sticks is proportional to the calculated oscillator strength, and the calculated spectrum is composed of δ functions at the excitation energies) (bottom).

Kohn-Sham frontier orbitals of the singlet ground state of 8 are shown in Figure 2. The lowest unoccupied molecular orbitals (LUMOs) of 8 are mainly localized on the EtOOCtpy ligand, while the highest occupied molecular orbitals (HOMOs) are essentially ruthenium-based orbitals (t_{2g} in octahedral symmetry) with some ddpd contribution (especially the nitrogen atoms of the N-CH₃ groups). The experimental electronic spectrum of 8 is dominated by intense $\pi \rightarrow \pi^*$ transitions at $\lambda < 350$ nm (Supporting Information). The broad absorption band around $\lambda = 500$ nm corresponds to several MLCT transitions (Figure 3).²¹ On the basis of time-dependent DFT (TD-DFT) calculations (gas-phase and polarizable continuum solvation model, CH_3CN ²¹ on 8 involving the first 12 spin-allowed singlet excitations, the most intense peaks in the visible spectral region are assigned to MLCT " $t_{2\alpha}(Ru)$ " $\rightarrow \pi^*(tpy-COOEt)$ transitions, e.g., transitions (3), (4), and (5) involve mainly HOMO, HOMO-1, and HOMO-2 (d_{Ru}) to LUMO and LUMO+1 [π^* (tpy-COOEt)] transitions at 508, 478, and 445 nm (Figures 2 and 3).

Breivogel et al.

Figure 4. Excitation emission matrix of 8.

The TD-DFT results compare well with the experimental data of **8** ($\lambda_{abs} = 517 \text{ nm}$; $\epsilon = 7500 \text{ M}^{-1} \text{ cm}^{-1}$; Figure 3). The difference between experimental and calculated absorption maxima of $\Delta E = 0.35$ eV (gas phase) [$\Delta E = 0.30$ eV (CH_3CN)] is similar to the one obtained for 1 using the same method [$\Delta E = 0.38$ eV (acetone)].²¹ The experimental maximum of **8** is bathochromically shifted by 1275 cm^{-1} relative to that of 3 because of the π -electron-donating effect of ddpd, raising the energy of the Ru d orbitals.

The room temperature emission is also shifted from 667 nm (3) to 729 nm (8),¹³ with the maximum intensity observed upon excitation of the ¹MLCT transitions (Figure 4). The excitation spectrum closely follows the absorption spectrum in the visible spectral region. In spite of the lower ³MLCT energy, 8 features a more than 10-fold higher quantum yield compared to 3 [$\Phi = 3.0 \times 10^{-3}$ (8)]. Also, the ³MLCT lifetime has dramatically increased to $\tau = 722(5)$ ns (8). This is appreciable considering the fact that a lower ³MLCT energy should lead to faster nonradiative decay.^{22,23}

In frozen butyronitrile at 77 K, emission is observed at higher energy and with a higher lifetime [$\lambda_{emiss} = 707 \text{ nm}; \tau =$ 3309(15) ns]. The first observation is due to the lower stabilization of the excited state in the frozen matrix, and the second finding is due to less accessible thermal deactivation pathways. The DFT-calculated energy difference between the ³MLCT state and the ground state (gas phase) amounts to 1.64 eV (756 nm for the $0 \rightarrow 0$ transition), in quite good agreement with the experiment.²¹

The photophysical properties of $\mathbf{8}$ are thus dramatically improved when compared to those of 1 and are approaching those of **2** ($\Phi = 6.2 \times 10^{-2}$; $\tau = 962 \text{ ns}^{24,25}$).

The Ru^{11/III} oxidation of **8** is found at $E_{1/2} = 0.81$ V (vs Fc/ Fc⁺). Thus, **8** is harder to oxidize than $4(E_{1/2} = 0.68 \text{ V}^{14})$ but easier to oxidize than $1(E_{1/2} = 0.92 \text{ V}^{11})$ or $3(E_{1/2} = 0.96 \text{ V}^{12})$ V¹³). This reflects the stronger donor ability of ddpd as compared to tpy, raising the energy of the Ru d levels. 8 is reduced at $E_{1/2} = -1.40$ V in a quasi-two-electron process, precluding assignments to individual ligands.

To place the ddpd ligand in the context of other donor ligands, a computational analysis was conducted. The net donor strength ($\sigma + \pi$) is estimated from DFT-calculated A₁ carbonyl stretching modes of tricarbonyl(nickel) fragments

⁽²¹⁾ Jakubikova, E.; Chen, W.; Dattelbaum, D. M.; Rein, F. N.; Rocha, R. C.; Martin, R. L.; Batista, E. R. Inorg. Chem. 2009, 48, 10720.

⁽²²⁾ Meyer, T. J. Pure Appl. Chem. 1986, 58, 1193.

⁽²³⁾ Caspar, J. V.; Meyer, T. J. J. Phys. Chem. 1983, 87, 952.
(24) Caspar, J. V.; Meyer, T. J. J. Am. Chem. Soc. 1983, 105, 5583.
(25) Ding, Z.; Wellington, R. G.; Brevet, P. F.; Girault, H. H. J. Phys.

Chem. 1996, 100, 10658.

Article

coordinated to the ligands.^{26,27} On this basis, the ddpd ligand was ranked between trimethylamine and N-heterocyclic carbene ligands (Supporting Information).

Conclusion

We have prepared a novel heteroleptic ruthenium(II) complex with a terpyridine acceptor ligand and a meridionalcoordinating tridentate ddpd donator ligand. The latter forms six-membered chelate rings with the metal center. This ligand combination results in long-wavelength absorption and emission as well as an extended ³MLCT lifetime of 722 ns.

The effects of ddpd are 3-fold: improved σ -orbital overlap with Ru "eg" orbitals due to $\approx 90^{\circ}$ bite angles (LUMO+11 and LUMO+13; Figure 2) raising their energies and thus the energy of the deactivating ³MC state, increased σ -donation boosting this effect, and increased π donation raising the energy of the Ru " t_{2g} " orbitals and resulting in quite low absorption and emission energies. These aspects of ddpd will also be exploited in other ddpd metal complexes currently prepared in our group. The use of 8 and functionalized derivatives in organic light-emitting devices, dye-sensitized solar cells (DSSCs), or biolabeling applications is actively pursued in our group.

Experimental Section

General Procedures. CH₃CN and dioxane were distilled from CaH₂ and sodium, respectively. All reagents were used as received from commercial suppliers (Acros and Sigma-Aldrich). Microwave heating was performed in a Discover Benchmate Plus (CEM Synthesis) single-mode microwave cavity, producing continuous irradiation at 2.455 GHz with 100 W (maximum power). Reaction mixtures were stirred with a magnetic stir bar during irradiation. The temperature and irradiation power were monitored during the course of the reaction. NMR spectra were recorded on a Bruker Avance DRX 400 spectrometer at 400.31 MHz (¹H), 100.66 MHz (${}^{13}C{}^{1}H$), and 40.56 MHz (${}^{15}N$). All resonances are reported in ppm versus the solvent signal as an internal standard [CD₃CN (¹H, $\delta = 1.94$; ¹³C, $\delta = 1.24$ ppm)] or versus external CH₃NO₂ (90% in CDCl₃; ¹⁵N, $\delta = 0$ ppm). IR spectra were recorded with a BioRad Excalibur FTS 3100 spectrometer as KBr disks. Electrochemical experiments were carried out on a BioLogic SP-50 voltammetric analyzer using platinum wires as counter and working electrodes and 0.01 M $Ag/AgNO_3$ as the reference electrode. The measurements were carried out at a scan rate of 150 mV s⁻¹ for cyclic voltammetry experiments and at 50-200 mV s⁻¹ for square-wave voltammetry experiments using 0.1 M $(nBu_4N)(PF_6)$ as the supporting electrolyte in CH₃CN. Potentials are referenced to the ferrocene/ferrocenium couple ($E_{1/2} = 85 \pm 5$ mV under the experimental conditions). UV/vis/near-IR spectra were recorded on a Varian Cary 5000 spectrometer using 1.0 cm cells (Hellma, Suprasil). Emission spectra were recorded on a Varian Cary Eclipse spectrometer. Quantum yields were determined by comparing the areas under the emission spectra on an energy scale/cm recorded for optically matched solutions of the sample and the reference {([Ru(bpy)₃]²⁺) = 0.062 in CH₃CN}.²⁴ For time-resolved photoluminescence measurements, a solution ($c = 4.5 \times$ 10^{-6} M in butyronitrile) was filled into a homemade cuvette (tinplated copper with quartz windows; indium-sealed; 4 mm optical path length) inside a nitrogen-filled glovebox and the cuvette was sealed and transferred to a home-built cryostat. It was kept under a dynamic vacuum (typically 10^{-6} mbar) for low-temperature experiments. The sample was excited by the 517 nm output of an optical parametric oscillator (OPO; GWU Lasertechnik) itself pumped by the frequency-tripled (10 Hz) output of a pulsed Nd:YAG nanosecond laser (INDI Quanta Ray Spectra Physics). The luminescence of the sample was dispersed by a Shamrock SR-303i spectrograph with a 150 L/ mm grating and detected by a gated intensified CCD detector (Andor IStar DH740 ICCD camera). The solution was illuminated with the laser beam from the detector side, and measurements were conducted at room temperature (295 K) and liquidnitrogen temperature (77 K). Single exponentials were used to fit the experimental data. Field desorption (FD) MS spectra were recorded on a FD Finnigan MAT90 spectrometer. ESI MS spectra were recorded on a Micromass Q-TOF-Ultima spectrometer. Elemental analyses were performed by the microanalytical laboratory of the chemical institutes of the University of Mainz.

Crystal Structure Determination. Intensity data were collected with a Bruker AXS Smart1000 CCD diffractometer with an APEX II detector and an Oxford cooling system and corrected for absorption and other effects using Mo Ka radiation ($\lambda = 0.71073$ Å) at 173(2) K. The diffraction frames were integrated using the *SAINT* package, and most were corrected for absorption with *MULABS*.^{28,29} The structures were solved by direct methods and refined by the full-matrix method based on F^2 using the SHELXTL software package.^{30,31} All nonhydrogen atoms were refined anisotropically, while the positions of all hydrogen atoms were generated with appropriate geometric constraints and allowed to ride on their respective parent carbon atoms with fixed isotropic thermal parameters. The asymmetric unit of a crystal of 8 contains one molecule of an acetonitrile solvent and two $[PF_6]^-$ counterions, one of which is disordered over two positions (site occupancy 0.73:0.27). Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-773229. Copies of the data can be obtained free of charge upon application to CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K. [fax (0.44) 1223-336-033; e-mail deposit@ ccdc.cam.ac.uk].

DFT calculations were carried out with the *Gaussian03/* DFT³² series of programs. The B3LYP formulation of DFT was used by employing the LANL2DZ basis set.³² No symmetry constraints were imposed on the molecules. For solvent modeling, the integral-equation-formalism polarizable continuum model (IEFPCM) was employed.

⁽²⁶⁾ Tolman, C. A. Chem. Rev. 1977, 77, 313.

⁽²⁷⁾ Shi, Q.; Thatcher, R. J.; Slattery, J.; Sauari, P. S.; Whitwood, A. C.; McGowan, P. C.; Douthwaite, R. E. Chem.-Eur. J. 2009, 15, 11346.

⁽²⁸⁾ SMART Data Collection and SAINT-Plus Data Processing Software for the SMART System, various versions; Bruker Analytical X-ray Instruments, Inc.: Madison, WI, 2000.

 ⁽²⁹⁾ Blessing, B. Acta Crystallogr. 1995, A51, 33.
 (30) Sheldrick, G. M. SHELXTL, version 5.1; Bruker AXS: Madison, WI, 1998

⁽³¹⁾ Sheldrick, G. M. SHELXL-97; University of Göttingen: Göttingen,

Germany, 1997. (32) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T., Jr.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision B.03; Gaussian, Inc.: Pittsburgh, PA, 2003.

7056 Inorganic Chemistry, Vol. 49, No. 15, 2010

Chart 2. Atom Numbering of ddpd for NMR Assignment

Chart 3. Atom Numbering of 8 for NMR Assignment

Synthesis of ddpd (Chart 2). Potassium bis(trimethylsilyl)amide (5.670 g, 28.42 mmol, 2.6 equiv) was dissolved in dioxane (100 mL) under argon. After the addition of N-methylpyridin-2ylamine (3.00 mL, 29.2 mmol, 2.7 equiv), the solution turned vellow. A solution of 2.6-dibromopyridine (2.555 g, 10.79 mmol. 1.0 equiv) in dioxane (30 mL) was added, and the mixture was heated to reflux for 64 h, resulting in a brown solution. After cooling to room temperature, water (250 mL) was added, and the aqueous phase was extracted three times with tetrahydrofuran/Et₂O (1:1, 100 mL). The combined organic phases were washed three times with a 1 M aqueous Na₂CO₃ solution and finally dried over MgSO₄. After removal of the solvent under reduced pressure, the product was purified by column chromatography (silica gel, 3:1 petroleum ether 40-60/ethyl acetate), yielding a yellow viscous liquid. Yield: 2.82 g (9.68 mmol, 90%). ¹H NMR (CD₃CN, 300 K): δ 8.29 (m, 2 H, H⁸), 7.57 (m, 2 H, H⁶), 7.50 (t, ${}^{3}J_{HH} = 8.0 \text{ Hz}, 1 \text{ H}, \text{H}^{1}$), 7.26 (m, 2 H, H⁵), 6.89 (m, 2 H, H⁷), 6.71 (d, ${}^{3}J_{HH} = 8.0 \text{ Hz}, 2 \text{ H}, \text{H}^{2}$), 3.50 (s, 6 H, CH₃). ¹³C{¹H} NMR (CD₃CN, 300 K): δ 158.7 (s, C⁴), 157.2 (s, C³), 148.8 (s, C⁸), 139.8 (s, C¹), 137.8 (s, C⁶), 117.9 (s, C⁷), 116.3 (s, C^{5}), 106.6 (s, C^{2}), 36.3 (s, CH_{3}). MS (FD): m/z 291.2 (100%) $[M]^+$. HR-MS (ESI⁺): Calcd for C₁₇H₁₇N₅Na: m/z 314.1382. Obsd: m/z 314.1375. Elem anal. Calcd for C₁₇H₁₇N₅ (291.35): C, 70.08; H, 5.88; N, 24.04. Found: C, 70.12; H, 5.52; N, 24.34.

Synthesis of 8 (Chart 3). A solution of ddpd (216.4 mg, 0.743 mmol, 1.5 equiv) in ethanol (15 mL) was added to RuCl₃-(EtOOC-tpy)^{33–35} (251.0 mg, 0.490 mmol, 1.0 equiv). After the addition of *N*-ethylmorpholine (0.20 mL, 0.18 mg, 3.2 equiv), the mixture was sonicated for 1 min and heated to reflux in a laboratory microwave oven for 15 min (80 °C). The mixture was filtered over Celite (1.5 cm; diameter 3.5 cm) and rinsed with ethanol. The solvent was removed under reduced pressure, and the dark-red-brown residue was dissolved in ethanol (3 mL). The addition of an aqueous solution of NH₄PF₆ (239.0 mg, 1.466 mmol, 3.0 equiv, 3 mL of H₂O) resulted in the precipitation of a purple solid. After the precipitate was washed with water, the precipitate was dissolved in CH₃CN (10 mL) and a solution of AgNO₃ (52 mg, 0.31 mmol, 0.4 equiv) in CH₃CN

Breivogel et al.

(10 mL) was added. The mixture was refluxed for 4 h. The resulting AgCl was removed by filtration, and the filtrate was concentrated to 3 mL under reduced pressure. The addition of an aqueous solution of NH₄PF₆ (156.0 mg, 0.957 mmol, 2.0 equiv, 3 mL of H₂O) resulted in the precipitation of a purple solid, which was collected by filtration and dried under reduced pressure. Yield: 298.6 mg (0.3023 mmol, 62%). Crystals suitable for single-crystal X-ray diffraction were obtained by the slow diffusion of diethyl ether into a solution of 8 in CH₃CN. ¹H NMR (CD₃CN, 300 K): δ 8.97 (s, 2 H, H²), 8.56 (m, 2 H, H⁵), NMR (CD₃CN, 300 K): δ 8.97 (s, 2 H, H⁻), 8.56 (m, 2 H, H⁻), 8.27 (t, ${}^{3}J_{HH} = 8.2 Hz, 1 H, H^{16}$), 8.11 (m, 2 H, H⁸), 8.02 (m, 2 H, H⁶), 7.61 (m, 2 H, H¹¹), 7.56 (d, ${}^{3}J_{HH} = 8.2 Hz, 2 H, H^{15}$), 7.47 (m, 2 H, H⁷), 7.17 (m, 2 H, H¹²), 6.57 (m, 2 H, H¹⁰), 6.42 (m, 2 H, H⁹), 4.58 (q, ${}^{3}J_{HH} = 7.1 Hz, 2 H, CH_{2}CH_{3}$), 3.46 (s, 6 H, N-CH₃), 1.52 (t, ${}^{3}J_{HH} = 7.1 Hz, 3 H, CH_{2}CH_{3}$). ${}^{13}C{}^{14}$ NMR $\begin{array}{l} (CD_{3}CN, 300 \text{ K}): \delta 164.9 (s, C=O), 159.8, 159.7 (2s, C^{3}, C^{13}), \\ 158.7 (s, C^{4}), 157.2 (s, C^{14}), 155.1 (s, C^{8}), 149.4 (s, C^{9}), 141.8 (s, C^{16}), 140.2 (s, C^{11}), 139.2 (s, C^{6}), 136.3 (s, C^{1}), 128.0 (s, C^{7}), 125.7 \\ (s, C^{5}), 123.8 (s, C^{2}), 121.5 (s, C^{10}), 116.3 (s, C^{12}), 113.6 (s, C^{15}), \\ \end{array}$ 63.7 (s, <u>CH</u>₂CH₃), 41.8 (s, <u>NC</u>H₃), 14.6 (s, CH₂CH₃). ¹H⁻¹⁵N HMBC (CD₃CN, 300 K): δ = 288.1 (N²), -168.6 (N¹), -162.2 (N^3) , -142.2 (N^4) , -85.8 (N^5) . MS (ESI⁺): m/z 349.1 (7%) [M – 2PF₆]²⁺, 843.1 (100) [M – PF₆]⁺. HR-MS (ESI⁺): Calcd for $C_{35}H_{32}F_6N_8O_2P^{96}Ru: m/z 837.1366. Obsd: m/z 837.1360. IR$ (KBr): v 3432 (br, crystal water), 3092 (m, CHar), 2922 (m, CHal), 1729 (s, COester), 1603 (s), 1583 (m), 1492 (m), 1454 (s), 1441 (s), 1372 (m), 1343 (s), 1280 (m), 1254 (s), 1126 (m), 1100 (m), 1023 (m), 841 (vs, PF), 768 (m), 752 (m), 560 (s) cm^{-1} . UV/ vis (CH₃CN): λ_{abs} (ϵ) 517 (7500), 319 (28 800), 276 (34 700), 236 (29 900), 205 nm (31500 M⁻¹ cm⁻¹). Emission (CH₃CN, 295 K, $\lambda_{exc} = 517 \text{ nm}$): $\lambda_{emiss} = 729 \text{ nm} [\tau = 722(5) \text{ ns}]$. Emission (CH₃-CH₂CH₂CN, 77 K, $\lambda_{exc} = 517 \text{ nm}$): $\lambda_{emiss} = 707 \text{ nm} [\tau = 707 \text{ nm}]$ 3309(15) ns]. Quantum yield (CH₃CN, $\lambda_{exc} = 469$ nm, 295 K): $\Phi = 0.003$. CV (CH₃CN): $E_{1/2} = +0.81$ (1e), -1.40 V (2e) vs Fc/Fc⁺. Elem anal. Calcd for C₃₅H₃₂F₁₂N₈O₂P₂Ru (987.68). 5H₂O: C, 39.00; H, 3.93; N, 10.40. Found: C, 39.03; H, 3.60; N, 10.40

Acknowledgment. This work was supported by the Deutsche Forschungsgemeinschaft (Grant HE 2778/5-2). We thank Dr. F. Laquai and M. Meister (Max Planck Institute for Polymer Research, Mainz) for measuring the excited-state life-time of **8**.

Supporting Information Available: X-ray crystallographic data for complex 8 in CIF format, X-ray structure of complex 8 (Figure S1), crystal and structure refinement data for complex 8 (Table S1), bond lengths and angles of complex 8 (Table S2), IR spectrum, UV/vis absorption and emission spectra, ¹H NMR spectrum, ${}^{13}C{}^{1}H$ NMR spectrum, HH COSY, NOESY, CH COSY, ${}^{13}C{}^{-1}H$ HMBC, and ${}^{15}N{}^{-1}H$ HMBC of 8 (Figures S2– S10), Cartesian coordinates of cis-fac-9, trans-fac-9, mer-9, the singlet ground state of 8, the ³MLCT state of 8, graphical representation of the frontier orbitals of 8, results of the TD-DFT (singlet) calculation of 8 (gas phase and CH₃CN), Cartesian coordinates of Ni(CO)₃L complexes [L = κ N(central pyridine)-ddpd, kN(terminal pyridine)-ddpd, NMe₃, NHC (1,3dimethyl-2,3-dihydro-1H-imidazol-2-ylidene), PMe₃, PH₃, PF₃, pyridine, NH₃, CH₃CN, CH₃NC, correlation of A₁ stretching frequencies with C-O distances in Ni(CO)₃L complexes. This material is available free of charge via the Internet at http:// pubs.acs.org.

⁽³³⁾ Fallahpour, R.-A. Synthesis 2000, 8, 1138.

⁽³⁴⁾ Fallahpour, R.-A. Eur. J. Inorg. Chem. 1998, 1205.

⁽³⁵⁾ Fallahpour, R.-A.; Neuburger, M.; Zehnder, M. New J. Chem. 1999, 23, 53.

9.6 Excited State Tuning of Bis(tridentate) Ruthenium(II) Polypyridine Chromophores by Push-Pull Effects and Bite Angle Optimization: A Comprehensive Experimental and Theoretical Study

A. Breivogel, M. Meister, C. Förster, F. Laquai, K. Heinze, Chem. Eur. J. 2013, 19, 13745–13760.

DOI: 10.1002/chem.201302231

Reprinted with permission from John Wiley and Sons, Copyright © 2013.

FULL PAPER

Excited State Tuning of Bis(tridentate) Ruthenium(II) Polypyridine Chromophores by Push–Pull Effects and Bite Angle Optimization: A Comprehensive Experimental and Theoretical Study

Aaron Breivogel,^[a] Michael Meister,^[b] Christoph Förster,^[a] Frédéric Laquai,^[b] and Katja Heinze^{*[a]}

Abstract: The synergy of push-pull substitution and enlarged ligand bite angles has been used in functionalized heteroleptic bis(tridentate) polypyridine complexes of ruthenium(II) to shift the ¹MLCT absorption and the ³MLCT emission to lower energy, enhance the emission quantum yield, and to prolong the ³MLCT excited-state lifetime. In these complexes, that is, [Ru(ddpd)(EtOOC-tpy)][PF₆]₂, [Ru-(ddpd-NH₂)(EtOOC-tpy)][PF₆]₂, [Ru- $(ddpd){(MeOOC)_3-tpy}][PF_6]_2,$ and [Ru(ddpd-NH₂){(EtOOC)₃-tpy}][PF₆]₂ the combination of the electron-accepting 2,2';6',2"-terpyridine (tpy) ligand equipped with one or three COOR substituents with the electron-donating N,N'-dimethyl-N,N'-dipyridin-2-ylpyridine-2,6-diamine (ddpd) ligand decorated with none or one NH₂ group enforces spatially separated and orthogonal frontier orbitals with a small HOMO–LUMO gap resulting in lowenergy ¹MLCT and ³MLCT states. The extended bite angle of the ddpd ligand increases the ligand field splitting and

Keywords: density functional calculations • excited states • ligands • luminescence • ruthenium

pushes the deactivating ³MC state to higher energy. The properties of the new isomerically pure mixed ligand complexes have been studied by using electrochemistry, UV/Vis absorption spectroscopy, static and time-resolved luminescence spectroscopy, and transient absorption spectroscopy. The experimental data were rationalized by using density functional calculations on differently charged species (charge n =0–4) and on triplet excited states (³MLCT and ³MC) as well as by timedependent density functional calculations (excited singlet states).

Introduction

Polypyridine complexes of ruthenium(II) have attracted great interest due to their outstanding and tunable photophysical and electrochemical properties combined with high thermal and chemical robustness.^[1] They are used as light harvesters in dye-sensitized solar cells,^[2-4] luminescent emitters in light-emitting electrochemical cells,^[5-7] possible anticancer and imaging agents in phototherapy,^[8-10] sensors for ions^[11-16] and small molecules,^[17,18] photocatalysts for water splitting,^[19,20] hydrogen production,^[21-24] CO₂ reduction,^[21,23,25] and many other chemical reactions,^[23,26-29] components in mixed valence systems,^[30-35] light upconversion systems^[36-39] and molecular memory devices.^[40-42]

 [a] A. Breivogel, Dr. C. Förster, Prof. Dr. K. Heinze Institute of Inorganic Chemistry and Analytical Chemistry Johannes Gutenberg-University of Mainz Duesbergweg 10-14, 55128 Mainz (Germany) Fax: (+49)6131-39-27-277 E-mail: katja.heinze@uni-mainz.de

[b] M. Meister, Dr. F. Laquai Max Planck Institute for Polymer Research Ackermannweg 10, 55128 Mainz (Germany)

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201302231.

Two strategies have emerged to impede radiationless deactivation in bis(tridentate) ruthenium(II) complexes and to improve ³MLCT lifetimes and luminescence quantum yields:

🕅 WILEY 师

13745

Scheme 1. Qualitative Jablonski diagram of Ru^{II} oligopyridine complexes (GS=ground state, MLCT=metal-to-ligand charge transfer, ISC=intersystem crossing, MC=metal-centered).

1) Push-pull substituents at the 4-position of the central pyridine rings: Electron-withdrawing substituents lower the ³MLCT state energy, whereas electron-donating substituents raise the ³MC state energy, which increases the energy difference between the two states.^[46] For example, the bis-4'-substituted complex [(EtOOC-tpy)Ru(tpy-NH₂)]²⁺ ([7]²⁺, Scheme 2) possesses a significantly higher lifetime (τ =34 ns) and a higher quantum yield (Φ =0.18%) compared with unsubstituted [Ru(tpy)₂]²⁺. This amino acid derivative [7]²⁺ has been successfully in-

Scheme 2. Bis(tridentate) ruthenium(II) oligopyridine complexes.

corporated in peptidic energy and electron-transfer systems and shows light-induced charge separation in a donor–chromophore–acceptor nanocomposite.^[25,50–54] Exceptionally high room temperature emission lifetimes and quantum yields were obtained by Schubert and Berlinguette et al. by using heteroleptic bis(tridentate) ruthenium(II) complexes incorporating electron-accepting tpy and strongly σ -electron-donating tridentate bis(carbene)pyridine ligands (τ up to 7.9 µs, Φ up to 11%).^[55]

2) Enlargement of N-Ru-N bite angles: Typically, N-Ru-N bite angles in tpy complexes of ruthenium are around 79°. Larger bite angles (ideally 90°) would create a stronger ligand field splitting due to the better overlap between the Ru d orbitals and the pyridine nitrogen lone pairs. In a stronger ligand field the ³MC-³MLCT energy difference increases and the deactivating ³MC states are less accessible.^[48] Bite angles of close to 90° could be achieved by Hammarström et al. in [Ru(dqp)₂]²⁺ (dqp=

2,6-di(quinolin-8-yl)pyridine) with a high lifetime and quantum yield at room temperature ($\tau = 3.0 \,\mu s$, $\Phi =$ 2%).^[56] 4'-substituted The analogue [Ru(dap- $COOEt_{2}^{2+}$ even surpasses the values of the latter ($\tau =$ 5.5 µs, $\Phi = 7\%$) and $[Ru(dqp)_2]^{2+}$ complexes have already been used in donor-acceptor arrays with longlived photoinduced charge-separated states.^[57,58] A homoleptic analogue of $[Ru(tpy)_2]^{2+}$ containing carbonyl bridges between the pyridine rings synthesized by Ruben et al. shows bite angles of 90° and, to the best of our knowledge, features the highest reported room temperature quantum yield for a bis(tridentate) ruthenium(II) complex ($\tau = 3.3 \,\mu s$, $\Phi = 30 \,\%$).^[59] Ligands with large bite angles like dqp are flexible and therefore can lead to the formation of stereoisomers (mer, cis-fac, trans-fac).^[60] For this reason we developed the heteroleptic bis(tridentate) ruthenium(II) complex [1][PF₆]₂ (Scheme 2), which is the first example for the combination of a tpy ligand and a ddpd ligand (ddpd = N, N'-dimethyl-N, N'-dipyridin-2-ylpyridine-2,6-diamine, 11). The tpy ligand only allows for a meridional coordination of both ligands and avoids the formation of undesired stereoisomers. The ddpd ligand is a tpy analogue and shows large bite angles due to the additional NCH₃ bridges between the pyridine rings. The ³MLCT room temperature lifetime of $[1][PF_6]_2$ and its room temperature quantum yield are significantly higher than for comparable bis(tpy) complexes ($\tau =$ 722 ns, $\Phi = 0.45 \%$).^[7,61]

Herein, we apply the push-pull strategy to the complex $[1][PF_6]_2$ by stepwise boosting its push-pull substitution pattern with additional electron-accepting (-COOR) and electron-donating $(-NH_2)$ substituents $([1][PF_6]_2-[4][PF_6]_2,$ Scheme 2). The amino and the (hydrolyzed) ester groups can be easily functionalized and principally connected to semiconductors, polymers, biomolecules, or potential catalysts in a directional way.^[25,50-53] A 2,2';6',2"-terpyridine $(R^1R^2$ -tpy) ligand as electron acceptor and a R^3 -ddpd ligand as electron donor are used in combination with additional substituents on both tridentate ligands enhancing their acceptor or donor strength, respectively. This choice of acceptor and donor abilities should lead to a small HOMO-LUMO gap, which should shift the MLCT absorption and emission energies towards the red spectral region. Additionally, the different donor-acceptor characteristics of the meridional coordinating ligands should enforce spatially separated (orthogonal) frontier orbitals and should equip the systems with a high electronic directionality. The second strategy aims at shifting the energy of the thermally accessible ³MC state, which is a funnel for radiationless deactivation,^[48] to higher values by employing the ddpd ligand with its large bite angle. Thus, to enhance the emission quantum yield and ³MLCT state lifetime, the ³MC-³MLCT energy difference is increased by increasing the energy of the ³MC state and by decreasing the energy of the ³MLCT state. As the latter strategy also decreases the energy between the emitting ³MLCT state and the ground state ¹GS, the effects of the energy gap law^[62-64] also need to be considered (Scheme 1). The properties of $[1]^{2+}-[4]^{2+}$ and bis(tpy) reference complexes $[5]^{2+}-[7]^{2+}$ will be disclosed by electrochemistry, UV/ Vis, static and time-resolved emission, transient absorption spectroscopy, and by DFT calculations (Scheme 2).

Results and Discussion

Ligand and complex synthesis and analytical characterization: The terpyridine ligands EtOOC-tpy and $(MeOOC)_3$ tpy, the unsubstituted ddpd ligand **11**, the trichlorido ruthenium(III) complexes **12** and **13**, and the heteroleptic complex [**1**][PF₆]₂ have been reported previously.^[61,65–67] The synthesis of the new amino-functionalized ddpd ligand precursor **10** is depicted in Scheme 3. The N-protected ligand **10** was prepared by a Pd-catalyzed Buchwald–Hartwig amination of 2,6-dichloro-4-phthalimidopyridine **8** or its bromo derivative **9**. The reasons for this protecting-group strategy are outlined in the Supporting Information. All compounds **8–11**^[61] were characterized by using mass spectrometry, infrared (Figure S1–S4, the Supporting Information), ¹H, ¹³C, and ¹⁵N NMR 1D- and 2D spectroscopy (Figure S5–S16, the Supporting Information) and elemental analysis. Single crystals of **8** and **9** have been obtained and X-ray diffraction analyses show a dihedral angle of 43° between the pyridine and the phthalimido substituent in both cases (Figures S17 and S18, Tables S1–S3, the Supporting Information).

The syntheses of heteroleptic ruthenium(II) complexes $[1][PF_6]_2-[4][PF_6]_2$ are depicted in Scheme 4. Starting from the trichlorido(terpyridine)ruthenium(III) precursors 12 and 13^[65-67] all mixed ligand complexes were obtained in isomerically pure form (mer) in a microwave-assisted reaction with the respective ddpd ligand 10 or 11 in ethanol and N-ethylmorpholine as reducing agent. For a successful synthesis of $[1]^{2+[61]}$ and $[3]^{2+}$ comprising the unsubstituted ddpd ligand 11 the chloride ions have to be removed with $AgNO_3$ as AgCl. In the last step, the complexes $[1][PF_6]_2$ and $[3][PF_6]_2$ are precipitated by addition of an aqueous NH₄PF₆ solution. For $[2]^{2+}$ and $[4]^{2+}$ bearing the N-protected amino ligand 10 the phthalimido group is partially deprotected during the microwave-assisted reaction to give a mixture of phthalimide, monoethylester monoamide, and free amino group functionality of the coordinated ddpd ligand. Full deprotection is achieved in situ by treating the mixture with hydrazine hydrate. The use of AgNO₃ to remove the chloride

anions proved unnecessary. During the hydrazine deprotection to give $[4]^{2+}$, the methyl ester groups are partially hydrolyzed. Therefore, the free acid groups are re-alkylated by treating the mixture with ethanol and sulfuric acid to obtain $[4]^{2+}$ as pure tris(ethylester). All complexes $[1][PF_6]_2$ –[4]- $[PF_6]_2$ were characterized by using ESI and HR-ESI mass

NHMe

[Pd₂(dba)₃],

Scheme 4. Synthesis of the heteroleptic ruthenium(II) complexes [1][PF₆]₂-[4][PF₆]₂-

Chem. Eur. J. 2013, 19, 13745-13760

spectrometry, infrared, ¹H, ¹³C and ¹⁵N NMR 1D and 2D spectroscopy, and elemental analysis. For all complexes, the ion peaks for $[M-PF_6]^+$ and for $[M-2PF_6]^{2+}$ were observed in the ESI mass spectrum with m/z values and isotope distributions fitting excellently to the theoretical values. Moreover, the HR-ESI spectra verify the molecular formulae of all the complex cations (see the Experimental Section). ¹H NMR spectral data of [1][PF₆]₂-[4][PF₆]₂ are summarized in the Supporting Information (Table S4) and the corresponding spectra of [2][PF₆]₂-[4][PF₆]₂ are shown in Figures S19-S21. All NMR data confirm the presence of a single stereoisomer in each case, namely, the meridional one. Exemplarily, the ¹H NMR spectrum of $[2][PF_6]_2$ and its atom numbering are depicted in Figure 1. All resonances of the pyridine protons appear in the expected range from $\delta = 6$ to 9 ppm. The most downfield-shifted resonance is assigned to H^2 and appears as a singlet at $\delta = 8.95$ ppm. The amino protons resonate at $\delta = 5.72$ and the protons of the bridging NCH₃ unit at $\delta = 3.36$ ppm. Compared with $[1]^{2+}$ ($\delta =$ $(7.56 \text{ ppm})^{[61]}$ the resonance of H¹⁵ in $[2]^{2+}$ is shifted to higher field ($\delta = 6.80$ ppm) due to the presence of the NH₂ group as expected.^[68] For the NCH₃ moieties a single resonance is observed for each of the ¹H, ¹³C and ¹⁵N nuclei in the respective NMR spectra. The two NCH₃ units in the ddpd ligand point up and below the plane of the central pyridine plane, respectively, enforcing an interligand nuclear Overhauser effect (NOE) between NCH₃ of the ddpd ligand and H⁸ of the tpy ligand vis-à-vis. ¹³C{¹H} NMR spectra of [1][PF₆]₂-[4][PF₆]₂ show resonances of all carbon atoms (Table S5 and Figures S22–S24, the Supporting Information). The ¹³C resonances were successfully assigned by using 2D NMR correlation spectroscopy. ¹⁵N-¹H HMBC spectral data of [1][PF₆]₂-[4][PF₆]₂ and of ligands 10, 11, and EtOOC-tpy are summarized in Table S6 and Figures S15, S16, and S25–S27 (the Supporting Information). All ¹⁵N resonances, including pyridyl, amino, and phthalimido nitrogen

atoms have been identified and assigned by correlation to the respective adjacent hydrogen nuclei. The coordinating pyridine nitrogen atoms of the ligands are much more affected by Ru^{2+} coordination (coordination shift) than the remote and non-coordinating NCH₃ ¹⁵N nuclei substantiating that the NCH₃ groups remain indeed non-coordinated.

Solid-state IR spectra of complexes $[1][PF_6]_2-[4][PF_6]_2$ show very strong bands at 841–843 cm⁻¹, which are assigned to the PF stretching vibration of the counterions. Functional groups of the cations are identified by strong bands at 1726– 1734 cm⁻¹ belonging to C=O stretching vibrations of the ester moieties and by bands at 3400–3468 cm⁻¹ and 3240 cm⁻¹ assigned to asymmetric and symmetric NH stretching vibrations (Figure S28–S30, the Supporting Information).

Single crystals of $[2][PF_6]_2$ and $[3][PF_6]_2$ were obtained by diffusion of diethyl ether into an acetonitrile solution of the complexes. The single-crystal X-ray diffraction analysis of [1][PF₆]₂ has been described previously.^[61] Selected bond lengths and angles obtained by X-ray diffraction and from DFT optimized geometries are summarized in Table 1. All complex cations $[1]^{2+}-[3]^{2+}$ exhibit *meridional* coordination of the tridentate ligands as expected (Figure 2 and the Supporting Information, Figures S31-S32 and Tables S7-S9). Cations [1]²⁺-[3]²⁺ feature very similar Ru-N bond lengths and N-Ru-N bond angles. The shortest Ru-N distance in $[1]^{2+}-[3]^{2+}$ is the one between ruthenium and the central tpy-nitrogen atom N2 (1.94-1.95 Å) due to the small bite angle of tpy. All other Ru–N bond lengths in $[1]^{2+}-[3]^{2+}$ are around 2.07-2.09 Å. The DFT-calculated values are about 0.03–0.04 Å longer (1.98 Å for Ru–N2 and 2.11–2.12 Å for all other Ru-N bonds) but reproduce the short central Ru-N(tpy) distance. The N-Ru-N bite angles are well reproduced by DFT calculations with tpy bite angles of 79-80° and ddpd bite angles of 87-88°. The latter nearly approach the value of an ideal octahedron (90°) allowing for an opti-

Figure 1. ¹H NMR spectrum of $[2][PF_6]_2$ and atom numbering in CD₃CN. The asterisk (*) indicates the splitting of the proton resonances of $[2]^{2+}$ after addition of chiral (Δ -TRISPHAT)⁻ counterions.

13748 -

www.chemeurj.org

FULL PAPER

Table 1. Experimental (X-ray diffraction) and DFT calculated (singlet ground state, B3LYP/LANL2DZ, IEFPCM in CH₃CN), selected bond lengths [Å] and angles [°] of $[1]^{2+}-[4]^{2+}$.

	[1] ²⁺	[1] ²⁺ DFT	[2] ²⁺	[2] ²⁺	[3] ²⁺	[3] ²⁺ DFT	[4] ²⁺ DFT
D 11	2.070(2)	0.117	0.0004(17)	0.114	0.0777(1.5)	2 100	2.107
Ru-NI	2.079(2)	2.117	2.0804(17)	2.114	2.0///(15)	2.109	2.107
Ru–N2	1.944(2)	1.983	1.9465(16)	1.980	1.9481(14)	1.984	1.982
Ru–N3	2.078(2)	2.117	2.0869(16)	2.116	2.0921(15)	2.108	2.107
Ru–N4	2.076(2)	2.119	2.0750(16)	2.118	2.0800(15)	2.119	2.119
Ru–N5	2.078(2)	2.114	2.0806(16)	2.113	2.0858(15)	2.114	2.111
Ru–N6	2.072(2)	2.119	2.0766(16)	2.118	2.0784(15)	2.119	2.118
N1-Ru-N2	79.68(8)	79.23	79.80(7)	79.28	79.84(6)	79.28	79.33
N1-Ru-N3	159.22(8)	158.46	159.53(7)	158.56	159.10(6)	158.59	158.72
N2-Ru-N5	178.29(9)	179.85	178.19(7)	179.91	177.18(6)	179.95	179.92
N4-Ru-N5	87.51(8)	87.55	87.33(6)	87.28	87.34(6)	87.54	87.31
N4-Ru-N6	174.70(8)	175.12	174.83(6)	174.56	174.74(6)	175.04	174.58

Figure 2. Molecular structures of cations of a) $[2]^{2+}$ and b) $[3]^{2+}$ in the solid state (CH hydrogen atoms omitted).

mal σ -overlap of metal d orbitals (" e_g ") with the lone pairs of the ddpd nitrogen donor atoms. The coordinated ddpd ligand is slightly twisted with the NCH₃ groups pointing up and below the plane of the central pyridine ring as already deduced from the nuclear Overhauser effect (NOE) data.

To explore this helical twist of the coordinated ddpd ligand, a solution of $[2][PF_6]_2$ was treated with the chiral anion [Δ -tris(tetrachloro-1,2-benzenediolato)phosphate(V)] ((Δ -TRISPHAT)⁻).^[45,69] This splits the ¹H NMR resonances of $[2]^{2+}$ (H², H¹⁵, NH₂, CH₂, NCH₃, CH₃; Figure 1; Figure S33, the Supporting Information) into two signal sets (≈1.0:1.3 by integration of ¹H NMR spectrum) revealing the helical chirality of $[2]^{2+}$. The formation of diasteromeric ion pairs is a result of the electrostatic attraction between the cations and anions leading to a high proximity between $[2]^{2+}$ and the $(\Delta$ -TRISPHAT)⁻ or [PF₆]⁻ counterions. Indeed, the solid-state structures of [2][PF₆]₂ and [3][PF₆]₂ reveal that the [PF₆]⁻ counterions are situated in chiral "pockets" formed by the tridentate ligands (Figure 3). The two [PF₆]⁻ counterions with the shortest Ru…P distance (≈6 Å) lie vis-à-vis on both sides of the ruthenium atom. Each hexafluorophosphate is embraced by two neighboring pyridine rings of one chelate ligand and by one additional pyridine ring of the other tridentate ligand, respec-

Figure 3. Arrangement of cations and the two nearest $[PF_6]^-$ counterions of a) $[2]^{2+}$ and b) $[3]^{2+}$ in the solid state (red: tpy, blue: ddpd, CH hydrogen atoms omitted). Distances between the phosphorus atoms and the center of the surrounding pyridine rings are indicated in Å.

tively, with distances between the phosphorus atom and the center of the pyridine rings of 4.4–5.7 Å. Similar contact ion pairs are expected for the $(\Delta$ -TRISPHAT)⁻ anion and [2]²⁺ with the anion inserted into the chiral "pockets" of the cation.

Electrochemistry of $[1][PF_6]_2-[4][PF_6]_2$ and reference complexes: Electrochemical data of $[1][PF_6]_2-[4][PF_6]_2$ are obtained by cyclic and square wave voltametry in acetonitrile solution and $[n-Bu_4N][PF_6]$ as the supporting electrolyte. All potential values are referenced to the Fc/Fc⁺ couple. Electrochemical data of all complexes $[1][PF_6]_2-[7][PF_6]_2$ are summarized in Table 2 (Figures S34–S36, the Supporting Information). Exemplarily, Figure 4 depicts cyclic and square wave voltammograms of $[4][PF_6]_2$. The reversible one-electrochemical ended to the reversible one-electrochemical space.

 $[\mathbf{7}][\mathbf{PF}_6]_2^{[53,70][a]}$

	$E_{1/2}$ ddpd/ddpd+	$E_{1/2}$ Ru ^{II} /Ru ^{III}	$E_{1/2}$ tpy/tpy ⁻
[1][PF ₆] ₂ ^[a]	$+1.80^{[b]}$	+0.81	$-1.47, -2.09^{[b]}$
$[2][PF_6]_2^{[a]}$	+1.73 ^[b]	+0.64	-1.50, -2.11, ^[b] -2.21 ^[b]
[3] [PF ₆] ₂ ^[a]	$+1.80^{[b]}$	+0.92	-1.25, ^[b] -1.70 ^[b]
$[4][PF_6]_2^{[a]}$	$+1.70^{[b]}$	+0.73	-1.32, -1.75
[5][PF ₆] ₂ ^{[46][a]}	-	+0.92	-1.67
$[6][PF_6]_2^{[7][c]}$	-	+0.96	-1.27, -1.45

Table 2. Electrochemical data^[a] of complexes $[1][PF_6]_2-[7][PF_6]_2$.

[a] In CH₃CN in V versus Fc/Fc⁺. [b] Irreversible, E_p given. [c] No solvent denoted.

+0.68

-1.54, -1.99

Figure 4. Cyclic voltammogram (top) and square wave voltammogram (bottom) of $[4][PF_6]_2$ in CH₃CN; 0.1 M $[nBu_4][PF_6]$. The inset structures show the DFT calculated spin densities (contour value 0.01 au) of the reduced and oxidized species $[4]^+$ and $[4]^{3+}$, respectively.

tron oxidation of $[4]^{2+}$ to $[4]^{3+}$ at 0.73 V is assigned to the Ru^{II/III} redox couple in analogy to similar complexes.^[7,53,54,61] To further confirm this assignment, DFT calculations (B3LYP/LANL2DZ, IEFPCM, CH₃CN) were performed on singly oxidized species $[1]^{3+}-[4]^{3+}$ and on bis(tpy) ruthenium reference compounds $[5]^{3+}-[7]^{3+}$ (without $(PF_6)^-$ counterions, multiplicity M=2). Indeed, the spin density is largely located on the ruthenium atom with Mulliken spin densities calculated as 0.85, 0.78, 0.83, 0.77, 0.88, 0.88, and 0.76 for $[1]^{3+}$ - $[7]^{3+}$, respectively (Figure S37, the Supporting Information). For $[2]^{3+}$, $[4]^{3+}$, and $[7]^{3+}$ bearing NH₂ groups, a small amount of spin density is delocalized onto the nitrogen atom of the NH₂ group (Mulliken spin density on N: 0.06, 0.07, and 0.11), which underlines the electron-donating character of the amino group in these complexes (Figure 4).^[25,53,54] This electron donation is experimentally clearly observed in the oxidation potentials of complexes with and without an NH₂ group $[2]^{2+}/[1]^{2+}$, $[4]^{2+}/[3]^{2+}$ and $[7]^{2+}/[6]^{2+}$ (Table 2).^[7,53,54,61] On the other hand, comparing the $Ru^{II/III}$ potential of complexes with one or three ester substituents $[1]^{2+}/[3]^{2+}$ and $[2]^{2+}/[4]^{2+}$ reveals that their electron-withdrawing nature hampers the largely metal-centered oxidation by roughly 0.1 V.

The second experimentally observed oxidation of $[1]^{2+}$ - $[4]^{2+}$ at 1.70–1.80 V is irreversible. DFT calculations of doubly oxidized complexes $[1]^{4+}-[4]^{4+}$ (M=3) and reference compounds $[5]^{4+}-[7]^{4+}$ are depicted in Figure S38 (the Supporting Information). The spin density in bis(tpy) complexes $[5]^{4+}$ and $[6]^{4+}$ is located almost entirely on the metal center and for $[7]^{4+}$ also partly on the NH₂ group. However, in ddpd complexes $[1]^{4+}-[4]^{4+}$ a significant amount of spin density is delocalized onto the nitrogen atoms of the NCH₃ groups. Therefore, we assign the second oxidation in complexes $[1]^{2+}-[4]^{2+}$ to the irreversible oxidation of the NCH₃ groups of the ddpd ligands. Again, the second oxidation potential of NH₂-containing ddpd complexes $[2]^{2+}$ and $[4]^{2+}$ is lower than that of their NH₂-free counterparts $[1]^{2+}$ and $[3]^{2+}$, respectively (Table 2).

Two reduction waves are observed for $[1]^{2+}-[4]^{2+}$ and assigned to ligand-based reductions.^[53,61] The first reduction is clearly centered on the tpy ligand as it is strongly affected by the number of ester substituents on the tpy ligand ($[1]^{2+}$, $[3]^{2+}$; $[2]^{2+}/[4]^{2+}$) and only marginally affected by the presence of NH₂ groups on the ddpd ligand ($[1]^{2+}/[2]^{2+}$; $[3]^{2+}$, $[4]^{2+}$). The second reduction follows the trend of the first reduction, with triesters $[3]^+$ and $[4]^+$ being much more easily reduced than $[1]^+$ and $[2]^+$ (Table 2). This leads to the conclusion that both the first and the second reduction are related to the tpy ligands.

DFT calculated spin densities of the singly reduced species $[1]^+-[7]^+$ (M=2) and doubly (M=3) reduced species $[1]^0-[7]^0$ are depicted in Figures S39 and S40 of the Supporting Information, respectively. As spin densities are mainly localized on the tpy ligand(s) in all cases the experimental assignment to tpy reductions is confirmed. In some cases the singlet species $[1]^0-[7]^0$ (M=1) are calculated slightly lower in energy than their triplet counterparts (M=3). Thus, for a pictorial comparison, the highest occupied molecular orbitals (HOMOs) of these singlet species were also calculated (the Supporting Information, Figure S40). The HOMOs of $[1]^0-[4]^0$ (M=1) are fully localized on the (ROOC)_n-tpy ligand leading to the same conclusion as the spin density in the triplet species.

Exemplarily, complex $[2]^{2+}$ was chemically oxidized by ammonium cerium(IV) nitrate to $[2]^{3+}$ and reduced by decamethylcobaltocene to [2]⁺. EPR spectra of the resulting radicals were measured at 77 K. The radical $[2]^{3+}$ gives a rhombic signal $(g_{1,2,3}=2.4440, 2.2694, 2.0300; \Delta g=0.4140$ by spectral simulation; Figure S41, the Supporting Information). This signal is in full accordance with similar complexes of $Ru^{III[52]}$ and the DFT calculations of $[2]^{3+}$ (Figure S37, the Supporting Information). For the one-electron-reduced radical [2]⁺ a less rhombic signal is obtained $(g_{1,2,3}=2.0089,$ 1.9865, 1.9720; $\Delta g = 0.0387$ by spectral simulation; Figure S42, the Supporting Information). The reduced g anisotropy points to a ligand-based reduction with some ruthenium admixture,^[25,52] which is fully corroborated by DFT calculations for [2]⁺ (Mulliken spin density of 0.10 on Ru; Figure S39, the Supporting Information).

13750 -
In summary, oxidation occurs at the ruthenium center (plus some ddpd-NH₂ admixture for $[2]^{2+}$ and $[4]^{2+}$), whereas reduction is confined to the tpy ligand. Consequently, oxidation is favored by NH₂ substitution at ddpd, whereas reduction is facilitated by COOR substitution at tpy leading to the smallest difference between oxidation and reduction potentials in $[4]^{2+}$ in the series $[1]^{2+}-[4]^{2+}$ (Table 2). This electronic situation should also be reflected in the optical properties.

Optical properties of [1][PF₆]₂–[4][PF₆]₂ and reference complexes: Experimental UV/Vis data together with time-dependent (TD) DFT (IEFPCM, CH₃CN) calculated stick spectra showing the oscillator strength f of the calculated transitions are graphically depicted in Figure 5 and numerically listed in Table 3.

Figure 5. Experimental UV/Vis spectra and calculated stick spectra (TD-DFT, IEFPCM, CH_3CN) of $[1]^{2+}-[4]^{2+}$ in CH_3CN .

The absorption spectra of $[1][PF_6]_2-[4][PF_6]_2$ in acetonitrile show ligand-centered $\pi \rightarrow \pi^*$ transitions below $\lambda =$ 350 nm. In the visible spectral region characteristic metal-toligand charge transfer (MLCT) bands with maxima at $\lambda_{max} =$ 517–546 nm and further maxima (or shoulders) at around $\lambda \approx$ 470, 600, and 665 nm are found. Similar to the electrochemical data, the MLCT maxima are affected by the ligand type and the ligand-substitution pattern.

Replacing a tpy ligand by ddpd $([6]^{2+} \rightarrow [1]^{2+}; [7]^{2+} \rightarrow [2]^{2+}$) causes a bathochromic shift of the MLCT band $(485^{[7]} \rightarrow 517 \text{ nm};^{[61]} 502^{[53]} \rightarrow 525 \text{ nm})$ due to the electron-donating NCH₃ groups, which raise the energy of the (mainly ruthenium-centered) HOMO, leaving the lowest occupied molecular orbital (LUMO) of the tpy acceptor essentially unaffected. This results in a smaller HOMO–LUMO gap (Table 3). Attaching electron-donating NH₂ groups to the ddpd ligand further decreases the HOMO–LUMO gap ($[1][PF_6]_2 \rightarrow [2]-[PF_6]_2$; $[3][PF_6]_2 \rightarrow [4][PF_6]_2$, Table 3, Figure 6). Installing more electron-withdrawing ester substituents at the acceptor tpy ligand also results in bathochromically shifted MLCT absorptions ($[1]^{2+} \rightarrow [3]^{2+}$; $[2]^{2+} \rightarrow [4]^{2+}$, Table 3, Figure 5). The strongest push–pull combination is realized in $[4]^{2+}$,

Table 3. UV/Vis data of complexes [1][PF₆]₂=[7][PF₆]₂ in CH₃CN and TD-DFT data (B3LYP/LANL2DZ, IEFPCM in CH₃CN) data.

Experimental	DFT ^[a]
MLCT λ_{max} [nm] $\pi \rightarrow 3$	$\pi^* \lambda_{\max} [nm] \lambda [nm] (f)$
$(\varepsilon [M^{-1} cm^{-1}])$ ($\varepsilon [M$	4^{-1}cm^{-1}])
$[1][\mathbf{PF}_6]_2$ 630 (1000, sh), 319	(28800), 596.70 (0.0116),
582 (1900, sh), 276	(34700), 507.85 (0.0576),
517 (7500), 236	(29900), 478.37 (0.0215),
473 (5700, sh) 205	(31500) 444.82 (0.1188)
$[2][PF_6]_2$ 648 (1200, sh), 323	(26700), 642.20 (0.0167),
595 (2200, sh), 273	(42000), 623.45 (0.0072),
525 (8230). 238	(43600) 517.71 (0.0649).
475 (6300, sh)	508.21 (0.0198),
	450.24 (0.0937),
	450.08 (0.0516)
$[3][PF_6]_2$ 687 (800, sh), 340	(31000), 631.34 (0.0356),
603 (3100, sh), 292	(34200), 625.10 (0.0106),
539 (6360), 210	(52400) 545.59 (0.0283),
508 (5400, sh),	510.71 (0.0451),
475 (5060)	464.10 (0.0174),
	461.70 (0.0405),
	423.32 (0.0725),
	416.11 (0.1591)
$[4][PF_6]_2$ 696 (1200, sh), 341	(32000), 674.37 (0.0139),
622 (3700, sh), 292	(37200), 638.74 (0.0352),
546 (7810), 223	(45600) 553.25 (0.0300),
479 (5960)	543.00 (0.0428),
	476.16 (0.0226),
	468.56 (0.0175),
	445.44 (0.0797),
	426.62 (0.0214),
	419.40 (0.1538)
$[5][\mathbf{PF}_6]_2^{[49]} \qquad 476 \ (14400) \qquad 308$	(57400), 555.80 (0.0063),
269	(38800) 489.74 (0.0144),
	471.01 (0.1314),
	441.43 (0.0262),
	426.47 (0.1782),
	425.02 (0.0372),
	415.02 (0.0447)
$[6][PF_6]_2^{[7]} 485 (18140) 309$	(51690), 502.22 (0.0151),
272	(42450), 502.22 (0.0151),
225	(39620)
	429.73 (0.1659),
	428.54 (0.0190),
	428.54 (0.0192),
	425.14 (0.0297),
	425.14 (0.0297)
$[7][PF_6]_2^{[53]} \qquad 502 (19080) \qquad 318$	(37610), 572.52 (0.0064),
306	(34760), 483.95 (0.1485),
274	(50990),
236	(42800) 446.09 (0.0838),
	439.61 (0.0411),

[a] Highest calculated oscillator strengths f at $\lambda > 400$ nm (TD-DFT, IEFPCM, CH₃CN). For a complete list see the Supporting Information.

which displays its MLCT band at the lowest energy in the reported series, consistent with the redox data. We note that $[1]^{2+}-[4]^{2+}$ have more structured MLCT absorption bands than their bis(tpy) counterparts $[6]^{2+}$ and $[7]^{2+}$. Extinction coefficients at the band maxima of $[1]^{2+}-[4]^{2+}$ are significantly lower than for $[6]^{2+}$ and $[7]^{2+}, [^{7,53,54]}$ which might be due to the fact that the low-energy MLCT excitations only involve tpy ligands but no ddpd ligands. The extinction coefficients of the amino derivatives $[2]^{2+}, [4]^{2+}$,

CHEMISTRY A EUROPEAN JOURNAL

Figure 6. Energies of relevant frontier molecular orbitals (HOMO-2, HOMO-1, HOMO, LUMO, and LUMO+1) of $[1]^{2+}-[4]^{2+}$.

and $[7]^{2+}$ are consistently larger than that of their respective NH₂-free parent complexes $[1]^{2+}$, $[3]^{2+}$, and $[6]^{2+}$. This is based on the enlarged chromophore system, which extends onto the NH₂ group in $[2]^{2+}$, $[4]^{2+}$, and $[7]^{2+}$.

The Kohn–Sham frontier molecular orbitals have been calculated by using DFT (B3LYP/LANL2DZ, IEFPCM, CH₃CN) for $[1]^{2+}-[4]^{2+}$ and their energies are presented in Figure 6. Figure 7 exemplarily depicts the frontier molecular

Figure 7. Relevant Kohn–Sham frontier molecular orbitals (contour value 0.06 au) of $[2]^{2+}$ (CH hydrogen atoms omitted).

orbitals of $[2]^{2+}$. HOMO to HOMO-2 are essentially ruthenium-centered corresponding to the t_{2g} orbitals in O_h symmetry, whereas LUMO and LUMO+1 are localized on the tpy ligand.^[55] The " e_g " orbitals LUMO+11 and LUMO+13 are found at a higher energy. Introduction of an NH₂ group at the ddpd ligand ($[1]^{2+} \rightarrow [2]^{2+}$) raises the HOMO energy by $\Delta E_{HOMO} = 0.21$ eV, whereas the LUMO energy is hardly affected ($\Delta E_{LUMO} = 0.05$ eV). Similar values are calculated for the pair $[3]^{2+} \rightarrow [4]^{2+}$ ($\Delta E_{HOMO} = 0.23$; $\Delta E_{LUMO} = 0.07$ eV). Installing more ester substituents at the tpy ligand lowers the LUMO energy more than the HOMO energy $([1]^{2+} \rightarrow [3]^{2+}$: $\Delta E_{\text{LUMO}} = 0.29$; $\Delta E_{\text{HOMO}} = 0.17 \text{ eV}$ and $[2]^{2+} \rightarrow [4]^{2+}$: $\Delta E_{\text{LUMO}} = 0.27$; $\Delta E_{\text{HOMO}} = 0.15 \text{ eV}$) resulting in a net smaller HOMO–LUMO gap consistent with a bathochromically shifted MLCT absorption (Figures 5 and 6). The HOMO of the NH₂-substituted ddpd complexes $[2]^{2+}$ and $[4]^{2+}$ extends onto the NH₂ group similar to that of $[7]^{2+}$ and thus enhances the transition dipole moment leading to higher extinction coefficients (Table 3).^[54]

The absorption spectra of $[1]^{2+}-[4]^{2+}$ were also estimated by TD-DFT calculations including a polarizable solvent continuum model.^[55,71,72] The characteristic experimental bandshape with four discernible features (Table 3, Figure 5) is reproduced as MLCT transitions originating from the metalcentered orbitals (HOMO to HOMO-2) to the tpy-based π^* orbitals (LUMO and LUMO + 1). For $[2]^{2+}$ the MLCT band is composed of four sets of transitions centered at 450.1 (f=(0.0516)/450.2 (f=0.0937), 508.2 (f=0.0198)/517.5 (f= 0.0649), 623.5 (f=0.0072), and 642.2 nm (f=0.0167). The bathochromic shift and the shape of the MLCT band of $[4]^{2+}$ is also fully reproduced by the TD-DFT calculation by 468.6 (f=0.0175)/476.2 (f=0.0226), 543.0 (f=0.0428)/553.3(f=0.0300), 638.7 (f=0.0352), and 674.4 (f=0.0139). Furthermore, the individual sum of oscillator strengths Σf at $\lambda >$ 400 nm increases by attaching an amino group ($\Sigma f = 0.2408$ $([1]^{2+}) \rightarrow 0.2564$ $([2]^{2+})$ and $\Sigma f = 0.4153$ $([3]^{2+}) \rightarrow 0.4410$ $([4]^{2+})$)). The total experimental integrated intensity $\int I$ of the MLCT absorption bands was calculated on an energy scale (cm⁻¹). In the range $\lambda = 400-1000 \text{ nm}$ (25000-10000 cm⁻¹), the integrated intensity $\int I$ increases in the same direction $(I = 3.57 \times 10^7 \,\mathrm{M}^{-1} \,\mathrm{cm}^{-2} \quad ([1]^{2+}) \rightarrow 4.01 \times 10^7 \,\mathrm{M}^{-1} \,\mathrm{cm}^{-2}$ $([2]^{2+})$ and $\int I = 4.58 \times 10^7 \,\mathrm{m}^{-1} \,\mathrm{cm}^{-2} \,([3]^{2+}) \rightarrow 5.86 \times 10^7 \,\mathrm{m}^{-1} \,\mathrm{cm}^{-2} \,([4]^{2+}) \,\mathrm{cm}^{-2} \,\mathrm{cm}$)). The high absorptivity in the visible spectral region up to 700 nm of the amino-substituted complexes $[2]^{2+}$ and $[4]^{2+}$ would be especially beneficial for harvesting the low-energy red light in dye-sensitized solar cells. For reference compounds $[5]^{2+}-[7]^{2+}$, the sums of the oscillator strengths Σf at $\lambda > 400 \text{ nm} (\Sigma f = 0.3463 ([5]^{2+}) < \Sigma f = 0.4395 ([6]^{2+}) < \Sigma f =$ $0.5026 [7]^{2+}$) is also nicely in accordance with the trend of their respective experimental extinction coefficients of their lowest-energy MLCT band (Table 3).

Emission data of [1][PF₆]₂–[7][PF₆]₂ are summarized in Table 4. In a solution of CH₃CN at room temperature, complexes [1]²⁺–[4]²⁺ emit red to near-infrared light with emission maxima at $\lambda_{max} > 720$ nm bathochromically shifted in the series [1]²⁺ <[3]²⁺ <[2]²⁺ <[4]²⁺ (λ_{max} =729, 744, 762, and 788 nm; Figure 8). Both the amino groups at the push-substituted side and the ester groups at the pull-substituted side act in a cooperative manner and lower the energy of the emitting ³MLCT state. The mixed ligand complex [2]²⁺ emits at significantly lower energy than the bis(tpy) complex [7]²⁺ ([2]²⁺: λ_{max} =762 nm; [7]²⁺: λ_{max} =734 nm), which is essentially due to the electron-donating NCH₃ groups present in the ddpd ligand.

Emission energies were estimated by using DFT calculations (B3LYP/LANL2DZ, IEFPCM, CH_3CN) as energy difference of the energy of the optimized ³MLCT state and the

FULL PAPER

ure 10 a). The effect of the N– H oscillators is removed by deuteration of the NH₂ groups in $[2]^{2+}$ and $[4]^{2+}$. Successful deuteration is proven by the absence of amine resonances in the ¹H NMR spectra, by the absence of N–H bands in the solid state IR spectra and by the appearance of correspond-

ing N-D bands ([2^D]²⁺: 2631/

2477 cm⁻¹ (asymmetric/symmet-

ric); $[4^{\mathbf{D}}]^{2+}$: 2629/2475 cm⁻¹

Table 4. Experimental and DFT calculated emission data of complexes [1][PF₆]₂-[7][PF₆]₂.

]	Experimental				DFT ^[d]
	$\lambda_{\max,295K}^{[a]} [nm]$	$\Phi_{295\mathrm{K}}{}^{\mathrm{[a]}}[\%]$	$ au_{295\mathrm{K}}$	$\lambda_{\max,77K}^{[b]}[nm]$	$\tau_{77K}^{[b]}$	$ au_{\mathrm{TA}}^{\mathrm{[b,c]}}$	$\lambda_{\max,298K}^{[a]}$ [nm]
	$(E_{\text{max},295\text{K}} \text{ [eV]})$	$(\lambda_{ex} [nm])$	[ns]	$(E_{\text{max},77\text{K}} \text{ [eV]})$	[ns]	[ps]	$(E_{\rm max,298K} [eV]$
[1][PF ₆] ₂	729 (1.70)	0.45 (469.0)	722 ^[b]	707 (1.75)	3309	9.3	932 (1.33)
$[2][PF_6]_2$	762 (1.63)	0.042 (474.5)	149 ^[b]	749 (1.66)	1123	8.4	1047 (1.18)
$[3][PF_6]_2$	744 (1.67)	1.1 (467.5)	841 ^[b]	728 (1.70)	3251	16.7	979 (1.27)
[4][PF ₆] ₂	788 (1.57)	0.052 (467.5)	136 ^[b]	779 (1.59)	1002	7.5	1181 (1.05)
$[5][PF_6]_2^{[49]}$	629 (1.97)	≤0.0005 (n.a.)	$\approx 0.1 - 0.2^{[e]}$	n.a.	10600	n.a.	716 (1.73)
[6] [PF ₆] ₂ ^{[7][f]}	667 (1.86)	0.027 (n.a.)	32	n.a.	n.a.	8.7	816 (1.52)
[7][PF ₆] ₂ ^[54]	734 (1.69)	0.18 (n.a.)	34 ^[a]	702 (1.77)	n.a.	7.2	916 (1.35)

[a] In CH₃CN. [b] In PrCN. [c] Time constants from picosecond TA spectroscopy at 295 K. [d] Calculated from the energy difference of the optimized ³MLCT state and the singlet state with ³MLCT geometry. [e] Various solvents. [f] No solvent denoted.

Figure 8. Normalized emission spectra of $[1][PF_6]_2$ - $[4][PF_6]_2$ in CH₃CN at room temperature.

energy of the singlet ground state at the ³MLCT state geometry. Figure 9 shows a clear correlation of the DFT-calculated values of $[1]^{2+}-[7]^{2+}$ with the experimentally determined ones. Thus, the DFT derived conclusions corroborate the experimental findings and underpin the successful push-pull concept to manipulate absorption and emission energies.

All mixed ligand complexes $[1]^{2+}-[4]^{2+}$ display high room temperature emission quantum yields and long ³MLCT-state lifetimes in fluid solution in comparison to the essentially non-emissive bis(tpy) complex $[5]^{2+}$ (Table 4). Recently, cyclometalated ligands as strong donors in ruthenium(II) complexes have been reported with quantum yields of 0.001-0.025% and lifetimes of 1-30 ns.^[73,74] The significantly higher values for $[1]^{2+}-[4]^{2+}$ are based on a synergetic effect of the push-pull substitution (lower ³MLCT state) and the stronger ligand field imposed by the ddpd ligand with the large bite angle (higher ³MC state). However, for the lowenergy emitting complexes $[2]^{2+}$ and $[4]^{2+}$ a further effect is noted. The lower emission energy of the amino-substituted complexes renders them susceptible to radiationless deactivation to the ground state (energy-gap law^[62-64]) especially due to the presence of high-energy oscillators such as the N-H stretch (\approx 3450 cm⁻¹). This detrimental effect of the NH₂ group significantly reduces the quantum yield and room temperature ³MLCT lifetime ($[1]^{2+} \rightarrow [2]^{2+} \tau_{295K} =$ 722 \rightarrow 149 ns and $[3]^{2+}\rightarrow$ $[4]^{2+}$ $\tau_{295K}=$ 841 \rightarrow 136 ns; Fig-

Figure 9. DFT calculated and experimental emission energies (E_{max} at 295 K) of $[1]^{2+}-[4]^{2+}$ and reference compounds $[5]^{2+}-[7]^{2+}$ in CH₃CN. Experimental emission data of $[5]^{2+}$ and $[6]^{2+}$ were taken from the literature.^[7,49]

(asymmetric/symmetric)) in the solid-state IR spectra. Hence, high-energy N–H oscillators (\approx 3450 cm⁻¹) are replaced by lower-energy N–D oscillators (\approx 2630 cm⁻¹). Intersystem crossing from the ³MLCT state to the ¹GS ground state is feasible through the second vibrational NH overtone of the ¹GS ([**2**]²⁺/[**4**]²⁺) and through the third ND overtone ([**2**^{**D**}]²⁺/[**4**^{**D**}]²⁺; Figure 11). As multiphonon deactivation is more probable for fewer phonons, the deuterated derivatives are less prone to quenching by high-energy vibrations (Figure 11). Indeed, deuteration of the amino group significantly increases the quantum yields ([**2**]²⁺ \rightarrow [**2**^{**D**}]²⁺: Φ = 0.042 \rightarrow 0.100%; [**4**]²⁺ \rightarrow [**4**^{**D**}]²⁺: Φ =0.052 \rightarrow 0.073%). Possibly, the replacement of C–H in the ligands by C–D would further improve the quantum yield and lifetime but this is beyond the scope of this study.^[75-78]

³MLCT lifetimes for $[1]^{2+}-[4]^{2+}$ ($\tau_{77K}=3309$, 1123, 3251, 1002 ns) at 77 K in frozen butyronitrile are higher than room temperature lifetimes by a factor of 4–8 (Table 4, Figure 10) showing that deactivation through thermally accessible ³MC states is still a deactivation pathway at room temperature in fluid solution. The presence of an amino group reduces τ_{77K} by a factor of approximately three ([1]²⁺

HEMISTRY

EUROPEAN JOURNAL

Figure 10. Monoexponential emission decay of $[1]^{2+}-[4]^{2+}$ in PrCN a) at 295 K and b) at 77 K.

Figure 11. Proposed radiationless deactivation from the vibrationally relaxed ³MLCT states of [2]²⁺ and [4]²⁺ (estimated by $\lambda_{maxemiss}$ at 295 K) into their respective ground states (¹GS) in the presence of a) N–H and b) N–D harmonic oscillators.

 \rightarrow [2]²⁺; [3]²⁺ \rightarrow [4]²⁺). Emission maxima at 77 K are shifted to higher energy ($\Delta E = 0.02$ -0.05 eV) compared with room temperature values because the excited state is less stabilized in the frozen matrix than in solution, which also prolongs the lifetime at low temperature (energy-gap law).

In summary, emission quantum yields and ³MLCT lifetimes are improved by 1) using the push-pull concept decreasing the energy of the ³MLCT state and 2) increasing the ligand bite angle to strengthen the ligand field and thus raising the energy of the deactivating ³MC state. The first approach, however, seems to reach its limits at around 750 nm emission energy due to the energy-gap law in this type of complexes, especially when high-energy oscillators are present.

DFT modeling of excited triplet states: Relevant electronic triplet states ³MLCT and ³MC have been successfully modeled by DFT methods for all complexes $[1]^{2+}-[7]^{2+}$ (Figure 12), except for the ³MC state of $[4]^{2+}$, which we were unable to localize. It appears that the ³MC state of $[4]^{2+}$ corresponds only a very shallow minimum, which connects to the ³MLCT state without a significant barrier. In addition, we were able to locate the transition states (³TS) for the excited state equilibrium between ³MLCT and ³MC

Figure 12. Geometries, relative energies, and spin densities of triplet states (³MLCT and ³MC) as well as the connecting transition state (³TS) of $[1]^{2+}-[7]^{2+}$. Contour value 0.01; energies in kJ mol⁻¹; hydrogen atoms are omitted.

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

states for all complexes $[1]^{2+}-[7]^{2+}$ except $[4]^{2+}$. Optimized geometries and spin densities of the triplet states are depicted in Figure 12 together with their energy relative to the ³MLCT state. Selected bond lengths and angles are summarized in Table S10 (the Supporting Information). For complexes $[1]^{2+}-[7]^{2+}$ (except $[5]^{2+}$), the Ru–N2 bond is slightly elongated (0.02–0.05 Å) from the ¹GS to the ³MLCT state, whereas the Ru-N5 bond trans to N2 is slightly shortened (0.01–0.06 Å). Consequently, bite angles of the ester substituted tpy ligand (N1-Ru-N2, N2-Ru-N3) in the ³MLCT state $(77-78^{\circ})$ are slightly smaller than in the ¹GS state (79°) . The majority of the spin density in the ³MLCT state is located on the ester substituted tpy ligand and on the ruthenium atom as can be seen from Mulliken spin density values (Table S11, the Supporting Information) and spin densities (Figure 12). The elongation of the Ru-N2 bond as well as the spin density distribution clearly demonstrate that the excited ³MLCT state is located on both the ruthenium atom as well as on the tpy ligand as expected from electrochemical and optical investigations.

Geometries of ³MC states are obtained as local energy minima. The Ru-N bond lengths of the ester substituted tpy ligand of $[1]^{2+}-[4]^{2+}$, $[6]^{2+}$ and $[7]^{2+}$ are significantly longer in the ³MC state than in the ³MLCT state, whereas for the second ligand (ddpd or tpy) the Ru-N bond lengths change only marginally. N-Ru-N angles with the ester-substituted tpy ligand are smaller due to the larger distance between the ruthenium atom and the ester-substituted ligand. Furthermore, dihedral angles (N1-C-C-N2 and N2-C-C-N3) of the ester substituted tpy ligand are significantly larger in the ³MC state than in the ¹GS and ³MLCT states. Spin density plots (Figure 12) and Mulliken spin densities (Table S11, Supporting Information) show that the ³MC state is predominantly located on the ruthenium atom with only small contributions from both ligands, which corresponds to the expected spin density of a " $(t_{2g})^5 (e_g)^1$ " electronic configuration (see " e_{g} " orbitals LUMO + 11 and LUMO + 13 in Figure 7). All ³MC states are calculated to be higher in energy than corresponding ³MLCT states. For bis(tpy) complexes [6]²⁺ and $[7]^{2+}$ the energy difference amounts to 15.4 and 26.8 kJmol⁻¹, respectively. Substituting one tpy ligand in $[6]^{2+}$ and $[7]^{2+}$ by a ddpd ligand $([1]^{2+}$ and $[2]^{2+})$ raises the energy difference between the ³MC and the ³MLCT state by 3–6 kJ mol⁻¹ ([6]²⁺→[1]²⁺: 15.4→21.0 kJ mol⁻¹; [7]²⁺→[2]²⁺: $26.8 \rightarrow 30.0 \text{ kJ mol}^{-1}$). This finding is in accordance with experimental ³MLCT lifetimes, which are higher for the ddpd complexes $[1]^{2+}$ and $[2]^{2+}$ compared with $[6]^{2+}$ and $[7]^{2+}$ (Table 4). Additionally, the ³MC-³MLCT energy difference of a given complex type dramatically increases by push-pull substitution ([7]²⁺ (26.8 kJ mol⁻¹)>[6]²⁺ (15.4 kJ mol⁻¹)> [5]²⁺ $(0.2 \text{ kJ mol}^{-1});$ **[2**]²⁺ $(30.0 \text{ kJ mol}^{-1}) \approx [3]^{2+}$ $(27.9 \text{ kJ mol}^{-1}) > [\mathbf{1}]^{2+} (21.0 \text{ kJ mol}^{-1}))$. The calculated transition states ³TS are more similar to the ³MC than to the ³MLCT states with respect to energies, bond lengths, N-Ru-N angles and N-C-C-N dihedral angles as well as from spin density distributions, suggesting a late transition state on the reaction coordinate. The homoleptic complex $[Ru(tpy)_2]^{2+}$ $([5]^{2+})$ is unique when compared with heteroleptic analogues due to its higher symmetry. In the ¹GS, both ligands have similar Ru–N bond lengths, whereas in the ³MLCT state, one central pyridine nitrogen atom moves towards and the other central pyridine nitrogen atom moves away from the ruthenium atom, indicating that the excited state is distorted and the spin density is localized on one of the two tpy ligands. Spin densities are higher on the tpy ligand with the shorter central Ru–N bond. With respect to the ³TS and the ³MC state, complex $[5]^{2+}$ is similar to the aforementioned heteroleptic complexes.^[79]

Early-time dynamics by transient absorption spectroscopy: Before reaching the ³MLCT state and its thermal equilibration with the ³MC state, the Franck-Condon excited ¹MLCT state has to undergo localization of the excited electron onto a single oligopyridyl ligand, intersystem crossing (ISC), solvent reorganization, and vibrational relaxation.^[1] Earlytime dynamics occurring shortly after excitation to the Franck-Condon state and before reaching the emitting ³MLCT state and the deactivating ³MC state were probed by picosecond transient absorption (TA) spectroscopy for $[1]^{2+}-[4]^{2+}$, and $[6]^{2+}$ and $[7]^{2+}$ at 298 K in CH₃CN (pulse $\lambda_{\text{exc}} = 400-425 \text{ nm}$). The TA spectra of $[2]^{2+}$ and $[7]^{2+}$ are exemplarily depicted in Figure 13 (Figures S43-S46 in the Supporting Information for $[1]^{2+}$, $[3]^{2+}$, $[4]^{2+}$, and $[6]^{2+}$). All complexes exhibit ground-state bleaching from 480 to 550 nm and absorption features of the MLCT state from 550 to 1000 nm similar to the reported data of $[Ru(tpy)_2]^{2+}$ in CH₃CN.^[49,80]

To assign absorption and bleaching in the TA spectra, UV/Vis spectra of chemically oxidized and reduced $[2]^{2+}$ were recorded (Figure S47, the Supporting Information). In [2]³⁺ the MLCT band at 450–550 nm is replaced by LMCT bands at 600–950 nm with maxima at 647 $(4300 \text{ M}^{-1} \text{ cm}^{-1})$ and at 770 nm $(3100 \,\mathrm{M}^{-1} \,\mathrm{cm}^{-1})$.^[34] In the reduced form [2]⁺ absorption bands appear at $372 (27500 \text{ m}^{-1} \text{ cm}^{-1})$ and 466 nm $(18600 \text{ M}^{-1} \text{ cm}^{-1})$. Similar absorptions are also present in the spectra of reduced $[Ru(tpy)_2]^{2+}$ complexes.^[25,52] A third absorption band of $[2]^+$ is found at 695 nm (4100 M^{-1} cm⁻¹). The absorption features of $[2]^+$ are tentatively assigned to the coordinated tpy radical ligand. The difference spectrum " $[2]^{2+-1}/_{2}$ ($[2]^{3+}+[2]^{+}$)" emulates the TA spectrum concerning ground state bleach at 530 nm and excited state absorption at 560–900 nm (Figure 13). Thus, the excited ³MLCT state of [2]²⁺ is well formulated by [Ru^{III}(ddpd- NH_2)(EtOOC-tpy⁽⁻⁾)]²⁺, with the spin density localized on the tpy ligand and a Ru^{III} center.

Time-resolved transient absorption features evolve within the first picoseconds after the laser pulse. The time constants of $[1]^{2+}-[4]^{2+}$, and $[6]^{2+}$ and $[7]^{2+}$ are summarized in Table 4. TA spectra of $[Ru(bpy)_3]^{2+}$ had revealed that no significant changes occur in the spectrum within ≈ 0.3 ps after a laser pulse with $\lambda_{exc} = 475$ nm.^[81] On the other hand, time constants of 5 ps had been observed by TA measurements for $[Ru(dmb)_3]^{2+}$ (dmb=4,4'-dimethyl-2,2'-bipyridine) when irradiated at 400 nm and had been assigned to

Chem. Eur. J. 2013, 19, 13745-13760

CHEMISTRY A EUROPEAN JOURNAL

Figure 13. Transient absorption spectra of a) $[2]^{2+}$ (pulse $\lambda_{exc} = 425$ nm, 2050 nJ) with difference spectrum " $[2]^{2+} - \frac{1}{2}([2]^{3+} + [2]^{+})$ " and b) $[7]^{2+}$ (pulse $\lambda_{exc} = 400$ nm, 2600 nJ) in PrCN at 295 K.

vibrational cooling within the ³MLCT state.^[82] A time constant of 2 ps had been found for $[Ru(tpy)_2]^{2+}$ and had been assigned to the equilibrium between ³MLCT and ³MC states. This interpretation is clearly not applicable for $[1]^{2+}-[4]^{2+}$, and $[6]^{2+}$ and $[7]^{2+}$ because the ³MLCT/³MC equilibration occurs in the nanosecond regime. For heteroleptic [Ru(tpy)-(ttpy)²⁺ (ttpy=4'-(4-methylphenyl)-2,2';6',2''-terpyridine) a 3 ps dynamics had been discussed to be an interligand electron-transfer process.^[80] Whatever the exact nature of the observed dynamics in $[1]^{2+}-[4]^{2+}$ and $[6]^{2+}$ and $[7]^{2+}$ (localization of the electron on the tpy ligand, ISC, or vibrational relaxation within MLCT states), all these processes together from the ¹MLCT Franck-Condon state to the thermalized ³MLCT state are completed within several picoseconds in all cases. The thermalized ³MLCT state equilibrates with the ³MC state, relaxes to the ground state by radiationless deactivation through high-energy oscillators, or emits a photon.

Conclusion

Heteroleptic bis(tridentate) ruthenium(II) complexes $[1]^{2+}$ – $[4]^{2+}$ with long ³MLCT lifetimes (up to 841 ns) and high quantum yields (up to 1.1%) have been synthesized by using the combination of an electron-accepting tpy and an

electron-donating ddpd ligand. The favorable push-pull substitution of the complexes leads to a small HOMO-LUMO gap, a spatial separation of the frontier orbitals. and to lowenergy absorption and emission. The large 88° bite angle of ddpd ligands induces a strong ligand field and increases the energy difference between ³MLCT and ³MC states, thus reducing radiationless decay pathways through the latter state. Excited states of $[1]^{2+}-[4]^{2+}$ have been probed experimentally by using ultrafast transient absorption spectroscopy and theoretically by DFT calculations. The ${}^{1}MLCT \rightarrow$ ³MLCT relaxation occurs within picoseconds, whereas the ${}^{3}MLCT \rightarrow {}^{3}MC$ equilibration is shifted to the nanosecond timescale (Scheme 1). The fairly long lifetime of >100 ns of the ³MLCT state of complexes $[1]^{2+}-[4]^{2+}$ should allow for efficient electron-transfer processes in solution or at semiconductor interfaces. Furthermore, the quantum yields together with the functional groups present will allow labeling applications in the field of luminescent sensors and in other luminescent devices. Future applications of $[1]^{2+}-[4]^{2+}$ are dye-sensitized solar cells, light-emitting electrochemical cells, labeling, and photocatalysis. This research is currently being pursued in our group and results will be reported in due course.

Experimental Section

General procedures: Dioxane, diethyl ether, and petroleum ether (b.p. 40-60 °C) were distilled from sodium, CH3CN and CH2Cl2 from CaH₂, and THF from potassium under an argon atmosphere. All reagents were used as received from commercial suppliers (Acros and Sigma-Aldrich). Microwave heating was performed in a Discover Benchmate Plus (CEM Synthesis) single-mode microwave cavity, producing continuous irradiation at 2.455 GHz with 100 W (maximum power). Reaction mixtures were stirred with a magnetic stir bar during irradiation. The temperature and irradiation power were monitored during the course of the reaction. NMR spectra were recorded on a Bruker Avance DRX 400 spectrometer at 400.31 MHz (1H), 100.66 MHz (13C[1H]), and 40.56 MHz (15N). All resonances are reported in ppm versus the solvent signal as an internal standard (CD₃CN (¹H, δ =1.94; ¹³C, δ =1.24 ppm); CD₂Cl₂ (¹H, δ =5.32); $[D_6]DMSO$ (¹H, $\delta = 2.50$); ¹³C, $\delta = 39.43$ ppm)) or versus external CH₃NO₂ (90% in CDCl₃ $\delta = 380.23$ ppm vs. NH₃(1)) and referenced to NH₃ (¹⁵N, $\delta = 0$ ppm). IR spectra were recorded with a BioRad Excalibur FTS 3100 spectrometer as KBr or CsI disks. Electrochemical experiments were carried out on a Bio Logic SP-50 voltammetric analyzer using platinum wires as counter- and working electrodes and 0.01 M Ag/AgNO3 as reference electrode. The measurements were carried out at a scan rate of 100-333 mVs⁻¹ for cyclic voltammetry experiments and at 25-333 mVs⁻¹ for square-wave voltammetry experiments using 0.1 M [nBu₄N][PF₆] as the supporting electrolyte and a 10^{-3} M solution of the sample in dry and degassed CH₃CN. Potentials are referenced to the ferrocene/ferrocenium couple ($E_{1/2}=90\pm5$ mV under experimental conditions). UV/Vis/near-IR spectra were recorded on a Varian Cary 5000 spectrometer using 1.0 cm cells (Hellma, Suprasil). Emission spectra were recorded on a Varian Cary Eclipse spectrometer. Quantum yields were determined by comparing the areas under the emission spectra on an energy scale cm⁻¹ recorded for optically matched solutions of the sample and the reference $\Phi([Ru(bpy)_3]Cl_2) = 0.094$ in deaerated CH₃CN.^[83] Time-resolved photoluminescence measurements were recorded with a gated intensified chargecoupled device camera (Andor IStar iCCD Detector DH740 ICCD) connected to a spectrograph (Andor Shamrock SR-303i) employing gratings with 150 or 300 lines per millimeter. Photoexcitation at wavelengths corresponding to the maximum absorption of the complexes in solution was

13756 -

provided by 10 ns pulses of an optical parametric oscillator (GWU VisIR2 OPO System) pumped by the third harmonic of a Nd:YAG Laser (Spectra-Physics Quanta Ray-INDI) at a repetition rate of 10 Hz. Solutions ($c = 5 \times 10^{-6}$ M) in degased butyronitrile were prepared under a nitrogen atmosphere. The measurements were performed at 295 and 77 K in a self-made indium sealed brass cuvette with quartz windows and an optical path of 1 mm. Single exponentials were used to fit the experimental data. Transient absorption measurements were performed with a homebuilt pump-probe setup.^[84] To measure a time range up to 3 ns with a resolution of ≈ 100 fs, the output of a commercial titanium:sapphire amplifier (Coherent LIBRA HE, 3.5 mJ, 1 kHz, 100 fs) was split with one portion used to generate a 400-425 nm excitation pulse using an optical parametric amplifier (Coherent OPerA Solo), and another used to generate a 1300 nm seed pulse (output of an optical parametric amplifier (Coherent OPerA Solo)) for white-light generation in the visible to NIR (500-1000 nm) in a c-cut 3 mm thick sapphire window. The variable delay of up to 3 ns between pump and probe was introduced by using a broadband retroreflector mounted on a mechanical delay stage. The excitation pulse was chopped at 500 Hz, while the white light pulses were dispersed onto a linear silicon (Hamamatsu NMOS linear image sensor \$3901) photodiode. The array was read out at 1 kHz. Adjacent diode readings corresponding to the transmission of the sample after an excitation pulse and without an excitation pulse were used to calculate $\Delta T/T$. Samples were excited with fluences between 50 and 500 µJ cm⁻². No fluence dependent kinetics were observed. The complexes were dissolved in degased butyronitrile (c = 0.2 - 0.6 mM) under a nitrogen atmosphere and measured in a quartz cuvette with 1 mm optical path length. Field desorption (FD) mass spectra were recorded on a FD Finnigan MAT90 spectrometer, ESI mass spectra were recorded on a Micromass O-TOF-Ultima spectrometer. X-band CW ESR spectra were measured on a Miniscope MS 300 (Magnettech GmbH, Germany), g values are referenced to external Mn^{2+} in ZnS (g=2.118, 2.066, 2.027, 1.986, 1.946, 1.906). Measurements were conducted at 77 K and simulations were performed with the program package EasySpin.[85] Elemental analyses were performed by the microanalytical laboratory of the chemical institutes of the University of Mainz.

Crystal structure determinations: Intensity data were collected with a Bruker AXS Smart 1000 CCD diffractometer with an APEX II detector and an Oxford cooling system and corrected for absorption and other effects using Mo_{Ka} radiation ($\lambda = 0.71073$ Å) at 173(2) K. The diffraction frames were integrated using the SAINT package, and most were corrected for absorption with MULABS.^[86,87] The structures were solved by direct methods and refined by the full-matrix method based on F^2 using the SHELXTL software package.^[88,89] All non-hydrogen atoms were refined anisotropically, whereas the positions of all hydrogen atoms were generated with appropriate geometric constraints and allowed to ride on their respective parent carbon atoms with fixed isotropic thermal parameters. The asymmetric unit of a crystal of [3][PF₆]₂ contains one molecule of an acetonitrile solvent and one molecule of diethylether. Both [PF6]counterions and one ester group are disordered over two positions (site occupancy 0.55:0.45 (P1); 0.68:0.32 (P2); 0.76:0.24 (ester)). In the refinement one [PF₆]⁻ counterion (P1) of [3][PF₆]₂ restraints were applied (same, simu, delu). Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited as CCDC-930312 ([2][PF₆]₂), CCDC-930313 ([3][PF₆]₂), CCDC-930310 (8) and CCDC-930311 (9). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif..

DFT calculations: Calculations were performed by using the Gaussian 09/DFT^[90] series of programs. The B3LYP formulation of DFT was used employing the LANL2DZ basis set.^[90] No symmetry constraints were imposed on the molecules. The presence of energy minima or first order saddle points was checked by analytical frequency calculations. The integral-equation-formalism polarizable continuum model (IEFPCM, CH₃CN) was employed for solvent modeling. As data obtained including solvent modeling reproduced the experimental results better than those without solvent modeling the IEFPCM formalism is used in all calculations in this paper. In TD-DFT calculations at least 100 singlet transitions ($n \ge 100$) were calculated. For thermodynamic energy values, the sum of

electronic and thermal free-energies (T=298.15 K) from the output file was used. All calculations were performed without explicit counterions and solvent molecules.

Syntheses: The synthesis of $[Ru(ddpd)(EtOOC-tpy)][PF_6]_2$ ([1][PF₆]₂), [RuCl₃(EtOOC-tpy)] (12) and ddpd (11) have been reported previously.^[61] [(RuCl₃{(MeOOC)₃-tpy}] (13) was synthesized according to literature procedures.^[55,66,67] Syntheses of 8, 4-amino-2,6-dibromopyridine, 9 and 10 can be found in the Supporting Information.

 $[Ru(ddpd-NH_2)(EtOOC-tpy)][PF_6]_2$ ([2][PF_6]_2): [RuCl₃(EtOOC-tpy)] (12, 103.7 mg, 0.2022 mmol, 1.0 equiv) and 10 (95.4 mg, 0.219 mmol, 1.1 equiv) were suspended in ethanol (15 mL). The dark red-brown suspension was ultrasonicated for 1 min and N-ethylmorpholine (0.15 mL, 1.2 mmol, 5.9 equiv) was added. The mixture was heated to reflux in a laboratory microwave oven for 30 min (80 °C). The mixture was filtered over Celite (1.5 cm; \emptyset 3.5 cm) and rinsed with ethanol. The solvent was removed under reduced pressure, and the dark-purple solid was dissolved in ethanol (5 mL). Addition of diethylether (50 mL) resulted in the precipitation of a dark-purple solid, which was filtered and dissolved in ethanol (25 mL). Hydrazine hydrate (50 µL, 1.0 mmol, 5.1 equiv) was added and the mixture was heated to reflux (16 h). After cooling to room temperature a second portion of hydrazine hydrate (70 µL, 1.4 mmol, 7.1 equiv) was added. The mixture was heated to reflux (17 h), cooled to room temperature and the solvent was removed under reduced pressure. The dark purple solid was dissolved in ethanol (2 mL) and precipitated by adding diethylether (26 mL). The solid was filtered and dissolved in water (11 mL). The dark-purple product was precipitated by the addition of an aqueous solution of NH₄PF₆ (166.2 mg, 1.020 mmol, 5.0 equiv, 13 mL). The precipitate was filtered, washed with water (10 mL) and diethyl ether (30 mL) and dried under reduced pressure. A dark-purple powder was obtained. Yield: 155.2 mg (0.1548 mmol, 77%). ¹H NMR $(CD_3CN, 300 \text{ K}): \delta = 8.95 \text{ (s, 2H, H}^2), 8.54 \text{ (m, 2H, H}^5), 8.15 \text{ (m, 2H, H}^8),$ 8.00 (m, 2H, H⁶), 7.58 (m, 2H, H¹¹), 7.48 (m, 2H, H⁷), 7.12 (m, 2H, H¹²), 6.80 (s, 2H, H15), 6.54 (m, 2H, H10), 6.38 (m, 2H, H9), 5.72 (br, s, 2H, NH₂), 4.57 (q, ³J_{HH}=7.1 Hz, 2H, CH₂CH₃), 3.36 (s, 6H, NCH₃), 1.51 ppm (t, ${}^{3}J_{HH} = 7.1 \text{ Hz}, 3 \text{ H}, \text{ CH}_{2}\text{CH}_{3}$); ${}^{13}\text{C}{}^{1}\text{H}$ NMR (CD₃CN, 300 K): $\delta = 165.0$ (s, C=O), 160.2 (s, C¹³), 160.0 (s, C¹⁶), 159.1 (s, C³), 158.8 (s, C⁴), 156.8 (s, C14), 155.0 (s, C8), 149.3 (s, C9), 140.0 (s, C11), 138.8 (s, C6), 135.1 (s, C1), 127.8 (s, C⁷), 125.4 (s, C⁵), 123.6 (s, C²), 121.1 (s, C¹⁰), 116.2 (s, C¹²), 98.7 (s, C¹⁵), 63.5 (s, CH₂CH₃), 41.4 (s, NCH₃), 14.5 ppm (s, CH₂CH₃); ¹H-¹⁵N HMBC (CD₃CN, 300 K): $\delta = 297.2$ (N^e), 238.6 (N^d), 212.7 (N^a), 183.1 (N^c), 90.1 (N^b), 72.1 ppm (NH₂) ppm; MS (ESI⁺): *m*/*z* 356.6 (100%) $[M-2PF_6]^{2+}$, 858.2 (25%) $[M-PF_6]^+$; HR-MS (ESI⁺): m/z calcd for $C_{35}H_{33}F_6N_9O_2P^{96}Ru^+$: 852.1475; found: 852.1500; IR (CsI): $\tilde{\nu} = 3468$ (m, NH), 3400 (m, NH), 3240 (w, NH), 3125 (w, NH, CH), 2920 (m, CH), 2853 (w, CH), 1726 (s, C=O), 1641 (s, NH2, NH, C=C), 1620 (s, NH, C= N), 1605 (s, NH, C=N), 1574 (m, NH, C=N), 1462 (s, CH₃, CH₂), 1433 (s, CH₃, CH₂), 1367 (s, CH₃), 1344 (s, C-N), 1327 (s, C-N), 1281 (s, C-N, C-O-C), 1254 (s, C-N, C-O-C), 1170 (m, C-N, C-O-C), 1132 (m, C-N, C-O-C), 1097 (m, C-O-C), 1049 (m, C-O-C), 1026 (m, C-O-C), 966 (w), 843 (vs, PF), 781 (m), 767 (m), 650 (w), 613 (w), 559 (s), 527 cm⁻¹ (w); UV/ Vis (CH₃CN): λ_{abs} (ϵ) = 525 (8230), 323 (26 700), 273 (42000), 238 nm $(43\,600\,\text{m}^{-1}\text{cm}^{-1})$; emission (CH₃CN, 295 K, $\lambda_{\text{exc}} = 525$ nm): $\lambda_{\text{emiss}} = 762$ nm [τ =149(2) ns]; emission (CH₃CH₂CH₂CN, 77 K, λ_{exc} =525 nm): λ_{emiss} = 749 nm [τ =1123(9) ns]; Φ (CH₃CN, λ_{exc} =474.5 nm, 295 K): 0.00042%; CV (CH₃CN): $E_{1/2}$ = +1.73 (1e, irrev.), +0.64 (1e, rev.), -1.50 (1e, rev.), -2.11 (1e, irrev.), -2.21 (1e, irrev.) vs. Fc/Fc+; elemental analysis calcd (%) for C₃₅H₃₃F₁₂N₉O₂P₂Ru•¹/₂Et₂O: C 42.74, H 3.68, N 12.12; found: C 42.97, H 3.48, N 11.96.

 $[Ru(ddpd)]((MeOOC)_3-tpy)][PF_{ol2}$ ([3][PF_{ol2}): A solution of **11** (524.7 mg, 1.801 mmol, 2.1 equiv) in methanol (40 mL) was added to $[RuCl_3](MeOOC)_3-tpy]]$ (**13**, 523.1 mg, 0.851 mmol, 1.0 equiv). *N*-ethylmorpholine (1.50 mL, 11.9 mmol, 13.9 equiv) was added, the black mixture was ultrasonicated (1 min) and heated to reflux in a laboratory microwave oven for 30 min (70 °C). A dark purple-brown solution was obtained which was filtered over Celite (1.5 cm; \emptyset 3.0 cm) and rinsed with methanol. The solvent was removed under reduced pressure, and the viscous dark purple-brown residue was dissolved in methanol (10 mL). Addition of an aqueous solution of NH₄PF₆ (5.768 g, 35.39 mmol, 41.6 equiv,

Chem. Eur. J. 2013, 19, 13745-13760

100 mL) led to the precipitation of a dark purple-brown solid which was filtered and washed with a dilute aqueous solution of NH₄PF₆ (50.5 mg in 100 mL; pale-brown filtrate). The filtrate was washed with dioxane (\approx 200 mL) until the filtrate was colorless (the color of the filtrate turned from dark-green to colorless). The black residue on the filter paper was redissolved in acetone. The solvent of the dark purple solution was removed under reduced pressure and the residue was dissolved in CH₃CN, filtered again and the filter was washed with CH3CN (a dark-green residue remained on the filter paper). The solvent was removed under reduced pressure and the residue was dissolved in acetone (10 mL). Dioxane (90 mL) was added and the mixture was concentrated to half of its volume under reduced pressure. The suspension was filtered (greenish filtrate). The solid residue was dried in vacuo. AgNO₃ (0.5025 g, 2.958 mmol, 3.5 equiv) and absolute CH₃CN (43 mL) were added and the solution was heated to reflux (30 min) under an argon atmosphere. After cooling to room temperature AgCl was filtered and washed with CH₃CN. The solvent of the combined filtrates was removed under reduced pressure and the residue was dissolved in CH3CN (14 mL). An aqueous solution of NH₄PF₆ (1.037 g, 6.362 mmol, 7.5 equiv, 10 mL) was added and the dark-purple product precipitated. CH3CN was removed under reduced pressure and the suspension was filtered, washed with diethyl ether, and dried in vacuo. A dark-purple powder was obtained. Yield: 464 mg (0.426 mmol, 50%). ¹H NMR (CD₃CN, 300 K): $\delta = 9.17$ (s, 2 H, H²), 8.99 (m, 2H, H⁵), 8.30 (t, ${}^{3}J_{HH} = 8.2$ Hz, 1H, H¹⁶), 8.28 (m, 2H, H⁸), 7.91 (m, 2H, H⁷), 7.62 (m, 2H, H¹¹), 7.60 (d, ${}^{3}J_{HH} = 8.2$ Hz, 2H, H¹⁵), 7.19 (m, 2H, H¹²), 6.56 (m, 2H, H¹⁰), 6.36 (m, 2H, H⁹), 4.13 (s, 3H, H¹⁹), 3.99 (s, 6H, H¹⁸), 3.48 ppm (s, 6H, NCH₃); ${}^{13}C{}^{1}H$ NMR (CD₃CN, 300 K): $\delta =$ $\begin{array}{l} (c, c^{(1)}, 11) (c, c^{(1)}, 164.8 (s, C=O^{outer}), 159.7 (s, C^4), 159.5 (s, C^{(3)}), 159.3 (s, C^3), 157.1 (s, C^{14}), 155.8 (s, C^8), 149.2 (s, C^9), 142.1 (s, C^{16}), 140.4 (s, c^{(1)}), 14$ C¹¹), 140.0 (s, C⁶), 136.4 (s, C¹), 126.8 (s, C⁷), 124.8 (s, C²), 124.7 (s, C⁵), 121.6 (s, C¹⁰), 116.6 (s, C¹²), 113.7 (s, C¹⁵), 54.1 (s, OCH₃^{center}), 53.9 (s, OCH₃^{outer}), 41.7 ppm (s, NCH₃); ¹H-¹⁵N HMBC (CD₃CN, 300 K): $\delta =$ 294.4 (Ne), 249.1 (Nd), 216.2 (Nc), 209.2 (Na), 92.0 (Nb) ppm. MS (ESI+): m/z = 400.2 (84%) $[M-2 \text{ PF}_6]^{2+}$, 945.3 (100%) $[M-\text{PF}_6]^{+}$; HR-MS (ESI⁺): m/z calcd for $C_{38}H_{34}F_6N_8O_6P^{96}Ru^+$: 939.1319; found: 939.1343; IR (CsI): v=3120 (w, CH), 2959 (w, CH), 2922 (w, CH), 2853 (w, CH), 1734 (s, C=O), 1607 (m, C=N), 1582 (w, C=N), 1491 (m, C=N), 1450 (m, CH₃), 1408 (m, CH₃), 1358 (s, CH₃, C-N), 1337 (s, C-O-C), 1308 (m, C-N, C-O-C), 1238 (s, C-N, C-O-C), 1165 (w, C-N, C-O-C), 1123 (m, C-N, C-O-C), 1099 (m, C-N), 841 (vs, PF), 768 (m), 727 (w), 613 (w), 559 (s), 538 (w), 467 (w), 444 (w), 349 (w) cm⁻¹; UV/Vis (CH₃CN): λ_{abs} (ε) = 539 (6360), 475 (5060), 340 (31 000), 292 (34 200), 210 nm (52 $400 \text{ m}^{-1} \text{ cm}^{-1}$); emission (CH₃CN, 295 K, λ_{exc} =539 nm): λ_{emiss} =744 nm [τ =841(26) ns]. Emission (CH₃CH₂CH₂CN, 77 K, λ_{exc} =539 nm): λ_{emiss} =728 nm [τ = 3251(55) ns]; Φ (CH₃CN, λ_{exc} = 467.5 nm, 295 K): 0.011 %; CV (CH₃CN): $E_{1/2}$ = +1.80 (1e, irrev.), +0.92 (1e, rev.), -1.25 (1e, irrev.), -1.70 (1e, irrev.) vs. Fc/Fc⁺; elemental analysis calcd (%) for C₃₈H₃₄F₁₂N₈O₆P₂Ru•H₂O•¹/₂Et₂O: C 41.97, H 3.61, N 9.79; found: C 41.22, H 3.33, N 8.79.

 $[Ru(ddpd-NH_2){(EtOOC)_3-tpy}][PF_6]_2$ [4][PF_6]_2: [RuCl₃{(MeOOC)_3-tpy}][PF_6]_2: [RuCl_3{(MeOOC)_3-tpy}][PF_6]_2: [RuCl_3{(MeOOC)_3-tpy}][PF_6]_3: [RuCl_3{(M tpy]] (13, 141.9 mg, 0.2308 mmol, 1.0 equiv) and ddpd-phthalimide (10, 98.6 mg, 0.2259 mmol, 1.0 equiv) were placed in a flask and ethanol (15 mL) was added. The dark red-brown suspension was ultrasonicated (1 min) and N-ethylmorpholine (0.15 mL, 1.2 mmol, 5.2 equiv) was added. The mixture was heated to reflux in a laboratory microwave oven for 30 min (80 °C). A dark-purple solution was obtained that was filtered over Celite (1.5 cm; diameter 3.5 cm) and rinsed with ethanol. The solvent was removed under reduced pressure, the solid residue was dissolved in CH₃CN (5 mL) and precipitated by the addition of diethyl ether (100 mL). After filtration and washing with diethyl ether half of the obtained solid was used for further treatment. The solid was dissolved in ethanol (25 mL) and hydrazine hydrate (1.00 mL, 20.6 mmol, 178 equiv) was added. The mixture was heated to reflux (18 h). After cooling to room temperature the solvent was removed under reduced pressure. The dark-purple solid was dissolved in water (13 mL) and a dark-purple solid was precipitated by the addition of an aqueous NH₄PF₆ (1.088 g, 6.675 mmol, 58 equiv, 10 mL) solution. A pH of 7 was adjusted with concentrated H₂SO₄, the suspension was filtered and the solid was washed with water. The solid was dissolved in CH₃CN (2.5 mL) and precipitated by the addition of dioxane (25 mL). After filtration and washing with distilled dioxane and distilled diethyl ether, the solid was dried in a vacuo and dissolved in absolute ethanol (25 mL). Concentrated H₂SO₄ (0.25 mL) was added and the mixture was heated to reflux (21 h). After cooling to room temperature, an aqueous solution of NH₄PF₆ (1.552 g, 9.521 mmol, 84 equiv, 10 mL) was added. Ethanol was removed under reduced pressure and the precipitate was filtered, washed with water and dried in a vacuo. A dark-purple powder was obtained. Yield: 19.9 mg (0.0187 mmol, 17%). ¹H NMR (CD₃CN, 300 K): $\delta = 9.15$ (s, 2H, H²), 8.96 (m, 2H, H⁵), 8.31 (m, 2H, H⁸), 7.91 (m, 2H, H⁷), 7.59 (m, 2H, H¹¹), 7.13 (m, 2H, H¹²), 6.82 (s, 2H, H¹⁵), 6.52 (m, 2H, H¹⁰), 6.30 (m, 2H, H⁹), 5.77 (br, s, 2H, NH₂), 4.60 (q, ${}^{3}J_{HH} = 7.1$ Hz, 2H, CH₂CH₃^{center}), 4.45 (q, ${}^{3}J_{HH} =$ 7.1 Hz, 4H, CH_2CH_3 , ^{uter}), 3.36 (s, 6H, NCH₃), 1.54 (t, ${}^{3}J_{HH} = 7.1$ Hz, 3H, $CH_2CH_3^{center}$), 1.41 ppm (q, ${}^{3}J_{HH} = 7.1$ Hz, 6H, $CH_2CH_3^{outer}$); ${}^{13}C{}^{1}H$ NMR (CD₃CN, 300 K): $\delta = 164.8$ (s, C=O^{center}), 164.4 (s, C=O^{outer}), 160.0 (s, C¹³), 159.8 (s, C⁴), 159.6 (s, C³), 159.3 (s, C¹⁶), 156.7 (s, C¹⁴), 155.7 (s, C⁸), 149.2 (s, C⁹), 140.3 (s, C¹¹), 140.0 (s, C⁶), 135.8 (s, C¹), 126.7 (s, C⁷), 124.6 (s, C²), 124.4 (s, C⁵), 121.2 (s, C¹⁰), 116.5 (s, C¹²), 98.8 (s, C¹⁵), 63.6 (s, CH₂CH₃^{center}), 63.5 (s, CH₂CH₃^{outer}), 41.3 (s, NCH₃), 14.6 (s, CH₂CH₃^{center}), 14.4 ppm (s, CH₂CH₃^{outer}); ¹H-¹⁵N HMBC (CD₃CN, 300 K): $\delta = 296.6$ (N^e), 249.7 (N_d), 209.9 (N_a), 181.7 (N_c), 89.5 (N_b), 72.7 ppm (NH₂); MS (ESI⁺): m/z = 428.6 (100%) $[M-2PF_6]^{2+}$, 1002.2 (55%) $[M-PF_6]^+$; HR-MS (ESI⁺): m/z calcd for $C_{41}H_{41}F_6N_9O_6P^{96}Ru^+$: 996.1898; found: 996.1891; IR (CsI): v=3109 (w, CH), 2957 (w, CH), 2926 (m, CH), 2855 (w, CH), 1726 (s, C=O), 1636 (m, NH, C=C, C=N), 1607 (m, NH, C=N), 1574 (w, NH, C=N), 1556 (w, NH, C=N), 1464 (m, CH), 1441 (w, CH), 1408 (m), 1364 (s, CH, C-N), 1325 (s, C-O-C), 1304 (m, C-N, C-O-C), 1238 (s, C-N, C-O-C), 1169 (w, C-N, C-O-C), 1117 (m, C-N, C-O-C), 1051 (w, C-N, C-O-C), 1016 (w, C-O-C), 843 (vs, PF), 768 (w), 615 (w), 559 (m) cm⁻¹; UV/Vis (CH₃CN): λ_{abs} (ϵ) = 546 (7810), 479 (5960), 341 (32 000), 292 (37 200), 223 nm (45 $600 \text{ m}^{-1} \text{ cm}^{-1}$); emission (CH₃CN, 295 K, λ_{exc} =546 nm): λ_{emiss} =788 nm [τ =136(3) ns]; emission (CH₃CH₂CH₂CN, 77 K, λ_{exc} =546 nm): λ_{emiss} =779 nm [τ =1002(17) ns]; Φ (CH₃CN, λ_{exc} = 467.5 nm, 295 K): 0.00052 %; CV (CH₃CN): $E_{1/2}$ = +1.70 (1e, irrev.), +0.73 (1e, rev.), -1.32 (1e, rev.), -1.75 (1e, rev.) vs. Fc/Fc+; elemental analysis calcd (%) for C41H41F12N9O6P2Ru-5EtOH: C 44.48, H 5.20, N 9.15; found: C 44.76, H 5.06, N 8.78.

Anion exchange with Δ -TRISPHAT: ¹H NMR spectra of [2][PF₆]₂ (2.7 mg, 2.7 µmol, 1 equiv) in CD₃CN (0.55 mL) were measured before and after addition of tetra(*n*-butyl)ammonium(Δ -tris(tetrachloro-1,2-benzenediolato) phosphate(V)) (4.8 mg, 4.7 µmol, 1.8 equiv). A small but clear splitting of around $\Delta \delta = 0.01$ ppm is obtained for the proton resonances of H^2 , H^{15} , NH_2 , CH_2 , NCH_3 , and CH_3^{ethyl} in the presence of (Δ -TRISPHAT)⁻ (see Figure 1). The ³¹P NMR spectrum revealed no splitting of the phosphorus resonance of (Δ -TRISPHAT)⁻ at $\delta = -81.6$ ppm. Deuteration: A few milligrams of [2][PF₆]₂ or [4][PF₆]₂ were dissolved in dry CD₃CN (0.5 mL). D₂O (99.96% D; 2-3 drops) was then added. A proton NMR spectrum revealed the instantaneous absence of the NH₂ resonance due to proton-deuterium exchange. The solvent was removed under reduced pressure and the resulting deuterated complex was kept under a dry argon atmosphere. Solid-state IR spectra of $[2^{D}][PF_{6}]_{2}$ or [4^D][PF₆]₂ revealed the presence of N–D vibrational bands and the absence of N-H vibrational bands (the Supporting information, Figures S48 and S49).

$$\begin{split} & [2^{D}] [PF_{6}]_{2} : \text{IR} \ (\text{CsI}): \ \tilde{\nu} = 3120 \ (\text{w, CH}), 2984 \ (\text{w, CH}), 2924 \ (\text{w, CH}), 2851 \\ & (\text{w, CH}), 2631 \ (\text{w, ND}_{asym}), 2477 \ (\text{w, ND}_{sym}), 1728 \ (\text{s, C=O}), 1628 \ (\text{s, C=C}, \\ & \text{C=N}), 1605 \ (\text{s, C=N}), 1574 \ (\text{m, C=N}), 1477 \ (\text{s, CH}), 1462 \ (\text{s, CH}), 1435 \\ & (\text{m, CH}_{3}, \text{CH}_{2}), 1368 \ (\text{m, CH}_{3}), 1344 \ (\text{s, C-N}), 1335 \ (\text{s, C-N}), 1283 \ (\text{s, C-N}, \\ & \text{C-O-C}), 1258 \ (\text{s, C-N, C-O-C}), 1175 \ (\text{m, C-N, C-O-C}), 1134 \ (\text{m, C-N, C-O-C}), 1105 \ (\text{w, C-O-C}), 1026 \ (\text{w, C-O-C}), 1013 \ (\text{w, C-O-C}), 980 \ (\text{w}), 843 \ (\text{vs, PF}), 781 \ (\text{m}), 766 \ (\text{s}), 557 \ (\text{s}), 527 \ \text{cm}^{-1} \ (\text{w}); \ \varPhi (\text{CH}_{3}\text{CN}, \lambda_{exc} = 472.2 \ \text{nm}, 295 \ \text{K}): 0.0010 \ \%. \end{split}$$

$$\begin{split} & [{4}^D] [PF_6]_2: \mbox{ IR (CsI): } \tilde{\nu} = 3105 \mbox{ (w, CH), } 2955 \mbox{ (m, CH), } 2926 \mbox{ (m, CH), } 2855 \mbox{ (m, CH), } 2629 \mbox{ (w, ND}_{aym}), 2475 \mbox{ (w, ND}_{sym}), 1732 \mbox{ (s, C=O), } 1628 \mbox{ (s, C=C, C=N), } 1607 \mbox{ (m, C=N), } 1576 \mbox{ (w, C=N), } 1553 \mbox{ (w, C=N), } 1464 \mbox{ (s, CH), } 1416 \mbox{ (w, CH), } 1371 \mbox{ (m, CH, C-N), } 1310 \mbox{ (s, C-N, C-O-C), } 1124 \mbox{ (w, C-N), } 1049 \mbox{ (w, C-N), } \end{split}$$

13758 -

C-O-C), 1024 (w, C-O-C), 986 (m), 843 (vs, PF), 768 (m), 557 cm⁻¹ (s); Φ (CH₃CN, λ_{exc} = 477.4 nm, 295 K): 0.00073 %.

Oxidation and reduction of [2][PF₆]₂: For UV/Vis oxidation measurements a solution of [2][PF₆]₂ (7.7×10^{-5} M) was titrated with a solution of (NH₄)₂[Ce(NO₃)₆] (3.0×10^{-2} M) in 0.5 M trifluoroacetic acid in water. UV/Vis reduction measurements were performed by titration of a solution of [2][PF₆]₂ (1.3×10^{-4} M, 0.5 mL) with a solution of [Co(Cp⁺)₂] (2.0×10^{-3} M) in CH₃CN. For EPR oxidation measurements a solution of (NH₄)₂[Ce(NO₃)₆] (5.0×10^{-2} M, 3.1 equiv) was added to a solution of [2][PF₆]₂ (1.3×10^{-3} M, 0.5 mL) in CH₃CN. EPR reduction was performed by addition of a solution of [Co(Cp⁺)₂] (1.0×10^{-2} M, 3.0 equiv) to a solution of [2][PF₆]₂ (1.7×10^{-3} M) in CH₃CN. For all EPR measurements the solution was immediately frozen to 77 K in an EPR tube. [2]⁺: EPR: $g_{1,2,3}$ =2.0089, 1.9865, 1.9720; Δg =0.0387 by spectral simulation; Figure S42, the Supporting Information). [2]³⁺: EPR: $g_{1,2,3}$ =2.4440, 2.2694, 2.0300; Δg = 0.4140 by spectral simulation; Figure S41, the Supporting Information).

Acknowledgements

This work was supported by the International Research Training Group (IRTG 1404): Self Organized Materials for Optoelectronics supported by the Deutsche Forschungsgemeinschaft (DFG). M.M. thanks the Max Planck Graduate Center for support and F.L. (all Max Planck Institute for Polymer Research of Mainz, Germany) thanks the Max Planck Society for funding a Max Planck Research group. We thank Anica Wünsche von Leupoldt for the EPR simulations, Regine Jung-Pothmann for the Xray data collection (all Johannes Gutenberg-University of Mainz, Germany), Julian Ochsmann (MPI-P Mainz) for transient absorption measurements and Prof. Dr. Doris Kunz (Eberhard Karls-University of Tübingen, Germany) for helpful discussions.

- S. Campagna, F. Puntoriero, F. Nastasi, G. Bergamini, V. Balzani, *Top. Curr. Chem.* 2007, 280, 117–214.
- [2] B. O'Regan, M. Grätzel, Nature 1991, 353, 737-740.
- [3] J.-F. Yin, M. Velayudham, D. Bhattacharya, H.-C. Lin, K.-L. Lu, Coord. Chem. Rev. 2012, 256, 3008–3035.
- [4] P. G. Bomben, K. C. D. Robson, B. D. Koivisto, C. P. Berlinguette, *Coord. Chem. Rev.* 2012, 256, 1438–1450.
- [5] R. D. Costa, E. Ortí, H. J. Bolink, F. Monti, G. Accorsi, N. Armaroli, Angew. Chem. 2012, 124, 8300–8334; Angew. Chem. Int. Ed. 2012, 51, 8178–8211.
- [6] H. J. Bolink, E. Coronado, R. D. Costa, P. Gaviña, E. Ortí, S. Tatay, *Inorg. Chem.* 2009, 48, 3907–3909.
- [7] H. J. Bolink, L. Cappelli, E. Coronado, P. Gaviña, *Inorg. Chem.* 2005, 44, 5966–5968.
- [8] L. Marcélis, J. Ghesquière, K. Garnir, A. K.-D. Mesmaeker, C. Moucheron, *Coord. Chem. Rev.* 2012, 256, 1569–1582.
- [9] M. R. Gill, J. A. Thomas, Chem. Soc. Rev. 2012, 41, 3179–3192.
- [10] H. Komatsu, K. Yoshihara, H. Yamada, Y. Kimura, A. Son, S.-i. Nishimoto, K. Tanabe, *Chem. Eur. J.* 2013, *19*, 1971–1977.
- [11] C. Bhaumik, D. Saha, S. Das, S. Baitalik, *Inorg. Chem.* 2011, 50, 12586–12600.
- [12] L. M. Hancock, E. Marchi, P. Ceroni, P. D. Beer, Chem. Eur. J. 2012, 18, 11277-11283.
- [13] T. Kundu, A. D. Chowdhury, D. De, S. M. Mobin, V. G. Puranik, A. Datta, G. K. Lahiri, *Dalton Trans.* 2012, *41*, 4484–4496.
- [14] S. Khatua, D. Samanta, J. W. Bats, M. Schmittel, *Inorg. Chem.* 2012, 51, 7075-7086.
- [15] H.-J. Mo, Y. Shen, B.-H. Ye, Inorg. Chem. 2012, 51, 7174-7184.
- [16] Z.-B. Zheng, Z.-M. Duan, Y.-Y. Ma, K.-Z. Wang, *Inorg. Chem.* 2013, 52, 2306–2316.
- [17] R. Zhang, Z. Ye, G. Wang, W. Zhang, J. Yuan, Chem. Eur. J. 2010, 16, 6884–6891.
- [18] H. Chen, X. Li, Y. Wu, W. Gao, R. Bai, *Dalton Trans.* 2012, 41, 13292–13297.

- [19] R. H. Crabtree, Energy Production and Storage: Inorganic Chemical Strategies for a Warming World, Wiley-VCH, Weinheim, 2010.
- [20] X. Liu, F. Wang, Coord. Chem. Rev. 2012, 256, 1115–1136.
- [21] M. Schulz, M. Karnahl, M. Schwalbe, J. G. Vos, *Coord. Chem. Rev.* 2012, 256, 1682–1705.
- [22] W.T. Eckenhoff, R. Eisenberg, Dalton Trans. 2012, 41, 13004– 13021.
- [23] A. Inagaki, M. Akita, Coord. Chem. Rev. 2010, 254, 1220-1239.
- [24] T. Stoll, M. Gennari, I. Serrano, J. Fortage, J. Chauvin, F. Odobel, M. Rebarz, O. Poizat, M. Sliwa, A. Deronizer, M.-N. Collomb, *Chem. Eur. J.* 2013, 19, 782–792.
- [25] J. Dietrich, U. Thorenz, C. Förster, K. Heinze, *Inorg. Chem.* 2013, 52, 1248–1264.
- [26] S. Ohzu, T. Ishizuka, Y. Hirai, S. Fukuzumi, T. Kojima, Chem. Eur. J. 2013, 19, 1563–1567.
- [27] H. Nitadori, T. Takahashi, A. Inagaki, M. Akita, *Inorg. Chem.* 2012, 51, 51–62.
- [28] P. Guillo, O. Hamelin, P. Batat, G. Jonusauskas, N. D. McClenaghan, S. Ménage, *Inorg. Chem.* 2012, 51, 2222–2230.
- [29] F. Li, M. Yu, Y. Jiang, F. Huang, Y. Li, B. Zhang, L. Sun, Chem. Commun. 2011, 47, 8949–8951.
- [30] S. Roeser, M. Z. Ertem, C. Cady, R. Lomoth, J. Benet-Buchholz, L. Hammarström, B. Sarkar, W. Kaim, C. J. Cramer, A. Llobet, *Inorg. Chem.* 2012, 51, 320–327.
- [31] L.-Z. Sui, W.-W. Yang, C.-J. Yao, H.-Y. Xie, Y.-W. Zhong, *Inorg. Chem.* 2012, 51, 1590–1598.
- [32] O. S. Wenger, Chem. Soc. Rev. 2012, 41, 3772-3779.
- [33] H.-J. Nie, X. Chen, C.-J. Yao, Y.-W. Zhong, G. R. Hutchison, J. Yao, *Chem. Eur. J.* 2012, 18, 14497–14509.
- [34] A. Breivogel, K. Hempel, K. Heinze, *Inorg. Chim. Acta* 2011, 374, 152–162.
- [35] C. J. Yao, Y.-W. Zhong, J. Yao, Inorg. Chem. 2013, 52, 4040-4045.
- [36] P. Ceroni, Chem. Eur. J. 2011, 17, 9560-9564.
- [37] T. N. Singh-Rachford, F. N. Castellano, Coord. Chem. Rev. 2010, 254, 2560–2573.
- [38] W. Wu, S. Ji, W. Wu, J. Shao, H. Guo, T. D. James, J. Zhao, Chem. Eur. J. 2012, 18, 4953–4964.
- [39] P. Hanczyc, B. Norden, M. Samoc, *Dalton Trans.* 2012, 41, 3123-3125.
- [40] P. Ceroni, G. Bergamini, V. Balzani, Angew. Chem. 2009, 121, 8668– 8670; Angew. Chem. Int. Ed. 2009, 48, 8516–8518.
- [41] J. Lee, H. Chang, S. Kim, G. S. Bang, H. Lee, Angew. Chem. 2009, 121, 8653–8656; Angew. Chem. Int. Ed. 2009, 48, 8501–8504.
- [42] K. Terada, K. Kanaizuka, V. M. Iyer, M. Sannodo, S. Saito, K. Kobayashi, M.-a. Haga, Angew. Chem. 2011, 123, 6411–6415; Angew. Chem. Int. Ed. 2011, 50, 6287–6291.
- [43] A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, A. von Zelewsky, *Coord. Chem. Rev.* 1988, 84, 85–277.
- [44] C. Fu, M. Wenzel, E. Treutlein, K. Harms, E. Meggers, *Inorg. Chem.* 2012, 51, 10004–10011.
- [45] E. Meggers, Chem. Eur. J. 2010, 16, 752-758.
- [46] M. Maestri, N. Armaroli, V. Balzani, E. C. Constable, A. M. W. Cargill Thompson, *Inorg. Chem.* 1995, 34, 2759–2767.
- [47] J.-P. Sauvage, J.-P. Collin, J.-C. Chambron, S. Guillerez, C. Coudret, V. Balzani, F. Barigelletti, L. D. Cola, L. Flamigni, *Chem. Rev.* 1994, 94, 993-1019.
- [48] L. Hammarström, O. Johansson, Coord. Chem. Rev. 2010, 254, 2546–2559.
- [49] Y. Liu, R. Hammitt, D. A. Lutterman, R. P. Thummel, C. Turro, *Inorg. Chem.* 2007, 46, 6011–6021.
- [50] K. Heinze, K. Hempel, Chem. Eur. J. 2009, 15, 1346-1358.
- [51] L. zur Borg, A. L. Domanski, A. Breivogel, M. Bürger, R. Berger, K. Heinze, R. Zentel, *J. Mater. Chem. C* 2013, *1*, 1223–1230.
- [52] J. Dietrich, A. Wünsche von Leupoldt, M. Grabolle, U. Resch-Genger, K. Heinze, *Eur. J. Inorg. Chem.* 2013, 3009–3019.
- [53] K. Heinze, K. Hempel, M. Beckmann, Eur. J. Inorg. Chem. 2006, 2040–2050.
- [54] K. Heinze, K. Hempel, S. Tschierlei, M. Schmitt, J. Popp, S. Rau, Eur. J. Inorg. Chem. 2009, 3119–3126.

CHEMISTRY

- [55] D. G. Brown, N. Sanguantrakun, B. Schulze, U. S. Schubert, C. P. Berlinguette, J. Am. Chem. Soc. 2012, 134, 12354–12357.
- [56] M. Abrahamsson, M. Jäger, T. Österman, L. Eriksson, P. Persson, H.-C. Becker, O. Johansson, L. Hammarström, J. Am. Chem. Soc. 2006, 128, 12616–12617.
- [57] M. Abrahamsson, M. Jäger, R. J. Kumar, T. Österman, P. Persson, H.-C. Becker, O. Johansson, L. Hammarström, J. Am. Chem. Soc. 2008, 130, 15533–15542.
- [58] R. J. Kumar, S. Karlsson, D. Streich, A. R. Jensen, M. Jäger, H.-C. Becker, J. Bergquist, O. Johansson, L. Hammarström, *Chem. Eur. J.* 2010, 16, 2830–2842.
- [59] F. Schramm, V. Meded, H. Fliegl, K. Fink, O. Fuhr, Z. Qu, W. Klopper, S. Finn, T. E. Keyes, M. Ruben, *Inorg. Chem.* **2009**, 48, 5677– 5684.
- [60] M. Jäger, R. J. Kumar, H. Görls, J. Bergquist, O. Johansson, *Inorg. Chem.* 2009, 48, 3228–3238.
- [61] A. Breivogel, C. Förster, K. Heinze, Inorg. Chem. 2010, 49, 7052– 7056.
- [62] T. J. Meyer, Pure Appl. Chem. 1986, 58, 1193-1206.
- [63] J. V. Caspar, T. J. Meyer, J. Am. Chem. Soc. 1983, 105, 5583-5590.
- [64] J. V. Caspar, T. J. Meyer, J. Phys. Chem. 1983, 87, 952-957.
- [65] M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, S. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, J. Am. Chem. Soc. 2001, 123, 1613–1624.
- [66] L. Giribabu, T. Bessho, M. Srinivasu, C. Vijaykumar, Y. Soujanya, V. G. Reddy, P. Y. Reddy, J.-H. Yum, M. Grätzel, M. K. Nazeeruddin, *Dalton Trans.* 2011, 40, 4497–4504.
- [67] J. Dehaudt, J. Husson, L. Guyard, Green Chem. 2011, 13, 3337-3340.
- [68] M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, Thieme, Stuttgart, 1991.
- [69] S. Sharma, F. Lombeck, L. Eriksson, O. Johansson, Chem. Eur. J. 2010, 16, 7078–7081.
- [70] $E(vs. Fc/Fc^+)/V = E(vs. SCE)/V 0.4 V.$
- [71] E. Jakubikova, W. Chen, D. M. Dattelbaum, F. N. Rein, R. C. Rocha, R. L. Martin, E. R. Batista, *Inorg. Chem.* 2009, 48, 10720– 10725.
- [72] T. Österman, P. Persson, Chem. Phys. 2012, 407, 76-82.
- [73] B. Schulze, D. Escudero, C. Friebe, R. Siebert, H. Görls, S. Sinn, M. Thomas, S. Mai, J. Popp, B. Dietzek, L. González, U. S. Schubert, *Chem. Eur. J.* 2012, *18*, 4010–4025.
- [74] W.-W. Yang, Y.-W. Zhong, S. Yoshikawa, J.-Y. Shao, S. Masaoka, K. Sakai, J. Yao, M.-a. Haga, *Inorg. Chem.* 2012, 51, 890–899.
- [75] J. Van Houten, R. J. Watts, J. Am. Chem. Soc. 1975, 97, 3843-3844.
- [76] J. Van Houten, R. J. Watts, J. Am. Chem. Soc. 1976, 98, 4853-4858.

- [77] S. F. McClanahan, J. R. Kincaid, J. Am. Chem. Soc. 1986, 108, 3840– 3841.
- [78] T. E. Keyes, C. M. O'Connor, U. O'Dwyer, C. G. Coates, P. Callaghan, J. J. McGarvey, J. G. Vos, J. Phys. Chem. A 1999, 103, 8915– 8920.
- [79] T. Österman, M. Abrahamsson, H.-C. Becker, L. Hammarström, P. Persson, J. Phys. Chem. A 2012, 116, 1041–1050.
- [80] J. T. Hewitt, P. J. Vallet, N. H. Damrauer, J. Phys. Chem. A 2012, 116, 11536–11547.
- [81] N. H. Damrauer, G. Cerullo, A. Yeh, T. R. Boussie, C. V. Shank, J. K. McCusker, *Science* 1997, 275, 54–57.
- [82] N. H. Damrauer, J. K. McCusker, J. Phys. Chem. A 1999, 103, 8440– 8446.
- [83] K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, S. Tobita, *Phys. Chem. Chem. Phys.* 2009, 11, 9850–9860.
- [84] F. Etzold, I. A. Howard, N. Forler, D. M. Cho, M. Meister, H. Mangold, J. Shu, M. R. Hansen, K. Müllen, F. Laquai, J. Am. Chem. Soc. 2012, 134, 10569–10583.
- [85] S. Stoll, A. Schweiger, J. Magn. Reson. 2006, 178, 42-55.
- [86] SMART Data Collection and SAINT-Plus Data Processing Software for the SMART System, various versions, Bruker Analytical X-ray Instruments, Madison, 2000.
- [87] R. H. Blessing, Acta Crystallogr. A 1995, 51, 33-38.
- [88] G. M. Sheldrick, SHELXTL, Version 5.1, Bruker AXS, Madison, 1998.
- [89] G. M. Sheldrick, SHELXL-97, University of Göttingen, Göttingen, 1997.
- [90] Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

Received: June 12, 2013 Published online: September 2, 2013

9.7 Push-Pull Design of Bis(tridentate) Ruthenium(II) Polypyridine Chromophores as Deep Red Light Emitters in Light-Emitting Electrochemical Cells

A. Breivogel, M. Park, D. Lee, S. Klassen, A. Kühnle, C. Lee, K. Char, K. Heinze, *Eur. J. Inorg. Chem.* 2014, 288–295.

DOI: 10.1002/ejic.201301226

Reprinted with permission from John Wiley and Sons, Copyright © 2013.

DOI:10.1002/ejic.201301226

Push-Pull Design of Bis(tridentate) Ruthenium(II) Polypyridine Chromophores as Deep Red Light Emitters in Light-Emitting Electrochemical Cells

Aaron Breivogel,^[a] Myeongjin Park,^[b] Donggu Lee,^[b] Stefanie Klassen,^[c] Angelika Kühnle,^[c] Changhee Lee,^[b] Kookheon Char,^[d] and Katja Heinze*^[a]

Dedicated to Professor Rudolf Zentel on the occasion of his 60th birthday

Keywords: Ruthenium / Molecular electronics / Tridentate ligands / Luminescence / N ligands

Light-emitting electrochemical cells (LECs) with a simple device structure were prepared by using heteroleptic bis(tridentate) ruthenium(II) complexes $[1](PF_6)_2-[3](PF_6)_2$ as emitters. The push-pull substitution shifts the emission energy to low energy, into the NIR region. The devices emit deep red light up to a maximum emission wavelength of 755 nm [CIE (International Commission on Illumination) coordinates: x =0.731, y = 0.269 for $[3](PF_6)_2]$, which, to the best of our knowledge, is the lowest emission energy for LECs containing

Introduction

Light-emitting electrochemical cells (LECs) provide a low-cost alternative to conventional organic light emitting devices (OLEDs) due to their simple device structures and solution processability. LECs feature an ionic emitting layer that enables low turn-on and driving voltages, as well as independence of the work function of electrode materials.^[1–6] LECs introduced in 1995 by Pei contained organic polymers as emitters.^[7,8] While for all-organic emitters spin statistics predicts a maximum internal quantum efficiency

 [a] Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany E-mail: katja.heinze@uni-mainz.de http://www.ak-heinze.chemie.uni-mainz.de/
 [b] Department of Electrical and Computer Engineering,

- Inter-University Semiconductor Research Center, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Korea
- [c] Institute of Physical Chemistry, Johannes Gutenberg University of Mainz,
- Duesbergweg 10-14, 55099 Mainz, Germany [d] The National Creative Research Initiative Center for Intelligent
- Hybrids, The WCU Program on Chemical Convergence for Energy and Environment, School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-744, Korea

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejic.201301226.

bis(tridentate) ruthenium(II) complexes. A device structure of ITO/PEDOT:PSS/ruthenium(II) complex/Ag was used, and the thickness of the emitting layer was measured by AFM [ITO: indium tin oxide, PEDOT: poly(3,4-ethylenedioxythiophene), PSS: poly(styrenesulfonate), AFM: atomic force microscopy]. To enhance the external quantum efficiency (EQE), cells were fabricated with and without poly(methyl methacrylate) (PMMA) as additive in the emitting layer.

of 25%, transition metal complexes have a theoretical limit of 100%, because in the latter both singlet and triplet excitons can lead to light emission.^[9-12] The first LEC with an ionic transition metal complex was reported in 1996 by Lee employing a [Ru(phen)₃]²⁺ derivative as emitter (phen: 1,10phenanthroline).^[13] The use of ruthenium(II) complexes as emitters is reasonable because of their outstanding photophysical and electrochemical properties combined with their high thermal and chemical stabilities.^[14] So far [Ru- $(bpy)_3^{2+}$ (bpy: 2,2'-bipyridine) and its analogues are the most studied ruthenium(II) polypyridine complexes because they have high ³MLCT (MLCT: metal-to-ligand charge transfer) excited state lifetimes ($\tau \approx 1 \,\mu s$) and luminescence quantum yields ($\Phi \approx 10\%$) at room temperature in solution.^[14–16] $[Ru(bpy)_3]^{2+}$ and its derivatives have already been used in LECs showing high external quantum efficiencies (EQEs) of up to 6.4%.[17-20]

However, $[\text{Ru}(\text{bpy})_3]^{2+}$ is chiral (Δ , Λ), and unsymmetrical substitution of bpy ligands leads to the formation of stereoisomers, which complicates synthetic procedures.^[21,22] The formation of stereoisomers can be avoided by using tridentate, meridional coordinating ligands. For instance achiral $[\text{Ru}(\text{tpy})_2]^{2+}$ (tpy: 2,2';6',2''-terpyridine) gives rise to only a single isomer even in the case of unsymmetrical substitution of the tpy 4'-positions.^[23] Additionally, the tridentate coordination provides a higher photostability and

chemical stability relative to the bidentate mode.^[24,25] This should prevent thermal and photoinduced ligand exchange, favoring longevity of luminescent and solar cell devices.^[26–29] Degradation products due to ligand loss have been identified in LECs with $[Ru(bpy)_3]^{2+}$ complexes, namely bis(aqua)complex $[Ru(bpy)_2(H_2O)_2]^{2+}$ and oxidobridged dimer $[{Ru(bpy)_2(H_2O)}_2O]^{4+}$, which have been formed by photoaquation in the presence of water.^[6,30–32] A better stabilization towards (photo) ligand substitution might be achieved by using tridentate ligands.

Unfortunately, excited state features of $[Ru(tpy)_2]^{2+}$ in solution are very unfavorable ($\tau \approx 0.1-0.2$ ns, $\Phi \le 0.0005\%$) because of rapid radiationless deactivation of the radiative ³MLCT states via thermally accessible ³MC states (MC: metal-centered; Figure 1).^[33,34] Increased excited state lifetimes τ and quantum yields Φ have been obtained by structurally modifying [Ru(tpy)₂]²⁺ in order to increase the energy difference between the ³MLCT and ³MC states and hence to avoid radiationless deactivation via the latter states. Push-pull substitution like that in [(EtOOC-tpy)- $Ru(tpy-NH_2)]^{2+}$ ([1](PF₆)₂, Figure 2) is favorable, as the electron-withdrawing ester group lowers the energy of the ³MLCT state while the electron-donating amino group increases the energy of the ³MC state, thus reducing radiationless deactivation via the latter state and enhancing the excited state lifetime and luminescence quantum yield significantly ($\tau = 34$ ns, $\Phi = 0.18\%$).^[23,35–37] Another strategy employs a strong ligand field to increase the energy difference between the ³MLCT and ³MC states. This can be achieved by N-Ru-N bite angles of 90° as in an ideal octahedron allowing for an optimal overlap of ruthenium and nitrogen orbitals. The N-Ru-N bite angle of tpy is 79° because its five-membered chelate rings result in a suboptimal orbital overlap.^[38] Hammarström et al. designed a complex {[Ru(dqp)₂]²⁺; dpq: 2,6-di(quinolin-8-yl)pyridine} with sixmembered chelate rings and 90° bite angles featuring high room-temperature lifetime and quantum yield in solution (τ = 3.0 µs, $\hat{\Phi} = 2\%$).^[39,40] The substituted complex [Ru(dpq- $COOEt_{2}^{2+}$ with ester substituents on the 4'-positions reaches even higher values ($\tau = 5.5 \,\mu s$, $\Phi = 7 \%$).^[41] Ruben et al. incorporated carbonyl bridges between the pyridine rings of [Ru(tpy)₂]²⁺ and thus obtained six-membered chelate rings and 90° bite angles leading to high ³MLCT lifetimes and, to the best of our knowledge, to the highest re-

Figure 1. Jablonski diagram of ruthenium(II) polypyridine complexes (GS: ground state, MLCT: metal-to-ligand charge transfer, ISC: intersystem crossing, MC: metal centered).

ported quantum yield of bis(tridentate) ruthenium(II) complexes ($\tau = 3.3 \,\mu s$, $\Phi = 30 \,\%$).^[42] Bis(tridentate) ruthenium(II) complexes have been incorporated in LECs, but until now only complexes with small bite angles (ca. 79°) and hence low solution luminescence quantum yields have been utilized, leading to low EQEs ($\leq 0.1 \%$) of the devices.^[43-45]

Figure 2. Bis(tridentate) ruthenium(II) oligopyridine complexes $[1](PF_6)_2-[3](PF_6)_2$.

In this paper, we incorporate bis(tridentate) ruthenium(II) complexes [1](PF₆)₂-[3](PF₆)₂ as low-energy emitters in LECs (Figure 2). $[1](PF_6)_2-[3](PF_6)_2$ are photostable and chemically stable as a result of their tridentate coordination mode; they feature a sophisticated push-pull substitution with high directionality due to electron-withdrawing ester and electron-donating amino groups.^[35-37,46-48] The push-pull substitution lowers the HOMO-LUMO gap (and hence increases the energy difference between the ³MLCT and ³MC states) and leads to emission in the red spectral region ($\lambda_{em} = 729-744$ nm, Table 1).^[35,36,46,47] Red light and NIR emission are particularly favorable for noninvasive bioimaging, telecommunication, night-vision-readable displays, downconversion and triplet-triplet annihilation upconversion.^[1,2,49–57] However, according to the energy gap law, low-energy emission is correlated to low luminescence quantum yields and short luminescence lifetimes due to effective radiationless deactivation into the ground state.^[58–60] In spite of their low emission energy, complexes $[1](PF_6)_{2}$ -[3](PF₆)₂ possess comparably high luminescence lifetimes and quantum yields at room temperature in solution (τ = 34, 722, and 841 ns; $\Phi = 0.18$, 0.45, and 1.1%, Table 1). While complex $[1](PF_6)_2$ consists of two tpy ligands with 79° N–Ru–N bite angles, complexes $[2](PF_6)_2$ and $[3](PF_6)_2$ consist of a tpy ligand and a ddpd ligand (ddpd: N,N'-dimethyl-N,N'-dipyridin-2-ylpyridine-2,6-diamine).[35,46,47] The larger bite angle (88°) of the latter ligand favors the

high luminescence lifetimes and quantum yields of [2]- $(PF_6)_2$ and [3] $(PF_6)_2$ ($\Phi = 0.45$ and 1.1%, Table 1) and their choice as red light to NIR emitters in LECs.

Table 1. Electrochemical and photophysical properties of complexes $[1](PF_6)_2\mathcal{-}[3](PF_6)_2.^{[35-37,46]}$

	[1](PF ₆) ₂	[2](PF ₆) ₂	[3](PF ₆) ₂
$E_{1/2}^{\text{ox}} / V^{[a]}$	+0.68	+0.81	+0.92
$E_{1/2}^{\text{red}}/V^{[a]}$	-1.54,	-1.47,	-1.25 ^[b] ,
	-1.99	-2.09 ^[b]	$-1.70^{[b]}$
$\lambda_{abs} / nm (\epsilon/M^{-1} cm^{-1})^{[c]}$	502 (19080)	517 (7500)	539 (6360),
			475 (5060)
$\lambda_{em,295 \text{ K}} / nm^{[c]}$	734	729	744
Φ _{295 K} /%[c]	0.18	0.45	1.1
τ _{295 K} /ns	34 ^[c]	722 ^[d]	841 ^[d]

[a] In 0.1 M [nBu_4N][PF₆] in CH₃CN vs. Fc/Fc⁺. [b] Irreversible, E_p given. [c] In CH₃CN. [d] In PrCN.

Results and Discussion

The electrochemical and photophysical properties of complexes [1](PF₆)₂-[3](PF₆)₂ have been described previously and are summarized in Table 1.[35-37,46] The oxidation potential, $E_{1/2}^{\text{ox}}$, follows the order [1](PF₆)₂ < $[2](PF_6)_2 < [3](PF_6)_2$ (Table 1). $[1](PF_6)_2$ is oxidized at the lowest potential because of the electron-donating effect of the NH_2 substituent. [3](PF₆)₂ is oxidized at the highest potential because of the electron-withdrawing effect of the three ester groups.^[46] The first reduction potential, $E_{1/2}^{\text{red}}$, follows the same order $[1](PF_6)_2 < [2](PF_6)_2 < [3](PF_6)_2$ (Table 1) for the same reasons as those for the trend in $E_{1/2}^{\text{ox}}$. The oxidation of [1](PF₆)₂-[3](PF₆)₂ is reversible on the time scale of electrochemical experiments, while reduction is only reversible for $[1](PF_6)_2$ and $[2](PF_6)_2$ on this time scale. The reduction of $[3](PF_6)_2$ seems to be only quasireversible.[35,36,46] Thus, for all complexes sufficient reversibility in oxidation and reduction processes is given for the application in LECs.

HOMO and LUMO energies of emitting compounds $[1](PF_6)_2-[3](PF_6)_2$ were estimated from electrochemical redox potentials (Table 1) and are depicted in Figure 3.^[61] The parent $[Ru(tpy)_2]^{2+}$ complex has a HOMO-LUMO energy gap of $\Delta E = 2.59 \text{ eV}$ with $E_{HOMO} = -6.00 \text{ eV}$ and $E_{\text{LUMO}} = -3.41 \text{ eV.}^{[23]}$ The effect of donor-acceptor substitution in $[1](PF_6)_2$ can be clearly seen as the electron-withdrawing ester group lowers the LUMO energy (E_{LUMO} = -3.54 eV) while the electron-donating amino group raises the HOMO energy ($E_{\text{HOMO}} = -5.76 \text{ eV}$) resulting in a smaller $\Delta E = 2.22 \text{ eV}$ compared to that of $[\text{Ru}(\text{tpy})_2]^{2+}$. $[2](PF_6)_2$ and $[3](PF_6)_2$ have lower HOMO and LUMO energies than [1](PF₆)₂ because of the strong electron-donating effect of the primary amino group present in [1]- $(PF_6)_2$.^[35-37,46] [3](PF_6)₂ has even lower HOMO and LUMO energies than $[2](PF_6)_2$, which results from the electron-withdrawing character of the additional ester groups on the tpy ligand. The push-pull effect is most pronounced in $[3](PF_6)_2$, leading to the smallest HOMO–LUMO energy gap in this series ($E_{HOMO} = -6.00 \text{ eV}$, $E_{LUMO} = -3.83 \text{ eV}$, $\Delta E = 2.17$ eV). HOMO and LUMO energies were also obtained by DFT calculations and are summarized in Figure 3.

Figure 3. HOMO and LUMO levels of complexes $[1](PF_6)_{2^-}$ [3](PF₆)₂ from experimentally determined redox potentials in CH₃CN^[35,46] and from DFT calculations (B3LYP/LANL2DZ, IEFPCM, CH₃CN).

HOMO energies calculated by DFT (B3LYP/ LANL2DZ, IEFPCM, CH₃CN) are lower (0.2–0.3 eV) and LUMO energies are higher (0.3–0.4 eV) than values obtained from electrochemical data. Nevertheless, the trend of the HOMO and LUMO energies (E_{HOMO} and E_{LUMO}) is correctly reproduced: [1]²⁺ > [2]²⁺ > [3]²⁺.

The injection of electrons and holes from opposite electrodes leads to the formation of radical species. Electron capture and loss both occur on the doubly charged ruthenium complex cation. Reduction is located at the estersubstituted tpy ligands, while oxidation is essentially confined to the ruthenium center.^[35,46-48] Spin densities calculated by DFT are exemplarily depicted for complex $[3]^{2+}$ in its reduced and oxidized forms ([3]⁺ and [3]³⁺; Figures 4a and 4b). The plot illustrates the location of reduction and oxidation processes in $[3]^{2+}$. Electron transfer from $[3]^+$ to $[3]^{3+}$ leads to one ^{1,3}MLCT excited state species ^{1,3} $[3]^{2+}$ and [3]²⁺ in the ground state.^[62] The excited ¹MLCT state undergoes efficient ISC to the ³MLCT state (Figure 1).^[16] Finally, the ³MLCT state emits light upon returning to the singlet ground state $[3]^{2+}$ (Figure 1). The spin density of ${}^{3}[3]^{2+}$ is located on both the ruthenium center and the estersubstituted tpy ligand (Figure 4c), which is in accord with a ruthenium(III) center and a one-electron-reduced tpy ligand.

LECs incorporating [1](PF₆)₂–[3](PF₆)₂ were built with a configuration of ITO/PEDOT:PSS/ruthenium(II) complex/ Ag [Figure 5; ITO: indium tin oxide; PEDOT: poly(3,4ethylenedioxythiophene); PSS: poly(styrenesulfonate)]. PEDOT:PSS was found to increase reproducibility^[45] and shows a HOMO energy level of $E_{HOMO} = -5.1 \text{ eV}_{-63}^{[63]}$ Ag was used as cathode material because it greatly improves lifetimes of LECs compared to other electrode materials like Al.^[20] Cells were fabricated with and without 20% (w/w) PMMA in the emitting layer [PMMA: poly(methyl methacrylate)]. PMMA acts as insulator, improves the film

www.eurjic.org

Figure 4. Spin densities of (a) one-electron-reduced complex $[3]^+$, (b) one-electron-oxidized complex $[3]^{3+}$ and (c) the lowest excited triplet species ³MLCT of $[3]^{2+}$ in CH₃CN calculated by DFT (B3LYP/LANL2DZ, IEFPCM, contour value 0.01 a. u.). Hydrogen atoms are omitted.

quality, and increases the distance between ruthenium(II) complexes to avoid self-quenching processes to enhance the EQE and to prolong device lifetimes.^[18,20,44,45,64] The PE-DOT:PSS and ruthenium(II) complex layers were spincoated onto an ITO substrate. The Ag cathode was deposited in vacuo by thermal evaporation. The thicknesses of the PEDOT:PSS and the ruthenium complex:PMMA layers were determined by AFM measurements after scratching the layer with a razor (AFM: atomic force microscopy). The thicknesses are 45 ± 5 nm (PEDOT:PSS), 229 ± 19 nm (total thickness of PEDOT:PSS and ruthenium complex without PMMA), and 237 ± 23 nm (total thickness of PE-DOT:PSS and ruthenium complex with PMMA). Figure 6 shows a representative AFM image of the scratched LEC with [1](PF₆)₂ and PMMA. AFM images for all scratched LECs are depicted in the Supporting Information (Figure S1).

Figure 5. General device structure of the LECs and photograph of the LEC with $[1](PF_6)_2$ without PMMA.

A voltage of 3 V was applied to each cell for at least 10 min. The LEC incorporating complex $[2](PF_6)_2$ (without PMMA) shows red light emission. The other cells did not emit under these conditions. For these cells, a higher voltage on a new pixel was applied in steps of 0.5–1 V until emission was observed. LEC characteristics are summarized in Table 2. The reported voltage is the minimum voltage for which emission is observed, and all other data refer to this voltage. Cells with $[1](PF_6)_2$ without PMMA do not emit

Figure 6. AFM image taken in intermittent contact mode of a scratched PEDOT:PSS/[1](PF_6)₂ with PMMA layer. (a) Topographical height scan with indicated cross section. (b) Height profile along the indicated cross section.

up to a voltage of 6 V. When PMMA is present, the LEC with [1](PF₆)₂ emits with a turn on voltage of 4 V. The driving voltages are generally a few volts higher for cells with PMMA, which is consistent with the insulating character of PMMA.^[20] Emission wavelengths of the devices are fully comparable to the emissions in solution and differ only by $\Delta E = \pm 0.02 \text{ eV}$ (Tables 1 and 2, Figures S2 and S3). [3](PF₆)₂ features a slightly redshifted electroluminescence in LECs in the absence of PMMA (Figure S4, Tables 1 and 2). Figure 7a exemplarily depicts the emission spectra of [2](PF₆)₂ in CH₃CN and in LECs with and without PMMA.

The longest emission wavelength maximum ($\lambda_{em,max}$ = 755 nm) was obtained for the LEC with $[3](PF_6)_2$ without PMMA at an applied voltage of 4 V. To the best of our knowledge, this is the longest emission wavelength of a LEC with a mononuclear bis(tridentate) ruthenium(II) complex. The CIE (International Commission on Illumination) coordinates^[65] of the emitted light are given in Table 2 and in all cases correspond to deep red light at the edge of the CIE chromaticity diagram. Light intensity, current density, and EQE curves are plotted against time (Supporting Information, Figures S4-S7). Exemplarily, Figure 7b shows the EQE-intensity-current density vs. time plots for the LEC with $[2](PF_6)_2$ without PMMA at an applied voltage of 3 V. All values increase at initial stages until they reach a maximum after a few minutes. Then they slowly decrease as typically observed for this kind of LECs.^[44,45] Maximum light emission occurs after $t_{em,max} = 2-14$ min. Devices with PMMA should have a higher $t_{em,max}$ than devices without PMMA, because PMMA hinders ion migration and forma-

	[1](PF ₆) ₂ without PMMA	with PMMA ^[a]	[2](PF ₆) ₂ without PMMA	with PMMA ^[a]	[3](PF ₆) ₂ without PMMA	with PMMA ^[a]
Height of emitting layer /nm	182 ± 16	190 ± 12	168 ± 33	191 ± 31	193 ± 27	194 ± 12
UN	_	4	3	6	4	5
$\lambda_{\rm em.max,LEC}$ /nm	_	733 ^(6V)	731	722	755	745
$\lambda_{\rm em.max.acetonitrile}$ /nm	734	734	729	729	744	744
t _{em.max} /min	-	ca. 11–14	13	2	9	4
$L_{\rm max}$ /cd m ⁻²	-	0.32	1.81	3.36	0.75	0.64
t _{current.max} /min	-	13	31	3	8	8
$I_{\rm d.max}$ /mA cm ⁻²	-	313	103	518	213	231
EQE _{max} /%	-	0.001	0.016	0.028	0.007	0.013
t _{EOE} max /min	_	14-15	10	1	9	1
CIE coordinates (x, y)	_	0.709, 0.291	0.725. 0.275	0.717. 0.283	0.731, 0.269	0.729: 0.271

Table 2. LEC device characteristics for complexes $[1](PF_6)_2-[3](PF_6)_2$.

[a] 20% (w/w).

Figure 7. (a) Normalized emission spectra of $[2](PF_6)_2$ (black squares: CH₃CN solution; red hollow circles: LEC with PMMA, 6 V; blue stars: LEC without PMMA, 3 V). (b) Current density (black squares), emission intensity (red hollow circles), and EQE (blue stars) as a function of time in the LEC with $[2](PF_6)_2$ without PMMA at an applied voltage of 3 V.

tion of electric double layers. However, a smaller $t_{em,max}$ value is measured for devices with PMMA than for those without PMMA (see LECs with [2](PF₆)₂ and [3](PF₆)₂, Table 2). The higher voltages applied for devices with PMMA to compensate the insulating behavior of PMMA might be responsible for this observation.^[6] Luminances *L* were calculated with Equation (1), which assumes that the

device was a Lambertian source and a calibrated Si photodiode was placed at an angle normal to the device surface.^[66,67]

$$L = \frac{K_{m} \cdot I_{photodiode} \cdot R^{2}}{A_{LEC} \cdot A_{photodiode}} \frac{\int_{sconm}^{830nm} V(\lambda) \frac{S_{emission}(\lambda)}{S_{responsivity}(\lambda)} d\lambda}{\int_{sconm}^{830nm} S_{emission}(\lambda) d\lambda}$$
(1)

where $K_{\rm m} = 683 \, {\rm lm} \, {\rm W}^{-1}$ at 555 nm, *I*: current, *R*: distance between LEC and photodiode, $A_{\rm LEC}$: area of the limiting aperture, $A_{\rm photodiode}$: area of the photodiode, V(λ): photopic response curve, $S_{\rm emission}(\lambda)$: emission spectrum, $S_{\rm responsivity}(\lambda)$: responsivity of the Si photodiode, λ : wavelength).

The highest luminance is L = 3.4 cd m⁻² for the LEC with $[2](PF_6)_2$ with PMMA at an applied voltage of 6 V. The smaller luminance of LECs with $[1](PF_6)_2$ ($L = 0.3 \text{ cd m}^{-2}$) is likely due to the lower luminescence quantum yield of $[1](PF_6)_2$ in solution (Table 2). The lower luminance of $[3](PF_6)_2$ ($L \approx 0.7$ cd m⁻²) might be due to the small overlap of its NIR emission ($\lambda_{em} \approx 750$ nm) with the human eye response curve (Figure S8). The current density reaches its maximum after $t_{\text{current,max}} = 3-31$ min. For LECs with complex [3](PF₆)₂ there is no clear dependency of $t_{\text{current,max}}$ on the voltage or the presence of PMMA. In contrast, $t_{\text{current,max}}$ values in LECs with [2](PF₆)₂ are smaller at high voltages (6 V, 3 min) and larger at lower voltages (3 V, 31 min), which confirms that ion migration is faster at higher voltages.^[6] Current densities are in the range I_d = 103-518 mA cm⁻², which is consistent with previously reported LECs with a bis(terpyridine)ruthenium(II) complex (ca. 200-300 mA cm⁻²).^[44] As expected, current densities are high for high applied voltages (Table 2). EQE values are 0.001-0.028%. The highest EQE value (0.028%) is obtained for the LEC with $[2](PF_6)_2$ with PMMA. LECs containing $[1](PF_6)_2$ only lead to a small EQE (0.001%), which is probably caused by the smaller solution quantum yield of $[1](PF_6)_2$ relative to those of $[2](PF_6)_2$ and $[3](PF_6)_2$ (Table 1). The maximum EQE of the LEC with $[3](PF_6)_2$ (0.013%) is less than the EQE for the LEC with [2](PF₆)₂ (0.028%), which is in contrast to the relative emission quan-

tum yields (Table 1 and Table 2). Possibly this observation can be explained by the redshifted emission of $[3](PF_6)_2$ (λ = 745–755 nm) within the LEC compared to its emission in solution (λ = 744 nm, Figure S5, Table 1 and Table 2). The low-energy emissive state might be prone to enhanced radiationless deactivation according to the energy gap law.^[58–60] Interestingly, [**2**](PF₆)₂ shows no redshifted emission in the LECs (Figure 7a, Table 1 and Table 2).

For OLEDs, saturation and quenching effects like triplet-triplet annihilation resulting from high luminescence lifetimes and high current densities can lead to decreasing EQEs.^[68] Typically, luminescent emitters are doped into host matrices like PMMA or CBP in order to enhance the EQE [CBP: 4,4'-bis(9-carbazolyl)-2,2'-biphenyl]. For instance, fac-Ir(ppy)₃ (ppy: 2-phenylpyridine) features lifetimes of 1.4 μ s (less than 0.1 w/w% in PMMA) to 630 ns (8 w/w% in CBP), which is regarded sufficiently short to avoid saturation and quenching effects up to a current density of $I_d = 1000 \text{ mA cm}^{-2}$.^[69,70] Saturation thresholds for the current density also depend on the concentration of the dopant. For PtOEP (PtOEP: 2,3,7,8,12,13,17,18-octaethylporphyrine platinum) with a phosphorescence lifetime of τ \approx 30 µs, the critical current density rises from $I_{\rm d}$ = 40 (1 w/ w% in CBP) to 800 mA cm⁻² (16 w/w% in CBP).^[71] For neat films of fac-Ir(ppy)₃ the EQE drops to 0.8% with a concomitant drop in phosphorescence lifetime to $\tau \approx 100$ ns relative to doped devices.^[72] This drop is caused by selfquenching due to Ir(ppy)3-Ir(ppy)3 exciton interactions.^[68,73] In neat films of fac-Ir(ppy)₃ critical current densities for quenching mechanisms like triplet-triplet annihilation are reported to be in the range $I_d = 500$ -1400 mA cm⁻².^[74,75] However, depending on the device structure, a decrease of EQE in neat films of fac-Ir(ppy)₃ can already be observed at current densities of $I_d \approx$ 300 mA cm⁻².^[76] In LECs such quenching effects have also been studied in a few cases apart from the above-mentioned deactivation due to ligand loss and the formation of aqua complexes. The cationic iridium(III) complex [Ir(ppy)₂-(pzpy)]PF₆ [pzpy: 2-(1H-pyrazol-1-yl)pyridine] was tested in a LEC. The doping of this complex into a PMMA film (5 w/w%) increases its luminescence quantum yield ($\Phi = 23$ \rightarrow 61%) and lifetime ($\tau = 1.6 \rightarrow 3.3 \,\mu$ s). However, luminescence quantum yield and lifetime drop dramatically when going from the doped (5 w/w % in PMMA) to the neat film $(\Phi = 3\%, \tau = 0.2 \,\mu s)$, which is attributed to the efficient excited state quenching in the neat film.^[77] Quenching effects in LECs also depend on the thickness of the (neat) emitting layer. The EQE of a LEC with $[Ru(bpy)_3](PF_6)_2$ decreases monotonically from 1% for a 192 nm thick complex layer to less than 0.01% for a 46 nm thick layer. The quenching is believed to occur by triplet-triplet annihilation and higher charge carrier densities near the electrode surfaces.^[78-80] Self-quenching can be avoided by using sterically demanding substituents.^[81,82] As a result of the high local concentration (neat or 80 w/w%), high current densities (up to 518 mA cm⁻²), and high solution luminescence lifetimes (up to 841 ns), saturation and quenching effects might also be present in our LECs. Indeed, dilution with PMMA has a positive effect on the EQE. In LECs with $[2](PF_6)_2$ and $[3](PF_6)_2$, the EQE is increased by a factor of two by using PMMA.^[20,83] The maximum values of the EQE are obtained after 1–15 min. In LECs with PMMA of $[2](PF_6)_2$ and $[3](PF_6)_2$, the maximum EQE is reached after only one minute, which is attributed to the fast ion migration and rapid device degradation due to the high applied voltages of 5–6 V.^[6]

Conclusions

Heteroleptic bis(tridentate) ruthenium(II) complexes $[1](PF_6)_2-[3](PF_6)_2$ (Figure 1) were used as emitters in LECs with a ITO/PEDOT:PSS/ruthenium(II) complex/Ag device structure. Red to NIR light emission was observed in the solid-state devices ($\lambda_{em} = 722-755 \text{ nm}$; CIE: x = 0.709-0.731, y = 0.291-0.269). To the best of our knowledge, these are the lowest emission energies for LECs containing bis-(tridentate) ruthenium(II) complexes. The low-energy emission is favored by the pronounced push-pull character of the complexes, which results in a small HOMO-LUMO gap. PMMA as additive (20% w/w) in the ruthenium complex layer requires higher driving voltages but yields higher external quantum efficiencies. Future perspectives include the steric protection of the ruthenium core by bulkier ligands to prevent a change in the coordination sphere by ligand substitution and self-quenching as well as the usage of other counterions to investigate their effect on the LEC performance.

Experimental Section

General Procedures: Complexes [1](PF₆)₂–[3](PF₆)₂ were prepared as described previously.^[35,36,46,47] Before spin-coating, the complexes were further purified by reversed phase HPLC with a JASCO semipreparative HPLC system with a Reprosil C₁₈ column (5 µm) by using CH₃CN/water (96:4, v/v) as an eluent (10 mLmin⁻¹) and UV/Vis detection at 502-539 nm. Patterned ITO glass substrates, which were cleaned in an ultrasonic bath, sequentially with acetone, isopropyl alcohol, and deionized water, were treated with UV/O3 for 10 min before spin-coating. PEDOT:PSS (1:6 weight%, Al 4083; suspension in water; 1.3-1.7% solid content) was filtered (HP, 0.45 µm) and spin-coated (4000 rpm, 30 s, 4 s acceleration) onto the ITO substrate. After drying (1 h, 120 °C under reduced pressure), the substrate was transferred into an argon atmosphere. Ruthenium complexes (10 mg mL-1) and PMMA (0 or 2 mgmL^{-1} , M_W 120000) were dissolved in acetonitrile in an argon atmosphere and spin-coated onto the PEDOT:PSS layer (1000 rpm, 20 s, no acceleration). Silver electrodes were vapor-deposited on the substrates under a pressure of 3×10^{-6} Torr. The current-voltage characteristics were measured by using a source measurement unit (Keithley 236). The luminance and efficiencies were calculated from photocurrent measurement data obtained with a calibrated Si photodiode (Hamamatsu S5227-1010BQ). Electroluminescence spectra of the devices were obtained by an ICCD camera through an ARC 275 monochromator. AFM measurements were conducted in intermittent contact mode with two different instruments: A Veeco Dimension AFM was used for the measurement of the total height of the PEDOT:PSS and the

emitting layers and a XE-100 AFM was used to measure the thickness of the PEDOT:PSS layer. The spin-coated PEDOT:PSS and PEDOT:PSS-ruthenium complex layers were scratched with a razor, and the thickness of the layers was determined by the measured height differences.

DFT Studies: The DFT calculations were carried out with the *Gaussian 09*/DFT^[84] series of programs. The LANL2DZ basis set^[84] was used in the B3LYP formulation of DFT. No symmetry constraints were imposed on the molecules. The presence of energy minima was checked by analytical frequency calculations. The integral-equation-formalism polarizable continuum model (IEFPCM, CH₃CN) was employed for solvent modeling in all calculations. All calculations were performed without explicit counterions and solvent molecules.

Supporting Information (see footnote on the first page of this article): AFM images of scratched PEDOT:PSS/ruthenium complex:PMMA layers; emission spectra of $[1](PF_6)_2$ and $[3](PF_6)_2$ in solution and in LECs; current density vs. EQE intensity curves of the LECs; human eye response curve and emission spectra of $[1](PF_6)_2$ - $[3](PF_6)_2$ in LECs.

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) [International Research Training Group: Self-Organized Materials for Optoelectronics (IRTG 1404)].

- H. Xiang, J. Cheng, X. Ma, X. Zhou, J. J. Chruma, *Chem. Soc. Rev.* 2013, 42, 6128–6185.
- [2] R. D. Costa, E. Ortí, H. J. Bolink, F. Monti, G. Accorsi, N. Armaroli, Angew. Chem. 2012, 124, 8300–8334; Angew. Chem. Int. Ed. 2012, 51, 8178–8211.
- [3] R. D. Costa, E. Ortí, H. J. Bolink, Pure Appl. Chem. 2011, 83, 2115–2128.
- [4] J. Slinker, D. Bernards, P. L. Houston, H. D. Abruña, S. Bernhard, G. G. Malliaras, *Chem. Commun.* 2003, 19, 2392–2399.
- [5] E. Holder, B. M. W. Langeveld, U. S. Schubert, Adv. Mater. 2005, 17, 1109–1121.
- [6] J. D. Slinker, J. Rivnay, J. S. Moskowitz, J. B. Parker, S. Bernhard, H. D. Abruña, G. G. Malliaras, J. Mater. Chem. 2007, 17, 2976–2988.
- [7] Q. Pei, G. Yu, C. Zhang, Y. Yang, A. J. Heeger, Science 1995, 269, 1086–1088.
- [8] Q. Pei, Y. Yang, G. Yu, C. Zhang, A. J. Heeger, J. Am. Chem. Soc. 1996, 118, 3922–3929.
- [9] A. P. Monkman, ISRN Mater. Sci. 2013, DOI: 10.1155/2013/ 670130.
- [10] J. Wang, A. Chepelianskii, F. Gao, N. C. Greenham, *Nat. Commun.* 2012, *3*, DOI: 10.1038/ncomms2194.
- [11] A. Köhler, H. Bässler, Mater. Sci. Eng. 2009, R66, 71-109.
- [12] H. Yersin, Highly Efficient OLEDs with Phosphorescent Materials, Wiley-VCH, Weinheim, Germany, 2008.
- [13] J.-K. Lee, D. S. Yoo, E. S. Handy, M. F. Rubner, Appl. Phys. Lett. 1996, 69, 1686–1688.
- [14] S. Campagna, F. Puntoriero, F. Nastasi, G. Bergamini, V. Balzani, *Top. Curr. Chem.* 2007, 280, 117–214.
- [15] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, New York, 2006.
- [16] A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, A. von Zelewsky, *Coord. Chem. Rev.* 1988, 84, 85–277.
- [17] C.-Y. Liu, A. J. Bard, Appl. Phys. Lett. 2005, 87, 061110.
- [18] H. Rudmann, S. Shimada, M. F. Rubner, J. Am. Chem. Soc. 2002, 124, 4918–4921.
 [10] S. Yam, J. Zhang, Y. Li, D. Ma, Z. Y. Wang, Sund. Met. 2009.
- [19] S. Xun, J. Zhang, X. Li, D. Ma, Z. Y. Wang, Synth. Met. 2008, 158, 484–488.

- [20] H. Rudmann, M. F. Rubner, J. Appl. Phys. 2001, 90, 4338– 4345.
- [21] C. Fu, M. Wenzel, E. Treutlein, K. Harms, E. Meggers, *Inorg. Chem.* 2012, 51, 10004–10011.
- [22] E. Meggers, Chem. Eur. J. 2010, 16, 752-758.
- [23] M. Maestri, N. Armaroli, V. Balzani, E. C. Constable, A. M. W. Cargill Thompson, *Inorg. Chem.* 1995, 34, 2759– 2767.
- [24] R. Hogg, R. G. Wilkins, J. Chem. Soc. 1962, 341-350.
- [25] R. H. Holyer, C. D. Hubbard, S. F. A. Kettle, R. G. Wilkins, *Inorg. Chem.* **1966**, *5*, 622–625.
- [26] A. Reynald, E. Palomares, Eur. J. Inorg. Chem. 2011, 29, 4509– 4526.
- [27] C.-W. Hsu, S.-T. Ho, K.-L. Wu, Y. Chi, S.-H. Liu, P.-T. Chou, *Energy Environ. Sci.* 2012, 5, 7549–7554.
- [28] J.-F. Yin, M. Velayudham, D. Bhattacharya, H.-C. Lin, K.-L. Lu, Coord. Chem. Rev. 2012, 256, 3008–3035.
- [29] B. Schulze, D. Escudero, C. Friebe, R. Siebert, H. Görls, S. Sinn, M. Thomas, S. Mai, J. Popp, B. Dietzek, L. González, U. S. Schubert, *Chem. Eur. J.* 2012, 18, 4010–4025.
- [30] J. D. Slinker, J.-S. Kim, S. Flores-Torres, J. H. Delcamp, H. D. Abruña, R. H. Friend, G. G. Malliaras, J. Mater. Chem. 2007, 17, 76–81.
- [31] L. J. Soltzberg, J. D. Slinker, S. Flores-Torres, D. A. Bernards, G. G. Malliaras, H. D. Abruña, J.-S. Kim, R. H. Friend, M. D. Kaplan, V. Goldberg, J. Am. Chem. Soc. 2006, 128, 7761–7764.
- [32] G. Kalyuzhny, M. Buda, J. McNeill, P. Barbara, A. J. Bard, J. Am. Chem. Soc. 2003, 125, 6272–6283.
- [33] J.-P. Sauvage, J.-P. Collin, J.-C. Chambron, S. Guillerez, C. Coudret, *Chem. Rev.* **1994**, *94*, 993–1019.
- [34] Y. Liu, R. Hammitt, D. A. Lutterman, R. P. Thummel, C. Turro, *Inorg. Chem.* 2007, 46, 6011–6021.
- [35] K. Heinze, K. Hempel, M. Beckmann, *Eur. J. Inorg. Chem.* **2006**, *10*, 2040–2050.
- [36] K. Heinze, K. Hempel, S. Tschierlei, M. Schmitt, J. Popp, S. Rau, *Eur. J. Inorg. Chem.* **2009**, *21*, 3119–3126.
- [37] K. Heinze, K. Hempel, A. Breivogel, Z. Anorg. Allg. Chem. 2009, 635, 2541–2549.
- [38] K. Lashgari, M. Kritikos, R. Norrestam, T. Norrby, Acta Crystallogr., Sect. C 1999, 55, 64–67.
- [39] M. Abrahamsson, M. Jäger, T. Österman, L. Eriksson, P. Persson, H.-C. Becker, O. Johansson, L. Hammarström, J. Am. Chem. Soc. 2006, 128, 12616–12617.
- [40] G. A. Parada, L. A. Fredin, M.-P. Santoni, M. Jäger, R. Lomoth, L. Hammarström, O. Johansson, P. Persson, S. Ott, *Inorg. Chem.* 2013, 52, 5128–5137.
- [41] M. Abrahamsson, M. Jäger, R. J. Kumar, T. Österman, P. Persson, H.-C. Becker, O. Johansson, L. Hammarström, J. Am. Chem. Soc. 2008, 130, 15533–15542.
- [42] F. Schramm, V. Meded, H. Fliegl, K. Fink, O. Fuhr, Z. Qu, W. Klopper, S. Finn, T. E. Keyes, M. Ruben, *Inorg. Chem.* 2009, 48, 5677–5684.
- [43] W. Y. Ng, X. Gong, W. K. Chan, Chem. Mater. 1999, 11, 1165– 1170.
- [44] H. J. Bolink, L. Cappelli, E. Coronado, P. Gaviña, *Inorg. Chem.* 2005, 44, 5966–5968.
- [45] H. J. Bolink, E. Coronado, R. D. Costa, P. Gaviña, E. Ortí, S. Tatay, *Inorg. Chem.* 2009, 48, 3907–3909.
- [46] A. Breivogel, M. Meister, C. Förster, F. Laquai, K. Heinze, *Chem. Eur. J.* 2013, 19, 13745–13760.
- [47] A. Breivogel, C. Förster, K. Heinze, *Inorg. Chem.* 2010, 49, 7052–7056.
- [48] A. Breivogel, K. Hempel, K. Heinze, *Inorg. Chim. Acta* 2011, 374, 152–162.
- [49] H. Komatsu, K. Yoshihara, H. Yamada, Y. Kimura, A. Son, S.-i. Nishimoto, K. Tanabe, *Chem. Eur. J.* 2013, 19, 1971–1977.
- [50] M. R. Gill, J. A. Thomas, Chem. Soc. Rev. 2012, 41, 3179-3192.
- [51] P. Ceroni, Chem. Eur. J. 2011, 17, 9560–9564.
- [52] T. N. Singh-Rachford, F. N. Castellano, Coord. Chem. Rev. 2010, 254, 2560–2573.

- [53] W. Wu, S. Ji, W. Wu, J. Shao, H. Guo, T. D. James, J. Zhao, *Chem. Eur. J.* 2012, 18, 4953–4964.
- [54] P. Hanczyc, B. Norden, M. Samoc, *Dalton Trans.* 2012, 41, 3123–3125.
- [55] M. D. Ward, Coord. Chem. Rev. 2007, 251, 1663–1677.
- [56] S. V. Eliseeva, J.-C. G. Bünzli, Chem. Soc. Rev. 2010, 39, 189– 227.
- [57] J. C. G. Bünzli, S. V. Eliseeva, J. Rare Earths 2010, 28, 824-842.
- [58] T. J. Meyer, Pure Appl. Chem. 1986, 58, 1193-1206.
- [59] J. V. Caspar, T. J. Meyer, J. Am. Chem. Soc. 1983, 105, 5583– 5590.
- [60] J. V. Caspar, T. J. Meyer, J. Phys. Chem. 1983, 87, 952–957.
- [61] $E(\text{vacuum}) / \text{eV} = -4.68 E(\text{SCE}) / \text{V} = -5.08 E(\text{Fc/Fc}^+) / \text{V}.$
- [62] F. Bolletta, S. Bonafede, Pure Appl. Chem. 1986, 58, 1229–1232.
- [63] F. Xu, J.-Y. Kwon, J.-H. Kim, H. U. Kim, J. M. Lim, H. Cho, C. Lee, J. Lee, J.-I. Lee, D.-H. Hwang, *Synth. Met.* 2012, 162, 1421–1428.
- [64] H. J. Bolink, L. Cappelli, E. Coronado, M. Grätzel, Md. K. Nazeeruddin, J. Am. Chem. Soc. 2006, 128, 46–47.
- [65] International Commission on Illumination (CIE), 1931.
- [66] P. Toivanen, J. Hovila, P. Kärhä, E. Ikonen, *Metrologia* 2000, 37, 527–530.
- [67] P. Toivanen, P. Kärhä, F. Manoochehri, E. Ikonen, *Metrologia* 2000, 37, 131–140.
- [68] H. Yersin, A. F. Rausch, R. Czerwieniec, T. Hofbeck, T. Fischer, Coord. Chem. Rev. 2011, 255, 2622–2652.
- [69] N. C. Giebink, S. R. Forrest, Phys. Rev. B 2008, 77, 235215.
- [70] T. Hofbeck, H. Yersin, Inorg. Chem. 2010, 49, 9290–9299.
- [71] M. A. Baldo, C. Adachi, S. R. Forrest, Phys. Rev. B 2000, 62, 10967–10977.
- [72] M. A. Baldo, M. E. Thompson, S. R. Forrest, Pure Appl. Chem. 1999, 71, 2095–2106.
- [73] C. Adachi, M. A. Baldo, S. R. Forrest, M. E. Thompson, *Appl. Phys. Lett.* 2000, 77, 904–906.
- [74] J. Kalinowski, J. Mżyk, F. Meinardi, R. Tubino, M. Cocchi, D. Virgili, J. Appl. Phys. 2005, 98, 063532.

- [75] J. Kalinowski, W. Stampor, J. Szmytkowski, D. Virgili, M. Cocchi, V. Fattori, C. Sabatini, *Phys. Rev. B* 2006, 74, 085316.
- [76] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, *Appl. Phys. Lett.* **1999**, *75*, 4–6.
- [77] L. He, L. Duan, J. Qiao, R. Wang, P. Wei, L. Wang, Y. Qiu, Adv. Funct. Mater. 2008, 18, 2123–2131.
- [78] K. W. Lee, J. D. Slinker, A. A. Gorodetsky, S. Flores-Torres, H. D. Abruña, P. L. Houston, G. G. Malliaras, *Phys. Chem. Chem. Phys.* 2003, 5, 2706–2709.
- [79] S. Bernhard, X. Gao, G. G. Malliaras, H. D. Abruña, Adv. Mater. 2002, 14, 433–436.
- [80] N. R. Armstrong, R. M. Wightman, E. M. Gross, Annu. Rev. Phys. Chem. 2001, 52, 391–422.
- [81] P. Dreyse, B. Loeb, M. Soto-Arriaza, D. Tordera, E. Ortí, J. J. Serrano-Pérez, H. J. Bolink, *Dalton Trans.* 2013, 42, 15502– 15513.
- [82] S. Bernhard, J. A. Barron, P. L. Houston, H. D. Abruña, J. L. Ruglovksy, X. Gao, G. G. Malliaras, J. Am. Chem. Soc. 2002, 124, 13624–13628.
- [83] D. W. Thompson, C. N. Fleming, B. D. Myron, T. J. Meyer, J. Phys. Chem. B 2007, 111, 6930–6941.
 [84] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
 - M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox Gaussian 09, revision A.02, Gaussian, Inc., Wallingford CT, 2009.

Received: September 19, 2013 Published Online: November 21, 2013

122

9.8 Anchor-Functionalized Push-Pull-Substituted Bis(tridentate) Ruthenium(II) Polypyridine Chromophores: Photostability and Evaluation as Photosensitizers

A. Breivogel, S. Wooh, J. Dietrich, T. Y. Kim, Y. S. Kang, K. Char, K. Heinze, *Eur. J. Inorg. Chem.* 2014, 2720–2734.

DOI: 10.1002/ejic.201402091

Reprinted with permission from John Wiley and Sons, Copyright © 2014.

DOI:10.1002/ejic.201402091

Anchor-Functionalized Push-Pull-Substituted Bis(tridentate) Ruthenium(II) Polypyridine Chromophores: Photostability and Evaluation as Photosensitizers

Aaron Breivogel,^[a] Sanghyuk Wooh,^[b] Jan Dietrich,^[a] Tea Yon Kim,^[c] Yong Soo Kang,^[c] Kookheon Char,^[b] and Katja Heinze^{*[a]}

Keywords: Ruthenium / Tridentate ligands / Sensitizers / Photochemistry / N ligands

Stable push-pull substituted heteroleptic bis(tridentate) ruthenium(II) polypyridine complexes with COOH or 2,2'-bipyridine anchor groups have been prepared and characterized by ¹H, ¹³C and ¹⁵N NMR 1D and 2D spectroscopy, infrared spectroscopy, elemental analysis, high-resolution ESI mass spectrometry, electrochemistry, UV/Vis absorption spectroscopy, luminescence spectroscopy, and density functional calculations. The complexes feature a pronounced electronic directionality and high absorption wavelengths up to $\lambda_{\rm max} =$ 544 nm extending to 720 nm as a result of favorable pushpull substitutions. A remarkable photostability in the presence of water and coordinating ions (I⁻) was discovered for the tridentate complexes when compared with the standard

Introduction

Dye-sensitized solar cells (DSSCs) were introduced in 1991 by O'Regan and Grätzel^[1] and provide a promising class of light-to-energy conversion systems.^[2–8] In a typical DSSC, molecular dyes are adsorbed onto a nanoporous inorganic semiconductor electrode (e.g., TiO₂, ZnO). After being excited by light, the dyes inject electrons into the conduction band of the semiconductor. A redox electrolyte (typically I^-/I_3^-) regenerates the dye and diffuses to the counter electrolyte where positive charges are collected. DSSCs are an attractive alternative to conventional silicon-based solar cells due to low-cost of fabrication and the pos-

ruthenium sensitizer N719 and tris(bidentate) [Ru(bpy)₃]-(PF₆)₂, which are highly photolabile under the same conditions (photodissociation/photosubstitution). The complexes were studied as photosensitizers in dye-sensitized solar cells. The incident photon-to-current conversion efficiency follows the absorption spectra into the NIR region. However, the high positive charge of the complexes (2+) favors the recombination of the injected electrons with I_3^- of the redox electrolyte, which is evidenced by high dark currents and short electron recombination lifetimes, leading to low cell performances compared with cells with the negatively charged N719 dye.

sibility to finely tune the sensitizers, cell morphologies, and redox mediators.^[2-8] Currently, the highest power conversion efficiency amounts to $\eta = 12.3\%$ under full air mass 1.5 (AM 1.5) solar light using a designed zinc porphyrin as sensitizer in concert with an organic dye as cosensitizer.^[9] Polypyridine complexes of ruthenium(II) have emerged as a prominent class of sensitizers for DSSCs due to their useful photophysical properties,^[10] high cell efficiencies, and longterm stabilities.^[2-8] Well-known standard ruthenium(II) sensitizers for DSSCs are N719 (Bu₄N)₂[Ru(Hdcbpy)₂- $(NCS)_2$ ^[11,12] and the so-called black dye $(Bu_4N)_3$ - $[Ru(Htctpy)(NCS)_3]$,^[13] reaching solar cell efficiencies of η = 10-11% under full AM 1.5 (dcbpy = 4,4'-dicarboxy-2,2'bipyridine, tctpy = 4,4',4''-tricarboxy-2,2';6',2''-terpyridine). However, the presence of monodentate ligands in these complexes is a key detrimental factor reducing the longterm stability in DSSCs. Monodentate ligands, such as NCS- and pyridine, support thermal- and photo-induced isomerization and ligand-exchange reactions, leading to dye species with lower cell efficiencies.^[14-21] The replacement of monodentate ligands in DSSCs is realized in complexes with tris(bidentate) and bis(tridentate) coordination and offers a better opportunity for tuning the sensitizer properties.^[5,22] The two NCS⁻ ligands of N719 can be replaced by one bidentate cyclometalated 2-phenylpyridine ligand, reaching DSSC efficiencies of $\eta = 10.1\%$.^[5,20,23] In another

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

[[]a] Institute of Inorganic Chemistry and Analytical Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10–14, 55128 Mainz, Germany E-mail: katja.heinze@uni-mainz.de/ http://www.ak-heinze.chemie.uni-mainz.de/

[[]b] The National Creative Research Initiative Center for Intelligent Hybrids, The WCU Program on Chemical Convergence for Energy and Environment, School of Chemical and Biological Engineering, Seoul National University, I Gwanak-ro, Gwanak-gu, Seoul 151-744, Korea

<sup>Engineering, Seoul National University,
1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Korea
[c] The WCU Department of Energy Engineering and Center for</sup> Next Generation Dye-Sensitized Solar Cells, Hanyang University,

²²² Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejic.201402091.

strategy, a NCS--free complex with bidentate 2-pyridylpyrazole ligands achieves an efficiency of $\eta = 9.5\%$ in a DSSC.^[4,24] However, even ruthenium complexes with bidentate ligands such as 4,4'-bi-1,2,3-triazolate suffer from photoinduced ligand loss or photoisomerization.^[25,26] Ligand loss is also known for [Ru(bpy)₃]²⁺ in light-emitting electrochemical cells, leading to degradation products such as $[Ru(bpy)_2(H_2O)_2]^{2+}$ and the oxido-bridged ruthenium(III) dimer $[(Ru(bpy)_2(H_2O))_2(\mu-O)]^{4+.[27-30]}$ Moreover, tris(bidentate) complexes are chiral, thus diastereomers can be formed in the case of unsymmetrically substituted ligands, leading to complex synthetic procedures.^[3,31,32] The presence of stereoisomers can be circumvented with bis(tridentate) complexes such as [Ru- $(tpy)_2$ ²⁺, which are achiral, even when the ligands are functionalized unsymmetrically in the 4'-positions (tpy = 2,2';6',2''-terpyridine).^[33] Tridentate chelate complexes are expected to feature higher photo- and chemical-stability compared with bidentate chelates.^[34,35] The drawback of $[Ru(tpy)_2]^{2+}$ is its fast excited state deactivation via ³MC states with a time constant of $\tau = 0.1-0.2$ ns,^[36-38] thus competing with electron injection into semiconductor electrodes (MC = metal-centered).^[39,40] The detrimental effect of radiationless deactivation via ³MC states can be avoided by substitution at the 4'-positions of tpy. In 4'-substituted [(EtOOC-tpy)Ru(tpy)]²⁺, the electron-withdrawing ester group stabilizes the ³MLCT state with respect to the ³MC state, thus radiationless deactivation via the latter state is hampered (MLCT = metal-to-ligand charge transfer).^[41,42] This is reflected by the enhanced excited state lifetime of τ = 32 ns, which is sufficiently long for quantitative charge injection into TiO₂.^[39,40] The ester group also reduces the HOMO-LUMO gap because it effectively reduces the LUMO energy. This is beneficial due to the redshift of the absorption maximum ($\lambda = 485$ nm) compared with [Ru- $(tpy)_2]^{2+}$ ($\lambda = 476$ nm), thus enabling the harvest of lower energy photons.^[38,42] The carboxylic acid analogue [(HOOC-tpy)Ru(tpy)]²⁺ has been incorporated into DSSCs. Efficiencies were not reported, but the incident photon-tocurrent conversion efficiency (IPCE) shows a maximum of 35% at $\lambda = 500 \text{ nm.}^{[43]}$ The phosphonic acid derivative [(H₂O₃P-tpy)Ru(tpy)]²⁺ reaches only a low DSSC efficiency of $\eta = 0.17\%$, which has been attributed to the low injection yield.^[44] Push-pull substituted [(HOOC-tpy)Ru(tpy- $([4](PF_6)_2)$, Figure 1) features both an electronwithdrawing and an electron-donating moiety. The excited state lifetime is further enhanced ($\tau = 34$ ns) and the absorption is redshifted ($\lambda = 502 \text{ nm}$) because the electrondonating NH₂ group destabilizes both the HOMO and the ³MC state.^[41,45-47] Asymmetric substitution with a carboxylic acid and an amino group offers the possibility for orthogonal functionalization. Bis(tridentate) ruthenium(II) complexes have been used in donor-acceptor arrays with photoinduced charge-separated states.^[48] Complex [4]-(PF₆)₂ has been covalently linked to ferrocene, Pt^{II} and Re^I complexes, which show photoinduced electron transfer.^[45,49,50] Light-induced charge separation has been achieved by using $[4](PF_6)_2$ as a chromophore in a donorchromophore-acceptor nanocomposite with triphenylamine as donor and ZnO nanorods as acceptor.^[51] The push-pull character of [4](PF₆)₂ can be further intensified by the inclusion of additional electron-withdrawing groups on the acceptor ligand as well as electron-donating groups on the donor ligand. This has been shown by our group employing a tpy acceptor ligand containing one or three ester groups and a ddpd donor ligand featuring two or three amine functionalities (ddpd = N,N'-dimethyl-N,N'-dipyridin-2-ylpyridine-2,6-diamine). The absorption is redshifted up to $\lambda =$ 546 nm, while maintaining excited state lifetimes of $\tau > 100$ ns in spite of increased radiationless deactivation due to the energy gap law.^[41,52–54] In these dyes, a directional electron transfer is enforced by spatially separated and orthogonal frontier orbitals.^[41,55]

Figure 1. Bis(tridentate) ruthenium(II) oligopyridine complexes $[1](PF_6)_2 - [6](PF_6)_2$ and reference dye N719. Atom numbering for NMR assignments.

Cyclometalation is another striking tool that can be used to create a push-pull situation in ruthenium(II) complexes and to shift the absorption further into the red spectral region. Spatially separated frontier orbitals are obtained when the cyclometalated functionality is situated face to face with the anchoring ligand with the HOMO located on the cyclometalated ligand and the metal center while the LUMO is located on the anchoring ligand.^[56] The donoracceptor motive was also realized by Berlinguette et al. in a bis(tridentate) ruthenium(II) complex with tctpy as acceptor ligand and a cyclometalating pbpy ligand with a triarylamine substituent (pbpy = 6-phenyl-2,2'-bipyridine). After the injection of an electron into TiO₂, the positive charge is shifted away from the TiO₂ surface towards the appended triarylamine moiety, thus avoiding charge recombination and reaching a DSSC efficiency of $\eta = 8.0\%$.^[57] Recently, bis(tridentate) ruthenium(II) complexes with a dianionic donor ligand [2,6-bis(5-pyrazolyl)pyridine] and tctpy acceptor ligand have been presented in DSSCs with efficiencies up to $\eta = 10.7\%$.^[58,59] The use of ruthenium(II) complexes with two tridentate ligands has a favorable effect on the long-term stability of DSSCs.[4,60,61]

In this work, we present the synthesis of three novel, push-pull substituted bis(tridentate) ruthenium(II) complexes $[1](PF_6)_2 - [3](PF_6)_2$ together with three previously reported, push-pull-substituted bis(tridentate) complexes $[4](PF_6)_2$ – $[6](PF_6)_2$ and their performance in DSSCs in comparison with the standard ruthenium(II) sensitizer N719 (Figure 1).^[45,49,50,62] Binding to TiO₂ occurs through carboxylic acid/carboxylate groups $\{[1](PF_6)_2 - [4](PF_6)_2,$ N719} and for the first time complexes with bidentate 2,2'bpy as anchor $\{[5](PF_6)_2, [6](PF_6)_2\}$ were used in DSSCs. Dicarboxylic acid^[63] and bidentate acetylacetonato^[64,65] or catecholato^[39,66,67] anchors have been employed previously. Bidentate bpy anchors might be favored compared with monodentate pyridine anchors because dye desorption from the semiconductor is a critical issue for the long-term stability of DSSCs.^[68] The photostability under irradiation $(\lambda_{exc} = 400 \text{ and } 500 \text{ nm})$ of ethyl esters $[1^{Et}](PF_6)_2$ and $[4^{Et}](PF_6)_2$ was studied and compared to that of $[Ru(bpy)_3]$ -(PF₆)₂ and N719. In addition, the stability of the ruthenium(III) complexes $[1^{Et}]^{3+}$, $[4^{Et}]^{3+}$, $[Ru(bpy)_3]^{3+}$, and oxidized N719 was investigated by spectroelectrochemical measurements.

Results and Discussion

Synthesis and Analytical Characterization

The ester analogues of complexes $[1](PF_6)_2 - [3](PF_6)_2$ as well as complexes $[4](PF_6)_2 - [6](PF_6)_2$ have been reported previously.^[41,45,49,50,55] Complexes $[1](PF_6)_2$ and $[2](PF_6)_2$ have been synthesized by hydrolysis of their respective ester derivatives with sulfuric acid.^[41,55] [3](PF_6)_2 has been obtained in a microwave-assisted reaction of $[(MeOOC)_3-tpy]$ -RuCl₃^[13,69–71] and ddpd-4'-phthalimide^[41] in methanol with *N*-ethylmorpholine as reducing agent. Subsequently, the ester groups and the phthalimide protecting group were hydrolyzed in a single step by acidic treatment. Finally, $[1](PF_6)_2 - [3](PF_6)_2$ were precipitated by addition of $[NH_4](PF_6)$ and obtained as $(PF_6)^-$ salts. Complexes $[1](PF_6)_2 - [3](PF_6)_2$ were characterized by ESI and HR-ESI mass spectrometry, infrared, ¹H, ¹³C and ¹⁵N NMR 1D and 2D spectroscopy, and by elemental analysis. The ion peaks for $[M - PF_6]^+$ and $[M - 2PF_6]^{2+}$ were found in the ESI mass spectra of $[1](PF_6)_2 - [3](PF_6)_2$ with m/z values and isotope distributions being in excellent accord with theoretical values. Additionally, HRMS (ESI) clearly confirmed the molecular formulae of all complex cations (see Experimental Section). ¹H, ¹³C and ¹⁵N NMR spectroscopic data of $[1](PF_6)_2 - [3](PF_6)_2$ corroborate that the structural integrity remained intact during the harsh synthetic conditions (reflux, acidic medium) by showing only a single stereoisomer (meridional), similar to their ester derivatives (Tables S1-S3 in the Supporting Information; see Figure 1 for atom assignment).^[41,55] NMR spectra of $[1](PF_6)_2 - [3](PF_6)_2$ do not differ significantly from the spectra of their respective ester derivatives,[41,55] with the exception that the resonances for the alkyl ester groups were not present. The resonances of all pyridine protons of $[1](PF_6)_2 - [3](PF_6)_2$ appear in the expected range between δ = 6.2 and 9.2 ppm. The highest chemical shift originates from to H-2 (δ = 8.99–9.15 ppm), due to the electron-withdrawing COOH moiety at the central pyridine of the tpy ligand. The addition of two carboxylic acid groups $\{[1](PF_6)_2 \rightarrow [2](PF_6)_2\}$ strengthens the electron-accepting character of the tpy ligand, which is reflected in the downfield shift of H-5 and H-7 by about 0.4 ppm. The protons of the NCH₃ group of the ddpd ligand appear as a singlet at $\delta = 3.4-3.5$ ppm. The amino protons of [3](PF₆)₂ resonate at $\delta = 5.75$ ppm. The electron-donating character of the NH₂ group is clearly seen in the high-field shift of the H-15 resonance for $[3](PF_6)_2$ ($\delta = 6.81$ ppm) compared with $[2](PF_6)_2$ ($\delta = 7.58$ ppm).^[72] For $[1](PF_6)_2 - [3](PF_6)_2$ an interligand nuclear Overhauser effect is observed between proton H-8 of the tpy ligand and the NCH₃ protons of the ddpd ligand, supporting the twisted meridional coordination of the ddpd ligand, with the two NCH₃ groups lying above and below the plane of the tpy ligand.^[41,55] $^{13}C{^{1}H}$ NMR spectra of $[1](PF_6)_2 - [3](PF_6)_2$ show resonances for all carbon atoms, including quaternary carbon atoms. All carbon atoms were assigned unambiguously on the basis of 2D NMR correlation spectroscopic methods (HMQC, HMBC) and appear with expected chemical shifts (Table S2 in the Supporting Information). Again, the electron-donating effect of the NH_2 group of $[3](PF_6)_2$ is revealed when comparing the chemical shifts of C-15 { δ = 113.7 ([2]- $(PF_6)_2$) \rightarrow 98.8 ppm ([3](PF_6)_2)}. ¹⁵N NMR chemical shifts of $[1](PF_6)_2 - [3](PF_6)_2$ were recorded with ¹⁵N-¹H HMBC spectroscopy and also underline the electron-withdrawing effect of two additional COOH groups { $\delta(N^d) = 238.3$ ([1]- $(PF_6)_2$) \rightarrow 249.5 ppm ([2](PF_6)_2)} and the electrondonating character of the NH₂ group { δ (N^c) = 216.3 $([2](PF_6)_2) \rightarrow 181.6 \text{ ppm} ([3](PF_6)_2)\}$. IR spectra of [1]- $(PF_6)_2 - [3](PF_6)_2$ in CsI disks were recorded, and these feature characteristic bands of the functional groups and

counterions. Broad bands at $\tilde{v} = 3440-3443$ cm⁻¹ arise from OH stretching vibrations. Absorption bands at $\tilde{v} = 1713-1728$ cm⁻¹ are assigned to C=O stretching vibrations, and very strong bands at $\tilde{v} = 839-843$ cm⁻¹ are caused by PF stretching vibrations of the (PF₆)⁻ counterions.

Electrochemical Properties of $[1](PF_6)_2 - [3](PF_6)_2$

Cyclic and square wave voltammetry in CH₃CN and $[nBu_4N](PF_6)$ as supporting electrolyte have been performed for complexes [1](PF₆)₂ - [3](PF₆)₂ (Figures S1-S3 in the Supporting Information). The FcH/FcH⁺ redox couple was used as internal reference. Electrochemical data of $[1](PF_6)_2 - [6](PF_6)_2$ and N719 are summarized in Table 1. The one-electron oxidation of $[1](PF_6)_2 - [3](PF_6)_2$ is reversible and occurs at $E_{1/2} = 0.81$, 0.87, and 0.71 V, respectively, which essentially matches the oxidation potentials of the corresponding ester counterparts.^[41] The oxidation is assigned to the Ru^{II}/Ru^{III} redox couple.^[41,55] Spin density plots of the DFT optimized one-electron oxidized complexes corroborate the ruthenium-centered oxidation (Figure 2). [1](PF₆)₂ ($E_{1/2} = 0.81$ V) is more easily oxidized than $[2](PF_6)_2$ ($E_{1/2} = 0.87$ V) due to the two additional electronwithdrawing COOH groups of the latter. [3](PF₆)₂ ($E_{1/2}$ = 0.71 V) is more easily oxidized than [2](PF₆)₂ ($E_{1/2}$ = (0.87 V) due to the electron-donating NH₂ group of [3]- $(PF_6)_2$. In $[3]^{3+}$, a small amount of spin density is also located on the NH_2 group, similar to complexes $[4]^{3+}$ and $[6]^{3+}$, with Mulliken spin densities on the amino nitrogen atom of 0.07, 0.11, and 0.12, respectively (Figure 2).^[45,55] Reduction of $[1](PF_6)_2 - [3](PF_6)_2$ is irreversible and initially occurs at $E_p = -1.50, -1.37$, and -1.53 V, respectively, and is confined to the acid-substituted tpy ligand, which is illustrated by spin density plots of the one-electron reduced species [1]⁺, [2]⁺, and [3]⁺ (Figure S4 in the Supporting Information).^[41] Because the ester derivatives of $[1](PF_6)_2$ – $[3](PF_6)_2$ show reversible reductions, the irreversibility is associated with the COOH group.^[41,55] The reduced radical ligand (tpy-COOH)⁻ has a higher proton affinity compared with tpy-COOH. This might lead to the protonation reaction (tpy-COOH)⁻ + H⁺ \rightarrow [tpy-C(OH)₂]⁻ and explains the irreversibility of the reduction in complexes [1](PF₆)₂ - $[3](PF_6)_2$. Reductive H₂ evolution, as in the reaction R-COOH + $e^- \rightarrow$ R-COO⁻ + 1/2 H₂, has also been reported

Table 1. Electrochemical data of complexes $[1](PF_6)_2 - [6](PF_6)_2$ and reference compound N719 in CH₃CN ($E_{1/2}$ given in V vs. FcH/ FcH⁺).

	$E_{1/2}$ (Ru ^{II} /Ru ^{III})	$E_{1/2}$ (tpy/tpy ⁻)
[1](PF ₆) ₂	+0.810	-1.500 ^[a]
$[2](PF_6)_2$	+0.870	-1.370 ^[a]
$[3](PF_6)_2$	+0.710	-1.530 ^[a]
$[4](PF_6)_2^{[45]}$	+0.680	-1.540 ^[a]
$[5](PF_6)_2^{[49]}$	+0.915	-1.565
$[6](PF_6)_2^{[50]}$	+0.680	-1.505
N719 ^{[12][b]}	+0.500	-1.790

[a] Irreversible, E_p given. [b] In DMF.

Figure 2. Spin densities of ruthenium(III) complexes $[1]^{3+} - [6]^{3+}$ and one-electron oxidized N719 (contour value 0.005 a. u.; CH hydrogen atoms omitted).

Optical Properties of [1](PF₆)₂ - [3](PF₆)₂

Figure 3 depicts experimental UV/Vis spectra of $[1](PF_6)_2 - [3](PF_6)_2$ in CH₃CN. The data are summarized together with complexes $[4](PF_6)_2 - [6](PF_6)_2$ and N719 in Table 2. Intense bands at $\lambda < 400$ nm are assigned to $\pi \rightarrow \pi^*$ transitions of the ligands. The bands in the visible spectral range are predominantly of MLCT parentage. [1](PF₆)₂ features its MLCT band maximum at $\lambda = 517$ nm ($\varepsilon =$ 8110 M^{-1} cm⁻¹) with a high-energy shoulder at $\lambda = 472$ nm and two low-energy shoulders at $\lambda = 583$ and 635 nm. The spectrum of [2](PF₆)₂ shows two maxima at $\lambda = 537$ ($\varepsilon =$ $6600 \text{ m}^{-1} \text{ cm}^{-1}$) and 473 nm ($\varepsilon = 5820 \text{ m}^{-1} \text{ cm}^{-1}$) and two shoulders at $\lambda = 608$ and 661 nm. A distinct redshift compared with $[1](PF_6)_2$ can be noticed. This is due to the smaller HOMO-LUMO energy gap in the case of [2]-(PF₆)₂ caused by the additional COOH groups lowering the LUMO energy by a greater extent than the HOMO energy

Figure 3. Experimental UV/Vis spectra in CH₃CN and calculated stick spectra (TD-DFT, B3LYP/LANL2DZ, IEFPCM in CH₃CN) of $[1]^{2+} - [3]^{2+}$.

([1]²⁺ \rightarrow [2]²⁺: $\Delta E_{LUMO} = 0.30$; $\Delta E_{HOMO} = 0.19$ eV by DFT; Figure 4). For [3](PF₆)₂, the HOMO–LUMO gap is further

Table 2. UV/Vis data of complexes $[1](PF_6)_2 - [6](PF_6)_2$ and reference compound N719 in CH₃CN and TD-DFT data (B3LYP/LANL2DZ, IEFPCM in CH₃CN).

	Experimental	MICT	DFT ^[a]
	$\pi \rightarrow \pi^*$	MLCI	λ [nm]
	λ_{\max} [IIII] (ε [M ⁻¹ cm ⁻¹])	λ_{\max} [IIII] (ε [M ⁻¹ cm ⁻¹])	())
$[1](PF_6)_2$	319 (31200),	635 (970, sh),	627.28 (0.0064)
	279 (37600),	583 (2080, sh),	609.06 (0.0119)
	221 (37500)	517 (8110),	514.10 (0.0653)
		472 (6060, sh)	479.27 (0.0233)
			446.70 (0.1147)
			438.60 (0.0114)
$[2](PF_6)_2$	340 (34400),	661 (1010, sh),	641.06 (0.0337)
	291 (37100),	608 (2960, sh),	634.53 (0.0100)
	211 (55300)	537 (6600),	552.49 (0.0261)
		4/3 (5820)	515.85 (0.0423)
			40/.85(0.0155)
			400.40(0.02/3)
			432.33 (0.0718)
[3](PF .).	340 (30400)	680 (1400 sh)	425.85 (0.1511) 680.40 (0.0137)
[3](116)2	292 (34400)	610 (3540 sh)	651.28(0.0319)
	217 (59900)	544 (6690)	562.06 (0.0276)
	217 (35500)	480 (5090)	550.87 (0.0400)
		((()))	480.21 (0.0260)
			455.99 (0.0768).
			433.95 (0.0681).
			426.03 (0.0142).
			405.47 (0.0608)
$[4](PF_6)_2^{[45]}$	318 (41100),	570 (1900, sh),	585.50 (0.0053)
	306 (38000),	501 (20700),	486.60 (0.1460)
	274 (55700),	467 (14400, sh)	451.84 (0.0719)
	236 (46700)		443.55 (0.0837)
			439.16 (0.0402)
(DE) [49]	205 (5(200))	402 (24400)	431.24 (0.1507)
$[5](PF_6)_2^{[+5]}$	305(50800),	493 (24400)	333./4 (0.0039)
	270 (77800)		490.41 (0.0137)
			475.02(0.2056)
			432.00(0.0410)
			430.92 (0.2257)
			427.40 (0.0372)
$[6](PF_6)_2^{[50]}$	313 (43900, sh).	502 (23000)	562.43 (0.0079)
L'J(0/2	278 (63900)		485.06 (0.1427).
			457.57 (0.0134)
			456.09 (0.0963).
			448.27 (0.0421)
			446.75 (0.0828)
			435.76 (0.1837)
N719 ^[11]	312 (49100) ^[b]	535 (14700) ^[b] ,	682.20 (0.0586)
		395 (14300) ^[6]	653.33 (0.0131)
			591.98 (0.1223)
			541.43 (0.0857)
			4/3.38 (0.0312)
			449 54 (0.0393)
			440 46 (0.0180)
			435.66 (0.0298)
			433.88 (0.0260)
			414.86 (0.0149)
			408.02 (0.0087)

reduced because the addition of the electron-donating NH₂ group raises the HOMO energy more than the LUMO energy ([2]²⁺ \rightarrow [3]²⁺: $\Delta E_{\text{LUMO}} = 0.05$; $\Delta E_{\text{HOMO}} = 0.22 \text{ eV}$ by DFT; Figure 4). This can be seen in the electronic spectra because the absorption bands of $[3](PF_6)_2$ are further redshifted compared with those of $[2](PF_6)_2$ (Table 2, Figure 3). Calculated stick spectra were obtained by time-dependent DFT calculations including solvent modeling (TD-DFT, B3LYP/LANL2DZ, IEFPCM in CH₃CN) and these appropriately reproduce the experimental spectra (Figure 3). For example, the bands and shoulders of the experimental spectrum of $[3]^{2+}$ at $\lambda = 680$, 610, 544 and 480 nm appear as calculated transitions at $\lambda = 689.5$ (f = 0.0137), 651.3 (f = 0.0319), 562.1 (f = 0.0319)/550.9 (f = 0.0400) and $480.2 \ (f = 0.0260)/456.0 \ \text{nm} \ (f = 0.0768).$ Absorptions at $\lambda > 400 \text{ nm}$ arise predominantly from transitions from metal-centered " t_{2g} " orbitals (HOMO, HOMO–1 and HOMO-2) to tpy-based π^* orbitals (LUMO and LUMO+1). Relevant Kohn-Sham frontier molecular orbitals are depicted for $[3]^{2+}$ in Figure 5. The unoccupied " e_g "

Figure 4. DFT (B3LYP/LANL2DZ, IEFPCM in CH₃CN) calculated frontier orbital energies of $[1]^{2+} - [3]^{2+}$.

[a] Highest calculated oscillator strengths f at $\lambda > 400$ nm (TD-DFT, B3LYP/LANL2DZ, IEFPCM in CH₃CN). For a complete list see the Supporting Information. [b] In ethanol.

Figure 5. Relevant Kohn–Sham frontier molecular orbitals (contour value 0.06 a. u.) of $[3]^{2+}$ (CH hydrogen atoms omitted).

orbitals of the d-manifold (LUMO+13 and LUMO+14) appear at higher energy.

In a more detailed analysis, we compare the frontier orbitals (HOMO-3 to LUMO+3) that are relevant for transitions at $\lambda > 400$ nm, as calculated by TD-DFT calculations for complexes $[1]^{2+} - [6]^{2+}$ and N719 (Figures S5–S6 in the Supporting Information). HOMO, HOMO–1, and HOMO–2 of complexes $[1]^{2+} - [6]^{2+}$ are located at the metal center, formally corresponding to " t_{2g} " orbitals. For complexes $[3]^{2+}$, $[4]^{2+}$, and $[6]^{2+}$, the p(N) orbitals of the NH₂ substituent also contribute to the HOMO.^[41,62] This is regarded as being beneficial for directional electron injection into solid semiconductors, e.g., TiO2.^[2-4] HOMO-3 of complexes $[1]^{2+} - [4]^{2+}$ is situated at the remote amine donor ligand, which also favors directional electron injection into TiO₂. Similarly, HOMO to HOMO-2 of N719 are metalcentered, but large contributions from the NCS- ligands are present. HOMO-3 of N719 is even essentially NCS--based. LUMO to LUMO+3 of $[1]^{2+} - [3]^{2+}$ and N719 are mainly located at the anchoring ligand and should therefore facilitate electron injection.^[2-4] In contrast, LUMO to LUMO+3 of $[4]^{2+} - [6]^{2+}$ are distributed over both tpy ligands. In the case of $[5]^{2+}$, the LUMO is not even located on the anchor ligand as is the case for all other complexes (Figure S6). Thus, for complexes $[4]^{2+} - [6]^{2+}$, the local separation of frontier orbitals is less pronounced and might retard efficient charge injection into TiO₂.

The individual sum of oscillator strengths Σf at $\lambda > 400 \text{ nm}$ increases by attaching two COOH groups $\{\Sigma f = 0.2368 ([1]^{2+}) \rightarrow 0.3849 ([2]^{2+})\}$ as well as by attaching an amino group $\{\Sigma f = 0.3849 ([2]^{2+}) \rightarrow 0.4619 ([3]^{2+})\}$, which is a behavior similar to the ester derivatives and is due to the enlargement of the chromophoric system.^[41] The total experimental integrated intensity $\int I$ was calculated in the visible spectral range ($\lambda = 400-800 \text{ nm}$) on an energy scale (cm⁻¹) and increases in the same order $\{\int I = 3.77 \times 10^7 \text{ m}^{-1} \text{ cm}^{-2} ([1](\text{PF}_6)_2) \rightarrow 4.69 \times 10^7 \text{ m}^{-1} \text{ cm}^{-2} ([2](\text{PF}_6)_2) \rightarrow 5.16 \times 10^7 \text{ m}^{-1} \text{ cm}^{-2} ([3](\text{PF}_6)_2)\}$. This increased absorptivity favors photon collection over the entire spectral range.

DFT-calculated spin densities of the emissive ³MLCT states of complexes $[1]^{2+} - [6]^{2+}$ and N719^[12,74] are illustrated in Figure 6. For all complexes, the spin density is distributed over both the ruthenium atom and the carbonyl-substituted polypyridine ligand. For all complexes except

Figure 6. Spin densities of the ${}^{3}MLCT$ state of $[1]^{2+} - [6]^{2+}$ and N719 (contour value 0.01 a. u.; CH hydrogen atoms omitted).

 $[5]^{2+}$, spin density is transferred towards the anchor groups in the ³MLCT state compared with the ground state. This is beneficial for efficient charge injection into semiconductors.^[2-4] For $[5]^{2+}$ however, the carbonyl-substituted terpyridine ligand is opposite to the bpy anchor group, which should be rather detrimental for charge injection (see below).^[4]

Figure 7 compares the experimental UV/Vis spectra of $[1](PF_6)_2 - [6](PF_6)_2$ and N719 in CH₃CN/*t*BuOH (1:1) solution. [2](PF₆)₂ features a very similar absorption maximum to that of N719, with additional low energy shoulders at $\lambda = 661$ and 608 nm. The absorption maxima of [3]-(PF₆)₂ are even bathochromically shifted with respect to those of N719 (Table 2).

Figure 7. (a) Normalized experimental UV/Vis spectra of [1]- $(PF_{6})_2 - [6](PF_{6})_2$ and N719 in CH₃CN/tBuOH (1:1); (b) IPCE of cells with [1] $(PF_{6})_2 - [6](PF_{6})_2$ and N719.

Emission of [1](PF₆)₂ – [3](PF₆)₂ in CH₃CN at 295 K occurs at λ = 732, 743, and 771 nm, respectively. The redshift of the emission wavelength in the series [1](PF₆)₂, [2](PF₆)₂, [3](PF₆)₂ is due to the consecutive lowering of the HOMO–LUMO gap, as already discussed for absorption (see above, Figure 4). Emission quantum yields of [1](PF₆)₂ – [3](PF₆)₂ were measured in deaerated CH₃CN at 295 K. The quantum yield of [3](PF₆)₂ (Φ = 0.067%) is similar to its ester derivative (Φ = 0.052%).^[41] In contrast, the quantum yields of [1](PF₆)₂ (Φ = 0.068%) and [2](PF₆)₂ (Φ = 0.590%) are smaller by a factor of 2–7 compared with their ester derivative (additional contrast) is due to the presence of carboxylic acid

functionalities. Carboxylic acids are known to form hydrogen-bonding networks, and proton transfer along hydrogen bonds can be responsible for excited-state deactivation.^[76–80] Furthermore, excited-state deactivation can occur through high energy oscillators (O–H, N–H), typically leading to smaller quantum yields.^[41,45] For [**3**](PF₆)₂, we assume that efficient excited-state deactivation already occurs through N–H oscillators and clearly does not increase significantly by additional deactivation through the three extra O–H oscillators. This would explain the similar quantum yields of [**3**](PF₆)₂ and its ester derivative.^[41]

For example, the excited state pK_a^* [$pK_a^* = pK_a^* + 0.625 \times T^{-1} \times (\tilde{v} - \tilde{v}')$] was calculated for complex [1](PF₆)₂ from the ground state pK_a and the 0–0 transitions of [1]²⁺ (\tilde{v}' /cm⁻¹) and the deprotonated (\tilde{v} /cm⁻¹) form [1–H]⁺.^[81] 0– 0 transitions were estimated from the intersection points of the normalized absorption and emission spectrum, which were found at $\lambda = 659$ and 621 nm for [1]²⁺ and [1–H]⁺, respectively. The ground state pK_a amounts to 2.3 and the excited state pK_a^* to 4.3 (T = 295 K). A similar difference between pK_a (3.0) and pK_a^* (4.85) was found in [Ru(bpy)₂-(bpy-4-COOH)]²⁺.^[82] The lower acidity of the excited state compared to the ground state corroborates the metal-to-ligand charge transfer character of the excited state mentioned above.^[81]

Photostability Tests

Photostability tests were conducted to investigate possible ligand loss during DSSC operation. The ethyl ester derivatives $[1^{Et}](PF_6)_2$ and $[4^{Et}](PF_6)_2$ of carboxylic acids $[1](PF_6)_2$ and $[4](PF_6)_2$ as well as N719 and $[Ru(bpy)_3]$ -(PF₆)₂ were continuously irradiated under an Ar atmosphere in 0.1 M [*n*Bu₄N]I in CH₃CN/H₂O (98:2, v/v) at λ_{exc} = 400 and 500 nm. The solutions of $[1^{Et}](PF_6)_2$, $[4^{Et}]$ - $(PF_6)_2$, N719, and $[Ru(bpy)_3](PF_6)_2$ were isoabsorptive at the respective irradiation wavelength. The presence of water and potentially coordinating iodide simulates DSSCs conditions, with I⁻ being present in the liquid electrolyte and H₂O penetrating into the cell. The emission intensity of the complexes was measured over a period of at least 4 h and compared to the evolution of the emission intensity of N719 and $[Ru(bpy)_3](PF_6)_2$ (Figure 8). In the absence of coordinating anions, [Ru(bpy)₃](PF₆)₂ is photoinert.^[83,84] However, in the presence of coordinating anions such as Cl-, Br⁻, I⁻, SCN⁻, or NO₃⁻, $[Ru(bpy)_3]^{2+}$ readily undergoes photoinduced ligand substitution, photooxygenation (in the presence of O₂), and photoracemization.^[83-87] When irradiated at $\lambda_{\text{exc}} = 400$ nm, the normalized emission intensities of N719 and [Ru(bpy)₃](PF₆)₂ drop within 4 h to 68 and 5% of the initial emission intensity, respectively (Figure 8, a). In contrast, for $[1^{Et}](PF_6)_2$ and $[4^{Et}](PF_6)_2$, more than 95% of the initial emission intensity is maintained after the same irradiation time under identical conditions. Irradiation at $\lambda_{\text{exc}} = 500 \text{ nm}$ shows similar results, with a drop in the initial emission intensity to 79 and 47% for N719 and $[Ru(bpy)_3](PF_6)_2$, respectively, after 5 h (Figure 8, b). Under the same conditions, $[1^{\text{Et}}](\text{PF}_6)_2$ and $[4^{\text{Et}}](\text{PF}_6)_2$ retain more than 97% of the initial emission intensity. The results clearly show that under the applied conditions bis(tridentate) complexes $[1^{\text{Et}}](\text{PF}_6)_2$ and $[4^{\text{Et}}](\text{PF}_6)_2$ are much more photostable than N719 and $[\text{Ru}(\text{bpy})_3](\text{PF}_6)_2$, which is a result of the tridentate coordination compared with mono- and bidentate modes.^[14–21,88]

a) normalized emission intensity (λ_{exc} = 400 nm)

b) normalized emission intensity ($\lambda_{avc} = 500 \text{ nm}$)

Figure 8. Normalized emission intensities of $[1^{\text{Et}}](\text{PF}_6)_2$, $[4^{\text{Et}}](\text{PF}_6)_2$, N719, and $[\text{Ru}(\text{bpy})_3](\text{PF}_6)_2$ in 0.1 M [*n*Bu₄N]I in CH₃CN/H₂O (98:2, $\nu\%$) under continuous irradiation at (a) $\lambda_{\text{exc}} = 400$ and (b) $\lambda_{\text{exc}} = 500$ nm.

Photodecomposition products of $[Ru(bpy)_3]^{2+}$ were indeed detected when a solution of $[Ru(bpy)_3](PF_6)_2$ (11 mM) was irradiated at λ_{exc} = 400 nm in the presence of [nBu₄N]I (2.2 equiv.) and trace amounts of H₂O. ¹H NMR spectra reveal resonances corresponding to the noncoordinated 2,2'-bipyridine ligand (Figure S7 in the Supporting Information). The ESI⁺ mass spectrum after irradiation shows signals with characteristic ruthenium isotope patterns at $m/z = 559.0 [Ru(bpy)_2(H_2O)I]^+$, 541.0 [Ru- $(bpy)_2I^+$, 467.1 $[Ru(bpy)_2(H_2O)_2(OH)]^+$, and 449.1 [Ru(bpy)₂(H₂O)(OH)]⁺ in addition to intense signals for intact $[Ru(bpy)_3]^{2+}$ (Figure S8 in the Supporting Information). Hence, one bpy ligand of $[Ru(bpy)_3]^{2+}$ is efficiently photo-substituted by H₂O and/or I⁻. The high photostability of ruthenium(II) complexes with bis(tridentate) coordination should thus be favorable in applications such as DSSCs and light-emitting devices.^[3,4,27-30,60,61]

Photodecomposition products of N719 could be detected when a solution of N719 (4.4 mm) was irradiated at λ_{exc} = 400 nm in the presence of $[nBu_4N]I$ (4.5 equiv.) and H₂O. ¹H NMR spectra after irradiation show new signals with similar resonances ($\Delta\delta < 0.1$ ppm) to those obtained from N719 (Figure S9 in the Supporting Information). No signals from degradation compounds could be observed in FD, ESI+, or ESI- mass spectra. However, the small changes of the chemical shifts indicate that both dcbpy ligands remain coordinated and that NCS- ligands are replaced by I⁻ or by H₂O.^[11] This is reasonable because NCS⁻ coordinates in a monodentate fashion and is substituted faster than the bidentate dcbpy ligand. Indeed, for N719 and related compounds, the photochemical and thermal substitution of both NCS- by I- and other monodentate ligands has previously been reported.[17,19,20,89,90]

Redox Stability

The redox stability of sensitizers is an important issue in DSSCs because electron injection leads to ruthenium(III) complexes, which can be prone to ligand exchange reactions. The ethyl esters of $[1^{Et}]^{2+}$ and $[4^{Et}]^{2+}$ were oxidized and the stability of the oxidized species ($[1^{Et}]^{3+}$ and $[4^{Et}]^{3+}$) in the presence of coordinating OH- ions was investigated by spectroelectrochemical measurements. Oxidized N719 and $[Ru(bpy)_3]^{3+}$ were used for comparison. The ruthenium(II) complexes were oxidized to ruthenium(III) by gradually increasing the potential and then reduced back to the starting ruthenium(II) complexes by gradually lowering the potential. The reactions were monitored by following changes to the UV/Vis spectra. Figure 9 exemplarily shows that, upon oxidation of $[4^{Et}]^{2+}$ to $[4^{Et}]^{3+}$, the MLCT band disappears while a LMCT band at $\lambda = 729 \text{ nm}$ ($\varepsilon =$ 5120 m⁻¹ cm⁻¹) appears.^[46] Isosbestic points at $\lambda = 581, 431,$ 340, 292, 283, 272, and 241 nm reveal a clean conversion from $[4^{\text{Et}}]^{2+}$ into $[4^{\text{Et}}]^{3+}$.^[46] Upon lowering the potential, the spectra clearly show a clean reduction back to $[4^{Et}]^{2+}$ with the same isosbestic points as for the oxidation and a perfect overlap with the spectra of the initial ruthenium(II) complex could be achieved.

Experiments with $[1^{\text{Et}}](\text{PF}_6)_2$ and $[\text{Ru}(\text{bpy})_3](\text{PF}_6)_2$ show essentially the same spectral behavior upon oxidation and back reduction (Figures S10–S11 in the Supporting Information). LMCT bands for the oxidized complexes $[1^{\text{Et}}]^{3+}$, N719^{ox}, and $[\text{Ru}(\text{bpy})_3]^{3+}$ appear at $\lambda = 702$ (shoulder; $\varepsilon =$ $770 \text{ m}^{-1} \text{ cm}^{-1}$), $\lambda = 662$ (shoulder; $\varepsilon = 860 \text{ m}^{-1} \text{ cm}^{-1}$), and $662 \text{ nm} (\varepsilon = 370 \text{ m}^{-1} \text{ cm}^{-1})$, respectively. The smaller LMCT band intensity of $[1^{\text{Et}}]^{3+}$, N719^{ox}, and $[\text{Ru}(\text{bpy})_3]^{3+}$ compared with NH₂-substituted $[4^{\text{Et}}]^{3+}$ is due to the strong electron-donating character of the primary amino group of $[4^{\text{Et}}]^{3+}$. Isosbestic points for $[1^{\text{Et}}](\text{PF}_6)_2$ appear at $\lambda = 664$, 423, 373, 352, 296, 285, and 258 nm and for $[\text{Ru}(\text{bpy})_3]$ - $(\text{PF}_6)_2$ at $\lambda = 573$, 329, 298, and 267 nm.

During the oxidation of N719, isosbestic points were observed at $\lambda = 316$, 333, and 550 nm (Figure S12a). However, during the back reduction, no isosbestic points were ob-

Figure 9. UV/Vis spectra of (a) the electrochemical oxidation ($E = 600 \rightarrow 1000 \text{ mV}$) and (b) back reduction ($E = 1000 \rightarrow 600 \text{ mV}$) of $[4^{\text{Et}}](\text{PF}_{6})_2$ in an OTTLE cell in 10^{-3} M NaOH and 0.1 M [$n\text{Bu}_4\text{N}$](PF₆) in CH₃CN/H₂O (98:2, v/v). Black arrows indicate isosbestic points.

served. The spectrum of N719 before oxidation (E =200 mV, Figure S12 a) features maxima at $\lambda_{max} = 249$ ($\varepsilon =$ $31810 \text{ m}^{-1} \text{ cm}^{-1}$), $308 (\varepsilon = 44640 \text{ m}^{-1} \text{ cm}^{-1})$, $374 (\varepsilon =$ 14090 M^{-1} cm⁻¹), and 512 nm ($\varepsilon = 12270 M^{-1}$ cm⁻¹) whereas the spectrum after gradually increasing and then lowering the potential (E = 200 mV, Figure S12b) features maxima at $\lambda_{\text{max}} = 249 \ (\varepsilon = 33190 \text{ m}^{-1} \text{ cm}^{-1}), \ 307 \ (\varepsilon = 47040 \text{ m}^{-1} \text{ cm}^{-1}),$ 372 ($\varepsilon = 14700 \text{ m}^{-1} \text{ cm}^{-1}$), and 508 nm ($\varepsilon = 12270 \text{ m}^{-1} \text{ cm}^{-1}$) indicating that the majority of N719 could be recovered and a small part of oxidized N719 underwent side reactions. Indeed the oxidation of the ester-protected analogue of N719 is irreversible, and desulfuration of the NCS- ligands has been reported. $^{[90]}$ In essence, $[1^{Et}]^{3+},\ [4^{Et}]^{3+},$ and [Ru- $(bpy)_3]^{3+}$ are stable in the presence of coordinating OH⁻. No hint of instability of the ruthenium(III) complexes could be found on the electrochemical time-scale under the applied conditions. In contrast, oxidized N719 is less stable and undergoes irreversible side reactions. Thus, compared with N719, our bis(tridentate) ruthenium(II) complexes feature a superior redox stability, which is important for applications such as DSSCs.^[2]

Device Testing

DSSCs were prepared with a FTO/TiO2/dye/electrolyte/ Pt/FTO structure. As redox electrolyte the I^{-}/I_{3}^{-} redox couple in CH₃CN was used. Ground state (¹GS) and excited state (³MLCT and ¹MLCT) energy levels of sensitizers $[1](PF_6)_2 - [6](PF_6)_2$ at E = -5.89, -4.20, -3.49 ($[1](PF_6)_2$), -5.95, -4.28, -3.64 ([2](PF₆)₂), -5.79, -4.18, -3.51 ([3]-(PF₆)₂), -5.74, -4.06, -3.26 ([4](PF₆)₂), -6.00, -4.15, -3.48 ([5](PF₆)₂), -5.58, -4.09, -3.26 eV ([6](PF₆)₂) and N719 at -5.58, -4.09, -3.26 eV are depicted together with the conduction band edge of TiO₂ (E = -3.94 eV) and the redox potential of the I^{-}/I_{2}^{-} redox couple (E = -5.24 eV), which is assumed to be responsible for dye regeneration in the I⁻/I₃⁻ system (Figure 10).^[5,91] ¹GS energies were derived from experimental Ru^{II}/Ru^{III} redox potentials, ¹MLCT state energies were estimated from lowest energy absorption maxima in solution (Table 2) and ³MLCT state energies from the room temperature emission maxima in solution.^[11,45,49,50] ¹MLCT state energies are higher in energy than the TiO₂ conduction band edge by $\Delta E = 0.30-0.68$ eV. Thus, injection of electrons into the TiO₂ conduction band is thermodynamically feasible from hot and thermally equilibrated ¹MLCT states for all tested dyes.^[39] Typically, electron injection occurs on the femto to picosecond timescale with high efficiency.^[39,40] In contrast, injection from thermally equilibrated ³MLCT states would be thermodynamically uphill for all dyes by $\Delta E = 0.13 - 0.34$ eV. Injection rates from vibrationally hot ³MLCT states depend on the vibrational state and the relaxation rate to the vibrational ground state. Vibrational cooling in complexes of type $[1](PF_6)_2 - [4](PF_6)_2$ occurs on the timescale of several picoseconds.^[41] The ¹GS energies of all dyes is lower than the I^{-}/I_{2}^{-} redox potential by $\Delta E = 0.34-0.76$ eV and therefore allows for the regeneration of oxidized dyes.

Figure 10. Energy levels of the ground state (¹GS) and excited states (¹MLCT and ³MLCT) of [1](PF₆)₂ – [6](PF₆)₂ and N719, the conduction band edge of TiO₂, and the I_2^-/I^- redox potential.

Dye loadings of $[1](PF_6)_2 - [6](PF_6)_2$ and N719 on TiO₂ were measured by the difference of absorption maxima of the dipping solution (CH₃CN/*t*BuOH, 1:1) before and after dipping of the TiO₂ electrodes. Whereas high dye loading was obtained for $[1](PF_6)_2 - [4](PF_6)_2$ and N719 (6–

 $11 \times 10^{-8} \text{ mol cm}^{-2}$), the dye loading for [5](PF₆)₂ $(1 \times 10^{-8} \text{ mol cm}^{-2})$ and $[6](PF_6)_2$ $(3 \times 10^{-8} \text{ mol cm}^{-2})$ remained low (Table 3). This can be explained by the nature of the anchor group, which are 2,2'-bpy anchors for $[5](PF_6)_2$ and $[6](PF_6)_2$ and carboxylic acids and carboxylate anchors for $[1](PF_6)_2 - [4](PF_6)_2$ and N719. So far, only para-substituted pyridine anchors have been used for binding to TiO₂ and, to the best of our knowledge, this is the first example of a 2,2'-bpy anchor.^[92,93] The low dye loadings with our 2,2'-bpy anchor might have two reasons: One reason could be that both pyridines in 2,2'-bpy hinder each other sterically in binding to TiO₂ due to the 2,2'-constitution, resulting in low dye loadings for [5](PF₆)₂ and $[6](PF_6)_2$. A carboxylic acid/carboxylate anchor might be able to bind to TiO₂ surface atoms that are not sufficiently accessible for a 2,2'-bpy anchor. The dye loading of [6]- $(PF_6)_2$ is higher than of $[5](PF_6)_2$, which is due to the more electron-rich bpy moiety in $[6](PF_6)_2$ in which bpy is bound to the nitrogen atom of the amide functionality. In contrast, bpy is bound to the carbonyl carbon atom of the amide functionality in complex $[5](PF_6)_2$. The more electron-rich bpy of $[6](PF_6)_2$ might form stronger interactions to the electrophilic surface Ti ions of TiO2. A second reason might be the larger area per molecule required for binding of $[5](PF_6)_2$ and $[6](PF_6)_2$ to the TiO₂ surface compared with $[1](PF_6)_2 - [4](PF_6)_2$ and N719, which is due to the canted orientation with respect to the surface. In addition, the 2,2'bpy anchor has more steric bulk than a carboxylic acid/ carboxylate anchor.

Table 3. Characteristics of the DSSCs with $[1](PF_6)_2 - [6](PF_6)_2$ and reference compound N719.

	Dye loading [mol cm ⁻²]	$U_{\rm oc}$ [V]	$I_{\rm sc}$ [mA cm ⁻²]	Fill factor [%]	η [%]	IPCE [%] (λ _{max} [nm])
$[1](PF_6)_2$	5.6×10^{-8}	0.41	0.50	63	0.13	2.2 (510)
$[2](PF_6)_2$	9.7×10^{-8}	0.49	0.75	70	0.26	3.6 (520)
$[3](PF_6)_2$	8.7×10^{-8}	0.45	0.74	67	0.22	3.3 (530)
$[4](PF_6)_2$	11.0×10^{-8}	0.49	0.48	62	0.15	2.2 (500)
$[5](PF_6)_2$	$1.0 imes 10^{-8}$	0.44	0.24	61	0.06	0.5 (510)
[6](PF ₆) ₂	2.6×10^{-8}	0.46	0.59	61	0.18	3.0 (500)
N719	$6.4 imes 10^{-8}$	0.76	9.30	71	5.03	51.6 (520)

IPCE were measured (Figure 7, b, Table 3) and these nicely follow the absorption spectrum of the respective dipping solution (Figure S13). The maximum IPCE of 3.7% was obtained for the cell with [2](PF₆)₂ at $\lambda \approx 520$ nm. For the cell with $[3](PF_6)_2$, the maximum IPCE (3.3%) is redshifted to $\lambda \approx 530$ nm, whereas for the cell with [1]- $(PF_6)_2$ it is blueshifted to $\lambda \approx 510$ nm. This is consistent with the tendency for λ_{max} in the solution absorption mentioned above: $[3](PF_6)_2 > [2](PF_6)_2 > [1](PF_6)_2$. The cell with $[2](PF_6)_2$ features higher IPCE and efficiency than the cell with $[1](PF_6)_2$ and $[3](PF_6)_2$. This can be ascribed to the higher dye loading (Table 3) in the case of $[2](PF_6)_2$ and the less intimate contact to TiO_2 in the case of $[1](PF_6)_2$ due to the presence of only one carboxylic acid anchor group.^[94] The IPCE maxima of cells with $[4](PF_6)_2$ (2.2%), $[5](PF_6)_2$ (0.6%), and [6](PF₆)₂ (3.0%) are at $\lambda \approx 500-510$ nm, which is consistent with the respective absorption maxima in solu-

tion (Table 2). The reference cell with N719 features a maximum IPCE of 51.6% at $\lambda \approx 520$ nm. The maximum IPCE of the cell with [5](PF₆)₂ remains low (0.5% at 510 nm) due to the low dye loading (Table 3) and the poor electronic directionality of complex [5](PF₆)₂, as already discussed (Figure S6).

Current-voltage curves of DSSCs with [1](PF₆)₂ - $[6](PF_6)_2$ are depicted in Figure 11 and data are listed in Table 3. Open circuit voltages of cells with $[1](PF_6)_2$ – $[6](PF_6)_2$ reach values of $U_{oc} = 0.41-0.49$ V compared with $U_{\rm oc} = 0.76$ V for the cell with N719. Short circuit currents are low for cells with $[1](PF_6)_2 - [6](PF_6)_2$ ($I_{sc} = 0.2$ - $0.8 \; mA \; cm^{-2})$ whereas the cell with N719 features a much higher value ($I_{sc} = 9.3 \text{ mA cm}^{-2}$). Fill factors amount to 61– 71% for all cells, with the highest fill factor belonging to the one with N719. At the maximum power point, the cell with N719 has an efficiency of $\eta = 5.03\%$. Nazeeruddin, Angelis et al. have reported a maximum efficiency of 11.2% for the N719 dye, which is attributed to the optimized cell building procedure, including the addition of tetra-n-butylammonium chenodeoxycholic acid salt to the dipping solution.^[12] Efficiencies of cells with $[1](PF_6)_2 - [6](PF_6)_2$ are much lower ($\eta = 0.06-0.26\%$) than for the cell with N719 under the same conditions ($\eta = 5.03\%$), which is primarily due to the poor short circuit current in these cells. The low efficiency of the cell with $[5](PF_6)_2$ can further be attributed to the low dye loading (Table 3) as well as to the poor electronic directionality (Figure S6).

Figure 11. Current-voltage characteristics of DSSCs containing complexes $[1](PF_6)_2 - [6](PF_6)_2$.

A reverse bias was applied to all cells to measure the dark currents. Recombination was shown to be negligible at the TiO₂-dye interface when the I_3 -/I⁻ redox couple was used because regeneration of the oxidized dye is significantly faster than back electron transfer from TiO₂ to the oxidized dye.^[95,96] Instead, efficient recombination is supposed to occur at the TiO₂-electrolyte interface.^[95] The recombination efficiency depends on the excitation intensity, the electrolyte composition, and the presence of dyes and additives.^[96,97] Figure 12 shows that for the cell with N719 a significantly higher voltage is necessary to produce the same amount of dark current compared with cells contain-

ing complexes $[1](PF_6)_2 - [6](PF_6)_2$. This can be explained by the twofold positive charge of the complex cations of $[1](PF_6)_2 - [6](PF_6)_2$ as compared to the twofold negative charge of N719 (Figure 1). Electrostatic interactions between the cationic complexes and I₃⁻ favor a higher concentration of I_3^- near the TiO₂ surface than in the bulk solution, which leads to an enhanced recombination rate.^[95,98] In contrast, the negative charge of N719 effectively repels I_3^- ions from the TiO₂ surface. Consequently, it is not surprising that all top-performing dyes are neutral or even negatively charged.^[6–9] Among the cells with $[1](PF_6)_2$ – $[6](PF_6)_2$, the cell with $[4](PF_6)_2$ shows the smallest dark current (Figure 12). This is possibly due to the high dye loading of [4](PF₆)₂, which acts as a blocking layer and reduces recombination at the TiO2-electrolyte interface (Table 3).^[96] Indeed, the dye loading order of $[1](PF_6)_2$ – $[4](PF_6)_2$ is the inverse of the amount of dark current (Table 3, Figure 12). Regarding the low dye loading of $[5](PF_6)_2$ and $[6](PF_6)_2$, one would expect a high dark current for cells with these dyes. However, the amount of dark current of cells with $[5](PF_6)_2$ and $[6](PF_6)_2$ is moderate and can be compared to the cell with $[2](PF_6)_2$.

Figure 12. Dark current characteristics of DSSCs with complexes $[1](PF_6)_2-[6](PF_6)_2$ and N719.

Two reasons might be responsible for this effect: (1) Dyes can also protonate (or deprotonate) the TiO₂ surface, shifting the conduction band edge of TiO₂ to lower (or higher) energy, which influences recombination rates.^[95,96,99] Protonation of TiO₂ by protons from N719 was found to increase the dark current, which might be due to the enhanced concentration of I₃⁻ near the surface.^[95,96] [1]-(PF₆)₂ – [4](PF₆)₂ are even more acidic than N719 [N719: $pK_{a1} = 3.5$, $pK_{a2} = 4.2$; [4](PF₆)₂: $pK_{a} = 2.7$; [1](PF₆)₂: $pK_{a} = 2.3$]^[45,100] and therefore protonate the TiO₂ surface, which lowers the energy of the conduction band. [5](PF₆)₂ and [6](PF₆)₂ cannot protonate the TiO₂ surface, which might lower the dark current in cells with these complexes. (2) The steric effect of [5](PF₆)₂ and [6](PF₆)₂ might suppress the dark current due to their steric bulk, as discussed above.

Electron recombination lifetimes τ of cells with [1]-(PF₆)₂ – [6](PF₆)₂ and N719 were determined experimentally by intensity-modulated photovoltage spectroscopy and the results corroborate the rationals derived from the dark

current measurements (Figure 13).[101,102] Cells with $[1](PF_6)_2 - [6](PF_6)_2$ feature significantly smaller recombination lifetimes than the cell with N719. Because low recombination lifetimes result in charge carrier losses and, hence, in smaller short-circuit photocurrents,^[4] the observed recombination dynamics explains the poor performance of cells with complexes $[1](PF_6)_2 - [6](PF_6)_2$ compared with the cell with N719 (Table 3). The cell with $[4](PF_6)_2$ features the smallest recombination rate constant among our bis(tridentate) complexes, followed by the cell with $[2](PF_6)_2$ (Figure 12 and Figure 13). This might again be due to the high dye loading of $[4](PF_6)_2$ [and $[2](PF_6)_2$] as discussed above (Table 3).^[96] The lower dye loadings of $[1](PF_6)_2$, $[3](PF_6)_2$, $[5](PF_6)_2$, and $[6](PF_6)_2$ cannot effectively protect the TiO₂ surface from I_3^- and might be responsible for the high recombination rates. Successful strategies to suppress recombination are manifold and include the use of additional oxidic blocking layers, TiO2 underlayers, coadsorbents, and sterically demanding dyes as surface protection.[96,103,104]

Figure 13. Electron recombination lifetimes τ vs. the open-circuit voltage U_{OC} of DSSCs with complexes [1](PF₆)₂ – [6](PF₆)₂ and N719.

Conclusions

Push-pull substituted heteroleptic bis(tridentate) ruthenium(II) polypyridine chromophores $[1](PF_6)_2 - [3](PF_6)_2$ (Figure 1) have been synthesized and fully characterized by ESI and HR-ESI mass spectrometry, infrared, ¹H, ¹³C and ¹⁵N NMR 1D and 2D spectroscopy, elemental analysis, electrochemistry, UV/Vis absorption and emission spectroscopy. The pronounced donor-acceptor substitution induces a small HOMO-LUMO gap, which shifts the absorption to lower energy (up to $\lambda_{max} = 544$ nm and extending to 720 nm). The push-pull character is introduced by a tpy acceptor ligand featuring one or three carboxylic acid functionalities as electron-withdrawing components and a tpy/ ddpd donor ligand featuring two or three amino functionalities as electron-donating components. DFT calculations show spatially separated and orthogonal frontier orbitals with a high electronic directionality. Irradiation experiments reveal a high photostability for our bis(tridentate) complexes under conditions where N719 and tris(bidentate) $[Ru(bpy)_3](PF_6)_2$ undergo photodecomposition. Oxidation experiments revealed a superior stability of bis(tridentate) complexes as compared with N719. Complexes $[1](PF_6)_2$ – $[6](PF_6)_2$ (Figure 1) were tested as photosensitizers for TiO₂ in dye-sensitized solar cells with an I⁻/I₃⁻ redox electrolyte. For the first time, 2,2'-bipyridine groups were used as anchors to TiO₂ {[5](PF₆)₂ and [6](PF₆)₂}. Power conversion efficiencies up to $\eta = 0.26\%$ under full AM 1.5 were obtained compared to $\eta = 5.0\%$ for the standard sensitizer N719 under our conditions. The twofold positive charge of our complexes contrasts with the twofold negative charge of N719. Consequently, the concentration of I_3^- near the TiO₂ electrode is increased and favors electron recombination. High dark currents and high recombination rates were measured for DSSCs with complexes $[1](PF_6)_2 - [6](PF_6)_2$, which rationalize the low cell performances.

Future perspectives are the use of negatively charged, cyclometalated, tridentate ligands, alkylated ligands, or triarylamine substituted ligands derived from tpy and ddpd, which can be used to redshift and broaden the absorption spectrum, to increase the push-pull characteristics and to decrease the overall positive charge of our complexes while retaining the excellent photo- and redox-stability.

Experimental Section

General Procedures: Diethyl ether was distilled from sodium, and acetonitrile from CaH2 under an argon atmosphere. All reagents were used without further treatment from commercial suppliers (Acros and Sigma-Aldrich). Microwave heating was performed with a Discover Benchmate Plus (CEM Synthesis) single-mode microwave cavity, producing continuous irradiation at 2.455 GHz with 100 W (maximum power). NMR spectra were recorded with a Bruker Avance DRX 400 spectrometer at 400.31 MHz (1H), 100.66 MHz (${}^{13}C{}^{1}H$), and 40.56 MHz (${}^{15}N$). All resonances are reported in ppm vs. the solvent signal as an internal standard [CH₃CN (¹H, δ = 1.94 ppm; ¹³C, δ = 1.24 ppm)] or vs. external CH₃NO₂ [90% in CDCl₃, δ = 380.23 ppm vs. NH₃(l)] and referenced to NH₃ (¹⁵N, $\delta = 0$ ppm). Figure 1 shows the atom numbering for NMR signal assignment. IR spectra were recorded with a BioRad Excalibur FTS 3100 spectrometer as CsI disks. Electrochemical experiments were carried out with a Bio Logic SP-50 voltammetric analyzer using platinum wires as counter- and workingelectrodes and 0.01 M Ag/AgNO3 as reference electrode. The measurements were performed with a scan rate of 50–333 mV s⁻¹ for cyclic voltammetry experiments and 100-200 mV s⁻¹ for squarewave voltammetry experiments using $0.1 \text{ M} [n\text{Bu}_4\text{N}](\text{PF}_6)$ as the supporting electrolyte and a 10^{-3} M solution of the sample in anhydrous and degassed CH₃CN. Potentials are referenced to the ferrocene/ferrocenium couple ($E_{1/2} = 86 \pm 5 \text{ mV}$ under our experimental conditions). UV/Vis/near-IR spectra were recorded with a Varian Cary 5000 or a Jasco V-670 spectrometer using 1.0 cm cells (Hellma, Suprasil). Emission spectra were recorded with a Varian Cary Eclipse spectrometer. Quantum yields were determined by comparing the areas under the emission spectra on an energy scale (cm⁻¹) recorded for optically matched solutions of the sample and the reference $[Ru(bpy)_3]Cl_2$ ($\Phi = 9.4\%$ in deaerated CH₃CN).^[105] ESI mass spectra were recorded with a Micromass Q-TOF-Ultima spectrometer. Elemental analyses were performed by the microana-

lytical laboratory of the chemical institutes of the University of Mainz.

Photostability: Photostability measurements were conducted at room temperature under an Ar atmosphere in 0.1 M [nBu₄N]I in CH₃CN/H₂O (98:2, v/v) at λ_{exc} = 400 and 500 nm, respectively. The concentrations of the solutions were adjusted to ensure the same absorption at the corresponding excitation wavelength. The concentrations of $[1^{Et}](PF_6)_2$, $[4^{Et}](PF_6)_2$, N719, and $[Ru(bpy)_3](PF_6)_2$ for the irradiation at λ_{exc} = 400 nm were 3.94 × 10⁻⁵, 1.97 × 10⁻⁵, 0.82×10^{-5} , and 0.96×10^{-5} M and for the irradiation at $\lambda_{\rm exc}$ = 500 nm 3.83×10^{-6} , 1.02×10^{-6} , 2.23×10^{-6} , and 9.89×10^{-6} M, respectively. As light sources, a Bivar LED (108A-713-5059, 400 nm) and a Sloan LED (L5-BG1G, 500 nm) were used in combination with a 40 W supply. Photodecomposition products of $[Ru(bpy)_3](PF_6)_2$ were found when $[Ru(bpy)_3](PF_6)_2$ (9.4 mg, 0.011 mmol, 1.0 equiv.) and [nBu₄N]I (9.0 mg, 0.024 mmol, 2.2 equiv.) were dissolved in $CD_3CN\ (1.0\ mL)$ and irradiated for 5 d at λ_{exc} = 400 nm. Before and after irradiation, NMR spectra were measured and their analysis revealed the formation of noncoordinated 2,2'-bipyridine during the irradiation. ESI+ mass spectra were measured with the same solution. Photodecomposition products of N719 were found when N719 (3.9 mg, 0.0033 mmol, 1.0 equiv.) and [nBu₄N]I (5.5 mg, 0.015 mmol, 4.5 equiv.) were dissolved in CD₃CN/H₂O (14:1, 0.75 mL) and irradiated for 4 d at λ_{exc} = 400 nm. Before and after irradiation, NMR spectra were measured and reveal the formation of a new complex, in which presumably both NCS- ligands are substituted by I- or H₂O. No signals with ruthenium isotope pattern could be found in FD, ESI⁺, or ESI⁻ mass spectra.

Redox Stability: The chemical stabilities of electrochemically oxidized complexes were measured at room temperature in a 10^{-3} M NaOH and 0.1 M [*n*Bu₄N](PF₆) in CH₃CN/H₂O (98:2, v/v) with ruthenium complex concentrations of 2×10^{-4} M. The optical pathlength of the OTTLE cell was 1 mm. A platinum mesh was used as working electrode, a platinum wire as counter electrode, and 0.01 M Ag/AgNO₃ as reference electrode. Electrical potentials were applied for at least 2 min before UV/Vis spectra were recorded.

DFT Calculations: Calculations were performed by using the Gaussian09/DFT^[106]series of programs. The B3LYP formulation of DFT was used, employing the LANL2DZ basis set.^[106] No symmetry constraints were imposed on the molecules. The presence of energy minima was checked by analytical frequency calculations. The integral-equation-formalism polarizable continuum model (IEFPCM in CH₃CN) was employed for solvent modeling. In TD-DFT calculations, at least 50 singlet transitions ($n \ge 50$) were calculated. All calculations were performed without explicit counterions and solvent molecules.

Materials and Fabrication of Dye-Sensitized Solar Cells: A TiO₂ blocking layer was prepared by spin coating a 2 wt.-% solution of bis(ethyl acetoacetato)-diisopropoxide titanium(IV) in *n*-butanol onto a FTO glass (TEC 8, Pilkington) followed by sintering at 500 °C for 15 min. The nanostructured TiO₂ layer was fabricated by doctor blading commercial TiO₂ paste (18NR-T, Dyesol) onto the TiO₂ layered FTO substrate followed by sintering at 500 °C for 15 min. The TiO₂ particle size was around 20 nm and the TiO₂ layer thickness was 7 µm as measured by a surface profiler (alphastep IQ, Tencor). The TiO₂ electrodes were dipped into 0.3 mM solutions of ruthenium complexes in acetonitrile/*tert*-butyl alcohol (1:1) for 18 h at 25 °C, washed with acetonitrile and dried with an air stream. Dye loadings on TiO₂ were determined by the absorption difference of the dipping solution before and after dipping of a TiO₂ layer with a defined area of 2.6 cm². The N719 dye, bis-

(tetra-*n*-butylammonium)-*cis*-di(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(II), (Solaronix) was used as reference. For cell measurements, an active TiO₂ area of 0.25 cm² was used. Pt counter electrodes were fabricated by thermal decomposition of 0.01 M H₂PtCl₆ (Sigma–Aldrich) in isopropanol (Sigma– Aldich) and were spun onto FTO substrates followed by sintering at 500 °C for 15 min. Two small holes were made in the Pt counter electrodes with a drill. A Surlyn film (25 µm, Solaronix) was sandwiched between the TiO₂ and the Pt electrode. The electrolyte was filled into the cell through one of the two holes and sealed with a Surlyn film and a cover glass. The electrolyte is a mixture of 1methyl-3-propylimidazolium iodide (0.6 M) and iodine (0.05 M) in acetonitrile.

Characterization: The current-voltage curves of the cells were measured with a Keighley Model 2400 source meter and a solar simulator with a 300 W xenon arc-lamp (Newport) under 1 sun illumination (AM 1.5, 100 mW cm⁻²). The light intensity was calibrated by a silicon solar cell (PV measurements, Inc.) A shading mask was placed on the residual area of the front side FTO substrate except for the 0.25 cm² TiO₂ active area to prevent overestimation of the power conversion efficiency. Electron recombination lifetimes were characterized by intensity-modulated photovoltage spectroscopy using IM6 (Zahner) under an open circuit condition. A white lightemitting diode (LED, $\lambda_{emiss} = 603$ nm, $\Delta \lambda = 105$ nm) was used as the modulated light source to ensure a homogeneous distribution of the illumination of the TiO₂ photoanodes. The applied light intensities ranged from 250 to 7 W m⁻².

Syntheses: The syntheses of $[4](PF_6)_2 - [6](PF_6)_2$ have been reported previously.^[45,49,50,62]

[Ru(ddpd)(HOOC-tpy)](PF₆)₂ ([1](PF₆)₂): [Ru(ddpd)(EtOOCtpy)](PF₆)₂^[55] (119.6 mg, 0.121 mmol, 1.0 equiv.) was dissolved in CH₃CN (20 mL) and a mixture of conc. H₂SO₄ (20 mL) and water (50 mL) was added. The solution was heated to reflux (15 h). After cooling to room temperature, the mixture was neutralized with saturated NaOH solution and the solvent was removed under reduced pressure. CH₃CN (100 mL) was added, the suspension was ultrasonicated (1 min), filtered, and washed with CH₃CN (75 mL). The solvent was removed under reduced pressure and the precipitate was dissolved in water (10 mL). The pH was adjusted to 1.0 with conc. H₂SO₄. The addition of an acidic aqueous solution of [NH₄](PF₆) (127.8 mg, 0.785 mmol, 6.5 equiv; 5 mL water; the pH was adjusted to 1.0 with conc. H₂SO₄) led to precipitation of a dark-purple solid, which was filtered and washed with cold water (ca. 10 mL). The solid was dissolved in CH₃CN (1 mL) and precipitated by the addition of Et₂O (10 mL). After filtration, washing with Et₂O (10 mL), and drying under reduced pressure a dark-purple solid was obtained, yield 88.3 mg (0.092 mmol, 76%). ¹H NMR $(CD_3CN, 300 \text{ K}): \delta = 8.99 \text{ (s, 2 H, H-2)}, 8.56 \text{ (m, 2 H, H-5)}, 8.27$ (t, ${}^{3}J_{H,H} = 8.2 \text{ Hz}$, 1 H, H-16), 8.11 (m, 2 H, H-8), 8.01 (m, 2 H, H-6), 7.61 (m, 2 H, H-11), 7.56 (d, ${}^{3}J_{H,H} = 8.2$ Hz, 2 H, H-15), 7.47 (m, 2 H, H-7), 7.17 (m, 2 H, H-12), 6.58 (m, 2 H, H-10), 6.44 (m, 2 H, H-9), 3.47 (s, 6 H, CH₃N) ppm, no resonance for OH was observed. ¹³C{¹H} NMR (CD₃CN, 300 K): $\delta = 165.7$ (s, C=O), 159.8 (s, C-13), 159.5 (s, C-3), 158.7 (s, C-4), 157.2 (s, C-14), 155.1 (s, C-8), 149.4 (s, C-9), 141.7 (s, C-16), 140.1 (s, C-11), 139.1 (s, C-6), 137.1 (s, C-1), 127.9 (s, C-7), 125.7 (s, C-5), 124.1 (s, C-2), 121.4 (s, C-10), 116.3 (s, C-12), 113.5 (s, C-15), 41.8 (s, CH₃N) ppm. ¹H-¹⁵N HMBC (CD₃CN, 300 K): δ = 293.6 (N^e), 238.3 (N^d), 218.4 (N^c), 212.1 (N^a), 92.1 (N^b) ppm. MS (ESI⁺): m/z (%) = 335.1 (27) $[M - 2 PF_6]^{2+}$, 625.1 (7) $[M - H - CO_2 - PF_6]^+$, 815.1 (100) $[M - H - CO_2 - PF_6]^+$ PF_6]⁺. HRMS (ESI⁺): m/z calcd. for $C_{33}H_{28}F_6N_8O_2P^{96}Ru^+$ 809.1053; found 809.1056. IR (CsI): v = 3443 (br., m, OH), 3088

Eur. J. Inorg. Chem. 2014, 2720-2734

(w, CH), 2926 (w, CH), 1728 (m, C=O), 1601 (s, C=N), 1582 (m, C=N), 1489 (m, C=N), 1450 (s), 1364 (m), 1341 (m), 1279 (m), 1234 (m), 1138 (m), 1097 (m), 1043 (w), 1022 (w), 949 (w), 839 (vs, PF), 798 (m), 777 (m), 752 (m), 559 (s), 527 (w) cm⁻¹. UV/Vis (CH₃CN): λ_{abs} (ε , M⁻¹ cm⁻¹) = 517 (8110), 319 (31200), 279 (37600), 221 (37500) nm. Emission (CH₃CN, 295 K, λ_{exc} = 517 nm): λ_{emiss} = 732 nm. Φ (CH₃CN, λ_{exc} = 468 nm, 295 K): 0.068%. CV (CH₃CN): $E_{1/2}$ = +0.81 (le, rev.), -1.50 (le, irrev.) V vs. Fc/Fc⁺. C₃₃H₂₈F₁₂N₈O₂P₂Ru·0.8H₂O·0.3Et₂O: calcd. C 41.23, H 3.30, N 11.25; found C 40.94, H 2.99, N 10.87.

[Ru(ddpd){(HOOC)₃-tpy}](PF₆)₂ ([2](PF₆)₂): [Ru(ddpd){(MeOOC)₃tpy}](PF₆)₂^[41] (114.7 mg, 0.1053 mmol, 1.0 equiv.) was dissolved in $CH_3CN\ (4\ mL)$ and a mixture of conc. $H_2SO_4\ (4\ mL)$ and water (10 mL) was added. The solution was heated to reflux (20 h). After cooling to room temperature, CH3CN was removed under reduced pressure. The pH was adjusted to 1.0 with saturated aqueous NaOH solution. The addition of an acidic aqueous solution of [NH₄](PF₆) (646.0 mg, 3.963 mmol, 37.6 equiv; 10 mL water; the pH was adjusted to 1.0 with conc. H₂SO₄) led to the precipitation of a dark-purple solid, which was filtered and washed with an acidic aqueous solution of [NH₄](PF₆) (20.0 mg, 0.123 mmol, 1.2 equiv; 20 mL water; the pH was adjusted to 1.0 with conc. H₂SO₄). The solid was dried under reduced pressure to give a dark-purple powder, yield 55.5 mg (0.053 mmol, 50%). ¹H NMR (CD₃CN, 300 K): δ = 9.15 (s, 2 H, H-2), 8.97 (m, 2 H, H-5), 8.29 (t, ${}^{3}J_{H,H}$ = 8.2 Hz, 1 H, H-16), 8.26 (m, 2 H, H-8), 7.89 (m, 2 H, H-7), 7.61 (m, 2 H, H-11), 7.58 (d, ${}^{3}J_{H,H} = 8.2$ Hz, 2 H, H-15), 7.18 (m, 2 H, H-12), 6.56 (m, 2 H, H-10), 6.36 (m, 2 H, H-9), 3.47 (s, 6 H, CH₃N) ppm, no resonance for OH was observed. ${}^{13}C{}^{1}H$ NMR $(CD_3CN, 300 \text{ K}): \delta = 165.1 \text{ (s, } C=O^{\text{center}}), 164.7 \text{ (s, } C=O^{\text{outer}}), 159.7$ (s, C-3), 159.6 (s, C-13), 159.2 (s, C-4), 157.1 (s, C-14), 155.8 (s, C-8), 149.2 (s, C-9), 142.1 (s, C-16), 140.4 (s, C-11), 140.1 (s, C-6), 136.6 (s, C-1), 127.1 (s, C-7), 125.0 (s, C-2), 124.9 (s, C-5), 121.6 (s, C-10), 116.6 (s, C-12), 113.7 (s, C-15), 41.7 (s, CH₃N) ppm. ¹H-¹⁵N HMBC (CD₃CN, 300 K): δ = 293.9 (N^e), 249.5 (N^d), 216.3 (N^c), 209.0 (N^a) ppm, N^b was not observed. MS (ESI⁺): m/z (%) = 379.1 (100) $[M - 2 \text{ PF}_6]^{2+}$, 903.1 (80) $[M - \text{PF}_6]^+$. HRMS (ESI⁺): m/zcalcd. for $C_{35}H_{28}F_6N_8O_6P^{96}Ru^+$ 897.0850; found 897.0836. IR (CsI): $\tilde{v} = 3440$ (br., m, OH), 3105 (w, CH), 2928 (w, CH), 2855 (w, CH), 1726 (m, C=O), 1605 (m, C=N), 1543 (w, C=N), 1489 (w, C=N), 1450 (m), 1404 (m), 1360 (vs), 1234 (s), 1138 (m), 1115 (m), 1099 (s), 843 (vs, PF), 800 (w), 777 (m), 752 (w), 679 (w), 615 (w), 559 (w) cm⁻¹. UV/Vis (CH₃CN): λ_{abs} (ϵ , m⁻¹cm⁻¹) = 537 (6600), 473 (5820), 340 (34400), 291 (37100), 211 (55300) nm. Emission (CH₃CN, 295 K, $\lambda_{\text{exc}} = 537$ nm): $\lambda_{\text{emiss}} = 743$ nm. Φ (CH₃CN, λ_{exc} = 467.5 nm, 295 K): 0.59%. CV (CH₃CN): $E_{1/2}$ = +0.87 (le, rev.), -1.37 (1e, irrev.) V vs. Fc/Fc⁺. C₃₅H₂₈F₁₂N₈O₆P₂Ru·0.3H₂O: calcd. C 39.92, H 2.74, N 10.64; found C 40.51, H 3.36, N 10.36.

[Ru(ddpd-NH₂){(HOOC)₃-tpy}](PF₆)₂ ([3](PF₆)₂): {(MeOOC)₃-tpy}RuCl₃^[13,69–71] (222.3 mg, 0.3616 mmol, 1.00 equiv.) and ddpd-4'-phthalimide^[41] (162.7 mg, 0.3728 mmol, 1.03 equiv.) were suspended in methanol (20 mL), ultrasonicated (1 min), and *N*-ethylmorpholine (0.40 mL, 3.2 mmol, 8.7 equiv.) was added. The darkgreen to brown mixture was heated to reflux in a laboratory microwave oven for 45 min (75 °C). After cooling to room temperature, the mixture was filtered through Celite (1.5 cm; Ø 3.0 cm) and rinsed with methanol. The solvent was removed under reduced pressure and the residue was dissolved in conc. HCl/H₂O (2:1, 150 mL) and heated to reflux (15 h). After cooling to room temperature, the pH was carefully adjusted to 0.9 with saturated NaOH solution. The addition of an acidic aqueous solution of [NH₄](PF₆) (1.0 g, 6.1 mmol, 17 equiv., 100 mL H₂O, adjusted to pH 0.9 with conc. H₂SO₄) led to the precipitation of a dark-purple solid, which was filtered and washed with an acidic aqueous solution of [NH₄](PF₆) (100 mg, 0.613 mmol, 1.7 equiv., 100 mL H₂O, adjusted to pH 0.9 with conc. H₂SO₄). The solid was dried under reduced pressure to give a dark-purple powder, yield 95.1 mg (0.0895 mmol, 25%). ¹H NMR (CD₃CN, 300 K): δ = 9.12 (s, 2 H, H-2), 8.94 (m, 2 H, H-5), 8.30 (m, 2 H, H-8), 7.89 (m, 2 H, H-7), 7.58 (m, 2 H, H-11), 7.12 (m, 2 H, H-12), 6.81 (s, 2 H, H-15), 6.52 (m, 2 H, H-10), 6.29 (m, 2 H, H-9), 5.75 (br. s, 2 H, NH₂), 3.36 (s, 6 H, CH₃N) ppm, no resonance for OH was observed. $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (CD₃CN, 300 K): $\delta = 165.3$ (s, C=O^{center}), 164.8 (s, C=Oouter), 160.0 (s, C-13), 159.8 (s, C-4), 159.5 (s, C-3), 159.3 (s, C-16), 156.7 (s, C-14), 155.7 (s, C-8), 149.2 (s, C-9), 140.3 (s, C-11), 139.7 (s, C-6), 135.5 (s, C-1), 127.0 (s, C-7), 124.9 (s, C-2), 124.7 (s, C-5), 121.2 (s, C-10), 116.5 (s, C-12), 98.8 (s, C-15), 41.3 (s, CH₃N) ppm. ¹H-¹⁵N HMBC (CD₃CN, 300 K): δ = 296.9 (N^e), 249.9 (N^d), 210.0 (N^a), 181.6 (N^c), 72.2 (NH₂) ppm, N^b was not observed. MS (ESI⁺): m/z (%) = 386.6 (38) $[M - 2 \text{ PF}_6]^{2+}$, 918.1 (100) [M - PF₆]⁺. HRMS (ESI⁺): m/z calcd. for $C_{35}H_{29}F_6N_9O_6P^{96}Ru^+$ 912.0959; found 912.0914. IR (CsI): $\tilde{v} =$ 3443 (br., s, OH), 3098 (w, CH), 2959 (w, CH), 2926 (w, CH), 2855 (w, CH), 1713 (m, C=O), 1605 (vs, NH, C=N), 1539 (m, C=N), 1462 (s), 1437 (m), 1404 (s), 1360 (vs), 1234 (m), 1167 (m), 1117 (m), 1097 (vs), 968 (w), 841 (vs, PF), 781 (m), 756 (m), 727 (w), 696 (w), 683 (w), 667 (w), 648 (w), 613 (s), 561 (s), 530 (w), 505 (w), 482 (w), 451 (w), 347 (w) cm⁻¹. UV/Vis (CH₃CN): λ_{abs} (ϵ , $M^{-1}cm^{-1}$ = 544 (6690), 480 (5090), 340 (30400), 292 (34400), 217 (59900) nm. Emission (CH₃CN, 295 K, λ_{exc} = 544 nm): λ_{emiss} = 771 nm. Φ (CH₃CN, λ_{exc} = 509 nm, 295 K): 0.067%. CV (CH₃CN): $E_{1/2}$ = +0.71 (1e, rev.), -1.53 (1e, irrev.) V vs. Fc/Fc⁺. C35H29F12N9O6P2Ru·3CH3OH: calcd. C 39.39, H 3.57, N 10.88; found C 39.96, H 3.67, N 11.22.

Supporting Information (see footnote on the first page of this article): Tabulated ¹H, ¹³C and ¹⁵N NMR chemical shifts in CD₃CN; cyclic and square-wave voltammograms of [1](PF₆)₂ – [3](PF₆)₂; spin densities of [1]⁺ – [6]⁺ and reduced N719; frontier molecular orbitals of [1]²⁺ – [6]²⁺ and N719. ¹H NMR spectra of [Ru(bpy)₃]-(PF₆)₂/[*n*Bu₄N]I before and after irradiation. ESI mass spectrum of [Ru(bpy)₃](PF₆)₂/[*n*Bu₄N]I before and after irradiation. UV/Vis spectra of the electrochemical oxidation and back reduction of [1](PF₆)₂; [Ru(bpy)₃](PF₆)₂ and N719 in the presence of NaOH; IPCE plots of cells with [1](PF₆)₂ – [6](PF₆)₂ and N719; DFT (B3LYP/LANL2DZ, IEFPCM, CH₃CN) optimized geometries of [1]²⁺ – [6]²⁺ and N719 (singlet) and [1]³⁺ – [6]²⁺ and N719 (singlet).

Acknowledgments

This work was supported by the International Research Training Group (IRTG 1404): Self Organized Materials for Optoelectronics supported by the Deutsche Forschungsgemeinschaft (DFG).

- [1] B. O'Regan, M. Grätzel, Nature 1991, 353, 737-740.
- [2] A. Hagfeld, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, *Chem. Rev.* 2010, 110, 6595–6663.
- [3] A. Reynal, E. Palomares, Eur. J. Inorg. Chem. 2011, 29, 4509– 4526.
- [4] J.-F. Yin, M. Velayudham, D. Bhattacharya, H.-C. Lin, K.-L. Lu, Coord. Chem. Rev. 2012, 256, 3008–3035.
- [5] P. G. Bomben, K. C. D. Robson, B. D. Koivisto, C. P. Berlinguette, *Coord. Chem. Rev.* 2012, 256, 1438–1450.

- [6] C. A. Bignozzi, R. Argazzi, R. Boaretto, E. Busatto, S. Carli, F. Ronconi, S. Caramori, *Coord. Chem. Rev.* 2013, 257, 1472– 1492.
- [7] B. Bozic-Weber, E. C. Constable, C. E. Housecroft, *Coord. Chem. Rev.* 2013, 257, 3089–3106.
- [8] T. Chen, L. Qiu, Z. Yang, H. Peng, Chem. Soc. Rev. 2013, 42, 5031–5041.
- [9] A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, M. Grätzel, *Science* 2011, *334*, 629–634.
- [10] S. Campagna, F. Puntoriero, F. Nastasi, G. Bergamini, V. Balzani, *Top. Curr. Chem.* 2007, 280, 117–214.
- [11] M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C.-H. Fischer, M. Grätzel, *Inorg. Chem.* **1999**, *38*, 6298–6305.
- [12] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Grätzel, J. Am. Chem. Soc. 2005, 127, 16835–16847.
- [13] M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphrey-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, J. Am. Chem. Soc. 2001, 123, 1613–1624.
- [14] T. P. Brewster, W. Ding, N. D. Schley, N. Hazari, V. S. Batista, R. H. Crabtree, *Inorg. Chem.* 2011, 50, 11938–11946.
- [15] S. Betanzos-Lara, L. Salassa, A. Habtemariam, O. Novakova, A. M. Pizarro, G. J. Clarkson, B. Liskova, V. Brabec, P. J. Sadler, *Organometallics* **2012**, *31*, 3466–3479.
- [16] S. Kämper, A. Paretzki, J. Fiedler, S. Záliš, W. Kaim, *Inorg. Chem.* 2012, 51, 2097–2104.
- [17] G. Xue, Y. Guo, T. Yu, J. Guan, X. Yu, J. Zhang, J. Liu, Z. Zou, Int. J. Electrochem. Sci. 2012, 7, 1496–1511.
- [18] A. Bahreman, B. Limburg, M. A. Siegler, E. Bouwman, S. Bonnet, *Inorg. Chem.* 2013, 52, 9456–9469.
- [19] P. T. Nguyen, B. X. T. Lam, A. R. Andersen, P. E. Hansen, T. Lund, *Eur. J. Inorg. Chem.* 2011, 2533–2539.
- [20] C. Dragonetti, A. Valore, A. Colombo, D. Roberto, V. Trifiletti, N. Manfredi, M. M. Salamone, R. Ruffo, A. Abbotto, J. Organomet. Chem. 2012, 714, 88–93.
- [21] M. M. R. Choudhuri, R. J. Crutchley, Inorg. Chem. 2013, 52, 14404–14410.
- [22] C.-H. Siu, C.-L. Ho, J. He, T. Chen, X. Cui, J. Zhao, W.-Y. Wong, J. Organomet. Chem. 2013, 748, 75–83.
- [23] T. Bessho, E. Yoneda, J.-H. Yum, M. Guglielmi, I. Tavernelli, H. Imai, U. Rothlisberger, M. K. Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. 2009, 131, 5930–5934.
- [24] K.-L. Wu, H.-C. Hsu, K. Chen, Y. Chi, M.-W. Chung, W.-H. Liu, P.-T. Chou, *Chem. Commun.* 2010, 46, 5124–5126.
- [25] C. E. Welby, C. R. Rice, P. I. P. Elliott, Angew. Chem. Int. Ed. 2013, 52, 10826–10829; Angew. Chem. 2013, 125, 11026–11029.
- [26] K. Garg, J. T. Engle, C. J. Ziegler, J. J. Rack, *Chem. Eur. J.* 2013, 19, 11686–11695.
- [27] J. D. Slinker, J. Rivnay, J. S. Moskowitz, J. B. Parker, S. Bernhard, H. D. Abruña, G. G. Malliaras, *J. Mater. Chem.* 2007, 17, 2976–2988.
- [28] J. D. Slinker, J.-S. Kim, S. Flores-Torres, J. H. Delcamp, H. D. Abruña, R. H. Friend, G. G. Malliaras, J. Mater. Chem. 2007, 17, 76–81.
- [29] L. J. Soltzberg, J. D. Slinker, S. Flores-Torres, D. A. Bernards, G. G. Malliaras, H. D. Abruña, J.-S. Kim, R. H. Friend, M. D. Kaplan, V. Goldberg, J. Am. Chem. Soc. 2006, 128, 7761–7764.
- [30] G. Kalyuzhny, M. Buda, J. McNeill, P. Barbara, A. J. Bard, J. Am. Chem. Soc. 2003, 125, 6272–6283.
- [31] C. Fu, M. Wenzel, E. Treutlein, K. Harms, E. Meggers, *Inorg. Chem.* 2012, 51, 10004–10011.
- [32] E. Meggers, Chem. Eur. J. 2010, 16, 752-758.
- [33] M. Maestri, N. Armaroli, V. Balzani, E. C. Constable, A. M. W. Cargill Thompson, *Inorg. Chem.* 1995, 34, 2759– 2767.
- [34] R. Hogg, R. G. Wilkins, J. Chem. Soc. 1962, 341-350.

Eur. J. Inorg. Chem. 2014, 2720-2734

- [35] R. H. Holyer, C. D. Hubbard, S. F. A. Kettle, R. G. Wilkins, *Inorg. Chem.* **1966**, 5, 622–625.
- [36] J.-P. Sauvage, J.-P. Collin, J.-C. Chambron, S. Guillerez, C. Coudret, V. Balzani, F. Barigelletti, L. D. Cola, L. Flamigni, *Chem. Rev.* 1994, 94, 993–1019.
- [37] L. Hammarström, O. Johansson, Coord. Chem. Rev. 2010, 254, 2546–2559.
- [38] Y. Liu, R. Hammitt, D. A. Lutterman, R. P. Thummel, C. Turro, *Inorg. Chem.* 2007, 46, 6011–6021.
- [39] T. Banerjee, S. Kaniyankandy, A. Das, H. N. Ghosh, *Inorg. Chem.* 2013, 52, 5366–5377.
- [40] E. Jakubikova, R. C. Snoeberger, V. S. Batista, R. L. Martin, E. R. Batista, J. Phys. Chem. A 2009, 113, 12532–12540.
- [41] A. Breivogel, M. Meister, C. Förster, F. Laquei, K. Heinze, *Chem. Eur. J.* 2013, 19, 13745–13760.
- [42] H. J. Bolink, L. Cappelli, E. Coronado, P. Gaviña, *Inorg. Chem.* 2005, 44, 5966–5968.
- [43] S. H. Wadman, J. M. Kroon, K. Bakker, M. Lutz, A. L. Spek, G. P. M. van Klink, G. van Koten, *Chem. Commun.* 2007, 19, 1907–1909.
- [44] C. Houarner-Rassin, F. Chaignon, C. She, D. Stockwell, E. Blart, P. Buvat, T. Lian, F. Odobel, J. Photochem. Photobiol. A 2007, 192, 56–65.
- [45] K. Heinze, K. Hempel, M. Beckmann, Eur. J. Inorg. Chem. 2006, 2040–2050.
- [46] A. Breivogel, K. Hempel, K. Heinze, *Inorg. Chim. Acta* 2011, 374, 152–162.
- [47] K. Heinze, K. Hempel, A. Breivogel, Z. Anorg. Allg. Chem. 2009, 635, 2541–2549.
- [48] R. J. Kumar, S. Karlsson, D. Streich, A. R. Jensen, M. Jäger, H.-C. Becker, J. Bergquist, O. Johansson, L. Hammarström, *Chem. Eur. J.* 2010, 16, 2830–2842.
- [49] J. Dietrich, U. Thorenz, C. Förster, K. Heinze, *Inorg. Chem.* 2013, 52, 1248–1264.
- [50] J. Dietrich, A. Wünsche von Leupoldt, M. Grabolle, U. Resch-Genger, K. Heinze, *Eur. J. Inorg. Chem.* 2013, 3009–3019.
- [51] L. zur Borg, A. L. Domanski, A. Breivogel, M. Bürger, R. Berger, K. Heinze, R. Zentel, J. Mater. Chem. 2013, 1, 1223–1230.
 [52] T. I. Mayer. Pure Anal. Chem. 1986, 58, 1193–1206.
- [52] T. J. Meyer, Pure Appl. Chem. 1986, 58, 1193–1206.
- [53] J. V. Caspar, T. J. Meyer, J. Am. Chem. Soc. 1983, 105, 5583– 5590.
- [54] J. V. Caspar, T. J. Meyer, J. Phys. Chem. 1983, 87, 952–957.
- [55] A. Breivogel, C. Förster, K. Heinze, *Inorg. Chem.* 2010, 49, 7052–7056.
- [56] B. D. Koivisto, K. C. D. Robson, C. P. Berlinguette, *Inorg. Chem.* 2009, 48, 9644–9652.
- [57] K. C. D. Robson, B. D. Koivisto, A. Yella, B. Sporinova, M. K. Nazeeruddin, T. Baumgartner, M. Grätzel, C. P. Berlinguette, *Inorg. Chem.* 2011, 50, 5494–5508.
- [58] C.-C. Chou, K.-L. Wu, Y. Chi, W.-P. Hu, S. J. Yu, G.-H. Lee, C.-L. Lin, P.-T. Chou, *Angew. Chem. Int. Ed.* **2011**, *50*, 2054– 2058; *Angew. Chem.* **2011**, *123*, 2102–2106.
- [59] C.-C. Chou, F.-C. Hu, H.-H. Yeh, H.-P. Wu, Y. Chi, J. N. Clifford, E. Palomares, S.-H. Liu, P.-T. Chou, G.-H. Lee, *Angew. Chem. Int. Ed.* **2014**, *53*, 178–183; *Angew. Chem.* **2014**, *126*, 182–187.
- [60] C.-W. Hsu, S.-T. Ho, K.-L. Wu, Y. Chi, S.-H. Liu, P.-T. Chou, Energy Environ. Sci. 2012, 5, 7549–7554.
- [61] B. Schulze, D. Escudero, C. Friebe, R. Siebert, H. Görls, S. Sinn, M. Thomas, S. Mai, J. Popp, B. Dietzek, L. González, U. S. Schubert, *Chem. Eur. J.* 2012, 18, 4010–4025.
- [62] K. Heinze, K. Hempel, S. Tschierlei, M. Schmitt, J. Popp, S. Rau, Eur. J. Inorg. Chem. 2009, 3119–3126.
- [63] W. B. Heuer, H.-L. Xia, W. Ward, Z. Zhou, W. H. Pearson, M. A. Siegler, A. A. N. Sarjeant, M. Abrahamsson, G. J. Meyer, *Inorg. Chem.* 2012, 51, 3981–3988.
- [64] S. Zhang, Y. Peng, W. Jiang, X. Liu, X. Song, B. Pan, H.-Q. Yu, Chem. Commun. 2014, 50, 1086–1088.
- [65] W. R. McNamara, R. C. Snoeberger III, G. Li, J. M. Schleicher, C. W. Cady, M. Poyatos, C. A. Schmuttenmaer, R. H.

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

rbara, A. J. Bard, J. [62] K. Heinze, K. Hem Rau, Eur. J. Inorg. C

Crabtree, G. W. Brudvig, V. S. Batista, J. Am. Chem. Soc. 2008, 130, 14329–14338.

- [66] T. Banerjee, S. Rawalekar, A. Das, H. N. Ghosh, Eur. J. Inorg. Chem. 2011, 4187–4197.
- [67] E. Franzmann, F. Khalil, C. Weidmann, M. Schröder, M. Rohnke, J. Janek, B. M. Smarsly, W. Maison, *Chem. Eur. J.* 2011, 17, 8596–8603.
- [68] M. I. Asghar, K. Miettunen, J. Halme, P. Vahermaa, M. Toivola, K. Aitola, P. Lund, *Energy Environ. Sci.* 2010, *3*, 418–426.
- [69] J. Dehaudt, J. Husson, L. Guyard, Green Chem. 2011, 13, 3337–3340.
- [70] L. Giribabu, T. Bessho, M. Srinivasu, C. Vijaykumar, Y. Soujanya, V. G. Reddy, P. Y. Reddy, J.-H. Yum, M. Grätzel, M. K. Nazeeruddin, *Dalton Trans.* 2011, 40, 4497–4504.
- [71] M. K. Nazeeruddin, P. Péchy, M. Grätzel, Chem. Commun. 1997, 18, 1705–1706.
- [72] M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der Organischen Chemie, Thieme, Stuttgart, Germany, 1991.
- [73] W.-S. Han, J.-K. Han, H.-Y. Kim, M. J. Choi, Y.-S. Kang, C. Pac, S. O. Kang, *Inorg. Chem.* 2011, 50, 3271–3280.
- [74] F. D. Angelis, S. Fantacci, E. Mosconi, M. K. Nazeeruddin, M. Grätzel, J. Phys. Chem. C 2011, 115, 8825–8831.
- [75] A. Breivogel, M. Park, D. Lee, S. Klassen, A. Kühnle, C. Lee, K. Char, K. Heinze, *Eur. J. Inorg. Chem.* **2014**, 288–295.
- [76] G. R. Desiraju, Angew. Chem. Int. Ed. Engl. 1995, 34, 2311– 2327; Angew. Chem. 1995, 107, 2541–2558.
- [77] K. Heinze, K. Hempel, Chem. Eur. J. 2009, 15, 1346-1358.
- [78] C. Turro, S. H. Bossmann, Y. Jenkins, J. K. Barton, N. J. Turro, J. Am. Chem. Soc. 1995, 117, 9026–9032.
- [79] Y. Nosenko, G. Wiosna-Sałyga, M. Kunitski, I. Petkova, A. Singh, W. J. Buma, R. P. Thummel, B. Brutschy, J. Waluk, *Angew. Chem. Int. Ed.* **2008**, *47*, 6037–6040; *Angew. Chem.* **2008**, *120*, 6126–6129.
- [80] M. Marazzi, U. Sancho, O. Castaño, W. Domcke, L. M. Frutos, J. Phys. Chem. Lett. 2010, 1, 425–428.
- [81] G. Y. Zheng, Y. Wang, D. P. Rillema, *Inorg. Chem.* 1996, 35, 7118–7123.
- [82] P. A. Lay, W. H. F. Sasse, Inorg. Chem. 1984, 23, 4125-4127.
- [83] R. J. Watts, J. Chem. Educ. 1983, 60, 834-842.
- [84] B. Durham, J. V. Caspar, J. K. Nagle, T. J. Meyer, J. Am. Chem. Soc. 1982, 104, 4803–4810.
- [85] Z. J. Fuller, W. D. Bare, K. A. Kneas, W.-Y. Xu, J. N. Demas, B. A. DeGraff, *Anal. Chem.* 2003, *75*, 2670–2677.
- [86] W. M. Wallace, P. E. Hoggard, Inorg. Chem. 1979, 18, 2934– 2935.
- [87] T. E. Keyes, E. Gicquel, L. Guerin, R. J. Forster, V. Hultgren, A. M. Bond, A. G. Wedd, *Inorg. Chem.* 2003, 42, 7897–7905.
- [88] M. Abrahamsson, M. Jäger, R. J. Kumar, T. Österman, P. Persson, H.-C. Becker, O. Johansson, L. Hammarström, J. Am. Chem. Soc. 2008, 130, 15533–15542.
- [89] O. Kohle, M. Grätzel, A. F. Meyer, T. B. Meyer, Adv. Mater. 1997, 9, 904–906.
- [90] G. Wolfbauer, A. M. Bond, D. R. MacFarlane, *Inorg. Chem.* 1999, 38, 3836–3846.
- [91] G. Boschloo, A. Hagfeld, Acc. Chem. Res. 2009, 42, 1819-1826.

- [92] Y. Ooyama, T. Nagano, S. Inoue, I. Imae, K. Komaguchi, J. Ohshita, Y. Harima, *Chem. Eur. J.* 2011, 17, 14837–14843.
- [93] Y. Ooyama, S. Inoue, T. Nagano, K. Kushimoto, J. Oshita, I. Imae, K. Komaguchi, Y. Harima, *Angew. Chem. Int. Ed.* **2011**, 50, 7429–7433; *Angew. Chem.* **2011**, *123*, 7567–7571.
- [94] S. H. Wadman, J. M. Kroon, K. Bakker, M. Lutz, A. L. Spek, G. P. M. van Klink, G. van Koten, *Chem. Commun.* 2007, 1907–1909.
- [95] A. J. Frank, N. Kopidakis, J. van de Lagemaat, Coord. Chem. Rev. 2004, 248, 1165–1179.
- [96] S. Ito, P. Liska, P. Comte, R. Charvet, P. Péchy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin, M. Grätzel, *Chem. Commun.* 2005, 4351–4353.
- [97] S. A. Haque, Y. Tachibana, R. L. Willis, J. E. Moser, M. Grätzel, D. R. Klug, J. R. Durrant, *J. Phys. Chem. B* 2000, 104, 538–547.
- [98] S. Caramori, J. Husson, M. Beley, C. A. Bignozzi, R. Argazzi, P. C. Gros, *Chem. Eur. J.* 2010, *16*, 2611–2618.
- [99] M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, J. Phys. Chem. B 2003, 107, 8981–8987.
- [100] G. Pizzoli, M. G. Lobello, B. Carlotti, F. Elisei, M. K. Nazeeruddin, G. Vitillaro, F. D. Angelis, *Dalton Trans.* 2012, 41, 11841–11848.
- [101] G. Schlichthörl, S. Y. Huang, J. Sprague, A. J. Frank, J. Phys. Chem. B 1997, 101, 8141–8155.
- [102] J. Bisquert, F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte, S. Giménez, J. Phys. Chem. A 2009, 113, 17278– 17290.
- [103] E. Palomares, J. N. Clifford, S. A. Haque, T. Lutz, J. R. Durrant, *Chem. Commun.* 2002, 1464–1465.
- [104] Y.-G. Lee, S. Park, W. Cho, T. Son, P. Sudhagar, J. H. Jung, S. Wooh, K. Char, Y. S. Kang, *J. Phys. Chem. C* 2012, *116*, 6770–6777.
- [105] K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, S. Tobita, *Phys. Chem. Chem. Phys.* 2009, 11, 9850–9860.
- [106] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, revision A.02, Gaussian, Inc., Wallingford CT, 2009.

Received: February 21, 2014 Published Online: April 28, 2014

10 Supporting Information

10.1 Explanatory Notes for the Supporting Information

In the following the full supporting information of all manuscripts and publications is reproduced herein expect published DFT optimized cartesian coordinates and published results of TD-DFT calculations. This is for the sake of clarity. The data can be found in the online supporting information of the respective journal.

10.2 Thermal and Photo Reactivity of a Donor-Acceptor-Substituted Bis(terpyridine) Ruthenium(III) Complex in Acidic Solutions

A. Breivogel, K. Heinze.

-to be submitted-

Thermal and Photo Reactivity of a Donor-Acceptor-Substituted Bis(terpyridine) Ruthenium(III) Complex in Acidic Solutions

Aaron Breivogel, and Katja Heinze*

Supporting Information

Table of Contents:

- 1) Figures S1 S8
- 2) Preparation and characterization of the IrCl(PEt₃)₃ solution and Figure S9.
- 3) DFT (B3LYP/LANL2DZ, IEFPCM, H₂O) optimized geometries of $[1]^{2^+}$, $[1]^{3^+}$, $[1 H]^{2^+}$, $[1 2 H]^+$, $[Ru(\kappa^2-H_2N-tpy)(\kappa^3-HOOC-tpy)(H_2O)]^{3^+}$ and " $[Ru(\kappa^3-H_2N-tpy)(\kappa^3-HOOC-tpy)]^{3^+} + H_2O$ ".
- 4) Results of TD-DFT calculations of $[1]^{2+}$ and $[1]^{3+}$.

Figure S1. Relevant DFT-calculated Kohn-Sham frontier molecular orbitals (B3LYP/LANL2DZ, IEFPCM, H₂O, contour value 0.06 a.u., CH hydrogen atoms omitted) and energy levels of frontier molecular orbitals of $[1]^{2^+}$.

Figure S3. ESI⁺ mass spectrum of $[1](PF_6)_2$ 0.5 M TFA in CH₃CN:H₂O (200:1) before addition of $(NH_4)_2[Ce(NO_3)_6]$.

Figure S4. ESI⁺ mass spectrum of $[1](PF_6)_2 0.5 \text{ M}$ TFA in CH₃CN:H₂O (200:1) 2 d after oxidation with 2.0 equiv $(NH_4)_2[Ce(NO_3)_6]$.

Figure S5. ESI⁺ mass spectrum of [1](PF₆)₂ in 0.5 M HNO₃ in H₂O before addition of (NH₄)₂[Ce(NO₃)₆].

Figure S6. ESI⁺ mass spectrum of $[1](PF_6)_2$ in 0.5 M HNO₃ in H₂O 2 d after oxidation with 2.0 equiv $(NH_4)_2[Ce(NO_3)_6]$.

Figure S7. ESI⁺ mass spectrum of $[1](PF_6)_2$ in 0.1 M H₂SO₄ in H₂O before addition of Ce(SO₄)₂ • 4 H₂O.

Figure S8. ESI⁺ mass spectrum of $[1](PF_6)_2$ in 0.1 M H₂SO₄ in H₂O 2 d after oxidation with 2.0 equiv Ce(SO₄)₂ • 4 H₂O.

Preparation of the IrCl(PEt₃)₃ solution^[1]: $[Ir(COE)_2Cl]_2$ (178.3 mg, 0.199 mmol, 1.0 equiv) was dissolved in abs. THF (17 ml; COE = cyclooctene). The orange solution turned red when a solution of PEt₃ (1 M in THF, 1.2 ml, 1.2 mmol, 6.0 equiv) was added. The mixture was stirred for 4 h at room temperature. Then the solvent and excess PEt₃ were removed under reduced pressure. The red solid was dissolved in 7.2 ml d₈-THF and a red solution of IrCl(PEt₃)₃ was obtained (55 mM). IrCl(PEt₃)₃ reversibly reacts with O₂ under formation of IrCl(O₂)(PEt₃)₃.^[2] Figure S9 shows ³¹P-NMR spectra before and after bubbling an excess of air through the solution.

Figure S9. ³¹P-NMR spectra, structures and phosphorus atom numbering of $IrCl(PEt_3)_3$ and $IrCl(O_2)(PEt_3)_3$ in d₈-THF.

 $IrCl(PEt_3)_3$ and its oxygen adduct $IrCl(O_2)(PEt_3)_3$ show the following ³¹P-NMR characteristics in accordance with literature data^[2]:

IrCl(PEt₃)₃: ³¹P-NMR (d₈-THF, 162 MHz): δ = 10.5 (d, 24.0 Hz, 2 P, P²), 9.0 ppm (t, 24.0 Hz, 1 P, P¹). IrCl(O₂)(PEt₃)₃: ³¹P-NMR (d₈-THF, 162 MHz): δ = -15.5 (t, 15.6 Hz, 1 P, P³), -16.8 ppm (d, 15.6 Hz, 2 P, P⁴).

- [1] A. L. Casalnuovo, J. C. Calabrese, D. Milstein, J. Am. Chem. Soc. 1988, 110, 6738–6744.
- [2] S. W. Kohl, L. Weiner, L. Schwartsburd, L. Konstantinovski, L. J. W. Shimon, Y. Ben-David, M. A. Iron, D. Milstein, *Science* 2009, *324*, 74–77.

DFT-optimized Cartesian Coordinates of [1]²⁺ (singlet) in H₂O in Å.

6	2.345932000	1.227034000	0.000056000
6	3.745880000	1.259502000	0.000365000
6	4.457632000	0.040748000	-0.000607000
6	3.767095000	-1.189673000	-0.001892000
6	2.365520000	-1.177243000	-0.002196000
7	1.693729000	0.019176000	-0.001193000
1	4.294158000	2.194070000	0.001415000
1	4.324431000	-2.117441000	-0.002560000
6	-0.835580000	3.076620000	0.002348000
6	-0.460851000	4.427858000	0.003143000
6	0.907443000	4.756607000	0.002939000
6	1.858166000	3.722892000	0.001951000
6	1.429494000	2.385531000	0.001186000
7	0.079193000	2.072608000	0.001377000
1	1.227783000	5.793175000	0.003513000
1	-1.878145000	2.782458000	0.002503000
1	-1.226559000	5.195430000	0.003888000
1	2.916408000	3.956674000	0.001746000
6	1.467855000	-2.350346000	-0.003413000
6	1.917532000	-3.680929000	-0.004957000
6	0.983156000	-4.729462000	-0.006189000

6	-0.390209000	-4.422276000	-0.005929000
6	-0.786061000	-3.077170000	-0.004353000
7	0.112761000	-2.058854000	-0.003045000
1	1.319705000	-5.760874000	-0.007345000
1	2.979327000	-3.898074000	-0.005214000
1	-1.143852000	-5.201712000	-0.006903000
1	-1.833062000	-2.799455000	-0.004113000
6	-2.983720000	-0.020585000	1.194604000
6	-4.378794000	-0.033018000	1.229899000
6	-5.109048000	-0.038835000	0.003570000
6	-4.380885000	-0.030577000	-1.223984000
6	-2.985756000	-0.018227000	-1.190997000
7	-2.317904000	-0.013952000	0.001238000
1	-4.913161000	-0.038252000	2.173097000
1	-4.916806000	-0.033900000	-2.166312000
6	0.186433000	0.006603000	3.076521000
6	-0.199143000	0.003739000	4.424349000
6	-1.569786000	-0.007922000	4.740206000
6	-2.510304000	-0.016414000	3.696871000
6	-2.072287000	-0.012993000	2.363113000
7	-0.719180000	-0.001370000	2.063633000
1	-1.900198000	-0.010319000	5.773655000
1	1.232300000	0.015463000	2.794756000
1	0.560457000	0.010505000	5.197878000
1	-3.570482000	-0.025372000	3.920904000
6	-2.076289000	-0.008267000	-2.361029000
6	-2.516561000	-0.009302000	-3.694056000
6	-1.577793000	0.001323000	-4.738951000
6	-0.206622000	0.012755000	-4.425363000
6	0.181212000	0.013196000	-3.078183000
7	-0.722688000	0.003047000	-2.063788000
1	-1.909929000	0.000720000	-5.771849000
1	-3.577117000	-0.018091000	-3.916305000
1	0.551691000	0.021151000	-5.200140000
1	1.227546000	0.021834000	-2.798148000
44	-0.295512000	0.003541000	-0.000426000
8	6.613661000	1.148068000	0.000993000
6	5.945539000	0.095901000	-0.000097000
8	6.523325000	-1.152892000	-0.000961000
7	-6.479088000	-0.052174000	0.004733000
1	-7.003176000	-0.059026000	0.869213000
1	7.507019000	-1.110604000	-0.000592000
1	-7.004664000	-0.057368000	-0.858853000

DFT-optimized Cartesian Coordinates of [1]³⁺ (doublet) in H₂O in Å.

6	2.339086000	1.039146000	-0.685533000
6	3.739758000	1.074493000	-0.729207000
6	4.463091000	0.088631000	-0.031293000
6	3.792121000	-0.906525000	0.704129000
6	2.389118000	-0.896918000	0.720919000
7	1.708088000	0.061586000	0.028784000
1	4.274110000	1.835121000	-1.284964000
1	4.359712000	-1.655902000	1.239366000
6	-0.870021000	2.516129000	-1.690720000
6	-0.520860000	3.628289000	-2.470061000
6	0.838217000	3.912334000	-2.686782000
6	1.812614000	3.076093000	-2.115372000
6	1.411503000	1.975842000	-1.345461000
7	0.072179000	1.705452000	-1.144978000
1	1.136203000	4.766336000	-3.285152000
1	-1.907136000	2.268239000	-1.506695000

1	-1.303911000	4.248245000	-2.890377000
1	2.865052000	3.282726000	-2.267564000
6	1.510705000	-1.837403000	1.440767000
6	1.968807000	-2.888834000	2.246231000
6	1.038235000	-3.711290000	2.904151000
6	-0.334712000	-3.458362000	2.743588000
6	-0.742064000	-2.392859000	1.927970000
7	0.158100000	-1.603877000	1.287274000
1	1 380219000	-4 528150000	3 530181000
1	3 031124000	-3 064935000	2 364798000
1	-1 084390000	-4 066563000	3 235833000
1	-1 791538000	-2 172277000	1 781441000
6	-3.047620000	0.619232000	0 881476000
6	-4 430285000	0.593050000	0.841876000
6	-5.087221000	-0 159489000	-0 190182000
6	-4 289174000	-0.867637000	-1 153707000
6	-2 910685000	-0.811622000	-1.062421000
7	-2 311269000	-0.076752000	-0.058078000
1	-5.023263000	1 128601000	1 573175000
1	-4 777814000	-1 434219000	-1 936843000
6	0.018097000	1 834016000	2 523547000
6	-0.439460000	2 620729000	3 592072000
6	-1 822798000	2.020729000	3 788306000
6	-2 711738000	2.103103000	2 911674000
6	2 202654000	1 2/2205000	2.911074000
7	-2.202034000	1.343293000	1.676822000
1	2 205606000	3 367400000	1.070822000
1	-2.203000000	1 701628000	2 342200000
1	0.278010000	3 102258000	2.342299000 4.245130000
1	3 781402000	2 210/22000	4.245150000
1	-3.781402000	2.219432000	1 060894000
6	-1.936074000	-1.462072000	-1.900884000
6	-2.303303000	-2.29/0/3000	-3.038493000
6	-1.303970000	-2.894009000	-3.828407000
6	0.043084000	-2.002829000	-3.3109/3000
7	0.557200000	-1.030/40000	-2.424889000
1	-0.004120000	-1.239323000	-1.003899000
1	-1.380080000	-3.32/313000	-4.003330000
1	-3.330093000	-2.4/1309000	-3.203944000
1	1 286567000	-5.105019000	-4.098027000
1	0.242847000	-1.043130000	-2.133487000
44 0	-0.343647000	-0.000940000	0.01804/000
6	5 058240000	0.331000000	0.005147000
0	5380249000	0.1529/0000	-0.07314/000
0 7	6 43620000	-0.004100000	0.010232000
/ 1	-0.430200000 7.017449000	-0.202403000	-0.230103000
1	-/.01/440000	0.294498000	0.40/403000
1	6 012100000	-0.003411000	0.3/3343000
1	-0.913190000	-0./30031000	-0.980240000

DFT-optimized Cartesian Coordinates of $[1 - H]^{2+}$ (doublet) in H₂O in Å.

6	2.377101000	1.013332000	-0.668955000
6	3.778779000	1.032189000	-0.707309000
6	4.499932000	0.046337000	-0.005207000
6	3.804674000	-0.934696000	0.729049000
6	2.402460000	-0.916682000	0.739834000
7	1.729948000	0.044846000	0.042725000
1	4.332688000	1.780679000	-1.260428000
1	4.378176000	-1.678981000	1.267726000
6	-0.815690000	2.534668000	-1.673416000
6	-0.452427000	3.644414000	-2.448336000
6	0.911256000	3.910439000	-2.663619000

6	1.874029000	3.059699000	-2.095083000
6	1.459640000	1.961031000	-1.328811000
7	0.116285000	1.708595000	-1.131234000
1	1.220599000	4.762803000	-3.258818000
1	-1.855851000	2.298766000	-1.490046000
1	-1.226746000	4.276672000	-2.866608000
1	2.929768000	3.251271000	-2.244188000
6	1.509866000	-1.846644000	1.457062000
6	1.953317000	-2.901940000	2.266703000
6	1.012825000	-3.713664000	2.922773000
6	-0.357869000	-3.447628000	2.757825000
6	-0.750971000	-2.380043000	1.939338000
7	0.159778000	-1.601642000	1.298906000
1	1.344533000	-4.533049000	3.551294000
1	3.013989000	-3.086564000	2.386990000
1	-1.114994000	-4.047645000	3.248808000
1	-1.797636000	-2.148704000	1.788300000
6	-3.032962000	0.627495000	0.862096000
6	-4.416298000	0.605842000	0.813787000
6	-5.068218000	-0.143749000	-0.222693000
6	-4.266087000	-0.854059000	-1.180787000
6	-2.887331000	-0.801402000	-1.080521000
7	-2.294076000	-0.068959000	-0.072864000
1	-5.012413000	1.142796000	1.541590000
1	-4.751239000	-1.419283000	-1.967160000
6	0.029757000	1.828567000	2.522308000
6	-0.430115000	2.615938000	3.589357000
6	-1.814093000	2.765139000	3.778739000
6	-2.701323000	2.122518000	2.896947000
6	-2.190164000	1.347003000	1.847485000
7	-0.823870000	1.209909000	1.671169000
1	-2.198623000	3.368026000	4.594306000
1	1.088873000	1.690885000	2.344345000
1	0.286557000	3.094241000	4.246710000
1	-3.771319000	2.228142000	3.030107000
6	-1.909434000	-1.473442000	-1.974149000
6	-2.272431000	-2.284210000	-3.056914000
6	-1.269700000	-2.880764000	-3.843416000
6	0.078902000	-2.653131000	-3.524219000
6	0.388300000	-1.833973000	-2.427108000
7	-0.576011000	-1.255765000	-1.670987000
1	-1.540785000	-3.509708000	-4.684539000
1	-3.316721000	-2.454269000	-3.289473000
1	0.881218000	-3.095220000	-4.103176000
1	1.416090000	-1.639839000	-2.148383000
44	-0.323185000	-0.001760000	0.017989000
8	6.591218000	0.958849000	-0.754994000
6	6.036521000	0.042728000	-0.037284000
8	6.615892000	-0.876875000	0.656064000
7	-6.418193000	-0.182116000	-0.300060000
1	-7.001617000	0.316883000	0.361604000
1	-6.891791000	-0.708194000	-1.025488000

DFT-optimized Cartesian Coordinates of $[1 - 2 H]^+$ (doublet) in H₂O in Å.

6	-2.354807000	1.196201000	-0.007843000
6	-3.757813000	1.218302000	-0.010102000
6	-4.466861000	-0.000135000	-0.005773000
6	-3.757735000	-1.218517000	0.000699000
6	-2.354733000	-1.196312000	0.002612000
7	-1.695544000	-0.000031000	-0.001650000
1	-4.321707000	2.143137000	-0.015157000

1	-4.321581000	-2.143390000	0.004068000
6	0.814288000	3.071276000	-0.012058000
6	0.428859000	4.419245000	-0.017688000
6	-0.941394000	4.736782000	-0.020334000
6	-1.884451000	3.695719000	-0.017261000
6	-1.446611000	2.362234000	-0.011613000
7	-0.095461000	2.062843000	-0.009040000
1	-1 269644000	5 770826000	-0.024615000
1	1 859463000	2 787636000	-0.009721000
1	1 189413000	5 191677000	-0.019843000
1	-2 944772000	3 918674000	-0.019121000
6	-1.446470000	-2 362279000	0.000083000
6	1 884220000	-2.302279000	0.009085000
6	-1.884229000	-3.093790000	0.014471000
6	-0.941108000	-4./30/82000	0.020079000
0	0.429123000	-4.419146000	0.021477000
0	0.8144/0000	-3.0/1153000	0.015905000
/	-0.095558000	-2.062/92000	0.009/38000
1	-1.269298000	-5.//0846000	0.0248/5000
1	-2.944536000	-3.918823000	0.013913000
1	1.189/23000	-5.191522000	0.026302000
I	1.859626000	-2.78/43/000	0.016529000
6	2.9/9/20000	-0.005418000	-1.204260000
6	4.364031000	-0.005644000	-1.2322/3000
6	5.116919000	-0.000040000	0.011111000
6	4.358481000	0.005494000	1.246991000
6	2.975382000	0.005363000	1.215383000
7	2.301977000	0.000008000	0.003738000
1	4.905951000	-0.009971000	-2.172394000
1	4.912872000	0.009684000	2.178052000
6	-0.193729000	-0.014215000	-3.076047000
6	0.187173000	-0.019897000	-4.425185000
6	1.557023000	-0.020809000	-4.745541000
6	2.503148000	-0.016126000	-3.707298000
6	2.068620000	-0.010564000	-2.372521000
7	0.718137000	-0.009543000	-2.070252000
1	1.882783000	-0.025092000	-5.780445000
1	-1.237848000	-0.013372000	-2.788110000
1	-0.574772000	-0.023451000	-5.196265000
1	3.562311000	-0.016789000	-3.936209000
6	2.060991000	0.010606000	2.380080000
6	2.491948000	0.016236000	3.716115000
6	1.542977000	0.021022000	4.751569000
6	0.173804000	0.020174000	4.427349000
6	-0.203363000	0.014447000	3.077285000
7	0.711419000	0.009660000	2.073878000
1	1.865813000	0.025325000	5.787407000
1	3.550763000	0.016859000	3.946666000
1	-0.590193000	0.023813000	5.196413000
1	-1.246694000	0.013669000	2.786490000
44	0.333881000	0.000043000	0.001077000
8	-6.574519000	1.156473000	-0.016102000
6	-6.002325000	-0.000205000	-0.008205000
8	-6.574424000	-1.156942000	-0.002256000
7	6.461372000	0.000483000	0.093263000
1	6.909218000	-0.003548000	-0.837938000

DFT-optimized Cartesian Coordinates of $[Ru(\kappa^2-H_2N-tpy)(\kappa^3-HOOC-tpy)(H_2O)]^{3+}$ (doublet) in H₂O in Å.

6	-2.528788000	1.228951000	0.418211000
6	-3.909906000	1.429337000	0.292727000
6	-4.663957000	0.494960000	-0.445550000
6	-4.046609000	-0.620696000	-1.041993000

6	-2.657994000	-0.776191000	-0.898003000
7	-1.953797000	0.146242000	-0.183950000
1	-4.408483000	2.275737000	0.748936000
1	-4.643985000	-1.331892000	-1.596759000
6	0.683358000	2.283634000	1.883320000
6	0.372386000	3.429128000	2.631127000
6	-0.953381000	3.895736000	2.641661000
6	-1.937778000	3.202500000	1.912813000
6	-1.575857000	2.063867000	1.182525000
7	-0.262537000	1.625177000	1,169014000
1	-1.221987000	4,778825000	3.211402000
1	1 688148000	1 882230000	1 848526000
1	1 154026000	3 932794000	3 187483000
1	-2.965298000	3 545625000	1 924453000
6	-1 824848000	-1 864522000	-1 451941000
6	-2 330202000	-2 917305000	-2 226683000
6	-1.450185000	-3 897822000	-2.220005000
6	-0.079482000	-3 800227000	-2 426121000
6	0.373021000	-2 726802000	-1.644173000
7	-0.47320000	-2.720802000	-1.165758000
1	1 830102000	-1.785765000	-1.103758000
1	2 388230000	-4.710339000	-3.319897000
1	-3.388230000	-2.977333000	2.430333000
1	1 422808000	-4.33130000	-2./9210/000
1	2 204152000	-2.013033000	-1.409556000
6	5.504158000	0.1003/0000	-0.318933000
0	4.510558000	-0.333033000	-0.39/331000
0	4.081222000	-1./84595000	0.000298000
0	3.009/22000	-2.209525000	0.888128000
0 7	2.420439000	-1.485856000	0.912420000
/	2.200061000	-0.349962000	0.14243/000
1	5.331280000	-0.123520000	-1.1/2155000
I	3./16651000	-3.10949/000	1.4/9880000
6	2.42/899000	3.34/346000	-2.35/521000
6	3.549567000	4.154001000	-2.151006000
6	4.593837000	3.649120000	-1.35511/000
6	4.495429000	2.356194000	-0.812246000
6	3.356/09000	1.564184000	-1.06/155000
1	2.359939000	2.10069/000	-1.824/80000
1	5.4/1321000	4.253482000	-1.150859000
1	1.5/2141000	3.6/02/0000	-2.93/6/6000
1	3.591412000	5.14452/000	-2.586942000
I	5.284802000	1.974548000	-0.177881000
6	1.317649000	-1.878965000	1.823163000
6	1.471468000	-2.789569000	2.883975000
6	0.3854/4000	-3.058858000	3.731184000
6	-0.841545000	-2.40/31/000	3.508316000
6	-0.941817000	-1.514641000	2.437171000
7	0.112656000	-1.259215000	1.617457000
1	0.498477000	-3.757566000	4.553268000
1	2.423144000	-3.270993000	3.066529000
1	-1.701695000	-2.582299000	4.143589000
1	-1.868951000	-0.997756000	2.228411000
8	-6.736137000	1.691419000	-0.066289000
6	-6.138487000	0.725137000	-0.570846000
8	-6.756588000	-0.250871000	-1.307343000
7	5.826583000	-2.506240000	-0.062788000
1	6.589812000	-2.185984000	-0.645036000
1	-7.727119000	-0.108508000	-1.396256000
1	5.949974000	-3.385040000	0.423616000
44	0.036013000	-0.039396000	-0.068002000
1	1.405432000	1.560687000	-1.950646000
1	-0.632442000	1.154297000	-2.318534000

8 0.163482000 0.948394000 -1.789268000

DFT-optimized Cartesian Coordinates of "["[Ru(κ^3 -H₂N-tpy)(κ^3 -HOOC-tpy)]³⁺ + H₂O" (doublet) in H₂O in Å.

6	-2.255210000	-0.095835000	1.223861000
6	-3.650869000	-0.213871000	1.263436000
6	-4.352203000	-0.352928000	0.051528000
6	-3.664856000	-0.359978000	-1.175894000
6	-2.267526000	-0.239205000	-1.161610000
7	-1.606993000	-0.124922000	0.024696000
1	-4.198513000	-0.199847000	2,197784000
1	-4.215626000	-0.456252000	-2.102223000
6	0.913505000	0.320855000	3.036137000
6	0.542108000	0.422064000	4.384127000
6	-0.818827000	0 343315000	4 725933000
6	-1.772659000	0.166624000	3.709140000
6	-1 350186000	0.068565000	2 376245000
7	-0.008627000	0 142659000	2.055567000
1	-1 133978000	0 420366000	5 760855000
1	1 952730000	0 374394000	2 738704000
1	1 308905000	0.559883000	5 137311000
1	-2 826241000	0.110511000	3 954979000
6	-1 375578000	-0 211890000	-2 334963000
6	-1 815668000	-0.269762000	-3 664347000
6	-0.876133000	-0.205182000	-4 707376000
6	0.070155000	-0.079824000	-4 394309000
6	0.400540000	-0.075441000	-3.048579000
7	-0.030773000	-0.025441000	-2 0/1625000
1	-1 204456000	-0.093333000	-5 740169000
1	-2 872190000	-0.358562000	-3 886303000
1	1 244806000	-0.023600000	-5.168222000
1	1 920351000	0.067206000	-2 773297000
6	3 000225000	1 12/915000	-2.773297000
6	<i>J.099225</i> 000	1.124913000	-0.074121000
6	5 106201000	0.105422000	-0.090834000
6	<i>1 4 5</i> 1011000	1 222281000	-0.040140000
6	3.060604000	1 286035000	0.029301000
7	2 415814000	-1.280935000	-0.00798/000
1	5.033/77000	2 070725000	-0.1/3121000
1	1 082617000	-2 276917000	0.071320000
1	-0.060849000	-2.270917000	-0.153708000
6	0.346765000	1 367920000	-0.133708000
6	1 716705000	4.307920000	-0.221378000
6	2 653187000	4.074030000	-0.239843000
6	2.055187000	2 201802000	0.124046000
7	2.200720000	2.301392000	-0.124940000
1	2 054651000	5 703596000	-0.201308000
1	1 118800000	2 76000000	-0.291398000
1	-1.118800000	2.709000000	-0.140813000
1	-0.400391000	3.140489000	-0.238323000
1	3.714020000 2.140267000	2 440582000	-0.200002000
6	2.149307000	-2.449383000	0.118917000
6	2.378941000	-3./81044000	0.183/38000
6	1.020/3/000	-4.014077000	0.238930000
6	0.200004000	-4.40040/000	0.200013000
07	-0.113910000	-3.138200000	0.200023000
/	0.799032000	-2.141823000 5.848427000	0.123438000
1 1	1.747330000	-3.04043/000	0.309/3/000
1	5.050022000	-4.01//04000	0.1//930000
1	-0.304494000	-3.233348000 2851750000	0.32/089000
I Q	-1.139340000	-2.031/39000	1 165020000
o	-0.477/04000	-0.403307000	1.102000000

6	-5.841697000	-0.478822000	0.109796000
8	-6.405690000	-0.583527000	-1.135486000
7	6.548310000	-0.126336000	-0.057280000
1	7.091070000	0.728159000	-0.105680000
1	-7.386821000	-0.663704000	-1.105979000
1	7.064845000	-0.997689000	-0.024643000
44	0.442632000	-0.052313000	0.009353000
1	-3.656912000	3.048101000	-0.982642000
1	-3.654450000	3.192280000	0.606575000
8	-3.151029000	2.868133000	-0.165969000

Results of the TD-DFT (singlet) calculation of [1]²⁺ in H₂O.

Excited State	1:	Singlet-A	1.9750 eV 627.78 nm f=0.0)000 <s**2>=0.000</s**2>
141 ->145		-0.10870		
144 ->145		0.69246		
Excited State	2:	Singlet-A	2.1153 eV 586.12 nm f=0.0)052 <s**2>=0.000</s**2>
143 ->145		0.69916		
Excited State	3:	Singlet-A	2.5469 eV 486.80 nm f=0.1	455 <s**2>=0.000</s**2>
142 ->145		0.57686		
143 ->146		0.31690		
143 ->148		-0.11544		
144 ->147		0.20329		
Excited State	4:	Singlet-A	2.5876 eV 479.15 nm f=0.0)007 <s**2>=0.000</s**2>
144 ->146		0.68512		
144 ->148		-0.12805		
Excited State	5:	Singlet-A	2.7334 eV 453.59 nm f=0.0)001 <s**2>=0.000</s**2>
143 ->147		0.51478		
144 ->146		0.12725		
144 ->148		0.45975		
Excited State	6:	Singlet-A	2.7443 eV 451.79 nm f=0.0)721 <s**2>=0.000</s**2>
143 ->146		-0.24029		
143 ->148		0.27371		
144 ->147		0.59561		
Excited State	7:	Singlet-A	2.7968 eV 443.31 nm f=0.0)831 <s**2>=0.000</s**2>
143 ->147		-0.47471		
144 ->148		0.50770		
Excited State	8:	Singlet-A	2.8227 eV 439.25 nm f=0.0)399 <s**2>=0.000</s**2>
142 ->146		0.68338		
142 ->148		-0.13124		
Excited State	9:	Singlet-A	2.8327 eV 437.69 nm f=0.0)000 <s**2>=0.000</s**2>
142 ->147		0.70338		
Excited State	10:	Singlet-A	2.8766 eV 431.00 nm f=0.	1498 <s**2>=0.000</s**2>
142 ->145		-0.23294		
143 ->146		0.55124		
143 ->148		0.35878		
Excited State	11:	Singlet-A	2.9978 eV 413.59 nm f=0.	$0002 < S^{**2} = 0.000$
142 ->146		0.13946		
142 ->148		0.68534		
Excited State	12:	Singlet-A	3.2041 eV 386.95 nm f=0.	$0000 < S^{**2} = 0.000$
142 ->145		0.26190		
143 ->146		-0.17335		
143 ->148		0.51695		
143 ->153		0.19386		
144 ->147		-0.27442		
Excited State	13:	Singlet-A	3.3095 eV 374.63 nm f=0.	$0000 < S^{**2} = 0.000$
144 ->149		0.69057		
Excited State	14:	Singlet-A	3.5000 eV $354.24 nm$ f=0.	$0025 < S^{**2} = 0.000$
144 ->150		0.70082	a sass at assa sa	
Excited State	15:	Singlet-A	3.5055 eV $353.69 nm$ f=0.	$0000 < S^{**2} = 0.000$
143 ->154	1.4	0.68831		0007 0000
Excited State	16:	Singlet-A	3.5162 eV $352.61 nm$ f=0.	$0227 < S^{**2} = 0.000$

139 ->145	-0.25148				
143 ->149	0.64439		a (a = a		
Excited State 17:	Singlet-A	3.6070 eV	343.73 nm	f=0.0000	<s**2>=0.000</s**2>
141 ->145	0.69083				
144 ->145	0.10958	A (100 II		0 0 0 0 6	G.t
Excited State 18:	Singlet-A	3.6122 eV	343.24 nm	t=0.0862	<s**2>=0.000</s**2>
142 ->149	0.68142	2 (7(7 N	227.22	6 0 01 70	-C**O
Excited State 19:	Singlet-A	3.6/6/ eV	337.22 nm	f=0.0172	<\$**2>=0.000
140 ->145	0.68809				
143 ->149	0.10246	2 (051 1	226.45	C 0 00 47	-C++2 0.000
Excited State 20 :	Singlet-A	3.6851 eV	336.45 nm	1=0.004/	<\$**2>=0.000
143 ->150	0.18307				
144 ->151 Evolted State 21.	0.6/215	2 (095 aV	225.22	£_0.0010	<c**2> -0.000</c**
Exciled State 21: $142 > 154$	Singlet-A	5.0985 ev	555.25 nm	1=0.0019	<5***2>=0.000
142 - >134 144 > 152	-0.10001				
144 ->135 Evoited State 22:	0.0/519 Singlet A	2 7257 N	332 78 nm	f-0.0433	~\$**2>-0.000
1/3 ->150	0.66581	5.1257 CV	<i>552.</i> 78 mm	1-0.0433	<5 2>-0.000
143 -> 150 144 -> 151	-0.10306				
Excited State 23.	Singlet-A	3 7552 eV	330 17 nm	f=0.0536	<\$**2>=0.000
139 ->145	-0 30303	5.7552 01	550.17 IIII	1 0.0000	·B 2· 0.000
142 -> 150	0.53909				
142 ->153	-0.12772				
143 ->149	-0.10597				
144 ->154	-0.25204				
Excited State 24:	Singlet-A	3.7665 eV	329.18 nm	f=0.2028	<s**2>=0.000</s**2>
139 ->145	0.52022				
142 ->150	0.20038				
143 ->149	0.22205				
143 ->152	-0.17578				
144 ->154	-0.23572				
144 ->158	-0.13462				
Excited State 25:	Singlet-A	3.7762 eV	328.33 nm	f=0.0000	<s**2>=0.000</s**2>
144 ->152	0.69464				
Excited State 26:	Singlet-A	3.7887 eV	327.25 nm	f=0.0455	<s**2>=0.000</s**2>
139 ->145	0.10903				
141 ->154	-0.12333				
142 ->150	0.40099				
142 ->153	0.15864				
144 - >134 144 - >159	0.47104				
Evolted State 27:	Singlet A	3 8510 N	321 88 nm	f = 0.0173	~\$**2>-0.000
Exciled State 27 .	0 22051	5.051960	521.00 1111	1-0.0175	<32>=0.000
140 -> 147 143 -> 151	0.25051				
Excited State 28:	Singlet-A	3 9279 eV	315 65 nm	f=0.0000	<s**2>=0 000</s**2>
142 ->151	0 70602	5.5275 01	510.00 1111	1 0.0000	5 2 0.000
Excited State 29:	Singlet-A	3.9370 eV	314.92 nm	f=0.0001	<s**2>=0.000</s**2>
142 ->154	0.62189				
142 ->158	-0.26124				
144 ->153	0.15388				
Excited State 30:	Singlet-A	3.9710 eV	312.23 nm	f=0.0709	<s**2>=0.000</s**2>
139 ->145	0.17217				
142 ->153	-0.44057				
143 ->152	0.48006				
144 ->154	0.10257				
144 ->158	0.14432				
Excited State 31:	Singlet-A	3.9882 eV	310.88 nm	f=0.0706	<s**2>=0.000</s**2>
139 ->145	0.11096				
142 ->153	0.45465				
143 ->152	0.45862				
144 ->158	-0.21//6	4.0502 37	206.12	6-0.0005	-0** 0 - 0.000
Excited State 32:	Singlet-A	4.0502 eV	306.12 nm	1=0.0085	<5**2>=0.000

142 ->152	0.69614				
Excited State 33:	Singlet-A	4.0790 eV	303.95 nm	f=0.0377	<s**2>=0.000</s**2>
140 ->147	0.15337				
141 ->146	0.58621				
141 ->148	0.32934				
143 ->151	-0.11653				
Excited State 34:	Singlet-A	4.1049 eV	302.04 nm	f=0.0022	<s**2>=0.000</s**2>
140 ->146	-0.11582				
141 ->147	0.54619				
143 ->153	0.37082				
144 ->147	0.11367				
144 ->155	-0.10703				
Excited State 35:	Singlet-A	4.1417 eV	299.35 nm	f=0.0818	<s**2>=0.000</s**2>
140 ->147	0.26880				
141 ->146	-0.37987				
141 ->148	0.50095				
143 ->151	-0.12920				
Excited State 36:	Singlet-A	4.1720 eV	297.18 nm	f=0.0001	<s**2>=0.000</s**2>
139 ->146	-0.13244				
140 ->146	0.66731				
140 ->148	-0.12635				
141 ->147	0.12697				
Excited State 37:	Singlet-A	4.2541 eV	291.45 nm	f=0.3151	<s**2>=0.000</s**2>
140 ->147	0.57867				
141 ->148	-0.34301				
143 ->151	-0.16253				
Excited State 38:	Singlet-A	4.2675 eV	290.53 nm	f=0.0008	<s**2>=0.000</s**2>
136 ->145	0.65669				~
136 ->149	0 22666				
Excited State 39	Singlet-A	4 2763 eV	289 94 nm	f=0.0130	<s**2>=0 000</s**2>
141 ->158	-0 16381	,	20000000	1 0.0100	5 - 0.000
142 ->153	0 20544				
144 ->154	-0.30325				
144 ->158	0.56756				
Excited State 40	Singlet-A	4 2922 eV	288 86 nm	f=0.0180	<\$**2>=0.000
140 ->146	0 10292	1.2922.01	200.00 IIII	1 0.0100	10 21 0.000
140 -> 148	0 19368				
141 ->147	-0 37843				
142 ->145	-0 12919				
143 ->153	0 49101				
Excited State 41	Singlet-A	4 3518 eV	284 90 nm	f=0.0465	<s**2>=0 000</s**2>
139 ->147	0 70015		201000	1 0.0100	5 - 0.000
Excited State 42	Singlet-A	4 4032 eV	281 58 nm	f=0.0314	<s**2>=0 000</s**2>
137 ->145	-0 20112		201.00	1 0.0011	5 - 0.000
139 ->146	0.51274				
139 ->148	0.38877				
140 ->146	0.10739				
140 -> 148	0.15620				
Excited State 43	Singlet-A	4 4537 eV	278 39 nm	f=0.0000	<\$**2>=0.000
138 ->145	0 70297		270.57 IIII	1 0.0000	S 2º 0.000
Excited State 44	Singlet-A	4 4662 eV	277 60 nm	f=0.0925	<\$**2>=0 000
137 ->145	0 30491	1.1002 01	277.00 1111	1 0.0720	5 2 0.000
139 ->146	-0.30659				
139 ->148	0.49830				
137 = 148 140 = >148	0.22595				
Excited State 45	Singlet_A	4 5271 eV	273 87 nm	f=0.1573	<\$**2>=0.000
139 ->148	-0 26896	1.52/101	-, J. 07 mm	1 0.1070	5 2- 0.000
140 ->148	0 57427				
141 ->147	0 14123				
143 ->153	-0 18681				
144 _>155	-0 12126				
Excited State 16.	Singlet_A	4 6147 N	268 67 nm	f=0.0024	<\$**2>=0.000
Exerce State 40.	Singlet-A	1.01 T / UV	200.07 mm	1 0.0024	-5 2- 0.000

142 ->154 0.25091	
142 ->158 0.64013	
Excited State 47: Singlet-A	4.6307 eV 267.74 nm f=0.3221 <s**2>=0.000</s**2>
137 ->145 0.58807	
139 ->146 0.30995	
139 ->148 -0.11426	
Excited State 48: Singlet-A	4.7889 eV 258.90 nm f=0.0000 <s**2>=0.000</s**2>
141 ->149 0.67820	
143 ->158 -0.14964	
Excited State 49: Singlet-A	4.8280 eV 256.80 nm f=0.0000 <s**2>=0.000</s**2>
141 ->149 0.15706	
143 ->158 0.66443	
Excited State 50: Singlet-A	4.8325 eV 256.56 nm f=0.0156 <s**2>=0.000</s**2>
139 ->149 0.32655	
140 ->149 0.60284	

Results of the TD-DFT (doublet) calculation of [1]³⁺ in H₂O.

Excited State 1: 2.008-A	0.3658 eV 3388.97 nm f=0.0009 <s**2>=0.758</s**2>
139B ->144B 0.26181	
141B ->144B -0.19275	
143B ->144B 0.91551	
143B ->147B -0.10577	
Excited State 2: 2.007-A	0.5367 eV 2310.28 nm f=0.0000 <s**2>=0.757</s**2>
127B ->144B 0.10736	
137B ->144B -0.10498	
142B ->144B 0.96680	
142B ->147B -0.11855	
Excited State 3: 2.122-A	1.8129 eV 683.89 nm f=0.1535 <s**2>=0.876</s**2>
144A ->146A 0.18133	
141B ->144B 0.93145	
143B ->144B 0.21801	
Excited State 4: 2.110-A	1.8555 eV 668.19 nm f=0.0118 <s**2>=0.863</s**2>
139B ->144B 0.48220	
140B ->144B 0.83199	
143B ->144B -0.20153	
Excited State 5: 2.042-A	2.0387 eV 608.17 nm f=0.0011 <s**2>=0.793</s**2>
139B ->144B 0.81370	
140B ->144B -0.52923	
141B ->144B 0.13497	
143B ->144B -0.17997	
Excited State 6: 3.092-A	2.6440 eV 468.92 nm f=0.0061 <s**2>=2.140</s**2>
140A ->147A 0.12066	
141A ->145A -0.18966	
141A ->147A 0.16086	
142A ->145A -0.29651	
143A ->145A 0.11777	
143A ->147A -0.16660	
138B ->144B 0.53468	
139B ->146B -0.17131	
140B ->146B 0.16444	
142B ->145B 0.50119	
143B ->145B -0.25299	
143B ->146B 0.15189	
Excited State 7: 2.586-A	2.6460 eV 468.58 nm f= $0.0013 < S^{**2} = 1.422$
141A ->145A 0.14130	
141A ->14/A -0.11314	
142A ->145A 0.22506	
138B ->144B 0.81745	
139B ->146B 0.10435	
140B ->146B -0.11907	
142B ->145B -0.28673	

1430 - 21430	0 18022			
143D -> 145D 143D \\146D	0.10022			
THOD -> THOD	-0.10952	2 (729 AV	162.00	$f_{-0,000}$ < $f_{**2} - 2,499$
Exclued State δ .	5.509-A	2.0/28 eV	405.88 1111	1-0.0000 <5.2>-2.488
142A ->145A	-0.23286			
143A ->145A	-0.31601			
140B ->145B	0.21285			
141B ->145B	-0.13785			
142B ->145B	0.23888			
143B ->145B	0.77350			
Excited State 9:	2.050-A	2.7676 eV	447.98 nm	f=0.0000 <s**2>=0.801</s**2>
137B ->144B	0.98046			
142B ->144B	0 12704			
Excited State 10:	3 456-A	2 8968 eV	428 00 nm	f=0.0000 <s**2>=2.737</s**2>
$128\Delta \rightarrow 150\Delta$	-0 11573	2.0700 € 1	420.00 IIII	1 0.0000 3 2 2.151
120M > 130M 140A > 140A	0.1110/10			
140A -> 149A	0.10119			
140A - >130A	-0.29033			
143A ->149A	0.18061			
143A ->150A	-0.5142/			
144A ->150A	-0.16550			
139B ->152B	0.19455			
141B ->152B	-0.12517			
143B ->149B	-0.10247			
143B ->152B	0.58235			
143B ->154B	0.27497			
Excited State 11.	2 568-A	2 9434 eV	421 23 nm	f=0 0001 <s**2>=1 398</s**2>
141A ->145A	-0 28017	2.9 13 1 0 1	121.25 1111	1 0.0001 35 2 1.590
141X > 145X 142X = >145X	0.1/813			
142A > 145A	0.14013			
143A - > 143A	0.09031			
144A ->145A	0.16119			
139B ->145B	0.28202			
140B ->145B	-0.16188			
143B ->145B	0.47082			
Excited State 12:	3.417-A	3.0158 eV	411.11 nm	f=0.0075 <s**2>=2.669</s**2>
138A ->145A	0.14716			
140A ->147A	-0 11423			
110/1 / 11//1	-0.11+25			
141A ->147A	-0.25876			
141A ->147A 142A ->145A	-0.25876			
141A ->147A 142A ->145A 142A ->147A	-0.25876 -0.23245 0.12603			
141A ->147A 142A ->145A 142A ->145A 142A ->147A 143A ->146A	-0.25876 -0.23245 0.12603 0.13532			
141A ->147A 142A ->145A 142A ->145A 142A ->147A 143A ->146A 143A ->147A	-0.25876 -0.23245 0.12603 0.13532 0.33923			
141A ->147A 142A ->145A 142A ->145A 142A ->147A 143A ->146A 143A ->147A	-0.25876 -0.23245 0.12603 0.13532 0.33923 0.13566			
141A ->147A 142A ->145A 142A ->145A 142A ->147A 143A ->146A 143A ->147A 143A ->148A	-0.25876 -0.23245 0.12603 0.13532 0.33923 -0.13566			
141A ->147A 142A ->145A 142A ->145A 142A ->147A 143A ->146A 143A ->147A 143A ->148A 137B ->145B	-0.25876 -0.23245 0.12603 0.13532 0.33923 -0.13566 -0.13941			
141A ->147A 142A ->145A 142A ->145A 142A ->147A 143A ->146A 143A ->146A 143A ->148A 137B ->145B 139B ->146B	-0.25876 -0.23245 0.12603 0.13532 0.33923 -0.13566 -0.13941 0.19530			
141A ->147A 142A ->147A 142A ->145A 142A ->147A 143A ->146A 143A ->146A 143A ->147A 143A ->148A 137B ->145B 139B ->146B 140B ->146B	-0.25876 -0.23245 0.12603 0.13532 0.33923 -0.13566 -0.13941 0.19530 -0.24146			
141A ->147A 142A ->145A 142A ->145A 142A ->147A 143A ->146A 143A ->146A 143A ->145B 137B ->145B 139B ->146B 140B ->146B 140B ->147B	-0.25876 -0.23245 0.12603 0.13532 0.33923 -0.13566 -0.13941 0.19530 -0.24146 -0.10522			
141A ->147A 142A ->145A 142A ->145A 142A ->147A 143A ->146A 143A ->146A 143A ->145B 139B ->146B 140B ->146B 140B ->147B 142B ->145B	-0.25876 -0.23245 0.12603 0.13532 0.33923 -0.13566 -0.13941 0.19530 -0.24146 -0.10522 0.49361			
141A ->147A 142A ->145A 142A ->145A 142A ->145A 143A ->146A 143A ->146A 143A ->146B 139B ->146B 140B ->146B 140B ->146B 142B ->145B 142B ->146B	-0.25876 -0.23245 0.12603 0.13532 0.33923 -0.13566 -0.13941 0.19530 -0.24146 -0.10522 0.49361 -0.37841			
141A ->147A 141A ->147A 142A ->145A 142A ->145A 143A ->146A 143A ->146A 143A ->146A 137B ->145B 139B ->146B 140B ->146B 140B ->145B 142B ->145B 143B ->146B 143B ->148B	-0.25876 -0.23245 0.12603 0.13532 0.33923 -0.13566 -0.13941 0.19530 -0.24146 -0.10522 0.49361 -0.37841 -0.11454			
141A ->147A 141A ->147A 142A ->145A 142A ->145A 143A ->146A 143A ->146A 143A ->146A 143A ->146B 139B ->146B 140B ->146B 140B ->146B 142B ->146B 143B ->146B 143B ->146B 143B ->148B	-0.25876 -0.23245 0.12603 0.13532 0.33923 -0.13566 -0.13941 0.19530 -0.24146 -0.10522 0.49361 -0.37841 -0.11454 3.373-A	3.0429 eV	407.46 nm	f=0.0059 <s**2>=2.594</s**2>
141A ->147A 141A ->147A 142A ->145A 142A ->145A 143A ->146A 143A ->146A 143A ->146A 137B ->145B 139B ->146B 140B ->146B 140B ->146B 142B ->145B 143B ->146B 143B ->146B 143B ->146B 143B ->146B	-0.25876 -0.23245 0.12603 0.13532 0.33923 -0.13566 -0.13941 0.19530 -0.24146 -0.10522 0.49361 -0.37841 -0.11454 3.373-A -0.13093	3.0429 eV	407.46 nm	f=0.0059 <s**2>=2.594</s**2>
141A ->147A 141A ->147A 142A ->145A 142A ->145A 143A ->146A 143A ->146A 143A ->146A 137B ->145B 139B ->146B 140B ->146B 140B ->146B 142B ->145B 143B ->146B 143B ->146B 143B ->146B 143B ->146B 143B ->146A 139A ->146A	-0.25876 -0.23245 0.12603 0.13532 0.33923 -0.13566 -0.13941 0.19530 -0.24146 -0.10522 0.49361 -0.37841 -0.11454 3.373-A -0.13093 0.15298	3.0429 eV	407.46 nm	f=0.0059 <s**2>=2.594</s**2>
141A ->147A 141A ->147A 142A ->145A 142A ->145A 143A ->146A 143A ->146A 143A ->146A 137B ->145B 139B ->146B 140B ->147B 142B ->146B 143B ->146B 143B ->146B 143B ->146B 143B ->146B 143B ->146A 139A ->146A 139A ->146A	-0.25876 -0.23245 0.12603 0.13532 0.33923 -0.13566 -0.13941 0.19530 -0.24146 -0.10522 0.49361 -0.37841 -0.11454 3.373-A -0.13093 0.15298 -0.16651	3.0429 eV	407.46 nm	f=0.0059 <s**2>=2.594</s**2>
141A ->147A 141A ->147A 142A ->145A 142A ->145A 143A ->146A 143A ->146A 143A ->146A 137B ->145B 139B ->146B 140B ->147B 142B ->146B 140B ->147B 142B ->146B 143B ->146B 143B ->146B 143B ->146B 139A ->146A 139A ->146A 140A ->148A 141A ->148A	-0.25876 -0.23245 0.12603 0.13532 0.33923 -0.13566 -0.13941 0.19530 -0.24146 -0.10522 0.49361 -0.37841 -0.11454 3.373-A -0.13093 0.15298 -0.16651 0.33865	3.0429 eV	407.46 nm	f=0.0059 <s**2>=2.594</s**2>
141A ->147A 141A ->147A 142A ->145A 142A ->145A 143A ->146A 143A ->146A 143A ->146B 140B ->146B 140B ->146B 140B ->146B 140B ->147B 142B ->146B 143B ->146B 143B ->146B 143B ->146B 143B ->146A 139A ->146A 139A ->146A 140A ->148A 141A ->148A 142A ->148A	-0.25876 -0.23245 0.12603 0.13532 0.33923 -0.13566 -0.13941 0.19530 -0.24146 -0.10522 0.49361 -0.37841 -0.11454 3.373-A -0.13093 0.15298 -0.16651 0.33865 -0.13341	3.0429 eV	407.46 nm	f=0.0059 <s**2>=2.594</s**2>
141A ->147A 141A ->147A 142A ->145A 142A ->145A 143A ->146A 143A ->146A 143A ->146A 143A ->146B 140B ->146B 140B ->146B 140B ->146B 140B ->147B 142B ->146B 143B ->146B 143B ->146B 143B ->146B 143B ->146A 139A ->146A 139A ->146A 140A ->148A 141A ->148A 142A ->147A	-0.25876 -0.23245 0.12603 0.13532 0.33923 -0.13566 -0.13941 0.19530 -0.24146 -0.10522 0.49361 -0.37841 -0.11454 3.373-A -0.13093 0.15298 -0.16651 0.33865 -0.13341 0.12160	3.0429 eV	407.46 nm	f=0.0059 <s**2>=2.594</s**2>
141A ->147A 141A ->147A 142A ->145A 142A ->145A 143A ->146A 143A ->146A 143A ->146B 140B ->146B 140B ->146B 140B ->146B 140B ->147B 142B ->146B 143B ->146B 143B ->146B 143B ->146B 143B ->146A 139A ->146A 139A ->146A 140A ->148A 141A ->148A 142A ->148A 143A ->147A	-0.25876 -0.23245 0.12603 0.13532 0.33923 -0.13566 -0.13941 0.19530 -0.24146 -0.10522 0.49361 -0.37841 -0.11454 3.373-A -0.13093 0.15298 -0.16651 0.33865 -0.13341 0.12169 0.27996	3.0429 eV	407.46 nm	f=0.0059 <s**2>=2.594</s**2>
141A ->147A 141A ->147A 142A ->145A 142A ->145A 143A ->146A 143A ->146A 143A ->146B 140B ->146B 140B ->146B 140B ->146B 140B ->146B 143B ->146B 143B ->146B 143B ->146B 143B ->146B 143B ->146A 139A ->146A 139A ->146A 140A ->148A 141A ->148A 143A ->147A 143A ->148A	-0.25876 -0.23245 0.12603 0.13532 0.33923 -0.13566 -0.13941 0.19530 -0.24146 -0.10522 0.49361 -0.37841 -0.11454 3.373-A -0.13093 0.15298 -0.16651 0.33865 -0.13341 0.12169 0.37896	3.0429 eV	407.46 nm	f=0.0059 <s**2>=2.594</s**2>
141A ->147A $141A ->147A$ $142A ->145A$ $142A ->145A$ $142A ->147A$ $143A ->146A$ $143A ->146B$ $140B ->146B$ $140B ->146B$ $140B ->146B$ $140B ->147B$ $142B ->146B$ $143B ->146B$ $143B ->146B$ $143B ->146B$ $143B ->146B$ $143B ->146A$ $139A ->146A$ $139A ->146A$ $140A ->148A$ $141A ->148A$ $142A ->148A$ $143A ->147A$	-0.25876 -0.23245 0.12603 0.13532 0.33923 -0.13566 -0.13941 0.19530 -0.24146 -0.10522 0.49361 -0.37841 -0.11454 3.373-A -0.13093 0.15298 -0.16651 0.33865 -0.13341 0.12169 0.37896 0.11787	3.0429 eV	407.46 nm	f=0.0059 <s**2>=2.594</s**2>
141A ->147A $141A ->147A$ $142A ->145A$ $142A ->145A$ $142A ->147A$ $143A ->146A$ $143A ->146B$ $140B ->146B$ $140B ->146B$ $140B ->146B$ $140B ->147B$ $142B ->146B$ $143B ->146B$ $143B ->146B$ $143B ->146B$ $143B ->146A$ $139A ->146A$ $139A ->146A$ $140A ->148A$ $141A ->148A$ $142A ->148A$ $143A ->147A$ $143A ->148A$ $144A ->148A$	-0.25876 -0.23245 0.12603 0.13532 0.33923 -0.13566 -0.13941 0.19530 -0.24146 -0.10522 0.49361 -0.37841 -0.11454 3.373-A -0.13093 0.15298 -0.16651 0.33865 -0.13341 0.12169 0.37896 0.11787 0.17445	3.0429 eV	407.46 nm	f=0.0059 <s**2>=2.594</s**2>
141A ->147A 141A ->147A 142A ->145A 142A ->145A 143A ->146A 143A ->146A 143A ->146B 140B ->146B 140B ->146B 140B ->146B 140B ->147B 142B ->146B 143B ->146B 143B ->146B 143B ->146B 143B ->146A 139A ->146A 140A ->148A 141A ->148A 143A ->147A 143A ->148A 144A ->148A 144A ->148A 144A ->148A	-0.25876 -0.23245 0.12603 0.13532 0.33923 -0.13566 -0.13941 0.19530 -0.24146 -0.10522 0.49361 -0.37841 -0.11454 3.373-A -0.13093 0.15298 -0.16651 0.33865 -0.13341 0.12169 0.37896 0.11787 0.17445 0.13486	3.0429 eV	407.46 nm	f=0.0059 <s**2>=2.594</s**2>
$\begin{array}{c} 141A & ->147A \\ 141A & ->147A \\ 142A & ->145A \\ 142A & ->145A \\ 143A & ->146A \\ 143A & ->146A \\ 143A & ->145B \\ 139B & ->146B \\ 140B & ->146B \\ 140B & ->146B \\ 140B & ->147B \\ 142B & ->146B \\ 143B & ->146B \\ 143B & ->146B \\ 143B & ->146B \\ 139A & ->146A \\ 139A & ->146A \\ 140A & ->148A \\ 141A & ->148A \\ 142A & ->148A \\ 143A & ->148A \\ 143A & ->148A \\ 144A & ->148A \\ 144A & ->148A \\ 144A & ->148A \\ 134B & ->144B \\ 138B & ->144B \\ 144B & $	-0.25876 -0.23245 0.12603 0.13532 0.33923 -0.13566 -0.13941 0.19530 -0.24146 -0.10522 0.49361 -0.37841 -0.11454 3.373-A -0.13093 0.15298 -0.16651 0.33865 -0.13341 0.12169 0.37896 0.11787 0.17445 0.13486 0.13186	3.0429 eV	407.46 nm	f=0.0059 <s**2>=2.594</s**2>
141A ->147A 141A ->147A 142A ->145A 142A ->145A 143A ->146A 143A ->146A 143A ->146B 140B ->146B 140B ->146B 140B ->146B 140B ->146B 140B ->146B 143B ->146B 143B ->146B 143B ->146B 143B ->146A 139A ->146A 140A ->148A 141A ->148A 143A ->148A 143A ->148A 143A ->148A 144A ->148A 144A ->148A 144A ->148A 134B ->144B 138B ->144B 138B ->147B	-0.25876 -0.23245 0.12603 0.13532 0.33923 -0.13566 -0.13941 0.19530 -0.24146 -0.10522 0.49361 -0.37841 -0.11454 3.373-A -0.13093 0.15298 -0.16651 0.33865 -0.13341 0.12169 0.37896 0.11787 0.17445 0.13486 0.13186 -0.15508	3.0429 eV	407.46 nm	f=0.0059 <s**2>=2.594</s**2>

139B ->148B	-0.11718				
140B ->147B	0.21938				
140B ->148B	-0.29254				
141B ->148B	-0.10323				
142B ->145B	0.14644				
143B ->146B	-0.10926				
143B ->147B	-0.24039				
143B ->148B	0.33938				
Excited State 14:	3.217-A	3.0813 eV	402.38 nm	f=0.0054	<s**2>=2.337</s**2>
139A ->148A	0.14126				
141A ->146A	0.19346				
143A ->146A	0.34775				
143A ->147A	-0.12636				
143A ->148A	0.10827				
144A ->145A	-0.24086				
144A ->146A	0.27921				
144A ->148A	-0.20096				
135B ->144B	-0.26193				
138B -> 148B 120D > 144D	-0.12251				
139D ->144D	0.10381				
140B -> 14/B	-0.12880				
141D ->140D 142B >147B	-0.19909				
143D ->147D 143D ->148D	0.4///4				
Evolted State 15:	2 510 A	2 0822 N	402 13 nm	f = 0.0002	~\$**7\-1 275
$136\Lambda \rightarrow 145\Lambda$	2.310-A	5.0852 e v	402.13 1111	1-0.0002	<5**2>=1.525
130A => 145A 139A => 145A	0.13035				
139A = 145A 140A = >145A	0.15035				
140A = 145A 1/11A = >1/15A	0.13950				
141A = >145A 144A = >145A	0.15004				
139R ->145R	-0 15911				
140B ->145B	0 11879				
143B ->147B	0.13156				
Excited State 16	3 055-A	3 1709 eV	391 00 nm	f=0 0008	<s**2>=2 083</s**2>
140A ->145A	0.45147	0.1709 01	291.001	1 0.0000	5
141A ->145A	0.28698				
142A ->145A	-0.13040				
143A ->145A	0.53433				
144A ->145A	-0.24683				
139B ->145B	-0.40701				
140B ->145B	0.33275				
142B ->146B	0.10895				
Excited State 17:	3.453-A	3.1864 eV	389.11 nm	f=0.0010	<s**2>=2.731</s**2>
127A ->150A	-0.10798				
138A ->150A	0.10979				
141A ->150A	-0.24585				
142A ->149A	0.20008				
142A ->150A	-0.57020				
142B ->149B	-0.10855				
142B ->152B	0.61066				
142B ->154B	0.28870				
Excited State 18:	2.041-A	3.2040 eV	386.96 nm	1=0.0000	< S **2>=0.792
136B ->144B	0.99860	2 2200 11	202 74	6-0.0070	<0**0× 1 070
Excited State 19:	2.304-A	3.2309 eV	383.74 nm	1=0.0252	<8**2>=1.078
142A -> 145A	0.11810				
144A -> 146A	0.42397				
134B ->144B	-0.22185				
133D ->144B 141D \147D	0.19032				
141D -~14/B 1/3D \1/7D	0.13308				
Excited State 20.	0.17393 2 543-Δ	3 2503 eV	381 45 nm	f=0 0230	<s**2>=1 367</s**2>
139A ->148A	0 10151	5.2505 6 4	JUL 77 IIII	1 0.0239	-0 2- 1.307
13711 × 170A	0.10101				

1/11 ->1/64	0 13863				
141A -> 140A 142A > 146A	0.15805				
143A - > 140A	0.23633				
144A ->146A	-0.46182				
144A ->148A	-0.24144				
134B ->144B	0.43694				
135B ->144B	0.48031				
141B ->144B	0.13202				
141B ->148B	-0.28629				
Excited State 21.	2 809-A	3 3091 eV	374 68 nm	f=0.0256	<s**2>=1 723</s**2>
141A _>145A	0 11404				~
$1/1\Lambda > 1/8\Lambda$	-0.11786				
141A -> 140A 142A > 145A	-0.11780				
142A - > 143A	0.27430				
143A -> 140A	0.11624				
143A ->148A	-0.15315				
144A ->148A	0.53025				
131B ->144B	-0.12220				
134B ->144B	0.40026				
141B ->147B	-0.17554				
141B ->148B	0.29260				
142B ->145B	0.19186				
143B ->147B	0.16959				
143B ->148B	0 31225				
Excited State 22	2 538-A	3 3234 eV	373 07 nm	f=0.0714	<s**2>=1 360</s**2>
$1/1\Lambda \rightarrow 1/15\Lambda$	0 18012	5.525101	575.07 1111	1 0.0711	·0 2· 1.500
141A = 143A 142A > 145A	0.16912				
142A - >143A	0.43030				
143A ->146A	-0.19/06				
144A ->146A	0.22140				
144A ->148A	-0.36023				
126B ->144B	-0.10475				
134B ->144B	0.35127				
135B ->144B	-0.18647				
141B ->147B	0.22787				
142B ->145B	0.32912				
143B ->146B	0.29040				
143B ->148B	-0.17173				
Excited State 23.	2 083-A	3 3374 eV	371 50 nm	f=0.0008	<s**2>=0 835</s**2>
127B ->144B	-0 16182	5.55, 10,	<i>b</i> , 1.0 0 mm	1 0.0000	5 - 0.000
$127B \rightarrow 111B$ $128B \rightarrow 144B$	-0 10050				
120D -> 144D	0.16340				
130D - 2144D 122D $> 144D$	0.10340				
132D - 2144D	-0.13240				
133B ->144B	0.91000				
134B ->144B	-0.13166				
142B ->144B	0.10096				
142B ->147B	0.12584				~
Excited State 24:	2.034-A	3.3931 eV	365.40 nm	t=0.0001	<s**2>=0.784</s**2>
128A ->150A	0.10177				
140A ->150A	0.30191				
143A ->149A	-0.19602				
143A ->150A	0.57043				
143A ->155A	-0.11938				
144A ->150A	0.13240				
139B ->152B	0 16283				
141R ->145R	-0 10377				
141R_>157P	_0 10802				
143R -> 102D	_0 11152				
143D -/149D	0.52201				
143D - 132B	0.33291				
143B ->134B	0.24984		264.20	£_0 0004	<0**0> -1 1 CO
Excited State 75.	2 275 4	2 1026 17	/ / / · · ·	//	< > * * * / >= + + 60
	2.375-A	3.4026 eV	364.38 nm	1-0.0004	<5.2/=1.100
141A ->145A	2.375-A -0.12162	3.4026 eV	364.38 nm	1-0.0004	<5. 22-1.100
141A ->145A 142A ->145A	2.375-A -0.12162 -0.31509	3.4026 eV	364.38 nm	1-0.0004	< <u>5**2</u> /-1.100
141A ->145A 142A ->145A 143A ->146A	2.375-A -0.12162 -0.31509 -0.28799	3.4026 eV	364.38 nm	1-0.0004	<5. 2/-1.100

	0 11/10			
133B ->144B	0.11419			
134B ->144B	0.5/490			
139B ->146B	-0.12350			
141B ->147B	0.12836			
141B ->148B	0.10331			
142B ->145B	-0.28324			
143B ->146B	-0.39710			
143B ->147B	0 18850			
$143B \rightarrow 148B$	-0 12237			
Evoited State 26.	2 270 A	3 5016 eV	354 08 nm	f=0.0102 < S**2 > -1.040
141A > 146A	2.2/9-A	5.5010 6 V	554.08 IIII	1-0.0192 <5* 2>=1.049
141A - 2140A	-0.1/502			
142A ->150A	-0.10596			
143A ->146A	-0.44952			
143A ->147A	0.13111			
144A ->146A	-0.34208			
144A ->148A	-0.18543			
128B ->144B	-0.12354			
129B ->144B	-0.10320			
134B ->144B	-0.15452			
139B ->147B	0 16466			
140B ->147B	0 12409			
1/1B ->1/8B	-0 11907			
141D - 140D 1/2D > 1//D	-0.11907			
143D - 144D	0.13443			
143B ->14/B	0.49394			
143B ->148B	0.34590		252 (1	
Excited State 27:	2.826-A	3.5159 eV	352.64 nm	$f=0.0056 < S^{**2} > =1.746$
140A ->145A	0.10080			
141A ->145A	0.13970			
140B ->145B	-0.12894			
141B ->145B	0.92432			
142B ->146B	0.15841			
143B ->145B	0.16012			
Excited State 28:	2.274-A	3.5402 eV	350.22 nm	f=0.0357 <s**2>=1.042</s**2>
136A ->150A	0 11/06			
12011 12011	-0.11460			
139A ->150A	-0.11480			
139A ->150A 140A ->145A	-0.11480 -0.12264 0.21511			
139A ->150A 140A ->145A 141A ->145A	-0.11480 -0.12264 0.21511 0.37874			
139A ->150A 140A ->145A 141A ->145A 142A >145A	-0.11480 -0.12264 0.21511 0.37874 0.12406			
139A ->150A 140A ->145A 141A ->145A 142A ->145A	-0.11480 -0.12264 0.21511 0.37874 -0.12406			
139A ->150A 140A ->145A 141A ->145A 142A ->145A 144A ->149A	-0.11480 -0.12264 0.21511 0.37874 -0.12406 0.10654			
139A ->150A 140A ->145A 141A ->145A 142A ->145A 144A ->149A 144A ->150A	-0.11480 -0.12264 0.21511 0.37874 -0.12406 0.10654 -0.28530			
139A ->150A 140A ->145A 141A ->145A 142A ->145A 144A ->149A 144A ->150A 139B ->145B	-0.11480 -0.12264 0.21511 0.37874 -0.12406 0.10654 -0.28530 0.29855			
139A ->150A 140A ->145A 141A ->145A 142A ->145A 144A ->149A 144A ->150A 139B ->145B 140B ->145B	-0.11480 -0.12264 0.21511 0.37874 -0.12406 0.10654 -0.28530 0.29855 -0.46496			
139A ->150A 140A ->145A 141A ->145A 142A ->145A 142A ->145A 144A ->149A 144A ->150A 139B ->145B 140B ->145B 141B ->145B	-0.11480 -0.12264 0.21511 0.37874 -0.12406 0.10654 -0.28530 0.29855 -0.46496 -0.29446			
139A ->150A 140A ->145A 141A ->145A 142A ->145A 142A ->145A 144A ->149A 144A ->150A 139B ->145B 140B ->145B 141B ->145B 142B ->146B	$\begin{array}{c} -0.11480\\ -0.12264\\ 0.21511\\ 0.37874\\ -0.12406\\ 0.10654\\ -0.28530\\ 0.29855\\ -0.46496\\ -0.29446\\ 0.47264\end{array}$			
139A ->150A 140A ->145A 141A ->145A 142A ->145A 142A ->145A 144A ->149A 144A ->150A 139B ->145B 140B ->145B 140B ->145B 142B ->146B Excited State 29:	-0.11480 -0.12264 0.21511 0.37874 -0.12406 0.10654 -0.28530 0.29855 -0.46496 -0.29446 0.47264 2.935-A	3.5863 eV	345.72 nm	f=0.0298 <s**2>=1.904</s**2>
139A ->150A 140A ->145A 141A ->145A 142A ->145A 142A ->145A 144A ->149A 144A ->150A 139B ->145B 140B ->145B 140B ->145B 142B ->146B Excited State 29: 140A ->147A	-0.11480 -0.12264 0.21511 0.37874 -0.12406 0.10654 -0.28530 0.29855 -0.46496 -0.29446 0.47264 2.935-A -0.20064	3.5863 eV	345.72 nm	f=0.0298 <s**2>=1.904</s**2>
139A ->150A 140A ->145A 141A ->145A 142A ->145A 142A ->145A 144A ->149A 144A ->150A 139B ->145B 140B ->145B 140B ->145B 142B ->146B Excited State 29: 140A ->147A 141A ->147A	-0.11480 -0.12264 0.21511 0.37874 -0.12406 0.10654 -0.28530 0.29855 -0.46496 -0.29446 0.47264 2.935-A -0.20064 -0.14104	3.5863 eV	345.72 nm	f=0.0298 <s**2>=1.904</s**2>
139A ->150A 140A ->145A 141A ->145A 142A ->145A 142A ->145A 144A ->149A 144A ->150A 139B ->145B 140B ->145B 140B ->145B 142B ->146B Excited State 29: 140A ->147A 141A ->147A 142A ->145A	-0.11480 -0.12264 0.21511 0.37874 -0.12406 0.10654 -0.28530 0.29855 -0.46496 -0.29446 0.47264 2.935-A -0.20064 -0.14104 -0.36314	3.5863 eV	345.72 nm	f=0.0298 <s**2>=1.904</s**2>
139A ->150A 140A ->145A 141A ->145A 142A ->145A 142A ->145A 144A ->149A 144A ->150A 139B ->145B 140B ->145B 140B ->145B 142B ->146B Excited State 29: 140A ->147A 141A ->147A 142A ->145A 142A ->147A	-0.11480 -0.12264 0.21511 0.37874 -0.12406 0.10654 -0.28530 0.29855 -0.46496 -0.29446 0.47264 2.935-A -0.20064 -0.14104 -0.36314 0.10984	3.5863 eV	345.72 nm	f=0.0298 <s**2>=1.904</s**2>
139A ->150A 140A ->145A 141A ->145A 142A ->145A 142A ->145A 144A ->149A 144A ->150A 139B ->145B 140B ->145B 141B ->145B 142B ->146B Excited State 29: 140A ->147A 141A ->147A 142A ->145A 142A ->145A 142A ->148A	-0.11480 -0.12264 0.21511 0.37874 -0.12406 0.10654 -0.28530 0.29855 -0.46496 -0.29446 0.47264 2.935-A -0.20064 -0.14104 -0.36314 0.10984 0.14571	3.5863 eV	345.72 nm	f=0.0298 <s**2>=1.904</s**2>
139A ->150A 140A ->145A 141A ->145A 141A ->145A 142A ->145A 144A ->149A 144A ->150A 139B ->145B 140B ->145B 140B ->145B 142B ->146B Excited State 29: 140A ->147A 141A ->147A 142A ->145A 142A ->145A 142A ->148A 144A ->150A	-0.11480 -0.12264 0.21511 0.37874 -0.12406 0.10654 -0.28530 0.29855 -0.46496 -0.29446 0.47264 2.935-A -0.20064 -0.14104 -0.36314 0.10984 0.14571 -0.17518	3.5863 eV	345.72 nm	f=0.0298 <s**2>=1.904</s**2>
139A ->150A 140A ->145A 141A ->145A 141A ->145A 142A ->145A 144A ->149A 144A ->150A 139B ->145B 140B ->145B 140B ->145B 142B ->146B Excited State 29: 140A ->147A 141A ->147A 142A ->145A 142A ->145A 142A ->148A 144A ->150A 126B ->144B	-0.11480 -0.12264 0.21511 0.37874 -0.12406 0.10654 -0.28530 0.29855 -0.46496 -0.29446 0.47264 2.935-A -0.20064 -0.14104 -0.36314 0.10984 0.14571 -0.17518 0.10141	3.5863 eV	345.72 nm	f=0.0298 <s**2>=1.904</s**2>
139A ->150A 140A ->145A 141A ->145A 142A ->145A 142A ->145A 144A ->149A 144A ->150A 139B ->145B 140B ->145B 140B ->145B 142B ->146B Excited State 29: 140A ->147A 141A ->147A 142A ->145A 142A ->145A 142A ->148A 144A ->150A 126B ->144B 134B >144P	-0.11480 -0.12264 0.21511 0.37874 -0.12406 0.10654 -0.28530 0.29855 -0.46496 -0.29446 0.47264 2.935-A -0.20064 -0.14104 -0.36314 0.10984 0.14571 -0.17518 0.10141 0.13766	3.5863 eV	345.72 nm	f=0.0298 <s**2>=1.904</s**2>
139A ->150A 140A ->145A 141A ->145A 141A ->145A 142A ->145A 144A ->149A 144A ->150A 139B ->145B 140B ->145B 140B ->145B 142B ->146B Excited State 29: 140A ->147A 141A ->147A 142A ->145A 142A ->145A 142A ->144B 134B ->144B 134B ->144B	-0.11480 -0.12264 0.21511 0.37874 -0.12406 0.10654 -0.28530 0.29855 -0.46496 -0.29446 0.47264 2.935-A -0.20064 -0.14104 -0.36314 0.10984 0.14571 -0.17518 0.10141 0.13766 0.22420	3.5863 eV	345.72 nm	f=0.0298 <s**2>=1.904</s**2>
139A ->150A 139A ->150A 140A ->145A 141A ->145A 142A ->145A 142A ->145A 144A ->150A 139B ->145B 140B ->145B 140B ->145B 142B ->146B Excited State 29: 140A ->147A 141A ->147A 142A ->145A 142A ->145A 142A ->145A 142A ->148A 144A ->150A 126B ->144B 139B ->146B 139B ->146B 140B ->146B	-0.11480 -0.12264 0.21511 0.37874 -0.12406 0.10654 -0.28530 0.29855 -0.46496 -0.29446 0.47264 2.935-A -0.20064 -0.14104 -0.36314 0.10984 0.14571 -0.17518 0.10141 0.13766 0.33439 0.10270	3.5863 eV	345.72 nm	f=0.0298 <s**2>=1.904</s**2>
139A ->150A 139A ->150A 140A ->145A 141A ->145A 142A ->145A 144A ->149A 144A ->150A 139B ->145B 140B ->145B 140B ->145B 142B ->146B Excited State 29: 140A ->147A 141A ->147A 142A ->145A 142A ->145A 142A ->145A 142A ->148A 144A ->150A 126B ->144B 139B ->146B 139B ->146B 140B ->146B	-0.11480 -0.12264 0.21511 0.37874 -0.12406 0.10654 -0.28530 0.29855 -0.46496 -0.29446 0.47264 2.935-A -0.20064 -0.14104 -0.36314 0.10984 0.14571 -0.17518 0.10141 0.13766 0.33439 -0.19878	3.5863 eV	345.72 nm	f=0.0298 <s**2>=1.904</s**2>
139A ->150A 139A ->150A 140A ->145A 141A ->145A 142A ->145A 142A ->145A 144A ->150A 139B ->145B 140B ->145B 140B ->145B 142B ->146B Excited State 29: 140A ->147A 142A ->147A 142A ->147A 142A ->145A 142A ->145A 142A ->148A 144A ->150A 126B ->144B 139B ->146B 140B ->146B 142B ->145B 142B ->145B	-0.11480 -0.12264 0.21511 0.37874 -0.12406 0.10654 -0.28530 0.29855 -0.46496 -0.29446 0.47264 2.935-A -0.20064 -0.14104 -0.36314 0.10984 0.14571 -0.17518 0.10141 0.13766 0.33439 -0.12745 -0.12745	3.5863 eV	345.72 nm	f=0.0298 <s**2>=1.904</s**2>
139A ->150A 139A ->150A 140A ->145A 141A ->145A 142A ->145A 142A ->145A 144A ->150A 139B ->145B 140B ->145B 142B ->146B Excited State 29: 140A ->147A 142A ->147A 142A ->147A 142A ->145A 142A ->145A 142A ->148A 144A ->150A 126B ->144B 139B ->146B 142B ->146B 142B ->146B 142B ->146B	-0.11480 -0.12264 0.21511 0.37874 -0.12406 0.10654 -0.28530 0.29855 -0.46496 -0.29446 0.47264 2.935-A -0.20064 -0.14104 -0.36314 0.10984 0.14571 -0.17518 0.10141 0.13766 0.33439 -0.19878 -0.12745 -0.17647	3.5863 eV	345.72 nm	f=0.0298 <s**2>=1.904</s**2>
139A ->150A 139A ->150A 140A ->145A 141A ->145A 142A ->145A 144A ->149A 144A ->150A 139B ->145B 140B ->145B 142B ->146B Excited State 29: 140A ->147A 142A ->147A 142A ->147A 142A ->145A 142A ->145A 142A ->148A 144A ->150A 126B ->144B 139B ->146B 142B ->146B 142B ->146B 143B ->146B	-0.11480 -0.12264 0.21511 0.37874 -0.12406 0.10654 -0.28530 0.29855 -0.46496 -0.29446 0.47264 2.935-A -0.20064 -0.14104 -0.36314 0.10984 0.14571 -0.17518 0.10141 0.13766 0.33439 -0.19878 -0.12745 -0.17647 0.59614	3.5863 eV	345.72 nm	f=0.0298 <s**2>=1.904</s**2>
139A ->150A 139A ->150A 140A ->145A 141A ->145A 142A ->145A 144A ->149A 144A ->150A 139B ->145B 140B ->145B 142B ->146B 142B ->146B 142A ->147A 141A ->147A 142A ->147A 142A ->147A 142A ->145A 142A ->147A 143A ->148A 144A ->150A 126B ->144B 139B ->146B 142B ->146B 143B ->147B 143B ->147B	-0.11480 -0.12264 0.21511 0.37874 -0.12406 0.10654 -0.28530 0.29855 -0.46496 -0.29446 0.47264 2.935-A -0.20064 -0.14104 -0.36314 0.10984 0.14571 -0.17518 0.10141 0.13766 0.33439 -0.12745 -0.12745 -0.17647 0.59614 0.15818	3.5863 eV	345.72 nm	f=0.0298 <s**2>=1.904</s**2>
139A ->150A 139A ->150A 140A ->145A 141A ->145A 142A ->145A 142A ->145A 144A ->150A 139B ->145B 140B ->145B 140B ->145B 142B ->146B Excited State 29: 140A ->147A 141A ->147A 142A ->147A 142A ->147A 142A ->145A 142A ->145A 142A ->148A 144A ->150A 126B ->144B 139B ->146B 142B ->146B 142B ->146B 142B ->146B 142B ->146B 142B ->146B 143B ->146B 143B ->147B Excited State 30:	-0.11480 -0.12264 0.21511 0.37874 -0.12406 0.10654 -0.28530 0.29855 -0.46496 -0.29446 0.47264 2.935-A -0.20064 -0.14104 -0.36314 0.10984 0.14571 -0.17518 0.10141 0.13766 0.33439 -0.12745 -0.17647 0.59614 0.15818 2.614-A	3.5863 eV 3.5994 eV	345.72 nm 344.45 nm	f=0.0298 <s**2>=1.904 f=0.0042 <s**2>=1.458</s**2></s**2>
139A ->150A 139A ->150A 140A ->145A 141A ->145A 142A ->145A 142A ->149A 144A ->150A 139B ->145B 140B ->145B 140B ->145B 142B ->146B Excited State 29: 140A ->147A 142A ->147A 142A ->147A 142A ->147A 142A ->145A 142A ->145A 142A ->148A 144A ->150A 126B ->144B 139B ->146B 142B ->146B 142B ->146B 142B ->146B 142B ->146B 143B ->146B 143B ->146B 143B ->147B Excited State 30: 133A ->150A	-0.11480 -0.12264 0.21511 0.37874 -0.12406 0.10654 -0.28530 0.29855 -0.46496 -0.29446 0.47264 2.935-A -0.20064 -0.14104 -0.36314 0.10984 0.14571 -0.17518 0.10141 0.13766 0.33439 -0.12745 -0.12745 -0.12745 -0.12745 -0.12745 -0.12745 -0.12745 -0.12250	3.5863 eV 3.5994 eV	345.72 nm 344.45 nm	f=0.0298 <s**2>=1.904 f=0.0042 <s**2>=1.458</s**2></s**2>

	0.20730				
141A ->145A	-0.12436				
143A ->150A	-0.10825				
144A ->149A	-0.18908				
144A ->150A	0.50478				
133B ->144B	0.12475				
139B ->146B	0.11905				
142B ->146B	0.51083				
142B ->147B	-0.28502				
142B ->148B	-0.11665				
143B ->146B	0.19046				
Excited State 31:	2.761-A	3.6193 eV	342.56 nm	f=0.0183	<s**2>=1.656</s**2>
136A ->150A	0.11842				
139A ->150A	0.13189				
141A ->145A	0.18827				
142A ->146A	0.16014				
144A ->149A	-0.11672				
144A ->150A	0.32618				
127B ->144B	-0.16047				
133B ->144B	-0.21421				
139B ->145B	0.12364				
140B ->145B	-0.15368				
142B ->144B	0.13619				
142B ->147B	0.64238				
142B ->148B	0.35417				
Excited State 32:	3.373-A	3.6349 eV	341.09 nm	f=0.0033	<s**2>=2.595</s**2>
140A ->145A	-0.29119				
141A ->145A	0.36535				
142A ->145A	-0.13490				
143A ->145A	0.16462				
139B ->145B	0.58287				
140B ->145B	0.54706				
143B ->145B	-0.14313				
Excited State 33:	2.477-A	3.6474 eV	339.93 nm	f=0.0154	<s**2>=1.284</s**2>
140A ->145A	-0.30875				
141A ->145A	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
11111 - 11011	0.51338				
142A ->145A	0.51338				
142A ->145A 142A ->147A	0.51338 -0.19004 0.15467				
142A ->145A 142A ->147A 143A ->145A	0.51338 -0.19004 0.15467 0.12840				
142A ->145A 142A ->145A 142A ->147A 143A ->145A 144A ->150A	0.51338 -0.19004 0.15467 0.12840 0.18833				
142A ->145A 142A ->145A 142A ->147A 143A ->145A 144A ->150A 139B ->145B	0.51338 -0.19004 0.15467 0.12840 0.18833 -0.23445				
142A ->145A 142A ->145A 142A ->147A 143A ->145A 144A ->150A 139B ->145B 140B ->145B	0.51338 -0.19004 0.15467 0.12840 0.18833 -0.23445 -0.39499				
142A ->145A 142A ->145A 142A ->147A 143A ->145A 144A ->150A 139B ->145B 140B ->145B 142B ->146B	0.51338 -0.19004 0.15467 0.12840 0.18833 -0.23445 -0.39499 -0.39712				
142A ->145A 142A ->145A 142A ->147A 143A ->145A 144A ->150A 139B ->145B 140B ->145B 142B ->146B 142B ->147B	0.51338 -0.19004 0.15467 0.12840 0.18833 -0.23445 -0.39499 -0.39712 -0.18493 0.23720				
142A ->145A 142A ->147A 143A ->145A 144A ->150A 139B ->145B 140B ->145B 142B ->146B 142B ->146B 142B ->148B	0.51338 -0.19004 0.15467 0.12840 0.18833 -0.23445 -0.39499 -0.39712 -0.18493 -0.20720	2 (594 -)	228.00	6-0.0005	-0**2>-2.242
142A ->145A 142A ->145A 142A ->147A 143A ->145A 144A ->150A 139B ->145B 140B ->145B 142B ->146B 142B ->146B 142B ->148B Excited State 34:	0.51338 -0.19004 0.15467 0.12840 0.18833 -0.23445 -0.39499 -0.39712 -0.18493 -0.20720 3.158-A 0.1979(3.6584 eV	338.90 nm	f=0.0095	<s**2>=2.243</s**2>
142A ->145A 142A ->145A 142A ->147A 143A ->145A 144A ->150A 139B ->145B 140B ->145B 142B ->146B 142B ->146B 142B ->148B Excited State 34: 139A ->148A	0.51338 -0.19004 0.15467 0.12840 0.18833 -0.23445 -0.39499 -0.39712 -0.18493 -0.20720 3.158-A -0.18786	3.6584 eV	338.90 nm	f=0.0095	<s**2>=2.243</s**2>
142A ->145A 142A ->145A 142A ->147A 143A ->145A 144A ->150A 139B ->145B 140B ->145B 142B ->145B 142B ->146B 142B ->146B 142B ->148B Excited State 34: 139A ->148A 140A ->146A	0.51338 -0.19004 0.15467 0.12840 0.18833 -0.23445 -0.39499 -0.39712 -0.18493 -0.20720 3.158-A -0.18786 0.41850 0.11131	3.6584 eV	338.90 nm	f=0.0095	<s**2>=2.243</s**2>
142A ->145A 142A ->145A 142A ->147A 143A ->145A 144A ->150A 139B ->145B 140B ->145B 142B ->146B 142B ->146B 142B ->148B Excited State 34: 139A ->148A 140A ->148A 140A ->148A	0.51338 -0.19004 0.15467 0.12840 0.18833 -0.23445 -0.39499 -0.39712 -0.18493 -0.20720 3.158-A -0.18786 0.41850 -0.11131 0.20707	3.6584 eV	338.90 nm	f=0.0095	<s**2>=2.243</s**2>
142A ->145A 142A ->145A 142A ->147A 143A ->145A 144A ->150A 139B ->145B 140B ->145B 142B ->146B 142B ->146B 142B ->148B Excited State 34: 139A ->148A 140A ->146A 141A ->146A 143A ->146A	0.51338 -0.19004 0.15467 0.12840 0.18833 -0.23445 -0.39499 -0.39712 -0.18493 -0.20720 3.158-A -0.18786 0.41850 -0.11131 -0.29707 0.46315	3.6584 eV	338.90 nm	f=0.0095	<s**2>=2.243</s**2>
142A ->145A 142A ->145A 142A ->147A 143A ->145A 144A ->150A 139B ->145B 140B ->145B 142B ->146B 142B ->146B 142B ->147B 142B ->148B Excited State 34: 139A ->148A 140A ->146A 140A ->146A 143A ->146A 143A ->146A	0.51338 -0.19004 0.15467 0.12840 0.18833 -0.23445 -0.39499 -0.39712 -0.18493 -0.20720 3.158-A -0.18786 0.41850 -0.11131 -0.29707 0.46315 0.10864	3.6584 eV	338.90 nm	f=0.0095	<s**2>=2.243</s**2>
142A ->145A 142A ->145A 142A ->147A 143A ->145A 144A ->150A 139B ->145B 140B ->145B 142B ->146B 142B ->146B 142B ->147B 142B ->148B Excited State 34: 139A ->148A 140A ->146A 140A ->146A 143A ->146A 144A ->147A 144A ->148A	0.51338 -0.19004 0.15467 0.12840 0.18833 -0.23445 -0.39499 -0.39712 -0.18493 -0.20720 3.158-A -0.18786 0.41850 -0.11131 -0.29707 0.46315 0.10864 -0.17145	3.6584 eV	338.90 nm	f=0.0095	<s**2>=2.243</s**2>
142A ->145A 142A ->145A 142A ->145A 143A ->145A 144A ->150A 139B ->145B 140B ->145B 142B ->146B 142B ->147B 142B ->148B Excited State 34: 139A ->148A 140A ->146A 140A ->146A 143A ->146A 144A ->147A 144A ->148A 139B ->147B	0.51338 -0.19004 0.15467 0.12840 0.18833 -0.23445 -0.39499 -0.39712 -0.18493 -0.20720 3.158-A -0.18786 0.41850 -0.11131 -0.29707 0.46315 0.10864 -0.17145 0.28695	3.6584 eV	338.90 nm	f=0.0095	<s**2>=2.243</s**2>
142A ->145A 142A ->145A 142A ->145A 143A ->145A 143A ->145A 144A ->150A 139B ->145B 140B ->145B 142B ->146B 142B ->147B 142B ->148B Excited State 34: 139A ->148A 140A ->146A 140A ->146A 143A ->146A 144A ->146A 144A ->147A 144A ->147B 140B ->147B	0.51338 -0.19004 0.15467 0.12840 0.18833 -0.23445 -0.39499 -0.39712 -0.18493 -0.20720 3.158-A -0.18786 0.41850 -0.11131 -0.29707 0.46315 0.10864 -0.17145 0.28695 0.36175	3.6584 eV	338.90 nm	f=0.0095	<s**2>=2.243</s**2>
142A ->145A 142A ->145A 142A ->147A 143A ->145A 144A ->150A 139B ->145B 140B ->145B 142B ->146B 142B ->146B 142B ->148B Excited State 34: 139A ->148A 140A ->146A 140A ->146A 143A ->146A 144A ->146A 144A ->147A 144A ->147B 140B ->147B 140B ->148B	0.51338 -0.19004 0.15467 0.12840 0.18833 -0.23445 -0.39499 -0.39712 -0.18493 -0.20720 3.158-A -0.18786 0.41850 -0.11131 -0.29707 0.46315 0.10864 -0.17145 0.28695 0.36175 0.10902	3.6584 eV	338.90 nm	f=0.0095	<s**2>=2.243</s**2>
142A ->145A 142A ->145A 142A ->145A 143A ->145A 143A ->145A 144A ->150A 139B ->145B 140B ->145B 142B ->146B 142B ->146B 142B ->147B 142B ->148A 140A ->146A 140A ->146A 140A ->146A 143A ->146A 143A ->146A 144A ->147A 144A ->147B 140B ->147B 140B ->147B 141B ->148B 143B ->147B	0.51338 -0.19004 0.15467 0.12840 0.18833 -0.23445 -0.39499 -0.39712 -0.18493 -0.20720 3.158-A -0.18786 0.41850 -0.11131 -0.29707 0.46315 0.10864 -0.17145 0.28695 0.36175 0.10902 0.12838	3.6584 eV	338.90 nm	f=0.0095	<s**2>=2.243</s**2>
142A ->145A 142A ->145A 142A ->145A 143A ->145A 143A ->145A 144A ->150A 139B ->145B 142B ->145B 142B ->146B 142B ->147B 142B ->148B 142B ->148A 140A ->146A 140A ->146A 140A ->146A 143A ->146A 143A ->146A 144A ->147A 144A ->147A 144A ->147B 140B ->147B 140B ->147B 141B ->148B 143B ->147B 143B ->148B	0.51338 -0.19004 0.15467 0.12840 0.18833 -0.23445 -0.39499 -0.39712 -0.18493 -0.20720 3.158-A -0.18786 0.41850 -0.11131 -0.29707 0.46315 0.10864 -0.17145 0.28695 0.36175 0.10902 0.12838 -0.21507	3.6584 eV	338.90 nm	f=0.0095	<s**2>=2.243</s**2>
142A ->145A 142A ->145A 142A ->145A 143A ->145A 143A ->145A 144A ->150A 139B ->145B 140B ->145B 142B ->146B 142B ->147B 142B ->148B Excited State 34: 139A ->148A 140A ->146A 140A ->146A 144A ->146A 144A ->146A 144A ->147A 144A ->147B 140B ->147B 140B ->147B 141B ->148B 143B ->147B 143B ->148B 143B ->147B	0.51338 -0.19004 0.15467 0.12840 0.18833 -0.23445 -0.39499 -0.39712 -0.18493 -0.20720 3.158-A -0.18786 0.41850 -0.11131 -0.29707 0.46315 0.10864 -0.17145 0.28695 0.36175 0.10902 0.12838 -0.21507 2.823-A	3.6584 eV 3.6680 eV	338.90 nm 338.02 nm	f=0.0095 f=0.0178	<s**2>=2.243</s**2>
142A ->145A 142A ->145A 142A ->145A 143A ->145A 143A ->145A 144A ->150A 139B ->145B 140B ->145B 142B ->146B 142B ->147B 142B ->148B Excited State 34: 139A ->148A 140A ->146A 140A ->146A 140A ->146A 144A ->146A 144A ->147A 144A ->147B 140B ->147B 140B ->147B 141B ->148B 143B ->147B 143B ->148B Excited State 35: 139A ->146A	0.51338 -0.19004 0.15467 0.12840 0.18833 -0.23445 -0.39499 -0.39712 -0.18493 -0.20720 3.158-A -0.18786 0.41850 -0.11131 -0.29707 0.46315 0.10864 -0.17145 0.28695 0.36175 0.10902 0.12838 -0.21507 2.823-A -0.10496	3.6584 eV 3.6680 eV	338.90 nm 338.02 nm	f=0.0095 f=0.0178	<\$**2>=2.243
142A ->145A 142A ->145A 142A ->145A 143A ->145A 144A ->150A 139B ->145B 140B ->145B 142B ->146B 142B ->147B 142B ->148B Excited State 34: 139A ->148A 140A ->146A 140A ->146A 140A ->146A 143A ->146A 143A ->146A 144A ->147A 144A ->147B 140B ->147B 140B ->147B 141B ->148B 143B ->147B 143B ->147B 143B ->148B Excited State 35: 139A ->146A 139A ->148A	0.51338 -0.19004 0.15467 0.12840 0.18833 -0.23445 -0.39499 -0.39712 -0.18493 -0.20720 3.158-A -0.18786 0.41850 -0.11131 -0.29707 0.46315 0.10864 -0.17145 0.28695 0.36175 0.10902 0.12838 -0.21507 2.823-A -0.10496 -0.10190	3.6584 eV 3.6680 eV	338.90 nm 338.02 nm	f=0.0095 f=0.0178	<s**2>=2.243</s**2>

140A ->148A	0.18342				
141A ->148A	-0.14974				
143A ->146A	0.16940				
143A ->147A	-0.22174				
144A -> 14/A	-0.21358				
144A ->148A	-0.31514				
139B ->148B	0.20734				
140D ->140D 140D >140D	-0.10778				
140B -> 140B 1/1B -> 1/7B	0.23923				
$141B \rightarrow 14/B$ 141B ->148B	0.14980				
143B -> 146B	-0 14723				
143B ->147B	-0 33599				
143B ->148B	0.49374				
Excited State 36:	2.777-A	3.6886 eV	336.13 nm	f=0.0863	<s**2>=1.678</s**2>
138A ->147A	0.11174				
140A ->145A	0.57849				
141A ->147A	0.13170				
142A ->147A	0.27901				
143A ->145A	-0.18413				
144A ->150A	0.16844				
130B ->144B	-0.10100				
137B ->146B	-0.10745				
139B ->145B	0.34466				
142B ->146B	-0.36306				
143B ->149B	0.18611	A (075 1)		a	
Excited State 37:	3.466-A	3.6975 eV	335.32 nm	t=0.0002	<s**2>=2.754</s**2>
13/A ->145A	0.64327				
13/A ->149A	0.25929				
13/A - 2134A 127A > 150A	-0.13373				
13/R -> 13/R 136B -> 145B	-0.60761				
136B ->145B	-0.00701				
136B ->154B	0 10442				
136B ->159B	-0 12562				
Excited State 38:	2.322-A	3.7110 eV	334.10 nm	f=0.0010	<s**2>=1.098</s**2>
139A ->147A	0.12243				
144A ->146A	0.18867				
144A ->147A	0.90395				
144A ->148A	-0.15602				
143B ->148B	0.16108				
Excited State 39:	3.396-A	3.7378 eV	331.70 nm	f=0.0095	<s**2>=2.633</s**2>
140A ->145A	0.18296				
140A ->155A	-0.25395				
141A ->155A	0.10023				
142A ->155A	0.20584				
143A ->149A	0.11905				
143A ->155A	-0.46898				
144A ->155A	-0.14945				
139B ->133B	0.1/323				
1410 -~1330 1428 ->146P	-0.10030				
140D ->140D 147R ->147R	-0.104/0				
142B -> 147B	-0.13903				
142B ->155B	-0 24661				
143B ->149B	-0 10726				
143B ->155B	0.54683				
Excited State 40:	3.333-A	3.7452 eV	331.04 nm	f=0.0205	<s**2>=2.527</s**2>
134A ->151A	-0.11770				
135A ->149A	-0.10684				
138A ->147A	-0.25401				
140A ->145A	0.32754				

$\begin{aligned} 140>154A & 0.16247 \\ 141A ->154A & 0.13172 \\ 142A ->155A & -0.13700 \\ 143A ->149A & 0.21694 \\ 143A ->150A & 0.11130 \\ 143A ->150A & 0.10232 \\ 133B ->150B & 0.10704 \\ 135B ->149B & -0.10232 \\ 137B ->146B & 0.25566 \\ 139B ->154B & 0.17266 \\ 140B ->145B & 0.1571 \\ 142B ->146B & 0.2556 \\ 140B ->145B & 0.1571 \\ 142B ->146B & -0.16583 \\ 142B ->150B & 0.10288 \\ 142B ->150B & 0.10288 \\ 142B ->155B & 0.10713 \\ 128A ->155A & -0.10066 \\ 138A ->155A & -0.10666 \\ 138A ->155A & -0.10666 \\ 138A ->155A & -0.12194 \\ 142A ->145A & -0.22194 \\ 142A ->145A & -0.22194 \\ 142A ->155A & -0.2104 \\ 142B ->155B & 0.63175 \\ 143B ->155B & 0.63175 \\ 143B ->155B & 0.63175 \\ 143B ->155B & 0.63175 \\ 142B ->155B & 0.63175 \\ 142A ->146A & 0.36079 \\ 142A ->146A & 0.36079 \\ 142A ->146A & 0.36079 \\ 142A ->146A & 0.36175 \\ 142A ->146A & 0.19219 \\ Excited State 43: 2.765 - A 3.8051 eV 325.84 nm f=0.0052 =1.661 \\ 139A ->146A & 0.11157 \\ 141A ->147A & 0.11635 \\ 140A ->147A & 0.01283 \\ 140A ->147A & 0.01283 \\ 140A ->147A & 0.01283 \\ 140A ->147A & 0.01645 \\ 133A ->147A & 0.01645 \\ 143A ->147A & 0.01645 \\ 143A ->147A & 0.01645 \\ 143A ->147A & 0.01645 \\ 143B ->146B & 0.13770 \\ 142B ->147B & 0.19219 \\ Excited State 441 & 2.00879 \\ 139B ->146B & 0.13770 \\ 142B ->147A & 0.01645 \\ 131B ->144B & 0.13062 \\ 142B ->147B & 0.10879 \\ 139B ->146B & 0.13749 \\ 142B ->147B & 0.10879 \\ 139B ->146B & 0.13749 \\ 142B ->147A & 0.1226 \\ 127B ->144B & 0.1362 \\ 148B ->147B & 0.1529 \\ 128B ->144B & 0.25294 \\ 130B ->144B & 0.25974 \\ 130B ->144B & $						
$\begin{array}{llllllllllllllllllllllllllllllllllll$	140A ->154A	0.16247				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	141A ->145A	-0.12597				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	141A ->154A	0.13172				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	142A ->155A	-0.13700				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	143A ->149A	0.21694				
143A > 155A 0.16223 133B > 150B 0.10704 133B > 149B 0.10232 137B > 146B 0.25566 139B > 154B 0.1768 140B > 154B 0.16789 140B > 154B 0.16789 140B > 154B 0.10768 142B > 146B 0.00768 142B > 150B 0.10288 142B > 150B 0.10288 142B > 155B 0.16464 143B > 149B 0.28288 143B > 155A 0.10066 138A > 155A 0.12143 142B > 152B 0.12443 142B > 152B 0.12443 142A > 147A 0.12800 142A > 147A 0.12800 142A > 147A 0.10283 140A > 147A 0.10283 140A > 147A 0.10283 140A > 147A 0.10283 140A > 147A 0.1645 143A > 146A 0.1524 143A > 146A 0.1524 143A > 147A 0.1645 143A > 147A 0.1645 143A > 147A 0.1645 143A > 147A 0.1637 141A > 148A 0.1524 143A > 147A 0.1645 143A > 147A 0.1645 144A > 147A 0.16137 144A > 144B 0.1014 131B > 144B 0.10614 131B > 144B 0.10614 131B > 144B 0.1074 143B > 146B 0.18770 143B > 146B 0.18770 143B > 144B 0.13749 126B > 144B 0.13749 126B > 144B 0.13749 127B > 144B 0.13749 126B > 144B 0.12262 Excited State 41: 2.209-A 3.8087 eV 325.53 nm f=0.0013 <\$**2>=0.970 142A > 147A 0.12809 127B > 144B 0.25294 130B > 144B 0.14389 142B > 147B 0.4389 142B > 147B 0.26294 Excited State 41: 2.209-A 3.8087 eV 325.53 nm f=0.0013 <\$**2>=0.970 142A > 147A 0.12262 Excited State 44: 2.209-A 3.8087 eV 325.53 nm f=0.0013 <\$**2>=0.970 142A > 147A 0.2027 Excited State 44: 2.209-A 3.8087 eV 325.53 nm f=0.0013 <\$**2>=0.970 142B > 147B 0.25294 130B > 144B 0.25294 130B	143A ->150A	0 11130				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$1/3\Lambda > 155\Lambda$	0.16223				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	122D >150D	0.10223				
137B >144B 0.25566 139B >154B 0.17266 140B >145B 0.11571 142B >146B 0.25566 139B >154B 0.11571 142B >146B 0.06583 142B >150B 0.10288 142B >155B 0.16464 143B >149B 0.28288 143B >155B 0.19713 Excited State 41: 3.450-A 3.7580 eV 329.92 nm f=0.0000 $<$ 8**2>=2.726 128A >155A 0.10536 140A >155A 0.010536 140A >155A 0.010536 140A >155A 0.010536 140A >155A 0.02194 141A >155A 0.22194 142A >155B 0.63175 143B >155B 0.63175 143B >155B 0.63175 143B >155B 0.63175 143B >155B 0.63175 143B >155B 0.63175 143B >155B 0.6639 Excited State 42: 2.522-A 3.7653 eV 329.28 nm f=0.0007 $<$ 8**2>=1.340 141A >14A >147A 0.12800 142A >147A -0.12800 142A >147A -0.12800 142A >146A 0.36174 144A >146A 0.36154 140A >147A 0.36154 140A >148A 0.1157 141A >148A 0.1157 141A >148A 0.1157 141A >148A 0.1157 141A >148A 0.1157 141A >148A 0.13056 137A >146A 0.15224 143A >146A 0.15224 143A >147A 0.11645 143A >147A 0.11645 143A >148A 0.13632 144A >147A 0.13652 142A >147B 0.10524 143B >148B 0.10614 131B >144B 0.13066 137B >145B 0.01047 143B >146B 0.18770 143B >146B 0.18770 143B >146B 0.18770 143B >146B 0.18770 143B >146B 0.18770 143B >148B 0.14781 143B >148B 0.14781 143B >148B 0.14781 143B >148B 0.1522 Excited State 44: 2.209-A 3.8087 eV 325.53 nm f=0.0013 <\$**2>=0.970 142A >147B 0.12820 Excited State 44: 2.209-A 3.8087 eV 325.53 nm f=0.0013 <\$**2>=0.970 142A >147B 0.25294 133B >144B 0.25294 133B >144B 0.25294 133B >144B 0.25294 133B >144B 0.75166 132B >144B 0.28978 133B >144B 0.75166 132B >144B 0.28978 133B >144B 0.28978 134B >147B -0.26924 E	133D ->130D	0.10704				
137B > 140B 0.25566 $139B > 140B > 145B 0.17266$ $140B > 145B 0.16789$ $140B > 154B 0.11571$ $142B > 146B 0.016583$ $142B > 150B 0.10288$ $142B > 150B 0.10288$ $142B > 155B 0.016464$ $143B > 149B 0.22288$ $143B > 155A 0.10066$ $138A > 155A 0.2194$ $142A > 155A 0.2194$ $142A > 155A 0.2194$ $142B > 155B 0.63175$ $143B > 155B 0.26339$ Excited State 42: 2.522-A 3.7653 eV 329.28 nm f=0.0007 <s**2>=1.340 $141A > 146A 0.36079$ $142A > 147A 0.12800$ $142A > 147A 0.12800$ $142B > 147B 0.12800$ $142B > 147B 0.12800$ $142B > 147B 0.12800$ $142A > 147A 0.12800$ $142B > 147B 0.13652$ $143A > 148B 0.14781$ $143B > 144B 0.33135$ $128B > 144B 0.228978$ $133B > 144B 0.228978$ $133B > 144B 0.228978$ $133B > 144B 0.028978$ $132B > 144B 0.28974$ $132B > 142B > 0.1478$ $142B > 147B 0.028974$ $132B > 144B 0.28974$ $132B > 147B 0.028974$ $132B > 144B 0.28974$ $132B > 147B 0.028974$ $132B > 144B 0.28974$ $132B > 147B 0.28$</s**2>	135B ->149B	-0.10232				
1398 >1548 -0.17266 1408 >1548 0.16789 1408 >1548 0.11571 1428 >1468 -0.16583 1428 >1508 0.10288 1428 >1558 0.10288 1428 >1558 0.10288 1428 >1558 0.19713 Excited State 41: 3.450-A 3.7580 eV 329.92 nm f=0.0000 $<$ S**2>=2.726 128A $>155A$ 0.10970 141A $>155A$ 0.02194 142A $>155A$ 0.02194 142A $>155A$ 0.02194 142A $>155A$ 0.02194 142A $>155A$ 0.02194 142A $>155B$ 0.6175 143B $>155B$ 0.6175 143B $>155B$ 0.26339 Excited State 42: 2.522-A 3.7653 eV 329.28 nm f=0.0007 $<$ S**2>=1.340 141A $>147A$ 0.12800 142A $>147A$ 0.12800 142A $>147A$ 0.12800 142A $>147A$ 0.12800 142A $>147A$ 0.06175 143B $>146A$ 0.0023 140A $>147A$ 0.36154 140A $>148A$ 0.11157 141A $>147A$ 0.12810 141A $>147A$ 0.36154 140A $>148A$ 0.11157 141A $>147A$ 0.12815 142A $>147A$ 0.1283 140A $>147A$ 0.1645 143A $>147A$ 0.16145 143A $>148A$ 0.1157 141A $>147A$ 0.1645 143A $>147A$ 0.1645 143A $>148A$ 0.13522 142A $>147A$ 0.061337 143A $>148B$ 0.10614 131B $>148B$ 0.10614 131B $>148B$ 0.10879 139B $>146B$ 0.18770 142B $>148B$ 0.11047 143B $>148B$ 0.11647 143B $>148B$ 0.11877 142B $>144B$ 0.28978 133B $>144B$ 0.28978 134B $>147B$ 0.26924	137B ->146B	0.25566				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	139B ->154B	-0.17266				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	140B ->145B	-0.16789				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	140B ->154B	0.11571				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	142B ->146B	-0.16583				
142B $>150B$ 0.10288 142B $>155B$ 0.16464 143B $>149B$ -0.28288 143B $>155B$ 0.10713 Excited State 41: 3.450-A 3.7580 eV 329.92 nm f=0.0000 $<$ S**2>=2.726 128A $>155A$ -0.10066 138A $>155A$ -0.10056 140A $>155A$ -0.14790 141A $>155A$ -0.22194 142A $>155A$ -0.22194 142A $>155A$ -0.21703 142B $>155B$ 0.63175 143B $>155B$ 0.63175 143B $>155B$ 0.62399 Excited State 42: 2.522-A 3.7653 eV 329.28 nm f=0.0007 $<$ S**2>=1.340 141A $>146A$ 0.36079 142A $>147A$ -0.12800 142B $>147A$ -0.12800 142B $>147A$ -0.12800 142B $>147A$ -0.12800 142B $>147A$ 0.036154 140A $>147A$ 0.36154 140A $>147A$ 0.36154 140A $>148A$ 0.11157 141A $>148A$ 0.13157 141A $>148A$ 0.13157 141A $>148A$ 0.136154 143A $>147A$ 0.18067 141A $>148A$ 0.13632 144A $>147A$ 0.18047 141A $>148A$ 0.13632 144A $>147A$ 0.18047 141A $>148A$ 0.13632 144A $>147A$ 0.18047 143B $>148B$ 0.13642 143B $>148B$ 0.13642 143B $>148B$ 0.13642 144A $>147A$ 0.14239 126B $>144B$ 0.1067 143B $>144B$ 0.10879 139B $>146B$ 0.18770 143B $>146B$ 0.18770 143B $>148B$ 0.10879 139B $>146B$ 0.18770 143B $>148B$ 0.1147 143B $>148B$ 0.1147 143B $>148B$ 0.12262 127B $>144B$ 0.01879 139B $>144B$ 0.026924 Excited State 44: 2.209-A 3.8087 eV 322.49 nm f=0.0012 $<$ S**2>=1.908	142B ->148B	-0.10768				
$\begin{array}{c} 142B > 155B & 0.16464 \\ 143B >>143B >>155B & 0.19713 \\ Excited State 41: 3.450-A & 3.7580 eV & 329.92 nm f=0.0000 =2.726 \\ 128A >>155A & -0.10066 \\ 138A >>155A & -0.10066 \\ 138A >>155A & -0.2194 \\ 142A >>155A & -0.22194 \\ 142A >>155A & -0.22194 \\ 142A >>155A & -0.22194 \\ 142A >>155B & 0.63175 \\ 143B >>152B & 0.12443 \\ 142B >>155B & 0.63175 \\ 143B >>155B & 0.26339 \\ Excited State 42: & 2.522-A & 3.7653 eV & 329.28 nm f=0.0007 =1.340 \\ 141A >>146A & 0.36079 \\ 142A >>146A & 0.087440 \\ 142A >>147A & -0.12800 \\ 142B >>147A & -0.19219 \\ Excited State 43: & 2.765-A & 3.8051 eV & 325.84 nm f=0.0352 =1.661 \\ 139A >>146A & -0.10283 \\ 140A >>147A & 0.36154 \\ 140A >>147A & 0.36154 \\ 140A >>147A & 0.16157 \\ 141A >>148A & -0.12315 \\ 142A >>146A & 0.15224 \\ 143A >>146A & 0.16327 \\ 143A >>148A & 0.13632 \\ 144A >>147A & 0.61337 \\ 143B >>148B & 0.10614 \\ 131B >>144B & 0.10614 \\ 131B >>144B & 0.10614 \\ 131B >>146B & 0.18770 \\ 143B >>146B & 0.16879 \\ 139B >>146B & 0.18781 \\ 143B >>146B & 0.16879 \\ 139B >>144B & 0.02262 \\ 127B >>144B & 0.025294 \\ 130B >>144B & 0.025294 \\ 130B >>144B & 0.025294 \\ 130B >>144B & 0.075166 \\ 132B >>144B & 0.01439 \\ 142B >>147B & 0.026924 \\ 142B >>147B & 0.$	142B ->150B	0 10288				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	142B > 150B 1/2B > 155B	0.16464				
143B -:147b -0.20286 143B -:155B -0.19713 Excited State 41: 3.450-A 3.7580 eV 329.92 nm f=0.0000 $<$ S**2>=2.726 128A ->155A -0.10066 138A ->155A -0.14790 141A ->155A -0.22194 142A ->155A -0.22194 142A ->155A -0.21703 142B ->152B 0.12443 142B ->152B 0.12443 142B ->155B 0.26339 Excited State 42: 2.522-A 3.7653 eV 329.28 nm f=0.0007 $<$ S**2>=1.340 141A ->146A 0.36079 142A ->147A -0.12800 142B ->147B -0.19219 Excited State 43: 2.765-A 3.8051 eV 325.84 nm f=0.0352 $<$ S**2>=1.661 139A ->146A -0.10283 140A ->147A 0.36154 140A ->147A 0.18067 141A ->147A 0.18067 141A ->147A 0.18067 141A ->147A 0.16137 141A ->147A 0.16137 143A ->147A 0.16137 143A ->147A 0.16137 143A ->147A 0.16137 143A ->147A 0.16137 143B ->148B 0.1362 143A ->147B 0.10614 131B ->144B 0.13066 137B ->145B -0.10879 139B ->146B 0.18770 143B ->145B 0.11047 143B ->145B 0.11647 143B ->146B 0.18770 143B ->145B 0.11047 143B ->146B 0.18770 143B ->146B 0.18770 143B ->146B 0.18770 143B ->144B 0.13622 127B ->144B 0.1369 126B ->144B 0.13749 126B ->144B 0.13749 126B ->144B 0.1262 127B ->144B 0.75166 132B ->144B 0.75166 132B ->144B 0.75166 132B ->144B 0.75166 132B ->144B 0.75166 132B ->144B 0.28978 133B ->144B 0.75166 132B ->144B 0.28978 133B ->144B 0.28978 134B ->147B -0.26924 134B ->147B -0.26924 134B ->147B -0.26924 134B ->147B -0.26924 134B ->147B -0	142D > 155D 142D > 140D	0.10404				
143B ->153B-0.19/13Excited State 41: 3.450 -A3.7580 eV329.92 nm=0.0000<***2>=2.726128A ->155A0.10066138A ->155A0.010536140A ->155A-0.2190141A ->155A-0.22194142A ->155A-0.21703142B ->155B0.63175143B ->155B0.63175143B ->155B0.63175143B ->155B0.63175143B ->155B0.63175143B ->155B0.63079142A ->146A0.36079142A ->146A0.36079142A ->147A-0.12800142B ->147B-0.192190325.84 nmExcited State 43:2.765-A3.8051 eV325.84 nm140A ->147A0.36154140A ->147A0.36154140A ->147A0.36154140A ->147A141A ->147A0.18067141A ->147A0.16137143A ->147A0.61337143A ->147A0.61337143A ->147A0.61337143A ->148A0.13622144A ->147A0.1645131B ->144B0.13066137B ->145B-0.10879139B ->146B0.13749142B ->147B0.01262127B ->144B0.15224128B ->144B0.1315128B ->144B0.13670142A ->147A0.1262127B ->144B0.13749142B ->144B0.25294130B ->144B0.75166132B ->144B0.26924127B ->144B0.26924127B	143D ->149D	-0.28288				
Excited State 41: $3.450-A$ $3.7580 eV 329.92 nm f=0.0000 <S**2>=2.726128A > 155A$ $-0.10066138A > 155A$ $-0.10636140A > 155A$ $-0.2194142A > 155A$ $-0.21703142B > 155B$ $0.63175143A > 155B$ $0.26339Excited State 42: 2.522-A 3.7653 eV 329.28 nm f=0.0007 <S**2>=1.340141A > 146A$ $0.36079142A > 147A$ $-0.12800142A > 147A$ $-0.12800142A > 147B$ $-0.19219Excited State 43: 2.765-A 3.8051 eV 325.84 nm f=0.0352 <S**2>=1.661139A > 146A$ $-0.10283140A > 147A$ $0.36154140A > 147A$ $0.36154140A > 147A$ $0.18067141A > 148A$ $-0.12315142A > 146A$ $0.15224143A > 146A$ $0.15224143A > 146A$ $0.15224143A > 146A$ $0.1645143A > 146A$ $0.16337143A > 146A$ $0.1645143A > 145B$ $-0.10614131B > 144B$ $0.13662144B > 145B$ $-0.1047143B > 145B$ $-0.1047143B > 145B$ $-0.11047143B > 145B$ $0.11047143B > 146B$ $0.18770142B > 145B$ $-0.11047143B > 146B$ $0.18770142B > 144B$ $0.12262Excited State 44: 2.209-A 3.8087 eV 325.53 nm f=0.0013 <S**2>=0.970142A - 3144B$ $0.25294Excited State 44: 2.209-A 3.8087 eV 325.53 nm f=0.0013 <S**2>=0.970142A - 3144B$ $-0.25294130B - 144B$ $0.25294130B - 144B$ $0.14389142B - 147B$ $-0.26924142B - 147B$ $-0.26924142B - 147B$ $0.26924142B - 147B$ $0.26924142B - 147B$ $0.26924142B - 147B$ 0.26924	143B ->155B	-0.19/13				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Excited State 41:	3.450-A	3.7580 eV	329.92 nm	t=0.0000	<s**2>=2.726</s**2>
$\begin{array}{llllllllllllllllllllllllllllllllllll$	128A ->155A	-0.10066				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	138A ->155A	0.10536				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	140A ->155A	-0.14790				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	141A ->155A	-0.22194				
$\begin{array}{c} 143A > 155A & -0.21703 \\ 142B > 155B & 0.26339 \\ \text{Excited State 42: } 2.522-A & 3.7653 \ eV & 329.28 \ nm \ f=0.0007 \ < S^{**2} >= 1.340 \\ 141A > 146A & 0.36079 \\ 142A > 146A & 0.36079 \\ 142A - 146A & 0.87440 \\ 142A - 147A & -0.12800 \\ 142B - 147B & -0.19219 \\ \text{Excited State 43: } 2.765-A & 3.8051 \ eV & 325.84 \ nm \ f=0.0352 \ < S^{**2} >= 1.661 \\ 139A - 146A & 0.10283 \\ 140A - 2147A & 0.36154 \\ 140A - 2147A & 0.36154 \\ 140A - 2147A & 0.12815 \\ 142A - 2147A & 0.12315 \\ 142A - 2147A & 0.11645 \\ 143A - 2146A & 0.15224 \\ 143A - 2147A & 0.11645 \\ 143A - 2146A & 0.15224 \\ 143A - 2147A & 0.61337 \\ 143A - 2148B & 0.10614 \\ 131B - 2144B & 0.13066 \\ 137B - 2144B & 0.13066 \\ 137B - 2144B & 0.13066 \\ 137B - 2145B & -0.11047 \\ 143B - 2146B & 0.18770 \\ 143B - 2146B & 0.18770 \\ 143B - 2146B & 0.18770 \\ 143B - 2146B & 0.15292 \\ \text{Excited State 44: } 2.209-A & 3.8087 \ eV \ 325.53 \ nm \ f=0.0013 \ < S^{**2} >= 0.970 \\ 142A - 2147A & 0.12262 \\ 127B - 144B & 0.25294 \\ 130B - 2144B & 0.26924 \\ 127B - 144B & 0.26924 \\ 127B - 144B & 0.26924 \\ 128B - 2144B & 0.28978 \\ 133B - 2144B & 0.289$	142A ->155A	-0 52854				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1434 ->1554	-0 21703				
$142B > 152B$ 0.12443 $142B > 155B$ 0.63175 $143B > 155B$ 0.26339 Excited State 42: $2.522-A$ 3.7653 eV $141A - 5146A$ 0.36079 $142A - 5147A$ 0.12800 $142B - 5147B$ -0.12800 $142B - 5147B$ -0.19219 Excited State 43: $2.765-A$ 3.8051 eV 325.84 nm f= $0.0352 < S^{**2} >= 1.661$ $139A - 5146A$ -0.10283 $140A - 5147A$ 0.36154 $140A - 5147A$ 0.36154 $140A - 5147A$ 0.36154 $140A - 5147A$ 0.11645 $143A - 5147A$ 0.015224 $143A - 5147A$ 0.01637 $143A - 5147A$ 0.11645 $143A - 5147A$ 0.01632 $144A - 5147A$ 0.01623 $144A - 5147A$ 0.01879 $126B - 5144B$ 0.10614 $131B - 5145B$ -0.10879 $139B - 5146B$ 0.13749 $142B - 5145B$ 0.11047 $143B - 5160B$ 0.15292 Excited State 44: $2.209-A$ 3.8087 eV 325.53 nm $122B - 5144B$ 0.35135 $122B - 5144B$ 0.25294 $130B - 5144B$ 0.25294 $130B - 5144B$ 0.25294 $130B - 5144B$ 0.26924 Excited State 45: $2.938-A$ 3.8446 eV 322.49 nm $=0.0012 < S^{**2} >= 1.908$	140R > 150R	0.12443				
142B $-2153B$ 0.05175 143B $-2155B$ 0.26339 Excited State 42: $2.522-A$ 3.7653 eV 141A $-2146A$ 0.36079 142A $-2146A$ 0.87440 142B $-2147A$ -0.12800 142B $-2147A$ -0.12800 142B $-2147A$ -0.12800 142B $-2147A$ -0.12800 142B $-2147A$ -0.1283 140A $-2147A$ 0.36154 140A $-2147A$ 0.36154 140A $-2147A$ 0.36154 140A $-2147A$ 0.18067 141A $-2148A$ 0.11157 141A $-2147A$ 0.11645 143A $-2147A$ 0.11645 143A $-2147A$ 0.61337 143A $-2147A$ 0.61337 143A $-2147A$ 0.01239 126B $-144B$ 0.10614 131B $-144B$ 0.13666 137B $-145B$ -0.10879 139B $-144B$ 0.13749 142B $-145B$ 0.11047 143B $-145B$ 0.11047 143B $-146B$ 0.18770 142A $-2147A$ 0.12262 127B $-144B$ 0.25294 130B $-144B$ 0.25294 130B $-144B$ 0.25294 130B $-144B$ 0.25294 130B $-144B$ 0.26924 Excited State 45: $2.938-A$ $3.8446 eV$ 322.49 nm f= $0.0012 < S^{**2>=1.908$	142D - 2132D	0.12445				
143B ->155B 0.26339 Excited State 42: $2.522-A$ 3.7653 eV 329.28 nm $f=0.0007 < S^{**}2^{=}1.340$ $141A ->146A$ 0.36079 $142A ->146A$ 0.87440 $142A ->147A$ -0.12800 $142B ->147B$ -0.19219 Excited State 43: $2.765-A$ 3.8051 eV 325.84 nm $f=0.0352 < S^{**}2^{>}=1.661$ $139A ->146A$ -0.10283 $140A ->147A$ 0.36154 $140A ->147A$ 0.36154 $141A ->147A$ 0.18067 $141A ->147A$ 0.18067 $141A ->147A$ 0.1645 $143A ->146A$ 0.15224 $143A ->146A$ 0.15224 $143A ->147A$ 0.61337 $143A ->148A$ 0.13632 $144A ->147A$ 0.01644 $131B ->144B$ 0.13066 $137B ->145B$ -0.10879 $139B ->146B$ 0.13749 $142B ->145B$ 0.11047 $143B ->146B$ 0.18270 $143B ->144B$ 0.1262 $127B ->144B$ 0.25294 $130B ->144B$ 0.25294 $130B ->144B$ 0.75166 $132B ->144B$ 0.25294 $130B ->144B$ 0.25294 $130B ->144B$ 0.25294 $130B ->144B$ 0.25294 $130B ->144B$ 0.26924 Excited State 45: $2.938-A$ $3.8446 eV$ 322.49 nm $f=0.0012 < S^{**2>=1.908$	142B ->155B	0.631/5				
Excited State 42: 2.522-A 3.7653 eV 329.28 nm f=0.0007 $<$ S**2>=1.340 141A ->146A 0.36079 142A ->147A 0.12800 142B ->147B -0.19219 Excited State 43: 2.765-A 3.8051 eV 325.84 nm f=0.0352 $<$ S**2>=1.661 139A ->146A -0.10283 140A ->148A 0.1157 141A ->148A 0.12315 142A ->147A 0.18067 141A ->148A 0.12315 142A ->147A 0.11645 143A ->146A 0.15224 143A ->146A 0.15224 143A ->147A 0.61337 144A ->148A 0.13632 144A ->147B 0.10614 131B ->144B 0.13066 137B ->145B -0.10879 139B ->146B 0.18770 143B ->146B 0.18770 143B ->148B 0.11047 143B ->148B 0.11047 143B ->148B 0.11047 143B ->148B 0.15292 Excited State 44: 2.209-A 3.8087 eV 325.53 nm f=0.0013 $<$ S**2>=0.970 142A ->147A 0.1262 127B ->144B 0.25294 130B ->144B 0.75166 132B ->144B 0.75166 132B ->144B 0.75166 132B ->144B 0.25294 130B ->144B 0.75166 132B ->144B 0.25294 130B ->144B 0.75166 132B ->144B 0.25294 130B ->144B 0.25294 130B ->144B 0.75166 132B ->144B 0.25294 130B ->144B 0.75166 132B ->144B 0.25294 130B ->144B 0.25294 130B ->144B 0.75166 132B ->144B 0.25294 130B ->144B 0.25294 130B ->144B 0.75166 132B ->144B 0.25294 130B ->144B 0.25294 130B ->144B 0.25294 130B ->144B 0.75166 132B ->144B 0.25294 130B ->144B 0.75166 132B ->144B 0.25294 130B ->144B 0.25294 130B ->144B 0.75166 132B ->144B 0.25294 130B ->144B 0.75166 132B ->144B 0.25294 130B ->144B 0.25294 130B ->144B 0.25294 130B ->144B 0.25294 130B ->144B 0.25294 130B ->144B 0.25294 130B ->144B 0.75166 132B ->144B 0.25294 130B ->144B 0.25294 142B ->147B -0.26924 142B ->147B -0.269	143B ->155B	0.26339				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Excited State 42:	2.522-A	3.7653 eV	329.28 nm	t=0.0007	$=1.340$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	141A ->146A	0.36079				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	142A ->146A	0.87440				
$142B > 147B$ -0.19219 Excited State 43: $2.765-A$ 3.8051 eV 325.84 nm $f=0.0352 < S^{**2} > =1.661$ $139A > 146A$ -0.10283 $140A > 147A$ 0.36154 $140A > 148A$ 0.11157 $141A > 147A$ 0.18067 $141A > 148A$ -0.12315 $142A > 147A$ 0.1645 $143A > -146A$ 0.15224 $143A > 146A$ 0.15224 $143A > 148A$ 0.13632 $144A > 147A$ 0.01637 $143A > 148A$ 0.13632 $144A > 147A$ 0.14239 $126B > 144B$ 0.10614 $131B > 144B$ 0.10614 $131B > 146B$ 0.13749 $142B > 145B$ 0.11047 $143B > 146B$ 0.18770 $143B > 146B$ 0.15292 Excited State 44: $2.209-A$ 3.8087 eV 325.53 nm $f=0.0013 < S^{**2} > =0.970$ $142A > 147A$ 0.12262 $127B > 144B$ 0.25294 $130B > 144B$ 0.25294 $130B > 144B$ 0.75166 $132B > 144B$ 0.28978 $133B > 144B$ 0.14389 $142B > 147B$ 0.26924 Excited State 45: $2.938-A$ 3.8446 eV 322.49 nm $f=0.0012 < S^{**2} > =1.908$	142A ->147A	-0.12800				
Excited State 43: 2.765-A 3.8051 eV 325.84 nm f=0.0352 $<$ S**2>=1.661 139A ->146A -0.10283 140A ->147A 0.36154 140A ->148A 0.11157 141A ->148A 0.12315 142A ->147A 0.18067 141A ->148A -0.12315 142A ->147A 0.11645 143A ->147A 0.61337 143A ->148A 0.13632 144A ->147A 0.14239 126B ->144B 0.10614 131B ->144B 0.13066 137B ->145B -0.10879 139B ->146B 0.18770 143B ->146B 0.18770 143B ->148B 0.14781 143B ->150B 0.15292 Excited State 44: 2.209-A 3.8087 eV 325.53 nm f=0.0013 $<$ S**2>=0.970 142A ->147A 0.12262 127B ->144B -0.35135 128B ->144B 0.25294 130B ->144B 0.25294 130B ->144B 0.75166 132B ->144B 0.28978 133B ->144B 0.14389 142B ->147F 0.26924 Excited State 45: 2.938-A 3.8446 eV 322.49 nm f=0.0012 $<$ S**2>=1.908	142B ->147B	-0.19219				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Excited State 43:	2.765-A	3.8051 eV	325.84 nm	f=0.0352	<s**2>=1.661</s**2>
$140A \rightarrow 147A$ 0.36154 $140A \rightarrow 148A$ 0.11157 $141A \rightarrow 148A$ 0.12315 $142A \rightarrow 147A$ 0.1645 $143A \rightarrow 146A$ 0.15224 $143A \rightarrow 146A$ 0.15224 $143A \rightarrow 146A$ 0.15224 $143A \rightarrow 147A$ 0.61337 $143A \rightarrow 148A$ 0.13632 $144A \rightarrow 147A$ -0.14239 $126B \rightarrow 144B$ 0.10614 $131B \rightarrow 144B$ 0.13066 $137B \rightarrow 145B$ -0.10879 $139B \rightarrow 146B$ 0.18770 $143B \rightarrow 146B$ 0.18770 $143B \rightarrow 146B$ 0.15292 Excited State 44: $2.209-A$ 3.8087 eV 325.53 nm $126B \rightarrow 144B$ 0.12262 $127B \rightarrow 144B$ 0.25294 $130B \rightarrow 144B$ 0.75166 $132B \rightarrow 144B$ 0.28978 $133B \rightarrow 144B$ 0.14389 $142B \rightarrow 147B$ 0.26924 Excited State 45: $2.938-A$ 3.8446 eV 322.49 nm $=0.0012 < S^{**2>=1.908$	139A ->146A	-0.10283				
140A ->148A 0.11157 141A ->147A 0.18067 141A ->148A -0.12315 142A ->147A 0.11645 143A ->146A 0.15224 143A ->146A 0.15224 143A ->147A 0.61337 143A ->148A 0.13632 144A ->147A -0.14239 126B ->144B 0.10614 131B ->144B 0.13066 137B ->145B -0.10879 139B ->146B 0.18770 143B ->146B 0.18770 143B ->146B 0.18770 143B ->146B 0.15292 Excited State 44: 2.209-A 3.8087 eV 325.53 nm f=0.0013 $<$ S**2>=0.970 142A ->147A 0.12262 127B ->144B -0.35135 128B ->144B 0.75166 132B ->144B 0.75166 132B ->144B 0.28978 133B ->144B 0.14389 142B ->147B -0.26924 Excited State 45: 2.938-A 3.8446 eV 322.49 nm f=0.0012 $<$ S**2>=1.908	140A ->147A	0.36154				
141A = -147A 0.18067 $141A = -5148A$ -0.12315 $142A = -5147A$ -0.11645 $143A = -5146A$ 0.15224 $143A = -5146A$ 0.15224 $143A = -5145A$ 0.13632 $144A = -5147A$ -0.14239 $126B = -5144B$ 0.10614 $131B = -5144B$ 0.13066 $137B = -5145B$ -0.10879 $139B = -5146B$ -0.13749 $142B = -5145B$ -0.10879 $139B = -5146B$ 0.18770 $143B = -5150B$ 0.15292 Excited State 44: $2.209-A$ $142A5144B$ -0.12622 $127B - 5144B$ -0.35135 $128B - 5144B$ 0.25294 $130B - 5144B$ 0.75166 $132B - 5144B$ 0.28978 $133B - 5144B$ 0.14389 $142B - 5147B$ -0.26924 Excited State 45: $2.938-A$ $3.8446 eV$ $322.49 nm$ f=0.0012 < S**2>=1.908	140A ->148A	0 11157				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	141A ->147A	0 18067				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	14111 > 14711	0.12315				
142A ->147A -0.11645 143A ->146A 0.15224 143A ->147A 0.61337 143A ->148A 0.13632 144A ->147A -0.14239 126B ->144B 0.10614 131B ->144B 0.13066 137B ->145B -0.10879 139B ->146B 0.13749 142B ->145B -0.11047 143B ->146B 0.18770 143B ->148B 0.14781 143B ->150B 0.15292 Excited State 44: 2.209-A $3.8087 \text{ eV} 325.53 \text{ nm} \text{ f=0.0013 } <\text{S**2>=0.970}$ 142A ->147A 0.12262 127B ->144B -0.35135 128B ->144B 0.25294 130B ->144B 0.75166 132B ->144B 0.28978 133B ->144B 0.14389 142B ->147B -0.26924 Excited State 45: 2.938-A $3.8446 \text{ eV} 322.49 \text{ nm} \text{ f=0.0012 } <\text{S**2>=1.908}$	141A - 140A	-0.12515				
143A ->146A 0.15224 143A ->147A 0.61337 143A ->148A 0.13632 144A ->147A -0.14239 126B ->144B 0.10614 131B ->144B 0.13066 137B ->145B -0.10879 139B ->146B 0.18770 143B ->146B 0.18770 143B ->148B 0.14781 143B ->150B 0.15292 Excited State 44: 2.209-A 3.8087 eV 325.53 nm f=0.0013 $<$ S**2>=0.970 142A ->147A 0.12262 127B ->144B -0.35135 128B ->144B 0.25294 130B ->144B 0.75166 132B ->144B 0.28978 133B ->144B 0.14389 142B ->147B -0.26924 Excited State 45: 2.938-A 3.8446 eV 322.49 nm f=0.0012 $<$ S**2>=1.908	142A ->14/A	-0.11045				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	143A ->146A	0.15224				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	143A ->147A	0.61337				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	143A ->148A	0.13632				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	144A ->147A	-0.14239				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	126B ->144B	0.10614				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	131B ->144B	0.13066				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	137B ->145B	-0.10879				
$\begin{array}{l} 142B -> 145B & -0.11047 \\ 143B -> 146B & 0.18770 \\ 143B -> 146B & 0.18770 \\ 143B -> 148B & 0.14781 \\ 143B -> 150B & 0.15292 \\ \hline \\ Excited State \ 44: \ 2.209 - A & 3.8087 \ eV \ 325.53 \ nm \ f=0.0013 \ < S^{**}2 >= 0.970 \\ 142A -> 147A & 0.12262 \\ 127B -> 144B & -0.35135 \\ 128B -> 144B & -0.25294 \\ 130B -> 144B & 0.75166 \\ 132B -> 144B & 0.28978 \\ 133B -> 144B & 0.014389 \\ 142B -> 147B & -0.26924 \\ \hline \\ Excited State \ 45: \ 2.938 - A & 3.8446 \ eV \ 322.49 \ nm \ f=0.0012 \ < S^{**}2 >= 1.908 \\ \hline \end{array}$	139B ->146B	-0 13749				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	142R ->145R	-0 11047				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	142B > 145B 1/3B > 1/6B	0.18770				
$143B \rightarrow 140B$ 0.14781 $143B \rightarrow 150B$ 0.15292 Excited State 44: $2.209-A$ 3.8087 eV $142A \rightarrow 147A$ 0.12262 $127B \rightarrow 144B$ -0.35135 $128B \rightarrow 144B$ -0.25294 $130B \rightarrow 144B$ 0.75166 $132B \rightarrow 144B$ 0.28978 $133B \rightarrow 144B$ -0.14389 $142B \rightarrow 147B$ -0.26924 Excited State 45: $2.938-A$ 3.8446 eV 322.49 nm $f=0.0012 < S**2 > =1.908$	140D - 140D 1/2D > 1/0D	0.10//0				
$143B ->150B$ 0.15292 Excited State 44: $2.209-A$ 3.8087 eV 325.53 nm $f=0.0013 < S^{**}2 >= 0.970$ $142A ->147A$ 0.12262 $127B ->144B$ -0.35135 $128B ->144B$ -0.25294 $130B ->144B$ 0.75166 $132B ->144B$ 0.28978 $133B ->144B$ -0.14389 $142B ->147B$ -0.26924 Excited State 45: $2.938-A$ 3.8446 eV 322.49 nm $f=0.0012 < S^{**}2 >= 1.908$	143D ->148B	0.14/81				
Excited State 44: 2.209-A $3.808 / eV 325.53 \text{ nm } f=0.0013 < S^{**2} = 0.970$ 142A ->147A 0.12262 127B ->144B -0.35135 128B ->144B -0.25294 130B ->144B 0.25294 132B ->144B 0.28978 133B ->144B 0.28978 133B ->144B -0.14389 142B ->147B -0.26924 Excited State 45: 2.938-A $3.8446 \text{ eV} 322.49 \text{ nm } f=0.0012 < S^{**2} >= 1.908$	143B ->150B	0.15292	2 0007	225.52	0.0010	
142A ->147A 0.12262 127B ->144B -0.35135 128B ->144B -0.25294 130B ->144B 0.75166 132B ->144B 0.28978 133B ->144B -0.14389 142B ->147B -0.26924 Excited State 45: 2.938-A 3.8446 eV 322.49 nm f=0.0012	Excited State 44:	2.209-A	3.8087 eV	325.53 nm	1=0.0013	<5**2>=0.970
127B ->144B -0.35135 128B ->144B -0.25294 130B ->144B 0.75166 132B ->144B 0.28978 133B ->144B -0.14389 142B ->147B -0.26924 Excited State 45: 2.938-A 3.8446 eV 322.49 nm f=0.0012 <s**2>=1.908</s**2>	142A ->147A	0.12262				
128B ->144B -0.25294 130B ->144B 0.75166 132B ->144B 0.28978 133B ->144B -0.14389 142B ->147B -0.26924 Excited State 45: 2.938-A 3.8446 eV 322.49 nm f=0.0012 <s**2>=1.908</s**2>	127B ->144B	-0.35135				
130B ->144B 0.75166 132B ->144B 0.28978 133B ->144B -0.14389 142B ->147B -0.26924 Excited State 45: 2.938-A 3.8446 eV 322.49 nm f=0.0012 <s**2>=1.908</s**2>	128B ->144B	-0.25294				
132B ->144B 0.28978 133B ->144B -0.14389 142B ->147B -0.26924 Excited State 45: 2.938-A 3.8446 eV 322.49 nm f=0.0012 <s**2>=1.908</s**2>	130B ->144B	0.75166				
133B ->144B -0.14389 142B ->147B -0.26924 Excited State 45: 2.938-A 3.8446 eV 322.49 nm f=0.0012 <s**2>=1.908</s**2>	132B ->144B	0.28978				
142B ->147B -0.26924 Excited State 45: 2.938-A 3.8446 eV 322.49 nm f=0.0012 <s**2>=1.908</s**2>	133B ->144B	-0.14389				
Excited State 45: 2.938-A 3.8446 eV 322.49 nm f=0.0012 <s**2>=1.908</s**2>	142B ->147B	-0.26924				
	Excited State 45:	2.938-A	3.8446 eV	322.49 nm	f=0.0012	<s**2>=1.908</s**2>

120D > 144D	0 14612				
130B ->144B	-0.14013				
132B ->144B	-0.149/2				
142B ->146B	-0.1/132				
142B ->14/B	-0.48784				
142B ->148B	0.79837				
Excited State 46:	3.257-A	3.8510 eV	321.95 nm	f=0.0062	<s**2>=2.402</s**2>
129A ->147A	-0.10828				
138A ->145A	0.49979				
140A ->148A	-0.10099				
143A ->147A	-0.35202				
143A ->148A	-0.14291				
131B ->144B	0.27412				
137B ->145B	-0.47258				
143B ->148B	0.12364				
143B ->150B	0.11168				
Excited State 47:	2.226-A	3.8702 eV	320.36 nm	f=0.0007	<s**2>=0.989</s**2>
144A ->148A	0.22108				
127B ->144B	0.10916				
128B ->144B	-0.18069				
129B ->144B	-0.57438				
131B ->144B	0.67093				
132B ->144B	0 11771				
Excited State 48	2 427-A	3 8839 eV	319 22 nm	f=0.0291	<s**2>=1 222</s**2>
138A ->145A	0 14483	0.0009	019. 22 IIII	1 0.0_/1	S = 1.===
139A ->146A	-0 10668				
140A ->148A	0 26634				
141A ->148A	-0.16837				
1434 ->1474	-0 15474				
$143\Lambda = 147\Lambda$ $143\Lambda = >148\Lambda$	0.19474				
143A => 146A 144A => 146A	-0 14148				
144A => 140A 144A => 147A	0 10203				
$144\Lambda = 147\Lambda$ $144\Lambda = >148\Lambda$	0.22580				
174A -> 140A 126B ->144B	-0.36068				
$120D \rightarrow 144D$ $128B \rightarrow 144B$	-0.10106				
120D -> 144D 131B ->144B	-0.15619				
131D -> 144D 134B -> 144B	-0.17/01				
134B -> 144B 1/1B -> 1/7B	0.22403				
141D -> 147D 1/3R > 1/7R	0.22405				
143D - 214/D 1/3R > 1/8R	0.10493				
143D -> 140D	0.12053				
Evolted State 40:	-0.12033	2 2002 N	217 07 nm	f-0.0201	< <u>\$**2</u> -1 000
$138\Lambda > 145\Lambda$	2.314-A	5.8992 ev	517.97 1111	1-0.0201	<52>=1.089
130A - >143A 142A > 150A	-0.13093				
142A - >130A	0.17155				
144A - >140A 126D >144D	-0.1/133				
120D - 2144D	-0.23/20				
12/D - 2144D	-0.23413				
120D ->144B	0.43334				
129B ->144B	0.35388				
131B ->144B	0.381/9				
13/B -> 145B	0.14624				
141B ->146B	-0.10928				
141B -> 147B	0.24331				
142B ->152B	0.14495				
143B ->147B	0.22593				
143B ->148B	0.12755				
Excited State 50:	0.12755	2 0215 31	21/1/	1. 1	
1 4 1 A	2.154-A	3.9215 eV	316.16 nm	f=0.0289	<s**2>=0.910</s**2>
141A ->147A	2.154-A 0.15542	3.9215 eV	316.16 nm	f=0.0289	<\$**2>=0.910
141A ->147A 142A ->147A	2.154-A 0.15542 0.36853	3.9215 eV	316.16 nm	f=0.0289	<\$**2>=0.910
141A ->147A 142A ->147A 127B ->144B	0.12755 2.154-A 0.15542 0.36853 0.34077	3.9215 eV	316.16 nm	t=0.0289	<s**2>=0.910</s**2>
141A ->147A 142A ->147A 127B ->144B 128B ->144B	2.154-A 0.15542 0.36853 0.34077 0.16720	3.9215 eV	316.16 nm	t=0.0289	<\$**2>=0.910
141A ->147A 142A ->147A 127B ->144B 128B ->144B 129B ->144B	2.154-A 0.15542 0.36853 0.34077 0.16720 0.10568	3.9215 eV	316.16 nm	1=0.0289	<\$**2>=0.910

1000 1110				
133B ->144B	0.17356			
139B ->145B	-0.10195			
142B ->146B	0.11614			
142B ->147B	0 15366			
$142B \rightarrow 148B$	0.26673			
Evoited State 51:	2 204 4	2 0244 aV	215 02 nm	f=0.0065 < S**2 = 1.192
Exclicu State 31 .	2.394-A	5.9244 EV	515.95 1111	1-0.0903 <3.22-1.182
141A ->14/A	0.30638			
142A ->14/A	0.66361			
142A ->148A	-0.16198			
125B ->144B	0.10804			
127B ->144B	-0.15008			
132B ->144B	-0.42499			
139B ->145B	-0 19845			
142B ->146B	0 20020			
1/3B > 1/0B	-0.14801			
Traited State 52	-0.14001	2 0655 aV	212 (6	$f_{-0,0,400} < 0**2 = 1.020$
Exclued State 52 .	2.739-A	5.9055 ev	512.00 mm	1-0.0402 <52>-1.020
139A ->146A	-0.12540			
140A ->146A	-0.20781			
140A ->148A	-0.16260			
141A ->146A	0.21919			
141A ->148A	0.13269			
142A ->150A	-0.14352			
143A ->146A	0.16728			
143A ->148A	-0.26217			
143M > 146M	0.14711			
144A - 140A 126D > 144D	-0.14/11			
120D - 144D	-0.32334			
128B ->144B	-0.13131			
129B ->144B	-0.18135			
131B ->144B	-0.16104			
139B ->148B	-0.16561			
140B ->148B	-0.18914			
141B ->146B	-0.20796			
141B ->147B	0.29384			
141B ->148B	0.34341			
142B ->152B	-0.12462			
143B ->151B	-0.12138			
Excited State 53:	2.503-A	3.9753 eV	311.89 nm	f=0.0059 <s**2>=1.316</s**2>
136A ->146A	-0 13336			
10011 10011	0.10000			
140A ->146A	0 1 1 9 1 7			
140A ->146A 141A ->146A	0.11917			
140A ->146A 141A ->146A 143A >148A	0.11917 -0.19471 0.36754			
140A ->146A 141A ->146A 143A ->148A 144A >146A	0.11917 -0.19471 -0.36754 0.16950			
140A ->146A 141A ->146A 143A ->148A 144A ->146A	0.11917 -0.19471 -0.36754 -0.16950			
140A ->146A 141A ->146A 143A ->148A 144A ->146A 144A ->148A	0.11917 -0.19471 -0.36754 -0.16950 0.18623			
140A ->146A 141A ->146A 143A ->148A 144A ->146A 144A ->148A 126B ->144B	0.11917 -0.19471 -0.36754 -0.16950 0.18623 0.45307			
140A ->146A 141A ->146A 143A ->148A 144A ->146A 144A ->148A 126B ->144B 131B ->144B	0.11917 -0.19471 -0.36754 -0.16950 0.18623 0.45307 -0.14979			
140A ->146A 141A ->146A 143A ->148A 144A ->146A 144A ->148A 126B ->144B 131B ->144B 141B ->147B	0.11917 -0.19471 -0.36754 -0.16950 0.18623 0.45307 -0.14979 0.51021			
140A ->146A 141A ->146A 143A ->148A 144A ->146A 144A ->148A 126B ->144B 131B ->144B 141B ->147B 141B ->148B	0.11917 -0.19471 -0.36754 -0.16950 0.18623 0.45307 -0.14979 0.51021 -0.21789			
140A ->146A 141A ->146A 143A ->146A 144A ->146A 144A ->146A 144A ->148A 126B ->144B 131B ->144B 141B ->147B 141B ->148B Excited State 54:	0.11917 -0.19471 -0.36754 -0.16950 0.18623 0.45307 -0.14979 0.51021 -0.21789 3.311-A	4.0051 eV	309.57 nm	f=0.0049 <s**2>=2.490</s**2>
140A ->146A 141A ->146A 143A ->146A 144A ->146A 144A ->146A 144A ->148A 126B ->144B 131B ->144B 141B ->147B 141B ->148B Excited State 54: 132A ->145A	0.11917 -0.19471 -0.36754 -0.16950 0.18623 0.45307 -0.14979 0.51021 -0.21789 3.311-A 0.15641	4.0051 eV	309.57 nm	f=0.0049 <s**2>=2.490</s**2>
140A ->146A 141A ->146A 143A ->146A 144A ->146A 144A ->146A 144A ->148A 126B ->144B 131B ->144B 141B ->147B 141B ->147B 141B ->148B Excited State 54: 132A ->145A 132A ->149A	0.11917 -0.19471 -0.36754 -0.16950 0.18623 0.45307 -0.14979 0.51021 -0.21789 3.311-A 0.15641 0.12483	4.0051 eV	309.57 nm	f=0.0049 <s**2>=2.490</s**2>
140A ->146A 141A ->146A 143A ->146A 144A ->146A 144A ->146A 144A ->148A 126B ->144B 131B ->144B 141B ->147B 141B ->148B Excited State 54: 132A ->145A 132A ->149A 134A ->145A	0.11917 -0.19471 -0.36754 -0.16950 0.18623 0.45307 -0.14979 0.51021 -0.21789 3.311-A 0.15641 0.12483 0.29438	4.0051 eV	309.57 nm	f=0.0049 <s**2>=2.490</s**2>
140A ->146A 141A ->146A 143A ->146A 144A ->146A 144A ->146A 144A ->148A 126B ->144B 131B ->144B 141B ->147B 141B ->148B Excited State 54: 132A ->145A 134A ->145A 138A ->145A	0.11917 -0.19471 -0.36754 -0.16950 0.18623 0.45307 -0.14979 0.51021 -0.21789 3.311-A 0.15641 0.12483 0.29438 0.15843	4.0051 eV	309.57 nm	f=0.0049 <s**2>=2.490</s**2>
140A ->146A 141A ->146A 143A ->146A 144A ->146A 144A ->146A 144A ->148A 126B ->144B 131B ->144B 141B ->144B 141B ->144B Excited State 54: 132A ->145A 132A ->145A 134A ->145A 138A ->145A	0.11917 -0.19471 -0.36754 -0.16950 0.18623 0.45307 -0.14979 0.51021 -0.21789 3.311-A 0.15641 0.12483 0.29438 0.15843 0.19437	4.0051 eV	309.57 nm	f=0.0049 <s**2>=2.490</s**2>
140A ->146A 141A ->146A 143A ->146A 144A ->146A 144A ->146A 144A ->148A 126B ->144B 131B ->144B 141B ->144B 141B ->144B Excited State 54: 132A ->145A 132A ->145A 134A ->145A 138A ->145A 140A ->151A	0.11917 -0.19471 -0.36754 -0.16950 0.18623 0.45307 -0.14979 0.51021 -0.21789 3.311-A 0.15641 0.12483 0.29438 0.15843 0.19437 -0.11071	4.0051 eV	309.57 nm	f=0.0049 <s**2>=2.490</s**2>
140A ->146A 141A ->146A 143A ->146A 144A ->146A 144A ->146A 144A ->148A 126B ->144B 131B ->144B 141B ->147B 141B ->147B 141B ->148B Excited State 54: 132A ->145A 132A ->145A 134A ->145A 138A ->145A 141A ->149A 141A ->149A	0.11917 -0.19471 -0.36754 -0.16950 0.18623 0.45307 -0.14979 0.51021 -0.21789 3.311-A 0.15641 0.12483 0.29438 0.15843 0.19437 -0.11071 0.12494	4.0051 eV	309.57 nm	f=0.0049 <s**2>=2.490</s**2>
140A ->146A 141A ->146A 143A ->146A 144A ->146A 144A ->146A 144A ->148A 126B ->144B 131B ->144B 141B ->144B 141B ->144B Excited State 54: 132A ->145A 132A ->145A 134A ->145A 138A ->145A 140A ->151A 141A ->151A	0.11917 -0.19471 -0.36754 -0.16950 0.18623 0.45307 -0.14979 0.51021 -0.21789 3.311-A 0.15641 0.12483 0.29438 0.15843 0.19437 -0.11071 0.12494	4.0051 eV	309.57 nm	f=0.0049 <s**2>=2.490</s**2>
140A ->146A 141A ->146A 143A ->146A 144A ->146A 144A ->146A 144A ->148A 126B ->144B 131B ->144B 141B ->144B 141B ->144B Excited State 54: 132A ->145A 132A ->145A 134A ->145A 138A ->145A 141A ->151A 141A ->151A 142A ->149A	0.11917 -0.19471 -0.36754 -0.16950 0.18623 0.45307 -0.14979 0.51021 -0.21789 3.311-A 0.15641 0.12483 0.29438 0.15843 0.19437 -0.11071 0.12494 -0.21829	4.0051 eV	309.57 nm	f=0.0049 <s**2>=2.490</s**2>
140A ->146A 141A ->146A 143A ->146A 144A ->146A 144A ->146A 144A ->148A 126B ->144B 131B ->144B 141B ->147B 141B ->148B Excited State 54: 132A ->145A 132A ->145A 134A ->145A 138A ->145A 141A ->151A 141A ->151A 142A ->149A 143A ->147A	0.11917 -0.19471 -0.36754 -0.16950 0.18623 0.45307 -0.14979 0.51021 -0.21789 3.311-A 0.15641 0.12483 0.29438 0.15843 0.19437 -0.11071 0.12494 -0.21829 0.22278	4.0051 eV	309.57 nm	f=0.0049 <s**2>=2.490</s**2>
140A ->146A 141A ->146A 143A ->146A 144A ->146A 144A ->146A 144A ->148A 126B ->144B 131B ->144B 141B ->147B 141B ->148B Excited State 54: 132A ->145A 132A ->145A 134A ->145A 138A ->145A 140A ->151A 141A ->151A 142A ->149A 143A ->147A 129B ->144B	0.11917 -0.19471 -0.36754 -0.16950 0.18623 0.45307 -0.14979 0.51021 -0.21789 3.311-A 0.15641 0.12483 0.29438 0.15843 0.19437 -0.11071 0.12494 -0.21829 0.22278 0.12747	4.0051 eV	309.57 nm	f=0.0049 <s**2>=2.490</s**2>
$140A \rightarrow 146A$ $141A \rightarrow 146A$ $143A \rightarrow 146A$ $144A \rightarrow 146A$ $144A \rightarrow 146A$ $144A \rightarrow 146A$ $126B \rightarrow 144B$ $131B \rightarrow 144B$ $141B \rightarrow 147B$ $141B \rightarrow 147B$ $141B \rightarrow 147B$ $141B \rightarrow 147B$ $141B \rightarrow 147B$ $132A \rightarrow 145A$ $132A \rightarrow 145A$ $134A \rightarrow 145A$ $140A \rightarrow 151A$ $141A \rightarrow 149A$ $141A \rightarrow 149A$ $141A \rightarrow 149A$ $142A \rightarrow 149A$ $143A \rightarrow 147A$ $129B \rightarrow 144B$ $132B \rightarrow 145B$	0.11917 -0.19471 -0.36754 -0.16950 0.18623 0.45307 -0.14979 0.51021 -0.21789 3.311-A 0.15641 0.12483 0.29438 0.15843 0.19437 -0.11071 0.12494 -0.21829 0.22278 0.12747 -0.16498	4.0051 eV	309.57 nm	f=0.0049 <s**2>=2.490</s**2>
$140A \rightarrow 146A$ $141A \rightarrow 146A$ $143A \rightarrow 146A$ $144A \rightarrow 146A$ $144A \rightarrow 146A$ $144A \rightarrow 148B$ $131B \rightarrow 144B$ $141B \rightarrow 147B$ $141B \rightarrow 147B$ $141B \rightarrow 148B$ Excited State 54: $132A \rightarrow 145A$ $132A \rightarrow 145A$ $134A \rightarrow 145A$ $140A \rightarrow 151A$ $141A \rightarrow 149A$ $141A \rightarrow 149A$ $141A \rightarrow 149A$ $142A \rightarrow 149A$ $142A \rightarrow 149A$ $142A \rightarrow 149B$ $132B \rightarrow 144B$ $132B \rightarrow 149B$	0.11917 - 0.19471 - 0.36754 - 0.16950 0.18623 0.45307 - 0.14979 0.51021 - 0.21789 3.311-A 0.15641 0.12483 0.29438 0.15843 0.19437 - 0.11071 0.12494 - 0.21829 0.22278 0.12747 - 0.16498 - 0.12798	4.0051 eV	309.57 nm	f=0.0049 <s**2>=2.490</s**2>
$140A \rightarrow 146A$ $141A \rightarrow 146A$ $143A \rightarrow 146A$ $144A \rightarrow 146A$ $144A \rightarrow 146A$ $144A \rightarrow 148A$ $126B \rightarrow 144B$ $131B \rightarrow 144B$ $141B \rightarrow 147B$ $141B \rightarrow 147B$ $141B \rightarrow 147B$ $141B \rightarrow 147B$ $141B \rightarrow 147B$ $141B \rightarrow 147B$ $132A \rightarrow 145A$ $132A \rightarrow 145A$ $134A \rightarrow 145A$ $140A \rightarrow 151A$ $141A \rightarrow 149A$ $141A \rightarrow 149A$ $141A \rightarrow 149A$ $142A \rightarrow 149A$ $142A \rightarrow 149A$ $142A \rightarrow 149B$ $132B \rightarrow 144B$ $132B \rightarrow 145B$ $132B \rightarrow 145B$ $133B \rightarrow 145B$	0.11917 - 0.19471 - 0.36754 - 0.16950 0.18623 0.45307 - 0.14979 0.51021 - 0.21789 3.311-A 0.15641 0.12483 0.29438 0.15843 0.19437 - 0.11071 0.12494 - 0.21829 0.22278 0.12747 - 0.16498 - 0.12798 - 0.26674	4.0051 eV	309.57 nm	f=0.0049 <s**2>=2.490</s**2>

139B ->146B	0.10199				
139B ->150B	-0.20995				
139B ->153B	-0.10561				
141B ->148B	0.12681				
142B ->149B	0.30895				
142B ->154B	0.12201				
143B ->146B	-0.13536				
143B ->150B	-0.17778				
Excited State 55:	2.718-A	4.0237 eV	308.14 nm	f=0.0114	<s**2>=1.597</s**2>
139A ->153A	0.10836				
140A ->146A	-0.15173				
141A ->146A	0.25316				
142A ->146A	-0.10731				
142A ->150A	0.20843				
143A ->14/A	-0.15705				
143A -> 148A	0.13646				
144A ->146A	-0.12593				
126B ->144B	0.38296				
141B ->140B	-0.1400/				
141D - 214/D 1/1D > 1/9D	-0.21097				
1410 -~140D 1478 ->1450	0.23991				
142B ->143B 142B ->149B	-0 14865				
$142B \rightarrow 147B$ $147B \rightarrow 157B$	0 17652				
$142D \rightarrow 152D$ $143B \rightarrow 147B$	0.17052				
$143B \rightarrow 147B$ 143B ->148B	-0 12593				
143B ->153B	-0 11587				
Excited State 56:	2.019-A	4.0289 eV	307.73 nm	f=0.0002	<s**2>=0.770</s**2>
137A ->145A	0.64634				
137A ->149A	0.18379				
136B ->145B	0.67950				
136B ->149B	0.20658				
Excited State 57:	2.689-A	4.0349 eV	307.28 nm	f=0.0010	<s**2>=1.558</s**2>
141A ->148A	0.35548				
142A ->147A	0.19693				
142A ->148A	0.87458				
Excited State 58:	2.051-A	4.0492 eV	306.19 nm	f=0.0062	<s**2>=0.802</s**2>
125B ->144B	0.95603				
Excited State 59:	3.050-A	4.0678 eV	304.80 nm	f=0.0062	<s**2>=2.076</s**2>
136A ->146A	-0.12208				
139A ->146A	0.15437				
139A ->153A	0.14009				
140A ->146A	-0.13591				
140A ->152A	0.13/66				
140A ->153A	0.10349				
141A -> 140A	-0.124/2				
141A ->132A 142A >150A	-0.10303				
142A ->130A 143A >146A	-0.22421				
143A => 140A 1/3A => 1/8A	-0.19932				
143A => 146A 144A => 146A	0.10711				
129B ->144B	0 20436				
131B ->144B	0.11234				
138B ->147B	-0.16480				
139B ->151B	-0.12833				
140B ->147B	-0.10423				
140B ->151B	-0.14392				
141B ->146B	0.35275				
141B ->147B	-0.11529				
141B ->148B	-0.12909				
142B ->149B	0.11148				
142B ->152B	-0.19646				

142B ->154B	-0.10080				
143B ->150B	0.12599				
Excited State 60:	3.132-A	4.0812 eV	303.79 nm	f=0.0001	<s**2>=2.203</s**2>
133A ->152A	-0.10326				
135A ->152A	-0.10262				
136A ->146A	-0.13549				
136A ->148A	-0.10159				
139A ->145A	-0.23108				
139A ->151A	0.10056				
139A -> 152A 130A -> 153A	-0.13037				
139A -> 135A 140A -> 146A	0.11200				
140A => 140A	-0 19190				
140A > 152A 141A ->152A	0.17170				
142A ->150A	-0.10994				
143A ->146A	-0.16387				
143A ->148A	-0.14467				
144A ->148A	-0.13196				
128B ->144B	-0.20324				
129B ->144B	0.15514				
131B ->144B	0.20987				
134B ->151B	0.11672				
138B ->148B	-0.17519				
138B ->151B	0.11449				
139B ->151B	0.12935				
140B ->151B 141D >149D	0.15/11				
141D ->140D 141B >151B	0.31707				
141D ->151D 143B ->148B	-0 14230				
143B -> 140B 143B ->150B	0 13719				
143B ->151B	0.10782				
1100 1010	0.10/0-				
Excited State 61:	2.588-A	4.0844 eV	303.55 nm	f=0.0007	<s**2>=1.424</s**2>
Excited State 61: 132A ->145A	2.588-A -0.12337	4.0844 eV	303.55 nm	f=0.0007	<s**2>=1.424</s**2>
Excited State 61: 132A ->145A 139A ->145A	2.588-A -0.12337 0.59235	4.0844 eV	303.55 nm	f=0.0007	<s**2>=1.424</s**2>
Excited State 61: 132A ->145A 139A ->145A 141A ->149A	2.588-A -0.12337 0.59235 0.10050	4.0844 eV	303.55 nm	f=0.0007	<s**2>=1.424</s**2>
Excited State 61: 132A ->145A 139A ->145A 141A ->149A 142A ->150A	2.588-A -0.12337 0.59235 0.10050 -0.15796	4.0844 eV	303.55 nm	f=0.0007	<s**2>=1.424</s**2>
Excited State 61: 132A ->145A 139A ->145A 141A ->149A 142A ->150A 144A ->145A	2.588-A -0.12337 0.59235 0.10050 -0.15796 -0.10548	4.0844 eV	303.55 nm	f=0.0007	<s**2>=1.424</s**2>
Excited State 61: 132A ->145A 139A ->145A 141A ->149A 142A ->150A 144A ->145A 126B ->144B	2.588-A -0.12337 0.59235 0.10050 -0.15796 -0.10548 0.11688	4.0844 eV	303.55 nm	f=0.0007	<s**2>=1.424</s**2>
Excited State 61: 132A ->145A 139A ->145A 141A ->149A 142A ->150A 144A ->145A 126B ->144B 128B ->144B	2.588-A -0.12337 0.59235 0.10050 -0.15796 -0.10548 0.11688 -0.34539	4.0844 eV	303.55 nm	f=0.0007	<s**2>=1.424</s**2>
Excited State 61: 132A ->145A 139A ->145A 141A ->149A 142A ->150A 144A ->145A 126B ->144B 128B ->144B 129B ->144B	2.588-A -0.12337 0.59235 0.10050 -0.15796 -0.10548 0.11688 -0.34539 0.38471	4.0844 eV	303.55 nm	f=0.0007	<s**2>=1.424</s**2>
Excited State 61: 132A ->145A 139A ->145A 141A ->149A 142A ->150A 144A ->145A 126B ->144B 128B ->144B 129B ->144B 130B ->144B	2.588-A -0.12337 0.59235 0.10050 -0.15796 -0.10548 0.11688 -0.34539 0.38471 -0.10387	4.0844 eV	303.55 nm	f=0.0007	<s**2>=1.424</s**2>
Excited State 61: 132A ->145A 139A ->145A 141A ->149A 142A ->150A 144A ->145A 126B ->144B 128B ->144B 130B ->144B 130B ->144B	2.588-A -0.12337 0.59235 0.10050 -0.15796 -0.10548 0.11688 -0.34539 0.38471 -0.10387 0.24084 0.12647	4.0844 eV	303.55 nm	f=0.0007	<s**2>=1.424</s**2>
Excited State 61: 132A ->145A 139A ->145A 141A ->149A 142A ->150A 144A ->145A 126B ->144B 128B ->144B 130B ->144B 131B ->144B 132B ->145B 142B ->152B	2.588-A -0.12337 0.59235 0.10050 -0.15796 -0.10548 0.11688 -0.34539 0.38471 -0.10387 0.24084 0.12647	4.0844 eV	303.55 nm	f=0.0007	<s**2>=1.424</s**2>
Excited State 61: 132A ->145A 139A ->145A 141A ->149A 142A ->150A 144A ->145A 126B ->144B 128B ->144B 130B ->144B 130B ->144B 132B ->145B 142B ->152B Excited State 62:	2.588-A -0.12337 0.59235 0.10050 -0.15796 -0.10548 0.11688 -0.34539 0.38471 -0.10387 0.24084 0.12647 -0.19048 2 789-A	4.0844 eV	303.55 nm	f=0.0007	<\$**2>=1.424
Excited State 61: 132A ->145A 139A ->145A 141A ->149A 142A ->150A 144A ->145A 126B ->144B 128B ->144B 129B ->144B 130B ->144B 131B ->144B 132B ->145B 142B ->152B Excited State 62: 132A ->145A	2.588-A -0.12337 0.59235 0.10050 -0.15796 -0.10548 0.11688 -0.34539 0.38471 -0.10387 0.24084 0.12647 -0.19048 2.789-A 0.11667	4.0844 eV 4.0861 eV	303.55 nm 303.43 nm	f=0.0007 f=0.0006	<s**2>=1.424 <s**2>=1.694</s**2></s**2>
Excited State 61: 132A ->145A 139A ->145A 141A ->149A 142A ->150A 144A ->145A 126B ->144B 129B ->144B 130B ->144B 130B ->144B 132B ->144B 132B ->145B 142B ->152B Excited State 62: 132A ->145A 136A ->145A	2.588-A -0.12337 0.59235 0.10050 -0.15796 -0.10548 0.11688 -0.34539 0.38471 -0.10387 0.24084 0.12647 -0.19048 2.789-A 0.11667 0.11366	4.0844 eV 4.0861 eV	303.55 nm 303.43 nm	f=0.0007 f=0.0006	<s**2>=1.424 <s**2>=1.694</s**2></s**2>
Excited State 61: 132A ->145A 139A ->145A 141A ->149A 142A ->150A 144A ->145A 126B ->144B 128B ->144B 130B ->144B 130B ->144B 132B ->144B 132B ->145B 142B ->152B Excited State 62: 132A ->145A 136A ->145A 139A ->145A	2.588-A -0.12337 0.59235 0.10050 -0.15796 -0.10548 0.11688 -0.34539 0.38471 -0.10387 0.24084 0.12647 -0.19048 2.789-A 0.11667 0.11366 0.71376	4.0844 eV 4.0861 eV	303.55 nm 303.43 nm	f=0.0007 f=0.0006	<s**2>=1.424 <s**2>=1.694</s**2></s**2>
Excited State 61: 132A ->145A 139A ->145A 141A ->149A 142A ->150A 144A ->145A 126B ->144B 128B ->144B 130B ->144B 130B ->144B 132B ->144B 132B ->145B 142B ->152B Excited State 62: 132A ->145A 136A ->145A 139A ->145A 143A ->148A	2.588-A -0.12337 0.59235 0.10050 -0.15796 -0.10548 0.11688 -0.34539 0.38471 -0.10387 0.24084 0.12647 -0.19048 2.789-A 0.11667 0.11366 0.71376 -0.12850	4.0844 eV 4.0861 eV	303.55 nm 303.43 nm	f=0.0007 f=0.0006	<s**2>=1.424 <s**2>=1.694</s**2></s**2>
Excited State 61: 132A ->145A 139A ->145A 141A ->149A 142A ->150A 144A ->145A 126B ->144B 128B ->144B 130B ->144B 130B ->144B 132B ->144B 132B ->145B 142B ->152B Excited State 62: 132A ->145A 136A ->145A 139A ->145A 143A ->148A 144A ->145A	2.588-A -0.12337 0.59235 0.10050 -0.15796 -0.10548 0.11688 -0.34539 0.38471 -0.10387 0.24084 0.12647 -0.19048 2.789-A 0.11667 0.11366 0.71376 -0.12850 -0.12884	4.0844 eV 4.0861 eV	303.55 nm 303.43 nm	f=0.0007 f=0.0006	<s**2>=1.424 <s**2>=1.694</s**2></s**2>
Excited State 61: 132A ->145A 139A ->145A 141A ->149A 142A ->150A 144A ->145A 126B ->144B 128B ->144B 130B ->144B 130B ->144B 132B ->144B 132B ->145B 142B ->152B Excited State 62: 132A ->145A 136A ->145A 139A ->145A 143A ->148A 144A ->145A 126B ->144B	2.588-A -0.12337 0.59235 0.10050 -0.15796 -0.10548 0.11688 -0.34539 0.38471 -0.10387 0.24084 0.12647 -0.19048 2.789-A 0.11667 0.11366 0.71376 -0.12850 -0.12884 -0.12265	4.0844 eV 4.0861 eV	303.55 nm 303.43 nm	f=0.0007 f=0.0006	<s**2>=1.424 <s**2>=1.694</s**2></s**2>
Excited State 61: 132A ->145A 139A ->145A 141A ->149A 142A ->150A 144A ->145A 126B ->144B 128B ->144B 130B ->144B 130B ->144B 130B ->144B 132B ->145B 142B ->152B Excited State 62: 132A ->145A 136A ->145A 139A ->145A 139A ->145A 143A ->148A 144A ->145A 126B ->144B 128B ->144B	$\begin{array}{c} 2.588\text{-A} \\ -0.12337 \\ 0.59235 \\ 0.10050 \\ -0.15796 \\ -0.10548 \\ 0.11688 \\ -0.34539 \\ 0.38471 \\ -0.10387 \\ 0.24084 \\ 0.12647 \\ -0.19048 \\ 2.789\text{-A} \\ 0.11667 \\ 0.11366 \\ 0.71376 \\ -0.12850 \\ -0.12850 \\ -0.12884 \\ -0.12265 \\ 0.22951 \end{array}$	4.0844 eV 4.0861 eV	303.55 nm 303.43 nm	f=0.0007 f=0.0006	<\$**2>=1.424 <\$**2>=1.694
Excited State 61: 132A ->145A 139A ->145A 141A ->149A 142A ->150A 144A ->145A 126B ->144B 128B ->144B 130B ->144B 130B ->144B 131B ->144B 132B ->145B 142B ->152B Excited State 62: 132A ->145A 136A ->145A 136A ->145A 136A ->145A 139A ->145A 143A ->148A 144A ->145A 126B ->144B 128B ->144B 128B ->144B 129B ->144B	$\begin{array}{c} 2.588\text{-A} \\ -0.12337 \\ 0.59235 \\ 0.10050 \\ -0.15796 \\ -0.10548 \\ 0.11688 \\ -0.34539 \\ 0.384711 \\ -0.10387 \\ 0.24084 \\ 0.12647 \\ -0.19048 \\ 2.789\text{-A} \\ 0.11667 \\ 0.11366 \\ 0.71376 \\ -0.12850 \\ -0.12884 \\ -0.12265 \\ 0.22951 \\ -0.27611 \end{array}$	4.0844 eV 4.0861 eV	303.55 nm 303.43 nm	f=0.0007 f=0.0006	<\$**2>=1.424 <\$**2>=1.694
Excited State 61: 132A ->145A 139A ->145A 141A ->149A 142A ->150A 144A ->145A 126B ->144B 128B ->144B 130B ->144B 130B ->144B 131B ->144B 132B ->145B 142B ->152B Excited State 62: 132A ->145A 136A ->145A 136A ->145A 136A ->145A 143A ->145A 144A ->145A 126B ->144B 128B ->144B 129B ->144B 129B ->144B 131B ->144B	2.588-A -0.12337 0.59235 0.10050 -0.15796 -0.10548 0.11688 -0.34539 0.38471 -0.10387 0.24084 0.12647 -0.19048 2.789-A 0.11667 0.11366 0.71376 -0.12850 -0.12884 -0.12265 0.22951 -0.27611 -0.13675	4.0844 eV 4.0861 eV	303.55 nm 303.43 nm	f=0.0007 f=0.0006	<\$**2>=1.424 <\$**2>=1.694
Excited State 61: 132A ->145A 139A ->145A 141A ->149A 142A ->150A 144A ->145A 126B ->144B 128B ->144B 130B ->144B 130B ->144B 132B ->145B 142B ->152B Excited State 62: 132A ->145A 136A ->145A 136A ->145A 136A ->145A 143A ->148A 144A ->145A 126B ->144B 128B ->144B 128B ->144B 128B ->144B 131B ->144B 132B ->145B	2.588-A -0.12337 0.59235 0.10050 -0.15796 -0.10548 0.11688 -0.34539 0.38471 -0.10387 0.24084 0.12647 -0.19048 2.789-A 0.11667 0.11366 0.71376 -0.12850 -0.12850 -0.12884 -0.12265 0.22951 -0.27611 -0.13675 -0.12010	4.0844 eV 4.0861 eV	303.55 nm 303.43 nm	f=0.0007	<\$**2>=1.424 <\$**2>=1.694
Excited State 61: 132A ->145A 139A ->145A 141A ->149A 142A ->150A 144A ->145A 126B ->144B 128B ->144B 130B ->144B 130B ->144B 132B ->144B 132B ->145B 142B ->152B Excited State 62: 132A ->145A 136A ->145A 136A ->145A 136A ->145A 136B ->144B 128B ->144B 128B ->144B 129B ->144B 129B ->144B 131B ->144B 132B ->145B 142B ->152B	2.588-A -0.12337 0.59235 0.10050 -0.15796 -0.10548 0.11688 -0.34539 0.38471 -0.10387 0.24084 0.12647 -0.19048 2.789-A 0.11667 0.11366 0.71376 -0.12850 -0.12884 -0.12265 0.22951 -0.27611 -0.13675 -0.12010 0.12196	4.0844 eV 4.0861 eV	303.55 nm 303.43 nm	f=0.0007 f=0.0006	<\$**2>=1.424
Excited State 61: 132A ->145A 139A ->145A 141A ->149A 142A ->150A 144A ->145A 126B ->144B 128B ->144B 130B ->144B 130B ->144B 132B ->144B 132B ->145B 142B ->152B Excited State 62: 132A ->145A 136A ->145A 136A ->145A 136A ->145A 136B ->144B 128B ->144B 128B ->144B 128B ->144B 128B ->144B 131B ->144B 132B ->145B 142B ->152B 143B ->150B	2.588-A -0.12337 0.59235 0.10050 -0.15796 -0.10548 0.11688 -0.34539 0.38471 -0.10387 0.24084 0.12647 -0.19048 2.789-A 0.11667 0.11366 0.71376 -0.12850 -0.12850 -0.12854 -0.12265 0.22951 -0.27611 -0.13675 -0.12010 0.12196 0.10416	4.0844 eV 4.0861 eV	303.55 nm 303.43 nm	f=0.0007	<\$**2>=1.424 <\$**2>=1.694
Excited State 61: 132A ->145A 139A ->145A 141A ->149A 142A ->150A 144A ->145A 126B ->144B 128B ->144B 130B ->144B 130B ->144B 130B ->144B 132B ->145B 142B ->152B Excited State 62: 132A ->145A 136A ->145A 136A ->145A 136A ->145A 136A ->145A 143A ->148A 144A ->145A 126B ->144B 128B ->144B 128B ->144B 131B ->144B 132B ->145B 142B ->152B 143B ->150B Excited State 63:	2.588-A -0.12337 0.59235 0.10050 -0.15796 -0.10548 0.11688 -0.34539 0.38471 -0.10387 0.24084 0.12647 -0.19048 2.789-A 0.11667 0.11366 0.71376 -0.12850 -0.12884 -0.12265 0.22951 -0.27611 -0.13675 -0.12010 0.12196 0.10416 2.488-A	4.0844 eV 4.0861 eV 4.1145 eV	303.55 nm 303.43 nm 301.34 nm	f=0.0007 f=0.0006	<\$**2>=1.424 <\$**2>=1.694 <\$**2>=1.297
Excited State 61: 132A ->145A 139A ->145A 141A ->149A 142A ->150A 144A ->145A 126B ->144B 128B ->144B 130B ->144B 130B ->144B 131B ->144B 132B ->145B 142B ->152B Excited State 62: 132A ->145A 136A ->145A 136A ->145A 136A ->145A 144A ->145A 126B ->144B 128B ->144B 128B ->144B 132B ->145B 142B ->152B 143B ->145B 142B ->152B 143B ->145B 142B ->152B 143B ->150B Excited State 63: 132A ->145A	2.588-A -0.12337 0.59235 0.10050 -0.15796 -0.10548 0.11688 -0.34539 0.38471 -0.10387 0.24084 0.12647 -0.19048 2.789-A 0.11667 0.11366 0.71376 -0.12850 -0.12884 -0.12265 0.22951 -0.27611 -0.13675 -0.12010 0.12196 0.10416 2.488-A -0.12135	4.0844 eV 4.0861 eV 4.1145 eV	303.55 nm 303.43 nm 301.34 nm	f=0.0007 f=0.0006	<s**2>=1.424 <s**2>=1.694 <s**2>=1.297</s**2></s**2></s**2>
Excited State 61: 132A ->145A 139A ->145A 141A ->149A 142A ->150A 144A ->145A 126B ->144B 128B ->144B 129B ->144B 130B ->144B 131B ->144B 132B ->145B 142B ->152B Excited State 62: 132A ->145A 136A ->145A 136A ->145A 126B ->144B 128B ->144B 128B ->144B 128B ->144B 128B ->144B 128B ->144B 128B ->144B 131B ->144B 132B ->145B 142B ->152B 142B ->152B	2.588-A -0.12337 0.59235 0.10050 -0.15796 -0.10548 0.11688 -0.34539 0.38471 -0.10387 0.24084 0.12647 -0.19048 2.789-A 0.11667 0.11366 0.71376 -0.12850 -0.12850 -0.12884 -0.12265 0.22951 -0.27611 -0.13675 -0.12010 0.12196 0.10416 2.488-A -0.12135 0.12791 -0.12425	4.0844 eV 4.0861 eV 4.1145 eV	303.55 nm 303.43 nm 301.34 nm	f=0.0007 f=0.0006 f=0.0017	<\$**2>=1.424 <\$**2>=1.694 <\$**2>=1.297
Excited State 61: 132A ->145A 139A ->145A 141A ->149A 142A ->150A 144A ->145A 126B ->144B 128B ->144B 130B ->144B 130B ->144B 132B ->144B 132B ->145B 142B ->152B Excited State 62: 132A ->145A 136A ->145A 136A ->145A 136B ->144B 128B ->144B 128B ->144B 128B ->144B 128B ->144B 129B ->144B 131B ->144B 132B ->144B 132B ->145B 142B ->152B 143B ->150B Excited State 63: 132A ->145A 138A ->145A 148A ->145A ->145A 148A ->145A ->1	2.588-A -0.12337 0.59235 0.10050 -0.15796 -0.10548 0.11688 -0.34539 0.38471 -0.10387 0.24084 0.12647 -0.19048 2.789-A 0.11667 0.11366 0.71376 -0.12850 -0.12850 -0.12884 -0.12265 0.22951 -0.27611 -0.13675 -0.12010 0.12196 0.10416 2.488-A -0.12135 0.12791 -0.12435 -0.23544	4.0844 eV 4.0861 eV 4.1145 eV	303.55 nm 303.43 nm 301.34 nm	f=0.0007 f=0.0006	<\$**2>=1.424 <\$**2>=1.694 <\$**2>=1.297

126B ->144B	0.24598					
128B ->144B	0.50058					
129B ->144B	-0.25998					
130B ->144B	0.16130					
132B ->145B	0.12188					
137B ->145B	-0 12155					
140B ->146B	0.12111					
$140D \rightarrow 140D$ $1/1B \rightarrow 1/6B$	0.12111					
141D -> 140D 1/1D > 1/9D	0.21408					
141D - 2140D	0.20917					
142B -> 152B	-0.20300					
142B ->155B	0.1104/	4 1004 17	200.01	C 0 0002	-0++0 0.07(
Excited State 64:	3.1/9-A	4.1204 eV	300.91 nm	f=0.0003	<s**2>=2.2/6</s**2>	
132A ->145A	0.16139					
138A ->145A	-0.10365					
138A ->151A	0.13255					
140A ->149A	-0.20251					
140A ->153A	-0.11875					
140A ->154A	-0.10243					
141A ->149A	-0.17477					
142A ->149A	0.15468					
142A ->151A	0.17422					
142A ->154A	0.10679					
143A ->147A	-0.11601					
143A ->148A	0 19635					
143A ->149A	0.12815					
126B ->144B	0 27814					
132B ->145B	-0 15955					
$132D \rightarrow 145D$ $137B \rightarrow 145B$	0.10702					
137B > 143D 137B > 150B	0.10702					
137D - 2130D 120D $> 140D$	-0.13340					
139D ->149D 120D >152D	0.23281					
139D - 2133D 120D > 154D	0.10290					
139B ->154B	0.10281					
140B ->149B	-0.19/58					
140B ->150B	-0.10581					
141B ->148B	0.12520					
142B ->150B	-0.17554					
142B ->154B	-0.12790					
Excited State 65:	2.783-A	4.1295 eV	300.24 nm	f=0.0018	<s**2>=1.687</s**2>	
141A ->146A	0.17493					
142A ->150A	0.16157					
128B ->144B	-0.14733					
141B ->146B	0.80602					
141B ->147B	0.26150					
141B ->148B	0.20991					
142B ->152B	0.17191					
142B ->155B	-0.10565					
Excited State 66:	3.387-A	4.1391 eV	299.54 nm	f=0.0003	<s**2>=2.617</s**2>	
132A ->145A	-0.21381					
134A ->145A	-0.15884					
134A ->149A	-0.11021					
138A ->145A	0.12801					
138A ->151A	0 13832					
140A ->149A	_0 19759					
1404 =>1514	0 1202/					
1404 ->1514	0.12934					
140A ->133A	0.10493					
140A - 104A	-0.11381					
141A ->149A	-0.19302					
141A ->151A	0.16229					
141A ->154A	-0.12213					
142A ->145A	-0.10977					
142A ->149A	0.10541					
143A ->148A	-0.11228					

143A ->149A	0.14117				
126B ->144B	-0.14763				
128B ->145B	0 11664				
132B ->145B	0 21718				
132D = 145D 122B $> 145B$	0.12001				
133D - 143D	0.12991				
133B ->149B	0.104/0				
137B ->145B	-0.13612				
137B ->150B	-0.13956				
139B ->149B	0.24427				
139B ->150B	-0.13342				
139B ->154B	0.11977				
140B ->149B	-0.19798				
140B ->150B	0 10784				
142B ->150B	-0 18195				
142B ->154B	0 12882				
142D > 134D	0.12002				
Evolted State 67:	-0.11303	4 1651 oV	207 67 nm	f-0.0665	< <u>\$**2</u> -1 400
120A > 14CA	2.309-A	4.1031 6 V	297.07 1111	1-0.0005	<5**2>=1.400
139A ->140A	0.12497				
140A ->146A	0.26503				
141A ->146A	0.49833				
141A ->147A	-0.15492				
142A ->146A	-0.21857				
142A ->150A	-0.20259				
144A ->148A	0.13259				
126B ->144B	0.11553				
128B ->144B	0.17170				
138B ->147B	-0.10374				
139B ->146B	-0 17327				
139B ->147B	0 10190				
140B ->146B	-0 29657				
140B > 140B 140B > 147B	0.2/698				
140D -> 147D	0.24098				
140B ->148B	0.15//5				
141B ->14/B	0.19404				
141B ->148B	-0.15188				
142B ->152B	-0.20255				~
Excited State 68:	2.856-A	4.1918 eV	295.78 nm	f=0.0591	<s**2>=1.789</s**2>
139A ->146A	-0.12673				
140A ->146A	0.60398				
140A ->147A	-0.17175				
141A ->146A	0.23564				
142A ->146A	-0.12058				
142A ->155A	0.16609				
143A ->146A	-0.11624				
139B ->146B	0.24820				
140B ->146B	0 35981				
140R ->147R	-0 23868				
140R = >151R	_0 11600				
140D -/131D 140D \152D	0.11008				
140D ->155D	-0.10021				
142B ->155B	0.1/846	4 2 2 2 7 1 7	202 (1	6 0 0077	0 1 5 4
Excited State 69:	3.101-A	4.2227 eV	293.61 nm	t=0.02//	<8**2>=2.154
136A ->146A	-0.20851				
139A ->146A	0.44415				
139A ->152A	-0.18767				
140A ->151A	0.12571				
140A ->153A	-0.16174				
141A ->147A	-0.10989				
141A ->151A	-0.14346				
141A ->153A	0.17546				
143A ->153A	0.11441				
144A ->146A	-0 11719				
138R ->147R	_0 27336				
138R ->148R	_0 1750/				
	0.1/0/4				

100D + 151D	0 12024				
138B ->151B	-0.13934				
139B ->146B	0.15339				
139B ->150B	-0.12877				
139B ->153B	0.14938				
140B ->146B	0.29286				
140B ->147B	-0.11842				
140B ->150B	-0.16470				
140B ->153B	0.18835				
141B ->147B	0.10445				
141B ->148B	0 11653				
141B ->151B	-0 15884				
Excited State 70:	3 246-4	4 2300 eV	293 11 nm	f=0.0100	<\$**7>=7 383
$140\Lambda > 146\Lambda$	0.21000	4.2300 C V	275.11 1111	1 0.0177	S 2× 2.303
140A -> 140A	-0.21909				
140A - 214/A	-0.34913				
141A ->140A	0.11548				
141A ->14/A	0.39785				
141A ->148A	-0.12828				
142A ->147A	-0.15349				
142A ->155A	-0.17063				
143A ->147A	0.14109				
143A ->151A	0.10231				
139B ->146B	0.26329				
139B ->147B	0.17175				
139B ->148B	0.10674				
140B ->146B	0 33095				
$140B \rightarrow 147B$	0 21459				
$140B \rightarrow 148B$	0 24457				
140D -> 140D	0.24457				
142D - 153D	-0.10434				
145B ->150B	-0.133/3	4 2521 - 37	201 59	6-0.0020	<0** 0 > _0 070
Exciled State $/1$:	2.209-A	4.2521 ev	291.58 nm	1-0.0020	<5***2>=0.970
139A ->146A	0.10703				
140A ->147A	-0.37566				
141A ->14/A	0.42460				
141A ->148A	-0.10522				
141A ->155A	0.11126				
142A ->147A	-0.15640				
142A ->155A	0.25740				
139B ->146B	-0.30938				
139B ->148B	-0.10106				
140B ->146B	-0.42017				
140B ->147B	-0.21284				
140B ->148B	-0 16871				
142B ->155B	0 25080				
143B ->150B	-0 14360				
Excited State 72	2 863-A	4 2600 eV	291 04 nm	f=0.0224	<s**2>=1 799</s**2>
$135\Lambda \rightarrow 145\Lambda$	-0 11163	4.2000 C V	2)1.04 IIII	1 0.0224	S 2× 1.777
133A - 2143A	-0.11103				
130A - 214/A	-0.21559				
141A ->154A	0.12052				
142A ->14/A	0.10760				
143A ->154A	-0.13767				
127B ->144B	0.41623				
130B ->144B	0.30757				
132B ->144B	-0.24085				
133B ->146B	0.10094				
137B ->146B	0.18721				
140B ->154B	0.10341				
143B ->149B	0.54828				
143B ->154B	0.17971				
Excited State 73:	2.541-A	4.2694 eV	290.40 nm	f=0.0155	<s**2>=1.364</s**2>
138A ->147A	0.17647				
143A ->154A	0 10551				
127B ->144B	0.58251				
	0.00000				

129B ->144B	0 11268				
130B ->144B	0.41237				
130B ->144B	-0.31152				
137B ->146B	-0 15769				
143B ->149B	-0 37347				
143B ->154B	-0 14217				
Excited State 74	2 222-A	4 2808 eV	289 63 nm	f=0.0811	<s**2>=0 984</s**2>
127A ->155A	0.10044				~
140A ->146A	-0.17415				
140A ->147A	0.10329				
141A ->146A	0.10222				
141A ->155A	0.22329				
142A ->155A	0.51792				
139B ->146B	0.17176				
140B ->147B	0.38033				
140B ->148B	0.23083				
142B ->155B	0.49974				
143B ->150B	0.10645				
143B ->151B	-0.11449				
Excited State 75:	3.008-A	4.3215 eV	286.90 nm	f=0.0358	<s**2>=2.012</s**2>
139A ->152A	-0.11923				
140A ->147A	-0.17581				
140A ->148A	0.18260				
141A ->147A	0.29579				
141A ->148A	0.14613				
141A ->153A	0.11128				
142A - >14/A	-0.1254/				
143A ->151A 127D >145D	-0.18031				
13/D - 2143D 138B ->151B	0.10/31				
130B -> 131D 139R ->146R	0.31570				
139B ->147B	-0 39011				
139B ->148B	-0.11540				
140B ->147B	0.19454				
140B ->153B	0.14378				
141B ->151B	-0.10188				
143B ->150B	0.43887				
Excited State 76:	2.838-A	4.3436 eV	285.44 nm	f=0.0123	<s**2>=1.764</s**2>
138A ->145A	-0.11021				
139A ->146A	-0.16575				
140A ->146A	-0.13680				
140A ->147A	-0.19616				
140A ->148A	0.31433				
141A ->148A	0.30441				
142A ->148A	-0.13891				
143A ->151A	-0.11969				
139B ->140B 120D >147D	-0.19194				
139D ->14/D 130B >148B	0.30444				
139D ->146B	0.28740				
140B -> 140B 140R -> 147R	-0 22524				
$140B \rightarrow 147B$ 140B ->148B	-0.14246				
143B ->150B	0 23501				
143B ->153B	-0.10032				
Excited State 77:	2.879-A	4.3519 eV	284.90 nm	f=0.0001	<s**2>=1.822</s**2>
138B ->145B	0.99330				
Excited State 78:	2.036-A	4.3658 eV	283.99 nm	f=0.0001	<s**2>=0.787</s**2>
126A ->155A	0.12605				
133A ->155A	0.17086				
136A ->155A	0.25666				
139A ->155A	0.29818				
143A ->155A	-0.16950				

144A ->150A	-0.12028				
144A ->155A	0.78030				
123B ->144B	0.14194				
124B ->144B	0.22187	1000 11	000 55	0.0.0100	
Excited State 79:	3.0/8-A	4.3692 eV	283.77 nm	t=0.0120	<s**2>=2.119</s**2>
138A ->145A	0.11645				
$140A \rightarrow 14/A$	0.24166				
140A - >148A 141A > 148A	0.44/38				
141A - >140A 1/1A > 151A	0.43982				
147A => 137A 147A => 148A	-0.20822				
143A -> 148A	-0 14711				
143A ->151A	0.15075				
139B ->147B	-0.18506				
140B ->150B	-0.14813				
142B ->149B	-0.17179				
143B ->150B	-0.35447				
143B ->153B	-0.13693				
Excited State 80:	2.159-A	4.3897 eV	282.45 nm	f=0.0325	<s**2>=0.916</s**2>
138A ->145A	0.34927				
140A ->147A	0.41559				
141A ->147A	0.25083				
142A ->147A	-0.12201				
143A ->147A	-0.12504				
13/B -> 145B	0.33908				
139B ->140B 120D >147D	0.3/0//				
139D ->14/D 140B >146B	0.40590				
140B ->140B 140B ->147B	-0.23396				
Fxcited State 81:	-0.23940 2 702-A	4 4287 eV	279 96 nm	f=0.0624	< S **2>=1 575
134A ->147A	0 19963	7.7207 0 0	279.90 IIII	1 0.0024	S 2º 1.575
135A ->145A	0.26122				
143A ->149A	0.43277				
143A ->150A	0.13606				
143A ->154A	0.10490				
144A ->149A	0.26732				
133B ->146B	-0.18102				
135B ->145B	0.33007				
135B ->149B	-0.10742				
139B ->154B	0.10900				
143B ->149B	0.49571	1 1212 31	270 (0	6.0.000	-C++2 1 200
Excited State 82: 128.4×145.4	2.554-A	4.4343 eV	2/9.60 nm	1=0.0236	<\$**2>=1.380
138A - >145A 120A >146A	0.13101				
139A = -2140A 140A = ->147A	-0.14115				
140A => 147A 140A => 148A	-0 27191				
140A > 140A 141A ->148A	-0 14505				
143A ->153A	0.13076				
139B ->147B	-0.17781				
139B ->148B	0.63204				
140B ->147B	0.17801				
140B ->148B	-0.45826				
142B ->149B	-0.10003				
143B ->153B	-0.14311				
Excited State 83:	3.190-A	4.4402 eV	279.23 nm	f=0.0136	<s**2>=2.294</s**2>
132A ->145A	0.21258				
134A ->145A	-0.15895				
133A -> 14/A	-0.10424				
130A ->140A 120A \146A	0.11862				
137A -~140A 140A _>148A	0.29808				
141A ->151A	0.10681				
1424 - 1514					
---	---	------------------------	------------------------	----------------------	---------------------
143A ->131A	-0.10056				
143A ->152A	-0.10056				
143A ->153A	-0.13777				
132B ->145B	-0.20989				
133B -> 145B	0 18642				
135B > 145B	0.11025				
13/D - 2143D	0.11023				
139B ->14/B	-0.12013				
139B ->148B	0.31259				
140B ->147B	0.12140				
140B ->148B	-0.13192				
140B ->150B	0.13476				
141B ->147B	0.11911				
143B ->150B	-0 25557				
143B ->151B	0.17861				
143D > 151D	0.20252				
THUD -> 100D	0.30233	4 4511	279 55	£-0.0177	< C**2> -2 5 40
Excited State 84:	3.341-A	4.4511 ev	2/8.55 nm	1=0.01//	<5**2>=2.540
132A ->145A	-0.12606				
133A ->148A	0.11114				
135A ->146A	0.19576				
136A ->148A	-0.10989				
136A ->153A	-0.10666				
140A ->146A	-0 16657				
1/11 = 152	-0.16522				
141A = 152A	-0.10322				
145A ->152A	-0.54218				
132B ->145B	0.12362				
134B ->148B	0.12405				
135B ->147B	-0.12007				
138B ->153B	0.12084				
139B ->148B	-0.10942				
140B ->148B	0.12587				
140B ->151B	-0 17403				
141B ->151B	-0 16922				
141D -> 151D 142D >151D	-0.10922				
143D -~131D	0.34100	4 45 47 - 37	279.22	6-0.0011	-0**2> -1 200
Excited State 85:	2.569-A	4.454/ev	2/8.32 nm	1=0.0011	<5**2>=1.399
1260 > 1/150	_0 58330				
130A ->143A	-0.38339				
139A ->145A	0.17775				
139A ->145A 139A ->145A 144A ->149A	0.17775 0.66295				
130A ->143A 139A ->145A 144A ->149A 144A ->150A	0.17775 0.66295 0.22591				
139A ->145A 139A ->145A 144A ->149A 144A ->150A Excited State 86:	0.17775 0.66295 0.22591 2.910-A	4.4593 eV	278.03 nm	f=0.0361	<s**2>=1.868</s**2>
130A ->145A 139A ->145A 144A ->149A 144A ->150A Excited State 86: 127A ->145A	0.17775 0.66295 0.22591 2.910-A 0.12982	4.4593 eV	278.03 nm	f=0.0361	<s**2>=1.868</s**2>
130A ->145A 139A ->145A 144A ->149A 144A ->150A Excited State 86: 127A ->145A 130A ->145A	0.3833 0.17775 0.66295 0.22591 2.910-A 0.12982 0.16889	4.4593 eV	278.03 nm	f=0.0361	<s**2>=1.868</s**2>
130A ->145A 139A ->145A 144A ->149A 144A ->150A Excited State 86: 127A ->145A 130A ->145A 132A ->145A	0.17775 0.66295 0.22591 2.910-A 0.12982 0.16889 -0.21059	4.4593 eV	278.03 nm	f=0.0361	<s**2>=1.868</s**2>
130A ->145A 139A ->145A 144A ->149A 144A ->150A Excited State 86: 127A ->145A 130A ->145A 132A ->145A 132A ->149A	0.17775 0.66295 0.22591 2.910-A 0.12982 0.16889 -0.21059	4.4593 eV	278.03 nm	f=0.0361	<s**2>=1.868</s**2>
130A ->145A 139A ->145A 144A ->149A 144A ->150A Excited State 86: 127A ->145A 130A ->145A 132A ->145A 132A ->149A 138A ->145A	0.17775 0.66295 0.22591 2.910-A 0.12982 0.16889 -0.21059 -0.12791 0.2255	4.4593 eV	278.03 nm	f=0.0361	<s**2>=1.868</s**2>
130A ->145A 139A ->145A 144A ->149A 144A ->150A Excited State 86: 127A ->145A 130A ->145A 132A ->145A 132A ->145A 138A ->145A	0.17775 0.66295 0.22591 2.910-A 0.12982 0.16889 -0.21059 -0.12791 0.23258	4.4593 eV	278.03 nm	f=0.0361	<s**2>=1.868</s**2>
130A ->145A 139A ->145A 144A ->149A 144A ->150A Excited State 86: 127A ->145A 130A ->145A 132A ->145A 132A ->145A 138A ->145A 140A ->151A	0.17775 0.66295 0.22591 2.910-A 0.12982 0.16889 -0.21059 -0.12791 0.23258 -0.10904	4.4593 eV	278.03 nm	f=0.0361	<s**2>=1.868</s**2>
130A ->143A 139A ->145A 144A ->149A 144A ->150A Excited State 86: 127A ->145A 130A ->145A 132A ->145A 132A ->145A 138A ->145A 140A ->151A 127B ->145B	0.17775 0.66295 0.22591 2.910-A 0.12982 0.16889 -0.21059 -0.12791 0.23258 -0.10904 -0.12699	4.4593 eV	278.03 nm	f=0.0361	<s**2>=1.868</s**2>
130A ->145A 139A ->145A 144A ->149A 144A ->150A Excited State 86: 127A ->145A 130A ->145A 132A ->145A 132A ->145A 138A ->145A 140A ->151A 127B ->145B 130B ->145B	0.17775 0.66295 0.22591 2.910-A 0.12982 0.16889 -0.21059 -0.12791 0.23258 -0.10904 -0.12699 -0.16055	4.4593 eV	278.03 nm	f=0.0361	<s**2>=1.868</s**2>
130A ->145A 139A ->145A 144A ->149A 144A ->150A Excited State 86: 127A ->145A 130A ->145A 132A ->145A 132A ->145A 138A ->145A 140A ->151A 127B ->145B 130B ->145B 132B ->145B	0.17775 0.66295 0.22591 2.910-A 0.12982 0.16889 -0.21059 -0.12791 0.23258 -0.10904 -0.12699 -0.16055 0.20722	4.4593 eV	278.03 nm	f=0.0361	<s**2>=1.868</s**2>
130A ->143A 139A ->145A 144A ->149A 144A ->150A Excited State 86: 127A ->145A 130A ->145A 132A ->145A 132A ->145A 138A ->145A 140A ->151A 127B ->145B 130B ->145B 132B ->145B 132B ->149B	0.17775 0.66295 0.22591 2.910-A 0.12982 0.16889 -0.21059 -0.12791 0.23258 -0.10904 -0.12699 -0.16055 0.20722 0.14522	4.4593 eV	278.03 nm	f=0.0361	<s**2>=1.868</s**2>
130A ->143A 139A ->145A 144A ->149A 144A ->150A Excited State 86: 127A ->145A 130A ->145A 132A ->145A 132A ->145A 138A ->145A 140A ->151A 127B ->145B 130B ->145B 132B ->145B 132B ->145B 132B ->145B	0.38333 0.17775 0.66295 0.22591 2.910-A 0.12982 0.16889 -0.21059 -0.12791 0.23258 -0.10904 -0.12699 -0.16055 0.20722 0.14522 0.36494	4.4593 eV	278.03 nm	f=0.0361	<s**2>=1.868</s**2>
130A ->145A 139A ->145A 144A ->149A 144A ->150A Excited State 86: 127A ->145A 130A ->145A 132A ->145A 132A ->145A 138A ->145A 140A ->151A 127B ->145B 130B ->145B 132B ->145B 132B ->145B 132B ->145B 137B ->145B	0.17775 0.66295 0.22591 2.910-A 0.12982 0.16889 -0.21059 -0.12791 0.23258 -0.10904 -0.12699 -0.16055 0.20722 0.14522 0.36494 -0.10288	4.4593 eV	278.03 nm	f=0.0361	<s**2>=1.868</s**2>
130A ->145A 139A ->145A 144A ->149A 144A ->150A Excited State 86: 127A ->145A 130A ->145A 132A ->145A 132A ->145A 138A ->145A 140A ->151A 127B ->145B 130B ->145B 132B ->145B 132B ->145B 132B ->145B 139B ->147B 139B ->148B	0.3833 0.17775 0.66295 0.22591 2.910-A 0.12982 0.16889 -0.21059 -0.12791 0.23258 -0.10904 -0.12699 -0.16055 0.20722 0.14522 0.36494 -0.10288 0.14994	4.4593 eV	278.03 nm	f=0.0361	<s**2>=1.868</s**2>
130A ->143A 139A ->145A 144A ->149A 144A ->150A Excited State 86: 127A ->145A 130A ->145A 132A ->145A 132A ->145A 132A ->145A 140A ->151A 127B ->145B 130B ->145B 132B ->145B 132B ->145B 132B ->145B 139B ->145B 139B ->147B 139B ->148B 142B ->149B	0.3833 0.17775 0.66295 0.22591 2.910-A 0.12982 0.16889 -0.21059 -0.12791 0.23258 -0.10904 -0.12699 -0.16055 0.20722 0.14522 0.36494 -0.10288 0.14994 0.52624	4.4593 eV	278.03 nm	f=0.0361	<s**2>=1.868</s**2>
130A ->143A 139A ->145A 144A ->149A 144A ->150A Excited State 86: 127A ->145A 130A ->145A 132A ->145A 132A ->145A 132A ->145A 140A ->151A 127B ->145B 130B ->145B 132B ->145B 132B ->145B 132B ->145B 139B ->145B 139B ->147B 139B ->148B 142B ->149B 142B ->149B	0.38333 0.17775 0.66295 0.22591 2.910-A 0.12982 0.16889 -0.21059 -0.12791 0.23258 -0.10904 -0.12699 -0.16055 0.20722 0.14522 0.36494 -0.10288 0.14994 0.52624 0.12077	4.4593 eV	278.03 nm	f=0.0361	<s**2>=1.868</s**2>
130A \rightarrow 145A 139A \rightarrow 145A 144A \rightarrow 149A 144A \rightarrow 150A Excited State 86: 127A \rightarrow 145A 130A \rightarrow 145A 132A \rightarrow 145A 132A \rightarrow 145A 132A \rightarrow 145A 138A \rightarrow 145B 130B \rightarrow 145B 132B \rightarrow 145B 132B \rightarrow 145B 132B \rightarrow 145B 132B \rightarrow 145B 139B \rightarrow 145B	0.3833 0.17775 0.66295 0.22591 2.910-A 0.12982 0.16889 -0.21059 -0.12791 0.23258 -0.10904 -0.12699 -0.16055 0.20722 0.14522 0.36494 -0.10288 0.14994 0.52624 0.12077 0.17620	4.4593 eV	278.03 nm	f=0.0361	<s**2>=1.868</s**2>
130A \rightarrow 145A 139A \rightarrow 145A 144A \rightarrow 149A 144A \rightarrow 150A Excited State 86: 127A \rightarrow 145A 130A \rightarrow 145A 132A \rightarrow 145A 132A \rightarrow 145A 132A \rightarrow 145A 132A \rightarrow 145B 130B \rightarrow 145B 132B \rightarrow 145B 132B \rightarrow 145B 132B \rightarrow 145B 132B \rightarrow 145B 132B \rightarrow 145B 132B \rightarrow 145B 139B \rightarrow 150B Excited State 27	0.3833 0.17775 0.66295 0.22591 2.910-A 0.12982 0.16889 -0.21059 -0.12791 0.23258 -0.10904 -0.12699 -0.16055 0.20722 0.14522 0.36494 -0.10288 0.14994 0.52624 0.12077 -0.17620	4.4593 eV	278.03 nm	f=0.0361	<s**2>=1.868</s**2>
130A ->145A 139A ->145A 144A ->149A 144A ->150A Excited State 86: 127A ->145A 130A ->145A 132A ->145A 132A ->145A 132A ->145A 132A ->145A 140A ->151A 127B ->145B 130B ->145B 132B ->145B 132B ->145B 139B ->145B 139B ->147B 139B ->148B 142B ->150B Excited State 87: 130A ->145A 143B ->150B	0.17775 0.66295 0.22591 2.910-A 0.12982 0.16889 -0.21059 -0.12791 0.23258 -0.10904 -0.12699 -0.16055 0.20722 0.14522 0.36494 -0.10288 0.14994 0.52624 0.12077 -0.17620 2.700-A	4.4593 eV 4.4817 eV	278.03 nm 276.65 nm	f=0.0361 f=0.1190	<\$**2>=1.868
130A ->145A 139A ->145A 144A ->149A 144A ->150A Excited State 86: 127A ->145A 130A ->145A 132A ->145A 132A ->145A 132A ->145A 140A ->151A 127B ->145B 130B ->145B 132B ->145B 132B ->145B 132B ->145B 139B ->145B 139B ->147B 139B ->148B 142B ->152B 143B ->150B Excited State 87: 132A ->145A	0.38339 0.17775 0.66295 0.22591 2.910-A 0.12982 0.16889 -0.21059 -0.12791 0.23258 -0.10904 -0.12699 -0.16055 0.20722 0.14522 0.36494 -0.10288 0.14994 0.52624 0.12077 -0.17620 2.700-A -0.17189	4.4593 eV 4.4817 eV	278.03 nm 276.65 nm	f=0.0361 f=0.1190	<\$**2>=1.868
130A \rightarrow 145A 139A \rightarrow 145A 144A \rightarrow 149A 144A \rightarrow 150A Excited State 86: 127A \rightarrow 145A 130A \rightarrow 145A 132A \rightarrow 145A 132A \rightarrow 145A 138A \rightarrow 145A 140A \rightarrow 151A 127B \rightarrow 145B 130B \rightarrow 145B 132B \rightarrow 145B 132B \rightarrow 145B 132B \rightarrow 145B 139B \rightarrow 145B 139B \rightarrow 147B 139B \rightarrow 148B 142B \rightarrow 152B 143B \rightarrow 150B Excited State 87: 132A \rightarrow 145A 134A \rightarrow 145A	0.17775 0.66295 0.22591 2.910-A 0.12982 0.16889 -0.21059 -0.12791 0.23258 -0.10904 -0.12699 -0.16055 0.20722 0.14522 0.36494 -0.10288 0.14994 0.52624 0.12077 -0.17620 2.700-A -0.17189 0.13280	4.4593 eV 4.4817 eV	278.03 nm 276.65 nm	f=0.0361 f=0.1190	<\$**2>=1.868
130A \rightarrow 145A 139A \rightarrow 145A 144A \rightarrow 149A 144A \rightarrow 150A Excited State 86: 127A \rightarrow 145A 130A \rightarrow 145A 132A \rightarrow 145A 132A \rightarrow 145A 132A \rightarrow 145A 130B \rightarrow 145B 130B \rightarrow 145B 132B \rightarrow 145B 132B \rightarrow 145B 132B \rightarrow 145B 132B \rightarrow 145B 139B \rightarrow 145B 139B \rightarrow 145B 139B \rightarrow 145B 142B \rightarrow 152B 143B \rightarrow 150B Excited State 87: 132A \rightarrow 145A 134A \rightarrow 145A 136A \rightarrow 146A	0.3833 0.17775 0.66295 0.22591 2.910-A 0.12982 0.16889 -0.21059 -0.12791 0.23258 -0.10904 -0.12699 -0.16055 0.20722 0.14522 0.36494 -0.10288 0.14994 0.52624 0.12077 -0.17620 2.700-A -0.17189 0.13280 0.18288	4.4593 eV 4.4817 eV	278.03 nm 276.65 nm	f=0.0361 f=0.1190	<\$**2>=1.868
130A \rightarrow 145A 139A \rightarrow 145A 144A \rightarrow 149A 144A \rightarrow 150A Excited State 86: 127A \rightarrow 145A 130A \rightarrow 145A 132A \rightarrow 145A 132A \rightarrow 145A 138A \rightarrow 145A 138A \rightarrow 145B 130B \rightarrow 145B 132B \rightarrow 145B 132B \rightarrow 145B 132B \rightarrow 145B 132B \rightarrow 145B 139B \rightarrow 145B 139B \rightarrow 147B 139B \rightarrow 148B 142B \rightarrow 150B Excited State 87: 132A \rightarrow 145A 134A \rightarrow 145A 136A \rightarrow 145A 138A \rightarrow 145A	0.17775 0.66295 0.22591 2.910-A 0.12982 0.16889 -0.21059 -0.12791 0.23258 -0.10904 -0.12699 -0.16055 0.20722 0.14522 0.36494 -0.10288 0.14994 0.52624 0.12077 -0.17620 2.700-A -0.17189 0.13280 0.18288 -0.24382	4.4593 eV 4.4817 eV	278.03 nm 276.65 nm	f=0.0361 f=0.1190	<\$**2>=1.868
130A \rightarrow 145A 139A \rightarrow 145A 144A \rightarrow 149A 144A \rightarrow 150A Excited State 86: 127A \rightarrow 145A 130A \rightarrow 145A 132A \rightarrow 145A 132A \rightarrow 145A 138A \rightarrow 145A 138A \rightarrow 145B 130B \rightarrow 145B 132B \rightarrow 145B 132B \rightarrow 145B 132B \rightarrow 145B 132B \rightarrow 145B 139B \rightarrow 145B 139B \rightarrow 145B 139B \rightarrow 145B 142B \rightarrow 150B Excited State 87: 132A \rightarrow 145A 136A \rightarrow 146A 138A \rightarrow 146A 139A \rightarrow 146A	0.17775 0.66295 0.22591 2.910-A 0.12982 0.16889 -0.21059 -0.12791 0.23258 -0.10904 -0.12699 -0.16055 0.20722 0.14522 0.36494 -0.10288 0.14994 0.52624 0.12077 -0.17620 2.700-A -0.17189 0.13280 0.18288 -0.24382 0.28558	4.4593 eV 4.4817 eV	278.03 nm 276.65 nm	f=0.0361 f=0.1190	<\$**2>=1.868

140A ->148A	0.37536				
141A ->148A	-0.11526				
143A ->151A	0.21715				
122B ->144B	-0.11099				
132B ->145B	0.16630				
133B ->145B	-0.18889				
137B ->145B	-0.25194				
140B ->148B	-0.30383				
141B ->147B	0.11250				
143B ->150B	0.24033				
143B ->153B	0.15732				
Excited State 88:	2.598-A	4.5121 eV	274.78 nm	f=0.0013	<s**2>=1.437</s**2>
136A ->145A	0.70991				
139A ->145A	-0.10155				
143A ->149A	-0.11453				
143A ->155A	0 11739				
144A ->149A	0.56273				
144A ->150A	0 17928				
143B ->155B	0.11862				
Excited State 89	2 401-A	4 5163 eV	274 53 nm	f=0.0349	<\$**2>=1 101
130A ->145A	0 10477	1.5105 01	271.35 1111	1 0.0517	·0 2· 1.1/1
136A ->145A	-0 11108				
130A => 145A 138A => 145A	-0.26169				
$140\Delta =>148\Delta$	-0.23963				
140A => 140A 1/11A => 1/17A	0.10065				
141A -> 14/A 1/1A -> 1/8A	0.10005				
141A -> 140A 142A > 148A	0.29039				
142A -> 140A	-0.110/4				
142A - >149A	-0.15102				
143A - 140A 143A > 151A	0.10133				
143A - 2131A	-0.10040				
144A - >140A	-0.10834				
144A ->149A	-0.10004				
144A - >152A	0.13601				
122B -> 144B	0.10//1				
13/B -> 145B	-0.18593				
139B ->146B	0.103/5				
139B ->14/B	-0.106/1				
139B ->148B	0.36946				
140B ->146B	-0.13153				
140B ->14/B	-0.20835				
140B ->148B	0.27929				
142B ->149B	-0.13532				
143B ->153B	0.29833	4 5305 11	0.50 10	a	
Excited State 90:	3.196-A	4.5385 eV	2/3.18 nm	t=0.0002	<s**2>=2.303</s**2>
129A ->146A	0.11800				
131A ->146A	-0.11646				
136A ->148A	-0.14924				
139A ->148A	0.60922				
139A ->151A	-0.10710				
139A ->153A	0.12019				
140A ->146A	0.15123				
140A ->152A	0.13514				
141A ->146A	-0.11890				
141A ->152A	-0.15285				
129B ->147B	0.10274				
138B ->147B	0.18693				
138B ->148B	-0.28227				
139B ->147B	0.15042				
139B ->151B	-0.14359				
140B ->147B	0.11894				
140B ->151B	-0.16801				
143B ->151B	-0.26655				

Excited State 91:	2.711-A	4.5748 eV	271.02 nm	f=0.0688	<s**2>=1.587</s**2>
134A ->145A	-0.20608				
138A ->145A	-0.13728				
141A ->147A	0.11993				
143A ->151A	0.42463				
144A ->151A	0.33811				
130B ->145B	0 11634				
133B ->145B	0 14067				
1350×1450 1270 >1450	0.1969/				
137D - 143D 120D $> 149D$	-0.10004				
139D - 2140D	0.10850				
142B ->149B	0.53096				
143B ->150B	0.13617				
Excited State 92:	3.094-A	4.5811 eV	270.64 nm	f=0.0185	<\$**2>=2.143
134A ->147A	-0.17682				
135A ->145A	-0.38755				
138A ->147A	0.10494				
143A ->149A	0.62221				
143A ->150A	0.17525				
143A ->154A	0.14245				
133B ->146B	0 18466				
135B ->145B	-0 29284				
137B ->1/6B	-0 13203				
137D ->140D 142D >150D	-0.13203				
142D - 2130D	0.14330				
143B ->154B	-0.19919	4 (000 11	a (a 1 a		0.4.4.0 1.501
Excited State 93:	2.707-A	4.6008 eV	269.48 nm	t=0.0389	<s**2>=1.581</s**2>
127A ->145A	0.11175				
130A ->145A	0.16220				
136A ->146A	-0.20034				
138A ->145A	-0.10954				
139A ->146A	-0.23619				
139A ->147A	-0.12527				
141A ->148A	-0.13819				
142A ->149A	-0.21082				
143A ->153A	-0 10485				
144A ->151A	0 58161				
127R > 101R	-0.12052				
12/D -> 145D	0.16121				
130D - /143D	-0.10121				
133B - >143B	0.10515				
140B ->148B	-0.13258				
141B ->148B	-0.10251				
142B ->149B	-0.18239				
143B ->150B	-0.24949				
Excited State 94:	2.872-A	4.6015 eV	269.44 nm	f=0.0536	<s**2>=1.812</s**2>
134A ->145A	0.19110				
135A ->147A	0.11324				
136A ->146A	-0.11210				
138A ->145A	0.27870				
141A ->147A	-0.13741				
142A ->149A	0.19786				
143A ->153A	-0 23649				
1444 = 15514	0.38355				
144A > 151A	0.12014				
122D \1/5D	0.12014				
133D - 143B	-0.21439				
135B ->146B	0.10520				
13/B->145B	0.20015				
139B ->146B	-0.16383				
142B ->149B	-0.19314				
143B ->150B	0.26265				
143B ->151B	-0.10393				
143B ->153B	0.30913				
Excited State 95:	2.548-A	4.6265 eV	267.99 nm	f=0.1021	<s**2>=1.373</s**2>

139A ->146A	0.26549				
139A ->147A	-0.16673				
140A ->148A	-0.12904				
141A ->148A	0.13460				
143A ->151A	-0.29917				
143A ->153A	0.28562				
144A ->151A	0.52475				
144A ->152A	-0.11590				
122B ->144B	-0.11257				
138B ->147B	0.18531				
140B ->148B	0.11500				
141B ->147B	0.11117				
141B ->148B	0.15244				
143B ->153B	-0.16342				
Excited State 96:	2.082-A	4.6441 eV	266.97 nm	f=0.0010	<s**2>=0.834</s**2>
136A ->145A	-0.23454				
140A ->155A	0.25092				
143A ->150A	0.14326				
143A ->155A	0.58385				
144A ->155A	0.11239				
124B ->144B	-0.19452				
127B ->144B	0.12060				
139B ->155B	0.13940				
141B ->152B	-0.10369				
141B ->155B	-0.11807				
142B ->150B	0.11415				
143B ->152B	0.10675				
143B ->155B	0.56539				
Excited State 97:	2.851-A	4.6627 eV	265.90 nm	f=0.0034	<s**2>=1.782</s**2>
143A ->149A	-0.14332				
137B ->150B	-0.12221				
139B ->149B	0.16334				
140B ->149B	-0.15450				
142B ->150B	0.86334				
142B ->153B	-0.15165				
143B ->154B	-0.15530				
Excited State 98:	2.913-A	4.6745 eV	265.23 nm	f=0.0064	<s**2>=1.872</s**2>
143A ->149A	0.17966				
124B ->144B	-0.10228				
13/B ->146B	-0.19861				
139B ->149B	-0.11100				
140B ->149B	0.11050				
142B ->150B	0.23332				
142B ->133B 142D > 140D	-0.10621				
143D - 2149D 142D > 151D	-0.13021				
143D ->131D 142D >152D	-0.10203				
143B ->152B	-0.3//0/				
143D ->134D Evoited State 00:	0.72232 2.075 A	4 6707 N	264.04 nm	£-0.0586	~\$**7>-7 114
$\frac{122}{148} \times \frac{148}{148}$	0.16222	4.0/9/ 60	204.94 1111	1-0.0380	< <u>3</u> ·· <u>2</u> /=2.114
135A -> 146A	-0.25210				
135A ->140A	0 201/2				
130A -> 146A	-0.10418				
1394 ->1404	0 38747				
144A ->157A	-0 18505				
134R ->147R	0 16947				
134R ->14/D	-0 17036				
135R -> 140D	0 24952				
139B -> 147B	0 11034				
143B ->151B	0 50098				
143B ->153B	0 25307				
143B ->154B	0.12899				

10.3 Dinuclear Bis(terpyridine)ruthenium(II) Complexes by Amide Coupling of Ruthenium Amino Acids: Synthesis and Properties

A. Breivogel, K. Hempel, K. Heinze, Inorg. Chim. Acta 2011, 374, 152–162.

DOI: 10.1016/j.ica.2011.03.046

•

Reprinted with permission from Elsevier, Copyright © 2011.

DFT-optimized (B3LYP/LANL2DZ) cartesian coordinates of **3a** and **3b** (singlet) and $\mathbf{1b}^+$, $\mathbf{3a}^+$ and $\mathbf{3b}^+$ (doublet) can be found in the online supporting information.

Dinuclear Bis(terpyridine)ruthenium(II) Complexes by Amide Coupling of Ruthenium Amino Acids: Synthesis and Properties

Aaron Breivogel^a, Klaus Hempel^b, Katja Heinze^{*a}

Supporting Information

Fig. S1. MO scheme of 3a (contour level 0.07 a.u.).

Fig. S2. Relevant DFT calculated metrical parameters of a model of **1b** (red) and **[1b]**⁺ (green, in parentheses) (distances in Å).

10.4 Light-induced Charge Separation in a Donor-Chromophore-Acceptor Nanocomposite Poly[TPA-Ru(tpy)₂]@ZnO

L. zur Borg, A. L. Domanski, A. Breivogel, M. Bürger, R. Berger, K. Heinze, R. Zentel, J. Mater. Chem. C 2013, 1, 1223–1230.

DOI: 10.1039/c2tc00535b

Reprinted with permission from The Royal Society of Chemistry, Copyright © 2013.

Supporting Information

Light-Induced Charge Separation in a Donor-Chromophore-Acceptor Nanocomposite Poly[TPA-Ru(tpy)₂]@ZnO

- **Fig. S1** FT-IR spectrum of $[(H_2N-Gly-CONH-tpy)Ru(tpy-CONH-Gly-COOH)](PF_6)_2$ (A)
- Fig. S2 ¹⁹F NMR spectra of P2 and P3a
- Fig. S3 FT-IR spectra of P2, P3a and P3b
- Fig. S4 TEM images
- Fig. S5 Topography image of P3a@ZnO
- Fig. S6 KPFM images of P3b@ZnO
- Fig. S7 Atom numbering of A used for NMR assignments
- Fig. S8 UV-Vis spectrum of P3b in THF

Fig. S2 FT-IR spectra of P2 and P3a and 3b.

Fig. S4 TEM images of a) pristine ZnO. b) and c) P3a@ZnO, drop cast from THF.

Fig. S5 Topography image of P3a@ZnO.

Fig. S6 KPFM images of P3b@ZnO. a) Topography b) Surface potential map recorded in darkness. c) Surface potential map recorded under laser illumination of a wavelength of 488 nm. d) Line profile of the surface potential across the particle indicated by the line in the respective surface potential map. No photo-response was observed for this D-A system.

Fig. S7 Atom numbering of A used for NMR assignments.

10.5 A Heteroleptic Bis(tridentate)ruthenium(II) Polypyridine Complex with Improved Photophysical Properties and Integrated Functionalizability

A. Breivogel, C. Förster, K. Heinze, Inorg. Chem. 2010, 49, 7052-7056.

DOI: 10.1021/ic1007236

Reprinted with permission from the American Chemical Society, Copyright © 2010.

DFT-optimized (B3LYP/LANL2DZ, IEFPCM in CH₃CN) cartesian coordinates of *cis-fac*- $[\text{Ru}(\text{ddpd})_2]^{2^+}$, *trans-fac*- $[\text{Ru}(\text{ddpd})_2]^{2^+}$, *mer*- $[\text{Ru}(\text{ddpd})_2]^{2^+}$, **[8]**²⁺ (singlet ground state and ³MLCT state) and results of the TD-DFT (B3LYP/LANL2DZ, gasphase and IEFPCM in CH₃CN) calculation of **[8]**²⁺ (singlet) can be found in the online supporting information.

A Heteroleptic Bis(tridentate)ruthenium(II) Polypyridine Complex with Improved Photophysical Properties and Integrated Functionalizability

Aaron Breivogel, Christoph Förster, Katja Heinze*

Supporting Information

- X-ray crystal data of 8
- Spectroscopic data of 8
- Cartesian Coordinates of *cis-fac*-[Ru(ddpd)₂]²⁺, *trans-fac*-[Ru(ddpd)₂]²⁺, *mer*-[Ru(ddpd)₂]²⁺, 8 (singlet ground state), 8 (³MLCT state)
- Graphical representation of the frontier orbitals of 8
- Results of the TD-DFT (singlets) calculation of 8 (gas phase)
- Results of the TD-DFT (singlets) calculation of 8 (CH₃CN).
- Cartesian Coordinates of Ni(CO)₃L complexes (L = κN(central pyridine)-ddpd, κN(terminal pyridine)-ddpd, NMe₃, NHC (1,3-dimethyl-2,3-dihydro-1*H*-imidazol-2ylidene), PMe₃, PH₃, PF₃, pyridine, methyl(1-methyl-1H-pyridin-2-ylidene)amine)

Figure S1. Atom numbering of the dication of 8.

	8
Empirical formula	$C_{37}H_{35}F_{12}N_9O_2P_2Ru$
Formula weight	1028.75
Crystal color, habit	orange-brown plate
Crystal dimensions / mm	$0.20\times0.20\times0.10$
Crystal system	triclinic
Space group	P1-bar
a / Å	11.9005(9)
b / Å	13.2663(10)
<i>c</i> / Å	14.7564(11)
α / \circ	68.413(2)
β / °	73.337(2)
$\gamma/^{\circ}$	73.704(2)
$V/Å^3$	2034.8(3)
Z	2
<i>F</i> (000)	1036
Density (calcd) / $g \text{ cm}^{-3}$	1.679
Absorption coefficient μ / mm^{-1}	0.567 (MULABS)
Theta range / °	1.52 - 28.12
Index ranges	$-15 \leq h \leq 15$
2	$-17 \leq k \leq 17$
	$-19 \le l \le 19$
Reflections collected	44719
Independent reflections	9793 ($R_{\rm int} = 0.1026$)
Observed reflections	9793
Parameters	632
Max. / min. transmission	1.2702 / 0.8205
Goodness-of-fit on F^2	0.931
Largest difference peak and hole / e $Å^{-3}$	0.51 / -1.26
$R_1 (I > 2\sigma(I))$	0.0391
R_1 (all data)	0.0781
$wR_2 (I > 2\sigma(I))$	0.0614
wR_2 (all data)	0.0842

 Table S1. Crystal and structure refinement data for 8.

Table S2. Bond lengths / Å and angles / ° of 8.

Ru(1)-N(2)	1.944(2)
Ru(1)-N(6)	2.072(2)
Ru(1) - N(4)	2.0/6(2)
Ru(1) - N(3)	2.0/8(2)
Ru(1) = N(5)	2.078(2)
Ru(1) = N(1)	2.079(2)
N(1) = C(101) N(1) = C(105)	1.340(3) 1.370(3)
N(1) = C(100) N(2) = C(110)	1.370(3)
N(2) = C(110) N(2) = C(106)	1,366(3)
N(2) = C(100) N(3) = C(115)	1.349(3)
N(3) - C(111)	1.373(3)
C(101)-C(102)	1.378(4)
С(101)-Н(10А)	0.9500
C(102)-C(103)	1.382(4)
С(102)-Н(10В)	0.9500
C(103)-C(104)	1.384(4)
С(103)-Н(10С)	0.9500
C(104)-C(105)	1.379(4)
С(104)-Н(10D)	0.9500
C(105)-C(106)	1.479(4)
C(106) - C(107)	1.3/6(3)
C(107) - C(108)	1.388(4)
C(107) = H(10E) C(108) = C(108)	1 207(4)
C(108) = C(109)	1.397(4) 1.488(4)
C(100) - C(110)	1,379(3)
C(109)-H(10F)	0.9500
C(110) -C(111)	1.476(4)
C(111) -C(112)	1.382(4)
C(112)-C(113)	1.381(4)
C(112)-H(11A)	0.9500
C(113)-C(114)	1.383(4)
С(113)-Н(11В)	0.9500
C(114)-C(115)	1.373(4)
C(114) - H(11C)	0.9500
C(115) = H(11D)	0.9500
C(116) = O(1) C(116) = O(2)	1,210(3) 1,329(3)
C(117) = O(2)	1,325(3) 1,457(3)
C(117) - C(118)	1.497(4)
С(117)-Н(11Е)	0.9900
С(117)-Н(11F)	0.9900
C(118)-H(11G)	0.9800
C(118)-H(11H)	0.9800
C(118)-H(11I)	0.9800
N(4)-C(201)	1.352(3)
N(4) - C(205)	1.35/(3)
N(5) - C(211)	1.360(3)
N(5) = C(207) N(6) = C(213)	1.301(3)
N(6) = C(213) N(6) = C(217)	1.349(3) 1.359(3)
C(201) - C(202)	1,363(4)
C(201)-H(20A)	0.9500
C(202) -C(203)	1.374(4)
С(202)-Н(20В)	0.9500
C(203)-C(204)	1.375(4)
С(203)-Н(20С)	0.9500
C(204)-C(205)	1.391(4)
C(204)-H(20D)	0.9500
C(205)-N(7)	1.401(3)
N(7) = C(207)	1.412(3)
IN(7) = U(206) C(206) = U(20E)	1.4/3(3) 0 9800
C(206) -H(20E)	0.9800
C(206) -H(20G)	0.9800
C(207) -C(208)	1.384(4)
C(208)-C(209)	1.378(4)

СИИССССССССССРРРРРРРРРРРРРРРРРИССССС ИИИ		11))11111111111))))))AAAAAA))))))000000)))	2)) ()) ()) ()) ()) ()) ()) ()) ()) ())	- (:) =		(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)())))))))))))))))))))))))))))))))))))))))))))))))))))))))))))	BCD45E6F7GH ())))) 12ABC NNN	<pre>,))))))))))))))))))))))))))))))))))))</pre>			4449993393939395555565555655565556614999	1078889758565567889068888178990035888	0780005007070056278362239013572242000		333 34 4 4 545555111111222222(56 1))))))))))))))))))))))))))))))))))))))))))))) 124)	9997	520	3)	3)	
N N N N N N N N N N N N N N N N N N N	(264)(264)(264)(264)(264)(264)(264)(264)	<pre>))))))))))))))))))))))))))))))))))))</pre>	— F F F F F F F F F F F F F F F F F F F		((((((((((N N N N N N N N 1 1 C C	1)))))))))))))))))))))))))))))))))))))		N N N N N N N N N N	())) ()) ()) ()) ()) ()) ()) ()) ()) ()	<pre>3));;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;</pre>	0 1 1 0 1 1 1 1 1 0 0 (5))))))) A11)))))))	A))	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7897880799591212111212111	98.8772902987931996933889	· · · 9 · · · · · · · · · · · · · · · ·	5842650690264321257831552	78(981984026(42(79(58(({{ (}) (}) () () () () () () () () () () () () ()	3) 3) 3) 3) 3) 3) 3) 3) 20 20 20 20 20 20 20 20 20 20 20 20 20)))))))))))))))))))))))))))

С(101)-С(102)-Н(10В)120.4 C(103)-C(102)-H(10B)120.4 C(102)-C(103)-C(104)118.8(3) С(102)-С(103)-Н(10С)120.6 C(104)-C(103)-H(10C)120.6 C(105)-C(104)-C(103)119.8(3) С(105)-С(104)-Н(10D)120.1 С(103)-С(104)-Н(10D)120.1 N(1) - C(105) - C(104) 121.6(2) N(1) - C(105) - C(106)114.7(2) C(104)-C(105)-C(106)123.7(2) N(2) - C(106) - C(107)120.3(2)N(2)-C(106)-C(105) 112.6(2) C(107) - C(106) - C(105) 126.8(2)C(106)-C(107)-C(108)119.4(2) С(106)-С(107)-Н(10Е)120.3 С(108)-С(107)-Н(10Е)120.3 C(107)-C(108)-C(109)119.7(2) C(107)-C(108)-C(116)122.7(2) C(109)-C(108)-C(116)117.5(2) C(110)-C(109)-C(108)119.4(2) С(110)-С(109)-Н(10F)120.3 С(108)-С(109)-Н(10F)120.3 N(2)-C(110)-C(109) 120.1(2) N(2)-C(110)-C(111) 113.0(2)C(109)-C(110)-C(111)126.9(2) N(3)-C(111)-C(112) 122.1(2) N(3)-C(111)-C(110) 114.5(2)C(112)-C(111)-C(110)123.4(2) C(113)-C(112)-C(111)119.9(3) С(113)-С(112)-Н(11А)120.1 С(111)-С(112)-Н(11А)120.1 C(112)-C(113)-C(114)118.3(3) С(112)-С(113)-Н(11В)120.9 C(114)-C(113)-H(11B)120.9 C(115)-C(114)-C(113)119.6(3) С(115)-С(114)-Н(11С)120.2 С(113)-С(114)-Н(11С)120.2 N(3)-C(115)-C(114) 123.4(3) N(3)-C(115)-H(11D) 118.3 С(114)-С(115)-Н(11D)118.3 O(1) - C(116) - O(2) 124.4(2)O(1)-C(116)-C(108) 122.8(3) O(2)-C(116)-C(108) 112.8(2)107.5(2) O(2)-C(117)-C(118) 110.2 O(2)-C(117)-H(11E) С(118)-С(117)-Н(11Е)110.2 O(2)-C(117)-H(11F) 110.2 С(118)-С(117)-Н(11F)110.2 H(11E)-C(117)-H(11F)108.5 C(117)-C(118)-H(11G)109.5 С(117)-С(118)-Н(11Н)109.5 H(11G)-C(118)-H(11H)109.5 С(117)-С(118)-Н(11І)109.5 H(11G)-C(118)-H(11I)109.5 H(11H)-C(118)-H(11I)109.5 C(116) - O(2) - C(117) 115.3(2) C(201)-N(4)-C(205) 117.9(2)C(201)-N(4)-Ru(1) 121.68(17) C(205)-N(4)-Ru(1) 120.40(17) C(211)-N(5)-C(207) 117.8(2) C(211)-N(5)-Ru(1) 121.56(16) C(207)-N(5)-Ru(1) 120.61(18) C(213)-N(6)-C(217) 117.9(2) 121.10(16) C(213)-N(6)-Ru(1) 120.51(18) C(217)-N(6)-Ru(1) 123.7(3) N(4)-C(201)-C(202) N(4)-C(201)-H(20A) 118.1 C(202)-C(201)-H(20A)118.1 C(201)-C(202)-C(203)118.3(3) C(201)-C(202)-H(20B)120.8

С(203)-С(202)-Н(20В)120.8 C(202)-C(203)-C(204)119.5(3) С(202)-С(203)-Н(20С)120.3 C(204)-C(203)-H(20C)120.3 C(203)-C(204)-C(205)120.0(3) C(203)-C(204)-H(20D)120.0 C(205)-C(204)-H(20D)120.0 N(4)-C(205)-C(204) 120.6(2) N(4) - C(205) - N(7)117.9(2)C(204)-C(205)-N(7) 121.5(2) 121.9(2) C(205)-N(7)-C(207) C(205)-N(7)-C(206) 115.7(2)C(207)-N(7)-C(206) 115.8(2) N(7)-C(206)-H(20E) 109.5 N(7)-C(206)-H(20F) 109.5 H(20E)-C(206)-H(20F)109.5 N(7)-C(206)-H(20G) 109.5 H(20E)-C(206)-H(20G)109.5 H(20F)-C(206)-H(20G)109.5 N(5)-C(207)-C(208) 122.4(2) N(5)-C(207)-N(7)117.2(2) C(208)-C(207)-N(7) 120.4(2) C(209)-C(208)-C(207)118.7(3) С(209)-С(208)-Н(20Н)120.7 C(207)-C(208)-H(20H)120.7 C(210)-C(209)-C(208)119.7(3) C(210)-C(209)-H(20I)120.2 C(208)-C(209)-H(20I)120.2 C(209)-C(210)-C(211)119.7(3) С(209)-С(210)-Н(21А)120.2 С(211)-С(210)-Н(21А)120.2 N(5)-C(211)-C(210) 121.8(2) N(5)-C(211)-N(8) 117.5(2)C(210)-C(211)-N(8) 120.7(2) 123.0(2) C(213)-N(8)-C(211) C(213)-N(8)-C(212) 116.0(2) C(211)-N(8)-C(212) 115.5(2)109.5 N(8)-C(212)-H(21B) N(8)-C(212)-H(21C) 109.5 H(21B)-C(212)-H(21C)109.5 N(8)-C(212)-H(21D) 109.5 H(21B)-C(212)-H(21D)109.5 H(21C)-C(212)-H(21D)109.5 N(6)-C(213)-C(214) 121.0(2) N(6)-C(213)-N(8) 118.5(2)C(214)-C(213)-N(8) 120.5(2) C(215)-C(214)-C(213)119.9(3) C(215)-C(214)-H(21E)120.0 C(213)-C(214)-H(21E)120.0 C(214)-C(215)-C(216)119.4(3) C(214)-C(215)-H(21F)120.3 С(216)-С(215)-Н(21F)120.3 C(217)-C(216)-C(215)118.2(3) С(217)-С(216)-Н(21G)120.9 C(215)-C(216)-H(21G)120.9 N(6)-C(217)-C(216) 123.4(3) N(6)-C(217)-H(21H) 118.3 С(216)-С(217)-Н(21Н)118.3 F(13) - P(1) - F(16)89.8(4) F(13) - P(1) - F(15)179.2(4)F(16)-P(1)-F(15) 91.0(4) F(13)-P(1)-F(14) 89.8(4) F(16) - P(1) - F(14)179.6(4)F(15)-P(1)-F(14) 89.4(4) 89.9(5) F(13)-P(1)-F(12) F(16) - P(1) - F(12)89.7(4) F(15)-P(1)-F(12) 90.2(4) 90.3(4) F(14) - P(1) - F(12)F(13) - P(1) - F(11)90.6(5) F(16) - P(1) - F(11)90.6(5) F(15)-P(1)-F(11) 89.3(5)

F(14)-P(1)-F(11)	89.5(5)
F(12)-P(1)-F(11)	179.4(6)
F(14A)-P(1A)-F(15A)	92.3(12)
F(14A)-P(1A)-F(16A)	175.2(12)
F(15A)-P(1A)-F(16A)	92.3(11)
F(14A)-P(1A)-F(13A)	90.4(11)
F(15A)-P(1A)-F(13A)	177.1(13)
F(16A)-P(1A)-F(13A)	85.0(11)
F(14A)-P(1A)-F(12A)	90.2(12)
F(15A)-P(1A)-F(12A)	93.1(12)
F(16A)-P(1A)-F(12A)	91.1(13)
F(13A)-P(1A)-F(12A)	87.9(12)
F(14A)-P(1A)-F(11A)	89.0(13)
F(15A)-P(1A)-F(11A)	89.3(13)
F(16A)-P(1A)-F(11A)	89.5(12)
F(13A)-P(1A)-F(11A)	89.8(13)
F(12A)-P(1A)-F(11A)	177.6(16)
F(26)-P(2)-F(24)	91.86(14)
F(26)-P(2)-F(23)	178.61(13)
F(24)-P(2)-F(23)	89.13(12)
F(26)-P(2)-F(25)	91.54(14)
F(24)-P(2)-F(25)	91.20(12)
F(23)-P(2)-F(25)	89.41(12)
F(26)-P(2)-F(22)	90.24(14)
F(24)-P(2)-F(22))	177.72(13)
F(23)-P(2)-F(22)	88.76(12)
F(25)-P(2)-F(22)	89.65(12)
F(26)-P(2)-F(21)	89.96(12)
F(24)-P(2)-F(21)	89.76(11)
F(23)-P(2)-F(21)	89.07(10)
F(25)-P(2)-F(21)	178.18(13)
F(22)-P(2)-F(21)	89.33(10)
N(300)-C(301)-C(302)	176.9(5)
C(301)-C(302)-H(30A)	109.5
С(301)-С(302)-Н(30В)	109.5
Н(30А)-С(302)-Н(30В)	109.5
С(301)-С(302)-Н(30С)	109.5
Н(30А)-С(302)-Н(30С)	109.5
Н(30В)-С(302)-Н(30С)	109.5

Figure S2. IR spectrum of 8 in KBr.

Figure S3. UV/Vis absorption and emission spectrum ($\lambda_{exc} = 517$ nm) of **8** in CH₃CN at 295 K.

Figure S4. ¹H NMR spectrum of 8 in CD₃CN (top: full spectrum; bottom: zoom).

Figure S5. ${}^{13}C{}^{1}H$ NMR spectrum of 8 in CD₃CN (top: full spectrum; bottom: zoom).

Figure S6. HH-COSY of 8 in CD₃CN.

Figure S8. CH-COSY of 8 in CD₃CN.

Figure S10. ¹⁵N-¹H HMBC of 8 in CD₃CN.

#MO	E / eV	contour value 0.06 a.u.	qualitative description
160	-11.884		ddpd (NMe+py _{terminal}) + d _{yz}
161	-11.352		ddpd (NMe+py_{central}) + d _{xy}
162	-11.083		d _{xz}
163	-10.838		ddpd (NMe) + \mathbf{d}_{xy}
164	-10.798 (HOMO)		ddpd (NMe) + d _{yz}

Graphical representation of some relevant frontier orbitals of 8.

165	-7.779 (LUMO)	π*(tpy-COOEt)
166	-7.424	π*(tpy-COOEt)
167	-6.618	π*(ddpd)
168	-6.577	π*(tpy-COOEt)
169	-6.548	$\pi^*(tpy-COOEt+ddpd)$
170	-6.452	π*(ddpd)

171	-6.357	π*(tpy-COOEt+ddpd)
172	-6.187	π^* (tpy-COOEt)
173	-6.020	$\pi^*(ddpd)$
174	-5.723	$\pi^*(ddpd)$
175	-5.679	π*(ddpd)
176	-5.110	$d_{x}^{2} \cdot y^{2}$
177	-4.794	$\pi^*(tpy-COOEt)$
178	-4.619	d _z ²

Cartesian Coordinates of Ni(CO)₃L complexes

L = κN (central pyridine)-ddpd: $\tilde{\nu} = 2017 \text{ cm}^{-1}$; d(C-O) = 1.1776 Å

6	-1.192199000	1.057845000	-0.602639000
6	-1.697181000	2.378356000	-0.678960000
6	-0.825367000	3.446807000	-0.438169000
6	0.535284000	3.204164000	-0.201082000
6	0.989100000	1.865741000	-0.169386000
7	0.113752000	0.811282000	-0.268176000
1	-2.728587000	2.551799000	-0.958313000
1	1.235503000	4.022932000	-0.094502000
6	-5.473083000	-0.958263000	-1.281627000
6	-6.146247000	-0.278924000	-0.254916000
6	-5.377153000	0.527369000	0.612285000
6	-3.995895000	0.635688000	0.417157000
6	-3.402769000	-0.066240000	-0.666871000
7	-4.137655000	-0.856671000	-1.490775000
1	-5.845745000	1.047151000	1.443935000
1	-6.008550000	-1.610381000	-1.967309000
1	-7.218301000	-0.389967000	-0.128411000
1	-3.386454000	1.215258000	1.101170000
6	3.040139000	0.557851000	-0.674111000
6	2.548525000	0.002814000	-1.884719000
6	3.311231000	-0.975008000	-2.534425000
6	4.542699000	-1.385650000	-1.982674000
6	4.958791000	-0.771504000	-0.791233000
7	4.230954000	0.174948000	-0.152067000
1	2.951583000	-1.409635000	-3.463633000
1	1.608958000	0.338984000	-2.304192000
1	5.154917000	-2.145707000	-2.456725000
1	5.902433000	-1.037881000	-0.321846000
7	-2.008536000	-0.051463000	-0.909034000
6	-1.454588000	-1.144950000	-1.744886000
1	-0.367283000	-1.103242000	-1.694291000
1	-1.795653000	-2.112858000	-1.369475000
1	-1.798518000	-1.043614000	-2.780800000
7	2.355807000	1.593773000	0.018702000
6	3.157844000	2.527373000	0.842551000
1	2.571550000	2.862134000	1.703304000
1	4.037020000	1.987238000	1.192814000
1	3.487830000	3.402031000	0.262402000
1	-1.192113000	4.468281000	-0.496084000
28	0.485328000	-0.897765000	1.134868000
6	-1.150388000	-1.362065000	1.777693000
6	1.504902000	-0.140656000	2.438177000
6	1.314170000	-2.312051000	0.352032000
8	-2.130302000	-1.759076000	2.297063000
8	2.144125000	0.250679000	3.346037000
8	1.835560000	-3.299150000	-0.023109000

L = κN (terminal pyridine)-ddpd: $\tilde{v} = 2016 \text{ cm}^{-1}$; d(C-O) = 1.1780 Å

L = NH₃: \tilde{v} = 2022 cm⁻¹; d(C-O) = 1.1779 Å

L = CH₃CN: \tilde{v} = 2029 cm⁻¹; d(C-O) = 1.1759 Å

L = CH₃NC: $\tilde{\nu}$ = 2026 cm⁻¹; d(C-O) = 1.1746 Å

L = NMe₃:
$$\tilde{v}$$
 = 2018 cm⁻¹; d(C-O) = 1:1783 Å

7	1.630255000	-0.002271000	0.000256000
28	-0.533608000	0.001320000	-0.000344000
6	-1.061949000	1.729122000	-0.180847000
6	-1.067140000	-1.018648000	-1.404455000
6	-1.067223000	-0.705530000	1.584770000
8	-1.493372000	-1.666204000	-2.291811000
8	-1.492311000	-1.152815000	2.588585000
8	-1.483529000	2.823384000	-0.295984000
6	2.126237000	0.542377000	-1.302423000
1	1.755592000	1.562183000	-1.438914000
1	3.230184000	0.553920000	-1.333168000
1	1.754163000	-0.075589000	-2.124431000
6	2.126374000	0.852475000	1.124144000
1	1.754058000	0.461197000	2.075083000
1	3.230298000	0.872020000	1.151229000
1	1.755971000	1.873940000	1.000063000
6	2.122907000	-1.404137000	0.178729000
1	1.743234000	-2.032970000	-0.631549000
1	3.226735000	-1.440883000	0.174784000
1	1.757468000	-1.803735000	1.128904000
L = NHC (1,3-dimethyl-2,3-dihydro-1*H*-imidazol-2-ylidene): $\tilde{v} = 2003 \text{ cm}^{-1}$; d(C-O) = 1.1795 Å

L = PMe₃: \tilde{v} = 2017 cm⁻¹; d(C-O) = 1.1774 Å

L = PH₃: $\tilde{\nu}$ = 2033 cm⁻¹; d(C-O) = 1.1752 Å

L = PF₃: $\tilde{\nu}$ = 2068 cm⁻¹; d(C-O) = 1.1682 Å

L = pyridine: $\tilde{v} = 2020 \text{ cm}^{-1}$; d(C-O) = 1.1765 Å

Correlation of A₁ stretching frequencies with C-O distances in Ni(CO)₃L complexes

10.6 Excited State Tuning of Bis(tridentate) Ruthenium(II) Polypyridine Chromophores by Push-Pull Effects and Bite Angle Optimization: A Comprehensive Experimental and Theoretical Study

A. Breivogel, M. Meister, C. Förster, F. Laquai, K. Heinze, Chem. Eur. J. 2013, 19, 13745–13760.

DOI: 10.1002/chem.201302231

Reprinted with permission from John Wiley and Sons, Copyright © 2013.

DFT-optimized (B3LYP/LANL2DZ, IEFPCM in CH₃CN) cartesian coordinates of $[1 - 7]^{0}$ (singlet and triplet), $[1 - 7]^{+} [1 - 7]^{2+}$ (singlet ground state and ³MLCT state), $[1 - 7]^{2+}$ (³MC and ³TS state, except for $[4]^{2+}$), $[1 - 7]^{3+}$, $[1 - 7]^{4+}$ and results of the TD-DFT (B3LYP/LANL2DZ, IEFPCM in CH₃CN) calculation of $[1 - 7]^{2+}$ (singlet) can be found in the online supporting information.

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2013

Excited State Tuning of Bis(tridentate) Ruthenium(II) Polypyridine Chromophores by Push–Pull Effects and Bite Angle Optimization: A Comprehensive Experimental and Theoretical Study

Aaron Breivogel,^[a] Michael Meister,^[b] Christoph Förster,^[a] Frédéric Laquai,^[b] and Katja Heinze^{*[a]}

chem_201302231_sm_miscellaneous_information.pdf

Table of Contents:

- Description of the synthetic strategy and syntheses of 8, 4-amino-2,6-dibromopyridine, 9 and 10
- 2) Figures S1 S49
- 3) Tables S1 S11
- 4) DFT (B3LYP/LANL2DZ, IEFPCM in CH₃CN) optimized geometries of [1 − 7]⁰ (singlet and triplet), [1] [7]⁺ (doublet), [1] [7]²⁺ (singlet, ³MLCT, ³MC (not for [4]²⁺), ³TS (not for [4]²⁺)), [1] [7]³⁺ (doublet) and [1] [7]⁴⁺ (triplet)
- 5) Results of TD-DFT calculations of $[1] [7]^{2+}$ (singlet)

Synthesis strategy. Initial attempts to synthesize an amino substituted ddpd ligand analogously to the straightforward synthesis of 11 in a metal free amination using 4-amino-2,6-dibromopyridine or 4amino-2,6-dichloropyridine and N-methylpyridine-2-ylamine failed although a similar procedure for the amination of 4-amino-2,6-dichloropyridine with pyrrolidine had been reported.^[1] This is probably due to the electron donating character of the NH₂ group which prevents a nucleophilic attack of Nmethylpyridine-2-ylamine Furthermore, the amine group itself can act as nucleophile. Hence, a strategy is necessary to prevent nucleophilic reactivity of the primary amino group and to activate the dibromopyridine. Attempts to employ a nitro group as latent amine by using 2,6-dibromo-4nitropyridine in a metal free amination reaction with N-methylpyridine-2-ylamine using sodium hydride as base only resulted in *ipso* substitution of the nitro group before the desired bromine substitution.^[1,2,3,4] Finally, we chose the phthalimido group as protecting group because of its less electron withdrawing character compared to the nitro group which should inhibit the undesired ipso substitution. The phthalimido protecting group is introduced straightforwardly by treating 4-amino-2,6-dichloropyridine or its dibromo derivative with phthalic anhydride giving N-protected $\mathbf{8}$ and $\mathbf{9}$ in 56 % and 65 % yield, respectively. Amination of 8 or 9 with N-methylpyridine-2-ylamine using sodium hydride or potassium bis(trimethylsilyl) amide (KHMDS) as base in dioxane or in Nmethylpyridine-2-ylamine as solvent using different reaction times and temperatures without a metal catalyst did not yield the desired ligand **10**. However, using $Pd_2(dba)_3$ (dba = dibenzylidene acetone) together with P('Bu)₃ as precatalyst and KO'Bu as base 10 is successfully obtained from 8 or 9 in 5 % and 26 % yields, respectively (Scheme 2). Harsher reaction conditions are required for the chloro compound 8 compared to the bromo derivative 9 due to the lower reactivity of the chloro derivative 8 in the oxidative addition to the catalytically active palladium species. However, the starting material for 8, 4-amino-2,6-dichloropyridine, is commercially available while the bromo derivative 4-amino-2,6-dibromopyridine, has to be prepared in three steps from 2,6-dibromopyridine rendering the dichloro starting material attractive in spite of its lower reactivity.^[5,6]

Synthesis of 2,6-dichloro-4-phthalimidopyridine (8). Phthalic anhydride (2.338 g, 15.78 mmol, 1.0 equiv) and 4-amino-2,6-dichloropyridine (3.287 g, 20.17 mmol, 1.3 equiv) were placed in a flask and acetic acid (100 ml) was added. The mixture was stirred at room temperature and ultrasonicated until the starting materials were completely dissolved. The yellow solution was heated to reflux for 6 h and cooled to room temperature. During the cooling process a colorless solid precipitated. The solid was filtered, washed with 60 ml of petroleum ether 40 - 60 and dried under reduced pressure. A colourless solid was obtained. Single crystals for X-ray diffraction analysis were obtained by slow evaporation of an acetone solution of **8**. Yield: 2.609 g (8.9 mmol, 56%). ¹H NMR (d_6 -DMSO, 300 K): $\delta = 8.06-8.04$ (m, 2 H, H²), 7.98-7.96 (m, 2 H, H¹), 7.80 (s, 2 H, H⁶) ppm. ¹³C{¹H} NMR (d₆-DMSO, 300 K): $\delta =$ 165.5 (C⁴), 149.4 (s, C⁷), 144.1 (s, C⁵), 135.3 (s, C¹), 131.0 (s, C³), 124.0 (s, C²), 119.3 (s, C⁶) ppm. ¹H-¹⁵N HMBC (d₆-DMSO, 300 K): $\delta = 294.1$ (N^a), 167.6 (N^b) ppm. MS (FD): m/z 292.3 (100%) [M]⁺. IR (CsI): v 3130 (w, CH), 3099 (w, CH), 1788 (m, C=O), 1761 (m, C=O), 1736 (vs, C=O), 1580 (vs, C=N), 1549 (s, C=N), 1468 (w), 1433 (s), 1377 (vs), 1354 (vs, C-N), 1232 (s, C-N), 1167 (m, C-N), 1143 (w, C-N), 1121 (w, C-N), 1097 (m, C-N, C-Cl), 1074 (m, C-N, C-Cl), 988 (w), 932 (w), 885 (w, C=C), 858 (m, C=C), 824 (m, C=C), 798 (w, C=C), 789 (w), 714 (s), 663 (w), 638 (m), 613 (w), 596 (w), 532 (w), 453 (w), 361 (w), 270 (w) cm⁻¹. Elemental analysis calcd (%) for $C_{13}H_6Cl_2N_2O_2$: C 53.27, H 2.06, N 9.56; found: C 52.90, H 2.20, N 8.92.

Synthesis of 4-amino-2,6-dibromopyridine. 4-amino-2,6-Dibromopyridine was synthesized by modification of a literature procedure.^[5] 2,6-Dibromo-4-nitropyridine-*N*-oxide^[6] (303 mg, 1.08 mmol, 1.0 equiv) and iron powder (301 mg, 5.39 mmol, 5.0 equiv) were suspended in acetic acid. The grey suspension was heated to 100 °C and stirred for 1 h. During the heating process the mixture turned brown. After cooling to room temperature the mixture was cooled with an ice bath and the pH was adjusted to 14 with a concentrated NaOH solution. The mixture was extracted with diethylether (5 × 10 – 15 ml). The combined organic phases were dried over Na₂SO₄, filtered and the solvent was removed in vacuo. A colorless solid was obtained. Yield: 0.24 g, (0.95 mmol, 88%). ¹H NMR (CD₂Cl₂, 300 K): $\delta = 6.69$ (s, 2 H, H^{aromatic}), 4.43 (s, 2 H, NH₂) ppm. MS (FD): *m/z* 251.9 (100%) [M]⁺.

Synthesis of 2,6-dibromo-4-phthalimidopyridine (9). Phthalic anhydride (2.80 g, 18.9 mmol, 1.0 equiv) and 4-amino-2,6-dibromopyridine (5.94 g, 23.6 mmol, 1.2 equiv) were placed in a flask and

acetic acid (150 ml) was added. The mixture was stirred at room temperature and ultrasonicated. The starting materials did not dissolve completely. The vellowish suspension was heated to reflux for 6 h. Before starting to reflux, all the components were dissolved (at 60-70 °C) and a yellow solution was obtained. The mixture was cooled to room temperature. During the cooling process a colorless solid precipitated. The solid was filtered, washed with 50 ml of petroleum ether 40 - 60 and dried in a vacuo. A colorless solid was obtained. Single crystals for X-ray diffraction analysis were obtained by slow evaporation of an acetone solution of 9. Yield: 4.67 g (12.2 mmol, 65%). ¹H NMR (d₆-DMSO, 300 K): $\delta = 8.06-8.03$ (m, 2 H, H²), 7.98-7.95 (m, 2 H, H¹), 7.94 (s, 2 H, H⁶) ppm. ¹³C{¹H} NMR (d₆-DMSO, 300 K): $\delta = 165.5 (C^4)$, 143.1 (s, C⁵), 139.8 (s, C⁷), 135.3 (s, C¹), 131.1 (s, C³), 123.9 (s, C²), 123.3 (s, C⁶) ppm. ¹H-¹⁵N HMBC (d₆-DMSO, 300 K): $\delta = 260.5$ (N^a), 166.8 (N^b) ppm. MS (FD): m/z382.1 (100%) $[M]^+$. IR (CsI): \tilde{v} 3140 (w, CH), 3117 (w, CH), 3090 (w, CH), 3062 (w, CH), 1790 (vs. C=O), 1757 (s, C=O), 1734 (s, C=O), 1570 (s, C=N), 1535 (vs, C=N), 1468 (m, C=N), 1423 (vs), 1348 (vs, C-N), 1231 (vs, C-N), 1165 (s, C-N), 1126 (s, C-N), 1096 (s, C-N), 1070 (vs, C-N, C-Br), 1016 (w), 982 (m), 962 (w), 906 (w, C=C), 883 (m, C=C), 860 (s, C=C), 824 (w, C=C), 800 (m, C=C), 770 (s), 717 (vs), 665 (w), 635 (vs), 590 (m), 563 (w), 532 (m), 405 (w), 362 (m), 330 (w), 289 (w), 224 (w) cm⁻¹. Elemental analysis calcd (%) for $C_{13}H_6Br_2N_2O_2$: C 40.87, H 1.58, N 7.33; found: C 41.79, H 1.57, N 7.43.

Synthesis of ddpd-phthalimide (10) from 2,4-dibromo-4-phthalimidopyridine (9). Under an argon atmosphere KOtBu (814.2 mg, 7.6 mmol, 2.6 equiv) was dissolved in absolute dioxane (50 ml). While adding methylaminopyridine (0.80 ml, 7.8 mmol, 2.8 equiv) the solution turned yellow. Pd₂(dba)₃ (128.2 mg, 0.14 mmol, 0.05 equiv) was added and a black suspension was obtained. Then a solution of P(^tBu)₃ (1 M in toluene, 0.50 ml, 0.50 mmol, 0.18 equiv) was added and the reaction mixture turned into a green-brown solution. 2,6-Dibromo-4-phthalimidopyridine (9, 1.060 g, 2.8 mmol, 1.0 equiv) was added and dissolved completely. The green-brown solution was heated to 80 °C for 48 h. The reaction mixture was a brown solution containing a brown solid. The solvent was removed under reduced pressure. The residue was purified by column chromatography (silica gel, petroleum ether 40 - 60/ethyl acetate 1:2), yielding a light yellow solid. Yield: 312.1 mg (7.2 mmol, 26%). ¹H NMR $(CD_3CN, 300 \text{ K}): \delta = 8.33 \text{ (m, 2 H, H}^8), 7.90 \text{ (m, 2 H, H}^{11}), 7.85 \text{ (s, 2 H, H}^{12}), 7.64 \text{ (m, 2 H, H}^6), 7.38 \text{ (m, 2 H, H}^5), 6.96 \text{ (m, 2 H, H}^7), 6.79 \text{ (s, 2 H, H}^2), 3.55 \text{ (s, 6 H, CH}_3) \text{ ppm.}^{-13}C{}^{1}H} \text{ NMR (CD}_3CN,$ 300 K): $\delta = 167.6$ (s, C⁹), 158.4 (s, C⁴), 157.6 (s, C³), 148.9 (s, C⁸), 143.0 (s, C¹), 138.0 (s, C⁶), 135.7 (s, C¹²), 132.7 (s, C¹⁰), 124.4 (s, C¹¹), 118.6 (s, C⁷), 117.1 (s, C⁵), 102.8 (s, C²), 36.3 (s, CH₃) ppm. ¹H-¹⁵N HMBC (CD₃CN, 300 K): $\delta = 287.9$ (N^{pyridine,outer}), 250.1 (N^{pyridine,center}), 169.0 (N^{phthalimide}), 98.7 (NCH₃) ppm. MS (FD): m/z 436.5 (100%) [M]⁺. HR-MS (ESI⁺): Calcd for C₂₅H₂₀N₆NaO₂⁺: m/z459.1545. Obsd: m/z 459.1559. IR (CsI): \tilde{v} 3055 (w, CH), 2957 (s, CH), 2926 (s, CH), 2854 (s, CH), 1768 (m, C=O), 1726 (vs, C=O), 1599 (s, C=N), 1472 (vs, CH₃, C=N), 1421 (vs, CH₃), 1364 (vs, C-N, CH₃), 1333 (s, C-N), 1290 (s, C-N), 1240 (s, C-N), 1175 (m, C-N), 1144 (m, C-N), 1111 (s, C-N), 1080 (m, C-N), 989 (m), 961 (w), 881 (m), 851 (w), 798 (m), 777 (s), 743 (m), 716 (s), 673 (w), 636 (w), 619 (m), 555 (w), 532 (w), 409 (w), 361 (w) cm⁻¹. Elemental analysis calcd (%) for $C_{25}H_{20}N_6O_2$: C 68.80, H 4.62, N 19.25; found: C 68.57, H 4.65, N 18.34.

Synthesis of ddpd-phthalimide (10) from 2,6-dichloro-4-phthalimidopyridine (8). Under an argon atmosphere KO/Bu (411.0 mg, 3.66 mmol, 2.6 equiv) was dissolved in absolute dioxane (50 ml). While adding methylaminopyridine (0.40 ml, 3.9 mmol, 2.8 equiv) the solution turned yellow. $Pd_2(dba)_3$ (66.8 mg, 0.073 mmol, 0.05 equiv) was added and a black suspension was obtained. Then a solution of $P(Bu)_3$ (1 M in toluene, 0.40 ml, 0.40 mmol, 0.30 equiv) was added and the reaction mixture turned into a green-brown solution. 2,6-Dichloro-4-phthalimidopyridine (8, 410.1 mg, 1.4 mmol, 1.0 equiv) was added and dissolved completely. The green-brown solution was heated (80 °C for 48 h). An aliquot was taken from the reaction mixture and filtered. An FD mass spectrum of the solution did not show a signal for the product, only signals of the starting materials could be found. Therefore, the heating of the mixture was continued (90 °C for 48 h). The reaction mixture now was a brown solution containing a brown solid. The solvent was removed under reduced pressure. The remaining dark brown oil was dissolved in very few dichloromethane and purified by column chromatography (silica gel, petroleum ether 40 – 60/ethyl acetate 1:2). A yellow oil was obtained, which was dissolved in THF (2 ml) and ice cold petroleum ether 40 – 60 was added. The mixture was stored at -30 °C for 18 h. The clear solution was decanted and the solid was dried in a vacuo and

purified by column chromatography (silica gel, 1:3:0.05 petroleum ether 40-60/ethyl acetate/triethylamine). A light yellow solid was obtained. Yield: 19.2 mg (0.0669 mmol, 5%).

- [1] M. Menichincheri, D. F. Bassini, M. Gude, M. Angiolini, *Tetrahedron Lett.* **2003**, *44*, 519–522.
- [2] R. Shetty, D. Nguyen, D. Flubacher, F. Ruggle, A. Schumacher, M. Kelly, E. Michelotti, *Tetrahedron Lett.* **2007**, *48*, 113–117.
- [3] H. Abe, N. Masuda, M. Waki, M. Inouye, J. Am. Chem. Soc. 2005, 127, 16189–16196.
- [4] J. C. Rodriguez-Ubis, R. Sedano, G. Barroso, O. Juanes, E. Brunet, *Helv. Chim. Acta* **1997**, 80, 86–96.
- [5] M. van Ammers, H. J. den Hertog, *Recl. Trav. Chim. Pays-Bas* 1958, 77, 340–345.
- [6] U. Neumann, F. Vögtle, *Chem. Ber.* **1989**, *122*, 589–591.

Figure S1. IR spectrum of 8 in CsI.

Figure S2. IR spectrum of 9 in CsI.

Figure S3. IR spectrum of 10 in CsI.

Figure S4. IR spectrum of 11 between KBr plates.

Figure S5. ¹H-NMR spectrum of **8** in d₆-DMSO (top: full spectrum; inset: zoom).

Figure S6. ¹H-NMR spectrum of **9** in d₆-DMSO (top: full spectrum; inset: zoom).

Figure S7. ¹H-NMR spectrum of **10** in CD₃CN (top: full spectrum; bottom: zoom).

Figure S8. ¹H-NMR spectrum of **11** in CD₃CN (top: full spectrum; bottom: zoom).

Figure S9. ${}^{13}C{}^{1}H$ NMR spectrum of **8** in d₆-DMSO.

ppm (t1)

Figure S10. $^{13}C{^{1}H}$ NMR spectrum of 9 in d₆-DMSO.

ppm (t1)

Figure S12. ${}^{13}C{}^{1}H$ NMR spectrum of **11** in CD₃CN.

Figure S16. ¹⁵N-¹H HMBC of 11 in CD₃CN.

Figure S17. Ellipsoid view and atom numbering of 8 (50% probability, 296 K).

Figure S18. Ellipsoid view and atom numbering of 9 (50% probability, 173 K).

Figure S19. ¹H-NMR spectrum of $[2](PF_6)_2$ in CD₃CN (top: full spectrum; bottom: zoom).

Figure S20. ¹H-NMR spectrum of **[3](PF**₆)₂ in CD₃CN (top: full spectrum; bottom: zoom).

Figure S21. ¹H-NMR spectrum of [4](PF₆)₂ in CD₃CN (top: full spectrum; bottom: zoom).

Figure S23. ¹³C{¹H} NMR spectrum of $[3](PF_6)_2$ in CD₃CN (top: full spectrum; bottom: zoom).

Figure S25. ¹⁵N-¹H HMBC of **[2](PF₆)**₂ in CD₃CN.

Figure S27. ¹⁵N-¹H HMBC of [4](**PF**₆)₂ in CD₃CN.

0,0 |-

Figure S29. IR spectrum of [3](PF₆)₂ in CsI.

Figure S30. IR spectrum of $[4](PF_6)_2$ in CsI.

Figure S31. Ellipsoid view of $[2](PF_6)_2$ (50% probability, 173 K).

Figure S32. Ellipsoid view of **[3](PF₆)**₂ (50% probability, 173 K).

Figure S33. ¹H NMR spectra of selected signals of $[2](PF_6)_2$ CD₃CN without and with Δ -TRISPHAT.

Figure S34. Cyclic voltammograms (CV) and square wave voltammograms (SWV) of $[1](PF_6)_2^{[a]}$.

[a] in CH₃CN; 0.1 M (nBu_4)(PF₆); in V versus Fc/Fc⁺.

Figure S35. Cyclic voltammograms (CV) and square wave voltammograms (SWV) of $[2](PF_6)_2^{[a]}$.

[a] in CH₃CN; 0.1 M (nBu_4)(PF₆); in V versus Fc/Fc⁺.

Figure S36. Cyclic voltammograms (CV) and square wave voltammograms (SWV) of $[3](PF_6)_2^{[a]}$.

[a] in CH₃CN; 0.1 M (nBu₄)(PF₆); in V versus Fc/Fc⁺.

Figure S37. Spin density of one-electron oxidized species $[1]^{3+} - [4]^{3+}$ and reference compounds $[5]^{3+} - [7]^{3+}$ in CH₃CN (b3lyp/lanl2dz, iefpcm, contour value 0.01 a. u.). Hydrogen atoms are omitted for clarity.

Figure S38. Spin density of two-electron oxidized species $[1]^{4+} - [4]^{4+}$ and reference compounds $[5]^{4+} - [7]^{4+}$ in CH₃CN (b3lyp/lanl2dz, iefpcm, contour value 0.01 a. u.). Hydrogen atoms are omitted for clarity.

Figure S39. Spin density of one-electron reduced species $[1]^+ - [4]^+$ and reference compounds $[5]^+ - [7]^+$ in CH₃CN (b3lyp/lanl2dz, iefpcm, contour value 0.01 a. u.). Hydrogen atoms are omitted for clarity.

Figure S40. Two-electron reduced species $[1]^0 - [4]^0$ and reference compounds $[5]^0 - [7]^0$ CH₃CN (b3lyp/lanl2dz, iefpcm). Left: HOMOs of singlet species (M = 1, contour value 0.06 a. u.). Right: Spin density of triplet species (M = 3, contour value 0.01 a. u.). In parentheses is shown the relative energy of singlet and triplet species. Hydrogen atoms are omitted for clarity.

Figure S41. X-band EPR spectrum of $[2]^{3+}$ in 0.5 M trifluoroacetic acid in CH₃CN at 77 K. Black: measurement; red: simulation.

Figure S42. X-band EPR spectrum of [2]⁺ in CH₃CN at 77 K. Black: measurement; red: simulation.

Figure S43. Transient absorption spectra of $[1](\mathbf{PF}_6)_2$ in PrCN at room temperature (pulse $\lambda_{exc} = 425$ nm, 1900 nJ).

Figure S44. Transient absorption spectra of $[3](\mathbf{PF}_6)_2$ in PrCN at room temperature (pulse $\lambda_{exc} = 400$ nm, 2200 nJ).

Figure S45. Transient absorption spectra of $[4](\mathbf{PF}_6)_2$ in PrCN at room temperature (pulse $\lambda_{exc} = 420$ nm, 3800 nJ).

Figure S46. Transient absorption spectra of $[6](\mathbf{PF}_6)_2$ in PrCN at room temperature (pulse $\lambda_{exc} = 425$ nm, 2050 nJ).

Figure S47. UV/Vis spectra of reduced and oxidized [2](PF₆)₂ in different solvents.

Figure S48. IR spectrum (CsI) of [2^D](PF₆)₂.

Figure S49. IR spectrum (CsI) of [4^D](PF₆)₂.

Table S1. Crystal and structure refinement data for 8 and 9 from X-ray analysis.

	8	9
Empirical formula	$C_{13}H_6Cl_2N_2O_2$	$C_{13}H_6Br_2N_2O_2$
Formula weight	293.10	382.02
Crystal color, habit	colourless block	colourless plate
Crystal dimensions / mm	0.85 x 0.52 x 0.30	0.98 x 0.37 x 0.10
Crystal system	orthorhombic	orthorhombic
Space group	Pbcn	Pbcn
a / Å	7.2514(5)	7.2704(14)
b / Å	12.1612(8)	12.246(2)
<i>c</i> / Å	13.5025(9)	14.167(3)
α / °	90	90
eta / °	90	90
$\gamma/^{\circ}$	90	90
$V/ \text{\AA}^3$	1190.73(14)	1261.3(4)
Z	4	4

<i>F</i> (000)	592	736
Density (calcd) / g cm ⁻³	1.635	2.012
Absorption coefficient μ / mm^{-1}	0.542 (MULABS)	6.424 (MULABS)
Theta range / °	3.02 - 27.94	2.88 - 27.87
Index ranges	$-9 \le h \le 9$	$-9 \le h \le 9$
	$-15 \le k \le 15$	$-16 \le k \le 16$
	$-17 \le l \le 17$	$-18 \le l \le 17$
Reflections collected	12886	11138
Independent reflections	1424 ($R_{\rm int} = 0.0868$)	1513 ($R_{\rm int} = 0.1152$)
Observed reflections	1424	1513
Parameters	89	88
Max. / min. transmission	0.8543 / 0.6558	0.5659 / 0.0616
Goodness-of-fit on F^2	1.080	1.048
Largest difference peak and hole / $e Å^{-3}$	0.385 / -0.360	1.258 / -1.038
$R_1 (I > 2\sigma(I))$	0.0302	0.0478
R_1 (all data)	0.0331	0.0684
$wR_2 (I \geq 2\sigma(I))$	0.0732	0.1316
wR_2 (all data)	0.0752	0.1494

Table S2. Bond lengths / Å and angles / $^\circ$ of 8 from X-ray crystal analysis.

$C_{1}(1)$ - $C_{1}(1)$	1 7376(11)
O(1)-C(4)	1 2038(14)
N(2)-C(3)	1 4163(19)
N(2)-C(4)#1	14232(13)
N(2)-C(4)	1 4232(13)
C(5)-C(5)#1	1 386(2)
C(5)- $C(6)$	1 3877(16)
C(5)-C(4)	1.8877(10) 1.4830(15)
C(1)-N(1)	13305(13)
C(1)-C(2)	1 3841(15)
C(2)-C(3)	1 3929(13)
C(2)-H(2)	0.9300
C(3)-C(2)#1	1.3929(13)
C(6)-C(7)	1.3928(17)
C(6)-H(6)	0.9300
C(7)-C(7)#1	1.395(3)
C(7)-H(7)	0.9300
N(1)-C(1)#1	1.3305(13)
C(3)-N(2)-C(4)#1	124.24(6)
C(3)-N(2)-C(4)	124.24(6)
C(4)#1-N(2)-C(4)	111.52(13)
C(5)#1-C(5)-C(6)	121.65(7)
C(5)#1-C(5)-C(4)	109.03(6)
C(6)-C(5)-C(4)	129.32(11)
N(1)-C(1)-C(2)	125.61(10)
N(1)-C(1)-Cl(1)	114.77(8)
C(2)-C(1)-Cl(1)	119.62(8)
C(1)-C(2)-C(3)	116.43(10)
C(1)-C(2)-H(2)	121.8
C(3)-C(2)-H(2)	121.8
O(1)-C(4)-N(2)	125.28(11)
O(1)-C(4)-C(5)	129.50(10)
N(2)-C(4)-C(5)	$105\ 21(9)$
	103.21()
C(2)#1-C(3)-N(2)	119.84(7)
------------------	------------
C(2)-C(3)-N(2)	119.84(7)
C(5)-C(6)-C(7)	117.02(12)
C(5)-C(6)-H(6)	121.5
C(7)-C(6)-H(6)	121.5
C(6)-C(7)-C(7)#1	121.32(7)
C(6)-C(7)-H(7)	119.3
C(7)#1-C(7)-H(7)	119.3
C(1)#1-N(1)-C(1)	115.59(13)

Table S3. Bond lengths / Å and angles / $^\circ$ of 9 from X-ray crystal analysis.

1.899(5)
1.210(7)
1.329(6)
1.329(6)
1.419(6)
1.419(6)
1.423(9)
1.395(7)
1.389(6)
0.9500
1.389(6)
1.488(7)
1.374(11)
1.397(7)
1.403(8)
0.9500
1.372(13)
0.9500
116.6(6)
111.4(6)
124.3(3)
124.3(3)
124.9(5)
115.6(4)
119.5(4)
116.2(5)
121.9
121.9
121.1(6)
119.5(3)
119.5(3)
125.5(5)
129.2(5)
105.2(5)
122.3(3)
109.0(3)
128.6(5)
115.4(6)
122.3
122.3
122.3 122.2(4)
122.3 122.2(4) 118.9

$[1](\mathbf{PF}_6)_2$	[2](PF ₆) ₂	$[3](PF_6)_2$	[4](PF ₆) ₂
8.97 (s, 2 H)	8.95 (s, 2 H)	9.17 (s, 2 H)	9.15 (s, 2 H)
8.56 (s, 2 H)	8.54 (s, 2 H)	8.99 (m, 2 H)	8.96 (m, 2 H)
8.02 (m, 2 H)	8.00 (m, 2 H)	-	-
7.47 (m, 2 H)	7.48 (m, 2 H)	7.91 (m, 2 H)	7.91 (m, 2 H)
8.11 (m, 2 H)	8.15 (m, 2 H)	8.28 (m, 2 H)	8.31 (m, 2 H)
6.42 (m, 2 H)	6.38 (m, 2 H)	6.36 (m, 2 H)	6.30 (m, 2 H)
6.57 (m, 2 H)	6.54 (m, 2 H)	6.56 (m, 2 H)	6.52 (m, 2 H)
7.61 (m, 2 H)	7.58 (m, 2 H)	7.62 (m, 2 H)	7.59 (m, 2 H)
7.17 (m, 2 H)	7.12 (m, 2 H)	7.19 (m, 2 H)	7.13 (m, 2 H)
7.56 (d, ${}^{3}J_{\rm HH} = 8.2$	6.80 (s, 2 H)	7.60 (d, ${}^{3}J_{\rm HH} = 8.2$	6.82 (s, 2 H)
Hz, 2 H)		Hz, 2 H)	
8.27 (t, ${}^{3}J_{\rm HH} = 8.2$	-	8.30 (t, ${}^{3}J_{\rm HH} = 8.2$	-
Hz, 1 H)		Hz, 1 H)	
-	5.72 (br, s, 2 H)	-	5.77 (br, s, 2 H)
3.46 (s, 6 H)	3.36 (s, 6 H)	3.48 (s, 6 H)	3.36 (s, 6 H)
1.52 (t, ${}^{3}J_{\rm HH} = 7.1$	1.51 (t, ${}^{3}J_{\rm HH} = 7.1$	-	1.54 (t, ${}^{3}J_{\rm HH} = 7.1$
Hz, 3 H)	Hz, 3 H)		Hz, 3 H)
-	-	-	1.41 (q, ${}^{3}J_{\rm HH} = 7.1$
			Hz, 6 H)
4.58 (q, ${}^{3}J_{\rm HH} = 7.1$	4.57 (q, ${}^{3}J_{\rm HH} = 7.1$	-	$4.60 (q, {}^{3}J_{\rm HH} = 7.1$
Hz, 2 H)	Hz, 2 H)		Hz, 2 H)
-	-	-	4.45 (q, ${}^{3}J_{\rm HH} = 7.1$
			Hz, 4 H)
-	-	4.13 (s, 3 H)	-
-	-	3.99 (s, 6 H)	-
	$[1](PF_{6})_{2}$ 8.97 (s, 2 H) 8.97 (s, 2 H) 8.56 (s, 2 H) 8.02 (m, 2 H) 7.47 (m, 2 H) 8.11 (m, 2 H) 6.42 (m, 2 H) 7.61 (m, 2 H) 7.61 (m, 2 H) 7.66 (d, ³ J_{HH} = 8.2 Hz, 2 H) 8.27 (t, ³ J_{HH} = 8.2 Hz, 1 H) - 3.46 (s, 6 H) 1.52 (t, ³ J_{HH} = 7.1 Hz, 3 H) - 4.58 (q, ³ J_{HH} = 7.1 Hz, 2 H) - -	Image: Image definition of the system of	Image: Image in the second system is a second system in the system is a system in the system is a system in the system in the system is a system in the system in the system is a system in the system in the system is a system in the sys

Table S4. ¹H NMR data of [1](PF₆)₂ – [4](PF₆)₂ in CD₃CN, 400 MHz.

Table S5. ${}^{13}C{}^{1}H$ NMR data of $[1](PF_6)_2 - [4](PF_6)_2$ in CD₃CN, 101 MHz.

	[1](PF ₆) ₂	$\frac{0.2}{[2](PF_6)_2}$	[3](PF ₆) ₂	[4](PF ₆) ₂
C^1	136.3	135.1	136.4	135.8
C^2	123.8	123.6	124.8	124.6
C^3	159.7	159.1	159.3	159.6
\mathbf{C}^4	158.7	158.8	159.7	159.8
C^5	125.7	125.4	124.7	124.4
C^6	139.2	138.8	140.0	140.0
C^7	128.0	127.8	126.8	126.7
C^8	155.1	155.0	155.8	155.7
C^9	149.4	149.3	149.2	149.2
\mathbf{C}^{10}	121.5	121.1	121.6	121.2
C^{11}	140.2	140.0	140.4	140.3
C^{12}	116.3	116.2	116.6	116.5
C^{13}	159.8	160.2	159.5	160.0
\mathbf{C}^{14}	157.2	156.8	157.1	156.7
C^{15}	113.6	98.7	113.7	98.8
C^{16}	141.8	160.0	142.1	159.3
CO ^{center}	164.9	165.0	165.2	164.8
CO ^{outer}	-	-	164.8	164.4
NCH ₃	41.8	41.4	41.7	41.3
$CH_2\underline{C}H_3^{center}$	14.6	14.5	-	14.6
$CH_2\underline{C}H_3^{outer}$	-	-	-	14.4
$\underline{C}H_2CH_3^{center}$	63.7	63.5	-	63.6
$\underline{C}H_2CH_3^{outer}$	-	-	-	63.5
OCH ₃ ^{center}	-	-	54.1	-
OCH ₃ ^{outer}	-	-	53.9	-

					ų ,		
	$[1](PF_6)_2$	$[2](PF_6)_2$	$[3](PF_6)_2$	$[4](PF_6)_2$	10	11	EtOOC-tpy
							(in d ₆ -DMSO)
\mathbf{N}^{a}	211.6	212.7	209.2	209.9	287.9	285.4	-
$\mathbf{N}^{\mathbf{b}}$	92.1	90.1	92.0	89.5	98.7	97.1	-
\mathbf{N}^{c}	218.0	183.1	216.2	181.7	250.1	256.1	-
\mathbf{N}^{d}	238.0	238.6	249.1	249.7	-	-	301.5
$\mathbf{N}^{\mathbf{e}}$	294.4	297.2	294.4	296.6	-	-	306.6
NH_2	-	72.1	-	72.7	-	-	-
phthalimide	-	-	-	-	169.0	-	-

Table S6. ¹⁵N NMR data of [1](PF₆)₂ – [4](PF₆)₂, 10 and 11 in CD₃CN, 41 MHz.

Table S7. Crystal and structure refinement data for $[2](PF_6)_2$ and $[3](PF_6)_2$ from X-ray analysis.

	$[2](PF_6)_2$	$[3](\mathbf{PF}_6)_2$
Empirical formula	$C_{37}H_{36}F_{12}N_{10}O_2P_2Ru$	$C_{44}H_{47}F_{12}N_9O_7P_2Ru$
Formula weight	1043.77	1204.92
Crystal color, habit	brown block	black block
Crystal dimensions / mm	0.43 x 0.20 x 0.17	0.25 x 0.11 x 0.11
Crystal system	triclinic	triclinic
Space group	Pt	<i>P</i> 1
a / Å	12.0041(5)	12.0767(3)
b / Å	13.4065(5)	15.4254(4)
c / Å	14.8818(6)	15.7197(4)
α / °	68.1070(10)	64.4150(10)
eta / °	72.3710(10)	86.9760(10)
γ / \circ	73.7940(10)	69.4790(10)
$V/\text{ Å}^3$	2080.16(14)	2456.73(11)
Z	2	2
<i>F</i> (000)	1052	1224
Density (calcd) / $g \text{ cm}^{-3}$	1.666	1.629
Absorption coefficient μ / mm ⁻¹	0.556 (MULABS)	0.490 (MULABS)
Theta range / °	1.51 - 27.97	2.45 - 27.98
Index ranges	$-15 \le h \le 15$	$-15 \le h \le 15$
	$-17 \le k \le 17$	$-20 \le k \le 17$
	$-19 \le l \le 19$	$-20 \le l \le 20$
Reflections collected	43817	45957
Independent reflections	9967 ($R_{\rm int} = 0.0373$)	11811 ($R_{int} = 0.0376$)
Observed reflections	9967	11811
Parameters	585	841
Max. / min. transmission	0.910 / 0.875	0.9481 / 0.8873
Goodness-of-fit on F^2	1.019	0.944
Largest difference peak and hole / e $Å^{-3}$	0.837 / -0.398	0.453 / -0.331
$R_1 (I > 2\sigma(I))$	0.0316	0.0300
R_1 (all data)	0.0414	0.0432
$wR_2 (I \geq 2\sigma(I))$	0.0816	0.0704
wR_2 (all data)	0.0855	0.0745

Table S8. Bond lengths / Å and angles / ° of $[2](PF_6)_2$ from X-ray crystal analysis.

Ru(1)-N(2)	1.9465(16)
Ru(1)-N(4)	2.0750(16)
Ru(1)-N(6)	2.0766(16)
Ru(1)-N(1)	2.0804(17)
Ru(1)-N(5)	2.0806(16)
Ru(1)-N(3)	2.0869(16)

N(1)-C(101)	1.348(3)
N(1)-C(105)	1.370(3)
N(2)-C(106)	1.366(3)
N(2)-C(110)	1.368(2)
N(3)-C(115)	1.343(3)
N(3)-C(111)	1.375(2)
N(4)-C(201)	1.354(3)
N(4)-C(205)	1.358(2)
N(5)-C(207)	1.362(2)
N(5)-C(211)	1.362(3)
N(6)-C(213)	1.350(3)
N(6)-C(217)	1.360(3)
N(7)-C(205)	1.301(3) 1 403(3)
N(7)-C(207)	1.102(3) 1.422(3)
N(7)-C(206)	1.122(3) 1.479(2)
N(8)-C(213)	1.479(2) 1 409(3)
N(8)-C(213)	1.405(3) 1.416(2)
N(8) - C(212)	1.410(2) 1.473(3)
N(0) - C(212) N(0) - C(200)	1.475(3) 1.364(3)
N(9) - U(20)	0.8800
N(0) H(0R)	0.8800
$\Omega(1) - \Omega(116)$	1.210(3)
O(2)-C(116)	1.210(3) 1.323(3)
O(2) - C(110) O(2) C(117)	1.323(3) 1.450(3)
$C(101)_{-}C(102)$	1.439(3) 1 300(3)
C(101)-C(102) C(101)-H(101)	0.9500
C(102)- $C(103)$	1.378(4)
C(102) - H(102)	0.9500
$C(102) \cdot \Pi(102)$ $C(103) \cdot C(104)$	1 388(3)
C(103) - H(103)	0.9500
C(104)- $C(105)$	1.384(3)
C(104)-H(104)	0.9500
C(105)-C(106)	1.481(3)
C(106)- $C(107)$	1.384(3)
C(107)- $C(108)$	1.394(3)
C(107)-H(107)	0.9500
C(108)- $C(109)$	1.399(3)
C(108)- $C(116)$	1.493(3)
C(109)-C(110)	1.380(3)
С(109)-Н(109)	0.9500
C(110)-C(111)	1.480(3)
C(111)-C(112)	1.388(3)
C(112)-C(113)	1.378(3)
C(112)-H(112)	0.9500
C(113)-C(114)	1.382(3)
C(113)-H(113)	0.9500
C(114)-C(115)	1.388(3)
C(114)-H(114)	0.9500
C(115)-H(115)	0.9500
C(117)-C(118)	1.493(3)
C(117)-H(11A)	0.9900
C(117)-H(11B)	0.9900
C(118)-H(11C)	0.9800
C(118)-H(11D)	0.9800
C(118)-H(11E)	0.9800
C(201)-C(202)	1.372(3)

C(201)-H(201)	0.9500
C(202)-C(203)	1.387(3)
C(202)-H(202)	0.9500
C(203)-C(204)	1.376(3)
C(203)-H(203)	0.9500
C(204)-C(205)	1.397(3)
C(204)-H(204)	0.9500
C(206)-H(20A)	0.9800
C(206)-H(20B)	0.9800
C(206)-H(20C)	0.9800
C(207)-C(208)	1.372(3)
C(208)-C(209)	1.393(3)
C(208)-H(208)	0.9500
C(209)-C(210)	1.405(3)
C(210)-C(211)	1.376(3)
C(210)-H(210)	0.9500
C(212)-H(21A)	0.9800
C(212)-H(21B)	0.9800
C(212)-H(21C)	0.9800
C(213)-C(214)	1.404(3)
C(214)-C(215)	1.378(3)
C(214)-H(214)	0.9500
C(215)-C(216)	1.383(4)
C(215)-H(215)	0.9500
C(216)-C(217)	1.371(3)
C(216)-H(216)	0.9500
C(217)-H(217)	0.9500
P(1)-F(6)	1.571(2)
P(1)-F(4)	1.5809(19)
P(1)-F(5)	1.5899(19)
P(1)-F(2)	1.5952(17)
P(1)-F(3)	1.5961(18)
P(1)-F(1)	1.6037(16)
P(2)-F(10)	1.5770(18)
P(2)-F(12)	1.5845(18)
P(2)-F(9)	1.5905(17)
P(2)-F(7)	1.5956(17)
P(2)-F(11)	1.5980(16)
P(2)-F(8)	1.6127(17)
N(10)-C(300)	1.146(5)
C(300)-C(301)	1.418(5)
C(301)-H(30A)	0.9800
C(301)-H(30B)	0.9800
С(301)-Н(30С)	0.9800
N(2)-Ru(1)-N(4)	92.88(7)
N(2)-Ru(1)-N(6)	92.02(6)
N(4)-Ru(1)-N(6)	174.83(6)
N(2)-Ru(1)-N(1)	79.80(7)
N(4)-Ru(1)-N(1)	91.53(6)
N(6)-Ru(1)-N(1)	90.94(7)
N(2)-Ru(1)-N(5)	178.19(7)
N(4)-Ru(1)-N(5)	87.33(6)
N(6)-Ru(1)-N(5)	87.83(6)
N(1)-Ru(1)-N(5)	98.39(6)
N(2)-Ru(1)-N(3)	79.74(7)
() (-) - (-)	

N(4)-Ru(1)-N(3)	90.38(6)
N(6)-Ru(1)-N(3)	88.88(6)
N(1)-Ru(1)-N(3)	159.53(7)
N(5)-Ru(1)-N(3)	102.05(6)
C(101)-N(1)-C(105)	117.89(18)
C(101)-N(1)-Ru(1)	128.94(15)
C(105)-N(1)-Ru(1)	113 13(13)
C(106) - N(2) - C(110)	121.29(17)
C(106) N(2) Pu(1)	121.29(17) 110.25(13)
C(100) - N(2) - Ru(1) C(110) N(2) Pu(1)	119.23(13) 110.20(14)
C(115) N(2) C(111)	117.39(14) 117.72(17)
C(115) - N(3) - C(111) C(115) - N(2) - Dy(1)	117.73(17) 120.26(14)
C(113)-IN(3)-Ku(1) $C(111)$ N(2) $D_{11}(1)$	129.30(14) 112.00(12)
C(111)-IN(5)-Ku(1) C(201) N(4) C(205)	112.90(15) 117.79(17)
C(201)-N(4)- $C(205)$	11/./8(1/)
C(201)-N(4)-Ru(1)	121.55(13)
C(205)-N(4)-Ru(1)	120.62(14)
C(207)-N(5)-C(211)	116.83(17)
$C(20^{7})-N(5)-Ru(1)$	121.21(14)
C(211)-N(5)-Ru(1)	121.82(12)
C(213)-N(6)-C(217)	118.09(17)
C(213)-N(6)-Ru(1)	121.02(13)
C(217)-N(6)-Ru(1)	120.63(14)
C(205)-N(7)-C(207)	122.30(17)
C(205)-N(7)-C(206)	116.09(17)
C(207)-N(7)-C(206)	115.46(17)
C(213)-N(8)-C(211)	122.15(17)
C(213)-N(8)-C(212)	116.24(17)
C(211)-N(8)-C(212)	115.65(16)
C(209)-N(9)-H(9A)	120.0
C(209)-N(9)-H(9B)	120.0
H(9A)-N(9)-H(9B)	120.0
C(116)-O(2)-C(117)	115.90(17)
N(1)-C(101)-C(102)	122.6(2)
N(1)-C(101)-H(101)	1187
C(102)- $C(101)$ -H(101)	118.7
$C(102) = C(101) \Pi(101)$ C(103) = C(102) = C(101)	110.7 119.1(2)
C(103) - C(102) - H(102)	120.5
C(103)-C(102)-H(102)	120.5
C(102)-C(102)-H(102)	120.3 119 2(2)
C(102)- $C(103)$ - $C(104)$	119.2(2) 120 4
C(102)- $C(103)$ - $H(103)$	120.4
$C(104)$ - $C(103)$ - $\Pi(103)$ C(105) $C(104)$ $C(103)$	120.4 110 $A(2)$
C(103)- $C(104)$ - $C(103)$	119.4(2) 120.2
$C(103)$ - $C(104)$ - $\Pi(104)$	120.5
$C(103)$ - $C(104)$ - $\Pi(104)$	120.5 121.74(10)
N(1)-C(105)-C(104) N(1)-C(105)-C(106)	121.74(19) 114.05(19)
N(1)-C(105)-C(106)	114.95(18)
C(104)- $C(105)$ - $C(106)$	123.21(19)
N(2)-C(106)-C(107)	120.03(18)
N(2)-C(106)-C(105)	112.62(17)
C(107)-C(106)-C(105)	127.10(19)
C(106)-C(107)-C(108)	119.2(2)
C(106)-C(107)-H(107)	120.4
С(108)-С(107)-Н(107)	120.4
C(107)-C(108)-C(109)	120.24(19)
C(107)-C(108)-C(116)	121.9(2)
C(109)-C(108)-C(116)	117.79(19)

C(110)-C(109)-C(108)	118.98(19)
C(110)-C(109)-H(109)	120.5
C(108)-C(109)-H(109)	120.5
N(2)-C(110)-C(109)	120.24(19)
N(2)-C(110)-C(111)	112.53(17)
C(109)-C(110)-C(111)	127.21(18)
N(3)-C(111)-C(112)	121.51(19)
N(3)-C(111)-C(110)	115.11(17)
C(112)-C(111)-C(110)	123.31(19)
C(113)-C(112)-C(111)	119.8(2)
С(113)-С(112)-Н(112)	120.1
C(111)-C(112)-H(112)	120.1
C(112)-C(113)-C(114)	118.8(2)
C(112)-C(113)-H(113)	120.6
C(112) = C(113) = H(113)	120.6
C(113)-C(114)-C(115)	120.0 119 3(2)
C(113)-C(114)-H(114)	120.4
C(115)-C(114)-H(114)	120.4
N(3)-C(115)-C(114)	120.4 122.8(2)
N(3) - C(115) - C(114) N(3) - C(115) - U(115)	122.0(2)
C(114) C(115) H(115)	118.6
O(1) C(116) O(2)	110.0 124.0(2)
O(1)- $C(110)$ - $O(2)$	124.9(2) 122.8(2)
O(1)- $C(116)$ - $C(108)$	122.0(2) 112.20(10)
O(2)- $C(110)$ - $C(108)$	112.30(19) 107.26(10)
O(2)- $C(117)$ - $C(118)$	107.20(19)
O(2)-C(117)-H(11A)	110.5
C(118)-C(117)-H(11A)	110.3
O(2)-C(117)-H(11B)	110.3
С(118)-С(117)-Н(11В)	110.3
H(IIA)-C(II/)-H(IIB)	108.5
C(117)-C(118)-H(11C)	109.5
C(117)-C(118)-H(11D)	109.5
H(IIC)-C(II8)-H(IID)	109.5
С(11/)-С(118)-Н(11Е)	109.5
H(11C)-C(118)-H(11E)	109.5
H(11D)-C(118)-H(11E)	109.5
N(4)-C(201)-C(202)	124.00(19)
N(4)-C(201)-H(201)	118.0
С(202)-С(201)-Н(201)	118.0
C(201)-C(202)-C(203)	117.9(2)
C(201)-C(202)-H(202)	121.1
С(203)-С(202)-Н(202)	121.1
C(204)-C(203)-C(202)	119.5(2)
C(204)-C(203)-H(203)	120.2
C(202)-C(203)-H(203)	120.2
C(203)-C(204)-C(205)	119.9(2)
C(203)-C(204)-H(204)	120.1
C(205)-C(204)-H(204)	120.1
N(4)-C(205)-C(204)	120.9(2)
N(4)-C(205)-N(7)	118.37(17)
C(204)-C(205)-N(7)	120.72(18)
N(7)-C(206)-H(20A)	109.5
N(7)-C(206)-H(20B)	109.5
H(20A)-C(206)-H(20B)	109.5
N(7)-C(206)-H(20C)	109.5
H(20A)-C(206)-H(20C)	109.5

H(20B)-C(206)-H(20C)) 109.5
N(5)-C(207)-C(208)	123.4(2)
N(5)-C(207)-N(7)	117.05(17)
C(208)-C(207)-N(7)	119.52(17)
C(207)-C(208)-C(209)	119.52(19)
C(207)-C(208)-H(208)	120.2
C(209)-C(208)-H(208)	120.2
N(9)-C(209)-C(208)	121.0(2)
N(9)-C(209)-C(210)	121.3(2)
C(208)-C(209)-C(210)	117.75(19)
C(211)-C(210)-C(209)	119.6(2)
C(211) - C(210) - H(210)	120.2
C(209)-C(210)-H(210)	120.2
N(5)-C(211)-C(210)	120.2
N(5) - C(211) - N(8)	122.07(10) 117 20(17)
C(210) C(211) N(8)	117.20(17) 110.03(10)
N(8) C(212) H(21A)	100 5
$N(0)-C(212)-\Pi(21R)$ $N(0)-C(212)-\Pi(21R)$	109.5
$N(0)-C(212)-\Pi(21D)$ U(21A) C(212) U(21D)	109.3
H(21A)-C(212)-H(21B)) 109.5
N(8)-C(212)-H(21C)	109.5
H(21A)-C(212)-H(21C) 109.5
H(21B)-C(212)-H(21C)) 109.5
N(6)-C(213)-C(214)	120.85(19)
N(6)-C(213)-N(8)	118.79(17)
C(214)-C(213)-N(8)	120.3(2)
C(215)-C(214)-C(213)	119.6(2)
C(215)-C(214)-H(214)	120.2
C(213)-C(214)-H(214)	120.2
C(214)-C(215)-C(216)	119.5(2)
C(214)-C(215)-H(215)	120.2
C(216)-C(215)-H(215)	120.2
C(217)-C(216)-C(215)	118.3(2)
C(217)-C(216)-H(216)	120.9
C(215)-C(216)-H(216)	120.9
N(6)-C(217)-C(216)	123.5(2)
N(6)-C(217)-H(217)	118.3
C(216)-C(217)-H(217)	118.3
F(6)-P(1)-F(4)	92.00(13)
F(6)-P(1)-F(5)	92.28(13)
F(4)-P(1)-F(5)	91.68(11)
F(6)-P(1)-F(2)	90.12(13)
F(4)-P(1)-F(2)	177.40(11)
F(5)-P(1)-F(2)	89.74(11)
F(6)-P(1)-F(3)	177 87(13)
F(4)-P(1)-F(3)	89 25(11)
F(5)-P(1)-F(3)	89 41(12)
F(2) - P(1) - F(3)	88 59(10)
F(2) = F(1) = F(3) F(6) = D(1) = F(1)	80.97(10)
F(0) - F(1) - F(1) F(A) D(1) F(1)	89.00(11)
$\Gamma(4) - \Gamma(1) - \Gamma(1)$ $\Gamma(5) D(1) \Gamma(1)$	$177 \ 91(12)$
$\Gamma(3)$ - $\Gamma(1)$ - $\Gamma(1)$ $\Gamma(2)$ $D(1)$ $\Gamma(1)$	1/7.01(12)
$\Gamma(2) - \Gamma(1) - \Gamma(1)$ E(2) D(1) E(1)	07.JJ(7) 99.50(0)
$\Gamma(3)-\Gamma(1)-\Gamma(1)$	00.30(9)
$\Gamma(10) - \Gamma(2) - \Gamma(12)$ $\Gamma(10) - \Gamma(2) - \Gamma(0)$	92.43(12)
$\Gamma(10) - \Gamma(2) - \Gamma(9)$ $\Gamma(10) - \Gamma(2) - \Gamma(9)$	91.3/(10)
F(12)-F(2)-F(9)	90.93(11)
F(10)-P(2)-F(7)	90.30(11)

F(12)-P(2)-F(7)	177.23(12)
F(9)-P(2)-F(7)	89.39(10)
F(10)-P(2)-F(11)	89.93(10)
F(12)-P(2)-F(11)	89.58(11)
F(9)-P(2)-F(11)	178.58(10)
F(7)-P(2)-F(11)	90.04(10)
F(10)-P(2)-F(8)	179.28(12)
F(12)-P(2)-F(8)	88.25(11)
F(9)-P(2)-F(8)	88.80(10)
F(7)-P(2)-F(8)	89.01(10)
F(11)-P(2)-F(8)	89.89(10)
N(10)-C(300)-C(301)	176.3(4)
C(300)-C(301)-H(30A)) 109.5
C(300)-C(301)-H(30B)	109.5
H(30A)-C(301)-H(30B) 109.5
C(300)-C(301)-H(30C)	109.5
H(30A)-C(301)-H(30C) 109.5
H(30B)-C(301)-H(30C) 109.5

Table S9. Bond lengths / Å and angles / ° of $[3](PF_6)_2$ from X-ray crystal analysis.

$D_{11}(1) N(2)$	1 0491(14)
Ru(1) - IN(2) Ru(1) N(1)	1.9401(14) 2.0777(15)
Ru(1) - IN(1) Pu(1) N(8)	2.0777(13) 2.0784(15)
Ru(1) - IN(0) Pu(1) N(4)	2.0764(13) 2.0800(15)
Nu(1)-IN(4)	2.0600(13)
Ru(1)- $N(6)$	2.0858(15)
Ru(1)-N(3)	2.0921(15)
O(1)-C(4)	1.199(2)
O(2)-C(4)	1.328(2)
O(2)-C(5)	1.457(2)
N(1)-C(1)	1.349(2)
N(1)-C(7)	1.371(2)
N(2)-C(14)	1.359(2)
N(2)-C(8)	1.364(2)
N(3)-C(21)	1.344(2)
N(3)-C(15)	1.381(2)
N(4)-C(22)	1.352(2)
N(4)-C(26)	1.353(2)
N(5)-C(26)	1.409(2)
N(5)-C(28)	1.415(3)
N(5)-C(27)	1.471(3)
N(6)-C(32)	1.354(2)
N(6)-C(28)	1.358(2)
N(7)-C(34)	1.412(2)
N(7)-C(32)	1.412(3)
N(7)-C(33)	1.472(3)
N(8)-C(34)	1.345(2)
N(8)-C(38)	1.360(2)
C(1)-C(2)	1.383(3)
C(1)-H(1A)	0.9500
C(2)-C(3)	1.388(3)
C(2)-H(2A)	0.9500
C(3)-C(6)	1.388(3)
C(3)-C(4)	1.502(3)
C(5)-H(5A)	0.9800
C(5)-H(5B)	0.9800
	0.2000

C(5)-H(5C)	0.9800
C(6) - C(7)	1.387(3)
C(0)- $C(7)$	1.367(3)
C(0)-H(0A)	0.9500
C(7)-C(8)	1.471(3)
C(8)-C(9)	1.371(3)
C(9)-C(10)	1.393(3)
C(9)-H(9A)	0.9500
C(10)-C(13)	1.389(3)
C(10)- $C(11)$	1.209(2) 1.499(2)
C(11) O(3)	1.499(2) 1.105(2)
C(11) - O(3)	1.193(2) 1.221(2)
C(11)-O(4)	1.331(2)
O(4)-C(12)	1.448(2)
C(12)-H(12A)	0.9800
C(12)-H(12B)	0.9800
C(12)-H(12C)	0.9800
C(13)-C(14)	1.385(2)
C(13)-H(13A)	0.9500
C(14)- $C(15)$	1474(3)
C(15) C(16)	1.171(3) 1.380(3)
C(15)- $C(10)$	1.300(3) 1.292(2)
C(10)-C(17)	1.585(5)
C(16)-H(16A)	0.9500
C(17)-C(20)	1.382(3)
C(17)-C(18)	1.508(4)
C(17)-C(18A)	1.518(9)
C(18)-O(5)	1.196(2)
C(18)-O(6)	1.332(2)
O(6)-C(19)	1449(2)
$C(19) - H(19\Delta)$	0.9800
C(10) H(10R)	0.9800
$C(19) - \Pi(19D)$ $C(10) \Pi(10C)$	0.9800
C(19)-H(19C)	0.9800
C(18A)-O(5A)	1.196(2)
C(18A)-O(6A)	1.332(2)
O(6A)-C(19A)	1.448(2)
C(19A)-H(19D)	0.9800
C(19A)-H(19E)	0.9800
C(19A)-H(19F)	0.9800
C(20)-C(21)	1.391(3)
C(20)-H(20A)	0.9500
C(21) - H(21A)	0.9500
$C(21)$ - $\Pi(21R)$ C(22) $C(22)$	1.272(2)
C(22) - C(23)	1.575(5)
C(22)-H(22A)	0.9500
C(23)-C(24)	1.382(3)
C(23)-H(23A)	0.9500
C(24)-C(25)	1.373(3)
C(24)-H(24A)	0.9500
C(25)-C(26)	1.393(3)
C(25)-H(25A)	0.9500
C(27)-H(27A)	0.9800
C(27) H(27R)	0.9800
C(27) H(27D)	0.2000
$C(27) - \Pi(27C)$	0.9800
C(28) - C(29)	1.58/(5)
C(29)-C(30)	1.368(3)
C(29)-H(29A)	0.9500
C(30)-C(31)	
	1.375(3)
C(30)-H(30A)	1.375(3) 0.9500

C(31)-H(31A)	0.9500
C(33)-H(33A)	0.9800
C(33)-H(33B)	0.9800
C(33)-H(33C)	0.9800
C(34)-C(35)	1.402(3)
C(35)-C(36)	1370(3)
C(35) - H(35A)	0.9500
C(36) C(37)	1.378(3)
C(36) = U(36A)	1.378(3)
$C(30)-\Pi(30A)$ C(27) C(28)	1.270(2)
C(37)-C(30)	1.370(3)
C(37)-H(37A)	0.9500
C(38)-H(38A)	0.9500
P(1)-F(4)	1.5/4(2)
P(1)-F(3)	1.586(2)
P(1)-F(1)	1.5881(19)
P(1)-F(6)	1.5973(19)
P(1)-F(2)	1.598(2)
P(1)-F(5)	1.604(2)
P(1A)- $F(4A)$	1.574(2)
P(1A)-F(3A)	1.586(2)
P(1A)-F(1A)	1.588(2)
P(1A)-F(6A)	1.597(2)
P(1A)-F(2A)	1.598(2)
P(1A)-F(5A)	1.604(2)
P(2)-F(9)	1.513(5)
P(2)-F(8)	1.536(4)
P(2)-F(12)	1.566(6)
P(2)-F(11)	1.595(4)
P(2)-F(10)	1.609(4)
P(2)-F(7)	1.619(7)
P(2A)-F(10A)	1.402(12)
P(2A)-F(7A)	1.38(2)
P(2A)-F(9A)	1.538(12)
P(2A)-F(11A)	1 590(12)
$P(2\Delta) - F(12\Delta)$	1.596(12) 1.635(14)
$P(2\Delta) - F(8\Delta)$	1.655(14)
$\Omega(10) - C(41)$	1.000(12) 1.417(3)
O(10) - C(41) O(10) - C(40)	1.417(3) 1.422(3)
C(30) C(40)	1.422(3) 1.405(4)
C(39) - C(40) C(30) = U(30A)	0.0800
$C(39)-\Pi(39A)$	0.9800
$C(39)-\Pi(39D)$	0.9800
C(39)-H(39C)	0.9800
C(40)-H(40A)	0.9900
C(40)-H(40B)	0.9900
C(41)-C(42)	1.504(4)
C(41)-H(41A)	0.9900
C(41)-H(41B)	0.9900
C(42)-H(42A)	0.9800
C(42)-H(42B)	0.9800
C(42)-H(42C)	0.9800
N(9)-C(44)	1.125(4)
C(43)-C(44)	1.438(4)
C(43)-H(43A)	0.9800
C(43)-H(43B)	0.9800
	0.9000

$\mathbf{N}(\mathbf{A}) = \mathbf{D}(\mathbf{A}) \mathbf{N}(\mathbf{A})$	70.04(6)
N(2)-Ru(1)-N(1)	/9.84(6)
N(2)-Ru(1)-N(8)	93.08(6)
N(1)-Ru(1)-N(8)	89.97(6)
N(2)-Ru(1)-N(4)	92.05(6)
N(1)-Ru(1)-N(4)	92.08(6)
$N(8)_{Ru}(1)_{N(4)}$	17474(6)
$N(2) D_{1}(1) N(4)$	177.19(6)
N(2)-Ru(1)-N(0)	177.10(0)
N(1)-Ru(1)-N(6)	97.43(6)
N(8)-Ru(1)-N(6)	87.59(6)
N(4)-Ru(1)-N(6)	87.34(6)
N(2)-Ru(1)-N(3)	79.31(6)
$N(1)-R_{11}(1)-N(3)$	159 10(6)
$N(8)_{Ru}(1)_{N(3)}$	89.80(6)
N(0) - Ru(1) - N(0) $N(4) D_{11}(1) N(2)$	00.00(0)
N(4)-Ru(1)-N(5)	90.00(0)
N(6)-Ru(1)-N(3)	103.44(6)
C(4)-O(2)-C(5)	115.64(18)
C(1)-N(1)-C(7)	117.70(16)
C(1)-N(1)-Ru(1)	129.52(12)
C(7)-N(1)-Ru(1)	11273(12)
C(14) N(2) C(8)	120.01(15)
C(14) - N(2) - C(0) C(14) - N(2) - Du(1)	120.91(13) 120.10(12)
C(14)-IN(2)-Ku(1)	120.10(12)
C(8)-N(2)-Ru(1)	118.98(12)
C(21)-N(3)-C(15)	117.11(16)
C(21)-N(3)-Ru(1)	130.17(13)
C(15)-N(3)-Ru(1)	112.71(11)
C(22)-N(4)-C(26)	117.40(16)
C(22)-N(4)-Ru(1)	122.10(13)
C(26)-N(4)-Ru(1)	120.49(13)
C(26) N(5) C(28)	120.49(15) 121.22(16)
C(26) = N(5) - C(26)	121.22(10) 115.70(17)
C(20)-N(5)-C(27)	115.79(17)
C(28)-N(5)-C(27)	116.66(17)
C(32)-N(6)-C(28)	118.19(16)
C(32)-N(6)-Ru(1)	121.50(13)
C(28)-N(6)-Ru(1)	120.20(13)
C(34)-N(7)-C(32)	121.66(16)
C(34)-N(7)-C(33)	11571(17)
C(32) - N(7) - C(33)	115.91(17) 115.80(16)
C(34) N(8) C(38)	117.00(10) 117.85(16)
C(34)- $N(0)$ - $C(30)$	117.03(10) 101.45(10)
C(34)-IN(8)-Ru(1)	121.43(12)
C(38)-N(8)-Ru(1)	120.59(13)
N(1)-C(1)-C(2)	122.74(17)
N(1)-C(1)-H(1A)	118.6
C(2)-C(1)-H(1A)	118.6
C(1)-C(2)-C(3)	119.48(18)
C(1)-C(2)-H(2A)	120.3
C(3) - C(2) - H(2A)	120.3
$C(3) - C(2) - \Pi(2\pi)$	120.3 110 25(17)
C(2)- $C(3)$ - $C(0)$	118.53(17)
C(2)-C(3)-C(4)	123.74(18)
C(6)-C(3)-C(4)	117.89(18)
O(1)-C(4)-O(2)	125.59(19)
O(1)-C(4)-C(3)	122.97(19)
O(2)-C(4)-C(3)	111.43(18)
O(2)-C(5)-H(5A)	109.5
O(2)-C(5)-H(5R)	109.5
$U(5\Delta)_{C(5)} = U(5D)$	100.5
$\Pi(JAJ-C(J)-\Pi(JD))$	109.3
U(2) - U(3) - H(3U)	109.5

H(5A)-C(5)-H(5C)	109.5
H(5B)-C(5)-H(5C)	109.5
C(7)-C(6)-C(3)	119.76(18)
C(7)-C(6)-H(6A)	120.1
C(3)-C(6)-H(6A)	120.1
N(1)-C(7)-C(6)	121.66(17)
N(1)-C(7)-C(8)	115.33(16)
C(6)-C(7)-C(8)	122.97(17)
N(2)-C(8)-C(9)	120.28(17)
N(2)-C(8)-C(7)	112.73(16)
C(9)-C(8)-C(7)	126.73(17)
C(8)-C(9)-C(10)	119.57(17)
C(8)-C(9)-H(9A)	120.2
C(10)-C(9)-H(9A)	120.2
C(13)-C(10)-C(9)	119.85(17)
C(13)-C(10)-C(11)	118.90(17)
C(9)-C(10)-C(11)	121.24(17)
O(3)-C(11)-O(4)	125.45(16)
O(3)-C(11)-C(10)	123.65(17)
O(4)-C(11)-C(10)	110.88(16)
C(11)-O(4)-C(12)	116.29(16)
O(4)-C(12)-H(12A)	109.5
O(4)- $C(12)$ - $H(12B)$	109.5
H(12A)-C(12)-H(12B)	109.5
O(4)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
C(14)-C(13)-C(10)	118 96(17)
C(14)- $C(13)$ - $H(13A)$	120 5
C(10)-C(13)-H(13A)	120.5
N(2)-C(14)-C(13)	120 40(16)
N(2)-C(14)-C(15)	112,48(15)
C(13)-C(14)-C(15)	$127\ 10(17)$
C(16)-C(15)-N(3)	121.88(17)
C(16)- $C(15)$ - $C(14)$	127.00(17) 122.94(17)
N(3)-C(15)-C(14)	122.94(17) 115 16(16)
C(15)-C(16)-C(17)	120.03(18)
C(15)-C(16)-H(16A)	120.05(10)
C(17)- $C(16)$ - $H(16A)$	120.0
C(20)- $C(17)$ - $C(16)$	120.0 118 53(18)
C(20) - C(17) - C(18)	127 3(2)
C(16)- $C(17)$ - $C(18)$	127.3(2) 114 1(2)
C(20)- $C(17)$ - $C(18A)$	1090(4)
C(16)-C(17)-C(18A)	1325(4)
C(18)-C(17)-C(18A)	132.3(4) 18 4(4)
O(5)- $C(18)$ - $O(6)$	1250(2)
O(5)-C(18)-C(17)	125.0(2) 125.6(3)
O(5)-C(18)-C(17)	123.0(3) 109 $4(2)$
C(18) O(6) C(10)	107.4(2) 115 7(2)
O(6) C(10) H(10A)	100 5
$O(0)-C(19)-\Pi(19R)$ $O(6) C(10) \Pi(10R)$	109.5
$U(0) - U(13) - \Pi(13D)$ $H(10\Delta) - C(10) = U(10D)$	109.5
$\Omega(6) C(10) U(10C)$	109.5
$U(0) - U(13) - \Pi(13U)$ $H(10\Delta) - C(10) = U(10C)$	109.5
H(10R) C(10) H(10C)	109.5
$\Pi(17D) - U(17) - \Pi(17U)$	109.3
U(JA) - U(IA) - U(OA)	123.3(2)

O(5A)-C(18A)-C(17)	129.4(6)
O(6A)-C(18A)-C(17)	105 2(6)
C(18A)-O(6A)-C(19A)	1160(2)
O(6A) C(19A) H(19D)	100.5
O(6A) C(10A) H(10E)	107.5
U(10D) C(10A) U(10E)	109.5
H(19D)-C(19A)-H(19E)	109.5
U(6A)-C(19A)-H(19F)	109.5
H(19D)-C(19A)-H(19F)	109.5
H(19E)-C(19A)-H(19F)	109.5
C(17)-C(20)-C(21)	119.28(18)
C(17)-C(20)-H(20A)	120.4
C(21)-C(20)-H(20A)	120.4
N(3)-C(21)-C(20)	123.08(18)
N(3)-C(21)-H(21A)	118.5
C(20)-C(21)-H(21A)	118.5
N(4)-C(22)-C(23)	123.84(19)
N(4)-C(22)-H(22A)	118.1
C(23)-C(22)-H(22A)	118.1
C(22)-C(23)-C(24)	118.2(2)
C(22)-C(23)-H(23A)	120.9
C(24)-C(23)-H(23A)	120.9
C(25)-C(24)-C(23)	120.9 119 3(2)
C(25) - C(24) - C(25)	120.3
C(23) - C(24) - H(24A)	120.3
$C(24) - C(24) - \Pi(24A)$	120.5 110.7(2)
C(24) - C(25) - C(26)	119.7(2)
C(24)- $C(25)$ - $H(25A)$	120.2
C(26)-C(25)-H(25A)	120.2
N(4)-C(26)-C(25)	121.50(18)
N(4)-C(26)-N(5)	117.52(17)
C(25)-C(26)-N(5)	120.95(18)
N(5)-C(27)-H(27A)	109.5
N(5)-C(27)-H(27B)	109.5
H(27A)-C(27)-H(27B)	109.5
N(5)-C(27)-H(27C)	109.5
H(27A)-C(27)-H(27C)	109.5
H(27B)-C(27)-H(27C)	109.5
N(6)-C(28)-C(29)	122.04(19)
N(6)-C(28)-N(5)	117.37(16)
C(29)-C(28)-N(5)	120.58(18)
C(30)-C(29)-C(28)	118.8(2)
C(30)-C(29)-H(29A)	120.6
C(28)-C(29)-H(29A)	120.6
C(29)-C(30)-C(31)	120.44(19)
C(29)-C(30)-H(30A)	119.8
C(31)-C(30)-H(30A)	119.0
C(31) - C(30) - H(30A)	119.0 118.6(2)
C(30) - C(31) - C(32)	120.7
C(30)- $C(31)$ - $H(31A)$	120.7
C(32)- $C(31)$ - $H(31A)$	120.7
N(6)-C(32)-C(31)	121.90(19)
N(6)-C(32)-N(7)	117.00(10)
U(31)-U(32)-N(7)	120.44(18)
N(/)-C(33)-H(33A)	109.5
N(7)-C(33)-H(33B)	109.5
H(33A)-C(33)-H(33B)	109.5
N(7)-C(33)-H(33C)	109.5
H(33A)-C(33)-H(33C)	109.5

H(33B)-C(33)-H(33C)	109.5
N(8)-C(34)-C(35)	121.21(18)
N(8)-C(34)-N(7)	118.32(17)
C(35)-C(34)-N(7)	120.43(18)
C(36)-C(35)-C(34)	119.4(2)
C(36)-C(35)-H(35A)	120.3
C(34)-C(35)-H(35A)	120.3
C(35)-C(36)-C(37)	119.9(2)
C(35)-C(36)-H(36A)	120.0
C(37)-C(36)-H(36A)	120.0
C(38)-C(37)-C(36)	118.14(19)
C(38)-C(37)-H(37A)	120.9
C(36)- $C(37)$ - $H(37A)$	120.9
N(8)-C(38)-C(37)	123 48(19)
N(8)-C(38)-H(38A)	118 3
C(37)- $C(38)$ - $H(38A)$	118.3
F(4)-P(1)-F(3)	91 47(14)
F(4)-P(1)-F(1)	91.47(14) 91.13(17)
$F(3)_P(1)_F(1)$	89.86(12)
F(3)- $F(1)$ - $F(1)F(4)$ $D(1)$ $F(6)$	89.80(12) 80.05(16)
F(4) - F(1) - F(0) F(3) P(1) F(6)	00.52(10)
$\Gamma(3)$ - $\Gamma(1)$ - $\Gamma(0)$ $\Gamma(1)$ $\Gamma(1)$ $\Gamma(6)$	90.32(13) 179.94(17)
$\Gamma(1) - \Gamma(1) - \Gamma(0)$ $\Gamma(4) - \Gamma(1) - \Gamma(2)$	1/0.04(17) 179/12(12)
$\Gamma(4) - \Gamma(1) - \Gamma(2)$ $\Gamma(2) = \Gamma(1) - \Gamma(2)$	1/8.42(13)
F(3)-P(1)-F(2) F(1) P(1) F(2)	89.90(13)
F(1)-P(1)-F(2)	89.07(14)
F(0)-P(1)-F(2)	89.24(14)
F(4)-P(1)-F(5)	88.8/(15)
F(3)-P(1)-F(5)	1/9.53(1/)
F(1)-P(1)-F(5)	90.46(11)
F(6)-P(1)-F(5)	89.16(12)
F(2)-P(1)-F(5)	89.76(15)
F(4A)-P(1A)-F(3A)	91.47(15)
F(4A)-P(1A)-F(1A)	91.12(17)
F(3A)-P(1A)-F(1A)	89.86(13)
F(4A)-P(1A)-F(6A)	89.96(16)
F(3A)-P(1A)-F(6A)	90.52(13)
F(1A)-P(1A)-F(6A)	178.84(17)
F(4A)-P(1A)-F(2A)	178.43(14)
F(3A)-P(1A)-F(2A)	89.90(14)
F(1A)-P(1A)-F(2A)	89.66(14)
F(6A)-P(1A)-F(2A)	89.24(14)
F(4A)-P(1A)-F(5A)	88.87(16)
F(3A)-P(1A)-F(5A)	179.54(16)
F(1A)-P(1A)-F(5A)	90.46(12)
F(6A)-P(1A)-F(5A)	89.16(12)
F(2A)-P(1A)-F(5A)	89.76(15)
F(9)-P(2)-F(8)	94.5(3)
F(9)-P(2)-F(12)	89.1(4)
F(8)-P(2)-F(12)	89.7(3)
F(9)-P(2)-F(11)	176.5(4)
F(8)-P(2)-F(11)	88.7(3)
F(12)-P(2)-F(11)	89.5(3)
F(9)-P(2)-F(10)	88.3(3)
F(8)-P(2)-F(10)	177.2(4)
F(12)-P(2)-F(10)	90.7(3)
F(11)-P(2)-F(10)	88.5(3)

F(8)-P(2)-F(7) $88.1(3)$ $F(12)-P(2)-F(7)$ $93.1(3)$ $F(10)-P(2)-F(7)$ $91.6(3)$ $F(10A)-P(2A)-F(7A)$ $85.5(13)$ $F(10A)-P(2A)-F(9A)$ $94.6(10)$ $F(7A)-P(2A)-F(9A)$ $92.0(11)$ $F(10A)-P(2A)-F(9A)$ $92.0(11)$ $F(10A)-P(2A)-F(9A)$ $92.0(11)$ $F(10A)-P(2A)-F(1A)$ $97.8(11)$ $F(7A)-P(2A)-F(11A)$ $91.1(11)$ $F(9A)-P(2A)-F(12A)$ $88.6(9)$ $F(7A)-P(2A)-F(12A)$ $88.6(9)$ $F(7A)-P(2A)-F(12A)$ $86.3(7)$ $F(10A)-P(2A)-F(12A)$ $86.3(7)$ $F(10A)-P(2A)-F(12A)$ $86.3(7)$ $F(10A)-P(2A)-F(8A)$ $85.0(10)$ $F(1A)-P(2A)-F(8A)$ $85.0(10)$ $F(14)-O(10)-C(40)$ $113.1(2)$ $C(40)-C(39)-H(39C)$ 109.5 $F(43A)-C(39)-H(39C)$ 109.5 $F(43B)-C(39)-H(39C)$ 109.5 $F(39A)-C(39)-H(39C)$ 109.5 $F(40)-C(40)-H(40B)$ 109.8 $C(39)-C(40)-H(40B)$ 109.8 $C(39)-C(40)-H(40B)$ 109.5 $C(40)-C(40)-H(40B)$	F(9)-P(2)-F(7)	88.5(3)
F(12)-P(2)-F(7) $176.6(4)$ $F(11)-P(2)-F(7)$ $93.1(3)$ $F(10A)-P(2A)-F(7A)$ $85.5(13)$ $F(10A)-P(2A)-F(9A)$ $94.6(10)$ $F(7A)-P(2A)-F(9A)$ $92.0(11)$ $F(10A)-P(2A)-F(9A)$ $92.0(11)$ $F(10A)-P(2A)-F(1A)$ $97.8(11)$ $F(7A)-P(2A)-F(11A)$ $91.1(11)$ $F(9A)-P(2A)-F(11A)$ $167.5(12)$ $F(10A)-P(2A)-F(12A)$ $88.6(9)$ $F(7A)-P(2A)-F(12A)$ $86.3(7)$ $F(11A)-P(2A)-F(12A)$ $86.3(7)$ $F(10A)-P(2A)-F(12A)$ $86.3(7)$ $F(10A)-P(2A)-F(8A)$ $87.0(13)$ $F(9A)-P(2A)-F(8A)$ $85.0(10)$ $F(1A)-P(2A)-F(8A)$ $82.6(8)$ $F(12A)-P(2A)-F(8A)$ $88.9(7)$ $C(41)-O(10)-C(40)$ $113.1(2)$ $C(40)-C(39)-H(39A)$ 109.5 $C(40)-C(39)-H(39A)$ 109.5 $C(40)-C(39)-H(39C)$ 109.5 $F(39A)-C(39)-H(39C)$ 109.5 $F(39A)-C(39)-H(39C)$ 109.5 $F(39A)-C(39)-H(39C)$ 109.5 $C(39)-C(40)-H(40A)$ 109.8 $C(39)-C(40)-H(40B)$ 109.8 $C(39)-C(40)-H(40B)$ 109.8 $C(39)-C(40)-H(40B)$ 109.8 $C(39)-C(40)-H(40B)$ 109.5 $C(41)-C(42)-H(42C)$ 109.5 $C(41)-C(42)-H(42B)$ 109.5 $C(41)-C(42)-H(42C)$ 109.5 $C(41)-C(42)-H(42C)$ 109.5 $C(41)-C(42)-H(42C)$ 109.5 $C(41)-C(42)-H(42C)$ 109.5 $C(41)-C(42)-H(42C)$ 109.5 $C(41)-C(42)-H(42C)$ 109.5	F(8)-P(2)-F(7)	88.1(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	F(12)-P(2)-F(7)	176.6(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	F(11)-P(2)-F(7)	93.1(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	F(10)-P(2)-F(7)	91.6(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	F(10A)-P(2A)-F(7A)	85.5(13)
F(7A)- $P(2A)$ - $F(9A)$ $92.0(11)$ $F(10A)$ - $P(2A)$ - $F(11A)$ $97.8(11)$ $F(7A)$ - $P(2A)$ - $F(11A)$ $91.1(11)$ $F(9A)$ - $P(2A)$ - $F(12A)$ $88.6(9)$ $F(7A)$ - $P(2A)$ - $F(12A)$ $173.2(14)$ $F(9A)$ - $P(2A)$ - $F(12A)$ $173.2(14)$ $F(9A)$ - $P(2A)$ - $F(12A)$ $91.8(7)$ $F(11A)$ - $P(2A)$ - $F(12A)$ $86.3(7)$ $F(10A)$ - $P(2A)$ - $F(8A)$ $97.0(13)$ $F(9A)$ - $P(2A)$ - $F(8A)$ $97.0(13)$ $F(9A)$ - $P(2A)$ - $F(8A)$ $85.0(10)$ $F(11A)$ - $P(2A)$ - $F(8A)$ $82.6(8)$ $F(12A)$ - $P(2A)$ - $F(8A)$ $88.9(7)$ $C(41)$ - $O(10)$ - $C(40)$ $113.1(2)$ $C(40)$ - $C(39)$ - $H(39B)$ 109.5 $C(40)$ - $C(39)$ - $H(39C)$ 109.5 $F(39A)$ - $C(39)$ - $H(39C)$ 109.5 $F(39A)$ - $C(39)$ - $H(39C)$ 109.5 $O(10)$ - $C(40)$ - $H(40A)$ 109.8 $C(39)$ - $C(40)$ - $H(40B)$ 109.8 $C(39)$ - $C(40)$ - $H(40B)$ 109.8 $O(10)$ - $C(41)$ - $H(40B)$ 109.8 $O(10)$ - $C(41)$ - $H(40B)$ 108.2 $O(10)$ - $C(41)$ - $H(41B)$ 109.5 $C(42)$ - $C(41)$ - $H(41B)$ 109.5 $C(41)$ - $C(42)$ - $H(42B)$ 109.5 $C(41)$ - $C(42)$ - $H(42B)$ 109.5 $C(41)$ - $C(42)$ - $H(42B)$ 109.5 $C(41)$ - $C(42)$ - $H(42C)$ 109.5 $C(41)$ - $C(42)$ - $H(42C)$ 109.5 $C(41)$ - $C(42)$ - $H(42C)$ 109.5 $C(42)$ - $C(43)$ - $H(43B)$ 109.5 $C(44)$ - $C(43)$ - $H(43B)$ 109.5 $C(44)$ - $C(43)$ - $H(43B)$ 109.5 $C(44)$ - $C(43)$ - H	F(10A)-P(2A)-F(9A)	94.6(10)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	F(7A)-P(2A)-F(9A)	92.0(11)
F(7A)-P(2A)-F(11A) $91.1(11)$ $F(9A)-P(2A)-F(11A)$ $167.5(12)$ $F(10A)-P(2A)-F(12A)$ $88.6(9)$ $F(7A)-P(2A)-F(12A)$ $173.2(14)$ $F(9A)-P(2A)-F(12A)$ $91.8(7)$ $F(11A)-P(2A)-F(12A)$ $86.3(7)$ $F(10A)-P(2A)-F(12A)$ $86.3(7)$ $F(10A)-P(2A)-F(8A)$ $177.5(10)$ $F(7A)-P(2A)-F(8A)$ $97.0(13)$ $F(9A)-P(2A)-F(8A)$ $85.0(10)$ $F(11A)-P(2A)-F(8A)$ $82.6(8)$ $F(12A)-P(2A)-F(8A)$ $88.9(7)$ $C(41)-O(10)-C(40)$ $113.1(2)$ $C(40)-C(39)-H(39A)$ 109.5 $C(40)-C(39)-H(39B)$ 109.5 $F(39A)-C(39)-H(39C)$ 109.5 $F(39A)-C(39)-H(39C)$ 109.5 $F(39A)-C(39)-H(39C)$ 109.5 $C(39)-C(40)-H(40A)$ 109.8 $C(39)-C(40)-H(40B)$ 109.8 $C(40)-C(41)-H(41B)$ 109.5 $C(42)-C(41)-H(41B)$ 109.5 $C(41)-C(42)-H(42C)$ 109.5 $C(41)-C(42)-H(42B)$ 109.5 $C(41)-C(42)-H(42C)$ 109.5 $F(42A)-C(42)-H(42C)$ 109.5 $F(42A)-C(42)-H(42C)$ 109.5 $F(42A)-C(42)-H(42C)$ 109.5 $F(42A)-C(42)-H(42C)$ 109.5 $F(42A)-C(43)-H(43B)$ 109.5 $F(44)-C(43)-H(43B)$ 109.5	F(10A)-P(2A)-F(11A)	97.8(11)
F(9A)-P(2A)-F(11A) $167.5(12)$ $F(10A)-P(2A)-F(12A)$ $88.6(9)$ $F(7A)-P(2A)-F(12A)$ $173.2(14)$ $F(9A)-P(2A)-F(12A)$ $91.8(7)$ $F(11A)-P(2A)-F(12A)$ $86.3(7)$ $F(10A)-P(2A)-F(12A)$ $86.3(7)$ $F(10A)-P(2A)-F(8A)$ $97.0(13)$ $F(9A)-P(2A)-F(8A)$ $97.0(13)$ $F(9A)-P(2A)-F(8A)$ $85.0(10)$ $F(11A)-P(2A)-F(8A)$ $82.6(8)$ $F(12A)-P(2A)-F(8A)$ $88.9(7)$ $C(41)-O(10)-C(40)$ $113.1(2)$ $C(40)-C(39)-H(39A)$ 109.5 $C(40)-C(39)-H(39B)$ 109.5 $C(40)-C(39)-H(39C)$ 109.5 $F(39A)-C(39)-H(39C)$ 109.5 $F(39A)-C(39)-H(39C)$ 109.5 $C(39)-C(40)-H(40A)$ 109.8 $C(39)-C(40)-H(40B)$ 109.8 $C(39)-C(40)-H(40B)$ 109.8 $C(39)-C(40)-H(40B)$ 109.8 $C(39)-C(40)-H(40B)$ 109.8 $C(39)-C(40)-H(40B)$ 109.8 $C(39)-C(40)-H(40B)$ 109.5 $C(40)-C(41)-H(41B)$ 109.5 $C(42)-C(41)-H(41B)$ 109.5 $C(41)-C(42)-H(42C)$ 109.5 $C(41)-C(42)-H(42C)$ 109.5 $C(41)-C(42)-H(42C)$ 109.5 $C(41)-C(42)-H(42C)$ 109.5 $C(41)-C(42)-H(42C)$ 109.5 $F(42A)-C(42)-H(42C)$ 109.5 $F(42A)-C(42)-H(42C)$ 109.5 $F(42A)-C(42)-H(42C)$ 109.5 $F(42A)-C(43)-H(43B)$ 109.5 $F(43A)-C(43)-H(43B)$ 109.5 $F(43A)-C(43)-H(43C)$ 109.5 <td>F(7A)-P(2A)-F(11A)</td> <td>91.1(11)</td>	F(7A)-P(2A)-F(11A)	91.1(11)
F(10A)-P(2A)-F(12A) $88.6(9)$ $F(7A)-P(2A)-F(12A)$ $173.2(14)$ $F(9A)-P(2A)-F(12A)$ $91.8(7)$ $F(11A)-P(2A)-F(12A)$ $86.3(7)$ $F(10A)-P(2A)-F(12A)$ $86.3(7)$ $F(10A)-P(2A)-F(8A)$ $177.5(10)$ $F(7A)-P(2A)-F(8A)$ $97.0(13)$ $F(9A)-P(2A)-F(8A)$ $85.0(10)$ $F(11A)-P(2A)-F(8A)$ $82.6(8)$ $F(12A)-P(2A)-F(8A)$ $82.6(8)$ $F(12A)-P(2A)-F(8A)$ $88.9(7)$ $C(41)-O(10)-C(40)$ $113.1(2)$ $C(40)-C(39)-H(39B)$ 109.5 $C(40)-C(39)-H(39B)$ 109.5 $C(40)-C(39)-H(39C)$ 109.5 $F(39A)-C(39)-H(39C)$ 109.5 $C(39)-C(40)-H(40A)$ 109.8 $C(39)-C(40)-H(40B)$ 109.8 $C(39)-C(41)-H(41B)$ 109.5 $C(42)-C(41)-H(41B)$ 109.5 $C(41)-C(42)-H(42C)$ 109.5 $C(41)-C(42)-H(42C)$ 109.5 $C(41)-C(42)-H(42C)$ 109.5 $F(42A)-C(42)-H(42C)$ 109.5 $F(42A)-C(42)-H(42C)$ 109.5 $F(42A)-C(43)-H(43B)$ 109.5 $F(43A)-C(43)-H(43C)$ 109.5 $F(43A)-C(43)-H(43C)$ 109.5 $F(43A)-C(43)-H(43C)$ 109.5 $F(43A)-C(43)-H(43C)$ 109.5	F(9A)-P(2A)-F(11A)	167.5(12)
F(7A)-P(2A)-F(12A) $173.2(14)$ $F(9A)-P(2A)-F(12A)$ $91.8(7)$ $F(11A)-P(2A)-F(12A)$ $86.3(7)$ $F(10A)-P(2A)-F(8A)$ $177.5(10)$ $F(7A)-P(2A)-F(8A)$ $97.0(13)$ $F(9A)-P(2A)-F(8A)$ $85.0(10)$ $F(11A)-P(2A)-F(8A)$ $82.6(8)$ $F(12A)-P(2A)-F(8A)$ $82.6(8)$ $F(12A)-P(2A)-F(8A)$ $88.9(7)$ $C(41)-O(10)-C(40)$ $113.1(2)$ $C(40)-C(39)-H(39A)$ 109.5 $C(40)-C(39)-H(39B)$ 109.5 $F(39A)-C(39)-H(39C)$ 109.5 $H(39A)-C(39)-H(39C)$ 109.5 $H(39A)-C(39)-H(39C)$ 109.5 $H(39A)-C(39)-H(39C)$ 109.5 $O(10)-C(40)-H(40A)$ 109.8 $C(39)-C(40)-H(40A)$ 109.8 $C(39)-C(40)-H(40B)$ 109.5 $C(42)-C(41)-H(41B)$ 109.5 $C(42)-C(41)-H(41B)$ 109.5 $C(41)-C(42)-H(42C)$ 109.5 $C(41)-C(42)-H(42C)$ 109.5 $C(44)-C(43)-H(43B)$ 109.5 $C(44)-C(43)-H(43C)$ 109.5 $C(44)-C(43)-H(43C)$ 109.5 $F(43A)-C(43)-H(43C)$ 109.5 $F(43A)-C(43)-H(43C)$ 109.5 $F(43A)-C(43)-H(43C)$ 109.5 $F(43A)-C(43)-H(43C)$ 109.5 <t< td=""><td>F(10A)-P(2A)-F(12A)</td><td>88.6(9)</td></t<>	F(10A)-P(2A)-F(12A)	88.6(9)
F(9A)-P(2A)-F(12A) $91.8(7)$ $F(11A)-P(2A)-F(12A)$ $86.3(7)$ $F(10A)-P(2A)-F(8A)$ $177.5(10)$ $F(7A)-P(2A)-F(8A)$ $97.0(13)$ $F(9A)-P(2A)-F(8A)$ $85.0(10)$ $F(11A)-P(2A)-F(8A)$ $82.6(8)$ $F(12A)-P(2A)-F(8A)$ $82.6(8)$ $F(12A)-P(2A)-F(8A)$ $88.9(7)$ $C(41)-O(10)-C(40)$ $113.1(2)$ $C(40)-C(39)-H(39A)$ 109.5 $C(40)-C(39)-H(39B)$ 109.5 $C(40)-C(39)-H(39B)$ 109.5 $F(139A)-C(39)-H(39C)$ 109.5 $F(139A)-C(39)-H(39C)$ 109.5 $F(39A)-C(39)-H(39C)$ 109.5 $O(10)-C(40)-H(40A)$ 109.8 $C(39)-C(40)-H(40A)$ 109.8 $C(39)-C(40)-H(40B)$ 109.8 $C(42)-C(41)-H(41B)$ 109.5 $C(42)-C(41)-H(41B)$ 109.5 $C(42)-C(41)-H(41B)$ 109.5 $C(41)-C(42)-H(42C)$ 109.5 $C(41)-C(42)-H(42C)$ 109.5 $F(42A)-C(42)-H(42C)$ 109.5 $F(42A)-C(42)-H(42C)$ 109.5 $F(42A)-C(42)-H(42C)$ 109.5 $F(42A)-C(43)-H(43B)$ 109.5 $F(43A)-C(43)-H(43C)$ 109.5 $F(43A)-C(43)-H(43C)$ 109.5 $F(43A)-C(43)-H(43C)$ 109.5 <t< td=""><td>F(7A)-P(2A)-F(12A)</td><td>173.2(14)</td></t<>	F(7A)-P(2A)-F(12A)	173.2(14)
F(11A)-P(2A)-F(12A) $86.3(7)$ $F(10A)-P(2A)-F(8A)$ $177.5(10)$ $F(7A)-P(2A)-F(8A)$ $97.0(13)$ $F(9A)-P(2A)-F(8A)$ $85.0(10)$ $F(11A)-P(2A)-F(8A)$ $82.6(8)$ $F(12A)-P(2A)-F(8A)$ $82.6(8)$ $F(12A)-P(2A)-F(8A)$ $88.9(7)$ $C(41)-O(10)-C(40)$ $113.1(2)$ $C(40)-C(39)-H(39A)$ 109.5 $C(40)-C(39)-H(39B)$ 109.5 $K(39A)-C(39)-H(39C)$ 109.5 $H(39A)-C(39)-H(39C)$ 109.5 $H(39A)-C(39)-H(39C)$ 109.5 $H(39B)-C(39)-H(39C)$ 109.5 $O(10)-C(40)-H(40A)$ 109.8 $C(39)-C(40)-H(40A)$ 109.8 $C(39)-C(40)-H(40B)$ 109.8 $C(40)-C(41)-H(41B)$ 109.5 $C(42)-C(41)-H(41B)$ 109.5 $C(42)-C(41)-H(41B)$ 109.5 $C(41)-C(42)-H(42C)$ 109.5 $H(42A)-C(42)-H(42C)$ 109.5 $H(42A)-C(42)-H(42C)$ 109.5 $H(42A)-C(42)-H(42C)$ 109.5 $H(42A)-C(42)-H(42C)$ 109.5 $H(42A)-C(43)-H(43B)$ 109.5 $H(42A)-C(43)-H(43C)$ 109.5 $H(43A)-C(43)-H(43C)$ 109.5 $H(43A)-C(43)-H(43C)$ 109.5 $H(43A)-C(43)-H(43C)$ 109.5 <td< td=""><td>F(9A)-P(2A)-F(12A)</td><td>91.8(7)</td></td<>	F(9A)-P(2A)-F(12A)	91.8(7)
F(10A)-P(2A)-F(8A) $177.5(10)$ $F(7A)-P(2A)-F(8A)$ $97.0(13)$ $F(9A)-P(2A)-F(8A)$ $85.0(10)$ $F(11A)-P(2A)-F(8A)$ $82.6(8)$ $F(12A)-P(2A)-F(8A)$ $88.9(7)$ $C(41)-O(10)-C(40)$ $113.1(2)$ $C(40)-C(39)-H(39A)$ 109.5 $C(40)-C(39)-H(39B)$ 109.5 $C(40)-C(39)-H(39B)$ 109.5 $H(39A)-C(39)-H(39C)$ 109.5 $H(39A)-C(39)-H(39C)$ 109.5 $H(39A)-C(39)-H(39C)$ 109.5 $H(39B)-C(39)-H(39C)$ 109.5 $O(10)-C(40)-F(39)$ 109.5 $O(10)-C(40)-H(40A)$ 109.8 $C(39)-C(40)-H(40A)$ 109.8 $C(39)-C(40)-H(40B)$ 109.8 $C(39)-C(40)-H(40B)$ 109.8 $O(10)-C(41)-H(41B)$ 109.5 $O(10)-C(42)-H(42C)$ 109.5 $H(42A)-C(42)-H(42C)$ 109.5 $H(42A)-C(42)-H(42C)$ 109.5 $H(42A)-C(42)-H(42C)$ 109.5 $H(42A)-C(43)-H(43B)$ 109.5 $(44)-C(43)-H(43C)$ 109.5 $H(43A)-C(43)-H(43C)$ 109.5 $H(43A)-C(43)-H(43C)$ 109.5 $H(43A)-C(43)-H(43C)$ 109.5 $H(43A)-C(43)-H(43C)$ 109.5 $H(43A)$	F(11A)-P(2A)-F(12A)	86.3(7)
F(7A)-P(2A)-F(8A)97.0(13) $F(9A)-P(2A)-F(8A)$ 85.0(10) $F(11A)-P(2A)-F(8A)$ 82.6(8) $F(12A)-P(2A)-F(8A)$ 88.9(7) $C(41)-O(10)-C(40)$ 113.1(2) $C(40)-C(39)-H(39A)$ 109.5 $C(40)-C(39)-H(39B)$ 109.5 $F(139A)-C(39)-H(39B)$ 109.5 $F(139A)-C(39)-H(39C)$ 109.5 $F(139A)-C(39)-H(39C)$ 109.5 $F(139B)-C(39)-H(39C)$ 109.5 $F(139B)-C(39)-H(39C)$ 109.5 $O(10)-C(40)-F(39)$ 109.5 $O(10)-C(40)-H(40A)$ 109.8 $C(39)-C(40)-H(40B)$ 109.8 $C(39)-C(40)-H(40B)$ 109.8 $C(39)-C(40)-H(40B)$ 108.2 $O(10)-C(41)-H(41B)$ 109.5 $C(42)-C(41)-H(41B)$ 109.5 $O(10)-C(41)-H(41B)$ 109.5 $C(42)-C(41)-H(41B)$ 109.5 $C(41)-C(42)-H(42B)$ 109.5 $F(41A)-C(42)-H(42B)$ 109.5 $F(41A)-C(42)-H(42C)$ 109.5 $F(42A)-C(42)-H(42C)$ 109.5 $F(42A)-C(42)-H(42C)$ 109.5 $F(42A)-C(42)-H(42C)$ 109.5 $F(44)-C(43)-H(43B)$ 109.5 $F(44)-C(43)-H(43B)$ 109.5 $F(43A)-C(43)-H(43C)$ 109.5 $F(43A)-C(43)-H(43C)$ 109.5 $F(43A)-C(43)-H(43C)$ 109.5 $F(43A)-C(43)-H(43C)$ 109.5 $F(43A)-C(43)-H(43C)$ 109.5 $F(43A)-C(43)-H(43C)$ 109.5 $F(43B)-C(43)-H(43C)$ 109.5 $F(43B)-C(43)-H(43C)$ 109.5 $F(43B)-C(43)-H(43C)$ 109.5 $F(43B)-C(43)-H(43C)$	F(10A)-P(2A)-F(8A)	177.5(10)
F(9A)-P(2A)-F(8A) $85.0(10)$ $F(11A)-P(2A)-F(8A)$ $82.6(8)$ $F(12A)-P(2A)-F(8A)$ $88.9(7)$ $C(41)-O(10)-C(40)$ $113.1(2)$ $C(40)-C(39)-H(39A)$ 109.5 $C(40)-C(39)-H(39B)$ 109.5 $H(39A)-C(39)-H(39B)$ 109.5 $H(39A)-C(39)-H(39C)$ 109.5 $H(39A)-C(39)-H(39C)$ 109.5 $H(39B)-C(39)-H(39C)$ 109.5 $H(39B)-C(39)-H(39C)$ 109.5 $O(10)-C(40)-C(39)$ 109.5 $O(10)-C(40)-H(40A)$ 109.8 $C(39)-C(40)-H(40B)$ 109.8 $C(39)-C(40)-H(40B)$ 109.8 $C(39)-C(40)-H(40B)$ 109.8 $O(10)-C(41)-H(41B)$ 109.5 $O(10)-C(41)-H(41B)$ 109.5 $O(10)-C(41)-H(41B)$ 109.5 $O(10)-C(41)-H(41B)$ 109.5 $C(42)-C(41)-H(41B)$ 109.5 $C(41)-C(42)-H(42B)$ 109.5 $H(41A)-C(42)-H(42B)$ 109.5 $H(42A)-C(42)-H(42C)$ 109.5 $H(42A)-C(42)-H(42C)$ 109.5 $H(42A)-C(42)-H(42C)$ 109.5 $H(42A)-C(42)-H(42C)$ 109.5 $H(42A)-C(43)-H(43B)$ 109.5 $H(42A)-C(43)-H(43B)$ 109.5 $H(43A)-C(43)-H(43C)$ 109.5 $H(43A)-C(43)-H(43C)$ 109.5 $H(43A)-C(43)-H(43C)$ 109.5 $H(43A)-C(43)-H(43C)$ 109.5 $H(43A)-C(43)-H(43C)$ 109.5 $H(43A)-C(43)-H(43C)$ 109.5 $H(43B)-C(43)-H(43C)$ 109.5 $H(43B)-C(43)-H(43C)$ 109.5 $H(4$	F(7A)-P(2A)-F(8A)	97.0(13)
F(11A)-P(2A)-F(8A) $82.6(8)$ $F(12A)-P(2A)-F(8A)$ $88.9(7)$ $C(41)-O(10)-C(40)$ $113.1(2)$ $C(40)-C(39)-H(39A)$ 109.5 $C(40)-C(39)-H(39B)$ 109.5 $H(39A)-C(39)-H(39B)$ 109.5 $F(12A)-P(23)-H(39C)$ 109.5 $H(39A)-C(39)-H(39C)$ 109.5 $H(39A)-C(39)-H(39C)$ 109.5 $H(39B)-C(39)-H(39C)$ 109.5 $H(39B)-C(39)-H(39C)$ 109.5 $O(10)-C(40)-C(39)$ 109.5 $O(10)-C(40)-H(40A)$ 109.8 $C(39)-C(40)-H(40B)$ 109.8 $C(39)-C(40)-H(40B)$ 109.8 $C(39)-C(40)-H(40B)$ 109.8 $O(10)-C(41)-H(41B)$ 109.5 $O(10)-C(41)-H(41B)$ 109.5 $O(10)-C(41)-H(41B)$ 109.5 $O(10)-C(41)-H(41B)$ 109.5 $C(42)-C(41)-H(41B)$ 109.5 $C(41)-C(42)-H(42A)$ 109.5 $H(41A)-C(41)-H(41B)$ 109.5 $H(41A)-C(41)-H(41B)$ 109.5 $C(41)-C(42)-H(42C)$ 109.5 $H(42A)-C(42)-H(42C)$ 109.5 $H(42A)-C(42)-H(42C)$ 109.5 $H(42A)-C(42)-H(42C)$ 109.5 $H(42B)-C(42)-H(43B)$ 109.5 $L(44)-C(43)-H(43B)$ 109.5 $L(44)-C(43)-H(43C)$ 109.5 $L(44)-C(43)-H(43C)$ 109.5 $L(43A)-C(43)-H(43C)$ 109.5 $L(43A)-C(43)-H(43C)$ 109.5 $L(43A)-C(43)-H(43C)$ 109.5 $L(43A)-C(43)-H(43C)$ 109.5 $L(43A)-C(43)-H(43C)$ 109.5 $L(43B)-C$	F(9A)-P(2A)-F(8A)	85.0(10)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	F(11A)-P(2A)-F(8A)	82.6(8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	F(12A)-P(2A)-F(8A)	88.9(7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(41)-O(10)-C(40)	113.1(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(40)- $C(39)$ - $H(39A)$	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(40)- $C(39)$ - $H(39B)$	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H(39A)-C(39)-H(39B)	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(40)-C(39)-H(39C)	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H(39A)-C(39)-H(39C)	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H(39B)-C(39)-H(39C)	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(10)-C(40)-C(39)	109.5(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(10)- $C(40)$ - $H(40A)$	109.8
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(39)- $C(40)$ - $H(40A)$	109.8
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(10)-C(40)-H(40B)	109.8
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(39)-C(40)-H(40B)	109.8
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H(40A)-C(40)-H(40B)	108.2
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(10)-C(41)-C(42)	110.8(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(10)- $C(41)$ - $H(41A)$	109 5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(42)- $C(41)$ - $H(41A)$	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(10)-C(41)-H(41B)	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(42)- $C(41)$ - $H(41B)$	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H(41A)-C(41)-H(41B)	108.1
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(41)-C(42)-H(42A)	109 5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(41)- $C(42)$ - $H(42B)$	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H(42A)-C(42)-H(42B)	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(41)-C(42)-H(42C)	109 5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H(42A)-C(42)-H(42C)	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H(42B)-C(42)-H(42C)	109.5
$\begin{array}{c} C(44) - C(43) - H(43B) & 109.5 \\ H(43A) - C(43) - H(43B) & 109.5 \\ C(44) - C(43) - H(43C) & 109.5 \\ H(43A) - C(43) - H(43C) & 109.5 \\ H(43B) - C(43) - H(43C) & 109.5 \\ N(9) - C(44) - C(43) & 177.4(4) \\ \end{array}$	C(44)-C(43)-H(43A)	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(44)- $C(43)$ - $H(43B)$	109.5
$\begin{array}{cccc} C(44)-C(43)-H(43C) & 109.5 \\ H(43A)-C(43)-H(43C) & 109.5 \\ H(43B)-C(43)-H(43C) & 109.5 \\ N(9)-C(44)-C(43) & 177.4(4) \end{array}$	H(43A)-C(43)-H(43B)	109.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(44)-C(43)-H(43C)	109 5
H(43B)-C(43)-H(43C) 109.5 N(9)-C(44)-C(43) 177.4(4)	H(43A)-C(43)-H(43C)	109.5
N(9)-C(44)-C(43) 177.4(4)	H(43B)-C(43)-H(43C)	109.5
	N(9)-C(44)-C(43)	177.4(4)

	Ru-N1	Ru-N2	Ru-N3	Ru-N4	Ru-N5	Ru-N6	N1-Ru-N2	N2-Ru-N3	N4-Ru-N5	N5-Ru-N6	N1-C-C-N2	N2-C-C-N3
[1] ²⁺ - ¹ GS	2.12	1.98	2.12	2.12	2.11	2.12	79.2	79.2	87.6	87.6	-1.4	-1.4
[1] ²⁺ - ³ MLCT	2.12	2.01	2.12	2.12	2.09	2.10	78.0	77.9	88.2	88.2	-1.5	-2.4
[1] ²⁺ - ³ TS	2.31	2.16	2.30	2.15	2.10	2.11	72.7	73.2	87.1	88.2	10.9	-17.9
[1] ²⁺ - ³ MC	2.36	2.23	2.38	2.13	2.11	2.11	71.1	71.2	87.9	87.9	1.9	-14.3
[2] ²⁺ - ¹ GS	2.11	1.98	2.12	2.12	2.11	2.12	79.3	79.3	87.3	87.3	-1.3	-1.2
[2] ²⁺ - ³ MLCT	2.12	2.02	2.12	2.11	2.06	2.11	77.5	77.5	88.6	88.6	-1.8	-1.9
[2] ²⁺ - ³ TS	2.33	2.19	2.33	2.14	2.09	2.11	72.1	72.4	87.3	88.1	9.5	-17.9
[2] ²⁺ - ³ MC	2.37	2.23	2.38	2.12	2.09	2.11	71.0	71.2	87.4	87.7	-0.8	-13.6
[3] ²⁺ - ¹ GS	2.11	1.98	2.11	2.12	2.11	2.12	79.3	79.3	87.6	87.5	-1.3	-1.2
[3] ²⁺ - ³ MLCT	2.11	2.02	2.11	2.12	2.09	2.10	77.9	77.8	88.2	88.3	-1.0	-2.8
[3] ²⁺ - ³ TS	2.35	2.19	2.35	2.14	2.10	2.11	71.3	71.8	87.1	87.6	3.3	-16.8
[3] ²⁺ - ³ MC	2.35	2.23	2.38	2.13	2.11	2.11	70.8	71.1	87.3	87.8	1.1	-14.1
[4] ²⁺ - ¹ GS	2.11	1.98	2.11	2.12	2.11	2.12	79.3	79.4	87.3	87.3	-1.1	-0.9
[4] ²⁺ - ³ MLCT	2.11	2.03	2.11	2.11	2.05	2.11	77.5	77.5	88.6	88.6	-1.7	-1.7
[4] ²⁺ - ³ TS	n. a.	n. a.										
[4] ²⁺ - ³ MC	n. a.	n. a.										
[5] ²⁺ - ¹ GS	2.11	2.01	2.11	2.11	2.01	2.11	78.9	78.9	78.9	78.9	0.0	0.0
[5] ²⁺ - ³ MLCT	2.10	2.05	2.10	2.12	1.98	2.10	77.6	77.6	79.7	79.5	-0.4	0.4
[5] ²⁺ - ³ TS	2.20	2.07	2.15	2.11	2.02	2.18	75.4	76.0	79.5	77.4	-10.6	11.2
[5] ²⁺ - ³ MC	2.36	2.16	2.35	2.14	2.01	2.15	72.6	72.6	79.2	77.8	-10.6	10.6
[6] ²⁺ - ¹ GS	2.10	2.00	2.10	2.11	2.01	2.11	79.0	79.0	78.8	78.8	0.0	0.0
[6] ²⁺ - ³ MLCT	2.10	2.02	2.10	2.10	2.02	2.12	77.8	77.9	79.0	79.9	1.3	-1.7
[6] ²⁺ - ³ TS	2.25	2.10	2.25	2.18	2.02	2.13	74.3	74.5	77.4	79.4	12.2	-12.7
[6] ²⁺ - ³ MC	2.34	2.14	2.34	2.16	2.02	2.14	72.9	73.0	77.7	79.2	10.9	-11.0
[7] ²⁺ - ¹ GS	2.10	1.99	2.10	2.11	2.02	2.11	79.2	79.2	78.4	78.4	0.0	0.0
[7] ²⁺ - ³ MLCT	2.11	2.04	2.10	2.11	1.99	2.12	77.0	77.1	79.4	79.8	0.3	-0.3
[7] ²⁺ - ³ TS	2.29	2.15	2.30	2.15	2.01	2.13	72.9	72.9	77.8	79.2	12.6	-12.8
[7] ²⁺ - ³ MC	2.33	2.17	2.33	2.14	2.01	2.13	72.2	72.3	77.9	79.1	11.2	-11.4

Table S10. Selected bond lengths / Å and angles / ° of DFT (B3LYP/LANL2DZ, IEFPCM in CH₃CN) calculated singlet ground state (¹GS) and triplet excited states (³MLCT, ³MC, ³TS) of $[1]^{2+} - [7]^{2+}$.

	Ru	ligand 1	ligand 2
		tpy	ddpd or second tpy
[1] ²⁺ - ³ MLCT	0.89	1.04	0.07
[1] ²⁺ - ³ TS	1.60	0.38	0.02
$[1]^{2+} - {}^{3}MC$	1.80	0.19	0.01
[2] ²⁺ - ³ MLCT	0.86	1.03	0.11
[2] ²⁺ - ³ TS	1.67	0.30	0.03
[2] ²⁺ - ³ MC	1.81	0.17	0.02
[3] ²⁺ - ³ MLCT	0.89	1.04	0.07
[3] ²⁺ - ³ TS	1.72	0.27	0.01
[3] ²⁺ - ³ MC	1.78	0.21	0.01
[4]²⁺ - ³ MLCT	0.85	1.03	0.12
$[4]^{2+} - {}^{3}TS$	n. a.	n. a.	n. a.
[4] ²⁺ - ³ MC	n. a.	n. a.	n. a.
[5] ²⁺ - ³ MLCT	0.86	0.05	1.09
$[5]^{2+} - {}^{3}TS$	1.31	0.60	0.09
[5] ²⁺ - ³ MC	1.75	0.21	0.04
[6] ²⁺ - ³ MLCT	0.91	1.05	0.04
[6] ²⁺ - ³ TS	1.50	0.44	0.06
[6] ²⁺ - ³ MC	1.73	0.22	0.05
[7] ²⁺ - ³ MLCT	0.85	1.02	0.13
[7] ²⁺ - ³ TS	1.59	0.33	0.08
[7] ²⁺ - ³ MC	1.69	0.24	0.07

Table S11. Selected Mulliken spin densities of DFT (B3LYP/LANL2DZ, IEFPCM in CH₃CN) calculated triplet excited states (³MLCT, ³MC, ³TS) of $[1]^{2+} - [7]^{2+}$.

10.7 Push-Pull Design of Bis(tridentate) Ruthenium(II) Polypyridine Chromophores as Deep Red Light Emitters in Light-Emitting Electrochemical Cells

A. Breivogel, M. Park, D. Lee, S. Klassen, A. Kühnle, C. Lee, K. Char, K. Heinze, *Eur. J. Inorg. Chem.* 2014, 288–295.

DOI: 10.1002/ejic.201301226

Reprinted with permission from John Wiley and Sons, Copyright © 2013.

Eur. J. Inorg. Chem. 2013 · © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2013 · ISSN 1099-0682

SUPPORTING INFORMATION

DOI: 10.1002/ejic.201301226

<u>Title</u>: Push-Pull Design of Bis(tridentate) Ruthenium(II) Polypyridine Chromophores as Deep Red Light Emitters in Light-Emitting Electrochemical Cells

<u>Author(s)</u>: Aaron Breivogel, Myeongjin Park, Donggu Lee, Stefanie Klassen, Angelika Kühnle, Changhee Lee, Kookheon Char, Katja Heinze*

Table of Contents:

- 1) AFM images of scratched PEDOT:PSS/ruthenium complex:PMMA layers (Figure S1)
- 2) Emission spectra of $[1](PF_6)_2$ and $[3](PF_6)_2$ in solution and in LECs (Figures S2 S3)
- 3) Current density-EQE-intensity curves of the LECs (Figures S4 S7)
- 4) Human eye response curve and emission spectra of $[1](PF_6)_2 [3](PF_6)_2$ in LECs (Figure S8)

Figure S1. Representative intermittent contact mode images showing scratched PEDOT:PSS/ruthenium(II) complex:PMMA samples with varying compositions. The horizontal stipes arise from material attaching to and detaching from the cantilever tip. The given thickness values are determined by height histograms taken in areas without stripe artifacts.

normalized emission intensity

Figure S2. Normalized emission spectra of $[1](PF_6)_2$ (black squares: CH₃CN solution at 297 K; red hollow circles: LEC with PMMA, 6 V.

Figure S3. Normalized emission spectra of $[3](PF_6)_2$ (black squares: CH₃CN solution at 297 K; red hollow circles: LEC with PMMA, 5 V; blue stars: LEC without PMMA, 4 V)

Figure S4. Current density (black squares), emission intensity (red hollow circles) and EQE (blue stars) vs. time in the LEC with $[1](PF_6)_2$ with PMMA at an applied voltage of 4 V.

Figure S5. Current density (black squares), emission intensity (red hollow circles) and EQE (blue stars) vs. time in the LEC with $[2](PF_6)_2$ with PMMA at an applied voltage of 6 V.

Figure S6. Current density (black squares), emission intensity (red hollow circles) and EQE (blue stars) vs. time in the LEC with $[3](PF_6)_2$ without PMMA at an applied voltage of 4 V.

Figure S7. Current density (black squares), emission intensity (red hollow circles) and EQE (blue stars) vs. time in the LEC with $[3](PF_6)_2$ with PMMA at an applied voltage of 5 V.

Figure S8. Comparison of the human eye response curve (photopic response curve) with normalized emission spectra of LECs of $[1](PF_6)_2 - [3](PF_6)_2$.

10.8 Anchor-Functionalized Push-Pull-Substituted Bis(tridentate) Ruthenium(II) Polypyridine Chromophores: Photostability and Evaluation as Photosensitizers

A. Breivogel, S. Wooh, J. Dietrich, T. Y. Kim, Y. S. Kang, K. Char, K. Heinze, *Eur. J. Inorg. Chem.* 2014, 2720–2734.

DOI: 10.1002/ejic.2014020919

Reprinted with permission from John Wiley and Sons, Copyright © 2014.

DFT-optimized (B3LYP/LANL2DZ, IEFPCM in CH₃CN) cartesian coordinates of $[1 - 6]^{3+}$ and reduced N719 (doublet), $[1 - 6]^{2+}$ and N719 (singlet), $[1 - 6]^{3+}$ and oxidized N719 (doublet) and results of the TD-DFT (B3LYP/LANL2DZ, IEFPCM in CH₃CN) calculation of $[1 - 6]^{2+}$ (singlet) can be found in the online supporting information.

Eur. J. Inorg. Chem. 2014 · © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2014 · ISSN 1099-0682

SUPPORTING INFORMATION

DOI: 10.1002/ejic.201402091

Title: Anchor-Functionalized Push-Pull-Substituted Bis(tridentate) Ruthenium(II) Polypyridine Chromophores: Photostability and Evaluation as Photosensitizers

Author(s): Aaron Breivogel, Sanghyuk Wooh, Jan Dietrich, Tea Yon Kim, Yong Soo Kang, Kookheon Char, Katja Heinze*

Table of Contents:

- 1) Tabulated ¹H, ¹³C and ¹⁵N NMR chemical shifts in CD_3CN (Tables S1 S3).
- 2) Figures S1 S13
- 3) DFT (B3LYP/LANL2DZ, IEFPCM, CH₃CN) optimized geometries of $- [1]^{2+} - [6]^{2+}$ and N719 (singlet) $- [1]^{3+} - [6]^{3+}$ and oxidized N719 (doublet) $- [1]^{+} - [6]^{+}$ and reduced N719 (doublet)
- 4) Results of TD-DFT calculations of $[1]^{2+} [6]^{2+}$ and N719 (singlet).

14010 011			
	$[1](PF_6)_2$	$[2](PF_6)_2$	[3](PF ₆) ₂
H^2	8.99 (s, 2 H)	9.15 (s, 2 H)	9.12 (s, 2 H)
H^{5}	8.56 (m, 2 H)	8.97 (m, 2 H)	8.94 (m, 2 H)
H^{6}	8.01 (m, 2 H)	-	-
H^7	7.47 (m, 2 H)	7.89 (m, 2 H)	7.89 (m, 2 H)
H^{8}	8.11 (m, 2 H)	8.26 (m, 2 H)	8.30 (m, 2 H)
H^{9}	6.44 (m, 2 H)	6.36 (m, 2 H)	6.29 (m, 2 H)
H^{10}	6.58 (m, 2 H)	6.56 (m, 2 H)	6.52 (m, 2 H)
\mathbf{H}^{11}	7.61 (m, 2 H)	7.61 (m, 2 H)	7.58 (m, 2 H)
H^{12}	7.17 (m, 2 H)	7.18 (m, 2 H)	7.12 (m, 2 H)
H^{15}	7.56 (d, ${}^{3}J_{\rm HH} = 8.2$ Hz, 2 H)	7.58 (d, ${}^{3}J_{\rm HH} = 8.2$ Hz, 2 H)	6.81 (s, 2 H)
H^{16}	8.27 (t, ${}^{3}J_{\rm HH} = 8.2$ Hz, 1 H)	8.29 (t, ${}^{3}J_{\rm HH} = 8.2$ Hz, 1 H)	-
NH_2	-	-	5.75 (br, s, 2 H)
NCH ₃	3.47 (s, 6 H)	3.47 (s, 6 H)	3.36 (s, 6 H)

Table S1. ¹H NMR data (δ / ppm) of [1](PF₆)₂ – [3](PF₆)₂ in CD₃CN, 400 MHz.

Table S2. ¹³C{¹H} NMR data (δ / ppm) of [1](PF₆)₂ – [3](PF₆)₂ in CD₃CN, 101 MHz.

	$[1](PF_6)_2$	$[2](PF_6)_2$	[3](PF ₆) ₂
C^1	137.1	136.6	135.5
C^2	124.1	125.0	124.9
C^3	159.5	159.7	159.5
\mathbf{C}^4	158.7	159.2	159.8
C^5	125.7	124.9	124.7
C^6	139.1	140.1	139.7
C^7	127.9	127.1	127.0
C^8	155.1	155.8	155.7
\mathbf{C}^{9}	149.4	149.2	149.2
C^{10}	121.4	121.6	121.2
C^{11}	140.1	140.4	140.3
C^{12}	116.3	116.6	116.5
C^{13}	159.8	159.6	160.0
C^{14}	157.2	157.1	156.7
C^{15}	113.5	113.7	98.8
C^{16}	141.7	142.1	159.3
CO ^{center}	165.7	165.1	165.3
CO ^{outer}	-	164.7	164.8
NCH ₃	41.8	41.7	41.3

Table S3. ¹⁵N NMR data (δ / ppm) of [1](PF₆)₂ – [3](PF₆)₂ in CD₃CN, 41 MHz.

	$[1](PF_6)_2$	$[2](PF_6)_2$	$[3](PF_6)_2$
\mathbf{N}^{a}	212.1	209.0	210.0
N^b	92.1	not observed	not observed
N^{c}	218.4	216.3	181.6
\mathbf{N}^{d}	238.3	249.5	249.9
N^{e}	293.6	293.9	296.9
NH_2	-	-	72.2

Figure S1. Cyclic voltammogram (a) and square wave voltammograms (b, c) of $[1](PF_6)_2$ in CH₃CN; 0.1 M [*n*-Bu₄](PF₆).

Figure S2. Cyclic voltammogram (a) and square wave voltammogram (b) of [2](PF₆)₂ in CH₃CN; 0.1 M [*n*-Bu₄](PF₆).

Figure S3. Cyclic voltammograms (a) and square wave voltammogram (b) of $[3](PF_6)_2$ in CH₃CN; 0.1 M [*n*-Bu₄](PF₆).

Figure S4. Spin densities of $[1]^+ - [6]^+$ and one-electron reduced N719 (contour value 0.005 a. u.; CH hydrogen atoms omitted).

Figure S5. Relevant DFT calculated frontier orbitals (HOMO-3 to LUMO+3) of $[1]^{2+} - [4]^{2+}$ for transitions with $\lambda > 400$ nm (contour value 0.06 a. u.; CH hydrogen atoms omitted).

Figure S6. Relevant DFT calculated frontier orbitals (HOMO-3 to LUMO+3) of $[5]^{2+}$, $[6]^{2+}$ and N719 for transitions with $\lambda > 400$ nm (contour value 0.06 a. u.; CH hydrogen atoms omitted).

Figure S7. ¹H-NMR spectra in CD₃CN: a) free bpy and the mixture of $[Ru(bpy)_3](PF_6)_2$ and 2.2 equiv $[n-Bu_4N]I$ b) before and c) after irradiation.

Figure S8. ESI^+ mass spectrum of the mixture of $[\text{Ru}(\text{bpy})_3](\text{PF}_6)_2$ and 2.2 equiv $[n-\text{Bu}_4\text{N}]\text{I}$ in CD₃CN after irradiation.

Figure S9. ¹H-NMR spectra in CD₃CN:H₂O (14:1): N719 and 4.5 equiv [*n*-Bu₄N]I a) before and b) after irradiation.

Figure S10. UV/Vis spectra of a) the electrochemical oxidation ($E = 800 \rightarrow 1300 \text{ mV}$) and b) back reduction ($E = 1300 \rightarrow 700 \text{ mV}$) of $[1^{\text{Et}}](\text{PF}_6)_2$ in an OTTLE cell in 10^{-3} M NaOH and 0.1 M [*n*-Bu₄N](PF₆) in CH₃CN:H₂O (98:2, ν %). Black arrows indicate isosbestic points.

Figure S11. UV/Vis spectra of a) the electrochemical oxidation ($E = 800 \rightarrow 1200 \text{ mV}$) and b) back reduction ($E = 1200 \rightarrow 600 \text{ mV}$) of [Ru(bpy)₃](PF₆)₂ in an OTTLE cell in 10⁻³ M NaOH and 0.1 M [*n*-Bu₄N](PF₆) in CH₃CN:H₂O (98:2, ν %). Black arrows indicate isosbestic points.

Figure S12. UV/Vis spectra of a) the electrochemical oxidation ($E = 200 \rightarrow 500 \text{ mV}$) and b) back reduction ($E = 500 \rightarrow 200 \text{ mV}$) of N719 in an OTTLE cell in 10^{-3} M NaOH and 0.1 M [*n*-Bu₄N](PF₆) in CH₃CN:H₂O (98:2, ν %). Black arrows indicate isosbestic points.

Figure S13. IPCE plots of cells with $[1](PF_6)_2 - [6](PF_6)_2$ and N719 and solution absorption spectra of the respective complexes in CH₃CN:'BuOH (1:1).

11 Summary and Outlook

Polypyridine complexes of ruthenium(II) have unique and tunable electrochemical and photophysical properties such as high redox stability, visible light absorption, room temperature emission in fluid solution combined with high thermal and chemical robustness.^[1] They are applied in a plethora of applications, e.g. dye-sensitized solar cells (DSSC),^[2-4] light-emitting devices,^[5-8] photodynamic therapy^[9-11] and as photocatalysts for water splitting,^[34,35] hydrogen production,^[36-40] CO₂ reduction^[38-40] and organic redox reactions.^[39,41-45] One of the most famous ruthenium(II) polypyridine complexes is $[Ru(bpy)_3]^{2+}$ (bpy = 2,2'-bipyridine). Excitation of $[Ru(bpy)_3]^{2+}$ with visible light leads to instantaneous population of the ¹MLCT state followed by quantitative ISC to the ³MLCT state (Figure 29a, MLCT = metal-to-ligand charge transfer, ISC = intersystem crossing).^[1] At room temperature the ³MLCT state is emissive with a long lifetime of $\tau_{RT} \approx 1 \ \mu s$ and a high luminescence quantum yield of $\Phi_{\rm RT} \approx 10\%$ which explains the use of $[{\rm Ru}({\rm bpy})_3]^{2+}$ as photoredox catalyst and as emitter in light-emitting devices.^[47] The properties of $[Ru(bpy)_3]^{2+}$ can be fine tuned via ligand design. However, the intrinsic Δ , Λ chirality of tris(bidentate) $[Ru(bpy)_3]^{2+}$ leads to stereoisomers when the bpy ligands are substituted unsymmetrically which heavily complicates synthetic procedures.^[48–50] In contrast, bis(tridentate) $[Ru(tpy)_2]^{2+}$ ([1]²⁺, Figure 30) is achiral, even in the case of unsymmetrical substitution of the tpy 4'-positions (tpy = 2,2';6',2''-terpyridine).^[47] Furthermore, the stronger chelate effect is favorable in terms of chemical, photo and redox stability.^[52,53,78] Unfortunatelly, [Ru(tpy)₂]²⁺ features poor excited state properties ($\tau_{RT} \approx 0.1 - 0.2$ ns, $\Phi_{RT} \leq 0.0007\%$) due to effective radiationless deactivation of the ³MLCT state via thermally accessible ³MC states (Figure 29b, MC = metal-centered).^[54–56]

Figure 29. Qualitative Jablonski diagrams of a) $[Ru(bpy)_3]^{2+}$ and b) $[Ru(tpy)_2]^{2+}$ (MLCT = metal-toligand charge transfer, ISC = intersystem crossing, MC = metal-centered, bpy = 2,2'-bipyridine, tpy = 2,2';6',2"-terpyridine).

Figure 30. Bis(tridentate) polypyridine complexes of ruthenium(II) and their amide conjugates.

Amino acid ester $[4]^{2+}$ features substituents at the 4'-position of both tpy ligands (Figure 30). The electron-withdrawing COOEt group lowers the energy of the ³MLCT state while the electron-donating NH₂ group shifts the ³MC state to higher energy resulting in improved excited state properties $(\tau_{RT} \approx 34 \text{ ns}, \Phi_{RT} = 0.27\%)$.^[61] $[4]^{2+}$ can be hydrolyzed to the carboxylic acid $[5]^{2+}$ (Figure 30) enabling selective functionalization either at the C- or at the N-terminus. The formal addition of *para*-phenylene spacers to $[4]^{2+}/[5]^{2+}$ results in complexes $[9 - 11]^{2+}$ (Figure 30).^[62] $[9 - 11]^{2+}$ feature enhanced extinction coefficients compared to the respective *para*-phenylene-free complex ($[4]^{2+}/[5]^{2+}$). However, the ring planes of the phenylene ring and the central pyridyl ring of a tpy ligand are twisted which dilutes the effect of donor and acceptor substituents. Hence, ³MLCT lifetimes and phosphorescence quantum yields of $[9 - 11]^{2+}$ are smaller compared to the *para*-phenylene-free analogues $[4]^{2+}$ and $[5]^{2+}$.

The N-Ru-N ligand bite angles of bis(terpyridine) complexes of ruthenium(II) are typically around 79°. Enlargement of the bite angles to 90° creates a stronger ligand field splitting due to the higher overlap between Ru d orbitals and pyridine nitrogen lone pairs. A stronger ligand field increases the ³MC–³MLCT energy difference making ³MC states less accessible.^[56] However, ligands with large bite angles can form stereoisomers (*mer, cis-fac, trans-fac*).^[85]

In this work, complexes $[21]^{2+}$ and $[22]^{2+}$ (Figure 30) have been synthesized and characterized. In these complexes the problem of stereoisomers is overcome by the use of a tpy acceptor ligand in combination with a ddpd donor ligand (ddpd = N_{N} '-dimethyl- N_{N} '-dipyridin-2-ylpyridine-2,6diamine) because the tpy ligand only allows for the *meridional* coordination. The ddpd ligand features N-Ru-N bite angles of 88°. The donor-acceptor substitution in $[21]^{2+}$ and $[22]^{2+}$ leads to small HOMO-LUMO gaps and spatially separated frontier orbitals which is favorable for low-energy absorption and the use as photosensitizers in dye-sensitized solar cells. The high ³MLCT lifetimes and phosphorescence quantum yields of $[21]^{2+}$ ($\tau_{RT} = 722$ ns, $\Phi_{RT} = 0.45\%$) and $[22]^{2+}$ ($\tau_{RT} = 841$ ns, $\Phi_{\rm RT} = 1.1\%$ confirm the effectiveness of the bite angle enlargement strategy.^[57] [23]²⁺ and [24]²⁺ (Figure 30) feature additional NH₂ groups at the 4'-position of the ddpd ligand. The donor-acceptor substitution is even more pronounced inducing smaller HOMO-LUMO gaps compared to the NH₂-free analogues $[21]^{2+}$ and $[22]^{2+}$. However, ³MLCT lifetimes and phosphorescence quantum yields of $[23]^{2+}$ ($\tau_{RT} = 149$ ns, $\Phi_{RT} = 0.042\%$) and $[24]^{2+}$ ($\tau_{RT} = 136$ ns, $\Phi_{RT} = 0.052\%$) are smaller compared to the NH₂-free analogues.^[57] There are two reasons for this: The small HOMO-LUMO gap induces fast radiationless deactivation of the ³MLCT state due to the energy gap law.^[73,87,88] Secondly, the presence of high-energy oscillators (N-H) provides an additional path for radiationless deactivation to the ground state. Deuteration $(NH_2 \rightarrow ND_2)$ removes this effect and enhances the quantum yields by a factor of about 2.^[57] Excited states of $[4]^{2+}$ and $[21 - 24]^{2+}$ were studied experimentally by transient absorption measurements revealing excited state dynamics with a lifetime in the ps regime which might be associated with localization of the electron on the tpy-COOEt ligand, ISC or vibrational relaxation within ^{1/3}MLCT states.^[57] Lifetime and transient absorption experiments were measured in collaboration with the group of Dr.

together with Dr.

³MC, ³MLCT and the connecting transition state ³TS were calculated via DFT methods and nicely explain the trends of experimental ³MLCT lifetimes of $[1]^{2^+}$, $[2]^{2^+}$, $[4]^{2^+}$ and $[21 - 24]^{2^+}$ (DFT = density functional theory).^[57] In the future $[21]^{2^+}$ and $[22]^{2^+}$ will be used as sensitizers for photoredox catalysis.

[4]²⁺, [21]²⁺ and [22]²⁺ have been used and characterized as emitters in light-emitting electrochemical cells with an ITO/PEDOT:PSS/ruthenium(II) complex/Ag device structure in a collaboration with the groups of Prof. Dr. ______, Prof. Dr. ______ and Prof. Dr. ______

together with **and the energy**, **and the energy** and **and and the energy**. Deep red light emission up to a maximum emission wavelength of 755 nm is achieved when an external voltage is applied. The small external quantum efficiencies (EQE) of $\leq 0.03\%$ is rationalized by radiationless deactivation predicted by the energy gap law and by saturation and quenching effects in the emitting layer. The EQE increases by admixture of PMMA to the emitting ruthenium complexes.^[107] Future work will be focused on the steric protection of the ruthenium core by bulky ligands to prevent self-quenching and the effect of counterion exchange.

Compared to $[Ru(bpy)_3]^{2+}$ bis(tridentate) complexes $[4]^{2+}$ and $[21]^{2+}$ feature an enhanced photostability in the presence of H₂O and coordinating I⁻ ions which is favorable for applications in DSSCs.^[78] $[21]^{2+}$, $[22]^{2+}$ and $[24]^{2+}$ can be hydrolyzed to their respective carboxylic acids in order to obtain $[25-27]^{2+}$ (Figure 30). $[5]^{2+}$, derivatives of $[5]^{2+}$ featuring 2,2'-bipyridine anchor substituents (kindly donated by **1** and **1** (25 – 27)²⁺ have been incorporated as sensitizers in dye-sensitized solar cells with an I^-/I_3^- redox electrolyte. DSSC fabrication and characterization were conducted in collaborations with the groups of Prof. Dr. **1** and Prof. Dr.

together with Dr. **Construction** and **Construction**. The COOH and 2,2'-bipyridine groups serve as anchor to the nanoporous TiO₂ electrode. The incident photon-to-current efficiency (IPCE) follows the solution absorption spectrum of the complexes. Power conversion efficiencies of the cells remain low ($\eta_{max} = 0.26\%$). This is ascribed to the twofold positive charge of the complexes which increases the I₃⁻ concentration near the TiO₂ electrode favoring electron recombination. This was shown by dark current measurements and electron recombination lifetime measurements. A twofold negatively charged ruthenium(II) complex (N719) was used as reference and reaches a power conversion efficiency of $\eta = 5.03\%$ under the same conditions.^[78] Future perspectives include the reduction of the overall complex charge by negatively charged, cyclometalated, tridentate ligands. Triarylamine substituted ligands will be employed in order to further redshift the absorption spectrum and to enhance extinction coefficients. In addition, other redox electrolytes such as polypyridine complexes of Co^{2+/3+} will be used in order to suppress electron recombination.

Dinuclear complexes $[29]^{4+}$ and $[31]^{4+}$ (Figure 30), kindly donated by Dr. (AK **Complexes**), have been synthesized from mononuclear complexes by standard solution peptide chemistry methods. The mixed valence behavior of the one-electron oxidized forms $[29]^{5+}$ and $[31]^{5+}$

has been studied. Electrochemical and UV/Vis/NIR spectroscopic measurements reveal that [29]⁵⁺ and $[31]^{5+}$ are valence localized showing no metal-metal interaction (Robin-Day-Class $I^{[94]}$). In both complexes, $[29]^{5+}$ and $[31]^{5+}$, the ruthenium center with the donor-substituted tpy ligand (^{*t*}Bu- or NH₂substituents) is oxidized to ruthenium(III) while the other ruthenium(II) center remains unaffected.^[26] This redox asymmetry vanishes when the substituents are adjusted and results will be reported in due (AK).^[160] course by Peptidic arrays such as $[38]^{2+}$, $[39]^{2+}$ and $[40]^{2+}$ (Figure 30) including amino acid $[5]^{2+}$ are also available via solid-phase peptide synthesis (SPPS). The bis(tpy) ruthenium(II) core of $[5]^{2+}$ is connected to coumarin chromophores via amide bridges consisting of a different number (n = 0 - 2) of glycine units.^[18,20] For short amide bridges with n = 0 ([**38**]²⁺) and n = 1 ([**39**]²⁺; both kindly donated , AK () excitation of the coumarin chromophore leads to efficient by Dr. energy transfer from the coumarin to the bis(tpy) ruthenium chromophore. This is evident from the phosphorescence of the ruthenium chromophore and the quenching of the coumarin fluorescence.^[18] For longer bridges $(n = 2; [40]^{2+}; \text{ prepared in this work})$ energy transfer is hampered which is evident from the intense fluorescence of the coumarin chromophore while no emission from the ruthenium chromophore is detected when the coumarin is excited.^[20] Future applications deal with more sophisticated energy transfer systems featuring multichromophore systems for dye-sensitized solar cells and light-to-chemical energy conversion systems with 0 - 1 amino acids between the energy donor and the acceptor.

Amino acid $[5]^{2+}$ has been used as chromophore in light-induced charge separation in a donorchromophore-acceptor nanocomposite in a collaboration with the groups of Prof. Dr.

together with Dr. and Dr. and . A TPA-containing block-copolymer acts as electron donor and ZnO nanorods as electron acceptor (TPA = triphenylamine). In this work $[5]^{2+}$ is functionalized by SPPS and connected to the TPA-containing block-copolymer (provided by Prof. Dr. together with Dr.) to obtain $[44]^{(2m)+}$ (Figure 30). The COOH groups serve as anchors to the ZnO nanorods. In $[44]^{(2m)+}$ @ZnO the phosphorescence of the ruthenium(II) chromophore is completely quenched. Irradiation into the absorption band of the ruthenium(II) chromophore leads to electron injection into the ZnO nanorods. The electron holes are transferred to the TPA units of the blockcopolymer. The positive charge of the polymer is detected by Kelvin probe force microscopy measured by the group of Dr. [100] In the future sophisticated nanoscale charge separation systems will be used in solid state dye-sensitized solar cells. The ruthenium(II) complex $[5]^{2+}$ can be oxidized in acidic media by Ce^{IV} leading to the ruthenium(III) complex $[5]^{3+}$. $[5]^{3+}$ features a LMCT band around 730 nm. EPR spectra and DFT calculations reveal a ruthenium-centered oxidation with smaller contributions from the NH₂ nitrogen atom. After oxidation of $[5]^{2+}$ to $[5]^{3+}$ in acidic media, the ruthenium(III) complex undergoes slow spontaneous back reduction to $[5]^{2+}$ without addition of a reducing agent which is shown by mass spectrometry, UV/Vis and NMR spectroscopy. The rate of back reduction is enhanced in the presence of light. However, the responsible reducing agent is yet unidentified. The oxidation of H₂O to O₂ was ruled out by oxygen measurements using different methods. It is assumed that upon degradation a small fraction of $[5]^{3+}$ undergoes irreversible side reactions which provide enough electrons for the reduction of the majority ($\approx 91 \pm 3\%$) of $[5]^{3+}$ to $[5]^{2+}$. DFT calculations indicate that chelate decoordination and protonation of an outer pyridine ring of the tpy ligand in $[5]^{3+}$ in concert with the attack of water to the ruthenium atom might be responsible for irreversible side reactions such as ligand loss and oxidative ligand decomposition e.g. to CO₂. Further investigations are necessary to clarify the mechanism of the back reduction.^[74]

12 List of Publications

A. Breivogel, K. Heinze, **2014**, to be submitted. Thermal and Photo Reactivity of a Donor-Acceptor-Substituted Bis(terpyridine) Ruthenium(III) Complex in Acidic Solutions.

A. Breivogel, C. Kreitner, K. Heinze, *Eur. J. Inorg. Chem.* **2014**, accepted. Redox and Photochemistry of Bis(terpyridine)ruthenium(II) Amino Acids and their Amide Conjugates – from Understanding to Applications.

A. Breivogel, S. Wooh, J. Dietrich, T. Y. Kim. Y. S. Kang, K. Char, K. Heinze, *Eur. J. Inorg. Chem.*2014, 2720–2734. Anchor-Functionalized Push-Pull-Substituted Bis(tridentate) Ruthenium(II)
Polypyridine Chromophores: Photostability and Evaluation as Photosensitizers. DOI: 10.1002/ejic.201402091.

A. Breivogel, M. Park, D. Lee, S. Klassen, A. Kühnle, C. Lee, K. Char, K. Heinze, *Eur. J. Inorg. Chem.* **2014**, 288–295. Push-Pull Design of Bis(tridentate) Ruthenium(II) Polypyridine Chromophores as Deep Red Light Emitters in Light-Emitting Electrochemical Cells. DOI: 10.1002/ejic.201301226.

A. Breivogel, M. Meister, C. Förster, F. Laquai, K. Heinze, *Chem. Eur. J.* **2013**, *19*, 13745–13760. Excited State Tuning of Bis(tridentate) Ruthenium(II) Polypyridine Chromophores by Push-Pull Effects and Bite Angle Optimization: A Comprehensive Experimental and Theoretical Study. DOI: 10.1002/chem.201302231.

L. zur Borg, A. L. Domanski, A. Breivogel, M. Bürger, R. Berger, K. Heinze, R. Zentel, *J. Mater. Chem. C* 2013, *1*, 1223–1230. Light-induced Charge Separation in a Donor-Chromophore-Acceptor Nanocomposite Poly[TPA-Ru(tpy)₂]@ZnO. DOI: 10.1039/c2tc00535b.

A. Breivogel, K. Hempel, K. Heinze, *Inorg. Chim. Acta* **2011**, *374*, 152–162. Dinuclear Bis(terpyridine)ruthenium(II) Complexes by Amide Coupling of Ruthenium Amino Acids: Synthesis and Properties. DOI: 10.1016/j.ica.2011.03.046.

A. Breivogel, C. Förster, K. Heinze, *Inorg. Chem.* **2010**, *49*, 7052–7056. A Heteroleptic Bis(tridentate)ruthenium(II) Polypyridine Complex with Improved Photophysical Properties and Integrated Functionalizability. DOI: 10.1021/ic1007236.

K. Heinze, K. Hempel, A. Breivogel, *Z. Anorg. Allg. Chem.* **2009**, *635*, 2541–2549. Synthesis and Characterization of Extended Bis(terpyridine)ruthenium Amino Acids. DOI: 10.1002/zaac.200900303.

13 Oral and Poster Presentations

03.2014	Poster Novel Iron(II) Complexes – A Way to 3d Metal Complex Chromophores at the Koordinationschemiker-Treffen in Kaiserslautern
08.2013	Oral presentation Ruthenium Complexes for Applications in Solar Cells and Light-Emitting Devices at Laytec in Berlin
03.2013	Oral presentation <i>Ruthenium Complexes for Applications in Solar Cells and Light-Emitting Devices</i> at the Seoul National University in Seoul (South Korea)
02.2013	Poster New Ruthenium Chromophores for Solar Cells and Light-Emitting Devices at the IRTG conference in Seoul (South Korea)
09.2012	Oral presentation <i>Molecular Ruthenium Chromophores</i> at the Seoul National University in Seoul (South Korea)
02.2012	Poster Light-Induced Charge Separation in a ZnO-Bis(terpyridine)ruthenium- TPA Polymer Composite at the Koordinationschemiker-Treffen in Dortmund
11.2011	Poster <i>Light-Induced Charge Separation in a ZnO-Bis(terpyridine)ruthenium-</i> <i>TPA Polymer Composite</i> at the pacific polymer conference in Jeju (South Korea)
07.2011	Oral presentation Novel Ruthenium Chromophores with Optimized Properties in the Max-Planck-Institut für Polymerforschung in Mainz
06.2011	Oral presentation Novel Ruthenium Chromophores with Optimized Properties at the IRTG conference in Mainz
01.2011	Poster New Ruthenium Chromophores with Optimized Properties at the IRTG conference in Seoul (South Korea)
02.2010	Poster Neue Rutheniumchromophore mit maßgeschneiderten Eigenschaften at the Koordinationschemiker-Treffen in Mainz
02.2009	Oral presentation Solid-Phase Synthesis of Peptide Libraries Combining α - Amino Acids with Inorganic and Organic Chromophores at the Koordinationschemiker-Treffen in Erlangen

14 Acknowledgment/Dank

Ich danke

...besonders Prof. Dr. für die Promotionsstelle in ihrem Arbeitskreis, die spannenden Themen und für die exzellente wissenschaftliche Betreuung.

...Prof. Dr. **Constant and Second Sec**

meinen K	ooperationspartnern Pr	of. Dr.	of. Dr.	, Prof. Dr.
	, Prof. Dr.	, Prof. Dr.	, Dr.	,
Dr.	, Dr.	, Dr.	, Dr.	, Dr.
	, Dr.	,	,	,
			und	

für die erfolgreiche und interessante Zusammenarbeit.

...dem gesamten Arbeitskreis **für** die gegenseitige Unterstützung, die Diskussionen und die gute Stimmung im Labor ("immer cool keepen").

...meinen Arbeitskollegen (Stichwort: Käsebrot) und (Ey, was guckst du?) für die Freundschaft und die gemeinsamen Freizeitaktivitäten.

...dem "IRTG 1404 - Self Organized Materials for Optoelectronics" von der Deutschen Forschungsgemeinschaft für die Finanzierung und die einzigartigen Auslandserfahrungen.

...Dr. für das Lösen der Kristallstrukturen.

...Dr. für die großartige Unterstützung bei den NMR-Experimenten.

...Dr. und und für das Messen der Massenspektren.

...dem Mikroanalytischen Labor des Institutes für Organische Chemie.

...meiner Oma für die große Fürsorge.

...meiner Schwester für den geschwisterlichen Zusammenhalt.

...meiner Freundin für all die schönen Momente.

15 Literature

- [1] S. Campagna, F. Puntoriero, F. Nastasi, G. Bergamini, V. Balzani, *Top. Curr. Chem.* 2007, 280, 117–214.
- [2] B. O'Regan, M. Grätzel, *Nature* **1991**, *353*, 737–740.
- [3] J.-F. Yin, M. Velayudham, D. Bhattacharya, H.-C. Lin, K.-L. Lu, *Coord. Chem. Rev.* 2012, 256, 3008–3035.
- [4] P. G. Bomben, K. C. D. Robson, B. D. Koivisto, C. P. Berlinguette, *Coord. Chem. Rev.* 2012, 256, 1438–1450.
- [5] R. D. Costa, E. Ortí, H. J. Bolink, F. Monti, G. Accorsi, N. Armaroli, *Angew. Chem.* **2012**, *124*, 8300-8334; *Angew. Chem. Int. Ed.* **2012**, *51*, 8178–8211.
- [6] P. Dreyse, B. Loeb, M. Soto-Arriaza, D. Tordera, E. Ortí, J. J. Serrano-Pérez, H. J. Bolink, *Dalton Trans.* **2013**, *42*, 15502–15513.
- [7] H. J. Bolink, E. Coronado, R. D. Costa, P. Gaviña, E. Ortí, S. Tatay, *Inorg. Chem.* 2009, 48, 3907–3909.
- [8] H. J. Bolink, L. Cappelli, E. Coronado, P. Gaviña, Inorg. Chem. 2005, 44, 5966–5968.
- [9] L. Marcélis, J. Ghesquière, K. Garnir, A. K.-D. Mesmaeker, C. Moucheron, *Coord. Chem. Rev.* 2012, 256, 1569–1582.
- [10] M. R. Gill, J. A. Thomas, Chem. Soc. Rev. 2012, 41, 3179–3192.
- [11] H. Komatsu, K. Yoshihara, H. Yamada, Y. Kimura, A. Son, S.-i. Nishimoto, K. Tanabe, *Chem. Eur. J.* **2013**, *19*, 1971–1977.
- [12] D. Maity, C. Bhaumik, D. Mondal, S. Baitalik, *Dalton Trans.* 2014, 43, 1829–1845.
- [13] Z.-B. Zheng, Z.-M. Duan, Y.-Y. Ma, K.-Z. Wang, *Inorg. Chem.* 2013, *52*, 2306–2316.
- [14] M. Li, Q. Liang, M. Zheng, C. Fang, S. Peng, M. Zhao, Dalton Trans. 2013, 42, 13509– 13515.
- [15] S. A. Poteet, F. M. MacDonnell, *Dalton Trans.* **2013**, *42*, 13305–13307.
- [16] H. Chen, X. Li, Y. Wu, W. Gao, R. Bai, *Dalton Trans.* 2012, 41, 13292–13297.
- [17] R. Zhang, Z. Ye, G. Wang, W. Zhang, J. Yuan, Chem. Eur. J. 2010, 16, 6884–6891.
- [18] K. Heinze, K. Hempel, Chem. Eur. J. 2009, 15, 1346–1358.
- [19] R. Horvath, J. Lombard, J.-C. Leprêtre, M.-N. Collomb, A. Deronizer, J. Chauvin, K. C. Gordon, *Dalton Trans.* 2013, 42, 16527–16537.
- [20] A. Breivogel, C. Kreitner, K. Heinze, Eur. J. Inorg. Chem. 2014, accepted.
- [21] S. Roeser, M. Z. Ertem, C. Cady, R. Lomoth, J. Benet-Buchholz, L. Hammarström, B. Sarkar, W. Kaim, C. J. Cramer, A. Llobet, *Inorg. Chem.* 2012, *51*, 320–327.
- [22] L.-Z. Sui, W.-W. Yang, C.-J. Yao, H.-Y. Xie, Y.-W. Zhong, *Inorg. Chem.* 2012, 51, 1590– 1598.
- [23] O. S. Wenger, Chem. Soc. Rev. 2012, 41, 3772–3779.
- [24] H.-J. Nie, X. Chen, C.-J. Yao, Y.-W. Zhong, G. R. Hutchison, J. Yao, Chem. Eur. J. 2012, 18, 14497–14509.
- [25] C.-J. Yao, Y.-W. Zhong, J. Yao, *Inorg. Chem.* **2013**, *52*, 4040–4045.
- [26] A. Breivogel, K. Hempel, K. Heinze, Inorg. Chim. Acta 2011, 374, 152–162.
- [27] P. Ceroni, Chem. Eur. J. 2011, 17, 9560–9564.

- [28] T. N. Singh-Rachford, F. N. Castellano, Coord. Chem. Rev. 2010, 254, 2560–2573.
- [29] W. Wu, S. Ji, W. Wu, J. Shao, H. Guo, T. D. James, J. Zhao, Chem. Eur. J. 2012, 18, 4953–4964.
- [30] P. Hanczyc, B. Norden, M. Samoc, *Dalten Trans.* 2012, 41, 3123–3125.
- [31] P. Ceroni, G. Bergamini, V. Balzani, Angew. Chem. 2009, 121, 8668–8670; Angew. Chem. Int. Ed. 2009, 48, 8516–8518.
- [32] J. Lee, H. Chang, S. Kim, G. S. Bang, H. Lee, *Angew. Chem.* **2009**, *121*, 8653–8656; *Angew. Chem. Int. Ed.* **2009**, *48*, 8501–8504.
- [33] K. Terada, K. Kanaizuka, V. M. Iyer, M. Sannodo, S. Saito, K. Kobayashi, M.-a. Haga, *Angew. Chem.* **2011**, *123*, 6411–6415; *Angew. Chem. Int. Ed.* **2011**, *50*, 6287–6291.
- [34] R. H. Crabtree *Energy Production and Storage: Inorganic Chemical Strategies for a Warming World*; Wiley-VCH: Weinheim, Germany, **2010**.
- [35] X. Liu, F. Wang, Coord. Chem. Rev. 2012, 256, 1115–1136.
- [36] W. T. Eckenhoff, R. Eisenberg, *Dalton Trans.* 2012, 41, 13004–13021.
- [37] T. Stoll, M. Gennari, I. Serrano, J. Fortage, J. Chauvin, F. Odobel, M. Rebarz, O. Poizat, M. Sliwa, A. Deronizer, M.-N. Collomb, *Chem. Eur. J.* **2013**, *19*, 782–792.
- [38] M. Schulz, M. Karnahl, M. Schwalbe, J. G. Vos, Coord. Chem. Rev. 2012, 256, 1682–1705.
- [39] A. Inagaki, M. Akita, Coord. Chem. Rev. 2010, 254, 1220–1239.
- [40] Z. Chen, P. Kang, M.-T. Zhang, T. J. Meyer, Chem. Commun. 2014, 50, 335–337.
- [41] S. Ohzu, T. Ishizuka, Y. Hirai, S. Fukuzumi, T. Kojima, Chem. Eur. J. 2013, 19, 1563–1567.
- [42] H. Nitadori, T. Takahashi, A. Inagaki, M. Akita, *Inorg. Chem.* 2012, 51, 51–62.
- [43] P. Guillo, O. Hamelin, P. Batat, G. Jonusauskas, N. D. McClenaghan, S. Ménage, *Inorg. Chem.* 2012, *51*, 2222–2230.
- [44] F. Li, M. Yu, Y. Jiang, F. Huang, Y. Li, B. Zhang, L. Sun, Chem. Commun. 2011, 47, 8949– 8951.
- [45] D. Chao, W.-F. Fu, *Dalton Trans.* **2014**, *43*, 306–310.
- [46] C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322–5363.
- [47] A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, A. von Zelewsky, *Coord. Chem. Rev.* **1988**, *84*, 85–277.
- [48] A. Reynal, E. Palomares, *Eur. J. Inorg. Chem.* **2011**, 4509–4526.
- [49] C. Fu, M. Wenzel, E. Treutlein, K. Harms, E. Meggers, *Inorg. Chem.* 2012, *51*, 10004–10011.
- [50] E. Meggers, Chem. Eur. J. 2010, 16, 752–758.
- [51] M. Maestri, N. Armaroli, V. Balzani, E. C. Constable, A. M. W. Cargill Thompson, *Inorg. Chem.* **1995**, *34*, 2759–2767.
- [52] R. Hogg, R. G. Wilkins, J. Chem. Soc. 1962, 341–350.
- [53] R. H. Holyer, C. D. Hubbard, S. F. A. Kettle, R. G. Wilkins, Inorg. Chem. 1966, 5, 622–625.
- [54] J.-P. Sauvage, J.-P. Collin, J.-C. Chambron, S. Guillerez, C. Coudret, V. Balzani, F. Barigelletti, L. D. Cola, L. Flamigni, *Chem. Rev.* **1994**, *94*, 993–1019.
- [55] Y. Liu, R. Hammitt, D. A. Lutterman, R. P. Thummel, C. Turro, *Inorg. Chem.* 2007, 46, 6011–6021.
- [56] L. Hammarström, O. Johansson, Coord. Chem. Rev. 2010, 254, 2546–2559.

- [57] A. Breivogel, M. Meister, C. Förster, F. Laquai, K. Heinze, Chem. Eur. J. 2013, 19, 13745– 13760.
- [58] K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi, S. Tobita, *Phys. Chem. Chem. Phys.* **2009**, *11*, 9850–9860.
- [59] B. D. Koivisto, K. C. D. Robson, C. P. Berlinguette, *Inorg. Chem.* 2009, 48, 9644–9652.
- [60] V. Duprez, M. Biancardo, F. C. Krebs, Sol. Energy Mater. Sol. Cells 2007, 91, 230–237.
- [61] K. Heinze, K. Hempel, M. Beckmann, Eur. J. Inorg. Chem. 2006, 2040–2050.
- [62] K. Heinze, K. Hempel, A. Breivogel, Z. Anorg. Allg. Chem. 2009, 635, 2541–2549.
- [63] K. Heinze, K. Hempel, S. Tschierlei, M. Schmitt, J. Popp, S. Rau, *Eur. J. Inorg. Chem.* 2009, 3119–3126.
- [64] Y.-Q. Fang, N. J. Taylor, G. S. Hanan, F. Loiseau, R. Passalacqua, S. Campagna, H. Nierengarten, A. V. Dorsselaer, *J. Am. Chem. Soc.* **2002**, *124*, 7912–7913.
- [65] Y.-Q. Fang, N. J. Taylor, F. Laverdière, G. S. Hanan, F. Loiseau, F. Nastasi, S. Campagna, H. Nierengarten, E. Leize-Wagner, A. V. Dorsselaer, *Inorg. Chem.* **2007**, *46*, 2854–2863.
- [66] A. Harriman, M. Hissler, A. Khatyr, R. Ziessel, Chem. Commun. 1999, 8, 735–736.
- [67] M. Hissler, A. Harriman, A. Khatyr, R. Ziessel, *Chem. Eur. J.* **1999**, *5*, 3366–3381.
- [68] A. C. Benniston, A. Harriman, D. J. Lawrie, A. Mayeux, *Phys. Chem. Chem. Phys.* 2004, 6, 51–57.
- [69] D. G. Brown, N. Sanguantrakun, B. Schulze, U. S. Schubert, C. P. Berlinguette, *J. Am. Chem. Soc.* **2012**, *134*, 12354–12357.
- [70] M. Abrahamsson, M. Jäger, T. Österman, L. Eriksson, P. Persson, H.-C. Becker, O. Johansson, L. Hammarström, *J. Am. Chem. Soc.* **2006**, *128*, 12616–12617.
- [71] M. Abrahamsson, M. Jäger, R. J. Kumar, T. Österman, P. Persson, H.-C. Becker, O. Johansson, L. Hammarström, *J. Am. Chem. Soc.* **2008**, *130*, 15533–15542.
- [72] F. Schramm, V. Meded, H. Fliegl, K. Fink, O. Fuhr, Z. Qu, W. Klopper, S. Finn, T. E. Keyes, M. Ruben, *Inorg. Chem.* 2009, 48, 5677–5684.
- [73] J. V. Caspar, T. J. Meyer, J. Am. Chem. Soc. 1983, 105, 5583–5590.
- [74] A. Breivogel, K. Heinze, **2014**, to be submitted.
- [75] M. D. Kärkäs, T. Åkermark, H. Chen, J. Sun, B. Åkermark, Angew. Chem. 2013, 125, 4283–4287; Angew. Chem. Int. Ed. 2013, 52, 4189–4193.
- [76] N. G. Connelly, W. E. Geiger, Chem. Rev. 1996, 96, 877–910.
- [77] J. Dietrich, U. Thorenz, C. Förster, K. Heinze, Inorg. Chem. 2013, 52, 1248–1264.
- [78] A. Breivogel, S. Wooh, J. Dietrich, T. Y. Kim, Y. S. Kang, K. Char, K. Heinze, *Eur. J. Inorg. Chem.* **2014**, 2720–2734.
- [79] S. Ji, W. Wu, W. Wu, H. Guo, J. Zhao, Angew. Chem. 2011, 123, 1664–1667; Angew. Chem. Int. Ed. 2011, 50, 1626–1629.
- [80] J. Wang, G. S. Hanan, F. Loiseau, S. Campagna, Chem. Commun. 2004, 18, 2068–2069.
- [81] Y. Chi, P.-T. Chou, Chem. Soc. Rev. 2010, 39, 638–655.
- [82] V. Friese, S. Nag, J. Wang, M.-P. Santoni, A. Rodrigue-Witchel, G. S. Hanan, F. Schaper, *Eur. J. Inorg. Chem.* 2011, 39–44.
- [83] W. Ghattas, H. Müller-Bunz, M. Albrecht, Organometallics 2010, 29, 6782–6789.
- [84] G. A. Parada, L. A. Fredin, M.-P. Santoni, M. Jäger, R. Lomoth, L. Hammarström, O. Johansson, P. Persson, S. Ott, *Inorg. Chem.* 2013, 52, 5128–5137.

- [85] M. Jäger, R. J. Kumar, H. Görls, J. Bergquist, O. Johansson, *Inorg. Chem.* 2009, 48, 3228– 3238.
- [86] A. Breivogel, C. Förster, K. Heinze, *Inorg. Chem.* 2010, 49, 7052–7056.
- [87] T. J. Meyer, Pure Appl. Chem. 1986, 58, 1193–1206.
- [88] J. V. Caspar, T. J. Meyer, J. Phys. Chem. 1983, 87, 952–957.
- [89] R. J. Watts. J. Chem. Educ. 1983, 60, 834–842.
- [90] B. Durham, J. V. Caspar, J. K. Nagle, T. J. Meyer, J. Am. Chem. Soc. 1982, 104, 4803–4810.
- [91] Z. J. Fuller, W. D. Bare, K. A. Kneas, W.-Y. Xu, J. N. Demas, B. A. DeGraff, Anal. Chem. 2003, 75, 2670–2677.
- [92] W. M. Wallace, P. E. Hoggard, *Inorg. Chem.* 1979, *18*, 2934–2935.
- [93] T. E. Keyes, E. Gicquel, L. Guerin, R. J. Forster, V. Hultgren, A. M. Bond, A. G. Wedd, *Inorg. Chem.* 2003, 42, 7897–7905.
- [94] M. B. Robin, P. Day, Adv. Inorg. Chem. Radiochem. 1968, 10, 247–422.
- [95] E. Bayer, Angew. Chem. 1991, 103, 117–133; Angew. Chem. Int. Ed. Engl. 1991, 30, 113–129.
- [96] M. Grøtli, C. H. Gotfredsen, J. Rademann, J. Buchardt, A. J. Clark, J. Ø. Duus, M. Meldal, J. Comb. Chem. 2000, 2, 108–119.
- [97] *Fmoc Solid Phase Peptide Synthesis* (Eds.: W. C. Chan, P. D. White), Oxford University Press, Oxford **2000**.
- [98] A. Barbieri, B. Ventura, R. Ziessel, Coord. Chem. Rev. 2012, 256, 1732–1741.
- [99] A. Barbieri, B. Ventura, F. Barigelletti, A. D. Nicola, M. Quesada, R. Ziessel, *Inorg. Chem.* **2004**, *43*, 7359–7368.
- [100] L. zur Borg, A. L. Domanski, A. Breivogel, M. Bürger, R. Berger, K. Heinze, R. Zentel, J. Mater. Chem. C 2013, 1, 1223–1230.
- [101] K. C. D. Robson, B. D. Koivisto, A. Yella, B. Sporinova, M. K. Nazeeruddin, T. Baumgartner, M. Grätzel, C. P. Berlinguette, *Inorg. Chem.* 2011, 50, 5494–5508.
- [102] C.-C. Chou, K.-L. Wu, Y. Chi, W.-P. Hu, S. J. Yu, G.-H. Lee, C.-L. Lin, P.-T. Chou, Angew. Chem. 2011, 123, 2102–2106; Angew. Chem. Int. Ed. 2011, 50, 2054–2058.
- [103] C.-C. Chou, F.-C. Hu, H.-H. Yeh, H.-P. Wu, Y. Chi, J. N. Clifford, E. Palomares, S.-H. Liu, P.-T. Chou, G.-H. Lee, Angew. Chem. 2014, 126, 182–187; Angew. Chem. Int. Ed. 2014, 53, 178–183.
- [104] S. Caramori, J. Husson, M. Beley, C. A. Bignozzi, R. Argazzi, P. C. Gros, Chem. Eur. J. 2010, 16, 2611–2618.
- [105] J. Dietrich, A. Wünsce von Leupoldt, M. Grabolle, U. Resch-Genger, K. Heinze, *Eur. J. Inorg. Chem.* **2013**, 3009–3019.
- [106] W. Y. Ng. X. Gong, W. K. Chan, Chem. Mater. 1999, 11, 1165–1170.
- [107] A. Breivogel, M. Park, D. Lee, S. Klassen, A. Kühnle, C. Lee, K. Char, K. Heinze, Eur. J. Inorg. Chem. 2014, 288–295.
- [108] A. Abbotto, N. Manfredi, *Dalton Trans.* 2011 40, 12421–12438.
- [109] O. K. Varghese, C. A. Grimes, Sol. Energy Mater. Sol. Cells 2008, 92, 374–384.
- [110] M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphrey-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, J. Am. Chem. Soc. 2001, 123, 1613–1624.
- [111] M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C.-H. Fischer, M. Grätzel, *Inorg. Chem.* **1999**, *38*, 6298–6305.

- [112] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Grätzel, J. Am. Chem. Soc. 2005, 127, 16835–16847.
- [113] S. Ghosh, G. K. Chaitanya, K. Bhanuprakash, M. K. Nazeeruddin, M. Grätzel, P. Y. Reddy, *Inorg. Chem.* 2006, 45, 7600–7611.
- [114] Y. Cao, Y. Bai, Q. Yu, Y. Cheng, S. Liu, D. Shi, F. Gao, P. Wang, J. Phys. Chem. C 2009, 113, 6290-6297.
- [115] T. P. Brewster, W. Ding, N. D. Schley, N. Hazari, V. S. Batista, R. H. Crabtree, *Inorg. Chem.* 2011, 50, 11938–11946.
- S. Betanzos-Lara, L. Salassa, A. Habtemariam, O. Novakova, A. M. Pizarro, G. J. Clarkson, B. Liskova, V. Brabec, P. J. Sadler, *Organometallics* 2012, *31*, 3466–3479.
- [117] S. Kämper, A. Paretzki, J. Fiedler, S. Záliš, W. Kaim, Inorg. Chem. 2012, 51, 2097–2104.
- [118] G. Xue, Y. Guo, T. Yu, J. Guan, X. Yu, J. Zhang, J. Liu, Z. Zou, Int. J. Electrochem. Sci. 2012, 7, 1496–1511.
- [119] A. Bahreman, B. Limburg, M. A. Siegler, E. Bouwman, S. Bonnet, *Inorg. Chem.* 2013, 52, 9456–9469.
- [120] P. T. Nguyen, B. X. T. Lam, A. R. Andersen, P. E. Hansen, T. Lund, Eur. J. Inorg. Chem. 2011, 2533–2539.
- [121] C. Dragonetti, A. Valore, A. Colombo, D. Roberto, V. Trifiletti, N. Manfredi, M. M. Salamone, R. Ruffo, A. Abbotto, J. Organomet. Chem. 2012, 714, 88–93.
- [122] M. M. R. Choudhuri, R. J. Crutchley, Inorg. Chem. 2013, 52, 14404–14410.
- [123] T. Bessho, E. Yoneda, J.-H. Yum, M. Guglielmi, I. Tavernelli, H. Imai, U. Rothlisberger, M. K. Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. 2009, 131, 5930–5934.
- [124] C.-H. Siu, C.-L. Ho, J. He, T. Chen, X. Cui, J. Zhao, W.-Y. Wong, J. Organomet. Chem. 2013, 748, 75–83.
- [125] B. D. Koivisto, K. C. D. Robson, C. P. Berlinguette, *Inorg. Chem.* 2009, 48, 9644–9652.
- [126] K. C. D. Robson, B. D. Koivisto, A. Yella, B. Sporinova, M. K. Nazeeruddin, T. Baumgartner, M. Grätzel, C. P. Berlinguette, *Inorg. Chem.* 2011, 50, 5495–5508.
- [127] K.-L. Wu, H.-C. Hsu, K. Chen, Y. Chi, M.-W. Chung, W.-H. Liu, P.-T. Chou, *Chem. Commun.* **2010**, *46*, 5124–5126.
- [128] C. E. Welby, C. R. Rice, P. I. P. Elliott, Angew. Chem. 2013, 125, 11026–11029; Angew. Chem. Int. Ed. 2013, 52, 10826–10829.
- [129] K. Garg, J. T. Engle, C. J. Ziegler, J. J. Rack, Chem. Eur. J. 2013, 19, 11686–11695.
- [130] C.-W. Hsu, S.-T. Ho, K.-L. Wu, Y. Chi, S.-H. Liu, P.-T. Chou, *Energy Environ. Sci.* **2012**, *5*, 7549–7554.
- B. Schulze, D. Escudero, C. Friebe, R. Siebert, H. Görls, S. Sinn, M. Thomas, S. Mai, J. Popp, B. Dietzek, L. González, U. S. Schubert, *Chem. Eur. J.* 2012, *18*, 4010–4025.
- [132] A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, M. Grätzel, *Science* 2011, 334, 629–634.
- [133] P. L. Burn, P. Meredith, NPG Asia Materials 2014, 6, e79, DOI:10.1038/am.2013.74.
- [134] H. J. Snaith, J. Phys. Chem. Lett. 2013, 4, 3623–3630.
- [135] N.-G. Park, J. Phys. Chem. Lett. 2013, 4, 2423–2429.
- [136] M. Liu, M. B. Johnston, H. J. Snaith, *Nature* **2013**, *501*, 395–398.
- [137] Q. Pei, G. Yu, C. Zhang, Y. Yang, A. J. Heeger, *Science* **1995**, *269*, 1086–1088.
- [138] Q. Pei, Y. Yang, G. Yu, C. Zhang, A. J. Heeger, J. Am. Chem. Soc. 1996, 118, 3922–3929.

- [139] H. Xiang, J. Cheng, X. Ma, X. Zhou, J. J. Chruma, Chem. Soc. Rev. 2013, 42, 6128–6185.
- [140] R. D. Costa, E. Ortí, H. J. Bolink, Pure Appl. Chem. 2011, 83, 2115–2128.
- [141] J. Slinker, D. Bernards, P. L. Houston, H. D. Abruña, S. Bernhard, G. G. Malliaras, Chem. Commun. 2003, 19, 2392–2399.
- [142] E. Holder, B. M. W. Langeveld, U. S. Schubert, Adv. Mater. 2005, 17, 1109–1121.
- [143] J. D. Slinker, J. Rivnay, J. S. Moskowitz, J. B. Parker, S. Bernhard, H. D. Abruña, G. G. Malliaras, J. Mater. Chem. 2007, 17, 2976–2988.
- [144] International Commission on Illumination (CIE), 1931.
- [145] http://upload.wikimedia.org/wikipedia/commons/6/60/CIE1931xy CIERGB.svg, 04.03.2014.
- [146] P. Toivanen, J. Hovila, P. Kärhä, E. Ikonen, *Metrologia* **2000**, *37*, 527–530.
- [147] P. Toivanen, P. Kärhä, F. Manoochehri, E. Ikonen, *Metrologia* **2000**, *37*, 131–140.
- [148] A. P. Monkman, ISRN Materials Science 2013, DOI:10.1155/2013670130.
- [149] J. Wang, A. Chepelianskii, F. Gao, N. C. Greenham, *Nat. Commun.* 2012, DOI:10.1038/ncomms2194.
- [150] A. Köhler, H. Bässler, Mater. Sci. Eng. 2009, R 66, 71–109.
- [151] H. Yersin, *Highly Efficient OLEDs with Phosphorescent Materials*; Wiley-VCH: Weinheim, Germany, **2008**.
- [152] J.-K. Lee, D. S. Yoo, E. S. Handy, M. F. Rubner, Appl. Phys. Lett. 1996, 69, 1686–1688.
- [153] C.-Y. Liu, A. J. Bard, Appl. Phys. Lett. 2005, 87, 061110.
- [154] J. D. Slinker, J.-S. Kim, S. Flores-Torres, J. H. Delcamp, H. D. Abruña, R. H. Friend, G. G. Malliaras, J. Mater. Chem. 2007, 17, 76–81.
- [155] L. J. Soltzberg, J. D. Slinker, S. Flores-Torres, D. A. Bernards, G. G. Malliaras, H. D. Abruña, J.-S. Kim, R. H. Friend, M. D. Kaplan, V. Goldberg, J. Am. Chem. Soc. 2006, 128, 7761– 7764.
- [156] G. Kalyuzhny, M. Buda, J. McNeill, P. Barbara, A. J. Bard, J. Am. Chem. Soc. 2003, 125, 6272–6283.
- [157] H. Yersin, A. F. Rausch, R. Czerwieniec, T. Hofbeck, T. Fischer, Coord. Chem. Rev. 2011, 255, 2622–2652.
- [158] S. Bernhard, J. A. Barron, P. L. Houston, H. D. Abruña, J. L. Ruglovksy, X. Gao, G. G. Malliaras, J. Am. Chem. Soc. 2002, 124, 13624–13628.
- [159] T. Sajoto, P. I. Djurovich, A. B. Tamayo, J. Oxgaard, W. A. Goddard, M. E. Thompson, J. Am. Chem. Soc. 2009, 131, 9813–9822.
- [160] C. Kreitner, K. Heinze, to be submitted.

Lebenslauf

Persönliche Daten

Name:	Aaron Breivogel
Geburtsdatum:	18.03.1984
Geburtsort:	Mainz
Nationalität:	Deutsch

Promotionsarbeit

seit 08.2009	Promotionsarbeit in Chemie an der Johannes Gutenberg-Universität Mainz in
	der Arbeitsgruppe von Prof. Dr.
	Ruthenium-based Light Harvesting Complexes
01.2011 - 12.2013	DFG-Stipendium im Rahmen des IRTG
08.2012 - 03.2013	Forschungsaufenthalt an der Seoul National University in Seoul (Südkorea) in
	der Arbeitsgruppe von Prof. Dr.

Studium

04.2004 - 07.2009	Studium der Chemie an der Johannes Gutenberg-Universität Mainz mit den
	Schwerpunkten Physikalische, Organische, Anorganische und Analytische
	Chemie
10.2008 - 07.2009	Diplomarbeit in der Arbeitsgruppe von Prof. Dr.
	Ruthenium-basierte Lichtsammelkomplexe
10.2007 - 02.2008	Forschungsaufenthalt an der Universidad de Valencia in Valencia (Spanien)
	in der Arbeitsgruppe von Prof. Dr.

Zivildienst und Schulbildung

07.2003 - 04.2004	Zivildienst in der Rheinhessen-Fachklinik in Alzey
08.1994 - 03.2003	Allgemeine Hochschulreife am Elisabeth-Langgässer-Gymnasium in Alzey