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Abstract

A study of hadron production by photons opens unique ways to address a number of funda-
mental problems in strong interaction physics as well as fundamental questions in Quantum
Field Theory. In particular, an understanding of two-photon processes is of crucial importance
for constraining the hadronic uncertainties in precision measurements and in searches for new
physics. The process of �

⇤
�

⇤ fusion (by quasi-real photons � or virtual photons �

⇤) into leptons
and hadrons has been observed and studied in detail at nearly all high-energy colliders. From
the theoretical point of view two-photon processes are very complicated. One of approaches
which may be efficiently used to study non-perturbative features of two-photon production is
based on a dispersion theory. Using general properties of relativistic quantum field theory we
relate in this work the forward light-by-light scattering to energy weighted integrals of the �

⇤
�

fusion cross sections. The first type of new relations derived in this work have the form of exact
super-convergence sum rules. The second type involves the effective constants of the low-energy
photon-photon interaction and allow to define them in terms of two-photon production cross
sections.

We subsequently test and verify these sum rules exactly at tree and one-loop level in scalar
and spinor QED. Furthermore, we test the criterium of the tree-level unitarity imposed by the
sum rules on the example of the massive spin-1 QED. Next, we apply the sum rules for the
forward light-by-light scattering process within the context of the �

4 quantum field theory.
Within this theory, we present a stringent causality criterion and apply it to a particular
non-perturbative resummation of graphs. Applied to the �

⇤
� production of mesons, the super-

convergence sum rules lead to intricate relations between the �� decay widths and the �

⇤
�

transition form factors for (pseudo-) scalar, axial-vector and tensor mesons. We discuss the
phenomenological implications of these results for mesons in both the light-quark sector and
the charm-quark sector.

In the second part of this thesis we develop the formalism to provide an improved estimate
for the hadronic light-by-light (HLbL) correction to the muon’s anomalous magnetic moment
a

µ

, by considering single meson contributions beyond the leading pseudo-scalar mesons. This
is motivated by the present 3� deviation between the measurement of a

µ

and its estimate
in the Standard Model. Furthermore, a forthcoming new experiment at Fermilab aims to
improve the experimental precision by a factor of 4 which also requires a similar theoretical
improvement. We incorporate available experimental input as well as constraints from light-
by-light scattering sum rules to estimate the effects of axial-vector, scalar, and tensor mesons.
We give numerical evaluations for the HLbL contribution of these states to a

µ

. The presented
formalism allows to further improve on these estimates, once new data for such meson states
will become available. In the last part of this work, we present a new dispersion formalism
developed for the HLbL contribution to a

µ

and test the formalism for the case of scalar field
theory. The new framework opens a unique possibility for a consistent incorporation of data
from e

+

e

� colliders for single- as well as multi-meson contributions. Furthermore, it allows to
systematically control the HLbL uncertainty in the a

µ

which is a crucial step in searches of
new physics using this precision quantity.
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Zusammenfassung

Die Studie der Hadronproduktion in Photon induzierte Prozesse erlaubt es um eine Reihe funda-
mentaler Fragestellungen in der starken Wechselwirkung sowie allgemeine Fragen in der Quan-
tenfeldtheorie zu untersuchen. Insbesondere sind die Photon-Photon induzierte Prozesse von
wesentlicher Bedeutung um hadronische Korrekturen in Präzisionsmessungen und in der Suche
nach neuer Physik jenseits des Standardmodells der Teilchenphysik zu bestimmen. Der Prozess
der �

⇤
�

⇤ Fusion durch quasi-reelle (�) oder virtuelle (�⇤) Photonen in Leptonen und Hadronen
wurde an fast allen Hochenergiebeschleunigern vermessen und untersucht. Eine theoretische
Beschreibung der zwei-Photon Prozesse ist im allgemeinen kompliziert. Ein Zugang der benutzt
werden kann um solche Prozesse im nicht-perturbativen Bereich der starken Wechselwirkung zu
beschreiben basiert auf die Dispersionstheorie. Ausgehend von allgemeinen Eigenschaften der
relativistischen Quantenfeldtheorie wird in dieser Arbeit die Licht-Licht Streuung in vorwärts
Richtung verknüpft mit Integrale der �

⇤
� Fusionswirkungsquerschnitte. Es werden vorerst

eine Reihe von superkonvergenz Summenregeln hergeleitet, sowie Summenregeln welche die
Niederenergiekonstanten der �� Wechselwirkung verknüpfen mit �� Wirkunsgquerschnitten.

Die hergeleiteten Summenregeln werden in der Arbeit getestet für Baumgraphen sowie Ein-
schleifengraphen in der skalaren und spinor Quantenelektrodynamik (QED), sowie am Beispiel
der massiven Spin-1 QED. Im weiteren werden die Summenregeln für die vorwärts Licht-Licht
Streuung angewandt im Rahmen der �

4 Quantenfeldtheorie. Innerhalb dieser Theorie leiten
wir ein Kausalitätskriterium her und wenden es auf eine nicht-perturbative Resummation von
Graphen innerhalb dieser Theorie an. Wir zeigen dass als Folge solcher Resummation nicht-
perturbative, gebundene Zustände dynamisch erzeugt werden. Angewandt auf die �

⇤
� Pro-

duktion von Mesonen, wird gezeigt dass die Summenregeln zu Beziehungen zwischen �� Zer-
fallsbreiten und �

⇤
� Formfaktoren für pseudo-skalare, axiale, sowie tensor Mesonen führen.

Die phänomenologische Relevanz dieser Resultate wird sowohl im leichten wie auch im Charm
Quark Sektor diskutiert.

Im zweiten Teil der Arbeit wird der Formalismus entwickelt für eine verbesserte Abschätzung
der hadronischen Licht-Licht Korrektur (HLbL) zum anomalen magnetischen Moment des
Myons, a

µ

. Wir betrachten dabei den Beitrag von Mesonen, über diesen der führenden pseudo-
skalare Mesonen hinaus. Dies ist motiviert durch die derzeitige 3� Diskrepanz zwischen der
direkten Messung von a

µ

und seinen theoretischen Wert im Standardmodell. Eine neue Mes-
sung, die geplant ist am Fermilab um den experimentellen Wert von a

µ

um ein Faktor 4 zu
verbessern, motiviert auch eine verbesserte theoretische Beschreibung von a

µ

, insbesondere
der HLbL Korrektur. In den Abschätzungen in dieser Arbeit verwenden wir die verfügbaren
Daten, sowie die Einschränkungen der hergeleiteten Summenregeln, um den Beitrag der axi-
alen, skalaren, und tensor Mesonen zu a

µ

zu bestimmen. Der hier hergeleitete Formalismus wird
es auch erlauben um die Abschätzungen zu verbessern wenn neue Daten für solche Mesonen
verfügbar werden. Im letzen Teil der Arbeit wird ein neuer Dispersionformalismus entwickelt
für die HLbL Korrektur zu a

µ

, und wird getestet am Beispiel der skalaren Feldtheorie. Dieser
neue Formalismus öffnet die Möglichkeit um Daten von e

+

e

� Beschleunigern konsistent zu
benutzen in der Abschätzung der HLbL Korrektur zu a

µ

, sowie um die systematische Unsicher-
heiten in a

µ

besser zu kontrollieren, was wesentlich ist in der Suche nach neuer Physik in dieser
Präzisionsgrösse.
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Chapter 1

Introduction

With discovery of the electron in the end of the nineteenth century several new phenomeno-
logical disciplines, including physics of elementary particles as well as physics of atoms and
nuclei were born. Early theoretical studies in these fields gave rise to the establishment of
quantum mechanics and general relativity which allowed to successfully explain a vast range
of microscopic phenomena within atomic and nuclear physics and laid the foundation of the
theory of elementary particles. In the beginning of the twentieth century the known content of
the microscopic world was very limited and the prevalent view was that the existing picture of
the microscopic physics is complete. In 1930, Max Born, after learning of the Dirac equation,
said, "Physics as we know it will be over in six months."

The discovery of new particles in cosmic rays marked the beginning of a new era in particle
physics. This revelation unveiled the real complexity of the microscopic world and stimulated
the development of particle accelerators. The progress on accelerator technology provided in-
tense and controlled beams of particles with known energy which opened a wide spectrum of
possibilities for systematic study of the microscopic physics and led to a plethora of fundamen-
tal discoveries and theoretical developments. The quark substructure of hadrons and the gauge
nature of fundamental interactions were revealed and with the development of quantum field
theory (QFT) in the 70’s, the subject was put on a sound quantitative basis. The accumulated
experimental information was embodied in the theoretical framework in the first complete phe-
nomenological model of particles and fundamental interactions, the Standard Model (SM). It
gave predictions and explanations of many fundamental effects which were successively con-
firmed in experiments, for a review, see [1] and references therein.

The continuous improvement of the theoretical and experimental tools deepened our under-
standing of the structure of matter and the laws it obeys at the microscopic level. We reached
the scales where we can test very fine predictions of theory and tune its parameters to an un-
precedented accuracy. This stimulates further improvement of the experimental techniques and
construction of more and more advanced and sophisticated machines, accessing unprecedented
scales. More than twenty years of work of over 10,000 scientists and engineers from over 100
countries, as well as hundreds of universities and laboratories, have finally been crowned with
the creation of "one of the great engineering milestones of mankind" [2]: the Large Hadron
Collider (LHC), a fascinating triumph of the forefront synergy between technology and science
of nowadays. Being the highest-energy particle collider ever made, it allows us to get insight
into the structure of matter to the depths which were formerly hard to conceive. Already after
the first few years of operation, the machine justified the efforts put in its construction. It
made possible an experimental discovery [3, 4] of the Higgs boson [5, 6, 7] and confirmation
of the mechanisms of mass generation, a crucial constituent of the Standard Model. To make
this discovery possible a huge amount of information at all-time high 7 � 8 TeV center-of-mass
energies equivalent to an integrated luminosity of about 12 fb�1 had to be collected and an-
alyzed, which was unrealizable with previous facilities. To compare, the same luminosity was
collected by its predecessor – Tevatron – during 26 years of operation. The high statistics
reached by LHC is indispensable, as the processes with a direct involvement of the Higgs boson
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Chapter 1 Introduction

are extremely rare compared to other background processes which makes it extremely difficult
to detect. Remarkably, the first signs of the Higgs boson were observed in the two-photon decay
process (Fig. 1.1). This occurrence may be attributed to the fact that though being electro-
magnetically suppressed compare to other channels, this process can be clearly separated from
a large background originating from the strongly interacting particles. Being free from strong
interactions, the two-photon channel is therefore of a crucial importance in present searches for
new heavy particles, whose main interaction with the visible matter is through electromagnetic
interaction (e.g. Dirac’s monopoles, heavy leptons etc.). In addition, the energy and momen-
tum of photons can be measured very precisely, giving an accurate reconstruction of the mass
of the decaying particle. For these reasons photons perfectly match the role of a clean probe
of strongly interacting systems and and hence provide an important tool for studying hadronic
effects.

Figure 1.1: Feynman diagrams showing the cleanest channels associated with the low-mass,
⇠ 125 GeV , Higgs candidate observed by ATLAS and CMS at the LHC. The
dominant production mechanism at this mass involves two gluons from each proton
fusing to a top-quark loop, which couples strongly to the Higgs field to produce a
Higgs boson. It subsequently decays into 2� ray photons by virtual interaction with
a W boson loop or top-quark loop. Experimental analysis of this channel reached
a significance of 5� [3].

An early interest in the two-photon processes had risen after the discovery of the positron by
Anderson in 1932 and experiments on fast particle interaction with matter [8]. There appeared
to be a necessity to find out the process in which positrons are generated. Studying e

+

e

�

pair production in the collision of fast particles, Landau and Lifshitz [9] ascertained that,
although being suppressed by four orders of the electromagnetic constant ↵ = 1/137, the two-
photon channel is dominant for the experiments with colliding e

+

e

� beams. With a subsequent
development of e

+

e

� colliders a study of this process gained a tremendous importance. The
present interest in the two-photon production is due, first of all, to the study of the reaction
�� ! h (hadrons). The electromagnetic interaction provides a clean probe and the two-
photon state allows to produce hadrons with nearly all quantum numbers (with C = +1,
see Fig. 1.2), in contrast to the well studied single-photon scattering or production, which
only accesses the vector states. A study of hadron production by photons opens unique ways
towards the solutions of a number of fundamental problems in strong interaction physics and
also fundamental questions in Quantum Electrodynamics (QED).

As we have already mentioned, another essential advantage of this process is the possibility of
studying the reaction dependence on not only energy, but also on the "masses" of both colliding
particles (photons). When producing exclusive final states such as in the �⇤

�

⇤ ! meson process,
one accesses meson transition form factors (FFs), which are some of the simplest observables
where the approach to the asymptotic limit of Quantum Chromodynamics (QCD) is studied
along with the quark content of mesons described by distribution amplitudes (DAs). The non-
perturbative dynamics of QCD is also playing a profound role in these FFs at low momentum

6
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Fig. 3.6. The spectrum of invariant �� masses obtained with the Crystal Ball
detector [65]. The three rather pronounced spikes seen are the �� ! pseudoscalar
(PS) ! �� excitations: PS =⇡0, �, �0

relator is not available. In this case one has to resort to the low energy ef-
fective descriptions of QCD like chiral perturbation theory (CHPT) extended
to include vector–mesons. This Resonance Lagrangian Approach (RLA) is
realizing vector–meson dominance model (VMD) ideas in accord with the
low energy structure of QCD [66]. Other e�ective theories are the extended
Nambu-Jona-Lasinio (ENJL) model [67] (see also [70]) or the very similar
hidden local symmetry (HLS) model [71, 72]; approaches more or less ac-
cepted as a framework for the evaluation of the hadronic LbL e�ects. The
amazing fact is that the interactions involved in the hadronic LbL scat-
tering process are the parity conserving QED and QCD interactions while
the process is dominated by the parity odd pseudoscalar meson–exchanges.
This means that the e�ective ⇡

0
�� interaction vertex exhibits the par-

ity violating �5 coupling, which of course in �� ! ⇡

0 ! �� must ap-
pear twice (an even number of times). The process indeed is associated
with the parity odd Wess-Zumino-Witten (WZW) e�ective interaction term

L(4) = � ↵Nc

12⇡F0
"µ���F

µ�
A

�
@

�
⇡

0 + · · · (3.54)

which reproduces the Adler-Bell-Jackiw anomaly and which plays a key role
in estimating the leading hadronic LbL contribution. F0 denotes the pion de-
cay constant F� in the chiral limit of massless light quarks (F� ' 92.4 MeV).
The constant WZW form factor yields a divergent result, applying a cut–o�
� one obtains the leading term

Figure 1.2: Fig. 3.6. The spectrum of invariant �� masses obtained with the Crystal Ball detec-
tor [10, 11]. The three rather pronounced spikes seen are the �� ! P excitations.
P = ⇡

0

, ⌘, ⌘

0

transfers. For example, the transition FFs of the ⌘ and ⌘

0 mesons depend on the interplay of
various symmetry breaking mechanisms in QCD, i.e.: U

A

(1) symmetry breaking [12], dynamical
and explicit chiral symmetry breaking [13].

In recent years, new experiments at high luminosity e

+

e

� colliders such as BABAR and Belle
have vastly expanded the field of �� physics. The result of a measurement of the �⇤

� ! ⇡

0

FF at large momentum transfers by the BABAR Collaboration [14] came as a surprise, as this
form factor seems to rise much faster than the perturbative QCD predictions for momentum
transfers up to 40 GeV2. A new �� physics program is being realized now by the BES-III
Collaboration [15]. It will yield high-statistics results at intermediate momentum transfers for
a multitude of �⇤

�

⇤ ! hadron observables (see Chapter 2).
Despite the recent development in the two-photon phenomenology, our understanding of the

hadronic production is still very limited. On the experimental side, only pseudo-scalar meson
production was studied in detail in processes involving two quasi-real photons, or one real and
one virtual photon (see [16] and references therein). Besides that, a very few measurements
involving the axial-vector mesons were carried out. Finally, no measurements involving two
virtual photons have so far been performed. On the theoretical side, a quantitative description
of two-photon processes is presently available only in the asymptotic regimes of the process,
where perturbative expansions hold. Some well studied approaches include expansions in the
coupling constant (pQCD), low momenta (Chiral Perturbation Theory), heavy quark mass
(HQFT) or the number of colors N

c

. In the non-perturbative regime, very few model-dependent
frameworks exist. A big disadvantage of model-dependent approaches is that, they do not allow
for a systematic control of uncertainties unlike in perturbative expansions. Of course, lattice
QCD provides ab initio calculation of hadron structure formulated within an Euclidian space-
time framework. However, a general description of light-by-light processes on the lattice still
entails a huge challenge at present. One of the very few model independent frameworks in
the non-perturbative regime is provided by dispersion theory, which is based on fundamental
principles of analyticity and unitarity.

In this work we use the dispersion theory to relate the two phenomena of the elastic scattering
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Chapter 1 Introduction

of photons on photons (or light-by-light scattering (LbL) )and �⇤
� fusion, and express the low-

energy LbL scattering as integrals over the �⇤
�-fusion cross sections, where one photon is real

while the second may have arbitrary (space-like) virtuality. These integrals, or ‘sum rules’,
lead to interesting constraints on �� decay widths or �⇤

� transition FFs of qq̄ states, and more
general meson states. The first sum rule of this type involves the helicity-difference cross-section
for real photons and reads as:

1
Z

s0

ds

s

h

�

2

(s) � �

0

(s)
i

= 0, (1.1)

where s is the total energy squared, s

0

is the first inelastic threshold for the �� fusion process,
and the subscripts 0 or 2 for the �� cross sections indicate the total helicity of the state of
two circularly polarized photons. This sum rule was originally1 inferred [18, 19] from the
the Gerasimov–Drell–Hearn (GDH) sum rule [20, 21], using the fact that the photon has no
anomalous moments.

Parameterizing the lowest energy LbL interaction by means of an effective Lagrangian (which
contains operators of dimension eight at lowest order) as

L(8) = c

1

(F
µ⌫

F

µ⌫)2 + c

2

(F
µ⌫

F̃

µ⌫)2, (1.2)

with F and F̃ being the electromagnetic field strength and its dual, one finds sum rules for the
LbL low-energy constants (LECs) [22]:

c

1

=
1

8⇡

1
Z

s0

ds

�k(s)

s

2

, c

2

=
1

8⇡

1
Z

s0

ds

�?(s)

s

2

, (1.3)

where the subscripts || or ? indicate if the colliding photons are polarized parallel or perpen-
dicular to each other. While the GDH-type sum rule provides a stringent constraint on the
polarized �� fusion, the sum rules for the LECs allow one in principle to fully determine the
low-energy LbL interaction through measuring the linearly polarized �� fusion.

In Chapter 2 we will extend the GDH type sum rule to the case where one of the colliding
photons is virtual, with an arbitrary (space-like) virtuality. Furthermore, we will find additional
sum rules, involving the longitudinally polarized �⇤

� cross sections. All the derived sum rules
will be studied and verified in field theory and applied to the real process of �⇤

�

⇤ fusion to
mesons in Chapter 3. Using the available data, we will quantitatively study the new sum rules
for the case of production of light quark mesons as well as mesons containing charm quarks,
both by real photons and by virtual photons.

There is another reason to investigate two-photon processes motivated by precision mea-
surements. The idea of the latter approach is, instead of producing heavy particle directly in
collisions, to measure a particular SM observable with very high precision. This allows to mea-
sure contributions from virtual processes with heavy particles by observing subtle deviations
in the measured parameters. Historically, precision experiments provided the first direct tests
of QFT and subsequently took their place among the key experimental approaches in particle
physics. The simplest observables to study in the precision experiments are the static electro-
magnetic properties of charged particles. A big advantage of the electromagnetic phenomena

1An earlier version of this sum rule had been proposed in Ref. [17], where a contribution from ⇡0 production
appears on the right-hand side (rhs) of Eq. (2.58), while integration on the lhs starts at the 2⇡ production
threshold. That version would be fully compatible with Eq. (2.58), if it were not for the sign of the ⇡0

contribution obtained in [17].
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is that they may be successfully described by perturbation theory in the experimentally acces-
sible region, and thus can be defined to needed accuracy. However, higher-order corrections to
electroweak processes become contaminated by hadronic contributions as well. The hadronic
corrections originate from the vacuum polarization effects which couple to QED diagrams via
photons. In particular, leading two- (propagator of photon) and- four-photon (or light-by-light
scattering) correlation functions play a key role in this context.

The most familiar and best studied electromagnetic property of particles is the magnetic
dipole moment2. The magnetic moment is a quantity which is responsible for the interaction
of a charged particle with the magnetic field. This interaction is defined by the Hamiltonian

HI = �µ · B. (1.4)

where µ denotes the magnetic moment operator and B states for the magnetic field strength.
The magnetic moment of a particle is related to its spin similarly how the orbiting charge
exhibits a magnetic dipole moment proportional to its orbital angular momentum:

µ = g Q µ

0

�

2
. (1.5)

In the above equation � is the Pauli matrix originating from the spin operator S = ~�/2, Q

is the electric charge in units of e and µ

0

= e~/2mc is the Bohr magneton and g denotes the
so-called gyromagnetic ratio (g-factor). The latter defines the absolute value of the magnetic
moment and exhibits important information about the dynamics of leptons. For a free lepton
the relativistic theory predicts g = 2, as was shown by Dirac in 1928 [25, 26]. However
due to quantum fluctuations via virtual photon electron interactions the actual observable
value deviates from the Dirac prediction. This deviation is defined as the anomalous magnetic
moment

a

l

=
g � 2

2
. (1.6)

In a local renormalizable relativistic quantum field theory g�2 vanishes at tree level and thus
is not a renormalizable parameter. This implies that g�2 can be unambiguously prdicted in the
theory and confronted with experiments. At the same time the anomalous magnetic moment
is an observable which can be relatively easily observed experimentally from the motion of the
lepton in an external magnetic field. These aspects of g � 2 open a vast field for testing the
SM predictions and searches for new physics. For the first time the precision determination
was made for the anomalous moment of the electron, a

e

. The electron is a stable particle and
exists in atoms which opens a possibility to study it by atomic spectroscopy. The original
precision measurement for a

e

was performed by a study of the hyperfine-structure of atomic
spectra in a constant magnetic field in 1948 [27]. This result had a tremendous significance
verifying the prediction of the leading quantum correction ↵/2⇡ (see Fig. 1.3) in the framework
of newly-developed perturbative QFT made by Schwinger [28]. A continuous development of
the experimental techniques over last 50 years resulted in a fascinating 106 fold improvement
of the precision compared to the first experiments. At the present moment a

e

is experimentally
known to the accuracy of .66 parts per billion (ppb) supported by a profound theoretical
understanding of the phenomenon.

The theoretical framework required to reach such accuracy becomes sensitive to suppressed
higher order quantum corrections and requires a deep understanding of the microscopic pro-
cesses. Despite the remarkable success of the Standard Model in a description of a wide range
of phenomena, a number of observed discrepancies still remain unexplained. This arouses sus-
picion that the microscopic world is going beyond the known content. In light of existing

2Other exemples of properties studied in precision experiments are the weak mixing angle [23] and the proton
charge radius [24].
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Chapter 1 Introduction

Figure 1.3: The leading one-loop correction to the magnetic moment of a lepton in QED.

experimental information it seems rather plausible that the expected new physics appears at
scales sizably higher than what is reachable within the present hadron colliders. Compared to
direct measurements, precision experiments allow to access much larger scales indirectly, by
studying possible effects of new physics at the level of virtual quantum corrections. A special
place in this field is assigned to the anomalous magnetic moment of the muon a

µ

which is the
main subject of the second part of this dissertation. It is one of the most precisely measured
quantities in particle physics and has been playing a vital role in testing the framework of QFT
since its development more than half a century ago, as well as in searching for new physics
beyond the Standard Model, for a comprehensive review see [29] and references therein. A
crucial distinction of the muon compared to the electron is its larger mass. In 1956 it was
pointed out by Berestetskii et al. [30, 31] that the sensitivity of a

l

to a heavy mass M scales as

�a

l

a

l

⇠ m

2

l

M

2

, (1.7)

where m

l

and M are the masses of the lepton and the heavier SM particle or a hypothetical
state beyond SM. It means that the effects of higher masses are magnified in a

µ

relative to
a

e

by a factor (m
µ

/m

e

)2 ⇠ 4 ⇥ 104, which makes it more suitable for testing of SM at small
distances. Contrary to the electron, which is a stable particle on the Universe lifetime scale,
the muon lives only 2.197 ⇥ 10�6 seconds which complicates its experimental studies. This
problem is resolved by using highly relativistic muons in the storage ring which was realized at
CERN [32] and BNL [33]. The present experimental world average for a

µ

is [34, 33]:

a

µ

(exp) = (116 592 089 ± 63) ⇥ 10�11

, (1.8)

which corresponds to a relative precision of 0.54 parts per million.
From the theoretical point of view, in the SM a

µ

is defined by electromagnetic (QED),
electroweak, and hadronic contributions. The dominant QED contribution, which at present
has been calculated including all terms up to fifth-order in the fine structure constant [35, 36],
is known to an impressive theoretical precision of �a

µ

(QED) = 8 ⇥ 10�13. The much smaller
electroweak contribution, which has been calculated up to 2-loop order [37, 38, 39, 40], is also
known with good accuracy �a

µ

(weak) = 2 ⇥ 10�11, which is more than a factor of 30 smaller
than the present experimental precision. Within the Standard Model, the largest source of
uncertainty is given by the hadronic contribution, which contains two parts: the hadronic
vacuum polarization (HVP) and the hadronic light-by-light scattering (HLbL), see Fig. 1.4.
The HVP has been estimated based on data for e

+

e

� ! hadrons, e

+

e

� ! � + hadrons, as
well as ⌧ decays, by several groups [41, 42, 43, 44, 45, 46, 47, 48, 49, 50]. A recent evaluation
of the leading order HVP has found [50] :

a

µ

(l.o. HVP) = (6886.0 ± 42.4) ⇥ 10�11

. (1.9)

The next-to-leading order HVP has been estimated as [48]:

a

µ

(n.l.o. HVP) = (�98.4 ± 0.7) ⇥ 10�11

. (1.10)
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The HLbL, although much smaller in size than the HVP, has a similar theoretical uncertainty.
It has been estimated by different groups as :

a

µ

(HLbL) = (116 ± 39) ⇥ 10�11 Ref. [29], (1.11)
a

µ

(HLbL) = (105 ± 26) ⇥ 10�11 Ref. [51]. (1.12)

When comparing theory with experiment for a

µ

, the difference has recently been evaluated
as [50]

a

µ

(exp) � a

µ

(theory) = (312.5 ± 57.6 (theory) ± 63 (exp)) ⇥ 10�11

, (1.13)
which corresponds with a 3.7� discrepancy. The different analyses for the l.o. HVP and HLbL
contributions, give results which all agree within 1� [52].

Figure 1.4: The hadronic contributions to the anomalous magnetic moment of the muon. Left
panel: hadronic vacuum polarization (HVP). Right panel: hadronic light-by-light
contribution (HLbL). The grey blobs denote hadronic intermediate states.

In order to conclude whether this discrepancy is a sign of new physics beyond the standard
model, new experiments are planned in the near future both at Fermilab [53] as well as at
J-PARC [54] to further improve on the precision. The Fermilab experiment aims to reduce
the experimental uncertainty by a factor 4 to �a

µ

⇡ 16 ⇥ 10�11. Such improvement also calls
to improve on the theoretical accuracy by at least a factor of 2 in order to obtain a definitive
test for the presently observed discrepancy. As the theoretical uncertainty is totally dominated
by the knowledge of the HVP, Eq. (1.9), and the HLbL, Eq. (1.11), the main effort on the
theoretical side will be to improve on both estimates. For the HVP, new data from ongoing
experiments at Novosibirsk and BES-III will provide valuable experimental input to further
constrain this contribution. It was estimated in Ref. [52] that such data will allow to reduce
the uncertainty in the HVP to �a

µ

(l.o. HVP) = 26 ⇥ 10�11. For the HLbL scattering, new
data are expected from KLOE-2 for the �⇤

� ! ⇡

0 transition form factor at very low photon
virtualities, and from BES-III for the reactions �⇤

� ! X, where X = ⇡

0

, ⌘, ⌘

0
, 2⇡. Such data

do require a theoretical analysis in order to further constrain the HLbL evaluation.
In Chapter 4 we provide an improved estimate for the HLbL contribution, by considering

single meson contributions beyond the leading pseudo-scalar mesons (⇡0

, ⌘, ⌘

0) and incorpo-
rating available experimental input as well as constraints from light-by-light scattering sum
rules [22, 55]. The framework which will be presented will also allow to further improve on
the estimate, once new data, in particular from BES-III, for such meson states will become
available. Subsequently in Chapter 5, we will present a new dispersion formalism developed
for HLbL contribution to (g � 2)

µ

. We will discuss the details of this approach and will see
how it fundamentally affects the determination of the hadronic contributions to the anomalous
magnetic moment of the muon. The new framework opens a possibility for a consistent in-
corporation of data from e

+

e

� colliders and allows to systematically control the hadronic LbL
uncertainty in the (g � 2)

µ

.
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Chapter 2

Two-photon physics and sum rules

The processes of �⇤
�

⇤ fusion (by quasi-real photons � or virtual photons �⇤) into leptons
and hadrons and two-photon decays have been observed at nearly all high-energy colliders.
These processes are a rich source of information on strong interaction physics and are crucial
for a number of fundamental questions in QED. On the other hand the light-by-light (LbL)
elastic scattering which is a prediction of the quantum theory [56, 57] has thus-far not been
directly observed, mainly due to smallness of the cross section. The two processes of elastic and
inelastic photon-photon scattering can be related by dispersion relations giving a strict non-
perturbative constraint on the energy behavior of the fusion cross-sections and the low-energy
forward scattering amplitudes. To start with, we will discuss how the two-photon processes
can be studied experimentally and review the methods for extracting information on the two-
photon transition from experimental data. We will show how the transition amplitudes for
single meson production can be phenomenologically described in terms of non-perturbative
form factors, while the tensor structure can be fixed by the Lorentz invariance. The sum
rules for light-by-light scattering involving the measurable correlation functions will be derived
subsequently.

2.1 Experimental approaches in two-photon physics

The experimental studies of the electromagnetic decays of hadrons is complicated by the fact
that being of higher orders in QED coupling constant these processes are suppressed. As a
consequence, they have relatively low probability compare to the background, requiring very
sensitive high-intensity experiments with simultaneous detection of all secondary decay prod-
ucts (both charged particles and � quanta) for a reliable elimination of numerous background
processes. Important information on the electromagnetic decay width and the transition form
factors of some mesons has been obtained by studying such subtle effects as the production of
particles in the Coulomb field of a nucleus (Primakoff effect) or in �� collisions. In the first case
experiments have to be conducted with very high energy primary beams of ⇡ and K mesons
in order for the Coulomb processes to be reliably singled out. In the second case one needs
high-energy high-luminosity e

+

e

� colliding-beam storage rings. Another type of experiments
which became feasible only relatively recently are hadronic decays to two photons and e

+

e

�

radiative annihilation production of hadrons. The two-photon radiative transitions to mesons
have been widely studied in the past years. The formalism as well as the state-of-the-art of
this work and a detailed bibliography are found in a number of review papers and conference
talks (e.g., see [58, 16]), so that here we only very briefly touch on the relevant point.

The main object to study in these processes is the matrix element

h�⇤(q
1

)�⇤(q
2

)|X(p
X

)i (2.1)

with q

1

+ q

2

= p

X

. Experimentally only the information for the on-shell mesons is available. It
is not clear how to separate and to define the hadronic resonant states off their mass shell. At
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Chapter 2 Two-photon physics and sum rules

the same time the virtualities of photons q

2

1

and q

2

2

may be varied depending on the set up of
the experiment. Physically we can distinguish two regimes of the process depending on whether
the photons’ virtualities are space-like or time-like. There are several reasons for that. The
main distinction between two regimes is that, as the virtuality of a photon q

2 increases in the
region of space-like momentum the form factors decrease: if the momentum transfer is large, the
virtual photon is sensitive only to the "inner part" of a hadron. Contrary to that in the time-
like region we come across another phenomenon: the resonance interaction between photons
and hadrons. The time-like domain includes the physical region of a single photon production,
e.g. pair production �

⇤ ! ⇡

+

⇡

�. Therefore, the analytical structure of the corresponding
matrix element possesses singularities and is substantially different from the space-like domain
in this way. The second reason is that the two regimes are accessed experimentally in different
processes. The time-like processes appear in a Dalitz decay and inclusive production where for
the first case a meson decays to two-photons and in the second case an e

+

e

� pair annihilates
with emission of a time-like virtual photon which then creates a system of hadrons and a
single photon. The processes involving space-like photons are studied in e

+

e

� scattering and
Primakoff reaction. Here the final state is produced by two virtual photons which are emitted
by colliding leptons. Another process involving the two-photon-meson transition amplitude is
a very rare direct dilepton decay ⇡0 ! e

+

e

�. Two photons emitted in this process convert to
a dilepton by lepton exchange, see Fig. 2.1 and Ref. [59]. The meson transition amplitude
enters the corresponding "QED loop"; see, e.g., Ref. [60].

Figure 2.1: Dilepton rare decay of mesons.

As we already mentioned, the main fundamental distinction of the time-like processes is
that they involve the physical processes of a single-photon production. In this case the photo-
production amplitudes posses singularities in the complex Q

2-plane. In a widely used Vector
Meson Dominance (VMD) approach and its modifications, the source of these singularities
are intermediate vector states produced by virtual photons which then decay into hadrons, so-
called hadronization of photons (Fig. 2.2). This regime is particularly involved in the dispersive
analysis of the process, therefore is of a substantial importance, especially for the dispersion
determination of (g � 2)

µ

where the hadronic light-by-light tensor is related by dispersion
relations and unitarity to the meson transition amplitudes.

Figure 2.2: Two-photon production in the VMD model. The double lines represent the vector
meson states.

In this thesis, we mostly pay attention to the processes involving a single meson which
are also the best studied at the moment. The two-photon multi-hadron production has been
studied at different facilities for the final states ⇡⇡, 4⇡, 6⇡ (for review see [61, 62, 63, 64], and
references therein). At BES-III an extensive program underway to access these channels down
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2.1 Experimental approaches in two-photon physics

to threshold and for one or both virtual photons. These channels are both of importance for
understanding non-perturbative regime of QCD and for determination of the hadronic LbL
contribution to (g � 2)

µ

, see [64, 29]. Including the multi-hadron states to the analysis is the
logical continuation of the presented in this document work. In the following we discuss the
details of the experimental observables and their relation to hadron transition amplitudes.

2.1.1 Electromagnetic decays of mesons.

In the direct detection of electromagnetic decays particles under study are produced either in
hadron collisions or in electromagnetic interactions (meson photoproduction, their resonance
production in e

+

e

� colliding beams, etc.). As a rule to select rare electromagnetic decays it
is necessary to detect all decay products – charged particles as well as photons – to measure
their momenta and to reconstruct the effective mass of the decay particles. The kinematical
constraints in this procedure are very important for the suppression of background processes.

When two real photons are detected, i.e. in process ⇡
0

! 2� one can measure the meson
decay width. It is well described by the chiral anomaly encoded in the Wess-Zumino-Witten
action, see, e.g., Refs. [65], [66]. The transition amplitudes as functions of the photons’
four-momenta squared can be studied in the processes with the detection of the dilepton pair
produced by a time-like virtual photon, i.e. in processes ⇡0 ! �e

+

e

� and ⇡0 ! e

+

e

�
e

+

e

�, as
an illustration, see Fig. 2.3.

Figure 2.3: Single and double Dalitz decays. The momenta of the photons are q

1

and q

2

The momenta of the virtual photons q

2

1

and q

2

2

for the conversion (Dalitz) decays in Fig. 2.3,
are equal to the invariant mass squared of the lepton-antilepton pair, and m

2

M

> q

2

1,2

> 4m

2

l

(time-like virtual photons). The amplitude of the single conversion decay of a pseudoscalar
meson P (which is presently the only studied channel) is given by

M(P ! l

+

l

�
�) = ieF

P

(q2

1

, 0)"
µ⌫�⌧

✏

�

1

✏

µ

2

q

⌫

2

1

q

2

1

[ū�⌧

u], (2.2)

where 1/q

2

1

is the photon propagator and the last term is the leptonic current. The function
F

P

(q2

1

, q

2

2

) is the form factor of a particle. The form factor characterizes the particle as an
extended object. The analysis of the decays of mesons with spin is more complicated, although
the pattern remains qualitatively the same. Now there are more configurations of the pro-
cess allowed by the the angular momentum conservation which can be described by helicity
amplitudes and cross sections. Each helicity amplitude has a spatial distribution which is char-
acterized by its own form factor. For instance, a description of the two-photon transition of
scalar mesons, which are spin-0 particles, requires two different form factors to be introduced.
The form factors of higher spin mesons are currently measured only in two-photon fusion at
e

+

e

�-colliders and will be discussed in detail further on.
Experimentally, the time-like form factor can be extracted from the q

2 = q

2

1

distribution
given by

d�(P ! l

+

l

�
�) =

2↵

3⇡

1

q

2

s

1 � 4m

2

l

q

2

✓

1 +
2m

2

l

q

2

◆✓

1 � q

2

M

2

P

◆

3

|F
P

(q2

, 0)|2 (2.3)
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Chapter 2 Two-photon physics and sum rules

It was measured mostly for ⌘ mesons at MAMI [67] and VEPP-2M [68] experiments. The
example of the distribution for ⌘ Dalitz decay is presented in Fig. 2.4. The distributions for

Figure 2.4: d�(⌘ ! e

+

e

�
�)/dm(e+

e

�) distributions for the single Dalitz decays of the ⌘ me-
son (here m

2 = q

2) from [67]. The solid line corresponds to ⌘ ! e

+

e

�
� with

F

⌘

(m2

, 0) = 1; the dashed line shows the ⌘ ! e

+

e

�
� with the VMD form factor

with ⇤�2 = 1.95 GeV

�2.

the e

+

e

�
� final states are peaked at 4m

2

l

due to the 1/q

2 QED term. The form factor can be
obtained by dividing out the QED dependence (see Fig. 2.9 further on). To extract the form
factor slope, a dependence on the q

2 variable is often fitted with a VMD inspired single-pole
formula, which can be defined as follows:

F (q2

, 0) =
⇤2

⇤2 � q

2 � i�⇤
. (2.4)

2.1.2 Two-photon production of mesons

Let us now consider the possibilities of studying the transition form factors of the neutral
mesons in e

+

e

� colliding beam experiments. These experiments can yield information on the
form factors in a wider kinematic region in contrast to those on conversion decays. In addition,
since in this case the dominant hadrons’ coupling to leptons is via photons, a complicated
question about the origin of the produced hadrons does not arise. In particular, while studying
resonances no special hypothesis about the production mechanism would be necessary for
separating a resonance from background are required as, e.g. in an analysis of ⇡p collisions. The
fact that there are no other hadrons but those produced by photons makes the interpretation
of results transparent. All this makes electron colliding beams (e+

e

� or e

�
e

�) the main
instrument for the study of �� ! h processes presently.

When studying two-photon processes at e

+

e

�-colliders the main research objects are the
amplitudes for the �� ! h process, for both space- and time-like off-mass shell as well as for
almost real photons. The processes of main interest are the radiative one-photon annihilation
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2.1 Experimental approaches in two-photon physics

e

+

e

� ! h� or e

+

e

� ! he

+

e

� on Fig. 2.5 and the two-photon particle production e

+

e

� !
he

+

e

� on Fig. 2.6.

Figure 2.5: e

+

e

� radiative one-photon annihilation.

We will firstly discuss the radiative annihilation process. It allows to study the process in the
time-like region. In the process of the radiative one-photon annihilation the colliding leptons
annihilate to a time-like virtual photon which than decays to a system of hadrons and a single
virtual (real) photon. The information on �� ! h reaction in the time-like region may be
extracted from the measured cross section by

�(e+

e

� ! h�) = 4⇡↵�
��

✓

s � M

2

sM

◆

3

|F (q2 = s, 0)|2 (2.5)

where all non-perturbative information is contained in the form factor F . The time-like data
on the light pseudo-scalar meson transition form factors was measured by SND [68] and CMD-2
[69] collaborations and is summarized in Fig. 2.9.

The main two processes to study the two-photon production in a space-like region are e

+

e

�

and Primakoff effect Figs. 2.7 and 2.6. The Primakoff effect is the resonant production of
neutral pseudoscalar mesons by high-energy photons interacting with an atomic nucleus. In the
two-photon production two colliding leptons emit virtual photons which fuse to form a system
of hadrons. The colliding photons are space-like and may have both a transverse polarization
and a longitudinal one. The experiments can be carried out in the single-tag mode, i.e. by
tagging one of the two scattered leptons at large polar angle and by requiring that the second
is scattered at small polar angles or the double-tag mode when both leptons are detected. Only
the single-tag mode has been realized so far and the double-tag experiments are planned in the
nearest future, particularly at BES-III [15].

Figure 2.6: Two-photon production of
hadrons.

Z e

Figure 2.7: Two-photon production of hadrons
in the heavy nucleus field (Pri-
makoff effect).

The differential distributions of the process e

+

e

� ! e

+

e

�
X may be written in such a way

that the contributions from vertices and transition amplitudes �� ! h are factorized. When
using two-photon production processes the main research objects are the amplitudes of the
process

�

⇤(�
1

, q

1

) + �

⇤(�
2

, q

2

) ! X(p
X

), (2.6)

for the case of both off-shell photons as well as for almost real photons. Here the colliding
photons with momenta q

1

and q

2

are space-like (q2

i

< 0). The produced system X is C-even
and its invariant mass is s = (q

1

+ q

2

)2. The observed e

+

e

� ! e

+

e

�
X differential cross
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section is expressed in terms of the off-shell �⇤
�

⇤ ! X helicity cross sections depending on the
virtualities of photons q

2

1

and q

2

2

and a crossing invariant variable ⌫ = (s � q

2

1

� q

2

2

)/2:
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here h

1

= ±1 and h

2

= ±1 are both lepton beam helicities and the kinematical factors ⇢ab

i

are
expressed in a known way in terms of the momenta p

i

and q

i

and are given in the Appendix.
The cross sections denoted by �

0

(�
2

) are the �⇤
�

⇤ ! X cross sections for total helicity 0 (2)
respectively, and �k(�?) are the cross sections for linear photon polarizations with both photon
polarization directions parallel (perpendicular) to each other respectively. The remaining cross
sections (positive definite quantities �) involve either two longitudinal photon polarizations
�

LL

, or one transverse (T ) and one longitudinal (L) photon polarization �
LT

and �
TL

related
as :

�

LT

(⌫, Q2

1

, Q

2

2

) = �

TL

(⌫, Q2

2

, Q

2

1

). (2.8)

Besides, the result involves four additional interfering terms ⌧
TT

, ⌧

a

TT

, ⌧

TL

, ⌧

a

TL

(which are not
sign-definite) with either both photons transverse (TT ), or for one transverse and one longi-
tudinal photon (TL), where the superscript a indicates the combinations which are odd in ⌫.
For instance, the quantity ⌧

TT

is the difference between cross sections for scattering transverse
photons with linear polarizations: ⌧

TT

= �k � �?. Analogously, the quantity ⌧a

TT

is the differ-
ence between the cross sections for scattering of transverse photons with circular polarizations
⌧

a

TT

= �

0

� �

2

.
This quantities can be connected to the absorptive part of the �⇤

�

⇤ ! �

⇤
�

⇤ forward scattering
amplitudes M

�

0
1�

0
2,�1�2

and to the amplitudes M
�1�2 of the �⇤

�

⇤ ! X transition. Denoting
the absorptive part as

W

�

0
1�

0
2,�1�2

⌘ Abs M

�

0
1�

0
2,�1�2

, (2.9)

the optical theorem yields:

W

�

0
1�

0
2,�1�2

=
1

2

Z

d�
X

(2⇡)4�4(q
1

+ q

2

� p

X

) M
�1�2(q1

, q

2

; p
X

) M⇤
�

0
1�

0
2
(q

1

, q

2

; p
X

), (2.10)

where M
�1�2(q1

, q

2

; p
X

) denotes the invariant amplitude for the process

�

⇤(�
1

, q

1

) + �

⇤(�
2

, q

2

) ! X(p
X

). (2.11)

As a result, the absorptive parts are related to eight independent �⇤
�

⇤ ! X cross sections by
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2.2 Two-photon coupling to mesons

the relations (see Ref. [58] for details):

W

++,++

+ W

+�,+� ⌘ 2
p

X (�
0

+ �

2

) = 2
p

X

�

�k + �?
�

⌘ 4
p

X �

TT

, (2.12a)

W

++,++

� W

+�,+� ⌘ 2
p

X (�
0

� �

2

) ⌘ 4
p

X ⌧

a

TT

, (2.12b)
W

++,�� ⌘ 2
p

X

�

�k � �?
�

⌘ 2
p

X ⌧

TT

, (2.12c)

W

00,00

⌘ 2
p

X �

LL

, (2.12d)
W

+0,+0

⌘ 2
p

X �

TL

, (2.12e)
W

0+,0+

⌘ 2
p

X �

LT

, (2.12f)
W

++,00

+ W

0+,�0

⌘ 4
p

X ⌧

TL

, (2.12g)
W

++,00

� W

0+,�0

⌘ 4
p

X ⌧

a

TL

, (2.12h)

where the virtual photon flux factor is defined through

X ⌘ (q
1

· q

2

)2 � q

2

1

q

2

2

= ⌫

2 � Q

2

1

Q

2

2

. (2.13)

The response functions extracted from differential distributions (2.3, 2.5, 2.7) allow to study
meson transition amplitudes. The Lorentz structure of these amplitudes can in general be
constructed on the basis of the relativistic invariance and the non-perturbative information can
be isolated in the meson form factors. The general structure of these amplitudes is developed
further.

2.2 Two-photon coupling to mesons

In this section we detail the formalism and the available data for the �⇤
�

⇤ ! meson transition
form factors (FFs), and successively discuss the C-even pseudo-scalar (JPC = 0�+), scalar
(JPC = 0++), axial-vector (JPC = 1++), and tensor (JPC = 2++) mesons.

2.2.1 Pseudo-scalar mesons

The process �⇤(q
1

,�

1

) + �

⇤(q
2

,�

2

) ! P, describing the transition from an initial state of two
virtual photons, with four-momenta q

1

, q

2

and helicities �
1

,�

2

= 0, ±1, to a pseudo-scalar
meson P = ⇡

0

, ⌘, ⌘

0
, ⌘

c

, ... (JPC = 0�+) with mass m

P

, is described by the matrix element :

M(�
1

,�

2

) = �i e

2

"

µ⌫↵�

"

µ(q
1

,�

1

) "⌫(q
2

,�

2

) q

↵

1

q

�

2

FP�

⇤
�

⇤(Q2

1

, Q

2

2

), (2.14)

where "↵(q
1

,�

1

) and "�(q
2

,�

2

) are the polarization vectors of the virtual photons, and where the
meson structure information is encoded in the form factor (FF) FP�

⇤
�

⇤ , which is a function of
the virtualities of both photons, satisfying FP�

⇤
�

⇤(Q2

1

, Q

2

2

) = FP�

⇤
�

⇤(Q2

2

, Q

2

1

). From Eq. (2.14),
one can easily deduce that the only non-zero �⇤

�

⇤ ! P helicity amplitudes, which we define
in the rest frame of the produced meson, are given by :

M(�
1

= +1,�

2

= +1) = �M(�
1

= �1,�

2

= �1) = �e

2

p
X FP�

⇤
�

⇤(Q2

1

, Q

2

2

) . (2.15)

The FF at Q

2

1

= Q

2

2

= 0, FP�

⇤
�

⇤(0, 0), describes the two-photon decay width of the pseudo-
scalar meson :

�
��

(P) =
⇡↵

2

4
m

3

P

|FP�

⇤
�

⇤(0, 0)|2, (2.16)

with m

P

the pseudo-scalar meson mass, and ↵ = e

2

/(4⇡) ' 1/137.
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Chapter 2 Two-photon physics and sum rules

In this document, we study the cross sections for one real photon and one virtual photon.
For one real photon (Q2

2

= 0), the only non-vanishing cross sections in Eq. (2.12) are given by :

[�
0

]
Q

2
2=0

= [�?]
Q

2
2=0

= 2 [�
TT

]
Q

2
2=0

= � [⌧
TT

]
Q

2
2=0

= �(s � m

2

P

) 16⇡2

�
��

(P)

m

P

✓

1 +
Q

2

1

m

2

P

◆ 

FP�

⇤
�

⇤(Q2

1

, 0)

FP�

⇤
�

⇤(0, 0)

�

2

.

(2.17)

For massless quarks, the divergence of the isovector axial current, A

µ

3

⌘ 1p
2

(ū�µ

�

5

u�d̄�

µ

�

5

d),
does not vanish but exhibits an anomaly due to the triangle graphs which allow the ⇡0 to couple
to two vectors currents (Wess-Zumino-Witten anomaly). For the ⇡0, the chiral (isovector axial)
anomaly, predicts that its transition FF at Q

2

1

= Q

2

2

= 0 is given by :

F

⇡

0
�

⇤
�

⇤(0, 0) =
1

4⇡2

f

⇡

, (2.18)

where the pion decay constant f

⇡

is defined through the isovector axial current matrix element :

h0|Aµ

3

(0)|⇡0(p)i = i (
p

2 f

⇡

) p

µ

. (2.19)

When using the current empirical value of the pion decay constant f

⇡

' 92.4 MeV to evaluate
the chiral anomaly prediction of Eq. (2.18), one obtains the value F

⇡

0
��

(0, 0) ' 0.274 GeV�1,
which yields through Eq. (4.39) a 2� decay width in very good agreement with the experimental
value.

⇤
P

[MeV]
⇡

0 776 ± 22
⌘ 774 ± 29
⌘

0 859 ± 28
⌘

c

(1S) 2920 ± 160

Table 2.1: Experimental extraction of the monopole mass parameter in the �⇤
� ! P form

factors, according to the fit of Eq. (2.20). The measured value of ⇤
P

for P = ⇡

0

, ⌘, ⌘

0

is from the CLEO Collaboration [70]. For the ⌘
c

(1S) state, the measured value is
from the BABAR Collaboration [71].

Being the lowest excitations in the ��-production spectrum (Fig. 1.2) the three pseudo
scalar mesons ⇡, ⌘, ⌘0 are the best studied channels in the �� fusion process. The form factors
FP�

⇤
�

⇤(Q2

1

, 0) for one virtual photon and one real photon have been measured for ⇡0, ⌘, ⌘0

by the CELLO [72] , CLEO [70], and BABAR [14, 73] Collaborations, and for ⌘
c

(1S) by the
BABAR Collaboration [71]. Available data on F

⇡�

⇤
�

⇤(Q2

1

, 0) for low Q

2

1

values are presented
in Fig. 2.8. For theoretical calculations of the pion form factor see, e.g., Refs. [74, 75, 76, 77]
and references therein. The models either use strict vector meson dominance Ref. [78] , or, as,
e.g., in Ref. [76], include point interactions in addition. For a review on vector mesons and
their interactions, see also Ref. [79]. In the Q

2

1

range up to 10 GeV2, a good parameterization
of the data is obtained by the monopole form :

FP�

⇤
�

⇤(Q2

1

, 0)

FP�

⇤
�

⇤(0, 0)
=

1

1 + Q

2

1

/⇤2

P

, (2.20)

where ⇤
P

is the monopole mass parameter. In Table 4.2, we show the experimental extraction
of ⇤

P

for the ⇡0

, ⌘, ⌘

0, and ⌘
c

(1S) mesons.
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Figure 4: Single o�-shell �0 meson transition form factor in the low |q2| region from SND [15]
and CMD-2 [16] data on the reaction e+e� ! �0� and CELLO data on the reaction e+e� !
e+e��⇤�⇤ ! e+e��0 [17].

Figure 5: Contributions to the pion transition form factor. Wavy lines denote real or virtual
photons.

• Another process involving the pion transition form factor is a very rare direct dilepton
decay �0 ! e+e�. Two photons emitted in this process convert to a dilepton by
lepton exchange, see Fig. 34c in Ref. [6]. The pion transition form factor enters the
corresponding “QED loop”; see, e.g., Ref. [14].

Available data on |F
⇡

0(q2, 0)| for low |q2| values are presented in Fig. 4. For theoretical
calculations of the pion form factor see, e.g., Refs. [18–21] and references therein. The
models either use strict vector meson dominance [22] (right diagram in Fig. 5), or, as, e.g.,
in Ref. [20], include point interactions in addition (the left diagram in Fig. 5). For a review
on vector mesons and their interactions, see also Ref. [23]. In Ref. [1] the two-photon data
on the production of pseudoscalar mesons (�0, �, �0) [24] was used to model the transition
form factors needed in the evaluation of aLbL,had

µ

.
In Table 1 we list the information on the branching fractions of �0 decays together with

the corresponding theoretical predictions. The branching ratios largely follow the naive
scaling as 1 : �

QED

: �2

QED

: �2

QED

/(4�)2, where the factor (4�)2 is present since in the
Standard Model the leading contribution to �0 ! e+e� appears at one loop. Note that
between the most accurate calculation for �0 ! e+e� and the corresponding experimental
value there is a more than 3� discrepancy. For asymptotically large virtualities there are
QCD constraints on the pion transition form factor, see, e.g., Refs. [14, 31, 32]. These might

6

Figure 2.8: Single off-shell ⇡0 meson transition form factor in the low Q

2 region from SND [68]
and CMD-2 [69] data on the reaction e

+

e

� ! ⇡

0

� and CELLO data on the reaction
e

+

e

� ! e

+

e

�
�

⇤
�

⇤ ! e

+

e

�
⇡

0 [72]. Figure from Ref. [16].

Due to the approximate SU(3) flavor symmetry, the pion transition form factor is closely
related to the corresponding transition form factor of the ⌘ meson and, via ⌘ � ⌘

0 mixing, also
to the transition form factor of the ⌘0. In fact, the whole discussion of ⌘�⌘0 mixing, interesting
in its own right, is strongly based on these transition form factors [80, 81, 82]. Both processes
⇡

0 ! ��

⇤ and ⌘ ! ��

⇤ can be described by vector meson dominance [59]. For the ⌘ this is
illustrated with the available low q

2 data on F

⌘

(q2

, 0) in Fig. 2.9. Note that this does not
necessarily mean that the double-virtual processes ⇡0

/⌘ ! �

⇤
�

⇤ would also be well described
by vector meson dominance. Indeed, some theories show deviations [76, 83].

2.2.2 Scalar mesons

We next consider the process �⇤(q
1

,�

1

) + �

⇤(q
2

,�

2

) ! S, describing the transition from an
initial state of two virtual photons, with four-momenta q

1

, q

2

and helicities �
1

,�

2

= 0, ±1, to
a scalar meson S (JPC = 0++) with mass m

S

. Scalar mesons can be produced either by two
transverse photons or by two longitudinal photons [85, 86]. Therefore, the �⇤

�

⇤ ! S transition
can be described by the matrix element :

M(�
1

,�

2

) = e

2

"

µ(q
1

,�

1

) "⌫(q
2

,�

2

)

✓

⌫

m

S

◆

�
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, q

2
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⇤
�
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1

, Q

2

2

)

+
⌫

X

✓

q

µ

1

+
Q

2

1

⌫

q

µ

2

◆✓

q

⌫

2

+
Q

2

2

⌫

q

⌫

1

◆

F

L

S�

⇤
�

⇤(Q2

1

, Q

2

2

)

�

,

(2.21)

where we introduced the symmetric transverse tensor R

µ⌫ :

R

µ⌫(q
1

, q

2

) ⌘ �g

µ⌫ +
1

X

�

⌫ (qµ

1

q

⌫

2

+ q

µ

2

q

⌫

1

) + Q

2

1

q

µ

2

q

⌫

2

+ Q

2

2

q

µ

1

q

⌫

1

 

, (2.22)

which projects onto both transverse photons, having the properties :

q

1µ

R

µ⌫(q
1

, q

2

) = 0, q

1⌫

R

µ⌫(q
1

, q

2

) = 0,

q

2µ

R

µ⌫(q
1

, q

2

) = 0, q

2⌫

R

µ⌫(q
1

, q

2

) = 0.

21



Chapter 2 Two-photon physics and sum rules

]2 [GeV2
1

q
-2 -1.5 -1 -0.5 0 0.5 1

2
=0

)|
2 2

,q2 1
(q
η

|F

-110

1

10

210

310

ηγ→-e+e

η→*γγ

- l+  lγ
→η

Figure 6: Single o�-shell � meson transition form factor from NA60 data on � ! �µ+µ�

decay [38]; from SND [15] and CMD-2 [16] data on the reaction e+e� ! �� reaction, and
CELLO data on the reaction e+e� ! e+e��⇤�⇤ ! e+e�� [17].

Figure 7: Left: transition form factor of omega to pion. Right: tree-level contribution to
the omega transition form factor.

Since vector mesons are relevant as intermediate states for the transition form factors
of pseudoscalar mesons, there is another source of information, namely the transition form
factors of vector mesons to pseudoscalar mesons. These involve processes like

• � ! �0l+l� where l = e, µ; see Fig. 7 for illustration. This process shows a dramatic
deviation from the vector meson dominance picture [38, 47], see the data in Fig. 8.

• e+e� ! �0�: previously studied in Novosibirsk with SND [48] and CMD-2 [49].

• � instead of � in the previous processes and/or � instead of �0 (in part measured): it
would be important to clarify whether also in these processes the drastic deviation from
vector meson dominance seen in � ! �0µ+µ� shows up. Of particular importance
is � ! �0l+l�, where the peak mass of the � meson is in the kinematically allowed
region [51].

• �0 ! �� (measured) and �0 ! �e+e� (not measured).
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Figure 2.9: Figure 6: Single off-shell ⌘ meson transition form factor from NA60 data on ⌘ !
�µ

+

µ

� decay [84]; from SND [68] and CMD-2 [69] data on the reaction e

+

e

� ! ⌘�

reaction, and CELLO data on the reaction e

+

e

� ! e

+

e

�
�

⇤
�

⇤ ! e

+

e

�
⌘ [72]. Figure

from Ref. [16].

In Eq. (2.21), the scalar meson structure information is encoded in the form factors F

T

S�

⇤
�

⇤ and
F

L

S�

⇤
�

⇤ , which are a function of the virtualities of both photons, where the superscripts indicate
the situation where either both photons are transverse (T ) or longitudinal (L). Note that the
pre-factor ⌫/m

S

in Eq. (2.21) is chosen such that the FFs are dimensionless. Furthermore,
both form factors are symmetric under interchange of both virtualities :

F

T,L

S�

⇤
�

⇤(Q
2

1

, Q

2

2

) = F

T,L

S�

⇤
�

⇤(Q
2

2

, Q

2

1

). (2.23)

From Eq. (2.21), one can easily deduce that the only non-zero �⇤
�

⇤ ! S helicity amplitudes
are given by :

M(�
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= +1) = M(�
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= �1) = e
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⇤
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) . (2.24)

The transverse FF at Q

2

1

= Q

2

2

= 0, F

T

S�

⇤
�

⇤(0, 0), describes the two-photon decay width of the
scalar meson :

�
��

(S) =
⇡↵

2

4
m

S

|F T

S�

⇤
�

⇤(0, 0)|2. (2.25)

In this paper, we study the sum rules involving cross sections for one real photon and one
virtual photon. For one real photon (Q2

2

= 0), the only non-vanishing cross sections in Eq. (2.12)
are given by :
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(2.26)
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2.2 Two-photon coupling to mesons

Presently, there is no experimental data on scalar transition amplitudes. It is expected in
the nearest future to measure these processes at BES III by an analysis of the �⇤

�

⇤ ! ⇡⇡

channels.

2.2.3 Axial-vector mesons

We next discuss the two-photon production of an axial vector meson. Due to the symmetry
under rotational invariance, spatial inversion as well as the Bose symmetry of a state of two
real photons, the production of a spin-1 resonance by two real photons is forbidden, which is
known as the Landau-Yang theorem [87]. However the production of an axial-vector meson
by two photons is possible when one or both photons are virtual. The matrix element for the
process �⇤(q

1

,�

1

)+�⇤(q
2

,�

2

) ! A, describing the transition from an initial state of two virtual
photons, with four-momenta q

1

, q

2

and helicities �
1

,�

2

= 0, ±1, to an axial-vector meson A
(JPC = 1++) with mass m

A

and helicity ⇤ = ±1, 0 (defined along the direction of ~q
1

), is
described by three structures [85, 86], and can be parameterized as :
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In Eq. (2.27), the axial-vector meson structure information is encoded in the form factors F

(0)

A�

⇤
�

⇤

and F

(1)

A�

⇤
�

⇤ , where the superscript indicates the helicity state of the axial-vector meson. Note
that only transverse photons give a non-zero transition to a state of helicity zero. The form
factors are functions of the virtualities of both photons, and F

(0)

A�

⇤
�

⇤ is symmetric under the
interchange Q

2

1

$ Q

2

2

. In contrast, F

(1)

A�

⇤
�

⇤ does not need to be symmetric under interchange
of both virtualities, as can be seen from Eq. (2.27).

From Eq. (2.27), one can easily deduce that the only non-zero �⇤
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⇤ ! A helicity amplitudes
are given by :
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Note that the helicity amplitude with two transverse photons vanishes when both photons are
real, in accordance with the Landau-Yang theorem.

The matrix element F

(1)

A�

⇤
�

(0, 0) allows to define an equivalent two-photon decay width for
an axial-vector meson to decay in one quasi-real longitudinal photon and a (transverse) real
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where we have introduced the decay width � (A ! �

⇤
L
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T

) for an axial-vector meson to decay in
a virtual longitudinal photon, with virtuality Q
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, and a real transverse photon (Q2
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= 0), as :
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In this work, we will study the sum rules involving cross sections for one real photon and
one virtual photon. For one quasi-real photon (Q2

2

! 0), we can obtain from the above helicity
amplitudes and using Eq. (2.10) the axial-vector meson contributions to the response functions
of Eq. (2.12) as :
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Extracting the FFs F

(1), and F

(0) separately from experiment requires the measurements of
�

LT

and �
TT

respectively. As experiments to date have not achieved this separation, one is so
far only sensitive to the quantity �

TT

+ "

1

�

LT

, where "
1

is a kinematical parameter (so-called
virtual photon polarization parameter) defined as "
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⌘ ⇢

00
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/2⇢++

1

, see Appendix A. Note that
in high-energy collider experiments, one typically has "

1

⇡ 1. From Eq. (2.35) one then obtains
for this experimentally accessible combination :
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We can compare the above general formalism for the two-photon production of an axial-
vector meson with the description of Ref. [90], which is commonly used in the literature, and is
based on a non-relativistic quark model calculation leading to only one independent amplitude
for the �⇤

�

⇤ ! A process as :
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1In defining the equivalent two-photon decay width for an axial-vector meson, we follow the convention of
Ref. [86], which is also followed in experimental analyses [88, 89]. Note however that the definition for �̃��

adopted here is one half of that used in Ref. [90].
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2.2 Two-photon coupling to mesons

where the independent form factor A satisfies : A(Q2
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in which 2⌫ = m
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. In such model, the experimentally measured two-photon cross
section combination of Eq. (2.36), where Q
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= 0, is proportional to :
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To apply this formula to experimental results where the axial-vector meson has a finite width,
one commonly replaces the delta-function in Eq. (2.39) by a Breit-Wigner form, yielding :
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(2.40)

where �
total

is the total decay width of the axial-vector meson.
Phenomenologically, the two-photon production cross sections have been measured for the

two lowest lying axial-vector mesons : f

1

(1285) and f

1

(1420). The most recent measurements
were performed by the L3 Collaboration [88, 89] (Fig. 2.10).

In those works, the non-relativistic quark model expression of Eq. (2.40) in terms of a single
FF A has been assumed, and the resulting FF has been parameterized by a dipole :
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where ⇤
A

is a dipole mass. By fitting the resulting expression of Eq. (2.40) to experiment
(for which "

1

⇡ 1, and for a Q

2

1

range which extends up to 6 GeV2), one can then extract the
parameters �̃

��

and ⇤
A

. Table 4.3 shows the present experimental status of the equivalent 2�
decay widths of the axial-vector mesons f

1

(1285), and f

1

(1420), which we use in this work.

2.2.4 Tensor mesons

The process �⇤(q
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) ! T (⇤), describing the transition from an initial state of two
virtual photons to a tensor meson T (JPC = 2++) with mass m

T

and helicity ⇤ = ±2, ±1, 0
(defined along the direction of ~q

1

), is described by five independent structures [85, 86], and can
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Figure 2.10: Experimental differential cross section d�/Q

2 compared to calculations of the
GaGaRes Monte Carlo (dashed line) and to the calculations of [90] and [91] (dot-
ted line). The full line is a fit of the data with the GaGaRes model, with ⇤ and
�̃

��

as free parameters. Figure from Ref. [88]
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where "
↵�

(p
f

, ⇤) is the polarization tensor for the tensor meson with four-momentum p

f

and
helicity ⇤. Furthermore in Eq. (2.43) T

(⇤) are the �⇤
�

⇤ ! T transition form factors, for tensor
meson helicity ⇤. For the case of helicity zero, there are two form factors depending on whether
both photons are transverse (superscript T ) or longitudinal (superscript L).
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2.2 Two-photon coupling to mesons

m

A
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⇤
A

[MeV] [keV] [MeV]
f

1

(1285) 1281.8 ± 0.6 3.5 ± 0.8 1040 ± 78
f

1

(1420) 1426.4 ± 0.9 3.2 ± 0.9 926 ± 78

Table 2.2: Present values [1] of the f

1

(1285) meson and f
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(1420) meson masses m

A

, their
equivalent 2� decay widths �̃
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, defined according to Eq. (2.31), as well as their
dipole masses ⇤
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entering the FF of Eq. (2.41). For �̃
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, we use the experimental
results from the L3 Collaboration : f
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(1285) from Ref. [88], f
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(1420) from Ref. [89].
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From Eq. (2.43), we can easily calculate the different helicity amplitudes as :
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The transverse FFs T

(2) and T

(0,T ) at Q

2

1

= Q

2

2

= 0 describe the two-photon decay widths of
the tensor meson with helicities ⇤ = 2 and ⇤ = 0 respectively :
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In this work, we study the sum rules involving cross sections for one real photon and one
virtual photon. For one quasi-real photon (Q2

2

! 0), we can obtain from the above helicity
amplitudes and using Eq. (2.10) the tensor meson contributions to the response functions of
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Eq. (2.12) as :
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The experimental information on the Q

2 dependence of the tensor form factor is not available
at the moment. As we will see later, one can learn a lot about these form factors using
constraints imposed by the sum rules for light-by-light scattering which are the subject of the
following sections.

2.3 Sum rules for light-light scattering

We can use the dispersion theory to relate the two phenomena of LbL scattering and �⇤
� fusion,

and express the low-energy LbL scattering as integrals over the �⇤
�-fusion cross sections, where

one photon is real while the second may have arbitrary (space-like) virtuality. These integrals,
or ‘sum rules’, lead to interesting constraints on �� decay widths or �⇤

� transition FFs of qq̄

states, and more general meson states. The first sum rule of this type involves the helicity-
difference cross-section for real photons and reads as:

1
Z
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h

�

2

(s) � �

0

(s)
i

= 0, (2.58)

where s is the total energy squared, s

0

is the first inelastic threshold for the �� fusion process,
and the subscripts 0 or 2 for the �� cross sections indicate the total helicity of the state of
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2.3 Sum rules for light-light scattering

two circularly polarized photons. This sum rule was originally2 inferred [18, 19] from the
Gerasimov–Drell–Hearn (GDH) sum rule, using the fact that the photon has no anomalous
moments.

Parameterizing the lowest energy LbL interaction by means of an effective Lagrangian (which
contains operators of dimension eight at lowest order) as

L(8) = c

1

(F
µ⌫

F

µ⌫)2 + c

2

(F
µ⌫

F̃

µ⌫)2, (2.59)

with F and F̃ being the electromagnetic field strength and its dual, one finds sum rules for the
LbL low-energy constants (LECs) [22]:

c

1

=
1

8⇡

1
Z

s0

ds

�k(s)

s

2

, c

2

=
1

8⇡

1
Z

s0

ds

�?(s)

s

2

, (2.60)

where the subscripts || or ? indicate if the colliding photons are polarized parallel or perpen-
dicular to each other. While the GDH-type sum rule provides a stringent constraint on the
polarized �� fusion, the sum rules for the LECs allow one in principle to fully determine the
low-energy LbL interaction through measuring the linearly polarized �� fusion. In the follow-
ing we subsequently derive and give a detailed description of already known sum rules for real
photons as well as their generalization and a set of new sum rules for the case of one (quasi-)real
and one virtual photon.

2.3.1 Forward �⇤�⇤- scattering

We start from a discussion of the elastic forward scattering of photons. In the most general
case we consider the forward scattering of virtual photons on virtual photons:

�

⇤(�
1

, q

1

) + �

⇤(�
2

, q

2

) ! �

⇤(�0
1

, q

1

) + �

⇤(�0
2

, q

2

), (2.61)

where q

1

, q

2

are photon four-momenta, and �

1

,�

2

(�0
1

,�

0
2

) are the helicities of the initial
(final) virtual photons, which can take on the values ±1 (transverse polarizations) and zero
(longitudinal). The total helicity in the �⇤

�

⇤ c.m. system is given by ⇤ = �

1

� �

2

= �

0
1

� �

0
2

.
To define the kinematics, we firstly introduce the photon virtualities Q

2

1

= �q

2

1

, Q

2

2

= �q

2

2

, the
Mandelstam invariants: s = (q

1

+ q

2

)2, u = (q
1

� q

2

)2, and the following crossing-symmetric
variable:

⌫ ⌘ 1

4

(s � u) = q

1

· q

2

, (2.62)

such that s = 2⌫ � Q

2

1

� Q

2

2

, u = �2⌫ � Q

2

1

� Q

2

2

.
The �⇤

�

⇤ ! �

⇤
�

⇤ forward scattering amplitudes, denoted as M

�

0
1�

0
2,�1�2

, are functions of ⌫,
Q

2

1

, Q

2

2

. Parity invariance (P ) and time-reversal invariance (T ) imply the following relations
among the matrix elements with different helicities :

P : M

�

0
1�

0
2,�1�2

= M��

0
1��

0
2,��1��2

, (2.63)
T : M

�

0
1�

0
2,�1�2

= M

�1�2,�

0
1�

0
2
, (2.64)

which leaves out only eight independent amplitudes [92]:

M

++,++

, M

+�,+�, M

++,��, M

00,00

, M

+0,+0

, M

0+,0+

, M

++,00

, M

0+,�0

. (2.65)
2An earlier version of this sum rule had been proposed in Ref. [17], where a contribution from ⇡0 production

appears on the right-hand side (rhs) of Eq. (2.58), while integration on the lhs starts at the 2⇡ production
threshold. That version would be fully compatible with Eq. (2.58), if it were not for the sign of the ⇡0

contribution obtained in [17].
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Chapter 2 Two-photon physics and sum rules

We next consider the constraint imposed by crossing symmetry, which requires that the
amplitudes for the process (2.61) equal the amplitudes for the process where the photons with
e.g. label 2 are crossed:

�

⇤(�
1

, q

1

) + �

⇤(��0
2

, �q

2

) ! �

⇤(�0
1

, q

1

) + �

⇤(��
2

, �q

2

). (2.66)

As under photon crossing ⌫ ! �⌫, one obtains

M

�

0
1�

0
2,�1�2

(⌫, Q2

1

, Q

2

2

) = M

�

0
1��2,�1��

0
2
(�⌫, Q2

1

, Q

2

2

), (2.67)

it becomes convenient to introduce amplitudes which are either even or odd in ⌫ (at fixed Q

2

1

and Q

2

2

). One easily verifies that the following six amplitudes are even in ⌫ :

(M
++,++

+ M

+�,+�) , M

++,��, M

00,00

, (2.68)
M

+0,+0

, M

0+,0+

, (M
++,00

+ M

0+,�0

) , (2.69)

whereas the following two amplitudes are odd in ⌫ :

(M
++,++

� M

+�,+�) , (M
++,00

� M

0+,�0

) . (2.70)

2.3.2 Dispersion relations

The principle of (micro-)causality is known to translate into exact statements about analytic
properties of the scattering amplitude in the complex energy plane. In our case this principle
translates into the statement of analyticity of the forward �

⇤
�

⇤ scattering amplitude in the
entire ⌫ plane, except for the real axis where the branch cuts associated with particle production
are located. Assuming that the threshold for particle production is ⌫

0

> 0, one can write
down the usual dispersion relations, in which the amplitude is given by integrals over the
non-analyticities, which in this case are branch cuts extending from ±⌫

0

to ±1. Finally, for
amplitudes that are even or odd in ⌫ we can write (for any fixed values of Q

2

1

, Q

2

2

> 0):

f

even

(⌫) =
2

⇡

Z 1

⌫0

d⌫

0 ⌫

0

⌫

0 2 � ⌫

2 � i0+

Abs f

even

(⌫ 0), (2.71a)

f

odd

(⌫) =
2⌫

⇡

Z 1

⌫0

d⌫

0 1

⌫

0 2 � ⌫

2 � i0+

Abs f

odd

(⌫ 0), (2.71b)

where 0+ is an infinitesimal positive number.
These dispersion relations are derived with the provision that the integrals converge. If they

do not, subtractions must be made; e.g., the once-subtracted dispersion relation for the even
amplitudes reads:

f

even

(⌫) = f

even

(0) +
2⌫2

⇡

Z 1

⌫0

d⌫

0 1

⌫

0(⌫ 0 2 � ⌫

2 � i0+)
Abs f

even

(⌫ 0). (2.72)

We are thus led to examine the high-energy behavior (⌫ ! 1 at fixed Q

2

1

, Q

2

2

) of the absorptive
parts given by Eq. (2.12). In Ref. [92], a Regge pole model assumption for the high-energy
asymptotics of the light-by-light forward amplitudes yielded:

(W
++,++

+ W

+�,+�) , W

+0,+0

, W

0+,0+

, W

00,00

⇠ ⌫

↵P (0)

,

(W
++,++

� W

+�,+�) , W

++,�� ⇠ ⌫

↵⇡(0)

, (2.73)
(W

++,00

+ W

0+,�0

) , (W
++,00

� W

0+,�0

) ⇠ ⌫

↵⇡(0)�1

,

30



2.3 Sum rules for light-light scattering

where ↵
P

(0) ' 1.08 is the intercept of the Pomeron trajectory, and ↵

⇡

(0) ' �0.014 is the
intercept of the pion trajectory. This means that for all the even amplitudes, except M

++,00

+
M

0+,�0

, one can only use the subtracted dispersion relation Eq. (2.72). We therefore need
the information about these amplitudes at zero energy ⌫. Anticipating the discussion of the
low-energy expansion of the LbL scattering, we can state that at ⌫ = 0 these amplitudes vanish
when one of the photons is real [cf. Eq. (2.77)]. Using Eq. (2.12) then to substitute the cross
sections in place of the absorptive parts, we obtain the following sum rules for the case of one
real and one virtual photon (when the virtual photon flux factor becomes X = ⌫

2):

M

++,++

(⌫) + M

+�,+�(⌫) =
4⌫2

⇡

Z 1

⌫0

d⌫

0 �k(⌫
0) + �?(⌫ 0)

⌫

0 2 � ⌫

2 � i0+

, (2.74a)

M

++,��(⌫) =
4⌫2

⇡

Z 1

⌫0

d⌫

0 �k(⌫
0) � �?(⌫ 0)

⌫

0 2 � ⌫

2 � i0+

, (2.74b)

M

0+,0+

(⌫) =
4⌫2

⇡

Z 1

⌫0

d⌫

0 �

LT

(⌫ 0)

⌫

0 2 � ⌫

2 � i0+

, (2.74c)

M

+0,+0

(⌫) =
4⌫2

⇡

Z 1

⌫0

d⌫

0 �

TL

(⌫ 0)

⌫

0 2 � ⌫

2 � i0+

. (2.74d)

We cannot write such a subtracted sum rule for M

00,00

, since it trivially vanishes when one
of the photons is real. Instead, considering an unsubtracted dispersion relation, we find the
following sum rule:

M

00,00

(⌫) =
4

⇡

Z 1

⌫0

d⌫

0 ⌫
0p

X

0
�

LL

(⌫ 0)

⌫

0 2 � ⌫

2 � i0+

, (2.74e)

with X

0 = ⌫

0 2 �Q

2

1

Q

2

2

. At least in perturbative QED calculations (cf. Appendix B), the above
integral converges which seems to validate this sum rule in a renormalizable, perturbative field
theory. We emphasize however that this observation is in contradiction with the expectation
of non-convergence from the Regge pole model shown above. A validation of this sum rule in
non-perturbative field theory, particularly in QCD, is therefore an open issue.

For all the remaining amplitudes the asymptotic behavior of Eq. (2.74) justifies the use of
unsubtracted dispersion relations which, upon substituting Eq. (2.12), lead to the following
sum rules, valid for both photons virtual:

M

++,++

(⌫) � M

+�,+�(⌫) =
4⌫

⇡

Z 1

⌫0

d⌫

0
p

X

0
⇥

�

0

(⌫ 0) � �

2

(⌫ 0)
⇤

⌫

0 2 � ⌫

2 � i0+

, (2.74f)

M

++,00

(⌫) � M

0+,�0

(⌫) =
8⌫

⇡

Z 1

⌫0

d⌫

0
p

X

0
⌧

a

TL

(⌫ 0)

⌫

0 2 � ⌫

2 � i0+

, (2.74g)

M

++,00

(⌫) + M

0+,�0

(⌫) =
8

⇡

Z 1

⌫0

d⌫

0 ⌫
0p

X

0
⌧

TL

(⌫ 0)

⌫

0 2 � ⌫

2 � i0+

, (2.74h)

where the dependence on virtualities Q

2

1

, Q

2

2

is tacitly assumed.
The above sum rules, relating all the forward �⇤

�

⇤ elastic scattering amplitudes to the energy
integrals of the �⇤

�

⇤ fusion cross sections, should hold for any space-like photon virtualities in
the unsubtracted cases, and for one of the virtualities equal to zero in the subtracted cases. In
the following we examine the low-energy expansion of these sum rules.

2.3.3 Low-energy expansion via effective Lagrangian

To obtain more specific relations from the sum rules established in Eq. (2.74), we parametrize
the low-energy (small ⌫) behavior of the �

⇤
�

⇤ ! �

⇤
�

⇤ forward scattering amplitudes M ,
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Chapter 2 Two-photon physics and sum rules

appearing on the left hand side of Eqs. (2.74) At lowest order in the energy, the self-interactions
of the electromagnetic field are described by an effective Lagrangian (of fourth order in the
photon energy and/or momentum, and fourth order in the electromagnetic field):

L(8) = c

1

(F
µ⌫

F

µ⌫)2 + c

2

(F
µ⌫

F̃

µ⌫)2, (2.75)

where F

µ⌫

= @

µ

A

⌫

� @

⌫

A

µ

, F̃

µ⌫ = "

µ⌫↵�

@

↵

A

�

, and where c

1

, c

2

are two low-energy constants
(LECs) which contain the structure dependent information. It is often referred to as Euler-
Heisenberg Lagrangian due to the seminal work [56].

At the next order in energy, one considers the terms involving two derivatives on the field
tensors, corresponding with the sixth order in the photon energy and/or momentum. Writing
down all such dimension-ten operators and reducing their number using the antisymmetry of
the field tensors, the Bianchi identities, as well as adding or removing total derivative terms,
we find that there are 6 independent terms at that order, which we choose as :
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7
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F
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, (2.76)

where c

3

, . . . , c

8

are the new LECs arising at this order. Only c

3

and c

4

appear in the case of
real photons.

We can now specify the low-energy limit of the light-by-light scattering amplitudes in terms
of the LECs describing the low-energy self-interactions of the electromagnetic field:
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⇤
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⇤

+ O(⌫4), (2.77a)
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2.3 Sum rules for light-light scattering

These expressions can be treated as a simultaneous expansion in ⌫ and the virtualities Q

2

i

of
the lhs of the sum rules Eq. (2.74). Concerning the Q dependence, it is important that the
leading in ⌫ term, in any of the amplitudes, is proportional to Q

1

Q

2

and hence vanishes for at
least one real photon. The latter statement is valid for any values of virtualities, not just when
they are small. For example, let us show for the amplitude (M

++,++

� M

+�,+�) its leading
term in ⌫ is proportional to the combination Q

2

1

Q

2

2

, to all orders in Q

1

and Q

2

.
Since all photons are transversely polarized the only non-vanishing structures involving po-

larization vectors of photons "(�
i

) are their mutual scalar products "(�
i

) · "(�
j

). Due to gauge
invariance, the electromagnetic fields enter the Lagrangian through the field tensor F

µ⌫

, which
contributes to the amplitude as q

µ

"

⌫

�q

⌫

"

µ

. Thus an arbitrary term in the effective Lagrangian
contributes to (M

++,++

� M

+�,+�) as:
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++,++
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+�,+� ⇠ q

µ

1

q

⌫

2

q

�

1

q

⇢

2

T

µ⌫�⇢

, (2.78)

where the tensor T

µ⌫�⇢

is constructed from four-vectors q

i

and the metric tensor. Since this
amplitude is odd with respect to ⌫, it is required to be proportional to at least ⌫1. Assuming
that one factor ⌫ comes from contraction of two of the q’s in Eq. (2.78), we are left with q

µ

1

q

⌫

2

.
Now, if we suppose that q

1

is contracted with q

2

we obtain an extra power of ⌫, and such an
amplitude vanishes when taking the limit ⌫ ! 0. Thus, both q

1

and q

2

must be contracted
with another q

1

and q

2

respectively, giving a global factor Q

2

1

Q

2

2

.
We are now in position to examine the sum rules in Eq. (2.74) order by order in ⌫. For this

we expand the rhs of Eq. (2.74) using 1/(⌫ 0 2 � ⌫

2) = 1/⌫ 0 2 + ⌫

2

/⌫

0 4 + O(⌫4). As the result we
obtain from Eqs. (2.74f,2.74g,2.74h) the following set of super-convergence relations, valid for
at least one real photon (e.g., Q

1

� 0, Q

2

2

= 0):
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. (2.79c)

and the following set of sum rules for the LECs of the dimension-8 (Euler-Heisenberg) La-
grangian, valid when both photons are quasi-real:
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where s

0

= 2⌫
0

� Q

2

1

� Q

2

2

. We emphasize again that, unlike the other sum rules, the sum rule
of Eq. (2.80c) is only shown to hold in perturbative field theory.

There are as well the sum rules for the LECs of the dimension-10 Lagrangian, most notably:

c

4

= � 1

4⇡

1
Z

s0

ds

s

3

⌧

a

TT

(s, 0, 0), (2.81)

but presently they are of far lesser importance and we do not write them out explicitly here.
Let us remark again that the relation of Eq. (2.79a), obtained by combining Eqs. (2.74f) and

(2.77f), is essentially a GDH sum rule for the photon target, see [18, 19, 17]. For large virtuality
Q

2

1

, it leads to the sum rule for the photon structure function g

�

1

[93]:
R

1

0

dxg

�

1

(x, Q

2) = 0.
The sum rules in Eqs. (2.80a) and (2.80d), first established in [22], are obtained by combining

Eqs. (2.74a) with (2.77a) and Eqs. (2.74b) with (2.77b), respectively. All the other relations
presented above are new. In the following section we will sequentially discuss applications of
these sum rules in field theory and hadronic phenomenology.
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Chapter 3

Applications of the sum rules

The sum rules derived in the previous chapter can be rigorously tested in field theory and in
consistent model calculations. In this case the sum rules can be interpreted as consistency
conditions that constrain low-energy behavior of the theory, i.e. constrain the parameters of
an effective action. Conversely, when the low-energy structure is fixed by the gauge invariance,
dispersion relations give constraints on the ultraviolet behavior of the theory. Starting from
perturbative examples we will subsequently discuss the impact of the sum rules in field theory.
When applied perturbatively these sum rules must hold exactly for each order of the perturba-
tion expansion. All of the new relations will be verified exactly at leading and one-loop order
in scalar and spinor QED. Subsequently, we will discuss the transition to the non-perturbative
regime on the example of applying the sum rules to a study of bound states in a scalar �4 theory.
On the other hand as their derivation is based on general principles they must be satisfied as
well for the observable hadronic cross-sections. When applied to the �⇤

� production of mesons
they lead to intricate relations between the �� decay widths or the �⇤

� transition form factors
for (pseudo-) scalar, axial-vector and tensor mesons. We will proceed to the phenomenological
applications for the production of hadrons in the last part of this section.

3.1 Sum rules in perturbation theory

We start from two-photon particle production in perturbative field theory. First, we will
consider tree-level processes in scalar QED (e.g., Born approximation to �⇤

�

⇤ ! ⇡

+

⇡

�), spinor
QED (�⇤

�

⇤ ! qq̄ where q stands for a charged lepton or a quark) and vector QED (�⇤
�

⇤ !
W

+

W

� with spin-1 point-like particles). After that we discuss a pair-production in a model
field theory, the �4 scalar QED at one-loop level.

3.1.1 Tree-level pair production

Scalar QED. At leading order the process is defined by Feynman graphs in Fig.(3.1) represent-
ing the production of a pair. In the Lorentz gauge (i.e. q

µ

✏

µ(q) = 0) the process �⇤
�

⇤ ! �

⇤
�,

describing the transition from an initial state of two virtual photons with four-momenta q

1

, q

2

and helicities �
1

, �

2

= 0, ±1 to a pair of charged scalar particles with four-momenta p

1

and
p

2

is described by the matrix element:

iM(0)

�1�2
= 2ie

2

"

µ(q
1

,�

1

)"⌫(q
2

,�

2

)



2p

1µ

p

2⌫

(q
1

� p

1

)2 � m

2

+
2p

2µ

p

1⌫

(q
2

� p

1

)2 � m

2

+ g

µ⌫

�

. (3.1)

From Eq. (3.1) we can easily compute �⇤
�

⇤ ! �

⇤
� polarized cross sections involving trans-

verse and longitudinal photons to leading order in ↵ in the limit where one of the photons
becomes real (Q2

2

= 0) or quasireal (Q2

2

⇡ 0) :
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Chapter 3 Applications of the sum rules

Figure 3.1: Pair production in scalar QED at leading order
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We firstly study the three sum rules of Eqs. (2.79a, 2.79b, 2.79c) for the case of one real or
quasi-real photon (Q2

2

! 0) and for arbitrary space-like virtuality (Q2

1

� 0) of the other photon.
To better see the cancellation which must take place in these sum rules between contributions
at low and higher energies, we show the integrands of the three sum rules in Figs. 3.2-3.4
multiplied by s. In this way, when plotted logarithmically, one can clearly see how the low and
high energy contributions cancel each other. For the sum rule of Eq. (2.79b), we denote the
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3.1 Sum rules in perturbation theory

integrand as :

I =
1

(s + Q

2

1

)2



�k + �

LT

+
(s + Q

2

1

)

Q

1

Q

2

⌧

a

TL

�

Q

2
2=0

. (3.10)

All three sum rules of Eqs. (2.79a, 2.79b, 2.79c) are exactly verified in scalar QED for arbitrary
space-like values of Q

2

1

. One notices from Figs. 3.2, 3.3, 3.4 that for larger values of Q

2

1

the zero
crossing of the integrands shifts to larger values of s, requiring higher energy contributions for
the cancellation to take place. For the helicity difference sum rule of Eq. (2.79a), one notices
that at low energies �

0

dominates while with increasing energies �
2

overtakes.
Besides exactly verifying the sum rules which integrate to zero, we can also use the above

derived sum rules to study the low-energy coefficients for light-by-light scattering in scalar
QED. Using Eqs. (2.80a, 2.80d), we obtain for the tree-level contributions to the lowest order
coefficients c

1

and c

2

in scalar QED:

c

1

=
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2

m

4

7

1440
, c
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2

m

4

1

1440
. (3.11)

Spinor QED. Analogously to the previous case the response functions in spinor QED to lowest
order in the electromagnetic coupling in the limit where one of the virtual photons becomes
real (Q2

2

= 0) or quasi-real (Q2

2

⇡ 0) are given by :
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3.1 Sum rules in perturbation theory

We again study the three sum rules of Eqs. (2.79a, 2.79b, 2.79c) for the case of one real or
quasi-real photon (Q2

2

! 0) for different space-like virtualities of the other photon. As the
tree level contribution to ⌧

TL

in spinor QED vanishes for one quasi-real photon, one notices
that the sum rule of Eq. (2.79c) is trivially satisfied. For the sum rules involving the helicity
difference of Eq. (2.79a), and involving the integrand I of Eq. (3.10), we show the corresponding
integrands multiplied by s in Figs. 3.5, 3.6 for the case of one real or quasi-real photon and for
different virtualities of the other photon. We again verify that the sum rules involve an exact
cancellation between low and high energy contributions.

Using Eqs. (2.80a, 2.80d), we obtain for the tree-level contributions to the lowest order
coefficients c

1

and c

2

for light-by-light scattering in spinor QED :

c
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m
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m
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7
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. (3.20)

In these case we also are able to verify the sum rule in Eq. (2.81), yielding

c

4
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2

m

6

1

315
, (3.21)

in agreement with the result obtained in Ref. [94] for the low-energy photon-photon scattering.
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Vector QED Now we will discuss two-photon production of a spin-1 massive pair described
by a complex vector field W

µ

(x). A spin-1 particle with mass M may have an electric charge
(e), magnetic dipole (µ), and an electric quadrupole moment (Q), and thus to describe its
interaction with the electromagnetic field (A

µ

) we ought in general to write the following
Lagrangian density :
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where D

µ

= @

µ

+ ieA

µ

, W

µ⌫

= @

µ

W

⌫
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W

µ

, and the electromagnetic moments are given in
terms of parameters l

i

as follows :
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The previous studies show that the feature of the tree-level unitarity1 is maintained for theories
with so-called ’natural’ values of electromagnetic moments. In such theories the particles are
structureless from electromagnetic point of view and their charge distribution is pointlike.
According to previous findings, the natural values for a spin-1 particle electromagnetic moments
are: µ = e/M , Q = �e/M , and hence we deduce the natural values for our model parameters:
l

1

= 1 (corresponding with a g-factor g = 2), l

2

= 0.
For this case we study the helicity-difference sum rule of Eq. (2.79a) with both real or quasi-

real photons (Q2

i

! 0). The �⇤
�

⇤ ! W

⇤
W cross sections to lowest order in ↵ in the limit

where both of the virtual photons become real (Q2

2

= 0) are given by :
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For the sum rules involving the helicity difference of Eq. (2.79a) we show the corresponding
integrand multiplied by s in Fig. 3.7. We observe that the expected cancellation between low
and high energy contributions occurs only for natural values of electromagnetic moments. This
can be related to the unitarity violation for a theory with non-point like fields. The tree-level
contributions to the lowest order coefficients c

1

and c

2

for light-by-light scattering in spin-1
QED are given by

1Tree-level unitarity provides a criterion for the renormalizability of a model at a given energy scale. [95]
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When comparing Eqs. (3.11), (3.20) and (3.28) we observe another curious pattern for the
values of the difference of low-energy constants c

2

� c

1

when considering different spins. From
the cases of spin 0, 1/2 and 1, it seems, that this value can be related to a spin by a very simple
formula :

c
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� c
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= (�1)(2l+1)

(2l + 1)↵2

240M

4

(3.29)

Again this relation is valid only in the case of natural moments, i.e. point-like particles. One can
suppose that such a rule holds for any spins. It would be interesting to check this assumption
for the spin-3/2 fields which is the only remaining consistent theory of higher spin fields.

Figure 3.7: The �� ! W

⇤
W tree level result (vector QED) for the integrand in the �� ⌘ �

2

��
0

sum rule of Eq. (2.79a), multiplied by s (where both of the photons are real).

3.1.2 Loop corrections in scalar QED

To examine the sum rules at higher orders of perturbation theory we will study the two-photon
production process in a specific model quantum field theory. We take one of the simplest
examples: a self-interacting scalar field �(x) with charge e and mass m as described by the
following Lagrangian density,

L = (Dµ
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4
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, (3.30)

where �
0

is the self-interaction coupling constant, while the covariant derivatives and electro-
magnetic field-strength tensor are given as usual by D

µ

= @

µ

+ ieA

µ

and F

µ⌫

= @

µ

A

⌫

� @

⌫

A

µ

.
We already discussed the two-photon production of a scalar pair at leading order in ↵. Now

we consider ��-fusion at the order of O(�↵) which is described by a set of one-loop Feynman
graphs in Fig.(3.8). First two diagrams include correction to the propagator giving rise to
the ultraviolet divergence, which is absorbed by renormalization of mass. The four diagrams
including the vertex correction vanish. In the end the non-vanishing contribution comes from
the three graphs in the last row on Fig. 3.8. The explicit expression for the one-loop production
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Chapter 3 Applications of the sum rules

Figure 3.8: Pair production in scalar QED with self-interaction at one-loop order.

process is given by:
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,

where "µ(q,�) denotes the photon polarization vector, with helicity � = ±1. In Eq. (3.31), the
first term describes the contribution of the first and the second diagrams and the second term
corresponds to the contribution of the third graph in the last row in Fig. 3.8. Note that all
three diagrams contribute only to M

++

and M

00

, i.e. helicity-0 amplitudes, because we have
only s-wave rescattering. Helicity-2 contributions would necessarily involve the d-waves and
higher due to conservation of the angular momentum. For exactly the same reason we have
no angular dependence of the loop contribution. The sum of the 3 diagrams is finite because
it is proportional to q

1

q

2

, i.e, the two external momenta. This happens indeed due to current
conservation. In this case the superficial divergence of the result is less then the superficial
divergence of each diagram.

For the considered theory the one-loop amplitude for the case when one of photons has zero
virtuality has the following covariant decomposition :
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(3.32)

F (s) denotes the (dimensionless) form factor describing the transition of photons to a scalar
pair at one-loop order and the subscripts T and L stand for transverse and longitudinal photons
respectively.
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3.1 Sum rules in perturbation theory

The explicit expressions for form factors are given by :
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with  =
p

1 + 4m

2

/Q

2

1

.
Next-to-leading order corrections to the cross-sections are given by an interference of the

tree-level amplitudes with the one-loop :
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which can be related to cross sections using Eqs. (2.12). The cross sections �
2

, �?, �
TL

vanish
at this order according to previous discussion. The non-vanishing response functions for the
case when one photon is (quasi-)real are given by
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where we used the notation:
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(3.37)

We firstly study the sum rules Eqs. (2.79a), (2.79b) and (2.79c) for the case of one real
or quasi-real photon Q

2

2

! 0 and for arbitrary space-like virtuality of the other photon. As
the one-loop contribution to ⌧

TL

vanishes for one quasi-real photon, one notices that the sum
rule of Eq. (2.79b) is trivially satisfied. For the sum rules of Eqs. (2.79a) and (2.79c) the
corresponding integrands multiplied by s for the case of one real or quasi-real photon and for
different virtualities of the other photon are shown on Fig. 3.9 and Fig. 3.10. One can clearly
see how the low and high-energy contributions cancel each other. Thus all three sum rules of
Eqs. (2.79a), (2.79b) and (2.79c) are exactly verified for arbitrary space-like values of Q

2

1

. One
notices from Figs. 3.9 and 3.10 that for larger values of Q

2

1

the zero crossing of the integrands
shifts to larger values of s, requiring higher energy contributions for cancellation to take place.
For the helicity difference sum rule of Eq. (2.79a) one notices that analogously to the leading
order result, �

0

dominates at low energies while with increasing energies �
2

overtakes. For the
one-loop contribution, it was verified both analytically and numerically that the sum rule is
obeyed at the one-loop level.
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Figure 3.9: The integrand of the SR (2.79a)
in one-loop approximation in the
scalar QED. The definitions of
the curves are as in Fig. 3.4.
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Figure 3.10: The integrand of the SR (2.79c)
for the scalar QED in one-loop
approximation. The definitions
of the curves are as in Fig. 3.4.

Finally using Eqs. (2.80a, 2.80d), we obtain for the O(↵2

�) contributions to the lowest order
coefficients c
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and c
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(3.38)
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3.2 Sum rules in non-perturbative field theory

Figure 3.11: The contribution to the ��-fusion process within the �4 field theory considered in
this work. The solid lines denote the charged scalar fields.

3.2 Sum rules in non-perturbative field theory

We already demonstrated how the sum rules are realized in a perturbation theory for the tree
level amplitudes as well as for the one-loop corrections. Now we are going to examine the sum
rules at higher orders of perturbation theory and study how they apply in the non-perturbative
regime.

Being based on general assumptions about analytic structure of the amplitude and unitar-
ity, sum rules apply also outside the regime where perturbative expansions hold. As sum
rules are consequences of such general principles as analyticity and unitarity, they allow to
establish rigorous relations between physical observables, even when the underlying theory is
non-perturbative in nature and cannot be solved exactly at the moment.

Studies of causality constraints on the basis of different sum rules were carried out in the
past in a number of different contexts. Especially the realization of the well-known GDH sum
rule within perturbative field theory was analyzed for spin-1/2 targets at the lowest nontrivial
order [96] as well as at higher orders in QED [97]. In Refs. [98, 99] consequences of the sum
rules within asymptotically free theories were considered. In more recent years, they have also
been discussed within the context of quantum gravity [100, 101].

In the following, we will use light-by-light scattering sum rules as a tool to study causality
constraints within a model field theory, the �4 scalar theory. We will consider a bubble-chain
resummation and demonstrate it to be consistent with causality to all orders of perturbation
theory. Furthermore, it is shown that the sum rule strictly defines the non-perturbative struc-
ture of the solutions which arise dynamically within this approximation. In a particular regime
of the coupling constant the spectrum of solutions contains a dynamically generated bound
state and a K-matrix pole. For another domain the solution possesses an unphysical pole with
negative invariant mass being a direct sign of the inconsistency of the approximation.

3.2.1 Bubble-chain sum

A class of diagrams naturally arises when one analyzes how the sum rules are realized at higher
orders in perturbation theory, and in fact beyond perturbation theory. In the following, we
discuss the contribution of the bubble-chain type diagrams to the ��-fusion process as shown on
Fig. 3.11, where the shaded blob now denotes a bubble-chain contribution to the four-particle
vertex, as shown in Fig. 3.12. The bubble-chain approximation arises in many contexts, but
most notably as the leading large-N result of the O(N) models. The interest in such an
approximation is due to the fact that it preserves much of the non-linear structure of the exact
theory [102, 103].

The bubble-chain only contributes to the helicity-0 amplitude M

++

, with the n-bubble con-
tribution being given by

M

(n+1)

++

(s) = 4⇡↵ �̃
0

[��̃
0

B(s)]n 2F (s). (3.39)

In the dimensional regularization scheme the one-loop corrections to the four-particle vertex,
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Chapter 3 Applications of the sum rules

Figure 3.12: The bubble chain corection to the four-point vertex function arising in the scalar
�

4 theory.

corresponding with a single bubble in Fig.C.16, can be expressed through the scalar integral:
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This integral has the explicit form:

B(s) = �L

d

(µ2) + 2 � � ln
1 + �

1 � �

+ i⇡�✓(s � 4m

2). (3.41)

Here L

d

= �2/(4 � d) + �

E

+ log(m2

/4⇡µ

2) is the dimensional regularization factor and µ is
the corresponding dimensional regularization scale, �

E

= ��0(1) ' 0.5772 is Euler constant.
We define a renormalized coupling constant �̃ by the equation
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� L

d

(µ2) + 2. (3.42)

This gap equation allows to renormalize the calculated contribution to each order perturba-
tively. Using such renormalization, leads to the renormalized (subtracted) one-loop four-point
function:

B̃(s) ⌘ B(s) � B(4m

2) = �� ln
1 + �

1 � �

+ i⇡�✓(s � 4m

2). (3.43)

We notice that our renormalization procedure is conveniently chosen so as to make a subtraction
at threshold: B̃(4m

2) = 0. We show the real and imaginary parts of the renormalized function
B̃(s) versus s in Fig. 3.13.

The interference of two chain diagrams with total number of (n � 1) bubble loops gives rise
to a cross-section correction of the order O(�̃n). For the helicity-difference cross-section, which
in the given case is equal to the helicity-0 cross section, we obtain as correction beyond the
tree-level:
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(3.44)

We note that the renormalized mass m, which enters the cross-section of Eq. (3.44) is also µ

dependent such that the full result is not. A very nice discussion of the renormalization scale
dependence in this model can be found in Section II of Ref. [103].

We checked explicitly that the expression of Eq. (3.44) satisfies the helicity-difference sum
rule exactly in each order of perturbation theory, i.e.

I(n)(�̃) ⌘
1
Z

4m

2

ds

��(n)(s)

s

= 0. (3.45)

In Fig. 3.14, we plot the integrands of the sum rule at different orders of perturbation theory.
One sees that in all cases the low- and high-energy contributions cancel.
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Figure 3.13: Real and imaginary part of the renormalized one-loop correction to the four-point
function of Eq. (3.43), as function of s.

It is well-known in quantum field theory that when trying to sum the different orders of
perturbation theory, the resulting series is mostly divergent and has at best a meaning as
an asymptotic series, a notable exception being the case of theories which have the property
of asymptotic freedom [104, 105, 106]. As a result, the perturbation theory often can not
determine the solution uniquely. If we are only interested in perturbative phenomena, it is not
a problem to deal with it in the region of small coupling constants. However if we are interested
in non-perturbative phenomena then we are faced with the problem to give a meaning to a
divergent series.

For example, the photon propagator calculated in the leading logarithmic approximation
possesses an unphysical pole associated with negative invariant mass and negative probability,
usually called the "Landau ghost" [107, 108]. In QED, however, due to the smallness of the
coupling constant the ghost appears at an extremely high energy scale, and the results at
the energy scales accessible in experiment are not influenced by it. However, in contrast to
the QED case, in the theory under consideration the coupling constant is not constrained to
small values, and we are faced with the need to regularize our solution. The appearance of
the Landau singularity is usually attributed to non-Borel-summability of the considered series,
where some individual Feynman amplitudes are positive and grow like the factorial of the
number of vertices producing a singularity on the real positive axis of the Borel transform of
the perturbative series [109]. A similar situation arises also in the context of our model. We can
easily see how non-Borel-summability manifests itself in the context of sum rules, by analyzing
the contribution from the high-energy region to the sum rule integral. In the example under
study, the cross section Eq. (3.44) in the n-bubble approximation behaves at large s as:

��(n)(s) ⇠ �̃

n

(ln s/m

2)n�2

s

. (3.46)

The contribution of the high-energy region to the sum rule integral can then be approximated
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where ⇤2 � m

2. As we see for positive �̃ the high-energy contribution to the sum rule integral
is positive definite and grows factorially with the order of perturbation theory, which amounts
to the non-Borel summability of the series
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As a result we can consider
P1

n=0

��(n)(s) only in the sense of an asymptotic series. According
to Poincaré [110], a divergent series is an asymptotic expansion of a function f(�) if
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This definition implies that an asymptotic series does not define a function uniquely. The
expansion coefficients of a function of the type e

�1/�

P

n

k=0

f

k

�

k being identically zero, such a
function can be added to f(�) without changing Eq. (3.49)[111].

Thus it is natural to expect that in order to obtain the correct behavior of I(�̃) for positive �̃,
one has to modify a formal resummation of the geometric series of renormalized bubble-chain
corrections to the cross section in Eq. (3.44), which is given by:
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3.2 Sum rules in non-perturbative field theory

where the tree-level cross section satisfies the sum rule by itself. As was discussed above, due
to the non-Borel-summability of the series of Eq. (3.48), we do not have any reasons to expect
that the sum rule integral will vanish for the resummed theory. In Fig. 3.15 we show the
dependence of the sum rule integral for the cross section of Eq. (3.50) on the value of �̃. We
indeed notice from Fig. 3.15 that the sum rule is only valid for negative values of �̃ (denoted
by region I), but is violated for positive values of �̃ (regions II and III on Fig. 3.15), showing
that the naive procedure of the resummation is not applicable. In order to preserve validity of
the sum rules beyond the region I, we need to find a way to evaluate the cross section correctly.
We will discuss the physical situation for the three regions of �̃ in the following.

!4 !2 0 2 4 6 8 10
!0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Λ
#!1

!m
"Α
#2
$

d
s s

%
Σ
!s
#

I II III

perturbative
regime

b
o
u
n
d

st
at

e

instability

Figure 3.15: The dependence of the sum rule integral for the helicity difference cross section of
the �� ! X process on the inverse coupling �̃�1.

3.2.2 Discussion of the results

Region I : convergent perturbative expansion

Though the sum of Eq. (3.48) is formally undetermined, we can still use a naive resummation
at least in the region of negative �̃, as one can see from Fig. 3.15. For �̃�1

< 0 (region I) the
series is alternating-sign, since ReB̃(s) < 0, and one can expect the series to be resummable.
Alternatively we can interpret such a resummation at the level of photon-photon-fusion ampli-
tudes by summing up contributions of bubble-chain diagrams at different orders, which yields
the amplitude :

M

++

(s, ✓) = M

(tree)

++

(s, ✓) + 4⇡↵
2F (s)

�̃

�1 + B̃(s)
, (3.51)

with tree-level amplitude given as in Eq. (3.1). Squaring the amplitude of Eq. (3.51) then
yields the cross section of Eq. (3.50). In the region I, the amplitude (3.51) has no poles for all
complex values of s, and the series is conventionally convergent for all values of s. Thus the
formal resummation of Eq. (3.50) satisfies the sum rule.

Region II : Bound state and K-matrix pole

Now we proceed to the discussion of the second domain, denoted by region II on Fig. 3.15. In
the range of 0 < �̃

�1

< 2 the sum rule is not valid for the naive cross section, given by Eq. (3.50).
It is easy to see that the amplitude of Eq. (3.51) acquires additional singularities below the
two-particle production threshold. Indeed from Fig. 3.13 we can see that the imaginary part
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of B̃(s) vanishes for s < 4m

2 and monotonically increases for s > 4m

2. The real part satisfies
the inequality

�1 < ReB̃(s) 6 0, (3.52)

for 0 6 s < 1, with the upper limit attained for s = 4m

2. Thus we see that for �̃�1

> 0 there
is always a S-matrix pole for s < 4m

2. Above the two-particle threshold, there is a value of s

where �̃�1 = �ReB̃(s), corresponding with a K-matrix pole as will be discussed below.
We firstly discuss the S-matrix pole below the threshold. Such a pole is usually interpreted

in a relativistic field theory as s bound state with a propagator given by :

P

B

(s) =
1

s � M

2

B

. (3.53)

One notices from Fig. 3.13 that the mass of the bound state varies continuously from M

2

B

= 4m

2

for �̃�1 = 0 to M

2

B

= 0 for �̃�1 = 2 as we sweep over the bound state region on Fig. 3.15. In
general, the position of the bound state pole is defined by the equation :

�̃

�1 = �B̃(M2

B

). (3.54)

It is important to note that the bound state singularity is not described by perturbation theory
being essentially of non-perturbative nature. The (effective) coupling of the ��⇤ to the bound
state is defined by the residue of the pole as :
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and the coupling of the bound state to two photons is given by e

22F (s). Then the second term
in Eq. (3.51) corresponds to a Feynman graph on Fig. 3.16 where the dashed line denotes the
propagation of the bound state and the bubble loops define the mass correction.

...

Figure 3.16: The ��-fusion amplitude corresponding with the dynamical generation of a bound
state.

The agreement with the sum rule can now be remedied by treating the bound state as a new
asymptotic state of the theory and thus including the channel of its production in �� collisions,
see Fig. 3.17. The total helicity cross-section for the case of the single particle final state can
be defined as follows:

��(s) =
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d

4

p

(2⇡)3
�

4(p � q

1

� q

2

)(2⇡)4�(s � M

2
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)|M |2. (3.56)

Figure 3.17: The amplitude of the bound state production in the ��-fusion process.

The contribution of the bound state production to the helicity-0 cross section is:
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50



3.2 Sum rules in non-perturbative field theory

It is not difficult to see now that its contribution to the sum rule integral:
Z 1
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ds
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�

(��!B)
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(s) = 4⇡↵2
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2
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M

4

B

|F (M2

B

)|2, (3.58)

exactly counter-balances the contribution of the �� ! ��

⇤ channel shown in Fig. 3.15. Thus
the causality is restored in this region of �̃.

We now turn to the position of the singularity above the two-particle threshold. To describe
the elastic �� scattering in the bubble-chain approximation in the �4 theory, we only need to
consider S-wave scattering. The (dimensionless) elastic forward scattering amplitude f(s) is
expressed through a real phase shift �(s) as:

f(s) = e

i�(s) sin �(s), (3.59)

or through the K-matrix amplitude K(s) ⌘ tan �(s) as:

f(s) =
1

K

�1(s) � i

. (3.60)

Since the imaginary part of the loop function is

Im B(s) = ⇡� ✓
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2

�

, (3.61)

for s � 4m

2 we can define the elastic amplitude as :
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In Fig. 3.18 we show plots of the phase shift for different values of the coupling constant. Note
that for positive �̃ the phase-shift starts from ⇡ which indicates the presence of one bound state.
Also for positive �̃ the phase shift crosses ⇡/2 at s > 4m

2 satisfying the following equation:

�̃

�1 = �Re B̃(M2

K

). (3.64)

This is the location of the K-matrix pole, corresponding with a scattering amplitude which
becomes purely imaginary. Usually this behaviour is attributed to a resonance. However,
above the threshold, the imaginary part of B(s) is not zero for all complex s and �̃ is real, the
amplitude (3.51) does not possess a S-matrix pole for s > 4m

2. Hence there is no resonance
associated with this K-matrix pole. Note that on the left side of region II on Fig. 3.15,
corresponding with �̃�1 = 0, the K-matrix pole merges with the bound state and is defined by
the position M

2

K

= 4m

2. When reaching the right side of region II on Fig. 3.15, corresponding
with �̃�1 = 2, the mass is obtained from ReB(M2

K

) = 0, which implies M

2

K

⇡ 13.1m

2.

Region III : Ground state instability and tachyonic solution

If �̃�1 becomes larger than +2 (corresponding with region III on Fig. 3.15), the binding energy
of the bound state exceeds 2m, and the pole crosses the point s = 0, moving into the unphysical
region s < 0, and producing a tachyonic solution (a pole with negative invariant mass). The
occurrence of a pole for negative values of s signals that the ground state of the theory is
unstable [102, 103]. We could formally still include this pole in the ��-production channel as
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Chapter 3 Applications of the sum rules

Figure 3.18: Phase shift for different values of �̃.

an asymptotic state and add its contribution to the total cross section in the same way as we
did for the bound state, which restores the validity of the sum rule. For small positive values
of �̃, i.e. �̃�1 ! +1, corresponding with the right asymptotic edge of the region III in Fig.
3.15, the contribution of the tachyon pole is vanishingly small and the sum rule is satisfied
approximately. This is consistent with the observations in other models, for example, in the
leading logarithmic approximation in QED, where the position of the Landau pole appears
at very large scales due to the smallness of the fine structure constant. The position of the
tachyon pole in this limit is defined by

M

2 ⇠ �e

1/

˜

�

, (3.65)

which shows explicitly the non-perturbative structure of this contribution. The contribution
of this pole in this sum rule is asymptotically defined as

��(s) ⇠ 1/M

2 ⇠ �e

�1/

˜

� (3.66)

and vanishes when �̃

�1 ! +1. However such a procedure has a number of inconsistencies.
Being required by the sum rule such extra contribution spoils the general principles of field
theory. The cross section of Eq. (3.66) is negative, thus indicating that the appearance of a
tachyon ghost state contradicts the usual quantum mechanical probabilistic interpretation and
spoils unitarity. Moreover, the delta function is located at a space-like squared four momentum
�M

2 indicating the occurrence of a tachyonic instability and spoiling the analyticity principle.
All these facts show that the bubble-chain approximation is essentially inconsistent in region
III of the coupling constant. For the full theory, such unphysical state will not appear among
the exact eigenstates.
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3.3 Meson production in �� collision

3.3 Meson production in �� collision

In the previous section, the sum rules of Eqs. (2.79a, 2.79b, 2.79c) integrating to zero have been
shown to hold exactly in perturbative calculations (e.g., in QED or QCD in the perturbative
regime) and in the non-perturbative regime. As their derivation is general, their realization
in QCD, in its non-perturbative regime, allows to gain insight in the �⇤

� ! hadrons cross-
sections. This was illustrated in Ref. [22] for the sum rule of Eq. (2.79a). In the following,
we will elaborate on the discussion of Ref. [22] and extend it to the other sum rules presented
above. The required non-perturbative input for the absorptive parts of the sum rules are the
�

⇤
� ! hadrons response functions. We will perform an analysis by estimating the hadronic

contributions to these response functions by the corresponding �⇤
�

⇤ ! M (with M a meson)
production processes, which are described in terms of the �⇤

�

⇤ ! M transition form factors.

3.3.1 Real photons

We first consider the helicity sum rule of Eq. (2.79a) with two real photons producing a meson,
as well as the sum rules of Eq. (2.80d) for the mesonic contributions to the low-energy constants
c

1

and c

2

describing the forward light-by-light scattering amplitude. When producing mesons,
the sum rules will hold separately for states of given intrinsic quantum numbers. Therefore, we
will separately study the sum rule contributions for light quark isovector mesons (Table 3.1),
for light quark isoscalar mesons (Table 3.2), as well as cc̄ mesons (Table 3.3). For the isoscalar
mesons, one could in principle separate the contributions according to singlet or octet states
(or alternatively according to (uū + dd̄)/

p
2 or ss̄ states). The corresponding mesons involve

mixings however which complicate such separation, as this mixing is not known well enough for
some of the states. We will postpone such a separation for a future work and add all isoscalar
meson contributions in the present work.

The pseudo-scalar mesons contribute to the helicity-0 cross section only, given by Eq. (2.17).
The corresponding contributions to the helicity sum rule of Eq. (2.79a) as well as the c

1

and
c

2

sum rules are shown for the ⇡0 in Table 3.1, for the ⌘, ⌘0 in Table 3.2, and for the ⌘
c

(1S)
state in Table 3.3.

Besides the pseudo-scalar mesons, also scalar mesons can only contribute to �
0

. We show
the contributions of the a

0

(980) in Table 3.1, for the f

0

(980) and f

0
0

(1370) in Table 3.2, and
for the �

c0

(1P ) state in Table 3.3. For the scalar mesons, mainly the f

0
0

(1370) state gives a
sizable contribution due to its large 2� decay width. An analogous analysis for the contribution
of the f

0

(500) may yield a sizable although largely uncertain contribution. The uncertainty
mainly comes from the relatively large range in the extracted values for the 2� decay width
�

��

as well as the mass of the f

0

(500), as listed by the PDG [1]. Furthermore, given the
large width of the f

0

(500), a strong interference with the �� ! ⇡⇡ non-resonant background
contribution is expected here. Estimating such contribution goes beyond the narrow resonance
analysis performed in this work, and will require to perform the sum rule analysis directly
for multi-meson channels (⇡⇡, KK̄, ...). Such an analysis is certainly an interesting topic for
future studies.

For the helicity sum rule, one notices that in order to compensate the large negative con-
tribution from the pseudo-scalar mesons, and to lesser extent from the scalar meson states,
an equal strength is required in the helicity-2 cross section, �

2

. For light quark mesons, the
dominant feature of the helicity-2 cross section in the resonance region arises from the multiplet
of tensor mesons f

2

(1270), a

2

(1320), and f

0
2

(1525). For cc̄ tensor mesons, the dominant tensor
contribution is given by the �

c2

(1P ) state.
Measurements at various e

+

e

� colliders, notably the recent high statistics measurements
by the BELLE Collaboration of the �� cross sections to ⇡+

⇡

�, ⇡0

⇡

0, ⌘⇡0, and K

+

K

� chan-
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Chapter 3 Applications of the sum rules

nels [112, 113, 114] have allowed to accurately establish their parameters. For the light quark
mesons, the experimental analyses of decay angular distributions have found [115] that the
tensor mesons are produced predominantly (around 95% or more) in a state of helicity ⇤ = 2.
We will therefore assume in all of the following analyses that �

��

(T (⇤ = 0)) ⇡ 0, and that
�

��

(T (⇤ = 2)) ⇡ �
��

(T ) in Tables 3.1, 3.2, 3.3. We show all tensor meson contributions to
the helicity difference sum rule as well as the c

1

, c

2

sum rules for which the 2� decay widths
are known.

For the isovector meson contributions to the helicity sum rule, shown in Table 3.1, we con-
clude that the lowest isovector tensor meson composed of light quarks, a

2

(1320), compensates
to around 70% the contribution of the ⇡0, which is entirely governed by the chiral anomaly.
Including the a

0

(980) and a

2

(1700) meson contributions, one notices from Table 3.1 that the
deviation from zero for the helicity sum rule is at the 3 � level. This is most likely due to
additional, yet unmeasured, two-photon strength at higher energies in the tensor channel, con-
tributing to �

2

. The perturbative calculation for the �� ! qq̄ cross sections indeed shows that
at higher energies �

2

dominates over �
0

, see Fig. 3.5. Using a duality argument, one can then
expect additional strength from tensor mesons at higher energies.

For the isoscalar states composed of light quarks, the cancellation is even more remarkable:
the sum of f

2

(1270) and f

0
2

(1525), within the experimental accuracy, nearly entirely com-
pensates the combined contribution of the ⌘ and ⌘

0 mesons. Also here, one may expect the
remaining strength to arise from tensor mesons at higher energies.

m

M

�
��

R

ds

s

�� c

1

c

2

[MeV] [keV] [nb] [10�4 GeV�4] [10�4 GeV�4]
⇡

0 134.9766 ± 0.0006 (7.8 ± 0.5) 10�3 �195 ± 13 0 10.94 ± 0.70

a

0

(980) 980 ± 20 0.3 ± 0.1 �20 ± 8 0.021 ± 0.007 0
a

2

(1320) 1318.3 ± 0.6 1.00 ± 0.06 134 ± 8 0.039 ± 0.002 0.039 ± 0.002
a

2

(1700) 1732 ± 16 0.30 ± 0.05 18 ± 3 0.003 ± 0.001 0.003 ± 0.001

Sum �63 ± 17 0.06 ± 0.01 10.98 ± 0.70

Table 3.1: �� sum rule contributions of the light quark isovector mesons based on the present
PDG values [1] of the meson masses (m

M

) and their 2� decay widths �
��

. Fourth
column: �

2

� �

0

sum rule of Eq. (2.79a). Fifth, sixth columns: c

1

, c

2

sum rules of
Eqs. (2.80a, 2.80d) respectively.

For the cc̄ states, one notices that the known strength in the tensor channel from the �
c2

(1P )
state only compensates about 20% of the strength arising from the ⌘

c

(1S) and �
c0

(1P ) states.
We can however expect a sizable contribution to this sum rule from states above the nearby DD̄

threshold, which we denote by s

D

= 4m

2

D

⇡ 14 GeV2, using the D-meson mass m

D

⇡ 1.87 GeV.
So far, the helicity cross sections have not been measured above DD̄ threshold. To estimate
this continuum contribution to the helicity sum rule, which we denote by I

cont

, we use a
quark-hadron duality argument [116] , which amounts to replacing the integral of the helicity
difference cross section for the �� ! X process (with X any hadronic final state containing
charm quarks) by the corresponding integral of the helicity difference cross section for the
perturbative �� ! cc̄ process :

I

cont

⌘
1
Z

sD

ds

1

s

[�
2

� �

0

] (�� ! X) ⇡
1
Z

sD

ds

1

s

[�
2

� �

0

] (�� ! cc̄), (3.67)

where the perturbative cross section is given in Appendix B.2. The duality expressed by the
approximate equality in Eq. (3.67) is meant to hold in a global sense, i.e. after integration over
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3.3 Meson production in �� collision

m

M

�
��

R

ds

s

�� c

1

c

2

[MeV] [keV] [nb] [10�4GeV�4] [10�4GeV�4]
⌘ 547.853 ± 0.024 0.510 ± 0.026 �191 ± 10 0 0.65 ± 0.03
⌘

0 957.78 ± 0.06 4.29 ± 0.14 �300 ± 10 0 0.33 ± 0.01

f

0

(980) 980 ± 10 0.29 ± 0.07 �19 ± 5 0.020 ± 0.005 0
f

0
0

(1370) 1200 � 1500 3.8 ± 1.5 �91 ± 36 0.049 ± 0.019 0
f

2

(1270) 1275.1 ± 1.2 3.03 ± 0.35 449 ± 52 0.141 ± 0.016 0.141 ± 0.016
f

0
2

(1525) 1525 ± 5 0.081 ± 0.009 7 ± 1 0.002 ± 0.000 0.002 ± 0.000
f

2

(1565) 1562 ± 13 0.70 ± 0.14 56 ± 11 0.012 ± 0.002 0.012 ± 0.002

Sum �89 ± 66 0.22 ± 0.03 1.14 ± 0.04

Table 3.2: �� sum rule contributions of the light quark isoscalar mesons based on the present
PDG values [1] of the meson masses (m

M

) and their 2� decay widths �
��

. Fourth
column: �

2

� �

0

sum rule of Eq. (2.79a). Fifth, sixth columns: c

1

, c

2

sum rules of
Eqs. (2.80a, 2.80d) respectively.

m

M

�
��

R

ds

s

�� c

1

c

2

[MeV] [keV] [nb] [10�7GeV�4] [10�7GeV�4]
⌘

c

(1S) 2980.3 ± 1.2 6.7 ± 0.9 �15.6 ± 2.1 0 1.79 ± 0.24

�

c0

(1P ) 3414.75 ± 0.31 2.32 ± 0.13 �3.6 ± 0.2 0.31 ± 0.02 0
�

c2

(1P ) 3556.2 ± 0.09 0.50 ± 0.06 3.4 ± 0.4 0.14 ± 0.02 0.14 ± 0.02

Sum resonances �15.8 ± 2.1 0.49 ± 0.03 1.97 ± 0.24

continuum 15.1

resonances
+ continuum �0.7 ± 2.1

Table 3.3: �� sum rule contributions of the lowest cc̄ mesons based on the present PDG val-
ues [1] of the meson masses (m

M

) and their 2� decay widths �
��

. Fourth column:
the �

2

� �

0

sum rule of Eq. (2.79a), for which we also show the duality estimate of
Eq. (3.70) for the continuum contribution above DD̄ threshold (

p
s � 2m

D

), as well
as the sum of resonances and continuum contributions. Fifth, sixth columns: c

1

, c

2

sum rules of Eqs. (2.80a, 2.80d) respectively.

the energy of the helicity difference cross section above the threshold s

D

. As we have verified
in Section 3.1 that the perturbative cross section satisfies the helicity sum rule exactly, i.e.

0 =

1
Z

4m

2
c

ds

1

s

[�
2

� �

0

] (�� ! cc̄), (3.68)

with m

c

the charm quark mass, we can re-express Eq. (3.67) as:

I

cont

⇡ �
sD
Z

4m

2
c

ds

1

s

[�
2

� �

0

] (�� ! cc̄). (3.69)

Using Eq. (3.14) for the �� ! cc̄ helicity difference cross section, we finally obtain:

I

cont

⇡ �8⇡ ↵2

sD
Z

4m

2
c

ds

1

s

2

(

�3

r

1 � 4m

2

c

s

+ 2 ln

 p
s

2m

c

"

1 +

r

1 � 4m

2

c

s

#!)

. (3.70)
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Using the PDG value m

c

⇡ 1.27 GeV [1], we show the duality estimate for �I

cont

in Fig. 3.19,
as function of the integration limit s

D

(solid red curve). Using the physical value of the DD̄

threshold, s

D

⇡ 14 GeV2, we obtain: I

cont

⇡ 15.1 nb. We notice that within the experimental
uncertainty, this fully cancels the sum of the ⌘

c

(1S),�
c0

(1P ), and �

c2

(1P ) resonance contri-
butions to the �

2

� �

0

sum rule, as is shown in Table 3.3. This cancellation quantitatively
illustrates the interplay between resonances with hidden charm (cc̄ states) and production of
charmed mesons in order to satisfy the sum rule. It will be interesting to further test this exper-
imentally by measuring the �� production cross sections above DD̄ threshold, where a plethora
of new states (so-called XY Z states) have been found in recent years, see e.g. Ref. [117] for a
review.

� �� �� �� �� �� �� ��-��

-��

-��

-�

�

V ' @*H9 � D

-
, FR

QW
@QE
D

Figure 3.19: Solid (red) curve: duality estimate for the negative of the continuum contribution
of Eq. (3.70) to the helicity difference sum rule for charm quarks as function
of the integration limit s

D

, which represents the threshold for charmed meson
production (DD̄ threshold). For reference, the dashed (blue) horizontal curve
indicates the sum of the ⌘

c

(1S),�
c0

(1P ), and �
c2

(1P ) resonance contributions to
the �

2

� �

0

sum rule, as listed in Table 3.3. The intersection between both curves
near the physical DD̄ threshold, s

D

⇡ 14 GeV2 indicates a perfect cancellation
between these resonance contributions and the duality estimate for the continuum
contribution.

We have also computed the meson contributions to the forward light-by-light scattering
coefficients c

1

and c

2

(fifth and sixth columns respectively in Tables 3.1, 3.2, 3.3). The di-
mensionality of these coefficients requires them to scale with the meson mass m

M

as 1/m

4

M

.
Therefore, the higher mass mesons contribute very insignificantly to these coefficients. One
notes that the coefficient c

1

, which involves the cross section �k, does not receive any con-
tributions from pseudo-scalar mesons, and is dominated by the tensor mesons a

2

(1320) and
f

2

(1270), with smaller contributions from the scalar states around 1 GeV. On the other hand,
the coefficient c

2

, which involves the cross section �?, is totally dominated by the contributions
from pseudo-scalar mesons, especially the light ⇡0, with contributions of ⌘ and ⌘

0 at the 10%
level of the ⇡0 contribution.
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3.3 Meson production in �� collision

3.3.2 Virtual photons

We next discuss the sum rule of Eq. (2.79b) when both photons are quasi-real. One immediately
observes that pseudo-scalar mesons do not contribute to this sum rule. However scalar, axial-
vector and tensor mesons will contribute to this sum rule. The sum rule will therefore require
a cancellation mechanisms between scalar, axial-vector and tensor mesons, which we will study
subsequently. According to Eq. (2.26), scalar mesons (with mass m

S

) can only contribute to
the �k term in the sum rule, and their contribution is given by:

Z

ds

1

s

2

⇥

�k
⇤

Q

2
1=Q

2
2=0

= 16⇡2

�
��

(S)

m

5

S

. (3.71)

In contrast, Eq. (2.35) shows that axial-vector mesons (with mass m

A

) can only contribute
to the ⌧a

TL

term in the sum rule as:

Z

ds

1

s



⌧

a

TL

Q

1

Q

2

�

Q

2
1=Q

2
2=0

= �8⇡2

3 �̃
��

(A)

m

5

A

, (3.72)

where we introduced the equivalent 2� decay width �̃
��

(A) of Eq. (2.31).
The tensor mesons in general contribute to both terms of the sum rule of Eq. (2.79b). For

the �k contribution, we will use the experimental observation that light tensor mesons are
produced predominantly (around 95 % or more) in a state of helicity ⇤ = 2, as discussed
above. Neglecting therefore the much smaller �

0

term, we obtain from Eq. (2.57):
Z

ds

1

s

2

⇥

�k
⇤

Q

2
1=Q

2
2=0

=

Z

ds

1

s

2

1

2
[�

2

]
Q

2
1=Q

2
2=0

= 8⇡2

5 �
��

(T )

m

5

T

, (3.73)

with tensor meson mass m

T

. For the ⌧a

TL

contribution to the sum rule of Eq. (2.79b), one
sees from Eq. (2.57) that it involves a helicity-1 amplitude for tensor meson production by
quasi-real photons, which unfortunately is not known experimentally for any tensor meson. It
is reasonable to assume that for quasi-real photons this amplitude is much smaller than the
helicity-2 amplitude which is known to dominate in the real photon limit. We will therefore
neglect the helicity-1 contribution in the following analysis.

One notes from Eqs. (3.71, 3.72, 3.73) that only axial-vector mesons give a negative contribu-
tion to the sum rule of Eq. (2.79b), whereas scalar and tensor mesons contribute positively. As
the sum rule has to integrate to zero, one therefore obtains a cancellation mechanism between
axial-vector mesons on one hand, and scalar and tensor mesons on the other. In Table 3.4,
we show the contributions of the lowest lying scalar, axial-vector and tensor mesons, for which
the 2� widths are known experimentally. One sees from Table 3.4 that the two lowest lying
axial-vector mesons f

1

(1285) and f

1

(1420) are entirely cancelled, within error bars, by the con-
tribution of the dominant tensor meson f

2

(1270). Using the experimentally known 2� widths,
the deviation of the (zero) sum rule value is at the 2� level, which hints at a moderate contri-
bution of either another higher mass axial-vector meson state or a non-resonant contribution
with axial-vector quantum numbers.

At finite Q

2

1

, for Q

2

2

= 0, the three sum rules of Eqs. (2.79a, 2.79b, 2.79c) imply relations
between the transition form factors for the contributing mesons. To date, experimental results
for the �⇤

� ! meson FFs only exist for the pseudo-scalar mesons ⇡0

, ⌘, ⌘

0, and ⌘

c

(1S), as
well as for the axial-vector mesons f

1

(1285), and f

1

(1420). For other mesons, in particular
the tensor mesons, the corresponding form factors still wait to be extracted. We have seen
from Table 3.2 that for real photons the dominant contributions to the helicity sum rule of
Eq. (2.79a) come from ⌘, ⌘

0, and f

2

(1270) mesons, where the f

2

(1270) contribution cancels
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m

M

�
��

R

ds

s

2 �k(s)
R

ds

h

1

s

⌧

a
TL

Q1Q2

i

Q

2
i =0

R

ds [I]
Q

2
i =0

[MeV] [keV] [nb / GeV2] [nb / GeV2] [nb / GeV2]
f

1

(1285) 1281.8 ± 0.6 3.5 ± 0.8 0 �93 ± 21 �93 ± 21
f

1

(1420) 1426.4 ± 0.9 3.2 ± 0.9 0 �50 ± 14 �50 ± 14

f

0

(980) 980 ± 10 0.29 ± 0.07 20 ± 5 0 20 ± 5
f

0
0

(1370) 1200 � 1500 3.8 ± 1.5 48 ± 19 0 48 ± 19

f

2

(1270) 1275.1 ± 1.2 3.03 ± 0.35 138 ± 16 & 0 138 ± 16
f

0
2

(1525) 1525 ± 5 0.081 ± 0.009 1.5 ± 0.2 & 0 1.5 ± 0.2
f

2

(1565) 1562 ± 13 0.70 ± 0.14 12 ± 2 & 0 12 ± 2

Sum 76 ± 36

Table 3.4: Light isoscalar meson contributions to the sum rule of Eq. (2.79b) based on the
present PDG values [1] of the meson masses (m

M

) and their 2� decay widths �
��

.
For the axial-vector mesons, we quote the equivalent 2� decay width �̃

��

of Table 4.3.
Fourth column: �k contribution, fifth column: ⌧a

TL

contribution, sixth column: total
contribution to the sum rule of Eq. (2.79b).

to 90% the contribution from the ⌘ and ⌘

0 mesons. We will therefore use the corresponding
sum rule of Eq. (2.79a) at finite Q

2

1

to estimate the �⇤
� ! f

2

(1270) helicity-2 FF from the
measured ⌘ and ⌘0 FFs, given by Eq. (2.20). Assuming that the helicity sum rule of Eq. (2.79a)
is saturated by the ⌘, ⌘0, and f

2

(1270) mesons, we then obtain:

5 �
��

(f
2

)

m

3

f2

2

4

T

(2)

f2
(Q2

1

, 0)

T

(2)

f2
(0, 0)

3

5

2

' c

⌘

1
�

1 + Q

2

1

/⇤2

⌘

�

2

+ c

⌘

0
1

⇣

1 + Q

2

1

/⇤2

⌘

0

⌘

2

, (3.74)

where we have introduced the shorthand notation:

c

P

⌘ �
��

(P)

m

3

P

. (3.75)

For Q

2

1

= 0, the f

2

(1270) meson contribution cancels to 90% the ⌘ + ⌘

0 contributions to the
helicity sum rule. We can therefore use

5 �
��

(f
2

)

m

3

f2

' c

⌘

+ c

0
⌘

, (3.76)

which allows us to express Eq. (3.74) as:

T

(2)

f2
(Q2
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We can obtain a second estimate for the T

(2) FF for the f

2

(1270) meson from the sum
rule of Eq. (2.79b). We have seen from Table 3.4 that for quasi-real photons the dominant
contributions to this sum rule come from f

1

(1285), f
1

(1420), and f

2

(1270) mesons, where the
f

2

(1270) contribution cancels to 95 % the contribution from the f

1

(1285) and f

1

(1420) mesons.
We can then also use the corresponding sum rule of Eq. (2.79b) at finite Q

2

1

to estimate the
�

⇤
� ! f

2

(1270) helicity-2 FF from the measured f

1

(1285) and f

1

(1420) FFs, using Eqs. (2.38,
2.41). Assuming that the helicity sum rule of Eq. (2.79b) is saturated by the f

1

(1285), f

1

(1420),
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and f

2

(1270) mesons, which we denote by f

1

, f

0
1

, and f

2

respectively, and retaining only the
supposedly dominant ⇤ = 2 FF for the tensor mesons, we obtain:
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where
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A
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For Q

2

1

= 0, the f

2

(1270) meson contribution cancels to 95% the f

1

(1285)+ f

1

(1420) contribu-
tions to the sum rule of Eq. (2.79b), which implies:
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This allows to obtain a second estimate for the T

(2) FF for the f

2

(1270) meson as:
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In Fig. 3.20 we show the two sum rule estimates of Eqs. (3.77) and (3.81) for the FF T

(2)

for the tensor meson f

2

(1270) using the known experimental information for either ⌘, ⌘0 in
Eq. (3.77), or f

1

(1285), f
1

(1420) in Eq. (3.81). When taking the ratio of both estimates, one
sees that it is larger than 80% below 1 GeV2 and around 65% around Q

2 = 2 GeV2. It will
be interesting to confront these estimates with a direct measurement of the T

(2) FF for the
f

2

(1270) tensor meson.
In an analogous way, we can provide an estimate for the a

2

(1320) FF from the ⇡0 FF. We
have seen from Table 3.1 that ⇡0 and a

2

(1320) provide the dominant isovector contributions
to the helicity sum rule of Eq. (2.79a), where the a

2

(1320) contribution cancels to 70% the
contribution from the ⇡0. We can therefore use the sum rule of Eq. (2.79a) for one virtual
photon to estimate the helicity-two FF T

(2) for the a

2

(1320) meson in terms of the ⇡0 FF,
given by Eq. (2.20), as:
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As empirically the �⇤
� ! ⇡

0 FF is the best known meson transition FF, it will be interesting
to test the above prediction for the a

2

(1320) FF experimentally.

3.4 Conclusions

We have studied the forward light-by-light scattering sum rules which involve energy weighted
integrals of �⇤

� fusion cross sections, measurable at e

+

e

� colliders, which integrate to zero
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Figure 3.20: Sum rule estimates for the form factor T

(2)(Q2

, 0)/T

(2)(0, 0) with helicity ⇤ = 2
for the tensor meson f

2

(1270). Red solid curve: sum rule estimate from Eq. (3.77),
using the experimental input from the ⌘ and ⌘0 FFs. Blue dashed curve: sum rule
estimate from Eq. (3.81), using the experimental input from the f

1

(1285) and
f

1

(1420) FFs.
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In these sum rules the �⇤
� fusion cross sections are for one (quasi-) real photon and a second

virtual photon which can have arbitrary (space-like) virtuality. The first of the sum rules
generalizes the GDH sum rule for the helicity-difference �� fusion cross section to the case of
one real and one virtual photon. The two further sum rules are for �⇤

� fusion cross sections
which involve longitudinal photon amplitudes.

These sum rules were tested and verified exactly at tree and one-loop level in scalar and spinor
QED for the case of two (quasi-)real and one virtual and one (quasi-)real photons. We have
observed that for larger values of the photon’s virtuality the higher energy contributions are
required for cancellations to take place. Another observation is that for the helicity difference
sum rule of Eq. (2.79a) the �

0

cross section dominates at lower energies while with increasing
energies �

2

overtakes. Similar pattern is observed in the production of the hadronic states
showing deep relation between perturbative production of qq̄ pairs and hadronic resonances.
Furthermore, we have tested the criterium of the tree-level unitarity imposed by the sum
rules on the example of the massive spin-1 QED. We have observed that when applied to the
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processes of higher spin particles production the sum rules hold for the natural values of the
corresponding electromagnetic moments only.

Next, we have studied consequences of causality constraints imposed by the helicity-difference
sum rule for the forward light-by-light scattering process within the �4 scalar quantum field
theory. Within this theory, we have performed a non-perturbative resummation of bubble
graphs. We have demonstrated that depending on the value of the renormalized self-interaction
coupling of the �4 theory, three different regimes emerge. In a first regime, the perturbative
series is convergent and the sum rule as calculated from the continuum states in the theory
holds exactly. In a second regime for the renormalized coupling, the resummed amplitude
acquires additional singularities: a dynamically generated bound state below the two-particle
production threshold and a K-matrix pole above the two-particle production. Is was shown
that when evaluating the light-by-light sum rule, the bound state contribution exactly cancels
the continuum contribution, so as to verify the sum rule. Furthermore, we found a third regime
of the renormalized coupling where a tachyonic solution with negative invariant mass appears,
signaling that in this regime the vacuum is unstable and that the considered non-perturbative
resummation is essentially inconsistent.

The results within the considered model relativistic quantum field theory have demonstrated
that such sum rules provide a very powerful tool to quantitatively connect dynamically gener-
ated bound states with the continuum region of the theory. As such this can be a first step,
to apply such a tool e.g. to the study meson bound states produced in the ��-fusion process
presently under study at different e

+

e

� collider facilities.
Finally, we have performed a detailed quantitative study of the new sum rules for the case

of the production of light quark mesons as well as for the production of mesons in the charm
quark sector. Using the empirical information in evaluating the sum rules, we have found that
the helicity-difference sum rule requires cancellations between different mesons, implying non-
perturbative relations. For the light quark isovector mesons, the ⇡0 contribution was found to
be compensated to around 70% by the contribution of the lowest lying isovector tensor meson
a

2

(1320). For the isoscalar light quark mesons, the ⌘ and ⌘

0 contributions were found to be
entirely compensated within the experimental accuracy by the two lowest-lying tensor mesons
f

2

(1270) and f

0
2

(1525). In the charm quark sector, the situation is different as it involves the
narrow resonance contributions below DD̄ threshold, and the continuum contribution above
DD̄ threshold. For the narrow resonances, the ⌘

c

was found to give by far the dominant
contribution. When using a duality estimate for the continuum contribution, we found that
it entirely cancels the narrow resonance contributions, verifying the sum rule, and pointing to
large tensor strength (helicity 2) in the cross sections above DD̄ threshold. It will be interesting
to test this property experimentally.

The helicity difference sum rule has also been applied for the case of one real and one virtual
photon. In this case the �⇤

� fusion cross sections depend on the meson transition form factors
(FFs). We have reviewed the general formalism and parameterization for the �⇤

� ! meson
transition FFs for (pseudo-) scalar, axial-vector, and tensor mesons. Because for scalar and
tensor mesons the �⇤

� transition FFs have not yet been measured, a direct test of the sum
rules for finite virtuality is not possible at present. However, we were able to show that the
helicity-difference sum rule allows to provide an estimate for the f

2

(1270) tensor FF in terms
of the ⌘, and ⌘

0 FFs, and for the a

2

(1320) tensor FF in terms of the ⇡0 FF. Since empirical
information on pseudo-scalar meson FFs is available, these relations provide predictions for
tensor meson FFs which will be interesting to confront with experiment.

The sum rules involving the �k,�LT

, and ⌧a

TL

�

⇤
� response functions, have also been tested

for the case of quasi-real photons. As pseudo-scalar mesons cannot contribute to this sum
rule, a cancellation between scalar and tensor mesons on one hand and axial-vector mesons
on the other hand is at work. Using the existing empirical information for quasi-real photons,
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the contribution of the two lowest lying axial-vector mesons f

1

(1285) and f

1

(1420) was found
to be entirely cancelled, within error bars, by the contribution of the dominant tensor meson
f

2

(1270). When applying this sum rule to the case of one virtual photon, it again allows one
to relate the f

2

(1270) tensor FF, this time to the transition FFs for the f

1

(1285) and f

1

(1420)
mesons, which have both been measured. The predictions from the two different sum rules for
the f

2

(1270) FF were found to agree within 20% for a virtuality below 1 GeV2, and within 35%
up to about 2 GeV2. The sum rules which express the coefficients in a low-energy expansion
of the forward light-by-light scattering amplitude in terms of �⇤

� ! X cross sections may be
used as a cross-check for models of the non-forward light-by-light scattering which are applied
to evaluate the hadronic LbL contribution to (g � 2)

µ

.
On the experimental side, the ongoing �� physics programs by the BABAR, Belle and BES-

III Collaborations, will allow to further improve the data situation significantly. In particular,
the extraction of the �

⇤
� response functions through their different azimuthal angular de-

pendencies, and the measurements of multi-meson final states (⇡⇡, ⇡⌘, . . .) promise to access
besides the pseudo-scalar meson FFs also the scalar, axial-vector and tensor meson FFs, thus
allowing direct tests of the sum rule predictions presented in this work.
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Chapter 4

Hadronic light-by-light contribution to the
anomalous magnetic moment of the muon

In previous chapters we discussed in detail the process of light-by-light scattering and in par-
ticular, the hadronic contribution to this process. The subject of the second part of this work
is related to the contribution of the hadronic light-by-light scattering to the anomalous mag-
netic moment of the muon. The following chapter is devoted to the hadronic light-by-light
correction to (g � 2)

µ

via the single meson exchange. To carry out our computation we will
use a phenomenological description of the meson transition amplitudes. The two-loop integrals
appearing in the calculation are treated by first performing the angular integration analytically,
followed by a numerical evaluation of the remaining integrals. The values obtained, are the
first estimates for the contributions of the scalar, axial-vector and tensor mesons based on the
phenomenological information on the form factors and significantly disagree with other recent
calculations. Our result completes a list of relevant single meson contributions to the hadronic
light-by-light part of the muon’s anomalous magnetic moment.

4.1 Introduction

Similarly to polarization effects in a dielectric medium, a charge in vacuum is continually
emitting and reabsorbing virtual particles producing a shielding effect, the so-called vacuum
polarization. As a result, due to virtual corrections the effective strength of interactions is sub-
stantially dependent on the interaction distance. This feature of the relativistic quantum field
theory plays a fundamental role for an understanding and description of interaction processes.
When the force is weak, or in other words, when the coupling is small the processes may be well
described by the perturbation theory. While electromagnetic and weak interactions allow to
apply perturbation expansions in a wide range of energy scales up to a Landau pole [107, 108],
strong interaction coupling becomes small only at high energies as inferred by the property of
asymptotic freedom. In particular, quantum chromodynamics (QCD) acquires the form of a
perturbation theory (pQCD) only at energies above about 2 GeV, which as we will see, does not
apply in the regime of interest to us. As we approach lower energies the strength of the strong
coupling constant increases dramatically and the low-energy QCD becomes non-perturbative in
character. This is the reason why the processes involving hadrons are usually hard to describe
from first principles. To handle the phenomena of the non-perturbative nature one is compelled
to resort to different approximations and model descriptions, which result is a substantial in-
crease of the uncertainties. As a consequence, it is not surprising that the dominant part of
the Standard Model (SM) uncertainty in the calculation of the anomalous magnetic moment
of the muon originates from hadronic effects.

The strong interaction effects in the (g � 2)
µ

show up by virtue of the hadronic vacuum
polarization in the photon propagator h0|TA

µ(x
1

)A⌫(x
2

)|0i and in the light-by-light scattering
four-point Green function

⌦

0|TA

µ(x
1

)A⌫(x
2

)A�(x
3

)A⇢(x
4

)|0
↵

. Being the leading in the electro-
magnetic coupling constant hadronic correction (i.e. starting at O(↵2)), the photon polarization
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type diagrams (hereinafter vacuum polarization) shown in Fig. 4.1 are covering a major part
of the hadronic contribution. The non-perturbative effects appearing in the hadronic vacuum
polarization (VP) may be reliably described by exploiting causality (analyticity) and unitarity
(optical theorem) in terms of experimental low energy data on electron-positron annihilation
to hadrons. In particular, the VP has been estimated based on data for e

+

e

� ! hadrons,
e

+

e

� ! �+hadrons, as well as ⌧ decays, by several groups [41, 42, 43, 44, 45, 46, 47, 48, 49, 50].
It is expected, that the new data from ongoing experiments at Novosibirsk and BES-III
will provide valuable experimental input to further constrain this contribution. It was es-
timated in Ref. [52] that such data will allow to reduce the uncertainty in the HVP to
�a

µ

(l.o. HVP) = 26 ⇥ 10�11, compared to the most recent evaluation of the leading order
VP [50] which sets it to the accuracy �a

µ

(HVP) = 42.4 ⇥ 10�11.

Figure 4.1: The hadronic vacuum polarization contribution to the anomalous magnetic moment
of the muon

A much more problematic type of hadronic corrections are those related to hadronic Light-
by-Light scattering (LbL). Though it sets in at order O(↵3) only, experience shows that this
contribution can be dramatically enhanced as happens in the leptonic counterpart [118]. Being
a constituent of a loop diagram as shown in Fig. 4.2 it implies that three of the four photons1
have off-shell momenta to be integrated over full four-momentum phase space. Obviously,
perturbation theory can not give a satisfactory description of the strong interactions in such
conditions, especially in the low-energy region, where the spectrum of the two-photon produc-
tion shows sharp spikes of ⇡0, ⌘ and ⌘0 mesons while pQCD predicts a smooth continuum (Fig.
1.2). Moreover, it is believed that the process is even dominated by the low-energy region
which makes a consistent calculation from the first principles unrealizable at the moment. Un-
fortunately, the direct experimental input for the non-perturbative dressed four-photon matrix
element available at present is also very limited and the lattice QCD is still far away from the
calculation of such objects with the required precision.

The early calculations were based on the assumption that the process is entirely dominated by
the region around the muon mass. Within such an assumption it is suitable to apply Chiral Per-
turbation Theory (ChPT), which is limited to the low energy tail only. As would be expected,
the applicability of the effective field theories (EFT) possesses the traditional limitations. The
first kind of problem we face when dealing with the EFTs is their non-renormalizability. It
means that the effective expansions are well-defined at low energies, however possess unphys-
ical ultra-violet behavior in contrast to the underlying QCD, which is renormalizable at high
energies, but has not well-defined infra-red behavior. Such an inconsistency in the cut-off de-
pendence of two frameworks results in the fact that the predictions we obtain when trying to
match low- and high-energy pieces acquire dependence on the cut-off scale. In the EFTs such
dependence is usually absorbed in model parameters, which are then tuned to fit the appro-

1One of the photons is external in the considered diagram. Moreover the evaluation of the (g � 2)µ as we will
see further implies setting the limit k ! 0
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Figure 4.2: The hadronic light-by-light scattering contribution to the anomalous magnetic mo-
ment of the muon

priate short distance behavior. However, an estimate of the real model dependence is very
difficult in the considered case as long as the exact solution of the problem is not known.

Another kind of complication we face when applying the EFTs to estimate the hadronic light-
by-light correction is related to the absence of a clear distinction between different asymptotic
regimes. As was mentioned before the loop integration implies the dependence of the integrand
on three photon virtualities which run over the entire range of values. In the case of the
hadronic vacuum polarization the two-point correlator is a function of a single variable, which
allows to make a clear separation between low- and high- energy regions and accordingly to
apply the low-energy effective theory and perturbative QCD consistently. In contrast, in multi-
scale problems it is not possible to carry out such a separation to the full extent. We can still
safely use the effective field theory and perturbative QCD in the soft and hard regions (where
all the scales are either small or large), respectively. However, in the mixed soft-hard regions
the effective and perturbative expansions are not valid any more. The approaches agreed as
a framework for the evaluation of the hadronic light-by-light effects in such regions are for
instance, operator product expansions and soft/hard factorization theorems [119].

At long last, all the attempts to apply the low-energy effective description of strong interac-
tions in its pure form hardly meet with success. In such a situation one may naturally resort
to phenomenological facts to ascertain some empirical patterns and constraints. First of all,
although it was originally assumed that the process under study is low-energy in character, it
was later observed that this assumption does not hold in general and the contributions from
higher momentum region, around 0.5 ⇠ 1 GeV are relevant as well. It means that the hadron
resonances beyond the Goldstone bosons of ChPT may also play an important role in this pro-
cess and have to be taken into account. Note that in photon-hadron interactions the photon
mixes with hadronic vector-mesons like the ⇢0. From the hadronic VP, we know that the ⇢
meson is indeed expected to play an important role in the game. It thus looks natural to apply
a vector-meson dominance (VMD) like model. The naive VMD model attempts to take into
account this hadronic dressing by replacing the photon propagator as

ig

µ⌫

q

2

+ . . . ! ig

µ⌫

q

2

m

2

⇢

m

2

⇢

� q

2

+ . . . (4.1)

Of course real photons q

2 ! 0 in any case remain undressed and the dressing would go away
for m

2 ! 1. The main effect is that it provides a damping at high energies with the ⇢ mass as
an effective cut-off (physical version of a Pauli-Villars cut-off). However, the naive VMD model
does not respect chiral symmetry properties. The combination of correct low-energy structure
of QCD with the vector-meson dominance (VMD) principles was realized in a consistent way in
the resonance lagrangian approach [120, 121], as an extension of ChPT. Other effective theories
which may be to some extent successfully used for the estimates of the hadronic light-by-light
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effects are the Extended Nambu-Jona-Lasinio (ENJL) model [122] or the very similar hidden
local symmetry (HLS) [123, 124, 125] and massive Yang-Mills models [79, 126].

An alternative approach commonly used for an effective description of QCD is the one based
on the large-N

c

limit. In this approach QCD is considered as SU(N
c

) for N

c

! 1 and a true
theory is approximated by an expansion in 1/N

c

[127, 128, 129, 130, 81]. It turns out that
the loop corrections appearing in the perturbative expansion are suppressed by powers of 1/N

c

when the number of colors becomes large. In the context of chiral perturbation theory it means
that the leading order contributions are covered by the tree-level effective Lagrangian assuming
the scalar QED for the interaction of the photon with the charged pseudoscalars.

Based on EFT models, two major estimates of the full a

LbL

µ

contribution exist. The BPP
estimate [131, 132] is based on an extended Nambu-Jona-Lasinio model in which both a 1/N

c

and chiral counting was used. The HKS estimate [133, 134, 135] was based on a hidden local
gauge symmetry model. It is remarkable that despite considerable differences (which results
in a different splitting of long and short distance physics), the results of two approaches are
in a good agreement. It provided to be essentially dominated by the ⇡

0-meson exchange,
which was taken with the wrong sign, however. In order to eliminate the cut-off dependence in
separating long distance and short distance physics when modeling the hadronic amplitudes,
the arguments based on a quark-hadron duality, which holds exactly in the large-N

c

limit of
QCD [136, 137, 138], may be used successively. The spectrum of the large-N

c

which amounts to
an infinite series of narrow vector states may be fairly well approximated by a suitable lowest
meson dominance (LMD+V) ansatz [139]. In this approximation the hadronic amplitudes
assumed to be saturated by known low lying physical states of appropriate quantum numbers.
This approach was adopted in a reanalysis of [140] in 2001, in which a sign mistake was
discovered in the previous estimates of the dominant ⇡0

, ⌘, ⌘

0 exchange contribution. This
correction changed the central value of a

µ

by +167 ⇥ 10�11, a 2.8� shift, and reduced a larger
discrepancy between theory and experiment. More recently [141] additional problems were
found in previous calculations, this time in the short distance constraints (QCD/OPE) used
in matching the high energy behavior of the effective models used for the ⇡0

, ⌘, ⌘

0 exchange
contribution. In addition, most of the evaluations do not take into account the dependence
of the ⇡0

�� vertex on the pion virtuality. Such an assumption may be interpreted as a pole
approximation of the hadronic production amplitude. In this case, however, to calculate the
pole contribution consistently one has to respect the energy-momentum conservation in the
external vertex, which is violated when trying to evaluate the on-shell pion contribution in the
approaches used before. We will discuss this issue in more detail further on and present a new
approach based on dispersion techniques which allows to avoid such inconsistencies in the next
chapter. Nevertheless, experience shows that the corrections arising when taking into account
the off-shell effects are suppressed and despite the defects of such approach adopted in the past
it may still be considered as a first approximation and give us an idea about the order of the
dominant effects.

Though the contributions of the pseudo-scalar mesons are expected to be dominating in
the hadronic light-by-light scattering, there are signs that the corrections from other meson
states may also be relevant in this context. As we saw from the sum rules there is a sizable
contribution to the low-energy light-by-light effective constants originating from a sequence of
scalar, axial and tensor states. At finite virtualities of the photons the contributions of these
states may be even enhanced as compared to the real-photon scattering (e.g. the axial vector
meson, which due to Landau-Yang theorem gives a vanishing contribution to the real-photon
scattering, but is non-zero when the photons are virtual), giving a sizable corrections to the
(g � 2)

µ

which were not yet taken into account consistently. The increasing accuracy of the
experiments and the substantial reduction of the uncertainty of other hadronic contributions
spurs us to include other hadronic states in such evaluation.
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There were a number of attempts to make model estimates for the single meson corrections.
Their predictions for axial-vector mesons differ quite a lot. The before mentioned BPP es-
timate [131, 132] and the HKS estimates [133, 134, 135] for axial-vector meson give results
concordant within the uncertainty. It has been argued by PdRV [51] that the errors in the
BPP and HKS calculations were underestimated, and an intermediate estimate with larger
error has been suggested. The MV estimate [142], which was also adopted in JN [29] and uses
a constant Wess-Zumino-Witten form factor is an order of magnitude larger than the BPP and
HKS estimates.

For the scalar mesons, BPP has performed an estimate, which was adopted by N/JN and
PdRV (by increasing the error bar to 100 %). The contribution of the tensor mesons has never
been estimated before and will be presented in this work for the first time.

axial-vectors scalars tensors
BPP [131, 132] 2.5 ± 1.0 �7 ± 2 -

HKS [133, 134, 135] 1.7 ± 1.7 - -
MV [142] 22 ± 5 - -
PdRV [51] 15 ± 10 �7 ± 7 -
N/JN [29] 22 ± 5 �7 ± 2 -

Table 4.1: HLbL contribution to a

µ

(in units 10�11) due to axial-vector, scalar, and tensor
mesons obtained in this work, compared with various previous estimates.

We can see that except for the pseudo scalar exchange these results vary considerably from
one group to another. This is not a surprise as all these estimates are strongly dependent
on model assumptions and, as a result have a large not well controlled uncertainty. Our aim
is to provide an improved estimate for the HLbL contribution, by considering single meson
contributions beyond the leading pseudo-scalar mesons (⇡0

, ⌘, ⌘

0), which have been evaluated
in the pioneering work of [140]. We will incorporate available experimental input as well as
constraints from light-by-light scattering sum rules [22, 55] to estimate the effects of axial-
vector, scalar, and tensor mesons to the HLbL contribution. The framework which will be
presented will also allow to further improve on the estimate, once new data, in particular from
BES-III, for such meson states will become available.

4.1.1 General formalism and definitions

In quantum field theory a

µ

may be calculated perturbatively by considering a scattering of
a muon in a static electromagnetic field. In momentum space this process is described by
a vertex matrix element of the electromagnetic current between an incoming µ

�(p) and an
outgoing µ

�(p0) states:

⌦

µ

�(p0) |jµ

em

(0)| µ�(p)
↵

= (�ie)ū(p0)�µ(p0
, p)u(p). (4.2)

The vertex �µ(p0
, p) has a relativistically covariant decomposition of the form

�µ(p0
, p) = �

µ

F

1

(k2) + i

�

µ⌫

k

⌫

2m

F

2

(k2), (4.3)

where k = p

0 �p is the photon momentum, u(p) denote the Dirac spinors and the matrix �
µ⌫

=
i

2

[�
µ

, �

⌫

] represents the spin 1/2 angular momentum tensor. F

1

(k2) is the Dirac form factor
and in the static (classical) limit corresponding to zero momentum transfer (p0 � p ⌘ k ! 0)
defines the charge renormalization:

F

1

(0) = 1, (4.4)
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in units of the physical positron charge e. F

2

(k2) is the Pauli form factor and at k ! 0

F

2

(0) = a

µ

, (4.5)

giving the finite prediction for the anomalous magnetic moment of the muon. Experience shows
that the straightforward calculation of the electromagnetic form factors turns out to be quite
tedious at the one-loop level already. In particular, it happens due to the occurrence of higher
order tensor integrals. Alternatively, one may project out the form factors directly from the
vertex function using a projection operator technique which appears to be a much more clever
set up for such calculations. In particular, the desired Pauli form factor may be extracted by
using relation

F

2

(k2) = Tr
⇥

(/p + m)⇤
µ

(p0
, p)(/p0 + m)�µ(p0

, p)
⇤

, (4.6)

with the help of projector

⇤
µ

(p0
, p) =

m

2

k

2(4m

2 � k

2)



�

µ

+
k

2 + 2m

2

m(k2 � 4m

2)
(p0 + p)

µ

�

. (4.7)

To obtain the muon anomaly we need to work out the classical limit of the form factor
F

2

(k2):
a

µ

= lim
k

2!0

F

2

(k2). (4.8)

It is important to briefly remark some peculiarities of the limiting procedure in Eq. (4.8).
One has two ways to proceed. One way is to perform angular integration in the loop integrals
assuming finite k and then, when all the angular dependence in the remaining expression is
eliminated to take the limit k

2 ! 0 directly.
Alternatively, one can use the fact that the trace under consideration projects to a scalar,

which allows to average the k dependence over all spacial directions without changing the
result:

Z

d⌦(k̂)

4⇡
a

µ

(k) = a

µ

(4.9)

As a result now the limit may be taken even before the loop integration. In some cases when
the integrand has a simple polynomial expansion in k a simplified limiting procedure may be
implemented. Such a method was adopted in previous calculations [140] and will be pursued
in details further in the next section by applying to the case of pseudo scalar and axial vector
exchanges. However, for most of the simplified procedure can be applied only after carrying
out the loop integration explicitly. Such a technique is described later on the example of a
scalar and tensor meson exchange contribution.

4.1.2 Hadronic light-by-light correction to the (g � 2)
µ

The hadronic light-by-light contribution to the electromagnetic vertex �µ(p0
, p) arises from a

diagram in Fig.4.3. According to this diagram, the vertex matrix element is given by

(�ie)ū(p0)�
⇢

(p0
, p)u(p) =

Z

d4

q

1

(2⇡)4

Z

d4

q

2

(2⇡)4
(�i)3

q
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1

q

2

2

(k � q

1

� q

2

)2

⇥ i

(p + q

1

)2 � m

2

i

(p + k � q

2

)2 � m

2

⇥

⇥(�ie)3ū(p0)��(/p 0 � q/

2

+ m)�⌫(/p + q/

1

+ m)�µ

u(p)⇥
⇥(ie)4⇧

µ⌫�⇢

(q
1

, k � q

1

� q

2

, q

2

),

(4.10)
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Figure 4.3: The LbL scattering contribution to the anomalous magnetic moment of the muon

where

⇧
µ⌫�⇢

(q
1
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2

, q
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) =
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d4

x

1
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⇥ h⌦ |T{j
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(x
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)j
⌫

(x
2

)j
�

(x
3

)j
⇢

(0)}| ⌦i
(4.11)

is the fourth-rank quark hadronic vacuum polarization tensor with |⌦i denoting the QCD
vacuum. The external momentum k is incoming and momenta of the virtual photons are
outgoing from the hadronic "blob". The j

µ

(x) ⌘ ( ̄Q̂�

µ

 )(x) (with  ̄ = (ū, d̄, s̄) and the
charge matrix Q̂ = diag(2/3, �1/3, �1/3)) denotes the light quark part of the electromagnetic
current.

By virtue of electromagnetic current conservation, the tensor ⇧µ⌫�� satisfies the Ward iden-
tities

{q

µ

1

; q⌫

2

; q�

3

; (q
1

+ q

2

+ q

3

)⇢}⇧
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(q
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, q

2

, q

3

) = 0, (4.12)

which entail that

k

�

@

@k

⇢

⇧µ⌫��(q
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2

, q

2

) = �⇧µ⌫�⇢(q
1

, k � q

1

� q

2

, q

2

). (4.13)

Inserting the definition of the vertex correction from Eq. (4.10) into Eq. (5.2) we obtain a
master formula for the hadronic light-by-light contribution to the anomalous magnetic moment

a

LbL

µ

= lim
k!0

ie
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(2⇡)4
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q
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(p0 � q
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� q
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, q
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)⇧
µ⌫��

(q
1

, k � q

1

� q

2
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)

(4.14)

with

T

µ⌫��(q
1

, k � q

1

� q

2

, q

2

) = Tr
⇥

(/p + m)⇤�(p0
, p)(/p0 + m)

⇥��(/p 0 � q/

2

+ m)�⌫(/p + q/

1

+ m)�µ

i

.

(4.15)

As mentioned before, the hadronic tensor ⇧
µ⌫��

(q
1

, k � q

1

� q

2

, q

2

) we have to deal with, has
a very complicated structure and no general approach which allows to define it in a consistent
way exists. Fortunately, as we saw there are a number of considerations which indicate that
this matrix element is dominated by the long distance interaction, in other words the process
is dominated by the exchanges of light quark single mesons and meson pairs. The subsequent
discussion is devoted to a survey of the single meson contribution to the anomalous magnetic
moment of the muon.
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4.1.3 Single meson contributions to the hadronic light-by-light scattering

In this work, we will consider the contributions of a single meson with an arbitrary spin to ⇧,
which have the general form:

(ie)4⇧
µ⌫��

(q
1

, k � q

1

� q

2

, q

2

) = M
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2
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2
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) (4.16)

+ M
µ�,{↵}(q1

, q

2

)
iP

{↵},{�}(q
1

+ q

2

)

(q
1

+ q

2

)2 � M

2

M
⌫�,{�}(k � q

1

� q

2

, �k).

where the three terms correspond with the three topologies shown in Fig. 4.4.

Figure 4.4: The single meson contributions to the hadronic light-by-light scattering.

In Eq. (5.11), the Lorentz amplitude M
µ⌫,{↵}(q1

, q

2

) describes the transition from the initial
state of two virtual photons with momenta q

1

and q

2

to a C-even (JP+) meson with mass M .
Depending on the spin J of the meson, the amplitude M

µ⌫,{↵} has different Lorentz structures:
for the case of a pseudoscalar (JPC = 0�+) and a scalar (JPC = 0++) meson the amplitude
is a rank two tensor, for the case of an axial-vector (JPC = 1++) and a tensor (JPC = 2++)
meson it is a rank three tensor and a rank four tensor respectively. The projector P for spin J

entering the meson propagator is defined by the spin sum

P

{↵},{�}(p) =
J

X

�=�J

"

{↵}
�

(p)"{�}⇤
�

(p), (4.17)

where the "{↵}
�

denote the corresponding polarization tensors.
The transition amplitudes are defined in such a way that the non-perturbative physics is

contained in the meson transition Form Factors (FFs). It is important to note that these FFs
depend on three invariants in the general case [29, 143]. However, mainly due to the absence
of reliable information about the off-shell dependence on the virtuality of the exchanged meson
we will assume, for the following estimates, the pole-dominance approximation for the FFs:

F (q2

1

, q

2

2

, (q
1

+ q

2

)2) = F (q2

1

, q

2

2

, M

2) ⌘ FM�

⇤
�

⇤(q2

1

, q

2

2

), (4.18)

where q

2

1

, q

2

2

denote the two photon virtualities, and (q
1

+ q

2

)2 denotes the meson virtuality.
Given a particular parametrization of the FFs, the loop integrals may be partially performed

analytically. In this work, we will use simple VMD-inspired monopole (mon) and dipole (dip)
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parameterizations of the form :
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, (4.20)

where ⇤
mon

(⇤
dip

) are the monopole (dipole) mass parameters respectively, which are to be
determined from phenomenology. It should be noticed that the behavior of fitting functions
for the form factors at large and small momenta ensures ultraviolet and infrared convergence
to the loop integrals.

In the following section we shall proceed to work out in details the particular cases of scalar,
pseudo scalar, axial vector and tensor meson exchanges.

4.2 Four-dimensional angular integration approach

We now begin our first calculation of a single meson contribution to the anomalous magnetic
moment of the muon, the pseudo scalar and axial vector exchanges. These two cases are
traditionally considered to be a dominant source of the single meson light-by-light correction.
As we saw this assumption is supported by low-energy effective models and quark-hadron
duality arguments.

In contrast to the case of a scalar and a tensor meson the pseudo scalar and the axial
vector transition amplitudes can be constructed as local operators (i.e. without involving the
projectors of Eq. (2.22)). This allows to implement the simplified k ! 0 limiting procedure.
In the subsequent computation we will follow the traditional approach adopted in [144].

The classical limit k ! 0 of Eq. (5.2) may be worked out in the following way. Because of
the singular factor 1/k

2 in the projector ⇤
µ

we are required to expand the amplitude �
µ

(p, k)
to first order for small k,

�
µ

(p0
, p) ' �
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(p), (4.21)

Other factors of k come from expanding the trace by setting p

0 = p+k explicitly. We note that
due to the on-shell condition p

2 = (p + k)2 = m

2 we have (p · k) = �k

2

/2. The only relevant
k

µ

dependence left are the terms linear and quadratic in k, proportional to k

µ

and k

µ

k

⌫

. Since
the trace under consideration projects to a scalar, we may average the residual k dependence
over all spatial directions without changing the result. Since p and k are two independent and
in the limit k ! 0 orthogonal vectors, the averaging is relative to the direction of p. For the
linear term we have

k

µ ⌘
Z

d⌦(p, k)

4⇡
k

µ = 0, (4.22)

since the integrand is an odd function, while
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must be a second rank tensor in p. Since (p · k) = O(k2), the contraction with p

µ

is vanishing,
which requires

� = �↵. (4.24)
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The other possible contraction with g

µ⌫

yields k

2:
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Using these averages we may work out the limit explicitly, which yields
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as a master formula for the calculation of a

µ

[144, 145]. The form of the first term is obtained
upon anti-symmetrization in the indices [µ⌫]. The amplitudes �c

µ

(p) and �
⌫µ

(p) depend on one
on-shell momentum p, only.

We now exploit the electromagnetic current conservation and write the Ward-Takahashi
identity for the derivative vertex: k

⇢

k

�

ū(p0)�
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(p0
, p)u(p) = 0, which implies that the light-

by-light contribution to the Dirac form factor vanishes or �
⇢

(p0
, p)|

k=0

⌘ �c(p) = 0. Recalling
Eq. (4.14) and Eq. (4.13) the hadronic light-by-light contribution to the muon anomalous
magnetic moment for the considered case reads
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4.2.1 Pseudo scalar meson exchange.

According to Eq. (2.14) the amplitude of the two-photon production of the pseudoscalar meson
(P ) is taken as
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The spin projection operator for J = 0 has a trivial form

P (p) = 1. (4.31)

The contribution of the pseudo-scalar meson to the light-by-light scattering may then be
written in terms of the meson form factors, as
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For the calculation we need
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Inserting the last expression into Eq. (4.29) and computing corresponding Dirac traces, we
obtain
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In deriving Eq. (4.34), we have used the fact that, upon a trivial change of variables in the
two-loop integral (4.29), the two first terms of Eq. (4.33) lead to identical contributions. Fur-
thermore, in writing T
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, p) we have taken into account the invariance of the remaining
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where ⇤
P

is the monopole mass parameter. The normalization of the form factor at q
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Within the introduced parametrization Eq. (4.34) becomes
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4.2.2 Axial-vector meson exchange.

We next proceed to compute the contribution of the axial vector meson. Although the pro-
duction of an axial-vector meson (A) by two real photons is forbidden by the Landau-Yang
theorem [87], an axial-vector meson can be produced in two-photon processes when one or
both photons are virtual. Existing phenomenological analyses have used an expression for the
transition amplitude derived from a non-relativistic quark model calculation [90, 88, 89]:
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Note that a general discussion of the A�⇤
�

⇤ vertex, has to allow for three independent Lorentz
structures [85, 86]. However, as no phenomenological information is available at present to
disentangle the three helicity structures, we will use the simplified vertex of Eq. (2.37) in the
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The the axial vector-exchange contribution to the light-by-light scattering in three diagrams
of Fig. (4.4) reads
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and the full light-by-light scattering tensor is given by the sum of three terms:
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Similarly to the pseudo scalar exchange considered before the contributions of (4.47) and
(4.48) are equal. Now it only remains to insert Eqs. (4.47-4.49) into Eq. (4.29) which then
results in
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For the form factor with both virtual photons we use the double pole parametrization:
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With the account of the introduced parametrization Eq. (4.50) becomes
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4.2.3 Angular integration

To evaluate Eqs. (4.40) and (4.55) the basic approach is to perform the integrations directly in
momentum space, without introducing Feynman parameters. To do this, we analytically con-
tinue the loop momenta to the Euclidean region, and then introduce four-dimensional spherical
(hyperspherical) coordinates. After that we perform the resulting angular integrations analyti-
cally. As we shall show in this section, for form factors that have a form of a rational function,
it is possible to perform all angular integrations in the two-loop integral of Eqs. (4.40, 4.55)
using the technique of Gegenbauer polynomials (hyperspherical approach); see [146, 147]. In
order to do so we temporarily discard the constant p

2 = m

2 and perform the Wick rotation
with p spacelike: p

2 = �P

2. It is easily accomplished by letting the energy associated with
each external line acquire the same phase �, which is then varied from 0 to ⇡/2 and making
change of variable p
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2 in the explicit expressions after angular integration. Since the external
momentum P flows only through the massive fermion propagators, we will not need to deform
the integration contour for the radial integrals over Q
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(see the discussion in [147, 148]).
For a start, we briefly summarize some basic properties of the Gegenbauer polynomials; see

also [149, 150]. We introduce the measure of the four-dimensional sphere as follows
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With the account of Wick rotation expressions for the pseudo scalar and axial vector contri-
butions in Eqs. (4.40, 4.55) modify as follows
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for the pseudo scalar exchange, and
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for the axial vector exchange. The generating function of the Gegenbauer polynomials C

(1)

n

(x)
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(hereinafter we use notation C

(1)

n

(x) ⌘ C

n

(x)) is given by

1

z

2 � 2xz + 1
=

1
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(x), �1  x  1, |z| < 1. (4.59)

From Eq. (D.1) we immediately obtain the following property under parity transformations
C

n

(�x) = (�1)n

C

n

(x). Furthermore we get C

n

(1) = n+1. The Gegenbauer polynomials obey
the orthogonality conditions
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where, for instance, (Q̂
1

· K̂) is the cosine of the angle between the four-dimensional vectors
Q

1

and K.
From the generating function, we obtain the following representation of the propagators in

Euclidean space:
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Note that we have to choose the negative sign in front of the square root in Z

M

KL

in order that
|ZM

KL

| < 1. For a massless propagator these expressions simplify as follows:
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Let us introduce the following abbreviations for the propagators in the loop integral in
Eqs. (4.57, 4.58):
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By rewriting the scalar products P ·Q
1

, P ·Q
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and Q
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·Q
2

in terms of the propagators D
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, D
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and D

3

, respectively we can remove some of the terms in the numerator of T
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/(D
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2
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3

D

4
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5

),
n = 1, 2, in Eqs. (4.57, 4.58). If we multiply by the form factors, taking into account their
general form from Eqs. (4.8) and (4.9), and using a partial fraction decomposition, we finally
obtain the following basic angular integrals. Apart from the trivial one

R

d⌦(Q̂
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) = 4⇡2,
they can all be performed using the method of Gegenbauer polynomials (from now on, we write
Q

1

instead of |Q
1

|, etc.). For the sake of demonstration of the technique we will work out
explicitly one example and list the remaining integrals in the Appendix.

Let’s consider integral:
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First, we express the integrand in terms of the polynomial series using expansion (D.14):
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We can see that the angular dependence is now contained in the Gegenbauer polynomials. Now
we can apply the orthogonality relation (D.2) with the result that
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Applied to Eq. (4.68), it gives
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4.3 Three-dimensional angular integration approach

As we saw in Chapter 2 the general Lorentz covariant decomposition of the meson transition
amplitudes for higher spins involve the projectors of Eq. (2.22). Unlike the case of the axial
vector where thanks to a model approximation we could combine the Lorentz structures in such
a way that the projectors are eliminated2, for the scalars and tensors such a parametrization is
not known. As a result, the simplified averaging scheme used in the previous section can not
be applied in this case. To overcome this complication we may however apply the averaging
formula Eq. (4.9) directly to the Eq. (4.29) without expanding the vertex function. The second
peculiarity of the case under consideration is that the particular form of the projectors of
Eq. (2.22) does not allow simple Gegenbauer polynomial expansion of the integrand after the
averaging as was done in the previously. Thus, the analytical integration by means presented
in the previous section is not possible as well. However, the situation is not hopeless. It turns
out that the integrals over the spatial directions of the loop momenta can still be performed
analytically using properties of Legendre polynomials.

4.3.1 Scalar meson exchange

As was mentioned before, A scalar meson (S) may be produced either by two transverse or by
two longitudinal photons [85, 86]. As the main contribution to the magnetic moment comes
from the region of small photon virtualities, the contribution of the transverse amplitude is
dominating. Furthermore, there is no empirical information on the structure of the longitudinal
FFs at present. Thus in this work, we will only consider the transverse part of the scalar meson
production amplitude which is described by:
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As there is no phenomenological information on the scalar FFs available at the moment, for
simplicity, we assume a simple monopole behavior of the form factor with the pole mass ⇤

S

being a free parameter :
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2It should be noticed that the case of the full transition amplitude for the axial vector involving three inde-
pendent structures may be treated similarly, using the framework presented in this section.
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The normalization of the transverse form factor at q

2

1

= q

2

2

= 0 is defined by Eq. (2.25).
According to Eq. (4.14) a scalar meson contribution to the anomalous magnetic moment may

be written as :
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We again used the fact that the first two topologies give equal contributions.
The next step in our calculation is to perform the angular averaging over the spatial directions

of k. Firstly, we simplify the expression by keeping the leading terms in k. We omit all the
terms of first order in k in the trace and expand the denominators of the propagators by using
relation
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Next, we make a change of variables in the two-loop integral. We replace q

1

$ q

2

and
p $ �p�k in the second and q

2

$ k�q
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�q

2

in the third term. After such change of variables
the hadronic matrix element has the same form for all three diagrams. As we will see further it
significantly simplifies the calculation especially for diagram (c). In addition, we again notice
that the first and the second terms give equal contributions. As a result, the two-loop integral
for the anomalous moment modifies as follows:
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Computing the Dirac traces (for which we used the computer algebraic system FORM [151]),
we find that T
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and T

2

contain a set of structures of three types :
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Before proceeding to further steps we will discuss the remaining case of the tensor mesons
(T ) exchange.
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4.3.2 Tensor meson exchange

For the light quark tensor mesons, the experimental analyses of decay angular distributions for
�� cross sections to ⇡+
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�, ⇡0
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0, ⌘⇡0, and K

+

K

� channels have shown [115] that the J = 2
mesons are produced predominantly (around 95% or more) in a state of helicity ⇤ = 2. We will
therefore assume in all of the following analyses that the hadronic light-by-light amplitude for
tensor states is dominated by the helicity ⇤ = 2 exchange. Therefore, the two-photon decay
rate is �

��

(T (⇤ = 2)) ⇡ �
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(T ), and we will safely neglect the contribution of the remaining
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(4.79)

We consider a dipole parametrization for the form factor and use our estimates for the mass
parameters described in the previous chapter. The projector operator for J = 2 has the form
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. (4.81)

In the remaining the calculation completely parallels the scalar case. The difference is in
the additional structures appearing in the tensor exchange and a large number of terms in
the expressions as compared to the scalar case. The intermediate expression become rather
lengthy and we use the computer algebraic system FORM to carry out algebraic manipulations,
contractions and to calculate the traces.

4.3.3 Angular integration

In the following we will discuss the averaging procedure in details. The only dependence on
the direction of k is incorporated in three structures in Eq. (4.78).

First we briefly summarize the main properties of the Legendre polynomials (see [149, 150]).
The Legendre polynomial expansion of the propagators is based on series
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The second crucial property we will intensively exploit in our calculations is an orthogonality
which reads
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where, for instance, (Q̂
1

· K̂) is the cosine of the angle between the four-dimensional vectors
Q

1

and K.
It is convenient to perform the calculation in the muon’s rest reference frame: p = (m, 0, 0, 0).

We assume that the external photon has a finite space-like virtuality so k
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2 which is
due to a scattering nature of the process. Using mass-shell conditions for the muon p
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2 the components of four-vector k = (k0

,k) can be defined in the muon’s rest
frame as :
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Using these relations one can expand the scalar products (q
i

· k) in the vicinity of a small K:
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Thus, in the following we always keep only the leading terms in K.
At this point it is convenient to continue the two-loop integral to the Euclidean region. After

deforming the contour we make the change of variables q
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are the Euclidean
zero components of the corresponding four-momenta and denote the modulus of the Euclidean
loop momenta by capital letters q
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and q
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2

. This allows to change to the angular
coordinates with the result that the loop integration domain becomes finite. Experience shows,
that this is a big advantage for a numerical evaluation. In addition, by doing this analytical
continuation we limit the integration to space-like values of the photons’ virtualities which
keeps us away from production thresholds of the form factors (in the case of monopole form
factor, these correspond with vector meson poles).

Now we proceed to work out the averaging integrals explicitly. First, by rewriting the scalar
products in terms of the propagators we can remove some of the terms involving Q

1

· Q

2

in
the numerator. The scalar products p · Q

1

and p · Q

2

which occur in the fermion propagators
don’t imply angular dependence in the muon’s rest reference frame. The denominators can be
simplified using a partial fraction decomposition and we finally obtain a set of angular integrals,
which can all be performed using properties of the Legendre polynomials.

As a demonstration of the angular averaging procedure let’s consider the integral
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After rotating the momenta and expanding the scalar products we simplify the integrand by
using a rational fraction decomposition, which yields :
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Using the Legendre polynomial expansion for propagators (4.82) and the orthogonality rela-
tion (D.40) we obtain
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Now we can judge the benefit from the change of variables we did before. In the case of
direct averaging without the change of variables the expression for the third diagram would
involve the sum of two momenta Q

1

+ Q

2

instead of Q

2

in the argument of logarithm and the
following analytical integration would be significantly complicated. The full list of the integrals
appearing in the calculation is given in Appendix.
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4.3 Three-dimensional angular integration approach

The next step is the integration over loop momenta. The loop integration can be partially
done analytically and the remaining integrals can be evaluated using numerical algorithms.
The integration technique based on the properties of Gegenbauer polynomials widely used in
two-loop calculations does not lead to analytical results in a general case. Due to the structure
appearing after angular averaging the three-dimensional angular integral can not be performed
analytically for all appearing structures [152]. However, it is possible to perform analytical
integration over two-dimensional spherical angles ⌦(Q

1

) and ⌦(Q
1

) with subsequent numerical
evaluation of the remaining four-dimensional integral. We notice that the only dependence on
the relative angle between vectors Q

1

and Q
2

in the resulting expression is in the Legendre
polynomials. It allows us to integrate it out analytically in a similar way to how we did the
averaging over k. The details of the integration are given in Appendix D.

Due to the reasons mentioned before, it is convenient to carry out the numerical integration
in polar coordinates. In particular, we make the change of variables :
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The resulting four-dimensional integral for the case of a scalar meson with a monopole FF
takes the form :
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where in the third diagram we have absorbed a factor
⇥

(Q
1

+ Q

2

)2 + 2im(cos 
1

+ cos + 
2

)
⇤�1

in the expression for T̃

2

(Q
1

, Q

2

, 

1

, 

2

). Reproducing again all the steps as was done for the
scalar exchange we arrive to a similar four-dimensional integral representation for the tensor
meson contribution to the muon’s anomalous moment,
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The remaining integrals in Eqs. (4.91, 4.92) can not be performed analytically. To accomplish
the integration we use numerical algorithms.
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4.4 Results and discussion

The integrands in four-dimensional representations of Eqs. (4.91, 4.92) as well as in two-
dimensional integrals of Eqs. (4.57, 4.58) are composed of rational functions, square roots and
logarithms. The numerical evaluation of the two- and four-dimensional integral representations
therefore possesses no real problems. We have used the following input values for the physical
constants: ↵ = 1/137.03599976 and the mass of the muon m = m

µ

= 105.66 MeV. The remain-
ing values of meson masses and their decay constants as well as the form factor parameters are
given further in tables. Where it is possible, we will use the available experimental information
to define the mass parameters of the form factor fitting functions. Otherwise, we will exploit
the constraints obtained from the sum rules to set the mass parameters or vary their values in
a certain range. In the end we will compare our predictions with the previous calculations.

4.4.1 Pseudo-scalar mesons

To test the formalism based on three-dimensional angular integration, we have firstly applied
it to the case of pseudo-scalar meson poles. This case had been worked out analytically in
Ref. [140] and reproduced previously in this work using the Gegenbauer polynomial technique,
where for monopole parametrizations of the FFs the HLbL contribution to a

µ

had been given
by a two-dimensional numerical integral over Q

1

and Q

2

. We can alternatively obtain this
two-dimensional representation by using the three-dimensional angular integration technique
with subsequent two-dimensional numerical integration over  

1

and  
2

. We checked that using
e.g. a monopole FF, the result obtained from the analogous to Eq. (4.91) representation for the
pseudo scalar mesons is in exact agreement with the result of Ref. [140]. It is shown in Table
4.2. The errors from the numerical integration are much smaller than the last digits given in
the table below and the total errors are dominated by the phenomenological uncertainties.

M �̃
��

⇤
dip

a

µ

[MeV] [keV] [MeV] [10�11]
⇡

0 134.9766 ± 0.0006 (7.8 ± 0.5) ⇥ 10�3 1040 ± 78 58 ± 10
⌘ 547.853 ± 0.024 0.510 ± 0.026 774 ± 29 13 ± 1
⌘

0 957.78 ± 0.06 4.29 ± 0.14 859 ± 28 12 ± 1

Sum 83 ± 12

Table 4.2: Present values [62] of the ⇡0. ⌘ and ⌘

0 meson masses M , their equivalent 2� decay
widths �̃

��

, defined according to Eq. (4.39), as well as their monopole masses ⇤
mon

entering the FF of Eq. (4.38).

In order to have a better understanding which region of virtualities in the axial-vector meson
FFs is contributing mostly to this result, it is instructive to define a density function ⇢ as :

a

µ
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Z 1
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dQ

1

Z 1

0

dQ
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⇢
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1

(Q
1

, Q

2

) +

Z 1

0

dQ

1

Z 1

0

dQ

2
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2

(Q
1

, Q

2

). (4.93)

For the four-dimensional integral representation the density function may be obtained by two-
dimensional integration over polar angles  

1

and  

2

. We show the dependence of ⇢(P )

1,2

on the
photon virtualities Q

1

and Q

2

, which enter the HLbL scattering diagram, for the ⇡0 meson in
Fig. 4.5.

First of all, we can see that for the pseudo scalar mesons the second distribution function
is highly suppressed compare to the first one. It turns out that the corresponding integral
converges even for a constant form factor as in the WZW model [140]. It means that it is
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less sensitive to the short-distance physics and the contribution is defined by the region of low
momenta. As a result the magnitude of this contribution is very stable with respect to the
various form factors [140]. Finally, one notices that the dominant contribution arises from the
region around Q

1

⇡ Q

2

⇡ 0.5 GeV.

Figure 4.5: The densities ⇢(P )

1,2

as defined in Eq. (4.93), in units 10�10 GeV�2, for the ⇡0 meson.
Left panel corresponds with left two diagrams of Fig. 4.4, right panel corresponds
with right diagram of Fig. 4.4.

As we discussed due to the more complicated vertex structure for scalar and tensor mesons,
the Gegenbauer polynomial technique cannot be easily extended, which is why we resort to the
four-dimensional expression of Eq. (4.91). Using this formalism, we subsequently discuss our
estimates for the HLbL contribution to a

µ

due to axial-vector, scalar and tensor mesons.

4.4.2 Axial-vector mesons

Phenomenologically, the two-photon production cross sections have been measured for the two
lowest lying axial-vector mesons : f

1

(1285) and f

1

(1420). The most recent measurements were
performed by the L3 Collaboration [88, 89]. In those works, the non-relativistic quark model
expression of Eq. (2.37) in terms of a single FF FA�

⇤
�

⇤ has been assumed, and the resulting
FF has been parameterized by a dipole form as in Eq. (4.20). Table 4.3 shows the present
experimental status of the equivalent 2� decay widths for f

1

(1285), and f

1

(1420), as well as
the phenomenological values for the dipole mass parameters ⇤

dip

.
Using these values, we can calculate the HLbL contributions of f

1

(1285) and f

1

(1420) to a

µ

,
which are shown in Table 4.3. Both contributions sum up to a value of 6.4 ⇥ 10�11, which is
roughly one order of magnitude smaller than the dominant HLbL contribution to a

µ

due to
the ⇡0 [140]. We like to emphasize that our estimate for the two dominant axial-vector meson
contributions is based on available experimental information. In this way, we are also able to
provide an error estimate, which derives from the experimental uncertainties in the equivalent
2� decay widths and from the FF parameterization.

We show the dependence of distribution functions ⇢(A)

1,2

on the photon virtualities Q

1

and
Q

2

, which enter the HLbL scattering diagram, for the axial-vector meson f

1

(1285) in Fig. 4.6.
One notices that the dominant contribution arises from the region around Q

1

⇡ Q

2

⇡ 0.5 GeV.
One also sees that the contribution beyond Q

1,2

� 1.5 GeV becomes negligible.
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M �̃
��

⇤
dip

a

µ

[MeV] [keV] [MeV] [10�11]
f

1

(1285) 1281.8 ± 0.6 3.5 ± 0.8 1040 ± 78 5.0 ± 2.0
f

1

(1420) 1426.4 ± 0.9 3.2 ± 0.9 926 ± 78 1.4 ± 0.7

Sum 6.4 ± 2.0

Table 4.3: Present values [62] of the f

1

(1285) meson and f

1

(1420) meson masses M , their
equivalent 2� decay widths �̃

��

, defined according to Eq. (2.31), as well as their
dipole masses ⇤

dip

entering the FF of Eq. (2.37). For �̃
��

, we use the experimental
results from the L3 Collaboration : f

1

(1285) from [88], f

1

(1420) from [89].

Figure 4.6: The densities ⇢(A)

1,2

, in units 10�10 GeV�2, for the axial-vector meson f

1

(1285). Left
panel corresponds with left two diagrams of Fig. 4.4, right panel corresponds with
right diagram of Fig. 4.4.

4.4.3 Scalar mesons

When going to virtual photons, unfortunately no empirical information is available at present
for the S�

⇤
�

⇤ transition FFs. We will assume a simple monopole behavior of the FF. The
monopole mass ⇤

mon

is considered as a free parameter, which we will vary in the expected
hadronic range ⇤

mon

= 1 � 2 GeV, in order to obtain the numerical estimates for a

µ

. We show
our results for the HLbL contribution to a

µ

due to the leading scalar mesons f

0

, f

0
0

, and a

0

in
Table 4.4. We find a negative contribution of the scalar mesons to a

µ

which is in the range �1
to �3 (in units 10�11), when varying ⇤

mon

in the range 1 to 2 GeV. The opposite to the other
contributions sign can clearly seen from the density plots on Fig. 4.7

4.4.4 Tensor mesons

In this work, we also estimate the HLbL contribution to a

µ

due to tensor mesons. The dominant
tensor mesons produced in two-photon fusion processes are given by : f

2

(1270), a

2

(1320),
f

2

(1565), and a

2

(1700), see Table 4.5. At the present moment there is unfortunately no direct
experimental information about the Q

2 dependence of the tensor meson transition FFs. One
can however resort to other phenomenological information based on exact forward sum rules
for the light-by-light scattering. For �⇤

� ! X fusion cross sections, with one real photon (�)
and one virtual photon (�⇤), three super convergence sum rules were derived in Refs. [22, 55].
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M �
��

a

µ

(⇤
mon

= 1 GeV) a

µ

(⇤
mon

= 2 GeV)
[MeV] [keV] [10�11] [10�11]

f

0

(980) 980 ± 10 0.29 ± 0.07 �0.19 ± 0.05 �0.61 ± 0.15
f

0
0

(1370) 1200 � 1500 3.8 ± 1.5 �0.54 ± 0.21 �1.84 ± 0.73
a

0

(980) 980 ± 20 0.3 ± 0.1 �0.20 ± 0.07 �0.63 ± 0.21

Sum �0.9 ± 0.2 �3.1 ± 0.8

Table 4.4: Scalar meson pole contribution to a

µ

based on the present PDG values [62] of the
scalar meson masses M and their 2� decay widths �

��

.

Figure 4.7: The densities ⇢(S)

1,2

, in units 10�10 GeV�2, for the scalar meson for monopole mass
⇤ = 1 GeVx. Left panel corresponds with left two diagrams of Fig. 4.4, right panel
corresponds with right diagram of Fig. 4.4.

Applied to the �⇤
� production of mesons, this leads to intricate relations between transition

FFs of pseudo-scalar, axial and tensor mesons. In order to saturate these sum rules, one obtains
approximate expressions for the dominant tensor meson transition FFs, given the knowledge
of the transition FFs for the pseudo-scalar mesons. In particular, it was shown in Ref. [55]
that the ⌘, and ⌘0 transition FFs constrain the transition FF for f

2

(1270) and the ⇡0 transition
FF constrains the corresponding transition FF for the a

2

(1320) state. We found that in the
relevant range of virtualities these relations can approximately be expressed by choosing a
dipole form for the tensor meson transition FF with dipole mass parameter ⇤

dip

= 1.5 GeV.
We use this estimate in calculating the HLbL contribution to a

µ

due to tensor mesons, which
is shown in Table 4.5. We see that the four dominant tensor meson contributions add up to
a contribution to a

µ

of around 1 (in units 10�11). The density plots for the case of ... meson
are shown on Fig. 4.8. A curious fact emerges here, the contribution of the tensor meson is
cancelled by the contribution of a scalar meson. Similar cancellation we already observed when
analyzing of the meson production in the sum rules.

4.4.5 Comparison with previous works

Our results can be compared with previous estimates for axial-vector and scalar mesons, which
are shown in Table 4.6 and were mentioned previously. For tensor mesons, our results are the
first estimates.
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Figure 4.8: The densities ⇢(S)

1,2

, in units 10�10 GeV�2, for the scalar meson. Left panel cor-
responds with left two diagrams of Fig. 4.4, right panel corresponds with right
diagram of Fig. 4.4.

M �
��

a

µ

(⇤
dip

= 1.5 GeV)
[MeV] [keV] [10�11]

f

2

(1270) 1275.1 ± 1.2 3.03 ± 0.35 0.79 ± 0.09
f

2

(1565) 1562 ± 13 0.70 ± 0.14 0.07 ± 0.01

a

2

(1320) 1318.3 ± 0.6 1.00 ± 0.06 0.22 ± 0.01
a

2

(1700) 1732 ± 16 0.30 ± 0.05 0.02± 0.003
Sum 1.1 ± 0.1

Table 4.5: Tensor meson pole contribution to a

µ

based on the present PDG values [62] of the
tensor meson masses M and their 2� decay widths �

��

.

The MV [142] and JN [29] estimates are an order of magnitude larger than our estimate,
while the BPP [131, 132], HKS [133, 134, 135] and PdRV [51] estimates are enhanced by
around a factor 3. The large value of Ref. [142] was obtained because a constant FF was used
at the external vertex to reproduce the QCD short-distance constraints. Although such short-
distance constraints are surely important for the large Q

2 behavior of the FFs, one can see
from Fig. 4.6 that using the empirical information for the f

1

(1285) transition FF, the region
which dominates the HLbL contribution to a

µ

is for virtualities around and below 1 GeV2. An
intermediate estimate of PdRV [51] is in agreement within 1� with our estimate.

For the scalar mesons, BPP has performed an estimate, which was adopted by N/JN and
PdRV (by increasing the error bar to 100 %). Compared with the result of BPP, our result
also has the negative sign, but is around a factor of 2 smaller in magnitude. Given that there
is no empirical information at all on the scalar meson transition FFs, future data from BES-III
would be mostly welcome here to better constrain this contribution.
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axial-vectors scalars tensors
BPP [131, 132] 2.5 ± 1.0 �7 ± 2 -

HKS [133, 134, 135] 1.7 ± 1.7 - -
MV [142] 22 ± 5 - -
PdRV [51] 15 ± 10 �7 ± 7 -
N/JN [29] 22 ± 5 �7 ± 2 -
this work 6.4 ± 2.0 �3.1 ± 0.8 1.1 ± 0.1

Table 4.6: HLbL contribution to a

µ

(in units 10�11) due to axial-vector, scalar, and tensor
mesons obtained in this work, compared with various previous estimates. For our
scalar meson estimate, we have quoted the value corresponding with ⇤

mon

= 2 GeV.

4.5 Conclusions

In this chapter we have presented the formalism to calculate the HLbL contribution to the
muon’s anomalous magnetic moment a

µ

due to axial-vector, scalar and tensor meson poles. In
this way, we have extended the framework of Ref. [140], where the leading HLbL contribution
due to pseudo-scalar mesons was evaluated. To allow for the different Lorentz structures of
the �⇤

�

⇤ ! meson vertex, we have performed a combined analytical and numerical technique,
where the angular integrals over the virtual photon momenta were performed analytically using
the Legendre polynomial technique, and where the resulting four-dimensional integral for a

µ

was performed numerically. We validated our method by reproducing the known result for
pseudo-scalar mesons. To estimate the HLbL contribution to a

µ

from axial-vector, scalar and
tensor mesons, we incorporated available experimental input as well as constraints from light-
by-light scattering sum rules. For those mesons which have the largest known couplings to two
virtual photons, we obtained as estimates :

a

µ

(f
1

, f

0
1

) = (6.4 ± 2.0) ⇥ 10�11

,

a

µ

(f
0

, f

0
0

, a

0

) = [(�0.9 ± 0.2) to (�3.1 ± 0.8)] ⇥ 10�11

,

a

µ

(f
2

, f

0
2

, a

2

, a

0
2

) = (1.1 ± 0.1) ⇥ 10�11

.

The size of such contributions is about an order of magnitude smaller than the dominant ⇡0

HLbL contribution. Given a new muon g � 2 experiment at Fermilab, which aims to reduce
the experimental uncertainty to �a

µ

⇡ 16⇥10�11, it is however crucial to further constrain the
theoretical uncertainty due to the HLbL contribution. In this respect, it would be particularly
helpful to have �⇤

�

⇤ ! meson transition form factor measurements with one and two virtual
photons for axial-vector, scalar and tensor states. As such information will become available,
in particular from future measurements from BES-III, the here developed formalism can be
used to further improve on the estimate of the HLbL contribution to a

µ

.
The estimates worked out in this chapter shed the light on the hadronic contributions to

the (g � 2)
µ

giving an important information about the relevance of different intermediate
states. However, as we already mentioned there is one issue which should not be dismissed. In
order to avoid the inconsistency related to the momentum conservation and due to the absence
of the phenomenological information we had to assume constant form factors in the meson
mass. This, of course, might be a source of a larger uncertainty of our estimates compare to
errors given above. In order to overcome this complication and to define hadronic contributions
rigorously we refer to the analytical structure of the hadronic vacuum polarization tensor and
develop a novel dispersion technique for the evaluation of the HLbL contribution to the (g�2)

µ
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Chapter 5

Hadronic light-by-light contribution to
(g � 2)µ in a dispersion approach

In the previous chapter we have estimated the single meson LbL contributions to the anoma-
lous magnetic moment of the muon by the direct computation of loop integrals in Feynman
diagrams. However, our results possess significant limitations. A weak point of the used ap-
proach is the on-shell approximation for the meson form factors, while in the loop integral
the exchanged meson is significantly off-shell. To overcome this inconsistency we develop a
dispersion representation for the two-loop HLbL contribution to (g � 2)

µ

. The aim is to ex-
press the HLbL correction to the anomalous magnetic moment in terms of on-shell hadronic
amplitudes which in this case can be directly determined from the experimental data. The
integrals appearing in (g � 2)

µ

can be generally decomposed in a sum of scalar integrals. As
a first step we will develop the formalism for a dispersive representation of the scalar two-loop
functions. The general dispersive framework for the muon’s anomalous magnetic moment will
be discussed subsequently.

5.1 Introduction

When dealing with the strong interactions especially in the non-perturbative regime it is often
prohibitive to find a consistent theoretical solution. The background processes involving strong
forces are usually a source of large uncertainty which in many situations defies their systematic
theoretical control. In such a situation to constrain the hadronic uncertainties one can refer to
experimental data. To make such an implementation one needs to express the quantity in terms
of on-shell hadronic matrix elements as outside of the mass shell they are highly suppressed
and can not be measured experimentally.

The rigorous incorporation of the data into a theoretical analysis can be carried out by means
of the dispersion framework. We already showed how, by analyticity and unitarity, the elastic
scattering amplitude at low energy may be related to the two-photon fusion cross-sections by
sum rules. Similarly, one can apply such an idea for the calculation of loop corrections where
the non-perturbative hadronic correlators may be related to measurable cross sections or other
observables. An example of such an approach is the determination of the VP correction to
(g � 2)

µ

. The energy scale for the virtual hadrons in this process is of order m

µ

c

2, well
below the perturbative region of QCD. Using the dispersion representation for the photon
polarization, the VP contribution is expressed in terms of measurable e

+

e

� ! h cross sections,
shown pictorially in Fig. 5.1,

a

V P

µ

=
⇣

↵m

µ

3⇡

⌘

2

1
Z

m

2
⇡

ds

s

2

K(s)R(s), where R =
�

tot

(e+

e

� ! hadrons)

�(e+

e

� ! µ

+

µ

�)
, (5.1)

where K(s) is a kinematic factor ranging from 0.4 at s = m

2

⇡

to 0 at s = 1 (see Ref. [153]).
Because the integrand contains a factor of s

�2, the values of R(s) at low energies (the ⇢
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resonance) dominate the determination of a

V P

µ

, however at the level of precision needed, the
data up to 2 GeV are very important. Using this approach, the HVP which is the dominating
hadronic contribution in (g � 2)

µ

, is presently determined to a much higher relative precision
than the HLbL contribution.

Figure 5.1: The HVP contribution to the anomalous magnetic moment of the muon: cuts in a
vertical projection

Up to a present moment, a commonly accepted belief was that the HLbL contribution to
(g � 2)

µ

cannot be defined in a dispersive framework. Attempts to define the dispersion repre-
sentation for the HLbL matrix element directly in the loop integral fail due to the kinematical
constraints. It may be explained by the following arguments. In a general case, a four-point
function may be defined in terms of six invariant variables, e.g. squared masses of the external
particles q

2

1

, q

2

2

, q

2

3

, q

2

4

and Mandelstam variables s = (q
1

+ q

2

)2 and t = (q
1

� q

3

)2. The fact
that all six variables can be varied independently allows to perform the analytical continuation
of the amplitude in each of these parameters for given values of the remaining invariants. How-
ever, when considering the loop integral in the limit of the classical external field, i.e. q

1

! 0
(see Fig. 5.2), the hadron invariant mass s and the photon virtuality q

2

2

are not independent
any more: s = (q

1

+ q

2

)2 ! q

2

2

, and the dispersion integral can not be written independently.
However, it turns out, that it is not the only possible way of the calculation. In the following
we present the novel dispersive approach developed specifically for the calculation of the HLbL
correction to (g � 2)

µ

which allows to overcome this inconsistency.

q
1

q
2

q
1
+ q

2

Figure 5.2: The LbL scattering contribution to the anomalous magnetic moment of the muon:
cuts in a vertical projection

In the previous section we defined the anomalous magnetic moment as a classical limit of the
Pauli form factor F

2

(k2), which in general may be calculated using the projection operator as

F

2

(k2) = Tr
⇥

(/p0 + m)⇤
⌫

(p0
, p)(/p + m)�⌫(p0

, p)
⇤

, (5.2)
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with the projector ⇤
µ

defined by

⇤
⌫

(p0
, p) =

m

2

k

2(4m

2 � k

2)



�

⌫

+
k

2 + 2m

2

m(k2 � 4m

2)
(p0 + p)

⌫

�

. (5.3)

If one knows the vertex �⌫(k2), the a

µ

can be defined straightforwardly by the limit k ! 0.
Alternatively, using the dispersion relation in the virtuality of the external photon k

2 ⌘ t we can
relate F

2

(0) to the absorptive part of the form factor for the time-like process of �⇤ ! µ

+

µ

�:

F

2

(0) =
1

2⇡i

I

Disc

dt

t

Abs F

2

(k2). (5.4)

The absorptive part of the form factor is directly related to the absorptive part of the QED
vertex function1:

Abs F

2

(t) = Tr
⇥

(/p0 + m)⇤
µ

(p0
, p)(/p + m)Abs �µ(p0

, p)
⇤

(5.5)

Subsequently, using analytical continuation and unitarity relations the absorptive part of the
vertex function �µ can be expressed in terms of measurable on-shell hadron production matrix
elements. In practice, the unitarity method is realized by means of Cutkosky rules. They can
be graphically represented as a cut of a Feynman diagram which crosses all intermediate states
allowed in the considered channel by quantum numbers and kinematics. When the cut crosses
the propagator it means that the corresponding virtual intermediate state is put on its mass
shell. This can be done by a simple substitution of the crossed propagators by delta-functions:

1

q

2 � m

2 + i"

! �2⇡i�(q2 � m

2). (5.6)

When the non-perturbative matrix element is crossed by the cut, the discontinuity in the
corresponding invariant energy flowing through the cut is implied

M(m2

i

, s

j

) ! Disc
s

M(m2

i

, s

j

). (5.7)

where m

i

and s

j

are the masses of external legs and energy invariants of the matrix element
and s is the squared c.m. energy flowing through the discontinuity.

For better visualization it is convenient to depict the cut diagrams for the HLbL contribution
in a 3D image which can be considered as a three-dimensional projection of the four-dimensional
momentum phase-space. In this representation each intermediate state appearing in the uni-
tarity relation is represented by an on-shell slice of a phase-space. For example, one of the
cuts appearing in �µ is shown in Fig. 5.3. The cut plane is represented by a grey box in the
illustration. It crosses the HLbL blob and two virtual muon lines. The absorptive part cor-
responding to this diagram is defined as a product of µ

+

µ

� ! µ

+

µ

�
X (below the cut plane)

and �⇤ ! µ

+

µ

�
X (above the cut plane) amplitudes.

To systematize all possible cuts appearing in the considered case it is convenient to use the
vertical projection of the 3D Feynman diagrams (see Fig. 5.4). The red curve defines the
projection of a cut, thus all the intermediate states which cross this line are on-shell. The black
spot depicts the incoming external photon. In terms of Fig. 5.3 the part of the diagram inside
the red circle lies above the plane and the outside part lies below. One can notice that the 3D
diagram in Fig. 5.3 corresponds with the third graph in the first row of Fig.(5.4).

1A seeming kinematical singularity t = 4m2 form the projector does not contribute to the discontinuity. It is
cancelled against the numerator after performing all the phase space integrals in the unitarity relation.
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Figure 5.3: The 3D projection of a cut diagram in LbL scattering contribution to the anomalous
magnetic moment of the muon.

In a general case (in the absence of the before mentioned kinematical constraints) the HLbL
matrix element may be defined via dispersion representation through its discontinuities. The
analytical structure of this matrix element is very complicated and has not been widely studied
in the past. The intermediate states which contribute to the discontinuities of the HLbL
tensor (grey blob in Fig. 5.4) can be separated in two types, the C-positive and C-negative
states. They correspond to two types of cuts of the HLbL four-point function. The C-positive
intermediate hadronic states contribute to the �⇤

�

⇤ production channels and appear as poles
and branching points in the complex plane of the squared total energy of initial photons. They
include a series of single meson intermediate states, i.e. pseudo scalar mesons ⇡0, ⌘ and ⌘0 and
heavier scalar, axial vector and tensor mesons. Furthermore, they include multi-particle states
with the dominant channel �⇤

�

⇤ ! ⇡

+

⇡

�. These intermediate states explicitly contribute to
unitarity diagrams 2, 3, 4, 5 and 6 in Fig. 5.4. The C-negative states contribute to the ’corner’
cuts and are originating from the ’hadronization’ of the photon. These discontinuities result
in poles and branching points in the complex plane of the virtualities of the corresponding
photons. A prominent contribution of this kind originates from the fluctuation of a photon to
a vector meson, such as ⇢0 or !. They explicitly contribute to the three diagrams in the last
row in Fig. 5.4.

One notices that in the dispersion relation of Eq.(5.4) the contribution of the discontinuities
with the branch points located at higher scales are suppressed due to expansion of the phase
space. In view of this argument and the fact that the HLbL tensor is weighted by the QED prop-
agators it makes sense to start constraining the uncertainty by systemizing the contributions
of the lowest lying singularities. The general idea is to incorporate the experimentally observed
behavior in the non-analyticities of the amplitude. For instance, the resonant behavior (a single
particle, a resonance or a bound state exchange) corresponds to poles in a complex plane, the
logarithmic behavior which originates from multi-particle production channels is related to the
branch points located at the production threshold, etc. The parameters (i.e. position of poles
and branch points, the residues, etc.) of the introduced singularities are obtained by a fit of
the data. This procedure can be formally called ’the analytical parametrization’2.

The dominant contributions to the two-photon production discontinuity are originating from
the intermediate states related to the lightest hadronic state, a single neutral pion (X = ⇡

0).
This C-positive intermediate state can contribute to the �� decay (or �� ! ��) channel which

2In principle, one can involve the experimental data directly. This can be done by using partial wave decom-
position and analytical continuation of the partial wave amplitudes.
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Figure 5.4: The LbL scattering contribution to the anomalous magnetic moment of the muon:
cuts in a vertical projection

explicitly appears in unitarity diagrams 2, 3, 4, 5 and 6 in Fig. 5.43. Defining the Mandelstam
variables
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the contribution of the meson pole to the light-by-light scattering amplitude discontinuity is
given by
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where for a pseudo-scalar state the �⇤
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⇤ ! M helicity amplitude is given by:
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In the last equations ✏(q
i

,�

i

) stands for the polarization vectors of photon, subscripts �
i

denote
their helicities and M is a meson mass. The analytical continuation from the scattering to the

3We do not discuss the QED corrections, e.g. processes �⇤ ! �⇤⇡ ! 3� as they are suppressed by electro-
magnetic coupling constant ↵.
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decay channel is trivial in this case4. Hence, the pole contribution to the light-by-light scattering
amplitude is

⇧⇡

0

�1�2�3�4
(q2

1

,q

2

2

, q

2

3

, q

2

4

, s

1

, s

2

, s

3

)

=

Z

ds

1

M
�1�2(q

2

1

, q

2

2

, s

0
1

)M
�3�4(q

2

3

, q

2

4

, s

0
1

)

s

1

� s

0
1

�

�

s

0
1

� M

2

�

+

Z

ds

2

M
�1��3(q

2

1

, q

2

3

, s

0
2

)M
�2��4(q

2

2

, q

2

4

, s

0
2

)

s

2

� s

0
2

�

�

s

0
2

� M

2

�

(5.11)

+

Z

ds

3

M
�1��4(q

2

1

, q

2

4

, s

0
3

)M
�2��3(q

2

2

, q

2

3

, s

0
3

)

s

3

� s

0
3

�

�

s

0
3

� M

2

�

As a result of the latter transformation the non-perturbative part of the pion-pole contribution
to the HLbL tensor is defined through the on-shell pion transition form factors:
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Subsequently, the structure of the form factors is defined by the C-odd intermediate hadronic
states which contribute to the corner (single-photon) discontinuities. Although the lowest
threshold in the C-odd channel corresponds to two-pion production we will consider a simplified
picture for this channel where we take into account only the lowest resonant part of the vector-
isovector spectrum. Moreover, we assume it to be an exchange of a stable isovector state. This
can be conformed with a single pole of the on-shell meson form factor in the complex planes
of photons’ virtualities q

2

1

and q

2

2

located at ⇤2 (the monopole mass parameter). Physically, it
corresponds to the effect of photon hadronization, or conversion of the photon to a vector (e.g.
⇢ meson) state. The chosen structure of the form factor is motivated by the presently available
phenomenological description. Furthermore, it is closely connected to the VMD model for
meson form factors widely used in previous calculations and allows direct comparison with the

4For the cases of higher-spin meson exchanges or multi-meson intermediate states it can be done separately
for each partial wave.
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latter. Similarly to the case of the C-even channel the isovector-pole contribution to the meson
form factor gives rise to
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with the residue defined by the normalization in the limit of quasi-real photons
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P�

⇤
�

⇤(0, 0, M

2)|2 =
4�

��

⇡↵

2

M

3

. (5.15)

The generalization to include the non-resonant part of the �⇤ ! X spectrum is also possible
in our approach and in fact, is the next step together with including of the C-even �� !
⇡

+

⇡

� channel. In practice, the account of multi-particle inelastic thresholds is rather involved
technically, due to the multi-particle phase space integration and a complicated structure of
the LbL scattering matrix element. The contribution of two-pion intermediate states to the
LbL matrix element has been recently discussed in detail in [154].

Among the C-odd singularities, there is also the isovector pole in the external photon vir-
tuality k

2 = ⇤2. To minimize the efforts we will calculate the vertex multiplied by k

2

/⇤2 � 1,
which rids us from the before mentioned singularity. In other words we re-define the vertex as

�
µ

! (k2

/⇤2 � 1)�
µ

. (5.16)

From one side, calculations shows that the discontinuity of the vertex � decreases faster than
1/t. Thus, the before mentioned modification does not threaten the convergence of the disper-
sion integral, where it is additionally suppressed by another factor 1/t. From the other side,
in the limit of k ! 0 the modified vertex coincides with � and gives the same value of the
projection on F

2

(0).
The discussed analytical structure may be graphically represented by diagrams in Fig. 5.5

where the dashed line represents the exchanged meson pole and the double solid line stands
for the resonant part of the isovector spectrum (i.e. exchange of a ⇢-meson pole). The three
diagrams originate from the contributions of the three terms ⇧⇡

0
(i) in Eq. (5.12). The discon-

tinuities of the corresponding amplitudes can now be easily computed by exploiting Eq. (5.6).
Due to symmetry the first two diagrams in Fig. 5.5 give identical contributions. Hence, we
will explicitly compute the contributions of the second and the third graphs.

p p’

k

q
2

q
1

q
1

q
1

q
2

q
2

k k

Figure 5.5: The meson-pole contributions to the hadronic light-by-light scattering in (g � 2)
µ

.

The contribution to the vertex function in Eq. (5.2) corresponding with the second diagram
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in Fig. 5.5 may be defined as
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whereas the third diagram gives rise to
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Exploiting Eq. (5.2) we can define the corresponding contributions to the Pauli form factor as

F

(1)

2

(t) = e

6⇤6

F

P�

⇤
�

⇤(0, 0, M

2)

Z

d4

q

1

(2⇡)4

Z

d4

q

2

(2⇡)4

⇥ 1

q

2

1

1

q

2

1

� ⇤2

1

q

2

2

1

q

2

2

� ⇤2

1

(k � q

1

� q

2

)2
1

(k � q

1

� q

2

)2
1

(k � q

1

� q

2

)2 � ⇤2

⇥ 1

(p + q

1

)2 � m

2

1

(p + k � q

2

)2 � m

2

1

(k � q

1

)2 � M

2

T

1

(q
1

, q

2

, p, k),

(5.19)

for the first topology and
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for the second topology. Here we introduce notation
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Applying Cutkosky rules to the vertex functions in Eqs. (5.17, 5.18) we can compute their
discontinuities and with the help of Eq. (5.4) evaluate the corresponding contribution to the
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anomalous magnetic moment. From Fig. 5.5 as well as Eqs. (5.17, 5.18) we can see that in this
case the discontinuity originates from two- and three-body cuts. The two-particle cuts include
the ones with ⇡

0

� and ⇡

0

⇢ intermediate states. In total there are four cut diagrams, two for
each topology. They are depicted in Fig. 5.6. The full two-particle discontinuity is obtained
by the sum of contributions from two cuts:
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The three-particle cuts include one of each 3� and 3⇢ and two of each 2�⇢ and 2⇢�, in total
8 different cut diagrams for each topology. They may be explicitly represented as shown in
Figs. 5.7, 5.8. In addition, there is one cut diagram corresponding with the 2µ⇡ discontinuity
for the second topology, see Fig. 5.9.

Figure 5.6: The two-body cuts of the second and the third diagrams in Fig. 4.4.

Similarly to the two-particle cut, the full three-particle discontinuity is obtained by the sum
of contributions from all cuts. For the first diagram it is
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and for the second topology
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Figure 5.7: The three-body cuts of the second diagram in Fig. 4.4.
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Figure 5.8: The three-body cuts of the third diagram in Fig. 4.4.
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Figure 5.9: The muonic three-body cut of the third diagram in Fig. 4.4.

Using the projection technique and Eq. (5.6) one can explicitly define the corresponding
contributions to the discontinuity of the Pauli form factor. For instance, the ⇡0

� cut for the
first topology contributes to the discontinuity as
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In practice, it turns out that it is more convenient to perform the calculation in a slightly
different way. One can notice that the used parametrization of the form factors allows to
simplify the integrand using rational fraction decomposition, e.g.
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As a result, the expression for the Pauli form factor in Eqs. (5.19, 5.20) may be transformed
into a simpler form. For the contribution of the first topology:

F

(1)

2

(t) = e

6⇤6|F (0, 0, M

2)|2
Z

d4

q

1

(2⇡)4
1

(p + q

1

)2 � m

2

1

(k � q

1

)2 � M

2

⇥
✓

1

q

2

1

� ⇤2

� 1

q

2

1

◆

�

S

⇤⇤

3

� S

⇤0

3

� S

0⇤

3

+ S

00

3

�

,

(5.27)

Regarding the second topology it is convenient to make a change of variables for the momenta
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In the latter equations we explicitly isolated the one-loop integrals
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Finally, we can write
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For each of Eqs. (5.32, 5.33) the dispersion integral is divergent by itself as it would be in the
case with constant form factors, for instance. However the sum of all eight terms is convergent
as the divergent terms in each of the dispersion integrals are not dependent on masses ⇤

i

. One
can do the evaluation regularizing the integral over t by a cutoff and keeping in mind that
the integrals over infinite contour for both terms are the same and cancel each other, thus the
resulting sum is finite and definite.

The dispersive computation of the two-loop integrals in Eqs. (5.32, 5.33) can be illustratively
demonstrated on the example of the evaluation of two-loop scalar functions. In fact, the latter
possess the same analytical structure and can be straightforwardly generalized to the case of
interest.

5.2 Two-loop scalar vertex functions

In this section we will calculate the two-loop scalar graphs depicted in Fig. 5.10. This calcula-
tion is relevant for the computation of the single meson contribution to the HLbL correction in
(g�2)

µ

as the diagrams appearing there are topologically similar to the ones considered in this
section. In the latter the tensor loop integrals can be decomposed in a sum of scalar integrals
among which also those appear which correspond to a scalar �3 theory. Since in the above
decomposition the considered type of integrals have the maximum number of propagators (here
six) they are the most difficult ones to compute and therefore we present their calculation here.
The remaining integrals which contain less propagators than those given by the diagrams in
Fig. 5.10 are easier to compute and can be calculated in the analogous way. We will discuss the
general case where the scalars corresponding to photons have all different masses (motivated
by the integrals which appear when using monopole form factors for the M�

⇤
�

⇤ vertex in the
HLbL contribution (g � 2)

µ

).
The scalar two-loop amplitude corresponding with the first diagram in Fig. 5.10 can be

written as
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Figure 5.10: Two-loop vertex corrections in a scalar theory. Here the following code for the
masses of the scalar propagators is used: the double line denotes the (meson)
propagator with mass M , the solid lines denote (lepton) propagators with masses
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and m
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and the dashed lines denote (photon) propagators with masses ⇤
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5.2.1 Angular parametrization and integration of the phase space

The scalar two-loop integrals can be represented in a convenient way using a special set of
variables. The choice of variables is based on the initial form of the integrand: the non-
perturbative vacuum polarization part is dependent only on invariants and the angular integral
is reduced to the integration over one polar and azimuthal angle. The same type of the
angular integral we meet when integrating the three-particle phase space. It can be evaluated
analytically and expressed in a closed form. In this section we discuss the technical details of
the angular integration.

The most important ingredient of the dispersion method is the calculation of the angular
part of the two- and three-particle phase-space integrals. The loop and external momenta can
be defined in terms of the angular coordinates and a set of invariant energy parameters t, t
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This angular parametrization is explained by Fig.(5.11). The space direction of the momentum
q

2

is defined with respect to q

1

, by a polar angle ✓ between ~q
1

and ~q
2

and azimuthal angle ✓
2

.
Such a definition allows to factorize the two-loop expression and to express the angular integral
in a closed form.
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Figure 5.11: The angular coordinates in the one- and two-loop phase space integral.

The invariants which appear in the calculation are related to the introduced parameters as
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Using the above definitions the transformation of the phase-space integration measure is
given by
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where the integration domains are explicitly defined by kinematic constraints for each of two-
and three-particle cuts separately. Using the introduced parametrization the loop integrals in
Eqs. (5.62, 5.35) can be represented as
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The angular integral ⌦ can be carried out analytically which yields to
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The details of the computation are given in the Appendix F.

5.2.2 Discontinuity of the vertex function

Applying the Cutkosky rules to the graphs in Fig. 5.10 we can now calculate the absorptive
parts which are represented by the cut diagrams in Figs. 5.12, 5.14. The diagrams can be
divided into two-particle and three-particle cut graphs.
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Figure 5.12: The two-particle cuts belonging to the corner vertex three-point functions pre-
sented by diagrams in Fig. 5.10.

Two-particle cuts.

The first set contains the one-loop virtual diagram insertions which are represented by the
vertex and crossed-box graphs given in Fig. 5.13.

With the right choice of the loop momenta the triangle correction in the first diagram and the
crossed-box correction in the second diagram can be isolated as closed integrals. The absorptive
part corresponding to the left two-particle cut graph in Fig. 5.12 can be expressed in the form:
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To isolate the one-loop function in a closed form in the right two-particle cut diagram in Fig.
5.12 we relabel momenta as q

1
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. Hence, the discontinuity has form
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Using the above definitions the two- and three-particle cuts may be reformulated in a compact
form. For the two-particle cuts we have
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and
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where in Eq. 5.49 q

2

1

= ⇤3

3

and t

1

= M

2. The one-loop three- and four-point functions M

3

and M

4

(see Fig. 5.13) which enter the expressions for the above loop integrals can be thus
presented as
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The above integrals belong to a class of one-loop integrals which were studied in quite detail
starting with the original work of Ref. [155] (see also Ref. [156] for a review). The original
approach is based on the Feynman parametrization which allows to regroup the propagators
in a spherically symmetric form and to perform the momentum integral in the Euclidian space
directly. The subsequent integration over Feynman parameters can be performed with the
account of the analytical structure of the amplitudes. In regions of momentum space where no
cuts occur the integrals are rather simple to perform. In principle, the rest can be obtained
by analytical continuation, however in practice it is hard to realize. Therefore, it is more
efficient to define the integral independently for different kinematical regions. The details of
this approach are described in detail in Ref. [155].
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Figure 5.13: One-loop three- and four-point functions in a scalar theory.

A big disadvantage of this approach is a very narrow type of the parametrizations for the nPT
functions which allow its application, basically limited to a pole and power parametrizations. It
turns out that in this case the dispersion technique is very powerful because the absorptive parts
from the two-particle cut can be expressed in a very simple form and is similar to the three-
particle cut contribution. Furthermore, it turns out that the dispersion integral representation
of the loop integral becomes extremely useful when considering the (g�2)

µ

since it’s application
is not limited to the simplest pole parametrizations of the �� ! X form factors.

Three-particle cuts.

The three-particle cut diagrams originating from the two diagrams in Fig. 5.10 are depicted in
Fig. 5.10 below.

For the first three-particle cut in Fig. 5.14 we have:
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It occurs that for the second diagram in Fig. 5.10, there are two three-particle cut diagrams
which contribute to the discontinuity (see second row in Fig. 5.14). The first (three-photon)
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Figure 5.14: The three-particle cuts belonging to the corner vertex three-point functions pre-
sented by diagrams in Fig. 5.10. For the third diagram the momenta are relabeled
as shown in figure.

cut contribution (left panel in the second row of Fig. 5.14) is given by
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whereas the second (meson-lepton-lepton) cut contribution (right panel in the second row of
Fig. 5.14) is given by
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The phase-space integrals in the discontinuities of Eqs. (5.46-5.54) may be partly performed
analytically by introducing the angular parametrization. For the three-particle discontinuity
in the first diagram defined by Eq. (5.52) we have

Disc
t

�
(3)

1

(t) =
4

(4⇡)3t

Z

dt

1

Z

dt

2

1

t

1

� M

2

⇥ ⌦(t
1

, t

2

, t + ⇤2

1

+ ⇤2

2

+ ⇤2

3

� t

1

� t

2

, ⇤2

1

, ⇤2

2

, m

2

1

, m

2

2

).

(5.55)

109



Chapter 5 Hadronic light-by-light contribution to (g � 2)
µ

in a dispersion approach

For the discontinuities coming from the left three-particle cut diagram in the second row of
Fig. 5.14 defined by Eq. (5.53) we can write
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The integral over energy variables is performed over two-dimensional region defined by a two-
dimensional diagram in Fig. 5.15. It is defined by inequalities
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An additional constrain is imposed by condition �1 6 cos ✓ 6 1 which results in
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Figure 5.15: The integration domain for the three-particle cut. The blue dashed lines corre-
spond to the conditions in Eq. (5.60); the solid blue line correspond to Eqs. (5.57,
5.58); the red curve represent condition �1 6 cos ✓ 6 1.

For the discontinuities coming from the right three-particle cut diagram in the second row
of Fig. 5.14 the analogous expressions may be easily obtained by substitutions m

1

$ ⇤
1

,
m

2

$ ⇤
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, M $ ⇤
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. As a result we obtain expression for the cut in Eq. (5.54):
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5.2.3 Numerical results

We will start from a discussion of the imaginary parts of the two- and three-particle disconti-
nuities. The sum of both should vanish as the full discontinuity has to be a purely imaginary
function. The imaginary parts may be easily obtained by re-applying Cutkosky rules to the cut
diagrams in Figs. 5.12 and 5.14. For the first diagram the imaginary part of the three-particle
discontinuity is originating from the propagator (t

1

�M

2 + i")�1; for the second diagram from
propagators (t

1

� M

2 + i")�1 and (t
1

� ⇤2

2

+ i")�1 for the first and the second cut respectively.
The imaginary part of the two-particle discontinuity is coming from the two-particle cut of the
triangle and box diagrams in Fig. 5.13. For the case of demonstration we will consider the
mass configuration ⇤

1

= m, ⇤
2

= 0, ⇤
3

= 3m and M = 3m. The imaginary parts of the
discontinuities are shown in Figs 5.16. We can see that the imaginary part starts exactly at the
two-particle (meson-photon) thresholds (⇤

1

+ M)2 for the first diagram and (⇤
3

+ M)2 for the
second. As is expected, for both topologies the imaginary parts of the two- and three-particle
cuts are identical and have opposite signs.

The real parts of the discontinuities are shown on the plots in Figs. 5.17. We can clearly
see that the real parts start at the corresponding two- and three-particle thresholds. In the
case of the first diagram, it is (⇤

1

+ M)2 for the two-particle cut and (⇤
1

+ ⇤
2

+ ⇤
3

)2 for the
three-particle cut. Regarding the second diagram, the two-particle cut starts at (⇤

3

+ M)2

and the three-particle cut start at (⇤
1

+ ⇤
2

+ ⇤
3

)2 and (M + 2m)2 for the first (three-photon)
and the second (meson-lepton-lepton) cuts respectively. We can observe clear spikes in the
three-particle cuts exactly at the position where the two-particle cut starts. It corresponds to
the opening of a new, two-particle (meson-photon) channel and is correlated with the threshold
shown in Fig. 5.16.

Similarly to Eq. (5.4) the F (0) can now be obtained directly by performing the dispersion
integral
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The dependence of the form factor on (meson) mass M is shown in Fig. 5.18. We can observe
spikes in both two- and three-particle cuts located at M = ⇤

1

+ ⇤
3

for the first diagram and
M = ⇤

1

+ ⇤
2

for the second. This kink can be attributed to the opening of the two-particle
threshold when considering the one-loop diagrams depending on the virtuality t

1

. Since in the
dispersion evaluation we put the meson on its mass shell, i.e. t

1

= M

2 this effect is reflected
in the dependencies of the contribution of two- and three-particle discontinuities on M . When
performing the loop integral directly, the meson is not an external particle but rather virtual and
this effect does not emerge. Practically, when applied to the anomalous moment calculation it
means that for light hadronic states or for the states with mass M ⇠ ⇤, 2⇤, with ⇤ a monopole
mass parameter of the form factor parametrization, we need additional precision in the data
input. We notice from Fig. 5.18 that the sum of two contributions exactly reproduces the
dependence obtained by the direct evaluation of the loop integrals using the hyperspherical
approach (see Appendix E).

We thus conclude that the developed dispersion technique can be applied to the calculation
of the HLbL correction to (g � 2)

µ

. In the subsequent section we will establish the general
formalism and discuss particular features of the calculation.
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Figure 5.16: The imaginary parts of the vertex function discontinuities. Left panel: the imagi-
nary parts of the two- and three-particle discontinuities of the first diagram. The
red dotted (blue dashed) line denotes the imaginary part of the three-particle dis-
continuity (two-particle discontinuity taken with the opposite sign). Right panel:
the imaginary parts of the two- and three-particle discontinuities of the second
diagram. The dotted and dash-dotted red lines denote the imaginary part of the
three-particle discontinuities (3� cut and 2µ⇡

0 cut respectively), and the solid red
line denotes the sum of two. The blue dashed line stands for the imaginary part
of the two-particle discontinuity taken with the opposite sign.

M/m = 5
R1/m = 1
R2/m = 0
R3/m = 3

t/m2

-0.1

-0.05

-0

0.05

0.1

0.15

0.2

0.25

20 40 60 80 100 120 140

M/m = 5

R1/m = 1

R2/m = 0

R3/m = 3

t/m2

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

20 40 60 80 100 120 140 160 180 200

Figure 5.17: The real parts of the vertex function discontinuities: Im �
i

(t)/t. Left panel: the
real parts of the two- and three-particle discontinuities of the first diagram. The
red dotted (blue dashed) line denotes the real part of the three-particle (two-
particle) discontinuity. Right panel: the real parts of the two- and three-particle
discontinuities of the second diagram. The red dotted and dash-dotted lines denote
the real part of the three-particle discontinuities originating from the 3� and 2µ⇡

0

cuts respectively. The blue dashed line stands for the real part of the two-particle
discontinuity.

112



5.2 Two-loop scalar vertex functions

R1/m = 1
R2/m = 0
R3/m = 3

M/m

-0.05
-0.025

0
0.025
0.05
0.075
0.1

0.125
0.15
0.175
0.2

0 1 2 3 4 5 6 7

R1/m = 1
R2/m = 0
R3/m = 3

M/m

-0.1

-0.05

0

0.05

0.1

0.15

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Figure 5.18: The vertex function in the limit of the vanishing external momentum k ! 0 de-
pending on (meson) mass M : �

i

(0). Left panel: the contributions which originate
from the two- and three-particle discontinuities of the first diagram. The red dot-
ted (blue dashed) line denotes the contribution of the three-particle (two-particle)
discontinuity. The black dashed-dotted line denotes the sum of two contributions.
The pink solid line is obtained by the direct evaluation of two-loop integrals. Right
panel: the contributions of the two- and three-particle discontinuities of the second
diagram. The dotted and dash-dotted red lines denote the contributions of the
three-particle discontinuities (3� cut and 2µ⇡

0 cut respectively). The blue dashed
line stands for the contribution of the two-particle discontinuity. The sum of three
contributions is given by black dashed-dotted line. The pink line is obtained by
the direct evaluation of two-loop integrals.
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5.3 The pion-pole contribution to (g � 2)
µ

The subsequent calculation of the meson-pole contribution to (g � 2)
µ

generically parallels
the computation of the scalar amplitudes. The two-loop functions F

⇤1⇤2⇤3
i

have the same
analytical structure as the scalar integrals and can be represented by the same diagrams.
First, we will compute the discontinuity of the two-loop function F

⇤1⇤2⇤3
i

by introducing the
angular parametrization similarly to the case of scalar amplitude. After that the eight terms
in Eq. (5.31) can be combined and the dispersion integral can be evaluated numerically.

5.3.1 Two-particle cuts.

The two-particle discontinuities of two-loop functions F

⇤1⇤2⇤3
i

of Eqs. (5.32, 5.32) correspond-
ing with the diagrams in Fig. (5.12) are given by
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where the one-loop integrals S

⇤2⇤3
3

and S
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are given by Eqs. (5.29, 5.30). To calculate these
one-loop integrals we use the Passarino-Veltman reduction scheme and express the result in
terms of scalar one-loop integrals including four- and three-point functions M
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Next we express the two-loop integrals in terms of the angular variables and invariants as
discussed in Section 5.2.1. This yields the following representation of the two-particle discon-
tinuities
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The integrals of Eqs. (5.67, 5.68) may be subsequently performed by means of numerical
algorithms.

5.3.2 Three-particle discontinuity of Pauli form factor

The contribution to the discontinuity of the two-loop functions of Eqs. (5.32, 5.33) from the
three-particle cuts are given next. For the first three-particle cut in Fig. 5.14 we have:
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, p, k) can be written in such a way that the hadronic and leptonic parts are
factorized, in other words:
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Here we introduced notation for the leptonic tensor
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In order to correctly isolate the pole contribution to the HLbL tensor we need to explicitly
formulate it in terms of the helicity amplitudes. Using completeness relation for the electro-
magnetic field polarization tensors
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and taking into account gauge invariance of the photon amplitude q
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The pole contribution to the HLbL helicity amplitudes ⇧
(i)

��1�2�3
is given by Eq. (5.13). In

the case of a pseudoscalar meson production, due to Lorentz and crossing symmetries the only
non-zero �

⇤
�

⇤ ! M helicity amplitudes, which we define in the rest frame of the produced
meson, are given by:
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where
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The non-vanishing independent helicity amplitudes ⇧
(i)
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are listed below
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Using Eq. (5.78) they can be written explicitly. For instance
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As a result the contribution of the three-particle cut to the discontinuity for the first topology
is given by
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Similarly to the case of scalar two-loop functions, for the second diagram in Fig. 5.10, there
are two three-particle cut diagrams which contribute to the discontinuity (see second row in
Fig. 5.14). In order to generalize our computation for both three-particle cuts appearing in
this case we consider the leptons to have different masses m

1

and m

2

. The first (three-photon)
cut contribution (left panel in the second row of Fig. 5.14) is given by
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(5.84)

where the sum over helicities is performed in correspondence with the list of Eq. (5.80). The
second (meson-lepton-lepton) cut contribution (right panel in the second row of Fig. 5.14) is
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µ

given by
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In the angular coordinates, the three-particle discontinuity for the first topology is given by
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or
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For the three-particle contributions to the discontinuity of the diagram with the second topology
we have
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wheres the second discontinuity Disc3,2

t
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(t) may be easily obtained by a substitutions
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similarly to the case of scalar two-loop functions.
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Chapter 5 Hadronic light-by-light contribution to (g � 2)
µ

in a dispersion approach

The angular integral may be performed analogously to the case of scalar functions. The
expression may be firstly simplified by canceling the angle dependent terms throughout the
numerator against corresponding terms in the denominator. This yields a decomposition in
terms of a set angular integrals similar to the one appearing in the case of scalar two-loop
functions. They can be computed in an analogous way. The subsequent integration over t

1

and t

2

can be performed by means of numerical integration.

5.4 Discussion

In this chapter, we have presented the general dispersion formalism for the HLbL contribution
to (g �2)

µ

. This formalism has the advantage that no uncontrollable extrapolation outside the
mass-shell for the hadronic intermediate state has to be performed. We have shown explicitly
how the HLbL contribution to (g � 2)

µ

can be expressed as a sum of two- and three-particle
cuts. For the case of the dominant ⇡0 as hadronic state, we have shown that for the simplified
model of vector meson (VM) poles for the ⇡0 transition FF, one can reduce the calculation to
scalar integrals.

We subsequently worked out the case of two-loop scalar vertex functions for three different
“photon" masses (corresponding with vector meson poles to describe the ⇡0 transition FF).
We have shown explicitly that the discontinuities due to two- and three-particle cuts add up
exactly to the result of the direct two-loop calculation, which can be performed unambiguously
in this case.

The next step is to apply this dispersive formalism to the explicit calculation of the ⇡0 pole
contribution. To this end, we presented in this work the explicit formulas necessary for the
dispersive evaluation of the corresponding two- and three-particle cuts.

For the further development of the dispersive formalism for the HLbL contribution to (g�2)
µ

we can foresee several steps :

1. A first step in this program is to extend the numerical evaluation from the scalar field
theory case, presented in this work, to the dispersive evaluation of the HLbL contribution
due to the ⇡0, when using VM poles for the ⇡0 transition FF.

2. Secondly, we can apply the dispersive formalism to directly include the phenomenological
input for the meson transition FFs, e.g. by separating the FF in a VM pole + non-resonant
background part.

3. A further extension will entail the inclusion of heavier hadronic intermediate states, most
importantly the 2⇡ intermediate states.
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Chapter 6

Conclusion

In this thesis we considered a wide spectrum of problems related to processes of two-photon
electromagnetic production. These processes are of tremendous importance for understand-
ing QCD, for constraining the hadronic uncertainties in the precision measurements and in
searches for new physics. At first, we systematically discussed the experimental approaches
and methods of extraction of the phenomenological information on two-photon processes from
the experimental data. We highlighted the main experimental results in this field and discussed
relevant directions for further progress. From the theoretical point of view two-photon processes
are very complicated and except for a few limited asymptotic regions, it cannot at present be
rigorously described from first principles. To study non-perturbative features of two-photon
production we use dispersion theory in this work. Such approach allows to rigorously constrain
the energy behavior of the two-photon correlation functions. We derived several constraints
in the form of superconvergent sum rules. These sum rules are the integral relations which
involve energy weighted integrals of �⇤

� fusion cross sections, measurable at e

+

e

� colliders,
which integrate to zero (super-convergence relations):
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Furthermore, we derived a set of integral relations which allow to define the low-energy structure
of the elastic light-by-light scattering amplitudes in terms of integrals over fusion cross sections.

These sum rules were tested and verified exactly at tree and one-loop level in scalar and
spinor QED for the case of two (quasi-)real photons, as well as for the case of one virtual and
one (quasi-)real photons. We have observed that for larger values of the photon’s virtuality the
higher energy contributions are required for cancellations to take place. Another observation is
that for the helicity difference sum rule the helicity-0 cross section dominates at lower energies
while with increasing energies the helicity-2 cross section overtakes. A similar pattern is ob-
served in the production of the hadronic states showing a deep relation between perturbative
production of qq̄ pairs and hadronic resonances. Furthermore, we have tested the criterium of
the tree-level unitarity imposed by the sum rules on the example of the massive spin-1 QED.
We have observed that when applied to the processes of higher spin particles production the
sum rules hold for the natural values of the corresponding electromagnetic moments only.

Next, we have studied the consequences of causality constraints imposed by the helicity-
difference sum rule for the forward light-by-light scattering process within the �4 scalar quan-
tum field theory. Within this theory, we have performed a non-perturbative resummation of
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Chapter 6 Conclusion

bubble graphs. We have demonstrated that depending on the value of the renormalized self-
interaction coupling of the �4 theory, three different regimes emerge. In a first regime, the
perturbative series is convergent and the sum rule as calculated from the continuum states
in the theory holds exactly. In a second regime for the renormalized coupling, the resummed
amplitude acquires additional singularities: a dynamically generated bound state below the
two-particle production threshold and a K-matrix pole above the two-particle production. It
was shown that when evaluating the light-by-light sum rule, the bound state contribution ex-
actly cancels the continuum contribution, so as to verify the sum rule. Furthermore, we found
a third regime of the renormalized coupling where a tachyonic solution with negative invari-
ant mass squared appears, signaling that in this regime the vacuum is unstable and that the
considered non-perturbative resummation is essentially inconsistent.

The results within the considered model relativistic quantum field theory have demonstrated
that such sum rules provide a very powerful tool to quantitatively connect dynamically gener-
ated bound states with the continuum region of the theory. As such this can be a first step,
to apply such a tool e.g. to the study meson bound states produced in the ��-fusion process
presently under study at different e

+

e

� collider facilities.
Subsequently, we have performed a detailed quantitative study of the new sum rules for the

case of the production of light quark mesons as well as for the production of mesons in the
charm quark sector. Using the empirical �� ! X information in evaluating the sum rules, we
have found that the helicity-difference sum rule requires cancellations between different mesons,
implying non-perturbative relations. For the light quark isovector mesons, the ⇡0 contribution
was found to be compensated to around 70% by the contribution of the lowest lying isovector
tensor meson a

2

(1320). For the isoscalar light quark mesons, the ⌘ and ⌘

0 contributions were
found to be entirely compensated within the experimental accuracy by the two lowest-lying
tensor mesons f

2

(1270) and f

0
2

(1525). In the charm quark sector, the situation is different
as it involves the narrow resonance contributions below DD̄ threshold, and the continuum
contribution above DD̄ threshold. For the narrow resonances, the ⌘

c

was found to give by far
the dominant contribution. When using a duality estimate for the continuum contribution, we
found that it entirely cancels the narrow resonance contributions, verifying the sum rule, and
pointing to large tensor strength (helicity 2) in the cross sections above DD̄ threshold. It will
be interesting to test this property experimentally.

The helicity difference sum rule has also been applied for the case of one real and one virtual
photon. In this case the �⇤

� fusion cross sections depend on the meson transition form factors
(FFs). We have reviewed the general formalism and parameterization for the �⇤

� ! meson
transition FFs for (pseudo-) scalar, axial-vector, and tensor mesons. Because for scalar and
tensor mesons the �⇤

� transition FFs have not yet been measured, a direct test of the sum
rules for finite virtuality is not possible at present. However, we were able to show that the
helicity-difference sum rule allows to provide an estimate for the f

2

(1270) tensor FF in terms
of the ⌘, and ⌘

0 FFs, and for the a

2

(1320) tensor FF in terms of the ⇡0 FF. Since empirical
information on pseudo-scalar meson FFs is available, these relations provide predictions for
tensor meson FFs which will be interesting to confront with experiment.

The sum rules involving the �k,�LT

, and ⌧a

TL

�

⇤
� response functions, have also been tested

for the case of quasi-real photons. As pseudo-scalar mesons cannot contribute to this sum
rule, a cancellation between scalar and tensor mesons on one hand and axial-vector mesons
on the other hand is at work. Using the existing empirical information for quasi-real photons,
the contribution of the two lowest lying axial-vector mesons f

1

(1285) and f

1

(1420) was found
to be entirely cancelled, within error bars, by the contribution of the dominant tensor meson
f

2

(1270). When applying this sum rule to the case of one virtual photon, it again allows one
to relate the f

2

(1270) tensor FF, this time to the transition FFs for the f

1

(1285) and f

1

(1420)
mesons, which have both been measured. The predictions from the two different sum rules for
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the f

2

(1270) FF were found to agree within 20% for a virtuality below 1 GeV2, and within 35%
up to about 2 GeV2. The sum rules which express the coefficients in a low-energy expansion
of the forward light-by-light scattering amplitude in terms of �⇤

� ! X cross sections may be
used as a cross-check for models of the non-forward light-by-light scattering which are applied
to evaluate the hadronic LbL contribution to (g � 2)

µ

.
On the experimental side, the ongoing �� physics programs by the BABAR and Belle Col-

laborations, as well as the upcoming �� physics program by the BES-III Collaboration, will
allow to further improve the data situation significantly. In particular, the extraction of the
�

⇤
� response functions through their different azimuthal angular dependencies, and the mea-

surements of multi-meson final states (⇡⇡, ⇡⌘, . . .) promise to access besides the pseudo-scalar
meson FFs also the scalar, axial-vector and tensor meson FFs, thus allowing direct tests of the
sum rule predictions presented in this thesis.

In the second part of this thesis we have presented the formalism to calculate the HLbL
contribution to the muon’s anomalous magnetic moment a

µ

due to axial-vector, scalar and
tensor meson poles. In this way, we have extended the framework of Ref. [140], where the
leading HLbL contribution due to pseudo-scalar mesons was evaluated. To allow for the differ-
ent Lorentz structures of the �⇤

�

⇤ ! meson vertex, we have performed a combined analytical
and numerical technique, where the angular integrals over the virtual photon momenta were
performed analytically using the Legendre polynomial technique, and where the resulting four-
dimensional integral for a

µ

was performed numerically. We validated our method by reproduc-
ing the known result for pseudo-scalar mesons. To estimate the HLbL contribution to a

µ

from
axial-vector, scalar and tensor mesons, we incorporated available experimental input as well as
constraints from light-by-light scattering sum rules. For those mesons which have the largest
known couplings to two virtual photons, we obtained as estimates :

a

µ

(f
1

, f

0
1

) = (6.4 ± 2.0) ⇥ 10�11

,

a

µ

(f
0

, f

0
0

, a

0

) = [(�0.9 ± 0.2) to (�3.1 ± 0.8)] ⇥ 10�11

, (6.1)
a

µ

(f
2

, f

0
2

, a

2

, a

0
2

) = (1.1 ± 0.1) ⇥ 10�11

.

The size of such contributions is about an order of magnitude smaller than the dominant ⇡0

HLbL contribution. Given a new muon g � 2 experiment at Fermilab, which aims to reduce
the experimental uncertainty to �a

µ

⇡ 16⇥10�11, it is however crucial to further constrain the
theoretical uncertainty due to the HLbL contribution. In this respect, it would be particularly
helpful to have �⇤

�

⇤ ! meson transition form factor measurements with one and two virtual
photons for axial-vector, scalar and tensor states. As such information will become available,
in particular from future measurements from BES-III, the formalism developed in this thesis
can be used to further improve on the estimate of the HLbL contribution to a

µ

.
The adopted approach has one significant disadvantage though. In the developed represen-

tation the HLbL correction is defined in terms of the off-shell hadronic amplitudes. Therefore,
due to the absence of the phenomenological information we had to assume a constant behavior
of the form factors in the meson mass. This, of course, might be a source of a larger uncertainty
of such estimates compared to errors given in Eq. (6.1). In order to overcome this uncertainty,
we developed a novel dispersive formalism for calculation of the hadronic light-by-light con-
tribution to (g � 2)

µ

. We showed that in this approach the inconsistency of the conventional
framework does not emerge. This is due to the fact, that in the dispersion formalism the Pauli
form factor is expressed in terms of on-shell hadronic matrix elements which can be directly
measured in experiments.

As a first step the formalism was applied to the calculation of a single pseudo-scalar meson
pole contribution to (g � 2)

µ

. It was shown that for the case of the monopole form factors
the pole contribution may be expressed in terms of two-loop scalar three-point functions. The
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Chapter 6 Conclusion

properties of the scalar amplitudes were studied in detail in the dispersion framework. We
have subsequently computed one among those which appear in the (g � 2)

µ

and verified our
result by the direct two-loop calculation using the Gegenbauer polynomial expansion. A crucial
distinctive feature of the dispersion approach is that it allows extension to implement the form
factors beyond the simplest monopole or dipole approximations and to include multi-meson
channels. Especially, the next step will be to include the two-pion channel. The currently
running measurements by the BES III collaboration are of a crucial importance for further
developments in this field.
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Appendix A

Kinematics and cross sections of the
e± + e� ! e± + e� + X process

In this Appendix we detail the kinematics of the e

± + e

� ! e

± + e

� + X process, and show
how the cross sections accessible in experiments are expressed in terms of the �⇤

�

⇤ ! X cross
sections, which enter in the sum rules discussed in the present work.

The kinematics of the process e(p
1

) + e(p
2

) ! e(p0
1

) + e(p0
2

) + X, with X the produced
hadronic state, in the lepton c.m. system, i.e. the c.m. system of the colliding beams (which
we denote by c.m. ee) is characterized by the four-vectors of the incoming leptons :
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with beam energy E =
p

s/2, and s = (p
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)2.
The kinematics of the outgoing leptons can be related to the virtual photon four-momenta as :
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The kinematics of the outgoing leptons then determines five kinematical quantities :

• the energies of both virtual photons :
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with E

0
1

and E

0
2

the energies of both outgoing leptons;

• the virtualities of both virtual photons :
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where ✓
1

and ✓
2

are the (polar) angles of the scattered electrons relative to the respective
beam directions, and where the minimal values of the virtualities are given by (in the
limit where E

0
1

>> m and E

0
2

>> m, with m the lepton mass) :

Q

2

1, min

' m

2

!

2

1

EE

0
1

, Q

2

2, min

' m

2

!

2

2

EE

0
2

; (A.5)

• the azimuthal angle � between both lepton planes, which in the lepton c.m. frame can
be obtained as :
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where p

0
1? and p

0
2? denote the components of the outgoing lepton four-vectors which are

perpendicular to the respective beam directions, and are defined in the lepton c.m. frame
as :
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In the following it will also turn out to be useful to determine kinematical quantities in the
c.m. system of the virtual photons ( which we denote by c.m. ��). In particular, the azimuthal
angle between both lepton planes, in the �� c.m. frame, which we denote by �̃ is given by :
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where p̃

1? and p̃

2? denote the transverse components of the incoming lepton four-vectors in
the �� c.m. frame and are defined in a covariant way as :
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As the rhs of Eq. (A.10) is expressed in a Lorentz invariant way, one can then evaluate all
four-momenta in the lepton c.m. frame, to obtain the expression of cos �̃ in terms of the lepton
c.m. kinematics.

The cross section for the process e(p
1

) + e(p
2

) ! e(p0
1

) + e(p0
2

) + X, with X the produced
hadronic state, can be expressed in terms of eight cross sections for the �⇤
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⇤ ! X process,
which where defined in Eq. (2.12), as :

d� =
↵

2

16⇡4

Q

2

1

Q

2

2

2
p

X

s(1 � 4m

2

/s)
· d

3

~p

0
1

E

0
1

· d

3

~p

0
2

E

0
2

⇥
�

4 ⇢++

1

⇢

++

2

�

TT

+ ⇢

00

1

⇢

00

2

�

LL

+ 2 ⇢++

1

⇢

00

2

�

TL

+ 2 ⇢00

1

⇢

++

2

�

LT

+ 2
�

⇢

++

1

� 1
� �

⇢

++

2

� 1
�

⇣

cos 2�̃
⌘

⌧

TT

(A.14)

+ 8

"

�

⇢

00

1

+ 1
� �

⇢

00

2

+ 1
�

�

⇢

++

1

� 1
� �

⇢

++

2

� 1
�

#

1/2

⇣

cos �̃
⌘

⌧

TL

+h

1

h

2

4
⇥�

⇢

00

1

+ 1
� �

⇢

00

2

+ 1
�⇤

1/2

⌧

a

TT

(A.15)

+ h

1

h

2

8
⇥�

⇢

++

1

� 1
� �

⇢

++

2

� 1
�⇤

1/2

⇣

cos �̃
⌘

⌧

a

TL

o

, (A.16)

where h

1

= ±1 and h

2

= ±1 are both lepton beam helicities, and where we have defined
kinematical coefficients :
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Appendix B

Tree-level �⇤�⇤ cross sections in QED

B.1 Scalar QED

The �⇤
�

⇤ ! SS̄ cross sections (with S an electrically charged structureless scalar particle) to
lowest order in ↵ are given by :
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Appendix B Tree-level �⇤
�

⇤ cross sections in QED

B.2 Spinor QED

The �⇤
�

⇤ ! qq̄ cross sections (with q an electrically charged structureless spin-1/2 particle) to
lowest order in ↵ are given by :
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Appendix C

Radiative corrections in a scalar �4 theory

The action describing electrodynamics of the charged scalar particle in the dimensional regu-
larization scheme is defined by :

S =
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where A

µ

and F

µ⌫

are the electromagnetic field and its strength tensor, µ is a mass dimension
constant and d is a number of dimensions.

C.1 One-loop correction to the scalar propagator

p

Figure C.1: One-loop correction to the scalar propagator.

According to Feynman rules the contribution of a graph on Fig.(C.1) can be written as
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which is absorbed by a renormalization of mass.

C.2 One-loop correction to the three particle vertex

p

q

Figure C.2: One-loop correction to the three-point vertex.

Applying Feynman rules to a graph on Fig.(C.2) we obtain
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Appendix C Radiative corrections in a scalar �4 theory

Using Feynman parametrization one can transform the loop integral to a spherically sym-
metric form and perform Wick’s rotation which allows to integrate over the momenta in hyper
spherical coordinates. As a result we obtain :
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here � = m

2 +z(1�z)Q2 and Q
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2. It is easy to show that the integral over the Feynman
parameter is equal to zero
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since the integrand is an antisymmetric function of z.

C.3 One-loop correction to the four-scalar vertex

p

Figure C.3: The one-loop correction to the four-point vertex

In accordance with Feynman rules one can obtain for the graph on Fig. (C.3)
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here we isolate (�i�)2 for convenience. Calculating the loop momentum integral we obtain :
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The integral over x gives :
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Recollecting the i"-prescription we ascertain that the physical amplitude is defined on the upper
edge of the right-hand cut of the s-plane.

C.4 One-loop correction to the �� ! SS̄ vertex

The non-vanishing one-loop corrections to the �� ! �

⇤
� vertex are shown on Fig. (C.4)
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C.4 One-loop correction to the �� ! SS̄ vertex

p

p p

Figure C.4: The �� ! SS̄ vertex correction.

The contribution of the first diagram on a Fig. (C.4) is :
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Integrating over the loop momentum we obtain
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The contribution of the second graphs given by :
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Integration over the loop momentum gives :
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contribute to the matrix element
thus we will omit all not relevant terms in further calculations. The third and the second
diagrams on Fig.(??) give equal contributions. The total contribution of three diagrams is
given by :
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Integrating the first term by parts
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one can rearrange this expression as follows
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The third term in (C.16) vanish for the same arguments as (C.6). Thus finally we obtain
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where the integrals I
1

and I
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are defined as follows
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Introducing form factors
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one can define the amplitude for the �⇤
� ! S̄S production at one-loop level by :

iM

(1)

µ⌫

= ie

2

�F

T (⌫, Q2

1

, Q

2

2

) (q
1

· q

2

g

µ⌫

� q

2µ

q

1⌫

)

+ ie

2

�

Q

2

1

Q

2

2

X

�

F

L(⌫, Q2

1

, Q

2

2

) � F

T (⌫, Q2

1

, Q

2

2

)
�

q

2µ

q

1⌫

(C.21)

When one of photons is quasi-real (i.e. Q

2

2

! 0) the integrals (C.18) and (C.19) can be
evaluated analytically, which gives the following expressions for form-factors (C.20)

F

T (s, Q2

1

, 0) =
1

(2⇡)2(s + Q

2

1

)2

⇢

s + Q

2

1

+ 4m

2arctanh2

1

�

+

+2Q

2

1

�arctanh
1

�

� m

2 ln2

+ 1

� 1
� Q

2

1

 ln
+ 1

� 1

�

,

(C.22)

F

L(s, Q2

1

, 0) =
1

4(2⇡)2(s + Q

2

1

)2

⇢

8(s + Q

2

1

) + 4 arctanh
1

�



�4s� + (s � Q

2

1

)arctanh
1

�

�

�

� (s � Q

2

1

) ln2

+ 1

� 1
+ 4(s � Q

2

1

) ln
+ 1

� 1

�

,

(C.23)

here  =
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.
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Appendix D

Angular integration in (g � 2)µ

In this Appendix we give a complete summary of the three- and four- dimensional angular
integration technique.

D.1 Four-dimensional angular integration

The generating function of the Gegenbauer polynomials C

(1)

n

(x) (hereinafter we use the notation
C

(1)

n

(x) ⌘ C

n

(x)) is given by

1

z

2 � 2xz + 1
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1
X

n=0
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(x), �1  x  1, |z| < 1. (D.1)

From Eq. (D.1) we immediately obtain the following property under parity transformations
C

n

(�x) = (�1)n

C

n

(x). Furthermore we get C
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(1) = n+1. The Gegenbauer polynomials obey
the orthogonality conditions
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where, for instance, (Q̂
1

· K̂) is the cosine of the angle between the four-dimensional vectors
Q

1

and K. Some low-order cases of the polynomials are listed below

C

0

(x) = 1, (D.4)
C

1

(x) = 2x, (D.5)
C

2

(x) = 4x2 � 1, (D.6)
C

3

(x) = 8x3 � 4x, (D.7)
C

4

(x) = 16x

4 � 12x

2 + 1, (D.8)
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From the generating function, we obtain the following representation of the propagators in
Euclidean space:
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Note that we have to choose the negative sign in front of the square root in Z

M

KL

in order that
|ZM

KL

| < 1. For a massless propagator these expressions simplify as follows:
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A set of simplest integrals similar to the one considered in Section 4.2.3 is listed below
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where the following abbreviations for the propagators in the loop integral are introduced:
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D.1 Four-dimensional angular integration

Other integrals that occur during the calculation, involve extra scalar products in the nu-
merator. First, the integrands may be reduced by noting that D

3

= Q

2

1

+ Q

2

2

+ 2(Q
1

· Q

2

),
D

4

= Q

2

1

+ 2(P · Q

1

) and D

5

= Q

2

2

� 2(P · Q

2

). After that using Eq. (D.9), (D.9) we may
rewrite the residual scalar products in the numerator in terms of Gegenbauer polynomials. As
a result, with the help of the identities

(ZM

Q1Q2
)2 =

M

2 + Q

2

1

+ Q

2

2

Q

1

Q

2

Z

M

Q1Q2
� 1,

(Zm

PQi
)2 =

m

2 + P

2 + Q

2

i

PQ

i

Z

m

PQi
� 1,

(D.27)

we can reduce the integrals to the basic ones. In this way we obtain, for P
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D.2 Three-dimensional angular integration

The Legendre polynomials obey the orthogonality relations which read
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where, for instance, (Q̂
1

· K̂) is the cosine of the angle between the three-dimensional vectors
Q
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and K. Some low-order cases of the Legendre polynomials and functions are given below
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showing the even order functions to be odd in x and conversely, and
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The expansion of the denominator in Eq. (4.82) may be derived by exploiting the orthogo-
nality property. Our task here is to calculate
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Using the orthogonality we can write:
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With the help of Eq. (D.50) we can write:
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Applied to a denominator of a propagator together with the orthogonality relation (D.40),
this gives
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The second type of integrals involves factors
⇥

(Q
1

· Q

2

)2 � Q

2

1

Q

2

2

⇤�2. In this case the answer
can be obtained as a derivative of the known integral over a parameter:

1

[(Q
1

+ Q

2

)2 + ⇤2]2
= � @

@⇤2

1

(Q
1

+ Q

2

)2 + ⇤2

. (D.56)

For example:

Z

d⌦(Q1)

4⇡

P

i

(Q̂1 · Q̂2)

[(Q
1

+ Q

2

)2 + ⇤2]2
=

(�1)i+1

2|Q1||Q2|
lim
⇤!0

@

@⇤2

Q

i

✓

2E

1

E

2

+ Q

2

1

+ Q

2

2

+ ⇤2

2|Q1||Q2|

◆

.

(D.57)

A full list of the integrals appearing in the calculation is written out below:
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The integrations appearing when performing the averaging over the direction of K may be per-
formed in a similar way. We can rearrange the denominators by partial fraction decomposition,
with the result that
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We next exploit Eqs. (D.48) to express the numerator of the integrand in terms of the Legendre
polynomials. Finally, a straightforward calculation yields:
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D.2 Three-dimensional angular integration
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For squared denominators we use the same approach as previously. In other words, we exploit
relation
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Applied to the integrands, this gives
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Appendix E

Two-loop scalar vertex function in the
Hyperspherical approach

Hyperspherical approach. The contribution of the first diagram on Fig.(E.1) is
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Figure E.1: The two-loop correction to a vertex function in a scalar �3 theory.
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Changing integral measure to the hypesherical coordinates:
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Using properties of Gegenbauer polynomials we have for the first diagram:
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Appendix E Two-loop scalar vertex function in the Hyperspherical approach
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For the third diagram it takes form:
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Fractional decomposition of the denominator yields
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which can be easily integrated using orthogonality relations of Eq. D.2 and power expansions
of Eq. (D.13, D.14)
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Obtained two-dimensional representation may be integrated numerically.
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Appendix F

Angular integration in the three-particle
phase space integral

The angular integral of interest is given by
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It can be simplified as follows
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Introducing a change of variables cos ✓
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It is convenient to rearrange the integrand of the latter equation as
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Appendix F Angular integration in the three-particle phase space integral

The latter integral may be easily performed which gives
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