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2



I

Zusammenfassung
Die Frage nach der Existenz von Physik jenseits des Standardmodells der Teil-

chenphysik ist eine der wichtigsten Fragestellungen der Physik. Physik jenseits
des Standardmodells wird in zwei Forschungsrichtungen gesucht. Die eine ist die
direkte Suche nach neuen schweren Teilchen im Bereich der Hochenergie-Physik auf
der TeV Skala. Die zweite ist die Suche nach neuen Resonanzen oder Abweichngen
zwischen Experiment und Theorie auf dem Gebiet der Niederenergie-Präzisions-
physik. Diese Arbeit leistet einen Beitrag in letzterem Bereich und beschäftigt
sich mit der Standardmodellvorhersage des anomalen magnetischen Moments des
Myons aµ. Diese physikalische Größe beschreibt die Wechselwirkung eines Myons
mit einem externen elektromagnetischen Feld. Sie wurde experimentell mit einer
relativen Genauigkeit von 0, 5 · 10−6 bestimmt. Allerdings weicht der gemessene
Wert um mehr als drei Standardabweichungen von der theoretischen Vorhersage
ab.

In der Berechnung von aµ treten neben den Beiträgen der Quantenelektro-
dynamik auch Korrekturbeiträge der schwachen Wechselwirkung und der Quan-
tenchromodynamik (QCD) auf. Im Gegensatz zu den beiden anderen Beiträgen
kann der QCD-Beitrag nicht störungstheoretisch berechnet werden. Er besteht
aus dem hadronischen Vakuumpolarisations-Beitrag und dem hadronischen Licht-
an-Licht-Streuungs-Beitrag. Letzterer kann mittels des Optischen Theorems auf
hadronische Wirkungsquerschnitte zurückgeführt werden. Diese wiederum können
in Elektron-Positron Vernichtungsreaktionen experimentell gemessen werden. In
dieser Arbeit wird der Wirkungsquerschnitt des Prozesses e+e− → π+π−2π0 ex-
perimentell bestimmt, welcher einen großen Beitrag zur Unsicherheit des Vakuum-
polarisations-Beitrages von aµ liefert. Der Vakuumpolarisationsanteil von aµ wird
vom Wirkungsquerschnitt unterhalb von 1,8 GeV dominiert. Das Ziel ist es, diese
Unsicherheit durch eine Präzisionsmessung zu reduzieren.

Diese Messung wird mit Daten des BESIII-Experiments am BEPCII- Beschleu-
nigerzetrum in Peking, China, durchgeführt. Es werden Daten verwendet, deren
Schwerpunktsenergie der Elektron-Positron-Kollision von 3,773 GeV entsprechen.
Daher wird die Methode der Abstrahlung eines Photons im Anfangszustand an-
gewendet. Diese Methode ermöglicht es, den Wirkungsquerschnitt als kontinuier-
liches Spektrum unterhalb einer Energie der Schwerpunktsenergie zu messen. Um
die für aµ notwendige Präzision zu erreichen, sind neben der Messung des Wirkungs-
querschnitts des Prozesses e+e− → π+π−2π0 Effizienzstudien der π0 Rekonstruk-
tion, sowie genaue Messungen der Wirkungsquerschnitte der Prozesse e+e− →
π+π−3π0 und e+e− → π+π−3π0γISR erforderlich. Diese treten als Untergrund-
beiträge zu e+e− → π+π−2π0 auf. Dadurch ist es gelungen den systematischen
Fehler der Messung auf etwa 3% in dem für aµ wichtigen Bereich des e+e− →
π+π−2π0 Wirkungsquerschnitts zu minimieren. Auch der Wirkungsquerschnitt
des Prozesses e+e− → π+π−3π0 wird in dieser Arbeit behandelt.





III

Summary
The search for physics beyond the Standard Model of particle physics is one

of the most challenging topics of modern particle physics. Physics beyond the
Standard Model has two frontiers. The first one is the search for new heavy
particles in the field of high energy physics at energies above the TeV scale. The
second is the search of weakly coupled new forces at the low energy precision
frontier. This thesis is placed in the field of low energy precision physics and deals
with the Standard Model prediction of the anomalous magnetic moment of the
muon aµ. This observable describes the interaction of a muon with an external
electromagnetic field. It has been measured experimentally to a relative precision
of 0.5·10−6. However, there is a discrepancy of more than three standard deviations
between the experimentally measured value and the Standard Model prediction.

Besides the contribution from quantum electrodynamics, the calculation also
involves higher order quantum corrections from the weak interaction and quantum
chromodynamics (QCD). The QCD contribution cannot be calculated in terms
of perturbation theory as the other contributions. It further decomposes into a
hadronic light-by-light contribution and a hadronic vacuum polarization contribu-
tion. The latter one can be related to hadronic cross sections via the optical theo-
rem. The hadronic cross sections can be measured in electron positron annihilation
processes. This thesis presents a measurement of the processes e+e− → π+π−2π0,
which contribute with a large uncertainty to the vacuum polarization contribution
of aµ. The dispersion integral used to calculate the vacuum polarization correction
is dominated by the hadronic cross sections in the region below 1.8 GeV. The goal
of this thesis is to reduce this uncertainty by a new precise measurement.

This measurement uses data taken with the BESIII detector located at the
BEPCII accelerator facility in Beijing, China. The initial state radiation method
is used to measure the cross section as a continuous spectrum in the interesting
region below the center of mass energy, though the center of mass energy of the
used data is 3.773 GeV. In order to reach the desired precision, it is not sufficient to
measure only the processes e+e− → π+π−2π0. New precise efficiency studies of the
π0 reconstruction as well as detailed measurements of the background processes
e+e− → π+π−3π0 and e+e− → π+π−3π0γISR are necessary. With these efforts it
was possible to optimize the systematic uncertainty of the measurement to about
3% in the energy region that is important for aµ. Moreover, the cross section of
the process e+e− → π+π−3π0 is measured in this thesis.
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Chapter 1.

Introduction

This chapter presents the scientific context of this thesis. First, the Standard Model
of particle physics is introduced. The experimental measurement and the theoretical
prediction by the Standard Model of the muon’s anomalous magnetic moment, aµ,
is explained in the following sections. Then it is discussed, how hadronic cross
section measurements, performed at e+e− colliders, are used in the calculation of
the hadronic vacuum polarization contribution to aµ. Last, an overview of the
current experimental and theoretical situation is given.

1



2 Chapter 1. Introduction

1.1. The Standard Model of Particle Physics
Since the ancient Greek times philosophers tried to model the world with theo-
ries in order to find some deeper understanding of nature. Galilei and Newton
gave birth to the scientific field of physics in the 16th century by introducing the
methods of repeatable experimental measurements and with the theory about the
equations of motion. In the late 19th century Maxwell showed with his theory of
electrodynamics that completely distinct phenomena, like electric and magnetic
interactions, can be explained and described within only one theory of electro-
magnetism. Albert Einstein revolutionized the understanding of space and time
with his theories about special and general relativity. After the birth of quantum
mechanics in 1905, triggered by Max Planck, it is the goal of modern physics to
explain all observed interactions within only one theory.

The Standard Model (SM) of elementary particle physics represents the theory
which incorporates the current knowledge of known matter and its interactions [1],
except Gravity. The SM was first proposed by Weinberg, Glashow and Salam.
T’Hooft’s prove of its renormalizability [2] and the discovery of the asymptotic
freedom of the strong interaction by Gross, Wilczek and Politzer [3, 4] confirmed
the reliability of the SM. It successfully describes all phenomena of quantum electro
dynamics, the weak force, and the strong force in terms of a quantum field theory.

The SM divides all known elementary particles into two groups. The first group
consists of the bosonic gauge bosons that act as force carriers. The second group
contains the fermionic matter fields. The massless photon, γ, mediates electrody-
namic interactions, the W± and Z0 bosons carry the weak force. Finally there are
8 gluons, g, that carry the strong force. The fermionic matter is further divided
into quarks (u, d, s, c, b, t) and leptons (e, νe, µ, νµ, τ, ντ ). All particles couple
to the gauge bosons of the weak interaction and all except the three neutrinos, ν,
interact with the photon. The six quarks couple to the gluons additionally. All
fundamental particles of the SM are shown in Fig. 1.1.

For energies above a few GeV, all SM predictions are confirmed by experiment
with a very good precision. All the gauge bosons and fermions that were predicted
by the SM have indeed been found in several experiments. In particular the pre-
diction of the existence of the W± and Z0 bosons [5, 6], as well as the top-quark [7]
and the τ lepton [8] were milestone achievements of the SM that were granted with
Nobel Prizes in physics in 1984, 1990, and 1995, respectively. The most recent and
important prediction of the SM was the Higgs boson, which is responsible for the
masses of the SM particles via the Higgs-mechanism [9, 10, 11, 12]. The discovery
of the Higgs boson in 2012 at the LHC at CERN [13, 14] was a major success of
the SM and proved its correctness.

However, the precision of SM predictions is limited in the low energy range.
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Figure 1.1.: Particles of the standard model and their classification.
http : //www.daviddarling.info/encyclopedia/S/standard model.html

Quarks and gluons cannot be observed separately, but only in color neutral bound
states, the hadrons. This phenomenon is called confinement. The hadronic bound
states cannot be described in the perturbative approach of quantum chromody-
namics. Astrophysical observations of galaxy rotations and the accelerated expan-
sion of the universe suggest the existence of dark matter and dark energy, which are
not included in the SM. The matter-antimatter asymmetry found in the universe
is much stronger than expected from the CP-violation in the CKM [15] mecha-
nism provided by the SM. Moreover, the SM completely ignores gravity. Below
the electroweak scale, gravity is so weak, that it can be safely neglected. However,
a grand unified theory should explain all phenomena in the universe at all energy
scales. The goal of modern physics is to find this grand unified theory. The SM is
expected to be the low energy limit of such a theory. Physics beyond the SM does
not necessarily need to occur at energy scales above the TeV scale. I fact, there
may be unobserved particles with very light masses that have a tiny coupling to
the SM particles, even at low energies.

Testing the SM at energies scales below the TeV scale requires observables that
can be measured with very high precision. Such quantities are for instance the
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running electromagnetic coupling at the scale of the Z0 mass, and the anomalous
magnetic moment of the muon [17], aµ. In fact, a deviation between experiment
and the SM prediction of the anomalous magnetic moment of the muon is observed.
At present, the significance of this deviation is about three to four standard de-
viations, which is not yet significant to claim the existence of physics beyond the
SM. However, it is regarded as a strong evidence for physics beyond the SM and
therefore triggered numerous efforts to clarify whether the deviation is really sig-
nificant.

The aim of this thesis is to contribute to these efforts by increasing the precision
of the SM prediction of aµ, which would shed light on the deviation between ex-
periment and theory. The following sections explain the latest (g − 2)µ experiment
and how new high precision measurements of exclusive hadronic reactions in e+e−

annihilations can reduce the uncertainty of the SM prediction.

1.2. The Anomalous Magnetic Moment of the Muon

All electrically charged leptons have a magnetic moment defined as

~µ = g`
e

2m`

~S , ` = e, µ, τ ,

where e denotes the elementary charge, g` is the gyro-magnetic factor, m` is the
mass and ~S the spin of the lepton. This quantity is well suited to perform pre-
cision tests of the Standard Model, since it can be measured very precisely in
experiments for the electron and muon flavors and it also can be calculated theo-
retically. In case of the muon with accuracy equal to the experimental precision.
Dirac theory predicts g` = 2 for all charged lepton flavors. It describes relativis-
tically a charged spin 1/2 particle in a fixed exterior electromagnetic field [18].
However, Dirac theory neglects that the charged particle influences the exterior
electromagnetic field in return. These rebound actions are considered in the SM
as quantum corrections and will be explained later. Dirac theory is identical to
the leading order contribution of the Standard Model shown in the left panel of
Fig. 1.2. Experiments [19] indeed revealed a deviation from g` = 2. Therefore, the
anomalous magnetic moment is defined as the relative deviation from the Dirac
solution

al = 1
2 (gl − 2) , ` = e, µ, τ .

Schwinger was the first who derived the first order correction to the anomalous
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magnetic moment using quantum electrodynamics (QED) [20]. His result was

aQED` = α

π
K(0) (1.2.1)

= α

2π , ` = e, µ, τ ,

which is lepton flavor independent. The expression K(s) =
∫ 1
0 dx

x2(1−x)
x2+ s

m2
`

(1−x2) is the

kernel-function. The Feynman diagram corresponding to Schwinger’s correction is
shown in the right panel of Fig. 1.2.

B field B field

leading order Schwinger term

Figure 1.2.: Feynman diagrams of aµ for leading order (left) and the Schwinger correc-
tion (right).

1.3. Experimental Measurement of the Anomalous
Magnetic Moment of the Muon

The first measurements of (g − 2)µ were performed in Columbia in 1960 [21] and
at CERN between 1961 and 1979 [22, 23, 24]. The last CERN measurement
reached an accuracy of a few parts per million. Between 1998 and 2001 the E821
experiment at the Brookhaven National Laboratory (BNL), USA, was measuring
(g− 2)µ [25, 26, 27, 28, 29, 30]. The latest result from the BNL experiment is the
most precise result on (g− 2)µ up to the time of writing. Its accuracy is 0.54 ppm.
The experimental approach of this (g− 2)µ experiment shall be described in more
detail.

The Alternating Gradient Synchrotron at BNL provides a proton beam with an
energy of 24 GeV. The protons, impinging on a fixed target, produce a secondary
charged pion beam. Pions with an energy of 3.1 GeV are filtered out and injected
into a storage ring, as depicted in Fig. 1.3. The charged pions, π±, decay via the
weak interaction dominantly into polarized muons, µ±, and neutrinos, ν, as shown
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Figure 1.3.: Sketch of the experimental setup of the BNL experiment (Figure
from [17]).

here for the π− decay

π− →µ− + ν̄µ

µ− → e− + ν̄e + νµ .

The appearance of neutrinos ensures lepton number conservation. The branching
fraction of the decay π− → e− + ν̄e is 1.2 · 10−4 times smaller than the branching
fraction of the decay π− → µ−+ ν̄µ [31], although the decay involving the electron,
which is about 200 times lighter than the muon, is strongly favored by the phase
space of the reaction. Due to the parity violation of the weak (vector-axialvector)
interaction, only leptons with left-handed chirality and anti-leptons with right-
handed chirality couple to the W± bosons. The spin orientations of the pion decay
are illustrated in Fig. 1.4. This decay would be forbidden by spin conservation,
since the muon and the (anti-) neutrino can not be left- and right-handed as
required by the weak interaction, such that the sum of their helicities add up to
the spin of the pion, which is zero. However, helicity is not Lorentz-invariant
and there is a probability of 1 − β to observe a particle in a rest frame where it
has an inverted helicity. The decay width of the pion decay is proportional to
1 − β. One obtains 1 − βe = 2.6 · 10−5, if the pion decays into an electron plus
an electron anti-neutrino and 1 − βµ = 0.72 for the decay involving a muon. For
this reason, the branching fraction of the π → e + νe decay is so much smaller
than the branching fraction of the π → µ + νµ decay. This fact is instrumented
for the BNL experiment, as it provides a muon yield of nearly 100% from the pion
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Figure 1.4.: Spin transfer properties in the production and the decay of the muons
(Figure from [17]).

beam. Moreover, the helicity suppression fixes the polarization of the muons to be
oriented into the pion’s direction of flight.

Those polarized muons are injected into a storage ring with a diameter of 14 m
and a constant magnetic field | ~B| of 1.45 Tesla. There are electric quadrupoles
to focus the beam, which create an additional electric field, ~E, in the ring. As
illustrated in Fig. 1.5, the muon spins precesses with the Lamor frequency

~ωL = −ge
~B

2mµ

− (1− γ) e ~B

γmµ

+ e

mµc

(
g

2 −
γ2

γ2 − 1

)
~β × ~E (1.3.1)

around their flight direction. The quantity e is the electric charge of the muon, c
is the speed of light, mµ is the muon mass, ~β is the velocity of the muons in the
storage ring and γ = 1/

√
1− β2 is the relativistic Lorentz factor.

At the same time, inside the storage ring, the muon spin rotates with the cy-
clotron frequency

~ωC = − ge
~B

γmµ

+ e

γmµc
~β × ~E . (1.3.2)

Using Eq. 1.3.1 and Eq. 1.3.2, the observed anomalous frequency ~ωa is given
by [17]

~ωa = ~ωL − ~ωC = e

mµ

[
aµ ~B −

(
aµ −

1
γ2 − 1

)
~β × ~E

]
. (1.3.3)
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Figure 1.5.: Directions of the spin-precession of the BNL experiment (Figure from [17]).

At the so called magic momentum of 3.098 GeV/c, which corresponds to γ =
29.378, the expression for the anomalous frequency in Eq. 1.3.3 simplifies to

~ωa '
e

mµ

aµ ~B

∣∣∣∣∣
p=3.1GeV/c

, (1.3.4)

since for this value of γ the electric field term cancels. The magnetic field strength
of | ~B| = 1.45 T used at the BNL experiment requires the diameter of the storage
ring to be 14 m. The lifetime of the muons in the laboratory frame corresponding
to this boost is 64.54µs, which is long enough to perform a precise experiment.
The magnetic field, which is proportional to ωa needs to be measured with high
precision. Therefore, the Larmor frequency of the free proton ωp = eB

mp
is measured

with a probe of H2O inside the same magnetic field instrumenting the nuclear-
magnetic-resonance (NMR) method. A precision of a 0.05 ppm is achieved using
375 fixed sensors and a mobile device measuring the field at 6000 different positions.
The muons will finally decay into electrons or positrons, according to the charge
of the muon. Also a neutrino and an anti-neutrino are produced in the decay. The
electrons or positrons produced in the muon decay are emitted in the direction of
the muon spin. The storage ring is equipped with 24 calorimeters on the inner
side. Electrons or positrons with a minimum energy of Emin = 1.8 GeV, that fly
to the inner side of the storage ring are detected by the calorimeters, as shown in
Fig. 1.6. The number of positrons with a minimum energy of Emin in the storage
ring is exponentially decreasing according to

N(t) = N0(Emin)e−
t

γτµ [1 + A(Emin) sin (ωat+ ϕ(Emin))] ,

where N0(Emin) is a normalization factor, τµ is the muon lifetime, A(Emin) is the
asymmetry factor reflecting parity violation in the muon decay, and ϕ(Emin) is a
phase. A typical count rate as a function of time is depicted in Fig. 1.7. The decay
shows a modulation with the anomalous frequency ωa, as expected.
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Figure 1.6.: Measurement of g-2 of the muon via the decay to an electron (Figure
from [17]).

The anomalous magnetic moment of the muon can then be determined via

aµ = 1
2 (gµ − 2) = ωa

ωp|µµ/µp| − ωa
.

The ratio |µµ/µp| is given from high precision measurements of the muonium hy-
perfine structure. Results of some of the (g−2)µ experiments are shown in Tab. 1.1.
The world average value of aµ [30], which is completely dominated by the latest

Table 1.1.: Results of the Cern and BNL muon g-2 experiments.
Experiment aµ × 1011 ∆aµ

aµ
[ppm] ref.

CERN µ+ 1961 114500000(2200000) 4300 [21]
CERN µ+ 1972 116616000(31000) 270 [23]
CERN µ+ 1979 116591000(1100) 10 [24]
CERN µ− 1979 116593600(1200) 10 [24]
BNL µ+ 1997 116592510(1500) 13 [25]
BNL µ+ 1998 116591910(590) 5 [26]
BNL µ− 1999 116592020(150) 1.3 [27]
BNL µ+ 2000 116592040(90) 0.73 [28]
BNL µ− 2001 116592140(90) 0.72 [29]

BNL experiments, reads

aexpµ = 116592080(54)(33)× 10−11 [0.54ppm ] .

The anomalous magnetic moment of the muon is one of the most precisely mea-
sured quantities of the Standard Model. There are two new experiments in progress
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Figure 1.7.: Counts of positrons with Emin > 1.8 GeV versus the time modulo 100 µs
since muon injection. The modulation is at the anomalous precession
frequency (Figure from [30]).

to measure aexpµ with even higher precision. The storage ring used at BNL was
shipped to Fermilab in Chicago, USA, where the accelerator facility can provide
higher beam currents, which lead to higher statistics for the aexpµ measurement [32].
The experimental setup is also improved in order to reduce the systematic uncer-
tainties. For this reason the knowledge of NMR trolley location and its tempera-
ture changes is improved. More NMR probes are installed and a new temperature
control stabilizes the heat in the experimental hall. Moreover, the full probe
waveforms are stored to measure at higher gradients in the magnetic field. The
calorimeters are segmented to achieve temporal separation of the signals. This
reduces the systematic uncertainties due to the calorimeter pile-up. A laser based
calibration system is instrumented to improve the intra-fill gain stability of the
calorimeters.

The magnet is ready since September 2015. The calibration of the passive
shimming tools was completed in October 2015. In August 2016, the shimming
procedure was completed and a highly uniform magnetic field is achieved. A first
run of data taking for commissioning started in July 2017. The commissioning
phase is planed to finish in November 2017. First results are expected in the end
of 2018 or 2019.

The other experiment is located at the Japan Proton Accelerator Research Com-
plex (J-PARC) in Tokai, Japan [33]. A new method using an ultra-cold muon beam
will be instrumented, which provides a completely independent approach to mea-
sure aexpµ . Both experiments aim for a precision in the order of 0.1 ppm, which
reduces the error of the existing results by a factor of four.



Chapter 1. Introduction 11

1.4. Standard Model Prediction
In this section, the theoretical calculation of the muon anomalous magnetic mo-
ment within the SM is explained The description of Ref. [17] is followed.

Schwinger’s calculation on the anomalous magnetic moment given in Eq. 1.2.1,
which was introduced in section 1.2 is independent of the lepton flavor and provides
the most sizable correction to (g−2)µ. This correction is equal to the leading order
correction obtained with the SM. In order to obtain a more precise value of the
anomalous magnetic moment of the muon, aµ, higher order corrections have to be
taken into account. These higher order corrections depend on the lepton mass.
The anomalous magnetic moment of the muon can be additively decomposed in
terms of the three forces contained in the SM

aµ = aQED
µ + aweak

µ + ahad
µ . (1.4.1)

1.4.1. Higher Order QED and Weak Contributions
The quantum electrodynamic (QED) part aQED

µ in Eq. 1.4.1 has been calculated
up to tenth order in perturbation theory, which corresponds to five the loop cor-
rection [34]. It only contains radiative corrections involving photons and leptons
as illustrated in Fig. 1.8. Up to the third order the contributions are known ana-

Figure 1.8.: Some diagrams of the second order QED corrections (Figure from [17]).

lytically, whereas the fourth and the fifth order have been calculated numerically.
Recently, the parts of the four loop corrections containing only electron loops or
electron and tau loops have been calculated analytically [35] to cross check the
numeric results.

Also the weak part aweak
µ in Eq. 1.4.1 has been evolved to a high precision. After

the discovery of the Higgs boson, the electroweak contributions involving the W
and Z bosons as well as the Higgs boson itself were recalculated using the correct
Higgs mass [36]. The most important electroweak Feynman diagrams are shown
in Fig. 1.9. The QED and weak contributions are
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Figure 1.9.: Leading order contributions to aweak
µ of the weak interaction. (Figure

from [17].)

aQED
µ = (116584718.104± 0.148)× 10−11 [34] and
aweak
µ = (153.6± 1.0)× 10−11 [36] .

1.4.2. Hadronic Contributions
The hadronic contribution ahad

µ in Eq. 1.4.1 cannot be calculated using perturbative
quantum chromodynamics (QCD), since this theory is not valid at low energies
due to confinement. The running coupling αS(E) of the non-Abelian SU(3)c gauge
theory, which is the basis of QCD, has a pole at E = 0. The hadronic contribution
can be decomposed into three parts

ahad
µ = aHVP,LO

µ + aHVP,HO
µ + aLbL

µ ,

as is illustrated in Fig. 1.10.

had

B-field

had

B-field
B-field

had

Figure 1.10.: Leading-order (LO) hadronic vacuum polarization (HVP) corrections
(left), higher-order HVP corrections (middle) and hadronic light-by-light
scattering corrections (right) to ahad

µ .

The hadronic light-by-light scattering corrections (HLbL) are not subject of this
thesis. These contributions can not be determined in a model-independent way.
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Experimental input of space-like as well as time-like transition form-factors of pro-
cesses of the tpye γ∗γ(∗) → π0 , η , η′ , π+π− , π0π0 and e+e− → γπ0 , γη , γη′ or
π0 , η , η′ → γ∗γ(∗) are used to validate the hadronic models used in the calcula-
tions. A calculation of the HLbL contribution to ahad

µ , which is very often used,
was calculated by Knecht and Nyffeler [37] and reads

aHLbL
µ = (116± 39)× 10−11 . (1.4.2)

The leading order hadronic vacuum polarization (HVP) correction aHVP,LO
µ is

closely related to the topic of this thesis and will now be investigated in more
detail. The first step in the calculation of aHVP,LO

µ is to dress the photon propagator
according to

1
q2 −→

∞∫
0

ds

sπ

Im Πγ(s)
q2 − s

, (1.4.3)

where Πγ(s) is the photon self-energy-function. Fig. 1.11 illustrates the dressing
of the photon propagator.

Figure 1.11.: Next-to-leading order correction to the photon self-energy

The photon self-energy-function can be calculated analytically for leptons, where
the result is Im Πγ(s) =

√
1− 4m`

s

(
1 + 2m`

s

)
, which is a part of the NLO QED

contribution.
In the case of quarks in the loop, an analytic calculation is not possible anymore

due to the non-perturbative nature of QCD. However, the loop can be calculated
using experimental data. The optical theorem,

σ(s)e+e−→hadrons = 4πα
s

Im Πγ(s) , (1.4.4)

which is illustrated in Fig. 1.12, relates the total hadronic cross section σ(s)e+e−→hadrons
to the desired photon self-energy-function.

had had

2

photon self-energy function hadronic cross-section

Figure 1.12.: Relation between the photon self-energy-function and the hadronic cross
sections.
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Extending Schwinger’s result from Eq. 1.2.1 by involving the dressed photon
propagator from Eq. 1.4.3 and applying the optical theorem from Eq. 1.4.4, the
anomalous magnetic moment can be determined via the dispersion integral [17]

aHVP,LO
µ = α

π

∞∫
0

ds

sπ
K(s)Im Πγ(s)

= 1
4π3

∞∫
0

dsK(s)σ(s)e+e−→hadrons (1.4.5)

=
(
αmµ

3π

)2 ∞∫
0

ds
K̂(s)Rγ(s)

s2 .

Again, K(s) = m2
µ

3s K̂(s) =
∫ 1

0 dx
x2(1−x)

x2+ s

m2
µ

(1−x2) is the analytically known kernel func-

tion as used before in Eq. 1.2.1, and Rγ(s) = 3s
4πα2σ(e+e− → hadrons) is the

hadronic R-ratio. The integral to determine aHVP,LO
µ can be split up into a re-

gion where perturbative QCD fails and another where it can be applied. In the
low energy region mπ <

√
s < 1.8 GeV, experimental data from e+e−-colliders

are needed as input using the optical theorem. The composition of the quan-
tity aVP

µ is explained in further detail in the following section 1.5. In the region
1.8 <

√
s < 5.0 GeV inclusive R-scan measurements from PLUTO [38], Crystal

Ball [39] and BES [40] are used for the calculation of the integral. In the remaining
region

√
s > 5.0 GeV perturbative QCD can be used safely [17]. The latest results

obtained by two independent theory groups are in good agreement with each other

aHVP,LO
µ = (6922± 25)× 10−11 [41] , (1.4.6)
aHVP,LO
µ = (6926± 33)× 10−11 [42] .

Among the QCD contributions shown in Fig. 1.10, this contribution is the
largest, both in terms of the absolute value and the uncertainty. The higher order
vacuum polarization corrections aHVP,HO

µ involve multiple blobs, as shown in the
middle panel of Fig. 1.10, but their contribution is much smaller than the leading
order one. They have been calculated to be [17]

aVP,HO
µ = (−97.9± 0.9)× 10−11 . (1.4.7)

Combining all contributions from Eq. 1.4.2, Eq. 1.4.6 and Eq. 1.4.7, the total value
for the SM prediction of the anomalous magnetic moment of the muon results in

atheoµ = (116595802± 42± 26± 2)× 10−11 .
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The difference between the experimental result from Eq. 1.3 in section 1.2 and the
theoretical calculation is

aexpµ − atheoµ = (268± 76)× 10−11 .

This deviation between experiment and theory corresponds to a statistical signifi-
cance of 3.6σ. Several theory groups have published SM predictions of aµ. Some
older ones are based on the τ spectral functions instead of the e+e−-collider data
for the hadronic cross section data to be used in the HVP contribution to (g−2)µ,
or have modified ranges of the dispersion integral from Eq. 1.4.5. The devia-
tions between the BNL measurement and several SM predictions are displayed in
Fig. 1.13. All SM predictions confirm the difference of more than two standard
deviations. A significance of 5σ would be a good hint at physics beyond the Stan-

Figure 1.13.: Deviation between theoretical predictions and the experimental value of
aµ (Figure from [42]).

dard Model to cause the deviation. The objective of this thesis is to perform a
new precise measurement of the e+e− → π+π−2π0 cross section in order to reduce
the uncertainty of the vacuum polarization contribution aHVP,LO

µ .
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1.5. Composition of the Vacuum Polarization
Contribution

The dispersion integral shown in Eq. 1.4.5 is used to relate the vacuum polar-
ization contribution aHVP,LO

µ to hadronic cross sections measured in e+e− anni-
hilations [43]. The integrand of Eq. 1.4.5 is proportional to s−2. This implies,
that cross sections at low energies for example in the ρ resonance region domi-
nate aHVP,LO

µ . Nevertheless, all hadronic cross sections up to 1.8 GeV are needed
to gain the desired precision. The left-hand chart of Fig. 1.14 shows the relative
contribution of different energy regions to the dispersion integral from Eq. 1.4.5.
The (squared) errors are presented in the right-hand chart of Fig. 1.14. The en-

Figure 1.14.: Distribution of the contribution (left) and uncertainties (right) to
aHVP,LO
µ (Figure from [43]).

ergy region between the pion mass threshold and 900 MeV is dominated by the
ρ and ω resonances, which subsequently can be observed in the hadronic chan-
nels e+e− → π+π− and e+e− → π+π−π0. 73% of the contribution stems from
the e+e− → π+π− process, containing the ρ and ω resonances and in their in-
terference. This hadronic cross section has been measured the in e+e− collision
experiments TOF [44], OLYA [45], CMD [46], CMD-2 [47, 48, 49, 50, 51], SND [52],
DM1 [53], DM2 [54], KLOE [55, 56, 57, 58], BABAR [59] and BESIII [60]. The
cross section is shown in Fig. 1.15. The BABAR, KLOE and BESIII measure-
ments claim an uncertainty below 1%. However, there is a discrepancy of about
2σ between the BABAR and KLOE measurements. The newest BESIII mea-
surement [60] rather favors the KLOE results. Many hadronic processes con-
tribute in the energy region between 900 MeV and 1.8 GeV, such as e+e− →
π+π−π0 , π+π−π+π− , π+π−2π0 , π+π−η , π+π−3π0 , KK̄ , KK̄π.

The channel e+e− → π+π−2π0, which is topic of this thesis, has been measured
previously by ACO [61], M3N [62], MEA [63], GG2 [64], OLYA [65], DM2 [66],
ND [67], CMD-2 [68], SND [69]. A new result from BABAR was released in
September 2017 [70] just before finalizing this thesis. The cross sections determined
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Figure 1.15.: e+e− → π+π− cross section as function of center of mass energy (Figure
from [42]).

by these experiments are shown in Fig. 1.16. The error bars show statistical errors
only. The uncertainty of the e+e− → π+π−2π0 channel has a large contribution
to the uncertainty of aHVP,LO

µ . Hence, it needs further investigations to improve it.
This is the main goal of this thesis.

Figure 1.16.: Measurements of the cross section e+e− → π+π−2π0 (Figure from [42]).





Chapter 2.

The BESIII experiment

This thesis is based on experimental data taken by the BESIII detector operated at
the BEPCII accelerator ring facility located at the Institute for High Energy Physics
in Beijing, China. This chapter gives an overview of the BEPCII accelerator and
storage ring, as well as the BESIII detector. In addition to all detector components,
the software frameworks used for this thesis are described.

19
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2.1. The BEPCII Collider
The BESIII experiment is located at the BEPCII (Beijing Electron Positron Col-
lider II) accelerator in Beijing, China, shown in the left panel of Fig. 2.1. The

Figure 2.1.: BEPCII accelerator facility (left) and the storage rings (right) [71].

accelerator facility BEPCII, which was built in 2008, consists of an electron gun, a
positron source, a linear accelerator (linac) and two storage rings. The left panel
of Fig. 2.1 shows an aerial view of the BEPCII accelerator facility. The electron
gun and the positron source produce pulsed bunches of electrons or positrons every
8 ns. The bunch length is 1.5 cm and the beam current is 0.91 A per beam. These
bunches are inserted to the linac and accelerated by synchronized radio-frequency
electromagnetic pulses. The beam energy can be set between 1 − 2.3 GeV. At the
end of the linac, the electrons and positrons are injected to the two independent
storage rings, as shown in the right panel of Fig. 2.1. 93 bunches can be stored in
each ring with a beam current of up to 0.91 A. The two beams can be collided with
a horizontal crossing angle of 11 mrad at the interaction point, where the Beijing
Spectrometer III (BESIII) detector is located. All the design parameters are sum-
marized in Table 2.1. The center of mass energy of the colliding beams is in the
range between 2 − 4.6 GeV. The peak instantaneous luminosity is 1033 cm−2s−1

at beam energies of 1.89 GeV. The design luminosity of 1033cm−2s−1 was reached
in 2016, but data taking is still in progress.

2.2. The BESIII Detector
The BESIII detector is described in full detail in Ref. [72]. A cross section of the
detector is shown in Fig. 2.2. It is a cylindrical shaped multi purpose detector
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Table 2.1.: Parameters of the BEPCII accelerator
Center-of-mass-energy 2 - 4.6 GeV
Designed Peak luminosity at 2 · 1.89 GeV ∼ 1033cm−2s−1

Number of bunches 2 · 93
Beam current 2 · 0.91 A
Bunch spacing 2.4 m / 8 ns
Bunch length 1.5 cm
Relative energy spread 5 · 10−4

Crossing angle ±11 mrad

providing systems to detect and reconstruct charged and neutral particles. The
most inner part of the detector is the beam pipe, where the electron and positron
bunches collide. The beam pipe is surrounded by the multilayer drift chamber
(MDC). The next sub-detector is the time-of-flight system (TOF). Then follows
the electromagnetic calorimeter (EMC). A superconducting magnet creates a ho-
mogeneous magnetic field with a strength of 1 T inside the beam pipe, the MDC,
the TOF and the EMC. Most outside, there is a muon chamber (MUC). All the
sub detector systems will be explained in detail in the following.

Figure 2.2.: Cross-sectional view of the upper half of the BESIII detector with its
components.



22 Chapter 2. The BESIII experiment

2.2.1. Interaction Region and Beam Pipe
The electron and positron beams delivered by BEPCII are focused to the interac-
tion point (IP) by six pairs of quadrupole magnets and two beam bending dipoles.
The beams collide with a crossing angle of 11 mrad. The interaction region is
covered by the 29.6 cm long beam pipe made of a 0.6 mm thick Beryllium tube to
shield the vacuum pressure of 5 · 10−10 torr at the IP. The central Beryllium part
is welded on double wall copper extensions. A cross-sectional view of the beam
pipe is shown in Fig. 2.3. Beryllium has a low density and a low atomic number.
This minimizes multiple scattering of the particles produced in the e+e− collisions
in the beam pipe material. Moreover, Beryllium has good thermal and electric
conductivity in order to withstand the heat load and radio frequency radiation
form the beam bunches. The beam pipe is actively cooled with mineral oil.

Figure 2.3.: Cross-sectional view of the beam pipe. (Drawing form [72].)

2.2.2. Multilayer Drift Chamber
The cylindrical shaped Multilayer Drift Chamber (MDC) is the most important
sub-detector system to measure the momentum of charged particles. Moreover,
the energy loss per path length dE/dx of a charged particle can be measured
with the MDC, which is needed for particle identification. The MDC consists of
an inner and an outer chamber. The inner chamber is installed directly around
the beam pipe and is also joined together with the outer chamber. There are
43 layers of 25µm thick sense wires arranged stepped conically around the beam
pipe as depicted in Fig.2.4, making 6796 sense wires in total. The radius of the
most inner layer is 59 mm and of the most outer one is 810 mm. In total a polar
angle of | cos θ| < 0.93 is covered. Each sense wire is surrounded by 8 field wires.
Neighboring sense wires share the field wires in between. This unit is called drift
cell and its radial position resolution is better than 130µm. In order to achieve an
axial resolution, the layers 1-8 and 21-36 are arranged as small angle stereo layers.
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Figure 2.4.: Mechanical structure of the MDC. (Drawing from [72].)

These small angle stereo layers are rotated by 3◦ - 4◦ against the normal axial
arranged layers. This yields an axial position resolution better than 4 mm for the
charged tracks. The entire MDC is filled with a mixture of 60% He and 40% C3H8
gas at a pressure of 3 mbar above the ambient atmospheric pressure. The mixture
reduces the multiple scattering effect of charged particles crossing the MDC, while
the dE/dx resolution remains at the reasonable value of 6%.

The uniform axial magnetic field induced by the superconducting magnet, that
surrounds the MDC allows to measure the momentum of charged tracks passing
the MDC. The momentum resolution is limited by the position resolution of the
single wires and the effect of multiple scattering of the tracks in the gas or the wires
of the MDC. For a track with a transversal momentum of 1 GeV/c the momentum
resolution is better than 0.5%. The MDC design parameters are summarized in
Table 2.2.

The MDC readout electronics system has to process 6796 sense wires. A block
diagram of the readout electronics system is shown in Fig. 2.5. The main compo-
nents of the readout system are listed below.

• Preamplifier

• Charge and Time measurement module (MQT)
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Table 2.2.: MDC design parameters.
radius inner chamber 86 mm
radius outer chamber 810 mm
total length 2400 mm
angular acceptance inner chamber | cos θ| < 0.93
angular acceptance outer chamber | cos θ| < 0.83
number of layers 43
sense wire gold-plated W, diameter 25µm
field wire gold-plated Al, diameter 110µm
transverse momentum resolution < 0.5% for 1 GeV tracks at 90◦
dE/dx resolution 6%
single wire resolution < 130µm
position uncertainty < 0.4 mm

• Type I und II fan-out modules (MF-I/II)

• Readout control module (MROC)

• Trigger interface module (MTI)

• PowerPC controller (PPC)

After being amplified by fast trans-impedance preamplifiers, the sense wire signals
are sent to the readout crates. Here the signals are split into three branches
in order to measure the charge and the timing information and to give input
to the L1 trigger, which will be described later on. The digitalization of the
timing signal is performed by CERN HPTDC chips [73]. The trigger is provided
with the discriminated timing signals. The branch of the incoming wire signal
used for charge determination is shaped and integrated by charge amplifiers. The
digitalization of this signal type is then performed with analog-to-digital-converter
(ADC) chips. The digitalized signals are further processed by FPGA chips for
digital integration to obtain the total charge and to send it to the data-acquisition
system (DAQ) at the online farm to be stored on hard-disk for further track
reconstruction and physics analyses.

2.2.3. Time-of-Flight System
The time-of-flight (TOF) sub-detector system consists of a barrel part and two
end cap parts. The barrel TOF detector is made of two staggered layers of plastic
scintillators with photomultiplier tube (PMT) readouts at both ends of the scintil-
lator plates. The end caps only have a single layer of plastic scintillators, also with
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Figure 2.5.: Block diagram of the MDC readout electronics. (Drawing form [72].)

PMT readouts. The thickness of each layer is 5 cm. The inner radius of the first
layer in the barrel is 0.81 m, which is exactly on top of the MDC outer edges. The
scintillator layers of the barrel TOF detector are 2.3 m long. The end cap part of
the TOF system is placed behind the end plates of the outer MDC chamber with
an inner radius of 1.15 m. The polar angle coverage is | cos θ| < 0.82 for the barrel
and 0.85 < | cos θ| < 0.95 for the end caps. A gap exists between the barrel and
the end caps containing support structures for the MDC. Each layer in the barrel
contains 88 plastic scintillation counters of the type BICRON BC-408. The end
caps are made of 48 trapezoidal scintillation counters.

The time resolution of the TOF system is 80 ps for the two layers in the bar-
rel and 110 ps in for the single layer system in the end caps for muons with a
momentum of 1 GeV/c. The main contributions to these uncertainties stem from
the scintillator counter intrinsic time resolution, the global timing marker (accel-
erator RF clock), the determination of the interaction vertex of the 15 mm long
electron/positron bunches, the uncertainty of the axial position of the hit points
including light propagation speed in the scintillator, the time resolution of the
readout electronics and the uncertainty of the expected flight time calculated from
the momentum measured from the MDC (0.5% momentum resolution). For other
particles like kaons, pions and protons, the time resolution is approximately 20%
larger. The simulated K/π separation capability of the barrel TOF is shown in
Fig. 2.6. The thick solid line represents the time difference between kaons and pi-
ons arriving at the inner TOF layer that is necessary to separate kaons and pions
with a significance of 3 standard deviations as function of the polar angle. The
dashed thick line represents the same if both layers are used. Kaons and pions
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Figure 2.6.: K/π separation capability as functions of cos θ. (Drawing form [72].)

can be separated with a 3σ significance if their momenta are below 0.7 GeV/c at
cos θ = 0, which is in the center of the barrel, or 1 GeV/c at cos θ = 0.8, which
corresponds to the outer border of the barrel at the gap. The 3 σ K/π separation
limit of the end cap TOF is between 0.9 − 1 GeV/c, since the time resolution is
worse than in the barrel. The TOF readout system, shown in Fig. 2.7 consists
of preamplifiers, signal time and amplitude measurement circuits, L1 trigger cir-
cuits and a laser calibration system. The PMT preamplifiers have 448 channels
from all the scintillation counters. Similar to the MDC readout system, time and
charge measurement modules are contained in the front end electronics (FFE) on
HPTDC and FlashADC chips. Each FEE unit processes signals from 16 pream-
plifiers. Moreover there are two L1 trigger fast control modules. These modules
provide L1 readout control forming the L1 sub-trigger system. All the basic TOF
design parameters are summarized in Table 2.3.

Table 2.3.: Properties of the TOF system
inner radius barrel 810 mm
outer radius barrel 870 mm
scintillator dimensions 2380 mm× 50 mm× 50mm
angular acceptance barrel | cos θ| < 0.83
angular acceptance endcaps 0.85 < | cos θ| < 0.95
total time resolution 80 ps (barrel), 110 ps (end caps)
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Figure 2.7.: Architecture of the TOF readout electronics crate. (Drawing form [72].)

2.2.4. Electromagnetic Calorimeter
The electromagnetic calorimeter (EMC) is a sub-detector system that measures
the energy deposition of charged, as well as neutral particles passing its detector
material. The energy deposit of charged particles in the EMC gives additional
information for the particle identification (PID) system. Electrons and charged
pions, for example, interact differently with the EMC detector material. The
shapes of the showers that particles produce within the EMC is also used by the
PID system to distinguish between different species. Photons, which are invisible
to the MDC, can be detected by the EMC, since they usually deposit their entire
energy in the crystals. In rare cases photons convert into an e+e− pair within the
detector and cannot be reconstructed by the EMC. An electromagnetic calorimeter
with a good spatial and energy resolution plays a key role for the spectrum of
possible physics applications of a multi purpose detector like BESIII.

Similar to the TOF, the EMC is divided in a barrel part covering | cos θ| < 0.8
and two end caps covering 0.86 < | cos θ| < 0.93. The EMC consists of 6240
CsI(Tl) crystals arranged in 44 rings in the barrel and 2× 6 rings in the end caps.
As shown in Fig. 2.8, each crystal covers an angle of 3◦ in polar and azimuthal
direction and points towards the IP, in the center of the detector, with a tilt of 1.5◦
in the azimuthal angle direction and 3◦ in the direction of the polar angle. This
corresponds to an offset of ±5 cm from the IP in the axial direction. The small
tilt of the crystal orientation prevents photons from flying exactly parallel through
the gaps between the crystals, if coming from the IP. The shape of the crystals
is a truncated pyramid with a quadratic front face of 5.2 cm and a rear face of
6.4 cm. The crystal length is 28 cm, which corresponds to 15 radiation lengths of
the CsI(Tl) material. This provides an energy resolution of ≤ 2.5% for a 1 GeV
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photon. The EMC can measure shower energies between 20 MeV and 2 GeV with
a sampling cycle time of 50 ns. The photo diodes reading out the scintillation light

Figure 2.8.: Side and cross-sectional views of the barrel super module assembly jig.
(Drawing form [72].)

of the crystals, provide a voltage, which is proportional to the energy deposited in
the crystal. After preamplification, this signal is digitalized by ADCs. The energy
E can then be calculated by

E = ADC − PED
e · c

.

ADC is the digitalized output voltage (mV), which is measured experimentally
by the calorimeter. The pedestal value PED is the constant background noise
rate of the electronics. The electronics gain e (mV/C) is the conversion constant
between the output voltage from the ADC readout electronics and the input charge
of the preamplifier. This constant is known from the design of the electronics. It
is further calibrated with test pulses to the preamplifier. The energy conversion
constant c (C/MeV) was measured before the final assembly of the EMC for each
crystal. Test beams of photons and charged particles, for example electrons with
known energy where used for this measurements. The design properties of the
EMC are summarized in Table 2.4.
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inner radius barrel 940 mm
barrel length 2750 mm
inner radius endcaps 500 mm
Number of CsI(Tl) crystals 6240 (5280 in barrel and 960 in endcaps)
crystal length 280 mm
crystal front and rear sizes 5.2× 5.2 cm2 and 6.4× 6.4 cm2

angular acceptance barrel | cos θ| < 0.83
angular acceptance endcaps 0.85 < | cos θ| < 0.95
total acceptance of 4π 93%
energy resolution 2.3%√

E(GeV )
⊗ 1%

position resolution in xy-plane σxy <
6 mm√
E(GeV )

Table 2.4.: Design properties of the EMC

Figure 2.9.: Distribution of the Magnetic field in the axial direction Bz. (Drawing
form [72].)
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2.2.5. Superconducting Solenoid Coil
The superconducting solenoid (SC) provides a uniform axial magnetic field of
1 T around the interaction region, the MDC, TOF and EMC sub-detectors. The
magnetic field map is shown in Fig 2.9. This magnetic field causes a curvature
in the particle trajectories due to the Lorentz force, which is measured by the
MDC to determine the momenta of the charged particles. The SC consists of the
superconducting solenoid itself and a steel flux return yoke with a weight of about
498 metric tons, which serves as a hadron absorber. The flux return yoke provides
structure and support for the inner detector parts and consists of nine layers of
steel in the barrel and eight layers in the end caps. This segmented layer structure
is instrumented with MUC system described in the next subsection.

2.2.6. Muon Chamber
The Muon chamber (MUC) is necessary for an efficient separation between muons
and pions. The MDC and TOF systems alone cannot provide a sufficiently efficient
identification due to the relatively similar masses of muons and pions. The MUC
consists of nine layers of resistive plate counters (RPC) in the barrel region and
eight layers in the endcaps. The barrel RPC layers are inserted between the steel
plates of the flux return yoke of the SC. The inner radius of the barrel part of
the detector is 1.7 m and the outer radius is 2.62 m. The angular resolution of
the MUC is modest due to multiple scattering of the muons in the EMC and the
steel of the magnet yoke. However, the resolution is sufficient to associate MUC
hits with the tracks reconstructed from the MDC and TOF systems, which have
a much better resolution. The RPCs are made of phenolic paper laminate.

The RPC single gas gaps are shown in Fig. 2.10, where the phenolic paper
laminate is addressed with Bakelite. The electrodes are vapor-coated on the phe-
nolic paper laminate resistive plates with a thickness of 2 mm. A 2 mm gas gap
separates the Bakelite plates. The gas is a mixture of Ar/C2F4H2/C4H10 with a
mixing ratio of 50:42:8. Spacers of 12 mm diameter each 10 cm serve as support
structure to hold and separate the Bakelite plates. Two single RPC modules are
stacked together to a double-gap design in the MUC. This improves the muon de-
tection efficiency. The readout strips are placed in between the double-gap. The
muon tracking efficiency is about 98%. Important MUC design parameters are
summarized in Table 2.5.

2.2.7. Trigger System
The BESIII trigger system decides, whether a recorded collision event is written
to disc or whether it will be discarded. As shown in Fig. 2.11, the trigger system
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Figure 2.10.: Cross-sectional view of the RPC gas gap (left) and the double gap RPC
(right). (Drawing form [72].)

Table 2.5.: Design properties of the MUC
inner/outer radius barrel 1700 mm / 2620 mm
total steel plate thickness barrel 56 cm
inner/outer distance to IP end caps 2050 mm / 2800 mm
total steel plate thickness end caps 43 cm
number of layers barrel/end caps 9/8
angular acceptance barrel | cos θ| < 0.75
angular acceptance endcaps 0.75 < | cos θ| < 0.89
total acceptance of 4π 89%
average efficiency barrel/end caps 96% / 95%

consists of a two level based system with a Level-1 (L1) FPGA based hardware
trigger and a Level-3 software trigger1. Whether an event will be written to disc
or not must be decided within a few micro seconds, since the physics event rate is
2 kHz at the maximum instantaneous luminosity of 1033/, cm−2s−1, which is near
the J/ψ-resonance region. On top of the desired physics events, there are back-
ground contributions from cosmic rays, which are estimated to occur with a rate
of 1.5 kHz. Beam related background contributions pollute the spectrometer with
a rate of 1.3 · 104 kHz. This kind of background stems from electrons or positrons
lost from the focusing in the storage ring due to the high beam currents. The
L1 trigger must be capable to suppress the beam-related and cosmic backgrounds
to a rate lower than 2 kHz, which is the physics event rate. To meet these time
requirements, the maximum L1 trigger rate is 4 kHz. After the collision the trigger
decision, which determines if the L1 trigger accepts the signal or not, takes 6.4µs.
Figure 2.11 shows the block diagram of the L1 trigger. The hardware parts close to
the detector are the read-out front-end electronics of the four sub-detectors. They
provide the input information for the trigger decision. The L1 trigger performs
simple track finding from the MDC, TOF hit patterns, isolated cluster energy
finding and energy summation in the EMC. The L1 decision latency is dominated

1There is no trigger subsystem addressed with Level-2.
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by the 3µs decay time of the EMC material. The L1 trigger reduces the rate of
cosmic-ray backgrounds to a level of 0.2 kHz, whereas the rate of the beam related
backgrounds after the L1 trigger is ≤ 2 kHz. More detailed information on the
trigger can be found in [74, 75].

Figure 2.11.: Data flow of the trigger (left). Block diagram of the trigger system
(right). (Drawings form [72] and [75].)

2.3. Software Framework
This section contains descriptions of all software packages that are used to analyze
the data taken by the BESIII detector and the Monte Carlo simulations of these
data.

2.3.1. Geant4
The Geant4 (Geometry and tracking) software platform is developed at CERN [76,
77]. Most of the modern particle physics experiments for example BaBar, ATLAS,
PANDA, BELLEII and BESIII use Geant4 to simulate the detector responses. It
is based on the object oriented C++ programming language. The particles pro-
duced in the e+e− collisions change their energy and direction of their momenta
due to scattering processes with the detector material and the gases used in the
detector. Monte Carlo (MC) methods are instrumented to quantitatively simulate
these interactions between the particles and the detected material. The Geant4
software platform provides a precise simulation of the detector response of parti-
cles generated by a MC simulation of physical processes. Any geometrical shape of
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matter and a large variety of materials can be used in the simulation. Therefore,
the Geometry Design Markup Language(GDML) [78] is used to store the geometry
information.

2.3.2. CERN ROOT
The ROOT software framework is developed at CERN since 1994 [79]. This soft-
ware provides a large number of C++ classes and libraries for general data analysis.
The framework libraries are available for all the most common operating systems
like Windows, Linux, Mac OS X and many more. It is the successor of the famous
FORTRAN based PAW software framework. ROOT is designed to face the analy-
sis of the extensive amounts of data produced at the LHC experiments. Presently,
ROOT also finds more and more scopes of applications for example in data-mining.
ROOT can be used as a compiled binary program linked with the necessary ROOT
libraries or as an interpreter for command chains or macros.

Root version 5.34 is extensively used to produce all plots and histograms in this
work.

2.3.3. BESIII Offline Software System
The BESIII offline software system (BOSS), is the software framework that is used
to reconstruct, calibrate and analyze the data collected by the detector, as well
as to simulate certain physical processes and their interaction with the detector.
It consists of more than 100 libraries for the detector sub-systems, their calibra-
tion, MC generators, reconstruction algorithms and tools like kinematic fitting,
and particle identification. The libraries are written in the C++ programming
language and partially based on the GAUDI package [80] of CERN ROOT intro-
duced above and compiled with the CMT framework. BOSS runs on scientific
Linux version SLC5 and SLC6. Each library of the BOSS framework has been
implemented by the experts of the corresponding detector sub-system. The archi-
tecture of the BOSS framework is shown in Fig. 2.12. After generating a physical
event in a Monte Carlo Simulation, the BOSS software also simulates the readout
electronics, noise, dead channels, and the trigger system using Geant4. These in-
formations mimicking the digital readout of the detector sub-systems is sored in a
raw data file, which has the same format as the digital information of the real data
taken by the detector electronics. The reconstruction package proceeds real and
simulated data from a raw file into a Data-Summary-Tape (DST) file. Within this
process a Kalman-filter performs the fitting for the charged track reconstruction.
The clustering algorithm transforms calibrated ADC values of each crystals into
energies and merges the energy deposits of close by crystals to electromagnetic
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Figure 2.12.: The overall BESIII software architecture. Picture taken form [72]

showers in the EMC. Also the time measurements of the TOF system are calcu-
lated from the TOF electronics output in this step. At last the hit information of
the MUC is transformed into tracks. Last, the reconstruction package merges the
informations of the sub-detector systems, if they are found to belong to the same
particle. For each physics analysis or efficiency study, the user has to implement
his/her own software package to analyse the DST files of data and simulations.
The BOSS version used in this work is BOSS6.6.4.p01, since the used data set is
reconstructed with this BOSS version.

A good example of a BOSS package is the EventDisplay class. This class allows
to display the information of all the sub-detector systems for each event separately.
Fig. 2.13 shows the event display of a e+e− → J/ψπ+π− event in the plane per-
pendicular to the beam axis. The J/ψ immediately decays into a µ+µ− pair. That
is why four tracks can be seen in the picture. One can nicely see, how the charged
tracks leave a curved trace in the MDC and pass through the TOF, EMC and
MUC.

2.4. BESIII Data Sets
The center-of-mass (c.m.) energy of the BESIII experiment can be adjusted be-
tween 2 GeV and 4.6 GeV. This region referrers to as the τ -charm region, as it
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Figure 2.13.: Graphical display of an e+e− → J/ψπ+π− event. The tracks and the
detector are shown in the plane perpendicular to the beam axis.

covers the poles of several charmonium resonances, the threshold of open charm,
and the threshold for the pair production of tau-leptons. Thus, the main physics
goals of the BESIII collaboration are charmonium spectroscopy, light hadron spec-
troscopy in charmonium decays, D-meson physics, τ -physics, XYZ-physics and
search for new physics beyond the Standard Model. The BEPCII accelerator
belongs to the accelerators with the worlds highest luminosity at energies in the
charmonium range, which is shown in Fig. 2.14. The BESIII detector collected the
worlds larges data sets at

√
s = 3.096 GeV,

√
s = 3.684 GeV and

√
s = 3.773 GeV.

These data sets allow to study the corresponding charmonium resonances J/ψ,
ψ(3686) and ψ(3770) with high precision. Fig. 2.15 shows the size of these data
sets taken by the BESIII detector in comparison to the respective data sizes of
previous e+e− collider experiments.
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Figure 2.14.: Comparison of luminosities versus c.m. energies for several e+e−, pp̄
and proton-proton Colliders in the world. BEPCII (BESIII, Beijing),
DAΦNE (KLOE-II, Frascati), PEP-II (BaBar, Stanford) and KEKB
(BELLE, Tsukuba). (Figure from [82].)

Figure 2.15.: J/ψ, ψ(3686) and ψ(3770) data sets taken by several experiments. In
the left histogram the number of events is shown.

The BESIII data sets are about one order of magnitude larger than the data
sets, which are taken by the experiments MARKIII, Crystal Ball (CBAL), and
CLEO-c. All the BESIII data sets taken in the campaign between 2009 and 2016
are listed in Table 2.6. The data sets with a large integrated luminosity give the
opportunity to perform high precision measurements, as for example aimed in the
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context of this work. For this thesis, the ψ(3770) data set taken in 2010 and 2011
is used. It is the largest sample and the c.m. energy is as close as possible to the
region most relevant for (g − 2)µ. Detailed information of this data set are given
in Table 2.7. Its luminosity has been measured precisely in [84] using Bhabha
scattering events.

Table 2.6.: List of all BESIII data sets taken until 2016.
Name Year

√
s [GeV] L [pb−1]

R-Scan 1 2015 2.050-3.080
J/ψ 2009 3.097 106M events
τ data 2009 3.650 44
ψ(3686) 2009 + 2012 3.686 341M events
ψ(3770) data 2010 + 2011 3.773 2932
ψ(3770) lineshape 2010 3.643-3.890 64
R-Scan 2 2014 3.890-4.220 826
ψ(4040) data 2010 4009 482
Y(4230) data 2012-2013 4260 1092
Y(4260) data 2012-2013 4260 826
Y(4360) data 2012-2013 4360 540
Y(4420) data 2014 4420 1073
Y(4600) lineshape 2014 4.470-4.575 268
Y(4600) data 2014 4600 566

Table 2.7.: Detailed information and luminosity [83, 84] about the ψ(3770) data set,
which is used in this thesis. The first error is statistical and the second
is the systematic uncertainty. Round 1 was taken in 2010 and round 2 in
2011.

Round Run number Integrated luminosity L [pb−1]
Round 1 11414 - 13988 and 14395 - 14604 927.67± 0.10± 9.2
Round 2 20448 - 23454 1989.27± 0.15± 19.89

Sum 2931.8± 0.18± 29.17

2.5. Monte Carlo Simulations
Monte Carlo (MC) simulations are needed in order to calculate the detection

efficiency of a final state, to optimize the event selection criteria and to study
background contributions. As mentioned above, the simulation consists of three
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steps. In the first step a dedicated MC event generator produces physical pro-
cesses. In the second step the BOSS framework simulates the response of the
detector electronics as if the simulated particles would propagate through all de-
tector sub-systems. In the last step, the track and EMC shower reconstructions
are performed. The result is a DST file that looks like real data.

The Phokhara 9.1 event generator [85] is used for the simulation of the pro-
cess e+e− → π+π−2π0γISR, which is the main topic of this work. Phokhara 9.1
is a dedicated initial state radiation (ISR) event generator. It simulates ISR
events with a precision of 0.5%. The final states µ+µ−, π+π−, π+π−π0, π+π−η,
π+π−π+π−, π+π−π0π0, K+K−, K0K̄0, pp̄, nn̄ and ΛΛ̄, are supported up to next-
to-leading order (NLO) ISR. Thus, up to two additional ISR photons in the final
state are considered. Also final state radiation (FSR) and ISR-FSR interference
are supported for the final states µ+µ−, π+π−, K+K− and pp̄. Free parameters
in the model of the hadronic currents are fixed by fits to previous experimental
results on these channels by BABAR, CMD-2, CLEO-c, KLOE and ALEPH. The
generator allows to adjust the parameters specific for certain physics effects and
experimental setups, such as the c.m. energy, VP, ISR or fixed c.m. energy mode,
maximum and minimum energies of the leading order (LO) and NLO ISR photons,
the polar angle range of the particles in the final state, where the range of radi-
ated photons and produced hadrons is adjusted separately. Table 2.8 shows the
configuration used for the simulation of the signal process e+e− → π+π−2π0γISR.

Table 2.8.: Settings of Phokhara 9.1 for the simulation of the signal channel
e+e− → π+π−2π0γISR.

Parameter Value/Setting
ScanMode no

CMS energy 3.773 GeV
Vacuum polarization yes, by Jegerlehner

NLO ISR yes
FSR no

FSR NLO no
Minimum photon energy (LO) 0.05 GeV

SoftPhotonCutoff (NLO) 0.1 MeV
Minimum photon angle 0.0◦
Maximum photon angle 180.0◦

Minimum hadrons/muons angle 0.0◦
Maximum hadrons/muons angle 180.0◦

Narrow Ressonances (J/ψ, ψ(3686)) no

The background processes are simulated with the BesEvtGen [86] event gener-
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ator. To simulate the dominating multihadronic background channels, the genera-
tor model LundAreaLaw [87, 88] is used. This model simulates e+e− → qq̄+nγ,
q = u, d, s and n = 0, 1, where the qq̄ pair hadronizes to the multihadronic fi-
nal states. This MC sample is referred to as Lund-qq̄. The HelPWA generator
tool [89] was used to produce a dedicated MC sample for the important back-
ground contribution from π+π−3π0. To simulate a final state, HelPWA uses
data input of all kinematic variables of the final state particles to perform a
partial wave analysis (PWA) and generate MC samples according to the solu-
tion of the PWA. BesEvtGen is also used to simulate additional background
contributions from, e+e− → γISRJ/ψ, e+e− → γISRψ(3686), e+e− → D+D−,
e+e− → D0D̄0 and non-DD̄. The non-DD̄ MC sample contains processes of the
type e+e− → ψ(3770), where ψ(3770) decays to anything except D-meson pairs,
for example e+e− → ψ(3770)→ γχc1.

Table 2.9 provides details on the cross sections and event numbers of all MC
samples generated and evaluated in the analyses of this work.

Table 2.9.: List of all MC samples and their sizes used in the analyses of this work.
Final state(s) Cross section [pb] Generator (model) Events
π+π−2π0γISR 385 Phokhara 9.1 107

π+π−3π0 18 BesEvtGen (HelPWA) 2 · 106

ωπ0π0 80 BesEvtGen (PHSP) 2 · 106

ηπ+π− 41 BesEvtGen (PHSP) 2 · 106

Lund-qq̄ 12200 BesEvtGen (LundAreaLaw) 366 · 106

non-DD̄ 500 BesEvtGen (HELAMP) 15 · 106

γISRJ/ψ 1100 BesEvtGen (VECTORISR) 33 · 106

γISRψ(3686) 3400 BesEvtGen (VECTORISR) 102 · 106

D+D− 2880 BesEvtGen (VSS) 91 · 106

D0D̄0 3660 BesEvtGen (VSS) 12 · 106





Chapter 3.

Physics of Initial State Radiation

For an improved determination of the hadronic vacuum polarization contribution
to (g − 2)µ it is necessary to measure the cross section of the hadronic channel
e+e− → π+π−2π0 in the energy range from the kinematic threshold up to a few
GeV. However, high precision data for this channel were not available in the desired
energy range. This chapter introduces the initial state radiation technique. This
technique allows to determine the desired cross section in the relevant energy region
from data taken at a collider operating at center of mass energies above the energy
range of interest.

41
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3.1. Leading Order Initial State Radiation
The center of mass (c.m.) energy of the collision at colliders is fixed. Following
the dispersive approach1 for calculating the hadronic vacuum polarization con-
tribution to (g − 2)µ, referred to as aHVP,LO

µ , it is necessary to determine the
energy dependence of the hadronic cross sections. The cross section of the process
e+e− → π+π−2π0 in the energy range below 1.8 GeV is of particular importance
for the determination of aHVP,LO

µ .
One possibility to obtain the cross section in the desired energy range is to per-

form an energy scan. This means to take data at different c.m. energies within the
energy range of interest. However, this method suffers from several disadvantages.
Firstly, since it is highly time consuming to tune the detector and the accelerator
after each change of the c.m. energy, the number of energy points is typically
limited. Secondly, the cross section between the accumulated data points remains
unknown, so that narrow structures might be lost or underestimated. Lastly, the
performance of the accelerator is not constant for different c.m. energies. How-
ever, an advantage of the energy scan method is that there are less background
contributions.

Therefore it is more efficient to derive the desired cross section for the relevant
energy range from a huge data set taken at a higher c.m. energy. Collision data at
a higher energy also contain the desired process with an additional photon, which
was radiated from the initial state. This process is referred to as Initial State
Radiation (ISR). Figure 3.1 illustrates a leading order ISR process. Data from the
ISR process e+e− → π+π−2π0γISR allow to derive the cross section of the channel
e+e− → π+π−2π0 for lower c.m. energies than the one, at which the collision was
performed. The analysis described in this thesis is based on the data set collected
at a c.m. energy of 3.773 GeV, which corresponds to the largest data set available
at BESIII.

had

Figure 3.1.: Leading order initial state radiation process

1Compare section 1.4.2
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For the desired accuracy in the ISR analysis, it is important to consider events,
in which more than one photon is emitted from the initial state. This results from
higher orders in the perturbation expansion of QED. A more detailed description
of this issue will follow in section 3.2.

For the leading order process, the effective c.m. energy left for the interaction
can be calculated from the energy of the ISR photon. Applying four-momentum
conservation gives

p0 = phad + pγ , (3.1.1)
where p0 = (

√
s,~0) denotes the four-momentum of the initial state in the labo-

ratory frame, s = E2
CM is the squared c.m. energy, pγ = (Eγ, ~pγ) denotes the

four-momentum of the ISR photon and phad denotes the sum of the four-momenta
of the hadrons in the final state. Squaring both sides of Eq. 3.1.1, using p2

γ = 0
and considering the Minkowski metric one obtains

p2
0 = (phad + pγ)2 = p2

had + 2phadpγ + p2
γ

= p2
had + 2(p0 − pγ)pγ = p2

had + 2p0pγ

= m2
had + 2

√
sEγ = s

⇒ Eγ = s−m2
had

2
√
s

. (3.1.2)

Moreover, it is considered that p2
had = m2

had.
The cross section dσrad

dmhad
of a certain final state with an additional ISR photon,

called radiative cross section, can be related to the cross section σnonrad(mhad)
without the ISR photon, which is called non-radiative cross section. This relation
is given by [90, 91] and reads

dσrad

dmhad
= dσ

dx

dx

dmhad
= 2mhad

s
W (x, s)σnonrad(mhad) , (3.1.3)

where x = 1− m2

s
= 2Eγ√

s
and W (x, s) is the angular integrated radiator function.

The leading-order angular dependent radiator function H(x, s, θ) is given by

H(x, s, θ) = α

πx


(
1− x+ x2

2

)
sin2 θ − x2

2 sin4 θ(
sin2 θ + 4m2

e

s
cos2 θ

)2 − 4m2
e

s

(1− 2x) sin2 θ − x2 cos4 θ(
sin2 θ + 4m2

e

s
cos2 θ

)2

 ,
(3.1.4)

in Ref. [90, 91] The function H(x, s, θ) describes the amplitude to radiate an initial
state photon with energy Eγ under the polar angle θ. Eq. 3.1.4 is independent
of the photon’s azimuthal angle ϕ. The angular integrated radiator function in
leading order is subsequently given by

W (x, s) =
2π∫
0

dϕ

π∫
0

dθ sin(θ)H(x, s, θ) = 2α
πx

(
ln s

m2
e

− 1
)(

1− x+ x2

2

)
. (3.1.5)
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Equation 3.1.5 reveals that the radiator function has a pole at the c.m. energy
of the collision. For this reason, it cannot be normalized and therefore not be
interpreted as a probability density to radiate a photon. It rather has to be
interpreted as an amplitude. Figure 3.2 shows the polar angle dependence of the
energy integrated leading order radiator function

∫ 1
0 dxH(x, s, θ). The ISR photons

are dominantly radiated at angles close to zero and 180 degrees, which is along
the beam pipe in an experimental setup.
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Figure 3.2.: Polar angle dependence of the leading order radiator function integrated
over photon energy

∫ 1
0 dxH(x, s, θ). The BESIII detector can detect pho-

tons in the orange shaded area, but not in the blue shaded one.

Conventional detector setups at e+e− colliders require a gap in their detector
acceptance at small polar angles in order to host the accelerator structures, like
beam pipes and focusing magnets. Considering the special shape of the radiator
function, ISR events can be reconstructed in two ways, as illustrated in Fig. 3.3.
The methods can be characterized as follows:

ISR Tagged Method All particles of the final state including the ISR photon are
reconstructed in the analysis. A kinematic fit to all particles including the
ISR photon can be performed, constraining the total four-momentum to be
equal to the c.m. energy of the e+e− collision. Due to the shape of the
radiator function this method is statistically limited.
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ISR Untagged Method The ISR photon is emitted at small polar angles and
therefore not reconstructed. All hadrons, however, are fully reconstructed.
The four momentum of the missing ISR photon can be predicted by re-
quiring four-momentum conservation. The polar angle of the ISR photon
is restricted to angles close to the beam axis, which is outside the accep-
tance region of the detector. This method provides much higher statistics
compared to the tagged mode. Another advantage of this method is the
unique signature of the photon polar angle distribution, which can be used
to suppress background.

Figure 3.3.: Sketch of an tagged ISR event (left) and an untagged ISR event (right).
The solid lines represent the final state hadrons and the wiggled line de-
picts the ISR photon.

Another characteristic signature of an ISR event is that the radiated photon and
the total momentum vector of the final state hadrons are back to back. Also, the
final state hadrons are boosted in a cone. These kinematic properties are displayed
in Fig. 3.4. The opening angle of the cone is small for a high energetic ISR photon.

pions
pions

hard ISR photon soft ISR photon

Figure 3.4.: Kinematics of an ISR event.
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If the ISR photon is lost in the beam pipe, the probability is high to also lose some
final state hadrons in the opposite end of the beam pipe. Hence, the efficiency to
reconstruct an untagged ISR event with a high energetic ISR photon is reduced.
In the BESIII experiment, the efficiency even drops to zero in the untagged mode
for invariant masses of the hadrons below about 1 GeV. This corresponds to the
kinematic threshold, where the cone radius is always smaller than the beam pipe
radius.

3.2. Next-to-Leading Order Inital State Radiation
s discussed already above, besides the emission of a single photon from the initial
state, it is also possible to emit several photons from the initial state. Figure 3.5
shows two possible Feynman graphs for such next-to-leading order (NLO) ISR
processes. For each ISR photon that is emitted from the initial state, the process
becomes suppressed by an additional order of the electromagnetic fine structure
constant α. However, in NLO, the radiator function can overcompensate the sup-
pression of the order O(α), if the energy and the polar angle of the second ISR
photon are small. Figure 3.6 shows that the NLO effects slightly enhance the

had

had

Figure 3.5.: Two possible NLO ISR processes.

radiator function for large values of x compared to the LO case from Eq. 3.1.5.
The dependence of the NLO radiator function on the polar angles θγi and the
momentum fractions xγi of the two ISR photons γi, i = 1, 2 is shown in Fig. 3.7.
The emission of two high energetic ISR photons with large polar angles is negli-
gibly small. However, the radiation of a second low energetic ISR photon with a
large polar angle has a non negligible impact on the observed ISR cross sections.
Therefore, these effects have to be considered when performing a precise measure-
ment. In fact, the Phokhara 9.1 [85] event generator simulates ISR to the NLO
precision.
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Figure 3.6.: x-dependence of the LO and NLO radiator functions.
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Figure 3.7.: Polar angle θγi and xγi distributions of the NLO radiator function.

3.3. Final State Radiation
Also the charged particles in the final state can as well emit photons besides the
initial state electrons and positrons. This process is called final state radiation
(FSR). Similar to the ISR process, the emission of each photon is suppressed
by the radiator function, which contains α and ln

(
s
m2

)
, where m is the mass of
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the radiating charged particle. This shows that the emission of a FSR photon
is less probable for pions than for electrons or positrons. The polar angle and
energy dependence of the FSR photons is similar to the ISR photons. Small
angles with respect to the mother particle are favored. The leading order (LO)
final state radiation process is depicted in the left panel of Fig. 3.8. ISR and FSR
events cannot be distinguished kinematically. Hence, the FSR photons produce
an irreducible background contribution.

The process of emitting one ISR photon and one FSR photon, as illustrated
in the right panel of Fig. 3.8, is referred to as mixed ISR+FSR process. The
FSR photons from the ISR+FSR process cause another irreducible background
contribution. Moreover, an undetected FSR photon in the final state shifts the
invariant mass of the hadronic system towards lower masses. A few percent of
the mixed ISR+FSR events will be therefore interpreted as LO FSR events with
a reduced invariant mass. The measurement needs to be corrected for this effect
in order to achieve the desired precision. The corresponding correction will be
explained in more detail in section 7.1.3. The Phokhara 9.1 event generator [85]
does not contain FSR effects for the process e+e− → π+π−2π0γISR. However, the
PHOTOS package [92] is used to consider FSR effects.

had had

Figure 3.8.: LO FSR process (left). NLO FSR process (right).



Chapter 4.

Event Selection

This chapter contains the description of how the e+e− → π+π−2π0γISR signal
events are selected from data and the Monte Carlo samples. Also the selections
of the final states π+π−3π0γISR and π+π−3π0 are explained here, which are the
most important background contributions to the e+e− → π+π−2π0γISR process.
The tagged and untagged ISR modes are applied and considered separately. Ex-
ploiting the kinematic and geometrical constraints of the signal processes, criteria
are optimized for a high purity, but also a high efficiency of the signal process.

49
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Before starting with the event selection procedure of the signal process e+e− →
π+π−2π0γISR, general requirements on good charged tracks, photons and neutral
pions are explained in this chapter. The requirements are identical for the events
selections of the signal process e+e− → π+π−2π0γISR and also the background
processes e+e− → π+π−3π0γISR and e+e− → π+π−3π0. In all plots shown in the
following, the distributions of the signal Monte Carlo (MC) simulation is always
stacked over the distributions of the background contributions. The selection cri-
teria are illustrated with a yellow line. Green lines indicate the variation range for
the systematic error studies. The distributions from MC simulations are scaled to
the integrated luminosity of the data set in all plots. Plots showing data before
the application of a specific requirement have all other selection criteria applied,
which will be introduced in the corresponding sections in the following. Only LO
ISR events are considered in the event selections.

Charged Tracks For the selection of the two charged pions, events with exactly
two good charged tracks with net charge zero are required. The radial dis-
tance r of the track helix to the interaction point (IP) is required to be
r < 1.0 cm and the axial distance z must satisfy |z| < 10.0 cm. The polar
angle of the tracks must satisfy | cos θ| < 0.93. These conditions have been
agreed on inside the BESIII collaboration for the selection of charged tracks
and the systematic uncertainties are understood. Additional tracks in the
event, that do not pass the vertex selection are ignored.

EMC showers Showers in the electromagnetic calorimeter (EMC) are considered
to be good photons if they deposit an energy E > 25 MeV in the barrel
(| cos θ| < 0.8) or E > 50 MeV in the end caps (0.86 < | cos θ| < 0.92). In
addition, their timing must hold 0 ≤ TDC ≤ 700 ns for barrel and the end
caps. These are also the BESIII standard requirements on the selection of
good photon candidates. Good photon candidates are also required to be
separated at least 20◦ from all charged tracks in the event. The distribution
of the angle β between the good photon candidates and the charged pions is
shown in Fig. 4.1 for the Phokhara 9.1 signal MC.

Neutral Pions Only the π0 → γγ decay channel, which has a branching frac-
tion of (98.823 ± 0.034)% [31], is reconstructed. For each event a list of
all possible pairs of two photons with an invariant mass M(γγ) within
100 MeV ≤ M(γγ) ≤ 160 MeV is created. From this list another list is
built with combinations of two neutral pions, such that no photon is used for
both π0. This list is called double-π0-list. Also a list with respective valid
combinations of three neutral pions, called triple-π0-list is built.
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Figure 4.1.: Angle β between a charged pion and the closest EMC shower for
both tracks in the events of the Phokhara 9.1 signal MC simula-
tion.

ISR Photon The energy of the ISR photon, EISR, is required to be EISR >
360 MeV. In the untagged modes EISR is the missing energy. Assuming
LO ISR, this corresponds to mhad < 3.4 GeV/c2 according to Eq.3.1.2 for a
c.m. energy of 3.773 GeV. The threshold is applied because of the vast back-
ground due to low energetic ISR photons, which cannot be distinguished by
a kinematic fit from the photons of the π0 decay. A MC study is performed
to check, whether the kinematic fit correctly assigns the EMC shower of the
ISR photon candidate to the true ISR photon. Figure 4.2 shows the angle
α between the momentum of the ISR photon at the generator level and the
reconstructed shower in the EMC, which is assigned to the ISR photon after
the kinematic fit. The angular distribution clearly shows that the angle is
well below 2◦. Due to the shower size assumed by the clustering algorithm,
the minimum angle between different EMC showers is at least 3◦, as men-
tioned in section 2.2. Hence, the fit does identify the ISR photon correctly.
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Figure 4.2.: Angle α between the true and the reconstructed ISR photon.



52 Chapter 4. Event Selection

Kinematic Fit For each channel a fit for all possible combinations of the two
charged tracks, the double- or triple-π0-list and every additional photon as
the ISR photon candidate is performed. In the non-ISR analysis of e+e− →
π+π−3π0, there is no ISR photon candidate. Combinations are excluded, if
the ISR photon is also used as decay photon for one of the neutral pions. In
MC simulations the correction of the helix parameters according to [93] is
applied.

The fits are constrained by the four momentum conservation and the neutral
pion mass of the two photon pairs 1. In case of the untagged ISR mode, a
missing track for the ISR photon instead of a real EMC shower is used. From
all these fits the one with the least χ2

nC is kept. The absolute requirement
on the χ2 is channel specific.

Ks Rejection In the region 480 < M(π0π0) < 520 MeV/c2 all the analyses suffer
from a small Ks background contribution originating from the final states
e+e− → KsKπ(π)(γISR). If an event has at least one π0π0 combination with
480 < M(π0π0) < 520 MeV/c2, the PID system, introduced in section 2.2, is
used to calculate the π and K probabilities Pπ/K for both charged tracks. The
Ks contamination is strongly suppressed by rejecting events with Pπ < PK
for at least one of the charged tracks.

4.1. Event Selection for e+e− → π+π−2π0γISR

Vertex Fit (untagged) and IP distance (tagged and untagged) A vertex fit is
performed to find the intersection point of the helices of the two charged
pion tracks. A value of χ2

vertex < 500 is required for the vertex fit of the two
oppositely charged tracks. Figure 4.3 shows the vertex position distribution
in the xy-plane for the ISR untagged method. In this method a structure in
data around rvertex = 3 cm is observed. Since the position of the structure
agrees with the position of the beam pipe, these vertices presumably stems
from interactions of the beam with the beam pipe. The IP positions of the
data sets taken in 2010 and 2011 are shifted relative to each other by 8 mm,
due to calibration of the beam orbit. The beam lost in the beam pipe appears
as missing energy, which is misidentified as the untagged ISR photon.

1In the following the expression χ2
nC denotes the χ2 value of the fit, where n constraints are

applied.
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Figure 4.3.: Vertex position distribution in the xy-plane of the untagged method.

The beam related background is removed by requiring rvertex < 2.0 cm. Fig-
ure 4.4 shows the distributions of the radial and axial distances of the point
of closest approach of each individual track (helix) to the IP after the vertex
fit requirement.
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Figure 4.4.: Distance from the interaction point of both charged tracks after the
vertex fit selection of the process e+e− → π+π−2π0γISR.

Number of EMC Showers Figure 4.5 shows the multiplicity distribution of the
number of good EMC showers. Required are less than eight good photons
for tagged as well as for untagged events.
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Figure 4.5.: Number of good EMC showers of the process e+e− →
π+π−2π0γISR.

Neutral Pions Fig. 4.6 shows the two photon mass distributions for the π0 re-
construction for the tagged and the untagged method. The left panels show
the π0 candidate with the higher momentum and the right panels show the
π0 particle with the lower momentum. As expected, the two photon mass
distributions show a clear peak around the nominal π0 mass of 135 MeV/c2.
Data and MC are in good agreement. This proves the stability of the π0

reconstruction in the event selection procedure.
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Figure 4.6.: Two photon mass distribution for both π0 candidates of the process
e+e− → π+π−2π0γISR.
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Kinematic Fit For the tagged ISR method, the kinematic fit contains the four
pions and the ISR photon. In the case of the untagged analysis, the ISR
photon is treated as a massless particle with unknown momentum, which is
to be determined by the fit. In both methods, the π0 masses are constraint
in the fit. In case of the tagged analysis, events with χ2

6C > 60 are rejected.
In case of the untagged ISR method, the best fit of the event is required to
satisfy χ2

3C < 30 to accept the event. The χ2
6C/3C distributions for both ISR

methods are shown in Fig. 4.7.
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Figure 4.7.: χ2 distributions of the kinematic fits of the process e+e− →
π+π−2π0γISR.

Energy of the ISR Photon Figure 4.8 shows the energy distributions of the ISR
photons for the tagged and the untagged method.
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Figure 4.8.: Energy distributions of the ISR photon of the process e+e− →
π+π−2π0γISR.

At small energies EISR of the ISR photon, the kinematic fit cannot distin-
guish the ISR photon from π0 decay photons. For energies smaller than



56 Chapter 4. Event Selection

500 MeV, the background level is rising steeply to a signal to background
ratio of below 1:4. Therefore, events with EISR < 360 MeV are rejected for
both analysis modes.

Ks Rejection As explained before, in the 2π0 mass region 480 < M(π0π0) <
520 MeV/c2, a Ks veto using the PID system is performed to veto the back-
ground contribution e+e− → KsKπ(π)(γISR). The M(π0π0) mass distribu-
tion is shown in Fig. 4.9. The Ks peak is obvious in the distributions from
data and MC simulations.
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Figure 4.9.: M(π0π0) distribution before the Ks veto of the process e+e− →
π+π−2π0γISR.

For good pion tracks, the probability calculated by the PID system to be a
pion, Pπ, should be higher than the probability to be a Kaon, PK . Hence,
events with Pπ < PK are rejected. The PID distribution for the Ks rejection
is shown in Fig. 4.10.
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Figure 4.10.: Kaon PID distribution of the process e+e− → π+π−2π0γISR.
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Polar Angle of the ISR Photon (untagged) In case of the untagged method
| cos θISR| > 0.995 is required for the polar angle of the missing ISR photon.
This selection provides a good signal to background ratio, since the region
with | cos θISR| ≤ 0.995 is dominated by background. Fig. 4.11 shows the
polar angle distribution of the ISR photon for tagged and untagged meth-
ods. For both methods, Fig. 4.11 shows good agreement between data and
simulation for the distribution of the polar angle of the ISR photon.
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Figure 4.11.: Polar angle distributions of the ISR photon of the process e+e− →
π+π−2π0γISR.

Misidentified ISR Photons (tagged method only) For the tagged method a con-
dition on the quantity M(γISRγ) = (pγ + pISR)2 is applied. M(γISRγ) is cal-
culated for the combination of each of the up to six EMC showers in the event
and the ISR photon. Events are rejected, if

∣∣∣M(γISRγ)−mdetector
π0

∣∣∣ < 40 MeV,
where mdetector

π0 = 134.6± 0.5 MeV is the neutral pion mass obtained by a fit
to data in section 5.3. For the tagged ISR method, the left panel of Fig. 4.12
shows a peak at the π0 mass on top of a broad distribution.
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Figure 4.12.: M(γISRγ) distributions of the process e+e− → π+π−2π0γISR.
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In the reconstruction of the events contributing to the peak, a photon from
a π0 decay has been wrongly assigned as ISR photon. Rejecting these events
reduces the background contributions from the reaction e+e− → π+π−3π0,
where one of the neutral pions cannot be reconstructed completely, but one
of its decay photons is misidentified as the ISR photon. In the case of the
untagged method, there are slightly more events in data compared to the
MC simulations. This is due to the large missing J/ψ contribution in the
Phokhara 9.1 event generator. Moreover, for the untagged method, the
right panel of Fig. 4.12 does not show a peak at the π0 mass. The reason for
the missing π0 peak in the untagged method is that the polar angle range
of the ISR photon in the untagged method is limited to | cos θISR| > 0.995,
whereas the polar angle range of the ISR photons in the tagged method
is | cos θISR| < 0.93. This means that the polar angle range of the tagged
method is almost two orders of magnitude larger than the range of the un-
tagged method. The decay photons of the neutral pions are distributed
uniformly. Hence, the probability to misinterpret a photon from a π0 decay
as the ISR photon is almost two orders of magnitudes lower in the untagged
method compared to the tagged method.

Angle between ISR Photon and Neutral Pions (tagged) Let α denote the min-
imum angle between the ISR photon and the neutral pions. In data, shown
in the upper left panel of Fig. 4.13, two distinct enhancements are observed.
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Figure 4.13.: Distribution of the minimal angle cosα between the ISR photon
and the neutral pions. The black line is the cut. The dashed lines
are for the systematic error study of e+e− → π+π−2π0γISR.
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One at low masses and negative cosα and the other at high masses and
large cosα. The comparison with signal MC in the upper right panel and
qqbar MC in the lower left panel reveals that only the enhancement at low
masses and negative cosα is due to the signal process. In order to reduce
the e+e− → π+π−3π0γISR background contribution in the tagged method,
events that have cosα > −0.96GeV−1M(π+π−2π0) + 3.12 are rejected. This
is the upper right area marked with the black line in Fig. 4.13. The condition
is not applied in the untagged method.

All criteria used for the event selection of the process e+e− → π+π−2π0γISR are
summarized in Table 4.1. Table 4.2 shows the number of events in data, signal
MC simulation and background simulations that survive the events selection of
the tagged and untagged methods.

Table 4.1.: Summary of the event selection criteria of the process e+e− →
π+π−2π0γISR.

tagged untagged
Vertex Fit - rvertex < 2.00 cm

Nch = 2 (net charge 0)
Charged tracks r < 1.0 cm

|z| < 10.0 cm
E > 25 MeV (barrel)

Good Photons E > 50 MeV (end caps)
0 ≤ TDC ≤ 14

Nγ < 8
π0 Mass 100 < M(γγ) < 160 MeV/c2

π0 Candidates ≥ 2 non overlapping
Fake ISR |M(γISRγ)−mπ0| > 40 MeV/c2 -

cosα < −0.96GeV−1M(π+π−2π0) + 3.12 -
ISR Photon EISR > 360 MeV Emiss > 360 MeV
| cos θ| < 0.93 > 0.995

Ks rejection Pπ − PK < 0 Pπ − PK < 0
480 < M(π0π0) < 520 MeV/c2

Kinematic Fit χ2
6C < 60 χ2

3C < 30
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Table 4.2.: Summary of the number of events after the selection of the process e+e− →
π+π−2π0γISR.

tagged untagged
data 21320 53696

signal MC 14203 46767
3πω(γISR) MC (tagged only) 2250 -
6π(γISR) MC (untagged only) - 314

5π MC 1282 305
5πγISR MC 2232 1261
other qq̄ MC 676 948
nonDD̄ MC 437 94
J/ψγISR MC 106 555

ψ(3686)γISR MC 243 244
D+D− MC 4 6

4.2. Event Selection for e+e− → ωπ0γISR

Events stemming from the process e+e− → ωπ0 are obtained from fits to the ω
resonance in the M(π+π−π0) distributions of the selected e+e− → π+π−2π0γISR
events. In order to calculate the reconstruction efficiency of e+e− → ωπ0γISR, this
kind of events has to be selected in the Phokhara 9.1 e+e− → π+π−2π0γISR
signal MC. All event selection criteria shown in Table. 4.1 are applied. In addition,
a mass window of 720 < M(π+π−π0) < 830 MeV/c2 in the tagged ISR method
and 720 < M(π+π−π0) < 850 MeV/c2 in the untagged method is required to select
the ω resonance The omega peak is slightly broader in the untagged ISR method.
Figure 4.14 shows the M(π+π−π0) distribution of the Phokhara 9.1 simulation.
For every event only the mass of the pion combination is shown, which yields the
M(π+π−π0) value closest to the mass of the ω resonance. Obviously, a small non-
resonant ω contribution is still remaining in the signal simulation. This background
is removed by a sideband subtraction, since it is sufficiently linear. The sideband
regions are defined as 610 < M(π+π−π0) < 720 MeV/c2 and 830 < M(π+π−π0) <
940 MeV/c2 for the tagged mode. For the untagged mode, the sideband regions
are 590 < M(π+π−π0) < 720 MeV/c2 and 850 < M(π+π−π0) < 980 MeV/c2.
Hence, the sideband rescaling factor is 1

2 . Although, the absolute contribution of
e+e− → ωπ0γISR is underestimated by the simulation, the efficiency is correct,
since the momentum and angular distributions are simulated correctly.
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Figure 4.14.: M(π+π−π0) distribution after the e+e− → π+π−2π0γISR event selection.
Green lines mark the signal and sideband regions.

4.3. Event Selection for the Background

4.3.1. Event Selection for e+e− → π+π−3π0γISR

The process e+e− → π+π−3π0γISR gives a large background contribution to the
process e+e− → π+π−2π0γISR. However, the process e+e− → π+π−3π0γISR is
barely known experimentally and the quality of the MC description is unclear.
In order to gain a precision of about 10%, which is mandatory for a reliable
background subtraction in the e+e− → π+π−2π0γISR analysis, a measurement
is performed to validate the quality of the MC description and to correct the MC
distributions.

An MC study showed that the signal reconstruction efficiency in the e+e− →
π+π−3π0γISR channel is less than one percent in the ISR tagged method and the
signal to background ratio is below 1:4. Therefore, in the following, only the
e+e− → π+π−3π0γISR ISR untagged method is considered.

Vertex Fit and IP distance cut A vertex fit of the two oppositely charged tracks
is performed. Events with χ2

vertex ≥ 500 are rejected. The radial distance
of the fitted vertex position to the origin in the center of the beam pipe is
shown in Fig. 4.15. The structure in data around rvertex = 3 cm corresponds
to the beam related background explained in section 4.1.
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Figure 4.15.: Radial distance between the track origin and the interaction vertex
of e+e− → π+π−3π0γISR.

The two peaks correspond to the IP positions of the 2010 and 2011 data
taking periods as pointed out in section 4.1. The beam related background
is removed by requiring rvertex < 2 cm. The distributions of the radial and
axial distances of the point of closest approach of the individuals tracks to
the IP after the vertex fit condition are shown in Fig. 4.16.
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Figure 4.16.: Axial (left) and radial (right) distance between the track origin and
the interaction vertex after the vertex fit of the process e+e− →
π+π−3π0γISR.

Kinematic Fit The kinematic fit is performed as explained at the beginning of
this chapter, using energy momentum conservation and the masses of the
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three neutral pions as constraints, while the untagged ISR photon is treated
as massless particle with unknown momenta. The χ2

4C distribution is shown
in Fig.4.17. Events with χ2

4C < 30 are accepted for the untagged method.
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Figure 4.17.: χ2
4C distributions of the process e+e− → π+π−3π0γISR.

For a better comparison of the shape between data and the simulations, the
scaling of the e+e− → π+π−3π0γISR signal MC simulation is chosen such
that the average of the first five bins in data and MC simulation are equal.
The corresponding rescaling factor is f5πγISR = 0.68. This rescaling factor
is applied to all plots shown in the e+e− → π+π−3π0γISR event selection
section in this section. The uncertainty of the scaling factor is not considered,
because it is not used to determine the efficiency nor the cross section.

ISR polar angle For the polar angle of the missing ISR photon from the fit,
| cos θISR| > 0.990 is required. This selection provides the optimal signal
to background ratio, since the background ratio increases in the region at
| cos θISR| ≤ 0.990. Figure 4.18 shows the polar angle distribution of the
untagged ISR photon.
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Figure 4.18.: Polar angle distribution of the untagged ISR photon of the process
e+e− → π+π−3π0γISR.

Ks Rejection The rejection of background contributions containing Ks is per-
formed analogously to the methods described in section 4.1. Here, there are
three combinations to calculate M(π0π0). The PID distribution for the Ks

rejection is shown in Fig. 4.19. Events with Pπ − PK < 0 are rejected.
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Figure 4.19.: Difference of Kaon and Pion identification probabilities for the Ks

rejection in the process e+e− → π+π−3π0γISR.
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All criteria used for the event selection of the process e+e− → π+π−3π0γISR are
summarized in Tab. 4.3. In total, 10996 events survive the event selection in data,
13646 in the signal simulation and 2637 in the background MC simulations.

Table 4.3.: Summary of all event selection criteria for the untagged π+π−3π0γISR final
state.

Nch = 2 (net charge 0)
Charged tracks r < 1.0 cm

|z| < 10.0 cm
rvertex < 2 cm

E > 25 MeV (barrel)
Good Photons E > 50 MeV (end caps)

0 ≤ TDC ≤ 14
Nγ < 8

π0 Masses 100 < M(γγ) < 160 MeV/c2

π0 Candidates ≥ 3 non overlapping
ISR Photon EISR > 360 MeV

| cos θ| > 0.990
Kinematic Fit χ2

4C < 30
Ks rejection Pπ − PK < 0 if 480 < M(π0π0) < 520 MeV/c2

4.3.2. Event Selection for e+e− → ω2π0γISR

The process e+e− → π+π−3π0γISR has significant contributions from resonant
channels like e+e− → ω2π0γISR and e+e− → ηπ+π−γISR. These sub-channels
are studied explicitly, as good knowledge of their contributions is vital to the
understanding of the full e+e− → π+π−3π0γISR process. This section focuses on
the selection of e+e− → ω2π0γISR.

All criteria shown in Table. 4.3 of the e+e− → π+π−3π0γISR event selection are
applied. In every event the combination of two charged and one neutral pion is
selected, which has an invariant mass closest to the omega peak. A mass window
of 720 < M(π+π−π0) < 850 MeV/c2 is applied to this invariant mass distribution
in order to select good e+e− → ω2π0 candidates. A nonresonant ω background
contribution is left after subtracting the background contributions from other pro-
cesses using the MC simulations. It is removed by a sideband subtraction, since
the simulations indicate a sufficiently linear nonresonant background contribu-
tions. The sideband regions are defined as 590 < M(π+π−π0) < 720 MeV/c2 and
850 < M(π+π−π0) < 980 MeV/c2. Hence the sideband rescaling factor is 1

2 . The
right panel of Fig. 4.20 shows the M(π+π−π0) distribution after background and
sideband subtraction. The lower and upper bounds of the sideband regions are
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marked with green lines in Fig. 4.20. The signal region is between the two yellow
lines.
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Figure 4.20.: M(π+π−π0) distribution after the e+e− → π+π−3π0γISR selection and
background subtraction with a ω fit (left) and with marked sideband
subtraction (right).

A fit of the M(π+π−π0) distribution after background subtraction, but before
sideband subtraction with a Gaussian plus a polynomial is performed in order to
cross check the sideband subtraction method. The fit is shown in the left panel
of Fig. 4.20 and yields 1071 ± 33 events in the ω peak, where the fit quality is
χ2/ndf = 1.08. Using the sideband subtraction, 1090 ± 33 events are obtained in
data, which is in good agreement with the fit result within errors.

4.3.3. Event Selection for e+e− → 5πγISR excluding η, and
e+e− → ηπ+π−γISR

In order to select the e+e− → ηπ+π−γISR sub-channel of e+e− → π+π−3π0γISR,
all event selection criteria of the e+e− → π+π−3π0γISR event selection are ap-
plied. Additionally, a mass window of M(π0π0π0) < 600 MeV/c2 is applied on
the invariant mass of the three neutral pions. The right panel of Fig. 4.21 shows
the M(π0π0π0) distribution after subtracting background contributions accord-
ing to MC distributions. The mass window is indicated by orange lines. After
background subtraction using MC distributions, the remaining nonresonant back-
ground is negligible. A fit of the M(π0π0π0) distribution after background sub-
traction, but before sideband subtraction with a Gaussian plus a polynomial is
performed in order to cross check the subtraction method. The fit, shown in the
left panel of Fig. 4.21, yields 196 ± 14 events in the η peak, where the fit quality
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is χ2/ndf = 0.58. Using the sideband subtraction method, 192 ± 13 events are
obtained in data, which is in agreement with the fit result within errors.
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Figure 4.21.: M(π0π0π0) distribution after the e+e− → π+π−3π0γISR selection and
background subtraction with a η fit (left) and after additional sideband
subtraction (right).

Also the process e+e− → π+π−3π0γISR without a contribution of the η meson
in the 3π0 subsystem is measured in this thesis. To select events of this type, all
event selection criteria of the e+e− → π+π−3π0γISR event selection are applied.
Additionally, the selection criteria of the η meson discussed before are inverted to
M(π0π0π0) > 600 MeV/c2, in oder to reject all events containing a contribution of
the η meson. The loss of nonresonant e+e− → π+π−3π0γISR events under the η
resonance peak is negligible, as shown in Fig. 4.21.

4.3.4. Event Selection for e+e− → π+π−3π0

Also the process e+e− → π+π−3π0 at 3.773 GeV creates a large background contri-
bution to the analysis of the e+e− → π+π−2π0γISR process. The e+e− → π+π−3π0

process is barely known experimentally and the quality of the MC description is
unclear. In order to gain a precision of about 10% in the knowledge of this chan-
nel, a measurement is performed to validate the quality of the MC description and
to correct the MC distributions. The MC sample, referred to as π+π−3π0 in the
following, combines the MC samples of e+e− → ω2π0 and e+e− → ηπ+π− with
the sample of e+e− → π+π−3π0 without intermediate contributions of ω and η
resonances, produced with the HelPWA generator. The data-driven generator
model HelPWA simulates events according to a PWA performed on the results
of the measurement described below to simulate events accordingly.
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Kinematic Fit The kinematic fit is performed as explained in the beginning of this
chapter. Here the fit has seven constraints. These are the three pion masses
plus four constraints from requiring energy-momentum conservation. The
χ2

7C distribution is shown in Fig.4.22. Events with χ2
7C < 50 are accepted.
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Figure 4.22.: χ2
7C distribution of the process e+e− → π+π−3π0.

Ks Rejection The suppression of background contribution from Ks is performed
analogously to section 4.1. The PID distribution for the Ks rejection is
shown in Fig. 4.23. Events with Pπ < PK are rejected.

All the cuts used for the event selection are summarized in Tab. 4.4.

Table 4.4.: Summary of the event selection criteria for the e+e− → π+π−3π0 final
state.

Nch = 2 (net charge 0)
Charged tracks r < 1.0 cm

|z| < 10.0 cm
E > 25 MeV (barrel)

Good Photons E > 50 MeV (end caps)
0 ≤ TDC ≤ 14

Nγ < 8
π0 Masses 100 < M(γγ) < 160 MeV/c2

π0 Candidates ≥ 3 non overlapping
Kinematic Fit χ2

7C < 50
Ks rejection Pπ − PK < 0 if 480 < M(π0π0) < 520 MeV/c2
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Figure 4.23.: Kaon PID distribution for Ks rejection of the process e+e− → π+π−3π0.
11683 ± 108 events survive the event selection in data, 8061 ± 89 in the signal

simulation and 4594± 67 in the background MC simulations.

4.3.5. Event Selection for e+e− → ω2π0

The e+e− → π+π−3π0 final state has two relatively large sub-channels, which are
e+e− → ω2π0 and e+e− → ηπ+π−. These sub-channels are also selected explicitly.
This is important for the understanding of the e+e− → π+π−3π0 process. This
section contains the selection for the e+e− → ω2π0 sub-channel.

All event selection criteria of the e+e− → π+π−3π0 event selection are applied.
Additionally, There is only one entry per event, stemming from the π0 candidate
whose the M(π+π−π0) value is closest to the mass of the ω resonance. 720 <
M(π+π−π0) < 850 MeV/c2 is required.

A nonresonant background below the ω signal peak is left after subtracting the
background contributions from other processes using MC simulations. This back-
ground is removed by a sideband subtraction, since the simulations indicate that
it is sufficiently linear. The sideband regions are defined as 590 < M(π+π−π0) <
720 MeV/c2 and 850 < M(π+π−π0) < 980 MeV/c2. Hence, the sideband rescaling
factor is 1

2 . The right panel of Fig. 4.24 shows the M(π+π−π0) distribution after
background and sideband subtraction. A fit of the M(π+π−π0) distribution after
background subtraction, but before sideband subtraction with a double-Gaussian
plus a polynomial is performed in order to cross check the sideband subtraction



70 Chapter 4. Event Selection

method. The fit, shown in the left panel of Fig. 4.24, yields 884±117 events in the
ω resonance peak, whereas the fit quality is χ2/ndf = 1.06. Using the sideband
subtraction, 858± 29 events are obtained in data, which is in agreement with the
fit result within errors.
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Figure 4.24.: M(π+π−π0) distribution after the e+e− → π+π−3π0 selection and back-
ground subtraction with a ω fit (left) and with sideband subtraction
(right).

4.3.6. Event Selection for e+e− → ηπ+π−

The e+e− → ηπ+π− sub-channel of e+e− → π+π−3π0 is selected as well. All crite-
ria of the e+e− → π+π−3π0 event selection are applied. Additionally, M(π0π0π0) <
600 MeV/c2 is required for the invariant mass of the three neutral pions. The
right panel of Fig. 4.25 shows the M(π0π0π0) distribution after background sub-
traction. A nonresonant η background is remaining after the background sub-
traction of the other background contributions from MC simulation. This back-
ground is removed by a sideband subtraction. The sideband regions are chosen as
400 < M(π+π−π0) < 500 MeV/c2 and 600 < M(π+π−π0) < 700 MeV/c2. Hence,
the sideband rescaling factor is 1

2 . The lower sideband region does not contain any
events. A fit of the M(π0π0π0) distribution after background subtraction, but be-
fore sideband subtraction with a Gaussian plus a polynomial is performed in order
to cross check the sideband subtraction. The fit, shown in the left panel of Fig. 4.25,
yields 558±39 events in the η peak, whereas the fit quality is χ2/ndf = 1.41. Using
the sideband subtraction mode, 572± 24 events are obtained in data, which is in
agreement with the fit result within errors.
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Figure 4.25.: M(π0π0π0) distribution after the e+e− → π+π−3π0 selection and back-
ground subtraction with a η fit (left) and with sideband subtraction
(right).

4.4. Mass Resolution of the π+π−2π0 Mass
Spectrum

The resolution of M(π+π−2π0) is important in order to chose a reasonable in-
terval width of the M(π+π−2π0) distribution, from which the cross section will
be calculated. The resolution achieved in the detection and event reconstruc-
tion described in section 4.1 is investigated based on signal MC simulations.
To this end, the quantity M(π+π−2π0)fit − M(π+π−2π0)true is plotted. Here,
M(π+π−2π0)fit is calculated from the four momenta of the four pions obtained
from the kinematic fit and M(π+π−2π0)true is calculated from the four momenta at
the event generator level. The resulting distribution is fitted with a double Gaus-
sian. The M(π+π−2π0)fit −M(π+π−2π0)true distributions and their fits for the
tagged and untagged ISR modes are shown in Fig. 4.26. The fit yields a resolution
of (15.24 ± 0.25) MeV for the tagged ISR method and (15.47 ± 0.05) MeV for the
untagged method. These values are taken from the widths of the broader Gaus-
sian in the fit function. The mass shifts, defined as the average mean value of the
two Gaussians, are (0.64± 0.52) MeV and (−1.13± 0.06) MeV for the tagged and
the untagged method, respectively. Even though the mass shift of the untagged
method is significant, it is still negligible compared to the width of the distribution.
The results prove that the reconstruction and fitting procedures work correctly and
give reasonable results. Furthermore, the result suggests to chose a M(π+π−2π0)
intervals with a width of 30 MeV. An unfolding of the M(π+π−2π0) is not neces-
sary, since the chosen interval width is narrow enough to resolve any structures,
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except the J/ψ resonance, which is not located in the region relevant for (g− 2)µ.
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Figure 4.26.: Mass resolution of M(π+π−2π0) mass spectrum in signal simulation.



Chapter 5.

Background of
e+e−→ π+π−2π0γISR

After the event selection of the process e+e− → π+π−2π0γISR there are re-
maining background contributions, mainly from e+e− → π+π−3π0 and e+e− →
π+π−3π0γISR. These background channels need to be simulated in MC and sub-
tracted from data. In order to achieve a high precision measurement of the signal
process e+e− → π+π−2π0γISR, all background contributions have to be under-
stood to a high accuracy to achieve a small systematic uncertainty associated to
the background subtraction. However, the processes e+e− → π+π−3π0γISR and
e+e− → π+π−3π0 at a c.m. energy of 3.773 GeV and below are essentially unknown
experimentally. Therefore, these processes are also measured in this thesis with a
precision on the 10% level. With this measurement the MC simulations can be ad-
justed accordingly. The ISR mass spectrum of the process e+e− → π+π−2π0γISR
is also presented in this chapter before and after correcting the background contri-
butions.

73
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Applying the event selection for the process e+e− → π+π−2π0γISR, explained in
chapter 4, the four pion mass spectrum is obtained, which is defined as M2(4π) =
(pπ+ + pπ− + pπ0,1 + pπ0,2)2, where pπ±,01,2

denote the the four-momenta of the four
pions in the final state. The event yields in dependence of M(π+π−2π0) for
the tagged and untagged methods are shown in Fig. 5.1. The J/ψ resonance
is not contained in the Phokhara 9.1 signal simulation. The sum of the signal
MC simulation and background MC simulations overestimates data in the region
M(π+π−2π0) > 2 GeV/c2. The composition of the background contributions and
their fraction in data are shown in Fig. 5.2.
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Figure 5.1.: Mass spectrum of the e+e− → π+π−2π0γISR events the before the correc-
tion of the background contributions and before efficiency corrections.

It is known that the signal is contaminated by background contributions from
the π+π−3π0 and π+π−3π0γISR final states, which get large above M(π+π−2π0) &
2 GeV. This background contribution stems from e+e− → π+π−3π0(γISR) events,
where at least one photon was too low energetic to be accepted or were emitted at
polar angles, which are outside the acceptance region of the detector. As a con-
sequence, the rest of the final state is misidentified as the e+e− → π+π−2π0γISR
signal. Those e+e− → π+π−3π0(γISR) events can not be distinguished kinemati-
cally from the real e+e− → π+π−2π0γISR signal events. However, the background
channels are poorly known experimentally and theoretically. Hence, the precision
of their prediction in the MC simulations is unknown and presumably bad. This
makes them the most probable reason for the discrepancy observed between data
and the simulations in the tagged mode.

Another large background contribution from e+e− → π+π−π0ωγISR, with ω →
π0γ exists in the tagged mode. This contribution has been measured by BaBar [94]
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Figure 5.2.: Relative amount of the background contributions of the e+e− →
π+π−2π0γISR signal channel and their fractions in data.

and fond to be sufficiently precise in the Lund-qq̄ MC sample. Other impor-
tant background contributions for both ISR modes are contained in the Lund-qq̄
MC sample. These background channels are e+e− → π+π−4π0(γISR), e+e− →
π+π−π0η(γISR) and e+e− → KsKπ(γISR), where the kaon is misidentified as a
pion and with a subsequent decay Ks → 2π0. Background contributions from
e+e− → D+D− and e+e− → D0D̄0 are found to be negligible.

In the following, the analyses of the e+e− → π+π−3π0(γISR) channels, which
have been presented in chapter 4, will be used to improve the precision of the corre-
sponding background simulations. The correction procedures of these background
contributions are explained in the following sections 5.1 and 5.2. After applying
these corrections, the systematic uncertainty of subtracting the e+e− → π+π−3π0

and e+e− → π+π−3π0γISR background contributions from the M(π+π−2π0) spec-
trum is equal to the total uncertainties of the measurements of e+e− → π+π−3π0

and e+e− → π+π−3π0γISR. Additional systematic uncertainties due to interme-
diate structures in the π+π−3π0 and π+π−3π0γISR final states are also taken into
account, but discussed later in chapter 11. The distributions of the intermedi-
ate structures in e+e− → π+π−3π0 and e+e− → π+π−3π0γISR are presented in
sections 8.2 and 8.3. Kinematic variables like momenta and polar angle distribu-
tions of the pions are shown in Fig. A.1 as well as Fig. A.2 in appendix A. All
these distributions indicate that the intermediate structures and the kinematic
variables are described well by the MC simulations. This gives a good confidence
that the efficiencies obtained from the simulations are correct and yield reasonable
uncertainties. The uncertainties will be discussed in detail in chapter 11.
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As shown in Fig. 5.2, the qq̄ background contribution gives large contributions in
the region of M(π+π−2π0) . 1.5 GeV. The absolute validation of this contribution
is investigated in section 5.3.

5.1. Correction of the e+e− → π+π−3π0

Background

For each event that is selected as e+e− → π+π−3π0 in data and in the simu-
lation, the whole e+e− → π+π−2π0γISR event selection procedure of the tagged
and untagged methods is applied as well. This is needed to find out in which
mass range the e+e− → π+π−3π0 events contribute to the background in the
M(π+π−2π0) spectrum by being misidentified as e+e− → π+π−2π0γISR events.
The M(π+π−2π0) mass spectrum arising from misidentified e+e− → π+π−3π0

events is shown in Fig. 5.3 for the tagged and untagged ISR modes.
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Figure 5.3.: Correction of the e+e− → π+π−3π0 background in the e+e− →
π+π−2π0γISR analysis.

For these events, which have successfully passed the e+e− → π+π−3π0 as well
as the e+e− → π+π−2π0γISR event selection, the background stemming from
e+e− → π+π−3π0 is subtracted both from data and from the full Mc cocktail.
The remaining event yield is divided by the e+e− → π+π−3π0 simulation. This
ratio represents the correction to be applied to the e+e− → π+π−3π0 simulation.
The correction obtained is shown in Fig. 5.4 for the tagged and the untagged
ISR methods, respectively. A comparison of the shape of the e+e− → π+π−3π0

background MC before and after applying the correction is shown in Fig. 5.5.
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Figure 5.4.: Correction of the e+e− → π+π−3π0 background in the e+e− →
π+π−2π0γISR analysis.
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Figure 5.5.: Comparison of the e+e− → π+π−3π0 background to the e+e− →
π+π−2π0γISR final state before and after applying the π+π−3π0 correc-
tion.
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5.2. Correction of the e+e− → π+π−3π0γISR
Background

The M(π+π−3π0) mass spectrum obtained after the e+e− → π+π−3π0γISR event
selection is shown in Fig. 5.6. Up to a rescaling factor of about two, data is qualita-
tively in relative good agreement with the shape of the Lund-qq̄ MC simulation in
the mass region M(π+π−3π0) < 3.1 GeV/c2, which is below the J/ψ peak. In the
inclusive γISRJ/ψ MC sample, the decay J/ψ → π+π−3π0 is identified on the MC
generation level and moved to the red π+π−3π0γISR MC histogram. In the mass
region above the J/ψ peak up to 3.5 GeV/c2 MC obviously underestimates data.
Above M(π+π−3π0) & 3.5 GeV/c2 the MC overestimates again data. Although,
the simulation does not describe data perfectly in the absolute scale, the kinematic
variables shown in Fig. A.4 of appendix A and the intermediate resonances shown
in Fig. 8.7 in section 8.3 prove that the Lund-qq̄ MC simulation can be used to
obtain a reliable signal reconstruction efficiency.
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Figure 5.6.: e+e− → π+π−3π0 mass spectrum without efficiency correction
Table 5.1 shows the composition of the background contributions for the e+e− →

π+π−3π0γISR channel. These are contained in the Lund-qq̄ MC sample. The other
background contributions are small. From the M(π+π−3π0) mass spectrum in
Fig. 5.6, the correction histogram can be obtained by dividing data after back-
ground subtraction by the reconstructed e+e− → π+π−3π0γISR MC distribution.
This correction is shown in Fig 5.7. In the region below the J/ψ resonance, the
correction is around 0.5. For each e+e− → π+π−3π0γISR event in the MC simu-
lations that was successfully selected as an e+e− → π+π−2π0γISR event, the true



Chapter 5. Background of e+e− → π+π−2π0γISR 79

five pion mass, M(π+π−3π0)true, is stored. These values of M(π+π−3π0)true stem
from the MC generator, before taking into account detector resolution effects.

Table 5.1.: Background composition of the π+π−3π0γISR final state.
final state fraction in all background [%] fraction in signal [%]
π+π−4π0 38 10
π+π−4π0γISR 23 6
π+π−5π0 5 1.3
π+π−5π0γISR 4 1
π+π−2π0ωγISR, ω → π0γ 3 1
2π+2π−4π0 3 1
2π+2π−4π0γISR 3 1
π+π−2π0ω, ω → π0γ 2 0.5
186 other each < 2 each < 0.5
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Figure 5.7.: Correction of the e+e− → π+π−3π0γISR background to e+e− →
π+π−2π0γISR.

Figure 5.8 shows the M(π+π−3π0)true distribution for e+e− → π+π−3π0γISR
background events. In the tagged mode for e+e− → π+π−2π0γISR, most of the
e+e− → π+π−3π0γISR background has values ofM(π+π−3π0)true above 3.7 GeV/c2.
A few events are found with M(π+π−3π0)true < 3.7 GeV/c2 in the untagged mode.
This mass region is not covered in the e+e− → π+π−3π0γISR measurement and
the correction can not be applied for these events. However, these events have
an ISR photon energy of EISR < 72 MeV and they can be hardly distinguished
kinematically from the non-ISR channel e+e− → π+π−3π0. Also their internal
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resonance structure as well as the pion momenta and polar angle distributions are
sufficiently similar to the ones of the non-ISR process e+e− → π+π−3π0. For this
reason, the e+e− → π+π−3π0 correction can be safely applied for these events,
which is discussed in the previous section. The e+e− → π+π−3π0γISR background
events with M(π+π−3π0)true < 3.7 GeV/c2 in the e+e− → π+π−2π0γISR analysis
are then weighted by the correction factor obtained in Fig 5.7 according to their
true M(π+π−3π0)true value. Events with M(π+π−3π0)true > 3.7 GeV/c2 are scaled
according to Fig. 5.4. The difference between M(π+π−3π0)true values in the MC
simulation and the fitted M(π+π−3π0) values from data or MC is less than half the
width of the M(π+π−3π0) intervals and hence negligibly small. A comparison of
the shape of the e+e− → π+π−3π0γISR background MC before and after applying
the correction is shown in Fig. 5.9.
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Figure 5.8.: Correction of the e+e− → π+π−3π0γISR background channel to e+e− →
π+π−2π0γISR events.
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Figure 5.9.: Comparison of the e+e− → π+π−3π0γISR background contribution to the
e+e− → π+π−2π0γISR final state before and after the correction.
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5.3. Normalization of the Remaining qq̄
Contribution

The inclusive Lund-qq̄ MC sample which is based on the LundAreaLaw gener-
ator model [87, 88], simulates a large number of hadronic final states excluding
the J/ψ resonance but including ISR. The shape of the background contribution
to e+e− → π+π−2π0γISR events, which is obtained by this Lund-qq̄ simulation is
reliable up to a total scaling factor. This is due to the models used in the MC
generator. Therefore, the scaling of this MC sample needs to be checked. The
luminosity of the generated Lund-qq̄ MC sample corresponds to Lqq̄ = 30 fb−1.
Hence, this MC sample can be rescaled to the luminosity of data with a scaling
factor of s = Ldata

Lqq̄ = 0.098. This scaling factor is applied to the MC sample before
calculating the renormalization factors in this section. Hence, the Lund-qq̄ MC de-
scribes data perfectly, if a renormalization factor of one would be obtained. The
validation of the Lund-qq̄ scaling factor can be performed by a data MC compari-
son of the number of π0 candidates as the dominant background from the Lund-qq̄
sample stems from these events, in which a decay photon from a π0 particle is
misidentified as an ISR photon. For this purpose, the invariant mass of the ISR
photon and any other photon recorded in the event, M(γISRγ), is calculated. This
quantity is given by

M(γISRγ)2 =
(
pµISR + pµγ,i

)2
, i = 1 . . . 6 .

The quantity M(γISRγ) is expected to be equal in data and the Lund-qq̄ MC sam-
ple after correcting the e+e− → π+π−3π0γISR contribution within the Lund-qq̄ MC
according to section 5.2 and subtracting the background contributions of other MC
samples from data. The e+e− → π+π−3π0 background contributions are added to
the Lund-qq̄ MC histogram, instead of subtracting them from data. Their scaling
factor is already adjusted to data by the e+e− → π+π−3π0 measurement that
was put into the HelPWA MC generator. Up to 6 combinations of M(γISRγ)
have to be calculated per event. To obtain the M(γISRγ) distribution, all the
e+e− → π+π−2π0γISR signal event selection criteria explained before in section 4
are applied, except the selection on M(γISRγ) itself and the cosα requirement. It
was found that the potential Lund-qq̄ background is suppressed by the cosα re-
quirement quite effectively. I order to obtain sufficient statistics for the calibration
procedure described here, the cosα requirement is hence not applied here. The
distribution of M(γISRγ) is shown in Fig. 5.10. Background contributions from the
non-DD MC sample, e+e− → γISRJ/ψ, e+e− → γISRψ(3686) and e+e− → DD̄
are subtracted from data. Hence, only Lund-qq̄ events plus e+e− → π+π−3π0

events are compared between data and MC. As expected, a peak at the neutral
pion mass in data and in the Lund-qq̄ MC sample can be seen in Fig. 5.10. The
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Figure 5.10.: M(γISRγ) spectrum. Data and the simulations show a peak at the π0

mass.

e+e− → π+π−3π0γISR contribution within Lund-qq̄ is adjusted according to the
correction obtained in section 5.2, as mentioned before. In fact the peaks do not
have equal height. This means that the Lund-qq̄ sample has to be rescaled with
a rescaling factor f . This additional scaling factor f is obtained by taking the
ratio of the number of events in the π0 mass peaks in data and in the Lund-qq̄ MC
sample

f =
Ndata
γISRγ

N qq̄
γISRγ

, (5.3.1)

where NγISRγ denotes the number of events in the π0 peak of the M(γISRγ) spec-
trum in data or Lund-qq̄ MC, respectively. The resulting scaling factor stot, which
will be applied on the Lund-qq̄ MC sample is then given by stot = f LdataLqq̄ .

The number of π0 candidates in the peaks are determined with two different fit
methods for the entire M(π+π−2π0) spectrum and also in bins of the invariant
mass M(π+π−2π0). In the first method the M(γISRγ) distribution in Fig. 5.10 is
fitted with a double Gaussian for the π0 peak plus a fourth order polynomial for
the tail

f(x) = N1√
2πσ1

e
−
(
x−µ1
2σ1

)2

+ N2√
2πσ2

e
−
(
x−µ2
2σ2

)2

+
4∑
i=0

aix
i .

Applying the fitted parameters according to NγISRγ = N1 +N2 to Eq.5.3.1 for data
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Figure 5.11.: M(γISRγ) distribution after background subtraction.

and MC, the rescaling factor of method ”1 global“ is obtained. Its value is shown
in Table 5.2.

In the second method, the ShowBackground function of the Cern-ROOT frame-
work is used to subtract the tail in the M(γISRγ) distribution. This function
determines the shape of the background automatically and gives a histogram as
output, that describes the background shape. Such a background histogram is sub-
tracted from data and the qq̄ histograms shown before. Afterwards, the remaining
peak is fitted with a double Gaussian plus a first order polynomial for potentially
remaining backgrounds. The result is shown in Fig. 5.11. All the event selection
criteria were applied to obtain the M(γISRγ) distribution except the M(γISRγ) se-
lection itself. Also here, the scaling factor is obtained by using the integrated event
number in the Gaussians with Eq. 5.3.1. The result, addressed with ”2 global“, is
shown in Table 5.2.

In the next step the scaling factor will be calculated for nine bins ofM(π+π−2π0).
The M(γISRγ) spectrum is fitted according to the second method again with a
double Gaussian in order to describe the peak plus a first order polynomial for
the background. Fig. 5.12 shows the nine M(γISRγ) distributions for different
regions of M(π+π−2π0) and the respective fits. Again the scaling factor is deter-
mined using Eq.5.3.1 for each bin by dividing the peak heights of data by the ones
of the Lund-qq̄ MC. A constant behavior of the scaling factor in dependence of
M(π+π−2π0) is identified. Thus a constant function is fitted to the 9 points. The
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Figure 5.12.: M(γISRγ) split into 9 intervals of M(π+π−2π0).

fit result, which is addressed by ”2 local“ is shown in Table 5.2. Fig. 5.13 shows
that the scaling factor is sufficiently flat as a function of M(π+π−2π0) if also the
systematic error is considered.

This cross check shows the consistency of this procedure, since all the numbers
of Table 5.2 agree with each other within uncertainties.

Table 5.2.: Rescaling factors for the Lund-qq̄ MC sample
Method rescaling factor
1 global 1.058± 0.038stat
2 global 1.061± 0.081stat
2 local 1.109± 0.031stat

The largest difference between all the numbers presented in Table 5.2 is used as
systematic uncertainty. One obtains:

∆fsys = fmax − fmin = 0.051 .

Finally, the results of all the three methods are combined. Fig.5.13 shows all the
three methods and the fit to the M(π+π−2π0) dependent method. The final result
for the scaling factor is taken as the average of the three values in Table 5.2. The
final value is:

f = 1.087± 0.056sys+stat . (5.3.2)
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Figure 5.13.: Summary of all methods: Rescaling factor in bins of M(π+π−2π0) (blue
dots), fit to the blue dots with a constant (red line), first global method
(light green line) and second global method (dark green line).

This factor will be multiplied to the given luminosity of the Lund-qq̄ simulation
sample. The scaling factor after this correction is s = f LdataLqq̄ = 0.106. This
additional scaling is only used for the tagged mode, not for the untagged mode,
since Fig. 4.12 of chapter 4 shows that the M(γISRγ) peak and the corresponding
discrepancy between data and MC do not appear in the untagged ISR method.

Last, an input-output check is performed. Therefore, the scaling factor is applied
to the qq̄ curve in Fig. 5.10 and the background subtraction of the second method
is applied. The result, shown as a red histogram in Fig. 5.11, reproduces the
expected shape. Hence, the input-output check proves the procedure to be valid.
A small shift of the π0 mass between data and MC can still be observed, as before
the rescaling, but this effect is negligible and is not supposed to be corrected by
this the rescaling procedure.

5.4. Background Subtraction Crosscheck with the
Sideband Subtraction

In the previous section the qq̄ rescaling factor was determined for the tagged mode.
This method cannot be applied to the untagged mode, as the ISR photon is not
detected in the corresponding selection. Therefore, a sideband subtraction of the
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background is performed to estimate the accuracy of the nominal scaling of the
background MC samples.

The sideband subtraction is performed in the χ2
6C/3C distribution for different

bins of M(π+π−2π0). The χ2
6C/3C distribution of Fig. 4.7 reveals that the back-

ground is sufficiently flat in the untagged mode but peaks at small χ2
6C/3C in the

tagged mode. Hence, this method is only reliable for the untagged mode. For the
tagged mode it can only serve as cross check, but can not be used to give a good
estimation of the background MC rescaling factor. The signal region is defined as
the region 0 < χ2 < 60, whereas the region 60 < χ2 < 120 defines the sideband.
Moreover, the following definitions are used:

• D1 the number of data events in the signal region,

• D2 the number of data events in the sideband region,

• Ns1 the number of signal events in the signal region,

• Ns2 the number of signal events in the sideband region,

• Nb1 the number of background events in the signal region,

• Nb2 the number of background events in the sideband region,

• a = Ns1/Ns2,

• b = Nb1/Nb2.

The parameters a and b have to be determined in bins ofM(π+π−2π0) from the MC
samples for signal and background, respectively. From the definitions mentioned
above it follows:

D1 = Ns1 +Nb1 ,

D2 = Ns2 +Nb2 .

After some algebra one finds for the number of background events in the signal
region Nb1:

Nb1 = b

a− b
(D2 − aD1) (5.4.1)

which only depends on the number of data events and on ratios D1 , D2 of MC
event numbers a , b. The absolute scale of the MC sample cancels out. Fig. 5.14
shows the Nb1 distribution in bins of the hadronic mass M(π+π−2π0), where as
Fig. 5.15 shows the ratio between the number of background events determined
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by the sideband method and the number given by the background MC samples.
The additional qq̄ rescaling factor is applied in the tagged case. Hence, the ratio
is expected to be close to one, if the rescaling is vital. Fig. 5.15 shows that this is
indeed the case within the given statistical uncertainties, but only up to 2 GeV in
the tagged mode.
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Figure 5.14.: Comparison of the number of background events between the sideband
subtraction method and the MC simulation
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Figure 5.15.: Difference of the number of background events between the sideband
subtraction method and the MC simulation

The sideband to MC ratio integrated over the whole M(π+π−2π0) range is
1.022±0.122 for the untagged mode. For the tagged mode 1.062±0.244 is obtained
in the region below 2 GeV. This proves that the background is well described by the
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MC samples for the untagged mode and also for the tagged mode after rescaling.
This method suggests an error of 12.2% for the background subtraction in untagged
mode. To be conservative, a 20% uncertainty is assumed for the subtraction of
background contributions described with the Lund-qq̄ sample.

5.5. Mass Spectrum of π+π−2π0 after Background
Corrections

Applying the corrections of the e+e− → π+π−3π0 and e+e− → π+π−3π0γISR
background contributions as well as the rescaling of the Lund-qq̄ MC described
in section 5.3, the mass distribution obtained from data can again be compared
to the corrected MC sum of signal and background. This is shown in Fig. 5.16
for the tagged and untagged ISR methods, respectively. A significantly improved
data-MC agreement is observed with respect to the situation before the correction,
shown in Fig. 5.1.
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Figure 5.16.: π+π−2π0 mass spectrum after correction of all background contributions,
before efficiency correction.



Chapter 6.

π0 Reconstruction Efficiency

One of the most important source of systematic uncertainty is the π0 efficiency. In
particular, the difference of the efficiency between data and MC in reconstructing a
π0. In this chapter two control channels, ψ(3686)→ J/ψπ0π0 and e+e− → ωπ0 are
used to investigate the differences of the π0 reconstruction efficiency between data
and MC simulation. The control channels contain two π0 in their final states to
account for any possible effects of mis-combined photons. A π0 efficiency correction
is obtained to improve the precision of the e+e− → π+π−2π0γISR measurement.
The remaining uncertainty on the π0 reconstruction is the uncertainty of this π0

efficiency study, which is much smaller than the initial data-MC difference of the
π0 reconstruction efficiency.

89
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One of the major sources of systematic uncertainty is the difference between
data and simulation in the reconstruction efficiency of the π0 particles in the final
state. Since the final states investigated in the context of this thesis contain two or
three neutral pions and an ISR photon, a dedicated study is performed. Potential
sources of the uncertainty stem from taking wrong combinations of photons or
from misidentified photon candidates used to form a π0 candidate. Hence, it is
important to study the π0 reconstruction efficiency in a channel containing at least
two neutral pions, similarly to the topology of the signal channels. The basic idea
of the efficiency study performed here is to choose a clean and well known final state
and reconstruct all particles except one of the two π0. Imposing four momentum
conservation of all final state particles, the missing π0 four-momentum can be
predicted. This is realized by performing a two constraint kinematic fit, where one
of the π0 is treated as a missing particle, called π0

miss. The two constraints are
the π0 masses. The second ”tagged“ π0, which needs to be reconstructed in the
detector, will be referred to as π0

tag. This set of events containing a predicted π0

is called test sample. Let Ntot be the number of events in the test sample. The
fit result of the four momentum of π0

miss can be considered as a prediction of the
measured four-momentum of a particle, which must have been reconstructed in an
efficient event. If matching π0 candidates cannot be found, the event is regarded
as inefficient. If at least one matching π0 candidate is found, a 6C kinematic
fit is performed testing each potential π0 candidate. The candidate that yields
the least χ2

6C value is kept. If the best candidate yields χ2
6C < 60, which is the

same requirements as used in the untagged ISR analysis, the event is regarded as
efficient, otherwise it is considered as inefficient. Let Neff be the number of all
efficient events.

In order to study the efficiency of neutral pions with momenta below 0.45 GeV
data taken at the ψ(3686) peak are used to study the process e+e− → ψ(3686)→
J/ψπ0π0. This channel has huge statistics and background contributions are neg-
ligibly small. For the efficiency of pions with momenta above 0.45 GeV the process
e+e− → ωπ0

tag with ω → π+π−π0
miss from the ψ(3770) data set is analyzed. The

narrow ω resonance provides an unambiguous signature, which is exploited to reject
background contributions. It needs to be shown that the π0 efficiencies obtained
from different final states give sufficiently similar results and can be combined.

6.1. π0 Efficiency in the J/ψπ0π0 Channel
For the low momentum π0 reconstruction efficiency study, The 106M ψ(2S) events
taken in 2009 are investigated. The analysis is performed with the BOSS version
6.6.4.p01, which is the same version used for the main analysis. The inclusive
MC sample containing e+e− → ψ(3686) events, generated with BesEvtGen is
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used. The sample is separated into the signal process e+e− → J/ψπ0π0 and the
remaining background events. The J/ψ is reconstructed only from its decay into
lepton pairs. The π0 is reconstructed from its decay to photon pairs.

6.1.1. Event Selection
Events with exactly two charged tracks with opposite charges are selected. The
BESIII standard cuts r < 1 cm and |z| < 10 cm for the fiducial volume of the points
of closest approach of the charged tracks to the interaction point are applied. Since
the J/ψ decays into leptons with high momenta, the charged tracks must have
momenta above 1 GeV. The BESIII standard requirements for the selection of good
photons are applied as explained in chapter 4. For the particle identification (PID)
the energy deposit E in the EMC and the momentum p of the track from the MDC
is calculated. An individual charged track is identified as a moun, if 0 < E/p < 0.4.
Charged tracks with 0.8 < E/p < 1.2 are identified as electrons. Events are
accepted, if both charged tracks are either muons or electrons. Figure 6.1 shows
the scatter plot of E/p for both leptons. For the reconstruction of J/ψ from
lepton pairs, the invariant mass M(`+`−) is required to be within the mass window
3.04 < M(`+`−) < 3.14 GeV. The lepton mass distribution is shown in Fig. 6.2.
Furthermore, at least one π0 candidate is required to form the π0

tag. The π0
tag cannot

be chosen by the least χ2 of a kinematic fit, since this would bias the resolution of
the tagged neutral pion. For the π0 reconstruction, the same criteria as described
in chapter 4 are applied.
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Figure 6.1.: Lepton PID for the J/ψ reconstruction in the process e+e− → J/ψπ0π0.
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Figure 6.2.: J/ψ mass distribution of the e+e− → J/ψπ0
tagπ

0
miss event selection.

For events with more than one π0
tag candidate, it is chosen randomly among all

available π0 candidates. The analysis is performed twice with different random
seeds in order to estimate the systematic uncertainty of this method. Figure 6.3
shows the azimuthal angle distributions obtained with different random seeds.
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Figure 6.3.: Azimuthal angle distribution of π0
tag.

As expected, the azimuthal angle distributions are flat. The two analyses with
different seeds are similar, but do not coincide exactly. For the final result, the
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two methods are combined together by using their average. A 2C kinematic fit of
the final state J/ψπ0

tagπ
0
miss is performed with both π0 masses constrained. The

momentum pπ0
miss

of π0
miss is predicted by the fit by closing the kinematic relations

pπ0
miss

= p0−pπ0
tag
−pJ/ψ, where p0 is the initial boost vector of the collision. Events

with χ2
2C > 15 are rejected. Fig. 6.4 shows the χ2

2C distribution. The agreement
between data and simulation is very good and the background contributions are
negligible. Table 6.1 summarizes all the event selection criteria.
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Figure 6.4.: χ2
2C distribution of the e+e− → J/ψπ0

tagπ
0
miss event selection.

Table 6.1.: Summary of event selection criteria for J/ψπ0
tagπ

0
miss events.

Charged tracks
# 2 (net charge 0)
R 1.0 cm
|z| 10.0 cm

Good Photons
E (barrel) > 25 MeV
E (end caps) > 50 MeV

TDC < 700 ns
angle to closest charged track > 20◦

# < 8
π0 Window 100 < M(γγ) < 160 MeV/c2

π0 Candidates ≤ 5 non overlapping
2π0 Candidates ≤ 2 non overlapping
J/ψ Window 3.04 < M(``) < 3.14 GeV/c2

Kinematic Fit χ2
2C ≤ 15
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6.1.2. Determination of the Efficiency
For all the events in the e+e− → J/ψπ0

recπ
0
tag test sample a π0 candidate denoted

by π0
rec is searched for in the detector, which matches to the predicted candidate

π0
miss. As pointed out in the beginning of chapter 6, the criteria for an event in the

test sample to be efficient is the 6C kinematic fit of `+`−π0
recπ

0
tag, where the two π0

masses and the four momentum conservation are constrained. Every combination
is rejected for which the fit yields χ2

6C > 60. Figure 6.5 shows the momentum and
polar angle distributions of the predicted and the reconstructed neutral pions for
data and MC.
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Figure 6.5.: Momentum and polar angle distributions of the missing and the recon-
structed π0 in data and MC.

By definition, there is at least one efficient π0 in each event, which is the π0
tag .

Considering in addition that the two π0 in the final state J/ψπ0π0 cannot be
distinguished, the efficiency ε to reconstruct a single π0 cannot be calculated con-
ventionally as ε = Neff/ (Neff +Nineff ). The equation describes the efficiency to
reconstruct the whole J/ψπ0π0 event. Which is different from the desired single
π0 reconstruction efficiency in the presence of a second π0. The proper way to cal-
culate the reconstruction efficiency of a single π0 in dependence of its momentum
p is given by:

ε(p) = Ngood(p)
Nall(p)

= Neff (p) +Ntag(p)
Neff (p) +Ntag(p) +Nineff (p)

, (6.1.1)

with Nall(p) = Neff (p) + Ntag(p) + Nineff (p) and Ngood(p) = Neff (p) + Ntag(p),
where Ntag is the number of reconstructed π0

tag, Neff is the number of efficiently
reconstructed predicted π0

miss andNineff is the number of inefficient events, where a
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π0
rec candidate could not be found for the π0

miss according to the criterion described
above. Eq. 6.1.1 treats every π0

tag as an efficiently reconstructed π0. Hence, it
gives the correct efficiency to reconstruct a single π0. By definition, the number
of e+e− → J/ψπ0π0 events, where both π0 were lost do not belong to the test
sample. Other π0 reconstruction efficiency studies [95, 96] have demonstrated
that the data-MC difference of the single π0 reconstruction efficiency is a as small
as a few percent. Hence, the data-MC difference of events, where both π0 are
lost is negligible. Eq. 6.1.1 implies a lower bound of the efficiency of 50%, in
the case where none of the π0

miss could be reconstructed. This is not a problem,
since the interesting quantity will be the relative difference between data and
MC εdata/εMC − 1, which will no longer suffer from this problem. The left panel
of Fig. 6.6 shows the final π0 reconstruction efficiency for data and the signal
simulation in dependence of the π0 momentum.

The relative efficiency difference between data and MC is defined as

∆επ0 = εdata/εMC − 1 ,

where εdata and εMC are calculated according to Eq. 6.1.1. This quantity can be
used in the main analyses of e+e− → π+π−2π0γISR and e+e− → π+π−3π0(γISR)
as a multiplicative correction to the event reconstruction efficiency obtained from
signal MC.
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Figure 6.6.: π0 reconstruction efficiency in dependence of the pion momentum (left)
and the relative difference between data and MC (right). The blue line is
a constant fit and the red line is a linear it.

The ∆επ0 distribution in dependence of the momentum is shown in the right
panel of Fig. 6.6 and the corresponding numbers are also listed in Table 6.2. The
efficiency and the relative difference in different intervals of the polar angle are
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shown in Fig. 6.7 and found to be sufficiently flat. Hence, the π0 efficiency correc-
tion is approximately independent of the polar angle of the neutral pions.

Table 6.2.: π0 efficiency in dependence of the π0 momentum in the J/ψπ0π0 channel,
where Nall(p) = Neff (p) + Ntag(p) + Nineff (p) and Ngood(p) = Neff (p) +
Ntag(p).

data
Pπ0 [GeV/c] Nall(p) Ngood(p) ε[%]
0.00 − 0.05 3296± 58 2033± 46 61.7± 0.9
0.05 − 0.10 52945± 231 29158± 172 55.1± 0.2
0.10 − 0.15 184770± 433 102429± 323 55.4± 0.1
0.15 − 0.20 351378± 596 197637± 448 56.2± 0.1
0.20 − 0.25 490993± 703 280839± 532 57.2± 0.1
0.25 − 0.30 539122± 737 316738± 564 58.8± 0.1
0.30 − 0.35 446378± 671 265376± 517 59.5± 0.1
0.35 − 0.40 212964± 466 123162± 353 57.8± 0.1

Total 2281846± 1518 1317372± 0.00 57.73± 0.03
MC

Pπ0 [GeV/c] Nall(p) Ngood(p) ε[%]
0.00 − 0.05 3305± 57 2054± 45 62.1± 0.8
0.05 − 0.10 53759± 232 29771± 173 55.4± 0.2
0.10 − 0.15 183664± 429 102259± 320 55.7± 0.1
0.15 − 0.20 356951± 597 200836± 448 56.3± 0.1
0.20 − 0.25 507947± 713 292284± 541 57.5± 0.1
0.25 − 0.30 556069± 746 328680± 573 59.1± 0.1
0.30 − 0.35 452353± 673 270912± 520 59.9± 0.1
0.35 − 0.40 207990± 456 121149± 348 58.2± 0.1

Total 2322038± 1524 1347945± 0.00 58.05± 0.03

In order to give a momentum dependent efficiency correction, the momentum
distribution of the relative efficiency difference ∆επ0 is fitted with a first order
polynomial. The obtained fit parameters are

∆επ0(p) = a · p+ b ,with
a = (−2.05± 1.07) · GeV−1% ,

b = (−0.02± 0.28) % and
χ2/ndf = 0.70 .

The fit quality of the blue constant fit in Fig. 6.6 is χ2/ndf = 1.13. Hence the
constant hypothesis is rejected. The negative sign of the result above at π0 mo-
menta below 0.15 GeV/c indicates that the MC overestimates the π0 reconstruction
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efficiency of data. The result is in agreement with the previous π0 efficiency mea-
surement [95] that has been performed in the same final state, but with BOSS
version 6.5.5. The result of this measurement was conservatively estimated to be
3% for the entire momentum range.
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Figure 6.7.: π0 reconstruction efficiency in dependence of the pion polar angle (left)
and the relative difference between data and MC (right).

As additional cross check, the π0 reconstruction efficiency is studied as a two
dimensional function of the predicted and the tagged π0 momenta. In this case
the efficiency is defined as

επ0(pmiss, ptag) = Neff (pmiss, ptag)
Neff (pmiss, ptag) +Nineff (pmiss, ptag)

.

The two dimensional distributions of the efficiency in data and MC are shown
in Fig. 6.8. Background contributions from MC are subtracted from data. The
efficiency distributions show a strong correlation between the momenta of the
tagged and the predicted π0. This is because of the limited phase space available
for the two π0 in the ψ(3686) → J/ψπ0π0 process. Moreover, the plots show
that a π0 efficiency correction cannot be performed as a function of both π0, since
the efficiency distribution does not cover the entire two-dimensional momentum
space. In addition, the relative difference between data and MC of the efficiency
as a function of both π0 momenta is flat in the region with sufficient statistics.
This proves the stability of the efficiency calculated according to Eq. 6.1.1
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Figure 6.8.: π0 reconstruction efficiency as a function of both π0 momenta in the
e+e− → J/ψπ0π0 channel.
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Figure 6.9.: Relative difference between data and MC of the π0 efficiency as a function
of both π0 momenta in the e+e− → J/ψπ0π0 channel.
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6.1.3. Systematic Uncertainty
The systematic uncertainties from the luminosity, tracking and the position of the
interaction point cancel out in the ratio of the efficiencies.

First, the systematic uncertainty coming from the event selection of the test
sample is estimated. The selection criteria are varied in an appropriate range and
the π0 efficiency correction factor ∆επ0 is determined with the varied selection. The
largest deviation from the result of ∆επ0 obtained with the default selection criteria
is taken as systematic uncertainty. The applied variations and the determined
uncertainties are listed in Table 6.3. Moreover, the difference between the two
analyses with different initial random seeds is taken as a systematic uncertainty,
which is 0.43%. In order to estimate the uncertainty of the χ2

6C requirement, which
is used to decide if a reconstructed π0 candidate is efficient, the χ2

6C selection
is changed by ±10. In addition, the so-called cone method is used to decide
if a reconstructed π0 candidate is efficient instead of the χ2

6C requirement. In
this method a reconstructed π0 candidate is efficient, if the angle α between the
predicted and the reconstructed π0 candidates fulfills 1 − cosα < 0.03 and their
relative energy difference is less than 40%. The resulting uncertainty is listed in
Table 6.3.

Table 6.3 shows all contributions to the systematic uncertainties. Since they can
be assumed to be uncorrelated, their quadratic sum is 0.68%.

Table 6.3.: Systematic uncertainties for π0 efficiency study in J/ψπ0
tagπ

0
miss .

Source Variation Range Error [%]
Selection χ2

2C cut 11 < χ2
2C < 19 0.15

Efficiency χ2
6C cut 20 < χ2

6C < 40 0.23
Cone + ∆E Method - 0.43

J/ψ window 3.02 < M cut
low < 3.06 0.04

3.12 < M cut
up < 3.16

Bgr. Subrt. ±10% Bgr. 0.06
Tag Mode - 0.43

Bining 5 MeV→ 10 MeV 0.05
Fit range border −5 MeV 0.07

Total - 0.68

6.2. π0 Efficiency in the ωπ0 Channel
Neutral pions with momenta above 450 MeV cannot be accessed in the ψ(2S) →
J/ψπ0π0 process. For these π0 with higher momenta, the process e+e− → ωπ0

tag

with ω → π+π−π0
miss is investigated at a c.m. energy of 3.773 GeV. In order to
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benefit from the narrow ω width, the predicted neutral pion π0
miss is chosen to be

the one coming from the ω decay. In this way, background contributions can be
reduced. The momenta of the ω resonance and the π0

tag are fixed to 1.80 GeV up
to resolution effects, since e+e− → ωπ0 is a two body process. The upper bound
of the momentum of the π0

miss is also 1.80 GeV, which only occurs in the very rare
case, when the two charged pions from the decay of the ω resonance have zero
momentum. This implies that the two π0 in the final state can be distinguished
by their momenta. Therefore, the π0

tag candidate can be chosen by the best χ2

of a kinematic fit without introducing a resolution bias, if there is more than
one possible candidate. Moreover, due to the momentum separation of the two
neutral pions, the calculation of the single π0 reconstruction efficiency according
to Eq. 6.1.1 simplifies to

ε(p) = Neff (p)
Neff (p) +Nineff (p)

. (6.2.1)

This is because Ntag(p < 1.75 GeV) is zero in the momentum range of the predicted
neutral pion, as explained above. The Momentum distributions of the predicted
and the tagged neutral pions are shown later in Fig. 6.16, which clearly shows
the momentum separation. In this analysis, the Lund-qq̄ MC sample is used for
the signal simulation, since the form factor models used in the scan mode of the
Phokhara 9.1 generator are not optimized in the c.m. energy region of ψ(3770).
The signal simulation is split into three parts, which are: (1) pure e+e− → ωπ0

tag

events, (2) e+e− → π+π−2π0 continuum events without an ω resonance and (3)
e+e− → π+π−2π0γISR events with and without an ω resonance. These three
contributions are kinematically identical. In data they cannot be distinguished by
the event selection explained in the following.

6.2.1. Event Selection

Events with exactly two charged tracks with opposite charge and at least one
π0 candidate are selected. The BESIII standard cuts r < 1 cm and |z| < 10 cm
for the fiducial volume of points of closest approach of the charged tracks to the
interaction point are applied. Moreover, EEMC/pMDC < 0.8 is required for both
charged pion candidates in order to reject electrons. If the EEMC/pMDC cannot
be determined, the pion candidates are kept. Figure 6.10 shows the EEMC/pMDC

distributions for positively and and negatively charged pions separately.
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Figure 6.10.: Energy deposit in the EMC over the track momentum separated by the
charge of the pions of the e+e− → ωπ0 final state.

There is a background contamination of events with EEMC/pMDC > 0.8 in
particular for the π+. These events presumably come from radiative Bhabha scat-
tering. Moreover, in the case of π+, the MC simulations cannot describe data
well in the region 0.2 < EEMC/pMDC < 0.7. Figure 6.11 shows the EEMC/pMDC

plotted versus the momentum of the charged pions.
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Figure 6.11.: EEMC/pMDC versus the momenta separated by the charge of the pions
for for the e+e− → ωπ0 final state.

The two dimensional distribution shows the same structures in data compared
to MC. An additional structure in data, which would suggest a further background
contribution, cannot be observed. However, the accumulation of low momentum
events begins at EEMC/pMDC ≈ 0.5 in data, but starts at EEMC/pMDC ≈ 0.7
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in MC. Hadronic showers are not described completely in the simulations. The
integrated number of events in data and MC below EEMC/pMDC = 0.8 are Ndata =
24276± 156 and NMC = 23144± 152, which is in reasonable agreement. It can be
assumed that other reactions do not contribute significantly.

The BESIII standard requirements for the selection of good photons, as ex-
plained in chapter 4, are applied. Furthermore, at least one π0 candidate is re-
quired to form the π0

tag. For the π0 reconstruction, the same criteria as in the
main analysis of e+e− → π+π−2π0γISR is applied, which is the mass window
100 MeV < M(γγ) < 160 MeV. A two constraint kinematic fit of the π+π−π0

missπ
0
tag

final state is performed for all available π0
tag candidates. The momentum of π0

miss

is predicted by the fit by imposing four-momentum conservation. The constraints
are the two π0 masses. The ω width is large compared to the detector reso-
lution to be constrained in the kinematic fit. In case of multiple π0

tag candi-
dates, the one which yields the smallest χ2

2C is kept. Events with χ2
2C < 15

and 680 < M(π+π−π0
miss) < 860 MeV/c2 are accepted. The χ2

2C and the ω mass
distributions are shown in Fig. 6.12. All selection criteria, except the ones shown
in the plots are applied.
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Figure 6.12.: Event selection of the ωπ0 final state for the π0 reconstruction efficiency.

The wrong combination of three pions π+π−π0
tag, shown in Fig. 6.13, always

results in invariant masses well above the ω mass, as expected from the two body
kinematics. A misidentification of the π0 is ruled out. However, an excess of
events is observed in data above M(π+π−π0

tag) > 3.45 GeV/c2 that cannot be de-
scribed by the Lund-qq̄ MC simulation. These events appear as e+e− → π+π−2π0

signal events in the Phokhara 9.1 simulation. However, the Phokhara 9.1
generator underestimates this contribution significantly, which becomes evident
when comparing the corresponding contributions in the spectra of the left and
right panels in Fig. 6.13. The difference can be attributed to the inadequately
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optimized form factors in Phokhara 9.1, as mentioned above. Events with
M(π+π−π0

tag) > 3.45 GeV/c2 are removed from the selection in order to avoid this
region to spoil the data-MC comparison. These events correspond to π0

miss with
momenta below 200 MeV. The reconstruction efficiency of these low momentum
π0 is already known from the e+e− → ψ(3686)→ J/ψπ0π0 study with sufficiently
high precision. All the event selection criteria are summarized in Table 6.4.
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Figure 6.13.: Comparison of the M(π+π−π0
tag) mass distribution between

Phokhara 9.1 and Lund-qq̄.

Table 6.4.: Summary of event selection criteria for ωπ0
tag events.

Charged tracks
# ≥ 2 (net charge 0)
R 1.0 cm
z 10.0 cm
E/p < 0.8

Good Photons
E > 25 MeV (barrel)

> 50 MeV (end caps)
TDC < 700 ns

angle to closest charged track > 20◦
# < 8

π0 Window 100 < M(γγ) < 160 MeV/c2

π0 Candidates ≤ 5 non overlapping
2π0 Candidates ≤ 2 non overlapping
ω Window 680 < M(ω) < 860 MeV/c2

π+π−π0
tag cut M(π+π−π0

tag) < 3.45 GeV/c2

Kinematic Fit χ2
2C ≤ 15
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6.2.2. Determination of the Efficiency
The event selection plots reveal that the simulation of the ωπ0 final state is not
perfect and there are differences between data and MC remaining. However, these
differences do not have any impact on the relative data-MC difference, if the cross
section shape in MC does not reproduce data correctly. However, the angular
distributions of the pions must be described well in MC to keep the statement
above valid. Therefore, the Dalitz plot of the ω resonance must be simulated
correctly. Figure 6.14 shows the Dalitz plot for the ω resonance in data and MC.
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Figure 6.14.: ω-Dalitz plot
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Figure 6.15.: Ratio between data and MC of the ω-Dalitz plot.
The Dalitz plot volume is not uniformly populated, which would correspond to a

pure phase-space simulation of the decay of the ω resonance. The two dimensional
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shapes agree well between data and MC. The ratio between data and MC of the
Dalitz plot is shown in Fig. 6.15. The ratio is constant, except border effects,
where statistics is low. Hence, the Dalitz decay of the ω is described correctly
in the Lund-qq̄ MC, which implies that the angular distributions of the pions are
simulated correctly.

For all the events in this test sample, a π0 candidate denoted by π0
rec is searched

for in the detector that a matches to the missing one π0
miss. As pointed out above

the criteria for an event in the test sample to be efficient is the 6C kinematic fit of
π+π−π0

recπ
0
tag, where the two π0 masses and the four momentum conservation are

constrained. The π0 candidate is accepted if the fit yields χ2
6C < 60. Fig. 6.16 shows

the momentum distributions of the tagged, the missing and the reconstructed
neutral pions for data and MC. The highest momenta of the π0

miss is about 1.5 GeV,
while the momenta of π0

tag are approximately 1.8 GeV. Hence, the predicted and
the tagged π0 are well separated.
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Figure 6.16.: Momentum distributions of all π0 in data and MC.

The yields of the total and the efficient e+e− → ωπ0
tag events are obtained in the

ω-mass distribution M(ω). These are given in 200 MeV intervals of the momentum
Pmiss of the predicted neutral pion in the range 0.2 < Pmiss < 1.6 GeV . A double
Gaussian for the ω resonance peak plus a first order polynomial for the background
is fitted to data and MC. The fits for the total number of events are shown in
Fig. 6.17, and Fig. 6.18 shows the fits for efficient events only. The yields Ntot(p)
and Neff (Pmiss) are obtained from the integrals of the respective double Gaussians
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after the fit.
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Figure 6.17.: ω mass distribution fits of efficient plus inefficient e+e− → ωπ0
tag events

in data and signal MC for different momenta of the π0
miss.
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Figure 6.18.: ω mass distribution fits of only efficient e+e− → ωπ0
tag events in data and

signal MC for different momenta of the π0
miss.

The efficiency for data and MC is calculated according to Eq. 6.2.1, using
Ntot(p) = Neff (p) + Nineff (p). The efficiencies obtained from the fits to data
and to the MC sum are listed in Table 6.5 and are also shown in the left plot of
Fig. 6.19. As explained above, the summed MC sample contains the three final
states ωπ0, π+π−2π0 without ω and π+π−2π0γISR (with and without ω). The left
panel of Fig. 6.19 also shows that the shapes of the efficiencies of the three MC con-
tributions are similar to each other. The efficiency of the e+e− → π+π−2π0γISR
contribution is smaller because the additional ISR photon distorts the assumed
two body kinematics. As expected, the average efficiency in MC matches very well
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to the one of data. Therefore, the three MC contributions can be compared safely
to data to obtain the π0 reconstruction efficiency.

Table 6.5.: Fit results of the fit to the ω mass peaks in various momentum ranges of
the π0

miss for the π0 efficiency study in ωπ0
tag.

data
Pπ0 [GeV/c] Ntot Neff ε[%]
0.2 − 0.4 2177± 49 603± 25 27.7± 1.0
0.4 − 0.6 2601± 54 735± 28 28.3± 0.9
0.6 − 0.8 2431± 51 677± 27 27.8± 0.9
0.8 − 1.0 2084± 47 604± 25 29.0± 1.0
1.0 − 1.2 1599± 40 519± 23 32.5± 1.2
1.2 − 1.4 710± 27 268± 17 37.8± 1.9
1.4 − 1.6 134± 13 62± 9 46.5± 4.9

Total 11737± 108 3468± 59 29.5± 0.4
MC

Pπ0 [GeV/c] Ntot Neff ε[%]
0.2 − 0.4 1869± 14 530± 7 28.4± 0.3
0.4 − 0.6 2745± 17 785± 9 28.6± 0.3
0.6 − 0.8 2436± 16 691± 8 28.4± 0.3
0.8 − 1.0 1885± 14 581± 8 30.8± 0.3
1.0 − 1.2 1157± 11 387± 6 33.4± 0.4
1.2 − 1.4 500± 7 199± 4 39.8± 0.7
1.4 − 1.6 91± 3 38± 2 41.8± 1.6

Total 10682± 32 3212± 18 30.1± 0.4

The right plot of Fig. 6.19 shows the relative efficiency difference between data
and MC ∆επ0 = εdata/εMC−1 (black dots). Also the result of the e+e− → J/ψπ0π0

study (blue dots) and its fit (dashed blue line) is shown for comparison. The
extrapolation of the e+e− → J/ψπ0π0 fit function agrees well with the result
from e+e− → ωπ0. Considering the errors, Fig. 6.20 shows, that the polar angle
distribution of the π0

miss is sufficiently flat. Hence the π0 reconstruction efficiency
correction is independent from the polar angle.
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Figure 6.19.: π0 reconstruction efficiency and its relative difference between data and
MC in the ωπ0

tag final state.

0πθcos
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

 [%
]

ε

0

20

40

60

80

100

data

ISR
γπ + 4π + 40πωMC 

 polar angle0πefficiency of 

0πθcos
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

-1
 [%

]
M

C
ε/

da
ta

ε

20−

10−

0

10
difference: data/MC -1 

Figure 6.20.: π0 efficiency in intervals of the π0
miss polar angle.

6.2.3. Systematic Uncertainty
The systematic uncertainties from the luminosity, tracking and the position of the
interaction point cancel out in the ratio of the efficiencies.

First, the systematic uncertainty coming from the event selection of the test
sample is estimated. Here, the selection criteria are varied in an appropriate range
and determine the π0 efficiency correction factor ∆επ0 . The largest deviation from
the result of ∆επ0 obtained with the default selection criteria is taken as systematic
uncertainty from the considered selection criteria. The applied variations and
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the determined uncertainties are listed in Table 6.6. In addition, the systematic
uncertainties coming from the binning of the fitted histograms, the background
shape and the relative scaling of the three MC contributions are considered. The
corresponding uncertainties are also shown in Table 6.6.

Table 6.6.: Systematic uncertainties for π0 efficiency study in ωπ0
tag .

Source Variation Range Error [%]
Selection χ2

2C cut 11 < χ2
2C < 19 0.61

Efficiency χ2
6C cut 20 < χ2

6C < 40 0.64
Anti-ω cut 3420 < M cut < 3495 0.20
Fit binning 10 Mev→ 8 Mev 0.02
Fit shape 2.order poly. 0.03

relative scale ±10% rescaling 0.52
of MC contr.

Total - 1.05
Since all the systematics can be assumed to be uncorrelated, the total systematic

uncertainty is taken as the quadratic sum which is 1.05%.

6.3. Combined π0 Efficiency

6.3.1. Cross Checks and Combination Study
Cross checks are performed in order to judge, whether or not the results from the
two channels can be combined.

Overlap Region

The relative difference between the two methods is compared for MC and data,
ε(MC1)/ε(MC2)− 1 and ε(data1)/ε(data2)− 1, where ε(MC1), ε(data1) denote
the efficiencies in MC and data for the e+e− → ωπ0 channel and ε(MC2), ε(data2)
describe the corresponding for the e+e− → J/ψπ0π0 channel. The comparison
can only be performed in the overlap region 200 MeV < pπ0 < 400 MeV. The
e+e− → ωπ0 channel provides only one interval in the overlap region. Taking the
mean of the intervals in that region for the e+e− → J/ψπ0π0 channel,

ε(MC1)/ε(MC2)− 1 = (−38.0± 1.2) % ,

ε(data1)/ε(data2)− 1 = (−39.0± 3.6) %

is obtained. Their difference of 1.0% is covered within the statistic and systematic
uncertainties in that region. The relative difference between data and MC of the π0
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reconstruction efficiency is found to be in good agreement for the e+e− → J/ψπ0π0

and the e+e− → ωπ0 method in the overlap region.

Comparison of the π0 Photon Polar Angle Distributions

The results of the relative efficiency differences can be combined safely, if the shape
of the photon polar angle distributions are sufficiently similar. These distributions
are shown in Fig. 6.21 and Fig. 6.22 for the e+e− → J/ψπ0π0 or the e+e− → ωπ0

methods, respectively. A sufficient agreement between the methods is observed,
such that they can be combined safely.
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Figure 6.21.: Photon polar angle distributions of the tagged and the reconstructed π0

for the e+e− → J/ψπ0π0 method.
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Figure 6.22.: Photon polar angle distributions of the tagged and the reconstructed π0

for the e+e− → ωπ0 method.
The shoulder at | cos θ| . 0.8 in the distribution of the reconstructed photons
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is due to the requirement on M(π+π−π0
tag). The shape of the photon polar angle

distribution of the reconstructed π0 in the e+e− → ωπ0 method matches with all
photon polar angle distributions of the e+e− → J/ψπ0π0 method. In addition,
the π0 reconstruction efficiencies of both methods as a function of the polar angle,
shown in Fig. 6.7 and Fig. 6.20, are flat within the errors. The findings further
support that te results of the two channels can be safely combined.

Effects of Intermediate Structures

The effects on the efficiency of different masses and quantum numbers of inter-
mediate resonances denoted with X are tested in this section. For this test, MC
simulations of the process e+e− → Xπ0π0 are performed. Four different cases of
masses and quantum numbers of the intermediate resonance X are considered, as
shown in Table 6.7.

Table 6.7.: Choices for different configurations of the intermediate resonance.
Mode Mass [GeV] JPC

1 (default) MJ/ψ 1−−
1 1 1−−
2 2 1−−
3 MJ/ψ 1+−

The efficiency is determined for the four configurations in the Dalitz plots of the
resonance X and the two π0 as shown in Fig. 6.23. M(Xπ0) is shown on the x-axis
and M(π0

tagπ
0
pred) on the y-axis. The efficiency is calculated according to Eq. 6.1.1.

hence, there are both, tagged and predicted π0 used to calculate M(J/ψπ0) on
the x-axis. The four Dalitz plots only differ in their phase space volume according
to the mass of X. The efficiencies obtained with different masses and quantum
numbers of the resonance are divided by the default efficiency of J/ψπ0π0. The
resulting scatter plots are shown in Fig. 6.24. Except border effects, these plots
show that the efficiency ratios are flat. Moreover, the total efficiencies for the four
cases of the intermediate resonance X are calculated. The values for the total
efficiencies obtained by integrating over the Dalitz plots are shown in Table 6.8.
The different sizes of the phase-spaces are taken into account by dividing the total
efficiencies by the size of the respective phase-space. The total efficiencies obtained
for the four different cases of the intermediate resonance X agree well with each
other within the errors. Fig. 6.24 and Table 6.8 prove, that the dependence of
the efficiency on the mass of the resonance X is negligible. Therefore, the two
methods can be combined safely.
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Figure 6.23.: Efficiency in the Dalitz plot of MC. The bottom right panel shows JPC =
1+−, all other are JPC = 1−−.

]2) [GeV/c0πM(X
3 3.1 3.2 3.3 3.4 3.5 3.6

]2
) 

[G
eV

/c
pr

ed
0 π

ta
g

0 π
M

(

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
ψJ/ε /1ε

]2) [GeV/c0πM(X
3 3.1 3.2 3.3 3.4 3.5 3.6

]2
) 

[G
eV

/c
pr

ed
0 π

ta
g

0 π
M

(

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

ψJ/ε /2ε

]2) [GeV/c0πM(X
3 3.1 3.2 3.3 3.4 3.5 3.6

]2
) 

[G
eV

/c
pr

ed
0 π

ta
g

0 π
M

(

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

ψJ/ε /+-ε

Figure 6.24.: Efficiencies of the modified MC divided by the standard MC.

Table 6.8.: Total efficiencies in MC for different configurations of the intermediate res-
onance in the final state.

Mode εtotal[%]
default (J/ψ) 60.2± 0.52

MX = 1 GeV, JPC = 1−− 60.6± 0.51
MX = 2 GeV, JPC = 1−− 60.6± 0.51
MX = 3 GeV, JPC = 1+− 61.1± 0.53
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6.3.2. Combining the Results and Combined Fit

In order to give a single result for the entire momentum region, the results of the
π0 reconstruction efficiency of the two methods e+e− → ψ(3686)→ J/ψπ0π0 and
e+e− → ωπ0 are combined. In the overlap region, the error weighted mean of both
methods is calculated. The combined result is shown in Fig. 6.25. For the final
result, a fit with a linear function is performed to the combined relative difference
between data and MC of the π0 reconstruction efficiency ∆επ0(p). The fit yields

∆επ0(p) = a · p+ b ,

a = (−2.41± 0.87) · GeV−1% , (6.3.1)
b = (0.06± 0.24) % , (6.3.2)
w = 0.94 , (6.3.3)

χ2/ndf = 0.50 ,

where w is the correlation coefficient of the parameters a and b obtained by the fit.
The small value of the χ2/ndf indicates that the errors are overestimated. Hence,
the statistical error of the π0 reconstruction efficiency is conservative.

 [GeV/c]
0π

p
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

 [%
]

0 πε∆

30−

20−

10−

0

 0.87)%/(GeV/c)±slope: (-2.41 
 0.24)%±offset: (0.06 

 

Figure 6.25.: Combined relative difference between data and MC of the π0 reconstruc-
tion efficiency.
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The relative difference between data and MC is described by the function

∆επ0(p) = εdata
εMC

− 1 (6.3.4)

=
(
0.06− 2.41 GeV−1c· p

)
% ,

where εMC and εdata are the absolute π0 reconstruction efficiencies as defined above
for simulation and data, respectively. The negative sign indicates that the MC
simulations overestimate the π0 reconstruction efficiency with respect to data.



Chapter 7.

Determination of the Cross Sections

The respective event yields in the invariant mass spectra of the pion systems of the
processes e+e− → π+π−2π0γISR and e+e− → π+π−3π0γISR are used to determine
the cross section of e+e− → π+π−2π0 and its sub-process e+e− → ωπ0. Moreover,
the cross sections of e+e− → π+π−3π0 and its sub-processes e+e− → π+π−3π0 ex-
cluding the η resonance, e+e− → ηπ+π− and e+e− → ω2π0 are calculated. Differ-
ential cross sections are determined from the background subtracted invariant mass
spectra, correcting for efficiencies as well as vacuum polarization and final state
radiation effects. In case of the final states π+π−2π0γISR and ωπ0γISR, the cross
section is determined for the tagged and and untagged ISR methods separately.
The error weighted mean of the two methods is calculated for each M(π+π−2π0)
interval in the next step as the final result of these cross sections. In addition,
the results are discussed and compared with previous experimental measurements
of the corresponding cross sections.

115



116 Chapter 7. Determination of the Cross Sections

7.1. Determination of the e+e− → π+π−2π0 Cross
Section

The non-radiative cross section of e+e− → π+π−2π0 is calculated from the selected
e+e− → π+π−2π0γISR events after subtracting the background contributions eval-
uated in chapter 5 and presented with their corrected MC distributions in Fig. 5.16.
The background subtracted invariant mass spectra are presented in Fig. 7.1. In
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Figure 7.1.: π+π−2π0 mass spectrum after subtraction of all corrected background
contributions but before efficiency correction.

order to obtain the final e+e− → π+π−2π0γISR cross section from the spectra
of Fig. 5.16, several corrections need to be considered and calculated. These are
introduced in the following sections.

7.1.1. Reconstruction Efficiency of e+e− → π+π−2π0γISR

The the M(π+π−2π0) dependent reconstruction efficiency ε(M(π+π−2π0)) is ex-
tracted from MC simulations. It is defined as

ε(M(π+π−2π0)) = Nrec(M(π+π−2π0))
Ngen(M(π+π−2π0)) . (7.1.1)

Here, Ngen(M(π+π−2π0)) is the number of generated events as a function of
M(π+π−2π0), Nrec(M(π+π−2π0)) is the respective number of events after the full
event selection described in chapter 4. The event generator Phokhara 9.1 [85]
is used to produce the signal MC simulations. Figure 7.2 reveals a strong depen-
dence of the reconstruction efficiency on M(π+π−2π0) due to detector acceptance,
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kinematics of the four pion channel, and the event selection. Starting from values
in the order of a few permille at and close to threshold, the reconstruction effi-
ciency rises to its maximum values at masses between 2.5 GeV and 3 GeV, before
it drops again towards the highest achievable M(π+π−2π0). This is due to energy
resolution effects from the requirement on the minimum energy of the ISR pho-
ton. In the tagged mode, the additional selection criterion on the minimum angle
cosα between the ISR photon and the neutral pions causes a further, significant
reduction of the reconstruction efficiency above M(π+π−2π0) > 2.6 GeV.
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Figure 7.2.: Signal reconstruction efficiency of the π+π−π0π0γISR final state.

The shape of the reconstruction efficiency can be explained with the special
kinematic properties of the ISR events. As explained in section 3.1, the pions
in the final state are emitted in a cone, which is oriented back-to-back with the
ISR photon. The opening angle of the cone is small, if the boost of the final
state system is large. This is the case if the ISR photon energy is high. Events
with a high energetic ISR photon have a small M(π+π−2π0) due to the relation
EISR = E2

CM−M(π+π−2π0)2

2ECM . This special kinematic is depicted in Fig. 7.3, which was
shown before as Fig. 3.4. Because of extensive use in this section, it is repeated
for the convenience of the reader. In the untagged ISR method, the ISR photon
is lost in the beam pipe. The final state pions are boosted in a cone, which is
directed in the opposite hemisphere of the detector. If the mass of the pion system
M(π+π−2π0) is small, then the cone is small and the probability to lose a pion
in the beam pipe in the opposite direction to the ISR photon becomes large. For
large masses of the M(π+π−2π0) system, the energy of the ISR photon is small
and the four pions span a large cone. Thus, the probability to lose at least one
of the four pions in the beam pipe in the opposite direction to the ISR photon is
much smaller compared to the case of a high energetic ISR photon. Consequently,
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pions
pions

hard ISR photon soft ISR photon

Figure 7.3.: Kinematic of ISR events with soft and hard ISR photons.

a high reconstruction efficiency is expected for large values M(π+π−2π0) and the
efficiency shows a fast drop towards smaller values of M(4pi). The described
behavior can be observed in the left panel in Fig. 7.2. Additionally, the efficiency
decreases at the upper border at M(π+π−2π0) & 3.2 GeV.

In the tagged analysis, the low M(π+π−2π0) events hit the barrel in a small cone.
A large reconstruction efficiency is expected. However, it is smaller than for high
M(π+π−2π0), because the decay of the neutral pions compensates for the focusing
effect of the small cone. The opening angles of the photons from the decay of low
momentum π0 are rather large, even close to the back-to-back configuration they
have in the rest frame of the neutral pion. Thus, these photons escape the narrow
cone given by the boost of the ISR photon. Unlike the photons from the decay of
high momentum pions, which, in the laboratory frame, are boosted into a narrow
cone around the direction of the π0 momentum, the photons from the decay of low
momenta pions have a higher probability to escape detection in the beam pipe or
the gap between barrel and endcap. However, this effect does not compensate for
the the focusing effect completely, thus, the efficiency of low M(π+π−2π0) events
is larger and drops slower compared to the untagged mode.

7.1.2. Efficiency Correction for π0 Reconstruction
Differences between data and simulations were found in reconstruction efficiencies
of neutral pions, in chapter 6. In order to correct for these differences, each
reconstructed event in the simulation is weighted by a factor w2 depending on the
momenta of the two neutral pions Pπ0

1,2
according to

w2(Pπ0
1
, Pπ0

2
) =

(
1 + ∆επ0

(
Pπ0

1

)) (
1 + ∆επ0

(
Pπ0

2

))
, (7.1.2)

where ∆επ0 is the relative difference between data and MC of the π0 reconstruction
efficiency from Eq. 6.3.4. Weighting the events in the simulation can be interpreted
as a multiplicative correction to the signal reconstruction efficiency of the process
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e+e− → π+π−2π0γISR defined in Eq. 7.1.1. Hence, the corrected efficiency reads

ε(m)cor = ε(m)w2(Pπ0
1
, Pπ0

2
) = Nrec(m)

Ngen(m)w2(Pπ0
1
, Pπ0

2
) , (7.1.3)

with m ≡M(π+π−2π0). Figure 7.4 shows the e+e− → π+π−2π0γISR signal recon-
struction efficiency ε with and without the π0 efficiency correction. A significant
difference is found especially for masses between 2 GeV and 3.2 GeV, demonstrat-
ing the importance of the applied corrections for the correctness of the cross section
measurement.
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Figure 7.4.: Comparison between the π0 efficiency corrected and the uncorrected
M(π+π−2π0) mass spectrum.

7.1.3. Final State Radiation Correction
Similar to initial state leptons also the final state particles can radiate photons.
The process is referred to as Final State Radiation (FSR). Due to their vanishing
electric charge, the neutral pions cannot emit a photon in leading order. However,
due to the charge of their constituent quarks, the radiation of an even number
of photons is allowed. The emission of two FSR photons is highly suppressed
O(α2

QED) compared to the emission of a single FSR photon O(αQED). Hence,
FSR from the neutral pions is negligible and FSR is only considered from the two
charged pions. The leading-order (LO) FSR processes e+e− → π+π−2π0γFSR and
e+e− → π+π−3π0γFSR are negligible, since the corresponding production cross
sections are small at the c.m. energy of 3.773 GeV. However, the cross sections
of the mixed ISR+FSR process e+e− → π+π−2π0γISRγFSR, depicted in Fig. 7.5,
is in the order of a few percent compared to the pure ISR signal process e+e− →
π+π−2π0γISR.
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had

Figure 7.5.: Simultaneous ISR+FSR process.
The FSR photons are not considered in the event reconstruction procedure, since

they cannot be distinguished from ISR photons. The cross section of the process
e+e− → π+π−2π0 at a c.m. energy of 3.773 GeV is well below 0.1 nb. Events of the
type e+e− → π+π−2π0γFSR is further suppressed by an additional factor of αQED.
Hence, the LO FSR process, where the FSR photon is misidentified as an ISR
photon is negligible. The invariant mass of the final state pions appears lower, if
an FSR photon was emitted in addition to the ISR photon. Hence, the ISR+FSR
effect causes a shift in the mass spectra towards lower values of M(π+π−2π0).
The mass spectra, Fig. 7.1 have to be corrected for this shift. To this end, two
MC simulations of the signal process are generated, on the one hand including
ISR+FSR effects, on the other hand including only next-to-leading order ISR, so
two ISR photons. The correction is determined from the ratio of cross sections of
these simulations via

δISR+FSR = σ(ISR+FSR)
σ(NLO ISR) . (7.1.4)

The relevant cross sections are determined from MC simulations performed with
the Phokhara 9.1 [85] event generator. FSR is not implemented for the three and
four pion final states in Phokhara 9.1. Therefore, the FSR has to be simulated
with the Photos [92] package. Interference effects between ISR and FSR photons
are neglected. The ISR+FSR correction factor δISR+FSR depends on M(π+π−2π0)
and is shown in Fig. 7.6.

After applying the δISR+FSR correcting, FSR effects are removed from the cross
section. However, for the calculation of aµ, the ”bare“cross section with LO FSR
effects σ (hadrons(γFSR)) is needed. Therefore, the FSR effects have to be reintro-
duced to the ”Born“cross section using the relation introduced in Ref. [97]

σ (hadrons(γFSR))
σ (hadrons) = 1 + η(s)α

π
= δFSR , (7.1.5)

where η(s) is the theoretical Schwinger FSR correction factor. The correction as
a function of the invariant mass of the pion system is shown in Fig. 7.7, which
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describes the FSR correction for a non-radiative processes using scalar QED.

]2) [GeV/c0π2-π+πM(
0.5 1 1.5 2 2.5 3 3.5 4

F
S

R
δ

1

1.01

1.02

1.03

1.04

  

Figure 7.6.: FSR correction for the π+π−2π0γISR channel.
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Figure 7.7.: Schwinger FSR correction function η(s)

7.1.4. Vacuum Polarization Correction
The measured four pion mass spectrum M(π+π−2π0) in data includes vacuum po-
larization (VP) effects. The extracted cross section is, thus, referred to as dressed
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cross section σdressed. For the calculation of the anomalous magnetic moment of
the muon aµ the bare cross section σbare, which is the Born cross section with FSR
corrections of Eq.7.1.5 applied is needed. Therefore the measured Born cross sec-
tion σBorn has to be adjusted considering the running of the finestructure constant.
The bare and the dressed cross sections are connected via the relation

σBornδFSR = σbare = σdressed
(
α(0)
α(s)

)2

= σdressed

δV P
, (7.1.6)

where α(0) = 1/137 is the fine structure constant and

α(s) = α(0)
1−∆αlep(s)−∆αhad(s)

is the running fine structure constant. The parameters ∆αlep(s) are taken from
Ref. [99]. Figure 7.8 shows the inverse VP correction factor 1/δV P . Narrow reso-
nances with quantum numbers JPC = 1−−, such as ω(782), φ(1020), J/ψ have a
large impact in the energy range relevant for this measurement. The VP correction
does not depend on the specific final state to be corrected, but only on the c.m.
energy, which, in case of this measurement, corresponds to the invariant mass of
the hadronic system.
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Figure 7.8.: Vacuum polarization correction according to Ref. [99].
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7.1.5. Calculation of the ISR Cross Section
The relation between a radiative cross section dσ

dm
and the corresponding non-

radiative Born cross section σ(m) is given by [90, 91]

dσ

dm
= 1
εcor(m)LδV P δISR+FSR

dN

dm
= 2m

s
W (s, x)σBorn(m) , (7.1.7)

where L is the luminosity of the data set, s is the c.m. energy, m is the invari-
ant mass of the hadronic system, εcor(m) is the corrected event reconstruction
efficiency shown in Fig. 7.4, W (s, x) is the radiator function, δV P is the VP cor-
rection discussed in section 7.1.4, δISR+FSR is the ISR+FSR correction introduced
in section 7.1.3 and x = 1 − m2

s
= EISR/Ebeam, where Ebeam is the beam energy

and EISR is the energy of the ISR photon. Hence, the non-radiative cross section
is given by

σBorn(m) = 1
2m
s
W (s, x)ε(m)LδV P δISR+FSR

dN

dm
. (7.1.8)

The quantity dN
dm

is the background subtracted event yield as a function of invariant
mass of the hadronic system. The radiator function W (s, x) has been discussed in
sections 3.1 and 3.2. Figure 7.9 shows the LO and next-to-leading order (NLO)
radiator functions, which is extracted from the Phokhara 9.1 event generator.
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Figure 7.9.: LO and NLO radiator functions from the Phokhara 9.1 generator.
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Here, the NLO radiator function is applied. The LO radiator function corrspond-
ing to Eq. 3.1.5 is shown as a cross check and to see the difference between LO
and NLO.

This analysis is based on the data taken on the ψ(3770) resonance in the years
2010 and 2011, which has an integrated luminosity of L = 2931.8 pb−1 [83, 84].

7.1.6. Cross Section of e+e− → π+π−2π0

According to Eq. 7.1.8, the four pion cross section σ(π+π−2π0) is calculated de-
pending on the c.m. energy from the ISR mass spectrum shown in Fig. 7.1. The
FSR and VP corrections are applied according to Fig. 7.6 and Fig. 7.8, respectively.
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Figure 7.10.: Cross section of e+e− → π+π−2π0 obtained with the tagged and un-
tagged ISR methods. Error bars show statistical errors only. The spec-
trum is not unfolded, so narrow structures appear smeared with the
detector resolution.

The e+e− → π+π−2π0γISR signal reconstruction efficiency, shown in Fig. 7.4
is applied. Figure 7.10 shows the cross sections obtained with the tagged and
untagged ISR methods separately. Both resulting cross sections agree well with
each other within uncertainties. The untagged method has low statistics at small
M(π+π−2π0), but large statistics at high masses. The error bars contain statistical
errors only. At small M(π+π−2π0) the tagged method has higher statistics than
the untagged one. In contrary, the untagged method is statistically superior to the
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tagged one at high M(π+π−2π0). Hence, the two methods are complementary in
terms of statistics.

For the final result, the error weighted mean of the tagged and untagged methods
is calculated. The combined cross section is shown in Fig. 7.11. Error bars show
statistical and systematic errors, which are determined in chapter 11. The values of
the combined cross section together with its statistical and systematic uncertainties
are also listed in Table B.1 of appendix B. The cross section values are not unfolded
for detector resolution. Narrow structures, like the J/ψ, appear smeared with the
mass resolution of the detector, not with their natural line width. The mass
resolution has been determined in section 4.4 and the width of the M(π+π−2π0)
intervals have been chosen accordingly larger. Except for the J/ψ resonance,
all structures are sufficiently broad to consider the smearing effects negligible.
Figure 7.11 shows good agreement within uncertainties between this measurement
and previous measurements of the e+e− → π+π−2π0 cross section [61, 62, 63, 64,
65, 66, 67, 68, 69, 70]. There is a hint at a structure around 2 GeV in data, which
does not exist in the Phokhara 9.1 signal MC. This structure is also observed
by the BaBar measurement [70].
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Figure 7.11.: Cross section calculated from the error weighted mean of the tagged and
untagged modes. Error bars include systematic errors. The spectrum
is not unfolded, so narrow structures appear smeared with the detector
resolution.
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7.2. Determination of the e+e− → ωπ0 Cross
Section

7.2.1. Mass Spectrum of e+e− → ωπ0

In order to obtain the e+e− → ωπ0 event yield in different intervals of M(ωπ0), fits
of the M(π+π−π0) distributions are performed. The M(π+π−π0) distributions are
split into 60 equidistant intervals of M(ωπ0). The width of each M(ωπ0) region is
60 MeV. The fit function consists of a double Gaussian to describe the peak of the
ω-resonance peak plus a third order polynomial to account for the background con-
tributions. The fits are performed in the region 710 < M(π+π−π0) < 860 GeV/c2.
These fits are shown in Fig. 7.12 and Fig. 7.13 for the tagged and untagged ISR
methods, respectively. Empty M(ωπ0) intervals are not shown. The number of
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Figure 7.12.: Fit of the ω-resonance in the M(π+π−π0) mass spectrum of the e+e− →
π+π−2π0γISR tagged ISR method.

the of e+e− → ωπ0 events per M(ωπ0) mass interval is obtained by integrating
the double Gaussians taken from the fit result in the entire fit region. Resulting
event yields for the tagged and untagged ISR methods are shown in Fig. 7.14.
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Figure 7.13.: Fit of the ω-resonance in the M(π+π−π0) mass spectrum of the e+e− →
π+π−2π0γISR untagged ISR method.
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Figure 7.14.: e+e− → ωπ0γISR mass spectrum obtained form the fits to the
M(π+π−π0) distributions before efficiency correction.
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7.2.2. Cross Section of e+e− → ωπ0

Applying Eq. 7.1.8, the e+e− → ωπ0 cross section is determined separately for
the tagged and untagged mass spectra in Fig. 7.14. The resulting cross sections
are shown in Fig. 7.15. The error weighted mean of the tagged and untagged ISR
methods is shown in Fig. 7.16 together with previous measurements of this cross
section [62, 63, 68, 100, 101, 102, 70].
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Figure 7.15.: Cross section of e+e− → ωπ0.
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Figure 7.16.: Combined cross section of e+e− → ωπ0.
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The cross section values of the combined result are listed in Table B.2 of ap-
pendix B. The result obtained in this thesis and the previous measurements agree
well within uncertainties. There is a hint at a structure around 2 GeV in data,
confirmed by the BaBar measurement [70], as also observed in the full e+e− →
π+π−2π0 cross section.

7.3. Determination of the e+e− → π+π−3π0 Cross
Section via ISR

The mass spectrum of the full e+e− → π+π−3π0γISR process has been shown
before in Fig. 5.6 of section 5.2. In this section special attention is paid to the
sub-processes e+e− → ω2π0γISR and e+e− → ηπ+π−γISR.

7.3.1. Mass Spectra of e+e− → ω2π0γISR and
e+e− → ηπ+π−γISR

The event selection of the the important sub-processes e+e− → ω2π0γISR and
e+e− → ηπ+π−γISR of e+e− → π+π−3π0γISR have been descrobed in section 4.3.2
and 4.3.3. Their invariant mass spectra are shown in Fig. 7.17. In order to ac-
count for background contributions to the e+e− → ω2π0γISR signal, the sideband
of the ω resonance in the M(π+π−π0) distribution is subtracted from the mass
spectrum. In the e+e− → ηπ+π−γISR spectrum, the nonresonant background con-
tribution is negligible. Similar to the full e+e− → π+π−3π0γISR spectrum, both
processes show good agreement between simulation and experiment in the mass
region M(π+π−3π0) < 3.1 GeV/c2. The agreement becomes worse above the J/ψ
resonance region at M(π+π−3π0) > 3.1 GeV/c2.
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Figure 7.17.: Mass spectra of M(ω2π0) (sideband subtracted) and M(ηπ+π−).
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7.3.2. Reconstruction Efficiency of e+e− → π+π−3π0γISR

With the MC simulation of the M(π+π−3π0) mass spectrum, shown in Fig. 5.6,
the e+e− → π+π−3π0γISR reconstruction efficiency εrec can be determined. It is
defined as εrec(M(π+π−3π0)) = Nrec(M(π+π−3π0))

Ngen(M(π+π−3π0))w3(Pπ0
1
, Pπ0

2
, Pπ0

3
), where

Ngen(M(π+π−3π0)) is the number of generated events as a function ofM(π+π−3π0),
Nrec(M(π+π−3π0)) is the number of events after the event selection and
w3(Pπ0

1
, Pπ0

2
, Pπ0

3
), contains the π0 efficiency correction. As the e+e− → π+π−3π0γISR

reconstruction efficiency depends on three momenta Pπ0
1,2,3

of π0 particles, the
weight function w3 is defined as

w3(Pπ0
1
, Pπ0

2
, Pπ0

3
) =

(
1 + ∆επ0

(
Pπ0

1

)) (
1 + ∆επ0

(
Pπ0

2

)) (
1 + ∆επ0

(
Pπ0

3

))
.

(7.3.1)
The reconstruction efficiency is obtained from the Lund-qq̄ MC simulation. The
distribution of the true M(π+π−3π0) mass spectrum produced by the MC gen-
erator is shown in Fig. 7.18. The peaks of the φ and the J/ψ resonances are
artifacts, which have to be attributed to incorrect settings of the generator. The
branching fraction for the decay of the φ resonance to the π+π−3π0 final state is
B(φ→ π+π−3π0) ≈ O (10−6), consequently, its contribution should be negligibly
small. By construction the J/ψ is not supposed to be included in the Lund-qq̄
MC simulation, but in the dedicated e+e− → γISRJ/ψ MC sample. However, the
number of reconstructed e+e− → π+π−3π0γISR events is zero in the mass region
below ≈ 1.2 GeV/c2. Consequently, the appearance of the φ resonance in the MC
sample does not affect the final result. The J/ψ events from the Lund-qq̄ MC are
excluded from the simulation by rejecting the events on the generator level which
have an invariant mass of |MJ/ψ −M(5π)true| < 100 keV/c2. The excluded region
is instead extrapolated from the average of right and left.
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Figure 7.18.: MC true distribution of the π+π−3π0 mass spectrum.
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Fig. 7.19 shows the final e+e− → π+π−3π0γISR reconstruction efficiency includ-
ing the J/ψ correction and the π0 efficiency correction.
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Figure 7.19.: Reconstruction efficiencies of the processes e+e− → π+π−3π0γISR,
e+e− → π+π−3π0γISR excluding the η resonance, e+e− → ηπ+π−γISR
and e+e− → ω2π0γISR.

The curves of the reconstruction efficiencies e+e− → π+π−3π0γISR and e+e− →
π+π−2π0γISR show a similar shape. The reconstruction efficiencies of the e+e− →
ω2π0γISR and e+e− → ηπ+π−γISR are also sown in Fig. 7.19. The event selection
procedures described in section 4.3.2 and 4.3.3 have been applied to the Lund-qq̄
MC simulation to obtain these efficiencies.

7.3.3. Cross Section of e+e− → π+π−3π0 and Sub-Processes
via ISR

According to Eq. 7.1.8, the cross section of the process e+e− → π+π−3π0 is cal-
culated depending on the c.m. energy. Additionally, the cross sections for the
sub-process e+e− → π+π−3π0 excluding the η resonance, e+e− → ηπ+π− and
e+e− → ω2π0 are calculated.

To derive the FSR corrections required in Eq. 7.1.8 the same procedure is ap-
plied, which has been used for the four pion final state in Eq. 7.1.4, based on the
Lund-qq̄ MC. The FSR correction is shown in Fig. 7.20. The same correction is
used for the sub-processes, since the shape of the curves are sufficiently similar.
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]2) [GeV/cπM(5
0.5 1 1.5 2 2.5 3 3.5 4

F
S

R
δ

1

1.02

1.04

1.06

1.08

  

Figure 7.20.: FSR correction for the e+e− → π+π−3π0γISR processes.

As pointed out in section 7.1.4, the correction for VP effects only depends on
the c.m. energy. Thus, the corrections according to Eq. 7.1.6 are applied here.
The result for the cross sections are shown in Fig. 7.21.
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Figure 7.21.: Cross section of e+e− → π+π−3π0. The spectrum is not unfolded, so
narrow structures appear smeared with the detector resolution.

The values of the e+e− → π+π−3π0 cross section, together with its statistical
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and systematic uncertainties are also listed in Table B.3 of appendix B. The cross
section values are not unfolded. Narrow structures, like the J/ψ resonance appear
smeared with the detector resolution, not with their natural line width. However,
the width of the M(π+π−3π0) intervals has been chose according to the mass
resolution, which has been determined in section 4.4. Hence, the smearing effect
is negligible outside the J/ψ mass region in the M(π+π−3π0) spectrum, since
all other structures are sufficiently broad. No previous result with reasonable
uncertainty is available to compare to.

7.4. Determination of the e+e− → π+π−3π0 Cross
Section without ISR

7.4.1. Reconstruction Efficiency of e+e− → π+π−3π0

The reconstruction efficiency of the non-ISR process e+e− → π+π−3π0 at the c.m.
energy of 3.773 GeV is defined as ε5π

rec = N5π
rec

N5π
gen
w3(Pπ0

1
, Pπ0

2
, Pπ0

3
). w3(Pπ0

1
, Pπ0

2
, Pπ0

3
) is

the weighting function from Eq. 7.3.1 to account for the data-MC differences of
the π0 reconstruction efficiency. The number N5π

gen is obtained from the e+e− →
π+π−3π0 MC cocktail via the MC true information from the MC generator. The
quantity N5π

rec denotes the number of reconstructed events in the signal simula-
tion. The MC cocktail contains the e+e− → π+π−3π0 contribution simulated with
HelPWA [89] as well as phase space simulations of the e+e− → ω2π0 and e+e− →
ηπ+π− contributions. The HelPWA simulation yields a cross section of 17.97 pb
of the e+e− → π+π−3π0 process excluding e+e− → ω2π0 and e+e− → ηπ+π−. The
relative contributions of the e+e− → ω2π0 and e+e− → ηπ+π− MC contributions
to the e+e− → π+π−3π0 MC cocktail are tuned to match the ω or η resonance
peaks of the e+e− → π+π−3π0 final state in data. Their relative contributions are
found to be 13.6% for e+e− → ω2π0 and 23.5% for e+e− → ηπ+π−, respectively.
Finally, an efficiency value of ε5π

rec = 8.6% is obtained for the full e+e− → π+π−3π0

process. The efficiencies of the sub-processes are 12.5% for e+e− → ω2π0 or 8.8%
for e+e− → ηπ+π−, respectively.

7.4.2. Cross Section of e+e− → π+π−3π0 at
√
s = 3.773 GeV

The cross section of the processes e+e− → π+π−3π0 at the c.m. energy of
3.773 GeV without an ISR photon is given by

σobs = Ndata −Nbgr

L εrec
, (7.4.1)
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where L is the luminosity of the data set, εrec is the event reconstruction effi-
ciency, Ndata is the event yield in data and Nbgr is the number of background
events. The signal and background yields Ndata and Nbgr are determined from
the e+e− → π+π−3π0 event selection, in data and background MC simulations,
respectively. The event selection procedure is described in section 4.3.4. Events of
the type e+e− → π+π−3π0γISR can contaminate the event selection, if the energy
of the ISR photon is below . 100 MeV. The ISR events are treated as background
contributions in the simulations and are subtracted from data, instead of using an
ISR correction factor δISR to correct for this effect. Since the e+e− → π+π−3π0γISR
process is tuned to data according to Fig. 5.7, its simulation is precise enough to
subtract this background contribution. The event numbers Ndata and Nbgr found
after applying the e+e− → π+π−3π0 event selection to data and MC are shown in
Table 7.1. The luminosity of the data set is Ldata = 2931.8 pb−1 and the efficiency
is calculated in the previous section. Applying Eq. 7.4.1, a cross section value
of σ(e+e− → π+π−3π0)(

√
s = 3.773 GeV) = (28.7± 0.5stat ± 2.0sys) pb is found.

The systematic uncertainties are discussed later in section 11.2.2. The cross sec-
tions of the sub-channels e+e− → ω2π0 and e+e− → ηπ+π− are calculated anal-
ogously. Their efficiencies are determined in the previous section. The branching
fractions B(ω → π+π−π0) = (89.2± 0.7) % and B(η → 3π0) = (32.68± 0.23) %
from [31] are used to calculate the total cross sections of the sub-channels. The re-
sults are σ(e+e− → ω2π0)(3.773 GeV) = (2.6± 0.1stat ± 0.2sys) pb] and σ(e+e− →
ηπ+π−)(3.773 GeV) = (6.8± 0.3stat ± 0.5sys) pb, as shown in Table 7.1. The to-
tal contributions of e+e− → ω2π0γISR and e+e− → ηπ+π−γISR in data are
(19.6± 0.49) % and (2.9± 0.18) %, respectively.

Table 7.1.: Numbers for the e+e− → π+π−3π0 cross section at 3.773 GeV.
quantity final state

π+π−3π0 ωπ0π0 ηπ+π−

Ndata 11683± 108 1042± 32 587± 24
Nbgr 4594± 67 184± 32 16± 4
ε5π
rec 8.6% 12.5% 8.8%

σ(e+e− → f) 28.7± 0.5stat ± 2.0sys 2.6± 0.1stat ± 0.2sys 6.8± 0.3stat ± 0.5sys
[pb]



Chapter 8.

Intermediate Resonances

The processes e+e− → π+π−2π0 and e+e− → π+π−3π0 contain a rich spectrum
of intermediate structures, some of which are narrow, like the ω, η and f0(980)
resonances. Many others, such as the ρ, σ, and a1(1270) resonances are broad.
The contribution of these intermediate states are investigated in this chapter. It is
of particular interest, whether or whether not intermediate structures are described
correctly by the simulations used to determine the detection efficiencies. A good
agreement between data and the simulations is needed to obtain a valid and precise
result of the cross section measurements.

135
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8.1. Intermediate Resonances in
e+e− → π+π−2π0γISR

Besides the mass spectrum of the hadronic final state of the e+e− → π+π−2π0γISR
process, also the mass spectra of the intermediate systems M(π+π−), M(π0π0),
M(π±π0), M(π+π−π0), M(π±π0π0), and M(π0γISR) are investigated. These dis-
tributions are shown in five regions ofM(π+π−2π0) as indicated in Fig. 8.1-Fig. 8.5.
For each of these intermediate mass spectra the differential non-radiative cross
sections dσ/dM are calculated from the measurement by subtracting the back-
ground, correct for the detector efficiency and dividing out the radiator function.
Along with the data points, the distributions extracted from the Phokhara 9.1
event generator are shown as solid, red curves. The f0 contribution in Fig. 8.1 is
underestimated in the M(π+π−2π0) regions between 1.4 GeV/c2 and 2.3 GeV/c2.
Above 1.8 GeV/c2 the f2(1270) signal strength is overestimated by the simula-
tion. The ρ(770) and ω(782) resonances are obvious in the M(π+π−), M(π±π0),
and M(π+π−π0) distributions shown in Fig. 8.2, Fig. 8.3, and Fig. 8.4, respec-
tively. The Phokhara 9.1 simulation is in good agreement with data in the
M(π+π−) distributions shown in Fig. 8.2. Figure 8.3 shows that the M(π±π0)
distributions are described perfectly by the Phokhara 9.1 event generator. In
the M(π+π−π0) distributions, as shown in Fig. 8.4, the ω resonance contribution
is underestimated. The overall data-MC agreement becomes worse in the region
M(π+π−2π0) > 2.3 GeV/c2.
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Figure 8.1.: π0π0 intermediate structures.
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Figure 8.2.: π+π− intermediate structures.
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Figure 8.3.: π±π0 intermediate structures.
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Figure 8.4.: π+π−π0 intermediate structures.
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Figure 8.5.: π±π0π0 intermediate structures.
There is a reasonable agreement between experiment and the simulation of

the shapes of the M(π±π0π0) distributions, shown in Fig. 8.5. The informa-
tion presented in this section can be used to improve the performance of the
e+e− → π+π−2π0 channel of future event generators.
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8.2. Intermediate Resonances in e+e− → π+π−3π0

The mass spectra of different subsystems of the final state in e+e− → π+π−3π0

are investigated in order to identify and study intermediate states. The respective
distributions before efficiency correction are shown in Fig. 8.6. The MC histograms
are stacked. The ρ, ω, η and J/ψ resonance peaks are clearly visible in the dis-
tributions, which show good agreement between data and the simulations. The
good quality of the simulation provides a reliable reconstruction efficiency for the
calculation of the cross section.
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Figure 8.6.: Intermediate structures of the process e+e− → π+π−3π0.

8.3. Intermediate Resonances in
e+e− → π+π−3π0γISR

The mass spectra of different subsystems of the final state in e+e− → π+π−3π0γISR
are investigated in order to identify and study intermediate states. The respective
distributions before efficiency correction are shown in Fig. 8.7. The MC histograms
are stacked. If required by combinatorics, more than one entry per event is dis-
played. These distributions show good agreement between data and the Lund-qq̄
MC simulation. The resonances ρ, ω, η and J/ψ are obviously visible in the dis-
tributions. The good quality of the simulation provides a reliable reconstruction
efficiency for the calculation of the cross section.
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Figure 8.7.: Intermediate structures of the process e+e− → π+π−3π0γISR.



Chapter 9.

Contribution to aµ

This chapter contains the calculation of the contributions of the e+e− → π+π−2π0

and e+e− → π+π−3π0 cross section measurements obtained within this thesis to the
HVP contribution to the anomalous magnetic moment of the muon, aπ+π−2π0,LO

µ ,
and, aπ+π−3π0,LO

µ . For comparison, aπ+π−2π0,LO
µ is determined separately for the

tagged and untagged ISR methods as well as for their error weighted mean. The
final result is compared to calculations of aπ+π−2π0,LO

µ based on the measurement
of the BaBar collaboration. In case of the e+e− → π+π−3π0 process, also the
contributions to aµ of the sub-processes e+e− → π+π−3π0 excluding the η resonance
and e+e− → ηπ+π− are computed.
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The dispersion integral introduced in Eq. 1.4.5 in section 1.4.2 can be defined
for a certain final state f = π+π−2π0 , π+π−3π0 as

af,LO
µ = 1

4π3

(1.8 GeV)2∫
0

dsK(s)σbare
f (s) . (9.0.1)

In Eq. 9.0.1 the bare cross section σbare is needed as pointed out in Ref. [104].
However, the cross section measured in this work is the Born cross section as
defined in Eq. 7.1.8 of section 7.1.5. The cross section σbare

π+π−2π0(s) reads as
σbare
π+π−2π0(s) = σBorn

π+π−2π0δFSR, where δFSR is the theoretical Schwinger correction
of Eq. 7.1.5, to reintroduce FSR effects.

The cross sections measured in this thesis are evaluated in the dispersion integral
only for c.m. energies from 920 MeV up to 1.8 GeV. Perturbative QCD and R-scan
results are used to determine the value of af,LO

µ for higher c.m. energies. This was
pointed out in section 1.5.

The integral requires the cross sections as a function of s, not of M(π+π−2π0) =√
s as given in Fig.7.11. Therefore, the cross section and all involved corrections

are recalculated to match this requirement. The corresponding plots are presented
in the following subsections.

A correlation of 100% is assumed between the intervals in the cross section
histograms and the systematic uncertainties of af,LO

µ . Hence, the systematic uncer-
tainties are not calculated using the Gaussian error propagation, but as the linear
sum of the errors from all individual M(π+π−2π0) or M(π+π−3π0) intervals.

9.1. Contribution of e+e− → π+π−2π0 to aµ
Figure 9.1 shows the fully corrected ”bare“cross section of e+e− → π+π−2π0 in
intervals of the squared c.m. energy s, as required for the calculation of aπ+π−2π0,LO

µ .
The yellow dashed line marks the upper integration border at s = (1.8 GeV)2 to
calculate aπ+π−2π0,LO

µ . However, this measurement starts only from c.m. energies
of 920 MeV. The threshold of the e+e− → π+π−2π0 cross section is below that.
Since the Kernel function in the integral enhances the contribution at lower masses,
a non-negligible contribution to aπ

+π−2π0,LO
µ could be missing in this calculation.

Extrapolating from the first valid bin in Fig. 9.1, the differential cross section of
e+e− → π+π−2π0 is estimated to be smaller than 1 nb/120 MeV in the interval
from 800 MeV to 920 MeV. Consequently, the cross section below 800 MeV is
estimated to be negligibly small. The contribution to aπ+π−2π0,LO

µ of the omitted
part of the differential cross section is evaluated as aπ+π−2π0,LO

µ . 0.08·10−10, which
corresponds to an additional uncertainty of 0.43%. It is added in quadrature to
the systematic uncertainty of the cross section measurement.
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Figure 9.1.: Bare cross section of e+e− → π+π−2π0 in intervals of s. The FSR correc-
tion is included.

Table 9.1 summarizes the resulting values of aπ+π−2π0,LO
µ from the tagged and

untagged analyses, as well as the combined results. Each result is presented with
statistical and systematic uncertainties. The value from the recent BABAR mea-
surement is given for comparison. Within the uncertainties the result agrees with
the BaBar result [70] and improves the precision of aπ+π−2π0,LO

µ . The combined
result of this thesis is closer to the result of the tagged method even though, the
statistical uncertainty of the cross section is generally smaller for the untagged
method. The reason for this is found in the behavior of the Kernel function in
the integral, which favors regions of low c.m. energies. Especially, in the region of
s < 2 GeV2, the smaller statistic uncertainty of the tagged method dominates the
error weighted mean of the combined result.

Table 9.1.: Results for aπ+π−2π0,LO
µ , the first error is of statistical nature, the second

one is the systematic uncertainty.
aπ

+π−2π0,LO
µ /10−10

tagged 18.59± 0.32± 0.57
untagged 19.36± 0.97± 0.57
combined 18.63± 0.27± 0.57
BaBar [70] 17.9± 0.1± 0.6
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9.2. Contribution of e+e− → π+π−3π0 to aµ
The fully corrected ”bare“cross sections of the three processes e+e− → π+π−3π0,
e+e− → π+π−3π0 excluding the η resonance and e+e− → ηπ+π− are shown in
Fig. 9.2 in intervals of the squared c.m. energy s. These ”bare“cross sections
are obtained analogously to the corresponding cross sections shown in Fig. 7.21.
The Schwinger FSR and VP corrections are applied according to Eq. 7.1.5 and
Eq. 7.1.6, respectively.
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Figure 9.2.: π+π−3π0 bare cross section in bins of s; VP and FSR corrections are
included.

The contribution of the π+π−3π0 final state, calculated usig Eq. 9.0.1, is shown
in Table 9.2. The contributions from e+e− → ηπ+π− and of e+e− → π+π−3π0

excluding the η resonance are calculated in addition, in order to compare them
to the theoretical predictions given in Ref. [42]. The branching fraction B(η →
3π0) = (32.68± 0.23) % is used in the calculation of aηπ+π−,LO

µ .

Table 9.2.: Results for aπ+π−3π0,LO
µ .

Mode This Work Theoretical Estimations [42]
aπ

+π−3π0,LO
µ 0.65± 0.11stat ± 0.09sys 0.74± 0.07stat ± 0.09sys

aπ
+π−3π0,no η,LO
µ 0.32± 0.07stat ± 0.04sys 0.36± 0.02stat ± 0.03sys
aηπ

+π−,LO
µ 1.08± 0.26stat ± 0.15sys 1.15± 0.06stat ± 0.08sys

These contributions to aV P,LOµ have never been measured directly before. The
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theoretical estimation of these contributions are partially based on isospin relations
between the processes e+e− → π+π−3π0 and e+e− → π+π−π+π−π0. The results of
the BESIII measurement presented here are in agreement with the theoretical es-
timations within uncertainties. The contribution of the process e+e− → π+π−3π0

and its sub-processes to aV P,LOµ is determined experimentally for the first time in
this thesis. Several channels needed in the dispersion approach for aV P,LOµ have
not been measured, but their contributions have been estimated using isospin re-
lations. For this reason, this measurement provides important information about
the validity of the isospin assumptions in the theoretical prediction of aV P,LOµ , even
though the aπ+π−3π0,LO

µ contribution is smaller than the one of aπ+π−2π0,LO
µ .





Chapter 10.

Branching Fractions

The branching fractions of the resonances J/ψ and ψ(3686) to the final states
π+π−2π0, π+π−3π0 and their sub-channels can be calculated from the cross section
measurements. The result serves as a cross check to the analysis.
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10.1. Calculation of the Branching Fractions
The analyses of the processes e+e− → π+π−2π0γISR and e+e− → π+π−3π0γISR
also cover the radiative return to the narrow resonances J/ψ and ψ(3686). Thus,
their branching fractions to the corresponding final states, including intermediate
resonances can be studied. Here, special attention is paid to the branching fractions
J/ψ → π+π−2π0, J/ψ → ωπ0, J/ψ → π+π−3π0, J/ψ → ωπ0π0 and ψ(3686) →
π+π−3π0. The decay modes ψ(3686) → ωπ0π0 and ψ(3686) → ηπ+π− are not
considered, because the MC simulations are not reliable for these sub-channels
in the mass region above M(π+π−3π0) > 3.5 GeV/c2. This is indicated by the
bad agreement between data and the simulations in the region M(π+π−3π0) >
3.5 GeV/c2 in the mass spectra shown in Fig. 7.17.

In order to obtain the branching fractions B(R→ f) a Gaussian distribution for
the resonance peak and a third order polynomial for the non-resonant background
is fitted to the cross section spectra shown in Fig. 7.10, Fig. 7.21 and Fig. 10.1,
respectively. These spectra are not unfolded and the apparent resonance widths
are dominated by the detector resolution. However, the integral of the fitted
Gaussians are equal to the integral from zero to infinity of the Breit-Wigner curve
of the resonances

σint
R→f =

∫
dmσ(m2)R→f = B(R→ f)6π2ΓRee

M2
R

C (10.1.1)

where σ(m2)R→f = 12πΓRΓReeB(R→f)
(M2

R−m2)2
+M2

RΓ2
R

is the Breit-Wigner line shape,

R = J/ψ , ψ(3686) denotes the resonances, f = π+π−2π0 , ωπ0 , π+π−3π0 , ωπ0π0

denotes the considered final states, σint
R→f is the integrated cross section from the

fit result, ΓRee is the electronic width of the resonance [31], M2
R is the mass of

the resonance [31] and C = (~c)2 = 389100 (GeV)2 nb is a conversion constant.
The right hand side of Eq. 10.1.1 is the result of the integral of the Breit-Wigner
function. Solving this for the branching fraction gives

B(R→ f) =
σint
R→fM

2
R

6π2ΓReeC
. (10.1.2)

For the final states ωπ0 and ω2π0 the branching fraction B(ω → π+π−π0) =
(89.2± 0.7) % [31] has to be included in the denominator of Eq. 10.1.2 and B(η →
3π0) = (32.68± 0.23) % for the final state ηπ+π−.

The fits performed for the e+e− → π+π−2π0γISR channel and its ωπ0γISR
sub-process are shown in Fig. 10.1. Figure 10.2 shows the fits of the e+e− →
π+π−3π0γISR process and its sub-channels.
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Figure 10.1.: Fits to the cross sections of e+e− → π+π−2π0 and e+e− → ωπ0 in the
J/ψ region obtained with the untagged ISR analysis.
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Figure 10.2.: Fits to the cross sections of e+e− → π+π−3π0 and its sub-channels in
the J/ψ region.

The results for the integrated cross sections from the fits, their χ2/ndf , and the
results for the branching fractions are listed in Table 10.1.

Table 10.1.: Results for the branching fractions of J/ψ →
π+π−2π0 , π+π−3π0 , ωπ0π0 and ηπ+π−. The last column shows
the comparison to previous results listed in the PDG [31]

final state χ2/ndf σint
R→f [ nb GeV] B(J/ψ → f)/10−3 PDG /10−3

π+π−2π0 1.14 0.086± 0.006 6.46± 0.43stat ± 0.27sys -
ωπ0 0.27 0.007± 0.002 0.52± 0.12stat ± 0.03sys 0.45± 0.05

π+π−3π0 1.55 0.347± 0.012 26.0± 0.9stat ± 3.4sys -
ωπ0π0 1.11 0.057± 0.007 4.8± 0.6stat ± 0.8sys 3.4± 0.8
ηπ+π− 0.66 0.0027± 0.0010 0.61± 0.23stat ± 0.08sys 0.40± 0.17

The branching fraction ψ(3686) → π+π−3π0 is also calculated using Eq. 10.1.2
and fitting the ψ(3686)-resonance peak with the same function as used for the
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J/ψ-resonance. There is a potential background contamination from ψ(3686) →
J/ψ3π0, with J/ψ → µ+µ− and the muons being misidentified as pions. From the
M(π+π−) distribution in Fig 8.7, it can be concluded that this background is negli-
gible, since events with an invariant mass close to the mass of the J/ψ-resonance are
not observed. Figure 10.3 shows the fit result of the ψ(3686)-resonance peak in the
full e+e− → π+π−3π0γISR channel. For the fit quality χ2/ndf = 0.38 is obtained.
The fit yields an integrated cross section of σint

ψ(3686)→π+π−3π0 = 0.004±0.001 nb GeV
for the ψ(3686)-resonance. The branching fraction is found to be

B(ψ(3686)→ π+π−3π0) = (0.9± 0.2stat ± 0.1sys) · 10−3 . (10.1.3)
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Figure 10.3.: Fit to the cross sections of e+e− → π+π−3π0 in the ψ(3686) region.

The ratio of the J/ψ and ψ(3686) branching fractions to π+π−3π0 is found to
be

B(ψ(3686)→ π+π−3π0)
B(J/ψ → π+π−3π0) = 0.034± 0.005 ,

which does not fulfill the 12% rule [103], which is observed for the ratios of other
J/ψ and ψ(3686) branching fractions.



Chapter 11.

Systematic Uncertainty Estimations

Unlike statistical uncertainties, the systematic uncertainties can shift an entire re-
sult towards wrong values. All possible sources of systematic uncertainties of the
e+e− → π+π−2π0γISR cross section measurement are explained in this chapter
and their impact is estimated. Possible shifts can be tested either by varying all
selection criteria or by applying alternative methods, where ever possible, to see
how much the result varies. The most important sources for systematic uncer-
tainties are the remaining error of the π0 reconstruction efficiency correction and
the subtraction of remaining background contributions from MC simulations. The
systematic uncertainties for e+e− → ωπ0γISR, the corresponding fits of the ω res-
onance contributions, as well as the additional uncertainties for the sub-processes
of e+e− → π+π−3π0γISR and the branching fractions are discussed in this chapter.
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The following uncertainties are taken from external sources. Their contribution
to the final result is independent of the conditions applied in the analysis presented
in this thesis.

Luminosity For the systematic uncertainty due to the scaling to the luminosity of
data, the result from Ref. [84] is taken, which is 0.5% for the ψ(3770) data
set. It is determined from the measurement of large angle Bhabha scattering
events.

Tracking Reconstruction Efficiency The systematic uncertainty stemming from
tracking efficiency of charged tracks has been determined in Ref. [105] using
the control channel e+e− → π+π−π+π−γISR. The uncertainty was found to
be 0.3% per track. For the two charged tracks in this analysis, the linear
sum is taken to be conservative. Hence, the total systematic uncertainty due
to tracking efficiency is 0.6%.

ISR Photon Reconstruction Efficiency The uncertainty of the photon reconstruc-
tion efficiency has been determined in Ref. [105]. The control channel e+e− →
π+π−2π0 at a c.m. energy of 3.773 GeV has been used. An uncertainty of
0.3% has been found, which is applied for the ISR photon in the tagged
mode.

VP Correction The estimated uncertainty of the VP correction from Ref. [99] is
0.1%.

FSR Correction The emission of FSR photons from the neutral pions can be ne-
glected compared to the FSR emission of the charged pions. The FSR effects
of the final states π+π−3π0γISR and the π+π−2π0γISR are thus comparable to
the final state π+π−. Therefore, the same uncertainty for the FSR correction
as given in Ref. [84] is assumed, which is 0.2%.

Radiator Function The Phokhara 9.1 generator produces ISR events with a
precision of 0.5% [85].

11.1. Signal Efficiencies

11.1.1. π0 Reconstruction
The differences between data and simulation in the π0 reconstruction is determined
in chapter 6. The uncertainties of the fit parameters are given in Eq. 6.3.1 and
6.3.2. They correspond to the statistical uncertainty of the π0 efficiency correction.
The systematic uncertainty of the e+e− → J/ψπ0π0 method is 0.68% and the one of
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the e+e− → ωπ0
tag method is 1.05%. The larger one of these two values will be used

as the systematic uncertainty of the combined π0 efficiency, which is ∆s = 1.05%.
In order to determine the total uncertainty of the π0 efficiency correction, the slope
of the π0 correction function Eq. 6.3.4 is shifted by its statistical uncertainty and
the offset by the squared sum of its statistical and systematic uncertainties. The
function obtained ∆ε′π0(p) reads

∆ε′π0(p) = επ0(p)±
√
p2∆a2 + ∆b2 + 2pw∆a∆b+ ∆s2 (11.1.1)

=
(

0.06− 2.41 GeV−1c· p±
√

0.76 GeV−2c2· p2 + 1.15 + 0.39 GeV−1c· p
)

% ,

where w = 0.94 is the correlation between the parameters a and b of the linear fit
function. The corresponding correlation matrix has only this one free parameter
w. Figure 11.1 shows the tagged e+e− → π+π−2π0γISR reconstruction efficiency
without π0 efficiency correction, with normal π0 correction and with the corrections
according to Eq. 11.1.1.

]2) [GeV/c0π2-π+πM(
0.5 1 1.5 2 2.5 3 3.5 4

 [%
]

ε

0

0.5

1

1.5

2

 

 correction0π

 correction0πno 

tagged

 

]2) [GeV/c0π2-π+πM(
0.5 1 1.5 2 2.5 3 3.5 4

 [%
]

ε

0

5

10

 

 correction0π

 correction0πno 

untagged

 

Figure 11.1.: Tagged e+e− → π+π−2π0γISR reconstruction efficiency without π0 effi-
ciency correction (blue), with π0 efficiency correction (black), and with
the uncertainty shifted one from Eq. 11.1.1 (red).

The relative difference ∆ε′
π0

∆επ0
− 1 between the nominal π0 efficiency correction

function ∆επ0 and the uncertainty shifted one ∆ε′π0 can be seen in Fig. 11.1 as the
difference between the black and the red dots. The maximum deviation observed
over the full mass range is considered as systematic uncertainty. The result is
2.6% and 2.5% for the tagged and the untagged ISR methods, respectively.

11.1.2. Intermediate States
The e+e− → π+π−2π0γISR reconstruction efficiency may depend on intermediate
structures. If the number of events containing intermediate structures is different
in data compared to the simulations, the e+e− → π+π−2π0γISR reconstruction
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efficiency may be determined wrongly In order to estimate the size of this effect
and to obtain the corresponding systematic uncertainty, the two sub-processes
e+e− → ωπ0γISR and e+e− → ρ+ρ−γISR are considered. The event selection of
the e+e− → ωπ0γISR sub-process is explained in detail in section 4.1. In order to
select e+e− → ρ+ρ−γISR events, the best combinations of π±π0

1,2 for each e+e− →
π+π−2π0γISR event are determined, such that non of the π0 is used twice. Events
are rejected, if |M(π±π0)−mρ± | > 150 MeV holds. The correlation plot of the
two π±π0 combinations is shown in Fig. 11.2 for data and signal simulation. The
reconstruction efficiencies εωπ0 , ερ+ρ− and εother of the corresponding sub-processes
and the remaining e+e− → π+π−2π0γISR events need to be determined separately.
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Figure 11.2.: ρ± window in data and signal MC for the ρ+ρ−γISR selection.
Figure 11.3 shows the reconstruction efficiencies of the individual processes as

well as the full e+e− → π+π−2π0γISR final state. In the region M(π+π−2π0) &
2 GeV, the reconstruction efficiency εωπ0 differs significantly from the full e+e− →
π+π−2π0γISR efficiency. It is found to be lower by approximately 25%. However,
the fraction of e+e− → ωπ0γISR events is small compared to the total number of
e+e− → π+π−2π0γISR events in that M(π+π−2π0) region. The e+e− → ρ+ρ−γISR
efficiency ερ+ρ− does not reveal any significant deviation from the full e+e− →
π+π−2π0γISR efficiency. The full e+e− → π+π−2π0γISR reconstruction efficiency
εMC obtained from Phokhara 9.1 can be decomposed into a e+e− → ωπ0γISR
part, a e+e− → ρ+ρ−γISR part and a remaining part according to

εMC = f1εωπ0 + f2ερ+ρ− + (1− f1 − f2)εother ,
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where f1 is the fraction of e+e− → ωπ0γISR events and f2 is the fraction of e+e− →
ρ+ρ−γISR events in the full amount of e+e− → π+π−2π0γISR process. The values
of the individual fractions are taken from the Phokhara 9.1 event generator.
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Figure 11.3.: The e+e− → π+π−2π0γISR reconstruction efficiency comparison for
e+e− → ωπ0γISR, ρ+ρ−γISR and other e+e− → π+π−2π0γISR events.

The equivalent fractions f ′1,2 are calculated for data and define the corrected
efficiency εdata according to

εdata = f ′1εωπ0 + f ′2ερ+ρ− + (1− f ′1 − f ′2)εother .

The distributions of f ′1,2 for the tagged and untagged methods are shown in
Fig. 11.4.
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Figure 11.4.: Fractions of the ωπ0γISR, ρ+ρ−γISR and other 4πγISR contributions in
the full π+π−2π0γISR final state.

The corrected efficiency εdata and the nominal efficiency taken directly from the
Phokhara 9.1 event generator εMC are shown for comparison in Fig. 11.5.
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Figure 11.5.: Comparison between the efficiency obtained by Phokhara 9.1 only and
the one corrected for the ωπ0 and ρ+ρ− contributions according to data.

The largest relative deviation ∆ε = (εMC − εdata) /εdata between efficiencies ob-
tained with the fractions from data or MC is taken as systematic uncertainty. The
result is 0.6% for tagged ISR method and 0.6% for untagged one. The nominal
efficiency εMC is used to do calculate the cross section.

11.1.3. Signal Selection
The systematic uncertainties due to the event selection criteria are determined, ex-
cept for the χ2 selection. The strategy is to vary individual selection requirements.
The respective range of variation corresponds to three to five three to five times
the resolution of the observable the condition is based on. The relative difference
δ(N) = N

N0
− 1 of the number N of events in the efficiency corrected M(4pi) mass

spectra, obtained with the modified event selection, to the number of events N0
obtained with the nominal event selection, is calculated for every variation of se-
lection criteria. The largest deviation δ(N) to zero for each selection requirement
is taken as its systematic uncertainty. This method is applied for the following
selection criteria:

• Kaon Veto (tagged and untagged)

• Vertex Fit of the two charged tracks (untagged)

• Fake ISR photons mγγISR (tagged)

• Minimal angle between the ISR photon and the neutral pions cosα (tagged)

• Polar angle of the ISR photon cos θISR (untagged)
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Their corresponding variation ranges and systematic uncertainties are listed in
Table 11.6 of section 11.3.

11.2. Background Subtraction
The main background contributions were identified to stem from e+e− → π+π−3π0γISR
and e+e− → π+π−3π0. Due to a lack of existing measurements of both processes,
the cross sections have been determined additionally as a part of this work. The de-
tailed studies of their systematic uncertainties are discussed in the following. Fur-
thermore, the systematic uncertainty introduced by subtracting these background
contributions from the M(π+π−2π0) spectrum is discussed. It is directly related
to the systematic uncertainties of the measurement of e+e− → π+π−3π0γISR and
e+e− → π+π−3π0.

11.2.1. Systematic Uncertainty Estimation for
e+e− → π+π−3π0γISR

The uncertainty due to the pi0 efficiency correction can be calculated from Eq. 11.1.1,
which describes the contribution of a single π0 in the final state. The relative dif-
ference ∆ε′

π0
∆επ0

− 1 between the nominal π0 efficiency correction function ∆επ0 and
the function ∆ε′π0 shifted by the uncertainty of the π0 reconstruction is shown in
Fig. 11.6.

]2) [GeV/cπM(5
0.5 1 1.5 2 2.5 3 3.5 4

 -
 1

 [%
]

0 πε∆'/
0 πε∆

6−

4−

2−

0

2
 Correction0πUncertainty of 

max: 3.58 %
untagged

 Correction0πUncertainty of 

Figure 11.6.: Comparison between the normal π0 efficiency correction and the uncer-
tainty shifted one for the e+e− → π+π−3π0 final state.
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For the total systematic uncertainty of the π0 reconstruction efficiency correction
the maximum value obtained in Fig. 11.6 is taken, which is 3.58% for the e+e− →
π+π−3π0γISR process, where the untagged ISR method is used.

The e+e− → π+π−3π0γISR reconstruction efficiency may depend on intermediate
structures. If the fraction of these intermediate structures in the number of all
e+e− → π+π−3π0γISR events differs between data and the MC simulations, the
full π+π−3π0γISR reconstruction efficiency can be wrong. In order to estimate
the effect quantitatively, the two sub-processes e+e− → ω2π0γISR and e+e− →
ηπ+π−γISR are used. Since the ω and the η resonances are the most narrow
intermediate structures in the M(π+π−3π0) mass spectrum, they can be easily
identified. The reconstruction efficiencies εω of e+e− → ω2π0γISR events, εη of
e+e− → ηπ+π−γISR events, and the one of the remaining non-ω and non-η events
εrest are determined. Figure 11.7 shows the reconstruction efficiencies of these kind
of events along with the full e+e− → π+π−3π0γISR reconstruction efficiency.
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Figure 11.7.: Reconstruction efficiency comparison between e+e− → ω2π0γISR,
e+e− → ηπ+π−γISR, non-ω,η and the full e+e− → π+π−3π0γISR.

In the region M(π+π−3π0) & 2 GeV, the reconstruction efficiency εη of the
e+e− → ηπ+π−γISR events differs significantly from the full e+e− → π+π−3π0γISR
efficiency. However, the fraction of these events among the total number of e+e− →
π+π−3π0γISR events is small. The e+e− → π+π−3π0γISR reconstruction efficiency
εMC obtained from Lund-qq̄ can be decomposed into a e+e− → ω2π0γISR part, an
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e+e− → ηπ+π−γISR part and a non-ω,η part according to

εMC = f1εω + f2εη + (1− f1 − f2)εrest ,

where f1 is the fraction of e+e− → ω2π0γISR among the full e+e− → π+π−3π0γISR
event sample and f2 is the according fraction for e+e− → ηπ+π−γISR events. The
same fractions f ′1 and f ′2 are calculated for data and the corrected efficiency εdata
according to

εdata = f ′1εω + f ′2εη + (1− f ′1 − f ′2)εrest .

The distributions of f ′1 and f ′2 are shown in the left panel of Fig. 11.8. The total
contributions of e+e− → ω2π0γISR and e+e− → ηπ+π−γISR in data are found to
be (19.6± 0.49) % and (2.9± 0.18) %, respectively. The corrected efficiency εdata
and the nominal efficiency from Lund-qq̄ are shown in the right panel of Fig. 11.8.
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Figure 11.8.: Fractions of the e+e− → ω2π0γISR, e+e− → ηπ+π−γISR and non-ω,η
contributions in the full e+e− → π+π−3π0γISR final state (left). Com-
parison between the efficiency obtained by Lund-qq̄ only and the one
corrected for the ω and η contributions according to data (right).

The largest relative deviation ∆ε = (εMC − εdata) /εdata between efficiencies ob-
tained with the fractions from data and MC is found to be 5.5%, which is taken
as systematic uncertainty. The nominal efficiency εMC is used to do calculate the
cross section.

Another uncertainty to be determined is due to the subtraction of background
contributions taken directly from the Lund-qq̄ MC simulation. An accuracy of
20% is assumed for the channels listed in Table 5.1, since they are not well known.
The scaling of the background contribution is changed by ±20% and the rescaled
background MC is subtracted from data. This results in different event yields
in intervals of M(π+π−3π0). Figure 11.9 shows the relative deviation between
the nominal background contribution and the background contributions scaled by
±20%. As expected, the deviations of the results with reduced and increased
background contributions are symmetric with respect to zero. The largest relative
difference is taken as the systematic uncertainty due to background subtraction.
A systematic uncertainty of 10.55% is found according to Fig. 11.9.
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Figure 11.9.: Systematic uncertainty from the background subtraction for the
π+π−3π0 final state.

The systematic uncertainties of the event selection criteria are also determined
with the same strategy used in the four pion analysis. The contributions of the
following selection criteria are studied:

• Kinematic fit χ2
4C

• Kaon Veto

• Vertex Fit of the two charged tracks

• Polar angle of the ISR photon cos θISR

Their corresponding systematic uncertainties are listed in the summary Table 11.1.

The various sources of systematic uncertainty are assumed to be uncorrelated.
Hence, their quadratic sum is taken as total systematic uncertainty. The total sys-
tematic uncertainty and the individual contributions are summarized in Table 11.1.
The total systematic uncertainty is 13.25%.
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Table 11.1.: Summary of systematic uncertainties of the π+π−3π0γISR final state.
Source Variation Untagged [%]

Luminosity - 0.50
Tracking - 0.60

radiator function - 0.50
VP correction - 0.05
FSR correction - 0.20

π0 eff. - 3.58
rec. eff. - 5.50

Bgr. Subrt. ±20% Bgr. 10.55
χ2 cut 26 < χ2

4C < 35 1.09
Vertex cut 1.75 < rvertex < 2.25 0.11
Kaon Veto on/off 2.52
ISR Angle 0.989 < cos θ < 0.991 3.57

Total 13.81

11.2.2. Systematic Uncertainty Estimation for
e+e− → π+π−3π0

The estimation of systematic uncertainties for the cross section measurement of
e+e− → π+π−3π0 is performed analogously to the procedure described in sec-
tion 11.2.1. The e+e− → π+π−3π0 event yield with the π0 efficiency correction
function shifted by its uncertainty is calculated for each π0 according to Eq. 11.1.1.
The relative difference to the event yield determined with the normal π0 correction
is 1.7%.

A systematic uncertainty of the efficiency due to possibly wrong contributions of
narrow intermediate structures is not determined, since the ω and η intermediate
resonances were tuned to match data in the e+e− → π+π−3π0 MC cocktail.

The uncertainty due to background subtraction is determined. 96% of the back-
ground contributions come from the process e+e− → π+π−3π0γISR, where the
total uncertainty has been determined as 13.25% in section 11.2.1. The relative
difference between the event yield with normal scaling of the background contri-
bution and the one rescaled considering the uncertainty of the π+π−3π0γISR final
state is taken as systematic uncertainty of the background e+e− → π+π−3π0γISR
subtraction. A value of 6.8% is found.

The same procedure is applied for other background contributions, where an
uncertainty of 20% is assumed. The corresponding uncertainty is found to be
0.4%.

The systematic uncertainties of the event selection criteria are also determined
with the same strategy used for the four pion analysis. The selection criteria of
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the kinematic fit and the kaon veto are studied. Their systematic uncertainties
are listed in the summary Table 11.2.

The individual sources of systematic uncertainty are assumed to be uncorrelated.
Hence, their quadratic sum is taken as total systematic uncertainty for the process
e+e− → π+π−3π0. All the systematic uncertainties are summarized in Tab. 11.2.
The total systematic uncertainty is found to be 7.1%.

Table 11.2.: Summary of systematic uncertainties of the π+π−3π0 final state.
Source Variation Untagged [%]

Luminosity - 0.5
Tracking - 0.6
π0 Eff. - 1.7

Bgr. Subrt. π+π−3π0γISR ±12% Bgr. 6.8
Bgr. Subrt. other ±20% Bgr. 0.4

χ2 cut 45 < χ2
7C < 55 0.8

Kaon Veto on/off 1.0
Total 7.1

11.2.3. Subtraction of the Dominating Backgrounds
In the following, the M(π+π−2π0) spectrum is split in four regions. These four re-
gions are defined in Table 11.3. Systematic uncertainties that depend onM(π+π−2π0)
are studied separately in the four ranges.

Table 11.3.: Error regions of the mass spectrum M(π+π−2π0).
Region Mass range [ GeV]

R1 0.5 < M(π+π−2π0) < 1.5
R2 1.5 < M(π+π−2π0) < 2.0
R3 2.0 < M(π+π−2π0) < 3.0
R4 3.0 < M(π+π−2π0) < 3.8

The final state π+π−3π0γISR is measured with a total uncertainty of 13.25%,
as shown in section 11.2.1 and the uncertainty of the e+e− → π+π−3π0 channel
is 7.1%, as shown in section 11.2.2. Further, an accuracy of 20% is assumed for
the remaining Lund-qq̄ background contributions. The scaling of the background
contributions is changed according to their uncertainty. The event yields are de-
termined after subtracting the modified background contributions from data. The
largest relative difference between the event yields after background subtraction
obtained with the default and the modified rescaling factor is used as the system-
atic uncertainty due to the background subtraction of the specific channel. The
corresponding systematic uncertainties from the subtraction of the
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e+e− → π+π−3π0γISR, e+e− → π+π−3π0, and the remaining Lund-qq̄ back-
ground contributions are listed in Table 11.4.

Table 11.4.: Systematic uncertainties from the background subtractions of the domi-
nating background contributions in four ranges of M(π+π−2π0) defined in
Table 11.3. T stands for the tagged ISR method and U for the untagged
one.

R1 R2 R3 R4
bgr. contr. T [%] U [%] T [%] U [%] T [%] U [%] T [%] U [%]
π+π−3π0 0.0 0.0 0.1 0.0 2.5 0.1 3.2 0.2

π+π−3π0γISR 0.5 0.6 0.5 0.2 7.8 0.6 10.3 0.7
qq̄ 0.5 0.6 1.0 0.2 12.7 0.8 21.0 0.8

11.2.4. Subtraction of the Remaining Backgrounds

The same method is performed for the background contributions from the MC
samples listed in Table 11.5. An accuracy of 20% is assumed for the non-DD MC
sample. The MC samples containing the e+e− → γISRJ/ψ, e+e− → γISRψ(3686)
and e+e− → DD̄ processes are assumed to have a precision of 10%. The numbers
are conservative guesses of the uncertainties of the shapes and scalings of these MC
samples and the branching fractions used therein. The resulting uncertainties for
subtracting the corresponding background contributions are listed in Table 11.5.

Table 11.5.: Systematic uncertainty from the background subtraction of the minor
background contributions in the four ranges of M(π+π−2π0) defined in
Table 11.3. T(U) stands for the tagged (untagged) ISR modes.

R1 R2 R3 R4
MC sample T [%] U [%] T [%] U [%] T [%] U [%] T [%] U [%]

nonDD 0.04 0.00 0.13 0.00 2.54 0.07 5.92 0.18
γISRJ/ψ 0.01 0.00 0.01 0.02 0.51 0.37 0.40 0.04

γISRψ(3686) 0.04 0.00 0.07 0.01 0.57 0.08 0.96 0.27
D+D− 0.00 0.01 0.00 0.00 0.03 0.00 0.01 0.00
D0D̄0 0.00 0.00 0.00 0.00 0.17 0.01 0.03 0.00
total 0.05 0.01 0.15 0.02 2.66 0.39 6.01 0.33
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11.3. Summary of the Systematic Uncertainties for
e+e− → π+π−2π0γISR
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The various sources of systematic uncertainty are assumed to be uncorrelated.
Hence, their quadratic sum is taken as the total systematic uncertainty. All indi-
vidual sources of systematic uncertainties are summarized in Table 11.6, together
with the total systematic uncertainty. For the low mass region, from 920 MeV to
1.8 GeV, which is relevant for aµ, the total systematic uncertainty is found to be
between 3.0% and 3.1% for the tagged ISR method depending on the four pion
invariant mass M(π+π−2π0). For the untagged ISR method the uncertainties are
found to be between 3.0% and 2.9%. In the high mass region, above 2 GeV, the
systematic uncertainties vary between 15.6% and 24.4% for the tagged method
and are found to be 3.0% for the untagged method.

11.4. Systematic Uncertainties of the Sub-processes
of e+e− → π+π−3π0γISR

The contributions to the systematic uncertainty of the e+e− → π+π−3π0γISR
process have been discussed in section 11.2.1 .The total systematic uncertainty is
found to be 13.25%.

The systematic uncertainty of the π+π−3π0γISR sub-channels ω2π0γISR and
ηπ+π−γISR are composed of the total systematic uncertainty of the π+π−3π0γISR
channel, plus an additional uncertainty of the ω and η selection criteria, respec-
tively. To estimate the systematic uncertainty of this selection, the size mass win-
dow to select the respective resonance is varied. In addition to the nominal mass
window of 720 < M(3π) < 850 MeV to select the ω resonance, a tighter window of
710 < M(3π) < 860 MeV and a less restrictive window of 730 < M(3π) < 840 MeV
are chosen. The sidebands are adjusted accordingly to match the size of the signal
region. For the η resonance, here is only an upper bound, which is moved by
±100 MeV. For each of the three mass windows, the event yield is determined and
corrected for the correspondingly adjusted efficiencies. The maximum change af-
ter efficiency correction is taken as systematic uncertainty of the ω, or η selection,
which is found to be 7.2%. Adding these results in quadrature to the systematic
uncertainty of the e+e− → π+π−3π0γISR analysis, a total systematic uncertainty
of 14.8% for ω2π0γISR and 14.1% for ηπ+π−γISR is obtained.

11.5. Systematic Uncertainties for e+e− → ωπ0

The systematic uncertainty of the reaction e+e− → ωπ0γISR is composed of the to-
tal systematic uncertainty of the e+e− → π+π−2π0γISR channel, plus an additional
uncertainty to consider the ω resonance fits. However, the background contribution
in the region around the ω resonance is different from the background contribution
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of the full e+e− → π+π−2π0γISR final state. For the systematic uncertainties from
e+e− → π+π−2π0γISR without background subtraction 2.87% is obtained for the
tagged ISR method and 2.82% for the untagged one.

In order to determine the systematic uncertainty from the background contribu-
tions, the signal to background ratio is calculated under the peaks of the ω reso-
nance for each M(ωπ0) interval. The four kinds of background contributions from
e+e− → π+π−3π0, e+e− → π+π−3π0γISR, Lund-qq̄ and ”other“sources are investi-
gated separately. Their uncertainties are 7.1%, 13.25%, 20% and 10% respectively.
The background contribution in the ω resonance region is smaller compared to the
rest of the M(π+π−π0) spectrum. The sum of the signal to background fractions
weighted with the uncertainty of the corresponding background channels is listed
in Table 11.7 for tagged and untagged ISR methods.

Table 11.7.: Systematic uncertainties of the background sunbtaction for the ωπ0 cross
section. The spectrum is not unfolded, so narrow structures appear
smeared with the detector resolution.

Region Tagged [%] Untagged [%]
R1 1.52 0.96
R2 3.74 0.94
R3 6.97 3.05
R4 0.79 0.69

The M(π+π−π0) mass distributions used for the fits are filled with only the one
π0 candidate, which gives the M(π+π−π0) mass closest to the PDG omega mass.
This choice might introduce a bias. The ω resonance peak in the M(π+π−π0) mass
distributions might be enhanced by this choice. In order to estimate the size of
this bias, the M(π+π−π0) mass distributions are constructed again but both π0

candidates are used to calculate M(π+π−π0). This means there are two entries
per event in the M(π+π−π0) mass distributions. Comparing the fit results of the
two methods yields a difference of 0.004%. Hence, the bias effect is negligible.

To estimate the systematic uncertainty of the ω fit, the fit ranges, the binning
and the fit model are changed. For the fit range, 10 MeV on the upper and the lower
side are cut off the M(π+π−π0) spectra for the fits of each M(ωπ0) mass interval.
The intervals of the M(π+π−π0) spectra are changed from 10 MeV to 8 MeV at
each M(ωπ0) interval. For the uncertainty due to the fit model, the PDF of the
background is changed to a third order polynomial. These systematic uncertainty
tests are applied to the tagged and untagged ISR methods separately. The error
weighted mean of the tagged and untagged cross sections is determined with the
results of the modified fits. The mean relative deviation between the combined
cross sections obtained with the modified fits and the default fits are taken for



Chapter 11. Systematic Uncertainty Estimations 167

the systematic uncertainties for each test case of the fits. The corresponding
uncertainties are listed in Table 11.8. The total systematic uncertainty of the
e+e− → ωπ0 cross section is shown in Table 11.9. The uncertainties are added in
quadrature, since the sources are uncorrelated.

Table 11.8.: Systematic uncertainties of the ω fit of the ωπ0γISR measurement.
Source Uncertainty [%]

Fit range 0.13
Fit model 0.74
Binning 0.35

Total 0.82
Table 11.9.: Total systematic uncertainties for the e+e− → ωπ0 cross section.

Region Tagged [%] Untagged [%]
R1 3.16 3.30
R2 4.38 3.04
R3 7.42 3.94
R4 3.08 3.02

11.6. Systematic Uncertainties for the Branching
Fractions

The total systematic uncertainty of the branching fractions B(J/ψ → π+π−2π0),
B(J/ψ → π+π−3π0) and B(ψ(3686) → π+π−3π0) consists of three contributions.
The first is the systematic uncertainty of the cross section of the respective final
state, which is 3.0% for untagged π+π−2π0γISR in the J/ψ region, and 13.25% for
the π+π−3π0γISR channel. The second source of uncertainty is the error of the
electronic width, which is 2.52% of the J/ψ, and 7.75% for ψ(3686). The third
source of uncertainty is the fit to determine the number of events originating from
the decay of the charmonium resonances. To estimate the systematic uncertainty
of the fit, the fit range, the signal shape, and the background function are varied.
For the signal shape, a double Gaussian is used in stead of the single Gaussian.
The polynomial describing the background is changed from second order to third
order. The uncertainties obtained as the deviations of the variations from the
nominal procedures are listed in Table 11.10. The contributions are summed in
quadrature to obtain the total uncertainty.
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Table 11.10.: Systematic uncertainties of the fits for the branching fractions.
final state fit range [%] bgr [%] signal [%] Γee [%] σ [%] Total [%]
π+π−2π0 1.35 0.53 0.26 2.52 3.0 4.14
ωπ0 4.22 0.41 0.13 2.52 3.0 5.74

π+π−3π0 0.13 0.01 2.44 2.52 13.25 13.1
ωπ0π0 0.28 0.03 7.01 2.52 13.25 16.4
ηπ+π− 0.56 0.22 0.17 2.52 13.25 13.3

ψ(3686)→ 5π 0.02 0.24 4.12 7.75 13.25 15.6
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Data-MC Comparison of Kinematic
Variables
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Figure A.1.: Kinematic variables of tagged e+e− → π+π−2π0γISR.
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Figure A.2.: Kinematic variables of untagged e+e− → π+π−2π0γISR.
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Figure A.3.: Kinematic variables of e+e− → π+π−3π0.
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Figure A.4.: Kinematic variables of e+e− → π+π−3π0γISR.





Appendix B.

Cross Section Tables

Table B.1.: Combined Cross section of e+e− → π+π−2π0. FSR and VP corrections
are included. No unfolding is performed, narrow structures are smeared
with the detector resolution. The first error is statistical, the second is the
systematic one. The systematic uncertainty is 3%.√

s σ ± (stat)± (sys)
√
s σ ± (stat)± (sys)

√
s σ ± (stat)± (sys)

[GeV] [nb] [GeV] [nb] [GeV] [nb]
0.93 2.96± 1.47± 0.09 1.75 19.12± 0.61± 0.56 2.55 2.28± 0.10± 0.07
0.96 3.88± 1.40± 0.11 1.77 17.70± 0.56± 0.52 2.58 2.20± 0.09± 0.07
1.00 6.18± 1.77± 0.18 1.80 14.46± 0.49± 0.42 2.61 2.03± 0.09± 0.06
1.02 8.82± 1.77± 0.26 1.83 12.57± 0.43± 0.36 2.64 1.95± 0.08± 0.06
1.05 8.64± 1.73± 0.26 1.87 11.78± 0.41± 0.34 2.67 1.87± 0.08± 0.06
1.08 13.01± 1.91± 0.39 1.89 10.12± 0.36± 0.29 2.71 1.81± 0.08± 0.05
1.11 14.39± 1.85± 0.43 1.92 8.71± 0.33± 0.25 2.74 1.54± 0.07± 0.05
1.14 17.92± 2.00± 0.53 1.95 8.84± 0.32± 0.26 2.76 1.50± 0.07± 0.05
1.17 16.02± 1.68± 0.47 1.98 9.39± 0.32± 0.27 2.79 1.37± 0.07± 0.04
1.21 19.07± 1.73± 0.56 2.01 8.46± 0.30± 0.26 2.82 1.38± 0.06± 0.04
1.24 19.39± 1.65± 0.57 2.04 8.64± 0.29± 0.26 2.85 1.25± 0.06± 0.04
1.26 24.25± 1.74± 0.72 2.07 7.80± 0.26± 0.24 2.88 1.17± 0.06± 0.04
1.29 23.39± 1.55± 0.69 2.10 7.17± 0.25± 0.22 2.91 1.10± 0.05± 0.03
1.32 26.41± 1.55± 0.78 2.13 6.61± 0.23± 0.20 2.94 1.05± 0.05± 0.03
1.35 26.30± 1.44± 0.78 2.17 6.21± 0.22± 0.19 2.98 1.08± 0.05± 0.03
1.39 32.38± 1.51± 0.96 2.19 5.20± 0.19± 0.16 3.01 1.00± 0.05± 0.03
1.41 32.50± 1.39± 0.96 2.23 5.02± 0.18± 0.15 3.03 1.30± 0.05± 0.04
1.45 32.78± 1.31± 0.97 2.26 4.53± 0.17± 0.14 3.06 1.85± 0.06± 0.06
1.48 33.07± 1.24± 0.98 2.28 4.15± 0.16± 0.13 3.09 2.07± 0.07± 0.06
1.51 32.41± 1.16± 0.96 2.31 4.00± 0.15± 0.12 3.12 0.90± 0.04± 0.03
1.53 29.61± 1.03± 0.87 2.34 3.85± 0.15± 0.12 3.15 0.66± 0.03± 0.02
1.56 28.35± 0.96± 0.83 2.38 3.54± 0.14± 0.11 3.18 0.68± 0.03± 0.02
1.59 27.00± 0.89± 0.79 2.40 3.29± 0.13± 0.10 3.22 0.65± 0.03± 0.02
1.63 25.06± 0.82± 0.73 2.44 3.11± 0.12± 0.09 3.25 0.60± 0.03± 0.02
1.65 26.16± 0.81± 0.76 2.46 2.67± 0.11± 0.08 3.27 0.57± 0.03± 0.02
1.68 23.73± 0.74± 0.69 2.50 2.61± 0.11± 0.08 3.30 0.57± 0.03± 0.02
1.71 21.34± 0.67± 0.62 2.52 2.55± 0.10± 0.08 3.33 0.56± 0.03± 0.02
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Table B.2.: Combined Cross section of e+e− → ωπ0. FSR and VP corrections are
included. No unfolding is performed, narrow structures are smeared with
the detector resolution.√

s σ ± (stat)± (sys)
√
s σ ± (stat)± (sys)

√
s σ ± (stat)± (sys)

[GeV] [nb] [GeV] [nb] [GeV] [nb]
1.01 8.14± 1.80± 0.27 1.79 0.92± 0.25± 0.03 2.58 0.20± 0.05± 0.01
1.07 12.55± 2.12± 0.42 1.85 0.93± 0.22± 0.04 2.64 0.21± 0.05± 0.01
1.13 15.68± 2.36± 0.52 1.91 0.50± 0.10± 0.02 2.70 0.15± 0.05± 0.01
1.19 17.07± 2.40± 0.57 1.97 0.82± 0.11± 0.03 2.76 0.08± 0.05± 0.00
1.25 15.58± 1.94± 0.51 2.03 0.79± 0.12± 0.03 2.82 0.14± 0.05± 0.01
1.31 15.41± 1.73± 0.51 2.09 1.10± 0.15± 0.06 2.88 0.09± 0.05± 0.00
1.37 19.38± 1.54± 0.62 2.15 0.87± 0.13± 0.04 2.94 0.09± 0.04± 0.00
1.43 19.41± 3.14± 0.61 2.21 0.69± 0.09± 0.03 3.00 0.08± 0.05± 0.00
1.49 13.94± 1.36± 0.44 2.27 0.44± 0.08± 0.02 3.06 0.14± 0.04± 0.00
1.55 11.18± 1.13± 0.45 2.34 0.29± 0.08± 0.02 3.12 0.09± 0.03± 0.00
1.61 6.56± 0.73± 0.24 2.40 0.31± 0.06± 0.01 3.18 0.04± 0.03± 0.00
1.67 4.64± 0.45± 0.19 2.46 0.26± 0.07± 0.01 3.24 0.04± 0.03± 0.00
1.73 1.80± 0.33± 0.07 2.52 0.22± 0.05± 0.01 3.30 0.03± 0.03± 0.00

Table B.3.: Cross section of e+e− → π+π−3π0. FSR and VP corrections are included.
No unfolding is performed, narrow structures are smeared with the detector
resolution.√

s σ ± (stat)± (sys)
√
s σ ± (stat)± (sys)

√
s σ ± (stat)± (sys)

[GeV] [nb] [GeV] [nb] [GeV] [nb]
1.51 1.85± 1.24± 0.26 2.23 0.93± 0.18± 0.13 2.94 0.30± 0.05± 0.04
1.53 1.50± 1.08± 0.21 2.26 0.71± 0.15± 0.10 2.98 0.32± 0.05± 0.04
1.56 1.78± 0.98± 0.25 2.28 0.58± 0.13± 0.08 3.01 0.36± 0.05± 0.05
1.59 2.08± 0.88± 0.29 2.31 0.76± 0.14± 0.11 3.03 0.87± 0.07± 0.12
1.63 2.67± 1.00± 0.37 2.34 0.72± 0.14± 0.10 3.06 3.99± 0.23± 0.55
1.65 2.04± 0.81± 0.28 2.38 0.44± 0.12± 0.06 3.09 6.87± 0.22± 0.95
1.68 1.61± 0.63± 0.22 2.40 0.63± 0.12± 0.09 3.12 1.08± 0.07± 0.15
1.71 1.43± 0.60± 0.20 2.44 0.57± 0.12± 0.08 3.15 0.35± 0.04± 0.05
1.75 2.43± 0.67± 0.34 2.46 0.52± 0.10± 0.07 3.18 0.36± 0.04± 0.05
1.77 1.14± 0.43± 0.16 2.50 0.51± 0.10± 0.07 3.22 0.30± 0.04± 0.04
1.80 1.20± 0.42± 0.17 2.52 0.53± 0.10± 0.07 3.25 0.29± 0.04± 0.04
1.83 1.16± 0.39± 0.16 2.55 0.51± 0.10± 0.07 3.27 0.28± 0.03± 0.04
1.87 1.30± 0.41± 0.18 2.58 0.45± 0.08± 0.06 3.30 0.28± 0.03± 0.04
1.89 0.61± 0.30± 0.08 2.61 0.36± 0.08± 0.05 3.33 0.31± 0.03± 0.04
1.92 1.28± 0.36± 0.18 2.64 0.48± 0.08± 0.07 3.36 0.25± 0.03± 0.03
1.95 1.43± 0.31± 0.20 2.67 0.40± 0.08± 0.05 3.39 0.23± 0.03± 0.03
1.98 1.04± 0.29± 0.14 2.71 0.36± 0.07± 0.05 3.42 0.26± 0.03± 0.04
2.01 1.31± 0.29± 0.18 2.74 0.41± 0.07± 0.06 3.45 0.19± 0.03± 0.03
2.04 0.83± 0.23± 0.11 2.76 0.42± 0.07± 0.06 3.49 0.22± 0.03± 0.03
2.07 1.08± 0.24± 0.15 2.79 0.33± 0.06± 0.05 3.51 0.18± 0.02± 0.02
2.10 0.91± 0.21± 0.13 2.82 0.45± 0.07± 0.06 3.54 0.15± 0.02± 0.02
2.13 0.84± 0.20± 0.12 2.85 0.34± 0.06± 0.05 3.57 0.16± 0.02± 0.02
2.17 0.88± 0.19± 0.12 2.88 0.35± 0.06± 0.05 3.60 0.11± 0.02± 0.01
2.19 0.82± 0.18± 0.11 2.91 0.25± 0.05± 0.03 3.63 0.10± 0.02± 0.01



Bibliography

175



176 Bibliography

[1] S. L. Glashow and S. Weinberg, Phys. Rev. D 15, 1958 (1977).

[2] G. ’t Hooft, Nucl. Phys. B 61, 455 (1973).

[3] D. J. Gross and F. Wilczek, Phys. Rev. D 8, 3633 (1973).

[4] D. J. Gross and F. Wilczek, Phys. Rev. D 9, 980 (1974).

[5] G. Arnison et al. [UA1 Collaboration], Phys. Lett. B 122, 103 (1983).

[6] G. Arnison et al. [UA1 Collaboration], Phys. Lett. B 126, 398 (1983).

[7] F. Abe et al. [CDF Collaboration], Phys. Rev. Lett. 74, 2626 (1995)
doi:10.1103/PhysRevLett.74.2626 [hep-ex/9503002].

[8] J. E. Augustin et al., Phys. Rev. Lett. 33, 1406 (1974)

[9] F. Englert and R. Brout, Phys. Rev. Lett. 13, 321 (1964).

[10] P. W. Higgs, Phys. Lett. 12, 132 (1964).

[11] P. W. Higgs, Phys. Rev. Lett. 13, 508 (1964).

[12] P. W. Higgs, Phys. Rev. 145, 1156 (1966).

[13] Atlas Collaboration, Physics Letters B 716 1-29 (2012).

[14] CMS Collaboration, Physics Letters B 716 30-61 (2012).

[15] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).

[16] P. Langacker and M. x. Luo, Phys. Rev. D 44, 817 (1991).

[17] F. Jegerlehner, Acta Phys. Polon. B 38, 3021 (2007).

[18] P. A. M. Dirac, Proc. Roy. Soc. A 117 (1928) 610; A 118 351 (1928).

[19] H. M. Foley and P. Kusch, Phys. Rev. 73 412 (1948).

[20] J. S. Schwinger, Phys. Rev. 73 416 (1948).

[21] R. L. Garwin, D. P. Hutchinson, S. Penman and G. Shapiro, Phys. Rev. 118
271 (1960).

[22] G. Charpak, F. J. M. Farley and R. L. Garwin, Phys. Lett. 1 16 (1962).

[23] J. Bailey, W. Bartl, G. von Bochmann, R. C. A. Brown, F. J. M. Farley,
M. Giesch, H. Jostlein and S. van der Meer et al., Nuovo Cim. A 9 369 (1972).

[24] J. Bailey et al., Nucl. Phys. B 150 1 (1979).

[25] R. M. Carey, W. Earle, E. Efstathiadis, M. F. Hare, E. S. Hazen, B. J. Hughes,
F. Krienen and J. P. Miller et al., Phys. Rev. Lett. 82 1632 (1999).



Bibliography 177

[26] H. N. Brown et al. [Muon (g-2) Collaboration], Phys. Rev. D 62 091101 (2000).

[27] H. N. Brown et al. [Muon g-2 Collaboration], Phys. Rev. Lett. 86 2227 (2001).

[28] G. W. Bennett et al. [Muon g-2 Collaboration], Phys. Rev. Lett. 89, 101804
(2002); [Erratum-ibid. 89, 129903 (2002)].

[29] G. W. Bennett et al. [Muon g-2 Collaboration], Phys. Rev. Lett. 92 161802
(2004).

[30] G. W. Bennett et al. [Muon g-2 Collaboration], Phys. Rev. D 73 072003
(2006).

[31] C. Patrignani et al. [Particle Data Group], Chin. Phys. C 40, no. 10, 100001
(2016).

[32] B. L. Roberts, Chin. Phys. C 34, 741 (2010).

[33] T. Mibe [J-PARC g-2 Collaboration], Nucl. Phys. Proc. Suppl. 218, 242
(2011).

[34] T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Phys. Rev. Lett. 109,
111808 (2012).

[35] A. Kurz, T. Liu, P. Marquard, A. V. Smirnov, V. A. Smirnov and M. Stein-
hauser, PoS LL 2016, 009 (2016) [arXiv:1607.01399 [hep-ph]].
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