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Summary Humans emit a wide range of volatile organic compounds (VOCs). These
molecules can be emitted via breath and skin and can be from endogenous or exogenous
sources. The main breath gases besides N2 and O2 include CO2, acetone and isoprene
and are mainly endogenously produced via metabolic pathways. Exogenously emitted
molecules comprise methanol from the digestion of fruits and molecules such as monoter-
penes and siloxanes used in hygiene products. The study of these human-made emissions
is important for the detection of biomarkers for illnesses as well as for the estimation of
the contribution of human emission to indoor and outdoor environments. The measure-
ment of volatile organic compounds in indoor and outdoor studies was performed with
a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS).
Closed spaces with controlled ventilation such as the showroom of a cinema allows the
estimation of emission rates from a large group of people averaging over individual be-
haviour and habits. Factors such at diet or use of hygiene products depict the largest
source for uncertainty in estimating the emission rates. On a much smaller scale the
emission of human-emitted molecules varies with the emotional state. In the cinema
showroom the screening of a film induces the same stimuli on a large amount of people
and reproducible patterns in the time series of VOCs were found. The combination of
the measured time series of VOCs and film scene annotations and the application of
data mining techniques allows the discovery of relationships between the emission of
VOC and specific scenes displayed in the film.
Most of the world population now lives in urban areas and humans spend most of their
time in indoor environments. In closed spaces people are exposed to volatile organic
compounds which can occur in much higher abundances than outside. Since some of the
VOCs can have adverse health impacts on humans it is important to estimate sources
of VOCs in indoor environments such as emissions from furniture, human emissions and
VOCs being transported from outside into these closed spaces.
These outside sources are strongly dependent on biogenic sources such as emission of
plants and vegetation and anthropogenic sources for example through combustion pro-
cesses. Human emission can significantly impact the air chemistry in urban areas but
on a global scale they only contribute a small amount to the total emission of VOCs.
The behaviour and fate of a VOC is affected by many factors such as temperature, rel-
ative humidity and the origin of the air mass. To study the atmospheric chemistry of
these VOCs, measurement campaigns were conducted in different locations lasting over 4
weeks. Typically, different meteorological conditions are faced during this measurement
period. In order understand the atmospheric behaviour of a VOC it is useful to partition
these time series in periods of similar meteorological conditions. To do this objectively
a pattern identification method was applied. The data-driven investigation of the time
series provided useful insights in the chemistry behind the VOCs. The proton transfer
reaction time-of-flight mass spectrometer is able to capture hundreds of VOCs in real
time and therefore the combination of this instrument with data mining techniques has
huge potential for future research projects.



Zusammenfassung Menschen emittieren eine Vielzahl von flüchtigen organischen Ver-
bindungen (VOCs). Diese Moleküle können über den Atem und die Haut emittiert wer-
den und stammen aus endogenen oder exogenen Quellen. Die wichtigsten Atemgase
neben N2 und O2 sind CO2, Aceton und Isopren und werden hauptsächlich endogen
über Stoffwechselwege produziert. Exogen emittierte Moleküle schließen Methanol aus
der Verdauung von Früchten und Molekülen wie Monoterpene und Siloxane aus Hygien-
eprodukten ein. Die Untersuchung dieser menschlichen Emissionen ist wichtig für die
Identifikation von Biomarkern von Krankheiten sowie für die Abschätzung des Beitrags
menschlicher Emissionen zur Innen- und Außenluft. Die Messungen von flüchtigen or-
ganischen Verbindungen in der Innen- und Außenluft wurde mit einem Protonentransfer-
Flugzeitmassenspektrometer (PTR-TOF-MS) durchgeführt.
Durch die Messung von menschlichen Emission in geschlossene Räumen mit kontrollierter
Ventilation zum Beispiel in einem Kinosaal können Emissionsraten von einer großen
Gruppe von Menschen, die sich durch individuelle Verhaltensweisen und Gewohnheiten
unterscheidet, berechnet werden. Die größte Unsicherheit bei der Schätzung dieser Emis-
sionsraten stellen Faktoren wie Ernährung oder Konsum von Hygieneprodukten dar. In
einem viel kleineren Maßstab variiert die Emission von menschlichen Molekülen mit dem
emotionalen Zustand. Durch das Zeigen eines Films werden die gleichen Reize bei einer
großen Anzahl von Menschen induziert und reproduzierbare Muster in der Zeitreihe der
emittierten Moleküle wurden beobachtet. Die Auswertung der gemessenen Zeitreihen
und der gezeigten Filmszenen mithilfe von Data Mining-Methoden zeigte Korrelationen
zwischen menschlichen Emissionen von VOCs und Filmszenen.
Ein Großteil der Erdbevölkerung lebt in städtischen Gebieten und die Menschen verbrin-
gen die meiste Zeit in Innenräumen. Dort sind die Menschen VOCs ausgesetzt, welche
gesundheitsschädlich sein können und zum Teil in höheren Konzentrationen vorkom-
men. Daher ist es wichtig, Emissionen von VOCs in Innenräumen wie zum Beispiel aus
Möbeln sowie menschliche Emissionen und VOCs, die von außen in diese geschlossenen
Räume transportiert werden, zu charakterisieren.
VOCs in der Außenluft sind stark abhängig von biogenen Quellen wie der Emission
von Pflanzen und Vegetation und anthropogenen Quellen durch Verbrennungsprozesse.
Die Emissionen von Menschen können die Luftchemie in städtischen Gebieten erheblich
beeinflussen, aber auf globaler Ebene tragen sie nur einen kleinen Teil zur Gesamtemis-
sion von VOCs bei. Das Verhalten eines Moleküls wird von vielen Faktoren wie zum
Beispiel Temperatur, relative Luftfeuchtigkeit und der Herkunft der Luftmasse beein-
flusst. Um die Zusammensetzung dieser VOCs in der Atmosphäre zu untersuchen, wur-
den an verschiedenen Standorten Messkampagnen über 4 Wochen durchgeführt. In der
Regel sind während dieser Messperiode unterschiedliche meteorologische Bedingungen
zu beobachten. Um das Verhalten von VOCs zu verstehen, ist es sinnvoll, diese Zeitrei-
hen in Zeiträume ähnlicher meteorologischer Bedingungen zu unterteilen. Dafür wurde
eine datengesteuerte Musteridentifikationsmethode angewendet. Die Untersuchung der
Zeitreihen lieferte nützliche Einsichten in die Chemie hinter den VOCs. Das PTR-TOF-
MS ist in der Lage hunderte Moleküle in Echtzeit zu messen und daher bietet die Kombi-
nation von Data Mining-Methoden ein großes Potential für die Auswertung dieser Daten.
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1. Introduction

In this chapter the basic information required for the understanding of the proton trans-
fer reaction time-of-flight mass spectrometer (PTR-TOF-MS) and the applied data min-
ing techniques are presented. First the set-up and operating principle of the PTR-TOF-
MS are described. The second section introduces the applied data mining techniques
and the methods for model evaluation.

1.1. Proton transfer reaction time-of-flight mass

spectrometer (PTR-TOF-MS)

The proton transfer reaction time-of-flight mass spectrometer is widely used as an instru-
ment in the field of atmospheric chemistry and for the investigation of human volatiles.
This analytical tool allows the online measurement of numerous volatile organic com-
pounds (VOCs).[12, 57, 66] The final data generated by this method is typically reported
at a time resolution of about one minute (down to 0.1 seconds) and contains hundreds
of masses up to a mass-to-charge limit of approximately 400 m/z. The mass resolution
(m/∆m) is in the range of 4000-5000 allowing the separation of isobaric masses. The
reasons leading to this characteristic data is discussed in the following sections.

1.1.1. Setup of the PTR-TOF-MS

The setup of the PTR-TOF-MS is shown schematically in Figure 1.1.
On the left side in Figure 1.1 the hollow cathode generates hydronium ions (H3O

+)
in a glow discharge. These reagent ions are transported using an electromagnetic field
into the drift tube through which the air containing the analytes is drawn. The analytes
undergo a proton transfer reaction with the hydronium yielding positively charged ana-
lyte ions of the mass M+1 (original nominal mass plus a proton). The analyte ions are
transferred out of the drift tube into a lens system that focuses the ion beam. In the
time-of-flight section the ions within the continuous ion beam are accelerated orthogonal
to the direction of the beam. Once the ions are extracted into the time-of-flight area
the ions are separated according to their mass-to-charge ratio. This happens because
every ion is initially accelerated with the same energy. The energy is transferred to
each ion with an electric pulse, pushing the ions into the time-of-flight tube towards
the detector. The transferred energy becomes kinetic energy dependent on the mass of
the ion m and its velocity v (E = 1

2
mv2). Since different molecules possess different

molecular masses the velocity of an ion will vary too. Higher masses tend to be slower
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1. Introduction

Figure 1.1.: Set-up of the PTR-TOF-MS.

in the flight tube. Therefore, the molecules reach the detector (multi-channel-plate) at
different times which are precisely recorded. When impacting the detector, electrons are
released which are amplified and finally a current can be measured.
The extraction of the ions from the continuous ion beam into the time-of-flight area takes
place every 0.1 nanoseconds. The detector counts the impacting ions and calculates the
required time from the extraction to the impact. Depending on the desired time reso-
lution (typically ranging from 0.1 seconds to several minutes) the counting statistics for
each extraction is summed up resulting in a single mass spectrum. The frequency of the
extraction defines the upper mass-to-charge limit. The higher the frequency the lower
the mass-to-charge limit since at some point the heavier compounds (slower velocities)
are not able to reach the detector in time before the next extraction.

1.1.2. Proton affinity

The air with the analytes is drawn in the drift tube where they undergo a proton transfer
reaction with the hydronium ions. This reaction only takes place if the proton affinity
(PA) of the analyte is higher than for water (H3O

+). Table 1.1 shows a few selected
compounds and their corresponding proton affinity.
Water has a proton affinity of 691 kJ mol−1. The main constituents of air such as nitro-
gen, oxygen, argon and carbon dioxide have a lower proton affinity than water and are
not protonated in the drift tube. Also, many hydrocarbons like alkanes possess a lower
proton affinity than water and are undetectable. Components being protonated include

2



1. Introduction

many alkenes like isoprene, aromatics, oxidated species like alcohols, aldehydes and or-
ganic acids. Furthermore compounds containing sulfur and nitrogen can be measured
such as dimethylsulfide and acetonitrile. This chemical ionization is considered as a soft
ionization method as the relatively low excess energy transferred to the analytes results
in low fragmentation of the molecules.

Table 1.1.: Proton affinities of selected compounds.
Group Compound Proton affinity [kJ mol−1]
Inorganic gases O2 421

N2 494
CO2 541
H2O 691

(H2O)2 808
Alkanes Methane 544

Ethane 596
Alkenes Ethene 641

Propene 752
Alkines Acetylene 641
Aromatics Benzene 750

Toluene 784
Phenol 817

organic compounds Chloromethane 647
Formaldehyde 713
Acetone 812
Ethanol 776

1.2. Data mining

In general, the data mining task can be divided into supervised and unsupervised meth-
ods. On the one hand, supervised learning comprises tasks where the output class labels
are already known to the learner. The known variable is also called “dependent variables”
whereas the variables used to predict this variable are called “independent variables”.
The supervised methods are used to predict the dependent variable by identifying struc-
ture in the independent variables. The methods can be divided up into models which
can be easily interpreted like linear and logistic regression and decision tree models or
into “black-box models” which are difficult to interpret such as random forests, neural
nets and support vector machines. Which of these methods should be applied depends
on the data and on the aim of the analysis. Simpler models are not able to capture
non-linear behaviour in the set of independent variables. If such a structure exists in the
data a more complex model must be used. On the other hand, unsupervised learning
deals with the aim of dividing up the data into a number of groups. In this case, the

3



1. Introduction

class labels of the data are not known to the user. Unsupervised learning methods com-
prise clustering methods like hierarchical clustering and dimension reduction methods.
Additionally, a sequence mining algorithm is presented for finding patterns in discrete
temporal data.

1.2.1. Supervised Methods

This section provides the basics of model validation and presents two classifiers namely
decision tree and random forest models. An example data set can be seen in Table 1.2
showing some data from a measurement campaign in Cyprus. The data was put into
two different classes labelled as “high” and “low” being the dependent variable. The rest
of the data are independent variables (temperature, relative humidity, wind speed, wind
direction). Each row is called an instance (x, y) defined by a dependent variable x and a
set of independent variables y. For a classification task the dependent variable must be
discrete otherwise it is referred as regression. The supervised method tries to map the
independent variables with the help of a target function f on the dependent variable.
If the user is only interested in explanatory data analysis the whole data set is used and

Table 1.2.: Example data set including a binary dependent variable and 4 independent
variables (temperature, relative humidity, wind speed and wind direction).

Dep. variable Temperature Rel. humidity Wind speed Wind direction
high 24.8 87.3 1.35 SW
high 25.0 85.6 0.9 SSW
high 25.1 72.5 2.75 SW
high 25.2 78.4 2.5 SW
low 25.5 73.7 3.15 SSW
low 25.7 68.8 2.3 SSW
high 25.9 65.9 2.5 SW
low 26.1 69.5 1.6 SW
low 26.4 65.4 2.5 SW
low 26.5 59.1 2.45 SSW
low 27.0 59.0 3.15 SSW

the representation of the classification model is interpreted. For example, the slope of a
linear regression can be used for further interpretation. In predictive analysis the whole
data set is divided into a training set usually containing two thirds of the data and into
a test set containing one third of the data. The training data is used to build the model
and the test set is used to predict the target class from each unseen instance. The whole
procedure is depicted in Figure 1.2. The outcome of the prediction is compared to the
true classes of the test set to evaluate and validate the model.[54, 98, 168]

4



1. Introduction

Figure 1.2.: Scheme for model building and evaluation.

Model validation

This section discusses methods for model evaluation being an essential part in the de-
velopment of a model. Model evaluation helps to find the model which represents the
given data best. Therefore, some performance measures must be established being able
to evaluate the prediction outcomes of the model. Using the whole data as a training
set in order to build the model would lead to overoptimistic and overfitted models. The
meaning of overfitting in conjunction with techniques tackling this problem are also pre-
sented in this section.
For the model evaluation several measures can be taken. Figure 1.3 shows the layout

of a confusion matrix. Each column represents the instances of the actual class and
each row the instances with their predicted class. It is usually presented in conditions
labelled as “TRUE” and “FALSE” for a binary variable. The four fields are labelled as
“true positives” for instances predicted as the actual class, “false positives” for instances
that were predicted as “TRUE” with an actual class of “FALSE”, “false positives” for
instances predicted as “FALSE” and an actual class of “TRUE” and “true negative” for
instances that were correctly predicted as “FALSE”. These four terms are used to derive
performance measures such as Accuracy.

Accuracy =

∑
TP +

∑
TN

total population
(1.1)

5



1. Introduction

Figure 1.3.: Confusion matrix with several performance measures.

This measure adds up the correctly predicted instances divided by the total number
of instances. However, this measure becomes unreliable if the data gets unbalanced
with classes that differ greatly in number. For example, if there are 95 sample of the
label “TRUE” and 5 of the label “FALSE” and all of them were predicted as “TRUE”
the model would result in 95% accuracy even if the model classifies all samples just as
“TRUE”. Therefore, other performance must be used if the data is highly unbalanced.
A useful performance measure can be Cohens’s kappa κ when it comes to unbalanced
data sets.

κ =
p0 − pe

1 − pe

(1.2)

in Equation 1.2 p0 is the relative observed agreement (same as Accuracy in Equation 1.1)
and pe is the hypothetical probability of chance agreement and is defined as following:

pe =
TP + FP

total population
·

TP + FN
total population

+
TN + FN

total population
·

TN + FP
total population

(1.3)

Cohen’s kappa lies always between 0 and 1 and basically tells how much better the
model performs than random classification.[21]
Until now the model predicts the target label of an instance. For some classifiers such as
randomForest models it is possible to derive the probability of how likely it is that one
instance belongs to a certain label. The sum of the probabilities must sum up to 100%.

6



1. Introduction

These probabilities can be used to define a threshold value classifying the instances into
positively (TRUE) and negatively (FALSE) predicted outcomes. This threshold value
is usually set to 0.5, yielding a positive outcome if the probability is larger than 0.5
and otherwise resulting in a negative outcome. However, it is not always obvious how
the right threshold value should be chosen. Therefore, performance measures such as
receiver operating characteristics (ROC) curves and precision-recall-curves (PRC) are
introduced providing an overview over the whole range of possible threshold values. The
ROC plot shows the trade-off between the false positive rate, which is 1- specificity (1
- SP = TN / (TN+FP), and sensitivity (SN = TP / (TP+FN) as shown in Figure 1.4.
In case of the ROC curve the diagonal line from the origin (0,0) to the point (1,1) would
be a random classifier and a curve above of this straight line depicts a better prediction
than just by chance. A single performance measure can be obtained by calculating
the area under the ROC curve (AUC). For a random classifier this would result in a
value of 0.5 and for a perfect classifier in a value of 1.[37, 38] For unbalanced data
sets the PRC is a better choice.[118] This plot shows the trade-off between precision
(PREC = TP / (TP +FP)) and recall (REC = TP / (TP + FN).
In predictive analysis cross-validation is used to reduce the problem of overfitting. This

Figure 1.4.: Representation of a ROC curve (left side) and a precision recall curve (right
side).

happens if the model tries to find patterns in the training data and may pick up some
patterns that are just caused by random chance rather than by true properties of the
unknown function f . For example, for a linear model it is possible to choose a function
of the polynomial degree of one or to include higher order polynomials. If the order of
the polynomial is equal to the number of instances, the function can perfectly capture
the behaviour of the instances. However, this describes the problem of overfitting since
the function f perfectly fits to the training data but performs poorly on unseen test
set data. Thus re-sampling techniques such as cross-validation are used to obtain the
optimal set of parameters given to the model. Taking the example of a linear model, a
suitable polynomial degree can be found. The idea is to divide the training set, which
is used for model building, internally into additional training and test sets. These sets
of the original training set are used to choose the model which performed best with a
given set of parameters.[81] These parameters are used to build the final model using

7



1. Introduction

the whole training set. The original test set should not be incorporated in the model
building process and is used as an unseen set of instances for the final model.
A procedure to evaluate whether the model really captures some pattern in the training
set data or finds some random structure is the use of permutation tests. First a model is
trained on the normal data set and a performance measure is calculated. Then the classes
of the dependent variable are randomly permutated and again a model is trained and
evaluated. This permutation is repeated several times. Then the performance measures
of the permutated model are compared to the original data and the occurrences how
often the performance measure of the random model is greater than the performance
measure of the original model is recorded. This fraction indicates if the original model
found some real pattern in the data.[108]

Decision trees and random forest models

This section provides the basics for the understanding of decision trees. Figure 1.5 shows
a possible representation of a decision tree of the fictional data included in Table 1.2.

The decision tree represents a hierarchical structure starting at the root node and

Figure 1.5.: Possible representation of a classification tree model for the example data
in 1.2.

leading over internal nodes to several leaf nodes. At each non-terminal node (including
the root and internal nodes) a conditional test is performed on one of the independent
variables. Figure 1.5 shows a representation of a decision tree model. The top node is

8



1. Introduction

called root node and the bottom nodes are called leaf nodes. In the boxes, the lowest line
shows the amount of data included in that node from the training set. The root node
contains all the data (100%) and the leaf nodes contain some fraction of this data. For
example box number 2 (left bottom box) contains the data for which the temperature is
greater or equal than 26 which is the case for 78% of the data. The second line in the box
shows the distribution of the classes for the data contained in this node. For the root
node containing all the data the initial distribution of the class labels is 83% of the label
“low” and 17% of the label “high”. The majority is shown in the first line stating that
the label “low” is the most frequent label. In general, the notation of the splitting nodes
is as following: “<variable name> <condition>”. First the variable name is presented
and the condition shows the splitting criteria. In general, the higher the nodes the more
important their influence on the classification result. In case of explanatory analysis one
can examine each node reflecting the variable importance and investigating the splitting
criteria. For prediction a new instance is introduced at the root node and at each node
the corresponding variable is tested whether the condition is TRUE or FALSE. If the
condition is TRUE, the left path is taken otherwise the right one. This is done until
this instance ends at some leaf node and the majority class of the model tree for this
leaf node is given to the new instance.
Now the question arises in which order the independent variables are selected and how the
test condition is calculated. Therefore, a statistical property measure of how well a given
independent variable A separates the data (S) into the target classification (given by
the dependent variable) must be established. This property is called information gain.
In order to calculate the information gain of a dependent variable, we first define the
term entropy describing the disorder of a given distribution of discrete values.[123]

Entropy(S) = −phigh · log2(phigh) − plow · log2(plow) (1.4)

Here we assume a binary variable (containing values of “high” and “low” from the depen-
dent variable in Table 1.2). The variable phigh in Equation 1.4 describes the proportion
of the class “high” and plow the proportion of the class “low”. For example, the data set
consists of 11 instances with 6 of them belonging to class “high” and 5 of them to class
“low”. Inserting the proportions (phigh = 6

11
and plow = 5

11
) into Equation 1.4:

Entropy[6high,5low] = −
6

11
· log2(

6

11
) −

5

11
· log2(

5

11
)

= 0.994
(1.5)

For a binary variable with instances belonging to the same class, the entropy term is 0
whereas for a distribution of equal occurrences of the two classes it results in an entropy
value of 1. For an unequal distribution of a binary variable the entropy values lies
between 0 and 1. The function of entropy for a binary variable is shown in Figure 1.6.
The entropy term defined in Equation 1.4 leads to a measure which allows to estimate

how well an independent variable separates the dependent variable in its different classes.
This measure is called information gain. It describes the reduction in entropy of the
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Figure 1.6.: The entropy function for a binary variable.[98]

dependent variable by classifying the data according an independent variable. This
information gain or Gain(S, A) is defined as following given the data (S) and the
independent variable A:

Gain(S, A) = Entropy(S) −
∑

v∈V alues(A)

|Sv|

|S|
· Entropy(Sv) (1.6)

The term V alues(A) incorporates all possible values of the independent variable A and
Sv is the subset of the data S for which the variable A has the value of v. The first
term in Equation 1.6 is the entropy of the complete data set. The second term includes
the entropy of the subset Sv being partitioned by value v of variable A. This entropy
of the subset Sv is weighted by the size of this subset |Sv| divided by the size of the
whole data set |S|. Thus the subtraction of the original entropy by the sum of the
entropy calculated from the partitioned data set results in the reduction in entropy by
variable A. The information gain is used to evaluate the relevance of each variable
and to select the best for growing the tree. For example, taking the data from Table
1.2 and calculating the information gain by choosing the wind direction variable for
classification. The wind direction is a binary variable with values of “SSW” occurring
|SSSW| = 5 times and “SW” occurring |SSW| = 6 times. In case of wind direction =
“SSW” the target class is labelled “high” for one time and “low” for 4 times. On the
other hand, if the wind direction = “SW” the target attribute shows 4 times the label
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“high” and 2 times the label “low”. Thus the Equation 1.6 is as following:

Gain(S, A) = Entropy(S) −
∑

v∈{SSW,SW}

|Sv|

|S|
· Entropy(Sv)

= Entropy(S) −
5

11
· Entropy(SSSW) −

6

11
· Entropy(SSW)

= Entropy(S) −
5

11
· Entropy([1high,4low]) −

6

11
· Entropy([4high,2low])

= 0.994 − 0.455 · 0.722 − 0.545 · 0.918

= 0.165

(1.7)

This outline also works for dependent variables with more than two values but only for
binary independent variables. If more than two values are present for an independent
variable new dummy variables for each of these values must be created. This dummy
variable contains the information about one selected value in this variable if it is present
(the value for this instance is set to TRUE) or not (the value for this instance is set to
FALSE). These new independent and binary variables are treated as before.
Taking the example from Figure 1.5 the information gain is calculated at each non-
terminal node and the variable is selected for which the largest value is calculated. In the
presented outline only categorical variables were allowed. For continuous variables the
variable must be discretized beforehand. The continuous-valued variable is discretized
into two classes based on passing a conditional test in the form of A < c. For smaller
values of the variable A than the threshold value c the new discretized variable is set
TRUE otherwise the variable is set FALSE. The threshold c is set by selecting the great-
est information gain. This can be done by sorting the data according to the variable
A and picking out adjacent instances which change their target classification. For all of
these occurrences a candidate threshold value is chosen which lies in the middle between
the two surrounding values. Then the information gain for all chosen threshold candi-
dates is computed and the greatest value in information gain is selected as a threshold
for this variable. Finally, the calculated information gain is compared to the rest of
the independent variables.[98, 113] For example, Table 1.2 was sorted according to an
increase in temperature. Three possible splits are available at temperature values of
25.6, 25.8, and 26.0. Transforming the temperature variable into a binary variable by
dividing the temperature in values greater and smaller than the splitting criteria results
in information gain values of 0.311, 0.165 and 0.445. Thus the third splitting criteria
(Temperature > 26) is chosen. Compared to the information gain value of the wind
direction variable of 0.165 the temperature variable with a splitting criteria of “Temper-
ature > 26” is chosen to be the first splitting node (the two other variables show lower
information gain values, too).
This presented procedure for applies for classification trees when the dependent variable
is discrete. For regression trees with a continuous dependent variable first the indepen-
dent variables are divided into non-overlapping regions. This is done by recursive binary
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splits. This procedure is the same as for the classification tree outlined in the above
paragraphs. For each possible independent variable and each possible splitting value
(discrete or continuous) the residual sum of squares (RSS) of the dependent variable
must be minimized (similar to maximizing the information gain for classification). A
discrete independent variable A divides the data into two subsets belonging to one of the
values (for example S1(A, high) and S2(A, low) in Equation 1.4). In case of a continuous
independent variable A the cut point c dividing the dependent variable in partitions of
A > c and A <= c is selected which minimizes the RSS. The two resulting subsets
(dividing the independent variable into subsets one larger and the other smaller or equal
than c) are labelled as S1(A, c) and S2(A, c). For each of these subsets the corresponding
mean value of the dependent variable ŷS1

and ŷS2
is calculated. The RSS is defined as

following:
RSS =

∑

i∈S1(A,c)

(yi − ŷS1
)2 +

∑

i∈S2(A,c)

(yi − ŷS2
)2 (1.8)

Thus for each subset the sum of the difference between each value of the dependent
variable yi belonging to this subset and its mean value is calculated. This value is added
to the second subset. This is done for each independent variable and each possible cut
point or in case of a discrete variable its values. The variable and cut point is chosen
as a splitting node which minimizes the RSS. The subsequent splits are performed as
for the classification tree on the subsets S1 and S2. For an unknown instance the mean
value of the subset (one of the leaf nodes), to which this unseen observation belongs, is
returned.
To reduce the overfitting for these models some pruning of the trees is done. Therefore,
a cut-off value must be defined balancing the tree size with the goodness of fit.[80, 114]
The cut-off value is usually chosen via internal cross-validation. Figure 1.7 shows an
example comparing the accuracy of the training set with the one of the test set by
increasing the number of nodes. The optimal value for the number of nodes can be
found by cross-validation. It can be seen that the accuracy of the training set increases
monotonically whereas the accuracy of the test set first increases and then decreases by
adding further nodes. This is because by adding further nodes no real pattern in the
data is found and the splits are made only due to the noise in the training set.
The next algorithm used in this thesis is a randomForest classifier and it is based on

the decision tree algorithm. In the case of randomForest models multiple trees (typically
around 1000 trees) are grown. These trees are built upon a sub-sample of the whole data
set such that some instances are omitted and the number of variables are restricted for
each tree. For example, for the first tree 33% of the instances were randomly removed
and out of 10 variables only 5 variables were allowed for model building. For the second
tree other instances and variables were randomly removed. The final prediction combines
all results from the trees and the predicted label is the majority vote from the output
of each tree.[16] This procedure results in probabilities for each instance belonging to
one class (for example 70% out of the 1000 trees predict this instance belonging to class
“A” and the rest to class “B”). These probabilities can be used for ROC curves and
PRC. Compared to decision tree models this leads to a larger stability of the model.
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Figure 1.7.: This shows the effect of overfitting for a decision tree. The number of nodes
is plotted against the accuracy of the training set and test set. It can be
seen that the accuracy for the training set steadily increases with increasing
number of nodes whereas the accuracy of the test set first increases and then
decreases reaching its maximum around 10 nodes.[98]

In the case of the decision tree a small change in the values in one of the variables can
alter the way the first split is done and subsequently the representation of the whole
tree can be altered. Thus the representation is highly dependent on the given data. To
tackle this problem, the random forest model introduces some diversity. This is done
by subsampling the data (removing some of the instances) and by omitting some of
the variables. This procedure reduced the chance of overfitting through the internal
re-sampling methods. This becomes very important if there are a lot of independent
variables or if the user wants to extrapolate the model to new data. Random forest
classifiers are seen as robust classifier compared to other classifiers because of their
internal re-sampling method and variable selection process. Due to their implicit variable
selection they can also handle data set with many variables obtaining no signal but only
noise. These kind of variables do not add any further information to the classification
problem. Therefore, randomForest classifier are suitable for extrapolation to a different
set of instances.
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1.2.2. Unsupervised Learning

In unsupervised learning the goal is to partition the data set into the number of desired
clusters or to mine frequent patterns in discrete data. This task can be performed by
hierarchical clustering and sequence mining. These two algorithms are presented in the
following sections.

Hierarchical cluster

A representation of a hierarchical clustering is shown in Figure 1.8. This representation
is also called dendrogram. At the bottom of the dendrogram each variable is in its own
cluster whereas the top node joins all variables into one cluster. At intermediate levels
one may find meaningful groups.

To create such a dendrogram from atmospheric time series one needs to calculate

Figure 1.8.: Representation of hierarchical clustering result as a dendrogram.

the pairwise distance for each variable. The distance metric can be chosen by the user
including for example Euclidean distance or correlation. This distance matrix serves as
the input for the hierarchical clustering algorithm. Here we use agglomerative clustering.
This method starts from the bottom with each variable in its own cluster. Then it merges
successively the most similar pair of clusters until all clusters are in the same cluster
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reaching the top node. At the very beginning the algorithm merges the two cluster (at
the very beginning these are two variables) with the smallest distance. Doing this a new
cluster (Cij is formed containing two clusters Ci and Cj. For the next step the closest
pair of clusters is found subsequently a new cluster is formed until there is only one
cluster. When more and more variables are joined into one cluster the mean distance
between two cluster must be calculated in order to find the closest connection.[71]

Sequence mining

Sequence mining is the task of discovering patterns in a discrete and temporal data set.
Therefore, the time series must be divided into several segments for example days. The
SPADE algorithm records the position of each label in each segment. Next it is checked
for each day whether there is a label which occurs temporally after the chosen label.
This is performed for each label and the found sequences of length two are recorded.
These records of length two include the position of the second label which occurs after
the first one and subsequently the next label can be added. For example, given the
label “low” occurring at day 1 at positions 2,4 and 5 the following tuple will be created
< 1, {2, 4, 5} >. Figure 1.9 shows an example of the labels “low” and “high” and their
positions.

In order to merge these two labels creating the sequence of the labels from “low” to

Figure 1.9.: Example of the SPADE sequence mining algorithm.

“high” for each day the position of the second label is tested whether it occurs temporally
after the first one (larger position number). For the first day both the positions 3 and
6 for the label “high” occur after some occurrence for label “low”, for example after
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position 2. Thus for the first day the position {3,6} is recorded. Then further labels are
added. The number of rows of the boxes in Figure 1.9 represent the total occurrences of
this label or sequences in the data set. The fraction of these rows to the total number of
segments (here days) is called support. If the support for one sequence is smaller than
a predefined threshold value this sequence will be dropped and no further labels will
be added. Furthermore, the maximum distance between two labels can be defined. For
example, if the addition of a new label must occur subsequently to the former one with
the distance of one or if larger gaps are allowed.[167, 168]

1.3. Open research questions

The PTR-TOF-MS finds its ideal applications in domains where rapid changes of the
measured air is expected. Here, two application fields are presented comprising the
measurement of human emissions and the measurement of VOCs in the atmosphere.

1.3.1. Human emissions

The PTR-TOF-MS is widely used in the field of measuring human emissions. One ap-
plication area involves the measurement of human breath in order to identify biomarkers
and to establish a non-invasive method for detecting illnesses like lung cancer.[6, 111, 115]
Furthermore, the influence of groups of people on the indoor air chemistry has been in-
vestigated. The settings for these measurements took pace in office rooms,[126] class
rooms,[117, 135, 136, 144] football stadiums[142] and as in our case the showroom of
a cinema. These measurements bear the advantage of estimating emissions from large
groups and thus averaging over individual habits and backgrounds. The PTR-TOF-MS
is well suited to measure these human emissions since they can change rapidly due to
opening or closing doors, dress and undressing clothes or also because of physiologi-
cal changes like the increase of the breathing rate. Until now more than 1800 organic
compounds are known to be emitted from humans.[24] The following bullet points sum-
marize the open research questions.

• Veres et al.[142] investigated the emission of VOC from humans during a soccer
match in a football stadium and the emission of these VOCs were extrapolated to
global scale. It was discovered that ethanol was the dominant VOC besides the
emission of CO2. Additionally, tracers of smoking and skin ozonolysis were found.
It can be seen that the emission of VOCs depends on many complex confounding
factors such as age, dietary habits, consumption of hygiene products.[41, 77, 91]
The measurement of larger groups and during several times of day is required to
average over individual behaviour and to assess confounding factors influencing the
human emission of VOCs. Therefore, the measurement in an enclosed environment
with many people such as in a cinema showroom allows to study of these factors.
The confined space and the steady flush rate of air allows the quantification of
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the emission rates of VOC from humans and to examine the difference between
children and adults as well as between endogenously and exogenously produced
VOCs.

• The study performed by Veres et al.[142] in the football stadium also shows that
through ozonolysis of skin lipids new VOCs were formed. A prominent candidate
for these processed compound is 6-methyl-5-hepten-2-one (6-MHO).[149, 156, 157]
The impact of the environmental condition such as ozone mixing ratio, temperature
and abundance of rainfall can be attributed to the emission of human-borne VOCs.
For indoor air studies these molecules can be transported into closed spaces and
released into the air.

• During the measurement in the football stadium no goal was scored and the match
resulted in a draw between the two teams. Nevertheless, the question arises if it
is possible to see a goal in the measured time series of the VOCs specifically if the
emission rates of human-borne VOCs are influenced by a goal

• The scoring of a goal certainly induces many emotions in the spectators. Enhanced
emissions of VOCs might come from increased movement or from other physiolog-
ical responses to this specific event. The influence of the emotional state might
contribute to varying VOC levels in breath which could be an important factor in
the search of biomarkers. The cinema provides a suitable environment to study
emotions because the same emotional stimuli are exerted to all viewers. Addition-
ally, many different emotions are induced through the showing of different scenes
such as “action”, “comedy”, “drama”.

• A film consists of many different scenes inducing different emotions. It is unknown
if the physiological response to these scene during a screening of a film can be used
to classify a film into its age rating.

1.3.2. Atmospheric chemistry

The emission of the human-borne VOCs do not play a significant role in global atmo-
spheric chemistry but can influence the local air chemistry.[142] A much larger source
of VOCs is vegetation.[73] Although smaller in terms of carbon emitted, anthropogenic
VOCs have an huge impact on the air chemistry.[25, 102, 170] These primary emitted
compounds undergo various chemical transformations forming new species. The most
important one is the oxidation through the hydroxyl radical (OH) and ozone (O3) dur-
ing daytime and the nitrate radical (NO3) during night. The primary or secondary
VOCs can form or adsorb to particles and surfaces (dry deposition) or can be washed
out through rain (wet deposition).[9, 122] In some cases the VOCs may generate new
particles.[8, 49, 61]
Many applications of data mining within the field of atmospheric chemistry involve the
forecast of pollutants such as ozone, nitrous oxide and nitrous dioxide and particulate
matter in urban areas. The data often consist of continuous measurements over years
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for the main meteorological parameters and the main pollutants.[13, 20, 94, 106, 109]
The data we use comprise many compounds (ca. 100 compounds) measured by various
devices for a time period of around one month.

• The abundance of VOCs is influenced by various meteorological conditions such
temperature, relative humidity, wind speed, wind direction and the origin of the
air mass. Due to different conditions the behaviour of the VOC mixing ratio can
change. There has not been an objective method for the segmentation of meteo-
rological parameters of similar behaviour. Therefore, an objective segmentation of
the measurement time period allows the comparison of the behaviour of the VOC
under different conditions. Potential changes in the meteorological conditions can
be the onset of the sea breeze or the decrease of the boundary layer height and
thus the immersion into the free troposphere. Furthermore, the incorporation of
VOCs with these meteorological variables can add valuable information for the
segmentation of time series.

• Many methods are known for grouping VOC to specific groups such as princi-
pal component analysis, dimension reduction methods[161, 166] and clustering
methods[63]. A new method is developed to cluster time series of VOCs into
groups and to capture subtle differences between VOCs.

• Due to changing meteorological conditions it is difficult to estimate the influence
of one variable on the behaviour of a VOCs. The interpretation of data mining
methods can help to gain insights into the impact of a meteorological variable and
help to understand the origin and fate of a VOC.

This thesis is divided up into an indoor air chemistry part and into an atmospheric
chemistry part. First the estimation and interpretation of human emission rates are
presented (chapter 2-3). Then the relationship between emotions and human emission
is investigated (chapter 4-6). The second part focuses on the identification of patterns
in atmospheric time series and the application of data mining methods for further un-
derstanding (chapter 7).

18



2. Real world volatile organic
compound emission rates from
seated adults and children for use in
indoor air studies

Christof Stönner, Achim Edtbauer, Jonathan Williams

Max Planck-Institute for Chemistry, Mainz, Germany

Manuscript published in Indoor Air

Abstract Human beings emit many volatile organic compounds (VOCs) of both en-
dogenous (internally produced) and exogenous (external source) origin. Here we present
real world emission rates of volatile organic compounds from cinema audiences (50 - 230
people) as a function of time in multiple screenings of three films. The cinema location
and film selection allowed high frequency measurement of human emitted VOCs within a
room flushed at a known rate so that emissions rates could be calculated for both adults
and children. Gas phase emission rates are analysed as a function of time of day, vari-
ability during the film, and age of viewer. The average emission rates of CO2, acetone
and isoprene were lower (by a factor of ~1.2 - 1.4) for children under twelve compared
to adults while for acetaldehyde emission rates were equivalent. Molecules influenced
by exogenous sources such as decamethylcyclopentasiloxanes and methanol tended to
decrease over the course of day then rise for late evening screenings. These results rep-
resent average emission rates of people under real world conditions and can be used in
indoor air quality assessments and building design. Averaging over a large number of
people generates emission rates that are less susceptible to individual behaviours.

Keywords PTR-TOF-MS, Emission rate, Volatile organic compounds, Crowd breath,
Movie theatre, Indoor air quality

Practical Implications The contribution of human emissions of volatile organic com-
pounds (VOCs) to indoor air is an important yet often overlooked source of chemicals.
The presented emission rates of VOCs averaged over a total of 8000 people can be used
for characterizing indoor air influenced by human presence, source strength comparisons,
building ventilation design and sick building syndrome assessments.
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2.1. Introduction

Human beings are exposed to numerous volatile organic compounds (VOCs) in both
outside and indoor air environments. More than half of the world’s population now
live in cities with significant airborne pollution[99] and exposure to outside air can have
serious consequences for human health.[88] However, indoor sources of chemicals are
also important, particularly since people spend much of their life (93% for the aver-
age American) in enclosed spaces such as buildings and vehicles.[79] Furthermore, as
architects strive to improve the energy efficiency of buildings (e.g passive houses) the in-
ternal recirculation of air becomes key for heat conservation and hence indoor air quality
becomes an important issue.[158] Known sources of indoor pollutants include building
materials,[59, 90] carpeting,[60] furnishings[58] and products used or stored indoors such
as paints[23, 86] and cleaning products.[105] Commonly reported indoor air pollutants
include gases such as carbon monoxide, sulphur dioxide, nitrogen dioxide and ozone;
microbial debris, selected VOCs and particulate matter.[11, 147] It has been noted that
even when the emitted contaminants are present below threshold limit values,[158] they
may contribute to a significant time-weighted exposure.[129] Humans too are a potent,
yet often overlooked, source of chemicals to the indoor air environment. Several hundred
VOCs have been reported emanating from human breath, saliva, skin, blood, milk, urine
and faeces.[24] The major endogenous compounds emitted in human breath are acetone
(1.2 - 1880 ppb), isoprene (12 - 580 ppb), ethanol (13 - 1000 ppb) and methanol (160 -
2000 ppb).[39] However, many other exogenous species may be uptaken (by inhalation
and dermal uptake,[148] or on textile fabrics[141]) in outdoor polluted environments such
as roadsides and subsequently re-emitted indoors, thereby effectively being imported into
more confined domestic spaces. In this study, average VOC emission rates have been
determined from a large number of people (8300) under real world conditions so as to
include both endogenous and exogenous species. The aim is to provide a representative
dataset of typical city dwelling human emission rates that can be used by architects,
indoor air quality specialists, and medical researchers. Groups of people (50-238 at a
time), were measured in a cinema which served as a convenient enclosed space that was
ventilated at a known rate while the audience remained seated. By characterising the
human emission rates of VOCs and CO2 in the real world we may put other indoor
sources into context and gauge the potential for indoor chemical reactions.
Here we present emission rates for numerous VOCs from seated human beings measured
with a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS). This
device allows quantification of numerous VOCs in real-time.[57] The measurements pre-
sented here took place in a cinema in Mainz (Germany) over a period of four weeks
during the winter holidays 2015-2016. The study was designed to continuously measure
from one screening room of the cinema. Physiological parameters or the exact age of the
8300 audience members were not recorded, although via ticketing information the pro-
portion of the audience under 12 was known. Presented are the average VOC emission
per person (above and below 12 years of age) from a crowd of people and how the main
VOC emissions vary over time. The measurement of VOC emissions from a crowd neatly
circumvents the tedious problem of sampling a statistically significant number of individ-
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uals to encompass the main real-world source categories.[154] Such crowd measurement
have been performed previously in enclosed, ventilated environments so that hundreds
of people are monitored simultaneously, for example class rooms,[117, 135, 136, 144]
office rooms,[126] other public buildings like a football stadium[142] and cinemas.[155]
In contrast, much current breath research is focussed on the identification of biomarkers
or chemical fingerprints from individuals to diagnose an illness.[6, 111, 115] However,
the breath composition of an individual can vary significantly with dietary, sanitary
and smoking habits, exposure to air pollutants,[41] position, and even the emotional
state.[155] In future the results provided here may be compared with individuals to as-
sess their representativeness and with disease biomarker candidates to gauge potential
interferences.

2.2. Materials and Methods

2.2.1. Cinema/Movie Theatre

The measurements were made from screening room 2 in the Cinestar cinema complex
in Mainz between 15 Dec 2015 and 15 Jan 2016. Within this time period, three films
were screened: “Star Wars: The Force Awakens” and two German films “I’m off then”
(German title “Ich bin dann mal weg”) and “Help, I’ve shrunk my teacher” (German
title “Hilfe, ich habe meine Lehrerin geschrumpft”). According to the “International
Movie Database”[1] the “Star Wars” film falls under the genre “Action“, “Adventure”
and “Fantasy” whereas the other two films were “Comedy” films. The third film was
additionally categorized under “Family” indicating that it was targeted at younger audi-
ences. Star Wars was classified as suitable for viewing by people of 12 and above, while
the other two films had no age restriction (USK 0). Nonetheless, the subject matter of
“I’m off then” was more adult in nature (recounting a pilgrimage) whereas “Help, I’ve
shrunk my teacher” was more directed at children. Screening room 2 has a capacity
of 238 people and ticket sales, which are discounted for children (under 12 years old),
permitted the proportion of children under 12 to adults to be known for each screening.
The number of screenings, viewers and percentage of children (under 12 years old) in
the audience are given in the supplement Table A.1. In total 8300 viewers were assessed
over 85 separate film screenings.
The three films assessed in this study were screened at different times of day, from 11:30
in the morning to 22:30 at night. The summary of the screening hours of each film
can be found in the supplement Table A.2. It is important to note, that the children’s
film “Help, I’ve shrunk my teacher” was screened mainly in the morning with only two
screenings in the afternoon, whereas the other two films are distributed more evenly over
the day. This distribution may bias the calculated VOC emission rates for this film and
the consequences are explored later in the emission rates section.
The screening room was continuously flushed with outside air at a constant rate of
6500 m3h−1. All air was drawn in from the outside without any internal recirculation.
Air entered the cinema through vents in the floor and was drawn out though opening
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in the ceiling. The volume of the screening room was 1300 m3 so that the overall air
exchange rate was circa five times per hour. The entire exhaust airstream from the
screening room was taken through a 75×75 cm stainless steel ventilation shaft to a
separate technical room where the measurement instruments (PTR-TOF-MS and CO2-
Analyzer) were placed. In the middle of the ventilation shaft a 1/4” outer diameter
(0.625 cm OD) Teflon sample line was inserted and 20 L/min air drawn continuously to
the instruments.

2.2.2. Proton transfer reaction time-of-flight mass spectrometer

The VOCs in the screening room exhaust air were continuously monitored with a
PTR-TOF-MS (proton transfer reaction time-of-flight mass spectrometer, PTR-TOF-
MS 8000, Ionicon Analytik GmbH, Innsbruck, Austria). The ionization of the analyte
molecules is made via hydroxonium ions (H2O

+) which, due to the relatively low energies
involved, results in little fragmentation of the analyte. The protonation occurs only for
molecules possessing a higher proton affinity than water (691 kJ/mol), thus conveniently
the system is blind to nitrogen, oxygen and argon, the main components of air.[12, 66]
A detailed description of the set-up, the adjusted parameters of the PTR-TOF-MS and
the calibration procedure is provided in the supplement.

2.2.3. CO2 measurement

CO2 was measured at 1 Hz using a commercially available Li-COR Li-7000 system. The
linearity of the response was confirmed to 3400 ppmv using a second standard gas (10%
CO2, Air Liquide, Germany).

2.2.4. Data analysis

All modelling and statistical analyses were performed using the software R.[138] The
data from each film title was divided into sections of the equal length corresponding to
30 minutes before the beginning of the film until 15 minutes after the end. Screening
room background mixing ratios were sampled during the night between 3:00 and 6:00
local time when the cinema was closed to the public. In order to extract the masses
that changed in the presence of the audience a paired Wilcoxon rank test for each mass
was performed using the mean of the 15 minutes before the beginning of the film and
the mean value during the film. A threshold p-value of 0.01 was chosen to extract the
molecular mass signals which significantly increase in the presence of the audience.

2.2.5. Box model

Instantaneous emission rates were calculated by applying a mass-balance-approach. In
this model it was assumed that there is no pathway for mass loss except air exchange
and that the emission rate p is small compared to the air exchange rate. Since well-
mixed conditions could not be assumed to apply in this model a correction variable
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2. Emission rates from adults and children

was introduced to account for the incompletely mixed air.[107] As stated previously, the
volume of the screening room was 1300 m3 and the air supply was 6500 m3h−1 with
identical flows in and out of the showroom.

dm/dt = cin · q · r · +p − cout · q · r (2.1)

In Equation 2.1, m is the mass of the molecules at time t in the screening room air.
The outside air is supplied with a ventilation rate r and a mixing ratio cin. The mixing
ratio cin of each VOC in the inflowing air was interpolated from the two surrounding
background night time measurements in the absence of people. The ventilation rate r
is multiplied with the mixing parameter q, to account for the imperfect air mixing. The
lower the mixing factor q the worse the mixing of air in the room providing a smaller
effective room ventilation rate (product of q · r). This accounts for the fact that the
air less effectively mixed from the lower part of the cinema. This phenomenon leads to
a slower exchange resulting in a flatter curve and in a later establishment of the steady
state. The emission rate of a given gas from the audience is given by p. The effective
ventilation rate was estimated by optimizing the mixing factor q and the emission rate
of CO2 pCO2

with a normal least squares fit. The estimated mixing factor was used
thereafter for all other calculations.
Rearrangement of Equation 2.1 results in an expression for the emission rate, Equation
2.2. For the calculation of the emission rate, the data was smoothed and differentiated
using a Savitzky-Golay-filter with a span of 21 points and a polynomial order of 3.

p = dm/dt − cin · q · r + cout · q · r (2.2)

In Equation 2.2, the emission rate p expresses the total emitted mass per unit time
[μg h−1p−1] for a specific number of viewers. Equation 2.3 was applied in order to
determine the average emission rate per person (ER) while at rest. Henceforth, the
emission rate (ER) will be referred to as the average emission rate per person.

ER = p/N (2.3)

The mean of the total emitted mass p over the course of the entire film was divided by
the number of viewers N and reported for each film. This results in an emission rate
of grams (of a particular molecule) per hour per person. All calculated values for the
emission rate are presented as the average emission rate per person [μg h−1p−1]. The
cinema provided also the number of children (younger than 12 years) watching the film
based on the ticket sales. The mean emission rates per person estimated from the “I’m
off then”-film (ERadults) were used to calculate the emission rate of children. To do
this it was assumed that the emission rate for children during the child film “Help, I’ve
shrunk my teacher” is the difference between the total emission rate p minus the sum of
the emission rate of the adults (

∑
ERadults).

pchildren = p −
∑

ERadults (2.4)
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2. Emission rates from adults and children

The division of the total amount of emitted VOC per minute by the amount of children
(Equation 2.3) resulted in the emission rate per child. The “I’m off then” -film was
only attended by adults because of the subject matter (a pilgrimage), even though the
film is free for all age groups (unrestricted), see Table A.2. Thus the emission rates
calculated from these screenings were labelled as pure “adult”. In the case of the “Star
Wars”-film the audience consisted of people from different age classes, beginning at the
age of 12. The film “Star Wars” is more directed at younger viewers than the film “I’m
off then” and therefore the emission rate obtained from the Star Wars screenings were
labelled as “mixed”. Given the emission rate of “adults” calculated from the “I’m off
then” screenings the emission rates labelled as “children” were obtained by applying
Equation 2.4.

2.3. Results and Discussion

2.3.1. Calculated effective ventilation rate and results of the box

model

The mean mixing factor derived from the CO2 data from all screenings was found to be
0.3 ± 0.1 with a residual sum of squares ranging from 0.97 to 0.99. Previously reported
literature values for this parameter range from 0.1 for imperfectly mixed rooms to 1
indicating fully mixed.[107] There is no dependence of the mixing factor on the number
of viewers (correlation coefficient r = -0.07).
Further calculations were performed using the mean of the mixing factor giving q= 0.3.
The second parameter estimated by the model is the emission rate of CO2 per person.
The calculated emission rate pCO2

was estimated to be 2.9·107 μg h−1p−1 with a standard
deviation of 0.1 · 107 μg h−1p−1.

2.3.2. Emission rates

In Figure 2.1, the CO2 mixing ratio (black) and the emission rate per hour per person
(grey) are shown. Most of the measured VOC from human beings show a similar general
behaviour during all screenings with a slow steady increase as the audience enters the
previously empty screening room and a steep decrease at the end of each film, when
the audience departs. Typical mixing ratios of CO2 lie between 400 and 2500 ppm, for
acetone between 3.00 and 20.00 ppb, and for isoprene between 1.00 and 9.00 ppb. These
molecules are known to be endogenously produced and emitted in human breath.[7, 24]
The emission rate at the beginning of each film cannot be evaluated quantitatively since
the audience enters the screening room little by little and the door is open to the foyer
area. During the film, the elevated emission rate remains on average reasonably sta-
ble albeit with clearly defined peaks at certain moments (associated with events in the
film), and then decreases rapidly at the end of the film. The mean emission rates for the
measured VOCs were calculated from the beginning of the film until 5 minutes before
the end.
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The mixing ratio of the VOCs entering the screening room (cin) was estimated using
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Figure 2.1.: Behaviour of the emission rate per person (grey) and the mixing ratio (black)
of CO2. The top panel shows the film “Help, I’ve shrunk my teacher”, the
middle panel “Star Wars: The Force Awakens” and the bottom panel “I’m
off then”.

the interpolated value between the two night-time background measurements. Assuming
lower mixing ratios of VOCs during the day time (true for CO2) than during night time
background measurements, the emission rate would be higher than reported. For CO2

a maximum error of 30% was calculated for 54 viewers and a mixing ratio of CO2 of
627 ppm at night. This condition depicts the maximum error and mixing ratios higher
than 600 ppm at night were measured only for 5 films. The average mixing ratio during
night was 483 ± 44 ppm CO2 resulting in an error of 15% with 54 people attending the
cinema. The higher the amount of viewers attending the cinema the smaller the error
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2. Emission rates from adults and children

becomes (on average of 98 people attended the screenings). In general, we assume that
the error introduced in the emission rates by different diurnal VOC concentrations is
small compared to the standard deviation presented in Table 2.1.
The emission rates of selected gaseous species from children and adults, provided by
Equation 2.3 and 2.4, are shown in Table 2.1. The presented masses were either cali-
brated with the use of a gas standard or calibrated using the calibration factor of acetone
(30.9 ncps/ppb). An overview of all detected VOC signals can be found in the supple-
ment Table A.3.

Table 2.1.: Emission rates of various VOC and CO2.
Molecule Pr. Mass

[m/z]
Adults
[μg h−1p−1]

Std.dev.
[μg h−1p−1]

Children
[μg h−1p−1]

Std.dev.
[μg h−1p−1]

Cal.
method

Carbon diox-
ide

- 3.0 · 107 0.5 · 107 1.8 · 107 0.6 · 107 Cal. gas

Formaldehyde 31.0178 207 104 426 375 Cal. factor
Methanol 33.0335 650 736 1136 984 Cal. gas
Acetaldehyde 45.0335 221 76 252 160 Cal. gas
Ethanol 47.0491 216 154 116 171 Cal. factor
Acetone 59.0491 419 96 333 202 Cal. gas
Isoprene 69.0699 166 39 95 59 Cal. gas
Sum of all
monoterpenes

137.1325
+ 81.0699

201 170 189 181 Cal. gas

Siloxane (D5) 355.0698 112 104 256 186 Cal. factor

In order to distinguish between exogenous and endogenous emissions, the standard
deviation of the emission rates was examined over several screenings of the same film.
We hypothesize that exogenous sources will be significantly more variable over the time
of day. This is supported by the relatively small standard deviations that were observed
for CO2, acetaldehyde, acetone and isoprene which are known to be predominately en-
dogenous. The protonated mass of decamethylcyclopentasiloxane (D5) would be m/z
371.0956 but the most abundant peak appears at m/z 355.0698 due to the elimina-
tion of a methyl group. Based on their relatively high standard deviation, we consider
ethanol, the siloxane, methanol and monoterpenes to be predominately exogenous.
The emission rate per person for CO2 was estimated to be 30 ± 5 g h−1p−1 for adults
and 18 ± 6 g h−1p−1 for children. Persily et al.[110] derived the CO2 emission rates
from well-established concepts concerning the human metabolism and physical activity.
Assuming an average age between 21 to < 30 and a physical activity of 1.4 met (be-
tween 1.3 for “sitting, reading, writing, typing” and 1.5 for “sitting at sporting event
as spectator”. The unit “met” quantifies the level of physical activity) we calculate an
emission rate of 40 g h−1p−1 for males and 32 g h−1p−1 for females. The emission rate
decreases continuously for younger or older people (both male and female). For children
(younger than 12) the reported value of 18±6 g h−1p−1 underestimate the emission rate
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calculated by Persily et al. for an age class between 6 to < 11 lying between 22 to 25
g h−1p−1 for males and 19 to 23 g h−1p−1 for females.
Tang et al.[136] recently published emission rates from several VOCs measured in a
classroom. Table 2.2 compares the emission rates calculated by Tang et al. with the
values presented in this study. Especially, the emission rates per person of isoprene,
monoterpenes and the (iso)butyl fragment are in good agreement. For ethanol the adult
emission rate from the cinema is higher (216 μg h−1p−1 for adults) which comes from the
consumption of alcoholic beverages in the evening also resulting in a higher standard
deviation. Comparing the ethanol emission between pre-evening and evening screen-
ings the estimated emission rate is calculated to be 132 μg h−1p−1 for the pre-evening
screenings (before 18:00) and 329 μg h−1p−1 for the evening screenings (18:00 and later,
compared to 94.9 μg h−1p−1 from Tang et al.). Tang et al. summarized all sulfur-
containing compounds resulting in an emission rate of 6.5 μg h−1p−1 which is close to
the emission rate of dimethyl sulfide or ethyl mercaptan derived in this study. The
emission of methanol is discussed later in more detail but was found to be variable over
the day exhibiting high values in the morning.
The skin oxidized VOC like 6-methyl-5-heptene-2-one (6-MHO) or 4-oxopentanal (4-
OPA) were less abundant or were not detected in the cinema. Possible explanations
might be the lower ozone mixing ratios in winter or the effective removal of ozone within
the intake of the ventilation system and hence a lower amount of oxidation products.
A previous study measuring the air within an open air football stadium using the same
instruments in summer reported a signal of 6-MHO.[157] Another explanation could be
that these products were already evaporated from the skin during the waiting time in
the foyer of the cinema which would have low ambient ozone due to effective indoor
deposition. This could be also true for acetone which is reported to be a product of
skin lipid ozonolysis, too.[127] Compared to the emission rate presented in this paper
of 419 μg h−1p−1 Tang et al. reported a value twice as high. In 1975 Wang et al.[144]
published a study concerning emission rates of bioeffluents from humans. In general,
their calculated emission rates lie above those presented in our study with the exception
of CO2. However, bearing in mind that the study from Wang et al. was conducted 40
years ago that most of the values are in the same order of magnitude is reassuring.
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Table 2.2.: Summarization of emissions rate of several VOC from this study and Tang
et al.[136]

Molecule Protonated
Mass [m/z]

Tang et al.
[μg h−1p−1]

Adults
[μg h−1p−1]

Children
[μg h−1p−1]

Acetone 59.0491 1060 419 333
Acetic Acid 61.0284 329 205 357
Methanol 33.0335 156 650 1136
Acetaldehyde 45.0335 114 221 252
Monoterpenes 137.1325 +

81.0699
187 201 189

Isoprene 69.0699 162 166 95
Ethanol 47.0491 94.9 216 116
C6H10H+ 83.0855 88.8 22 32
(iso)butyl fragment 57.0699 39.7 41 52
Propionic acid / hydrox-
yacetone

75.044 40.4 19 27

6-MHO 127.1168 99.3 3 5
(iso)propyl fragment 43.0542 23.8 107 321
S-containing 63.0263 6.5 7 6
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Figure 2.2 shows the emission rate in μg per hour per person for different VOCs in a
boxplot. The black solid line in the box indicates the median and the boxes encompass
the 25 and 75 percentiles of the data. The whiskers are 1.5 times the interquartile range.
The different colours indicate the age classification of the film. The molecules shown
in Figure 2.2 were those with the highest emission rates measured, whereby CO2 was
by far the greatest emission source (ca.30 g h−1p−1) followed by methanol and acetone
(approximately four orders of magnitude less) along with the other VOCs.

Figure 2.2.: Boxplots for different VOCs and different age groups. In the upper part
carbon dioxide, methanol and acetone are shown (from left to right). The
lower part includes acetaldehyde, ethanol, isoprene, pinene, monoterpenes
and decamethylcyclopentasiloxane.
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Some of the VOCs show significantly different emission rates depending on the age
classes. CO2, acetone and isoprene show similar behaviour with the lowest emission rates
for children and highest for adults. For CO2 and isoprene, the emission rates for the
mixed audience (“Star Wars”, rating 12) and the adults only (“I’m off then”, rating 0)
are almost equal but they differ significantly from the emission rates of children (calcu-
lated as shown in Equation 2.4). Figure 2.2 shows a slightly higher emission rate for CO2

for the mixed group than for adults. An explanation could be that the “Star Wars”-film
from which the emission rates of the mixed group were derived were screened mostly at
14:00 (20 screenings) and 22:30 (12 screenings). In the case of the screening at 22:30
only people of an age of 18 or older are allowed to enter and the target audience of the
“Star Wars”-film is probably younger than that of the “I’m off then”-film (recounting a
pilgrimage). This group specifically people between 21 to < 31 emit the highest amount
of CO2. The calculated emission rate for CO2 at 22:30 screening the “Star Wars”-film is
36 ± 4 g h−1p−1 compared to 28 ± 5 g h−1p−1 at 14:00 (see Figure 2.3). There is no data
available on the average age or gender distribution for the people attending the cinema.
The age dependency of the isoprene emission rate is in agreement with the previously
reported age dependency of isoprene in human breath described in Lechner et al.[87]
Therein it was recognised that children emit significantly less isoprene than adults. As
for CO2 the emission rate for isoprene is slightly higher for the mixed group than for the
adults also showing an enhanced emission rate at 22:30 (233 ± 58 μg h−1p−1 at 22:33
and 148±23 μg h−1p−1 at 14:00). Lechner et al.[87] reported a significant lower isoprene
emission rate for 19-29-year-old subjects than for older adults. However, it should be
noted that only 11 subjects were measured in 19-29-year-old age category in the Lechner
et al. study. A much earlier study by Mendis et al.[95] also reported no age dependency
of isoprene concentration in expired air, sampling from 43 healthy volunteers between 22
and 75 years. It should be noted that this study differentiates only between children up
to 12 years and older persons, based on ticket sale information. Thus the exact average
age of the viewers attending the measured films could not be determined. Interestingly,
the function and source mechanism of isoprene is still a matter of debate. Isoprene is
clearly endogenously produced and it is suggested that its production is linked to the
cholesterologenesis.[131]
The emission rate for acetone shows significantly different emission rates between the
children and adult age classes with a p-value of 0.05. A similar difference in breath
acetone, whereby children emit less than adults, has been also reported by Enderby et
al.[35] In our study the “mixed” age class emission rate lies in between children and
adults. However, Enderby et al found no correlation between breath concentration and
age in an age range between 7 to 18 years.[35] Acetone is produced by the liver during
fatty acid metabolism which acts when glucose energy sources are not available. Higher
levels of acetone in blood are therefore measured in humans during fasting and prolonged
exercise.[84] The larger acetone emission rates from adults (13% higher) may be simply
a function of their larger body mass. Further factors like the diabetic status of the atten-
dees presumably leading to higher emissions rates of acetone cannot be excluded.[145]
Acetaldehyde was found to be age independent, so emission rates of children and adults
are comparable despite differences in body mass. This is in agreement with previous
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studies.[35, 140], Acetaldehyde is produced in the liver as an intermediate in the ethanol
metabolism[42] and through the action of bacteria on ethanol in the mouth.[143] The
aforementioned molecules all show a relatively small standard deviation compared to
their emission rate and to the other compounds. This behaviour may reflect the fact
that they are predominantly endogenously produced and thus are less liable to influence
by exogenous factors like food and drink consumption.
The average CO2 emission rate for the different films and screening times can be seen
in Figure 2.3. The CO2 emission rate during each of the films (“Help, I’ve shrunk my
teacher” in red screened at 11:30 and 17:20, “Star Wars” in green screened at 14:30,18:00
and 22:30 and “I’m off then” in blue screened at 17:30 and 20:00) are closely comparable
for multiple screenings of the same film, but the three films exhibited significantly dif-
ferent emission rates and standard deviations, see Table 2.1. Interestingly the emission
rate for CO2, as well as for acetone and isoprene (and many other species) gets higher
during later screenings with a maximum at 22:30. This might be a result of a higher
emission rate seen in the example of CO2 or the underestimation of the emission rates
during midday due to the error introduced by the measurement of the background dur-
ing night. The CO2 emission rate for the children’s film, shown at 11:30 and 17:20 (only
two screening times), lay well below that of the other two films.
When examining the data for trends in the emission rate as a function of time of day,
it is important to note that all “Help, I’ve shrunk my teacher” films were screened in
the morning and early afternoon whereas the “Star Wars” and “I’m off then” films had
screening times distributed over the day, as shown in the supplement Table A.2. In Table
2.1 it can be seen that other VOCs like methanol, ethanol and the monoterpenes show
larger standard deviations compared to their emission rates than the main breath gases
discussed above. Methanol is known to be produced endogenously by the consumption
of fruit through the degradation of pectin.[91] The high standard deviation may stem
from the different dietary habits between the viewers. Therefore, the high emission rate
of methanol for the children’s film “Help, I’ve shrunk my teacher” may be caused by the
consumption of fruits and fruit juices during breakfast since this emission rate diminishes
during the day. The middle panel in Figure 2.3 depicts the daily pattern of methanol
which is clearly distinct from CO2. The emission rate of methanol shows a maximum at
11:30 and again at 22:30 and a relatively constant emission rate during the rest of the
day. Monoterpenes are ingredients of many fruits and can be also found in soft drinks
like Cola. Additionally, monoterpenes like limonene are frequently used as fragrances in
personal care and cleaning products. The use of personal care products and their effect
on emission rates is discussed in detail using the example of decamethylcyclopentasilox-
ane below.
In the lower panel the emission rates of decamethylcyclopentasiloxane (D5) calculated

at different screening hours is shown. This molecule belongs to a group of chemicals col-
lectively called siloxanes or silicones that are commonly found in personal care products
such as shampoo and deodorants as well as in cleaning and polishing products.[62] It is
therefore an exogenous species and shows a temporal emission behaviour similar to that
reported by Tang et al. who measured the mixing ratio of different cyclic siloxanes in a
classroom of engineering students.[135] In that study D5 was found to decrease over the
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Figure 2.3.: Emission rates of CO2 (top) and methanol (middle) and decamethylcy-
clopentasiloxane (bottom) during the course of the day. The colours indicate
the film screened in the showroom. The film “Help I’ve shrunk my teacher”
is shown in red, “Star Wars” in green and “I’m off then” in blue.

course of day, likely due to evaporative losses of applied hygiene products. Indeed, the
earliest and the latest screenings show the highest values. This may simply reflect that
hygiene and cosmetic products containing siloxanes are applied in the morning then “re-
freshed” later on prior to late screenings. The emission rate of several different siloxanes
were calculated in a study of Tang et al.[135] The calculated emission rates provided by
Tang et al. were generally higher in the morning than in the evening due to outgassing
from siloxanes of cosmetic products, ranging for D5 from 9800 to 183 μg h−1p−1. In
our study such strong differences for D5 could not be found, as shown in Figure 2.3,
most of our reported average values lay close to the afternoon levels (between 14:10 and

32



2. Emission rates from adults and children

16:00 pm) of 183 μg h−1p−1. This is despite the ventilation rates in both rooms being
comparable. This discrepancy may reflect the fact that we used the average over the
film to calculate VOC emission rates, whereas Tang et al. reported emission rates every
minute. This is important because higher emission rates for D5 were observed at the
beginning and at the end of the film, when the audience undress and dress respectively.
This behaviour is shown in Figure 2.4 along with the emission rate of CO2. The peak
emission of D5 for the films screened in the morning was on average 2800 μg h−1p−1,
and was therefore only slightly higher than measured for the films in the afternoon with
an emission rate of 2500 μg h−1p−1. In general, we used only values during the film and
not the peak emission at the beginning of the film since as the audience is entering the
cinema we do not know the exact number of people present.
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Figure 2.4.: Emission rate of CO2 (black curve) and Decamethylcyclopentasiloxane (grey
curve) in [μg h−1p−1] during the film "Star Wars" starting at 14:00 and ending
around 16:30.

In Figure 2.4 the emission rate of D5 decreases during the film while the audience
remains seated since it is not emitted from breath and is probably emitted from skin at
lower rates when the audience does not move. This indicates that they are not released
from the human metabolism but from a “burst” source associated with ruffling of hair,
clothes and skin.[135] All other VOCs exhibit some emission source during the film that
varies with time. The examples of D5 show clear emission rate changes over the day.
Determining differences between children and adults in our study is complicated by these
temporal trends and by the fact that family films are screened earlier. The time of day
can be an important factor for the release of VOCs due to temporally dependent habits
and metabolic differences. Evaporative loss influences emission rates of chemicals which
are applied or consumed only several times a day.
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2.4. Conclusion

In summary, a PTR-TOF-MS and a CO2 instrument were plugged into the exhaust
ventilation shaft of a movie theatre in order to characterize the emissions of VOC and
CO2 from a large number of seated people under real world conditions. By sampling a
crowd of people at different times of day rather than individuals a representative aver-
age human VOC emission is obtained over a broad range of dietary and smoking habits,
activity level, state of health, environmental exposures, age, stress level or mood. This
approach offers a statistically robust method for determining average emission rates of
VOC from humans incorporating multiple sources including breath, skin, clothes and
some foodstuffs.[154]
The most abundant compounds were the endogenous breath compounds CO2, acetone
and acetaldehyde, and the predominantly exogenous ethanol, monoterpenes and de-
camethylcyclopentasiloxane (D5). The emission rates of the VOCs measured from hu-
mans covered a range of 5 orders of magnitude, and CO2 emission rates were a factor
of 105 higher than the VOC emissions. Large variances were found between adults and
children younger than 12 (for CO2, acetone and isoprene), for time of day (methanol,
siloxanes),[39, 135] and between seated and moving crowds. The underlying reasons for
the differences can be biological (result of metabolic processes as with isoprene and ace-
tone) or behavioural (from hygiene or diet as with siloxanes and methanol). Since this
dataset represents average emissions from a wide cross section of society it can therefore
be used for indoor air chemistry studies, comparison of source strengths, and building
design.
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3. Investigation of the emission of
VOCs from humans as a function of
the ambient ozone mixing ratio

The previous section shows the emission rates of VOCs emitted by humans. These can
be classified in: 1) mainly endogenously produced such as CO2, acetone and isoprene and
2) exogenously produced such as ethanol and decamethylpentasiloxane. It was found
that the emission rates depend on biological and behavioural differences. Recent work
showed the production of oxidated species due to the ozonolysis of skin products. It was
shown that 6-methyl-5-hepten-2-one (6-MHO) is one of the most dominant degradation
products.[142, 149, 156, 157] This compound was also measured in the cinema showroom
in both winter and summer. It is assumed that the largest part is transported from the
outside into the screening room since ozone is effectively removed on surfaces such as
metal ventilation shafts and air filters and thus negligible ozonolysis is assumed to occur
the showroom.
The measurement of VOCs in a showroom of a cinema took place in summer 2016 for four
weeks during the European Football Championship. Additionally, ozone data was re-
trieved from the Mainz Umweltbehörde from a measurement station in Mainz-Mombach.
The ozone data does not come exactly next to the cinema. The measurement station
is located 6 kilometres to the south from the cinema. However, we assume that the
measurement represents the regional ozone level and can be taken to show seasonal dif-
ferences. We do not perform any quantitatively analysis with this ozone data. The ozone
mixing ratio was calculated by averaging over 3 hours before the beginning of the film.

Figure 3.1 shows the relationship between 6-MHO and ozone for summer 2016 and
winter 2014/2015. The mixing ratio of 6-MHO in the cinema ranges from 3.5 ppb to
17.4 ppb with a median value of 12.6 ppb during summer and from 0.9 ppb to 10.3 ppb
with a median value of 3.3 ppb during winter. The ozone mixing ratio ranges from 40
ppb to 73 ppb with a median value of 55 ppb in summer and from 1 ppb to 67 ppb with
a median value of 15 ppb in winter. The correlation coefficient is r = 0.70 in summer
and r = 0.36 in winter. This supports the suggestion that 6-MHO is formed via surface
ozonolysis of skin oils. Due to the small data set size during summer no further investi-
gation was performed.
The comparison of average emission rates between summer and winter revealed higher
emission rates for 6-MHO during summer (~3.8 times higher in summer) whereas de-
camethylsiloxanes (~1.6 times higher in winter) and monoterpenes (~2.5 times higher
in winter) were emitted in higher amounts in winter. Possible explanations might be
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3. Emissions of VOCs as a function of the ambient ozone mixing ratio

(a) Summer

(b) Winter

Figure 3.1.: Scatter plot between 6-MHO and ozone during summer (upper panel) and
winter (lower panel). The blue line shows the estimated linear regression
line with its error as the dark grey shaded area.

higher emission rates of these exogenous compounds in winter due to different seasonal
hygiene habits. Another reason might be the difference in outside temperature and thus
the higher evaporation of these compounds in summer. Indeed, the meteorological con-
ditions (such as ozone mixing ratio, temperature and rainfall) can have an impact on
the release of VOCs in indoor environments and should be taken into consideration. For
6-MHO a positive correlation (r = 0.40) was also found with temperature (with a cor-
relation coefficient of r = 0.64 between temperature and ozone) and statistical methods
might provide useful tools for discovering these dependencies.
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4. European football: Goals change
crowd air chemistry
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During live public screenings of the 2016 UEFA European Championships, the emis-
sion rates of particular chemicals in the audience’s breath vary sharply - apparently in
response to events on the football pitch.

Figure 4.1.: People exhale burst of carbon dioxide and isoprene whenever a goal is scored.

Football matches induce fans to roar in jubilation, hold their breath in suspense and
sigh with disappointment. On 26th June, we tracked reactions from a cinema audience
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during the Germany - Slovakia game by monitoring changes in air composition resulting
from their exhalations (for methodology, see Williams et al.[155]).
In moments of high excitement, exhaled carbon dioxide seems to spike as people’s heart-
beats and breathing accelerate (see ’Breath chemistry of football fans’). So do emission
rates of isoprene, which is released from muscles as fans spring from their seats when
a goal is scored. Breath chemistry therefore appears to ride the same emotional roller
coaster as the live broadcast.
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Abstract Human beings continuously emit chemicals into the air by breath and through
the skin. In order to determine whether these emissions vary predictably in response
to audiovisual stimuli, we have continuously monitored carbon dioxide and over one
hundred volatile organic compounds in a cinema. It was found that many airborne
chemicals in cinema air varied distinctively and reproducibly with time for a particular
film, even in different screenings to different audiences. Application of scene labels and
advanced data mining methods revealed that specific film events, namely “suspense” or
“comedy” caused audiences to change their emission of specific chemicals. These event-
type synchronous, broadcasted human chemosignals open the possibility for objective
and non-invasive assessment of a human group response to stimuli by continuous mea-
surement of chemicals in air. Such methods can be applied to research fields such as
psychology and biology, and be valuable to industries such as film making and advertis-
ing.

5.1. Introduction

All living organisms from the smallest plants and bacteria to trees and primates emit
chemicals into their local environment.[24, 56, 75, 159] Such chemicals may act as sig-
nals, eliciting wide ranging responses[31, 70]. The atmosphere has been shown to be
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an effective conduit for chemical communication between plants and plants,[10] plants
and insects,[121] insects and insects.[5] Yet the extent, or even existence of airborne
chemical communication between humans remains controversial.[32, 162] Despite re-
ported chemosignal volatiles in human tears affecting testosterone levels,[45] armpit
and sweat odours interpreted as fear signals,[2, 4, 29] sleeping babies responding to
lactating breast volatiles[33, 93, 119] and menstrual synchronization,[130] no human
pheromone (an evolved chemical signal between humans) has been reliably and repro-
ducibly identified.[160] Generally, studies reported to date have been small in scale
(number of people and measurements), subjectively assessed,[2, 29] and often with un-
naturally high concentrations of bioassays, due to the analytical methods available. To
screen groups of people for potential emotion signalling molecules at natural levels we
have conducted a largescale study involving more than 9500 cinemagoers who viewed
108 screenings of 16 different films (including comedy, horror and romance, see Table
5.1). During the films, audiences were subjected to audiovisual stimuli while outside air
was directed into the cinema through floor vents and out through ceiling vents (normal
operating practice), and in the outflow, the concentration of over 100 trace gas species
was measured using proton transfer reaction time-of-flight mass spectrometer (PTR-
TOF-MS) and infra-red spectroscopy. Data was collected at 30 second time resolution
and with sub-ppb(10−9) detection limits to investigate potential causal links between
the audiovisual stimuli and audience emitted chemicals.

Table 5.1.: Summary
Film Number of Screenings
Buddy 17
Walking with Dinosaurs 15
The Hobbit - The desolation of Smaug 15
The Secret Life of Walter Mitty 15
The Hunger Games 2 10
Carrie 7
Suck me Shakespeare 5
The Little Ghost 4
Journey to the Christmas Star 4
Paranormal Activity 6 4
Belle and Sebastian 3
The Counselor 3
Machete Kills 2
Cloudy with a chance of Meatballs 2 2
The Physician 1
Bolshoi: Sleeping Beauty 1
Total 108
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Of the 872 volatile compounds identified in human breath[24], a fraction is thought
to be produced endogenously. These compounds can be used to track chemical changes
within the body, over long (with age)[83, 87] and short timescales (medication response,
food, disease or exercise).[75, 76, 128, 131] Within this cinema based study we hypothe-
size that if films elicit strong emotional responses then volatile products from the internal
biochemical response (cardiovascular, skeletomuscular, neuroendocrine, and autonomic
nervous system)[34, 89] may be vented shortly afterwards over the lungs, and observed
as transient peaks in concentration in air exiting the cinema. Full details of the experi-
mental set-up and instrumentation is given in the method section.

5.2. Results

Figure 5.1 shows sections of the CO2 data measured in air from the Mainz Cinestar cin-
ema. In Figure 5.1a, large CO2 peaks can be observed between 26th and 30th December,
each corresponding to the screening of a particular film. Prior to a film starting in the
empty cinema, CO2 approximates to background levels (ca. 400 ppm) as ambient air
is continually drawn through the cinema from outside. People exhale air with circa 4%
CO2, so that as the audience arrives, CO2 levels increase, rapidly at first, and then more
slowly as the equilibrium value is approached after about ninety minutes, reaching levels
between 1000–2400 ppm. This is some 2 to 8 times the current ambient background
levels (400 ppm), but well below the European indoor standard limit of 3500 ppm. In
effect, the cinema is a small scale analogue of the on-going planetary scale increases in
CO2 in which additional anthropogenic CO2 sources from fossil fuel usage must equili-
brate with the slow uptake rates into the ocean, vegetation and soils.[40] At the end of
each film the CO2 level falls abruptly as the audience departs, generating a “shark-fin”
profile for CO2.
Figure 5.1b shows CO2 measurements and audience numbers for a day on which four

films were screened, “Hunger Games 2”, “Dinosaurs 3D” and “Buddy” twice. Those
films with higher attendance have correspondingly higher CO2. Figure 5.1c displays the
CO2 profile of a single film, “Hunger Games 2”. Clearly the CO2 trace does not in-
crease smoothly with time, as would be expected from a constant emission source, but
rather small peaks are discernable despite the cinema ventilation rate remaining con-
stant. These CO2 peaks would be generated if the audience’s pulse and breathing rate
were momentarily increased in response to scenes in the film. Figure 5.2 shows measure-
ments from four showings of “Hunger games 2” on sequential days between December
26th - 29th with attendances of 87, 96, 104, and 186 people respectively. Two distinct
peaks in CO2 occurring around 15:00, highlighted by the red vertical lines, are visible
on all days, indicating that the physiological response induced in each audience is repro-
ducible. The pattern of CO2 peaks shown in Figure 5.1c was characteristic of the film
“Hunger Games 2” and in many cases it was possible to identify the different films from
the CO2 profile by eye.
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Figure 5.1.: Selected sections of the CO2 measurements, (a) 5 days, (b) 1 day and (c)
1 film. The numbers above the peaks indicate the number of people in the
audience.

The mixing ratios of isoprene (C5H8) and acetone (C3H6O), which are among the most
abundant exhaled organic trace gases,[24, 75] are shown with CO2 for four film screenings
in Figure 5.2. Acetone is a soluble gas (in blood and water) that has been linked to fat
catabolism, while isoprene is an insoluble gas linked to cholesterol synthesis.[75, 131]
In Figure 5.2 peaks can be seen in the isoprene trace and to a lesser extent for acetone,
although acetone mixing ratios were twice as high. Isoprene levels in the cinema are
similar to levels reported from aircraft flying low over the pristine Amazon rainforest
(1-3 ppb)[26] while acetone levels generated by the audience (~8 ppb) are approximately
twice that found in forested environments[164] and city air.[50] The two distinct peaks
around 15:00 previously noted in CO2 are also visible in isoprene, and additionally a
further large isoprene peak is observed at the end of each film (16:00). Breath analyses of
individuals on an ergometer have shown that isoprene can be stored in muscle tissue, and
that limb movement increases isoprene in breath.[76] The mass exodus of people at the
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Figure 5.2.: Measurements of CO2, isoprene and acetone taken during four separate
screenings of “Hunger Games 2”.

end of the film is therefore the likely cause of the isoprene peak at 16:00 coincident with
rapidly falling CO2. However, the two other outstanding peaks in isoprene appear during
the film when the audience is seated (15:00 and 15:10). These times correspond to key
moments in the film when the heroine’s dress catches fire and when the final battle begins.
Previous studies have indicated that breath holding[133] and twitching muscles[76] could
potentially enhance isoprene emission over acetone. Another possibility is that isoprene
is linked to cortisol production via cholesterol. Whatever the mechanism behind the
release, the peaks in isoprene were reproduced in all four screenings of the film at the
same time, meaning that each set of cinemagoers broadcasted chemicals into the air in
synchrony to on-screen events.
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Table 5.2.: Content labels
Label Sub-label Relative Frequency
Everyday Life 0.025
Dream 0.016
Landscape 0.04
Conversation 0.68

Aggressive 0.008
Conv. Main Actor 0.321

Action 0.141
Death 0.022
Running 0.031
Recovery 0.001
Laughter 0.004
Sleeping 0.001
Blood (violence) 0.028
Sex 0.003
Kissing 0.009
Crying 0.007

Main Char. Cry 0.006
Injury 0.008
Sudden shock 0.026

Table 5.3.: Genre labels
Label Sub-label Relative Frequency
Suspense 0.283

Chase 0.002
Hidden Threat 0.005
Hiding 0.002

Comedy 0.054
Romantic Comedy 0.002
Mystery 0.002
Romance 0.014
Drama 0.019

44



5. Scene specific emissions of VOCs from humans

To determine whether causal links exist between levels of all chemicals measured and
events in the film, it was necessary to annotate the films with scene content labels. A set
of scene labels (Table 5.2 and 5.3) was defined based on genres in the IMDb database
(e.g. comedy), on objective subheadings (e.g. chase) and psychological studies (happy
to sad and excited to calm). These labels were applied to the films by ten individuals
independently (see method for details). All data were then statistically normalized and
random forests were constructed for each mass and CO2, for each 30 second timestep
within a 10 minute window, and for each label.[151] Each random forest based model
was generated based on a randomly selected subset of two thirds of the data and then
evaluated on the remaining third. This procedure was then repeated 15 times, using the
Mainz Mogon supercomputer. A set of models were trained in a process called backward
prediction to determine how well the present label was predicted by the future mass (in
the next 5 minute time window). Figure 5.3a shows film scene labels plotted against
AUC (Area Under Curve, see method) which expresses the ratio between true positives
(when the model correctly predicted labels based mass decision trees) and false posi-
tives. A random prediction produces an AUC value of 0.5. Many of the labels showed
a significant relationship with measured masses. The highest AUCs observed were for
the labels “injury” (0.85), “hidden” (0.83), “mystery” (0.81) and “hiding” (0.79), all of
which were subcategories of the label “suspense” which itself showed an AUC value of
0.75. The label comedy was also predictable based on the measured chemicals (AUC =
0.78). In contrast, the label “chase” (AUC = 0.55) could not be predicted by the model.
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Figure 5.3.: Shown are the results when two thirds of the whole film screening dataset
is randomly selected (15 times) and the resultant model tested on the re-
maining third.
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The boxes indicate the extent of 25 percent of the data either side of the median (solid
line). The dashed vertical line represents the lowest/highest datapoints that are still in
the 1.5 interquartile range while the circles are outliers. Figure 5.3a shows AUC which
expresses the ratio between true positives (when the model correctly predicted labels
based on mass decision trees) and false positives (backward prediction). A random pre-
diction produces an AUC value of 0.5. Figure 5.3b shows the ability of an individual
mass to be predicted by the labels (forward prediction). The performance of this pre-
diction versus the real value for VOC mixing ratios is given as the Pearson’s correlation
coefficient (r). High correlation coefficients indicate the predictive model was successful
for that particular species, and not that all species with high correlation coefficients are
inter-correlated.
In parallel we investigated the ability of an individual mass to be predicted by the labels
(forward prediction). The performance of this prediction versus the measured mixing
ratio is given as the Pearson’s correlation coefficient (r) in Figure 5.3b. Strong correla-
tion was found between model predicted and measured CO2, as well as for the predicted
and measured water sensitive reagent clusters m21 and m39. Both water and CO2 are
introduced to the cinema primarily by breath. Among the best correlated masses was
isoprene (r = 0.91), which is presented qualitatively for the film “Hunger Games 2”
in Figure 5.2. Some masses with high correlations have not been observed or identified
in previous studies (e.g. 105.93, r = 0.92) while other masses exhibit no significant
correlation.
Table 5.4 shows the best correlated masses and labels based on backward prediction.

A filter of AUC > 0.5 and significance level <0.05 was applied to all data. “Signifi-
cance” (Sig.) here is the result of a statistical T-test (between an evaluation based on all
masses and an evaluation with one mass omitted, this mass is given in Table 5.4). There-
fore higher AUC and lower significance values indicate stronger potentially causal links.
The labels with the highest overall causal link to the measured species were “injury”
and “comedy”. Among the chemicals linked to injury scenes are methanol (m33.0335),
acetaldehyde (m45.0335), 2-furanone (m85.0284), and butadiene (m55.0580). These
compounds have all been previously detected in human breath.[24] Although the masses
m100.9380 and m73.9472 were also significantly linked, no plausible identification could
be made based on combinations of C, H, and O. Curiously, the mass m374.08 also shows
a causal link to injury scenes despite being associated with polysiloxane which is found in
cosmetics and conditioning shampoo. This may be related to emotionally induced body
temperature variations rather than to breath. The film labels “chase” and “romance”
both did not show significant causal links with any measured masses.

5.3. Discussion

Interestingly, the two film scene labels with the most significant linkage to chemicals
measured were “suspense” and “comedy”. These could be interpreted as an evolutionar-
ily advantageous alert/stand-down signal, if perceivable by others.[134] Humans possess
a very well developed sense of smell,[125] and new evidence suggests that recall is more
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Table 5.4.: Film labels and masses with significant causal links are shown (Injury, Com-
edy, and Mystery) and two examples where masses and labels were not linked
(Romance and Chase). The AUC value for “none” means the result with the
complete dataset, and the values below are AUCs when the stated mass is
removed from the model. Significance and AUC are given for each mass as
well as an elemental formula and possible molecular identities based on previ-
ous measurements from human emissions summarized by de Lacy Costello et
al.[24] The abbreviations refer to where the species were previously measured
Br=Breath, Sk=Skin, U=Urine, F=Faeces, Bl=Blood and M=Mucus).

Injury

Mass Sig. AUC Formula Possible ID/Comment

none 0.84929
m374.082 0.004 0.81808 siloxanes
m73.947 0.015 0.8284
m85.028 0.018 0.82524 C4H4O2 2 (5H)-furanone (Br)
m105.034 0.03 0.81353 C4C8OS 3-(methylthio)-propanal (F, U, M)
m100.938 0.031 0.81562
m40.974 0.035 0.82323
m45.034 0.04 0.82347 Acetaldehyde (F, U, Br, Sk, M, Bl, Sa), Ethylene oxide (F, Br)
m55.058 0.04 0.83322 Butadiene (Br), Butyne (Br)
m33.034 0.044 0.82877 Methanol (F, Br, M, Bl)

Comedy

none 0.77843
m235.208 0.01 0.75878 C15H26N2

m111.080 0.031 0.7636 C7H10O 1,3-cyclohexadien-1-yl methyl ether (Br), 2-ethyl-5-methylfuran
(F, U, Br), (E, Z)-2,4-heptadienal (M), 3-methyl-2-cyclohexen-1-
one (U, Br), propylfuran (Br), 2,3,5-trimethylfuran (U, Br)

m121.065 0.045 0.76266 C8H8O Acetophenone (F, U, Br, Sk, M, Sa), 2,3-dihydro-1-
benzofuran (Br), 4-methylbenzaldehyde (F), phenyl acetalde-
hyde/phenylethanal/benzene acetaldehyde (F, M)

Mystery

none 0.79193
m217.204 0.024 0.7327 C15H20O a-hexyl cinnamaldehyde (Sk)
m108.959 0.03 0.69253
m159.143 0.04 0.69335 C9H18O2 1-methylhexyl acetate (Sk), isoamyl butanoate (Br), heptanoic

acid, ethyl ester (F), hexanoic acid, propyl ester (F), 3-
methylbutanoic acid, butyl ester (F), 2-methyloctanoic acid (Sk),
2-methylbutyl 2-methylpropanoate (Br), nonanoic acid (U, Br, Sk,
M, Sa), pentanoic acid, butyl ester (F), propanoic acid, hexyl ester
(F)

Romance

none 0.55738
m95.049 0.157 0.54349 C6H6O
m79.002 0.165 0.54388
m70.077 0.289 0.54591 13CC4H8 Isotope of isoprene

Chase

none 0.55248
m122.109 0.128 0.47477 C8H11N
m100.084 0.135 0.47568 C5H9NO
m164.971 0.169 0.47155
m135.030 0.175 0.5066 C8H6O2
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effective,[82] and our perception of faces changes with odours present.[146] Therefore
the chemical accompaniment generated by the audience has the potential to alter the
viewer’s perception of a film.
There are several important consequences of our finding that human beings respond
to audiovisual cues through breath emissions. Firstly, in the field of medicinal breath
analysis, where chemical markers for diseases such as cancer are being sought,[75] emo-
tionally induced emissions have the potential to confound disease marker identification.
The strong response found here for “suspense” suggests that a patient’s state of anxiety
should be taken into account in future medicinal breath studies. These findings also have
obvious industrial applications where an objective assessment of audiovisual material is
sought from groups of people, for example, in advertising, video game design or in film
making.

5.4. Method

5.4.1. Cinema/Movie Theater

All data were recorded at the Cinestar Cinema complex in Mainz (Figure 5.4a), Germany
between 1st December 2013 and 14th January 2014. Of the 14 screen multiplex, two
separate screen rooms were used (see Figure 5.4b, Cinema 2 capacity 230, and Cinema
7 capacity 230). During a film the entrance doors were closed and ambient air was
circulated from outside into the room through vents under the banked seating and out
via ceiling mounted openings so that the screening room was flushed entirely circa 6
times per hour. The measurement instruments (PTR-TOF-MS and the CO2 detector,
see below for details) were located outside the screening room (to avoid possible noise
disturbance), in a technical room that contained the outgoing air vents (75 × 75 cm
square stainless steel) and associated control systems for all auditoriums, see Figure
5.4c. An inlet was inserted into the midpoint of the exit flow vent and a 10 L/min flow
was drawn through 1

4
” OD (0.625 cm) Teflon line continuously, see Figure 5.4d. The

films viewed and the number of screenings are given in Table 5.1. This is a study of
ambient air and the chemical changes within it caused by entirely anonymous groups of
people in a public space. No personal data concerning the cinemagoers was collected,
no individuals identified, only the number of people present were recorded by way of the
ticket sales.

5.4.2. Proton transfer reaction time-of-flight mass spectrometer

Volatile organic compounds (VOCs) were measured using a commercial PTR-TOF-MS
(proton transfer reaction time-of-flight mass spectrometer, PTR-TOF-MS 8000, Ionicon
Analytik GmbH, Innsbruck, Austria).[48, 142] The measurement technique is based on
the low pressure (ca. 2 mbar) protonation of molecules with a proton affinity higher than
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Figure 5.4.: (a) The Cinestar Cinema in Mainz, Germany, (b) The 230 seat capacity
cinema audioreum, (c) the air ventilation system, (d) insertion of the Teflon
inlet into the 75 × 75 cm ventilation system. (a,b) are reproduced with
permission from Cinestar.

water by H3O
+ ions (691 kJ mol−1) that are generated in a hollow cathode discharge

chamber flushed with water vapour. All protonated molecular ions are accelerated by
an electrical field to the same kinetic energy such that the resultant velocity of the
ions depends on the mass-to-charge ratio. Hence, the time-of-flight is used to measure
the velocity, from which the mass-to-charge ratio can be determined. The TOF was
configured in the standard V-mode with a mass resolution of approximately 3700 m/z.
Mass spectra were collected ranging from m/z 10–400 with a TOF acquisition sampling
time per channel of 0.1 ns. The instrument was operated with a drift pressure of 2.20 hPa
(E/N 137 Td) and a drift voltage of 600 V. For mass calibration, 1,3,5-trichlorobenzene
was used as an internal standard by permeating 1,3,5-trichlorobenzene into a 1 mm
section of 1/8” (1.58 mm) Teflon tubing used in the inlet system. Data post-processing
and analysis was performed by using the program “PTR-TOF DATA ANALYZER”,
which is described elsewhere.[103] The PTR-TOF-MS was calibrated with a commercial
pressurized gas standard mixture (Apel-Riemer Environmental Inc., Broomfield, USA)
of known mixing ratio. The overall uncertainty was 15 percent. The calculated detection
limit (3σ of the noise) of identified masses was between 15 ppt and 155 ppt. Signals
were normalized to H3O

+ ions and the first water cluster H3O(H2O)+ by means of the
following formula:

[R+]ncps = [R+]cps · P · 106 · 296.15/(([m21] · 500 + [m39] · 250) · T · 2) (5.1)

here [R+] ncps is the normalized counts per second, [R+] is the reagent ion, P the pres-
sure, T the temperature, [m21] the counts per second of the 18O isotope of H3O

+ and
[m39] the counts per second of the 18O isotope of the first water cluster of the primary
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ion. The signal is normalized to a temperature of 298.15 K and a pressure of 2 mbar.
The humidity dependence of the PTR-TOF-MS sensitivity was tested for a suite of com-
pounds including key breath species such as isoprene and acetone shown in Figure 5.2.
The sensitivity was weak, varying in the order of 3% for the ambient conditions in the
cinema and therefore we can exclude humidity dependent variations in sensitivity as the
cause of the peaks shown.

5.4.3. Carbon Dioxide (CO2) measurement

CO2 was measured at 1 Hz using a commercially available Li-COR Li-7000 system. The
Li-7000 monitor was calibrated using a standard containing 509 ± 10 ppmv of CO2 ppmv
(Air Liquide, Germany) before and during the campaign. The instrument specifications
state that the response is linear up to 3000 ppmv. Post campaign the linearity of the
response was confirmed to 3400 ppmv using a second standard gas (10 percent CO2, Air
Liquide, Germany).

5.4.4. Film scene annotation

In order to assess the data for relationships between film scene content and trace gas
behavior it was necessary to annotate the film scene content at high time resolution, from
a set of preselected labels. Although several approaches to film scene annotation have
been reported, including scene change frequency and both audio and visual cues,[47,
103, 169, 171] as yet no standardized procedure exists. Suitable independently derived
time resolved annotations were also not available from film censor boards nor from the
subsequently published film DVDs. Instead, ten volunteers individually viewed the films
and allocated descriptor annotations as a function of the film duration using a custom
made interface. Each film was labelled at least five separate times. Three different types
of scene labels were used. The first set was general in nature and described the film
genre using terms from the Internet Movie Database (IMDb). These included terms
such as “comedy”, “suspense” or “romantic.” The second set was more specific and
referred directly to the scene content such as “chase”, “laughter” or “kiss”, “house pet”
or “injury”. These terms were kept deliberately objective to minimize potential labelling
differences between individuals caused by personal perception. Finally, we have adopted
an emotional assessment scheme that has been previously used by psychologists.[15]
It consists of two separate five point scales, one ranging from happy to sad and the
other from excited to calm. The labels produced by the individual volunteers were then
averaged and used only when two thirds of the individuals agreed. The labels were
created to match the datapoint frequency (1 every 30 seconds). A full list of scene labels
is in Table 5.2,5.3 and a comprehensive description of all data mining approaches applied
to the dataset given by Wicker et al.[151]
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5.4.5. Data Mining

This study was designed to determine whether causal links exist between levels of volatile
organic compounds and CO2 emitted in a cinema auditorium and events in the film.
While it is easy to examine the variance with time of a single molecular species for a
single film by simple graphical methods (see for example Figs 1 and 2), to analyze the
entire suite of measured masses (including unidentified mass species) at thirty second
intervals with all the labels from all the films for causal relationships and possible inter-
dependencies requires a more sophisticated and systematic data mining approach. Full
details of the data mining algorithms applied are given by Wicker et al.[151], however,
the generalized approach is summarized below. Data mining algorithms were applied
to analyze the VOC and label data within a 10 minute window around a given mea-
surement datapoint (5 minutes backwards and 5 minutes forwards). The first method
applied was forward prediction, whereby the VOC mixing ratios are predicted based on
regression from past VOC mixing ratios and the film labels. The second method was
termed backward prediction, as it used VOC changes ahead of a given point in time to
predict the current associated label. In order to evaluate the coherence of the two types
of models, the forward prediction model and the backward prediction model, we used
the predictions of the forward prediction model as an input to the backward prediction
model and compared the resulting predicted values with the actual values. The overall
product of the backward prediction are tables of VOC signal intensities (measured as
mass-to-charge ratios in the mass spectrometer) that are associated with a given la-
bel and the error in the prediction expressed as the area under the receiver operating
characteristic (ROC) curve (AUC, sometimes also called AUROC, see Table 5.4) and a
significance. The AUC expresses how well a classifier (in this case the label) ranks the
cases of one class before those of another class (in our case: those of one scene label
before those of all others). An AUC value of 1 would mean that the label was predicted
perfectly from mass signals, while a value of 0.5 indicates that the predictive perfor-
mance was equivalent to a random selection.[14] The p-value results from a statistical
test that compares the performance of a machine learning model using all masses as
input to the performance of a model using all but one mass as input. The difference
between these two cases is tested using a corrected paired t-test.[104] The t-test returns
a significance measure in terms of p-values, the lower the p-value, the more probable is
a relationship between the left out mass and the target label. Whereas in most cases, an
adjustment like Holm-Bonferoni should be performed on the tests, this is not necessary
in this case, as we only searched for indications for further analysis, which we also can
get from uncorrected values. The results of the two (significance level and AUC in Table
5.4) expresses the significance of the relationship with low number of p-values and high
numbers of AUCs indicating higher degrees of dependence.
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Abstract Humans emit numerous volatile organic compounds (VOCs) through breath
and skin. The nature and rate of these emissions are affected by various factors including
emotional state. Previous measurements of VOCs and CO2 in a cinema have shown
that certain chemicals are reproducibly emitted by audiences reacting to events in a
particular film. Using data from films with various age classifications, we have studied
the relationship between the emission of multiple VOCs and CO2 and the age classifier
(0, 6, 12, and 16) with a view to developing a new chemically based and objective film
classification method. We apply a random forest model built with time independent
features extracted from the time series of every measured compound, and test predictive
capability on subsets of all data. It was found that most compounds were not able
to predict all age classifiers reliably, likely reflecting the fact that current classification
is based on perceived sensibilities to many factors (e.g. incidences of violence, sex,
antisocial behaviour, drug use, and bad language) rather than the visceral biological
responses expressed in the data. However, promising results were found for isoprene
which reliably predicted 0, 6 and 12 age classifiers for a variety of film genres and
audience age groups. Therefore, isoprene emission per person might in future be a
valuable aid to national classification boards, or even offer an alternative, objective,
metric for rating films based on the reactions of large groups of people.

6.1. Introduction

With box office revenues worldwide estimated to be around 40 billion US dollars, the
global film industry is an important element of many national economies. Once a film is
recorded and edited it is must be classified prior to distribution to the cinemas. Movie
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classification serves to protect children from unsuitable media content and to inform
consumers, particularly parents, of the film’s subject material. This classification is made
at the national level by an independent regulator according to guidelines based on the
legal framework of the individual country. The regulator assigns a rating to the film that
reflects the public’s sensibility to the film’s content, ranging from unrestricted (suitable
to all) up to adults only (typically 18 years old). The division of the classification system
into age groups varies greatly from country to country. For example, Germany uses 0,
6, 12, 16, 18, while the United States has G (general audiences), PG (parental guidance
suggested), PG-13 (parents strongly cautioned), R (restricted) and NC-17 (no one 17 and
under admitted). India the world’s most prolific film maker, uses U (0 to 11), UA (to 17)
and A for adult. The classification process is complicated by the numerous influencing
factors that must be considered together before the age classifier can be assigned, such
as the degree of violence, sex, antisocial behaviour and bad language. Furthermore,
public opinion on certain aspects of the classification guidelines may change with time
requiring the regulator to revise their guidelines regularly. Ultimately, the classifying
authority expresses a subjective assessment on behalf of the public in the form of an
age limit. On some occasions this can be a contentious decision as a film maker seeking
a larger market for their film may consider their work suitable for a broader audience
than the classifying agency.
Clearly, it would be helpful to classification authorities if objective data based methods
could be used to support the decision. Recently it was shown that cinema audiences
emit chemical signals into the surrounding air in response to specific scenes in a film.
Moreover, the sequence of signals over time was reproducible over multiple screenings
of the same film. The effect can be most easily understood in terms of carbon dioxide
(CO2), which makes up circa 4% of exhaled human breath. Cinemas are ventilated
continuously with outside air containing circa 0.0004% CO2 so that when an audience
is present the CO2 level rises smoothly until an equilibrium is reached. However, when
audience pulse and breathing rates increase momentarily in unison, in response to a
particularly exciting scene, a peak in the CO2 is generated which can be detected in air
vented from the cinema. Current air measurement technology allows, in addition to CO2,
several hundred volatile organic compounds to be measured at high frequency (every 30
seconds). In the aforementioned study, it was found that certain chemicals corresponded
to specific scene types, with suspense and comedy scenes being best characterized. The
chemical response measured in the “crowd breath” represents the reaction of a large
group of people to the scenes shown. This information could be potentially very useful
in film classification as the chemical information is a direct, non-invasive measure of
how a large group of people react to particular scenes and to the film as a whole. It
is easy to imagine that the variability in the CO2 trace, the number of peaks in the
individual VOCs or the absolute amounts of the chemicals emitted per person are all
possible indicators of the group response.
Recently, computerized systems evolved to support the decision making of the age rating
of a film by the committee. Most of these methods utilize the language (use of bad words)
and the image properties (colour variance, shot length) to classify the films[18, 67] but
do not take into account the human reaction to the film. In this study we systematically
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examine the feasibility of using CO2 and over 60 VOCs measured in air ventilating from
a cinema to classify films. The assessment is based on 135 screenings of 11 different films
collected over 8 weeks from two separate cinemas involving more than 13000 people. Our
approach involves a random forest model built with time independent features extracted
from the time series of every measured compound for every film. These features include
for example peak height, peak width and the number of peaks in a film normalized
to its length.[92, 139] Finally, a permutation test was performed to test the resulting
performance measures (area under ROC curve) of the original model versus the ones
calculated from randomized class labels.[108]

6.2. Materials and Methods

6.2.1. Cinema measurement

We are very grateful to the Cinestar company for permission to use their facilities. No
specific permission was required. Individual audience members were neither harmed or
identifiable in the gas mixture and therefore the measurements were not subject to eth-
ical approval.
The measurements were conducted in the multiplex cinema Cinestar in Mainz, Ger-
many (located at 49◦ 59’ 37.511" N 8◦ 16’ 45.548" E) in two different screening rooms
for approximately four weeks during the winter 2013/2014 and winter 2015/2016. Over
the 8 weeks of measurement, 11 different films were shown multiple times resulting in a
total of 135 separate screenings. Table 6.1 summarizes the films measured, categorized
according to the German film classification system age recommendations “FSK” (“Frei-
willige Selbstkontrolle der Filmwirtschaft” meaning voluntary self-regulation) along with
the number of screenings. The average number of people present at each screening is
given in the supplementary Table B.1. It can be seen that each age recommendation
class was attended by approximately the same amount of people.
For this study, the German motion picture rating system was used dividing the films in

5 categories. Unrestricted films are classified as “FSK 0”, films released to 6-years-old
and over as “FSK 6”, films released to 12-years-old and over “FSK 12”, films released
to 16-years-old and over “FSK 16” and films allowed only to adults “FSK 18”. During
the period of measurement, no film with the age rating “FSK 18” was screened. Since
children under 12 have a discounted ticket price, the proportion of viewers at a particular
film under 12 could be taken from the ticket sales.
The two different screening rooms were approximately the same size with a seating ca-
pacity of 237 and 227 viewers respectively. The size of the screening rooms was 6500 m3

and the rooms were continuously flushed with 1300 m3h−1 fresh outside air. No inter-
nal influx of consumed air from the cinema was mixed with the fresh outside air. The
entire exhaust air of the screening room was drawn through a 75×75 cm stainless steel
ventilation shaft. The air from the exhaust shaft was measured in a separate technical
room with a PTR-TOF-MS and a CO2-Analyzer.
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Table 6.1.: Summary of the measured films partitioned into the four different age rec-
ommendation classes.

Age recommendation Movie
Number of
screenings

FSK 0

Help I’ve shrunk my teacher 18
I’m off then 33

Total 51

FSK 6

Buddy 10
Walking with Dinosaurs 3D 12
The Secret Life of Walter Mitty 13

Total 35

FSK 12

The Starving Games 2
Hunger Games: Catching Fire 8
Star Wars: The Force Awakens 34

Total 44

FSK 16

The Counselor 1
Machete Kills 1
Paranormal Activity: Ghost Dimension 3

Total 5

6.2.2. Proton transfer reaction time-of-flight mass spectrometer

The exhaust air of the cinema was measured with a PTR-TOF-MS 8000 (Ionicon Ana-
lytik GmbH, Innsbruck, Austria). The ionization of each analyte occurs via hydroxonium
ions (H3O

+) resulting in protonated positively charged ions. This transfer reaction pro-
ceeds only to molecules with a higher proton affinity than water (691 kJ/mol). Thus the
system is blind to the main air components like nitrogen, oxygen and argon. The low
energy involved in the protonation reaction results in small fragmentation of the analyte
facilitating identification. A detailed description of the set up and the calibration can
be found elsewhere.[132]
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6.2.3. Data analysis

In total, 20% of the film screenings measured had to be discarded due to problems asso-
ciated ventilation system checks around midnight (only in winter 2013/2014) and high
VOC emissions from cleaning products in the morning masking some human emissions
(only for pre-midday screenings).
The data analysis was divided up into a pre-processing step and a model building step.
The latter includes the generation of instances and the partitioning into training and test
sets. Finally, the resulting performance measures were compared to the results obtained
from a permutation test.

Pre-Processing

The measured time series for the isoprene mixing ratio for one film (“I’m off then”, “FSK
0”) is shown as the black curve on the left side of Figure 6.1. As the audience enters the
cinema, the mixing ratio of isoprene increases quickly at first and then steadily during the
film before decreasing sharply at the end when the audience leaves the screening room.
In the case of isoprene, the peak that can be seen at the end of each movie is caused
by enhanced release of isoprene due to muscle contractions associated with standing up
and walking out.[69, 77] This peak was discarded for the analysis by removing the last
5 minutes of each film in the data pre-processing step.
Zooming in, several peaks and valleys can be seen which re-occur at the same time in
every screening of the same film.[155] The maximum mixing ratio of the VOCs measured
for each film, positively correlates with the number of viewers attending the screening
room. Therefore, the time series of the individual films were normalized to the number
of viewers which is known from the ticket sales. The temporal behaviour of isoprene
with an initial sharp increase, followed by a smooth steady enhancement and final rapid
decrease was similarly observed for many other breath-borne compounds such as CO2

and acetone. The increase in the mixing ratio (red curve in Figure 6.1) can be calculated
using a box model assuming a constant emission rate during the film. Within the model
the mixing ratio is dependent only on the inflowing and out-flowing air and the emission
rate of the VOCs from the audience. A detailed description of the model can be found in
the supplement. The modelled behaviour of the mixing ratio assuming a fixed emission
rate (red curve in Figure 6.1) was subtracted from the measured mixing ratio (black
curve on the left side in Figure 6.1). The resulting trace without the increasing trend
was termed as the “residual time series” and can be seen on the right hand side in Figure
6.1.
The corrected time series was used to extract distinctive features comprising standard

deviation, skewness and kurtosis of the time series as well as several features describing
the occurrence of peaks in the time series. Additionally, the mean of the positive and
negative values were included into the feature set to obtain an overall measure of change
within the time series. The residual time series allows the comparison between the peak
heights of different films. In one case all peaks were counted (single time step increase
and decrease). In a second case, peaks were only counted exhibiting a sequence of a
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Figure 6.1.: Time series of isoprene. The left panel shows the mixing ratio of isoprene (in
ppb) during the film "I’m off then". The black line shows the measured values
and the red one the modelled mixing ratio assuming a constant emission rate
of isoprene. The right panel shows the residuals obtained by subtracting the
measured times series from the modelled one.

minimum of 3 consecutive increasing and decreasing steps. In the case of the peak height
and peak width only the 5 highest and widest peaks with a minimum of 3 increasing
and decreasing steps were taken and included in the feature set. In total 18 features
were included in the feature set. The complete list of extracted features can be seen in
Table 6.2. These features were extracted for each film and for each measured VOC. A
separate model was built for each of the measured 66 VOCs.

Table 6.2.: Summary of the extracted features.

Extracted features

Moments: Standard deviation, Kurtosis, Skewness
Sum of all positive values
Sum of all negative values
Amount of peaks (all peaks and peaks with a minimum of 3 increasing and
3 decreasing steps) normalized to the film length
Occurrence of the first peak
5 highest peaks normalized per person
5 widest peaks normalized per person
sum of the 5 highest peaks
Sum of the 5 widest peaks
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Model building

Instances were created for each molecule in the same manner using the four age ratings
“FSK 0”, FSK 6”, “FSK 12” and “FSK 16”. For the modelling process, the films were
divided up into a training and a test set. For each age recommendation class, one
film was chosen to be in the test set and the remaining films were put in the training
set. In order to receive statistically meaningful results, the test set contained only films
with 8 or more recorded screenings. An exception involves the age recommendation
“FSK 16” because two films were measured only once (“The Counselor” and “Machete
Kills”). These two films were always put into the same set (training or test set) and
were evaluated together. Consequently, the other set includes “Paranormal Activity”.
This set up results in 24 combinations of different training and test sets (two possible
films in “FSK 0”, “FSK 12”and “FSK 16” and three possible films in “FSK 6”).
For each training set a random forest model was constructed.[16] The random forest
classifier was run with the default values for its parameter specifically the number of
trees to grow was set to 500 and the number of variables randomly sampled at each
split was set to 6 (number of variables divided by 3). This model was used to predict
the age rating of the corresponding and unseen test set. The classifier performance was
evaluated using Receiver Operating Characteristic (ROC)[37, 38] and Precision-Recall
curves (PRC).[112] The ROC curve with its corresponding area under curve (AUC)
value is frequently used in the machine learning community. However, this performance
measure lacks interpretability when it comes to imbalanced data sets.[118] In our study
the number of negative examples exceed the number of positive examples. For instance,
a large number of false positives weakly enhances the false positive rate used in ROC.
On the other hand, the precision value is affected by a larger amount because this
value compares the false positives and the true positives. Between the ROC and PRC
curves a one-to-one relationship exists, meaning that each point in one curve uniquely
corresponds to one point in the other curve and vice versa.[27]

Permutation test

A permutation test was performed to check for spurious results. For this test a random
age rating was assigned to each film in the training set and the initial class distribution
was retained. The test set kept the original age ratings. From the resulting model, the
area under curve from the ROC and the PRC were calculated. For each test set compo-
sition the training set labels where shuffled 50 times and the resulting 50 performance
measures where compared to the corresponding original performance measures. There-
fore, the cases in which the performance measure of the permutation test exceeds the
one of the original test set composition were counted and divided by the total amount
of permutations. The calculation of the p-value was according to Ojala et al.[108] Gen-
erally, a Holm-Bonferroni correction should be applied to the p-values to counteract the
problem of multiple comparisons as in our case summarizing the models from all mea-
sured VOCs. In this study we did not apply this correction since we only searched for
indications pointing to VOCs which might be useful for further analysis. Therefore, we
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used the uncorrected p-values.

6.3. Results

The resulting AUC values are summarized in Table 6.3. The complete results with the
corresponding standard deviation of the AUC values and p-values are given in the sup-
plement (supplement Table B.2-B.4).
It can be seen that most of the VOCs show AUC values below or around 0.5 indicating
a performance similar to a random classifier. The AUC value for CO2 shows the highest
value in the age class “FSK 12”, whereas almost no significance is seen in the other
categories. Isoprene shows AUC values above 0.7 for the age classes “FSK 0”, “FSK 6”
and “FSK 12”. The AUC value for the age class “FSK 16” lies below 0.5. However, this
class is hardly interpretable since we measured only 6 films for this class. This may pose
a problem to the reliable prediction of this class. Therefore, in the following discussion
the age recommendation class “FSK 16” was omitted.
In general, it can be seen that based on the AUC values several different compounds

Table 6.3.: Summary of several VOCs with the corresponding area under ROC curve
for the different age classes. AUC values of 0.70 and higher or equal were
highlighted in bold font.

Mass Compound FSK 0 FSK 6 FSK 12 FSK 16

CO2 0.55 0.53 0.75 0.15
m31.0178 Formaldehyde 0.55 0.71 0.48 0.39
m33.0335 Methanol 0.50 0.62 0.36 0.26
m45.0335 Acetaldehyde 0.45 0.50 0.51 0.14
m59.0491 Acetone 0.55 0.63 0.56 0.13
m61.0284 Acetic acid 0.54 0.54 0.55 0.32

m63.0263
Methyl mercaptane /

0.55 0.76 0.40 0.44
Dimethylsulfide

m65.0215 0.74 0.79 0.40 0.17
m65.0604 0.36 0.64 0.58 0.16
m67.0542 0.40 0.65 0.47 0.52
m69.0699 Isoprene 0.84 0.74 0.70 0.25
m83.0455 0.38 0.40 0.70 0.60
m95.0855 0.53 0.54 0.70 0.55
m137.1325 Sum of Monoterpenes 0.60 0.58 0.64 0.66
m235.2056 0.51 0.55 0.73 0.48

m355.0698
Fragment of
Decamethylcyclopentasiloxane

0.54 0.73 0.59 0.38

are able to distinguish between one or more age classes. Isoprene, which is one of the
main VOCs on breath, seems to be a potentially useful compound for the differentiation
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of the age classes FSK 0, 6 and 12. Other compounds being able to predict only one
age recommendation class are for example CO2, formaldehyde and decamethylcyclopen-
tasiloxane.

Figure 6.2 shows the average behaviour of the AUC values derived from the ROC

Figure 6.2.: Performance measures for isoprene models. The box plots of the calculated
area under ROC curve values(left) and average Precision-Recall curves for
all age recommendations(right). The performance measures were derived
from the isoprene models. The box plots on the upper left panel in Figure
6.2 the thick black line in the middle of the box indicates the median value
for each group. The box comprises the interquartile range (IQR) of the data
and the whiskers define 1.5 times the IQR or the minimum and maximum
if no points exceed the 1.5 time IQR.

curves and PRC for the age classes from 0 to 16 for isoprene. In general, 24 models
were built for each measured VOC corresponding to the 24 different test and training
set combinations. The plots in Figure 6.2 show the average value of the performance
measures calculated from the 24 different test and training set combinations of isoprene.
In case of the age class “FSK 0” all AUC values lie above 0.5 indicating a non-random
classifier. For the age recommendations “FSK 6” and “FSK 12” some of the AUC val-
ues lie around the value of 0.5 (median AUC value ~0.70) indicating that some models
trained and tested on particular sets cannot be predicted with a higher chance than a
random classifier. The PRC shows the average curve over all models. The PRC curve
shows a similar behaviour as the AUC values describing the age class “FSK 0” as the
best predicted class followed by the age classes “FSK 6” and “FSK 12”. However, the
age classes “FSK 6” and “FSK 12” exhibit higher average precision values of ~0.6 for
lower recall values up to 0.2. The p-values from the permutation test for isoprene for
the “FSK 0”, “FSK 6” and “FSK 12” are 0.01, 0.05 and 0.16 respectively. Consequently,
for a significance level of 0.05 the null hypothesis for “FSK 6” and “FSK 12” cannot be
rejected. Examining the variable importance for all 24 random forest models built for
isoprene no specific feature was found to distinguish oneself from the others.
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6.3.1. Different genre labels

In this section we examine the differences in classifier performance between films of the
same age class but with different genre label. The genre labels for the films were taken
from the International Movie Database (IMDb). For this purpose, the films of the age
class “FSK 6” were selected due to their similar frequency in the number of screenings
(10 films of “Buddy”, 12 films of “Walking with Dinosaurs 3D” and 13 films of “Walter
Mitty”). Here the film “Walking with Dinosaurs 3D” was labelled as “action” whereas
“Buddy” and “Walter Mitty” are “comedy” films.
Figure 6.3 shows the distribution of AUC values and PRC depending on the film in the

Figure 6.3.: Performance measures for isoprene models involving only the “FSK 6” films.
Area under ROC curve and Precision-Recall-curves divided up into the dif-
ferent films in the age recommendation "FSK 6". The film “Walking with Di-
nosaurs 3D” was labelled as “action” whereas “Buddy” and ”Walter Mitty”
are comedy films.

test set. On the right side the results are shown for the age recommendation “FSK 0”
and on the left side the results for “FSK 6”. Note that one film was chosen in the test
set putting the other two films in the training set. It can be seen on the left side that
the highest mean AUC value (~0.77 ± 0.13) is obtained placing the film “Walking with
Dinosaurs 3D” in the test set. This test and training set combinations also shows the
highest standard deviation. Figure 6.3 compares the mean PRC of the three films in the
age class “FSK 6”. In general, all three PRC curves seem to behave similarly despite
using films with different genre labels. Evaluating the permutation tests separately for
the three different films results in p-values for the film “Buddy” to be 0.06, “Walter
Mitty” to be 0.04 and “Walking with Dinosaurs 3D” to be 0.11. In this case the p-values
were calculated by comparing the original test set combinations in which the selected
film appears with the corresponding randomized ones. These p-values are in accordance
with the boxplot in Figure 6.3 showing the film “Walking with Dinosaurs 3D” with
the highest standard variation. Thus, the chances are higher that the AUC values of
the permutation test exceeds the values of the original one. It seems that some of the
training and test set combinations do not predict the “Walking with Dinosaurs 3D” film

63



6. Age classification of films based on human emissions

well and that the genre label has an effect on the prediction results. However, the film
“Walking with Dinosaurs 3D” could be predicted comparably well keeping in mind that
there is no other action film in the training set if “Walking with Dinosaurs 3D” is in the
test set.

6.3.2. Different age of the audience

The ticket sales information provided the proportion of viewers younger than 12, to
viewers 12 years or older. In the case of the age rating class “FSK 0” the films shown
were aimed at quite varied audiences. The film “Help, I’ve shrunk my teacher” was
classified as a “family” film by IMDb and the proportion of viewers younger than 12
was 64%. In contrast, the film “I’m off then” was attended only by viewers of 12 or
older. The film “I’m off then” was more targeted to adults as it deals with a man on
a pilgrimage in Spain. Remarkably, this age rating could be predicted with the highest
AUC of 0.91 despite the difference in the average age of the viewers.

The difference in the AUC value between those two films with the averaged PRC

Figure 6.4.: Performance measures for isoprene models involving only the “FKS 0” films.
Area under ROC curve and Precision-Recall-curves divided up into the dif-
ferent films in the age recommendation "FSK 0". The film “Help I’ve shrunk
my teacher” was attended by a large proportion of viewers younger than 12
(64%) whereas the film “I’m off then” was only seen by viewers of 12 or
older.

curve for each film can be seen in Figure 6.4 on the right side. Both PRC curves exhibit
precision values higher than that of a random classifier. It can be seen that the classifiers
perform worse, if the training set contains the film “I’m off then” and the test set “Help
I’ve shrunk my teacher” than vice versa. Nevertheless, the age difference of the audience
between those two films does not seem to worsen the classifier critically and the age class
can be still predicted to a reasonable degree.
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6.4. Discussion

In this study we have assessed whether the age classification of a film can be predicted
based on variations of airborne chemicals measured in a cinema. Previous publications[151,
155] have reported correspondence between audio-visual stimuli and the emission of
VOC from human beings. The aforementioned study reported that scenes labelled with
“suspense” and “comedy” caused the audience to change their emissions of chemicals
significantly. Intuitively then, we may think that these chemical changes may be related
to the age classification given to the film. For example, films with horrific scenes will
induce rapid pulse and breathing rates and hence higher and more variable levels of CO2.
Indeed, CO2 values are effective in predicting FSK 12 films, probably because the films
in this category were action films. However, our results show that most of the chemicals
measured, including CO2, do not reliably predict all the age classifications of the films
(0, 6, 12). One reason for this may be that current age recommendations for films are
not solely linked to the intensity of induced fear, or the audience’s innate visceral re-
sponses to film content. Rather it is subjectively based on a synthesis of multiple aspects
such as the degree and intensity of violence, sex, antisocial behaviour, drug taking and
bad language. Provided that the audience’s reaction to these aspects of the film are
in some way reflected within the large chemical dataset, an alternative and objective
age classification may still be possible. It is interesting to reflect that a chemical based
approach as advocated here, would be based on directly measured responses from large
test audiences, whereas the current scheme is based on a subjective appraisal of the film
by relatively few people entrusted to reflect the general public sentiment.
Of all species tested we found that isoprene performed best in predicting the different
age classifications. The highest AUC value was obtained for “FSK 0” (AUC value of
0.84 ± 0.07). In this age recommendation class, the two films had a different proportion
of younger viewers (in “Help I’ve shrunk my teacher” 64% of the audience was younger
than 12 and in “I’m off then” only viewers of the age of 12 or older attended). It is
known, that the children emit significantly less isoprene than adults.[87, 132] Neverthe-
less, it was found that the age structure of the audience does not critically worsen the
predictive power of the classifier and that the features displaying the structure of the
films were able to distinguish this class from the rest. Lower precision values were re-
ported for the age recommendation classes “FSK 6” and “FSK 12”. For these two classes
the p-value of the permutation test lies between 0.05 for “FSK 6” and 0.16 for “FSK
12”. The age recommendation “FSK 6” included three films with similar frequency of
two different genre labels (two comedy films and one action film). Again, this does not
seem to influence the classifier’s performance. In the case of “FSK 12”, the average AUC
values were 0.63 ± 0.10 if the film “Star Wars” is included in the test set (and the films
“The Hunger Games” and The Starving Games” in the training set), and 0.77 ± 0.05
if the film “The Hunger Games” is included in the test set (the films “Star Wars” and
The Starving Games” in the training set). The lower AUC (0.63) value and the higher
corresponding p-value of the permutation test (0.25 versus the p-value of 0.08 includ-
ing “The Hunger Games” in the test set) is likely due to the lower amount of training
examples (12 screenings with “The Hunger Games” and the “Starving Games” in the
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training set).
Isoprene is generated in the body during cholesterol-genesis[131] and stored in muscle
tissue. Muscle movement causes stored isoprene to enter the bloodstream and then vent
the body via the breath.[69, 77] It is interesting that that this species, rather than CO2,
can be used as a successful delineator for film classification, at least for FSK 0,6, and
12. Generally, it could be seen that isoprene was reproducibly emitted at higher rates
at the same time point in the same film, even with different audiences. The height of
peaks depicted in Figure 6.5 show smallest values for the age class “FSK 0”. This could
be because of the lower concentration of isoprene in the breath of children for the film
“Help I’ve shrunk my teacher” or because of fewer suspense scenes in both films. Sus-
pense scenes generally lead to increased heart and breathing rates as well as involuntary
movement, all of which enhance the isoprene emission rate of the audience.

Figure 6.5.: Boxplot with the height of the highest peak for the different age recommen-
dations.

We may speculate that in future isoprene may be used to objectively classify films,
using the dataset shown here as the basis or conceivably, measurements from a test au-
dience could be used by the classification board to aid in decision making in borderline
cases.
The presented findings imply that features within the isoprene trace correspond to the
pattern and the intensity of induced emotions in the film. This structure can be distin-
guished from the other classes even when the audiences between the films in the same
class consists of different age proportions (“FSK 0”) or the genre labels of the films are
different (“FSK 6”). In general, the isoprene trace properties should reflect the subjec-

66



6. Age classification of films based on human emissions

tive assessment of the rating agency (age classification). It would be interesting to see if
isoprene acts as an indicator in other domains with multiple underlying stimuli like psy-
chological stress. The perception of stress can also be caused by several environmental
conditions and events.
In this study we used a random forest model built for each measured mass separately to
predict the age recommendation of a film. Future work should involve combinations of
different masses. As shown in Table 6.3 masses like m65.0215 or CO2 show higher AUC
values for the specific age classes like “FSK 6” (AUC of 0.79 for m65.0215) and “FSK
12” (AUC of 0.75 for CO2) than isoprene. These masses might respond better to specific
scenes or capture similar structures of films within the same age recommendation class.
Thus, the combination of the features of these masses might help to reflect the structure
of the film and to improve the classifier’s performance. This approach requires a larger
number of measured films because as in our case the classifier adopted the features of the
few films in the training set very well (resulting in a perfect classification for the training
set) so that the extrapolation to new films in the test set resulted in comparably low
performance values. The addition of new features from other masses exacerbates this
problem. Therefore, a new validation set should be used to choose the best combinations
of these masses and to test them on an unseen set of films. Therefore, future datasets
should include a larger number of films.

6.5. Conclusion

This study presents a framework to objectively gauge a film into an age classification
system based on VOCs and CO2 in cinema air. The evaluation of these compounds
resulted in no single human generated volatile compound being able to distinguish all
four age classes (0, 6, 12, 16). Problems arise because of the small number of available
films within each age class, especially for the age class “FSK 16”. Overall, the results
of this first study are promising for isoprene. Perhaps in future metrics can be devised
using combinations of isoprene and other VOCs to designate movie classification. This
could be useful for the film industry which edits films to make them accessible for their
desired target audience. It can be seen for the age recommendations “FSK 0” that the
classification is based on the films in this class and not on the age structure (different
target audience in “FSK 0”), so the classifying ability is not based on the lower isoprene
emission from children. The concepts proposed here could be tested more thoroughly if
more films are sampled. In particular, a larger suite of films with rating “FSK 16” and
“FSK 18” would be interesting as they represent the extreme categories.
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7. Pattern identification in
multivariate atmospheric time series

Abstract Atmospheric data time series typically contain multiple variables including
meteorological information and the temporal behaviour of trace gases and particles. Such
time series can contain categorical values for example wind direction data and air mass
origin, along with continuous variables such as temperature, wind speed and the abun-
dance of atmospheric species. The identification of patterns within this data set must
take account these different parameter attributes and must be robust towards noise. In
this study we have analysed data from two different ground based summer measurement
campaigns that took place in Finland (HUMPPA-COPEC 2010) and Cyprus (CYPHEX
2015). A novel pattern identification method was applied to the data to extract periods
of similar meteorological conditions within both campaigns. The pattern identification
method has proven to be robust towards noise. Furthermore, such extracted data facili-
tate the interpretation of trace gas behaviour. Comparisons between different extracted
patterns are presented. For further understanding the origin and fate of the trace gases
the application of a regression tree model is demonstrated to qualitatively estimate the
influence of meteorological variables on the measured organic compounds. These tech-
niques can be applied generally to long term ground based datasets. It is shown that the
pattern identification method is a powerful tool in connection with data mining methods
for further understanding, particularly for interpreting VOC data where the species may
have multiple sources with complex varying strengths.

7.1. Introduction

Temporal data mining can be divided into several tasks including the classification,
forecasting, clustering and pattern identification.[43] This study focusses on pattern
identification meaning the extraction of time periods of similar behaviour out of multi-
variate atmospheric time series. Statistical evaluation methods have been applied widely
in research areas including atmospheric chemistry and mass spectrometric data.[13, 17,
36, 63, 94, 109, 161] However, the use of unsupervised pattern identification methods
in atmospheric chemistry is sparse and is more widely applied in the field of economic
research.
The approach applied in this study was first developed by Guimarães et al.[51, 52] and
expanded by Mörchen et al.[100, 101] It provides a framework for identifying patterns
in time series. The method is based on the discretization of the time series into labels
such as “high”, “medium” and “low” and the subsequent search for sequences in this
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discretized data. Promising results for the identification of patterns have been shown
in the field of sports medicine. This work uses this approach for identifying patterns in
atmospheric data.
Atmospheric data set can be quite complex. It usually contains time series of mete-
orological variables like temperature, sun radiance, relative humidity, wind speed and
wind direction combined with time series of measured trace gases and particles. The
time resolution of the measurements typically varies from steps of 1 minute to 1 or 2
hours depending on the measurement device. Here we evaluate meteorological data in
conjunction with data from a proton transfer reaction time-of-flight mass spectrome-
ter (PTR-TOF-MS).[12, 48] This device is able to measure hundreds of volatile organic
compounds (VOCs) with a time resolution of a 1 minute. The time series of these trace
gases can be quite noisy depending on the abundance of the trace gas, the integration
time of the measurement and the associated sensitivity of the measurement device for
this compound. The behaviour of VOCs in the field can be erratic. This mainly depends
on the meteorological conditions such as highly varying wind directions and wind speeds
which determines which sources impact the measurement.
The data used in this work was taken from two measurement campaigns in Finland in
summer 2010 (HUMPPA-COPEC)[153] and in Cyprus in summer 2015 (CYPHEX).[30]
Both campaigns took place for 4 weeks in summer and comprise two very different en-
vironments. In Finland the measurement site was located in a boreal forest at Latitude
61◦51′0” N and Longitude 24◦17′0” E (elevation 181 m above sea level) with its main
focus on investigating the chemistry and physics of this boreal forest ecosystem. The
air masses mostly originated from the south west (53.7%) with significant periods from
the south east (20.7%) and north east (10.3%). In Cyprus the measurement took place
on a 650 m high hilltop (34◦57′0 N”/32◦23′0” E) covered by sparse Mediterranean scrub
vegetation. This measurement site was impacted primarily by northerly Etesian winds
alternately shifting between air masses from over the sea originating from western Eu-
rope (for 33% of the time) and eastern Europe (for 67% of the time). The local wind
direction was primarily south west (70%) with intermittent sea breeze effects.
The air masses encountered at the measurement sites contained multiple VOCs that orig-
inate from both biogenic and anthropogenic sources and some that are formed through
photochemical processes. With increasing air mass age (local emissions versus long range
transport) the primarily emitted compounds are gradually removed and oxidised to new
species. By extracting periods of similar meteorological conditions allows the investiga-
tion of parameters such as temperature and relative humidity on the local emissions and
the extent of photochemical processing. Secondly, pattern identification is an important
tool to objectively classify time series data into time periods of similar behaviour and
enables comparison between different meteorological regimes. Furthermore, we explore
methods for evaluating the derived sequences and estimate the influence of the meteo-
rological variables on the measured volatile organic compounds. Finally, the trace gas
data includes many masses which have not been unequivocally identified. The behaviour
and similarity to known VOCs for particular time periods can help identify those species.
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7.2. Method

The data was obtained from two ground based summer field campaigns which took
place in Finland (HUMPPA-COPEC) and the other in Cyprus (CYPHEX). For both
campaigns data is available over a time period of approximately 3-4 weeks. The time
resolution of the meteorological variables and the trace gases is 1 minute for the Cyprus
data and 10 minutes for the Finland data. A detailed description of the measured com-
pounds and deployed instruments can be found elsewhere.[30, 153]
The PTR-TOF-MS provides information about the molecular mass of a molecule. From
this information the mass sum formula can be derived but the structural formula remains
unknown. From previous field and laboratory studies several masses can be assigned to
a particular molecule with confidence. These “known masses” were chosen in this study
according their abundance and importance in atmospheric chemistry. Nonetheless it
should be noted that other isomers or isobaric compounds can interfere with these mass
signals, but here it is assumed that these known masses are the predominant contrib-
utors to the mass signal. In order to gain knowledge of the unknown masses these are
compared to the known ones. It is assumed that a similar behaviour might indicated a
similar source and fate in the atmosphere. Table 7.1 shows the masses which were known.

Table 7.1.: Known and calibrated masses for the PTR-TOF-MS used during the
CYPHEX campaign and the PTR-MS used during the HUMPPA-COPEC
campaign.

CYPHEX HUMPPA-COPEC
Mass Compound Mass Compound

m33.0335 Methanol m31
Formaldehyde
+ unknown compound

m42.0338 Acetonitrile m33 Methanol
m45.0335 Acetaldehyde m42 Acetonitrile
m59.0491 Acetone m59 Acetone
m63.0263 Dimethylsulfide m69 Isoprene

m69.0699 Isoprene m71
Methyl vinyl ketone
+ Methacrolein

m71.0491
Methyl vinyl ketone
+ Methacrolein

m73.0648 Methyl ethyl ketone
m79.0542 Benzene
m81.0699 Pinene fragment
m93.0699 Toluene
m107.0855 Xylenes
m121.1012 Trimethylbenzene
m137.1325 Monoterpenes
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For the pattern identification algorithm each continuous time series is discretized
into a number of chosen labels. Smaller interruptions from another different label are
filtered out, according to a predetermined time based threshold. Next the labels of all
chosen time series are combined. In the final step, sequences are found in the previously
combined and discretized time series. For the sequence mining, the data is divided into
days. Thus days of similar meteorological conditions are assembled from pieces of the
real time data. The following sections give a detailed description of the multiple data
analysis steps.
The overall method is shown in Figure 7.1.

Figure 7.1.: Scheme of the applied method described in this section.

7.2.1. Discretizing the univariate time series

In this step the continuous univariate time series is discretized into several labelled
segments. This discretization can be done using the whole data set at once or using
a part of the data defined by a time window. The size of the time window can range
between several hours to days. The reason for the application of a time window in this
discretization step can be the elimination of a trend in the time series. More importantly,
this window removes the information concerning the absolute value of the time series.
Thus it is possible to search for the same patterns even if the data differs strongly in
magnitude. Usually this time window is of the same length as the time window in which
the sequences are mined in the last step. In this last step the length of an interval
is chosen in which the sequence mining algorithm searches for frequent patterns. For
example, the user wants to find sequences within of the maximum length of one day.
Therefore, the window length is chosen to be 24 hours. Thus it makes sense to choose a
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window length of the same size for discretization in order to remove some trend in the
time series.
The number of labels can be adjusted using the default setting segmenting the data
into “low”, “medium” and “high” labels. The discretization can be done with different
methods. The first method is the division of the data into segments of the same range
or into segments including the same amount of data. The Gaussian mixture model is
a more sophisticated approach. In case of the Gaussian mixture model the number
of labels is chosen by investigating the distribution of the data. For this method the
number of maxima in the distribution could be used to indicate the number of segments
to be made. The choice of the discretization method mainly depends on the amount of
data. If the time window is small only the simple discretization method is applicable.

7.2.2. Finding successive steps

The univariate discretized time series from the first step or additional discrete time series
(e.g. wind direction data with cardinal direction labels, or sequence data obtained from
earlier experiments) serve as the input. The univariate data consists of time steps with
a given label. Here the time series is compressed into triples containing consecutive
occurrences of the same label (this is shown Figure 7.1 as Step 1). These triples are
defined by their start point, duration of a sequence of the same labels and the label.
This data is often interrupted by smaller triples because of the noise in the time series.
Smaller triples with a duration shorter than a predefined limit are removed or renamed
if this triple is located between two triples of the same label. Two parameters must be
adjusted. The first one defines the minimum length of duration for a triple (dmax) and
the second one controls the size of the gap which is allowed compared to the length of
the surrounding segments (rmax). For example, a value of rmax of 0.5 allows the gap to
be half as long as the two surrounding segments together. If this condition is fulfilled
the gap is renamed obtaining the name of the surrounding triples.

7.2.3. Merging the discretized data

This step merges the univariate triple into one matrix defining the start point, duration
and the combination labels of all given univariate time series. Every time step, a label
changes in one of the univariate time series a new combined label is defined (this is shown
Figure 7.1 as Step 2). After merging the univariate time series, the filter removing small
interruptions can be applied a second time. For example, as a result of this merging
the following triple could be created such as (start: 21.07.2015 15:30:00; duration: 60
minutes; label: high temperature, low humidity, hlow wind speed). This means that for
the given date and time the three univariate time series were given the mentioned labels
lasting for 60 minutes. Subsequently, the labels in one or more univariate time series
changes such that a new triple is created.
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7.2.4. Finding sequences

In the last step sequences are searched from the merged triples in the previous step (this
is shown Figure 7.1 as Step 3). Therefore, a time window must be defined. The time
window can range from several hours to days. Here we use always a time window of 1 day,
as we are particularly interested in the diel behaviour of trace gases at the measurement
locations. Some prior knowledge of the sought phenomena must be brought in. We
applied the SPADE algorithm for mining the sequences.[167] This algorithm allows the
definition of a gap controlling the amount of omitted triples in a sequence.

7.2.5. Labelling of the time series data

The extracted sequences can be used to label the time series data. For each mined se-
quence a new variable is added. This variable is of the same length as the original time
series and contains the information for each time step if it is included in the sequence
(“sequence data”) or not (“non-sequence data”). These labelled time series serve as a
starting point for further analysis. This includes the application of supervised classifi-
cation models to identify trace gases which behave differently between “sequence data”
and “non-sequence data”. Similarly, two sequences can be compared.
Secondly, this labelling allows the extraction of data out of the time series belonging to a
specific sequence. This bears the advantage that the behaviour of VOCs for specific me-
teorological conditions can be chosen (including meteorological variables in the sequence
mining step). For example, hierarchical clustering can be used to divide the VOCs into
groups of similar behaviour. The comparison between two clustering results of a dif-
ferent sequence allows identification of VOCs behaving differently in these two regimes.
Additionally, the affiliation of a VOC to a group or to another VOC was examined using
a randomForest model.

Hierarchical clustering

Using this unsupervised method, the time points included in the chosen sequence must be
extracted. This must be done for all desired VOCs. Then the extracted data sequences
are scaled to make them comparable to each other. From the scaled data a distance
matrix is constructed by calculating the Euclidean distance from each pair of the VOCs.
Finally, this matrix is used to apply the unsupervised clustering method. Here we used
a hierarchical clustering approach. The complete agglomeration method was applied.
From the resulting dendrogram different groups of VOCs can be distinguished.
Additionally, it is possible to compare two clustering results. This can be done visually
by contrasting the two dendrograms and charting the ways where the VOCs cluster into
a different position. This pairwise comparison can be done mathematically calculating
the similarity of two dendrograms. This can be used to identify sequences which behave
similarly to the way VOCs cluster into the same groups.
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RandomForest model to predict the affiliation of an unknown mass

Secondly, to explore the nature of the unknown masses, a model with involving domain
knowledge can be built. Here the instances contain all or a subset of the known masses.
Then one desired sequence is chosen and the data for all given compounds is extracted
and scaled. This is important since the behaviour of the classes is compared to the
unknown masses. Finally, a random forest model is built based on this data with all
chosen masses. This model is used to predict the mass labels for the instances of the
unknown masses. The final table contains the unknown masses and the occurrences of
each label given to them. This table can be compared to a second sequence to detect
VOCs which change their behaviour.

7.2.6. Regression tree model to estimate the influence of

meteorological variables on the measured VOCs

The identified sequences can be used to estimate the influence of the meteorological
variables on the measured VOCs. In such cases, two sequences can be chosen along
with the desired trace gas. The time series of the VOC and the meteorological variables
for each sequence are averaged over the time. This results in one averaged time series
ranging for example for sequence 38 from 06:00 to 15:00. Then the difference for each
variable for the two chosen sequences is calculated. In the case of categorical meteoro-
logical variables such as local wind direction or origin of the air mass the most frequent
category for each time step is chosen. This approach results in one variable for numeric
variables (difference between the time series of the two sequences) and in two variables
for categorical variables (one separate variable for each sequence). Here we choose to
apply a regression tree model because of their easy visualization and interpretation and
its capability of incorporating non-linear relationships.

7.3. Results

First, the results of pattern identification algorithm for the CYPHEX data are discussed.
In Figure 7.2 the times series of temperature, humidity and wind speed are shown. The
parameters give to the algorithm were dmax = 3, rmax = 0.3, mind = 3, support = 0.3
and maxgap = 7. Additionally, two different sequences are shown. In total, the pattern
identification algorithm for the CYPHEX data including temperature, humidity and
wind speed resulted in 43 found sequences.
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Figure 7.2.: Temporal patterns found using temperature (red line), relative humidity
(green line) and wind speed (yellow line). Sequence 30 is shown within the
green boxes and sequence 38 within the blue boxes.

Interesting patterns can be found by examining the fraction of the occurrence of one
sequence divided by the number of total time windows (here days) or the total coverage
of the sequences in the whole measurement time period. For example, sequences of the
length one (for example sequence 11 in Table 7.2), containing only one triple, mostly
occur in all time windows but cover only a small amount of the whole time period. This
would result in a large fraction (close to 100%) but a small coverage. The results are
shown in Table 7.2, including the calculated fraction and coverage of the sequences 30
and 38.

Table 7.2.: Fraction and Coverage for sequences 11, 30 and 38.
Sequence Fraction Coverage
11 74% 8%
30 35% 20%
38 35% 25%

The first 16 sequences are of length one, containing only one triple of the combined uni-
variate, discretized variables. The other sequences contain between two to four triples.
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The two chosen sequences (sequence 30 and sequence 38) shown in Figure 7.2 are char-
acterized by a fraction of 35% for sequence 30 and sequence 38 and a coverage of 20%
for sequence 30 and 25% for sequence 38. For one day (15th July) there is an overlap of
both sequences. Other combinations like temperature, humidity and isoprene or ozone
result in similar sequences.

(a) Sequence 30. (b) Sequence 38.

Figure 7.3.: Individual time series for temperature (grey), wind speed (orange) and rel-
ative humidity (purple) for sequence 30 (left) and sequence 38 (right).

Figure 7.3 shows the individual time series of temperature, humidity and wind speed
for the two chosen sequences 30 and 38. The presented time series data is down-sampled
from 1 minute to 10 minutes for the sake of clarity. It can be seen for sequence 38
(on the right side of Figure 7.3) that for one day the wind speed deviates in the time
range from 03:00 until 07:00 from the other days. Indeed, the rest of this day behaves
like the others showing that this method is robust to outliers and partial deviations.
The corresponding written sequences can be found in Table 7.3. For example sequence
38 shows an increase in temperature over the course of day described as a sequence of
“low”, “low”, “medium”,“high”.

Table 7.3.: Written labels for sequence 30 and sequence 38.
Merged Sequence 30 Sequence 38
triples Temperature Humidity Speed Temperature Humidity Speed

1 Medium Low Low Low High Low
2 High Medium High Low High Medium
3 - - - Medium Medium High
4 - - - High Low High
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For sequence 30, two blocks build this sequence and sequence 38 inherits four blocks.
This shows the influence of the maxgap parameter which was set to 7. In case of sequence
30 the sequence mining algorithm only found similar sequences of triples if most of the
triples between these two triples were omitted. It is possible to merge two sequences
manually if the user decides from the visual investigation that they are similar. This
makes sense since the discretization into several segments is arbitrary and depends on
the daily behaviour.
The addition of dimethylsulfide, a molecule with a strong marine source,[19] to the me-
teorological variables leads to a sequence identifying the onset of sea breeze at this island
site. Figure 7.4 shows the average behaviour of these variables.

Figure 7.4.: Average behaviour of temperature (brown), relative humidity (yellow), wind
speed (green) and dimethylsulfide (orange) during a sequence depicting the
onset of the sea breeze.

In order to further examine the potential for data-mining such atmospheric datasets,
the meteorological parameters for the HUMPPA-COPEC campaign were used. For this
campaign 44 sequences were found. Sequence 40 is shown in Figure 7.5 (left side). This
sequence was present for 18 days with a total duration of 31 days. For this data the
same daily profile as for sequence 38 for the CYPHEX campaign was extracted (similar
daily behaviour of temperature, relative humidity and wind speed). For the rest of the
days no distinct sequences were found.
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(a) Occurrences of sequence 40. (b) Individual behaviour during sequence 40

Figure 7.5.: Results of the HUMPPA-COPEC data. On the left side the temporal pat-
terns found using temperature (orange line), relative humidity (green line)
and wind speed (red line). Sequence 40 is shown within the green boxes.
On the right side the individual behaviour of sequence 40 for temperature
(orange), relative humidity (purple) and wind speed (grey) is shown.
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7.3.1. Detection of similar behaviour of VOCs and their comparison

Unsupervised approach with hierarchical clustering

In the first stage of this analysis, the known masses were chosen to be included into this
unsupervised approach. The hierarchical cluster for sequence 38 is shown in Figure 7.6.

It can be seen that the primarily emitted biogenic compounds (isoprene, pinene and

Figure 7.6.: Hierarchical cluster for sequence 38. The colours indicate meaningful
clusters comprising anthropogenic compounds (blue), biogenic compounds
(green), a red cluster (with oxidized species and acetonitrile) and DMS in
black. All known masses were included in this clustering.

monoterpenes) form a cluster together with acetaldehyde and methyl vinyl ketone. A
second cluster comprises the primarily emitted anthropogenic compounds including ben-
zene, toluene, xylene and trimethylbenzene. The third cluster is formed by some oxidised
compounds (methanol, acetone, methyl ethyl ketone) and acetonitrile. Dimethylsulfide
shows no cluster affiliation.

It is possible to compare two dendrograms visually as shown in Figure 7.7. The left
dendrogram shows the hierarchical clustering result from sequences 30 and the right one
from sequence 38. It can be seen that mainly dimethylsulfide (from “biogenic” cluster
in sequence 30 to no cluster affiliation in sequence 38), acetaldehyde (from “anthro-
pogenic” cluster in sequence 30 to “biogenic” cluster in sequence 38) and methyl vinyl
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Figure 7.7.: Comparison of the hierarchical cluster from sequence 30 (left) to the cluster
for sequence 38 (right).All known masses were included for this comparison.

ketone (from “anthropogenic” cluster in sequence 30 to “oxidized” cluster in sequence
38) change their cluster affiliation. Here is to say that the clusters are chosen according
to domain knowledge and there is no rule whether these clusters should be formed with
a finer (more accurate) or coarser separation. The height of the knots depicts the Eu-
clidean distance between two VOCs or clusters. Thus the time series of monoterpenes
and pinene are more similar than the time series of xylene and trimethylbenzene. For
acetonitrile it can be seen that the similarity is small and the affiliation to one cluster
is remote. A cluster affiliation is not always unambiguous and can vary with different
distance metrics and linkage criteria.

Figure 7.8 shows the comparison of two dendrograms with 40 masses. The compari-
son of these two dendrograms becomes ambiguous and it gets hard to pick any clusters
or follow changes in cluster affiliations of VOCs between the sequences. Therefore, we
applied a supervised approach with a randomForest model.
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Figure 7.8.: Comparison of the hierarchical cluster for sequence 30 (left) to the cluster
for sequence 38 (right) for all measured masses.

Supervised approach with a randomForest model

The results from the supervised approach with a randomForest model yields a matrix
with the number of instances of the unknown masses which were classified as one of the
known masses. An example is shown in Table 7.4.

Figure 7.9 shows the results for ethanol (m47.0128) and acetic acid (m61.0284). In

Table 7.4.: Example from the randomForest approach showing three unknown masses
and the occurrence how often they were classified as one as the known masses.

Sequence 30 sequence 38
mass Acetaldehyde Acetonitrile Benzene Acetaldehyde Acetonitrile Benzene
m47.0128 79 223 33 138 0 8
m61.0284 85 207 15 160 0 41
m113.0230 52 74 196 17 17 100

sequence 30 these masses are correlated with acetonitrile. During this sequence ac-
etaldehyde clearly shows a different pattern. During sequence 38 ethanol and acetic acid
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are correlated with acetaldehyde and acetonitrile behaves differently.

(a) Hourly boxplots of acetonitrile, ethanol and
acetic acid during sequence 30.

(b) Hourly boxplots of acetaldehyde, ethanol
and acetic acid during sequence 38.

(c) Hourly boxplot of acetaldehyde during se-
quence 30.

(d) Hourly boxplot of acetonitrile during se-
quence 38.

Figure 7.9.: On the left side daily behaviour of VOCs for sequence 30 and on the right
side for sequence 38 are shown. The left top panel shows the behaviour
of acetonitrile (m42.0338), ethanol (m47.0128) and acetic acid (m61.0284).
The left bottom panel shows the behaviour of acetaldehyde (m45.0335).
The right top panel shows the daily behaviour of acetaldehyde, ethanol and
acetic acid and the right bottom panel acetonitrile.

In comparison with the results from the distance-based approach with the hierarchi-
cal cluster from the previous section it can be seen that the supervised approach may
yield more stable results. This can be seen for the mass m113.0230. In the dendrogram
for sequence 30 and sequence 38 this mass forms a cluster together with ethanol and
acetone. For sequence 30 close proximity to benzene can be found whereas for sequence
38 isoprene and other biogenic emitted compounds are neighbouring m113.0230. The
supervised approach affiliates m113.0230 for both sequences to benzene. Figure 7.10
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compares the behaviour of m113.0230 with benzene and isoprene during sequence 38.
Benzene and isoprene seem to be both capable of following the behaviour of m113.0230
but benzene seems to lie closer to the daily profile of m113.0230.

(a) Hourly boxplot of isoprene (orange) and
m113.0230 (red).

(b) Hourly boxplot of benzene (red) and
m113.0230(gray).

Figure 7.10.: Comparison between the behaviour of isoprene (m69.669), benzene
(m79.0542) and m113.0230 during sequence 38.

7.3.2. Regression tree model to estimate the influence of

meteorological variables on the measured VOCs

Estimating the influence of meteorological variables on the abundance of VOCs was per-
formed using temperature, relative humidity, wind speed, mixed layer depth (mld), local
wind direction and air mass origin as independent variables. It should be noted that
the variables temperature, relative humidity and mixed layer depth are highly corre-
lated (correlation factors: rhumidity, temperature = -0.92, rhumidity, mld = -0.93,rtemperature, mld

= 0.87). This multicollinearity may pose a problem to the reliable modelling of the
regression trees since small changes in one of the variables can alter the representation
of the whole tree. The most abundant wind direction and air mass origin are shown in
Table 7.5.
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Table 7.5.: Summary of the wind direction and air mass origin (cluster affiliation). The
numbers indicate the proportion of the abundance for each level.

Local wind
direction

Air mass origin
(cluster affiliation)

SW 0.46 Cluster 5 0.36
WSW 0.21 Cluster 6 0.23
SSW 0.14 Cluster 1 0.12
W 0.05 Cluster 4 0.10
S 0.04 Cluster 3 0.08
WNW 0.03 Cluster 2 0.06
Other 0.06 Other 0.05

In case of the air mass origin, an hierarchical clustering approach on the back tra-
jectories was used to assess the number of clusters. The back trajectories with their
cluster affiliation are shown in Figure 7.11. For the clustering of the back trajectories
the longitude and latitude as well as the height was included.

Figure 7.11.: Back trajectories during the whole measurement period. The colours indi-
cated the cluster affiliation.

The results of the regression trees show that compounds like methanol, acetone, ace-
tonitrile, and DMS are mostly linked to humidity. Biogenic compounds such as isoprene
and monoterpenes are dependent on temperature and anthropogenic compounds (aro-
matic compounds) mostly on the air mass origin. An example of the visualization of a
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regression tree model is shown in Figure 7.12 for methanol. The top box (box 1) sum-
marizes the average value of the difference of methanol between sequence 38 and 30 of
the complete data set (average of -1 indicating overall higher mixing ratios of methanol
during sequence 30 than during sequence 38). The boxplot of the daily behaviour during
these two sequences is shown in the lower right part in Figure 7.12 showing sequence 30
in green and sequence 38 in orange.
The second line in the boxes of the tree model representation shows the number of in-
stances included in this node and the proportion to the total number of instances. The
top box describes the initial condition containing all instances (n = 540) resulting in
a proportion of 100%. With a time resolution of 1 minute this model covers 9 hours.
Under each non-terminal node the splitting condition is shown. In general, the notation
of the splitting nodes is as following: “<variable name><condition>”. First the variable
name is presented on which variable the split is performed and then a condition which
is the splitting criteria. The information gain is used as a statistical property deciding
which variable is used for the split. In general the higher the nodes the more important
is their influence on the regression. The top node splits the data set into partitions with
a difference in the mixed layer depth smaller than 0.16 or greater or equal than 0.16.
This split can be seen in the lower left panel in Figure 7.12 indicated by the vertical
line. If the humidity is smaller than 0.16 the left path is taken resulting in an average
value of -1.5 for methanol. This splitting leads to a terminal node which includes 195
instances (36% of the total data size). If the mld is greater or equal than 0.16 and thus
the condition mld < 0.16 is FALSE the right path is taken leading to a non-terminal
node. This partition of the data possesses an average value of -0.73 including 64% of the
data. For this partition of the data a second split is performed using the wind direction
variable of sequence 38. The splitting variable is called “Dir_seq38_SW”. This variable
is a binary categorical variable containing values of 1 for TRUE and 0 for FALSE. It
should be noted that for categorical variables there are separate binary variables for each
sequence (sequence 38 or sequence 30) and each category (for example different variables
are created for wind directions like “south, “south west”, “west” and so on). The binary
categorical variables possess only values of 1 or 0. The value 1 indicates that the wind
comes from the direction “SW” whereas the value 0 stands for any other wind direction.
The notation “Dir_seq38_SW < 0.5” means if the variable “Dir_seq38_SW” has the
value of zero, the condition is set TRUE and the left path is taken resulting in a leaf
node. If the condition is FALSE meaning that the cluster variable has a value of 1 the
data is put into the right path leading to another leaf node. The colour code in the
lower left panel in Figure 7.12 shows the division of the data into instances containing
the wind direction “SW” (green points) or not (red points). This condition does only
apply for the points with a mld larger than 0.16 (located on the left part of the vertical
part). Thus for the wind direction “SW” this results in a higher average value (-0.69 for
“SW” compared to -1.2 for all other wind directions).
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(a) Tree model representation.

(b) Scatter plot of mixed layer depth and
methanol.

(c) Hourly boxplot of methanol during se-
quence 30 and sequence 38.

Figure 7.12.: Representation of the regression tree model (top). On the lower left side,
the scatter plot of the difference in mixed layer depth versus the difference
in methanol between sequence 30 and 38 is shown. The vertical line defines
a humidity level of 14 and the green colours depicts instances influenced by
a south western (SW) local wind direction during sequence 38 and the red
points depict every other wind direction during sequence 38. The boxplot
of the daily behaviour of methanol is shown on the lower right (right) for
sequence 30 (green) and sequence 38 (orange).
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7.4. Discussion

The results presented in the previous section raise several interesting questions about the
origin and fate of VOCs in the atmosphere. They were effectively distilled from the data
sets using the data mining approaches described above. Therefore, we now evaluate the
comparison of the two dendrograms in Figure 7.7 in conjunction with the results from
the regression tree model from the perspective of atmospheric chemistry. The compari-
son of the dendrograms in Figure 7.7 resulted in roughly three groups of molecules. The
first group includes biogenic masses like isoprene, pinene, monoterpenes, methyl vinyl
ketone/methacrolein (MVK/MACR). The second group includes anthropogenic masses
like benzene, toluene, xylenes and trimethylbenzene. The third group includes oxidized
species like methanol, acetone as well as dimethylsulfide and acetonitrile.
First we discuss the biogenic compounds comprising isoprene, pinene, monoterpenes
and the oxidation product methyl vinyl ketone/methacrolein. These masses cluster to-
gether for both sequences in the “biogenic” cluster as shown in Figure 7.7. It is well
established that the primary emission of isoprene, pinene and other monoterpenes is pri-
marily driven by temperature and sunlight radiation. The atmospheric lifetime of these
molecules ranges from one hour to several hours during daytime.[73, 137] This rather
short lifetime leads to the assumption that the measured mixing ratios are mostly in-
fluenced by local emissions from vegetation. MVK/MACR is an oxidation product of
these primary emitted compounds but has also been reported as a primary emission.[65]
Isoprene was chosen as an example for these biogenic compounds. In Figure 7.13 the
representation of the regression tree model and its partition with the two variables tem-
perature and energy is shown.
It can be seen in Figure 7.13 that the first two splits use the temperature variable.
During sequence 30 a higher temperature is faced resulting in a negative temperature
difference (between -5 and -2◦C). Between 4:00 and 7:00 the largest temperature differ-
ence is calculated whereas during this time the isoprene mixing ratios were almost equal
(purple colour coding in Figure 7.13). The isoprene emission is mainly triggered by sun
radiation which rises around 07:00.[124, 152] Therefore, no large difference in isoprene
mixing ratio between 4:00 and 7:00 is expected. The third node in the tree model uses
the sun radiation. Here a higher sun radiation during sequence 30 (more negative dif-
ference) leads higher isoprene emissions (more negative isoprene difference) or vice versa.
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(a) Tree model representation.

(b) Scatter plot of temperature and sun radia-
tion.

(c) Difference in isoprene mixing ratio between
sequence 38 and sequence 30.

Figure 7.13.: The upper part shows the representation of the tree model for isoprene. The
lower left panel shows the scatter plot of temperature and sun radiation.
The colour scaling indicates the difference in isoprene between sequence 38
and sequence 30 (ranging from purple for a value of ca. 0.00 to red for a
value of ca. -0.15). The horizontal and vertical lines represent the partition
of the regression tree model. The lower right panel shows the difference of
isoprene between sequence 38 and sequence 30.

The other biogenic compounds such as pinene, monoterpenes and MVK/MACR be-
have similar to isoprene and use the temperature variable for their first splitting. MVK/MACR
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then uses the air mass origin variable for the next splitting accounting for the transport
of these molecules. MVK/MACR possess an atmospheric lifetime of 6-10 hours during
daytime.[46] If the air mass originates from cluster 5 in Figure 7.11 higher mixing ratios
during sequence 30 were measured than for cluster 1. Thus the air mass from cluster 5 is
maybe stronger influenced by photo-processed air with primary and secondary sources
in closer proximity. Whereas the air mass from cluster 1 spent a longer time over the
sea with no primary or secondary sources of MVK/MACR. The lower mixing ratio for
cluster 1 suggests that either the emission sources where stronger for Eastern Europe or
the removal processes had a stronger impact for the air masses originating from cluster
1.[30] Pinene and the monoterpenes also use the temperature variable as the first split
and then use the local wind direction variable as the third splitting criteria. If the wind
comes from the southwest during sequence 38 higher emissions of these compounds were
measured compared to the other directions. Closely in this direction a pine tree-covered
area is located which could lead to higher mixing ratios.
The second group includes the anthropogenic compounds such as benzene, toluene,
xylenes and trimethylbenzene. These aromatic species form one cluster in the den-
drograms presented in Figure 7.7. The representation of the regression tree model
shows that for all these masses except for toluene, the most important variable is the
“cluster_seq30_clusNum1”-variable (see Figure 7.14. This variable includes the infor-
mation about the first cluster of the air mass origin for sequence 30. This node means
that if the air mass during sequence 30 comes from cluster 1 (condition is FALSE and
thus going the right path) the mixing ratios of xylenes for sequence 30 is lower (more
positive difference). On the other hand, if the air mass does not come from cluster
1 (condition “cluster_seq30_clusNum1 < 0.5” is TRUE) the mixing ratios during se-
quence 30 are higher. This makes sense since the other two most abundant clusters
are cluster 5 and 6 (see Table 7.5) and these air masses originate from Eastern Europe
(Western Turkey see Figure 7.11) which is geographically closer and therefore the air is
carries higher mixing ratios of anthropogenic compounds. In contrast, cluster 1 spends
most of its time of the Mediterranean Sea (see Figure 7.11) with less or no sources of
these aromatic compounds. The presented aromatics are mostly emitted from fuel com-
bustion processes,[3, 22, 68] biomass burning[165] or industrial solvent evaporation.[116]
The atmospheric lifetime of toluene is 1-2 days and for benzene around 12 days allowing
this compound to be transported from more remote sources to the measurement site.[44]
For benzene and trimethylbezene also the “cluster_seq30_clusNum1”-variable for the
first split was used. Interestingly, the splits for toluene was performed using the humid-
ity and temperature difference.
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Figure 7.14.: Representation of the tree model for the xylenes.

Figure 7.15 shows the cluster dendrogram for the differences between sequence 38
and sequence 30 for all known VOCs. It can be seen that the behaviour of the differ-
ence of toluene resembles the behaviour of the biogenic masses. It is suggested that
the abundance of toluene is stronger influenced by the local emission of toluene by
the vegetation.[97] Despite the known biochemical production of a range of aromatic
compounds by plants and the presence of benzenoids in floral scents, the emissions of
only a few benzenoid compounds have been reported from the biosphere to the atmo-
sphere. Here, using evidence from measurements at aircraft, ecosystem, tree, branch and
leaf scales, with complementary isotopic labelling experiments, we show that vegetation
(leaves, flowers, and phytoplankton) emits a wide variety of benzenoid compounds to the
atmosphere at substantial rates. Controlled environment experiments show that plants
are able to alter their metabolism to produce and release many benzenoids under stress
conditions. The functions of these compounds remain unclear but may be related to
chemical communication and protection against stress. The estimatation of the total
global secondary organic aerosol potential from biogenic benzenoids is similar to that
from anthropogenic benzenoids (ca. 10 Tg y−1), pointing to the importance of these
natural emissions in atmospheric physics and chemistry. This was also found by White
et al. indicating the contribution of pine trees to the emission of toluene. Pine trees
also dominate the vegetation in Cyprus.[150] To summarize, the emission of toluene is
clearly dominated by anthropogenic emission for both sequences (shown in Figure 7.7)
and smaller differences between the two sequences may occur because of local emissions
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from the surrounding vegetation.

Figure 7.15.: Dendrogram of the hierarchical clustering of the differences between se-
quence 38 and sequence 30 for all VOCs.

The third group includes compounds like methanol, acetone and acetonitrile. These
species also form a cluster in Figure 7.7. They mainly depend on relative humidity
according to the regression tree model. Methanol uses as the only examined species the
mixed layer depth as its first splitting criteria. However due to its water solubility and
the similarity to acetone and acetonitrile in Figure 7.7 and Figure 7.15 we will discuss
these species together. Additionally, the correlation between the humidity and mixed
layer depth is highest for all combinations (rhumidity, mld = -0.93). Furthermore, using
mld as the splitting criteria for methanol does not make much sense since this splitting
node states that if the difference in mld is smaller than 0.16 the higher the mixing ratio
for methanol in sequence 30 compared to sequence 38 (more negative values for the dif-
ference in methanol). This means that the if the mixed layer depth becomes higher the
larger the mixing ratio gets (more negative differences for mld and methanol). This is
in contrast to the physical understanding because the higher the mixed layer depth the
lower the mixing ratio due to the larger turbulent mixing of the compound. The tree
models for acetone and acetonitrile show that the higher the difference in humidity the
lower the mixing ratios of these compounds for sequence 30. Looking at the difference
of these compounds between sequence 38 and sequence 30, lower values (meaning higher
abundance in sequence 30 and lower values in sequence 38) occur from 04:00 to 09:00
(see Figure 7.16 for acetonitrile). During this time the humidity has its largest difference
(higher values for sequence 38 and lower values for sequence 30 in Figure 7.16). Thus
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the lower mixing ratios for these compounds maybe stem from their high water solu-
bility. The drop in humidity in sequence 30 may come from the fact that the air mass
originates from higher altitudes (free troposphere)[30] and has been more isolated from
contact with the water surface than the air masses from sequence 38. Thus these soluble
compounds are removed by a lesser amount. The representation of the regression tree
of acetonitrile shows the relative humidity as the first splitting node with a second node
using the mixed layer depth. The mld is highly correlated with humidity and we assume
that acetonitrile is mainly affected by the difference in humidity. We suggest that this
comes from the high water solubility of acetonitrile and thus the higher marine influence
and increased uptake[28, 53] rather than abundance through biomass burning. Whereas
for acetone and methanol an additional node is added. For acetone the air mass origin
and for methanol the local wind direction is included into the tree model. This tends
to support the assumption made by Derstroff et al.[30] of varying emissions of acetone
and methanol due to the source region. Derstroff et al.[30] reported that for the acetone
and methanol, the uptake to the sea surface cannot solely defined by solubility and that
there is a potential sink in the Mediterranean Sea or emission variability in the source
region. The emission variability of methanol and the additional nodes in the regression
tree might come from these local biogenic emissions released by the surrounding forests.
Acetone possesses a rather long atmospheric lifetime of 1 month (compared to methanol
with an atmospheric lifetime of 10 days)[120] and might be stronger influenced by the
air mass origin through long-range transport. Interestingly, even though acetone and
methanol are known to be emitted from forests,[55, 64, 78] both species are not grouped
together with the other biogenic compounds (isoprene, monoterpenes).
For dimethylsulfide the first splitting node contains the humidity variable. It shows the
higher the difference in humidity (higher humidity in sequence 38 compared to sequence
30) the higher the mixing ratio of DMS (see Figure 7.16). Since dimethylsulfide is emit-
ted from marine phytoplankton[19] it is obvious that the air mass needs to be in contact
with water surface to transport this compound to the measurement site. This fits the
behaviour of dimethylsulfide which shows a drop between 04:00 to 09:00 for sequence
30 when the difference in humidity shows the highest values due to the drop of rela-
tive humidity during this time for sequence 30. Similar mixing ratios between the two
sequences are observed for the rest of the day. It is known that DMS is emitted from
vegetation, soil and marshes.[72, 74, 85] The presented analysis does not show that these
sources play an important role in this location.
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(a) Hourly boxplot for acetontrile. (b) Hourly boxplot for DMS.

(c) Hourly boxplot for rel. humidity.

Figure 7.16.: Hourly boxplots for acetonitrile, DMS and rel. humidity for sequence 30
and sequence 38.

The remaining compounds for discussion are methyl ethyl ketone and acetaldehyde.
These two compounds can be emitted from anthropogenic and biogenic sources and can
be formed through photochemical processes. Acetaldehyde can be formed through the
oxidation of multiple alkanes, alkenes, ethanol and also from isoprene the dominant bio-
genic molecule.[96] Methyl ethyl ketone is an oxidation product of n-butane, 2-butanol,
3-methyl pentane and 2-methyl-1-butene. The photo oxidation of the dominate biogenic
VOCs like isoprene and pinene presumably does not yield methyl ethyl ketone.[163] Ad-
ditionally, there is no linkage to the biogenic cluster (see Figure 7.7 and Figure 7.15).
From the comparison of the hierarchical clustering in Figure 7.7 it can be seen that for
sequence 30 with higher abundance of anthropogenic compounds MEK and acetaldehyde
both cluster together with these anthropogenic compounds. This similar behaviour can
be caused by primary anthropogenic emissions of acetaldehyde and MEK or due to the
oxidation of anthropogenic precursor molecules. During sequence 38 acetaldehyde forms
a cluster with the biogenic compounds probably due to the photo oxidation of these
compounds whereas MEK lacking of a pathway for MEK production through dominant
biogenic molecules and resembles the behaviour acetone and methanol. However, this
cluster including MEK, acetone, methanol, acetonitrile has high x-axis values compared
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to the other cluster meaning that these compounds resemble each other only remotely.
The representation of the regression tree model for acetaldehyde is shown in Figure 7.17.

(a) Tree model representation.

(b) Hourly boxplot of for sequence 30 and sequence 38.

Figure 7.17.: Representation of the regression tree model for acetaldehyde and the box-
plot of its daily behaviour.
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It can be seen that the first splitting node for acetaldehyde is the air mass origin
during sequence 30. It is the same splitting as for the anthropogenic compounds. Thus
it can be guessed that the acetaldehyde production during sequence 30 is strongly influ-
enced by anthropogenic precursor. For sequence 38 with higher proportion of biogenic
molecules the behaviour resembles its biogenic precursor molecules. In Figure 7.17 it
can be seen the daily boxplot for sequence 38 in orange and sequence 30 in green. For
sequence 30 the mixing ratio is similar during the morning and evening hours and are
higher during midday. The regression tree model suggests that this difference comes from
the different air mass origin. Since the anthropogenic masses shows the same splitting
criteria this might come from the higher abundance of anthropogenic molecule which are
photo-chemically degraded to acetaldehyde during this time period. This anthropogenic
contribution adds on the local primary and secondary production of acetaldehyde. The
second node uses the difference in humidity. Indeed, during 04:00 and 07:00 enhanced
mixing ratios for acetaldehyde for some days during sequence 30 albeit smaller than for
acetone, methanol or acetonitrile can be seen. The tree representation of MEK becomes
difficult to explain. The tree model for MEK uses the humidity variable, but in a differ-
ent way than acetone, acetonitrile and methanol, and the local wind direction variable
as splitting criteria.

Figure 7.18.: Difference in MEK mixing ratio between sequence 38 and sequence 30.

The differenced time series in Figure 7.18 shows a strong minimum during midday.
This might be due to the photochemical production of MEK during sequence 30 from
the anthropogenic precursor molecules whereas during sequence 38 only lower mixing
ratios due to lower anthropogenic precursor molecules were measured.
With this interpretation of the origin and fate of the presented molecules unknown
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masses can be affiliated to the known ones. An initial approach might be to include all
measured masses in the hierarchical clustering approach. This results in fairly ambiguous
results as shown in Figure 7.8. A better approach might be the use of a randomForest
model as explained in the previous section.
Table 7.6 shows the results and summarizes the majority mass for each unknown mass
from the supervised randomForest approach. It can be seen that most of the unknown
masses were predicted as one of the anthropogenic masses.

Table 7.6.: Summary of the majority mass from the randomForest approach.
Masses Sequence 30 Sequence 38
m101.0230 Acetonitrile Methanol
m101.0597 Toluene Trimethylbenzene
m109.1012 Benzene Trimethylbenzene
m113.0230 Benzene Benzene
m113.0600 Toluene Trimethylbenzene
m115.0754 Toluene Acetonitrile
m123.0440 Benzene Acetonitrile
m41.0386 Toluene Trimethylbenzene
m43.0178 Benzene Acetaldehyde
m43.0542 Xylenes Trimethylbenzene
m47.0128 Acetonitrile Acetone
m61.0284 Acetonitrile Acetone
m69.0335 Toluene Trimethylbenzene
m75.0440 Benzene Acetone
m79.0542 Benzene Benzene
m85.0284 Toluene Trimethylbenzene
m87.0441 Acetaldehyde Benzene
m93.0699 Toluene Toluene
m99.0440 Acetaldehyde Trimethylbenzene

Two unknown masses m109.1012 and m113.0230 had a clear affiliation to anthro-
pogenic compounds. A possible sum formula for m109.1012 is C8H12. This could 1,5-
cyclooctadiene which is commonly used as a ligand in organometallic chemistry and
10.00 tons per year were approximately produced. The second mass m113.0203 could
be connected to the sum formula of C5H4O3. This could be 2-furoic acid. It is used in
food sterilization and is an oxidation product of furfural which is an important chemical
feedstock.
In case for the HUMPPA-COPEC campaign only one sequence was found covering 18
days out of 31 days. Thus the behaviour of the VOCs within this sequence was com-
pared to the rest of the days. It should be noted that the behaviour of temperature and
relative humidity are similar between sequence 40 and the rest of the data. The wind
speed shows a different pattern as can be seen in Figure 7.19.
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(a) Hourly boxplot for temperature. (b) Hourly boxplot for relative humidity.

(c) Hourly boxplot for wind speed.

Figure 7.19.: Hourly boxplots for temperature (top right), relative humidity (top left)
and wind speed (bottom right) for sequence 40 versus the rest.

Using regression tree models to estimate the influence of the meteorological param-
eters on the VOCs resulted in similar conclusion as for the CYPHEX data. In Figure
7.20 the representation of the tree model for isoprene is shown. It can be seen that
the first variable used for splitting is the difference in relative humidity and the second
one the difference in radiation. On the right side in Figure 7.20 the partition of the of
the tree model is shown with the humidity and radiation variable. If the difference in
humidity gets more negative (higher humidity for the rest of the days) the difference
in isoprene rises. Thus the lower the relative humidity the higher the isoprene mixing
ratio. This variable splits the data into 31% and 69% of the total data. For the larger
part the data is divided using the radiation variable. If the radiation rises the isoprene
mixing ratio gets higher. This makes sense since the emission of isoprene is triggered by
light.[73] One should bear in mind that this data has a time resolution of 10 minutes and
that for sequence 40 which covers about 16 hours of the day 96 data point are available.
Therefore, the results are more susceptible to noise.
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The rest variables all use the difference in temperature and relative humidity as split-
ting criteria. Only methanol uses the difference in wind speed for splitting. None of the
measured VOCs use the wind direction or the air mass origin as a splitting variable.

(a) Tree model representation.

(b) Scatter plot with humidity and radiation with colour
coded values for isoprene.

Figure 7.20.: Representation of the regression tree model for isoprene (top panel) for
the HUMPPA-COPEC data. The lower panel shows the scatter plot with
relative humidity and radiation with a colour scale for isoprene (ranging
from purple for a value of ca. 0.02 to red for a value of ca. -0.01).
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7.5. Conclusion

The results show that the algorithm suggested by Guimarães and Mörchen is able to
identify patterns in atmospheric time series that are hidden from simple visual inspec-
tion. This was demonstrated using two different data sets. It is robust towards noise
and only a few parameters must be adjusted. This unsupervised method is useful for
identifying patterns in continuous and categorical data. Here we mainly focus on the
extraction of patterns from meteorological variables but trace gas time series are possi-
ble and was shown for DMS identifying the onset of the sea breeze. A useful extension
might be including the factors of a principal component analysis (PCA). The PCA
would transform the time series of the measured VOCs into data containing the main
variance resulting in time series resembling the behaviour of biogenic or anthropogenic
compounds. This would allow in conjunction with meteorological variables to extract
patterns which would apply for all biogenic or anthropogenic compounds.
Through the use of dendrograms it is easy to inspect differences in the behaviour of
VOCs between two sequences visually. The use of these dendrograms is limited by the
amount of variables since the cluster affiliation and the change of VOCs between differ-
ent clusters becomes unclear. In conjunction with the evaluation of the meteorological
variables and their influence on the VOCs interesting insights into the origin and fate of
each VOC can be gained.
A promising alternative to hierarchical clustering for assigning VOC to similar groups
is the use the classification models. Here we used a randomForest classifier but other
classifiers are possible. The PTR-TOF-MS is able to detect hundreds of compounds.
Most of the measured masses are unknown and no specific molecule can be assigned to
the measured mass-to-charge ratio. The analysis of the similarity between an unknown
mass and known compound may lead to new understandings.
Further work includes the implementation of a time window sliding over the time series.
This time window could be adjusted to different length and would also allow to capture
sequences of a shorter time length. This issue is problematic with the presented approach
since the discretization into three intervals is very coarse and thus mainly daily patterns
are found. A finer discretization showed no promising results. The implementation of a
query algorithm is possible allowing the extraction patterns happening before a chosen
variable occurs at “low” or “high” abundance.
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Humans emit numerous volatile organic compounds (VOCs) into air via skin and breath.
These emissions can depend on various factors such as nutrition, sporting activity and
also the emotional state. Here we present results of a novel experiment measuring VOCs
and CO2 in a movie theater.
The movie theater provides the opportunity of simultaneously measuring a large group
of people (20 × 230 attendees per film resulting in a total of 13000 measured people)
under the same conditions. Secondly, these crowd measurements represent the average
emission from a wide cross section of society and are less susceptible to individual be-
haviour or to similar behavioural pattern from a group of people.
The measurements were performed with a CO2-monitor and a PTR-TOF-MS. The PTR-
TOF-MS enables the real-time measurement of many volatile organic compounds from
endogenous and exogenous sources. It was shown that the main breath gases like CO2,
acetone and isoprene mainly depend on the age of the audience. Children (people
younger than twelve) generally possess lower emission rates than adults (people of the
age of 12 and older). In contrast to that VOCs from exogenous sources strongly vary
over the course of day. Their emission rates are subject to behavioural habits like the
use of hygiene products or nutritional conventions. For example, the application of daily
care products in the morning leads to a constant decrease of the emission rate of de-
camethylcylopentasiloxane, a typical constituent in those products, over the course of
day. In case of methanol the consumption of fruits or juices during breakfast can be
the reason for increased emission rates in the screenings before midday. This shows that
the emission rates of VOCs can vary strongly between children and adults or over the
course of day.
Another influence besides the individual behaviour of humans contributing to the abun-
dance of VOCs in indoor air is the transport of chemicals in this environment. This can
be due to dietary habits or use of hygiene products as discussed in the previous para-
graph. The environmental conditions such as outdoor ozone mixing ratio and maybe
temperature and rainfall can also lead to varying emission rates in indoor environments.
We examined the correlation of oxidized VOCs from skin lipids to the mixing ratio of
ozone occurring 3 hours before beginning of the film. A positive correlation between
6-MHO and ozone was found. Additionally, increased outside temperature may lead to
enhanced evaporation of exogenous compounds included in hygiene products influencing
the transport of these compounds into indoor environments.
Compared to the variances due to nutritional habits on a lower magnitude variances in
emission rates were found to increase and decrease reproducibly over multiple screenings
of the same film, with peaks occurring at the same time point. This observation was
decisive for examining potential causal links between the emission of VOCs from the
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audience and the audio-visual stimuli occurring in the film. This emission happens on
shorter time scales (typically lasting over a few minutes) compared to the discovered
age dependence and also the emission from exogenous sources. Over the measurement
period, 16 different films of different genre labels (e.g. “action”, “horror”, “comedy”)
were recorded. The peaks occurring in the time series of a compound during the screen-
ing of the film were induced by the physiological response of the audience. For many
films these peaks were characteristic for the film such that the different films were sep-
arable by examining visually the behaviour of the VOC trace. To investigate potential
connections between VOCs and audio-visual stimuli the films were labelled into sections
of suspense, comedy, romantic and many more. Interestingly, the content scenes which
could be predicted best from the measured masses were “suspense” and “comedy”. These
could be interpreted as intrinsically basic emotions within human beings. Conversely
the main breath gases like CO2 and isoprene and also acetic acid could be predicted
best from the annotated content scenes. This significant link seemed reasonable since
for example isoprene is known to be emitted in larger amount when the subject holds
breath or twitches muscles.
Based on the previous findings indicating a potential connection between the emission
of VOCs and a specific content scene the question arose whether this chemical reaction
of the audience can be used for the prediction of age ratings of films. Currently, the age
rating of a film is decided by a national committee that evaluating several aspects of the
film. These aspects include antisocial behaviour, incidences of violence, sex, drug use
and bad language. Can this information also be hidden in the time series of the mea-
sured VOCs? Considering isoprene, the emission rate increases when an exciting scene is
shown due to one or more physiological responses of the audience. Thus the information
which can be drawn out from this reaction to the scene can be the height of the peak.
Taking into account the whole time series of a film the obtained information can be the
number of peaks in the film and the height of these peaks. Interestingly, investigating all
measured masses it was found that isoprene exhibits the highest potential in predicting
the age rating of a film. Furthermore, the influence of different genre labels of the films
(like “action” or “comedy” films) and the different age structure of the audience do not
worsen the prediction performance critically. The prediction of the age ratings was made
on a different set with unseen films. This indicates that the isoprene trace is able to
capture the pattern induced by emotions in the film reflecting the subjective assessment
of the committee. Other compounds like CO2 and acetone are able to distinguish fewer
age rating classes than isoprene. However, for single age rating classes they can show
higher prediction accuracy than isoprene may reflecting the ability to respond better to
specific scenes in this age rating class. It would be interesting if the combination of some
of these masses lead to a better prediction accuracy. Additionally, the use of VOCs as
indicators in other domains like the detection of psychological stress can be examined.
The perception of stress also relies on several environmental conditions and extrinsic
stimuli.
The calculated emission rates present robust estimates and can be used for characteriz-
ing indoor air influenced by human presence, building ventilation design and comparison
of source strength emissions. The investigation of the causal relationship between hu-
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man emission of VOCs and audio-visual stimuli might confound the identification of
disease biomarkers. Additionally, the chemical response of humans to extrinsic stimuli
has practical implications in fields where some objective assessment of groups is required
for example in advertising or film industry. It is interesting to think that in future, age
classifications of films could be objectively determined by measurement of the reaction of
representative test groups. Such approaches can help classification boards on borderline
cases or over time as public sensitivities to certain topics change.
The second part of this thesis comprised the use of data mining methods for the analysis
of atmospheric time series. The use of pattern identification methods for extracting
similar meteorological conditions or repeating behaviour of certain VOCs is useful for
the understanding of the chemistry of the VOCs. This was shown for two different data
sets taken place in Cyprus and Finland. For both measurement campaigns similar mete-
orological conditions with a decrease in relative humidity and an increase in wind speed
and temperature were found. Additionally, the time series of VOCs can be included
into the pattern identification method. For example, the addition of dimethylsulfide to
the set of meteorological parameters enabled the objective extraction of time periods
when the sea breeze sets in. It was shown for these two measurement campaigns that
this pattern identification algorithm is robust towards noise and allows the objective
partitioning into smaller time periods of similar behaviour.
The application of clustering methods allowed the division of VOCs into groups of sim-
ilar behaviour. Many biogenic VOCs such as isoprene and monoterpenes as well as
anthropogenic VOC like benzene and toluene were grouped together. Furthermore, rep-
resentations of hierarchical clustering of different time periods were compared. For the
measurement campaign in Cyprus it was shown that biogenic VOCs form similar clusters
for different time periods and different meteorological conditions. In contrast, molecules
like acetaldehyde change their cluster affiliation for different extracted time periods so
we deduce a diel change in the source of acetaldehyde. In order to qualitatively esti-
mate the influence of meteorological parameters and air mass origin on VOCs a decision
tree classifier was deployed. This resulted in different groups of VOCs. Biogenic com-
pounds were identified to be mainly dependent on temperature whereas anthropogenic
compounds on the air mass origin. For acetaldehyde it was assumed that it has some
strong biogenic source as well as some anthropogenic contribution (primary emission
and secondary production).
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A. Supplement: Real world volatile
organic compound emission rates
from seated adults and children for
use in indoor air studies

Table A.1.: Summary of the measured films.
Film USK Screenings Viewers Amount of

children

I’m off then 0 33 4053 0%

Star Wars:
The Force
Awakens

12 34 3300 0%

Help, I’ve
shrunk my
teacher

0 18 988 64%

sum 85 8341 8%

Table A.3.: Summary of the emission rates of the measured VOCs. All emission rates
are presented in [μg h−1p−1]. In the last column the calibration method
is recorded. “Calibration gas” means that we calibrated this mass with a
gas standard. For the monoterpenes we used α-pinene and took the sum
of m/z 81.0699 (fragment of many monoterpenes, C6H

+
9 ) and m/z 137.1325

(C10H
+
17). “Calibration factor” means that we used the calibration factor of

acetone (30.9 [ncps/ppb]) to convert the measured signal into a mixing ratio.

Pr. Mass Molecule Adults [μg
h−1p−1]

Std.dev.
[μg
h−1p−1]

Children
[μg
h−1p−1]

Std.dev.
[μg
h−1p−1]

Cal.
method

CO2 3.0 · 107 0.5 · 107 1.8 · 107 0.6 · 107 Cal. gas
m31.0178 Formaldehyde 207 104 426 375 Cal. gas
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A. Supplement: Emission rates from adults and children

m33.0335 Methanol 650 736 1136 984 Cal. gas
m42.0423 Acetonitrile 8 4 9 9 Cal. gas
m43.0542 (iso)Propyl

fragment
107 81 321 240 Cal. factor

m45.0335 Acetaldehyde 221 76 252 160 Cal. gas
m47.0491 Ethanol 216 154 116 171 Cal. factor
m57.0699 (iso)Butyl

fragment
41 21 52 48 Cal. factor

m59.0491 Acetone 419 96 333 202 Cal. gas
m61.0284 Acetic acid 205 78 357 277 Cal. factor
m63.0084 2 0 1 1 Cal. factor
m63.0263 Methyl mer-

captane
7 2 6 5 Cal. gas

m65.0604 5 4 1 5 Cal. factor
m67.0542 6 2 4 3 Cal. factor
m69.0699 Isorpene 166 39 95 59 Cal. gas
m71.0491 Methyl vinyl

ketone
8 3 11 8 Cal. gas

m71.0855 8 4 8 10 Cal. factor
m73.0648 Methyl

ethyl ke-
tone/Methacrolein

50 29 105 62 Cal. gas

m75.0440 Propionic
acid/Hydroxy
acetone

19 7 27 18 Cal. factor

m83.0855 22 7 32 23 Cal. factor
m85.0648 3 1 3 2 Cal. factor
m85.1012 3 2 4 4 Cal. factor
m87.0441 8 3 15 11 Cal. factor
m87.0804 Pentanal 3 1 3 2 Cal. factor
m89.0597 Butyric acid 12 4 19 11 Cal. factor

m95.0129 5 5 11 32 Cal. factor
m95.0491 Phenol 10 4 13 10 Cal. factor
m95.0855 15 10 14 12 Cal. factor
m97.0298 10 4 19 14 Cal. factor
m97.1012 7 3 10 7 Cal. factor
m99.0804 5 2 6 4 Cal. factor
m103.0780 Pentanoic

acid
4 1 6 5 Cal. factor

m109.1076 11 13 12 12 Cal. factor
m111.1178 5 2 6 5 Cal. factor
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A. Supplement: Emission rates from adults and children

m121.0648 28 14 54 45 Cal. factor
m123.1168 4 2 5 3 Cal. factor
m127.1181 6-Methyl-5-

heptene-2-
one (6MHO)

3 2 5 4 Cal. factor

m131.0850 6 2 4 3 Cal. factor
m133.1012 5 2 5 5 Cal. factor
m135.1168 8 5 3 18 Cal. factor
m137.1325
+
m81.0699

Sum of
monoter-
penes

201 170 189 181 Cal. gas

m143.1067 3 2 3 2 Cal. factor
m143.1430 4 2 8 6 Cal. factor
m145.1150 8 3 2 3 Cal. factor
m153.1274 7 6 6 5 Cal. factor
m155.1430 6 2 4 4 Cal. factor
m157.1577 4 2 5 4 Cal. factor
m159.1363 4 2 4 4 Cal. factor
m177.1608 3 1 3 3 Cal. factor
m201.1857 13 4 9 6 Cal. factor
m205.1951 12 4 12 11 Cal. factor
m207.1768 11 3 9 5 Cal. factor
m217.1734 8 3 4 4 Cal. factor
m221.1568 8 4 13 10 Cal. factor
m235.2056 37 13 12 21 Cal. factor
m355.0698 Fragment

of De-
camethylpen-
tacycosilox-
ane

112 104 256 186 Cal. factor

A.1. Description of the PTR-TOF-MS set up

From the 1/4” OD (0.625 cm) main sample line described in the section above, a frac-
tion of 500 mL/min was drawn through a heated PEEK (polyether ether ketone) line
(60 ◦C) with 1/8” OD (0.313 cm) to the PTR-TOF-MS drift tube. The drift tube
was operated under 2.20 hPa, a temperature of 60 ◦C and a drift voltage of 600 V
providing an E/N of 137 Td. For mass calibration 1,3,5 Trichlorobenzene was used,
permeating through a 1/8” OD Teflon tube in the inlet system. The acquisition time
was 30 seconds and mass spectra were recorded ranging from 1 × 400 m/z. The raw
PTR-TOF-MS data was evaluated using the PTR-TOF ANALYZER, which is described
elsewhere.[103] The signal in counts per second (cps) was normalized by the sum of the
intensities of the signals of protonated water (measured on m/z 21 for H2

18O
+) and
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Table A.2.: Summary of the screening hours.
film screening

hour
times

I’m off then 17:30 17

20:00 16

Star Wars 14:00 20

18:00 2

22:30 12

Help, I’ve
shrunk my
teacher

11:30 16

17:20 2

the first water cluster (measured on the m/z 39 for (H2
18O)H3O

+). The signal was
calculated for a standardized pressure (2.00 hPa) and temperature (20◦C). The PTR-
TOF-MS was calibrated using a standard gas mixture (Apel-Riemer Environmental Inc.,
Broomfield, USA) of several VOCs with known mixing ratios. The VOCs included in
the calibration gas were methanol, acetonitrile, acetaldehyde, acetone, dimethyl sulfide,
isoprene, methyl vinyl ketone, methacrolein, methyl ethyl ketone, benzene, toluene, o-
xylene, 1,3,5-trimethylbenzene and α-pinene. However, it could be that in ambient air
there are other isomers present but we calibrated the signal only with one compound
in our gas standard. In the case of the monoterpenes we used the calibration factor of
α-pinene obtained by summing up the signal from m81.0699 (fragment of many monoter-
penes, C6H

+
9 ) and m137.1325 (mass of monoterpenes, C10H

+
17). To calculate the mixing

ratio we used this calibration factor on the sum of these both masses. The signal of
decamethylpentasiloxane was converted into the mixing ratio using the most abundant
peak on m/z 355.0698 and applying the calibration factor of acetone. The calculated
detection limit (3 σ of the noise) ranged from 0.01 ppb (acetaldehyde) to 0.24 ppb (α-
pinene) for the measured VOCs. The mixing ratios of VOCs which were not included in
the standard gas mixture were calculated with respect to acetone using the sensitivity
of the m/z 59.0491. The humidity dependency was studied for various VOCs and it was
found that the normalized counts per second varied only slightly (< 5%) for all VOCs
in the standard gas mixture for the degree of humidity variation experienced during
the opening hours of the cinema. For all calibrated VOCs the sensitivity in normalized
counts per second decreased as humidity increased.
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B. Supplement: Can the age
classification of films be made
based on audience breath-chemical
emissions?

Table B.1.: Summary of the attendees statistic. The numbers show the average amount
of viewers attending the showroom.

FSK 0 FSK 6 FSK 12 FSK 16
Help, I’ve shrunk
my teacher 55

Buddy 104 The Starving
Games 52

Counselor 90

I’m off then 122 Dinosaurs 3D 36 Hunger Games:
Catching Fire 118

Machete Kills 44

Walter Mitty 138 Star Wars: The
Force Awakens 97

Paranormal Ac-
tivity: Ghost
Dimension 130

B.1. Detailed description of the box model

The modelled mixing ratios for the compounds were calculated by applying a mass-
balance-approach. In order to use this model several assumptions must be made includ-
ing that there is no pathway for mass loss except air exchange and that the emission
rate p is small compared to the air exchange rate. It was observed that the air was
less effectively mixed in the lower part of the cinema. Thus a mixing factor q must
be introduced accounting for the incomplete mixing of the air. The volume of the
screening room was 1300 m3 and the air supply was 6500 m3/h with identical flows
in and out of the showroom provided by the software control of the ventilation sys-
tem (Instatec Klima-Energietechnik GmbH). Equation 1 shows the ordinary differential
equation (ODE) which must be solved optimizing the parameters q the mixing factor
and p the emission rate.

dm
dt

= cin · q · r + p − cout · q · r (B.1)
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B. Supplement: Age classification of films based on human emissions

In equation B.1, m is the mass of the molecules at time t in the screening room air.
The outside air is supplied with a ventilation rate r and a mixing ratio cin. The mixing
ratio cin was interpolated from the two surrounding background night time measure-
ments in the absence of people for each VOC. To account for the imperfect air mixing
The ventilation rate r is multiplied with the mixing parameter q and the product (q · r)
provides a smaller effective room ventilation rate. Consequently, the lower the mixing
factor q the worse the mixing of air in the room. The emission rate of a given gas from
the audience is given by p. The estimation of the emission rate p and the mixing factor
q involves the solving of the ordinary differential equation shown as equation B.1. The
optimization was performed using a non-linear least squares method. The estimated
constant emission rate p of the VOC and the mixing factor q were used to calculate the
mixing ratio of the VOC, which could be seen as the red curve on the left side in Figure
6.1 in the manuscript.

Table B.2.: Summary of the area under ROC curve calculated for all VOCs.

mass compound FSK 0 FSK 6 FSK 12 FSK 16
CO2 0.55 0.53 0.75 0.15
m31.0178 Formaldehyde 0.55 0.71 0.48 0.39
m33.0335 Methanol 0.50 0.62 0.36 0.26
m42.0423 Acetonitrile 0.65 0.69 0.33 0.48
m43.0542 (iso)Propyl fragment 0.51 0.67 0.52 0.22
m45.0335 Acetaldehyde 0.45 0.50 0.51 0.14
m47.0152 Ethanol 0.45 0.57 0.56 0.43
m47.0491 0.47 0.57 0.56 0.22
m57.0699 (iso)Butyl fragment 0.61 0.67 0.37 0.35
m59.0491 Acetone 0.55 0.63 0.56 0.13
m61.0284 Acetic acid 0.54 0.54 0.55 0.32
m63.0084 0.52 0.66 0.48 0.58
m63.0263 Methyl mercaptane 0.55 0.76 0.40 0.44
m63.0463 0.47 0.55 0.47 0.60
m65.0215 0.74 0.79 0.40 0.17
m65.0604 0.36 0.64 0.58 0.16
m67.0542 0.40 0.65 0.47 0.52
m69.0335 0.54 0.66 0.56 0.41
m69.0699 Isorpene 0.84 0.74 0.70 0.25
m71.0491 Methyl vinyl ketone 0.47 0.63 0.39 0.37
m71.0855 0.44 0.46 0.53 0.69
m73.0648 Methyl ethyl ketone/Methacrolein 0.60 0.54 0.46 0.74
m75.0440 Propionic acid/Hydroxy acetone 0.46 0.66 0.33 0.36
m77.0536 0.45 0.55 0.57 0.38
m79.0542 0.56 0.62 0.53 0.42
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m83.0455 0.38 0.40 0.70 0.60
m83.0855 0.60 0.59 0.49 0.52
m85.0648 0.48 0.45 0.60 0.30
m85.1012 0.47 0.56 0.37 0.29
m87.0441 0.36 0.45 0.49 0.38
m87.0804 Pentanal 0.43 0.46 0.52 0.51
m89.0597 Butyric acid 0.49 0.63 0.59 0.22
m93.0699 0.51 0.56 0.52 0.43
m95.0129 0.51 0.51 0.50 0.47
m95.0491 Phenol 0.53 0.54 0.69 0.29
m95.0855 0.53 0.54 0.70 0.55
m97.0298 0.34 0.47 0.55 0.47
m97.0661 0.38 0.52 0.71 0.55
m97.1012 0.54 0.49 0.52 0.26
m99.0440 0.41 0.46 0.58 0.34
m99.0804 0.44 0.50 0.67 0.44
m101.0597 0.45 0.51 0.60 0.47
m101.0961 0.53 0.52 0.64 0.54
m103.0780 Pentanoic acid 0.54 0.52 0.61 0.63
m107.0855 0.55 0.59 0.59 0.50
m109.1076 0.56 0.70 0.40 0.61
m111.0363 0.40 0.53 0.62 0.61
m111.0800 0.43 0.44 0.45 0.45
m111.1178 0.51 0.64 0.53 0.54
m114.0930 0.54 0.79 0.29 0.32
m115.0754 0.50 0.58 0.54 0.52
m115.1117 0.52 0.44 0.63 0.29
m121.1012 0.51 0.47 0.58 0.36
m135.1168 0.50 0.54 0.56 0.40
m137.1325 Sum of monoterpenes 0.60 0.58 0.64 0.66
m145.1150 0.40 0.33 0.61 0.69
m235.2056 0.51 0.55 0.73 0.48
m355.0698 Decamethylpentacycosiloxane 0.54 0.73 0.59 0.38

Table B.3.: Summary of the standard deviation of the area under curve for all measured
VOCs.

mass compound FSK 0 FSK 6 FSK 12 FSK 16
CO2 0.08 0.13 0.06 0.10
m31.0178 Formaldehyde 0.10 0.09 0.10 0.10
m33.0335 Methanol 0.06 0.10 0.06 0.12
m42.0423 Acetonitrile 0.11 0.08 0.08 0.15
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m43.0542 (iso)propyl fragment 0.07 0.11 0.05 0.15
m45.0335 Acetaldehyde 0.09 0.09 0.07 0.10
m47.0152 Ethanol 0.10 0.13 0.09 0.14
m47.0491 0.09 0.10 0.08 0.13
m57.0699 (iso)Butyl fragment 0.12 0.09 0.11 0.14
m59.0491 Acetone 0.11 0.11 0.09 0.07
m61.0284 Acetic acid 0.09 0.12 0.10 0.17
m63.0084 0.10 0.10 0.10 0.15
m63.0263 Methyl mercaptane 0.15 0.08 0.15 0.20
m63.0463 0.10 0.10 0.10 0.08
m65.0215 0.14 0.12 0.10 0.12
m65.0604 0.06 0.07 0.07 0.06
m67.0542 0.09 0.06 0.11 0.12
m69.0335 0.08 0.14 0.08 0.14
m69.0699 Isorpene 0.07 0.09 0.11 0.13
m71.0491 Methyl vinyl ketone 0.10 0.09 0.10 0.09
m71.0855 0.06 0.09 0.07 0.10
m73.0648 Methyl ethyl ketone/Methacrolein 0.12 0.10 0.12 0.07
m75.0440 Propionic acid/Hydroxy acetone 0.13 0.11 0.10 0.16
m77.0536 0.09 0.09 0.12 0.15
m79.0542 0.08 0.07 0.10 0.11
m83.0455 0.10 0.13 0.12 0.11
m83.0855 0.10 0.07 0.11 0.12
m85.0648 0.10 0.12 0.07 0.10
m85.1012 0.10 0.11 0.11 0.11
m87.0441 0.08 0.12 0.08 0.13
m87.0804 Pentanal 0.10 0.12 0.12 0.14
m89.0597 Butyric acid 0.08 0.13 0.11 0.11
m93.0699 0.05 0.08 0.08 0.12
m95.0129 0.08 0.10 0.06 0.15
m95.0491 Phenol 0.10 0.17 0.12 0.11
m95.0855 0.08 0.12 0.11 0.08
m97.0298 0.07 0.11 0.10 0.17
m97.0661 0.06 0.12 0.11 0.11
m97.1012 0.10 0.11 0.15 0.11
m99.0440 0.09 0.13 0.12 0.15
m99.0804 0.11 0.16 0.14 0.13
m101.0597 0.11 0.10 0.13 0.10
m101.0961 0.10 0.12 0.05 0.12
m103.0780 Pentanoic acid 0.11 0.15 0.13 0.12
m107.0855 0.08 0.10 0.10 0.08
m109.1076 0.11 0.08 0.12 0.05
m111.0363 0.09 0.15 0.14 0.10
m111.0800 0.08 0.11 0.07 0.10
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m111.1178 0.11 0.11 0.13 0.16
m114.0930 0.11 0.10 0.09 0.17
m115.0754 0.08 0.13 0.08 0.09
m115.1117 0.08 0.12 0.13 0.11
m121.1012 0.10 0.13 0.07 0.12
m135.1168 0.10 0.12 0.11 0.08
m137.1325 Sum of monoterpenes 0.09 0.10 0.08 0.14
m145.1150 0.09 0.10 0.11 0.12
m235.2056 0.08 0.11 0.10 0.11
m355.0698 Decamethylpentacycosiloxane 0.06 0.08 0.09 0.17

Table B.4.: Summary of the p-value derived from the permutation test for all measured
VOCs.

mass compound FSK 0 FSK 6 FSK 12 FSK 16
CO2 0.40 0.49 0.09 0.92
m31.0178 Formaldehyde 0.41 0.08 0.57 0.75
m33.0335 Methanol 0.45 0.24 0.85 0.82
m42.0423 Acetonitrile 0.21 0.10 0.88 0.54
m43.0542 (iso)Propyl fragment 0.47 0.16 0.47 0.83
m45.0335 Acetaldehyde 0.68 0.41 0.53 0.93
m47.0152 Ethanol 0.68 0.35 0.37 0.65
m47.0491 0.59 0.34 0.37 0.86
m57.0699 (iso)Butyl fragment 0.31 0.16 0.76 0.68
m59.0491 Acetone 0.30 0.29 0.27 0.95
m61.0284 Acetic acid 0.37 0.51 0.33 0.80
m63.0084 0.44 0.15 0.54 0.41
m63.0263 Methyl mercaptane 0.41 0.08 0.68 0.52
m63.0463 0.58 0.41 0.52 0.32
m65.0215 0.11 0.09 0.67 0.91
m65.0604 0.92 0.16 0.24 0.92
m67.0542 0.78 0.14 0.56 0.50
m69.0335 0.42 0.19 0.32 0.72
m69.0699 Isorpene 0.01 0.05 0.16 0.80
m71.0491 Methyl vinyl ketone 0.59 0.21 0.79 0.70
m71.0855 0.71 0.58 0.44 0.25
m73.0648 Methyl ethyl ketone/Methacrolein 0.32 0.41 0.61 0.15
m75.0440 Propionic acid/Hydroxy acetone 0.56 0.20 0.86 0.72
m77.0536 0.71 0.41 0.37 0.63
m79.0542 0.35 0.22 0.43 0.54
m83.0455 0.79 0.70 0.11 0.37
m83.0855 0.22 0.28 0.50 0.52

112



B. Supplement: Age classification of films based on human emissions

m85.0648 0.57 0.61 0.26 0.81
m85.1012 0.68 0.42 0.81 0.81
m87.0441 0.88 0.66 0.55 0.68
m87.0804 Pentanal 0.61 0.55 0.49 0.45
m89.0597 Butyric acid 0.53 0.19 0.30 0.83
m93.0699 0.53 0.34 0.43 0.56
m95.0129 0.44 0.49 0.50 0.53
m95.0491 Phenol 0.42 0.39 0.08 0.86
m95.0855 0.42 0.40 0.08 0.43
m97.0298 0.89 0.58 0.36 0.59
m97.0661 0.86 0.47 0.10 0.46
m97.1012 0.38 0.54 0.46 0.84
m99.0440 0.78 0.58 0.29 0.75
m99.0804 0.60 0.55 0.19 0.57
m101.0597 0.63 0.43 0.22 0.56
m101.0961 0.39 0.44 0.14 0.49
m103.0780 Pentanoic acid 0.40 0.42 0.31 0.25
m107.0855 0.39 0.34 0.31 0.41
m109.1076 0.38 0.11 0.68 0.39
m111.0363 0.76 0.37 0.28 0.28
m111.0800 0.66 0.69 0.66 0.54
m111.1178 0.47 0.19 0.46 0.46
m114.0930 0.39 0.03 0.91 0.78
m115.0754 0.49 0.34 0.41 0.49
m115.1117 0.46 0.63 0.24 0.81
m121.1012 0.52 0.53 0.30 0.67
m135.1168 0.49 0.41 0.38 0.64
m137.1325 Sum of monoterpenes 0.25 0.33 0.16 0.32
m145.1150 0.73 0.85 0.27 0.20
m235.2056 0.47 0.37 0.04 0.54
m355.0698 Decamethylpentacycosiloxane 0.35 0.04 0.27 0.69

The tables S2-S3 (statistic mean and standard deviation for all compounds and all
features), tables S7-S8 (ticket sales data for 2013/2014 and 2015/2016) and tables S9-S10
(all measured masses for 2013/2014 and 2015/2016) can be obtained from the author.
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