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A B S T R A C T

Thin films of block copolymers have attracted intensive research interest be-
cause these materials can self-assemble into a variety of well-ordered nano-
structures. These systems have been employed in numerous applications in na-
notechnology, including photonic crystals, magnetic storage media, etc.. How-
ever, one of the problems with self-assembled block copolymers is the lack of
long-range order due to the presence of topological defects.

In this thesis, we perform a theoretical study to investigate the morphologies
in thin diblock copolymer films using self-consistent field theory (SCFT). We
focus on the stability and orientation of the cylindrical phase formed by AB
diblock copolymers when confined within substrates of different geometries.

Firstly, we apply the SCFT method to study AB diblock copolymers con-
fined between two planar surfaces. We determine minima in the free energy
landscape and the optimum thickness of multilayer cylindrical films to analyze
the stability of films. For the thin film systems investigated in this work, we
show that the global equilibrium state of these films is the one where a mono-
layer film coexists with the islands of thicker multilayer films. Additionally,
the coupling mechanism between the bottom and upper layers is investigated
as well. We show that the first aligned layer can help to order the upper layers,
and then to propagate order in thicker thin films.

In general, when the surface fields attract the majority block sufficiently
strongly, the cylindrical phase formed by the diblock copolymers will orient
parallel to the film plane (C||). However, their orientation can switch to perpen-
dicular (C⊥) or new morphologies can be found under certain conditions. Our
SCFT results indicate that there is an orientational phase transition, C|| → C⊥,
when the film thickness is reduced below the natural size of the monolayer of
parallel cylinders. Furthermore, we also find the formation of the perforated
lamellae (PL) and lamella (L) phases in the region in which the thickness is
about half the optimal thickness of a single layer of parallel cylinders. When
the thickness is very small, the films become unstable and dewet from the
substrate.

We also study the diblock copolymers confined in curved substrate (coaxial
cylindrical surfaces). We consider two types of model systems: free-standing
membranes and curved supported thin films. We calculate the bending con-
stant of the free-standing membranes. The results imply that the local orient-
ation of patterns has a strong coupling with the geometry of confinement.
Namely, the block copolymer cylinders tend to align along the direction of
curvature at high curvatures. Moreover, at low curvatures, there is a transition
C⊥ → C|| in supported films, which is absent in the free-standing membranes.
Therefore, the mean curvature not only acts as a guiding field to produce well
ordered patterns but also generates defects at specific regions in space. The sta-
bility of the thin films against curvature-induced dewetting is also analyzed.

iv



v

Z U S A M M E N FA S S U N G

Dünne Schichten aus Blockcopolymeren haben ein intensives Forschungsin-
teresse geweckt, da sich diese Materialien zu einer Vielzahl von geordneten
Nanostrukturen zusammenfügen können. Diese Systeme wurden in zahlrei-
chen Anwendungen in der Nanotechnologie, darunter photonische Kristalle,
magnetische Speichermedien, etc. eingesetzt. Eines der Probleme bei selbst
zusammengesetzten Blockcopolymeren ist jedoch das Fehlen einer langreich-
weitigen Ordnung aufgrund von topologischen Defekten.

In dieser Arbeit führen wir eine theoretische Studie zur Untersuchung der
Morphologien in dünnen Diblockcopolymer-Filmen mithilfe der Self-Consistent
Field Theory (SCFT) durch. Wir konzentrieren uns auf die Stabilität und Ori-
entierung der zylindrischen Phase, die durch AB-Diblockcopolymere gebildet
wird, wenn sie zwischen Substraten mit unterschiedlichen Geometrien einge-
schlossen wird.

Zuerst wenden wir die SCFT-Methode an, umAB-Diblockcopolymere zu un-
tersuchen, die zwischen zwei planaren Oberflächen eingeschlossen sind. Wir
bestimmen die Minima in der freien Energielandschaft und die optimale Di-
cke von mehrschichtigen zylindrischen Filmen, um die Stabilität von Filmen zu
analysieren. Für die in dieser Arbeit betrachteten Systeme aus dünnen Schich-
ten zeigen wir, dass der Zustand des globalen Gleichgewichts derjenige ist, bei
dem eine einzelne Monoschicht mit Inseln dickerer Multischichten koexistiert.
Des Weiteren wird auch der Kopplungsmechanismus zwischen der untersten
Schicht und oberen Schichten beleuchtet. Wir zeigen, dass die erste orientierte
Schicht helfen kann, die oberen Schichten zu ordnen und dann die Ordnung
in dickeren Dünnschichten zu propagieren.

Wenn die Oberflächenfelder den Mehrheitsblock ausreichend stark anzie-
hen, orientiert sich die von den Diblockcopolymeren gebildete zylindrische
Phase parallel zur Filmebene (C||). Unter bestimmten Bedingungen kann ih-
re Orientierung jedoch auf eine senkrechte Orientierung (C⊥) wechseln oder
es kann eine neue Morphologie gebildet werden. Unsere SCFT-Ergebnisse deu-
ten darauf hin, dass es einen Orientierungsphasenübergang von C|| → C⊥ gibt,
wenn die Filmdicke unter die natürliche Größe der Monoschicht der paralle-
len Zylinder reduziert wird. Darüber hinaus beobachten wir auch die Bildung
der perforierten Lamellen (PL) und Lamellen (L) in dem Bereich, in dem die
Dicke etwa die Hälfte der optimalen Dicke einer einzelnen Schicht von paral-
lelen Zylindern beträgt. Bei sehr geringer Dicke werden die Filme instabil und
entnetzen vom Substrat.

Weiterhin untersuchen wir Diblockcopolymere, welche in gekrümmten Sub-
straten bestehend aus koaxialen zylindrischen Oberflächen eingeschlossen wer-
den. Wir betrachten zwei Arten von Modellsystemen: freistehende Membranen
und gebogene, gestützte dünne Schichten. Wir berechnen die Biegekonstante
der freistehenden Membranen. Die Ergebnisse deuten darauf hin, dass die lo-
kale Orientierung der Pattern eine starke Kopplung mit der Geometrie des
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Confinements hat. Die Blockcopolymer-Zylinder orientieren sich nämlich bei
hohen Krümmungen entlang der Krümmungsrichtung. Außerdem gibt es bei
niedrigen Krümmungen einen Übergang C⊥ → C|| in gestützten Filmen, der
in den freistehenden Membranen nicht auftritt. Die mittlere Krümmung dient
daher nicht nur als leitendes Feld zur Erzeugung geordneter Pattern, sondern
erzeugt auch Defekte an bestimmten Stellen im Raum. Die Stabilität der dün-
nen Filme gegen krümmungsinduzierte Entnetzung wird ebenfalls analysiert.
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Part I

I N T R O D U C T I O N A N D T H E O RY





1
I N T R O D U C T I O N

Many soft materials, such as polymers, colloids and membranes self-assemble
into well-defined periodic nanostructures [1]. The self-assembly of complex
materials attracts tremendous interest, not only because of the intriguing mor-
phologies they form but also because of their importance in material industry
and biological applications. Self-assembly satisfies the key requirement of many
technologies. It is a typically low cost, fast and efficient method in nanofabrica-
tion [1–4]. Among a wide variety of self-assembling materials, block copolymer
thin films provide an excellent alternative because they can be synthesized
with different architectures to produce patterns with a diversity of symmet-
ries [5]. More importantly, they can create high resolution patterns on small
length scales, for example sub-100 nm, while the limit of traditional optical
lithographic techniques is 100 nm [6].

Figure 1.1: Examples of some common copolymer architectures

Block copolymers are made of two or more polymeric blocks. Each block is
a sequence of identical monomers which are attached by covalent bonds [7–9].
The number of monomers in one chain is often called the degree of polymeriz-
ation. It can be small, such as about 300 monomers, a typical number of amino
acids in a protein, or very large as polystyrene containing ∼ 105 monomers
[10]. The simplest form of a block copolymer is a diblock, in which two se-
quential species (simply denoted as A and B) occupy a given fraction of a
single backbone. Block copolymers can have more intricate and complex archi-

3



4 introduction

tectures, such as ABC triblock copolymer, graft copolymers or even ABABA
pentablock architectures. Figure 1.1 depicts some common copolymer architec-
tures.

During the last decades, it has been found that at a low enough temperature,
the incompatibility between different blocks leads to microphase separation.
In this case, the copolymer self-assembles into an ordered morphology. For
example, lamellae, hexagonally packed cylinders, body centered cubic arrays
of spheres, and gyroid phases have been observed in AB diblock copolymers.
The symmetry of these phases is mainly controlled by the volume fraction f
of one of the blocks, as shown in figure 1.2. In addition to these typical four
microphase structures, many more ordered phases with more complex poly-
mer architectures have been seen [5]. The extraordinary variety of possible
morphologies and their molecular size (5 − 10 nm) make block copolymers
an ideal material to produce self-assembled nanostructures. Block copolymers
form periodic microdomain structures that can be used as nanolithographic
etch masks to produce dot or stripe patterns [7, 11, 12]. There are many applic-
ations of block copolymer self-assembly, including the creation of nanopore
arrays [13], nanowire polarizer grids [14, 15], high-density magnetic storage
devices [16], nanoporous materials as a template to incorporate nanoparticles
[17] or biomolecules [18, 19], etc..

Figure 1.2: Schematics of thermodynamicically stable AB diblock copolymer phases
as a function of increasing diblock fraction fA [9].
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There are many studies, both in experiment and in theory, that describe
the self-assembly of block copolymers. One of the theoretical methods, the
so-called self-consistent field theory, is one of the most successful theories for
modelling soft condensed matter systems in general [20] and describing the
equilibrium structures of block copolymers in particular [21–24]. For instance,
it has been found that the phase diagram for a diblock copolymer (figures 1.3
and 1.4) depends on the volume fraction f of one block and χN, where N is
the degree of polymerization and χ is the Flory-Huggins interaction parameter
describing the segregation strength between the blocks.

Figure 1.3: Theoretical equilibrium phase diagram for melts of AB diblock copoly-
mers as a function of the volume fraction f of one block and segregation
strength χN [24]. Here L corresponds to the lamellar phase, C corresponds
to the cylindrical phase, S to the spherical phase, G corresponds to the
gyroid phase, O70 denotes the Fddd phase and Scp a phase in which
spheres occur on a close-packed lattice.

When block copolymers are confined in a thin film at the nano-scale, their
morphologies can significantly deviate from those observed in the bulk [4, 29,
30] due to the confining surfaces and the affinity of each block to the inter-
faces, or more new and interesting complex structures can appear. In these
confined systems, the morphologies are determined by a complex interplay of
different factors: surface energy, entropic and enthalpic free energy contribu-
tions [31]. The microdomain structure here has to adjust to the interfaces and
a given thickness. For example, there are some studies that investigated the
cylinder-forming of block copolymer confined in thin film indicating that the
equilibrium phase behavior is more complex [32–34]. Besides the cylinderical
phase, additional phases, such as perforated lamellae (PL) and lamellae (L)
were observed. This phase behavior is controlled by the interplay between the
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Figure 1.4: Experimental equilibrium phase diagram for melts of polystyrene-
polyisoprene diblock copolymers as a function of block fraction f and se-
gregation strength χN [25]. It is analogous to that in figure 1.3, but there are
no O70 (Fddd) or Scp phases. Most recently, the Fddd phase was observed
in an experiment [26, 27]. This figure is adapted from [28].

degree of the preference of surfaces to each block and the mismatch between
the film thickness and the periodicity of the microdomain.

The self-assembly of block copolymers has many promising applications.
However, one of the main drawbacks of the self-assembly strategy in block co-
polymer systems is the lack of long-range order due to the presence of defects
[35–37]. Figure 1.5 diplays four classical topological defects which are common
to various materials including block copolymers. The topological defects, like
disclinations, dislocations and grain boundaries disturb the ordered states and
consequently prevent applications for devices where order is crucial. In phys-
ical systems, these defects appear spontaneously due to a symmetry breaking
process [38] and their appearance at the interfaces are unavoidable [6]. In the
case of block copolymer thin films developing smectic order. The most com-
mon defects are +1/2 disclinations and dislocations as shown in figure 1.6.
These defects destroy the orientational and/or transitional order.

There has been significant effort to tackle the topological defect problem and
to promote long-range order and to produce well-defined periodic structures
in block copolymer thin films. For example, it was shown that thin films of
cylinder-forming or sphere-forming block copolymers can be well-aligned by
using a shearing technique [42–44]. Moreover, other methods such as, grapho-
epitaxy, electric fields [45–47], curvature of the substrates [41] and zone anneal-
ing [48, 49] have been employed to obtain well-defined orientational structures.
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Figure 1.5: Schematic representation of typical topological defect configurations that
disrupt order in smectic system. Panel a) shows a edge dislocation which
is a less energetic defect. Panel b) and c) are positive and negative 1/2
disclinations, respectively [39, 40]. Panel d) is a paired ±1/2 disclinations.

Figure 1.6: Experimental atomic force microscopy (AFM) phase field image of a block
copolymer thin film that shows the topological defects: A red circle is a
positive disclination, a blue rectangle is a dislocation [41].
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This thesis deals with the problem of block copolymers confined in thin film
and free-standing membrane systems using self-consistent field theory (SCFT).
The systems studied in this thesis are very similar to the experimental systems
investigated by Professor Vega’s group. In addition to the SCFT free energy, we
also consider the contribution of long-range van der Waals (vdW) interaction
between the copolymer film and the surfaces to the free energy of the system.
The vdW interaction plays an essential role in all phenomena involving inter-
molecular force, for instance, the wetting or dewetting properties of polymer
films. It can stabilize thin PS films against height fluctuations on the substrates
[50].

Chapter 2 reviews the theoretical framework of the self-consistent field the-
ory applied to AB diblock copolymer systems. The theory is developed in
both the canonical and grand canonical essemble. Chapter 3 presents the ap-
proximation and the numerical methods used in this thesis. The central task
is to solve the modified diffusion equations. The Crank-Nicolson method is
employed here; therefore, it is discussed in detail.
In chapter 4 and 5, we present the results of SCF calculations in Euclidean
geometry with periodic boundary conditions of cylinder-forming of diblock
copolymers confined between two flat surfaces. Chapter 4 studies multilayers
of diblock copolymer in thin films. We investigate the global equilibrium state
of thin films and the coupling mechanism between bottom and upper layers.
Chapter 5 covers the phase behaviour of cylinder-forming diblock copolymers
in thin films due to the mismatch between the natural size of a monolayer of
cylinders and the film thickness and the surface fields.
Finally, we extend the method to diblock copolymers confined in thin films
with curved substrates (two coaxial cylindrical surfaces) in chapter 6. We in-
vestigate how the mean curvature of the substrates influences the local orient-
ation of the copolymer patterns. However, up to now, little is known about the
interplay between the block copolymer self-assemply and the curvature. We
also analyze the stability of the films against curvature-induced dewetting.
In chapter 7, we summarize the main results of this thesis and give some per-
spectives in this research area.



2
S E L F - C O N S I S T E N T F I E L D T H E O RY

Self-consistent field theory (SCFT) was introduced by Edwards several decades
ago [51]. It is one of the most powerful methods to study the self-assembly of
complex systems, such as polymer fluids and other soft condensed matter sys-
tems in general. It was first extended to block copolymers by Helfand in 1975
[52, 53]. The idea of SCFT is replacing the many-body problem by the problem
of an ideal Gaussian chain in an effective mean field potential which is cre-
ated by the other chains. It is illustrated in figure 2.1. The theory allows exact
mean-field calculation for block copolymers and blends using a coarse-grained
model. It has been remarkably improved so far with tremendous successes. In
the case of block copolymers, SCFT provides a description of a rich variety of
phases and a prediction of new morphologies as well. There are several review
papers about SCFT [22, 28, 54] with more details. In this chapter, we present a
brief introduction into SCFT focusing on block copolymer thin films.

Figure 2.1: An illustration of the mean field approximation. In a system of identical
chains, we focus on one chain (the red one), and study the problem of one
chain under the influence of the mean field generated by the other chains
(right panel). The mean field depends on the local concentration of the
monomers.

We consider a melt of n identical AB diblock copolymer molecules confined
in a volume V , each consisting of N segments of which a fraction f forms the A
block. Then the number of A segments is NA = fN and for the B segments it is
NB = (1− f)N. Here we assume that A and B segments have equal statistical
segment length b; however they can have different statistical length in general.
Each molecule is parameterized by a variable s which increases continuously
from 0 to 1 along its length as shown in figure 2.2. Here s represents a paramet-
erization of the polymer chain. At the A-monomer end, s = 0, at the junction
point between A and B blocks, s = f, and at the other end s = 1. The configur-
ation of the αth block (α = A,B) is then represented by a mathematical space
curve, rα(s).

9



10 self-consistent field theory

Figure 2.2: Cartoon of a continuous chain of an AB diblock copolymer with the space
curve rα(s), where s ∈ [0, 1] is a contour parameter and α denots for A
or B block. f is a parameter indicating the ratio of the A block to the total
chain.

The microscopic concentration operators of A and B segments at a given
point r are defined as:

φ̂A(r) =
N

ρ0

n∑
j=1

∫f
0

ds δ(r − rj(s)) (2.1)

φ̂B(r) =
N

ρ0

n∑
j=1

∫1
f

ds δ(r − rj(s)) (2.2)

These concentrations are made dimensionless by dividing by the average seg-
ment density ρ0 (ρ0 = nN

V ). The segments here are assumed to have the same
monomer volume ρ−10 .

The interaction potential of the melt takes the form:

HI = kBTρ0χ

∫
dr φ̂A(r)φ̂B(r) + kBTρ0

κ

2

∫
dr
[
φ̂A(r) + φ̂B(r) − 1

]2
(2.3)

where χ is the Flory-Huggins parameter, that varies with the temperature, spe-
cifying the incompatibility between A and B segments; κ is the inverse iso-
thermal compressibility or Helfand parameter. It is the proper measure of the
tendency to attract copolymers into regions with φ̂A(r) + φ̂B(r) < 1, and re-
pel copolymers when the total density is greater than 1. When κ → ∞, we
approach the incompressibility limit. For simplicity, most studies consider in-
compressible diblock copolymer melts, where the total density of A and B-
block is always a constant ΦA +ΦB = 1. In this case, the last term in equation
2.3 is zero. However, this approximation fails under certain conditions. For in-
stance, when a copolymer melt is confined between two surfaces, the Dirichlet
boundary conditions are incompatible with the incompressibility constraint at
the surfaces. One way to solve this incompatibility is allowing the variation of
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the total density of copolymers near the surfaces [55]. The thermal energy kBT
and average segment density ρ0 are included to make χ and κ dimensionless.
We shall consider kBT = 1, as a convention.

The canonical partition function is written as the functional integral

ZC =
1

n!

∫  n∏
j=1

D{rj}

P[rj; 0, 1] e−FC/kBT
=

1

n!

∫  n∏
j=1

D{rj}

P[rj; 0, 1] exp
[
−ρ0χ

∫
drφ̂A(r)φ̂B(r)

]

exp
[
−ρ0

κ

2

∫
dr (φ̂A(r) + φ̂B(r) − 1)2

]
(2.4)

where the functional integral is taken over all configurations of the melt system.
We assume flexible Gaussian chain polymers [20]; therefore, the probability
distribution for individual configuration can be expressed as

P[rj; 0, 1] = N exp

[
−3

2Nb2

∫f
0

ds

∣∣∣∣ ddsrA(s)
∣∣∣∣2 − 3

2Nb2

∫1
f

ds

∣∣∣∣ ddsrB(s)
∣∣∣∣2
]

(2.5)

where drα(s)/ds is the derivative of the space curve rα(s) at contour position
s (α = A,B), b is the statistical segment length and N is the normalization
factor. The probability distribution P[rj; 0, 1] accounts for the internal stretching
energy of the chain.

To make the expression for the partition function more compact, we insert
the identity

∫
Dφαδ(φα − φ̂α) permitting the replacement of operators φ̂α in

equation (2.4) by the functions φα (α = A,B).

1 =

∫
D{φα} δ(φα − φ̂α)

=

∫
D{φα}

∫
i∞D{wα} exp

[
ρ0

∫
dr wα(φα − φ̂α)

]
(2.6)

We denote ∫
D{.} =

1

n!

∫  n∏
j=1

D{rj}

P[rj; 0, 1] (2.7)

Thus, we have the canonical partition function as below:

ZC =

∫
D{.}
∫

D{φA}

∫
i∞D{wA}

∫
D{φB}

∫
i∞D{wB} exp

[
−ρ0χ

∫
drφAφB

]

exp
[
−ρ0

κ

2

∫
dr (φA +φB − 1)2

]
exp

 ∑
α=A,B

ρ0

∫
dr wα(φα − φ̂α)


=

∫
D{φA}

∫
i∞D{wA}

∫
D{φB}

∫
i∞D{wB} exp

[
−ρ0

∫
dr
(
χφAφB +

κ

2
(φA +φB − 1)2

)]

exp

 ∑
α=A,B

ρ0

∫
dr wαφα

 ∫ D{.} exp

 ∑
α=A,B

ρ0

∫
dr wαφ̂α


=

∫
D{φA}

∫
i∞D{wA}

∫
D{φB}

∫
i∞D{wB} e

−FC (2.8)
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Therefore, the corresponding free energy of the system results

FC = ρ0

∫
dr
[
χφA(r)φB(r) +

κ

2
(φA(r) +φB(r) − 1)

2
]

−ρ0

∫
dr [wA(r)φA(r) +wB(r)φB(r)]

− ln

{∫
D{.} exp

[
−φ0

∫
dr
(
wA(r)φ̂A(r) +wB(r)φ̂B(r)

)]}
(2.9)

We redefine the fields by including the factor N, Nwα(r) → ωα(r). After this
manipulation, we get the result

FC = ρ0

∫
dr
[
χφA(r)φB(r) +

κ

2
(φA(r) +φB(r) − 1)

2
]

−
ρ0
N

∫
dr [ωA(r)φA(r) +ωB(r)φB(r)]

− ln

{∫
D{.} exp

[
−ρ0
N

∫
dr
(
ωA(r)φ̂A(r) +ωB(r)φ̂B(r)

)]}
,(2.10)

where∫
D{.} exp

[
−ρ0
N

∫
dr
(
ωA(r)φ̂A(r) +ωB(r)φ̂B(r

)]

=

∫
D{.} exp

−ρ0
N

∫
drωA(r)

N

ρ0

n∑
j=1

∫f
0

ds (r − r ′(s))


exp

−ρ0
N

∫
drωB(r)

N

ρ0

n∑
j=1

∫1
f

ds (r − r ′(s))


=

∫
D{.} exp

− n∑
j=1

∫f
0

dsωA(r(s)) −
n∑
j=1

∫1
f

dsωB(r(s))


=

1

n!

∫  n∏
j=1

D{rj}

P[rj; 0, 1] exp

− n∑
j=1

∫f
0

dsωA(r(s)) −
n∑
j=1

∫1
f

dsωB(r(s))


=

1

n!
Qn (2.11)

with

Q[ω] =

∫
D {rj}P[rj; 0, 1] exp

[
−

∫f
0

dsωA(r(s)) −
∫1
f

dsωB(r(s))

]

=

∫
Dj{.} exp

[
−

∫f
0

dsωA(r(s)) −
∫1
f

dsωB(r(s))

]
(2.12)

Here Q[ω] is the partition function of a single non-interacting polymer chain
subjected to external fields ωα(r). The square brackets on Q[ω] denote that it



self-consistent field theory 13

is a functional that depends on the fields ωα(r).
Then the free energy can be rewritten as,

FC = ρ0

∫
dr
[
χφA(r)φB(r) +

κ

2
(φA(r) +φB(r) − 1)

2
]

(2.13)

−
ρ0
N

∫
dr [ωA(r)φA(r) +ωB(r)φB(r)] − ln

(
Qn

n!

)
≈ −n lnQ+ ρ0χ

∫
drφA(r)φB(r) + ρ0

κ

2

∫
dr (φA(r) +φB(r) − 1)

2

−
ρ0
N

∫
dr [ωA(r)φA(r) +ωB(r)φB(r)] (2.14)

where the Stirling approximation was used

ln
(
Qn

n!

)
≈ n ln

(
Q

n

)
+ const = n lnQ+ const (2.15)

Note that the entropic free energy or equivalently the entropy according to
standard statistical mechanics is fe = −T S. Therefore, the entropic energy of
the diblock copolymer melt is

fe

kBT
= −n lnQ−

ρ0
N

∫
dr [ωA(r)φA(r) +ωB(r)φB(r)] (2.16)

The product of n chains and the logarithm of the single chain partition function
Q[ω] gives the total free energy of the n diblock copolymers in the mean
field approximation, while the integral of the product of fields and densities
removes the average internal energy gained from the fields.

In SCFT, the free energy of the melt is approximated by FC[φA,φB,ωA,ωB],
where the functions φα and ωα correspond to a saddle point obtained by
equating the functional derivatives of equation 2.14 to zero. Thus the self-
consistent equations can be obtained by extremizing the free energy with re-
spect to the fields ωα(r) and average segment densities φα(r)

ωA(r) = NχφB(r) +Nκ [φA(r) +φB(r) − 1] (2.17)

ωB(r) = NχφA(r) +Nκ [φA(r) +φB(r) − 1] (2.18)

φA(r) =
−nN

ρ0Q

δQ

δωA(r)
(2.19)

φB(r) =
−nN

ρ0Q

δQ

δωB(r)
(2.20)

δQ

δωA(x)
= −

∫f
0

ds q(r, s)q†(r, 1− s) (2.21)

δQ

δωB(x)
= −

∫1
f

ds q(r, s)q†(r, 1− s) (2.22)

The two equations (2.19) and (2.20) identify φA(r) and φB(r) as the average
segment densities of A and B blocks at position r as calculated in an ensemble
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of non-interacting polymers subject to the fields, ωA(r) and ωB(r), which act
on A and B blocks, respectively.

Here the two propagators q and q† are defined as

q(r, s) =


∫

Dj{.} δ(r(s) − x) exp
[
−
∫s
0 dτωA(r(τ))

]
0 < s < f∫

Dj{.} δ(r(s) − x) exp
[
−
∫f
0 dτωA(r(τ)) −

∫s
f dτωB(r(τ))

]
f < s < 1

(2.23)

q†(r, 1− s) =


∫

Dj{.} δ(r(s) − x) exp
[
−
∫f
s dτωA(r(τ)) −

∫1
f dτωB(r(τ))

]
0 < s < f∫

Dj{.} δ(r(s) − x) exp
[
−
∫1
s dτωB(r(τ))

]
f < s < 1

(2.24)
The physical meaning of these propagators q(r, s) and q†(r, 1− s) are the prob-
ability of finding the end of a chain fragment containing the segments [0 : f]

and [1 : f], respectively. The propagators are referred to as forward and back-
ward propagators [56], also as end-segment distribution functions [57, 58].
Then the single chain partition function is related to the integral of the two
end-segment distribution functions as follows:

Q[ω] =

∫
dr q(r, s) q†(r, 1− s) (2.25)

Furthermore, the end-segment distribution functions satisfy the equations be-
low, which are normally referred to as the modified diffusion equations (MDEs)
in the community of polymer scientists:

∂q(r, s)
∂s

=
Nb2

6
∇2q(r, s) −ωα(r)q(r, s) (2.26)

Length in the system is expressed in units of the unperturbed radius gyration
Rg, which is given by R2g = Nb2

6 , the diffusion equation becomes

∂q(r, s)
∂s

= ∇2q(r, s) −ωα(r)q(r, s) (2.27)

with

ωα(r, s) =

{
ωA(r) for 0 < s < f

ωB(r) for f < s < 1
(2.28)

and the initial condition q(r, 0) = 1.
The diffusion equation for the propagator q†(r, 1 − s) is similar, with initial
condition q†(r, 1) = 1.
The self-consistent equations are finally written as:

ωA(r) = NχφB(r) +Nκ [φA(r) +φB(r) − 1] (2.29)

ωB(r) = NχφA(r) +Nκ [φA(r) +φB(r) − 1] (2.30)

φA(r) =
V

Q

∫f
0

ds q(r, s)q†(r, 1− s) (2.31)

φB(r) =
V

Q

∫1
f

ds q(r, s)q†(r, 1− s) (2.32)
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Sometimes, it is more convenient to work in grand canonical ensemble. The
grand canonical partition function has form

ZGC =

∞∑
n=0

eµn/kBT

n!

∫  n∏
j=1

D{rj}

P[rj; 0, 1]e−FGC/kBT
=

∞∑
n=0

eµn

n!

∫  n∏
j=1

D{rj}

P[rj; 0, 1] exp
[
−ρ0χ

∫
drφ̂A(r)φ̂B(r)

]

exp
[
−ρ0

κ

2

∫
dr (φ̂A(r) + φ̂B(r) − 1)2

]
(2.33)

where µ is the chemical potential of diblock copolymers. After having the
partition function ZGC in hand, we apply the completely analogous way as for
canonical ensemble. We then obtain the grand canonical free energy:

FGC = −eµQ+ ρ0

∫
dr
[
χφA(r)φB(r) +

κ

2
(φA(r) +φB(r) − 1)

2
]

−
ρ0
N

∫
dr [ωA(r)φA(r) +ωB(r)φB(r)] (2.34)

The self-consistent equations for grand canonical ensemble are:

ωA(r) = NχφB(r) +Nκ [φA(r) +φB(r) − 1] (2.35)

ωB(r) = NχφA(r) +Nκ [φA(r) +φB(r) − 1] (2.36)

φA(r) = eµ
∫f
0

ds q(r, s)q†(r, 1− s) (2.37)

φB(r) = eµ
∫1
f

ds q(r, s)q†(r, 1− s) (2.38)

We will discuss approximations and numerical methods used to solve these
modified diffusion equations in the next chapter.





3
M E T H O D S

In the previous chapter we derived self-consistent equations by employing the
mean field approximation and the exact expressions for the partition function
and propagators of a single chain in external potentials. It is not easy to get
exact analytical solutions of these equations. There are several approximation
methods to derive an analytical expression for partition function and propag-
ators of a single chain, including the ground state dominance approximation
[10, 59], Semenov’s strong segregation theory [60], and the weak segregation
theory of Leibler [61]. Unfortunately, these analytical methods are limited in
applicability, and thus a more general method is desirable. In this chapter we
will discuss the ground state dominance approximation and the numerical
methods used to solve the modified equations (the main task), which is the
most time-consuming part, of this thesis.

3.1 ground state dominance

One of the important ways to analyze the modified diffusion equations (2.27)
for continuous chain models is to employ eigenfunction expansions. These
expansions are familiar methods in quantum mechanics [62]. It is called the
ground state dominance approximation and is suitable when polymers of high
molecular weight are constrained to a region of characteristic size smaller than
to their radius of gyration Rg [20]. To illustrate the method for the continu-
ous Gaussian chain approximation, it is useful to write the modified diffusion
equations (see equations 2.27) as:

∂q(r, s)
∂s

= Lq(r, s) (3.1)

where L is defined by
L = ∇2 −ωα(r) (3.2)

With the real fieldsωα(r) and suitable boundary conditions, the operator L has
real eigenvalues λk and eigenfunctions Ψk(r) that are orthogonal and complete.
Then we have an equation to describe the property of L

LΨk(r) = −λkΨk(r), k = 0, 1, 2, . . . ,∞ (3.3)

where the index k is chosen such that λ0 is the smallest eigenvalue, which
we call the ground state eigenvalue. The eigenfunctions are assumed to be
normalized. The properties of orthogonality and completeness are described
via the following equations

17
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∫
drΨi(r)Ψj(r) = δij (3.4)

∞∑
k=0

Ψk(r ′)Ψk(r) = δ(r − r ′) (3.5)

The solution of equation 3.1 can be expressed in terms of the eigenfuctions
Ψk(r) of operator L according to

q(r, s) =
∞∑
k=0

Ck Ψk(r) e−sλk (3.6)

Using the initial conditions q(r, 0) = 1, we get

1 =

∞∑
k=0

Ck Ψk(r) (3.7)

After applying the orthonormal property of the eigenfunctions we obtain the
expression for the coefficients Ck

Ck =

∫
drΨk(r) (3.8)

However, the eigenfunction expansion has restrictions due to our ability to
solve equation 3.3 for a given boundary conditions and summing the infinite
series. In most realistic cases in polymer physics, we cannot find analytical
expression for eigenvalues and eigenfunction or sum over infinite series such
as equation 3.6. The ground state dominance approximation applies when the
eigenfunction expansion is truncated after the leading k = 0 term, that is

q(r, s) ≈ C0 Ψ0(r) e−sλ0 (3.9)

C0 =

∫
drΨ0(r) (3.10)

In this case, then the partition function will be

Q[ω] =
1

V

∫
dr q(r,N) =

1

V

∞∑
k=0

C2ke
−Nλk

≈
C20
V
e−Nλ0 (3.11)

and the density is

φ(r) = −
δ lnQ[ω]

δω(r)
=

1

V Q

∫1
0

ds q(r, s) q†(r, 1− s)

≈
NC20
V Q

[Ψ0]
2 e−Nλ0 = N[Ψ0]

2 (3.12)
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The normalized condition 3.4 ensures that the dimensionless density in the
ground state approximation has the correct normalization∫

drφ(r) = N (3.13)

The ground state approximation is evidently the leading term in an asymp-
totic expansion for N → ∞. However, the validity of the truncation after the
leading term is limited. There are two conditions for the approximation to be
valid

• The eigenvalues must be discrete since the polymer is localized by the
potential to finite regions of space.

• The eigenvalue space and the chain length should be large enough to
make the ground state dominant, so that the relative contribution of the
first term compared to the leading term can be neglected. This means
that

e−N(λ1−λ0) � 1 (3.14)

The above conditions are common in problems where polymers are absorbed
at surfaces or interfaces. When the ground state replaces the full eigenfunction
expansion we have

LΨ0(r) = ∇2Ψ0(r) −ω(r)Ψ0(r) = −λ0Ψ0(r) (3.15)

By solving this equation, we obtain Ψ0(r) and then the propagator q(r, s)
(q†(r, 1− s)).
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3.2 numerical method

3.2.1 Numerical Algorithm

The solution of the mean field equations is not trivial since the modified dif-
fusion equations are self-consistent, and they can only be solved by an iterat-
ive procedure. The general scheme of the numerical algorithm to solve self-
consistent equations is described in the following flowchart.

Guess fields ωα(r)

Solve Eqs. (2.27)
q(r, s),q†(r, 1− s)

Calculate new
fields ωα(r)

Update fields
ωα(r): mix old
and new fields

SCFT
converged?

Stop

no

yes

The flowchart describes the steps involved in the numerical algorithm which
is used to solve the SCFT equations. The first step of the algorithm is making
a guess for the initial values for the fields. We can choose reasonable ones
which are close to equilibrium (if we foresee them) or even random fields. Us-
ing these initial fields, the MDEs (2.27) are solved to obtain the propagators
q(r, s) and q†(r, 1− s). Solving MDEs is a numerical challenge. One needs a
fast method to do it. The monomer volume fractions are calculated by integrat-
ing the propagators along the chain contour via equations (2.31) and (2.32) for
the canonical ensemble and equations (2.37) and (2.38) for the grand canonical
ensemble. After that we can compute the new fields and then compare it to the
SCFT convergence condition. If the convergence condition is not reached then
we update the fields using an appropriate iteration scheme, such as, Anderson
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mixing, simple mixing, or alpha mixing. The updated fields are then used as
input for the modified diffusion equations (MDEs) (2.27), and the whole pro-
cedure is repeated until the SCFT convergence condition is reached. Once the
final solutions of equations (2.27) are obtained, the free energy of the system
is calculated through equation (2.14) for the canonical ensemble and (2.34) for
the grand canonical ensemble.

From the general scheme, we know that the main task is to solve the modi-
fied diffusion equations (2.27). We can solve them by spectral (Fourier space),
pseudo-spectral or real space methods. Each of these methods have different
advantages and drawbacks.

The spectral method has been pioneered by Matsen and Schick, and involves
calculating the field functions in a Fourier basis. This Fourier basis consists of
functions which must satisfy two requirements [23]: the functions are the eigen-
functions of the Laplacian operator and they must have the same symmetries
as the phase of the fluid at the saddle point. It is the most efficient numer-
ical method so far when dealing with periodic morphologies in bulk materials
[63]. However, the spectral method is not efficient when applied to complex
systems without these symmetries. In these cases, the pseudo-spectral method
becomes more efficient [64].

It is worth going into details of the real space method since it is used in this
thesis. The algorithm, used here to solve modified diffusion equations in real
space, is Crank-Nicolson. We will discuss the algorithm in detail below.

3.2.1.1 The Crank-Nicolson Algorithm For The One Dimensional Problem

We use the Crank-Nicolson scheme [65] to descretize the MDEs (2.27). It is a
finite difference method for solving partial differential equations. Let us con-
sider the one dimensional problem

∂q(x, s)
∂s

=
∂2q(x, s)
∂x2

−ω(x, s)q(x, s) (3.16)

then the descretized modified equation is

qn+1j − qnj
∆s

=
qnj−1 − 2q

n
j + qnj+1

2∆x2
+
qn+1j−1 − 2qn+1j + qn+1j+1

2∆x2
−ωj

qnj + qn+1j

2
(3.17)

where j = {1,Nx} are grid points in x-variable, n = {1,Ns} represents the steps
in contour variable s, ∆x = Lx/(Nx − 1) is the interval size in real space, and
∆s = 1/Ns is the contour step size. We can write this equation in a shorter
form with the help of δ2xqj = qj−1 − 2qj + qj+1:

qn+1j − qnj
∆s

=

(
δ2x
2∆x2

−
ωj

2

)(
qnj + qn+1j

)
(3.18)
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This scheme is unconditionally stable for any size of contour variable ∆s
and it has second-order accuracy in variable s. After some mathematical ma-
nipulation, we obtain

−
∆s

2∆x2
qn+1j−1 +

(
1+

∆s

∆x2
+
∆s

2
ωj

)
qn+1j −

∆s

2∆x2
qn+1j+1

=
∆s

2∆x2
qnj−1 +

(
1−

∆s

∆x2
−
∆s

2
ωj

)
qnj +

∆s

2∆x2
qnj+1 (3.19)

Knowing the propagator qn
{j} at step n, we can calculate the propagator qn+1

{j}

at step (n+ 1) according to equation (3.19). Actually, (3.19) is a matrix equation
and can be written symbolically as A x = D, where A is a (Nx ×Nx) matrix, x
and D are (Nx) matrices. This implies that the computational cost is expensive
when Nx or Ns is large. Equation (3.19) can be solved by Gaussian elimination
[65] with the initial conditions q1

{j} = 1 and the boundary conditions depend-
ing on the system. The same procedure can be applied to calculate q†(xj, sn).

3.2.1.2 The Crank-Nicolson Algorithm For The Two Dimensional Problem

Now we consider the two dimensional modified diffusion equation:

∂q(x, z, s)
∂s

=

(
∂2x
∂x2

+
∂2z
∂z2

)
q(x, z, s) −ω(x, z, s)q(x, z, s) (3.20)

Then, we apply the Crank-Nicolson scheme in two dimensions (2d) in a slightly
different way of generalizing the Crank-Nicolson scheme. This is called altern-
ating direction implicit method (ADI). The idea of this method is dividing
each contour variable step into two steps of size ∆s/2. Therefore, the 2d ADI
scheme is

q
n+1/2
ik − qnik
∆s/2

=
δ2x
∆x2

q
n+1/2
ik +

δ2z
∆z2

qnik −
1

2
ωik

(
q
n+1/2
ik + qnik

)
(3.21)

qn+1ik − q
n+1/2
ik

∆s/2
=

δ2x
∆x2

q
n+1/2
ik +

δ2z
∆z2

qn+1ik −
1

2
ωik

(
q
n+1/2
ik + qn+1ik

)
(3.22)

where i = {1,Nx} are grid points in x-direction, k = {1,Nz} are grid points in
z-direction, and ∆x,∆z are the interval sizes in space. After some calculations,
we obtain

−∆s

2∆x2
q
n+1/2
i−1,k +

(
1+

∆s

∆x2
+
∆sωik
4

)
q
n+1/2
ik −

∆s

2∆x2
q
n+1/2
i+1,k

=
∆s

2∆z2
qni,k−1 +

(
1−

∆s

∆z2
−
∆sωik
4

)
qnik +

∆s

2∆z2
qni,k+1 (3.23)

and
−∆s

2∆z2
qn+1i,k−1 +

(
1+

∆s

∆z2
+
∆sωik
4

)
qn+1i,k −

∆s

2∆z2
qn+1i,k+1

=
∆s

2∆x2
q
n+1/2
i−1,k +

(
1−

∆s

∆x2
−
∆sωik
4

)
q
n+1/2
i,k +

∆s

2∆x2
q
n+1/2
i+1,k (3.24)

These two equations are tridiagonal and can be solved as equation (3.19) with
the initial and boundary conditions from the system. We use the 2d ADI
method for two dimensional thin films in this thesis.
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3.2.1.3 The Crank-Nicolson Algorithm For The Three Dimensional Problem

We now consider the three dimensional modified diffusion equation:

∂q(r, s)
∂s

=

(
∂2x
∂x2

+
∂2y

∂y2
+
∂2z
∂z2

)
q(r, s) −ω(r, s)q(r, s) (3.25)

We can apply the Crank-Nicolson scheme for equation (3.25) directly. However,
it results in that we will have to solve seven diagonal matrices, which is time
consuming. Therefore, we will apply the Crank-Nicolson scheme in a slightly
different way compared to the 2d ADI method. We introduce two intermediate
variables q∗ and q∗∗. Then the descretization of equation (3.25) leads to:

q∗i,j,k − q
n
i,j,k

∆s
=

1

2

(
δ2x
∆x2

−
ωi,j,k

3

)
(q∗i,j,k + q

n
i,j,k)

+

(
δ2y

∆y2
+
δ2z
∆z2

− 2
ωi,j,k

3

)
qni,j,k (3.26)

q∗∗i,j,k − q
n
i,j,k

∆s
=

1

2

(
δ2x
∆x2

−
ωi,j,k

3

)
(q∗i,j,k + q

n
i,j,k)

+
1

2

(
δ2y

∆y2
−
ωi,j,k

3

)
(q∗∗i,j,k + q

n
i,j,k)

+

(
δ2z
∆z2

−
ωi,j,k

3

)
qni,j,k (3.27)

qn+1i,j,k − qni,j,k
∆s

=
1

2

(
δ2x
∆x2

−
ωi,j,k

3

)
(q∗i,j,k + q

n
i,j,k)

+
1

2

(
δ2y

∆y2
−
ωi,j,k

3

)
(q∗∗i,j,k + q

n
i,j,k)

+
1

2

(
δ2z
∆z2

−
ωi,j,k

3

)
(qn+1i,j,k + qni,j,k) (3.28)

where i = {1,Nx} denotes grid points in x-direction, j = {1,Ny} denotes grid
points in y-direction, and k = {1,Nz} denotes grid points in z-direction. ∆x,
∆y, and ∆z are interval sizes in space. After some mathematical calculations,
we can obtain the three following equations

−∆s

2∆x2
q∗i−1,j,k +

(
1+

∆s

∆x2
+
∆sωi,j,k

6

)
q∗i,j,k −

∆s

2∆x2
q∗i+1,j,k

=
∆s

2∆x2
qni−1,j,k +

∆s

∆y2
qni,j−1,k +

∆s

∆z2
qni,j,k−1

+
∆s

2∆x2
qni+1,j,k +

∆s

∆y2
qni,j+1,k +

∆s

∆z2
qni,j,k+1

+

(
1−

∆s

∆x2
−
2∆s

∆y2
−
2∆s

∆z2
−
5∆sωi,j,k

6

)
qni,j,k (3.29)

−∆s

2∆y2
q∗∗i,j−1,k +

(
1+

∆s

∆y2
+
∆sωi,j,k

6

)
q∗∗i,j,k −

∆s

2∆y2
q∗∗i,j+1,k

=
−∆s

2∆y2
qni,j−1,k + q

∗
i,j,k +

(
∆s

∆y2
+
∆sωi,j,k

6

)
qni,j,k −

∆s

2∆y2
qni,j+1,k(3.30)
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2∆z2
qni,j,k+1(3.31)

These three equations are tridiagonal matrix equations and can be solved by
different methods, such as Gaussian elimination with the initial and boundary
conditions depending on the system. We applied this algorithm to investig-
ate three dimensional thin film systems in different coordinate systems, for
example, Cartesian coordinates for planar thin films and cylindrical coordin-
ates for curved supported thin films. All the above calculations were done in
Cartesian coordinates, I will briefly present the Crank Nicolson method ap-
plied for the cylindrical coordinates.

3.2.1.4 The Crank-Nicolson Algorithm For The Cylindrical Coordinates Problem

a) The Two Dimensional Cylindrical Coordinates, (r, θ)

The modified diffusion equation in the 2-dimensional cylindrical coordinates
(r, θ) takes the form:

∂q(r, θ, s)
∂s

=

(
∂2r
∂r2

+
1

r

∂r

∂r
+
1

r2
∂2θ
∂θ2

)
q(r, θ, s) −ω(r, θ, s)q(r, θ, s) (3.32)

We apply the Crank Nicolson method for equation (3.32) similarly as we did
for the two dimensional problem in Cartesian coordinates in 3.2.1.2. The dis-
cretization of equation (3.32) results in:

q
n+1/2
i,j − qni,j
∆s/2

=
δ2r
∆r2

q
n+1/2
i,j +

1
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δrq
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1
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qni,j

−
1

2
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(
q
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i,j + qni,j

)
(3.33)

qn+1i,j − q
n+1/2
i,j

∆s/2
=

δ2r
∆r2

q
n+1/2
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1

ri · 2∆r
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i,j

)
(3.34)

where i = {1,Nr} denotes grid points in r-direction, j = {1,Nθ} denotes grid
points in θ-direction, and ∆r, ∆θ are the interval sizes in space. δ2r , δr and δ2θ
are defined as:

δ2rq
n = qni−1,j − 2q

n
i,j + q

n
i+1,j (3.35)

δrq
n = qni+1 − q

n
i−1 (3.36)

δ2θq
n = qni,j−1 − 2q

n
i,j + q

n
i,j+1 (3.37)

After some mathematical manipulation, we obtain the two equations below:(
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b) The Two Dimensional Cylindrical Coordinates, (r, z)

Similarly, the modified diffusion equation in the 2-dimensional cylindrical co-
ordinates (r, z) takes the form:

∂q(r, z, s)
∂s

=

(
∂2r
∂r2

+
1

r

∂r

∂r
+
∂2z
∂z2

)
q(r, z, s) −ω(r, z, s)q(r, z, s) (3.40)

Applying the Crank Nicolson scheme for equation (3.40), we get the following
results:
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(3.42)

After some mathematical calculation, we obtain:(
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The equations (3.38), (3.39), (3.43) and (3.44) are tridiagonal and can be
solved as equation (3.19) with the boundary conditions depending on the sys-
tem. Particularly, in this thesis we apply the Dirichlet boundary conditions
in the r-direction and the periodic boundary conditions in the two in-plane
directions θ- and z-directions.
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3.2.2 Mixing Methods

The iteration scheme can be processed with different mixing methods, such as
simple mixing, lambda mixing [66] and Anderson mixing [67, 68]. The "simple
mixing" method is a very simple technique, where the fields at (n+ 1)th itera-
tion step are updated from the field at nth iteration step according to:

ωin
n+1 = ω

in
n + λ (ωout

n −ωin
n ) = ω

in
n + λ ∆ωn (3.45)

where ωin
n is the input value for the nth iteration step, ωout

n is the resultant
field, and ωin

n+1 is input value for the (n+ 1)th iteration step. ∆ωn = (ωout
n −

ωin
n ) is the difference between the output and input values of the field at the

nth step. λ is a parameter chosen appropriately to ensure stability (typical
value is 6 0.1). However, the simple mixing method is sometimes slow and
requires many iteration steps for the equations to converge, or even is unstable.
An alternative to improve the simple mixing is to determine a new value for
λn at every iteration step [66]. This method is called "lambda mixing" method.
Then the mixing parameter λn is determined as the following

λn =

√√√√ (ωin
n −ωout

n−1)
2

(ωout
n −ωin

n −ωout
n−1 +ω

in
n−1)

2

=

√
(ωin
n −ωout

n−1)
2

(∆ωn −∆ωn−1)2
(3.46)

In this thesis we use the lambda mixing method.

3.2.3 Discretization Error

As we discussed before, the Crank-Nicolson algorithm is unconditionally stable,
and does not depend on the contour variable step ∆s or the space interval size
∆x (∆y,∆z). However, when we apply the surface interaction on thin films (it
will be discussed in more detail in later chapters) we realize that the discretiz-
ation of the modified diffusion equations, specifically the discretization in the
direction orthogonal to the film, has important effects on the accuracy of the
free energy in the end. The degree of the discretization error depends on the
strength of surface interactions as well. It could not be neglected. Especially, it
is important to determine the stable morphologies. In order to quantify the ef-
fect of the discretization ∆z on the accuracy of the free energy, we vary ∆z and
carefully calculate the shift of the free energy ∆Fwith different film thicknesses
as a function of discretization. We apply the same procedure for every para-
meter set of surface interactions. Furthermore, for the thin films with curved
substrates we vary not only the thickness but also the curvature. Then we use a
third order polynomial to fit the shift energy as a function of the discretization
∆z. Figure 3.1 presents an example of the shift free energy ∆F as a function of
∆z for different thicknesses with certain surface interactions in flat films

This correction for discretization effects will be applied to the SCF data.
We note that the fit is very good in the range of ∆z from 0 to 0.016. In all
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Figure 3.1: Shifted energy ∆F as a function of discretization ∆z for different film
thicknesses h. The solid line corresponds to the fitting function ∆F(∆z) =
−12.27 ∆z− 341 ∆z2 + 1447 ∆z3.

simulations in this thesis, the discretization in the direction orthogonal to the
film surfaces is fixed to values of ∆z < 0.015.
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4
M U LT I L AY E R S O F C Y L I N D E R - F O R M I N G D I B L O C K
C O P O LY M E R T H I N F I L M S

The self-assembly of block copolymers in thin films has attracted increasing
interest in the area of science and nanotechnology due to their capicity to self-
assemble into periodic nanostructures [12, 16, 35, 69–72]. Thus, an in-depth
understanding of structure formation of the block copolymer films is import-
ant to exploit the potential applications of these materials. As a part of this
thesis, we study multilayers of cylinder-forming diblock copolymers. We in-
vestigate how the first-layer block copolymer acts as a periodic external field
that guides and stabilizes the orientation of subsequent layers. In order to ana-
lyze the stability of the block copolymer thin film system against the formation
of holes and islands and the coupling between layers, we performed SCFT to
calculate the free energy and to seek for the minima in the free energy land-
scape. It allows us to extract structral information, for instance, to determine
the optimum thickness of multilayers of cylinder-forming block copolymer sys-
tems. We also study the behavior of the average lateral spacing between near
neighbor cylinders as a function of the film thickness.

Part of the work presented in this chapter was published in: "Shear-aligned
block copolymer monolayers as seeds to control the orientation order in cylinder-
forming block copolymer thin films", Macromolecules, 49, 7588-7596, 2016.

4.1 model

We consider a melt of asymmetric AB diblock copolymers confined between
two surfaces, which are hard and flat. We assume symmetric boundary wetting
conditions where the two surfaces preferentially attract the A-segments of the
majority block. The confined film of thickness h is constrained between the two
surfaces located at z = 0 and z = h (a schematic of the thin film is illustrated
in figure 4.1). The two surfaces are identical, which means that the interaction
strengths to blocks are the same at the two surfaces. Therefore, the interaction
potential of the melt takes the form

HI = kBTρ0χ

∫
drφ̂A(r)φ̂B(r) + kBTρ0

κ

2

∫
dr
[
φ̂A(r) + φ̂B(r) − 1

]2
+kBTρ0

∫
drH(r)

[
ΛAφ̂A(r) +ΛBφ̂B(r)

]
(4.1)
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where ΛA,ΛB are the strength of the interaction between the A-block and B-
block and the surfaces, respectively. H(r) is surface field and we choose the
form of surface fields as:

H(r) =


(1+ cos(πz/ε)) 0 6 z 6 ε

0 ε 6 z 6 h− ε

(1+ cos(π(h− z)/ε)) h− ε 6 z 6 h

(4.2)

with z being the coordinate perpendicular to the film and ε being the distance
from the walls, inside which the diblock copolymers will interact with the
surfaces. The value of ε is small enough relative to the thickness of thin film
so that its finite size does not effect the phase behavior significantly. In this
thesis, we always choose ε = 0.2Rg.

Figure 4.1: Scheme of diblock copolymers confined between two flat sufaces located
at z = 0 and z = h. The block copolymers form cylindrical domains of the
minority block.

Our calculations are performed in the grand canonical ensemble. Within the
framework of SCFT, the free energy of such a system takes the form

NFGC
ρ0kBT

= −eµQ+

∫
dr
[
χNφA(r)φB(r) +

κN

2
(φA(r) +φB(r) − 1)

2

]
−

∫
dr [ωA(r)φA(r) +ωB(r)φB(r)]

+

∫
drH(r) [ΛANφA(r) +ΛBNφB(r)] (4.3)

So the free energy will be given in units of GkBT , where G = ρ0
N R

3
g = ρcR

3
g

is a dimensionless Ginzburg parameter (ρc = ρ0
N = n

V is the average density
of the copolymer chain). The Ginzburg parameter thus corresponds to the
average number of polymer chains that permeate the volume R3g occupied by



4.1 model 33

Figure 4.2: Surface interaction fields between the two walls and diblock copolymers,
where ε is the cutoff distance for the surface interaction.

one chain of interest. This can be very large for concentrated solutions or melts
of polymers of high molecular weight [20].
Then by minimizing the free energy with respect to the mono-densities φA,B(r)
and the fields ωA,B(r), we obtain the set of self-consistent equations

ωA(r) = NχφB(r) +Nκ [φA(r) +φB(r) − 1] +NΛAH(r) (4.4)

ωB(r) = NχφA(r) +Nκ [φA(r) +φB(r) − 1] +NΛBH(r) (4.5)

φA(r) = eµ
∫f
0

ds q(r, s)q†(r, 1− s) (4.6)

φB(r) = eµ
∫1
f

ds q(r, s)q†(r, 1− s) (4.7)

As discussed in chapter 2, propagators q(r, s) and q†(r, s) satisfy the modi-
fied diffusion equations (2.27). Here, the surfaces of the two dimensional thin
films are planar. Therefore, the Laplace operator has the following form

∆ =
∂2

∂x2
+
∂2

∂z2
(4.8)

Thus the modified diffusion equations are written as:

∂q(x, z, s)
∂s

=

(
∂2

∂x2
+
∂2

∂z2

)
q(x, z, s) −ωαq(x, z, s) (4.9)

We solve the modified diffusion equations 4.9 by the Crank-Nicolson algorithm.
Periodic boundary conditions are imposed in the unconfined directions (x-
direction). We consider the same strength of interaction between the blocks
and both surfaces. Although a more systematic study is required in order to ex-
plore the effect of the polymer/substrate and polymer/air interfaces in detail,
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the SCFT calculations considered here allow a rough estimation of the equilib-
rium configuration for this system. The incompatibility between the blocks is
characterized by the product χN, of the Flory-Huggins parameter χ and the
number of segments N. Here, we consider an asymmetric diblock copolymer
thin film with intermediate segregation strength χN = 20 and f = 0.7, f being
the volume fraction of the A-block. We consider the inverse compressibility
κN = 25 mostly for numerical reasons [52, 73, 74]. The values of the surface
interaction parameters are chosen as ΛAN = −120, and ΛBN = −115 at both
surfaces. Then we calculate the free energy per unit of area as a function of
the film thickness for each number of cylinder layers. It helps us to find the
equilibrium densities corresponding to a given parameter set of thickness h
and lateral space λ of the thin film. We know that the free energy of the thin
film not only depends on the thickness but also depends on the lateral dis-
tance (or characteristic wavelength λ). The comparison of the lateral spacing to
that in the bulk gives us information about the direction in which the cylinder
stretches, i.e., perpendicular or horizontal to the plane of the film. Therefore,
we also minimize the free energy with respect to the lateral spacing for each
thickness to obtain the optimal value of the inter-cylinder periodicity in lateral
direction.

Figure 4.3: Shifted energy ∆F as a function of discretization ∆z for different film
thicknesses h with surface interactions ΛAN = −120, ΛBN = −115 and
the chemical potential µ = (2.5+ lnG)kBT . The solid line corresponds to
the fit function ∆F(∆z) = −12.27 ∆z− 341 ∆z2 + 1447 ∆z3.

The discretization in lateral and perpendicular direction with respect to the
film (x and z, respectively), are chosen as ∆x ≈ 0.05 Rg and ∆z 6 0.015 Rg and
the contour parameter s is discretized in steps of ∆s = 0.0001 which is high
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compared to other SCFT studies [75, 76]. Whereas most of these choices are
not critical, we find that the discretization in the z direction has a significant in-
fluence on the resulting free energies, and even discretization errors could not
be neglected. On the other hand, we also find that they lead to an energy shift
∆F which only depends on the discretization in the direction perpendicular to
the plane of the thin film ∆z and does not depend on the film thickness or the
number of layers of cylinders in the film. Therefore, we studied the depend-
ence of ∆F on ∆z systematically for five different values of the film thickness.
We calculate the shifted energy ∆F at different ∆z which has a range from
∆z = 0.0033 Rg to ∆z = 0.017 Rg. Afterwards, we fit the results to a third order
polynomial, resulting in the estimate ∆F(∆z) = −12.27∆z− 341∆z2+ 1447∆z3

and ∆F(∆z) = −12.41 ∆z − 318.5 ∆z2 − 381 ∆z3, for the chemical potential
µ = (2.5+ lnG)kBT and µ = (2.512+ lnG)kBT , respectively. The energy shifts
∆F are presented in the figures 4.3 and 4.4. The fit functions describe ad-
equately the regime of discretization ∆z 6 0.015 Rg explored here. These cor-
rections are then applied to the SCF data shown in figures 4.7 and 4.8.

Figure 4.4: Shifted energy ∆F as a function of discretization ∆z for different film
thicknesses h with surface interactions ΛAN = −120, ΛBN = −115 and
the chemical potential µ = (2.512+ lnG)kBT . The solid line corresponds to
the fit function ∆F(∆z) = −12.41 ∆z− 318.5 ∆z2 − 381 ∆z3.

As discussed in the chapter 3, the pseudo-spectral method is usually more ef-
ficient to solve the modified diffusion equation when the block copolymers are
confined in flat geometries. In the pseudo-spectral method, we have to switch
back and forth between the real and Fourier spaces. For a given iteration step,
though such a scheme takes longer computing time than the Crank-Nicolson
method, yet it is highly accurate. We can choose larger values for discretiza-
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tion in the contour variable s to compute the propagators q(r, s) with a given
numerical accuracy. However, even with pseudo-spectral method, there are
systematic discretization errors arising due to the strong surface field. This is
shown in figure 4.5. This makes pseudo-spectral method less advantageous in
the current context, as we cannot choose higher discretization in the space and
contour variables.

Figure 4.5: Shifted energy ∆F (using the pseudo-spectral method) as a function of
discretization ∆z for different film thicknesses h with surface interactions
ΛAN = −120, ΛBN = −115 and the chemical potential µ = (2.5+ lnG)kBT .
The solid line corresponds to the fit function ∆F(∆z) = −12.38 ∆z −
11.4 ∆z2 − 112 ∆z3.

Besides the free energy shift due to discretization errors, we also consider
the effect of van der Waals (vdW) interaction on the free energy of the diblock
copolymer films. We account for the vdW interaction through the Hamaker
approach [77]. The vdW interaction energy per unit area takes the form:

W =
−A

12πh2
(4.10)

where h in equation 4.10 is the thickness of the diblock copolymer films, and
A is nonretarded Hamaker constant which can be identified by the Lifshitz
theory [77]. For example, we have a system consisting of three components as
shown in figure 4.6. The Hamaker constant of the whole system is determined
as:

A132 ≈ (
√
A11 −

√
A33)(

√
A22 −

√
A33) (4.11)

The value of the Hamaker constant depends on the material of the sys-
tems. Typical values for the Hamaker constants of condensed phases are about
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Figure 4.6: Sketch of a 3-component system characterized by a Hamaker constant
A132, for example copolymer (3) confined between substrate (1) and air
interface (2).

10−19J for interactions across vacuum [77]. The system studied in this thesis
is similar to the experimental system investigated by Vega et al. [78], where
they studied cylinder-forming of diblock copolymer PS-PHMA. The copoly-
mer was deposited on the Si substrate and the air interface. Therefore, the
Hamaker constant is chosen as A ≈ −4.87 · 10−20 J, which is adapted from the
work of Meli et al. [79]. Since the free energy obtained from the SCFT calcu-
lations is expressed in the units of GkBT , we convert the Hamaker constant
as well into the units of GkBT . At room temperature, 1 kBT = 0.414 · 10−20 J,
then the Hamaker constant A = −4.87 · 10−20J = −11.7 kBT . To convert the
Hamaker constant into the units of GkBT , we need to calculate the value of G,
the Ginzburg parameter. We have

G =
ρ0
N
R3g (4.12)

Matching the value of the spacing distance between cylinders from the SCFT
calculation and the experimental results, we can identify Rg ≈ 5.8 nm [80,
81]. We assume an average copolymer density of ρm ≈ 0.861 g/cm3 and the
molecular weight of diblock copolymer PS-PEP, M = 17500g/mol. Thus the
value of the Ginzburg parameter is:

G =
ρ0
N
R3g =

ρm

M
· (6.02 · 1023)R3g ≈ 5.77 (4.13)

Then the Hamaker constant of the diblock copolymer films is A = −2.03GkBT .
This value of A results in the vdW interactions which are about 0.0005 −
0.004 GkBT for multilayer thin films considered in this chapter. Such value of
the vdW interaction is very small when compared to the other contributions
to the SCFT free energy. Hence, it can safely be neglected.
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4.2 results

The calculations are done in the grand canonical ensemble, i.e., the chemical
potential µ of the copolymers is kept fixed and their number adjusts to the
film thickness. The film thickness here is in the range of [2− 12]Rg. In order to
analyze the stability of the cylinder-forming multilayer films, we examine the
free energy landscape of the films. SCFT calculations help us to seek minima in
the free energy landscape of multilayer thin films that are physically realizable.
Figure 4.7 shows an example of a Gibbs free energy landscape as a function
of the film thickness h. At each value of the film thickness, the free energy per
area is the one at the preferred value of the lateral distance λ, or in other words,
it was already minimized with respect to the λ. The free energy landscape ex-
hibits a series of minima, corresponding to monolayer, bilayer, and trilayer of
cylinder mesostructures. The free energy per area at the minima depends on
the value of the chemical potential µ. Here, the value of the chemical potential
is fixed at, µ = (2.5+ lnG)kBT (G is the dimensionless Ginzburg parameter),
was chosen slightly below the value where the film becomes macroscopically
thick µ∗ = (2.56+ lnG)kBT (figure 4.9). It is observed that the minimum corres-
ponding to the monolayer state is a global minimum. Therefore, the monolayer
of cylinders is globally stable, whereas the bilayer and trilayer of cylinders are
the metastable states since their free energy minima are local minima.

Figure 4.7: Grand canonical free energy per area in units of GkBT/R2g as a function of
the film thickness in units of Rg for a cylinder-forming diblock copolymer
multilayer confined between two surfaces at copolymer chemical potential
µ = (2.5 + lnG)kBT . The optimum thickness of the thin film is the one
corresponding to the free energy minimum and is indicated by the arrows.
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Figure 4.8: Grand canonical free energy per area in units of GkBT/R2g as a function
of film thickness in units of Rg for a cylinder-forming diblock copolymer
multilayer confined between two surfaces at copolymer chemical potential
µ = (2.512+ lnG)kBT . The optimum thickness of the thin film corresponds
to the free energy minimum and is indicated by the arrows.

If one increases the chemical potential, the free energy minima correspond-
ing to multilayers move down relative to the monolayer minimum. It means
that the free energy difference of the bilayer and trilayer compared to the
monolayer are reduced. However, the bilayer state remains metastable for
all µ < µ∗. For example, if we slightly increase the chemical potential to
µ = (2.512 + lnG)kBT , the free energy per area as a function of film thick-
ness, which is similar to one in figure 4.7, is presented in figure 4.8. It also has
a series of free energy minima corresponding to different numbers of layers
of cylinders. The monolayer is still a global state and the bilayer and trilayer
remain metastable states. In addition, we find that the free energy difference at
the minima of bilayer/monolayer films and trilayer/monolayer films decreases
compared to that corresponding to the chemical potential µ = (2.5+ lnG)kBT .
The value of minimum-energy difference between the bilayer and trilayer films
compared to the monolayer films at the chemical potential µ = (2.5+ lnG)kBT
are {

∆F21 = F2 − F1 = 0.18 GkBT/R2g
∆F31 = F3 − F1 = 0.36 GkBT/R2g
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while they are slightly smaller at the chemical potential µ = (2.512+ lnG)kBT{
∆F21 = F2 − F1 = 0.14 GkBT/R2g
∆F31 = F3 − F1 = 0.29 GkBT/R2g

Figure 4.9: Grand canonical free energy per area in units of GkBT/R2g as a function of
film thickness in units of Rg for a cylinder-forming diblock copolymer mul-
tilayer confined between two surfaces. The copolymer chemical potential
is fixed at µ∗ = (2.56 + lnG)kBT , where the film becomes macroscopic-
ally thick. The optimum thickness of the thin film corresponds to the free
energy minimum and is indicated by the arrows.

As mentioned above, the chemical potential when the film becomes macro-
scopically thick is µ∗ = (2.56 + lnG)kBT . We present the Gibbs free energy
landscape at the chemical potential µ∗ as a function of the film thickness in fig-
ure 4.9, which is similar to those in figure 4.7 and 4.8. It also exhibits a series of
free energy minima corresponding to different numbers of layers of cylinders.
The minimum corresponding to the monolayer is not a global minimum any
more. Instead, the free energy minima of bilayer and trilayer films have the
same value as that of the monolayer system. This indicates that the film makes
a transition to the macroscopically thick state.

In equilibrium, each number n of layers of cylinders will have an optimum
thickness, which is determined by the balance of different factors, for example,
the enthalpic, entropic energy and the surface interaction energy. The local
film thickness has a strong influence on the resulting morphologies, therefore,
we also analyze the behavior of the optimum thickness of the thin film here.
We find that the optimal thickness h which corresponds to the minimum of
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free energy per area, is h1L = 3.5Rg for the monolayer, while for the bilayer
and trilayer it becomes h2L = 6.9Rg, h3L = 10.2Rg, respectively. The multilayer
forms a hexagonal close-packed array of cylinders, as demonstrated in figures
4.7 and 4.8. However, it is not a perfect hexagonal lattice as in the bulk phase.
It is deformed in response to the confinement in the thin film [82]. Then, for
this system the ratios of the film thickness between bilayer and trilayer to
monolayer are h2L/h1L ∼ 1.97 and h3L/h1L ∼ 2.91, respectively. The optimal
thickness of the bilayer we find here is in excellent agreement with experi-
mental results of Abate et al. [80], where it was found to be twice the thickness
of the individual layers. Therefore, one can expect that a bilayer system with
h2L/h1L ∼ 2 should be relatively stable towards the development of holes or
islands even during long periods of thermal annealing.

Figure 4.10: The lateral cylinder spacing at the optimum thickness (the characteristic
distance between cylinders) is plotted as a function of the number of
layers. The horizontal axis corresponds to an integer number of cylinder
layers. The copolymer chemical potential is fixed at µ = (2.5+ lnG)kBT .

Further, we find that the lateral spacing between neighboring cylinders at the
optimal thickness systematically increases as the thin film thickness increases
from n to (n+ 1) layers of cylinders. Figure 4.10 shows this effect. Namely, for
the monolayer, bilayer and trilayer systems the optimum inter-cylinder spa-
cing in lateral direction at the energy-minimum thicknesses are, respectively,
λ1 ∼ 3.6Rg, λ2 ∼ 3.7Rg, and λ3 ∼ 3.8Rg. For this system, the bulk inter-cylinder
spacing is λ ∼ 3.7Rg. Thus, we have λ1/λ ∼ 0.97 for the monolayer, λ2/λ = 1

for the bilayer, and λ3/λ ∼ 1.03 for the trilayer. The data show that the aver-
age lateral distance between cylinders in thin film at the energetically favored
thickness deviates from λ in bulk due to the geometrical constraint and the
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lateral spacing of monolayer is the smallest and even smaller than that in bulk.
It indicates that the monolayer of cylinders is stretched perpendicular to the
plane of the film compared to the equivalent bulk structure. The data is also
in good agreement with that reported by Knoll et al. for a cylinder-forming
diblock and triblock copolymer multilayer [82]. They qualitatively studied the
lateral distance of cylinder-forming in the thin film. These authors employed
a solvent annealing technique to induce order in the diblock copolymer and
then they used scanning force microscopy (SFM) to analyze the structure of
the films. Afterwards, they compared the results with the theory based on the
strong segregation theory (SST) calculation. They considered up to five-layer-
thick films. They also found that in the thin films the unit cell is stretched
perpendicular to the film plane, and that the lateral spacing is smaller than
those in bulk [82]. Similar to the results shown here, they also observed a sys-
tematic variation of the characteristic distances between the cylinders as the
film thickness increases from n to (n+ 1) layers of cylinders [82]. Furthermore,
they showed that the differences in the lateral spacings in the adjacent number
of layers of cylinders vanish in the fourth layer. Although here we also simu-
lated systems containing tetra-layer of cylinders, the results for the free energy
are not reported because the discretization ∆z does not belong to the reliable
fitting regime. However, the discretization errors may not affect the results of
lateral spacings. In addition, we also found that the lateral distance of a tetra-
layer of cylinders is λ4 = 3.8Rg, which is the same compared to the trilayer of
cylinders films. Thus the effect of difference in the lateral distance between n
and (n+ 1) layers disappears in tetra-layer of cylinders films, which is also in
agreement with the data in the literature [82].

The density profile of multilayer cylinders of the thin film at the optimum
thickness is plotted in figure 4.11. This figure shows the characteristic profiles
of the diblock copolymers at the optimum values of the thickness (local min-
ima in figure 4.7) obtained through SCFT calculations. We observe that in the
monolayer films the cylinders are not circular but elliptical, in the bilayer films
the cylinders becomes more circular. If the number of layers increases, the cyl-
inders become more circular since the confining effect is spread over a larger
number of diblock copolymers. For example, in the trilayer films the cylinders
are more circular than in the bilayer films. Namely, two layers of cylinders at
the surfaces are more circular compared to cylinders in monolayer and bilayer
thin films and the cylinders in the middle thin films are circular.

As mentioned above, we minimize the free energy per area not only with re-
spect to the thickness but also to the characteristic wavelength and we just dis-
cussed the behavior of the inter-cylinder spacing at the optimum thicknesses
of different layers of cylinders. It is also interesting to study how the lateral
spacing behaves when we vary the film thickness and it is still in the range
of n layers. Figure 4.12 presents the lateral spacing as a function of the film
thickness.

When the thickness of a layer is far below the optimal thickness, the block
copolymer thin film is strongly compressed. It causes a cost of increasing the
compressing energy between two blocks A and B. The data in figure 4.12 in-
dicate that the lateral distance increases compared to that at the optimal thick-
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Figure 4.11: Density profiles of a monolayer, a bilayer and a trilayer diblock copolymer
thin film at the corresponding optimum thicknesses: h1L = 3.5 Rg, h2L =

6.9 Rg and h3L = 10.2 Rg. The chemical potential is µ = (2.5+ lnG)kBT .

Figure 4.12: The lateral cylinder spacing (the characteristic distance between cylin-
ders) is plotted as a function of the film thickness. The blue arrows indic-
ate the optimum thicknesses of the thin films. The copolymer chemical
potential is fixed at µ = (2.5+ lnG)kBT .
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ness in the bilayer and trilayer films. For example, λ2 = 3.8Rg at the thickness
h2 = 5.6Rg while it is 3.7Rg at the optimal thickness of bilayer; and λ3 = 3.9Rg
at the thickness h3 = 9.0Rg while it is 3.8Rg at the optimal thickness of trilayer.
However, it is different in the monolayer thin films. When the thickness is far
below the optimum thickness of the monolayer, the lateral spacing slightly
decreases. For instance, at the thickness h1 = 2.5 Rg, the lateral distance is
λ1 = 3.5 Rg (figure 4.12). This happens because the number of block copoly-
mers becomes smaller when the film is so thin.

In order to have a clear view on how much the structures of diblock copoly-
mer films deform compared to that at the optimum thicknesses, we present
the density profiles of multilayer compressed thin films in figure 4.13. It is ob-
vious that the block copolymer cylinders are more compressed than in figure
4.11, and that the cylinders become more squeezed ellipses in the monolayer.
The same happens for the cylinders at surfaces of bilayer and trilayer films.
However, the degree of compression is less than in the monolayer since it is
distributed over a larger number of block copolymers.

Figure 4.13: Density profiles of a monolayer, a bilayer and a trilayer diblock copolymer
thin films at the thicknesses smaller than the corresponding optimum
thicknesses: h1 = 2.9 Rg, h2 = 5.6 Rg and h3 = 9.0 Rg. The copolymer
chemical potential is fixed at µ = (2.5+ lnG)kBT .

In contrast, when the thickness is increased further above the optimal thick-
ness of n layers, the thin film is stretched perpendicularly to the substrates.
As a result, the lateral distance will decrease compared to that at the regime
near the optimal thickness (figure 4.12). For instance, the lateral spacing is
λ1 = 3.5Rg at the thickness h1 = 4.7Rg while it is 3.6Rg at the optimal thick-
ness of the monolayer films; and λ2 = 3.6Rg at the thickness h2 = 8.6Rg while
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Figure 4.14: Density profiles of a monolayer, a bilayer and a trilayer diblock copoly-
mer thin films at the thicknesses higher than the corresponding optimum
thicknesses: h1 = 4.7 Rg, h2 = 8.6 Rg and h3 = 11.6 Rg. The copolymer
chemical potential is fixed at µ = (2.5+ lnG)kBT .

it is 3.7Rg at the optimal thickness of the bilayer films; and λ3 = 3.7Rg at the
thickness h3 = 11.6Rg while it is 3.8Rg at the optimal thickness of the trilayer
films. Figure 4.14 shows the density profile of the monolayer, bilayer and tri-
layer thin films. It is similar to the plots in figure 4.11 and figure 4.13, but
at the different thicknesses h1 = 4.7Rg,h2 = 8.6Rg and h3 = 11.6Rg, which
are larger than the optimal ones. It is clear that the diblock copolymers are
elongated perpendicularly to the substrates compared to the density profile of
multilayers of thin films at optimal thickness in figure 4.11. Moreover, from the
density profile we also observe that the degree of stretching decreases as the
number of layers increases. The reason is the stretching is distributed among a
larger number of unit cells. For example, cylinders in the trilayer films are less
stretched than that in the bilayer films.

Note that the change of lateral distance is small but noticeable as the thin
film thickness varies either to higher or smaller values than the energetically
favored one and the number of layers remains the same. These results excel-
lently agree with observation in reference [82]. They reported the relationship
between the lateral spacing and the local thin fims as well. When the local film
thickness increases above n layers, the lateral distance firstly decreases. Then
the distance increases abruptly as the stretching energy is greater than the en-
ergy needed to accomodate an additional layer of cylinders, to (n+ 1) layers.
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If the thickness is continuously increased to approach the optimum thickness
of (n+ 1) layers, the lateral distance will relax to its favored value.

From the results we should note that the global equilibrium structure for
this diblock copolymer system is the one where a monolayer film coexists with
islands of thick multilayer films. This state is not reached on experimental time
scales [80]. However, we expect the upper layers, i.e., the second and the third
layers, to interact with the first layer to facilitate the penetration of chains
such that the cylinders in the second (third) layer can accomodate the local
structure of the first layer. The density profiles in figure 4.11 show that the
structure of the cylinders changes from squeezed ellipsoids in the monolayer
to more circular in the bilayer and trilayer. It is also noted that the layers near
the surfaces deform more than the ones located inside of the thin film. In
the bulk, cylinders are fully circular. Hence the addition of the second layer
slightly changes the structure of the first layer, and this interaction provides a
mechanism how a pre-aligned first layer can help to order the upper layers, i.e.,
the second and the third layers. This helps to minimize the density of defects
in thin films which are one of the main problems of the self-assembly of block
copolymers.

The coupling mechanism between the lower and the upper layers discussed
above, is also observed in the experiments conducted by Abate et al. [80]. They
studied cylinder-forming of diblock copolymers PS-PHMA films. First, they
used shear alignment to order cylinders parallel to the substrate of bottom
layer. Then they put the second layer of diblock copolymers on the top. The
stack of the two layers of cylinders, where the thickness is twice that of the
monolayer was thermally treated at different annealing times under vacuum
at 150◦C. They investigated the coupling between the bottom aligned layer and
the nonaligned upper layer. Figure 4.15 shows the block copolymer stack prior
to thermal annealing.

Figure 4.15: The PS-PHMA diblock copolymer film before thermal annealing: Panel
a) Atomic force microscopy (AFM) phase image of shear-aligned cylinder-
forming of bottom layer, panel b) schematic of bilayer film, where the
nonaligned cylinders rest on a shear-aligned bottom layer, and panel c)
AFM of nonaligned second layer with many defects [80].

They used atomic force microscopy (AFM) to image the structure of the
thin film and observed nice results. Before annealing, there are typical topolo-
gical defects that appear in diblock copolymer system, particularly in the nona-
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ligned upper layer of the thin film (see the panel c) in figure 4.15). For instance,
±1/2 disclinations are highly energetic cost and destroy the orientational order;
and dislocations break the translational order. During the annealing procedure,
the interaction between bottom shear-aligned layer and top nonaligned layer
drives the annihilation of the defects and promotes the connectivity between
cylinders. The layers are competing with each other to impose a local orient-
ation. As a result, the density of dislocations is reduced and the orientational
and translational order of the upper layer are improved. In figure 4.16 it is
easy to see that there are many defects and the order of the upper layer is
very poor after 2 h of annealing (panel a), but the order of the upper layer is
already improved in panel b) after 6 h of annealing. If the diblock copolymer
system is annealed during 24 h, the second layer adjusts the orientation of the
bottom layer and induces the complete annihilition of the topological defects
as shown in panel d) [80].

Figure 4.16: Atomic force microscopy (AFM) phase image for block copolymer thin
films deposited onto a preordered layer of cylinders with the same struc-
ture. The image shows the second layer after annealing at 150◦C in va-
cuum at different times: t = 2 h (panel a), t = 6 h (panel b), t = 16 h

(panel c) and t = 24h (panel d). The order of the second layer is improved
during thermally annealing. This figure is adapted from ref. [80].

Another work by Rahman et al. also showed the interaction mechanism
between layers in order to align block copolymer films [83]. They studied
multilayers of diblock copolymer PS-b-PMMA films. They found that each
copolymer layer acts as a structural factor of the final morphology and a guid-
ing field to order the subsequent layers. Specifically, the second layer does not
order independently from the first one. They proposed a responsive layering
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mechanism, that the second layer tends to maximize the overlap interface with
the first layer during ordering process. Besides the role as a template for dir-
ecting the order of the upper layers, the first layer also influences the defects
of the upper ones. The second layer inherits defects from the first layer; that
means, any defects in the first layer will disturb the preferred local motif, in-
troducing a defect in the second layer [83]. Moreover, they obtained new and
more complicated morphologies as reported in some other studies [76, 84–87].
These morphologies are hybrid between parallel and perpendicular cylinders,
parallel cylinder and perforated lamellae (CP), parallel cylinder and lamellae
(CL). It depends on the interplay of selectivity of surface fields for the blocks
and the mismatch between the film thickness and the integer number of the
natural size of single cylinder layer. For example, when the surfaces are neut-
ral for both blocks A and B, and the film thickness is not an integer number of
monolayer periodicity (i.e., h = (n+ 1/2)h0), block copolymer films can form
complicated strutucres. We do not observe these structures here since our film
systems were analyzed in two dimensions, where these symmetries cannot be
observed.

4.3 conclusions

By using SCFT, we have studied the directed self-assembly of cylinder-forming
diblock copolymer thin films confined between two planar surfaces, the sub-
strate and free surface (air interface). Both surfaces selectively attract the ma-
jority block (A) to create a wetting layer. A systematic analysis has been done
to gain a fundamental understanding to produce ordered diblock copolymer
nanostructures. We minimize the free energy per area with respect to the film
thickness and the characteristic wavelength in the lateral direction. We can,
therefore, determine the optimal conditions of the film thickness and lateral
spacing for each number of layers of cylinders. The results indicate that the
film thickness is an important control parameter in morphologies of block co-
polymer films. The global equilibrium state of this diblock copolymer films is
a monolayer coexisting with islands or holes of thicker films. We find charac-
teristic behaviour of the lateral spacing as a function of local thickness in each
number of layers of cylinders and also as a function of the overall film thick-
ness in different number of layers of cylinders. The stretching of monolayer
films relative to the corresponding structure in bulk is in excellent agreement
with experiments. More interestingly, we also discover the interaction mechan-
ism of the upper layers and the bottom one. Via this mechanism the bottom
layer acts as a periodic external field that stabilizes and dictates the orienta-
tion of upper layers. It leads to a sharing of orientations between layers. By
this coupling, the density of defects is reduced to get well-ordered structures,
it can be obtained through the thermally annealing. Our results demonstrate
that it is possible to propagate well-ordered structures in thick block copoly-
mers with appropriate control over a single self-assembling polymeric layer to
template successive layers and enhance the long-range order.
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O R I E N TAT I O N A L P H A S E T R A N S I T I O N O F D I B L O C K
C O P O LY M E R T H I N F I L M S

In the bulk, the copolymer structures are mainly determined by the ratio of
the block lengths f and the interaction between the different blocks χN. For ex-
ample, with the right values of f and χN, block copolymers form a hexagonal
lattice of cylinders. However, it is different and more complicated in thin films,
where we have additional constraints, such as forces from the air-polymer in-
terface and the film-substrate interface, which influence the structure forma-
tion. Typically, as we discussed in the previous chapter, the thickness plays
an important role in determining the morphologies of block copolymer thin
films. There are many experiments and computer simulation studies [32–34,
76, 88] suggesting that the equilibrium phase behaviour of the confined block
copolymer films is controlled by two important factors: the degree of prefer-
ential attraction of block copolymers to the surface of thin film and the mis-
match between the film thickness and the natural thickness of a single layer
of cylinders oriented parallel to the film plane. The latter factor is known as
commensurability effect. In the thin films, when the film thickness is not an
integer number of the thickness of one layer of parallel cylinders, instead of
parallel cylinder configuration, the copolymer films tend to form islands and
holes to accommodate additional materials or form other configurations, such
as perpendicular cylinders [89]. For symmetric and weak surface fields, par-
allel cylinders were found to be stable. Increasing the strength of the surface
fields results in perforated lamellae (PL) or lamellae (L). For asymmetric sur-
face fields, the situation is more complex. Here, parallel and perpendicular
configurations can coexist [34]. It is very interesting to study phase transitions
between the various phases of block copolymer fluids under the change of
certain conditions, such as the thickness or the surface fields. Such a phase
transition study is expected to provide a fundamental understanding of the
structure formation in copolymer fluids. Therefore, we can contribute a not-
able impact on nanotechnology, as discussed before. These ordered fluids are
facinating materials and have an essential role in technologies as well as in the
biological cells researches [18, 90].
Different experimental and simulation studies [86, 91–93] reported the form-
ation of perpendicularly oriented cylinder (C⊥) and perforated lamellae (PL),
when the thin film thickness was below the optimum thickness of monolayer.
For example, Knoll al et. [91] showed that there is a phase transition C|| →
C⊥ when the surface interaction is not too strong, and the sequence of phase
transitions C|| → PL → C⊥ with strong surface interaction. The schematic of
phase diagram studied by both simulations and experiments is presented in
the figure 5.1. In addition to these phases, there are other morphologies, such
as lamellae, undulated cylinders, undulated lamellae and hybrid structures
[86]. These phases are also stable under particular conditions of the thin film

49
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thickness and the interactions between copolymers and substrates.

Figure 5.1: Schematic phase diagram of a copolymer thin film. It is a function of
the film thickness H, which is in units of the thickness of a monolayer of
cylinders c0, and the strength of interaction between the block copolymers
and the surface of the film εM. The phase diagram was studied in both,
computer simulations (Sim.) and experiment (Exp.). This figure is adapted
from reference [91].

In the previous chapter, we discussed the phase transition from a monolayer
to multilayer of cylindrical phases C||, which are oriented parallel to the sur-
face of substrates, where the monolayer of cylinders is a globally stable and the
bilayer or trilayer of cylinders are metastable states. In thin films, as the film
thickness is varied, cylinders can change their orientation to C⊥, as described
above, in order to minimize the free energy. In this chapter, we will mainly
discuss the phase transition between cylindrical phases due to the influence of
the film thickness. These cylindrical phases are cylinders which are oriented
perpendicular to the substrate and the monolayer of cylinders which are ori-
ented parallel to the substrates. The phase transition between them occurs as
the film thickness is reduced below the periodicity of the monolayer of par-
allel cylinders. These two kinds of configurations are demonstrated in figure
5.2: panel a) shows the parallel configuration and panel b) shows the perpen-
dicular configuration. Furthermore, we also vary the interactions between the
block copolymers and the surfaces to analyze the phase behaviour of the thin
films. Specifically, we investigate the change in the orientation of cylinders or
the transition to other morphologies. We still employed the self-consistent field
theory to obtain the density profile with the minimum free energy.
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Figure 5.2: a)-Cylinders of block copolymers are oriented parallel to the surfaces; b)-
Cylinders of block copolymers are oriented perpendicular to the surfaces.
Green corresponds to B-block.

5.1 theory

We consider a melt of n asymmetric AB diblock copolymer molecules, where
each molecule is modeled as an ideal Gaussian chain without nonbonded in-
teractions [20] and is parameterized by a contour variable s that increases
continuously from 0 to 1 along its length. The A and B segments have equal
statistical length b. The diblock copolymers are confined between two flat sur-
faces, which are treated as two hard walls. The two surfaces preferentially
attract the majority block (A) of the copolymers as in chapter 4. Here, we focus
on the thickness range between zero and the thickness of a monolayer of cyl-
inders. First, we study films of thickness h, that are constrained between two
symmetric flat surfaces located at z = 0 and z = h. Here, symmetric surfaces
means that the bottom substrate and the top surface have the same strength of
interactions for each A or B block. We investigate the influence of the thickness
on the microstructure of the films. Then, for completeness, we also consider the
case where thin films are confined between two asymmetric surfaces, which
have different degrees of preferential attraction of blocks to the surfaces. Peri-
odic boundary conditions are applied in the other directions, namely, in the
x- and y-direction. The strength of repulsion between the unlike blocks is con-
trolled by the product χN, where χ is the Flory-Huggins parameter and N is
polymerization degree. Here, we study intermediate segregation level, and the
parameter values are chosen as χN = 20, and f = 0.7 being the volume frac-
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tion of the A-block. As expected, a cylindrical phase is formed. The inverse
compressibility parameter of the melt is chosen to be κN = 25 for numerical
reasons. The calculations are performed in the grand canonical ensemble, and
the number of diblock copolymers is adjusted to the film thickness. The chem-
ical potential of the copolymers is kept fixed at µ = (2.5+ lnG)kBT . Here, G is
the dimensionless Ginzburg parameter G = ρ0

N R
3
g (ρ0 is the average monomer

density).
Similar to the discussion in chapter 4, we employed the self-consistent field
theory to study the self-assembly of patterns. It has been established in detail
in the previous chapters, here we just briefly describe it. In its spirit the free
energy of the diblock copolymer melt is given by:

FGC
kBT

= −eµQ+ ρ0

∫
dr
[
χφA(r)φB(r) +

κ

2
(φA(r) +φB(r) − 1)

2
]

−
ρ0
N

∫
dr [ωA(r)φA(r) +ωB(r)φB(r)]

+
ρ0
N

∫
drH(r) [ΛANφA(r) +ΛBNφB(r)] (5.1)

where ΛA,ΛB are the strengths of the interaction between the A-block and B-
block to the surfaces, respectively. H(r) is the surface field defined as follows:

H(r) =


(1+ cos(πz/ε)) 0 6 z 6 ε

0 ε 6 z 6 h− ε

(1+ cos(π(h− z)/ε)) h− ε 6 z 6 h

(5.2)

The free energy of the system then will be expressed in units of GkBT .
The fieldsωA(r),ωB(r) act on the Amonomers and Bmonomers, respectively;
and the densities of each segment are determined from the following SCF
equations:

ωA(r) = NχφB(r) +Nκ [φA(r) +φB(r) − 1] +NΛAH(r) (5.3)

ωB(r) = NχφA(r) +Nκ [φA(r) +φB(r) − 1] +NΛBH(r) (5.4)

φA(r) = eµ
∫f
0

ds q(r, s)q†(r, 1− s) (5.5)

φB(r) = eµ
∫1
f

ds q(r, s)q†(r, 1− s) (5.6)

We first study an effectively two-dimensional (2D) system for a single layer
of parallel cylinders, which does not loose the general properties of the sys-
tem in three dimensions. However, it requires to study three-dimensional (3D)
systems for perpendicular cylinders because this configuration cannot be ob-
served in two dimensions. Therefore, the Laplace operator in the modified
diffusion equations for q(r, s) and q†(r, 1− s) will take the form

∆ =
∂2

∂x2
+
∂2

∂z2
(for 2D) (5.7)

∆ =
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
(for 3D) (5.8)
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The modified diffusion equations in 2D- and 3D- systems are:

∂q(x, z, s)
∂s

=

(
∂2

∂x2
+
∂2

∂z2

)
q(x, z, s) −ωαq(x, z, s) (5.9)

∂q(x,y, z, s)
∂s

=

(
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2

)
q(x,y, z, s) −ωαq(x,y, z, s) (5.10)

The discretization in space is chosen as ∆z = 0.01 Rg for either 2D or 3D
films. In the lateral directions, x and y, the values are ∆x ≈ 0.05 Rg for 2D
films, and ∆x ≈ 0.05 Rg, ∆y ≈ 0.1 Rg for 3D films. The contour parameter s
is discretized in steps of ∆s = 0.0001 and ∆s = 0.0003 for 2D and 3D films,
respectively. The discretization here has a high resolution compared to other
SCFT studies. These above discretization values in 2D and 3D systems are
chosen such that these values are optimal to conduct calculations without in-
fluencing the free energies of stable morphologies. From the work presented
in the last chapter, we know that most of these discretization choices are not
critical, and the discretization in the z direction had a significant effect on the
resulting free energies. Hence, the discretization errors could not be neglected.
On the other hand, we also found that they lead to an energy shift ∆F, which
only depends on the discretization in the direction perpendicular to the plane
of the thin film, ∆z, and does not depend on the film thickness. As in the previ-
ous chapter, we therefore study the dependence of ∆F on ∆z systematically for
five different values in the range of study of the film thickness. We calculate
the shifted energy ∆F at different ∆z, which has a range from ∆z = 0.0033 Rg
to ∆z = 0.017 Rg. Then we fit the results to a third order polynomial. We do
the fit for individual set of surface interactions parameters. For example, with
the symmetric surface interactions ΛAN = −120 and ΛBN = −115, the es-
timate for the fit function is ∆F(∆z) = −12.27 ∆z − 341 ∆z2 + 1447 ∆z3. The
corresponding data is shown in figure 5.3. For another example with asym-
metric surface interactions, where ΛAN = −120, ΛBN = −115 at one sur-
face and ΛAN = −95, ΛBN = −90 at the other surface, the fit function is
∆F(∆z) = −11.43∆z− 375∆z2+ 7012∆z3. The corresponding data is displayed
in figure 5.4. These corrections are then applied to the corresponding SCF data
below.

As discussed in previous chapter, we also consider the effect of the long-
range van der Waals (vdW) interaction on the free energy of the diblock
copolymer films. The system studied in this thesis is similar to the experi-
mental system investigated by Vega et al. [78]. They studied triblock copolymer
polystyrene-block-polybutadiene-block-polystyrene (SBS) with an average mo-
lecular weight of M ∼ 140000 g/mol. The copolymer was deposited on the
Si substrate and the carbon dioxide CO2 interface. As shown by Matsen and
Thompson [94], the phase diagram of an ABA triblock is similar to that of an
AB diblock with the same composition but with half of its molecular weight.
Hence, our SCFT calculations investigate the phase behaviour of the diblock
copolymers. To compute the van der Waals interaction for such a system, we
take the value of M to be half that of the experimentally investigated system
(M ∼ 70000 g/mol). The Hamaker constant is chosen A = −3 · 10−20J, which
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Figure 5.3: Shifted energy ∆F as a function of discretization ∆z for different film
thicknesses h with surface interactions ΛAN = −120, ΛBN = −115 and
the chemical potential µ = (2.5+ lnG)kBT . The solid line corresponds to
the fit function, ∆F(∆z) = −12.27 ∆z− 341 ∆z2 + 1447 ∆z3.

is the Hamaker constant of PS deposited on the Si substrate and CO2 surface
[79]. These values of M and A result in van der Waals interaction in the range
of [0.01 : 0.5]GkBT . Since the value is significant when compared to the SCFT
free energy, the van der Waals interaction cannot be neglected here.
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Figure 5.4: Shifted energy ∆F as a function of discretization ∆z for different film
thicknesses h with surface interactions ΛAN = −120, ΛBN = −115 at one
surface and ΛAN = −95, ΛBN = −90 at the other surface. The chemical
potential µ = (2.5+ lnG)kBT . The solid line corresponds to the fit function,
∆F(∆z) = −11.43 ∆z− 375 ∆z2 + 7012 ∆z3.

5.2 results

5.2.1 Symmetric surfaces

First, we study the AB diblock copolymer thin films confined between two
symmetric surfaces with the interaction strength ΛAN = −120, and ΛBN =

−115 at either surfaces. We investigate the orientational phase transition from
a monolayer of cylinders, which are aligned parallel to the substrates (C||),
to a configuration of cylinders, which are oriented perpendicular to the sub-
strate (C⊥) due to the confinement effect. We apply self-consistent field theory
(SCFT) [22, 52] to determine the Gibbs free energy per area landscape of the
parallel and perpendicular cylinder phases as a function of the film thickness.
At a given thickness, we always minimize the free energy with respect to the
lateral distance in x− y plane. As we mentioned before, in order to have an
accurate free energy profile, the discretization effect could not be neglected.
We have to be very careful when identifying the equilibrium morphologies.
The free energies obtained from SCF calculations are then applied the corres-
ponding shifted free energy ∆F = −12.27 ∆z− 341 ∆z2 + 1447 ∆z3 due to the
discretization error, as well as the van der Waals energy contribution.

Figure 5.5 presents the Gibbs free energy landscape as a function of the film
thickness. We find that the local film thickness has a strong role in the phase
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Figure 5.5: Gibbs free energy per area as a function of the film thickness of diblock
copolymers confined between two symmetric surfaces at the chemical po-
tential µ = (2.5+ lnG)kBT . The strength of the interactions between block
copolymers and the two identical walls are ΛAN = −120, ΛBN = −115.

diagram of diblock copolymers. As we discussed in the last chapter, there ex-
ists a minimum in the free energy landscape of a single layer of cylinders
corresponding to the optimum thickness h1L = 3.5 Rg. When the film thick-
ness is reduced below the optimum thickness of the monolayer, we observe
a commensurability effect. To be more specific, at the thicknesses h 6 2.5Rg,
this condition is energetically unfavourable for the monolayer of parallel cylin-
ders, and the films start to orient themselves perpendicular to the plane of the
films. As a result, there is a phase transition from the parallel to perpendicu-
lar orientation. The results are in a good agreement with other studies [32, 33,
91], where they studied both, static and dynamic properties of the phase beha-
viour of block copolymer thin films in experiments and computer simulations.
They also observed the phase transition C|| → C⊥ as the film thickness mis-
matches with the favorite thickness of the monolayer and the surface fields are
not strong. However, the cylinder aligned parallel to the surfaces (C||) is more
stable because its free energy minimum has lower value in the energy land-
scape (figure 5.5). On the contrary, the perpendicular cylinder configuration
(C⊥) does not have a real free energy minimum.

If one decreases the chemical potential, the free energy minimum corres-
ponding to the C|| configuration moves up relative to the free energy of C⊥.
This is clearly seen from figure 5.6. In the figure, we present free energy pro-
file of the system when the chemical potential is decreased to µ = (2.372 +
lnG)kBT . The figure exhibits two free energy minima corresponding to the
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Figure 5.6: Gibbs free energy per area as a function of the film thickness of diblock co-
polymers confined between two symmetric surfaces at C||/C⊥ coexistence,
µ = (2.372+ lnG)kBT . The strength of the interactions between block co-
polymers and the two identical walls are ΛAN = −120, ΛBN = −115. The
dashed lines are estimation from figure 5.5 via "µ- extrapolation method".

C⊥ and C|| orientations. It is noted that these two free energy minima have
the same value. This result indicates that the C⊥ configuration coexists with
the C|| one. Additionally, figure 5.6 also presents the free energy profile of the
thin films at the chemical potential µ = (2.373+ lnG)kBT (two dashed lines),
which is extracted from the data at the chemical potential µ = (2.5+ lnG)kBT
via the following formula:

F2 = F1 − (µ1 − µ2) h ρ̄ = F1 −∆µ h ρ̄ (5.11)

where ∆µ is the difference of the chemical potential, h is the film thickness, and
ρ̄ is the average density. The extracted data are in very good agreement with
those obtained from the SCFT calculations. It is noted that the "µ- extrapolation
method" is a faster way to estimate the coexistence. However, the data obtained
from such a method is not exactly the same as the one obtained from the
SCFT. This is because ρ̄ depends on the chemical potential µ. As a result, the
configuration changes slightly with µ even at fixed thickness.

If we further decrease the chemical potential, the free energy minimum of
the C|| continues moving up relative to the C⊥ minimum. Figure 5.7 shows the
plot similar to those presented in figure 5.5 and 5.6 at the chemical potential
µ = (2.35+ lnG)kBT . There is still the phase transition C|| → C⊥ when the
thickness is below the optimum thickness of the parallel monolayer. The C⊥
perpendicular configuration becomes more stable than the C|| parallel mono-
layer configuration since the free energy minimum of C⊥ is lower than that of
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the C||. As before, the estimation from the "µ- extrapolation method" is quite
good (two dashed lines).

Figure 5.7: Gibbs free energy per area as a function of the film thickness of diblock co-
polymers confined between two symmetric surfaces at the chemical poten-
tial µ = (2.35+ lnG)kBT . The strength of the interactions between block co-
polymers and the two identical walls are ΛAN = −120, ΛBN = −115. The
dashed lines are estimation from figure 5.5 via "µ- extrapolation method".

Note that the free energy per area of the perpendicular configuration (C⊥)
increases as the film thickness decreases at different values of chemical poten-
tial discussed above. The results indicate that the perpendicular configuration
C⊥ is unstable and the thin films dewet from the substrate when the thickness
is very small.

Our results are qualitatively consistent with recent experimental results of
Professor Vega’s group, where they studied the polystyrene-polybutadiene-
polystyrene (SBS) triblock copolymer thin films. They employed supercritical
carbon dioxide (Sc−CO2) to anneal the thin films. Figure 5.8 shows the AFM
image for the structures of copolymer films after 2h of annealing at different
thicknesses. They found that the optimum thickness of monolayer is 39 nm.
The copolymer films favor the C⊥ perpendicular configuration at the thick-
ness smaller than the optimum condition of the monolayer (panel b) and the
films dewet and develop islands when the thickess is as well below the op-
timum thickness for the formation of the monolayer (panel a). However, the
SCFT results are not quantitatively consistent with the experimental observa-
tion. Figure 5.9 shows the free energy as the function of the ratio h/λbulk,
where λbulk = 3.7 Rg [80]. Our SCFT calculations suggest that the optimum
thickness of the monolayer of parallel cylinders is h/λbulk = 0.87, while
the experimental result for the same is h/λbulk = 0.95. Moreover, the SCFT
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Figure 5.8: Atomic force microscopy (AFM) phase image for copolymer film config-
urations after 2 h of annealing in supercritical CO2 at different film thick-
nesses [78].

Figure 5.9: Gibbs free energy per area as a function of the ratio h/λbulk of diblock
copolymers confined between two symmetric surfaces at the chemical po-
tential µ = (2.35+ lnG)kBT . The strength of the interactions between block
copolymers and the two identical walls are ΛAN = −120, ΛBN = −115.
The blue line is the constructed common tangent line.

results indicate that there is a coexistence of C⊥ and C|| at the thickness
0.3 < h/λbulk < 0.87 and the films dewet at h/λbulk < 0.3. However, the
experiments observed the C⊥ at the thickness h/λbulk = 0.87, and the films
dewet when the thickness is h/λbulk 6 0.7.
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5.2.2 Asymmetric surfaces

Although the assumption that the film surface is symmetric simplifies some
analyses, many film systems have asymmetric surfaces, i.e., where the block-
s/surface interactions have different strength at the two surfaces. This is the
case for supported thin films. In order to explore the role of the strength of the
surface fields in the morphologies of thin films, we consider a thin film with
non-homogeneous surface conditions as well. The calculations for symmetric
surfaces are carried out for asymmetric surfaces as well. In order to understand
how the preference for the major A-block affects the morphologies of block co-
polymers, we study different degrees of asymmetric boundary conditions. We
first study the thin film where the difference of interaction strength between co-
polymers and the two surfaces is small. The interaction parameters are chosen
as ΛAN = −125, ΛBN = −120 at one wall and ΛAN = −115, ΛBN = −110

at the other one. Thus the difference of interactions between the two surfaces
and the A-block is ∆AΛ = 10 for such asymmetric interactions. The chemical
potential is still fixed at µ = (2.5+ lnG)kBT as before. We find the equilibrium
configuration and the corresponding free energy of the thin films at a given
thickness. The SCF free energies are then applied the corresponding shifted
energy ∆F due to the discretization error ∆F = −12.68 ∆z− 269 ∆z2 − 2788 ∆z3

and the van der Waals interaction.

Figure 5.10: Gibbs free energy per area as a function of the film thickness of dib-
lock copolymers confined between two asymmetric surfaces at the chem-
ical potential µ = (2.5 + lnG)kBT . The strength of surface interactions
are chosen as: ΛAN = −125,ΛBN = −120 at one surface and ΛAN =

−115,ΛBN = −110 at the other one.
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The Gibbs free energy landscape as a function of the film thickness is presen-
ted in figure 5.10. Note that the results are similar to that of symmetric interac-
tion at the surfaces. There is a phase transition from the single layer of parallel
configuration to the perpendicular one as the film thickness is reduced below
the natural size of the monolayer of cylinders. The boundary of the phase
transition between parallel and perpendicular cylinders is around h 6 2.5Rg
as for symmetric surface interactions. On the other hand, the single layer of
parallel cylinders remains more stable since its minimum energy has the lower
value. The results are consistent with the ones showed in Knoll’s work [33,
91] as we discussed in the symmetric surface fields. Moreover, Knoll and his
colleagues also found the perforated lamellae (PL) phase. We do not observe
it in our system with the given surface field parameters. The reason might be
that asymmetric surface interactions we used do not belong to the region of
PL phase.

Figure 5.11: Gibbs free energy per area as a function of the film thickness of diblock
copolymer confined between two asymmetric surfaces at the chemical
potential µ = (2.5+ lnG)kBT . The strength of the surface interactions are:
ΛAN = −120,ΛBN = −115 at one surface and ΛAN = −100,ΛBN = −95

at the other one.

Afterwards, we slightly increase the asymmetry between the two surfaces
by further reducing the interaction strengths at one surface. In particular, the
interaction parameters are kept the same as before at one surface ΛAN = −120,
ΛBN = −115, and at the other one are changed to ΛA = −100, ΛBN = −95.
Thus the difference of the interaction strength between theA-block and the two
surfaces is ∆AΛ = 20 for such interaction parameters. We also consider another
set of surface interactions with ∆AΛ = 25, where ΛAN = −120, ΛBN = −115

at one wall and ΛA = −95, ΛBN = −90 at the other wall. We then seek
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the concentration profiles corresponding to the minimum free energy of the
systems at a certain film thickness. Thereafter, the free energies obtained from
the SCFT calculations were corrected for the discretization errors. Then the
energetic contributions due to the van der Waals interaction were added to the
free energy above.

Figure 5.12: Gibbs free energy per area as a function of the film thickness of diblock
copolymers confined between two asymmetric surfaces at the chemical
potential µ = (2.5 + lnG)kBT . The strength of surface interactions are:
ΛAN = −120,ΛBN = −115 at one surface and ΛAN = −95,ΛBN = −90

at the other one.

Figures 5.11 and 5.12 show the same content as figures 5.5 and 5.10, the
Gibbs free energy landscape of the films as a function of the film thickness.
We still observed a phase transition from C|| → C⊥ as the film thickness is
decreased below the natural size of the monolayer of cylinders. The C||/C⊥
border is changed to a slightly thicker thickness h 6 2.7 Rg. It means that the
thin films start to rearrange the orientation to the plane of the film at thicker
regions compared to the previous parameter set. Note that the free energy dif-
ference of C|| and C⊥ decreases as the degree of asymmetry between the two
surfaces increases. Furthermore, the free energy profile of the perpendicular
configuration starts to have a minimum. In other words, the C⊥ phase has a
favored film thickness, which is about half the optimal thickness of the mono-
layer of parallel cylinders. However, the free energy minimum of the parallel
configuration has a lower value. Therefore, the C|| phase is still more stable
than the C⊥ one.

As discussed in the symmetric surface interaction case, if one decreases the
chemical potential the free energy minimum of monolayer of parallel cylinders
moves up relative to the perpendicular minimum. For instance, we slightly
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Figure 5.13: Gibbs free energy per area as a function of the film thickness of diblock
copolymers confined between two asymmetric surfaces at the chemical
potential µ = (2.45+ lnG)kBT . The strength of surface interactions are:
ΛAN = −120,ΛBN = −115 at one surface and ΛAN = −100,ΛBN = −95

at the other one.

decrease the chemical potential from µ = (2.5+ lnG)kBT down to µ = (2.45+
lnG)kBT , then calculate the Gibbs free energy landscape of the films. Figure
5.13 presents the free energy per area as a function of the thickness. The C||/C⊥
is still around h ≈ 2.7 Rg. It is noted that the C⊥ now has lower free energy
minimum than the C||. This indicates that the perpendicular configuration is
more stable than the parallel configuration.

A further increase of the asymmetry of the affinity of A block between the
two surfaces causes a significantly different structure evolution of the thin
films. It results in the appearance of new morphologies, such as perforated
lamellae (PL) and lamellae (L). In particular, we reduce the interaction strength
between one surface and the blocks to enhance the affinity difference between
the two surfaces. For example, we increase the difference of the selectivity of
the A-block between the two surfaces up to ∆AΛ = 30 with the surface interac-
tions ΛAN = −120,ΛBN = −115 at one surface and ΛAN = −90,ΛBN = −85

at the other one. Then we find the equilibrium configuration and the min-
imum free energy as before. We see a transformation from C⊥ into a perfor-
ated lamella PL structure at the film thickness corresponding to half of the
optimum one of a single monolayer, h = 1.8Rg. The PL is found at a very
specific film thickness, in agreement with Heckmann’s work [92], where they
found that perforated lamellae appeared only in a very small region of their
phase diagram. We emphasize that our simulations are not biased to any par-
ticular microdomain structures. For instance, we use the C⊥ phase as an initial
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configuration to obtain the PL phase. It took quite a long computation time to
reach the convergence conditions to equilibrate the PL phase compared to the
C|| or the C⊥ phases in our SCFT calculations. Figure 5.14 shows the density
profile of the PL configuration of the thin films. Instead of the B-minority block
cylinders oriented parallel C|| or perpendicular C⊥ to the surfaces, there are
hexagonally ordered microdomains of the A-majority block in a continuous
B-block layer.

Figure 5.14: Perforated lamellae (PL) structure of the AB diblock copolymer thin films.
Here, hexagonally ordered microdomains of the A-majority block in a
continuous layer of the B-minority block, i.e., a perforated B block lamella
are shown.

Figure 5.15: Perforated lamellae (PL) structure of the AB diblock copolymer thin films.
It is similar to the figure 5.14 but from the side view.

We also investigate the free energy landscape in order to analyze the stability
of the different morphologies of the diblock copolymer thin films. Figure 5.16
displays the free energy per area as a function of the film thickness. The ex-
istence of sharp borders between the C⊥ and the PL perforated lamella phase
in the energy landscape indicates that the C⊥ → PL transition as a function
of film thickness is a first order phase transition. Interestingly, the free energy
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Figure 5.16: Gibbs free energy per area as a function of the film thickness of diblock
copolymers confined between two asymmetric surfaces at the chemical
potential µ = (2.5 + lnG)kBT . The strength of surface interactions are:
ΛAN = −120,ΛBN = −115 at one surface and ΛAN = −90,ΛBN = −85

at the other one.

of the C|| does not correspond to the lowest free energy minimum any more.
Instead, the free energy of PL phase is lower. In addition, we also calculate
the free energy of lamellar phase (L) of the film (figure 5.17) in the region
of the thickness where PL phase is found. Then we compare the free energy
between the perforated lamellar and lamellar phases. It is obtained that the
free energy of PL phase has the lowest value. It is an intriguing result since it
is still an open question whether the perforated lamellae are stable phase or
not. There are different studies of PL phase of copolymers in the bulk or in
thin films with different conclusions. Hajduk et al. [95] studied different block
copolymer systems and showed that the perforated lamella phase is a nonequi-
librium structure, which might result from instabilities of the lamellae phase
and is transformed into the gyroid phase after sufficienly long isothermal an-
nealing. A theoretical study of Qi and Wang [96] suggested that the PL is a
metastable phase, which is caused by unstable fluctuation of lamellae phase.
Using real-space SCFT, Yang et al. [86] claimed that the PL phase is stable un-
der thin film conditions, i.e., the confinement and the affinity of the substrates
to the blocks. The thin films also dewet at very thin thickness.

These results again indicate that the surface fields play an essential role in
determining the stable structure of the thin films as well as the film thick-
ness [32, 33, 91]. It is also interesting to investigate the phase diagram of thin
films when the asymmetry of the two surfaces to A-block becomes even lar-
ger. Thus we further increase the affinity difference of the two walls for A-
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block up to ∆AΛ = 40, where the interaction strength of the surface fields are
ΛAN = −120,ΛBN = −115 at one surface and ΛAN = −80,ΛBN = −75 at
the other one. Then, we carefully determine the equilibrium configurations of
the films. Such a study results in an interesting phase behaviour. Besides the
C|| and C⊥ structures, we obtain the lamella phase parallel to the substrates
within a certain regime of the film thickness, which is around half of the op-
timal thickness of a single layer. The reason is that since the affinity of one wall
for A-block is much stronger compared to the other wall, the concentration of
the A-block increases near the former surface. Therefore, the films undergo an-
other phase transition C⊥ → L in addition to the C|| → C⊥ transition. Figure
5.17 shows the parallel lamellar phase of the diblock copolymer films. Note
that the PL phase is not found here. This confirms one more time the role of
the surface fields in morphologies of thin films.

Figure 5.17: Lamellae (L) structure of the AB diblock copolymer thin films.

We present the Gibbs free energy per area of diblock thin films as a function
of the thickness in figure 5.18 as we did for the surface fields in the cases above.
From that we can examine the stability of the thin films. More interestingly, the
single layer of parallel cylinders is not globally stable any more. The lamella
phase becomes the globally stable one since its free energy is a global min-
imum. The optimum thickness, which corresponds to the energy minimum of
the L phase is h ≈ 1.8Rg. It is approximately half the optimum thickness of the
monolayer of parallel cylinders. The difference of free energy between the min-
imum energies of the L and C|| phases increases as the asymmetry between the
air/film and film/substrate interfaces increases. This is shown in figure 5.19
where the surface selectivity difference ∆AΛ is extremely large. For such asym-
metric interaction, the strength of the polymer/surface interactions are chosen
as ΛAN = 5,ΛBN = 30 at one surface and ΛAN = −151,ΛBN = −150 at the
other one. The free energy minimum corresponding to the L phase profoundly
moves down relative to the monolayer minimum. It is reasonable since the pref-
erence of one surface to the A-block is much stronger than that of the other
surface; therefore, the A-block has a significantly increased concentration near
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Figure 5.18: Gibbs free energy per area as a function of the film thickness of dib-
lock copolymer confined between two asymmetric surface at the chem-
ical potential µ = (2.5+ lnG)kBT . The strength of surface interactions are:
ΛAN = −120,ΛBN = −115 at one surface and ΛAN = −80,ΛBN = −75

at the other one.

the former surface. It results in the reduction of the free energy of the L lamella
phase.

5.3 conclusion

In conclusion, we have studied the morphologies of asymmetric diblock co-
polymers confined between two hard walls using the SCFT. We chose the
volume fraction of the A-block to be f = 0.7, and an intermediate segregation
parameter of χN = 20. The two surfaces preferentially attract the major block.
We have identified the phase behaviour of copolymer thin films under the ef-
fect of both, surface fields and film thickness, where equilibrium structures for
two- or three-dimenional systems were analyzed. We considered the case of
two identical sufaces as well as the case of asymmetric surfaces. Together with
other studies, either simulations or experiments [32, 78, 86, 91], our results
give evidence that the equilibrium phase behaviour of diblock copolymer thin
films is controlled by the interplay between the strength of the surface interac-
tion fields and the mismatch of the film thickness and the optimal size of the
monolayer of parallel cylinders. This causes either a rearrangement of orienta-
tion of cylinders to the plane of the films, a phase transition from the parallel
to perpendicular configurations (C|| → C⊥) or the formation of other struc-
tures with sufficient surface fields, such as perforated lamellae and lamellae
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Figure 5.19: Gibbs free energy per area as a function of the film thickness of diblock
copolymers confined between two asymmetric surfaces at the chemical
potential µ = (2.5 + lnG)kBT . The strength of surface interactions are:
ΛAN = 5,ΛBN = 30 at one surface and ΛAN = −151,ΛBN = −150 at
the other one.

phases. Therefore, other phase transitions, such as C⊥ → PL or C⊥ → L occur.
The globally stable phase of the thin films depends on the surface fields. Spe-
cifically, the monolayer of C|| parallel cylinders is stable as the surface fields
are symmetric or slightly asymmetric, but the PL or L phases become more
stable as the degree of asymmetry increases. Moreover, the thin films become
unstable and dewet as the thickness is far below the natural size of a single
layer of parallel cylinders.
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C U RVAT U R E A S A G U I D I N G F I E L D F O R PAT T E R N S I N
T H I N B L O C K C O P O LY M E R F I L M S

Previous chapters focused on block copolymer thin films confined between
two planar substrates. In this chapter, we extend this framework to block co-
polymer thin films confined in a curved geometry (two coaxial cylindrical sur-
faces). We study the elastic properties of a monolayer of diblock copolymers
forming cylindrical phase in free-standing membranes and curved supported
thin films with self-consistent field theory (SCFT). The bending elasticity of
anisotropic ordering on surfaces is common in biological membranes, where
the competition with the membrane elasticity has a significant role in the mor-
phology of these systems [97, 98]. We analyze how the curvature of the sub-
strate affects the translational and orientational order that arises by minimiz-
ing the distortion energy of cylinder [35] in the free-standing membranes and
the curved supported films. Moreover, the stability of the thin films against
dewetting due to curvature is considered as well.

Part of the work presented in this chapter can be found in the preprint:
"Curvature as a guiding field for patterns in thin block copolymer films", Phys.
Rev. Lett., 121, 087801, 2018.

6.1 curvature

The curvature is the deviation from flatness, for example, a surface deviates
from being a flat plane or a curve from being a straight line. Therefore, it is
a measure of the rate of change of the tangent vector along the normal, or, in
other words, a measure of the rate of change the normal along the tangent vec-
tor. This can be described through the principal curvatures. For a two dimen-
sional surface, there are two principal curvatures k1 and k2, which determine
the local shape of a point on a surface. One shows the direction of maximum
curvature, while the other shows the direction of minimum curvature. The
local geometric properties of a surface can be described through k1 and k2 by
the mean and Gaussian curvatures. The mean curvature H is equal to half the
sum of the principal curvatures

H =
1

2
(k1 + k2) (6.1)

and the Gaussian curvature K is equal to the product of the principal curvatures

K = k1k2, (6.2)

If at a point on a surface, k1 and k2 have the same sign then the Gaussian
curvature is positive, for example in spheres or ellipsoids. In contrast to that,
the Gaussian curvature is negative, if k1 and k2 have opposite signs at a point
on the surface. This is the case of a saddle-like surfaces. The magnitudes of k1

69
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Figure 6.1: The saddle surface has negative curvature since k1 and k2 have different
signs. The magnitudes of the two principal curvatures are given by the
inverse radii of the tangent circles drawn as dashed red line [wiki].

and k2 are equal to the inverse of the radius of tangent circles in the principal
directions. An example is saddle surface, which is shown in figure 6.1. It has a
negative Gaussian cuvature.

6.2 symmetry considerations

Here, we first establish a theoretical understanding of the phenomena ob-
served in diblock copolymer membranes by using general symmetry consid-
erations. The curvature free energy per area of isotropic fluid-like membranes
can be written as the Helfrich formula [99, 100]:

FHC =
κb
2
(2H− c0)

2 + κgK , (6.3)

where κb is the bending regidity, κg is the Gaussian curvature modulus, and
c0 is the spontaneous curvature. These parameters determine the properties of
the thin films. The first term describes the change in energy since the average
curvature of the film deviates from the spontaneous curvature. The last term
is the part of the energy which depends on the Gaussian curvature K, and
therefore on the topology of the film. One can consider this energy as an ex-
pansion in terms of the invariants of the shape operator S of the surface. This
phenomenological approach was initiated by Helfrich and de Gennes, and fur-
ther developed by a number of authors. It has become a successful method to
study molecular membranes, vesicles, and microemulsion [101–103].
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Now we discuss a general expression for the curvature free energy per area
of a mathematically thin surface with the shape operator S. In its own Ei-
gensystem, the shape tensor S can be written as:

S = k1u1 ⊗ u1 + k2u2 ⊗ u2 (6.4)

Here, k1, k2 are the principal curvatures and u1, u2 denote the corresponding
Eigenvectors. We can choose |k1| > |k2| without loss of generality. If a mem-
brane or thin film has in-plane order characterized by a director field n, which
is the orientation of the cylinders, then the curvature free energy per area no
longer has to be rotationally symmetric. Thus, it may contain additional terms.
These terms take the form (n ·S ·n), (n ·S ·n)2 [104, 105], and (n ·S)2 [106, 107].
Here, we consider up to second order in terms of S. We write the contribution
of these additional terms to the curvature free energy per area in the general
form:

Fn = A n · S · n −B(n · S · n)2 −C(n · S)2 (6.5)

It is useful to represent Fn in terms of an angle of the director orienta-
tion with respect to the direction of the curvature {u1, u2}. The product (n ·
u1) defines the angle θ between the director and the direction of the largest
curvature via

(n · u1)2 = cos2 θ (6.6)

In addition, n, u1 and u2 have the following properties

n = (n · u1)u1 + (n · u2)u2 (6.7)

(n · u2)2 = 1− (n · u1)2 (6.8)

Inserting these three equations into equation 6.5 of Fn, we obtain:

Fn = AH−

(
3

2
B+ 2C

)
H2 +

(
1

2
B+C

)
K

+

(
A

2
(k1 − k2) − (B+C)(k1 − k2)H

)
cos(2θ)

−
B

2
(H2 −K) cos(4θ) (6.9)

In this equation, the first term can be absorbed in the spontaneous curvature
c0, and the next two terms in the bending and Gaussian modulus κb and κg, re-
spectively. The last two terms give the expression for the anisotropic curvature
free energy per area Fani, which we obtained by substracting isotropic contri-
butions FHC from Fn. By some simple calculations we get the following general
expression for the anisotropic curvature free energy per area:

Fani = −
κ ′

2
(k1 − k2)(2H− c ′0) cos(2θ) −

κ ′′

2
(H2 −K) cos(4θ) (6.10)

with 
κ ′ = B+C

κ ′′ = B

c ′0 = A/(B+C)
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Here θ ∈ [0 : π/2], κ ′, κ ′′, and c ′0 are anisotropic elastic parameters. In the
symmetric membranes, c ′0 vanishes (c ′0 = 0).

6.3 polymer system

We study a melt of n asymmetric AB diblock copolymer molecules confined
in a volume V between two coaxial cylindrical surfaces of radius R1 and
R2 = R1 + h, with h being the thickness of the confined film (see scheme
of the systems below, figures 6.5 and 6.15). Hence, the Gaussian curvature of
the thin film vanishes (K = 0) due to the property of the cylindrical surface.
Each diblock copolymer molecule consists of N segments of which a fraction f
represents the majority block A. We assume that A and B segments have equal
statistical segment length b. These two surfaces preferentially attract the major-
ity block A. The microscopic concentration operators of the A and B segments
at a given point r(r,ϕ, z) are defined as

φ̂A(r) =
N

ρ0

n∑
j=1

∫f
0

ds δ(r − rj(s)) (6.11)

φ̂B(r) =
N

ρ0

n∑
j=1

∫1
f

ds δ(r − rj(s)) (6.12)

respectively. These concentrations are made dimensionless by dividing by the
average segment density ρ0 (ρ0 = nN

V ).
The interaction potential of the melt is given in the form

HI = kBTρ0χ

∫
drφ̂A(r)φ̂B(r) + kBTρ0

κ

2

∫
dr
[
φ̂A(r) + φ̂B(r) − 1

]2
+kBTρ0

∫
drH(r)

[
Λs,a
A φ̂A(r) +Λ

s,a
B φ̂B(r)

]
(6.13)

where H(r) are surface fields, and Λs,a
A,B give the interaction strength between

the A or B block, respectively, and the substrate (s) and air (a) interface. We
choose a form of the surface interaction, which is similar to that in the planar
thin films:

H(r) =


(1+ cos(π(r− R1)/ε)) R1 6 r 6 R1 + ε

0 R1 + ε 6 r 6 R2 − ε

(1+ cos(π(R2 − r)/ε)) R2 − ε 6 r 6 R2

(6.14)

with the cutoff of the surface interactions ε = 0.2Rg. The ”surface interaction
energies per area” of the component A or B are defined as the integrated
surface energy per area of a hypothetical film ofA or Bmonomers with density
φ̂A,B ≡ 1, i.e.,

γs,a
A,B = ρc

∫
drH(r)Λs,a

A,B (6.15)

Where ρc = ρ0/N is the density of the copolymer chains. The ”surface interac-
tion energies per area” will be given in units of γ̂ = ρcRgkBT (which is a unit
of energy per area).
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Here we study two systems, one is free-standing membranes and the other
is curved supported thin films. In the membranes study we assume that the
two surfaces are symmetric for each block, ΛsAN = ΛaAN = −120 and ΛsBN =

ΛaBN = −115 corresponding to γs,a
A N = −24γ̂ and γs,a

B N = −23γ̂. In the
curved supported thin films, we choose symmetric surface interactions for the
B-block ΛsBN = ΛaBN = −30 corresponding to γs,a

B N = −6γ̂, and asymmetric
conditions for the A-block. Specifically, we study two cases:

I. The substrate attracts the A-block stronger than the free (air) surface.
The surface interaction parameters are: ΛsAN = −120,ΛaAN = −50 with
corresponding surface energy per area γsAN = −24γ̂, γaAN = −10γ̂.

II. The free surface attracts the A-block stronger than the substrate. The
surface interactions are chosen as ΛsAN = −50,ΛaAN = −100 with corres-
ponding surface energy per area γsAN = −10γ̂ and γaAN = −20γ̂. In this
case of asymmetric conditions, we also do simulations with two other
sets of paramters. We keep the interaction between B-block and the sur-
faces but vary the interaction of the A-block and the surfaces as: (ΛsAN =

−70,ΛaAN = −100 corresponding to γsAN = −14γ̂,γaAN = −20γ̂) and
(ΛsAN = −50,ΛaAN = −120 corresponding to γsAN = −10γ̂,γaAN =

−24γ̂).

As we discussed in chapter 2, the main task is solving modified diffusion
equations. However, here the systems are given in cylindrical coordinates, so
the Laplace operator takes the form:

∆ =
∂2

∂r2
+
1

r

∂

∂r
+
1

r2
∂2

∂ϕ2
+
∂2

∂z2
(6.16)

Due to the anisotropy of the smectic pattern, the elastic energy of deforma-
tion depends on the local orientation of the pattern with regard to the direc-
tions on the main curvature. To determine the configurations with the lowest
energy and to facilitate comparison with experiments, here we mainly consider
the two limiting cases where the pattern is either parallel (C||) or perpendic-
ular (C⊥ ) to the ~ez direction (see scheme below). In each case, the radius of
curvature R of the substrate is fixed while the thin film thickness and charac-
teristic pattern wavelength are optimized to obtain the lowest energy state.

The parallel configuration does not depend on the z-direction, so we solve
the diffusion equations in the two dimensional films to save simulation time
using the following Laplace operator:

∆ =
∂2

∂r2
+
1

r

∂

∂r
+
1

r2
∂2

∂ϕ2
(6.17)

The confined film of thickness in constrained in r-direction, and the periodic
boundary conditions are imposed in the ϕ-direction.
Similarly, the perpendicular configuration does not depend on ϕ-direction.
Thus, we solve the diffusion equations in the two dimensional systems using
the following Laplace operator:

∆ =
∂2

∂r2
+
1

r

∂

∂r
+
∂2

∂z2
(6.18)
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Figure 6.2: Shift of free energy ∆F as a function of discretization ∆r for the symmetric
films with the surface interactionsΛaAN = −120,ΛaBN = −115, for different
curvatures and film thicknesses h as indicated. The solid line corresponds
to the fit function ∆F(∆r) = −12.6∆r− 277∆r2 − 2367∆r3.

Periodic boundary conditions are applied in the z-direction. All calculations
are performed in the grand canonical ensemble. Of course, we need input
for the chemical potential. It was used µ = (2.5+ lnG)kBT in chapter 4 and
5, but in this chapter we have to slightly increase it µ = (2.55 + lnG)kBT ,
otherwise the films on curved substrates with positive curvature are not stable
or metastable. However, the calculations are performed with both values of
the chemical potential µ = (2.5+ lnG)kBT and µ = (2.55+ lnG)kBT for the
free-standing membranes.

The discretization in space, the azimuthal and thin film directions is chosen
as ∆z = 0.05Rg and ∆r = 0.01Rg, respectively. The contour parameter s is dis-
cretized in steps of ∆s = 0.0001. As in the previous chapters, we find that the
discretization in the direction normal to the film plane (r-direction) has a signi-
ficant influence on the accuracy of the free energies, and discretization errors
could not be neglected. On the other hand, we also find that they lead to an
energy shift ∆F which depends only on ∆r and not on the film thickness, the
curvature, or the orientation of the cylinders (parallel or perpendicular). There-
fore, we study the dependence of ∆F on ∆r systematically for different values
of the film thickness and curvature. Then we fit the result to a third order poly-
nomial, the fit functions are ∆F(∆r) = −11.75∆r− 270∆r2+ 5035∆r3 (∆F(∆r) =
−11.95∆r−167∆r2+3737∆r3) and ∆F(∆r) = −12.6∆r−277∆r2−2367∆r3 with
asymmetric and symmetric surface interactions, respectively. Figures 6.2, 6.3
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Figure 6.3: Shift of free energy ∆F as a function of discretization ∆r for the films
with asymmetric surface interaction ΛsAN = −120,ΛsBN = −30 at the fixed
substrate and ΛaAN = −50,ΛaBN = −30 at the free surface for different
curvatures and film thicknesses h as indicated. The solid line corresponds
to the fit function ∆F(∆r) = −11.75∆r− 270∆r2 + 5035∆r3.

and 6.4 present the fitting results. These corrections are then applied to the
results of the SCFT calculations.

In addition, we also consider the contribution of the van der Waals interac-
tion to the free energy of the diblock copolymer films as previous chapters.
However, the estimate of the vdW interaction for the systems studied in this
chapter is ∼ 0.004GkBT . Such a value is very small when compared to the SCFT
free energies. Hence, it can be neglected as in chapter 4 without influencing
the results regarding the most stable morphology.
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Figure 6.4: Shift of free energy ∆F as a function of discretization ∆r for films with
the asymmetric surface interactions ΛsAN = −50,ΛsBN = −30 at the fixed
substrate and ΛaAN = −100,ΛaBN = −30 at the free surface for different
curvatures and film thicknesses h as indicated. The solid line corresponds
to the fit function ∆F(∆r) = −11.95∆r− 167∆r2 + 3737∆r3.

6.4 boundary conditions

As discussed in the previous section, the SCFT calculations are done in cyl-
indrical coordinates (r,ϕ, z), where r is the direction normal to the plane of
the films or the membranes and z is the direction of the zero curvature. Con-
figurations C‖ and C⊥ with cylinder orientations parallel or perpendicular to
the direction of the curvature can be obtained with periodic boundary con-
ditions in the (ϕ, z) directions. Furthermore, in the free-standing membranes,
we also consider a configuration where the angle between the orientation of
the cylinder and the direction of the largest curvature is an arbitrary angle θ.
This configuration is called θ-configuration. In order to impose a given tilted
orientation with tilt angle θ, we must apply tilted boundary conditions, either
in the z or in the ϕ direction. We do this by using affine coordinates (r,u, v)
with periodic boundary conditions in (u, v). To be more specific, we use two
affine coordinate systems. The first one is:

r = r

u = ϕ

v = z−ϕa case (1)

a = R tan θ
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and the second affine coordinate system is:
r = r

u = ϕ− bz

v = z case (2)

b = 1/R/ tan θ

where R is the radius of the curvature of the membranes. In case (1), a = 0

corresponds to the perpendicular configuration C⊥ (θ = 0), and in case (2)
b = 0 corresponds to the parallel configuration C‖ (θ = π/2).

We solve the modified diffusion equations with periodic boundary condi-
tions in effectively two dimensions: (r, v), independent of u in case (1), and
(r,u), independent of v in case (2). This enforces tilted orientations of cylin-
ders. In general, the Laplace-Beltrami operator has the following form

∆LB =
1√

|detg|

∑
ij

∂

∂xi

(
gij
√

|detg|
∂

∂xj

)
(6.19)

where gij is the metric tensor and gij is its inverse. Applying this general
expression of the Laplace-Beltrami operator for the cases (1) and (2), we obtain
the Laplace-Beltrami operator in the two cases as below

∆
(1)
LB =

1

r

∂

∂r
+
∂2

∂r2
+
1

r2
∂2

∂u2
−
2a

r2
∂2

∂u ∂v

+

(
1+

a2

r2

)
∂2

∂v2
case (1) (6.20)

∆
(2)
LB =

1

r

∂

∂r
+
∂2

∂r2
+

(
1

r2
+ b2

)
∂2

∂u2

−2b
∂2

∂u ∂v
+
∂2

∂v2
case (2). (6.21)

We use the setup (1) for small angles θ where they are gradually increased
from 0 to π/4. Similarly, we use the setup (2) for the angles θ close to π/2
where they are gradually reduced from π/2 to π/4. Afterwards, we combine
the results from both setups in order to have the entire range of intermediate
angles θ ∈ (0 : π/2).



78 curvature as a guiding field for patterns in thin block copolymer films

6.5 results

6.5.1 Free-Standing Membranes

Since in the free-standing membrane systems there is an up-down symmetry,
the middle surface of the thin film is considered as the surface of reference.
The middle surface as demonstrated in figure 6.5 is charaterized by a radius
of curvature Rm, and the curvature therefore is k = 1/Rm. This surface is
kept fixed when minimizing the surface energy per area. The strength of in-
teractions between the two surfaces (substrate and air) are symmetric to each
block copolymer, with ΛsAN = ΛaAN = −120 and ΛsBN = ΛaBN = −115 cor-
responding to γs,a

A N = −24γ̂ and γs,a
B N = −23γ̂. The free energy per area is

normalized on the middle surface and the structure of diblock copolymers is
adjusted with the distance from the center of curvature.

Figure 6.5: Schematic representation of the free-standing membranes. Rm is the ra-
dius of the middle surface of the membranes, which is the surface of refer-
ence.

We calculate the free energy per area as a function of the curvature radius
1/Rm of the middle surface of the free-standing membranes (see figure 6.5)
for the two cases where cylinders are aligned parallel C‖ or perpendicular C⊥
to the direction of the main curvature. In each orientation of the alignment,
the film thickness h and the wavelength of the characteristic pattern λ are
optimized to obtain the lowest free energy state. This process is applied for
every curvature. To be more specific, for each curvature, we minimize the
free energy per area with respect to both, thickness and lateral distance. For
example, figure 6.6 presents the free energy per area as a function of the film
thickness at three different curvatures k = 0.01, k = 0.05 and k = 0.1, for
the perpendicular configurations at the chemical potential µ = (2.5+ lnG)kBT .
We show here only three different values of curvature just to demonstrate the
optimization process. By fitting the free energy per area F/A to a polynomial,
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which is a third order in the thickness (f(x) = ax3 + bx2 + cx + d), we get
the minimum free energy and the optimal thickness of membranes for the
individual curvature. Afterwards, we vary the curvature 1/Rm of free-standing
membranes and calculate the free energy per area as a function of the center
curvature 1/Rm of the middle surface.

Figure 6.6: Free energy per area of the C⊥ configurations as a function of the film
thickness at different curvatures with the chemical potential µ = (2.5 +
lnG) kBT . In this figure we show three curvatures k = 0.01, k = 0.05 and
k = 0.1 as an example.

Figure 6.7 shows the resulting density profiles for the parallel (panel a) and
the perpendicular (panel b) configurations in a free-standing membrane sys-
tem with a relatively large curvature (Rm = 9Rg). In panel c), we also show
the density profile of the A-block through the center of cylinders in both, nor-
mal (un) and tangential (ut) directions. Note that the density profiles along
the tangential and normal directions with regard to the substrate surface only
present very small difference between the perpendicular and parallel config-
urations. It indicates that the curvature does neither affect the position of the
cylinder with regard to the plane of symmetry nor the segregation strength.
Here we find that the optimum inter-cylinder spacing is λ ∼ 3.6Rg for either
parallel or perpendicular configurations. It is slightly smaller than the bulk
value, λbulk ∼ 3.7Rg. The ratio, λ/λbulk ∼ 0.97, is in good agreement with the
SCFT calculations and experiments on flat substrates from a previous study
[80]. It was found that in thin films the unit cell is stretched perpendicular to
the plane of the films resulting in lateral distances smaller than those in the
bulk [80, 82].
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Figure 6.7: Density profiles of free-standing membranes obtained through the SCF
calculation. Panel a) shows a parallel configuration and panel b) shows
a perpendicular configuration. Here the value of the radius curvature is
Rm = 9Rg. un and ut are the unit vectors along the normal and tangential
directions with respect to the substrate. The bottom panel c) show the
density profile of the A-block through the center of the cylinders along the
normal (two solid lines) and tangential (two dashed lines) directions with
regard to the substrate.

Figure 6.8 presents the total density of the diblock copolymer membranes
(φA + φB) through the center of cylinders along the direction normal to the
substrate with the radius curvature Rm = 9Rg and the film thickness h = 3.5Rg.
It is noted that the total density is nearly constant within a distance of about
0.5Rg from the center of the membranes. However, the total density changes
only slightly when we go further from the center of the membranes because
the diblock copolymer melt studied here is compressible. Moreover, there is a
bump close to the surfaces, i.e., the total density increases dramatically. This is
because the surface interactions are quite strong, therefore more copolymers
are attracted to the surfaces.

We also analyze the optimal thickness of the free-standing membranes as
we know that the film thickness plays an important role in the result of mor-
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Figure 6.8: Total density profiles of free-standing membranes through the center of
cylinders along the normal direction with regard to the substrate of the
parallel and perpendicular configurations at the radius curvature Rm =

9Rg.

phologies [32, 80, 108, 109]. The value of the energetically favored thickness is
similar for both the parallel and perpendicular configurations. It is h ≈ 3.4 Rg
for the chemical potential µ = (2.5+ lnG)kBT while it slightly increases up to
h ≈ 3.5 Rg for the chemical potential µ = (2.55+ lnG)kBT . This increase of
the thickness is reasonable since the number of diblock copolymers increases
with the chemical potential. Note that while for the perpendicular configura-
tion C⊥ the thickness h slightly increases as the curvature increases, there is
a stronger dependence for the parallel configuration C||, where h decreases
when the curvature increases. Moreover, the thickness h decreases more rap-
idly at large curvatures than that at small curvatures. This means that the
perpendicular configuration is slightly stretched whereas the parallel config-
uration is slightly compressed compared to planar film, whose curvature van-
ishes k = 0. However, the change in the thickness with respect to the curvature
is small compared to the thickness of flat films. Therefore, none of these fea-
tures appear to be severely affected by the curvature within the wide range of
curvatures explored here.

The behavior of the free energy per area as a function of the curvature for the
perpendicular C⊥ and parallel C|| configurations is shown in figures 6.11 and
6.12 with the chemical potential µ = (2.5+ lnG)kBT and µ = (2.55+ lnG)kBT ,
respectively. The data are treated with the corresponding free energy correc-
tion due to the discretization error. In order to obtain these free energy pro-
files, we determine the energy minimum of the individual curvature. At zero
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Figure 6.9: The minimum-energy thickness as a function of the curvature for the C||

and C⊥ configurations with the chemical potential µ = (2.5+ lnG)kBT .

Figure 6.10: The minimum-energy thickness as a function of the curvature for the C||

and C⊥ configurations with the chemical potential µ = (2.55+ lnG)kBT .
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Figure 6.11: Free energy per area as a function of curvature for the parallel (C||) and
perpendicular (C⊥) configurations with the chemical potential µ = (2.5+
lnG)kBT .

Figure 6.12: Free energy per area as a function of curvature for the parallel (C||)
and perpendicular (C⊥) configurations with the chemical potential µ =

(2.55+ lnG)kBT .
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curvature, diblock copolymer membranes are confined in the planar substrates.
The free energy per area has lowest value at zero curvature. This implies
that the diblock copolymer chains here are in the most relaxed state. As the
curvature increases, the bending of the confined surfaces begins. It has an im-
pact on the free energy as we observe in figures 6.11 and 6.12. The free energy
per area increases as the curvature increases for either the perpendicular or
parallel configurations. It grows faster in the parallel configuration since the
free energy curve of the perpendicular configuration (the red curve) is flatter.
The increase of the free energy per area is a result of either chain-stretching in
the thicker films or chain-compression in the thinner films compared to the flat
confinement. It also suggests that the presence of geometric constraints leads
to the elastic deformation of the diblock copolymer patterns from the stable
structures in the flat geometry.

We compute the free energy per area profiles to study the effect of the
curvature of the substrate on the orientation of diblock copolymer free-standing
membranes. We observe that the free energy per area of the perpendicular
configuration is always lower than that of the parallel configuration at the
same curvature. It implies that the perpendicular orientation is energetically
favored. This effect is more pronounced at large curvature since the difference
of the free energy per area increases with the curvature. This implies that the
curvature acts as a guiding field for the orientation of diblock copolymer pat-
terns [81, 110]. Our results are in a good agreement with the experimental
results, where the membrane setup is close to ours [81]. They studied a mono-
layer of cylinder-forming of diblock copolymer PS-PEP. First, they thermally
annealed the free-standing membranes at T=363K, above the glass transition
temperature of PS block (Tg ∼ 330K) and below the order-disorder transition
temperature of the block copolymer (TODT = 417K). The annealing is kept
until a prescribed orientational correlation length of ∼ 200nm is obtained [40].
Then they cooled it down to room temperature. Afterwards, they used atomic
force microscopy (AFM) to view the structures of the free-standing membranes.
The result is shown in figure 6.13, where the height and cylinder locations are
measured simutaneously.

We can see the presence of defect structures which were formed during the
annealing procedure. They cause the disruption in the order of patterns. The
shape of membranes is a result of a competition between a strain field of de-
fects, the bending energy associated with the curvature of membranes, and the
membranes tension [40]. They also observed the coupling mechanism between
the orientation of patterns and the local mean curvature of membranes. It is
clearly seen that the wrinkles strongly tend to be oriented either parallel (C||)
or perpendicular (C⊥) with respect to the underlying cylinders, though the
different defects present in the membranes are competing to impose an out-of-
plane deformation in order to relax their elastic distortions. Such a coupling
mechanism is more clear from the histogram shown in figure 6.13. The data
suggest that diblock copolymer membranes have preferential local orientation
with respect to the director of the maximum principal curvature. It also sug-
gests that the bending energy is anisotropic and coupled to the liquid crystal-
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Figure 6.13: Panel a): AFM phase-height image of a free-standing thin film (image
size: 2.6 µm × 2.6 µm). Panel b): Local mean curvature for the mem-
branes shape. Here the vectors u1,2 indicate the directions of the prin-
cipal curvatures and N is the normal vector to the membrane surface
(Hmax = −Hmin = 3.84× 10−3nm−1). Panel c): Local orientation of the
director field α of the pattern with regard to the x-axis. Panel d): His-
togram showing the correlation between the underlying pattern and the
local orientation of membrane wrinkles. This figure is adapted from the
reference [81].

line order of the block copolymers. These results are in very good agreement
with the predictions from our SCFT calculations.

Note that the development of a preferred orientation (C⊥) indicates that the
anisotropic elastic parameter in equation 6.10, κ ′ > 0.

The free energy expression Fani in equation (6.10) not only describes the
anisotropy of the elastic energy in nematic membranes, but also the coupling
between the orientation of patterns and the curvature in the supported nematic
films. Here, we write the expression of Fani again for convenience:

Fani = −
κ ′

2
(k1 − k2)(2H− c ′0) cos(2θ) −

κ ′′

2
(H2 −K) cos(4θ)

In the case κ ′′ > 0, the second term prefers the parallel (θ = π/2) and per-
pendicular (θ = 0) orientations over intermediate orientations (0 < θ < π/2).
This provides an explanation for the experimental results of the free-standing
membranes shown in figure 6.13 and later for the results of thin films in figure
6.22 (see in next section 6.5.2) [81].

We also investigate the bending constant κ of the diblock copolymer free-
standing membranes. As noted earlier, the free energy per area can be de-
scribed by the Helfrich formula FHC = κb

2 (2H − c0)
2 + κgK. We apply this
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to study the free-standing membranes here. We have the Gaussian curvature
K = 0 due to the geometry of cylinderical surfaces and the c0 = 0 due to the
symmetry of the membranes. Therefore, the free energy per area grows almost
quadratically with the curvature:

F

A
=

κ

2R2m
(6.22)

We can calculate the bending stiffness parameters for the C|| and C⊥ configur-
ations using equation 6.22. By fitting the free energy per area to a quadratic
order of the mean curvature, we extract the bending constant for the paral-
lel (κ||) and perpendicular (κ⊥) configurations. For example, at the chemical
potential µ = (2.5+ lnG)kBT , the bending constants are

κ|| = (0.968± 0.002)GkBT
κ⊥ = (0.395± 0.002)GkBT

On the other hand, when the chemical potential µ = (2.55 + lnG)kBT , the
bending constants slightly decreases for the perpendicular configuration and
slightly increases for the parallel configuration. They are:

κ|| = (1.056± 0.002)GkBT
κ⊥ = (0.376± 0.002)GkBT

Comparing this with equation (6.10) of the anisotropic energy Fani and using
the geometric properties of cylindrical surfaces k1 = ±1/Rm, k2 = 0, we can
deduce the anisotropic elastic parameter κ ′ = (κ|| − κ⊥). Such a calculation
gives κ ′ = 0.573GkBT and κ ′ = 0.68GkBT for systems with the chemical poten-
tial µ = (2.5+ lnG)kBT and µ = (2.55+ lnG)kBT , respectively. We note that
here, the bending constants are given in the units of GkBT , though it is more
useful to present them in units of kBT . We use the experimental data from [81],
to calculate the dimensionless Ginzburg constant G = ρ0

N R
3
g. For this we use

the molecular weight of diblock copolymer PS-PEP, M = 17500 g/mol, and
assume an average copolymer density of 0.861 g/cm3 (at T = 363K). Therefore,
the value of the Ginzburg constant is

G =
ρ0
N
R3g =

0.861 g/cm3

17500 g
· (6.02 · 1023) · R3g (6.23)

where (6.02 · 1023) is the Avogadro constant, which denotes the number of
molecules per mol. Furthermore, the lateral spacing between the cylinders is
λ = 3.6Rg. Matching it with the corresponding experimental value 21 nm [80],
we can determine the value of the radius of gyration as Rg = 5.8 · 10−7cm.
Inserting this into the equation (6.23), we obtain the dimensionless Ginzburg
constant:

G =
0.861
17500

1

(5.8−1 · 107)3 · R3g
· (6.02 · 1023) · R3g

≈ 5.77 (6.24)
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Therefore, the anisotropic parameter is{
κ ′ = (κ|| − κ⊥) = 0.573GkBT ≈ 3.3 kBT , µ = (2.5+ lnG)kBT

κ ′ = (κ|| − κ⊥) = 0.680GkBT ≈ 4 kBT , µ = (2.55+ lnG)kBT

These values correspond to κ ′ ≈ 1.4 · 10−13 erg and κ ′ ≈ 1.6 · 10−13 erg at
room temperature, for the chemical potential µ = (2.5 + lnG)kBT and µ =

(2.55+ lnG)kBT , respectively. On the contrary, the total bending energy of the
membranes has been estimated to be in the order of κb ∼ 10−9 erg, which is
much higher due to the large contribution of the glassy PS block [40]. Hence,
the influence of κ ′ on the membrane shapes is presumably negligible.

Furthermore, as suggested by the second term (−κ ′′/2(H2 − K)cos(4θ)) in
equation (6.10) of the anisotropic energy Fani, both, C⊥ and C|| configurations,
represent the local free energy minima with respect to variations of the angle
θ between cylinders and the direction of the largest curvature. In order to ex-
amine the stability of the two extremum configurations C⊥ (θ = 0) and C||

(θ = π/2) in comparison to the intermediate configurations, we thus investig-
ate the free energy per area of the θ-configuration at a given curvature by the
SCFT, and then compare the free energies of the three orientations: C⊥, C|| and
θ-configuration. Specifically, we keep the radius of the curvature Rm = 50Rg
fixed (which corresponds to the curvature k1 = 0.02), and then vary the val-
ues of the angle θ in the range (0 : π/2). In order to calculate the free energy
per area of the tilted configuration, we use the two setups with the bound-
ary conditions as discussed in the section 6.4, one for the small values of θ
close to 0 and the other for the value of θ close to π/2. We combine the res-
ults obtained from the two setups to get the free energy as a function of the
entire range of the values of θ ∈ [0 : π/2]. The free energy is also minimized
with respect to the pattern distance and the thickness as it is done for the con-
figurations C⊥ and C||. Here we only do the calculations with the chemical
potential µ = (2.55+ lnG)kBT . Figure 6.14 presents the free energy per area as
a function of the tilt angle θ.

Note that the free energy per area of the titled orientation configuration first
increases as the tilt angle increases from θ = 0 (which corresponds to the per-
pendicular configuration), reaches the maximum and then decreases as the tilt
angle approaches to θ = π/2 (which corresponds to the parallel configuration).
Since the range of the free energy per area F/A here is small, we have to be
careful while determining the equilibrium state at a given tilt angle θ. We use
different initial configurations to ensure that we get the real stable state. This
result enforces for the bimodal explanation from the above formula of Fani and
also the histograms obtained from experiments, that the two configurations C⊥
and C|| are the local minima in the free energy landscape of the free-standing
membranes. It is also consistent with Napoli’s work [111], where they studied
the alignment of nematic shells on a cylindrical substrate. They also found that
the parallel and perpendicular orientations are two stable states with respect
to the intermediate orientations.
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Figure 6.14: Free energy per area as a function of the tilt angle θ between the cylinders
and the direction of the largest curvature at a given radius of curvature
Rm = 50 Rg. The chemical potential is µ = (2.55+ lnG)kBT .

6.5.2 Supported Thin Film

The situation is different when looking at copolymers ordering in the curved
supported films, where the curvatures are kept fixed and the energy differ-
ences of order kBT do have a significant influence on the selection of the pat-
tern orientations. When studying this case, the appropriate reference surface
is the substrate which is kept fixed when minimizing the surface free energy.
It is different from the free-standing membrane study since the up-down sym-
metry in membranes is no longer valid. We study block copolymers confined
in two geometries. The first one, whose surface is inward (concave), has negat-
ive mean curvature H < 0 as illustrated in figure 6.15a. The second one, whose
surface is outward (convex) has positive curvature H > 0 as presented in figure
6.15b. In this approach, the structure of thin films is adjusted with the distance
from the substrates. In the SCF calculations, the free energy is thus minimized
with respect to the pattern dimensions and the film thickness for the fixed sub-
strate area and the curvature. Thereafter, the SCFT data are corrected for the
discretization error.

Furthermore, surface interaction energies may be the same or different at the
substrate and the air surface. As mentioned above, we consider both situations
where the surface interactions are either symmetric to each block as for the
free-standing membrane study or the surface interactions are asymmetric. For
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Figure 6.15: Scheme of the curved supported thin film: panel a) we call inward or con-
cave film with a negative mean cuvature H < 0, panel b) we call outward
or convex film with a positive mean curvature H > 0.

the symmetric surface interaction, we use the same surface interactions and
the chemical potential µ = (2.5+ lnG)kBT as in the free-standing membranes.
For asymmetric surface interactions, we study two cases: (I)- The affinity of
the substrate to the A-block is stronger than the free surface, and (II)- The
affinity of the free surface to the A-block is stronger than the substrate. The
chemical potential is slightly increased up to µ = (2.55+ lnG)kBT , otherwise
the supported thin films with positive curvature are not stable or metastable.

6.5.2.1 Supported thin films with symmetric surfaces

As noted above, we use the same parameters like for the free-standing mem-
branes. The strength of interaction between the substrate, free surface and each
block are ΛaAN = ΛsAN = −120, and ΛaBN = ΛsBN = −115. These correspond
to γs,a

A N = −24γ̂ and γs,a
B N = −23γ̂. The chemical potential of the thin films

is set to µ = (2.5+ lnG)kBT . We perform the SCFT calculations to obtain the
minimum free energy of the two extremum orientation configurations, C⊥ and
C|| similarly as we did for the free-standing membranes. To compare the free
energy of the two orientation configurations, we calculate the difference of the
free energy per area between the two configurations at the same curvature as
below:

∆F

A
=
F|| − F⊥
A

(6.25)

Figure 6.16 presents the difference of free energy per area of the two con-
figurations as a function of the curvature. Note that the free energy difference
∆F/A is always positive in both the outward and the inward thin films and it
increases as the curvature increases. Nevertheless, the free energy difference
is small. It is in the order of 10−3 GkBT corresponding to (10−3 : 10−2) kBT .
This implies that the perpendicular configuration has lower free energy than
the parallel one. In other words, the C⊥ configuration is more stable than the
C|| one. This result is similar to that observed in the free-standing membrane
study. This suggests that the curvature of the substrates imposes the local ori-
entation of patterns.
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Figure 6.16: The difference of the free energy per area of the parallel and perpendic-
ular configurations ∆F/A = (F|| − F⊥)/A as a function of the curvature,
in the thin film with symmetric surfaces to each block A and B. The in-
put parameters of the system are: Λs,a

A N = −120, Λs,a
B N = −115, and

µ = (2.5+ lnG)kBT .

We also analyze the behavior of the film thickness which is an important
and interesting factor in block copolymer morphologies. Figure 6.17 shows
the minimum-energy thickness of both, the perpendicular and parallel config-
urations of the thin films as a function of substrate curvature (when there is a
symmetric surface interaction for each block). For the outward thin films with
positive curvature (H > 0), the optimal thickness increases with the curvature
for either configurations C⊥ or C||, implying thickening of the films. In con-
trast, for the inward thin films with negative curvature (H < 0), the optimal
thickness decreases as the curvature increases irrespective of the orientation of
the patterns. Besides, the values of the thickness of the parallel and the perpen-
dicular configurations are almost the same at small curvature. However, they
are different at higher curvatures, in which the perpendicular configuration
film is slightly thicker than the parallel configuration film. These results are
consistent with the behavior of the film thickness obtained in the free-standing
membranes.

6.5.2.2 Supported thin films with asymmetric surfaces

For the first case (I) of surface interaction parameters in the curved supported
thin films, where the free surface attracts the A-block stronger than the sub-
strate, we use the symmetric conditions for the B-block at both surfaces with
parameters γaBN = γsBN = −30. These parameters correspond to γa,s

B N = −6γ̂.
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Figure 6.17: The optimum thickness of the parallel and perpendicular configurations
in supported thin films with symmetric surfaces as a function of the
curvature. The interaction parameters of the system are: Λs,a

A N = −120,
Λs,a
B N = −115, and µ = (2.5+ lnG)kBT .

The surface interactions for the A-block are asymmetric. They are chosen
to be γaAN = −100 and γsAN = −50, corresponding to γaAN = −20γ̂ and
γsAN = −10γ̂, at the free (air) surface and the substrate, respectively. We per-
form SCFT simulations to obtain the minimum free energy of the configura-
tions in the both directions, parallel and perpendicular to the substrate of the
thin films at different curvatures (similar to the previous studies). In order to
understand the stability of the two configurations, we also compare their free
energies.

From figure 6.18, it is observed that the free energy difference ∆F/A =

(F|| − F⊥)/A is always positive for the thin films with negative curvature and it
increases with the curvature. However, this behavior of ∆F/A is not the same
for the thin films with positive mean curvature H > 0. In such systems, ∆F/A
is negative at small curvatures (H . 0.033) and becomes positive at higher
curvatures. Nonetheless, the difference of the free energy ∆F/A is small, and
is in the order of 10−3 GkBT (equivalent to ∼ (10−3 : 10−2) kBT ). As a result,
we have to be careful when identifying the stable morphologies of the thin
films. From the data we note that the perpendicular phase is not always stable,
but at small positive curvatures there exists a small regime where the parallel
configuration C|| has lower free energy than the perpendicular configuration
C⊥. This regime is emphasized by cyan-shade in figure 6.18. Additionally, for
the thin films with H < 0 the free energy difference is more sensitive to the
curvature as it grows faster with the curvature.
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Figure 6.18: The difference of the free energy per area of the parallel C|| and perpen-
dicular C⊥ orientation configurations ∆F/A = (F|| − F⊥)/A for diblock
copolymers in the curved supported thin films, where the surface interac-
tion is the same for the B-block ΛsBN = ΛaBN = −30 but asymmetric for
the A-block ΛsAN = −50, ΛaAN = −100. The chemical potential is fixed at
µ = (2.55+ lnG)kBT .

We also investigate the influence of the surface preference to the majority
block (A) on the phase behavior of the supported thin films. We first make the
asymmetry between the two surfaces to the A-block larger by increasing the af-
finity of the free surface to the A-block from ΛaAN = −100 up to ΛaAN = −120.
It corresponds to ΛaAN = −24γ̂. The other parameters are chosen as before, the
symmetric conditions for the B-block Λs,a

B N = −30 and the chemical potential
µ = (2.55+ lnG)kBT . We also carefully determine the equilibrium state of the
thin films in both the orientations C⊥ and C||. Afterwards, we compare their
free energies by calculating the difference of free energy ∆F/A between the two
configurations. The data are presented in figure 6.19.

The behavior of the free energy difference ∆F/A as a function of the curvature
is similar to that reported in the figure 6.18. It is always positive for the neg-
ative curvature films and only at large curvatures for the positive curvature
films. There is a small positive curvature regime (H . 0.033) highlighted by
cyan-shade, in which ∆F/A < 0 and it is more remarkably negative than that
presented in the figure 6.18. At large curvatures, the difference of the free en-
ergy ∆F/A raises more steeply at negative curvature than at positive curvature.

After that, we reduce the degree of asymmetry between the free surface and
the substrate to the A-block as well. We do that by increasing the strength of
interaction at the substrate up to ΛsAN = −70, while keeping the other para-
meters the same, i.e., Λs,a

B N = −30 and µ = (2.55 + lnG)kBT . A procedure,
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Figure 6.19: The difference of the free energy per area of the parallel C|| and perpen-
dicular C⊥ orientation configurations ∆F/A = (F|| − F⊥)/A for diblock
copolymers in the curved supported thin films, where the surface interac-
tion is the same for the B-block ΛsBN = ΛaBN = −30 but asymmetric for
the A-block ΛsAN = −50, ΛaAN = −120. The chemical potential is fixed at
µ = (2.55+ lnG)kBT .

which is very similar to that presented in the previous sections, is employed
to carry out SCFT calculations. We show the behavior of the difference of the
free energy ∆F/A in figure 6.20. The results obtained here are very similar to
that of the above mentioned asymmetric thin film systems. The perpendicular
configuration is found to be stable at almost all the curvatures. This is because
∆F/A is found to be greater than zero for the entire regime except for the out-
ward thin films with H . 0.018 (the region is emphasized by cyan-color). We
also note that, when compared to the above asymmetric systems, the regime
in which the parallel configuration is favored, becomes narrower, and the free
energy difference ∆F/A is found to be less negative. If we continue to reduce
the asymmetry between the two surfaces until they are symmetric, we will get
back to the results obtained in section 6.5.2.1, in which the perpendicular con-
figuration was always energetically preferred over the parallel configuration.

For the second case (II) in the supported thin films with asymmetric sur-
face interactions, where the substrate attracts the A-block stronger than the
air surface, we choose the parameters which are still symmetric for the B-
block, ΛsBN = ΛaBN = −30, corresponding to Λa,s

B N = −6γ̂. Whereas these
interactions are asymmetric for the A-block ΛsAN = −120, ΛaAN = −50, corres-
ponding to ΛsAN = −24γ̂ and ΛaAN = −10γ̂. The chemical potential is fixed
at the same value as in the first case (I), i.e., µ = (2.55 + lnG)kBT . We first
find the minimum free energy of the two configurations C⊥ and C||. Then
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Figure 6.20: The difference of the free energy per area of the parallel C|| and perpen-
dicular C⊥ orientation configurations ∆F/A = (F|| − F⊥)/A for diblock
copolymers in the curved supported thin films, where the surface interac-
tion is the same for the B-block ΛsBN = ΛaBN = −30 but asymmetric for
the A-block ΛsAN = −70, ΛaAN = −100. The chemical potential is kept at
µ = (2.55+ lnG)kBT .

we calculate the difference of free energy between them as a function of the
mean curvature to analyze their relative stability to each other. The results are
presented in figure 6.21.

Note that the free energy difference ∆F/A is always positive for the thin
films with positive mean curvature H > 0 and it grows with the curvature.
There is an alteration for the thin films with negative mean curvature H < 0:
∆F/A is negative at small curvatures (H . 0.22), then becomes positive at
higher curvatures and increases as curvature increases. The difference of free
energy here is also small as in the first case (I), it is in the order of 10−3 GkBT .
This behavior of ∆F/A suggests that the perpendicular configuration is always
more stable for positive mean curvature films and only at high curvatures for
the negative mean curvature films. However, at the small negative curvature
regime, which is emphasized by a cyan-shade in figure 6.21, the parallel con-
figuration is more stable. The results are similar to those for the choice of
interaction parameters in the first case (I).

In both cases (I) and (II) of asymmetry in the surface interaction, the perpen-
dicular configuration is more favorable at large curvatures (either positive or
negative curvatures). However, at small curvatures, there exists a small regime
with positive or negative mean curvature depending on which surface (free
surface or substrate) has a stronger affinity to the A-block, where parallel con-
figurations have lower free energy. These results are compatible with equation
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Figure 6.21: The difference of the free energy per area of the parallel C|| and perpen-
dicular C⊥ orientation configurations ∆F/A = (F|| − F⊥)/A for diblock
copolymers in the curved supported thin films, where the surface inter-
action is symmetric for the B-block ΛsBN = ΛaBN = −30 but asymmetric
for the A-block ΛsAN = −120, ΛaAN = −50. The chemical potential of the
thin films is µ = (2.55+ lnG)kBT .

(6.10) (for κ ′ > 0 and non-vanishing c ′0 in the thin film system) and are also in
good agreement with the experimental observations [81]. Indeed, figure 6.22b
and figure 6.23 (which will be discussed more detail later) suggest that the loc-
ally preferred orientation switches or reorients from the perpendicular to the
parallel direction in a region around the inflection point of the surface profile
(green shaded areas in figure 6.22b). As a consequence, this switch of the pref-
erential configuration induces defects in that region. Hence curvature can be
used not only to orient patterns, but also combining with surface preference
to generate defects at specific regions in space.

Now, we compare our SCFT results with the experimental results of the
curved supported thin films conducted by Professor Vega’s group. The systems
in the experimental studies are very close to our SCFT studies.

As discussed above, in the experiment of diblock copolymer membranes,
wrinkles are preferentially observed in the directions either parallel or perpen-
dicular to the underlying cylinders. It is also noted that overall the perpendic-
ular orientation is more favorable. Vega et al. obtained similar results related
to the correlation between the orientation of the patterns and the geometry of
the confinement for the thin films as well. The results are displayed in figures
6.22 and 6.23.

In such an experiment, they studied the diblock copolymer PS-PEP thin
films. The films were annealed during different times at the temperature T=373K.
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Figure 6.22: Panels a) and b) are 3D AFM phase-height images of the block copoly-
mer thin film on a curved substrate after annealing at T=373K. They
show the pattern configuration after different times of thermal annealing,
90 min and 3.5 h, respectively. Height scale: 80 nm from crest to valley,
H2max = 6.25µm−2). The presence of a dislocation and +1/2 disclinations
has been emphasized with a rectangle and circles, respectively. Bottom
panels: c) Local orientation of the smectic pattern (color map indicated at
the bottom). d) Histograms showing the distribution of local orientations
at the two different annealing times [81].

To image the configurations of the thin films, they employed AFM. During an-
nealing, the thin films order via the annihilation of disclination and dislocation
defects. In figure 6.22a (short time of annealing, 90 min), the thin films have a
high density of defects. Additionally, the thin films located at the region with
high curvature corresponding to the crest of the substrate become unstable
and dewet. As the annealing time increases up to 3.5 h, there is a markedly
increasing translational order in the systems, as shown in figure 6.22b. In addi-
tion, the histograms in figure 6.22d show that the distribution of local cylinder
orientations θ at early annealing time (30 min) is bimodal, with two charac-
teristic peaks separated by ∼ π/2. These peaks correspond to two modes, the
perpendicular and parallel configurations. During the first stage of coarsen-
ing, the parallel and perpendicular configurations compete with each other.
After longer annealing times (3.5 h), the systems develop a preferential orient-
ation through the annihilation of topological defects. In this, the orientation C⊥
dominates. It can be clearly seen from the histogram, which becomes sharply
peaked at the perpendicular orientation θ = 0. This obseration confirms that
the anisotropic elastic parameter κ ′ > 0 as we discussed above in our SCFT
results. Note that the perpendicular orientation C⊥ of PS cylinders provides
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further evidence to the observation that the curvature of substrates acts as an
effective guiding field for the pattern orientation.

Figure 6.23: 3D AFM phase-height images of the block copolymer thin film lying on a
curved substrate after 3.5 h of thermal annealing at T=373K. (image size:
2.5 µm x 1.0 µm). This figure is adapted from reference [81].

Furthermore, Vega et al. also observed that at the small curvature region
(emphasized in green in figure 6.22b) and the region at the very left side of
the thin films in figure 6.23, the diblock copolymer patterns switch the orienta-
tion from perpendicular to parallel. We can see that the parallel configuration
is more common in that region. In addition, there are topological defects in
that region as well. For example, a +1/2 disclination is emphasized by a white
circle in figure6.22b. These experimental results support our SCFT results dis-
cussed above, in which we found that there is a narrow regime corresponding
to the small curvature region where the parallel orientation is found to be
more stable. This suggests that the curvature not only guides the alignment of
texture but also causes the defects in a certain region.

There are other experimental and theoretical studies where it was investig-
ated how the topography of the substrate affects the orientation of patterns,
such as, corrugated substrates with sinusoidal [41, 112–114] and pre-patterned
with square-wave in the substrate [29]. For example, Man et al. [113] employed
SCFT to investigate how the substrate corrugation induces the in-plane align-
ment of block copolymers in a 3-dimensional system. However, they studied
the formation of the lamellar phase, not the cylinder-forming phase as in this
thesis. They found that the topography and preference toward to the blocks
of the substrates together generate a synergy. This synergy dictates the pref-
erential perpendicular lamellar phase. They compared the free energy of the
two configurations L⊥ and L||. It was found that the free energy difference
∆F = F|| − F⊥ > 0 is positive and increases as the corrugation amplitude in-
creases (corresponding to the curvature increasing in our study).
Another example is the experimental work of Vega and co-workers [41]. They
studied the dynamics of the ordering of cylinder-forming diblock copolymer
PS-PEP deposited on a curved substrate. They proposed a coupling mechan-
ism between the mean curvature of the substrate and the alignment of the dib-
lock copolymers. They found that the texture can couple with the geometry of
the substrate to break the azimuthal symmetry. They also suggested that the
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parallel and the perpendicular orientations may involve different out-of-plane
bending constants, leading to different free energies. However, the curvature
does not influence the lattice constant of either the parallel or perpendicular
configurations. These results are consistent with the results we obtain, in which
the lateral distance is the same in either orientations. They also observed that
the topological defects were annihilated and the diblock copolymers become
perpendicularly oriented with regard to the substrate after thermally anneal-
ing long enough, and this orientation is a stable state.

One important issue to be considered from a technological perspective is
whether the dewetting can be prevented while the geometric constraint can
keep sufficient strength as a guiding field to form ordered patterns. This mo-
tivated us to examine the stability of the thin films by analyzing the behavior
of the free energy per area when varying the curvature.

Figure 6.24: Free energy per area as a function of the curvature for the perpendicular
configuration C⊥ in the thin films, where the free surface attracts the A-
block stronger than the substrate. The interaction parameters are ΛsAN =

−50, ΛaAN = −100 and Λs,a
B N = −30.

Figures 6.24 and 6.25 show the behavior of the free energy as a function of
the mean curvature for the perpendicular configurations C⊥ in the two cases
of asymmetric surfaces. For the outward films, for which the mean curvature
H > 0, the free energy increases as the curvature increases. This indicates
that the thin films are likely to become unstable and dewet from the substrate.
It is also in good agreement with the experimental data shown in the figure
6.22, where at the crest of the substrate the thin films dewet. Conversely, for
the inward films, for which the mean curvature is negative H < 0, the free
energy decreases as the curvature increases. It suggests that the films remain
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Figure 6.25: Free energy per area as a function of the curvature for the perpendic-
ular configuration C⊥ in the thin films, where the substrate attracts the
A-block stronger than the free surface. The interaction parameters are
ΛsAN = −120, ΛaAN = −50 and Λs,a

B N = −30.

stable. In the experiments (figure 6.22), it can be observed that the thin films
dewet at the region with the highest curvature, where HmaxRg ∼ 0.015 [81].
These results are in excellent agreement with our SCFT calculations discussed
above. Furthermore, in the recent experiments on curved substrates, Park and
Tsarkova [114] studied PS-b-PB diblock copolymer films confined in a corrug-
ated substrate. They investigated the structure development of the thin films.
They also reported that the thin films dewet at the crest region corresponding
to the films with positive mean curvature H > 0 in our study.

Another important feature of diblock copolymers in the curved supported
thin films is the film thickness. We present the behavior of the thickness as a
function of the curvature for the perpendicular configuration in the films in fig-
ure 6.26 where the free surface attracts the A-block stronger that the substrate,
and in figure 6.27 where the substrate attracts the A-block stronger than the
free surface. It is observed that the films become thinner as the curvature in-
creases for the outward films, whose the mean curvature is positive H > 0. On
the contrary, the films thicken as the curvature increases for the inward films,
whose mean curvature is negative H < 0. Our results are in a good agreement
with experimental results of Park and Tsarkova [114]. They also found that the
films thicken for H < 0 due to the flow of the diblock copolymer melt into the
region with negative curvature during thermally annealing, where they called
the grooves. This behavior does not depend on the initial thickness as well.
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Figure 6.26: The minimum-energy thickness as a function of the curvature for the
perpendicular configuration C⊥ in the thin films, where the free surface
attracts the A-block stronger than the substrate. The interaction paramet-
ers are ΛsAN = −50, ΛaAN = −100 and Λs,a

B N = −30.

6.6 conclusions

In conclusion, we have shown that the confined geometry plays a fundamental
role in the structure formation of diblock copolymer films through symmetry
considerations, SCFT calculations and comparing with experimental results
from our collaboration group. In particular, the curvature can be employed
as a guiding field to produce well-ordered patterns. The SCFT calculations
provide a rough estimate of the equilibrium configuration and the bending
constant for curved systems. We find that the perpendicular configuration C⊥
is always energetically favorable over the parallel configuration C|| in the free-
standing membranes. This is due to the anisotropic elasticity of the diblock
copolymer phase on curved substrate. More interestingly, the behavior is dif-
ferent in the curved supported thin films. In the latter systems, the perpen-
dicular configuration is still more stable at high curvatures; however, at the
small curvature regime the parallel configuration becomes more stable. This
switch of preferred configuration causes the appearence of topological defects
in that region. We also use SCFT to investigate the free energy of the tilted
configurations in which the angle between the director of the cylinder and
the direction of the largest curvature is θ ∈ (0 : π/2). This gives us the evid-
ence that both configurations, C⊥ and C||, represent local free energy minima
with respect to the θ-configuration as described in the formula of Fani. Fur-
thermore, our study predicts dewetting in the regions with high local positive
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Figure 6.27: The minimum-energy thickness as a function of the curvature for the per-
pendicular configuration C⊥ in the thin films, where the substrate attracts
the A-block stronger than the free surface. The interaction parameters are
ΛsAN = −120, ΛaAN = −50 and Λs,a

B N = −30.

mean curvature H > 0. From a technological perspective, our results suggest
up a novel strategy for directing the self-assembly of thin layer of block co-
polymers with a desired structure through an appropriate control over the
geometric properties and surface interactions. It should be possible to prevent
dewetting while keeping a geometric field with sufficient strength to guide the
order of the patterns.





7
C O N C L U S I O N A N D P E R S P E C T I V E

In this thesis, we have applied self-consistent field theory (SCFT) to differ-
ent thin film systems to explore the self-assembly of diblock copolymers. In
chapter 4, we analyzed the stability of the multiple layers of cylinder-forming
of diblock copolymers confined between two flat surfaces. The SCFT was em-
ployed to determine the optimum thickness of the films. The calculations were
performed in the grand canonical essemble to let the number of copolymers
adjust to the film thickness. We minimized the free energy with respect to
the film thickness and the characteristic wave length. Thus we determined the
optimum thickness and the lateral spacing distance of each number of layers
of cylinders in thin films. The results indicate the important role of the film
thickness in the morphologies of diblock copolymers. The global equilibrium
state of the thin films is the one where the monolayer of cylinders coexists with
the islands of thick multilayer films. Furthermore, we analyzed the coupling
mechanism between the bottom and the upper layers as well. The addition
of the second layer slightly changed the structure of the first layer, and this
interaction provides a mechanism on how the aligned first layer helps to order
the second layer. This mechanism offers a possible way to propagate the or-
der in thick block copolymer films and to control the orientation of the nano-
structures [80]. Indeed, our experimental partners (Vega et al.) find that the
coupling mechanism drives the complete annihilation of topological defects,
disclinations, and improve global orientation of thin films during the anneal-
ing process. The SCFT results are in excellent agreement with the experimental
data obtained by Professor Vega’s group [80].

Furthermore, we also studied the orientational phase transition from the
C|| monolayer of parallel cylinder to the C⊥ perpendicular cylinder configur-
ations in chapter 5. Such a phase transition is controlled by the surface field
and the mismatch between the natural size of monolayer of cylinders and the
film thickness. We obtain this phase transition, C|| → C⊥, as the thickness
reduces below the periodicity of monolayer in the thin films with symmetric
surface interactions. The thin films become unstable when the films are very
thin. This is a result of increase in the free energy per area with decrease in
the film thickness. The SCFT results are qualitatively consistent but not exactly
quantitative with the experimental data obtained by Abate et al.[78]. In addi-
tion to the symmetric surfaces, we also studied the case in which the strength
of preferential attraction of each surface to block copolymers are asymmetric.
Depending on the surface interactions and the thin film thickness, the lamel-
lar phase (L) and perforated lamellar phase (PL) can be found at equilibrium.
These phases appear when the film thickness is about half the natural size of
the monolayer of cylinders. The globally stable state of the films can change
from the C|| to PL or L, depending on the degree of asymmetry between the
two surfaces. Our results indicate that both the film thickness and the surface
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fields can either orient the structures or stabilize the deviation structure from
the bulk, such as PL and L.

Finally in chapter 6, we extended the method to the block copolymers con-
fined between the two curved substrates (the two coaxial cylindrical surfaces).
We consider two types of model systems: the free-standing block copolymer
membranes and the block copolymer thin films deposited onto curved sup-
ported substrates. First, we derived a general expression for the elastic energy
of anisotropic nematic membranes. Then we employed SCFT to examine the
elastic properties of the free-standing membranes and curved supported thin
films. We fitted the SCFT free energy up to a quadratic order on the mean
curvature to extract the bending constant of the free-standing membranes.
Thus we can establish a relationship between the morphologies of block co-
polymer membranes, the thin film and its shape, i.e., its local cuvature. We find
that there is a strong coupling between the local orientation of the block copoly-
mer patterns and the geometry of substrates. Specifically, the C⊥ perpendicu-
lar configuration is always stable in the free-standing membranes. However in
the curved supported thin films, the C⊥ is only stable at the high curvatures
and the C|| is stable at the small curvatures. As a result, there is a transition
from the perpendicular to parallel orientation in supported thin films at small
curvatures that is absent in the free-standing membranes. The results indicate
that the curvature acts as a guiding field for the patterns in thin films. There-
fore, the use of geometry of patterned substrates is a proposed solution to align
block copolymer patterns and as a consequence to enforce the long range order
[81]. Moreover, we also found that the thin films with positive mean curvature
likely become unstable and dewet from the substrate at high curvatures, while
the films with negative mean curvature thicken with the curvature. These res-
ults are in good agreement with experiments [81, 114].

This thesis focuses on the diblock copolymers. We can apply our simulations
to predict the phase behaviour of ABA triblock copolymers or other architec-
tures, which remain largely unexplored. These copolymers have potential ap-
plications because of their architecture. For example, the triblock copolymers
are found to provide improved mechanical properties relative to diblock co-
polymers. It is due to the triblock architecture, which allows the chain bridging
between discrete A-block domains [115, 116].

All the SCF calculations in this thesis were carried out in Euclidean geo-
metry with periodic boundary conditions. We can extend the method to non-
Euclidean geometries. Such geometries present a considerable challenge, such
as how to deal with an unit cell and boundary conditions. For example, if we
have a hexagonal array of cylinders perpendicularly oriented with regard to
the spherical surface, we need use some non-trivial periodic boundaries. Ob-
viously, we can solve the problem on the whole sphere [117]; however, it is
expensive. The study in non-Euclidean geometry is interesting and provides
us a new strategy using the geometry to produce well-ordered nanostructures
of the patterns.

Furthermore, the kinetics of phase evolution is essential for understanding
the pattern formation processes in structured fluid copolymers. For example,
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it provides a description of the phase transitions, the development and anni-
hilation of defects during the phase transition between the different phases.
We only investigated the static phase behavior of diblock copolymers in this
thesis, we can simulate the dynamical evolution of the diblock copolymer films
by means of Dynamic Density Functional Theory, or dynamical self-consistent
field theory (DSCFT) methods [118].



Part III

A P P E N D I X
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S H I F T E D F R E E E N E R G Y

We present here the shift of free energy ∆F as a function of the discretization
∆z for different strengths of surface interaction in the curved supported thin
films, which were studied in chapter 6.

Figure A.1: Shifted energy ∆F as a function of discretization ∆z for different film
thicknesses h with surface interactions ΛAN = −125, ΛBN = −120 at one
surface and ΛAN = −115, ΛBN = −110 at the other surface. The chemical
potential µ = (2.5+ lnG)kBT . The solid line corresponds to the fit function
∆F(∆z) = −12.68 ∆z− 269 ∆z2 − 2788 ∆z3.

III



IV shifted free energy

Figure A.2: Shifted energy ∆F as a function of discretization ∆z for different film
thicknesses h with surface interactions ΛAN = −120, ΛBN = −115 at one
surface and ΛAN = −100, ΛBN = −95 at the other surface. The chemical
potential µ = (2.5+ lnG)kBT . The solid line corresponds to the fit function
∆F(∆z) = −11.41 ∆z− 395 ∆z2 + 7304 ∆z3.
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Figure A.3: Shifted energy ∆F as a function of discretization ∆z for different film
thicknesses h with surface interactions ΛAN = −120, ΛBN = −115 at one
surface and ΛAN = −90, ΛBN = −85 at the other surface. The chemical
potential µ = (2.5+ lnG)kBT . The solid line corresponds to the fit function
∆F(∆z) = −11.5 ∆z− 358 ∆z2 + 6740 ∆z3.
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Figure A.4: Shifted energy ∆F as a function of discretization ∆z for different film
thicknesses h with surface interactions ΛAN = −120, ΛBN = −115 at one
surface and ΛAN = −80, ΛBN = −75 at the other surface. The chemical
potential µ = (2.5+ lnG)kBT . The solid line corresponds to the fit function
∆F(∆z) = −11.57 ∆z− 330 ∆z2 + 6255 ∆z3.



B
E F F E C T I V E S E L F - C O N S I S T E N T F I E L D T H E O RY F O R T H I N
F I L M S

We develop an effective self-consistent field theory for two dimensional thin
films. By applying some approximations, we separate the two dimensional
problem into two one dimensional problems.

b.1 thin film in two dimensions (x ,y)

We consider AB diblock copolymers in thin films as described in chapter 2.
The main task is finding the solutions of the modified diffusion equation:

∂q(x,y, s)
∂s

= ∇2q(x,y, s) −ωα(x,y)q(x,y, s) (B.1)

Here, α can be the A or B block. In order to separate the variables, x and y, in
the propagators, we make an ansatz:

q(x,y, s) = qx(x, s) qy(y, s) (B.2)

q†(x,y, s) = q†x(x, s) q†y(y, s) (B.3)

and use the approximation that the system is homogeneous in x−direction
and the total density φ(x,y) can be separated

m(x,y) = φA(x,y) −φB(x,y) ≈ m̄(y) (B.4)

φ(x,y) = φA(x,y) +φB(x,y) ≈ 1+ φ̄1(x) + φ̄2(y) (B.5)

with

m̄(y) =
1

Lx

∫
dxm(x,y) (B.6)

φ̄1(x) =
1

Ly

∫
dy (−1+φ(x,y))

= −1+
V

LyQ

∫
dy

∫1
0

ds q(x,y, s) q†(x,y, 1− s)

= −1+
Lx

Qx

∫1
0

ds qx(x, s) q†x(x, 1− s) (B.7)

φ̄2(y) =
1

Lx

∫
dx (−1+φ(x,y))

= −1+
V

LxQ

∫
dx

∫1
0

ds q(x,y, s) q†(x,y, 1− s)

= −1+
Ly

Qy

∫1
0

ds qy(y, s) q†y(y, 1− s) (B.8)

VII
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Here, we assume that Qx and Qy are independent of s

Qx =

∫
dx qx(x, s) q†x(x, 1− s) (B.9)

Qy =

∫
dy qy(y, s) q†y(y, 1− s) (B.10)

Inserting equations (B.2) and (B.3) into the modified diffusion equations
(equations 2.27), we get separated diffusion equations for x-, and y-direction.
For the x-direction, we get:

∂qx(x, s)
∂s

=
∂2qx(x, s)
∂x2

−ωα(x, s) qx(x, s) (B.11)

∂q
†
x(x, 1− s)
∂s

=
∂2q

†
x(x, 1− s)
∂x2

−ωα(x, s)q†x(x, 1− s) (B.12)

ωα(x, s) = Nκ φ̄1(x) (B.13)

For the y-direction, we get:

∂qy(y, s)
∂s

=
∂2qy(y, s)
∂y2

−ωα(y, s) qy(y, s) (B.14)

∂q
†
y(y, 1− s)
∂s

=
∂2q

†
y(y, 1− s)
∂y2

−ω†α(y, s) q†y(y, 1− s) (B.15)

ωα(y, s) =

{
ωA(y, s) = −Nχ

2 m̄(y) +Nκ φ̄2(y) for 0 < s < f

ωB(y, s) = Nχ
2 m̄(y) +Nκ φ̄2(y) for f < s < 1

(B.16)

We solve the equations (B.11) and (B.12) in x-direction numerically and by
the ground state dominance (GSD) approximation as well.
The propagator can be written as

qx(x, s) =
∞∑
k=0

qk Xk(x) e
−λks (B.17)

where qk =
∫
dx Xk(x), (k = 0, 1, 2, · · · ). The functions Xk(x) are orthogonal,

and satisfy the following equation∫
dx Xj(x)Xk(x) = δjk (B.18)

With the ground state approximation, the propagators become

qx(x, s) ≈ q0 X0(x) e
−λ0s (B.19)

q†x(x, 1− s) ≈ q0 X0(x) e
−λ0(1−s) (B.20)

λ0 is the lowest energy of the system. We consider both canonical and grand
canonical ensembles.
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b.1.1 Canonical ensemble

Inserting the ground state approximation into the expression of φ̄1(x) in equa-
tion B.7, gives us:

φ̄1(x) = −1+
Lx

Qx

∫1
0

ds qx(x, s) q†x(x, 1− s)

= −1+
Lx∫Lx

0 dx qx(x, s) q†x(x, 1− s)

∫1
0

ds qx(x, s) q†x(x, 1− s)

= −1+ a X20(x) (B.21)

where a−1 = 1
Lx

∫Lx
0 dx X20(x) (a > 1). Then by substituting this result into

equation B.13, we obtain the field as:

ωα(x, s) = Nκ(−1+ a X20(x)) (B.22)

Finally, the modified diffusion equation takes the form:

X ′′0 (x) −Nκ(−1+ a X
2
0(x))X0(x) = −λ0 X0(x) (B.23)

We can choose λ0 = 0, then eq. (B.23) becomes:

X ′′0 (x) −NκaX
3
0(x) +NκX0(x) = 0 (B.24)

We define:
U(X0) = −

Nκa

4
X40 +

Nκ

2
X20 (B.25)

Then:
1

2
X
′2
0 (x) +U(X0) = C (B.26)

where C is a constant and X0(x) satisfies the following boundary conditions:

X
′
0(Lx/2) = 0

X0(Lx/2) = Xmax0 , Xmax0 ∈ [0,
√
a−1]

X0(0) = X0(Lx) = 0 (B.27)

Using these conditions, we find the expression for constant C in equation B.26

U(Xmax0 ) = −
Nκa

4
(Xmax0 )4 +

Nκ

2
(Xmax0 )2 (B.28)

=⇒ C = U(Xmax0 ) = −
Nκa

4
(Xmax0 )4 +

Nκ

2
(Xmax0 )2 (B.29)

We solve equation (B.26) by Mathematica. Here, we choose a = 1 without loss
of generality.
The following figures show the comparision of the results obtained from the
numerical and ground state dominance methods. They match quite well.
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A

B

Figure B.1: Canonical ensemble with N = 32. (φ̄1(x) + 1) as a function of X-the thin
film length in x−direction in units of the unperturbed radius gyration Rg
(φ̄1(x) defined in eq. (B.7) for SCF and in eq. (B.21) for GSD). The thin film
length in A) Lx = 3 and B) Lx = 5.

b.1.2 Grand canonical ensemble

We proceed the same way as above.
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A

B

Figure B.2: Canonical ensemble with N = 64. (φ̄1(x) + 1) as a function of X-the thin
film length in x−direction in units of the unperturbed radius gyration Rg
(φ̄1(x) defined in eq. (B.7) for SCF and in eq. (B.21) for GSD). The thin film
length in A) Lx = 3 and B) Lx = 5.

φ̄1(x) =
1

Ly

∫
dy[−1+φ(x,y)]

= −1+
zN

φ0Ly

∫
dy

∫1
0

ds qx(x, s) q†x(x, 1− s) qy(y, s) q†y(y, 1− s)

= −1+
zNQy

φ0Ly

∫1
0

ds qx(x, s) q†x(x, 1− s)

= −1+ z ′1

∫1
0

ds qx(x, s) q†x(x, 1− s) (B.30)
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where we denote

Qy =

∫
dy qy(y, s) q†y(y, 1− s) (B.31)

z ′1 =
zNQy

φ0Ly
(B.32)

φ̄2(y) =
1

Lx

∫
dx [−1+φ(x,y)]

= −1+ z ′2

∫1
0

ds qy(y, s) q†y(y, 1− s) (B.33)

Qx =

∫
dx qx(x, s) q†x(x, 1− s), z ′2 =

zNQx

φ0Lx
(B.34)

For x-direction

∂qx(x, s)
∂s

=
∂2qx(x, s)
∂x2

−Nκ φ̄1(x) qx(x, s) (B.35)

Using ground state dominance qx(x, s) ≈ q0 X0(x) e−λ0s (choose λ0 = 0), we
obtain:

φ̄1(x) = −1+ z ′1

∫1
0

ds qx(x, s) q†x(x, 1− s)

= −1+ z ′1 q
2
0 X

2
0(x) (B.36)

X ′′0 (x) −Nκ(−1+ z
′
1 q
2
0 X

2
0(x))X0(x) = 0 (B.37)

X ′′0 (x) −Nκ z
′
1q
2
0 X

3
0(x) +NκX0(x) = 0 (B.38)

where q0 =
∫Lx
0 dx X0(x), and we choose z ′1 = 1 (the same in numerical calcu-

lation).
We define:

U(X0) = −
Nκq20
4

X40 +
Nκ

2
X20 (B.39)

Then:
1

2
X
′2
0 (x) +U(X0) = const (B.40)

where X0(x) satisfies the following conditions:

X
′
0(Lx/2) = 0

X0(Lx/2) = Xmax0 , Xmax0 ∈

[
0,

√
1

q20

]
X0(0) = X0(Lx) = 0 (B.41)

Without losing generality, we here chose q20 = 1
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A

B

Figure B.3: Grand canonical ensemble with N = 32. (φ̄1(x) + 1) as a function of X-the
thin film length in x−direction in units of the unperturbed radius gyration
Rg. (φ̄1(x) defined in eq. (B.30) for SCF and in eq. (B.36) for GSD). The
thin film length in A) Lx = 3 and B) Lx = 5.
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A

B

Figure B.4: Grand canonical ensemble with N = 64. (φ̄1(x) + 1) as a function of X-the
thin film length in x−direction in units of the unperturbed radius gyration
Rg. (φ̄1(x) defined in eq. (B.30) for SCF and in eq. (B.36) for GSD). The
thin film length in A) Lx = 3 and B) Lx = 5.
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