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Summary (English)

The scalar and spin polarizabilities of the proton are fundamental quantities that characterize
the ability of proton’s constituents to rearrange themselves in external electromagnetic fields.
Their PDG values combine the Dispersion relation (DR) and the chiral perturbation theory
(ChPT) results, whereas individually these theoretical approaches yield different values. In
particular, ChPT and fixed-t DR (combined with Compton scattering data) give at present dif-
ferent values of the magnetic polarizability. Here we offer two model-independent approaches
to extract the polarizabilities which are based on the low-energy and multipole expansions of
Compton scattering observables. These approaches are complementary to the existing theoreti-
cal methods, and as such they give additional insight into the problem. What is more important,
they offer an additional route to calculate observables that potentially can resolve the contro-
versy over the values of the polarizabilities.

In the first part of this dissertation we derive the low-energy expansions of the helicity ampli-
tudes and observables for the beam and spin-1/2 target polarizations. Here we identify and study
three independent spin asymmetries which can be used to measure the proton polarizabilities.
In particular, we show that the leading-order non-Born contribution to the beam asymmetry
is given by the magnetic polarizability alone. Hence, this observable is a good candidate for
a precision measurement of the magnetic dipole polarizability. To support this statement, we
present preliminary results of a pilot measurement of the beam asymmetry below the pion pro-
duction threshold. These results are obtained by the A2 collaboration at the Mainz Microtron.
We provide a similar analysis for the target asymmetries, which, as we argue, give an access to
the proton spin polarizabilities.

In the second part of this dissertation we obtain the multipole expansions of the helicity am-
plitudes and observables below the pion production threshold. To this end, we develop a fitting
procedure which yields the scalar and spin polarizabilities from unpolarized Compton scattering
data. We make several fits either using the full database or excluding a few inconsistent data
points. We find that in the former case the fitted scalar polarizabilities coincide with the values in
the DR framework, whereas in the latter case they are similar to the values computed using the
baryon ChPT approach. This observation allows us to suggest that the difference between the
baryon ChPT and DR values of the scalar polarizabilities is due to inconsistencies in the database
used in the DR analysis. To resolve this inconsistency we propose to measure the unpolarized
Compton scattering cross section at energy ν ≈ 110 MeV and backward angles. As far as the spin
polarizabilities are concerned, the values we extract are consistent among the different fits, and
are as well consistent with the values obtained in the baryon ChPT and DR analyses.
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The presented multipole analysis of Compton scattering is the first of its kind. We believe
that in the near future it will give us a unique opportunity to obtain accurate values of the po-
larizabilities in a model-independent way. The achievement of this goal will be facilitated by
improvements of the existing data that are to come in the following years at experimental facil-
ities around the globe, in particular, at the Mainz Microtron, and at the high-intensity electron
facility MESA which currently is under construction in Mainz.
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Summary (German)

Die Skalar- und Spinpolarisierbarkeiten des Protons sind fundamentale Größen, welche die
Fähigkeit der Protonkonstituenten charakterisieren, sich in externen elektromagnetischen Feldern
auszurichten. Bis heute sind ihre genauen Werte weitgehend unbekannt, da die unterschiedlichen,
theoretischen Ansätze verschiedene Resultate ergeben. Beispielsweise liefern die chirale Störungs-
theorie (ChPT) sowie fixed-t dispersion relation (DR) Frameworks offensichtlich unterschiedliche
Werte der magnetischen Polarisierbarkeit. Diese Arbeit liefert zwei modellunabhängige Ansätze
zur Extraktion der Polarisierbarkeiten, welche auf Niedrigenergie- und Multipolentwicklungen
von Observablen der Compton-Streuung basieren. Diese Ansätze verhalten sich zu den bereits
existierenden, theoretischen Methoden komplementär und liefern als solche eine zusätzliche
Einsicht in das betrachtete Problem. Noch wichtiger ist, dass sie eine weitere Möglichkeit
darstellen, Observablen zu berechnen, welche eventuell die Kontroverse zwischen den Werten
der Polarisierbarkeiten auflösen könnten.

Im ersten Teil der Dissertation leiten wir die Niedrigenergie-Entwicklung der Helizitätsampli-
tuden und der Observablen für die Strahl- und Targetpolarisation mit Spin-1/2 ab. Wir bestim-
men und untersuchen drei unabhängige Spinasymmetrien, welche zur Messung der Polarisier-
barkeiten des Protons verwendet werden können. Im Besonderen zeigen wir, dass der nicht-
bornsche Beitrag führender Ordnung zur Strahlasymmetrie allein durch die magnetische Polar-
isierbarkeit gegeben ist. Somit stellt diese Observable ein guter Kandidat für eine präzise Mes-
sung der magnetischen Dipolpolarisierbarkeit dar. Um diese Aussage zu unterstützen, präsen-
tieren wir vorläufige Resultate einer Pilotmessung der Strahlasymmetrie unterhalb der Pionpro-
duktionsschwelle. Diese Resultate wurden von der A2 Kollaboration am Mainzer Mikrotron
gewonnen. Wir liefern eine ähnliche Analyse für die Targetasymmetrien, welche, nach unserer
Argumentation, einen Zugang zu den Spinpolarisierbarkeiten des Protons darstellen.

Im zweiten Teil dieser Dissertation erhalten wir die Multipolentwicklungen der Helizität-
samplituden und Observablen unterhalb der Pionproduktionsschwelle. Zu diesem Zweck en-
twickeln wir eine Fitprozedur, welche die Skalar- und Spinpolarisierbarkeiten aus Daten der
unpolarisierten Compton-Streuung liefert. Wir führen zahlreiche Fitanpassungen durch, sowohl
auf Basis aller vorhandenen Daten, als auch unter Ausschluss weniger, inkonsistenter Daten-
punkte. Wir stellen fest, dass im ersteren Fall die gefitteten Skalarpolarisierbarkeiten mit den
Werten, welche im DR Framework gewonnen wurden, übereinstimmen, während sie im let-
zteren Fall eine Ähnlichkeit zu den Werten aufweisen, welche unter Verwendung des Baryon
ChPT Ansatzes berechnet wurden. Aufgrund dieser Beobachtung schlagen wir vor, dass die
Unterschiede zwischen den Werten der Skalarpolarisierbarkeiten, welche unter Verwendung
der Modelle des Baryon ChPT Ansatzes beziehungsweise des DR Frameworks gewonnen wur-
den, durch Inkonsistenzen innerhalb der Daten der DR- basierten Analyse bedingt sind. Um
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diese Inkonsistenzen zu beseitigen, schlagen wir vor, den Wirkungsquerschnitt der unpolar-
isierten Compton-Streuung bei einer Energie von ν ≈ 110 MeV und unter Rückwärtswinkeln
zu messen. Bezüglich der Spinpolarisierbarkeiten sind die von uns, unter Verwendung der aus
unterschiedlichen Fitanpassungen extrahierten Werte, untereinander konsistent. Ebenso decken
sie sich mit den Werten, welche in der Baryon ChPT sowie der DR-basierten Analyse gewonnen
wurden.

Die von uns vorgestellte Multipolanalyse der Compton-Streuung ist die Erste ihrer Art. Es
ist unsere Überzeugung, dass sie uns in naher Zukunft die einzigartige Möglichkeit eröffnen
wird, präzise Werte der Polarisierbarkeiten auf modellunabhängigem Wege zu erhalten. Die
Erreichbarkeit dieses Ziels wird durch die Verbesserung des existierenden Datenbestands durch
experimentelle Einrichtungen auf der ganzen Welt innerhalb der kommenden Jahre erleichtert.
Im Besonderen sind dies das Mainzer Mikrotron sowie die derzeit im Aufbau befindliche, neue
Linearbeschleunigeranlage MESA, welche einen Elektronenstrahl mit sehr hoher Intensität bere-
itstellen wird.
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CHAPTER 1

Introduction and Thesis Outline

1.1 Introduction

In the 1910s Ernest Rutherford in his famous series of scattering experiments [Rutherford 1911]

demonstrated that the positive charge of an atom and most of its mass is attributed to a tiny

core, the atomic nucleus. Furthermore, he argued that these cores always contain the nucleus

of the smallest atom — hydrogen. He assumed that this nucleus can be regarded as the simplest

structureless building block of matter, and suggested to name it ′proton′ after the Greek word for
′first′. During the next decades this new particle was under a thorough investigation, and in the

mid-twentieth century, it became clear that the proton itself is a non-point particle. Since then

the structure of the proton was among the hottest topics in both theoretical and experimental

physics.

The bulk of our current understanding of the proton structure comes from the Standard

Model of particle physics (see, e.g., Refs. [Schwartz 2014,Spiesberger 2000]), which unifies the

theories of Electroweak, and strong (Quantum chromodynamics or in short QCD) interactions.

The Electroweak theory provides a combined description of the electromagnetic (described by

Quantum electrodynamics or QED) and weak forces. The former force acts between charged

particles and is mediated by the photon. It is used, in particular, to describe the internal structure

of the matter, e.g., bound states of an electron and a proton, i.e., the hydrogen atom. The weak

interaction introduced to explain beta decay occurs between all particles in the Standard Model,

and is mediated by the massive W± and Z0 bosons. Finally, QCD describes the strong interactions

between quarks and gluons, which make up hadrons (strongly interacting particles, such as

proton, neutron etc.). At the level of the Lagrangian, QCD is almost as simple as QED, the main

difference is the non-abelian nature of the underlying interactions. However, despite of that the

physics of the strong interactions is very complicated and rich. It exhibits a range of fascinating

phenomena, e.g., color confinement (see, e.g., [Greensite 2011]), mass gap [Jaffe ], chiral

symmetry breaking [Cheng 1984,Wilczek 1999], quark-gluon plasma [Braun-Munzinger 2007,

Arsene 2005,Adcox 2005,Back 2005,Adams 2005,Khachatryan 2015] etc.

The proton in the Standard Model [Gell-Mann 1964,Zweig 1964a,Zweig 1964b] is a system

of three interacting valence quarks and an arbitrary number of quark-antiquark pairs and glu-

ons. However, in spite of having this theoretical set-up, we still lack its complete description.
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CHAPTER 1. INTRODUCTION AND THESIS OUTLINE

The reason is that one needs to perform calculations in QCD, which enjoys color confinement.

The latter implies that at small energies (correspondingly large distances) the strong coupling

constant αs is large1, making standard techniques from perturbation theory useless. Therefore,

one needs to utilise other methods, for instance, one can employ the lattice QCD [Creutz 1985,

Rothe 2005,Gattringer 2010,Wilson 1974], chiral effective field theory (also referred to as chiral

perturbation theory (ChPT)) [Weinberg 1979,Gasser 1984,Gasser 1988] or Dispersion relation

(DR) [Nussenzveig 1972, Hamilton 1975]. The results of these methods, however, are not al-

ways accurate and often give the largest uncertainties in calculations. For instance, the dominant

part of the uncertainty in the calculations of the anomalous magnetic moment of the muon is

due to hadronic effects, see Refs. [Miller 2007, Jegerlehner 2009,Miller 2012].

Besides the lattice QCD and other approaches listed above, one could use the low-energy

or multipole expansions of observables to develop model-independent methods for interpreting

experimental data. In this thesis we discuss this approach in detail, as we employ it to extract

the polarizabilities of the proton.
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Traditional experimental tools to study the proton structure are the elastic and inelastic

electron-proton (e-p) scatterings (see Fig. 1.2). The interaction in these processes is mediated

by a virtual photon with virtuality �Q2, and described by the four structure functions f1(⌫,Q2),

f2(⌫,Q2), g1(⌫,Q2) and g2(⌫,Q2) with ⌫ being the photon energy (see, e.g., Refs. [Drechsel 2003]

and [Yndurain 2006]). In the elastic scattering one can measure the charge and density dis-

tributions inside the proton, as in this case the structure functions, and hence the measured

cross sections, are parametrized by the electric GE(Q2) and magnetic GM(Q2) Sachs form fac-

tors, which are the Fourier transforms of the charge and magnetization density distributions. In

1Note that at high energies ↵s is a small parameter (phenomenon known as asymptotic freedom). This feature
of the QCD was first noted by David Politzer, Frank Wilczek and David Gross [Gross 1973, Politzer 1973]. For their
discovery they were awarded the Nobel Prize in Physics in 2004.
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Figure 1.1: A schematic diagram of the electron-proton scattering. The particles interact via a virtual
photon with virtuality −Q2, see the text for details. In the case of the elastic scattering X denotes the
outgoing proton, whereas in the inelastic case it stands for the produced new particles (hadrons).

Traditional experimental tools to study the proton structure are the elastic and inelastic

electron-proton (e-p) scattering processes (see Fig. 1.1). The interaction in these processes is

mediated by a virtual photon with virtuality −Q2, and described by the four structure functions

f1(ν,Q2), f2(ν,Q2), g1(ν,Q2) and g2(ν,Q2) with ν being the photon energy (see, e.g., Refs. [Drech-

sel 2003] and [Yndurain 2006]). In the elastic scattering one can measure the charge and

density distributions inside the proton, as in this case the structure functions, and hence the

measured cross sections, are parametrized by the electric GE(Q2) and magnetic GM(Q2) Sachs

1Note that at high energies αs is a small parameter (phenomenon known as asymptotic freedom). This feature
of the QCD was first noted by David Politzer, Frank Wilczek and David Gross [Gross 1973, Politzer 1973]. For their
discovery they were awarded the Nobel Prize in Physics in 2004.
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1.1. INTRODUCTION

form factors, which are the Fourier transforms of the charge and magnetization density distribu-

tions. In the inelastic case the structure functions, and hence observables, at high Q are related

to the parton distribution functions (PDFs) [Peskin 1995, Collins 2012, Feltesse 2010], whereas

at low Q they can be connected to the physical quantities called polarizabilities [Drechsel 2003].

For instance, the sum rule involving f1(ν,Q2), i.e.,
∫

dν f1(ν,Q2)/ν3, is related to the sum of the

electric αE1(Q2) and magnetic βM1(Q2) generalized dipole polarizabilities.

The polarizabilities of the proton are of main interest to us, and before we discuss them in

more detail, let us recall their classical definitions. It is known that if one places a macroscopic

system in the uniform electric field ~E, negative and positive charges will move in opposite di-

rections, creating an electric dipole moment. For an isotropic system in a weak field this dipole

moment is given by αE1~E. If now one places the same system in the uniform magnetic field ~H

instead of ~E, intrinsic dipole moments will align with ~H, inducing the magnetic dipole moment

βM1 ~H. Thus, we see that the response of the system to weak external fields is fully characterized

by the so-called electric and magnetic polarizabilities αE1 and βM1. On the one hand, the knowl-

edge of these quantities gives us a valuable theoretical insight into the internal structure of the

system. On the other hand, αE1 and βM1 are of fundamental importance in applications as they

quantify the stiffness of the system.

In the 1950s the classical polarizabilities inspired the introduction of a similar concept for

protons [Klein 1955, Baldin 1960]. It turns out that the values of the proton polarizabilites

are small when measured in natural units. Indeed, the polarizabilities have dimension length3

and the proton polarizabilities are several orders of magnitude smaller2 than the volume of

the proton (αE1 ∼ 10−3 fm3 and βM1 ∼ 10−4 fm3). Even though αE1 and βM1 are tiny in this

sense, the knowledge of them is crucial for a precision determination of other quantities. For

instance, they are the main source of the uncertainty in theoretical calculations of the muonic

hydrogen Lamb shift, and, hence, in the extracted value of the proton charge radius (see, e.g.,

Ref. [Carlson 2015]). At the present time this uncertainty is a hot topic of debate in the physics

community due to the so-called proton radius puzzle – the inconsistency in the measured values

of the proton radius [Pohl 2010,Bernauer 2014].

It is not feasible to measure αE1 and βM1 by placing a proton in the static ~E and ~H. Indeed,

small values of αE1 and βM1 imply that the proton is very stiff, and, to induce any measurable

dipole moment, one needs very strong external fields, which are not available in laboratories.

Nevertheless, the polarizabilities can be accessed experimentally in low-energy Compton scat-

tering (CS) on protons if the photon energy ν in this process is not too small. Indeed, if the

photon wavelength becomes smaller than the size of the proton, (starting from ν ≈ 50 MeV),

the internal structure of the proton is resolved and the effect of the polarizabilities can be mea-

sured. To extract the polarizabilities from the obtained data, one first isolates the contribution

2For atoms, for comparison, they are estimated to be of the order of Å3 (cf. Ref. [Holstein 2014]).
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CHAPTER 1. INTRODUCTION AND THESIS OUTLINE

of the polarizabilities to observables by expanding the CS amplitude in powers of energy. Then

one evaluates this contribution by analyzing the experimental data. Let us illustrate these steps

by considering the unpolarized cross section, dσ/dΩlab, see also Section 3.5. To write it in terms

of the polarizabilities we expand the CS amplitude. The lowest-order energy-independent term

in the obtained expansion is called the Thomson amplitude [Low 1954, Gell-Mann 1954a]. It

assumes that the photon wavelength is much larger than the proton which is then treated sim-

ply as an unpolarizable point particle with mass M, and charge e. With higher powers of the

photon energy come other contributions, e.g., with the first power3 comes the contribution of

the anomalous magnetic moment, κ, then of αE1 and βM1, then of the four spin polarizabilities,

γE1E1, γM1M1, γM1E2, and γE1M2, etc. see Refs. [Griesshammer 2012, Holstein 2014] and also

Eqs. (2.8) and (2.13). Having expanded the CS amplitude we write the leading-order non-Born

(NB) contribution to the cross section. This contribution is determined by the polarizabilites or

more precisely by the linear combination of αE1 and βM1

dσ(NB)

dΩlab
= − α

M

(
ν′

ν

)2
νν′

[
αE1

(
1 + cos2 θlab

)
+ 2βM1 cosθlab

]
+ O(ν3), (1.1)

where α = e2/(4π) ' 1/137 is the fine-structure constant, ν and ν′ are, respectively, the ener-

gies of the incoming and outgoing photons in the laboratory frame, and θlab is the scattering

angle (see Supplementary Material 3.11). At very low energies (ν ≤ 50 MeV) the effect of the

polarizabilities is suppressed by the factor νν′, and, therefore, it cannot be separated from the

Born term in modern experiments. On the other hand, at higher energies, the contribution of

αE1 and βM1 is large and a precision measurement of dσ/dΩlab at different angles should allow

one to extract αE1 and βM1, cf. Fig. 1.2. The ideal energy region to measure αE1 and βM1 is

ν ≈ 50 − 100 MeV, as at higher energies the higher order (spin, quadrupole etc.) polarizabilities

complicate the analysis.

These simple theoretical considerations motivated a number of experimental groups to mea-

sure the unpolarized cross section for low-energy CS (see table 4.1 for references) and to use

the collected data to determine the polarizabilities. We present αE1 and βM1 found in this way

together with the most recent theoretical results in Fig. 1.3. The theoretical calculations here

are done within baryon chiral perturbation theory (BChPT), see Ref. [Lensky 2015], and heavy

baryon chiral perturbation theory (HBChPT), see Ref. [McGovern 2013]. We also show the PDG

values [Olive 2014], which combine the Dispersion relation (DR) [Olmos de Leon 2001] and

the HBChPT results (see Table 1.1). Note that due to the differences between the BChPT and

the DR approaches4, their outcomes are not guaranteed to coincide. The figure indeed shows

3Here the zeroth- and first-order terms in energy are often called the Born amplitude, and all the other terms,
which are defined by the polarizabilities, the non-Born amplitude.

4For example, the DR approach requires the knowledge of the unpolarized Compton scattering data to fix αE1−βM1,
whereas BChPT and HBChPT predict αE1 and βM1 (up to O(p4)) without it.

4



1.1. INTRODUCTION

 0

 5

 10

 15

 20

 25

 0  20  40  60  80  100  120  140

dσ
 /d

Ω
la

b 
 (n

b/
sr

)

ν   (MeV)

Born

LO non-Born

θlab = 60 deg

Figure 1.2: The unpolarized cross section as a function of the photon energy at θlab = 60 degrees. The
green dashed curve depicts the Born part of the cross section, and the red solid curve corresponds to the
Born part together with the leading-order contribution of the polarizabilties (cf. Eq. (1.1)).

that some of these analyses are not in unison with the others. For instance, the value of the

magnetic polarizability, obtained using the DR approach with the unpolarized CS data, is not

consistent with the one calculated within the BChPT approach (see Table 1.1). The source of

Table 1.1: The values of αE1 and βM1 in units 10−4 fm3 obtained from BChPT and DR as well as the values
quoted in PDG.

αE1 βM1

BChPT 11.2 ± 0.7 3.9 ± 0.7

DR fit 12.1 1.6

PDG (2014) 11.2 ± 0.4 2.5 ± 0.4

this discrepancy has not been yet understood, and further theoretical and experimental studies

are required to resolve it.

In this dissertation we propose other means (cf. the LEX and MEX below) of determining

the magnetic polarizability that can potentially resolve the discrepancy between BChPT and DR.
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Figure 1.3: The values for the proton scalar polarizabilities. The magenta blob represents the PDG
summary [Olive 2014]. The experimental data are from Federspiel et al. [Federspiel 1991], Zieger et
al. [Zieger 1992], MacGibbon et al. [MacGibbon 1995], and TAPS [Olmos de Leon 2001]. The ‘Sum Rule’
shaded area corresponds to the Baldin sum rule evaluations of αE1 + βM1 in Ref. [Olmos de Leon 2001]
(broader band) and in Ref. [Babusci 1998b] (narrow band). The red blob represents the BChPT prediction
from Ref. [Lensky 2015], and the blue ellipse is due to the HBChPT fit from Ref. [McGovern 2013].

Another goal of this thesis is to establish the values of the spin polarizabilities γE1E1, γM1M1,

γE1M2 and γM1E2 by analyzing higher-order corrections to Eq. (1.1). These polarizabilities define

higher-order corrections to observables and are important at energies above ν ≈ 100 MeV. This

investigation is timely and important in particular due to the recent experiments at MAMI, in

which the effect of these quantities can be measured [Martel 2015].

To reach our goals we use two model-independent theoretical approaches based on the low-

energy expansion (LEX) and the multipole expansion (MEX) of CS observables. Both approaches

satisfy basic symmetries, such as invariance under parity, time-reversal, gauge and Lorentz trans-

formations. However, the parameters in these theories are different. Within the LEX approach

the CS amplitude TH′,H (here H′ and H are the total helicities of the final and initial states re-

spectively) is expressed in terms of the mass, charge, anomalous magnetic moment, two scalar

polarizabilities, and four spin polarizabilities. Within the MEX approach TH′,H is expressed in

terms of multipole amplitudes which depend on energy. An advantage of the MEX over the LEX

is that it has larger energy-range of applicability, i.e., while the LEX approach is accurate only

up to the photon energy ν ' 100 MeV, the MEX does not have such limitations. However, the

number of parameters (multipoles) in the latter approach depends on the energy region, i.e., the

6
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larger the energy, the larger the number of multipoles that should be taken into account. In this

thesis we limit ourselves to the energies below the pion production threshold, i.e., ν < 150 MeV.

At these energies to a good approximation one can truncate the series of the MEX at angular

momentum J = 3/2.

As these approaches are cornerstones of this thesis, let us discuss them in more detail. In the

LEX we write the amplitude TH′,H using the effective Lagrangian L, that describes the Compton

scattering on the proton at low energies. In doing so we introduce the main physical quantities

of this work, i.e., the scalar and spin polarizabilities, in a Lorentz-invariant fashion. Having

obtained the amplitude we construct various CS observables, and study their sensitivity to the

polarizabilities. For instance, we show (cf. Ref. [Krupina 2013]) that the beam asymmetry

depends only on the magnetic polarizability, see Eq. (3.24). This is a very important observation

as it allows one to find βM1 by direct measurement.

In the MEX below the pion production threshold we parametrize the amplitude TH′,H by ten

parameters (multipoles). We divide these multipoles into the Born and non-Born parts. The

Born part depends only on M, e and κ, and we calculate it exactly. The non-Born part contains

the polarizabilities of interest. To isolate them we develop a fitting procedure that uses the

existing unpolarized CS data as an input [Krupina 2016]. The main results here are the values

of the polarizabilities listed in Table 4.5.

1.2 Thesis Outline

Chapter 2 presents the basic ingredients of the two frameworks that we use and introduces the

main physical quantities of this thesis, i.e., the scalar and spin polarizabilities of the proton.

We start by writing the effective Lagrangian that describes CS on the proton at low energies,

thus, providing us with a starting point for the discussion of the LEX-based approach. We first

discuss the terms of the Lagrangian that describe a pointlike proton and yield the Born part of

the Feynman CS amplitude, and then the terms that define the scalar and spin polarizabilities.

The latter are used in Chapter 3 to calculate the non-Born part of the amplitude. Subsequently,

we present the derivation of the multipole expansion of the CS amplitudes. This expansion

is utilized in Chapter 4 to obtain the multipole expansion of CS observables. At the end of

Chapter 2 we relate the multipoles to the polarizabilities. The obtained relations are essential

elements of the approach developed in Chapter 4 to calculate the polarizabilities.

Chapter 3 presents the low-energy expansions of the four Compton scattering observables, the

unpolarized cross section, dσ/dΩ, the beam asymmetry, Σ3, and the beam-target asymmetries,

Σ2x and Σ2z, and analyzes the sensitivity of these observables to the scalar and spin polarizabil-

ities. This analysis puts Σ3 forward (cf. Ref. [Krupina 2013] and Ref. [Sokhoyan 2016]) as a

7
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possible candidate for the precision determination of the magnetic polarizability, βM1, as it is

difficult to extract βM1 directly from the low-energy unpolarized cross section. It also suggests

that Σ2x and Σ2z should be used to measure the spin polarizabilities, since dσ/dΩ and Σ3 are

mainly sensitive to the scalar polarizabilities.

Chapter 4 presents a MEX-based approach which yields values of the polarizabilities. Here we

discuss the method and its main ingredient – the relation between the multipoles with ` = 1

and the static polarizabilities (cf. Ref. [Krupina 2016]). Using this relation we find the polar-

izabilities by fitting them to the existing experimental data. We explain all the details of the

employed fitting procedure, i.e., we show the used data, we discuss the constraints that had to

be implemented to reduce the number of fitted parameters etc. The results obtained using the

unpolarized CS data are presented in Table 4.5.

Chapter 5 concludes the thesis with the summary of the results presented in the previous chap-

ters.
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1.3. LIST OF ABBREVIATIONS

1.3 List of Abbreviations

BChPT baryon chiral perturbation theory

CM center-of-mass

CS Compton scattering

DR dispersion relation

HBChPT heavy baryon chiral perturbation theory

LEX low-energy expansion

MAMI Mainz Microtron

MEX multipole expansion

NB non-Born

NLO next-to-leading order

NNLO next-to-next-to-leading order

PDG Particle data group

QED quantum electrodynamics

QCD quantum chromodynamics
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CHAPTER 2

Methods

This chapter introduces the main physical quantities of this thesis, i.e., the scalar and spin polariz-

abilities, and theoretical frameworks that we will use to calculate them.

2.1 Introduction

In this thesis we present two model-independent approaches to analyze Compton scattering on

the proton that utilise the LEX and the MEX of Compton observables. This chapter contains

important definitions and derivations that we later use in Chapters 3 and 4 to develop these

approaches.

The starting point for the LEX-based approach is the effective Lagrangian that describes the

photon-proton interaction at low energies. It naturally satisfies all the basic symmetries, such

as Lorentz and gauge invariance as well as discrete symmetries (parity, charge conjugation and

time reversal invariance), and, hence, allows us to introduce the main physical quantities of this

work, i.e., the scalar and spin polarizabilities, in a Lorentz-invariant fashion. An advantage of

this method is that we can use the non-relativistic limit as a reference point. In particular, we

use the fact that in this limit the terms that contain the scalar and spin polarizabilities must yield

the well-known effective Hamiltonian

H (2)
e f f = −4π

[1
2
αE1~E2 +

1
2
βM1 ~H2

]
,

H (3)
e f f = −4π

[1
2
γE1E1~σ · (~E × ~̇E) +

1
2
γM1M1~σ · (~H × ~̇H) (2.1)

− γM1E2 Ei j σi H j + γE1M2 Hi j σi E j

]
,

where ~̇E = ∂t~E, ~̇H = ∂t ~H, Ei j = 1
2 (∇iE j + ∇ jEi), Hi j = 1

2 (∇iH j + ∇ jHi). The superscripts

(2), (3) denote the number of space-time derivatives of the electromagnetic field Aν(x) (see the

discussion below).

The starting point for the MEX-based approach is the scattering matrix Ŝ(~k′,~k) that contains

all information about the scattering. In practical calculations one usually extracts this informa-

tion in the form of the helicity amplitude, TH′,H ≡ 〈θϕH′|Ŝ|00 H〉, which describes the 2 → 2

process with given initial (H) and final (H′) helicities. The angles (θ0 = 0, ϕ0 = 0) here define

11
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the direction of the relative momentum of the incoming particles with the helicities σ and λ,

thus, H ≡ σ − λ. The variables θ,ϕ, σ′, λ′ and H′ are used for the respective characteristics of

the outgoing particles. In this thesis we analyze Compton scattering using the multipole expan-

sion of these amplitudes. This expansion is known [Pfeil 1974], however, because we are not

aware of a reference with its full derivation, we obtain it for convenience of the reader in this

chapter.

The chapter is organized as follows. In Section 2.2 we introduce the effective Lagrangian.

Here, we firstly list the terms of the Lagrangian that describe the pointlike proton and yield the

Born part of the Feynman CS amplitude. Secondly, in Subsection 2.2.2 we write down the piece

that contains the scalar polarizabilities, i.e., αE1 and βM1. Thirdly, in the same subsection we

present the term that defines the spin polarizabilities γE1E1, γM1M1, γE1M2 and γM1E2. In addition

to that, Subsection 2.2.2 contains also the original part of this chapter — the contributions of the

scalar and spin polarizabilities to the invariant amplitudes A1, ...,A8 from Ref. [Pascalutsa 2003].

In Section 2.3 we derive the multipole expansion of the CS amplitudes, and present the result in

Eq. (2.52) in terms of the conventional multipole amplitudes (multipoles). In Subsection 2.3.3

we relate these multipoles to the polarizabilities. Later, in Chapter 4, we develop an approach

that uses these relations to establish the polarizabilities. Finally, for the sake of completeness, we

sketch in the Supplementary Material how to obtain the Feynman amplitude from the introduced

Lagrangian.

2.2 Effective Lagrangian and Polarizabilities

In this section we present the effective LagrangianL that describes the electromagnetic structure

of the proton at low energies. For convenience, we divide L into the non-interacting, L0, and

interacting, L1 +Lpol, parts, i.e.,

L = L0 +L1 +Lpol, (2.2)

where L0 describes the propagation of free photon and proton. The first term in the interacting

Lagrangian, i.e., L1, is linear in the photon field Aν(x) and describes the interaction of the

photon with a pointlike proton. It includes only the well-known mass of the proton, M, its

electric charge, e, and anomalous magnetic moment, κ. The second term of the interacting part,

Lpol, is quadratic in Aν(x) and defines the polarizabilities. We organize Lpol in classes according

to the number of derivatives of the photon field1 Aν(x),

Lpol = L2 +L3 + ... . (2.3)

1On the level of the CS amplitude this ordering corresponds to the small momentum expansion, because a deriva-
tive in coordinate space implies the photon momentum in momentum space.
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Here the term with two derivatives of Aν(x) (L2) contains the scalar polarizabilities αE1 and βM1,

whereas the term with three derivatives (L3) includes the spin polarizabilities2 γE1E1, γM1M1,

γE1M2 and γM1E2. The terms with a higher number of derivatives (Li>3) contain the higher order

polarizabilities [Holstein 2000]. For instance, the spin-independent fourth-order term (L4) in

the Lagrangian contains the fourth-order scalar polarizabilities αEν, βMν, αE2 and βM2. However,

as these higher order polarizabilities will not be discussed in the thesis, we do not introduce

here the terms Li with i > 3.

2.2.1 Lagrangian for a Pointlike Proton

Here we present L0 and L1 terms of the Lagrangian given in Eq. (2.2). The former term here

describes a free photon and a free proton, i.e.,

L0 = −1
4

FµνFµν + N(x)
(
iγµ∂µ −M

)
N(x), (2.4)

where Fµν = ∂µAν(x) − ∂νAµ(x) is the electromagnetic field-strength tensor, N(x) is the proton

Dirac-spinor field, and γµ is the Dirac matrix. And the latter term includes the NNγ interaction

(see e.g. [Peskin 1995])

L1 = −e N(x)γµAµ(x) N(x) − i eκ
4M

N(x)γµν N(x) Fµν,

where γµν ≡ 1
2

(
γµγν − γνγµ). This term assumes that a proton is a point3, and describes such a

proton in an electromagnetic field.

Now, using this Lagrangian we calculate the Born contribution to the Feynman CS amplitude

(see Fig. 3.1a and 3.1b). For this purpose we first find the Feynman rules for the NNγ vertex

and the proton propagator (see Supplementary Material 2.5), and then use them to write down

the Feynman amplitude

iMµν
B = −i Γµ(p′, p + k)

p/ + k/ + M
s −M2 Γν(p + k, p) − i Γν(p′, p′ − k)

p/ ′ − k/ + M
u −M2 Γµ(p′ − k, p), (2.5)

where i Γµ(p′, p+k) = ieγµ− ie
2Mκ

(
γµρp′ρ − γµδ(p + k)δ

)
is the electromagnetic vertex, k is the four-

momentum of the incoming photon, p (p′) is the four-momentum of the incoming (outgoing)

proton, and s,u are the Mandelstam variables (see Supplementary Material 3.11). Note that,

in principle, the derived terms describe not only a proton but any pointlike charged spin-1/2

2The expressions for L2, L3 are given in Eqs. (2.6) and (2.12). Note, however, that we could have written these
terms in a different form. For instance, we could have included Nγ5N F̃µνFµν (where Fµν = ∂µAν(x) − ∂νAµ(x) and
F̃µν = εµνρσFρσ/2) in L2, as it contains two derivatives. This term is, however, related to the spin polarizabilities due
to an additional momentum in Nγ5N, and therefore we include it in L3, see Eq. (2.12).

3A pointlike proton is fully characterized by its mass, electric charge and anomalous magnetic moment.
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particle described by the spin-1/2 particle field N(x).

2.2.2 Contribution of Polarizabilities to Lagrangian

Scalar polarizabilities We write down the term L2 from Eq. (2.3), introducing the scalar polariz-

abilities in a Lorentz-invariant fashion (cf. Ref. [Belousova 2000a]), as

L(2) = − 2π
M2 (∂αN)(∂βN)(αE1FαρFβρ + βM1F̃αρF̃βρ), (2.6)

where F̃µν = εµνρσFρσ/2 with εµνρσ being the Levi-Civita symbol with ε0123 = 1. Let us first verify

that this term yields the well-known Hamiltonian in the static limit, i.e.,

H (2)
e f f = −4π

[1
2
αE1~E2 +

1
2
βM1 ~H2

]
, (2.7)

where ~E and ~H are the electric and magnetic fields. In order to do this, we work in the proton

rest frame where ∂iN = 0, ∂0N = −iMN, ∂0N = iMN, and, hence,

H (2)
e f f = −L2 = −2π

{
βM1(~H2 − ~E2) + (αE1 + βM1) ~E2

}
NN,

note that to obtain this expression we have used the identities F̃αρF̃βρ = FαρFβρ − 1
2δ
αβF2 and

F2 = −2(F0i)2 + (Fi j)2 = −2~E2 + 2~H2.

The Lagrangian in Eq. (2.6) yields the following Feynman amplitude (see graph 3.1c and

Supplementary Material 2.5)

iMµν
NB(2) = 4π i

[
βM1(k · k′ gµν − kµ k′ν)

− αE1 + βM1

2M2 (p′αpβ + pαp′β) (k′αkβgµν − k′αkµgνβ − k′νkβgµα + k · k′ gµα gνβ)
]
,

(2.8)

where gµν = diag(1,−1,−1,−1) is the Minkowski metric and k′ is the four-momentum of the out-

going photon. The subscript NB indicates that it is the non-Born contribution to the amplitude,

whereas (2) indicates that this term is obtained from L2.

Finally we show that the helicity amplitude obtained fromMµν
NB(2) and the standard ampli-

tude (cf. Ref. [Pascalutsa 2003]) differ in their higher-order (in energy) terms. To this end, we

write the helicity amplitude

TH′H = uλ′(p′)Mµν
NB(2)ε

′
(σ′)µε(σ)νuλ(p)

= uλ′(p′)
(
−A (NB)

1 (s, t) E ′(σ′) · E(σ) + A (NB)
2 (s, t) k · E ′(σ′) k′ · E(σ)

)
uλ(p),

(2.9)
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where s, t are the Mandelstam variables (see Supplementary Material 3.11), and E(σ) is the

gauge-invariant polarization vector, i.e.,

E(σ)µ(k) = ε(σ)µ(k) − (p + p′) · ε(σ)

(p + p′) · k kµ. (2.10)

The functions A (NB)
1 , A (NB)

2 are

A (NB)
1 (s, t) = 2π(αE1 + βM1)(ν2 + ν′2) + 4πMβM1(ν′ − ν) , (2.11a)

A (NB)
2 (s, t) = −4πβM1 − π t

2M2 (αE1 + βM1), (2.11b)

where ν and ν′ denote the energies of the incident and scattered photon in the laboratory frame

respectively (see Supplementary Material 3.11). Note that these functions are Lorentz invariant

as they are written in terms of the invariant variables ν, ν′ and t. The function A (NB)
1 in Eq.

(2.11a) differs from the conventional definition (cf. Ref. [Lensky 2015]) by −(π/M2)(αE1 +

βM1) t(ω2
B − 1

4 t) and A (NB)
2 by − π t

2M2 (αE1 + βM1). However, we have checked that this difference

does not affect our LEX results. In particular, it does not affect the contribution (from the terms

up to and including O(ν4)) of the scalar polarizabilities to the beam asymmetry, see Chapter 3.

Spin polarizabilities Here we discuss the term L3 in Eq. (2.3), which describes the interaction

between the induced electromagnetic moments and the spin of proton (cf. [Belousova 2000b]),

L3 =
π

4M2

(
N

( ↔
∂α

↔
∂β +

↔
∂β

↔
∂α

)
γµγ5N

)
×

{
−1

2
γE1E1 Fαν

↔
∂βF̃µν +

1
2
γM1M1 F̃αν

↔
∂βFµν (2.12)

− γM1E2

(
Fαν

←
∂µF̃βν − F̃αν

→
∂νF

β
µ

)
+ γE1M2

(
F̃αν

←
∂µFβν − Fαν

→
∂νF̃

β
µ

)}
,

here
↔
∂α =

←
∂α −

→
∂α and γ5 = iγ0γ1γ2γ3 is the fifth Dirac matrix. Note that L3 introduces the spin

polarizabilities in a Lorentz-invariant fashion. In the non-relativistic limit this Lagrangian yields

the well-known Hamiltonian

H (3)
e f f = −4π

[1
2
γE1E1~σ · (~E × ~̇E) +

1
2
γM1M1~σ · (~H × ~̇H) (2.13)

−γM1E2 Ei j σi H j + γE1M2 Hi j σi E j

]
,

where ~̇E = ∂t~E, ~̇H = ∂t ~H, Ei j = 1
2 (∇iE j + ∇ jEi), Hi j = 1

2 (∇iH j + ∇ jHi). The relativistic

corrections to Eq. (2.13) can depend on the particular choice of L3. However, since in this

thesis we investigate the leading-order effect of the spin polarizabilities on the observables, we

do not discuss possible choices of the leading-order spin-polarizabilities coupling other than

included in Eq. (2.12).
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The Lagrangian L3 yields the Feynman amplitude (see graph 3.1c and Supplementary Ma-

terial 2.5),

Mµν
NB(3) =

π

4M2

{
γE1E1

[
−2γανµ

(
kα + k′α

)
k · P2 − 2γαβν kα k′β Pµ k · P − 2γαβµ kα k′β Pν k · P

]
+ γE1M2

[
−2γαβν kα k′β Pµ k · P − 2γαβµ kα k′β Pν k · P − 2γανµ

(
kα + k′α

)
k · P2

+ 4γαβν Pα kβ kµ k · P − 4γαβν Pα kβ Pµ k · k′ − 4γαβµ Pα k′β k′ ν k · P + 4γαβµ Pα k′β Pν k · k′
]

+ γM1E2

[
−2γαβν kα k′β Pµ k · P − 2γαβµ kα k′β Pν k · P − 2γανµ

(
kα + k′α

)
k · P2

− 4γαβρ Pα kβ k′ρ
(
gµν k · P − kµ Pν − Pµ k′ ν

)
+ 4γανµ Pα k · k′ k · P − 4γαβµ Pα kβ Pν k · k′

+ 4γαβν Pα k′β Pµ k · k′
]

+ γM1M1

[
−2γαβν kα k′β Pµ k · P − 2γαβµ kα k′β Pν k · P − 2γανµ

(
kα + k′α

)
k · P2

+ 4γαβρ Pα kβ k′ρ gµν k · P − 4γαβµ Pα kβ k′ ν k · P + 4γαβν Pα k′β kµ k · P
+ 4γανµ Pα k · k′ k · P]}

, (2.14)

where γµνρ = 1
2
(
γµν γρ + γρ γµν

)
, P = p+p′, and we have used the identity k ·P = k′ ·P. As before,

the subscript NB indicates that it is the non-Born contribution to the amplitude; (3) indicates

that this term is obtained from L3.

The presented expressions allow us to calculate the contribution of the spin polarizabilities

to the invariant amplitudes, and, hence, to observables. For this we write the helicity amplitude4

TH′H = uλ′(p′)Mµν
NB(3)ε

′
(σ′)µε(σ)νuλ(p)

= uλ′(p′)
{
−A NB(3)

1 (s, t) E ′(σ′) · E(σ) + A NB(3)
2 (s, t) k · E ′(σ′) k′ · E(σ)

− A NB(3)
3 (s, t)

(
E ′(σ′) · γ · E(σ)

)
+ A NB(3)

4 (s, t)
(
k′ · γ · k) E ′(σ′) · E(σ)

+ A NB(3)
5 (s, t)

[(
k′ · γ · E(σ)

)
k · E ′(σ′) −

(
k · γ · E ′(σ′)

)
k′ · E(σ)

]
(2.15)

+ A NB(3)
6 (s, t)

[(
k · γ · E(σ)

)
k · E ′(σ′) −

(
k′ · γ · E ′(σ′)

)
k′ · E(σ)

]
+ A NB(3)

7 (s, t)
(
k′ · γ · k) k · E ′(σ′) k′ · E(σ) −A NB(3)

8 (s, t) iγ5ε
µναβ E ′(σ′)µ E(σ)νk′αkβ

}
uλ(p),

where we use the notation k′ · γ · k ≡ k′µγµνkν. The functions A NB(3)
1 , ...,A NB(3)

8 are

A NB(3)
1 (s, t) = −π

2
t (ν + ν′)2 (

γM1E2 − γM1M1
)
,

A NB(3)
2 (s, t) = −π (ν + ν′)2 (

γE1M2 + γM1M1
)
,

A NB(3)
3 (s, t) =

π
2

(ν + ν′)
[
(ν + ν′)2 γ0 − 2t

(
γM1E2 + γM1M1

)]
, (2.16)

A NB(3)
4 (s, t) = −π

2
(−4 + t) (ν + ν′)

(
γM1E2 − γM1M1

)
,

4Note that to write the amplitude in a covariant form we need to use the eight invariant amplitudes A1 − A8

from Ref. [Pascalutsa 2003]. However, one can show that this form can be reduced to the one with the six standard
independent CS amplitudes (see, e.g., [McGovern 2001]).
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2.3. MULTIPOLE EXPANSION OF COMPTON AMPLITUDE

A NB(3)
5 (s, t) =

π
4

(ν + ν′)
[
t
(
γE1M2 + γM1E2

)
+ 8γM1M1

]
,

A NB(3)
6 (s, t) = −π

4
(ν + ν′)

[
(−8 + t)γE1M2 + tγM1E2

]
,

A NB(3)
7 (s, t) = π (ν + ν′)

(
γE1M2 + γM1M1

)
,

A NB(3)
8 (s, t) = −π

2
(ν + ν′)2 γ0,

where γ0 = −γE1E1 − γE1M2 − γM1E2 − γM1M1.

2.3 Multipole Expansion of Compton Amplitude

The scattering processes for particles with spin can be described by means of the scattering

matrix Ŝ, which connects the initial state i to the corresponding final state f . For systems

invariant under rotations and reflections, this matrix conserves the total angular momentum

J, its projection M, and the parity π, allowing one to write it as

Ŝ(~k′,~k) =
∑

JMπςς′
|ψ∗ fJMπς′(

~k′)〉S f i
J (ω) 〈ψi

JMπς(
~k)|, (2.17)

here ς and ς′ are additional quantum numbers needed to describe the system, 〈ψi( f )
JMπς(

~k)| is

the operator that yields the probability for the system to be in the state characterized by the

set {J,M, π, ς}, ψi( f )
JMπς(

~k), and S f i
J (ω) are the partial-wave amplitudes. To emphasize that the

projection operators describe only the geometry of the process, the above expression is often

rearranged as

Ŝ(~k′,~k) =
∑
Jπςς′

S f i
J (ω)

∑
M

|ψ∗ fJMπς′(
~k′)〉 〈ψi

JMπς(
~k)| =

∑
Jπςς′

S f i
J (ω) L̂Jπςς′(~k′,~k), (2.18)

where L̂Jπςς′(~k′,~k) is the so-called angular operator, which for Compton scattering was first de-

rived in Ref. [Ritus 1957].

In this thesis we analyze Compton scattering using the multipole expansion of the helicity

amplitudes TH′,H. We derive this expansion in two steps. First, in Subsection 2.3.1 we obtain

L̂Jπςς′ , see Eqs. (2.42) and (2.45). After that, in Subsection 2.3.2, we use this operator to write

down the scattering matrix Ŝ(~k′,~k), and to compute the helicity amplitude TH′,H. The latter is

written in terms of the conventional multipole amplitudes in Eq. (2.52).

2.3.1 Derivation of L̂Jπςς′(~k′,~k)

To derive L̂Jπςς′(~k′,~k) we consider Compton scattering in the center-of-mass (CM) frame (see

Section 3.11). We assume that the initial (final) photon propagates in the direction of the unit
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vector ~k (~k′) with the total angular momentum j ( j′), its projection m (m′), the orbital angular

momentum l (l′), and spin 1.

First, we decompose the wave function of the system into the wave function of the photon
~D jm(~k) and the wave function of the proton Q1/2λ

ψJMπς(~k) =
∑
λ

CJM
jM−λ,1/2λ ~D jM−λ(~k)Q1/2λ, (2.19)

where λ = ±1/2 is the spin projection of the proton, CJM
jM−λ, 12λ

is the Clebsch-Gordan coeffi-

cient, and Q1/2λ is the Pauli spinor. With ~D jM−λ(~k) we denote a linear combination of the three

spherical harmonics with spin, i.e., ~D jlM−λ(~k), with l = j, j ± 1 (see Eq. (2.25) below). The

decomposition in Eq. 2.19 allows us to rewrite the angular operator as

L̂ =
∑
λ′λ

Lλ
′λQ1/2λ′Q1/2λ, (2.20)

where the indices J,M, π, ν are omitted for simplicity, and

Lλ
′λ ≡

∑
M

CJM
j′M−λ′,1/2λ′C

JM
jM−λ,1/2λ~D j′M−λ′(~k′)~D∗jM−λ(~k). (2.21)

For convenience, from now on, we will use the notation | ↑〉 (| ↓〉) for the spin operator with

a positive (negative) spin projection |Q1/2 1/2〉 (|Q1/2−1/2〉). Using this notation, we rewrite the

angular operator from Eq. (2.20)

L̂ = L↑↑ | ↑〉〈↑ | + L↑↓ | ↑〉〈↓ | + L↓↑ | ↓〉〈↑ | + L↓↓ | ↓〉〈↓ |, (2.22)

where L↑↑ = L
1
2

1
2 , L↑↓ = L

1
2 − 1

2 etc. The corresponding matrix form of this operator is

L̂ = L↑↑
1
2

(1 + σz) + L↑↓
1
2

(σx + iσy) + L↓↑
1
2

(σx − iσy) + L↓↓
1
2

(1 − σz), (2.23)

where, to obtain the Pauli matrices σx, σy and σz, we use the vector representation of the proton

wave functions, i.e.,

| ↑〉 =

(
1
0

)
, | ↓〉 =

(
0
1

)
. (2.24)

The photon wave function. We see that the operator L̂ requires the knowledge of ~D jm(~k),

which following Ref. [Akhiezer 1965] we write as

~D jm

(
~k
)

=

j+1∑
l= j−1

al~D jlm

(
~k
)
, (2.25)
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2.3. MULTIPOLE EXPANSION OF COMPTON AMPLITUDE

where the spherical harmonic with spin is

~D jlm

(
~k
)

=
∑
σ

C jm
lh,1σYlh

(
~k
)
~εσ. (2.26)

Here Ylh

(
~k
)

is the spherical harmonic function of degree l and order h, h ≤ |l| is the projection

of orbital momentum, ~εσ is the photon polarization vector with σ = ±1 being the spin projection

of the photon. Notice that the coefficients al in Eq. (2.25) are not independent, because ~D jm

(
~k
)

must satisfy the transversality condition

~D jm

(
~k
)
· ~k = 0, (2.27)

here we denote with ~a · ~c the scalar product of vectors ~a and ~c. Therefore, there are only two

different photon states with given quantum numbers j and m. We denote them ~D(0)
jm

(
~k
)

and

~D(1)
jm

(
~k
)
. These functions are (cf. Ref. [Akhiezer 1965])

~D(1)
jm

(
~k
)

= i~D j jm

(
~k
)
× ~k =

1√
j( j + 1)

(
∂

∂~k
−~k

(
~k · ∂
∂~k

))
Y jm

(
~k
)
, (2.28)

~D(0)
jm

(
~k
)

= ~D j jm

(
~k
)

= − i√
j( j + 1)

~k × ∂

∂~k
Y jm

(
~k
)
, (2.29)

here we denote with ~a × ~c the cross product of vectors ~a and ~c. It can be shown that ~D(1)
jm

(
~k
)

and

~D(0)
jm

(
~k
)

have parities (−1) j and (−1) j+1 and correspond to states of electric and magnetic type.

The expressions that we will derive are cumbersome, however, we find them easier to read using

the following notations for the dot and cross products ~a ·~c→ (~a~c) and ~a×~c→ [
~a~c

]
, which we use

everywhere below.

To write the helicity amplitude it is enough to have projections of these wave functions onto

the states with definite helicity. To obtain them, we take the scalar product of ~D(1)
jm

(
~k
)

(~D(0)
jm

(
~k
)
)

and ~ε∗σ, i.e., (
~ε∗σ ~D

(1)
jm

(
~k
))

=
1√

j( j + 1)

(
~ε∗σ
∂

∂~k

)
Y jm

(
~k
)
, (2.30)(

~ε∗σ ~D
(0)
jm

(
~k
))

=
1√

j( j + 1)

(
i[~k ~ε∗σ]

∂

∂~k

)
Y jm

(
~k
)
. (2.31)

From now on instead of ~D(1)
jm

(
~k
)

and ~D(0)
jm

(
~k
)

we use
(
~ε∗σ ~D

(1)
jm

(
~k
) )

and
(
~ε∗σ ~D

(0)
jm

(
~k
) )

.

Allowed transitions. Clearly, not all transitions from j to j′ can be realized in nature. There-

fore, to write down a meaningful Lλ
′λ, we need to establish transitions allowed by the parity and

total angular momentum conservation laws. The rules of addition of angular momenta connect
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the quantum numbers J, j′ and j in the following way

J = j + 1/2 = j′ + 1/2, J = j − 1/2 = j′ − 1/2, (2.32)

J = j + 1/2 = j′ − 1/2, J = j − 1/2 = j′ + 1/2. (2.33)

The parity conservation gives another relation between j′ and j. For instance, when the initial

and final photons are in electric modes (below called the EE transition), then the parity conser-

vation law is (−1) j = (−1) j′ . This law implies that j′ = j + 2 n, where n is an integer. Therefore,

this scenario is realised only for J given in Eq. (2.32)

EE (−1) j = (−1) j′ , J = j + 1/2 = j′ + 1/2, J = j − 1/2 = j′ − 1/2. (2.34)

Similar arguments applied to other transitions yield

EM (−1) j = (−1) j′+1, J = j + 1/2 = j′ − 1/2, J = j − 1/2 = j′ + 1/2,

ME (−1) j+1 = (−1) j′ , J = j + 1/2 = j′ − 1/2, J = j − 1/2 = j′ + 1/2,

MM (−1) j+1 = (−1) j′+1, J = j + 1/2 = j′ + 1/2, J = j − 1/2 = j′ − 1/2.

(2.35)

Below we derive the operator L̂ for the EE and EM transitions. The results for the other transi-

tions can be obtained in a similar way.

EE transition. According to Eq. (2.34) the conservation of the total angular momentum

and parity in the photon-proton system leads to the following relation between the angular

momentum of initial and final photons

j′ = j, (2.36)

which allows us to write the function Lλ
′λ from Eq. (2.21) as

Lλ
′λ

EE =
1

j( j + 1)

(
~ε′
∂

∂~k′

)∗
Gλ′λ

EE , where

Gλ′λ
EE ≡

∑
M

CJM
jM−λ′, 12λ′

CJM
jM−λ, 12λ

(
~ε
∂

∂~k

)
Y jM−λ′

(
~k′

)
Y∗jM−λ

(
~k
)
. (2.37)

Here we omit the subscript σ′( σ) of vector ~ε′( ~ε) for simplicity. Inserting these expressions in

Eq. (2.23), we write down the angular operator,

L̂EE = 1
j( j+1)

(
~ε′ ∂
∂~k′

)∗
GEE ≡ 1

j( j+1)

(
~ε′ ∂
∂~k′

)∗
× (2.38)[

1
2 (1 + σz)G

1
2

1
2

EE + 1
2 (σx + iσy)G

1
2− 1

2
EE + 1

2 (σx − iσy)G−
1
2

1
2

EE + 1
2 (1 − σz)G−

1
2− 1

2
EE

]
.
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The EE transition assumes two possible values of j, i.e., j = J − 1/2 and j = J + 1/2 (see

Eq. (2.34)), which will yield two elements in the scattering matrix. Therefore, to proceed further,

we need calculate the GEE function for both values of j. For this we assume, that ~k′ = (0, 0, 1)

and ~k = (sinθ cosφ, sinθ sinφ, cosθ) (later we show, that this assumption does not affect the

generality of the final results). Then Y jM−λ′(~k′) , 0 only if M = λ′. Furthermore, in this case

M − λ = λ′ − λ = 0,±1, and, therefore, only the following spherical harmonics should be taken

into account

Y∗j0
(
~k
)

=
√

2 j + 1 P j(cosθ), Y∗j1
(
~k
)

= −
√

2 j + 1
j( j + 1)

sinθP′j(cosθ)e−iϕ,

Y∗j−1

(
~k
)

=

√
2 j + 1
j( j + 1)

sinθP′j(cosθ)eiϕ, Y j0

(
~k′

)
=

√
2 j + 1, (2.39)

where P j(cosθ) is the jth Legendre polynomial, and the derivative of P j(cosθ) is taken with

respect to its argument. After straightforward but tedious calculations we obtain GEE for j =

J − 1/2,

GEE =
{
(J + 1/2)

(
~k′~ε

)
− i

(
~σ
[
~k′~ε

])}
P′J−1/2 − i

(
~k′~ε

) (
~σ
[
~k′~k

])
P′′J−1/2, (2.40)

and GEE for j = J + 1/2,

GEE =
{
(J + 1/2)

(
~k′~ε

)
+ i

(
~σ
[
~k′~ε

])}
P′J+1/2 + i

(
~k′~ε

) (
~σ
[
~k′~k

])
P′′J+1/2, (2.41)

where the argument of the Legendre polynomials is (~k′~k). Note that expressions in (2.40) do

not depend on the direction of ~k′ individually, but on its relative position with respect to ~k and

~ε. Therefore, we can always rotate the system to direct ~k′ along the z-axis as the rotation of

the whole system does not change GEE. This means that the assumption we made above about

the direction of ~k′ does not affect the result for the function GEE but simplifies the calculation.

Finally, we substitute Eq. (2.40) into Eq. (2.38), and take the derivative with respect to ~k′. This

yields

L̂J−1/2
EE =

1
(J − 1/2)(J + 1/2)

{[
(J + 1/2)

(
~ε′∗~ε

)
− i

(
~σ
[
~ε′∗~ε

])]
P′J−1/2 +

[
(J + 1/2)

(
~k′~ε

) (
~ε′∗~k

)
− i

(
~σ
[
~k′~ε

]) (
~ε′∗~k

)
− i

(
~σ
[
~k′~k

]) (
~ε′∗~ε

)
− i

(
~σ
[
~ε′∗~k

]) (
~k′~ε

)]
P′′J−1/2

− i
(
~σ
[
~k′~k

]) (
~k′~ε

) (
~ε′∗~k

)
P′′′J−1/2

}
,
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L̂J+1/2
EE =

1
(J + 1/2)(J + 3/2)

{[
(J + 1/2)

(
~ε′∗~ε

)
+ i

(
~σ
[
~ε′∗~ε

])]
P′J+1/2 +

[
(J + 1/2)

(
~k′~ε

) (
~ε′∗~k

)
+ i

(
~σ
[
~k′~ε

]) (
~ε′∗~k

)
+ i

(
~σ
[
~k′~k

]) (
~ε′∗~ε

)
+ i

(
~σ
[
~ε′∗~k

]) (
~k′~ε

)]
P′′J+1/2

+ i
(
~σ
[
~k′~k

]) (
~k′~ε

) (
~ε′∗~k

)
P′′′J+1/2

}
,

(2.42)

where the superscript of L̂ j
EE defines the total angular momentum of the initial photon, j. Note

that Eq. (2.42) is written in a slightly different form, compared with the corresponding equation

in Ref. [Ritus 1957]. However, we checked that they are equivalent.

EM transition. For the EM transition the function Lλ
′λ from Eq. (2.21) reads

Lλ
′λ

EM =
1√

j′( j′ + 1) j( j + 1)

(
i
[
~k′ ~ε′∗

] ∂

∂~k′

) (
~ε
∂

∂~k

)∑
M

CJM
j′M−λ′, 12λ′

CJM
jM−λ, 12λ

Y j′M−λ′
(
~k′

)
Y∗jM−λ

(
~k
)
,

(2.43)

where the conservation of total angular momentum and parity (see Eq. (2.35)) implies that j′

can take only the following values

j′ = J − 1/2, for j = J + 1/2,

j′ = J + 1/2, for j = J − 1/2. (2.44)

We do the steps similar to the ones we have presented in the EE case and obtain the angular

operator L̂EM

L̂J+1/2
EM =

i

(J + 1/2)
√

(J − 1/2)(J + 3/2)

{
− (J − 1/2)

[(
~σ~s′

) (
~k′~ε

)
+

(
~σ~k′

) (
~s′~ε

)]
P′J+1/2

+
[
− (J − 3/2)

(
~σ~k′

) (
~k′~ε

) (
~s′~k

)
− (
~σ~ε

) (~s′~k) − (
~σ~k

) (
~s′~ε

)
+

(
~σ~s′

) (
~k′~ε

) (
~k′~k

)
+

(
~σ~k′

) (
~s′~ε

) (
~k′~k

)]
P′′J+1/2 −

(
~s′~k

) (
~k′~ε

) [(
~σ~k

)
−

(
~σ~k′

) (
~k′~k

)]
P′′′J+1/2

}
,

L̂J−1/2
EM =

i

(J + 1/2)
√

(J − 1/2)(J + 3/2)

{
− (J + 3/2)

[(
~σ~s′

) (
~k′~ε

)
+

(
~σ~k′

) (
~s′~ε

)]
P′J−1/2

+
[
− (J + 5/2)

(
~σ~k′

) (
~k′~ε

) (
~s′~k

)
+

(
~σ~ε

) (~s′~k) +
(
~σ~k

) (
~s′~ε

)
−

(
~σ~s′

) (
~k′~ε

) (
~k′~k

)
−

(
~σ~k′

) (
~s′~ε

) (
~k′~k

)]
P′′J−1/2 +

(
~s′~k

) (
~k′~ε

) [(
~σ~k

)
−

(
~σ~k′

) (
~k′~k

)]
P′′′J−1/2

}
,

(2.45)

where ~s′ ≡
[
~k′ ~ε′∗

]
.

The angular operators that correspond to the absorption of a magnetic photon, i.e., the MM

and ME transitions, can be obtained from Eqs. (2.42) and (2.45) by the following replacements
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(i) ~ε→ −i
[
~k~ε

]
in Eqs. (2.42) and (2.45),

(ii) ~ε′∗ → i
[
~k′ ~ε′∗

]
in Eq. (2.42),

(iii) i
[
~k′ ~ε′∗

]
→ ~ε′∗ in Eq. (2.45).

2.3.2 Derivation of the Helicity Amplitudes

In this section we derive the helicity amplitude, TH′,H. Recall that, by definition, it describes the

probability of the scattering in the (θ,ϕ)-direction for the incoming, along the z-axis, flux. In

Ref. [Jacob 1959], M. Jacob and G. C. Wick showed that for rotationally and parity invariant

systems the helicity amplitudes offer the most convenient way to describe the scattering pro-

cesses of particles with spin. For Compton scattering this follows from the observation that the

operator L̂ given in Eq. (2.42) maps an initial state of the photon-proton system with the helicity

H to a state with the helicity H′ simply times the Wigner d-function. For example, for the EE

transition with positive helicities of the initial and final particles (i.e., H = H′ = 1/2) we have

〈Q1/2 1/2| L̂J−1/2
EE |Q1/2 1/2〉 =

(
sin

θ
2
, −e−iϕ cos

θ
2

)
L̂J−1/2

EE

(
0
−1

)
= 1/2 (J − 1/2) e−iϕdJ

1
2

1
2
(θ),

〈Q1/2 1/2| L̂J+1/2
EE |Q1/2 1/2〉 =

(
sin

θ
2
, −e−iϕ cos

θ
2

)
L̂J+1/2

EE

(
0
−1

)
= 1/2 (J + 3/2) e−iϕdJ

1
2

1
2
(θ), (2.46)

where dJ
H′H(θ) is the Wigner d-function [Varshalovich 1988] and the spin functions of the proton

in an arbitrary direction (θϕ) are given by [Landau 1965]

Q1/2 1/2(θ,ϕ) =

(
cos θ

2

eiϕ sin θ
2

)
, Q1/2−1/2(θ,ϕ) =

(−e−iϕ sin θ
2

cos θ
2

)
. (2.47)

Note that in Eq. (2.46) the initial proton travels in the negative z-direction, whereas the final

proton is in the direction (π−θ,ϕ+π). The mapping in Eq. (2.46) naturally leads to the so-called

partial wave expansion

TH′,H =

∞∑
J=1/2

(2J + 1) TJ
H′,H dJ

H′,H(θ), (2.48)

where TJ
H′,H is the partial-wave helicity amplitude related linearly to S f i

J (ω) (see below).

To establish the amplitude TJ
H′,H we first connect TH′,H, with the help of Eq. (2.18), to the

already derived operator L

TH′,H =
∑

J

S f i
J (ω)

∫
d~k f

∫
d~ki ψ

∗
f

(
~k f

)
〈Q1/2λ′ | L̂ |Q1/2λ〉ψi

(
~ki

)
=

∑
J

S f i
J (ω)〈Q1/2λ′ | L̂ |Q1/2λ〉, (2.49)
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where the wave functions ψ∗f
(
~k f

)
and ψi

(
~ki

)
of the initial and final photons are given by δ-

functions, i.e., ψ∗f
(
~k f

)
= δ(cosθ f − cosθ) δ(ϕ f − ϕ) and ψi

(
~k
)

= δ(cosθi − 1) δ(ϕi), thus, the

integrations over ~k f and ~ki are trivial. The expectation value 〈Q1/2λ′ | L̂ |Q1/2λ〉 can be calculated

using the results of the previous section for the operator L̂ (see Eq. (2.46)). We derive the

amplitude TJ
H′,H by comparing Eqs. (2.48) and (2.49) .

The amplitude TJ
H′,H contains information about different transitions, i.e., EE, EM transition

etc., and it is possible to rewrite it in terms of the so-called multipole amplitudes, each of

which describes a certain transition. To do this we first note that there are 16 different helicity

amplitudes. However, discrete symmetries, such as parity (P) and time-reversal (T) invariance

connect different TH′,H as

P T−H′,−H = (−1)H′+H TH′,H,

T TH,H′ = (−1)H′+H TH′,H, (2.50)

reducing the number of independent amplitudes to six. Ordinarily, the following set of six

independent helicity amplitudes is chosen

Φ1 =
1

8π
√

s
T 1

2 ,
1
2
, Φ2 =

1
8π
√

s
T− 1

2 ,
1
2
, Φ3 =

1
8π
√

s
T− 3

2 ,
1
2
,

Φ4 =
1

8π
√

s
T 3

2 ,
1
2
, Φ5 =

1
8π
√

s
T 3

2 ,
3
2
, Φ6 =

1
8π
√

s
T− 3

2 ,
3
2
, (2.51)

where s is the standard Mandelstam variable. Using the derivations above we establish the

partial-wave amplitudes (cf. [Pfeil 1974])

Φ
L+ 1

2
1
2

=
1
4

{
(L + 2)2

(
f (L+1)−

EE ± f (L+1)−
MM

)
± L2

(
f L+
EE ± f L+

MM

)
∓ 2L (L + 2)

(
f L+
EM ± f L+

ME

)}
,

Φ
L+ 1

2
3
4

=
1
4

√
L(L + 2)

{
(L + 2)( f (L+1)−

EE ∓ f (L+1)−
MM ) ± L( f L+

EE ∓ f L+
MM) ∓ 2( f L+

EM ∓ f L+
ME)

}
,

Φ
L+ 1

2
5
6

=
1
4

L(L + 2){( f (L+1)−
EE ± f (L+1)−

MM ) ± ( f L+
EE ± f L+

MM) ± 2( f L+
EM ± f L+

ME)}, (2.52)

where L = J − 1/2, and we use the standard multipole amplitudes f j±
%%′ with %, %′ = E,M, e.g.,

f j+
EE corresponds to the amplitude of the process with the electric initial and final photons, the

superscript j indicates the total angular momentum of the initial photon j, whereas the plus sign

means that the total angular momentum of the system is J = j+1/2 (the minus sign corresponds

to J = j − 1/2). By definition f 0+
EE = f 0+

MM = f 0+
EM = f 0+

ME = 0. One should notice, that the multipole

amplitudes f (L+1)−
EM and f (L+1)−

ME are not shown in Eq. (2.52), because, due to the time reflection
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invariance, they are connected to f L+
ME and f L+

EM, i.e.,

f (L+1)−
EM = f L+

ME, f (L+1)−
ME = f L+

EM. (2.53)

Finally, we write how the amplitudes f j±
%%′ are connected to the energy-dependent part of the

amplitude S f i
J ,

f L+
EE =

1
L(L + 1)

SEE
j+1/2(ω), f (L+1)−

EE =
1

(L + 1)(L + 2)
SEE

j−1/2(ω),

f L+
MM =

1
L(L + 1)

SMM
j+1/2(ω), f (L+1)−

MM =
1

(L + 1)(L + 2)
SMM

j−1/2(ω), (2.54)

f L+
EM =

1

(L + 1)
√

L(L + 2)
SEM

j+1/2(ω), f L+
ME =

1

(L + 1)
√

L(L + 2)
SME

j+1/2(ω).

It is important to note that the multipole amplitudes that we have derived are functions of the

photon energy in the CM frame.

2.3.3 Relation between the Polarizabilities and Multipoles

In this section we connect the introduced polarizabilities to the multipoles f `±ρρ′ . In order to do

this, we divide the multipoles into the Born and the non-Born parts, i.e., f = f (B) + f̄ . The

Born part is related to L0 and L1, and, hence, depends only on M, e and κ (see Chapter 4).

The non-Born part is related to Lpol, and can be written in terms of the dynamical polarizabili-

ties [Guiasu 1979,Hildebrandt 2004,Griesshammer 2002],

f̄ 1+
EE (ω) =

ω2

3
[
αE1(ω) + ωγE1E1(ω)

]
, f̄ 1−

MM(ω) =
ω2

3
[
βM1(ω) − 2ωγM1M1(ω)

]
,

f̄ 1−
EE (ω) =

ω2

3
[
αE1(ω) − 2ωγE1E1(ω)

]
, f̄ 1+

EM(ω) =
ω3

6
γE1M2(ω), (2.55)

f̄ 1+
MM(ω) =

ω2

3
[
βM1(ω) + ωγM1M1(ω)

]
, f̄ 1+

ME(ω) =
ω3

6
γM1E2(ω).

where ω is the photon energy in the CM frame (see Supplementary Material 3.11). At low

energies these equations connect the multipoles to the static polarizabilities, as the low-energy

expansions of the dynamical polarizabilities are (cf. Ref. [Lensky 2015])

αE1(ω) = αE1 +
ωβM1

M
+ O(ω2),

βM1(ω) = βM1 +
ωαE1

M
+ O(ω2),

γE1E1(ω) = γE1E1 + ω

(
4γE1E1 + 7γM1E2 + 5γM1M1

8M
+
βM1

16M2

)
+ O(ω2),
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γM1M1(ω) = γM1M1 + ω

(
5γE1E1 + 7γE1M2 + 4γM1M1

8M
+

αE1

16M2

)
+ O(ω2),

γE1M2(ω) = γE1M2 + ω

(
2γE1M2 + 3γM1E2 + 3γM1M1

4M
− βM1

8M2

)
+ O(ω2),

γM1E2(ω) = γM1E2 + ω

(
3γE1E1 + 3γE1M2 + 2γM1E2

4M
− αE1

8M2

)
+ O(ω2). (2.56)

Later, in Chapter 4, we develop an approach based on the MEX that uses these relations to

establish the polarizabilities.

2.4 Summary

In this chapter we discussed the low-energy expansion and the multipole expansion of CS ampli-

tudes. For the LEX we introduced the effective Lagrangian that characterizes the electromagnetic

structure of the proton at low energies. Here we presented the terms that describe the interac-

tion of the photon with a pointlike proton and yield the Born part of the Feynman CS amplitude,

and the terms that define the scalar and spin polarizabilities and yield the non-Born part of the

amplitude. Subsequently, we found the contributions of the scalar and spin polarizabilities to

the invariant amplitudes A1, ...,A8, see Eqs. (2.11) and (2.16). These formulae comprise the

original part of this chapter. For the MEX we derived the multipole expansion of the helicity

amplitudes in terms of the conventional multipoles f `±ρρ′ and the polarizabilities.
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2.5. SUPPLEMENTARY MATERIAL

2.5 Supplementary Material

Derivation of Feynman Rules

To derive Feynman rules from our Lagrangian, we rewrite L as a sum of the non-interacting

and interaction terms, i.e., L = L0 + Lint, where Lint = L1 + L2 + .... Now, following the

standard procedure (see, e.g., Ref. [Peskin 1995]) we obtain propagators from the former, and

the vertices from the latter.

In order to do this, we write L0 as

L0 =
1
2
φi Pboson, real

i j φ j + χ∗i Pboson, complex
i j χ j + ψi Pfermion

i j ψ j, (SM2.57)

where φi denotes real boson fields (in our case the photon field), χi denotes complex boson

fields (we do not have this term in our effective Lagrangian, but we write it here for the sake of

generality), ψi denotes fermion fields (in our case the proton field). The matrix operator P here

is hermitian, and the corresponding inverse operator P−1 satisfies the equation∑
j

Pi j(x)P−1
jl (x − y) = δilδ

4(x − y). (SM2.58)

The propagator ∆F(k) in momentum space is given by the Fourier transform of P−1
i j (x) multiplied

by i, i.e.,

∆F(k) = i P̃−1
i j (k). (SM2.59)

Following this prescription we obtain the propagators from L0 in Eq. (2.4) for photons

∆F(k) = −i
gµν
k2 , (SM2.60)

and for protons

∆F(p) = i
p/ + M

p2 −M2 . (SM2.61)

To derive Feynman rules for the vertices, we write the interaction Lagrangian Lint as

Lint =
∑
n≥3

∫
d4x1...d4xn vi1...in(x, x1, ..., xn)φi1(x1)...φin(xn), (SM2.62)

where vi1...in(x, x1, ..., xn) describes interactions and, therefore, defines a vertex in coordinate

space, n is the number of fields (φi) in this vertex (in our case n = 3 for the NNγ vertex in-

teraction in L1 and n = 4 for the NNγγ vertex in L2 and L3). The vertex in momentum space
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is

i
∑
P f

(−1)σ(P f ) ṽi1...in(k1, ..., kn), (SM2.63)

where ṽi1...in(k1, ..., kn) is the Fourier transform of vi1...in(x, x1, ..., xn), the sum is taken over the all

possible permutations P f of the identical field operators, and σ(P f ) is the parity of the permuta-

tion P f with respect to the fermionic fields.

Using the presented algorithm and L1 from Eq. (2.5), we first derive the Feynman rule for

the vertex NNγ with a pointlike proton

i Γµ(p′, p + k) = ieγµ − ie
2M

κ
(
γµρp′ρ − γµδ(p + k)δ

)
, (SM2.64)

and then for the NNγγ vertex

i Γ
µν
(2)(k, k

′, p, p′) = 4πi
[
βM1(k · k′ gµν − kµ k′ν)

− αE1 + βM1

2M2 (p′αpβ + pαp′β) (k′αkβgµν − k′αkµgνβ − k′νkβgµα + k · k′ gµα gνβ)
]
,

(SM2.65)

which quantifies the contribution of the scalar polarizabilities to the amplitude. We note that

this rule is easier to derive after rewriting L2 in Eq. (2.6) as

L2 = πβM1NNF2 − 2π(αE1 + βM1)
M2 (∂αN)(∂βN)FαµFβνgµν. (SM2.66)

Finally, we use the third-order Lagrangian, L3 to obtain the contribution of the spin polariz-

abilities to the NNγγ vertex that we presented in Eq. (2.14).
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CHAPTER 3

Low-energy Expansion of Observables

This chapter presents the low-energy expansion of the observables of interest, and discusses how it

can be used to determine the scalar and spin polarizabilities of the proton. In particular, it shows

that the magnetic polarizability can be determined from the low-energy measurement of the beam

asymmetry. To support this statement, it presents the results of the proof-of-the-principle experiment

that was recently carried out in Mainz.

3.1 Introduction

Here we discuss the proton polarizabilities, introduced in Chapter 2, in more detail, and con-

nect them to the four Compton scattering observables, the unpolarized cross section, dσ/dΩ,

the beam asymmetry, Σ3, and the beam-target assymetries, Σ2x and Σ2z. In order to do so, we

calculate the low-energy Compton scattering amplitude using the effective Lagrangian given in

Eq. (2.2), i.e., we compute the Feynman diagrams presented in Fig. 3.1. Here graphs 3.1a and

3.1b depict the Born contribution, which can be calculated exactly (for details see Supplemen-

tary Material 3.11), and graph 3.1c illustrates the non-Born (NB) contribution. The former does

not contain the polarizabilities, therefore, in this chapter we only work with the latter, which in

lowest orders contains the two scalar and four spin polarizabilities.

The chapter is organized as follows. Firstly, we introduce the Compton scattering observ-

ables. Secondly, we express these observables in terms of the invariant response functions.

Thirdly, we use the obtained expressions to study the beam asymmetry, Σ3, and to derive the

main result of this chapter – Eq. (3.24) for the low-energy expansion of Σ3. This equation allows

us to suggest that the low-energy measurement of Σ3 can be used for the precision determina-

tion of the proton magnetic polarizability βM1. Fourthly, we present the low-energy expansions

of Σ2x and Σ2z, for which the leading order non-Born terms depend on the spin polarizabilities.

3.2 CS Cross Section and Spin Asymmetries

Observables measured in Compton scattering experiments can be divided into two categories —

unpolarized and polarized [Babusci 1998a]. In the former the initial and final states do not have

definite polarizations, and in calculations one needs to sum over the all possible polarizations of
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(a) s-channel (b) u-channel (c) seagull

Figure 3.1: Feynman diagrams for low-energy Compton scattering off a nucleon.

the outgoing particles and average over the polarization of the incoming particles; in the latter

the system is polarized, these observables can be further divided into the single polarized (either

the initial photon or the nucleon is polarized) and doubly polarized (both – the photon and the

nucleon – are polarized). In this thesis, we work with one unpolarized, one single-polarized

and two doubly-polarized observables. However, before we write them down, we introduce

the variables on which they depend, the 4-momentum, k (k′), the polarization vector, εσ (ε′σ′),

the helicity σ = ±1 (σ′ = ±1) of the incoming (outgoing) photon, the helicity of the incoming

(outgoing) proton, λ = ±1/2 (λ′ = ±1/2), and the scattering angle in the laboratory frame, θlab

(cf. Supplementary Material 3.11). Note that for the circularly-polarized photon, εσ is

ε(σ) = 1√
2
(0, −σ, −i, 0), (3.1)

whereas for a linearly-polarized photon with the polarization vector that makes the angle φ with

the scattering plane, it is

ε(σ) = (0, cosφ, sinφ, 0). (3.2)

Finally, we can introduce the observables relevant for our investigation

(i) The unpolarized cross section,

dσ
dΩ

=
1
4

∑
σ′,λ′,σ,λ

dσσ′,λ′,σ,λ
dΩ

, (3.3)

where dσσ′,λ′,σ,λ/dΩ is the cross section that corresponds to definite helicities of the in-

coming and outgoing particles, the factor 1/4 appears here due to the averaging over the

all possible polarizations of the incoming particles.

(ii) The beam asymmetry, Σ3(φ), for the processes in which the photons with linear polariza-

tion (cf. Eq. (3.2)), are scattered off the unpolarized target

Σ3(φ) ≡ dσφ − dσφ+π/2

dσφ + dσφ+π/2
, (3.4)
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Figure 3.2: The schematics of the scattering process in which circularly polarized photons are scat-
tered off a target polarized either longitudinally (left figure) or transversely (right figure). The variables
k, k′, εσ, λ and θlab are defined in the text.

where dσφ = 1/2
∑
σ′,λ′,λ dσσ′,λ′,φ,λ, i.e., the sum over the all possible polarizations of the

outgoing particles, and the average over the polarization of the proton target, note that the

polarization of the incoming photon is fixed. For the sake of generality, in this chapter we

do not specify the angle φ. However, later, we choose to work with φ = 0 (see chapter 3.6).

(iii) The beam-target asymmetries for the processes in which the circularly-polarized photons

are scattered off the target polarized in the scattering plane (xz-plane). In this dissertation

we study the processes with the target polarized either along the z-axis or x-axis (see

Fig. 3.2 for illustration), and the two corresponding beam asymmetries,

(a) i.e., for the longitudinal polarization (the target is polarized along the z-axis) we

work with the following beam-target asymmetry

Σ2z ≡
dσ

1, 1
2
− dσ−1, 1

2

dσ
1, 1

2
+ dσ−1, 1

2

, (3.5)

(b) and for the transversal polarization (the target is polarized along the x-axis) we

work with

Σ2x ≡ dσ1, x − dσ−1, x

dσ1, x + dσ−1, x
. (3.6)

Note, that besides these four observables, there are other single and doubly polarized observ-

ables (see, e.g., Ref. [Babusci 1998a]). We do not include them in our analysis because they are

negligibly small at the energies of our interest, i.e., below the pion production threshold. How-

ever, for the sake of completeness, we write a few other observables in terms of the invariant

response functions in the Supplementary Material 3.11. The expressions in this Supplementary

Material together with the ones in Eqs. (3.3)-(3.6) form a minimal closed set of observables in

CS with a polarized initial state (cf. Ref. [Babusci 1998a]).
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3.3 Invariant Response Functions

To obtain expressions for the above defined observables, we need to find the cross section for

a given initial helicity, dσH. To find it we first calculate the sum of1 |TH′,H|2, taken over the all

possible polarizations of the final state – the observables of interest describe the processes with

unpolarized outgoing particles, hence the sum. If the sum is known, then dσH is easily obtained

(see, e.g., Ref. [Itzykson 1980])

dσH = Γ
∑
H′
|TH′,H|2 with Γ =

4π
(s −M2)2 dt, (3.7)

where s = (p + k)2 and t = (k − k′)2 are the standard Mandelstam invariants.

To find
∑ |TH′,H|2, we write the helicity amplitude as

TH′,H = ūλ′(p′)M%νuλ(p)ε∗(σ′)%ε(σ)ν, (3.8)

where M%ν is the Feynman amplitude for Compton scattering (the diagrams are sketched in

Fig. 3.1), uλ is the normalized helicity spinor, i.e., ūλ′uλ = 2M. Now, we use the sums over the

final states
∑
λ′ uλ′(p′)ūλ′(p′) = p/ ′+M and

∑
σ′ ε
∗
(σ′)%ε(σ′)δ = −g%δ to obtain (cf. Ref. [Peskin 1995])

3/2∑
H′=−3/2

|TH′,H|2 = − ūλ(~p)
[
M%µ (

p/ ′ + M
)M ν

%

]
uλ(~p) ε∗(σ)µε(σ)ν, (3.9)

where M is the proton mass. Note that this expression is Lorentz invariant, therefore, any ref-

erence frame can be used for the analysis. We choose to work in the laboratory frame (i.e.,

p = (M,~0)), where some calculations are simpler. For instance, such a choice implies that

ū(0)γ5 u(0) = 0. Note also that the phase-space factor, Γ, here can be expressed in terms of

the solid angle Ωlab using that dt =
(ν′)2

π dΩlab, here ν′ is the energy of the outgoing photon (see

Supplementary Material 3.11).

We see that to calculate the dσH, we need to know theM%ν. For the low-energy scattering

we obtain the latter in the next section using the Feynman rules. In the rest of this section, we

would like to present the general structure of
∑

H′ |TH′,H|2, i.e., we write down the all possible

structures that can appear after inserting M%ν into Eq. (3.9), and express the observables in

terms of these structures. These expressions will be used later to simplify the discussion.

1Recall that TH′ ,H denotes the helicity amplitude, defined in Chapter 2, here H′, H are the helicities of the outgoing
and incoming particles, p (k) and p′ (k′) are the initial and final 4-momenta of the proton (photon).
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The most general form of
∑

H′ |TH′,H|2 is∑
H′
|TH′,H|2 = 4

{
R0 + |n′ · ε(σ)|2R1 + ūλ(0)γµνuλ(0)

[
ε∗(σ)µε(σ)ν R2

+ (nµε(σ)ν − nµε∗(σ)ν) n′ · ε(σ)R3 + (n′µε(σ)ν − n′µε∗(σ)ν) n′ · ε(σ)R4

+ i(nµε(σ)ν + nµε∗(σ)ν) n′ · ε(σ)R5 + i(n′µε(σ)ν + n′µε∗(σ)ν) n′ · ε(σ)R6

+ i nµn′ν |n′ · ε(σ)|2 R7

]}
, (3.10)

where Ri = Ri(s, t) are scalar functions which depend only on the Mandelstam invariants. The

4-momenta n = k
|~k| = (1, 0, 0, 1) and n′ = k′

|~k′| = (1, sinθlab, 0, cosθlab) show, respectively, the

directions of the incoming and outgoing photon in the laboratory frame (see Supplementary

material 3.11).

To proceed further we establish ūλ(0)γµνuλ(0) in terms of the arbitrary 4-vectors k̃ and q̃,

ū±z(0) k̃ · γ · q̃ u±z(0) ≡ ū±z(0)γµνu±z(0)k̃µq̃ν = ±i(k̃2q̃1 − k̃1q̃2), (3.11)

ū±x(0) k̃ · γ · q̃ u±x(0) = ±i(k̃3q̃2 − k̃2q̃3) , (3.12)

here the spinors u±z are used for the longitudinal polarization of the target (the polarization

along the z-direction (λ = ±1/2)), whereas the spinors u±x are used for the transverse polariza-

tion of the target (i.e., along the x-axis), thus, they are connected to uλ as

u±x(~p) = 1√
2

[
u−1/2(~p) ± u1/2(~p)

]
. (3.13)

By inserting these identities into Eq. (3.10) we write the cross sections in terms of the functions

R0, ...,R6,

dσσ,±z = Γ
[
R0 + 1

2 R1 sin2 θlab ± σ(R2 − R4 sin2 θlab)
]
,

dσσ,±x = Γ
[
R0 + 1

2 R1 sin2 θlab ± σ sinθlab(R3 + R4 cosθlab)
]
,

dσφ,±x = Γ
[
R0 + R1 sin2 θlab cos2 φ ± sinθlab sin 2φ(R5 + R6 cosθlab)

]
,

dσφ,±z = Γ
[
R0 + R1 sin2 θlab cos2 φ ∓ R6 sin2 θlab sin 2φ

]
, (3.14)

here the subscript defines the initial helicity – the first symbol is the polarization of the photon,

either circular with σ = ±1 or linear at angle φ (cf. Eq. (3.2)), and the second one is the

polarization of the proton. Using these equations we establish dσ (cf. Eq. (3.3))

dσ =
1
4

∑
σ=±1

(
dσσ,+z + dσσ,−z

)
, (3.15)

and dσφ which determines Σ3(φ) (cf. Eq. (3.4)),
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dσφ =
1
2

(dσφ,+z + dσφ,−z) = Γ
[
R0 + R1 sin2 θlab cos2 φ

]
. (3.16)

Now we use the established polarized cross sections to obtain the unpolarized cross section

and the asymmetries in terms of the functions Ri

dσ
dΩlab

=
( 2 ν′

s −M2

)2 [
R0 + 1

2 R1 sin2 θlab

]
. (3.17)

Σ2z =
R2 − R4 sin2 θlab

R0 + 1
2 R1 sin2 θlab

, (3.18)

Σ2x =
sinθlab (R3 + R4 cosθlab)

R0 + 1
2 R1 sin2 θlab

, (3.19)

Σ3(φ) =
R1 sin2 θlab cos 2φ

2R0 + R1 sin2 θlab
, (3.20)

Σ3 ≡ Σ3(0) =
R1 sin2 θlab

2R0 + R1 sin2 θlab
. (3.21)

Below we use these expressions2 to obtain the low-energy expansions of the corresponding

observables.

3.4 Low-energy Expansion. Contribution of Scalar Polarizabilities

In this subsection we obtain the low-energy expansion (LEX) of the Ri functions, i.e., here we

compute the leading order non-Born (NB) terms that contain the scalar polarizabilities. In order

to do so, we decompose the Feynman amplitude in Eq. (3.9) into the Born and non-Born parts,

Mµν = Mµν
B + Mµν

NB(2). The subscript (2) on the NB amplitude indicates that here we are

interested only in the contribution of αE1 and βM1, and, hence, we disregard the higher-order

polarizabilities, such as spin, quadrupole polarizabilities etc., which are also contained inMµν
NB.

The Born part, Mµν
B , is well-known and we give the expression for it in the Supplementary

Material 3.11. The non-Born part,Mµν
NB(2), can be obtained using the effective Lagrangian, see

Eq. (2.8) and chapter 2. Now we insert Mµν
B +Mµν

NB(2) in Eq. (3.9), and compare the result

with Eq. (3.10). Such a comparison allows us to obtain the energy expansions of the functions

Ri, which determine the observables of interest, see Eqs. (3.17)-(3.21). We present the Born

2See Supplementary Material 3.11 for the expressions of a few other important observables which, however, are
not relevant at the energies of interest. See also the discussion in Section 3.2.
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contribution in the Supplementary Material 3.11, and the leading order NB terms here3

RNB(2)
0 =

π e2

8M
αE1

(
ν2 + ν′ 2

) [
−8M2 − (1 + κ)2 t (1 + zlab) + 2t

]
+

π e2

8M
βM1

(
t + ν2 + ν′ 2

) [
−8M2 − (1 + κ)2 t (1 + zlab) + 2t

]
+

πM2

2
αE1βM1

(
ν2 + ν′ 2

) (
t + ν2 + ν′ 2

)
+
πM2

4
α2

E1

(
ν2 + ν′ 2

)2

+
πM2

4
β2

M1

(
t + ν2 + ν′ 2

)2
+ O(ν5),

RNB(2)
1 = −π e2

4M
αE1νν

′ [−8M2 + 3t + κ(2 + κ)
(
ν2 + ν′ 2

)]
− π e2

4M
βM1νν

′ [(1 + κ)2t + 2t + κ(2 + κ)
(
ν2 + ν′ 2

)]
− πM2α2

E1ν
2ν′ 2

+ πM2β2
M1ν

2ν′ 2 + O(ν5),

RNB(2)
2 =

π e2

4
αE1

[
−(1 + κ)2(1 − zlab) + κ2

]
(ν + ν′)

(
ν2 + ν′ 2

)
+

π e2

4
βM1

[
−(1 + κ)2(1 − zlab) + κ2

]
(ν + ν′)

(
t + ν2 + ν′ 2

)
+ O(ν5),

RNB(2)
3 = −π e2

4M
αE1

[
−Mν′

(
4ν2 − νν′ + ν′ 2

)
−Mκ

(
ν3 + 3ν2ν′ + 2ν′ 3

)
− κ2νν′ 3

− Mκ2
(
ν3 − ν2ν′ + νν′ 2 + ν′ 3

)
+ 2M2(1 + κ) ν(ν − ν′)

]
− π e2

4M
βM1

[
−Mν′

(
4ν2 − νν′ + ν′ 2

)
−Mκ

(
ν3 + 5ν2ν′ − 2νν′ 2 + 2ν′ 3

)
− κ2νν′ 3

− Mκ2
(
ν3 + ν2ν′ + νν′ 2 + ν′ 3

)
+ 2M2(1 + κ)2 (ν2 − ν′ 2)

]
+ O(ν5),

RNB(2)
4 = −π e2

4M
αE1ν

′ [M(1 + κ)
(
2ν2 + ν′ 2 + νν′

)
+ 2Mνν′κ − κ2ν3

]
− π e2

4M
βM1ν

′ [M(1 + κ)
(
2(1 + κ)ν2 + ν′ 2 + νν′

)
− 2M2(1 + κ)(ν − ν′) − κ2ν3

]
+ O(ν5),

RNB(2)
5 = 0,

RNB(2)
6 = 0,

RNB(2)
7 = 0. (3.22)

where κ is the anomalous magnetic moment of the proton and zlab = cosθlab. Note that we

do not include here the spin polarizabilities which start to contribute at the order ν3 , and the

fourth-order scalar polarizabilities αE2, βM2, αE1ν, and βM1ν which are relevant at the order ν4.

In the following sections we use these expressions to write down the LEX of the unpolarized

cross section and the beam asymmetry. Certainly, the LEX approach has a limited region of

3It is worthwhile noting that the leading order NB terms (of the order O(ν2)) in the sum
∑

H′ |TH′ ,H |2, and, hence,
in observables, come from the interference ofMµν

B andMµν
NB(2).
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applicability (well below the pion production threshold), where precision measurements are

currently not feasible. However, it can give us an idea of which observable is sensitive to which

quantity and motivate future theoretical and experimental studies.

3.5 Low-energy Expansion of dσ/dΩ

Here we obtain the LEX of the unpolarized cross section. In order to do this, we insert the ex-

pressions in Eq. (3.22) into Eq. (3.17), and obtain the well-known formula (see, e.g., Ref. [Max-

imon 1989])

dσ(NB)

dΩlab
= − α

M

(
ν′

ν

)2
νν′

[
αE1

(
1 + cos2 θlab

)
+ 2βM1 cosθlab

]
+ O(ν3), (3.23)

where α = e2/4π is the fine-structure constant. We see that the leading order non-Born contri-

bution to dσ/dΩ is determined by a linear combination of αE1 and βM1. For instance, at θlab = 0

the cross section is proportional to αE1 +βM1, and at θlab = π to αE1−βM1. Therefore, a precision

measurement of dσ/dΩlab at different angles should allow one to extract αE1 and βM1. That is the

reason why the unpolarized cross section is commonly considered to be a good observable to de-

termine the scalar polarizabilities. It is important to notice though, that at very low energies the

non-Born contribution in Eq. (3.23) is highly suppressed (due to the νν′ factor), and dσ/dΩlab is

mainly determined by the Born contribution. This makes it difficult, if at all possible, to measure

the effect of the polarizabilities at those energies. At higher energies the sensitivity to the polar-

izabilities is higher, which motivated experiments done at energies exceeding 100 MeV, i.e., not

small compared to the pion mass, mπ. However, at these energies (around the pion-production

threshold) the higher-order terms in Eq. (3.23) become substantial. This indicates that the LEX

does not work in this energy regime, and, to extract the polarizabilities, one needs to resort

to model-dependent approaches. For example, one can use BChPT or dispersion relation (DR)

(see [Drechsel 2003,Schumacher 2005] for reviews) which demonstrate their predictive power

in many quantum low-energy problems. Note, however, that as these approaches might have

very different starting points, their outcomes are not guaranteed to coincide with one another.

For instance, the value of the magnetic polarizability, obtained using the DR approach and fitted

to the unpolarized Compton scattering data, is not in consistence with calculated in BChPT. In

Chapter 4 we show that this discrepancy might be due to the inconsistency of the experimen-

tal data used by DR. In any case, as the value of βM1 is small, there is a necessity to find an

observable sensitive to the magnetic polarizability alone, which would allow one to determine

βM1 independently of αE1. Below we show that the beam asymmetry, Σ3, could serve as such an

observable.
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3.6. LOW-ENERGY EXPANSION OF Σ3

3.6 Low-energy Expansion of Σ3

Now we insert the functions Ri from Eq. (3.22) into Eq. (3.21) to derive the leading order

non-Born contribution to Σ3,

Σ
(NB)
3 = −4Mν2 cosθlab sin2 θlab

α(1 + cos2 θlab)2 βM1 + O(ν3). (3.24)

The derived equation shows that the leading (in the LEX) effect of the electric polarizability can-

cels out, while the effect of the magnetic polarizability remains. Hence, the beam asymmetry

should be optimal for a precision measurement of βM1 independently of αE1. It is worthwhile not-

ing that Eq. (3.24) retains its form in the Breit (brick-wall) or center-of-mass reference frames.

For instance, in the Breit frame we have

Σ
(NB)
3 = −4Mω2

B cosθB sin2 θB

α(1 + cos2 θB)2 βM1 + O(ω4
B), (3.25)

where ωB and θB are the energy and the angle in the Breit frame (see Supplementary Mate-

rial 3.11).

One should keep in mind that Eq. (3.24) is valid only at low energies. Unfortunately, as we

have already mentioned in the previous section, low-energy Compton experiments on the proton

are difficult to analyze, because of small cross sections and overwhelming QED backgrounds.

Today, a precision measurement is only feasible for photon-beam energies above 60 MeV and

scattering angles greater than 40 degrees. For instance, the recent experiments at MAMI were

carried out at photon energies between 80 and 150 MeV. At these energies the effect of higher-

order terms may become substantial, and one must check the applicability of the leading LEX

term. One way to do that is to compare Eq. (3.24) with the corresponding results of the

dispersion relation or chiral perturbation theory calculations. We demonstrate a comparison

to the latter calculations in Fig. 3.3, where the leading-LEX and the next-next-to-leading order

(NNLO) BChPT (cf. Ref. [Lensky 2010]) terms of Σ3 are plotted for different values of βM1.

From Fig. 3.3 one sees that for the beam energy of 100 MeV and forward directions (upper left

panel) the LEX is in a good agreement with BChPT. At the same time the results for the beam

energy of 135 MeV (lower panels) suggest that the leading LEX result does not apply at such

energies.

Figure 3.3 shows that Σ3 depends strongly on βM1. This observation together with the fact

that many systematic errors tend to cancel out for the beam asymmetry, suggests that it should

be feasible to obtain an accurate value of βM1 from Σ3.

To find the optimal kinematic parameters that will allow experimentalists to determine βM1

by measuring Σ3, one should know the kinematic region where the higher-order terms are small,

37



CHAPTER 3. LOW-ENERGY EXPANSION OF OBSERVABLES

                                                           

0 1 2 3 4 5 6
-65

-60

-55

-50

Σ 3 x
 1

00

Born
Born + O(ω2)
NNLO 

0 1 2 3 4 5 6
-10

-8

-6

-4

0 1 2 3 4 5 6
-45

-40

-35

-30

-25

0 1 2 3 4 5 6
-2

-1

0

1
120o

(c
os

2 θ
 d
σ y- d

σ x)/d
Ω

 (n
b/

sr
)

60o

120o60o

β M1 (10-4 fm3)

Eγ = 135 MeV

0 1 2 3 4 5 6
-65

-60

-55

-50

Σ 3 x
 1

00

Born

Born + O(ω2)
NNLO 

0 1 2 3 4 5 6
-5

-4

-3

-2
0 1 2 3 4 5 6

-50

-45

-40

-35

0 1 2 3 4 5 6
-2

-1

0

1
120o

(c
os

2 θ
 d
σ y- d

σ x)/d
Ω

 (n
b/

sr
)

60o

120o60o

β M1 (10-4 fm3)

Eγ = 100 MeV

0 1 2 3 4 5 6
-65

-60

-55

-50

Σ 3 x
 1

00

Born
Born + O(ω2)
NNLO 

0 1 2 3 4 5 6
-10

-8

-6

-4

0 1 2 3 4 5 6
-45

-40

-35

-30

-25

0 1 2 3 4 5 6
-2

-1

0

1
120o

(c
os

2 θ
 d
σ y- d

σ x)/d
Ω

 (n
b/

sr
)

60o

120o60o

β M1 (10-4 fm3)

Eγ = 135 MeV

                                                           

0 1 2 3 4 5 6
-65

-60

-55

-50

Σ 3 x
 1

00

Born
Born + O(ω2)
NNLO 

0 1 2 3 4 5 6
-10

-8

-6

-4

0 1 2 3 4 5 6
-45

-40

-35

-30

-25

0 1 2 3 4 5 6
-2

-1

0

1
120o

(c
os

2 θ
 d
σ y- d

σ x)/d
Ω

 (n
b/

sr
)

60o

120o60o

β M1 (10-4 fm3)

Eγ = 135 MeV

Figure 3.3: The beam asymmetry Σ3 shown as a function of βM1 for the fixed photon energies of 100
MeV (upper panel) and 135 MeV (lower panel) and scattering angles of 60 (left panels) and 120 (right
panels) degrees. The dashed green curve corresponds the Born contribution, the dash-dotted magenta —
leading LEX formula (3.24) and the red solid curve — NNLO BChPT [Lensky 2010].

and Σ
(NB)
3 is given by Eq. (3.24). To provide this information we take the contributions of the

order of O(ν3) and O(ν4) to Σ
(NB)
3 to the beam asymmetry into consideration

Σ
(NB)
3 = − 4 cosθlab sin2 θlab

(1 + cos2 θlab)2

M3βM1

α

(
ν
M

)2 {
1 +

ν
M

(−1 + cosθlab)

+
(
ν
M

)2
[

a1(cosθlab) +
M3αE1

α

]}
+

sin2 θlab

(1 + cos2 θlab)2

(
ν
M

)4
[
a2(cosθlab)

M3αE1

α

+ a3(cosθlab)
(

M3βM1

α

)2 + O(ν5), (3.26)
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where the dimensionless coefficients depend on the angle as

a1(zlab) =
1

4zlab

(
1 + z2

lab

) [
−1 − 4zlab + 7z2

lab + z3
lab − 8z4

lab + 5z5
lab + 2zlab (−8 + 16zlab

− 7z2
lab + z4

lab

)
κ + zlab

(
−32 + 40zlab + z2

lab + z4
lab

)
κ2 + 4zlab

(
−5 + 4zlab + 3z2

lab

)
κ3

+ zlab

(
−5 + 3z2

lab

)
κ4

]
,

a2(zlab) = 2 − zlab − z2
lab + 2

(
2 − 4zlab + z2

lab

)
κ +

(
7 − 10zlab − 2z2

lab

)
κ2 + 4

(
1 − zlab − z2

lab

)
κ3

+
(
1 − z2

lab

)
κ4,

a3(zlab) =
2
(
1 − 6z2

lab + z4
lab

)
1 + z2

lab

(3.27)

with zlab = cosθlab. To obtain these equations we have used the functions Ri from Eq. (3.22)

in Eq. (3.21). We remind the reader that here we do not include contributions of the higher-

order polarizabilities that appear at the orders ν3 and ν4. For instance, we disregard the spin

polarizabilities (at ν3 and ν4) and the fourth-order scalar polarizabilities4 αE2, βM2, and βM1ν

(at ν4). Note, however, that the contribution of the fourth-order scalar polarizabilities can be

recovered by the following replacement in the O(ν2) term

βM1 → βM1 + ν2
(
βMν − 1

12αE2 + 1
6βM2 cosθlab

)
. (3.28)

The spin polarizabilites5 and the O(ν4) part of the scalar polarizabilities (cf. Fig. 3.4) are impor-

tant only in the backward scattering. We demonstrate this fact in Fig. (3.4). Here the curve that

depicts the O(ν2) terms differs for the backward scattering from the curve that shows the O(ν4)

contribution. On the other hand, we see that the curves practically coincide at angles below

60 degrees, demonstrating a negligible effect of the O(ν3) and O(ν4) terms at these kinematics.

Therefore, to extract βM1, we propose to study only the forward scattering, i.e., θlab . 60 degrees,

(see Fig. 3.4). It is worthwhile noting that at θlab = 60 degrees the leading-order LEX result is

also very close to the BChPT result (see Fig. 3.3), confirming the near-perfect cancellation of

higher-order terms.

3.7 Measurement of Σ3

As argued in the previous section, the optimal way to determine the magnetic polarizability

from CS is to measure the beam asymmetry at low energies. To date, this observable has only

been measured well above the pion-production threshold where the LEX is not expected to hold.

4Note that we do not consider here the dispersive polarizability αE1ν as it starts to contribute to Σ3 only at ν6.
5See the corresponding expressions in Section 3.8
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Figure 3.4: The beam asymmetry Σ3 as a function of the scattering angle for the photon energy of 100
MeV. The dot-dashed purple curve corresponds to the leading LEX formula (3.24) and the red solid curve
is the sum of the contributions O(ν2), O(ν3) and O(ν4). The latter curve contains the contributions of the
scalar dipole polarizabilities (cf. Eq. (3.26)), spin (cf. Eq. (3.35)) and fourth-order scalar polarizabilites
(cf. Eq. (3.28)). The values of the scalar polarizabilities in the analysis are taken from PDG [Olive 2014],
αE1 = 11.2 [10−4fm3] and βM1 = 2.5 [10−4fm3], and the spin and fourth-order scalar polarizabilities from
BChPT [Lensky 2015], γE1E1 = −3.3 [10−4fm4], γE1M2 = 0.2 [10−4fm4], γM1E2 = 1.1 [10−4fm4], γM1M1 =

2.9 [10−4fm4], αE2 = 17.3 [10−4fm5], βM2 = −15.5 [10−4fm5] and βMν = 7.1 [10−4fm5].

However, very recently, inspired by our suggestion [Krupina 2013], the A2 collaboration at the

Mainz Microtron (MAMI) has provided the very first proof-of-principle measurements of the

beam asymmetry below the threshold. In this section we discuss this experiment. In particular,

we will argue that its characteristic energies are beyond the range of the applicability of the LEX,

and analyze the data using ChPT. We will also sum up the implication of these results for the

LEX-based approach.

The A2 experiment starts with an electron beam which passes through a diamond radiator

producing coherent linearly-polarized photons in the three energy ranges ν = 76 − 98, 98 −
119, 119 − 139 MeV. These photons are then shoot to the unpolarized liquid hydrogen target

and those which undergo an elastic scattering with the proton are detected in the Crystal Ball

detector [Starostin 2001]. The beam asymmetry is obtained by counting the number of events

for given scattering angles θ and φ [Sokhoyan 2016]. The dependence of the beam asymmetry

on the azimuthal angle φ, which defines the angle between the photon polarization vector and
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the scattering plane, see Eq. (3.4), is simply factorized (cf. Eqs. (3.20) and (3.21)),

Σ3(φ) = Σ3 cos 2φ. (3.29)

Here Σ3 ≡ Σ3(0) =
dσ||−dσ⊥

2dσ , where σ||, σ⊥ are the cross sections with the photon polarization ei-

ther parallel or perpendicular to the scattering plane. In the experiment the scattering plane, and

hence φ = 0, cannot be fixed, thus, we obtain Σ3 by fitting the φ-distributions using Eq. (3.29),

see Fig. 3.5. Note that the collected data are divided into 30 degree-wide bins in the azimuthal

angle φ bringing an additional factor of 6/π sinπ/6 to Eq. (3.29) due to the averaging over the

bin width.

150− 100− 50− 0 50 100 150
1−

0.5−

0

0.5

13Σ

]° [φ

Figure 3.5: The φ-dependence of the beam asymmetry. The black points are the experimental data
collected at the MAMI [Sokhoyan 2016], and the black curve shows the fit of these data to Eq. (3.29).

The obtained data are divided into seven bins in the polar angle with the central values

at θlab = 35, 50, 70, 90, 110, 130, 147.5 degrees, and presented in Fig. 3.6. The figure clearly

indicates the importance of the polarizability contributions by showing the deviation of the data

from the Born terms. Note, however, that in most cases the data points lie outside the region

of the applicability of the LO [O(ν2)] low-energy result from Eq. (3.24). This statement can

be proved by comparing the LO contribution with the fourth-order terms6 [O(ν4)] in the LEX.

In particular, the leading-order of the LEX at ν = 119 − 139 MeV deviates significantly from the

fourth-order contribution. Moreover, we notice that even at ν = 76−98 MeV and θlab > 60 deg the

O(ν4) term is at least as important as the LO contribution. Therefore, we conclude that for these

parameters the LEX converges slow, and, thus, we cannot extract the magnetic polarizability

from the data using the LEX. Ideally, we could do that at ν = 76 − 98 MeV and θlab . 60 deg,

6Here we include the contributions of the scalar polarizabilities from Eq. (3.26), as well as the contributions of
the spin polarizabilities from Eq. (3.35) and fourth-order scalar polarizabilities from Eq. (3.28).
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Figure 3.6: The beam asymmetry Σ3 as a function of the scattering angle for the three photon energy
bins. The black points are the experimental data from MAMI [Sokhoyan 2016]. The green dashed
curve corresponds to the Born contribution, the dot-dashed purple curve represents the leading LEX
formula (3.24), and the red solid curve corresponds to the contribution of the order of O(ν4) from
Eqs. (3.26), (3.35) and (3.28). The values of the scalar polarizabilities are taken from PDG [Olive 2014],
αE1 = 11.2 [10−4fm3] and βM1 = 2.5 [10−4fm3], and the spin and fourth-order scalar polarizabilities
from BChPT [Lensky 2015], γE1E1 = −3.3 [10−4fm4], γE1M2 = 0.2 [10−4fm4], γM1E2 = 1.1 [10−4fm4],
γM1M1 = 2.9 [10−4fm4], αE2 = 17.3 [10−4fm5], βM2 = −15.5 [10−4fm5] and βMν = 7.1 [10−4fm5].

where, as we discussed in the previous section, the LEX converges fast. However, the figure
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clearly shows that it is not feasible at the moment as the current data have too large error bars.

Therefore, Eq. (3.24) cannot be used to extract βM1. Instead, we will utilize ChPT which includes

the pion production physics.

Both BChPT and HBChPT can be used for our purposes7. We use the results of the BChPT

calculation [Lensky 2014, Lensky 2015] which contains the Born, π0-anomaly contributions,

chiral loops, ∆(1232)-excitation, and the contact term (see graph 3.1c). In this framework one

could either treat both αE1 and βM1 as free parameters and perform a two-parameter fit, or fix

their sum using its empirically known value [Gryniuk 2015],

αE1 + βM1 = (14.0 ± 0.2) × 10−4 fm3, (3.30)

and fit only βM1. We choose to perform a one-parameter fit. To do so we calculate the chi-square

χ2 =

21∑
i=1

 (Σexp
3 )i − (Σth

3 )i

δexp
i

2

, (3.31)

where the sum is held over the 21 experimental data points, (Σexp
3 )i, here (Σth

3 )i are the corre-

sponding theoretical prediction, and δexp
i is the error of the ith observation. Note that due to

the relative broadness of the energy and polar angle bins, we average the theoretical result for

the cross sections over the bin width. The value of βM1 is then obtained from χ2 at its minimum

value, χ2
min = 19.2,

βM1 = 2.8 +2.3
−2.1 [10−4fm3], (3.32)

where the error is defined from the (χ2
min + 1) interval, see Fig. 3.7. Recal that the minimum

value of χ2 represents the level of agreement between the measurements and the fitted function,

hence, we can conclude that our fit describes the data well as we have χ2
min per point ≈ 1.

Figure 3.8 shows the result of this fit. The band corresponds to the errors on βM1 given in

Eq. (3.32), demonstrating the sensitivity of the beam asymmetry to the magnetic polarizability

βM1.

For completeness, we present also the value extracted from the same data set using HBChPT

at fourth order [Sokhoyan 2016]

βM1 = 3.7 +2.5
−2.3 [10−4fm3]. (3.33)

Thus, this method gives the value for βM1 compatible (within the large error bars) with the

BChPT fit presented above. Note that the spin polarizabilities in BChPT and HBChPT are consis-

tent with one another. However, the error bars are large and prevent a conclusive determination

7Differences between the BChPT and HBChPT calculations are reviewed in Ref. [Lensky 2012].
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Figure 3.7: Chi-squared as a function of βM1. The minimum of functions χ2 defines the fitted parameter,
βM1. The corresponding error bars are obtained from the intersection of the χ2 and χ2

min + 1 curves.

of their values, e.g., the former gives γ0 = −0.9±1.4 [10−4fm4], whereas the value in the latter is

γ0 = −2.6±1.9 [10−4fm4]. We have checked that if we fix in our calculations the central values of

the spin polarizabilities to the HBChPT values the minimum of chi-squared changes marginally.

Due to the large error bars the present extraction does not improve the accuracy of the global

value of βM1. Despite of that, we find these experimental data very exciting as they correspond

to a pioneering measurement of Σ3 at these energies. We expect that further measurements of

this observable should pin down the value of βM1. Such experiments are planned at MAMI with

the aim to achieve a much higher accuracy by increasing the statistics and improving the control

over systematic effects. According to our estimate, decreasing the error bars on experimental

data by a factor of four, decreases the uncertainty on βM1 by the same factor. This would be

already enough to impact the global determination of βM1, as a single experiment should not

compete with the accuracy of the global value, but with the accuracy of other experiments, in

our case with the results of Olmos de Leon et al. [Olmos de Leon 2001].

At this moment one important comment is in order. In this subsection, we demonstrated that

the LEX does not allow us to extract the magnetic polarizability from the new Σ3 data. However,

more importantly, we also showed that the LEX can help us to find the observables that are the

best candidates for disentangling various polarizabilities, and, hence, guide ChPT calculations

and experiments.
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Figure 3.8: The beam asymmetry Σ3 as a function of the scattering angle for the three photon energy
bins. The black points are the experimental data from MAMI [Sokhoyan 2016], and the cyan band
corresponds to the fit to BChPT [Lensky 2014,Lensky 2015].

3.8 Contribution of Spin Polarizabilities to Ri Functions and Σ3

In this section we obtain the leading-order contribution of the spin polarizabilities to the func-

tions Ri. To this end, we embrace the route developed for the scalar polarizabilities in Sec-

tion 3.4. First the Feynman amplitude is decomposed into the Born and the non-Born parts,
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Mµν
B +Mµν

NB(3). The term Mµν
B is written in Supplementary Material 3.11, and Mµν

NB(3) is in

Eq. (2.14). Note that the subscript (3) here indicates that we consider only the contribution of

the spin polarizabilities to the non-Born amplitude. Second the expression forMµν
B +Mµν

NB(3) is

inserted in Eq. (3.9). Then we obtain the functions Ri by comparing the result with Eq. (3.10),

RNB(3)
0 = −π e2 γE1E1

(ν + ν′)2

4νν′
[1
2

(
1 − κ2

)
tνν′ − κ2ν2ν′ 2 +

1
4

(1 + κ) t2
]

− π e2

4
γE1M2

[
−

(1
2

+ κ
)

t + κ2νν′
] (
ν2 − 2t − 6νν′ + ν′ 2

)
+ π e2 γM1E2

1
4νν′

[
−1

2
(1 + κ)t3 + 4κ2ν3ν′ 3 + 4(−1 + 2κ)(1 + κ)M2(ν − ν′)2νν′

− 4(1 + 2κ)2M(ν − ν′)ν2ν′ 2
]

− π e2 γM1M1
(ν + ν′)2

4νν′
[1
4

(1 + κ)2t2 +
1
2

(
3 + 6κ + 2κ2

)
νν′t − κ2ν2ν′ 2

]
+ O(ν5),

RNB(3)
1 =

π e2

4

[
γE1E1 − γE1M2 + γM1E2(1 + κ)2 − γM1M1(1 + κ)2

]
νν′(ν + ν′)2 + O(ν5),

RNB(3)
2 = π e2 γE1E1

(ν + ν′)2

4νν′
[
−2Mν2ν′ +

(1
2

+ κ
)
νν′t +

1
4

(1 + κ) t2
]

+
π e2

4
γE1M2

[
−M(ν + ν′)3 + (1 + 2κ)t2 + 4(1 + 2κ)νν′t

]
− π e2 γM1E2

1
4νν′

{
−1

2
(1 + κ)t3 −M2

(
2 + 5κ + 3κ2

)
(ν − ν′)(ν + ν′)3

+ 2M2(ν − ν′)
[
κ(1 + κ)ν′ 3 −

(
4 − 5κ − 7κ2

)
ν2ν′ +

(
8 + 14κ + 4κ2

)
νν′ 2

]
+ Mνν′

[(
3 + 6κ + 2κ2

)
(ν + ν′)3 + 2κ(2 + 3κ)ν3 + 4κ(−6 − 5κ)ν2ν′

− 2
(
8 + 14κ + κ2

)
νν′ 2

]}
+ π e2γM1M1

(ν + ν′)
4νν′

{
M2(ν − ν′)

[
(1 + κ)2(ν2 − ν′ 2)

+ 4νν′] −Mνν′
[(

1 + 4κ + κ2
)

(ν2 − ν′ 2) + 4νν′ − 2
(
1 + κ2

)
ν′(ν′ − ν)

]}
+ O(ν5),

RNB(3)
3 = −π e2

8M
γE1E1ν

′ (ν + ν′)
[
−M

(
1 + 5κ + κ2

)
ν(ν + ν′) − 2Mν

(
κ2ν + ν′

)
− (1 + κ)Mt] − π e2

8M
γE1M2ν

[
−4M2t − 4M2ν′(ν + ν′) −M(2 + κ)(ν + ν′)t

− 8Mκν′t − 4M(2 + 3κ)νν′ 2 + 4Mκ2νν′ 2
]

+
π e2

8M
γM1E2

{
8(1 + κ)M3(ν − ν′)2

− 4M2ν(ν − ν′) [κ(1 + κ)ν + (4 + 5κ)ν] + 2Mν2ν′
[
κ(1 + 3κ)ν +

(
4 + 9κ − κ2

)
ν′

]}
+

π e2

8M
γM1M1(ν + ν′)

{
Mν′

(
−6Mν − ν2 + 2Mν′ + 5νν′

)
+ κM [νν′(ν + 5ν′)

− 4M
(
ν2 − ν′ 2

)]
+ κ2

[
4Mνν′ 2 − 2M2

(
ν2 − ν′ 2

)]}
+ O(ν5),

46



3.8. CONTRIBUTION OF SPIN POLARIZABILITIES TO RI FUNCTIONS AND Σ3

RNB(3)
4 = −π e2

8M
γE1E1ν

′ (ν + ν′)
[
2M2 (ν + ν′) + M (1 + κ) ν2 + M (3 + 5κ) νν′

]
− π e2

8M
γE1M2νν

′ [16M2ν′ − 2M
(
2 + 2κ + κ2

)
t + 4Mκν2 + 4M

(
2 − κ2

)
νν′

]
+

π e2

8M
γM1E2ν

′ {8M3 (ν − ν′) − 2M (1 + κ) ν2 [3κν − (−4 + κ) ν′]

+ 4M2ν [(1 + κ) ν − (3 + κ) ν′]
}

− π e2

8M
γM1M1ν

′(ν + ν′)
{
−2M2(1 + κ)(ν − ν′) + Mν

[(
−1 + κ + κ2

)
ν

+
(
5 + κ − κ2

)
ν′

]}
+ O(ν5),

RNB(3)
5 = 0,

RNB(3)
6 = 0,

RNB(3)
7 = 0. (3.34)

Using these expressions and Eqs. (3.17)-(3.21) we can calculate the contribution of the spin

polarizabilities to the observables of interest. For instance, for the beam asymmetry we obtain

Σ
NB(3)
3 = − 2 sin2 θlab ν

4

(1 + cos2 θlab)2 α

[
b1(cosθlab)γE1E1 + b2(cosθlab)γE1M2 + b3(cosθlab)γM1E2

+ b4(cosθlab)γM1M1
]
+ O(ν5), (3.35)

where the dimensionless coefficients are

b1(zlab) = −1 + κ + z2
lab(1 + κ) − zlab(1 + κ)2,

b2(zlab) = 1 − zlab(1 + κ)2 + z2
lab(1 + 2κ),

b3(zlab) = zlab

[
κ + z2

lab(1 + κ) − 2zlab(1 + κ)2
]
,

b4(zlab) = zlab + 2zlabκ − (1 + κ)2 + z2
lab(1 + κ)2. (3.36)

Note that the presented expression is the leading-order contribution of the spin polarizabilities to

the beam asymmetry. The inclusion of this term is necessary when considering the scattering at

θlab > 60 degrees. We have discussed this fact already in Section 3.6, and here we support this

statement by plotting Σ
NB(3)
3 in Fig. 3.9. We see that at θlab <∼ 60 degrees Σ

NB(3)
3 is small and can

be neglected, however, at larger angles it should be included, as, for example, at θ ≈ 100 degrees

it amounts to about 10% of the LO non-Born contribution given in Eq. (3.24) (cf. Fig. 3.4).
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Figure 3.9: The leading-order contribution of the spin polarizabilities to the beam asymmetry Σ3 given
by Eq. (3.35) as a function of the scattering angle for the photon energy of 100 MeV.

3.9 Low-energy Expansion of Σ2x and Σ2z

In this section we study the beam-target asymmetries Σ2z and Σ2x. In particular we show that

they can be used to measure experimentally the effect of the spin polarizabilities.

To calculate Σ2z and Σ2x we insert Eq. (3.34) into Eqs. (3.18) and (3.19), see the discussion

in the previous chapter, and obtain the leading order non-Born contribution to these observables,

Σ
(NB)
2x = − sinθlab ν

3(
1 + z2

lab

)
α
{αE1[(1 + κ)2 − (1 + 2κ)zlab]

+
βM1

1 + z2
lab

[κ + 3(1 + κ)2zlab − 3(1 + 2κ)z2
lab − (1 + κ)2z3

lab + (1 + κ)z4
lab] (3.37a)

+ 2
[
γM1M1 + zlab

(
γE1E1 + γE1M2

)
+ z2

lab γM1E2

]
} + O(ν4),

Σ
(NB)
2z = − ν3

(1 + z2
lab)α
{αE1[−κ + 2(1 + κ)2zlab − (2 + 3κ)z2

lab]

+
βM1

1 + z2
lab

[−(1 + κ)2 + (1 − κ)zlab + 6(1 + κ)2z2
lab − 2(3 + 4κ)z3

lab − (1 + κ)2z4
lab + (1 + κ)z5

lab]

+ 2[(1 + z2
lab)(γE1E1 + zlab γM1E2) + 2zlab(γM1M1 + zlab γE1M2)]} + O(ν4). (3.37b)
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Figure 3.10: The beam-target asymmetries Σ2z (upper panel) and Σ2x (lower panel) as functions of the
incident photon energy for scattering angles of 60 (left panel) and 120 (right panel) degrees. The dashed
green curves correspond to the Born contribution, red solid to the NNLO BChPT, and dot-dashed purple
to the leading LEX formulas from Eq. (3.37).

To demonstrate the limits of applicability of Eq. (3.37), we follow the strategy outlined for Σ3,

i.e., we compare the LEX expressions with the predictions of BChPT. We illustrate this compar-

ison in Fig. 3.10. In particular, it shows that for θlab = 60 deg Eq. (3.37) is applicable only for

photon energies below ν ≈ 80 MeV, and for θlab = 120 deg only below ν ≈ 50 MeV, as there

the LEX and BChPT curves coincide implying that the higher-order corrections to Eq. (3.37) are
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suppressed.

It is worthwhile noting that the spin polarizabilities enter in the O(ν3) terms, and, hence,

their effect is believed to be measurable only at relatively high energies. For example, modern

experiments [Martel 2015] designed for this purpose operate at energies around the ∆(1232)-

resonance. At these energies Eq. (3.37) does not apply, cf. Fig. 3.10, and, to extract the polariz-

abilities, model-dependent approaches should be used. The expressions we derive here provide

valuable reference points at low energies for testing and developing these techniques. Once

they are tested, we will use them to describe the current experiments that aim to extract the

spin polarizabilities.

3.10 Summary

In this chapter we used the LEX to study low-energy Compton scattering and the observables

that can be used to measure the proton polarizabilities. First, we addressed the magnetic dipole

polarizability, βM1. In particular, we showed that it determines the leading order non-Born

contribution to the beam asymmetry. This result together with the observation that the next-to-

leading corrections are suppressed at forward scattering angles allowed us to argue that a precise

and model-independent determination of βM1 is feasible through a precision measurement of Σ3

at forward scattering angles and beam energies below 100 MeV [Krupina 2013].

Our results inspired the A2 collaboration at MAMI to measure the beam asymmetry for the

first time below the pion-production threshold [Sokhoyan 2016]. In this chapter we presented

and discussed their preliminary results. In particular, we examined the LEX in the kinematical

region of the experiment and concluded that it should not be used in the upper energy range.

Also we noted that in the lower energy range, i.e., ν = 79 − 98 MeV, where the LEX can be

applied, the extraction of βM1 is at present not possible due to large error bars on the data. To

overcome the LEX limitations and extract βM1 we used the BChPT analysis that yielded

βM1 = 2.8 +2.3
−2.1 [10−4fm3]. (3.38)

The error bars on this value are too large to make this experiment conclusive. However, we have

estimated that decreasing the errors on the data by a factor of four, decreases the uncertainty

on βM1 by the same factor. Therefore, we believe that the new more accurate measurements

scheduled at MAMI will help us to extract the value of the magnetic dipole polarizability more

precisely.

Finally, we studied the beam-target asymmetries Σ2z and Σ2x, which are sensitive to the spin

polarizabilities. We demonstrated that the LEX results for these observables have a very limited

region of the applicability, i.e., the beam energy below 80 MeV for θlab = 60 deg and even lower
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energies for larger angles, where the effect of the spin polarizabilities cannot be measured. Note

that even though these LEX results cannot be used to extract the polarizabilities from the existent

CS data, they allow us to understand the behavior of observables at low energies. This, in turn,

shall guide further theoretical and experimental investigations.

3.11 Supplementary Material

Born Contribution to Ri Functions

Here we obtain the Born contribution8 to the Ri functions and, hence, to the observables

(cf. Eqs. (3.17) - (3.21)). In order to do this, we first use the Lagrangian from Eq. (2.5) to

write down the Feynman amplitude (for details see Chapter 2)

Mµν
B = −Γµ(p′, p + k)

p/ + k/ + M
s −M2 Γν(p + k, p) − Γν(p′, p′ − k)

p/ ′ − k/ + M
u −M2 Γµ(p′ − k, p), (SM3.39)

where Γµ(p′, p+k) = eγµ− e
2Mκ

(
γµρp′ρ − γµδ(p + k)δ

)
is the electromagnetic vertex [Peskin 1995].

Then by insertingMµν
B into

∑
H′ |TH′,H|2 (Eq. (3.9)) and by matching the result to Eq. (3.10), we

obtain the following expressions for the Ri functions

RB
0 = e4

[
1 − (ν − ν′)2

2νν′
(κ2 − 1)

(
1 + 2κ + 1

2κ
2
)

+
ν − ν′

M
3κ2

(
1 + κ + 1

6κ
2
)

+
νν′

4M2κ
4
]
,

RB
1 = e4

[
−1 − νν

′

M2κ
2
(
1 + κ + 1

4κ
2
)]
,

RB
2 = e4

[(
ν
ν′
− ν

′

ν

) (
1
2 + κ

)
+

(
ν
ν′
− ν

M
− 1

)
κ2 +

(ν − ν′)2

4νν′
κ2

(
1 + 4κ + κ2

)
− (ν − ν′)

M
κ2(1 + 2κ + 1

2κ
2)
]
, (SM3.40)

RB
3 = e4

[1
2

(
ν
ν′
− ν

M
− 1

)
(1 + κ) − ν′

2M
(1 + κ)2 − ν − ν

′

4M
κ2

(
3 + 4κ + κ2

)
+
νν′

4M2κ
2
(
1 + 3κ + κ2

)]
,

RB
4 = e4

[
ν + ν′

2M
(1 + κ) +

ν
2M

κ +
ν − ν′
4M

κ2(3 + κ) − νν′

4M2κ
2 (1 + κ)

]
,

RB
5 = 0,

RB
6 = 0,

RB
7 = 0.

There is another piece in the amplitude which can be calculated exactly. It is the so called

8Recall that the Born term is given by the tree-level graphs 3.1a and 3.1b, where the proton is assumed to be a
structureless object with mass M, electric charge e and anomalous magnetic moment κ.
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π0-anomaly term, which describes the t-channel exchange of a neutral pion. There is no con-

ventional choice whether to treat this term together with the Born or include it in the non-Born

part. We choose the former9 approach. Below we present the contribution of the π0-anomaly

using the Feynman amplitude

Mµν

(π0)
= Aγαβµν k′αkβ, (SM3.41)

where A =
gA

(2π fπ)2
M2

t−m2
π0

. For the Ri functions it yields

R(π0)
0 = 1

2 e2A (ν − ν′)2 [(1 − zlab)(1 + κ) + κ(2 + κ)] + 1
2 A2 M (ν − ν′)3 ,

R(π0)
1 = 0,

R(π0)
2 = − 1

2 e2A (1 − zlab)
{

(ν′2 − ν2) +
2ν2ν′

M
(1 + zlab)κ2 +

[
(ν + ν′)2 +

2νν′

M
(ν + ν′)

+
4ν2

M
(ν′ −M)

]
κ

}
+ (A νν′)2

(
1 − z2

lab

)
,

R(π0)
3 = 1

4 e2A
{
−2ν′ (ν − ν′) + 2

[
(ν + ν′)2 +

2νν′

M
(ν + ν′) − 4ν2

]
κ + ν [−4 (ν − ν′)

+
ν′

M
(ν + ν′) +

2νν′

M

]
κ2

}
− (A νν′)2zlab,

R(π0)
4 = e2A

[
1
2ν
′(ν − ν′) − νν

′

M
(ν + ν′)κ − νν

′

4M
(3ν + ν′)κ2

]
+ (A νν′)2,

R(π0)
5 = 0,

R(π0)
6 = 0,

R(π0)
7 = 0. (SM3.42)

We have used the algebraic manipulation program FORM [Kuipers 2013] to obtain these equa-

tions.

Kinematics

Here we review the kinematics of Compton scattering in the laboratory, the center-of-mass and

the Breit (brick-wall) frames. Additionally, we present useful formulae, which relate the scatter-

ing angles and the photon energies in different reference systems.

Let us first introduce the aforementioned reference frames, which are often used to describe

Compton scattering. They are

(i) The laboratory frame – the frame in which the proton is initially at rest. Here the incoming

photon propagates along the z-direction and has the energy ν. After the scattering event,

the particles move in the xz-plane along the directions defined by the energies and the

9Note that if the latter approach is chosen, then the spin polarizabilities are usually redefined to absorb the
π0-anomaly.
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scattering angle θlab. The energy of the outgoing photon is ν′ and of the proton is E′ =

M + ν − ν′. The corresponding 4-momenta of the incoming and outgoing particles are

summarized below

Incoming particles Outgoing particles

p = (M, 0, 0, 0) p′ = (E′,−ν′ sinθlab, 0, ν − ν′ cosθlab)

k = (ν, 0, 0, ν) k′ = (ν′, ν′ sinθlab, 0, ν′ cosθlab)

Using the Mandelstam variables s and t in this frame we write ν and cosθlab as

ν =
s −M2

2M
,

cosθlab = 1 +
t

2νν′
. (SM3.43)

Note also the following standard expressions, which are useful in derivations

ν − ν′ =
νν′

M
(1 − cosθlab) = − t

2M
,

ν
ν′
− ν

′

ν
=
ν + ν′

M
(1 − cosθlab),

ν
ν′
− ν

M
− 1 = −ν cosθlab

M
. (SM3.44)

(ii) The center-of-mass frame – the frame in which the total 3-momentum of the system

vanishes. Here initially the photon has the energy ω and propagates along the z-

direction. At the same time, the proton moves along the negative z-direction with the

energy E =
√

M2 + ω2. After the scattering event, the energies are conserved and the

particles move in the xz-plane along the directions defined by the scattering angle θ. The

4-momenta of the incoming and outgoing particles are shown below.

Incoming particles Outgoing particles

p = (E, 0, 0,−ω) p′ = (E,−ω sinθ, 0,−ω cosθ)

k = (ω, 0, 0, ω), k′ = (ω,ω sinθ, 0, ω cosθ)

Using the variables s and t, we obtain the following useful expressions

ω =
s −M2

2
√

s
,

cosθ = 1 +
t

2ω2 . (SM3.45)
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(iii) The Breit frame – the frame in which the energy transfer is zero (hence ~p + ~p ′ = 0). Here

the incoming proton moves along the z-direction with the energy EB =
√

M2 + ω2
B sin2 θB/2,

whereas the photon propagates along the direction10
(
π+θB

2 , 0
)

and has the energy ωB. The

scattering event reverses the z-components of 3-momenta as if the particles are reflected

from a wall (that is why, the reference system is called also the brick-wall frame). The

corresponding 4-momenta of the particles are presented in the table below.

Incoming particles Outgoing particles

p = (EB, 0, 0,−ωB sinθB/2) p′ = (EB, 0, 0, ωB sinθB/2)

k = (ωB, ωB cosθB/2, 0, ωB sinθB/2) k′ = (ωB, ωB cosθB/2, 0,−ωB sinθB/2)

Using the variables s and t we write ωB and cosθB as

ωB =
s −M2 + t

2√
4M2 − t

,

cosθB = 1 +
t

2ω2
B

. (SM3.46)

We recall, that the Mandelstam variables are invariant under the Lorentz transformation.

Therefore, using Eqs. (SM3.43), (SM3.45) and (SM3.46), we establish the following use-

ful relations, which connect the photon energies, and the scattering angles in different

reference frames,

cosθB = 1 − (1 − cosθlab)
νν′

ω2
B

= 1 − (1 − cosθ)
ω2

ω2
B

,

ωB =
2Mν + t

2√
4M2 − t

=
2
√

sω + t
2√

4M2 − t
,

ν =
ωB
√

4M2 − t − t
2

2M
, (SM3.47)

ν′ =
ωB
√

4M2 − t + t
2

2M
,

ωB =
(ν + ν′)M√

4M2 − t
.

Other Observables in Terms of Ri

Besides the observables that we have introduced and considered in this chapter, there are other

independent single and double polarized observables, such as Σy, Σ1x, Σ1z and Σ3y. Their defini-

tions can be found in Ref. [Babusci 1998a]. Let us present the expressions for these observables

10Here the direction is defined by the polar and azimuthal angles.
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in terms of the invariant response functions

Σy = −
sinθlab

(
R5 + R6 cosθlab − 1

2 R7 sin2 θlab

)
R0 + 1

2 R1 sin2 θlab
,

Σ1x =
sinθlab(R5 + R6 cosθlab)

R0 + 1
2 R1 sin2 θlab

,

Σ1z = − R6 sinθ2
lab

R0 + 1
2 R1 sin2 θlab

,

Σ3y =
Σ3 + Σy

1 + Σy
cos 2φ. (SM3.48)

The functions R5, R6 and R7 at the energies of interest are much smaller than the functions R1 −
R4. Therefore these observables are not relevant for our analysis. However, these expressions

are important since they complement the observables in Eqs. (3.3)-(3.6) to a minimal closed set

of observables in CS with a polarized initial state.
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CHAPTER 4

Multipole Expansion of Observables

This chapter introduces the MEX-based fitting procedure that determines the polarizabilities using

the existing experimental data.

4.1 Introduction

Here we introduce a model-independent approach based on the MEX from Chapter 2, which can

be used to determine the polarizabilities without employing the LEX. An advantage of the MEX

over the LEX is that the former can be successfully applied at relatively high energies, i.e., while

the LEX is accurate only for photon energies smaller than 100 MeV, the MEX does not have such

limitations. On the downside, the number of non-vanishing parameters1 (multipole amplitudes

f `±ρρ′ , defined in chapter 2) in the MEX depends on the energy region, i.e., the larger the energy,

the larger the number of multipoles that should be taken into account.

In this chapter we limit ourselves to the energies below the pion production threshold, i.e.,

ν < 150 MeV. At these energies to a good approximation one can truncate the series in the MEX

at angular momentum J = 3/2, hence, any Compton scattering observable can be parametrized

by the 10 parameters

f 1+
EE , f 1−

EE , f 1+
MM, f 1−

MM, f 1+
EM, f 1+

ME, f 2+
EE , f 2−

EE , f 2+
MM, f 2−

MM . (4.1)

Each of these multipoles consists of the Born and non-Born parts, i.e., f = f B+ f̄ . The former part

can be calculated exactly (see Section 4.2), however, since it does not contain the polarizabilities,

we are mainly after the latter piece. To obtain it, we first anchor the four multipoles f̄ 2+
EE ,

f̄ 2−
EE , f̄ 2+

MM, f̄ 2−
MM to the values predicted by BChPT at NNLO [Lensky 2015]. This reduces the

number of parameters without affecting the outcome, because the BChPT results tell us that

these multipoles are small, and contribute only marginally to observables. To find the other

non-Born multipoles which are related to the two scalar, αE1 and βM1, and four spin, γE1E1,

1We remind the reader (see Chapter 2) that, within the MEX approach, observables can be calculated using the six
independent helicity amplitudes, e.g., Φ1−Φ6 given by Eq. (2.51). These amplitudes can be expanded in partial waves
(see Eq. (2.48)), which can be further decomposed into the sum of multipole amplitudes, f `±ρρ′ , given by Eq. (2.52).
Therefore, the multipoles f `±ρρ′ fully characterize the MEX.
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γM1M1, γE1M2, and γM1E2, polarizabilities, we develop a fitting procedure which uses the existing

experimental data as an input, see Section 4.3.

We structure this chapter as follows. In Section 4.2 we first calculate the Born contribution

and discuss the non-Born contribution to the multipole amplitudes. After that we discuss the

method and its main ingredient — the relation between the non-Born multipoles from Eq. (4.1)

and the static polarizabilities. This relation, shown below in Eq. (4.10), is the cornerstone of our

analysis which allows us to find directly the polarizabilities that fit experimental data. In Sec-

tion 4.3 we explain all the details of the employed fitting procedure, i.e., we show the used data,

we discuss the constraints that we have implemented to reduce the number of fitted parameters

etc. Finally, in Section 4.4 we discuss the results obtained with the existing unpolarized CS data.

4.2 Description of the Method

4.2.1 Born Contribution to f `±ρ′ρ

Here we demonstrate that the Born contributions to the multipole amplitudes can be calculated

exactly. To do so, we use the fact that the d-functions are orthogonal to invert the formulae in

Eq. (2.52),

f L+
EE

MM

=
1

(L + 1)2

1
2

(
Φ

L+ 1
2

1 ∓Φ
L+ 1

2
2

)
± L + 2√

L(L + 2)

(
Φ

L+ 1
2

3 ∓Φ
L+ 1

2
4

)
+

L + 2
2L

(
Φ

L+ 1
2

5 ∓Φ
L+ 1

2
6

)
,

f (L+1)−
EE

MM

=
1

(L + 1)2

1
2

(
Φ

L+ 1
2

1 ±Φ
L+ 1

2
2

)
± L√

L(L + 2)

(
Φ

L+ 1
2

3 ±Φ
L+ 1

2
4

) (4.2)

+
L

2(L + 2)

(
Φ

L+ 1
2

5 ±Φ
L+ 1

2
6

)
,

f L−
EM
ME

=
1

(L + 1)2

−1
2

(
Φ

L+ 1
2

1 ∓Φ
L+ 1

2
2

)
∓ 1√

L(L + 2)

(
Φ

L+ 1
2

3 ∓Φ
L+ 1

2
4

)
+

1
2

(
Φ

L+ 1
2

5 ∓Φ
L+ 1

2
6

)
,

where the partial amplitudes are defined as follows

ΦJ
i (ν) =

1
2

∫ +1

−1
Φi(ν, θ) dJ

σ′i−λ′i ,σi−λi
(θ) d cosθ, i = 1, ..., 6. (4.3)

Therefore, to compute the Born part of the multipole amplitudes, one can first calculate the

Born contribution to the helicity amplitudes Φ
(B)
i , and then simply use Eqs. (4.2) and (4.3). To

calculate Φ
(B)
i , we use the manifestly Lorentz- and gauge invariant CS amplitude written in terms
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of the eight invariant amplitudes A1, ...A8 [Pascalutsa 2003],

TH′,H = 4πα ūλ′(p′)
8∑

i=1

Ai(s, t) Oµν
i E′∗(σ′)µ E(σ)ν uλ(p), (4.4)

where E(σ)µ is the modified photon polarization vector,

E(σ)µ = ε(σ)µ −
P · ε(σ)

P · k kµ, (4.5)

with P = p + p′. The tensors Oi have the following expressions

Oµν
1 = − gµν,

Oµν
2 =kµk′ ν,

Oµν
3 = − γµν,

Oµν
4 =gµν(k′ · γ · k),

Oµν
5 =kµk′αγαν − γαµkαk′ν,

Oµν
6 =kµkαγαν − γαµk′αk′ν,

Oµν
7 =kµk′ ν(k′ · γ · k),

Oµν
8 = − iγ5ε

µναβk′αkβ, (4.6)

where k′ · γ · k ≡ k′µγµνkν. The Born parts of the eight invariant amplitudes are

A (B)
1 = − 1

M
− (1 + κ)2t2

16M3ν ν′
,

A (B)
2 =

κ
{
−κ t2 + 8M2[−2κ ν ν′ + (2 + κ)t]

}
64M5ν ν′

,

A (B)
3 = −

(t + 4Mν)
[
2κ2ν ν′ + (1 + κ)2t

]
16M3ν ν′

,

A (B)
4 = − (1 + κ)2 (t + 4Mν)

8M3ν ν′
,

A (B)
5 =

(1 + κ)2 (t + 4Mν)
8M3ν ν′

,

A (B)
6 = − (1 + κ) (t + 4Mν)

8M3ν ν′
,

A (B)
7 =

κ2(t + 4Mν)
32M5ν ν′

,

A B
8 =

−2 gAM4ν ν′ + f 2
ππ

2
(
m2
π0 − t

) [
2κ2ν ν′ + (1 + κ)2 t

]
8 f 2
π M3 π2

(
m2
π0 − t

)
ν ν′

, (4.7)
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where gA is the axial charge of the nucleon, fπ is the pion decay constant and mπ0 is the pion

mass. Now we obtain the Born part of the helicity amplitudes, by using the expressions from

Eqs. (4.5), (4.6) and (4.7) in Eq. (4.4),

Φ(B)
1 = −α

√
η

[
ηM + 2κ2 ν2 ν′ − 2 t ν (1 + κ/2)2

]
8
√

sM ν2 ν′
,

Φ(B)
2 =

α
√−t

16
√

s

− 2Mt + 8κ (κ + 2) ν2 ν′ + κ2 t ν
Mν2 ν′

+
gAM t

π2 f 2
π

(
t −m2

π0

) ,
Φ(B)

3 = α

√
η t [2M + ν κ (κ + 2) ]

16
√

sM ν2 ν′
,

Φ(B)
4 = α

√−t η [2M − ν κ (κ + 2) ]

16
√

sM ν2 ν′
, (4.8)

Φ(B)
5 = α

η3/2
(
−2M + νκ2

)
16
√

sM ν2 ν′
,

Φ(B)
6 = −α (−t)3/2

16
√

s

2M + ν (κ + 2)2

M ν2 ν′
+

gAM

π2 f 2
π

(
t −m2

π0

) ,
where η = M4−su

M2 . Note that Eq. (4.8) allows one to calculate the Born contribution to the

multipole amplitudes using Eq. (4.2).

4.2.2 Non-Born Contribution to f `±ρρ′

The non-Born, in contrast to the Born, piece of the helicity amplitudes cannot be calculated

exactly. However, the MEX approach gives us the opportunity to estimate its contribution to the

observables of interest. In this approach we truncate the multipole series in Eq. (2.48) at J = 3/2.

The point of truncation here is chosen in accordance with the BChPT analysis [Lensky 2015],

which remarks that below the pion-production threshold, the partial waves with J > 3/2 (or,

equivalently, with L > 1 in Eq. (2.52)) are very small and can be neglected. Therefore, in our

investigation we use the following truncated amplitudes (cf. Ref. [Pfeil 1974])

Φ(NB)
1 = cos

θ
2

{
2( f̄ 1−

EE + f̄ 1−
MM) +

1
2

(−1 + 3 cosθ)[9( f̄ 2−
EE + f̄ 2−

MM) + ( f̄ 1+
EE + f̄ 1+

MM)

− 6( f̄ 1+
EM + f̄ 1+

ME)] + 6
[
1 + 4(−1 + cosθ) +

5
2

(−1 + cosθ)2
]
( f̄ 2+

EE + f̄ 2+
MM)

}
,

Φ(NB)
2 = − sin

θ
2

{
2( f̄ 1−

EE − f̄ 1−
MM) +

1
2

(1 + 3 cosθ)[9( f̄ 2−
EE − f̄ 2−

MM) − ( f̄ 1+
EE − f̄ 1+

MM)

+ 6( f̄ 1+
EM − f̄ 1+

ME)] − 6
[
3 + 6(−1 + cosθ) +

5
2

(−1 + cosθ)2
]
( f̄ 2+

EE − f̄ 2+
MM)

}
,

60



4.2. DESCRIPTION OF THE METHOD

Φ(NB)
3 =

3
2

cos
θ
2

(1 − cosθ){3( f̄ 2−
EE − f̄ 2−

MM) + ( f̄ 1+
EE − f̄ 1+

MM) − 2( f̄ 1+
EM − f̄ 1+

ME)

+ 2(1 + 5 cosθ)( f̄ 2+
EE − f̄ 2+

MM)},
Φ(NB)

4 =
3
2

sin
θ
2

(1 + cosθ){3( f̄ 2−
EE + f̄ 2−

MM) − ( f̄ 1+
EE + f̄ 1+

MM) + 2( f̄ 1+
EM + f̄ 1+

ME)

− 2(−1 + 5 cosθ)( f̄ 2+
EE + f̄ 2+

MM)},
Φ(NB)

5 =
3
2

cos
θ
2

(1 + cosθ){( f̄ 2−
EE + f̄ 2−

MM) + ( f̄ 1+
EE + f̄ 1+

MM) + 2( f̄ 1+
EM + f̄ 1+

ME)

+ 2(−3 + 5 cosθ)( f̄ 2+
EE + f̄ 2+

MM)},
Φ(NB)

6 = −3
2

sin
θ
2

(1 − cosθ){( f̄ 2−
EE − f̄ 2−

MM) − ( f̄ 1+
EE − f̄ 1+

MM) − 2( f̄ 1+
EM − f̄ 1+

ME)

− 2(3 + 5 cosθ)( f̄ 2+
EE − f̄ 2+

MM)}. (4.9)

As anticipated these expressions are determined by the ten multipoles from Eq. (4.1).

To proceed further, we note that according to the BChPT analysis the multipoles with multi-

polarity ` = 2 at the considered energies are much smaller than the ones with ` = 1. Therefore,

f̄ 2+
EE , f̄ 2−

EE , f̄ 2+
MM, f̄ 2−

MM are small and practically unable to influence the analysis, and we fix them

to the values predicted by BChPT at NNLO [Lensky 2015]. To establish the values of the other

non-Born multipoles and, consequently, of the static polarizabilities, there are at least two ap-

proaches. In the first approach, one finds the dynamical polarizabilities (cf. Eq. (2.55)) using

the six ` = 1 multipoles from Eq. (4.1) that provide the best fit to observables. After that one

finds αE1, βM1, γE1E1, γM1M1, γE1M2 and γM1E2, by extrapolating the established dynamical polar-

izabilities to the zero energy. In this thesis we follow another approach. Firstly, we write down

the low-energy behavior of the non-Born multipole amplitudes in terms of the static polarizabil-

ities. To that end, we use the LEX of the dynamical polarizabilities from Eq. (2.56) in Eq. (2.55).

In the obtained expressions we isolate the low-energy piece, and parametrize the rest with the

so-called residual functions, f R
1 − f R

6 ,

f̄ 1+
EE (ν) = ν2 M√

s

[
αE1

3
+
ν
3

(−αE1 + βM1

M
+ γE1E1

)
+

(
ν
M

)2
f R
1 (ν)

]
,

f̄ 1−
EE (ν) = ν2 M√

s

[
αE1

3
+
ν
3

(−αE1 + βM1

M
− 2γE1E1

)
+

(
ν
M

)2
f R
2 (ν)

]
,

f̄ 1+
MM(ν) = ν2 M√

s

[
βM1

3
+
ν
3

(−βM1 + αE1

M
+ γM1M1

)
+

(
ν
M

)2
f R
3 (ν)

]
, (4.10)

f̄ 1−
MM(ν) = ν2 M√

s

[
βM1

3
+
ν
3

(−βM1 + αE1

M
− 2γM1M1

)
+

(
ν
M

)2
f R
4 (ν)

]
,

f̄ 1+
EM(ν) = ν3 M√

s

[
γE1M2

6
+
ν
6

(−6γE1M2 + 3γM1E2 + 3γM1M1

4M
− βM1

8M2

)
+

(
ν
M

)2
f R
5 (ν)

]
,

f̄ 1+
ME(ν) = ν3 M√

s

[
γM1E2

6
+
ν
6

(−6γM1E2 + 3γE1M2 + 3γE1E1

4M
− αE1

8M2

)
+

(
ν
M

)2
f R
6 (ν)

]
.

61



CHAPTER 4. MULTIPOLE EXPANSION OF OBSERVABLES

Secondly, we use these equations to express the observables in terms of the static polarizabilities

(see the next subsection), which are then found by comparing the obtained expressions with the

existing experimental data.

We can reduce the number of parameters, by noting that at the scattering angle of θ = 0

the CS cross section and the beam-target asymmetry Σ2z were calculated with high preci-

sion [Gryniuk 2015, Gryniuk 2016]. Therefore, we know (for details see Supplementary Ma-

terial 4.6) the two combinations of the multipoles that correspond to the forward amplitudes

(cf. Eq. (SM4.23))

f (ν) =

√
s

2M
(Φ1 + Φ5)θ=0 =

√
s

2M

∞∑
L=0

(L + 1)2
{
(L + 2)

(
f (L+1)−
EE + f (L+1)−

MM

)
+ L

(
f L+
EE + f L+

MM

)}
,

g(ν) =

√
s

2M
(Φ1 −Φ5)θ=0 =

√
s

2M

∞∑
L=0

(L + 1)
{
(L + 2)

(
f (L+1)−
EE + f (L+1)−

MM

)
− L

(
f L+
EE + f L+

MM

)
− 2L (L + 2)

(
f L+
EM + f L+

ME

)}
. (4.11)

Following the discussion above we truncate these sums as

f (ν) =
√

s
M

(
f 1−
EE + 2 f 1+

EE + f 1−
MM + 2 f 1+

MM + 6 f 2−
EE + 9 f 2+

EE + 6 f 2−
MM + 9 f 2+

MM

)
, (4.12)

g(ν) =
√

s
M

(
f 1−
EE − f 1+

EE − 6 f 1+
EM − 6 f 1+

ME + f 1−
MM − f 1+

MM + 3 f 2−
EE − 3 f 2+

EE + 3 f 2−
MM − 3 f 2+

MM

)
.

These expressions can be rewritten in terms of the six polarizabilities and six residual functions

introduced in Eq. (4.10). This rewriting allows one to express any two parameters in terms

of the other ten, reducing the total number of unknowns from twelve to ten. We choose to

eliminate f R
2 and f R

3 functions in favour of f (ν) and g(ν).

4.2.3 Observables in Terms of Multipoles

In this subsection we show how to connect the four observables from Eqs. (3.3)-(3.6) to the six

polarizabilities and six energy-dependent residual functions defined in Eq. (4.10). In order to

simplify the calculations, we work with2 the asymmetries multiplied by the unpolarized cross

section, i.e.,

dσ
dΩ

=
1

256π2s

∑
H′,H

∣∣∣TH′,H
∣∣∣2 = 1

2 |Φ1|2 + 1
2 |Φ2|2 + |Φ3|2 + |Φ4|2 + 1

2 |Φ5|2 + 1
2 |Φ6|2,

dσ
dΩ

Σ3 =
1

128π2s

∑
σ′,λ′,λ

(
|Tσ′,λ′,||, λ|2 − |Tσ′,λ′,⊥, λ|2

)
= −Re[(Φ1 + Φ5)Φ∗3 + (Φ2 −Φ6)Φ∗4],

2Here and below we use the CM system.
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dσ
dΩ

Σ2z =
1

64π2s

∑
σ′,λ′

(
|Tσ′,λ′,1, 1

2
|2 − |Tσ′,λ′,−1, 1

2
|2
)

= −1/2
(
|Φ1|2 + |Φ2|2 − |Φ5|2 − |Φ6|2

)
,

dσ
dΩ

Σ2x =
1

64π2s

∑
σ′,λ′

(
|Tσ′,λ′,1, x|2 − |Tσ′,λ′,−1, x|2

)
= Re[(Φ1 −Φ5)∗Φ4 − (Φ2 + Φ6)Φ∗3] , (4.13)

where

Tσ′,λ′,||, λ =
1√
2

(
Tσ′,λ′,−1, λ − Tσ′,λ′,1, λ

)
,

Tσ′,λ′,⊥, λ =
i√
2

(
Tσ′,λ′,−1, λ + Tσ′,λ′,1, λ

)
,

Tσ′,λ′,±1, x =
1√
2

(
Tσ′,λ′,±1,− 1

2
+ Tσ′,λ′,±1, 1

2

)
. (4.14)

Let us first consider the expression for dσ/dΩ. For convenience, we write it as

dσ
dΩ

=
( dσ
dΩ

)Born
+

( dσ
dΩ

)inter f .
+

 dσ
dΩ

 . (4.15)

Here the first term is the Born contribution, and the rest is the non-Born part. The latter includes

the interference between the Born and non-Born amplitudes (the second expression), and the

interference between the two non-Born amplitudes (the third expression), i.e.,3

( dσ
dΩ

)Born
=

1
2

(
Φ(B)

1

)2
+

1
2

(
Φ(B)

2

)2
+

(
Φ(B)

3

)2
+

(
Φ(B)

4

)2
+

1
2

(
Φ(B)

5

)2
+

1
2

(
Φ(B)

6

)2
,( dσ

dΩ

)inter f .
= Φ(B)

1 Φ(NB)
1 + Φ(B)

2 Φ(NB)
2 + 2Φ(B)

3 Φ(NB)
3 + 2Φ(B)

4 Φ(NB)
4 + Φ(B)

5 Φ(NB)
5 + Φ(B)

6 Φ(NB)
6 , dσ

dΩ

 =
1
2

(
Φ(NB)

1

)2
+

1
2

(
Φ(NB)

2

)2
+

(
Φ(NB)

3

)2
+

(
Φ(NB)

4

)2
+

1
2

(
Φ(NB)

5

)2
+

1
2

(
Φ(NB)

6

)2
. (4.16)

We can easily calculate the Born part here using the expressions from Eq. (4.8), and the non-

Born part utilising additionally the MEX of the non-Born amplitudes from Eq. (4.9). These

calculations can be accomplished via standard computer software, e.g., Mathematica. Therefore,

we can obtain the observables in terms of the six polarizabilities and six energy-dependent

residual functions by substituting Eqs. (4.8), (4.9) and (4.10) into Eq. (4.13). We refrain from

showing the final expressions here, as they are cumbersome and do not offer any further insight

into the physics of the problem. We also do not present the expressions for the asymmetries,

as they are obtained from Eq. (4.13) by dividing the corresponding observables by the cross

section.

3Here we use the fact that below the pion production threshold the functions Φ1 −Φ6 are real.
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4.3 Fitting to Experimental Data

In the previous section we demonstrated how to write the observables in terms of the six polariz-

abilities, four residual functions and forward amplitudes. Note that f (ν) and g(ν) are known (see

Supplementary Material 4.6), and we list their values at the energies of interest in Table 4.2. In

this section we present a fitting procedure that determines the other parameters using the ex-

isting experimental data on the unpolarized cross sections4, which we summarise in Table 4.1.

These data fall into Ne = 11 energy bins, i.e.,

59, 69, 79, 89, 99, 109, 117, 127, 135, 143 and 150 (MeV), (4.17)

therefore, the total number of parameters Np that we need to find is

Np ≡ 6 + 4 Ne = 50, (4.18)

here 6 stands for the number of polarizabilities, and 4 for the number of residual functions.

Table 4.1: Experiments on the unpolarized Compton scattering off the proton below the pion production
threshold. The column Ndata indicates the number of the data points from each experiment used in the
fitting procedure. The photon energy, ν, and the scattering angle, θlab, are given in the laboratory frame
of reference (see Supplementary Material 3.11).

Author Reference ν, (MeV) θlab, (deg) Ndata Symbol

Oxley et al. [Oxley 1958] 60 70-150 4  

Hyman et al. [Hyman 1959] 60-128 50, 90 12

Goldansky et al. [Goldansky 1960] 55 75-150 5 I

Bernardini et al. [Bernardini 1960] 120, 139 133 2 N

Pugh et al. [Pugh 1957] 59-135 50, 90, 135 16

Baranov et al. [Baranov 1974] 79, 89, 109 90, 150 7 I

Federspiel et al. [Federspiel 1991] 59, 70 60, 135 4 N

Zieger et al. [Zieger 1992] 98, 132 180 2 �

Hallin et al. [Hallin 1993] 130-150 45, 60, 82, 135 13 �

MacGibbon et al. [MacGibbon 1995] 73-145 90-135 18 �

Olmos de Leon et al. [Olmos de Leon 2001] 59-149 59-155 55 �

The number of parameters is relatively large and precludes the use of standard minimization

4Note that some of the experiments in table 4.1 have also data at somewhat larger energies. We do not show
them here, because they are not used in the fitting procedure.
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Table 4.2: The forward amplitudes f (ν) and g(ν) at the energies from Eq. (4.17).

ν (MeV) f (ν) (µb ·GeV) g(ν) (µb ·GeV)

59 −2.76 −0.32

69 −2.66 −0.37

79 −2.54 −0.43

89 −2.39 −0.48

99 −2.22 −0.54

109 −2.01 −0.59

117 −1.83 −0.63

127 −1.55 −0.67

135 −1.28 −0.69

143 −0.94 −0.67

150 −0.41 −0.52

software that finds the minimum exactly, e.g., interior point algorithms. Therefore, we propose

first to use Monte-Carlo simulations to anchor the residual functions, and then establish the

polarizabilities using the minimisation routine from Mathematica. To provide a seed for the

Monte-Carlo analysis we make a natural assumption that the residual functions are of the same

order as the corresponding first terms in the brackets in Eq. (4.10), i.e., we assume that f R
1 (ν)

is of the order of αE1, and f R
4 (ν) is of the order of βM1, etc. (for details, see Supplementary

Material 4.6). Then we scan the neighborhood of these values for the four residual functions

that minimize the chi-square χ2.

Now, when the values of the residual functions are established, we are left with the six

unknowns, i.e., αE1, βM1, γE1E1, γM1M1, γE1M2, and γM1E2. To proceed further, we note, that we

can reduce this number to four. In order to do this, we use the Baldin sum rule [Gryniuk 2015]

αE1 + βM1 = (14.0 ± 0.2) × 10−4 fm3, (4.19)

and the value of the forward spin polarizability [Gryniuk 2016],

γ0 = −γE1E1 − γM1M1 − γE1M2 − γM1E2 = (−0.929 ± 0.044) × 10−4 fm4. (4.20)

Therefore, we need to establish only four parameters, i.e., αE1 − βM1, γM1M1, γE1M2 and γM1E2.

65



CHAPTER 4. MULTIPOLE EXPANSION OF OBSERVABLES

In the next section we present their values obtained from the fit, that we refer to as Fit 2.

For comparison we also make another fit, Fit 1, where we assume that γE1M2 ≈ 0. This

assumption is based on the recent extraction of the spin polarizabilities from the measure-

ments of the double-polarized Compton scattering asymmetries [Martel 2015], as well as on the

BChPT [Lensky 2015] and fixed-t DR [Babusci 1998a] results, which all yield values of γE1M2

consistent with zero, i.e., the BChPT analysis quotes γE1M2 = 0.2±0.2
[
10−4 fm4

]
, fixed-t DR gives

γE1M2 = 0.3
[
10−4 fm4

]
, and the value in Ref. [Martel 2015] is γE1M2 = −0.7 ± 1.2

[
10−4 fm4

]
.

Therefore, in Fit 1 we deal with only three unknowns, i.e., αE1 − βM1, γE1E1, and γM1E2.

In the next section we present the results of six fits, which correspond to Fit 1 and Fit 2

and are obtained by fitting to three experimental data sets. These fits are summarized in the

Table 4.3.

4.4 Results and Discussion

In the previous sections we introduced an algorithm to deduce the ten multipole amplitudes,

and hence any observable, from the existing unpolarized cross section data. In this section

we exploit this algorithm and discuss its outcome for the unpolarized cross section, multipole

amplitudes, static and dynamic polarizabilities.

Table 4.3: The six fits that we work with in our analysis. Here the first column shows the name of the
fit, the second column indicates which experimental data were used, and the third column states the
unknown parameters.

Data from Table 4.1 Parameters

fit 1 all points

fit 1′ all but two points5 αE1 − βM1, γE1E1, γM1E2

fit 1′′ all but four points6

fit 2 all points

fit 2′ all but two points5 αE1 − βM1, γM1M1, γE1M2, γM1E2

fit 2′′ all but four points6

5fit 1′ (fit 2′ ) are obtained using Fit 1 (Fit 2) procedure with all the points in Table 4.1 but the two points of Oxley

et al. at ν = 59 MeV for θlab = 120 deg and 150 deg.
6fit 1′′ (fit 2′′ ) are obtained using Fit 1 (Fit 2) procedure with all the points in Table 4.1 but the two points of

Oxley et al. at ν = 59 MeV for θlab = 120 deg and 150 deg, and the two points of Olmos de Leon et al. for ν = 89 MeV,

θlab = 133 deg and ν = 109 MeV, θlab = 133 deg.
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4.4.1 Unpolarized Cross Section

We present the unpolarized cross section in Fig. 4.1 as the blue (fit 1) and red (fit 1′′) solid

curves. For comparison, in the same figure we show the experimental data from Table 4.1, the

Born contribution, and the BChPT results [Lensky 2010]. Both of our curves are obtained using

the Fit 1 procedure7 with respectively all the points in Table 4.1, and all but

(i) the two points of Oxley et al. at ν = 59 MeV for θlab = 120 deg and 150 deg,

and

(ii) the two points of Olmos de Leon et al. for ν = 89 MeV, θlab = 133 deg and ν = 109 MeV,

θlab = 133 deg.

The reason for not including these data is that they are not consistent with the other exper-

imental data [Goldansky 1960, MacGibbon 1995] and with the theoretical predictions of our

calculations and BChPT. Note also that Fit 2 and Fit 1 (see Section 4.3) produce almost identical

curves, therefore we do not show the former here.

Let us now discuss the curves in the figure. As expected, at low energies the dot-dashed

curve (the Born contribution) is close to all the other curves, and at higher energies it starts to

deviate from them. This indicates the energy region where the contributions that come from the

polarizabilities can be measured. The curves fit 1 and fit 1′′ are almost everywhere identical and

qualitatively agree with the BChPT results. The most noticeable difference between these curves

is at ν = 109 MeV. However, even there we cannot dismiss one of the analyses since they both

lie within the experimental resolution. At the same time, fit 1, fit 1′′ and BChPT imply different

values of the polarizabilities, see Table 4.5 and the discussion below. Therefore, there should be

an interplay between the polarizabilities, i.e., the unpolarized cross section is sensitive only to

certain combinations of the polarizabilities, and, thus, different values of the polarizabilities can

lead to the same value of the observable.

To understand this interplay better we zoom in the plots for dσ/dΩlab at ν = 59 MeV and

ν = 109 MeV, see Figure 4.2. We focus on the forward (θlab = 0) and backward (θlab = π)

scatterings which are fully determined by correspondingly αE1 + βM1 and γ0, and αE1 − βM1 and

γπ. We observe that at ν = 59 MeV both fits coincide at θlab = 0 and slightly differ at θlab = π.

This observation can be understood from the fact that at this energy the contribution of the spin

polarizabilities is negligible, and the curves assume the same values8 of αE1 +βM1 and somewhat

different values of αE1 − βM1, see Table 4.4. We also note that the fit 1′′ and BChPT curves lie

on top of each other at θlab = π, as these analyses predict almost identical αE1 − βM1.

7We remind the reader that in Fit 1 we have γE1M2 = 0, see Section 4.3.
8Note that as we have fixed αE1 + βM1 and γ0, our fitted curves always coincide at θlab = 0.
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Figure 4.1: The unpolarized cross section as a function of the scattering angle θlab for the eleven experi-
mentally relevant photon energies, i.e., ν = 59, 69, ..., 149 MeV. The data points are taken from the various
experiments listed in Table 4.1. The symbol / at θlab = 0 corresponds to the empirically known values
of dσ/dΩlab. The black dot-dashed curve is the Born contribution, the cyan dashed curve is the BChPT
calculation, and the two solid curves are our fits, see the text for details.



4.4. RESULTS AND DISCUSSION

At the same time we see that at ν = 109 MeV and θlab = π the fitted curves lie close to each other

even though they have different values of αE1 − βM1 and γπ. This tells us that in our study the

difference in αE1 − βM1 should be somehow compensated by γπ. Finally, we note that the fit 1′′

and BChPT calculations do not coincide any longer, because they have different γπ.
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Figure 4.2: The unpolarized cross section as a function of the scattering angle θlab for the photon energies
ν = 59 MeV (top panel) and ν = 109 (bottom panel). The curves and the data points are as in Fig. 4.1.

Our investigation clearly demonstrates that an inconsistent data base cannot be used to esti-

mate the values of the polarizabilities using MEX-based approaches. This fact becomes especially
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Table 4.4: Our predictions for αE1 + βM1 and αE1 − βM1 in units 10−4 fm3 , and for γ0 and γπ in units
10−4 fm4 , obtained from the fit 1 and fit 1′′ procedures. For comparison we also show the values from the
BChPT [Lensky 2015] and DR calculations [Olmos de Leon 2001,Babusci 1998a].

αE1 + βM1 γ0 αE1 − βM1 γπ

fit 1 14.0 −0.93 10.5 ± 0.8 7.2 ± 1.3

fit 1′′ 14.0 −0.93 7.2 ± 0.9 3.0 ± 1.5

BChPT 15.1 ± 1.0 −0.9 ± 1.4 7.3 ± 1.0 7.2 ± 1.7

DR 13.7 −1.5 10.5 7.8

clear after examining Table 4.4. In order to obtain reliable results, we suggest to improve the

unpolarized cross section data base especially at ν ≈ 110 MeV and backward angles. This, in

turn, will allow us to resolve between our solutions and the BChPT prediction, if they still differ,

and pin down the values of the polarizabilities.

4.4.2 Multipoles

We present the multipole amplitudes from Eq. (2.55) in Fig. 4.3 in the form of blue (fit 1)

and red (fit 1′′) points with error bars. The uncertainty here is determined by the errors on

the polarizabilities (for details, see Supplementary Material 4.6). Note that at lower energies

the error bars are very small, however they increase with energy. This is due to the energy-

dependent prefactors in Eq. (4.10), which enter in the calculation of the uncertainties. For

comparison, we also show solely the Born contribution, and the results of calculations based on

BChPT and DR.

We can see that for all multipoles the Born contribution dominates at energies below 50 MeV.

As we go to higher energies the three multipoles, f 1−
EE , f 1+

EE and f 1+
MM, gain a significant non-Born

contribution, whereas the other multipoles deviate only slightly from the Born curve. Finally, we

note that our results agree well with the predictions of BChPT and DR in which the multipoles

are also smooth functions of energy, except of the multipole f 1−
EE which has a cusp at the pion

production threshold.

Our fitting procedure produces only the non-Born part of the multipoles, therefore, we

present this part separately in Fig. 4.4. We see that the quality of our results for the largest

amplitudes, i.e., f̄ 1−
EE , f̄ 1+

EE and f̄ 1+
MM, is higher than for the other three. To extract the latter

more accurately, we need very precise experimental data which can give us the opportunity to
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separate the small non-Born parts of these multipoles.
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Figure 4.3: The multipole amplitudes as functions of the photon energy ν. The black-dot-dashed curve
corresponds to the Born contribution, the black-dashed line is the DR calculation, the cyan band is the
BChPT result and the points with error bars correspond to our two fits (fit 1 is blue and fit 1′′ is red).

4.4.3 Polarizabilities

Using the multipole amplitudes from the previous subsection, we find the dynamical polariz-

abilities from Eq. (2.55). We show them in Fig. 4.5 in the form of blue (fit 1) and red (fit 1′′)
points with error bars. Note that the static polarizabilities are included here as well since they

are simply the data at ν = 0. For comparison, in this figure we also show the corresponding

BChPT and DR results. Arguably, the most important observation at this point is that the value

of βM1 suggested9 by the fit 1 coincides with the DR result, whereas the value obtained from

the fit 1′′ matches the BChPT prediction. This information allows us to suggest that the value

of βM1 in BChPT might differ from the value in the DR approach with the unpolarized CS data,

9See the upper right plot in Fig. 4.5 at ν = 0.
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Figure 4.4: The non-Born parts of the multipoles as functions of the photon energy ν. The points with
error bars correspond to our two fits, fit 1 is blue and fit 1′′ is red. Note that the energy axes here start at
ν = 50 MeV.

due to the quoted disagreements in the experimental data base. If this is indeed the case, then

this discrepancy will be resolved once the data base is improved.

Let us now discuss the curves in more detail. The fits at ν = 0 and everywhere else are in

agreement with BChPT and DR, however, we note that the fit 1 lies closer to the DR curve and

the fit 1′′ to the BChPT. We also note, that the polarizabilities αE1(ν) and γE1E1(ν) are rather

smooth functions of energy as they are defined by f̄ 1−
EE and f̄ 1+

EE in Fig. 4.4. The other four

dynamical polarizabilities are defined by the multipoles f̄ 1−
MM, f̄ 1+

EM and f̄ 1+
ME, for which we obtain

less accurate results (see Fig. 4.4), therefore, the fitted points produces the curves that are not

smooth functions for energies between 120 and 150 MeV.

Finally, in Table 4.5 we present the scalar and spin polarizabilities obtained using the Fit 1

and Fit 2 procedures (cf. Table 4.3). To this end, we extract the values of the dynamical polar-

izabilities at zero energy. Recall that fit 1′ (fit 2′) is obtained using the Fit 1 (Fit 2) procedure

with the all (see Table 4.1) but the two points of Oxley et al. at ν = 59 MeV for θlab = 120 deg

and 150 deg. To show the quality of the fits we include values of the χ2 per point. For example,

fit 1′′ and fit 2′′ are of better quality than fit 1 and fit 2 as they have smaller χ2 per point. For

comparison, in the table we also show the BChPT and DR results as well as the values recently

measured at MAMI [Martel 2015].

We see that the Fit 2 procedure always gives larger uncertainties on the values of the spin

polarizabilities than the Fit 1, this is due to the fitting of a small γE1M2. As mentioned before, the

polarizabilities obtained from the fit 1 and fit 2 curves are in agreement with the values of DR,

whereas the polarizabilities of fit 1′′ and fit 2′′ agree with the BChPT. This demonstrates how

important it is to have a reliable data set and allows to suggest that the difference between the

BChPT and DR values of scalar polarizabilities might be due to the inclusion of the inconsistent

data points in the DR analysis.
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Figure 4.5: The dynamic polarizabilities as functions of the photon energy ν. The black dashed curve
corresponds to the DR analysis, the cyan band is the BChPT result and the points with error bars are our
fits (fit 1 is blue and fit 1′′ is red).

4.4.4 Asymmetries

Using the multipoles from the previous subsection we can calculate any observable below the

pion-production threshold. As mentioned in Section 3.2, at these energies there are four impor-

tant observables, i.e, the unpolarized cross section and the three asymmetries Σ3, Σ2z and Σ2x.

The former was already demonstrated in Fig. 4.1, and in this subsection we compute the latter.

To this end, we utilize Eqs. (4.8), (4.9), (4.13). Before we proceed we note that the parameters

obtained using the fit 1 and fit 1′′ procedures produce in general different results. Ideally, we

would dismiss one of the fits by comparing these results with the existing experimental data. To

date, unfortunately, experimental errors do not allow us to do it. Therefore, here we present the

outcomes of both fits and compare them, whenever possible, with measured values.

Beam asymmetry We show the beam asymmetry in Figure 4.6. The two solid curves here

correspond to the results of fit 1 (blue) and fit 1′′ (red). The uncertainties of our results are
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Table 4.5: Our predictions for the proton scalar and spin polarizabilities in units 10−4 fm3 and 10−4 fm4 ,
respectively. For comparison, we include the values from the BChPT [Lensky 2015] and DR calcula-
tions [Olmos de Leon 2001,Babusci 1998a] and the recent experimental data from MAMI [Martel 2015].
The last column shows χ2 per point of our fits.

αE1 βM1 γE1E1 γM1M1 γE1M2 γM1E2 χ2/point

fit 1 12.2 ± 0.3 1.8 ∓ 0.3 −3.1 ± 0.7 1.6 ± 0.3 0.0 2.5 ± 0.7 1.3

fit 1′ 11.7 ± 0.3 2.3 ∓ 0.3 −2.6 ± 0.7 1.3 ± 0.3 0.0 2.3 ± 0.7 1.2

fit 1′′ 10.6 ± 0.3 3.4 ∓ 0.3 −1.0 ± 0.8 1.0 ± 0.3 0.0 1.0 ± 0.7 1.0

fit 2 12.2 ± 0.3 1.8 ∓ 0.3 −1.6 ± 2.6 1.8 ± 1.1 −1.3 ± 3.7 2.0 ± 0.7 1.4

fit 2′ 11.9 ± 0.35 2.1 ∓ 0.35 −2.5 ± 2.4 1.7 ± 1.1 −0.6 ± 3.4 2.5 ± 0.7 1.2

fit 2′′ 11.0 ± 0.36 3.0 ∓ 0.36 −1.4 ± 2.4 1.1 ± 1.3 −0.2 ± 4.0 1.5 ± 0.7 1.0

BChPT 11.2 ± 0.7 3.9 ± 0.7 −3.3 ± 0.8 2.9 ± 1.5 0.2 ± 0.2 1.1 ± 0.3

DR 12.1 1.6 −3.4 2.7 0.3 1.9

MAMI 2015 −3.5 ± 1.2 3.16 ± 0.85 −0.7 ± 1.2 1.99 ± 0.29

shown with the bands. To estimate them, we employ the error propagation method, which

uses the error bars on the multipoles as the input (for details, see Supplementary Material 4.6).

Besides our results in the figure we also present the experimental data recently collected by the

A2 Collaboration at MAMI [Sokhoyan 2016]. Note that these data are the average over photon

energy bins. To compare our results with these data, we produce our curves at the central values

of the experimental photon energy bins, i.e., ν = 89, 109, and 129 MeV.

We see that both curves are in agreement with the experimental data. Moreover, at ν =

89 MeV and ν = 109 MeV the curves practically coincide. This observation tells us that the beam

asymmetry is sensitive only to some combinations of multipoles that compensate the difference

in the values of the individual multipoles. The fact that the curves coincide at ν = 89 MeV and

ν = 109 MeV makes it impossible to discriminate between the two solutions (two sets of fitted

parameters) at the two lower energies no matter how accurate the data are. At the same time at

ν = 129 MeV the curves slightly differ, most noticeably at scattering angles θlab ≈ 70−80 degrees.

Unfortunately, the error bars on the current data are too large to dismiss one of the curves. We

will have this opportunity only after the data reaches the accuracy of a few percent.
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Figure 4.6: The beam asymmetry as a function of the scattering angle for the three experimentally
relevant photon energy bins. The black points are the experimental data from MAMI [Sokhoyan 2016],
and the curves with uncertainty bands are the calculations of Σ3 with the multipoles obtained in fit 1
(blue) and fit 1′′ (red), see the text for details. Note that the theoretical curves are obtained at the central
values of the photon energy bins, i.e., ν = 89, 109, 129 MeV.

Beam-target asymmetries We show the beam-target asymmetry Σ2z in Fig. 4.7. As for the

beam asymmetry we plot two curves that correspond to the results of fit 1 (blue) and fit 1′′ (red)

for ν = 89, 109 and 129 MeV. Note that in the fitting procedures we fix the empirically known

values of Σ2z for the forward scattering (see Section 4.2.2 for details), and, therefore, both curves

coincide at θlab = 0. At other angles the curves lie very close to each other, suggesting that the
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differences in values of the multipoles cancel out (just as for the unpolarized cross section at

most of the considered energies, and for Σ3 at ν = 89 and 109 MeV). To date, no experimental

data on Σ2z exist below the threshold, so we plot only the results of our calculations. It is

worthwhile noting that to claim that one of the fits is wrong we need very precise measurements

that are not feasible at the moment.
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Figure 4.7: The beam-target asymmetry Σ2z as a function of the scattering angle for ν = 89, 109 and
129 MeV. The curves with uncertainty bands correspond to the calculations of Σ2z with the multipoles
obtained in fit 1 (blue) and fit 1′′ (red). The symbol / at θlab = 0 shows in every figure the empirically
known value of Σ2z [Gryniuk 2016].
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Finally in Fig. 4.8 we show the beam-target asymmetry Σ2x. The photon energies and the

curves here are as in Fig. 4.7. To date, no experimental data exist below the threshold for

this observable, thus, we present only our results. Note that the curves slightly deviate (on

a level of a few percent) from each other especially at ν = 129 MeV and scattering angles

θlab ≈ 80 − 120 degrees. Therefore, in principle, it should be possible to discriminate between

the fit 1 and fit 1′′ solutions, once accurate experimental data become available.

4.5 Summary

In this chapter we introduced the MEX-based fitting procedure that was developed during the

course of our studies to determine the values of the multipoles and the static polarizabilities

using the existing experimental data. An advantage of this approach to the problem over the

one presented in the previous chapter is a broader energy range of the applicability. For instance,

in this chapter we worked at photon energies up to ν = 150 MeV, which are inaccessible using

our first method.

We argued that the current database contains a few inconsistent data points. Therefore, to

estimate the polarizabilities, we performed three fits — with all the existing points (fit 1), with

all but two points (fit 1′), and with all but four points (fit 1′′). The obtained results for the scalar

and spin polarizabilities are presented in Table 4.5. Apparently, fit 1 and fit 1′′ give different

predictions, in particular for the magnetic polarizability. For example, from fit 1 we obtained

the value of βM1 that is consistent with the DR result, whereas from fit 1′′ the value that is in

agreement with the BChPT calculations. This observation allowed us to suggest that the BChPT

and DR values of the magnetic polarizability do not agree because of the inconsistent database

in the DR analysis. If this is indeed the case, then the existing difference will disappear once the

database is improved.

Furthermore, we demonstrated that the unpolarized cross sections obtained in fit 1 and

fit 1′′ coincide almost everywhere, although they imply different values of polarizabilities. To

explain this fact, we suggested that this observable is mainly sensistive to some combinations

of the polarizabilities, and, therefore, one cannot isolate one, unless the used CS data are very

accurate. To illustrate this statement, we studied the interplay between αE1 − βM1 and γπ at

θlab = π. This investigation, in particular, showed that to obtain reliable results, one should

improve the existing database at ν ≈ 110 MeV and backward angles.

We also discussed the multipole amplitudes and dynamical polarizabilities. We found that

their values are similar to the calculated in BChPT and DR. However, we noted that the results
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Figure 4.8: The beam-target asymmetry Σ2x as a function of the scattering angle for ν = 89, 109 and
129 MeV. The curves with uncertainty bands show the calculations with the multipoles obtained in fit 1
(blue) and fit 1′′ (red).

of fit 1 agree again better with DR and of fit 1′′ with BChPT.

Finally, we computed the three asymmetries Σ3, Σ2z and Σ2x below the pion-production

threshold. These calculations ideally would allow us to find the solution (either fit 1 or fit 1′′)
that does not reproduce the experimental data. Unfortunately, the error bars on the current Σ3

data are too large to do so. However, we derived all ingredients to eliminate one of the solutions

once data with the accuracy of a few percent are available. We also showed that it is possible to
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discriminate between the fit 1 and fit 1′′ solutions using accurate experimental data on Σ2x. We

noted however that, to date, no experimental data exist below the pion-production threshold

for Σ2x.

4.6 Supplementary Material

Relations of the Forward CS Amplitudes to the Photoabsorption Cross Sections

Here we present the relations of the forward CS amplitudes, f (ν) and g(ν), to the photoabsorp-

tion cross sections. These relations follow from the unitarity and analyticity properties of f (ν)

and g(ν) [Gell-Mann 1954b]. The unitarity leads to the optical theorem, which relates the imag-

inary parts of the forward amplitudes to the doubly-polarized photoabsorption cross sections

Im f (ν) =
ν

8π

[
σabs

1/2(ν) + σabs
3/2(ν)

]
, (SM4.21a)

Im g(ν) =
ν

8π

[
σabs

1/2(ν) − σabs
3/2(ν)

]
, (SM4.21b)

where σabs
Λ

is the doubly polarized total cross section of the photoabsorption processes, and Λ

is the total helicity of the initial γN system. Assuming analyticity of the scattering amplitude

everywhere except the real axis, we write the dispersion relation, which relates the real parts of

f (ν) and g(ν) to their imaginary parts

Re A(ν) =
1
π

(∫ ∞

ν0

+

∫ −ν0

−∞

)
dν′

Im A(ν′)
ν′ − ν , (SM4.22)

where A is either f or g, and ν0 is the threshold energy. Combining the optical theorem with the

dispersion relations we obtain

f (ν) = − α
M

+
ν2

2π2

∫ ∞

0

dν′

ν′ 2 − ν2 − i0+

[
σabs

1/2(ν′) + σabs
3/2(ν′)

]
, (SM4.23)

g(ν) =
ν

2π2

∫ ∞

0

dν′ ν′

ν′ 2 − ν2 − i0+

[
σabs

1/2(ν′) − σabs
3/2(ν′)

]
. (SM4.24)

The photoabsorption cross sections were measured, therefore, these amplitudes are known

[Gryniuk 2015].

Technical Details

In this section we discuss in more detail the fitting procedure presented in Section 4.3. In partic-

ular, we explain how we establish the residual functions and how we calculate the uncertainties

on the static polarizabilities, multipoles, dynamical polarizabilities and observables.
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Residual functions. Below the pion-production threshold, the multipole amplitudes are ana-

lytical functions of energy, see Eq. (4.10). The low-energy behaviour of multipoles is defined by

the static polarizabilities (the first terms), and the behaviour at higher energies is given by the

residual functions, f R
i . To find f R

i , we first assume that at the energies of interest the scalar po-

larizabilities give the most important contribution to observables, meaning that the functions f R
i

are of the natural size, i.e., f R
1 is of the order of αE1, f R

4 is of the order of βM1, etc. Then we use

the Monte-Carlo methods, i.e., we sample random numbers normally distributed around 0, with

the variance of the natural size, and find the values that minimize the chi-squared function,

χ2 =

N∑
i=1


(

dσexp

dΩ

)
i
−

(
dσth

dΩ

)
i

δexp
i


2

, (SM4.25)

here the sum runs over N used experimental data points, (dσexp/dΩ)i and δexp
i are a measured

value of the unpolarized cross section and the corresponding error,
(
dσth/dΩ

)
i

is a theoretical

prediction for the cross section – in our case it is an expression in terms of the residual functions

and polarizabilities obtained from Eqs. (4.8), (4.9), (4.10), (4.13). Therefore, the cross section(
dσth/dΩ

)
depends on the polarizabilities, and we should either fix them and fit only the residual

functions, or also fit them using Monte-Carlo. We choose the latter, i.e., for the polarizabilities

we sample random numbers normally distributed around their known values (we take the value

for the difference of the scalar polarizabilities from PDG, i.e., αE1 − βM1 = 8.7 (10−4 fm3) and the

spin polarizabilities from BChPT, see table 4.5), and the variance of 2.0 in the respective units

(10−4 fm3 for the scalar and 10−4 fm4 for the spin polarizabilities). To minimize the chi-squared

we use standard routine from Mathematica. Therefore, in this method we obtain not only the

residual functions but also the polarizabilities. However, to establish the polarizabilities more

accurately, we prefer to perform another fit with a smaller number of parameters, i.e., three

polarizabilities in fit 1 and four in fit 2 (see above), using the residual functions obtained in the

described Monte-Carlo simulations.

Uncertainties. To calculate uncertainties on the fitted parameters we follow the standard

approach [Beringer 2012, chapter 36]. To this end, we first calculate the covariance matrix A,

whose elements are the covariances between the parameters. For instance, in fit 1 we have three

parameters, let us call them y = {y1, y2, y3}, therefore, the covariance matrix is a 3×3 symmetric

matrix, its diagonal elements are the variances, or uncertainties, of the fitted parameters, and

the non-diagonal elements are the covariances between the parameters. The calculation method

assumes that χ2(y1, y2, y3) is a quadratic function, meaning that we have a Gaussian distribution.

In this case the inverse of the covariance matrix, A−1, is given by [Beringer 2012, chapter 36],

(
A−1

)
i j

=
1
2
∂2χ2

∂yi∂y j

∣∣∣∣∣∣
min
, (SM4.26)
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where the second derivative is taken at the minimum of χ2. Having obtained the inverse matrix

we calculate A, and, hence, the uncertainties on the polarizabilities, which are simply

∆yi ≡ σi =
√

Aii. (SM4.27)

To calculate the uncertainties on the multipoles, dynamical polarizabilities and observables we

use the standard error propagation method. To illustrate it we consider a set of parameters

y = {y1, ..., yn} and a set of functions f (y) = { f1(y), ..., fm(y)}. Let us assume that we know the

covariance matrix for the parameters Ai j (e.g., from Eq. (SM4.26)). The error propagation

method then finds the covariance matrix for the functions Ui j, whose diagonal elements Uii

are the variances of the functions. This covariance matrix is found by expanding fi(y) in Taylor

series, which in the leading order are [Beringer 2012, chapter 36]

Ui j ≈
∑
k,l

∂ fi
∂yk

∂ f j

∂yl

∣∣∣∣∣∣∣
min

Akl. (SM4.28)

Note that in the matrix notationUi j can be written as

U ≈ O A OT, (SM4.29)

where Oi j =
∂ fi
∂y j

∣∣∣∣
min

and OT is its transpose. In our case the parameters y are the fitted polar-

izabilities, and the functions f (y) are the multipoles, dynamical polarizabilities, or observables

that depend on the polarizabilities.
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CHAPTER 5

Concluding Remarks

In this dissertation we introduced two model-independent procedures that were designed to

establish the values of the scalar and spin proton polarizabilities. First in Chapter 2 we reviewed

the starting points of our analysis, i.e., the low-energy expansion and the multipole expansion

of Compton scattering observables. Then, in Chapters 3 and 4 we presented the developed

methods and discussed the results, i.e., the estimates for the values of the polarizabilities.

Low-energy expansion. In chapter 3 we introduced observables that can be used to establish the

proton polarizabilities and calculated them using the LEX approach. Here firstly we showed that

the leading order non-Born contribution to the beam asymmetry Σ3 is given by the magnetic

polarizability βM1. We also studied the next-to-leading corrections to Σ3 and found them to

be suppressed at the forward scattering angles. These calculations allowed us to suggest that

βM1 can be determined experimentally by measuring Σ3 at forward scattering angles and beam

energies below 100 MeV [Krupina 2013].

Inspired by our suggestion the A2 Collaboration at MAMI performed the very first measure-

ment of the beam asymmetry below the pion-production threshold. We presented and analyzed

their preliminary data in Chapter 3. In particular, we tested the applicability of the LEX for the

parameters of the experiment and concluded that, at present, it seems not feasible to extract the

magnetic polarizability using the LEX alone. Indeed, in the upper energy range the LEX exhibits

slow convergence, and in the lower energy range, where the LEX does converge, it is impossible

to establish βM1 – the contribution of the polarizabilities is smaller than the error bars on the

data. Therefore, we analyzed the data using the BChPT framework and obtained the following

value of the magnetic polarizability

βM1 = 2.8+2.3
−2.1 (10−4 fm3). (5.1)

Despite the large error bars we find this experimental result very exciting. Indeed, this is just

the very first experimental study of this observable at these energies, and we believe that more

precise measurements will help us to pin down the value of the magnetic polarizability. For

instance, according to our calculations, to decrease the uncertainty on βM1 by a factor of 4 one

needs to decrease the error bars on the experimental data by the same factor.
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Besides the scalar polarizabilities, we also studied within the LEX approach the beam-target

asymmetries that are sensitive to the spin polarizabilities. We showed that the corresponding

LEX results have a limited region of applicability, i.e., the beam energy below 80 MeV. In this

region the dependence of observables on the spin polarizabilities becomes too weak, and it

is challenging to discriminate experimentally between the Born and non-Born contributions.

Nevertheless, we presented the LEX expressions for the non-Born leading order terms of the

beam-target asymmetries Σ2z and Σ2x, cf. Eq. (3.37). Although it seems not feasible to use these

expressions directly to determine the spin polarizabilities, they provide a useful low-energy test

for other theoretical approaches, e.g., approaches based on BChPT or DR. Once these approaches

are tested, they can be used to describe the current experiments that aim to extract the spin

polarizabilities. Note that these experiments are done at energies around the Delta resonance

region, where the contribution of the polarizabilities becomes substantial and the LEX cannot

be applied.

It follows from the above that the low-energy expansion connects the proton polarizabilities

and CS observables in a model-independent way. However, the LEX-based extraction of the

polarizabilities from CS data does not seem to be possible, as, at present, there are not enough

accurate data at low energies (below 100 MeV). Nonetheless, the results of the LEX can guide

future developments, as they help one to find the observables that are best suited to disentangle

various polarizabilities.

Multipole expansion. In chapter 4 we employed a model-independent approach based on the

MEX. An advantage of this approach over the LEX is that it has a broader energy range of

applicability, and in this thesis we apply it up to ν = 150 MeV. In this chapter we developed a

fitting procedure which yields the polarizabilities using unpolarized CS data as an input. Due to

the inconsistencies in the existing data base, we performed three different fits – with all points

(fit 1), with all but two points (fit 1′) and with all but four points (fit 1′′). We showed, that

the two fits, corresponding to the full data set and to the full set without four points, yield very

different values of the polarizabilities. In particular, the polarizabilities obtained using the full

data set are in agreement with the values of DR, whereas the polarizabilities obtained using the

full set without four points agree with BChPT. This demonstrates how important it is to have a

reliable data set and allows us to suggest that the difference between the BChPT and DR values

of the scalar polarizabilities might be due to the inclusion of the inconsistent data points in the

DR analysis.

Another important observation is that the unpolarized cross sections in the fit 1 and fit 1′′ are

almost everywhere identical and qualitatively agree with BChPT despite the fact that they imply

different values of the polarizabilities. This tells us that there should be an interplay between
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the polarizabilities, i.e., the unpolarized cross section is sensitive only to certain combinations

of the polarizabilities, and, thus, different values of the polarizabilities may give the same value

of the observable. In particular, we showed that there is an interplay between αE1 − βM1 and γπ
at the backward angle, i.e., the differences in αE1 − βM1 for fit 1 and fit 1′′ should be somehow

compensated by γπ. Most notably this interplay reveals itself at ν ≈ 110 MeV. Therefore, in order

to obtain reliable results from the multipole analysis, we suggest to improve the unpolarized

cross section data base at this energy and backward angles.

The presented multipole analysis of Compton scattering is the first of its kind. Our methods

will allow for a precision and model-independent determination of the proton polarizabilities

once accurate CS data are available. We hope that the new experiments planned in Mainz

(MAMI, MESA) will provide the required information in the near future.

Outlook. In the future, we aim to reduce the current error on the values of the polarizabilities

using the approaches put forward in this dissertation. We believe that this goal will be accom-

plished once accurate CS data are available. The improvement of these data set can be achieved

either by the exclusion of the inconsistent data points from the existing set or by adding new data

on the unpolarized cross section (e.g., as we suggested, at ν ≈ 110 MeV and backward angles).

We also would like to improve the analysis by adding to the database accurate measurements of

other CS observables, e.g., Σ3 below threshold (once more accurate data available). Note that

the presented MEX-based method is applicable above the pion-production threshold, therefore,

one could extend the analysis by adding new data at higher energies where the contribution of

the polarizabilities to observables is even more substantial. For instance, we plan to include the

data on Σ3 at ν = 276 − 324 MeV collected at the MAMI and the Laser Electron Gamma Source

(LEGS) facilities.

However, one should note that above the threshold the multipoles become complex due

to open decay chanels. Therefore, there are 2Np unknowns, i.e., Np real parts and Np imagi-

nary parts of multipoles, here Np is the number of multipoles1 that should be included in the

analysis. The number of parameters can be reduced by noting that the unitarity condition

relates the imaginary part of the CS multipole amplitudes with the photoproduction ampli-

tudes [Sitenko 1991]

2 Im〈γN|T|γN〉 =
∑
α

〈γN|T+|α〉〈α|T|γN〉, (5.2)

where iT = S − 1 with S being the scattering matrix. The sum here is taken over the all possible

intermediate states. It is worthwhile noting that below ν ≈ 350 MeV (the Delta-resonance

region) only the πN intermediate states must be taken into account, as the contribution of the

1This number clearly depends on the considered energy region and can be found by comparing the truncated
expressions for observables with the BChPT or DR calculations.
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ππN states is small and can be neglected. In this approximation the unitarity relation gives

Im f L±
EE = q

∑
c
|E(c)

(L±1)∓|2,

Im f L±
MM = q

∑
c
|M(c)

L±|2,

Im f L±
EM = ±q

∑
c

Re
(
E(c)

(L±1)∓M∗(c)
(L±1)∓

)
,

Im f L±
ME = ∓q

∑
c

Re
(
E(c)

L±M∗(c)
L±

)
, (5.3)

where on the right-hand side we have the single-pion photoproduction amplitudes E(c)
`± and

M(c)
`±. These energy-dependent amplitudes refer to the transitions initiated by the electric and

magnetic radiation, respectively, with final states of the orbital angular momentum ` and total

angular momentum `±1/2. The superscript (c) here distinguishes the two charge states π+n and

π0p, and q denotes the four-momentum of the outgoing pion. Having determined the imaginary

parts of the CS multipoles, one reduces the number of parameters to Np unknown real parts.

To determine them, one can apply the fitting procedure, developed in Chapter 4, i.e., one first

expresses the real parts of the multipoles in terms of the polarizabilities and residual functions,

and then fits the polarizabilities.
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