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Abstrat

Although only little is known about the preise quantum nature of the gravi-

tational interation, we an impose several essential requirements a onsistent

theory of quantum gravity must meet by all means: It must be renormalizable in

order to remain well de�ned in the high energy limit, it must be unitary in order

to admit a probabilisti interpretation, and it must be bakground independent

as the spaetime geometry should be an outome of the theory rather than a pre-

sribed input. Being nonrenormalizable from the traditional, perturbative point

of view, for a usual quantum version of general relativity already the �rst of these

onditions seems to be ruled out. In the Asymptoti Safety program, however,

a more general, nonperturbative notion of renormalizability is proposed, on the

basis of whih quantum gravity ould be de�ned within the framework of on-

ventional quantum �eld theory. The key ingredient to this approah is given by a

nontrivial renormalization group �xed point governing the high energy behavior

in suh a way that the in�nite uto� limit is well de�ned. While there is mount-

ing evidene for the existene of a suitable �xed point by now, investigations of

bakground independene are still in their infany, and the issue of unitarity is

even more obsure.

In this thesis we extend the existing Asymptoti Safety studies by examining all

three of the above onditions and their ompatibility. We demonstrate that the

renormalization group �ow and its �xed points are sensitive to hanges in the met-

ri parametrization, where di�erent quali�ed parametrizations, in turn, are seen

to orrespond to di�erent �eld spae onnetions. A novel onnetion is proposed,

and the renormalization group �ow resulting from the assoiated parametriza-

tion and a partiular ansatz for the e�etive average ation is shown to possess

the deisive nontrivial �xed point required for nonperturbative renormalizability.

For two speial parametrizations we argue that bakground independene an

be ahieved in the infrared limit where all quantum �utuations are ompletely

integrated out. In order to study the question of unitarity in an asymptotially

safe theory we resort to a setting in two spaetime dimensions. We provide a

detailed analysis of an intriguing onnetion between the Einstein�Hilbert ation

in d > 2 dimensions and Polyakov's indued gravity ation in two dimensions.

By establishing the 2D limit of an Einstein�Hilbert-type e�etive average ation

at the nontrivial �xed point we reveal that the resulting �xed point theory is a

onformal �eld theory, where the assoiated entral harge, shown to be c = 25,
guarantees unitarity. Further properties of this theory and its impliations for

the Asymptoti Safety program are disussed. In the last part of this work we

present a strategy for onveniently reonstruting the bare theory pertaining to

a given e�etive average ation. For the Einstein�Hilbert ase we prove the ex-

istene of a nontrivial �xed point in the bare setor and exploit the dependene

of the bare ation on the underlying funtional measure to simplify the maps

between bare and e�etive ouplings. Applying this approah to 2D asymptoti-

ally safe gravity oupled to onformal matter we unover a number of surprising

onsequenes, for instane for the gravitational dressing of matter �eld operators

and the KPZ saling relations.
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Kurzfassung

Auh wenn über den genauen Quantenharakter der gravitativen Wehselwir-

kung bislang nur wenig bekannt ist, können wir einige Forderungen aufstellen,

die eine konsistente Theorie der Quantengravitation zwingend erfüllen muss: Sie

muss renormierbar sein, um auh im Hohenergielimes wohlde�niert zu bleiben,

sie muss unitär sein, um eine Wahrsheinlihkeitsinterpretation zuzulassen, und

sie muss hintergrundunabhängig sein, da die Raumzeitgeometrie keine Vorga-

be, sondern ein Ergebnis der Theorie sein sollte. Da eine gewöhnlihe Quan-

tenversion der allgemeinen Relativitätstheorie aus störungstheoretisher Siht

niht-renormierbar ist, sheint bereits die erste dieser Bedingungen ausgeshlos-

sen. Das Asymptoti-Safety-Programm shlägt jedoh einen allgemeineren, niht-

störungstheoretishen Begri� von Renormierbarkeit vor, anhand dessen Quan-

tengravitation im Rahmen konventioneller Quantenfeldtheorie de�niert werden

könnte. Die Grundidee basiert auf einem niht-trivialen Renormierungsgruppen-

�xpunkt, an dem der Limes des unendlihen Cuto�s gebildet werden kann, sodass

das Hohenergieverhalten in diesem Zugang wohlde�niert bleibt. Während es in-

zwishen vermehrt Hinweise für die Existenz eines geeigneten Fixpunktes gibt,

haben die Untersuhungen zur Hintergrundabhängigkeit gerade erst begonnen,

und das Unitaritätsproblem ist derzeit noh unklarer.

In der vorliegenden Arbeit werden die bisherigen Studien zu Asymptoti Safe-

ty erweitert, indem alle drei der obigen Bedingungen sowie deren Kompatibi-

lität untersuht werden. Wir zeigen, dass der Renormierungsgruppen�uss und

dessen Fixpunkte von der Parametrisierung der Metrik abhängen, wobei unter-

shiedlihe Parametrisierungen wiederum auf untershiedlihe Zusammenhänge

im Feldraum zurükgeführt werden können. Im Hinblik darauf shlagen wir

einen neuen, eigens konstruierten Zusammenhang vor und weisen nah, dass

der Renormierungsgruppen�uss, der sih aus der zugehörigen Parametrisierung

und einem speziellen Ansatz für die e�ektive Mittelwertwirkung ergibt, einen

für die niht-störungstheoretishe Renormierbarkeit erforderlihen Fixpunkt auf-

weist. Für zwei bestimmte Parametrisierungen legen wir dar, dass im Infrarot-

limes, in dem alle Quanten�uktuationen vollständig ausintegriert sind, Hinter-

grundunabhängigkeit tatsählih erreiht werden kann. Um die Frage nah Uni-

tarität in einer asymptotish siheren Theorie zu erörtern, bedienen wir uns eines

Szenarios in einer 2-dimensionalen Raumzeit. Hierbei deken wir einen verblüf-

fenden Zusammenhang zwishen der Einstein�Hilbert-Wirkung in d > 2 Dimen-

sionen und Polyakovs induzierter Gravitationswirkung in zwei Dimensionen auf.

Indem wir den 2D-Limes einer e�ektiven Mittelwertwirkung des Einstein�Hilbert-

Typs am niht-trivialen Fixpunkt bilden, können wir zeigen, dass die resultierende

Fixpunkttheorie eine konforme Feldtheorie ist, und dass die entsprehende zen-

trale Ladung, die wir zu c = 25 berehnen, Unitarität gewährleistet. Darüber

hinaus diskutieren wir weitere Eigenshaften dieser Theorie sowie die Implika-

tionen für das Asymptoti-Safety-Programm. Im letzten Teil der Arbeit stellen

wir eine Strategie vor, mittels derer die nakte (mikroskopishe) Theorie zu einer

gegebenen e�ektiven Mittelwertwirkung zwekmäÿig rekonstruiert werden kann.

Für den Einstein�Hilbert-Fall beweisen wir die Existenz eines niht-trivialen Fix-

punktes auf nakter Ebene und nutzen die Abhängigkeit der nakten Wirkung

von dem zugrundeliegenden Funktionalmaÿ aus, um die Abbildungen zwishen

den nakten und den e�ektiven Kopplungen zu vereinfahen. Durh Anwenden

dieser Methode auf 2D asymptotish sihere Gravitation, die an konforme Ma-

terie gekoppelt ist, enthüllen wir eine Reihe überrashender Konsequenzen, die

sih beispielsweise für den gravitativen E�ekt auf Materiefeldoperatoren und für

die KPZ-Relationen ergeben.
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1
Introdution

It is one of the most fasinating and hallenging open problems in theoretial physis

to aquire a deeper understanding of the quantum nature of gravitation. Remarkably

enough, the two apparent pillars of quantum gravity, quantum �eld theory on the one

hand and Einstein's lassial theory of gravity on the other hand, are among the most

aurately veri�ed theories in physis and lead to strikingly preise preditions suh

as, for instane, the anomalous magneti moment in quantum eletrodynamis, and

the perihelion preession of Merury in general relativity. However, the perturbative

nonrenormalizability of Einstein gravity prevents a straightforward uni�ation of the

two onepts and seems to urtain the fundamental theory at the heart of quantum

gravity [1, 2℄.

These di�ulties do not imply a defet of quantum �eld theory or gravity per se,

but rather hint at the limitations of perturbation theory. A partiularly interesting

approah following this possibility is based on a more general, nonperturbative notion

of renormalizability, referred to as Asymptoti Safety [3, 4℄. The key idea of this

program onsists in that the underlying oupling onstants governing the strength of

interations are not plagued by unphysial singularities at high energies but onverge

to �nite, not neessarily small �xed point values instead.

During the past two deades, Asymptoti Safety matured from a hypothetial

senario to a theory with a realisti hane to desribe the struture of spaetime

and the gravitational interation onsistently and preditively, even on the shortest

length sales possible. In partiular, there is mounting evidene supporting the

existene of the deisive nontrivial renormalization group (RG) �xed point in the

spae of oupling onstants [5�11℄.

Apart from these promising results onerning nonperturbative renormalizability

there are several further properties a fundamental quantum theory of gravity must

possess. The two most important ones are bakground independene and unitarity.

A bakground independent theory is haraterized by the absene of any presribed

geometrial bakground struture: The struture of spaetime, usually enoded in
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a dynamial metri, must be an outome of the theory rather than an input. Uni-

tarity refers to the absene of unphysial states with negative norm; only under this

ondition the probabilisti interpretation of quantum mehanis and quantum �eld

theory an be maintained.

In the light of these onsiderations a virtually inevitable question suggests it-

self: Is there a theory of the gravitational �eld with the orret lassial limit that

ombines all three ruial properties at the same time, i.e. is there a theory that is

nonperturbatively renormalizable and bakground independent and unitary?

Although giving a �nal answer to this question seems to be out of reah with

the methods presently at hand, we may shed some light on the issue by deom-

posing it into smaller subsets whih are more easily aessible. First, we an study

the ompatibility of Asymptoti Safety and the requirement for bakground indepen-

dene. Seond, we an investigate whether Asymptoti Safety an be reoniled with

unitarity in priniple. Finding positive answers in both ases would mark another

important step for the Asymptoti Safety program.

It turns out that, for both tehnial and oneptual reasons, a quantum �eld

theoretial desription of Einstein gravity atually requires the introdution of a

bakground �eld [12℄. This does not neessarily imply a violation of the priniple

of bakground independene, though. It is perfetly possible that the bakground

�eld serves merely as an auxiliary tool during the intermediate steps of alulation,

and in the end all physial preditions are independent of it. This is preisely the

approah we pursue in this thesis. We introdue a bakground metri ḡµν , use it to

de�ne a sale dependent version of the e�etive ation, the e�etive average ation

Γk , and aim at demonstrating, at least for a speial ase, that the essential part of

Γk is ḡµν -independent in the limit of vanishing RG sale k, that is, when all quantum

�utuations have been integrated out ompletely.

Before proeeding along these lines, however, we shall disuss another as yet

unsolved strutural problem. It originates from the fat that, despite its name, the

RG is rather a semigroup sine the number of degrees of freedom dereases during

eah RG step. In general, the �ow diretion (from ultraviolet to infrared sales)

annot be reversed. Hene, without further assumptions (suh as �xing the types of

variables during the RG evolution) we have no diret aess to the physis at short

distanes, and the fundamental variables are unknown in priniple. In the ase of

gravity they may or may not be given by a metri �eld. Furthermore, there may

be several di�erent ways to parametrize them in terms of the bakground �eld and

some sort of �utuations.

In this work we study in detail two partiular parametrizations of the dynamial

metri gµν , the linear split

gµν = ḡµν + hµν , (1.1)

and the exponential parametrization

gµν = ḡµρ
(
eh
)ρ

ν , (1.2)



3

where in both ases the �utuations are given by a symmetri tensor �eld, hµν = hνµ ,

and indies are raised and lowered by means of the bakground metri. Although

these two parametrizations have already been employed in the literature on Asymp-

toti Safety, they have merely been onsidered as onvenient hoies for performing

alulations so far. We will argue, however, that they have a muh more fundamental

meaning whih we disuss on the basis of onnetions and geodesis on �eld spae.

Interestingly enough, (1.1) and (1.2) do not even parametrize the same objet : The

set of tensor �elds that an be represented by the linear parametrization is larger

than the set of tensor �elds that an be written in the form (1.2). This will lead to

di�erenes of the respetive RG �ows, whereas the disussion and the main results

onerning bakground independene are essentially the same for both parametriza-

tions. It is remarkable that even universal (i.e. uto� sheme independent) quantities

like the �xed point value of the running Newton onstant near two dimensions an

depend on the way the metri is parametrized.

From the Asymptoti Safety perspetive the two-dimensional setting is partiu-

larly interesting: The mass dimension of the running Newton onstant, [Gk] = 2−d,
vanishes in exatly d = 2 spaetime dimensions, and a perturbative treatment be-

omes feasible. This approah involves omputing the β-funtions (i.e. the vetor

�eld whih drives the RG �ow) in d = 2+ ε > 2 dimensions and expanding them in

terms of ε. A general onsideration [4℄ shows that the β-funtion of the dimensionless

Newton onstant, gk ≡ kd−2Gk , must be of the form

βg = εgk − bg2k , (1.3)

with a positive onstant b. Notably, this β-funtion possesses a nontrivial RG �xed

point, de�ned by the zero, βg(g∗) = 0, resulting in the �xed point value

g∗ = ε/b . (1.4)

Hene, already the perturbative analysis demonstrates the appliability of the As-

ymptoti Safety program in priniple. In fat, eq. (1.3) an be reprodued also

nonperturbatively. This is what makes the (2 + ε)-dimensional ase so speial; it

allows us to test nonperturbative results perturbatively.

Note that the struture of the gravitational β-funtion in 2+ε dimensions agrees

with the one of an SU(N) Yang�Mills theory in 4+ε dimensions, where the running of

αs(k) ≡ g2s(k)
4π , with gs(k) the dimensionless version of the strong oupling onstant,

is given by k∂kαs(k) = βα = εαs(k)−bsα2
s(k) [13℄. The positive oe�ient bs =

11N
6π

entails asymptoti freedom in exatly d = 4 dimensions, while there is a nontrivial

�xed point for d > 4.

We show in this thesis that the ruial oe�ient b in (1.3) depends on the

hoie of the underlying metri parametrization. Although it remains positive, its

numerial value hanges when swithing between (1.1) and (1.2). In spite of this

parametrization-dependene, g∗ at lowest order is always proportional to ε.
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The signi�ane of a suitable RG �xed point for the Asymptoti Safety senario

justi�es a loser look to its properties. After having hosen a metri parametrization

we may ask the question about the preise nature of the ation funtional whih

desribes this �xed point. In whih way exatly does it depend on the metri, the

bakground metri, and the Faddeev�Popov ghosts? Is it loal? What are the

strutural properties of the �xed point theory, i.e. the one de�ned diretly at the

�xed point itself rather than being de�ned by an RG trajetory running away from

it? Is this theory a onformal �eld theory?

Sine onformal invariane implies sale invariane, any onformal �eld theory in

a theory spae governed by the RG must be loated at a �xed point as, by de�ni-

tion, only �xed points are una�eted by hanges of the RG sale. The reverse, on the

other hand, seems to hold only in two spaetime dimensions: Under a few tehnial

assumptions, sale invariant 2D quantum �eld theories are neessarily onformally

invariant [14℄. In four dimensions, however, it is still unlear whether (and under

what onditions) sale invariant �xed point theories possess the full onformal sym-

metry. For this reason we shall fous on the 2D ase when disussing the onformal

harater of a �xed point theory. If, indeed, we identi�ed a onformal �eld theory,

the issue of unitarity ould then be studied in a straightforward way by making

use of well-known arguments whih are established for generi onformally invariant

theories in two dimensions [15℄.

It may be somewhat unexpeted that taking the 2D limit of an ation de�ned

in d > 2 dimensions an be a formidable task, in fat, depending on the behavior of

the oupling onstants and the geometrial properties of the invariants appearing in

that ation. As for gravity, we are mainly interested in (e�etive average) ations of

the Einstein�Hilbert type:

ΓEHk [g] =
1

16πGk

∫
d

dx
√
g
(
−R+ 2Λk

)
, d > 2 , (1.5)

where R is the salar urvature, and Gk and Λk denote the dimensionful running

Newton and osmologial onstant, respetively. The key point is that, aording to

eq. (1.4), Gk is proportional to ε = d−2 in the viinity of the �xed point, and we will

see later on that Λk ∝ ε, too. Hene, the osmologial term in (1.5) remains �nite in

the limit ε → 0, while the urvature term seems to diverge as it ontains the fator

G−1
k ∝ ε−1

. On the other hand, in exatly d = 2 dimensions, the integral

∫
d

2x
√
g R

beomes trivial in the sense that it is purely topologial and fully independent of the

metri. Loosely speaking, the ombination of the integral and the prefator ∝ G−1
k

thus leads to the problemati limit

1
16πGk

∫
d

2+εx
√
g R → �0/0 � for ε → 0. We will

demonstrate that it is atually possible to make sense of this limit. Remarkably

enough, its essential part amounts to a nontrivial, �nite, nonloal funtional whih

is proportional to the indued gravity ation

I[g] ≡
∫

d

2x
√
g R�−1R , (1.6)
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where �−1
is the inverse of the Laplaian. It is this limit ation that is used to

investigate the onformal properties of the �xed point theory. In this manifestly

two-dimensional setting, the question onerning unitarity has a preise answer.

By writing the metri gµν in terms of a onformal fator and a referene metri,

gµν = e2φĝµν , the �xed point funtional an be expressed as a Liouville ation,

ΓLk [φ; ĝ] = (−2a1)

∫
d

2x
√
ĝ

(
1

2
D̂µφD̂

µφ+
1

2
R̂φ− a2

4
e2φ
)
, (1.7)

plus a term that is independent of the onformal mode φ. Ations of the type (1.7)

play an important role in 2D quantum gravity and nonritial string theory [16℄.

Here, the oupling onstants a1 and a2 depend on the properties of the �xed point.

The requirement for unitarity of the mirosopi theory will be seen to impose the

onstraint a1 > 0. However, if this is indeed satis�ed, the kineti term of φ has

the �wrong� sign, apparently leading to an instability of the onformal mode. Thus,

unitarity on the one hand and stability of φ on the other hand are mutually exlusive.

We will disuss in detail whether or not this irumstane is problemati from the

physis point of view.

Finally, we address ourselves to an analysis of the mirosopi (�lassial�) system

orresponding to a given RG trajetory and a �xed point. Most nonperturbative

studies on Asymptoti Safety are based upon the e�etive average ation rather

than the bare ation. In this ontext, RG trajetories are fully determined by the

respetive initial onditions and an RG evolution equation alone, dispensing with

the need for a bare ation and a funtional integral. While all physially relevant

quantities like n-point funtions are already ontained in the e�etive average ation,

gaining insight into the bare theory might nonetheless be of interest in ertain ases,

for instane when a onnetion between Asymptoti Safety and other approahes to

quantum gravity is to be established. After hoosing an appropriately regularized

funtional measure we show that the bare ation an be �reonstruted� from the

e�etive theory in suh a way that the orresponding funtional integral reprodues

the presribed e�etive average ation.

We reonstrut the bare ation for two di�erent underlying systems: for an e�e-

tive average ation of the Einstein�Hilbert type, eq. (1.5), and one of the Liouville

type given by eq. (1.7). In this manner we obtain mappings from RG trajetories

on the e�etive side to trajetories in the spae of bare ouplings, parametrized by

some ultraviolet uto� sale. For the Einstein�Hilbert ase we disuss whether the

RG �xed point always has a ounterpart on the bare side. As a diret appliation

of this onsideration, the path integral for a gravity+matter theory in d = 2 dimen-

sions is onstruted expliitly. It an be used to investigate the gravitational dressing

of matter �eld operators when asymptotially safe gravity is oupled to onformal

matter. In this regard, it would be partiularly interesting to see if the well-known

Knizhnik�Polyakov�Zamolodhikov (KPZ) saling an be observed in this system,

too.
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This work is organized as follows. Apart from Chapter 2, a preparatory hapter

introduing the fundamentals of the funtional renormalization group, Asymptoti

Safety, and onformal �eld theory, the body of the thesis onsists of three major

parts: the study of (1) parametrization dependene in quantum gravity, (2) the 2D

limit of asymptotially safe gravity, and (3) the reonstrution of bare theories.

(1) Chapter 3 ontains a thorough analysis of the spae of metris. Making use of

methods from di�erential geometry and group theory we de�ne several onnetions on

this spae. In that ontext, di�erent metri parametrizations orrespond to geodesis

based on di�erent onnetions. We advoate one spei� onnetion whih is adapted

to the struture of the spae of metris. In a disussion on global geodesis we

arefully distinguish between Eulidean and Lorentzian metris. This hapter is the

most mathematial one.

While Chapter 3 illuminates di�erent metri parametrizations from the math-

ematis point of view, Chapter 4 fouses on their physial impliations. Choosing

an e�etive average ation as in eq. (1.5), supplemented by suitable gauge �xing

and ghost terms, we determine the running of the dimensionless Newton onstant gk

and the dimensionless osmologial onstant λk by means of funtional RG methods,

while paying partiular attention to the existene and parametrization dependene

of nontrivial �xed points suitable for the Asymptoti Safety program. The question

about bakground independene is addressed in a so-alled bimetri omputation.

(2) In Chapter 5 we onsider the loal Einstein�Hilbert ation (1.5) whih desribes

quantum gravity in d > 2 dimensions and onstrut its limit of exatly two dimen-

sions. Exploiting the fat that the Newton onstant is of the order ε = d− 2 we �nd

that this limit ation is a nonloal funtional of the metri. We disuss the in�uene

of zero modes of the Laplaian and omment on a potential generalization to four

dimensions.

Chapter 6 onerns the nature of the 2D limit of the �xed point theory following

from the results obtained in Chapter 5. We examine if it represents a onformal

�eld theory and if it is unitary. Furthermore, the onformal fator problem is put

in perspetive by making a point on physial state onditions and the ompatibility

with unitarity.

(3) In Chapter 7 we demonstrate that there is a one-loop relation between the e�e-

tive average ation and the bare ation provided that the measure of the assoiated

funtional integral is �xed. As an example, we map the RG �ow pertaining to eq.

(1.5) onto its ounterpart in the spae of bare oupling onstants. We explain how

this mapping an be simpli�ed by hoosing the funtional measure appropriately.

Under the assumption that there is a �xed point on the e�etive side we show that

there exists also a bare �xed point.

Chapter 8 is devoted to the bare side of the 2D �xed point theory and a to

omparison of Asymptoti Safety to other approahes to 2D gravity. For that purpose

we reonstrut the funtional integral desribing asymptotially safe gravity oupled
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to onformal matter and investigate whether or not KPZ saling ours. We disuss

similarities and di�erenes ompared with nonritial string theory and Monte Carlo

simulations in the ausal dynamial triangulation approah.

Chapter 9 is a �rst attempt to reonstrut the bare ation for a Liouville-type

e�etive average ation. Several ansätze for the bare ation are made to determine

the orresponding bare ouplings, and various riteria suh as Ward identities for

testing their onsisteny are suggested.

Eah hapter begins with an exeutive summary stating its motivation and most

important results. If its ontent is based on already published, own material, we

provide the orresponding referene. Finally, a onluding disussion and an outlook

is presented in Chapter 10.

The main hapters are supplemented with a number of appendies. While Ap-

pendies A � D over numerous general relations that are used throughout this thesis,

Appendies E � K are assigned to spei� hapters. They onsist of additional ma-

terial like detailed alulations and proofs.





2
Theoretial foundations

Exeutive summary

This hapter introdues three essential piees of equipment that are needed for

our subsequent disussions: the funtional renormalization group, Asymptoti

Safety and onformal �eld theory. (i) After reviewing the general onept of

the renormalization group, we show how the ideas an be formulated in a fun-

tional language by de�ning a sale dependent e�etive ation and stating the

orresponding evolution equation. In order to apply this mahinery to gravity

we employ the bakground �eld method. (ii) The Asymptoti Safety program

suggests that the unphysial ultraviolet divergenes ourring in onventional

perturbative quantum gravity an be irumvented by means of a nontrivial

renormalization group �xed point. (iii) Antiipating that there is a onnetion

between the 2D limit of asymptotially safe gravity and 2D onformal �eld the-

ory, we present a brief introdution to the latter theory, with a speial fous

laid on the issue of unitarity.

Based on: Partially Ref. [10℄.

2.1 The funtional renormalization group

2.1.1 General onept

In the early stages of its development, �renormalization� was regarded merely as

a tool to tame in�nities in Feynman diagrams. This understanding hanged with

the advent of the renormalization group (RG), though. Following the idea that

sale determines the pereption of the world, it has been realized that oupling

onstants an vary rather than being stritly onstant, and that their hange is

desribed by renormalization group equations whih relate ouplings at di�erent

(momentum/uto�) sales [17, 18℄.



10 Chapter 2. Theoretial foundations

Inspired by Kadano�'s blok spin transformations [19℄, Wilson formalized the

onept of sale transformations in the language of funtional integrals [20�22℄,

paving the way for the funtional renormalization group (FRG). It governs the hange

of a physial system due to smoothing or averaging out mirosopi details when go-

ing to a lower resolution. Wilson's version of the FRG is implemented by means of

a sale dependent bare ation, the Wilson ation SWΛ , whih is de�ned in suh a way

that lowering the sale from Λ to Λ′ < Λ amounts to integrating out those modes

in the funtional integral whose momenta are restrited by Λ′2 ≤ p2 ≤ Λ2
, giving

rise to a new ation SWΛ′ de�ned at the sale Λ′
. The variation of SWΛ with respet

to Λ is then ditated by RG equations. While there is no simple representation of

these RG equations in Wilson's original formulation whih relies on a sharp uto�,

the generalization to smooth uto�s allows for deriving them in a ompat form, the

Polhinski equation [23℄.

From a pratial point of view, using the Wilson ation as the fundamental objet

has the disadvantage that extrating physial information requires performing the

remaining funtional integration (over modes with momenta between Λ′
and 0 in the

above example) in order to obtain the orresponding e�etive ation, see Refs. [24�26℄

for reviews. Working with a sale dependent e�etive ation, on the other hand,

would be more intuitive and more appropriate for alulations, in partiular in the

ontext of gauge theories. It is this latter type of ation, the e�etive average ation,

that we employ throughout this thesis.

2.1.2 The e�etive average ation and its FRGE

In order to larify the onept, we start by formally de�ning the e�etive average

ation (EAA) by means of funtional integrals. Here, �formally� refers to the fat

that this approah depends on the preise de�nition of the funtional measure. Later

on we will obtain the EAA as a solution of its RG equation rather than employing

a funtional integral-based onstrution, so we dispense with the need for speifying

a measure and an ultraviolet (UV) regularization presription.

1

(1) E�etive average ation. The basi method is demonstrated for salar �elds

in the following, while the generalization to the gravitational �eld is disussed in

Subsetion 2.1.5. Let χ denote a salar �eld, J its orresponding soure, and S[χ]

the bare ation. We employ the ondensed notation J ·χ for a spaetime integration:

J · χ ≡
∫
d

dx
√
g J(x)χ(x). The key idea behind the EAA is to modify the standard

partition funtion suh that high momentum modes are integrated out while low mo-

mentum modes are suppressed, see Figure 2.1. (It is implied that �elds are expanded

in terms of eigenmodes of the ovariant Laplaian, −D2
, and squared �momenta�

refer to the orresponding eigenvalues.) To this end, we add a �uto� ation� ∆Sk[χ]

1

A preise knowledge of the funtional measure beomes neessary only if the bare ation is of

interest. This situation is disussed in more detail in Chapter 7 and Appendix I.1.
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0 k2

p2

0 k′ 2

p2

�RG step�

k → k′

Figure 2.1 In the modi�ed funtional integral (2.1) modes with momenta satisfying p2 & k2

are integrated out, as indiated by the hathed area, while those with p2 . k2 are suppressed,
where squared momenta refer to eigenvalues of −D2

(upper ray). Lowering the sale from

k to k′ amounts to integrating out additional modes orrespondingly (seond ray).

in the exponent of the integrand, leading to the de�nition

Zk[J ] ≡
∫

Dχ e−S[χ]−∆Sk[χ]+J ·χ , (2.1)

where the uto� ation an be written as ∆Sk[χ] ≡ 1
2 χ·Rkχ with the uto� operator

Rk ≡ Rk

(
− D2

)
. We require Rk to at e�etively as an infrared uto�. This is

ahieved by hoosing a uto� pro�le similar to the one skethed in Figure 2.2, whih

leaves the high momentum modes una�eted, i.e. they are integrated out in (2.1),

while it plays the role of a mass-like uto� for infrared modes. For onveniene we

write Rk in terms of a dimensionless funtion R(0)
: Rk ≡ Zk k

2R(0)
(
− D2/k2

)
,

where Zk is a onstant (that may arry internal indies in the ase of general �elds).

Several possible hoies for the shape funtion R(0)
are spei�ed in Appendix D.

De�ning Wk[J ] ≡ lnZk[J ] we an express the (sale dependent) �eld expetation

value as φ ≡ 〈χ〉 = δWk/δJ . This relation is now formally solved for the soure,

J ≡ Jk[φ], viewing φ as an independent argument heneforth. Finally, the e�etive

average ation Γk is de�ned as the Legendre transform of Wk[J ] with the uto�

ation subtrated [13, 27�30℄:

Γk[φ] ≡ J · φ−Wk[J ]−
1

2
φ · Rkφ . (2.2)

The EAA desribes a family of e�etive �eld theories labeled by the sale k. By

onstrution, it approahes the standard quantum e�etive ation in the limit k → 0:

Γk=0 = Γ. In the UV limit, on the other hand, it is losely related to the bare

ation [31�34℄. We will investigate this latter property in more detail in Chapter 7.

(2) Funtional RG equation. A partiularly important feature of the EAA is its

transformation behavior under the RG ation. Di�erentiating (2.2) with respet to

the sale k shows that the RG �ow of Γk is governed by the funtional renormalization

group equation (FRGE) [13, 29, 35, 36℄

k∂kΓk =
1

2
STr

[(
Γ
(2)
k +Rk

)−1
k∂kRk

]
. (2.3)

Here, Γ
(2)
k denotes the Hessian of Γk with respet to the �utuating �eld. The

supertrae `STr' omprises an operator trae that takes into aount all �eld types
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Rk

k2

k2
p2

Figure 2.2 Illustration of a suitable uto� pro�le Rk(p
2). It should be hosen suh that

high momentum modes with p2 & k2 are almost una�eted, while low momentum modes

with p2 . k2 are suppressed in (2.1). This leads to the following two requirements a generi

uto� operator should satisfy: Rk → 0 for UV modes and Rk → k2 for IR modes.

involved, weighting standard �elds with a plus sign and Grassmann-valued �elds

with a minus sign. For the salar �eld example `STr' thus boils down to the usual

operator trae `Tr'.

The FRGE (2.3) has a ouple of remarkable properties: It is fully nonperturba-

tive and does not rely on the smallness of any oupling, it is exat (as it involves

no approximation), it is UV �nite (due to the presene of k∂kRk in the numerator

on the RHS), and it is IR �nite (due to the appearane of Rk in the denominator),

to mention but a few. Moreover, it does no longer involve any funtional integral.

Therefore, it may even serve as a starting point for an RG analysis: Possible andi-

dates for the EAA are now given by solutions to the FRGE rather than being based

on a funtional integral onstrution.

(3) Theory spae. In the aforementioned approah, the only input data to be �xed

at the beginning are, �rst, the kinds of quantum �elds arrying the theory's degrees

of freedom, and seond, the underlying symmetries. This information determines the

stage the RG dynamis takes plae on, the so-alled theory spae, onsisting of all

possible ation funtionals that respet the presribed symmetry. A prime example

is given by the theory spae of Quantum Einstein Gravity (QEG). QEG is the generi

name for a quantum �eld theory that takes the metri as the dynamial �eld variable

and whose symmetry is given by di�eomorphism invariane.

Heneforth, we assume that any point in a given theory spae, i.e. any admissi-

ble ation funtional, an be expanded as a linear ombination of �eld monomials,

Γk[φ] =
∑∞

α=1 Cα(k)Pα[φ], where {Pα} denotes a set of k-independent basis in-

variants. The orresponding (possibly dimensionful) oupling onstants Cα(k) an

always be made dimensionless by multiplying them with a suitable power of the RG

sale: cα(k) ≡ kdαCα(k), with dα the anonial mass dimension of Pα[φ]. Then the

sale dependene of Γk is ompletely determined by (in�nitely many) β-funtions

desribing the RG �running� of the dimensionless ouplings:

k∂kcα(k) = βα(c1, c2, . . . ). (2.4)
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(4) Trunations. In order to �nd approximate solutions to the FRGE (2.3) one

usually resorts to trunations, implying a redution of the in�nite-dimensional the-

ory spae. To this end, we may � for instane � set all but a �nite number of

ouplings to zero and onsider the projetion onto the subspae spanned by the

redued basis {Pα} with α = 1, . . . , n. This amounts to the trunation ansatz

Γk[φ] =
∑n

α=1 cα(k)k
−dαPα[φ]. Inserting suh an ansatz into (2.3) and projet-

ing also the trae on the RHS onto the trunated theory spae yields a system of n

ordinary di�erential equations, k∂kcα(k) = βα(c1, . . . , cn), for eah α ∈ {1, . . . , n}.2
Although giving rise to an approximation of the exat RG �ow, these β-funtions

inherit the full nonperturbative harater of the FRGE. In the next subsetion we

present a onise step-by-step instrution how to systematially ompute them.

2.1.3 How to extrat β-funtions

The following is a reipe for alulating β-funtions on the basis of the FRGE,

assuming that the theory spae is �xed, i.e. �eld types and symmetries are known.

(1) We start by hoosing an appropriate trunation ansatz. The number and the

kind of invariants that are inluded in the ansatz should be suh that the resulting

approximation of the exat �ow is as good as possible in order to apture the essential

physis but also suh that the alulation is still tehnially manageable. For gravity

the prime example is the Einstein�Hilbert trunation,

1
16πGk

∫
d

dx
√
g
(
−R + 2Λk

)
,

whih onsists of the lassial Einstein�Hilbert ation with the ouplings replaed

by running ones, enabling us to desribe both the lassial and the UV regime.

When onsidering gauge theories, this �rst step also involves hoosing a suitable

gauge �xing ation and onstruting the orresponding ghost ation.

(2)We insert the trunation ansatz for Γk into the LHS of the FRGE (2.3) and di�er-

entiate it with respet to the RG sale k. This derivative ats on the (dimensionful)

oupling onstants, the only k-dependent piees in Γk .

(3) In order to proess the RHS of (2.3), we �rst ompute the Hessian Γ
(2)
k , i.e. the

seond funtional derivative of Γk with respet to the �utuating �eld. Typially, it

is of the form Γ
(2)
k = −� + U (dropping all prefators, k-dependenes and internal

indies), with the Laplaian � ≡ DµD
µ
and a potential U . In the ase of gravity

with an EAA omposed of the metri, it an be obtained by making use of the list

of variations of geometri quantities given in Appendix A.

(4)We write the argument of `STr' in (2.3) as funtion of −�. In all ases onsidered

in this thesis the FRGE an then be expressed as k∂kΓk = 1
2

∑
i Tr

[
Wi(−�)

]
, where

the sum is over di�erent �eld types. (If there are unontrated derivatives this step

might require hoosing an appropriate gauge [36℄ or more general tehniques [50℄ in

order to evaluate the trae.)

2

Note that even the ase n = ∞ may be onsidered, e.g. an f(R)-type trunation [37�49℄.



14 Chapter 2. Theoretial foundations

(5)Writing Wi formally as a Laplae transform, Wi(−�) =
∫∞
0 ds es� W̃i(s), allows

us to apply the trae to es� and expand it by means of heat kernel tehniques,

see Appendix C. In this way, we an projet the trae onto those invariants whih

are ontained in the trunation. By eqs. (C.9) and (C.12) suh an expansion reads

Tr
[
Wi(−�)

]
= (4π)−d/2 tr(1)

{
Qd/2[Wi]

∫√
g + 1

6 Qd/2−1[Wi]
∫√

g R+ · · ·
}
, where

Qn[Wi] denotes the generalized Mellin transform of Wi , f. Appendix D.

(6) After having expanded the trae on the RHS of the FRGE (2.3), we an ompare

the oe�ient of eah invariant with the orresponding one on the LHS, yielding the

β-funtions for the dimensionful ouplings.

(7) Finally, we rewrite the result in terms of dimensionless ouplings, leading to a

system of ordinary di�erential equations, k∂kcα(k) = βα(c1, . . . , cn), α = 1, . . . , n.

We follow the above instrutions for all EAA-based RG investigations performed

in this thesis, in partiular for the RG �ow studies in Chapter 4.

2.1.4 The bakground �eld formalism

Any theory of quantum gravity must omply with the priniple of bakground in-

dependene [51, 52℄: When setting up the theory, no speial bakground geometry

should play a distinguished role or be put in by hand. The atual spaetime met-

ri, gµν , should rather arise as the expetation value of a quantum �eld, say γµν ,

with respet to some state: gµν = 〈γµν〉. By way of ontrast, onventional quantum

�eld theories require a nondynamial (rigid) metri as an indispensable bakground

struture, i.e. the metri has the status of an external input. In this latter approah

the metri is ruial for introduing a notion of time and ausality (neessary for

de�ning equal time ommutation relations, for instane), for onstruting ations

that onsist of ovariant and �nontopologial� terms, and for de�ning a length sale

whih is required for the appliation of the aforementioned RG tehniques (as they

are based upon the eigenvalues of the Laplaian).

There are two di�erent strategies for resolving these oneptual di�ulties and

implementing bakground independene in quantum gravity. (i) One ould abandon

the traditional route of quantum �eld theory and try to set up the theory without

ever de�ning a bakground metri at all, an example being loop quantum gravity

[53, 54℄. (ii) One introdues a nondynamial, arbitrarily hosen bakground metri,

ḡµν , during the intermediate steps of the alulation, but shows in the end that no

physial predition depends on the hoie of ḡµν . Using this bootstrap method one

an apply the onepts of onventional quantum �eld theory, where the bakground

metri de�nes the �arena� all invariants of the theory an be onstruted in.

In this thesis we would like to onsider a �eld theoretial desription of quantum

gravity, that is, we have to take the seond path. As a onsequene, the introdu-

tion of a bakground �eld is unavoidable. The approah presented in the following,
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the bakground �eld method, has �rst been established for gravity, but it an more

generally be applied to other �eld theories as well [51, 55�59℄.

In the standard formulation of this method, the dynamial quantum metri γµν

is deomposed into the bakground �eld ḡµν and a �utuating �eld ĥµν in a linear

way:

γµν = ḡµν + ĥµν . (2.5)

Note that the �utuations ĥµν are not assumed to be small ompared to ḡµν but an

beome arbitrarily large. If hµν ≡
〈
ĥµν
〉
denotes the assoiated expetation value,

the full spaetime metri reads gµν ≡ 〈γµν〉 = ḡµν + hµν . These de�nitions allow

us to employ the FRG tehniques of Setion 2.1.2, where γµν orresponds to the

quantum �eld χ, and length sales and the Laplaian are based on the bakground

metri ḡµν .

Motivated by general relativity, the mirosopi (bare) ation S[γ] is assumed to

be invariant under general oordinate transformations,

δγµν = LXγµν , (2.6)

where the vetor �elds X generate di�eomorphisms on the manifold onsidered, the

Lie derivative LX appearing in their in�nitesimal representation. Due to the fat

that the desription depends on two �elds now, there is some freedom in splitting the

gauge transformation: both ḡµν and ĥµν an be transformed independently as long

as the sum δḡµν + δĥµν equals δγµν . Two possible hoies are the true or quantum

gauge transformations,

δḡµν = 0 , δĥµν = LX(ḡµν + ĥµν) , (2.7)

and the bakground gauge transformations:

δḡµν = LX ḡµν , δĥµν = LX ĥµν . (2.8)

The former are gauge �xed in the funtional integral de�ning the e�etive average

ation, so the invariane under (2.7) is expliitly broken. The latter transformations,

however, leave the EAA invariant. More preisely, Γk[g, ḡ, ξ, ξ̄ ] (whih is in fat a

funtional of both gµν and ḡµν , and of the ghost �elds ξµ and ξ̄µ) remains unhanged

under {δḡµν = LX ḡµν , δgµν = LXgµν , δξ
µ = LXξ

µ, δξ̄µ = LX ξ̄µ}. Hene, at the

level of Γk di�eomorphism invariane is fully intat. Note that the true gauge trans-

formations are aounted for by generalized BRST Ward identities. They redue to

the usual ones at vanishing RG sale, k = 0, but get modi�ed for higher sales due

to the mode suppression term [36℄.

We would like to point out that the relation between quantum, bakground and

�utuating �eld an be more general than the linear split (2.5). One ould as well

hoose a nonlinear parametrization, whih may be written as γµν ≡ γµν
[
ĥ; ḡ
]
. The

fat that suh a generalization is indeed useful will be motivated and explained in
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detail in Chapter 3. Note that it may be quite involved to �nd the transformation

behavior of ĥµν in the general ase. Therefore, we write the rules (2.7) and (2.8) in

terms of γµν and ḡµν rather than ĥµν and ḡµν . Then the quantum gauge transforma-

tions read {δḡµν = 0, δγµν = LXγµν}, while the bakground gauge transformations

are expressed as {δḡµν = LX ḡµν , δγµν = LXγµν}. This will be used in Setion 4.2.

2.1.5 The FRGE for quantum gravity

Combining the methods of Setion 2.1.2 with the bakground �eld formalism (in-

luding a suitable gauge �xing) and applying it to metri gravity yields the e�etive

average ation Γk[g, ḡ, ξ, ξ̄ ], the primary tool for investigating the gravitational RG

�ow at the nonperturbative level [36℄. It is a funtional of the dynamial metri

gµν and the ghost �elds ξµ and ξ̄µ , but it also has an extra ḡµν -dependene. This

extra bakground dependene is a onsequene of gauge �xing and ghost terms on

the one hand, and of regulator terms on the other hand. The latter ontributions

to Γk vanish in the limit k → 0, while the former ones remain nonzero even in the

IR limit. Consequently, sine for k → 0 the bakground enters only the gauge parts,

physial preditions derived from Γk=0 should not depend on ḡµν , in agreement with

the priniple of bakground independene. Whether this is atually on�rmed by

RG omputations an be investigated only by means of bimetri trunations (whose

orresponding theory subspaes ontain invariants onstruted out of both metris,

requiring a areful distintion between gµν and ḡµν at any step of the alulation),

as disussed in Ref. [60℄ and Setion 4.5.

The dependene of Γk on gµν may be reexpressed as a dependene on the metri

�utuations hµν , where hµν ≡ gµν − ḡµν in the ase of the linear parametrization.

For the rewritten funtional Γk we employ the �semiolon notation�

Γk

[
h, ξ, ξ̄; ḡ

]
≡ Γk

[
g, ḡ, ξ, ξ̄

]
≡ Γk

[
ḡ + h, ḡ, ξ, ξ̄

]
. (2.9)

If a general metri parametrization is used, the last equivalene in (2.9) has to be

stated as Γk

[
g, ḡ, ξ, ξ̄

]
≡ Γk

[
g[h; ḡ], ḡ, ξ, ξ̄

]
, as lari�ed in Setion 3.6.

In this thesis we use a ommon approximation that onsists in negleting the

running of the ghost part. For onsisteny, this requires setting the ghost �elds ξµ

and ξ̄µ to zero after having determined the Hessian of Γk on the RHS of the FRGE.

(In a sense, the assumption of sale independent ghosts may thus be onsidered part

of the trunation ansatz.) In this ase the supertrae in the FRGE (2.3) deomposes

into a purely gravitational part and a ghost ontribution [36℄:

k∂kΓk =
1

2
Tr

[((
Γ
(2)
k

)
hh

+Rgrav

k

)−1
k∂kRgrav

k

]

− Tr

[((
Γ
(2)
k

)
ξ̄ξ

+Rgh

k

)−1
k∂kRgh

k

]
.

(2.10)

Here,

(
Γ
(2)
k

)
hh

≡ δ2Γk
δh2 [h, 0, 0; ḡ] is the seond funtional derivative of Γk with respet

to the metri �utuations, and

(
Γ
(2)
k

)
ξ̄ξ

≡ δ
δξ

δΓk

δξ̄
[h, 0, 0; ḡ] agrees (up to a fator minus
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one) with the Faddeev�Popov operator. The uto� operators of the gravitational and

the ghost setor are denoted by Rgrav

k and Rgh

k , respetively.

Most standard FRG analyses rely on single-metri trunations, obtained by pro-

jetion onto suh invariants that depend on gµν alone. During the omputation

of β-funtions this approximation amounts to identifying bakground and dynam-

ial metri, ḡµν = gµν , or equivalently, hµν = 0, but only after the seond fun-

tional derivative appearing in the FRGE has been taken. A partiularly impor-

tant example is the Einstein�Hilbert trunation whose gravitational part is given by

Γgravk [g] ≡ 1
16πGk

∫
d

dx
√
g
(
− R + 2Λk

)
. The RG behavior of the sale dependent

Newton onstant and osmologial onstant, Gk and Λk, respetively, will be stud-

ied in Setion 4.3. Note that the above version of the FRGE, eq. (2.10), applies to

both single-metri and bimetri trunations, the only assumption that entered its

derivation being a k-independent ghost ation. (The ase of running ghosts has been

onsidered in Refs. [61�64℄.)

2.2 Asymptoti Safety

Aording to the notion introdued in Subsetion 2.1.2, the sale dependene of an

ation is enoded in a running of the oupling onstants that parametrize this ation,

{cα} ≡ {cα(k)}. This gives rise to a trajetory in the underlying theory spae (RG

trajetory), desribing the evolution of an ation funtional with respet to the sale

k. Whih of all possible trajetories is realized in Nature has to be determined by

measurements.

(1) Taking the UV limit. In the present ontext, the onstrution of a onsistent

quantum �eld theory amounts to �nding an RG trajetory whih is in�nitely ex-

tended in the sense that the ation funtional desribed by {cα(k)} is well-behaved

for all values of the �momentum� sale parameter k, inluding the infrared limit

k → 0 and the UV limit k → ∞. The Asymptoti Safety program [3, 4℄ is a way

of dealing with the latter limit. Its fundamental requirement is the existene of a

�xed point of the RG �ow. By de�nition this is a point {c∗α} in theory spae where

the running of all dimensionless ouplings stops, or, in other words, a zero of all

β-funtions: βγ({c∗α}) = 0 for all γ.3 In addition, that �xed point must have at least

one UV-attrative diretion. This ensures that there are one or more RG trajetories

whih run into the �xed point for inreasing sale.

(2) The UV ritial surfae. The set of all points in the theory spae that are

�pulled� into the �xed point by going to larger sales is referred to as UV ritial

surfae. Thus, the UV ritial surfae onsists of all those trajetories whih are

safe from UV divergenes sine all ouplings approah �nite �xed point values as

3

More preisely, it is only the essential ouplings whose running is required to stop, i.e. only all

those ouplings whih annot be eliminated by a �eld rede�nition. Inessential, unphysial ouplings

may still diverge. Here we assume for the sake of the argument that all ouplings are essential.
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Theory spae

UV ritial surfae

Figure 2.3 Vetor �eld of the RG �ow and some sample trajetories in theory spae,

parametrized by the oupling onstants. By onvention, the arrows of the vetor �eld (and

the one on the red trajetory) point from UV to IR sales. The set of ations whih lie inside

the theory spae and are pulled into the �xed point under the inverse RG �ow (i.e., going in

the diretion opposite to the arrows) is referred to as UV ritial surfae. The Asymptoti

Safety hypothesis states that a trajetory an be realized in Nature only if it is ontained in

the UV ritial surfae of a suitable �xed point sine only then it has a well-behaved high

energy limit (green, blue, and dark yellow trajetories, by way of example). Unless there

is another �xed point, trajetories outside this surfae esape the theory spae for k → ∞
as they develop unaeptable divergenes in the UV, while they approah the UV ritial

surfae when going to lower sales. This situation is represented by the red trajetory whih

lies above the surfae and runs away from it for inreasing RG sale (opposite to the red

arrow).

k → ∞, see Figure 2.3. The key hypothesis underlying Asymptoti Safety is that

only trajetories lying entirely within the UV ritial surfae of an appropriate �xed

point an be in�nitely extended and thus de�ne a fundamental quantum �eld theory.

(See Refs. [5�9℄ for reviews.) This may be thought of as a systemati searh strategy

whih identi�es physially aeptable theories as ompared with the unaeptable

ones plagued by short distane singularities. Note that the existene of a �xed point

allows the asymptotially safe trajetories to stay in its viinity for an in�nitely long

RG time. Sine the method does not rely on any kind of smallness of the ouplings,

asymptotially safe theories an be onsidered nonperturbatively renormalizable.

(3) Preditivity of asymptotially safe theories. With regard to the �xed

point, UV-attrative diretions are alled relevant, UV-repulsive ones irrelevant, sine
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the orresponding saling �elds inrease and derease, respetively, when the sale is

lowered. Therefore, the dimensionality of the UV ritial surfae equals the number

of relevant ouplings. An asymptotially safe theory is thus the more preditive the

smaller the dimensionality of the orresponding UV ritial surfae is.

For instane, if the UV ritial surfae has the �nite dimension n, it is su�ient to

perform only n measurements in order to uniquely identify Nature's RG trajetory.

One the n relevant ouplings are measured, the requirement for Asymptoti Safety

�xes all other ouplings sine the latter have to be adjusted in suh a way that

the RG trajetory lies within the UV ritial surfae. In this spirit, the theory

is highly preditive as in�nitely many parameters are �xed by a �nite number of

measurements.

Figure 2.3 illustrates the example of a three-dimensional theory spae and a

two-dimensional UV ritial surfae. The ouplings pertaining to the two relevant

diretions an be determined by two measurements, while the �vertial� diretion is

�xed by requiring that the trajetory be loated within the UV ritial surfae. On

the other hand, RG trajetories lying below or above (like the red one) are exluded

in the Asymptoti Safety program.

(4) Gaussian and non-Gaussian �xed points. A �xed point is alled �Gaussian�

if it orresponds to a free theory. Its ritial exponents agree with the anonial mass

dimensions of the orresponding operators. Usually this amounts to the trivial �xed

point values c∗α = 0 for all essential ouplings cα. Thus, standard perturbation theory

is appliable only in the viinity of a Gaussian �xed point. In this regard, Asymptoti

Safety at the Gaussian �xed point is equivalent to perturbative renormalizability plus

asymptoti freedom. Clearly, this possibility is ruled out for gravity whih an not

be renormalized in the perturbative way.

In ontrast, a nontrivial �xed point, that is, a �xed point whose ritial exponents

di�er from the anonial ones, is referred to as �non-Gaussian�. Usually this requires

c∗α 6= 0 for at least one essential cα. It is suh a non-Gaussian �xed point (NGFP)

that provides a possible senario for quantum gravity. Most studies on Asymptoti

Safety thus mainly fous on establishing the existene of a suitable NGFP.

(5) The bare ation. As opposed to other approahes, a bare ation whih should

be promoted to a quantum theory is not needed as an input here. It is the theory

spae and the RG �ow equations that determine possible �xed points with the de-

sired UV behavior. Sine suh a �xed point, in turn, aquires the status of the orre-

sponding bare ation, one an onsider the bare ation a predition in the Asymptoti

Safety program [31℄, the preise onnetion being disussed in Chapter 7.

To sum up, the onept of Asymptoti Safety is based upon two essential ingre-

dients: (i) a suitable �xed point for taming the UV behavior and (ii) a UV ritial

surfae of redued dimensionality for reasons of preditivity.
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2.3 Conformal �eld theory

This setion ontains a brief introdution to onformal �eld theory. We explain

onformal transformations, their generators, and the Virasoro algebra with its orre-

sponding representations, paying partiular attention to the question about unitarity.

More detailed reviews and primers are given in Refs. [15, 65�69℄, for instane.

(1) Weyl transformations. AWeyl transformation is a loal resaling of the metri

(and of other �elds, if present), leaving the oordinates unhanged. Sine we have

to exlude sign hanges and disappearanes of the metri during this operation, the

saling fator must be a stritly positive funtion, and we write Weyl transformations

in the form

gµν(x) → e2σ(x)gµν(x) , (2.11)

where σ is an arbitrary smooth funtion.

If S is an ation that is invariant under Weyl transformations, the orrespond-

ing stress-energy (energy-momentum) tensor, de�ned by T µν(x) ≡ 2√
g(x)

δS
δgµν(x)

, is

traeless: T µ
µ(x) = 0. On the other hand, if an ation has a traeless stress-energy

tensor, then it is Weyl invariant. (Note that the invariane of an ation under gen-

eral oordinate transformations, x → x′, leads to a onserved stress-energy tensor:

DµT
µν = 0. This explains the important role of T µν

for studying symmetries.)

(2) Conformal transformations. Let us onsider two (semi-) Riemannian mani-

folds (M,g) and (M̃ , g̃) of the same dimension as well as two open subsets U ⊂ M ,

V ⊂ M̃ . Then a smooth mapping f : U → V of maximal rank is alled onformal

transformation, if there is a smooth funtion σ : U → R suh that f∗g̃ = e2σg, where

f∗g̃(X,Y ) ≡ g̃
(
df(X),df(Y )

)
denotes the pullbak of g̃ by f . If the two manifolds

agree, (M,g) = (M̃ , g̃), the de�ning relation reads f∗g = e2σg.

Now, a general oordinate transformation x→ x′ within a given manifold indues

a transformation of the metri aording to g → g′ ≡ f∗g, where f is the inverse

of the oordinate hange, x′ = f−1(x). In loal oordinates this amounts to the

usual tensorial transformation behavior, gµν(x) → g′µν(x
′) = ∂xα

∂x′µ
∂xβ

∂x′ν gαβ(x). Thus,

a onformal transformation is de�ned by the property

gµν(x) → g′µν(x
′) =

∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x) = e2σ(x)gµν(x). (2.12)

In other words, a onformal transformation is a oordinate transformation whih ats

on the metri as a Weyl transformation. Sine the angle between two vetors X and

Y is determined by the normalized salar produt

g(X,Y )
||X|| ||Y || , suh transformations are

angle-preserving.

In the remainder of this setion we will work in �at Eulidean spae (unless oth-

erwise stated), with gµν = δµν . Note that a theory in �at spaetime with a onserved

and traeless stress-energy tensor is invariant under general oordinate transforma-

tions and Weyl transformations, respetively, and thus it is onformally invariant
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x′µ = xµ+bµx2

1+2b·x+b2x2

(b0, b1) = (2, 0)

Figure 2.4 E�et of a speial onformal transformation on a ouple of sample grid lines.

Like any other onformal transformation, this map is angle-preserving.

in �at spae: Consider a oordinate transformation with the property (2.12). Due

to oordinate invariane it does not hange the value of the underlying ation, but

only the �elds inside, inluding the metri. Then Weyl invariane an be used to

transform the metri bak to its original form. Suh ombined transformations leave

the metri unhanged, i.e. we stay in �at spae, and the ation is invariant. From

this point of view a onformal transformation is a transformation ating only on the

remaining �elds. We will ome bak to this interpretation in a moment.

Sine an in�nitesimal oordinate transformation x′µ = xµ+ǫµ is onformal if and

only if eq. (2.12) is satis�ed, we an use this equation to infer onditions for the fun-

tion ǫµ(x). This way we obtain two di�erential equations, ∂µǫν + ∂νǫµ = 2
dgµν∂αǫ

α

and (d− 2)∂µ∂ν∂αǫ
α = 0, �xing the general form of a onformal transformation. In

two dimensions the latter onstraint is absent, though, and the group of onformal

transformations, or more preisely, the number of its generators, is muh larger then.

In d > 2 dimensions one �nds that ǫµ(x) is at most quadrati in x, leading to four

di�erent kinds of onformal transformations whose in�nitesimal versions are given

by: xµ → xµ + αµ
(translations), xµ → xµ + ωµ

νx
ν
with ων

µ = −ωµ
ν (Lorentz

transformations/rotations), xµ → xµ + λxµ (sale transformations), and xµ → xµ +

bµx2−2xµb ·x (speial onformal transformations). The global version of the speial

onformal transformations reads

xµ → x′µ =
xµ + bµx2

1 + 2b · x+ b2x2
, (2.13)

an example being illustrated in Figure 2.4. The number of orresponding generators

for all four kinds of transformations,

1
2(d + 1)(d + 2), agrees with the dimension of

the onformal group, whih is isomorphi to SO(d+ 1, 1).

(3) Conformal transformations in d = 2 dimensions. It is onvenient to

parametrize the points (x1, x2) ∈ R
2
by a omplex number z ∈ C (and its omplex

onjugate z̄), using the identi�ation z, z̄ = x1 ± ix2. We have seen previously that

in d > 2 dimensions there are two di�erential equations onstraining the funtion
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ǫµ(x) suh that the map xµ → xµ + ǫµ(x) is onformal. In d = 2 dimensions, on the

other hand, there is only one onstraint left whih, in terms of ǫ, ǭ = ǫ1 ± iǫ2, boils

down to ∂z̄ǫ = 0 and ∂z ǭ = 0. That is, z → z+ǫ and z̄ → z̄+ ǭ represent a onformal

transformation if and only if ǫ ≡ ǫ(z) is an arbitrary in�nitesimal meromorphi (i.e.

holomorphi up to isolated points, here 0 and ∞) funtion that depends only on

z, and analogously for ǭ ≡ ǭ(z̄). (Note that ǫ and ǭ are usually viewed as being

independent rather than omplex onjugates of eah other. By imposing a reality

ondition at the end of alulations one obtains the orret result.) The orrespond-

ing global versions of this oordinate hange, i.e. the onformal transformations on

the Riemann sphere C ∪ {∞}, are given by

z → f(z), z̄ → f̄(z̄), (2.14)

where f and f̄ are arbitrary meromorphi funtions.

Suh meromorphi funtions, and hene the onformal transformations, are gen-

erated by the operators ℓn ≡ −zn+1∂z and ℓ̄n ≡ −z̄n+1∂z̄ with n ∈ Z. They span

the Witt algebra and satisfy the ommutation relations [ℓn, ℓm] = (n − m)ℓn+m ,

[ℓ̄n, ℓ̄m] = (n−m)ℓ̄n+m and [ℓn, ℓ̄m] = 0.

The only onformal transformations whih are de�ned globally without singular-

ities on the entire Riemann sphere are generated by the subalgebra {ℓ−1, ℓ0, ℓ1} and

the orresponding barred operators. This gives rise to the group of Möbius trans-

formations whih is isomorphi to SL(2,C)/Z2 and to SO(3, 1). The latter group

is preisely the one enountered in point (2). Therefore, the onformal transforma-

tions in 2D inlude translations, Lorentz transformations, sale transformations and

speial onformal transformations. The full algebra, however, is in�nite-dimensional.

(4) Conformal �elds in 2D. Tensors in omplex oordinates an be obtained from

their ounterparts in R
2
by Vz =

∂x1

∂z V1+
∂x2

∂z V2 =
1
2 (V1+ iV2) and Vz̄ =

1
2(V1− iV2),

and analogously for tensors with more indies. Here we adopt the ommon notation

where z (z̄) denotes both the oordinate and the orresponding index. The metri

gµν = δµν , for instane, transforms to gzz =
1
4(g11 + ig12 + ig21 − g22) = 0 = gz̄z̄ and

gzz̄ =
1
4(g11+ ig12− ig21+ g22) = 1

2 = gz̄z . For the stress-energy tensor, traelessness

translates into Tzz̄ = 0 = Tz̄z , while its onservation reads ∂z̄Tzz = 0 = ∂zTz̄z̄ .

A tensor �eld φ ≡ φz,...,z,z̄,...,z̄(z, z̄) is alled primary �eld or onformal �eld of

weight (h, h̄) if it transforms as

φ(z, z̄) →
(
∂f

∂z

)h(∂f̄
∂z̄

)̄h
φ
(
f(z), f̄(z̄)

)
, (2.15)

under the onformal transformation z → f(z), z̄ → f̄(z̄). Usually, the number

∆ ≡ h+ h̄ is referred to as saling weight, and s ≡ h− h̄ is the onformal spin. The

in�nitesimal version of (2.15) reads

δǫ,ǭφ(z, z̄) =
(
(h∂ǫ + ǫ∂) + (h̄∂̄ǭ+ ǭ∂̄)

)
φ(z, z̄), (2.16)



2.3. Conformal �eld theory 23

under z → z + ǫ and z̄ → z̄ + ǭ.

(5) Conformal invariane and the onformal bootstrap. Sine the orrelation

funtions G(n)(z1, . . . , zn, z̄1, . . . , z̄n) ≡ 〈φ1(z1, z̄1) · · ·φn(zn, z̄n)〉 in a onformally in-

variant theory are supposed to be invariant under (2.16), we have δǫ,ǭG
(n) = 0. This

equation onstrains the orrelation funtions onsiderably. For n = 2 and n = 3, for

instane, it determines the form of G(2)
and G(3)

ompletely [70, 71℄: If h1 6= h2 or

h̄1 6= h̄2 , then G
(2)(z1, z2, z̄1, z̄2) = 0, while for h1 = h2 and h̄1 = h̄2 :

G(2)(z1, z2, z̄1, z̄2) = C12 z
−2h
12 z̄−2h̄

12 , h ≡ h1 = h2 , h̄ ≡ h̄1 = h̄2 , (2.17)

where (h1, h̄1) and (h2, h̄2) are the onformal weights of φ1 and φ2, respetively.

Furthermore,

G(3)(zi, z̄i) = C123 z
h3−h1−h2
12 zh1−h2−h3

23 zh2−h3−h2
13 z̄h̄3−h̄1−h̄2

12 z̄h̄1−h̄2−h̄3
23 z̄h̄2−h̄3−h̄2

13 .

(2.18)

Here, C12 and C123 are onstants, and zij and z̄ij are de�ned by the di�erenes

zij ≡ zi−zj and z̄ij ≡ z̄i− z̄j , respetively. This proedure of determining orrelation

funtions (and the exploitation of further symmetry onstraints) is known as the

onformal bootstrap.

Note that under some tehnial assumptions like Poinaré invariane and unitar-

ity (whih are satis�ed by most relevant examples of 2D quantum �eld theories) any

sale invariant quantum �eld theory in d = 2 dimensions neessarily possesses the

enhaned onformal symmetry [14, 72, 73℄.

(6) Quantization in 2D onformal �eld theory. Let T (z) ≡ Tzz(z) and T̄ (z̄) ≡
T̄z̄z̄(z̄) denote the two nonvanishing omponents of the stress-energy tensor. Then

the urrents assoiated with an in�nitesimal onformal transformation are given by

J(z) = T (z)ǫ(z) and J̄(z̄) = T̄ (z̄)ǭ(z̄). The orresponding onserved harge beomes

Qǫ,ǭ =
1

2πi

∮ (
dz T (z)ǫ(z) + dz̄ T̄ (z̄)ǭ(z̄)

)
. (2.19)

As usual, onserved harges an be used to generate the transformation from whih

they were derived: At the quantum level we have

δǫ,ǭφ(w, w̄) =
[
Qǫ,ǭ, φ(w, w̄)

]
, (2.20)

where radial ordering (f. [15, 65℄ for instane) is implied. By omparing eq. (2.20)

with (2.16) one an infer an expansion for the (radially ordered) operator produt

T (z)φ(w, w̄), namely T (z)φ(w, w̄) = h
(z−w)2

φ(w, w̄)+ 1
z−w ∂wφ(w, w̄)+O

(
(z−w)0

)
,

and an analogous expansion for T̄ (z̄)φ(w, w̄). In a similar manner one an show that

T (z)T (w) =
c/2

(z − w)4
+

2

(z − w)2
T (w) +

1

z − w
∂wT (w), (2.21)

and analogously for the barred ounterpart. The onstant c is alled entral harge

and its value depends on the theory under onsideration.
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(7) The Virasoro algebra. The signi�ane of the stress-energy tensor for gener-

ating the onformal transformations justi�es a loser look to T (z) and T̄ (z̄). Intro-

duing the operators Ln ≡
∮

dz
2πi z

n+1T (z) and L̄n ≡
∮

dz̄
2πi z̄

n+1 T̄ (z̄) we an express

T (z) and T̄ (z̄) as a Laurent series:

T (z) =
∑

n∈Z
z−n−2Ln , T̄ (z̄) =

∑

n∈Z
z̄−n−2 L̄n . (2.22)

The ommutator algebra satis�ed by the modes Ln and L̄n an be omputed by

inserting their de�nitions, taking into aount the orret order of ontours during

the integration, and �nally using equation (2.21). The result reads

[
Ln, Lm

]
= (n−m)Ln+m +

c

12
(n3 − n)δn+n,0 , (2.23)

and

[
L̄n, L̄m

]
= (n −m)L̄n+m + c̄

12 (n
3 − n)δn+n,0 , as well as

[
Ln, L̄m

]
= 0. This

de�nes two opies of an in�nite-dimensional algebra whih is alled the Virasoro

algebra. It is a entral extension of the Witt algebra with entral harge c. As we

disuss in the next point, Ln and L̄n an be used to systematially onstrut the

�eld spae. Note that the requirements that T (z) and T̄ (z) be Hermitian operators

ditate the relations L†
n = L−n and L̄†

n = L̄−n .

(8) Highest weight representations of the Virasoro algebra. A highest weight

state is an eigenstate of L0 and L̄0 orresponding to the smallest eigenvalues, h and

h̄, respetively. Suh a state an be onstruted aording to

∣∣h, h̄
〉
≡ φ(0, 0)|0〉 , (2.24)

where φ(z, z̄) is a onformal �eld with weights h and h̄. Here, the vauum |0〉 is

de�ned by the ondition that it respets a maximal number of symmetries, i.e. it

must be annihilated by as many Ln (and L̄n) as possible. The largest possible set

with this property that does not on�it with the Virasoro ommutation relations

is given by {Ln |n ≥ −1}, that is, Ln|0〉 = 0 for all n ≥ −1. There is a barred

analogue of this result (and the subsequent results), but we restrit our disussion

to the non-barred objets heneforth.

Based on the de�nition of Ln and the operator produt expansion of T (z)φ(w, w̄)

given in point (6), one an verify the relation [Ln, φ(w, w̄)] = h(n+ 1)wnφ(w, w̄) +

wn+1∂wφ(w, w̄). Hene, Ln ommutes with φ(0, 0) for all n > 0, and we �nd

Ln

∣∣h, h̄
〉
= [Ln, φ(0, 0)] |0〉 + φ(0, 0)Ln|0〉 = 0 for n > 0, (2.25)

while the ase n = 0 leads to

L0

∣∣h, h̄
〉
= h

∣∣h, h̄
〉
. (2.26)

For n < 0, on the other hand, we obtain a new nonvanishing state Ln

∣∣h, h̄
〉
. It is an

eigenstate of L0 again, where the orresponding eigenvalue has inreased:

L0Ln

∣∣h, h̄
〉
=
(
[L0, Ln] + LnL0

)∣∣h, h̄
〉
= (h− n)Ln

∣∣h, h̄
〉
. (2.27)
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Therefore, the Ln with n < 0 at as raising operators while the Ln with n > 0 play

the role of lowering operators, and

∣∣h, h̄
〉
is indeed an L0-eigenstate with the lowest

eigenvalue.

This onsideration shows that ground states of Virasoro representations are gen-

erated by onformal �elds. The new states obtained by ating with one or more

raising operators on

∣∣h, h̄
〉
are alled desendants. We observe that there is in gen-

eral more than one way of onstruting a state at the exitation level n > 0 (i.e. with

the L0-eigenvalue h+ n), namely all linear ombinations of states of the type

L−n1 · · ·L−nk

∣∣h, h̄
〉
,

k∑

i=1

ni = n , (2.28)

with all ni positive. The olletion of all suh linear ombinations for all n ≥ 0 is

alled the Verma module of

∣∣h, h̄
〉
. By onstrution, the set of states in the Verma

module is losed with respet to the ation of the Virasoro generators.

(9) Unitarity. We refer to a representation of the Virasoro algebra as unitary if it

does not ontain any negative norm states (and only one zero norm state), i.e. if the

state spae is a (positive) Hilbert spae. For the simplest desendants we �nd

∣∣∣∣L−n

∣∣h, h̄
〉∣∣∣∣ =

〈
h, h̄

∣∣LnL−n

∣∣h, h̄
〉
=
〈
h, h̄

∣∣[Ln, L−n]
∣∣h, h̄

〉

=

[
c

12

(
n3 − n

)
+ 2nh

]〈
h, h̄

∣∣h, h̄
〉
.

(2.29)

Thus, the unitarity requirement

∣∣∣∣L−n

∣∣h, h̄
〉∣∣∣∣ !

≥ 0 demands c ≥ 0 (due to the large-n

behavior) as well as h ≥ 0 (following from the ase n = 1). These are neessary

onditions. A areful onsideration of all mixed states shows, however, that there

are negative norm states even if c ≥ 0 and h ≥ 0. The preferred tool for studying

these ases is provided by the Ka determinant. There is one suh determinant at

eah exitation level, and the general de�nition an be best understood by means of

the seond level example: At the level n = 2 there are two basis states, L−2

∣∣h, h̄
〉

and (L−1)
2
∣∣h, h̄

〉
. The orresponding Ka determinant reads

det

( 〈
h, h̄

∣∣L†
−2L−2

∣∣h, h̄
〉 〈

h, h̄
∣∣L†

−2L−1L−1

∣∣h, h̄
〉

〈
h, h̄

∣∣(L−1L−1)
†L−2

∣∣h, h̄
〉 〈

h, h̄
∣∣(L−1L−1)

†L−1L−1

∣∣h, h̄
〉
)
. (2.30)

For n > 2, there is an analogous onstrution involving all possible basis states of the

level onsidered. By using the ommutation relations (2.23) the Ka determinants

an be omputed expliitly. They are funtions depending on c and h. For instane,

the determinant in (2.30) amounts to 2
(
16h3 − 10h2 + 2h2c+ hc

)〈
h, h̄

∣∣h, h̄
〉2
.

Now, the key idea is that a negative or a zero determinant automatially means

that there is a negative or a zero norm state. For large c and h the Ka determinants

are positive, and there are no negative norm states. Dereasing c and/or h one might

enounter points in the (c, h)-spae where one or more Ka determinants beome



26 Chapter 2. Theoretial foundations

Figure 2.5 Values of c and h in the region 0 ≤ c < 1 that admit unitary Virasoro repre-

sentations, aording to eqs. (2.31) and (2.32) with 2 ≤ m ≤ 40.

zero, indiating a transition into a region that admits negative norm states. This

has been worked out in Refs. [74�76℄, revealing the following results.

For c ≥ 1, the Ka determinant analysis forms no obstale to the existene of

unitary representations of the Virasoro algebra as long as h ≥ 0. In partiular, this

spae,

{
(c, h) | c ≥ 1, h ≥ 0

}
, is ontinuous.

For 0 ≤ c < 1, on the other hand, there is only a disrete set of points (c, h) that

allow unitary representations. These points are given by

c = 1− 6

m(m+ 1)
, m ≥ 2, (2.31)

and

h =
[(m+ 1)p −mq]2 − 1

4m(m+ 1)
, p = 1, . . . ,m− 1, 1 ≤ q ≤ p . (2.32)

Figure 2.5 illustrates how the points are distributed in the (c, h)-spae.

All other values of c and h (in the region 0 ≤ c < 1) lead to negative norm states.

It has been shown in Ref. [77℄ that the onditions for c and h, eqs. (2.31) and (2.32),

respetively, are atually su�ient for the existene of unitary representations. The

importane of eqs. (2.31) and (2.32) lies in the fat that they allow us to desribe the

possible saling dimensions of �elds in 2D CFTs, and thereby the possible ritial

exponents of 2-dimensional systems at their ritial points. There is a omplete

lassi�ation that identi�es the disrete series of c- and h-values with statistial

mehanial models at their seond order phase transitions, for instane the Ising

model (m = 3) and the three-state Potts model (m = 4) [74, 78, 79℄.

For c = 0 there is no interesting unitary Virasoro representation: By (2.31), c = 0

requires m = 2 whih, in turn, ditates the trivial value h = 0. From eq. (2.29) it

then follows that all states L−n

∣∣h, h̄
〉
would have zero norm. Hene, unitarity for

c = 0 an be ahieved only if all the Ln are represented by 0.
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To sum up, a onformal �eld theory an be unitary (orresponding to a nontrivial

unitary Virasoro representation) only if its entral harge is positive, c > 0. If c is

even greater or equal to 1, unitary representations exist for any positive value of h.

(10) Final remarks. As an aside we would like to mention that the value c = 25

plays a speial role. The omputation of the Ka determinant involves the parameter

m = −1
2 ± 1

2

√
25−c
1−c (whih agrees with eq. (2.31) solved for m, but now we allow

general c and m). For 1 < c < 25 it beomes omplex-valued, whereas for c ≥ 25 it

is stritly real, implying that all eigenvalues of the Ka determinant are positive. In

Setion 4.1 we present another argument justifying the name �ritial entral harge�

for the value c = 25.

Finally, we note that, if a onformal �eld theory is quantized in an arbitrary

external gravitational �eld, i.e. if it is embedded in a urved bakground spae, the

length sale provided by the loal salar urvature R breaks sale invariane, and

the expetation value of the stress-energy tensor is no longer traeless:

〈T µ
µ〉 = gµν

2√
g

δΓ

δgµν
= − c

24π
R , (2.33)

where Γ denotes the e�etive ation. This is referred to as trae anomaly or onfor-

mal anomaly. In fat, eq. (2.33) an be used to determine the entral harge of a

theory if its e�etive ation is known (f. Chapter 6). By ombining these ideas with

FRG methods one an de�ne a running c-funtion [80�82℄. At any �xed point, this

c-funtion is onstant and agrees with the entral harge of the orresponding on-

formal �eld theory, while at all other points it is a dereasing funtion w.r.t. the RG

sale (from the UV to the IR), demonstrating the irreversibility of the RG �ow [72℄.





3
Towards quantum gravity: the

spae of metris and the role of

di�erent parametrizations

Exeutive summary

It is an open question how the fundamental mirosopi �eld variables in quan-

tum gravity look like. Motivated by the lassial formulation of general rela-

tivity we onsider the ase where the fundamental �eld is given by a proper

metri. Furthermore, we disuss a generalization to arbitrary symmetri rank-2

tensor �elds. It turns out that the most straightforward way to onstrut a

reparametrization invariant e�etive (average) ation is based on a geometri

formalism involving geodesis on the underlying �eld spae. Here we propose a

new onnetion on the spae of metris, giving rise to a simple parametrization

of geodesis. We demonstrate that this onnetion is adapted to the fundamen-

tal geometri struture of the spae of metris. Speial emphasis is laid upon

the di�erenes between Eulidean and Lorentzian metri signatures. Finally, we

ompare the results with the losely related Vilkovisky�DeWitt method, and

we use the geometri language to set up reparametrization invariant, ovariant

quantities.

What is new? Novel onnetion on the spae of metris (Ses. 3.2 & 3.4), its

relation to the anonial onnetion (Ses. 3.4 & 3.5), the role of the exponential

metri parametrization as a geodesi (Se. 3.4), a disussion on peuliarities

with Lorentzian metris (Se. 3.4.2).

Based on: Refs. [83℄ and [84℄.
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3.1 Motivation and preliminaries

Metris on a manifold M are given by the ovariant, symmetri, nondegenerate,

smooth rank-2 tensor �elds.

1

In loal oordinates, a metri at some point x ∈ M

an be viewed as a symmetri matrix with presribed signature (p, q):

(i) gµν(x) ∈ GL(d) ∀x ∈M, (3.1)

(ii) gνµ(x) = gµν(x) ∀x ∈M, (3.2)

(iii) gµν(x) has p positive and q negative eigenvalues, (3.3)

where d = p+q is the dimension ofM . The matrix representation gµν(x) depends on

the hosen basis of the tangent spae TxM . By Sylvester's law of inertia, however,

the numbers p and q are independent of the hoie of basis, and due to smoothness

and nondegeneray they are independent of the point x as well, leading to a onstant

metri signature. It is this fat that allows a global de�nition.

In general, the set of all �eld on�gurations is referred to as �eld spae, heneforth

denoted by F . In the present ase, F is the set of all metris on M that have

signature (p, q). It is globally de�ned by

F ≡ F(p,q) ≡
{
g ∈ Γ

(
S2T ∗M

) ∣∣∣ g has signature (p, q)
}
, (3.4)

where Γ
(
S2T ∗M

)
is the spae of symmetri type-(0, 2) tensor �elds on M . (The

notation �Γ� indiates that metris are setions, g :M → S2T ∗M .) It an be shown

that F by itself exhibits the struture of an (in�nite dimensional) manifold [85�89℄.

In the onventional formulation of lassial general relativity (GR) it is in fat the

metri whih is used as the fundamental objet to desribe the geometry of the spae-

time manifold M . Hene, lassial GR admits only those elements of Γ
(
S2T ∗M

)
as

andidates for g that satisfy the �xed signature onstraint.

2

As we will see, this

requirement restrits the full spae Γ
(
S2T ∗M

)
onsiderably.

In quantum gravity the situation is di�erent. The properties of the mirosopi

degrees of freedom are not known, in partiular it is unlear whether the fundamental

�eld variables are given by symmetri rank-2 tensor �elds at all. A ounterexample

is provided by the vielbein formalism [92, 93℄ whose �eld variables are tetrads, and

whih gives rise to (an equivalent version of) Einstein's equations at the lassial

level. Heneforth we will assume that the fundamental �eld variable is given by an

element of Γ
(
S2T ∗M

)
, though.

Even with this assumption we still do not know if the spae Γ
(
S2T ∗M

)
is to be

onstrained further: It is a notoriously di�ult question in virtually all funtional

integral based approahes to quantum gravity whether, or to what extent, degenerate,

1

In this hapter, a metri gµν may refer to both quantum �eld and expetation value, f. Se.

2.1.4, the atual status being either irrelevant for the respetive argument or lear from the ontext.

2

For generalizations of lassial GR that inlude signature hanges, see Refs. [90,91℄, for instane.
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wrong-signature or even vanishing tensor �elds should be inluded [94, 95℄.

3

Sine

the set of pure metris, F , forms a nonempty open subset in Γ
(
S2T ∗M

)
[84, 87℄,

there is no a priori reason to expet that F has vanishing funtional measure (nor

that its omplement has vanishing funtional measure), and so this question has no

obvious answer.

4

It is known, however, that �su�iently di�erent� hoies will lead

to inequivalent theories [97℄. Note that the lass of ations one usually onsiders is

onstruted out of invariants of the type

∫
d

dx
√
g,
∫
d

dx
√
gR, where for degenerate

metris the volume element

√
g ould vanish and the inverse metri required to raise

indies ould be nonexistent/divergent.

In this hapter we will demonstrate that the two options, g ∈ Γ
(
S2T ∗M

)
vs.

g ∈ F , an be desribed in a simple way by using di�erent parametrizations for g.

As mentioned in Setion 2.1.4, all approahes to quantum gravity that are based

on onventional quantum �eld theory methods require the introdution of a non-

dynamial bakground metri, ḡ, whih is indispensable for the onstrution of (non-

topologial) ovariant objets. The metri �utuations, denoted by h, then �live� on

the bakground geometry. There is, however, no unique way to parametrize the full,

dynamial metri g in terms of ḡ and h. Note that h belongs to the tangent spae

to the spae of all g. For the two options disussed above we have

h ∈ TgF = Γ
(
S2T ∗M

)
if g ∈ F , (3.5)

h ∈ TgΓ
(
S2T ∗M

)
= Γ

(
S2T ∗M

)
if g ∈ Γ

(
S2T ∗M

)
. (3.6)

Hene, in both ases the �utuating �eld h is a symmetri type-(0, 2) tensor �eld.5

We will see that there is a natural onnetion on Γ
(
S2T ∗M

)
(namely the trivial

onnetion), and a natural onnetion on F (whih an be referred to as �enhaned

anonial onnetion�). Based on these onnetions, the relation

gµν(x) = ḡµν(x) + hµν(x), (3.7)

formulated in loal oordinates, parametrizes a geodesi on Γ
(
S2T ∗M

)
, while

gµν(x) = ḡµρ(x)
(
eḡ

−1(x)h(x)
)ρ

ν (3.8)

parametrizes a geodesi on F , respetively. Here eḡ
−1h

denotes the matrix exponen-

tial. Indies are raised and lowered with the bakground metri. Note that sine

3

It is well known that standard 1D on�guration spae funtional integrals are dominated by

nondi�erentiable paths sine the set of di�erentiable ones has measure 0. The basi laws of quantum
mehanis, nonommutativity of positions and momenta, fore us to inlude these lassially for-

bidden nondi�erentiable trajetories in the path integral [96℄. Similarly, a onsistent gravitational

path integral might require integrating over �metris� whih have further nonlassial features to a

degree that is to be found out.

4

In loal oordinates the argument an be lari�ed as follows. Metris at some spaetime point

orrespond to symmetri matries with signature (p, q), see eqs. (3.1)�(3.3). Embedding the spae

of all symmetri d×d-matries into R
D
, with D = 1

2
d(d+1), its subset of symmetri signature-(p, q)

matries has nonvanishing Lebesgue measure.

5

IfM is nonompat, the h-spae generalizes to
{

h ∈ Γ
(

S2T ∗M
)
∣

∣ h has ompat support

}

[88℄.
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the signature requirement in the de�nition of F is a nonlinear onstraint, F is not

a vetor spae, whereas Γ
(
S2T ∗M

)
is. The following setions fous on a loser

investigation of F in order to reveal its basi properties.

Sine eqs. (3.7) and (3.8) are pointwise relations, we drop the argument x hene-

forth if not expliitly needed. We refer to

gµν = ḡµν + hµν (3.9)

as the linear parametrization (or standard parametrization), and to

gµν = ḡµρ
(
eh
)ρ

ν (3.10)

as the exponential parametrization. In (3.10) we adopted the usual notation [98�104℄

dropping the inverse bakground metri in the exponent, f. eq. (3.8), as the index

position (·)ρν already indiates the involvement of ḡ. For later use, let us rewrite

equation (3.10) in matrix notation, too: With hT = h ∈ Symd×d it reads

g = ḡ eḡ
−1h. (3.11)

The remainder of this hapter is organized as follows. In Setion 3.2 we derive

onnetions on Γ
(
S2T ∗M

)
and F whose assoiated geodesis are parametrized by

(3.9) and (3.10), respetively. We investigate in Setion 3.3 if, or, on what onditions,

(3.10) an be interpreted as a reparametrization of (3.9). The main part is ontained

in Setion 3.4: We unover the fundamental geometri struture of F , giving rise to

a onnetion whih emerges in the most natural way and whih agrees with the one

derived in Setion 3.2. Notie the two opposed approahes: In Setion 3.2 we start

out from the parametrizations, require that they desribe geodesis and dedue the

orresponding onnetions, while in Setion 3.4 the form of the geodesis is derived

from the geometri properties inherent in the spae of metris. Furthermore, we

point out signi�ant di�erenes between the spae of Eulidean metris (whih have

signature (p, q) = (d, 0)) and the spae of Lorentzian metris (with mixed signature),

see Setion 3.4.2. The results are reviewed in general terms in Setion 3.5 by ompar-

ing the new onnetion with the Levi-Civita onnetion and the Vilkovisky�DeWitt

onnetion. Finally, we disuss the exponential parametrization in the ontext of

ovariant Taylor expansions and split-Ward (or Nielsen) identities in Setion 3.6.

3.2 Determining onnetions by reverse engineering

Usually, onsidering geodesis requires some knowledge about the geometri details

of the spae, in partiular about the underlying onnetion. In this setion, however,

we take another path: For a moment we disregard the information we have onerning

the geometry of the spaes Γ
(
S2T ∗M

)
and F . We rather take the view that we are
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given the parametrizations (3.9) and (3.10), and we assume that they parametrize

geodesis. Based on this assumption we would like to determine onnetions on

Γ
(
S2T ∗M

)
and F , respetively, suh that their orresponding geodesi equations

are ompatible with the parametrizations.

In the urrent setion we follow this �reverse logi� for historial reasons. The

parametrizations (3.9) and (3.10) have been used extensively in the literature (see

for instane [5�7, 10, 11, 36, 105℄ for the linear parametrization and [98�104℄ for the

exponential parametrization) without any lear delaration if they are onsidered as

geodesis or what spaes they are de�ned in. They have been applied rather due to

their advantages at the tehnial level in alulations. Let summarize some nongeo-

metri arguments that motivate the use of (3.9) and (3.10), the detailed geometri

approah being postponed to Setion 3.4.

(1) Motivation for the use of the linear parametrization. It is evident that the

parametrization gµν = ḡµν + hµν is the simplest implementation of the bakground

�eld method, f. Setion 2.1.4. Sine the bakground �eld is indispensable in the

setting onsidered here, the use of eq. (3.9) introdues the least amount of additional

omplexity in our alulations. By way of example, let F [g] be a funtional of

the metri. Then its funtional derivatives w.r.t. gµν agree with those w.r.t. hµν :
δ

δgµν
F [g] = δ

δhµν
F [ḡ + h], and similarly for higher derivatives.

With regard to the above disussion onerning the spae of symmetri rank-2

tensors, Γ
(
S2T ∗M

)
, as opposed to the spae of metris, F , we �nd that g = ḡ + h

in fat parametrizes elements of Γ
(
S2T ∗M

)
sine ḡ ∈ F ⊂ Γ

(
S2T ∗M

)
and h ∈

Γ
(
S2T ∗M

)
, and sine Γ

(
S2T ∗M

)
is a vetor spae. Hene, using this parametriza-

tion admits a g-spae that is larger than F , inluding wrong-signature and vanishing

tensor �elds.

The linear parametrization has led to many important results in asymptotially

safe gravity, both at the perturbative and at the nonperturbative level, see Refs. [4℄

and [5℄, for instane. As this parametrization is the standard one, we refrain from

going into more detail here.

(2) Motivation for the use of the exponential parametrization. Apart from

its geometri meaning, the parametrization gµν = ḡµρ
(
eh
)ρ

ν entails the following

interesting onsequenes.

(i) We show in Appendix E that eq. (3.10) gives rise to proper metris only:

Provided that ḡ ∈ F and h ∈ Γ
(
S2T ∗M

)
we �nd that g = ḡ eḡ

−1h ∈ F . Hene,

the restrition to proper metris (nowhere vanishing, orret signature) is an

intrinsi feature of the exponential parametrization.

(ii) The use of parametrization (3.10) allows for an easy separation of the onfor-

mal mode from the �utuations: When splitting hµν into trae and traeless

ontributions, hµν = ĥµν +
1
d ḡµνφ, with φ = ḡµνhµν and ḡµν ĥµν = 0, the trae



34 Chapter 3. The spae of metris and the role of di�erent parametrizations

part gives rise to a onformal fator in (3.10):

gµν = e
1
d
φ ḡµρ

(
eĥ
)ρ

ν . (3.12)

Remarkably enough, the volume element on the spaetime manifold depends

only on φ, while the traeless part of hµν drops out ompletely:

√
g =

√
ḡ e

1
2
φ . (3.13)

In the ontext of gravity this means that the osmologial onstant ours as

a oupling only in the onformal mode setor. This will beome expliit in the

alulations performed in the next hapter.

(iii) Partially related to the previous point, there are ertain ases where om-

putations are simpli�ed or beome feasible only if parametrization (3.10) is

used. Let us brie�y mention four examples. (a) In the searh of saling solu-

tions in salar-tensor gravity, infrared singularities ourring in standard al-

ulations [106,107℄ an be avoided by employing the exponential parametriza-

tion [108,109℄. (b) The RG �ow of nonloal form fators appearing in a urva-

ture expansion of the e�etive average ation Γk is divergent in the limit d→ 2

for small k when based on (3.9) [110℄, but it has a meaningful limit when based

on (3.10) [81℄. () The exponential parametrization provides an easy aess to

unimodular quantum gravity [45, 111℄. (d) The use of (3.10) ensures gauge

independene at one-loop level without resorting to the Vilkovisky�DeWitt

method [112, 113℄ (f. also Setion 3.5).

(iv) Our main motivation for parametrization (3.10) arises from its apparent on-

netion to onformal �eld theory: CFT studies show that there is a ritial

number of salar �elds in a theory of gravity oupled to onformal matter,

referred to as the ritial entral harge, at whih the onformal mode φ de-

ouples. It amounts to c
rit

= 25 [114�117℄. Notably, this result is orretly

reprodued in the Asymptoti Safety program when using the exponential

parametrization [81, 83, 98�104℄, while the linear relation (3.9) gives rise to

c
rit

= 19 [36, 81, 83, 118�121℄. This will be disussed in detail in Chapter 4.

(3) Connetions, geodesis and DeWitt's notation. Geodesis on a di�eren-

tiable manifold � parametrized by means of an exponential map

6

� are �xed by the

hoie of an a�ne onnetion. In this ontext, di�erent onnetions lead to di�erent

exponential maps. Above we have disussed the relevane of the linear and the expo-

nential metri parametrizations. Now we aim at �nding onnetions on Γ
(
S2T ∗M

)

and F in suh a way that the orresponding exponential maps are given by (3.9) and

(3.10), respetively.

6

Note that, a priori, the exponential parametrization is unrelated to the exponential map.
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In order to introdue the method in general terms, we employ DeWitt's ondensed

notation [122℄ where eah Latin index represents both disrete and ontinuous (e.g.

spaetime) labels, i ≡ (µ, ν, x), for instane. Let ϕ denote a generi �eld. Then ϕi

an be regarded as the loal oordinate representation of a point in �eld spae

(
here

Γ
(
S2T ∗M

)
or F

)
, so we identify

7

ϕi ≡ gµν(x) . (3.14)

Repeated ondensed indies are interpreted as summation over disrete and integra-

tion over ontinuous indies: aibi ≡
∫
x aµν(x)b

µν(x), with
∫
x ≡

∫
d

dx. By ϕ̄i
we will

denote a �xed but arbitrary bakground �eld.

Our starting point for the derivation of the desired onnetions will be an expan-

sion of ϕi
in terms of tangent vetors, determined by a geodesi onneting ϕ̄i

to ϕi
.

Let ϕi(s) denote suh a geodesi, i.e. a urve with

ϕi(0) = ϕ̄i
and ϕi(1) = ϕi, (3.15)

that satis�es the geodesi equation

ϕ̈i(s) + Γi
jk ϕ̇

j(s)ϕ̇k(s) = 0, (3.16)

where the dots indiate derivatives w.r.t. the urve parameter s, and Γi
jk is the

Christo�el symbol evaluated at ϕi(s), that is, Γi
jk ≡ Γi

jk[ϕ
i(s)]. We assume for a

moment that the geodesi ϕi(s) lies entirely in one oordinate path. As we will see,

the two onnetions determined below give rise to only suh geodesis that automat-

ially satisfy this assumption. In that ase we an expand the loal oordinates as a

series,

ϕi(s) =

∞∑

n=0

sn

n!

(
d

n

dsn
ϕi(s)

∣∣∣
s=0

)
. (3.17)

We observe that it is possible to express all higher derivatives in (3.17) in terms of

ϕ̇i
by using equation (3.16) iteratively. If hi ≡ ϕ̇i(0) denotes the tangent vetor

at the point ϕ̄ in the diretion of the geodesi, we obtain the following relation for

ϕi = ϕi(1):

ϕi = ϕ̄i + hi − 1
2 Γ̄

i
jk h

jhk + 1
6

(
Γ̄i
mjΓ̄

m
lk + Γ̄i

kmΓ̄m
lj − Γ̄i

jk,l

)
hjhkhl +O(h4), (3.18)

where we used the abbreviations Γ̄i
jk = Γi

jk[ϕ̄] and Γ̄i
jk,l ≡ δ

δϕ̄l Γ̄
i
jk for the onnetion

and its derivatives at the point ϕ̄.

By onstrution, any geodesi from ϕ̄i ≡ ϕi(0) to ϕi ≡ ϕi(1) with initial veloity

ϕ̇i(0) = hi satis�es equation (3.18). On the other hand, if we start with an arbitrary

parametrization of ϕi
in terms of ϕ̄i

and hi, say

ϕi = f(ϕ̄i, hi), (3.19)

7

Note that µ, ν are ovariant (lower) indies referring to the dual of the tangent spae to M ,

while i is a ontravariant (upper) index referring to the tangent spae to Γ
(

S2T ∗M
)

or F .
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with f(ϕ̄i, 0) = ϕ̄i
, and we require that it be a geodesi, then we an expand f(ϕ̄i, hi)

in terms of hi and ompare it with (3.18) in order to determine a suitable onnetion.

It is this approah that we pursue in the remainder of this setion. Note that the

onnetion Γ̄i
jk an be read o� already from the seond order term in (3.18) and in

the expansion of f(ϕ̄i, hi). In standard index notation equation (3.18) amounts to

gµν(x) = ḡµν(x) + hµν(x)− 1
2

∫

y

∫

z
Γ̄αβ ρσ
µν (x, y, z)hαβ(y)hρσ(z) +O(h3). (3.20)

(4) Deriving a onnetion ompatible with the linear parametrization. We

would like to determine a onnetion Γ̄i
jk ≡ Γ̄αβ ρσ

µν (x, y, z) on Γ
(
S2T ∗M

)
in suh a

way that it is ompatible with the linear parametrization,

gµν(x) = ḡµν(x) + hµν(x). (3.21)

To this end we ompare (3.21) with (3.20). As the equality must hold for any hµν , we

onlude Γ̄αβ ρσ
µν (x, y, z) = 0. Moreover, sine the bakground metri is arbitrary, the

onnetion must vanish everywhere. This proves that the trivial (�at) onnetion,

Γαβ ρσ
µν (x, y, z) = 0 on Γ

(
S2T ∗M

)
, (3.22)

leads to geodesis on Γ
(
S2T ∗M

)
that are parametrized by the linear relation (3.21).

Although this onnetion has been obtained from the seond order term in (3.20),

the equality (3.21) = (3.20) holds at all orders as all higher order terms vanish.

(5) Deriving a onnetion for the exponential parametrization. Analogously,

for the spae of metris, F , equation (3.20) is to be ompared with the exponential

metri parametrization (3.10), whih an be written as the pointwise series

gµν(x) = ḡµν(x) + hµν(x) +
1
2 ḡ

ρσ(x)hµρ(x)hνσ(x) +O(h3). (3.23)

The onnetion Γ̄αβ ρσ
µν (x, y, z) an again be read o� from the seond order terms in

(3.20) and (3.23). Here we must take into aount that any a�ne onnetion maps

two vetor �elds to another vetor �eld. In our urrent setup we have to ensure

that the onnetion maps to the spae of symmetri tensors. Thus, we require:

Γ̄(X,Y ) = Z ∈ Γ
(
S2T ∗M

)
for X,Y ∈ Γ

(
S2T ∗M

)
. In terms of loal oordinate

relations, this requirement an be implemented by symmetrizing indies adequately.

8

We obtain Γ̄αβ ρσ
µν (x, y, z) = −δ(α(µ ḡ

β)(ρ(x) δ
σ)
ν) δ(x − y)δ(x − z). Sine the result is

valid for arbitrary base points ḡµν , we an proeed to its unbarred version, i.e. to the

onnetion evaluated at gµν , yielding

Γαβ ρσ
µν (x, y, z) = −δ(α(µ g

β)(ρ(x) δ
σ)
ν) δ(x− y)δ(x − z) on F . (3.24)

8

By onvention, round brakets indiate symmetrization, for instane, a(µν) ≡ 1
2
(aµν + aνµ).
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This is the main result of this setion.

It remains to be shown that the onnetion (3.24) inserted into (3.20) is onsistent

with (3.23) not only at seond order but also at all higher orders. It is straightforward

to onvine oneself that the third order terms do in fat agree. For a omplete proof

at all orders, however, we proeed di�erently. The idea is to �nd exat solutions to

the geodesi equation (3.16) based on the onnetion (3.24).

Before doing so, let us make an important remark. Sine Γαβ ρσ
µν (x, y, z) is pro-

portional to δ(x−y)δ(x−z), all integrations impliit in (3.16) are trivial. Therefore,

the geodesi equation is e�etively pointwise with respet to spaetime. This means

that geodesis on F starting at ḡµν(x) at some spaetime point x an only go to

metris of the type gµν(x) at the same point x; it an never reah, say, gµν(x
′) if

x′ 6= x, nor an it give rise to nonloal expressions involving spaetime integrations.

As already stated above, any metri in loal oordinates at a given point x an be

onsidered an element of the set of symmetri matries with signature (p, q). The

latter is an open and onneted subset in the vetor spae of symmetri matries

(f. disussion in Setion 3.4), and thus it an be overed with one oordinate hart.

Therefore, geodesis orresponding to (3.24) stay indeed in one hart, in agreement

with the assumption that led to eq. (3.17).

Due to the pointwise harater of the geodesi equation, the spaetime depen-

dene is not written expliitly in the following. Based on the onnetion (3.24),

equation (3.16) boils down to

g̈µν − δ
(α
(µ g

β)(ρ δ
σ)
ν) ġαβ ġρσ = g̈µν − gβρġµβ ġρν = 0. (3.25)

Upon multipliation with gνλ we observe that (3.25) an be brought to the form

d

ds

(
ġµνg

νλ
)
= 0, (3.26)

that is, ġµνg
νλ = cλµ = onst. In matrix notation this reads

ġ(s) = cg(s). (3.27)

Equation (3.27) is known to have the unique solution g(s) = esc g(0). Using the

initial onditions g(0) = ḡ and h = ġ(0) = cg(0) = c ḡ we obtain g(s) = eshḡ
−1
ḡ,

whih �nally leads to

g(s) = ḡ esḡ
−1h. (3.28)

Setting s = 1 and swithing bak to index notation, this is preisely the exponential

relation (3.10) for the metri. Hene, we have proven that geodesis orresponding

to the onnetion (3.24) are uniquely parametrized by gµν = ḡµρ
(
eh
)ρ

ν . As a result,

(3.20) and (3.23) agree indeed at all orders.

In onlusion, there is a onnetion that de�nes a struture on the �eld spae F ,

the set of all metris, entailing a simple exponential parametrization of geodesis on

F . Here it has been derived by starting with the parametrization and assuming that

it desribes geodesis. Whether there is a more fundamental geometri motivation

for this onnetion, for instane a �eld spae metri, will be disussed in Setion 3.4.
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3.3 A note on reparametrization invariane

Let us brie�y disuss as to why the hoie of parametrization is relevant at all. A

priori, there seems to be no reason to prefer one parametrization over another one.

In fat, �eld rede�nitions in a path integral for the partition funtion do not hange

S-matrix elements, a statement known as the equivalene theorem [123�125℄. Hene,

all physial quantities are invariant under �eld rede�nitions. The point we want to

make here is that swithing between the linear and the exponential relation for the

metri is not a genuine reparametrization, in the sense that it is not a one-to-one

orrespondene.

(1) As disussed above and proven in Appendix E, the exponential parametriza-

tion gives rise to only proper metris satisfying the signature onstraint, while

the linear parametrization admits also wrong-signature and vanishing tensor �elds:

g = ḡ eḡ
−1h ∈ F and g = (ḡ+h) ∈ Γ

(
S2T ∗M

)
, respetively. Therefore, the exponen-

tial parametrization annot be obtained from the linear parametrization by means of

a �eld rede�nition. There exist in�nitely many g ∈ Γ
(
S2T ∗M

)
that an be expressed

as g = ḡ + h, but not as g = ḡ eḡ
−1h

. Put another way, the addition in g = ḡ + h

with ḡ ∈ F and h ∈ Γ
(
S2T ∗M

)
an result in �leaving� the spae F .

However, it is possible to onstrain the h-spae when the linear parametrization

is used suh that ḡ+h beomes a proper metri. The onstrained h-spae, heneforth

denoted by Hḡ, is a subset of the spae of symmetri tensors, Hḡ ⊂ Γ
(
S2T ∗M

)
, and

it depends on the bakground metri ḡ : Hḡ ≡
{
h ∈ Γ

(
S2T ∗M

) ∣∣ (ḡ+h) ∈ F
}
. Note

that it has similar nonlinear properties to F . Only with this restrition, the linear

relation

g = ḡ + h′ , with h′ ∈ Hḡ , (3.29)

an be a reparametrization of

g = ḡ eḡ
−1h , with h ∈ Γ

(
S2T ∗M

)
. (3.30)

(2) Although the restrition to Hḡ is possible in priniple, it is usually not applied

to alulations in the pertinent quantum gravity literature sine one prefers to inte-

grate over linear spaes.

9

Hene, in all standard approahes the exponential and the

linear parametrization desribe di�erent objets after all. This justi�es our disus-

sion onerning �eld parametrization dependent results, see also Chapter 4. Even

if we assume for a moment that restrition to Hḡ is applied, the question about

reparametrization invariane is more involved than it seems at �rst sight: While

the equivalene theorem is based on the use of the equations of motion, we argue

in the following that the (o� shell) e�etive ation Γ in the usual formulation does

still depend on the hoie of the parametrization. This is a ruial observation sine

there are many important physial appliations involving o� shell quantities, e.g.

9

This way, it is easier to evaluate Gaussian integrals [126℄, for instane.
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β-funtions and the existene of �xed points in RG studies (see below), or the ef-

fetive potential part of the e�etive ation in the ontext of spontaneous symmetry

breaking [30, 127℄. Choosing the parametrization appropriately may be a powerful

tool to simplify the underlying omputations. For points (3) and (4) we ontinue

assuming that there is a one-to-one orrespondene between the parametrizations.

(3) Pioneered by Vilkovisky [128℄ and DeWitt [129℄, there is a way to onstrut

an e�etive ation, ΓVDW, whih is reparametrization invariant, gauge invariant and

gauge independent both o� and on shell.

10

However, the prie one has to pay for this

invariane is a nontrivial dependene of ΓVDW on the bakground metri, enoded in

modi�ed Ward identities (sometimes also referred to as modi�ed Nielsen identities)

relating δΓVDW/δgµν to δΓVDW/δḡµν [130, 131℄, f. Setion 3.6. Unlike the on-

ventional e�etive ation, the Vilkovisky�DeWitt (VDW) e�etive ation does not

generate the 1PI orrelation funtions, and sine it entails new nonloal strutures,

alulations are generially muh more involved. Furthermore, ΓVDW an have a

remaining dependene on the hosen on�guration spae metri [132℄. Ultimately,

it depends on the desired appliation whether or not a reparametrization invariant

approah is useful.

(4) RG studies (without the VDW method) show that β-funtions and �xed points

do indeed vary when the parametrization is hanged [133�137℄. A similar example

of o� shell noninvariane is provided by the frame dependene in osmology [138℄.

Moreover, reparametrization invariane is violated even on shell when trunations,

e.g. derivative expansions, are onsidered [137℄. In the ontext of asymptotially safe

gravity there is, in priniple, the interesting possibility that a non-Gaussian �xed

point exists in parametrization A, giving rise to a well de�ned UV limit, while there

is no suh �xed point in parametrization B. Clearly, suh a result would have to be

tested for stability under extensions of the trunation.

Combining RG tehniques with the ideas of Vilkovisky and DeWitt leads to the

geometrial e�etive average ation, ΓVDWk , whih � by analogy with ΓVDW �

is reparametrization and gauge invariant as well as gauge independent, and whih

is onstrained by modi�ed Ward identities [139, 140℄. Therefore, again, the bene�ts

entailed by this onstrution an be obtained only at the expense of nontrivial depen-

denies on the bakground, and, on the tehnial side, omputations are of inreased

omplexity [141℄. This onstitutes one of the major drawbaks of the VDW method.

The path we will take in the following is a ompromise between the VDW and

the onventional approah. We avoid the aforementioned nonloalities by hoosing

a geometri formalism (taking into aount the nonlinear harater of F) that leads

to a reparametrization invariant and (bakground) gauge invariant but not gauge in-

dependent e�etive (average) ation. This will redue the omplexity of alulations

10

�Gauge independene� denotes the invariane of the e�etive ation under hanges of the gauge

ondition, while �gauge invariane� refers as usual to its invariane under gauge transformations.
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onsiderably. In Setions 3.5 and 3.6 we larify the idea in more detail and ompare

our results with those of the VDW method.

(5) Let us ome bak to the usual ase where the exponential parametrization is not

a proper �eld rede�nition of the linear one. Due to the problem of �nding appropri-

ate physial observables in gravity,

11

the best one an do with a andidate theory of

quantum gravity is to test it for self-onsisteny, hek the lassial limit, and om-

pare it with other approahes. In this regard, too, studying o� shell quantities like

β-funtions is of substantial interest. Their parametrization dependene might then

be exploited to simplify the omparison between di�erent theories. In fat, we will

see in Chapters 6 and 8 that it is the exponential parametrization that establishes a

onnetion of our approah to onformal �eld theory and bosoni string theory.

To sum up, we have argued that the hoie of parametrization plays an important

role, both from a tehnial and from a fundamental perspetive, even if only proper

(i.e. one-to-one) �eld rede�nitions are onsidered. In our setup, the latter ould be

ahieved by restriting the h-spae for the linear parametrization to Hḡ. However,

suh a restrition is inonvenient, and we will not apply it in the remainder of this

thesis. Thus, by employing the exponential parametrization as ompared with the

linear one we desribe a di�erent fundamental �eld, possibly giving rise to a di�erent

theory at the quantum level.

3.4 The fundamental geometri struture of the spae of

metris: the anonial onnetion and its geodesis

We have already disussed that the spae of symmetri rank-2 tensors is a vetor

spae. Its most natural onnetion is the �at one, and the orresponding geodesis

are straight lines desribed by the linear parametrization. This setion, on the other

hand, addresses solely the spae of metris, F ≡ F(p,q), de�ned in eq. (3.4).

We would like to show that, from a group theory and di�erential geometry per-

spetive, F possesses a fundamental struture whih does not rely on any further

external input like the de�nition of a onnetion, but whih singles out one partiular

onnetion instead. Thus, unlike in Setion 3.2 we derive a onnetion from a few

priniples to be stated in a moment, rather than adapt it to a spei� parametriza-

tion. While most of the arguments presented in Subsetion 3.4.1 are well known (see

for instane Refs. [147, 148℄, f. also [149℄, [87℄ and [108℄), the onnetion in F that

eventually derives from them, as well as its geodesis, represent new results [84℄.

11

If aessible, onsidering physial observables is of ourse preferable as these should not exhibit

any parametrization or gauge dependene. In quantum gravity, however, it is not even lear what

physially meaningful observable quantities are, and so far there is no experiment for a diret

measurement of quantum gravity e�ets [142℄. Based on e�etive �eld theory arguments it is

possible to ompute the leading quantum orretions to the Newtonian potential [143�146℄, but the

e�et is unobservably small and the desription is valid only in the low energy regime, so it annot

be onsidered a fundamental theory of the gravitational �eld.



3.4. The anonial onnetion and its geodesis 41

By reviewing the foundations in Subsetion 3.4.1 we also intend to reonile the

mathematial with the physial literature. In Subsetion 3.4.2 we distinguish are-

fully between Eulidean and Lorentzian metris, pointing out some important issues

related to the exponential parametrization in the Lorentzian ase.

3.4.1 General desription

As observed in Setion 3.1, any metri g ∈ F at a given spaetime point an be

onsidered a symmetri matrix. More preisely, if g has signature (p, q), then in any

hart (U,ϕ) for the spaetime manifold M the metri in loal oordinates is a map

g
∣∣
U
: U → M , x 7→ gµν(x), (3.31)

where M ≡ M(p,q) denotes the set of real invertible symmetri d × d matries with

signature (p, q),

M ≡ M(p,q) ≡
{
A ∈ GL(d)

∣∣AT = A, A has signature (p, q)
}
. (3.32)

Due to this loal appearane there is a simple illustration of the full spae F whose

rigorous de�nition in terms of setions of a �ber bundle, given by eq. (3.4), is rather

abstrat: We may think of F as a topologial produt,

F ≃
∏

x∈M
M , (3.33)

supplemented by additional requirements that guarantee ontinuity.

In this setion we fous on the properties of M. By eq. (3.33) most topologial

and di�erential geometrial features arry over from M to F .

There is one important onstraint whih will underly our disussion onerning

geodesis on F : We restrit ourselves to loal geodesis. Here �loal� refers to �loal

w.r.t. spaetime�. This means that, loosely speaking, a geodesi on F onneting

ḡµν(x) to gµν(x) for x ∈M �stays� in x for all points of the geodesi, and it is inde-

pendent of all other spaetime points.

12

In partiular, the onstrution of geodesis

does not ontain any spaetime integrations involving the bakground metri or tan-

gent vetors, for instane. Only then geodesis on M an be lifted straightforwardly

to geodesis on F . In order to guarantee this loality we have to make a simple

assumption for the lass of onnetions we admit : We allow only suh onnetions

that are spaetime-diagonal in loal oordinates, i.e.

Γαβ ρσ
µν (x, y, z) ∝ δ(x− y)δ(x − z) . (3.34)

Based on this assumption the analysis of geodesis on F an be done pointwise, f.

also [87℄. Hene, we an redue our disussion to the matrix spae M.

13

One we

12

Note the distintion between spaetime points, x ∈ M , and points on geodesis, g ∈ F .

13

Note that the Vilkovisky�DeWitt onnetion does not fall into the lass of onsidered onne-

tions as it is nondiagonal w.r.t. spaetime. Moreover, it is nonloal w.r.t. the �eld spae F .
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have found a geodesi on M parametrized by a tangent vetor, we obtain a geodesi

on F by using the same parametrization but promoting the tangent vetor to an

x-dependent �eld. Continuity of the geodesi with respet to x is then ensured by

ontinuity of the vetor �eld.

At this point we an speify the priniples our derivation of a onnetion on F
will be based on: (a) The onnetion is required to be spaetime-diagonal, and (b)

it is to be adapted to the natural geometri struture of F . The �rst requirement is

needed to redue the disussion to M, while the seond one will uniquely single out

one onnetion.

Let us disuss the properties of M now. We will denote points in M by o and

ō rather than g and ḡ in order to avoid onfusion with elements of F , and sine the

symbol g will be used for group elements in aordane with the standard literature,

here g ∈ G ≡ GL(d). Unless otherwise spei�ed, the following arguments are valid

for all p, q ≥ 0 satisfying p+ q = d, i.e. for both Eulidean and Lorentzian metris.

(1) The set M as a homogeneous spae. We �nd that M is a smooth manifold

sine it is an open subset in the vetor spae of all symmetri matries,

14

Sd ≡
{
A ∈ R

d×d
∣∣AT = A

}
. (3.35)

Hene, the tangent spae at any point o ∈ M is given by ToM = Sd. In what follows

we aim at desribing M as a homogeneous spae. For this purpose we reognize that

the group G ≡ GL(d) ats transitively on M by

φ : G×M → M,

(g, o) 7→ φ(g, o) ≡ g ∗ o ≡ (g−1)T og−1.
(3.36)

The fat that g∗o belongs indeed toM and that the ation is transitive (i.e. ∀ o1, o2 ∈
M ∃ g ∈ G : g ∗ o1 = o2) is a onsequene of Sylvester's law of inertia. Note that φ

is a left ation, that is, g1 ∗ (g2 ∗ o) = (g1g2) ∗ o. Let us onsider a �xed but arbitrary

base point ō ∈ M now. It is most onvenient to think of ō as

I(p,q) =

(
1p×p

−1q×q

)
, (3.37)

although the subsequent onstrution is independent of that hoie. The isotropy

group (stabilizer) of ō is given by

15

H ≡ Hō ≡ Oō(p, q) ≡
{
h ∈ R

d×d
∣∣ hT ōh = ō

}
, (3.38)

14

Proof: Any matrix o ∈ M(p,q) has nonvanishing determinant, det(o) 6= 0. Continuity of

the determinant implies that all symmetri matries in a su�iently small neighborhood of o
(with respet to some matrix norm) must also have nonvanishing determinant: det(o + ǫX) =
det(o) det(1 + ǫo−1X) = det(o)

[

1 + ǫ Tr(o−1X) + O(ǫ2)
]

6= 0 for ǫ small enough. As the (real)

eigenvalues of symmetri matries hange ontinuously, too, the matries o + ǫX in the neighbor-

hood of o annot have any zero eigenvalue and the number of positive and negative eigenvalues

annot hange, so (o+ ǫX) ∈ M(p,q). Hene, M(p,q) is an open subset of Sd .
15

Note that hT ō h = ō is equivalent to h ∗ ō ≡ (h−1)T ō h−1 = ō.



3.4. The anonial onnetion and its geodesis 43

g

π : G→ M

o

G ≡ GL(d)

M ≃ G/H

H ≃ O(p, q)

Figure 3.1 The spae of real symmetri matries with signature (p, q), M, interpreted as

base spae of the prinipal bundle (G, π,M, H). In the tangent spae to this bundle, the

vertial diretion is determined by the struture group H , while the horizontal diretion,

indiated by the blue dashed line, is not �xed until a onnetion is hosen.

whih is onjugate to the semi-orthogonal group, and whih is a losed subgroup of

G ≡ GL(d). This makes M a homogeneous spae, and we an write

M ≃ G/H, (3.39)

where G/H are the left osets of H in G. De�ning the anonial projetion

π : G→ M, g 7→ π(g) ≡ (g−1)T ōg−1, (3.40)

we see that (G,π,M,H) beomes a prinipal bundle with struture group H. Figure

3.1 illustrates this relation.

(2) Geometri interpretation. Before setting up a onnetion on the prinipal

bundle let us brie�y illustrate the geometri notion behind this onstrution. Con-

sider d linearly independent vetors in R
d
. This frame an be represented as a matrix

B ∈ GL(d). Now we �x a metri η by delaring the frame to be orthonormal:

η(B(i), B(j))
!≡ δ

(p,q)
ij ≡ (I(p,q))ij , (3.41)

where B(i) denotes the i-th olumn of B, and I(p,q) is given by (3.37). Writing (3.41)

in matrix notation and solving for η yields

η = (B−1)T I(p,q)(B
−1), (3.42)

so η is indeed determined by B. We see, however, that the RHS of equation (3.42) is

invariant under multipliations of the type B → BO−1
, where O ∈ O(p, q) ≡ {A ∈

R
d×d|AT I(p,q)A = I(p,q)}. Thus, two frames that di�er by a semi-orthogonal trans-

formation de�ne the same metri, so the set of all metris is given by GL(d)/O(p, q).
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If a general bakground metri is used instead of I(p,q) on the RHS of (3.41), say,

η(B(i), B(j)) ≡ ōij , then O(p, q) is to be replaed with H, reproduing (3.39).

(3) The anonial onnetion on the prinipal bundle. In order to �nd a

onnetion on (G,π,M,H) adapted to the bundle struture we onsider the orre-

sponding Lie algebras. In the following, Lie brakets are given by the ommutator

of matries. The Lie algebra g of G is the spae of all real, square matries,

g = R
d×d. (3.43)

The Lie algebra of H is the spae of � ō-antisymmetri� matries,

h =
{
A ∈ R

d×d
∣∣ AT ō = −ōA

}
. (3.44)

By Ad : G→ Aut(g) we denote the adjoint representation of the group G:

Ad(g)(X) = gXg−1 , g ∈ G, X ∈ g. (3.45)

We �nd that its restrition Ad(H) keeps h invariant, i.e.

16

Ad(h)(h) = h ∀h ∈ H. (3.46)

Let us further de�ne m as the spae of � ō-symmetri� matries,

m ≡
{
A ∈ R

d×d
∣∣ AT ō = ōA

}
. (3.47)

This de�nes a vetor spae omplement of h in g,

g = m⊕ h, (3.48)

and m is alled Lie subspae for G/H. (Note, however, that m is not a Lie algebra

sine [m1,m2] ∈ h ∀m1,m2 ∈ m.) It is straightforward to show that m is invariant

under Ad(H), too,17

Ad(h)(m) = m ∀h ∈ H. (3.49)

Therefore, the homogeneous spae G/H is redutive.

We use the di�erential of the anonial projetion at the identity e in G in order

to make the transition from the Lie algebra g to the tangent spae of M at ō = π(e),

dπe : TeG ≡ g → TōM. (3.50)

Sine dπe is surjetive and has kernel h, the restrition dπe|m is an isomorphism on

the omplement m. Thus, we an identify m with TōM.

16

Proof: Let h ∈ H and X ∈ h, so we have hT ōh = ō and XT ō = −ōX. We de�ne Y ≡
Ad(h)(X) ≡ hXh−1

. Then: Y T ō = (h−1)TXThT ōhh−1 = (h−1)TXT ōh−1 = −(h−1)T ōXh−1 =
−(h−1)T ōh−1hXh−1 = −ōY . Hene Y ∈ h, proving Ad(h)(h) ⊂ h. Sine the map X 7→ Y =
hXh−1

is bijetive, we onlude that the reverse diretion, h ⊂ Ad(h)(h), holds true, too.
17

For the proof we proeed as in Footnote 16, but taking h ∈ H and X ∈ m instead. This way

we �nd that Ad(h)(X) ∈ m. Bijetivity of the map X 7→ Ad(h)(X) then implies Ad(h)(m) = m.
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By means of the left translations Lg : G → G we an push forward the Lie sub-

spae m to any point g in order to de�ne a distribution on G, namely the horizontal

distribution

Hg = dLgm. (3.51)

This de�nes a onnetion on the prinipal bundle sine it is invariant under the right

translations of H:

dRh(Hg) = dRhdLgm = dLgdRhm = dLgdLhAd(h
−1)m

= dLgdLhm = dLghm = Hgh.
(3.52)

It is alled the anonial onnetion of the prinipal bundle (G,π,M,H).

(4) The indued onnetion on the tangent bundle of M. The anonial on-

netion, in turn, indues a onnetion on the tangent bundle TM whih is assoiated

to the prinipal bundle [148℄,

18

TM ≃ G×H m ≡ (G×m)/H , (3.53)

where h ∈ H ats on G× m by (g,X) 7→ (gh−1,Ad(h)X). This indued onnetion

is often referred to as the anonial linear onnetion of the homogeneous spae

M ≃ G/H. As we will see below, it an be derived from a metri on M. In

the following we use only the term �anonial onnetion� sine it is lear from the

ontext whether a onnetion on the prinipal bundle or on the tangent bundle is

meant.

(5) Torsion. In general, the torsion tensor following from the anonial onnetion

is given by T (X,Y ) = −prm([X,Y ]) for X,Y ∈ m, where prm denotes the projetion

onto m (see e.g. Referene [148℄). Here, however, we have [m,m] ⊂ h. To see this,

let us onsider m1 ∈ m and m2 ∈ m, i.e. by de�nition mT
1 ō = ōm1 and m

T
2 ō = ōm2.

Then the ommutator satis�es

[m1,m2]
T ō = mT

2m
T
1 ō−mT

1m
T
2 ō = mT

2 ōm1 −mT
1 ōm2

= ō(m2m1 −m1m2) = −ō[m1,m2],
(3.54)

so [m1,m2] ∈ h. Thus, prm([X,Y ]) = 0 for all X,Y ∈ m, implying that the anonial

onnetion is torsion free.

(6) A metri on M and its Levi-Civita onnetion. It is possible to de�ne a

G-invariant metri on M, denoted by γ. For any X,Y ∈ TōM = Sd we set

γō(X,Y ) ≡ tr(ō−1Xō−1Y ) +
c

2
tr(ō−1X) tr(ō−1Y ), (3.55)

18

Eq. (3.53) omprises an impliit redution of the frame bundle: Generially, the tangent bun-

dle is assoiated to the frame bundle, GL(M), aording to TM ≃ GL(M) ×GL(D) R
D
, where

D ≡ dim(M) = 1
2
d(d + 1). Sine the adjoint representation (3.45) maps H to GL(D) (up to an

isomorphism) and sine it is possible to �nd a prinipal bundle homomorphism G → GL(M) (with
M as ommon base spae) ompatible with the H-ation, the struture group is redued and we

have GL(M)×GL(D) R
D ≃ G×H m.
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with an arbitrary onstant c. The metri (3.55) an be onsidered a generalization

of the Killing form for g. It is the most general G-invariant metri on M up to

a global fator. Here, G-invariane means that the group ation (3.36) of G on

M, φg(o) ≡ φ(g, o) = (g−1)T og−1
, is isometri with respet to this metri: With

(dφg)ōX = (g−1)TXg−1
, we have

γφg(ō)

(
(dφg)ōX, (dφg)ōY

)
= γō(X,Y ) , (3.56)

for all X,Y ∈ TōM.

In ombination with the G-invariane of the anonial onnetion (w.r.t. left

translations), dLg1Hg2 = Hg1g2 , equation (3.56) has the onsequene that the o-

variant derivative obtained from the anonial onnetion preserves the metri (3.55)

[148℄. Thus, we onlude that the anonial onnetion is the Levi-Civita onnetion

on TM with respet to γ.

Applying the priniple of minimum energy as in Ref. [88℄ leads to the geodesi

equation orresponding to the Levi-Civita onnetion for the metri (3.55): We

minimize the energy funtional Eō[o] ≡ 1
2

∫ t
0 γō

(
ȯ(s), ȯ(s)

)
ds with respet to the

urves o : R → M, s 7→ o(s), resulting in the di�erential equation

ö(s)− ȯ(s)ō−1 ȯ(s) = 0. (3.57)

Comparing this expression to the generi geodesi equation ö(s)+Γō

(
ȯ(s), ȯ(s)

)
= 0,

we an onlude that Γō(X,X) = −Xō−1X for X ∈ TōM. Finally, symmetrizing

appropriately yields, for X,Y ∈ TōM, the Levi-Civita onnetion

Γō(X,Y ) = −1

2

(
Xō−1Y + Y ō−1X

)
. (3.58)

For the sake of ompleteness we mention that for any point ō ∈ M there is a

symmetry sō, i.e. a map sō : M → M whih is an element of the isometry group of

the metri γ and whih has the re�etion properties, sō(ō) = ō and (dsō)ō = −Id. It
is given by the involution sō(o) ≡ ōo−1ō and makes M a symmetri spae.

(7) Geodesis w.r.t. the anonial onnetion. With the above groundwork

it is straightforward to onstrut geodesis through the point ō. For that purpose

we have to �nd the exponential map on the manifold M with base point ō, here

denoted by expō. On the matrix Lie group G the exponential map is given by the

standard matrix exponential, exp, where we also write expA = eA. As shown in

Referenes [147,148℄, the map expō ◦dπe : m → M is a loal di�eomorphism, and it

holds

expō ◦dπe = π ◦ exp . (3.59)

Hene, geodesis on M are determined by

expōX = π
(
edπ

−1
e X

)
, (3.60)
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for X ∈ TōM = Sd. From equation (3.40) we obtain dπ−1
e X = −1

2 ō
−1X, resulting

in

expōX = π
(
e−

1
2
ō−1X

)
=
(
e

1
2
ō−1X

)T
ō e

1
2
ō−1X . (3.61)

Using ō e
1
2
ō−1X ō−1 = e

1
2
Xō−1

as well as XT = X and ōT = ō we �nally obtain

expōX = ō eō
−1X . (3.62)

The same result an be derived diretly from eq. (3.57). With the identi�ations

ō = ḡ(x) and X = h(x) this equals preisely the metri parametrization (3.11).

19

That is the main result of this setion. The exponential parametrization desribes

geodesis with respet to the anonial onnetion.

(8) The metri and the anonial onnetion in loal oordinates. At last,

we would like to determine the form of γ de�ned in (3.55) in loal oordinates.

Symmetrizing adequately we obtain

γō(X,Y ) = tr(ō−1Xō−1Y ) +
c

2
tr(ō−1X) tr(ō−1Y )

=
(
ōµ(ρōσ)ν +

c

2
ōµν ōρσ

)
XµνYρσ

!
= γµνρσXµνYρσ.

(3.63)

Thus, we an read o�

γµνρσ = ōµ(ρōσ)ν +
c

2
ōµν ōρσ . (3.64)

Moreover, the orresponding Christo�el symbols follow diretly from equation

(3.58): The anonial onnetion in loal oordinates is given by

(Γō)
αβ ρσ
µν = −δ(α(µ ō

β)(ρ
δ
σ)
ν) (3.65)

It is to be emphasized that this result is independent of the parameter c. Remarkably

enough, the tensor struture of (3.65) agrees with the one of eq. (3.24). This ruial

observation will be disussed in more detail in the next setion where we analyze

how the anonial onnetion on TM an be lifted to a onnetion on TF .

To sum up, we have seen that the anonial onnetion arises in a very straight-

forward way from the basi struture of M ≃ G/H interpreted as the base spae of

a prinipal bundle, so its assoiated geodesis, given by (3.62), are adapted to this

struture, too. The extension from M to F , worked out in Setion 3.5, leads to the

exponential parametrization (3.8), whih an thus be onsidered the most natural

way to parametrize pure metris.

19

This is to be ontrasted with the geodesis found in Referene [87℄ (see also [149℄) whih are

based on the LC onnetion indued by the DeWitt metri in F (rather than M). This is equivalent

to determining geodesis on M with respet to the LC onnetion of the metri

√
g γ, i.e. of our

metri (3.55) times

√
g. The resulting parametrization of geodesis has a more involved form than

(3.62). In the referened alulations, the authors deompose M into a produt of Mµ and R
+
,

where Mµ are all elements of M with determinant µ. Remarkably, geodesis on Mµ based on

√
g γ

have the same struture as our result (3.62) that desribes geodesis on M based on γ. As will be
disussed in Setion 3.5, this an be traed bak to the fator

√
g whih is onstant in Mµ.
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3.4.2 Eulidean vs. Lorentzian signatures

Next, we speify some topologial and geometrial properties ofM ≡ M(p,q), de�ned

by equation (3.32), in ombination with the anonial onnetion, where it turns out

ruial in ertain ases to distinguish between di�erent signatures. For the sake of

brevity, not all of the following statements will be proven in detail, but they follow

from the results of the previous subsetion and from the theorems of Appendix E. Let

us start by giving and illustrating two important de�nitions, whih will be needed

for a lassi�ation of M(p,q).

De�nition: Geodesi ompleteness. A semi-Riemannian manifold M equipped

with an arbitrary onnetion is geodesially omplete if, for all x ∈ M , the orre-

sponding exponential map expx is de�ned for all v ∈ TxM , i.e. if every maximal

geodesi is de�ned on the entire real line R.

Broadly speaking, this means that geodesis �stay� in M rather than running

into the boundary or a singularity.

De�nition: Geodesi onnetedness. A semi-Riemannian manifoldM equipped

with an arbitrary onnetion is geodesially onneted if any two points in M an

be onneted by a geodesi.

The geodesis in both of these de�nitions depend on the underlying onnetion.

Therefore, �geodesi ompleteness� and �geodesi onnetedness� are not properties

of the manifold alone but of the manifold and the onnetion. We see by way of ex-

ample that the two properties are fully independent: They are illustrated in Figure

3.2 where they appear in di�erent ombinations. Note that geodesi onnetedness

implies onnetedness (and path onnetedness), while the opposite diretion is not

true. We would like to emphasize that even path-onnetedness plus geodesi om-

pleteness does not imply geodesi onnetedness.

Let us ome to lassify M(p,q) now. In the following, �for all p, q� refers to �for

all p, q ∈ N0 with p+ q = d�.

(1) Properties of M(p,q) valid for all p, q.

• As already stated above, M(p,q) is an open subset in the spae of symmetri

matries. This has the important onsequene that it an be overed with one

hart only.

• Irrespetive of the signature it is nonompat. (If o ∈ M(p,q), then αo ∈ M(p,q),

too, where α ∈ R
+
. Considering the limit α→ ∞ disproves ompatness.)

• It is path-onneted. (Note that G = GL(d) is nononneted, but the subgroup

H has elements in both of the onneted omponents of G. Hene, M(p,q) ≃
G/H is onneted. Sine it is an open subset, it is even path-onneted.)
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(a) The �at plane, R2
, with vanishing on-

netion: Both geodesially omplete and

geodesially onneted.

(b) The half plane, {x ∈ R2 |x1 > 0},
with vanishing onnetion: Not geodesi-

ally omplete but geodesially onneted.

() The puntured plane, R2\{0}, with

vanishing onnetion: Neither geodesially

omplete nor geodesially onneted.

(d) The puntured plane, R2\{0}, with

a ertain nontrivial onnetion: Geodesi-

ally omplete (and path-onneted) but

not geodesially onneted.

Figure 3.2 Four examples illustrating the meaning of geodesi ompleteness and geodesi

onnetedness. The blue urves represent geodesis starting at one point (marked as a blak

dot), and it is skethed whether or not they an reah the seond marked point. In (a) � (),

geodesis are based on the trivial onnetion, i.e., they are straight lines. The onnetion

in (d), on the other hand, is (arti�ially designed) suh that geodesis bend away from the

singularity at x = 0 and never reah the upper half plane. The single geodesi in (d) running

towards the singularity does not run into x = 0 at any �nite t but approahes it only in the

limit t→ ∞, guaranteeing geodesi ompleteness.

• The salar urvature RM of M(p,q) is a negative onstant: Independent of p,

q and the metri parameter c, we dedue from eq. (3.65) that

RM = −1

8
d(d− 1)(d+ 2). (3.66)

• Remarkably enough, the spae M(p,q) furnished with the anonial onnetion

(3.65) is geodesially omplete. In Appendix E it is shown algebraially that

ō eō
−1X

stays in M(p,q) for all X ∈ Sd. Note, however, that an algebrai proof

is not even neessary here sine geodesi ompleteness is already guaranteed by

onstrution: M(p,q) is a homogeneous spae, and by homogeneity the expo-

nential map orresponding to the anonial onnetion is de�ned on the entire

tangent spae.

(2) Properties of M(p,q) spei� to both (p, q) = (d,0) and (p, q) = (0, d).

These are the positive de�nite matries (i.e. Eulidean signatures) and the negative

de�nite matries, respetively, to whih we an attribute four interesting additional

properties.

• The spaes M(d,0) and M(0,d) are simply onneted. (This an be seen by

noting that they are onvex : If A,B ∈ M(d,0), then x
TAx > 0 and xTBx > 0
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for all x 6= 0, implying xT [sA+ (1− s)B]x > 0 for all x 6= 0 and all s ∈ [0, 1].

The ase (p, q) = (0, d) follows analogously.)

• The spae M(p,q) exhibits a Riemannian struture provided that c > −2
d sine

the metri γ given by equation (3.55) is positive de�nite: For both (p, q) =

(d, 0) and (p, q) = (0, d) one an show that

γō(X,X) = tr
(
(ō−1X)2

)
+
c

2

(
tr(ō−1X)

)2
> 0, (3.67)

for all X ∈ TōM = Sd with X 6= 0, and for c > −2
d . In the ase c = −2

d

(c < −2
d) γ beomes positive semide�nite (inde�nite). As an aside we would

like to mention that passing over from M(p,q) to F(p,q) leads to a surprising

statement: The natural metri in the spae of negative de�nite metris is

positive de�nite.

• Our most important observation is that bothM(d,0) andM(0,d) are geodesially

onneted. There are two ways to prove this.

(i) In Appendix E it is shown that for any ō ∈ M(p,q) and any o ∈ M(p,q), with

(p, q) = (d, 0) or (p, q) = (0, d), there exists an X ∈ Sd satisfying o = ō eō
−1X

.

Sine we know from Subsetion 3.4.1 that the latter relation desribes geodesis,

this proves that any two points in M(p,q) an be onneted by a geodesi.

(ii) By eq. (3.67) M(p,q) has a Riemannian struture for c > −2
d . Therefore,

the Hopf�Rinow theorem is appliable, whih implies in turn that M(p,q) is

geodesially onneted. Sine we have shown that the anonial onnetion

is independent of the parameter c, see (3.65), the resulting geodesis do not

depend on c either. Thus, the statement of geodesi onnetedness remains

true even for c ≤ −2
d .

• The exponential map, expō : TōM(p,q) ≡ Sd → M(p,q), X 7→ o = ō eō
−1X

,

is a global di�eomorphism, i.e. there is a one-to-one orrespondene between

o ∈ M(p,q) and X ∈ Sd.

(3) Properties of M(p,q) spei� to p ≥ 1, q ≥ 1. These are the inde�nite

matries (orresponding to Lorentzian, i.e. mixed, signatures), whih exhibit funda-

mentally di�erent features.

• When onsidering mixed signatures, M(p,q) is not simply onneted. (This an

be proven by means of the long exat homotopy sequene. For the speial ase

d = 2 we will see it in a moment by means of an illustrative example.)

• Independent of c, the spae M(p,q) has a semi-Riemannian struture: For

p ≥ 1 and q ≥ 1 the expression γō(X,X) an beome both positive and

negative, depending on X, so γ is inde�nite. As an example let us onsider
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ō = diag(−1, 1, · · · ), where the numbers abbreviated by the dots are hosen to

be onsistent with the signature. Furthermore, we set

X ≡




1 0

0 1

0
.

.

.




and Y ≡




0 1

1 0
.

.

.

0



. (3.68)

Using (3.55), this hoie results in γō(X,X) = 2 > 0 and γō(Y, Y ) = −2 < 0

for all c. For di�erent base points ō similar examples an be found. Hene, γ

is inde�nite.

20

• For p, q ≥ 1 the spae M(p,q) is not geodesially onneted, so the exponential

map expō is not surjetive. This is the most important di�erene as ompared

with the positive and negative de�nite matries disussed in point (2), and it

establishes the main result of this subsetion. Before proving the statement,

we notie that its basi ause lies in the fat that M(p,q) is semi -Riemannian.

Hene, the Hopf�Rinow theorem is not appliable.

In order to disprove geodesi onnetedness it is su�ient to �nd appropriate

ounterexamples. The general ase is treated in Appendix E. Here, we sketh

the idea by means of a simple ounterexample for 2 × 2-matries, that is, for

p = 1 and q = 1. We try to onnet the base point

ō =

(
1 0

0 −1

)
to another point o =

(
−2 0

0 1

)
, (3.69)

both of whih belong to M(p,q). Aording to eq. (3.62) we have to �nd an

X ∈ TōM(p,q) ≡ Sd that solves the equation

ō−1o =

(
−2 0

0 −1

)
= eō

−1X . (3.70)

There is an existene theorem [150℄, however, whih states that a real square

matrix has a real logarithm if and only if it is nondegenerate and eah of

its Jordan bloks belonging to a negative eigenvalue ours an even number

of times. Thus, sine the matrix in the middle of equation (3.70) has two

distint negative eigenvalues, it does not have a real logarithm, so there is no

X ∈ TōM(p,q) that solves (3.70). This proves that the exponential map is not

surjetive.

20

It is possible to de�ne a di�erent metri for p ≥ 1, q ≥ 1 that makes M(p,q) Riemannian.

However, suh a metri would not be G-invariant, its Levi-Civita onnetion would not be the

anonial onnetion, and it would not extend to a ovariant metri in �eld spae F . In partiular,

orresponding geodesis would not be given by the simple exponential parametrization.
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• Even the restrition of M(p,q) to the image of expō to guarantee surjetivity

does not turn expō into a global di�eomorphism sine it is also not injetive.

Again, the general ase is proven in Appendix E, while we speify a simple

ounterexample in d = 2 dimensions here. Let us onsider the base point

ō =

(
1 0

0 −1

)
, (3.71)

and the one-parameter family of tangent vetors, i.e. symmetri matries,

Xα =

(
0 α

α 0

)
∈ TōM(p,q) . (3.72)

Inserting these matries into the exponential map yields

oα ≡ expō(Xα) = ō eō
−1Xα =

(
1 0

0 −1

)
exp

[(
0 α

−α 0

)]

=

(
1 0

0 −1

) (
cosα sinα

− sinα cosα

)
=

(
cosα sinα

sinα − cosα

)
,

(3.73)

whih is periodi, and thus not injetive. In partiular, we �nd expō(Xα) = ō

for all α ∈ {2πk | k ∈ Z}.

Let us brie�y summarize our main insights. Whether or not the spae M(p,q),

equipped with the anonial onnetion, is geodesially onneted depends highly

on the signature (p, q). For positive de�nite and negative de�nite matries, i.e. for

(p, q) = (d, 0) and (p, q) = (0, d), respetively, any two points in M(p,q) an be

onneted by a geodesi. The exponential map expō �reahes� every point in M(p,q)

one and only one. For inde�nite matries, p ≥ 1, q ≥ 1, on the other hand, there

are points in M(p,q) that an never be reahed by any of the geodesis starting at the

base point ō, while there are other points that are reahed in�nitely many times by

a single geodesi.

(4) Illustration of M(p,q). Finally, we would like to visualize our results. It is

partiularly interesting to �nd out how geodesis on the spae of inde�nite matries

look like and how a geodesially omplete spae an be geodesially nononneted at

all. In the ase of 2×2-matries the spaeM(p,q) an be illustrated by means of three-

dimensional plots. It will turn out onvenient to parametrize arbitrary symmetri

matries by (
z − x y

y z + x

)
, (3.74)

sine the various subspaes assume simple geometri shapes then. Any symmetri

matrix is thus mapped to a point in R
3
. The eigenvalues of (3.74) are given by

λ = z ±
√
x2 + y2. (3.75)
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Figure 3.3 Using parametrization (3.74) the spae of symmetri 2×2-matries deomposes

into positive de�nite matries M(2,0) (interior of the one with positive z), negative de�nite
matriesM(0,2) (interior of the one with negative z), and symmetri matries with signature

(1, 1) (R3
with the losure of the two ones ut out). The ones extend to z → ±∞. We

observe that M(1,1) is not simply onneted.

Hene, the ondition for positive de�nite, negative de�nite or inde�nite matries, i.e.

both eigenvalues positives, negative or mixed, respetively, leads to a ondition for

x, y and z, whih an be displayed graphially. For instane, positive de�niteness

implies two positive eigenvalues, i.e. z+
√
x2 + y2 > 0 and z−

√
x2 + y2 > 0, whih

boils down to the single ondition

z >
√
x2 + y2 . (3.76)

This representation gives rise to an open one embedded into R
3
. Analogously, we

�nd z < −
√
x2 + y2 for negative de�nite matries, and −

√
x2 + y2 < z <

√
x2 + y2

for inde�nite matries.

The analysis shows that the set of all nondegenerate symmetri 2 × 2-matries

deomposes into three open sets, M(2,0), M(1,1) and M(0,2). This is depited in

Figure 3.3. The set of positive de�nite matries, M(2,0), is represented by the inner

part of a one whih is upside down and has its apex at the origin. Note that it

extends to z → ∞. The negative de�nite matries, M(0,2), are merely a re�etion of

this one through the origin. Finally, M(1,1) is mapped to R
3
from whih two ones

are ut out. The surfaes of the ones belong to neither of the three sets but rather
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to degenerate symmetri matries.

At last, we illustrate geodesis on M(1,1). This helps to understand how it an

be possible that every maximal geodesi is de�ned on the entire real line, while still

not all points an be reahed by geodesis starting from a base point. Figure 3.4

shows what happens. By way of example, we hoose a base point ō ∈ M(1,1) with

the parametrization (x, y, z) = (−1, 0, 0) and some random tangent vetors that give

rise to orresponding geodesis. We observe that most of the example geodesis lie

entirely in the half spae with negative x. However, those entering the positive x

half spae have in ommon that they run through the same axis: Whenever they

ross the yz-plane at positive x they interset the x-axis. This holds for all geodesis

starting at ō, that is, at x > 0 they an never reah points in the yz-plane with z > 0

or z < 0. Furthermore, we see the aforementioned periodi solutions in Figure 3.4

as geodesis irling around the origin.

In order to visualize that part of M(1,1) whih annot be reahed by geodesis

starting at ō we an make use of the existene theorem for real logarithms [150℄

again: Following the same logi as the one underlying the above disussion around

eqs. (3.69) and (3.70), these geodesially unonneted points are all those o ∈ M(1,1)

for whih the produt ō−1o has two distint negative eigenvalues. The result is shown

in Figure 3.5. Points that an be reahed from the base point ō by a geodesi are

given by the white region. It an be observed that the two ones e�etively shield

the spae behind them.

To sum up, for Eulidean signatures there is a one-to-one orrespondene between

tangent vetors and points in M(p,q), while for Lorentzian signatures there is none.

In order to �ure� the latter ase, we would have to start from several base points

and restrit the orresponding tangent spaes at the same time suh that all points

in M(p,q) are reahed one and only one. As our results arry over from M(p,q)

to F(p,q), this peuliarity has to be taken into aount when onsidering funtional

integrals over Lorentzian metris.

3.5 Comparison of onnetions on �eld spae

So far, we have studied the spae M ≡ M(p,q), the loal manifestation of the �eld

spae F ≡ F(p,q). In this setion we will show how the results derived previously for

M transition into properties of F . To this end, we will lift the metri (3.64), the

onnetion (3.65) and the orresponding geodesis from their matrix form to tensor

�eld expressions. Note that it is perfetly admissible to use the parametrization

o = expō(X) given by (3.62) and replae o, ō ∈ M and X ∈ TōM by the x-dependent

tensor �elds g(x), ḡ(x) and h(x), respetively, where ontinuity of g with respet to

x is ensured by ontinuity of ḡ and h. The question is rather if this parametrization

still desribes geodesis on F assoiated to the Levi-Civita onnetion. In this regard

we disuss and ompare di�erent onnetions on the spae of metris.
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Figure 3.4 Geodesis on M(1,1), starting at (x, y, z) = (−1, 0, 0), where M(1,1) is given by

the white spae without the gray ones. As opposed to the ase of positive de�nite matries,

we �nd periodi solutions here. Moreover, whenever a geodesi traverses the yz-plane on

the positive x side, it rosses the half-line {(x, 0, 0) ∈ R
3|x > 0}. There is no geodesi

onneting the base point to the point marked in red at (x, y, z) =
(
3
2 , 0,− 1

2

)
, for instane.
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Figure 3.5 The white region shows the spae within M(1,1) that an be reahed by a

geodesi starting from the base point at (x, y, z) = (−1, 0, 0).
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(1) The underlying manifolds. Apart from the spaetime manifold M and the

spae M of symmetri matries with signature (p, q), we will see in a moment that

F an be equipped with a metri, too. Thus, we onsider three (semi-)Riemannian

manifolds in total, whih we distinguish arefully:

(M,g), (M, γ), (F , G) , (3.77)

where, in loal oordinates, gµν is the spaetime metri, γµνρσ denotes the metri in

M, and Gij is the �eld spae metri in DeWitt notation.

21

Note that gµν represents

also a point in F . We would like to �nd the most natural form of Gij and disuss

its relation to γµνρσ in the following.

(2) The DeWitt metri. The �eld spae metri Gij is part of the de�nition of

the theory under onsideration. Nevertheless, it an be �xed if a few requirements

adapted to the spae of metris, F , are made.

First, we want to take into aount that gravity is a gauge theory. The lassial

ation is invariant under di�eomorphisms, and so are all physial quantities. This

leads to the reasonable requirement that the metri Gij on F be gauge invariant,

too, i.e. that the ation of the gauge group on F be an isometry. In general terms,

a gauge transformation an be written as

δϕi = Ki
α[ϕ]δǫ

α , (3.78)

where δǫα parametrizes the transformation and the Kα are the generators of the

gauge group, heneforth denoted by G. In the ase of gravity, equation (3.78) reads

δgµν = Lδǫgµν , with the Lie derivative L along a vetor �eld δǫα. The ation of G on

F indues a prinipal bundle struture [85, 86℄. Points that are onneted by gauge

transformations are physially equivalent while the spae of orbits F/G ontains

all physially nonequivalent on�gurations. Now, if the gauge group is to generate

isometri motions in F , then the �eld spae metri Gij [ϕ] must satisfy Killing's

equation, i.e. our �rst requirement reads

Kk
α,iGjk +Kk

α,jGik +Kk
αGij,k = 0 , (3.79)

where ommas denote funtional derivatives with respet to the �eld ϕi
.

Seond, we require that Gij [ϕ] be ultraloal, i.e. that it involve only undi�eren-

tiated ϕ's, and that it be diagonal in x-spae.

There is a unique one-parameter family of �eld spae metris satisfying all re-

quirements, whih is known as DeWitt metri [149℄. It reads

Gµν ρσ(x, y)[g] =
√
g
(
gµ(ρgσ)ν +

c

2
gµνgρσ

)
δ(x − y) , (3.80)

21

The DeWitt notation has been introdued in point (3) of Setion 3.2. The DeWitt label i
represents all indies a tensor �eld possesses, inluding the spaetime oordinate, here i ≡ (µ, ν, x).
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where the x-dependene of gµν is impliit. This metri on F is our starting point.

On TgF ≡ Γ
(
S2T ∗M

)
it indues the inner produt

Gg(h, h
′) ≡

∫
d

dx ddy Gµν ρσ(x, y)[g]hµν (x)h
′
ρσ(y) . (3.81)

By omparing the DeWitt metri on F with the metri γµνρσ on M, given by (3.64),

we observe an idential tensor struture. The fator

√
g in (3.80) is needed merely

to make Gµν ρσ(x, y) a bitensor density of orret weight. Hene, the DeWitt metri

an be written as

Gµν ρσ(x, y)[g] =
√
g(x) γµν ρσ(g(x)) δ(x − y) . (3.82)

(3) The Levi-Civita onnetion on F . The Levi-Civita (LC) onnetion on M
w.r.t. the metri γ is given by the anonial onnetion, and it has already been

omputed in the previous setion. In order to ompare it with the LC onnetion

on F indued by the DeWitt metri, let us introdue another onvenient notation:

In the following, apital Latin indies refer to pairs of spaetime indies but not to

spaetime oordinates, e.g. I ≡ (µ, ν), and we write oI ≡ oµν for points in M and

gI(x) ≡ gµν(x) ≡ gi for points in F .

Let

{
K
IJ

}
denote the Christo�el symbols of the LC onnetion on (M, γ). Then,

by de�nition,

{
K
IJ

}
=

1

2
γKL (γIL,J + γJL,I − γIJ,L) . (3.83)

As omputed in Setion 3.4, they read

{
K
IJ

}
≡
{
αβ ρσ
µν

}
= −δ(α(µ g

β)(ρ δ
σ)
ν) . (3.84)

With this in mind, let us onstrut onnetions on �eld spae F now. For that

purpose we start out from the LC onnetion w.r.t. the DeWitt metri (3.80). Its

Christo�el symbols are denoted by

{
k
ij

}
, and they follow from the usual de�nition:

{
k
ij

}
≡ 1

2
Gkl (Gil,j +Gjl,i −Gij,l) . (3.85)

Their preise form in terms of �eld spae oordinates gµν has been determined in

Refs. [149, 151℄. We will speify them in a moment.

Now, a generi onnetion on F an always be written as

Γk
ij =

{
k
ij

}
+Ak

ij . (3.86)

The last term in (3.86), Ak
ij , is an arbitrary smooth bilinear bundle homomorphism,

and di�erent onnetions on F merely di�er in that term.

We would like to emphasize that, although by equation (3.82) Gµν ρσ(x, y) is

proportional to γµν ρσ
, the orresponding LC onnetions are not. The �eld spae LC
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onnetion rather ontains additional terms. We �nd that it deomposes into two

piees,

{
k
ij

}
=
({

K
IJ

}
+ TK

IJ

)
(x) δ(x − y)δ(x− z) , (3.87)

where the �rst term is given by equation (3.84) with gµν replaed by gµν(x), and

TK
IJ ≡ Tαβ ρσ

µν reads [149, 151℄

Tαβ ρσ
µν =

1

4
gαβδρ

(µ
δσν) −

1

2(2 + dc)
gµνg

α(ρgσ)β

+
1

4
gρσδα(µδ

β
ν) −

c

4(2 + dc)
gµνg

αβgρσ .

(3.88)

Clearly, the reason for this di�erene between the LC onnetions on M and F an

be traed to a nononstant proportionality fator relating the underlying metris,

i.e. to the volume element

√
g in (3.82). When taking funtional derivatives of Gij

they at both on

√
g and on γµν ρσ

in (3.82). Thus, the seond term in (3.87)

ontains only ontributions due to derivatives ating on the volume element. This is

a speial harateristi of gravity. In other theories, like in nonlinear sigma models

for instane [152�154℄, proportionality of a �eld spae metri to a metri in (the

equivalent of) M results in proportional LC onnetions. There the volume element

is a presribed external ingredient, while it depends on the �eld in the ase of gravity.

(4) Lifting the anonial onnetion from M to F . The naive approah

to lifting geodesis w.r.t. (3.84) from M to F onsists in making the Levi-Civita

onnetion (3.84) spaetime dependent. This an be ahieved by multiplying it

with appropriate δ-funtions, and by replaing gµν with gµν(x), leading to the result

−δ(α(µ g
β)(ρ(x) δ

σ)
ν) δ(x−y)δ(x−z), whih would reprodue exponentially parametrized

geodesis as desired. We have to make sure, though, that this expression de�nes a

proper onnetion on F . To this end, we want to write it as in eq. (3.86) in terms

of the Levi-Civita onnetion on F w.r.t. the DeWitt metri.

As argued in the previous point, the LC onnetion on (F , G) ontains additional
terms originating from the volume element. Thus, we merely have to remove these

terms in order to obtain a onnetion on F that is proportional to (3.84). This an

easily be ahieved by hoosing a bundle homomorphism Ak
ij in (3.86) whih takes

the form

Ak
ij = −TK

IJ δ(x− y)δ(x − z) , (3.89)

with TK
IJ as in eqs. (3.87) and (3.88). That hoie is perfetly admissible: All terms

in TK
IJ are properly symmetrized, so it maps two symmetri tensors to a symmetri

tensor again. Therefore, Ak
ij represents a valid bundle homomorphism. As a result,

we obtain indeed

Γk
ij ≡ Γαβ ρσ

µν (x, y, z) = −δ(α(µ g
β)(ρ(x) δ

σ)
ν) δ(x − y)δ(x− z) (3.90)
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as a natural onnetion on F . Remarkably enough, this agrees preisely with the

onnetion (3.24), determined in Setion 3.2. It is to be emphasized, however, that

in Setion 3.2 the onnetion was designed arti�ially suh that it leads to geodesis

given by the exponential parametrization, while here it was derived from the re-

quirement that it be adapted to the geometri struture of the spae of metris.

(5) The Vilkovisky�DeWitt onnetion. For omparison, we would like to

mention another famous hoie for Ak
ij whih is due to Vilkovisky [128℄ and De-

Witt [129℄. It is adapted to the prinipal bundle struture of F indued by the

gauge group. The basi idea is to de�ne geodesis on the physial base spae F/G
of the bundle and horizontally lift them to the full spae F . In this manner, oordi-

nates in �eld spae are deomposed into gauge and gauge-invariant oordinates. The

resulting Vilkovisky�DeWitt onnetion is obtained by using (3.86) with the bundle

homomorphism [155℄

Ak
ij = ηαρηβσKαiKβjK

l
(ρK

k
σ);l − ηαβKαiK

k
β;j − ηαβKαjK

k
β;i , (3.91)

Here, Kαi ≡ GijK
j
α, involving the generators Kj

α of the gauge group, ηαβ is the in-

verse of ηαβ ≡ Ki
αGijK

j
β, and semiolons denote ovariant derivatives in �eld spae

orresponding to the LC onnetion (3.85). In ontrast to (3.90), the Vilkovisky�

DeWitt onnetion is highly nonloal, ontaining in�nitely many di�erential opera-

tors [155℄. Based on this onnetion, it is possible to onstrut a reparametrization

invariant and gauge independent e�etive ation [128, 129℄.

To sum up, we have disussed three di�erent onnetions on the spae of metris,

F , all of whih have the form Γk
ij =

{
k
ij

}
+ Ak

ij , where they are haraterized by

di�erent hoies for the bundle homomorphism Ak
ij .

• Setting Ak
ij = 0 yields the LC onnetion indued by the DeWitt metri. Its

assoiated geodesis were alulated in [87, 88, 149℄. Although these geodesis

are loal and possess an expliit representation in terms of tangent vetors, their

struture is more involved than the one of the exponential parametrization.

• Choosing relation (3.91) for Ak
ij gives rise to the Vilkovisky�DeWitt onnetion,

whih takes into aount the prinipal bundle harater of the �eld spae F with

the gauge group as struture group. It an be used in priniple to onstrut

reparametrization invariant and gauge independent quantities (even o� shell).

The orresponding geodesis are highly nonloal, though, and they annot be

represented by an expliit formula.

• The hoie (3.89) for Ak
ij leads to the novel onnetion (3.90). It is adapted

to the geometri struture of the spae of metris. Furthermore, it generates

geodesis whih are loal and possess a simple representation: the exponential

metri parametrization.
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3.6 Covariant Taylor expansions and Ward identities

Taking the geometri path advoated previously, involving onnetions and geodesis

on �eld spae, allows for the onstrution of ovariant objets, in partiular, of a

geometri e�etive (average) ation. Here, �ovariane� has a double meaning as it

denotes both ovariane w.r.t. spaetime and ovariane w.r.t. �eld spae. It is the

latter property, also referred to as reparametrization ovariane, that we will fous

on in this setion. We will brie�y review the approah and disuss spei�ally the

impliations of the onnetion (3.90). A more detailed introdution to the geometri

formalism an be found, for instane, in Ref. [155℄.

(1) Covariant Taylor expansions. Having some onnetion Γk
ij on F at hand, the

key idea is to de�ne oordinate harts based on geodesis. We start by seleting an

arbitrary base point ϕ̄ in �eld spae and using Γk
ij to onstrut geodesis that onnet

ϕ̄ to neighboring points ϕ.22 As in Setion 3.2, let ϕi(s) denote suh a geodesi in

loal oordinates onneting ϕi(0) = ϕ̄i
to ϕi(1) = ϕi

. The vetor whih is tangent

to the geodesi at the starting point ϕ̄i
is given by

dϕi(s)
ds

∣∣
s=0

= hi[ϕ̄, ϕ]. It depends

on both base point and end point. We have already argued that F is geodesially

omplete, and that geodesis are determined by the exponential map. Sine the

exponential map is a loal di�eomorphism, we see that expϕ̄ : Tϕ̄F → U ⊆ F
with h 7→ ϕ[h; ϕ̄] onstitutes a oordinate hart. We refer to this hart as geodesi

oordinates. In this sense, the �eld hi[ϕ̄, ϕ] plays a twofold role, as a tangent vetor

loated at ϕ̄, and as the oordinate representation of the point ϕ.

On the basis of geodesi oordinates it is possible to perform (�eld spae-) ovari-

ant expansions whih an eventually be used to de�ne a reparametrization invariant

e�etive ation. Let A[ϕ] be any salar funtional of the �eld ϕi
, and let ϕi(s) be

a geodesi as above. Then the funtional A[ϕ] an be expanded as a Taylor series

aording to

A[ϕ] = A[ϕ(1)] =

∞∑

n=0

1

n!

d

n

dsn

∣∣∣∣
s=0

A[ϕ(s)] . (3.92)

By iteratively making use of the geodesi equation as in Setion 3.2, this relation

an be rewritten as [156℄

A[ϕ] =
∞∑

n=0

1

n!
A

(n)
i1...in

[ϕ̄]hi1 · · · hin , (3.93)

where A
(n)
i1...in

[ϕ̄] ≡ D(in . . .Di1)A[ϕ̄] denotes the n-th ovariant derivative (indued

by the �eld spae onnetion) with respet to ϕ evaluated at the base point ϕ̄, and

the hi's are the oordinates of the tangent vetor h ≡ h[ϕ̄, ϕ] ∈ Tϕ̄F . Relation (3.93)

onstitutes a ovariant expansion of A[ϕ] in powers of tangent vetors.

22

We assume here that suh geodesis exist. This assumption is valid for Eulidean metris, but

metris with Lorentzian signatures have to be handled with more are, see Setion 3.4.2.
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(2) Covariant derivatives expressed as partial derivatives. By viewing hi

as the oordinate representation of the point ϕ (based on geodesi oordinates),

ϕ ≡ ϕ[h; ϕ̄], any salar funtional A[ϕ] depends parametrially on h and on the base

point ϕ̄. Let us denote funtionals interpreted this way with a tilde, so in geodesi

oordinates we have

A
[
ϕ[h; ϕ̄]

]
≡ Ã[h; ϕ̄] . (3.94)

Expansion (3.93) implies a useful relation onneting partial and ovariant derivatives

whih reads

δn

δhi1 . . . δhin
Ã[h; ϕ̄]

∣∣∣∣
h=0

= D(in . . .Di1)A[ϕ̄] . (3.95)

The signi�ane of equation (3.95) omes from the fat that the right hand side

is manifestly ovariant, so it an be used to onstrut reparametrization invariant

objets, while ovariane is hidden on the left hand side. Hene, we observe that(
δ
δh

)n
A[expϕ̄(h)]

∣∣
h=0

is ovariant.

(3) Covariane in F and M. Employing the onnetion (3.24) with its diagonal

harater in x-spae, a ovariant derivative in the �eld spae F redues to a ovariant

derivative in the target spae M, whih we will denote by

Dkh
i ≡ DKh

Iδ(x− y) ≡ Dαβhµν δ(x− y), (3.96)

where apital Latin labels denote again pairs of spaetime indies, hI(x) ≡ hµν(x).

Assuming that the funtional A an be written as A[ϕ] =
∫
d

dxL(ϕ), expansion
(3.93) beomes

A[ϕ] =

∫
d

dx
∞∑

n=0

1

n!
D(In . . .DI1)L[ϕ̄] hI1(x) · · · hIn(x) . (3.97)

Thus, with the onnetion (3.24), ovariant expansions in M an be lifted to ovari-

ant expansion in F in a minimal way. In fat, this applies to all spaetime-diagonal

onnetions, while there is no suh mehanism for other onnetions. In partiular,

the Vilkovisky�DeWitt onnetion does not give rise to redutions of the type (3.97).

Note that, in gravity, derivatives at also on the volume element

√
g whih usually

ours inside L, in ontrast to the ase of nonlinear sigma models.

(4) The geometri e�etive ation. Let us turn to the quantum theory now.

Based on the onventional de�nition, the e�etive ation Γ is determined by a fun-

tional integro-di�erential equation,

e−Γ[ϕ] =

∫
Dϕ̂ e

−S[ϕ̂]+(ϕ̂i−ϕi) δΓ
δϕi , (3.98)

where S denotes the lassial (bare) ation, and the integration variable is given by

the quantum �eld ϕ̂. By onstrution, the argument ϕ of the e�etive ation agrees

with the expetation value, ϕ = 〈ϕ̂〉. In the ase of gauge theories, the funtional
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integral involves an additional integration over ghost �elds, and gauge �xing and

ghost ation terms are added in the exponent on the RHS of (3.98). This may

require the introdution of a bakground �eld ϕ̄ whih then appears as an additional

argument of Γ. A disussion of the funtional measure Dϕ̂ an be found in Appendix

I.1, f. also Ref. [126℄.

The key point we want to make is that Γ fails to be reparametrization invariant.

As already notied by Vilkovisky [128℄, the reason for nonovariane in the naive

de�nition originates from the soure term (ϕ̂i − ϕi)Ji with Ji = δΓ/δϕi
: Sine ϕ̂i

and ϕi
are merely oordinates in a nonlinear spae, their di�erene is not de�ned, and

thus, suh a soure term makes no sense from a geometrial point of view. However,

by employing the powerful tools of Riemannian geometry it is possible to de�ne the

path integral ovariantly.

The idea is to ouple soures to tangent vetors whih are determined by geodesis

onneting ϕ to ϕ̂. That means, the soure term in (3.98) must be of the form

Ssource = Ji ĥ
i ≡ Ji ĥ

i[ϕ, ϕ̂], where the �utuation �eld ĥ is an element of TϕF now,

and the soure �eld J is a otangent vetor, J ∈ T ∗
ϕF . Moreover, the �eld spae met-

ri an be used to inlude the volume fator

√
detGij in the funtional integral suh

that the ombination Dϕ̂
√

detGij [ϕ̂] and its analog in terms of Dĥ are manifestly

ovariant [12℄. This proedure allows for the onstrution of a reparametrization

invariant e�etive ation [128℄, referred to as the geometri e�etive ation. As it

is a funtional of h and ϕ̄, we employ the notation of eq. (3.94) and label it with a

tilde: Γ̃[h; ϕ̄]. Its full de�nition an be obtained from eq. (F.1) in Appendix F by

setting k = 0.

The orresponding funtional Γ[ϕ, ϕ̄] an then be de�ned by means of the tangent

vetor to the geodesi onneting ϕ̄ to ϕ, say, h ≡ h[ϕ̄, ϕ], whih is inserted into Γ̃

thereafter: Γ[ϕ, ϕ̄] ≡ Γ̃
[
h[ϕ̄, ϕ]; ϕ̄

]
. In general, in partiular for gauge theories, Γ

annot be written as a funtional of ϕ alone, but it ontains an extra ϕ̄-dependene.

This is disussed in more detail in a moment. Within the geometri approah to

de�ning the e�etive ation, the equation h =
〈
ĥ
〉
is satis�ed by onstrution (sine

it is ĥ that is oupled to the soure), while we have ϕ 6= 〈ϕ̂〉 for a general �eld spae

onnetion; the relation between the dynamial �eld and an expetation value is

rather given in terms of a geodesi, aording to ϕ ≡ ϕ[h; ϕ̄] = ϕ
[〈
ĥ
〉
; ϕ̄
]
.

In the remainder of this setion we would like to review some properties of the

geometri e�etive ation, Γ, and its generalization to the geometri e�etive average

ation, Γk, whih takes into aount sale dependene aording to the renormaliza-

tion group. The following statements are not restrited to a partiular onnetion,

say, the Vilkovisky�DeWitt onnetion, but they are valid for any �eld spae on-

netion, in partiular for the one given by equation (3.24).

(5) Loop expansion. Like in the standard (�nongeometri�) ase, the geometri ef-

fetive ation Γ[ϕ, ϕ̄] ≡ Γ̃[h; ϕ̄] in a Eulidean quantum �eld theory an be expressed
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in terms of an ~-expansion:

Γ̃[h; ϕ̄] = S̃[h; ϕ̄] +
~

2
STr log S̃(2)[h; ϕ̄] +O(~2) , (3.99)

where S̃
(2)
ij [h; ϕ̄] ≡ δ2S̃[h;ϕ̄]

δhjδhi is the Hessian of S̃ with respet to h. We derive a similar

relation for Γk in Chapter 7.

(6) The geometri e�etive average ation. By adding a ovariant infrared

uto� term of the type −1
2 ĥ

i(Rk[ϕ̄])ij ĥ
j
with the sale k to the exponent on the

RHS of (3.98) and applying the same modi�ations to the funtional integral as in

point (4) in order to ahieve ovariane, it is possible to onstrut a generalization

of the geometri e�etive ation, denoted by Γk[ϕ, ϕ̄] ≡ Γ̃k[h; ϕ̄], whih is referred to

as geometri e�etive average ation [139�141℄. Its running is governed by an FRGE

similar to the standard one given by eq. (2.3) [140℄:

∂kΓ̃k[h; ϕ̄] =
1

2
STr

[(
Γ̃
(2)
k [h; ϕ̄] +Rk

)−1
∂kRk

]
. (3.100)

Both in (3.99) and in (3.100) the e�etive (average) ation depends additionally on

the base point ϕ̄. As mentioned previously, an extra ϕ̄-dependene generally remains

when swithing from geodesi oordinates based on h to a ϕ-based oordinate hart,

Γk[ϕ, ϕ̄] ≡ Γ̃k[h; ϕ̄]. This extra dependene stems from gauge �xing, ghost and uto�

terms. It is onstrained by generalized Ward identities, though, as we will larify

in points (8) and (9). Note that a single-�eld e�etive (average) ation is usually

obtained by taking the oinidene limit ϕ→ ϕ̄, or equivalently, h→ 0.

(7) Construting ovariant expressions from Γk.
23

In pratie, RG �ow om-

putations based on the EAA usually resort to the method of trunations, i.e. Γ̃k[h; ϕ̄]

is onstruted out of a restrited set of possible invariants, as explained in Se-

tion 2.1.2. Most studies based on the funtional RG deal with single �eld truna-

tions, where the e�etive average ation is approximated by funtionals of the form

Γ̃k[h; ϕ̄] = Γk[ϕ(h; ϕ̄)] without extra ϕ̄-dependene (apart from gauge �xing and

ghost terms possibly). In this ase, after taking the �eld oinidene limit we an

make use of relation (3.95) on the right hand side of (3.100), where we write

δ2Γ̃k[h; ϕ̄]

δhiδhj

∣∣∣∣
h=0

= D(iDj)Γk[ϕ̄] , (3.101)

thus yielding a fully ovariant expression. In fat, the statement remains true when

going bak from Γ̃k to a general Γk : Upon inserting ϕ = expϕ̄(h) into Γk[ϕ, ϕ̄],

the partial derivatives with respet to h omprised by the Hessian are equivalent to

ovariant derivatives in F with respet to ϕ.

In partiular, this result applies to the use of onnetion (3.24) and the assoiated

exponential parametrization. A diret alulation reveals the reason for ovariane:

23

The same arguments apply to Γ, too.
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By means of equation (3.18) we an expand g = ḡ eḡ
−1h

inside Γk in terms of h, that

is, shematially we have Γk

[
ḡ eḡ

−1h, ḡ
]
= Γk

[
ḡ + h − 1

2 Γ̄hh + O(h3), ḡ
]
. Thanks

to the appearane of the onnetion, a subsequent expansion of Γk in terms of h

is ovariant in F , in ontrast to an expansion of Γk[ḡ + h, ḡ] with the linear split

(3.9) whih is ovariant only in Γ
(
S2T ∗M

)
with vanishing onnetion. This is a very

important property of the exponential parametrization. In unondensed notation we

have

δ2Γk[ḡ e
ḡ−1h, ḡ]

δhµν(x)δhαβ(y)

∣∣∣∣∣
h=0

= Dµν
(x)D

αβ
(y)Γk[g, ḡ]

∣∣∣
g=ḡ

, (3.102)

where the ovariant derivatives at on the �rst argument of the e�etive average

ation, and symmetrization is ensured by the onnetion (3.24).

(8) Split-Ward identities (also referred to as modi�ed Nielsen identities). Above,

we have mentioned the extra ϕ̄-dependene of the e�etive (average) ation. How-

ever, Γ̃[h; ϕ̄] only seemingly depends on two �elds. As disussed in Refs. [52,60,130,

131, 139, 140, 157�160℄, it rather depends on a ertain ombination of the two �elds

h and ϕ̄ sine Γ̃[h; ϕ̄] has to satisfy the split-Ward identities

δΓ̃

δϕ̄i
+
〈
D̄iĥ

j
〉 δΓ̃
δhj

= 0 , (3.103)

in the ase of non-gauge theories. The tangent vetor ĥj appearing inside the expeta-

tion value orresponds to the geodesi onneting the base point ϕ̄ to the integration

variable ϕ̂, i.e. we have ĥj ≡ ĥj [ϕ̄, ϕ̂]. The barred ovariant derivative in (3.103) is

with respet to the base point, D̄iĥ
j[ϕ̄, ϕ̂] = δĥj

δϕ̄i + Γj
ik[ϕ̄]ĥ

k
. Relation (3.103) im-

plies that ϕ̄i
and hi an simultaneously be varied in suh a way that Γ̃[h; ϕ̄] is left

unhanged. This is partiularly important, as it guarantees that the e�etive ation

and, onsequently, all physial quantities are in fat independent of the hoie of the

base point. The statement an be phrased in terms of ϕ and ϕ̄, too, where Γk[ϕ, ϕ̄]

depends only on a ombination of ϕ and ϕ̄.

In a �at �eld spae F and in Cartesian oordinates we have ĥi[ϕ̄, ϕ̂] = ϕ̂i − ϕ̄i

and thus

〈
D̄iĥ

j
〉
= −δji . In this speial ase, relation (3.103) redues to the simple

identity

δΓ̃

δϕ̄i
=

δΓ̃

δhj
, (3.104)

implying a linear split, Γ̃[h; ϕ̄] = Γ[ϕ̄+ h] = Γ[ϕ].

In the ase of gauge theories there may be additional terms on the right hand

side of (3.103) due to ghosts and gauge �xing: If a general �eld spae onnetion is

onsidered, the split-Ward identities read

δΓ̃

δϕ̄i
+
〈
D̄iĥ

j
〉 δΓ̃
δhj

=

〈
δSgf

δϕ̄i

〉
+

〈
δSgh

δϕ̄i

〉
, (3.105)
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while they redue to (3.103) if the Vilkovisky�DeWitt onnetion is used [130, 131℄.

A derivation of (3.105) an be found in Appendix F.

(9) Split-Ward identities for Γk . The orresponding relation for the e�etive

average ation reeives further ontributions due to the presene of the regulator.

As shown in Appendix F for a general onnetion, the ounterpart of eq. (3.105) is

given by

δΓ̃k

δϕ̄i
+
〈
D̄iĥ

j
〉δΓ̃k

δhj
=

1

2
TrGk D̄iRk+TrRkGk

δ
〈
D̄iĥ

〉

δh
+

〈
δSgf

δϕ̄i

〉
+

〈
δSgh

δϕ̄i

〉
, (3.106)

with the propagator Gk =
(
Γ̃
(2)
k [h; ḡ] +Rk

)−1
. When using the Vilkovisky�DeWitt

onnetion, on the other hand, the gauge �xing and ghost ontributions in (3.106)

are absent [140℄. In the limit k → 0 the identity (3.106) redues to (3.105), as it

should be. Another instrutive limit is

〈
D̄iĥ

j
〉
→ −δji resulting from a �at �eld

spae, where the seond trae term in (3.106) vanishes.

Similar to the orresponding identities for Γ̃, equation (3.106) is of primary im-

portane for the disussion of bakground independene. The split-Ward identities

state that any hange of the bakground �eld ϕ̄ an be ompensated for by a suitable

hange of h. This result guarantees that physial preditions obtained from Γ̃k do

not depend on the hoie of the bakground �eld.

Reently, the �rst steps towards a omputation of RG �ows satisfying split-Ward

identities like (3.106) have been taken [52, 60, 140, 141, 157�160℄. However, suh

onsiderations are possible only for speial ases and approximations. As yet, a

fully general treatment seems to be out of reah. In this thesis, we will mainly be

foused on single-�eld (single-metri) trunations where the �eld is identi�ed with the

bakground �eld, so the split-Ward identities are suspended. They beome aessible

only in the bimetri ase. As an example, we will hek Γk for split-symmetry

restoration in the limit k → 0 in the bimetri analysis performed in Setion 4.5.

3.7 Summarizing remarks

(1)We have onsidered two possibilities for the type of the fundamental �eld variable

in quantum gravity: pure metris with a �xed signature, g ∈ F , versus arbitrary

symmetri rank-2 tensor �elds, g ∈ Γ
(
S2T ∗M

)
.

(2) The spae Γ
(
S2T ∗M

)
is a vetor spae, i.e. it is linear. Hene, the most natural

onnetion on its tangent bundle is the �at one, and geodesis are straight lines,

parametrized by g = expḡ(h) = ḡ + h.

(3) On the other hand, F is a nonlinear spae. Loally, at eah spaetime point it

is isomorphi to a homogeneous spae M, where the most natural onnetion, the

anonial onnetion on TM, is adapted to the geometri struture of M. This on-

netion determines a onnetion on TF in turn, giving rise to geodesis parametrized

by g = expḡ(h) = ḡ eḡ
−1h

.
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(4) Looking at it the other way round, the linear parametrization desribes elements

of Γ
(
S2T ∗M

)
, while the exponential parametrization produes only pure metris

whih stritly satisfy the signature onstraint. Hene, the exponential parametriza-

tion is not a proper (one-to-one) �eld rede�nition of the linear parametrization. The

equivalene theorem for S-matrix elements does not apply.

(5) Restriting the tangent spae for the linear parametrization suh that the sum

ḡ + h �stays� in F is possible but unommon, and it would require the introdution

of a nontrivial Jaobian in the funtional integral [108℄. By not onsidering suh

restritions in this thesis, we take the point of view that g = ḡ eḡ
−1h

is not a proper

reparametrization of g = ḡ + h.

(6) As suggested by the previous points, we expet di�erent results for the linear

and the exponential parametrization when RG quantities like β-funtions, �xed point

values and ritial exponents are omputed. This will be on�rmed in the subsequent

hapter.

(7) Using a geometri formalism based on geodesis it is possible to onstrut a

reparametrization invariant and gauge invariant e�etive average ation, Γk . For

a speial onnetion, the Vilkovisky�DeWitt onnetion, Γk is even gauge indepen-

dent, but its assoiated geodesis are nonloal and do not possess an expliit rep-

resentation. The onnetion derived in this hapter seems to ombine the best of

both worlds, though: (i) Reparametrization and gauge invariane are guaranteed by

onstrution. (ii) Corresponding geodesi are given by the simple parametrization

g = ḡ eḡ
−1h

whih is loal in spaetime. (iii) Remarkably enough, the use of the

exponential parametrization is already su�ient to ensure gauge independene at

one-loop level for the Einstein�Hilbert trunation [112, 113℄.

(8) Gravity shares many properties with nonlinear sigma models, e.g. the homo-

geneous spae struture of the respetive �eld spae [152�154℄. There is a ruial

di�erene, though, whih is due to the volume element

√
g inevitably ourring in

all spaetime integrals and �eld spae metris Gij . In gravity, this introdues an

extra �eld dependene, giving rise to additional terms in the Levi-Civita onnetion

on the �eld spae.

(9) For Eulidean metris (and also for negative de�nite ones), the spae F equipped

with the onnetion determined in this hapter is geodesially omplete and geodesi-

ally onneted. There is a one-to-one orrespondene between metris g and tangent

vetors h, i.e. the exponential map is a global di�eomorphism.

For Lorentzian signatures, F is geodesially omplete but not geodesially on-

neted. The exponential map is neither surjetive nor injetive. In a gravitational

path integral this fat an be dealt with by applying two steps. (i) One should sum

over several bakground metris suh that any metri an be reahed. (ii) The tan-

gent spaes should be restrited suh that eah metri is integrated over one and

only one.

(10) In the Eulidean ase, onvexity of F guarantees that the expetation value of
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a quantum metri is again an element of F with the orret signature: Let γ ∈ F
denote a quantum metri and ĥ ∈ Γ

(
S2T ∗M

)
the orresponding �utuating tangent

vetor, i.e. γ = ḡ eḡ
−1ĥ

, where ḡ ∈ F is given. Then 〈γ〉 ≡
〈
ḡ eḡ

−1ĥ
〉
de�nes a proper

metri again. (This statement is independent of the above result that g de�ned by

g ≡ ḡ eḡ
−1h

with h =
〈
ĥ
〉
∈ Γ

(
S2T ∗M

)
is a proper metri. Note here that g 6= 〈γ〉

for a general �eld spae onnetion.)

On the other hand, whether or not Lorentzian quantum metris lead to expeta-

tion values 〈γ〉 that an again be interpreted as Lorentzian metris depends on the

underlying ation.

Nonetheless, the fat that in both the Eulidean and the Lorentzian ase the

�eld g ≡ ḡ eḡ
−1h

de�nes a metri with the orret signature justi�es the use of the

exponential metri parametrization also within the argument of the e�etive average

ation, in addition to its possible appearane in a funtional integral.





4
Parametrization dependene in

asymptotially safe gravity

Exeutive summary

After having seen in the previous hapter that the linear metri parametriza-

tion, gµν = ḡµν + hµν , and the exponential one, gµν = ḡµρ(e
h)ρν , are not

reparametrizations of eah other, we expet this fat to be re�eted in di�erent

results for β-funtions and their assoiated �xed points. The urrent hapter

is dediated to on�rming this onjeture. We perform a areful RG analysis

based on a single-metri Einstein�Hilbert trunation of the EAA for both the

linear and the exponential parametrization. Di�erenes onerning �ow dia-

grams and �xed point properties will be pointed out. Motivated by onformal

�eld theory studies the impliations of our �ndings near two spaetime dimen-

sions, where the β-funtion of Newton's onstant is losely related to a entral

harge, are of partiular interest: Only the exponential parametrization repro-

dues the well known ritial entral harge c = 25. The distinguished status

of exponentials is explained by observing that they emerge in a natural way

in the 2D limit. Finally, we ompute the β-funtions in a bimetri setting on

the basis of a twofold Einstein�Hilbert trunation. For the linear parametriza-

tion it is known that bakground independene an be restored in the infrared

and reoniled with Asymptoti Safety in the UV. Here we investigate if the

exponential parametrization features this ruial property, too.

What is new? Detailed RG analysis with the exponential parametrization for

a single-metri trunation (Ses. 4.3.3, 4.3.4 & 4.3.5) and a bimetri trunation

(Se. 4.5.2); �ow diagrams near 2D for the linear parametrization (Se. 4.3.2);

argument for the speial role of the exponential parametrization (Se. 4.4).

Based on: Ref. [83℄.
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4.1 An introdutory example

All standard FRG analyses of metri gravity (for reviews see Refs. [5�9,11,161℄) are

based on the linear parametrization,

gµν = ḡµν + hµν . (4.1)

In respet of the previous hapter, however, it seems ruial to examine if the main

results of these analyses remain valid when the metri is parametrized by

gµν = ḡµρ
(
eh
)ρ

ν , (4.2)

as only the latter hoie guarantees that gµν is a proper metri. Further bene�ts of

the exponential parametrization have already been disussed in Setion 3.2. In par-

tiular, we have mentioned the possibility to ompare our approah with onformal

�eld theory by establishing its onnetion to the entral harge. Let us elaborate on

this in more detail now. It will provide a �rst example of parametrization depen-

dene.

We begin by realling the results of the onformal �eld theory side, or, more

preisely, of Polyakov's formulation of bosoni string theory [162�164℄. To this end,

we onsider a path integral for two-dimensional gravity oupled to onformal matter

(i.e. to a matter theory that is onformally invariant when the metri is �xed to be

the �at one) with entral harge c
m

. Here it is su�ient to regard suh matter ations

that are onstruted out of salar �elds. In this ase, c
m

is merely the number of

these salar �elds. As shown by Polyakov, integrating out the matter �elds indues a

nonloal gravitational ation, Γind , and the full path integral deomposes into an in-

tegral over the onformal mode φ with a Liouville-type ation times a φ-independent

part, where the kineti term for φ is found to be proportional to the number c
m

.

Performing the integration over the Faddeev-Popov ghosts orresponding to the on-

formal gauge, this fator gets modi�ed to (c
m

− 26), re�eting the famous ritial

dimension of bosoni string theory. If, �nally, the impliit φ-dependene of the path

integral measure is shifted into the ation, the kineti term for φ undergoes another

hange and beomes proportional to (c
m

− 25) [114�116℄. For this reason we all

crit
m

≡ 25 (4.3)

the ritial entral harge at whih the onformal mode φ deouples.

How is this related to the FRG studies of gravity and Asymptoti Safety? By

de�nition, the running of the dimensionless version of Newton's onstant, gk, is

enoded in its β-funtion: k∂kgk = βg(gk). Now the essential point is that, in d = 2

dimensions, the β-funtion, denoted by βg ≡ βg(g), is of the form

βg = −2

3
c
grav

g2, (4.4)

up to higher orders in g. The oe�ient c
grav

an be interpreted as a gravitational

entral harge sine it an be read o� from an ation of the same type as the one
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ourring in the aforementioned string theory example, the indued gravity ation

Γind, although it is not indued by salar �elds this time but rather represents a

ombined gravity+matter ontribution to the gravitational �xed point ation (f.

Chapter 8). Relation (4.4) has been proven within the FRG framework by means of

saling arguments applied to the gravitational funtional integral [81℄ and by means

of a generalized nonloal ansatz for the e�etive average ation [80℄.

1

Going slightly away from two dimensions, d = 2 + ε > 2, it is still possible

to determine the general form of the β-funtion of Newton's onstant. Already a

perturbative treatment [4℄ shows � and the nonperturbative approah will be seen

to on�rm � that βg an be written as

βg = εg − bg2, (4.5)

up to the order O(g3). For positive b, this implies the existene of a non-Gaussian

�xed point at

g∗ = ε/b , (4.6)

whih is ruial for the Asymptoti Safety senario. Clearly, eq. (4.4) an be obtained

from (4.5) by taking the limit ε → 0, and the gravitational entral harge an be

read o� from the seond order term. This way we obtain the rule

c
grav

=
3

2
b . (4.7)

We will rederive this relation between b and the entral harge in Chapter 6 as a

diret result of the 2D limit, without having to insert the indued gravity ation by

hand as in Refs. [80, 81℄.

It turns out that the oe�ient b depends on the underlying parametrization

of the metri. Perturbative alulations based on the linear parametrization (4.1)

yield b = 38
3 for pure gravity and b = 2

3(19 − c
m

) for gravity oupled to c
m

salar

�elds [4, 118�121℄. This gives rise to the entral harge

c
grav

= 19− c
m

(for the linear parametrization). (4.8)

If, on the other hand, parametrization (4.2) underlies the omputation of β-funtions,

then the ritial entral harge amounts to

c
grav

= 25− c
m

(for the exponential parametrization), (4.9)

as was �rst obtained within a perturbative framework in Refs. [98�104℄. Hene,

only for the exponential parametrization the pure gravity part of the entral harge

amounts to 25. In this ase the ritial number of salar �elds is given by crit
m

= 25

again. Here, �ritial� refers to the fat that the non-Gaussian �xed point in the

small oupling regime does not exist any longer if c
m

> 25. In this sense, only

1

Note that the de�nition of the gravitational entral harge in Refs. [80, 81℄ inludes a minus

sign as ompared with our onvention. See also the disussion in Chapter 6, in partiular eq. (6.32).
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the exponential parametrization reprodues the result known from onformal �eld

theory.

We would like to emphasize that the above argument is by no means a statement

about the �orretness of a parametrization�. The disrepany between (4.8) and

(4.9) is rather a manifestation of the fat that (4.1) and (4.2) parametrize di�erent

objets and may desribe di�erent theories after all. We an merely onjeture that

the exponential parametrization is more appropriate for a omparison with onformal

�eld theory.

After having seen this �rst example of parametrization dependene in perturba-

tion theory we would like to investigate in this hapter whether the results onerning

entral harges an be reprodued by the fully nonperturbative FRG methods intro-

dued in Setion 2.1. For this purpose, we derive β-funtions in arbitrary spaetime

dimensions using the exponential parametrization and an e�etive average ation

on the basis of the single-metri Einstein�Hilbert trunation, and we expand them

in terms of ε = d − 2. Also, we review the orresponding results for the linear

parametrization, add new insights and point out the main di�erenes.

While the (2 + ε)-dimensional ase serves as a playground whih is partiularly

appropriate for a omparison with 2D onformal �eld theory, it seems equally im-

portant to study the impliations of a hange of parametrization for a 4-dimensional

world. In Setion 4.3 we perform an RG analysis that takes into aount the regu-

lator dependene, ultimately leading to harateristi �ow diagrams in the spae of

gk and the osmologial onstant λk. Partiular attention is paid to the existene

and properties of non-Gaussian �xed points in the ontext of Asymptoti Safety.

In Setion 4.4 we onsider a onformally redued setting to show that there is a

distinguished form of the onformal fator whose 2D limit agrees preisely with the

exponential parametrization.

Finally, in Setion 4.5 we ondut a bimetri analysis where we proeed along

similar lines to the single-metri ase: We begin by reviewing the known results for

the linear parametrization before we perform the orresponding alulations based

on the exponential parametrization. We will see that for both parametrizations the

onept of Asymptoti Safety an be reoniled with the requirement for bakground

independene.

4.2 E�etive average ation and gauge �xing

(1) How the parametrization enters tehnially. In order to derive β-funtions

we hoose a trunation of the e�etive average ation Γk and follow the reipe given

in Setion 2.1.3. As outlined in Setion 2.1.4, our formalism requires the introdution

of a bakground metri, so Γk is a funtional of both gµν and ḡµν in general: Γk ≡
Γk[g, ḡ]. If we want to reexpress this as a funtional of the tangent vetor hµν and

the bakground metri ḡµν instead of gµν and ḡµν , the two parametrizations give rise
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to

Γlineark [h; ḡ] ≡ Γk[ḡ + h, ḡ], (4.10)

as opposed to

Γexponentialk [h; ḡ] ≡ Γk

[
ḡ eḡ

−1h, ḡ
]
. (4.11)

(As usual we adopt the omma notation for funtionals of two metri �elds, e.g.

Γk[g, ḡ], and the semiolon notation if the list of arguments ontains the tangent

vetor and the bakground metri as in Γk[h; ḡ]. Sine this notation is su�ient for a

lear distintion, we omit the tilde on Γk[h; ḡ], unlike in Setion 3.6.) The di�erene

between (4.10) and (4.11) is ruial; swithing from one parametrization to the other

results in a modi�ation of some terms in the FRGE (2.10).

This an most easily be seen at the level of the orresponding Hessians, Γ
(2)
k .

As the seond derivatives are with respet to h, the two parametrizations lead to

di�erent terms beause, aording to the hain rule,

Γ
(2)
k (x, y) ≡ 1√

ḡ(x)
√
ḡ(y)

δ2Γk

δh(x) δh(y)

=
1√

ḡ(x)
√
ḡ(y)

∫
d

du

∫
d

dv
δ2Γk

δg(u) δg(v)

δg(v)

δh(x)

δg(u)

δh(y)

+
1√

ḡ(x)
√
ḡ(y)

∫
d

du
δΓk

δg(u)

δ2g(u)

δh(x) δh(y)
,

(4.12)

where we suppressed all spaetime indies for the sake of larity. The �rst term on

the RHS of equation (4.12) is the same for both parametrizations, at least at lowest

order in h, sine

δgµν(x)

δhρσ(y)
=




δρ(µ δ

σ
ν) δ(x − y) (linear),

δρ(µ δ
σ
ν) δ(x − y) +O(h) (exponential),

(4.13)

where round brakets enlosing index pairs denote symmetrization.

The last term in (4.12), however, vanishes identially for parametrization (4.1)

beause

δ2gµν(u)

δhρσ(x) δhλγ(y)
= 0 , (4.14)

whereas the exponential relation (4.2) entails

δ2gµν(u)

δhρσ(x) δhλγ (y)
= 1

2

(
ḡλ(σδ

ρ)
(µ
δγ
ν)

+ ḡρ(γδ
λ)
(µ
δσν)

)
δ(u − x)δ(u− y) +O(h) . (4.15)

As a onsequene, the latter ase implies additional ontributions to the FRGE (2.10).

We would like to point out that these new ontributions are proportional to the �rst

variation of Γk in (4.12). Therefore, sine δΓk/δgµν
∣∣
on shell

= 0, the exponential

parametrization gives the same result for the Hessian as the linear one when going

on shell. Nonetheless, due to the inherent o� shell harater of the FRGE, we expet

di�erenes in β-funtions and the orresponding RG �ow.
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(2) The transformation behavior of hµν . As we want to omment on gauge

invariane and gauge �xing, we have to know how the �eld hµν transforms under

di�eomorphisms provided that both gµν and ḡµν transform as usual tensor �elds,

i.e. they satisfy δgµν = Lξgµν and δḡµν = Lξḡµν . Here, ξ is the vetor �eld whih

generates the di�eomorphism and Lξ denotes a Lie derivative along ξ.

For the linear parametrization the answer is rather obvious: The de�ning relation

gµν = ḡµν + hµν implies that hµν transforms as a tensor �eld, too:

δhµν = δ(gµν − ḡµν) = Lξ(gµν − ḡµν) = Lξhµν . (4.16)

For the exponential parametrization suh a onlusion is not as straightforward

as it seems at �rst sight. Starting out from relation (4.2), we observe that (eh)ρν

must transform as a tensor �eld under general oordinate transformations if gµν and

ḡµρ transform as tensor �elds. However, sine δhµν does not ommute with hµν in

general, we annot write δ(eh)ρν in the form (eh)ρσδh
σ
ν , whih would diretly entail

the simple tensorial transformation behavior for hµν . Nevertheless, suh a behavior

an still be shown by a more areful analysis: We prove in Appendix G.1 that hµν

transforms indeed as an ordinary tensor �eld, too, that is

δhµν = Lξhµν . (4.17)

Hene, bakground gauge transformations, introdued in Setion 2.1.4, are in-

dued by the usual transformation laws δgµν = Lξgµν , δḡµν = Lξḡµν and δhµν =

Lξhµν for both parametrizations. It is these transformations under whih the e�etive

average ation is invariant.

(3) Quantum gauge transformation. Let us brie�y reall the arguments of

Setion 2.1.4. In the proess of the (funtional integral based) onstrution of the

e�etive average ation we must ensure that we pik only one �point� (�eld on�gu-

ration) per gauge orbit during the integration, i.e. we have to �x the gauge, whih

is usually aomplished by adding a gauge �xing ation in the exponent of the inte-

grand. The bare ation S[γ] (with γµν the quantum metri) is invariant under the

transformation γµν → γµν + δγµν = γµν + Lξγµν . Viewing γµν as a funtion of ḡµν

and the quantum tangent vetor ĥµν (f. disussion on geodesis in the spae of met-

ris in Chapter 3), we have the freedom to distribute the full hange δγµν = Lξγµν

among δḡµν and δĥµν . One partiular hoie is the quantum or true gauge transfor-

mation, here denoted by δQ , whih is haraterized by δQḡµν = 0. As an example,

let us onsider the linear parametrization, γµν = ḡµν + ĥµν . Choosing

δQḡµν = 0 , (4.18)

δQĥµν = Lξ

(
ḡµν + ĥµν

)
= Lξγµν , (4.19)

we observe that the transformation behavior of the quantum metri γµν is unhanged:

δQγµν = δQḡµν + δQĥµν = Lξ

(
ḡµν + ĥµν

)
= Lξγµν . (4.20)
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For the exponential parametrization γµν = ḡµρ
(
eĥ
)ρ

ν , on the other hand, it is

muh more involved to �nd the quantum gauge transformation law for ĥµν , i.e. to

solve the requirements δQḡµν = 0 and δQγµν = Lξγµν for δQĥµν . Making use of

Lemmas G.2 and G.1 �nally leads to the integral representation (in matrix notation)

δQĥ =

∫ ∞

0
ds

∫ 1

0
dt e−tsγ ḡ−1Lξγ e−(1−t)sḡ−1γ . (4.21)

Using this expression as a basis for the onstrution of a ghost ation (after having

hosen the underlying gauge �xing ation) would lead to an unusual form of the

Faddeev-Popov operator. Therefore, we will proeed di�erently in the following.

(4) The gµν-type gauge �xing method. In order to be as lose to the standard

alulations based on (4.1) as possible [36℄, we slightly adapt the gauge �xing pro-

edure. The standard gauge �xing ondition for the linear parametrization is of the

form Fα ≡ Fµν
α [ḡ] ĥµν = 0, and the orresponding ghost ation is proportional to

∫
d

dx C̄µ ḡ
µν ∂Fν

∂ĥαβ
δQĥαβ =

∫
d

dx C̄µ ḡ
µν ∂Fν

∂ĥαβ
LC

(
ḡαβ + ĥαβ

)
, (4.22)

with the ghost �elds C̄µ and Cµ
. At this point we make the unsurprising but ruial

observation that ĥµν in the gauge �xing ondition an be replaed by γµν : We employ

the most onvenient lass of F 's where Fµν
α [ḡ] ontains only suh terms whih are

proportional to the ovariant derivative D̄µ orresponding to the bakground metri,

and therefore, sine D̄µ ḡαβ = 0,

0 = Fµν
α [ḡ] ĥµν = Fµν

α [ḡ]
(
ḡµν + ĥµν

)
= Fµν

α [ḡ] γµν , (4.23)

for the linear parametrization. That is, we an always write the gauge ondition

as Fµν
α [ḡ] γµν = 0 instead of Fµν

α [ḡ] ĥµν = 0. Heneforth, we refer to this as the

�metri version� of the gauge �xing ondition. Similarly, the ghost ation (4.22) an

be expressed as ∫
d

dx C̄µ ḡ
µν ∂Fν

∂γαβ
LCγαβ . (4.24)

The advantage of (4.24) is that it does not involve δQĥµν . By onstrution, for

the linear parametrization the metri versions of the gauge ondition and the ghost

ation are ompletely equivalent to the standard versions.

Passing on to the exponential parametrization, we an hoose the metri version

of the gauge ondition, too,

Fµν
α [ḡ] γµν = 0 , (4.25)

along with the ghost ation (4.24). This form is preferred to the ĥµν -version beause

(a) avoiding the use of δQĥµν given by (4.21) redues the omplexity of omputa-

tions, and (b) the metri version leads to the same Faddeev-Popov operator as in the

standard ase [36℄.
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As disussed in Setion 2.1.3, the standard FRG approah onsists in hoosing a

suitable trunation ansatz for Γk rather than evaluating a funtional integral. Suh

a trunation ansatz inludes gauge �xing and ghost ontributions, the usual hoie

being motivated by possible gauge �xing ations and ghost ations as they would

appear in the exponent of the orresponding funtional integral. Therefore, at the

level of Γk , we have to speify the gauge �xing and ghost ation in terms of hµν (or

gµν) rather than ĥµν (or γµν). For the above disussion inluding point (3) and (4)

this means that we an employ the same arguments, but applied to hµν and gµν this

time. In partiular, we use a gauge �xing ondition of the form

Fµν
α [ḡ] gµν = 0 . (4.26)

We will refer to this hoie as �gµν-type� gauge �xing ondition. Its use implies

that the Faddeev-Popov operator is independent of the metri parametrization. As

a onsequene, all ontributions to the FRGE oming from gauge �xing and ghost

terms are the same for both parametrizations onsidered. By virtue of the one-to-one

orrespondene between gµν and hµν (see Appendix E) this gauge �xing method is

perfetly admissible for the exponential parametrization.

(5) Choie of the gauge ondition. Both for the single-metri omputation

presented in Setion 4.3 and for the bimetri analysis shown in Setion 4.5 we employ

the harmoni oordinate ondition (de Donder gauge): Fµν
α [ḡ] gµν = 0 with

Fµν
α [ḡ] = δνα ḡ

µρD̄ρ −
1

2
ḡµνD̄α , (4.27)

(orresponding to β = d
2−1 in Ref. [165℄). As for the gauge parameter α appearing in

the gauge �xing ation, we hoose a Feynman-type gauge, α = 1, in the single-metri

ase, while the bimetri results are obtained by employing the �Ω deformed α = 1

gauge� introdued in Ref. [60℄. This allows us to ompare the subsequent alulations

based on the exponential parametrization with the standard results [36, 60℄.

4.3 RG analysis for a single-metri trunation

In this setion we aim at determining the RG running of the Newton onstant and

the osmologial onstant. As usual, we resort to a trunation of the full theory

spae, i.e. we determine the RG �ow within a subspae of redued dimensionality.

In what follows, we hoose a subspae that onsists only of suh invariants whih are

onstruted out of one single metri. More preisely, our omputations are based on

the Einstein�Hilbert trunation [36℄:

Γk

[
g, ḡ, ξ, ξ̄

]
= Γgravk

[
g, ḡ
]
+ Γgfk

[
g, ḡ
]
+ Γghk

[
g, ḡ, ξ, ξ̄

]
. (4.28)

with

Γgravk

[
g, ḡ
]
≡ 1

16πGk

∫
d

dx
√
g
(
−R+ 2Λk

)
. (4.29)



4.3. RG analysis for a single-metri trunation 77

Here Gk and Λk are the dimensionful Newton onstant and osmologial onstant,

respetively, and

Γgfk
[
g, ḡ
]
≡ 1

2α

1

16πGk

∫
d

dx
√
ḡ ḡαβ

(
Fµν
α [ḡ]gµν

)(
Fρσ
β [ḡ]gρσ

)
(4.30)

is the gauge �xing ation, where α = 1 and Fµν
α [ḡ] is given by eq. (4.27). Fur-

thermore, Γghk denotes the assoiated ghost ation with the ghost �elds ξ and ξ̄.

After having inserted the respetive metri parametrization into the EAA (4.28),

the orresponding β-funtions are obtained by following the steps of Setion 2.1.3.

In order to determine ritial entral harges in the upoming Setions 4.3.2 and

4.3.5 we add a matter ation to the ansatz given by eq. (4.28): We onsider the

trunation Γk

[
g, ḡ, A, ξ, ξ̄

]
= Γgravk

[
g, ḡ
]
+ Γmk

[
g, ḡ, A

]
+ Γgfk

[
g, ḡ
]
+ Γghk

[
g, ḡ, ξ, ξ̄

]
,

where the matter ontribution is given by a multiplet of N salar �elds,

2 A = (Ai),

with i = 1, . . . , N , minimally oupled to the full, dynamial metri:

Γmk
[
g, ḡ, A

]
≡ 1

2

N∑

i=1

∫
d

dx
√
g gµν ∂µA

i∂νA
i . (4.31)

Note that the matter ation ontains no running parameters in the present truna-

tion.

3

Thus, we an write Γmk
[
g, ḡ, A

]
≡ Γm

[
g,A

]
.

In the following six subsetions we would like to investigate the parametrization

dependene of �xed points, ritial exponents and other qualitative features of �ow

diagrams. Apart from the phase portraits in d = 2+ ε dimensions, shown in Setion

4.3.2, the results for the linear parametrization are well known, so we refrain from

repeating the underlying omputation. We merely present a olletion of the most

important fats (Ses. 4.3.1 and 4.3.2). Afterwards we derive the di�erenes entailed

by the use of the exponential parametrization (Ses. 4.3.3, 4.3.4 and 4.3.5), where

the details of the alulation are spei�ed in Appendix G.2.

4.3.1 The linear parametrization in d = 4 dimensions

For omparison with the exponential parametrization, we begin with a brief summary

of known results for the linear parametrization.

2

Note that, in order to avoid onfusion between the gravitational and the matter entral harge,

we denote the number of matter �elds by N instead of c
m

heneforth.

3

In fat, with the ation de�ned in eq. (4.31) the RHS of the FRGE (2.3) an generate terms

proportional to ∂µA
i∂νA

i
, so Γmk is k-dependent in general. Here, however, we are interested only

in the running of the Newton onstant and the osmologial onstant, while the k-dependene of Γmk
an be negleted. In this sense, Γmk may be onsidered always at its �xed point. On the tehnial

level, this behavior is ahieved by setting Ai
to zero after having determined the Hessian.

For the analysis performed in this hapter, we ould ouple the salar �elds to the bakground

metri as well: If Γmk in (4.31) were a funtional of ḡµν instead of gµν , the FRGE would not generate

any terms that ould lead to a running of Γmk . In this ase Γmk would be stritly k-independent.
Within a single-metri trunation, where ḡµν is identi�ed with gµν after funtional derivatives have

been taken, the two points of view give rise to equivalent results.
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The β-funtions of the dimensionless ouplings,

gk ≡ kd−2Gk , λk ≡ k−2Λk , (4.32)

have been derived in Ref. [36℄ for general dimensions d. In the speial ase d = 4 they

give rise to the �ow diagram shown in Figure 4.1. In addition to the Gaussian �xed

point at the origin, there exists a non-Gaussian �xed point (NGFP) with a positive

Newton onstant, suitable for the Asymptoti Safety senario. Its ritial exponents

have positive real parts, so it has two UV-attrative diretions. Furthermore, we

make the ruial observation that there are trajetories emanating from the NGFP

and passing the lassial regime lose to the Gaussian �xed point. This type of

trajetories is believed to be realized in Nature [166℄. In Figure 4.1 they lie to the

right of the separatrix, the trajetory onneting the non-Gaussian to the Gaussian

�xed point.

The red, dashed urve in Figure 4.1 indiates that the β-funtions diverge at

these points. Thus, trajetories approahing this boundary/singularity line are not

de�ned beyond or below a ertain RG sale. This holds in partiular for type IIIa

trajetories (based on the lassi�ation proposed in Ref. [167℄) whih, by de�nition,

emanate from the NGFP and run into the singularity line at positive λ towards IR

sales. They lie entirely in the �rst quadrant, mainly to the right of and below the

separatrix. The aforementioned trajetory realized in Nature falls into this lass. It

is believed that the singularity line is merely a trunation artifat [166℄: In a less

trunated or untrunated theory spae trajetories are expeted to be de�ned at all

sales down to k = 0. For the present analysis the most important message is that

the singularity line does not �blok� the separatrix.

It has turned out that the qualitative piture (existene of the NGFP, number

of relevant diretions, onnetion between NGFP and lassial regime) is extremely

stable under many kinds of modi�ations of the setup, for instane under hanges

of the trunation ansatz (like the inlusion of higher order urvature terms [11, 37�

49,160,169�174℄, matter �elds [175�179℄ or running ghosts [61,62℄), the gauge �xing

ation and the uto� sheme; for reviews see [5�8,11,161℄. In partiular, hanges in

the uto� shape funtion do not alter the piture, exept for insigni�antly shifting

numerial values like �xed point oordinates. The very existene of the NGFP is

found for all realisti settings investigated so far.

4.3.2 The linear parametrization in d = 2+ ε dimensions

In d = 2 + ε dimensions the form of β-funtions implies that the Newton onstant

and the osmologial onstant at the NGFP are of �rst order in ε: g∗ = O(ε) and

λ∗ = O(ε), respetively. Hene, unless we onsider points too far away from the

NGFP, we an assume g = O(ε) and λ = O(ε), too. Inserting this bak into the

β-funtions yields the following expansion in terms of the ouplings, whih is also an



4.3. RG analysis for a single-metri trunation 79

Figure 4.1 Flow diagram for the Einstein�Hilbert trunation in d = 4 based on the linear

parametrization (�rst obtained in [167℄ for a sharp uto�; here for the optimized uto� [168℄).

There is a non-Gaussian �xed point at positive g and λ, indiated by the blue dot in the

middle of the spiral. The separatrix onneting the non-Gaussian to the Gaussian �xed

point follows the green arrows. On the red, dashed urve the β-funtions beome divergent.

Note that, by onvention, arrows point from the UV (�k → ∞�) to the IR (�k → 0�).

expansion in terms of ε:

βg = εg − bg2 , (4.33)

βλ = −2λ− 2Φ1
1(0)g , (4.34)

up to higher orders, where the threshold funtions of the type Φp
n(w) are de�ned

in Appendix D. We observe that the β-funtion of the Newton onstant has the

same struture as in the perturbative analysis, see equation (4.5), βg = εg − bg2.

It is possible to show [36℄ that the oe�ient b is a universal number, i.e. it is

independent of the uto� shape funtion, and its value is given by b = 38
3 for pure

gravity. Positivity of b implies the existene of a non-Gaussian �xed point with

positive Newton onstant, here g∗ = 3
38 ε. The �xed point value of the osmologial

onstant is not universal, though, sine the threshold funtion Φ1
1(0) depends on

the uto�. It an be argued, however, that Φ1
1(0) is positive and of order 1 for all
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standard uto� shapes. For the optimized shape funtion [168℄ we obtain λ∗ = − 3
38 ε.

If, additionally, salar �elds are inluded in the analysis by taking into aount

the matter ation (4.31), then the oe�ient b beomes b = 2
3(19−N) for all uto�

shapes. Thus, the linear parametrization gives rise to the universal result

c
grav

= 19−N , (4.35)

leading to the ritial entral harge crit
m

≡ N rit = 19, in agreement with the per-

turbative result (4.8).

Finally, we would like to visualize the RG �ow orresponding to the full β-

funtions [36℄ in d = 2 + ε without relying on any expansion of the type (4.33)

and (4.34). To this end we introdue the normalized ouplings

λ̊ ≡ λ/ε , g̊ ≡ g/ε , (4.36)

whose �xed point values, λ̊∗ , g̊∗ , remain �nite in the limit ε → 0. In this represen-

tation, even the �ow diagram and its assoiated RG trajetories approah a ��nite�

form for ε → 0. The situation is illustrated in Figure 4.2, where we show several

diagrams at di�erent values of ε. Eah diagram ontains four sample trajetories,

all of whih run into the UV �xed point for k → ∞. The initial onditions for the

respetive trajetories, i.e. their starting points in the infrared, are the same for all

diagrams.

We observe that, while trajetories are still notieably urved for ε su�iently

large, they approah straight lines in the limit ε → 0, ontaining only one sharp

bend: Let ON denote the straight line through the origin and the NGFP. Then, in

the limit ε→ 0 trajetories appear as perfet horizontal lines at infrared and medium

sales, until they hit ON as k inreases (i.e. following the inverse RG �ow). There, at

the rossing point, they instantly hange their diretion, from then on lying on top of

ON towards inreasing RG sales, until they �nally run straightly into the �xed point

in the UV limit. Thus, they may be desribed as zigzag lines with one sharp bend

eah. This result is quite remarkable, partiularly with regard to the fat that in

terms of the unnormalized ouplings the non-Gaussian �xed point ollapses into the

Gaussian one for ε → 0, and the orresponding �ow diagram loses its harateristi

struture.

We would like to point out that the singularity line, present in the 4D diagram

shown in Figure 4.1, is shifted to in�nity for the normalized ouplings when the limit

ε→ 0 is taken, so trajetories are well de�ned at all sales.

In onlusion, we have seen that the RG �ow diagrams in d = 2 + ε, based on

the linear parametrization and normalized ouplings, approah a rigid struture in

the small ε limit, featuring a non-Gaussian �xed point at g̊∗ = 3/38.

4.3.3 The exponential parametrization in general dimensions

In this subsetion and the two following ones, we investigate to what extent the

above results pertaining to the linear parametrization hange when hoosing the ex-
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ε = 0.35 ε = 0.2

ε = 0.05 ε = 0.005

Figure 4.2 RG trajetories in the spae of the normalized ouplings λ̊ ≡ λ
ε
and g̊ ≡ g

ε
, based

on the Einstein�Hilbert trunation in d = 2 + ε dimensions with the linear parametrization

and the optimized uto�. Shown are the ases ε = 0.35, ε = 0.2, ε = 0.05 and ε = 0.005,
with four sample trajetories for eah diagram. Blue dots indiate UV �xed points.

ponential parametrization instead. As argued in Setion 4.2, point (1), the nonlinear

harater of the exponential parametrization entails additional terms ontributing to

the Hessian of Γk . The β-funtions are obtained by a areful analysis along the steps

proposed in Setion 2.1.3. While the alulation is performed in Appendix G.2, we

fous on presenting results and onsequenes in the following.

For a general dimension d the β-funtions of the dimensionless ouplings gk ≡
kd−2Gk and λk ≡ k−2Λk are given by equations (G.29) and (G.30). Before studying

in detail their impliations in d = 4 and d = 2+ ε dimensions, an important remark

onerning the appearane of the osmologial onstant is in order.

We have seen in Setion 3.2, in partiular in eq. (3.13), that the volume element

√
g is independent of the traeless part of the �eld hµν : Upon splitting hµν into trae

and traeless ontributions, hµν = ĥµν+
1
d ḡµνφ, with φ = ḡµνhµν and ḡ

µν ĥµν = 0, we
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observe that the volume element depends only on φ, while ĥµν drops out ompletely:

√
g =

√
ḡ e

1
2
φ . (4.37)

Hene, the osmologial onstant an our as a oupling only in the trae setor.

This is re�eted both in the Hessian of Γk, determined by eq. (G.24), and in the

β-funtions: Those ontributions to βλ and βg that stem from the trae part involve

threshold funtions (f. Appendix D) of the form Φp
n(−µλ), while those originating

from the traeless part ontain only threshold funtions of the form Φp
n(0), see eqs.

(G.27) � (G.30). This result is in distintion from the one for the linear parametriza-

tion where λ ourred in both ases.

Another di�erene is given by the argument of the threshold funtions: For the

linear parametrization all threshold funtions that involve the osmologial onstant

are of the form Φp
n(−2λ) or Φ̃p

n(−2λ), independent of the dimension d. For the

exponential parametrization, on the other hand, they are replaed by Φp
n(−µλ) and

Φ̃p
n(−µλ), respetively, where µ ≡ 2d

d−2 . This hange turns out to be partiularly

signi�ant: All threshold funtions beome singular when their argument approahes

−1. That is, for the linear parametrization they have a pole at λ = 1/2, while for

the exponential parametrization the pole is loated at λ = 1/µ. This pole marks the

starting point (at g = 0, λ = 1
2 or λ = 1

µ) of the singularity line disussed in Setion

4.3.1. Sine µ > 2, however, the singularity line is shifted towards smaller values of λ

when the exponential parametrization is used. We expet to see this behavior in the

orresponding �ow diagrams, to be determined in the next setion in the 4D ase.

4.3.4 The exponential parametrization in d = 4 dimensions

Let us onsider the speial ase of four dimensions now. Inserting d = 4 into the

β-funtions (G.29) and (G.30) yields

βg = (2 + ηN )g , (4.38)

βλ = −(2− ηN )λ+
g

4π

[
2Φ1

2(−4λ) + 2Φ1
2(0) − ηN Φ̃1

2(−4λ)− 9ηN Φ̃1
2(0)

]
, (4.39)

where the anomalous dimension of Newton's onstant, ηN ≡ G−1
k k∂kGk , is given by

ηN =
2g
[
Φ1
1(−4λ)− 3Φ2

2(−4λ) + Φ1
1(0)− 21Φ2

2(0)
]

12π + g
[
Φ̃1
1(−4λ)− 3Φ̃2

2(−4λ) + 9Φ̃1
1(0)− 9Φ̃2

2(0)
] . (4.40)

The threshold funtions, Φp
n(w), Φ̃

p
n(w), are de�ned (and evaluated for several uto�

shapes) in Appendix D. Due to the form of their arguments, −4λ, we �nd that

they have a pole at λ = 1/4. Thus, the in�uene of the uto� shape funtion on

β-funtions and �xed points might be inreased already at small λ as ompared with

the situation for the linear parametrization where the pole lies at λ = 1/2. In the

following we on�rm this onjeture by onsidering global properties of the RG �ow

for di�erent shape funtions.
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Figure 4.3 Flow diagram for the Einstein�Hilbert trunation in d = 4 based on the expo-

nential parametrization and the optimized uto�. There is a limit yle, indiated by the

green arrows, whose inside ontains a non-Gaussian �xed point (blue dot). The singularity

line is shown as a red, dashed line. As usual, arrows point from the UV to the IR.

(1) Optimized uto�. An numerial evaluation of the β-funtions (4.38) and (4.39)

gives rise to the �ow diagram shown in Figure 4.3.

The result is fundamentally di�erent from what is known for the linear parame-

trization (f. Figure 4.1). Although we �nd again the Gaussian �xed point at the

origin and a non-Gaussian �xed point at positive g and positive λ, we enounter new

properties of the latter. The NGFP is UV-repulsive in both diretions now sine its

ritial exponents have negative real parts. Furthermore, it is surrounded by a losed

limit yle. This limit yle by itself is UV-attrative: Trajetories both inside and

outside approah the yle for k → ∞, unless they run into a singularity.

As expeted, the singularity line (marked by the dashed, red urve in Figure 4.3),

on whih β-funtions diverge and beyond whih the trunation ansatz is no longer

reliable, has been shifted to smaller values of λ. It prevents the existene of globally

de�ned trajetories emanating from the limit yle and passing the lassial regime,

i.e. there is no onnetion between the limit yle and the Gaussian �xed point.

Clearly, there annot be a separatrix either as the limit yle �shields� its inside from
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Figure 4.4 Flow diagram for the Einstein�Hilbert trunation in d = 4 based on the expo-

nential parametrization and the sharp uto�. As indiated by the green arrows, all trajeto-

ries emanating from the NGFP (blue dot) run into the singularity line (red, dashed urve)

towards the infrared so that they annot ome lose to the Gaussian �xed point.

its outside, not allowing any rossing trajetories.

Trajetories inside the limit yle may be onsidered asymptotially safe in a

generalized sense sine they approah the yle in the UV, while they hit the NGFP

in the infrared. However, they an never reah a lassial region, so they annot be

realized in Nature. Note that the limit yle is similar to those found in Referenes

[92, 93℄ whih are based on di�erent but also nonlinear metri parametrizations.

(2) Sharp uto�. Next, we repeat the analysis for the sharp uto�. The orre-

sponding �ow diagram is shown in Figure 4.4. At �rst sight it seems to resemble the

one of Figure 4.1 (pertaining to the linear parametrization and the optimized uto�)

muh more than the one of Figure 4.3 (exponential parametrization and optimized

uto�): Figure 4.4 features the Gaussian and a non-Gaussian �xed point as previ-

ously, where the NGFP is UV-attrative in both g- and λ-diretion. In partiular,

there is no limit yle.

We observe an important di�erene between Figure 4.4 and Figure 4.1, though:
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Due to the singularity line, there is no separatrix in Figure 4.4, and hene, there is

no trajetory emanating from the NGFP that has a su�iently extended lassial

regime lose to the Gaussian �xed point. This an be understood as follows. The

singularity line is too lose to the NGFP suh that all asymptotially safe trajetories

eventually terminate at some �nite sale k when going from the UV towards the IR,

i.e. they run into the singularity line, and thus, they have no hane to reah the

viinity of the Gaussian �xed point.

(3) Exponential uto�. The exponential uto� as introdued in Appendix D with

generi values of the parameter s gives rise to a �ow diagram that shares features

with both Figure 4.3 and Figure 4.4. Here, we refrain from depiting diagrams for

several s sine they do not provide muh further insight. We rather desribe the

result.

For uto� parameters s > 0.93 there exists an NGFP at positive g and positive λ.

This �xed point is UV-repulsive, as it is for the optimized uto�. However, this time

there is no losed limit yle. Although a relit of the yle is still present, it does

not form a losed line, but rather runs into the singularity line. Again, there is no

separatrix onneting the �xed points. Varying s amounts to shifting the oordinates

of the NGFP.

For s ≤ 0.93 the �xed point even vanishes, or, more preisely, it is shifted beyond

the singularity, leaving it inaessible by shielding it from trajetories that have a

lassial regime. Thus, the NGFP that seemed to be indestrutible for the linear

parametrization an be made disappear with the exponential parametrization.

In summary, some fundamental qualitative features of the RG �ow like the signs

of the real parts of ritial exponents, the existene of limit yles, or the existene

of suitable non-Gaussian �xed points seem to have a stronger uto� dependene

when the exponential parametrization is used. None of the above �ow diagrams

orresponding to the exponential parametrization ontains a trajetory that desribes

a omplete and onsistent quantum theory, or to put it another way, that an be

realized in Nature. However, this onlusion holds true only within the sope of our

simpli�ed setting whih is based on the Einstein�Hilbert trunation (without �eld

rede�nitions, f. Se. 4.3.6) and a spei� hoie for the gauge. We will disuss in

Setion 4.3.6 that it is in fat the exponential parametrization that leads to the most

reliable results after all.

4.3.5 The exponential parametrization in d = 2+ ε dimensions

Inserting d = 2 + ε into the β-funtions (G.29) and (G.30) we �nd that there is a

non-Gaussian �xed point whose oordinates are of order ε: λ∗ = O(ε), g∗ = O(ε).

Thus, for all points (λ, g) not too far away from the NGFP we have λ = O(ε) and
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g = O(ε), too. This an be used to expand the β-funtions in terms of ε, yielding

βg = εg − bg2 , (4.41)

βλ = −2λ+ 2g
[
− 2Φ1

1(0) + Φ1
1

(
− 4

ελ
)]
, (4.42)

up to higher orders in λ, g and ε. Here, the oe�ient b is given by

b =
2

3

[
2Φ1

0(0) + 24Φ2
1(0)− Φ1

0

(
− 4

ελ
)]
. (4.43)

Some of the threshold funtions Φp
n appearing in (4.43) are independent of the under-

lying uto� shape funtion R(0)(z): As spei�ed in Appendix D, we have Φn+1
n (0) = 1

for any uto�, hene Φ1
0(0) = 1 and Φ2

1(0) = 1.

Furthermore, for all standard shape funtions satisfying R(0)(z = 0) = 1 we �nd

Φ1
0

(
− 4

ελ
)
=
(
1 − 4

ελ
)−1

. Due to the ourrene of ε−1
in the argument of Φ1

0, the

λ-dependene does not drop out of βg at lowest order. Rather, the ombination λ/ε

results in a �nite orretion.

By ontrast, the sharp uto� [167℄ does not fall into the lass of standard uto�s

(f. Appendix D): It beomes in�nitely large at vanishing argument, leading to the

onstant funtion Φ1
0

(
− 4

ελ
)
= 1 for all λ.4

Colleting the above results, we �nd

b =





2
3

[
26−

(
1− 4

ελ
)−1
]

for all standard uto�s,

50
3 for the sharp uto�.

(4.44)

Note that even if b has the same form for all standard uto�s, it does not give rise

to a universal �xed point oordinate. This an be seen as follows: The threshold

funtions of the type Φ1
1(w) ourring in eq. (4.42) are uto� dependent everywhere,

even at w = 0. Hene, βλ inevitably depends on the uto� shape, and so does λ∗ .

Sine b depends on λ∗ in turn, its value at the �xed point is not universal. As a

onsequene, both λ∗ and g∗ depend on the uto� shape funtion.

In order to alulate ritial entral harges as in Setion 4.3.2, we inlude the

matter ation (4.31) in the ansatz for the EAA, amounting to N minimally oupled

salar �elds in addition. In this ase, the β-funtions are given by eqs. (G.35) and

(G.36). Again, an expansion in terms of ε yields βg = εg − bg2 up to higher orders,

where the oe�ient b is hanged into

b =





2
3

[
26−

(
1− 4

ελ
)−1 −N

]
for all standard uto�s,

2
3

[
25−N

]
for the sharp uto�.

(4.45)

4

For the sharp uto�, Φ1
n(w) = − 1

Γ(n)
ln(1+w)+ϕn is determined up to a onstant ϕn, whih,

for onsisteny, is hosen suh that Φ1
n(w = 0) agrees with Φ1

n(0) orresponding to some other

uto� [167℄, f. Appendix D. In the limit n → 0, however, the w-dependene drops out ompletely,

and Φ1
0(w)sharp = Φ1

0(0)
other

. Sine Φ1
0(0) = 1 for any uto�, we �nd Φ1

0(w)sharp = 1 ∀w.
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Cuto� shape crit
m

Any uto�, but setting λ = 0 25

Optimized uto� 25.226

Sharp uto� 25

Exponential uto� (s = 0.5) 25.363

Exponential uto� (s = 1) 25.322

Exponential uto� (s = 5) 25.263

Exponential uto� (s = 20) 25.244

Table 4.1 Cuto� dependene of the ritial entral harge for the exponential parametriza-

tion. (In ase of the linear parametrization we had crit
m

= 19 for all uto� shapes.)

As disussed in Setion 4.1, the gravitational entral harge is given by c
grav

=
3
2 b. The ritial value of N , determined by the zero of c

grav

at the NGFP, an be

omputed for di�erent uto� shape funtions now.

Before onsidering the general ase, we would like to ompare our result to the

perturbative one, spei�ed in eq. (4.9). To this end, we have to set λ = 0 by

hand in (4.45) sine the perturbative studies that led to (4.9) did not take into

aount the impat of the osmologial onstant on the β-funtion of the Newton

onstant [98�104℄. As a result, eq. (4.45) boils down to

c
grav

= 25−N for all uto�s if λ = 0 . (4.46)

Hene, we obtain the ritial value crit
m

= N rit = 25, reproduing the ritial entral

harge of the matter setor that was found perturbatively.

If, however, the osmologial onstant is not set to zero by hand, the uto� de-

pendent �xed point value λ∗ enters the oe�ient b for all standard uto�s, aording

to eq. (4.45). Thus, the ritial entral harge depends on the uto� shape in this

ase. We on�rm these general arguments by evaluating the threshold funtions

numerially for various uto� shape funtions (f. Appendix D) and omputing the

orresponding �xed point oordinates. Spei�ally, we obtain λ∗ ≈ −0.0729 for the

optimized uto�, λ∗ ≈ −0.1226 for the sharp uto�, λ∗ ≈ −0.1426 for the expo-

nential uto� with s = 0.5, λ∗ ≈ −0.1187 for the exponential uto� with s = 1,

λ∗ ≈ −0.0892 for the exponential uto� with s = 5, and λ∗ ≈ −0.0806 for the expo-

nential uto� with s = 20. These numbers lead to the ritial entral harges listed

in Table 4.1, the main result of this subsetion. We observe that although the value

of crit
m

is not universal, it is lose to 25 for all uto�s onsidered. As seen above, the

number 25 beomes an exat and universal result when the osmologial onstant is

left aside, making ontat to the CFT result.

At last, we want to visualize the RG �ow orresponding to the full (nonexpanded)

β-funtions (G.29) and (G.30) in d = 2+ ε dimensions for several values of ε. As in
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ε = 0.35 ε = 0.2

ε = 0.05 ε = 0.005

Figure 4.5 RG trajetories in the spae of the normalized ouplings λ̊ ≡ λ
ε
and g̊ ≡ g

ε
,

based on the Einstein�Hilbert trunation in d = 2 + ε dimensions with the exponential

parametrization and the optimized uto�. As in Figure 4.2, we show the ases ε = 0.35,
ε = 0.2, ε = 0.05 and ε = 0.005. In the limit ε→ 0 a rigid zigzag struture is approahed.

Setion 4.3.2, we employ the normalized ouplings

λ̊ ≡ λ/ε , g̊ ≡ g/ε , (4.47)

whih lead to �nite �xed point values, λ̊∗ and g̊∗, respetively, when the limit ε→ 0

is taken. The assoiated RG trajetories are illustrated in Figure 4.5, showing four

diagrams at di�erent values of ε with four sample trajetories eah.

It is remarkable how muh Figure 4.2 (linear parametrization) and Figure 4.5 (ex-

ponential parametrization) resemble eah other. They both feature a UV-attrative

non-Gaussian �xed point (at slightly di�erent positions as the numerial values of

the oordinates have hanged). Furthermore, the struture the diagrams approah

in the limit ε→ 0 is very similar for the two parametrizations: In the infrared, tra-

jetories appear as horizontal lines whih beome perfetly straight for ε→ 0. One

these lines hit the onneting line through the origin and the NGFP, they instantly
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hange their diretion, now heading straightly towards the NGFP for inreasing RG

sale. In the UV limit they �nally approah the NGFP. Thus, following the RG �ow

diretion (from high to low sales) eah trajetory beomes a zigzag ray starting at

the NGFP in the UV, having one sharp bend at intermediate sales, and proeeding

inde�nitely in the IR. Like for the linear parametrization, the singularity line present

in Figures 4.3 and 4.4 is shifted to in�nity in Figure 4.5 in the limit ε → 0,5 and

trajetories in the (̊λ, g̊)-spae are well de�ned at all sales.

To sum up Subsetions 4.3.4 and 4.3.5, we reovered many results known for

the linear parametrization, like the existene of a non-Gaussian �xed point. The

stronger uto� dependene observed for the exponential parametrization seems to

indiate that the orresponding results are less reliable. However, there are two points

in favor of the exponential parametrization: (i) It reprodues the orret value of the

ritial entral harge, crit
m

= 25, known from onformal �eld theory. (ii) The high

uto� dependene is mainly due to the loser singularity line whih is believed to be

merely a trunation artifat [166℄. Hene, using extended trunations, di�erent gauge

hoies and/or �eld rede�nitions will most probably lead to more stable results. We

will argue in the next subsetion that it is atually the exponential parametrization

that features a higher reliability after all.

4.3.6 Remark about reent results

The results presented in this hapter (and published in Ref. [83℄) have triggered a

ouple of follow-up investigations onerning the exponential metri parametrization

[46, 47, 81, 84, 108, 112, 113, 165, 174, 179, 180℄. Here, we would like to brie�y review

two reent ontributions, Refs. [165℄ and [180℄.

(1) The idea behind Ref. [165℄ is based on the priniple of minimum sensitivity,

whih is applied as follows. The ritial exponents θi should be universal quanti-

ties. Also, it is believed that the produt g∗λ∗ is physially observable and thus

universal [181℄. Therefore, testing the uto� and gauge dependene of θi and g∗λ∗
onstitutes a quantitative riterion for the reliability of approximate results. This

test an be applied to any parametrization now. To this end, the authors of Ref. [165℄

exploit that the di�erene between the linear and the exponential parametrization

originates entirely from the seond order term in an expansion of gµν : Realling

5

The mehanism of removing the singularity line is di�erent for the exponential parametrization,

though. In the ase of the linear parametrization, the singularity line has a zero at λ = 1/2 beause
of the involvement of Φp

n(−2λ). In terms of normalized ouplings this is shifted to λ̊ = 1/(2ε) → ∞
for ε → 0. Sine g is resaled, too, g̊ ≡ g/ε, the line itself is saled upwards to g̊ = ∞. For

the exponential parametrization, on the other hand, there are threshold funtions of the form

Φp
n(−4λ/ε) leading to a pole (whih is a zero of the singularity line at the same time) at λ = ε/4.

In terms of normalized ouplings this pole is loated at λ̊ = 1/4 for all ε, i.e. it is not shifted

to in�nity for ε → 0. However, the β-funtions are suh that all divergent ontributions of the

threshold funtions in ombination atually onverge to a �nite limit. Thus, e�etively there is

no singularity when λ̊ passes the point λ̊ = 1/4. For λ̊ 6= 1/4, the oordinates of all points with

potentially divergent β-funtions are again saled to g̊ = ∞ due to the resaling g̊ ≡ g/ε.
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that gexpµν ≡ ḡµρ
(
eh
)ρ

ν = ḡµν + hµν +
1
2hµρh

ρ
ν +O(h3), we an introdue the general

parametrization

gµν = ḡµν + hµν +
τ

2
hµρh

ρ
ν . (4.48)

Up to quadrati order, this expression interpolates smoothly between the linear pa-

rametrization (τ = 0) and the exponential parametrization (τ = 1). Furthermore, a

two-parameter family of gauge �xing ations is hosen: The gauge ondition (4.27)

is generalized to Fµν
α [ḡ] = δνα ḡ

µρD̄ρ − 1+β
d ḡµνD̄α, and the parameter α appearing in

eq. (4.30) is not set to one this time but left arbitrary. Based on this approah, it

an now be tested for whih value of τ the results for θi and g∗λ∗ exhibit the least

dependene on α and β.

In addition to that, it is possible to study the in�uene of partiular �eld re-

de�nitions: The metri �utuations hµν an be split aording to the York deom-

position into transverse traeless tensor modes, a transverse vetor mode and two

salar modes. This hange of variables usually introdues Jaobians in the under-

lying funtional integral. Choosing a ertain nonloal �eld rede�nition [175, 181℄,

however, its assoiated Jaobians anel against those from the York deomposition,

provided that a maximally symmetri bakground is onsidered. Sine rigorous ar-

guments about the form of the fundamental variables of quantum gravity are still

laking, it is unlear whether or not suh a �eld rede�nition should be used. Thus,

the minimum sensitivity analysis desribed above is performed for both original and

rede�ned �elds in Ref. [165℄.

Without �eld rede�nition, the harateristi variables θi and g∗λ∗ depend on

the gauge parameters to a muh larger extent for the exponential parametrization

(τ = 1) than for the linear one (τ = 0). Hene, the exponential parametrization

leads to less reliable results, on�rming our observations of the previous subsetions.

Employing a �eld rede�nition, on the other hand, both parametrizations feature

an extended range for the gauge parameters that leads to very stable results. This

indiates an even level of reliability.

Moreover, Ref. [165℄ ontains an analysis with �xed gauge parameters but varying

parameter τ . The outome is quite remarkable: The most stable results are found

for τ ≈ 1.22, whih is learly loser to τ = 1 orresponding to the exponential

parametrization. The values of θi and g∗λ∗ for τ ≈ 1.22 are lose to the ones found

for τ = 1, while those for τ = 0 deviate onsiderably.

Finally, we would like to emphasize that there is one partiularly suitable hoie of

the gauge parameter β. We already know that the traeless setor of the metri �u-

tuations is independent of the osmologial onstant if the exponential parametriza-

tion is used. If we hoose |β| → ∞ now, the osmologial onstant drops out of

the �ow equations ompletely. In this ase the β-funtion of the Newton oupling is

independent of λ. With regard to eq. (4.45) we obtain b = 2
3

[
25−N

]
for all uto�s,

leading to the universal gravitational entral harge c
grav

= 25−N . Besides, in the

limit |β| → ∞ all results beome independent of α.
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(2) In Ref. [180℄ the parametrization is generalized even further: The fundamental

variable is not given by the metri gµν , but rather by a tensor density γµν of a

ertain weight, or even by some densitized inverse metri γµν . The relation between

gµν (gµν) and γµν (γµν) is given by

gµν = (det(γµν))
m γµν , gµν = (det(γµν))

−m γµν . (4.49)

Then γµν (and also γµν) an be parametrized in di�erent ways, the linear and the

exponential parametrization being speial ases. Putting everything together and

expanding the metri gµν up to quadrati order yields

gµν = ḡµν + hµν +mḡµνh+ ωhµρh
ρ
ν +mhhµν +m

(
ω − 1

2

)
ḡµνh

αβhαβ + 1
2m

2ḡµνh
2,

(4.50)

with h ≡ ḡµνhµν . Here, the hoie ω = 0 orresponds to the linear expansion of the

metri, ω = 1/2 orresponds to the exponential expansion, and ω = 1 orresponds

to the linear expansion of the inverse metri.

Based on these de�nitions, the dependene of the RG �ow on m and ω as well

as on the gauge parameters α and β is investigated in [180℄. It turns out that the

exponential parametrization (ω = 1/2) leads to the most stable results, whih is

re�eted in an independene of m in partiular. The hoie ω = 1/2 and |β| → ∞
automatially eliminates all dependene on m, α, and on the osmologial onstant.

This is a very favorable situation sine it redues the amount of unertainty of results

onsiderably.

In onlusion, we have seen that a simple modi�ation of the gauge ondition (by

implementing the parameter β and onsidering the limit β → ±∞) and/or a �eld

rede�nition an substantially inrease the degree of reliability of the results obtained

with the exponential parametrization.

4.4 The birth of exponentials in 2D

We emphasize that the above results do not imply any statements about the �or-

retness� of ertain parametrizations. For the time being, it is not lear whether the

exponential and the linear parametrization, respetively, desribe the same physis

at the exat level. As argued in Chapter 3, the former gives rise to pure metris only,

while the latter inludes degenerate, wrong-signature and vanishing tensor �elds.

6

We annot fully exlude the possibility that both of them are equally orret, but

probe instead two di�erent universality lasses. If so, we onjeture that these lasses

would then be represented by c
grav

= 25 for the exponential parametrization (in the

pure gravity ase) and by c
grav

= 19 for the linear one.

But why is it the former hoie that reprodues the results of standard onformal

�eld theory, while the latter one fails to do so? In the following we will argue

6

The latter would be in the spirit of Ref. [94℄, and one might expet to �nd a phase of unbroken

di�eomorphism invariane, among others.
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that the exponential parametrization is a partiularly appropriate hoie in the 2D

limit. More preisely, we will see that there is a distinguished parametrization in any

dimension d whih approahes an exponential form as d→ 2. Although this does not

mean that the exponential parametrization should be preferred over the linear one in

general, we an at least understand its ompatibility with 2D onformal �eld theory.

In any ase, the issue of parametrization dependene should always be reonsidered

when a better trunation beomes tehnially manageable.

7

The argument presented in this Setion (f. Ref. [34℄) onsiders only suh dy-

namial metris gµν that are onformally related to a �xed referene metri ĝµν , and

only their relative onformal fator is quantized. The resulting �onformally redued�

setting [182, 183℄ amounts to the exat theory in 2D, but it is an approximation in

higher dimensions. Aordingly, �exponential parametrization� refers to the form of

the onformal fator in the following. Now, among all possible ways of parametrizing

the onformal fator there exists one distinguished hoie in eah dimension d.

(1) Distinguished parametrizations. Let us onsider the onformal redution

of the Einstein�Hilbert ation SEH[g] ≡ − 1
16πG

∫
d

dx
√
g (R − 2Λ) in any number of

dimensions d > 2. That is, we evaluate SEH only on metris whih are onformal to

a given ĝ onsistent with the desired topology. But how should we write the fator

relating g and ĝ now? Assume, for instane, the redued SEH plays the role of a bare

ation under a funtional integral over a ertain �eld Ω representing the onformal

fator, how then should the latter be written in terms of Ω ? Clearly, in�nitely many

parametrizations of the type gµν = f(Ω)ĝµν are possible here, and depending on our

hoie the redued SEH will look di�erently.

There exists a distinguished parametrization, however, whih is spei� to the

dimensionality d, having the property that

∫√
g R beomes quadrati in Ω. Starting

out from a power ansatz, gµν = Ω2ν ĝµν , the integral
∫√

g R will in general produe

a potential term ∝ R̂ times a partiular power of Ω, and a kineti term ∝
(
D̂Ω
)2

times another power of Ω. The exponent of the latter turns out to be zero, yielding

a kineti term quadrati in Ω, preisely if [184℄

ν = 2/(d − 2) , gµν = Ω4/(d−2) ĝµν . (4.51)

In this ase, the potential term ∝ R̂ is found to be quadrati as well, and one

obtains [182, 184℄

SEH
[
g = Ω4/(d−2) ĝ

]

= − 1

8πG

∫
d

dx
√
ĝ

[
1

2 ξ(d)
D̂µΩ D̂

µΩ+
1

2
R̂Ω2 − ΛΩ2d/(d−2)

]
.

(4.52)

7

A �rst indiation pointing towards the possibility of di�erent universality lasses might be

ontained in reent results from the f(R)-trunation in 4D where an apparently parametrization

dependent number of relevant diretions was observed [46, 47℄.
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d 3 4 6

Conformal fator Ω4 Ω2 Ω

Volume operator Ω6 Ω4 Ω3

Table 4.2 Conformal fator and volume operator for the distinguished parametrization.

Here, we introdued the onstant

ξ(d) ≡ (d− 2)

4(d− 1)
. (4.53)

Usually, one employs Ω(x)−1 ≡ ω(x) rather than Ω itself as the dynamial �eld that

is quantized, i.e. integrated over if SEH appears in a funtional integral. Then there

will be no positivity issues as long as ω(x) stays small. We emphasize, however, that

the derivation of neither (4.52) nor the related ation for ω,

SEH[ω; ĝ] = − 1

8πG

∫
d

dx
√
ĝ

[
1

2 ξ(d)
D̂µω D̂

µω +
1

2
R̂ (1 + ω)2 − Λ (1 + ω)2d/(d−2)

]
,

(4.54)

involves any (small �eld, or other) expansion. (It involves an integration by parts,

though, hene there ould be additional surfae ontributions if spaetime has a

boundary.)

(2) Metri operators. The exponent appearing in the onformal fator Ω2ν
is

noninteger in general, exeptions being d = 3, 4, and 6, see Table 4.2. The virtue of a

quadrati ation needs no mentioning, of ourse. As long as the osmologial onstant

plays no role � Λ will always give rise to an interation term � the omputation

of the RG �ow will be easiest and most reliable if we employ the distinguished

parametrization.

8

One should be aware that there is a onservation of di�ulties also here. Gener-

ially the onformal fator depends on the quantum �eld nonlinearly. Hene, anon-

ially speaking, even if the ation is trivial (Gaussian), the onstrution of a metri

operator amounts to de�ning Ω2ν
or (1+ω)2ν as a omposite operator. And in fat,

the experiene with models suh as Liouville theory [186�188℄ shows how extremely

di�ult this an be.

At present, we are just interested in omparing the relative degree of reliability

of two trunated RG �ows, based upon di�erent �eld parametrizations. For this

purpose it is su�ient to learn from the above argument that the �most orret�

results should be those from the distinguished parametrization (4.51) sine then

the theory is free (for Λ = 0). But what is the distinguished parametrization in 2

dimensions?

8

The RG �ow of the onformally redued Einstein�Hilbert trunation (�CREH�) with the dis-

tinguished parametrizations has been omputed in [182℄, an LPA-type extension was onsidered

in [183℄, see also [185℄.
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(3) The limit d → 2. As we lower d = 2 + ε towards two dimensions, the

distinguished form of the onformal fator, (1 + ω)4/(d−2)
, develops into a funtion

whih inreases with ω faster than any power. At the same time the onstant ξ(d)

goes to zero, and (4.54) beomes

SEH[ω; ĝ] = − 1

16πG̊

∫
d

2+εx
√
ĝ

[
4

ε2
D̂µω D̂

µω
{
1 +O(ε)

}

+
1

ε
R̂ (1 + ω)2 − 2Λ̊ (1 + ω)2(2+ε)/ε

]
.

(4.55)

Here we introdued normalized ouplings again, G ≡ G̊ ε and Λ ≡ Λ̊ ε, assuming

that G̊, Λ̊ = O(ε0). We see that in order to obtain a meaningful kineti term we

must resale ω by a fator of ε prior to taking the limit εց 0.

Introduing the new �eld φ(x) ≡ 2ω(x)/ε, its kineti term D̂µφ D̂
µφ
{
1 +O(ε)

}

will have a �nite and nontrivial limit. The onomitant onformal fator Ω2ν
has

the limit

lim
ε→0

(1 + ω)4/ε = lim
ε→0

(
1 + 1

2 εφ
)4/ε

= lim
n→∞

(
1 + 2φ

n

)n
= e2φ . (4.56)

This demonstrates that the exponential parametrization gµν = e2φĝµν is preisely the

2D limit of the distinguished (power-like) parametrizations in d > 2.

The osmologial term in (4.55) involves the same exponential for d → 2, and

the originally quadrati potential R̂(1 + ω)2 turns into a linear one for φ. Taking

everything together the Laurent series of SEH in ε looks as follows:

SEH[φ; ĝ] = − 1

16πG̊

{
1

ε

∫
d

2+εx
√
ĝ R̂+

∫
d

2x
√
ĝ
(
D̂µφ D̂

µφ+R̂ φ−2Λ̊ e2φ
)}

+O(ε).

(4.57)

The �rst term on the RHS is φ-independent and involves a purely topologial on-

tribution proportional to the Euler harateristi, χ ≡ 1
4π

∫
d

2x
√
g R, whih will be

disussed in more detail in Setion 5.2. Obviously, from eq. (4.57) we obtain Liouville

theory as the intrinsially 2D part of the Einstein�Hilbert ation, but this is perhaps

not too muh of a surprise (as will also be seen in Chapter 5).

What is important, though, is that in this derivation, ontrary to the standard

argument, the exponential �eld dependene of the onformal fator was not put in

by hand, we rather derived it.

Here, our input were the following two requirements: First, the saling limit of

SEH should be both nonsingular and nontrivial, and seond, it should go through a

sequene of ations whih, apart from the osmologial term, are at most quadrati

in the dynamial �eld. Being quadrati implies that when SEH[ω; ĝ] is used as the

(onformal redution of the) Einstein�Hilbert trunation, this trunation is �perfet�

at any ε.

Therefore, we believe that using the exponential parametrization already in

slightly higher dimensions d > 2 yields more reliable results for the β-funtions
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and their 2D limits than using the linear parametrization in d > 2 and taking

the 2D limit of the orresponding β-funtions afterwards. (There is still a minor

soure of unertainty due to the ghost setor. In either parametrization there are

ghost-antighost-graviton interations whih are not treated exatly by the truna-

tions onsidered here.)

The basi di�erene between the two parametrizations an also be seen quite

diretly. If we insert g = e2φĝ into SEH, the resulting derivative term reads exatly,

i.e. without any expansion in ε and/or φ and resaling of φ:

− (d− 1)

16πG̊

∫
d

dx
√
ĝ e(d−2)φ

(
D̂φ
)2
. (4.58)

For d→ 2 this term has a smooth limit (we did use G = G̊ ε after all) and this limit

is quadrati in φ.

On the other hand, inserting the linear parametrization g = (1 + ω)ĝ into SEH

we obtain again exatly, i.e. without expanding in ε and/or ω and resaling ω:

− (d− 1)

64πG̊

∫
d

dx
√
ĝ (1 + ω)(d−2)/2

(
D̂ω
)2

(1 + ω)2
. (4.59)

The term (4.59), too, has a smooth limit d → 2, but it is not quadrati in the

dynamial �eld. This renders the ω-theory interating and makes it a nontrivial

hallenge for the trunation.

(4) The dimension d = 6. As an aside we mention that aording to Table 4.2 the

ase d = 6 seems to be easiest to deal with sine in the preferred �eld parametrization

the onformal fator is linear in the quantum �eld, and so there is no need to onstrut

a omposite operator. The kineti term (4.59) beomes quadrati exatly at d = 6.

It is intriguing to speulate that this observation is related to the following rather

surprising property enjoyed by the β-funtions derived from the bimetri Einstein

Hilbert trunation (see Appendix A.1 of Ref. [60℄): If d = 6, and if in addition

the dimensionful dynamial osmologial onstant ΛDyn

is zero, then the gravity

ontributions to the β-funtions of both ΛDyn

and the dimensionful dynamial Newton

onstant GDyn

vanish exatly. (There are nonzero ghost ontributions, though.)

(5) Summary. On the basis of the above arguments we onlude that most probably

the exponential parametrization is more reliable in 2D than the linear one. We believe

in partiular that c
grav

= 25 is more likely to be a orret value of the entral harge

at the pure gravity �xed point than its ompetitor `19'. Depending on the reliability

of the linear parametrization, the `19' ould be a poor approximation to `25', or a

hint at another universality lass.

4.5 RG analysis for a bimetri trunation

As argued above, the full e�etive average ation Γk is inherently a funtional of

two metris, gµν and ḡµν . Hene, unless further onditions (e.g. a single-metri



96 Chapter 4. Parametrization dependene in asymptotially safe gravity

trunation) are imposed on an ansatz for Γk, it an ontain all kinds of invariants:

those onstruted out of gµν alone, out of ḡµν alone, or out of mixed terms like∫
d

dx
√
ḡ R,

∫
d

dx
√
g R̄, et. Trunations whih do not involve the identi�ation

gµν = ḡµν but keep both metris separately are referred to as bimetri [52,157,158℄.

Being more general, it an be expeted that a bimetri trunation of a given order

(of derivatives, for instane) is a better approximation to the exat EAA than a

single-metri trunation of the same order.

At the tehnial level, alulations beome more omplex in the bimetri ase,

and the standard approah for deriving β-funtions, introdued in Setion 2.1.3, is

no longer appliable: The Hessian Γ
(2)
k w.r.t. the dynamial �eld an ontain all

kinds of seond order derivative operators like �, �̄, DµD̄
µ
, and even unontrated

ones like D̄µDν , and so forth. Thus, employing the standard reipe, whih is based

on a heat kernel expansion and relies on the ourrene of only one type of ovariant

derivative (either Dµ or D̄µ), is not an option here. As yet, there are only a few

approximate tehniques at our disposal that ope with this di�ulty. Here, we

employ the onformal projetion tehnique [158℄. It onsists in onformally relating

the two metris gµν and ḡµν as follows:

gµν(x) = e2Ω ḡµν(x), (4.60)

where Ω is an x-independent number whih an be used as a bookkeeping parameter.

Sine any metri parametrization (inluding the linear and the exponential one)

an be expanded as gµν = ḡµν + hµν + O(h2), and sine eq. (4.60) implies gµν =

ḡµν + 2Ωḡµν +O(Ω2), we �nd that the terms of an expansion of Γk[h; ḡ] ≡ Γk[g, ḡ]

linear in hµν an be �ltered out by inserting (4.60) into Γk[g, ḡ] and projeting onto

the terms linear in Ω. Although the hoie (4.60) amounts to a restrition of the full

theory spae, it is still possible to di�erentiate between invariants that stem from

di�erent metris, at least within the trunation ansatz onsidered in this setion.

The advantage of this method resides in the fat that there is only one kind of

ovariant derivative left, D̄µ, suh that a heat kernel expansion is appliable. Then

the aessible �bimetri information� an be reonstruted by disentangling terms of

the order Ω0
and terms of the order Ω1

. (See Refs. [60, 158℄ for further details).

For the subsequent RG analysis we onsider the bimetri trunation ansatz

Γk

[
g, ḡ, ξ, ξ̄

]
=

1

16πGDyn

k

∫
d

dx
√
g
(
−R+ 2ΛDyn

k

)

+
1

16πGB

k

∫
d

dx
√
ḡ
(
− R̄+ 2ΛB

k

)

+ Γgfk
[
g, ḡ
]
+ Γghk

[
g, ḡ, ξ, ξ̄

]
.

(4.61)

It onsists of two separate Einstein�Hilbert terms belonging to the dynamial ('Dyn')

and the bakground ('B') metri and their orresponding ouplings. In order to

extrat β-funtions from the FRGE (2.10), we proeed along the lines of Ref. [60℄:
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We hoose the gauge parameter α in the most onvenient way, referred to as the �Ω

deformed α = 1 gauge�, and we employ the onformal projetion tehnique. Both of

these hoies simplify the Hessian Γ
(2)
k onsiderably. For the linear parametrization

the alulation has been done in Ref. [60℄. As for the exponential parametrization,

a detailed derivation of β-funtions is ontained in Appendix G.3.

In Chapter 1 as well as in Setion 2.1.4 we have disussed the requirement for

bakground independene: Physial observables must not depend on an externally

presribed bakground �eld. The most straightforward possibility to implement this

ondition is to make sure that Γk has no extra ḡ-dependene one all �utuations are

integrated out, i.e. the partial funtional derivative

δΓk [g,ḡ]
δḡµν (x)

must vanish identially

at the sale k = 0. In this ase, ḡµν an enter Γk=0 only via gµν , provided that

gµν is parametrized by ḡµν and hµν , the linear and the exponential parametrization

being typial examples. Then it is always possible to vary ḡµν and hµν simultane-

ously in suh a way that gµν remains onstant. Thus, Γk=0 is invariant under suh

split-symmetry transformations, too. In other words, bakground independene is

ahieved if split-symmetry is restored in the IR limit.

With regard to our trunation ansatz, the seond line in (4.61) ontaining the ex-

tra ḡ-dependent terms has to vanish in the limit k → 0 in order to ensure bakground

independene.

9

This leads to the requirements

1

GB

k

k→0−−−→ 0 , and

ΛB

k

GB

k

k→0−−−→ 0 . (4.62)

As usual, the RG analysis is mainly performed in terms of dimensionless ou-

plings, in partiular, when �xed points and RG trajetories are onerned. They are

de�ned as

gDynk ≡ kd−2GDyn

k , λDynk ≡ k−2ΛDyn

k , (4.63)

gBk ≡ kd−2GB

k , λBk ≡ k−2ΛB

k . (4.64)

We will on�rm later on that almost all trajetories are haraterized in the IR by the

anonial running of the ouplings. In the bakground setor this means gBk ∝ kd−2

and λBk ∝ k−2
, implying 1/GB

k = onst and ΛB

k /G
B

k = onst for small k. In this ase,

(4.62) is not satis�ed.

However, if there was a �xed point (λB∗ , g
B

∗ ) in the bakground setor, a trajetory

starting at (λB∗ , g
B

∗ ) at some �nite sale k would �stay� in this point for k → 0. For

this speial ase, we would have λBk = λB∗ = onst and gBk = gB∗ = onst in the IR,

�nally leading to

1

GB

k

=
1

gB∗
kd−2 k→0−−−→ 0 , and

ΛB

k

GB

k

=
λB∗
gB∗

kd
k→0−−−→ 0 , (4.65)

9

Note that gauge �xing and ghost terms violate bakground independene, too, even at the

sale k = 0, This is a very mild violation, though, sine it onerns the gauge modes only, and it

should disappear upon going on-shell [60℄. Thus, for the present disussion we onsider only the

non-gauge parts of Γk .
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as it should be. We thus onlude that bakground independene by means of split-

symmetry restoration an be established on the basis of a suitable �xed point in the

bakground setor.

It is this possibility that we investigate in the following for both the linear and

the exponential parametrization. In partiular, we aim at proving the existene of

suh RG trajetories that are asymptotially safe in the UV and restore bakground

independene in the IR.

Before performing expliit omputations, a general remark is in order: Sine the

bakground ouplings GB

k and ΛB

k in the trunation ansatz (4.61) our in terms

that ontain only the bakground metri, they drop out when alulating the se-

ond derivative of Γk with respet to hµν , and hene, they annot enter the RHS of

the FRGE (2.10). As a onsequene, there is a typial hierarhy of oupling on-

stants. This beomes expliit on the level of the β-funtions: Independent of the

parametrization, they have the general form

βDyng ≡ βDyng

(
gDyn, λDyn

)
,

βDynλ ≡ βDynλ

(
gDyn, λDyn

)
,

βBg ≡ βBg
(
gDyn, λDyn, gB

)
,

βBλ ≡ βBλ
(
gDyn, λDyn, gB, λB

)
.

(4.66)

In partiular, we observe that the RG �ow of the dynamial oupling setor is deou-

pled as the β-funtions of λDyn and gDyn onstitute a losed system. Thus, one an

solve the RG equations of the 'Dyn' ouplings independently at �rst.

On the other hand, the bakground β-funtions depend on both dynamial and

bakground ouplings. Therefore, the RG running of gBk and λBk an be determined

only if a solution of the 'Dyn' setor is piked. With regard to the Asymptoti Safety

program we would like to hoose a 'Dyn' trajetory whih emanates from a NGFP

and passes the lassial regime near the Gaussian �xed point. This trajetory is

then inserted into the β-funtions of the bakground setor, making them expliitly

k-dependent. Therefore, the vetor �eld these β-funtions give rise to depends on k,

too, and possible ��xed points�, i.e. simultaneous zeros of βBλ and βBg , beome moving

points. We will refer to a UV-attrative �moving NGFP� as running attrator [60℄.

One might think of suh a running attrator as a moving magnet: Starting at a given

point in the bakground oupling setor, its RG evolution is suh that it is trailed

behind the running attrator. If the running attrator approahes a �nite limit for

k → ∞, it �nally beomes an ordinary (i.e. nonmoving) UV �xed point.

4.5.1 Results for the linear parametrization

In this subsetion we quote a ouple of known results for the linear parametrization,

�rst obtained in Ref. [60℄. The hierarhy (4.66) of the oupling onstants, whih

was derived from very general arguments, is indeed found by an expliit alulation.
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Consequently, it is possible to solve the `Dyn' system �rst, selet a suitable trajetory,

and insert it into the `B' system.

The linear parametrization in d = 4 dimensions

We pik a `Dyn' trajetory whih is asymptotially safe in the UV, passes the viinity

of the Gaussian �xed point at lassial sales, and then runs towards large positive

values of the osmologial onstant in the IR. By the lassi�ation of Ref. [167℄, suh

a trajetory belongs to the type IIIa trajetories. The k-dependent solution,

k 7→ (λDynk , gDynk ), (4.67)

is inserted into the β-funtions of the bakground ouplings now, yielding an e�e-

tively nonautonomous system:

βBg ≡ βBg (g
B, k) ,

βBλ ≡ βBλ (λ
B, gB, k) .

(4.68)

The orresponding k-dependent vetor �eld with its ��xed points� is depited in

Figure 4.6. (All diagrams that belong to the bakground setor will be drawn in dark

yellow.) We show the vetor �eld at six di�erent values of t ≡ ln(k/k0) with some

referene sale k0. We observe that the running attrator, i.e. the moving �xed point,

exists at low sales, vanishes at an intermediate sale, and exists again at high sales,

in partiular for k → ∞. Note that the temporarily divergent running attrator

does not lead to divergent RG trajetories: Even though trajetories are attrated

by a point at in�nity at those potentially problemati RG times, the trajetories

themselves do not diverge sine this happens only during a �nite RG time interval.

Thus, all relevant trajetories stay in theory spae and approah a �nite point in

the limit k → ∞. We emphasize that the urve given by the position of the running

attrator is not an RG trajetory.

A similar piture is obtained if we hoose a type Ia trajetory (haraterized by

negative osmologial onstants in the IR, aording to the lassi�ation of Ref. [167℄)

in the `Dyn' setor and adapt the β-funtions in the `B' setor orrespondingly.

We have argued in (4.65) that bakground independene an be ahieved at the

sale k = 0 only if there is a suitable �xed point. It turns out that the moving �xed

point observed in Figure 4.6 has indeed the right properties.

10

Now, let us onsider

10

Note that the moving �xed point depends on the hoie of a suitable `Dyn' trajetory, here

seleted to be of type IIIa. In fat, type IIIa trajetories might run into the singularity line (if

present) at some positive value of λDyn suh that they would not possess a well de�ned infrared

limit. However, sine the singularity line is believed to be merely a trunation artifat (f. disussion

in the single-metri ase), it is assumed here as well as in Ref. [60℄ that trajetories extend to

(λDyn, gDyn) → (∞, 0) for k → ∞, i.e. the singularity at λDyn = 1/2 is ignored for a moment. In

this limit of the `Dyn' ouplings, the orresponding moving �xed point in the `B' setor has indeed

a �nite limit that serves as a �xed point at k = 0. To inrease the numerial reliability we stop the

RG evolution towards the IR at some small, �nite sale before getting too lose to the singularity,

though. Nonetheless, this is su�ient for showing the appliability of the mehanism in priniple.
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Figure 4.6 Flow diagrams of the bakground setor for the linear parametrization at several

�nite RG times t ≡ ln(k/k0). Horizontal axes show the bakground osmologial onstant,

λB, while vertial axes show the bakground Newton onstant, gB. There is a moving non-

Gaussian ��xed point� whose existene and position depends on the RG parameter t. This
��xed point� is found to exist in the infrared, for small values of t. At intermediate sales

it disappears for a moment of time, see �gure with t ≈ 3.1 (or, more preisely, it diverges,

jumps to negative gB, and jumps bak to positive gB). For large t it is present again, and
it approahes a stable value in the limit t → ∞. The diagram in the last �gure (t ≈ 3.5)
already agrees almost entirely with its �nal form at t→ ∞.

the bakground trajetory that starts preisely at the position of this running at-

trator in the IR. What happens if the RG sale inreases now? From Figure 4.6

we know that the running attrator moves away. Being UV-attrative it trails the

starting point under onsideration, where the resulting RG trajetory is given by

urve of this trailed point. At all �nite sales, the point lags behind the running

attrator. Finally, they both approah a ommon �xed point in the limit k → ∞.

In this manner, we obtain a trajetory that satis�es the requirement for bakground

independene in the IR and is asymptotially safe in the UV.

This situation is illustrated in Figure 4.7. It shows the vetor �eld in the bak-

ground setor at k → ∞ and the RG trajetory (gray) that starts at the IR position

of the running attrator and ends at its k → ∞ position (w.r.t. the inverse RG �ow).

The main result of Ref. [60℄ an be summarized as follows: For any appropriate

hoie of initial onditions in the 'Dyn' setor there exists a unique trajetory in the

'B' setor that omplies with the requirements for both bakground independene and

Asymptoti Safety. This statement is independent of the hosen uto� funtion.
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Underlying 'Dyn'

trajetory

Figure 4.7 Vetor �eld for the bakground ouplings at k → ∞ and RG trajetory (gray

urve) that is asymptotially safe in the UV and restores split symmetry in the IR (left

�gure), and the underlying trajetory in the 'Dyn' setor (right �gure), based on the linear

parametrization and the optimized uto� in d = 4. Note that the marked RG trajetory in

the `B' diagram omprises all RG sales from the IR (red point) to the UV (blue point),

while the vetor �eld is in its �nal state in the UV limit.

The linear parametrization in d = 2+ ε dimensions

As an interesting supplement to the single-metri results in 2 + ε dimensions we

would like to disuss the bimetri ase now. Note that the following results deviate

from those of Ref. [60℄ whih did not take into aount that λDyn∗ is of the order ε.

Although we employ the same set of equations for the β-funtions in d dimensions

as in Ref. [60℄, we arefully keep trak of all potential appearanes of ε.

A numerial analysis based on the optimized uto� shows that there exists an

NGFP in d = 2 + ε whose oordinates are of the order ε :

gDyn∗ = O(ε) , λDyn∗ = O(ε) , (4.69)

gB∗ = O(ε) , λB∗ = O(ε) . (4.70)

Thus, in the viinity of the NGFP all ouplings satisfy gDyn, λDyn, gB, λB = O(ε).
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For an analytial alulation it is onvenient to introdue the normalized ouplings

gDynk ≡ g̊Dynk ε , λDynk ≡ λ̊Dynk ε , (4.71)

gBk ≡ g̊Bk ε , λBk ≡ λ̊Bk ε , (4.72)

where g̊Dynk , λ̊Dynk , g̊Bk and λ̊Bk are of the order O(ε0). Inserting these relations into

the β-funtions and expanding in terms of ε, the relevant order in the `Dyn' setor

reads

βDyng = g̊Dyn



4 g̊Dyn

[
5 + 6λ̊Dyn

(
12Φ3

1(0)− 24Φ4
2(0) − 1

)]

24 g̊Dyn
(
Φ̃2
1(0)− 2 φ̃32(0)

)
+ 3

+ 1


 ε2 +O(ε3) ,

(4.73)

βDynλ =
(
20 g̊Dyn Φ2

2(0) − 2̊λDyn
)
ε+O(ε2) . (4.74)

The β-funtions in the bakground setor are not stated here in general, but in a

moment we speify the result for the optimized shape funtion instead. We would like

to point out that the β-funtions of the two Newton ouplings are of the same form

as in the single-metri ase: βDyng = εgDyn − bDyn(gDyn)2 and βBg = εgB − bB(gB)2,

respetively, up to higher orders. Sine they ontain uto� dependent threshold

funtions, all β-funtions are nonuniversal.

Solving the system

{
βDynλ = 0, βDyng = 0

}
yields the �xed point values g̊Dyn∗ and

λ̊Dyn∗ . For the oe�ient bDyn this leads to

bDyn = −
4
[
5 + 6 λ̊Dyn∗

(
12Φ3

1(0)− 24Φ4
2(0)− 1

)]

3 + 24 g̊Dyn∗
(
Φ̃2
1(0) − 2 Φ̃3

2(0)
) , (4.75)

together with λ̊Dyn∗ = 10 g̊Dyn∗ Φ2
2(0) and g̊

Dyn

∗ = 1/bDyn. By eliminating both ou-

plings we obtain a quadrati equation with two possible solutions for bDyn. For the

optimized uto� the �rst solution is given by

bDyn ≈ −34.45

3
, bB ≈ 72.45

3
, (4.76)

while the seond solution reads

bDyn ≈ 10.45

3
, bB ≈ 27.55

3
. (4.77)

A general onsideration shows that the sum of bDyn and bB must agree with

the oe�ient b ≡ bsm from the orresponding single-metri omputation: Setting

gµν = ḡµν in (4.61) to projet onto the single-metri trunation we see that the only

remaining Einstein�Hilbert term � the term from whih bsm an be read o� � is

now proportional to

(
1

GDyn

k

+ 1
GB

k

)
. Sine the b-oe�ients are proportional to

1

GDyn

k

,

1
GB

k

and

1
Gsm

k
, respetively, in 2 + ε dimensions, we onlude that

bDyn + bB = bsm . (4.78)
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Using (4.76) and (4.77) we �nd indeed

bDyn + bB =
38

3
, (4.79)

for both solutions, in perfet agreement with the single-metri result of Setion 4.3.2.

4.5.2 Results for the exponential parametrization

In this subsetion we investigate the same bimetri trunation as above, eq. (4.61),

but now we employ the exponential parametrization. The orresponding β-funtions

are derived in detail in Appendix G.3. We �nd the same hierarhial struture of

ouplings in the β-funtions as for the linear parametrization. Again, this enables us

to solve the `Dyn' system �rst and insert a `Dyn' solution into the β-funtions of the

bakground ouplings. This way, we obtain a nonautonomous system of evolution

equations for the `B' setor, whih is analyzed similarly to the previous subsetion.

As the threshold funtions appearing in the β-funtions (G.52) � (G.56) are of the

form Φp
n(−µλDyn) with µ ≡ 2d

d−2 > 2 (rather than Φp
n(−2λDyn) as for the linear

parametrization), we expet that the singularity line in the `Dyn' setor is shifted to

smaller values of λDyn this time.

The exponential parametrization in d = 4 dimensions

We aim at proving the existene of asymptotially safe trajetories that respet the

priniple of bakground independene by restoring split-symmetry in the infrared.

To this end we try again to pik a type IIIa `Dyn' trajetory (i.e. a trajetory that

emanates from a UV �xed point and runs towards either large positive values of λDyn

or a singularity at positive λDyn in the IR) whih has a su�iently extended lassial

regime, that is, whih passes the viinity of the Gaussian �xed point. It turns out

that the existene of suh trajetories depends on the hosen uto� shape, like in the

single-metri ase disussed in Setion 4.3.4. Consequently, the resulting RG �ow

in the bakground setor is disussed only if we sueed in �nding a suitable `Dyn'

trajetory.

(1) Optimized uto�. An evaluation of the β-funtions in the 'Dyn' setor gives

rise to the �ow diagram displayed in Figure 4.8. We disover a non-Gaussian �xed

point, but it is rather lose to the singularity line. As a onsequene, all trajetories

emanating from this �xed point will hit the singularity after a short period of RG

time. It is impossible to �nd suitably extended trajetories: they do not pass the

lassial regime, and they never ome lose to an aeptable infrared limit. For this

reason, it is pointless to investigate the possibility of split-symmetry restoration here.

Although the bakground setor exhibits a UV-attrative NGFP, too, owing to the

lak of an appropriate infrared regime we refrain from showing vetor �elds for the

bakground ouplings.
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Figure 4.8 Flow diagram of the 'Dyn' ouplings in d = 4 based on the exponential

parametrization and the optimized uto�. The green arrows indiate that eah trajetory

that emanates from the NGFP (blue dot) �nally runs into the (red, dashed) singularity line

before it ould ever pass the viinity of the Gaussian �xed point. Note also that the NGFP

is UV-attrative, so there is no suh limit yle as in the single-metri ase.

We emphasize, however, that the inability to establish bakground independene

in the IR is not a �aw of the exponential parametrization or the very mehanism, but

it is merely due to the loser singularity line. Sine the singularity line is believed

to disappear one the trunation is su�iently enlarged, we expet that the above

method of restoring split-symmetry beomes appliable after all.

(2) Exponential uto�. We �nd the same qualitative piture as in Figure 4.8

whih was based upon the optimized uto�. The exponential uto� brings about a

UV-attrative non-Gaussian �xed point for both `Dyn' and `B' ouplings. However,

there are no trajetories that extend to a suitable infrared region sine they run

into the singularity line. Thus, we do not disuss the possibility of restoration of

bakground independene either.

(3) Sharp uto�. The β-funtions of the 'Dyn' ouplings lead to a Gaussian and

a non-Gaussian �xed point, the latter being UV-attrative. We observe that βDynλ is

proportional to λDyn, so `Dyn' trajetories annot ross the line at λDyn = 0. Still,
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Figure 4.9 Flow diagrams of the bakground setor for the exponential parametrization at

several �nite RG times t ≡ ln(k/k0). Again, horizontal (vertial) axes show λB (gB). As

in Figure 4.6 we observe a moving, UV-attrative non-Gaussian �xed point whose existene

and position depends on the RG parameter t. In the last �gure (t ≈ 3.5) the �ow diagram

has almost onverged to its �nal form at t→ ∞.

there are trajetories that onnet the NGFP to the lassial regime, omparable

with the ones found for the linear parametrization. One suh a `Dyn' trajetory is

hosen, the k-dependent solution k 7→ (λDynk , gDynk ) is inserted into the β-funtions

of the bakground setor, serving as a basis for further analyses of the orresponding

RG �ow. Similar to Subsetion 4.5.1, we obtain a vetor �eld in the (λB, gB)-spae

whih varies with the RG sale. The result is shown in Figure 4.9 at several values

of t ≡ ln(k/k0).

In this way, we unover the same running attrator mehanism as for the linear

parametrization, based on a moving, UV attrative non-Gaussian �xed point. In

order to ahieve bakground independene in the IR we hoose the unique trajetory

in the bakground setor whih �starts� (w.r.t. the inverse RG �ow) at the IR position

of the moving �xed point.

11

This trajetory remains �nite for all sales k, and in the

limit k → ∞ it approahes the �end position� of the running attrator. In Figure

4.10 we show the graph of this trajetory (pertaining to all sales from the IR to the

11

As in Ref. [60℄ we assume that the limit k → 0 exists in order to demonstrate the priniple of

the mehanism. Due to the singularity line in the `Dyn' setor, we do not �start� at k = 0, though,
but rather at some �nite IR sale.
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Underlying 'Dyn'

trajetory

Figure 4.10 Vetor �eld for the bakground ouplings at k → ∞ and RG trajetory that is

asymptotially safe in the UV and restores split-symmetry in the IR (left �gure), and under-

lying trajetory in the 'Dyn' setor (right �gure), based on the exponential parametrization

and the sharp uto� in d = 4.

UV) as well as the �nal state of the `B' vetor �eld at the sale k → ∞.

Even though the urve of the marked trajetory in Figure 4.10 has a di�erent

form as ompared with the one in Figure 4.7, it has the same essential properties.

In partiular, it restores split-symmetry in the infrared and is asymptotially safe at

the same time, making it an eligible andidate for de�ning a fundamental theory of

gravity.

To summarize, the possibility to ahieve bakground independene seems to de-

pend in a ruial way on the underlying uto� shape funtion if the exponential

parametrization is used. This uto� dependene, however, is merely due to the un-

physial singularity line in the dynamial oupling setor, f. also Setion 4.3.6. We

have demonstrated by means of a sharp uto� that the split-symmetry restoration

mehanism works in priniple for the exponential parametrization, as it did for the

linear parametrization.
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The exponential parametrization in d = 2+ ε dimensions

Finally, let us disuss β-funtions and �xed points in 2 + ε dimensions. For the

exponential parametrization a numerial analysis based on eqs. (G.52) � (G.56) re-

veals the somewhat unusual situation that λDyn∗ is of the order ε2. The remaining

ouplings, on the other hand, are again of the order ε at the NGFP, so we have

gDyn∗ = O(ε) , λDyn∗ = O(ε2) , (4.80)

gB∗ = O(ε) , λB∗ = O(ε) . (4.81)

Consequently, for an analytial alulation in the viinity of the NGFP we must set

gDynk ≡ g̊Dynk ε , λDynk ≡ ˚̊
λDynk ε2 , (4.82)

gBk ≡ g̊Bk ε , λBk ≡ λ̊Bk ε , (4.83)

where g̊Dynk ,

˚̊
λDynk , g̊Bk and λ̊Bk are of the order O(ε0). When inserting this into the

β-funtions and expanding in terms of ε as in Setion 4.5.1 we obtain

βDyng = g̊Dyn

(
16 g̊Dyn

˚̊
λDyn

3
+ 1

)
ε2 +O(ε3), (4.84)

βDynλ =
˚̊
λDyn

(
8 g̊Dyn − 2

)
ε2 +O(ε3), (4.85)

in the `Dyn' setor, and

βBg = g̊B
(
1− 38

3
g̊B
)
ε2 +O(ε3), (4.86)

βBλ = −2
(
g̊B Φ1

1(0) + λ̊B
)
ε+O(ε2), (4.87)

in the `B' setor, where we have already evaluated those threshold funtions that are

independent of the uto� (f. App. D). Note that eqs. (4.84) � (4.86) are ompletely

uto� independent, giving rise to universal �xed point values and oe�ients bDyn

and bB, de�ned by βDyng = εgDyn−bDyn(gDyn)2 and βBg = εgB−bB(gB)2, respetively,
up to higher orders. By the relations bDyn = 1/̊gDyn∗ and bB = 1/̊gB∗ we obtain the

universal result

bDyn =
12

3
and bB =

38

3
. (4.88)

As a test, we onvine ourselves that the sum of these oe�ients equals the

result of the single-metri omputation, aording to the general rule (4.78). We

�nd

bDyn + bB =
50

3
, (4.89)

in agreement with the single-metri number based on the exponential parametriza-

tion, derived in Setion 4.3.5.
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It is highly remarkable that the bakground oe�ient bB of the bimetri truna-

tion with the exponential parametrization equals preisely the oe�ient bsm of the

single-metri omputation based on the linear parametrization:

12 bB = bsm = 38/3.

4.6 Summarizing remarks

In this hapter we have investigated the properties of the nonstandard exponential

metri parametrization, in partiular with regard to the RG �ow, and ompared

the results with the standard linear parametrization. We onlude with a ouple of

general omments.

(1) When inserting the exponential relation gµν = ḡµρ(e
h)ρν into the lassial

Einstein�Hilbert ation and expanding in orders of hµν we obtain

SEH[g] = SEH
[
ḡeḡ

−1h
]
= SEH

[
ḡ + h+O(h2)

]

= SEH[ḡ] +

∫
d

dx
δSEH

δgµν(x)
hµν(x) +O(h2).

(4.90)

Thus, the equations of motion are given by those of the linear parametrization,

δSEH

δhµν

∣∣∣∣
g=ḡ

=
δSEH

δgµν

∣∣∣∣
g=ḡ

=
1

16πG

(
Ḡµν + ḡµνΛ

)
= 0 , (4.91)

i.e. the two parametrizations give rise to equivalent theories at the lassial level. It

is only the quantum theory that might reveal the di�erenes.

(2) Sine gµν = ḡµν + hµν and gµν = ḡµρ(e
h)ρν parametrize di�erent objets (arbi-

trary signature tensor �elds and pure metris, respetively), we expet that they give

rise to di�erent quantum theories or that they desribe di�erent universality lasses.

First evidene for this expetation is provided by our studies of β-funtions and �xed

points in Setions 4.3 and 4.5. Most notably, we have alulated the gravitational

entral harge in d = 2 + ε dimensions: For pure gravity, the linear parametrization

gives rise to c
grav

= 19, while the exponential parametrization reprodues the result

known from onformal �eld theory, c
grav

= 25.

(3) We have explained in Setion 4.4 why the exponential parametrization is parti-

ularly appropriate in d = 2+ ε dimensions: In a onformally redued setting there is

12

The reason for this result is rather tehnial and an be traed bak to a surprising interplay of

the onformal projetion and the exponential parametrization. Like the fat that the exponential

parametrization in a single-metri trunation gives rise to additional terms as ompared with the

linear parametrization, the higher levels of a onformally projeted bimetri trunation represent

additional terms, too. In d = 2 + ε dimensions, the additional terms have the same e�et in both

ases (due to the similarity of the relations gµν = ḡµρ(e
h)ρν and gµν = ḡµν e

2Ω
). Conerning the

bimetri ase, it is only the oe�ient bDyn that ontains the additional terms sine it is derived

from the level Ω1
in the onformal projetion proess. By eq. (4.78) we have bB = bsm − bDyn,

so we subtrat the additional terms from the full single-metri result (based on the exponential

parametrization). Hene, this di�erene equals preisely the single-metri oe�ient for the linear

parametrization.
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a way of parametrizing the onformal fator whih is distinguished in that gives rise

to the most natural quadrati form of the kineti term in the ation, and whose 2D

limit generates the desired exponential. Sine the onformal redution agrees with

the exat theory in 2 dimensions, the speial status of exponentials in/near 2D is

onjetured to hold more general, inluding the �nonredued� ase.

(4) The role of Newton's onstant is hanged for the exponential parametrization.

This an be understood as follows. In order to identify the Newton oupling Gk

with the strength of the gravitational interation in the linear parametrization, one

usually resales the �utuations hµν suh that

gµν = ḡµν +
√

32πGk hµν . (4.92)

In this way, the kineti term for hµν does not ontain any ontribution from Gk, while

eah gravitational vertex whih has n legs is assoiated with the fator (
√
32πGk )

n−2
.

For the exponential parametrization we an onsider a similar resaling of hµν , lead-

ing to the same fator appearing in the n-point funtions. The di�erene resides in

the fat that there are new terms and strutures in Γ
(n)
k when using the exponential

parametrization. As already indiated in equation (4.12), these additional ontri-

butions to eah vertex are due to the hain rule. Hene, the Newton onstant is

assoiated to di�erent terms in the n-point funtions.

(5) For the exponential parametrization results depend to a larger extent on the

uto� shape funtion. It is somewhat unexpeted that the sharp uto� leads to the

most onvining results. We have argued, however, that this uto� dependene is

mainly due to the loser distane between the singularity line and the NGFP. Slight

modi�ations of the setting may solve the issue. (a) The nonlinear relation for the

metri might attah more importane to the trunated higher order terms. More

general trunations might shift or even remove the singularity suh that we obtain a

learer piture. (b) In the terminology of Ref. [11℄, our alulations are based on a

type I uto�. As has been argued in Ref. [93℄, in a few situations it is only the type

II uto� that leads to orret physial results, whereas the type I uto� does not,

an example being the presene of a limit yle (f. Se. 4.3.4). () In Setion 4.3.6

we reviewed a ouple of arguments that already minor modi�ations in the gauge,

or (d) in the hoie of basi �eld variables (�eld rede�nition), lead to onsiderably

more reliable results.

(6) After all, the answer to the question whih parametrization should be used

depends on the desired appliation and on whih other approah the alulation is

to be ompared with.





5
The 2D limit of the

Einstein�Hilbert ation

Exeutive summary

Classial gravity is most onveniently desribed by the Einstein�Hilbert ation,

and we have previously disussed the signi�ane of the Einstein�Hilbert truna-

tion,

1
16πGk

∫
d

dx
√
g (−R+2Λk), for the quantum theory. In d = 2 dimensions,

however, the term

∫
d

dx
√
g R beomes a topologial invariant. Being indepen-

dent of the metri and thus not giving rise to any equations of motion, it does

no longer seem to de�ne an appropriate ation. On the other hand, we showed

in Chapter 4 that the Newton oupling in d = 2+ε dimensions is of the order ε.

Hene, the prefator

1
Gk

attahes an inreasing weight to

∫
d

2+εx
√
g R. Loosely

speaking, the ation beomes more and more trivial, while its prefator makes

it more and more important. In this hapter we show that

1
ε

∫
d

2+εx
√
g R a-

tually approahes a nontrivial, �nite limit as ε → 0. It onsists of Polyakov's

indued gravity ation,

∫
d

2x
√
g R�−1R, as well as purely topology dependent

ontributions. Hene, the loal Einstein�Hilbert ation has turned into a non-

loal ation in the limit. Our disussion inludes a onsideration of zero modes

of the Laplaian whih beome ruial for terms involving �−1
.

What is new? The method of establishing the 2D limit of the Einstein�Hilbert

ation (Ses. 5.2 & 5.3); taking into aount zero modes (Se. 5.2.3 & App. H.2).

Based on: Ref. [34℄.

In the previous hapter we studied the properties of the oupling onstants,

their RG evolution and, in partiular, their behavior near two dimensions. Up to

this point, however, we have not disussed what happens in the 2D limit to the

underlying ation itself. Does it hange? If so, does it remain �nite? Is it still an



112 Chapter 5. The 2D limit of the Einstein�Hilbert ation

appropriate ation? In order to approah these questions, we again start out from

the Einstein�Hilbert trunation of the EAA in d = 2 + ε > 2 dimensions,

Γgravk [g] =
1

16πGk

∫
d

dx
√
g
(
−R+ 2Λk

)
. (5.1)

As shown in the preeding hapter, the dimensionless ouplings, gk ≡ Gkk
d−2 =

Gkk
ε
and λk ≡ k−2Λk, are of the order ε in the viinity of the non-Gaussian �xed

point, leading to Gk ∝ ε and Λk ∝ ε, respetively. (It an be argued that a similar

relation should hold for the lassial Newton onstant, too [189℄: G ∝ ε.) Hene,

the pure volume part of the ation,

Λk
8πGk

∫
d

2+εx
√
g , remains �nite and well de�ned

in the limit ε → 0. It is the urvature part of Γgravk , though, that requires a loser

inspetion. In what follows, we investigate the nature of its ε→ 0 limit, and �nally

onstrut a manifestly 2-dimensional ation whih desribes 2D Asymptoti Safety

without reverting to �higher� dimensions in any way.

In exatly 2 dimensions the Gauss�Bonnet theorem states that the integral of the

salar urvature,

∫
d

2x
√
g R, is a purely topologial term,

∫

M
d

2x
√
g R = 4π χ(M) , (5.2)

where χ denotes the Euler harateristi, a topologial invariant that measures the

number of handles of the manifold M . In partiular, it is independent of the metri

and does not imply any loal dynamis. Thus, one might expet that the urvature

part of (5.1) beomes trivial when d approahes 2. However, the 1/ε pole entailed

by the prefator 1/Gk gives so muh weight to

∫
d

2+εx
√
g R that the limit ε→ 0 in

fat remains nontrivial. Making sense of this limit requires some kind of generalized

L'H�pital's rule.

We will present a new argument in this hapter showing that the (loal) Einstein�

Hilbert ation turns into a nonloal ation in the limit d → 2 whose most essential

part is given by Polyakov's indued gravity ation.

Our proof will on�rm reurring speulation [81℄ that the indued gravity ation

is the natural 2-dimensional analogue of the Einstein�Hilbert ation in d > 2 as

both ations determine �eld equations for the metri in their respetive spaetime

dimension. Here we go one step further, though: We do not require that one ation

has to be replaed by the other one when swithing between d = 2 and d > 2. The

idea is rather to say that there is only one ommon origin, the Einstein�Hilbert ation

in a general dimension d, and that the indued gravity ation emerges automatially

when d approahes 2.

It is this latter 2D ation, analyzed at the NGFP, that establishes the ontat

between the Asymptoti Safety studies within the Einstein�Hilbert trunation and

2-dimensional onformal �eld theory. In Chapter 6 it will form the basis of our

investigations onerning entral harges and unitarity.

We start by reviewing the speial role of self-onsistent bakgrounds in Setion

5.1. In partiular, we re-interpret the e�etive Einstein equation as a tadpole ondi-
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tion and the trae of the stress-energy tensor due to metri �utuations as a kind of

lassial �trae anomaly�. Here, all alulations are performed in 2 + ε dimensions,

and the 2D limit is taken at the very end only. This leads us to the question if the

same trae anomaly ould be obtained when starting out from a stritly 2D ation.

The answer to this question will be given in Setion 5.2 where we ompute the 2D

limit of the Einstein�Hilbert ation at the NGFP and argue that it results indeed

in an ation with the sought-for properties. Details of the omputation, inluding

various useful identities for Weyl transformations and a thorough disussion of the

indued gravity ation in the presene of zero modes, are given in Appendix H.

5.1 The 2D limit at the level of the gravitational

stress-energy tensor

In this preparatory setion we ollet a number of results onerning the imple-

mentation of bakground independene in the EAA framework whih atually does

employ (unspei�ed) bakground �elds, f. Se. 2.1.4. In partiular, we introdue

the energy-momentum tensor of metri �utuations in a bakground, as well as an

assoiated �trae anomaly�. The latter will be used in Chapter 6 in order to identify

the onformal �eld theory at the heart of Asymptoti Safety in 2 dimensions.

5.1.1 The e�etive Einstein equation re-interpreted

Let us onsider a generi e�etive average ation Γk[Φ, Φ̄] ≡ Γk[ϕ; Φ̄] involving a

multiplet of dynamial �elds

〈
Φ̂i
〉
≡ Φi

, assoiated bakground �elds Φ̄i
, and �u-

tuations ϕi ≡ 〈ϕ̂i〉 = Φi − Φ̄i
.

1

The e�etive average ation implies a soure ↔ �eld

relationship whih ontains an expliit uto� term linear in the �utuation �elds:

1√
ḡ

δΓk[ϕ; Φ̄]

δϕi(x)
+Rk[Φ̄]ij ϕ

j(x) = Ji(x) . (5.3)

By de�nition, self-onsistent bakgrounds are �eld on�gurations Φ̄(x) ≡ Φ̄s

k (x)

whih allow ϕi = 0 to be a solution of (5.3) with Ji = 0. A self-onsistent bakground

is partiularly �liked� by the �utuations, in the sense that they leave it unaltered

on average: 〈Φ̂〉 = Φ̄ + 〈ϕ̂〉 = Φ̄s

k . These speial bakgrounds are determined by the

tadpole ondition 〈ϕ̂i〉 = 0, whih reads expliitly

δ

δϕi(x)
Γk[ϕ; Φ̄]

∣∣∣
ϕ=0, Φ̄=Φ̄s

k

= 0 . (5.4)

Equivalently, in terms of the full dynamial �eld,

δ

δΦi(x)
Γk[Φ, Φ̄]

∣∣∣
Φ=Φ̄=Φ̄s

k

= 0 . (5.5)

1

For the sake of argument we onsider a linear �eld parametrization here. A generalization to

arbitrary parametrizations, Φi = Φi[ϕ; Φ̄], i.e. ϕi ≡ 〈ϕ̂i〉 = ϕi[Φ, Φ̄], is straightforward, f. Se. 3.6.
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Here, we onsider ations of the speial type

Γk[g, ξ, ξ̄, A, ḡ] = Γgravk [g, ḡ] + Γmk [g,A, ḡ] + Γgfk [g, ḡ] + Γghk [g, ξ, ξ̄, ḡ]. (5.6)

These funtionals inlude a purely gravitational piee, Γgravk , furthermore a (for the

time being) generi matter ation Γmk , as well as gauge �xing and ghost terms, Γgfk
and Γghk , respetively. Conerning the latter, only the following two properties are

needed at this point: (i) The hµν -derivative of the gauge �xing funtional Γ
gf

k [h; ḡ] ≡
Γgfk [ḡ + h, ḡ] vanishes at hµν = 0. This is the ase, for example, for lassial gauge

�xing terms Sgf ∝
∫
(Fh)2 whih are quadrati in hµν . (ii) The funtional Γghk is

ghost number onserving, i.e. all terms ontributing to it have an equal number of

ghosts ξµ and antighosts ξ̄µ. Again, lassial ghost kineti terms ∝
∫
ξ̄Mξ are of

this sort.

Thanks to these properties, Γgfk drops out of the tadpole equation (5.5), and it

follows that ξ = 0 = ξ̄ is always a onsistent bakground for the Faddeev�Popov

ghosts. Adopting this bakground for the ghosts, (5.5) boils down to the following

onditions for self-onsistent metri and matter �eld on�gurations ḡsk and Ās

k ,

respetively:

0 =
δ

δgµν(x)

{
Γgravk [g, ḡ] + Γmk [g, Ā

s

k , ḡ]
}∣∣∣

g=ḡ=ḡsk

, (5.7)

0 =
δ

δA(x)
Γmk [g,A, ḡ]

∣∣∣
g=ḡ=ḡsk , A=Ās

k

. (5.8)

Introduing the stress-energy (energy-momentum) tensor of the matter �eld,

Tm[ḡ, A]µν(x) ≡ 2√
ḡ(x)

δ

δgµν(x)
Γmk [g,A, ḡ]

∣∣∣
g=ḡ

, (5.9)

the �rst ondition, equation (5.7), beomes

0 =
2√
ḡ(x)

δ

δgµν(x)
Γgravk [g, ḡ]

∣∣∣
g=ḡ=ḡsk

+ Tm[ḡsk , Ā
s

k ]
µν(x). (5.10)

This relation plays the role of an e�etive gravitational �eld equation whih, to-

gether with the matter equation (5.8), determines ḡsk and Ās

k . Struturally, eq.

(5.10) is a generalization of the lassial Einstein equation to whih it redues if

Γgravk [g, ḡ] ≡ Γgravk [g] happens to have no �extra ḡ-dependene� [52℄ and to oinide

with the Einstein�Hilbert ation; then the δ/δgµν -term in (5.10) is essentially the

Einstein tensor Gµν .

In this very speial bakground-free ase we reover the familiar setting of lassial

General Relativity where there is a lear logial distintion between matter �elds and

the metri, meaning the full one, gµν , while none other appears in the fundamental

equations then. It is ustomary to express this distintion by putting Gµν on the

LHS of Einstein's equation, the side of gravity, and Tm

µν on the RHS, the side of

matter.
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In the e�etive average ation approah where, for both deep oneptual and

tehnial reasons [52,60℄, the introdution of a bakground is unavoidable during the

intermediate alulational steps, this ategorial distintion of matter and gravity,

more preisely, matter �elds and metri �utuations, appears unmotivated. It is

muh more natural to think of hµν as a matter �eld whih propagates on a bak-

ground spaetime furnished with the metri ḡµν .

Adopting this point of view, we interpret the δ/δgµν -term in (5.10) as the energy-

momentum tensor of the hµν -�eld, and we de�ne

T grav[ḡ]µν(x) ≡ 2√
ḡ(x)

δ

δgµν(x)
Γgravk [g, ḡ]

∣∣∣
g=ḡ

=
2√
ḡ(x)

δ

δhµν(x)
Γgravk [h; ḡ]

∣∣∣
h=0

.

(5.11)

The tadpole equation (5.10) turns into an Einstein equation with zero LHS then:

0 = T grav

µν

[
ḡsk
]
+ Tm

µν

[
ḡsk , Ā

s

k

]
. (5.12)

It states that for a bakground to be self-onsistent, the total energy-momentum

tensor of matter and metri �utuations, in this bakground, must vanish. (In the

general ase there ould also be a ontribution from the ghosts.)

5.1.2 The stress-energy tensor of the hµν-�utuations

Note that in general, T grav

µν is not onserved, D̄µT
grav[ḡ]µν 6= 0, sine due to the

presene of two �elds in Γgravk the standard argument does not apply. Of ourse,

it is onserved in the speial ase Γgravk [g, ḡ] ≡ Γgravk [g] when there is no extra ḡ-

dependene.

For example, hoosing Γgravk [g] to be the single-metri Einstein�Hilbert funtional

(5.1), the orresponding energy-momentum tensor of the hµν -�utuations is given by

the divergene-free expression

T grav

µν [ḡ] =
1

8πGk

(
Ḡµν + Λk ḡµν

)
, (5.13)

with Ḡµν the Einstein tensor built from ḡµν . The trae of the energy-momentum

tensor (5.13) reads

Θk[ḡ] ≡ ḡµν T grav

µν [ḡ] =
1

16πGk

[
− (d− 2)R̄ + 2dΛk

]
, (5.14)

where R̄ ≡ R(ḡ). A remarkable feature of this trae is that it possesses a ompletely

well de�ned, unambiguous limit d → 2 if Gk and Λk are of �rst order in ε = d − 2.

In terms of the �nite quantities G̊k ≡ Gk/ε and Λ̊k ≡ Λk/ε whih are of the order

ε0, we have

Θk[ḡ] =
1

16πG̊k

[
− R̄+ 4Λ̊k

]
+O(ε)

=
1

16πg̊k

[
− R̄+ 4k2 λ̊k

]
+O(ε).

(5.15)
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In the seond line of (5.15) we exploited that in exatly two dimensions the dimen-

sionful and dimensionless Newton onstant are equal, so gk = Gk and g̊k = G̊k,

while, as always, λk ≡ Λk/k
2
, hene λ̊k = Λ̊k/k

2
.

When the underlying RG trajetory is in the NGFP saling regime, the dimen-

sionless ouplings are sale independent, and

ΘNGFP

k [ḡ] =
1

16πg̊∗

[
− R̄+ 4λ̊∗k

2
]
. (5.16)

Using the representation g∗ ≡ ε/b as in Chapter 4 and Refs. [4, 60, 83, 190�192℄ we

obtain

ΘNGFP

k [ḡ] =
(
3
2b
) 1

24π

[
− R̄+ 4λ̊∗k

2
]
. (5.17)

Here and in the following, we onsider Θk and ΘNGFP

k as referring to exatly 2

dimensions, in the sense that the limit has already been taken, and we omit the

�O(ε)� symbol.

5.1.3 The intrinsi desription in exatly 2 dimensions

In this hapter we would like to desribe the limit d → 2 of Quantum Einstein

Gravity (QEG) in an intrinsially 2-dimensional fashion, that is, in terms of a new

funtional Γgrav,2Dk whose arguments are �elds in stritly 2 dimensions, and whih no

longer makes referene to its �higher� dimensional origin. Sine the Einstein�Hilbert

term is purely topologial in exatly d = 2, it is lear that the sought-for ation must

have a di�erent struture.

(1) One of the onditions whih we impose on Γgrav,2Dk is that it must reprodue the

trae Θk omputed in d > 2, sine we saw that this quantity has a smooth limit with

an immediate interpretation in d = 2 exatly:

2gµν
δ

δgµν
Γgrav,2Dk [g, ḡ]

∣∣∣
g=ḡ

=
√
ḡΘk[ḡ]. (5.18)

Furthermore, if Γgravk is a single-metri ation, we assume that Γgrav,2Dk ≡ Γgrav,2Dk [g]

has no extra ḡ-dependene either. The ondition (5.18) �xes its response to an

in�nitesimal Weyl transformation then:

2gµν(x)
δ

δgµν(x)
Γgrav,2Dk [g] ≡ δ

δσ(x)
Γgrav,2Dk

[
e2σg

]∣∣∣
σ=0

=
√
g(x) Θk[g](x). (5.19)

For the example of the Einstein�Hilbert trunation, Θk is of the form

Θk[g] = a1(−R+ a2), (5.20)

with onstants a1, a2 whih an be read o� from (5.15) � (5.17) for the various ases.

(2) It is well known how to integrate equation (5.19) in the onformal gauge [162℄.

By setting

gµν(x) = e2φ(x) ĝµν(x), (5.21)
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with a �xed referene metri ĝµν (oneptually unrelated to ḡµν), one for eah topo-

logial setor, and taking advantage of the identities listed in Appendix H, eq. (5.19)

with (5.20) is turned into

δ

δφ(x)
Γgrav,2Dk

[
e2φ ĝ

]
= a1

√
ĝ(x)

[
2D̂µD̂

µφ(x)− R̂(x) + a2 e
2φ(x)

]
. (5.22)

The general solution to this equation is easy to �nd:

Γgrav,2Dk

[
e2φ ĝ

]
= ΓLk [φ; ĝ] + Uk[ĝ]. (5.23)

Here Uk is a ompletely arbitrary funtional of ĝ, independent of φ, and ΓLk denotes

the Liouville ation [193℄:

ΓLk [φ; ĝ] = (−2a1)

∫
d

2x
√
ĝ

(
1

2
D̂µφD̂

µφ+
1

2
R̂φ− a2

4
e2φ
)

= (−2a1)∆I[φ; ĝ] +
1

2
a1a2

∫
d

2x
√
ĝ e2φ .

(5.24)

In the last line we employed the normalized funtional

∆I[φ; g] ≡ 1

2

∫
d

2x
√
g
(
DµφD

µφ+Rφ
)
. (5.25)

While this method of integrating the trae �anomaly� applies in all topologial

setors, it is unable to �nd the funtional Uk[ĝ]. Usually, in onformal �eld theory

or string theory this is not muh of a disadvantage, but in quantum gravity where

bakground independene is a pivotal issue it is desirable to have a more omplete

understanding of Γgrav,2Dk . For this reason, we next disuss the possibility to take

the limit ε→ 0 diretly at the level of the ation.

5.2 How the indued gravity ation emerges from the

Einstein�Hilbert ation

In this setion we reveal a mehanism whih allows us to regard Polyakov's indued

gravity ation in 2 dimensions as the ε → 0 limit of the Einstein�Hilbert ation in

2 + ε dimensions. (Here and in the following we always onsider the ase ε > 0, i.e.

the limit εց 0.) This will on�rm the point of view that the indued gravity ation

is fundamental in desribing 2-dimensional gravity, while it is less essential for d > 2

where gravity is governed mainly by an (e�etive average) ation of the Einstein�

Hilbert type. The dimensional limit exhibits a disontinuity at d = 2, produing a

nonloal ation out of a loal one.

(1) The ruial ingredient for a nontrivial limit ε→ 0 is a prefator of the Einstein�

Hilbert ation proportional to 1/ε. This ours whenever the Newton onstant is
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proportional to ε. As mentioned previously, suh a behavior was found in the Asymp-

toti Safety related RG studies, whih showed the existene of a non-Gaussian �xed

point with a Newton onstant of the order ε; a result that is independent of the

underlying regularization sheme and parametrization, and that is found in both

perturbative and nonperturbative investigations.

In Chapter 7 we will see that this property holds not only for the e�etive, but

also for the bare ation: Using an appropriate regularization presription the bare

Newton onstant is of �rst order in ε, too.

This is our motivation for onsidering a generi Einstein�Hilbert ation with a

Newton onstant proportional to ε. For the disussion in this setion it is not ne-

essary to speify the physial role of the ation under onsideration � the arguments

apply to both bare and e�etive (average) ations. In both ases our aim is eventually

to make sense of, and to alulate

1

ε

∫
d

2+εx
√
g R (5.26)

in the limit ε→ 0.

(2) It turns out helpful to study the transformation behavior of the Einstein�Hilbert

ation under Weyl resalings. Under these transformations an expansion in powers

of ε is more straightforward. Loosely speaking, the reason why Weyl variations

are useful in the 2D limit resides in the fat that the onformal fator is the only

dynamial part of the metri that �survives� when the limit d → 2 is taken, i.e. the

onformal setor aptures the most essential information also in a dimension slightly

larger than two, d = 2 + ε. This irumstane is detailed in Subsetion 5.2.1.

Weyl transformations are de�ned by the pointwise resaling

gµν(x) = e2σ(x)ĝµν(x) , (5.27)

with σ a salar funtion on the spaetime manifold. In Appendix H we list the

transformation behavior of all geometri quantities relevant to this setion.

From (5.27) it follows that gµν is invariant under the Weyl split-symmetry trans-

formations

ĝµν → e2χĝµν , σ → σ − χ . (5.28)

Thus, any funtional of the full metri gµν rewritten in terms of ĝµν and σ is invariant

under (5.28). On the other hand, a funtional of ĝµν and σ whih is not Weyl split-

symmetry invariant annot be expressed as a funtional involving only gµν , but it

ontains an �extra ĝµν -dependene� [52℄.

Before atually alulating the 2D limit of (5.26) in Setions 5.2.3 and 5.3 in a

gauge invariant manner, we illustrate the situation in Setion 5.2.1 by employing the

onformal gauge, and we give some general arguments in Setion 5.2.2 why and in

what sense the limit is well de�ned.
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5.2.1 Lessons from the onformal gauge

In exatly 2 spaetime dimensions any metri g an be parametrized by a di�eomor-

phism f and a Weyl saling σ:

f∗g = e2σ ĝ{τ} , (5.29)

where f∗g denotes the pullbak of g by f , and ĝ{τ} is a �xed referene metri that

depends only on the Teihmüller parameters {τ} or �moduli� haraterizing the un-

derlying topology [194℄. Stated di�erently, a ombined Di�×Weyl transformation

an bring any metri to a referene form. Thus, the moduli spae is the remaining

spae of inequivalent metris, Mh = Gh/(Di� × Weyl)h, where Gh is the spae of

all metris on a genus-h manifold.

2

Its preise form is irrelevant for the present

disussion. Aordingly, if not needed we do not write down the dependene on

{τ} expliitly in the following. Here we onsider ĝ a referene metri for a �xed

topologial setor.

In order to ope with the redundanies stemming from di�eomorphism invariane

we an �x a gauge by piking one representative among the possible hoies for f in

eq. (5.29), the most natural hoie being the onformal gauge:

gµν = e2σ ĝµν . (5.30)

Equation (5.30) displays very learly the speial role of 2 dimensions: The metri

depends only on the onformal fator and possibly on some topologial moduli pa-

rameters. Sine the latter are global parameters, we see that loally the metri is

determined only by the onformal fator.

(1) Conformal �atness. At this point a omment is in order. By hoosing an

appropriate oordinate system it is always possible to bring a 2D metri to the form

gµν = e2σδµν , (5.31)

in the neighborhood of an arbitrary spaetime point, where δµν is the �at Eulidean

metri (see Ref. [195℄ for instane). However, this is only a loal property. For a

general metri on a general 2D manifold there exists no salar funtion σ satisfying

(5.31) globally.

3

Rather must the referene metri in eq. (5.30) be ompatible with

all topologial onstraints, like, for instane, the value of the integral

∫ √
ĝ R̂ whih is

2

For the topology of a sphere Mh = M0 is trivial, while for a torus there is one omplex

parameter, τ , assuming values in the fundamental region, F0. Apart from suh simple examples it

is notoriously involved to �nd moduli spaes [194℄.

3

This an be understood by means of the following ounterexample. Consider the standard

sphere S2 ⊂ R
3
with the indued metri. Upon stereographi projetion the sphere is parametrized

by isothermal oordinates, say (u, v), where the metri assumes the form g = 4
(1+u2+v2)2

(du2+dv2).

Setting σ ≡ ln
(

2
1+u2+v2

)

we have g = e2σ ĝ with ĝ = δ. If we assumed that g = e2σ ĝ holds globally

for a valid salar funtion σ, we ould make use of identity (H.12) to arrive at a ontradition for

the Euler harateristi χ = 2, namely: 8π = 4πχ ≡
∫√

g R =
∫√

ĝ (R̂ − 2 �̂σ) = −2
∫√

ĝ �̂σ = 0,

sine R̂ = 0 for the �at metri, and sine the sphere has vanishing boundary. A resolution to this
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�xed by the Euler harateristi. As a onsequene, we annot restrit our disussion

to a globally onformally �at metri in general.

(2) Di�×Weyl invariant funtionals. This has a diret impat on di�eomor-

phism and Weyl invariant funtionals F : g 7→ F [g]. The naive argument laiming

that di�eomorphism invariane an be exploited to make gµν onformally �at, and

then Weyl invariane to bring it to the form δµν suh that F [g] = F [δ] would be

independent of the metri, i.e. onstant, is wrong atually. The global properties of

the manifold destroy this argument.

When hoosing appropriate loal oordinates to render g �at up to a Weyl resal-

ing, there is some information of the metri impliitly enoded in the oordinate

system, e.g. in the boundary of eah path, giving rise to a remaining metri de-

pendene in F . A ombined Di�×Weyl transformation an bring the metri to unit

form, but it hanges boundary onditions (like periodiity onstraints for a torus)

as well (see e.g. Ref. [196℄). Therefore, F is in fat onstant with respet to loal

properties of the metri, while it an still depend on global parameters. Aording to

eq. (5.29) these are preisely the moduli parameters. Hene, the metri dependene

of any 2D funtional whih is both di�eomorphism and Weyl invariant is redued to

a dependene on {τ}, and we an write F [g] = f
(
{τ}
)
where f is a funtion (not a

funtional).

(3) Calulating 2D limits. Let us ome bak to the purpose of this subsetion,

simplifying alulations by employing the onformal gauge (5.30). Following the

previous disussion we should not rely on the hoie (5.31). Nevertheless, as an

example we may assume for a moment that the manifold's topology is onsistent with

a metri ĝ that orresponds to a �at spae, where � for the above reasons � onformal

�atness is not expressed in loal oordinates as in (5.31) but by the oordinate free

ondition R̂ = 0, whih is possible i� the Euler harateristi vanishes. The general

ase with arbitrary topologies will be overed in Setion 5.2.3. We now aim at �nding

a salar funtion σ whih is ompatible with eq. (5.30) with gµν given. Exploiting

the identities (H.11) and (H.13) given in the appendix with R̂ = 0 we obtain

R = −2�σ . (5.32)

One we have found a solution σ to eq. (5.32), it is lear that σ′ = σ+(zero modes of

�) de�nes a solution, too. In partiular, we an subtrat from σ its projetion onto

the zero modes. This way, we an always obtain a solution to (5.32) whih is free of

zero modes. Thus, we may assume that σ does not ontain any zero modes before

atually having omputed it. In doing so, relation (5.32) an safely be inverted (f.

ontradition is to take into aount that we need (at least) two oordinate pathes all of whih have

a boundary ontributing to

∫√
gR. Deomposing S2

into two half spheres, H+ andH−, for instane,

and using �̂σ = −4/(1+u2+v2)2, we obtain
∫√

g R = −2
∫

H+

√
ĝ �̂σ−2

∫

H
−

√
ĝ �̂σ = 8π = 4πχ,

as it should be.
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Appendix H for a more detailed disussion of zero modes):

σ = −1

2
�−1R (5.33)

Note that the possibility of performing suh a diret inversion is due to the simple

struture of eq. (5.32) whih, in turn, is a onsequene of R̂ = 0.

Now we leave the stritly 2-dimensional ase and try to �lift� the disussion to

d = 2 + ε. For this purpose we make the assumption that we an still parametrize

the metri by (5.30) with a referene metri ĝ whose assoiated salar urvature

vanishes, R̂ = 0. (One again, the general ase will be disussed in Setion 5.2.3.)

In this ase, by employing equation (H.9) we obtain the following relation for the

integral (5.26):

1

ε

∫
d

2+εx
√
g R =

1

ε

∫
d

2x
√
ĝ
[
ε σ
(
− �̂

)
σ
]
+O(ε). (5.34)

This expression an be rewritten by means of the (2 + ε)-dimensional analogues of

eqs. (5.32) and (5.33) whih read R = −2�σ + O(ε) and σ = −1
2 �

−1R + O(ε),

respetively, and we arrive at the result

1

ε

∫
d

2+εx
√
g R = −1

4

∫
d

2x
√
g R�−1R+O(ε). (R̂ = 0) (5.35)

Clearly, the assumption R̂ = 0 is quite restritive. But already in this simple

setting we make a ruial observation: the emergene of a nonloal ation from a

purely loal one in the limit d → 2. More preisely, in the 2D limit the Einstein�

Hilbert type ation

1
ε

∫
d

2+εx
√
g R beomes proportional to the indued gravity ation.

As we will see below, a similar result is obtained for general topologies without any

assumption on R̂.

5.2.2 General properties of the limit

(1) Existene of the limit. In the following we argue that limε→0

(
1
ε

∫
d

2+εx
√
g R
)

is indeed a meaningful quantity without restriting ourselves to a partiular topology

or gauge. For onveniene let us set

Sε[g] ≡
∫

d

2+εx
√
g R. (5.36)

We would like to establish that Sε[g] has a Taylor series in ε whose �rst nonzero

term whih is sensitive to the loal properties of gµν is of the order ε.

For the proof we make use of the relation Rµν = 1
2gµνR, valid in d = 2 for any

metri, so that the Einstein tensor vanishes identially in d = 2,

Gµν

∣∣
d=2

= 0 . (5.37)
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Going slightly away from 2 dimensions, d = 2 + ε, we assume ontinuity and thus

onlude that Gµν

∣∣
d=2+ε

= O(ε). Furthermore, the order ε1 is really the �rst non-

vanishing term of the Taylor series with respet to ε in general, i.e. Gµν

∣∣
d=2+ε

is not

of the order O(ε2) or higher. This an be seen by taking the trae of Gµν ,

gµνGµν = gµν
(
Rµν −

1

2
gµνR

)
= R− d

2
R = −1

2
Rε. (5.38)

Therefore, we have gµνGµν = gµνG
µν ∝ ε. (Of ourse, we assume R 6= 0 sine Sε

would vanish identially otherwise). But even the non-trae (tensor) parts of Gµν an

be expeted to be of the order ε in general, as the following argument suggests. Let

us onsider a Weyl transformation of the metri, gµν = e2σ ĝµν . The orresponding

transformation of the Einstein tensor is given by equation (H.6) in the appendix.

Now, let us assume that ĝµν belongs to an Einstein manifold, i.e. the orresponding

Rii tensor is proportional to the metri and the salar urvature, R̂µν = 1
d ĝµνR̂ .

4

In this ase the Einstein tensor reads

Gµν = (d− 2)

[
− 1

2d
ĝµνR̂− D̂µD̂νσ + ĝµν�̂σ + D̂µσD̂νσ +

d− 3

2
ĝµνD̂ασD̂

ασ

]
,

(5.39)

so we �nd Gµν ∝ ε again.

This ε-proportionality is exploited now to make a statement about the Taylor

series of Sε. For that purpose we onsider the variation of Sε with respet to gµν

(assuming vanishing surfae terms):

δSε[g]

δgµν(x)
=

∫
d

2+εy
√
g

[
1

2
gµνR−Rµν

]
δ(x − y) = −√

g Gµν = O(ε).
(5.40)

As a result we obtain Sε[g] = C + O(ε), where the onstant C is independent of

gµν . Clearly, C is obtained by omputing Sε in d = 2, whih is known to lead to the

Euler harateristi χ :

C = Sε

∣∣
ε=0

= 4πχ. (5.41)

That is, we have Sε = 4πχ +O(ε). (This result di�ers from Ref. [203℄, but it is in

agreement with Refs. [204�206℄). As a onsequene, the integral (5.26) amounts to

1

ε

∫
d

2+εx
√
g R =

4πχ

ε
+ �nite = top.+ �nite, (5.42)

where `top.' is a �eld independent (up to topologial information) and thus irrel-

evant ontribution to the ation. The terms in (5.42) that ontain the interesting

4

In d > 2 it is always possible to �nd a σ for a given metri gµν suh that ĝµν = e−2σgµν leads to

a spae with onstant salar urvature provided that the manifold is ompat. This is known as the

Yamabe problem [197�201℄ (while the ase d = 2 is overed by Poinaré's uniformization theorem).

However, this statement does not imply that the manifold is Einstein (whereas a onstant setional

urvature would imply that the manifold is Einstein). In fat, there are known examples of metris

whih are not onformal to any Einstein metri [202℄. On the other hand, in d = 2 any Riemannian

manifold is of Einstein type.
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information about the dynamis of the �eld are of order O(ε0), so the �relevant� part

of

1
ε

∫
d

2+εx
√
g R has indeed a meaningful limit ε→ 0.

(2) The role of the volume form. Next we argue that the important part of the

ε-dependene of Sε originates from the salar density

√
g R in the integrand of (5.36)

alone, i.e. loosely speaking, it is su�ient to employ the a priori unde�ned frational

integration element d

2+εx at ε = 0. Stated di�erently, all onsistent de�nitions of

�d

2+εx� away from ε = 0 that one might ome up with are equivalent. The reason

for that is the following.

Any integration over a salar funtion on a manifold involves a volume form,

i.e. a nowhere vanishing d-form (or a density in the nonorientable ase), in order to

de�ne a measure. This volume form is given by d

dx
√
g, where

√
g is the square root

of the orresponding Gramian determinant. If an integral is to be evaluated, the

unit vetors of the underlying oordinate system are inserted into the volume form.

Sine, for any d, these unit vetors produe a fator of 1 when inserted into d

dx, we

see that it is the remaining part of the volume element that ontains its omplete

d-dependene, namely

√
g. In partiular,

√
g arries the anonial dimension of the

volume element.

5

To summarize, for the evaluation of limε→0
1
εSε it is su�ient to onsider the

ε-dependene of
√
gR, while the integration an be seen as an integration over d

2x.

This presription an be onsidered our de�nition for taking the ε-limit in a well

behaved way. Clearly, the details of the domain of integration ontribute some ε-

dependene, too. However, as we have seen in point (1) in equation (5.40), the

�rst relevant nononstant, i.e. metri dependent, part of the ation omes from

√
gR

alone, and any further ε-dependent ontributions would be of the order ε2. This

makes lear that our argument is valid in the speial ase of an integral over

√
gR,

but not for arbitrary integrands.

(3) Comment and omparison with related work. As an aside we note that

in Ref. [204℄ it is argued that the irrelevant divergent term in (5.42) an be made

vanish by subtrating the term

1
ε

∫
d

dx
√
g̃ R̃ from

1
ε

∫
d

dx
√
g R where the metri

g̃µν is assumed to be gµν -dependent but hosen in suh a way that the resulting �eld

equations for gµν do not hange when d approahes 2. That means, the gµν -variation

of the subtrated term (and, in turn its variation w.r.t. g̃) must vanish for d → 2,

leading to the requirement limε→0

(
1
ε G̃µν

)
= 0 for the orresponding Einstein tensor.

This subtration term would anel the ε-pole in (5.42). In [204℄ it is assumed that

suh a term exists for some metri g̃µν whih is onformally related to gµν . However,

it remains unlear if this is possible at all. Aording to the above argument in (1),

we would rather expet

1
ε G̃µν to remain �nite in the limit ε→ 0.

5

Our onventions for the anonial mass dimensions are suh that all oordinates are dimension-

less, [xµ] = 0, while the metri omponents have [gµν ] = −2, giving ds2 = gµνdx
µ
dxν

the anonial

dimension of an area, [ds2] = −2, regardless of the value of d. Hene [dxµ] = 0 and [
√
g] = −d.

As a onsequene, the symboli integration over the remaining �fration of a dimension�, d

εx, is
irrelevant even for the dimension of Sε[g].
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Unlike Ref. [204℄, we do not need to subtrat further gµν -dependent terms from

the ation here, and our disussion is valid for all metris.

5.2.3 Establishing the 2D limit

Next we determine the �rst relevant order of the Taylor series of (5.26), providing

the basis for our main statements. Let us de�ne the ε-dependent ation funtional

Yε[g] ≡
1

ε

∫
d

2+εx
√
g R − 4πχ

ε
. (5.43)

Here, χ again denotes the metri independent Euler harateristi de�ned in stritly

2 dimensions. Corresponding to the arguments of Setion 5.2.2, Yε is well de�ned in

the limit ε→ 0 beause it is of the order ε0. Therefore, Y [g] de�ned by

Y [g] ≡ lim
ε→0

Yε[g] (5.44)

is a �nite funtional.

To expand the integral in (5.43) in powers of ε we make use of the general

transformation law of

∫
d

dx
√
gR under Weyl resalings, gµν = e2σ ĝµν , given by

equation (H.9) in the appendix. This yields

Yε[g] =
1

ε

∫
d

2+εx
√
ĝ eεσ

[
R̂+ (1 + ε)ε

(
D̂µσ

)(
D̂µσ

)]
− 4πχ

ε

=
1

ε

∫
d

2+εx
√
ĝ R̂− 4πχ

ε
+

∫
d

2x
√
ĝ
(
R̂σ + D̂µσD̂

µσ
)
+O(ε).

(5.45)

We observe that the �rst two terms of the seond line of (5.45) an be ombined

into Yε[ĝ]. Furthermore, the terms involving the parameter of the Weyl transfor-

mation, σ, are seen to agree with the de�nition in (5.25) and an be written as∫
d

2x
√
ĝ
[
D̂µσD̂

µσ + R̂σ
]
≡ 2∆I[σ; ĝ]. This, in turn, an be expressed by means of

the (normalized) indued gravity funtional [162℄, de�ned by

6

I[g] ≡
∫

d

2x
√
g R�−1R . (5.46)

As shown in Appendix H, the hange of I under a �nite Weyl transformation of

the metri in its argument equals preisely −8∆I whih therefore has the interpre-

tation of a Wess�Zumino term, a 1-oyle related to the Abelian group of Weyl

transformations [207℄:

7

I[e2σ ĝ]− I[ĝ] = −8∆I[σ; ĝ] . (5.47)

6

If the salar Laplaian � has zero modes, then �−1
is de�ned as the inverse of � on the

orthogonal omplement to its kernel, that is, before �−1
ats on a funtion it impliitly projets

onto nonzero modes. For the arguments presented in this hapter we may assume that � does not

have any zero modes, although a areful analysis shows that the inlusion of zero modes does not

hange our main results (see detailed disussion in Appendix H, in partiular Setion H.2).

7

As a onsequene of identity (5.47), the Liouville ation (5.24) an be rewritten as ΓLk [φ; ĝ] =
a1

4
I [e2φĝ] + 1

2
a1a2

∫

d

2x
√

det(e2φĝ) − a1

4
I [ĝ]. Note that the �rst two terms on the RHS of this

equation depend on φ and ĝµν only in the ombination e2φĝµν = gµν .
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Inserting (5.47) into (5.45) leads to

Yε[g] = Yε[ĝ] + 2∆I[σ; ĝ] +O(ε) = Yε[ĝ] +
1

4
I[ĝ]− 1

4
I[g] +O(ε). (5.48)

Rearranging terms and taking the limit ε→ 0 results in the important identity

Y [g] +
1

4
I[g] = Y [ĝ] +

1

4
I[ĝ]. (5.49)

Note that the LHS of eq. (5.49) depends on the full metri g = e2σ ĝ while the RHS

depends only on ĝ.

For the further analysis it is onvenient to introdue the funtional

F [g] ≡ Y [g] +
1

4
I[g]. (5.50)

By onstrution F has the following properties:

(i) It is di�eomorphism invariant sine it has been onstruted from di�eomor-

phism invariant objets only.

(ii) It is a funtional in d = 2 preisely sine the ε-limit has already been taken.

(iii) It is insensitive to the onformal fator of its argument sine from eq. (5.49)

follows Weyl invariane:

F [e2σ ĝ] = F [ĝ]. (5.51)

Thanks to our preparations in Setion 5.2.1 we an onlude immediately that F is

onstant apart from a remaining dependene on some moduli {τ} possibly. Here it

is ruial that the moduli are global parameters of purely topologial origin. They

are insensitive to the loal properties of the metri, in partiular they do not depend

on a spaetime point. These arguments show that the funtional F [g] beomes a

funtion of the moduli, say C
(
{τ}
)
. The preise dependene of F on these moduli is

irrelevant for the present disussion sine they enode only topologial information.

We thus have

F [g] = C
(
{τ}
)
, (5.52)

i.e. F is a metri independent onstant funtional, up to topologial terms.

For the funtional Y [g] de�ned in eq. (5.44) we obtain, using eq. (5.50),

Y [g] = −1

4
I[g] + C

(
{τ}
)
, (5.53)

whih leads to our �nal result:

1

ε

∫
d

2+εx
√
g R = −1

4

∫
d

2x
√
g R�−1R+

4πχ

ε
+ C

(
{τ}
)
+O(ε). (5.54)

The terms 4πχ/ε and C
(
{τ}
)
are topology dependent but independent of the lo-

al properties of the metri, and thus they may be onsidered irrelevant for most

purposes.
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Thereby we have established that the limit d→ 2 of the Einstein�Hilbert ation

equals preisely the indued gravity ation up to topologial terms. Clearly, the most

remarkable aspet of this limiting proedure is that it leads from a loal to a nonloal

ation.

A similar mehanism has been disussed earlier in the framework of dimensional

regularization [207℄. The result (5.54) is in agreement with the one of Referene

[205℄ where it has been obtained by means of a di�erent reasoning based on the

introdution of a Weyl gauge potential.

We would like to emphasize that the emergene of the indued gravity ation is

also found for suh Laplaian operators that admit zero modes. In this ase, the

RHS of (5.54) reeives an additional ontribution, but the ruial term −1
4I[g] is

still present. This situation is disussed in detail in Appendix H.2.

5.3 The full Einstein�Hilbert ation in the 2D limit

Inluding also the osmologial onstant term, the Einstein�Hilbert trunation of

the (gravitational part of the) e�etive average ation in d dimensions reads

Γgravk [g] =
1

16πGk

∫
d

dx
√
g
(
−R+ 2Λk

)
, (5.55)

with the dimensionful Newton and osmologial onstant, Gk and Λk, respetively.

(1) As we have mentioned already, the dimensionless versions of these ouplings,

gk ≡ kd−2Gk and λk ≡ k−2Λk, possess a nontrivial �xed point in d = 2+ε dimensions

whose oordinates are proportional to ε (f. Chapter 4 and Refs. [4, 36, 81, 83, 98�

104, 112, 113, 118�121, 190�192, 208, 209℄). Thus, at least in the viinity of this non-

Gaussian �xed point the dimensionful ouplings are of the form

Gk ≡ ε G̊k , Λk ≡ ε Λ̊k , (5.56)

where G̊k and Λ̊k are of the order O(ε0). Making use of eq. (5.54) in the limit ε→ 0

we arrive at the 2-dimensional e�etive average ation

Γgrav,2Dk [g] =
1

64πG̊k

∫
d

2x
√
g R�−1R+

Λ̊k

8πG̊k

∫
d

2x
√
g + top. (5.57)

Here 'top' refers again to topology dependent terms whih are insensitive to the

loal properties of the metri. The result (5.57) is quite general; it holds for any RG

trajetory provided that the ouplings Gk and Λk in d = 2+ ε are of �rst order in ε.

As an aside we note that the topologial terms in (5.57) inlude a ontribution

proportional to

∫
d

2x
√
g R = 4πχ. Thus, eq. (5.57) ontains the indued gravity

ation, a osmologial onstant term, and the χ-term. These are preisely the terms

that were inluded in the trunation ansatz in Ref. [81℄. By ontrast, in our approah
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they are not put in by hand through an ansatz, but they rather emerge as a result

from the Einstein�Hilbert ation in the 2D limit.

(2) If we want to onsider Γk exatly at the NGFP, we an insert the known �xed

point values, where the one of Newton's onstant is given by g∗ = ε/b aording to eq.

(4.6). As shown in Chapter 4, the oe�ient b depends on the parametrization of the

metri. For the linear parametrization it is given by [4,36,81,83,118�121,190�192℄

8

b = 2
3

(
19−N

)
, (5.58)

while the exponential parametrization leads to [81, 83, 84, 98�104, 112, 113℄

b = 2
3

(
25−N

)
, (5.59)

where N denotes the number of salar �elds, provided that we onsider the ansatz

(5.6) with a matter ation of the type (4.31). As the exponential parametrization was

argued to be more appropriate in the 2D limit, we will mostly state the results based

on eq. (5.59) in the following, although the analogues for the linear parametrization

an simply be obtained by replaing 25 → 19. Using the de�nition (5.46) and

ombining (5.57) with (5.59), we obtain the NGFP ation

Γgrav,2D,NGFPk [g] =
(25 −N)

96π
I[g] +

(25−N)

12π
k2λ̊∗

∫
d

2x
√
g + top , (5.60)

where λ̊∗ ≡ λ∗/ε is uto� dependent and thus left unspei�ed here. The ations

(5.57) and (5.60) will be the subjet of our disussion in Chapter 6.

(3) Finally, let us brie�y establish the onnetion with Liouville theory. For this

purpose we separate the onformal fator from the rest of the metri. Inserting

gµν = e2φĝµν (5.61)

into eq. (5.57) for Γgrav,2Dk [g] and using (H.22) and (H.23) from the appendix yields

Γgrav,2Dk [φ; ĝ] =
1

64πG̊k

∫
d

2x
√
ĝ R̂ �̂−1R̂

− 1

16πG̊k

∫
d

2x
√
ĝ
[
D̂µφ D̂

µφ+ R̂φ− 2Λ̊k e
2φ
]
+ top ,

(5.62)

where ĝµν is a �xed referene metri for the topologial setor (i.e. a point in moduli

spae) under onsideration. Hene, the e�etive average ation for the onformal

fator in preisely 2 dimensions is nothing but the Liouville ation.

Of ourse, this is well known to happen if one starts from the indued gravity

ation, an objet that lives already in 2D. It is quite remarkable and nontrivial,

8

When the running of the Gibbons�Hawking surfae term instead of the pure Einstein�Hilbert

ation is omputed, the result reads b = 2
3
(1−N) [208, 209℄. See Refs. [190�192℄ for a disussion.
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however, that Liouville theory an be regarded as the limit of the higher dimensional

Einstein�Hilbert theory. Note that this result is onsistent with the disussions in

Refs. [204, 206℄ (f. also [210℄).

(4) To sum up, we have used the the Einstein�Hilbert ation in d > 2 to onstrut a

manifestly 2-dimensional ation whih desribes 2D Asymptoti Safety. As opposed

to earlier work on the ε-expansion of β-funtions the dimensional limit was taken

diretly at the level of the ation funtional.

5.4 Aside: Is there a generalization to 4D?

For the sake of ompleteness we would like to omment on a generalization of our

results to 4 dimensions. At �rst sight, there seems to be a remarkable similarity.

Dimensional analysis suggests that the role of the R-term in the Einstein�Hilbert

ation near 2 dimensions is now played by urvature-square terms in d = 4+ ε. The

gravitational part of the ation assumes the general form

Γgravk [g] = ΓEHk [g] +

∫
d

4+εx
√
g

{
1

ak
E +

1

bk
F +

1

ck
R2

}
, (5.63)

where F ≡ CµνρσC
µνρσ

is the square of the Weyl tensor. Furthermore, the term

E ≡ RµνρσR
µνρσ − 4RµνR

µν + R2 + d−4
18 R

2
gives rise to the Gauss�Bonnet�Euler

topologial invariant when integrated over in exatly d = 4. Considerations of non-

trivial oyles of the Weyl group show that the orresponding Wess�Zumino ation

in d = 4 is generated by the E- and the F -term [207℄, analogous to the generation

of ∆I in Se. 5.2.3 due to the R-term. It may thus be expeted that there would be

a mehanism to take the 4D limit, similar to the one of Se. 5.2.3 but now for E and

F instead of R, if the ouplings ak and bk were of �rst order in ε.

At one-loop level the β-funtions in d = 4 + ε feature indeed a �xed point with

a∗ = O(ε), b∗ = O(ε) and c∗ �nite [173℄. There are, however, two ruial di�erenes

in omparison with the 2-dimensional ase: (i) The term

∫
d

4x
√
g F is not a topolog-

ial invariant, i.e. there is no appropriate subtration analogous to de�nition (5.43),

and the limit ε → 0 remains problemati. (ii) Even if we managed to de�ne some

4D-funtional similar to (5.50) whih is both di�eomorphism and Weyl invariant,

this would not be su�ient to onlude that the funtional is onstant sine in d = 4

the spae of metris modulo Di� × Weyl-transformations is too large and annot

be lassi�ed in terms of topologial parameters. Roughly speaking, if we found a

way to irumvent problem (i), the 4D limit of the above ation omputed with our

methods might lead to the same nonloal ation as found in [207℄, but this would not

represent the general 4D limit sine the latter must ertainly ontain further terms

that do not originate from a variation of the onformal fator alone. In summary, in

spite of many similarities to the 2D ase there seems to be no diret generalization

of our approah of omputing a nonloal limit ation to 4 spaetime dimensions.

Nevertheless, we expet that the 4D �xed point ation ontains nonloal terms, too.



6
The non-Gaussian �xed point as a

unitary onformal �eld theory

Exeutive summary

We study further properties of the 2D limit of the gravitational EAA whih

was onstruted in the previous hapter. Diretly at the �xed point, it an be

written in terms of dimensionless variables as a sale independent funtional,

giving rise to a onformal �eld theory. By means of this 2D �xed point ation

we disuss the ompatibility of Asymptoti Safety with Hilbert spae positivity

(unitarity). The orresponding entral harge is related to the �xed point value

of the Newton oupling in the limit d→ 2. We �nd that the pure gravity part is

governed by a unitary onformal �eld theory with positive entral harge c = 25.

Partiular attention is paid to the relation between the ruial sign of the entral

harge, the ourrene of a onformal fator instability, and unitarity: A positive

entral harge implies Hilbert spae positivity and an unstable onformal fator.

The latter an be seen by representing the �xed point CFT by a Liouville theory

in the onformal gauge and investigating its properties. We argue that the

onformal fator instability is not only aeptable but also desired.

What is new? Reoniling Asymptoti Safety with unitarity.

Based on: Ref. [34℄.

6.1 Motivation

All studies on Asymptoti Safety arried out in the literature so far provided evidene

in favor of the existene of a suitable nontrivial RG �xed point. In this hapter, we

would like to gain further insight into the nature of the �xed point theory, i.e. the

theory de�ned diretly at the �xed point rather than by an RG trajetory running
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away from it. For instane, it is an open question whether or not this is a onformal

�eld theory.

In 2 dimensions we are indeed used to the piture that the onformal �eld theories

orrespond to points in theory spae that are �xed points of the RG �ow [14℄. In 4

dimensions, however, Quantum Einstein Gravity (QEG) has a sale invariant �xed

point theory but it is unlear whether it is onformal.

While onformality is not known to be indispensable, we argued in the introdu-

tion that a onsistent asymptotially safe theory must possess several other properties

in addition to its mere nonperturbative renormalizability (that is, the existene of a

suitable non-Gaussian �xed point), the two most important ones being bakground

independene and unitarity. Aording to Ref. [60℄ and Setion 4.5 there are by now

�rst promising results whih indiate that the requirements for bakground inde-

pendene and Asymptoti Safety an be met simultaneously in su�iently general

trunations of the RG �ow. On the other hand, little is known about the status of

unitarity.

In this onnetion the somewhat olloquial term �unitarity� is equivalent to �Hil-

bert spae positivity� (f. Setion 2.3) and is meant to express that the state spae of

the system under onsideration ontains no vetor having a negative salar produt

with itself (�negative norm state�). If it does so, it is not a Hilbert spae in the math-

ematial sense of the word and annot desribe a quantum system as the probability

interpretation of quantum mehanis would break down then.

At least on (nondynamial) �at spaetimes the riterion of Hilbert spae posi-

tivity, alongside with the spetral ondition an be translated from the Lorentzian

to the Eulidean setting where it reappears as the requirement of re�etion-, or

Osterwalder�Shrader, positivity [211�214℄.

Unitarity is in fat a property that is not automati and needs to be heked

in order to demonstrate the viability of the Asymptoti Safety program based upon

the e�etive average ation. The operator formulation orresponding to the grav-

itational EAA amounts to an inde�nite metri (Krein spae) quantization, and so

the negative norm states it ontains should ultimately be �fatored out� in order to

obtain a positive (�physial�) state spae, a true Hilbert spae. While this proedure

is standard and familiar from perturbative quantum gravity and Yang�Mills theory,

for instane, the situation is muh more involved in Asymptoti Safety. The reason is

that, impliitly, this inde�nite metri quantization is applied to a bare ation whih

is essentially given by the �xed point funtional (see Refs. [31�33,35℄, and Chapters

7 and 8). As suh it is already in itself the result of a tehnially hallenging non-

perturbative omputation whih in pratie an be done only approximately, for the

time being.

In the following, we explore the question of Hilbert spae positivity together with

a number of related issues suh as loality by analyzing the situation in 2 dimensions

where � as we have seen � a number of tehnial simpli�ations our. To this
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end, we employ the manifestly 2-dimensional limit ation onstruted in the previous

hapter. We shall see that the non-Gaussian �xed point underlying Asymptoti

Safety is governed by a onformal �eld theory (CFT) whih is interesting in its own

right, and whose properties we shall disuss. Remarkably enough, it turns out to

possess a positive entral harge, thus giving rise to a unitary representation of the

Virasoro algebra and a �positive� Hilbert spae in the above sense.

6.2 The unitary �xed point theory

We an summarize the main message of Chapter 5 by saying that every trajetory

k 7→ (gk, λk) ≡ (̊gk, λ̊k)ε, i.e. every solution to the RG equations of the Einstein�

Hilbert trunation in 2+ε dimensions, indues the following intrinsially two-dimen-

sional running ation:

Γgrav,2Dk [g] =
1

96π

(
3

2

1

g̊k

)[
I[g] + 8λ̊k k

2

∫
d

2x
√
g

]
, (6.1)

where topologial terms are left aside heneforth. In this hapter we disuss the main

properties of this RG trajetory, in partiular its �xed point.

(1) The �xed point funtional. Stritly speaking, the theory spae under onsid-

eration omprises funtionals whih depend on the dimensionless metri g̃µν ≡ k2gµν .

For any average ation Γk[g] we de�ne its analog in the dimensionless setting by

Ak[g̃] ≡ Γk[g̃k
−2]. Thus, equation (6.1) translates into

Ak[g̃] =
1

96π

(
3

2

1

g̊k

)[
I[g̃] + 8λ̊k

∫
d

2x
√
g̃

]
. (6.2)

It is this funtional that beomes stritly onstant at the NGFP: Ak → A∗ , with

A∗[g̃] =
1

96π

(
3

2

1

g̊∗

)[
I[g̃] + 8λ̊∗

∫
d

2x
√
g̃

]
. (6.3)

For the exponential �eld parametrization we �nd the �xed point funtional

A∗[g̃] =
(25 −N)

96π

∫
d

2x
√
g̃
(
R̃ �̃−1R̃+ 8λ̊∗

)
. (6.4)

Here and in the following we usually present the results for the exponential parame-

trization. The orresponding formulae for the linear parametrization an be obtained

by replaing (25−N) → (19−N). (See Chapter 4 for a disussion of di�erent metri

parametrizations).

While the NGFP is really a point in the spae of A-funtionals, it is an entire

line, parametrized by k, in the more familiar dimensionful language of the Γk's. Let

us refer to the onstant map k 7→ (g∗, λ∗) ∀ k ∈ [0,∞) as the �FP trajetory�. Moving
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on this trajetory, the system is never driven away from the �xed point. Aording

to eq. (5.60), it is desribed by the following EAA:

Γgrav,2D,NGFPk [g] =
(25 −N)

96π

[
I[g] + 8λ̊∗ k

2

∫
d

2x
√
g

]
. (6.5)

As always in the EAA framework, the EAA at k = 0 equals the standard e�etive

ation, Γ = limk→0 Γk. So, letting k = 0 in (6.5), we onlude that the ordinary ef-

fetive ation related to the FP trajetory has vanishing �renormalized� osmologial

onstant and reads

Γgrav,2D,NGFP[g] =
(25−N)

96π

∫
d

2x
√
g R�−1R . (6.6)

(2) The 2D stress-energy tensor. Di�erentiating Γgrav,2Dk of equation (6.1) with

respet to the metri leads to the following energy-momentum tensor in the gravita-

tional setor [215℄:

T grav

µν [g] =
1

96π

(
3

2

1

g̊k

)[
gµν Dρ

(
�−1R

)
Dρ
(
�−1R

)
+ 4DµDν

(
�−1R

)

−2Dµ

(
�−1R

)
Dν

(
�−1R

)
− 4 gµνR+ 8 λ̊k k

2gµν

]
.

(6.7)

It is easy to see that taking the trae of this tensor yields

Θk[g] =

(
3

2

1

g̊k

)
1

24π

[
−R+ 4 λ̊k k

2
]
, (6.8)

whih, as it should be, agrees with the result from the Einstein�Hilbert ation in

d > 2, see equations (5.15) and (5.17).

1

As for the non-trae parts of T grav

µν , the om-

paratively ompliated nonloal strutures in (6.7) an be seen as the 2D replaement

of the Einstein tensor in (5.13).

In absene of matter (that is, Γmk = 0) the tadpole equation (5.12) boils down

to T grav

µν [ḡsk ] = 0 with the above stress-energy tensor. Hene, self-onsistent bak-

grounds have a onstant (but k-dependent) Rii salar:

Θk[ḡ
s

k ] = 0 ⇔ R
(
ḡsk
)
= 4λ̊k k

2 . (6.9)

In terms of the dimensionless metri, R
(
˜̄gsk
)
= 4λ̊k, in this ase.

(3) Intermezzo on indued gravity. As a preparation for the subsequent disus-

sion, we onsider an arbitrary onformal �eld theory on �at Eulidean spae, having

entral harge cS , and ouple this theory to a gravitational bakground �eld gµν ,

1

Note that in string theory or onformal �eld theory one would usually rede�ne the stress-energy

tensor and employ T ′

µν ≡ Tµν − 1
2
gµνΘ whih is traeless at the expense of not being onserved.

It is the modes of T ′

µν that satisfy a Virasoro algebra whose entral extension keeps trak of the

anomaly oe�ient then.



6.2. The unitary �xed point theory 133

omprised in an ation funtional S [g]. Then the resulting (symmetri, onserved)

stress-energy tensor,

T (S )[g]µν ≡ 2√
g

δS [g]

δgµν
, (6.10)

will aquire a nonzero trae in urved spaetimes, of the form

gµν T
(S )[g]µν = −cS

1

24π
R+ onst , (6.11)

where �onst� is due to a osmologial onstant possibly.

(3a) Above, S [g] an stand for either a lassial or an e�etive ation. In the �rst

ase, S [g] might result from a CFT of �elds χI
governed by an ation S[χ, g] upon

solving the equations of motion for χ, and substituting the solution χ
sol

(g) bak into

the ation: S [g] = S[χ
sol

(g), g]. If cS 6= 0 then the system displays a �lassial

anomaly�, and Liouville theory is the prime example [16, 216�218℄.

In the �e�etive� ase, S [g] ould be the indued gravity ation Sind[g] whih we

obtain from S[χ, g] by integrating out the �elds χI
quantum mehanially:

e−Sind[g] =

∫
DχI e−S[χ,g] . (6.12)

Then Sind[g] is proportional to the entral harge cS ,

Sind[g] = +
cS
96π

I[g] + · · · , (6.13)

and by (6.10) the ation Sind[g] gives rise to a stress-energy tensor whose trae is

preisely of the form (6.11). (The dots represent a osmologial onstant term.)

(3b) It is important to observe that the funtional I[g] is negative, i.e. for any metri

g we have
∫
d

2x
√
g R�−1R < 0 . (Reall that �−1

ats only on nonzero modes while

it �projets away� the zero modes. Sine −� is nonnegative, we onlude that −�−1

has a stritly positive spetrum.) Leaving the osmologial onstant term in (6.13)

aside, this entails that for a positive entral harge cS > 0 the (nonosmologial

part of the) indued gravity ation is negative, Sind[g] < 0.

The impliations are partiularly obvious in the onformal parametrization g =

e2φĝ, yielding

Sind[φ; ĝ] = − cS
24π

∫
d

2x
√
ĝ
(
D̂µφD̂

µφ+ R̂φ
)
+
cS
96π

I[ĝ] + · · · . (6.14)

When cS is positive, the �eld φ is unstable, it has a �wrong sign� kineti term. Stated

di�erently, integrating out unitary onformal matter indues an unstable onformal

fator of the emergent spaetime metri.

The 4D Einstein�Hilbert ation is well known to su�er from the same onformal

fator instability, that is, a negative kineti term for φ if the overall prefator of∫√
gR is adjusted in suh a way the onomitant kineti term for the transverse-

traeless (TT) metri �utuations omes out positive, as this be�ts propagating
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physial modes. Irrespetive of all questions about the onventions in whih the

equations are written down, the ruial signs are always suh that

cS > 0
d=2⇐⇒ φ unstable

d>3⇐⇒ hTTµν stable. (6.15)

We shall ome bak to this point in a moment.

(4) Central harge of the NGFP. The �xed point ation A∗ given by (6.3)

desribes a onformal �eld theory with entral harge

cNGFP
grav

=
3

2
b , (6.16)

where b = 1/̊g∗. Depending on the parametrization it amounts to

cNGFP
grav

=





25−N, exponential parametrization,

19−N, linear parametrization.

(6.17)

This follows by observing that for the two �eld parametrizations, diretly at the

NGFP, the trae of the stress-energy tensor is given by

Θk[g] =
1

24π

(
−R+ 4λ̊∗k

2
)
×





25−N (exp.),

19−N (lin.) .

(6.18)

Applying the rule (6.11) to eq. (6.18), we see indeed that, �rst, the �xed point theory

is a CFT, and seond, its entral harge is given by (6.17).

2

Aording to eq. (6.5), the EAA related to the FP trajetory, Γgrav,2D,NGFPk ,

happens to have exatly the struture of the indued gravity ation (6.13) with the

orresponding entral harge, for all values of the sale parameter.

At the k = 0 endpoint of this trajetory, the dimensionful osmologial onstant

Λ̊k = λ̊∗k2 runs to zero without any further ado, and Γgrav,2D,NGFPk→0 beomes the

standard e�etive ation (6.6). At this endpoint, by eq. (6.9), self-onsistent bak-

grounds have vanishing urvature in the absene of matter: R(ḡsk=0) = 0. Therefore,

we have indeed inferred a entral harge pertaining to �at spae by omparing (6.18)

to (6.11).

(5) Auxiliary �matter� CFTs. Sine the 2D gravitational �xed point ation is of

the indued gravity type, we an, if we wish to, introdue a onformal matter �eld

theory whih indues it when the �utuations of those auxiliary matter degrees of

freedom are integrated out (although suh auxiliary �elds are not required by our

2

Reading o� the entral harge aording to (6.11) and (6.13) is onsistent with Refs. [80, 81℄

where the relation between the entral harge and the β-funtion of Newton's onstant is disussed

in the FRG framework, implying a relation between cNGFP
grav

and g∗ . (Cf. also Se. 4.1.)
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formalism). Denoting the orresponding �elds by χI
again, and their (k independent)

ation by Saux[χ; g], we then have

e−Γgrav,2D,NGFPk [g] ≡
∫

Dχ e−Saux[χ;g] · e−N [g] . (6.19)

Here, N [g] ∝
∫
d

2x
√
g is an inessential orretion term to make sure that also the

nonuniversal osmologial onstant terms agree on both sides of (6.19); it depends

on the preise de�nition of the funtional integral.

Clearly, the auxiliary matter CFT an be hosen in many di�erent ways, the

only onstraint is that it must have the orret entral harge, c
aux

= cNGFP
grav

, that

is, c
aux

= 25 − N or c
aux

= 19 − N , respetively. Let us present two examples of

auxiliary CFTs:

(5a) Minimally oupled salars. For c
aux

> 0 the simplest hoie is a multiplet

of minimally oupled salars χI(x), I = 1, · · · , c
aux

. These auxiliary �elds may not

be onfused with the physial matter �elds Ai(x), i = 1, · · · , N . The χ's and A's

have nothing to do with eah other exept that their respetive numbers must add

up to 25 (or to 19).

(5b) Feigin�Fuks theory. The indued gravity ation I[g] being a nonloal fun-

tional, it is natural to introdue one, or several �elds in addition to the metri that

render the ation loal. The minimal way to ahieve this is by means of a single salar

�eld, B(x), as in Feigin�Fuks theory [219,220℄, whih has a nonminimal oupling to

the metri. Consider the following loal ation, invariant under general oordinate

transformations applied to gµν and B:

I lo[g,B] ≡
∫

d

2x
√
g
(
DµBD

µB + 2RB
)
. (6.20)

The equation of motion δI lo/δB = −2
√
g (�B − R) = 0 is solved by B = B(g) ≡

�−1R whih, when substituted into I lo, reprodues preisely the nonloal form of

the indued gravity ation: I lo[g,B(g)] =
∫ √

g R�−1R ≡ I[g].

As I lo is quadrati in B, the same trik works also quantum mehanially when

we perform the Gaussian integration over B rather than solve its �eld equation.

Hene, the exponentiated Γgrav,2D,NGFPk has the representation

e−
(25−N)

96π
I[g]+··· =

∫
DB e−

(24−N)
96π

∫

d

2x
√
g (DµBDµB+2RB+··· ) . (6.21)

Here again, the dots stand for a osmologial onstant whih depends on the preise

de�nition of the funtional measure DB. It is well known that thanks to the RB-term
the CFT of the B-�eld (in the limit gµν → δµν) has a shifted entral harge [66,221℄;

in the present ase this reprodues the values (6.17).

So the onlusion is that while the �xed point ation is a nonloal funtional

∝
∫ √

g R�−1R in terms of the metri alone, one may introdue additional �elds
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suh that the same physis is desribed by a loal (onretely, seond-derivative)

ation. In partiular, Γgrav,2D,NGFPk and the loal funtional

Γlok [g,B] ≡ (24−N)

96π

∫
d

2x
√
g
(
DµBDµB + 2RB + · · ·

)
(6.22)

are fully equivalent, even quantum mehanially.

(6) Positivity in the gravitational setor. Pure quantum gravity (N = 0) and

quantum gravity oupled to less than 25 (or 19) salars are governed by a �xed point

CFT with a positive entral harge.

Clearly, this is good news onerning the pressing issue of unitarity (Hilbert spae

positivity) in asymptotially safe gravity. The theories with cNGFP
grav

≥ 1, ontinued

to Lorentzian signature, do indeed admit a quantum mehanial interpretation and

have a state spae whih is a Hilbert spae in the mathematial sense (no negative

norm states), supporting a unitary representation of the Virasoro algebra. In the

interval 0 < cNGFP
grav

< 1, this an be ahieved only for disrete values of cNGFP
grav

. In

any ase, we need cNGFP
grav

> 0 as a neessary ondition for unitarity (f. Setion 2.3).

(6a) Shwinger term. Leaving the analyti ontinuation to the Lorentzian world

aside, it is interesting to note that already in Eulidean spae the simple-looking in-

dued gravity ation �knows� about the fat that cNGFP
grav

< 0 would reate a problem

for the probability interpretation. By taking two funtional derivatives of the stan-

dard e�etive ation (6.6) we an ompute the 2-point funtion 〈T grav

µν (x)T grav

ρσ (y) 〉
and, in partiular, its ontrated form 〈Θ0(x)Θ0(y) 〉. Setting thereafter gµν = δµν ,

whih, as we saw, is a self-onsistent bakground (assuming that we an hoose a

suitable, globally de�ned oordinate hart), we obtain the following Shwinger term:

〈Θ0(x)Θ0(y) 〉 = −c
NGFP

grav

12π
∂µ∂µδ(x− y) . (6.23)

Let us smear Θ0 with a real valued test funtion f that vanishes at the boundary

and outside of the hart region, or, in the ase where the hart is the entire Eu-

lidean plane, falls o� rapidly at in�nity:

3 Θ0[f ] ≡
∫
d

2x f(x)Θ0(x). Then, applying∫
d

2x d2y f(x)f(y) · · · to both sides of (6.23), we �nd after an integration by parts:

〈Θ0[f ]
2 〉 = + cNGFP

grav

1

12π

∫
d

2x (∂µf)δ
µν(∂νf) . (6.24)

Sine the integral on the RHS of (6.24) is manifestly positive, we onlude that if

cNGFP
grav

< 0 the expetation value of the square Θ0[f ]
2
is negative. Obviously, this

would be problemati already in the ontext of statistial mehanis (at least with

real �eld variables).

3

Note that in the latter ase the funtion f has support on the entire Eulidean plane, hene

we are not testing Osterwalder�Shrader [211,212℄ re�etion positivity here [213,214℄.
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(6b) Indued gravity approah in 4D: a omparison. Note that one an extrat

the entral harge from the Shwinger term by performing an integral

∫
d

2xx2(· · · )
over both sides of eq. (6.23). Sine Newton's onstant is dimensionless in 2D, and

G̊−1 = g̊−1
∗ = b = 2

3 c
NGFP

grav

, this leads to the following integral representation for the

Newton onstant belonging to the 2D world governed by the FP trajetory [222℄:

G̊−1 = −2π

∫
d

2x x2〈Θ0(x)Θ0(0) 〉 . (6.25)

It is interesting to note that this representation is of preisely the same form as

the relations that had been derived long ago within the indued gravity approah

in 4D, the hope being that ultimately one should be able to ompute its RHS from

a matter �eld theory, assumed to be known (the Standard Model, say), and would

then predit the value of Newton's onstant in terms of matter-related onstants of

Nature.

For a review and a disussion of the inherent di�ulties we refer to [222℄. We

see that, in a sense, Asymptoti Safety was suessful in making this senario work,

produing a positive Newton onstant in partiular, but with one key di�erene:

The underlying matter �eld theory, here the `aux' system, is no longer an arbitrary

external input, but is hosen so as to reprodue the NGFP ation, an objet omputed

from �rst priniples.

(7) Complete vs. gauge invariant �xed point funtional. So far we mainly

foused on the gravitational part of the NGFP funtional. The omplete EAA,

namely Γk = Γgravk + Γmk + Γgfk + Γghk ontains matter, gauge �xing and ghost terms

in addition. But sine the present trunation neglets the running of the latter three

parts, they may be onsidered always at their respetive �xed point. Also, they have

an obvious interpretation in 2D exatly. Furthermore, our trunation assumes that

neither Γgravk nor Γmk as given in (4.31) has an �extra� ḡ-dependene.

As a result, the sum of gravity and matter (`GM') ontributions,

ΓGM,2D

k [g,A] ≡ Γgrav,2Dk [g] +
1

2

N∑

i=1

∫
d

2x
√
g gµν∂µA

i∂νA
i , (6.26)

enjoys both bakground independene, here meaning literally independene of the

bakground metri, and gauge invariane, i.e. it does not hange under di�eomor-

phisms applied to gµν and Ai
.

Thanks to the seond property

4

, we may adopt the point of view that it is

atually the gauge invariant funtional ΓGM,2D

k only whih ontains all information

of interest and was thus �handed over� alone from the higher dimensional Einstein�

Hilbert world to the intrinsially 2-dimensional indued gravity setting. Therefore,

4

Whih might not be realized in more ompliated trunations!
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if in 2D the neessity of gauge �xing arises, we an in priniple pik a new gauge,

di�erent from the one employed in d > 2 for the omputation of the β-funtions.5

(8) Unitarity vs. stability: the onformal fator �problem� . Next we take

advantage of the partiularly onvenient onformal gauge available in stritly 2 di-

mensions (f. Setion 5.2.1), and evaluate Γgrav,2D,NGFPk [g] as given expliitly by eq.

(6.5) for metris of the speial form gµν = e2φ ĝµν . The result is a Liouville ation as

before in eqs. (5.23), (5.24), this time without any undetermined piee suh as Uk[ĝ],

however:

Γgrav,2D,NGFPk

[
e2φ ĝ

]
≡
cNGFP
grav

96π
I[ĝ] + ΓLk [φ; ĝ] , (6.27)

with

ΓLk [φ; ĝ] =
cNGFP
grav

12π

∫
d

2x
√
ĝ

{
−1

2
D̂µφ D̂

µφ− 1

2
R̂φ+ λ̊∗ k

2e2φ
}
. (6.28)

Sine cNGFP
grav

= 25 − N (or cNGFP
grav

= 19 − N with the linear parametrization), we

observe that for pure gravity, and gravity interating with not too many matter �elds,

the onformal fator has a �wrong sign� kineti term that might seem to indiate an

instability at �rst sight. If we think of the �xed point ation as indued by some

auxiliary CFT with entral harge c
aux

= cNGFP
grav

= 25 −N > 0, we see that this is

exatly the orrelation mentioned in paragraph (3b) above: bona �de unitary CFTs

generate �wrong sign� kineti terms for the onformal fator.

We emphasize that the unstable φ-ation is neither unexpeted, nor �wrong� from

the physis point of view, nor in ontradition with the positive entral harge of the

�xed point CFT. Let us disuss these issues in turn now.

(8a) The importane of Gauss' law. Reall the standard ount of gravitational

degrees of freedom in Einstein�Hilbert gravity: In d dimensions, the symmetri

tensor gµν ontains

1
2d(d + 1) unknown funtions whih we try to determine from

the

1
2d(d + 1) �eld equations Gµν = · · · . Those are not independent, but subjet

to d Bianhi identities. Moreover, we need to impose d oordinate onditions due

to di�eomorphism invariane. This leaves us with N
EH

(d) ≡ 1
2d(d + 1) − d − d =

1
2d(d − 3) gravitational degrees of freedom, meaning that by solving the Cauhy

problem for gµν we an predit the time evolution of N
EH

(d) funtions that, (i), are

related to �physial � (i.e. gauge invariant) properties of spae, (ii), are algebraially

independent among themselves, and (iii), are independent of the funtions desribing

the evolution of matter.

With N
EH

(4) = 2 we thus reover the gravitational waves of 4D General Relativ-

ity, having preisely 2 polarization states. Similarly, N
EH

(3) = 0 tells us that there

an be no gravitational waves in 3 dimensions sine all independent, gauge invariant

5

This ould not be done if one wants to ombine loop or RG alulations from d > 2 with others

done in d = 2 exatly. However, in this and the previous hapter all dynamial alulations are

done in d > 2, i.e. before the 2D limit is taken.
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properties desribed by the metri an be inferred already from the matter evolution.

No extra initial onditions an, or must, be imposed.

Finally N
EH

(2) = −1 seems to suggest that �gravity has −1 degree of freedom in

2 dimensions�. Strange as it might sound, the meaning of this result is quite lear:

The quantum metri with its ghosts removes one degree of freedom from the matter

system. If, in absene of gravity, the Cauhy problem of the matter system has a

unique solution after speifying N
m

initial onditions, then this number gets redued

to N
m

− 1 by oupling the system to gravity.

Quantum mehanially, on a state spae with an inde�nite metri, the removal

of degrees of freedom happens upon imposing �Gauss' law onstraints�, or �physial

state onditions� on the states. As a result, the potentially dangerous negative-norm

states due to the wrong sign of the kineti term of φ are not part of the atual

(physial) Hilbert spae. The latter an be built using matter operators alone, and

it is in fat smaller than without gravity.

6

The situation is analogous to Quantum Eletrodynamis (QED) in the Coulomb

gauge, for example. The overall sign of the Maxwell ation ∝ FµνF
µν

is hosen

suh that the spatial omponents of Aµ have a positive kineti term, and so it

is unavoidable that the time omponent A0 has a negative one, like the onformal

fator in (6.28). However, it is well known [223℄ that the states with negative (norm)2

generated by A0 do not survive imposing Gauss' law ∇ · E = eψ†ψ on the states.

This step indeed removes one degree of freedom sine A0 and ρem ≡ eψ†ψ get oupled

by an instantaneous equation, ∇2A0(t,x) = −ρ
em

(t,x).

(8b) Instability and attrativity of lassial gravity. To avoid any misunder-

standing we reall that in onstruting realisti 4D theories of gravity it would be

quite absurd, at least in the Newtonian limit, to �solve� the problem of the onfor-

mal fator by manufaturing a positive kineti term for it in some way. In taking

the lassial limit of General Relativity, this kineti term essentially desends to the

∇ϕ
N

· ∇ϕ
N

-part of the lassial Lagrangian governing Newton's potential ϕ
N

and

therefore �xes the positive sign on the RHS of Poisson's equation, ∇2ϕ
N

= +4πGρ.

However, this latter plus sign expresses nothing less than the universal attrativity

of lassial gravity, something we ertainly want to keep.

This simple example shows that the onformal fator instability is by no means

an unmistakable sign for a physial de�ieny of the theory under onsideration. The

theory an be perfetly unitary if there are appropriate Gauss' law-type onstraints

to ut out the negative norm states of the inde�nite metri state spae.

(8) Central harge in Liouville theory. Finally, we must disuss a potential

soure of onfusion onerning the orret identi�ation of the �xed point's entral

harge. Let us pretend that the Liouville ation ΓLk [φ; ĝ] desribes a matter �eld φ

6

See Polhinski [116℄ for a related disussion.



140 Chapter 6. The non-Gaussian �xed point as a unitary onformal �eld theory

in a �bakground� metri ĝµν .
7

It would then be natural to asribe to this �eld the

stress-energy tensor

TL

k [φ; ĝ]
µν ≡ 2√

ĝ

δΓLk [φ; ĝ]

δĝµν
. (6.29)

Without using the equation of motion (i.e. �o� shell�) its trae is given by

ΘL

k [φ; ĝ] ≡ ĝµν T
L

k [φ; ĝ]
µν =

cNGFP
grav

12π

(
�̂φ+ 2λ̊∗ k

2e2φ
)
. (6.30)

Conerning (6.30), several points are to be noted.

(i) Varying ΓLk with respet to φ yields Liouville's equation �̂φ+2λ̊∗ k2e2φ = 1
2R̂.

With φ
sol

denoting any solution to it, we obtain �on shell� the following k-

independent trae:

ΘL[φ
sol

; ĝ] = +cNGFP
grav

1

24π
R̂ . (6.31)

If we now ompare (6.31) to the general rule (6.11), we onlude that the

Liouville �eld represents a CFT with the entral harge

cL = −cNGFP
grav

, (6.32)

whih is negative for pure asymptotially safe gravity, namely cL = −25, or

−19, respetively.

Does this result indiate that the �xed point CFT is nonunitary, after all? The

answer is a lear `no', and the reason is as follows.

(ii) The Liouville theory governed by ΓLk of (6.28) is not a faithful desription of

the NGFP. Aording to eq. (6.27), the full ation ontains the �pure gravity�

term

cNGFP
grav

96π I[ĝ] in addition. In order to orretly identify the entral harge of

the NGFP, it is essential to add the ĝµν -derivative of this term to the Liouville

stress-energy tensor. Hene, the trae (6.30) gets augmented to

2ĝµν√
ĝ

δ

δĝµν

(
cNGFP
grav

96π
I[ĝ]

)
+ΘL

k [φ; ĝ] = −c
NGFP

grav

24π
R(ĝ) + ΘL

k [φ; ĝ] (6.33)

=
cNGFP
grav

24π

[
−R(ĝ) + 2�̂φ+ 4λ̊∗ k

2e2φ
]

=
cNGFP
grav

24π

[
−e−2φ

(
R(ĝ)− 2�̂φ

)
+ 4λ̊∗ k

2
]
e2φ

=
cNGFP
grav

24π

[
−R
(
e2φ ĝ

)
+ 4λ̊∗ k

2
]
e2φ

= e2φ Θk

[
e2φ ĝ

]
.

7

Reall, however, that the referene metri ĝµν that enters only the onformal parametrization

of 2D metris is to be distinguished arefully from the true bakground metri ḡµν whih is at the

heart of the entire gravitational EAA setting. In this onformal parametrization, a generi bimetri

ation F [g, ḡ] translates into a funtional of two onformal fators, F
[

φ, φ̄; ĝ
]

≡ F
[

e2φ ĝ, e2φ̄ ĝ
]

.
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In the 2

nd

line of (6.33) we inserted (6.30), in going from the 3

rd

to the 4

th

line we exploited the identity (H.11) from the appendix, and in the last line we

used (6.18). So with this little alulation we have heked that the Liouville

stress-energy tensor makes physial sense only when ombined with the pure

gravity piee.

8

If this is done, the total gravitational trae from whih the

orret entral harge is inferred, eq. (6.18), is indeed reovered, as it should

be. It satis�es the relation

9

Θk[g] ≡ Θk

[
e2φ ĝ

]
= e−2φ

(
−
cNGFP
grav

24π
R̂+ΘL

k [φ; ĝ]

)
, (6.34)

whih holds true even o� shell.

(iii) If we take φ on shell, eq. (6.31) applies, and so the two terms in the brakets

of eq. (6.34) anel preisely. This, too, is as it should be sine from eq. (6.9)

we know already that Θk[g] vanishes identially when g ≡ ḡ is a self-onsistent

bakground, and this is exatly what we insert into (6.34) when φ is a solution

of Liouville's equation.

Thus, taking the above points together we now understand that nothing is wrong

with cL = −cNGFP
grav

. In fat, cL < 0 for pure gravity is again a re�etion of the

Liouville �eld's �wrong-sign� kineti term

10

and its perfetly orret property of

reduing the total number of degrees of freedom.

6.3 Summarizing remarks

In Chapter 5 we started from the Einstein�Hilbert trunation for the e�etive average

ation of metri quantum gravity in d > 2 dimensions and onstruted its intrinsially

2-dimensional limit. This limit was taken diretly at the level of the ation, rather

than being a mere ε-expansion of β-funtions. We saw that it turns the (loal,

seond-derivative) Einstein�Hilbert term into the nonloal Polyakov ation.

Using this result in the present hapter, we were able to onlude that in 2D

the non-Gaussian �xed point underlying Asymptoti Safety gives rise to a unitary

onformal �eld theory whose gravitational setor possesses the entral harge +25.

We analyzed the properties of the �xed point CFT using both a gauge invariant

desription and a alulation based on the onformal gauge where it is represented

by a Liouville theory.

We lose with a number of further omments.

8

In isolation, ΘL[φ; ĝ] is not invariant under the Weyl split-symmetry transformations (5.28),

i.e. not a funtion of the ombination e2φ ĝ only.

9

The expliit fator e−2φ
in (6.34) is simply due to the di�erent volume elements

√
ĝ and√

g =
√
ĝ e2φ appearing in the de�nitions of the stress-energy tensors (6.29) and (6.10), respetively.

10

Hene, at the tehnial level, the wrong-sign kineti term requires speial attention (regular-

ization, analyti ontinuation, or similar) at intermediate steps of the alulation at most.
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(1) An important step in proving the viability of the Asymptoti Safety program

onsists in demonstrating that Hilbert spae positivity an be ahieved together

with bakground independene and nonperturbative renormalizability. While we

onsider our present result on the unitarity of the pertinent CFT as an enouraging

�rst insight, it is lear, however, that the 2D ase is not yet a ruial test sine

the gravitational �eld has no independent propagating degrees of freedom, and so

there is no pure-gravity subspae of physial states whose positivity would be at

stake. To takle the higher dimensional ase additional tehniques will have to be

developed. Nevertheless, it is interesting that at least at the purely geometri level

the remarkable link between the Einstein�Hilbert and the Polyakov ation whih we

exploited has an analogue in all even dimensions d = 2n. Eah nontrivial oyle

of the Weyl ohomology yields, in an appropriate limit d → 2n, a well de�ned

nonloal ation that is onjetured to be part of the standard e�etive ation in 2n

dimensions [207℄.

(2) A number of general lessons we learned here will be relevant in higher dimen-

sions, too. We mention in partiular that the issue of unitarity annot be settled

by super�ially heking for the stability of some bare ation and ruling out �wrong

sign� kineti terms as this is sometimes implied. We saw that the CFT whih is at

the heart of the NGFP is unitary even though in onformal gauge it entails a negative

kineti energy of the Liouville �eld. As we explained in Setion 6.2, the bakground

�eld, indispensable in our approah to quantum gravity, plays an important role in

reoniling these properties.

(3)We showed that the ruial entral harge cNGFP
grav

an be read o� from the leading

term in the β-funtion of Newton's onstant, and we saw that the pure gravity result

is either 25 or 19, depending on whether the exponential or the linear parametrization

of the metri is hosen, respetively. The arguments of Setion 4.4 suggest aepting

the result of the former, +25, as the orret one in the present ontext. Nevertheless,

the issue of parametrization dependene is not fully settled yet, and one should still

be open towards the possibility that the two sets of results, obtained from the same

trunation ansatz but di�erent hoies of the �utuating �eld, might atually refer

to di�erent universality lasses.

(4) Regarding di�erent universality lasses, it is perhaps not a pure oinidene that

the �19� is also among the �ritial dimensions for nonritial strings� whih were

found by Gervais [224�229℄:

D
rit

= 7, 13, 19. (6.35)

They orrespond to gravitational entral harges c
grav

= 19, 13, 7, respetively. For

these speial values the Virasoro algebra admits a unitary trunation, that is, there

exists a subspae of the usual state spae on whih a orresponding hiral alge-

bra loses, and whih is positive (in the sense that it ontains no vetors |ψ〉 with
〈ψ|ψ〉 < 0). The assoiated string theories were advoated as onsistent extensions
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of standard Liouville theory, whih is valid only for c < 1 and c > 25 when gravity

is weakly oupled, into the strongly oupled regime, 1 < c < 25, in whih the KPZ

formulae [114, 115, 164℄ would lead to meaningless omplex answers.

Thus, for the time being, we annot exlude the possibility that a better under-

standing of the RG �ow omputed with the linear parametrization (but with more

general trunations than those analyzed in this thesis) will lead to the piture that

there exists a seond pure gravity �xed point ompatible with Hilbert spae positiv-

ity, namely at c
grav

= 19, and that this �xed point represents another, inequivalent

universality lass.

We know already that this piture displays the following orrelation between pa-

rametrization and universality lass, whih we would then indeed onsider the natural

one: The exponential parametrization, i.e. the �onservative� one in the sense that

it overs only nonzero, nondegenerate, hene �more lassial� metris having a �xed

signature, leads to c
grav

= 25 whih is loated just at the boundary of the strong

oupling interval. In the way it is employed, the linear parametrization, instead, gives

rise to an integration also over degenerate, even vanishing tensor �eld on�gurations

not orresponding to any lassial metri; typially enough, it is this parametrization

that would be linked to the hypothetial, ertainly quite nonlassial theory with

c
grav

= 19 deep in the strong oupling domain.

Whatever the �nal answer will be, it seems premature, also in more than 2 dimen-

sions, to regard the exponential parametrization merely as a tool to do alulations

in a more preise or more onvenient way than this would be possible with the linear

one. It might rather be that in this manner we are atually omputing something

else.





7
The reonstruted bare ation

Exeutive summary

Although it is possible to derive the FRGE from a funtional integral formu-

lation, its �nal manifestation given by eq. (2.3) has no reminisene of suh

a derivation and does not depend on any path integral. Solving the theory

amounts to solving the FRGE, and thus we dispense with the need to de�ne

a funtional measure and a bare ation. However, if we want to aess the

mirosopi degrees of freedom in more detail, a preise knowledge of the bare

ation may beome indispensable. In this hapter we prove a one-loop relation

between the e�etive average ation and the bare ation, the �reonstrution

formula�, and we argue that the relation beomes exat for ertain terms when

the large uto� limit is onsidered. We apply these results to gravity within

the Einstein�Hilbert trunation in order to determine the bare osmologial

onstant and the bare Newton onstant. It will be shown that the bare se-

tor features a non-Gaussian �xed point in this framework. Finally, we reveal a

mehanism how the freedom in setting up a funtional measure an be exploited

to adjust bare ouplings in a onvenient way.

What is new? Exatness beyond one-loop (Se. 7.2.2); existene and proper-

ties of the bare NGFP (Ses. 7.3.2 & 7.3.3); a strategy to adjust bare ouplings

(Se. 7.3.4), used to ahieve a vanishing bare osmologial onstant and a bare

Newton onstant that agrees with the e�etive one (Se.7.3.5).

7.1 Motivation

From a Wilson�Kadano� point of view, the renormalization proess amounts to

starting from a bare ation in a path integral at some UV sale Λ, the Wilsonian

ation SWΛ , deomposing the integration �eld variable into high and low momentum
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modes, integrating out the high momentum modes and reexpressing the remaining

piees in terms of an �e�etive� bare ation, SWΛ′ , valid at some sale Λ′ < Λ. This

proedure an be ontinued down to the sale zero until all modes are integrated

out, giving rise to the ordinary e�etive ation Γ. We an think of SWΛ at di�erent

values of Λ as a set of ations for the same system. It is ruial that SWΛ plays the

role of a bare ation at the sale Λ as long as Λ > 0.1

By ontrast, in the e�etive average ation (EAA), Γk, there are no unintegrated

�utuations, so inherently Γk is a standard e�etive ation for eah k. In this sense,

Γk desribes a family of di�erent systems: For eah k it is the ordinary e�etive ation

for a system whose full bare ation is of the form SΛ +∆Sk, where ∆Sk denotes the

mode suppression term. The orresponding orrelation funtions provide an e�etive

�eld theory desription of the physis at sale k.

Having emphasized the oneptual di�erenes between the bare/Wilsonian ation

and the e�etive average ation, one might raise the question whether the two types

of ations an be transformed into eah other. One �diretion� of suh a relation

is rather straightforward sine the EAA an in priniple be obtained by funtional

integration provided that a bare ation, an appropriately regularized funtional mea-

sure and a mode suppression term are given. It is the other diretion that we will

fous on in this hapter: Let us assume that we are given an e�etive average ation

Γk whih, upon setting k = 0, yields the standard e�etive ation, Γ = Γk=0. This

brings us to the question how a bare ation SΛ (together with a suitably de�ned

funtional measure) has to be hosen in order that the orresponding path integral

reprodues preisely the same e�etive ation Γ.

It is important to keep in mind that the �derivation� of the FRGE from a fun-

tional integral is only formal as it ignores all di�ulties spei� to the UV limit

of quantum �eld theories. In fat, rather than the integral, the starting point of

the EAA based route to a fundamental theory is the mathematially perfetly well

de�ned, UV uto�-free �ow equation (2.3). In this setting, the problem of the UV

limit is shifted from the properties of the equation itself to those of its solutions,

onverting renormalizability into a ondition on the existene of fully extended RG

trajetories on theory spae. The Asymptoti Safety paradigm is a way of ahieving

full extendability in the UV and, barring other types of (infrared, et.) di�ulties,

it leads to a well-behaved ation funtional Γk at eah k ∈ [0,∞). Every suh om-

plete RG trajetory de�nes a quantum �eld theory (with the uto�(s) removed).

The �reonstrution problem� [31�34℄ onsists in �nding a funtional integral that

reprodues a given omplete Γk-trajetory.

The bene�ts of reonstruting the bare ation from the e�etive average ation

are diverse: First, the bare ation provides diret aess to the mirosopi degrees of

freedom and their fundamental interations. This allows reonstruting the Hamil-

1

When using a running bare ation in the Wilsonian sense we denote it by SW

Λ . If, on the other

hand, we onsider a bare ation at some �xed UV sale Λ, we denote it by SΛ.
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tonian phase spae formulation desribing the lassial system. Seond, the imple-

mentation of symmetries or onstraints, the derivation of Ward identities and further

general properties an be studied more easily in a path integral setting. Third, the

bare ation is needed to make ontat to perturbation theory and similar approxima-

tion shemes. And �nally, establishing the onnetion to di�erent approahes might

require a bare ation, too. In gravity, for instane, it would be interesting to know

the relation between the EAA formulation on the one hand and anonial quantum

gravity, loop quantum gravity or Monte Carlo simulations of ausal dynamial tri-

angulations (CDT) on the other hand, where the bare ation plays a entral role in

the latter three approahes.

There is a rule of thumb often mentioned in the literature on the EAA (see

Ref. [29℄, for instane): �In the large uto� limit Γk approahes the bare ation,

Γk→∞ = SΛ.� However, even if we ignore for a moment the problems related to UV

regularization, this heuristi rule annot be omplete; there are additional orretion

terms. This an be seen by ritially revising the standard argument underlying the

rule of thumb, whih says that the mode suppression term

e−∆Sk ≡ e−
1
2

∫ √
g (χ−φ)Rk(χ−φ)

(7.1)

ats e�etively as a δ-funtional for k → ∞ in a path integral over the �eld χ. The

idea behind this argument is based on the relation Rk ∝ k2. In the limit k → ∞
the term (7.1) thus fully suppresses all �eld ontributions to the integral exept for

χ = φ. The premature onlusion from this would be that (7.1) is equivalent to the

funtional δ[χ− φ] in the large k limit. In fat, this is not true.

Figure 7.1 Approximation of a delta

funtion by a family of Gaussian urves

by inreasing their height and dereas-

ing their width.

Let us demonstrate the ruial issue

in terms of a simple δ-funtion whih an

be approximated by a family of Gaussian

urves,

δk(x) ≡
k√
2π

e−
1
2
k2x2

, (7.2)

with the standard deviation σ = 1/k, see

Figure 7.1. Thanks to the hosen normal-

ization we have

∫∞
−∞ dx δk(x) = 1 for all

k, and δk(x) will indeed approah a δ-

funtion in the limit k → ∞. The key

point is that k enters the RHS of (7.2)

twie: Inreasing k means inreasing the height (due to the prefator) and simultane-

ously squeezing the urve (due to the exponential). Only an appropriate ombination

of amplifying and squeezing will ultimately lead to a δ-funtion.

Having said this, it is lear what prevents eq. (7.1) from approahing δ[χ − φ]:

The exponential leads to a squeezing of the funtional for inreasing k whih gives

rise to the mode suppression, but there is no suitable prefator whih is required to
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inrease the height. As a onsequene, we do not obtain an exat δ-funtional in the

large k limit. Stated di�erently, the rule of thumb, Γk→∞ = SΛ, whose �derivation�

relies on the validity of the δ-funtional argument, is inomplete.

There are two possibilities how this problem an be ured. (1.) We ould multiply

(7.1) by a suitable k-dependent prefator. In this way, it an be ahieved that the

relation Γk→∞ = SΛ beomes exat. This would, however, lead to a k-dependent

path integral measure and modify the �ow equation for Γk. Suh an approah has

been pursued in Ref. [32℄, f. also Ref. [33℄. (2.) We ould stik to (7.1) without

modifying the measure. This leaves the �ow equation unaltered, but requires a

modi�ation suh as Γk→∞ = SΛ + orretion [31℄. In this hapter we fous on the

seond possibility.

7.2 The one-loop reonstrution formula

The assoiation of a funtional integral, i.e. a bare theory, to a Γk-trajetory is highly

nonunique. The �rst deision to be taken onerns the variables of integration: They

may or may not be �elds of the same sort as those serving as arguments of Γk. From

the pratial point of view the most important situation is when the integration

variables are no (disretized) �elds at all, but rather belong to a ertain statistial

mehanis model whose partition funtion at ritiality is supposed to reprodue the

preditions of the EAA trajetory. Besides the nature of the integration variables,

a UV regularization sheme, a orrespondingly regularized funtional integration

measure, and an assoiated bare ation SΛ are to be hosen. Then the information

enapsulated in Γk→∞ an be used to �nd out how the bare parameters ontained

in SΛ must depend on the UV uto� Λ in order to give rise to a well-de�ned path

integral reproduing the EAA-trajetory in the limit Λ → ∞.

Guided by the setting of Ref. [31℄ we onsider a reonstrution based on the

following two hoies: (i) The integration variable is taken to be of the same sort

as in the argument of Γk. (ii) The UV regularization is implemented by means of a

sharp mode uto�.

In order to derive a reonstrution formula we have to speify in detail how the

funtional measure is de�ned. Otherwise, it would be impossible to determine the

bare ation: Any shift in the bare ation of the form SΛ → SΛ +X an be absorbed

by multiplying the measure by eX , and vie versa. Thus, only the ombination of

measure and bare ation is a meaningful objet. Appendix I.1 ontains a thorough

disussion about how the funtional measure an be de�ned onsistently. It is shown

that the de�nition is not unique but rather involves a parameter M whih labels a

ertain 1-parameter family of measures. TheM -dependene of the measure translates

into an M -dependent bare ation. This nonuniqueness signals the �unphysialness�

of the bare ation. As we will see later on, this fat an be exploited to adjust the

bare oupling onstants onveniently.
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In the following subsetion we review and extend the arguments of Ref. [31℄.

7.2.1 Derivation

Let φ denote a (olletion of) generi �eld(s) of unspei�ed type, i.e. φ represents

salar �elds, metri �utuations or gauge �elds, for instane. Sine the line of rea-

soning in the subsequent omputation is the same for any kind of �eld, we adopt �

for the sake of readability � the simple notation for salar �elds, bearing in mind

that an appropriate extension to other �eld types will in general require the use of

internal indies, bakground �elds, as well as additional gauge �xing and ghost terms

supplementing the bare ation.

Starting out from the de�nition of the e�etive average ation Γk,Λ , given in

Se. 2.1.2, we an reexpress the de�ning equation as

2

e−Γk,Λ[φ] ≡ e−J ·φ+ 1
2
φ·Rkφ

∫
DΛχ e−SΛ[χ]+J ·χ− 1

2
χ·Rkχ , (7.3)

with the shortuts J ·φ ≡
∫
d

dx
√
g J(x)φ(x) and φ·Rkφ ≡

∫
d

dx
√
g φ(x)Rk(−�)φ(x).

While being irrelevant for the form of the FRGE, the expliit dependene of the

funtional measure DΛχ on the UV uto� sale Λ (and on the parameter M) will

turn out to be ruial for the reonstrution step (f. Appendix I.1). The soure

J(x) ≡ Jk,Λ[φ](x) is determined by the equation

Γ
(1)
k,Λ[φ](x) ≡

1√
g(x)

δΓk[φ]

δφ(x)
= J(x)−Rkφ(x). (7.4)

Replaing J in (7.3) aording to (7.4) yields

e−Γk,Λ[φ] =

∫
DΛχ e−SΛ[χ]+Γ

(1)
k,Λ[φ]·(χ−φ)− 1

2
(χ−φ)·Rk(χ−φ) . (7.5)

We an now exploit the translation invariane of the measure to make the hange of

variables χ→ f = χ− φ and obtain

e−Γk,Λ[φ] =

∫
DΛf e−S

tot

[f ;φ] , (7.6)

where we introdued the total ation

S
tot

[f ;φ] ≡ SΛ[φ+ f ]− Γ
(1)
k,Λ[φ] · f +

1

2
f · Rkf . (7.7)

It is onvenient to reinstate ~ as a bookkeeping parameter for a moment, allowing

us to systematially ount loop orders. Equation (7.6) then beomes

e−
1
~
Γk,Λ[φ] =

∫
DΛf e−

1
~
S
tot

[f ;φ] . (7.8)

2

Note that we state the dependene on the UV uto� sale Λ expliitly here sine it enters both

the bare ation and the funtional measure (f. Appendix I.1) in a ruial way. It was dropped in

Se. 2.1.2 where we impliitly onsidered the limit Λ → ∞ in the end, in partiular in the FRGE.
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At this point we make the assumption that SΛ behaves like a generi ation in

that it is bounded from below. (Clearly, when the bare ation has been reonstruted,

one should test a posteriori if the solution SΛ is onsistent with this assumption.)

In that ase, sine Rk is positive by onstrution, we �nd that S
tot

, too, is bounded

from below. As a onsequene, S
tot

[f ;φ] must have a minimum w.r.t. f for �xed φ,

so the equation

δS
tot

δf
[f0;φ] = 0, (7.9)

de�ning a stationary �point� f0, is guaranteed to have a solution. This stationary

point an be used in turn to perform a saddle point expansion in the integrand of

(7.8): We deompose the integration variable f aording to

f = f0 +
√
~
M

Λ
ϕ , (7.10)

and eq. (7.8) beomes

e−
1
~
Γk,Λ[φ] =

∫
DΛϕJΛ e

− 1
~
S
tot

[f0;φ]− 1
2

M2

Λ2

∫√
g ϕ

(

S
(2)
Λ [φ+f0]+Rk

)

ϕ+···
. (7.11)

In appendix I.2.1 we show by a areful analysis that (i) all higher order terms in

(7.11) indiated by the dots do not ontribute to the �nal result at one-loop level and

vanish in the large uto� limit, (ii) the Jaobian JΛ ≡ detΛ

(
δf
δϕ

)
is �eld independent

and an be pulled out of the integral, (iii) the remaining Gaussian integral an be

omputed exatly, giving rise to a determinant whih an be written as a trae by

using ln det(·) = Tr ln(·), and (iv) the stationary point f0 is found to be of �rst order

in ~, a result that an be exploited for a subsequent ~-expansion. For further details

we refer the reader to the appendix. Employing (i)�(iv) we �nally obtain

Γk,Λ[φ] = SΛ[φ] +
~

2
TrΛ ln

[
1

~M2

(
S
(2)
Λ [φ] +Rk

)]
+O(~3/2/Λ) +O(~2). (7.12)

Here and in the following, we use the de�nition TrΛ
[
(·)
]
≡ Tr

[
(·)θ(Λ2+�)

]
for the

regularized trae. In eq. (7.12) the terms of higher than linear order in ~ orrespond

to higher-loop ontributions.

Moreover, we argue in appendix I.1 and I.2.1 that the above salar �eld onsid-

eration an be extended to the general ase of arbitrary �elds by taking into aount

the anonial mass dimensions of all �elds involved.

3

This amounts to replaingM−2

in (7.12) with N−1
, where N denotes the blok diagonal matrix whose dimension

equals the number of di�erent �elds and whose diagonal elements are given by the

parameter M raised to some power, determined by the orresponding �eld type: We

know already that the entry of N in the salar �eld setor is given by M2
, while it

3

Note that raising and lowering indies leads to a hange of mass dimension. This a�ets S
(2)
Λ

whih must have as many upper indies as lower ones. Therefore, the power of M in (7.12) needed to

make the argument of the logarithm dimensionless depends on both the anonial mass dimension

of the �elds and the number of their upper and lower indies.
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is, for instane, Md
for gravitons and M2

in the ghost setor. Using this matrix N
and setting ~ = 1 again yields our �nal one-loop result,

Γk,Λ = SΛ +
1

2
STrΛ ln

[
N−1

(
S
(2)
Λ +Rk

)]
, (7.13)

where the supertrae inludes a summation over all �eld types and a minus sign for

eah Grassmann-valued �eld.

We emphasize that, due to the ourrene of the free parameter M in eq. (7.13),

bare ouplings will in general depend on M . Thus, the bare ouplings may be

adjusted (to an extent that is yet to be determined) by tuning M . A partiularly

intriguing implementation of this possibility will be disussed in Setions 7.3.4 and

7.3.5 for the Einstein�Hilbert ation.

7.2.2 Exatness beyond one-loop in the large uto� limit?

In this subsetion we investigate the question whether the reonstrution formula

(7.13), whih is inherently one-loop exat, atually beomes a fully exat relation

one the limit Λ → ∞ is taken. As shown in Appendix I.2.2 this is not true in

general. Nevertheless, it turns out that for ertain terms to be spei�ed in a moment

the relation beomes indeed exat in the large uto� limit.

For our argument we assume that any funtional an be expanded in terms

of linearly independent basis funtionals of theory spae. With regard to a given

funtional equation this means that the equation holds true for eah term of the

expansion separately. In this sense, the reonstrution formula an be analyzed

term-wise. Then it is perfetly possible that the one-loop relation is fully exat at

large Λ for one lass of terms while there are nonvanishing higher-loop ontributions

for another lass of terms. As the full derivation is rather tedious, we work out

the details in the appendix in Setion I.2.2. Here we present only the �nal result

inluding its meaning and appliations.

In the limit k = Λ → ∞ the relation between bare and e�etive average ation

is given by

Pr⊥(div)

{
ΓΛ,Λ − SΛ

}
= Pr⊥(div)

{
~

2 STrΛ ln
[
1
~
N−1

(
S
(2)
Λ +RΛ

)]}
. (7.14)

This is an exat identity rather than a one-loop approximation. In (7.14) the pro-

jetion Pr⊥(div) is to be understood as follows. In the intermediate steps leading to

(7.14) (see Appendix I.2.2), partiular terms are divergent in the limit Λ → ∞ and

would require higher-loop orretions. These terms must be exluded from our anal-

ysis in order to establish exatness of the reonstrution formula. We ahieve this by

projeting onto a suitable subspae of theory spae, namely the orthogonal omple-

ment to all divergent terms. Spei�ally, whih of the terms have to be �projeted

away� depends on the spaetime dimension:
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• 2 < d ≤ 4: In this ase the projetion operator amounts to Pr⊥(div) ≡
Pr⊥(

√
g,
√
gR). Its appliation projets onto the orthogonal omplement to all

√
g- and

√
gR-terms. This means that all terms of the type

∫√
g,
∫√

g φ�φ,∫√
g φ2,

∫√
g φ4,

∫ √
g R,

∫ √
g Rφ2,

∫√
g�φDµφDµR, et. are projeted

away.

• d = 2: The projetion is similar to the ase 2 < d ≤ 4 exept that the

√
gR-

terms do not have to be projeted away this time: Pr⊥(div) ≡ Pr⊥(
√
g). Hene,

only suh terms that involve no urvature at all are a�eted by Pr⊥(div).

• d > 4: The higher the dimension the more terms have to be projeted away.

For d > 4 all

√
gR2

-terms and possibly further higher dimensional operators

beome relevant as well, and we have Pr⊥(div) ≡ Pr⊥(
√
g,
√
gR,

√
gR2,... ).

Finally, let us brie�y disuss how eq. (7.14) an be applied, when it is useful and

when it is not. In the ase of salar �elds the additional information ontained in

(7.14) as ompared with (7.13) is very little: Eq. (7.14) does not onern any of the

terms

∫√
g φ�φ,

∫√
g φ2,

∫√
g φ4,

∫ √
g Rφ2 and so forth, and thus the orrespond-

ing bare ation terms annot be determined on an exat level in this manner. As

these are the main terms a standard e�etive average ation is omposed of, identity

(7.14) seems inappropriate to �nd the most relevant part of the bare ation. There-

fore, we have to resort to the one-loop approximation (7.13) in that ase. The same

onlusion holds for other matter �elds.

For pure metri gravity, however, eq. (7.14) ontains a onsiderable amount of

additional information, at least as far as single-metri trunations are onerned.

In this ase, for 2 < d ≤ 4 the projetion Pr⊥(div) exludes only two terms from

the equation: the osmologial onstant term,

∫√
g, and the �rst urvature term,∫√

g R. Moreover, for d = 2 the equation even holds true for all terms but the

osmologial onstant term. To sum up, in the limit Λ → ∞ we �nd that the identity

ΓΛ,Λ − SΛ = ~

2 STrΛ ln
[
1
~
N−1

(
S
(2)
Λ +RΛ

)]
is fully exat exept for the osmologial

onstant term in d = 2 (exept for

∫√
g and

∫√
g R in 2 < d ≤ 4).

If we want to determine how the exluded terms enter the bare ation, we an

make use of the one-loop approximation (7.13) again whih is valid for all terms.

As a last point we would like to mention a reently found simpli�ation emerging

for salar �elds in �at spae [33℄. It is based upon a di�erent regularization sheme:

Only the massless kineti parts of the underlying ations are regularized (leaving

their interation parts unmodi�ed), and the various uto�s involved have to satisfy a

ertain sum rule as well as a ompatibility ondition. In this speial ase the trae in

eq. (7.13) amounts to a (divergent but irrelevant) �eld independent onstant, and so

do all higher-loop terms. Thus, provided that the regulators satisfy all onstraints,

the reonstrution formula (7.13) at k = Λ redues to [33℄ (f. also [32℄)

ΓΛ,Λ[φ] = SΛ[φ] for salar �elds. (7.15)
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It should be borne in mind, though, that the modi�ed regulators imply a modi�ation

of the funtional measure as ompared with our de�nition in Appendix I.1. The

authors of Ref. [33℄ argue that their disussion an be generalized to the ase of

other, for instane fermioni, matter �elds. Moreover, it an be veri�ed that the

results hold true in urved spaetime, too. In (the QFT approah to) quantum

gravity, however, where the integration variable of the funtional integral is given by

the dynamial metri, the simple relation (7.15) is spoiled by additional orretion

terms. These further ontributions originate from Gaussian integrals one enounters

in the proof of (7.15). They an be treated as irrelevant onstants in the ase of

salar �elds [33℄, while they give rise to ruial �eld dependent terms in gravity.

4

Similar obstales an our in other gauge theories as well.

In onlusion, the bare ation may be determined by eq. (7.15) in the matter

�eld setor, and by eq. (7.13) for gauge theories, in partiular for gravity.

7.3 Bare ation for the Einstein�Hilbert trunation

In this setion we aim at applying the reonstrution formula disussed in the previ-

ous setions to metri gravity. Our analysis will extend the results of Ref. [31℄ where

a map between bare and e�etive ouplings was onsidered for a twofold Einstein�

Hilbert (EH) trunation. Using the same setting, we will prove the existene of a

�xed point in the bare setor for any hoie of the measure parameter M and any

dimension d, we will investigate the �ow of the bare ouplings in more detail, in

partiular near 2 dimensions, and we try to simplify the map by hoosing a suitable

value ofM . This way we will demonstrate that M an always be �xed suh that the

bare osmologial onstant vanishes. As we will show, this implies in d = 2+ ε that

at �rst order the bare Newton onstant equals the e�etive one.

7.3.1 Mapping between bare and e�etive ouplings

For pure (metri) gravity, both the EAA and the total bare ation depend on four

arguments in general, Γk,Λ ≡ Γk,Λ[g, ḡ, ξ, ξ̄ ] and SΛ ≡ SΛ[g, ḡ, ξ, ξ̄ ], respetively, with

the dynamial metri gµν , the bakground metri ḡµν and the ghost �elds ξµ, ξ̄µ. We

employ optimized regulators Rk and set k = Λ, implying the relation ΓΛ,Λ = Γk=Λ,

i.e. ΓΛ,Λ equals the UV uto�-free EAA [31℄. Our ansatz for ΓΛ reads

ΓΛ[g, ḡ, ξ, ξ̄ ] =− (16πGΛ)
−1

∫
d

dx
√
g
(
R− 2fΛ

)
+ S

gh

[g, ḡ, ξ, ξ̄ ]

+ (32πGΛ)
−1

∫
d

dx
√
ḡ ḡµν(Fαβ

µ gαβ)(Fρσ
ν gρσ),

(7.16)

where the last term on the RHS is the gauge �xing ation orresponding to the

harmoni oordinate ondition with Fαβ
µ ≡ δβµ ḡαγD̄γ− 1

2 ḡ
αβD̄µ, and the seond term

4

More preisely, in the bakground �eld approah these additional terms depend on the bak-

ground metri. This beomes partiularly problemati for single-metri trunations.
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is the assoiated ghost ation. Equation (7.16) involves the dimensionful running

parameters GΛ and fΛ, where the symbol f is used for the osmologial onstant

here in to order to avoid onfusion with the sale Λ.

We make an ansatz analogous to (7.16) also for the bare ation:

SΛ[g, ḡ, ξ, ξ̄ ] =− (16πǦΛ)
−1

∫
d

dx
√
g
(
R− 2f̌Λ

)
+ S

gh

[g, ḡ, ξ, ξ̄ ]

+ (32πǦΛ)
−1

∫
d

dx
√
ḡ ḡµν(Fαβ

µ gαβ)(Fρσ
ν gρσ),

(7.17)

with the orresponding bare Newton and bare osmologial onstant, ǦΛ and f̌Λ,

respetively. Note that by virtue of the reonstrution formula the bare ouplings

will exhibit a Λ-dependene, too.

In order to �nd the map relating bare to e�etive ouplings, it is su�ient to set

gµν = ḡµν and ξµ = 0 = ξ̄µ in (7.13) after having omputed the seond funtional

derivatives w.r.t. gµν , ξ
µ
and ξ̄µ. Sine there is only one metri left then, we an omit

the �bar� over bakground quantities for reasons of larity from now on. Following

Ref. [31℄, we deompose the metri �utuations into a traeless and a trae part,

and without loss of generality we assume a maximally symmetri bakground. Then

(7.13) leads to

ΓΛ[g, g, 0, 0] − SΛ[g, g, 0, 0]

= +
1

2
TrTΛ ln

{
M−d

32πǦΛ

[
−�+ Λ2 R(0)(−�/Λ2)− 2f̌Λ + C

T

R
]}

+
1

2
TrSΛ ln

{
M−d

32πǦΛ

(d− 2

2d

)[
−�+ Λ2 R(0)(−�/Λ2)− 2f̌Λ + C

S

R
]}

− TrVΛ ln

{
M−2

[
−�+ Λ2 R(0)(−�/Λ2) + C

V

R
]}
,

(7.18)

where the sub- and supersripts T, S and V refer to symmetri traeless tensors,

salars and vetors, respetively. The onstants in (7.18) are de�ned by

C
T

≡ d(d− 3) + 4

d(d − 1)
, C

S

≡ d− 4

d
, C

V

≡ −1

d
, (7.19)

like in Ref. [36℄. Using the heat kernel tehniques introdued in appendix C, we

an expand the traes in terms of the urvature R, ollet all terms proportional to∫
d

dx
√
g and

∫
d

dx
√
g R, and ompare the orresponding oe�ients. This yields the

following map between bare and e�etive ouplings, whih was �rst obtained in [31℄:

1

ǧΛ

(
6

d
+ λ̌Λ

)
− 1

gΛ

(
6

d
+ λΛ

)
= 12Cd

d(d− 1) + 4(1 − 2λ̌Λ)

d2(1− 2λ̌Λ)
,

λ̌Λ
ǧΛ

− λΛ
gΛ

= Cd

[
(d+ 1) ln

(
ǧΛ

1− 2λ̌Λ

)
−QΛ

]
.

(7.20)

(7.21)
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Here, ǧΛ and λ̌Λ (gΛ and λΛ) are the dimensionless bare (e�etive) Newton onstant

and osmologial onstant, respetively, and we have introdued the onstant

Cd ≡ 1

(4π)d/2−1Γ(d/2)
. (7.22)

The system {(7.20),(7.21)} depends on a parameter QΛ whih is de�ned by

QΛ ≡
[
d(d + 1)− 8

]
ln(Λ/M)− (d+ 1) ln(32π) + 2

d ln
(
d−2
2d

)
. (7.23)

As a onsequene, the bare ouplings are not ompletely determined in terms of the

e�etive ones but rather depend on this parameter. We observe that QΛ � besides

its Λ-dependene � depends on the measure parameter M . Therefore, hoosing

di�erent values of M amounts to modifying ǧΛ and λ̌Λ, even if Λ, gΛ and λΛ are

�xed. This on�rms our general argument onerning the nonuniqueness of bare

ouplings. Unlike in Ref. [31℄ we will not on�ne ourselves to the ase M ∝ Λ in the

following but disuss arbitrary hoies as well.

Apart from the speial dimension d ≈ 2.3723 where the prefator [d(d+1)−8] of

ln(Λ/M) in (7.23) vanishes so that the M -dependene disappears, there is a one-to-

one orrespondene between QΛ andM . Thus, we may onsider QΛ a free parameter

as well.

From a oneptual point of view, eqs. (7.20) and (7.21) ontinuously map any

RG trajetory of the e�etive side to an RG trajetory of the bare side, where the

latter depends on the parameter QΛ. This way we an obtain a QΛ-dependent family

of �ow diagrams for the bare ouplings. The onstrution of eah �bare trajetory�

involves �ve steps: (i) We hoose and �x some QΛ-value. (ii) Then we pik an

arbitrary point of the (λ̌, ǧ)-plane whih serves as an initial ondition for the sought-

after trajetory. (iii) After inserting this point into eqs. (7.20) and (7.21), the system

is solved for the e�etive ouplings. (iv) The resulting e�etive ouplings serve, in

turn, as an initial ondition for the FRGE (2.3), giving rise to an RG trajetory on

the EAA side, Λ → (λΛ, gΛ), where we employ the optimized uto� here. (v) Using

eqs. (7.20) and (7.21) again, eah point of the e�etive trajetory is mapped to a

point in the bare setor, whih �nally leads to a trajetory Λ → (λ̌Λ, ǧΛ).

By means of this onstrution we obtain a harateristi �ow diagram orre-

sponding to the hosen QΛ-value.

In Figure 7.2 we demonstrate to what extent the �ow diagrams of the bare

ouplings in d = 4 dimensions depend on QΛ. It seems that quantitative features

like the position of the �bare NGFP� and the shape of the streamlines are modi�ed

when QΛ hanges, while qualitative features like the mere existene of the �xed point

and its ritial exponents are independent of QΛ. Whether this is indeed true, will

be disussed in the next subsetions, where we investigate the existene of the NGFP

for any hoie of QΛ and for all dimensions d > 2. In partiular, the analysis will

inlude the ases QΛ → ∞ and QΛ → −∞.
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QΛ = 20 QΛ = 10

QΛ = 2 QΛ = −0.583183

QΛ = −3 QΛ = −8

Figure 7.2 Flow diagrams in the spae of the bare ouplings λ̌ and ǧ for several onstant

values of QΛ in d = 4 dimensions.
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7.3.2 Existene of the bare NGFP

We restrit ourselves to the ase d > 2 as the EH ation gives rise to a topologial

invariant in stritly d = 2 dimensions. From the RG studies of the EH trunation

we know that the β-funtions of λ and g possess a nontrivial �xed point for any

d > 2 (see Ref. [230℄ for instane). The orresponding oordinates λ∗ and g∗ are to

be inserted into the �xed point version of eqs. (7.20) and (7.21). The question about

the existene of a �xed point for the bare ouplings then boils down to the question

if the system an be solved for λ̌∗ and ǧ∗. Whether or not the answer depends on

the underlying QΛ-value will be investigated in this subsetion.

Being the most natural assumption for the bare Newton onstant we start with

the relation ǧ∗ > 0.5 In that ase the logarithm in eq. (7.21) requires that 1−2λ̌∗ > 0

for any �nite QΛ. This an be used in eq. (7.20) in turn:

1

ǧ∗︸︷︷︸
>0

(
6

d
+ λ̌∗

)
=

12Cd

d2︸ ︷︷ ︸
>0

d(d− 1) + 4(1− 2λ̌∗)

1− 2λ̌∗︸ ︷︷ ︸
>0

+
1

g∗

(
6

d
+ λ∗

)
. (7.24)

For 2 < d . 2.56 the e�etive osmologial onstant beomes negative at the

�xed point [11, 230℄, but its absolute value remains su�iently small suh that

1
g∗

(
6
d + λ∗

)
> 0. Clearly, this latter relation holds true also for larger dimensions

where λ∗ > 0. Therefore, we an onlude that the RHS of (7.24) is positive for all

d > 2, whih implies on the LHS that 6/d + λ̌∗ > 0. To sum up, we have found

that the �xed point values of the bare ouplings, if any, are on�ned to the restrited

domain

−6

d
< λ̌∗ <

1

2
and ǧ∗ > 0 , for QΛ �nite. (7.25)

Moreover, from eq. (7.24), i.e. from

1
ǧ∗

(
6
d + λ̌∗

)
= �nite > 0, follows that ǧ∗ is �nite

as well. Thus, ǧ∗ is bounded from above, too.

Whether the bare �xed point exits in fat an be lari�ed by reduing the system

{(7.20),(7.21)} to a single equation. For that purpose we solve (7.20) for ǧΛ, insert

the result into (7.21) and replae gΛ and λΛ by their �xed point values. Then the

system boils down to the equation

f(λ̌∗) = 0 , (7.26)

5

Only for ǧ∗ > 0 the kineti term of the (traeless part of the) metri �utuations in the bare

ation has the orret sign. Furthermore, ǧ∗ > 0 is in aordane with g∗ > 0, whih is a neessary

ondition for the �xed point value of the e�etive Newton onstant sine otherwise there would not

exist any RG trajetory onneting the NGFP to the lassial regime.
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where the funtion f(λ̌) is given by

f(λ̌) ≡ CdQΛ − λ∗
g∗

+
λ̌

6/d+ λ̌

[
12Cd

d(d− 1) + 4(1− 2λ̌)

d2(1− 2λ̌)
+

1

g∗

(
6

d
+ λ∗

)]

+ Cd (d+ 1) ln

{
1− 2λ̌

6/d + λ̌

[
12Cd

d(d− 1) + 4(1 − 2λ̌)

d2(1− 2λ̌)
+

1

g∗

(
6

d
+ λ∗

)]}
,

(7.27)

so it depends parametrially on QΛ. The existene of a bare NGFP is equivalent to

the existene of a zero of f , and by eq. (7.26) the zero is loated at the yet unknown

�xed point value λ̌∗. Remarkably enough, for the proof of existene we an proeed

analytially by means of the following simple argument.

Let us �rst onsider the ase where QΛ remains �nite. Realling that −6/d <

λ̌∗ < 1/2, it turns out useful to study the asymptoti behavior of f for λ̌ ց −6/d

and for λ̌ր 1/2. Both the third term in the de�nition (7.27) of f , λ̌
6/d+λ̌

[
· · ·
]
, and

the logarithm are divergent in these limits. Sine linear terms always predominate

over logarithmi ones when being divergent, it is the term

λ̌
6/d+λ̌

[
· · ·
]
that deides on

the asymptoti running in either limit. The square braket is always positive, while

its prefator

λ̌
6/d+λ̌

is negative for λ̌ ց −6/d. Taking all ontributions together we

�nd

lim
λ̌ց−6/d

f(λ̌) = −∞ . (7.28)

On the other hand,

λ̌
6/d+λ̌

is positive and remains �nite for λ̌ր 1/2, while the square

braket tends to in�nity. This leads to

lim
λ̌ր1/2

f(λ̌) = +∞ . (7.29)

Therefore, the funtion f must hange its sign between −6/d and 1/2. Furthermore,

it is smooth in its domain of de�nition. In onlusion, f must have a zero. This

proves the existene of a bare �xed point for any d > 2 at any �nite QΛ.

Although the exat position of this zero of f hanges when QΛ is varied, its mere

existene is independent of QΛ. Figure 7.3 illustrates the situation. It shows the

graph of f in four dimensions for the exemplary hoie QΛ = 20. By the de�nition

of f , given in eq. (7.27), inreasing QΛ means shifting the entire graph upwards,

whih, in turn, moves the zero λ̌∗ towards the left boundary at λ̌ = −6/d. Similarly,

dereasing QΛ amounts to shifting λ̌∗ towards the right boundary at λ̌ = 1/2. This

suggests the two relations limQΛ→∞ λ̌∗ = −6/d and limQΛ→−∞ λ̌∗ = 1/2, whih we

would like to prove now.

We begin with the limit QΛ → ∞. By a areful analysis of eqs. (7.20) and

(7.21) in this limit we �nd that the bare �xed point ouplings an be determined

onsistently only if ǧ∗ ց 0 and λ̌∗ → �nite < 0. Then we an dedue the preise

QΛ-dependene of ǧ∗ and λ̌∗ as follows.
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Figure 7.3 The funtion f(λ̌) in d = 4 dimensions for QΛ = 20, having a zero at λ̌ = λ̌∗.

At leading order, the divergent behavior of QΛ on the RHS of (7.21) is ompen-

sated solely by the �rst term on the LHS due to its denominator ∝ ǧ∗. Hene, we

obtain

ǧ∗ = − λ̌∗
CdQΛ

+O
(
Q−2

Λ

)
. (7.30)

Inserting this into (7.20) yields

λ̌∗ = −6

d
−
[
12Cd

d(d− 1) + 4(1− 2λ̌∗)

d2(1− 2λ̌∗)
+

1

g∗

(
6

d
+ λ∗

)]
λ̌∗

CdQΛ
+O

(
Q−2

Λ

)
. (7.31)

At �rst order in 1/QΛ, we have λ̌∗ = −6/d. This an be inserted bak into the RHS

of eq. (7.31) in order to determine the subleading order, and into (7.30). In this way,

we arrive at

ǧ∗ =
6/d

CdQΛ
+O

(
Q−2

Λ

)
,

λ̌∗ = −6

d
+

[
12Cd

d(d − 1) + 4 + 48/d

d(d + 12)
+

6/d+ λ∗
g∗

]
6/d

CdQΛ
+O

(
Q−2

Λ

)
,

(7.32)

in the limit QΛ → ∞.

The limit QΛ → −∞ an be analyzed in a very similar way. Requiring that the

divergent behavior of QΛ be ompensated by λ̌∗ and ǧ∗ in order to satisfy eqs. (7.20)

and (7.21) onsistently we �nd

ǧ∗ =
1

2Cd(−QΛ)
+O

(
Q−2

Λ

)
,

λ̌∗ =
1

2
− 6(d− 1)

d+ 12

1

(−QΛ)
+O

(
Q−2

Λ

)
,

(7.33)

in the limit QΛ → −∞.

The preeding onsiderations prove our onjeture onerning the bare NGFP

for divergent QΛ whih we have read o� from the graph of f and whih we an
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QΛ → ∞ QΛ → −∞

Figure 7.4 Parametri plot showing the position of the bare NGFP dependent on QΛ in

d = 4 dimensions, inluding the asymptoti �xed point positions in the limits QΛ → ∞ and

QΛ → −∞ at (−3/2, 0) and (1/2, 0), respetively.

summarize as follows:

ǧ∗ ց 0 , λ̌∗ ց −6/d , for QΛ → ∞,

ǧ∗ ց 0 , λ̌∗ ր 1/2 , for QΛ → −∞.

(7.34)

(7.35)

In order to illustrate how the position of the bare NGFP depends on QΛ we an

solve the system {(7.20),(7.21)} numerially for λ̌∗ and ǧ∗ at some QΛ and repeat the

proedure for di�erent QΛ's. Then the result an be plotted as a parametri urve

γ : QΛ 7→
(
λ̌∗(QΛ), ǧ∗(QΛ)

)
. The shape of suh a urve as well as its endpoints

depend on the spaetime dimension. Figure 7.4 depits the situation in d = 4. The

urve starts at (λ̌∗, ǧ∗) = (1/2, 0) orresponding to QΛ = −∞. For inreasing QΛ it

moves to the left, where it inreases �rst, before it dereases again, until it �nally

approahes (λ̌∗, ǧ∗) = (−3/2, 0) for QΛ → ∞.

For other dimensions we obtain qualitatively very similar pitures. The left

diagram in Figure 7.5 shows the 3-dimensional ase while the right diagram is a

representative of the 2 + ε-lass, here for ε = 0.01. We make three important

observations: When the dimension is lowered towards 2, (i) the left end point of the

urve moves further to the left, in agreement with eq. (7.34), (ii) the height of the

urve dereases, and (iii) the maximum point gets more and more peaked, rendering

the urve rather triangular. In the limit d→ 2 we ultimately obtain a perfet triangle

with the right side perpendiular to the baseline.

We would like to emphasize that, for any dimension d > 2, these urves exhibit

a smooth transition from (λ̌∗, ǧ∗) = (1/2, 0) to (λ̌∗, ǧ∗) = (−6/d, 0), demonstrating

one again the existene of the bare NGFP for any value of QΛ.
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QΛ → ∞
QΛ

↓
−∞

QΛ → ∞
QΛ

↓
−∞

Figure 7.5 Parametri plots showing the position of the bare NGFP dependent on QΛ in

d = 3 dimensions (left diagram) and d = 2 + ε dimensions with ε = 0.01 (right diagram).

7.3.3 Critial exponents of the bare NGFP

As usual, ritial exponents are obtained by linearizing the �ow in the viinity of a

�xed point. Let us start with the e�etive ouplings, here denoted by {uα}. Their

linearized �ow an be written as

∂tuα ≡ Λ∂Λuα = βα(u1, u2, . . .) ≈
∑

σ

Bασ(uσ − u∗σ) , (7.36)

with Bασ ≡ ∂βα

∂uσ
(u∗1, u

∗
2, . . .), where the last relation (�≈�) in eq. (7.36) means equality

up to linear order. The ritial exponents orresponding to the �xed point (u∗1, u
∗
2, . . .)

are de�ned to be minus one times the eigenvalues of the matrix B, i.e. they are

solutions for θ to the equation

det(B + θ1) = 0 . (7.37)

In order to obtain the ritial exponents for the bare NGFP it is neessary to

linearize the map (u1, u2, . . .) ↔ (ǔ1, ǔ2, . . .) as well beause eah bare oupling is

onsidered to be a funtion of the e�etive ouplings, ǔα ≡ ǔα(u1, u2, . . .), and the

�ow originates from the e�etive side:

∂tǔα ≡ Λ∂Λǔα =
∑

ρ

∂ǔα
∂uρ

∂tuρ(u1, u2, . . .). (7.38)

Now, linearization must be applied to three parts in eah term of the sum in (7.38):

to

∂ǔα
∂uρ

, to ∂tuρ as in (7.36), and to the arguments (u1, u2, . . .) that have to be re-

expressed in terms of the bare ouplings again. For the �rst ontribution we onsider

the following linearization in the neighborhood of a �xed point:

ǔα ≡ ǔα(u1, u2, . . .) = ǔα(u
∗
1, u

∗
2, . . .) +

∑

ρ

∂ǔα
∂uρ

(uρ − u∗ρ) +O
(
(u− u∗)2

)
, (7.39)

so with Cαρ ≡ ∂ǔα
∂uρ

(u∗1, u
∗
2, . . .) we have, at linear order,

ǔα − ǔ∗α =
∑

ρ

Cαρ(uρ − u∗ρ), (7.40)
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and similarly for the inverse,

uσ − u∗σ =
∑

κ

C−1
σκ (ǔκ − ǔ∗κ). (7.41)

Thus, eq. (7.38) in ombination with (7.36) yields

∂tǔα =
∑

ρ,σ

CαρBρσ(uσ − u∗σ) +O
(
(u− u∗)2

)

=
∑

ρ,σ,κ

CαρBρσC
−1
σκ (ǔκ − ǔ∗κ) +O

(
(ǔ− ǔ∗)2

)
.

(7.42)

From eq. (7.42) we an �nally read o� the de�ning relation for the �bare ritial

exponents�:

det
(
CBC−1 + θ̌1

)
= 0. (7.43)

Using det
(
CBC−1+ θ̌1

)
= det

[
C(B+ θ̌1)C−1

]
= det(C) det(B+ θ̌1) det−1(C), we

�nd that θ̌ atually satis�es the same ondition as θ, see (7.37):

det(B + θ̌1) = 0 . (7.44)

This proves that bare �xed points have the same ritial exponents as their ounter-

parts on the EAA side.

Regarding �ow diagrams for bare ouplings, for instane the ones in Figure 7.2,

this means that the typial spiraling (or non-spiraling, for real ritial exponents)

form of the RG trajetories is preserved under the map (u1, u2, . . .) ↔ (ǔ1, ǔ2, . . .).

The altered shapes of these spirals near the NGFP originate from a hange of the

eigenvetors of the linearized �ow whih � unlike the ritial exponents � are af-

feted by the map between e�etive and bare ouplings. This phenomenon manifests

itself as a squeezing of the spirals in Figure 7.2 for large values of QΛ.

7.3.4 A strategy to adjust bare ouplings:

ritial QΛ-value and vanishing osmologial onstant

In this setion we would like to exploit the remaining freedom in setting up the

funtional integration measure, assoiated with the free parameter M , in order to

onveniently adjust the ouplings in the bare ation, in partiular the bare osmo-

logial onstant. Note that the M -dependene ours in the measure and the bare

ation separately; their ombination in the path integral, however, gives rise to anM -

independent e�etive ation, so that no physial quantity derived from it an depend

on M . This holds true also for the FRGE (2.3) where any potential M -dependene

has dropped out. As already mentioned in Setion 7.3.1, the free parameter M

translates into the parameter QΛ whih underlies the following disussion.

In Setion 7.3.2 we showed that the �ow of the bare ouplings possesses an

NGFP for any d > 2 and for any QΛ. Furthermore, we have seen that the position

of this NGFP depends on QΛ: it starts at (λ̌∗, ǧ∗) = (1/2, 0), orresponding to
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QΛ = −∞, then it �moves� along an asymmetri ar, until it ultimately approahes

(λ̌∗, ǧ∗) = (−6/d, 0) as QΛ → ∞. This implies a transition from positive to negative

bare osmologial onstants. Hene, for reasons of ontinuity there must be a �nite

value of QΛ at whih the bare osmologial onstant vanishes.

Before determining this ritial QΛ-value, a omment regarding the signi�ane of

the bare �xed point (as ompared with arbitrary points in the spae of bare ouplings)

is in order: As we would like to remove the UV uto� ultimately by taking Λ → ∞, it

is in fat the bare NGFP that represents bare ouplings in the ommon sense.

6

Thus,

although being unphysial it plays an important part at a omputational level, whih

justi�es an investigation about how it an be adjusted onveniently. Nevertheless,

in spite of the distint role of the bare NGFP we would like to keep our disussion

as general as possible and onsider also those bare ouplings that do not orrespond

to a �xed point.

In our Einstein�Hilbert setting a possible �onvenient adjustment� entails �xing

the bare osmologial onstant to zero. Let us denote the ritial QΛ-value where this

happens by Q
(0)
Λ . It an be obtained by setting λ̌Λ = 0 in eqs. (7.20) and (7.21), and

solving the system for QΛ. In this way we �nd that the bare osmologial onstant

vanishes if QΛ = Q
(0)
Λ , with

Q
(0)
Λ ≡ 1

Cd

λΛ
gΛ

− (d+ 1) ln

[
2Cd

d

(
d(d− 1) + 4

)
+

1

gΛ
+
d

6

λΛ
gΛ

]
. (7.45)

Clearly, the statement remains valid at the NGFP, where the e�etive ouplings λΛ

and gΛ have to be replaed by their �xed point ounterparts. In d = 4, for instane,

based on the NGFP values λ∗ and g∗ for the Einstein�Hilbert trunation and the

optimized uto�, we obtain Q
(0)
∗ ≈ −0.583. The d-dependene of Q

(0)
∗ is illustrated

in Figure 7.6. We �nd that the ritial value Q
(0)
∗ exists in any dimension d > 2.

As a remark we restate this result in terms of M . Using the de�nition of QΛ,

given by eq. (7.23), we see that the bare osmologial onstant vanishes ifM =M (0)
,

where M (0)
satis�es

7

ln

(
M (0)

Λ

)
=

1

8− d(d+ 1)

{
(d+ 1) ln(32π)− 2

d
ln

(
d− 2

2d

)

+
1

Cd

λΛ
gΛ

− (d+ 1) ln

[
2Cd

d

(
d(d− 1) + 4

)
+

1

gΛ
+
d

6

λΛ
gΛ

]}
.

(7.46)

6

Here the term �bare NGFP� refers to the NGFP of the e�etive ouplings mapped into the

spae of bare ouplings. This notion inludes two ases: The bare NGFP (i) is stritly a point, (ii)

is divergent. Case (ii) means that the e�etive ouplings are mapped to suh bare ouplings whih

ontain divergent ontributions. (These divergent parts exatly anel out potential divergenes in

Feynman diagrams.) In both ases we an safely remove the uto� in the end.

7

The ritial value M (0)
exists for any d > 2 with d 6= 2.3723. For d = 2.3723 the denominator

of (7.46) beomes zero. In this ase the bare ouplings are independent of M , i.e. they annot be

adjusted by tuning M . Most probably this phenomenon is merely an artifat of the trunation and

the approximate one-loop harater of the reonstrution formula.
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Figure 7.6 Dependene of the ritial value Q
(0)
∗ on the dimension d (taking the �xed point

values based on the optimized uto� for the e�etive ouplings in (7.45)).

As demonstrated in the next subsetion, the onsequenes of a vanishing bare

osmologial onstant are partiularly interesting in d = 2 + ε dimensions.

7.3.5 The bare ouplings in 2 + ε dimensions

Let us review the above results and elaborate in more detail whih simpli�ations

emerge in d = 2 + ε dimensions. By analogy with Figure 7.2 whih showed several

�ow diagrams of the bare ouplings in d = 4 dimensions, the (2+ε)-dimensional ase

is depited in Figure 7.7 where we hoose ε = 0.01 as an example here. We observe a

QΛ-dependene of the �ow similar to the one in d = 4, inluding the �moving� bare

�xed point. Note that the qualitative struture of the trajetories is very similar

to the one for the e�etive ouplings, f. Figure 4.2: eah trajetory onsists of an

almost horizontal part (in the IR), then a very sharp bend, and �nally a line that

onnets it to the bare NGFP (in the UV). Sine the bare osmologial onstant at

the �xed point, λ̌∗, is not proportional to ε, we do not normalize λ̌ by the fator

1/ε. For that reason the singularity line haraterized by diverging β-funtions is

still present in Figure 7.7, while it is shifted to in�nity for the e�etive ouplings,

see Figure 4.2. Apart from this numerial analysis we demonstrate in the following

that it is possible to draw some important onlusions at the analytial level, too.

We have already seen in the previous hapters that the e�etive ouplings in an

Einstein�Hilbert type EAA are of the order ε at the �xed point:

λ∗ = O(ε), g∗ = O(ε). (7.47)

In the viinity of the NGFP the main ε-order of the ouplings does not hange.

Thus, we an assume λΛ = O(ε) and gΛ = O(ε) there, whih an be exploited in an

ε-expansion in (7.45). Moreover, we have

λΛ
gΛ

= �nite + O(ε) and Cd = 1 + O(ε),



7.3. Bare ation for the Einstein�Hilbert trunation 165

QΛ = 4000 QΛ = 1000

QΛ = −22.4671 QΛ = −300

Figure 7.7 Flow diagrams of the bare ouplings λ̌ and ǧ for several onstant values of QΛ

in d = 2.01 dimensions. The bare NGFP is marked by a blue dot, and the gray dashed lines

in the upper two �gures represent the singularity lines known from the �ow diagrams of the

e�etive ouplings (f. Figure 4.1, for instane), mapped into the spae of bare ouplings.

For the sake of larity we show only four representative trajetories for eah diagram.
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leading to the ritial value

Q
(0)
Λ =

λΛ
gΛ

+ 3 ln(gΛ) +O(ε ln ε), (7.48)

provided that both λΛ and gΛ are of �rst order in ε.

As above, we an express this result in terms of the parameter M . We �nd that

the bare osmologial onstant vanishes if M =M (0)
, where M (0)

satis�es

M (0) = αεΛ . (7.49)

In (7.49), α ≡ α(λΛ, gΛ) is a positive �nite onstant that depends only on the e�etive

ouplings and whose leading order is given by

α = exp
[
1
2
λΛ
gΛ

+ 3
2 ln

(
32π gΛ

ε

)
+ ln(2)

]
. (7.50)

Remarkably enough, we found M (0) ∝ Λ, whih might be onsidered the expeted

behavior for a mass parameter, but here it is not the result of any dimensional

analysis. It has rather been derived by requiring a vanishing bare osmologial

onstant. After all, M ∝ Λ seems to be the most natural hoie.

There are two possible orders of taking limits in our setting: (i) Λ → ∞ before

ε → 0, and (ii) Λ → ∞ after ε → 0. The order must be onsidered part of the

de�nition of the theory under onsideration. As we have seen in Chapter 5, the

limit d → 2 of the Einstein�Hilbert ation leads to a new ation with a redued

number of degrees of freedom. Therefore, taking the dimensional limit �rst before

reonstruting the bare ation and taking Λ → ∞ might give a di�erent result (see

Chapter 9) than the one obtained by reonstruting SΛ �rst and taking the 2D limit

afterwards. We would like to point out that there is even a third possibility: a

simultaneous limit, in partiular with regard to eq. (7.49). For that purpose, we

introdue a �xed referene sale, say Λ(0)
, and write the uto� sale as Λ = Λ(0)/ε.

Then the limit Λ → ∞ is equivalent to the limit ε→ 0. By eq. (7.49) we �nd that the

bare osmologial vanishes at the ritial value M =M (0) = αΛ(0)
. This establishes

the possibility of a onstant parameter M .

Finally, let us work out the most important onsequene of a vanishing bare os-

mologial onstant in d = 2 + ε dimensions. It turns out that λ̌Λ = 0 implies a

partiularly simple relation between bare and e�etive Newton onstant: Reonsid-

ering equation (7.20) with λ̌Λ = 0, we obtain

1

ǧΛ

(
3 +O(ε)

)
− 1

gΛ

(
3 + λΛ +O(ε)

)
= 18 +O(ε). (7.51)

Choosing the e�etive ouplings to lie in a neighborhood of the NGFP, i.e. assuming

λΛ = O(ε) and gΛ = O(ε) again, multipliation by gΛ/3 yields

gΛ
ǧΛ

− 1 = O(ε), (7.52)
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or ǧΛ = gΛ + O(ε2). Hene, for the speial hoie M = M (0)
, given by eq. (7.49),

the bare Newton onstant agrees with the e�etive Newton onstant.

To sum up, we have found a strategy to reonstrut the bare ation in a spei�

way suh that the bare oupling onstants are adjusted onveniently. The method

relies on an appropriate hoie of the measure parameter M : If M is hosen as in

(7.49) the bare ouplings at the NGFP are given by

λ̌∗ = 0,

ǧ∗ = g∗ +O(ε2).

(7.53)

(7.54)

This powerful argument demonstrates that the freedom in de�ning a funtional mea-

sure, i.e. the freedom in hoosingM , an be exploited to �x one of the bare ouplings

to a suitable value (here λ̌∗ = 0), and possibly to obtain a simpler map from the

e�etive ouplings to the remaining bare ouplings. The result ǧ∗ = g∗ + O(ε2) is

ruial with regard to our disussion of the 2D limit of the Einstein�Hilbert ation

in Chapter 5, and it lays the foundation for a reonstrution of the funtional inte-

gral orresponding to a full gravity+matter system, to be studied in more detail in

Chapter 8.





8
The reonstruted path integral in

2D asymptotially safe gravity

Exeutive summary

We ombine the results of Chapters 6 and 7 by taking the asymptotially safe

�xed point theory pertaining to the EAA in d = 2 dimensions and by reon-

struting its orresponding funtional integral. The disussion is not restrited

to the purely gravitational bare ation but takes into aount matter and ghosts

ontributions as well, thus giving rise to the omplete funtional integral of

all �elds under onsideration. We �nd that it amounts to a CFT whose to-

tal entral harge adds up to zero. In partiular, we unover a ompensation

mehanism for the matter �elds: They enter both the gravitational part and

the matter part of the NGFP theory where the two ontributions exatly an-

el eah other. As a onsequene, the gravitational dressing of matter �eld

operators is trivial, i.e. the matter system is not a�eted by its oupling to

quantum gravity. This leads to a omplete quenhing of the a priori expeted

Knizhnik�Polyakov�Zamolodhikov (KPZ) saling. A possible onnetion of

this predition to Monte Carlo results obtained in the disrete approah to 2D

quantum gravity based upon ausal dynamial triangulations is mentioned. Fur-

thermore, we desribe similarities of the �xed point theory to, and di�erenes

from, nonritial string theory.

What is new? Showing the ompensation of matter ontributions, the van-

ishing of the total entral harge and the quenhing of the KPZ saling in 2D

Asymptoti Safety.

Based on: Ref. [34℄.
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8.1 Remark on the reonstrution proess

Starting with an e�etive average ation Γk of the full system (inluding gravita-

tional, ghost and matter �elds) we searh for a funtional integral representation

that reprodues a given omplete Γk-trajetory. In our setting, this reonstrution

an be onsidered for eah setor (gravity, ghost, matter) separately.

Conerning the gravitational part we employ the results of the previous hapter,

where we have seen that the map between e�etive and bare ouplings depends on

the measure parameter M . As demonstrated in Setion 7.3.5, in d = 2 + ε dimen-

sions there is one partiular value of M that leads to a vanishing bare osmologial

onstant, λ̌∗ = 0, and a bare Newton onstant ǧΛ whih equals preisely the e�etive

one at the NGFP:

ǧ∗ = g∗ . (8.1)

For the exponential parametrization of the metri this amounts to ǧ∗ = ε/b with

b = 2
3(25 − N). After having reonstruted the gravitational funtional integral in

d = 2+ε, where the bare ation is given by − 1
16πǦΛ

∫
d

2+εx
√
g R with ǦΛ = Λ−εǧ∗ =

Λ−εg∗, we take its 2D limit by employing the methods of Setion 5.2. As a result we

obtain a bare ation whih is proportional to the indued gravity ation,

SgravΛ [g] =
(25 −N)

96π
I[g] + · · · (8.2)

The dots indiate that there might appear additional terms originating from the zero

modes, aording to eq. (H.40) in the appendix. For our present purposes they are

irrelevant, though; all properties of the funtional integral that are onsidered here

an be studied on the basis of the term ∝ I[g].

For the ghost system we avail ourselves of the argument presented in Setion

6.2, point (7): In our setting, it is only the gauge invariant gravity+matter part

of the EAA that is �handed over� from d > 2 to d = 2, while we an �x the gauge

diretly in 2D. Being partiularly onvenient, we hoose the onformal gauge and the

orresponding Faddeev-Popov determinant [162℄. The integration over the metri

then boils down to an integration over the Liouville �eld and the moduli parameters

(f. Se. 5.2.1).

The bare ation of the matter system an be reonstruted aording to the

results of Ref. [33℄: For uto�s satisfying ertain onstraints the bare ation equals

preisely the EAA when the respetive uto� sales are identi�ed. Thus, the bare

matter ation agrees with the RHS of eq. (4.31), i.e. it is given by

SmΛ [g,A] ≡ 1

2

N∑

i=1

∫
d

dx
√
g gµν ∂µA

i∂νA
i , (8.3)

in agreement with eq. (7.15).
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We would like to point out that, by equations (8.2) and (8.3), the number N

enters both the gravitational and the matter part of the bare ation, respetively, the

former being a onsequene of the N -dependene of the �xed point value g∗ .

8.2 A funtional integral for 2D asymptotially safe

gravity

(1) The partition funtion. Based on the above onsiderations we obtain the full

reonstruted partition funtion:

Z =

∫
[dτ ]

∫
De2φ ĝφ Z

gh

[
e2φ ĝ

]
Z
matter

[
e2φ ĝ

]
Y NGFP

grav

[
e2φ ĝ

]
. (8.4)

The integrand of (8.4) omprises the following fators: the exponential of the gravi-

tational part of the �xed point ation,

Y NGFP

grav

[g] ≡ exp

(
−(25−N)

96π
I[g] + · · ·

)
, (8.5)

the partition funtion of the matter system (f. Appendix H),

Z
matter

[g] ≡
∫

DA exp

(
− 1

2

N∑

i=1

∫
d

2x
√
g gµν∂µA

i ∂νA
i

)

= det−N/2
(
−�g

)
= exp

(
− N

96π
I[g] + · · ·

)
,

(8.6)

the partition funtion of the b-c ghost system, Z
gh

, the split symmetry invariant

measure for the integration over the Liouville �eld, De2φ ĝφ, and �nally the measure

[dτ ] for the integration over the moduli that are impliit in the referene metri

pertaining to a given topologial type of the spaetime manifold (f. Se. 5.2.1). In

eqs. (8.5) and (8.6) we suppressed possible ontributions to the bare osmologial

onstant. Here and in the following, we indiate them by the dots.

The behavior under Weyl transformations of the various fators is well known.

Using in partiular eq. (5.47) with the (nonosmologial onstant part of the) renor-

malized Liouville ation, ∆I, as de�ned in (5.25), we have

Y NGFP

grav

[
e2φ ĝ

]
= Y NGFP

grav

[ĝ] exp

(
+

(25−N)

12π
∆I[φ; ĝ]

)
, (8.7a)

Z
matter

[
e2φ ĝ

]
= Z

matter

[ĝ] exp

(
+

N

12π
∆I[φ; ĝ]

)
, (8.7b)

Z
gh

[
e2φ ĝ

]
= Z

gh

[ĝ] exp

(
+

(−26)

12π
∆I[φ; ĝ]

)
, (8.7)

De2φ ĝφ = Dĝφ exp

(
+

1

12π
∆I[φ; ĝ]

)
. (8.7d)
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As before, possible (measure dependent) terms involving the bare osmologial on-

stant are suppressed in eqs. (8.7). On the RHS of (8.7d), Dĝφ is the translational

invariant measure now.

Up to this point, the disussion is almost the same as in nonritial string theory

[162℄. The profound di�erene lies in the purely gravitational part of the bare ation,

Y NGFP

grav

. Contrary to what happens in any onventional �eld theory, whose bare

ation is a postulate rather than the result of a alulation, asymptotially safe gravity

in 2 dimensions is based upon a gravitational ation whih depends expliitly on

properties of the matter system. In the example at hand, this dependene is via the

number N of Ai
-�elds that makes its appearane in the �xed point ation and hene

in the �Boltzmann fator� (8.5).

(1a) Matter refuses to matter: a ompensation mehanism. Remarkably

enough, the integrand of (8.4) depends on N only via the produt Z
matter

· Y NGFP

grav

in whih the N -dependene anels between the two fators. Multiplying (8.5) and

(8.6) we obtain a result whih, for any N , equals that of pure gravity. It is always

the same no matter how many salar �elds there are:

Z
matter

[g]Y NGFP

grav

[g] = exp

(
− 25

96π
I[g] + · · ·

)
. (8.8)

Under a Weyl resaling this expression transforms as Z
matter

[
e2φ ĝ

]
Y NGFP

grav

[
e2φ ĝ

]
=

Z
matter

[ĝ]Y NGFP

grav

[ĝ] exp
(
+ 25

12π∆I[φ; ĝ]
)
. As a onsequene of eq. (8.8), the reon-

struted funtional integral oinides always with that of pure gravity (as long as we

do not evaluate the expetation value of observables depending on the A's and as

long as osmologial onstant terms do not play a role):

Z =

∫
[dτ ] Z

matter

[ĝ]Y NGFP

grav

[ĝ]

∫
De2φ ĝφ Z

gh

[
e2φ ĝ

]
exp

(
+

25

12π
∆I[φ; ĝ] + · · ·

)
.

(8.9)

(1b) Zero total entral harge. Over and above the spei� form of its matter

dependene, the �xed point ation displays a seond mirale: Its entral harge

equals preisely the ritial value 25. Up to a osmologial onstant term possibly,

this leads to a omplete anellation of the entire φ-dependene of the integrand

one the ghost ontribution (8.7) and the �Jaobian� fator in (8.7d) are taken into

aount:

Z =

∫
[dτ ] Z

gh

[ĝ]Z
matter

[ĝ]Y NGFP

grav

[ĝ]

∫
Dĝφ exp(0 + · · · ) . (8.10)

Hene, for every hoie of the matter setor, the total system desribed by the

reonstruted funtional integral of asymptotially safe 2D gravity is a onformal

�eld theory with entral harge zero. The various setors of this system ontribute
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to the total entral harge as follows:

c
tot

= (25 −N)︸ ︷︷ ︸
NGFP, grav. part

+ N︸︷︷︸
matter

+ 1︸︷︷︸
Jaobian

+(−26)︸ ︷︷ ︸
ghosts

= 0 . (8.11)

Atually, the result (8.11) is even more general than we have indiated so far. In

addition to the salar matter �elds underlying our onsiderations up to this point,

we an also bring massless free Dira fermions into play and ouple them (minimally)

to the dynamial metri by adding a orresponding term to the matter ation (4.31).

The ontribution of eah of suh fermions to the β-funtion of Newton's onstant in

d = 2 + ε dimensions is the same as for a salar �eld [93, 177℄, that is, fermions and

salars enter the entral harge in the same way. Hene, in all above equations for

β-funtions and entral harges we may identify N with

N ≡ N
S

+N
F

, (8.12)

where N
S

and N
F

denote the number of real salars and Dira fermions, respe-

tively. In partiular, we reover the same anellation in the total entral harge

as in eq. (8.11): The entral harge of the matter system, +N , removes exatly a

orresponding piee in the pure gravity ontribution enfored by the �xed point,

25 −N .

(2) Observables. By inserting appropriate funtions Ō[φ,A; ĝ] into the path inte-

gral (8.4) we an in priniple evaluate the expetation values of arbitrary observables

O[g,A] = O[e2φ ĝ, A]. The insertion of Ō instead of O is required due to the hange

of variables, g 7→
(
φ, {τ}

)
, where in general Ō[φ,A; ĝ] 6= O[e2φ ĝ, A]. In the ase

when the observables do not involve the matter �elds, their expetation values read

〈O〉 = 1

Z

∫
[dτ ] Z

matter

[ĝ]Y NGFP

grav

[ĝ]

∫
De2φ ĝφ Z

gh

[
e2φ ĝ

]
Ō[φ; ĝ] exp

(
25

12π
∆I[φ; ĝ]

)
.

(8.13)

Without atually evaluating the φ-integral we see that when the osmologial on-

stant term is negligible the expetation value of purely gravitational observables does

not depend on the presene or absene of matter and its properties, provided the

bakground fator Z
matter

[ĝ] in (8.13) anels against the orresponding piee in the

denominator of (8.13). At the very least, this happens if one onsiders expetation

values at a �xed point of the moduli spae.

(3) Gravitational dressing. As it is well known [114,115,117℄, it is not ompletely

straightforward to �nd the funtional Ō [φ; ĝ] whih one must use under a onformally

gauge-�xed path integral in order to represent a given di�eomorphism (and, trivially,

Weyl) invariant observable O[g] = O[e2φ ĝ]. The assoiation O → Ō should respet

the following onditions [117℄: Ō[φ; ĝ] must be invariant under di�eomorphisms, it

must approah O[e2φ ĝ] in the lassial limit and O[ĝ] in the limit φ → 0, and most

importantly it must be suh that the expetation value omputed with its help is

independent of the referene metri hosen, ĝµν .
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Let us brie�y reall the David�Distler�Kawai (DDK) solution to this problem

[114, 115℄. For this purpose, we onsider 2D gravity oupled to an arbitrary matter

system desribed by a CFT with entral harge c and partition funtion Z
(c)
m

[g]. First

we want to evaluate the partition funtion for a �xed volume (area) of spaetime, V :

ZV =

∫ Dg
vol(Di�)

Z(c)
m

[g] δ

(
V −

∫
d

2x
√
g

)
. (8.14)

This integral involves the observable O[g] ≡
∫
d

2x
√
g ≡

∫
d

2x
√
ĝ exp(2φ). The

assoiated Ō satisfying the above onditions turns out to require only a �deformation�

of the prefator of φ in the exponential:

Ō [φ; ĝ] =

∫
d

2x
√
ĝ exp(2α1φ) . (8.15)

The modi�ed prefator α1 depends on the entral harge of the matter CFT aording

to

α1 =
2
√
25− c√

25− c+
√
1− c

=
1

12

[
25− c−

√
(25 − c)(1 − c)

]
. (8.16)

Thus, in the onformal gauge, ZV reads as follows:

ZV =

∫
[dτ ] Z

gh

[ĝ]Z(c)
m

[ĝ]

∫
Dĝφ δ

(
V −

∫
d

2x
√
ĝ e2α1φ

)
exp

(
−(25− c)

12π
∆I[φ; ĝ]

)
.

(8.17)

Similarly, the expetation value of an arbitrary observable O[g] at �xed volume is

given by 〈O[g]〉 = Z−1
V 〈Ō [φ; ĝ]〉′. Here 〈· · · 〉′ is de�ned by analogy with (8.17) but

with the additional fator Ō[φ; ĝ] under the φ-integral.

The DDK approah to the gravitational dressing of operators from the mat-

ter setor was developed as a onformal gauge-analogue to the work of Knizhnik,

Polyakov and Zamolodhikov (KPZ) [163, 164℄ based upon the light one gauge.

To study gravitational dressing, let us onsider an arbitrary spinless primary

�eld On[g] ≡
∫
d

2x
√
g Pn+1(g), where Pn(g) is a generi salar involving the matter

�elds with onformal weight (n, n), that is, it responds to a resaling of the metri

aording to Pn(e
−2σg) = e2nσ Pn(g). Under the funtional integral, the observables

On are then represented by

Ōn[φ; ĝ] =

∫
d

2x
√
ĝ exp(2α−nφ)Pn+1(ĝ) , (8.18)

where the c-dependent onstants in the dressing fators generalize eq. (8.16):

αn =
2n

√
25− c√

25− c+
√
25− c− 24n

. (8.19)

Using (8.19) it is straightforward now to write down the modi�ed onformal dimen-

sions orreted by the quantum gravity e�ets.

The results of the DDK approah reprodue those of KPZ (valid for spherial

topology) and generalize them for spaetimes of arbitrary topology. Within the
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framework of the EAA and its funtional RG equations, the KPZ relations were

derived from Liouville theory in Ref. [193℄; for a review see [81℄.

(4) Quenhing of the KPZ saling. Let us apply the general DDK�KPZ formulae

to the NGFP theory of asymptotially safe gravity. We must then replae

c −→ cNGFP
grav

+N ≡ (25 −N) +N = 25 , (8.20)

sine the relevant bare ation now arises from both the integrated-out matter �u-

tuations and the pure-gravity NGFP ontribution, Y NGFP

grav

. Setting c = 25 in eqs.

(8.16) and (8.19) we obtain

α1 = 0 and αn = 0, (8.21)

respetively. This implies that the Liouville �eld ompletely deouples from the area

operator (8.15) and any of the observables (8.18).

As a onsequene, the dynamis of the matter system is una�eted by its ou-

pling to quantum gravity. In partiular, its ritial behavior is desribed by the

properties (ritial exponents, et.) of the matter CFT de�ned on a nondynamial,

rigid bakground spaetime. Thus, the spei� properties of the NGFP lead to a

perfet �quenhing� of the a priori expeted KPZ saling.

(5) Relation to nonritial string theory. The funtional integral (8.10) is

idential to the partition funtion of nonritial string theory in 25 Eulidean di-

mensions. This theory is equivalent to the usual ritial bosoni string living in a

(25+1)-dimensional Minkowski spae whereby the Liouville mode plays the role of

the time oordinate in the target spae [231�233℄. Whether we onsider pure asymp-

totially safe gravity in two dimensions, or ouple any number of salar and fermioni

matter �elds to it, the resulting partition funtion equals always the one indued by

the �utuations of preisely 25 string positions Xm(xµ).

There is, however, a ertain di�erene between asymptotially safe gravity and

nonritial string theory in the way the speial ase of vanishing total entral harge,

i.e. of preisely 25 target spae dimensions, is approahed. To see this, note that

in the present work we related the Liouville �eld to the metri by the equation

gµν = e2φĝµν , and at no point did we rede�ne φ by absorbing any onstant fators

in it. In this onnetion, the Liouville ation for a general entral harge c has the

struture ΓLk = − c
24π

∫ (
D̂µφD̂

µφ+ R̂φ
)
+ · · · .

(i) In order to ombine ΓLk with the ation of the string positions, +
1
8π

∫
D̂µX

mD̂µXm
,

it is natural to introdue the rede�ned �eld

φ′ ≡ Qφ with Q ≡
√
c

3
, (8.22)

in terms of whih ΓLk = − 1
8π

∫ (
D̂µφ

′D̂µφ′ + QR̂φ′
)
+ · · · . It is this new �eld φ′

that plays the role of time in target spae and ombines with the Xm
's in the

onventionally normalized ation

1
8π

∫ (
− D̂µφ

′D̂µφ′ + D̂µX
mD̂µXm −QR̂φ′

)
+ · · ·
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whih enhanes the original O(25) symmetry to the full Lorentz group in target

spae, O(1, 25) [233℄.

In string theory, onformal invariane requires the total entral harge to vanish,

c
tot

= 0. Hene, arguing that the ombined (X0 ≡ φ′,Xm)-quantum system is

equivalent to the usual bosoni string theory in the ritial dimension involves taking

the limit c ≡ c
tot

→ 0 in the above formulae. Obviously this requires some are in

alulating orrelation funtions as the relationship φ′ ≡
√
c/3φ breaks down in this

limit. Considering vertex operators for the emission of a tahyon of 26-dimensional

momentum (P0, Pm), say, this involves ombining the resaling φ →
√
c/3 φ with

a orresponding resaling of P0 with the inverse fator, P0 →
√

3/c P0, rendering

their produt P0X
0 ≡ P0φ

′
independent of c. The vertex operator exp

{
i(−P0X

0 +

PmX
m)
}
also displays the full O(1, 25) invariane. (See Refs. [231,232℄ for a detailed

disussion.)

(ii) In 2D asymptotially safe quantum gravity, too, the total entral harge was

found to vanish, albeit for entirely di�erent reasons than in string theory. However,

here there is no obvious reason or motivation for any resaling before letting c→ 0.

In all of the above equations, inluding (8.15) and (8.18), φ still denotes the Liouville

�eld introdued originally. In quantum gravity we let c → 0 in the most straight-

forward way, setting in partiular c = 0 diretly in (8.16) and (8.19). This is what

led us to (8.21), that is, the disappearane of φ from the exponentials exp(2α−nφ)

multiplying the matter operators and the �quenhing� of the KPZ-saling.

8.3 Comparison with Monte Carlo results

In earlier work [105, 234, 235℄ indiations were found that suggest that Quantum

Einstein Gravity in the ontinuum formulation based upon the EAA might be related

to the disrete approah employing ausal dynamial triangulation (CDT) [97, 236℄.

In partiular, the respetive preditions for the fratal dimensions of spaetime were

ompared in detail and turned out similar [105, 235℄. It is therefore natural to ask

whether the quenhing of the KPZ-saling due to the above ompensation mehanism

an be seen in 2D CDT simulations. And in fat, the Monte Carlo studies indeed

seem to suggest a piture that looks quite similar at �rst sight: Coupling several

opies of the Ising model [237℄ or the Potts model [238℄ to 2-dimensional Lorentzian

quantum gravity in the CDT framework, there is strong numerial evidene that the

ritial behavior of the ombined system, in the matter setor, is desribed by the

same ritial exponents as on a �xed, regular lattie. Under the in�uene of the

quantum �utuations in the geometry the ritial exponents do not get shifted to

their KPZ values.

While this seems a striking on�rmation of our Asymptoti Safety-based predi-

tion, one should be areful in interpreting these results. In partiular, it is unlear

whether the underlying physis is the same in both ases. In CDT, the presene
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(absene) of quantum gravity orretions of the matter exponents is attributed to

the presene (absene) of baby universes in Eulidean (ausal Lorentzian) dynamial

triangulations. In our approah instead, the quantum gravity orretions that ould

in priniple lead to the KPZ exponents are exatly ompensated by the expliit mat-

ter dependene of the pure gravity-part in the bare ation. This matter dependene

is an immediate onsequene of the very Asymptoti Safety requirement.

As yet, we onsidered onformal matter only whih was exempli�ed by massless,

minimally oupled salar �elds. In the nononformal ase when those �elds are given

a mass for instane, the ompensation between the matter ontributions to the bare

NGFP ation and those resulting from integrating them out will in general no longer

be omplete. On the EAA side, this situation is desribed by a trajetory k 7→ Γk that

runs away from the �xed point as k dereases, and typially the resulting ordinary

e�etive ation of the gravity+matter system, Γk=0, will indeed be a�eted by the

presene of matter.

This expeted behavior seems to be mathed by the results of very reent 2D

Monte Carlo simulations of CDT oupled to more than one massive salar �eld

[239�241℄. It was found that, above a ertain value of their mass, the dynamis

of the CDT+matter system is signi�antly di�erent from the massless ase. In

partiular, a harateristi �blob + stalk� behavior was observed, well known from

4D pure gravity CDT simulations, but absent in 2D with onformal matter.

8.4 Summarizing remarks

(1) We reonstruted the partition funtion for the omplete 2D �xed point theory,

whose gravitational part is governed by the �xed point value of the Newton oupling.

Interestingly enough, this value reeives ontributions from both gravity and matter

setor: g∗ = 3ε/
(
2(25 − N)

)
, where the �+25� is of purely gravitational origin,

and �−N � represents the matter portion. In this manner, the bare ation of the

pure gravity setor has a reminisene of matter by means of the number parameter

N . On the other hand, N learly enters the bare ation of the matter setor, too.

Considering gravity and matter in ombination in the funtional integral, there is a

anellation of terms involving N .

(2) Due to this ompensation of matter e�ets, and sine the gravitational �+25�

neutralizes the �−26� from the ghosts and the �+1� from the measure of the Liouville

�eld, the NGFP theory amounts to a CFT with vanishing total entral harge.

(3) Another onsequene of the ompensation mehanism an be observed for the

gravitational dressing of operators from the matter setor: There is a omplete

deoupling of the Liouville �eld from matter operators of the type (8.15) and (8.18).

As a result, this leads to a full quenhing of the KPZ-saling, in distintion from what

one might have expeted a priori. Remarkably enough, this quenhing is preisely

what is found in Monte Carlo simulations of analogous systems in the framework of
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ausal dynamial triangulation.

(4) Although these results are surprising and enouraging, they should be handled

with are. Our arguments relied upon numerous approximations at di�erent stages

of their derivation. (i) We employed the single-metri Einstein�Hilbert trunation

in d > 2 for the gravitational EAA. (ii) For the bare ation in d > 2 we made an

Einstein�Hilbert ansatz, too, whih is probably the most prearious approximation.

(iii) The bare ation was reonstruted at one-loop level only. (iv) The matter setor

is based on the simplest possible trunation ansatz. (v) The running of the matter

and the ghost ation was negleted. (vi) In this hapter we negleted bare osmolog-

ial onstant terms, (vii) topologial terms and (viii) zero mode ontributions. (ix)

The number N enters some of the negleted terms other than I[g], whih might spoil

the perfet anellation.
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The bare ation in Liouville theory

Exeutive summary

The results of Chapter 7, in partiular the reonstrution formula, are applied to

Liouville theory. That is, we aim at reonstruting the bare ation for a theory

whose e�etive average ation is of the Liouville type,

∫
d

2x
√
g (aDµφD

µφ +

bRφ+c e2φ). This hapter basially ontains a olletion of attempts, inluding

setbaks, rather than a presentation of the solution: We test several ansätze for

the bare Liouville ation all of whih ome with their harateristi advantages

and drawbaks, listed in Table 9.1 in Setion 9.5. Our analysis inludes a numer-

ial omputation of bare ouplings and an analytial argument to demonstrate

their onvergene in one ase. Finally, we speify the Ward identity orrespond-

ing to a Weyl transformation applied to the bare ation and evaluate its pure

uto� ontributions for an optimized regulator.

What is new? The appliation of the reonstrution formula to a bare ation

of pure Liouville type (Se. 9.1), to a bare potential onsisting of a power series

(Se. 9.2) and a series of exponentials (Se. 9.3), and to an arbitrary potential

(Se. 9.4); the form of the Ward identity (Se. 9.6).

Its lose onnetion to 2D quantum gravity and nonritial string theory as dis-

ussed in Chapters 1, 5, 6 and 8 renders Liouville �eld theory an interesting topi

to study. In what follows, we would like to shed some light on the relation between

the e�etive average ation and the bare ation in this theory. We have seen in

Chapter 5 how an EAA of the Liouville type, ΓLk , emerges from an EAA in the

Einstein�Hilbert (EH) trunation in d > 2 dimensions, ΓEHk , when the limit d → 2

is taken. This leaves us with the somewhat unusual situation of having a Liouville

ation on the �already quantized� EAA side. By ontrast, in the existing studies on

Liouville theory (see for instane Refs. [16,193,217,242℄) it is the bare ation that has
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the Liouville form and that is yet to be quantized, while the orresponding e�etive

(average) ation is searhed for.

The question we will fous on in this hapter is how the bare ation must be

hosen in order to be ompatible (in the sense of the reonstrution disussed in

Chapter 7, setting k = Λ) with an EAA of the Liouville type:

ΓLΛ
reonstr.−−−−−→ SΛ? (9.1)

In Ref. [193℄ the inverse problem has been investigated, where the authors start with

a Liouville ation on the bare side, SLΛ, make an ansatz for the EAA and determine its

ouplings at the UV sale Λ by means of Ward identities: SLΛ
WI−−→ ΓΛ. An important

result of this analysis is that the EAA annot have the standard Liouville form the

bare ation has, and thus ΓΛ 6= SLΛ. Therefore, with regard to our urrent setting

that starts with a Liouville-type EAA, we expet that the bare theory annot be

given by a pure Liouville ation.

Before addressing the reonstrution proedure, we would like to point out a sub-

tlety we enounter in our approah. We know from Chapter 5 that Einstein�Hilbert

ations in d > 2 give rise to Liouville ations in the 2D limit. As a onsequene,

there are di�erent possibilities for obtaining a bare ation when starting out from

an Einstein�Hilbert-based e�etive average ation. Figure 9.1 illustrates the two op-

tions we have. Given the EAA in the Einstein�Hilbert trunation, way (a) means

reonstruting the bare ation �rst, and then taking the limit d → 2 in order to

obtain a Liouville-type bare ation. Possibility (b) on the other hand, refers to the

way where the limit d → 2 is taken �rst, yielding a Liouville EAA, and from this

new ation the bare ation is reonstruted.

A priori, it is not lear whether the diagram ommutes, even if there were a

way to perform the omputations in a full, i.e. untrunated, theory spae for the

bare ation. This an be understood as follows. The reonstrution in way (a) is

based on the full metri gµν as arguments of the EAA and the bare ation, and the

underlying funtional integration variable is given by the metri �utuations. By

ΓEHk=Λ

ΓLk=Λ

SEHΛ

SLΛ

reonstr.

lim
d→2

lim
d→2

reonstr.

(a)

(b)

Figure 9.1 Relation between Einstein�Hilbert and Liouville ation, on both the e�etive

and the bare side (left and right olumn, respetively), and the two ways to obtain the bare

ation when starting out from an Einstein�Hilbert-type e�etive average ation.
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ontrast, the onformal fator φ is the only argument of the ations at the bottom of

way (b), and the orresponding funtional integral is over Dφ. Therefore, unless the
funtional measure satis�es additional requirements, say, some sort of generalized

version of uniform onvergene in the limit d → 2, the resulting bare ation will

probably depend on the order of reonstrution and hange of variables.

One we have to resort to trunations, this e�et will ertainly beome even

more distint. These general arguments suggest that the bare ation obtained in

way (b) does not have the standard Liouville form (in agreement with Ref. [193℄),

while the one of way (a) does. Furthermore, way (b) violates the invariane under

the Weyl split-symmetry transformations (5.28) in general, while way (a) is Weyl

split-symmetry preserving. The one-loop results of this hapter will on�rm these

onsiderations.

For the sake of ompleteness, let us extent the piture shown in Figure 9.1 in

order to larify the intermediate steps and relations as well, inluding the onnetion

to the respetive e�etive ations Γ ≡ Γk=0. The result is ontained in Figure 9.2,

where we show in detail whih relations have already been studied in the literature or

in this thesis. As indiated by the dashed lines, a diret evaluation of path integrals

is a formidable task. Although it is possible to ompute ertain orrelation funtions

within a simple setting in Liouville theory [243℄, a general reipe for the alulations

seems to be beyond reah. In this hapter we take a �rst small step towards bridging

one gap by investigating the reonstrution problem at the bottom of Figure 9.2.

Our starting point is the Liouville EAA, ΓLΛ , whih is obtained by taking the 2D

limit of the Einstein�Hilbert EAA at the NGFP as desribed in Chapter 5:

ΓΛ[φ] ≡ ΓLΛ[φ] = − b

16π

∫
d

2x
√
ĝ
[
φ
(
− �̂

)
φ+ R̂φ+ µΛ2 e2φ

]
, (9.2)

where b and µ are determined by the �xed point values of the Newton onstant and

the osmologial onstant in d = 2 + ε dimensions:

b = lim
ε→0

ε

g∗
and µ = −2 lim

ε→0

λ∗
ε
. (9.3)

The numerial values of b and µ depend on the underlying metri parametrization,

see Chapter 4. For the linear parametrization we found the universal result b = 38
3

and the uto� dependent value µ = 3
19Φ

1
1(0), whih amounts to µ = 3

19 for the

optimized uto�. For the exponential parametrization, on the other hand, both b

and µ depend on the hosen regulator, where the optimized uto� leads to b ≈ 50.45
3

and µ ≈ 3
20.58 . Note that the ommon prefator in (9.2) is negative, that is, both the

kineti term and the potential involving µ > 0 have the �wrong� sign, irrespetive of

the parametrization. This means that the potential term must be taken into aount

in addition to the kineti term when disussing the onformal fator instability along

the lines of Setion 6.2.

The analysis in the subsequent setions yields the same qualitative results for

the two parametrizations; only in Setion 9.3 a more preise distintion beomes
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ΓLk=Λ
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SindΛ

SLΛ
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ΓLk=0

reonstr.

reonstr.

reonstr.

lim
d→2

lim
d→2

e2φĝ e2φĝ
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integral
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integral

funtional

integral
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d→2

e2φĝ

Einstein�

Hilbert

Indued

gravity

Liouville

Figure 9.2 Relation between Einstein�Hilbert, indued gravity and Liouville ation, on-

erning the EAA for k = Λ → ∞ (left vertial arrows), the e�etive ation for k = 0 (olumn

in the middle) and the bare ation (right vertial arrows). Thik arrows and bold-faed la-

bels refer to relations that are either known in the literature or have been worked out in this

thesis. (Reonstruting SEHΛ from ΓEHΛ : Ref. [31℄ & Chap. 7; the 2D limit of EH-type a-

tions: Chap. 5; FRGE for ΓEHk : Ref. [36℄ & Chap. 4; FRGE for Γindk : Ref. [81℄; FRGE for ΓLk :
Ref. [193℄; getting Liouville ations from indued gravity ations by inserting gµν = e2φĝµν :
known transformation rules an be used, see e.g. App. H.) This hapter is dediated to the

horizontal arrow at the bottom, the reonstrution problem in Liouville theory.

neessary. We will make several ansätze for the bare ation now and determine its

bare ouplings by inserting it together with the EAA (9.2) into the reonstrution

formula (7.13), i.e. into ΓΛ = SΛ + 1
2 TrΛ ln

[
M−2

(
S
(2)
Λ +RΛ

)]
.

9.1 Liouville ansatz for the bare ation

To begin with, we onsider an ansatz for the bare ation whih is purely of the

Liouville type, but with modi�ed oe�ients:

SΛ[φ] =
1

2

∫
d

2x
√
ĝ
[
Žφ
(
− �̂

)
φ+ ξ̌ R̂φ+ γ̌Λ2 e2φ

]
, (9.4)
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where ouplings with the inverse hat (̌ ) refer to bare ouplings again, and, as above,

we do not list the referene metri ĝµν as an argument expliitly. For the uto� RΛ

we hose an optimized regulator funtion with the wave funtion renormalization

inluded:

RΛ = Ž
(
Λ2 + �̂

)
θ
(
Λ2 + �̂

)
. (9.5)

Sine we have TrΛ
[
(·)
]
≡ Tr

[
(·)θ(Λ2 + �)

]
, the θ-funtion in (9.5) evaluates to 1

whenever RΛ appears inside a regularized trae.

The seond derivative of the bare ation (9.4) is given by

S
(2)
Λ = −Ž �̂+ 2γ̌Λ2 e2φ. (9.6)

Thus, the trae term of the reonstrution formula an be written as

1

2
TrΛ ln

[
M−2

(
S
(2)
Λ +RΛ

)]
=

1

2
Tr
[
fΛ(φ)θ

(
Λ2 + �̂

)]
, (9.7)

with fΛ(φ) ≡ ln
[
Λ2M−2

(
Ž +2γ̌ e2φ

)]
. The trae in (9.7) an be omputed as usual

by projeting it onto urvature invariants with the help of heat kernel tehniques,

as introdued in Appendix C, in partiular eq. (C.12). Employing the generalized

Mellin transforms (C.10) we obtain

1

2
TrΛ ln

[
M−2

(
S
(2)
Λ +RΛ

)]

=
1

8π

{
Q1

[
θ
(
Λ2 − (·)

)] ∫ √
ĝ fΛ(φ) +

1

6
Q0

[
θ
(
Λ2 − (·)

)] ∫ √
ĝ R̂ fΛ(φ) + · · ·

}

=
1

8π

{
Λ2

∫ √
ĝ fΛ(φ) +

1

6

∫ √
ĝ R̂ fΛ(φ) + · · ·

}
. (9.8)

By the reonstrution formula (7.13) this expression must agree with

ΓΛ − SΛ = − b

16π

∫
d

2x
√
ĝ
[
φ
(
− �̂

)
φ+ R̂φ+ µΛ2 e2φ

]

− 1

2

∫
d

2x
√
ĝ
[
Žφ
(
− �̂

)
φ+ ξ̌ R̂φ+ γ̌Λ2 e2φ

]
.

(9.9)

The ouplings of the bare ation an now be determined by equating (9.9) with (9.8)

and omparing the oe�ients of orresponding invariants.

First of all, the oe�ients of the φ(−�̂)φ-terms ditate

Ž = − b

8π
, (9.10)

for the trunation onsidered. The omputation of ξ̌ and γ̌ requires an expansion

of the funtion fΛ. Interestingly enough, we are fored to onsider two di�erent

expansions here: In order to determine ξ̌ we must expand fΛ in terms of φ, while for

γ̌ the expansion parameter is e2φ instead. The two ases read

fΛ(φ) = ln
[
Λ2M−2

(
Ž + 2γ̌

)]
+

4γ̌

Ž + 2γ̌
φ+O

(
φ2
)
, (9.11)

fΛ(φ) = ln
(
ŽΛ2M−2

)
+ 2γ̌ Ž−1 e2φ +O

(
e4φ
)
. (9.12)
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Then the oe�ients of the R̂φ-term give rise to the equation

− b− 8πξ̌ =
4

3

γ̌

Ž + 2γ̌
. (9.13)

In a similar manner, the oe�ients of the e2φ-terms have to satisfy

− bµ− 8πγ̌ = 4γ̌ Ž−1. (9.14)

Note that theM -dependene has dropped out for these oe�ients. Equations (9.13)

and (9.14) an easily be solved for ξ̌ and γ̌. Let us express the solutions in terms of

the rede�ned bare ouplings

b̌ ≡ −8π ξ̌, and µ̌ ≡ −8πγ̌

b̌
, (9.15)

by analogy with b and µ of the EAA. We obtain

b̌ ≈ 38.63

3
, and µ̌ ≈ 0.227 (9.16)

for the linear metri parametrization, and

b̌ ≈ 51

3
, and µ̌ ≈ 0.189 (9.17)

for the exponential parametrization. These values are strikingly lose to their oun-

terparts of the EAA, b = 38
3 , µ ≈ 0.158, and b ≈ 50.45

3 , µ ≈ 0.146 for the linear and

the exponential parametrization, respetively. Hene, the one-loop orretion in the

reonstrution formula has a rather small e�et on the ouplings onsidered in our

setting.

There is a ertain inonsisteny inherent in the above equations, though. It traes

bak to eq. (9.12), an expansion in terms of e2φ around e2φ = 0, i.e. around φ = −∞.

Only with that expansion we managed to projet the trae onto a term proportional

to e2φ. Taken by itself, this does not pose a problem. However, the omputation

should be onsistent with an expansion in terms φ and a subsequent resummation

to get bak the e2φ-term. As we will argue now, this annot be attained within the

underlying trunation.

From eq. (9.9) we read o� the e2φ-terms under the integral, adding up to

−
(
bµ

16π
+
γ̌

2

)
Λ2
{
1 + 2φ+ 2φ2 + · · ·

}
. (9.18)

This is to be ompared with all terms in eq. (9.8) of the type

∫√
ĝ φn without any

ontribution from the urvature. For that purpose we expand fΛ in terms of φ. We

�nd that (9.18) must agree with

Λ2

8π

{
ln
[
Λ2M−2

(
Ž + 2γ̌

)]
+

4γ̌

Ž + 2γ̌
φ+

4γ̌ Ž

(Ž + 2γ̌)2
φ2 + · · ·

}
. (9.19)
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The ruial point is that there is no possibility to ahieve (9.18) = (9.19) for eah

expansion term. In fat, the linear term in (9.19) enters e2φ only in part, while the

remaining part might be thought of to be distributed among e4φ, e6φ, et. The same

holds true for the quadrati and all further terms. But sine we have trunated

the bare ation theory spae suh that e2φ is the only invariant of that type, we do

not know whih amount of eah term in (9.19) must be split o� as a ontribution

to e2φ. Thus, eqs. (9.18) and (9.19) annot be heked for onsisteny this way.

This onsideration rather suggests taking into aount a more omplete set of basis

invariants. Consequently, we study a series of invariants of the type φn in Setion

9.2 and invariants of the type e2nφ in Setion 9.3.

As already mentioned in the introdution of this hapter, we expeted some

kind of inonsisteny for the hosen trunation in advane: Our ansatz was suh

that both EAA and bare ation were of the Liouville type. This, however, is ruled

out by the Ward identities with respet to Weyl transformations [193℄ that predit

di�erent forms of the two ations. In ombination with the above arguments this

indiates that a di�erent and more omplete trunation for the bare ation has to

be onsidered.

9.2 Power series ansatz for the bare potential

Motivated by the previous arguments we start with a more general ansatz for the

bare ation now: We write the bare potential as a power series,

SΛ[φ] =
1

2

∫
d

2x
√
ĝ

[
Žφ
(
− �̂

)
φ+ ξ̌ R̂φ+ 2Λ2

N
max∑

n=0

α̌n φ
n

]
, (9.20)

where the number of terms in the series is given by N
max

+ 1. We refer to N
max

as trunation parameter as it gives the highest power of φ in our trunation. The

ultimate goal would be to onsider the limit N
max

→ ∞. Due to restrited om-

putational apaity and the lak of a suitable analytial mehanism, however, we

learly annot determine in�nitely many bare ouplings but have to resort to a �nite

trunation parameter N
max

. Nonetheless, we an study to what extent the results

hange when N
max

is inreased.

The analysis is onduted as in the previous setion. We insert the EAA (9.2),

the bare ation (9.20) and its seond derivative,

S
(2)
Λ = −Ž �̂+ Λ2

N
max∑

n=2

n(n− 1)α̌n φ
n−2, (9.21)

into the reonstrution formula (7.13). The trae is expanded as above, the only

di�erene onsisting in the hoie of basis invariants where, as ompared to Setion
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9.1, e2φ is replaed by the set

{
φ0, φ1, . . . , φNmax

}
:

1

2
TrΛ ln

[
M−2

(
S
(2)
Λ +RΛ

)]
=

1

8π

∫
d

2x
√
ĝ

{
R̂ α̌3

Ž+2α̌2
φ+ · · ·

}

+
Λ2

8π

∫
d

2x
√
ĝ

{
ln
[
Λ2M−2

(
Ž + 2α̌2

)]

+ 6α̌3

Ž+2α̌2
φ+

[
12α̌4

Ž+2α̌2
− 18

(
α̌3

Ž+2α̌2

)2 ]
φ2 + · · ·

}
.

(9.22)

Reading o� the oe�ients in (7.13) using (9.22) yields a system of equations, the

�rst few of whih are given by

−b = 8πŽ, −b = 8πξ̌ +
2α̌3

Ž + 2α̌2

,

−bµ = 16πα̌0 + 2 ln
[
Λ2M−2

(
Ž + 2α̌2

)]
,

−bµ = 8πα̌1 +
6α̌3

Ž + 2α̌2

,

−bµ = 8πα̌2 − 18

(
α̌3

Ž + 2α̌2

)2
+

12α̌4

Ž + 2α̌2

, et.

(9.23)

We �nd that the determining equation for a oupling α̌n is of the general form

−bµ = (some number) · α̌n + (some funtion of α̌2, α̌3, . . . , α̌n+2). In partiular, the

alulation of α̌n requires the knowledge of α̌n+1 and α̌n+2. Note that due the �nite

trunation parameter N
max

these latter ouplings may be zero: α̌N
max

+1 = 0 and

α̌N
max

+2 = 0. As a onsequene, we do not have to go to higher and higher orders

to �nd a solution sine the system of equations is atually losed.

One we have hosen a trunation parameter we an perform a numerial analysis

to solve (9.23) for the ouplings. We refrain from presenting their preise numeri-

al values as these are insigni�ant for the present disussion. What is important,

though, is how the ouplings hange when the trunation parameter N
max

is varied.

Let us illustrate the issue by means of a simple Taylor series of some analyti

funtion. All oe�ients are �xed by the derivatives of the funtion at the expansion

point. If we trunate the series after a �nite amount of terms, there will be a �nite

residual desribing the deviation between the series and the funtion. The more

terms are taken into aount, the smaller the residual gets. Furthermore, and this

is the ruial point, the oe�ients are independent of the total number of terms in

the trunated series.

With regard to this Taylor series example, we might hope that bare ouplings

in (9.20) do not depend on the trunation parameter N
max

. This would allow us to

justify our bare ation ansatz with the �nite series a posteriori. Our seond hope is

that higher order ouplings eventually tend to zero, α̌n → 0 for n→ ∞ (whih would

require taking N
max

→ ∞, too). As far as our numerial omputation is onerned,

both points seem not to ome true.

In Figure 9.3 we demonstrate what happens. The plots show the dependene

of α̌0, . . . , α̌4 and ξ̌ on the trunation parameter N
max

, where we use those values
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Figure 9.3 The oupling ξ̌ and the �rst 5 series oe�ients of the bare potential, α̌0, . . . , α̌4,

dependent on the trunation parameter N
max

, i.e. dependent on the total number of terms

in the power series minus one, f. eq. (9.20). We observe that all ouplings �utuate heavily

when N
max

is varied. The oupling α̌0 may even beome omplex for ertain values of

N
max

, as indiated by the gaps in the orresponding plot. (Note that α̌0 depends also on

the measure parameter M , see (9.23). Here we hose M = Λ.) There is no indiation of

onvergene of the ouplings for inreasing N
max

.

for b and µ in the EAA that are based on the linear metri parametrization �

similar results are obtained with the exponential parametrization. We observe heavy

�utuations of all ouplings when N
max

is varied. Remarkably enough, this holds

true for ξ̌, too, even if that one is not a oe�ient of the power series. Moreover,

it is surprising that the lower order ouplings still depend strongly on N
max

even if

N
max

is already large. The analysis goes up to the value N
max

= 24 beyond whih

the numerial results get unreliable. Clearly, the graphs of all α̌n with n ≥ 1 start

at the origin (where N
max

= 0) sine α̌n = 0 for n > N
max

. For instane, in the

diagram for α̌4 in Figure 9.3 we see that α̌4 an get nonzero only when N
max

≥ 4.

Although Figure 9.3 shows only six bare ouplings, we have done the alulation

for α̌0, . . . , α̌24, and all resulting pitures show the same harateristi �utuations.

Here, we would like to emphasize that higher order oe�ients seem not to tend

to zero eventually: Averaging over the absolute values of the ouplings α̌n we do

not observe any signi�ant derease for inreasing n. Due to their onnetion to

the power of φ in the series, these higher order ouplings beome more and more

important. Therefore, both of our two hopes vented above are not satis�ed.

In summary, we have seen that a �nite power series ansatz for the bare poten-

tial appears to be inappropriate for reonstruting the bare ation on the basis of

(7.13). The resulting bare ouplings depend strongly on the number of terms in the

series. We do not observe any onvergene: neither do ouplings of some �xed index

approah a stable value in the large N
max

limit, nor do higher order ouplings α̌n

beome small in the large n limit. An equally heavy N
max

-dependene is found for

the form and the stability (boundedness) of the total potential.
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9.3 The bare potential as a series of exponentials

Motivated by our results of Setion 9.1 we would like to make an ansatz for the

bare ation whih onsists of a Liouville ation plus orretion terms. The latter are

organized as a series of exponentials of the type e2nφ. Hene, the bare ation within

this trunation reads

SΛ[φ] =
1

2

∫
d

2x
√
ĝ

[
Žφ
(
− �̂

)
φ+ ξ̌ R̂φ+ Λ2

N
max∑

n=1

γ̌n e
2nφ

]
. (9.24)

This ansatz for the bare potential losely resembles a Fourier series. (For imag-

inary φ it is a Fourier series.) Just like

{
e2inx

}
is a basis for the spae of square-

integrable funtions on [−π/2, π/2], we assume here that the terms

∫
d

2x
√
ĝ e2nφ(x)

are linearly independent and part of a basis of theory spae. With regard to the in-

onsistenies found in Setion 9.1, these terms ertainly onstitute a more omplete

set of invariants and we expet that some of the above issues might get resolved.

Besides, we observe a ertain similarity to the trunation ansatz for the sine-

Gordon model onsidered in Refs. [244, 245℄ where the potential term in the ation

is given by V (φ) =
∑

n un cos(nφ). This is a further motivation to study suh trun-

ations that omprise a series of exponentials, justifying our hoie in (9.24).

In order to determine the bare ouplings in (9.24) we proeed preisely as in the

previous setions. First, we ompute the Hessian,

S
(2)
Λ = −Ž �̂+ 2Λ2

N
max∑

n=1

n2γ̌n e
2nφ , (9.25)

whih is inserted into the reonstrution formula (7.13). Seond, we ompute the

trae analogously to eq. (9.8). We obtain

1

2
TrΛ ln

[
M−2

(
S
(2)
Λ +RΛ

)]
=

1

8π

{
Λ2

∫ √
ĝ fΛ(φ) +

1

6

∫ √
ĝ R̂ fΛ(φ) + · · ·

}
,

(9.26)

with

fΛ(φ) = ln
(
Λ2M−2Ž

)
+ ln

(
1 + 2Ž−1

N
max∑

n=1

n2 γ̌n e
2nφ

)
. (9.27)

Third, we apply two di�erent kinds of expansions to fΛ: In the

√
ĝ fΛ(φ)-term in

(9.26) we must expand fΛ in terms of e2φ, e4φ, et. , while for the
√
ĝ R̂ fΛ(φ)-term

it is su�ient to projet fΛ onto its ontribution linear in φ.

(a) Expansion in terms of exponentials. Let us introdue the abbreviations

an ≡ 2Ž−1n2 γ̌n, x ≡ e2φ and N ≡ N
max

. (9.28)

Then fΛ assumes the form fΛ = ln
(
Λ2M−2Ž

)
+ln

(
1+
∑N

n=1 anx
n
)
. Employing the

Taylor series of the logarithm leads to

fΛ = ln
(
Λ2M−2Ž

)
−

∞∑

k=1

(−1)k

k

(∑N
n=1 anx

n
)k
. (9.29)
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The k-th power of a sum an be alulated by means of the multinomial theorem:

(y1 + · · · + yN)k =
∑

|α|=k

k!

α1! · · ·αN !
yα1
1 · · · yαN

N , (9.30)

where we use the multi-index notation, i.e. α ∈ N
N
0 . Applying this to (9.29) and

ombining all powers of x ≡ e2φ we obtain

fΛ = ln
(
Λ2M−2Ž

)
−

∞∑

k=1

∑

|α|=k

(−1)k(k − 1)!

α1! · · ·αN !
aα1
1 · · · aαN

N x
∑N

n=1 nαn . (9.31)

(b) Expansion in terms of φ. Up to linear order the expansion of fΛ in terms of

φ reads

fΛ = ln
(
Λ2M−2Ž

)
+ ln

(
1 + 2Ž−1

∑N
max

n=1 n2 γ̌n

)

+
4Ž−1

∑N
max

n=1 n3γ̌n

1 + 2Ž−1
∑N

max

n=1 n2 γ̌n
φ+O(φ2).

(9.32)

Inserting (9.31) and (9.32) into eq. (9.26) yields

1

2
TrΛ ln

[
M−2

(
S
(2)
Λ +RΛ

)]

=
Λ2

8π

∫ √
ĝ

∞∑

k=1

∑

|α|=k

(−1)k−1(k − 1)!

α1! · · ·αN !
aα1
1 · · · aαN

N e2φ
∑N

n=1 nαn

+
1

12π

∫ √
ĝ R̂

∑N
max

n=1 n3γ̌n

Ž + 2
∑N

max

n=1 n2 γ̌n
φ+ · · · ,

(9.33)

Aording to eq. (7.13), this expression must agree with ΓΛ[φ]−SΛ[φ]. As usual, we
an read o� the oe�ients belonging to the same invariant and set up a system of

equations de�ning the bare ouplings. By suitably rearranging these equations, eah

oupling γ̌n an be expressed in terms of Ž, γ̌1, . . . , γ̌n−1, whereas ξ̌ depends on all

other ouplings involved in our trunation:

Ž = − b

8π
,

ξ̌ = − b

8π
− 1

6π

∑N
n=1 n

3γ̌n

Ž + 2
∑N

n=1 n
2 γ̌n

,

γ̌1 = − bµŽ

4 + 8πŽ
,

γ̌n =
Ž

2n2 + 4πŽ

n∑

k=2

∑

α∈NN
0

|α|=k
∑

i iαi=n

(−1)k(k − 1)!

α1! · · ·αN !
aα1
1 · · · aαn−1

n−1 for 2 ≤ n ≤ N ,

γ̌n = 0 for n > N, with N ≡ N
max

and an ≡ 2Ž−1n2 γ̌n .

(9.34)

(9.35)

(9.36)

(9.37)

(9.38)
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Before alulating the bare ouplings numerially a ouple of remarks are in order.

(1) The seond sum in eq. (9.37) is over all vetors α ∈ N
N
0 that satisfy the two

onstraints |α| ≡ ∑i αi = k and

∑
i iαi = n. These onstraints redue the number

of ontributing terms onsiderably. They ditate that αi = 0 for i ≥ n, so instead of

α ∈ N
N
0 we ould write α ∈ N

n−1
0 as well.

As an example for how the onstraints restrit the sum, let us onsider the ase

n = 2 = k: There is only one possible vetor α left, namely α1 = 2, α2 = 0,

α3, . . . , αN = 0. Sine the �rst sum in (9.37) requires k ≤ n, the de�ning equation

for γ̌2 involves only one term, and we �nally obtain γ̌2 =
1

4+2πŽ
Ž−1 γ̌21 .

(2) As long as n ≤ N
max

, the bare ouplings γ̌n are independent of the number

N
max

. This is a tremendous advantage as ompared with the situation in Setion

9.2 where the resulting bare ouplings depended strongly on N
max

, whih led to

signi�ant �utuations and an instable behavior. Here, on the other hand, we �nd

that a oupling γ̌n is determined one the lower order ouplings Ž, γ̌1, . . . , γ̌n−1 are

known, and inreasing N
max

does not have any e�et on γ̌n. Having alulated a

oupling at one point �xes it �for all times� (that is, for all N
max

, in partiular for

N
max

→ ∞).

(3) Related to our seond remark, we observe that the bare ouplings an be omputed

iteratively : Inserting Z = −b/(8π) into eq. (9.36) determines γ̌1, whih an be used,

in turn, to alulate γ̌2, and so forth. Only ξ̌ depends on all other ouplings. We

might hope, however, that the γ̌n's derease su�iently fast suh that ξ̌ atually

onverges. As we will see, this seems indeed to be the ase.

Clearly, the numerial values of the bare ouplings are sensitive to the e�e-

tive ouplings b and µ. Aording to the disussion below eq. (9.3) the latter de-

pend on the underlying metri parametrization. As the linear and the exponential

parametrization lead to di�erent results for the bare potential, we study the two

ases separately.

9.3.1 Results for the linear parametrization

In the ase of the linear parametrization we insert b = 38
3 and µ = 3

19 into the system

(9.34) - (9.37) and solve numerially for the bare ouplings. The result for the �rst

48 ouplings γ̌n is shown in Figure 9.4.

1

It reveals a surprising and very important

feature of the ouplings: for inreasing n we observe a fast and monotoni derease

of the γ̌n's. This derease seems to exhibit an exponential behavior at large n, as

suggested by the approximately linear derease in the logarithmi plot in Figure 9.4.

1

The omputation time grows exponentially. It took approximately 10 hours in Mathematia to

alulate γ̌48. During the alulation of γ̌49, Mathematia ran into a memory over�ow error after

about 15 hours. Surely it is possible to �nd faster and more reliable algorithms and programming

languages, but for our purposes knowing the �rst 48 ouplings is more than enough.
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Figure 9.4 Logarithmi plot showing the absolute values of the bare ouplings γ̌n dependent

on their index n, in the range n = 1, . . . , 48, based on the linear parametrization. We observe

an approximately exponential derease towards larger n. All ouplings have the same sign.

This observation is another advantage of the trunation (9.24) as ompared with

the power series ansatz in Setion 9.2 where all ouplings were of the same order

of magnitude. Here the situation is di�erent as higher order ouplings derease

su�iently fast. We would like to point out, however, that our numerial analysis

does not prove the onvergene in a mathematially rigorous sense. This raises the

question to what extent the disussion an be brought to a rigorous analytial level.

The signi�ane of suh a onsideration resides in the fat that trunations of the

type (9.24) are justi�ed only if higher order ouplings get less and less important,

suh that the �nite series already enapsulates the most essential information. Oth-

erwise, omputing ξ̌ aording to (9.35) would be pointless as long as N
max

remains

�nite. Therefore, a more thorough analysis serves as a onsisteny hek for the

trunation. In Appendix J we present an argument that provides strong evidene

for the onvergene of the ouplings γ̌i as i → ∞. In terms of ai ≡ 2Ž−1i2 γ̌i the

statement reads: Provided that the �rst n ouplings ai, i = 1, . . . , n, derease expo-

nentially, say ai = A e−λi
, then the value of an+1 is less than or equal to A e−λ(n+1)

.

This result supports the onvergene onjeture. However, sine the derease of the

�rst n ouplings deviates slightly from an exat exponential fall-o�, in partiular at

small n, see Figure 9.4, the assumption of the proof is not stritly satis�ed.

2

Hene,

we must rely on a numerial omputation of the �rst ouplings. This onstitutes a

gap in the proof. Nonetheless, all indiations oming from Appendix J and Figure

2

The proof in Appendix J is arried out in terms of an ≡ 2Ž−1n2 γ̌n instead of γ̌n. The

additional fator n2
is irrelevant for the disussion of the fall-o� behavior: One we know that an

dereases exponentially with n, the γ̌n's are dominated by an exponential derease as well (and

vie versa). The diagrams for both γ̌n (Figure 9.4) and an (Figure J.1) show the harateristi

exponential behavior for inreasing n while there are deviations from the exponential for small n.
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Figure 9.5 Dependene of ξ̌ on N
max

, i.e. on the number of exponential terms in the bare

potential. (Note that the disrete set of points is joined by line segments for illustrative

purposes.) For inreasing N
max

the urve onverges to the value ξ̌ → −0.55604.

9.4 point towards onverging ouplings.

By virtue of Figure 9.5, our onjeture reeives additional support. It shows the

oupling ξ̌ dependent on N
max

. One N
max

is greater than about 15, ξ̌ is approxi-

mately onstant. In this region, inreasing N
max

further, i.e. inluding more terms

in the bare potential and in eq. (9.35), has no observable e�et on ξ̌. The last ten

entries in the diagram di�er only by the number

(
ξ̌|N

max

=39−ξ̌|N
max

=48

)
≈ 1.7·10−10

.

We emphasize that suh a fast and stable onvergene behavior is a striking result

whih might not have been expeted in advane. After determining a �t funtion

based on an exponential derease of the ouplings and a subsequent extrapolation we

�nd ξ̌ → −0.55604 in the large N
max

-limit. For omparison with the EAA oupling

b = 38
3 we ompute its bare ounterpart by their relation to the R̂φ-term in the

ations. We obtain b̌ ≡ −8πξ̌ ≈ 41.92
3 , so the bare and the e�etive oupling are

reasonably lose together.

At this point a remark onerning the bare potential is in order. As an be

seen in Figure 9.4, all ouplings γ̌i ome with a negative sign. For that reason, the

bare potential, V̌ (φ) = 1
2Λ

2
∑N

max

n=1 γ̌n e
2nφ

, is negative for all φ. Moreover, it is

not bounded from below. This observation is independent of the number of terms

inluded in the bare potential. Figure 9.6 shows the dimensionless version of V̌ for

N
max

= 1, N
max

= 2 and N
max

= 48. We see that V̌ does not possess any minimum

but it tends to −∞ in the large �eld limit.

Whether or not this apparent instability of the onformal fator poses a physial

problem is a di�erent question, though. In fat, we see from the ation (9.24) and

from (9.34) that the kineti term is negative, too, sine Ž < 0. Therefore, the

kineti term and the bare potential V̌ have the same sign. This is preisely what was

observed for the e�etive average ation (9.2), where we mentioned that both soures
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Figure 9.6 Bare potential for N
max

= 1 (dotted), N
max

= 2 (dashed), N
max

= 48 (plain),

based on the linear parametrization.

of negativity should be taken into aount in our disussion. Again, as argued in

Setion 6.2, the onformal fator instability is not an unmistakable sign for a physial

de�ieny but it an be ured by imposing appropriate onstraints to ut out negative

norm states.

3

In this regard, an unbounded potential might be unproblemati after

all.

9.3.2 Results for the exponential parametrization

In order to study the di�erenes that arise from using the (�xed point version of

the) EAA based on the exponential parametrization, we simply replae the e�etive

ouplings b and µ by their modi�ed values, b ≈ 50.45
3 and µ ≈ 0.145772, while, apart

from this, we proeed as in the previous subsetion, i.e. we solve eqs. (9.34) - (9.37)

numerially for the bare ouplings. The result for γ̌n, n = 1, . . . , 48, is depited

in Figure 9.7. It shows a fall-o� behavior of the ouplings very similar to the one

orresponding to the linear parametrization: The absolute values of the γ̌n's seem

again to derease exponentially on average as n inreases. As ompared with Figure

9.4 there are two di�erenes, though. First, the deviations from a perfet exponential

fall-o� are more distint, and seond, the sign of the ouplings �utuates. The latter

is indiated by the two di�erent olors of the points in Figure 9.7. It appears that

there are as many positive as negative signs whih alternate without following any

obvious regular pattern. This phenomenon renders a rigorous disussion about the

ouplings' onvergene more involved, f. Appendix J.3.

The dependene of ξ̌ on the number N
max

is shown in Figure 9.8. We observe

an osillation whose amplitude dereases towards larger N
max

. Ultimately, ξ̌ seems

3

As mentioned previously, a onsideration at the tehnial level might require speial attention

(regularization, analyti ontinuation, or similar) at intermediate steps of the alulation suh that

the funtional integral an be made sense of (f. Ref. [246℄, for instane). We leave this point for

future investigations.
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Figure 9.7 Logarithmi plot showing the absolute values of the bare ouplings γ̌n dependent

on their index n, in the range n = 1, . . . , 48, based on the exponential parametrization. The

average derease behavior towards larger n is still approximately exponential, although there

are larger �utuations as ompared with Figure 9.4. Couplings represented by a blue dot

have a positive sign, while dark yellow dots refer to negative signs.

to onverge in the large N
max

limit. In omparison with Figure 9.5 (whih did not

show any osillation) this onvergene is slower. The limit that ξ̌ approahes an be

obtained by �tting a damped osillation to the points in Figure 9.8 and applying an

extrapolation at large N
max

subsequently.

4

This way we �nd that ξ̌ → −0.6019 for

N
max

→ ∞. In order to ompare this value with the e�etive oupling b ≈ 50.45
3 we

onsider b̌ ≡ −8πξ̌ again, yielding b̌ ≈ 45.38
3 .

At last, let us investigate how the bare potential hanges as N
max

is inreased.

In Figure 9.9 we show its dimensionless version, V̌ /Λ2
, for N

max

= 1, N
max

= 4,

N
max

= 10 and N
max

= 48. We observe that the bare potential possesses a minimum

for all N
max

≥ 2, whih is loated at φ ≈ −0.37 at large N
max

. For inreasing

numbers N
max

the potential seems to onverge pointwise to a limit funtion whih is

given approximately by the blue urve (in the depited region V̌ |N
max

=48 is supposed

to be lose to V̌ |N
max

→∞) and whose minimum beomes a global minimum.

5

Hene,

the bare potential beomes bounded from below, i.e., unlike the one for the linear

parametrization, f. Figure 9.6, it has a stabilizing harater now. The minimum

breaks sale invariane, in aordane with the Ward identities w.r.t. ombined Weyl

transformations (f. Ref. [193℄ and Setions 9.5 and 9.6). Note that, with regard to

the onformal fator instability, the kineti term �ounterats� the potential this time

4

More preisely, it turned out that the data points in Figure 9.8 are most e�iently approxi-

mated by a funtion of the type f(x) = c2 e
−λ2x sin(ωx+ x0) + c1 e

−λ1x + c0 with x ≡ N
max

.

5

If N
max

orresponds to a oupling with negative sign, see Figure 9.7, then V̌ (φ) → −∞ for

φ → ∞, so the minimum is only a loal one. If, on the other hand, the last oupling of the series in

the potential is positive, then the minimum is a global one. The limit potential V̌ |N
max

→∞ seems

to have a unique global minimum, too.
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Figure 9.8 Dependene of ξ̌ on N
max

. (Again, the disrete set of points has been joined by

line segments for illustrative purposes.) The diagram starts at N
max

= 18 as this aptures

the signi�ant region onerning onvergene; for smaller N
max

the �utuations are stronger

and more irregular. Fitting a urve to the depited points shows that ξ̌ onverges to −0.6019
for N

max

→ ∞.

Figure 9.9 Bare potential for N
max

= 1 (dark yellow, dashed), N
max

= 4 (green, dashed),

N
max

= 10 (orange, dashed), and N
max

= 48 (blue), using the exponential parametrization.
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sine the former is negative and the latter is bounded from below.

9.4 Bare ation with a general potential

As mentioned in the introdution of this hapter, Ref. [193℄ is foused on the ompu-

tation of the EAA provided that the bare ation is given, i.e. it onerns the opposite

diretion as ompared with our preeding disussion. There the authors �nd that, if

the bare potential has a pure Liouville form, µ̌ e2φ, then a alulation of the e�etive

potential based on the trunation ansatz µ eαφ shows that α annot equal 2, so the

bare and the e�etive potential are di�erent.

This onsideration applied to our present ase suggests studying a trunation

ansatz for the bare potential whih is of the type µ̌ eα̌φ
if the e�etive potential is

given by µ e2φ. However, it is not possible to obtain suh a bare potential by means

of the reonstrution formula (7.13): We have to know whih terms the trae must

be projeted onto, e.g.

∫ √
ĝ e2φ,

∫ √
ĝ e4φ, et. Only then we an determine their

oe�ients onsistently. Thus, we do not investigate suh trunations with modi�ed

exponents like α̌φ. Nonetheless, we an study a trunation for the bare ation whose

potential is left ompletely arbitrary. The idea is to leave the logarithm appearing

in the reonstrution formula unexpanded rather than to extrat any terms (∝ e2φ,

∝ φ, or similar). This leads to a seond order di�erential equation for the bare

potential V̌ (φ) whih an be solved numerially and whose asymptoti behavior an

be determined analytially.

We start out with the general ansatz

SΛ[φ] =
1

2

∫
d

2x
√
ĝ
[
Žφ
(
− �̂

)
φ+ ξ̌ R̂φ+ V̌ (φ)

]
. (9.39)

The orresponding Hessian reads

S
(2)
Λ = −Ž �̂+

1

2
V̌ ′′(φ). (9.40)

This is to be inserted into (7.13) where the trae is treated as in the previous setions.

As a result, the trae term is the same as in eq. (9.26), the only di�erene being a

modi�ation of the funtion fΛ aording to

fΛ(φ) = ln
[
Λ2M−2Ž + 1

2M
−2 V̌ ′′(φ)

]
. (9.41)

Then the reonstrution formula ΓΛ = SΛ+
1
2 Tr ln

[
M−2

(
S
(2)
Λ +RΛ

)]
at lowest order

in the urvature, O(R0), amounts to − bµ
16π

∫ √
ĝ e2φ = 1

2

∫ √
ĝ V̌ (φ) + Λ2

8π

∫ √
ĝ fΛ(φ).

Comparing oe�ients yields

− bΛ2µ

16π
e2φ =

1

2
V̌ (φ) +

Λ2

8π
ln
[
Λ2M−2Ž + 1

2M
−2 V̌ ′′(φ)

]
, (9.42)

and by solving for V̌ ′′(φ) we obtain

V̌ ′′(φ) = 2M2 exp
[
−1

2bµ e
2φ − 4πΛ−2V̌ (φ)

]
− 2Λ2 Ž . (9.43)
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This equation �xes V̌ (φ) up to two unknown initial onditions, say V̌ (0) and V̌ ′(0).

Before solving the di�erential equation (9.43) numerially, we try to assess the

asymptoti behavior of the potential for φ→ −∞ and φ→ ∞ at an analytial level.

As we searh for bounded potentials, it turns out onvenient to distinguish between

the ase where V̌ is bounded from below and the ase where V̌ is bounded from

above. Although these properties onerning boundedness are used as assumptions,

we test a posteriori whether they are satis�ed by the resulting solution for V̌ .

(a) Assumption: V̌ is bounded from below. Let us onsider the limit of very

small �elds and very large �elds separately in our analysis.

• The ase φ ≪ −1: In this limit we may assume e2φ ≈ 0 suh that eq. (9.43)

redues to V̌ ′′(φ) = 2
(
M2 e−4πΛ−2V̌ (φ) − Λ2 Ž

)
. Furthermore, boundedness of

V̌ requires V̌ (φ) → ∞ or V̌ (φ) → onst for φ → −∞. Thus, for φ ≪ −1,

the di�erential equation simpli�es to V̌ ′′(φ) ≈ onst, leading to V̌ (φ) ∼ φ2

asymptotially. Here, the afore-mentioned requirement ditates a positive sign

in front of the φ2-term. As a onsequene, e−4πΛ−2V̌ (φ) → 0 for φ → −∞. In

this limit we have V̌ ′′(φ) = −2Λ2Ž. Integration yields

V̌ (φ) = −2Λ2Žφ2 + V̌ ′(0)φ+ V̌ (0). (9.44)

This asymptoti solution meets the above requirement only if Ž < 0. Sine Ž

is not modi�ed as ompared to the previous subsetions, this is indeed the ase:

Both for the linear and for the exponential parametrization we have Ž < 0, so

the solution (9.44) is onsistent.

• The ase φ ≫ 1: Let us assume for a moment that the term e2φ in eq.

(9.43) dominates over 4πΛ−2V̌ (φ), an assumption that is to be hek for on-

sisteny one we have found an asymptoti solution. In this ase we �nd

e−
1
2
bµ e2φ−4πΛ−2V̌ (φ) → 0 for φ → ∞. Therefore, the large φ limit amounts to

V̌ ′′(φ) = −2Λ2Ž again, so we �nd preisely the same solution as in eq. (9.44).

Again, this result is onsistent with our above assumption.

(b) Assumption: V̌ is bounded from above. Atually, there is no solution

to eq. (9.43) whih satis�es the assumption onsistently. To see this, it is su�ient

to onsider the ase φ ≪ −1, that is, e2φ ≈ 0. Then the di�erential equation

beomes V̌ ′′(φ) = 2M2 e−4πΛ−2V̌ (φ) − 2Λ2 Ž again. Now, boundedness of V̌ ditates

V̌ (φ) → −∞ or V̌ (φ) → onst for φ→ −∞.

If limφ→−∞ V̌ (φ) = onst, the di�erential equation boils down to V̌ ′′(φ) = onst

in the limit of small φ. This is in ontradition with V̌ (φ) = onst, though.

On the other hand, if limφ→−∞ V̌ (φ) = −∞, the di�erential equation redues to

V̌ ′′(φ) = 2M2 e−4πΛ−2V̌ (φ)
. This ase would require V̌ (φ) → −∞ and V̌ ′′(φ) → +∞

at the same time. However, there is no smooth funtion satisfying both onditions

simultaneously. Hene, V̌ annot be bounded from above.
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Figure 9.10 Bare potential (blue) in omparison with a perfet parabola (gray, dashed).

In the regime of small absolute �eld values (left diagram) there are observable deviations,

while the e�et weakens towards larger values of |φ| (right diagram).

Taking all ases together, we have demonstrated that the bare potential ap-

proahes the parabola given by eq. (9.44) asymptotially, for both φ → −∞ and

φ → ∞. We emphasize in partiular that this asymptoti behavior is independent

of the measure parameter M .

For small values of |φ| we expet deviations of V̌ from a perfet parabola form.

The magnitude of these deviations is revealed by a numerial analysis in the following.

All numerial omputations are performed with Mathematia. We use the initial

onditions V̌ (0) = 0 and V̌ ′(0) = 0. Di�erent hoies would merely amount to shifted

graphs for the resulting potentials. The values b and µ are hosen to orrespond

to the linear parametrization; the ones for the exponential parametrization would

qualitatively lead to the same piture. For the measure parameter we hooseM = Λ.

The result is shown in Figure 9.10. It on�rms our expetations remarkably well. We

observe that the bare potential notieably deviates from a parabola form for small

values of |φ|. For large |φ|, on the other hand, it onverges to the parabola given

by V̌ (φ) ∼ −2Λ2Žφ2. Note that the degree of deviation depends on the measure

parameter M : For inreasing M , the deviations beome more distint, in partiular

in the small |φ| regime, while they are ompletely absent for M → 0, as an be seen

from eq. (9.43). The asymptoti behavior is the same for all values of M , though.

One we know the funtion fΛ in eq. (9.41) it is straightforward to extrat an

equation for the oe�ients of the R̂φ-terms, too, by using the same strategy as in

the previous setions. This determines the bare oupling ξ̌ :

ξ̌ =
b

8π

(
−1 +

µ

3

)
+

1

6
Λ−2V̌ ′(0). (9.45)

For the values of b and µ based on the linear parametrization, and the initial ondition

V̌ ′(0) = 0, we obtain ξ̌ ≈ −0.477. In terms of b̌ ≡ −8πξ̌ this amounts to b̌ = 36
3 .

Up to this point, the above results seem to be quite promising. However, a note

of aution is in order. The issue an be understood by reviewing eq. (9.42). Our

investigation has revealed the asymptotially quadrati form of the bare potential,
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whih implies the relation V̌ ′′(φ) ≈ −2Λ2Ž. Inserting this into (9.42) shows that

the argument of the logarithm is lose to zero, Λ2M−2Ž + 1
2M

−2 V̌ ′′(φ) ≈ 0. This

indiates a high degree of �ne-tuning : Eq. (9.42) an be solved only if the argument

of the logarithm is extremely small ompared with V̌ (φ) and e2φ. At the same time,

it must not beome exatly zero. Suh a solution appears to be rather unnatural:

All large terms are indued by a small �ne-tuned term.

Moreover, this means that all ontributions to the e�etive potential stem from

the one-loop term, in disagreement with the onventional piture whih assumes

that the bare ation represents an essential part of the EAA, aording to ΓΛ =

SΛ + orretion. The major signi�ane of the one-loop term suggests that higher-

loop orders might beome even more important. Therefore, we do not onsider the

above results reliable. In a sense, the one-loop reonstrution formula predits its

own breakdown when applied to the setting disussed in this subsetion.

9.5 Summarizing remarks

The preeding setions onerned the reonstrution problem in Liouville theory. We

tried to determine the bare ation by applying eq. (7.13) to a Liouville-type e�etive

average ation. Reall that there are di�erent ways to obtain a bare ation when

starting from an Einstein�Hilbert-type EAA, as shown in Figures 9.1 and 9.2. In

this hapter we studied the last step in the hain

ΓEHΛ [g] → ΓindΛ [g] → ΓLΛ[φ; ĝ] + ΓindΛ [ĝ] → SΛ[φ; ĝ] + ΓindΛ [ĝ]. (9.46)

In (9.46) we expliitly state the remaining part ΓindΛ [ĝ] that does not ontain any on-

tributions from the onformal fator and that is not involved in the reonstrution

proess. It is mentioned here sine the ombination ΓLΛ[φ; ĝ] + ΓindΛ [ĝ] an be inter-

preted as a onformal �eld theory whose entral harge c an be read o� from ΓindΛ [ĝ]

or, equivalently, from the R̂φ-term in ΓLΛ[φ; ĝ]. In terms of the e�etive oupling b

we have c = 3
2b. Now, the ruial point is that after the reonstrution proess, i.e.

after the last step in (9.46), the sum SΛ[φ; ĝ] + ΓindΛ [ĝ] is no onformal �eld theory

beause SΛ[φ; ĝ] is not a pure Liouville ation. Hene, although we an ompute b̌ as

the oe�ient of the R̂φ-term in the bare ation, the quantity

3
2 b̌ does not represent

a entral harge.

Having said this, let us brie�y sum up the results of this hapter obtained so far.

We onsidered several trunation ansätze for SΛ[φ; ĝ] with di�erent bare potentials,

viz., a pure Liouville potential, a power series, a series of exponentials, and an

arbitrary funtion. Apart from some interesting results, we unovered also a ouple

of drawbaks. It turned out that the most promising among the studied andidates

for the bare potential is a series of exponentials, V̌ (φ) = Λ2
∑N

max

n=1 γ̌n e
2nφ

. We were

able to ompute the bare ouplings γ̌n iteratively. They do not depend on N
max

and they tend to zero as n → ∞. Inluding an inreasing number of terms in the
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Ansatz for V̌ + −

γ̌Λ e2φ • Simple, natural ansatz

• Same form as ΓΛ

• No losure: Tr ln-terms

do not ombine to e2φ

• Disagrees with Ward

identities [193℄

Power series

• Simple extension

• High-dim. theory spae

• No onvergene: oe�-

ients depend heavily on

# of terms in series

• Rφ-term not onvergent

• Higher order terms more

and more important

∑
n γ̌n,Λ e2nφ

• Similar to Fourier series

• Similar to sine-Gordon

• High-dim. theory spae

• �Liouville ation plus

higher order terms�

• Series oe�s. onverge

• Rφ-term onverges

• For lin. parametrization:

V̌ bounded from above

• For exp. parametrization:

V̌ bounded from below

General potential

(numerial analysis)

• Most general form

• ∞-dim. theory spae

• Simple asymptoti

behavior: V̌ ∼ φ2

• V̌ bounded from below

• Fine tuning required:

argument of Tr ln-term
is lose to zero

• Importane of one-loop

term suggests onsider-

ing higher-loop orders

Table 9.1 Assets and drawbaks of four ansätze for the potential V̌ of the bare Liouville

ation, based on the one-loop reonstrution performed in this hapter.

potential a�ets the bare oupling ξ̌, but we observed a fast onvergene. Depending

on the underlying metri parametrization and onN
max

the total bare potential an be

bounded from below or bounded from above, a�eting the instability of the onformal

fator. It has been disussed in Setion 6.2, however, that the onformal fator

instability may be ured by imposing appropriate onstraints in order to projet

onto physial states only.

In Table 9.1 we summarize advantages and disadvantages of the four di�erent

ansätze. In either ase it remained unlear to what extent we an atually rely on the
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alulations performed in this hapter. We emphasize that all results were obtained

on the basis of the reonstrution formula (7.13). Thus, our �ndings suggest that

the approximate harater inherent in the one-loop formula (7.13) might prevent us

from determining the essential part of the bare ation in Liouville theory: The one-

loop term might possibly not ontain enough information, while higher-loop orders

might be more important in this ase. In this regard, di�erent methods like the use

of Ward identities may be expeted to lead to more reliable results. For that reason,

we derive the Ward identity orresponding to Weyl split-symmetry transformations

in the next setion.

9.6 Ward identity with respet to Weyl split-symmetry

Being a quantum version of Noether's theorem, Ward identities

6

(WIs) desribe

the relation between orrelation funtions arising from the symmetries of (the bare

ation of) a quantum �eld theory. Their derivation is based on the invariane of the

funtional measure under a symmetry transformation. If the measure is noninvariant,

it ontributes an additional term to the WIs, whih are then alled �anomalous Ward

identities�. In both ases, the transformation behavior of the bare ation and the

measure is known, while relations for orrelation funtions, enoded in the e�etive

(average) ation, are searhed for.

In the reonstrution proess onsidered in this hapter, the situation is di�erent:

We now start out from the e�etive average ation and its symmetries, and we

speify the funtional measure for the reonstrution, but we do not know how the

bare ation hanges under the orresponding symmetry transformations. This raises

the question whether it is possible to dedue ertain identities that the bare ation

has to satisfy upon transformation. In a sense, suh relations may be onsidered as

reverse Ward identities.

Here, we onsider the Weyl split-symmetry transformation, or ombined Weyl

transformation,

ĝµν → e2σ ĝµν , φ→ φ− σ , (9.47)

whih leaves the full metri gµν = e2φĝµν unaltered. Any funtional F [φ; ĝ] whih

is invariant under the Weyl split-symmetry transformation (9.47) an be written

as a funtional F̃ [g] of the full metri, and any funtional whih an be expressed

ompletely in terms of the full metri is Weyl split-symmetry invariant.

As realled in the previous setion in eq. (9.46), the reonstrution started with

the sum ΓLΛ[φ; ĝ]+ΓindΛ [ĝ] whih an be written in the form ΓfullΛ [g] = ΓindΛ [g]+c
∫√

g,

a stritly Weyl split-symmetry invariant funtional. In what follows, we will show

that, after having reonstruted the bare ation with respet to the Liouville �eld,

6

Some authors di�erentiate between the terms �Ward identity� and �Ward�Takahashi identity�,

where the former is onsidered a speial ase of the latter. Here, on the other hand, we always

think of the general version when speaking about �Ward identities�.
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the sum SΛ[φ; ĝ]+ΓindΛ [ĝ] is Weyl split-symmetry violating. For that purpose, we will

derive a WI in the reverse sense that governs the transformation behavior of SΛ[φ; ĝ].

For our disussion we make use of the results of Appendix H (in partiular the

transformation rules) and Chapter 5. The full funtional we start with is given by

the indued gravity ation plus a osmologial onstant term,

ΓfullΛ [g] = ΓindΛ [g] − bµ

16π
Λ2

∫
d

2x
√
g , (9.48)

with ΓindΛ [g] = b
64π I[g] plus zero mode ontributions. As shown in Chapter 5, ΓfullΛ

an be interpreted as the 2D limit of the Einstein�Hilbert ation. Inserting the

metri gµν = e2φĝµν yields

ΓfullΛ [e2φĝ] = ΓindΛ [ĝ] + ΓLΛ[φ; ĝ], (9.49)

with ΓLΛ[φ; ĝ] = − b
16π

∫
d

2x
√
ĝ
[
φ
(
− �̂

)
φ+ R̂φ+µΛ2 e2φ

]
, as given in eq. (9.2). The

behavior of the �rst term on the RHS of (9.49) under Weyl transformations reads

ΓindΛ [e2σ ĝ] = ΓindΛ [ĝ]− b
8π ∆I[σ; ĝ], see eq. (H.22) in the appendix,

7

with

∆I[σ; ĝ] ≡ 1

2

∫
d

2x
√
ĝ
[
D̂µσD̂

µσ + R̂σ
]
. (9.50)

Besides, the Liouville ation transforms as

ΓLΛ[φ− σ; e2σ ĝ] = ΓLΛ[φ; ĝ] +
b

8π
∆I[σ; ĝ], (9.51)

under (9.47). Note that in the sum of these transformation laws the terms involving

∆I anel eah other. Hene, the sum ΓindΛ [ĝ]+ΓLΛ[φ; ĝ] is indeed Weyl split-symmetry

invariant, as it should be.

9.6.1 Derivation of the Ward identity

Let SΛ[φ; ĝ] denote the bare ation that orresponds to the Liouville EAA, ΓLΛ[φ; ĝ].

In order to derive a WI desribing the transformation behavior of SΛ[φ; ĝ] we onsider

the funtional integral representation of the Liouville part of ΓfullΛ :

e−ΓfullΛ [e2φĝ] = e−ΓindΛ [ĝ] e−ΓLΛ[φ;ĝ]

= e−ΓindΛ [ĝ]

∫
D[ĝ]

Λ χ e−SΛ[χ;ĝ]+(χ−φ)·(ΓLΛ)(1)[φ;ĝ]−
1
2
(χ−φ)·RΛ(χ−φ) .

(9.52)

In (9.52) we expliitly indiate the metri dependene of the (translation invariant)

measure by writing D[ĝ]
Λ χ (f. de�nition in App. I.1), and we bear in mind that the

7

Although ΓindΛ ontains � apart from the funtional I � additional terms due to topologial

and zero mode ontributions in general, see Appendix H.2, its above-stated transformation behavior

is exat: ΓindΛ [e2σ ĝ] = ΓindΛ [ĝ]− b
8π

∆I [σ; ĝ]. The reason why there are orretion terms to be added to

I but no ones to ∆I is that the onstrution of ΓindΛ was atually based on the exat transformation

rule, see Chapter 5, so the rule must hold irrespetive of the preise form of ΓindΛ .
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uto� RΛ ≡ RΛ(−�̂) depends on ĝµν , too. Furthermore, (ΓLΛ)
(1)[φ; ĝ] ≡ 1√

ĝ

δΓLΛ[φ;ĝ]
δφ

is the �rst funtional derivative w.r.t. the Liouville �eld, and the dot refers to a

spaetime integration, f · g ≡
∫
d

2x
√
ĝ f(x)g(x). Note that in (9.52) the indued

gravity ation part deouples from the funtional integral. Applying the transforma-

tion (9.47) to the remaining (pure Liouville) part, we observe that the shift of the

Liouville �eld, φ→ φ−σ, is most onveniently taken into aount by simultaneously

hanging the integration variable,

χ→ χ− σ, (9.53)

sine φ makes its appearane in (9.52) as (χ−φ) several times. Then this di�erene

is invariant under the ombined transformations (9.47) and (9.53): (χ−φ) → (χ−φ).
Note that � due to its translational invariane � the measure is not modi�ed by

the shift (9.53): D[ĝ]
Λ χ

′ = D[ĝ]
Λ χ.

The transformation behavior of SΛ[φ; ĝ] is governed by the transformation laws

of all those terms in (9.52) that are hanged by (9.47) and (9.53), viz:

• ΓLΛ[φ; ĝ] • δΓLΛ[φ; ĝ]

δφ
• D[ĝ]

Λ χ •
√
ĝRΛ (9.54)

Sine the behavior of ΓLΛ[φ; ĝ] under (9.47) has already been stated in eq. (9.51), it

is only the last three terms that are to be investigated.

(1) Transformation of δΓLΛ/δφ :

The �rst funtional derivative of the Liouville ation w.r.t. φ is given by

δΓLΛ
δφ

[φ; ĝ] = − b

16π

√
ĝ
[
−2�̂φ+ R̂+ 2µΛ2 e2φ

]
. (9.55)

Using the Weyl transformation rules of Appendix H we �nd that (9.55) is atually

invariant under (9.47):

δΓLΛ
δφ

[φ− σ; e2σ ĝ] =
δΓLΛ
δφ

[φ; ĝ]. (9.56)

(2) Transformation of the measure D[ĝ]
Λ χ :

In appendix K.1 we derive the transformation of the measure under the hange

ĝµν → ĝ′µν ≡ e2σ ĝµν . It is given by

D[ĝ′]
Λ χ = e−∆Γind[ĝ′,ĝ] D[ĝ]

Λ χ . (9.57)

In (9.57) the exponent of the ruial transformation fator, ∆Γind[ĝ′, ĝ], reads

∆Γind[ĝ′, ĝ] ≡ − 1

12π
∆I[σ; ĝ] +

1

2
ln

(
V̂ ′

V̂

)
− Λ2

8π

(
V̂ ′ − V̂

)
, (9.58)

with ∆I[σ; ĝ] ≡ 1
2

∫
d

2x
√
ĝ
[
D̂µσD̂

µσ + R̂σ
]
, and the volume terms are de�ned by

V̂ ≡
∫
d

2x
√
ĝ and V̂ ′ ≡

∫
d

2x
√
ĝ′. The term

1
2 ln

(
V̂ ′/V̂

)
is present in (9.58) only
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if the Laplaians �̂ and �̂′
have zero modes. The divergent ontributions

Λ2

8π V̂ and

Λ2

8π V̂
′
may be absorbed in the osmologial onstant term of the bare ation later on.

(3) Transformation of

√
ĝRΛ :

It turns out that for the derivation of the searhed-for Ward identity it is su�ient

to onsider the transformations only up to linear order in σ, sine knowing the

behavior under an in�nitesimal transformation, ĝµν → ĝµν + 2ĝµν δσ, already �xes

the full transformation law. To �nd the orresponding relation for

√
ĝRΛ we exploit

a funtional identity whih is valid for any funtional of the metri:

F
[
ĝ′
]
= F

[
e2σ ĝ

]
= F

[
ĝ + 2σĝ +O(σ2)

]

= F [ĝ] + 2

∫
d

2xσ(x)ĝµν(x)
δ

δĝµν (x)
F [ĝ] +O(σ2).

(9.59)

Thus, the uto� operator transforms as

(√
ĝRΛ

)′
=
(√

ĝRΛ

)
+ 2

∫
d

2xσ ĝµν
δ

δĝµν

(√
ĝRΛ

)
+O(σ2). (9.60)

In a very similar way we an express the transformation of the bare ation as

SΛ[χ
′; ĝ′] = SΛ[χ−σ ; e2σ ĝ] = SΛ[χ; ĝ]+

∫
d

2x

(
2 ĝµν

δSΛ
δĝµν

− δSΛ
δχ

)
σ+O(σ2). (9.61)

Resulting transformation of the funtional integral:

Now that we have olleted all piees that ontribute to the Ward identity, we an

divide (9.52) by e−ΓindΛ [ĝ]
and apply the transformations (9.47) and (9.53) to the

remainder:

e−ΓLΛ[φ
′;ĝ′] =

∫
D[ĝ′]

Λ χ′ e−SΛ[χ
′;ĝ′]+(χ′−φ′)·(ΓLΛ)(1)[φ′;ĝ′]− 1

2
(χ′−φ′)·R′

Λ(χ
′−φ′) . (9.62)

By eq. (9.51) the LHS of (9.62) amounts to

e−ΓLΛ[φ
′;ĝ′] = e−ΓLΛ[φ;ĝ] e−

b
8π

∆I[σ;ĝ] = e−ΓLΛ[φ;ĝ]
[
1− b

16π R̂ · σ +O(σ2)
]
. (9.63)

Using the above list of transformation laws, the RHS of (9.62) beomes

∫
D[ĝ]

Λ χ exp

{
−∆Γind[ĝ′, ĝ]− SΛ[χ; ĝ]−

(
2

ĝµν√
ĝ

δSΛ
δĝµν

− 1√
ĝ
δSΛ
δχ

)
· σ

+ (χ− φ) · (ΓLΛ)(1)[φ; ĝ]−
1

2
(χ− φ) · RΛ(χ− φ)

− (χ− φ) ·
(
σ · ĝµν√

ĝ
δ

δĝµν

(√
ĝRΛ

))
(χ− φ) +O(σ2)

}
.

(9.64)
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With ∆Γind[ĝ′, ĝ] = − 1
24π R̂ · σ+

(
1
V̂
− Λ2

4π

) ∫ √
ĝ σ+O(σ2) we an expand the expo-

nential in terms of σ, yielding

∫
D[ĝ]

Λ χ exp
{
− SΛ[χ; ĝ] + (χ− φ) · (ΓLΛ)(1)[φ; ĝ]− 1

2(χ− φ) · RΛ(χ− φ)
}

×
[
1 + 1

24π R̂ · σ −
(

1
V̂
− Λ2

4π

) ∫ √
ĝ σ −

(
2

ĝµν√
ĝ

δSΛ
δĝµν

− 1√
ĝ
δSΛ
δχ

)
· σ

− (χ− φ) ·
(
σ · ĝµν√

ĝ
δ

δĝµν

(√
ĝRΛ

))
(χ− φ)

]
+O(σ2).

(9.65)

Sine we know from eq. (9.62) that (9.63) agrees with (9.65), the di�erene of these

latter two expressions must vanish: (9.65)− (9.63) = 0. This leads to

0 =

∫
D[ĝ]

Λ χ exp
{
− SΛ[χ; ĝ] + (χ− φ) · (ΓLΛ)(1)[φ; ĝ]− 1

2 (χ− φ) · RΛ(χ− φ)
}

×
∫

d

2x
√
ĝ(x)

[ (
b

16π + 1
24π

)
R̂(x)−

(
1
V̂
− Λ2

4π

)
−
(
2

ĝµν√
ĝ

δSΛ
δĝµν

− 1√
ĝ
δSΛ
δχ

)

−
∫

d

2y (χ− φ)(y)

(
ĝµν(x)√

ĝ(x)

δ
δĝµν(x)

(√
ĝ(y)RΛ

))
(χ− φ)(y)

]
σ(x) +O(σ2).

(9.66)

Upon dividing eq. (9.66) by the normalization fator e−ΓLΛ[φ;ĝ]
we observe that it

beomes in fat an identity for the expetation value of

∫
d

2x
√
ĝ(x)

[
· · ·
]
σ(x). Fur-

thermore, as we kept σ ompletely arbitrary, we onlude that the expetation value

of the square braket in (9.66) must be equal to zero. We thus obtain

〈(
b

16π + 1
24π

)
R̂(x)−

(
1
V̂
− Λ2

4π

)
−
(
2

ĝµν√
ĝ

δSΛ
δĝµν

− 1√
ĝ
δSΛ
δχ

)

−
∫

d

2y (χ− φ)(y)

(
ĝµν(x)√

ĝ(x)

δ
δĝµν(x)

(√
ĝ(y)RΛ

))
(χ− φ)(y)

〉
= 0 .

(9.67)

In Appendix K.2 we show that the uto� ontribution to (9.67) an be rephrased

by two simple terms involving the propagator

(
ΓLΛ

(2)+RΛ

)−1
. Moreover, we express

the number b, i.e. the EAA oupling ∝ 1
g∗

at the NGFP, in terms of the gravitational

entral harge (f. Chapter 6 in the pure gravity ase): We have b = 2
3 c, with

c ≡ cNGFP
grav

= 25 for the exponential metri parametrization

8

and c = 19 for the

linear parametrization. With these modi�ations, we arrive at the main result of

this setion, the Ward identity for the bare ation SΛ[χ; ĝ] onerning Weyl split-

8

As shown in Setion 4.3.5, for the exponential parametrization the �xed point value of Newton's

onstant is uto� sheme dependent if the osmologial onstant is taken into aount, and so is c.
Based on the optimized uto�, for instane, we found c = 25.226. However, when the osmologial

onstant is set to zero, we obtain the uto� independent result c = 25.
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symmetry transformations:

1√
ĝ(x)

〈
δSΛ
δχ(x)

〉
− 2

ĝµν(x)√
ĝ(x)

〈
δSΛ

δĝµν(x)

〉
+
c+ 1

24π
R̂(x) +

(
Λ2

4π
− 1

V̂

)

−
〈
x
∣∣RΛ

(
ΓLΛ

(2) +RΛ

)−1∣∣x
〉
− TrΛ

[
R̂Λ(x)

(
ΓLΛ

(2) +RΛ

)−1
]
= 0 .

(9.68)

The abbreviation R̂Λ(x) whih we introdued in (9.68) is de�ned by

R̂Λ(x) ≡
ĝµν(x)√
ĝ(x)

δ

δĝµν(x)
RΛ , (9.69)

with RΛ ≡ RΛ[ĝµν(y)] ≡ RΛ(−�̂y), where the argument y orresponds to the vari-

able of spaetime integration whih is impliit in the trae. Note that we kept the

regulator funtion arbitrary up to this point.

Before trying to simplify the Ward identity further by speifying the regulator

shape, we would like to mention some important general aspets.

Remarks

(1) Eq. (9.68) desribes the hange of the bare ation under in�nitesimal Weyl split-

symmetry transformations, χ→ χ− σ, ĝµν → e2σ ĝµν : Aording to (9.61) we have

∆SΛ[χ; ĝ] ≡ SΛ[χ−σ ; e2σ ĝ]−SΛ[χ; ĝ] =
∫
d

2x

(
2 ĝµν

δSΛ
δĝµν

− δSΛ
δχ

)
σ+O(σ2). (9.70)

Hene, it is the expetation value of this variation that is �xed by the WI. Note that

the expetation value is with respet to the �eld χ only.

(2) The bare ation must stritly satisfy the WI. Therefore, any andidate for SΛ

we an think of an be heked for validity by inserting it into (9.68). In this regard,

the WI may be used in addition to the reonstrution formula (7.13) in order to

determine SΛ. While this might be a powerful tool in ertain simple ases, the WI

seems to be too omplex to fully ompute the bare ation in general sine it involves

expetation values whih, in turn, depend on the bare ation itself.

(3) The bare ation SΛ[χ; ĝ] is not Weyl split-symmetry invariant. This follows

immediately from the Ward identity (9.68) and the �rst remark. If SΛ were Weyl

split-symmetry invariant, it would satisfy

〈
1√
ĝ(x)

δSΛ
δχ(x) − 2

ĝµν(x)√
ĝ(x)

δSΛ
δĝµν(x)

〉
= 0 . (9.71)

However, the Ward identity ditates that the right-hand side of (9.71) must be

nonzero: there are terms proportional to the urvature, a pure number ontribution

and uto� terms. The sum of these additional terms is uto� dependent and does

not equal zero in general. This an already be seen in the vanishing uto� limit.

(4) The sum ΓindΛ [ĝ] + SΛ[χ; ĝ] is not Weyl split-symmetry invariant : In Setion 9.5

and in the beginning of the urrent setion we have disussed that the ombination
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ΓindΛ [ĝ] + ΓLΛ[χ; ĝ] is invariant under Weyl split-symmetry transformations. This in-

variane is a manifestation of the interplay of ΓindΛ and ΓLΛ, whose hanges under

the transformations exatly anel eah other. At linear order in σ, this requires

the transformation law ΓLΛ[φ− σ; e2φĝ] = ΓLΛ[φ; ĝ] +
b

16π

∫
d

2x
√
ĝ R̂σ, or, in terms of

derivatives w.r.t. ĝµν and the Liouville �eld,

1√
ĝ

δΓLΛ
δφ

− 2
ĝµν√
ĝ

δΓLΛ
δĝµν

= − b

16π
R̂ ≡ − c

24π
R̂ . (9.72)

Now, if the sum ΓindΛ [ĝ] + SΛ[χ; ĝ] were Weyl split-symmetry invariant, then SΛ

would have to satisfy an equivalent relation:

1√
ĝ
δSΛ
δχ − 2

ĝµν√
ĝ

δSΛ
δĝµν

!
= − c

24π R̂. Taking

the expetation value of both sides yields the requirement

〈
1√
ĝ

δSΛ
δχ

− 2
ĝµν√
ĝ

δSΛ
δĝµν

〉
!
= − c

24π
R̂ . (9.73)

Clearly, this possibility is ruled out by the Ward identity (9.68): There must be addi-

tional terms on the RHS of (9.73), in partiular additional urvature ontributions.

Thus, ΓindΛ [ĝ] + SΛ[χ; ĝ] is Weyl split-symmetry violating.

(5) The pure number terms in (9.68),

Λ2

4π and

1
V̂
, whih stem from the divergent part

of the funtional measure and from the zero modes, respetively, an be absorbed

by a rede�nition of the osmologial onstant term in the bare ation: Suppose that

the bare ation an be written as SΛ[χ; ĝ] = λ̌
∫
d

2x
√
ĝ + X[χ; ĝ], where X[χ; ĝ]

omprises all remaining terms. Then

〈
1√
ĝ
δSΛ
δχ − 2

ĝµν√
ĝ

δSΛ
δĝµν

〉
= −2λ̌+X-terms. Now,

let us onsider the rede�nition

S̃Λ[χ; ĝ] ≡
(
λ̌− Λ2

4π

)∫
d

2x
√
ĝ +

1

2
ln
(
V̂ /V0

)
+X[χ; ĝ] , (9.74)

where V0 is an arbitrary referene volume. This leads to

〈
1√
ĝ

δS̃Λ
δχ

− 2
ĝµν√
ĝ

δS̃Λ
δĝµν

〉
= −2λ̌−

(
Λ2

4π
− 1

V̂

)
+X-terms. (9.75)

We onlude that the additional term in (9.75),

(
Λ2

4π − 1
V̂

)
, preisely annihilates the

orresponding ontribution in (9.68). Thus, the rede�ned bare ation S̃Λ satis�es eq.

(9.68) with the term

(
Λ2

4π − 1
V̂

)
missing and with SΛ replaed by S̃Λ.

(6) In Chapter 7 we have demonstrated that the EAA atually depends on two sales,

as indiated by the notation Γk,Λ . However, sine we were interested in the EAA

with its ouplings at the UV �xed point throughout the urrent hapter, we have

identi�ed k with Λ here (having in mind the large-Λ limit). This sale identi�ation

thus underlies also our derivation of (9.68). The generalization to the ase of two

independent sales k and Λ is straightforward, though. We merely have to repeat

all steps that led to (9.68), the only modi�ations being the replaements RΛ → Rk
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and ΓLΛ → ΓLk,Λ. The Ward identity then reads

1√
ĝ(x)

〈
δSΛ
δχ(x)

〉
− 2

ĝµν(x)√
ĝ(x)

〈
δSΛ

δĝµν(x)

〉
+
c+ 1

24π
R̂(x) +

(
Λ2

4π
− 1

V̂

)

−
〈
x
∣∣Rk

(
ΓLk,Λ

(2) +Rk

)−1∣∣x
〉
− TrΛ

[
R̂k(x)

(
ΓLk,Λ

(2) +Rk

)−1
]
= 0 .

(9.76)

In the last two subsetions of this hapter we will ompute the uto� terms

appearing in (9.68) for the optimized regulator and try to make a general statement

about the form of the bare ation.

9.6.2 The Ward identity for the optimized uto�

Upon employing the optimized uto�, eq. (9.68) redues to a muh simpler identity.

Here we brie�y outline the main reason for the speial status of the optimized uto�,

while further details and all underlying alulations an be found in Appendix K.3.

The seond funtional derivative of the EAA reads ΓLΛ
(2) = ZΛ

(
− �̂+2µΛ2 e2φ

)
,

with ZΛ ≡ − b
8π . Aording to the standard onvention, the uto� is hosen to have

the same prefator as −�̂ in ΓLΛ
(2)
. Then the optimized uto� is given by

RΛ ≡ RΛ(−�̂) = ZΛ

(
Λ2 + �̂

)
θ
(
Λ2 + �̂

)
, (9.77)

leading to the inverse propagator

ΓLΛ
(2) +RΛ = ZΛ

[
− �̂+ 2µΛ2 e2φ +

(
Λ2 + �̂

)
θ
(
Λ2 + �̂

)]
. (9.78)

Suppose that this operator ats on an eigenmode of −�̂ with the eigenvalue ω2 ≤ Λ2
.

In this ase the θ-funtion in (9.78) evaluates to 1, and we have, symbolially,

(
ΓLΛ

(2) +RΛ

)∣∣∣
ω2≤Λ2

= ZΛ

(
Λ2 + 2µΛ2 e2φ

)
. (9.79)

Now the ruial point is that

(
ΓLΛ

(2) + RΛ

)
appears in the WI (9.68) only in om-

bination with another uto� term, either with RΛ or with R̂Λ(x). When using the

optimized uto�, these terms stritly suppress all those eigenmodes whose squared

�momenta�, i.e. eigenvalues of −�̂, are larger than Λ2
. Therefore, we an replae(

ΓLΛ
(2) +RΛ

)
in (9.68) for all modes by the RHS of eq. (9.79), not only for the low

momentum modes. As a onsequene,

(
ΓLΛ

(2) +RΛ

)−1
does no longer ontain any

di�erential operators, so, broadly speaking, it an be pulled out of the trae and out

of 〈x| · |x〉 in (9.68). This irumstane is a tremendous simpli�ation. It allows us

to alulate the uto� terms in the WI at an exat level. We emphasize that suh a

simpli�ation ours only if the optimized uto� is used.
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As worked out in Appendix K.3, we �nd that the Ward identity (9.68) in ase of

an optimized uto� redues to

1√
ĝ(x)

〈
δSΛ
δχ(x)

〉
− 2

ĝµν(x)√
ĝ(x)

〈
δSΛ

δĝµν(x)

〉
+
c+ 1

24π
R̂(x) +

(
Λ2

4π
− 1

V̂

)

− 1

4π

{
Λ2

1 + 2µ e2φ(x)
+

1

6

R̂(x)

1 + 2µ e2φ(x)
− 1

6
�̂

[
1

1 + 2µ e2φ(x)

]

+
1

30
Λ−2 1

1 + 2µ e2φ(x)
�̂ R̂(x)− 1

30
Λ−2 R̂(x) �̂

[
1

1 + 2µ e2φ(x)

]

− 1

30
Λ−2 �̂

[
R̂(x)

1 + 2µ e2φ(x)

]
− 1

30
Λ−2 �̂2

[
1

1 + 2µ e2φ(x)

]}
= 0 .

(9.80)

Note that eq. (9.80) is an exat result; there are no higher order urvature or deriva-

tive terms. Moreover, we observe that the last two lines of (9.80) are suppressed in

the limit Λ → ∞. Therefore, the ontribution from the uto� operator RΛ to the

WI redues to only three terms, given by the seond line of (9.80): a pure potential

term, a term of �rst order in the urvature, and a term involving derivatives of the

Liouville �eld.

In spite of the simpli�ations entailed by the optimized uto�, there is still no

easy way to solve eq. (9.80) for SΛ sine the ourring expetation values depend

impliitly on the bare ation again. That means, the WI is a funtional integro-

di�erential equation whose solutions annot be found by our methods in general.

Nonetheless, we will demonstrate in the next subsetion that we an draw some

important onlusions about the term in SΛ linear in R̂ and about the bare potential.

9.6.3 A note on entral harges and the bare potential

As we have mentioned in the beginning of this setion, the starting point of our

analysis was given by the indued gravity ation plus a osmologial onstant term,

ΓindΛ [g] − bµ
16π Λ2

∫
d

2x
√
g, see eq. (9.48) for instane. We have seen in Chapter 6

that ΓindΛ [g] is linked to a CFT sine it an be written as a funtional integral over

a onformally invariant ation, e−ΓindΛ [g] =
∫
DΛχ e−S[χ]

. Furthermore, it an be

expressed in terms of the funtional I[g] (de�ned in Appendix H): ΓindΛ [g] = c
96π I[g]

(modulo orretions due to topologial terms and zero modes), with the orrespond-

ing entral harge c = cNGFP
grav

as de�ned in Chapter 6. By deomposing the metri

into onformal fator and referene metri, gµν = e2φĝµν , the full EAA assumes the

form ΓindΛ [g]− bµ
16π Λ2

∫
d

2x
√
g = ΓindΛ [ĝ] + ΓLΛ[φ; ĝ].

The point we want to make here is that the entral harge an be read o� from

three di�erent terms: from the prefator of I[g] in ΓindΛ [g], from the prefator of I[ĝ]

in ΓindΛ [ĝ], as well as from the prefator of

∫
d

2x
√
ĝ R̂φ and of

∫
d

2x
√
ĝ φ(−�̂)φ in

ΓLΛ[φ; ĝ]. As we are fousing on Liouville theory in this hapter, we would like to
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extrat c from ΓLΛ[φ; ĝ], where c =
3
2b. For this purpose, the relation

1√
ĝ

δΓLΛ
δφ

− 2
ĝµν√
ĝ

δΓLΛ
δĝµν

= − b

16π
R̂ ≡ − c

24π
R̂ (9.81)

seems to be most appropriate to indiate the entral harge in our ase.

When reonstruting the bare ation that belongs to the Liouville EAA, the full

ation hanges aording to ΓindΛ [ĝ] + ΓLΛ[φ; ĝ] → ΓindΛ [ĝ] + SΛ[φ; ĝ]. It is ruial

to reognize that the reonstruted side does not orrespond to a CFT beause of

the Weyl split-symmetry violating behavior of the sum ΓindΛ [ĝ] + SΛ[φ; ĝ], a diret

onsequene of the WI (9.68), f. remark (4) at the end of subsetion 9.6.1. This

sum annot be written as a funtional of the full metri alone, and there is no way

to express it as a funtional integral over a onformally invariant ation. Thus, not

being a CFT, there is no entral harge assoiated to the bare ation.

Nevertheless, we may analyze to what extent eq. (9.81) gets hanged during the

transition from the e�etive to the bare side. By analogy with (9.81) we de�ne č by

1√
ĝ

〈
δSΛ
δχ

〉
− 2

ĝµν√
ĝ

〈
δSΛ
δĝµν

〉
≡ − č

24π
R̂+ remainder , (9.82)

where �remainder� refers to all ontributions that do not ontain the urvature R̂

alone, i.e. remainder = onst + O(R̂2) + O(D̂µR̂) + O(φ), with φ = 〈χ〉. Bearing

in mind that č has no interpretation of a entral harge we an, loosely speaking,

use the di�erene (č − c) as a measure for the �deviation of SΛ from a CFT�. This

di�erene an be inferred from the WI.

Colleting all terms in eq. (9.80) proportional to R̂ we obtain

− č

24π
R̂+

c+ 1

24π
R̂− 1

24π

1

1 + 2µ
R̂+ onst+O

(
R̂2, D̂µR̂, φ

)
= 0 . (9.83)

Therefore, we onlude

č = c+ 1− 1

1 + 2µ
. (9.84)

For the exponential metri parametrization and a nonzero osmologial onstant

we observe the transition

c ≈ 25.226 −→ č ≈ 25.452 , (9.85)

while setting the osmologial onstant to zero by hand (λ∗ = 0, µ = 0) leads to

c = 25 −→ č = 25 . (9.86)

For the linear parametrization, on the other hand, we �nd

c = 19 −→ č = 19.24 , (9.87)
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(WI) (a) (b) ()

Exponential parametrization 25.45 25.50 22.69 24

Linear parametrization 19.24 19.32 20.96 18

Table 9.2 Comparison of the numbers č and č′ obtained in four di�erent approahes, for

both the exponential and the linear parametrization. The olumns refer to: (WI) the number

č from the Ward identity, (a) the number č′ from the reonstrution formula in ombination

with a pure Liouville ansatz for the bare ation, f. Setion 9.1, (b) the number č′ from
the reonstrution formula with an ansatz for the bare potential that onsists of a series

of exponentials, f. Setion 9.3, () the number č′ from the reonstrution formula with a

general bare potential, f. Setion 9.4. In (a)�() we used č′ ≡ 3
2 b̌ ≡ −12πξ̌.

in the general ase, and c = 19 −→ č = 19 if the osmologial onstant is set to

zero. The numbers in (9.85) and (9.87) are based on the optimized uto� again

(thus c 6= 25 in (9.85), f. Setion 4.3.5). They an be used as referene values

sine the bare ation SΛ must stritly satisfy the Ward identity, and they should be

reprodued when reonstruting SΛ by whatever method. In partiular, we an test

in priniple the validity of the one-loop approximation (7.13) in ombination with

the ansätze we made for the bare ation in Setions 9.1�9.4.

Evaluating the expetation values on the LHS of (9.82) is a formidable task in

general, even if we knew the bare ation. For the trunations studied in Setions 9.1�

9.4 the methods we have at hand are in fat not su�ient to ompute č. Therefore,

we resort to the following assumption.

We have mentioned that the entral harge assoiated to the EAA ΓLΛ an be

read o� from the R̂φ-term as well: c = 3
2 b where Γ

L

Λ[φ; ĝ] = − b
16π

∫
d

2x
√
ĝ R̂φ+ · · · .

In this respet let us de�ne the number č′ ≡ 3
2 b̌ if the bare ation is of the form

SΛ[χ; ĝ] = − b̌
16π

∫
d

2x
√
ĝ R̂χ+ · · · , resulting in

1√
ĝ

δSΛ
δχ − 2

ĝµν√
ĝ

δSΛ
δĝµν

= − č′

24π R̂+ · · · .
Upon taking the expetation value of the latter equation, it might happen that the

dots give rise to yet another ontribution to R̂. Hene, aording to de�nition (9.82)

we expet č′ 6= č in general. Now the assumption we make is that the additional

ontribution to R̂ is omparatively small, implying č′ ≈ č. The validity of this

approximation an be heked within di�erent trunations for the bare ation.

In Table 9.2 we list the numbers č′ entailed by the trunation ansätze onsidered

in Setions 9.1, 9.3 and 9.4 (exluding the trunation studied in Setion 9.2 whih was

already ruled out) and ompare it to the exat result č from the WI. It is surprising

that the deviations among the di�erent approahes are rather small within eah

parametrization. Remarkably enough, the numbers č′ resulting from the trunation

based on a pure Liouville ansatz lie losest to their ounterparts č. Although this

appears to be an argument in favor of the Liouville ansatz for the bare ation, it

remains unlear how onlusive it is. It might very well be possible that the other

trunations are more appropriate after all, while only the approximation č′ ≈ č is

less good. The main onlusion we want to draw here is that for all three trunations
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(Ses. 9.1, 9.3 and 9.4) the numbers č′ are �not too inonsistent� with the WI.

Finally, we would like to brie�y omment on the form of the bare potential

favored by the Ward identity. Let us assume that the bare ation is of the form

SΛ[χ; ĝ] =
∫
d

2x
√
ĝ
[
1
2 Ž χ(−�̂)χ− č′

24π R̂χ+ V̌ (χ)
]
. Then we have

1√
ĝ

δSΛ
δχ

− 2
ĝµν√
ĝ

δSΛ
δĝµν

= −Ž �̂χ− č′

24π
R̂+ V̌ ′(χ)− č′

12π
�̂χ− 2V̌ (χ) . (9.88)

By olleting all those terms in the WI for the optimized uto�, eq. (9.80), that do

not ontain any ontribution from the urvature or from the derivatives of the �eld,

we obtain

9

〈
V̌ ′(χ)

〉
− 2

〈
V̌ (χ)

〉
= −

(
Λ2

4π
− 1

V̂

)
+

1

4π

Λ2

1 + 2µ e2φ
+O(D̂µφ) +O(R̂)

=
1

V̂
− µΛ2

2π
e2φ +

µ2Λ2

π
e4φ − 2µ3Λ2

π
e6φ + · · · .

(9.89)

As already mentioned previously, the expetation values

〈
V̌ ′(χ)

〉
− 2

〈
V̌ (χ)

〉
annot

be omputed in general by our methods, so we annot solve (9.89) for V̌ (χ). However,

two important statements an be made here. First, the bare ation annot have the

pure Liouville form. If it were so, V̌ (χ) would be proportional to e2χ, whih would

lead to

〈
V̌ ′(χ)

〉
−2
〈
V̌ (χ)

〉
= 0, in ontradition to (9.89). Seond, the RHS of (9.89)

suggests that the bare potential might involve a series of exponentials, providing yet

another justi�ation of the ansatz hosen in Setion 9.3.

9

The reader should not onfuse the bare potential V̌ with the volume V̂ ≡
∫

d

2x
√
ĝ .
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Summary, onlusions and outlook

In this thesis we elaborated several fundamental aspets of Quantum Einstein Grav-

ity. We started by disussing a number of basi level questions onerning the stru-

ture of the spae of metris. In this ontext we provided a fresh look at the role

played by di�erent metri parametrizations. With regard to the Asymptoti Safety

program it was explained that RG �ows and orresponding �xed points an depend

on the way the metri is parametrized. For two parametrizations the ompatibility

of Asymptoti Safety and bakground independene was demonstrated within a bi-

metri setting. Furthermore, we onstruted a manifestly two-dimensional theory of

asymptotially safe gravity whih was shown to orrespond to a unitary onformal

�eld theory. This result is a major ahievement of this work sine it allows for study-

ing unitarity in ombination with Asymptoti Safety for the �rst time. Finally, we

argued that there is a one-loop relation between the e�etive average ation and the

bare ation, and we proposed a strategy for adjusting bare ouplings onveniently

by means of an appropriate hoie of the funtional measure.

Let us summarize our most important results and lass their extensibility.

(1) Field parametrizations and RG studies. What is the struture of the �eld

spae under onsideration? How should the �eld variables be parametrized? Does it

make any physial di�erene if we hange the parametrization? To what extent do

RG �ows and �xed points depend on parametrizations? These questions were studied

and answered in Chapters 3 and 4. While Chapter 3 onerned the mathematial

foundations, Chapter 4 foused on the physial impliations.

(1a) We ontrasted the spae of metris, F , with the spae of symmetri rank-2

tensor �elds, Γ
(
S2T ∗M

)
. While Γ

(
S2T ∗M

)
is a vetor spae, F is a nonlinear,

open, path-onneted subset of Γ
(
S2T ∗M

)
. Here, the most important advanement

onsisted in the introdution of a novel onnetion on the spae of metris: In loal

oordinates, F at a given spaetime point is isomorphi to GL(d)/O(p, q). The

anonial onnetion on this latter bundle, providing the most natural de�nition of

a horizontal diretion, an be lifted to a spaetime dependent onnetion on F .
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Geodesis with respet to this proposed onnetion are parametrized by a simple

exponential, gµν = ḡµρ
(
eh
)ρ

ν , where hµν is a symmetri tensor �eld. Every gµν

desribed in this way de�nes a proper metri on F with the same signature as

ḡµν . On the other hand, geodesis with respet to the trivial (�at) onnetion are

parametrized linearly by gµν = ḡµν +hµν . If hµν is not further onstrained, then gµν

an �leave� the spae of metris: In this ase, the linear split does not parametrize a

proper metri on F but rather a general symmetri tensor in Γ
(
S2T ∗M

)
.

Hene, the exponential and the linear parametrization desribe di�erent objets.

They annot be onverted into eah other by �eld rede�nitions, and their use may

very well lead to physially inequivalent theories.

(1b) In fat, RG �ows are parametrization dependent. Within the Einstein�Hilbert

trunation we found that the oordinates as well as further properties of the non-

Gaussian �xed point depend on the hoie of parametrization. This study omprises

the �rst nonperturbative RG analysis based on the exponential parametrization.

Numerial results an most onlusively be disussed in d = 2+ε > 2 dimensions

sine the �xed point value of the dimensionless Newton onstant beomes universal

(sheme independent) in the limit of small ε. Leaving the osmologial onstant aside

for a moment, we derived the universal results g∗ = 3
38 ε for the linear parametriza-

tion, and g∗ =
3
50 ε for the exponential parametrization. We unovered a lose relation

between these �xed point values and the ritial entral harge crit = 25 known from

onformal �eld theory and bosoni string theory. For the exponential parametrization

we reprodued crit = 25, whereas the linear split gives rise to crit = 19, indiating

that the exponential parametrization might be more appropriate in the 2D limit.

(1) Within a bimetri setting we demonstrated that Asymptoti Safety an be re-

oniled with the requirement for bakground independene. To this end, we singled

out a spei� RG trajetory, haraterized by (i) an asymptotially safe behavior in

the UV limit and (ii) the property that bakground ouplings are loated at a �xed

point in the IR limit. Then the non-gauge part of the e�etive average ation at

vanishing RG sale beomes independent of the bakground metri. We showed that

suh trajetories exist for both parametrizations onsidered.

(1d) Outlook. Although having presented arguments in favor of the use of the

exponential parametrization in and near d = 2 dimensions, partiularly in view of

omparisons with 2D onformal �eld theory, the linear parametrization might be

suited equally well for the appliation to other ases. Thus, we do not promote any

general preferene. Our message is merely that the hoie of parametrization does

indeed matter. As long as it is unlear what the fundamental variables of quantum

gravity are, one should be open towards either kind of parametrization.

By now it is an ative researh area to �nd modi�ed parametrizations that are

spei�ally designed for partiular appliations, their motivation ranging from a re-

dution of tehnial omplexity, to a simpli�ation of Ward identities, to a sim-

pler treatment of gauge degrees of freedom. For instane, onstruting an expliit
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parametrization on the basis of the Vilkovisky�DeWitt formalism in ombination

with RG methods might turn out an extremely useful tool for studying quantum

gravity in a gauge independent way.

Furthermore, it would be interesting to work out in a future projet whether dif-

ferent parametrizations atually refer to di�erent universality lasses. In the present

ontext this would mean that there is a seond pure gravity �xed point suitable for

the Asymptoti Safety program, but with di�erent properties suh as ritial expo-

nents. Investigating this possibility would require onsidering enlarged trunation

spaes as ompared with the ones overed in this thesis.

Finally, advaned studies on bakground independene should take into aount

the full geometri split-Ward identities. We have argued that the (untrunated)

gravitational e�etive average ation depends only seemingly on two metris inde-

pendently sine a hange of the dynamial metri an in priniple be ompensated

for by a variation of the bakground metri and vie versa. This link opens up the

potential possibility to formulate the omplete theory in terms of one single metri

and a rede�ned e�etive average ation whih would then be bakground indepen-

dent by onstrution but whose evolution equation might not have the familiar form

of the FRGE.

(2) The unitary onformal �eld theory behind 2D Asymptoti Safety. In

Chapters 5 and 6 we investigated whether the theory de�ned diretly at the �xed

point belonging to an asymptotially safe RG trajetory in d = 2 dimensions repre-

sents a onformal �eld theory, and if so, whether it admits unitary representations of

the orresponding Virasoro algebra. Chapter 5 foused on establishing the form of

the ation funtional at the �xed point, whereas Chapter 6 addressed its onformal

properties and unitarity.

(2a) We argued that, within the Einstein�Hilbert trunation in d = 2 + ε > 2

dimensions, the deisive part of both the e�etive average ation and the bare ation

is of the form

1
ε

∫
d

2+ε√g R. In the limit ε→ 0 we observed a kind of ompensation

between the integral and the prefator: While the integral tends to a trivial, metri

independent term, the prefator 1/ε tends to in�nity. We demonstrated that the

essential part of the ommon limit atually remains �nite. Our key result is that the

loal Einstein�Hilbert ation in d > 2 dimensions approahes Polyakov's nonloal

indued gravity ation in the 2D limit.

(2b) With the analysis desribed in (2a) we paved the way for a detailed study of

the 2D �xed point theory. The most important ontribution to the orresponding

e�etive average ation funtional was shown to be given by

c
96π

∫
d

2x
√
g R�−1R,

with c = 25 − N (c = 19 − N) for the exponential (linear) parametrization. Here,

N denotes the number of additionally inluded salar or fermioni matter �elds.

From onformal �eld theory onsiderations we know that suh an indued gravity

ation an be interpreted as the e�etive ation of a onformally invariant theory

with entral harge c.
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(2) Provided that the number of matter �elds is not too large, N ≤ 24, this

onformal �eld theory at the �xed point is indeed unitary as the assoiated Virasoro

algebra with c ≥ 1 possesses representations with a positive state spae. This result

onstitutes the �rst proof of unitarity in an asymptotially safe theory of quantum

gravity.

Finally, we showed that unitarity is losely onneted to the onformal fator

instability. The theory an be unitary only if the kineti term of the onformal

fator has the �wrong� sign. We argued, however, that this observation is not only

physially aeptable but even expeted sine that sign is ruial for the universal

attrativity of gravity.

(2d) Outlook. In the introdution (Chapter 1) we raised the question if there is

a theory of the gravitational �eld whih is asymptotially safe and bakground in-

dependent and unitary at the same time. For the bimetri trunation onsidered in

Chapter 4, Asymptoti Safety was shown to be reonilable with bakground inde-

pendene, and our 2D �xed point theory example demonstrated the ompatibility of

Asymptoti Safety and unitary. It remains an open problem, however, whether all

three properties an be ombined in a single theory. We onjeture that stiking with

the 2D setting is the most promising way to deal with this problem. In any ase,

suh an investigation would all for a bimetri treatment and the inlusion of Ward

identities, though. As yet, we do not know if a fully bimetri �xed point theory an

be interpreted as a onformal �eld theory.

The next step would onsist in generalizing the arguments to d = 4 dimensions.

Many open questions ould be studied in this ontext, about the possibility to un-

mask a 4D onformal �eld theory at a nontrivial RG �xed point or about the form

of the orresponding ation, for example. Anyhow, one should bear in mind that a

theory may very well be unitary without featuring the onformal symmetry. Thus,

proving unitarity might require employing additional tehniques after all.

(3) Reonstruting the funtional integral. In the FRG approah to asymp-

totially safe gravity, alulations are usually based upon the e�etive average ation

rather than a bare ation. Chapters 7, 8 and 9 were devoted to the question how the

orresponding funtional integral, omprising the funtional measure and the bare

ation, an be reonstruted from the e�etive average ation.

(3a) We started in Chapter 7 by speifying the measure and deriving a general

one-loop relation between the bare ation and the e�etive average ation. It was

demonstrated that, after having expanded the relation in terms of basis funtionals,

the one-loop approximation atually beomes an exat equation in the large uto�

limit for ertain expansion terms.

As an example, we onsidered the Einstein�Hilbert trunation of the e�etive

average ation and reonstruted the assoiated bare ation by making an Einstein�

Hilbert ansatz as well. We proved the existene of a nontrivial �xed point in the

bare setor, irrespetive of the dimension and the underlying funtional measure.
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Over and above, we revealed the intriguing opportunity to adjust bare ouplings

onveniently by means of a suitable hoie of the measure. For instane, the bare

osmologial onstant at the �xed point an be made vanish in any dimension, and

in 2 + ε dimensions one an ahieve that the �xed point values of the e�etive and

the bare Newton onstant agree.

(3b) In Chapter 8 we applied these result to the 2D onformal �xed point theory

disussed in points (2b) and (2) and reonstruted the orresponding funtional

integral. The indued gravity ation part of the partition funtion was shown to

be independent of the number of inluded matter �elds. This has the surprising

onsequene that the total entral harge of the gravity+matter system vanishes.

Besides, it leads to a deoupling of the onformal fator from observables under the

funtional integral and a quenhing of the KPZ relations. Finally, we ompared and

ontrasted 2D asymptotially safe quantum gravity with nonritial string theory

and the ausal dynamial triangulation approah.

(3) Chapter 9 was dediated to the reonstrution of the bare ation in Liouville

theory. We found that, if the e�etive average ation is of the Liouville type, the

most auspiious ansatz made for the bare ation inludes a series of exponentials of

the form e2nφ . Our results were supported by spei�ally derived Ward identities.

(3d) Outlook. In partiular ases the approximative harater of the one-loop

reonstrution relation may prevent aess to the orret form of the bare ation

or set us on the wrong trak when trying to �nd suitable trunation ansätze. This

may happen if higher loop orders beome too signi�ant. In this regard, it would

be interesting to assess the range of validity of the reonstrution formula in more

detail. Furthermore, we do not exlude the possibility that the measure and the

regularization presription an be modi�ed in suh a way that one an derive an

exat relation. As disussed in Chapter 7, this an be done for salar �elds under

ertain onditions, whereas the understanding of the general ase is still vague, in

partiular for the gravitational �eld.

Nevertheless, in future works the bare ations reonstruted by means of the

one-loop relation an be used to ompare the FRG results to other approahes and

to gain further insight into the underlying mirosopi systems. In Liouville theory,

for instane, this may guide lattie simulations into the right way to guessing a

quali�ed disretized bare theory and taking the ontinuum limit in a suitable manner.

Moreover, for theories involving 2D asymptotially safe gravity oupled to matter

we laid the foundations for further studies onerning the quenhing of the KPZ

relations and its possible impliations for related physial models.





A
Variations of geometri quantities

In this appendix we list variation formulae for all geometri quantities relevant to

this work, i.e. for the metri determinant and the various urvature tensors. Here

we onsider general variations of the metri, gµν 7→ gµν + δgµν . (The speial ase

of Weyl variations implies a ouple of simpli�ations, see Appendix H.) Throughout

this thesis we employ the following de�nitions:

Rσ
ρµν = ∂µΓ

σ
νρ − ∂νΓ

σ
µρ + Γσ

µτΓ
τ
νρ − Γσ

ντΓ
τ
µρ , (A.1)

Rµν = Rσ
µσν , (A.2)

R = gµνRµν . (A.3)

The Riemann tensor satis�es the identities

[Dµ,Dν ]V
σ = Rσ

ρµνV
ρ

for vetors, (A.4)

[Dµ,Dν ]Aρ = −Rσ
ρµνAσ for 1-forms, (A.5)

[Dµ,Dν ]Hαβ = −Rτ
αµνHτβ −Rτ

βµνHατ for (0, 2)-tensors, (A.6)

whih an be used to derive its variation in a straightforward way. Here, we merely

present the result, though. We have:

δgµν = − gµαgνβδgαβ , (A.7)

δg = g gµνδgµν , (A.8)

δ
√
g = 1

2

√
g gµνδgµν , (A.9)

δ2
√
g = 1

2

√
g
(

1
2 g

µνgαβ δgµνδgαβ − gµαgνβδgαβδgµν
)
, (A.10)

δΓσ
µν = 1

2 g
σβ (Dµδgνβ +Dνδgµβ −Dβδgµν) , (A.11)

δRλ
ρµν = 1

2

(
−Rσ

ρµνg
λαδgασ +Rλ

σµνg
σαδgαρ + gλαDµDρδgαν

− gλαDνDρδgαµ +DνD
λδgµρ −DµD

λδgνρ
)
, (A.12)
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δRµν = 1
2

(
− gσβRα

µσνδgαβ +Rα
ν δgµα +DσDµδgνσ

− gσαDνDµδgσα +DνD
σδgσµ −DσD

σδgνµ
)
, (A.13)

δR = −Rµνδgµν +Dµ
(
Dνδgνµ − gναDµδgνα

)
, (A.14)

δ2R = gσαRµνδgµαδgσν −Rµνρσδgνρδgµσ + 2gσαδgµνD
µDνδgσα

+ 2gµαgνβδgαβDσD
σδgµν − 3gµαδgανD

νDσδgσµ

− gναδgµαD
σDµδgσν − 2gµα(Dνδgαν)(D

σδgσµ)

− gνα(Dσδgµα)(D
µδgσν) + 2gσα(Dµδgµν)(D

νδgσα)

+ 3
2 g

µαgνβ(Dσδgµν)(D
σδgαβ)− 1

2 g
µνgαβ(Dσδgµν)(D

σδgαβ) . (A.15)

Note that indies are lowered and raised by gµν and gµν , respetively, and g denotes

the determinant of the metri. The above variations are used in Appendix G in order

to derive the Hessians belonging to two di�erent trunations of the e�etive average

ation, enountered in the RG analysis of Chapter 4.



B
Matrix representation of operators

in urved spaetime

In this appendix we brie�y summarize some important onventions for the represen-

tation of operators and funtional derivatives in urved spaetime.

(1) Orthogonality and ompleteness in urved spaetime. In urved spae,

1√
ḡ
δ(x − y) replaes the δ-funtion of �at spae. Orthogonality and ompleteness

relations thus involve the bakground metri ḡµν , too:

〈x|y〉 = 1√
ḡ(y)

δ(x − y) , (B.1)

1 =

∫
d

dx
√
ḡ(x) |x〉〈x| . (B.2)

(2) Matrix representation of operators. Let O be a loal operator. Then its

matrix representation Oxy in position spae (di�erential operator representation)

reads

Oxy ≡ 〈x|O|y〉 ≡ O 1√
ḡ(y)

δ(x− y) ≡ 1√
ḡ(y)

O δ(x− y). (B.3)

In the middle and the RHS we assumed that O ≡ Odi�-op

(x) is a di�erential operator

ating on x so that it ommutes with

√
ḡ(y). In this setting the identity operator is

given by

Ixy ≡ 1xy ≡ 〈x|1|y〉 = 〈x|y〉 = 1√
ḡ(y)

δ(x− y) . (B.4)

We abbreviate

∫
y ≡

∫
d

dy
√
ḡ(y) and ψx = ψ(x) in the following. Using ψ(x) =

〈x|ψ〉, equation (B.3) is onsistent with

∫
y Oxyψy =

∫
y〈x|O|y〉〈y|ψ〉 = 〈x|O|ψ〉 =

(Oψ)x = Oψ(x). As an example for equation (B.3), let us onsider the operator

O = �̄ ating on a �eld inside an integral. In this ase we have

∫

y
�̄xyφy =

∫
d

dy
√
ḡ(y)

1√
ḡ(y)

�̄ δ(x− y)φ(y) = �̄φ(x) . (B.5)
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(3) Relation to funtional derivatives of ation funtionals. We de�ne

Γ(2) ≡ Γ(2)(x, y) ≡ (Γ(2))xy ≡ 1√
ḡ(x)ḡ(y)

δ2Γ

δφ(x)δφ(y)
. (B.6)

Considering the EAA Γk ≡ Γk[φ] =
1
2

∫
d

dx
√
ḡ(x)φ(x)(−�̄)φ(x) for instane, we

have

Γ
(2)
k (x, y) = −�̄xy = − 1√

ḡ(y)
�̄ δ(x − y) , (B.7)

and aording to the above onvention we write Γ
(2)
k = −�̄.

(4) Funtional traes. We de�ne the funtional trae by

Tr(O) ≡
∫

d

dx
√
ḡ(x) 〈x|O|x〉 ≡

∫

x
Oxx . (B.8)

Note that if there is a nontrivial internal index spae, eq. (B.8) must be replaed by

Tr(O) ≡
∫
x trOxx, where `tr' denotes the trae over internal indies.

(5) Notation for inverse operators. Using the relations φ(x) = 1√
ḡ(x)

δWk
δJ(x) and

J(x) = 1√
ḡ(x)

δΓ̃k
δφ(x) , with Γ̃k = Γk + 1

2

∫
d

dx
√
ḡ φRk φ, and thus Γ̃(2) = Γ(2) + Rk

(f. Setion 2.1), yields the relation

∫

y

(
W

(2)
k

)
xy

(
Γ
(2)
k +Rk

)
yz

=

∫

y

(
W

(2)
k

)
xy

(
Γ̃
(2)
k

)
yz

=

∫
d

dy
√
ḡ(y)

1√
ḡ(x)ḡ(y)

δ2Wk

δJ(x)δJ(y)

1√
ḡ(y)ḡ(z)

δ2Γ̃k

δφ(y)δφ(z)

=

∫
d

dy
√
ḡ(y)

1√
ḡ(y)

δφ(x)

δJ(y)

1√
ḡ(z)

δJ(y)

δφ(z)
=

1√
ḡ(z)

δφ(x)

δφ(z)

=
1√
ḡ(z)

δ(x− z) . (B.9)

Sine

1√
ḡ
δ(x− y) is the δ-funtion of urved spae (i.e. the identity), we an write

(
Γ
(2)
k +Rk

)−1
(x, y) = W

(2)
k (x, y) , (B.10)

where

(
Γ
(2)
k +Rk

)−1
(x, y) ≡

〈
x
∣∣(Γ(2)

k +Rk

)−1∣∣y
〉
(whih is possibly nonloal).

With 〈χ(x)〉 = φ(x), the onnetion between eq. (B.10) and the expetation value

〈χ(x)χ(y)〉 is given by

〈χ(x)χ(y)〉 − φ(x)φ(y) =W
(2)
k (x, y) ≡ 1√

ḡ(x)ḡ(y)

δ2Wk

δJ(x)δJ(y)
, (B.11)

or, equivalently

〈χ(x)χ(y)〉 − φ(x)φ(y) =
(
Γ
(2)
k +Rk

)−1
(x, y) . (B.12)



C
Heat kernel expansion

In this appendix we introdue the heat kernel and present an expansion formula for

its trae. For derivations and further details we refer the reader to the pertinent

literature, for instane [12, 50, 247�253℄.

Let M be a manifold of dimension d and H a seond order partial di�erential

operator onM of the Laplae type, that is, ovariant derivatives in H are ontrated

with the metri, and the internal index struture of the seond derivative term is

trivial. Then H an be written in the form

H = 1�+E , (C.1)

where the identity in 1� ≡ 1gµνDµDν orresponds to the internal index spae, and

E is an endomorphism, i.e. a (generally matrix-valued) funtion on M ating on

internal indies.

We de�ne the heat kernel K ≡ K(s;x, y) as a solution to the heat equation

∂K

∂s
= HK , with initial ondition K(s = 0;x, y) = 1√

g δ(x− y). (C.2)

The formal solution to (C.2) reads

K(s;x, y) = esH
[

1√
g δ(x− y)

]
≡
〈
x
∣∣esH

∣∣y
〉
, (C.3)

or short, K = esH . It possesses a so-alled early time expansion, a power series in

terms of s around s = 0. While this expansion is nonloal (as it involves geodesi

distanes and their derivatives), there exists a loal early time expansion one the

oinidene limit y → x is taken:

K(s;x, x) =

(
1

4πs

)d/2 ∞∑

n=0

sn tr an(x). (C.4)
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The �rst three of the so-alled Seeley�DeWitt oe�ients in eq. (C.4) are given by

a0(x) = 1 , (C.5)

a1(x) = P , (C.6)

a2(x) =
1

180 (RµνρσR
µνρσ −RµνR

µν +�R)1+ 1
2P

2 + 1
12RµνRµν + 1

6�P , (C.7)

where P ≡ E + 1
6R1, and the ommutator urvature Rµν ≡ [Dµ,Dν ] is assoiated

with the full (spaetime plus gauge et.) onnetion. Note that �tr� in eq. (C.4)

denotes the trae over internal indies only.

As we will see in a moment, the trae of the heat kernel is of partiular importane

sine it an be used to ompute very general operator traes. Let f be a square

integrable funtion on M . Then from (C.4) follows that

Tr
[
f esH

]
=

(
1

4πs

)d/2 ∞∑

n=0

sn
∫

d

dx
√
g tr an(x)f(x). (C.8)

This result an be employed to alulate traes of funtions of H, or more gen-

eral, to alulate Tr
[
f W (−H)

]
, where W is a funtion that dereases su�iently

fast regarding onvergene of the trae. For this purpose, we write W (−H) as a

Laplae transform, W (−H) =
∫∞
0 ds esH W̃ (s), insert the early time expansion for

Tr
[
f esH

]
, and perform the s-integration for eah term in the series separately. This

yields

Tr
[
f W (−H)

]
=

(
1

4π

)d/2 ∞∑

n=0

Qd/2−n[W ]

∫
d

dx
√
g tr an(x)f(x). (C.9)

Here we introdued the �Q-funtionals� [36℄ (generalized Mellin transforms) Qm[W ],

de�ned by

Qm[W ] ≡





1

Γ(m)

∫ ∞

0
dz zm−1W (z) for m > 0,

(−1)−mW (−m)(0) for m ≤ 0.

(C.10)

If there is an additional unontrated ovariant derivative, the �rst terms of the heat

kernel expansion are given by [50℄

Tr
[
f DµW (−H)

]
=
(

1
4π

)d/2
Qd/2−1[W ]

∫ √
g f tr

[
1
12DµR+ 1

2DµE− 1
2D

νRνµ

]
+ · · ·

(C.11)

For the speial ase of a vanishing endomorphism in (C.1) we obtain

Tr
[
f W (−�)

]
=
(

1
4π

)d/2
tr(1)

{
Qd/2[W ]

∫ √
g f + 1

6 Qd/2−1[W ]

∫ √
g R f

}
,

(C.12)

up to terms of higher order in the urvature.



D
Cuto� shape funtions and

threshold funtions

In this appendix we list three possible uto� shape funtions whih are used through-

out this thesis: the optimized uto� [168℄, an exponential uto� [169, 181℄, and the

sharp uto� [167℄. We de�ne threshold funtions as in Ref. [36℄ and evaluate them

for the uto�s onsidered. (See Ref. [230℄ for a more detailed disussion.)

The uto� operator Rk an be written in terms of a dimensionless funtion R(0)
:

Rk(−�) = Zk k
2R(0)

(
−�/k2

)
, (D.1)

where the (possibly matrix-valued) funtion Zk is usually hosen to agree with the

wave funtion renormalization, and R(0)
is referred to as the uto� shape funtion.

Sine Rk is meant to be an IR uto�, we impose the onditions

(i) R(0)(0) = 1 , (D.2)

(ii) lim
z→∞

R(0)(z) = 0 , (D.3)

where the latter is often ombined with the requirement that the derease be su�-

iently fast in order that mainly IR modes are suppressed. Spei�ally, we onsider:

• The optimized uto�

R(0)(z) ≡ (1− z)θ(1− z). (D.4)

• The �s-lass exponential uto��

R(0)(z; s) ≡ sz

esz − 1
, s > 0. (D.5)
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• The sharp uto�

Rk(−�) ≡ R̃ θ
(
1 +�/k2

)
, (D.6)

where R̃ has mass dimension 2, and the limit R̃→ ∞ is to be taken in the end

(i.e. after evaluating traes / performing momentum integrals that involve the

uto�). Note that the sharp uto� is not a standard regulator sine it annot

be written in the form (D.1) and it is not �nite at vanishing argument.

D.1 Threshold funtions and their properties

Throughout this thesis we use the threshold funtions Φp
n(w) and Φ̃p

n(w) de�ned by

Φp
n(w) ≡

1

Γ(n)

∫ ∞

0
dz zn−1R

(0)(z)− zR(0)′(z)[
z +R(0)(z) + w

]p , (D.7)

Φ̃p
n(w) ≡

1

Γ(n)

∫ ∞

0
dz zn−1 R(0)(z)[

z +R(0)(z) + w
]p , (D.8)

for n > 0, as well as Φp
0(w) ≡ limn→0Φ

p
n(w) and Φ̃p

0(w) ≡ limn→0 Φ̃
p
n(w). (For the

sharp uto� these de�nitions have to be expressed in terms of Rk, f. [167℄.) Based

on the onditions (D.2) and (D.3) it is possible to dedue the following general,

universal (i.e. uto� shape independent) properties (see e.g. Ref. [230℄ for proofs):

• lim
w→∞

Φp
n(w) = 0, lim

w→∞
Φ̃p
n(w) = 0, (D.9)

• d

dwΦ
p
n(w) = −pΦp+1

n (w), d

dw Φ̃
p
n(w) = −p Φ̃p+1

n (w), (D.10)

• Φp
0(w) = (1 + w)−p , Φ̃p

0(w) = (1 + w)−p , (D.11)

• Φn+1
n (0) = 1

Γ(n+1) . (D.12)

For the optimized uto� all threshold funtions an be evaluated analytially:

Φp
n(w)

opt =
1

Γ(n+ 1)
(1 +w)−p , (D.13)

Φ̃p
n(w)

opt =
1

Γ(n+ 2)
(1 +w)−p . (D.14)

When the exponential uto� is employed, the threshold funtions an be ex-

pressed in terms of polylogarithms. We refrain from listing the lengthy results here,

but refer to Ref. [169℄ instead.

For the sharp uto� the threshold funtions have to be rede�ned in terms of Rk

before they an be omputed analytially [167℄. This results in

Φp
n(w)

sh =
1

Γ(n)

1

p− 1

1

(1 + w)p−1
, Φ̃p

n(w)
sh = 0, for p > 1, (D.15)

Φ1
n(w)

sh = − 1

Γ(n)
ln(1 + w) + ϕn , Φ̃1

n(w)
sh =

1

Γ(n+ 1)
, for p = 1, (D.16)

where the ϕn's are onstants of integration that an be hosen onveniently.



E
The exponential parametrization

and the spae of metris

In this appendix we want to establish the onnetion between the exponential metri

parametrization and the spae of metris. As we will see, this requires a distintion

between Eulidean and Lorentzian metris. Therefore, we speify metri signatures

expliitly in the following. Reall that the spae of metris is de�ned by

F(p,q) ≡
{
g ∈ Γ

(
S2T ∗M

) ∣∣∣ g has signature (p, q)
}
, (E.1)

where Γ
(
S2T ∗M

)
is the spae of symmetri rank-2 tensor �elds. In what follows,

we ompare F(p,q) to the spae that is generated by the exponential parametriza-

tion, heneforth denoted by F̃(p,q)(ḡ), i.e. the set of all those tensors having the

representation ḡ eḡ
−1h

for a given bakground metri ḡ :

F̃(p,q)(ḡ) ≡
{
g = ḡ eḡ

−1h
∣∣∣ h ∈ Γ

(
S2T ∗M

)}
with ḡ ∈ F(p,q) . (E.2)

Here and in the following, we use the (matrix form of the) loal oordinate repre-

sentation of metris, and we do not write the spaetime dependene expliitly. This

is admissible due to the pointwise harater of the exponential parametrization, f.

Chapter 3, in partiular Setion 3.2.

Ultimately, we would like to �nd out whether F̃(p,q)(ḡ) ⊂ F(p,q) and F(p,q) ⊂
F̃(p,q)(ḡ). That is, we investigate (a) if the exponential parametrization gives rise to

a metri with signature (p, q) again, and (b) if every signature-(p, q) metri an be

parametrized by ḡ eḡ
−1h

. We will show that F̃(p,q)(ḡ) = F(p,q) holds only for posi-

tive de�nite (Eulidean) and negative de�nite metris. For inde�nite (Lorentzian)

metris, on the other hand, we will see that F̃(p,q)(ḡ) ⊂ F(p,q), but F(p,q) 6⊂ F̃(p,q)(ḡ).

Let us start with a remark. Proving that ḡ eḡ
−1h

represents a proper metri re-

quires proving symmetry and positive de�niteness. We emphasize that these state-

ments are not obvious: The produt of two symmetri positive de�nite matries is
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in general neither positive de�nite nor symmetri. In addition, a hypothetial proof

of F(p,q) ⊂ F̃(p,q)(ḡ) would require determining h suh that g = ḡ eḡ
−1h

for g and

ḡ given, but in general only little is known about existene and uniqueness of real

logarithms of produts of matries, and ḡ−1h = ln(ḡ−1g) might not exist.

The following four lemmas turn out to be useful, though. They �nally lead to

the main results of this appendix, Theorems E.5�E.7.

Lemma E.1. Let C be a real symmetri positive de�nite matrix. Then there exists

a unique real symmetri solution H to the equation C = eH .

Proof.

Existene: With C ∈ Symn×n , there exists an orthogonal matrix S ∈ O(n) and

a diagonal matrix Λ = diag(λ1, . . . , λn), with {λi} the eigenvalues of C, suh that

C = STΛS. Positive de�niteness of C implies that all λi are positive. Now, let us

set H ≡ ST
diag(lnλ1, . . . , lnλn)S. Then H is real and symmetri. Exponentiating

H yields

eH = ST ediag(lnλ1,...,lnλn)S = ST
diag(λ1, ..., λn)S = C,

proving the existene of a real symmetri solution.

Uniqueness: Assume that H is a real symmetri matrix satisfying C = eH . Assume

that H ′
is another real symmetri matrix with the same exponential, C = eH

′

.

Due to their symmetry, there are matries O ∈ O(n) and O′ ∈ O(n) together with

the diagonal matries D = diag(d1, . . . , dn) and D′ = diag(d′1, . . . , d
′
n), where di

are the eigenvalues of H and d′i are the eigenvalues of H ′
, suh that H = OTDO

and H ′ = O′TD′O′
. Then we have C = eH = eO

TDO = OT eDO, and, similarly,

C = O′T eD
′

O′
. Equating these expression leads to eD

(
OO′T ) =

(
OO′T )eD′

, or,

rewritten,

eDU = UeD
′

, (E.3)

with U = OO′T ∈ O(n). The matrix entries on the LHS of (E.3) read

(
eDU

)
ij
=

n∑

k=1

ediδikukj = ediuij , (E.4)

and, analogously for the RHS,

(
UeD

′
)
ij

= ed
′

juij . For any pair (i, j) this gives the

relation (edi − ed
′

j )uij = 0. Sine all di are real, we onlude that (di − d′j)uij = 0.

Bak to matrix form again, this yields DU − UD′ = 0. Reinstating U = OO′T
and

rearranging �nally results in

H = OTDO = O′TD′O′ = H ′ , (E.5)

whih proves the uniqueness of H. �

Lemma E.2. The n roots of a polynomial p(z) =
∑n

k=0 akz
k
of degree n depend

ontinuously on the oe�ients {ak}.
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For a proof, see for instane Refs. [254, 255℄.

Lemma E.3. The eigenvalues of a matrix depend ontinuously on the matrix entries.

Proof.

Follows immediately from Lemma E.2 and the fat that the oe�ients of the har-

ateristi polynomial of a matrix depend ontinuously on the matrix entries. �

Lemma E.4. Let C be a real square matrix. Then there exists a real solution X

to the equation C = eX if and only if C is nonsingular and eah elementary divisor

(Jordan blok) of C belonging to a negative eigenvalue ours an even number of

times.

For a proof, see Ref. [150℄.

Now, let us ome bak to the spae of metris and the exponential parametriza-

tion. We will exploit the above lemmas to reveal a number of important properties.

Let us begin with a theorem whih is valid for all signatures.

Theorem E.5. Let h ∈ Γ
(
S2T ∗M

)
and ḡ ∈ F(p,q). Then g de�ned by g ≡ ḡ eḡ

−1h

belongs to F(p,q), too. Equivalently, if ḡ ∈ F(p,q), then

F̃(p,q)(ḡ) ⊂ F(p,q) ∀ p, q . (E.6)

This means that the exponential parametrization gives rise to a proper metri.

Proof.

We have to show that g = ḡ eḡ
−1h

is symmetri and has signature (p, q).

Symmetry:

gT =
(
eḡ

−1h
)T
ḡT = eh

T (ḡ−1)T ḡ = eḡ ḡ
−1h ḡ−1

ḡ = ḡ eḡ
−1h ḡ−1ḡ = ḡ eḡ

−1h = g . (E.7)

Signature: Let us de�ne the s-dependent matrix

g(s) = ḡ es ḡ
−1h , (E.8)

with s ∈ R. We notie that g(s) depends ontinuously on s. Thus, g(s) interpolates

ontinuously between ḡ and g:

g(0) = ḡ , g(1) = g . (E.9)

By analogy with eq. (E.7) we onlude that g(s) is symmetri, too. Hene, all its

eigenvalues are real for all s. Obviously, g(s) has the same eigenvalues as ḡ at s = 0,

while it has the same eigenvalues as g at s = 1. Now, let us onsider the determinant

of g(s). Using the matrix relation det exp(M) = expTr(M) we �nd

det
(
g(s)

)
= det

(
ḡ es ḡ

−1h
)
= det(ḡ) det

(
es ḡ

−1h
)
= det(ḡ) esTr(ḡ

−1h). (E.10)
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Sine sTr(ḡ−1h) ∈ R, we have esTr(ḡ
−1h) > 0. Therefore, the determinants of g(s)

and ḡ have the same sign, for all s. In partiular, det(g(s)) 6= 0 for all s. That is,

aording to det(g(s)) = λs1λ
s
2 · · ·λsn (where λsi denotes the i-th eigenvalues of g(s)),

no eigenvalue λsi an get zero, regardless of whih value of s is taken:

λsi 6= 0 ∀ s . (E.11)

From Lemma E.3 we know that the λsi depend ontinuously on g(s), so they depend

ontinuously on s. As a onsequene, the λsi annot hange their signs when varying

s from 0 to 1. That means that the total number of positive (negative) eigenvalues

λsi at s = 0 agrees with the total number of positive (negative) eigenvalues λsi at

s = 1. With (E.9) we onlude that g and ḡ have the same number of positive (and

negative) eigenvalues, so they have the same signature. �

For the �nal part of this appendix a distintion between Eulidean and Lorentzian

signatures beomes neessary. More preisely, positive de�nite and negative de�nite

metris fall into one lass, (p, q) = (d, 0) and (p, q) = (0, d), respetively, while

inde�nite metris with signature (p, q), p ≥ 1, q ≥ 1, fall into the seond lass. We

would like to answer the question whether a symmetri tensor h ∈ Γ
(
S2T ∗M

)
exists

for all g ∈ F(p,q) and all ḡ ∈ F(p,q) suh that g = ḡ eḡ
−1h

.

Theorem E.6. Let g ∈ F(p,q) and ḡ ∈ F(p,q) with (p, q) = (d, 0) or (p, q) = (0, d),

orresponding to positive or negative de�nite metris, respetively. Then there exists

a unique h ∈ Γ
(
S2T ∗M

)
satisfying g = ḡ eḡ

−1h
. Therefore,

F(d,0) = F̃(d,0)(ḡ) and F(0,d) = F̃(0,d)(ḡ) , (E.12)

where the orrespondene is one-to-one. This means that every positive de�nite (Eu-

lidean) metri and every negative de�nite metri an be represented uniquely by

the exponential parametrization, and that the exponential parametrization uniquely

de�nes a proper metri.

Proof.

We know already from Theorem E.5 that F̃(p,q)(ḡ) ⊂ F(p,q). Moreover, for eah

h ∈ Γ
(
S2T ∗M

)
and ḡ ∈ F(p,q) there is one and only one g ∈ F(p,q) suh that the

de�ning equation given by the exponential parametrization is satis�ed (sine it is

already solved for g). Hene, it remains to be shown that for eah g ∈ F(p,q) and

ḡ ∈ F(p,q) there exists a unique h ∈ Γ
(
S2T ∗M

)
satisfying g = ḡ eḡ

−1h
.

The ase (p, q) = (d,0).

Existene: Sine ḡ is symmetri and positive de�nite, we an de�ne ḡ1/2 to be the

(unique) prinipal square root. Note that ḡ1/2 is real and symmetri again. The key

idea is to rewrite the exponential parametrization as follows:

g = ḡ eḡ
−1h = ḡ eḡ

−1/2ḡ−1/2h ḡ−1/2ḡ1/2 = ḡ1/2eḡ
−1/2h ḡ−1/2

ḡ1/2, (E.13)
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leading to

ḡ−1/2g ḡ−1/2 = eḡ
−1/2h ḡ−1/2

. (E.14)

We observe that the LHS of equation (E.14) is real and symmetri. Furthermore, it

is positive de�nite, as follows from

zT
(
ḡ−1/2g ḡ−1/2

)
z = (ḡ−1/2z)T g (ḡ−1/2z) = yT gy > 0 , (E.15)

for y = ḡ−1/2z and z ∈ R
d
arbitrary. Thus, Lemma E.1 is appliable to eq. (E.14):

There exists a unique real symmetri matrix H satisfying ḡ−1/2g ḡ−1/2 = eH . Setting

h ≡ ḡ1/2H ḡ1/2 and noting that h is real and symmetri proves the existene.

Uniqueness: Sine there is more than one square root of ḡ in general, it remains to be

shown that the h onstruted above does not depend on the hoie of the root. Let

us assume that there exists another symmetri solution h′ orresponding to another

square root (ḡ1/2)′, i.e. g = ḡ eḡ
−1h′

. In the manner of equation (E.14) we rewrite

again

ḡ−1/2g ḡ−1/2 = eḡ
−1/2h′ ḡ−1/2 !

= eḡ
−1/2h ḡ−1/2

, (E.16)

where we use the prinipal root ḡ1/2 on all sides. We already know from Lemma E.1

that the symmetri logarithm of the LHS is unique. Therefore, the exponents on the

RHS have to agree, ḡ−1/2h′ ḡ−1/2 = ḡ−1/2h ḡ−1/2
, and �nally h′ = h, ompleting the

proof of uniqueness.

The ase (p, q) = (0, d).

Let us de�ne g̃ ≡ −g and

˜̄g ≡ −ḡ. Then both g̃ and

˜̄g are positive de�nite. Thus,

we an apply the above results onerning the ase (p, q) = (d, 0): There exists a

unique h̃ ∈ Γ
(
S2T ∗M

)
satisfying

g̃ = ˜̄g e
˜̄g−1h̃ . (E.17)

After setting h ≡ −h̃ we onlude that g = ḡ eḡ
−1h

and that this h is unique. �

Theorem E.7. Let g ∈ F(p,q) and ḡ ∈ F(p,q) with p ≥ 1, q ≥ 1, orresponding to

inde�nite (i.e. Lorentzian) metris. Then, in general there exists no h ∈ Γ
(
S2T ∗M

)

suh that g = ḡ eḡ
−1h

is satis�ed. Equivalently,

F(p,q) 6⊂ F̃(p,q) for p ≥ 1, q ≥ 1 . (E.18)

This means that the map

Γ
(
S2T ∗M

)
→ F(p,q), h 7→ g = ḡ eḡ

−1h , (E.19)

is not surjetive for p ≥ 1, q ≥ 1. Moreover, it is also not injetive for p ≥ 1, q ≥ 1.

Proof.

Non-surjetivity of (E.19) immediately implies F(p,q) 6⊂ F̃(p,q). Thus, in order to

prove Theorem E.7 we only have to �nd ounterexamples against surjetivity and
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injetivity. As argued above it is su�ient to speify these examples as matries, i.e.

as the loal representation of rank-2 tensors at a �xed spaetime point.

Surjetivity: We rewrite the exponential parametrization as

ḡ−1g = eḡ
−1h . (E.20)

The idea is to �nd ḡ and g suh that the LHS of (E.20) annot be expressed as an

exponential. For this purpose let us onsider the following matries:

ḡ =




1

−1

1
.

.

.

1

−1
.

.

.

−1







p− 1 times




q − 1 times

(E.21)

g =




−2

1

1
.

.

.

1

−1
.

.

.

−1







p− 1 times




q − 1 times

(E.22)

Then the produt ḡ−1g is given by

ḡ−1g =




−2

−1

1
.

.

.

1







p+ q − 2 times

(E.23)

Sine this matrix is diagonal, it is already in Jordan normal form, so we an read

o� its Jordan bloks. There is one blok belonging to the eigenvalue −2, one blok

belonging to the eigenvalue −1 and one blok belonging to the eigenvalue 1. Thus,

aording to Lemma E.4 there is no real solution to the equation ḡ−1g = eX beause

both of the two negative eigenvalues of ḡ−1g our an odd number of times. As a

onsequene, there is no h ∈ Γ
(
S2T ∗M

)
satisfying ḡ−1g = eḡ

−1h
. This proves the

non-surjetivity of the map (E.19) for p ≥ 1, q ≥ 1.
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Injetivity: Let us onsider the same ḡ as given in eq. (E.21), together with the

following family of symmetri matries parametrized by α ∈ R:

hα =




0 α 0 · · · 0

α 0

0
.

.

.

.

.

.

.

.

.

.

.

.

0 · · · 0







p+ q − 2 times

(E.24)

Then we �nd ḡ−1hα = αJ12, where J12 is amongst the generators of the rotation

group O(d), with 1, 2 denoting the variant oordinates. The matrix exponential of

ḡ−1hα amounts to

eḡ
−1hα =




cosα − sinα

sinα cosα

1
.

.

.

1




(E.25)

This gives rise to an α-dependent metri gα :

gα = ḡ eḡ
−1hα =




cosα − sinα

− sinα − cosα

1
.

.

.

1

−1
.

.

.

−1







p− 1 times




q − 1 times

(E.26)

Obviously, eq. (E.26) de�nes a periodi solution gα ∈ F(p,q). There are in�nitely

many α that lead to the same gα. In partiular, we have gα = ḡ for all α ∈ {2πk | k ∈
Z}. This ompletes the proof of non-injetivity of (E.19) for p ≥ 1, q ≥ 1. �

More illustrative ounterexamples against surjetivity and injetivity on the basis

of eqs. (E.21)�(E.26) an be found in the body of this thesis in Setion 3.4.2.

While all proofs in this appendix made use of purely algebrai arguments, they

are reviewed in a di�erential-geometri language in Setion 3.4, revealing the basi

origin of the orresponding statements.





F
Split-Ward identities for the

geometri e�etive average ation

In this appendix we derive the split-Ward identities for the geometri e�etive average

ation Γk , introdued in Setion 3.6. These identities imply that the dependene of

Γk on its arguments is intertwined: A variation of Γk with respet to the bakground

�eld, say, ϕ̄, an be ompensated for by a variation with respet to the dynamial

�eld, say, ϕ. The subsequent derivation is independent of the underlying �eld spae

onnetion. In this sense it generalizes Referenes [52℄ (�at �eld spae onnetion in

a onformally redued setting) and [140℄ (Vilkovisky�DeWitt onnetion).

(1) The de�ning funtional integral. Our starting point is given by the fun-

tional integro-di�erential equation determining Γk , where we employ a modi�ed ver-

sion aording to point (4) of Setion 3.6 in order to de�ne Γk in a ovariant manner.

Here, �ovariane� means �ovariane with respet to �eld spae F �. Sine we would

like to keep the disussion as general as possible, we allow for an extra ϕ̄-dependene

in Γk . Our arguments are phrased in terms of the �tilde-version� of Γk (f. Setion

3.6), Γ̃k[h; ϕ̄] ≡ Γk

[
ϕ[h; ϕ̄], ϕ̄

]
, but we omit the tilde in the following sine the semi-

olon notation, Γk[h; ϕ̄], is already su�ient to distinguish it from Γk

[
ϕ, ϕ̄

]
. At the

level of Γk

[
ϕ, ϕ̄

]
the extra ϕ̄-dependene is expliitly visible, while for Γk[h; ϕ̄] it is

enoded in the split-Ward identities.

Note that all tangent vetors are elements of Tϕ̄F now. Generalizing point (4)

of Setion 3.6, the soure ouples no longer to the tangent vetor to the geodesi

onneting the dynamial �eld ϕ to the integration variable ϕ̂, but rather to
(
ĥ−h

)
,

where ĥ ≡ ĥ[ϕ̄, ϕ̂] denotes the tangent vetor to the geodesi onneting ϕ̄ to ϕ̂,

and h is the independent argument of Γk whih is interpreted as a tangent vetor to

the geodesi onneting ϕ̄ to ϕ. That is, we an write the soure term (in DeWitt

index notation) as Ssource = Ja
(
ĥa − ha

)
≡ Ja

(
ĥa[ϕ̄, ϕ̂] − ha

)
, where ĥ and h are

elements of Tϕ̄F , and the soure J ∈ T ∗
ϕ̄F an be expressed in terms of δΓk/δh.
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These onsiderations lead to the following funtional integro-di�erential equation

de�ning Γk :

e−Γk[h;ϕ̄] =

∫
dµ
[
ϕ̂, C, C̄

]
exp

{
− S[ϕ̂]− Sgf[ϕ̂, ϕ̄]− Sgh[ϕ̂, ϕ̄, C, C̄ ]

−∆Sk
[
ĥ[ϕ̄, ϕ̂]− h; ϕ̄

]
+
δΓk

δha
(
ĥa[ϕ̄, ϕ̂]− ha

)}
.

(F.1)

Here, dµ
[
ϕ̂, C, C̄

]
≡ Dϕ̂

√
detGij [ϕ̂]DCDC̄

√
det(Ggh)ab is the ovariantly de�ned

and bakground �eld independent measure for the quantum �eld ϕ̂ and the ghosts

C and C̄ (where Gij [ϕ̂] is the usual �eld spae metri, and

√
det(Ggh)ab is merely a

onstant fator sine the ghost �eld spae metri (Ggh)ab is assumed to be �eld inde-

pendent). The uto� ation is given by∆Sk
[
ĥ− h; ϕ̄

]
≡ 1

2

(
ĥa − ha

)
(Rk)ab

(
ĥb − hb

)
.

In this version of the e�etive average ation, the relation between ĥ and h is given

by h = 〈ĥ〉. We would like to point out that this entails ϕ 6= 〈ϕ̂〉 in general; the

dynamial �eld ϕ is rather de�ned through a geodesi, ϕ ≡ ϕ[h; ϕ̄] = ϕ
[〈
ĥ
〉
; ϕ̄
]
.

Equation (F.1) is obtained by onstruting Γk as the Legendre transform of

Wk ≡ lnZk plus a uto� ontribution, as disussed in Setion 2.1.2, and by replaing

the soure aording to Ja = δΓk
δha + (Rk)abh

b
. Note that the Legendre transform

onerns only the �elds J ↔ h. It does not involve the ghosts, though. (Also,

we did not inlude any soure terms for the ghost �elds and ghost uto� terms in

the funtional integral.) We hose this version of Γk here for a better omparison

with the existing works on split-Ward identities [130, 131, 139, 140℄. The alternative

version of Γk, whih inludes a Legendre transform with respet to the ghosts and is

thus a funtional of h, ϕ̄, ξ and ξ̄, with ξ ≡ 〈C〉 and ξ̄ ≡ 〈C̄〉, leads to very similar

split-Ward identities to the ones derived below (the main di�erene being a sum over

all �eld types onsidered and a replaement of traes by supertraes).

(2) Expetation values. In this setting, expetation values an be determined by

using the relation

〈F 〉 = 1

Ak

∫
dµ
[
ϕ̂, C, C̄

]
F e−S−Sgf−Sgh−∆Sk+

δΓk
δha

ĥa
, (F.2)

with

Ak ≡
∫

dµ
[
ϕ̂, C, C̄

]
e−S−Sgf−Sgh−∆Sk+

δΓk
δha

ĥa
. (F.3)

Up to a fator, Ak agrees with the partition funtion Zk . Note that S, S
gf

, Sgh and

∆Sk are the same as in eq. (F.1), whereas the soure terms are di�erent.

(3) Reexpressing the auxiliary term

〈(
ĥa − ha

)
ĥi

;l

〉
. For later use, let us

onsider the expression

δ
δhj

〈
ĥi;l
〉
, whih we would like to relate to

〈(
ĥa − ha

)
ĥi;l
〉
.

Here, we use a semiolon to denote a ovariant derivative with respet to the bak-

ground �eld ϕ̄, for instane ĥi;l ≡ D̄lĥ
i ≡ δ

δϕ̄l ĥ
i +Γi

lj[ϕ̄]ĥ
j
with a general �eld spae
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onnetion Γi
lj [ϕ̄]. Employing eq. (F.2) we obtain

δ

δhj
〈
ĥi;l
〉
=
〈
(Rk)ja

(
ĥa − ha

)
ĥi;l

〉
+

〈
δ2Γk

δhj δha
ĥa ĥi;l

〉

− 1

A2
k

δAk

δhj

∫
dµ
[
ϕ̂, C, C̄

]
ĥi;l e

−S−Sgf−Sgh−∆Sk+
δΓk
δha

ĥa
.

(F.4)

The seond term on the RHS an be written as Γk,ja

〈
ĥa ĥi;l

〉
, with the omma in

Γk,ja denoting derivatives with respet to h, while the third term amounts to

−
〈
ĥi;l
〉 1

Ak

∫
dµ
[
ϕ̂, C, C̄

] (
(Rk)ja

(
ĥa − ha

)
+ Γk,jaĥ

a
)
e−S−Sgf−Sgh−∆Sk+

δΓk
δha

ĥa

= −
〈
ĥi;l
〉
(Rk)ja

〈
ĥa − ha

〉
−
〈
ĥi;l
〉
Γk,ja

〈
ĥa
〉
= −

〈
ĥi;l
〉
Γk,jah

a

= −Γk,ja

〈
ha ĥi;l

〉
, (F.5)

where we have exploited that

〈
ĥa − ha

〉
= 0. Taking all piees together we have

δ

δhj
〈
ĥi;l
〉
= (Rk)ja

〈(
ĥa − ha

)
ĥi;l
〉
+ Γk,ja

〈(
ĥa − ha

)
ĥi;l
〉

=
(
Γ
(2)
k +Rk

)
ja

〈(
ĥa − ha

)
ĥi;l
〉
,

(F.6)

where Γ
(2)
k is the Hessian of Γk with respet to h. This an be rewritten by intro-

duing the propagator

Gk ≡
(
Γ
(2)
k +Rk

)−1
. (F.7)

Here (and only here) we denote the propagator by Gk in order to avoid onfusion

with the �eld spae metri G. (Usually the propagator is labeled by Gk .) We �nally

obtain 〈(
ĥa − ha

)
ĥi;l
〉
= Gaj

k

δ

δhj
〈
ĥi;l
〉
. (F.8)

This auxiliary equation is needed for the following point.

(4) Deriving the split-Ward identities. We proeed by omputing the ovari-

ant derivative D̄j ≡ (·);j of Γk with respet to the bakground �eld, where Γk is

determined by taking the logarithm of eq. (F.1). Sine Γk is a salar, the ovariant

derivative amounts to an ordinary funtional derivative: Γk ;j =
δΓk

δϕ̄j , but the vetor-

valued expressions inside the funtional integral will be a�eted by the �eld spae

onnetion, so there the ovariant derivative does not redue to a usual one. We �nd

−δΓk

δϕ̄j
= −

〈
δSgf

δϕ̄j

〉
−
〈
δSgh

δϕ̄j

〉
− 1

2
(Rk)il;j

〈(
ĥi − hi

)(
ĥl − hl

)〉

− (Rk)il
〈(
ĥi − hi

)
ĥl;j

〉
+

(
δΓk

δha

)

;j

〈
ĥa − ha

〉
+
δΓk

δha
〈
ĥa;j

〉
.

(F.9)

Using

〈
ĥa − ha

〉
= 0 and

〈(
ĥi − hi

)(
ĥl − hl

)〉
=
(
W

(2)
k

)il
= Gil

k (f. point (5) of

Appendix B) as well as eq. (F.8) yields

δΓk

δϕ̄j
+
δΓk

δha
〈
ĥa;j

〉
=

1

2
(Rk)il;jGil

k + (Rk)ilGim
k

δ

δhm
〈
ĥl;j
〉
+

〈
δSgf

δϕ̄j

〉
+

〈
δSgh

δϕ̄j

〉
.

(F.10)
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We observe that the �rst two terms on the RHS of (F.10) an be represented as

operator traes sine the summation �loses�. This leads to our �nal result:

δΓk

δϕ̄j
+
δΓk

δha
〈
D̄j ĥ

a
〉
=

1

2
Tr
[
(D̄jRk)Gk

]
+Tr

[
RkGk

δ
〈
D̄j ĥ

〉

δh

]

+

〈
δSgf

δϕ̄j

〉
+

〈
δSgh

δϕ̄j

〉
.

(F.11)

Here, the matrix representation of the term

δ〈D̄j ĥ〉
δh is given by its omponents

δ〈D̄j ĥl〉
δhm .

(5) Speial ases of �eld spae onnetions.

Metri onnetion: By notiing that the index struture of the uto� operator is

provided by the �eld spae metri alone, (Rk)il ≡ Gil[ϕ̄]Rk[ϕ̄], we see that its

ovariant derivative in (F.11) redues to an ordinary derivative,

(Rk)il;j ≡
(
Gil[ϕ̄]Rk[ϕ̄]

)
;j
= Gil[ϕ̄]

δRk

δϕ̄j
. (F.12)

Flat/trivial onnetion: For a �at �eld spae we have ĥa ≡ ĥa[ϕ̄, ϕ̂] = ϕ̂a − ϕ̄a
and

thus D̄j ĥ
a = −δaj . Then the seond trae term in (F.11) vanishes:

δΓk

δϕ̄j
− δΓk

δhj
=

1

2
Tr

[
δRk

δϕ̄j
Gk

]
+

〈
δSgf

δϕ̄j

〉
+

〈
δSgh

δϕ̄j

〉
. (F.13)

Vilkovisky-DeWitt onnetion: As shown in Referene [140℄, the expliit gauge �xing

and ghost terms in (F.11) vanish if the Vilkovisky-DeWitt onnetion is used.

(6) The split-Ward identities for Γ. Sine the e�etive average ation Γk at the

sale k = 0 agrees with the onventional e�etive ation Γ, it is straightforward to

extrat the split-Ward identities for Γ = Γk=0 from eq. (F.11): Exploiting the fat

that the uto� operator Rk vanishes for k = 0 we obtain

δΓ

δϕ̄j
+

δΓ

δha
〈
D̄j ĥ

a
〉
=

〈
δSgf

δϕ̄j

〉
+

〈
δSgh

δϕ̄j

〉
. (F.14)



G
Transformation laws and

β-funtions for the exponential

parametrization

In this appendix we derive β-funtions both for the single-metri trunation on-

sidered in Setion 4.3 and for the bimetri trunation overed in Setion 4.5. We

begin with a disussion on the transformation behavior of h under di�eomorphisms

assuming that g and ḡ transform as tensor �elds.

G.1 Transformation behavior of h

Let gµν and ḡµν transform as proper tensor �elds under di�eomorphisms, i.e. they

satisfy δgµν = Lξgµν and δḡµν = Lξḡµν . Here Lξ denote the Lie derivative along

the vetor �eld ξ whih generates the underlying di�eomorphism. Using the linear

parametrization, gµν = ḡµν + hµν , implies diretly that hµν transforms as a tensor

�eld, too: δhµν = Lξhµν . For the exponential parametrization, on the other hand,

it requires more e�ort to ome to that onlusion. We will need the following two

lemmas.

Lemma G.1. The variation of the matrix exponential of a square matrix A is given

by

δ
(
eA
)
=

∫ 1

0
etA δA e(1−t)A dt . (G.1)

Proof: We exploit two mathematial identities.

(i) We employ the summation formula

∞∑

n=1

n−1∑

m=0

=

∞∑

m=0

∞∑

n=m+1

, (G.2)
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whih follows from simple reordering arguments as illustrated in Figure G.1.

Figure G.1 There are two possibilities to sum over all

disrete points in the shaded area (where the origin in

the diagram is loated at n = 1, m = 0): First, from

n = 1 to n = ∞ and from m = 0 to m = n − 1, and
seond, from m = 0 to m = ∞ and from n = m+ 1 to

n = ∞.

(ii) We make use of the integral representation of the Euler beta funtion (Euler

integral of the �rst kind) and its value in terms of fatorials for integer numbers:

B(m+ 1, p + 1) =

∫ 1

0
tm(1− t)p dt =

m! p!

(m+ p+ 1)!
(G.3)

With these two formulae we �nd

δ
(
eA
)
= δ

( ∞∑

n=0

1

n!
An

)
=

∞∑

n=1

1

n!

n−1∑

m=0

Am δA An−m−1

(i)
=

∞∑

m=0

∞∑

n=m+1

1

n!
Am δA An−m−1 =

∞∑

m=0

∞∑

p=0

1

(m+ p+ 1)!
Am δA Ap

=

∞∑

m=0

∞∑

p=0

m! p!

(m+ p+ 1)!

Am

m!
δA

Ap

p!

(ii)
=

∞∑

m=0

∞∑

p=0

∫ 1

0
tm(1− t)p dt

Am

m!
δA

Ap

p!

=

∞∑

m=0

∞∑

p=0

∫ 1

0

(tA)m

m!
δA

[
(1− t)A

]p

p!
dt

=

∫ 1

0
etA δA e(1−t)A

dt , (G.4)

where summation and integration ommute due to the onvergene properties of the

exponential funtion. �

Lemma G.2. If existent, the real matrix logarithm of a real square matrix A an be

represented by the expression

ln(A) = −
∫ ∞

ǫ

e−sA

s
ds− ln(ǫ)1− γ 1+O(ǫ), (G.5)

where γ denotes the Euler�Masheroni onstant.



G.1. Transformation behavior of h 241

Proof: Let us begin with the speial ase of a positive real number A. Then we an

rewrite the logarithm as

ln(A) =

∫ A

1

1

t
dt =

∫ A

1
dt

[
−1

t
e−st

]s=∞

s=0

=

∫ A

1
dt

∫ ∞

0
ds e−st

=

∫ ∞

0
ds

∫ A

1
dt e−st =

∫ ∞

0
ds

(
1

s
e−s − 1

s
e−sA

)

=

∫ ǫ

0
ds

1

s

(
e−s − 1

)
+

∫ ǫ

0
ds

1

s

(
1− e−sA

)
+

∫ ∞

ǫ
ds

e−s

s
−
∫ ∞

ǫ
ds

e−sA

s

= −
∫ ∞

ǫ
ds

e−sA

s
+

∫ ∞

ǫ
ds

e−s

s
+O(ǫ) , (G.6)

where the mean value theorem for integration, employed in the last equality, is

appliable sine both

1
s (e

−s − 1) and 1
s

(
1− e−sA

)
are ontinuous funtions.

The term

∫∞
ǫ ds e−s

s an be evaluated as follows. Substituting s→ sǫ we observe

∫ ∞

ǫ
ds

e−s

s
=

∫ ∞

1
ds

e−sǫ

s
. (G.7)

Furthermore, de�ning f(s) = ln(s)e−sǫ
, we an exploit that f ′(s) = e−sǫ

s −ǫ ln(s)e−sǫ

and that

∫∞
1 f ′(s)ds = f(∞)− f(1) = 0, so we have

∫ ∞

1

e−sǫ

s
ds = ǫ

∫ ∞

1
ln(s)e−sǫ

ds =

∫ ∞

ǫ
ln

(
t

ǫ

)
e−t

dt

=

∫ ∞

0
ln(t)e−t

dt−
∫ ǫ

0
ln(t)e−t

︸ ︷︷ ︸
integrable

dt

︸ ︷︷ ︸
=O(ǫ)

− ln(ǫ)

∫ ∞

ǫ
e−t

dt

︸ ︷︷ ︸
= e−ǫ =1+O(ǫ)

=

∫ ∞

0
ln(t)e−t

dt− ln(ǫ) +O(ǫ) . (G.8)

Finally, with

−γ = Γ′(1) =
d

dz

∫ ∞

0
e(z−1) ln(t) e−t

dt

∣∣∣∣
z=1

=

∫ ∞

0
ln(t)tz−1 e−t

dt

∣∣∣∣
z=1

=

∫ ∞

0
ln(t)e−t

dt ,

(G.9)

we obtain ∫ ∞

1

e−sǫ

s
ds = − ln(ǫ)− γ +O(ǫ) , (G.10)

and thus, using (G.6) and (G.7),

ln(A) = −
∫ ∞

ǫ

e−sA

s
ds− ln(ǫ)− γ +O(ǫ) . (G.11)

Note that the divergene at the lower limit of integration for ǫ → 0 is aneled by

the term ln(ǫ).
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Now let A be a square matrix (or an operator). Sine the exponential is de�ned

both for matries and operators, relation (G.11) remains valid in this generalized

ase. For the argument it is su�ient to know that the logarithm is the inverse

funtion of the exponential and that the alulation rules for the usual exponential

hold true for the matrix exponential as well, provided that ommuting matries are

onsidered. (The latter requirement is satis�ed as A and 1 are the only matries

that an our here.) Existene of a real logarithm on the LHS of (G.5) is equivalent

to onvergene of the RHS. This ompletes the proof. �

Lemmas G.1 and G.2 now allow us to prove the following theorem.

Theorem G.3. Let ḡ be a metri tensor and let g be related to ḡ and h by the

exponential parametrization, g = ḡ eḡ
−1h

. Then h transforms as a tensor �eld if and

only if g transforms as a tensor �eld.

Proof:

�⇒�: We begin with the ase where h transforms as a tensor �eld, δh = Lξh. Then

δ
(
eḡ

−1h
)
=

∫ 1

0
dt etḡ

−1h δ
(
ḡ−1h

)
e(1−t)ḡ−1h

=

∫ 1

0
dt etḡ

−1h Lξ

(
ḡ−1h

)
e(1−t)ḡ−1h = Lξ

(
eḡ

−1h
)
.

(G.12)

sine both ḡ−1
and h transform as tensor �elds. Hene, eḡ

−1h
transforms as a tensor

�eld, too, and so does g = ḡ eḡ
−1h

.

�⇐�: Now let us onsider the ase where g transform as a tensor �eld, while the

transformation behavior of the symmetri �eld h is a priori unknown. Clearly, the

exponential eḡ
−1h = ḡ−1g transforms as a tensor �eld sine both g and ḡ are tensor

�elds. Therefore, X de�ned by

X ≡ eḡ
−1h − 1 (G.13)

transforms as a tensor �eld, too, as δ1 = 0 = Lξ1. As proven in Appendix E, there

exists a unique real logarithm of eḡ
−1h

, namely ḡ−1h = ln(1+X).

Let us assume for a moment that the matrix norm of X is su�iently small.

Then we an expand ln(1+X) aording to

ḡ−1h = ln(1+X) = −
∞∑

n=1

(−1)n

n
Xn . (G.14)

Applying a transformation to (G.14) leads to

δ(ḡ−1h) = −δ
∞∑

n=1

(−1)n

n
Xn = −

∞∑

n=1

(−1)n

n
δ(Xn)

= −
∞∑

n=1

(−1)n

n
Lξ(X

n) = −Lξ

∞∑

n=1

(−1)n

n
Xn = Lξ(ḡ

−1h),

(G.15)
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where we assumed in the seond equality that ||δX|| is su�iently small, guaranteeing

uniform onvergene of the last term in the �rst row, so that the variation an be

ommuted with the sum. This proves that ḡ−1h transforms as a tensor �eld, and so

does h: δh = Lξh.

In the general ase, if the matrix norm of X an beome arbitrarily large, we an

make use of the representation formula for matrix logarithms, as given in Lemma

G.2: If a real square matrix A possesses a real logarithm, it satis�es the relation

ln(A) = −
∫∞
ǫ

e−sA

s ds − ln(ǫ)1 − γ1 +O(ǫ). Now, if A transforms as a tensor �eld,

then we know from the ase �⇒� that the matrix exponential e−sA
is a proper tensor

�eld, too. Hene, also ln(A) must transforms as a tensor �eld. Identifying A with

1+X proves the statement, i.e. ln(1+X) = ḡ−1h transforms as a tensor �eld, and

therefore δh = Lξh. �

For the trae part of h, de�ned by φ ≡ Tr(ḡ−1h), this result an be heked in a

di�erent way. Applying a transformation to the RHS of g = ḡ eḡ
−1h

yields

δg = (δḡ) eḡ
−1h + ḡ δ

(
eḡ

−1h
)

= (Lξ ḡ) e
ḡ−1h + ḡ

∫ 1

0
dt etḡ

−1h δ
(
ḡ−1h

)
e(1−t)ḡ−1h . (G.16)

On the other hand, we also know that δg = Lξg, so

δg = Lξ

(
ḡ eḡ

−1h
)
= (Lξ ḡ) e

ḡ−1h + ḡLξ

(
eḡ

−1h
)

= (Lξ ḡ) e
ḡ−1h + ḡ

∫ 1

0
dt etḡ

−1h Lξ

(
ḡ−1h

)
e(1−t)ḡ−1h . (G.17)

Comparing (G.16) with (G.17) leads to

∫ 1

0
dt etḡ

−1h
[
δ
(
ḡ−1h

)
− Lξ

(
ḡ−1h

) ]
e(1−t)ḡ−1h = 0 . (G.18)

Sine the exponents in eq. (G.18) do in general not ommute with the variations, it

is not obvious that δ
(
ḡ−1h

)
must agree with Lξ

(
ḡ−1h

)
. However, upon taking the

trae of (G.18) we obtain

0 =

∫ 1

0
dt Tr

{
etḡ

−1h
[
δ
(
ḡ−1h

)
− Lξ

(
ḡ−1h

) ]
e(1−t)ḡ−1h

}

=

∫ 1

0
dt Tr

{[
δ
(
ḡ−1h

)
− Lξ

(
ḡ−1h

) ]
1

}
= Tr

[
δ
(
ḡ−1h

)
− Lξ

(
ḡ−1h

) ]
,

(G.19)

and with φ = Tr(ḡ−1h) �nally δφ = Lξφ.

G.2 Hessians and β-funtions in the single-metri ase

In order to derive β-funtions we follow the steps outlined in Setion 2.1.3, adopting

the notation of Referene [36℄. We onsider the gravitational EAA

Γgravk

[
g, ḡ
]
≡ 1

16πGk

∫
d

dx
√
g
(
−R+ 2Λk

)
, (G.20)
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along with the gauge �xing ation

Γgfk [g, ḡ] =
α−1

32πGk

∫
d

dx
√
ḡ ḡµν

(
Fαβ
µ [ḡ]gαβ

)(
Fρσ
ν [ḡ]gρσ

)
, (G.21)

with α = 1 and Fαβ
µ [ḡ] ≡ δβµ ḡατ D̄τ − 1

2 ḡ
αβD̄µ . Note that equation (G.21) represents

a �gµν -type� gauge �xing ation, f. Setion 4.2.

Now the exponential metri parametrization, gµν = ḡµρ(e
h)ρν , is inserted into

Γgravk and into Γgfk . Their sum, Γk = Γgravk + Γgfk , is to be expanded in terms of hµν

then. The quadrati term of Γk an be obtained by employing the variation relations

spei�ed in Appendix A and by some lengthy algebrai reshaping. The result reads

Γquadk =
1

32πGk

∫
d

dx
√
ḡ hµν

(
−Kµν

ρσD̄
2 + Uµν

ρσ

)
hρσ , (G.22)

with Kµν
ρσ ≡ 1

2

(
δµ(ρδ

ν
σ) − 1

2 ḡ
µν ḡρσ

)
and

Uµν
ρσ ≡ −1

4
ḡµν ḡρσR̄+

1

2

(
ḡµνR̄ρσ + ḡρσR̄

µν
)
− R̄µ

(ρ
ν
σ) +

1

2
ḡµν ḡρσΛk , (G.23)

where round brakets enlosing index pairs denote symmetrization. We observe that

the additional terms resulting from the use of the exponential parametrization anel

some of those whih are already present in the standard alulation (f. Ref. [36℄).

1

After splitting the �eld hµν into trae and traeless part, hµν = ĥµν + 1
d ḡµνφ,

where φ = ḡµνhµν and ḡ
µν ĥµν = 0, and inserting a maximally symmetri bakground

for ḡµν ,
2

we obtain

Γquadk =
1

64πGk

∫
d

dx
√
ḡ

{
ĥµν

(
− D̄2 + C

T

R̄
)
ĥµν

−
(
d− 2

2d

)
φ
(
− D̄2 + C

S

R̄− µΛk

)
φ

}
,

(G.24)

with the onstants C
T

≡ 2
d(d−1) and C

S

≡ d−2
d (whih are modi�ed in omparison

with Ref. [36℄), as well as

µ ≡ 2d

d− 2
. (G.25)

As argued on general grounds in Setion 4.3.3 on the basis of eq. (3.13), the osmo-

logial onstant does indeed drop out of the traeless setor.

By the methods of Setion 2.1.3 (hoosing the same uto� as in Ref. [36℄) we �nd

that the resulting anomalous dimension of Newton's onstant, ηN ≡ G−1
k k∂kGk, is

given by

ηN =
gB1(λ)

1− gB2(λ)
, (G.26)

1

For the linear parametrization one �nds the same Kµν
ρσ as above, while Uµν

ρσ is given by

the tensor Uµν
ρσ ≡ 1

2

(

δµ
(ρ
δνσ) − 1

2
ḡµν ḡρσ

) (

R̄− 2Λk

)

+ 1
2

(

ḡµνR̄ρσ + ḡρσR̄
µν

)

− δ
(µ

(ρ
R̄ν)

σ) − R̄µ
(ρ

ν
σ).

2

A maximally symmetri bakground ḡµν implies R̄µνρσ = 1
d(d−1)

(

ḡµρḡνσ − ḡµσ ḡνρ
)

R̄ for the

Riemann tensor and R̄µν = 1
d
ḡµνR̄ for the Rii tensor.
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where g and λ denote the dimensionless versions of the Newton onstant and the

osmologial onstant, respetively,

3

and B1, B2 are funtions of λ:

B1(λ) =
1

3
(4π)1−d/2

{(
d2 − 3d− 2

)
Φ1
d/2−1(0)− 12

3d+ 2

d
Φ2
d/2(0)

+2Φ1
d/2−1(−µλ)− 12

d− 2

d
Φ2
d/2(−µλ)

}
,

(G.27)

B2(λ) = −1

6
(4π)1−d/2

{
(d− 1)(d + 2)Φ̃1

d/2−1(0) − 12
d+ 2

d
Φ̃2
d/2(0)

+2 Φ̃1
d/2−1(−µλ)− 12

d− 2

d
Φ̃2
d/2(−µλ)

}
.

(G.28)

The threshold funtions Φp
n and Φ̃p

n are de�ned in Appendix D. Finally, we �nd the

following result for the β-funtions of gk = kd−2Gk and λk = k−2Λk:

βg = (d− 2 + ηN )g, (G.29)

βλ = − (2− ηN )λ+ 1
2(4π)

1−d/2g
{
2
(
d2 − 3d− 2

)
Φ1
d/2(0)

− (d− 1)(d+ 2)ηN Φ̃1
d/2(0) + 4Φ1

d/2(−µλ)− 2ηN Φ̃1
d/2(−µλ)

}
. (G.30)

The speial ases d = 4 and d = 2 + ε and their main onsequenes are treated in

detail in Setions 4.3.4 and 4.3.5, respetively.

If the matter ation (4.31) is inluded in the trunation ansatz for the EAA, we

obtain the modi�ed quadrati term

Γquad,fullk = Γquadk +
1

2

∫
d

dx
√
ḡ Ai

(
− δij�̄

)
Aj , (G.31)

where Γquadk denotes the pure gravity result (G.24), and we have already identi�ed

gµν with ḡµν . The sum both over i and over j is from 1 to N . This hanges the

funtions B1(λ) and B2(λ) given by eqs. (G.27) and (G.28), respetively, into

Bfull

1 (λ) = B1(λ) +
1

3
(4π)1−d/2

{
2NΦ1

d/2−1(0)

}
, (G.32)

Bfull

2 (λ) = B2(λ) , (G.33)

leading to the modi�ed anomalous dimension

ηfullN =
gBfull

1 (λ)

1− gBfull

2 (λ)
. (G.34)

Finally, the orresponding β-funtions read

βfullg =
(
d− 2 + ηfullN

)
g , (G.35)

βfullλ = −
(
2− ηfullN

)
λ+ 1

2 (4π)
1−d/2g

{
2
(
d2 − 3d− 2

)
Φ1
d/2(0) + 4NΦ1

d/2(0)

− (d− 1)(d + 2)ηfullN Φ̃1
d/2(0) + 4Φ1

d/2(−µλ)− 2ηfullN Φ̃1
d/2(−µλ)

}
.

(G.36)

3

Here, g and λ play the role of independent arguments, so they arry no index k.
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G.3 Hessians and β-funtions in the bimetri ase

We onsider the trunation ansatz

Γk

[
g, ḡ, ξ, ξ̄

]
=

1

16πGDyn

k

∫
d

dx
√
g
(
−R+ 2ΛDyn

k

)
+ Γgfk

[
g, ḡ
]
+ Γghk

[
g, ḡ, ξ, ξ̄

]

+
1

16πGB

k

∫
d

dx
√
ḡ
(
− R̄+ 2ΛB

k

)
, (G.37)

onsisting of one Einstein�Hilbert-type ation for the dynamial ('Dyn') setor and

one for the bakground ('B') setor. For reasons explained in Setion 4.5, we employ

the onformal projetion tehnique [60℄. It onsists in setting the dynamial metri to

gµν = e2Ωḡµν (after having taken funtional derivatives). In the following, we denote

this projetion by (· · · )|
pr

. For the exponential parametrization, gµν = ḡµρ(e
h)ρν , it

is equivalent to setting hρν = 2Ω δρν . This a�ets the derivatives of gµν w.r.t. hρσ

appearing in equation (4.12) as follows:

δgµν(x)

δhρσ(y)

∣∣∣∣
pr

= e2Ω δρ(µ δ
σ
ν) δ(x− y), (G.38)

δ2gµν(u)

δhρσ(x) δhλγ(y)

∣∣∣∣
pr

= 1
2 e

2Ω
(
ḡλ(σδ

ρ)
(µ δ

γ
ν) + ḡρ(γδ

λ)
(µ δ

σ
ν)

)
δ(u − x)δ(u − y). (G.39)

Now, the Hessian (Γk)
(2)
hh (where derivatives are w.r.t. hµν , and ghost �elds are set

to zero) is obtained by inserting these relations into eq. (4.12) and by omputing the

remaining derivatives of Γk w.r.t. gµν by means of the formulae given in Appendix

A. The result an be simpli�ed by applying the onformal projetion again and by

hoosing the �Ω deformed α = 1 gauge� as in Ref. [60℄. For the �Ω deformed α = 1

gauge� and the harmoni oordinate ondition the gauge �xing ation reads

Γgfk [g, ḡ] =
α−1

32πGDyn

k

∫
d

dx
√
ḡ ḡµν

(
Fαβ
µ [ḡ]gαβ

)(
Fρσ
ν [ḡ]gρσ

)
, (G.40)

with α−1 ≡ e(d−6)Ω
and Fαβ

µ [ḡ] ≡ δβµ ḡατ D̄τ − 1
2 ḡ

αβD̄µ . Like in the single-metri ase,

eq. (G.40) represents a �gµν-type� gauge �xing ation (see Setion 4.2). Putting all

ontributions together yields the Hessian

(
(Γk)

(2)
hh

)µνρσ∣∣∣
pr

=
e(d−2)Ω

32πGDyn

k

{(
− ḡµ(ρḡσ)ν + 1

2 ḡ
µν ḡρσ

)
D̄2

− 1
2

(
R̄− 2 e2ΩΛDyn

k

)
ḡµν ḡρσ + 2R̄ρ(µν)σ + ḡρσR̄µν + ḡµνR̄ρσ

} (G.41)

in the graviton setor, as well as

((
Γghk
)(2)
ξξ̄

)µ
ν

∣∣∣
pr

=
√
2 e2Ω

(
R̄µ

ν + δµν D̄
2
)

(G.42)

and

(
Γghk
)(2)
ξ̄ξ

= −
(
Γghk
)(2)
ξξ̄

in the ghost setor.
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Compared with Ref. [60℄, the Hessians for the ghosts are not modi�ed, but the

one for the graviton setor is di�erent: (a) The terms in the urly brakets in (G.41)

have hanged, in partiular, the osmologial onstant term is proportional to ḡµν ḡρσ

now, so it drops out of the traeless setor as it did in the single-metri omputation

of Setion G.2. (b) The numerator of the prefator has hanged from e(d−6)Ω
into

e(d−2)Ω
, signaling the speial role of d = 2 dimensions.

Upon deomposing hµν into trae and traeless parts, hµν ≡ ĥµν + 1
d ḡµνφ, with

φ = ḡµνhµν and ḡµν ĥµν = 0, and hoosing a maximally symmetri bakground, eq.

(G.41) boils down to

(
(Γk)

(2)

ĥĥ

)µνρσ∣∣∣
pr

=
e(d−2)Ω

32πGDyn

k

ḡµ(ρḡσ)ν
[
−D̄2 +

2

d(d− 1)
R̄

]
, (G.43)

(Γk)
(2)
φφ

∣∣∣
pr

= −
(
d− 2

2d

)
e(d−2)Ω

32πGDyn

k

[
−D̄2 − 2d

d− 2
e2ΩΛDyn

k +
d− 2

d
R̄

]
,

(G.44)

where the o�-diagonal parts of the Hessian, (Γk)
(2)

ĥφ
and (Γk)

(2)

φĥ
, vanish identially.

Similarly, we �nd for the ghost setor:

((
Γghk
)(2)
ξξ̄

)µ
ν

∣∣∣
pr

= −
((
Γghk
)(2)
ξ̄ξ

)µ
ν

∣∣∣
pr

= −
√
2 e2Ω δµν

(
− D̄2 − 1

d R̄
)
. (G.45)

Unlike in Ref. [60℄, we inlude the fator e(d−2)Ω
(e2Ω) in the uto� operator Rk

for the gravitons (ghosts). Projeted onto the various setors we have

(Rk)ĥĥ =
e(d−2)Ω

32πGDyn

k

k2R(0)
(
− D̄2/k2

)
, (G.46)

(Rk)φφ = −
(
d− 2

2d

)
e(d−2)Ω

32πGDyn

k

k2R(0)
(
− D̄2/k2

)
, (G.47)

(Rgh

k )ξξ̄ = −(Rgh

k )ξ̄ξ = −
√
2 e2Ωk2R(0)

(
− D̄2/k2

)
. (G.48)

The reason for the inlusion of e(d−2)Ω
(e2Ω) in Rk is given by the requirement that

uto� operators be ompatible with the standard replaement rule [11℄ of Laplaians

ourring in inverse propagators when the regularization is swithed on, whih, in

our ase, reads: −D̄2 7→ −D̄2 + k2R(0)
(
− D̄2/k2

)
.

Based on the above foundations we an �nally apply the steps spei�ed in Setion

2.1.3 in order to derive the β-funtions. The separation between dynamial and

bakground quantities is realized by means of an expansion in terms of Ω and a

subsequent omparison of oe�ients [60℄.

For the 'Dyn' ouplings we �nd the following results: The anomalous dimension

of GDyn

k , de�ned by ηDyn ≡ k∂kG
Dyn

k /GDyn

k , is given by

ηDyn =
gDynB1(λ

Dyn)

1 + gDynB2(λDyn)
, (G.49)
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with

B1(λ
Dyn) = 8(4π)1−d/2λDyn

{
d

3(d−2)2
Φ2
d/2−1

(
−µλDyn

)

− 4
d−2 Φ

3
d/2

(
−µλDyn

) }
,

(G.50)

B2(λ
Dyn) = 4(4π)1−d/2λDyn

{
d

3(d−2)2 Φ̃
2
d/2−1

(
−µλDyn

)

− 4
d−2 Φ̃

3
d/2

(
−µλDyn

) }
,

(G.51)

where the onstant µ is de�ned by µ ≡ 2d
d−2 again. The β-funtion of the dimension-

less dynamial Newton onstant, gDynk = kd−2GDyn

k , then reads

βDyng =
(
d− 2 + ηDyn

)
gDyn , (G.52)

and for the dimensionless dynamial osmologial onstant, λDynk = k−2ΛDyn

k , we

�nd

βDynλ =
(
− 2 + ηDyn

)
λDyn

+ 4
d−2 (4π)

1−d/2λDyngDyn
{
2Φ2

d/2

(
−µλDyn

)
− ηDyn Φ̃2

d/2

(
−µλDyn

) }
.

(G.53)

In the bakground setor, on the other hand, the anomalous dimension of GB

k is

given by

ηB = −1
6 (4π)

1−d/2gB
{
8dΦ1

d/2−1(0)− 4Φ1
d/2−1

(
−µλDyn

)
+ 48Φ2

d/2(0)

− (d− 1)(d + 2)
[
2Φ1

d/2−1(0)− ηDyn Φ̃1
d/2−1(0)

]

+ 2ηDyn Φ̃1
d/2−1

(
−µλDyn

)
+ 12(d+2)

d

[
2Φ2

d/2(0) − ηDyn Φ̃2
d/2(0)

]

+ 12(d−2)
d

[
2Φ2

d/2

(
−µλDyn

)
− ηDyn Φ̃2

d/2

(
−µλDyn

)]

+ 8
(d−2)2

λDyn
[
2dΦ2

d/2−1

(
−µλDyn

)
− 24(d − 2)Φ3

d/2

(
−µλDyn

)

+ 12(d − 2)ηDyn Φ̃3
d/2

(
−µλDyn

)

− ηDynd Φ̃2
d/2−1

(
−µλDyn

) ]}
,

(G.54)

and the β-funtions of gBk = kd−2GB

k and λBk = k−2ΛB

k read, respetively,

βBg =
(
d− 2 + ηB

)
gB , (G.55)

βBλ =
(
− 2 + ηB

)
λB + (4π)1−d/2 gB

{
− 4dΦ1

d/2(0) + 2Φ1
d/2

(
−µλDyn

)

+ (d− 1)(d+ 2)
[
Φ1
d/2(0)− 1

2 η
DynΦ̃1

d/2(0)
]
− ηDyn Φ̃1

d/2

(
−µλDyn

)

+ 4
d−2 λ

Dyn

[
−2Φ2

d/2

(
−µλDyn

)
+ ηDyn Φ̃2

d/2

(
−µλDyn

)]}
.

(G.56)
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Note the harateristi hierarhy of the above system of β-funtions:

βDyng ≡ βDyng

(
gDyn, λDyn

)
,

βDynλ ≡ βDynλ

(
gDyn, λDyn

)
,

βBg ≡ βBg
(
gDyn, λDyn, gB

)
,

βBλ ≡ βBλ
(
gDyn, λDyn, gB, λB

)
,

(G.57)

in agreement with the general onsideration that led to (4.66). In partiular, the

dynamial ouplings form a losed subsystem whih an be solved separately. We

show the resulting �ow diagrams and analyze their properties in Setion 4.5.





H
Weyl transformations, zero modes

and the indued gravity ation

In this appendix we list the behavior of various geometri objets under Weyl trans-

formations, inluding the indued gravity funtional, whih is needed in the main

part of this thesis. Weyl transformations are given by ĝµν → gµν with

gµν = e2σ ĝµν , (H.1)

where σ is a salar funtion on the spaetime manifold.

(1) From the de�nition of the Christo�el onnetion we immediately obtain

Γα
µν = Γ̂α

µν + δαµ D̂νσ + δαν D̂µσ − ĝµνD̂
ασ . (H.2)

Note that indies (on the right hand side) are raised and lowered by means of ĝµν

and ĝµν , respetively. From (H.2) we easily dedue the Riemann tensor and its

ontrations,

Rα
µνρ = R̂α

µνρ + 2 ĝµ[νD̂ρ]D̂
ασ − 2 δα[νD̂ρ]D̂µσ − 2 ĝµ[νD̂ρ]σD̂

ασ

+ 2 δα[νD̂ρ]σD̂µσ + 2 ĝµ[νδ
α
ρ]D̂βσD̂

βσ ,
(H.3)

Rµν = R̂µν − (d− 2)
(
D̂µD̂νσ − D̂µσD̂νσ

)
− ĝµν

[
�̂σ + (d− 2)D̂ασD̂

ασ
]
, (H.4)

R = e−2σ
[
R̂− (d− 1)(d− 2)D̂µσD̂

µσ − 2(d− 1)�̂σ
]
, (H.5)

where �̂ ≡ D̂αD̂
α
and the square brakets enlosing indies denote antisymmetriza-

tion, A[µν] =
1
2(Aµν − Aνµ). Note that sine the underlying onnetion is given by

the Christo�el symbols, i.e. it is torsion free, we have D̂µD̂νσ = D̂νD̂µσ. For the

Einstein tensor we �nd

Gµν = Ĝµν + (d− 2)

[
−D̂µD̂νσ + ĝµν�̂σ + D̂µσD̂νσ +

d− 3

2
ĝµνD̂ασD̂

ασ

]
. (H.6)
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Furthermore, the metri determinant transforms as

√
g =

√
ĝ edσ . (H.7)

Hene, we arrive at the useful relations

√
g R = e(d−2)σ

√
ĝ
[
R̂− (d− 1)(d− 2)D̂µσD̂

µσ − 2(d− 1)�̂σ
]
, (H.8)

∫
d

dx
√
g R =

∫
d

dx
√
ĝ e(d−2)σ

[
R̂+ (d− 1)(d − 2)D̂µσD̂

µσ
]
. (H.9)

The transformation behavior of the Laplaian is given by

�f = e−2σ�̂f + (d− 2)e−2σD̂µσD̂
µf , (H.10)

where f is an arbitrary salar funtion.

(2) In the speial ase of two dimensions, d = 2, we obtain

R = e−2σ
[
R̂− 2�̂σ

]
, (H.11)

√
g R =

√
ĝ
[
R̂− 2�̂σ

]
, (H.12)

�f = e−2σ�̂f , (H.13)

√
g�f =

√
ĝ �̂f . (H.14)

(3) Due to its relevane to the indued gravity ation we are partiularly interested in

the transformation behavior of �−1R, with the inverse Laplaian (Green's funtion)

�−1 ≡ �−1(x, y), where (�−1R)(x) refers to

(�−1R)(x) ≡
∫

d

dy
√
g �−1(x, y)R(y). (H.15)

If � has no zero modes, its inverse is de�ned by �
[
�−1(x, y)

]
= 1√

g δ(x − y), f.

App. B. On the other hand, if � has normalizable zero modes, then �−1
is de�ned as

the inverse of � on the orthogonal omplement to its kernel, where the delta funtion

has to be modi�ed appropriately, that is, ��−1(x, y) = 1√
g δ(x− y)−Pr0(x, y), and

Pr0 denotes the projetion onto zero modes. Whenever we write �−1
in this thesis,

this de�nition is meant impliitly.

(4) Sine the onsideration of zero modes requires a more areful treatment, we

�rst onsider the situation where zero modes are absent in the following subsetion,

before investigating the general ase in Subsetion H.2.

H.1 The indued gravity ation in the absene of zero

modes

If the Laplaian has no zero modes, then the equation �f = h an be solved for f

by diret inversion of �, that is, f = �−1h. In this ase the transformation behavior
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of the Green's funtion �−1
is given by

�−1
(
e−2σ h

)
= �̂−1h . (H.16)

This gives rise to

�−1R = �̂−1R̂− 2σ. (H.17)

For our arguments in Setion 5.2.3 we need to determine the transformation

behavior of the indued gravity funtional I[g] whih an be de�ned as the normalized

�nite part of Polyakov's indued e�etive ation [162℄:

Γind[g] = 1
2 Tr ln(−�) . (H.18)

In the absene of zero modes, the trae in (H.18) an be omputed expliitly. The

result, Γind[g], onsists of a universal �nite part and a regularization sheme depen-

dent divergent part. Regularizing by means of a proper time uto� [249�252℄, for

instane, one obtains from eq. (H.18):

Γind[g] =
1

96π

∫
d

2x
√
g R�−1R− 1

8πs

∫
d

2x
√
g . (H.19)

The seond term on the RHS of eq. (H.19) is sheme dependent and divergent in the

limit s → 0. It might be absorbed by a rede�nition of the osmologial onstant.

The �rst term, on the other hand, ontains all relevant information, so we fous on

it for our further investigations. We de�ne the indued gravity funtional I[g] to be

proportional to the �nite part of Γind[g],

I[g] ≡ 96π Γind[g]
∣∣
�nite

=

∫
d

2x
√
g R�−1R . (H.20)

Using (H.12) and (H.17) we now obtain, after integrating by parts,

I[g] =

∫
d

2x
√
ĝ
[
R̂ �̂−1R̂− 4R̂σ + 4σ�̂σ

]
. (H.21)

This an be written as

I[g] − I[ĝ] = −8∆I[σ; ĝ], (H.22)

with the funtional ∆I de�ned by

∆I[σ; ĝ] ≡ 1

2

∫
d

2x
√
ĝ
[
D̂µσD̂

µσ + R̂σ
]
. (H.23)

These results prove useful for alulating the 2D limit of the Einstein�Hilbert

ation, as applied in Setions 5.2.2 and 5.2.3.
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H.2 The treatment of zero modes

What is di�erent and whih results of Setion H.1 remain valid when the salar

Laplaian has one or more zero modes? To illustrate the issue let us start from

srath and onsider a funtional integral over a simple salar �eld X minimally

oupled to the metri. Integrating out X will �indue� a gravity ation for the

metri then. The orresponding partition funtion is given by

Z̃[g] ≡
∫

DX e−
1
2

∫

d

2x
√
g gµν∂µX ∂νX =

∫
DX e−

1
2

∫

d

2x
√
g X(−�)X . (H.24)

(The notation with the tilde is hosen sine de�nition (H.24) is pathologial and has

to be modi�ed as shown in the following.) Let us expand the �eld X in terms of

normalized eigenmodes ϕ(n)
of the Laplaian −�, that is, X =

∑
n cn ϕ

(n)
, where

−�ϕ(n) = λnϕ
(n)

, with the normalization

∫
d

2x
√
g ϕ(n)(x)ϕ(m)(x) = δmn. Then

the integral in (H.24) an be written as

Z̃[g] =

∫ ∏

n

dcn√
2π

e−
1
2

∑

n λn c2n . (H.25)

Now let us suppose that the Laplaian has a zero mode, −�ϕ(0) = 0, i.e. λ0 = 0.

In this ase the integration over its Fourier oe�ient,

∫
dc0 e−

1
2
λ0 c20 =

∫
dc0 1, is

divergent, and so is Z̃[g]. Thus, the zero mode(s) has to be exluded from the path

integral in the �rst plae. The orret de�nition reads

Z[g] ≡
∫

D′X e−
1
2

∫

d

2x
√
g gµν ∂µX ∂νX . (H.26)

Here and in the following, the prime denotes the exlusion of zero modes.

We will onsider only onneted manifolds with vanishing boundary. In that ase

the Laplaian has (at most) one single normalized zero mode. It is given by

ϕ(0) = 1/
√
V , (H.27)

with the volume, or area, V =
∫
d

2x
√
g .

Performing the Gaussian integral in eq. (H.26) one obtains

1

Z[g] =
[
det′(−�)

]− 1
2 . (H.28)

The orresponding e�etive ation Γind is determined by Z ≡ e−Γind
, leading to

Γind[g] = 1
2 ln det

′(−�) = 1
2 Tr

′ ln(−�) , (H.29)

whih is Polyakov's indued gravity ation, adapted to taking aount of zero modes.

In order to �nd an integral representation for Γind similar to eq. (H.19) it turns out

1

As we will see in App. I, eq. (H.28) atually reeives a ontribution from the funtional measure,

too, whih may be indiated by Z[g] =
[

det′Λ(−�/M2)
]

−1/2
. In the present ase, this modi�ation

merely gives rise to additional, inessential onstants whih we do not write expliitly heneforth.
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onvenient to onsider the variation of Γind under a �nite Weyl transformation, giving

rise to a stritly loal term and a term involving the logarithm of the volume (see

e.g. [256℄): The �nite part of the variation reads

Γind[g] − Γind[ĝ] = − 1

12π
∆I[σ; ĝ] +

1

2
ln
(
V/V̂

)
, (H.30)

with the volume terms V ≡
∫
d

2x
√
g and V̂ ≡

∫
d

2x
√
ĝ, and with ∆I[σ; ĝ] as de�ned

in eq. (H.23). The seond term on the RHS of (H.30) originates from the zero mode

ontribution ontained in the onformal fator.

To extrat an expliit expression for Γind from (H.30) that depends only on one

metri, we aim at eliminating the onformal fator and rewrite also the RHS of (H.30)

as the di�erene between some funtional evaluated at g and the same funtional

evaluated at ĝ. Although the existene of suh a representation an be proven [257℄,

the expliit form of Γind[g] with only one argument is (to the best of our knowledge)

not known in general. As already pointed out in Ref. [258℄, the problem ours for

uniform resalings when the onformal fator is a onstant, i.e. proportional to the

zero mode: In this ase even the formula

∫
gµν δS[g]

δgµν
= 1

2
∂S[e2σg]

∂σ

∣∣
σ=0

, where σ is

a onstant, does not apply, a ounterexample being the indued gravity funtional

(H.20) whih is invariant under uniform resalings but whose metri variation gives

rise to the anomaly proportional to R.

To eliminate the onformal fator in (H.30) we would like to solve the equation

�σ = 1
2
√
g

(√
ĝR̂−√

gR
)

(H.31)

for σ, where (H.31) follows from (H.12) and the identity

√
ĝ �̂ =

√
g�, valid in 2D.

The existene of a solution is guaranteed by the fat that the RHS of (H.31) is or-

thogonal to the zero mode, thanks to topologial invariane. However, the onformal

fator itself ould have a ontribution from the zero mode. As a onsequene, the

solution for σ is not unique. Employing the Green's funtion �−1
as de�ned below

eq. (H.15) we obtain

σ = 1
2 �

−1 1√
g

(√
ĝR̂−√

gR
)
+ 1

V

∫ √
g σ, (H.32)

where the seond term is the onstant zero mode part. (Reall that �−1
is the inverse

of � on the orthogonal omplement to the kernel of �, and it satis�es ��−1(x, y) =
1√
g δ(x−y)− 1

V .) Making use of the relation σ = 1
2 ln(

√
g/

√
ĝ) the last term in (H.32)

an be expressed in terms of the metris gµν and ĝµν , too. Then eq. (H.30) beomes

Γind[g]− Γind[ĝ] = Γind[g, ĝ], (H.33)

with the both gµν - and ĝµν -dependent funtional [257℄

Γind[g, ĝ] ≡ 1

96π

∫ (√
gR+

√
ĝR̂
)
�−1 1√

g

(√
gR−√

ĝR̂
)

− χ
12V

∫ √
g ln

(√
g√
ĝ

)
+ 1

2 ln
(
V
V̂

)
,

(H.34)
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where we have used

∫
d

2x
√
g R = 4πχ again. In this expression it does not seem

possible to disentangle g from ĝ.

Nevertheless, by introduing a �duial metri g0 in (H.34) we ould de�ne Γind[g]

formally up to an additive onstant by

Γind[g] ≡ Γind[g, g0]. (H.35)

Employing this de�nition, Γind[g] indeed satis�es eq. (H.30). The orresponding

funtional I full[g] (where I full refers to the general ase, with zero mode and arbitrary

resalings) an be obtained by applying rule (H.20), I full[g] ≡ 96π Γind[g]|
�nite

,

resulting in

I full[g] ≡ I[g] +R[g, g0], (H.36)

with I[g] =
∫√

g R�−1R as above, and with the residue

R[g, g0] ≡ −
∫ √

g0R(g0)�
−1

√
g0√
g R(g0)−

8πχ

V

∫ √
g ln

( √
g√
g0

)
+ 48π ln

(
V
V0

)
.

(H.37)

This residue is due to the zero mode ontribution to the onformal fator relating g

with g0. Using eq. (H.30) leads to a transformation behavior of I full[g] similar to the

one found in Setion H.1. We obtain

I full[g]− I full[ĝ] = −8∆I[σ; ĝ] + 48π ln
(
V/V̂

)
. (H.38)

Thus, apart from the pure volume terms we reover the same result as in eq. (H.22),

the modi�ation being due to the zero modes of � and �̂, ϕ(0) = 1/
√
V and ϕ̂(0) =

1/
√
V̂ , respetively.

Conerning our results of Setion 5.2, we observe that I[g] is to be replaed

aording to

I[g] → I full[g]− 48π ln(V/V0), (H.39)

where the orresponding behavior under Weyl transformations is given by eq. (H.38).

Thus, in the general ase there are additional orretion terms in onsequene of the

zero modes. In partiular, eq. (5.54) generalizes to

1

ε

∫
d

2+εx
√
g R = −1

4
I[g] +Q[g, g0] +

4πχ

ε
+ C

(
{τ}
)
+O(ε), (H.40)

with the orretion termsQ[g, g0] ≡ 1
4

∫√
g0R(g0)�

−1
√
g0√
g R(g0)+

2πχ
V

∫√
g ln

( √
g√
g0

)
.

We point out that the ruial result in eq. (5.54), the appearane of the nonloal

ation I[g], is ontained in its extension (H.40), too. All onlusions in the main part

of this thesis that relied on the emergene of I[g] in the 2D limit of the Einstein�

Hilbert ation remain valid in the presene of zero modes. The orretion terms in

(H.40) do not hange our main results; in partiular the entral harge, whih is read

o� from the prefator of I[g], remains unaltered.
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Finally, two omments are in order.

(1) Nonvanishing Euler harateristis. We would like to point out the following

subtlety onerning the indued gravity funtional I[g]. As argued above, �−1
is

de�ned suh that it a�ets only nonzero modes while it �projets away� the zero

modes of the objets it ats on. In partiular, the funtion (�−1R)(x) satis�es

��−1R = R − 1
V 4πχ. Hene, for manifolds with vanishing Euler harateristi,

χ = 0, we reover the usual feature of an inverse operator, ��−1R = R, as long

as �−1
ats on R. The reason behind this property is that the Fourier expansion

of R annot ontain any ontribution ∝ c0ϕ
(0)

from the zero mode if χ = 0. As a

onsequene �−1R is nonzero provided that R does not vanish, and, in turn, I[g] is

a nonzero funtional.

On the other hand, if χ 6= 0, then it might happen that I[g] vanishes. As

an example, let us onsider a sphere with onstant urvature R > 0. Sine R is

proportional to the onstant zero mode in this ase, we have �−1R = 0, and thus

I[g] = 0. With regard to eq. (H.38) this means that all nontrivial ontributions to

the LHS must ome from I full[ĝ] and from the residue ontained in I full[g].

(2) A modi�ed indued gravity funtional. The ourrene of the volume term

in eq. (H.38) an be understood as follows. We removed the zero modes from the

path integral (H.26), and this exlusion a�ets the transformation behavior, replaing

(H.22) with (H.38). However, there is the possibility to rede�ne the partition funtion

in order to absorb the volume terms. Let us brie�y sketh the idea.

As above, we expand the salar �eld X in the partition funtion in terms of

normalized eigenmodes ϕ(n)
of the Laplaian, X =

∑
n cn ϕ

(n)
, and insert this into

eq. (H.26). Then it is easy to show (see e.g. [259℄) that the transformation behavior

of lnZ under an in�nitesimal Weyl variation aording to eq. (H.1), δgµν = 2σ gµν ,

is given by

δ lnZ =

∫
d

2x
√
g

(
1

4

δg

g

) ∞∑

n=0

[
ϕ(n)

]2 − 1

2

δV

V
. (H.41)

Rearranging terms yields

δ ln
(√

V/V0 Z
)
=

∫
d

2x
√
g

(
1

4

δg

g

) ∞∑

n=0

[
ϕ(n)

]2
, (H.42)

where V0 is an arbitrary referene volume introdued merely to render the argument

of the logarithm dimensionless. The advantage of eq. (H.42) is that its RHS does

no longer ontain any distintion between zero and nonzero modes, hene the om-

bination

√
V/V0 Z is more appropriate for a treatment of all modes on an equal

footing.

These observations suggest introduing the modi�ed de�nition

Zmod[g] ≡
√
V/V0

∫
D′X e−

1
2

∫

d

2x
√
g gµν ∂µX ∂νX . (H.43)
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The orresponding e�etive ation reads

Γind,mod[g] = 1
2 ln det

′(−�)− 1
2 ln

V
V0
. (H.44)

This modi�ed e�etive ation is often used in the literature [260℄. Applying the rule

(H.20) to (H.44) and using (H.36) yields the modi�ed indued gravity funtional

Imod[g] ≡ I full[g] − 48π ln V
V0
, (H.45)

onsistent with (H.39). Employing eq. (H.38) we �nd that it transforms aording

to

Imod[g]− Imod[ĝ] = −8∆I[σ; ĝ], (H.46)

with ∆I as de�ned in eq. (H.23). Thus, for Imod[g] we reover the same behavior

under Weyl transformations as for I[g] in eq. (H.22), whih was the transformation

law for the ase without zero modes.

In onlusion, zero modes an be taken into aount by employing a modi�ed

de�nition of the path integral, where the behavior of the (generalized) indued gravity

funtional under Weyl resalings remains essentially the same.



I
Reonstruting the bare ation

from the e�etive average ation

We have seen that solutions to the FRGE do not depend on any underlying path

integral desription. Nonetheless, in partiular ases the bare ation appearing in

the exponent of a suitably de�ned funtional integral may be of interest, too. This

raises the following question: Given an e�etive average ation Γk whih solves the

FRGE, an we �nd a bare ation and a funtional measure suh that the fun-

tional integration reprodues Γk? In this appendix we give a detailed derivation of

a one-loop �reonstrution formula� whih an be used to determine the bare ation

approximately provided that Γk is known.

Before we an reonstrut the bare ation, however, we have to speify the mea-

sure of the orresponding funtional integral. It turns out that the de�nition is

usually not unique but depends on a tunable free parameter instead. This will be

worked out in Setion I.1. Thereafter we derive the reonstrution formula in Setion

I.2, and we prove that it beomes an exat relation for ertain terms when the large

uto� limit is taken. The results are applied to a gravitational EAA of Einstein�

Hilbert type and to Liouville theory in Chapters 7 and 9, respetively, in the body

of this thesis.

I.1 De�nition of the funtional measure

Let ϕ denote a generi �eld. We have argued in Chapter 7 that the bare ation

SΛ[ϕ] alone has no signi�ane at all. It is rather a ombination of measure and bare

ation, dµ[ϕ] exp(−SΛ[ϕ]), whih de�nes a meaningful quantity. In other words,

stating SΛ would be pointless without knowing the measure.
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There is an elegant but not unambiguous way to de�ne the measure by employing

Gaussian integrals [126℄. This method relies on a given inner produt on �eld spae,

1

denoted by 〈ϕ,ϕ〉. Then the measure dµ is �xed by requiring

∫
dµ[ϕ] e−

1
2
〈ϕ,ϕ〉 = 1.

However, there is a subtlety in this argument that demands further investigations.

The ruial point is that the exponent in this de�nition as well as the overall result

of the path integral should be pure numbers without any mass dimension. This has

to be reoniled with the fat that a generi �eld usually omes with a anonial mass

dimension whih may be determined by dimensional analysis of the kineti term in an

assoiated ation.

2

Therefore, it is neessary in general to inlude a mass sale in the

inner produt. For salar �elds with their inherent mass dimension [ϕ] = (d−2)/2, for

instane, a suitable de�nition would be 〈ϕ1, ϕ2〉 ≡
∫
d

dx
√
gM2ϕ1(x)ϕ2(x), involving

some external mass saleM . That means, the inner produt an be used to measure

distanes in �eld spae in units of M . A priori, M is not related to any uto� sale

but serves as a free parameter. GivenM , the funtional measure an now be �xed by

the modi�ed requirement

∫
dµM [ϕ] e−

1
2

∫

d

dx
√
gM2ϕ2

= 1, where we allow an expliit

M -dependene in dµM [ϕ].

Note that this de�ning expression is invariant under resalings of M if ϕ and the

metri gµν are resaled as well. However, when inluding a seond sale, say k, for

the renormalization proedure, suh a metri resaling is not desired as it would also

hange the eigenvalues of modes whih are suppressed. Thus, in general there is no

invariane under resalings of M , and the measure remains M -dependent. Only in

terms of dimensionless �elds and ouplings this dependene drops out. Our main

observation here is thatM may be onsidered a free parameter whih an be tuned to

adjust the measure, giving rise to a hange of the bare ation in turn. We emphasize

that this freedom signals the �unphysialness� of the bare ation.

In order to make the onstrution of the measure more expliit, we avail ourselves

of an argument used previously in Refs. [261�264℄. We aim at omputing a funtional

integral of the type ∫
dµM [ϕ] e−

1
2

∫

d

dx
√
g ϕOϕ, (I.1)

where O is an arbitrary positive operator whih appears in the integral in its dif-

ferential operator representation, the ase of the salar Laplaian, O = −�, being

of primary importane for our studies. It is assumed that there is a omplete set of

orthonormal eigenfuntions, {ϕn}, satisfying

Oϕn = λnϕn , (I.2)

1

More preisely, in Ref. [126℄ the onstrution is based on an inner produt on the otangent

spae of in�nitesimal deformations of the underlying �eld spae. For the sake of our argument and

for simpliity, however, we regard the �eld spae as a vetor spae with a salar produt here, the

generalization being straightforward.

2

We point out that the mass dimensions of �elds should be onsidered as inputs, depending on

allowed �eld spae monomials and on the dimensions of oupling onstants.
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where the orthonormality ondition is with respet to the above inner produt, i.e.

we have 〈ϕi, ϕj〉 =
∫
d

dx
√
gM2ϕi(x)ϕj(x) = δij . As pointed out in Ref. [263℄,

the requirement for manifest ovariane under general oordinate transformations

ditates hoosing a measure whih is onstruted from the modi�ed �eld ϕ̃ ≡ g1/4ϕ

with weight

1
2 :

dµM [ϕ] ≡ C
∏

x

dϕ̃(x)

Mκ
, (I.3)

with a normalization onstant C to be determined in a moment and with the mass

dimension κ =
[
ϕ̃
]
, whih amounts to κ = −1 if ϕ is a standard salar �eld.

The reason for this hoie of the measure an be understood as follows. Let us

expand the �eld ϕ in terms of eigenmodes of the operator O,

ϕ(x) =
∞∑

i=1

aiϕi(x). (I.4)

Then the measure (I.3) reeives ontributions from the Jaobians, formally leading

to [263, 264℄

dµM [ϕ] = C
∏

x

dϕ̃(x)

Mκ
= C det

[
g1/4ϕi(x)

Mκ

]∏

n

dan = C det

[
g1/4〈x|ϕi〉

Mκ

]∏

n

dan

= C
{
det

[
g1/4〈ϕi|x〉

Mκ

]
det

[
g1/4〈x|ϕj〉

Mκ

]}1/2 ∏

n

dan

= C det1/2
[∑

x

√
gM2〈ϕi|x〉〈x|ϕj〉

]∏

n

dan (I.5)

= C det1/2
[ ∫

d

dx
√
gM2ϕi(x)ϕj(x)

]∏

n

dan = C det1/2(δij)
∏

n

dan

= C
∏

n

dan .

Thus dµM [ϕ] an be written in terms of the standard translation invariant mea-

sures dan alone, i.e. it does no longer involve any x-dependent terms, satisfying the

general ovariane ondition in this way. Furthermore, in this representation the

M -dependene in dµM has dropped out ompletely. (We keep the index M , though,

sineM enters another term whih an be seen as part of the measure. This is shown

in a moment.)

A generi QFT usually has to ope with UV divergenes and needs to be reg-

ularized. The most straightforward way to regularize the funtional integral is to

restrit the ontributing modes by utting o� the high momentum parts at some UV

sale, say, Λ. In our setting this translates into restriting the modes with respet

to a �uto� index� N , and the measure beomes

dµNM [ϕ] = C
N∏

n=1

dan . (I.6)
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Consequently, all appearanes of ϕ in the path integral must be projeted onto low

momentum modes, too [265℄: ϕ(x) =
∑N

n=1 anϕn(x). The Gaussian integral (I.1)

an now be evaluated, and we �nd

∫
dµNM [ϕ] e−

1
2

∫

d

dx
√
g ϕO ϕ = C

∫ N∏

n=1

dan e−
1
2

∫

d

dx
√
g
∑N

i=1 aiϕi(x)O
∑N

j=1 ajϕj(x)

= C
∫ N∏

n=1

dan e−
1
2

∑N
i,j aiajλjM

−2δij

= C
√

(2π)NM2N

λ1 · · ·λN
= C (2π)N

2 det
− 1

2
N

(
O/M2

)
,

(I.7)

where the index N in the determinant indiates the exlusion of high momentum

modes. Choosing the normalization C ≡ (2π)−N/2
, we �nally obtain

∫
dµNM [ϕ] e−

1
2

∫

d

dx
√
g ϕO ϕ = det

− 1
2

N

(
O/M2

)
. (I.8)

With this result we understand the above remark on the M -dependene of the

measure: First, it is possible to absorb allM -fators appearing inside the determinant

on the RHS of (I.8) into the measure by an appropriate rede�nition. Sine we would

like to have a dimensionless argument in the determinant, however, we keep our

urrent de�nition of the measure. But seond, the index N may be regarded as a

funtion of the uto� sale Λ, a onvenient hoie being N = Λ/M . In any ase,

whenever the regularization is based on the sale Λ, the measure inevitably reeives

a ontribution from the parameter M . For onveniene, we use the notation DΛϕ in

the subsequent setions, de�ned by

DΛϕ ≡ dµ
N=Λ/M
M [ϕ], (I.9)

without writing the present M -dependene expliitly. By analogy with eq. (I.8), we

denote the determinant restrited to modes with momenta below Λ by detΛ, and

similarly we write TrΛ for the orresponding trae.

As a onsisteny hek we an hoose O in eq. (I.8) to be M2
times the identity.

Then the exponent amounts to −1
2〈ϕ,ϕ〉 with the inner produt 〈·, ·〉 de�ned above,

so the funtional integral beomes

∫
dµNM [ϕ] exp

(
− 1

2〈ϕ,ϕ〉
)
= det

−1/2
N (1) = 1, as

it should be [126℄.

Finally, let us omment on the ase where the exponent in the funtional integral

ontains terms of higher than quadrati order in ϕ. In antiipation of our alulation

in the subsequent setion, we onsider integrals of the type∫
DΛϕ exp

{
−1

2

∫√
g ϕAϕ+

∫√
g BΛ−1ϕ3 +

∫√
g CΛ−2ϕ4 +O(Λ−3)

}
, where the op-

erators A, B and C are of the order Λ0
at large uto� sales. Without further re-

stritions, this has no well-behaved UV limit. The issue an be illustrated by means

of the usual integral

∫∞
−∞ dx exp

{
−1

2ax
2 + bΛ−1x3 + cΛ−2x4 +O(Λ−3)

}
, whih is
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divergent for all values of Λ if c > 0. However, there is the possibility of restriting

the domain of integration aording to

∫∞
−∞ →

∫ L
−L and take the limit L → ∞ only

after taking the UV limit Λ → ∞. A partiularly onvenient hoie is a simulta-

neous limit beause this method involves taking only one limit e�etively, namely

Λ → ∞. The idea is to set L = 4
√

Λ/M , where the 4th root is essentially hosen in

order to ahieve onvergene of the integral under onsideration. Then we �nd that

∫ 4
√

Λ/M

− 4
√

Λ/M
dx exp

{
−1

2ax
2 + bΛ−1x3 + cΛ−2x4 +O(Λ−3)

}
remains �nite as Λ → ∞

for all b and c if a > 0, and the result is independent of the x3-, x4- and higher

order terms in the exponent. The same an be done for the funtional integral. This

justi�es the modi�ed de�nition

∫
DΛϕ ≡ (2π)−N(Λ)/2

N(Λ)∏

n=1

∫ 4
√

Λ/M

− 4
√

Λ/M
dan , with N(Λ) ≡ Λ/M . (I.10)

With this de�nition, all higher (than quadrati) order terms in the exponent in the

funtional integral an be dropped provided that these terms are aompanied by an

appropriate power of Λ. We obtain the result

∫
DΛϕ e−

1
2

∫√
g ϕAϕ+

∫√
g BΛ−1ϕ3+

∫√
g CΛ−2ϕ4+O(Λ−3)

=

∫
DΛϕ e−

1
2

∫√
g ϕAϕ = det

− 1
2

Λ

(
A/M2

)
,

(I.11)

when the limit Λ → ∞ is taken. Again, for large Λ all sale dependene of the terms

in the exponent on the LHS is stated expliitly, i.e. we assume that A, B and C are

of the order Λ0
in the limit.

In onlusion, we have seen that both the funtional measure and exponents in the

integral, in partiular any bare ation, depend on a free parameter M . Therefore, we

expet this parameter to enter the reonstrution formula for the bare ation as well.

3

As a �nal remark we would like to point out that the arguments presented above

are valid for salar �elds, but they an easily be extended to arbitrary �elds suh

as the metri �utuations by de�ning a suitable inner produt in the orresponding

�eld spae and by orretly taking into aount all mass dimensions. Clearly, sine

we an have di�erent �eld types with di�erent mass dimensions in general, we an

think of ϕ in eq. (I.11) as a vetor with one omponent for eah �eld type, and the

real number M−2
on the RHS of (I.11) must be replaed by a blok diagonal matrix,

say N−1
, whose diagonal entries read M−α

. Here, α is adapted to the assoiated

�eld type, e.g. α = 2 for salars and α = d for gravitons.

3

Note that in our approah to gravity the details of the regularization depend on the bakground

metri ḡµν sine high momentummodes are ut o� with respet to the bakground Laplaian �̄. As

a onsequene, funtional integrals and determinants exhibit a bakground dependene, too, before

the UV limit Λ → ∞ is taken. This an be made expliit by writing detΛ(·) ≡ det
[

(·)Θ(Λ + �̄)
]

.

In the limit Λ → ∞ this additional soure of bakground dependene is absent.
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I.2 The reonstrution formula

I.2.1 Derivation of the one-loop reonstrution formula

The following derivation is based on and extends the one of Ref. [31℄. Aording to

the arguments of Chapter 7, the e�etive average ation Γk,Λ is determined by the

de�ning funtional integral

exp
{
−1

~
Γk,Λ[φ]

}
=

∫
DΛf exp

{
1
~

(
−SΛ[φ+ f ] +

∫ δΓk,Λ[φ]
δφ f − 1

2

∫ √
g fRkf

)}

≡
∫

DΛf exp
{
−1

~
S
tot

[f ;φ]
}
, (I.12)

with the bare ation SΛ, the funtional measure DΛf as de�ned in Setion I.1, and

the total ation

S
tot

[f ;φ] ≡ SΛ[φ+ f ]−
∫
δΓk,Λ[φ]

δφ
f +

1

2

∫ √
g fRkf . (I.13)

The bare ation SΛ depends on Λ andM , while the total ation depends on all three

sales, Λ, M and k. In the present setion we state ~ expliitly as it will serve as a

bookkeeping parameter.

In order to �solve� eq. (I.12) for the bare ation (up to one-loop level), we perform

a saddle point expansion in the integral. For that purpose, we need an extreme

value of the total ation: We de�ne f0 as a stationary point:

δS
tot

δf [f0;φ] = 0, or

equivalently,

δSΛ
δφ

[φ+ f0]−
δΓk,Λ

δφ
[φ] +

√
gRkf0 = 0 . (I.14)

The existene of suh a stationary point is guaranteed by the properties of SΛ and

Rk whih are bounded from below provided that SΛ behaves like a generi ation,

an assumption to be heked a posteriori. Now we an expand f around f0 using

the parametrization

f ≡ f0 +
√
~
M

Λ
ϕ . (I.15)

This hoie is partiularly onvenient for our subsequent expansion sine it allows

using ~ to ount loop orders and suppressing �utuations by letting Λ/M → ∞. As

the �rst variation of S
tot

vanishes at f0, we obtain the series

S
tot

[f ;φ] = S
tot

[f0;φ] + ~
M2

Λ2

1

2

∫
ϕ
δ2S

tot

δf2
[f0]ϕ+O

(
~
3/2S

(3)
tot

/Λ3
)
, (I.16)

with the seond order derivative given by

δ2S
tot

δf(x)δf(y)
[f0] =

δ2SΛ
δφ(x)δφ(y)

[φ+ f0] +
√
gRkδ(x − y) . (I.17)

We an make the natural assumption that

4

S
(2)
Λ +Rk = O(Λ2) at �xed �elds for k2 ≤ Λ2 . (I.18)

4

Note that S
(2)
Λ [φ](x, y) ≡ g−1/2(x) g−1/2(y) δ2SΛ[φ]

δφ(x)δφ(y)
, while in its representation as a di�eren-

tial operator, S
(2)
Λ [φ](x, y) ≡ g−1/2(x)

(

S
(2)
Λ [φ]

)

di�-op

δ(x − y), one of the two fators

√
g drops out

(f. Appendix B). Thus, S
(2)
Λ [φ] and Rk always our with the same power of

√
g.
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This assumption is reasonable sine Rk ∝ k2 ≤ Λ2
for all standard regulators, and

S
(2)
Λ [φ] = O(Λ2) is usually satis�ed by any standard ation as an be seen by dimen-

sional analysis. Thus, we �nd that δ2S
tot

/δf2 is at most of order O(Λ2). In turn,

this holds true for higher order derivatives as well, i.e. δ3S
tot

/δf3, δ4S
tot

/δf4, · · · =
O(Λ2). In the expansion (I.16) any higher order term involving δnS

tot

/δfn[f0] goes

along with the fator ~
n/2Mn

Λn ϕ
n
, so their ombination is of the order O(~n/2/Λn−2).

Therefore, the remainder in (I.16) an be replaed aording to

O
(
~
3/2S

(3)
tot

/Λ3
)
= O

(
~
3/2/Λ

)
. (I.19)

By our argument at the end of Setion I.1, these higher order terms whih ontribute

to the exponent in the path integral by Λ−1ϕ3
, Λ−2ϕ4

, et. will ultimately vanish

as Λ is sent to ∞. Hene, for large uto� sales Λ all nontrivial ontribution omes

indeed from the quadrati term in eq. (I.16).

The Jaobian indued by the hange of variables (I.15) an be written as

DΛf =
∣∣∣detΛ

(
δf
δϕ

)∣∣∣DΛϕ = detΛ

(√
~

M
Λ 1

)
DΛϕ = e

− 1
2
ln detΛ

(

~−1 Λ2

M2 1

)

DΛϕ . (I.20)

By the identity ln det(·) = Tr ln(·) we an express this as

DΛf = JΛ DΛϕ , (I.21)

with the Jaobian JΛ de�ned by

JΛ ≡ e
− 1

2
TrΛ ln

(

~−1 Λ2

M2 1

)

. (I.22)

Note that JΛ is independent of ϕ (or f ) and an be pulled out of the path integral,

giving rise to an additional fator. Furthermore, sine TrΛ ln
(
~
−1 Λ2

M21

)
is stritly

monotonially inreasing for inreasing ratio Λ/M , we �nd that JΛ is bounded in

the UV regime, and thus the large uto� limit exists.

Combining (I.12) with (I.16) and (I.21) yields

e−
1
~
Γk,Λ[φ] = JΛ e−

1
~
S
tot

[f0;φ]

∫
DΛϕ e

− 1
2

M2

Λ2

∫√
g ϕ

(

S
(2)
Λ [φ+f0]+Rk

)

ϕ+O(~1/2/Λ)

= JΛ e−
1
~
S
tot

[f0;φ] det
− 1

2
Λ

[
1

M2
M2

Λ2

(
S
(2)
Λ [φ+ f0] +Rk

)]
· eO(~1/2/Λ).

(I.23)

At this point we an reinsert S
tot

[f0;φ] and take the logarithm:

Γk,Λ[φ] =SΛ[φ+ f0]−
∫

δΓk,Λ

δφ f0 +
1

2

∫ √
g f0Rkf0 − ~ ln JΛ

+
~

2
TrΛ ln

[
1
Λ2

(
S
(2)
Λ [φ+ f0] +Rk

)]
+O(~3/2/Λ).

(I.24)

Expanding SΛ[φ+ f0] in terms of f0 we obtain the intermediate result

Γk,Λ[φ]− SΛ[φ] =

∫ (
δSΛ[φ]
δφ − δΓk,Λ[φ]

δφ

)
f0 +

1

2

∫ √
g f0

(
S
(2)
Λ [φ] +Rk

)
f0

+
~

2
TrΛ ln

[
1
Λ2

(
S
(2)
Λ [φ] +

∫√
g S

(3)
Λ [φ]f0 + · · ·+Rk

)]

− ~ ln JΛ +O(f30 ) +O(~3/2/Λ).

(I.25)
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Moreover, from the de�nition of f0, eq. (I.14) we derive a seond important

relation, based upon an expansion in terms of f0 again:

√
g
(
S
(2)
Λ [φ] +Rk

)
f0 =

δΓk,Λ

δφ
[φ]− δSΛ

δφ
[φ] +O(f20 ). (I.26)

Now we an ombine (I.25) and (I.26), leading to

√
g
(
S
(2)
Λ [φ] +Rk

)
f0 +O(f20 ) =

δΓk,Λ

δφ
[φ]− δSΛ

δφ
[φ]

=

∫ √
g
(
S
(2)
Λ [φ]− Γ

(2)
k,Λ[φ]

)
f0 +

∫ (
δSΛ
δφ − δΓk,Λ

δφ

)
δf0
δφ

+

∫ √
g δf0

δφ

(
S
(2)
Λ [φ] +Rk

)
f0 −

δ

δφ

(
~ ln JΛ

)

+
~

2

δ

δφ
TrΛ ln

[
1
Λ2

(
S
(2)
Λ [φ] +

∫ √
g S

(3)
Λ [φ]f0 +O(f20 ) +Rk

)]

+O(f20 ) + ~O(δf0/δφ) +O(~3/2/Λ).

(I.27)

From this expression we an draw an important onlusion: We observe that eah

term in eq. (I.27) is proportional to f0 and/or ~ and/or δf0/δφ. Furthermore, there

are terms that involve f0 but no fator ~ and vie versa. Hene, f0 must be of the

order ~, and ~ must be of the order f0,

f0 = 0 +O(~) and ~ = 0 +O(f0). (I.28)

Consequently, we have O(f20 ) = O(~2), ~O(f0) = O(~2) and ~O(δf0/δφ) = O(~2)

in eq. (I.27). Inserting relation (I.28) into (I.25) we �nd

Γk,Λ[φ]− SΛ[φ] = O(~). (I.29)

With this result, we onlude that the �rst term on the RHS of (I.25) is in fat of

order O(~2). Colleting all terms up to linear order in ~ and using (I.22), we arrive

at our �nal result:

Γk,Λ[φ]− SΛ[φ] =
~

2
TrΛ ln

[
1
Λ2

(
S
(2)
Λ [φ] +Rk

)]
− ~ ln JΛ +O(~3/2/Λ) +O(~2)

=
~

2
TrΛ ln

[
1

~M2

(
S
(2)
Λ [φ] +Rk

)]
+O(~3/2/Λ) +O(~2).

(I.30)

In the large uto� limit all terms of order O(~3/2/Λ) vanish, and the order O(~2)

represents seond and higher loop ontributions. At one-loop level, setting ~ = 1,

we obtain the reonstrution formula

Γk,Λ[φ] = SΛ[φ] +
1

2
TrΛ ln

[
1

M2

(
S
(2)
Λ [φ] +Rk

)]
. (I.31)

As we have already pointed out at the end of Setion I.1, our onsideration an

be generalized to arbitrary �elds in a straightforward way by taking into aount the
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anonial mass dimensions of all �elds involved. Let N be the blok diagonal matrix

whih ontains for eah �eld the parameter M raised to the orresponding power.

For instane, its entry in the graviton setor equals Md
, while it is M2

in the ghost

setor as well as for salar �elds. With this matrix, (I.31) extends to

Γk,Λ = SΛ +
1

2
STrΛ ln

[
N−1

(
S
(2)
Λ +Rk

)]
. (I.32)

For ompleteness we simplify eq. (I.27) by observing that the φ-derivative of the

�eld independent Jaobian JΛ vanishes and by ombining all irrelevant orders. This

yields

√
g
(
S
(2)
Λ [φ] +Rk

)
f0 +O(f20 ) =

~

2

δ

δφ
TrΛ ln

[
1
Λ2

(
S
(2)
Λ [φ] +Rk

)]
+O(~3/2/Λ),

(I.33)

a relation that is used in the next subsetion to study the limit Λ → ∞.

I.2.2 Exatness beyond one-loop in the large uto� limit

The identity (I.32) derived in the previous subsetion is inherently one-loop exat.

In what follows we would like to investigate whether or not this one-loop relation

atually beomes fully exat one the limit Λ → ∞ is taken. In order to answer this

question we will deompose (I.32) into di�erent types of terms. We will then see that

the reonstrution formula is indeed fully exat in the large uto� limit for ertain

terms, while we must settle for one-loop exatness for the remaining terms.

As usual, we assume that there is a set of basis funtionals {Pα[·]} whih an

be used to expand elements of theory spae. In partiular, the e�etive average

ation an be written as Γk,Λ[φ] =
∑

α cα(k,Λ)Pα[φ] where cα(k,Λ) are the running

ouplings. In this regard we an expand the RHS of eq. (I.32), too, in terms of basis

funtionals. The question onerning exatness beyond one-loop level an then be

approahed for eah term separately.

The starting point is provided by eq. (I.33), an intermediate result of the previous

subsetion whih ultimately led to (I.32), and whih an be written as

(
S
(2)
Λ [φ] +Rk

)
f0 +O(f20 ) =

~

2

1√
g

δ

δφ
TrΛ ln

[
1
Λ2

(
S
(2)
Λ [φ] +Rk

)]
+O(~3/2/Λ).

(I.34)

In this equation the variation

1√
g

δ
δφ an be pulled into the trae now. Note that the

relation δ ln(A) = A−1δA, valid for pure numbers, does not hold true for a general

operator A and an arbitrary variation δA sine A and δA do not ommute in general.

Due to the yliity of the trae, however, the traed version of this identify remains

valid also for operators: Tr
[
δ ln(A)

]
= Tr

[
A−1δA

]
. Applying this to (I.34) yields

(
S
(2)
Λ [φ] +Rk

)
f0 +O(f20 ) =

~

2
TrΛ

[
S
(3)
Λ [φ]

S
(2)
Λ [φ] +Rk

]
+O(~3/2/Λ). (I.35)
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The asymptoti behavior of S
(3)
Λ [φ] at large Λ is at most of the same order as the

one of S
(2)
Λ [φ]. Thus, the argument of the trae on the RHS of (I.35) remains �nite

in the limit Λ → ∞ at �xed φ.

In general, S
(2)
Λ [φ] + Rk is a funtion of −� plus φ-dependent terms. Hene,

when expanding

(
S
(2)
Λ [φ] +Rk

)−1
in terms of φ we must take into aount that the

Laplaian ommuted to the rightmost position in eah term gives rise to additional

derivative terms proportional to Dµφ, �φ, et. Taking all terms together, we an

write symbolially:

S
(3)
Λ [φ]

S
(2)
Λ [φ] +Rk

=
∑

i

Vi
(
φ,Dµφ, · · · ; Λ)Wi(−�,Dµ, · · · ; Λ), (I.36)

with some funtions Vi and Wi that do not have to be spei�ed in more detail here;

for our argument it su�es to know that their ombination as in (I.36) remains

�nite in the limit Λ → ∞. We insert this expression into the trae in eq. (I.35) now.

Realling that TrΛ
[
(·)
]
≡ Tr

[
(·)θ(Λ2 +�)

]
we obtain

(
S
(2)
Λ [φ] +Rk

)
f0 +O(f20 ) =

~

2
Tr
[
(�nite) θ(Λ2 +�)

]
+O(~3/2/Λ). (I.37)

If �(�nite)� in (I.37) were a pure number, say c, the trae ould be determined

by making use of eq. (C.12) of Appendix C, with the generalized Mellin transforms

(C.10), giving rise to

Tr
[
c θ(Λ2 +�)

]

= c
(

1
4π

)d/2
tr(1)

{
1

Γ(d/2+1)Λ
d

∫ √
g + 1

6
1

Γ(d/2)Λ
d−2

∫ √
g R+O(R2)

}
,

(I.38)

where the terms of the order R2
, R4

, et. are aompanied with fators Λd−4
, Λd−6

,

and so forth, respetively, so provided that d ≤ 4 these terms remain �nite in the

limit Λ → ∞.

However, the term �(�nite)� in (I.37) ontains funtions of � and φ in general.

This modi�es the result (I.38) in that the oe�ients of

∫√
g,
∫√

g R, et. are no

longer onstant but rather funtions of φ(x), �φ(x) and further derivative terms.

The important point is that the asymptoti behavior for large Λ remains unaltered

for the various terms in the heat kernel series. As a result, we �nd

TrΛ

[
S
(3)
Λ [φ]

S
(2)
Λ [φ] +Rk

]
= �nite+Λd

∫ √
g F0(φ,Dµφ, ...) +Λd−2

∫ √
g F1(φ,Dµφ, ...)R.

(I.39)

Here F0 and F1 are �nite salar densities that do not have to be determined in detail

to advane our argument.

5

The only information we need at this point is that they

do not ontain any urvature terms.

5

More preisely, F0 and F1 are salar densities of weight −1 w.r.t. the point x and salar densities
of weight 0 w.r.t. the integration variable, say y. The additional appearane of the metri determi-

nant, 1/
√

g(x), stems from the LHS of eq. (I.39) sine S
(3)
Λ [φ] is de�ned as 1/

√

g(x) δ
δφ(x)

S
(2)
Λ [φ].
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It is known that

∫√
g,
∫√

g R,
∫√

g R2
, et., are linearly independent basis fun-

tionals in a pure metri gravity theory spae [266℄. Thus, we an make the plausible

assumption that

∫√
g F0(φ,Dµφ, ...),

∫√
g RF1(φ,Dµφ, ...),

∫√
g R2 F2(φ,Dµφ, ...),

et., are linearly independent, too. In this regard it is possible to projet any fun-

tional onto the orthogonal omplement to all funtionals of the type

∫√
g (·) and∫√

g R (·), i.e. we �projet away� the divergent terms aording to eq. (I.39). Hene-

forth we denote suh a projetion by Pr⊥(
√
g,
√
gR). Its appliation to eq. (I.39) yields

Pr⊥(
√
g,
√
gR)

{
TrΛ

[
S
(3)
Λ [φ]

S
(2)
Λ [φ] +Rk

]}
= �nite. (I.40)

Thus, by means of eq. (I.35) we obtain

Pr⊥(
√
g,
√
gR)

{(
S
(2)
Λ [φ] +Rk

)
f0 +O(f20 )

}
= �nite. (I.41)

At this point it is onvenient to identify the sales k and Λ suh that a simulta-

neous limit k = Λ → ∞ an be onsidered. We now assume that

(
S
(2)
Λ [φ] +RΛ

)
is

of the order Λ2
. Therefore, apart from those terms that are �projeted away� in eq.

(I.41), we an onlude that f0 is of the order Λ
−2

or lower. Using in addition that

f0 ∝ ~ we may reexpress it as

f0 = ~
M2

Λ2
f̃0 , (I.42)

where f̃0 = O(~0) and limΛ→∞ f̃0 = �nite, bearing in mind that this result holds

true only for the �projeted version� of f0 .

This ruial result an be used to simplify eq. (I.25) of the previous subsetion:

Sine

(
S
(2)
Λ [φ] +RΛ

)
f0 is �nite upon projetion, the term f0

(
S
(2)
Λ [φ] +RΛ

)
f0 ap-

proahes 0 in the limit Λ → ∞. Furthermore, all higher order terms in the trae on

the RHS of (I.25),

∫
f0 S

(3)
Λ [φ], et., remain �nite for large Λ, and with the prefator

1/Λ2
these terms vanish as Λ → ∞. Thus, for large Λ eq. (I.25) redues to

ΓΛ,Λ[φ]− SΛ[φ] = ~M2

∫
f̃0

1

Λ2

δ

δφ

(
SΛ[φ]− ΓΛ,Λ[φ]

)

+
~

2
TrΛ ln

[
1

~M2

(
S
(2)
Λ [φ] +RΛ

)]
,

(I.43)

up to the terms that have been projeted away. To proeed with this expression, let

us denote the asymptoti behavior of ΓΛ,Λ[φ]−SΛ[φ] at high uto� sales Λ by A(Λ),

i.e. for the quotient we have limΛ→∞
(
ΓΛ,Λ[φ]−SΛ[φ]

)
/A(Λ) = �nite. Dividing (I.43)

by A(Λ) we observe that the �rst term on the RHS vanishes in the limit Λ → ∞
sine

∫
f̃0

1
Λ2

δ
δφ

SΛ[φ]−ΓΛ,Λ[φ]
A(Λ) →

(
1
Λ2 · �nite

)
after having applied the projetion as

above. Hene, all nonvanishing ontributions to the RHS of (I.43) must stem from

the trae part:

1

A(Λ)

~

2
TrΛ ln

[
1

~M2

(
S
(2)
Λ [φ] +RΛ

)]
= �nite, (I.44)
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so this trae term must have the same asymptoti behavior as ΓΛ,Λ[φ] − SΛ[φ]. In

onlusion, the �rst term on the RHS of (I.43) an be dropped at large Λ sine

it beomes small ompared with the other ones. Writing the projetion expliitly

again, we arrive at our �nal result:

Pr⊥(
√
g,
√
gR)

{
ΓΛ,Λ − SΛ

}
= Pr⊥(

√
g,
√
gR)

{
~

2 TrΛ ln
[

1
~M2

(
S
(2)
Λ +RΛ

)]}
. (I.45)

Remarkably enough, this identity is exat in the limit Λ → ∞, that is, it is not a

one-loop approximation. The meaning of (I.45) is the following: One we projet

onto the orthogonal omplement to all

√
g- and

√
gR-terms, the one-loop equation

ΓΛ,Λ − SΛ = ~

2 TrΛ ln
[

1
~M2 (S

(2)
Λ +RΛ)

]
turns into an exat equation in the limit of

large uto� sales.

As in the previous subsetion, the result an be extended beyond salar �eld

level. For general �elds the fator M−2
in eq. (I.45) must be replaed by N−1

as in

(I.32), and the trae beomes a supertrae.

We would like to point out another interesting result: Among the divergent terms

in eq. (I.39) the ones involving R assume a speial role in that they beome atually

�nite in d = 2 dimensions. Therefore, in 2 dimensions we have to �projet away�

only the

√
g-terms in order to ahieve exatness of the reonstrution formula in the

limit Λ → ∞.



J
On the onvergene of higher

order ouplings when the bare

potential is a series of exponentials

This appendix supplements the disussion in Setion 9.3 whih onerned reon-

struting the bare ation for a Liouville-type e�etive average ation. The trunation

ansatz for the bare ation inluded a potential term onsisting of a series of exponen-

tials, V̌ (φ) = 1
2Λ

2
∑N

max

n=1 γ̌n e
2nφ

. A numerial reonstrution of the bare ouplings

indiated that the γ̌n derease approximately exponentially for inreasing n. In what

follows, we present an argument that supports the onvergene onjeture. Although

most steps will be proven rigorously, the appliation to the atual ouplings γ̌n relies

on a ertain assumption and a numerial omputation of initial values, rendering our

observations less onlusive. Nonetheless, our statements reveal the reason behind

the fast derease of higher order ouplings.

All numerial estimates are based on the EAA ouplings b and µ for the linear

metri parametrization (using the optimized uto�); at the end of this appendix we

brie�y mention the di�erenes the use of the exponential parametrization entails.

For onveniene we perform our analysis in terms of

an ≡ 2Ž−1n2 γ̌n , (J.1)

with Ž = −b/(8π). Then eqs. (9.36) and (9.37) an be written as

a1 = − bµ

2 + 4πŽ
, (J.2)

an =
n2

n2 + 2πŽ

n∑

k=2

∑

α∈Nn
0

|α|=k
∑

i iαi=n

(−1)k(k − 1)!

α1! · · ·αn!
aα1
1 · · · aαn−1

n−1 . (J.3)
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Let us onsider the ase where the ouplings a1, . . . , an are already known, and where

an estimate for the oupling an+1 is sought after. In order to proeed we make an

important assumption: Motivated by the fall-o� behavior of the ouplings, see Figure

9.4, we assume

ai = A e−λi
for 1 ≤ i ≤ n. (J.4)

Furthermore, we assume that the onstants A and λ satisfy

A > 0, λ > 0, and |A− 1| < 1. (J.5)

We have already notied in Se. 9.3.1 that the �rst assumption, eq. (J.4), is valid only

approximately sine there are slight deviations from an exat exponential derease.

It an be thought of as an upper bound, though. In this regard, it will be heked

numerially later on whether (J.5) is satis�ed. We will indeed determine A and λ

respeting (J.5) suh that ai ≤ A e−λi
for the �rst ouplings, see Se. J.3.

Based on assumption (J.4) we aim at proving an+1 ≤ A e−λ(n+1)
.

Our argument makes use of (a) an important ombinatorial identity, and (b) an

inequality involving A and Ž. The ombinatorial identity is given by

∑

α∈Nn
0

|α|=k
∑

i iαi=n

(k − 1)!

α1! · · ·αn!
=

1

n

(
n

k

)
, (J.6)

for k ≤ n. We will prove eq. (J.6) in Se. J.1. (To the best of our knowledge, neither

the identity itself nor its proof an be found in the literature.) The inequality reads

n2

n2 + 2πŽ

[
A+

1

n
(1−A)n − 1

n

]
≤ A, (J.7)

where n ∈ N, A > 0 and |A− 1| < 1. We show in Se. J.2 that it is satis�ed for all

n greater than some threshold value, in partiular it holds true in the limit n→ ∞.

For our setting we will determine an estimate for A numerially in Se. J.3, on the

basis of whih the inequality (J.7) is satis�ed for all n ≥ 5.

Proof of an+1 ≤ A e−λ(n+1)
assuming that (J.4) holds true.

By eq. (J.3) we have

an+1 =
(n+ 1)2

(n+ 1)2 + 2πŽ

n+1∑

k=2

∑

α∈Nn+1
0

|α|=k
∑

i iαi=n+1

(−1)k(k − 1)!

α1! · · ·αn+1!
aα1
1 · · · aαn

n . (J.8)

Now assumption (J.4) an be used to simplify the produt aα1
1 · · · aαn

n in the sum:

aα1
1 · · · aαn

n = Aα1 e−λα1 Aα2 e−2λα2 · · ·Aαn e−nλαn

= A|α|e−λ
∑

i iαi = Ak e−λ(n+1) .
(J.9)
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Thus, eq. (J.8) redues to

an+1 =
(n+ 1)2

(n+ 1)2 + 2πŽ

n+1∑

k=2

(−A)k e−λ(n+1)
∑

α∈Nn+1
0

|α|=k
∑

i iαi=n+1

(k − 1)!

α1! · · ·αn+1!
. (J.10)

At this point the inner sum on the RHS an be replaed by means of the ombinatorial

identity (J.6):

an+1 =
(n + 1)2

(n + 1)2 + 2πŽ
e−λ(n+1) 1

n+ 1

n+1∑

k=2

(
n+ 1

k

)
1(n+1)−k(−A)k , (J.11)

where we have inserted a fator 1 ≡ 1(n+1)−k
. Applying the binomial theorem to the

remaining sum,

∑n+1
k=2

(n+1
k

)
1(n+1)−k(−A)k = (1−A)n+1 − (n + 1)(−A) − 1, yields

an+1 = e−λ(n+1) (n+ 1)2

(n + 1)2 + 2πŽ

[
A+

1

n+ 1
(1−A)n+1 − 1

n+ 1

]
. (J.12)

As mentioned above and proven in Se. J.2, inequality (J.7) is valid for all n greater

than a yet to be determined threshold value. We assume here that n is already large

enough, so that the inequality holds true for n+ 1, too. Hene, the last two fators

on the RHS of (J.12) taken together are bounded from above by A, and we obtain

an+1 ≤ A e−λ(n+1) . (J.13)

This ompletes our proof. �

Sine we assumed |A− 1| < 1, f. eq. (J.5), the term (1− A)n+1
in (J.12) tends

to zero in the large n limit, and we have −1 < (1 − A)n+1 < 1 for all n. Thus, the

square braket in (J.12) satis�es [· · · ] > A − 2
n+1 . This leads to [· · · ] > 0 for all

n > 2
A − 1. Furthermore, the fator

(n+1)2

(n+1)2+2πŽ
is always positive. Combining these

results, eq. (J.12) yields a seond estimate:

an+1 > 0. (J.14)

Moreover, onsidered the fat that the fration and the square braket in (J.12) in

the limit n → ∞ satisfy

(n+1)2

(n+1)2+2πŽ
→ 1 and

[
A+ 1

n+1(1−A)n+1 − 1
n+1

]
→ A,

respetively, we onlude that an+1 lies lose to the upper bound given by eq. (J.13),

i.e. an+1 ≈ A e−λ(n+1)
, provided that n is su�iently large and that (J.4) is given.

Remarks: The above argument mimis a proof by indution. If we had obtained

an+1 = A e−λ(n+1)
instead of (J.13), we ould have onluded immediately that all

ouplings are given by the same exponential law, so that an → 0 exponentially for

n → 0. However, we have only obtained an inequality for an+1. Therefore, the

indutive hain is interrupted when going to n + 2 sine (J.4) might no longer be
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satis�ed for i = 1, . . . , n+1, and onvergene of the ouplings annot be proven this

way.

1

Nonetheless, (J.13) means that an exponential derease of the �rst n ouplings

leads to the same or an even larger fall-o� for an+1, whih strongly suggests that the

ouplings do in fat onverge.

J.1 Proof of the ombinatorial identity

In this setion we would like to prove the ombinatorial identity (J.6). It involves a

sum over a multi-index α ∈ N
n
0 whose absolute value is �xed by |α| ≡∑i αi = k and

whih satis�es the additional onstraint

∑
i iαi = n. These two onstraints redue

the number of possible terms onsiderably and turn the sum into a ombinatorial

problem. To the best of our knowledge, the identity has not yet been mentioned in

the literature, so we present a detailed proof here.

Prior to this, let us onsider an example of the sum in order to understand how

it is omputed: Let n = 4 and k = 2. Then the only possible multi-indies α ∈ N
4
0

whose absolute value equals 2 are given by (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0),

(0, 1, 0, 1), (0, 0, 1, 1), (2, 0, 0, 0), (0, 2, 0, 0), (0, 0, 2, 0) and (0, 0, 0, 2). Among these

vetors there are only two that satisfy

∑
i iαi = 4, namely (1, 0, 1, 0) and (0, 2, 0, 0).

Hene, in this ase the LHS of eq. (J.6) is given by

1!

1! 0! 1! 0!
+

1!

0! 2! 0! 0!
= 1 +

1

2
=

3

2
. (J.15)

The RHS of (J.6) gives

1
4

(4
2

)
= 1

4
4!
2! 2! =

3
2 , too, so the identity is satis�ed.

Proof of (J.6).

It is shown that the RHS and the LHS of (J.6) satisfy the same reurrene relation

and the same initial onditions.

We de�ne

Ωn,k ≡
∑

α∈Nn
0

|α|=k
∑

i iαi=n

1

α1! · · ·αn!
. (J.16)

Sine the multi-index is restrited by |α| = k, its omponents are less than or at

most equal to k, and we an think of the multi-sum as n sums,

∑k
α1=0 · · ·

∑k
αn=0 ,

where the αi's are still subjeted to the two onstraints. Now we split o� the �rst

1

Relaxing the assumption in (J.4) by requiring ai ≤ A e−λi
for 1 ≤ i ≤ n is not an option. The

onlusion (J.13) would no longer be admissible. This is due to the fat that there is an alternating

sign, (−1)k, in the sum in eq. (J.8), whih prevents us from estimating the sum of all terms by

means of an inequality.

Moreover, trying to �nd a similar statement as (J.13) with ai and an+1 replaed by their absolute

values in (J.4) and (J.13), respetively, does not work either: In this ase, (1 − A)n+1
in (J.12) is

substituted by (1 + |A|)n+1
whih is divergent in the large n limit.
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sum and shift the remaining indies. We obtain

Ωn,k =
k∑

α1=0

1

α1!

∑

α2

· · ·
∑

αn
∑n

i=1 αi=k
∑n

i=1 iαi=n

1

α2! · · ·αn!
=

k∑

j=0

1

j!

∑

α2

· · ·
∑

αn
∑n

i=2 αi=k−j
∑n

i=2 iαi=n−j

1

α2! · · ·αn!
, (J.17)

where we have relabeled α1 by j. De�ning α̃i ≡ αi+1 we an write (J.17) as

Ωn,k =

k∑

j=0

1

j!

∑

α̃1

· · ·
∑

α̃n−1
∑n−1

i=1 α̃i=k−j
∑n−1

i=1 iα̃i=n−k

1

α̃1! · · · α̃n−1!
. (J.18)

The seond onstraint under the sums in (J.18) has been obtained by rearranging

its ounterpart on the RHS of eq. (J.17),

∑n
i=2 iαi = n− j, as follows:

n−j =
n∑

i=2

iαi =

n∑

i=2

iα̃i−1 =

n−1∑

i=1

(i+1)α̃i =

n−1∑

i=1

iα̃i+

n−1∑

i=1

α̃i =

n−1∑

i=1

iα̃i+k−j, (J.19)

leading to

∑n−1
i=1 iα̃i = n − k. In fat, this onstraint ditates that all α̃i with

i > n− k must vanish. Therefore, we an onsider the multi-index α̃ as an element

of N
n−k
0 e�etively rather than N

n−1
0 , and the two onstraints in (J.18) amount to∑n−k

i=1 α̃i = k − j and
∑n−k

i=1 iα̃i = n − k. This enables us to identify the α̃-sums in

(J.18) with Ωn−k,k−j. As a result we �nd the reurrene relation

Ωn,k =

k∑

j=0

1

j!
Ωn−k,k−j . (J.20)

Furthermore, we have the initial values

(i) Ωn,n =
1

n!
, (ii) Ωn,k = 0 for k > n, (iii) Ωn,0 = 0. (J.21)

These equations an be shown as follows.

(i) Setting k = n in (J.16) we notie that the only possible multi-index α satisfying

both onstraints is the one with α1 = n and α2 = · · · = αn = 0. Thus, the main

sum over α onsists of one term only: Ωn,n = 1
n! 0!···0! =

1
n! .

(ii) The onstraints imply n =
∑

i iαi ≥
∑

i αi = k, so for k > n the main sum over

α ontains no term at all and amounts to zero.

(iii) For k = 0 the onstraint

∑
i αi = k fores all αi to vanish. In that ase, the

onstraint

∑
i iαi = n an not be satis�ed sine n ≥ 1, and so the main sum over α

ontains no term either.

Next, we de�ne

Ψn,k ≡ 1

(k − 1)!

1

n

(
n

k

)
=

1

k!

(
n− 1

k − 1

)
, (J.22)
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for n ≥ k ≥ 1, as well as

Ψn,k ≡ 0 for k > n and Ψn,0 ≡ 0 . (J.23)

With regard to eq. (J.6), we have to prove Ωn,k = Ψn,k. For that purpose it su�es

to show that Ωn,k and Ψn,k satisfy the same reurrene relation and the same initial

onditions. (By means of eq. (J.20), all Ωn,k's an be expressed in terms of the

initial values. This statement would hold true for Ψn,k, too, if we found the same

reurrene relation and initial onditions.) Using (J.22) we have

k∑

j=0

1

j!
Ψn−k,k−j =

k−1∑

j=0

(n − k)!

j! (k − j − 1)! (n − k) (k − j)! (n − 2k + j)!

=

k−1∑

j=0

1

k!

k!

j! (k − j)!

(n − k − 1)!

(k − j − 1)! [(n − k − 1)− (k − j − 1)]!

=
1

k!

k−1∑

j=0

(
k

j

)(
n− k − 1

k − 1− j

)
(∗)
=

1

k!

(
k + n− k − 1

k − 1

)
=

1

k!

(
n− 1

k − 1

)

= Ψn,k .

(J.24)

In (J.24) the equality labeled by (∗) makes use of Vandermonde's identity whih is

given by

(
m+n
r

)
=
∑r

i=0

(
m
i

)(
n

r−i

)
for m,n, r ∈ N0. Thus, Ψn,k indeed satis�es the

same reurrene relation as Ωn,k.

Finally, we onvine ourselves of the validity of the initial onditions: With

Ψn,n = 1
n!

(
n−1
n−1

)
= 1

n! and with the de�nitions in (J.23) we have in fat the same

initial values for Ψn,k as the ones for Ωn,k .

In onlusion, Ψn,k and Ωn,k satisfy the same reurrene relation and the same

initial onditions, so Ωn,k = Ψn,k. This proves the ombinatorial identity (J.6). �

J.2 Proof of the inequality

In this setion we will prove that inequality (J.7) is satis�ed for all n greater than a

ertain threshold value whih is to be determined. As |1 − A| < 1 by assumption,

we an make use of

(1−A)n < 1 ∀n ∈ N. (J.25)

• The ase Ž ≥ 0. In this ase the statement is obvious sine, �rst,

n2

n2+2πŽ
≤ 1,

and seond,

1
n(1 − A)n − 1

n < 0, by eq. (J.25). Thus, (J.7) is satis�ed for all

n ∈ N without further ado.

• The ase Ž < 0. This is the interesting ase sine in our analysis in Setion 9.3

we have Ž < 0 for either parametrization. We want to determine a threshold

value n
tr

suh that (J.7) is satis�ed for all n > n
tr

. Sine the fator

n2

n2+2πŽ

has a pole at n =
√

−2πŽ, our �rst requirement for the threshold value is
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n > n
tr

≥
√

−2πŽ. Unlike the ase Ž ≥ 0, here the problem whih hampers a

straightforward estimate in (J.7) arises from the di�erent behavior of the two

fators,

n2

n2 + 2πŽ︸ ︷︷ ︸
≥1

[
A+

1

n
(1−A)n − 1

n

]

︸ ︷︷ ︸
≤A

, (J.26)

so the produt is not less than or equal to A for all n. Hene, a more areful

argument is required. Subtrating (J.26) from A yields

A− n2

n2+2πŽ

[
A+ 1

n(1−A)n − 1
n

]
= n

n2+2πŽ

[
2πŽA

n − (1−A)n + 1
]
, (J.27)

and showing that this expression is greater than zero is equivalent to proving

(J.7). As we required n >
√

−2πŽ, n ∈ N, we have

n
n2+2πŽ

> 0, so it remains

to be shown that

2πŽA

n
− (1−A)n + 1

!
> 0. (J.28)

The idea is to determine threshold values with respet to n for the �rst two

terms separately, suh that both 2πŽA 1
n > −1

2 and −(1−A)n > −1
2 .

For the �rst term in (J.28) we require n > −4πŽA. Then rearranging yields

indeed 2πŽA 1
n > −1

2 .

Regarding the seond term, we di�erentiate between A = 1 and A 6= 1. For

A = 1, obviously −(1 − A)n = 0 > −1
2 without further onditions on n. For

A 6= 1 we require n > − ln(2)
ln |1−A| . This is equivalent to |1 − A|n < 1

2 , whih

implies (1−A)n < 1
2 .

Taking all requirements together we an de�ne the threshold value now:

n
tr

≡ max

(√
−2πŽ, −4πŽA, − ln(2)

ln |1−A|

)
, (J.29)

for A 6= 1, and n
tr

≡ max
(√

−2πŽ, −4πŽA
)
for A = 1. Then we �nd

2πŽA

n
− (1−A)n + 1 > −1

2
− 1

2
+ 1 = 0 ∀n > n

tr

. (J.30)

As a onsequene, we obtain the desired inequality,

n2

n2 + 2πŽ

[
A+

1

n
(1−A)n − 1

n

]
≤ A ∀n > n

tr

, (J.31)

where the �=�-ase inluded in �≤� applies to n→ ∞ only. �

J.3 Numerial hek of initial onditions

Finally, we would like to hek if and to what extent the �rst ouplings obtained by

numerial omputation satisfy assumption (J.4). If they do, at least approximately,



278 Appendix J. On the onvergene of higher order Liouville ouplings

we have to make sure that the orresponding values of A and λ meet the onditions

(J.5). Furthermore, we want to determine the threshold value n
tr

beyond whih

(J.31) holds true. It should be a value that is easily aessible by our numerial

analysis; otherwise the above proofs would be pointless.

We use the results of Setion 9.3.1, more preisely, the bare ouplings γ̌n alu-

lated on the basis of the EAA ouplings b and µ for the linear metri parametrization

(b = 38/3, µ = 0.1579), see Figure 9.4. By eq. (J.1) we express those ouplings in

terms of an, i.e. we determine an for n = 1, . . . , 48.

Figure J.1 shows the �rst 10 ouplings an, n = 1, . . . , 10. We �nd that their fall-

o� behavior for inreasing n is not exatly given by a straight line in the logarithmi

diagram, so the assumed exponential derease is observed only at an approximate

level, an ≈ A e−λn
. Although laking an exat relation, we might determine an upper

bound for an in terms of A and λ suh that

an ≤ A e−λn . (J.32)

For this purpose we proeed as follows. We �t a linear funtion of the type f(n) =

c1n+ c0 to the set of points (n, ln an) for n = 2, . . . , 10.2 The result reads

f(n) = −0.477n + 0.350 . (J.33)

Then we shift this funtion slightly upwards, f(n) → f̃(n) = f(n) + c̃, suh that

ln an ≤ f̃(n) for all n = 1, . . . , 10, yielding an upper bound for ln an. Here we �nd

that c̃ = 0.1 is a su�iently large shift. Exponentiating f̃(n) �nally leads to the

desired bound for an. Based on the �tting data (J.33) we obtain

A = 1.568 and λ = 0.477 , (J.34)

suh that an ≤ A e−λn
is indeed satis�ed for the �rst 10 ouplings. This upper bound

is shown in Figure J.1 as well.

Remarkably enough, the values in (J.34) meet the onditions (J.5): A > 0, λ > 0

and |A− 1| < 1.

In summary, we have not been able to show that the required assumption an =

A e−λn
is stritly satis�ed for the �rst ouplings, nor did we �nd a more general

proof with relaxed and less restritive assumptions. However, we have found an

upper bound, whih atually serves as a good approximation for the ouplings at the

same time: an . A e−λn
. Taking all of the above arguments together, we olleted

strong evidene for the onvergene of the ouplings as n→ ∞.

It remains to be heked if the threshold value orresponding to inequality (J.31)

is aessible by our numerial analysis, i.e. if we an ompute all an with n ≤ n
tr

.

(Note that we have alulated the an's up to n = 48.) Previously, we have tested the

2

We exluded a1 here beause it is the only oupling among the an's whih is determined by a

di�erent formula, eq. (J.2), and beause its orresponding point in the diagram deviates stronger

from the line.
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Figure J.1 Logarithmi plot of the �rst 10 ouplings an (dark yellow points) and a line

serving as an upper bound (blue). The bound was obtained by �tting a linear funtion,

c1n+ c0, to ln(an) for n = 2, . . . , 10 and shifting it slightly upwards (c0 → c0 + 0.1).

ompatibility of the �rst 10 ouplings with the requirements for the proof of (J.13).

In this respet, it would be desirable if (J.31) were satis�ed for all n > 10.

Using the result for the threshold value, eq. (J.29), and inserting the numerially

determined parameter A, given by (J.34), we obtain

n
tr

= 9.93 . (J.35)

This remarkable result proves that (J.31) is satis�ed for all n ≥ 10, in perfet agree-

ment with our wish expressed in the previous paragraph.

We an even �nd a lower threshold value. (The one in eq. (J.29) is su�ient for

(J.31), but it has been derived by very areful estimates that might be underut.)

This possibility is illustrated in Figure J.2. It shows the values resulting from the

LHS of (J.31),

n2

n2+2πŽ

[
A+ 1

n(1−A)n − 1
n

]
, dependent on n. For omparison, the

referene value A = 1.568 is represented by the dashed horizontal line. All points in

Figure J.2 below this line, i.e. all n ≥ 5, satisfy the inequality (J.31).

At last, we would like to brie�y point out the di�erenes arising from the use of

the exponential parametrization as ompared with the above results. For the linear

parametrization all bare ouplings γ̌n are negative (all an are positive). This fat

rendered the above onsiderations possible. As we have seen in Setion 9.3.2, on the

other hand, the exponential parametrization results in a set of γ̌n haraterized by

hanging signs. Although being evenly distributed on average, these sign �utuations

seem to be irregular, see Figure 9.7. Therefore, the requirement ai = A e−λi
for all

i ≤ n with some n ∈ N, f. eq. (J.4), annot be satis�ed in this ase. Figure 9.7 rather

suggests that it is the absolute values of the ouplings that derease exponentially.

In the beginning of this appendix we have already mentioned, however, that our
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Figure J.2 Chek of inequality (J.31): The blue points show

n2

n2+2πŽ

[
A+ 1

n
(1−A)n − 1

n

]

plotted against n. The dashed horizontal line is loated at the height A. Thus, we observe
that the inequality holds true for n ≥ 5.

proofs do not appropriately generalize to a formulation in terms of absolute values.

Hene, we must rely on the numerial analysis at this point. Having said this, it

is surprising that the ouplings γ̌n and ξ̌ seem to onverge almost equally well as

observed for the linear parametrization.



K
Weyl transformation of the

funtional measure and the uto�

This appendix addresses the transformation law of the funtional measure, D[ĝ]
Λ χ,

and the uto� ontribution to the Ward identity w.r.t. Weyl split-symmetry. The

latter requires a omputation of the term

〈∫
d

2y (χ− φ)(y)
ĝµν(x)√
ĝ(x)

δ

δĝµν(x)

[(√
ĝRΛ

)
(y)
]
(χ− φ)(y)

〉
. (K.1)

We will simplify this expression for general regulators in Setion K.2 and evaluate it

expliitly for the optimized uto� in Setion K.3. These onsiderations supplement

the disussion of Weyl split-symmetry transformations and Ward identities ontained

in Setion 9.6.

K.1 Weyl transformation of the funtional measure

Sine the measure de�ned in Appendix I.1 is translational invariant, the hange χ→
χ′ = χ − σ leaves it unaltered, D[ĝ]

Λ χ
′ = D[ĝ]

Λ χ. Thus, it remains to be investigated

how the measure transforms under Weyl transformations, ĝµν → ĝ′µν , with

ĝ′µν = e2σ ĝµν . (K.2)

For that purpose, we de�ne the two funtionals

Ŝ[χ] =
1

2

∫
d

2x
√
ĝ χ
(
− �̂

)
χ , Ŝ′[χ] =

1

2

∫
d

2x
√
ĝ ′ χ

(
− �̂′)χ . (K.3)

By eq. (H.14) we observe that Ŝ′ = Ŝ. For our disussion we are going to exploit

known identities for funtional integrals, the onnetion of Ŝ and Ŝ′
to the indued

gravity ation Γind, and the transformation laws of Γind onsidered in Appendix H.

We proeed in four steps.
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(1) We reall that the indued gravity ation is de�ned by

e−Γind[ĝ] ≡
∫

D[ĝ]
Λ χ e−Ŝ[χ] , (K.4)

where we use the shorthand notation Γind[ĝ] ≡ Γindk=0,Λ[ĝ].

(2) We know from Appendix H, in partiular eq. (H.30), that the transforma-

tion behavior of the �nite part of Γind[ĝ] is given by Γind[ĝ′]
∣∣
�nite

= Γind[ĝ]
∣∣
�nite

−
1

12π∆I[σ; ĝ] +
1
2 ln

(
V̂ ′/V̂

)
, where the funtional ∆I[σ; ĝ] has been de�ned in eq.

(H.23), and V̂ ≡
∫
d

2x
√
ĝ and V̂ ′ ≡

∫
d

2x
√
ĝ′ denote the respetive volume terms.

These volume terms are purely due to possible zero mode ontributions; if the Lapla-

ians do not have any zero modes, they anel eah other. As disussed in Setion

H.2, the divergent part of Γind[ĝ] depends on the underlying regularization sheme.

Regularizing the measure as in Appendies I.1 and H.1, the transformation law of

the full indued gravity ation reads

Γind[ĝ′] = Γind[ĝ]− 1

12π
∆I[σ; ĝ] +

1

2
ln

(
V̂ ′

V̂

)
− Λ2

8π

(
V̂ ′ − V̂

)
. (K.5)

Applying (K.5) to (K.4) and using Ŝ′ = Ŝ yields

∫
D[ĝ′]

Λ χ e−Ŝ′[χ] = e−∆Γind[ĝ′,ĝ]

∫
D[ĝ]

Λ χ e−Ŝ′[χ] , (K.6)

with ∆Γind[ĝ′, ĝ] ≡ − 1
12π∆I[σ; ĝ] +

1
2 ln

(
V̂ ′

V̂

)
− Λ2

8π

(
V̂ ′ − V̂

)
. From eq. (K.6) we an

read o� that the measure must transform as D[ĝ′]
Λ χ = e−∆Γind[ĝ′,ĝ]D[ĝ]

Λ χ provided that

the integrand is given by e−Ŝ′[χ]
. We would like to prove next that this relation is

atually independent of the integrand.

(3)We repeat the above integration, but we inlude an arbitrary funtional this time,

i.e. we aim at alulating

∫
D[ĝ′]

Λ χ e−Ŝ′[χ] F [χ; ĝ′]. For that purpose, we are going to

need two funtional identities. First, observe that the argument χ in F [χ; ĝ′] an be

replaed aording to

F [χ; ĝ′] = F
[

1√
ĝ′

δ
δJ ; ĝ′

]
e
∫

d

2x
√
ĝ′ J χ

∣∣∣
J=0

. (K.7)

For the seond identity, let g̃µν denote an arbitrary metri whih is merely used

to speify the measure. Then, by ompleting the square in the ensuing funtional

integral, we �nd

∫
D[g̃]

Λ χ e−Ŝ+J ·χ =

∫
D[g̃]

Λ χ e−
1
2

[
χ·(−�̂)χ−2 J ·χ

]

=

∫
D[g̃]

Λ χ e−
1
2
(χ+�̂−1J)·(−�̂)(χ+�̂−1J) e−

1
2
J ·�̂−1J

=

∫
D[g̃]

Λ χ e−
1
2
χ·(−�̂)χ e−

1
2
J ·�̂−1J = e−

1
2
J ·�̂−1J

∫
D[g̃]

Λ χ e−Ŝ ,

(K.8)

and an equivalent relation in terms of Ŝ′
is obtained by replaing �̂ with �̂′

. From the

seond to the third line we shifted the integration variable aording to χ→ χ−�̂−1J
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and exploited the translational invariane of the measure. Note that (K.8) holds for

any metri g̃µν in the measure.

(4) Combining the above results we obtain

∫
D[ĝ′]

Λ χ e−Ŝ′[χ] F [χ; ĝ′]
(K.7)

=

∫
D[ĝ′]

Λ χ e−Ŝ′[χ] F
[

1√
ĝ′

δ
δJ ; ĝ′

]
e
∫

d

2x
√
ĝ′ J χ

∣∣∣
J=0

(K.8)

= F
[

1√
ĝ′

δ
δJ ; ĝ′

]
e−

1
2

∫

d

2x
√
ĝ′ J �̂′−1J

∫
D[ĝ′]

Λ χ e−Ŝ′[χ]
∣∣∣
J=0

(K.6)

= e−∆Γind[ĝ′,ĝ] F
[

1√
ĝ′

δ
δJ ; ĝ′

]
e−

1
2

∫

d

2x
√
ĝ′ J �̂′−1J

∫
D[ĝ]

Λ χ e−Ŝ′[χ]
∣∣∣
J=0

(K.8)

= e−∆Γind[ĝ′,ĝ]

∫
D[ĝ]

Λ χ e−Ŝ′[χ] F
[

1√
ĝ′

δ
δJ ; ĝ′

]
e
∫

d

2x
√
ĝ′ J χ

∣∣∣
J=0

(K.7)

= e−∆Γind[ĝ′,ĝ]

∫
D[ĝ]

Λ χ e−Ŝ′[χ] F [χ; ĝ′], (K.9)

for an arbitrary funtional F [χ; ĝ′]. Therefore, we onlude that the measure trans-

forms as

D[ĝ′]
Λ χ = e−∆Γind[ĝ′,ĝ] D[ĝ]

Λ χ . (K.10)

The exponent of the ruial transformation fator, ∆Γind[ĝ′, ĝ], is given by

∆Γind[ĝ′, ĝ] ≡ − 1

12π
∆I[σ; ĝ] +

1

2
ln

(
V̂ ′

V̂

)
− Λ2

8π

(
V̂ ′ − V̂

)
, (K.11)

with ∆I[σ; ĝ] ≡ 1
2

∫
d

2x
√
ĝ
[
D̂µσD̂

µσ + R̂σ
]
. Again, the term

1
2 ln

(
V̂ ′/V̂

)
ours

only in the presene of zero modes.

K.2 Simpli�ation of the uto� ontribution

In this setion we reexpress the uto� ontribution to the Ward identity as it ours

in eq. (9.67),

〈 ∫
d

2y (χ − φ)(y)
ĝµν(x)√

ĝ(x)

δ
δĝµν(x)

[(√
ĝRΛ

)
(y)
]
(χ − φ)(y)

〉
, in terms

of the propagator

(
ΓLΛ

(2) + RΛ

)−1
. For this purpose, we exploit two well known

identities. First,

〈
(χ−φ)A (χ−φ)

〉
=
〈
χAχ

〉
−
〈
χ
〉
Aφ−φA

〈
χ
〉
+φAφ =

〈
χAχ

〉
−φAφ, (K.12)

and seond, we observe that a ontrated metri derivative, ĝµν
δ

δĝµν
, an be repre-

sented as a derivative with respet to σ :

δ

δσ(x)
F [e2σ ĝ]

∣∣∣
σ=0

=

∫
dy

δF [ĝ]

δĝµν(y)

δ
[
e2σ(y) ĝµν(y)

]

δσ(x)

∣∣∣∣
σ=0

=

∫
dy

δF [ĝ]

δĝµν(y)
2 e2σ(x) ĝµν(x) δ(x − y)

∣∣∣∣
σ=0

= 2 ĝµν(x)
δF [ĝ]

δĝµν(x)
.

(K.13)
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The latter relation an be used, for instane, to ompute the variation of the square

root of the metri determinant in an easy way, yielding

ĝµν(x)√
ĝ(x)

δ

δĝµν(x)

√
ĝ(y) = δ(x − y). (K.14)

In addition to that, we introdue the abbreviation

R̂Λ(x) ≡
ĝµν(x)√
ĝ(x)

δ

δĝµν(x)
RΛ , (K.15)

with RΛ ≡ RΛ[ĝµν(y)] ≡ RΛ(−�̂y) where the argument y agrees with the variable

of integration in the expression under onsideration.

Based on this groundwork we obtain

〈∫
d

2y (χ− φ)(y)
ĝµν(x)√
ĝ(x)

δ

δĝµν(x)

[(√
ĝRΛ

)
(y)
]
(χ− φ)(y)

〉

=

∫
d

2y
[〈
χ(y)RΛ χ(y)

〉
− φ(y)RΛ φ(y)

]
δ(x− y)

+

∫
d

2y
√
ĝ(y)

[〈
χ(y)R̂Λ(x)χ(y)

〉
− φ(y)R̂Λ(x)φ(y)

]

=

∫
d

2y δ(x − y)

∫
d

2z
√
ĝ(z) 1√

ĝ(z)
RΛ δ(y − z)

[〈
χ(y)χ(z)

〉
− φ(y)φ(z)

]

+

∫
d

2y
√
ĝ(y)

∫
d

2z
√
ĝ(z) 1√

ĝ(z)
R̂Λ(x) δ(y − z)

[〈
χ(y)χ(z)

〉
− φ(y)φ(z)

]

=

∫
d

2y δ(x − y)

∫
d

2z
√
ĝ(z)

(
RΛ

)
yz

(
ΓLΛ

(2) +RΛ

)−1

zy

+

∫
d

2y
√
ĝ(y)

∫
d

2z
√
ĝ(z)

[
R̂Λ(x)

]
yz

(
ΓLΛ

(2) +RΛ

)−1

zy

=

∫
d

2y δ(x − y)
[
RΛ

(
ΓLΛ

(2) +RΛ

)−1
]
yy

+

∫
d

2y
√
ĝ(y)

[
R̂Λ(x)

(
ΓLΛ

(2) +RΛ

)−1
]
yy

=
〈
x
∣∣RΛ

(
ΓLΛ

(2) +RΛ

)−1∣∣x
〉
+TrΛ

[
R̂Λ(x)

(
ΓLΛ

(2) +RΛ

)−1
]

(K.16)

Here we have employed the operator onventions disussed in Appendix B. In parti-

ular, for the third equality we have exploited that the propagator an be expressed

as

(
ΓLΛ

(2) +RΛ

)−1

xy
=
〈
χ(x)χ(y)

〉
− φ(x)φ(y).

The advantage of our result (K.16) lies in the fat that we do no longer have to

ompute any involved expetation values. The latter are replaed by the propagator,

an objet whih is obtained straightforwardly in our ase with the EAA given.

K.3 The Ward identity for the optimized uto�

Finally, we would like to evaluate the uto� terms obtained in the previous setion,〈
x
∣∣RΛ

(
ΓLΛ

(2)+RΛ

)−1∣∣x
〉
and TrΛ

[
R̂Λ(x)

(
ΓLΛ

(2)+RΛ

)−1]
, when using the optimized
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uto�, RΛ ≡ RΛ(−�̂) = ZΛ

(
Λ2+ �̂

)
θ
(
Λ2+ �̂

)
with ZΛ ≡ − b

8π . It is ruial for the

argument that

(
ΓLΛ

(2)+RΛ

)−1
beomes diagonal in its spaetime representation when

ombined withRΛ or R̂Λ(x). Diagonality of an operator O means 〈x|O|y〉 ∝ δ(x−y).
The reason why the propagator beomes diagonal is that it does no longer ontain

any di�erential operators provided that it is multiplied by a uto� term. We will

larify the details in a moment. We emphasize that this diagonality is a speial

feature of the optimized uto�; the general treatment is more involved.

The seond funtional derivative of ΓLΛ is given by ΓLΛ
(2) = ZΛ

(
− �̂+2µΛ2 e2φ

)
,

with ZΛ = − b
8π , so we have

ΓLΛ
(2) +RΛ = ZΛ

[
− �̂+ 2µΛ2 e2φ +

(
Λ2 + �̂

)
θ
(
Λ2 + �̂

)]
. (K.17)

Upon multiplying this expression by either RΛ or R̂Λ(x) we observe that the step-

funtion θ
(
Λ2 + �̂

)
ontained in both of these uto� terms e�etively suppresses all

modes with ω2/Λ2 ≥ 1, where ω2
is an eigenvalue of −�̂. For all remaining modes

the θ-funtion in (K.17) equals 1. From this we infer that

uto�×
(
ΓLΛ

(2) +RΛ

)−1
= uto�×

[
ZΛ

(
Λ2 + 2µΛ2 e2φ

)]−1
, (K.18)

where �uto�� is a plaeholder for RΛ or R̂Λ(x). Hene,

(
ΓLΛ

(2) +RΛ

)−1
is a pure

number whenever it ours in ombination with a uto� term, so it is indeed di-

agonal in x-spae. Note that, as usual, we employ the onventions for operator

representations spei�ed in Appendix B.

(1) Evaluation of TrΛ

[
R̂Λ(x)

(
ΓLΛ

(2) +RΛ

)
−1]

.

Here the trae TrΛ redues to a standard trae, Tr, sine R̂Λ already suppresses all

modes with momenta larger than Λ. Using (K.18) in addition, we obtain

TrΛ

[
R̂Λ(x)

(
ΓLΛ

(2) +RΛ

)−1
]
= Tr

[
R̂Λ(x)

(
ΓLΛ

(2) +RΛ

)−1
]

=

∫
d

2y d2z
√
ĝ(y)

√
ĝ(z)

〈
y
∣∣R̂Λ(x)

∣∣z
〉〈
z
∣∣(ΓLΛ(2) +RΛ

)−1∣∣y
〉

=

∫
d

2y d2z

[
ĝµν(x)√

ĝ(x)

δ
δĝµν(x)

(
RΛ

(
− �̂y

)
δ(y − z)

)] [
ZΛΛ

2
(
1 + 2µ e2φ

)]−1
δ(z − y),

(K.19)

where we have inserted the de�nition (K.15). Now we an separately analyze the

remaining uto� ontribution, RΛ

(
− �̂y

)
δ(y− z). For that purpose we express it in

terms of a Laplae transform:

RΛ

(
− �̂y

)
δ(y − z) =

∫ ∞

0
ds R̃Λ(s) e

s�̂δ(y − z) (K.20)

At this point we an exploit the known results onerning heat kernel expansions,

see Appendix C. Here the expansion has the form es�̂δ(y − z) =
∑

n s
nAn(y, z).

Sine there is a seond delta funtion on the very right of eq. (K.19), we an take
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the oinidene limit z → y in the heat kernel expansion.

1

This leads to signi�ant

simpli�ations, and we obtain [12, 50, 247�253℄

es�̂δ(y − z)
∣∣
z→y

=
1

4πs

√
ĝ(y)

∞∑

n=0

snan(y, y)

=
1

4πs

√
ĝ(y)

[
1 + 1

6sR̂+ 1
60s

2R̂2 + 1
30s

2�̂R̂+O(s3)
]
.

(K.21)

Furthermore, we an make use of the fat that the generalized Mellin transform

Qn[W ] � de�ned by eq. (C.10) in Appendix C � of some funtion W has an

equivalent representation in terms of the inverse Laplae transform W̃ :

Qn[W ] =

∫ ∞

0
ds W̃ (s)s−n (for all n). (K.22)

Combining (K.20), (K.21) and (K.22) we �nd

(
RΛ

(
− �̂y

)
δ(y − z)

)∣∣∣
z→y

=
1

4π

√
ĝ(y)

(
Q1[RΛ] +

1

6
R̂ Q0[RΛ] +

1

60

(
R̂2 + 2 �̂R̂

)
Q−1[RΛ] + . . .

)
,
(K.23)

where the dots refer to all terms proportional to Qn[RΛ] with n ≤ −2. For the

optimized uto�, RΛ ≡ RΛ(−�̂) = ZΛ

(
Λ2 + �̂

)
θ
(
Λ2 + �̂

)
, the generalized Mellin

transforms are omputed most easily by using eq. (C.10). They read

Qn[RΛ] =





1
Γ(n+2) ZΛΛ

2n+2
for n > −2,

0 for n ≤ −2,
(K.24)

in partiular Q1[RΛ] =
1
2ZΛΛ

4
, Q0[RΛ] = ZΛΛ

2
and Q−1[RΛ] = ZΛ. Note that the

dots in eq. (K.23) vanish identially for the optimized uto� sine Qn[RΛ] = 0 for

all n ≤ −2. Hene, the following equation is an exat identity in that ase:

(
RΛ

(
− �̂y

)
δ(y − z)

)∣∣∣
z→y

=
1

4π

√
ĝ(y)ZΛ

(
1
2Λ

4 + 1
6Λ

2 R̂+ 1
60 R̂

2 + 1
30 �̂R̂

)
.

(K.25)

This expression an be inserted into eq. (K.19) now. Then the metri derivative

ĝµν(x)√
ĝ(x)

δ
δĝµν(x)

ats on all terms on the RHS of eq. (K.25). From eq. (K.13) we already

1

Note that taking the oinidene limit, that is, letting z → y, ommutes with taking the

derivative δ/δĝµν in (K.19). There are terms proportional to the squared geodesi distane, σ(y, z),
appearing in the o�-diagonal heat kernel expansion (i.e. the expansion before taking the oinidene

limit), whih might potentially lead to nonommuting terms at �rst sight sine limz→y σ(y, z) = 0.
However, it is possible to show that

δ
δĝµν

σ(y, z) ∝ σ(y, z), and similarly for all spaetime derivatives

of σ(y, z). Hene, applying δ
δĝµν

to the expansion does not a�et whether or not ertain terms of

the expansion vanish in the oinidene limit, and so, taking

δ
δĝµν

ommutes with taking z → y.
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know that

ĝµν(x)√
ĝ(x)

δ
δĝµν(x)

√
ĝ(y) = δ(x− y), and using (K.13) yields

ĝµν(x)√
ĝ(x)

δ

δĝµν(x)

(√
ĝ(y) R̂(y)

)
= −�̂δ(x − y) , (K.26)

ĝµν(x)√
ĝ(x)

δ

δĝµν(x)

(√
ĝ(y) R̂2(y)

)
= −2 R̂ �̂δ(x− y)− R̂2δ(x− y) , (K.27)

ĝµν(x)√
ĝ(x)

δ

δĝµν(x)

(√
ĝ(y) �̂y R̂(y)

)
= −�̂

[
R̂ δ(x− y)

]
− �̂2δ(x− y) . (K.28)

By means of these relations we an �nally ompute the integrals in (K.19). After

integrating by parts all those terms with a Laplae operator �̂ ating on a delta-

funtion we obtain the result

TrΛ

[
R̂Λ(x)

(
ΓLΛ

(2) +RΛ

)−1
]

=
1

8π

{
Λ2

1 + 2µ e2φ(x)
− 1

3
�̂

[
1

1 + 2µ e2φ(x)

]

− 1

15
�̂

[
Λ−2R̂(x)

1 + 2µ e2φ(x)

]
− 1

30
R̂2(x)

Λ−2

1 + 2µ e2φ(x)

− 1

15
R̂(x) �̂

[
Λ−2

1 + 2µ e2φ(x)

]
− 1

15
�̂2

[
Λ−2

1 + 2µ e2φ(x)

]}
.

(K.29)

This is an exat relation for the optimized uto� ; there are no further higher order

terms. Note that the last two lines in (K.29) are suppressed in the limit Λ → ∞.

Moreover, we point out that there is no ontribution proportional to R̂ only. This is

ruial for a disussion onerning entral harges, see Setion 9.6.3.

(2) Evaluation of

〈
x
∣∣RΛ

(
ΓLΛ

(2) +RΛ

)
−1∣∣x

〉
.

Making use of eq. (K.18) we �nd that the propagator an be pulled out of 〈x| · |x〉:

〈
x
∣∣RΛ

(
ΓLΛ

(2) +RΛ

)−1∣∣x
〉
=
〈
x
∣∣∣RΛ

[
ZΛ

(
Λ2 + 2µΛ2 e2φ

)]−1∣∣∣x
〉

=
1

ZΛ

(
Λ2 + 2µΛ2 e2φ(x)

) 〈x
∣∣RΛ

∣∣x
〉
.

(K.30)

The term

〈
x
∣∣RΛ

∣∣x
〉
an be obtained by means of the heat kernel formalism. It is

given by

〈
x
∣∣RΛ

∣∣x
〉
=

1

4π

∞∑

n=0

Q1−n[RΛ] an(x, x), (K.31)

where the Seeley�DeWitt oe�ients an(x, x) are de�ned in App. C. The generalized

Mellin transforms have already been omputed above, see eq. (K.24): Q1−0[RΛ] =
1
2ZΛΛ

4
, Q1−1[RΛ] = ZΛΛ

2
, Q1−2[RΛ] = ZΛ and Q1−n[RΛ] = 0 for all n ≥ 3.
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Putting all piees together, we arrive at the �nal result

〈
x
∣∣RΛ

(
ΓLΛ

(2) +RΛ

)−1∣∣x
〉

=
1

8π

1

1 + 2µ e2φ(x)

{
Λ2 +

1

3
R̂(x) +

1

30
Λ−2R̂2(x) +

1

15
Λ−2�̂ R̂(x)

}
(K.32)

Again, this equation is exat for the optimized uto�. The last two terms on the

RHS of eq. (K.32) are suppressed in the limit Λ → ∞.

Unlike (K.29), eq. (K.32) ontains a small ontribution purely proportional to R̂

alone: By expanding

1
1+2µ e2φ(x)

= 1
1+2µ +O(φ) we �nd

〈
x
∣∣RΛ

(
ΓLΛ

(2) +RΛ

)−1∣∣x
〉
=

1

24π

1

1 + 2µ
R̂+ onst+O

(
φ, R̂2, �̂R̂

)
. (K.33)

For the exponential metri parametrization we have

1
1+2µ ≈ 0.774, while the linear

parametrization amounts to

1
1+2µ = 0.76. These numbers are indeed �small� sine

they appear in the Ward identity (9.68) as prefators of

1
24π R̂, so they are to be

ompared with c + 1 = 26 for the exponential parametrization (c + 1 = 20 for the

linear parametrization).
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