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FOREWORD

Humans have always observed their natural environment and tried to con-
clude the underlying mechanisms of phenomena. ¿is human behavior is the
cornerstone of physics. Physics is therefore strongly connected with the hu-
man abilities of curiosity, creativity and the ability to cooperate. ¿ose abilities
in basic forms also belong to other creatures too, but its extent is unique to
humans.
¿e curious man investigates a phenomenon from an intrinsic impulse. ¿is

intrinsic impulse is important to mention since the solutions to a problem
are sometimes not immediately advantageous. To �nd a explanation for a
phenomenon, creativity is needed.¿ose explanations are called theories in the
following. Many phenomena are too complex for an individual to solve them.
Here the ability to cooperate among a large group of individuals and over large
time scales is essential. In many cases the investigation of a phenomenon leads
to new questions and so in iterative processes leads to a new, more detailed
view of the world.
¿e philosophy of science deals with the Methodology of this process. If

this process is rational and intersubjective we can call its outcome knowledge.
In this term knowledge denotes the outcome of empirical science. Today, the
widespread view how a problem can be solved undogmatically and rationally,
has its root in the Critical rationalism of Karl Popper [1]. ¿e basic assumption
is that each scienti�c theory is fallible. ¿erefore the requirement is mandatory
that a theory is disprovable by observations. ¿e extent to which a theory is
disprovable and how attempts to disprove it fail, is a measure for its quality.
In contrast, the widespread view until the beginning of the 20th century was
that a theory is accepted if it was con�rmed for one or more special cases. One
assumed that the common case can be proven by induction from a special case.
¿e change of paradigm in philosophy of science was triggered by the trans-

ition of classical physics to modern physics. Albert Einstein’s theory of relativity
(1905) superseded Newton’s law of gravity which was experimentally proven for
more than 200 years. Max Planck developed his theory of quantized radiation
which also superseded previous ideas. From this, quantum mechanics was
developed which is, combined with special relativity, the theoretical basis of
the standard model of particle physics.
During the last century the previously mentioned iterative process of con-

structing or extending existing theories and its experimental falsi�cation led
to a model that describes nature extremely well. Today, the standard model of
particle physics consists of six quarks and six leptons as fundamental particles.
¿ese are ordered into three generations which di�er in mass. Each particle has
its anti-particle which is identical except it has the opposite discrete quantum
numbers.¿ree leptons, the neutrinos, are consideredmass-less in the standard
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Figure 0.1: ¿e Standard Model of elementary particles [4].

model, which is already disproven by experiment. All fundamental particles
are fermions 1.
¿e standard model incorporates three out of four fundamental interactions.

Gravity is not included but, on common scales of particle physics, its e�ect is
orders of magnitude smaller. ¿e standard model is a local gauge theory with
gauge bosons as exchange particles of the interactions. In the case of the strong
interaction the gauge boson is the gluon, in the case of the electro-magnetic
interaction the photon and the weak interaction is mediated via the massive
W± and Z0 bosons. ¿e gluon couples to color charge which is carried by
the quarks only. ¿e photon couples to the electric charge which includes all
particles except the neutrinos, and W± and Z0 bosons couple to the weak
charge.
¿e last constituent of the standard model which was experimentally proven

in 2013, is the Higgs boson [2, 3]. ¿e masses of particles and exchanges bosons
are generated via the coupling to the scalar Higgs �eld with the Higg boson as
the exchange boson. All constituents of the standard model are illustrated in
�g. 0.1.
Despite its success, the standard model contradicts to several observations.

We already mentioned the �nite neutrino mass which can not be incorporated
within the model. From cosmology there is evidence for dark matter as well as
dark energy, and our universe consists of almost no anti-matter. ¿e standard
model does not provide a candidate for a dark matter particle and it predicts a
universe with almost the same amount of matter and anti-matter. ¿erefore it

1 Particles with half-integer and integer spin are called fermions and bosons, respectively. In
contrast to Bosons, Fermions obey the Pauli exclusion principle.
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is justi�ed to assume that the standard model is only the low-energy limit of a
more comprehensive theory.
It is the challenge of experimental particle physics to reproduce those con-

tradictions in a laboratory. ¿is would make it possible to study the underlying
mechanism in a controlled environment. Furthermore theoretical predictions
based on the standard model need precise experimental input. ¿e topic of this
thesis is part of the latter challenge.
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ABSTRACT

¿e study of mesons and baryons containing one or more charm quark is re-
ferred to as open charm physics. Mesons containing one charm and one light
quark (u,d,s) are called Dmesons.¿e lightest Dmesons, D0 and D±, can only
decay via a weak transition c → (d,s). ¿e charm quark is together with the u
and t quark a so-called ‘up-type’ quark. Since the u quark is the lightest quark
and the t quark is too heavy to form bound states, D decays provide a unique
laboratory to study ‘up-type’ quark transitions. ¿e weak transition of bound
states is also in�uenced by strong interaction e�ects which are important to
understand, among others, the oscillation of D0 and D0. ¿e precise measure-
ment of branching fractions can help to improve the theoretical understanding
in this �eld. Furthermore, D mesons are expected to decay via subsequent two-
body decays, and in decays with three or more �nal state particles intermediate
resonances can be studied. Due to the phase-space limitations of D decays
so-called ‘light mesons’ can be observed.
¿e Beijing Electron-Positron collider II (BEPCII) is located at the Insti-

tute for High Energy Physics (IHEP) in Beijing. It provides collisions in the
energy range from 2GeV to 4.6GeV. At an energy of 3.773GeV the ψ(3770)
resonance is produced which predominantly decays to DD. ¿e Besiii detector
has collected a data sample of 2931.8 pb−1 at this energy which corresponds to
approximately 10.7 × 106 D0D0 and 8.5 × 106 D+D− decays. Each event contains
two recoiling D decays in a almost background free environment. D0D0 pair’s
are furthermore produced in a quantum entangled state. ¿is provides the
possibility to ‘tag’ properties of one D decay from the reconstruction of the
opposite D. In this work the �avour of the signal decay is obtained in this way.
¿e topic of this thesis is the study of the D0 → K0

SK+K− Dalitz plot using a
�avour tagged data sample. Using an untagged event sample, the branching
fraction is measured.
¿e Dalitz plot analysis is performed using 1856 ± 45 �avour tagged signal

events with a purity of 96.4%. We �nd that the Dalitz plot is well described by
a set of 4 resonances: a0(980)0, ϕ(1020), a0(980)+ and a2(1320)−. We determ-
ine their magnitudes, phases and �t fractions. Furthermore we measure the
a0(980) coupling to KK to be gKK =(2.88 ± 0.25 (stat.) ± 0.56 (sys.))GeV.
¿e branching fraction is measured with 11 384 ± 115 untagged signal decays
and we obtain a value of (4.45 ± 0.05 (stat.) ± 0.18 (sys.))×10−3. ¿e meas-
urement yields a relative precision of 4.21% which improves the current best
measurement signi�cantly. Both measurements are limited by the systematic
uncertainty. As part of this work the reconstruction of displaced vertices is
studied using J/ψ → ΛΛ decays. A comparison of data and simulation yields
no signi�cant di�erences.
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ZUSAMMENFASSUNG

Die Untersuchung von Mesonen und Baryonen, die mindestens ein Charm-
Quark enthalten, wird als (o�ene) Charm-Physik bezeichnet. Mesonen, die
sowohl ein c als auch ein leichtes quark (u,d,s) enthalten, werden als D Me-
sonen bezeichnet. Die leichtesten Mesonen, D0 und D±, können nur durch
den schwachen Übergang c → (d,s) zerfallen. Das Charm-Quark ist zusam-
men mit dem u und t Quark ein sogenanntes „up-type“ Quark. Zerfälle von
Charm-Mesonen und Baryonen bieten die einzige Möglichkeit Quarkübergän-
ge dieser Art zu studieren. Der schwache Zerfall gebundener Zustände wird
durch E�ekte der starken Wechselwirkung beein�usst, welche, unter anderem,
für das Verständnis der Oszillation von D0 und D0 wichtig sind. Die präzise
Vermessung vonVerzweigungsverhältnissen kann helfenUnsicherheiten in den
theoretischen Vorhersagen zu reduzieren. Desweiteren ist es möglich in D Zer-
fällen Zwischenzustände zu beobachten. In dem zugänglichen Massenbereich
können sogenannte „leichte Mesonen“ beobachtet werden.
Der Beijing Electron Positron Collider (BEPCII) wird am Institut für Hoch-

energiephysik (IHEP) in Peking in einem Energiebereich zwischen 2GeV und
4.6GeV betrieben. Bei einer Schwerpunktsenergie von 3.773GeV wird die
ψ(3770) Resonanz erzeugt, welche fast ausschließlich in ein Paar von DMe-
sonen zerfällt. Der bisher aufgezeichnete Datensatz bei dieser Energie von
2931.8 pb−1 entspricht ungefähr 10.7 × 106 D0D0 und 8.5 × 106 D+D− Zerfällen
in einer nahezu untergrundfreien Umgebung. D0D0 Paare werden darüber
hinaus in einem Zustand der Quantenverschränkung erzeugt, welche es ermög-
licht Rückschlüsse vom Zerfall eines Mesons auf den Zerfall des anderen zu
ziehen. Dies wird in dieser Arbeit zur Bestimmung der Teilchenart genutzt.
Im Rahmen dieser Arbeit wird der Zerfall D0 → K0

SK+K− untersucht. Das
Dalitz-Diagramm wird analysiert und das Verzweigungsverhältnis wird gemes-
sen.
Die Analyse des Dalitz-Diagramms erfolgt anhand von 1856 ± 45 D0 Si-

gnalzerfällen mit einer Reinheit von 96.4%. Es stellt sich heraus, dass die
Substruktur durch ein Model mit vier Resonanzen gut beschrieben werden
kann: a0(980)0, ϕ(1020), a0(980)+ und a2(1320)−. Wir bestimmen Magnitu-
de, Phase sowie die partiellen Verzweigungsverhältnisse. Außerdem wird für
die Kopplungsstärke des a0(980) im Kanal KK ein Wert von gKK =(2.88 ±
0.25 (stat.) ± 0.56 (sys.))GeV bestimmt. Das Verzweigungsverhältnis wird
durch 11 384 ± 115 Signalzerfälle gemessen. Wir bestimmen einen Wert von
(4.45 ±0.05 (stat.)±0.18 (sys.))×10−3.Mit einer relativen Präzision von 4.21%
übertri� diese Messung bisherige Messungen deutlich. Beide Messungen sind
durch systematische Unsicherheiten geprägt. Außerdem wird im Rahmen die-
ser Arbeit die Rekonstruktion von Teilchenzerfällenmit signi�kanter Fluglänge,
im Zerfall J/ψ → ΛΛ untersucht. Der Vergleich von Daten und Simulation zeigt
keine signi�kanten Unterschiede.
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Part I

INTRODUCTION

¿emain scope of this thesis concerns the analysis of the decay
D0 → K0

SK+K−. ¿e physics interest of this analysis is on the one
hand a better understanding of light mesons, in particular light
scalar mesons, that occur in the substructure of the decay, and on
the other hand a contribution to a better theoretical understand-
ing of the D0 meson, by a precise measurement of its branching
fraction to K0

SK+K−.

In the following we will give an introduction to meson spectro-
scopy (chapter 1) and charm physics (chapter 2). In part ii we deal
with the theoretical background which is necessary to describe
the decay. Chapter 7 summarizes the relevant formula. ¿e Besiii
experiment is introduced in part iii. Part iv describes the analysis
which consists of the analysis of the Dalitz plot (chapter 12) and the
branching fraction measurement (chapter 13). Finally we conclude
the results and give on outlook in part v.





1
MESON SPECTROSCOPY

¿e pion was introduced in 1935 [5] as an exchange particle of the force between
nucleons. In the following time, a large number of mesons and baryons were dis-
covered and groups of particles could be organized according to their quantum
numbers to resemble the symmetry of the underlying interaction. ¿e nonets
of pseudo-scalar and vector mesons arising from this grouping are shown in
�gs. 1.1 and 1.2.

I -1 -1/2 0 +1/2 +1

S
+1

0

-1

η′
η π0π− π+

K− K0

K0 K+

Figure 1.1: Pseudo-scalar meson
nonet.

I -1 -1/2 0 +1/2 +1

S
+1

0

-1

ω
ϕ ρ0ρ− ρ+

K∗− K∗0

K∗0 K∗+

Figure 1.2: Vector meson nonet. K∗
denotes the K∗(892).

From the mid 1970s on Quantum Chromodynamics (QCD) is
accepted as the theory of the strong interaction and mesons were identi�ed
as the bound states of QCD. ¿e symmetries that were found before and the
success of Quantum Electrodynamics (QED) were the basis for QCD. ¿e
theoretical prediction of bound states and their properties is di�cult in QCD,
yet without the knowledge of its bound states a theory cannot be considered to
be complete. ¿e experimental search for bound states and the measurement
of their properties are the goals of hadron (meson and baryon) spectroscopy.

1.1 the constituent quark model

Since an a priori prediction from QCD is di�cult, a phenomenological model
is used to predict the meson spectrum and compare it with experiment. ¿e
constituent quark model was proposed long before the success of QCD. It
assumes that mesons and baryons consist of constituent objects, so-called
(valence-) quarks. Hence mesons are bound states of quark and anti-quark.
¿e spins of the quarks can couple to a total spin s of zero and one, and the
quarks can have orbital angular momentum l . ¿e quantum numbers of the
quark system are:

• Meson spin: ∣l − s∣ ≤ J ≤ ∣l + s∣

• Parity: P = (−1)l+1

• Charge parity: C = (−1)l+s

Not all quantum numbers are allowed within this model. Quantum numbers
like JPC=0−−, 0+−, 1−+, 2+−, 3− . . . are termed as ‘exotic’ because they cannot be
accommodated by the constituent quark model. From the light quarks u,d and
s, nine qq combinations can be constructed and grouped into an octet and a
singlet. If the qq spins are anti-aligned we �nd the pseudo-scalar meson nonet
of �g. 1.1 and in case of aligned spins the vector meson nonet of �g. 1.2. In both
cases the qq pair does not have orbital angular momentum.
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4 meson spectroscopy

−0.6
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√
sP

I = 0, 1, 2

ππ πη KK

f0(500)

f0(980)

a0(980)

f0(1370)

a0(1450)

K∗(800)

K∗(1430)

√
sP

I = 1
2 ,

3
2

Kπ Kη

Figure 1.3: Overview of the light scalar meson spectrum. We plot the experi-
mental average values provided by the particle data group [7]. ¿e
resonance pole is parametrized as√sP = MR+iΓR/2.We assume that
the Breit-Wigner parameters and the pole parameters are identical
which is certainly not true for some resonances e. g. f0(500) and
K∗(800). With this assumption the imaginary part of the pole posi-
tion is linked to the resonance width via Γ = 2 Im(√sP). ¿e integer
isospin states are shown in blue and the half-integer isospin states
in red. Units are in GeV. Note that some results shown here are only
rough estimates from the particle data group.

¿e goal is to experimentally map out the spectrum of QCD bound states
and to search for states with ‘exotic’ quantum numbers that cannot be explained
in the constituent quark model. A candidate for such a state is the π1(1600)
which was observed by the COMPASS experiment [6]. Quantum numbers of
JPC = 1−+ were observed.

1.2 light scalar meson spectroscopy

¿emeson spectrum below 2GeV is referred to as lightmeson spectrum. In this
mass range mesons consist of u,d and s quarks. ¿e spectra for pseudo-scalar,
vector and tensor mesons are rather well-known, in contrast to the spectrum
for scalar mesons (JP = 0+). In the following we give a short overview of the
resonances which are observed in this region. Since this chapter focuses mainly
on the general understanding, we also include some results that are not free of
doubt. We follow the overview from the particle data group [7, pp. 784-791].
¿e light scalar meson spectrum is shown in �g. 1.3. Since we are dealing

with the strong interaction, isospin is a good symmetry and we can divide the
spectrum into integer isospin states (ππ, πη and KK) and half-integer isospin
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states (Kπ and Kη). ¿e range up to 2GeV involves several thresholds which
makes the investigations di�cult since close to thresholds the resonance shape
deviates signi�cantly from the expected Breit-Wigner form and its mass and
width parameter are di�erent from the pole parameters (in �g. 1.3 we assume
that both are identical). ¿e nature of most states in the light scalar meson
spectrum is not unequivocally proven since on the one hand many states are
close to thresholds and on the other hand the masses of the observed states
cannot be calculatedwithin a constituent quarkmodel.¿ere are severalmodels
that go beyond the constituent quark model to explain the observed spectrum
of 0+ states: four-quark states, meson-meson bound states or scalar glue balls.
¿ese states are allowed within QCD, and therefore they are expected to exist
somewhere. Note that all these states are compatible with quantum number 0+.
Since states with the same quantum numbers are expected to convert to each
other (if kinematically allowed) those statesmost likely consist of a combination
of several models.

I -1 -1/2 0 +1/2 +1

S
+1

0

-1

a00 f0a−0 a+0

K∗− K∗0

K∗0 K∗+

Figure 1.4: Hypothetical scalar
meson nonet. K∗ denotes the
K∗(800).

Close to the lowest thresholds ππ and Kπ the broad resonances f0(500) and
the K∗(800) are located. ¿eir widths is expected to be larger than 500MeV.
Many experiments have seen them, yet the quantitative results spread over a
wide range. Just below the KK threshold, the a0(980) and the f0(980) appear.
¿e mass is rather well known but the experimental results on the width are
not consistent. Above the KK threshold the f0(1370) and the a0(1450) show
up in the integer spin spectrum and the K∗(1430) shows up in the spectrum of
half-integer spin.
A possible interpretation is that the states K∗(800), f0(500), f0(980) and

a0(980) form a nonet as shown in �g. 1.4. ¿is could be a nonet of states that
cannot entirely be explained in the constituent quark model.
¿e light quark spectrum o�ers various candidates for new resonant states

beyond the constituent quark model. Unfortunately those broad and overlap-
ping resonances in combination with several thresholds make it di�cult to
study an isolated state and investigate its nature. ¿e search within the char-
monium region above

√
s = 3GeV seems to be more promising. In this region

Besiii discovered the Zc(3900)± in the reaction e+e− → J/ψπ+π− [8]. Cur-
rently the natural quantum number assignment JP = 1+ is favoured [9], but
a charged particle that decays to a cc state cannot be explained within the
constituent quark model.





2
CHARM PHYSICS

¿e �eld of Charm physics was born in 1974 with the discovery of the J/ψ
[10, 11]. ¿e charm quark was predicted as the fourth quark from the non-
existence of �avour changing neutral currents in conjunction with neutral kaon
mixing. Another important discovery in charm physics were the DsJ [12] states
in 2003 which were not predicted by QCD. ¿e most recent milestone was the
observation of neutral Dmeson mixing. First evidence was found by BABAR [13]
and Belle [14] in 2007, and in 2012 D0 mixing was observed by LHCb [15].

c

u c

u

W

b,s,d

W

b,s,d

c

u c

u

K+π−

K+K−π+π−

π+π−π0

etc.

Figure 2.1: Diagrams for short- and
long-distance contributions to
D0-D0 oszillation.

¿e charm quark is an ‘up-type quark’ with amass that is neither ‘light’ (u,d,s-
quarks) nor ‘heavy’ (t,b-quarks). In theoretical models it cannot be treated
properly in any mass limit, making it a di�cult object to study. Particles that
contain at least one charm quark are the objects of interest in charm physics.
One class of these particles are the charmonium resonances (e. g. J/ψ or ψ(2S))
which we will not discuss further at this point.¿e second class are open charm
mesons and baryons. Due to the scope of this thesis, we focus in the following
on open charm mesons, in particular D0 mesons.
D0 mesons mostly decay via the charged weak current. ¿ey provide there-

fore a unique laboratory to study weak transitions of ‘up-type’ quarks. ¿e
main topics of this �eld are the precise measurement and prediction of the D0

mixing parameters and the search for charge-parity (CP) violation.
Mixing between particle and anti-particle has been observed in several

neutral meson systems: K0, B0d , B
0
s and D0. ¿e fundamental mechanism is

the same for these systems, yet they di�er in the oscillation parameters. ¿is
mechanism will be outlined in the following. We rely on [16].
When we investigate short-lived particles we reconstruct them from their

decay products.¿e reconstructed particle states are therefore eigenstates of the
interaction that is responsible for their decay. In case of neutral D mesons this
interaction is the weak interaction and we denote these eigenstates with a well
de�ned quark content as ∣D0⟩ and ∣D0⟩. Yet these particles can be produced in a
di�erent interaction. For instance in e+e− collisions at a center-of-mass energy
of 3.773GeV a cc pair is produced, which hadronizes into a pair of D mesons.
¿e D0 mesons are therefore produced via the strong interaction in so-called
mass eigenstates denoted by ∣D1,D2⟩. Since D0 mesons are neutral, the quark
content can change over time using so-called long and short distance processes,
as shown in �g. 2.1. An initially produced pure state ∣cu⟩ can evolve to a pure
∣cu⟩ state or to a superposition of both. ¿erefore, if we investigate the decay
of D0 mesons the quark content that we measure changes, depending on the

7
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decay time of the particle. Written in formula, ∣D1,2⟩ are linear combinations of
∣D0,D0⟩:

∣D1,2⟩ = p ∣D0⟩ ± q ∣D0⟩ . (2.1)

¿e complex coe�cients p, q satisfy unitarity: ∣p∣2+∣q∣2=1. Mixing occurs if
there is a mass or width di�erence of the mass eigenstates D1,2. In this case the
mixing parameters

x = (m2 −m1)/Γ y = (Γ2 − Γ1)/(2Γ) (2.2)

are di�erent from zero. In this de�nition m1,2 and Γ1,2 denote mass and width
of ∣D1,2⟩. Γ is the D0 width. ¿e probability that an initially pure ∣D0⟩ state
evolves a er a certain time t into a pure �nal ∣D0⟩ or ∣D0⟩ state is given by:

P(D0 → D0)(t) = 1
2
∣ q
p
∣
2

e−Γt(cosh(yΓt) − cos(xΓt))

P(D0 → D0)(t) = 1
2
e−Γt(cosh(yΓt) + cos(xΓt)). (2.3)

To explain the in�uence of charge-parity symmetry violation (CPV ), we intro-
duce another quantity:

λ j =
pA j

qAȷ
∝ ∣ p

q
∣
RRRRRRRRRRR

A j

Aȷ

RRRRRRRRRRR
e−iϕCP , (2.4)

where A j and Aȷ are the decay amplitude of D0 to a �nal state j and D0 to the
CP conjugate state ȷ. If these amplitudes di�er one speaks of direct CPV . In
case of di�erent mixing parameters for D0 and D0, CPV occurs in the mixing
process and additionally CPV can happen in the interference of mixing and
decay (ϕCP ≠ 0).
Describing the mixing of D0 and D0 and the amount of CP violation within

theoretical models is di�cult since, as mentioned above, the c quark can neither
be treated as a ‘light’ nor as a ‘heavy’ quark. A precise measurement of the D0

branching fractions can help to improve theoretical predictions and constrain
corresponding models.



3
MOTIVATION FOR THE ANALYSIS OF D0 → K0

SK+K−

u

D0

u K+

c s
W− d K0

u K−s
s

g,γ

Figure 3.1: Feynman diagram
of leading order for the decay
D0
→ K0

S K+K−.

¿e topic of this thesis is the investigation of the decay D0 → K0
SK+K−. ¿e

objective of this work is between meson spectroscopy and charm physics. We
aim to contribute to the knowledge of light mesons by the investigation of
the K0

SK+K− Dalitz plot. ¿e mass range of the meson spectrum that can be
investigated is roughly between 1 GeV and 1.5GeV.¿e second part is the meas-
urement of the absolute branching fraction which can help to re�ne theoretical
predictions in the charm sector. Both measurements, the Dalitz plot analysis
and the branching fraction measurement, will improve future Monte-Carlo
simulations.
¿e decay of the D0 meson to the �nal state K0

SK+K− is mediated via the
weak interaction, as shown �g. 3.1. ¿e decay is suppressed by a small phase-
space. ¿e mass di�erence between the three kaons and the D0 meson is about
380MeV and the branching fraction isO(10−3).
We analyze the decay using a data sample of 2.932 fb−1 of e+e− collisions

which were collected by the Besiii detector at a center-of-mass energy of
√
s =

3.773GeV. A detailed description of the detector can be found in chapter 9
and an overview of all data samples that were collected with the Besiii detector
is given in section 10.4. In e+e− collisions with

√
s = 3.773GeV, the ψ(3770)

resonance is produced besides a small QCD background. Since its mass is
close to the threshold of a D meson pair it decays predominantly to it. ¿is
leads to a special kind of event topology which is illustrated in �g. 3.2. Each
event consists of two D mesons in a quantum entangled state and therefore
the sample provides a very clean laboratory to study charm decays. For neutral
D mesons the quantum entanglement is important since the measurement
of the �avour1 or the CP quantum number of one D meson can be used to
conclude the respective properties of the D meson. ¿is technique is denoted
by D tagging. More details are given in section 10.3.3. Exploiting the quantum
entanglement is mandatory for some analyses, e. g. the measurement of the
relative strong phase between D0 → K0

SK+K− and D0 → K0
SK+K− as it was

performed by CLEO-c [17].
We useD tagging tomeasure the �avour of the signal decay for theDalitz plot

analysis. ¿e branching fraction measurement does not rely on the knowledge
of the particle �avour and therefore we do not reconstruct the full event in this
case.

1 ¿e �avour of a meson refers to its quark content. In this context it indicates if a neutral D
meson contains a charm (D0) or an anti-charm (D0) quark.

9



10 motivation for the analysis of d0 →k0
sk+k−

z
y

ψ(3770)
e+

e−

D0
tag

hadrons

D0
signalK0

S

π+
π−

K−
K+

Figure 3.2: ψ(3770) decay topology in the ψ(3770) rest frame.

Figure 3.3: Dalitz plot projections of the BABAR data sample and the amplitude
model [18].

3.1 previous measurement

Currently, the most precise measurement of the branching fraction of the
D0 → K0

SK+K− decay is published by BABAR [18]:

Brel =
Γ(D0 → K0

SK+K−)
Γ(D0 → K0

S π+π−)
= (15.8 ± 0.2(stat.) ± 0.5(sys.)) × 10−2. (3.1)

¿e measurement is performed relative to the �nal state D0 → K0
S π+π−. ¿e

PDG value [7] is derived from that measurement:

B(D0 → K0
SK

+K−) = (4.47 ± 0.34) × 10−3 (3.2)

¿e relative error is 7.6% which includes the uncertainty on the branching
fraction of D0 → K0

S π+π−. To date there is no absolute measurement of the
branching fraction. ¿e particle data group also lists results for the branching
fraction which were published more than 20 years ago. Since these results are
not used for the PDG average we also omit them here.
¿e above-mentioned BABAR analysis uses 12500 �avour tagged signal decays

with a purity of 97.3%. Besides the branching fraction measurement, a partial
wave analysis was performed and the D0 → K0

SK+K− Dalitz plot was analyzed
using an isobar model. It was found that the Dalitz plot is well described by
the coherent sum of four intermediate states: a0(980)0, ϕ(1020), a0(980)+
and f0(1370). ¿e Dalitz plot projections of the data sample and the amplitude
model are shown in �g. 3.3.¿e results in terms of �t parameters and �t fractions
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Table 3.1: Fit parameters and �t fractions for the BABAR amplitude model [18].

Final state Amplitude Phase (rad) Fit fraction (%)

K0 a0(980)0 1.0(fix) 0.0(fix) 66.4±1.6±7.0
K0 ϕ(1020) 0.437±0.006±0.060 1.91±0.02±0.10 45.9±0.7±0.7
K− a0(980)+ 0.460±0.017±0.056 3.59±0.05±0.20 13.4±1.1±3.7
K0 f0(1400) 0.35±0.033±0.162 −2.63±0.10±0.71 3.8±0.7±2.3
K0 f0(980) 0.4±0.2±0.8
K+ a0(980)− 0.8±0.3±0.8

Total 130.7±2.2±8.4

are listed in table 3.1.¿e channel was reanalysed with the fullBABAR data sample
[19] but since systematic uncertainties were not studied we will compare our
result with the preceding measurement.





Part II

THEORY

In this part we discuss the theoretical background on the decay
kinematics and decay dynamics. We introduce the basic ideas to
describe and represent particle interactions. We construct two-
particle angular momentum eigenstates using the helicity formal-
ism and show the expansion of the transition amplitude in angular
momentum partial waves. Later on we focus on the dynamics in
particle interactions. We discuss what is considered to be a reson-
ance and we motivate the Breit-Wigner and Flatté formulae for the
description of a resonance. Furthermore we study the e�ect of the
quantum entanglement on the decay of a D0 meson. Finally we
apply the concepts introduced before to the decay D0 → K0

SK+K−.





4
PARTICLE INTERACTIONS

Ξ
R f1

f2

f3

Figure 4.1: ¿e isobar model.

Ξ
R f1

f2

f3

Figure 4.2: Final state interaction in
a particle decay.

In this chapter we introduce the fundamentals to describe particle interac-
tions.
We introduce the Mandelstam variables and the Mandelstam plane in sec-

tion 4.2. A special representation of the Mandelstam variables of three-body
decays is the so-called Dalitz plot as explained in section 4.3. We introduce the
transition amplitude in section 4.4 and explain in section 4.5 how the trans-
ition amplitude can be constructed using the helicity formalism. ¿e series
expansion of the amplitude is �nally given in section 4.6.

4.1 the isobar model

¿e isobar model denotes the very common assumption that particles interact
via two-body vertices. Applied to particle decays thismeans that a heavy particle
decays via subsequent two-body decays to a set of �nal state particles. ¿is is
illustrated in �g. 4.1. ¿e isobar model is widely used in partial wave analysis
and works extremely well for many reactions. Yet it has some limitations. For
instance it cannot describe �nal state interactions, which are illustrated in
�g. 4.2.

4.2 mandelstam variables

A particle interaction is usually described by a set of Lorentz invariant variables.
In the isobar model we have to deal with vertices of two incoming particles,
denoted by A and B, and two outgoing particles, denoted by C and D.¿e most
common set of variables are the Mandelstam variables [20]:

s = (pA + pB)2 t = (pA + pC)2 u = (pA + pD)2, (4.1)

wherepi is the four-momentumof the corresponding particle i. Four-momentum
conservation imposes the requirement that

s + t + u = m2
A +m2

B +m2
C +m2

D , (4.2)

where the particle masses are denoted by mi . Figure 4.3 shows the Mandelstam
plane. ¿e arrows on the axes indicate the positive and therefore physical
region for each Mandelstam variable. Depending on the reaction, di�erent
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Figure 4.3: ¿eMandelstamplane spanned by theMandelstam variables s, t and
u which are de�ned in eq. (4.1). ¿e central region is the physically
allowed phase-space for particle decays. ¿e other shaded regions
indicate phase-space regions for particle scattering. ¿eir exact size
and shape depend on the particle masses.

regions on the plane are physically allowed. In case of a particle decay, the
Mandelstam variables are positive and the phase-space region is located in the
center triangle. ¿is is the so-called Dalitz plot which we discuss in detail later
on in section 4.3. For scattering processes only one variable of (s, t, u) can be
positive. ¿e calculation of the exact phase-space boundary for each channel is
outlined in [21, Chapter 3.2].
¿e fundamental assumption, the so-called Mandelstam hypothesis [20–22],

is that the amplitudes for all processes including the decay in the center of the
Mandelstam plane, are represented by the same analytic function. And if we
determine the amplitude in one channel we can conclude properties of the
amplitude in another channel. ¿is is called crossing and is described in detail
in [21, Chapter 7.2].

4.2.1 Kinematics of two-particle vertices

In the following we introduce some quantities that are necessary to describe
the kinematics of two-particle vertices.¿e break-upmomentum qAB denotes
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the momentum of two particles A and B with masses mA and mB in their rest
frame for a given center-of-mass energy

√
s. It is given by [7, eq. 46.20a]:

q2AB(s) =
(s − (mA +mB)2)(s − (mA −mB)2)

4s
. (4.3)

¿e energy of particle B in the common rest-frame of A and B is given by:

Ecms,B =
s −m2

A +m2
B

2
√
s

. (4.4)

Using the break-up momentum we can calculate the phase-space factor:

ρ̂AB(s) =
1
16π

2
√

∣qAB(s)∣2√
s

. (4.5)

¿e phase-space factor denotes the particle momentum relative to the center-
of-mass energy. It is zero at threshold sth = (mA +mB)2 and rises with higher
center-of-mass energies. ¿e function behavior at and below threshold can
lead to problems with resonances outside the phase-space regions. ¿is issue is
addressed in chapter 7.

z
y

B
A

C

D

θ

Figure 4.4: Scattering angle θ in a
two-body reaction.

4.2.2 Scattering and helicity angle

Using the Mandelstam variables and the break-up momenta from eq. (4.3)
qAB and qCD, the scattering angle is illustrated in �g. 4.4 and is given by [21,
Equation 4.83]:

cos θCB =
s(t − u) + (m2

A −m2
B)(m2

C −m2
D)

4sqABqCD
. (4.6)

yz
Ξ

R

θR

θΞ

f3

f1

f2

Figure 4.5: Sequential two-body
decay. ¿e angles are measured
in the rest frame of the respective
decay.

In a decay the corresponding angle is called helicity angle. We consider
a decay of a particle Ξ to three �nal state particles f1, f2 and f3. ¿e decay
is illustrated in �g. 4.5. ¿e helicity angle can be calculate via a sequence of
Lorentz transformations from the �nal state four-momenta:

1. Lorentz transformation of the momenta of f1 and f2 to the common rest
frame. ¿e direction of the decay axis is denoted with (θR , ϕR).

2. Lorentz transformation of the combined momentum of f1 and f2 and
the momentum of f3 to their rest frame. ¿e direction of the decay axis
is denoted with (θΞ , ϕΞ).

3. Calculate the angle between the directions (θR , ϕR) and (θΞ , ϕΞ).

¿e helicity angle has also a closed-form [23]:

cos θ12 = −
m2
23 −m2

2 −m2
3 − 2E∗12E∗3

2q∗12q∗3
, (4.7)
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Figure 4.6: Phase-space boundary for the decay of a particle with massM to
three particles with masses m1,m2 and m3 [7].

where m2
i j is the invariant mass of particle i and j. Quantities marked with (*)

are measured in the rest frame of the particles f1 and f2, see eqs. (4.3) and (4.4).
For decays with more then three �nal state particles the Lorentz boosts have to
be adapted, but the procedure is equivalent.

4.3 the dalitz plot

We focus on three-body decays of particles: Ξ → f1 f2 f3. For simplicity we
assume that the decaying particle Ξ as well as the �nal states particles fi are
spinless. We already have seen that for a particle decay the Mandelstam vari-
ables s, t, u are always positive. Since s, t, u ful�ll eq. (4.2) these variables over
constrain the problem - we need only two variables to describe the process.
An analysis of the intermediate decay substructure using a representation of
two variables was �rst performed by R.H.Dalitz in 1954 [24] in the analysis
of kaon decays (formerly known as τ and Θmesons) to three pions. He used
the particle energies to represent the decay in a two-dimensional plane. ¿is
representation is not invariant under Lorentz transformation and therefore
nowadays the representation by two (Lorentz invariant) Mandelstam variables
is usually used. ¿is is known as Dalitz plot. It is also possible to use one Man-
delstam variable and the corresponding helicity angle to represent the decay.
Since angular momentum is conserved, this representation can be of advantage.
¿e phase-space boundary of the decay of a particle with massM to three

�nal state particles withmassm1,m2 andm3 is shown in �g. 4.6.¿e di�erential
decay rate within the phase-space boundary is given by [7]:

dΓ
dm2

13dm2
23
= 1
8π3

1
32M3 ∣M∣2. (4.8)

¿e Dalitz plot is a very simple and intuitive way to display the dynamics of the
matrix elementM. For illustration purposes we show in �g. 4.7 an arti�cial
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Figure 4.7: Arti�cial Dalitz amplitude model with four resonances.

model containing four resonances. ¿e parameters are chosen to show many
physical properties that can be derived from aDalitz plot. From the phase-space
boundary we can derive that �nal state particle 3 has be to mass-less since the
phase-space boundary approaches zero in both variables. ¿e resonance R1
occurs in the invariant mass of particle 2 and 3 and is spin-less as indicated by
the uniform population along the band. ¿e resonance R2 and R3 appear in
the same subsystem but have higher spins. ¿e spin can be derived from the
number of dips. In this case R2 has spin 2 and R3 has spin 1. ¿e 4th resonance
is spin-less and show up in the subsystem of particle 1 and 3. It interferes with
R1 destructively, since at the intersection of both bands the intensity vanishes.
As outlined before many properties of a decay can be observed without

further analysis. Yet a full amplitude analysis of the Dalitz plot is necessary for
several reasons. Sometimes resonances only contribute a small fraction to the
intensity, and are therefore not visible by eye. Nevertheless they can have strong
in�uence due to interference with other resonances. ¿e result of an amplitude
analysis is the amount of intensity that is contributed by a single resonance or
a set of resonances (so-called �t fractions) and the resonance parameters, e. g.
mass and width. Such quantitative results can be compared among di�erent
reactions and/or di�erent experiments.
¿eDalitz plot analysis for the decayD0 → K0

SK+K− is presented in chapter 12.
In the next chapter we discuss the dynamics of particle scattering and particle
decay.

4.4 transition amplitude

In the following we outline the basis for a mathematical description of particle
scattering from an free initial ∣i⟩ state to a free �nal state ∣ f ⟩. Since we require
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initial and �nal state particles which do not interact with each other, this
description is only strictly valid for the strong interactions. In general the
description is valid for an arbitrary number of particles, yet for simplicity we
will restrict ourself to the interaction of two initial-state particles to two �nal
state particles. ¿e mathematical object that encodes the propagation is the
scattering operator S which is de�ned by its matrix elements:

S f i = ⟨ f ∣ S ∣i⟩ . (4.9)

S f i contains elements for all possible initial and �nal states. It also includes
the case that particles do not interact at all. We separate that case from the
scattering matrix and obtain the transition matrix T:

⟨ f ∣ S ∣i⟩ = ⟨ f ∣i⟩ + i ⟨ f ∣T ∣i⟩ . (4.10)

If a quantity is conserved in the interaction its operator commutes with the
scattering operator:

[X , S] = 0. (4.11)

¿e state vector ∣i⟩ contains all relevant information and we write it as ∣Pi , αi⟩,
Pi contains all four-momenta and αi all other information such as particle
spins. Since four-momentum is conserved we can separate it:

⟨ f ∣ S ∣i⟩ = ⟨ f ∣i⟩ + i ⟨P f ∣Pi⟩ ⟨α f ∣TP ∣αi⟩ . (4.12)

¿e transition operator can still depend on the momentum and we denote
it with TP . In case of scattering of two spin-less particles the transition amp-
litude is a scalar function of two Lorentz-invariant quantities. For instance the
Mandelstam variables s and t:

⟨α f ∣TP ∣αi⟩ = T(s, t). (4.13)

If particles with spin are involved we can use the conservation of angular
momentum to simplify the problem. In section 4.5 we show how to construct
two-particle states which are eigenstates of the angular momentum operator.
¿e particles states are described by the angular momentum J, its projection M
onto a quantization axis, and the helicities λi and λ f . ¿e helicity of a particle is
de�ned in eq. (4.19). ¿e transition matrix element is connected to the helicity
amplitudes Tλ i λ f (s, t) via:

⟨α f ∣TP ∣αi⟩ = ⟨J fM f , λ f ∣TP ∣J fM f , λ f ⟩
= δJ f J i δM fM iTλ i λ f (s, t). (4.14)

¿e helicity amplitudes will be derived in section 4.5.
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4.4.1 Probability conservation and causality

We already mentioned conserved quantities like four-momentum and angular
momentum. In this part we want to introduce two other physical postulates:
the conservation of probability and causality. Conservation of probability
implies that a system in initial state ∣i⟩ evolves to a state ∣n⟩ with probability Pn
and ∣n⟩ is part of a complete set:

1 =∑
n
Pn =∑

n
∣ ⟨n∣ S ∣i⟩ ∣2

=∑
n

⟨i∣ S† ∣n⟩ ⟨n∣ S ∣i⟩ = ⟨i∣ S†S ∣i⟩ . (4.15)

From this expression one can obtain the unitarity relation [21, Chapter 5] for
the scattering operator S and its implication on the transition operator T :

S†S = SS† = 1 (4.16)
T − T† = iT†T . (4.17)

¿e conservation of probability leads to the optical theorem which connects
the imaginary part of the scattering amplitude in forward direction with the
total cross section of a process:

ImT(s, t = 0) =q
√
s

8π2
σtot . (4.18)

¿e derivation is outlined in appendix A.2.
¿e second physical postulate that we want to mention here quickly is caus-

ality. We presume the cause precedes its e�ect. It can be proven that amplitudes
respecting causality are complex analytic functions [21]. A function is called
analytic if it is locally given by a convergent power series.
Probability conservation and causality are fundamental postulates in physics.

In practise we have to develop models for decay and scattering amplitudes.
¿is involves approximations which can lead to a violation of unitarity and/or
analyticity. An example is the Flatté formula (section 5.3) which does not strictly
preserves unitarity.

4.5 the helicity formalism

We need a formalism to construct angular distributions in particle reactions.
¿e angular distribution is determined by the helicity of the particles that are
involved and by the angular momentum between them. An overview of various
so-called ‘spin formalisms’ is given in [25]. ¿ere are basically three classes:

• Formalisms based on Lorentz invariants

• (Covariant) Tensor formalisms

• Spin-projection formalisms
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¿e �rst approach usually depends strongly on the decay under study and we
list it for completeness only. Tensor formalisms can be formulated in a covariant
manner and is therefore the preferred formalism for highly relativistic problems.
Tensor formalisms are e�cient and elegant but for reactions involving high
angular momenta or many subsequent decays they are complicated.
On the contrary, spin-projection formalisms are not strictly covariant but

su�ciently precise for many reactions. Common representatives are the canon-
ical (orbital) and the helicity formalism. Among those, single particle states are
de�ned by their four-momentum p, their spin s and its projection to an arbit-
rary axis. ¿e canonical formalism uses an arbitrary, but �xed projection axis
(usually the z-axis of the laboratory coordinate system) and the helicity formal-
ism uses the direction of the particle momentum. In that case the projection of
the spin is the particle helicity which is de�ned as:

λ = s⃗ ⋅ p⃗
∣p⃗∣ . (4.19)

¿e choice of the projection axis determines the symmetries of the formalism.
¿e parity operation on a helicity amplitude is more complicated than on a
canonical amplitude, since the helicity is not invariant under parity operation.
On the other hand the helicity is invariant under rotations and Lorentz boosts
which simpli�es the construction of a relativistic basis.
¿e helicity formalism was originally developed by Jacob &Wick [26]. In

the following we derive it in detail by relying on [21, 27, 28]. We give a short
introduction on rotation operators and the Wigner D-matrix, followed by the
construction of single and two-particle states in the plane-wave and spherical
basis. Finally we apply the result on two-body scattering and decay processes.

4.5.1 Introduction to rotation operators and Wigner D-matrix

N
xx

yy

zz

Z

X

Y

α

β

γ

Figure 4.8: Euler rotation [29].

We consider a �xed coordinate system xyz and a rotated system XYZ. ¿e
rotation is then given by the Euler angles (αβγ). ¿e rotation operator R(αβγ)
can be seen as three successive rotations (illustrated in �g. 4.8):

1. Rotation around the z-axis by α

2. Rotation around the N-axis by β

3. Rotation around the Z-axis by γ

And therefore

R(αβγ) = RZ(γ)RN(β)Rz(α)
= e−iγJZ e−iβJN e−iαJz . (4.20)

In this de�nition the angles β and γ are not measured in the �xed coordinate
system xyz. ¿is is not desired for practical use and therefore we want to de�ne
the rotation with angles (αβγ) with respect to the original system xyz. Recall
that an operator transforms under rotation as J′ = RJR†. JZ can be expressed by
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the operator Jz followed by a rotation around the N-axis. ¿e rotation around
N can in turn be expressed by the rotation operator Jy followed by a rotation
around z:

R(αβγ) = RZ(γ)RN(β)Rz(α)
= (RN(β)e−iγJzR†

N(β))RN(β)Rz(α)
= (Rz(α)e−iβJyR†

z(α)e−iγJzR†
N(β))RN(β)Rz(α)

= e−iαJz e−iβJy e−iγJz . (4.21)

Note that the order of the rotations has changed. We have rotated the operators
JZ and JN to Jz and Jy and the angles (αβγ) are now measured with respect to
the original system xyz. In this derivation we used the unitarity of the rotation
operators

e−iγR(β)JR
†
(β) = R(β)e−iγJR†(β) (4.22)

and that a rotation around the z-axis does not change the operator Jz .
Equation (4.21) is where the Wigner D-matrix [30] originates from. ¿e

Wigner D-matrix is the matrix representation of the operator R(αβγ) with
angles (αβγ)measured in the �xed coordinate system xyz [30, Chapter XV.].
Let us consider the rotation of an angular momentum eigenstate ∣ jm⟩. ¿e

angularmomentumoperator commutes with the rotation operator ([R, J2] = 0)
and the rotation can be represented as:

R(αβγ) ∣ jm⟩ =
j

∑
m′=− j

D j
m′m(αβγ) ∣ jm

′⟩ . (4.23)

Written in a di�erent way, we obtain the de�nition of the Wigner D-matrix:

D j
m′′m(αβγ) =

j

∑
m′=− j

D j
m′m(αβγ)����

��:δm′′m
⟨ jm′′∣ jm′⟩

= ⟨ jm′′∣R(αβγ) ∣ jm⟩
= ⟨ jm′′∣ e−iαJz e−iβJy e−iγJz ∣ jm′⟩
= ⟨ jm′′∣ e−iαJz ∣ jm′′⟩ ⟨ jm′′∣e−iβJy ∣ jm⟩ ⟨ jm∣e−iγJz ∣ jm⟩
= e−iαm′′

d jm′′m(β)e
−iγm . (4.24)

¿e (small) Wigner D-matrix is denoted by d jm′′m(β). Its de�nition and some
properties are given in appendix A.1.
In the following we construct plane wave two-particle states ∣p, θϕ⟩. A better

basis for practical use are spherical wave helicity states ∣p, JM⟩ since they
depend on conserved quantities.¿eWigner-D functions are used to transform
from the plane wave basis to the spherical helicity basis.
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4.5.2 Plane-wave helicity states

We start from a single particle in its rest frame1 with spin s and the spin-
projection λ to an arbitrary axis. ¿e spin-projection in the rest frame is
identical to the particle helicity. A state with arbitrary momentum can be
obtained from the state at rest by a Lorentz boost L(p⃗) with a 3-momentum
p⃗ which we can express in spherical coordinates as (p, θ , ϕ). ¿is transforma-
tion can be composed from a boost along the (arbitrary) z-axis and a rotation
around (θϕ):

∣p⃗, sλ⟩ = L(p⃗) ∣0, sλ⟩ (4.25)
= R(ϕ, θ ,−ϕ)Lz(p) ∣0, sλ⟩ . (4.26)

A Lorentz invariant normalization of the single particle states ∣p⃗, sλ⟩ is chosen:

⟨p⃗′, s′λ′∣p⃗, sλ⟩ = (2π)32Eδ3(p⃗′ − p⃗)δs′sδλ′λ . (4.27)

¿e two particle plane-wave states are given by the direct product of two single
particle states:

∣p⃗1 p⃗2, s1s2λ1λ2⟩ = ∣p⃗1, s1λ1⟩⊗ ∣p⃗2, s2λ2⟩ . (4.28)

¿e particle spins are �xed and we suppress them. We choose the center-of-
mass frame which simpli�es the problem, since the particle momenta are
p⃗1 = −p⃗2 = p⃗ = (p, θ , ϕ). Furthermore the magnitude of the momentum is
completely determined by the masses of particle 1 and 2 and the center-of-mass
energy. ¿erefore, it can be factored out. ¿e two-particle state with proper
normalization is given by [27, Equation 3.13]:

∣p⃗1 p⃗2, s1s2λ1λ2⟩cm = ∣pθϕλ1λ2⟩ (4.29)

= (2π)3 [4
√
s

p
]
1/2

∣θϕ, λ1λ2⟩ ∣p⟩ . (4.30)

4.5.3 Spherical-wave helicity states

¿e plane-wave helicity states ∣pθϕλ1λ2⟩ are eigenstates of θ and ϕ. ¿ese are
in general not conserved in particle interactions. A better basis would be an
eigenstate basis of conserved quantities only.¿erefore, it is convenient to apply
a basis transformation from plane-wave helicity states to angular momentum
eigenstates which we call spherical helicity states in the following.
We expand the plane-wave helicity states in an angular momentum eigen-

basis:

∣p, θϕ, λ1λ2⟩ =∑
JM
cJM(p, θϕ, λ1λ2) ∣p, JM , λ1λ2⟩ . (4.31)

1 For photons another approach is necessary, see [27, B.6]
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We determine the coe�cients cJM(p, θϕ, λ1λ2) starting from the special case
θ = ϕ = 0. In that scenario the direction of the particle momenta is along
z-axis and the eigenvalue of the spin-projection operator Jz is λ = λ1 − λ2, as
illustrated in �g. 4.9. ¿is writes as:

yz
λ2

λ1
λ = λ1 − λ2

Figure 4.9: Spin-projection in
the center of mass system of two
particles with helicities λ1 and λ2 .
¿e momentum direction (black) is
chosen along the z-axis.

∣p, 00, λ1λ2⟩ =∑
JM
cJM(p, 00, λ1λ2) ∣p, JM , λ1λ2⟩ (4.32)

=∑
J
cJλ(p, 00, λ1λ2) ∣p, Jλ, λ1λ2⟩ . (4.33)

¿en we rotate the decay axis to arbitrary values of θ and ϕ:

∣p, θϕ, λ1λ2⟩
= R(ϕ, θ ,−ϕ) ∣p, 00, λ1λ2⟩
= R(ϕ, θ ,−ϕ)∑

J
cJλ(p, 00, λ1λ2) ∣p, Jλ, λ1λ2⟩

=∑
JM
cJλ(p, 00, λ1λ2)DJ

Mλ(ϕ, θ ,−ϕ) ∣p, JM , λ1λ2⟩ . (4.34)

We adopt the de�nition from [26] (α, β, γ) = (ϕ, θ ,−ϕ) and we use eq. (4.23)
to obtain:

cJM(p, θϕ, λ1λ2) =
√

2J + 1
4π

cJλ(p, 00, λ1λ2)DJ
Mλ(ϕ, θ ,−ϕ). (4.35)

¿e coe�cients are normalized to ∣cJM ∣ = 1. ¿en the transformation from
plane-wave helicity states to spherical helicity states is given by:

∣p, θϕ, λ1λ2⟩ =∑
JM

√
2J + 1
4π

DJ
Mλ(ϕ, θ ,−ϕ) ∣p, JM , λ1λ2⟩ . (4.36)

4.5.4 Parity

¿e strong and electromagnetic interaction are parity conserving. ¿is can be
exploited to reduce the number of independent amplitude contributions for a
reaction. We shortly outline how single-particle states and two-particles states
transform under parity operation.
¿e parity operator P applies a sign �ip in all spatial coordinates (a point

refection). A single particle at rest is an eigenstate of the parity operator:

P ∣p = 0, sλ⟩ = η ∣p = 0, sλ⟩ . (4.37)

Its intrinsic parity is denoted by η. A particle with a momentum along the
z-axis transforms under parity operation as:

P ∣pz , sλ⟩ = η(−1)s−λe iπJy ∣pz , s,−λ⟩ (4.38)

P ∣−pz , sλ⟩ = η(−1)s+λe iπJy ∣−pz , s,−λ⟩ . (4.39)
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¿e derivation of these relations can be found in [27, Chapter 6.1]. We use
them to study the behavior of two-particle states under parity operation. Two-
particle plane-wave helicity states in forward direction (θ = ϕ = 0) transform
as:

P ∣p, 00, λ1λ2⟩
= P ∣pz , s1λ1⟩P ∣−pz , s2λ2⟩
= η1(−1)s1−λ1 e iπJy ∣pz , s1,−λ1⟩η2(−1)s2+λ2 e iπJy ∣pz , s2,−λ2⟩
= η1η2(−1)s1−λ1+s2+λ2 e iπJy(∣pz , s1,−λ1⟩∣pz , s2,−λ2⟩)
= N e iπJy ∣p, 00,−λ1,−λ2⟩ . (4.40)

For brevity we merge the pre-factors:

N = η1η2(−1)s1−λ1+s2+λ2 . (4.41)

¿e transformation from plane-wave helicity states to spherical helicity states
is obtained by inserting eq. (4.36) on both sides of eq. (4.40).

P∑
JM
cJDJ

Mλ(0, 0, 0) ∣p, JM , λ1λ2⟩

= N e iπJy∑
JM
cJDJ

M ,−λ(0, 0, 0) ∣p, JM ,−λ1,−λ2⟩

P∑
J
cJ ∣p, Jλ, λ1λ2⟩

= N e iπJy∑
J
cJ ∣p, J(−λ),−λ1,−λ2⟩

= N ∑
J
cJ∑
M′
DJ
M′ ,−λ(0,−π, 0) ∣p, JM

′,−λ1,−λ2⟩

= N ∑
J
cJ(−1)J−λ ∣p, Jλ,−λ1 − λ2⟩ . (4.42)

We have used relations from A.1. ¿e last equation holds term by term in J and
therefore we get the transformation of spherical helicity states under parity:

P ∣p, Jλ, λ1λ2⟩ = η1η2(−1)s1−λ1+s2+λ2(−1)J−λ ∣p, Jλ,−λ1,−λ2⟩ . (4.43)

¿is equation was derived for λ = λ1 − λ2 but we can now use the raising and
lowering operators J± = Jx ± i Jy to step to values ofM between −J and J and
therefore:

P ∣p, JM , λ1λ2⟩ = η1η2(−1)s1−λ1+s2+λ2(−1)J−λ ∣p, JM ,−λ1,−λ2⟩ . (4.44)

4.6 partial wave expansion

We expressed two-body particles states in a basis of angular momentum eigen-
states. We use this result to expand the transition matrix element Tf i = ⟨ f ∣T ∣i⟩
in angularmomentum eigenstates.¿e summands of the series are called partial
waves. ¿e idea behind this is that we want to investigate the spectrum of QCD
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bound states which have de�ned quantum numbers. ¿e goal is to �nd new
states and to determine their quantum numbers.¿erefore, an expansion of the
total amplitude in partial waves with de�ned quantum numbers is convenient
since a new bound state would only contribute to a single partial wave and it is
therefore easier to isolate.
In the following we show this expansion for the case of a two-body scattering

process and for the case of a particle decay.

4.6.1 Two-body scattering

i1

i2

f1

f2

Figure 4.10: Two-body scattering in
s-channel.

¿e scattering process i1 i2 → f1 f2 is illustrated in �g. 4.10. Without loss of
generality we assume that the collision axis of i1 and i2 is along the z-axis. ¿e
transition amplitude from an initial state ∣i⟩ to a �nal state ∣ f ⟩ can be written
using eq. (4.30) as:

⟨ f ∣T ∣i⟩ = 4(2π)6
√

s
p f pi

⟨p f ∣ ⟨θ f ϕ f , λ f1λ f2 ∣T ∣00, λi1λi2⟩ ∣pi⟩ . (4.45)

¿e transition is independent of the initial and �nal momenta, but can depend
on the center-of-mass energy s. Conventionally the delta function is factored
out as shown in eq. (4.12), and we obtain:

⟨ f ∣T ∣i⟩ =(2π)4δ4(p f − pi)

× 4(2π)2
√

s
p f pi

⟨θ f ϕ f , λ f1λ f2 ∣TP ∣00, λi1λi2⟩ . (4.46)

We use the Mandelstam variable s to express the dependence of the transition
amplitude on the four-momenta:

⟨ f ∣TP ∣i⟩ = 4(2π)2
√

s
p f pi

⟨θ f ϕ f , λ f1λ f2 ∣T(s) ∣00, λi1λi2⟩ . (4.47)

Now we change the basis from plane-wave helicity states ∣θϕ, λ1λ2⟩ to spherical
helicity states ∣JM , λ1λ2⟩ by inserting two times the unity matrix:

⟨ f ∣TP ∣i⟩ = 4(2π)2
√

s
p f pi
∑
JM
∑
J′M′

⟨θ f ϕ f , λcλd ∣ ∣JM , λcλd⟩

× ⟨JM , λcλd ∣T(s)∣J′M′, λaλb⟩ ⟨J′M′, λaλb∣ ∣00, λaλb⟩ . (4.48)
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Using eq. (4.36) we obtain:

⟨ f ∣TP ∣i⟩ = 4(2π)2
√

s
p f pi

∑
JM
∑
J′M′

δJ J′δMM′

√
2J + 1
4π

√
2J′ + 1
4π

× DJ∗
Mλ f

(ϕ f , θ f ,−ϕ f ) ⟨λcλd ∣T J(s) ∣λaλb⟩����
���:

1
DJ′
Mλ i

(0, 0, 0)

= 4π
√

s
p f pi

∑
JM

(2J + 1)

× DJ∗
Mλ f

(ϕ f , θ f ,−ϕ f ) ⟨λcλd ∣T J(s) ∣λaλb⟩

= 4π
√

s
p f pi

∑
J
(2J + 1)

× DJ∗
λ i λ f

(ϕ f , θ f ,−ϕ f ) ⟨λcλd ∣T J(s, t) ∣λaλb⟩ . (4.49)

¿e angular momentum is conserved and therefore the two-particle states do
not depend on it, but the matrix T J(s, t) can depend on it. We have expanded
the transition matrix element in partial waves using the helicity formalism.¿e
dynamics of the decay is encoded in the helicity amplitudes ⟨λcλd ∣T J(s, t) ∣λaλb⟩.

yz
Ξ

f1

f2

θ f

Figure 4.11: Two-body decay in its
rest frame. ¿e decay angle θ f is
measured versus the z-axis.

4.6.2 Two-body decay

Now we want to do the same exercise for a two-body decay. We consider the
decay of a particle Ξ in its rest frame with spin J = sΞ and spin-projection
M = λΞ as initial state ∣i⟩. ¿e �nal state ∣ f ⟩ contains the particles f1 and f2
and can be written as ∣θ f ϕ f , λ f1λ f2⟩. ¿e decay is illustrated in �g. 4.11 and its
amplitude can be expressed as:

⟨ f ∣TP ∣Ξ⟩ = AΞ = ⟨θ f ϕ f , λ f1λ f2 ∣T ∣JM⟩ . (4.50)

In analogy to eq. (4.49) we get:

⟨ f ∣TP ∣Ξ⟩ = ∑
J′M′

⟨θ f ϕ f , λ f1λ f2 ∣ ∣J′M′, λ f1λ f2⟩ ⟨J′M′, λ f1λ f2 ∣T(s, t) ∣JM⟩

= ∑
J′M′

√
2J′ + 1
4π

DJ′∗
M′λ(ϕ f , θ f ,−ϕ f )

× δJ J′δMM′ ⟨JMλ f1λ f2 ∣T(s, t) ∣JM⟩

=
√

2J + 1
4π

DJ∗
Mλ(ϕ f , θ f ,−ϕ f ) ⟨λ f1λ f2 ∣T(s, t) ∣M⟩

=
√

2J + 1
4π

DJ∗
Mλ(ϕ f , θ f ,−ϕ f )Aλ f1 λ f2

. (4.51)

In a particle decay the angular momentum and the center-of-mass energy
are �xed. ¿e helicity amplitude Aλ f1 λ f2

must be rotationally invariant (no
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dependence on M) and therefore it can only depend on the helicities of the
�nal state particles.
In experiments the helicities of the �nal state particles usually cannot be

measured. In that case we have to sum over the helicities:

⟨ f ∣TP ∣Ξ⟩ = ∑
λ f1 λ f2

√
2J + 1
4π

DJ∗
Mλ(ϕ f , θ f ,−ϕ f )Aλ f1 λ f2

. (4.52)

4.6.2.1 Sequential two-body decay

yz
Ξ

R

θR

θΞ

f3

f1

f2

Figure 4.12: Sequential two-body
decay. ¿e angles are measured
in the rest frame of the respective
decay.

In the next step we want to describe a sequential two-body decay. A particle
Ξ decays to an intermediate resonance R with spin sR and helicity λR and a �nal
state particle f3. ¿e resonance R in turn decays to the �nal state particle f1 and
f2. For simplicity we assume that the helicities λi of the �nal state particles and
the helicity of the decaying particle λΞ are known. Otherwise we would have
to sum over them. ¿en the sequential decay amplitude can be written as:

A( f1 f2)R f3Ξ =∑
λR

⟨θRϕR , λ f1λ f2 ∣TP ∣sRλR⟩

× ⟨θΞϕΞ , λRλ f3 ∣TP ∣sΞλΞ⟩

=
√

2sΞ + 1
4π

DsΞ∗
λRλ f3

(ϕΞ , θΞ ,−ϕΞ)AΞλRλ f3

×∑
λR

√
2sR + 1
4π

DsR∗
λRλ f

(ϕR , θR ,−ϕR)ARλ f1 λ f2 . (4.53)

¿e angles θR , ϕR and θΞ , ϕΞ are measured in the respective rest frames of the
decay of R and the decay of Ξ. ¿is is illustrated in �g. 4.12. Equation (4.53) is
the decay amplitude for a resonating state in the �nal state particles f1 and f2.
¿e coherent sum of the amplitude over all possible intermediate states gives
the total decay amplitude.





5
RESONANCES

In the previous chapter we focused on the kinematic constraints imposed by
four-momentum and angular momentum conservation on scattering processes
and particle decays. In this chapter we spotlight the dynamics of particle scat-
tering and decay induced by the underlying interaction. We will shortly discuss
what a resonance is and motivate a erwards the most common parameter-
izations: ¿e Breit-Wigner (section 5.2) and Flatté formula (section 5.3). A
Breit-Wigner parametrization is suitable for narrow and isolated resonances
and the Flatté parametrization is used for resonances that are located close to
the threshold of a decay channel.

5.1 what is a resonance?

Today this question is still under discussion and a comprehensive overview is
beyond the scope of this thesis. Nevertheless we want to give a quick introduc-
tion without any claim for completeness. Wemainly followMartin & Spearman
[21].
¿e basic idea is that the transition matrix ⟨α f ∣TP ∣αi⟩ is a complex analytic

function which is de�ned all over the Mandelstam plane (�g. 4.3). ¿e behavior
of the amplitude in the physical regions is de�ned by its structure in the unphys-
ical regions. ¿is is the so-called Mandelstam hypothesis [20–22]. Previously
we introduced the expansion of the transition matrix in partial waves. Instead
of the transition matrix we refer to its partial wave amplitudes in the following.
Furthermore we assume that we have a elastic scattering process AB → AB of
spin-less particles.¿en the process can be described by one kinematic variable.
We choose the Mandelstam variable s and denote the partial wave amplitudes
of ⟨α f ∣TP ∣αi⟩ with AJi f (s). We drop the indices in the following.
A resonance is considered to be a pole of AJ(s) in the complex energy plane.

We have to evaluate AJ(s) for complex values of s and therefore we have to
evaluate the square-root of the break-up momentum eq. (4.3) which in turn
reduces to the complex square-root of s. ¿e complex square-root function is
multivalued in the complex plane with sets of solutions which di�er by integer
multiples of ±iπ. Figure 5.1 shows the complex energy plane and the argument
of the complex square root function. ¿e physical region is along the real s-
axis starting from threshold sth1. ¿e domains with one set of solutions are
the so-called Riemann sheets. With each threshold the number of Riemann
sheets doubles. Above the elastic threshold sth1 there are two solutions of the
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Im s
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√
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Sheet II - unphysical

Sheet I - physical

Branch cut

Figure 5.1: Argument of the complex square-root function. ¿e domains with
ambiguous solutions are so-called Riemann sheets. ¿e red line
indicates the physical region starting from threshold. Resonances
are pairs of singularities on the second sheet.

square-root function, and therefore two sheets. ¿e �rst and second sheet
are conventionally labeled by physical and unphysical sheet. As mentioned
before, resonances are considered to be poles of the transition amplitude in
the complex energy plane. On the real axis poles are possible only below the
threshold. ¿ese are identi�ed as bound states. Resonances are poles above the
threshold with a negative imaginary part. We consider a pole P at sP = sR − iγ.
Since a resonant state has to decay with time according to e−itE = e−it

√
sP the

pole positionmust have a negative imaginary part1 and therefore the pole reside
on the unphysical sheet. Due to unitarity each pole has a complex conjugate
partner 2. Since this pole is far away from the real axis (compare with �g. 5.1)
we neglect its in�uence.
¿e main challenge for spectroscopy is to determine the landscape of singu-

larities in the complex energy plane from its ’projection’ to the real energy axis
for a certain process. If the singularities are known, their in�uence on other
processes can be calculated. Yet the determination of the pole position can be
di�cult and we have to construct models that describe the cross section along
the physical region depending on the singularities close by. Common problems
are ambiguities in the description and model dependencies.
In the most simple case of a resonance far away from any thresholds and

separated from other resonances, the resonance shape is well described by a

1 ¿e complex square root can be separated into real and imaginary part:
√

2sP =
√

∣sP ∣ + sR + i sgn(γ)
√

∣sP ∣ − sR .
2 From unitarity follows that A(s) = A∗(s∗).
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Figure 5.2: Complex energy plane. ¿e physical region for an elastic scattering
process AB → AB opens at sth1. Below threshold poles can exist on
the real axis and are identi�ed as AB bound states. Poles above the
threshold reside on the unphysical sheet. A resonance pole R and
its complex conjugate partner on the unphysical sheet are sketched.
¿e unphysical sheet is reached from the physical sheet by crossing
the branch cut from above. At the threshold to the inelastic region
sth2 another pair of Riemann sheets opens up.

Breit-Wigner formula (see section 5.2) which can be used to extract the pole
position. ¿e width is then given by the imaginary part of the pole position
and the mass is given by the real part. Another special case is a resonance that
is located close to a channel threshold but isolated from other resonances. Such
a case is usually approximated by the Flatté formula (section 5.3). We discuss
both cases in the following. In general the resonance shape on the real axis can
be signi�cantly distorted from a Breit-Wigner shape depending on the presence
of thresholds and other resonances close by.

5.2 the breit-wigner ansatz

Originally the Breit-Wigner model was developed by Breit & Wigner [31] for
slow neutron capture in nuclei. We give a short derivation based on the ideas
of the previous section and illustration �g. 5.2. We consider a pole P at position
sP = sR − iγ and assume that resonances are poles of �rst order in AJ(s). ¿en
AJ(s) diverges close to the pole withO (1/(s − sP)) and we parametrize it as:

AJ(s) = g(s)
(s − sP)

. (5.1)

According to theMandelstamhypothesisAJ(s) is an analytic function and there-
fore g(s) is analytic and without poles. We require furthermore that g(sP)! = 0.
¿e value of g(s) close to the pole can be approximated by an expansion around
s = sP:

g(s) = g(sP) + (s − sP)
dg(s)
ds

∣
sP
+O(s2)

= g(sP) + (s − sR + iγ)g′(sP) +O(s2). (5.2)
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Figure 5.3: Breit-Wigner model for an isolated resonance with a mass of
0.98GeV and a width of 20MeV. ¿e intensity with phase variation
by π/2 at the resonance pole is on the le and the Argand diagram
on the right.

Using eq. (5.1) we �nd:

AJ(s) = g(sP)
s − sP

+ g′(sP) +O(s) ≈ g(sP)
s − sP

. (5.3)

In a certain proximity around sP the function g(s) is analytic without poles and
therefore the term g′(sP) can be neglected. In the context of resonances the
approximation is valid for narrow resonances (γ small) and for real (physical)
s close to sR. From the half width maximum of the intensity ∣AJ(s)∣2 one can
derive the connection between the apparent width along the real axis, denoted
by Γ, and the imaginary part of the pole position γ [21, Chapter 8.3.1]:

Γ = γ/√sR. (5.4)

¿is leads to the well-known Breit-Wigner formula:

AJ(s) ≈ −g(sP)
sR − s − i

√
sRΓ

. (5.5)

¿e phase variation can be calculated from eq. (5.5):

tan δ(s) =
Im (AJ(s))
Re (AJ(s)) = ( −γ

sR − s
) . (5.6)

¿e resonance shape and its phase variation are shown in �g. 5.3(a). At the
position of the resonance the phase rapidly increases by π with a slope depend-
ing on the resonance width. A di�erent representation of the phase variation is
shown in �g. 5.3(b). ¿e so-called Argand diagram shows the imaginary part
versus the real part of the amplitude. In the simple case we are dealing with,
the curve follows the unit circle. ¿is is a direct consequence of the unitarity
condition of the S-matrix (which is automatically ful�lled since the S-matrix is
in this case simply a complex number).
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¿e phase variation of π at the position of the resonance and the pole in
the transition matrix are directly connected to each other. Mathematically it is
possible to proof that a simple pole in a complex analytical function corresponds
to a phase change of π at the position of the pole [21, Chapter 6.1].
In this simple derivation some aspects of particle decays were not considered.

Firstly the amplitude in eq. (5.5) is not Lorentz invariant and secondly the
angularmomentumbarrier is not taken into account.¿ese issue are considered
in the parametrization suggested by the PDG [7]:

AJ(s) = −
gi→RgR→ f

m2
R − s + i

√
sΓ(s)

. (5.7)

¿e mass depended width Γ(s) is given by:

Γ(s) = ΓR ( q
qR

)
2J+1 F2J (q, q0)

F2J (qR , q0)
. (5.8)

¿ebreak-upmomentum q = q(s) is de�ned in eq. (4.3) and theBlatt-Weisskopf
angular barrier factors F2J (q, q0) are discussed in section 5.4. ¿e coupling
constants for the production and decay gi are related to the partial width Γi via:

gR→c =
1

qJcFJ(qc , q0)

√
mRΓR→c

ρc
. (5.9)

¿e last relation holds for narrow, isolated resonances.
Equation (5.7) describes the resonance structure along the real s axis close to

the pole position and with the assumption that all (other) poles and thresholds
are su�ciently far away. In practice these assumptions are strictly ful�lled
only in very rare cases. Nevertheless the Breit-Wigner model serves as a good
approximation in many cases.

5.3 the flatté formalism

Wewant to discuss a slightly more complicated situation which involves a reson-
ance close to a channel threshold. ¿e S matrix is therefore a 2 × 2matrix with
one resonance pole. ¿e di�culty is to parametrize the S-matrix in such a way
that unitarity is preserved. A correct treatment in that respect is usually done
using the K-Matrix formalism [21, Chapter 4]. Since this is beyond the scope
of this thesis we restrict ourself to the result. ¿e so-called Flatté formula [32]
was �rstly introduced to describe πη and KK states close to the KK threshold.
We use a slightly di�erent version:

AJ2ch(s) = −
ga→RgR→b

m2
R − s + i

√
s/mR(g21 ρ1 + g22ρ2)

. (5.10)

¿e coupling constants are denoted by gi and the phase-space factor ρi is given
in eq. (4.5). ¿e resonance shape for both channels and the Argand diagram
are shown in �g. 5.4. At the KK threshold a kink is visible in the intensity of the
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Figure 5.4: Flatté model for a two-channel resonance. ¿e resonance pole is
close to the KK threshold and couples strongly to KK and to the
second channel πη. ¿e intensity of both channels is shown on the
right and the Argand diagram on the le .

second channel ηπ. In the Argand diagram the curve for the second channel
dri s away from the unitarity circle a er the opening of the KK channel.

5.4 blatt-weisskopf barrier factors

As mentioned before, the Breit-Wigner Ansatz assumes a point-like object.
An extended object introduces a centrifugal barrier which leads in general to
a reduced resonance width. ¿e radial Schrödinger equation in absence of a
Coulomb potential and for distances larger than the size of the barrier potential
is given by:

d2

d2z
ψ(z) − J(J + 1)

r2
ψ(z) = ψ(z). (5.11)

¿e parameter z should be seen as normalized distance. As a measure for the
distance we use the break-up momentum q, as de�ned in eq. (4.3), and we
normalize it to the range of the interaction q0. ¿e range of interaction is in
turn approximated by the size of the object and we choose q0 = 1/R with the
meson size R. ¿erefore, z is de�ned as:

z = q
q0
. (5.12)

In principle the parameter q0 depends on the resonance. Practice shows that
its e�ect is rather small.
¿e solutions for eq. (5.11) are proportional to the spherical Hankel functions

hJ(z) [33, Chapter 11.7]:

ψ(z)∝ z h(1)J (z). (5.13)
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¿e form factor FJ(z) is related to Hankel functions via

F2J (z) =
z2∣h(1)J (z)∣

2

∣h(1)J (1)∣
2 (5.14)

which leads to the following expressions for angular momenta up to three:

F20(z) = 1

F21 (z) =
z

z + 1

F22(z) =
13z2

(z − 3)2 + 9z

F23(z) =
277z3

z(z − 15)2 + 9(2z − 5)2 . (5.15)

¿is type of parametrization of the angular momentum barrier was introduced
by Blatt & Weisskopf [34]. Further details can be found in [28, 35].
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QUANTUM ENTANGLED D0D0 DECAYS
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Figure 6.1: Feynman diagram for
the decay of ψ(3770) to D0D0 .

We analyze D0 mesons produced in the strong decay of ψ(3770) to D0D0.
¿e ψ(3770) is an excited cc state which hadronizes into a pair of D0 mesons,
as sketched in �g. 6.1. ¿e D0 mesons are produced in a quantum entangled
state. In contrast to an isolated decay, this has implication on the decay rate
since fundamental physical conservation laws needs to hold for the combined
D0D0 decay amplitude, not just for the decay amplitude of one D0. We mention
especially the conservation of charge-parity (CP) which we assume to be strictly
conserved in the D0 system. We follow the phase convention

CP ∣D0⟩ = − ∣D0⟩ (6.1)

and denote the transition amplitude of an isolated D0 decay ⟨ j∣H∣D0⟩ byA j.
From CP conservation follows:

A j = ⟨ j∣H∣D0⟩ = − ⟨ ȷ∣H∣D0⟩ = −A ȷ

A j = ⟨ j∣H∣D0⟩ = − ⟨ ȷ∣H∣D0⟩ = −A ȷ. (6.2)

In case that j is a CP eigenstate we have j = ȷ and we have to multiply by the CP
eigenvalue of the �nal state. Another useful de�nition is the amplitude ratio of
D0 and D0 to the same �nal state:

λ j =
A j

A j
= −

√
r je−iδ j . (6.3)

¿e amplitudes A j depend on the phase-space position, only for two-body
decaysA j is constant. We use a normalization in which ∣A j∣

2 integrated over
the phase-space is the branching fraction of an isolated D0 decay to the �nal
state j. We denote those �nal states with r j ≤ 1 by j and its charge-conjugate
with r ȷ > 1 by ȷ.
A general introduction to charmphysics is given in chapter 2. In the following

we derive the decay amplitude of a quantum entangled D0D0 pair and the
in�uence of the quantum entanglement on branching fraction measurements.
We follow [36, 37].

39
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6.1 decay amplitude of correlated d0d0 pairs

D0D0 pairs can be produced in e+e− collisions: e+e− → D0D0 +mγ + nπ0. ¿e
reaction is illustrated in �g. 6.2. ¿e D0D0 pair has the charge parity quantum
number (−1)m+1. In our case the D0 mesons are produced by the decay of a
ψ(3770) with quantum numbers JPC = 1−−. ¿e available phase-space does
not allow for an additional pion and the emission of a photon is suppressed
due to the heavy c-quark. D0 mesons have quantum numbers JP = 0− and the
relative angular momentum between both D0 mesons is therefore L = 1. In
consequence D0D0 are produced in a state of negative charge-parity. ¿e wave
function is therefore anti-symmetric:

e+

e−
γ

c

c
d

u D0

D0

γ, π0

Figure 6.2: Production of D0D0

pairs in e+e− reaction.

∣ψ(3770)⟩ = 1√
2
(∣D0D0⟩ − ∣D0D0⟩) . (6.4)

¿e decay is mediated by the decay operatorH. ¿e transition matrix element
forD0 andD0 going to the �nal states i and j at decay times t1 and t2 respectively,
is given by:

Mi j(t1, t2) =
1√
2
[ ⟨i∣H∣D0(t1)⟩ ⟨ j∣H∣D0(t2)⟩

− ⟨i∣H∣D0(t1)⟩ ⟨ j∣H∣D0(t2)⟩ ]. (6.5)

¿e transition actually only depends on the decay time di�erence ∆t = t2 − t1.
We use the time-evolution of the physical states ∣D0(t)⟩, as given in eq. (2.3),
to calculate the norm of the transition matrix element [7, Chapter 13.1]:

∣Mi j(∆t)∣
2 = Γ

4
e−Γ∣∆t∣[ (∣a+∣2 + ∣a−∣2) cosh(yΓ∆t)

+ (∣a+∣2 − ∣a−∣2) cos(xΓ∆t)
− 2Re(a∗

+
a−) sinh(yΓ∆t)

+ 2 Im(a∗
+
a−) sin(xΓ∆t)]. (6.6)

¿e mixing parameters (x,y) and the CP violation parameters (q,p) were intro-
duced in chapter 2. We use the abbreviations

a+ = A jAi −A jAi and a− = −
q
p
A jAk +

p
q
A jAk . (6.7)

¿e Besiii experiment does not give access to the D0 decay time and there-
fore we are interested on the time-integrated transition matrix element. ¿e
integration of eq. (6.6) over the D0 decay time di�erence yields:

∣Mi j∣
2 = ∫

∞

−∞

d(∆t)∣Mi j(∆t)∣
2

=
(∣a+∣2 + ∣a−∣2)

1 − y2 +
(∣a+∣2 − ∣a−∣2)

1 + x2

≈ ∣a+∣2 = ∣A jAi −A jAi ∣
2. (6.8)
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In eq. (6.6) we choose the normalization so that ∣Mi j∣
2 and ∣Ai ∣2 are branching

fractions if integrated over the phase-space. ¿e mixing parameters x and y
are of the orderO (10−3) and can be neglected in second order.
Using eq. (6.3) we can write eq. (6.8) as:

∣Mi j∣
2 ≈ ∣A jAi −A jAi ∣

2 = 2∣AiA j (λi − λ j)∣
2

= ∣Ai ∣
2∣A j∣

2 [λ2i + λ2j − λ∗i λ j − λiλ∗j ]

= ∣Ai ∣
2∣A j∣

2 [ri + r j −
√
rir j (e i(δ i−δ j) + e−i(δ i−δ j))]

= ∣Ai ∣
2∣A j∣

2 [ri + r j −
√
rir j 2 cos(δi − δ j)] . (6.9)

¿is amplitude is used for theDalitz plot analysis ofD0 → K0
SK+K− in chapter 12.

In case that one of the D0 mesons decays to a conjugate �nal state we derive in
the same way:

∣Mi ȷ∣
2 ≈ ∣A ȷAi −A ȷAi ∣

2 = ∣AiA j −A jAi ∣
2

= ∣Ai ∣
2∣A j∣

2 [1 + rir j −
√
rir j 2 cos(δi + δ j)] . (6.10)

¿e ratio of the decay amplitudes of D0 and D0 to the same �nal state j
denoted by λ j depends on the type of �nal state. We distinguish three di�erent
types:

Table 6.1: Magnitudes and phases of
the ratio λ j of D0 to D0 amplitude
to the same �nal states [37].

Final state j r j δ j

f r f δ f
f r f δ f
l+ 0 -
S+ 1 π
S− 1 0

• Hadronic �nal states f that can be reached from D0 and D0. For ex-
ample a D0 can decay to the �nal states K−π+ via a Cabibbo-favoured
(CF) (VcsVud) transition while the D0 decays via a doubly Cabibbo-
suppressed (DCS) (VcdVus) transition. ¿is category also includes self-
conjugate �nal states, in particular the decay D0 → K0

SK+K−.

• ¿e decay amplitudes of D0 and D0 are equal for CP eigenstates S± (in
the limit of conserved CP symmetry). CP eigenstates are for example
π+π− and K+K−.

• (Semi-) leptonic D0 decays l+ unambiguously determine the �avour of
the decaying meson. ¿ey are accessible by either D0 or D0. It is also
possible that a D0 oscillated to a D0 beforehand, or vise versa.

For those categories we list magnitude and phase of the ratio of D0 to D0

amplitude to the same �nal states in table 6.1.

6.2 branching-fractions in entangled d0d0 decays

¿e branching fraction of a D0 meson decaying to a �nal state f is in�uenced,
with respect to the decay of an isolated D0, by the quantum entanglement
between D0 and D0. ¿e branching fraction of an isolated D0 is what we
want to measure. ¿is can be achieved by a so-called single-tag or double-tag
measurements. We introduce those in the following.
¿e single-tag measurement is based on the reconstruction of the signal

decay and the normalization to the number of D0D0 decays. ¿e number of
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D0D0 decays is obtained from the integrated luminosity and the corresponding
cross section. ¿e transition matrix element that one D0 goes to a speci�c
channel j and D0 goes to any �nal state is given by:

∣M jX ∣
2 =∑

i
(∣M ji ∣

2 + ∣M jı ∣
2)

=∑
i
∣A j∣

2∣Ai ∣
2 [1 + ri + r j + rir j − 2

√
rir j [cos(δi − δ j) + cos(δi + δ j)]]

=∑
i
∣A j∣

2∣Ai ∣
2 [1 + ri + r j + rir j − 4

√
rir j cos δi cos δ j] . (6.11)

¿e transition matrix element ∣M jX ∣
2, the amplitudes of isolated D0 decays

A j as well as the parameters ri and δi implicitly depend on the phase-space
position. We obtain branching fractions via integration over the phase-space:

Bi j = ∫ dξi ∫ dξ j ∣Mi j∣
2

Bi = ∫ dξi ∣Ai ∣2. (6.12)

¿e in�nitesimal phase-space element of channel j is denoted by dξ j. For the
parameters ri and δi we calculate averaged values

⟨wi⟩ =
∫ dξi wi ∣Mi j∣

2

∫ dξi ∣Mi j∣
, (6.13)

with wi = (ri , δi) and can then rewrite eq. (6.11):

B jX =∑
i
B jBi [1 + ⟨ri⟩ + ⟨r j⟩ + ⟨ri⟩ ⟨r j⟩ − ⟨2√ri cos δi⟩ ⟨2

√
r j cos δ j⟩] .

(6.14)

¿e branching fractions of isolated D0 decays sum up to one:

∑
i
(Bi + Bi ⟨ri⟩) =∑

i
(Bi + Bi) = 1, (6.15)

where the mixing parameter y can be expressed as:

y = 2∑
i
Bi ⟨

√
ri cos δi⟩ . (6.16)
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¿is relation is derived in appendix A.3. Using those expressions eq. (6.14) can
be written as:

B jX = B j [∑
i
(Bi + Bi ⟨ri⟩) + ⟨r j⟩∑

i
(Bi + Bi ⟨ri⟩)

− ⟨2
√
r j cos δ j⟩ ∑

i
Bi ⟨2

√
ri cos δi⟩]

= B j [1 + ⟨r j⟩ − ⟨2
√
r j cos δ j⟩∑

i
Bi ⟨2

√
ri cos δi⟩]

= B j [1 + ⟨r j⟩ − ⟨2
√
r j cos δ j⟩ y] . (6.17)

¿e branching fraction in correlated decays B jX can be measured by:

B jX =
N j

NDD × є j
, (6.18)

with the number of D0D0 decays NDD and the signal yield N j. From eq. (6.18)
and eq. (6.17) we �nd that the branching fraction of an isolated D0 decay can
be obtained from a correlated decay via:

B j =
N j

NDD [1 + ⟨r j⟩ − y ⟨2
√r j cos δ j⟩] × є j

, (6.19)

where the reconstruction and selection e�ciency of a �nal state j is denoted
by є j. We will use this formula for the measurement of the D0 → K0

SK+K−

branching fraction which is discussed in chapter 13.
For completeness we explain in the following the double-tag measurement of

branching fractions.¿e branching fraction of a pair of correlatedD0D0mesons
to a �nal state (i , ȷ) can be obtained from eq. (6.10) and can be measured using
the signal yield Ni ȷ and the number of D0D0 decays:

Bi ȷ = ∫ dξi ∫ dξ ȷ ∣Mi ȷ∣
2 =

Ni ȷ

NDD × єi ȷ
. (6.20)

¿e branching fraction of an isolated D0 to a �nal state ȷ can be extracted
by normalization to the single-tag inclusive branching fraction BiX , given in
eq. (6.19):

Bi ȷ
BiX

=
Ni ȷєi
Niєi ȷ

=
BiB j [1 + ⟨ri⟩ ⟨r j⟩ − ⟨2√rir j cos(δi + δ j)⟩]

Bi [1 + ⟨ri⟩ − y ⟨2
√
ri cos δi⟩]

. (6.21)

Finally we obtain:

B j =
Ni ȷєi
Niєi ȷ

×
1 + ⟨r j⟩ − 2y ⟨

√r j cos δ j⟩
1 + ⟨ri⟩ ⟨r j⟩ − 2 ⟨

√rir j cos(δi + δ j)⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

fcorr

. (6.22)
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Depending on the �nal state (i , ȷ) the correction term fcorr can be neglected.
For example in case of (i , ȷ) = (K−π+,K+π−), we can use the experimental aver-
ages from table 7.1 to calculate fcorr. In this case the correction is (0.338 ± 0.004)%.



7
AMPLITUDE MODEL FOR D0 → K0

SK+K−

We introduced the basic theoretical constructs for partial wave analysis in
chapter 4 and the implications of the correlated decays of a pair of D0 mesons
in chapter 6. We now recap the important formulae and apply them to the
decay D0 → K0

SK+K−.
We analyze a data sample of D0D0 decays and we have to take into account

the entanglement of both D0 mesons. One D0 decay, the so-called tag decay, is
used to determine the �avour of the signal decay. From eq. (6.9) we get:

∣M
(tag)(K0

SK
+K−)∣

2
= ∣AtagAK0

SK
+K− −AtagAK0

SK
+K− ∣

2

= ∣Atag (AK0
SK

+K− − λtagAK0
SK

+K−)∣
2

= ∣Atag∣
2[∣AK0

SK
+K− ∣

2
+ rtag∣AK0

SK
+K− ∣

2

− 2√rD∣AK0
SK

+K− ∣∣AK0
SK

+K− ∣ cos(δtag − δK0
SK

+K−)]

= ∣Atag∣
2∣AK0

SK
+K− ∣

2
[1 + rtagrK0

SK
+K−

− 2
√
rtag

√rK0
SK

+K− cos(δtag − δK0
SK

+K−)]. (7.1)

Table 7.1: Charm mixing averages
from HFAG [38]. Values in [%].

Parameter Value

x 0.53 ± 0.17
y 0.63 ± 0.09
RD 0.350 ± 0.004

⟨RK−π+π0D ⟩ 0.164 ± 0.027
δKπ[°] 10 ± 11
δKππ0[°] 17 ± 23

¿e �nal state K0
SK+K− is a self-conjugate �nal state and therefore D0 and D0

amplitude are linked via [17]:

AK0
SK

+K−(m2
K0K+ ,m

2
K0K−) = AK0

SK
+K−(m2

K0K− ,m
2
K0K+). (7.2)

Note thatAK0
SK

+K− andAK0
SK

+K− are the same function evaluated at di�erent
phase-space positions.
We use �avour speci�c tag channels as listed in table 10.1. For those channels

λtag, see eq. (6.3), has the same magnitude RD but the phase depends on the
channel. Experimental averages are listed in table 7.1. As mentioned, the signal
channel K0

SK+K− is a self-conjugate �nal state and, as we will see, its substruc-
ture is a mixture of negative and positive CP eigenstates as well as non-CP states.
¿erefore, it is hard to predict the ratio λK0

SK
+K− . In particular the interference

term in eq. (7.1) can in�uence the result.
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¿e decay amplitudeAK0
SK

+K− is modeled by the coherent sum of interme-
diate resonances. ¿e D0 as well as all �nal state particles are spin-less (J = 0)
and have therefore helicity zero (λi = 0). In a three-body �nal state only one
intermediate resonance is possible and since we have only spin-less particles
the helicity of the intermediate resonance is �xed to zero. ¿e formula for
sequential two-body decays from eq. (4.53) therefore simpli�es to:

A(K1K2)RK3
R =

√
2sR + 1
4π

DsR
00(ϕR , θR ,−ϕR)A

R
00

×
√

1
4π

D0
00(ϕD , θD ,−ϕD)AD00

=
√
2sR + 1
4π

AR PsR(cos θR)AD . (7.3)

We have used that the Legendre polynomials PJ(cos θ) are a special case of the
Wigner D-matrix for λ=λ′=0 (see appendix A.1). ¿e helicity amplitudes AD

and AR describe the dynamics of the production and decay of the intermediate
resonance R. We add the individual amplitudes for all possible intermediate
states coherently to obtain the total amplitude for an isolated D0 decay:

AK0
SK

+K− =∑
R

√
2sR + 1
4π

AD PsR(cos θR)AR

=∑
J

√
2J + 1
4π

AD PJ(cos θR)∑
RJ
ARJ . (7.4)

In the last step we reordered the summation to resemble a partial wave decom-
position. ¿e helicity amplitudes ARJ depend on the center-of-mass energy of
the subsystem in with the resonance occurs. ¿e center-of-mass energy in each
subsystem is given by the invariant masses

m2
K0
SK

− = (pK0
S
+ pK−)2

m2
K0
SK

+ = (pK0
S
+ pK+)2

m2
K+K− = (pK+ + pK−)2. (7.5)

From these invariant masses the helicity angle associated with each invariant
mass can be calculated according to eq. (4.7). In principle these variables are
identical to the Mandelstam variables, yet in particle decay it is di�cult to
assign them to s,t and u channel. As mentioned before only two variables are
necessary to describe the decay: two invariant masses or one invariant mass
and its associated helicity angle. We denote the set of variables that are chosen
to describe the position in the Dalitz plot by ξ.
¿e next step is to construct models for the helicity amplitudes. In section 5.2

we have developed an ansatz for isolated resonances far away from thresholds.
Most of the resonances that signi�cantly contribute to the intensity of the �nal
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state K0
SK+K− ful�ll this requirement. ¿ese resonances are described by a

Breit-Wigner model:

AJ(s) = −
gi→RgR→ f

m2
R − s + i

√
sΓ(s)

. (5.7)

¿e a0(980) and the f0(980) are a bit more complicated. ¿e a0(980) and
f0(980) are considered to be isospin partners with I = 1 and I = 0 and have a
position close to the opening of the KK channel to which both of them couple
strongly. In this case the channel KK as well as the second channels need to
be taken into account. In case of the f0(980) the second channel is ππ and the
a0(980) couples to ηπ. ¿e charged a+0 and a−0 are described using the Flatté
formula:

AJ2ch(s) = −
ga→RgR→b

m2
R − s + i

√
s/mR(g21 ρ1 + g22ρ2)

. (5.10)

For the neutral resonances we introduce a third channel, since there is the
K+K− threshold and close by the K0K0 threshold. We assume that the coupling
to K−K+ and K0K0 are equal. Since the pole mass is below the KK threshold we
have to evaluate the phase-space factor ρ close at threshold. We use a modi�ed
formula for the phase-space factor which has better analytic properties com-
pared to eq. (4.5). ¿e parametrization suggested by the PDG [7, Section 47.2.3]
is given by:

iρ12 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

− ρ̂12
π log ∣ 1+ρ̂121−ρ̂12 ∣, s < 0

− 2ρ̂12
π arctan 1

ρ̂12 , 0 < s < sth
− ρ̂12

π log ∣ 1+ρ̂121−ρ̂12 ∣ + i ρ̂12, sth < s

, (7.6)

where ρ̂12 is de�ned as

ρ̂12(s) =
1
16π

2
√

∣q12(s)∣2√
s

. (4.5)

¿is de�nition is also used to obtain an analytic function for the break-up
momentum.





Part III

THE BESIII EXPERIMENT

¿e Besiii experiment is located at the Beijing Electron-Positron
Collider. ¿e accelerator is a e+e− storage ring located at the In-
stitute of High Energy Physics in Beijing. It provides symmetric
collisions in the energy range between 2.0GeV and 4.6GeV. ¿e
maximum luminosity of BEPCII is achieved at

√
s =3.773GeV. In

April a luminosity of 1 × 1033 cm−2 s−1 was surpassed. ¿e detector
measures charged trackmomenta with a relative precision of 0.5%
(@1.0GeV) using amulti-wire dri chamber in a 1 Tmagnetic �eld.
Electromagnetic showers are measured in a caesium iodide calor-
imeter with a relative precision of 2.5% (@1.0GeV) and a good
particle identi�cation is achieved by combining information from
energy loss in the dri chamber, from the time-of-�ight system
and from the calorimeter. Muons can be identi�ed using 9 layers
of resistive plate chambers integrated in the magnet return yoke.
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THE BEPCII STORAGE RING

¿eBeijing Electron-Positron Collider II (BEPCII) is a symmetric e+e− collider
located at the Institute of High Energy Physics in Beijing. It is a major upgrade
of its predecessor BEPC [39], which was in operation between 1989 and 2004.
During the upgrade the collider was essentially rebuilt.
BEPCII is a double ringmulti-bunch e+e− collider. It is designed to operate in

the τ-charm region between 2.0GeV and 4.6GeVwith a maximum luminosity
of 1×1033 cm−2 s−1 at

√
s = 3.773GeV. So far the luminosity was below the

design value but in April the goal of 1×1033 cm−2 s−1 was surpassed.
Electrons and positrons are accelerated to the nominal beam energy by a

linear accelerator with a length of 202.4m and are injected into the storage ring.
¿e storage ring is illustrated in �g. 8.1. It has two rings with a circumference of
237.5m which cross each other in the northern and southern interaction point.
¿e crossing angle in the southern point where Besiii is located, is 11mrad.
¿e ring is equipped with 60 quadrupole magnets for beam focusing and 40
bending magnets. Very close to the southern interaction point two focusing
magnets are installed to ensure a high luminosity as shown in �g. 9.1(blue
components).
¿e expected luminosity of an e+e− collider can be expressed by the beam

aspect ratio r, the vertical envelope function βy(both at the interaction point),
the vertical beam-beam parameter ξy, the bunch number kb and the beam
current Ib [41]:

L(cm−2 s−1) = 2.17×1034(1 + r)ξy
E(GeV)kbIb(A)

β∗y(cm) . (8.1)

A luminosity of 1 × 1033 cm−2 s−1 [42] was reached with a con�guration of 119
bunches and a beam current of 849mA and 852mA for the positron and elec-
tron beam, respectively. ¿e beam-beam parameter was 0.0384.
More details of the accelerator are provided by [41, 43].
BEPCII had its �rst collisions in July of 2008 and physics data taking started

in March of 2009. Since then, BEPCII has been producing reliably collisions
for particle physics analysis for around 6 Month per year. During this time
and during dedicated periods BEPCII is also used for synchrotron radiation
experiments.
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Figure 8.1: ¿e BEPCII e+e− storage ring [40].

North

8.1 synchrotron radiation facility

¿e Beijing Synchrotron Radiation Facility (BSRF) provides synchrotron radi-
ation (SR) fromultraviolet and hardX-rays. 14 beam-lines provide experimental
techniques like X-ray imaging and X-ray crystallography which are relevant for
many other research areas like condensed matter physics, chemistry, material
science, biology, geoscience andmanymore. During the dedicated SR operation,
electrons are inserted into the outer ring with an energy of 2.5GeV and only
250mA. During that time the accelerator is tuned for a low emittance instead
of a high current, which results in a higher brightness of the synchrotron source
compared to the collision mode. A description of the BSRF can be found in
[44].
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THE BESIII DETECTOR

z

y
x

e+ e−

Figure 9.1: Vertical section of the Besiii detector along the beam-axis (cos θ
plane) [45].

¿e Besiii detector covers almost the full solid angle of 4π. ¿e vertical
section along the beam-line (cos θ plane) is shown in �g. 9.1. In the ϕ plane the
detector is symmetrical.
From inside to outside the experiment consists of a multi-wire dri chamber

as central element, surrounded by a plastic-scintillator time-of-�ight system
and the electromagnetic calorimeter.¿en follows the superconducting magnet
with a �eld strength of 1 T and the outermost component is the muon system
which in integrated into the magnet return yoke. In the following the individual
detector components are described.

9.1 multi-wire drift chamber

¿e dri chamber is the central element of the detector. It measures charged
tracks and their momenta in three dimensions. Using a measurement of the
energy loss per length (dE/dx) it is possible to identify di�erent particle species.
¿e chamber has cylindrical shape with an inner radius of 59mm, an outer

radius of 81 cm and a maximum length of 2.582m. ¿e inner part is designed
to be removable in case of severe radiation damage and has a stepped shape to
allow focusing quadrupol magnets be installed close to the interaction region.
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Figure 9.2: Schematic view of the multi-wire dri chamber [43].

¿is is done to produce the high luminosity. ¿e whole chamber has 43 layers
of sense wires with 6796 sense wires in total. ¿ese sense wire layers alternate
with layers of �eld wires and are arranged in 11 super layers with 4 layers each
(3 in the last super layer).
¿e precision of the momentum measurement depends on two parameters:

the single wire resolution and the probability of multiple scattering. ¿e wire
resolution σx is 130 µm and the multiple scattering process is determined by
the chamber design and the gas mixture. ¿e gas mixture is on the one hand
chosen to minimize the material budget and on the other hand to provide
su�cient primary ionization for the dE/dx measurement. ¿e optimal choice
is a helium propane (He/C3H8) mixture in the ratio 60:40. ¿e expected mo-
mentum resolution for equally spaced layers in an axial uniform magnetic �eld
can approximated by:

σpt
pt

=

¿
ÁÁÁÀ⎛

⎝
σwirept

pt
⎞
⎠

2

+
⎛
⎝
σmultscatpt

pt
⎞
⎠

2

. (9.1)

¿e two terms can be expressed in terms of the single wire resolution σx and
the radiation length X0 of the total material in the chamber:

σwirept

pt
= 3.3 × 102 × σx

B × L × pt ×
√

720
n + 5 (9.2)

σmultscatpt

pt
= 0.05
B × L ×

√
1.43 L

X0
(1 + 0.038 ln L

X0
) . (9.3)

where B is the magnetic �eld in Tesla, L the track length in meters, pT the
transversal momentum in GeV, and n the number of sense wire layers. For
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a typical track of 1 GeV at 90° polar angle, σwirept and σmultscatpt are 0.32% and
0.35%. ¿is leads to a momentum resolution of a typical track of 0.47%.
¿e dE/dx resolution depends on �uctuations of the ionization process and

recombination loss of electron-ion pairs. It is currently 5% to 6% [46]. Kaons
and pions can be separated on a 3σ level up to momenta of ∼ 770MeV/c.

9.2 time-of-flight system

¿e next layer of the Besiii detector is the time-of-�ight (TOF) system. It
consists of a barrel part with two layers of plastic scintillator bars and an end
cap part with one layer of plastic scintillator. ¿e main task of the TOF system
is particle identi�cation. ¿e event start time in �rst order is given by the radio-
frequency clock of the storage ring (for details see section 10.2.1) and the TOF
systemmeasures the time di�erence between event start time and the passage of
a charged track through the layers of plastic scintillator. From the track length,
the velocity of the particle can be calculated, and together with a momentum
measurement in the dri chamber the particle mass can be determined. ¿e
TOF system also provides fast trigger signals of charged particles.
¿e barrel system is mounted on the outer shell of the dri chamber with

an inner radius of 0.81m and 0.86m for the �rst and second layer. Each layer
consists of 88 scintillator bars, each with a length of 2.3m and a width of
50mm. A polar angle region of ∣cos θ∣ < 0.82 is covered. Each bar has two
photomultiplier tubes (PMT) attached on both ends.
¿e end cap system has 48 scintillator bars with trapezoidal shape that are

arranged fan shaped in one layer. ¿e inside end of the components is cut
in a 45° angle to re�ect the light to to outer end. Here a single PMT detects
the scintillation light. ¿e minimum �ight path of particles detected by the
end cap TOF is about 1.4m. ¿e end cap layer covers a polar angle region of
0.95 < ∣cos θ∣ < 0.85.

9.2.1 Time resolution

¿e time resolution is in�uenced by many sources of uncertainty. ¿e largest
contribution comes from the ‘intrinsic’ time resolution which is determined
by the rise time of the scintillation light and �uctuations of the photon arrival
time. Another uncertainty comes from the time walk e�ect1. Both sources
of uncertainty depend only on the particle type and its momentum and are
therefore intrinsic to the technology in use. ¿ese uncertainties are reduced by
a factor of 1/

√
2 by two independent measurements in both layers of the barrel

part.
Other uncertainties come from the determination of the collision time (RF

clock), the hit position along the z-direction, the �nite bunch length of 1.5 cm
and from the uncertainty of the momentum measurement.

1 ¿e time walk e�ect denotes the dependence of the threshold crossing time on the signal height
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Table 9.1: Time resolution of the time-of-�ight system for a single layer [47].¿e
total resolution of both layers in the barrel part is given in brackets.

Uncertainty Barrel [ps] End cap [ps]

Intrinsic 80 ∼ 90 80
Bunch length 35 35
Collision time ∼ 20 ∼20
Z position 25 50

Readout electronic 25 25
Momentum uncertainty 30 30

Time walk 10 10

Total time resolution 100 - 110 (80 - 90) 110

(a) (b)

Figure 9.3: Time di�erence between kaon an pion as function of cos θ (a) and
the e�ciency for kaon identi�cation versus track momentum (b)
[47].

An overview of di�erent contributions to the time resolution is shown in
table 9.1. ¿e expected performance is shown in �g. 9.3 in terms of time dif-
ference between a kaon and pion track (a) and in terms of kaon identi�cation
e�ciency (b).
Currently for the time resolution in the barrel part the expectations are

outperformed by 89 ps and 67 ps [48] for one and two layers. In the end cap
part the resolution is 131 pswhich is below expectation.¿erefore, a new system
is under constructionwhich replaces the plastic scintillator end caps by a system
of multi-gap resistive plate chambers (MRPC) [48].

9.3 electromagnetic calorimeter

¿eelectromagnetic calorimeter (EMC) surrounds theTOFdetectors. It provides
a accurate energy and position measurement of neutral showers in an energy
range from 20MeV up to the BEPCII maximum beam energy. Furthermore,
a good electron-pion separation is provided. ¿e calorimeter is built from
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(a) (b)

Figure 9.4: Monte-Carlo simulation for energy (a) and position resolution (b)
for di�erent crystal sizes as function for the photon energy [47].

thallium doped caesium iodide CsI(Tl) crystals which provide a high light
yield and are therefore well suited for the detection of low energy photons. ¿e
whole detector consists of 6240 crystals that are arranged in 56 rings around the
TOF system. Each crystal has a length of 28 cm which is equivalent to 15.1X0
and an area of 5.2×5.2 cm pointing to the interaction point. ¿e crystals have
a tilt of 1.5° and 1.5°-3° in ϕ and cos θ direction, respectively. ¿is avoids that
photons coming from the interaction point hit the transition region between
crystals. ¿e calorimeter covers an polar region of cos θ < 0.83 in the barrel
and 0.84 < cos θ < 0.93 in the end cap part. ¿is corresponds to a coverage
of 93% of the full solid angle. ¿e expected resolution of energy and position
as function of the photon momentum is shown in �g. 9.4. An update on the
current performance of the calorimeter can be found in [49].

9.4 muon system

¿e Besiii muon system (MUC) is integrated into the magnetic �ux return.
¿e technology of choice are resistive plate chambers (RPC) since the area that
has to be covered is about 700m2 and RPC’s provide an inexpensive and robust
solution.¿e components of the gasmixture are argon (51%), Tetra�uoroethane
(41%) and isobutane (8%). Two layers of RPC’s are combined into one super
module of which 8 sections, with 9 layers of super modules each, surround the
EMC in the barrel part in a octagonal shape. Due to space limitations only 8
layers are used in the end caps.
¿e main task of MUC is the identi�cation of muons with a cut-o� mo-

mentum as low as possible. ¿e requirement on position resolution is modest
because tracks in the muon system can later be matched to tracks measured in
the dri chamber and to showers in the EMC. Using this matching condition
low momentum muons can be identi�ed down to 400MeV. More details are
provided in [47, 50].
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DATA ANALYSIS AT BESIII

¿eBesiii o�-line so ware environment is based on theGAUDI [51] framework.
GAUDI was originally developed for the LHCb experiment and provides a
generic framework for high energy physics experiments. In the Besiii so ware
environment GAUDI provides basic features like data read-in/read-out and
general interface classes for e. g. event generators.

10.1 simulation

¿eevent generationwith theBesiii so ware framework in illustrated in �g. 10.1.
Typically the e+e− collision is simulated by KKMC [53]. KKMC simulates the
electro-weak production of fermion pairs in e+e− collision including initial-
state radiation (e+e− → f f̄ + nγ) which is calculated in QED up to the second
order. ¿e energy regime ranges from the τ lepton threshold up to 1 TeV, it has
therefore a broad application also for the B factories. A er the simulation of the
production process the virtual photon can hadronized using the parton shower
model implemented in PYTHIA, or the production of the resonance and its
decay can be simulated. For the decay of a resonance usually BesEvtGen
[52] is used in a second step. BesEvtGen is a fork of EvtGen [54] which
was originally developed for the BABAR and Cleo experiments. It provides
precise decay models, which can easily be extended by the user. It is used for
simulating a sequential decay chain starting from the production and decay of a
(charmonium) resonance till the quasi-stable particles. ¿e �nal state radiation
(FSR) of the particles is then simulated using PHOTOS [55].

Figure 10.1: Event generation at Besiii [52].
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¿e Besiii framework also provides the inclusive generators PYTHIA [56]
and LundCharm [57] and QED generators (e. g. Babayaga [58] or Bhwide
[59]). ¿e latter ones are designed to simulate speci�c processes.
More information on the event generators used in Besiii can be found in

[52].

10.2 reconstruction

Particles transversing the detector trigger signals in di�erent parts of the
detector. A er a calibration procedure charged tracks and electromagnetic
showers can be reconstructed.

10.2.1 Event start time

¿e �rst step in the reconstruction procedure is the determination of the event
start time. It is de�ned as the common time at the origin of all tracks in an
event. Since the trigger rate is lower then the bunch crossing frequency the
determination is not trivial, nevertheless the accurate determination is crucial
for track reconstruction in the MDC. Using a fast reconstruction algorithm,
tracks in the MDC are reconstructed and matched to hits in the TOF layers.
Using a dE/dx measurement the particle type is estimated. ¿e common event
start time is then calculated from the time-of-�ight measurement of all tracks
in the event. ¿e procedure is described in [60].

10.2.2 Charged tracks

Charged tracks are reconstructed from position measurements in the dri 
chamber. If we neglect the energy loss and multiple scattering of the particle
when transversing the active volume of the dri chamber, its path in a magnetic
�eld can be parameterized by a helix with 5 parameters:

d0 signed distance in x − y projection between pivot point and helix center

ϕ0 azimuthal angle of d⃗0

κ inverse of track momentum κ ∼ 1/pt

dz signed distance in z projection between pivot point and helix center

λ slope of the track (tangent of the dip angle)

¿e helix is �xed in space by its pivot element x⃗pivot. ¿e physics parameters at
the interaction point of a charged track are given by:

x⃗ = x⃗pivot +
⎛
⎜⎜⎜
⎝

d0 cos ϕ0
d0 sin ϕ0

dz

⎞
⎟⎟⎟
⎠

p⃗ =
⎛
⎜⎜⎜
⎝

− sin ϕ0/κ
cos ϕ0/κ
tan ϕ0/κ

⎞
⎟⎟⎟
⎠
. (10.1)
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Figure 10.2: Illustration of helix parameterization for a negatively charged track
with magnetic �eld along the negative z-direction [61].

A detailed description of the helix parameterization is given in [61]. Besiii has
adopted the Belle helix parametrization.
¿e track �nding algorithm starts by searching for straight track segments

in the super layers. Using one of the segments as track seed, other segments are
added successively. ¿e best combination of segments is kept and �tted with
the helix parametrization discussed above. Hits that were not part of a segment
are added in a second step and the �t is repeated. When all tracks in a single
event are reconstructed hits contributing to more then one track hypothesis
are matched to one track. In that way arti�cial tracks are reduced e�ciently.

10.2.3 Electromagnetic showers

¿eEMCmeasures the energy and position of photons and electrons. A photon
transversing the calorimeter material converts to an electron-positron pair
which in turn emits photons by bremsstrahlung. ¿e shower can spread over
several crystals of the detector. A cluster �nding algorithm search for signals in
neighboring crystals and a erwards the particle energy is calculated by the sum
of energy deposited in each crystal. Usually a 3 × 3 or 9 × 9matrix of crystals
around the shower is used for the energy calculation to reduce the e�ects of
detector noise. ¿e particle position is determined by the weighted center of
the cluster. A cluster can also be caused by two particles (e. g. π0 → γγ). In
that case the cluster has usually two crystals with peaking energy. Energy and
position of both photons are then calculated by a reweighting procedure. More
details are available in [62].

10.3 analysis

¿e analysis of events of course strongly depends on the channel under study,
nevertheless in the following we want to discuss some general tools that are
important for almost every analysis.
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10.3.1 Kinematic �tting

¿e uncertainties on momentum and position measurements of tracks and
showers can be reduced by applying additional constraints. A constraint can
be a common vertex, four-momentum conservation or a requirement on the
momentum direction. A Kalman Filter [63] is applied to optimize the track
parameters given their measurement errors and a χ2 value is calculated. Since
the uncertainties on the track parameters are usually not perfectly estimated,
the χ2 is not a good quantity to calculate a probability for a certain hypothesis.
Yet is can be used to rank di�erent hypotheses. Within the BOSS framework
these constraints are applied in separate steps.

10.3.2 Particle identi�cation

An important task for most analysis is a good identi�cation of the quasi-stable
particles electron,muon, pion, kaon and proton. Depending on the particle type
di�erent signatures are observed in the di�erent subdetectors. In the following
we want to outline qualitatively how particles are identi�ed.
Electrons have a small mass and they deposit typically all their energy in

the calorimeter. ¿e ratio energy over momentum is therefore close to one,
while heavier particles are not completely stopped in the calorimeter. Muons
deposit almost no energy in the calorimeter but are detected in several layers
of the muon system. ¿e track reconstructed from hits in the RPC’s can be
matched to the dri chamber track. ¿is matching is worse for secondary
muons (e.g. from π → µνµ), which can be excluded in that way. Pions, kaons
and protons can be identi�ed using information from the energy loss in the
dri chamber and from the time-of-�ight system. ¿e energy loss per length
(dE/dx) depends on the particle momentum and its mass. ¿e distribution of
energy loss per path length versus momentum is shown in �g. 10.3(a). In the
low momentum range particles can be well separated. With the measurement
of the �ight time, the momentum and the path length, the velocity can be
calculated which di�ers for particles with the same momentum but di�erent
masses. An invariant mass spectrum for a typical momentum range calculated
from momentum and velocity is shown in �g. 10.3(b).
Generally the total probability that a particle of certain type and momentum

leaves a certain signature in the detector is a combination of information of
all subdetectors and can be highly non-trivial in case that measurements are
correlated and the probability distributions are unknown. But practically we
have to combine only the TOF measurement with the energy loss in the dri 
chamber to separate pions, kaons and protons. We assume that correlations are
small and calculate the probability for particle hypothesis H with momentum
p and detector signature x as:

P(x; p,H = {π,K , p}) = Prob(χ2p,HdE/dx(x) + χ
2p,H
TOF(x), 2). (10.2)
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(a) Energy loss per path length versus momentum for
di�erent particle species.

(b) Invariant mass calculated from time-
of-�ight measurement and momentum.
Shown are tracks from a typical mo-
mentum range.

Figure 10.3: Particle identi�cation based on TOF and MDC information [64].

χ2TOF is the weighted sum of measurements in the �rst and second TOF layer
and Prob(χ2,ndf) is the cumulative χ2 distribution.
For a detailed description see [64].

10.3.3 D tagging

D tagging refers to an analysis technique in special decay topologies which
contain a pair of D mesons. ¿ese topologies arise at certain thresholds. ¿e
ψ(3770) has a mass of 3.773GeV/c2 which is close to the D0 D0/ D+ D−

threshold and the ψ(3770) decays predominantly to those channels1. ¿e decay
ψ(3770)→ DD is illustrated in �g. 3.2.
¿e DD pair is produced in a quantum entangled state and information on

one of the mesons imposes constraints on the other meson. A so-called tagged
analysis generically reconstructs one D meson Dtag in a clean channel with a
high branching fraction and the second D is then reconstructed in the channel
of interest. Depending on the tag mode the �avour of the signal decay or the
CP quantum numbers are constrained and a �avour or CP eigenstate can be
investigated. Since the available phase-space in the decayψ(3770)→ DD is less
then 44GeV/c2, the decay is fully reconstructed and the background in very
low. ¿e algorithm for the generic D reconstruction are called DTagAlg. ¿e
most important modes for the neutral D reconstruction are listed in table 10.1.
¿e tag modes cover only a part of the D0 branching fraction and therefore the
tagging of a D0 decay can reduce the statistics signi�cantly.¿e tag information
is diluted by doubly Cabbibo suppressed (DCS) decays of the D0 and by D0

mixing. DCS decays are typically suppressed byO(10−3) and D0 mixing is slow.
Nevertheless it can have an in�uence, as shown in chapter 6.
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Table 10.1: D0 �avour and CP tag modes with branching fractions [7].

Flavour tag CP even

K− π+ (3.88 ± 0.05)% K+ K− (0.386 ± 0.008)%
K− π+ π0 (13.9 ± 0.5)% π+ π− (0.1402 ± 0.0026)%

K− π+ π0 π0 (1.58 ± 0.34)% K0
S π0 π0 (0.91 ± 0.11)%

K− π+ π+ π− (8.08 ± 0.28)% ∑B 1.4362%
K− π+ π+ π− π0 (4.2 ± 0.4)% CP odd

K− π+ η - K0
S π0 (1.19 ± 0.04)%

K∓ e±νe (3.55 ± 0.05)% K0
S ω (1.11 ± 0.06)%

K∓ µ±νµ (3.31 ± 0.13)% K0
S η (0.476 ± 0.003)%

∑B 38.50% 2.776%

Figure 10.4: Besiii data samples in the τ-charm region.

1.3

0.
5

0

0.5

1

1.5

2

Ev
en
ts
/10

9

2.9
32

0

2

4

6

∫
Lu
m
in
os
ity

/fb
−
1

6 49. Plots of cross sections and related quantities

R in Light-Flavor, Charm, and Beauty Threshold Regions

10
-1

1

10

10 2

0.5 1 1.5 2 2.5 3

Sum of exclusive
measurements

Inclusive
measurements

3 loop pQCD

Naive quark model

u, d, s

ρ

ω

φ

ρ′

2

3

4

5

6

7

3 3.5 4 4.5 5

Mark-I

Mark-I + LGW

Mark-II

PLUTO

DASP

Crystal Ball

BES

J/ψ ψ(2S)

ψ3770

ψ4040

ψ4160

ψ4415

c

2

3

4

5

6

7

8

9.5 10 10.5 11

MD-1
ARGUS CLEO CUSB DHHM

Crystal Ball CLEO II DASP LENA

Υ(1S)
Υ(2S)

Υ(3S)

Υ(4S)

b

R

√
s [GeV]

Figure 49.6: R in the light-flavor, charm, and beauty threshold regions. Data errors are total below 2 GeV and statistical above 2 GeV.
The curves are the same as in Fig. 49.5. Note: CLEO data above Υ(4S) were not fully corrected for radiative effects, and we retain
them on the plot only for illustrative purposes with a normalization factor of 0.8. The full list of references to the original data and
the details of the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. The computer-readable data are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, May 2010.)

2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
2

4

6

√
s /GeV

R

Figure 10.5: R value in τ-charm region [7].



10.4 data samples 65

Optimizer
Vary model parameter

● Interface to external libraries  
● Various algorithms 

(gradient, genetic, swarm)

Data & MC
Represent measurements

● Local and global values
● Multiple experiments
● Caching

Estimators
 Calculate discrepancy between

model and data

● Function tree
● MinLogLH and χ2

● Combined fits and re-fits   

Physics & Models
Calculate amplitude

● Various formalisms 
(helicity, K-matrix)    

● Various models 
(isobar)

amplitu
de

ev
e

n
t 

w
ei

g
h

t

estimate

User Interface

● Run manager
● Graphics
● Output

Figure 10.6: Overview over the modular structure of ComPWA [66].

10.4 data samples

¿e physics data taking started in 2009. Since that time data samples over the
whole energy region were taken. ¿e samples are illustrated in �g. 10.4. In
�g. 10.5 the R value distribution in the charmonium region is shown to em-
phasize the close connection of the Besiii physics program to the charmonium
region. Additionally to the data sample shown, scan data samples in the energy
ranges from 2.05GeV to 3.08GeV and from 3.85GeV to 4.56GeV are available.
An extensive overview over the Besiii physics program is given in [65].

10.5 partial wave analysis framework

¿e Dalitz plot analysis that is performed in the scope of this thesis uses the
ComPWA framework 2 [66].
It was originally developed for the PANDA experiment and is not linked to

Besiii. Yet is completely experiment independent and it o�ers a modularized
design that allows the implementation of di�erent types of physics models,
estimators and optimizers. An overview of the ComPWA framework is shown
in �g. 10.6. ¿e amplitude model that is currently implemented is described
in part ii and details on the likelihood and e�ciency correction are given in
part iv. ¿e optimizer module currently supports minimization byMinuit2
[67] and Geneva 3 [68]
Within the scope of this thesis major parts of the framework were extended.

In particular, the resonance model and the likelihood estimation were mod-
i�ed and additional functionality was added. For the e�ciency correction a

1 Another threshold is around 4.2GeV where the production of D0D∗
0 (2400)0 starts.

2 ¿eComPWA repository is hosted on https://github.com/ComPWA.¿e revision that is used
is commit 89baf58e.

3 Geneva provides an evolutionary algorithm to �nd the minimum in a high dimensional para-
meter space.

https://github.com/ComPWA
https://github.com/ComPWA/ComPWA/tree/89baf58e1367b5db4449ba6ae8f64ac483fb256c
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binned and an unbinned method were implemented. Further work was done
in improving printing and plotting capabilities of the framework. Since this is
one of the �rst analyses done with this framework a signi�cant amount of time
was spent on general validation tasks.



Part IV

ANALYSIS OF THE DECAY D0 →K0
sK+K−

Wepresent the analysis of the decayD0 → K0
SK+K− using 2931.8 pb−1

of data taken at
√
s = 3.773GeV with the Besiii detector. We

perform an analysis of the K0
SK+K− Dalitz plot and measure the

branching fraction.

¿e Dalitz plot analysis is performed using a sample of 1856 ± 45
�avour tagged signal events with a purity of 96.37%. We �nd
that the Dalitz plot is well described by a set of four resonances:
a0(980)0, a0(980)+, ϕ(1020) and a2(1320)−. We determine their
magnitudes, phases and �t fractions. Furthermore we measure the
a0(980) coupling gKK =(2.88 ± 0.25 (stat.) ± 0.56 (sys.))GeV.
¿e branching fraction is measured using 11 384 ±115 untagged
signal decays and we obtain a value of (4.45 ± 0.05 (stat.) ±
0.18 (sys.))×10−3. ¿e measurement yields a relative precision of
4.21%which improves the current best measurement signi�cantly.
Both measurements are limited by their systematic uncertainty.





11
EVENT RECONSTRUCTION AND SELECTION

In the following we describe the event reconstruction and selection of the decay
D0 → K0

SK+K−. We introduced the special decay topology of ψ(3770) decays
in chapter 3 and �g. 3.2. Since the ψ(3770) decays predominantly to a pair of
charged or neutral D mesons we have the choice to reconstruct both D mesons
or to reconstruct only the signal decay. We refer to this as tagged and untagged
analysis, respectively. In both cases the reconstruction procedure of the signal
decay is identical. A �avour tagged analysis is necessary for the Dalitz plot
analysis since the �avour of the D0 cannot be determined from the K0

SK+K−

�nal state. ¿e disadvantage is a reduction of statistics by a factor of about 6.
In the ψ(3770)→ DD decay topology the energy of each D mesons is half

the center-of-mass energy Ecms. ¿is makes it convenient to introduce two
kinematic variables. ¿e beam-constrained mass mBC is given by:

m2
BCc

4 = (Ecms/2)2 − ∣p⃗D ∣2c2 (11.1)

¿e reconstructed D0 momentum p⃗D is calculated from the momenta of its
�nal state particles. ¿e center-of-mass energy Ecms is calibrated on a per-run
basis. ¿e D0 beam-constrained mass has a better resolution compared to the
D0 mass. ¿e second variable is the energy di�erence between the measured
D0 energy and the beam energy:

∆E = Ecms/2 − ED . (11.2)

¿e energy is measured using the momenta of the �nal state particles and their
particle hypothesis. ∆E is expected to be centered around zero.

11.1 monte-carlo simulation

In the following we describe the Monte-Carlo simulation. It is used to develop
the selection requirements, to calculate the reconstruction e�ciency for the
branching fraction measurement (chapter 13) and to normalize the likelihood
in the Dalitz plot analysis (chapter 12). Technical details about the simulation
are given in section 10.1.
¿e Besiii collaboration provides a series of samples for di�erent reactions.

A list of all samples that are used throughout this work is shown in table 11.1.
In the following we refer to the mixture of all those samples as Monte-Carlo
sample. Each sample is scaled to the luminosity of the data sample. ¿e full

69
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data set of 2.932 fb−1 was collect during the 2010 and 2011 data taking period in
which 0.927 fb−1 and 1.990 fb−1 were collected, respectively. For the branching
fractionmeasurement we need to determine the signal reconstruction e�ciency
using Monte-Carlo simulation. ¿e substructure of the decay can in�uence the
total e�ciency. We therefore use the amplitude description of the Dalitz plot
from chapter 12 to generate an accurate signal Monte-Carlo sample. Technically
we apply a hit-and-miss procedure 1 to the large sample of events which are
uniformly distributed over the phase-space. Signal events from theD0D0Monte-
Carlo sample are then replaced by events from the new signal sample.

Table 11.1: Data and Monte-Carlo samples at
√
s = 3.770GeV. Luminosities of

the Monte-Carlo samples are given in multiples of the luminosity of
the data sample.

Reaction Luminosity (fb−1)
e+e− → X 2010 2011

Data [69] 927.67±9.28 1989.27±19.89

ψ(3770)→ D0D0 21.8× 21.8×
ψ(3770)→ D+D− 10.9× 10.8×
ψ(3770) /→DD 7.8× 7.3×
qq (KKMC) 7.8× 7.3×
ψ(2S)γ 10.8× 10.1×
J/ψγ 10.8× 10.1×
τ+τ− 10.8× 10.1×
µ+µ− 5.0× 5.0×
e+e− 0.2× 0.2×

D0D0 → (tag)(K0
SK+K−) 5 × 107 events

isotropic

D0D0 → (tag)(K0
SK+K−) 3 × 107 events

resonant structure

¿e simulated branching fraction for D0 → K0
SK+K− is 3.079 × 10−3 and

therefore signi�cantly lower than quoted by the PDG [7]. ¿is originates from
the problem that the branching fractions quoted by the PDG does not sum up
to one. During generation one tries to reproduces the decay of channels with a
high branching fraction as well as possible but channels with small branching
fraction are o en not reproduced very well. We correct the signal events for
the inaccurate branching fraction by assigning corresponding weights to each
event.

1 A sample which is distributed according to a real-valued function can be generated via the
so-called hit-and-miss procedure. For each data point in a uniformly distributed sample, a
random number between zero and the function maximum is generated. If this number is smaller
than the function value the event is accepted and rejected otherwise.
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¿e distributions for some kinematic variables from the untagged sample
are shown in �g. 11.1. No requirements are set on the beam-constrained D0

mass and the K0
S mass. ¿ere are discrepancies between data and simulation,

e. g. in the K0
S transversal momentum pT . ¿is most likely comes from a wrong

normalization of the qq background sample. We discuss the background in
section 11.5 and its systematic e�ect on the branching fraction measurement in
chapter 13.
In the following we describe the selection of the �nal state particles, the tag

candidates and the signal candidates. Note that the variables that are correlated
with the Dalitz plot variables cannot be used for selection since it would lead
to a non-uniform selection e�ciency over the Dalitz plot. ¿is is particularly
true for all kinematic variables of the K0

SK+K− �nal state.

11.2 reconstruction and selection of the final state particles

¿e selection requirements of the �nal state particles and the tag candidate
are consensus in the collaboration and we do not optimize these for the decay
D0 → K0

SK+K−. ¿e detector is described in chapter 9 and especially �g. 9.1 is
useful for understanding the selection criteria.

11.2.1 Charged kaons and pions

¿emomenta of charged tracks are calculated from the curvature of their tracks
in the magnetic �elds (see section 10.2.2 for details). From the signals in the
dri chamber the helix parameters are determined using a Kalman �lter and
we require that the minimization succeeds. We select tracks originating from
the interaction point by requiring that the point of closest approach of the helix
and the interaction point are separated by less than 1 cm in radial direction
and less than 10 cm in beam direction (z-direction). Furthermore we require
that all tracks have a polar angle cos θ smaller than 0.93, see �g. 11.1(g). ¿is
corresponds to the angular coverage of the dri chamber and the calorimeter.
¿e interaction point can slightly vary from run to run and we use an average
point per run.
¿e particle species is determined from the energy-loss dE/dx in the dri 

chamber and information from the time-of-�ight system. For each subsystem
and each particle species a χ2(H) variable is calculated (see section 10.3.2) and
then combined:

χ2(H) = χ2dE/dx(H) + χ2TOF(H). (11.3)

Using the corresponding number degrees of freedom a probability PH for each
particle hypothesis H can be calculated and we require that all kaon and pion
candidates satisfy PK ≥ Pπ and Pπ ≥ PK , respectively.
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Figure 11.1: Untagged data (black) andMonte-Carlo (blue) samples.¿eMonte-
Carlo sample is split into signal (green) and background (red). No
requirements are imposed onmBC andmKS . Discrepancies between
data and simulation are due to an improper scaling of the Monte-
Carlo background sample.
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11.2.2 Photons

¿e showers measured in the electromagnetic calorimeter are required to have
a minimum shower energy of 25MeV in the barrel part and 50MeV in the end
cap parts. Barrel and end cap are de�ned by a polar angle of ∣cos θ∣ ≥ 0.8 and
0.84 ≥ ∣cos θ∣ ≥ 0.92, respectively. ¿e transition region between barrel and
end cap is excluded. ¿e minimum energy requirement is di�erent since the
barrel part has a better energy resolution. In case that more than one charged
track was found in an event the time di�erence between arrival time in the
calorimeter and the event start time needs to be between 0 ns and 700 ns.

11.2.3 π0 and η candidates

Neutral pions and η are reconstructed from pairs of photons. Photons meet
the requirements described before and we reject candidates with both photons
detected in the end cap part due to poor resolution. π0 candidates with invariant
mass from 0.098GeV/c2 to 0.165GeV/c2 are selected. For η candidates the
range is from 0.4GeV/c2 to 0.7GeV/c2. A kinematic �t with the nominal π0

or η mass as constraint is performed and we require that the �t succeeds. ¿e
momenta obtained from the �t are used for further analysis.

11.2.4 K0
S candidates

¿e K0
S candidates are reconstructed from a pair of oppositely charged pions.

A typical �ight distance of K0
S candidates from D decays at

√
s = 3.773GeV is

about 2mm. ¿e pions therefore do not have the requirement to originate from
the interaction point. Nevertheless the point of closest approach is required
to be within 20 cm along the beam line. ¿e pion pair is required to pass
a kinematic �t with a common vertex as constraint and the χ2 needs to be
less than 100. ¿e resulting momenta are used for the calculation of the K0

S

invariant mass and for further analysis. ¿e K0
S mass window is chosen to be

from 0.487GeV/c2 to 0.511 GeV/c2. ¿e K0
S candidates for the signal decay

have a relaxed mass window from 0.47GeV/c2 to 0.528GeV/c2. Since the K0
S

mass spectrum is used to determine the signal yield, a larger sideband region is
needed. Furthermore, on K0

S candidates of the signal decay another kinematic
�t is applied with the requirement that the K0

S momentum points back to the
interaction point. From this �t result, the K0

S �ight distance and its uncertainty
are obtained. We require a �ight distance in units of its uncertainty of at least
0 and 2 for the tagged and untagged sample, respectively. ¿e distribution is
shown in �g. 11.2(a). Since the tagged sample has poor statistics we use a relaxed
requirement.

11.3 tag candidates

For a so-called tagged analysis both D mesons are reconstructed. See sec-
tion 10.3.3 for technical details. ¿e tag decay is generically reconstructed in
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multiple channels. In case that the �avour of the signal decay is supposed to
be tagged, the tag channel must provide this information. A list of �avour tag
channels is given in table 10.1. In this analysis only hadronic decay channels
are used. Additionally it is possible to use semi-leptonic decay channels but a
higher background level is expected and we pass on this option. In each event
we search for a tag decay and the signal decay D0 → K0

SK+K−. If there are
multiple candidates per event, the combination is chosen which has an average
beam-constrained mass closest to the nominal D0 mass.

mBC =
mtag
BC +m

signal
BC

2
(11.4)

We search for a tag-signal combination for each tag mode separately and so
is possible that one event is counted multiple times. In this case, we select
randomly one of the candidate pairs.
Bhabha events (e+e− → e+e−) and cosmic radiation can mimic two-body D

decays. For the tag channel K−π+ we veto these events. We reject events if one
of the following requirements is ful�lled:

1. ¿e event has only two charged tracks.

2. ¿e �ight time di�erence between the tracks is above a certain threshold.

3. Both tracks are identi�ed as electrons.

4. Both tracks have a signal in the muon chambers.

For all D0 tag candidates we require that the beam-constrained mass mBC is
between 1.86GeV/c2 and 1.87GeV/c2.

11.4 signal candidates

¿e selection of the �nal state particles K0
SK+K− was described previously. We

combine them to a D0 candidate and apply a kinematic �t to the K0
SK+K−

combination with the nominal D0 mass as constraint and require a χ2 smaller
than 20. ¿e distribution is shown in �g. 11.2(b). ¿e �tted four-momenta of
the daughters are used to calculate the invariant masses for the Dalitz plot
analysis. Other variables use the original four-momenta. In a separate step we
perform a kinematic �t with a common vertex as constraint and require that
the �t succeeds. ¿e updated four-momenta are used for further analysis.
In case of a tagged analysis the best candidate combination is chosen, as

mentioned before, by an average mBC closest to the nominal D0 mass. If only
the signal decay is reconstructed (untagged analysis) we choose the candidate
with minimum ∆E = ED − Ebeam.
¿e total selection is summarized in table 11.3. Untagged events pass our

selection with a signal e�ciency of 64.39% and a background rejection rate
of 99.63%. ¿is leads to a purity of the untagged data sample of 93.5%. ¿ose
numbers are obtained from a two-dimensional �t the mBC and mKS . Events
are required to be within an 8 σ signal region (see section 11.4.1). A detailed
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Figure 11.2: Non-standard selection variables. ¿e distributions shown are the
untagged sample with the full selection applied except the require-
ment on the variable that is shown.¿e selection value is indicated.

list of signal and background e�ciencies for untagged data and Monte-Carlo
samples are given in table 11.2. For �avour tagged events the purity raises to
96.37%.
¿e distribution of mBC of the tag candidate versus mBC of the signal can-

didate a er selection is shown in �g. 11.3(a).

11.4.1 Signal region

¿e tagged analysis requires a signal region. We de�ne it by a box with the side
length n× σmBC alongmBC and n× σmKS alongmKS . Where σmBC and σmKS are
the resolutions of the central signal peak. ¿e signal and background yields
on data are obtained by a two-dimension �t as described in section 11.6. ¿e
�t is performed on the full data set without requirements on mBC and mKS .
¿e yields for a certain signal region size are calculated by integrating the �t
model in the region of interest. For di�erent sizes of the signal region yields
and purities are listed in table 12.2. ¿e maximum signi�cance for the tagged
sample is obtained with a signal region size of 8×σ . We choose this value for
the further analysis. Background studies for the Dalitz plot analysis require
sideband samples in which we include events outside a 10σ region.

11.4.2 Multivariate discrimination

We do a cross-check of our cut-based selection by comparing it to some mul-
tivariate discrimination methods provided by the TMVA package [67]. ¿e
discrimination variables used are:

• D0: energy (∆E), momentum (P, Pt) and χ2 of kinematic �ts χ2vtx, χ2mass,
χ2mass (incl.K0

S )
.
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Table 11.2: Yields and rejection e�ciencies for the untagged Monte-Carlo
sample. ¿e samples are scaled to the luminosity of data. ¿e signal
region is explained in section 11.4.1.

Signal full region 8σ signal region
yield rejection[%] yield rejection[%]

Data 13 295 ± 115 12 162 ± 110

Simulation 15 244 ± 35 12 664 ± 31

Signal 11 300 ± 28 31.07 10 990 ± 27 32.96
Background 3944 ± 22 99.63 1675 ± 14 99.84
Purity [%] 74.13 86.78

non-K0
S 54 ± 2 98.37 28 ± 1 99.15

Combinatorial 3890 ± 22 99.63 1646 ± 14 99.84

ψ(3770)→ D0D0 232 ± 3 99.90 97 ± 2 99.96
ψ(3770)→ D+D− 352 ± 6 99.77 150 ± 4 99.90
ψ(3770)→ non-DD 95 ± 3 99.50 43 ± 3 99.77

qq 2611 ± 19 99.41 1105 ± 12 99.75
ψ(2S)γ 584 ± 8 99.67 251 ± 5 99.86
J/ψ γ 71 ± 3 99.73 29 ± 2 99.89
ττ 0 0
µµ 0 0
e+e− 0 0

Table 11.3: Overview of selection requirements.

K0
S → π+π− K±

π± Vz < 20 cm Vz < 10 cm
π± ∣ cos(Θ)∣ < 0.93 Vr < 1 cm
vertex χ2 < 100 ∣ cos(Θ)∣ < 0.93

�ight distance [σ] > 2 (untagged) identi�ed by SimplePIDSvc
> 0 (tagged)

D0
signal D0

tag

kinematic �t <20 1.86GeV/c2<mBC <1.87GeV/c2

χ2mass Veto l+ l− for D0 → K+π−
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Figure 11.3: Flavour tagged data sample a er selection.

• K0
S : χ2 of kinematic �ts (χ2vtx, χ2secondaryVtx) and �ight distance.

• K±: probabilities from particle identi�cation.

Many kinematic variables cannot be used for selection because they are cor-
related to the Dalitz plot variables. ¿e performance in terms of background
suppression versus signal e�ciency is shown in �g. 11.4. Compared with the
corresponding values of our ‘manual’ selection, we cannot see an advantage in
using one of these methods.

11.5 background

¿e background that passes our selection can be categorized according to its
distribution in the mBC versus mKS plane which is shown in �g. 11.3(b):

• Non-K0
S background:¿e �nal state of the signal decay is K0

SK+K− →
π+π−K+K−. Events that do not contain the intermediate decay of a K0

S

show up as a peak in mBC and a �at distribution in mKS . ¿is results in
a horizontal band.

• Combinatorial background: Events which do not contain the correct
�nal state.¿ese events come from qq production and from partly recon-
structed D decays. ¿e mBC distribution has a phase-space component
and a wide peak component. ¿e π+π− pair can originate from a K0

S

decay. In this case the events show up as a vertical band inmKS otherwise
they are equally distributed.

Since the signal is peaking in the center of themBC versusmKS plane, the signal
and both background components can be nicely distinguished on data by a
�tting procedure. ¿is is used for the determination of the untagged signal
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Figure 11.4: Background rejection rate versus selection e�ciency. ¿e perform-
ance of some multivariate discrimination methods is compared to
our selection.

yield for the branching fraction measurement and the determination of the
signal purity of the tagged sample for the Dalitz plot analysis. ¿e projections
of Monte-Carlo samples for signal, combinatorial and non-K0

S background are
shown 11.5.

11.6 signal and background models

Wehave to discriminate our signal against two classes of background.¿erefore,
we describe signal, non-K0

S background and combinatorial background by
probability-density functions (PDF) in mKS and mBC . ¿e models for signal
and background share the same description for the K0

S and D0 mass peaks
and therefore a simultaneous �t is appropriate to reduce the number of free
parameters. ¿e two-dimensional model is constructed as a product of the
mBC and mKS components.
¿e signal peak in mKS and mBC is modeled using a modi�ed Crystal-Ball

function, as de�ned in eq. (B.2), with power-law tails on the le and on the
right side.
¿e combinatorial backgroundhas amBC distributionwhich iswellmodeled

by an Argus phase-space shape [70] and a wide Gaussian. ¿e mKS distribu-
tion has a peak with the same shape as the signal and a �at contribution which
is described by a polynomial of �rst order.
¿e non-K0

S background shares themBC model with the signal and themKS
mass is described by a polynomial of �rst order. We see from �g. 11.5 that the K0

S

mass distribution of the non-K0
S background contains a peak despite the fact

that there was no K0
S in the signal decay. ¿ose candidates are reconstructed

using a K0
S decay from the tag side. ¿e peak vanishes for the tagged analysis.

We add a K0
S peak and an Argus phase-space shape to the description of
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mKS and mBC , respectively. Both components share their parameters with the
combinatorial background shape.
A detailed description of the model can be found in appendix B.1. We �t

the PDF simultaneously to three samples representing signal and background
components. Projections of the samples and the �t functions are shown in
�g. 11.5. All �nal shape parameter are listed in table B.7. We list only the result
from the untagged sample.
¿e yields for signal and background are then determined by the combined

model:

PDF(mBC ,mKS) = Nsig × S(mBC ,mKS)
+ NcombBcomb(mBC ,mKS)
+ Nnon-K0

S
Bnon-K0

S
(mBC ,mKS). (11.5)

Using this model, an extended maximum-likelihood �t to data is performed.
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(a) Signal sample.
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(b) Combinatorial background.
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(c) Non-K0
S background.

Figure 11.5: Dedicated samples for signal and background. ¿e model is de-
termined by a simultaneous �t to all three samples. ¿e deviation
between model and sample is shown in units of its uncertainty in
the last column.
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Figure 12.1: Binned Dalitz plot of the decay D0 → K0
SK+K− from 2931.8 pb−1

of e+e− collisions at
√
s = 3.773GeV. A er reconstruction and

selection a sample with 1872 ± 46 signal events is used for further
analysis. ¿e phase-space boundary is indicated in red.

¿eDalitz plot forD0 → K0
SK+K− a er reconstruction and selection is shown

in �g. 12.1 and its projections in �g. 12.10. ¿e distribution is dominated by the
ϕ(1020) and the a0(980)0 resonances in the K+K− channel. Furthermore the
a0(980)+ is visible in the K0

S K+ channel. From the distribution along the K0
S

K+ invariant mass the vector particle nature of the ϕ(1020) can be observed.
¿e scope of this thesis is an analysis of the K0

SK+K− Dalitz plot and the
determination of the partial branching fractions of the decay substructure.
¿e Dalitz amplitude model is than used in the branching fraction measure-
ment (chapter 13) as input to the simulation in order to determine the signal
reconstruction e�ciency.
¿e Dalitz amplitude parametrization is discussed in general in part ii and

more speci�c in chapter 7. Details about the so ware environment are given in
section 10.5 and the reconstruction and selection procedure was described in
the previous chapter (chapter 11).

81
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Table 12.2: Signal and background yields on data for di�erent sizes of the rect-
angular signal region in mBC and mKS . ¿e peak width in mBC or
mKS is denoted by σ . We select signal region with 8 σ side length.

Size of signal region Signal Background Purity Signi�cance
n × σ S B S/(S+B) S/

√
S + B

1 701 ± 21 6.2 ± 1.9 0.991 26.68
2 1440 ± 36 17 ± 5 0.987 37.77
3 1672 ± 41 27 ± 9 0.983 40.57
4 1761 ± 43 36 ± 12 0.980 41.55
5 1805 ± 44 45 ± 14 0.976 41.97
6 1830 ± 45 54 ± 17 0.971 42.17
7 1845 ± 45 62 ± 19 0.967 42.26
8 1856 ± 45 70 ± 21 0.964 42.29
9 1863 ± 46 78 ± 23 0.960 42.29
10 1868 ± 46 85 ± 23 0.956 42.27

In the following we discuss the determination of the signal fraction in sec-
tion 12.1 and the background amplitude model in section 12.2. ¿e likelihood
function is explained in section 12.3 and the e�ciency correction in section 12.4.
In section 12.5 we introduce the goodness-of-�t procedure. An overview of
resonances that can appear as intermediate states is given in section 12.6 and
the strategy that we use to select a proper set of resonances is explained in
section 12.7. Systematic uncertainties are studied in section 12.8 and the results
are �nally presented and discussed in section 12.9.

Table 12.1: Yields on data for di�er-
ent tag channels.

Flavour tag Yield

K−π+ 361 ± 19
K−π+π0 702 ± 26
K−π+π0π0 178 ± 13
K−π+π+π− 517 ± 23
K−π+π+π−π0 114 ± 11

K−π+η 63 ± 8

Total yield 1935 ± 44

In the following the free parameters of the Dalitz amplitude model are de-
noted with β and the Dalitz variables with ξ. ¿ese can be either two invariant
masses, as used in �g. 12.1 or an invariant mass and the corresponding helicity
angle (see �g. 4.12). In the �rst case we use m2

KK and m2
K0K+ and in the latter

case m2
KK and ΘKK . ¿e Dalitz amplitude model is denoted byM(β, ξ) and

the amplitude of the resonances that occur as intermediate states by Ai .

12.1 signal purity

¿e reconstruction and selection procedure is described in detail in chapter 11.
For the Dalitz plot analysis we de�ne a signal region in the D0 beam-constraint
massmBC and in the K0

S massmKS (see section 11.4.1). ¿e expected signal and
background yields for di�erent sizes of the signal region are listed in table 12.2.
We a signal region with 8 σ side length in mBC and mKS since it leads to the
highest signal signi�cance.
We determine the signal and background yields on data using models for

signal and background as described in section 11.6.¿e �t is performed without
a signal region and a er the minimization we integrate the signal and back-
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Table 12.3: Signal and background yields for the data and Monte-Carlo samples
within a 8 σ signal region. ¿e K0

S mass and width are le free in the
�t. ¿e comparison with the simulated true values shows that the
correct result can be reproduced.

Parameter Data Simulation
Fit True ∆ [σ]

Signal 1856 ± 45 1672 ± 43 1645.3 0.62
Combinatorial background 20 ± 20 49 ± 12 50.5 0.13

non-K0
S background 49.8 ± 6.8 32.2 ± 8.7 37.7 0.63

K0
S mass [MeV/c2] 497.58 ± 0.06 497.88 ± 0.06
K0

S width [MeV] 2.39 ± 0.06 2.08 ± 0.05
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Figure 12.2: Comparison of data sideband sample (black) with Monte-Carlo
background sample (red) andMonte-Carlo sideband sample (blue).

ground models within the signal region.¿e yields that we measure on the data
and Monte-Carlo samples are listed in table 12.3. ¿e �t to the Monte-Carlo
sample shows that the true values can be reproduced and the �t to the data
sample yields 1856 ± 45 signal and 70 ± 21 background events in total which
gives a purity of 96.37%. ¿e total number of events in the data sample within
the signal region is 1935 ± 44. ¿e contribution from each tag channels is listed
in table 12.1. Number of signal and background events do not exactly add up to
the total number of events since the extended maximum likelihood �t allows
the total number of events to vary within its uncertainty. ¿e �t to mBC and
mKS is shown in �g. B.1. In the following we discuss the background amplitude
model.

12.2 background

¿e background is studied using Monte-Carlo samples within the signal re-
gion, and using data and Monte-Carlo sideband samples. For the sideband
region we accept all events outside a region of 10 σ side length. Figure 12.2 com-
pares the data sideband sample with Monte-Carlo sideband and Monte-Carlo
background samples.



84 dalitz plot analysis

 /GeV2
KKm

0.8 1 1.2 1.4 1.6 1.8 2

K
K

θ
co

s

1−
0.8−
0.6−
0.4−
0.2−

0
0.2
0.4
0.6
0.8

1

0

2

4

6

8

10

12

14

16

KKθcos
1− 0.5− 0 0.5 1

E
nt

ri
es

10

20

30

40

50

Figure 12.3: ¿e decay the decay D0 → (KK)ϕ(ππ)ρ is a peaking contribution
to the background. We show the simulated distribution of K+K−
invariant mass versus the corresponding helicity angle (right) and
the projection of the helicity angle (le ). We require that on gen-
erator level one of the D0 decays to ϕρ and the other D0 decays
generically. ¿erefore, the sample contains a small number of mis-
reconstructed candidates. Events are not corrected for reconstruc-
tion and selection e�ciency.

In all samples a peaking background component shows up which origin-
ates from the decay D0 → (KK)ϕ(ππ)ρ. It is therefore part of the non-K0

S

background component (see section 11.5) and is hard to suppress. ¿e K+K− in-
variant mass distribution versus the helicity angle of this decay from simulation
is shown in �g. 12.3. ¿e decay of a pseudo-scalar (P) to two vector mesons (V)
has a di�erent structure compared to our signal decay (P → PPP) and therefore,
we do not see the vector particle nature of the ϕ(1020). ¿e relative angular
momentum between ϕ and ρ is zero in �rst order and its angular distribution
is therefore expected to be �at. Considering that the events shown in �g. 12.3
are not e�ciency corrected, the expectation is satis�ed. ¿e relative height of
the peak to the phase-space component depends in the size of the signal and
sideband regions.
¿e agreement of the background shape between data and simulation is

reasonable and since background is low we do not expect a signi�cant in�uence
on our result. ¿e nominal background model is determined from the Monte-
Carlo background sample within the signal region. ¿e sideband samples are
used to estimate the systematic uncertainty.
We describe the background by a phenomenological model. ¿is means

we focus on a decent description without any demand on physical meaning.
We build the model from a phase-space component and a peaking structure
around 1 GeV/c2 which is described by a Breit-Wigner amplitude model with
the ϕ(1020) mass and width but with a spin zero angular distribution and
in addition by a Breit-Wigner model with free mass and width. An accurate
description would require a full analysis of the four particle �nal state which is
beyond the scope of this work.
¿e �t to theMonte-Carlo background sample is shown in �g. 12.4 and the �t

parameters are listed in table 12.4. Background model and the signal fraction
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Figure 12.4: Projections of the Monte-Carlo background sample and the back-
ground model. ¿e parameters of the background model are listed
in table 12.4.

Table 12.4: Fit result for the background model. ¿e Monte-Carlo background
sample was used to determine the model parameters. ¿e mass and
width of the second Breit-Wigner amplitude are determined to be
(1.025 ± 0.004)GeV/c2 and (19.1 ± 7.1)MeV, respectively.

Component Magnitude Phase[rad] Fit fraction[%]

ϕ(1020) 0.62 +0.16
−0.07 1.42 +0.32

−0.33 83.8 ± 5.0
Breit-Wigner model 0.39 +0.21

−0.10 −1.37 +0.35
−0.33 32.4 ± 7.1

constant 1 0 12.4 ± 7.0

Total 129 ± 11

are inserted into the likelihood which is given in eq. (12.1).

12.3 likelihood function

¿e likelihood function is constructed as follows:

L(ξ, β) = f ⋅ ∣M(ξ, β)∣2

∫ ∣M(ξ′, β)∣2є(ξ′)dξ
+ (1 − f ) ⋅ ∣B(ξ)∣2

∫ ∣B(ξ′)∣2є(ξ′))dξ′
, (12.1)

whereM(ξ, β) and B(ξ) are the signal and background Dalitz amplitude
models. ¿e e�ciency function is denoted by є(ξ) and the signal fraction
(see section 12.1) by f . ¿e normalization integrals are calculated using Monte-
Carlo integration. ¿e likelihood function is evaluated for each event and the
logarithm of its products can be written as:

− logL(β) = −
N
∑
ev
log L(ξev , β), (12.2)
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where N is the size of the data sample. ¿e interesting physics parameters are
the �t fractions which are de�ned as:

fi =
∣ci ∣2 ∫ dξ′ ∣Ai(ξ′)∣

2

∫ dξ′ ∣M(ξ′)∣2
, (12.3)

where ci is the magnitude of resonance Ai . ¿e integral ∫ dξ′ ∣Ai(ξ′)∣
2 is equal

to one, due to our choice for the resonance normalization. Note that the nor-
malization integral in the denominator does not include the e�ciency function.
A precise calculation of the statistical uncertainty of the �t fractions requires
the propagation of the full covariance matrix through the integration. We use a
Monte-Carlo approach to estimate the statistical uncertainty. Details are given
in appendix B.3.

12.4 efficiency correction

We need to correct the events from data for the reconstruction and selection
e�ciency. We determine the reconstruction and selection e�ciency at a certain
point in phase-space using the signal Monte-Carlo sample. ¿e sample consists
of 30 × 106 events with resonant substructure and 50 × 106 events which are
uniformly distributed in phase-space (see table 11.1). In this way we ensure that
the e�ciency is precisely calculated in the peak region and as well in the phase-
space region with a small amplitude value. In contrast to the total e�ciency
required for the branching fraction measurement, the local e�ciency here is
not sensitive to the substructure of the signal Monte-Carlo sample.
We de�ne the e�ciency in bin i centered at ξi as:

є(ξi) =
N i

N i
gen

. (12.4)

¿e position of an event in the Dalitz plot can be calculated from its generated
or from its reconstructed values. We study the e�ect and �nd its in�uence
negligible on the �nal result. We use the reconstructed phase-space position.
¿e e�ciency is visualised using the variables m2

KK and the helicity angle of
the K+K− system cos θKK in �g. 12.5. ¿is representation is called Dalitz ‘box
diagram’. Compared to the representation using two invariant masses it has the
advantage that the phase-space boundary is a rectangle and does not intersect
bins. ¿e e�ciency drops to zero in regions with low momentum K+ and K−

tracks.
¿e e�ciency correction using a histogram has disadvantages in regions

with a large variation of the amplitude (e. g. close to the ϕ(1020)). ¿erefore,
we use the binned e�ciency correction for visualization only and choose an
unbinned e�ciency correction approach for the minimization procedure, as
described in the following.
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Figure 12.5: Simulated selection and reconstruction e�ciency for tagged signal
decays. ¿e reconstructed phase-space position of the events is
used.

¿e likelihood function from eq. (12.1) including the e�ciency function is
given by (we neglect the background term for simplicity):

L = ∣M(β, ξ)∣2є(ξ)
∫ dξ∣M(β, ξ)∣2є(ξ)

. (12.5)

¿e coherent amplitude sum is denoted byM(β, ξ), β are the free parameters
in the �t and ξ are the Dalitz plot variables. ¿e logarithm of the likelihood is
then given by:

− logL = −∑
ev
log( ∣M(β, ξ)∣2

∫ dξ∣M(β, ξ)∣2є(ξ)
) −∑

ev
ln є(ξ). (12.6)

In the minimization procedure the �rst derivative with respect the �t para-
meters β is calculated and therefore all terms not depending on β drop out.
¿erefore, the e�ciency function is only relevant for the normalization term
in the denominator. ¿e normalization integral is calculated by Monte-Carlo
integration and can be expressed as:

I = ∫ dξ∣M(β, ξ)∣2є(ξ)

≈
Ngen

∑
i=0

∣M(β, ξi)∣2∆xiє(ξi) Ngen = MC sample size.

= 1
Ngen

Ngen

∑
i=0

∣M(β, ξi)∣2Ngen∆ξiє(ξi)

= 1
Ngen

Ngen

∑
i=0

∣M(β, ξi)∣2Nξ i , (12.7)
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where Nξ i is the number of accepted events. We write the integral as sum over
all accepted events:

I = 1
Ngen

Ngen

∑
i=0

Nξ i

∑
j=1

∣M(β, ξi)∣2

=
Vphsp
Ngen

Nacc

∑
k=1

∣M(β, ξk)∣2 Sum over sample of accepted events. (12.8)

We arti�cially add the phase-space volume of our decay Vphsp to obtain the
correct units of the integral and for consistency with a binned e�ciency correc-
tion. For the minimization process this factor is irrelevant since it drops in the
�rst derivative.
¿is method allows to incorporate the e�ciency correction directly into

the likelihood normalization by using a isotropic Monte-Carlo sample with
applied e�ciency. ¿at means we generate a large phase-space sample and a er
simulation, reconstruction and selection it can be used to correct the likelihood
for e�ciency in a non-parametric way.¿e knowledge of the e�ciency function
є(ξ) is not necessary. Binned and unbinned approaches calculate the likelihood
normalization consistently on a level better than 1 % and the e�ect on the �t
result is negligible.
Both approaches depend on an accurate simulation of the track reconstruc-

tion. ¿e di�erences between simulation and data were studied by the collab-
oration in bins of the particle momentum. ¿e relative di�erences are listed
in table B.2. To each Monte-Carlo event in the isotropic sample we assign a
correction factor depending on the momenta of K0

S , K+ and K− to consider
those di�erences.

12.5 goodness-of-fit

We need a goodness-of-�t procedure to quantify the agreement between our
model hypothesis and the data sample. Furthermore we need to rank the
agreement of di�erent sets of amplitudes in order to �nd an optimal set of
resonances.
A common approach is the χ2 test. ¿e data sample is divided into bins and

from the number of entries Ni and the function value at the bin center f (x⃗i)
we calculate:

χ2 = Ni − f (x⃗i)
σi

. (12.9)

In case that the uncertainties on the values in each bin are Poisson distributed
the χ2 distribution follows a regularized Gamma function. Our data sample has
a rather limited size and the strong contributions from ϕ(1020) and a0(980)0
at low K+K− invariant masses leads to regions in phase-space with essentially
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no events as shown in �g. 12.1. 1 Fortunately there are many more powerful
tests on the market. An overview is given in [71].
We use an unbinned point-to-point dissimilarity goodness-of-�t method

which is o en refer to as ‘statistical energy’ test.¿is approach compares directly
the unbinned probability densities of two samples. ¿e application to problems
in particle physics was �rst discussed in [72]. Further (technical) hints can
be found in [71]. ¿e method performs much better compared to a χ2 test in
omnipresent as well as localized discrepancies.
As a complement to the point-to-point dissimilarity method we use the well-

known likelihood-ratio test to calculate the relative signi�cance of amplitude
models (see section 12.5.2).

12.5.1 Point-to-Point dissimilarity test

¿e basic idea is to use an analogy to the electrostatic energy as test variable
for the comparison of two unbinned samples. Lets assume a continuous charge
distribution ρ(x) which can be splitted into distributions for the negative and
positive charges:

ρ(x) = ρ+(x) − ρ−(x). (12.10)

¿e electrostatic potential writes as:

Φ = 1
2 ∫ dx∫ dy

[ρ+(x) − ρ−(x)][ρ+(y) − ρ−(y)]
∣x − y∣ . (12.11)

In case both distributions are equally distributed the electrostatic energy is
minimal. We considering ρ± to be probability density functions (PDF) and
we substitute 1

∣x−y∣ by a general distance function R(∣x − y∣). Our test variable
becomes:

2Φ = ∫ dx∫ dy ρ+(x)ρ+(y)R(∣x − y∣)

+ ∫ dx∫ dy 2ρ+(x)ρ−(y)R(∣x − y∣)

+ ∫ dx∫ dy ρ−(x)ρ−(y)R(∣x − y∣). (12.12)

In the following we identify ρ+ = ρdata as the true and unknown PDF of our
data sample and ρ− = ρmc as the amplitude model obtained from the Dalitz
plot analysis. In the next step we approximate the integrals over ρdata and ρmc
by Monte-Carlo integration. We use our data sample of size N for the integrals
over ρdata and for ρmc we generate a large Monte-Carlo sample of sizeM using

1 Despite that, we give the χ2 values for the invariant mass projections in �g. 12.10.
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Figure 12.6: Illustration of di�erent distance functions.

our amplitude model. ¿e Monte-Carlo sample has passed detector simulation,
reconstruction and selection.Φ is then calculated using two unbinned samples:

Φ = 1
N(N + 1)∑j>i

R(∣ni − nj∣)

− 1
NM∑j,i

R(∣ni −mi∣)

+ 1
M(M + 1)∑j>i

R(∣mi −mj∣). (12.13)

Heremi and ni are elements from the Monte-Carlo and data sample, respect-
ively. ¿is variable can be used to rank di�erent sets of amplitudes or di�erent
amplitude descriptions. In contrast to [71, 72], we do not drop the last term
since we think that without this term it is not ensured that models with better
�t quality always have smaller values inΦ. We did not treat prefactors carefully,
in particular the unit ofΦ is not correct. However this is irrelevant for the usage
of Φ as goodness-of-�t test variable. Furthermore it is in general necessary to
rescale the phase-space variables to a common range or common width. Since
we are using two invariant masses with almost the same range to calculate the
Dalitz plot position this is not necessary in our case. In the next section we
discuss our choice for the distance function R(∣x − y∣).

12.5.1.1 Distance function

In the literature [71, 72] three di�erence distance functions are discussed:

1. Power-law R(∣x − y∣) = (∣x − y∣κ + є)−1

2. Logarithmic R(∣x − y∣) = − log (∣x − y∣ + є)

3. Gaussian R(∣x − y∣) = exp (−∣x−y∣2σ 2 )

¿e power-law and logarithmic distance functions have a numerical cut-o�
є. ¿e exponent of the power-law function κ and the width of the Gaussian
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σ are nuisance parameters. ¿e di�erent distance functions are illustrated in
�g. 12.6. ¿e power-law and logarithmic distance functions have in�nite range.
¿at means pairs of events can contribute to the value of Φ even if they are
far away from each other and therefore only weakly correlated. We consider
this as unphysical and use the Gaussian distance function. ¿e width can be
considered as a correlation range. We choose a width which is allowed to vary
over the Dalitz plot, as proposed in [71]. ¿e local ‘correlation range’ at the
Dalitz position ξ is calculated from an average correlation range σ scaled by
the amplitude value at that point:

σ(ξ) = σ̄
M(ξ) ∫ dξ

. (12.14)

¿e idea is that in regions with low amplitude values and therefore with few
events the width is larger compared to regions with high amplitude values and
many events. ¿e phase-space factor ∫ dξ is added because the expectation
value ofM(ξ) ∫ dξ is one. ¿e variable width improves the power of the test
signi�cantly as studied in [71]. ¿e nuisance parameter σ̄ is set to an ‘average
width’ of all resonances in the Dalitz plot. We choose 30MeV. ¿e in�uence of
this parameter is considered to be small.

12.5.1.2 Probability distribution

¿e test variable Φ can be used to measure the agreement relative to another
solution. We want to calculate the probability that our amplitude model is the
underlying amplitude of the data sample. ¿e probability P�t can be calculated
from the distributionD�t(Φ) of the test variable Φ:

P�t = ∫
Φfit

−∞

D�t(Φ)dΦ. (12.15)

In case of a χ2 test the χ2 distribution is analytically known. For the ‘statistical
energy’ test we have to obtain the distribution from simulation. We use the
amplitudeM�t to generate two samples. One sample with the same size as the
data sample N and a second sample with the same sizeM as the Monte-Carlo
sample that was used to calculate Φ . ¿ese pairs are generated multiple times,
and for each we calculateΦi .¿e distributionD�t(Φ) follows a Gaussian shape
and is shown in �g. 12.7. ¿e probability can then be obtained by eq. (12.15). For
technical reasons the Monte-Carlo sample that is used here is limited to about
16 × 103 events. ¿erefore, the value of Φ has a statistical uncertainty which is
3.7 × 10−6 for the �nal amplitude model.

12.5.2 Likelihood ratio test

¿eDalitz amplitude model consists of the coherent sum of a set of resonances.
¿e agreement between data sample and model is given by the value of the
likelihood function at its minimum. A model with more parameters usually
yields a better �t quality. We need to test if a model with additional resonances
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Figure 12.7: ¿e �t probability of the �nal model for the Point-to-Point dissim-
ilarity method is estimated from a set of Monte-Carlo samples. ¿e
goodness-of-�t value Φ is 17 × 10−6 which gives a �t probability of
(42.6 ± 3.0)%.

results is a signi�cantly improved description. In ‘statistics language’ this means
we have to test the signi�cance of composite statistical hypotheses. Composite
statistical hypotheses means that the null hypothesis (with less parameters) is
within the parameter space of the alternative hypothesis (withmore parameters).
In our case both models are approximately the coherent sum of di�erent sets
of resonances and if one set is a subset of the other we can apply the likelihood
ratio test.
We calculate the ratio of both likelihoods at the minimum:

QL = −2 log
L(null hypothesis)

L(alternative hypothesis) . (12.16)

Wilks theorem [73] states that for the case of hypothesis testing described above,
QL is distributed according a χ2 distribution with n degrees of freedom:

χ2(Qi ; n) =
Qn/2−1
i e−Q i/2

2n/2Γ( n2 )
. (12.17)

In which n is the di�erence of degrees of freedom between the null and the
alternative hypothesis. For a sample size approaching in�nity, Wilks theorem
is exact.
We obtain the probability from the χ2 cumulative distribution function:

P(QL) = ∫
DL

−∞

χ2(x , n)dx . (12.18)

And the signi�cance in units of the standard deviation of the normal distribu-
tion is given by:

s(P) =
√
2 erf−1(P). (12.19)
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Table 12.5: Comparison of di�erent results for the f0(980) parameters. Other
measurements are listed in [75, Table 2].¿e BESII result is corrected
for a di�erent phase-space factor (second row).

Measurement Mass [MeV/c2] gKK[GeV] gππ[GeV] 2g2KK/g
2
ππ

Ambrosino et al. [74] 976.8 ± 10.1 3.76 ± 1.17 −1.43 ± 0.60 13.8 ± 7.8
e+e− → π0π0γ(KL)

García-Martín et al. [75] - - 2.3±0.2 -
ππ scattering, K4l

Ablikim et al. [76] 965 ± 10 0.49 ± 0.07 0.165 ± 0.018 17.7 ± 2.7
J/ψ → ϕπ+π−, ϕK+K− 3.5 ± 0.5 1.17 ± 0.13

Weighted average 971 ± 7 3.54 ± 0.46 1.5 ± 0.1 17.3 ± 2.6

¿is is the quantile function of the normal distribution with zero mean and a
width of one. ¿e inverse error function erf−1(x) is used.

12.6 resonances

In this section we collect information on the resonances that can appear as
intermediate states in the decay D0 → K0

SK+K−. ¿e phase-space range is in
all Dalitz variables approximately from 1 to 1.364GeV/c2. We are looking for
resonances in this mass window which decay to KK. ¿e kaons have quantum
numbers JP = 0− and therefore the allowed quantum numbers from the con-
stituent quark model for intermediate resonances are JPC = 0++, 1−−, 2++ and
so on.
All resonances listed by the PDG [7] that ful�ll those requirements are

discussed in the following. An overview is given in table 12.7.

• ¿e f0(980) is expected to be the isospin 0 component of a nonet, built
from the a0(980), the K∗(800) and the f0(600) (see �g. 1.3). It lies close
to the KK threshold and couples strongly to the charged and neutral
�nal states of KK and π+π−. ¿e f0 couplings to KK and ππ were meas-
ured by e. g. KLOE [74]. An overview of di�erent measurements is given
in table 12.5 Since it has the same quantum numbers and mass as the
a0(980)0, and only slightly di�erent coupling, both will be hard to distin-
guish. Since we see a contribution from a0(980)+ in the K0

SK+ channel
we also expect a a0(980)0 contribution in the KK channel.

• ¿e a0(980) is located close below the KK threshold. It couples strongly
to the ηπ as well as to the K+K−/K0K0 channel.¿e charged a0(980) has
only the channels K0

SK± and ηπ± while the neutral partner also decays
via K0K0. ¿is is taken into account by using two and three channel
formulas (see section 5.3). ¿e coupling to the KK channel can be de-
termined on data. ¿e a0(980)mass and the coupling to ηπ are external
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Table 12.6: Comparison of di�erent results for the a0(980) parameters. One
can clearly see that measurements from χcJ decays systematically
di�ers from the other measurements. Some measurements use a
di�erent phase-space factor than we do. ¿e corrected values are
given in the second line.

Measurement Mass [MeV/c2] gKK[GeV] gηπ[GeV] 2g2KK/g
2
ηπ

Teige et al. [83] 1001.0 ± 1.9 0.15 ± 0.02 0.240 ± 0.015 0.8 ± 0.2
π−p → {ηπ+π−n, ηπ0n} 1.1 ± 0.2 1.7 ± 0.1

Abele et al. [82] 999 ± 2 0.23 ± 0.02 0.324 ± 0.015 1.03 ± 0.14
pp → KLK±π± 1.6 ± 0.1 2.3 ± 0.1

Bugg [78] pp → 987.4 ± 3.2 0.29 ± 0.02 0.405 ± 0.015 1.05 ± 0.09
{ηπ0π0,KLπ±K±,ωπ+π−π0} 2.1 ± 0.1 2.9 ± 0.1

Ambrosino et al. [77] 982.5 ± 2.0 2.15 ± 0.08 2.82 ± 0.05 1.16 ± 0.08
ϕ(1020)→ ηπ0γ(KL)

Athar et al. [79] 1002 ± 18 0.4 ± 0.1 0.64 ± 0.05 0.66 ± 0.39
χcJ → h+h−h0 2.6 ± 0.8 4.5 ± 0.4

Adams et al. [80] 998 ± 16 0.40 ± 0.08 0.60 ± 0.04 0.87 ± 0.35
χc1 → {ηπ+π−, η‘π+π−} 2.8 ± 0.6 4.3 ± 0.3

Weighted average 994 ± 1 1.89 ± 0.06 2.66 ± 0.04 1.05 ± 0.04

input parameters. Recent measurements comes from KLOE [77], from
a reanalysis of Crystal Barrel data [78] and from CLEO-c [79, 80]. At
Besiii there is an ongoing measurement of these parameters in the decay
χc1 → ηπ+π−. ¿e analysis is currently in review stage [81]. An overview
over all measurements is listed in table 12.6. In the KLOE analysis the ra-
tio of the couplings is de�ned as g2K+K−/g2ηπ in all other analysis the ratio
is de�ned as (g2K+K− + g2K0K0)/g2ηπ ≈ 2g2K+K−/g2ηπ . ¿e coupling constants
from di�erent analysis need to be corrected for di�erent parametriza-
tions, namely for the two-body phase-space factor a di�erent formula
are used. It is not completely clear which formula were used for the χcJ
analyses. In case that our assumption for the phase-space factor is correct,
there is a systematic discrepancy between values obtained in χcJ decays
and the other analyses. In the previous analysis by BABAR the result from
[82] was used. We use the weighted average for the a0(980)mass and
coupling to ηπ.

• ¿e most precise measurement of the ϕ(1020) mass and width was
performed by the BABAR experiment using initial state radiation in the
�nal state e+e− → KK(γ) [84]. A mass of (1019.51 ± 0.05)GeV/c2 and a
width of (4.29 ± 0.08)MeV were measured. For our analysis we use the
PDG average values, shown in table 12.7. ¿e ϕ(1020) is described by a
Breit-Wigner model with mass-depended width.
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Table 12.7: Overview of resonances that can contribute to the decay D0 →
K0

SK+K−. Mass and width are the Breit-Wigner parameters. In case
that these are channel depended we quote the parameters of the KK
�nal state. Values without reference are the averaged values from
the particle data group [7].

Resonance IG (JPC) BKK[%] Mass[MeV/c2] Width[MeV]

f0(980) 0+(0++) seen 971 ± 7 gKK = 3.54 ± 0.05
gππ = 1.5 ± 0.1

a0(980) 1−(0++) seen 994 +6
−4 gηπ = 2.66 ± 0.04

ϕ(1020) 0−(1−−) 48.9 ± 0.5 1019.461 ± 0.019 4.266 ± 0.031
f2(1270) 0+(2++) 4.6 ± 0.4 1275.1 ± 1.2 184.2 +4.0

−2.4

a2(1320) 1−(2++) 4.9 ± 0.8 1318.1 ± 0.7 109.8 ± 2.4
f0(1370) [87] 0+(0++) seen 1440 ± 6 121 ± 15
ρ(1450) [89] 1+(1−−) not seen 1422.8 ± 6.5 146.5 ± 10.5

• ¿e parameters for the f2(1270) are determined in the �nal state ππ.
For example at BESII in the reactions e+e− → J/ψ → γπ+π− [85] and
J/ψ → ϕπ+π− [76]. We use the PDG average value.

• ¿emass and width of the a2(1320) in the KK channel were determined
in the 1980s for example in the reaction π± p → K0

S K± p [86]. All
measurements are in good agreement and we use the PDG average values.

• ¿e properties of the f0(1370) are rarely known and there is also a
discrepancy between di�erent measurements. ¿e particle data group
assumes a complex pole position in the range of (1200 − 1500) − i(150 −
250)MeV. We use the mass and width published in [87]. ¿is measure-
ment is the most recent one and is in agreement with measurements
from the 1980s.

• Input to the particle data group averages for mass and width of the
a0(1450) comes from the Crystal Barrel collaboration. ¿e results from
the �nal states pp → K0

LK±π± [82] and pp → {π0π0π0, π0ηη, π0π0η}
[88] are consistent. We use the PDG average.

• ¿e ρ(1450) parameters are not precisely known. ¿e Crystal Barrel
experiment measured them in the reaction p p → K+ K− π0. A mass of
(1422.8 ± 6.5)GeV/c2 and a width of (146.5 ± 10.5)GeV were observed
[89]. ¿e isospin was not determined and there is the possibility to
confuse it with the ω(1420). ¿e ρ(1450) has not been observed in the
channel KK and we do not include it in our model. Yet we list it for
completeness here.
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12.7 model selection

In the followingwe discuss howwe choose the set of resonances thatwe included
into the Dalitz amplitude model. ¿e particle data group [7] lists 12 resonances
that could potentially contribute to the decay D0 → K0

SK+K−. ¿e �t result for
an amplitude model including all resonances is given in table 12.8. ¿e sum
of �t fractions is 196.64% which is due to large interferences. ¿ose can be of
physical origin but it is also possible that the minimization procedure adds
intensity to two or more resonances which is then compensated by a larger
destructive interference. In the end more intensity can be added without an
improved �t quality. Furthermore many resonances have small �t fractions and
we want to remove those which do not signi�cantly contribute.
¿ose problems are common in amplitude analyses and an o en used strategy

is to subsequently remove insigni�cant resonances from the model with the
maximum set of resonances. Usually one introduces a cut-o� in the �t fraction
or on the signi�cance of a resonance. ¿is cut-o� is somehow arbitrary and
more importantly this procedure does not balance between a more complex
model and an improved �t quality.
In contrast to this approach, we use a strategy that automatically balances

between improved �t quality and model complexity and furthermore, does not
involve any arbitrary parameters. ¿is strategy is described in the following.

12.7.1 Penalty term

Balancing a model between �t quality and model complexity is a very com-
mon problem in the area of machine learning and in statistics in general. One
approach to solve such a problem is the so-called Least Absolute Shrinkage
and Selection Operator (LASSO) method [90]. ¿e basic idea is to penalize
undesired behaviour of the objective function. In the original approach the
objective function is a least square model and the penalty function is the sum
of the absolute values of the free parameters.
In the context of particle physics this approach is described in [91]. In our

case the objective function is − logL and the undesired behavior is a large sum
over all �t fractions.¿erefore, we use the square-root of the sum of �t fractions
as penalty function. We modify eq. (12.2) as follows:

− logLP = − logL + λP∑
i

¿
ÁÁÀ ∫ AiA∗i dξ

∫ ∑i , j AiA∗j dξ
. (12.20)

¿e square-root is used here since it favors the suppression of small contribu-
tions, in contrast to e. g. the sum of the �t fractions which would favor solutions
with equal values. ¿e parameter λP regularizes the model complexity. A large
value suppresses the sum of �t fractions and small values allow for larger inter-
ference terms. It is a nuisance parameter and we have to determine its optimal
value. Again, this is a common problem in statistics and the class of solutions
are so-called information criteria. Information criteria are mathematical formu-
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Figure 12.8: Scan of penalty scale λP . ¿e BIC information criterion is shown
with a minimum at λminP = 30.0. A spline function (black) to the
data points is shown to guide the eye.

lations of the ‘principle of parsimony’ [92]. ¿is means in hypothesis testing we
prefer the model with less parameters over a more complicated model, given
the same goodness-of-�t.
¿e criteria suggested by [91] are the Akaike (AIC) [93] and Bayesian (BIC)

[92] information criteria:

AICλP = −2 logLλP + 2rλP BICλP = −2 logLλP + rλP logNdata . (12.21)

¿e number of events in data is denoted by Ndata and the coe�cient r is
related to the complexity of the model. We follow the suggestion of [91] and
use the number of resonances with a �t fraction larger 10−3 as parameter r.
¿is somehow also introduces a cut o� however, not directly in the resonance
selection but in the scale for the complexity of the model. By construction, the
BIC prefers less complex models compared to the AIC.
We perform a scan for di�erent values of λP over a wide range and map out

the minima of AIC and BIC. ¿e scan is shown in �g. 12.8. Since the for many
values of λP the minimization procedure is numerically instable we have to use
di�erent starting values for the model parameters to �nd valid minima over
the whole range of λP . Nevertheless in some intervals minimization does not
succeed. We �nd a minimum for BIC at λP = 30.0 but no minimum for AIC.
¿e �t result at the minimum is listed in table 12.8. ¿e sum of �t fractions
decreases from 196.64% for λP = 0.0 to 159.67% for λP at the BIC minimum.
We test the in�uence on the �nal set of di�erent values of λP close to the
minimum and �nd that the result depends only weakly on the exact value of
λP . Some values tend to add a2(1320)− to the model and some do not. We keep
the a2(1320)− and test its signi�cance. A disadvantage of this method is that
the error estimate of the �tting procedure is inaccurate due to the additional
term in − logL. ¿erefore, we remove the penalty term and all resonances with
a �t fraction < 10−3 and rerun the �t.
¿e �nal model includes the resonances a0(980)0, ϕ(1020), a0(980)+ and

a2(1320)−.
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Table 12.8: Fit fractions in % of di�erent sets of resonances. ¿e signi�cance
is calculated from a likelihood ratio test with respect to the �nal
model. A negative signi�cance indicates that the likelihood is worse
than the reference model.

Resonance Complete BIC min Final model Signi�cance
λminP = 30.0 a2(1320)−

gKK [GeV] 2.78 ± 0.56 2.87 +0.23
−0.28 3.21 ± 0.18

f0(980) 17.55 2 × 10−4

a0(980)0 41.89 74.95 72.8 ± 4.7 77.9 ± 4.1
a0(980)+ 37.28 35.34 31.9 ± 4.7 38.0 ± 2.8
a0(980)− 6.04 7.4 × 10−2

ϕ(1020) 49.81 48.61 47.5 ± 1.6 47.2 ± 1.4
f2(1270) 3.43 2 × 10−4

a2(1320)0 1.51 3 × 10−2

a2(1320)+ 2.55 5 × 10−2

a2(1320)− 0.205 0.55 0.78 ± 0.40
f0(1370) 8.73 2 × 10−5

a0(1450)0 1 × 10−11 7 × 10−9

a0(1450)+ 9.14 1 × 10−7

a0(1450)− 18.52 9 × 10−9

Total 196.64 159.67 153.0 ± 7.6 163.1 ± 5.1

Degrees of freedom 25 7 5
− logL −4149.98 −4125.78 −4116.69

Signi�cance 3.82 - −3.88
Goodness-of-�t 0 1.701 × 10−5 1.680 × 10−5

Fit probability [%] 0 42.6 ± 3.0 24.6 ± 2.0
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12.8 systematics

In the following we describe how we estimate the systematic uncertainties
on the �t parameters and the �t fractions. ¿ese include an uncertainty from
the �tting procedure, the background description, the amplitude model and
inaccuracies of the Monte-Carlo simulation. For each source of uncertainty
we rerun the �t with a di�erent con�guration and add the deviations from the
nominal model in quadrature. An overview of the systematic uncertainties
for the nominal model is given in table 12.11 (and an extensive overview in
table B.3).

12.8.1 Background

¿e result is in�uenced by the background description in various ways. ¿e
background amplitude model can in�uence the �t result. ¿is in turn is in�u-
enced by the background sample that is used to determine the parameters and
by the amplitude model parametrization. ¿e �t quality for the Monte-Carlo
background sample is fairly good, as shown in �g. 12.4. We therefore neglect
the uncertainty due to an insu�cient description of the background model. In-
stead we test di�erent background samples. ¿e nominal model is determined
from a Monte-Carlo background sample in the signal region. We substitute
it by the data sideband sample and the Monte-Carlo background sideband
sample. ¿e di�erence of the �t result in comparison to the nominal model
is taken as systematic uncertainty. Note that the contribution to the ϕ(1020)
peak is di�erent for the signal and sideband region. ¿e systematic uncertainty
is therefore a conservative assumption.

Table 12.9: Charm mixing averages
from HFAG [38].

Parameter Value

x[%] 0.53 ± 0.17
y[%] 0.63 ± 0.09
RD[%] 0.350 ± 0.004

⟨RK−π+π0D ⟩ 0.164 ± 0.027
δKπ[°] 10 ± 11
δKππ0[°] 17 ± 23

Another source of uncertainty is the signal purity. It is obtained on data as
explained in section 12.1. Since the yields are not e�ciency corrected we assume
that the systematic uncertainty on this is negligible.¿e systematic e�ect on the
Dalitz plot analysis is estimated by varying the signal fraction by one standard
deviation of its statistical uncertainty to larger and smaller values.

12.8.2 Amplitude model

A source of uncertainty of the amplitude model is the resonance radius that
is used in the damping factors (see section 5.4). We vary it in steps of 1 GeV−1

from 0GeV−1 to 5GeV−1. Our nominal value is 1.5GeV−1.
¿e quantum entanglement of D0D0 is included in the Dalitz amplitude

model. We use external parameters for the magnitude and phase of

λ j =
A j

A j
= −

√
RDe−iδD , (6.3)

which we denote by RD and δD. Both depend on the �nal state but are not
measured for each �nal state that we use for tag reconstruction. As nominal
values we use the experimental averages for K−π+ which are listed in table 7.1.



100 dalitz plot analysis

We use the value of RD for the �nal state K− π+ π0 and two times the nominal
value to study the in�uence of the magnitude on the �nal result. For the phase
δ we use the values 0 and two times its nominal value. ¿e �t result for a Dalitz
amplitude model without quantum entanglement (rD = 0) is listed in table B.6.

12.8.3 Monte-Carlo simulation

¿e e�ciency correction of the data sample is obtained from Monte-Carlo
simulation. Di�erences between data and Monte-Carlo simulation in track
reconstruction and particle-identi�cation can in�uence the result. Especially
the regionswith lowmomentumK± tracks are prone to inaccuracies.We correct
for these di�erences using momentum depended correction factors provided
by the collaboration. ¿e corrections are listed in appendix B.4. We test the
in�uence of the tracking correction by rerunning the �t without correction
(table B.3). ¿e in�uence is found to be small and we do not assign a systematic
uncertainty.
Another e�ect are di�erent momentum resolutions in data andMonte-Carlo

simulation. ¿e ϕ(1020) has a width which is of the same order as the mass
resolution. We study the in�uence of the mass resolution by rerunning the min-
imization with a free width parameter.¿e parameter changes from 4.266MeV
to (5.08 ± 0.28)MeV. We add the deviation from the nominal model to the
systematic uncertainty. ¿e likelihood di�erence of both con�gurations has a
statistical signi�cance of 2.82 σ . We decide to keep the parameter �xed in the
nominal model.

12.8.4 External parameters

A list of external parameters used in this analysis is shown in table 12.10. We
shi each parameter by its uncertainty to smaller and larger values and re-
run the minimization. ¿e deviation from the nominal model is taken as
systematic uncertainty. ¿e in�uence of the a0(980) coupling to ηπ is estim-
ated by rerunning the minimization with both couplings le free. We obtain
gηπ = (2.62 ± 0.11)GeV.

12.8.5 Fitting procedure

¿e �tting procedure can introduce a bias on the �t result. Furthermore we
need to assure that the estimation of the statistical uncertainty calculated by
Minuit is correct. ¿is study accounts for the following contributions to the
systematic uncertainty:

1. Correlations between parameters.

2. E�ciency correction.

3. Reconstruction e�ects (e. g. a shi in phase-space position).
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Table 12.10: List of external parameters with uncertainties.

Name Value

a0(980)mass (0.994 +6
−4)GeV/c2

a0(980) gηπ 2.66GeV
ϕ(1020)mass (1.019 461 ± 0.000 019)GeV/c2

ϕ(1020) width (4.266 ± 0.031)MeV
a2(1320)mass (1.3181 ± 0.0007)GeV/c2

a2(1320) width (109.8 ± 2.4)MeV
a0(1450)mass (1.474 ± 0.019)GeV/c2

a0(1450) width (265 ± 13)MeV

We use our nominal �t result to generate a signal Monte-Carlo sample by
using a hit-and-miss method. ¿is sample has passed detector simulation
and reconstruction as well as the event selection procedure. ¿en, we add the
expected amount of background fromMonte-Carlo simulation and rerun the
minimization procedure. We calculate the di�erence between the parameters
of the nominal model and the �t result in units of the statistical uncertainty of
the parameter. ¿is quantity is denoted by:

Pβ =
βtrue − β

σβ
. (12.22)

We repeat this procedure for 150 statistically independent samples. ¿e distri-
bution of Pβ is expected to be Gaussian with a mean of zero with a width of
one. A shi ed mean indicates the average bias on the parameter of interest. A
width larger or smaller than one is a hint on an under- or overestimation of the
statistical uncertainty.
¿e distribution for Pβ is shown in �g. B.3. We �nd signi�cant biases for

some parameters. Especially the parameters of the a2(1320)− are signi�cantly
shi ed. Note that these shi s are given in units of the statistical uncertainty
and are therefore small in absolute values. We correct each �t parameter for its
bias and add half of the correction to the systematic uncertainty.
¿e widths of the distributions are compatible with one. Despite this we

perform an additional χ2 test on the error estimate to assure that the con�d-
ence intervals are well covered. We use the likelihood ratio test described in
section 12.5.2. We have a set of true parameters βtrue . From these parameters
independent samples are generated, as described above.¿e �t to each sample i
gives us a set of parameters βimin at the minimum as well as the value of the like-
lihood at this point − logLimin = − logLi(β

i
min). Furthermore we evaluate the
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Figure 12.9: ¿e quantity Qi is distributed according to a χ2 distribution. ¿e
�t yields 7.15 ± 0.28 degrees of freedom.¿is shows that the con-
�dence levels are well covered.

likelihood at the position of the true parameters: − logLitrue = − logLi(βtrue).
For each sample we calculate

Qi = −2 log
Li(true)
Li(min) . (12.16)

Qi in expected to be distributed according eq. (12.17) and a �t to the Qi distri-
bution with the degrees-of-freedom as free parameter is supposed to yield the
number of �t parameters. ¿e distribution for the nominal model is shown in
�g. 12.9 and the test shows that the con�dence intervals are well covered.
Furthermore we check that no better minima exists in the parameter space.

We do so by rerunning the minimization with random start values from the
whole parameter space. From 150 �ts, no �t with a valid minimum exhibits a
smaller likelihood value than the nominal set of start parameters.

12.9 result

We �nd that the Dalitz plot is well described by a model with 5 resonances. We
include the a0(980)0, ϕ(1020), a0(980)+ and the a2(1320)−. ¿e Dalitz plot
projections and the �t model are shown in �g. 12.10 and the �t parameter are
listed in table 12.12. A logarithmic representation can be found in �g. B.4.
¿e a2(1320)− has a small �t fraction but a signi�cance of 3.88 σ as shown

in table 12.8 and we therefore include it into our model. ¿e signi�cance of the
�nal set of resonances versus the full set is 3.82 σ but since the �nal model has
a signi�cantly smaller sum �t fraction it is preferred from the point of view
of physical interpretability. ¿e sum �t fraction is 166.8% which comes from
a strong destructive interference between the a0(980)0 and the a0(980)+ of
about −71.09%.
¿e a0(980)0 and the f0(980) have the same mass and similar couplings.

Our resonance selection procedure favors the a0(980)0 over the f0(980). ¿e
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Table 12.11: Overview of uncertainties for the nominal model. We list the �t
parameters and its statistical and systematic uncertainties. ¿e �t
parameters and �t fractions are corrected for its �tting bias and
are denoted by corrected value. Systematic uncertainties are given
in units of the statistical uncertainty of the parameter. In case that
errors are asymmetric we use the average value. A detailed overview
is given in table B.3.

Parameter gKK a0(980)0 a0(980)+ ϕ(1020) a2(1320)−

[GeV] FF[%] |c| ϕ[rad] FF[%] |c| ϕ[rad] FF[%] |c| ϕ[rad] FF[%]

Fit values 2.87 0.73 0.66 −2.93 0.32 0.81 1.76 0.48 0.10 0.24 0.008
Corrected values 2.88 0.73 0.66 −2.92 0.32 0.81 1.74 0.48 0.09 0.13 0.007

Background [σ̄] 0.45 0.59 0.90 0.77 0.75 0.37 0.42 0.60 0.23 0.38 0.18
Model [σ̄] 0.29 0.63 1.12 1.44 1.04 0.69 0.64 1.95 0.30 0.66 0.43
External [σ̄] 1.93 0.77 1.45 1.15 1.62 0.57 2.60 0.21 0.95 0.28 0.99
Fitting [σ̄] 0.03 0.04 0.01 0.00 0.05 0.01 0.19 0.04 0.20 0.21 0.16

Sys. uncertainty [σ̄] 2.00 1.30 2.19 2.21 2.17 1.03 2.72 2.07 1.07 0.89 1.17
Sys. uncertainty 0.51 0.07 0.13 0.34 0.10 0.04 0.17 0.03 0.03 0.21 0.005

Mean stat. uncertainty σ̄ 0.25 0.06 0.06 0.15 0.05 0.04 0.06 0.02 0.03 0.24 0.004
Total uncertainty 0.56 0.09 0.14 0.37 0.11 0.05 0.18 0.04 0.04 0.32 0.006

present of the a0(980)0 is expected since its charged partner is seen in the K0
S

K+ channel. Nevertheless it is possible that some of the intensity added to the
a0(980)0 originates from the f0(980). ¿e study of another decay channel of
a0(980)0 or f0(980) would be necessary to clearly distinguish both.
¿e coupling of the a0(980) to KK is a free parameter and we determ-

ine a value of (2.88 ± 0.25 (stat.) ± 0.56 (sys.))GeV. At the BABAR experi-
ment the coupling was measured in the same decay channel and a value of
(3.29 ± 0.21)GeV [18] was obtained. A reanalysis using the full data set gives
(3.90 ± 0.07)GeV [19]. An overview of other measurements is compiled in
table 12.6. ¿ose measurements yields an average value of (1.89 ± 0.06)GeV.
Our measurement is in between those measurement and is compatible with all
of them within its uncertainty.¿e uncertainty mainly originates from a0(980)
mass.
¿e projections of themodel and the data sample show that bothmodels have

a decent �t quality. For a quantitative measure of the goodness-of-�t we apply
the ‘statistical energy’ test as described in section 12.5. ¿e probability that the
data sample is distributed according to our amplitude model is (42.6 ± 0.3)%.
¿e e�ect of the quantum entanglement between the tag D0 decay and the

signal decay as described in chapter 6 has only aminor in�uence. In �g. 12.10 the
total intensity in shown in blue and the intensity due to the Cabibbo-favoured
decay is shown in orange. ¿e di�erence between both is due to the quantum
entangled decay.
In general our results are systematically limited. ¿e major source is the

uncertainty on the a0(980)mass and its coupling to ηπ. ¿e coupling to ηπ to
currently �xed to 2.66GeV. As shown in table 12.6 the measurements for the
coupling to ηπ spread over a wide range.
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Table 12.12: Result from the Dalitz plot analysis. ¿e �rst uncertainty is stat-
istical followed by systematic uncertainty. ¿e coupling constant
a0(980) → KK is determined to be gKK = (2.88 ± 0.25 (stat.) ±
0.56 (sys.))GeV. ¿e model has a �t probability of (42.6 ± 0.3)%
and the statistical signi�cance of the a2(1320)− is 3.88 σ .

Final state Magnitude Phase [rad] Fit fraction [%]

a0(980)0K0
S 1 0 73 ± 6±7

a0(980)+K− 0.66 ± 0.06±0.13 −2.92 ± 0.15±0.34 32 ± 5±10
ϕ(1020)K0

S 0.81 ± 0.04±0.04 1.74 ± 0.06±0.17 48 ± 2±3
a2(1320)−K+ 0.09 ± 0.03±0.03 0.13 ± 0.24±0.21 0.7 ± 0.4±0.5

Total 154 ± 13

¿e amplitude model is used below in the branching fraction measurement
to calculate the signal e�ciency.
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Figure 12.10: Dalitz plot projections of data sample and amplitude model. ¿e
Cabibbo-favoured component (orange), the background compon-
ent (red) and the full amplitude (blue) are shown.





13
BRANCHING-FRACTION MEASUREMENT

¿e measurement of the branching fraction D0 → K0
SK+K− in quantum en-

tangled D0D0 decays can be done in two ways, as explained in section 6.2. In a
so-called double-tag measurement both D0 mesons are reconstructed and the
branching fraction is normalized to the number of inclusively reconstructed
tag decays. ¿is ratio has to be corrected for the e�ect of the entangled D0

decays, as shown in eq. (6.22). Since the requirement that both D0 mesons are
reconstructed reduced statistics by about a factor of 6, we decide to perform a
single-tag measurement. In that case the number of reconstructed signal decays
Nsig is normalized to the total number of D0D0 decays NDD. ¿e branching
fraction for an isolated D0 decay is then given by:

B j =
N j

NDD [1 + ⟨r j⟩ − y ⟨2
√
r j cos δ j⟩]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
fQC

×єBF
. (6.19)

¿e single-tag measurement is also in�uenced by the entanglement of D0 and
D0. ¿e corresponding correction factor is denoted by fQC . ¿e simulated
signal reconstruction e�ciency is denoted by єBF and NDD is calculated from
the luminosity of the data sample Ldata and the cross section σD0D0 for the pro-
duction of D0D0 at

√
s = 3.773GeV in e+e− collisions. ¿e K0

S is reconstructed
in π+π− decays and we need to correct our result for its decay to other �nal
states. ¿e branching fraction for the decay D0 → K0

SK+K− then given by:

B(D0 → K0
SK

+K−) = N sig

fQC ⋅ єBF ⋅ B(K0
S → π+π−) ⋅ (2 ×Ldata ⋅ σD0D0)

. (13.1)

An overview of the parameters is given in table 13.1.
¿e correction factor for the quantum entangled D0D0 decays is calculated

in section 13.1 from the Dalitz amplitude model. ¿e signal yield on data is
determined on data by a two-dimensional �tting procedure as described in
section 11.6 and section 13.2. ¿e reconstruction and selection e�ciency for
D0 → K0

SK+K− is shown in section 13.3 and we validate the branching fraction
measurement in in section 13.4. Finally we study systematic uncertainties in
section 13.5.

107
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Table 13.1: Parameters for the branching fraction measurement. ¿e number
of D0 decays on data is calculated from the cross section e+e− →
D0D0 and the luminosity of the data sample.¿e signal Monte-Carlo
sample is scaled to resemble the correct branching fraction.

Parameter Simulation Data Reference

Luminosity (2931.8 ± 13.8) pb−1 [69, 94]
σ(e+e− → D0D0) (3.66 ± 0.07) nb [95]

Number of D0 decays 21.46 × 106 (21.46 ± 0.41) × 106

B (K0
S → π+ π−) 0.686 0.6920 ± 0.0005 [7]

B (D0 → K0
SK+K−)

3.079 × 10−3

4.47 × 10−3

Quantum entanglement 2 2.07 ± 0.03 section 13.1
correction fQC
Signal yield 11 384 ± 115 11 660 ± 118 section 13.2
E�ciency (0.1704 ± 0.0004) section 13.3

scaling

13.1 correction for quantum entangled d0d0 decays

We want to obtain the branching fraction of an isolated D0 decay. We have to
correct the branching fraction from entangled D0D0 decays by the factor

fQC = 1 + ⟨r j⟩ − y ⟨2
√
r j cos δ j⟩ . (13.2)

¿is factor can be calculated from theDalitz amplitudemodel shown in �g. 12.10.
¿e quantities r j and δ j depend on the phase-space position. For the calculation
of fQC we use average values which are calculated according to eq. (6.13). We
use a signal Monte-Carlo sample with 2 × 106 events to evaluate the integrals
and obtain:

fQC = 2.07 ± 0.03. (13.3)

¿e statistical uncertainty of the Dalitz amplitude model is propagated to fQC .
We use the covariance matrix of the Dalitz amplitude model and generate
several sets ofmodel parameters. For each set we calculate fQC .¿e distribution
is shown in �g. 13.1 and we use its root-mean-square as uncertainty on fQC .
¿e limited statistics in the double-tagged Dalitz plot analysis causes a large
uncertainty on fQC of 1.4%. ¿e Monte-Carlo sample does not include the
quantum entanglement of D0D0, in that case fQC is exactly 2.

13.2 signal yield

¿e signal yield is determined using models for signal, combinatorial and non-
K0

S background. Details are given in section 11.6. Since we see small di�erences
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Figure 13.1: ¿e distribution of the correction factor fQC . Various sets of model
parameters which were generated using the covariance matrix of
the Dalitz amplitude model are used the estimate the uncertainty
on fQC .

Table 13.2: Signal and background yields for data and Monte-Carlo sample. ¿e
K0

S mass and width parameters are le free in the �t.

Parameter Data Simulation
Fit True Dev[σ]

Signal 11 660 ± 118 11 384 ± 115 11 298 0.75
Comb. background 1544 ± 66 3840 ± 75 3890 0.67
non-K0

S background 3 ± 131 0 ± 8 54 6.75

K0
S mass [MeV/c2] 497.73 ± 0.03 497.87 ± 0.02
K0

S width [MeV] 2.29 ± 0.03 2.03 ± 0.02

between data and simulation in the K0
S mass and width we leave these para-

meters free in the �t. ¿is improves the �t quality notably. ¿e �t results are
listed in table 13.2 and the projections of sample and model to mBC and mKS
are shown in �g. 13.3 for simulation and in �g. 13.6 for data.¿e �t to data yields
a reduced χ2 of 1.51 and 0.92 for the mBC and mKS distribution, respectively.
Table 13.2 shows that the yield of the non-K0

S background component cannot
be reproduced accurately. But since the yield is low the in�uence ob the �nal
result is small as we show in section 13.4.

13.3 efficiency correction

¿e e�ciency for the branching fraction measurement is determined in sim-
ulation. ¿e e�ciency depends on the simulation of the decay substructure
and therefore we use the Dalitz amplitude model to generate an accurate sig-
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nal sample and use this sample for the e�ciency calculation. We de�ne the
e�ciency as:

єBF =
Nrec

Ngenerated
. (13.4)

Ngenerated is the number of events with the �nal state π+π−K+K− and an inter-
mediate K0

S on generator level and Nrec is the number of correct reconstructed
decays. Since even in a signal event the signal can be wrongly reconstructed we
have to deal with background. By analogy to the determination of the signal
yields in section 13.2 we determine the number of correct reconstructed signal
events by a �tting procedure in mBC and mKS . Furthermore this has the ad-
vantage that a potential bias would in�uence the signal yield and the e�ciency.
In the ratio, given in eq. (13.1), such an e�ect would cancel.
¿e �t result can be biased by the level of background. ¿erefore, we use the

full Monte-Carlo sample, including background. ¿e projections of the sample
and the �t model are shown in �g. 13.2. On generator level the Monte-Carlo
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Figure 13.2: E�ciency determination using the full Monte-Carlo sample. ¿e
signal events in the sample were substituted with events that were
generated according to the Dalitz amplitude model.

sample contains 979 229 signal decays. We determine 166 880 ± 438 reconstruc-
ted signal events and the e�ciency is:

єBF = (17.04 ± 0.04)% (13.5)

¿e uncertainty is statistical only.

13.4 validation

We validate our measurement procedure by applying the same �tting procedure
that is used on data to the Monte-Carlo sample. From the full Monte-Carlo
sample we select a subsample with the same luminosity as the data sample.¿is
sample is corrected for the inaccurate branching fraction in the Monte-Carlo
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Figure 13.3: Signal yield on a (reduced) Monte-Carlo sample.

simulation. ¿e expected outcome is the current PDG value of 4.47 × 10−3.
¿e projection of the sample and the �t model are shown in �g. 13.3 and the
parameters are listed in table 13.2. ¿e reduced χ2 is 1.21 and 1.23 for the mBC
and mKS distribution, respectively.
We obtain a signal yield of 11 461 ± 115 and according to eq. (13.1) the branch-

ing fraction is:

BMC(D0 → K0
SK

+K−) = (4.540 ± 0.045 (stat.) ± 0.014 (sys.))×10−3. (13.6)

¿e relative accuracy is 1.1 %. ¿e systematic uncertainty quoted here is the
statistical error of the e�ciency determination. All other sources of systematic
uncertainties are due to di�erences between data and Monte-Carlo simulation
and are therefore not present in this case. ¿e deviation to the true value is
1.40 σ .

13.5 study of systematic uncertainties

13.5.1 Mass resolution

We see di�erences in the K0
S mass distribution between data and simulation.

¿e K0
S mass and width are free parameters in the �t. We obtain a di�erence

of (140 ± 32) keV and (259 ± 35) keV for the K0
S mass and width, respectively.

We do not assign any further uncertainty. ¿e width for the mBC distribution
is 1.16MeV for the Monte-Carlo sample and we cannot see a di�erence to data.

13.5.2 Substructure of K0
S K+ K−

¿e total reconstruction and selection e�ciency is determined using Monte-
Carlo simulation and it depends on a correct simulation of the substructure
of the decay. We determine the e�ciency on a sample which contains signal
events that decay according to the Dalitz amplitude model that was determined
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Figure 13.4: Uncertainties for the signal and background yield due to variations
in the PDF description. ¿e width of the distribution is taken as
systematic uncertainty.

in chapter 12. Since the Dalitz plot is well described, as shown in �g. 12.10, we
consider this source of uncertainty to be negligible.

13.5.3 Signal and background models

¿e shape of signal and background models is determined using Monte-Carlo
simulation. Discrepancies between data and simulation can therefore lead to
a bias in the yield determination. In the �t to data the K0

S width is le free
to take into account di�erent resolutions. To estimate how the yield depends
on the exact shape of the model we vary all shape parameters according to
their uncertainties and recalculate the yields using statistically independent
Monte-Carlo samples. We use the covariance matrix of the �t and a multi-
dimensional Gaussian to generate sets of shape parameters and recalculate
signal and background yields using these sets of parameters. ¿e width of the
signal yield distribution is taken as systematic error. ¿e distribution with a
Gaussian �t is shown in �g. 13.4. We assume that the systematic uncertainty
due to discrepancies between PDF model and data is less then then 0.2%.

13.5.4 Selection variables

Deviations between data and simulation can lead to di�erent resolutions in spe-
ci�c variables. ¿erefore, selection requirements can have di�erent e�ciencies
in data and simulation. ¿is in turn leads to di�erences in the signal yields for
data and simulation which in�uences the branching fraction. We therefore vary
the selection variables and determine the simulated yields for each variation.
We choose a value below and above of the nominal value. ¿e range that we
use here is a conservative assumption on what the di�erence between data and
simulation could be. Since we are using mostly standard selection criteria most
uncertainties on the selection variables are already included in the systematic
uncertainties of track reconstruction and particle identi�cation for K0

S and K±.
¿e χ2 of the D0 kinematic �t is the only variable that remains. We recalculate
the simulated yield for values ±2 of the nominal value and use the maximum
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Figure 13.5: E�ciency di�erence ofK0→K0
S (le ) andK0→K0

S (right) between
data and simulation [96].

relative deviation as systematic uncertainty of our selection. ¿e change in the
yield is less then 0.8%.

13.5.5 K0
S reconstruction e�ciency

¿e systematic uncertainty of the K0
S reconstruction e�ciency was studied

in detail using J/ψ → K∗±K± and J/ψ → ϕK0
SK∓π± control samples and is

provided by the collaboration [96]. ¿e agreement between data and simula-
tion is (1.01 ± 0.53)%, when we average over K0 and K0. ¿e discrepancy in
e�ciency between data and simulation has amomentum dependence, as shown
in �g. 13.5.We can take this into account by calculating themomentumweighted
average and we obtain (1.05 ± 0.05)% (see table 13.3). We take a conservative
value of 1.5% as systematic uncertainty.

13.5.6 Track reconstruction and particle identi�cation

Charged tracks are selected using criteria which are consensus in the collab-
oration. Many studies had been performed and show that the di�erence of
tracking e�ciencies for data and simulation is less than 1 %. We use this as the
systematic uncertainty of the track reconstruction e�ciency for each charged
kaon track.
Furthermore the simulation of the particle identi�cation corresponds to data

generally on a level of 1 %.¿e comparison with themomentumweighted di�er-
ence between data and simulation in table 13.3 shows that this is a conservative
assumption. We add 1 % systematic uncertainty for each charged kaon track
due to particle identi�cation (the K0

S daughter tracks have no requirements on
the particle ID).
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Table 13.3: Momentum weighted e�ciency di�erence between data and simu-
lation. ¿e dependence of the e�ciency di�erence on the particle
momentum is listed in table B.3a. We use a conservative assumption
as systematic uncertainty since studies were performed using a pre-
vious so ware version than is used for this analysis (6.6.4.p02). All
studies are provided by the collaboration.

( єdataєmc − 1) [%]
So ware Weighted Arithmetic We use
version average average

K0
S reconstruction [96] 6.6.4.p02 0.97 ± 0.03 1.13 1.5

K+K− reconstruction [97] 6.6.2 0.207 ± 0.002 0.86 2
K+K− PID [97] 6.6.2 −0.2073 ± 0.0003 −0.54 2
K+K− PID 6.6.4.p02 0.616 0.62 2

13.5.7 Overview of systematic uncertainties

An overview over all contributions to the systematic uncertainty of the meas-
urement is given in table 13.4. ¿e systematic uncertainty, and also the total
uncertainty, of the measurement is dominated by the contributions due to
track reconstruction and particle identi�cation. Furthermore the cross section
measurement is a signi�cant contribution.

13.6 result

¿e signal yield on data is determined by a two-dimensional �tting procedure.
¿e projections tomBC andmKS of the data sample and the �t model are shown
in �g. 13.6 and we obtain a signal yield of:

N sig = 11 660 ± 118. (13.7)

Details on the �t result as well as the correlation matrix can be found in ap-
pendix B.7 and table B.8.
Our �nal result for the branching fraction of D0 → K0

SK+K− is according to
eq. (13.1):

B(D0 → K0
SK

+K−) = (4.45 ± 0.05 (stat.) ± 0.18 (sys.))×10−3. (13.8)

¿e relative statistical and systematical uncertainties are 1.1 % and 4.08%, re-
spectively, which give a total uncertainty of 4.21%. Our result is in good agree-
ment with the current best measurement of (4.47 ± 0.34) × 10−3 [7]. ¿e devi-
ation is 0.1 σ . We are able to improve the precision of the branching fraction
D0 → K0

SK+K− signi�cantly.
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Table 13.4: Overview of systematic uncertainties.

Systematic uncertainties [%]

Signal/background model 0.20
Selection 0.80

Quantum entanglement 1.45

E�ciency

Statistics 0.22
K± particle identi�cation 2.00

K± tracking 2.00
K0

S reconstruction 1.50

External

Luminosity measurement 0.47
cross section e+e− → D0D0 1.83

B (K0
S → π+ π−) 0.07

Total 4.08
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Figure 13.6: Projections of the data sample and the �t model.
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SUMMARY AND OUTLOOK

¿e Besiii experiment analyzes e+e− collisions in an energy range between
2.0GeV and 4.6GeV. At a center-of-mass energy of

√
s =3.773GeV the produc-

tion threshold for D0D0 and D+D− is located. At this energy Besiii has reached
a luminosity record of 1 × 1033 cm−2 s−1 and has collected a large sample of
2931.8 pb−1. ¿is corresponds to about 10.7 × 106 D0D0 decays and 8.5 × 106
D+D− decays. ¿e at-threshold decay topology provides a good laboratory to
study D decays in a clean environment. As both, an advantage and a complica-
tion, the D0D0meson pair is produced in a quantum entangled state that allows
to conclude properties of one D0 meson from the decay of the other meson.
Depending on the decay channel of the second meson, this can be the particle
�avour or the CP quantum number.
¿e topic of this thesis is the analysis of the decay D0 → K0

SK+K−. In a �rst
step the Dalitz plot is analyzed using an isobar amplitude model. We select the
optimal set of resonances using a ‘penalty term’ method. We �nd that the Dal-
itz plot is well described using an amplitude with four resonant contributions,
namely the a0(980)0, the a0(980)+, the ϕ(1020) and the a2(1320)−.¿e largest
contribution to the total intensity comes from the a0(980)0 which described
together with its charged partner the KK threshold. Both resonances show a
strong interference which leads to a sum of �t fractions of the Dalitz amplitude
model of (154 ± 13)%.¿e f0(980) in�uences this interference but our strategy
for resonance selection does not favour a model that includes the f0(980). ¿e
a0(980) couples strongly to the channel KK as well as to the channel πη. We
measure its coupling to KK to be gKK = (2.88 ±0.25 (stat.) ±0.56 (sys.))GeV.
Within the uncertainty we are in agreement with previous measurements. ¿e
contribution from a2(1320)− yields only (0.09 ± 0.03)% yet its signi�cance is
3.88 σ . For the Dalitz plot analysis both D0 mesons in each event are recon-
structed. ¿erefore the sample size of limited and statistical and systematic
uncertainties are of the same order. ¿e result is in�uenced by the quantum
entanglement of both D0 meson with respect the measurements of isolated D0

decays. We include this e�ect in our amplitude model. ¿e measurement of the
�t fractions is unfortunately not in agreement with the result from previous
analysis performed at the BABAR experiment [18]. ¿e reason for the deviation
could not be established.
We use the Dalitz amplitude model to accurately describe the signal decay

in Monte-Carlo simulation. ¿is is necessary to determine the total reconstruc-
tion and selection e�ciency of the decay. We measure a branching fraction of
(4.45 ±0.05 (stat.) ±0.18 (sys.))×10−3.¿emeasurement is in good agreement
with previous measurements and we are able to reduce the uncertainty signi�c-
antly. ¿e measurement is systematically limited. An improved measurement
of the cross section of e+e− → D0D0 from Besiii will be available soon and
will reduce the systematic uncertainty. ¿e correction factor of the quantum
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entanglement of the D0D0 is extracted from the Dalitz amplitude model and
its statistical limitations are propagated to the systematic uncertainty of the
branching fraction measurement.
¿e result from the Dalitz plot analysis and the branching fraction measure-

ment are currently under review by the collaboration.
In a side project the reconstruction of displaced vertices was studied using

J/ψ → ΛΛ decays. No signi�cant deviations between data and Monte-Carlo
simulation is found. ¿e results are provided to the Besiii collaboration [98].
As part of this study the branching fraction J/ψ → ΛΛ is measured to be
(2.07 ± 0.03 (stat.) ± 0.08 (sys.))×10−3. ¿e result is in good agreement with
previous measurements [99, 100] and we are able to reduce the uncertainty
signi�cantly.
¿e decay D0 → K0

SK+K− is of interest for the measurement of the CKM
angle γ/ϕ3.¿e angle γ/ϕ3 can bemeasured in the decay B− → D0K− using the
so-called GGSZ method [19]. ¿e D0 needs to decay to a self-conjugate �nal
state among which, the channels K0

S π+π− and K0
SK+K− are of special interest.

¿e strong phase di�erence between D0 and the D0 decay and its variation
over the phase-space is an external input. We can extract it from out Dalitz
amplitudemodel as shown in �g. 13.7.¿e phase di�erence depends strongly on
the model and therefore the model uncertainty would be the limiting factor for
the measurement of γ/ϕ3. ¿e solution is a model independent measurement
of the phase as it is currently performed for the channel K0

S π+π− at Besiii.
For the channel K0

SK+K− a previous measurement of CLEO-c [17] exists but
with its larger statistics, Besiii could reduce the uncertainty. Unfortunately this
measurement is beyond this thesis.
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Figure 13.7: Absolute strong phase di�erence of D0 and D0 amplitude.
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A
THEORY

a.1 properties of the wigner d-matrix

In the following we list some properties of the WignerD function. Derivations
for the relations can be found in [27]. ¿e Wigner-D matrix is connected to
the (small) Wigner-D matrix via:

DJ
m′m(αβγ) = e

−im′γd Jm′m(β)e
−imα . (A.1)

¿e (small) Wigner-D matrix element is given by:

d Jm′m(β) =∑
n

(−1)n
√

(J +m)!(J −m)!(J +m′)!(J −m′)!
(J −m′ − n)!(J +m − n)!(n +m′ −m)!n!
× (cos β/2)2J+m−m′

−2n × (− sin β/2)m′
−m+2n . (A.2)

¿e sum goes over all n for which the factorials are positive. ¿e Wigner-D
matrix obeys the following relations:

1. d Jm′m(−β) = (−1)m′
−md Jm′m(β) = d

J
mm′(β)

2. DJ
mm′(0, β, 0) = DJ

m′m(0,−β, 0)

3. DJ
mm′(α, β, γ) = DJ

mm′(γ,−β, α)

4. d Jm′m(π) = (−1)J−mδm′ ,−m

5. DJ
mm′(0, 0, 0) = δmm′

¿eWigner-D matrix elements are orthogonal

∫
2π

0
dα∫

2π

0
dγ∫

π

0
dβ sin β DJ∗

mn(αβγ)DJ′
m′n′(αβγ)

= 8π2

2J + 1δmm
′δnn′δJ J′ , (A.3)

and they are related to spherical harmonics via:

DJ
m0(αβ, 0) =

√
4π
2J + 1Y

m∗
J (β, α)

=
¿
ÁÁÀ(J −m)!

(J +m)!P
m
J (cos β)e−imα . (A.4)

123



124 theory

a.2 the optical theorem

¿e optical theorem links the imaginary part of the forward scattering amp-
litude with the total cross section. We follow [21, Chapter 4.5]. Assuming a
scattering process of two-particles in the initial state ∣i⟩ and in the �nal state
∣i⟩, we choose the z-axis as collision axis of the initial state (θ i = ϕi = 0) and
evaluate the �nal state in forward direction (θ f = ϕ f = 0). We remind about
the unitarity relation for the transition operator:

T − T† = iT†T . (4.17)
⟨ f ∣TP ∣i⟩ − ⟨ f ∣T†

P
∣i⟩ = i ⟨ f ∣T†T ∣i⟩

= i∑
n

⟨ f ∣T† ∣n⟩ ⟨n∣T ∣i⟩ . (A.5)

We have inserted a complete set of states in the right hand side of the matrix
notation and we have separated the conserved four-momenta from the trans-
ition amplitude T . In the next step we replace them by two-particle plane wave
states:

⟨00, λ∣TP ∣00, λ⟩− ⟨00, λ∣T†
P
∣00, λ⟩ =

i ∑
λ′
∫ dθ′dϕ′ ⟨00, λ∣T† ∣θ′ϕ′, λ′⟩ ⟨θ′ϕ′, λ′∣T ∣00, λ⟩

⟨00, λ∣TP ∣00, λ⟩− ⟨00, λ∣TP ∣00, λ⟩∗ =

i ∑
λ′
∫ dθ′dϕ′ ∣⟨θ′ϕ′, λ′∣T ∣00, λ⟩∣2

2i Im ⟨00, λ∣TP ∣00, λ⟩ =i ( q
2π

)
2
∑
λ′
∫ dθ′dϕ′

dσλ′
dθ′dϕ′

. (A.6)

We have used that the cross section is linked to the amplitude intensity via [21,
Equation 4.61]:

dσ
dθdϕ

= (2π
q

)
2

∣⟨θϕ, λ f ∣TP ∣00, λi⟩∣
2 . (A.7)

¿e optical theorem can then be written as:

ImT(s, t = 0) =q
√
s

8π2
σtot . (4.18)

a.3 the mixing parameter y

¿e D0 mixing parameter y is de�ned as:

y = Γ2 − Γ1
2Γ

. (A.8)
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¿e width of the CP eigenstates

∣D1,2⟩ =
1√
2
(∣D0⟩ ± ∣D0⟩) (2.1)

are denoted by Γ1,2 and the total D0 width by Γ. We use eq. (2.1) and get:

2y =∑
j
∣⟨ j∣D2⟩∣2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Γ2/Γ

−∑
j
∣⟨ j∣D1⟩∣2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Γ1/Γ

2y =∑
j
(∣⟨ j∣D0⟩ − ⟨ j∣D0⟩∣2 − ∣⟨ j∣D0⟩ + ⟨ j∣D0⟩∣2)

2y =∑
j
(∣A j −A j∣

2 − ∣A j +A j∣
2)

2y = 2∑
j
(−A∗jA j −A jA j

∗)

y =∑
j
(A j

∗
√
r je iδ jA j +A j

√
r je−iδ jA j

∗) . (A.9)

Finally we �nd the relation:

y =∑
j
∣A j∣

2√r j2 cos δ j . (A.10)





B
ANALYSIS OF D0 → K0

SK+K−

b.1 signal and background models

¿emodels for signal and background distributions of mBC and mKS are given
in table B.1. ¿e two-dimensional model is built from the one-dimensional
model by multiplication:

F(mBC ,mKS) = f (mBC) × g(mKS). (B.1)

¿e Crystal-Ball function[101] is a Gaussian function with a power-law tail on
one side. We add a second tail to the original description and denote it by CB2:

CB2(x) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

( nL
∣αL ∣

)
nL
exp (− ∣αL ∣

2

2 ) ( nL
∣αL ∣

− ∣αL∣ − x)
−nL

, if x < αL

exp (− x2
2 ) , if αL < x < αR

( nR
∣αR ∣

)
nR
exp (− ∣αR ∣

2

2 ) ( nR
∣αR ∣

− ∣αR ∣ + x)
−nR

, if x > αR

.

(B.2)

¿e mass dependence is expressed as the deviation from the mean value in
units of the width: x = (m − µ)/σ . CB2(x) is a di�erentiable function with a
Gaussian central part and power-law tails starting from αR/L (in units of σ) on
both sides. nR/L is the exponent of the power-law tails.

b.2 tagged signal fraction for the dalitz plot analysis

¿e signal and background yields are determined by a two-dimensional �t in
mKS and mBC . ¿e signal and background models are described in section 11.6
and appendix B.1.¿e �t to the tagged sample is shown in �g. B.1. For the Dalitz
plot analysis we apply a signal region of 8 σ . ¿e signal fraction in the signal
region is now calculated by integration of signal and background models in
the corresponding region. ¿e statistical uncertainty is propagated through the
integral. Yields and signal fraction for data and simulation are compared in
table 12.3.

127



128 analysis of the decay d0 →k0
sk+k−

Table B.1: PDF description for signal and background. ¿e modi�ed Crystal-
ball function CB2 is de�ned in eq. (B.2), P(1) denotes a polynomial
of �rst order with slope parameter sX and G(µ, σ) is a Gaussian
function. All functions are probability density functions and are
therefore implicitly normalized. We omit the mass dependence of
the functions.

f(mBC)

signal CB2(αL , nL , µ, σ , αR , nR)
comb f BCcomb argus(Ebeam, pargus) + (1 − f BCcomb)G(µcomb , σcomb)
non-K0

S f BCnonK0
S
CB2(αL , nL , µ, σ , αR , nR) + (1 − f BCnonK0

S
)argus(Ebeam, pargus)

g(mKS)

signal CB2(αL , nL , µ, σ , αR , nR)
comb f kscomb P

(1)(scomb) + (1 − f KScomb)CB2(αL , . . . )
non-K0

S f ksnonK0
S
P(1)(snonK0

S
) + (1 − f KSnonK0

S
)CB2(αL , . . . )

b.3 statistical uncertainty of fit fractions

¿e �t fractions for each intermediate resonance are calculated according to
eq. (12.3). ¿e normalization depends on all �t parameters and we have to
propagate the covariance matrix through the integral. We choose a Monte-
Carlo approach. ¿e central values of the �t parameters are denoted by β
and the covariance matrix by Σβ. Sets of �t parameters are generated using a
multi-variate Gaussian

G(x, β, Σβ)∝ exp(− 1
2
(x − β)T Σ−1β (x − β)) , (B.3)

and we calculate the �t fractions for each set of parameters. ¿e statistical
uncertainty for each �t fractions is than given by the root-mean-square of the
distribution. ¿e distribution for the a0(980)0 �t fraction is shown in �g. B.2.

b.4 efficiency differences between data and simulation

Di�erences between data and simulation in track reconstruction and particle-
identi�cation can in�uence the result of the Dalitz plot analysis. Especially
the regions with low K± tracks are prone to inaccuracies. We use the results
provided by the collaboration [96, 97]. ¿e momentum dependence of the e�-
ciency di�erence for the reconstruction of charged kaons is listed in table B.3a
and for particle identi�cation in table B.3b. Both were determined using BOSS
6.6.2 [97]. Since we use a di�erent version we have to study carefully how the
result is in�uence. ¿e reconstruction of the K0

S is studied in [96] and the
results is shown in table B.3c and �g. 13.5. ¿e study was performed with the
same BOSS version but the requirement on the �ight distance signi�cance was
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Figure B.1: Projections of data sample and �t model. From the �tted yields we
calculate a signal purity of 96.37%.
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Figure B.2: Statistical variation of the a0(980)0 �t fraction.¿e statistical uncer-
tainty of the �t fractions is estimated via Monte-Carlo simulation.
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Table B.2: Relative e�ciency di�erence between data and simulation in mo-
mentum bins. Note that the e�ciency studies for charged kaons were
performed using BOSS 6.6.2.

P[GeV/c] K±

0.0 - 0.1 0.36
0.1 - 0.2 −0.007
0.2 - 0.3 0.0056
0.3 - 0.4 0.01
0.4 - 0.5 0.0177
0.5 - 0.6 0.0121
0.6 - 0.7 0.0089
0.7 - 0.8 0.005
0.8 - 0.9 0.0053
0.9 - 1 0.0009
1 - 1.1 −0.0079

(a) Charged kaon track-
ing e�ciency[97]

P[GeV/c] K±

- -
0.1 - 0.2 −0.0263
0.2 - 0.3 −0.0038
0.3 - 0.4 −0.0021
0.4 - 0.5 −0.0017
0.5 - 0.6 −0.002
0.6 - 0.7 0.0008
0.7 - 0.8 0.0046
0.8 - 0.9 0.0082
0.9 - 1 0.0028
1 - 1.1 0.0071

(b) Charged kaon PID e�-
ciency[97]

P[GeV/c] K0
S K0

S

0 - 0.18 0.0645 0.0715
0.18 - 0.24 0.0498 0.0372
0.24 - 0.32 0.0131 0.0195
0.32 - 0.39 −0.0143 0.047
0.39 - 0.44 −0.0224 −0.0111
0.44 - 0.5 0.0303 0.0216
0.5 - 0.55 0.0182 −0.0155
0.55 - 0.6 0.0203 −0.0172
0.6 - 0.67 0.0445 −0.0055
0.67 - 0.74 −0.0119 0.0205
0.74 - 0.81 0.0214 0.0237
0.81 - 0.87 0.0213 −0.0002
0.87 - 0.92 −0.0037 0.0163
0.92 - 0.98 0.0127 −0.0068
0.98 - 1.04 0.0262 0.0175
1.04 - 1.1 0.0041 0.001
1.1 - 1.17 0.0518 −0.0045
1.17 - 1.26 −0.0164 0.0123
1.26 - 1.4 −0.0015 0.0109

(c) K0
S reconstruction e�ciency[96]. Visual-

ized in �g. 13.5.

chosen to be larger 2. In our analysis we select events with a �ight distance
signi�cance larger 0.
¿e likelihood normalization is calculated using a phase-space sample that

includes detector simulation, reconstruction and selection. ¿e simulated e�-
ciency is therefore intrinsically applied.We correct this sample for the e�ciency
di�erence between data and simulation by assigning per-event weights depend-
ing on the particle momenta of K± and K0

S :

w(pK− , pK+ , pK0) = (єdata(pK
−)

єmc(pK−)
)
K−
× (єdata(pK

+)
єmc(pK+)

)
K+
× (єdata(pK0)

єmc(pK0) )
K0
.

(B.4)

¿e in�uence of the e�ciency correction on the result of the Dalitz plot analysis
is found to be negligible. We do not assign a systematic uncertainty.
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b.5 systematic uncertainties of the dalitz plot analysis

Input/Output check

We validate the analysis procedure by �tting the Dalitz amplitude model to
a set of statistically independent Monte-Carlo samples. For each sample we
calculate from the �t result:

Pβ =
βtrue − β

σβ
. (12.22)

Further details are given in section 12.8.5. ¿e distribution of Pβ for each free
parameter in the �t is shown in �g. B.3

Overview

A detailed overview of the systematic uncertainties of the Dalitz amplitude
model can be found in table B.3.

b.6 dalitz plot fit result

¿e interference term between two resonances of the Dalitz amplitude model
are calculated, similar to eq. (12.3), by:

fi j =
∣ci ∣2 ∫ dβ A jA∗i
∫ dξ ∣M(ξ)∣

2

. (B.5)

We list the interference terms in table B.4 without uncertainty since the co-
variance matrix of the Dalitz amplitude model was not propagated through
the integral. We consider only interference terms of the Cabibbo-favoured
amplitude component.
¿e projections of the Dalitz amplitudemodel and the data sample are shown

in logarithmic scale in �g. B.4.
As a cross-check we �t an Dalitz amplitude model to the data sample which

does not consider the quantum entanglement of D0D0. ¿e �t result is listed in
table B.6. ¿e di�erence to the model that includes the quantum entanglement
in table 12.12 is notable.

b.7 untagged signal yield for branching fraction meas-
urement

¿e �t result for the shape parameters is shown in table B.7.
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Figure B.3: Input/Output check for the Dalitz amplitude model. We �t 150
independent samples which have passed detector simulation, recon-
struction and selection. ¿e di�erence between the nominal �t and
each �t result are given in units of the statistical uncertainty. An
unbiased �t with correct error estimate yields a Gaussian distribu-
tion with mean 0 and width 1. For the �nal result we correct the
parameters for the biases.
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Table B.3: Detailed overview of systematic uncertainties for the Dalitz amp-
litude model. For further explanations see section 12.8.

Parameter gKK a0(980)0 a0(980)+ ϕ(1020) a2(1320)−

[GeV] FF[%] |c| ϕ[rad] FF[%] |c| ϕ[rad] FF[%] |c| ϕ[rad] FF[%]

Nominal values 2.870 0.730 0.660 −2.930 0.320 0.810 1.760 0.480 0.100 0.240 0.008

St
at
.

σ+ 0.230 0.060 0.040 0.090 0.050 0.030 0.060 0.020 0.030 0.230 0.000
σ− 0.280 0.060 0.070 0.210 0.050 0.040 0.060 0.020 0.030 0.250 0.000

Scale factor 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Mean σ 0.250 0.060 0.060 0.150 0.050 0.040 0.060 0.020 0.030 0.240 0.000

Ba
ck
gr
ou
nd

data sideband 2.900 0.720 0.680 −2.870 0.330 0.810 1.760 0.470 0.100 0.270 0.010
MC sideband 2.960 0.700 0.700 −2.850 0.340 0.820 1.750 0.470 0.110 0.310 0.010

�t fraction (high) 2.850 0.740 0.640 −2.970 0.310 0.810 1.780 0.480 0.100 0.250 0.010
�t fraction (low) 2.920 0.710 0.690 −2.860 0.330 0.810 1.750 0.470 0.100 0.280 0.010
Uncertainty[σ] 0.450 0.590 0.900 0.770 0.750 0.370 0.420 0.600 0.230 0.380 0.180

M
od
el

Meson radius 0GeV−1 2.895 0.726 0.668 −2.911 0.324 0.808 1.753 0.474 0.102 0.193 0.008
Meson radius 1 GeV−1 2.869 0.728 0.661 −2.927 0.318 0.808 1.764 0.475 0.104 0.237 0.008
Meson radius 2GeV−1 2.871 0.728 0.662 −2.926 0.319 0.808 1.764 0.475 0.104 0.234 0.008
Meson radius 3GeV−1 2.872 0.728 0.662 −2.925 0.319 0.808 1.762 0.475 0.104 0.227 0.008
Meson radius 4GeV−1 2.873 0.728 0.662 −2.924 0.319 0.808 1.761 0.475 0.104 0.218 0.008
Meson radius 5GeV−1 2.875 0.728 0.662 −2.923 0.319 0.808 1.760 0.475 0.104 0.209 0.008

QC δtag = 0 2.875 0.724 0.663 −2.920 0.318 0.812 1.791 0.477 0.106 0.232 0.008
QC δtag × 2 2.872 0.725 0.662 −2.924 0.317 0.811 1.785 0.477 0.106 0.229 0.008

QC rD(K−π+π0) 2.877 0.731 0.675 −2.869 0.332 0.792 1.781 0.458 0.101 0.326 0.007
QC rD × 2 2.849 0.740 0.618 −3.083 0.283 0.822 1.759 0.500 0.105 0.142 0.008
Γϕ(1020) free 2.806 0.761 0.615 −3.070 0.288 0.794 1.764 0.480 0.111 0.166 0.009

Uncertainty[σ] 0.290 0.630 1.120 1.440 1.040 0.690 0.640 1.950 0.300 0.660 0.430

Ex
te
rn
al

gηπ free 2.846 0.718 0.656 −2.922 0.309 0.813 1.772 0.475 0.106 0.237 0.008
Ma0(980) ↑ 3.301 0.748 0.710 −2.919 0.377 0.800 1.629 0.478 0.080 0.256 0.005
Ma0(980) ↓ 2.645 0.766 0.594 −3.102 0.270 0.788 1.857 0.476 0.116 0.173 0.010
Ma2(1320) ↑ 2.870 0.728 0.662 −2.926 0.319 0.808 1.763 0.475 0.104 0.244 0.008
Ma2(1320) ↓ 2.870 0.729 0.661 −2.927 0.318 0.808 1.765 0.475 0.103 0.229 0.008
Γa2(1320) ↑ 2.867 0.729 0.660 −2.929 0.318 0.808 1.765 0.475 0.104 0.229 0.008
Γa2(1320) ↓ 2.872 0.728 0.662 −2.924 0.319 0.808 1.763 0.475 0.103 0.242 0.008
Mϕ(1020) ↑ 2.875 0.729 0.662 −2.926 0.320 0.807 1.769 0.475 0.103 0.240 0.008
Mϕ(1020) ↓ 2.865 0.728 0.661 −2.927 0.318 0.808 1.759 0.475 0.105 0.232 0.008
Γϕ(1020) ↑ 2.868 0.729 0.660 −2.929 0.318 0.807 1.763 0.475 0.104 0.233 0.008
Γϕ(1020) ↓ 2.871 0.728 0.662 −2.924 0.319 0.808 1.765 0.475 0.103 0.238 0.008

Uncertainty[σ] 1.930 0.770 1.450 1.150 1.620 0.570 2.600 0.210 0.950 0.280 0.990

Fi
tti
ng

Bias [σ] 0.058 0.081 0.017 0.016 0.100 −0.015 −0.391 0.076 −0.426 −0.407 −0.319
Bias absolute 0.013 0.005 0.001 0.002 0.005 −0.001 −0.025 0.001 −0.011 −0.102 −0.001
Uncertainty[σ] 0.030 0.040 0.010 0.000 0.050 0.010 0.190 0.040 0.200 0.210 0.160

Corrected values 2.880 0.730 0.660 −2.920 0.320 0.810 1.740 0.480 0.090 0.130 0.007

Mean stat. uncertainty σ 0.250 0.060 0.060 0.150 0.050 0.040 0.060 0.020 0.030 0.240 0.000
Sys. uncertainty [σ] 2.000 1.300 2.190 2.210 2.170 1.030 2.720 2.070 1.070 0.890 1.170
Sys. uncertainty 0.510 0.070 0.130 0.340 0.100 0.040 0.170 0.030 0.030 0.210 0.005
Total uncertainty 0.560 0.090 0.140 0.370 0.110 0.050 0.180 0.040 0.040 0.320 0.006
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Figure B.4: Dalitz plot projections of data sample and amplitude model in
logarithmic scale. ¿e Cabibbo-favoured component (orange), the
background component (red) and the full amplitude (blue) are
shown.
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Table B.4: Interference terms of the Dalitz amplitude model. ¿e largest inter-
ference occurs between the neutral and charged a0(980).

Interference [%] a0(980)0 a0(980)+ ϕ(1020) a2(1320)−

a0(980)0 98.66 −71.09 0.15 1.80
a0(980)+ 43.72 −2.17 −0.92
ϕ(1020) 65.01 −0.57
a2(1320)− 1.05

Table B.5: Correlation matrix of the Dalitz amplitude model. ¿e global correl-
ation coe�cient denotes the maximum correlation with any possible
linear combination of all other parameters.

Correlation [%] Global gKK
a0(980)+ ϕ(1020) a2(1320)−

Coe�cient |c| ϕ |c| ϕ |c| ϕ

gKK 87.11 100 57.03 21.30 −19.16 −16.87 −50.33 11.59

a0(980)+
|c| 96.50 100 87.84 48.18 −11.40 −36.66 62.24
ϕ 94.98 100 67.43 −5.08 −20.36 66.81

ϕ(1020) |c| 78.09 100 0.52 16.49 45.11
ϕ 40.70 100 −19.69 9.86

a2(1320)−
|c| 62.57 100 −18.59
ϕ 70.36 100

Table B.6: Result from the Dalitz amplitude model using the nominal set of
resonances but without considering the quantum entanglement
of D0D0. Uncertainties are statistical only. ¿e coupling constant
a0(980)→ KK is determined to be gKK = (2.82 ± 0.22)GeV.

Final state Magnitude Phase [rad] Fit fraction [%]

a0(980)0K0
S 1 0 75 ± 4

a0(980)+K− 0.67 ± 0.03 −2.81 ± 0.06 34 ± 4
ϕ(1020)K0

S 0.75 ± 0.03 1.82 ± 0.07 42 ± 1
a2(1320)−K+ 0.10 ± 0.03 0.45 ± 0.22 0.7 ± 0.4

Total 152 ± 6
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Table B.7: Shape parameters for the untagged sample. ¿e minimization suc-
ceeds and the covariance matrix is correctly estimated.

mKS mBC

Parameter Final value Parameter Final value

CB2 αL 1.54 ± 0.02 CB2 αL 2.01 ± 0.02
CB2 αR 1.76 ± 0.02 CB2 αR 1.316 ± 0.007
CB2 m0 (497.89 ± 0.01)MeV/c2 CB2 m0 (1865.000 ± 0.003)MeV/c2

CB2 nL 3.05 ± 0.09 CB2 nL 2.16 ± 0.05
CB2 nR 2.22 ± 0.05 CB2 nR 2.44 ± 0.03
CB2 σ (2.138 ± 0.009)MeV CB2 σ (1.161 ± 0.003)MeV
f KScomb 0.304 ± 0.003 Ebeam 1.8865GeV
scomb −1.36 ± 0.06 f BCcomb 0.80 ± 0.02
f KSnonK0

S
0.91 ± 0.02 pargus −2.0 ± 0.5

snonK0
S

−1.4 ± 0.1 µcomb (1864.5 ± 0.4)MeV/c2

σcomb (10.0 ± 0.5)MeV
f BCnonK0

S
0.75 ± 0.02

Table B.8: Correlation matrix for the determination of the signal yield on data.
¿e data sample and the �t model are shown in �g. 13.6. ¿e num-
ber of signal events Nsignal has only a small correlation to other
parameters.

Correlation [%] K0
S mass K0

S width Ncomb NnonK0
S

Nsignal

K0
S mass 1 2.332 0.2967 −0.5069 0.1686

K0
S width 1 29.24 −52.4 18.22
Ncomb 1 −63.23 5.741
NnonK0

S
1 −30.61

Nsignal 1



C
SYSTEMATIC STUDIES OF DISPLACED VERTEX
RECONSTRUCTION

c.1 introduction

¿e reconstruction e�ciency in most analyses is determined using Monte-
Carlo simulation. ¿erefore, an accurate simulation of particle interaction and
reconstruction is crucial and the uncertainty of the simulation is one of the
largest systematic uncertainties in most analyses.
At Besiii Λ’s as well as K0

S ’s have a signi�cant �ight distance from the inter-
action point but still decay within the �ducial volume of the detector. Tracks
originating from such secondary decay vertices can pose problems to the re-
construction procedure. We investigate this by measuring the reconstruction
e�ciency of Λ→ π− p and compare the results between data and simulation.
We reconstruct Λ from J/ψ decays since the decay J/ψ → ΛΛ o�ers constraint
kinematics and essentially background free conditions.

Figure C.1: J/ψ → ΛΛ decay topo-
logy.

At the time when this study was performed a signi�cant di�erence of the K0
S

reconstruction e�ciency were observed and the measurement of the Λ recon-
struction e�ciency was intended as a cross-check. Nowadays these problems
are solved and the K0

S reconstruction e�ciency is simulated with an accuracy
of about 1.5% [96].

Decay topology

¿e decay J/ψ → ΛΛ provides good conditions to measure the Λ reconstruction
e�ciency. ¿e recoiling Λ decays are illustrated in �g. C.1 and a reconstructed
event in the detector is shown in �g. C.2. Both Λ’s are reconstructed in the
channelΛ → π−p and the �nal state is therefore (π−p)(π+p).¿e four charged
tracks can be selected nearly background free.We also consider the decay J/ψ →
ΛΛγ with a photon from initial or �nal state radiation as signal. ¿e available
phase-space of the decay J/ψ → ΛΛ allows to measure the Λ reconstruction
e�ciency in the momentum range from 1.02GeV to 1.14GeV.

137
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Run -8093 
Event 8 
date: 1970-01-01 time: 03:17:43
MC=Yes Time Type: 14081783

XY View ZR View

Figure C.2: J/ψ → ΛΛ reaction in the detector with the line of sight along (le )
and perpendicular (right) of the beam axis. Black lines are recon-
structed charged tracks and red clusters are signals in the dri 
chamber, the time-of-�ight system and the calorimeter.

Analysis strategy

Each signal event contains a pair of Λ decays. One Λ is used as tag candid-
ate (Λtag) and we can calculate the missing four-momentum using the four-
momenta of the tag and of the e+e− system:

pΛrecoi l
miss = pe

+e− − ptag . (C.1)

Ondata the four-momentumof the e+e− system is calculated from the center-of-
mass energy measurement and the crossing angle of the e+e− beams (11mrad).
In case that the missing mass is in the range of the Λ mass we assume that
the event contains a J/ψ → ΛΛ decay. ¿e number of events satisfying this
condition gives us the number of predicted Λ decays. Now we check if a second
recoiling Λ can be reconstructed in the event. With the number of events with
a pair of reconstructed Λ decays we can calculate the e�ciency:

єΛrec =
# Λ found

# Λ predicted
. (C.2)

¿e e�ciency includes the detector acceptance for the Λ decay products. For
comparing data and simulation we calculate the relative di�erence ( єdataєmc − 1).
¿e detector acceptance cancels in this ratio.
¿e total Λ e�ciency can be separated into e�ciencies for the track recon-

struction and for the vertex �t:

єΛrec = єvtxf it × єπrec × є
proton
rec . (C.3)

¿e total Λ reconstruction e�ciency and its dependence on vertex �t and
�ight distance are studied in appendix C.4. ¿e e�ciencies for pion and proton
reconstruction from a displaced vertex are given in appendix C.4.
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Figure C.3: Momentum of π/p tracks from Monte-Carlo simulation. Tracks
identi�ed as pions (blue) and tracks identi�ed as protons (green) as
well as mis-identi�ed tracks (red) are shown.¿e Λ decay products
are well separated by kinematics.

Data samples and so ware version

We use the J/ψ dataset which was taken during the 2009/10 data taking period.
¿e J/ψ sample from the 2012/13 data taking is not taken into account. According
to [102] the number of J/ψ decays in our data sample is (225.0 ± 2.8) × 106. As
Monte-Carlo sample we use a generic J/ψ sample with 225 × 106 events. Data
and Monte-Carlo samples were reconstructed using BOSS version 6.5.5 and
analyzed using version 6.6.0.

c.2 selection

Track selection

¿e momentum distribution for pions and protons from Λ decays is shown
in �g. C.3. Pions have low momenta around 0.2GeV and protons have larger
momenta. ¿e daughters of Λ decays are well separated by kinematics. We
use particle identi�cation to categorize charged tracks as pions or protons.
Information from the dE/dx measurement in the dri chamber and from the
energy measurement in the calorimeter is used to calculate probabilities for
each particle hypothesis. For pion candidates we require the probability for the
pion hypothesis to be large than for the proton hypothesis. Proton candidates
must ful�ll the inverted requirement. ¿e mis-identi�cation rate using this
requirement is 6.9% for pions and 4.5% for protons. Another possibility to sep-
arate pion from proton tracks would be a requirement on the track momentum.
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Table C.1: Selection requirements for the tag candidate.

Variable min max

Λ mass (3 σ) 1.111 53GeV 1.120 47GeV
∆E −0.02GeV 0.1 GeV
p 1.05GeV 1.2GeV
χ2vtx 0 30
χ2secVtx 0 30

�ight distance 0.3 cm 200 cm
missing mass 1 GeV 1.2GeV

cos(opening angle) 0.5 0.95

ΛΛ reconstruction and selection

We combine proton and pion candidates to form tag candidates of the Λ. ¿e
tag candidates must pass vertex (χ2vtx) and secondary vertex �t (χ2secVtx) with a
χ2 better than 30.¿e secondary vertex �t constrains the combinedmomentum
of proton and pion to point back to the interaction region. In case of multiple
candidates we select the candidate with the energy closest to the beam energy
Ebeam = 1.549GeV. Figure C.4 shows variables of the tag candidate a er a
loose preselection. ¿e signal is characterized by a peak in Λtag mass and the
missing mass distributions around the Λmass mΛ = 1.115GeV[7]. Due to the
back-to-back kinematics of the J/ψ → ΛΛ decay the signal distributions in ∆E
and the momentum are also very narrow. ¿e signal distribution has tails in
missing mass, ∆E and the momentum which come from J/ψ → ΛΛ+γ decays.
¿e selection requirements are listed in table C.1 and the regions excluded

by the selection are marked in �g. C.4. ¿e selection is optimized for a good
background suppression and we obtain a sample with a background impurity
of

B/(S + B) = (0.40 ± 0.03)%. (C.4)

¿e resulting Λtag mass distribution a er the selection is shown in �g. C.5(a).
¿e e�ciency for reconstruction and preselection of the tag decay is єrecpre =
0.741 ± 0.002 and the selection requirements reduce signal events by єsel =
0.910 ± 0.003. ¿is gives a total e�ciency for reconstruction of the tag decay of
єrecpre = 0.675 ± 0.002. ¿e e�ciency we want to determine is the reconstruction
e�ciency of the recoiling Λ.
In the next step we combine the remaining pion and proton candidates to

reconstruct the recoiling Λ decay. In case of multiple candidates we use again
the energy di�erence to the beam energy to select the best candidate. On the
recoil side, vertex and secondary vertex �t are required to succeed. No further
selection is applied. ¿e mass distribution for Λrecoil candidates is shown in
�g. C.5(b)
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Figure C.4: Variables of the Λ tag decay a er a loose preselection. ¿e data
sample is shown in black and the Monte-Carlo sample (blue) is sep-
arated into signal (green) and background (red). Regions excluded
by the selection (table C.1) are marked.
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Figure C.6: ¿e Armenteros-Podolanski diagram shows the asymmetry of the
parallel momenta (α) versus the transversal momentum of π/p.
Momenta are measured in the laboratory frame with respect to the
Λ �ight direction. ¿e topology is illustrated in �g. C.7.

¿e decay J/ψ → ΛΛ provides a clean sample of Λ decays. We will neglect
the remaining background in the analysis but �rst we want to give an overview
which background decays survive our selection. In �g. C.8 we show the missing
mass of the recoil decay (le ) and the mass of the reconstructed recoil decay
(right) versus an event ID. ¿e event ID is a unique identi�er for the event to-
pology. Channels that contribute to the background are labeled. Some channels
classi�ed as background have the �nal state ΛΛ + γ or have at least a ΛΛ pair
in the �nal state. ¿ese channels could also be classi�ed as signal, but might
have a di�erent reconstruction e�ciency.
In �g. C.6 we show the Armenteros-Podolanski (AP) diagram. It shows

the transversal momentum component of the Λ daughter particle versus the
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Figure C.8: Missing mass and reconstructed mass of the Λ recoil decay versus
event topology ID. Prominent channels are labeled, and the Λmass
is marked.

asymmetry of the parallel component (see also �g. C.7). ¿e momenta are
calculated in the laboratory frame with respect to the Λ �ight distance. ¿is
diagram is correlated to the opening angle and can discriminate between K0

S

and Λ decays. K0
S decays would appear as symmetric distribution around α = 0.

Λ decays have positive and Λ decays negative values of α.

 flig
h
t d

irection

Figure C.7: Illustration of the decay
Λ→ π− p. ¿e asymmetry of the
longitudinal momenta (α) is shown
in �g. C.6.

In general AP diagrams can be used to obtain clean samples of pions, protons
and photons which can be used to calibrate the particle identi�cation system.

c.3 branching fraction

Wemeasure the branching fraction J/ψ → ΛΛ as a cross-check. It is given by:

B(J/ψ → ΛΛ) = N signal

єrec × N J/ψ . (C.5)

¿e signal yield N signal is corrected for the background impurity given in
eq. (C.4). ¿e background impurity as well as the reconstruction e�ciency
єrec is obtained from simulation. N J/ψ is the total number of J/ψ decays in our
data sample[102]. ¿e parameters for the branching fraction are summarized
in table C.2 and we obtain a result of

B(J/ψ → ΛΛ) = (2.07 ± 0.03 (stat.) ± 0.08 (sys.))×10−3. (C.6)

¿e total uncertainty is 4.1 %.
¿e systematic uncertainty involves the e�ciency di�erence for a pair of

reconstructedΛ’s.We use the result from appendix C.4 and assign a uncertainty
of 4%. Since in the e�ciency determination no selection requirements were ap-
plied, we have to study this in�uence separately by varying the selection criteria
in a suitable range. We �nd a variation below 0.02% and neglect this source of
uncertainty. We assign a conservative uncertainty to the background correction
of 50% of the correction itself. Due to the small background contamination
this source of uncertainty is also negligible. Since this measurement is intended
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Table C.2: Parameters for branching fraction measurement.

Si
m
ul
at
io
n

Number of J/ψ decays 225 × 106

Generated decays 362 250
Yield (S+B) 44 310

Signal yield (S) 44 118
Background yield (B) 192

Purity S/(S+B) (99.60 ± 0.03)%
E�ciency (12.18 ± 0.06)%

D
at
a Number of J/ψ decays (225.0 ± 2.8) × 106

Signal yield (w/ background) 56 813 ± 238
Signal yield (w/o background) 56 565 ± 237 (stat.) ± 124 (sys.)

to be a cross-check we do not further investigate the systematic uncertainties
(e. g. the in�uence of the decay J/ψ → ΛΛ + γ).
¿e current average values of the particle data group is (1.61 ± 0.15) × 10−3[7].

¿is value is used for Monte-Carlo simulation. It is an average value which
includes results from old experiments. ¿e newest results from BABAR and
BESII are (1.93 ±0.21 (stat.) ±0.05 (sys.))×10−3[99] and (2.03 ±0.03 (stat.) ±
0.15 (sys.))×10−3[100]. ¿ere is a tension between our result and the PDG
average but it is in good agreement with the measurements from BABAR and
BESII.

c.4 reconstruction efficiency

¿e reconstruction e�ciency can be calculated using the number reconstructed
tag decays (predicted Λ decays) and the number of reconstructed ΛΛ pairs
(see appendix C.1). We �nd that the Λ reconstruction e�ciencies for data
and simulation are consistent on a level of about 2%. An overview is given in
table C.3.
In order to do a more detailed comparison we calculate єΛrec in bins of kin-

ematic variables of the recoil decay.¿e predicted variables are shown in �g. C.9.
¿e results for the di�erential Λ reconstruction e�ciency in bins of p, pT ,
cos(Θ) and ϕ are shown in �g. C.10. ¿e distribution of the e�ciency for data
and simulation is shown above their relative deviation ( єdataєmc − 1) per bin. ¿e
red line marks the total deviation between data and simulation.
¿e cos(Θ) e�ciency distributions drops close to±1.¿is is the regionwhere

the decay products are likely to go into the beam pipe. ¿e distribution in ϕ is
not �at. ¿is originates from the reference frame in which the momenta are
measured. Since we do not boost the momenta to the J/ψ rest frame, the boost
of the e+e− system in x-direction causes a non-�at e�ciency distribution in ϕ.
¿e agreement between data and simulation is fairly good.
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Figure C.9: Kinematic variables for the Λ recoil decay predicted from four-
momentum conservation.¿e branching fraction in the simulation
is di�erent from data, therefore di�erent yields are observed.

Furthermore we measure the Λ reconstruction e�ciency without vertex
and/or secondary vertex �t. ¿e deviation between simulation and data is
similar. Vertex and secondary vertex �t have a e�ciency in data of 92.2% and
98.8%, respectively.

Pion and proton reconstruction e�ciency

¿eΛ reconstruction e�ciency can be factorized into e�ciencies of the vertex �t
and the tracking e�ciencies, see eq. (C.3). We want to study the reconstruction
e�ciencies of pions (єπrec) and protons (є

proton
rec ) from Λ decays. We require

a Λtag and a good pion or proton track for the proton and pion e�ciency,
respectively. We remove events with more than one good track. ¿en we can
calculate the missing four-momentum:

pp/πmiss = pe
+e− − ptag − pπ/p . (C.7)

We reconstruct the Λrecoil candidate without vertex and secondary vertex �t
and then the e�ciency is calculated according to eq. (C.2).
¿e reconstruction e�ciencies for pions and protons from a displaced vertex

are compared between data and simulation in table C.4. Both agree on a level of
(−1.7 ± 0.3) and (−0.7 ± 0.2) , respectively. ¿e di�erential e�ciency in bins
of momentum, transversal momentum, polar angle, azimuthal angle and �ight
distance of the Λ for pions as well as for protons are shown in �g. C.11. ¿e
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Figure C.10: Reconstruction e�ciency for Λ decays to π+ p in data (black)
and simulation (blue). ¿e relative deviation is shown below each
distribution. ¿e red line indicates the integrated di�erence.
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Table C.3: Λ reconstruction e�ciency. E�ciencies with a requirement on the
Λ �ight distances are calculated using an additional good pion track.
¿is is necessary to estimate the Λ decay vertex (see appendix C.4).

Data [%] Simulation [%] ( єdataєmc − 1) [%]

Nominal 47.9 ± 0.2 48.8 ± 0.2 −1.9 ± 0.6

no �t 52.6 ± 0.6 53.3 ± 0.7 −1.32 ± 0.16
no secondary vertex �t 48.5 ± 0.6 49.3 ± 0.7 −1.68 ± 0.18
�ight distance >8mm 14.9 ± 0.1 15.0 ± 0.1 −0.45 ± 1.33
�ight distance >50 σ 18.1 ± 0.1 17.8 ± 0.2 1.8 ± 1.2

Table C.4: Reconstruction e�ciencies of π/p.

Track Data [%] Simulation [%] ( єdataєmc − 1) [%]

π+ 73.3 ± 0.2 73.6 ± 0.2 −0.4
π− 74.4 ± 0.2 76.8 ± 0.2 −3.1

Combined 73.9 ± 0.2 75.2 ± 0.2 −1.7 ± 0.3

p 88.6 ± 0.2 89.7 ± 0.2 −1.2
p 86.1 ± 0.2 86.3 ± 0.2 −0.2

Combined 87.4 ± 0.1 88.0 ± 0.1 −0.7 ± 0.2

e�ciency distributions agree well. A small systematic deviation can be observed
in the ϕ distribution for pions.
In a last check we separate the e�ciencies for pions and protons by their

charge. ¿e integrated e�ciencies are listed in table C.4 and in bins of pT
the e�ciency is shown in �g. C.12. Some dependence of the reconstruction
e�ciency on the charge is expected. Data and simulation agree well in general
but for π− the deviation between data and simulation is signi�cant (3.1 %). ¿e
discrepancy can also be see in �g. C.12(b) in the high momentum region.

c.5 conclusion

We study the reconstruction e�ciency in data and simulation for Λ decays
and for pions and protons from displaced Λ vertices. ¿e decay J/ψ → ΛΛ
o�ers constraint kinematics and is almost background free. In general the Λ
reconstruction e�ciency is overestimated by 1.9% in simulation. From detailed
studies of the dependence on �ight distance and the charge of the �nal state
tracks we �nd that:

• Λ decays with a large �ight distance are better simulated.

• ¿e pion e�ciency distribution in the azimuthal angle shows a small
systematic deviation between data and simulation.
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Figure C.12: E�ciency in bins of transversal momentum for π/p separated by
charge.

• ¿e e�ciency of negative pion tracks show a signi�cant deviation.

We conclude that the Λ reconstruction is well simulated and no general prob-
lems were found in the reconstruction of a displaced vertex.
Within this analysis we measured the branching fraction J/ψ → ΛΛ:

B(J/ψ → ΛΛ) = (2.07 ± 0.03 (stat.) ± 0.08 (sys.))×10−3. (C.6)

¿is result is in good agreement with results from BABAR [99] and BESII[100].
¿is work is provided to the collaboration [98].
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