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Abstract

The thesis investigates the nucleon structure probed by the electromagnetic interaction. One
of the most basic observables, reflecting the electromagnetic structure of the nucleon, are the
form factors, which have been studied by means of elastic electron-proton scattering with
ever increasing precision for several decades. In the timelike region, corresponding with
the proton-antiproton annihilation into a electron-positron pair, the present experimental
information is much less accurate. However, in the near future high-precision form factor
measurements are planned.

About 50 years after the first pioneering measurements of the electromagnetic form factors,
polarization experiments stirred up the field since the results were found to be in striking
contradiction to the findings of previous form factor investigations from unpolarized mea-
surements. Triggered by the conflicting results, a whole new field studying the influence
of two-photon exchange corrections to elastic electron-proton scattering emerged, which ap-
peared as the most likely explanation of the discrepancy.

The main part of this thesis deals with theoretical studies of two-photon exchange, which
is investigated particularly with regard to form factor measurements in the spacelike as well
as in the timelike region. An extraction of the two-photon amplitudes in the spacelike region
through a combined analysis using the results of unpolarized cross section measurements and
polarization experiments is presented. Furthermore, predictions of the two-photon exchange
effects on the eTp/e~p cross section ratio are given for several new experiments, which are
currently ongoing.

The two-photon exchange corrections are also investigated in the timelike region in the
process pp — eTe~ by means of two factorization approaches. These corrections are found to
be smaller than those obtained for the spacelike scattering process. The influence of the two-
photon exchange corrections on cross section measurements as well as asymmetries, which
allow a direct access of the two-photon exchange contribution, is discussed. Furthermore, one
of the factorization approaches is applied for investigating the two-boson exchange effects in
parity-violating electron-proton scattering.

In the last part of the underlying work, the process pp — 7lete™ is analyzed with the
aim of determining the form factors in the so-called unphysical, timelike region below the
two-nucleon production threshold. For this purpose, a phenomenological model is used,
which provides a good description of the available data of the real photoproduction process

pp — 7707.
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Zusammenfasssung

Die vorliegende Dissertation untersucht die Struktur des Nukleons mittels elektromagneti-
scher Wechselwirkung. Formfaktoren sind mit die elementarsten Observablen, welche die elek-
tromagnetische Struktur des Nukleons widerspiegeln, und werden seit mehreren Jahrzehnten
mit Hilfe elastischer Elektron-Proton-Streuung mit steigender Genauigkeit bestimmt. Der
zeitartige Bereich, welcher der Proton-Antiproton-Vernichtung in ein Elektron-Positronpaar
entspricht, ist bislang experimentell weniger gut erforscht. Allerdings sind in naher Zukunft
Messungen der Formfaktoren mit hoher Prézision geplant.

Ungefahr 50 Jahre nach den ersten bahnbrechenden Messungen der elektromagnetischen
Formfaktoren sorgten Polarisationsexperimente fiir Aufsehen, deren Ergebnisse in grofem
Widerspruch zu den bisherigen Resultaten der Formfaktoruntersuchungen standen. Ausge-
16st durch diese widerspriichlichen Ergebnisse entstand ein neues Arbeitsfeld, welches Zwei-
Photon-Austauschkorrekturen zur elastischen Elektron-Proton-Streuung untersucht, die als
wahrscheinlichste Erklarung der Diskrepanz gelten.

Der Hauptteil der vorliegenden Arbeit beschéftigt sich mit theoretischen Studien des Zwei-
Photon-Austausches, der insbesondere mit Hinblick auf Messungen der Formfaktoren sowohl
im raumartigen als auch zeitartigen Bereich untersucht wird. Eine kombinierte Analyse der
Daten aus unpolarisierten Wirkungsquerschnittsmessungen und Polarisationsexperimenten
erlaubt eine Bestimmung der Zwei-Photon-Amplituden im raumartigen Bereich. Eine Vor-
hersage fiir den Einfluss des Zwei-Photon-Austausches auf das Verhiltnis der e™p und e™p
Wirkungsquerschnitte kann somit prisentiert werden, das momentan an verschiedenen Ex-
perimenten untersucht wird.

Die Zwei-Photon-Austauschkorrekturen werden zudem im zeitartigen Bereich fiir den Pro-
zess pp — eTe” mittels zweier Faktorisierungsansiitze untersucht. Die auf diese Weise erhal-
tenen Korrekturen sind kleiner als jene, die fiir den raumartigen Streuprozess ermittelt wur-
den. Der Einfluss dieser Zwei-Photon-Austauschkorrekturen auf Messungen des Wirkungs-
querschnittes sowie Asymmetrien, welche einen direkten Zugang zu Beitrigen des Zwei-
Photon-Austausches ermoglichen, wird diskutiert. Aufferdem wird einer der Faktorisierungs-
ansétze zur Untersuchung von Effekten des Zwei-Boson-Austausches in parititsverletzender
Elektron-Proton-Streuung angewandt.

Im letzten Teil der vorliegenden Dissertation wird der Prozess pp — n%ete™ mit dem Ziel
die elektromagnetischen Formfaktoren im sogenannten unphysikalischen, zeitartigen Bereich
unterhalb der Produktionsschwelle eines Nukleonpaares zu bestimmen, analysiert. Hierfiir
wird ein phinomenologisches Modell verwendet, welches eine gute Beschreibung der vorhan-
denen Daten fiir den Prozess der reellen Photoproduktion pp — 70 liefert.
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Chapter 1
Introduction

The idea of discrete constituents building up all matter arose already thousands of years ago.
Democritus proposed the philosophical concept that all matter is composed of indivisible
building blocks, called arouos. This basic idea has been recovered in the 18th and 19th
century. At that time, all materials had been found to be made of certain components, the
atoms, which were thought to be fundamental. However, the discovery of the electron and
nucleus, as well as its constituents, the proton and neutron, revealed the subatomic structure
and disproved the atoms’ indivisibility.

No evidence of the electron being a composite particle has been found until today. By
contrast, since the measurement of the proton magnetic moment [1], which differs signifi-
cantly from the expected value of a pointlike elementary particle, the question of the building
blocks of the proton and neutron has emerged. A complete description of the proton and
neutron internal structure is still an unsolved problem of hadron and particle physics.

Today the Standard Model of particle physics, as the theory of fundamental particles
and their interactions, describes the composition of matter and successfully explains a large
variety of phenomena of particle and hadron physics. Recently, the observation of a new
boson at the Large Hadron Collider [2,3] is supposed to be the discovery of the last missing
particle of the Standard Model, the Higgs boson.

There are four fundamental forces in nature, the strong force, the weak force, the electro-
magnetic force and gravity, where the latter one is not included in the Standard Model. The
fundamental constituents can be classified into two categories according to how they interact,
the leptons and the quarks, which appear in three generations (or families) each containing
two particles. For each of these particles a corresponding antiparticle exists. The interaction
between the particles is mediated via the so-called gauge bosons, to which the particles can
couple if they carry the charge of the appropriate interaction. The Higgs boson is essential
in order to explain the masses of the particles, which are generated via the interaction with
the Higgs field. Leptons interact weakly, given by the exchange of the weak gauge bosons
W# and Z, and, in the case of charged leptons, also electromagnetically. By carrying an
electric charge, the particles can interact via couplings to the photon, the transmitter of
the electromagnetic interaction. Besides a weak and electric charge, the quarks carry an
additional charge, known as color, which enables them to couple to gluons, the gauge bosons
mediating the strong force. The particles of the Standard Model are summarized in Fig. 1.1.

The electromagnetic force is well described within a quantum field theory known as Quan-
tum Electrodynamics (QED), whose predictions have been tested experimentally with ex-
tremely high accuracy. One can take advantage of the smallness of the electromagnetic
coupling, cem ~ 1/137, which enables a perturbative treatment of electromagnetic processes
as an expansion in terms of increasing powers of aep,. QED and the weak interaction can be
unified to the electroweak gauge theory.
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Figure 1.1: Particles of the Standard Model: The uncharged leptons (ve, v, vr), the charged
leptons (e~, u~, 77 ) and the quarks (u, d, ¢, s, t, b), which are arranged in three
generations, as well as the gauge bosons of the weak (Z, W), electromagnetic
() and the strong interaction (g), and the Higgs boson (H).

The theory of strong interactions, Quantum Chromodynamics (QCD), describes the inter-
action between quarks and gluons. The proton and neutron themselves, which are denoted
as nucleons, are no elementary particles, just like all other observable strongly interacting
particles, called hadrons. Understanding the structure of the nucleon as a complex system
built up of strongly interacting particles is one of the main tasks of hadron physics. At
present, the concept of the nucleon is seen as a system containing three valence quarks and
an arbitrary number of quark-antiquark pairs and gluons.

The investigation of the nucleon structure is complicated due to two remarkable features of
QCD. The first one, denoted as color confinement, manifests itself by the impossibility to ob-
serve colored quarks and gluons as free particles. Therefore, the nucleon structure cannot be
investigated simply by a decomposition into its constituent parts. Instead, indirect measure-
ments have to be performed, which allow conclusions regarding the underlying properties of
the nucleon. The second phenomenon, called asymptotic freedom, characterizes the running
of the strong coupling a,g, which decreases for increasing energies and even disappears, if the
energy tends to infinity. The asymptotic freedom has been proved in [4,5], rewarded by the
Nobel prize in 2004. A perturbative treatment of QCD at lower energies is not applicable so
far due to large values of ag. A non-perturbative access is given by lattice gauge theories,
where QCD is studied on a space-time, which is discretized into a finite lattice and evaluated
numerically [6]. Nevertheless, no analytical solutions of QCD at lower energies are known so
far.

Besides numerical simulations using lattice QCD, approaches to deal with processes in-
volving strongly interacting particles, such as nucleons, at intermediate and low energies are
necessary. Anyhow, many reactions can be calculated at least in part by means of perturba-
tive QCD (pQCD). This concept, known as QCD factorization, is based on the separation
of the process into a part, for which a perturbative treatment is applicable, and a non-
perturbative contribution, which has to be handled phenomenologically. In order to deal
with hadronic reactions, such factorization approaches will be applied in the course of this
thesis.
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Figure 1.2: Elastic electron-proton scatter- Figure 1.3: Deep inelastic scattering in the
ing in the Born approximation Born approximation

Despite the fact that the constituents of the nucleon cannot be observed directly, there
are several possibilities for probing properties of the proton and neutron. An excellent tool
to investigate the structure of the nucleon is electron scattering. Since the interplay between
the electron and the transferred photon is well described within QED, the electromagnetic
interaction provides a well known probe. Hence, one is able to infer information on the nu-
cleon composition from the results of scattering experiments. The leading-order contribution
to elastic electron-proton scattering arises from the exchange of a single photon between the
electron and proton, which is known as the Born approximation and is depicted in Fig. 1.2.

A milestone in the exploration of the sub-nuclear structure was reached in the 1950s by
Hofstadter and collaborators using elastic electron-proton scattering [7]. These experiments
allowed for the first time to determine the so-called electromagnetic form factors of the
nucleon, which provided a considerable insight into the underlying structure of the nucleon,
for which Hofstadter was awarded the Nobel prize in 1961. Electromagnetic form factors
are the most basic observables reflecting the composite nature of the nucleon, giving rise to
the distribution of the charge and magnetic moments inside the proton and neutron. This
structure is parametrized in terms of two form factors, denoted as G and Gj;, which are
functions of the momentum transfer squared 2, which is mediated via the photon between
the electron and the proton. This was the starting point for a large number of experiments,
which have measured the elastic electron-proton scattering cross section with increasing
precision over a wide kinematical range in order to extract the electromagnetic form factors.

If electrons with higher energies scatter off nucleons, the probability of an inelastic reaction
is increasing, where instead of a single proton several particles are produced in the final state.
The high-energy scattering process known as deep inelastic scattering, e™ +p — e~ + X,
is presented in Fig. 1.3, where X stands for a not further specified hadronic final state.
Measurements of such deep inelastic processes have started in the 1960s, leading to significant
observations concerning the interiors of the proton. The results of these experiments can be
explained within the parton model, which assumes that during the short interaction time the
scattering is performed at quasi-free pointlike objects inside the nucleon, denoted as partons
[8]. This was the first convincing evidence for the existence of pointlike nucleon constituents,
which later have been identified as quarks. These investigations have been awarded with the
Nobel prize in 1990. Within QCD factorization, the deep-inelastic scattering cross section
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Figure 1.4: Form factor ratio ;1,Gr/Guy (with the magnetic moment of the proton p,) ex-
tracted in electron-proton scattering. The green data correspond to the results of
Ref. [10] via unpolarized measurements, the blue data points indicate the findings
of Refs. [9,11] from polarization experiments.

is given as a convolution of the lepton-quark scattering cross section and a non-perturbative
contribution denoted as parton distribution functions, containing information on the partonic
nucleon structure.

About 50 years after the pioneering experiments of Hofstadter et al. [7], form factor inves-
tigation through polarization measurements became feasible, giving rise to additional and
independent experimental observables. However, the results of the form factors extracted
from polarization experiments are in striking contradiction to the findings of the unpolarized
cross section measurements [9]. To illustrate this discrepancy, in Fig. 1.4 the results of the
form factor ratio Gg /Gy as found in the experiments of Refs. [9-11] are shown, where the
green data points indicate the results of the unpolarized measurement [10] and the findings of
the polarization experiments [9,11] are represented by the blue data points. The noticeable
difference between the two experimental methods is clearly seen.

These conflicting results led to intense studies, from both experimental and theoretical
sides, attempting to explain and reconcile both experimental methods. Since our under-
standing of the electromagnetic structure of the nucleon is related to the knowledge of the
electromagnetic form factors, it is of great importance to understand the discrepancy in order
to find a reliable picture of the electromagnetic form factors of the proton. Due to the fact
that all these measurements have been analyzed using the Born approximation, considerable
doubt on the validity of this approximation arose.

Theoretical studies indicated that a possible explanation of the inconsistent results can
be provided by two-photon exchange processes, which are next-to-leading order corrections
to the Born approximation. In the analysis of cross section and polarization measurements,
effects of the exchange of two or more photons have been neglected. Such contributions are
suppressed by at least an additional factor e, compared to the leading terms, giving rise to
corrections of order of a few percent. Nevertheless, it has been shown that these corrections
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Figure 1.5: Sketch of factorization approaches used in this thesis. Left panel: factorization
within the framework of GPDs. Right panel: factorization within a hard scat-
tering perturbative QCD approach. The purple regions are associated with the
partonic subprocesses, which are directly calculable, while the gray blobs indicate
the non-perturbative contributions.

can impact the form factor extraction from the unpolarized cross section measurements
significantly.

Elastic scattering reactions allow only to reveal the form factor structure in the spacelike
region, corresponding to the region where the momentum transfer ¢> = —@Q? of the pho-
ton is negative. The timelike region of positive momentum transfer ¢> can be examined
with the crossed processes, as proton-antiproton annihilation into a lepton-antilepton pair
or the vice versa reaction of the annihilation of a lepton-antilepton pair into a nucleon and
antinucleon. A consistent description of the nucleon electromagnetic structure can only be
achieved through detailed knowledge of the form factors over the complete kinematical range.
So far, in the timelike regime only few data of the form factors with less precision exist. New
experiments are planned to probe the form factors to high accuracy in the timelike region.
With regard to such accurate experiments one has to be aware of two-photon exchange
contributions, which apparently have noticeable effects on the extraction on spacelike form
factors.

The main part of this thesis deals with two-photon exchange corrections, which are studied
in the spacelike as well as in the timelike regions of momentum transfer. For this purpose,
factorization approaches are applied for calculating the two-photon contributions to timelike
annihilation processes. Like the decomposition of the deep inelastic scattering cross section,
the considered factorization descriptions state, that in high energy processes the nucleons
behave like a set of free partons. The cross section is then calculated from the cross section of
the process at parton level and the distribution functions for finding the corresponding parton
state in the hadrons. These functions are non-perturbative objects, which are independent
of the explicit form of the partonic subprocess. This remarkable property allows to apply
factorization models to two-photon exchange reactions, which have been probed in other
processes.

The basic concepts of the two factorization approaches, which are discussed in this thesis,
are sketched in Fig. 1.5. The purple regions indicate the processes at the parton-level, which
are calculable within pQCD, while the gray blobs represent the non-perturbative parts. The
first approach, illustrated in the left panel of Fig. 1.5, gives rise to the concept of the so-called
generalized parton distributions (GPDs), which e.g. have been discussed extensively for the
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process of deeply virtual Compton scattering. A single quark state of the involved hadrons
participates in the partonic subprocess, which is embedded into the nucleons as described
by the GPDs. The second approach, presented by the graph in the right panel of Fig. 1.5,
is based on hard scattering perturbative QCD factorization, which at parton level implies a
process with three active valence quarks. The non-perturbative contribution is given by the
Distribution Amplitudes (DAs) of the nucleon, describing how the momenta of the nucleons
are shared between the constituents.

With the aforementioned processes it is not possible to reach the complete allowed kine-
matical range of the form factors. The so-called unphysical region of momentum transfer,
which is the timelike region below the production threshold of two nucleons, cannot be ac-
cessed. A part of the thesis focuses on the analysis of the process pp — mete™ as a means
to provide constraints on timelike nucleon form factors, particularly in the unphysical region.

Outline

This thesis is organized as follows:

In Chapter 2 an introduction to the electromagnetic form factors in the spacelike and
timelike regions is given.

Chapter 3 deals with the two-photon exchange effects in the elastic electron-proton scat-
tering process. The general formalism of two-photon exchange is introduced and the results
of several model calculations are briefly discussed. In the second part of the chapter a phe-
nomenological determination of the two-photon exchange corrections is presented. Using the
available cross section and polarization data, an extraction of the two-photon amplitudes
is provided and predictions for experiments, which are presently underway, are given. The
results of this work appeared in Ref. [12].

In Chapter 4 the two-photon exchange in the timelike region for the annihilation reaction
pp — ete is studied. For the calculation of the two-photon exchange contribution to the
cross section of the process, two different approaches are taken into account, both based on
factorization principles, in oder to deal with the hadronic interactions. This work has in part
been published in Ref. [13].

In Chapter 5 one of the approaches used in the previous chapter is applied for the inves-
tigation of the two-boson exchange contribution in parity-violating elastic electron-proton
scattering. Besides the exchange of a photon, the Standard Model provides the possibility
that electron-proton scattering is performed by the exchange of a Z boson. This Z boson
exchange, even though it is suppressed at lower energies, manifests itself in a parity-violating
contribution to the cross section, which can be affected by two-boson exchange contributions
as well, namely two-photon or Z-photon exchange corrections.

Chapter 6 is devoted to the process pp — 7lete™, with particular focus on the possibility
to determine the nucleon electromagnetic form factors in the unphysical region. The anni-
hilation reaction is analyzed within a phenomenological model, allowing for predictions for
forthcoming experiments. Since no data of this reaction has been taken so far, the model is
first tested for the reaction pp — 7’y. The results of this work can be found in Ref. [14].

Finally, a summary of the results and an outlook is given in Chapter 7.



Chapter 2
Electromagnetic Form Factors of the Nucleon

Understanding the internal structure of the nucleon as a composite system, built up of quarks
and gluons, is one of the most important unsolved problems in hadron physics.

Since the observation of the magnetic moment of the proton [1], which was found to be 2.8
times larger than the expected value for a fundamental pointlike particle, it is known that
the proton is not an elementary particle but made of more fundamental constituents.

Starting in the 1950s, the structure of the nucleon has been studied by means of the
electromagnetic interaction. The results of these measurements can be expressed in terms of
the electromagnetic form factors of the nucleon, which are functions describing the internal
structure as it is seen by the electromagnetic probe. For the first time, a measurement of
the electromagnetic form factors has been performed by Hofstadter et al. [7] using elastic
electron scattering off nucleons, which is still used for investigating the nucleon structure
nowadays.

In this chapter the basic properties of the electromagnetic form factors as well as the
results of the dedicated experiments are reviewed.

2.1 Properties of Electromagnetic Form Factors

In contrast to elementary particles like the electron, the nucleon has an extended structure,
which can be explored in electromagnetic processes like elastic electron-proton (ep-) scat-
tering. In the leading-order approximation of elastic electron-proton scattering, the Born
approximation, the electromagnetic interaction is mediated by the exchange of a single pho-
ton. The corresponding leading-order Feynman diagram is shown in Fig. 1.2.

The electron-photon interaction is fully described by the theory of electromagnetic inter-
actions and can be calculated directly within QED. Therefore electron-scattering provides a
clear probe to study properties of composite systems. In contrast to the electron-photon ver-
tex, the proton-virtual-photon interaction, encoding information about the extended spatial
distribution in the nucleon, cannot be calculated from first principles due to the unknown
interplay between the nucleon and photon. However, any deviation between the measure-
ments of the reaction and the results expected for scattering of two fundamental pointlike
particles is caused by the composite nature of the proton. These deviations can be described
in terms of the electromagnetic form factors of the proton.

To study the scattering process in terms of proton form factors, we first consider the
electromagnetic current of a pointlike Dirac particle with charge g, (for the electron ¢. = —e,
with e > 0) which is given by:

(UK |35 0)]1(k)) = ge w (K )y wi(k), (2.1)
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where jhy is the electromagnetic current operator and k (k') is the four-momentum of the
initial (final) particle. wu;(k) and @ (k") represent the Dirac spinors of the incoming and
outgoing particles, which appear in the plane-wave solutions of the Dirac equation. This
current is conserved, i.e. d, jhm = 0, giving rise to

0|38 (0)[1(k)) = 0, (2.2)

where ¢ = k — k' is the momentum of the transmitted virtual photon. The Lorentz invariant
four-momentum transfer is defined as

Q*=—-=—-(k-K)?>o. (2.3)

In contrast to jhm, the matrix element of the electromagnetic current operator of the
nucleon, J&n, as a system of strong interaction particles, cannot be calculated from first
principles. Therefore, J&, has to be parametrized by the most general structure I'*,

(N(p')|Jtn(0)|N(p)) = eN(p) T N(p), (2.4)

reflecting the electromagnetic properties of the nucleon, with the Dirac spinors N(p) and
N(p') of the proton in the initial and final state, respectively.

However, I'* is restricted by Lorentz invariance, parity and charge conservation. The
first condition implies that J&, has to transform in an analogous manner as jb,, which is
a Lorentz four-vector, depending only on p and p’ or ¢ = p’ — p. This allows to decompose
the hadronic current in terms of Dirac bilinears, which fulfill the given transformation prop-
erties. Parity and charge conservation constrain the number of the allowed contributions.
In addition, the current J4, has to satisfy the conservation of the electromagnetic current.
Consequently, the most general decomposition of I'* can be reduced to two independent
Lorentz structures, which are introduced in combination with two form factors. Hence, the
nucleon electromagnetic current can be expressed as

(NI O| N () = eN () |FL(Q%) " + Bo(Q?) 5——0"ay | N(p).  (25)

mn

with the nucleon mass my and "’ = %[’y“, ~*]. The form factors F} and F; are scalar func-
tions of the momentum transfer Q2 = —¢?, the only independent kinematic scalar quantity
constructed from p, p’ and ¢ for p? = p'? = m?v F1 and F, are known as Dirac form factor
(F1) and Pauli form factor (Fy). Eq. (2.5) describes the parametrization of both currents,
the proton as well as the neutron electromagnetic current.

The form factors are defined over the complete range of momentum transfer —oo < ¢? < co.
In the spacelike region of negative momentum transfer with ¢> = —Q? < 0, the form factors
can be investigated in scattering processes. The corresponding crossed annihilation processes
allow to access the form factors in the timelike region (¢ > 0). Section 2.3 deals with the
form factors in the timelike regime, whereas this section focuses on the spacelike form factors.

The electromagnetic current operator is a hermitian operator. For spacelike momentum
transfer, ¢> < 0, this fact gives rise to

(NI (0) [N ()" = (N@)[JEL 0[N (') = (N(p)| 5 (0)|N (). (2.6)



2.1 Properties of Electromagnetic Form Factors

With

1

<NWW$@W@Y=dwﬂﬁ@%W—@@% w@umJMm,

2mpy
(2.7)
i

2mpy

(NG OING)) =Nl [FQ) 7 + Fl@) oo™~ | N,
one can conclude, that the spacelike form factors must be purely real functions, whereas the
timelike form factors have to be treated as complex functions in general.

If Q2 tends to zero, the photon can only probe the static properties of the nucleon. There-
fore the form factors are normalized to the charge and the magnetic moment of the proton
and neutron, as

FY(0) F3(0) = pp — 1= #p,

= 1’
(2.8)
F'(0) =0,  F3(0) = pn = Ky,

where F}’ and F* are associated with the form factors of the proton and neutron, respectively.
Kpn is the anomalous magnetic moment of the corresponding nucleon, given by x, = 1.79
and k, = —1.91.

In some cases it is useful to consider the isoscalar (F°) and isovector (F)) description
of the form factors indicating the isospin symmetry properties of the proton and neutron.
These factors are defined as

1 1
S \%4
FS=S(FP+FY),  F =5 (P =), (29)
In order to express observables, it is often convenient to use the Sachs form factors Gg
and Gy instead of F} and F5, given by the linear combinations

Ge(Q%) = F(Q%) — TF(Q?),
Gu(Q%) = Fi(Q%) + F(Q%),

where 7 is defined by 7 = —¢*/4m2, = @*/4m?2,. The Sachs form factors are referred to as the
electric (Gg) and magnetic form factor (Gjs) of the associated nucleon.

In the limit Q% — 0 the form factors Gg and G, have the static values of charge and of
the magnetic moments i, , of the proton and neutron, respectively:

(2.10)

Gg,(0) =1, G (0) = p, =2.79
(2.11)
GEn(O) = O, GMn(O) = Un = —1.91.

In a particular Lorentz frame, the so-called Breit frame, Gg can be related to the Fourier
transform of the spatial charge distribution of the nucleon and Gy to the distributions of the
magnetic moments. In this frame, the three-momentum of the initial nucleon is given by -@/2,
while the outgoing nucleon carries /2. Since no energy in transferred, the four-momentum
of the photon reads ¢ = (0, ¢). This leads to a hadronic electromagnetic current of the form

(N(/2) | Jom(0)|N (=@/2) ) = 2emyGr(T?),
(2.12)

(N(q/2) | Jem(0) |N (=q@/2) ) = iex|, (¢ x @) xs Gu(T?).



Chapter 2 Electromagnetic Form Factors of the Nucleon

where & refers to the Pauli matrices and  to the Pauli spinors, given in Appendix A, with the
helicity of the initial (final) state nucleon A, (\,). Accordingly, in analogy to nonrelativistic
physics, Gg(q) measures the Fourier transform of the electric charge distribution pg(7) and
G (@) the Fourier transform of the distribution of the magnetization pps(7). However, each
value of Q? requires a particular Breit frame and pg 1/ (7) are no observables.

The slopes of the form factors in the limit Q? — 0 are defined as the electric and magnetic
charge radii of the nucleon:

dGE(Q%) —6  dGn(Q?)
dQ? ’

3
0'o Gu(0)  dQ 020

If the momentum transfer tends to infinity, the form factors can be calculated in the
framework of perturbative QCD, since the (vanishingly) small coupling constant ag of the
strong interaction allows for a perturbative treatment. Within these calculations, a scaling
behavior of the form factors has been derived, giving [15]

2

<rgp>=—6 <ri >=

(2.13)

1 1
Fy (QQ)N@7 F (QQ) N@7
(2.14)
Gu(@)~ 51 GE@)~ o
M Q47 E Q47

which are expected to be valid at a sufficiently high momentum transfer.

Alternatively, one can define a set of quark flavor form factors Fy, and G% ,,, with ¢ =
u,d, s to describe the electromagnetic distribution of each quark flavor inside the nucleon.
Contributions of quarks heavier than the strange quark have been neglected, since these are
expected to be small. The hadronic current can be rewritten as

(NG| O[NE) = (NG| Y Quar"a|Ne))

q:u7d7s

(2.15)

= 6N(p'){ > @ [quv“ +F§2;N0“”qu} }N(p)

q=u,d,s
where @), is the charge fraction of the quarks, with @, = 2/3 and Qg s = ~1/3. At the quark
level, the electromagnetic form factors can be decomposed as
FI3(Q%) = Y QuFL"™ (@),
q=u,d,s

Giu(@) = ) QuGEN (Q%),

q:u7d78

(2.16)

such that GZP,, (GL",,) refers to the contribution from different quark flavors ¢ to the
form factor of the proton (neutron). Using isospin symmetry, giving rise to Gp" = Gg”,

Ggp = GE™ and GP = G, enables to express the proton and neutron form factors in
terms of the quark distributions inside the proton:

2 1 1
Ghy = gGg,M(QQ) - gGg,M(QQ) - gGE,M(Q2)7
(2.17)

mn 2 1 u 1 S
Gem = gGﬁlJ,M(Qz) - gGE,M(Q2) - gGE,M(Q2)7

10



2.2 Form Factor Investigation using Elastic Electron-Proton Scattering

where G £ ,,, Gg  and G 3, are the contributions of the u, d and s quarks in the proton.
Tf not mentioned explicitly, 7omitting the index p,n of the quark form factors refers to the
flavor form factors of the proton. Flavor separation of the form factors can be achieved by
probing different hadrons.

2.2 Form Factor Investigation using Elastic Electron-Proton
Scattering

The elastic scattering process

e (k) +p(p) = e (K) +p®) (2.18)

in the Born approximation can be described in a frame-independent way by means of the
Lorentz-invariant Mandelstam variables. For the given process, they are defined as

s=(p+k)? = +k)7
t=( —p)® = (k- k) = -Q", (2.19)
u=p—HK)? =0 -k

satisfying the relation
S+t+u:2m?:2m?\,+2mg, (2.20)

(2

where ). m? corresponds to the sum of the squared masses of all external particles of the
process and m, is the electron mass.

In most cases, it is a good approximation to neglect the mass of the electron in the
calculations, as it is much smaller compared to the nucleon mass and the momentum transfer
of the process, m? < m3%;, @*. If not mentioned otherwise, the formulas have been evaluated
in the ultrarelativistic limit for the electron, in which we can take m, = 0.

The invariant amplitude of the scattering process is given by the matrix elements of the
leptonic and the hadronic electromagnetic currents connected with a photon propagator:

M = b)) () NN ) (221)

The scattering process is normally discussed in the laboratory frame, presented in Fig. 2.1,
where the initial nucleon is at rest and the four-momentum of the incoming electron is given
by k = (E, k ), where k is conventionally chosen to be in the z-direction. The momentum
transfer can be expressed as

Q* =2EE’ (1 — cos i), (2.22)

where 0,1, is the scattering angle of the electron in the laboratory frame and E and E' are
the energies of the initial and final electrons, respectively.
The differential cross section can be obtained in the laboratory frame as

do 1 EN\? _— 5
(Tsz)lab:(ﬁmw@) M (2.23)

11



Chapter 2 Electromagnetic Form Factors of the Nucleon

Figure 2.1: Kinematics for elastic ep-scattering in the laboratory frame.

with the leptonic solid angle df2. The expression W2 denotes the spin-averaged squared
matrix element of Eq. (2.21).

At present, the most important facilities for form factor investigation using ep-scattering
are the Mainz Microtron (MAMI), covering the the region of low @2, and the Continuous
Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Accelerator
Facility (JLab) for the range of higher momentum transfer.

2.2.1 Rosenbluth Separation

Starting with the pioneering work of Hofstadter [7] in the 1950s, the electromagnetic form
factors have been investigated in a large number of experiments using the Rosenbluth sepa-
ration technique. This method allows to extract both form factors, Gg and Gjs, from the
unpolarized elastic scattering cross section.

The cross section depends on two kinematical variables, typically taken to be the momen-
tum transfer Q2 (or 7) and the polarization of the virtual photon e, which is related to the

scattering angle 0,1 by
-1
e:<1+m1+fwmﬁ<%?>> . (2.24)

In the one-photon exchange approximation, the differential cross section of the reaction
can be written in terms of the cross section for scattering off a pointlike particle, the Mott
cross section (do/dQ)yott, and the electric and magnetic form factors:

do do 1 T
— = (= G2 + —G? 2.95
s <MJMM1+T<E+5A0’ (2.25)

where do/dS) is the measured cross section. Equation (2.25) is known as the Rosenbluth
formula [16]. The Mott cross section is given by:

2

< do > iy cos? <9‘§‘°)

FE
— = — 2.26
dQ /) \pots 4E? sin* <015b) E ( )

with the fine structure constant ey, = €2/47 ~ 1/137.

12



2.2 Form Factor Investigation using Elastic Electron-Proton Scattering
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Figure 2.2: Overview of form factor results obtained by Rosenbluth extraction: Gar/p,Gp
(left panel) and Gg/Gp (right panel). The figure is adapted from [17].

Besides, it is convenient to define the reduced cross section og:

o= D (1) /()

g
= G+ ;G%.

(2.27)

Since the form factors G and Gy, are functions of Q? only, measuring the cross section for
different values of e, while keeping Q? fixed, allows access to both form factors from the e
dependence of or. A linear fit of or to € gives Gg from the slope of the € dependence of the
cross section and Gy from the intercept at € = 0. This so-called Rosenbluth extraction of
the form factors requires that the energy of the initial electron and the scattering angle are
adjusted in a way that Q2 is constant while varying the photon polarization .

The findings of the Rosenbluth experiments are, that both G and Gy follow the form of
an approximate dipole form factor Gp:

Gr(Q?
ap@t) ~ L) L g2,
Hp
1 (2.28)
with GD(Q2) = 5 3
Q
(1 T o Gev2)
The approximate dipole behavior implies that the form factor ratio can be found as
2
M(%) ~ 1. (2.29)
Gu(Q?)

The results of the experiments are collected in Fig 2.2, where the form factors have been
divided by the standard dipole Gp. One notices the increasing uncertainties on the extracted

13



Chapter 2 Electromagnetic Form Factors of the Nucleon

Figure 2.3: Kinematics for polarization transfer from a longitudinally polarized electron on
an unpolarized proton in the Born approximation.

values of G for large momentum transfer, starting at @? ~ 1 GeV2. As one can see from
Eq. (2.27), at large Q2 (7 >> 1) the reduced cross section is dominated by the contribution of
the magnetic form factor Gy, whereas the contribution of G is suppressed with 1/Q?. This
fact makes an extraction of Gg from the measured cross section increasingly more difficult
in the larger Q? range, resulting in the rising error bars at larger Q?, as it is seen in Fig. 2.2.

Besides the reduction of the G contribution at larger Q* due to the factor 1/7 in
Eq. (2.27), the relation G?\/l ~ /‘122 G% implies an additional suppression factor of ~ 8 in-
dependent of Q2.

2.2.2 Polarization Transfer Measurements

An alternative experimental technique to access the electromagnetic form factors in elastic
ep-scattering became practical in the late 1990’s, the double polarization measurement. This
method allows for an investigation of the form factors by scattering a longitudinally polarized
electron beam from an unpolarized proton target and measuring the polarization of the
recoiling proton,

é(k) +p(p) — e(k') + 9 (p), (2.30)

which will be referred to as polarization transfer method, or equivalently by using a polarized
electron beam and a polarized proton target.

The kinematics of the reaction of Eq. (2.30) in the Born approximation is sketched in
Fig. 2.3.

In the Born approximation, two non-zero polarization components of the recoiling proton
appear, the longitudinal (P;) and the transverse (P:) component:

2
P = /1-¢2(2h) G—M,
OR
(2.31)
o= 26(1—6)(2h) GEGM7

T OR

where h is the helicity of the incident electron.
Therefore, the ratio of the polarization components can be related to the ratio of the

14



2.2 Form Factor Investigation using Elastic Electron-Proton Scattering

electric to magnetic proton form factors:

Pt 2¢e GE‘
o =T 2.32
P, 7(1+¢)Gum (2:32)

The advantage of using the polarization transfer method in order to access Gg/G)y is that
for a given Q? only one single measurement is necessary, if both polarization components
can be measured simultaneously. In the ratio, the electron beam polarization drops out.
These facts reduce systematic errors emerging through the variation of the beam energy or
scattering angle.

The results of the form factor ratio measurements using the polarization transfer method
are at variance with the Rosenbluth extraction of Gg/Gjps. This ratio was found to be
nearly linear, decreasing with increasing @2, in contrast to the well known scaling-behavior
of u,Gg/Gyr ~ 1 determined by the Rosenbluth separation technique. Therefore, as a good
approximation the polarization results can be described by a straight line. A linear fit to the
results of these experiments leads to [11]

7%?;2(@@2?) =1-0.13 (ch; - 0.04> : (2.33)

demonstrating the remarkable different > dependence of the form factor ratio, presented in
Fig. 2.4.

2.2.3 Discussion of the Discrepancy

The contradicting results of the Rosenbluth and polarization experiments have triggered a
lot of effort in order to understand and resolve the discrepancy. In Fig 2.4 the results of the
extracted ratio p, Gg /G of both experimental methods are shown. The deviation between
the two techniques starts at values of about Q> ~ 1 GeV? growing with the momentum
transfer.

First, it was assumed that the discrepancy arises from uncertainties in the Rosenbluth
extraction of the proton form factors, which at high Q2 is very sensitive to even small
corrections due to the small contribution of G to the cross section. A global reanalysis of
the world cross section data [19] shows that the data from previous Rosenbluth measurements
are consistent with each other. It was found, that the discrepancy is not caused by problems
in one or two single experimental setups and that the Rosenbluth data cannot be brought
into agreement with the results of the polarization transfer method by adjusting the data
within the normalization uncertainties.

Furthermore, new data of a high-precision Rosenbluth measurement of Gg/Gjs became
available [20], in which the final proton instead of the electron has been detected, confirming
the results of previous measurements. This detection procedure reduces the systematic un-
certainties due to a weaker dependence of the cross section on beam energy and scattering
angle.

In addition, the studies focused on the calculation of radiative corrections, which are QED
corrections to first order of aey to ep-scattering, caused by the exchange of a second virtual
photon or the emission of a real bremsstrahlung photon. The leading-order corrections are
illustrated in Fig. 2.5, where the corrections on the electron side (diagrams a-d), which are
independent of the nucleon structure, are shown on the left side and the Feynman graphs
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Figure 2.4: Ratio of the electric to magnetic proton form factors as a function of Q2. The
green data points indicate the results of the Rosenbluth extraction. The blue
circles, red squares and black triangles are the results of the polarization experi-
ments. The figure is adapted from Ref. [18].

on the right side (diagrams e-h) correspond to the nucleon structure dependent corrections.
To obtain results with high accuracy, the measured cross sections need to be corrected for
radiative corrections, effecting the cross section typically in the range of 10%-30%. Since
these corrections are ¢ dependent, they can change the slope of the Rosenbluth plot and
consequently influence the results of the extracted form factors. Polarization observables, as
being ratios of cross sections are less sensitive to radiative corrections, especially the ratio
Gp /G extracted from polarization transfer measurements, which is a ratio of polarization
observables.

Radiative corrections have been applied in the analysis of the cross sections mostly using
the standard formalism of Mo and Tsai [21,22]. In these calculations any effect of the proton
structure has been neglected, hence only the electron corrections and the corrections on the
nucleon side in the soft photon approximation, i.e. when the additional virtual photon car-
ries a vanishing small momentum, have been taken into account and several approximations
have been used for the computation. Improvements of the radiative corrections have been
performed in Refs. [23-26], such as including hadron structure effects and removing some
other assumptions, nevertheless without achieving a reconciliation of both methods. How-
ever, it has been shown, that the corrections required to bring the results into agreement are
at the level of a few percent of the cross section [19].

One process which has not been included in all previous calculations of radiative corrections
is two-photon exchange (Fig. 2.5 h)) in the case that both photons carry non-vanishing
virtualities, i.e. both photons are semi-hard or hard. In Ref. [27] it has been shown that
taking these corrections into account may lead to significant ¢ dependent contributions to
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Figure 2.5: Lowest-order radiative corrections for elastic ep-scattering: diagrams left (a-d)
show the correction graphs for the electron side, diagrams one the right side (e-h)
are graphs depending on the hadron structure.

the cross section and provide a possible explanation of the form factor results.

In recent years, two-photon exchange has been studied extensively, from both experimental
as well as theoretical side. The following two chapters of this thesis deal with two-photon
exchange processes, which will be discussed in the spacelike as well as in the timelike regions
of momentum transfer.

2.3 Electromagnetic Form Factors in the Timelike Region

In order to obtain a complete description of the electromagnetic structure of the nucleon,
the investigation of the form factors over the full range of momentum transfer is necessary.

The measurements of the nucleon form factors at spacelike momentum transfers, by means
of elastic electron proton scattering, are complemented by measurements in the timelike
region, through the corresponding crossed processes pp — e™ e~ or e™ e~ — pp, which allow
to access the form factors in the timelike region, starting from the threshold qfhr = 4m?v.
These processes are related via the crossing symmetry.
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Figure 2.6: Spacelike and timelike regions and the appropriate processes, which can be used
to study electromagnetic form factors. In the spacelike region, with momentum
transfer ¢ = —Q? < 0, the form factors can be investigated by means of scatter-
ing reactions. For the timelike region, defined by ¢? > 0, annihilation processes
can be used to access the form factors in the range ¢> > g, = 4m?v.

2.3.1 Accessing Form Factors in the Timelike Region

The annihilation reaction pp — et e~ and the time-reserved process e™ e~ — pp offer the
possibility to study the proton electromagnetic form factors in the timelike region. In the
Born approximation the interaction is mediated through the exchange of one virtual photon
with positive momentum transfer ¢> > 4m§\,, depicted in Fig 2.7.

For investigating the process

p(p1) + p(p2) = e (k1) + e* (k2) (2.34)

one can take advantage of the crossing relations, connecting the elastic ep-scattering ampli-
tude with the amplitude of the annihilation process. The crossing symmetry of the spacelike

N N

N N

Figure 2.7: The timelike processes NN — e~ et and e"e™ — NN in Born approximation
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2.3 Electromagnetic Form Factors in the Timelike Region

and timelike momenta can be found as
p<— p, P < —p,
(2.35)
k +— —ko, K «— k.
Introducing the Mandelstam variables of the reaction Eq. (2.34),
s=q*=(p1 +p2)? = (k1 + k2)?,
t=(p1—k2)® = (p2 — k1)?, (2.36)

u=(p1 —k1)* = (p2 — k2)?,

enables us to find the following relations with the Mandelstam variables of the spacelike
scattering process:

timelike spacelike

s=q¢" =p1+p) «— @-1)=-Q° (237

t =(p1—ka)® +— (p+k)*=s,
u=mp—-k)? < @P-KP’=u

with the variables of the timelike (spacelike) on the left-hand side (right-hand side).

Assuming one-photon exchange, the matrix element of the process can in an analogous
manner be expressed by two form factors, e.g. the timelike Dirac form factor F;(q?) and
Pauli form factor Fy(¢?):

7

M = 62 [ﬁ(k:l)’y”v(k:g)] _f]g;u [N(pg) <F1")/“ — 5 FQO"uuqy> N(pl)] s (2.38)

my
where N(p;) and N(ps) stand for the Dirac spinors of the incoming proton and antiproton,
respectively.

Accordingly, one can introduce the timelike electric and magnetic form factors Gg and
GM:

Ge(d®) = Fi(®)+7FR(d),
Gu(®) = Fi(®)+ Fd), (2-39)

with 7 = ¢*/4m2, .

In contrast to the spacelike form factors, the form factors in the timelike region are in
general complex functions of the momentum transfer ¢.

It is often convenient to study the process pp — eTe™ in the center-of-mass (c.m.) frame of
the reaction. In this reference frame the 3-momenta of the incoming nucleons have opposite
direction, the proton conventionally chosen to be in the z-direction, which yields

b1 :\/§<170707 T_1>7
2 T
(2.40)
D2 :\ég<170707_ T_1>7
T
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where /s is the c.m. energy. Identifying the reaction plane with the x-z-plane, allows one to
express the momenta of the leptons as

k1 :—(1, sind, 0, cosﬂ),
(2.41)

S
ko :i(l, —sind, O,—cosé?),
where 6 is the c.m. scattering angle of the electron with respect to the proton.

In the ultrarelativistic limit of vanishing lepton masses, the unpolarized differential cross
section in the c.m. frame using the Born approximation can be found as,

do o 9112 2 1 N2 . 2
_— = om 1 — 2.42
<dCOS(9>1,y 8m?v\/7_(7_7_1) { ‘GM(q )‘ (14 cos”6) + - ‘GE(q )| sin 0}, ( )

depending on the c.m. scattering angle, ¢> and the moduli of the form factors, |G/ (¢?)| and
|GE(¢%)]. An individual extraction of |G| and |G| can be achieved through a measurement
of the cross section over a wide range of cos 6 at fixed ¢>.

The total cross section in the 1vy-approximation is obtained by integrating Eq. (2.42) over
the c.m. scattering angle, which yields

T 1
— em G 2\2 |G 212
g 3m%v T 1) [’ Mm(q7)] 27\ e(q”)]
(2.43)
TTOlem 2

)

1
= 1+ —| |Gen(q®
3m3/7(r — 1) [ 27’} | ot (¢7)
where an effective form factor has been introduced, which characterizes the deviation between
the total cross section and the cross section one would obtain for an annihilation process with
only pointlike particles participating. In terms of |Gg| and |G|, the effective form factor

is given by
2112 2
Gunt?) = M £1Cs T (2.44)

Most experiments were able to extract the effective form factor from the measured cross
section, but not |G| and |G| separately through a measurement of the angular dependence.
Consequently, a statement regarding the individual form factors can only be made by means
of assumptions, which link one form factor to the other. Often, the assumptions |Gg| = |G|
or Gg = 0 are used. In Fig. 2.8 the world data set on the effective form factor G.g extracted
from different experiments using pp — eTe™, ete” — pp and eTe” — pp~y can be found
as a function of ¢2. In all cases, the assumption |G| = |G| has been used to analyze the
data, which results in |Gas| = Gegr-

Only two experiments have performed an individual determination of both form factors,
the PS170 experiment at LEAR [29], and the BaBar experiment at SLAC [30, 31], where in
the latter experiment the form factors have been extracted through the initial state radiation
reaction ee” — ppy. The results of the ratio |Gg /G|, which are presented in Fig. 2.9,
include large uncertainties and are not consistent with each other, clearly calling for future
experiments.

New measurements of the timelike form factors are planned by the PANDA experiment at
the Facility for Antiproton and Ion Research (FAIR) [32| and the BES-III experiment at the
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Figure 2.8: Results of the effective form factor measured by various experiments as a function

of ¢*. The figure is adapted from Ref. [28]. In the analysis the assumption
|G| = |GE| = Geg has been made.

Beijing Electron Positron Collider IT (BEPC-II). They will explore the at present still largely
uncharted timelike region in much greater detail, bringing values of about s = 30 GeV? into
reach. Those experiments, which also attempt to measure |Gg| and |G| separately with
high precision, will improve the knowledge of the electromagnetic form factors in the timelike
region and complement our picture of the nucleon.

By measuring the unpolarized cross section Eq. (2.42) of the aforementioned annihilation
processes, only the moduli of the electromagnetic form factors can be investigated, whereas
the phases of the form factors can only be accessed by taking additional observables into
account, in particular polarization observables. Due to the complex structure of the nucleon
form factors, further polarization observables emerge in the timelike region. For instance,
the single-spin asymmetry (SSA), when either the proton or the antiproton is polarized
perpendicular to the scattering plane and does not require polarization of the leptons in the
final state. The SSA is defined as

B dot — dot
Y dot + dot’

where do! (do‘) denotes the cross section for an incoming nucleon with positive (negative)
perpendicular polarization. In the case of a polarized proton the asymmetry in the 1v-

(2.45)

approximation reads
2sin 6 cos O Im [GpG?,]
Ay = —
V7D
_ 2sinf cos 6 |Gp||Grsin(¢p — o)
V7D |

(2.46)
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Figure 2.9: Results of the (timelike) form factor ratio |Gg|/|G| as a function of ¢?: Green
circles display the data of the BaBar experiment [31], blue triangles refer to the
results of the PS170 experiment [29].

where ¢p and ¢p; correspond to the phases of the electric and magnetic form factors, re-
spectively, and D is given by

D = [Gu*(1 +cos?6) + |G| (2.47)

Hence, measurements of both, the angular distribution of the unpolarized cross section and
the SSA, can be used to get information on the moduli of the electromagnetic form factors
as well as their relative phases.

2.3.2 Electromagnetic Form Factors in the Unphysical Region

The timelike region below the (p + p)-threshold, associated with a momentum transfer of
0<qg®< 4m%\,, is known as the unphysical region, since these values of momentum transfer
cannot be accessed by annihilation processes as pp — eTe™ or eTe” — pp. Anyhow, it
is worth to explore the form factors in that kinematical range, which presumably contains
important information concerning the link between the spacelike and timelike regimes. In
Fig. 2.10 a comparison of spacelike and timelike form factor data is shown. The gray colored
band indicates the unphysical timelike region. Information on the form factors in that
kinematical range will certainly improve our understanding of the internal nucleon structure.

Several models predict large contributions of vector meson resonances in the unphysical
region, which likewise impact the form factor behavior in the above-threshold region as well
as in the spacelike regime. A measurement of the form factor offers the opportunity to
constrain and disentangle such models.

Furthermore, the threshold behavior of the nucleon form factors at ¢ ~ 4m%\, raised
attention due to the unexpected sharp rising of the cross section, when approaching the
near-threshold region. The enhancement of the cross section entails a strong momentum
transfer dependence of the timelike form factors in the ¢* region close to 4m3;, which has
not been explained so far.
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Figure 2.10: Comparison of spacelike and timelike data of the form factors |G|/ . The blue
data points correspond to Gpr/p, extracted from Rosenbluth measurements,
taken from Refs. [10,20,33-38|. The green data points indicate the extracted
effective form factor Geg /1, in the timelike region measured in the annihilation
reactions pp — e"e~,ete” — pp and eTe” — pp~y. The data is adapted from
Refs. [29, 31,39-44]. The gray shaded area represents the unphysical region
0<q?< 4m?v.

Despite all this, no data of the form factors in the unphysical regions exist so far. But, as a
possible way to access the form factors below the threshold, an investigation of the reaction
pp — mete” has been proposed in Ref. [45] and of the process pd — eTe™n in Ref. [46].
An analysis of the former process with regard to the determination of the form factors will
be given in Chapter 6.

2.4 Form Factor Models

In order to calculate observables concerning the electromagnetic structure of the nucleon,
parametrizations of the electromagnetic form factors are required. Due to the numerous data
sets in the spacelike region, parametrizations based upon fits to the data are commonly used
for spacelike form factors, such as the dipole parametrization presented in Eq. (2.28), or an
expression of the ratio Gg/G)s as found by fitting the polarization transfer data, e.g. the
linear fit given by Eq. (2.33). For instance, one can parametrize Gj; by the results obtained
in the Rosenbluth separation, for which the extraction is expected to be more accurate than
the one of the electric form factors, and G is then expressed by the parametrization of G
and the form factor ratio found in polarization transfer measurements.

Other form factor parametrizations rest upon model descriptions, which attempt to explain
the properties of the nucleon form factors. The earliest models of the nucleon form factors
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Figure 2.11: VMD coupling of the photon to the nucleon.

are based on vector meson dominance (VMD), corresponding to a photon interacting with
the nucleon through the exchange of the lowest lying vector mesons, as shown in Fig (2.11).

In Ref. [47] a VMD based model of the proton and neutron form factors has been presented,
where the photon couples to both, an intrinsic structure, given by an intrinsic form factor,
and a meson cloud, described within the VMD framework. A form factor model for both
spacelike as well as timelike electromagnetic form factors has been presented in Ref. [48], by
generalizing the findings of Ref. [47] and including new data for fitting the free parameters
of the model. This model is mostly used as parametrization of the timelike electromagnetic
nucleon form factor in the calculations presented in this thesis.

The spacelike form factor parametrization of Ref. [48] is given by:

s;oy_ 1 4 mg mg
F1(Q)—§Q(Q) (1_ﬁ“_5¢)_ﬂwq2—mg_ﬁd’qQ—mi]’

i 2
F(¢*) = %g(rf) 1= B, =B, &] :

| T
(2.48)
S.2 L, i m; mi
F == 0.12 - — 0y ——— |
5 (a7) 2g(q)_( +%)q?—mi “F
B 2
FY(¢*) = = 9(¢®) | - 3.706 —L— | ,
2 (4) = 59( )_ @ —m?
where )
2y —
9(¢%) = 00 (2.49)

is the intrinsic form factor, characterizing the size of the constituent quarks inside the nucleon.
The masses of the vector mesons are m,, = 0.783 GeV, mg = 1.019 GeV and m, = 0.776 GeV
and the free parameters are obtained by fitting the spacelike data. To take the non-negligible
width of the p meson into account, the propagator has been replaced as

m% mz + 8L ymy/m

My . 2.50
Zomd " EomE T (@ = amd)T,alQP)jmn (2:50)

This model has been extended to the timelike region using @? — —¢?. In addition a phase
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Figure 2.12: Timelike form factor models: blue solid curve: VMD model; green dashed curve:
pQCD based model according to Eq. (2.53).

has been introduced to the intrinsic timelike form factors:

1
2
9\aq" ) = 77— oo
@) (1 —efyq?)?
where the phase 6 is obtained from a fit to the timelike data. Furthermore, the pole of the
p meson has been modified as

(2.51)

m% mz + 8L ,my/m

P—m2 @ —m2 (@ — Am2)T,a(¢?)/mr — T AmB()

(2.52)

Such a model predicts a resonance structure of the form factors in the unphysical region,
due to the interaction of the vector mesons.

Another model, which is also used to parametrize the timelike electromagnetic form factors,
is based on the predicted pQCD behavior of the form factors. This model is given by an
analytical continuation of the dipole parametrization of the spacelike form factors. The
moduli of the form factors are

B
¢ <1n2 K_z + 7r2> ’

|GE M| = (2.53)

with A = 0.3 GeV. The parameter B is a free parameter, in Ref. [49] it was found to be
B = 56.3 GeV? for the proton and B = 77.15 GeV? for the neutron.

In Fig. 2.12 both models, the VMD model and the model based on pQCD behavior are
shown for timelike momentum transfers. One can clearly see the predicted resonance struc-
ture of the VMD model in the unphysical region arising from the poles of the p, w and ¢
mesons, whereas the pQCD based model gives a smooth behavior of |G|, steeply rising for
> — 0.
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Chapter 3

Two-Photon Exchange in Elastic
Electron-Proton Scattering

Triggered by the discrepancy between data of unpolarized Rosenbluth measurements and
of polarization experiments, in recent years a whole new field studying the influence of
two-photon exchange corrections to elastic electron-nucleon scattering emerged, from both
experimental and theoretical sides. In this chapter the effects of two-photon (2v-) exchange
in elastic ep-scattering are presented. The general formalism of 2v-exchange in terms of
three generalized (2v-) form factors is introduced and a brief discussion of existing model
calculations as well as observables which are directly related to 2v-exchange effects is given.

Subsequently, a phenomenological determination of the 2y-amplitudes from elastic ep-
scattering data is presented. Motivated by new high-precision measurements of polarization
observables in ep-scattering performed at JLab/Hall C [50], the available cross section and
polarization data are used to provide an extraction of the two-photon exchange amplitudes.
Furthermore, predictions for the e™p/e™p cross section ratio, which is presently under inves-
tigation in several experimental setups, are given.

3.1 Electron-Proton Scattering beyond the Born
Approximation

In order to calculate the two-photon exchange in elastic electron-proton scattering, we con-
sider the process

p(p, Ap) + e~ (k,h) — p(', A\y) +e (K, h'), (3.1)

where p (p’) and k (k') are the momenta of the initial (final) proton and electron, respectively,
and A\, (Ay), h (R') are the corresponding helicities. The 2vy-exchange process is described
by the direct and crossed box diagrams presented in Fig. 3.1, where the gray blobs indicate
the unknown hadronic interaction of the 2v-exchange reaction.

For this purpose, we introduce the 4-vectors

1 1
Pl =S+ o), KM= k), Q= -yt (3.2)

The scattering process can be described by two independent variables, which are chosen to
be

v=K-P, Q'=-¢=-0p-p> (3.3)
The invariant Mandelstam variables are defined as
s = (p + k)2a t= (pl _p)2 = _Q2’ U = (p - k/)2a (34)
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N(p) N(p') N(p) N(p')

Figure 3.1: Direct and crossed box diagrams of two-photon exchange in elastic electron-
proton scattering

giving rise to

1
V=g (s—i—u—Qm%\,). (3.5)

The general concept of two-photon exchange as explanation for the discrepancy between
Rosenbluth measurements and polarization experiments has been discussed in Ref. [27]. It
has been shown, that taking Lorentz invariance, parity conservation, and charge conjugation
into account, the general form of the two-photon exchange diagrams can be written in terms
of an effective current-current interaction with one additional structure beyond those that
gave Gg and G ). This expression can be derived starting with the most general expansion
of the amplitude M of elastic ep-scattering, permitting the exchange of more than a single
photon

M = (K )T, u(k) N@') Th N(p), (3.6)

where the general Lorentz structures I'y; and 'z, with respect to a set of Dirac bilinears and
to the vector basis defined by P#, K#, Q" and L* = e*P? P, K,(),, can be written as

Iy = a1l 4+ biys + a' K, + diysy' K, (3.7)
I% = ayl + byys + 2" Py + dav57" P

All other structures either do not contribution or can be reduced to the structures above by
means of the Dirac equation. Therefore, the matrix can be expanded in terms of 16 Lorentz
structures. Taking parity conservation into account reduces the number to 8, since terms
containing only one 5 are not invariant under parity transformations. In addition, two
structures, namely @; v5u; N v5 YK N and @y v5 v, P* N ~5 N , are not invariant under
CPT transformations , which leads to 6 remaining amplitudes:

(K )u (k) N )N (p),  w (k" )ui (k) N(p")y* KN (p),
(k') v PP u (k) NP )N (p), (k") v, P* w (k) N(p') v K, N(p), (3.8)
(k) vs ur (k) N (") vs N(p), @ (k") v57,P* wi(k) N(p") v57" K, N (p).

In the limit of vanishing electron masses, m. — 0, the helicity of the leptons is conserved,
which implies invariance under the chirality transformation w;(k) — y5u;(k) and (k") —
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3.1 Electron-Proton Scattering beyond the Born Approximation

—1;(k")7y5. Structures, which change sign under these transformations, describe a helicity-flip
of the electron and are suppressed by a factor m.. Consequently, we can neglect any structure
given in Eq. (3.8), which contains either u;(k")u; (k) or @; (k") v5 u;(k), when assuming m, = 0.

Hence, the scattering process beyond the Born approximation, in the ultra-relativistic
limit, can be described by three independent amplitudes. By means of the Dirac equation
and elementary relations between the Dirac matrices, the most general matrix element of
elastic electron-nucleon scattering can be expressed as [27]:

e2 PH H

K () NG { Gar @t = Fa @)+ (@) b VG
Q my ma
(3.9)
The three generalized form factors G, F» and Fy are complex functions of two variables,
e.g. Q2 and v. Several equivalent representations of Eq. (3.9) exist. In some cases an axial
parametrization of the matrix element has been used to calculate the 2y-exchange processes,
where Fj is replaced by an axial-like term G 4, using the relation

M =

S—Uu

w(k)Pu(k) NV KN (p) = —— (k) v (k) N ()" N(p)

(3.10)

t _
+ 7wk )yrsu(k) N ')y N (p).
In the following, the representation of Eq. (3.9) will be used. The expressions for the axial-
vector expansion of the scattering amplitude can be obtained through a simple transformation
of the three generalized form factors. )
We also introduce the “electric amplitude G g, defined as

éE:éM—(l—i-T)FQ, (3.11)

which is commonly used to characterize 2y-exchange.

To identify the effects caused by multi-photon exchange, the amplitudes Gy and Gg can
be written as a decomposition of the usual proton form factor and a form factor which
originates from processes including the exchange of at least two photons. The additional
third amplitude, Fy, vanishes in the one-photon approximation:

Gu(Q%v) = Gu(Q%) +6Gu(Qv)
Gr(Q*v) = Gr(Q* +iGE(Q%v) (3.12)

F(Q%v) = 6F3(Q% v)

The complex amplitudes 6G s, 6Gg and §F; are suppressed by aem compared to the elec-
tromagnetic form factors Gg and Gj;. Using Eq. (3.12), the squared matrix element of the
elastic scattering process can be expanded with respect to qem:

IMJ? = | My, [? + 2Re[M], May] + O(0y,), (3.13)

with the electric charge appearing in Eq. (3.9) taken out. The amplitude M, is the am-
plitude of the process in Born approximation and Ms, stands for the amplitude describing
27-exchange, which is suppressed by an additional factor aepy, relative to Mj,. Consequently,
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Chapter 3 Two-Photon Exchange in Elastic Electron-Proton Scattering

the leading order correction to the squared matrix element is given by the real part of the
interference of 1v- and 27y-exchange processes, 2Re[M7], Ma,], which is of order ey com-
pared to the Born contribution. Higher order corrections in cep, e.g. terms oc |/\/l2,7|2 or
contributions caused by the exchange of three or more photons, are neglected in the following
calculations.

The reduced cross section including the two-photon exchange corrections calculated up to
first order corrections in «e, becomes

OR = G?M + EGQE +2GRe <(5GM + z’:‘LQFg) + QEGERG (5@]5 + %Fg) R (3.14)
T my T mayy
where the first two terms are the reduced cross section in Born approximation given by
Eq. (2.27) and the second part is the interference term oc 2Re[M7, Mo, ].
The transverse and longitudinal polarization components can be found as

1 2¢(1 — ~ - -
po— —op L= {GEGM+GMRe <5GE+L2F3> +GERe5GM},
OR T my

(3.15)

1 N N

P o= 2h—+/1—-¢2 {G%J +2GRe <5GM + LLQF?,) } :
OR 1+emy

corresponding to a polarization ratio P;/F:

Li = —’/276 Ge {1 — ReéGM —l—Re(SGE + LRGFg (L — ii) }
P, T(1+€) Gy Gu Gg m?v Gg 14+eGpy
(3.16)
In Born approximation, these corrections vanish and the well known expressions for these
observables, Eqgs. (2.31) and (2.32), are recovered.
The expressions of the observables including the 2+ contributions presented in this section
are model-independent. However, the 2y-amplitudes 8G ), 0GE and Fy cannot be calculated
from first principles due to the unknown hadronic interaction. Therefore, different approaches

have been used in order to obtain quantitative results for the corrections. Some of these
approaches will be discussed in the following.

3.2 Model Calculations of Two-Photon Exchange

Since the form factor discrepancy has been confirmed, several model approaches have been
applied to calculate 2v-exchange corrections to the elastic scattering process, where a few of
these approaches will be reviewed in this section.

In the analysis of Ref. [27], it has been demonstrated, that two-photon exchange contribu-
tions are able to change the Rosenbluth extraction of Gg in a significant way, affecting the
polarization transfer measurements only minimally. The 2v-exchange corrections to the cross
section, as one might expect from perturbation theory, could at large momentum transfer
be comparable in size to the term containing G% in the Rosenbluth cross section and con-
sequently could have a large impact on the extraction of Gg. Furthermore, e-dependent
corrections to the G?\/l term can appear as well. These results obviously call for further
precise calculations.
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Figure 3.2: Extracted ratio p,Gg/Gy including 2v-exchange calculated within a hadronic
approach using a single nucleon as the hadron intermediate state. Black circles
(PT): results of Gg/Gp from polarization experiments; blue diamond (LT):
results of G /G from Rosenbluth experiments; red squares (Lt + 2v): Gg/Gym
from Rosenbluth experiments including the 2y-corrections. Figure adapted from
Ref. [51].

A model calculation of the direct and crossed box diagram of 2y-exchange within a hadronic
approach has been done in Refs. [51-54], using nucleons and resonances as intermediate
states to describe the hadronic vertices. In the first calculations [51,52] only the elastic
nucleon intermediate state has been used. The analysis has been extended by first including
the A(1232) resonance in the calculation of the 2y-exchange corrections [53| and later by
a larger set of spin-1/2 and spin-3/2 resonances as intermediate states [54]. The results of
two-photon exchange contributions using an elastic nucleon intermediate state are shown in
Fig. 3.2. The authors of Refs. [51,52] found, that the elastic nucleon contributions have a
large effect on the results of the Rosenbluth extraction and are able to resolve the discrepancy
partially. The effect of the A and higher mass resonances were found to be small, cancelling
the 2v-exchange contribution of the nucleon intermediate state in part. The hadronic model
is limited to low Q?, where the contributions of the excited intermediate states should be
small.

In order to estimate the 2y-exchange contribution at larger 2, a partonic calculation was
performed in Refs. [55,56], by relating the so-called generalized parton distributions (GPDs)
of the proton to the 2v-exchange diagrams. Within this factorization approach the amplitude
of the process is given as a convolution of a hard subprocess and a soft non-perturbative part,
which can be parametrized by the GPDs. The corresponding Feynman diagram in the so-
called handbag factorization is illustrated in Fig. 3.3, where in the hard subprocess, indicated
by the hard scattering amplitude H, the lepton scatters off one massless quark in the nucleon:

e (k) +a(pg) — e~ (K') 4+ q(py)- (3.17)

The two-photon contribution to the elastic cross section can be obtained by calculating
the 2v-exchange direct and crossed box diagrams of the electron-quark scattering process.
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Chapter 3 Two-Photon Exchange in Elastic Electron-Proton Scattering

Figure 3.3: Handbag factorization approximation of elastic electron-nucleon scattering: in
the hard partonic subprocess H the electron scatters off one single quark in the
nucleon. The soft process is parametrized by the GPDs of the nucleon, presented
by the lower blob.

Accordingly, the quarks are embedded in the nucleon as described by the GPDs of the proton.
This approach is valid at larger values of momentum transfer Q2 and center-of-mass energy
s, with Q?, s > m?\,.

The effect of the hard two-photon corrections on the form factor ratio extracted from
unpolarized Rosenbluth measurements is shown in Fig. 3.4. In the Q? range of 2-3 GeV?
the Rosenbluth results including the 2vy-corrections agree with the results from polarization
experiments. However, at larger Q2 the corrections can partially reconcile both methods.
The size of the corrections to the polarization results is small and within their experimental
uncertainties, thus they are not presented in Fig. 3.4.

In Refs. [57,58|, two-photon exchange has been studied at high Q2 in the framework of
perturbative QCD using the concept of hadron distribution amplitudes (DAs). The ampli-
tude of the process appears as a convolution of a non-perturbative contribution parametrized
through the proton DA and a hard kernel H, which can be calculated within perturbative
QCD. In the leading-order contribution to the 2v-exchange, as shown in Fig. 3.5, all three
valence quarks participate in the subprocess. The two exchanged photons, which must have
large virtualities, couple to different quarks and the third quark interacts via the exchange
of a hard gluon. In the calculation of Ref. [57] two different models of DAs have been taken
into account. The authors found a 2v-effect of a few percent, depending on the model for
the DAs.

Two-photon exchange effects have been studied in Ref. [59] using the dispersion relation
technique for the nucleon form factors. Assuming, that the 2y-exchange is responsible for the
difference between the two methods and that the effect on the polarization ratio is negligible,
the dispersion results were found to be in agreement with previous model calculations [51,56].
In Ref. [60] the two-photon exchange amplitude has been computed in the framework of
dispersion relations for nucleon intermediate states using on-shell nucleon form factors. The
obtained effects are similar to those found within a hadronic approach [51], especially in the
smaller Q? region.
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Rosenbluth w/2-y corrections vs. Polarization data
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Figure 3.4: Rosenbluth extraction of the form factor ratio R including two-photon exchange
corrections obtained by a GPD based partonic approach. The results of the
Rosenbluth determination of Gg/G s including the 2v-corrections are presented
by the filled squares. The polarization data are indicated by the circles and the
Rosenbluth extraction without two-photon corrections by blue triangles. The
figure is taken from Ref. [56].

3.3 Observables related to Two-Photon Exchange

Besides searching for effects beyond the Born approximation in the Rosenbluth cross sections
and polarization transfer experiments, two-photon exchange can be probed using observables
which are directly connected with the 2v-amplitudes. The comparison of positron-proton and
electron-proton scattering cross sections allows to access the real part of the 2y-amplitudes,
whereas single spin asymmetries are related to the imaginary part.

3.3.1 Comparison of Positron-Proton and Electron-Proton Scattering

A direct experimental test of the two-photon exchange formalism can be obtained by the
comparison of the elastic positron-proton (e*p) and the elastic electron-proton (e~ p) scat-
tering cross sections. The ratio of these cross sections is defined as:

- +

R .
or(e~p— e p)

ete~

The cross sections in the Born approximation are the same for e*p and e~ p scattering, but
the interference term of the 1y and 2y-amplitudes in the cross section changes its sign under
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Figure 3.5: One possible diagram for elastic ep-scattering with hard two-photon exchange.
The gray blobs correspond to the DAs of the incoming and outgoing nucleon,
respectively.

the interchange of e~ and e™. Therefore the 2v-exchange contribution appears as a deviation
of Ro+.— from unity. The cross section ratio can be written as

. |/\/l1'7|2 - 2R6[M>{7M2’Y]
My [? + 2Re[M], Mo, (3.19)

~ 1 =202,

}%6+6_

where d2, is the two-photon exchange contribution to the cross section and M, and My, are
the amplitudes of the 1y and 2+ processes as discussed in Eq. (3.13). Hence a measurement
of R.+,- gives direct access to the real part of the 2v-exchange amplitudes and consequently
allows for tests of the two-photon exchange formalism.

Early comparisons of e™p and e p scattering could not yield to a clear constraint on the
two-photon exchange effects. The existing data, which have quite large uncertainties, had
mostly been taken at low Q2 and larger values of €, where the 2y-corrections are expected to
be small. However, new experiments, which attempt to measure R +.- with higher accuracy,
are underway. The Olympus experiment at DESY [61], the E07-005 experiment performed
at JLab [62], as well as the results taken at the VEPP-III storage ring in Novosibirsk [63], will
provide cross section comparisons over a wide kinematic range. The Novosibirsk experiment
already reported data for two values of ¢ and Q2 [64]:

Ro+.- = 1.0160 +£0.011 40.003, for ¢=0.5, Q*=1.43GeV?

(3.20)
R = 0.9976 + 0.0009 4 0.003, for e =0.95, Q%= 0.23GeV2.

ete™
Further results of these experiments will give insight into the 2v-formalism and disentangle

different models applied for calculating two-photon exchange corrections.

3.3.2 Beam-Normal and Target-Normal Spin Asymmetries

The imaginary part of the two-photon amplitudes can be accessed through a single-spin
asymmetry (SSA), when either the target or the beam is polarized normally to the scattering
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plane of the reaction. Due to time-reversal invariance, the SSA vanishes in the 1v-exchange
approximation and is suppressed by aep,-
The target-normal SSA A,, is defined as

A, = TN "INy (3.21)
oNt T+ ONy

where on4 (o) denotes the cross section for a nucleon spin parallel (anti-parallel) to the
direction normal to the scattering plane. A, is expected to be of order of ey ~ 102. It can
be expressed through the generalized form factors, which have been introduced in Eq. (3.9),

A, = Mi{_GMIm [5@,54_%}53] + GgIm [5@1\4—1— 2e 1/2 F3:|},
. OR m3, T+emy
(3.22)

and depends on the imaginary part of the two-photon amplitudes Gy, G and Fj.

Polarizing an ultra-relativistic particle normally to its momentum leads to a suppression
of m/E, where m is the mass and E is the energy of the particle. Hence, the beam-normal
SSA, which requires a polarized electron beam, is suppressed by an additional factor of
me/Ee ~ 1073 — 107* and is expected to be of the order of ~ 107° — 1075. Tt vanishes
explicitly for m, = 0, as it includes an electron-helicity flip. The general form of the matrix
element including the electron-helicity flip, which has been derived in Ref. [65], contains six
independent amplitudes, hence three additional structures besides the amplitudes introduced
in Eq. (3.9).

3.4 Determination of Two-Photon Exchange Amplitudes from
Elastic ep-Scattering Data

3.4.1 Measurement of Effects beyond the Born Approximation in
Polarization Transfer Observables

In 2010 the results of the GEp2y experiment [50], which was performed at JLab/Hall C,
have been published. The aim of the experiment was the search for effects beyond the
Born approximation in polarized elastic electron-proton scattering. The polarization ratio
R, defined by

T(l+¢) B

2
e B (3.23)

R=—py,
and the longitudinal polarization component P, have been measured separately at fixed
momentum transfer of Q? = 2.5 GeV? as a function of € with high precision.

The results of the experiment can be seen from Fig 3.6. The new data of the ratio R are
presented by the filled blue circles in the left plot, together with the results of the polarization
ratio from the earlier GEp-I experiment [67] (open triangle). It can be clearly seen that
the data of the GEp2v experiment improve the precision of the previous measurement.
No evidence of an ¢ dependence of the polarization ratio R has been found within the
uncertainties of ~ 1%. In contrast, the results of the polarization component P, /PlBom,
presented in the right panel of Fig 3.6, show an & dependent behavior, with an enhancement
of P,/PP™ of 2.3 % £ 0.6% at € = 0.785.
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Figure 3.6: Results of the GEp2y experiment (blue circles) of R (left panel) and P,/PBon
(right panel) as a function of ¢ at Q% = 2.5 GeV2. The blue solid line shows a
constant fit to the data, the other curves correspond to predictions of different
models [51,56,57,66]. The open triangle represents the result of the earlier GEp-I
experiment. The star in the right plot indicates the £ value at which the results
have been normalized. The systematic uncertainties are presented by the black
bands at the bottom of the panels. The figure is adapted from Ref. [50].

In addition, predictions of three theoretical models, which have been discussed in Sec-
tion 3.2, are presented in Fig. 3.6. One notices, that no model is able to explain both
findings of the experiment, the ¢ independent behavior of R as well as the effect of ~ 2% on
P /PlBOrn at larger € values, even though the predicted ¢ dependence for R of the different
models varies significantly. The hadronic model [51] as well as the GPD-based approach [56]
and the pQCD calculation [57] find a larger effect on R for smaller values of ¢, while the
results of the calculations differ in the sign of the two-photon contribution. Furthermore,
using the GPD model and the hadronic model, one obtains an insignificant effect on the ¢
dependence of P,/PB°™, which is below 1%.

Only the calculation of radiative corrections of Ref. [66] does not predict any measurable
¢ dependent effect on R. Within this approach the so-called structure function method has
been used to calculate radiative corrections to elastic ep-scattering in quasi-elastic kinemat-
ics. The authors of Ref. [66] found, that the 2y-exchange corrections are negligible, but
receive larger contributions through initial state emission. However, several approximations
have been applied in the analysis and the results strongly depend on the experimental con-
ditions. To calculate the box-diagrams of two-photon exchange, it has been assumed that
both photons carry approximately half of the transferred momentum.

The discussed precise measurement of the polarization observables, which cannot be ex-
plained by existing 2y-exchange model calculations, motivates to extract the two-photon
amplitudes from the existing data within a phenomenological approach.
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3.4 Determination of Two-Photon Amplitudes from ep-Scattering Data

3.4.2 Phenomenological Extraction of Two-Photon Exchange Amplitudes
from ep-Scattering Data

For the extraction of the three 2y-amplitudes 6G s, 6G g, and Fs, which have been introduced
in Eq. (3.9), it is convenient to define the real part of the two-photon amplitudes relative to
the magnetic form factor,

Y (v, Q%) = Re (5@_]\4) , Ye(v,Q*) = Re <@> ,

since these combinations appear in the expression of the observables.
The reduced cross section of the reaction including the 2vy-corrections divided by G?\/l then

reads )
G G

TR 14 22E Loy, 2.2

TGy TG

Yi + 2¢ (1 + @> V3. (3.25)
TG M

The polarization transfer ratio R in the presence of 2v-exchange can be written as:

R T(l—i—E)Pt Gg GEg 2¢e Gg
= AT 2 Y — —2Y; 1-— — | Ys. 2
i 5 B GM+ E Gt M+< 1+5GM> 3 (3.26)

For P, separately, its expression relative to the 1y-result PP°™ of Eq. (2.31) is given by :
p e G2\ 5 G2 Gr
L 12 (1+22E) «x 1— Y:
PlBorn © < * T G?, 1+e¢ TG?, * TG 3

G G
Yy SEy | L
+TGM{E Cor M”

(3.27)

For the analysis of the two-photon exchange contribution to elastic electron-proton scat-
tering the data for the ¢ dependence of P,/P, and P;/PP™ at Q?= 2.5 GeV? [50] are used,
which have been discussed before, and are combined with a high-precision Rosenbluth mea-
surement of op performed at JLab/Hall A [20], where data of the cross section have been
taken at a similar value, Q% = 2.64 GeV2. Neglecting the small difference between the two
values of momentum transfer (2.5 and 2.64 GeV?), the combination of both experiments
allows for having three observables at the same value of Q? to extract the three two-photon
amplitudes Y;s , Yg, and Ys.

Firstly, the data for the polarization ratio R is fitted, which is displayed in Fig. 3.7. The
JLab/Hall C experiment does not see any systematic 2vy-effect on P;/F; within their error

bars of the order of 1%. We performed a fit of — 1/ 7(12;6) % assuming an ¢ independent

part A, which in the Born approximation equals ,upg—f;, supplemented an € dependent part:

Td-e)h = A+ Be(1 —e)d. (3.28)

—Hp 2¢ P

Using a range of values for ¢ and d, it has been found, that the value B is zero within
the present error and that the extracted values of A are all equal within their error bars.
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Figure 3.7: The ratio —pu, T(lz—?)% as a function of € for Q2 = 2.5 GeV2. The data points
are from the GEp-I experiment [9,67] (blue triangle) and from the GEp-2v exper-
iment [50] (red circles): the error bars show the statistical errors, the systematic
errors are given by the gray band. The solid curve is an ¢ independent fit, given

by Eq. (3.29).

Therefore we conclude, that the precision of the present data [50] at Q2 = 2.5 GeV? does
not allow to extract any € dependent part, in addition to the constant value A.
For this reason, an ¢ independent fit is used in the analysis, which yields:

R=—pu, ME = 0.693 = 0.0064tat. £ 0.0104ys., (3.29)
2¢ P
indicated by the solid line in Fig. 3.7.

The fitted value of R can be used in order to extract the ratio Gg/Gps of the 1y-form
factors at Q? = 2.5 GeV?, which is a constant at fixed Q2. These procedure is motivated
by the Regge limit assumption, which predicts, that the 2+y-corrections to P;/F, vanish for
e — 1. Hence, in this limit R is directly related to p,Gr/Gn. Since we assume that the
ratio R is independent of € for Q2=2.5 GeV?, R can be identified with the form factor ratio:

Gg

R = R(f — 1) = /,Lp@ Q272 cey?

= 0.693. (3.30)

In the next step the longitudinal polarization component is analyzed. P is conventionally
divided by its 1y-value PlBom, which is calculated according to Eq. (2.31), using the value
of Eq. (3.30) as input for Gg/Gyr. To fit the e-dependence of P/ PP™, we first specify its
behavior for the limits ¢ — 0 and € — 1, where the 2v-contributions to P, are expected to
be zero. As can be seen from Eq. (3.27), for the limit € — 0 these statement can be derived
from the model independent expression of the observable P;/ PlBOrn in terms of Y, Yg, and
Y3, giving rise to

P
e 201 (3.31)
P orn

l

The second assumed limiting behavior can again be motivated from the Regge limit assump-
tion for ¢ — 1, as discussed above.
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Figure 3.8: The ratio Pl/PlBom as a function of € for Q2 = 2.5 GeV2. The data points are
from the GEp— 2+ experiment [50]: the error bars show the statistical errors, the
systematic errors are given by the gray band in the bottom. The star indicates
the € value at which the data have been normalized to the value 1. The two
curves correspond to the fits described in Eq. (3.32): Fit 1 (solid curve), Fit 2
(dashed curve).

Furthermore, perturbative QCD calculations of 2y-exchange corrections [57,58]| find, that
P,/ PB°™ behaves as

PBorn - 2 (332)
l

P, ) (1—¢e)Y2 for e — 1.
€ for e = 0.

Nevertheless, the pQCD prediction is not expected to hold accurately at the relatively low
value of Q% = 2.5 GeV?, so we refer to the pQCD behavior only as an example. Although
the data for Pl/PlBO]rn show a decrease for ¢ — 0, the fall-off at Q% = 2.5 GeV? is faster
than predicted from pQCD. At this values of Q? one expects to receive sizeable corrections
to the predicted behavior. Hence, we will not use the exact form of the perturbative QCD
prediction, but modify the simple functional form in order to find the best fit to the available
data, taking the predicted endpoint behavior into account .

Therefore, as fit of the data for P/ PIBO”” two different, purely phenomenological, func-
tional forms are used, which depend on one parameter a;:

P are*(1 —¢)t/? (Fit 1). (3:33)
pporn aeln(l —e)(1—&)Y2  (Fit 2). '
The fits to the data, shown in Fig. 3.8, lead to the values
a; = 0.11 % 0.034a1. %+ 0.065ys, (Fit 1).
(3.34)
a; = —0.032 £ 0.008a¢. = 0.0205ys.  (Fit 2).

Now we take a closer look on the Rosenbluth measurements of the reduced cross section.
As presented in Fig. 3.9, the precise data of the JLab/Hall A Rosenbluth measurement [20]
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Figure 3.9: Rosenbluth plots for elastic ep-scattering: reduced cross section or divided by
,u?)/(l + @Q?%/0.71%) as a function of ¢ at Q% = 2.64 GeVZ2. Solid curve: linear
fit to the JLab/Hall A cross section data (circles) [20]. Dashed curve: Result
in the one-photon approximation, using the slope from the polarization data of
Gpg/Gpu. The gray band shows the systematic errors.

of o at Q?>=2.64 GeV? show a linear increase of the cross section with respect to e, therefore
OR
(M}!)GD)2

is suggested, where the standard dipole form factor Gp has been factored out, which has
defined in Eq. (2.28).
The fit to the data yields

—a+be (3.35)

a=1.10640.006, b= 0.160 = 0.009. (3.36)

For the analysis, the 1y-form factors Gg /G as well as G?\/l are needed. To extract the
2v-amplitudes as well as the form factor combinations Gg/Gjs and G?M from the three
observables, we have to make two assumptions. The first one was made in Eq. (3.28), where
the ¢ independent part gives Gg/Gu, see Eq. (3.30). To fix the value of G2, it has been
assumed, that the 2y-corrections to og vanish in the limit € — 1, which is again motivated
by the Regge limit and in addition can be found as a result of model calculations of 2+-
exchange, e.g. in Ref. [57]. By means of the aforementioned assumptions, the reduced cross
section at € — 1 is found as

G2
ople =1,Q%) = G3, + TE (3.37)

The Gg /Gy value extracted from the fit to P,/ P, and the fitted values of the parameters a
and b entering in Eq. (3.35) allow to fix the value of G, as

2

b

( Gt > S . (3.38)
tpGD 1+ 2(Ge/Gum)?
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For Q? = 2.64 GeV? one obtains:

Gu \?
e = 1.168 + 0.010. (3.39)
p I D

Having specified the fits of the observables P,/P;, P;/ PlBom, and o defined in Egs. (3.29),
(3.32), (3.35), we next proceed to extract the two-photon amplitudes Yys, Yg, and Ys.

The fitting procedure involves three steps. Firstly, a standard x2-fit of the data for P;/P,
(1 parameter), P;/PP°™ (1 parameters) and op (2 parameters) is performed, using the
assumptions of the limit behavior for ¢ — 1 and ¢ — 0 as described above. Secondly, by
solving Eqs. (3.25)-(3.27) with respect to the amplitudes Y;, the 2y-amplitude as a function
of the fitting parameters and G%, and Gg/G ) are obtained. Thirdly, the 1o error bands of
Y; are computed from the statistical errors in the fitted observables, again using Egs. (3.25)-
(3.27). In the same way the systematic uncertainties of the data are estimated.

The results are presented in Fig. 3.10, where the 2+ amplitudes as a function of ¢ are
shown including the 1o statistical error bands. The systematic errors are indicated by the
horizontal bands at the bottom of Fig. 3.10. The two differently colored bands correspond to
the two different fits, which have been used for P;/PB°™ given by Eq. (3.34). One notices,
that all three amplitudes are of the order of 2-3 %, which is in agreement with the predicted
effects allowing to reconcile the discrepancy as found in Ref. [19].

The amplitude, which is best constrained by the available data, is Ya;. This is because
the amplitude Y} is mainly driven by the 2vy-effects on the cross section, for which several
precise data points over a large £ range exist. Neglecting the smaller terms in the cross
section, which are multiplied with Gg/G)y, leads to a 2vy-contribution 0? of the form

on =~ Yy +eYs, (3.40)

dominated by Yjs for smaller values of e. The error bands on Yjs originating from the two
different fits for P, largely overlap. Except for the region where ¢ is large, the dominance
of Y3 by the Rosenbluth data results in its approximate linear rise with €. For ¢ — 1, Yy
has to become non-linear in order to provide, that Yy + Y3 remains linear in this limit,
which we assumed in our analysis. How far the linearity of the Rosenbluth plot extends when
approaching e — 1 is an open question, which will be addressed by the results of a dedicated
experiment [68].

In contrast to Y3, the amplitudes Yr and Y3 are mainly driven by the polarization data.
One notices from Fig. 3.10 that the error bands overlap in the range where data for all three
observables exist (¢ > 0.6). In the range of smaller £, where there are less constraints from
the polarization data, one sees clear deviations between the two different functional forms
for the e-dependence. We checked, that the same conclusion is reached for other forms of
P/ PlBom. Hence one can conclude that the available data allow to extract these amplitudes
only in the range € > 0.6.

The amplitudes Yr and Y3 are at the 2-3 % level, showing a similar e dependence, but
having opposite sign. This can be explained by having a closer look at the ratio P;/P;. One
can see from Eq. (3.26), that the leading contribution of 2y-exchange to P;/P, is given by

P\Y
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Figure 3.10: Extracted 2vy-amplitudes as a function of ¢ at Q% = 2.64 GeV? together with
their lo-error bands. The two different colored bands indicate the fits of
P;/PPo™ as described in Eq.(3.32): Fit 1 (purple bands); Fit 2 (blue bands).
The horizontal bands at the bottom of the plots show the systematic errors.
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Figure 3.11: Predictions for the e™p/e™p elastic cross section ratio R.+.- as a function of e,
together with their 1o error bands.

The absence of 2y-effects in P,/ P, implies, that Yz and Y3 are of equal magnitude and of
opposite sign. Furthermore, the value of Y3 is nearly entirely driven by the data for P, as
can be seen from Eq. (3.27). When neglecting the small terms proportional to Gg/Gs, one
finds that the observable is given by

PP~ —22/(1+¢)Ys. (3.42)

To improve on the extraction of Yg and Y3 will require a further improvement in precision of
the polarization experiments and an accurate data set covering a larger range of ¢ for both
polarization observables.

3.4.3 Positron-Proton versus Electron-Proton Scattering

The comparison of positron-proton to electron-proton scattering, discussed in section 3.3.1,
provides a defined test of the 2v-exchange formalism. The e*p elastic scattering observables
are obtained from the ones for e"p (Egs. (3.25)-(3.27)) by merely changing the sign in front
of the 2y-amplitudes. Therefore the ratio of the positron-proton to electron-proton elastic
scattering cross section Rg+,-, Eq. (3.18), gives rise to the 2y-contributions to the cross
section.

The extracted 2y-amplitudes at Q? = 2.64 GeV? allowing for predictions of the ratio
R.+.-. The results of R.+.- are shown in Fig. 3.11 together with their 1o error bands,
where Fit 1 in Eq. (3.32) has been used. The ratio is dominated over most of the ¢ range by
the amplitude Y}, which is mainly determined from the cross section, and therefore R+ .-
depends very weakly on the functional form of P;. In the previous section, it has been found,
that the amplitude Y3; can be reliably extracted from the existing data. Consequently, the
present data allow to provide a prediction for R +.— at Q% = 2.64 GeV? over the full range of
g, under the assumption that the Rosenbluth plot extends linearly all the way up to € — 1.
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One notices that for Q? = 2.64 GeV?2, R+, rises linearly to small ¢, reaching R, +.- =
1.053 4+ 0.004 for ¢ = 0.5.

Measurements of R, +.- are underway at several experiments. The Olympus experiment
will cover an ¢ region of € ~ 0.4 -0.9 and a momentum transfer up to ~ Q? = 2.25 GeV?,
measuring R.+.- with an aimed accuracy of order of 1%. For the measured range of this
experiment, the 2y-corrections to the e™p/e™p elastic cross section ratio are found to vary
in the 1 - 6 % range.

In Fig. 3.11, also predictions for two other values of momentum transfer are provided,
Q? = 3.20 GeV? and Q? = 4.20 GeV?, where the high-precision Rosenbluth experiment at
JLab [20] has taken data of op. At these higher values of 2, a systematic measurement
of the e-dependence of the polarization observables has not yet been performed. For our
analysis of the Q% = 3.2 GeV? and Q? = 4.1 GeV? data, we therefore have assumed that
P,/ P, can be fitted by its 1vy-value proportional to Gg/Gps. One sees from Fig. 3.11, that
for a fixed value of ¢, the ratio increases with Q2. Nevertheless, for a detailed analysis of
the Q? dependence of the 2y-amplitude and the ratio R.+.— precise data for the polarization
observables at higher momentum transfer values are needed.

3.5 Conclusions

In this chapter the combined analysis of high-precision Rosenbluth data and considerably
measurements of the polarization observables has been performed. This analysis allows for
an extraction of the three 2v-amplitudes using empirical results for the three observables and
assuming, that for £ — 1 the 2y-amplitudes vanishes. The amplitudes are found to be at the
2-3 % level, where one amplitude (Y);) can be reliably extracted from the corrections to the
unpolarized cross section. Predictions of the eTp/e™p cross section ratio can be provided,
for which dedicated experiments are underway.

To improve on the extraction, further accurate data, in particular of the polarization
observables are required, covering a larger range of €. If a measurement of the polarization
observables at further common values of Q? will be performed, conclusions concerning the
Q? dependence of the 2y-amplitudes and the eTp/e™p cross section ratio can be drawn.
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Chapter 4

Two-Photon Exchange in the Timelike
Region

A complete understanding of the electromagnetic nucleon structure can only be achieved by
complementing the study of the spacelike nucleon form factors by its timelike counterparts.

The elastic scattering process is related to the corresponding annihilation processes via the
crossing symmetry. Since two-photon exchange plays a crucial role in the extraction of the
spacelike electromagnetic form factors from elastic electron-proton scattering, investigating
its influence in the timelike region seems to be an obvious task. Nevertheless, in the time-
like region no comparable calculation has been done to determine the two-photon exchange
effects for the annihilation processes. However, forthcoming form factor measurements at
PANDA@FAIR or BES-III are aiming precisions that can be comparable in size to the two-
photon exchange corrections. With the prospect of such high-accuracy measurements, a
detailed knowledge of corrections, as two-photon exchange, is necessary.

In this chapter the influence of two-photon exchange on the timelike annihilation reactions
pp — eTe” and eTe” — pp is studied. Firstly, the general properties of timelike 2-
exchange processes are presented in terms of generalized two-photon amplitudes, similarly
to the amplitudes introduced in chapter 3. Since a quantitative determination of the 2v-
amplitudes cannot be achieved from first principles, one has to resort to model descriptions.
In this chapter, two different approaches will be discussed, both based on the principle of
factorization. This basic concept describes the possibility to separate (factorize) soft and
hard momenta in the amplitude, which schematically can be expressed as

M = Msoft ® Mhard +0 (1/Q) ) (41)

where ® stands for a convolution. The hard part of the amplitude can be calculated pertur-
batively, whereas the soft part, which contains information on the internal structure of the
nucleon, has to be handled phenomenologically. The variable () denotes a large scale and the
expression O (1/Q) indicates, that the factorized amplitude receives corrections from terms
which are suppressed in the 1/Q expansion. In the factorization model the fast-moving pro-
ton and antiproton behave as a set of free partons. This allows to compute the process as a
convolution of the annihilation reaction performed at the parton-level and the distribution
functions for finding the corresponding partonic configuration in the nucleon.

For the purpose of studying two-photon exchange effects for the process pp — e7e™, we
consider two different models. First, the 2y-exchange corrections at large momentum trans-
fer are analyzed within the framework of pQCD, where the concept of nucleon Distribution
Amplitudes (DAs) is introduced in order to deal with the soft part of the amplitude. More-
over, as an alternative approach, an estimate of the 2y-effects within a partonic calculation is

+
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Figure 4.1: Direct and crossed box diagrams of the timelike 2v-exchange in the annihilation
process pp — e~ et

given, where the 2v-exchange process is related to the Generalized Distribution Amplitudes
(GDAs), the timelike analogon of the Generalized Parton Distributions.

4.1 Timelike Two-Photon Exchange: General Formalism

For the analysis of the 2vy-exchange in the timelike region, we consider the annihilation
process of a proton and a antiproton into a lepton pair,

p(p1, ANy ) + P(p2, Any) — 1 (K1, ha) + 17 (Ko, ho), (4.2)

where the momenta of the proton (antiproton) and lepton (antilepton) are given by py (p2)
and ki (k2), and An,, An,, h1 and hg denote the helicities of the nucleons and leptons,
respectively. The two-photon exchange corrections are given by the direct and crossed box
diagrams in Fig. 4.1. We will concentrate on the p p-annihilation process, but the results for
the reversed reaction, et e~ — pp, can easily be inferred from these calculations.

In order to describe the process, we introduce the variables

R k# _ k#
@ = (p1 +p2)% Pt = 1%’ K" = %’ (43)
and the Mandelstam variables
s=¢ =P +p2)? t=(1—k)’ u=(p1—k) (4.4)

The annihilation process can be described through two independent kinematical invariants,
which are chosen as variables ¢? and t.

In the 19-exchange approximation the cross section, given by Eq. (2.42), depends on the
electric and magnetic form factor as

<djc?s,9>17 x “GM(QQ)F(HCOSQ@) + %\GE(Cf)!Zsin?H . (4.5)

As for the spacelike scattering process, the part of the cross section containing |G g(¢?)|? is
suppressed for larger momentum transfer by 1/¢%. Hence, an extraction of both form factors
from the measured cross section at larger ¢® values is very sensitive to even small corrections
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as 2y-exchange, in particular when one of the form factors contributes only a few percent to
the cross section.

Similarly to the spacelike analysis, for vanishing lepton masses the matrix element in-
cluding multi-photon exchange can be parametrized by three independent generalized form
factors. Using crossing relations, the amplitude including multi-photon exchange can be
found as

62

M= ——= ﬁ(kﬁg,hl)’yu U(/ﬁ, —hl)

L)

X N(p2, Any) |Gar(@® 1)y — Fa(g?,t) —P“—l—Fs(q t) —P“K N(p1,An,)s
mN
(4.6)

where neglecting the masses of the leptons implies, that the electron and the positron have
opposite helicities. The generalized form factors Gur, F» and Fj are complex functions of ¢
and ¢t. One can equivalently introduce

GE(qz,t) = GM(qQ,t) — (1 — T)FQ(QQ,t). (47)

In order to identify the 1v- and 2v-exchange contributions, it is convenient to use the de-
compositions

Gu(d®t) = Gu(d®) + 606G (g2, 1),
Ge(d®,t) = Gp(d®) +6Gr(d? 1), (4.8)
Fg(q2,t) = 5F3(q2,t),

where, like in the spacelike region, the form factors 6G (2, 1), 6Gg(¢%,t), and 6F3(¢%, t) are
complex functions, corresponding to processes where at least two photons are exchanged and
Gg and G are the timelike electromagnetic form factors, introduced in Eq. (2.39). The
2~v-amplitudes are suppressed by e, compared to the 1v-form factors.

The process is considered in the c.m. frame of the nucleon pair, with the momenta given
by Egs. (2.40) and (2.41). The variable ¢ can be related to the c.m. scattering angle 6
between the incident proton and the outgoing electron through

t=m3 — ;(1 + cos 0). (4.9)

The cross section including the leading order 2y-exchange corrections can be expressed as

do oz 1
— em G 2 1 20 1@ 2 . 2(9
(dcosﬁ) 8m2 7-(7-—1){‘ w1+ cos )+T’ Bf"sin

~ 1 ~
+ 2Re[Grr 0G4 ] (1 + cos®0) + 2 = Re[G 6G;] sin® 0 (4.10)
T

2(Re Gy ﬁg*] - %Re[GE Fg*]) V/7(1 — 1) cos f sin? 0}.

47



Chapter 4 Two-Photon Exchange in the Timelike Region

In the 1y-exchange approximation, only the first line of Eq. (4.10) contributes to the cross
section and the expression reduces to the well known formula of the unpolarized cross section,
given by Eq. (2.42). The second part of Eq. (4.10) represents the interference of 179- and
2v-exchange processes. Due to the complex nature of the timelike form factors, the cross
section depends on the real as well as on the imaginary parts of the two-photon amplitudes.

As discussed in Ref. [69], the 2y-amplitudes have a defined behavior with respect to the
c.m. scattering angle 0:

5GE(Q2 —cosf) = —6Gpar(Q2,cosh),
_ i (4.11)
F3(Q2,—COSQ) = F3(Q2’C089)a

which can be derived from the C-invariance of the electromagnetic hadronic current. Con-
sequently, the two-photon contribution to the cross section, as presented in Eq. (4.10), is
an odd function with respect to the transformation cos 8 <+ — cos 8, in contrast to the Born
cross section, which in an even function of cos#. Hence, the forward-backward asymmetry,
defined by

do do do
Aoy = 6) — —cosf) =2 0
cos 0 <dcos€> (cos ) (dcos@) (= cosf) (dcosé’)27 (cos ), (4.12)

allows a direct extraction of the two-photon exchange corrections from the measured cross
sections, where (do/d cos 6)2 refers to the 2y-contributions of (do/d cos 6).

The forward-backward asymmetry have been analyzed in Ref. [70] using the available
data of the process pp — ete~v of Ref. [30], which have been taken in the energy range of
q®> ~ 4 — 7.3 GeV2. No systematic § dependence has been observed within the uncertainties
of the experiment and an averaged value of the asymmetry over the measured range has
been found as A..s9 = 0.01 +0.02. However, since the present data have large uncertainties,
more data with higher accuracy are needed for a detailed analysis of the forward-backward
symmetry.

The unpolarized cross section allows to access the absolute value of the timelike form
factors. Their phases can be investigated by means of polarization observables. These
observables can be affected by two-photon exchange corrections as well, even though the
effect is expected to be small. One observable enabling access to the imaginary part of the
electric and magnetic form factor, is the single spin asymmetry, Eq. (2.45), when either the
proton or antiproton is polarized normally to the scattering plane, which does not require a
polarization of the leptons in the final state. In the case of a polarized proton the single spin
asymmetry including 2y-exchange corrections up to next order in ey, is given by

1 : * Yk ~ *
Ay, = — 7D 2s1n0{ <Im[GEGM] + Im[GEoGy,) + Im[éGEGMD cos 0

(4.13)
+ v7(r— 1)<Im[GMF§] cos® 0 + Im[GpF}]sin 9)},

with

D = ‘GM‘2(1 +C0829) + % ‘GE|
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4.2 Timelike Two-Photon Exchange Corrections at Large q?: pQCD Result

In contrast to spacelike processes, the SSA A, in the timelike region does not vanish in the
Born approximation. Hence, the two-photon exchange appears in the asymmetry only as a
correction term.

Additional possibilities for extracting the phases of Gg and Gjs can be offered by double
polarization measurements, when both the proton and the antiproton are polarized. Two-
photon exchange corrections to double polarization observables in terms of the 2y-amplitudes
6GE, 0Gyr, and F3 can be found in Ref. [71].

4.2 Timelike Two-Photon Exchange Corrections at Large g2
Perturbative QCD Result

The description of the timelike 2v-exchange corrections presented in the previous section
is model independent, as it is derived from the general effective current-current expression
(Eq. (4.6)). However, for a quantitative determination of the 2y-amplitudes a model ap-
proach is needed. Only one model calculation of timelike 2y-exchange corrections has been
performed so far, namely a hadronic approach [72] using a nucleon as intermediate state
in the box graphs, which is expected to be applicable only in the region of small values of
momentum transfer.

Due to the fact, that the planned high precision measurements of the timelike form factors
attempt to achieve values of momentum transfer of ¢> ~ 30 GeV? and based on the expe-
rience, that 2y-exchange affects the spacelike form factor extraction particularly at larger
momentum transfer, we take a model description into account, which is suitable to study
2v-exchange corrections at higher values of ¢2. This approach is based on the principle of
QCD factorization giving rise to the nucleon distribution amplitudes, which will be firstly
introduced. Subsequently, the computation of the timelike 2+v-exchange within this approach
will be presented.

4.2.1 Nucleon Distribution Amplitudes and Perturbative QCD
Factorization Approach

For the study of exclusive high-energy processes the concept of factorization has success-
fully been used, which allows to separate the short-distance and long-distance physics. The
idea behind this is, that for processes with higher momentum transfer the hadrons can be
considered as defined partonic states for the short period of interaction.

Based on the factorization scheme of Ref. [73], the hadronic amplitude of a process can
be expressed as a convolution of a hard scattering part H and a soft contribution. The
hard process can be calculated directly within the framework of perturbative QCD and
the soft non-perturbative contribution is parametrized by the so-called hadron distribution
amplitudes, describing the hadronic structure effects. We will refer to this concept as pQCD
factorization approach. Such an approach is valid for sufficient large values of the momentum
transfer Q.

For this purpose, it is convenient to use light-cone coordinates (see Appendix A), defined
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Figure 4.2: Proton form factor in the framework of pQCD factorization. The hard scattering
amplitude H corresponds to the process vqqq — qqq. ® (®1) indicates the DA
of the initial (final) proton state.

by the light-cone basis
n* =(1,0,0,—1), =n*=(1,0,0,1),

2=7%’=0 andn-n=2, (4.14)

with n
(I'ti = (0,(11’ az, 0)5

where n and 7 are two light-like vectors and @/ is denoted as the transverse component of
the four-momentum a”. Any four-vectors can be decomposed in that basis as

p_ nt I
P Zg(n-p) +7(n-p) + ', (4.15)
pt P

where commonly the short-hand notation

P = (@, p pL)=(n-p,n-p p1) (4.16)

is used. Particles moving in the p* direction are denoted as collinear particles, while particles
along the p~ direction are denoted as anti-collinear particles. Additionally, we introduce the
projectors

_ ~_
AT = R A = R (4.17)

which project a spinor onto its "plus" and "minus" components. The spinor of a nucleon

N(p, Ap) can be decomposed as
N(p, )‘p) = A+N(p, )‘p) + AfN(p, )‘p)
(4.18)
= Nt(p,A) + N (p, ),

where in the case of a collinear particle N™ and N~ scale as

N+(p, )‘p) ~ \/p_+a N™ ~ 1/\/p_+ (419)

Using the pQCD factorization approach, one can for instance evaluate the spacelike elec-
tromagnetic form factors at large momentum transfer Q? = —¢? in the elastic ep-scattering
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Figure 4.3: Hard subprocess vygqq — qqq within the framework of pQCD factorization.

reaction. For this purpose the process, as shown in Fig. 4.2, is examined using the infinite
momentum frame. The incoming proton is fast moving along the z-axis, i.e. with momentum
p ~ pT, and is struck by a highly virtual photon with large transverse momentum qi ~ Q2.

The matrix element can be expressed by a distribution amplitude of ®(x;) for finding a
given partonic state in the hadron and a function H, which describes the hard scattering at
the partonic level. The subprocess consists of three valence quarks moving approximately
collinear, each carrying a momentum fraction x; of the proton momentum, with Z?:1 x; = 1.
Conventionally, x3 is chosen to be the momentum fraction of the valence d-quark.

Within this approach, for instance the magnetic form factor Gj; can be factorized as

1 1
Gu(Q%) :/0 dxi/o dy; 1 (i) H(Q?, i, yi) B (x;). (4.20)

The amplitude H characterizes the subprocess of the 3-valence quark state scattering with
the virtual photon and producing three (nearly collinear) quarks in the final state, which is
illustrated in Fig. 4.3. It can be calculated from the Born diagram contributions of

v (q) + q(z1p) + q(x2p) + q(x3p) = q(y1p) + q(y2p) + q(y3p) (4.21)

using pQCD. The hard four-momentum of the virtual photon is transferred from quark line
to quark line via gluon exchange. According to this, the exchange of at least two hard gluons
is required for the scattering of one photon with large virtuality. Contributions of higher
order Fock states are suppressed and vanish for Q% — occ.

The DA @ is the probability amplitude for finding the three valence quark state in the
incoming nucleon. It converts the proton into the three valence quark state, describing how
the momentum p is shared between the constituents. The probability amplitude ®' describes
the overlap of the final quark state with the hadron. The distribution amplitudes are process
independent quantities, i.e. they do not depend on the explicit form of the hard scattering
amplitude H. Therefore, the same proton DAs can be used for the calculation of two-photon
exchange processes, for both spacelike as well as timelike 2v-exchange reactions.

The nucleon DAs are fundamental non-perturbative functions, which at present cannot be
calculated from first principles. They refer to proton-to-vacuum matrix elements built up of
quark and gluon fields. In the infinite momentum frame, the three quark matrix element is

given by o
<0 6”ku’a(zln)ujﬁ(an)d(]j(z?)n)‘p(p, )\p)> (4.22)

in coordinate space, where ‘ p(p, )\p)> defines the proton state with momentum p and helicity
Ap and u, d are the quark-field operators of the up and down quarks, respectively. The Latin
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letters 4, j, k refer to color and the Greek letters a, 3,7 stand for Dirac indices. The vector
n is an arbitrary light-like vector and z; are real numbers satisfying ), z; = 1.

The matrix element of Eq. (4.22) has been transformed into an expression given by a
complete set of independent matrices. For this purpose the three spinor product of Eq. (4.22)
has been decomposed into a product of two spinors and one remaining spinor, for which a
matrix representation can be used. These two matrices have been expanded in terms of the
Dirac bilinears.

The most general decomposition of the proton-to-vacuum matrix element, taking Lorentz
invariance, parity and spin conservation into account, can be expressed by 24 independent
functions giving rise to the DAs [74]. The decomposition can be examined with respect to
the dependence on p™ ~ @ of the different contributions.

To the leading-order expansion in 1/p™, denoted as leading-twist or twist 3, only three DAs
contribute, the vector- (V), axial-vector (A), and tensor (T) DAs. The proton-to-vacuum
matrix element given as parametrization of the three leading-order DAs reads [74]:

4<0

3

Eijkug(zln)ug(@n)d(]j(z;m)‘p> = V(zin-p)p* <% "Y) C] 5 [75N+]o—

3

+ A(zin-p) p* <% -7>W5CLB [INT]_ (4.23)

1.
+ T(zin-p)p" 510“3 C] |:’)/J_’)/5N+] ,
aff g

where C is the charge conjugation matrix and = corresponds to the transverse component
of v#. The expression o ; is the shorthand notation for

_ . Z
Olp = nt Oy with Olpy = 5[7J.77M]' (4'24)

In momentum space, the DAs are given by the following expression:

X(zin-p)= /d[xl] X(x1,22,23) exp {—i (p-n) Z zixi} , X ={V,A,T} (4.25)
i
with
d[(L‘Z] = d(L‘ld.%'Qd(L'g (5(1 — 1 — T2 — .%'3), (4.26)
where x; is the collinear momentum fraction of the proton carried by quark i.

Due to the symmetry between the two up-quarks, the vector and tensor DAs are symmetric
under the interchange of the first two arguments, whereas the axial DA is antisymmetric:

V($1,5E2,5E3) = V($2,$1,$3),
T(v1,72,23) = T(w2,21,23), (4.27)
A($1,$2,$3) = —A($2,$1,$3).

In addition, the following property holds

1

1
T((L‘l,(L'Q,.%'g,) = 5[‘/ — A](.%'l,.%'g,.%'g) + §[V - A]((L‘Q,(L‘g,xl), (4.28)
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which allows to define a single independent leading twist-3 proton DA given by a scalar
function ®3 with mixed symmetry,

@3(1‘1,1‘2,1‘3) = [V — A]((L‘l,(L'Q,IL'g). (4.29)

Therefore, the DAs can be rewritten as
V(xy, o, 23) = =|[Ps(x1, 32, 23) + P3(x2, 1, 23)],

A(w1, 0, 13) = =[P3(w2, 71, 23) — P3(w1, w2, 73)], (4.30)

NI~ N~ N -

T(z1,22,33) = =[P3(21,23,22) + P3(22, 23, 21)].
The dependence of the DAs on the momentum transfer scale Q2 is weak. This dependence

is specified by a renormalization group equation, which requires, that ® is only logarithmi-
cally dependent on Q? [73].

4.2.2 Timelike Two-Photon Exchange within a pQCD Factorization
Approach

To calculate the two-photon exchange contribution of

p(p1, Any) + D(p2, Any) — € (K1, hy) + €F (ka, —hy) (4.31)

at large momentum transfer ¢2, the factorization approach, which has been discussed in the
previous subsection, is considered. We follow the experience gained by the spacelike process
ep — ep, for which the 2y-amplitudes 6G and Fj were computed at large momentum trans-
fer @ within a perturbative QCD factorization approach [57,58], which can be generalized
to the annihilation channel pp — ete™.

A typical diagram of the leading order contribution to the 2y-exchange corrections is illus-
trated in Fig. 4.4, where the gray blobs correspond to the DAs of the proton and antiproton,
and the hard part H is given by a three quark state and a three antiquark state, which
annihilate into two virtual photons. The 2v-amplitudes can be expressed as convolution of
H and the non-perturbative part, e.g. Gas can be written as

5Cri(a 1) = / dlz] / Ayl () H @ b, 22, ) @ (33), (4.32)

where the momentum fractions of the participating quarks and antiquarks are denoted by
x; and y;, respectively, which satisfy >, x; =1 and ), y; = 1.

The subprocess H is specified by the exchange of two photons, which couple to two different
quarks. The third quark interacts via the exchange of a hard gluon. Contributions where
the two photons couple to the same quark are suppressed due to the fact, that this implies
at least one additional gluon exchange, which includes the factor as/q%.

An important feature of the approach is, that both photon virtualities, ¢; and ¢s, must be
large:

@~ @~ ¢ (4.33)
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Figure 4.4: Diagram for pp — eTe~ describing the exchange of two hard photons using
the framework of pQCD factorization. The gray blobs refer to the proton and
antiproton DAs. The perturbative subprocess is given by the annihilation of a
three quark state and a three antiquark state into two highly virtual photons.

As all spectator quarks are involved in the hard scattering process described by Eq. (4.32),
we refer to it as the hard rescattering contribution.

Such an approach is valid at (asymptotic) large values of ¢?>. However, it is still an
open question at which energy the asymptotic behavior sets in. One may expect, that at
intermediate energies of ~ 10 GeV? the scale defining the applicability of the perturbative
expansion is already large enough to apply the present formalism. A test of the validity of
this approach can possibly be provided by future experiments.

In the case of s,t > m%v, the mass of the nucleons can be neglected and the momenta of
the proton and antiproton in the c.m.-frame can be expressed in the light-cone basis by the
light-like vectors n and n,

|8 nt
D :\/57:(\/5’0’0),

(4.34)
o

n
p52ﬁ7:(0,¢§,0),

where the initial proton is moving collinearly and the antiproton anticollinearly in the z-
direction. Consequently, the momentum transfer ¢ is given by

¢" = —py —pi = (=Vs,—V5,0). (4.35)
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The lepton momenta in the light-cone basis are defined as

k= ng nk +nf '+ K = (s, Vs, kL),
(4.36)
kg - 77\/7— nﬂ + \/— ki = (77\/5’ 77\/55 _kL)’
where, at large momentum transfer, n, 77 and k; can be determined from
t _ U 9 B
e = n=1- = k7 ~nmns, (4.37)

with the restriction 0 < n < 1. The kinematic variable i can be expressed by the electron
c.m. scattering angle 6:

n~ =(1+cos?h). (4.38)

The proton-to-vacuum matrix element parametrized by the proton DAs V', A and T, which
has been introduced in Eq. (4.23), can for the given process be expressed as:

4<O|€ijkug(z1 n)u%(ZQ n)df/(z;g n)|p(p1, Any))

= Ve [Land

oI5

], + A |G @ense| v,

af af

+ T(zin-p) [?i(ahl C)Lﬁ [7L75N+L

viry] [rfNt] +ary] y I N*]V+T 4] y T4 3] .

@ v

! (4.39)

Similarly, the matrix element of the antiproton state in terms of DAs yields

-/

4(0[" ¥l (24 ) 4l (25 1) 45 (24 ) [p(p2: Ay )

= — Vi@Zin-py) {TSC(TL-W)] [N*s], — Al(z 7 - o) [?C%(n-v)] [NF].,
B/a/ /Bla/
+ T(z4n - pa) [gcwm} {N+’Yl75} ,
B/a/

= v [r]  [vtrd] s a[ry] [N rd/} +7 [r4| [NTTE
/Bla/ ,-y/ 6/a/ /BICV/ ,Y/
(4.40)

where the complex conjugated DAs read
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X'(zin-p2) = X'(2in-p2) = /d[?/i] X(y1,y2,y3) exp {i(ﬁ'm)zym} ;

(4.41)
with X' = {V/, A", T'}.
The structures T'%, ', '/, and I’gl(, presented in Eqgs. (4.39, 4.40) are defined by
], =5e,, [, =T, [, =T,
(4.42)
Tt] = bk, 4] =0 4] =0ty
Q‘L/'}ﬁf P —§{67L]6, ’? [ ’%"]5/ P _§[C% ﬂ]ﬁfo/’ [ %l]gfa' - g[cwln]ﬁlaf’
Tt = bl 4], =y 4] = bty
(4.43)

The leading contribution to the 2v-exchange corrections is shown in the left panel of
Fig. 4.5. It can be factorized in the following way

A, :/d[z}](O!ué,(zln)ug,(zgn)di,(z;gn)|p2> . /d[z,]<O|ug(21n)u]6(z2n)d§(23n)|p1>

g (ky) Tyvi(ke) - L2, © L3, @ £5F

= Y Y [l X [ ded X)) Do)

X'=V' AT X=V,AT

/ !

< [ e [ [k ][], o] ] e

(4.44)
The second line characterizes the hard rescattering process H, where
w v = Z_Ll(k‘l, hl) Iy vl(kig, —hl) (4.45)
denotes the leptonic part of the subprocess and
% ¥ kK'k
Lijo @ Lyls @ L2 (4.46)

represents the quark annihilation process. I'Y, with ¢ = {u1,u2,d}, is associated with the
expression for the quark spinor line in the momentum space. The indices « (3) and o/ (8')
correspond to the u-quark line and @-quark line carrying the momentum x1p; (x2p1) and
y1p2 (y2p2), respectively. The indices vy, and 7/ refer to the d-quark and d-quark lines. The
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Figure 4.5: Leading pQCD contribution to the 2v exchange corrections for pp — eTe™. Left
diagram: Factorized amplitude of the process. Right diagram: One possible
contribution to the hard rescattering contribution H, where both photons couple
to the u-quarks. The x’s indicate the other possibility to attach the gluon. The
other diagrams, where the photons interact with the v and d-quarks, are not
shown for simplicity.

explicit expressions for I'? can be obtained from the Feynman rules of the elastic rescattering
process

Quy (1 P1) Quy (T2 P1) qa(23 P1) + Guy (Y1 P2) Gus (Y2 P2) Qay3 p2) — V¥ (q1) + 7" (q2) wa7)
S (k) +et(ke).

In the right panel of Fig. 4.5, one possible contribution to the hard rescattering kernel
is presented. The leading order contribution of the hard rescattering amplitude Ay can be
introduced in the following way:

Ap = Q2A™ 4+ Q,Qq(AMe 4 Av2d), (4.48)

A" denotes the amplitudes, where the photons couple to the two up-quarks, A“1¢ (Au29)
stands for one photon coupling to the u-quark with the momentum fraction x; (z2), the other
photon to the d-quark, with the charge fraction of the quarks @, = +2/3, and Q4 = —1/3.
For each of these photon couplings four possibilities of gluon exchange between the quarks
lines have to be considered, illustrated by the x’s in Fig. 4.5:

AY = DY 4+ DY + DY + DY (4.49)

Each diagram D% includes the sum of the direct and crossed box diagram. Consequently,
all together one finds 24 diagrams for the leading 2+v-exchange corrections, which can be
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computed using pQCD. For instance, the hard subprocess contribution, which is illustrated
in the right panel of Fig. 4.5, can be obtained from the corresponding Feynman rules as

1 1
D = Gielg? 7 w (k)" (—d2 — k2)7 v (k2)
pa g a4y (g2 — k2)? (4.50)

X 0(y1p2) Yu w(x1p1) U(y2p2) Yobu v w(z2p1) V(ysp2)viu(wspr ),

where G is a global factor and g2(—¢?) = 47 as(—¢?) is the coupling strength of the strong
force. The momenta of the exchanged gluon and the fermion propagator are given by

Pg = —T1P1 — Y1P2, Pu = y3p2 + (1 — 21)p1. (4.51)

The contributions of the different diagrams as well as the corresponding Feynman graphs
are given in Appendix B.

The results of the perturbative calculation are embedded into Eq. (4.44) in order to obtain
the 2y-amplitudes as a function of the DAs V A, and T. Finally, the timelike 2v-exchange
amplitudes 6G s and s/m?F3 can be found as :

SCar(gn) — — CemCs (21) [l di) ___an- Do
q* 3 Y1Y2l2 £122T [227] + y2n — 2ys] [£21 + y2i] — T2y2)]
X {Qu2 (VI 4+ AV + A) +4T'T] (3,2,1) (4.52)

+ QuQa [(V! + AV + A) +4T'T] (1,2,3) + 2QuQq [V'V + A'A] (1,3, 2)},

Cems (2_w>2 / dlyi] _df] 2w o + T2 1)

i153((12 77) =
m? ’ q* 3 V1Yol T1ToT2 [Tl + Yo — Toyo] [T2n + Yol — T2ys)

X {Qu2 (V! + A)(V + A) +4T'T] (3,2,1) (4.53)
+ QuQa [(V! + AV + A) +4T'T] (1,2,3) + 2QuQq [V'V + A'A] (1,3, 2)},

where the numbers in the brackets define the order of the momentum fraction arguments of
the DAs, e.g.

V'V (3,2,1) = V'(y1,y2,y3)V (21, T2, 73), (4.54)

and the abbreviations

zi=1—ay, Ui=1—y; (4.55)

have been used. As one can seen from Egs. (4.52) and (4.53), the leading behavior of the
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IN T Ty
(1073 GeV?)
COZ [76] 50£05 |40+15|11+0.3
BLW [77] 5.0 £ 0.5 1.37 0.35
QCDSF [78] 3.23 1.06 0.33

Table 4.1: Parameters entering the proton DA (at 4 = 1 GeV) for three parametrizations
(COZ [76], BLW [77], and the lattice evaluation from QCDSF [78]) used in this

work.

helicity conserving 2v-amplitudes is

~ 1 S ~ 1
5~ —, e 4.56
qt m?2 q* ( )

The helicity-flip amplitude §F5 is suppressed in the large momentum transfer limit, since its

behavior is be found as
1

0Fy ~ —. (4.57)
q

Therefore, the amplitude is obtained to be zero in the leading order expansion of the analysis.
In general, the timelike amplitudes are complex functions, but at tree level the expressions
of Egs. (4.52) and (4.53) do not contain an imaginary part explicitly. In the calculation
we receive nontrivial imaginary contributions by computing leading logarithms with the
renormalization of the strong coupling as. The imaginary part is generated by timelike

logarithms, like

In(—¢* —ie) = In(¢?) — in. (4.58)

For the coupling a; in the timelike region we adopt the analytic continuation [75]:

as(q?
as(=¢%) = 1 —iﬂofxqs()qQ)/ll TR (4.59)

where

2

is the leading term of the QCD S-function.

In an analogous manner, one receives an imaginary contribution which originates from
the evolution of the DAs. Nevertheless, the resulting imaginary contributions provide small
numerical effects in the regions of ¢? which will be discussed below. We assume, that the
scale of the running coupling as(/ﬁ%) is smaller than ¢ and use ur = 0.6 ¢> for our numerical
calculations. However, this procedure has only a small effect on the results, changing /ﬁ%
in the interval [0.5¢%, ¢?], we find for the 2y-exchange contribution to the cross section a
maximum variation in the hard scattering amplitude of about 10%.
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Figure 4.6: 3-dimensional plot of the DA ®3 according to the parametrizations in Eq. (4.61)
as a function of z7 and z9. The left (right) panel corresponds to the results
found for the COZ (BLW) model. The dependence on x3 has been removed due

to szl =1.

To evaluate the convolution integrals given in Eqs. (4.52, 4.53), a model for the DAs is
needed. In Ref. [74], a parametrization of the DAs is given by:

V(z;) ~ 120z 20w fn [1+74(1 — 3x3)],
A(.’L‘Z) ~ 120 T1T2T3 fN r_ (xQ — x1)7 (4.61)

1
T(x;) ~ 120x1x0x3 fn |1+ 3 (r— —ry) (1 —3z3)],

where the DAs depend on the three parameters, namely fy, r+ and r—. For the calculation
two phenomenological models for the DAs, which have been discussed in the literature,
are considered, which will be referred to as COZ [76] and BLW model [77], as well as one
description based on lattice QCD calculations (QCDSF) [78]. The corresponding parameters
at = 1 GeV? are presented in Table 4.1. One notices, that the parameters 7, and 7_ in
the BLW model and from lattice calculations are nearly comparable, whereas the overall
normalization fy is about a factor 2/3 smaller for the lattice DA than in the description of
the BLW model. In contrast to the BLW model and the lattice calculations, the parameters
r4 and r_ are about three times larger in the COZ description of the nucleon DAs.

The DA @3 as a function of z; and x2 is shown in Fig. 4.6, where in the left (right) panel
the DA obtained in the COZ (BLW) model is presented. One notices, that the dependence
on x1 and x9 is similar for both models of the DAs, even though the COZ model gives a
larger DA as when the BLW model is used.

Below, we will provide calculations using the first two models, COZ and BLW. The results
following from the lattice calculations can easily be approximated by scaling the BLW results.
All parameters from Table 4.1 have been evolved according to the procedure given in Ref. [74].

Using the parametrization of Eq. (4.61), the convolutions integrals can be computed and
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the following expressions of the 2y-amplitudes are obtained:

G = - (%”) (12075 2
X {(¢1 + o) [(77 — )7 In® (g) — 4niIn (g) +(n —7)(1 — yijr?)

+ 62| = 3(n7)2(n — i) In® (%) (1= 1207) In (%)

+ 30p = @na(1 = i) + %(n -7)] } (4.62)
s =~ om 2 98 QlemOls
b = (g) (120fn)"5 o

x { ~2(¢1 +200) | (n — ) In (%) — 777 n? (%) +1 - i’

+ b2 [ —2n7(1 — 6n7) In (g) —1260(2n = Dln <g>

+ 1 — 1207 — 2n7(1 — 67777)#} } (4.63)
where the notation ¢; denotes the following combinations of parameters r, r_:
¢o = Z + %r_ — %r% - ;m -+ émr_.
¢1 = %r_ + %r% + ;m - gri - gma_, (4.64)
P2 = %T% - 1—217“3 + %rjw,.

4.2.3 Results

We calculate the relative 2y-contribution to the differential cross section da., which is defined

by
do do
<dcos€> B (dcosﬂ)h (1402,), (4.65)

where the cross section do/dcosf is given by Eq. (4.10) and the cross section in the Born
approximation (do/dcos )1, has been introduced in Eq. (2.42). The two-photon exchange
contribution dz, depends on the c.m. scattering angle 6 and the c.m. energy s = q? as well as
on the model for the nucleon DAs. Furthermore, a description of the timelike electromagnetic
form factors Gg and Gy, which enter the 1-- as well as the 2y-parts of the cross section, is
needed.
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Chapter 4 Two-Photon Exchange in the Timelike Region

We first start with a simple description of the magnetic factor Gy, which is inspired by
the predictions of pQCD for the electromagnetic form factors (Model 1):

B

|GM| = 2 °
q* <ln2 % + 7'('2)

(4.66)

The parameter A is given by A = 0.3 GeV and B a free parameter, which can be extracted
from fitting data. In addition, for the first form factor parameterization, the assumption
|G| = |GE| is used and the imaginary parts of the form factors have been neglected.

As an alternative possibility (Model 2), following [79], an improved fit of the form factor
ratio Fy(Q?)/F1(Q?) is considered, which includes logarithmic corrections to the power law
fall-off expected from pQCD.

In the previous section it was mentioned, that the value of two-photon amplitude §F is
unknown due to the suppression of §F, within the factorization approach. Therefore, 6G
is estimated using a simple model:

6GE ~ AoGy, (4.67)

where A is a numerical parameter, for which —1 < A < 1 is used, which can account for the
expectation, that §G scales as 6G s in the large ¢ limit.

The results for d2, can be found in Fig. 4.7, where the relative 2y-contribution to the cross
section for two different values of momentum transfer, s = 6 GeV? and s = 20 GeV? is
shown as a function of cosf. The two aforementioned parametrizations of Gg and G,; are
associated with the blue (Model 1) and green (Model 2) colored bands. The bands describe
the variation of the parameter X\ in Eq. (4.67). Furthermore, two different models for the
nucleon DAs have been used, the COZ and BLW description, which correspond to the left
and right plots in Fig. 4.7, respectively. One notices, that for both parametrizations of the
electromagnetic form factors the results differ only slightly. The corresponding bands overlap
for a large range of cos#.

The relative effect of the two-photon exchange corrections is found to be smaller than 1%.
For s — 20 GeV?, a slightly larger 2y-exchange contribution is obtained as for the lower
value of ¢?. Both models of DAs produce a similar angular dependence, while the COZ
model leads to a contribution which is twice as large as when using the BLW model. For
the assumed parametrization of G g, the impact of the parameter A on the results is small.
The 2v-corrections show the required odd behavior with respect to cosf and are increasing
for |cosf| — 1.

Moreover, we consider one further model to parametrize the 1v-form factors Gg and Gy
and compare the results with the 2v-exchange corrections we have obtained above. We
take a VMD based model into account, according to Ref. [48], which assumes, that the
electromagnetic interaction is described through the exchange of the lowest lying vector
mesons p, w, and ¢, as discussed in Sec. 2.4.

The results are presented in Fig. 4.8, where d2, has been calculated for ¢*> = 6 GeV? using
the COZ model (left) and the BLW model (right) for the nucleon DAs and the bands again
refer to the influence of the parameter X\ in Eq. (4.67). The red bands correspond to the
findings of the VMD model and the blue bands indicate the results when using the pQCD
inspired model (Model 1) as parametrization of Gg and Gj;. One notices, that both models
lead to a similar angular behavior and to comparable quantitative results.
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Figure 4.7: Relative two-photon contribution to the cross section at s = 6 GeV2? and

s = 20 GeV? as a function of cos .y, for two models of Gg and G as indicated
in the text. Model 1: blue bands. Model 2: green bands. The bands describe
the contribution for different values of 6Gg given by —6Gp < 6Gy < 86GE. The
left (right) panel correspond to the calculation using the COZ (BLW) model for
the nucleon DAs.
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Figure 4.8: Relative 2y-contribution to the cross section for ¢>= 6 GeV? calculated with the
COZ model (left plot) and BLW (right plot) using two different parametrizations
of the form factors. Blue bands: Model 1 (purely real form factors). Red bands:
Form factors of Ref. [48] (VMD model). The bands describe the contribution for
different values of 6GE given by —6Gy < 0GE < 8G ).
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Figure 4.9: Magnitude of the relative two-photon contribution as a function of ¢ for cosf =
0.6 (red dotted curve), cosf = 0.75 (green dashed curve), cos§ = 0.85 (blue solid
curve) using Model 1 as 17 form factor parametrization (purely real form factor)
and 0Gg = 0. The left (right) panel indicates the corrections calculated with the
COZ (BLW) model for the nucleon DAs.
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Figure 4.10: Forward-backward asymmetry according to Eq. (4.12) as a function on ¢?. Blue
dashed curve (green dotted curve): Results within pQCD factorization approach
for cos@ = 0.9 (cos @ = —0.9) calculated with the COZ model using Model 1 as
1y-form factor parametrization (purely real form factor) and 6Gg = 0. Black
solid curve: Acysg = 1% as it has been found in the analysis of Ref. [70]. The
data points correspond to the results of the analysis at each ¢ value, for which
the data of Ref. [30] has been used.

The dependence of d3, on the momentum transfer ¢ is shown in Fig. 4.9. The 2y-
corrections have been calculated as a function of ¢ for 6Gr = 0 using three different values
of the c.m. scattering angle: cos# = 0.6, 0.75 and 0.85 in the range of ¢> = 4—30 GeV?, where
the parametrization of Eq. (4.66) (Model 1) has been used as model for the 1y-form factors.
One finds, that the absolute value of the corrections is increasing with ¢? for larger values of
cos 6. Since this growth is only logarithmic, it cannot change the effect quantitatively.

The obtained results allow us to predict the forward-backward asymmetry A.qsg, defined in
Eq. (4.12), which gives rise to the two-photon corrections to the cross section. The findings
for the asymmetry calculated within the pQCD description are shown in Fig. (4.10) for
cos @ = 0.9 (blue dashed curve) and cos = —0.9 (green dotted curve) using Model 1 for the
electromagnetic form factors and the COZ description of the DAs. Since the 2v-exchange
affects the cross section only slightly, the predicted asymmetry is small, especially in the
smaller ¢ range, where A.s¢ has been analyzed. The solid black line indicates Agosp = 1%,
which has been found as average value of the forward-backward asymmetry in the analysis of
the data of the BaBar experiment [30]. The experimental results of the asymmetry including
the error bars, which have been found at the individual values of ¢2, are given by the data
points in Fig. (4.10). The current data are affected with quite large uncertainties of ~ 5%,
which do not enable to constrain the two-photon exchange corrections so far.

In order to find constraints on two-photon exchange effects in the timelike region, data of
Acosg with higher precision are needed. In particular due to the fact that the form factor
extraction is more sensitive to small corrections at larger momentum transfer, an extension
of the measured ¢? range to higher values seems to be reasonable.
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Furthermore, the single spin asymmetry A, (introduced in Eq. (4.13)) has been analyzed.
As discussed in the previous section, only small imaginary parts of the 2y-amplitudes 6G
and Fj are obtained within the factorization approach. Therefore the 27y-contribution to
the SSA mostly results from the interference of the real part of the 2v-amplitudes and the
imaginary part of the form factors Gg and Gjps. The relative contribution to A, is found
to be small for all parametrizations of Gg and Gy discussed above. Logically, the resulting
2v-contribution to A, using the 1y-form factor Model 1 of Eq. (4.66) is negligible due to the
purely real structure of Gg and G in this model. A 2~v-effect of the order of about 1%
can be found when considering the two form factors parametrizations (Model 2 and VMD
model), which include imaginary contributions of Gg and Gjy.

To summarize the results, using a pQCD factorization approach we obtain small 2v-
exchange corrections to the cross section in the process pp — ete™ of about d2, < 1% in the
studied momentum transfer range of 4 — 30 GeV?2. The small 2vy-effect makes it challenging
to observe such effects in unpolarized cross section measurements. e.g. by PANDAQFAIR.
Feasibility studies of the annihilation process at PANDA have been performed in [28]. Since
the value of the 2y-contribution is sensitive to the choice of the DAs, a precise measurement
of the process would in addition allow to probe and constrain the DAs of the proton and
antiproton.

4.3 Partonic Calculation of Timelike Two-Photon Exchange:
Generalized Distribution Amplitude Approach

As an alternative approach for investigating the two-photon exchange in the timelike region
we present a partonic description, which has been applied to obtain 2v-exchange corrections
in elastic electron proton scattering using the concept of generalized parton distributions
[55,56]. The results of the calculations have been presented in Sec. 3.2. In order to deal
with annihilation processes the timelike counterparts of the GPDs have to be introduced, the
generalized distribution amplitudes (GDAs), which parametrize the matrix element between
a system of hadrons and the vacuum.

4.3.1 Generalized Distribution Amplitudes

In order to describe the timelike two-photon exchange within another model, we assume the
factorization approach, as shown in Fig 4.11, where the amplitude of the process pp — e*e™
appears as convolution of a soft transition matrix element, parametrized by the GDAs, and
a hard subprocess H, where just a single quark-antiquark pair annihilates into a lepton pair,
H(qq — ete™).

This so-called handbag factorization is expected to be valid in the kinematical region
where s, —t and —u are large compared to the hadronic scale (s, |t], |u| > m%). For this
kinematical region the handbag contribution is assumed to be dominant, as long as the
momentum transfer values are not asymptotically large. At high momentum transfer the
leading contribution with three valence quarks participating in the subprocess dominates,
which has been discussed in Sec. 4.2. The value of momentum transfer, which is sufficiently
large for the perturbative QCD approach to dominate, is still an unsolved problem.

The validity of the factorization scheme has been proven for several spacelike processes, as
deep inelastic scattering or the Drell-Yan processes, but no proof of the discussed timelike
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p(p1)

q(q2) et (k»)
P(p2)

Figure 4.11: Sketch of a handbag approximation for the process pp — eTe~. The left blob
represents the GDAs, H denotes the hard subprocess.

factorization approach exists. Arguments for the applicability of such a factorization have
been discussed in Ref. [80].

The generalized distribution amplitudes, indicated by the left gray blob in Fig (4.11), are
complex quantities, which encode the physics of the soft transition,

p(p1) +p(p2) — a(q1) + d(q2), (4.68)

and cannot be calculated from first principles. They are functions of three variables, the
c.m. energy s = (p; + p2)?, the momentum fraction carried by the quark

q

z2=—— 4.69
(p1+p2)* (469)
and the so-called skewness (,
+
Dy
= , 4.70
‘ (p1 +p2)* (470)

which describes how the total momentum of the pp-pairs is shared between the nucleons.

GDAs have been introduced in Ref. [80] in order to study two-photon annihilation into
baryon-antibaryon pairs and have been used to analyze of the process pp — 7%y within the
handbag factorization approach in Ref. [81]. The GDAs parametrize the matrix element
between a baryon state and the vacuum (or vice versa), as follows [80]

(p1 +p2)* / dx~

2 2 e’izP+l‘_ <0‘Q_(O)W+Q(a_:) ‘N(ply >‘N1)N(p2a )‘Ng)>

)(Pl +p2)t

= ¢%(2,¢,9)0(p2, Any )Y ulpr, Any) + 0%5(2,C, s 5

0(p2, ANy )u(p1, AN, ),

eizP+x_ <0‘q(0)7+'}/5q(§3) ‘N(pl, >\N1 )N(p% >‘N2)>

(p1 +p2)* / dz~
2 2

(p1 +p2)*

= 0% (2, ¢, 8)0(p2, Ay )y 5u(p1, Any ) — 0% (2,¢, 8) o

0(p2, ANy )y5u(p1, AN, )
(4.71)

where ¢! with ¢ =V, S, A, P is the vector, scalar, axial and pseudoscalar GDA, and g refers
to the quark flavor. GDAs are process independent quantities and accordingly can be applied
to the 2y-exchange process for pp — ete™.
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Integrating Eq. (4.71) over z leads to the following sum rules:

1
F-q(s):/ dz¢l(z,(,s), fori=V, AP
0

(2

1 (4.72)

(1 - 20)F4(s) = /0 dz $L(z,C, 5),

where F! are the quark form factors. Appropriate combinations of the quark form factors
give rise to the nucleon form factors of the electromagnetic and weak current, as

Gu(s) =) QuFi(s),  Fa(s) = QuFd(s). (4.73)

4.3.2 Timelike Two-Photon Exchange within a GDA based Approach

For the analysis of

p(p1, ANy ) + (P2, ANy ) — et (k1, h) + e (ka, —h). (4.74)

within a handbag factorization approach we use a symmetric frame and choose the axes of
the c.m. frame such that the 3-momenta of the incoming nucleons are in the positive or
negative z-direction and the process takes place in the x-z plane. Using light-cone variables,
with the shorthand notation p = (p™,p~,p.), the momenta of the nucleons can be chosen
as

p1= ﬁ(lal, Ber ),

2 (4.75)

|G

P2 = (1717_/851)7

4m? —1
B=yj1- N JT 72 (4.76)
S T

and €] = (1,0). The positron momentum (k;) and electron momentum (kg) are given by

NG

with

ky = 5 (1+sinf,1 —sinf, cosbeéy ),
(4.77)
Vs : . _
ko = 5 (1 —sin#,1+sinf, —cosber),
with the c.m. scattering angle 8. Using the Mandelstam variables
s=¢ =M@+’ t=m—-k) u=(pn—k)’ (4.78)

the c.m. scattering angle 6 can be expressed with respect to s, t and w:

w—t 2\/ut—mj1\, (479)

cosf) = ——, sinf =
s(s —4m%;) s(s —4m¥)
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p p

Figure 4.12: Two-photon exchange processes of pp — e*e™ in the handbag approximation.

The process in the handbag approximation in terms of a soft pp — ¢@ transition and the
hard subprocess qq — e*e™, which occurs through the exchange of two photons, is shown
in Fig. 4.12. The amplitude has a similar structure as the one of the vy — pp process,
appearing as a convolution of the GDAs ¢; and the hard process H. Following Ref. [80], it
can be found as:

1 1 _
Thawy vy = W{ 3 [Hh,% + Hh,—%] (RV(S)N(P27)\N2)7+ N(p1, Any)

S(S) (pl + p2)+

+(1-20)R S

N (p2, Any )N (p1, )‘Nl))
(4.80)

[Hh 1 —H, ,;} <RA(S) N (p2, Any) v 5 N(p1, Any )

Y41 —i-pQ)jL

— () PP ) 20 N )

with the annihilation form factors R;, which are obtained by integrating ¢; over z

ZQQ/ Q2 91(=C,s),  i= AV, P
(4.81)
(1 —2¢)Rs(s ZQ2/ dz ¢L(2,¢, 5).

Due to the choice of the reference frame with a skewness of ( = 1/2, the scalar form factor,
entering with a factor 1 — 2, decouples and does not contribute to the amplitude.
The hard partonic subprocess, the annihilation of a quark-antiquark pair into a lepton
pair,
Q(ql’ >‘CI) + Q(QQ’ _)‘Q) - 6+(k1’ _h) + 6_(k2’ h)’ (4'82)

contains the direct and crossed box diagram of the 2+-exchange process, presented in Fig 4.13.

It has been shown [80], that the pp — ¢g transition can only be soft if the quarks have small
virtualities and approximately carry the momenta of the proton and antiproton, respectively.
Therefore, the subprocess has been calculated using the assumption, that the quarks are on-
shell.
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a(q1) e (ka)

e (VAVAVAVES

(q2) et (k1)

e NN

Figure 4.13: Direct and crossed box diagrams of the hard subprocess q7 — eTe™ including
the exchange of two photons

By means of the approximation, that the masses of the quarks and of the leptons can be
neglected, the general amplitude of the two-photon part is given by the expression

2

e
Hh,)\q = ? u (/{?2, h) Yuv (kl, —h)
4.83
= £q, 1 ~qqil_q5%2_k1 ( )
X U(Q2,_)‘q) f1’7 +f3 2 2 u(qla)‘q)a

with the quark helicity A\, = i%. For massless quarks, the helicity of the antiquark is
opposite to the quark helicity and no analogon of the form factor F, in Eq. (4.6) emerges
in the amplitude of the subprocess. We only consider contributions were both photons have
non-zero virtualities. The form factors f{] , and fg can be obtained from the results of two-
photon exchange corrections for the reaction ete™ — p*u~, for the case that none of the
photons are soft. These calculations have been performed in Refs. [82,83], and the results
have been confirmed in the course of the GPD calculation of 2y-exchange in the crossed
scattering channel [56]. The real part of the form factors has been found as

o e (1 |t t—a . o]t a
Refi=—<{=In|- — (tIn?|<| +aln |
e f{ 4W2{2nﬁ+4t@<n g'—}—ung)}
(4.84)
o e 1 (.|t | t—a(t S|t] 4, |0
Ref{=— ~— {tln|<|+aln|= —In?|<| - =In?|<| ) ¢.
¢Js 4772tﬁ{ R R I <an T s
The variables 3, ¢, and @ are the Mandelstam variables of the subprocess:
s=(n+aq)? t=(@-k)? = (g2 —k1)?,
R (4.85)
with ¢?=8§=—f—a.
The hard annihilation amplitude results in
e? x -~ o~
Hh7,\q:?(—f{](2h2)\q-s+u—t)+f§(—ut))
Uiy g (it oy fata (4.86)
> gl i) =5 (E-0) - BT '
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Since the momenta of the quark and antiquark have to be close to the nucleon momenta,
the hard annihilation process H will be evaluated using

t ~t, u ~ u, (4.87)

for the Mandelstam variables of the subprocess.
The amplitude in the factorized process can be rewritten using the vector

1

= ———(1,0,0,—1), 4.88
(p1 +P2)+( ) (488)
which yields
1 _
Thoxwyavg = 3 [Hh,%+Hh, %] Ry (s) N(p2,An,) 78N (p1, Any)

1 _

5 [Huy = Hy o] (RaG) N2 ) s N Av) - (439)
1 _
~ Bp(s) g Np2: Av) 35 N1 M) ).

The Dirac structures are then evaluated with respect to the nucleon helicities Ay, and Ap,,
using

_ 1
N(p2a)‘N2) ﬁN(pla)‘]\h) = _5(1_4)‘]\71)‘]\72)’
_ m s — 4m?
N(p2, Any) 25 N(p1, Anv,) = TZ(l + 4AN AN,) — TN (22N, — 2)n,),  (4.90)
_ S
N(p2, Ang) v N(p1, An,) = —%(1+4>\N1>\N2),
which leads to
1 1
Thoxwydng = — 3 [Hh,% +Hh,—%} Ry (s) 5(1 —4ANAN,)
! ¥
5 [ Hag— Hy ] { = Rp(s) g (L4 D) (4.91)

— Ra(s) (m—\/g(1+4AN1>\N2) - \/#(”‘M —2)‘N2)> }

The most general parametrization of the pp — ete” amplitude (Eq. (4.6)), depending on
the generalized form factors Gy, Fb, and F3, can be evaluated as a function of the helicity
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of the proton and antiproton as well:

2
e
Th7 AN AN, = ; ﬂ(kﬁg, h) om U(kﬁl, —h)

pr
2
my

. ~ _pr
X N (p2, An,) [GM’Y“ - FQm—N + F3— (k2 — k1)] N (p1,An,)

2 ~
:e_{GM
S
u—t S
. / 1— 4An, A )
2 s—4m%v< NN

+ 2 [_ \/(ut—mélv) (s —4m¥) % <2>\N1 +2)\N2>]

ut — m#
—2mN

<2AN1 + 2)\N2> ~ <2AN1 - 2)\N2>

[NCY V)

2
s —4my;

(4.92)

% <2)\N1 + 2)\]\[2)

A comparison of Egs. (4.91) and (4.92) allows to extract the 2vy-amplitudes and express
them in terms of the GDAs, which leads to

2
_JizAmy 1
S s

oGy =
~ s—4m%\, u—t 1
G = . 4(ut_m4)-0+ = "B, (4.93)
N 2¢/ut —my
F3 _ s—4m%\, m?v C
S ut—m‘}v ’
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4.3.3 Results

For an analysis of the two-photon exchange contributions within the handbag approximation,
information on the annihilation form factors is required. However, no model calculation of
these form factors or GDAs exists so far. On account of this, in previous studies the form
factors have been extracted phenomenologically (see e.g. Refs. [80,81]).

Combining Eqgs. (4.73) and (4.81), one can relate the vector annihilation form factor Ry
to the magnetic form factor Gj;. We assume, that the u- and the d-quark form factors of
the proton fulfill

B = %Fd (4.97)
and neglect the form factor contributions of strange quarks and heavier quarks, which yields
Rv(s) = GM(S)

The magnetic form factor has been extracted by fitting the timelike form factor data. The
widest data set at higher momentum transfer values is provided by the BaBar experiment [31],
where the effective timelike form factor Geg (defined in Eq. (2.44)) has been measured in the
reaction ete™ — pp~y up to energies of s ~ 20 GeV2. A fit of G.g to the data above s = 5
GeV? leads to

s2Geg ~ 3.35 GeV*4. (4.98)

The results are presented in Fig. 4.14.
The frequently used assumption |G| = |Gg| yields Geg = |G|, therefore we will use as
parametrization for Ry :

s2|Ry(s)| = s?|Ga(s)] ~ 3.35 GeVa, (4.99)

In an analogous manner the axial annihilation form factor R4 can be expressed in terms

of the axial form factor of the nucleon, G 4. In the case of isospin symmetry, the nucleon
matrix element of the axial current operator A% #(0) is parametrized by two form factors,

(N@)| A%#(0) [N (p)) = (N ()| 2 (0) 7" %a a(0) | N(p) )

(4.100)

NI 2y PH—p! 2
= §0/) |7 9Gala?) + g Grla®)] N
mn
where G4 is the axial form factor, Gp the pseudoscalar form factor and 7% are the Pauli
matrices. Using Eqs. (4.81) and (4.97), one finds Ry = G 4.

In the spacelike region the measurements of G'4(Q?) indicates, that the form factor can be
described very well by a dipole fit. We will adopt the dipole fit as parametrization of G 4(s)
in the timelike region, because no data of the axial form factor in the timelike regime exist
so far. Hence R4 can be found as

Ru(s) = Gul(s) = — 94 (4.101)
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Figure 4.14: The timelike effective form fac-  Figure 4.15: Integrated Cross section

tor |Geg| as a function of ¢>. do(|cosf < 0.6|) for vy — pp
The blue dashed curve rep- as a function of s. The blue
resents the fit according to dashed curve represents the fit
Eq. (4.99) for ¢*> > 5 GeVZ2. The given by Eq. (4.103). The data
data are taken from Ref. [31]. are taken from Ref. [85].

with the axial coupling constant g4 = 1.27 and the axial mass m 4, for which we use m4 =
1.026 GeV [84].

In Ref. [80] the process vy — pp has been evaluated within a handbag factorization
approach and the differential cross section has been found as

do _47T042m 1
dt  s2  sin20

with Rop = (|Ra + Rp|* + 7[Rp*)

{|Rea|” + | Ry | cos? 0}

s (4.102)

Since the GDAs and consequently the annihilation form factors R; are process independent
quantities, Eq. (4.102) can be fitted to the data of the vy — pp cross section in order to
obtain Reg, which can be used to extract Rp. In our analysis, we use the data of the two-
photon annihilation process vy — pp collected at the BELLE experiment at the KEK-B
factory [85], where we take the results of the integrated cross section do(]cos 6| < 0.6) at the
highest measured s values, with 9 GeV? < s < 16 GeV?, into account. The result of the fit,
which gives

s> Reg ~ 5.02 GeV?, (4.103)

which is presented in Fig. 4.15. In the analysis the description of Eq. (4.99) has been used
as vector form factor Ry in Eq. (4.102).
The ratio |Rp|/|R4| can be written as

IBe| _ 1
|RAl 147

1 RZg
OS(S + m\/(l‘i‘T) |RA|2 _(1+T)+C082(5 (4104)

where § is the relative phase of R4 and Rp.
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After specifying the parametrizations of the annihilation form factors, Egs. (4.99), (4.101)
and (4.104), we can estimate the two-photon exchange contribution to the cross section.
In addition, an explicit expression of the electromagnetic form factors Gg ps is needed, for
which a VMD based model is used, as given in Ref. [48].

The results are shown in Fig. 4.16, where the relative contribution of the 2vy-exchange
corrections to the cross section, o2, has been calculated as a function of cos@ for three
different values of c.m. energies, s = 6 GeV?, 9 GeV?, and 12 GeV2. We only present results
for the intermediate angular range, because the GDA factorization description is applicable
only for s ~ t ~ u > m3,. One finds a 2y-contribution of ~ 1% in maximum, which is
increasing with the momentum transfer. The angular dependence is found to be similar to
the behavior obtained in Sec. 4.2, when using the pQCD factorization approach, even though
the results are inversed at cosf = 0. Their relative contribution is slightly larger within the
GDA model approach. The colored bands in Fig. 4.16 correspond to the unknown relative
phase of R4 and Rp, with —1 < cosd < 1.

The relative 2y-exchange contribution to the cross section as a function of the c.m. energy s
is presented in Fig. 4.17 for three values of the c.m. scattering angle, cos# = 0.3, 0.4 and 0.5,
where the colored bands again stand for the variation of the phase cosd. One notices, that
the 2v-exchange corrections are increasing with s at smaller values of momentum transfer
and reaching a maximum at s ~ 17 GeV2. For cos@ = 0.5, the contribution is found to be
|02| ~ 1.6 % in the maximum.

The results for the forward-backward symmetry Acosg, defined in Eq. (4.12), are shown in
Fig. 4.18, where A qs¢ has been analyzed for cos § = 0.5 (blue dashed curve) and cos = —0.5
(green dotted curve) using cosd = —1. The magnitude of A..sp is increasing with the
momentum transfer, approaching ~ 0.5 % for the largest considered values of s. The average
value of the asymmetry, Acosg = 1% £ 2%, obtained in Ref. [70] is given by the black solid
curve. Even though the results for the GDA model calculation are larger as when using
the pQCD factorization approach, the existing data do not allow for significant tests of the
model calculations for two-photon exchange corrections so far.

A more precise understanding of the annihilation form factors or the GDAs will certainly
improve the analysis of the 2y-exchange within a GDA based approach.

4.4 Conclusions

In this chapter the two-photon exchange contributions to the timelike annihilation process
pp — eTe” have been analyzed within two different factorization approaches and predictions
for the 2y-exchange corrections to the cross section as well as the forward-backward asymme-
try have been provided. With the view to forthcoming accurate form factors measurements
in the timelike region, it is important to be aware of these corrections.

The pQCD factorization approach gives a 2y-exchange contribution which is less than 1%
over the studied kinematical range. However, at smaller momentum transfer one is probably
outside of the validity of such an approach. Using a GDA based model, the 2v-corrections
are found to be somewhat larger, reaching values of ~ 2% in the intermediate angular
region, where this approach is expected to be applicable. The results are smaller than the
2v-corrections found for the spacelike ep-scattering process, which indicates that the 2v-
exchange effects are less significant for timelike form factor extraction than for the spacelike
case.
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Chapter 4 Two-Photon Exchange in the Timelike Region

Figure 4.16: Relative two-photon contribution to the cross section of pp — eTe™ as a func-

tion of cos# within a GDA based approach for selected values of c.m. energies.
Blue curve: s = 6 GeV?; green curve: s = 9 GeV?; red curve: s = 12 GeV2.
The colored bands indicate the variation of the phase cosd in Eq. (4.104).
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Figure 4.17: Relative two-photon contribution to the cross section of pp — eTe™ as a func-
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tion of s within a GDA based approach for selected values of c.m. scattering
angles. Blue curve: cosf = 0.3; green curve cos = 0.4; red curve: cosf = 0.5.
The colored bands indicate the variation of the phase cosd in Eq. (4.104).
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Figure 4.18: Forward-backward asymmetry according to Eq. (4.12) as a function of ¢?. Blue
dashed curve (green dotted curve): Results within the GDA approach for cos =
0.5 (cos @ = —0.5) calculated for cos§ = —1. Black solid curve: Agos9 = 1% as
it has been found in the analysis of Ref. [70]. The data points correspond to
the results of the analysis at each ¢ value, for which the data of Ref. [30] have
been used.

The existing data in the timelike region have not yet reached the required precision which
allows to find constraints on (timelike) 2-exchange, as it could be realized through an accu-
rate measurement of the forward-backward asymmetry. The predicted size of the asymmetry
is found to be still below the uncertainties of the available data. A precise measurement pro-
vides a test of the timelike two-photon exchange and offers the possibility to probe the
theoretical models used in this work.
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Chapter 5

Two-Boson Exchange in Parity-Violating
Electron-Proton Scattering

In this chapter the influence of two-boson exchange in parity-violating ep-scattering is dis-
cussed. Aside from a transmitted photon, the Standard Model provides the possibility that
electron-proton scattering occurs through the exchange of a Z boson. This Z boson ex-
change, even though it is suppressed at lower energies, manifests itself in a parity-violating
(PV) contribution to the scattering cross section. The resulting parity-violating asymmetry
offers a method to study the matrix elements of the neutral weak current operator of the
proton and provides access to the strange quark content of the nucleon as well as dedicated
tests of the Standard Model. This asymmetry can be affected by two-boson exchange, in
particular the exchange of a photon and Z boson (yZ2).

General aspects of parity-violating electron-proton scattering will be presented in the first
section of this chapter. In the second part, two-boson exchange effects are calculated within
the pQCD factorization approach, which has been introduced in the previous chapter and
which has been used to study 2v-corrections to the process pp — eTe™.

5.1 Parity-Violating Electron-Proton Scattering

The leading contribution to elastic ep-scattering is given by the one-photon exchange am-
plitude. Besides the electromagnetic mechanism, the scattering can proceed through the
neutral weak interaction via the exchange of the neutral Z boson. Due to the large mass
of the Z boson, with mz = 91.19 GeV, the neutral weak process is suppressed compared
to the electromagnetic one in the considered kinematical range of relatively low momentum
transfer. Since the neutral weak current does not conserve parity, PV contributions arise
from the interference terms between the electromagnetic and the weak amplitudes. These
PV effects can be accessed through asymmetries which are sensitive to the interference term.

The neutral weak current operator j/, is a linear combination of a vector and an axial-
vector coupling to the Z boson. For two pointlike fermions the matrix element of the operator
is given by

FENBOLW) = (7 ) ar ) (of — o) w61

4 cos Oy

where ug(k) and (k') are the Dirac spinors of the incident and outgoing fermions with

momentum k and &', respectively. The expressions g‘f/ and gf; are associated with the vector

and axial-vector couplings of the particles:

gh =2Tf —4Q;sin0w, ¢\ =217/, (5.2)
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Chapter 5 Two-Boson Exchange in Parity-Violating Electron-Proton Scattering

|
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Figure 5.1: Born diagrams of ep-scattering for one-photon and single Z exchange.

where Tg is the third component of the weak isospin and @y the charge fraction of the
particle f. The angle 6y is the so-called Weinberg angle or weak mixing angle, which can
be expressed by the masses of the Z boson, my, and the W+ bosons, my,

cos Oy = T;:L—W, with sin’ Oy (mz) = 0.231 [86]. (5.3)
z

The vector and axial-vector couplings of the electron and light quarks are given in table 5.1.
The lowest-order amplitude of ep-scattering including neutral weak currents is illustrated
in Fig. 5.1, where the leading order contribution of the weak interaction corresponds to
the exchange of a single Z boson between the electron and the proton. It can be expressed
through the neutral weak leptonic current operator j% and the neutral weak hadronic current

operator J g connected with the propagator of the Z boson as

Uty = =K ) 010 ) 2y (N ANITEON ). (50

where k (k') and p (p’) are the momenta of the initial (final) electron and proton, respectively,
h and R’ are the helicities of the incoming and outgoing electrons, A, and Ay of the initial
and final protons.

particle || Qf T3f g‘f, gfg
e~ —1 | =2 | —(1—4sin®0y) | -1
u oYz | 12| (1-3sin?w) | 1
d —1/3 | =1/2 | —(1 = 3sin®fy) | —1
s —1/3 | =1/2 | —(1 - 3sin®Oy) | —1

Table 5.1: Vector and axial-vector couplings of the electron and the light quarks u, d, s.
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5.1 Parity-Violating Electron-Proton Scattering

The matrix element of the weak leptonic current operator is found as

(1K 1) (0)[U(k, h)) = < ) w (K, W)y (gv — gays)ui(k, h), (5.5)

4 cos Oy

where the vector-coupling gy- and the axial vector coupling g4 of the electron to the weak
current have been introduced, which are given by

g = —(1—4siny), ¢5=—1. (5.6)

The weak coupling ¢ is connected with the electromagnetic coupling via g = esin Oy .
The most general expression of the matrix element of the neutral weak hadronic current
operator is parametrized by 4 form factors,

<N(p,7 )‘p/) Jg(o) {N(p7 )‘p)>

(2t Yo s 17

L g, GE s+ GZ L LN
40089W N v A o p my o ke

2m
(5.7)

The weak form factors FF, F{, GA?, and Gg are real functions of the momentum transfer
Q? in the spacelike region. The last structure of Eq. (5.7), which is related to the weak
pseudoscalar form factor G, does not contribute to the amplitude, due to electromagnetic
gauge invariance, which implies ¢*jz, = 0. Therefore, the pseudoscalar structure vanishes
when contracting with the neutral weak leptonic current.

In the momentum transfer region of interest the relation Q? = —¢*> < mQZ is valid.
Therefore ¢? can be neglected in the denominator of the Z boson propagator in Eq. (5.4),
1/(m% — ¢?) ~ 1/m%, and one obtains

22
: -~ —19 Y. .2
IMZ =~ m’dl(k?,h)’y‘u(—l—}—llSIH 0W +’}/5)Ul(]€,h)

x N\ 2p) {Flz (@) + B Q) 5~ a + G4(Q7) w%} N(p, )

my
(5.8)
= — % (k' 1) yu(—1 + 4sin® O + v5) w(k, h)
< NN { Q)7+ F @) g™, + GH@) 5 | N,
where the commonly used Fermi constant G has been introduced:
Gr___ ¢ ¢ (5.9)

V2 8m%cos? Oy - 8mi,

As for electromagnetic form factors, it is more convenient to use the Sachs form factors

G% and Gﬂ of the neutral weak current, defined by the linear combinations
GE(@Q*) = F(Q*) — TF(Q%),
g p g (5.10)
Gir(Q%) = F{(Q*) + F(Q7),
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Chapter 5 Two-Boson Exchange in Parity-Violating Electron-Proton Scattering

The matrix elements of the proton weak current operator can be expressed in terms of the
individual quark flavor current operators. Neglecting contributions of heavy quarks, the ¢, b
and t quarks, one finds

6] 250 |80 (125)

~ (¥0)

8 4 - 4
<1 ~3 sin? 0W> uyHu — <1 —3 sin? 6?W> dy*d — <1 —3 sin? 0W> syts

— (" y5u — dy'ys5d — 57/ 755)

NG)

=N(') Z (279 — 4Q, sin? Oy ) <F1‘1fyu + )

1 Z
NU“”(Ju) + 2T GY7 2Fys ¢ N(p),
q=u,d,s

2m
(5.11)

where the flavor form factors FfQ, which parametrize the vector current, have been defined
in Eq. (2.15). The quark flavor form factors give rise to the form factors of the neutral weak
hadronic current:

8 4 4
Ghn = <1 - gsin2 0W> 1 <1 - gsin2 0W> Ghar — (1 -3 sin? 0W> - (5.12)

Assuming isospin symmetry, one can use Eqgs. (2.17) and (5.12) to express the weak form
factors G% ,, in terms of the electromagnetic form factors of the proton and the neutron as
well as the strange form factor:

Ghy = (1—4sin®0w) Gh \y — G ar — G - (5.13)
The weak axial form factor G% can be related to the axial form factor of the nucleon:
GA(Q%) = Ga(@). (5.14)

The axial form factor G4 appears when parametrizing the nucleon matrix element of the
axial current operator, which has been introduced before in Eq. (4.100).

The leading-order amplitude of elastic ep-scattering including Z-exchange is given by the
sum of the the electromagnetic amplitude defined in Eq. (2.21), which is denoted as M, in
this section, and the neutral weak amplitude My, given by Eq. (5.4):

do o< IM? = [My + Mg|?
(5.15)
~ |M,[* + 2Re [M, M.

Due to the Z propagator, the amplitude Mz is suppressed by a factor ¢?/ mQZ compared to
the electromagnetic amplitude at lower Q2 values.

Instead of measuring the Z-exchange contribution to the cross section, one can access
the neutral weak amplitude through the parity-violating asymmetry APV which arises in
polarized ep-scattering from the interference of the electromagnetic and weak amplitudes.
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5.1 Parity-Violating Electron-Proton Scattering

The electromagnetic interaction, as a vector-current interaction, conserves parity, whereas
the mixed vector and axial-vector structure of the neutral weak current, violates parity
conservation. The PV asymmetry is defined as

dor — do
APV = 2R TOL 5.16
dUR—{—dUL’ ( )

where dog (doyp) refers to the cross section for a right-handed (left-handed) electron, i.e.
an electron with helicity +1/2 (=1/2). The neutral weak current for a right and left handed
electron can be written as:

(A FEE) [1(h) = ( )a(k',h'm[gev—gmg,]PR,Luw,h), (5.17)

cos Oy
with Pr = %(1 + 75), and where dog and doj, are associated with M as
dog < [M(h=+1/2)]?, dop o< [M(h=—1/2)| (5.18)

In the leading-order approximation, the asymmetry is given by the interference term of

M., and Mz:

by 2Re[My(h = +1/2) My (h = +1/2) — M (h = —1/2) M (h = ~1/2)]

Apom = M (h = +1/2)2 + M, (h = —1/2)2 (5.19)
ALY can be written as:
ARV = GfQ2 ArtAut A
e2v/2 TGy +eGy
with Ap=¢ - GpGZ, (5.20)
Ay =1 - Gy G%,
Ap=—(1—4sin?0y) /71 + 1)V1 — €2 - Gy G4.
The asymmetry provides access to the weak charge of the proton Q];V:
QY = 1—4sin®6Oyy. (5.21)

Due to an accurate prediction of @}, within the Standard Model, based on the Q? depen-
dence of sin® Oy, a precise measurement of QI;V provides a significant test of the validity of
the Standard Model. Such measurements are for instance performed at the JLab (Q-weak
experiment [87]) and are proposed for the new MESA facility at Mainz.

The asymmetry can alternatively be expressed through the proton and neutron electro-
magnetic form factors, the strangeness form factors G, ,, and the axial form factors G",, sep-

arating ATV into vector (Ay), strange (Ag) and axial contributions (A4). Using Eq. (5.13)
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yields
Agv _ GFQ2 Av+As+AA
M V2e? o (GB) 41 (687
with Ay = — [s(G])” + 7(G)?] (1 = 4sin® ) + eG G +7G, Gl (599

As = eGLGy + 7GY, Gy,

Aa= (1—4sin®0y) V(1 —e2)7(1+1)Gh,G4.

The strangeness form factors G, and G35, can be extracted from Ag. Measurements of A"V
with the aim to access the strangeness contributions of the nucleon have been performed
at several facilities, e.g. the SAMPLE experiment run at MIT-Bates [88, 89|, HAPPEX
undertaken at JLab/HALL A [90-93], the PVA4 experiment performed at MAMI [94-96]
and the GO experiment at JLab/HALL C [97,98]. Since the strangeness contributions are
small, the extraction from the measured asymmetry can be very sensitive to even small
corrections, as two-boson exchange effects.

5.2 Two-Boson-Exchange Effects in Parity-Violating
ep-Scattering

5.2.1 General Formalism

Due to the possibility to access the small strangeness contribution or the weak mixing angle
from high precision PV asymmetries, it is necessary to be aware of radiative corrections as
two-boson exchange (TBE) to the PV asymmetry APV,

For this purpose, we consider TBE in the process

p(p, Ap) + € (k,h) = p(p', A\y) + e~ (K, 1), (5.23)

using the four-vectors and variables introduced in Egs. (3.2) and (3.3).

The leading-order TBE corrections to PV ep-scattering arise from different contribu-
tions. The yZ-exchange process, given by the vZ-direct and crossed box graphs, contributes
through the interference with the 1y-exchange process, and the 2v-exchange as interference
term with Z-exchange Born diagram. Furthermore, the effects of the interference between
1y-exchange and 2y-exchange processes appear in the denominator of A”Y. The correspond-
ing Feynman graphs are presented in Fig. 5.2.

The invariant amplitude characterizing the yZ-exchange can be written in terms of 5
generalized form factors:

Gy ..
NG w (K 0 )9y — gars) )k, h)

M,y =

_ - P PrE . - P -
x N, \p) {WGJZW — m—N5F22 + QK FY 4+ 4F~56G4 + m—f(%GM} N(p,\p).

my N
(5.24)
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Figure 5.2: TBE corrections to A”Y: Contributions appearing in the numerator are illus-
trated on the left panel (17 x vZ and 1Z X 2+ interference terms), corrections
to the leading term in the denominator on the right panel (1 x 2v interference).
For clarity, the crossed box diagrams are not shown.

These generalized weak form factors, 5@%4, 51*:’22 , F?,Z , 5@% and Gs4 are, as the 2y-amplitudes,
complex functions of two variables, e.g. Q% and v = K - P. They are suppressed by em
compared to the neutral weak form factors. Equivalently, one can introduce

SGH(Q?) = 6GF(Q%) — (1 +7)0F2(Q). (5.25)

By means of the relations

_ - _ - Q* -
uPuNKN = vayuu NVN — —=@yus u Ny s N,

_ - _ S Q? _ S
W Pysuy NKN = vig vy, su NY'N — Tul%ule”%N,
G PuNKys N = vigy,w Ny N — P2y, 5w Nv* N+ my g 5,75 w NPEN,
U Pysuy NKvs N = vigy,ysu Ny ysN — P2agy,uy NYY N + my @y, w NPEN,
(5.26)

the structures of the matrix element of vZ-exchange, Eq. (5.24), can be reduced to 6 inde-
pendent structures of the form

~ 3 _pr ~ 3
uy vy ug Ny" N Gy, ﬁl’mule—NNQQ, Uy Y5 g NyHys N Gs,
(5.27)
) _ s B _pn ) _ .
g Yuys wy NyM N Gy, Uy Yuys w N e N Gs, g v uy Ny s N Ge.

It is convenient to study the process in the laboratory frame and express the cross sections
and asymmetries as functions of Q2 (or 7), the photon polarization ¢ and v. In order
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to compare corrections from the interference of different pairs of diagrams, the different
contributions are calculated separately. The interference between one-photon exchange and
the vZ-exchange reads

Atyxryz = Abyen (1+ 01yx12)

GrQ? 1 =7 s~z | EV ~7 -7
= — R G 0G Gg oG — Gy F. Gg F.
V2e? eG3 4+ 7G3, e{T M 0Giy e G E+m?v <T m byt G 3>

— (1 —4sin®Oy) <6/GM5G£ +et(1+7)Gum ésA) },

(5.28)
where the expression
= y/(1-e)r(1+7) (5.29)
has been introduced.
The invariant amplitude giving rise to the 2v-exchange corrections reads
e2 PH P
Moy = 5K k) V) (60" 0Fs 2+ By M) (530
my

where the form factors 6Gys, 6F», and F3 are the two-photon amplitudes introduced in
Eqg. 3.9.

Corrections to the asymmetry arising from the interference of the 2v-amplitude and the
Born amplitude of Z-exchange can be found as

Azvoy = ALY (1+62x2y)

 GpQ? 1 7 oA 7 o~ ev
= — N EG%—FTG?M Re[TGM5GM+€GE5GE+m—?V

(TGAZJF?, + Ggpg)

- (1- 4 sin’ Ow ) (a'GiééM +er(14+71)G4 Fg) }
(5.31)

The effects of the 2v-exchange amplitude interfering with the 1v-exchange amplitude ap-
pearing in the denominator yields:

Alvx2v = ABorn (1 + 51%%)

B GrQ?
V2e2

{TGM G +eGpGE — (1—4sin® Oy )e’ Gu Gﬁ}

-1
—2” (Gg +71G) Reﬁg} .

X {e (G% + 2Re[GE5éE]) + T(G?M + 2Re[GM5c”;M]) n
N
(5.32)
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Consequently, the PV asymmetry including the leading order corrections in aen, caused
by TBE is

APV _ APV (1+5)

Born

. Gr@?
-~

TGu GY +eGpGE — (1—4sin® 0y )e' Gy G4

+ Re |7 (G 6Gs + Gay 0G5y ) + 2 (GF0Gs + G oGE ) |

_|_%Re[T(GﬁFQJ,—FGMFBZ)+<G§F3+GEF3Z>]

my

— (1 — 4sin? HW)Re [5' (Gi(SG’M + Gy 5@%) +(1+7)er (Gf‘ﬁ’g +Gm G3A>}

- ~ 92 )t
X {5<G% + 2Re[GE6GE]> n T<Gﬁ4 n 2Re[GM5GM]> + % (G +7Gr) Rng} .

(5.33)

N

Two-photon exchange and yZ-exchange effects in PV ep-scattering have been calculated
in Refs. [99,100] within a parton factorization approach using GPDs, and within a hadronic
approach in Refs. [101,102]. Several theoretical studies have been performed in order to
receive the yZ-corrections to the asymmetry at zero (or very small) momentum transfer [103—
106], which corresponds to forward scattering, e.g. within dispersion relation frameworks.

5.2.2 Two-Boson Exchange within a perturbative QCD Factorization
Approach

Analogously to the 2v-exchange processes studied in Chapter 4, the pQCD factorization
approach can be applied in order to examine two-boson exchange effects in PV elastic ep-
scattering. Since the distribution amplitudes are process independent quantities, the same
DAs as discussed for the 2y-exchange corrections in Sec. 4.2 appear in the TBE formalism.

The effects of 2y-exchange on the PV asymmetry within a pQCD factorization approach
can be directly obtained from the results of the generalized 2vy-amplitudes, 6Gys, 0GE,
and F3, found within this model, which have been derived in Ref. [57], and adopting these
expressions for Egs. (5.31) and (5.32).

To compute the corrections caused by the vZ-box contributions, at first the formulas of
the vZ-exchange amplitudes, namely 5@%4, 5@%, F:,,Z, 5@% and Gsa, in terms of the DAs
have to be defined.

For this purpose, the process is analyzed in the Breit frame, assuming that s = (p + k)2
and the momentum transfer Q2 are large, s, Q> > m?v Therefore the masses of the proton
and the electron can be neglected in the calculation. The momenta of the initial and final
state proton can be expressed in the light-cone basis n* and n* as:

— Q nH, p'H Q

n
p= 9 "M T
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Figure 5.3: Diagram of yZ-exchange using pQCD factorization: The hard kernel describes
the electron scattering off a three-quark state via photon and Z boson exchange.
The gray blobs indicate the DAs of the initial and final nucleon.

and the momenta of the incident and scattered leptons are

k“zcgn“—(l—o%ﬁukb k’“:—(l—C)%n“H%ﬁMm,
146 L (5.35)
with [k ?=—-C1-0)Q% (= T £= o7

Using pQCD factorization, the amplitude of the vZ-exchange is given as a convolution
of the DAs of the incoming and outgoing nucleon and a hard scattering kernel, where the
electron scatters at a three valence quark state via the exchange of a photon and a Z boson.
A typical diagram of the factorized process is presented in Fig. 5.3. In the subprocess, the
initial quarks carry the momentum fraction x; of the proton, while after the scattering the
quarks have the momentum y; p/, with ", 2, => , y; = 1.

The proton-to-vacuum matrix element as parametrized by the leading-order DAs of the
proton has been introduced in Eq. (4.23). The DAs which convert the three valence quark
state into a hadron with momentum p’ can be deduced from the hermitian conjugate expres-
sion of the proton-to-vacuum matrix element in terms of the proton DAs.

In the leading-order expansion, the amplitude characterizing the vZ-exchange is found as

Az= Y Y [dw) %) [ de) X

X=V.AT X=VAT

ig B . . |
<m> w (k') (957 — 9avus) w(k) (5.36)

<[] [e] e v ], o) e T s

where V, A and T denote the vector, axial and tensor DA of the proton. The expression X
refers to the DAs of the outgoing nucleon defined by

X(zn-p) = Xzn-p) = /d[y@-] X (y1,v2,y3) exp {i(ﬁ-p/) Zym} (5.37)
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with X = {V,A,7).

and  dy;] = dy1 dyadysz6(1 —y1 — y2 — y3)- .
The structures F;L(’d and F;‘z’d are given by
rel, =5, [m],=50wed,,  [r],=5lmd,,
1] = bsh 4] = 4] = btk
(5.39)

u

[Iﬂ‘ﬁ/} pa - % [C %} ga’’ [FA} 8o - % [C s %] gra’’ [FT] 8o - _% [CVWL} glal’

7]

In Eq. (5.36), I'?, with ¢ = {uy, ug, d}, corresponds to the expression of the quark spinor lines
in momentum space. The indices « (8) and o' () are associated with the initial and final
u-quark lines, respectively, while the indices v and 7/ refer to the incoming and outgoing
d-quarks.

!

o= sl [T%L, = [y, [rdf]y = (157

The hard scattering process is given by the electron-scattering off a three quark state,

e~ (k) + q(z1p) q(w2p) q(z3p) — e~ (k') + q(y1p") a(y2p") a(ysp'), (5.40)

where a photon and a Z boson are exchanged. Similarly to the two-photon exchange reaction,
the contributions where the two bosons couple to different quarks have to be considered in
the subprocess, since other diagrams are suppressed. The third quark is involved in the
scattering process through the exchange of a hard gluon. Taking all possibilities to attach
the photon and the Z boson to the quarks and all possible gluon exchanges into account,
the leading-order hard scattering process includes 48 diagrams (given in Appendix B).

Inserting the results of the hard scattering process into Eq. (5.36) gives rise to the weak
~vZ-form factors as functions of the DAs, which yields

6G%, = — (4—”>2 dem®s /d[m] ! /d[ ] . L(2C— Dz
3 Q* Y179 vi y1y1y2 D1 L

x {xy [Quat{(V! — AY(V — 4) +4T'T}(1,3,2)

+ QuatH{(V! = AV = A) +4T'TH1,2,3) + 2Qagi{V'V + A'A}(3,2,1)]

+ 2 {Qu GE{(V' — ANV — A) +4T'T}H(1,3,2)

+ QuglA(V' = AV = 4) +AT'TH(1,2,3) +2Qu g {V'V + A'4}(3,2,1)] }
(5.41)
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Q? _, A7\ ? qemorg / 1 / 11
2R = dlz; d —2 —2
my; ’ 3 Q* [xl]wlﬂhm v ]y1y1y2 Dy (@14 91 = 2oy)

{x 0 [Qu (V' — AV — A) + 4T'T}H(1,3,2)
b Qugl (V! — ANV — A) +4T'T}(1,2,3) + 2Qq g% {V'V + A'A}(3,2, 1)}
+ 2 |Quat (V! = AV = A) +4T'T}(1,3,2)

+ Quab (V! — )V — A) +4T'TH(1,2,3) +2Qu gl {V'V + A'A}(3,2,1)] }
(5.42)

2
§G = - (%ﬂ) aegfs /d[aci]x@lw2 /d[y ]r;m Dil(zg — D21y
[Qu{( ANV — A) —4T'T}(1,3,2)
+ Qui(V' = A)(V — A) —4T'T}(1,2,3) +2Qd{V’A+A’V}(3,2,1)] (5.43)

+ @ | = Qu{(V! = AV — 4) +4T'TH(1,3,2)

— Qu{(V' = AV — A) +4T'T}(1,2,3) + 2Q.{V'V + A'A}(3,2, 1)} }

X {mlyl [Qu{(v’ AV — A) — AT'TY(1,3,2)
FQu(V =AYV — A) —4T'TY(1,2,3) + 2Qu{V'A + A'V}(3,2, 1)]
+ oy |~ Qui(V/ = AY(V = A) +4T'T}(1,3,2)

— Qi{(VI =AYV — A) +4T'T}(1,2,3) + 2Q,{V'V + A’ A} (3,2, 1)] }
(5.44)
with
Dy = [21¢ + 1€ — T191 + i€ [21C + §1¢ — Tag + ie].

In an analogous manner to the analysis of the 2v-exchange in the timelike region, the helicity-
flip amplitude F¥, which behaves as F¥ ~ 1/Q9, is suppressed within the pQCD calculation.
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Using the form factor expressions in terms of the DAs, the influence of the «Z-exchange to
the PV asymmetry can be derived from Eq. (5.28).

The 2v-amplitudes for ep-scattering have been calculated within a pQCD factorization
approach in Ref. [57] and have been found as

__ (4 ? Qoms _ dlz;]d[y;] T1Y1
oG = <6> Q* 2 1)/ Dy [z1Z122][y171Y2]

X | @V =AYV = A) +4T'T)] (1,3,2) + 2QuQu(V'V + A'4)(2,3,1)

+ QuQul(V/ = ANV — 4) +4T'T)](1,2,3)|,
(5.45)

LF _ _ <4_7T>2 Qem s / dlz;)dly;] 2(x1 +y1 — 2z191)
m3, " ? 6 Q* D, [z1Z122][y1512]
X [QE[(V! = AV = A) +4T'T)] (1,3,2) + 2QuQa(V'V + A'4)(2,3,1)

+ QuQa[(V' = AV = 4) +4T'T)](1,2,3)],
(5.46)

with
Dy = [21¢ + y1¢ — z1y1 + €] [21¢ + y1¢ — z1y1 + €.

The third 2y-amplitude §F, is suppressed in this approach (as in the timelike case). The
results have been inserted into Eqgs. (5.31) and (5.32) in order to receive the 2y-exchange
corrections to the PV asymmetry.

As parametrization of the DAs the formulas given in Eq. (4.61) have been used, with
the parameters of the COZ and BLW model (table 4.1). To compute the TBE corrections,
an explicit expression of the form factors is needed. For the magnetic form factor of the
proton a variation of a polynomial model is used [107], where the free parameters of the
model have been obtained from a fit to the Rosenbluth data of Gjs, while the form factors
ratio p,Gg/Gpr is parametrized by a fit of P;/P to the results of polarization transfer
measurements [11], giving rise to:

2 K
o (5.47)
'U/p# = 2 -
Gulgy ' TOB@ 00

The neutral weak form factors are expressed through the electromagnetic form factors of
the proton and neutron:

Ghy = (1—4sin®0w) Gh, = G oy, (5.48)
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Figure 5.4: Two-Boson exchange contributions to the PV asymmetry

92
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APV as a function of ¢

for different values of momentum transfer using the COZ (left panel) and BLW
model (right panel) as parametrization of the DAs. Black solid curve: total
corrections; red dotted curve: 1y x yZ-contribution; green dashed curve: Z x 2v-
contribution; blue dashed-dotted curve: 1y x 2v-contribution.



5.3 Conclusions

where the electromagnetic strangeness form factors have been neglected. The form factors
G ar of the neutron have been parametrized using the ansatz of Ref. [108]. The axial form
factor is expressed by a dipole fit [84]:

Ga(@) = —4A (5.49)
(1+%)

with g4 = 1.27 and the axial mass m4 = 1.026 GeV.

In Fig. 5.4 the results of the total TBE corrections to the asymmetry arising from vZ-

exchange as well as 2y-exchange, defined by

APV = ARV (1+9), (5.50)
are shown as a function of € for three selected values of momentum transfer, Q> = 2, 3.3,
and 9 GeV2. The plots in the left and right columns correspond to the COZ and BLW
models, respectively, which have been used for parametrizing the DAs. The total corrections,
illustrated by the black curves, are of order of 1% in maximum, where the TBE effects within
the COZ model are about twice as large as when using the BLW description. The TBE effects
are decreasing for increasing Q2. For higher momentum transfer, the dependence of the TBE
corrections on Q? is found to be small.

In addition to the total corrections, the contribution to A"V from different pairs of dia-
grams are shown in Fig. 5.4. The largest corrections result from the interference between 1+-
and 2y-exchange (1 x 27), entering in the denominator of the asymmetry, which is shown
by the blue curve. The effects of the 1v- and yZ-interference (1y x vZ) and Z- and 2~-
interference (Z x 2v) are somewhat smaller compared to the 1y x 2v contribution and have
the opposite sign over a wide € range. Therefore the corrections partially cancel each other,
giving rise to small TBE effects in total.

These results are similar to the findings of the hadronic calculation and the GPD based
calculations, presented in Refs. [99-101]. Even though the Z x 2v contribution calculated
within the hadronic model differs in sign, the results show similar ¢ dependencies as well as
comparable total corrections [101]. However, the total TBE corrections obtained within the
GPD calculation in Ref. [100] are slightly larger, leading to effects of ~ 0.5 — 2.5 % for the
considered kinematical range.

5.3 Conclusions

In this chapter the two-boson exchange corrections to parity-violating elastic ep-scattering
have been studied within a perturbative QCD factorization approach, which are of particular
interest with regard to high-precision measurements of PV asymmetries. Using two different
parametrizations of the proton DAs, the TBE corrections are found to be of the order of 1%
or less. The contributions arising from the different types of diagrams are at the few percent
level, but have opposite sign. Therefore, the corrections partially cancel each other, giving
rise to small total effects.
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Chapter 6

Nucleon Form Factors in the Unphysical
Region

The electromagnetic form factors of the nucleon have been studied extensively in the spacelike
region by means of elastic electron-proton scattering, and forthcoming experiments claim to
measure the timelike form factors with high accuracy in the annihilation reactions pp —
et e and e e” — pp. But the region of momentum transfer, which is reachable, is exactly
bound by the invariant mass of the nucleon pair, which requires a momentum transfer of
at least q,?hr = 4m?\,. The timelike region below the two nucleon threshold, 0 < ¢ < 4m?v,
which is denoted as the unphysical region, is not accessible by the aforementioned annihilation
processes.

However, due to the correlation of the spacelike and timelike regions, the knowledge of the
form factors in the unphysical region would be an important help towards finding a comple-
mentary picture of the nucleon electromagnetic structure. The spacelike and timelike regions
are connected through dispersion relations, which offer a model-independent framework to
study the electromagnetic form factors of the nucleons simultaneously in both regions. Since
several models predict a form factor behavior, which is dominated by large contributions
of vector mesons in the below threshold region, an investigation of the form factors in the
unphysical region provides the opportunity to test and constrain such models. The data
would be of particular interest in order to improve form factor approaches, which allow to
connect the spacelike and timelike form factors.

Therefore, in Refs. [45,109] the annihilation process, where in addition a neutral pion is
produced,

p+p — 1 +et +e, (6.1)

has been studied. Since the outgoing pion takes a part of the energy of the reaction, the
production of a lepton pair with an invariant mass below the (p + p)-annihilation threshold
is possible and thus this reaction can be used to study the electromagnetic form factors in
the unphysical region. Moreover, this reaction offers the possibility to access the relative
phases of Gg and G;. An investigation of the discussed process is proposed for the PANDA
experiment at FAIR. Feasibility studies for a measurement at PANDA have been performed
in Ref. [110]. However, a study of the timelike form factors from the pp — 7%eTe™ process
requires a model in order to deal with the unknown hadronic interaction.

In this chapter, the process pp — mete™ is analyzed as a means to provide constraints
on timelike nucleon form factors. In order to calculate the unknown hadronic reaction pp —
794*, an approach inspired by Regge theory is used. To check the consistency of this Regge
pole model, we first test the approach on the process of real photon production, pp — 7%,
where data of the angular distribution of the cross section exist. Subsequently, the Regge
pole model is applied to the process pp — nwlete™.
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p

Figure 6.1: Sketch of the process pp — mlete™

6.1 Probing Nucleon Form Factors in the Unphysical Region

6.1.1 Timelike Pion Electroproduction

As discussed in Ref. [45], the reaction

p(p1, Any) +p(p2, Ane) = 70(gx) + 7 (a0, M) 62)
6.2
— 7%qn) + e (k1, hy) + e (K2, ha),

where the lepton pair is produced from a photon with momentum ¢, as shown in Fig. 6.1,
allows for studying the unphysical region ¢> < ¢, = 4m3,. We will refer to this process as
timelike pion electroproduction.

The momenta of the pp — 7%~* reaction can be combined to the Mandelstam variables,

s= (p1+p2)° = (g= + 9
u= (p2—ax)” = (1 — 0)?, (6.3)
t= (p1—ax)’ = (02— ),
which satisfy the relation
s+t +u=2mi +m> + ¢, (6.4)

where m; is the pion mass and ¢? is the virtuality of the photon.
The amplitude of the process consists of the leptonic and the hadronic part, connected by
the photon propagator

A= LV (‘5;) M. (6.5)

The hadronic amplitude ./\/l’;* characterizes the process pp — 7°y* and the leptonic contri-
bution £¥ describes the lepton pair production v* — ete™,

LY = —euy(ky) " vi(ka), (6.6)

which is calculable using QED. On the contrary, for the investigation of the hadronic sub-
process a model description is needed in order to deal with the unknown interplay of the
participating hadrons.
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il

Tovw

(u — channel) (t — channel)

Figure 6.2: Born diagram model for pp — meTe™ described by a single nucleon exchange in
the u-channel and ¢-channel Feynman diagrams.

In Ref. [109], the process pp — mYeTe has been studied within a Born diagram model,
in which the interaction of the hadronic part results from the exchange of a single nucleon.
The two corresponding Feynman diagrams, which are shown in Fig. 6.2, are given by a u-
channel and t-channel nucleon exchange. Another analysis of the reaction has been performed
within a factorization approach, using the concept of the transition distribution amplitudes
[111,112]. This approach is applicable in the kinematic range of larger momentum transfer
s at forward and backward kinematics, where a lepton pair with high invariant mass is
produced. Thus this model does not cover the region of interest, where the invariant mass
of the produced lepton pair is below the production threshold qt2hr. Consequently, in the
following we will examine the Born diagram model in more detail.

The amplitudes of the diagrams describing the nucleon exchange can be written as

1
./4»}/*7,u = — q—2 Eu M/;O’Y*JL
1 < m 7'(p2_Q7T)+mN
= — _QE/JN(pl)F’yNN(q) B) FWNN(qﬂ')N(pQ)a
q U — my
L (6.7)
At = = q_2 NMWO'\/*,t

1 v Y (g —p1) +m
Z—q—Qﬁu-N(pl)FwNN(%r)< ( t—rrll)?v N>F5NN(Q)N(Z?2),

+ M*

7.‘.0,}/*,257

with Mij* = M::O'y*,u

where the subscripts v and ¢ of A« refer to the amplitude with w-channel and ¢-channel

nucleon exchange, respectively, and N(p1) (N(p2)) corresponds to the Dirac spinor of the

antiproton (proton). The structures F‘;NN and [';yn are the parametrization of the v* NN
and TN N vertices, as indicated in Fig. 6.2.

Within this approach, off-shell effects of the exchanged nucleons have been neglected, hence

the v* NN vertices are parametrized by the on-shell proton electromagnetic form factors, in
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terms of the Dirac and Pauli form factors F} and F5 given by

1

IMyn(a) = e [Fl((f)’y“ - FQ(qQ)a“”qy] : (6.8)

2mpy

To describe the NN vertex both cases of pseudoscalar as well as pseudovector 7NN
coupling are taken into account:

Prvav(gx) = gavn (m2) (s + (1= N E10s)) (6.9)

where A = 1 (A = 0) leads to a vertex with a purely pseudoscalar (pseudovector) coupling,
with the pion-nucleon constant g,y (m?2).

It is important to take both t-channel and u-channel nucleon exchange into account in order
to construct a model, which satisfies the electromagnetic gauge invariance. The amplitudes
M- and MZ 0t themselves are not gauge invariant, but since

mOy*
_ —r +
M, = €gmxn () No0) Fia?) (= my + 52— ) (A
’ u — mN
X <)\75 +(1=X) gmqj:%) N(p2)
_ 2 2\ N7 Y4
= eg-nN(my) F1(q°) N(p1) (A% +(1-X) - 75) N(p2),
N (6.10)
G My =egann(m2) N(p) (dg + (1 — ) Lr,, ) (=Pt my
B0y T g 2my t—m?v
X Fi(¢*) (th — d= +mn) N(p2)
_ 2 2\ N7 Y dr
= — cguux () B Vo) (Y5 + (1= 0] %0 ) Nipa),
it follows
Ml = g (Mo M) =0 (6.11)

Nevertheless, it should be kept in mind, that the discussed approach implies that the
process can be approximately described by the exchange of a single nucleon in the u- and
t-channel, which is treated to be on-shell. When making such assumptions, the question of
the validity of such a model arises, calling for the possibility to test the considered approach.

6.1.2 Real Photoproduction

Since at present no data of the process of timelike pion electroproduction (Eq. (6.2)) exist,
we study the reaction of real photoproduction,

p(p1) + p(p2) = 7°(gx) + (), (6.12)

which has been measured at Fermi National Accelerator Laboratory (Fermilab) [113], and
we test the predictions of the Born diagram model with the results of this experiment. Data
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IR (QZ =0)

Tyvw (62 = 0) Iony

Figure 6.3: Born diagram model for pp — 70

of the angular dependence of the differential cross section do/dcos 0, where 0, is the c.m.
scattering angle of the pion, is available in the c.m. energy range of

2.911 GeV < /s < 3.686 GeV, (6.13)

covering an angular region of approximately —0.6 < cos 8, < 0.6.
The unpolarized cross section has the following form

_ 1 &g, d*q
i P (@) (@)
(6.14)

1
X (277)45(4) (pl +p2—qr — (J) 1 Z ]A7]2,
AN; Ay

where the subscript v of the amplitude A, refers of the process of real photoproduction.
The u- and t-channel amplitudes within the Born diagram model, as seen in Fig. 6.3, are
obtained as

“4’7,“ = ¢, 'Muo

2 oy, u

* N, : — 4r +
= <30 0) N o) Do = 0) (T2 I EN ) ) N ),
N (6.15)
Ay =¢, - M, ‘

I oy, t

N “(@r —p1) + My
= £,(¢; Ay) - N(p1) T (gr) <7 ( = m)2 ) IEyn (a2 = 0) N(p2),
N

where €#(g, \y) is the photon polarization vector. For real photons, one has two polarization
states, Ay = £1, with g,e"(¢,\y) = 0. In the description of FZNN in Eq. (6.15) the form
factors

Fi(*=0)=1, F(¢*=0)=r, =179 (6.16)
have been used.

For the spin-averaged squared matrix element one finds

DMINEEDY

2
e;;(M“O + M )‘ (6.17)
AN, Ay AN, Ay

0y, u m0y, t
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The process has been evaluated in the c.m. frame of the (pp)-pair, in which the momentum
of the antiproton has been chosen as the z-direction and the process takes place in the z-z
plane. The nucleon momenta are given by

NG /s — 4m?v Vs /s — 4m?v
b1 9 ,050, s ; b2 2 50,05 s ) (618)

and the momenta of the mesons are

q = (q07(7) = (q07 |7|sin 6., 0, || cosby),

(6.19)
qr = (ET(" _(j)a
with the photon and pion energies
2 2
o S—my s+my
= E = . 6.20
q 2\/5 ) ™ 2\/5 ( )
The unpolarized differential cross section is given by
d 1 1
? = moE MK (6.21)

2
= 171> (—gm) [ MK S
d cos 97 167 s /S _ 47’)’1,?\[ 4 )\Ni Ty, u w0,

Using the Born diagram model for pp — 7y, we are not able to reproduce the results
obtained in the E760 experiment at Fermilab. The cross section do/dcos 6, found within
the Born diagram model is about 4 to 5 orders of magnitude larger then the data, depending
on the value of the c.m. energy 1/s. Simple fixes by introducing strong suppressions through
off-shell form factors do not lead to a correct energy dependence of the cross sections.

For this reason, one can assume, that the Born diagram model is not suitable to describe
this process and thus the process pp — 7%ete™ as well. Therefore, we consider an alternative
model, which is inspired by Regge theory. Within this model, the exchange of a class of
particles with same internal quantum numbers is taken into account, instead of a single
particle exchange as in the Born diagram model.

6.2 Regge Theory

Before the advent of QCD as theory of the strong interaction, Regge theory was been es-
tablished as an approach to describe hadronic reactions at high c.m. energies at forward
and backward scattering angles. It is based on the idea of an analytical continuation of the
scattering amplitude in the complex angular momentum plane [114].

Scattering processes have been analyzed by taking specific properties of the S-matrix into
account. The S-matrix, which describes the transition of an initial particle state {a> to a
final state |b>, is given by

Sab = (a[S|b) = 6ap +i(2m)" 6 (Zpa - Zm) Aab (6.22)
a b
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where A,y is the scattering amplitude. In the case of a 2 — 2 particle scattering process, A
can be expressed as function of the invariant Mandelstam variables s and ¢: A(s,t). Crossing
symmetry correlates the amplitudes of s-, t-, and u-channel exchange, which are described
by the same function A for a different parameter space of the Mandelstam variables. Besides
using unitarity of the S-matrix, S.St = 1, Regge theory postulates, that the S-matrix can
be analytically continuated in the complex angular momentum plane, having only isolated
singularities.

A detailed discussion of Regge theory can be found in Ref. [115]. Only the basic principles
are outlined here.

A 2 — 2 particle scattering process is studied in the so-called Regge limit, where the
momentum transfer s is large and s > |t| (or equivalently s > |u| ). For simplicity, we first
consider a reaction where the four external particles have equal masses and do not carry
internal spin. The partial wave series of the amplitude in the ¢-channel is given by

A(s,t) = Z(2l + 1) A;(t) Py(cos ),
1

1

1
with  A;(t) = 5/ dcos 6 Py(cos 0;).A(s,t) (6.23)
~1
2s
and cosf; =1+ T am2’

where [ is the angular momentum and P, are Legendre polynomials.
The partial wave series can be rewritten as a contour integral in the complex angular-
momentum plane, where the contour C; surrounds the positive real-axis,

A(s, ) = —% dl (20 + 1) &’tl) Pi(— cosy), (6.24)

1 Jo, sin 7

which is known as Sommerfeld-Watson transformation. A(l,t) is the analytic continuation
for complex values of [, which matches A;(t), if [ reaches an integer value:

A(l,t) = Aj(t) forl=0,1,2,.... (6.25)

Using Cauchy’s integral theorem, the residues of the integrand at the integer values I = n
with sin(nm) — (—=1)"(I —n)7 give rise to Eq. (6.23).

The contour C; can be deformed to another contour, as presented by the dashed curves in
Fig. (6.4), given by C along Re(l) = —1/2 and the semi-circle, which is extended to infinity,
where the singularities a; in the complex [-plane have to be included. To ensure that the
integration over the semi-circle vanishes at infinity, A(l,t) has to converge for [ — oo. To
guarantee the convergence, one has to separate the even and odd partial waves, such that

At(l,t) = Ay(t) forl=0,2,4,...,
(6.26)
A=(1,t) = Ay(t) forl=1,35...,

where A* are the analytic continuations of the even and odd partial wave amplitudes, re-

spectively. On this account, the signature S = +1 has to be introduced, where & = +1
(§ = —1) corresponds to even (odd) partial waves.
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< ! Re(l)

Figure 6.4: Integration contours C; and C in the complex angular momentum plane as well
as the Regge pole indicated by [ = «a;(t).

The integration can be performed by taking the singularities of AS(l,¢) in the angular
momentum plane, [ = a‘f(t), into account by adding up their residues Bf(t), which leads to
S+ e—im af(t)

5 AS(1,t) Py (— cos ;)

AS(s,1) = %/Cdl (20 +1)
sav (6.27)

S c i :
_ ﬂzi:(Qozi (t)+1) 9 sin (WOéES(t))

Pos (i) (—cos ),

where the latter term on the r.h.s. of Eq. (6.27) is denoted as a Regge pole. The expressions
(S+e ™ af(t)) /2 are the signature factors giving rise to the separated partial wave amplitudes
A%, In the high energy Regge limit, the dominant contribution to the amplitude results from
the pole term. The contour integral over C along the imaginary axis has a s73 dependence
and can be neglected for s — co. Hence the amplitude reduces to the second part given in
Eq. (6.27). Applying the Regge limit to Eq. (6.27), one finds that the leading contribution
to A can be written as

s S+ e—iwaf(t) Bf(t) s af (t)
A%(5,1) o Z 2 Llaf(t) + 1] sin (7o (1)) <50> ’ (6.28)

i

where the scaling factor sg is conventionally chosen to be sg = 1 GeV2. The Gamma function
suppresses poles in the unphysical (negative) angular momentum region.

For processes involving particles with spin 1/2, such as annihilation of two baryons into a
meson pair, which are relevant for the processes studied in this chapter, the Regge amplitude
is given by [116]:

=

—ir(a (®)+3) af (1)~
Ste ’ ! i > (6.29)

S 1
A O(Zi:r[af(t)_}_l] 2 Sinﬂ'(OéS(t)‘f'%) <SO

2 7
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6.2 Regge Theory

The appropriate expression for the Regge amplitude corresponding to u-channel exchange
can be found in an analogous manner in the Regge limit with s > |u].

In the limit | — «;(t), the Regge pole reduces to the Feynman pole, describing a single
particle exchange:

A(s,t)

-, (6.30)

m;

I ai(t) Pit)
t .

where 1/(t — m?) represents the Feynman pole. The residue §; can be determined from
the vertex structure of the single particle exchange amplitude. When such a Regge pole
occurs through an integer value of the angular momentum [, it corresponds to a particle (or
a resonance). For a t-channel process, one expects to have poles which are associated with

the exchange of a particle with mass m; and spin j; as

It is possible to group the particles and resonances with same internal quantum numbers, but
different spin, into families, which lie on a given Regge trajectory a. Phenomenologically, it
has been found that the Regge trajectories can be parametrized through a straight line:

ai(t) = a;(0) + al(t —m?), (6.32)

where a(0) is the spin and m; is the mass of the first materialization of the trajectory. Such
Regge trajectories are named after the lowest-lying particle of «;(t).

This procedure allows for converting amplitudes describing the exchange of a single parti-
cle, which is the first materialization of a Regge trajectory, to Regge amplitudes of a given
trajectory. These so-called reggeization is carried out by replacing a usual Feynman propa-
gator through a Regge propagator, e.g. for baryon exchange as

RO T N CUORS ) T

! f
r [%‘(75) + %] 2 sinm (ei(t) + %) ’

)
t—m;

— DBt s) = (6.33)

which corresponds to an effective summing up of higher-spin particles lying on the corre-
sponding Regge trajectory.

Phenomenologically, it has been found that trajectories often satisfy the so-called weak
degeneracy, which means, that both even- and odd-partial wave trajectories are equal:
a™(t) = a~(t). In addition, the condition of the strong degeneracy implies, that both
vertex functions of the process are the same. As a consequence, the corresponding ampli-
tude of a trajectory fulfilling the strong degeneracy is characterized by the trajectory a™
with the residue 8. Such a degenerate trajectory can be obtained by adding or subtracting
the trajectories of different signatures,

e*’iﬂ'(ai(t)‘F%) )

= B(t) { (6.34)

S+ efiﬂ(ai(t)Jr%) +S+ efiﬂ(ai(t)qté)

This leads to a degenerate trajectory, which has either a rotating or a constant phase. In
this work we assume strong degeneracy of the baryon trajectories.
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Chapter 6 Nucleon Form Factors in the Unphysical Region
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Figure 6.5: Trajectories «(t) of the nucleon (blue solid curve) and the A(1232) resonance
(green dashed curve). The data points correspond to the particle positions in the
m?-spin-plane.

In Fig. 6.5 the trajectories of the nucleon and A resonance are shown, which can approx-
imately be expressed through

1
an(t) = 3 4 0.97 GeV 2 (t— m?\,) ,
(6.35)
ap(t) = g +0.9 GeV™2 (t—m3),

which correspond to the blue solid (ay) and green dashed line (aa) in Fig. 6.5. The points
indicate the position of the particles in the mass-spin plane.

Using the expression of the Regge propagator in Eq. (6.33), the cross section of a process,
which is dominated by a given Regge trajectory, behaves as

do
dt
If more than one trajectory is involved, at sufficient large values of s relative to a typical

hadronic scale of 1 GeV? (for given t), only the trajectory with the largest value of a(t) will
provide a significant contribution. Such trajectories are denoted as leading trajectories.

1 (t)—
x |A(s,8)|? o F(t) s2*~2, (6.36)

6.3 Real Photoproduction within a Regge Framework

To investigate the pp — 7%y annihilation process a Regge pole description is considered,
which is based on the exchange of leading baryon Regge trajectories in the u-channel and ¢-
channel. This approach allows to take the exchange of particles with higher spins and higher
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6.3 Real Photoproduction within a Regge Framework

masses into account, which are expected to contribute significantly at large momentum
transfer. Such a phenomenological Regge pole approach has been successfully applied to
electroproduction and photoproduction of pions and kaons, see e.g. Refs. [117,118|. In
particular, it has been widely applied in order to extract 7™ and K electromagnetic form
factors from the 7™ and K+ electroproduction process [119,120].

The kinematic region of this approach, which has been introduced before as Regge limit,
are the ranges of forward and backward angles, s > |t| and s > |u|. In the kinematical
region s ~ —t ~ —u the reaction has been investigated within the framework of generalized
distribution amplitudes in Ref. [81].

The dominant trajectories for the process pp — 7% are the nucleon (N) trajectory and
A trajectory associated with the A(1232) resonance [115]. The amplitude for Regge tra-
jectory exchange can be obtained from the Born diagram by replacing the usual Feynman
propagator of the single exchanged particle by the Regge propagator, while leaving the Feyn-
man structure, giving rise to the residue of the Regge pole, unchanged. We assume, that
the trajectories are degenerate, which leads to a smooth behavior of the cross section [115].
Non-degenerate trajectories would manifest themselves in dips appearing in the cross section.
Since the data do not show any dips in the measured range, such an assumption seems to
be reasonable.

In case of an exchanged nucleon, the pole-like Feynman propagators of the u-channel and
t-channel, given by 1/(u —m3%;) and 1/(t — m3;), are replaced in the following way

1 ay(u)—2 —iw(ozN(u)—i—l)
— = D]%egge(u, s) = i ’ — Ty .e - T~
u—m3 I [an(u) + 3] sinm (ay(u) + 3)
(6.37)
1 an(t)—1 —im(an(t)+3)
= DReey g = © raly — -
t—my L [an(t) + 3] sint (an(t) + 3)
where the nucleon trajectory ap is of the form
1 / 2 1 / 2
an(u) = = + oy (u—my), an(t) == + oy (t—my), (6.38)

2 2
with o/ = 0.97 GeV 2.

Analogously to the findings of photoproduction and electroproduction of pions at high en-
ergies within a Regge pole model [117,118], we consider a 1NN coupling of the pseudoscalar
type, as

Tann(G) = genn (m2)ys, (6.39)

where g,nyn(m2) is the pion-nucleon coupling constant.

™

Besides including the nucleon Regge propagators, the exchange of the A trajectory is taken

into account. Starting from the Feynman diagrams in a Born model with a single A(1232)

resonance exchange, as illustrated in Fig. 6.6, the amplitudes of the u- and ¢-channel process
can be expressed by

Y iz w0y u w0yt

AD =g (M, + M) (6.40)
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ON (¢* =0)

Figure 6.6: Born model for p + p — 7° 4+ 7 described by the exchange of A(1232).

with

Ajp —1
Mﬂo%u =v(p1) FgNAm(’y “pu+ma)

A
X {gaﬁ - é%ﬂﬁ - W”’QQZ e QPQL%W } TR au(p2),
_ (6.41)
M5 =0(00) Dowa = o (1ot 1)
X {gaﬁ - %%ﬁ’ﬁ - 7aptv§7215ptva B 2p§;§tﬂ } FJ%«/AU(PZ)’

with p, = p2 — ¢, and p; = ¢ — p1 and the mass of the A resonance ma = 1.232 GeV. The
structures I'yya and I'zya are describing the yINA vertices and mNA vertices, respectively.
The 'z ya vertex can be parametrized as follows [121]:

.2 3e(ma +my) { 9
o = — appo
WNA(Q) 1\/g 2mn ((m m )2 — @) gm(q°)e PAp Qo

(6.42)
+98(0°) (¢°Px — a-pag™) ivs + 9c(a®) (¢“¢" — ¢°g°") i%},

where pa is the 4-momentum of the intermediate A state. In Eq. (6.42) the vertex depends
on three electromagnetic form factors, gas(¢?), gr(¢?) and gc(q?), representing the strength
of the magnetic dipole, electric quadrupole and Coulomb quadrupole N — A transitions. In
the calculation, the electric and Coulomb quadrupole terms have been neglected since their
contributions have been found to be of the order of a few % [122]. Therefore the yNA vertex
depends only on gys(q?), for which gas(0) = 3.02 is used as yNA coupling strength. Both
amplitudes of Eq. (6.41) satisfy electromagnetic gauge invariance due to

que™’ papqo = 0. (6.43)

The parametrization of the 7 NA-vertex can be written as

ha
2f7rmA

FgNA(QW) = 'VOWVQm,u baw T;f‘ (6.44)
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6.3 Real Photoproduction within a Regge Framework

The operator T; 1 is the isospin 1/2 — 3/2 transition operator, f, denotes the pion decay
constant and hy ~ 2.85 is the TNA coupling constant.
The Feynman propagators in Eq. (6.41) are then replaced by the Regge propagators:

1 aa(u)—2 —iw(aA(u)—l)
o= DRy sy = " gy S
u—mi I [aa(u) + 5] sin7 (aa(u) — 3)
(6.45)
1 an(t)—2 —im(aa(t) —3%)
- o= DRy = g -
t—mi L [aa(t) + 3] sin7 (aa(t) — 3)
where the A Regge trajectory is of the form
o § / _ 2 _ § / _ 2
an(u) = 5 +dp (u—ma), aa(t) = 5 +ap (t—ma) , (6.46)

with o/y = 0.9 GeV~2.
The amplitude of the process reggeized in the following way, which ensures gauge invariance
of the Regge model amplitudes:

M, =Dt s) (t —m) [My + M), (6.47)
MDY, = DR (u, s) (u — m) [My + My, (6.48)

and analogous expressions for the A-exchange diagrams. Contracting with the photon mo-
mentum yields

H egge
g (M) = DR ) (1 —md) [gu MY+ g MI] = 0,
(6.49)
H egge
qu <M7]X’%U> - DJP\{Z 5 (u, 5) (u—my) [gu MU + quME] = 0.

Note that the Regge approach implies s > |t|, s > |u|, so that both forward and backward
regions are kinematically separated. In the kinematic region s > |t| the Regge amplitude
of Eq. (6.47) is dominating, whereas in region of s > |u| the u-channel Regge amplitude
(Eq. (6.48)) is the dominant one. Only in these limits there is no double counting in this
procedure. In the intermediate angular region one is outside the range of the validity of a
Regge approach.

We next discuss the inclusion of the A-exchange Regge trajectories. As for the A we are
further away from the pole position than in the nucleon case, the description of the residues
of the Regge poles through their on-shell couplings can be expected to be modified. We allow
for such a reduction of the coupling strengths of the A Regge pole residue, leading to the
amplitude

AT — el - (Mﬁ)v +F. Mfov) , (6.50)

v

where the parameter F will be obtained by a fit to the data.

In Fig. 6.7, results for do/d cos 6, for several c.m. energies /s including N trajectory ex-
change and (N + A) trajectories exchange are presented as well as results using the approach
of Eq. (6.50) in comparison with the data taken at the Fermilab [113]. Fitting the available
data leads to F ~ 0.5. One notices, that the angular dependence of the data in the forward
and backward regions is well reproduced.
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Figure 6.7: Differential cross section do/dcos 8, of pp — w0~ for different c.m. energies |/s;
blue (dotted) curve: N trajectory contribution; purple (solid) curve: cross section
including (N + A) Regge trajectory exchange; green (dashed) curve: (N + A)
contribution including a reduction of the A pole residue (F ~ 0.5) according to
Eq. (6.50). The data are taken from Ref. [113].
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Figure 6.8: Differential cross section do/dcos @, of pp — 7y for different c.m. energies
/s including nucleon Regge trajectory exchange in the t-channel and w-channel:
the blue (solid) curve corresponds to a pseudoscalar coupling of the T NN vertex
(given by Eq. (6.39)), the green (dashed) curve describes a pseudovector coupling
(given by Eq. (6.51)). The data are taken from Ref. [113].

The Regge model including N and A trajectory exchange describes the available data
very well. When only a N trajectory exchange is included in the amplitude, presented by
the blue dotted curve in Fig. 6.7, the obtained cross sections lie somewhat below the data
points, in particular for larger values of momentum transfer s. The Regge pole model gives a
better description of the data when taking both N and A trajectory exchange into account,
even though the calculation gives to some extent a larger cross section than the results of
the experiment. The cross section including the reduction factor F of the A-pole residue is
in very good agreement with the experiment, as one can see from the green dashed curve in
Fig. 6.7, especially in the regions s > [t| and s > |ul.

In addition to the parametrization of the 7NN vertex in Eq. (6.39), we considered a 1NN
coupling of the pseudovector type,

Tonn(r) = grvn (m2) =2 5. (6.51)

2mN

The results of the differential cross section do/dcos 6, including N trajectory exchange are
shown in Fig. 6.8 for several c.m. energies /s using two different pion-nucleon couplings,
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Figure 6.9: Cross section do/dt divided by s2aa()=2 for the process pp — 70~ as a function
of —t for different values of /s using the description according to Eq. (6.50);
blue solid curve: /s = 3.686 GeV; green dashed curve: /s = 10 GeV; the data
correspond to the cross section measured at /s = 3.686 GeV [113].

pseudoscalar, indicated by the blue solid curve, and pseudovector coupling, shown by the
green dashed curve. As one can see in Fig. 6.8, one did not find a satisfactory description of
the data in the forward and backward regions when a pseusovector type of the coupling is
used.

Since Regge theory gives as asymptotic behavior of the cross section

d
d_(tj o« F(t)s>® =2 for |t| < s,
) (6.52)
and d_a x F(u)s**®™=2 for ju| < s,
u

the cross section do /dt, divided by the expected s dependence of the leading Regge trajectory
is analyzed, in order to test the applicability of the model. At high energies the dominant
t dependence of the cross section is expected to arise rather from the s*® term than from

F(t).
For small values of ¢t or u the A trajectory is the dominant one, therefore we compute the
cross section divided by s2a(t)—2.
do/dt

The results are presented in Fig. 6.9, where the cross section do/dt divided by s2aa®)=2 ig
given as a function of —t for two different c.m. energies. One notices, that for —¢ — 0 the
cross section (do/dt)/s**21)=2 shows a behavior, which is approximately independent of s,
as expected from Regge theory, and approaches a constant value. The existing cross section
data, as indicated by the data taken at /s = 3.686 GeV in Fig. 6.9, have not yet reached
the region of such small values of —t, where an extrapolation of (do/dt)/s**2")=2 could be
performed by a constant.
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6.4 Timelike Pion Photoproduction within a Regge Framework

6.4.1 General Analysis of the Annihilation Cross Section
After specifying the Regge pole model, we study the process

P(p1, Any) + (P2, Ane) — 7 (am) + 7 (4, M)
(6.54)
— 70(qr) + e (k1 h1) + e (ka, ha),

in the framework of one-photon exchange, starting with a model independent analysis of the
annihilation cross section, which will be performed by taking properties of the electromag-
netic interaction into account. The 5-fold differential cross section for the process is defined

as
do = ! < d*r ) &>k d3ks
4\/(291 - p2)? —my (2m)32E, ) \ (2m)32k) | \ (27)3 2k

x (2m) 6(p1 +p2— gr — k1 — Z | Ay~
)\Nv

(6.55)

with the spin-averaged squared matrix element | A« |?,

Z\A

>\N7

(6.56)

where the amplitude A+ has been introduced in Eq. (6.5). In the analysis, the dependence
on the pion variables as well as on the kinematic variables of the lepton pair are taken into
account, which is associated with an experimental setup, where all three particles of the final
state are detected.

The squared amplitude ].A—W*P can be decomposed into a hadronic and a leptonic contri-
bution:

= 3 X s G (et et st

Ay=0,£1 ,\N ,

S ID DN I Dl TP

Ay=0,%1 AN,

, (6.57)
ev(q, )‘ﬂ/)ﬁy

where £(q, \,) is the polarization vector of the virtual photon. ./\/lf:* is the amplitude of
the hadronic process pp — 7°v* and £ is the amplitude of the leptonic reaction. In the
unpolarized case it is given by:

. 1
> = 4e? (k:’f ky + kY Ky — §k2g“”> : (6.58)
hi,ho

which is symmetric with respect to the interchange p <> v. An explicit form of the hadronic
contribution is not given at this point of the analysis. The separation of the amplitude is
independent of any specific form of the hadronic interaction.
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Figure 6.10: Kinematics of the pp — 7%*e™ process.

Both contributions of Eq. (6.57),
« 2 _ v 2
(M en(g,\)]7 and e, (g, Ay)a(kr) e’ v(ka)|, (6.59)

are Lorentz invariants, thus one can choose any reference frame for the calculation. The
advantage of such a separation is, that one can easily calculate the hadronic and leptonic
processes in two different reference frames.

The hadronic process, taking place in the hadronic plane, which is chosen to be the x-2-
plane, is considered in the c.m.-frame of the nucleon pair, with the three-momentum of the
antiproton pointing in the direction of the z-axis. The hadron and meson momenta have
been introduced in Eq. (6.19). In the case of a virtual photon, the photon and pion energies

are

qo_s—m3r+q2 5 s+ mZ— ¢
— =

SN SN

The leptonic subprocess v* — eTe™ is computed in the y*-rest frame, with the 4-momentum

of the virtual photon given by
0= (Ve.0,0,0) (6.61)

and where the lepton momenta can be written as

(6.60)

/2
k1 :Tq (1, Sin @+ ,— coSs Pt o, sin b +.- sin @+, cos 9€+67),
(6.62)
/2
ko :Tq (1, —8in @y +,- cos Ppt,—, —sin b+, sin 4., — cos O+, )

Therefore, the angles 6.+.- and ®.+.- are chosen as two independent kinematic variables
describing the leptonic subprocess. The hadronic part of the amplitude depends on the c.m.
energy +/s, the virtuality of the photon ¢2, and the Mandelstam variable ¢, which give rise to
the pion scattering angle ;. The kinematics is illustrated in Fig. 6.10. Such a choice of the
reference frames enables a simple identification of the allowed kinematical range in terms of
the 5 variables.
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The integration over the phase space can be performed using

1 (B3 \ [k [ d3ksy
it 54 —qn— k1 — k
mr e ) () (5 )00 o ==

1 <d3(j ) <d3(j> B3k \ [ Bk
= "M o5 )0 (1 + 12— ax — @)dd® | 5 ) | T )0 (@ — k1 — K2).
(2m)> \ 2E; ) \ 2¢° ( ) 2k 2k ( )

(6.63)
The leptonic part in the v* rest frame is
APk [ dPky 1
— IV (=2 )W (q— k1 — ko) = =dQos.— 6.64
( 2]{? > < ng ) (q 1 2) ] ete > ( )

with the leptonic solid angle df),+.-. Evaluating the phase space of the hadronic subprocess
in the c.m. frame leads to

dgq;r dsj 4 2
<2E7r> (2—qo>5( (o1 +p2 — ¢x — q)dg* =

1
—— |7| dg*d< 6.65
4\/5 ‘q‘ q v ( )
where |¢'| refers to the momentum of the virtual photon in the c.m. frame. Finally, the
expression of the differential cross section is received as

do 1

T2
= |, 6.66
dtdg? dQe+.-  (2m)*64s(s — 4m?3,) Al (6.66)

Using the decomposition of the amplitude as presented in Eq. (6.57), the differential cross
section of the reaction can be expressed by

do B 1 e2 47
dtdg® dQe+.—  1672s(s — 4m%;) (4m)28¢% 3

WOt -, Pt o), (6.67)

where W(0+ .-, @+ ) is the decay angular distribution of the ete™ pair, giving rise to the
angular dependence of the lepton pair:

37 .
W(ee+e— s cI)e"‘e_) :E SIDZ 06+6_p00 + (1 + COSZ 06+6_ )pll

+ V25in20,4 - cos s - Refpio] + sin? b+ cos 2P +.-Relpy_1] ] .
(6.68)

The density matrix py y is defined as
pax = (Ml en(0)) (M5 (X)), for Ay, N, =0, &1, (6.69)

The expression of W(0,+.—, P.+.—) in Eq. (6.68) is model independent, which means that
it is not related to any particular choice of the hadronic interaction in the process. All
dependences on the lepton variables 6,+.- and ®.+.- are fully contained in the expression
of Eq. (6.68), which is a function of four different independent angular structures, namely

1, c08% O+ o, sin 26,+.- cos P+, Sin? 0+ - oS 2P 4. (6.70)
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Hence, the density matrix elements can be determined using different angular configurations.
The dependence on the hadronic variables s, cos and ¢? is completely absorbed in the
density matrix elements p.

Not all of the density matrix elements pyy are independent. From Eq. (6.69) one can
easily see, that the density matrix satisfies

PAN = Pxa- (6.71)

Furthermore, from parity conservation one finds the constraints
Ay —AL
pr-x = (1) paw. (6.72)

6.4.2 Results within a Regge Framework

In the previous subsection the process has been analyzed in the most general way, with-
out defining the explicit form of the hadronic amplitude M,+. The expressions found in
Egs. (6.68) and (6.67) are model independent. However, in order to obtain numerical results
one has to use a model to characterize the hadronic subprocess. We choose the Regge pole
model, which has been used in Sec. 6.1.1 for investigating the pp — 7%y process.

Since a virtual photon is produced, one has to specify the electromagnetic form factors
parametrizing the v* NN and v*NA vertices. For the electromagnetic form factors of the
nucleon a VMD model is used, given in [48], for the purpose of the computation of the cross
section. Eventually, the aim of the present work is to provide a further constraint on future
extractions of timelike nucleon form factors.

For the magnetic dipole form factor of the N — A transition, we use the results in the
large N, limit, which can be written as [123]:

[F3(¢*) — F3'(¢?)] , (6.73)

where F¥ (F2') is the Pauli form factor of the proton (neutron), for which the description of
the VMD model will be used, and ky = xp — kp, = 3.70.

The results of the differential cross section do/dt dq? dS2.+.- as a function of cos 0+, are
presented in Fig. 6.11 for several kinematical conditions. We display the N trajectory contri-
butions, corresponding to the red curves, and (N + A) trajectory contributions as introduced
in Eq. (6.50), indicated by the blue curves, for the angles ®.+,- = 0 and ®.+.- = 7. The
dependence on the angle ®.+.- appears as an asymmetric behavior of the cross section with
respect to cos f,+,-. As virtuality of the photon ¢ = 0.5 GeV? and ¢> = 1 GeV? has been
chosen for the calculation.

For ®,+,- = /2, the resulting cross section is symmetric, which can be derived from the
general form of the decay angular distribution W, given by Eq. (6.68). The only structure
of W being an odd function of cos @, the factor in front of p1o, vanishes for &+, = 7/2.

Using the Born diagram model suggested in Ref. [109], one obtains a cross section, which
is 1 to 4 orders of magnitude larger than the results of the Regge pole model, depending on
the variation of the kinematic parameters s, ¢ and 6.

The integrated cross sections can be used to investigate the density matrix elements py .
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Figure 6.11: Differential cross section do/dtdg®dQ.+.- of pp — mYete™ as a function of
cos0,+.~. Red curves correspond to the N trajectory contribution; red solid
curve: ®.+.,- = 0; red dashed curve: ®.+.- = 7. Blue curves correspond to
the (N + A) trajectory contribution including a reduction of the A pole residue
(F ~ 0.5) according to Eq. (6.50); blue solid curve: ®.+.- = 0; blue dashed

curve: ®_ 4+, = .

ete

The cross section integrated over the azimuthal angle @+,

do m do
_ dd,. .-
d cos 0 dg® dcos 6+ 0 d cos 0 dg? dQ

ete~

_ |C7|62 ) 2
- s 06*6*/’00 + (1 + cos 06+e*) P11

(16)2 473 g2 54/s — Am¥;

(6.74)
is sensitive to pgg and p1; and the cross section integrated over the polar angle 6,+.-
do = /1 d cos O+ do
dcos 0, dg? d® +.- 1 ¢ dcosOydg? dQ g+ .-
17e? (6.75)

1
= = [Poo + 2p11 + cos 2P .+.-Re [p1—1]]

6
(16)2 4 g% sy /s — 4m3,
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Figure 6.12: Cross sections defined by Eq. (6.74) (left) and Eq. (6.75) (right) of pp — mVete™
as a function of cosf.+.~ and ®,.+.-, respectively: Red (dashed) curve: N
trajectory contribution; blue (solid) (N + A) trajectory contribution according
to Eq. (6.50).

can be analyzed in order to obtain in addition information on p;_; from the ® dependence
of the cross section.

The cross section integrated over the full lepton phase space is given by

do B /dQ do
dcosfrdg® "¢ dcos Oy dg? Qe o
(6.76)

1
= 3 [Poo + 2,011] ;
(16)2 73 q2 54 /s — 4m3,

depending on the density matrix elements pgg and p1;.

Accordingly, an investigation of the differential cross sections do /dt dg? dQ.+.-, as well as
the cross sections integrated over the azimuthal angle ®.+.- and the polar angle 6,.+.-, and
do /d cos 0,dq? allows to access all four density matrix elements pyy through a separation of
the matrix elements from the angular dependencies of the cross sections.

As selective predictions, the results of the cross sections (6.74), and (6.75) for s = 5 GeV?,
¢®> = 1 GeV? and 6, = /3 are shown in Fig. 6.12, using both N trajectory and (N + A)
trajectory exchange given by Eq. (6.50). The cross section integrated over the polar angle,
shown in the left panel of Fig. 6.12, is symmetric with respect to cosf, as one can infer
from the general expression given in Eq. (6.74). The integrated cross section of Eq. (6.75),
presented in the right panel of Fig. 6.12, has a periodicity of m due to the cos 2®_+ .- structure.

The ¢ dependence of the density matrix elements pyy is presented in Fig. 6.13 using a
(N + A) trajectory exchange as introduced in Eq. (6.50) for the region s > |t|, which is
dominated by the ¢t-channel Regge amplitude. The density matrix element p;1, shown in the
left panel of Fig. 6.13, yields the dominant contribution to the cross section, since it is about
one order of magnitude larger compared to the three other structures, presented in the right
panel of Fig. 6.13.

An alternative calculation is the evaluation of the whole process in the v* rest frame. In
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Figure 6.13: Density matrix elements as functions of —t (in GeV?) for s = 10 GeV? and
¢*>=0.5 GeV? using a Regge model with N and A trajectory exchange according
to Eq. (6.50). Left panel: density matrix pi1; Right panel: poo (blue solid
curve), p1o (red dashed curve), p;_1 (green dotted curve).

this reference rest frame the polarization vectors of the virtual photon are given by

1
A =+1) = — (0, F1, —1,0),

ey =41 = 50,71, -1,0) -
e(A\y=0) = (0,0,0,1).

Using the short-hand notation of the hadronic matrix element

M = M‘; (./\/lf/) (6.78)
the squared matrix element in terms of the hadronic tensor can be found as
9 1 2 2¢2 47
‘-’4’\{* = ‘Eﬂ?M‘u ‘ = ? ?W(eeﬁLe*aq)eJre*)

2
= 2% [./\/l?’3 (1= cosOpre-) + (MM + M) <1 — %sin2 0)
q (6.79)

—sinf 4+, cosf+.— cos P+ - (./\/l?’1 + Ml?’)

1
+ 5 €082 B+ o— €08 2B 1 o~ (MM 4+ M??) ] .

Integrating the angular decay distribution over the azimuthal angle and polar angle gives

21 2 27

2e* 4

/ ‘A,\/* 2 d(I>6+e— = — _7T W (06+e— 5 q)e+e_) d¢6+6_
0 ¢ 3 Jo

2
= 2155 [ (2M% 4+ MU+ M) + 005% O (MU 4+ MP = 2M%)]
q
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1

2e2 4

/ ‘Ar\/* 2 etem = T35 o W (ee+e—7 (be+e—) d cos 06+6_
-1 q 3 0

— ge_z [M?,s VY- I %cosQ(I)eﬂf (MY~ Mm22)
(6.80)

/‘“4'7* ’

26 4
etem — /W ete > e+e )dQ@Le

167 ¢ 33 11 22
which is in agreement with the results presented in Ref. [110]|, where the analysis of the
reaction has been performed in the v* rest frame. Such observables allow to access different
combinations of the hadronic matrix elements.

6.5 Conclusions

In this chapter the process pp — meTe™ has been studied, giving a model independent
expression of the cross section in terms of the lepton pair angular distribution and presenting
results within a Regge pole approach. Such a model description is applicable for high-energy
processes in the forward and backward angular regions.

It has been found that a model based on nucleon and A Regge trajectory exchanges
provides a good description of the data of the real photoproduction process pp — 7’y in
the energy range of s ~ 8.5 — 14 GeV2. Applying this model to pp — 7%ete allows for
predictions of the angular dependence of the differential cross section, which can be used to
extract the timelike form factors in the unphysical region as well as their phases, in kinematics
which will be accessible by the PANDA@QFAIR experiment.

The Regge approach can be extended to study polarization observables for pp — mVete™
and furthermore, to the analysis of other processes, such as two-pion production, pp — 707°
and pp — 77T, or the spacelike reaction v*p — 7% in the forward and backward angular
regime.
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Chapter 7
Conclusions and Outlook

In this thesis different aspects of probing the structure of the nucleon by means of the
electromagnetic interaction have been studied. The electromagnetic interaction offers a clear
probe, which provides access to the electromagnetic form factors, which are one of the most
basic observables regarding the composite structure of the nucleon.

The main focus of the thesis was on two-photon exchange corrections in form factor mea-
surements, which are expected to explain the discrepancy between the results of the form
factor ratio G /G s found in unpolarized Rosenbluth measurements and polarization exper-
iments of elastic electron-proton scattering. Understanding this discrepancy is of particular
importance towards finding a consistent description of the electromagnetic form factors. The
appearance of the contradicting form factor results has triggered a new field studying the
influence of two-photon exchange corrections in order to reconcile both experimental meth-
ods.

In this thesis a combined analysis of high-precision Rosenbluth data and polarization
observables for elastic electron-proton scattering has been presented. The available cross
section data and the results of polarization measurements, both performed at similar values
of momentum transfer, allows for an empirical determination of the two-photon amplitudes.
Using the assumption that two-photon exchange is the source of the discrepancy, the two-
photon amplitudes have been found to be in the 2-3 % range. One amplitude (Y3;) can be
reliably extracted from the corrections to the unpolarized cross section. Improving on the
extraction of the other two amplitudes requires a further improvement in the precision of
the polarization experiments. The determination of the two-photon amplitudes allows for a
prediction of the e™p/e™p cross section ratio, for which dedicated experiments are underway,
giving rise to effects of several percent for the measured kinematical range of the experiments.

Furthermore, 2v-exchange in the corresponding crossed timelike annihilation processes has
been studied. With regard to forthcoming high precision measurements of the timelike form
factors, it is important to estimate such corrections. Two different approaches have been used
in order to perform the calculation of the two-photon exchange contribution to the timelike
annihilation process pp — ete™, both based on the concept of factorization. These studies
are the first calculations of timelike two-photon exchange corrections covering the region of
intermediate and larger momentum transfers, for which the form factor measurements will
be performed.

The first method is based upon perturbative QCD factorization, allowing to factorize
the amplitude of the process into a non-perturbative part and a hard subprocess, in which
all three valence quarks of the nucleon participate. The non-perturbative contribution is
represented by the Distribution Amplitudes of the proton and antiproton. Using different
parametrizations of the DAs, the 2+v-corrections to the cross section were found to be small,
leading to effects of ~ 1% at most. In the second approach the concept of Generalized
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Distribution Amplitudes has been applied, which are the timelike analogon of the Generalized
Parton Distributions. Within this model, the annihilation process takes places only at a
single quark-antiquark pair in the hard part of the amplitude. The two-photon corrections
obtained within this approach are slightly larger, reaching values of ~ 2% in maximum.
However, the timelike 2v-corrections are smaller than those found for the spacelike process,
which suggests that the impact of two-photon exchange is less important for the extraction
of the form factors in the timelike region. The small 2v-exchange contributions make it
challenging to observe such effects in unpolarized cross section measurements.

Two-photon exchange in the reaction pp — eTe™ manifests itself in an odd contribu-
tion with respect to forward and backward c.m. scattering angles, giving rise to a forward-
backward asymmetry. Since the obtained two-photon contributions depend on the parame-
trizations of the DAs and GDAs, respectively, an extraction of the corrections through an
accurate measurement of the asymmetry offers the opportunity to probe and constrain these
non-perturbative objects.

Moreover, the perturbative QCD factorization approach has been applied to investigate
the two-boson exchange contributions appearing in parity-violating elastic electron-proton
scattering. Parity violating asymmetries are sensitive to the interference term of one-photon
and Z boson exchange amplitudes of elastic ep-scattering, providing access to the strange
quark contribution and the weak charge of the nucleon. Applying the pQCD factorization
approach, it was found that the two-boson exchange corrections to the asymmetry are in the
range of < 1%, where the contributions of different exchange diagrams have opposite signs
and partially cancel each other, leading to small corrections in total.

In addition, the process pp — 7%ete™ has been analyzed, which attracted attention due
to the possibility to probe the nucleon electromagnetic form factors in the unphysical region
below the two-nucleon production threshold within this reaction. No data of this process exist
so far, but measurements are planned by forthcoming experiments. Data of the form factors
in the unphysical region would certainly improve our understanding of nucleon structure.

The annihilation process has been investigated within a phenomenological model based on
Regge theory. Prior to this, the validity of the Regge approach has been tested in the process
of real photoproduction pp — 7%y, for which data in the energy range of s ~ 8.5 — 14 GeV?
exist. It has been found that an approach including nucleon and A Regge trajectory exchange
provides a good description of the data of real photoproduction over the measured range.
Subsequently, the reaction pp — mete™ has been analyzed, where model independent
expressions of the cross section in terms of the angular distribution of the lepton pair as well
as predictions of the angular dependence of the cross section within the Regge approach has
been presented.

The discussed Regge based model can be extended to the analysis of further processes, such
as the spacelike reaction v*p — 7% p, or two-pion production, pp — 7°7% and pp — 77+,
in the forward and backward angular regime. The latter process represents an important
background reaction with respect to timelike form factor measurements, which are planned
in the near future by the PANDA experiment at FAIR.
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Appendix A

Notations and Conventions

A.1 Lorentz Vectors

The contravariant representation z# and covariant representation x, of Lorentz vectors,
which are given by

ot = (20, 2!, 2%, 23) = (2°, %), and xy, = (xo, 1, T2, 23) = (20, —), (A1)

respectively, are connected through

at = g"x,. (A.2)
The metric tensor g"” is defined by
+1 0 0 0
0 -1 0 0
p .
g 0 0 -1 0 (A.3)
0 0 0 -1

A.2 Light-Cone Coordinates

Light-cone coordinates have been introduced with respect to the light-cone basis n and n
and the transverse contribution a | :

n* = (1,0,0,1), n*

I
—~
\.D—‘
=
=
|
—_
~—

with 72 =n?>=0. A-n=2 (A4)
d = (O,al,aQ,O).

Any 4-vector can be decomposed with respect to the light-cone basis as

p_ Ly H
p =7(n-p)+7(n-p)+pl7 (A.5)
pt P

and can been expressed through the shorthand notation using p*,p~, p,:

p= (*p.p)= (n-p,7-p pL). (A.6)
The scalar-product of two vectors is given by:

p1-p2 = Pi Py +Dy Py +P1L P2,

(A7)
in particular: p* =2p*-p~ +pl.
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A.3 Pauli and Dirac Matrices

The Pauli matrices are 2 X 2 matrices defined as
1 (01 o (0 —1 3 (1 0
“‘<10 2= i oo )0 727 o -1 ) (A8)

3
0i0; = ]l+izeijk0-k- (Ag)
k=1

which satisfy

The Pauli spinors are defined by

2:<(1)>, Xs—%:<(1)>- (A.10)

Xg:l
The Dirac matrices are d x d matrices (d > 4), fulfilling the anticommutator relation

(VA =AY A = 29" (A.11)

In this thesis, only the case d = 4 has been considered. Additionally, the following combina-
tions of Dirac matrices have been used:

15 =102 o = S e = 5 (M =), (A12)
where 5 fulfills
{157} =0, B =1 (A.13)
Using light-cone coordinates, the combinations
At = (,YO + 73) , = (0,71,72,0) (A.14)
can be introduced. Furthermore, one obtains the following relations:
P =200 A=, A =1 As)
=0 (T =4 (M=o
For the traces over Dirac matrices one finds:
Tr[y"4"] = 49"
Tr[y*y P77 = (g g* — 9" 9" + g7 g"")
Tr[y#t -k =0 for n odd
Tr[vs] =0 (A.16)
Tr[y57#9"] =0
Tr[y57"7"2 7] = —4ie??

Tr[ysyHt - 4H] =0 for n odd.

As an explicit representation of the Dirac matrices the Dirac representation has been used:

1 0 . 0 of 0 1
0 __ 2x2 i ] _ 2x2
v = < 0 —lyuo > V= < o 0 ) Vs ( Lyvs 0 > (A.17)

where o' are the Pauli matrices.
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A.4 Dirac Spinors

The expansion of a fermion field is

3 =
0@ = [ s 5 2 {00l shesp-ipe) + 610,90 soxplpe)}

(A.18)

3 =
o) = [ (;ﬂgg ;poZ{b@,s)@(p,s)exp(—ipx)+a*<p,s>a<p,s>exp<ipx>},

where af and b' create a particle of kind a and b and u(p, s) and v(p, s) are the Dirac spinors,
which satisfy

Bp, —m)u(p,s) =
(V*pu —m)u(p,s) = 0, (A19)

(+pu +m) v(p.s) = 0.

The spinors fulfill the completeness relations

Z u(p, s)u(p,s) = p+m,
- (A.20)
Z’U(p, 5)1_)(29’ 5) = ]5—m.

S

In order to study transformation properties of 9I'y», where 9(z) is a Dirac spinor and T
is an arbitrary 4 x 4 matrix, it is convenient to decompose the expression with respect to its
transformation properties.

A basis contains 16 4 x 4 matrices, which are given by anti-symmetric combinations of the
Dirac matrices:

1 scalar 1

~H vector 4
oM tensor 6 (A.21)

yHAs pseudovector 4

Y5 pseudoscalar 1

where in the middle the transformation property of the matrix and on the r.h.s the number
of matrices are given.
The spinor of a spin-1/2-particle, with momentum p’ given by

sin 6 cos ¢
p=|p|| sinfsing (A.22)
cos 6
and
E? =m? + |p]? (A.23)

125



Appendix A Notations and Conventions

can be parametrized as

[
COS bl

sin & (cos ¢ + isin ¢)

u(p,+) = VE+m

|7 0 ’
i COS5
E‘f)ﬂ sin § (cos ¢ + isin ¢)
(A.24)
sin & (— cos ¢ + isin ¢)
5.2) — cos §
up,—) = m 5| )
’ quzm sin § (cos ¢ — isin ¢)
| 7] 9
T Et+m €983
and for antiparticles
E+m g(cosé—isin@
— AL cos 8
U(p,—i—) — /E—l—m E+m 2 ’
sin ¢ (— cos ¢ + isin ¢)
[
Cos 3
(A.25)
1l 0
" E+m cos 5

7] sin & (cos ¢ + isin ¢)

op—) = VETm| Fm 9

— COS§

— sin  (cos ¢ + isin ¢)

In some cases it is convenient to use light front helicity spinors. The expression of these
spinors is obtained by a transformation of a spinor in the rest frame via a longitudinal and
a transverse boost. The light front helicity spinors are given by

pt+m —pt +ip?
1 ton2 +
p+1p pr+m
u(p, +) =N + ) u(p’_) =N 1 ) )
p —m b —1p
p'+ip? —pt+m
—pt + ip? pt—m (A.26)
+ 1 02
b —m p +1p
U(pa +) :_N 1 ) ) U(p7_) :_N 4 )
p —1p pr+m
—pt—m p'+ip?

with N1 =/2pT,
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where the “+ “and “— “ correspond to a light-cone helicity state of the particle with h = +1/2
and h = —1/2, respectively. For m — 0 the light front helicity spinors are equivalent to the
ordinary helicity spinors.

For a particle with four-momentum p*, which is moving fast in the 4-direction, one finds

+ m + m _
u(p,+)=/\/<(p + )X+>’ u(p’_):N<_(p +m) x )

(p™ —m) x4+ (pt —m)x—

. 1 0
with X+:<0>7 X—:< 1).

Using the projectors

TR (e e A e Ao A9
A 1 1 1 1 (A.28)
gives
X+ X+ 1
Afu(p,£) ~ Np* ~Vpt, Aup, k)~ N ~
u(p, +) p (h&) P u(p, +) m<¢Xi> ot
—XF XF 1
A v(p,+) ~ Np ( e ) VT, A v(p, £) Nm( ixq:) \/p_+
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Appendix B

Amplitudes within a pQCD Factorization
Approach

In this appendix the results of the different diagrams of the hard subprocesses contributing
to the 2v-amplitude and yZ-amplitude calculated within the pQCD factorization approach
are given.

B.1 Results of Two-Photon Exchange Contributions
The amplitude for timelike two-photon exchange can be separated as

Agy = QUA™ + QuQu(A™ 4 A
(B.1)
= Q2 (Al + AL) + QuQu (Al + A + A+ A7)

with
AL = D" + DI'® + crossed. (B.2)

The superscript of A?7'% indicates to which quarks the two photons couple in the hard
subprocess. The diagrams contributing to the subprocess are presented in table B.1. The
indices k of Dy in Eq. (B.2) refer to the gluon exchange as indicated in the diagrams of
table B.1. The amplitudes of the different contributions are found as

g1
uu 5
12 =73 WY lr

‘ / : d[z;]d]y] (V'+ AV +A)+4T'T)(1,2,3) (B.3)

T2Tox3)(Y2P2y3) [T2(n — Y2) + G2l [T2(y2 — ) + G2n]
PrK

S

- N <(277 - 1)9523/2’71 - 2(z2 +y2 — 29022/2)) N,

uu 1
34 T3 WY Or

. / : d[z;]d]yi] (V'+ AV +A)+4T'T)(1,2,3) (B.4)

T2Tox3)(Y2P2y3) [T2(n — Y2) + G2l [T2(y2 — ) + G2n]

_ PH
- N <(2n — 1)m2y2’)’i — SKl 2(zg + Y2 — 2x2y2)> N,
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8G1

urd =
Ay —g3 Wb

' / dizidly] (V' + ANV + A) +4T'T)(1,2,3)
(

r122%2) (Y1y292) [T2(n — ¥2) + 27][Z2(y2 — 1) + Y21 (B-5)

P“Klz(

- N <(277 - 1)9523/2’Yi - T2+ Y2 — 23622/2)) N,

1661 _
Agy == Wy

. / dlz;)d[y] (V'V + AA)(1,3,2)
(

r122%2) (Y1y282) [T2(n — ¥2) + G2n][Z2(y2 — 1) + Y21 (B-6)

P“K¢2

S

- N ((277 — Doy — (z2 +y2 — 2562y2)> N,

wd 891 _
A3 T g3 Wby

' / dizildly] (V' + ANV + A) +4T'T)(1,2,3)
(

r12272) (Y1y292) [T2(n — ¥2) + 27][Z2(y2 — 1) + Y21 (B7)

j2z
- Onv <(277 — 1)x2y275f — SKJ‘Q(:UQ + Yo — 2x2y2)> up,

16G1 _
Az =3 Wvr

' / dlz;)d[y] (V'V + AA)(1,3,2)
(

r12272) (Y1y282) [T2(n — ¥2) + Y2n][Z2(y2 — 1) + Y21 (B8)

PMKLQ(

S

- N ((277 — Doy — T2+ Yo — 2m2yz)> N,

: e (4r 2
with G| = Z(?) o Ols-

B.2 Results of vZ-Exchange Contributions

The amplitude for vZ-exchange in ep-scattering can be expressed as

Az = QuiA™ + A7) 4 QA"
with A™ = AR 4 AR AN AR,
ud uid wid wod wod (BQ)
AYE = AR+ A+ AT+ A

uzd __ ulzd ulzd U2Zd u2Zd
A = A7+ A7 ALY+ AT
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Ys Y2 Ui
T3 T2 Z1
3
q
1 4
q2
2
Y3 Yo ki
Zz3 ) T
3
q
1
q2
2 4
Y3 Y2 il

uu AU uu
A" =AYy + As)f

=D1" + D3" + D5" + Dy" + crossed

uld __ quid urd
A _A12 +A34

:Di“d + D;“d + Dg,fld + DZld + crossed

u2d __ qu2d uad
A _A12 +A34

=D 4 py2? 4 DYt 4 D2t crossed

Table B.1: Diagrams contributing to the subprocess of 2y-exchange within the pQCD fac-
torization approach. The x’s indicate the possibilities to attach the gluon. The
subscripts 1-4 of D; refer to the gluon exchange as given in the Feynman diagrams.
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Again, the superscript of A indicates to which quarks the photon and the Z boson cou-
ple, while the subscript Z refers to the Z boson coupling. The Feynman diagrams of the
subprocess are presented in table B.2.

The amplitudes have been decomposed with respect to the vector (V) and axial-vector (A)
contribution, corresponding to a vector and axial-vector coupling of the hadronic current,
respectively:

8Go
AvV ot 9wl — gas)u

» / d [i] d[yi]

121702 Yy19192 [T1(y1 — C) + 51¢ +ie] [[Z1(C — 1) + 51 ¢ + ie

(B.10)
X {2 (V! = ANV — A) +4TT'] (1,3,2) (2151 + 2191)
X NWi {(2C — Dzyyg + %2(3:1 + 1y — 2x1y1)} N,
A T2 G (o — g
/ d|x] dlyi] i
12122 19192 [T1(y1 — ) + 51¢ + i) [21(C — §1) + 7iC + i
x { —2[(V! = AV — A) — ATT'] (1,3,2) &1 71 (B.11)

+2[(V/ = A)(V — A) +4TT') (1,3,2) mlyl}

n

_ P
X N5~} {(QC —Dxiy1 + %2(361 +y1 — 23612/1)} N,

802
Awzd, V. _ @ g{i/ up Yu(9y — gays)w

[ sl _
17122 Y191Y2 [Z1(y1 — €) + 1€ + ie] [[Z1(¢ — 7n) + 1 ¢ + ie]
X {2 (V! — A)(V — A) +4TT') (1,2,3) 151 + 4 [V'V + A'A] (3,2,1) xlyl}

PH

x N~ {(QC — Dz1y1 + K.

0’ 2(z1 +y1 — 23313/1)} N,

(B.12)
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8G2
Au2zd, V. _ + @ g% up 'yu(g‘e/ — 9375)1”

[ *
12102 y19192 [T1(y1 — C) + 1€ +ie] [[T1(C — 1) + 1€ + ie
X {2 (V! = A)(V — A) +ATT') (1,2,3) myys + 4 [V'V + A'4] (3,2,1) flgjl}

PH

x N~F {(2C — Dzy1 + %2(3:1 +y1 — 2x1y1)} N,
(B.13)

8Go
Awzd, A _ @ g% uy yu(g‘e/ - gi%i)ul

« / d [xi] dly;]

12122 y19192 [T1(y1 — C) + 51 +ie] [[T1(C — 1) + 1€ + ie
x {2 (V! = A)(V = A) = 4TT') (1,2,3) 3151 + 4 [V'V + A'A] (3,2,1) mlyl}

n

_ P
X N5~} {(2C — Dy + %2(% +y1 — 2561y1)} N,
(B.14)

8Go
AUQZCLA — @ g‘u/ (I ’}/H(g‘e/ - 921’75)2”

[ A *
r1Z122 19192 [T1(y1 — €) + 51 +ie] [[21(C — 91) + i + i
X {2 (V! = A)(V — A) +ATT'] (1,2,3) 211 + 4 [V' A+ AV] (3,2,1) flgjl}

n

_ P
X N5~} {(2C — Dy + %2(% +y1 — 2561y1)} N,
(B.15)

1 [47\? Gr
ith Go = — [ = ) clem s —=.
wi G 16 < 3 ) Qem 'S o
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Appendix B Amplitudes within a pQCD Factorization Approach

- — - - - — =

3 4
T n
1 2
T2 Y2
T3 Y3
|
|
|
3 ! 4
Ty 4 Y1
1 § 2
T2 Y2
T3 Y3
|
|
|
., 3 4
X 1 Y1
|
T2 t Y2
|
x3 4 Y3
1 2
|
|
|
3 ! 4
X : < Y1
T2 > Y2
T3 Y3
1 2
|
|
|
|
|
T 1 n
3 ? 4 |
T2 g t Y2
|
T3 4 Y3
1 2
I
|
|
|
T + n
3 ' 4 <
X2 $ g > Y2
Zz3 Ys3
1 2
Table B.2:
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Anwez — guiuez)V | guiuzz,A

— uiu2z uiu2z uiu2z uiru2z
— pWvez 4 puitez 4 platez 4 Dl

+ crossed

Aizuz — guizuzV | guizuz,A

— Uizu2 U1z u2 Uiz u2 U1z u2
= DWz¥2 4 plizv2 4 phiziz 4 Dt

+ crossed

Awdz — gudz)V | puidz,A

_ Diludz +D;“dz —i—Dgle —i—fole

+ crossed

Aulzd — Aulzd,V+Au1Zd,A

_ Dilhzd_i_D;ﬂzd_i_Dglzd_i_DXlzd

+ crossed

Aurdz — pu2dz)V | pu2dz,A

d d d d
— D71»42 zZ +D72»L2 zZ +Dg2 zZ +DZ2 zZ

+ crossed

AU,de — AUde,V+AUde,A

_ D?112Zd+D7212zd+Dggzd+szgzd

+ crossed

Diagrams contributing to the subprocess of yZ-exchange within the pQCD fac-
torization approach. The x’s indicate the possibilities to attach the gluon. The
subscripts 1-4 of D; refer to the gluon exchange as given in the Feynman diagrams.



Appendix C

Form Factor Parametrization

In this appendix the form factor parametrizations, which have been used in this thesis, are

summarized.

C.1 Electromagnetic Nucleon Form Factors

Spacelike Models

Inverse polynomial model [107]:

7 2
Gp(Q), %f) = (1+p2@Q®+p1Q* + - p2, Q™)

where the parameter obtained from fits to the Rosenbluth data are

‘ H D2 ‘ P4 ‘ Pe ‘ Ps ‘
Gy | 3.226 | 1.508 | -0.3773 | 0.611
G/ || 319 | 1335 | 0151 | -0.0114

Friedrich-Walcher parametrization [108]:

A i (2
6@, B 6,04+ @ 6@,
P
with  Gy(Q?) = — 40, 90
(1+%>2 (1+%>2

_1((@-e)? 1 [ (etey)?

auey - )L SR

- (C.1)

)

where the parameters have been obtained from fits to the form factors. In the case of the

neutron form factor it has been found:

‘ Ham‘an‘am‘am‘ab‘Qb‘Ub‘

Gt 1.04 | 1.73 | -1.04 | 1.54 | 0.009 | 0.29 | 0.20

G/ || 1.012 | 0.770 | -0.012 | 6.8 | -0.011 | 0.33 | 0.14
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Appendix C Form Factor Parametrization

VMD Models

In Ref. [48], a nucleon form factor model for both spacelike as well as timelike electromagnetic
form factors has been presented.
The spacelike parametrizations are given by

1 . é
) = 5 o) (1= 6o = ) — u ™ — By

m2 q* —mj
veay L o 7m%
F (¢%) = 59(a )_1_Bp_ﬁﬂq2_m2}’
2 2 (C.3)
1o me m
FJ(¢®) = =g(¢%)](0.12 T — 2 }
2 (0°) = 39(¢) | (012 + ag) 5= w2l
FY (%) = <(¢®) [ — 3706 s ]
2 27 L T g —m2 )
with
g(QY) = — 1 (C.4)
(1—~¢?)* |

In order to take the non-negligible width of the p meson into account, the propagator has
been replaced as

m? m?2 + 8T ym, /7
2 pz 3 2 pz pz / 2 ’ (C.5)
q” — mp q~ — mp + (q - 4m7r)rpa(Q )/mﬂ'
with
2 L A4m2\ 2 21 4m2 2
Q(Qz):<Q+72m7r>—log<vQ i m”VC?). (C.6)
Q T 2m
In the timelike region a phase has been introduced to the intrinsic form factors:
1
2
— % a5 a- C-?
o0") = Ty (1)
The pole of the p meson has been modified as
m?2 . m2 + 8y /7 ©8)
¢*—my = mp+ (¢ —AmI)Ta(q?) /mx — il p4mB(g?)’ '
with
Oé( 2)_ q2_4m72r 210 \/q2_4m72r+\/q2
q - q2 T g 2m7r ’
(C.9)

e 3/2 e —1/2
2 2 2
s = (10 -1) (1) e -,

The free parameters are obtained by fitting the spacelike data, the phase from a fit to the
timelike data

By =1102, B5=0.112, B, =0.672, ay=—0.052,

—2 (C.10)
v =025 GeV™2, 0 =53°.
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C.2 Axial Nucleon Form Factor

Timelike Models

QCD-inspired form factor model:

\GEMm| = (C.11)
qt <ln

where B is a free fit parameter.
Improved fit of F,/F} including logarithmic corrections to the power law fall off as expected
from QCD [79]:

F 14 (Q%/0.791 Gev?)’ ™ (1 +Q*/4m2)

= . C.12
R + (Q?/0.38 Gev2)31n5~1 (14 Q?/4m2) (C12)

C.2 Axial Nucleon Form Factor

The axial form factor in the spacelike region has been parametrized through a dipole form:

aa@) = —H (C.13)
)

with g4 = 1.27 and m4 = 1.026 GeV [84]. In addition, this dipole parametrization has been
used in order to express the timelike axial form factor with Q2 — —¢?.
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List of Acronyms

2y

DA
FAIR
Fermilab
GDA
GPD
JLab
LEAR
MAMI
MESA
PANDA
pPQCD
PV
QCD
QED
SLAC
SSA
TBE

VMD

two-photon

Distribution Amplitude

Facility for Antiproton and Ion Research
Fermi National Accelerator Laboratory
Generalized Distribution Amplitude
Generalized Parton Distribution

Thomas Jefferson National Accelerator Facility
Low Energy Antiproton Ring

Mainz Microtron

Mainz Energy-Recovering Superconducting Accelerator
Antiproton Annihilation at Darmstadt
perturbative QCD

parity-violating

Quantum Chromodynamics

Quantum Electrodynamics

Stanford Linear Accelerator Center

single spin asymmetry

two-boson exchange

vector meson dominance
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