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AbstratThe thesis investigates the nuleon struture probed by the eletromagneti interation. Oneof the most basi observables, re�eting the eletromagneti struture of the nuleon, are theform fators, whih have been studied by means of elasti eletron-proton sattering withever inreasing preision for several deades. In the timelike region, orresponding withthe proton-antiproton annihilation into a eletron-positron pair, the present experimentalinformation is muh less aurate. However, in the near future high-preision form fatormeasurements are planned.About 50 years after the �rst pioneering measurements of the eletromagneti form fators,polarization experiments stirred up the �eld sine the results were found to be in strikingontradition to the �ndings of previous form fator investigations from unpolarized mea-surements. Triggered by the on�iting results, a whole new �eld studying the in�ueneof two-photon exhange orretions to elasti eletron-proton sattering emerged, whih ap-peared as the most likely explanation of the disrepany.The main part of this thesis deals with theoretial studies of two-photon exhange, whihis investigated partiularly with regard to form fator measurements in the spaelike as wellas in the timelike region. An extration of the two-photon amplitudes in the spaelike regionthrough a ombined analysis using the results of unpolarized ross setion measurements andpolarization experiments is presented. Furthermore, preditions of the two-photon exhangee�ets on the e+p/e−p ross setion ratio are given for several new experiments, whih areurrently ongoing.The two-photon exhange orretions are also investigated in the timelike region in theproess pp̄→ e+e− by means of two fatorization approahes. These orretions are found tobe smaller than those obtained for the spaelike sattering proess. The in�uene of the two-photon exhange orretions on ross setion measurements as well as asymmetries, whihallow a diret aess of the two-photon exhange ontribution, is disussed. Furthermore, oneof the fatorization approahes is applied for investigating the two-boson exhange e�ets inparity-violating eletron-proton sattering.In the last part of the underlying work, the proess pp̄ → π0e+e− is analyzed with theaim of determining the form fators in the so-alled unphysial, timelike region below thetwo-nuleon prodution threshold. For this purpose, a phenomenologial model is used,whih provides a good desription of the available data of the real photoprodution proess
pp̄→ π0γ.
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ZusammenfasssungDie vorliegende Dissertation untersuht die Struktur des Nukleons mittels elektromagneti-sher Wehselwirkung. Formfaktoren sind mit die elementarsten Observablen, welhe die elek-tromagnetishe Struktur des Nukleons widerspiegeln, und werden seit mehreren Jahrzehntenmit Hilfe elastisher Elektron-Proton-Streuung mit steigender Genauigkeit bestimmt. Derzeitartige Bereih, welher der Proton-Antiproton-Vernihtung in ein Elektron-Positronpaarentspriht, ist bislang experimentell weniger gut erforsht. Allerdings sind in naher ZukunftMessungen der Formfaktoren mit hoher Präzision geplant.Ungefähr 50 Jahre nah den ersten bahnbrehenden Messungen der elektromagnetishenFormfaktoren sorgten Polarisationsexperimente für Aufsehen, deren Ergebnisse in groÿemWiderspruh zu den bisherigen Resultaten der Formfaktoruntersuhungen standen. Ausge-löst durh diese widersprühlihen Ergebnisse entstand ein neues Arbeitsfeld, welhes Zwei-Photon-Austaushkorrekturen zur elastishen Elektron-Proton-Streuung untersuht, die alswahrsheinlihste Erklärung der Diskrepanz gelten.Der Hauptteil der vorliegenden Arbeit beshäftigt sih mit theoretishen Studien des Zwei-Photon-Austaushes, der insbesondere mit Hinblik auf Messungen der Formfaktoren sowohlim raumartigen als auh zeitartigen Bereih untersuht wird. Eine kombinierte Analyse derDaten aus unpolarisierten Wirkungsquershnittsmessungen und Polarisationsexperimentenerlaubt eine Bestimmung der Zwei-Photon-Amplituden im raumartigen Bereih. Eine Vor-hersage für den Ein�uss des Zwei-Photon-Austaushes auf das Verhältnis der e+p und e−pWirkungsquershnitte kann somit präsentiert werden, das momentan an vershiedenen Ex-perimenten untersuht wird.Die Zwei-Photon-Austaushkorrekturen werden zudem im zeitartigen Bereih für den Pro-zess pp̄→ e+e− mittels zweier Faktorisierungsansätze untersuht. Die auf diese Weise erhal-tenen Korrekturen sind kleiner als jene, die für den raumartigen Streuprozess ermittelt wur-den. Der Ein�uss dieser Zwei-Photon-Austaushkorrekturen auf Messungen des Wirkungs-quershnittes sowie Asymmetrien, welhe einen direkten Zugang zu Beiträgen des Zwei-Photon-Austaushes ermöglihen, wird diskutiert. Auÿerdem wird einer der Faktorisierungs-ansätze zur Untersuhung von E�ekten des Zwei-Boson-Austaushes in paritätsverletzenderElektron-Proton-Streuung angewandt.Im letzten Teil der vorliegenden Dissertation wird der Prozess pp̄→ π0e+e− mit dem Zieldie elektromagnetishen Formfaktoren im sogenannten unphysikalishen, zeitartigen Bereihunterhalb der Produktionsshwelle eines Nukleonpaares zu bestimmen, analysiert. Hierfürwird ein phänomenologishes Modell verwendet, welhes eine gute Beshreibung der vorhan-denen Daten für den Prozess der reellen Photoproduktion pp̄→ π0γ liefert.
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Chapter 1IntrodutionThe idea of disrete onstituents building up all matter arose already thousands of years ago.Demoritus proposed the philosophial onept that all matter is omposed of indivisiblebuilding bloks, alled ατoµoς. This basi idea has been reovered in the 18th and 19thentury. At that time, all materials had been found to be made of ertain omponents, theatoms, whih were thought to be fundamental. However, the disovery of the eletron andnuleus, as well as its onstituents, the proton and neutron, revealed the subatomi strutureand disproved the atoms' indivisibility.No evidene of the eletron being a omposite partile has been found until today. Byontrast, sine the measurement of the proton magneti moment [1℄, whih di�ers signi�-antly from the expeted value of a pointlike elementary partile, the question of the buildingbloks of the proton and neutron has emerged. A omplete desription of the proton andneutron internal struture is still an unsolved problem of hadron and partile physis.Today the Standard Model of partile physis, as the theory of fundamental partilesand their interations, desribes the omposition of matter and suessfully explains a largevariety of phenomena of partile and hadron physis. Reently, the observation of a newboson at the Large Hadron Collider [2,3℄ is supposed to be the disovery of the last missingpartile of the Standard Model, the Higgs boson.There are four fundamental fores in nature, the strong fore, the weak fore, the eletro-magneti fore and gravity, where the latter one is not inluded in the Standard Model. Thefundamental onstituents an be lassi�ed into two ategories aording to how they interat,the leptons and the quarks, whih appear in three generations (or families) eah ontainingtwo partiles. For eah of these partiles a orresponding antipartile exists. The interationbetween the partiles is mediated via the so-alled gauge bosons, to whih the partiles anouple if they arry the harge of the appropriate interation. The Higgs boson is essentialin order to explain the masses of the partiles, whih are generated via the interation withthe Higgs �eld. Leptons interat weakly, given by the exhange of the weak gauge bosons
W± and Z, and, in the ase of harged leptons, also eletromagnetially. By arrying aneletri harge, the partiles an interat via ouplings to the photon, the transmitter ofthe eletromagneti interation. Besides a weak and eletri harge, the quarks arry anadditional harge, known as olor, whih enables them to ouple to gluons, the gauge bosonsmediating the strong fore. The partiles of the Standard Model are summarized in Fig. 1.1.The eletromagneti fore is well desribed within a quantum �eld theory known as Quan-tum Eletrodynamis (QED), whose preditions have been tested experimentally with ex-tremely high auray. One an take advantage of the smallness of the eletromagnetioupling, αem ∼ 1/137, whih enables a perturbative treatment of eletromagneti proessesas an expansion in terms of inreasing powers of αem. QED and the weak interation an beuni�ed to the eletroweak gauge theory. 1
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Figure 1.1: Partiles of the Standard Model: The unharged leptons (νe, νµ, ντ ), the hargedleptons (e−, µ−, τ−) and the quarks (u, d, c, s, t, b), whih are arranged in threegenerations, as well as the gauge bosons of the weak (Z, W±), eletromagneti(γ) and the strong interation (g), and the Higgs boson (H).The theory of strong interations, Quantum Chromodynamis (QCD), desribes the inter-ation between quarks and gluons. The proton and neutron themselves, whih are denotedas nuleons, are no elementary partiles, just like all other observable strongly interatingpartiles, alled hadrons. Understanding the struture of the nuleon as a omplex systembuilt up of strongly interating partiles is one of the main tasks of hadron physis. Atpresent, the onept of the nuleon is seen as a system ontaining three valene quarks andan arbitrary number of quark-antiquark pairs and gluons.The investigation of the nuleon struture is ompliated due to two remarkable features ofQCD. The �rst one, denoted as olor on�nement, manifests itself by the impossibility to ob-serve olored quarks and gluons as free partiles. Therefore, the nuleon struture annot beinvestigated simply by a deomposition into its onstituent parts. Instead, indiret measure-ments have to be performed, whih allow onlusions regarding the underlying properties ofthe nuleon. The seond phenomenon, alled asymptoti freedom, haraterizes the runningof the strong oupling αS , whih dereases for inreasing energies and even disappears, if theenergy tends to in�nity. The asymptoti freedom has been proved in [4, 5℄, rewarded by theNobel prize in 2004. A perturbative treatment of QCD at lower energies is not appliable sofar due to large values of αS . A non-perturbative aess is given by lattie gauge theories,where QCD is studied on a spae-time, whih is disretized into a �nite lattie and evaluatednumerially [6℄. Nevertheless, no analytial solutions of QCD at lower energies are known sofar.Besides numerial simulations using lattie QCD, approahes to deal with proesses in-volving strongly interating partiles, suh as nuleons, at intermediate and low energies areneessary. Anyhow, many reations an be alulated at least in part by means of perturba-tive QCD (pQCD). This onept, known as QCD fatorization, is based on the separationof the proess into a part, for whih a perturbative treatment is appliable, and a non-perturbative ontribution, whih has to be handled phenomenologially. In order to dealwith hadroni reations, suh fatorization approahes will be applied in the ourse of thisthesis.2
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XFigure 1.3: Deep inelasti sattering in theBorn approximationDespite the fat that the onstituents of the nuleon annot be observed diretly, thereare several possibilities for probing properties of the proton and neutron. An exellent toolto investigate the struture of the nuleon is eletron sattering. Sine the interplay betweenthe eletron and the transferred photon is well desribed within QED, the eletromagnetiinteration provides a well known probe. Hene, one is able to infer information on the nu-leon omposition from the results of sattering experiments. The leading-order ontributionto elasti eletron-proton sattering arises from the exhange of a single photon between theeletron and proton, whih is known as the Born approximation and is depited in Fig. 1.2.A milestone in the exploration of the sub-nulear struture was reahed in the 1950s byHofstadter and ollaborators using elasti eletron-proton sattering [7℄. These experimentsallowed for the �rst time to determine the so-alled eletromagneti form fators of thenuleon, whih provided a onsiderable insight into the underlying struture of the nuleon,for whih Hofstadter was awarded the Nobel prize in 1961. Eletromagneti form fatorsare the most basi observables re�eting the omposite nature of the nuleon, giving rise tothe distribution of the harge and magneti moments inside the proton and neutron. Thisstruture is parametrized in terms of two form fators, denoted as GE and GM , whih arefuntions of the momentum transfer squared Q2, whih is mediated via the photon betweenthe eletron and the proton. This was the starting point for a large number of experiments,whih have measured the elasti eletron-proton sattering ross setion with inreasingpreision over a wide kinematial range in order to extrat the eletromagneti form fators.If eletrons with higher energies satter o� nuleons, the probability of an inelasti reationis inreasing, where instead of a single proton several partiles are produed in the �nal state.The high-energy sattering proess known as deep inelasti sattering, e− + p → e− + X,is presented in Fig. 1.3, where X stands for a not further spei�ed hadroni �nal state.Measurements of suh deep inelasti proesses have started in the 1960s, leading to signi�antobservations onerning the interiors of the proton. The results of these experiments an beexplained within the parton model, whih assumes that during the short interation time thesattering is performed at quasi-free pointlike objets inside the nuleon, denoted as partons[8℄. This was the �rst onvining evidene for the existene of pointlike nuleon onstituents,whih later have been identi�ed as quarks. These investigations have been awarded with theNobel prize in 1990. Within QCD fatorization, the deep-inelasti sattering ross setion3
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Figure 1.5: Sketh of fatorization approahes used in this thesis. Left panel: fatorizationwithin the framework of GPDs. Right panel: fatorization within a hard sat-tering perturbative QCD approah. The purple regions are assoiated with thepartoni subproesses, whih are diretly alulable, while the gray blobs indiatethe non-perturbative ontributions.an impat the form fator extration from the unpolarized ross setion measurementssigni�antly.Elasti sattering reations allow only to reveal the form fator struture in the spaelikeregion, orresponding to the region where the momentum transfer q2 = −Q2 of the pho-ton is negative. The timelike region of positive momentum transfer q2 an be examinedwith the rossed proesses, as proton-antiproton annihilation into a lepton-antilepton pairor the vie versa reation of the annihilation of a lepton-antilepton pair into a nuleon andantinuleon. A onsistent desription of the nuleon eletromagneti struture an only beahieved through detailed knowledge of the form fators over the omplete kinematial range.So far, in the timelike regime only few data of the form fators with less preision exist. Newexperiments are planned to probe the form fators to high auray in the timelike region.With regard to suh aurate experiments one has to be aware of two-photon exhangeontributions, whih apparently have notieable e�ets on the extration on spaelike formfators.The main part of this thesis deals with two-photon exhange orretions, whih are studiedin the spaelike as well as in the timelike regions of momentum transfer. For this purpose,fatorization approahes are applied for alulating the two-photon ontributions to timelikeannihilation proesses. Like the deomposition of the deep inelasti sattering ross setion,the onsidered fatorization desriptions state, that in high energy proesses the nuleonsbehave like a set of free partons. The ross setion is then alulated from the ross setion ofthe proess at parton level and the distribution funtions for �nding the orresponding partonstate in the hadrons. These funtions are non-perturbative objets, whih are independentof the expliit form of the partoni subproess. This remarkable property allows to applyfatorization models to two-photon exhange reations, whih have been probed in otherproesses.The basi onepts of the two fatorization approahes, whih are disussed in this thesis,are skethed in Fig. 1.5. The purple regions indiate the proesses at the parton-level, whihare alulable within pQCD, while the gray blobs represent the non-perturbative parts. The�rst approah, illustrated in the left panel of Fig. 1.5, gives rise to the onept of the so-alledgeneralized parton distributions (GPDs), whih e.g. have been disussed extensively for the5



Chapter 1 Introdutionproess of deeply virtual Compton sattering. A single quark state of the involved hadronspartiipates in the partoni subproess, whih is embedded into the nuleons as desribedby the GPDs. The seond approah, presented by the graph in the right panel of Fig. 1.5,is based on hard sattering perturbative QCD fatorization, whih at parton level implies aproess with three ative valene quarks. The non-perturbative ontribution is given by theDistribution Amplitudes (DAs) of the nuleon, desribing how the momenta of the nuleonsare shared between the onstituents.With the aforementioned proesses it is not possible to reah the omplete allowed kine-matial range of the form fators. The so-alled unphysial region of momentum transfer,whih is the timelike region below the prodution threshold of two nuleons, annot be a-essed. A part of the thesis fouses on the analysis of the proess pp̄ → π0e+e− as a meansto provide onstraints on timelike nuleon form fators, partiularly in the unphysial region.OutlineThis thesis is organized as follows:In Chapter 2 an introdution to the eletromagneti form fators in the spaelike andtimelike regions is given.Chapter 3 deals with the two-photon exhange e�ets in the elasti eletron-proton sat-tering proess. The general formalism of two-photon exhange is introdued and the resultsof several model alulations are brie�y disussed. In the seond part of the hapter a phe-nomenologial determination of the two-photon exhange orretions is presented. Using theavailable ross setion and polarization data, an extration of the two-photon amplitudesis provided and preditions for experiments, whih are presently underway, are given. Theresults of this work appeared in Ref. [12℄.In Chapter 4 the two-photon exhange in the timelike region for the annihilation reation
pp̄ → e+e− is studied. For the alulation of the two-photon exhange ontribution to theross setion of the proess, two di�erent approahes are taken into aount, both based onfatorization priniples, in oder to deal with the hadroni interations. This work has in partbeen published in Ref. [13℄.In Chapter 5 one of the approahes used in the previous hapter is applied for the inves-tigation of the two-boson exhange ontribution in parity-violating elasti eletron-protonsattering. Besides the exhange of a photon, the Standard Model provides the possibilitythat eletron-proton sattering is performed by the exhange of a Z boson. This Z bosonexhange, even though it is suppressed at lower energies, manifests itself in a parity-violatingontribution to the ross setion, whih an be a�eted by two-boson exhange ontributionsas well, namely two-photon or Z-photon exhange orretions.Chapter 6 is devoted to the proess pp̄→ π0e+e−, with partiular fous on the possibilityto determine the nuleon eletromagneti form fators in the unphysial region. The anni-hilation reation is analyzed within a phenomenologial model, allowing for preditions forforthoming experiments. Sine no data of this reation has been taken so far, the model is�rst tested for the reation pp̄→ π0γ. The results of this work an be found in Ref. [14℄.Finally, a summary of the results and an outlook is given in Chapter 7.
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Chapter 2Eletromagneti Form Fators of the NuleonUnderstanding the internal struture of the nuleon as a omposite system, built up of quarksand gluons, is one of the most important unsolved problems in hadron physis.Sine the observation of the magneti moment of the proton [1℄, whih was found to be 2.8times larger than the expeted value for a fundamental pointlike partile, it is known thatthe proton is not an elementary partile but made of more fundamental onstituents.Starting in the 1950s, the struture of the nuleon has been studied by means of theeletromagneti interation. The results of these measurements an be expressed in terms ofthe eletromagneti form fators of the nuleon, whih are funtions desribing the internalstruture as it is seen by the eletromagneti probe. For the �rst time, a measurement ofthe eletromagneti form fators has been performed by Hofstadter et al. [7℄ using elastieletron sattering o� nuleons, whih is still used for investigating the nuleon struturenowadays.In this hapter the basi properties of the eletromagneti form fators as well as theresults of the dediated experiments are reviewed.2.1 Properties of Eletromagneti Form FatorsIn ontrast to elementary partiles like the eletron, the nuleon has an extended struture,whih an be explored in eletromagneti proesses like elasti eletron-proton (ep-) sat-tering. In the leading-order approximation of elasti eletron-proton sattering, the Bornapproximation, the eletromagneti interation is mediated by the exhange of a single pho-ton. The orresponding leading-order Feynman diagram is shown in Fig. 1.2.The eletron-photon interation is fully desribed by the theory of eletromagneti inter-ations and an be alulated diretly within QED. Therefore eletron-sattering provides alear probe to study properties of omposite systems. In ontrast to the eletron-photon ver-tex, the proton-virtual-photon interation, enoding information about the extended spatialdistribution in the nuleon, annot be alulated from �rst priniples due to the unknowninterplay between the nuleon and photon. However, any deviation between the measure-ments of the reation and the results expeted for sattering of two fundamental pointlikepartiles is aused by the omposite nature of the proton. These deviations an be desribedin terms of the eletromagneti form fators of the proton.To study the sattering proess in terms of proton form fators, we �rst onsider theeletromagneti urrent of a pointlike Dira partile with harge qe (for the eletron qe = −e,with e > 0) whih is given by:
〈
l(k′)

∣∣jµem(0)
∣∣l(k)

〉
= qe ūl(k

′)γµul(k), (2.1)7



Chapter 2 Eletromagneti Form Fators of the Nuleonwhere jµem is the eletromagneti urrent operator and k (k′) is the four-momentum of theinitial (�nal) partile. ul(k) and ūl(k
′) represent the Dira spinors of the inoming andoutgoing partiles, whih appear in the plane-wave solutions of the Dira equation. Thisurrent is onserved, i.e. ∂µ jµem = 0, giving rise to

qµ
〈
l(k′)

∣∣jµem(0)
∣∣l(k)

〉
= 0, (2.2)where q = k− k′ is the momentum of the transmitted virtual photon. The Lorentz invariantfour-momentum transfer is de�ned as

Q2 = −q2 = −(k − k′)2 > 0. (2.3)In ontrast to jµem, the matrix element of the eletromagneti urrent operator of thenuleon, Jµ
em, as a system of strong interation partiles, annot be alulated from �rstpriniples. Therefore, Jµ

em has to be parametrized by the most general struture Γµ,
〈
N(p′)

∣∣Jµ
em(0)

∣∣N(p)
〉
= eN̄ (p′) ΓµN(p), (2.4)re�eting the eletromagneti properties of the nuleon, with the Dira spinors N(p) and

N̄(p′) of the proton in the initial and �nal state, respetively.However, Γµ is restrited by Lorentz invariane, parity and harge onservation. The�rst ondition implies that Jµ
em has to transform in an analogous manner as jµem, whih isa Lorentz four-vetor, depending only on p and p′ or q = p′ − p. This allows to deomposethe hadroni urrent in terms of Dira bilinears, whih ful�ll the given transformation prop-erties. Parity and harge onservation onstrain the number of the allowed ontributions.In addition, the urrent Jµ

em has to satisfy the onservation of the eletromagneti urrent.Consequently, the most general deomposition of Γµ an be redued to two independentLorentz strutures, whih are introdued in ombination with two form fators. Hene, thenuleon eletromagneti urrent an be expressed as
〈
N(p′)

∣∣Jµ
em(0)

∣∣N(p)
〉
= eN̄(p′)

[
F1(Q

2) γµ + F2(Q
2)

i

2mN
σµνqν

]
N(p), (2.5)with the nuleon mass mN and σµν = i

2 [γ
µ, γν ]. The form fators F1 and F2 are salar fun-tions of the momentum transfer Q2 = −q2, the only independent kinemati salar quantityonstruted from p, p′ and q for p2 = p′ 2 = m2

N . F1 and F2 are known as Dira form fator(F1) and Pauli form fator (F2). Eq. (2.5) desribes the parametrization of both urrents,the proton as well as the neutron eletromagneti urrent.The form fators are de�ned over the omplete range of momentum transfer−∞ < q2 <∞.In the spaelike region of negative momentum transfer with q2 = −Q2 < 0, the form fatorsan be investigated in sattering proesses. The orresponding rossed annihilation proessesallow to aess the form fators in the timelike region (q2 > 0). Setion 2.3 deals with theform fators in the timelike regime, whereas this setion fouses on the spaelike form fators.The eletromagneti urrent operator is a hermitian operator. For spaelike momentumtransfer, q2 < 0, this fat gives rise to
〈
N(p′)

∣∣Jµ
em(0)

∣∣N(p)
〉∗

=
〈
N(p)

∣∣Jµ †
em(0)

∣∣N(p′ )
〉
=
〈
N(p)

∣∣Jµ
em(0)

∣∣N(p′)
〉
. (2.6)8



2.1 Properties of Eletromagneti Form FatorsWith
〈
N(p′)

∣∣Jµ
em(0)

∣∣N(p)
〉∗

= eN̄(p)

[
F ∗
1 (Q

2) γµ − F ∗
2 (Q

2)
i

2mN
σµν(p′ − p)ν

]
N(p′),

〈
N(p)

∣∣Jµ
em(0)

∣∣N(p′)
〉

= eN̄(p)

[
F1(Q

2) γµ + F2(Q
2)

i

2mN
σµν(p − p′)ν

]
N(p′ ),

(2.7)one an onlude, that the spaelike form fators must be purely real funtions, whereas thetimelike form fators have to be treated as omplex funtions in general.If Q2 tends to zero, the photon an only probe the stati properties of the nuleon. There-fore the form fators are normalized to the harge and the magneti moment of the protonand neutron, as
F p
1 (0) = 1, F p

2 (0) = µp − 1 = κp,

Fn
1 (0) = 0, Fn

2 (0) = µn = κn,
(2.8)where F p

i and Fn
i are assoiated with the form fators of the proton and neutron, respetively.

κp,n is the anomalous magneti moment of the orresponding nuleon, given by κp = 1.79and κn = −1.91.In some ases it is useful to onsider the isosalar (FS
i ) and isovetor (F V

i ) desriptionof the form fators indiating the isospin symmetry properties of the proton and neutron.These fators are de�ned as
FS
i =

1

2
(F p

i + Fn
i ) , F V

i =
1

2
(F p

i − Fn
i ) . (2.9)In order to express observables, it is often onvenient to use the Sahs form fators GEand GM instead of F1 and F2, given by the linear ombinations

GE(Q
2) = F1(Q

2) − τF2(Q
2),

GM (Q2) = F1(Q
2) + F2(Q

2) ,
(2.10)where τ is de�ned by τ = −q2/4m2

N = Q2/4m2
N . The Sahs form fators are referred to as theeletri (GE) and magneti form fator (GM ) of the assoiated nuleon.In the limit Q2 → 0 the form fators GE and GM have the stati values of harge and ofthe magneti moments µp,n of the proton and neutron, respetively:

GEp(0) = 1, GMp(0) = µp = 2.79

GEn(0) = 0, GMn(0) = µn = −1.91.
(2.11)In a partiular Lorentz frame, the so-alled Breit frame, GE an be related to the Fouriertransform of the spatial harge distribution of the nuleon and GM to the distributions of themagneti moments. In this frame, the three-momentum of the initial nuleon is given by -~q/2,while the outgoing nuleon arries ~q/2. Sine no energy in transferred, the four-momentumof the photon reads q = (0, ~q ). This leads to a hadroni eletromagneti urrent of the form

〈
N (~q/2)

∣∣ J0
em(0)

∣∣N (−~q/2)
〉

= 2emN GE(~q
2 ),

〈
N (~q/2)

∣∣ ~Jem(0)
∣∣N (−~q/2)

〉
= ieχ†

s′ (~σ × ~q )χs GM (~q 2 ).

(2.12)
9



Chapter 2 Eletromagneti Form Fators of the Nuleonwhere ~σ refers to the Pauli matries and χ to the Pauli spinors, given in Appendix A, with theheliity of the initial (�nal) state nuleon λp (λp′). Aordingly, in analogy to nonrelativistiphysis, GE(~q) measures the Fourier transform of the eletri harge distribution ρE(~r) and
GM (~q) the Fourier transform of the distribution of the magnetization ρM (~r). However, eahvalue of Q2 requires a partiular Breit frame and ρE,M(~r) are no observables.The slopes of the form fators in the limit Q2 → 0 are de�ned as the eletri and magnetiharge radii of the nuleon:

< r2E >= −6 dGE(Q
2)

dQ2

∣∣∣∣∣
Q2=0

, < r2M >=
−6

GM (0)

dGM (Q2)

dQ2

∣∣∣∣∣
Q2=0

. (2.13)If the momentum transfer tends to in�nity, the form fators an be alulated in theframework of perturbative QCD, sine the (vanishingly) small oupling onstant αS of thestrong interation allows for a perturbative treatment. Within these alulations, a salingbehavior of the form fators has been derived, giving [15℄
F1 (Q

2) ∼ 1

Q4
, F2 (Q

2) ∼ 1

Q6
,

GM (Q2) ∼ 1

Q4
, GE(Q

2) ∼ 1

Q4
,

(2.14)whih are expeted to be valid at a su�iently high momentum transfer.Alternatively, one an de�ne a set of quark �avor form fators F q
1,2 and Gq

E,M , with q =
u, d, s to desribe the eletromagneti distribution of eah quark �avor inside the nuleon.Contributions of quarks heavier than the strange quark have been negleted, sine these areexpeted to be small. The hadroni urrent an be rewritten as

〈
N(p′)

∣∣Jµ
em(0)

∣∣N(p)
〉

=
〈
N(p′)

∣∣∣
∑

q=u,d,s

Qq q̄γ
µq
∣∣∣N(p)

〉

= eN(p′)

{
∑

q=u,d,s

Qq

[
F q
1 γ

µ + F q
2

i

2mN
σµνqν

]}
N(p)

(2.15)where Qq is the harge fration of the quarks, with Qu = 2/3 and Qd,s = −1/3 . At the quarklevel, the eletromagneti form fators an be deomposed as
F p,n
1,2 (Q

2) =
∑

q=u,d,s

Qq F
q p,n
1,2 (Q2),

Gp,n
E,M(Q2) =

∑

q=u,d,s

Qq G
q p,n
E,M (Q2),

(2.16)suh that G q p
E,M (G q n

E,M) refers to the ontribution from di�erent quark �avors q to theform fator of the proton (neutron). Using isospin symmetry, giving rise to Gup
E = G dn

E ,
G d p

E = Gun
E and G s p

E = G s n
E , enables to express the proton and neutron form fators interms of the quark distributions inside the proton:

Gp
E,M =

2

3
Gu

E,M (Q2)− 1

3
G d

E,M (Q2)− 1

3
G s

E,M (Q2),

Gn
E,M =

2

3
G d

E,M (Q2)− 1

3
Gu

E,M (Q2)− 1

3
G s

E,M (Q2),

(2.17)
10



2.2 Form Fator Investigation using Elasti Eletron-Proton Satteringwhere Gu
E,M , G d

E,M and G s
E,M are the ontributions of the u, d and s quarks in the proton.If not mentioned expliitly, omitting the index p, n of the quark form fators refers to the�avor form fators of the proton. Flavor separation of the form fators an be ahieved byprobing di�erent hadrons.2.2 Form Fator Investigation using Elasti Eletron-ProtonSatteringThe elasti sattering proess

e−(k) + p(p)→ e−(k′) + p(p′) (2.18)in the Born approximation an be desribed in a frame-independent way by means of theLorentz-invariant Mandelstam variables. For the given proess, they are de�ned as
s = (p + k)2 = (p′ + k′)2,

t = (p′ − p)2 = (k − k′)2 = −Q2,

u = (p − k′)2 = (p′ − k)2,

(2.19)satisfying the relation
s+ t+ u =

∑

i

m2
i = 2m2

N + 2m2
e, (2.20)where ∑im

2
i orresponds to the sum of the squared masses of all external partiles of theproess and me is the eletron mass.In most ases, it is a good approximation to neglet the mass of the eletron in thealulations, as it is muh smaller ompared to the nuleon mass and the momentum transferof the proess, m2

e ≪ m2
N , Q

2. If not mentioned otherwise, the formulas have been evaluatedin the ultrarelativisti limit for the eletron, in whih we an take me = 0.The invariant amplitude of the sattering proess is given by the matrix elements of theleptoni and the hadroni eletromagneti urrents onneted with a photon propagator:
iM = e2 ūl(k

′) γν ul(k)

(
− igνµ
q2

)
N̄(p′) ΓµN(p). (2.21)The sattering proess is normally disussed in the laboratory frame, presented in Fig. 2.1,where the initial nuleon is at rest and the four-momentum of the inoming eletron is givenby k = (E,~k ), where ~k is onventionally hosen to be in the z-diretion. The momentumtransfer an be expressed as

Q2 = 2EE ′
(
1− cos θlab

)
, (2.22)where θlab is the sattering angle of the eletron in the laboratory frame and E and E ′ arethe energies of the initial and �nal eletrons, respetively.The di�erential ross setion an be obtained in the laboratory frame as

(
dσ

dΩ

)

lab

=

(
1

4πmN Q2

E′

E

)2

|M| 2 (2.23)11



Chapter 2 Eletromagneti Form Fators of the Nuleon
k = (E,~k)

p = (mN , 0)

p′

q

k′ = (E ′, ~k′)

θ

Figure 2.1: Kinematis for elasti ep-sattering in the laboratory frame.with the leptoni solid angle dΩ. The expression |M| 2 denotes the spin-averaged squaredmatrix element of Eq. (2.21).At present, the most important failities for form fator investigation using ep-satteringare the Mainz Mirotron (MAMI), overing the the region of low Q2, and the ContinuousEletron Beam Aelerator Faility (CEBAF) at the Thomas Je�erson National AeleratorFaility (JLab) for the range of higher momentum transfer.2.2.1 Rosenbluth SeparationStarting with the pioneering work of Hofstadter [7℄ in the 1950s, the eletromagneti formfators have been investigated in a large number of experiments using the Rosenbluth sepa-ration tehnique. This method allows to extrat both form fators, GE and GM , from theunpolarized elasti sattering ross setion.The ross setion depends on two kinematial variables, typially taken to be the momen-tum transfer Q2 (or τ) and the polarization of the virtual photon ε, whih is related to thesattering angle θlab by
ε =

(
1 + 2(1 + τ) tan2

(
θlab
2

))−1

. (2.24)In the one-photon exhange approximation, the di�erential ross setion of the reationan be written in terms of the ross setion for sattering o� a pointlike partile, the Mottross setion (dσ/dΩ)Mott, and the eletri and magneti form fators:
dσ

dΩ
=

(
dσ

dΩ

)

Mott

1

1 + τ

(
G2

E +
τ

ε
G2

M

)
, (2.25)where dσ/dΩ is the measured ross setion. Equation (2.25) is known as the Rosenbluthformula [16℄. The Mott ross setion is given by:

(
dσ

dΩ

)

Mott

=
α2
em cos2

(
θlab
2

)

4E2 sin4
(
θlab
2

) E
E′

(2.26)with the �ne struture onstant αem = e2/4π ∼ 1/137.12



2.2 Form Fator Investigation using Elasti Eletron-Proton Sattering

Figure 2.2: Overview of form fator results obtained by Rosenbluth extration: GM/µpGD(left panel) and GE/GD (right panel). The �gure is adapted from [17℄.Besides, it is onvenient to de�ne the redued ross setion σR:
σR =

ε(1 + τ)

τ

(
dσ

dΩ

)/( dσ
dΩ

)

Mott

= G2
M +

ε

τ
G2

E .

(2.27)Sine the form fators GE and GM are funtions of Q2 only, measuring the ross setion fordi�erent values of ε, while keeping Q2 �xed, allows aess to both form fators from the εdependene of σR. A linear �t of σR to ε gives GE from the slope of the ε dependene of theross setion and GM from the interept at ε = 0. This so-alled Rosenbluth extration ofthe form fators requires that the energy of the initial eletron and the sattering angle areadjusted in a way that Q2 is onstant while varying the photon polarization ε.The �ndings of the Rosenbluth experiments are, that both GE and GM follow the form ofan approximate dipole form fator GD:
GE(Q

2) ≃ GM (Q2)

µp
≃ GD(Q

2),with GD(Q
2) =

1
(
1 + Q2

0.71GeV2

)2 .
(2.28)The approximate dipole behavior implies that the form fator ratio an be found as

µpGE(Q
2)

GM (Q2)
≃ 1. (2.29)The results of the experiments are olleted in Fig 2.2, where the form fators have beendivided by the standard dipole GD. One noties the inreasing unertainties on the extrated13



Chapter 2 Eletromagneti Form Fators of the Nuleon
e

e′

p

p′
y

x

z

q

h
=
±1

θ

Figure 2.3: Kinematis for polarization transfer from a longitudinally polarized eletron onan unpolarized proton in the Born approximation.values of GE for large momentum transfer, starting at Q2 ∼ 1 GeV2. As one an see fromEq. (2.27), at large Q2 (τ ≫ 1) the redued ross setion is dominated by the ontribution ofthe magneti form fator GM , whereas the ontribution of GE is suppressed with 1/Q2. Thisfat makes an extration of GE from the measured ross setion inreasingly more di�ultin the larger Q2 range, resulting in the rising error bars at larger Q2, as it is seen in Fig. 2.2.Besides the redution of the GE ontribution at larger Q2 due to the fator 1/τ inEq. (2.27), the relation G2
M ∼ µ2pG

2
E implies an additional suppression fator of ∼ 8 in-dependent of Q2.2.2.2 Polarization Transfer MeasurementsAn alternative experimental tehnique to aess the eletromagneti form fators in elasti

ep-sattering beame pratial in the late 1990's, the double polarization measurement. Thismethod allows for an investigation of the form fators by sattering a longitudinally polarizedeletron beam from an unpolarized proton target and measuring the polarization of thereoiling proton,
~e (k) + p(p)→ e(k′) + ~p (p′), (2.30)whih will be referred to as polarization transfer method, or equivalently by using a polarizedeletron beam and a polarized proton target.The kinematis of the reation of Eq. (2.30) in the Born approximation is skethed inFig. 2.3.In the Born approximation, two non-zero polarization omponents of the reoiling protonappear, the longitudinal (Pl) and the transverse (Pt) omponent:

Pl =
√

1− ε2(2h) G
2
M

σR
,

Pt = −
√

2ε(1 − ε)
τ

(2h)
GEGM

σR
,

(2.31)where h is the heliity of the inident eletron.Therefore, the ratio of the polarization omponents an be related to the ratio of the14



2.2 Form Fator Investigation using Elasti Eletron-Proton Satteringeletri to magneti proton form fators:
Pt

Pl
= −

√
2ε

τ(1 + ε)

GE

GM
. (2.32)The advantage of using the polarization transfer method in order to aess GE/GM is thatfor a given Q2 only one single measurement is neessary, if both polarization omponentsan be measured simultaneously. In the ratio, the eletron beam polarization drops out.These fats redue systemati errors emerging through the variation of the beam energy orsattering angle.The results of the form fator ratio measurements using the polarization transfer methodare at variane with the Rosenbluth extration of GE/GM . This ratio was found to benearly linear, dereasing with inreasing Q2, in ontrast to the well known saling-behaviorof µpGE/GM ∼ 1 determined by the Rosenbluth separation tehnique. Therefore, as a goodapproximation the polarization results an be desribed by a straight line. A linear �t to theresults of these experiments leads to [11℄

µpGE(Q
2)

GM (Q2)
= 1− 0.13

(
Q2

GeV2 − 0.04

)
, (2.33)demonstrating the remarkable di�erent Q2 dependene of the form fator ratio, presented inFig. 2.4.2.2.3 Disussion of the DisrepanyThe ontraditing results of the Rosenbluth and polarization experiments have triggered alot of e�ort in order to understand and resolve the disrepany. In Fig 2.4 the results of theextrated ratio µpGE/GM of both experimental methods are shown. The deviation betweenthe two tehniques starts at values of about Q2 ∼ 1 GeV2 growing with the momentumtransfer.First, it was assumed that the disrepany arises from unertainties in the Rosenbluthextration of the proton form fators, whih at high Q2 is very sensitive to even smallorretions due to the small ontribution of GE to the ross setion. A global reanalysis ofthe world ross setion data [19℄ shows that the data from previous Rosenbluth measurementsare onsistent with eah other. It was found, that the disrepany is not aused by problemsin one or two single experimental setups and that the Rosenbluth data annot be broughtinto agreement with the results of the polarization transfer method by adjusting the datawithin the normalization unertainties.Furthermore, new data of a high-preision Rosenbluth measurement of GE/GM beameavailable [20℄, in whih the �nal proton instead of the eletron has been deteted, on�rmingthe results of previous measurements. This detetion proedure redues the systemati un-ertainties due to a weaker dependene of the ross setion on beam energy and satteringangle.In addition, the studies foused on the alulation of radiative orretions, whih are QEDorretions to �rst order of αem to ep-sattering, aused by the exhange of a seond virtualphoton or the emission of a real bremsstrahlung photon. The leading-order orretions areillustrated in Fig. 2.5, where the orretions on the eletron side (diagrams a-d), whih areindependent of the nuleon struture, are shown on the left side and the Feynman graphs15



Chapter 2 Eletromagneti Form Fators of the Nuleon

Figure 2.4: Ratio of the eletri to magneti proton form fators as a funtion of Q2. Thegreen data points indiate the results of the Rosenbluth extration. The blueirles, red squares and blak triangles are the results of the polarization experi-ments. The �gure is adapted from Ref. [18℄.on the right side (diagrams e-h) orrespond to the nuleon struture dependent orretions.To obtain results with high auray, the measured ross setions need to be orreted forradiative orretions, e�eting the ross setion typially in the range of 10%-30%. Sinethese orretions are ε dependent, they an hange the slope of the Rosenbluth plot andonsequently in�uene the results of the extrated form fators. Polarization observables, asbeing ratios of ross setions are less sensitive to radiative orretions, espeially the ratio
GE/GM extrated from polarization transfer measurements, whih is a ratio of polarizationobservables.Radiative orretions have been applied in the analysis of the ross setions mostly usingthe standard formalism of Mo and Tsai [21,22℄. In these alulations any e�et of the protonstruture has been negleted, hene only the eletron orretions and the orretions on thenuleon side in the soft photon approximation, i.e. when the additional virtual photon ar-ries a vanishing small momentum, have been taken into aount and several approximationshave been used for the omputation. Improvements of the radiative orretions have beenperformed in Refs. [23�26℄, suh as inluding hadron struture e�ets and removing someother assumptions, nevertheless without ahieving a reoniliation of both methods. How-ever, it has been shown, that the orretions required to bring the results into agreement areat the level of a few perent of the ross setion [19℄.One proess whih has not been inluded in all previous alulations of radiative orretionsis two-photon exhange (Fig. 2.5 h)) in the ase that both photons arry non-vanishingvirtualities, i.e. both photons are semi-hard or hard. In Ref. [27℄ it has been shown thattaking these orretions into aount may lead to signi�ant ε dependent ontributions to16



2.3 Eletromagneti Form Fators in the Timelike Region

a) electron vertex b) electron self-energy

c) vacuum polarization d) bremsstrahlung

e) proton vertex f) proton self-energy

g) bremsstrahlung

h) two-photon exchangeFigure 2.5: Lowest-order radiative orretions for elasti ep-sattering: diagrams left (a-d)show the orretion graphs for the eletron side, diagrams one the right side (e-h)are graphs depending on the hadron struture.the ross setion and provide a possible explanation of the form fator results.In reent years, two-photon exhange has been studied extensively, from both experimentalas well as theoretial side. The following two hapters of this thesis deal with two-photonexhange proesses, whih will be disussed in the spaelike as well as in the timelike regionsof momentum transfer.2.3 Eletromagneti Form Fators in the Timelike RegionIn order to obtain a omplete desription of the eletromagneti struture of the nuleon,the investigation of the form fators over the full range of momentum transfer is neessary.The measurements of the nuleon form fators at spaelike momentum transfers, by meansof elasti eletron proton sattering, are omplemented by measurements in the timelikeregion, through the orresponding rossed proesses p p̄→ e+ e− or e+ e− → p p̄, whih allowto aess the form fators in the timelike region, starting from the threshold q2thr = 4m2
N .These proesses are related via the rossing symmetry. 17



Chapter 2 Eletromagneti Form Fators of the Nuleon
Spacelike Region

”Unphysical

Timelike Region

q24m2
N

Region”

Elastic ep-scattering

q2 < 0 q2 > 0

q2 = −Q2

Annihilation processes

Figure 2.6: Spaelike and timelike regions and the appropriate proesses, whih an be usedto study eletromagneti form fators. In the spaelike region, with momentumtransfer q2 = −Q2 < 0, the form fators an be investigated by means of satter-ing reations. For the timelike region, de�ned by q2 > 0, annihilation proessesan be used to aess the form fators in the range q2 ≥ qthr = 4m2
N .2.3.1 Aessing Form Fators in the Timelike RegionThe annihilation reation p p̄ → e+ e− and the time-reserved proess e+ e− → p p̄ o�er thepossibility to study the proton eletromagneti form fators in the timelike region. In theBorn approximation the interation is mediated through the exhange of one virtual photonwith positive momentum transfer q2 > 4m2

N , depited in Fig 2.7.For investigating the proess
p(p1) + p̄(p2)→ e−(k1) + e+(k2) (2.34)one an take advantage of the rossing relations, onneting the elasti ep-sattering ampli-tude with the amplitude of the annihilation proess. The rossing symmetry of the spaelike

N̄

N e−

e+

e−

e+

N

N̄

γ∗ γ∗

q2 > 0 q2 > 0Figure 2.7: The timelike proesses NN̄ → e−e+ and e−e+ → NN̄ in Born approximation
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2.3 Eletromagneti Form Fators in the Timelike Regionand timelike momenta an be found as
p ←→ p1, p′ ←→ − p2,

k ←→ − k2, k′ ←→ k1.
(2.35)Introduing the Mandelstam variables of the reation Eq. (2.34),

s = q2 = (p1 + p2)
2 = (k1 + k2)

2,

t = (p1 − k2)2 = (p2 − k1)2,

u = (p1 − k1)2 = (p2 − k2)2,

(2.36)enables us to �nd the following relations with the Mandelstam variables of the spaelikesattering proess: timelike spaelike
s = q2 = (p1 + p2)

2 ←→ (p − p′)2 = −Q2,

t = (p1 − k2)2 ←→ (p + k )2 = s,

u = (p1 − k1)2 ←→ (p − k′)2 = u,

(2.37)with the variables of the timelike (spaelike) on the left-hand side (right-hand side).Assuming one-photon exhange, the matrix element of the proess an in an analogousmanner be expressed by two form fators, e.g. the timelike Dira form fator F1(q
2) andPauli form fator F2(q

2):
iM = e2

[
ū(k1)γ

νv(k2)
] −igνµ

q2

[
N̄(p2)

(
F1γ

µ − i

2mN
F2σ

µνqν

)
N(p1)

]
, (2.38)where N(p1) and N̄(p2) stand for the Dira spinors of the inoming proton and antiproton,respetively.Aordingly, one an introdue the timelike eletri and magneti form fators GE and

GM :
GE(q

2) = F1(q
2) + τF2(q

2),

GM (q2) = F1(q
2) + F2(q

2), (2.39)with τ = q2/4m2
N .In ontrast to the spaelike form fators, the form fators in the timelike region are ingeneral omplex funtions of the momentum transfer q2.It is often onvenient to study the proess pp̄→ e+e− in the enter-of-mass (.m.) frame ofthe reation. In this referene frame the 3-momenta of the inoming nuleons have oppositediretion, the proton onventionally hosen to be in the z-diretion, whih yields

p1 =

√
s

2

(
1, 0, 0,

√
τ − 1

τ

)
,

p2 =

√
s

2

(
1, 0, 0,−

√
τ − 1

τ

)
,

(2.40)
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Chapter 2 Eletromagneti Form Fators of the Nuleonwhere √s is the .m. energy. Identifying the reation plane with the x-z-plane, allows one toexpress the momenta of the leptons as
k1 =

√
s

2

(
1, sin θ , 0 , cos θ

)
,

k2 =

√
s

2

(
1,− sin θ, 0 ,− cos θ

)
,

(2.41)where θ is the .m. sattering angle of the eletron with respet to the proton.In the ultrarelativisti limit of vanishing lepton masses, the unpolarized di�erential rosssetion in the .m. frame using the Born approximation an be found as,
(

dσ

d cos θ

)

1γ

=
α2
emπ

8m2
N

√
τ(τ − 1)

{ ∣∣GM (q2)
∣∣2(1 + cos2 θ) +

1

τ

∣∣GE(q
2)
∣∣2 sin2 θ

}
, (2.42)depending on the .m. sattering angle, q2 and the moduli of the form fators, |GM (q2)| and

|GE(q
2)|. An individual extration of |GE | and |GM | an be ahieved through a measurementof the ross setion over a wide range of cos θ at �xed q2.The total ross setion in the 1γ-approximation is obtained by integrating Eq. (2.42) overthe .m. sattering angle, whih yields

σ =
παem

3m2
N

√
τ(τ − 1)

[
|GM (q2)|2 + 1

2τ
|GE(q

2)|2
]

=
παem

3m2
N

√
τ(τ − 1)

[
1 +

1

2τ

] ∣∣Geff (q
2)
∣∣2,

(2.43)where an e�etive form fator has been introdued, whih haraterizes the deviation betweenthe total ross setion and the ross setion one would obtain for an annihilation proess withonly pointlike partiles partiipating. In terms of |GE | and |GM |, the e�etive form fatoris given by
Geff (q

2) =

√
2τ |GM (q2)|2 + |GE |2

2τ + 1
. (2.44)Most experiments were able to extrat the e�etive form fator from the measured rosssetion, but not |GE | and |GM | separately through a measurement of the angular dependene.Consequently, a statement regarding the individual form fators an only be made by meansof assumptions, whih link one form fator to the other. Often, the assumptions |GE | = |GM |or GE = 0 are used. In Fig. 2.8 the world data set on the e�etive form fator Geff extratedfrom di�erent experiments using pp̄ → e+e−, e+e− → pp̄ and e+e− → p p̄ γ an be foundas a funtion of q2. In all ases, the assumption |GE | = |GM | has been used to analyze thedata, whih results in |GM | = Geff .Only two experiments have performed an individual determination of both form fators,the PS170 experiment at LEAR [29℄, and the BaBar experiment at SLAC [30, 31℄, where inthe latter experiment the form fators have been extrated through the initial state radiationreation e+e− → p p̄ γ. The results of the ratio |GE/GM |, whih are presented in Fig. 2.9,inlude large unertainties and are not onsistent with eah other, learly alling for futureexperiments.New measurements of the timelike form fators are planned by the PANDA experiment atthe Faility for Antiproton and Ion Researh (FAIR) [32℄ and the BES-III experiment at the20



2.3 Eletromagneti Form Fators in the Timelike Region

Figure 2.8: Results of the e�etive form fator measured by various experiments as a funtionof q2. The �gure is adapted from Ref. [28℄. In the analysis the assumption
|GM | = |GE | = Geff has been made.Beijing Eletron Positron Collider II (BEPC-II). They will explore the at present still largelyunharted timelike region in muh greater detail, bringing values of about s = 30 GeV2 intoreah. Those experiments, whih also attempt to measure |GE | and |GM | separately withhigh preision, will improve the knowledge of the eletromagneti form fators in the timelikeregion and omplement our piture of the nuleon.By measuring the unpolarized ross setion Eq. (2.42) of the aforementioned annihilationproesses, only the moduli of the eletromagneti form fators an be investigated, whereasthe phases of the form fators an only be aessed by taking additional observables intoaount, in partiular polarization observables. Due to the omplex struture of the nuleonform fators, further polarization observables emerge in the timelike region. For instane,the single-spin asymmetry (SSA), when either the proton or the antiproton is polarizedperpendiular to the sattering plane and does not require polarization of the leptons in the�nal state. The SSA is de�ned as

Ay =
dσ↑ − dσ↓
dσ↑ + dσ↓

, (2.45)where dσ↑ (dσ↓) denotes the ross setion for an inoming nuleon with positive (negative)perpendiular polarization. In the ase of a polarized proton the asymmetry in the 1γ-approximation reads
Ay = −2 sin θ cos θ Im [GEG

∗
M ]√

τ D

= −2 sin θ cos θ |GE ||GM | sin(φE − φM )√
τ D ,

(2.46)
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Figure 2.9: Results of the (timelike) form fator ratio |GE |/|GM | as a funtion of q2: Greenirles display the data of the BaBar experiment [31℄, blue triangles refer to theresults of the PS170 experiment [29℄.where φE and φM orrespond to the phases of the eletri and magneti form fators, re-spetively, and D is given by
D = |GM

∣∣2(1 + cos2 θ) +
1

τ

∣∣GE

∣∣. (2.47)Hene, measurements of both, the angular distribution of the unpolarized ross setion andthe SSA, an be used to get information on the moduli of the eletromagneti form fatorsas well as their relative phases.2.3.2 Eletromagneti Form Fators in the Unphysial RegionThe timelike region below the (p + p̄)-threshold, assoiated with a momentum transfer of
0 < q2 < 4m2

N , is known as the unphysial region, sine these values of momentum transferannot be aessed by annihilation proesses as p p̄ → e+e− or e+e− → p p̄. Anyhow, itis worth to explore the form fators in that kinematial range, whih presumably ontainsimportant information onerning the link between the spaelike and timelike regimes. InFig. 2.10 a omparison of spaelike and timelike form fator data is shown. The gray oloredband indiates the unphysial timelike region. Information on the form fators in thatkinematial range will ertainly improve our understanding of the internal nuleon struture.Several models predit large ontributions of vetor meson resonanes in the unphysialregion, whih likewise impat the form fator behavior in the above-threshold region as wellas in the spaelike regime. A measurement of the form fator o�ers the opportunity toonstrain and disentangle suh models.Furthermore, the threshold behavior of the nuleon form fators at q2 ∼ 4m2
N raisedattention due to the unexpeted sharp rising of the ross setion, when approahing thenear-threshold region. The enhanement of the ross setion entails a strong momentumtransfer dependene of the timelike form fators in the q2 region lose to 4m2

N , whih hasnot been explained so far.22
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N .Despite all this, no data of the form fators in the unphysial regions exist so far. But, as apossible way to aess the form fators below the threshold, an investigation of the reation
p̄ p → π0e+e− has been proposed in Ref. [45℄ and of the proess p̄ d → e+e−n in Ref. [46℄.An analysis of the former proess with regard to the determination of the form fators willbe given in Chapter 6.2.4 Form Fator ModelsIn order to alulate observables onerning the eletromagneti struture of the nuleon,parametrizations of the eletromagneti form fators are required. Due to the numerous datasets in the spaelike region, parametrizations based upon �ts to the data are ommonly usedfor spaelike form fators, suh as the dipole parametrization presented in Eq. (2.28), or anexpression of the ratio GE/GM as found by �tting the polarization transfer data, e.g. thelinear �t given by Eq. (2.33). For instane, one an parametrize GM by the results obtainedin the Rosenbluth separation, for whih the extration is expeted to be more aurate thanthe one of the eletri form fators, and GE is then expressed by the parametrization of GMand the form fator ratio found in polarization transfer measurements.Other form fator parametrizations rest upon model desriptions, whih attempt to explainthe properties of the nuleon form fators. The earliest models of the nuleon form fators23
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γ∗

ρ, ω, φ, ...

N NFigure 2.11: VMD oupling of the photon to the nuleon.are based on vetor meson dominane (VMD), orresponding to a photon interating withthe nuleon through the exhange of the lowest lying vetor mesons, as shown in Fig (2.11).In Ref. [47℄ a VMD based model of the proton and neutron form fators has been presented,where the photon ouples to both, an intrinsi struture, given by an intrinsi form fator,and a meson loud, desribed within the VMD framework. A form fator model for bothspaelike as well as timelike eletromagneti form fators has been presented in Ref. [48℄, bygeneralizing the �ndings of Ref. [47℄ and inluding new data for �tting the free parametersof the model. This model is mostly used as parametrization of the timelike eletromagnetinuleon form fator in the alulations presented in this thesis.The spaelike form fator parametrization of Ref. [48℄ is given by:
FS
1 (q

2) =
1

2
g(q2)

[
(1− βω − βφ)− βω

m2
ω

q2 −m2
ω

− βφ
m2

φ

q2 −m2
φ

]
,

F V
1 (q2) =

1

2
g(q2)

[
1− βρ − βρ

m2
ρ

q2 −m2
ρ

]
,

FS
2 (q

2) =
1

2
g(q2)

[
(0.12 + αφ)

m2
ω

q2 −m2
ω

− αφ

m2
φ

q2 −m2
φ

]
,

F V
2 (q2) =

1

2
g(q2)

[
− 3.706

m2
ρ

q2 −m2
ρ

]
,

(2.48)
where

g(q2) =
1

(1− γq2)2 (2.49)is the intrinsi form fator, haraterizing the size of the onstituent quarks inside the nuleon.The masses of the vetor mesons are mω = 0.783 GeV, mφ = 1.019 GeV and mρ = 0.776 GeVand the free parameters are obtained by �tting the spaelike data. To take the non-negligiblewidth of the ρ meson into aount, the propagator has been replaed as
m2

ρ

q2 −m2
ρ

→ m2
ρ + 8Γρmπ/π

q2 −m2
ρ + (q2 − 4m2

π) Γρα(Q2)/mπ
. (2.50)This model has been extended to the timelike region using Q2 → −q2. In addition a phase24
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g(q2) =

1

(1− eiθγq2)2 , (2.51)where the phase θ is obtained from a �t to the timelike data. Furthermore, the pole of the
ρ meson has been modi�ed as

m2
ρ

q2 −m2
ρ

→
m2

ρ + 8Γρmπ/π

q2 −m2
ρ + (q2 − 4m2

π)Γρα(q2)/mπ − iΓρ4mπβ(q2)
. (2.52)Suh a model predits a resonane struture of the form fators in the unphysial region,due to the interation of the vetor mesons.Another model, whih is also used to parametrize the timelike eletromagneti form fators,is based on the predited pQCD behavior of the form fators. This model is given by ananalytial ontinuation of the dipole parametrization of the spaelike form fators. Themoduli of the form fators are

|GE,M | =
B

q4
(
ln2 q2

Λ2 + π2
) , (2.53)with Λ = 0.3 GeV. The parameter B is a free parameter, in Ref. [49℄ it was found to be

B = 56.3 GeV2 for the proton and B = 77.15 GeV2 for the neutron.In Fig. 2.12 both models, the VMD model and the model based on pQCD behavior areshown for timelike momentum transfers. One an learly see the predited resonane stru-ture of the VMD model in the unphysial region arising from the poles of the ρ, ω and φmesons, whereas the pQCD based model gives a smooth behavior of |GM |, steeply rising for
q2 → 0. 25





Chapter 3Two-Photon Exhange in ElastiEletron-Proton SatteringTriggered by the disrepany between data of unpolarized Rosenbluth measurements andof polarization experiments, in reent years a whole new �eld studying the in�uene oftwo-photon exhange orretions to elasti eletron-nuleon sattering emerged, from bothexperimental and theoretial sides. In this hapter the e�ets of two-photon (2γ-) exhangein elasti ep-sattering are presented. The general formalism of 2γ-exhange in terms ofthree generalized (2γ-) form fators is introdued and a brief disussion of existing modelalulations as well as observables whih are diretly related to 2γ-exhange e�ets is given.Subsequently, a phenomenologial determination of the 2γ-amplitudes from elasti ep-sattering data is presented. Motivated by new high-preision measurements of polarizationobservables in ep-sattering performed at JLab/Hall C [50℄, the available ross setion andpolarization data are used to provide an extration of the two-photon exhange amplitudes.Furthermore, preditions for the e+p/e−p ross setion ratio, whih is presently under inves-tigation in several experimental setups, are given.3.1 Eletron-Proton Sattering beyond the BornApproximationIn order to alulate the two-photon exhange in elasti eletron-proton sattering, we on-sider the proess
p(p, λp) + e−(k, h) → p(p′, λp′) + e−(k′, h′ ), (3.1)where p (p′) and k (k′) are the momenta of the initial (�nal) proton and eletron, respetively,and λp (λp′), h (h′) are the orresponding heliities. The 2γ-exhange proess is desribedby the diret and rossed box diagrams presented in Fig. 3.1, where the gray blobs indiatethe unknown hadroni interation of the 2γ-exhange reation.For this purpose, we introdue the 4-vetors

Pµ =
1

2
(pµ + p′µ), Kµ =

1

2
(kµ + k′µ), Qµ = p′µ − pµ. (3.2)The sattering proess an be desribed by two independent variables, whih are hosen tobe

ν = K · P, Q2 = −q2 = −(p′ − p)2. (3.3)The invariant Mandelstam variables are de�ned as
s = (p+ k)2, t = (p′ − p)2 = −Q2, u = (p− k′)2, (3.4)27



Chapter 3 Two-Photon Exhange in Elasti Eletron-Proton Sattering
N(p) N(p′)

e−(k) e−(k′) e−(k′)e−(k)

N(p) N(p′)Figure 3.1: Diret and rossed box diagrams of two-photon exhange in elasti eletron-proton satteringgiving rise to
ν =

1

4

(
s+ u− 2m2

N

)
. (3.5)The general onept of two-photon exhange as explanation for the disrepany betweenRosenbluth measurements and polarization experiments has been disussed in Ref. [27℄. Ithas been shown, that taking Lorentz invariane, parity onservation, and harge onjugationinto aount, the general form of the two-photon exhange diagrams an be written in termsof an e�etive urrent-urrent interation with one additional struture beyond those thatgave GE and GM . This expression an be derived starting with the most general expansionof the amplitude M of elasti ep-sattering, permitting the exhange of more than a singlephoton

M = e2 ūl(k
′ ) Γe µ ul(k) N̄ (p′ ) Γµ

N N(p), (3.6)where the general Lorentz strutures Γµ
N and Γµ

e , with respet to a set of Dira bilinears andto the vetor basis de�ned by Pµ, Kµ, Qµ and Lµ = εµνρσPνKρQσ, an be written as
Γµ
N = a11 + b1γ5 + c1γ

µKµ + d1γ5γ
µKµ

Γµ
e = a21 + b2γ5 + c2γ

µPµ + d2γ5γ
µPµ.

(3.7)All other strutures either do not ontribution or an be redued to the strutures above bymeans of the Dira equation. Therefore, the matrix an be expanded in terms of 16 Lorentzstrutures. Taking parity onservation into aount redues the number to 8, sine termsontaining only one γ5 are not invariant under parity transformations. In addition, twostrutures, namely ūl γ5 ul N̄ γ5 γ
µKµN and ūl γ5 γµPµ ul N̄ γ5N , are not invariant underCPT transformations , whih leads to 6 remaining amplitudes:

ūl(k
′)ul(k) N̄ (p′)N(p), ūl(k

′)ul(k) N̄ (p′)γµKµN(p),

ūl(k
′) γµP

µ ul(k) N̄ (p′)N(p), ūl(k
′) γµP

µ ul(k) N̄ (p′) γνKν N(p),

ūl(k
′) γ5 ul(k) N̄ (p′) γ5N(p), ūl(k

′) γ5γµP
µ ul(k) N̄ (p′) γ5γ

νKν N(p).

(3.8)In the limit of vanishing eletron masses, me → 0, the heliity of the leptons is onserved,whih implies invariane under the hirality transformation ul(k) → γ5ul(k) and ūl(k′) →28



3.1 Eletron-Proton Sattering beyond the Born Approximation
−ūl(k′)γ5. Strutures, whih hange sign under these transformations, desribe a heliity-�ipof the eletron and are suppressed by a fatorme. Consequently, we an neglet any struturegiven in Eq. (3.8), whih ontains either ūl(k′)ul(k) or ūl(k′) γ5 ul(k), when assumingme = 0.Hene, the sattering proess beyond the Born approximation, in the ultra-relativistilimit, an be desribed by three independent amplitudes. By means of the Dira equationand elementary relations between the Dira matries, the most general matrix element ofelasti eletron-nuleon sattering an be expressed as [27℄:
M =

e2

Q2
ūl(k

′)γµul(k) N̄ (p′)

{
G̃M (Q2, ν)γµ − F̃2(Q

2, ν)
Pµ

mN
+ F̃3(Q

2, ν)
/KPµ

m2
N

}
N(p).(3.9)The three generalized form fators G̃M , F̃2 and F̃3 are omplex funtions of two variables,e.g. Q2 and ν. Several equivalent representations of Eq. (3.9) exist. In some ases an axialparametrization of the matrix element has been used to alulate the 2γ-exhange proesses,where F̃3 is replaed by an axial-like term G̃A, using the relation

ūl(k
′)/Pul(k) N̄ (p′) /KN(p) =

s− u
4

ūl(k
′)γµul(k) N̄ (p′)γµN(p)

+
t

4
ul(k

′)γµγ5ul(k) N̄ (p′)γµγ5N(p).

(3.10)In the following, the representation of Eq. (3.9) will be used. The expressions for the axial-vetor expansion of the sattering amplitude an be obtained through a simple transformationof the three generalized form fators.We also introdue the �eletri� amplitude G̃E , de�ned as
G̃E = G̃M − (1 + τ)F̃2, (3.11)whih is ommonly used to haraterize 2γ-exhange.To identify the e�ets aused by multi-photon exhange, the amplitudes G̃M and G̃E anbe written as a deomposition of the usual proton form fator and a form fator whihoriginates from proesses inluding the exhange of at least two photons. The additionalthird amplitude, F̃3, vanishes in the one-photon approximation:

G̃M (Q2, ν) = GM (Q2) + δG̃M (Q2, ν)

G̃E(Q
2, ν) = GE(Q

2) + δG̃E(Q
2, ν)

F̃3(Q
2, ν) = δF̃3(Q

2, ν)

(3.12)The omplex amplitudes δG̃M , δG̃E and δF̃3 are suppressed by αem ompared to the ele-tromagneti form fators GE and GM . Using Eq. (3.12), the squared matrix element of theelasti sattering proess an be expanded with respet to αem:
|M|2 = |M1γ |2 + 2Re[M∗

1γM2γ ] +O(α2
em), (3.13)with the eletri harge appearing in Eq. (3.9) taken out. The amplitude M1γ is the am-plitude of the proess in Born approximation andM2γ stands for the amplitude desribing

2γ-exhange, whih is suppressed by an additional fator αem relative toM1γ . Consequently,29



Chapter 3 Two-Photon Exhange in Elasti Eletron-Proton Satteringthe leading order orretion to the squared matrix element is given by the real part of theinterferene of 1γ- and 2γ-exhange proesses, 2Re[M∗
1γM2γ ], whih is of order αem om-pared to the Born ontribution. Higher order orretions in αem, e.g. terms ∝ |M2γ |2 orontributions aused by the exhange of three or more photons, are negleted in the followingalulations.The redued ross setion inluding the two-photon exhange orretions alulated up to�rst order orretions in αem beomes

σR = G2
M +

ε

τ
G2

E + 2GMRe

(
δG̃M + ε

ν

m2
N

F̃3

)
+ 2

ε

τ
GERe

(
δG̃E +

ν

m2
N

F̃3

)
, (3.14)where the �rst two terms are the redued ross setion in Born approximation given byEq. (2.27) and the seond part is the interferene term ∝ 2Re[M∗

1γM2γ ].The transverse and longitudinal polarization omponents an be found as
Pt = − 2h

1

σR

√
2ε(1 − ε)

τ

{
GEGM +GMRe

(
δG̃E +

ν

m2
N

F̃3

)
+GERe δG̃M

}
,

Pl = 2h
1

σR

√
1− ε2

{
G2

M + 2GMRe

(
δG̃M +

ε

1 + ε

ν

m2
N

F̃3

)}
,

(3.15)orresponding to a polarization ratio Pt/Pl:
Pt

Pt
= −

√
2ε

τ(1 + ε)

GE

GM

{
1− Re

δG̃M

GM
+Re

δGE

GE
+

ν

m2
N

ReF̃3

(
1

GE
− 2ε

1 + ε

1

GM

)}
.(3.16)In Born approximation, these orretions vanish and the well known expressions for theseobservables, Eqs. (2.31) and (2.32), are reovered.The expressions of the observables inluding the 2γ ontributions presented in this setionare model-independent. However, the 2γ-amplitudes δG̃M , δG̃E and F̃3 annot be alulatedfrom �rst priniples due to the unknown hadroni interation. Therefore, di�erent approaheshave been used in order to obtain quantitative results for the orretions. Some of theseapproahes will be disussed in the following.3.2 Model Calulations of Two-Photon ExhangeSine the form fator disrepany has been on�rmed, several model approahes have beenapplied to alulate 2γ-exhange orretions to the elasti sattering proess, where a few ofthese approahes will be reviewed in this setion.In the analysis of Ref. [27℄, it has been demonstrated, that two-photon exhange ontribu-tions are able to hange the Rosenbluth extration of GE in a signi�ant way, a�eting thepolarization transfer measurements only minimally. The 2γ-exhange orretions to the rosssetion, as one might expet from perturbation theory, ould at large momentum transferbe omparable in size to the term ontaining G2

E in the Rosenbluth ross setion and on-sequently ould have a large impat on the extration of GE . Furthermore, ε-dependentorretions to the G2
M term an appear as well. These results obviously all for furtherpreise alulations.30



3.2 Model Calulations of Two-Photon Exhange
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Figure 3.2: Extrated ratio µpGE/GM inluding 2γ-exhange alulated within a hadroniapproah using a single nuleon as the hadron intermediate state. Blak irles(PT): results of GE/GM from polarization experiments; blue diamond (LT):results of GE/GM from Rosenbluth experiments; red squares (Lt + 2γ): GE/GMfrom Rosenbluth experiments inluding the 2γ-orretions. Figure adapted fromRef. [51℄.A model alulation of the diret and rossed box diagram of 2γ-exhange within a hadroniapproah has been done in Refs. [51�54℄, using nuleons and resonanes as intermediatestates to desribe the hadroni verties. In the �rst alulations [51, 52℄ only the elastinuleon intermediate state has been used. The analysis has been extended by �rst inludingthe ∆(1232) resonane in the alulation of the 2γ-exhange orretions [53℄ and later bya larger set of spin-1/2 and spin-3/2 resonanes as intermediate states [54℄. The results oftwo-photon exhange ontributions using an elasti nuleon intermediate state are shown inFig. 3.2. The authors of Refs. [51, 52℄ found, that the elasti nuleon ontributions have alarge e�et on the results of the Rosenbluth extration and are able to resolve the disrepanypartially. The e�et of the ∆ and higher mass resonanes were found to be small, anellingthe 2γ-exhange ontribution of the nuleon intermediate state in part. The hadroni modelis limited to low Q2, where the ontributions of the exited intermediate states should besmall.In order to estimate the 2γ-exhange ontribution at larger Q2, a partoni alulation wasperformed in Refs. [55,56℄, by relating the so-alled generalized parton distributions (GPDs)of the proton to the 2γ-exhange diagrams. Within this fatorization approah the amplitudeof the proess is given as a onvolution of a hard subproess and a soft non-perturbative part,whih an be parametrized by the GPDs. The orresponding Feynman diagram in the so-alled handbag fatorization is illustrated in Fig. 3.3, where in the hard subproess, indiatedby the hard sattering amplitude H, the lepton satters o� one massless quark in the nuleon:
e−(k) + q(pq)→ e−(k′) + q(p′q). (3.17)The two-photon ontribution to the elasti ross setion an be obtained by alulatingthe 2γ-exhange diret and rossed box diagrams of the eletron-quark sattering proess.31
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Figure 3.3: Handbag fatorization approximation of elasti eletron-nuleon sattering: inthe hard partoni subproess H the eletron satters o� one single quark in thenuleon. The soft proess is parametrized by the GPDs of the nuleon, presentedby the lower blob.
Aordingly, the quarks are embedded in the nuleon as desribed by the GPDs of the proton.This approah is valid at larger values of momentum transfer Q2 and enter-of-mass energy
s, with Q2, s≫ m2

N .The e�et of the hard two-photon orretions on the form fator ratio extrated fromunpolarized Rosenbluth measurements is shown in Fig. 3.4. In the Q2 range of 2-3 GeV2the Rosenbluth results inluding the 2γ-orretions agree with the results from polarizationexperiments. However, at larger Q2 the orretions an partially reonile both methods.The size of the orretions to the polarization results is small and within their experimentalunertainties, thus they are not presented in Fig. 3.4.In Refs. [57, 58℄, two-photon exhange has been studied at high Q2 in the framework ofperturbative QCD using the onept of hadron distribution amplitudes (DAs). The ampli-tude of the proess appears as a onvolution of a non-perturbative ontribution parametrizedthrough the proton DA and a hard kernel H, whih an be alulated within perturbativeQCD. In the leading-order ontribution to the 2γ-exhange, as shown in Fig. 3.5, all threevalene quarks partiipate in the subproess. The two exhanged photons, whih must havelarge virtualities, ouple to di�erent quarks and the third quark interats via the exhangeof a hard gluon. In the alulation of Ref. [57℄ two di�erent models of DAs have been takeninto aount. The authors found a 2γ-e�et of a few perent, depending on the model forthe DAs.Two-photon exhange e�ets have been studied in Ref. [59℄ using the dispersion relationtehnique for the nuleon form fators. Assuming, that the 2γ-exhange is responsible for thedi�erene between the two methods and that the e�et on the polarization ratio is negligible,the dispersion results were found to be in agreement with previous model alulations [51,56℄.In Ref. [60℄ the two-photon exhange amplitude has been omputed in the framework ofdispersion relations for nuleon intermediate states using on-shell nuleon form fators. Theobtained e�ets are similar to those found within a hadroni approah [51℄, espeially in thesmaller Q2 region.32
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Q2 (GeV2)Figure 3.4: Rosenbluth extration of the form fator ratio R inluding two-photon exhangeorretions obtained by a GPD based partoni approah. The results of theRosenbluth determination of GE/GM inluding the 2γ-orretions are presentedby the �lled squares. The polarization data are indiated by the irles and theRosenbluth extration without two-photon orretions by blue triangles. The�gure is taken from Ref. [56℄.3.3 Observables related to Two-Photon ExhangeBesides searhing for e�ets beyond the Born approximation in the Rosenbluth ross setionsand polarization transfer experiments, two-photon exhange an be probed using observableswhih are diretly onneted with the 2γ-amplitudes. The omparison of positron-proton andeletron-proton sattering ross setions allows to aess the real part of the 2γ-amplitudes,whereas single spin asymmetries are related to the imaginary part.3.3.1 Comparison of Positron-Proton and Eletron-Proton SatteringA diret experimental test of the two-photon exhange formalism an be obtained by theomparison of the elasti positron-proton (e+p) and the elasti eletron-proton (e−p) sat-tering ross setions. The ratio of these ross setions is de�ned as:
Re+e− =

σR(e
+p→ e+p)

σR(e−p→ e−p)
. (3.18)The ross setions in the Born approximation are the same for e+p and e−p sattering, butthe interferene term of the 1γ and 2γ-amplitudes in the ross setion hanges its sign under33
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dFigure 3.5: One possible diagram for elasti ep-sattering with hard two-photon exhange.The gray blobs orrespond to the DAs of the inoming and outgoing nuleon,respetively.the interhange of e− and e+. Therefore the 2γ-exhange ontribution appears as a deviationof Re+e− from unity. The ross setion ratio an be written as
Re+e− =

|M1γ |2 − 2Re[M∗
1γM2γ ]

|M1γ |2 + 2Re[M∗
1γM2γ ]

≈ 1− 2 δ2γ ,

(3.19)where δ2γ is the two-photon exhange ontribution to the ross setion andM1γ andM2γ arethe amplitudes of the 1γ and 2γ proesses as disussed in Eq. (3.13). Hene a measurementof Re+e− gives diret aess to the real part of the 2γ-exhange amplitudes and onsequentlyallows for tests of the two-photon exhange formalism.Early omparisons of e+p and e−p sattering ould not yield to a lear onstraint on thetwo-photon exhange e�ets. The existing data, whih have quite large unertainties, hadmostly been taken at low Q2 and larger values of ε, where the 2γ-orretions are expeted tobe small. However, new experiments, whih attempt to measure Re+e− with higher auray,are underway. The Olympus experiment at DESY [61℄, the E07-005 experiment performedat JLab [62℄, as well as the results taken at the VEPP-III storage ring in Novosibirsk [63℄, willprovide ross setion omparisons over a wide kinemati range. The Novosibirsk experimentalready reported data for two values of ε and Q2 [64℄:
Re+e− = 1.0160 ± 0.011 ± 0.003, for ε = 0.5, Q2 = 1.43GeV2

Re+e− = 0.9976 ± 0.0009 ± 0.003, for ε = 0.95, Q2 = 0.23GeV2.
(3.20)Further results of these experiments will give insight into the 2γ-formalism and disentangledi�erent models applied for alulating two-photon exhange orretions.3.3.2 Beam-Normal and Target-Normal Spin AsymmetriesThe imaginary part of the two-photon amplitudes an be aessed through a single-spinasymmetry (SSA), when either the target or the beam is polarized normally to the sattering34



3.4 Determination of Two-Photon Amplitudes from ep-Sattering Dataplane of the reation. Due to time-reversal invariane, the SSA vanishes in the 1γ-exhangeapproximation and is suppressed by αem.The target-normal SSA An is de�ned as
An =

σN↑ − σN↓

σN↑ + σN↓
, (3.21)where σN↑ (σN↓) denotes the ross setion for a nuleon spin parallel (anti-parallel) to thediretion normal to the sattering plane. An is expeted to be of order of αem ∼ 10−2. It anbe expressed through the generalized form fators, whih have been introdued in Eq. (3.9),

An =

√
2ε(1 + ε)

τ

1

σR

{
−GM Im

[
δG̃E +

ν

m2
N

F̃3

]
+GE Im

[
δG̃M +

2ε

1 + ε

ν

m2
N

F̃3

]}
,(3.22)and depends on the imaginary part of the two-photon amplitudes δG̃M , δG̃E and F̃3.Polarizing an ultra-relativisti partile normally to its momentum leads to a suppressionof m/E, where m is the mass and E is the energy of the partile. Hene, the beam-normalSSA, whih requires a polarized eletron beam, is suppressed by an additional fator of

me/Ee ∼ 10−3 − 10−4 and is expeted to be of the order of ∼ 10−5 − 10−6. It vanishesexpliitly for me = 0, as it inludes an eletron-heliity �ip. The general form of the matrixelement inluding the eletron-heliity �ip, whih has been derived in Ref. [65℄, ontains sixindependent amplitudes, hene three additional strutures besides the amplitudes introduedin Eq. (3.9).3.4 Determination of Two-Photon Exhange Amplitudes fromElasti ep-Sattering Data3.4.1 Measurement of E�ets beyond the Born Approximation inPolarization Transfer ObservablesIn 2010 the results of the GEp2γ experiment [50℄, whih was performed at JLab/Hall C,have been published. The aim of the experiment was the searh for e�ets beyond theBorn approximation in polarized elasti eletron-proton sattering. The polarization ratio
R, de�ned by

R = −µp
√
τ(1 + ε)

2ε

Pt

Pl
, (3.23)and the longitudinal polarization omponent Pl have been measured separately at �xedmomentum transfer of Q2 = 2.5 GeV2 as a funtion of ε with high preision.The results of the experiment an be seen from Fig 3.6. The new data of the ratio R arepresented by the �lled blue irles in the left plot, together with the results of the polarizationratio from the earlier GEp-I experiment [67℄ (open triangle). It an be learly seen thatthe data of the GEp2γ experiment improve the preision of the previous measurement.No evidene of an ε dependene of the polarization ratio R has been found within theunertainties of ∼ 1%. In ontrast, the results of the polarization omponent Pl/P

Born
l ,presented in the right panel of Fig 3.6, show an ε dependent behavior, with an enhanementof Pl/P

Born
l of 2.3 %± 0.6% at ε = 0.785. 35
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Figure 3.6: Results of the GEp2γ experiment (blue irles) of R (left panel) and Pl/P
Born
l(right panel) as a funtion of ε at Q2 = 2.5 GeV2. The blue solid line shows aonstant �t to the data, the other urves orrespond to preditions of di�erentmodels [51,56,57,66℄. The open triangle represents the result of the earlier GEp-Iexperiment. The star in the right plot indiates the ε value at whih the resultshave been normalized. The systemati unertainties are presented by the blakbands at the bottom of the panels. The �gure is adapted from Ref. [50℄.

In addition, preditions of three theoretial models, whih have been disussed in Se-tion 3.2, are presented in Fig. 3.6. One noties, that no model is able to explain both�ndings of the experiment, the ε independent behavior of R as well as the e�et of ∼ 2% on
Pl/P

Born
l at larger ε values, even though the predited ε dependene for R of the di�erentmodels varies signi�antly. The hadroni model [51℄ as well as the GPD-based approah [56℄and the pQCD alulation [57℄ �nd a larger e�et on R for smaller values of ε, while theresults of the alulations di�er in the sign of the two-photon ontribution. Furthermore,using the GPD model and the hadroni model, one obtains an insigni�ant e�et on the εdependene of Pl/P

Born
l , whih is below 1%.Only the alulation of radiative orretions of Ref. [66℄ does not predit any measurable

ε dependent e�et on R. Within this approah the so-alled struture funtion method hasbeen used to alulate radiative orretions to elasti ep-sattering in quasi-elasti kinemat-is. The authors of Ref. [66℄ found, that the 2γ-exhange orretions are negligible, butreeive larger ontributions through initial state emission. However, several approximationshave been applied in the analysis and the results strongly depend on the experimental on-ditions. To alulate the box-diagrams of two-photon exhange, it has been assumed thatboth photons arry approximately half of the transferred momentum.The disussed preise measurement of the polarization observables, whih annot be ex-plained by existing 2γ-exhange model alulations, motivates to extrat the two-photonamplitudes from the existing data within a phenomenologial approah.36



3.4 Determination of Two-Photon Amplitudes from ep-Sattering Data3.4.2 Phenomenologial Extration of Two-Photon Exhange Amplitudesfrom ep-Sattering DataFor the extration of the three 2γ-amplitudes δG̃M , δG̃E , and F̃3, whih have been introduedin Eq. (3.9), it is onvenient to de�ne the real part of the two-photon amplitudes relative tothe magneti form fator,
YM (ν,Q2) = Re

(
δG̃M

GM

)
, YE(ν,Q

2) = Re

(
δG̃E

GM

)
,

Y3(ν,Q
2) =

ν

m2
N

Re

(
F̃3

GM

)
,

(3.24)sine these ombinations appear in the expression of the observables.The redued ross setion of the reation inluding the 2γ-orretions divided by G2
M thenreads

σR
G2

M

= 1 +
ε

τ

G2
E

G2
M

+ 2YM + 2ε
GE

τGM
YE + 2ε

(
1 +

GE

τGM

)
Y3. (3.25)The polarization transfer ratio R in the presene of 2γ-exhange an be written as:
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)
Y3. (3.26)For Pl separately, its expression relative to the 1γ-result PBorn

l of Eq. (2.31) is given by :
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(3.27)For the analysis of the two-photon exhange ontribution to elasti eletron-proton sat-tering the data for the ε dependene of Pt/Pl and Pl/P
Born
l at Q2= 2.5 GeV2 [50℄ are used,whih have been disussed before, and are ombined with a high-preision Rosenbluth mea-surement of σR performed at JLab/Hall A [20℄, where data of the ross setion have beentaken at a similar value, Q2 = 2.64 GeV2. Negleting the small di�erene between the twovalues of momentum transfer (2.5 and 2.64 GeV2), the ombination of both experimentsallows for having three observables at the same value of Q2 to extrat the three two-photonamplitudes YM , YE, and Y3.Firstly, the data for the polarization ratio R is �tted, whih is displayed in Fig. 3.7. TheJLab/Hall C experiment does not see any systemati 2γ-e�et on Pt/Pl within their errorbars of the order of 1%. We performed a �t of −µp√ τ(1−ε)
2ε

Pt

Pl
assuming an ε independentpart A, whih in the Born approximation equals µp GE

GM
, supplemented an ε dependent part:

− µp
√
τ(1− ε)

2ε

Pt

Pl
= A+Bεc(1− ε)d. (3.28)Using a range of values for c and d, it has been found, that the value B is zero withinthe present error and that the extrated values of A are all equal within their error bars.37
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Figure 3.7: The ratio −µp√ τ(1+ε)
2ε

Pt

Pl
as a funtion of ε for Q2 = 2.5 GeV2. The data pointsare from the GEp-I experiment [9,67℄ (blue triangle) and from the GEp-2γ exper-iment [50℄ (red irles): the error bars show the statistial errors, the systematierrors are given by the gray band. The solid urve is an ε independent �t, givenby Eq. (3.29).Therefore we onlude, that the preision of the present data [50℄ at Q2 = 2.5 GeV2 doesnot allow to extrat any ε dependent part, in addition to the onstant value A.For this reason, an ε independent �t is used in the analysis, whih yields:

R = −µp
√
τ(1 + ε)

2ε

Pt

Pl
= 0.693 ± 0.006stat. ± 0.010sys., (3.29)indiated by the solid line in Fig. 3.7.The �tted value of R an be used in order to extrat the ratio GE/GM of the 1γ-formfators at Q2 = 2.5 GeV2, whih is a onstant at �xed Q2. These proedure is motivatedby the Regge limit assumption, whih predits, that the 2γ-orretions to Pt/Pl vanish for

ε → 1. Hene, in this limit R is diretly related to µpGE/GM . Sine we assume that theratio R is independent of ε for Q2=2.5 GeV2, R an be identi�ed with the form fator ratio:
R = R(ε→ 1) = µp

GE

GM

∣∣∣∣
Q2=2.5GeV2

= 0.693. (3.30)In the next step the longitudinal polarization omponent is analyzed. Pl is onventionallydivided by its 1γ-value PBorn
l , whih is alulated aording to Eq. (2.31), using the valueof Eq. (3.30) as input for GE/GM . To �t the ε-dependene of Pl/P

Born
l , we �rst speify itsbehavior for the limits ε → 0 and ε → 1, where the 2γ-ontributions to Pl are expeted tobe zero. As an be seen from Eq. (3.27), for the limit ε→ 0 these statement an be derivedfrom the model independent expression of the observable Pl/P

Born
l in terms of YM , YE , and

Y3, giving rise to
Pl

PBorn
l

ε→ 0−−−→ 1. (3.31)The seond assumed limiting behavior an again be motivated from the Regge limit assump-tion for ε→ 1, as disussed above.38
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Figure 3.8: The ratio Pl/P
Born
l as a funtion of ε for Q2 = 2.5 GeV2. The data points arefrom the GEp−2γ experiment [50℄: the error bars show the statistial errors, thesystemati errors are given by the gray band in the bottom. The star indiatesthe ε value at whih the data have been normalized to the value 1. The twourves orrespond to the �ts desribed in Eq. (3.32): Fit 1 (solid urve), Fit 2(dashed urve).Furthermore, perturbative QCD alulations of 2γ-exhange orretions [57,58℄ �nd, that

Pl/P
Born
l behaves as

Pl

PBorn
l

− 1→
{

(1− ε)1/2 for ε→ 1.

ε2 for ε→ 0.
(3.32)Nevertheless, the pQCD predition is not expeted to hold aurately at the relatively lowvalue of Q2 = 2.5 GeV2, so we refer to the pQCD behavior only as an example. Althoughthe data for Pl/P

Born
l show a derease for ε → 0, the fall-o� at Q2 = 2.5 GeV2 is fasterthan predited from pQCD. At this values of Q2 one expets to reeive sizeable orretionsto the predited behavior. Hene, we will not use the exat form of the perturbative QCDpredition, but modify the simple funtional form in order to �nd the best �t to the availabledata, taking the predited endpoint behavior into aount .Therefore, as �t of the data for Pl/P

Born
l two di�erent, purely phenomenologial, fun-tional forms are used, whih depend on one parameter al:

Pl

PBorn
l

= 1 +

{
al ε

4(1− ε)1/2 (Fit 1).
al ε ln(1− ε)(1− ε)1/2 (Fit 2). (3.33)The �ts to the data, shown in Fig. 3.8, lead to the values

al = 0.11 ± 0.03stat. ± 0.06sys. (Fit 1).
al = − 0.032 ± 0.008stat. ± 0.020sys. (Fit 2). (3.34)Now we take a loser look on the Rosenbluth measurements of the redued ross setion.As presented in Fig. 3.9, the preise data of the JLab/Hall A Rosenbluth measurement [20℄39
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Figure 3.9: Rosenbluth plots for elasti ep-sattering: redued ross setion σR divided by
µ2p/(1 + Q2/0.712) as a funtion of ε at Q2 = 2.64 GeV2. Solid urve: linear�t to the JLab/Hall A ross setion data (irles) [20℄. Dashed urve: Resultin the one-photon approximation, using the slope from the polarization data of
GE/GM . The gray band shows the systemati errors.of σR at Q2=2.64 GeV2 show a linear inrease of the ross setion with respet to ε, therefore

σR
(µpGD)2

= a+ bε (3.35)is suggested, where the standard dipole form fator GD has been fatored out, whih hasde�ned in Eq. (2.28).The �t to the data yields
a = 1.106 ± 0.006, b = 0.160 ± 0.009. (3.36)For the analysis, the 1γ-form fators GE/GM as well as G2

M are needed. To extrat the
2γ-amplitudes as well as the form fator ombinations GE/GM and G2

M from the threeobservables, we have to make two assumptions. The �rst one was made in Eq. (3.28), wherethe ε independent part gives GE/GM , see Eq. (3.30). To �x the value of G2
M , it has beenassumed, that the 2γ-orretions to σR vanish in the limit ε→ 1, whih is again motivatedby the Regge limit and in addition an be found as a result of model alulations of 2γ-exhange, e.g. in Ref. [57℄. By means of the aforementioned assumptions, the redued rosssetion at ε→ 1 is found as

σR(ε = 1, Q2) = G2
M +

G2
E

τ
. (3.37)The GE/GM value extrated from the �t to Pt/Pl and the �tted values of the parameters aand b entering in Eq. (3.35) allow to �x the value of G2

M as
(
GM

µpGD

)2

=
a+ b

1 + 1
τ (GE/GM )2

. (3.38)40



3.4 Determination of Two-Photon Amplitudes from ep-Sattering DataFor Q2 = 2.64 GeV2 one obtains:
(
GM

µpGD

)2

= 1.168 ± 0.010. (3.39)Having spei�ed the �ts of the observables Pt/Pl, Pl/P
Born
l , and σR de�ned in Eqs. (3.29),(3.32), (3.35), we next proeed to extrat the two-photon amplitudes YM , YE , and Y3.The �tting proedure involves three steps. Firstly, a standard χ2-�t of the data for Pt/Pl(1 parameter), Pl/P

Born
l (1 parameters) and σR (2 parameters) is performed, using theassumptions of the limit behavior for ε → 1 and ε → 0 as desribed above. Seondly, bysolving Eqs. (3.25)-(3.27) with respet to the amplitudes Yi, the 2γ-amplitude as a funtionof the �tting parameters and G2

M and GE/GM are obtained. Thirdly, the 1σ error bands of
Yi are omputed from the statistial errors in the �tted observables, again using Eqs. (3.25)-(3.27). In the same way the systemati unertainties of the data are estimated.The results are presented in Fig. 3.10, where the 2γ amplitudes as a funtion of ε areshown inluding the 1σ statistial error bands. The systemati errors are indiated by thehorizontal bands at the bottom of Fig. 3.10. The two di�erently olored bands orrespond tothe two di�erent �ts, whih have been used for Pl/P

Born
l , given by Eq. (3.34). One noties,that all three amplitudes are of the order of 2-3 %, whih is in agreement with the preditede�ets allowing to reonile the disrepany as found in Ref. [19℄.The amplitude, whih is best onstrained by the available data, is YM . This is beausethe amplitude YM is mainly driven by the 2γ-e�ets on the ross setion, for whih severalpreise data points over a large ε range exist. Negleting the smaller terms in the rosssetion, whih are multiplied with GE/GM , leads to a 2γ-ontribution σ2γR of the form

σ2γR ≃ YM + ε Y3, (3.40)dominated by YM for smaller values of ε. The error bands on YM originating from the twodi�erent �ts for Pl largely overlap. Exept for the region where ε is large, the dominaneof YM by the Rosenbluth data results in its approximate linear rise with ε. For ε → 1, YMhas to beome non-linear in order to provide, that YM + εY3 remains linear in this limit,whih we assumed in our analysis. How far the linearity of the Rosenbluth plot extends whenapproahing ε→ 1 is an open question, whih will be addressed by the results of a dediatedexperiment [68℄.In ontrast to YM , the amplitudes YE and Y3 are mainly driven by the polarization data.One noties from Fig. 3.10 that the error bands overlap in the range where data for all threeobservables exist (ε > 0.6). In the range of smaller ε, where there are less onstraints fromthe polarization data, one sees lear deviations between the two di�erent funtional formsfor the ε-dependene. We heked, that the same onlusion is reahed for other forms of
Pl/P

Born
l . Hene one an onlude that the available data allow to extrat these amplitudesonly in the range ε > 0.6.The amplitudes YE and Y3 are at the 2-3 % level, showing a similar ε dependene, buthaving opposite sign. This an be explained by having a loser look at the ratio Pt/Pl. Onean see from Eq. (3.26), that the leading ontribution of 2γ-exhange to Pt/Pl is given by

(
Pt

Pl

)2γ

≃ YE + Y3. (3.41)41



Chapter 3 Two-Photon Exhange in Elasti Eletron-Proton Sattering

Figure 3.10: Extrated 2γ-amplitudes as a funtion of ε at Q2 = 2.64 GeV2 together withtheir 1σ-error bands. The two di�erent olored bands indiate the �ts of
Pl/P

Born
l as desribed in Eq.(3.32): Fit 1 (purple bands); Fit 2 (blue bands).The horizontal bands at the bottom of the plots show the systemati errors.
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3.4 Determination of Two-Photon Amplitudes from ep-Sattering Data
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0 0.2 0.4 0.6 0.8 1.0Figure 3.11: Preditions for the e+p/e−p elasti ross setion ratio Re+e− as a funtion of ε,together with their 1σ error bands.The absene of 2γ-e�ets in Pt/Pl implies, that YE and Y3 are of equal magnitude and ofopposite sign. Furthermore, the value of Y3 is nearly entirely driven by the data for Pl, asan be seen from Eq. (3.27). When negleting the small terms proportional to GE/GM , one�nds that the observable is given by
P 2γ
l ≃ −2ε2/(1 + ε)Y3. (3.42)To improve on the extration of YE and Y3 will require a further improvement in preision ofthe polarization experiments and an aurate data set overing a larger range of ε for bothpolarization observables.3.4.3 Positron-Proton versus Eletron-Proton SatteringThe omparison of positron-proton to eletron-proton sattering, disussed in setion 3.3.1,provides a de�ned test of the 2γ-exhange formalism. The e+p elasti sattering observablesare obtained from the ones for e−p (Eqs. (3.25)-(3.27)) by merely hanging the sign in frontof the 2γ-amplitudes. Therefore the ratio of the positron-proton to eletron-proton elastisattering ross setion Re+e− , Eq. (3.18), gives rise to the 2γ-ontributions to the rosssetion.The extrated 2γ-amplitudes at Q2 = 2.64 GeV2 allowing for preditions of the ratio

Re+e− . The results of Re+e− are shown in Fig. 3.11 together with their 1σ error bands,where Fit 1 in Eq. (3.32) has been used. The ratio is dominated over most of the ε range bythe amplitude YM , whih is mainly determined from the ross setion, and therefore Re+e−depends very weakly on the funtional form of Pl. In the previous setion, it has been found,that the amplitude YM an be reliably extrated from the existing data. Consequently, thepresent data allow to provide a predition for Re+e− at Q2 = 2.64 GeV2 over the full range of
ε, under the assumption that the Rosenbluth plot extends linearly all the way up to ε→ 1.43



Chapter 3 Two-Photon Exhange in Elasti Eletron-Proton SatteringOne noties that for Q2 = 2.64 GeV2, Re+e− rises linearly to small ε, reahing Re+e− =
1.053 ± 0.004 for ε = 0.5.Measurements of Re+e− are underway at several experiments. The Olympus experimentwill over an ε region of ε ∼ 0.4 -0.9 and a momentum transfer up to ∼ Q2 = 2.25 GeV2,measuring Re+e− with an aimed auray of order of 1%. For the measured range of thisexperiment, the 2γ-orretions to the e+p/e−p elasti ross setion ratio are found to varyin the 1 - 6 % range.In Fig. 3.11, also preditions for two other values of momentum transfer are provided,
Q2 = 3.20 GeV2 and Q2 = 4.20 GeV2, where the high-preision Rosenbluth experiment atJLab [20℄ has taken data of σR. At these higher values of Q2, a systemati measurementof the ε-dependene of the polarization observables has not yet been performed. For ouranalysis of the Q2 = 3.2 GeV2 and Q2 = 4.1 GeV2 data, we therefore have assumed that
Pt/Pl an be �tted by its 1γ-value proportional to GE/GM . One sees from Fig. 3.11, thatfor a �xed value of ε, the ratio inreases with Q2. Nevertheless, for a detailed analysis ofthe Q2 dependene of the 2γ-amplitude and the ratio Re+e− preise data for the polarizationobservables at higher momentum transfer values are needed.3.5 ConlusionsIn this hapter the ombined analysis of high-preision Rosenbluth data and onsiderablymeasurements of the polarization observables has been performed. This analysis allows foran extration of the three 2γ-amplitudes using empirial results for the three observables andassuming, that for ε→ 1 the 2γ-amplitudes vanishes. The amplitudes are found to be at the2-3 % level, where one amplitude (YM ) an be reliably extrated from the orretions to theunpolarized ross setion. Preditions of the e+p/e−p ross setion ratio an be provided,for whih dediated experiments are underway.To improve on the extration, further aurate data, in partiular of the polarizationobservables are required, overing a larger range of ε. If a measurement of the polarizationobservables at further ommon values of Q2 will be performed, onlusions onerning the
Q2 dependene of the 2γ-amplitudes and the e+p/e−p ross setion ratio an be drawn.
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Chapter 4Two-Photon Exhange in the TimelikeRegionA omplete understanding of the eletromagneti nuleon struture an only be ahieved byomplementing the study of the spaelike nuleon form fators by its timelike ounterparts.The elasti sattering proess is related to the orresponding annihilation proesses via therossing symmetry. Sine two-photon exhange plays a ruial role in the extration of thespaelike eletromagneti form fators from elasti eletron-proton sattering, investigatingits in�uene in the timelike region seems to be an obvious task. Nevertheless, in the time-like region no omparable alulation has been done to determine the two-photon exhangee�ets for the annihilation proesses. However, forthoming form fator measurements atPANDA�FAIR or BES-III are aiming preisions that an be omparable in size to the two-photon exhange orretions. With the prospet of suh high-auray measurements, adetailed knowledge of orretions, as two-photon exhange, is neessary.In this hapter the in�uene of two-photon exhange on the timelike annihilation reations
p p̄ → e+e− and e+e− → p p̄ is studied. Firstly, the general properties of timelike 2γ-exhange proesses are presented in terms of generalized two-photon amplitudes, similarlyto the amplitudes introdued in hapter 3. Sine a quantitative determination of the 2γ-amplitudes annot be ahieved from �rst priniples, one has to resort to model desriptions.In this hapter, two di�erent approahes will be disussed, both based on the priniple offatorization. This basi onept desribes the possibility to separate (fatorize) soft andhard momenta in the amplitude, whih shematially an be expressed as

M =Msoft ⊗Mhard +O (1/Q) , (4.1)where ⊗ stands for a onvolution. The hard part of the amplitude an be alulated pertur-batively, whereas the soft part, whih ontains information on the internal struture of thenuleon, has to be handled phenomenologially. The variable Q denotes a large sale and theexpression O (1/Q) indiates, that the fatorized amplitude reeives orretions from termswhih are suppressed in the 1/Q expansion. In the fatorization model the fast-moving pro-ton and antiproton behave as a set of free partons. This allows to ompute the proess as aonvolution of the annihilation reation performed at the parton-level and the distributionfuntions for �nding the orresponding partoni on�guration in the nuleon.For the purpose of studying two-photon exhange e�ets for the proess p p̄ → e−e+, weonsider two di�erent models. First, the 2γ-exhange orretions at large momentum trans-fer are analyzed within the framework of pQCD, where the onept of nuleon DistributionAmplitudes (DAs) is introdued in order to deal with the soft part of the amplitude. More-over, as an alternative approah, an estimate of the 2γ-e�ets within a partoni alulation is45



Chapter 4 Two-Photon Exhange in the Timelike Region
N(p1)

N̄(p2)

e−(k1)

e+(k2)

N(p1)

N̄(p2)

e−(k1)

e+(k2)Figure 4.1: Diret and rossed box diagrams of the timelike 2γ-exhange in the annihilationproess pp̄→ e−e+given, where the 2γ-exhange proess is related to the Generalized Distribution Amplitudes(GDAs), the timelike analogon of the Generalized Parton Distributions.4.1 Timelike Two-Photon Exhange: General FormalismFor the analysis of the 2γ-exhange in the timelike region, we onsider the annihilationproess of a proton and a antiproton into a lepton pair,
p(p1, λN1

) + p̄(p2, λN2
)→ l−(k1, h1) + l+(k2, h2), (4.2)where the momenta of the proton (antiproton) and lepton (antilepton) are given by p1 (p2)and k1 (k2), and λN1

, λN2
, h1 and h2 denote the heliities of the nuleons and leptons,respetively. The two-photon exhange orretions are given by the diret and rossed boxdiagrams in Fig. 4.1. We will onentrate on the p p̄-annihilation proess, but the results forthe reversed reation, e+ e− → p p̄, an easily be inferred from these alulations.In order to desribe the proess, we introdue the variables

q2 = (p1 + p2)
2, Pµ =

pµ1 − pµ2
2

, Kµ =
kµ1 − kµ2

2
, (4.3)and the Mandelstam variables

s = q2 = (p1 + p2)
2, t = (p1 − k2)2, u = (p1 − k1)2. (4.4)The annihilation proess an be desribed through two independent kinematial invariants,whih are hosen as variables q2 and t.In the 1γ-exhange approximation the ross setion, given by Eq. (2.42), depends on theeletri and magneti form fator as

(
dσ

d cos θ

)

1γ

∝
[ ∣∣GM (q2)

∣∣2(1 + cos2 θ) +
1

τ

∣∣GE(q
2)
∣∣2 sin2 θ

]
. (4.5)As for the spaelike sattering proess, the part of the ross setion ontaining |GE(q

2)|2 issuppressed for larger momentum transfer by 1/q2. Hene, an extration of both form fatorsfrom the measured ross setion at larger q2 values is very sensitive to even small orretions46



4.1 Timelike Two-Photon Exhange: General Formalismas 2γ-exhange, in partiular when one of the form fators ontributes only a few perent tothe ross setion.Similarly to the spaelike analysis, for vanishing lepton masses the matrix element in-luding multi-photon exhange an be parametrized by three independent generalized formfators. Using rossing relations, the amplitude inluding multi-photon exhange an befound as
M = − e2

q2
ū(k2, h1) γµ v(k1,−h1)

× N̄(p2, λN2
)

[
G̃M (q2, t) γµ − F̃2(q

2, t)
1

mN
Pµ + F̃3(q

2, t)
1

m2
N

Pµ /K]N(p1, λN1
),(4.6)where negleting the masses of the leptons implies, that the eletron and the positron haveopposite heliities. The generalized form fators G̃M , F̃2 and F̃3 are omplex funtions of q2and t. One an equivalently introdue

G̃E(q
2, t) ≡ G̃M (q2, t)−

(
1− τ

)
F̃2(q

2, t). (4.7)In order to identify the 1γ- and 2γ-exhange ontributions, it is onvenient to use the de-ompositions
G̃M (q2, t) ≡ GM (q2) + δG̃M (q2, t),

G̃E(q
2, t) ≡ GE(q

2) + δG̃E(q
2, t),

F̃3(q
2, t) ≡ δF̃3(q

2, t),

(4.8)where, like in the spaelike region, the form fators δG̃M (q2, t), δG̃E(q
2, t), and δF̃3(q

2, t) areomplex funtions, orresponding to proesses where at least two photons are exhanged and
GE and GM are the timelike eletromagneti form fators, introdued in Eq. (2.39). The
2γ-amplitudes are suppressed by αem ompared to the 1γ-form fators.The proess is onsidered in the .m. frame of the nuleon pair, with the momenta givenby Eqs. (2.40) and (2.41). The variable t an be related to the .m. sattering angle θbetween the inident proton and the outgoing eletron through

t = m2
N −

s

2
(1 + cos θ). (4.9)The ross setion inluding the leading order 2γ-exhange orretions an be expressed as

(
dσ

d cos θ

)
=

α2
emπ

8m2
√
τ(τ − 1)

{
|GM |2(1 + cos2 θ) +

1

τ
|GE |2 sin2 θ

+ 2Re
[
GM δG̃∗

M

]
(1 + cos2 θ) + 2

1

τ
Re
[
GE δG̃

∗
E

]
sin2 θ

+ 2
(
Re
[
GM F̃3

∗]− 1

τ
Re
[
GE F̃3

∗])√
τ(τ − 1) cos θ sin2 θ

}
.

(4.10)
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Chapter 4 Two-Photon Exhange in the Timelike RegionIn the 1γ-exhange approximation, only the �rst line of Eq. (4.10) ontributes to the rosssetion and the expression redues to the well known formula of the unpolarized ross setion,given by Eq. (2.42). The seond part of Eq. (4.10) represents the interferene of 1γ- and
2γ-exhange proesses. Due to the omplex nature of the timelike form fators, the rosssetion depends on the real as well as on the imaginary parts of the two-photon amplitudes.As disussed in Ref. [69℄, the 2γ-amplitudes have a de�ned behavior with respet to the.m. sattering angle θ:

δG̃E,M (Q2,− cos θ) = − δG̃E,M (Q2, cos θ),

F̃3(Q
2,− cos θ) = F̃3(Q

2, cos θ),
(4.11)whih an be derived from the C-invariane of the eletromagneti hadroni urrent. Con-sequently, the two-photon ontribution to the ross setion, as presented in Eq. (4.10), isan odd funtion with respet to the transformation cos θ ↔ − cos θ, in ontrast to the Bornross setion, whih in an even funtion of cos θ. Hene, the forward-bakward asymmetry,de�ned by

Acos θ =

(
dσ

d cos θ

)
(cos θ)−

(
dσ

d cos θ

)
(− cos θ) = 2

(
dσ

d cos θ

)

2γ

(cos θ), (4.12)allows a diret extration of the two-photon exhange orretions from the measured rosssetions, where (dσ/d cos θ)2γ refers to the 2γ-ontributions of (dσ/d cos θ).The forward-bakward asymmetry have been analyzed in Ref. [70℄ using the availabledata of the proess pp̄ → e+e−γ of Ref. [30℄, whih have been taken in the energy range of
q2 ∼ 4− 7.3 GeV2. No systemati θ dependene has been observed within the unertaintiesof the experiment and an averaged value of the asymmetry over the measured range hasbeen found as Acos θ = 0.01± 0.02. However, sine the present data have large unertainties,more data with higher auray are needed for a detailed analysis of the forward-bakwardsymmetry.The unpolarized ross setion allows to aess the absolute value of the timelike formfators. Their phases an be investigated by means of polarization observables. Theseobservables an be a�eted by two-photon exhange orretions as well, even though thee�et is expeted to be small. One observable enabling aess to the imaginary part of theeletri and magneti form fator, is the single spin asymmetry, Eq. (2.45), when either theproton or antiproton is polarized normally to the sattering plane, whih does not require apolarization of the leptons in the �nal state. In the ase of a polarized proton the single spinasymmetry inluding 2γ-exhange orretions up to next order in αem is given by

Ay = − 1√
τ D 2 sin θ

{(
Im[GEG

∗
M ] + Im[GEδG̃

∗
M ] + Im[δG̃EG

∗
M ]
)
cos θ

+
√
τ(τ − 1)

(
Im[GM F̃

∗
3 ] cos

2 θ + Im[GEF̃
∗
3 ] sin

2 θ
)}

,

(4.13)with
D = |GM

∣∣2(1 + cos2 θ) +
1

τ

∣∣GE

∣∣.48



4.2 Timelike Two-Photon Exhange Corretions at Large q²: pQCD ResultIn ontrast to spaelike proesses, the SSA Ay in the timelike region does not vanish in theBorn approximation. Hene, the two-photon exhange appears in the asymmetry only as aorretion term.Additional possibilities for extrating the phases of GE and GM an be o�ered by doublepolarization measurements, when both the proton and the antiproton are polarized. Two-photon exhange orretions to double polarization observables in terms of the 2γ-amplitudes
δG̃E , δG̃M , and F̃3 an be found in Ref. [71℄.4.2 Timelike Two-Photon Exhange Corretions at Large q2:Perturbative QCD ResultThe desription of the timelike 2γ-exhange orretions presented in the previous setionis model independent, as it is derived from the general e�etive urrent-urrent expression(Eq. (4.6)). However, for a quantitative determination of the 2γ-amplitudes a model ap-proah is needed. Only one model alulation of timelike 2γ-exhange orretions has beenperformed so far, namely a hadroni approah [72℄ using a nuleon as intermediate statein the box graphs, whih is expeted to be appliable only in the region of small values ofmomentum transfer.Due to the fat, that the planned high preision measurements of the timelike form fatorsattempt to ahieve values of momentum transfer of q2 ∼ 30 GeV2 and based on the expe-riene, that 2γ-exhange a�ets the spaelike form fator extration partiularly at largermomentum transfer, we take a model desription into aount, whih is suitable to study
2γ-exhange orretions at higher values of q2. This approah is based on the priniple ofQCD fatorization giving rise to the nuleon distribution amplitudes, whih will be �rstlyintrodued. Subsequently, the omputation of the timelike 2γ-exhange within this approahwill be presented.4.2.1 Nuleon Distribution Amplitudes and Perturbative QCDFatorization ApproahFor the study of exlusive high-energy proesses the onept of fatorization has suess-fully been used, whih allows to separate the short-distane and long-distane physis. Theidea behind this is, that for proesses with higher momentum transfer the hadrons an beonsidered as de�ned partoni states for the short period of interation.Based on the fatorization sheme of Ref. [73℄, the hadroni amplitude of a proess anbe expressed as a onvolution of a hard sattering part H and a soft ontribution. Thehard proess an be alulated diretly within the framework of perturbative QCD andthe soft non-perturbative ontribution is parametrized by the so-alled hadron distributionamplitudes, desribing the hadroni struture e�ets. We will refer to this onept as pQCDfatorization approah. Suh an approah is valid for su�ient large values of the momentumtransfer Q.For this purpose, it is onvenient to use light-one oordinates (see Appendix A), de�ned49
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x1p
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γ∗

p p′Φ Φ†HFigure 4.2: Proton form fator in the framework of pQCD fatorization. The hard satteringamplitude H orresponds to the proess γqqq → qqq. Φ (Φ†) indiates the DAof the initial (�nal) proton state.by the light-one basis
nµ = (1, 0, 0,−1), n̄µ = (1, 0, 0, 1),with n2 = n̄2 = 0 and n · n̄ = 2,

aµ⊥ = (0, a1, a2, 0),

(4.14)where n and n̄ are two light-like vetors and aµ⊥ is denoted as the transverse omponent ofthe four-momentum aµ. Any four-vetors an be deomposed in that basis as
pµ =

n̄µ

2
(n · p)︸ ︷︷ ︸ +

nµ

2
(n̄ · p)︸ ︷︷ ︸ + pµ⊥, (4.15)

p+ p−where ommonly the short-hand notation
pµ → (p+, p−, p⊥) ≡ (n · p, n̄ · p, p⊥) (4.16)is used. Partiles moving in the p+ diretion are denoted as ollinear partiles, while partilesalong the p− diretion are denoted as anti-ollinear partiles. Additionally, we introdue theprojetors

Λ+ =
/̄n /n
4
, Λ− =

/n /̄n
4
, (4.17)whih projet a spinor onto its "plus" and "minus" omponents. The spinor of a nuleon

N(p, λp) an be deomposed as
N(p, λp) = Λ+N(p, λp) + Λ−N(p, λp)

≡ N+(p, λp) + N−(p, λp),
(4.18)where in the ase of a ollinear partile N+ and N− sale as

N+(p, λp) ∼
√
p+, N− ∼ 1/

√
p+. (4.19)Using the pQCD fatorization approah, one an for instane evaluate the spaelike ele-tromagneti form fators at large momentum transfer Q2 = −q2 in the elasti ep-sattering50



4.2 Timelike Two-Photon Exhange Corretions at Large q²: pQCD Result
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Figure 4.3: Hard subproess γqqq → qqq within the framework of pQCD fatorization.reation. For this purpose the proess, as shown in Fig. 4.2, is examined using the in�nitemomentum frame. The inoming proton is fast moving along the z-axis, i.e. with momentum
p ∼ p+, and is struk by a highly virtual photon with large transverse momentum q2⊥ ∼ Q2.The matrix element an be expressed by a distribution amplitude of Φ(xi) for �nding agiven partoni state in the hadron and a funtion H, whih desribes the hard sattering atthe partoni level. The subproess onsists of three valene quarks moving approximatelyollinear, eah arrying a momentum fration xi of the proton momentum, with∑3

i=1 xi = 1.Conventionally, x3 is hosen to be the momentum fration of the valene d-quark.Within this approah, for instane the magneti form fator GM an be fatorized as
GM (Q2) =

∫ 1

0
dxi

∫ 1

0
dyiΦ

†(yi)H(Q2, xi, yi)Φ(xi). (4.20)The amplitude H haraterizes the subproess of the 3-valene quark state sattering withthe virtual photon and produing three (nearly ollinear) quarks in the �nal state, whih isillustrated in Fig. 4.3. It an be alulated from the Born diagram ontributions of
γ∗(q) + q(x1p) + q(x2p) + q(x3p)→ q(y1p) + q(y2p) + q(y3p) (4.21)using pQCD. The hard four-momentum of the virtual photon is transferred from quark lineto quark line via gluon exhange. Aording to this, the exhange of at least two hard gluonsis required for the sattering of one photon with large virtuality. Contributions of higherorder Fok states are suppressed and vanish for Q2 →∞.The DA Φ is the probability amplitude for �nding the three valene quark state in theinoming nuleon. It onverts the proton into the three valene quark state, desribing howthe momentum p is shared between the onstituents. The probability amplitude Φ† desribesthe overlap of the �nal quark state with the hadron. The distribution amplitudes are proessindependent quantities, i.e. they do not depend on the expliit form of the hard satteringamplitude H. Therefore, the same proton DAs an be used for the alulation of two-photonexhange proesses, for both spaelike as well as timelike 2γ-exhange reations.The nuleon DAs are fundamental non-perturbative funtions, whih at present annot bealulated from �rst priniples. They refer to proton-to-vauum matrix elements built up ofquark and gluon �elds. In the in�nite momentum frame, the three quark matrix element isgiven by 〈

0
∣∣∣εijkuiα(z1n)ujβ(z2n)dkσ(z3n)

∣∣∣ p(p, λp)
〉 (4.22)in oordinate spae, where ∣∣p(p, λp)〉 de�nes the proton state with momentum p and heliity

λp and u, d are the quark-�eld operators of the up and down quarks, respetively. The Latin51



Chapter 4 Two-Photon Exhange in the Timelike Regionletters i, j, k refer to olor and the Greek letters α, β, γ stand for Dira indies. The vetor
n is an arbitrary light-like vetor and zi are real numbers satisfying ∑i zi = 1.The matrix element of Eq. (4.22) has been transformed into an expression given by aomplete set of independent matries. For this purpose the three spinor produt of Eq. (4.22)has been deomposed into a produt of two spinors and one remaining spinor, for whih amatrix representation an be used. These two matries have been expanded in terms of theDira bilinears.The most general deomposition of the proton-to-vauum matrix element, taking Lorentzinvariane, parity and spin onservation into aount, an be expressed by 24 independentfuntions giving rise to the DAs [74℄. The deomposition an be examined with respet tothe dependene on p+ ∼ Q of the di�erent ontributions.To the leading-order expansion in 1/p+, denoted as leading-twist or twist 3, only three DAsontribute, the vetor- (V), axial-vetor (A), and tensor (T) DAs. The proton-to-vauummatrix element given as parametrization of the three leading-order DAs reads [74℄:

4
〈
0
∣∣∣εijkuiα(z1n)ujβ(z2n)dkσ(z3n)

∣∣∣ p
〉
= V (zi n · p) p+

[(
1

2
n̄ · γ

)
C
]

αβ

[
γ5N

+
]
σ

+ A(zi n · p) p+
[(

1

2
n̄ · γ

)
γ5 C

]

αβ

[
N+
]
σ

+ T (zi n · p) p+
[
1

2
iσ⊥n̄ C

]

αβ

[
γ⊥γ5N

+
]
σ
,

(4.23)
where C is the harge onjugation matrix and γ⊥ orresponds to the transverse omponentof γµ. The expression σ⊥n̄ is the shorthand notation for

σ⊥n̄ = n̄µ σ⊥µ, with σ⊥µ =
i

2
[γ⊥, γµ]. (4.24)In momentum spae, the DAs are given by the following expression:

X(zi n · p) =
∫
d[xi] X(x1, x2, x3) exp

{
−i (p · n)

∑

i

zixi

}
, X = {V,A, T} (4.25)with

d[xi] = dx1dx2dx3 δ(1− x1 − x2 − x3), (4.26)where xi is the ollinear momentum fration of the proton arried by quark i.Due to the symmetry between the two up-quarks, the vetor and tensor DAs are symmetriunder the interhange of the �rst two arguments, whereas the axial DA is antisymmetri:
V (x1, x2, x3) = V (x2, x1, x3),

T (x1, x2, x3) = T (x2, x1, x3),

A(x1, x2, x3) = −A(x2, x1, x3).

(4.27)In addition, the following property holds
T (x1, x2, x3) =

1

2
[V −A](x1, x3, x2) +

1

2
[V −A](x2, x3, x1), (4.28)52



4.2 Timelike Two-Photon Exhange Corretions at Large q²: pQCD Resultwhih allows to de�ne a single independent leading twist-3 proton DA given by a salarfuntion Φ3 with mixed symmetry,
Φ3(x1, x2, x3) = [V −A](x1, x2, x3). (4.29)Therefore, the DAs an be rewritten as

V (x1, x2, x3) =
1

2

[
Φ3(x1, x2, x3) + Φ3(x2, x1, x3)

]
,

A(x1, x2, x3) =
1

2

[
Φ3(x2, x1, x3)− Φ3(x1, x2, x3)

]
,

T (x1, x2, x3) =
1

2

[
Φ3(x1, x3, x2) + Φ3(x2, x3, x1)

]
.

(4.30)
The dependene of the DAs on the momentum transfer sale Q2 is weak. This dependeneis spei�ed by a renormalization group equation, whih requires, that Φ is only logarithmi-ally dependent on Q2 [73℄.4.2.2 Timelike Two-Photon Exhange within a pQCD FatorizationApproahTo alulate the two-photon exhange ontribution of

p(p1, λN1
) + p̄(p2, λN2

)→ e−(k1, h1) + e+(k2,−h1) (4.31)at large momentum transfer q2, the fatorization approah, whih has been disussed in theprevious subsetion, is onsidered. We follow the experiene gained by the spaelike proess
ep→ ep, for whih the 2γ-amplitudes δG̃M and F̃3 were omputed at large momentum trans-fer Q within a perturbative QCD fatorization approah [57, 58℄, whih an be generalizedto the annihilation hannel p p̄→ e+e−.A typial diagram of the leading order ontribution to the 2γ-exhange orretions is illus-trated in Fig. 4.4, where the gray blobs orrespond to the DAs of the proton and antiproton,and the hard part H is given by a three quark state and a three antiquark state, whihannihilate into two virtual photons. The 2γ-amplitudes an be expressed as onvolution of
H and the non-perturbative part, e.g. δG̃M an be written as

δG̃M (q2, t) =

∫
d[xi]

∫
d[yi]Φ(xi)H(q2, t, xi, yi)Φ

†(yi), (4.32)where the momentum frations of the partiipating quarks and antiquarks are denoted by
xi and yi, respetively, whih satisfy ∑i xi = 1 and ∑i yi = 1.The subproessH is spei�ed by the exhange of two photons, whih ouple to two di�erentquarks. The third quark interats via the exhange of a hard gluon. Contributions wherethe two photons ouple to the same quark are suppressed due to the fat, that this impliesat least one additional gluon exhange, whih inludes the fator αs/q

2.An important feature of the approah is, that both photon virtualities, q1 and q2, must belarge:
q21 ∼ q22 ∼ q2. (4.33)53



Chapter 4 Two-Photon Exhange in the Timelike Region
e−

p

p̄

e+

x3 x2 x1

y3 y2 y1

Figure 4.4: Diagram for pp̄ → e+e− desribing the exhange of two hard photons usingthe framework of pQCD fatorization. The gray blobs refer to the proton andantiproton DAs. The perturbative subproess is given by the annihilation of athree quark state and a three antiquark state into two highly virtual photons.As all spetator quarks are involved in the hard sattering proess desribed by Eq. (4.32),we refer to it as the hard resattering ontribution.Suh an approah is valid at (asymptoti) large values of q2. However, it is still anopen question at whih energy the asymptoti behavior sets in. One may expet, that atintermediate energies of ∼ 10 GeV2 the sale de�ning the appliability of the perturbativeexpansion is already large enough to apply the present formalism. A test of the validity ofthis approah an possibly be provided by future experiments.In the ase of s, t≫ m2
N , the mass of the nuleons an be negleted and the momenta ofthe proton and antiproton in the .m.-frame an be expressed in the light-one basis by thelight-like vetors n and n̄,

pµ
1 ≃
√
s
n̄µ

2
= (
√
s, 0, 0),

pµ
2 ≃
√
s
nµ

2
= ( 0,

√
s, 0),

(4.34)where the initial proton is moving ollinearly and the antiproton antiollinearly in the z-diretion. Consequently, the momentum transfer q is given by
qµ = −pµ

2 − pµ
1 = (−√s,−√s, 0). (4.35)54



4.2 Timelike Two-Photon Exhange Corretions at Large q²: pQCD ResultThe lepton momenta in the light-one basis are de�ned as
kµ1 = η̄

√
s

2
nµ + η

√
s

2
n̄µ + kµ⊥ = ( η

√
s, η̄
√
s, k⊥),

kµ2 = η

√
s

2
nµ + η̄

√
s

2
n̄µ − kµ⊥ = ( η

√
s, η̄
√
s, −k⊥),

(4.36)where, at large momentum transfer, η, η̄ and k⊥ an be determined from
η ≃ − t

s
, η̄ ≡ 1− η ≃ −u

s
, k2⊥ ≃ ηη̄s, (4.37)with the restrition 0 < η < 1. The kinemati variable η an be expressed by the eletron.m. sattering angle θ:

η ≃ 1

2
(1 + cos θ). (4.38)The proton-to-vauum matrix element parametrized by the proton DAs V , A and T , whihhas been introdued in Eq. (4.23), an for the given proess be expressed as:

4
〈
0
∣∣εijkuiα(z1 n)ujβ(z2 n)dkγ(z3 n)

∣∣p(p1, λN1
)
〉

= V (zi n · p1)
[√

s

2
(n̄ · γ) C

]

αβ

[
γ5N

+
]
γ

+A(zi n · p1)
[√

s

2
(n̄ · γ)γ5 C

]

αβ

[
N+
]
γ

+ T (zi n · p1)
[√

s

2
i(σ⊥n̄ C)

]

αβ

[
γ⊥γ5N

+
]
γ

≡ V
[
Γu
V

]
αβ

[
Γd
V N

+
]
γ
+A

[
Γu
A

]
αβ

[
Γd
AN

+
]
γ
+ T

[
Γu
T

]
αβ

[
Γd
T N

+
]
γ
. (4.39)Similarly, the matrix element of the antiproton state in terms of DAs yields

4
〈
0
∣∣εi′j′k′ ūj′β′(z

′
1 n̄) ū

i′

α′(z′2 n̄) d̄
k′

γ′ (z′3 n̄)
∣∣p̄(p2, λN2

)
〉

= − V †(z′1 n̄ · p2)
[√

s

2
C (n · γ)

]

β′α′

[
N̄+γ5

]
γ′ −A†(z′2 n̄ · p2)

[√
s

2
C γ5(n · γ)

]

β′α′

[
N̄+
]
γ′

+ T †(z′3 n̄ · p2)
[√

s

2
Ciσ⊥n

]

β′α′

[
N̄+γ⊥γ5

]
γ′

≡ V ′
[
Γu
V ′

]
β′α′

[
N̄+ Γd

V ′

]
γ′
+A′

[
Γu
A′

]
β′α′

[
N̄+ Γd

A′

]
γ′
+ T ′

[
Γu
T ′

]
β′α′

[
N̄+ Γd

T ′

]
γ′
, (4.40)where the omplex onjugated DAs read 55



Chapter 4 Two-Photon Exhange in the Timelike Region
X ′(z′i n̄ · p2) ≡ X†(z′i n̄ · p2) =

∫
d[yi] X(y1, y2, y3) exp

{
i (n̄ · p2)

∑

i

yizi

}
,with X ′ = {V ′, A′, T ′}.

(4.41)The strutures Γu
X , Γd

X , Γu
X′ , and Γd

X′ presented in Eqs. (4.39, 4.40) are de�ned by
[
Γu
V

]
αβ

=

√
s

2

[/̄n C]
αβ
,
[
Γu
A

]
αβ

=

√
s

2

[/̄n γ5 C]
αβ
,
[
Γu
T

]
αβ

=

√
s

2

[
iσ⊥n̄C

]
αβ
,

[
Γd
V

]
γ
= [γ5]γ ,

[
Γd
A

]
γ
= [1]γ ,

[
Γd
T

]
γ
= [γ⊥ γ5]γ

(4.42)
[
Γu
V ′

]
β′α′

= −
√
s

2

[
C /n]

β′α′
,
[
Γu
A′

]
β′α′

= −
√
s

2

[
C γ5 /n]

β′α′
,
[
Γu
T ′

]
β′α′

=

√
s

2

[
C iσ⊥n

]
β′α′

,

[
Γd
V ′

]
γ′

= [γ5]γ′ ,
[
Γd
A′

]
γ′

= [1]γ′ ,
[
Γd
T ′

]
γ′

= [γ5 γ
⊥]γ′ . (4.43)The leading ontribution to the 2γ-exhange orretions is shown in the left panel ofFig. 4.5. It an be fatorized in the following way

A2γ =

∫
d[z′j ]

〈
0
∣∣ūjβ′(z1n)ū

i
α′(z2n)d̄

k
γ′(z3n)

∣∣p2
〉
·
∫
d[zi]

〈
0
∣∣uiα(z1n)ujβ(z2n)dkγ(z3n)

∣∣p1
〉

· ūl(k1) Γl vl(k2) · Li
′i
α′α ⊗ Lj

′j
β′β ⊗Lk

′k
γ′γ

=
∑

X′=V ′,A′,T ′

∑

X=V,A,T

∫
d[yi]X

′(yi)

∫
d[xi]X(xi) · ūl(k1) Γl v(k2)

×
[
N̄+(p2) Γ

d
X′

]
γ′

[
Γd
]γ′γ[

Γd
X N+(p1)

]
γ

[
Γu
X′

]
β′α′

[
Γu1

]α′α[
Γu2

]β′β[
Γu
X

]
αβ(4.44)The seond line haraterizes the hard resattering proess H, where

ūl Γl vl = ūl(k1, h1) Γl vl(k2,−h1) (4.45)denotes the leptoni part of the subproess and
Li′iα′α ⊗ Lj

′j
β′β ⊗Lk

′k
γ′γ (4.46)represents the quark annihilation proess. Γq, with q = {u1, u2, d}, is assoiated with theexpression for the quark spinor line in the momentum spae. The indies α (β) and α′ (β′)orrespond to the u-quark line and ū-quark line arrying the momentum x1p1 (x2p1) and

y1p2 (y2p2), respetively. The indies γ, and γ′ refer to the d-quark and d̄-quark lines. The56



4.2 Timelike Two-Photon Exhange Corretions at Large q²: pQCD Result
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Figure 4.5: Leading pQCD ontribution to the 2γ exhange orretions for pp̄→ e+e−. Leftdiagram: Fatorized amplitude of the proess. Right diagram: One possibleontribution to the hard resattering ontribution H, where both photons oupleto the u-quarks. The ×'s indiate the other possibility to attah the gluon. Theother diagrams, where the photons interat with the u and d-quarks, are notshown for simpliity.expliit expressions for Γq an be obtained from the Feynman rules of the elasti resatteringproess
qu1

(x1 p1) qu2
(x2 p1) qd(x3 p1) + q̄u1

(y1 p2) q̄u2
(y2 p2) q̄d(y3 p2) → γ∗(q1) + γ∗(q2)

→ e−(k1) + e+(k2).
(4.47)In the right panel of Fig. 4.5, one possible ontribution to the hard resattering kernelis presented. The leading order ontribution of the hard resattering amplitude AH an beintrodued in the following way:

AH = Q2
uA

uu +QuQd(A
u1d +Au2d). (4.48)

Auu denotes the amplitudes, where the photons ouple to the two up-quarks, Au1d (Au2d)stands for one photon oupling to the u-quark with the momentum fration x1 (x2), the otherphoton to the d-quark, with the harge fration of the quarks Qu = +2/3, and Qd = −1/3.For eah of these photon ouplings four possibilities of gluon exhange between the quarkslines have to be onsidered, illustrated by the ×'s in Fig. 4.5:
Aij = Dij

1 +Dij
2 +Dij

3 +Dij
4 . (4.49)Eah diagram Dij inludes the sum of the diret and rossed box diagram. Consequently,all together one �nds 24 diagrams for the leading 2γ-exhange orretions, whih an be57



Chapter 4 Two-Photon Exhange in the Timelike Regionomputed using pQCD. For instane, the hard subproess ontribution, whih is illustratedin the right panel of Fig. 4.5, an be obtained from the orresponding Feynman rules as
Duu

1 = G ie4g2s
1

p2u p
2
g q

2
1 q

2
2

1

(q2 − k2)2
ul(k1)γ

µ(−q/2 − /k2)γνvl(k2)
× v̄(y1p2) γµ u(x1p1) v̄(y2p2) γν/pu γi u(x2p1) v̄(y3p2)γiu(x3p1), (4.50)where G is a global fator and g2s(−q2) = 4π αs(−q2) is the oupling strength of the strongfore. The momenta of the exhanged gluon and the fermion propagator are given by

pg = −x1p1 − y1p2, pu = y3p2 + (1− x1)p1. (4.51)The ontributions of the di�erent diagrams as well as the orresponding Feynman graphsare given in Appendix B.The results of the perturbative alulation are embedded into Eq. (4.44) in order to obtainthe 2γ-amplitudes as a funtion of the DAs V,A, and T. Finally, the timelike 2γ-exhangeamplitudes δG̃M and s/m2F̃3 an be found as :
δG̃M (q2, η) = − αemαs

q4

(
2π

3

)2∫ d[yi]

y1y2ȳ2

d[xi]

x1x2x̄2

4(2η − 1)x2 y2
[x2η̄ + y2η − x2y2] [x2η + y2η̄ − x2y2]

×
{
Qu

2
[
(V ′ +A′)(V +A) + 4T ′T

]
(3, 2, 1) (4.52)

+ QuQd

[
(V ′ +A′)(V +A) + 4T ′T

]
(1, 2, 3) + 2QuQd

[
V ′V +A′A

]
(1, 3, 2)

}
,

s

m2
F̃3(q

2, η) =
αemαs

q4

(
2π

3

)2∫ d[yi]

y1y2ȳ2

d[xi]

x1x2x̄2

2(x2 ȳ2 + x̄2 y2)

[x2η̄ + y2η − x2y2] [x2η + y2η̄ − x2y2]

×
{
Qu

2
[
(V ′ +A′)(V +A) + 4T ′T

]
(3, 2, 1) (4.53)

+ QuQd

[
(V ′ +A′)(V +A) + 4T ′T

]
(1, 2, 3) + 2QuQd

[
V ′V +A′A

]
(1, 3, 2)

}
,where the numbers in the brakets de�ne the order of the momentum fration arguments ofthe DAs, e.g.

V ′V (3, 2, 1) = V ′(y1, y2, y3)V (x1, x2, x3), (4.54)and the abbreviations
x̄i = 1− xi, ȳi = 1− yi (4.55)have been used. As one an seen from Eqs. (4.52) and (4.53), the leading behavior of the58



4.2 Timelike Two-Photon Exhange Corretions at Large q²: pQCD Result
fN r− r+(10−3 GeV2)COZ [76℄ 5.0± 0.5 4.0± 1.5 1.1 ± 0.3BLW [77℄ 5.0± 0.5 1.37 0.35QCDSF [78℄ 3.23 1.06 0.33Table 4.1: Parameters entering the proton DA (at µ = 1 GeV) for three parametrizations(COZ [76℄, BLW [77℄, and the lattie evaluation from QCDSF [78℄) used in thiswork.heliity onserving 2γ-amplitudes is

δG̃M ∼
1

q4
,

s

m2
F̃3 ∼

1

q4
. (4.56)The heliity-�ip amplitude δF̃2 is suppressed in the large momentum transfer limit, sine itsbehavior is be found as

δF̃2 ∼
1

q6
. (4.57)Therefore, the amplitude is obtained to be zero in the leading order expansion of the analysis.In general, the timelike amplitudes are omplex funtions, but at tree level the expressionsof Eqs. (4.52) and (4.53) do not ontain an imaginary part expliitly. In the alulationwe reeive nontrivial imaginary ontributions by omputing leading logarithms with therenormalization of the strong oupling αs. The imaginary part is generated by timelikelogarithms, like

ln(−q2 − iε) = ln(q2)− iπ. (4.58)For the oupling αs in the timelike region we adopt the analyti ontinuation [75℄:
αs(−q2) =

αs(q
2)

1− iβ0αs(q2)/4
+ · · · , (4.59)where

β0 = 11− 2

3
nf (4.60)is the leading term of the QCD β-funtion.In an analogous manner, one reeives an imaginary ontribution whih originates fromthe evolution of the DAs. Nevertheless, the resulting imaginary ontributions provide smallnumerial e�ets in the regions of q2 whih will be disussed below. We assume, that thesale of the running oupling as(µ2R) is smaller than q2 and use µR = 0.6 q2 for our numerialalulations. However, this proedure has only a small e�et on the results, hanging µ2Rin the interval [0.5q2, q2], we �nd for the 2γ-exhange ontribution to the ross setion amaximum variation in the hard sattering amplitude of about 10%.

59



Chapter 4 Two-Photon Exhange in the Timelike Region

Figure 4.6: 3-dimensional plot of the DA Φ3 aording to the parametrizations in Eq. (4.61)as a funtion of x1 and x2. The left (right) panel orresponds to the resultsfound for the COZ (BLW) model. The dependene on x3 has been removed dueto ∑i xi = 1.To evaluate the onvolution integrals given in Eqs. (4.52, 4.53), a model for the DAs isneeded. In Ref. [74℄, a parametrization of the DAs is given by:
V (xi) ≃ 120x1x2x3 fN

[
1 + r+(1− 3x3)

]
,

A(xi) ≃ 120x1x2x3 fN r−(x2 − x1),

T (xi) ≃ 120x1x2x3 fN

[
1 +

1

2
(r− − r+) (1− 3x3)

]
,

(4.61)
where the DAs depend on the three parameters, namely fN , r+ and r−. For the alulationtwo phenomenologial models for the DAs, whih have been disussed in the literature,are onsidered, whih will be referred to as COZ [76℄ and BLW model [77℄, as well as onedesription based on lattie QCD alulations (QCDSF) [78℄. The orresponding parametersat µ = 1 GeV2 are presented in Table 4.1. One noties, that the parameters r+ and r− inthe BLW model and from lattie alulations are nearly omparable, whereas the overallnormalization fN is about a fator 2/3 smaller for the lattie DA than in the desription ofthe BLW model. In ontrast to the BLW model and the lattie alulations, the parameters
r+ and r− are about three times larger in the COZ desription of the nuleon DAs.The DA Φ3 as a funtion of x1 and x2 is shown in Fig. 4.6, where in the left (right) panelthe DA obtained in the COZ (BLW) model is presented. One noties, that the dependeneon x1 and x2 is similar for both models of the DAs, even though the COZ model gives alarger DA as when the BLW model is used.Below, we will provide alulations using the �rst two models, COZ and BLW. The resultsfollowing from the lattie alulations an easily be approximated by saling the BLW results.All parameters from Table 4.1 have been evolved aording to the proedure given in Ref. [74℄.Using the parametrization of Eq. (4.61), the onvolutions integrals an be omputed and60



4.2 Timelike Two-Photon Exhange Corretions at Large q²: pQCD Resultthe following expressions of the 2γ-amplitudes are obtained:
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, (4.62)
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, (4.63)where the notation φi denotes the following ombinations of parameters r+, r−:
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(4.64)
4.2.3 ResultsWe alulate the relative 2γ-ontribution to the di�erential ross setion δ2γ , whih is de�nedby (

dσ

d cos θ

)
=

(
dσ

d cos θ

)

1γ

(1 + δ2γ) , (4.65)where the ross setion dσ/d cos θ is given by Eq. (4.10) and the ross setion in the Bornapproximation (dσ/d cos θ)1γ has been introdued in Eq. (2.42). The two-photon exhangeontribution δ2γ depends on the .m. sattering angle θ and the .m. energy s = q2 as well ason the model for the nuleon DAs. Furthermore, a desription of the timelike eletromagnetiform fators GE and GM , whih enter the 1γ- as well as the 2γ-parts of the ross setion, isneeded. 61



Chapter 4 Two-Photon Exhange in the Timelike RegionWe �rst start with a simple desription of the magneti fator GM , whih is inspired bythe preditions of pQCD for the eletromagneti form fators (Model 1):
|GM | =

B
q4
(
ln2 q2

Λ2 + π2
) . (4.66)The parameter Λ is given by Λ = 0.3 GeV and B a free parameter, whih an be extratedfrom �tting data. In addition, for the �rst form fator parameterization, the assumption

|GM | = |GE | is used and the imaginary parts of the form fators have been negleted.As an alternative possibility (Model 2), following [79℄, an improved �t of the form fatorratio F2(Q
2)/F1(Q

2) is onsidered, whih inludes logarithmi orretions to the power lawfall-o� expeted from pQCD.In the previous setion it was mentioned, that the value of two-photon amplitude δF̃2 isunknown due to the suppression of δF̃2 within the fatorization approah. Therefore, δG̃Eis estimated using a simple model:
δG̃E ≃ λ δG̃M , (4.67)where λ is a numerial parameter, for whih −1 < λ < 1 is used, whih an aount for theexpetation, that δGE sales as δGM in the large q2 limit.The results for δ2γ an be found in Fig. 4.7, where the relative 2γ-ontribution to the rosssetion for two di�erent values of momentum transfer, s = 6 GeV2 and s = 20 GeV2 isshown as a funtion of cos θ. The two aforementioned parametrizations of GE and GM areassoiated with the blue (Model 1) and green (Model 2) olored bands. The bands desribethe variation of the parameter λ in Eq. (4.67). Furthermore, two di�erent models for thenuleon DAs have been used, the COZ and BLW desription, whih orrespond to the leftand right plots in Fig. 4.7, respetively. One noties, that for both parametrizations of theeletromagneti form fators the results di�er only slightly. The orresponding bands overlapfor a large range of cos θ.The relative e�et of the two-photon exhange orretions is found to be smaller than 1%.For s = 20 GeV2, a slightly larger 2γ-exhange ontribution is obtained as for the lowervalue of q2. Both models of DAs produe a similar angular dependene, while the COZmodel leads to a ontribution whih is twie as large as when using the BLW model. Forthe assumed parametrization of δG̃E , the impat of the parameter λ on the results is small.The 2γ-orretions show the required odd behavior with respet to cos θ and are inreasingfor | cos θ| → 1.Moreover, we onsider one further model to parametrize the 1γ-form fators GE and GMand ompare the results with the 2γ-exhange orretions we have obtained above. Wetake a VMD based model into aount, aording to Ref. [48℄, whih assumes, that theeletromagneti interation is desribed through the exhange of the lowest lying vetormesons ρ, ω, and φ, as disussed in Se. 2.4.The results are presented in Fig. 4.8, where δ2γ has been alulated for q2 = 6 GeV2 usingthe COZ model (left) and the BLW model (right) for the nuleon DAs and the bands againrefer to the in�uene of the parameter λ in Eq. (4.67). The red bands orrespond to the�ndings of the VMD model and the blue bands indiate the results when using the pQCDinspired model (Model 1) as parametrization of GE and GM . One noties, that both modelslead to a similar angular behavior and to omparable quantitative results.62
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Acos θ with higher preision are needed. In partiular due to the fat that the form fatorextration is more sensitive to small orretions at larger momentum transfer, an extensionof the measured q2 range to higher values seems to be reasonable. 65



Chapter 4 Two-Photon Exhange in the Timelike RegionFurthermore, the single spin asymmetry Ay (introdued in Eq. (4.13)) has been analyzed.As disussed in the previous setion, only small imaginary parts of the 2γ-amplitudes δG̃Mand F̃3 are obtained within the fatorization approah. Therefore the 2γ-ontribution tothe SSA mostly results from the interferene of the real part of the 2γ-amplitudes and theimaginary part of the form fators GE and GM . The relative ontribution to Ay is foundto be small for all parametrizations of GE and GM disussed above. Logially, the resulting
2γ-ontribution to Ay using the 1γ-form fator Model 1 of Eq. (4.66) is negligible due to thepurely real struture of GE and GM in this model. A 2γ-e�et of the order of about 1%an be found when onsidering the two form fators parametrizations (Model 2 and VMDmodel), whih inlude imaginary ontributions of GE and GM .To summarize the results, using a pQCD fatorization approah we obtain small 2γ-exhange orretions to the ross setion in the proess p p̄→ e+e− of about δ2γ . 1% in thestudied momentum transfer range of 4− 30 GeV2. The small 2γ-e�et makes it hallengingto observe suh e�ets in unpolarized ross setion measurements. e.g. by PANDA�FAIR.Feasibility studies of the annihilation proess at PANDA have been performed in [28℄. Sinethe value of the 2γ-ontribution is sensitive to the hoie of the DAs, a preise measurementof the proess would in addition allow to probe and onstrain the DAs of the proton andantiproton.4.3 Partoni Calulation of Timelike Two-Photon Exhange:Generalized Distribution Amplitude ApproahAs an alternative approah for investigating the two-photon exhange in the timelike regionwe present a partoni desription, whih has been applied to obtain 2γ-exhange orretionsin elasti eletron proton sattering using the onept of generalized parton distributions[55, 56℄. The results of the alulations have been presented in Se. 3.2. In order to dealwith annihilation proesses the timelike ounterparts of the GPDs have to be introdued, thegeneralized distribution amplitudes (GDAs), whih parametrize the matrix element betweena system of hadrons and the vauum.4.3.1 Generalized Distribution AmplitudesIn order to desribe the timelike two-photon exhange within another model, we assume thefatorization approah, as shown in Fig 4.11, where the amplitude of the proess p p̄→ e+e−appears as onvolution of a soft transition matrix element, parametrized by the GDAs, anda hard subproess H, where just a single quark-antiquark pair annihilates into a lepton pair,
H(qq̄ → e+e−).This so-alled handbag fatorization is expeted to be valid in the kinematial regionwhere s, −t and −u are large ompared to the hadroni sale (s, |t|, |u| ≫ m2

N ). For thiskinematial region the handbag ontribution is assumed to be dominant, as long as themomentum transfer values are not asymptotially large. At high momentum transfer theleading ontribution with three valene quarks partiipating in the subproess dominates,whih has been disussed in Se. 4.2. The value of momentum transfer, whih is su�ientlylarge for the perturbative QCD approah to dominate, is still an unsolved problem.The validity of the fatorization sheme has been proven for several spaelike proesses, asdeep inelasti sattering or the Drell-Yan proesses, but no proof of the disussed timelike66



4.3 Partoni Calulation of Timelike Two-Photon Exhange: GDA Approah
q(q1)
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e+(k2)
p̄(p2)

p(p1)

H

Figure 4.11: Sketh of a handbag approximation for the proess pp̄ → e+e−. The left blobrepresents the GDAs, H denotes the hard subproess.fatorization approah exists. Arguments for the appliability of suh a fatorization havebeen disussed in Ref. [80℄.The generalized distribution amplitudes, indiated by the left gray blob in Fig (4.11), areomplex quantities, whih enode the physis of the soft transition,
p(p1) + p̄(p2)→ q(q1) + q̄(q2), (4.68)and annot be alulated from �rst priniples. They are funtions of three variables, the.m. energy s = (p1 + p2)

2, the momentum fration arried by the quark
z =

q+1
(p1 + p2)+

, (4.69)and the so-alled skewness ζ,
ζ =

p+1
(p1 + p2)+

, (4.70)whih desribes how the total momentum of the pp̄-pairs is shared between the nuleons.GDAs have been introdued in Ref. [80℄ in order to study two-photon annihilation intobaryon-antibaryon pairs and have been used to analyze of the proess p̄p → π0γ within thehandbag fatorization approah in Ref. [81℄. The GDAs parametrize the matrix elementbetween a baryon state and the vauum (or vie versa), as follows [80℄
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),(4.71)where φqi with i = V, S,A, P is the vetor, salar, axial and pseudosalar GDA, and q refersto the quark �avor. GDAs are proess independent quantities and aordingly an be appliedto the 2γ-exhange proess for p̄p→ e+e−. 67



Chapter 4 Two-Photon Exhange in the Timelike RegionIntegrating Eq. (4.71) over z leads to the following sum rules:
F q
i (s) =

∫ 1

0
dz φqi (z, ζ, s), for i = V,A, P

(1− 2ζ)F q
S(s) =

∫ 1

0
dz φqS(z, ζ, s),

(4.72)where F q
i are the quark form fators. Appropriate ombinations of the quark form fatorsgive rise to the nuleon form fators of the eletromagneti and weak urrent, as

GM (s) =
∑

q

QqF
q
V (s), F2(s) =

∑

q

QqF
q
S(s). (4.73)4.3.2 Timelike Two-Photon Exhange within a GDA based ApproahFor the analysis of

p(p1, λN1
) + p̄(p2, λN2

)→ e+(k1, h) + e−(k2,−h). (4.74)within a handbag fatorization approah we use a symmetri frame and hoose the axes ofthe .m. frame suh that the 3-momenta of the inoming nuleons are in the positive ornegative x-diretion and the proess takes plae in the x-z plane. Using light-one variables,with the shorthand notation p = (p+, p−, p⊥), the momenta of the nuleons an be hosenas
p1 =

√
s

2
( 1, 1, β~e1 ) ,

p2 =

√
s

2
( 1, 1,−β~e1) ,

(4.75)with
β =

√
1− 4m2

N

s
=

√
τ − 1

τ
, (4.76)and ~e1 = (1, 0). The positron momentum (k1) and eletron momentum (k2) are given by
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2
(1 + sin θ, 1− sin θ, cos θ~e1 ) ,

k2 =

√
s

2
(1− sin θ, 1 + sin θ,− cos θ~e1) ,

(4.77)with the .m. sattering angle θ. Using the Mandelstam variables
s = q2 = (p1 + p2)

2, t = (p1 − k1)2, u = (p1 − k2)2, (4.78)the .m. sattering angle θ an be expressed with respet to s, t and u:
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s(s− 4m2

N )
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4.3 Partoni Calulation of Timelike Two-Photon Exhange: GDA Approah
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e−Figure 4.12: Two-photon exhange proesses of pp̄→ e+e− in the handbag approximation.The proess in the handbag approximation in terms of a soft pp̄ → qq̄ transition and thehard subproess qq̄ → e+e−, whih ours through the exhange of two photons, is shownin Fig. 4.12. The amplitude has a similar struture as the one of the γγ → p p̄ proess,appearing as a onvolution of the GDAs φi and the hard proess H. Following Ref. [80℄, itan be found as:
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(4.80)
with the annihilation form fators Ri, whih are obtained by integrating φi over z

Ri(s) =
∑

q

Q2
q

∫ 1

0
dz φqi (z, ζ, s), i = A,V, P

(1− 2ζ)RS(s) =
∑

q

Q2
q

∫ 1

0
dz φqS(z, ζ, s).

(4.81)Due to the hoie of the referene frame with a skewness of ζ = 1/2, the salar form fator,entering with a fator 1− 2ζ, deouples and does not ontribute to the amplitude.The hard partoni subproess, the annihilation of a quark-antiquark pair into a leptonpair,
q(q1, λq) + q̄(q2,−λq)→ e+(k1,−h) + e−(k2, h), (4.82)ontains the diret and rossed box diagram of the 2γ-exhange proess, presented in Fig 4.13.It has been shown [80℄, that the pp̄→ qq̄ transition an only be soft if the quarks have smallvirtualities and approximately arry the momenta of the proton and antiproton, respetively.Therefore, the subproess has been alulated using the assumption, that the quarks are on-shell. 69
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Hh,λq =

e2
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f̃ q1γ

µ + f̃ q3
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2

)
u (q1, λq) ,

(4.83)with the quark heliity λq = ±1
2 . For massless quarks, the heliity of the antiquark isopposite to the quark heliity and no analogon of the form fator F̃2 in Eq. (4.6) emergesin the amplitude of the subproess. We only onsider ontributions were both photons havenon-zero virtualities. The form fators f̃ q1 , and f̃ q3 an be obtained from the results of two-photon exhange orretions for the reation e+e− → µ+µ−, for the ase that none of thephotons are soft. These alulations have been performed in Refs. [82, 83℄, and the resultshave been on�rmed in the ourse of the GPD alulation of 2γ-exhange in the rossedsattering hannel [56℄. The real part of the form fators has been found as
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ŝ

∣∣∣∣+
t̂− û
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û

ŝ
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(4.84)The variables ŝ, t̂, and û are the Mandelstam variables of the subproess:
ŝ = (q1 + q2)

2, t̂ = (q1 − k1)2, û = (q2 − k1)2,with q2 = ŝ = −t̂− û.
(4.85)The hard annihilation amplitude results in

Hh,λq =
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ŝ
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(4.86)
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4.3 Partoni Calulation of Timelike Two-Photon Exhange: GDA ApproahSine the momenta of the quark and antiquark have to be lose to the nuleon momenta,the hard annihilation proess H will be evaluated using
t̂ ≃ t, û ≃ u, (4.87)for the Mandelstam variables of the subproess.The amplitude in the fatorized proess an be rewritten using the vetor

ñµ =
1

(p1 + p2)+
(1, 0, 0,−1), (4.88)whih yields
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(4.89)
The Dira strutures are then evaluated with respet to the nuleon heliities λN1

and λN2
,using
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(4.90)
whih leads to
Th, λN1

, λN2
= − 1

2

[
Hh, 1

2

+Hh,− 1
2

]
RV (s)

1

2

(
1− 4λN1

λN2

)

+
1

2

[
Hh, 1

2

−Hh,− 1
2

]{
− RP (s)

√
s

4mN

(
1 + 4λN1

λN2

)

− RA(s)

(
mN√
s

(
1 + 4λN1

λN2

)
−
√
s− 4m2

N

4s

(
2λN1

− 2λN2

)
)}

.

(4.91)
The most general parametrization of the pp̄→ e+e− amplitude (Eq. (4.6)), depending onthe generalized form fators G̃M , F̃2, and F̃3, an be evaluated as a funtion of the heliity71



Chapter 4 Two-Photon Exhange in the Timelike Regionof the proton and antiproton as well:
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(4.92)

A omparison of Eqs. (4.91) and (4.92) allows to extrat the 2γ-amplitudes and expressthem in terms of the GDAs, whih leads to
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(4.93)
where the variables A, B, C have been introdue, de�ned as

A =

∫ 1

0
dzf̃ q1 · ŝ
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(∑

q

Q2
q φ

q
A +

s

4m2
N

∑

q

Q2
q φ

q
P

)
= f̃ q1 ŝ
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4.3 Partoni Calulation of Timelike Two-Photon Exhange: GDA Approah
C =
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∑

q

Q2
q φ

q
A +

∫ 1

0
dz
(
f̃ q1 (t̂− û)− f̃ q3 t̂ û
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(4.96)4.3.3 ResultsFor an analysis of the two-photon exhange ontributions within the handbag approximation,information on the annihilation form fators is required. However, no model alulation ofthese form fators or GDAs exists so far. On aount of this, in previous studies the formfators have been extrated phenomenologially (see e.g. Refs. [80, 81℄).Combining Eqs. (4.73) and (4.81), one an relate the vetor annihilation form fator RVto the magneti form fator GM . We assume, that the u- and the d-quark form fators ofthe proton ful�ll
F u
i =

1

2
F d
i , (4.97)and neglet the form fator ontributions of strange quarks and heavier quarks, whih yields

RV (s) = GM (s).The magneti form fator has been extrated by �tting the timelike form fator data. Thewidest data set at higher momentum transfer values is provided by the BaBar experiment [31℄,where the e�etive timelike form fator Geff (de�ned in Eq. (2.44)) has been measured in thereation e+e− → p p̄ γ up to energies of s ∼ 20 GeV2. A �t of Geff to the data above s = 5GeV2 leads to
s2Geff ≃ 3.35 GeV4. (4.98)The results are presented in Fig. 4.14.The frequently used assumption |GM | = |GE | yields Geff = |GM |, therefore we will use asparametrization for RV :

s2 |RV (s)| = s2 |GM (s)| ≃ 3.35 GeV4. (4.99)In an analogous manner the axial annihilation form fator RA an be expressed in termsof the axial form fator of the nuleon, GA. In the ase of isospin symmetry, the nuleonmatrix element of the axial urrent operator Aa, µ(0) is parametrized by two form fators,
〈
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(4.100)where GA is the axial form fator, GP the pseudosalar form fator and τa are the Paulimatries. Using Eqs. (4.81) and (4.97), one �nds RA = GA.In the spaelike region the measurements of GA(Q
2) indiates, that the form fator an bedesribed very well by a dipole �t. We will adopt the dipole �t as parametrization of GA(s)in the timelike region, beause no data of the axial form fator in the timelike regime existso far. Hene RA an be found as

RA(s) = GA(s) =
gA(

1− s
m2

A

)2 , (4.101)
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1.026 GeV [84℄.In Ref. [80℄ the proess γγ → p p̄ has been evaluated within a handbag fatorizationapproah and the di�erential ross setion has been found as
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(4.102)Sine the GDAs and onsequently the annihilation form fators Ri are proess independentquantities, Eq. (4.102) an be �tted to the data of the γγ → pp̄ ross setion in order toobtain Reff , whih an be used to extrat RP . In our analysis, we use the data of the two-photon annihilation proess γγ → p p̄ olleted at the BELLE experiment at the KEK-Bfatory [85℄, where we take the results of the integrated ross setion dσ(| cos θ| < 0.6) at thehighest measured s values, with 9 GeV2 < s < 16 GeV2, into aount. The result of the �t,whih gives
s2Reff ≃ 5.02 GeV4, (4.103)whih is presented in Fig. 4.15. In the analysis the desription of Eq. (4.99) has been usedas vetor form fator RV in Eq. (4.102).The ratio |RP |/|RA| an be written as
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(1 + τ)
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|RA|2
− (1 + τ) + cos2 δ (4.104)where δ is the relative phase of RA and RP .74



4.4 ConlusionsAfter speifying the parametrizations of the annihilation form fators, Eqs. (4.99), (4.101)and (4.104), we an estimate the two-photon exhange ontribution to the ross setion.In addition, an expliit expression of the eletromagneti form fators GE,M is needed, forwhih a VMD based model is used, as given in Ref. [48℄.The results are shown in Fig. 4.16, where the relative ontribution of the 2γ-exhangeorretions to the ross setion, δ2γ , has been alulated as a funtion of cos θ for threedi�erent values of .m. energies, s = 6 GeV2, 9 GeV2, and 12 GeV2. We only present resultsfor the intermediate angular range, beause the GDA fatorization desription is appliableonly for s ∼ t ∼ u ≫ m2
N . One �nds a 2γ-ontribution of ∼ 1% in maximum, whih isinreasing with the momentum transfer. The angular dependene is found to be similar tothe behavior obtained in Se. 4.2, when using the pQCD fatorization approah, even thoughthe results are inversed at cos θ = 0. Their relative ontribution is slightly larger within theGDA model approah. The olored bands in Fig. 4.16 orrespond to the unknown relativephase of RA and RP , with −1 < cos δ < 1.The relative 2γ-exhange ontribution to the ross setion as a funtion of the .m. energy sis presented in Fig. 4.17 for three values of the .m. sattering angle, cos θ = 0.3, 0.4 and 0.5,where the olored bands again stand for the variation of the phase cos δ. One noties, thatthe 2γ-exhange orretions are inreasing with s at smaller values of momentum transferand reahing a maximum at s ∼ 17 GeV2. For cos θ = 0.5, the ontribution is found to be

|δ2γ | ∼ 1.6 % in the maximum.The results for the forward-bakward symmetry Acos θ, de�ned in Eq. (4.12), are shown inFig. 4.18, where Acos θ has been analyzed for cos θ = 0.5 (blue dashed urve) and cos θ = −0.5(green dotted urve) using cos δ = −1. The magnitude of Acos θ is inreasing with themomentum transfer, approahing ∼ 0.5% for the largest onsidered values of s. The averagevalue of the asymmetry, Acos θ = 1% ± 2%, obtained in Ref. [70℄ is given by the blak solidurve. Even though the results for the GDA model alulation are larger as when usingthe pQCD fatorization approah, the existing data do not allow for signi�ant tests of themodel alulations for two-photon exhange orretions so far.A more preise understanding of the annihilation form fators or the GDAs will ertainlyimprove the analysis of the 2γ-exhange within a GDA based approah.4.4 ConlusionsIn this hapter the two-photon exhange ontributions to the timelike annihilation proess
p p̄→ e+e− have been analyzed within two di�erent fatorization approahes and preditionsfor the 2γ-exhange orretions to the ross setion as well as the forward-bakward asymme-try have been provided. With the view to forthoming aurate form fators measurementsin the timelike region, it is important to be aware of these orretions.The pQCD fatorization approah gives a 2γ-exhange ontribution whih is less than 1%over the studied kinematial range. However, at smaller momentum transfer one is probablyoutside of the validity of suh an approah. Using a GDA based model, the 2γ-orretionsare found to be somewhat larger, reahing values of ∼ 2% in the intermediate angularregion, where this approah is expeted to be appliable. The results are smaller than the
2γ-orretions found for the spaelike ep-sattering proess, whih indiates that the 2γ-exhange e�ets are less signi�ant for timelike form fator extration than for the spaelikease. 75
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Chapter 5Two-Boson Exhange in Parity-ViolatingEletron-Proton SatteringIn this hapter the in�uene of two-boson exhange in parity-violating ep-sattering is dis-ussed. Aside from a transmitted photon, the Standard Model provides the possibility thateletron-proton sattering ours through the exhange of a Z boson. This Z boson ex-hange, even though it is suppressed at lower energies, manifests itself in a parity-violating(PV) ontribution to the sattering ross setion. The resulting parity-violating asymmetryo�ers a method to study the matrix elements of the neutral weak urrent operator of theproton and provides aess to the strange quark ontent of the nuleon as well as dediatedtests of the Standard Model. This asymmetry an be a�eted by two-boson exhange, inpartiular the exhange of a photon and Z boson (γZ).General aspets of parity-violating eletron-proton sattering will be presented in the �rstsetion of this hapter. In the seond part, two-boson exhange e�ets are alulated withinthe pQCD fatorization approah, whih has been introdued in the previous hapter andwhih has been used to study 2γ-orretions to the proess p̄ p→ e+e−.5.1 Parity-Violating Eletron-Proton SatteringThe leading ontribution to elasti ep-sattering is given by the one-photon exhange am-plitude. Besides the eletromagneti mehanism, the sattering an proeed through theneutral weak interation via the exhange of the neutral Z boson. Due to the large massof the Z boson, with mZ = 91.19 GeV, the neutral weak proess is suppressed omparedto the eletromagneti one in the onsidered kinematial range of relatively low momentumtransfer. Sine the neutral weak urrent does not onserve parity, PV ontributions arisefrom the interferene terms between the eletromagneti and the weak amplitudes. ThesePV e�ets an be aessed through asymmetries whih are sensitive to the interferene term.The neutral weak urrent operator jµZ is a linear ombination of a vetor and an axial-vetor oupling to the Z boson. For two pointlike fermions the matrix element of the operatoris given by
〈
f(k′)

∣∣jµZ(0)
∣∣f(k)

〉
=

( −g
4 cos θW

)
ūf (k

′ ) γµ
(
gfV − g

f
Aγ5

)
uf (k), (5.1)where uf (k) and ūf (k

′) are the Dira spinors of the inident and outgoing fermions withmomentum k and k′, respetively. The expressions gfV and gfA are assoiated with the vetorand axial-vetor ouplings of the partiles:
gfV = 2T f

3 − 4Qf sin
2 θW , gfA = 2T f

3 , (5.2)79
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e− e−

p p

γ

e− e−
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Z

a) 1γ-exchange b) Z-exchangeFigure 5.1: Born diagrams of ep-sattering for one-photon and single Z exhange.where T f
3 is the third omponent of the weak isospin and Qf the harge fration of thepartile f . The angle θW is the so-alled Weinberg angle or weak mixing angle, whih anbe expressed by the masses of the Z boson, mZ , and the W± bosons, mW ,

cos θW =
mW

mZ
, with sin2 θW (mZ) = 0.231 [86℄. (5.3)The vetor and axial-vetor ouplings of the eletron and light quarks are given in table 5.1.The lowest-order amplitude of ep-sattering inluding neutral weak urrents is illustratedin Fig. 5.1, where the leading order ontribution of the weak interation orresponds tothe exhange of a single Z boson between the eletron and the proton. It an be expressedthrough the neutral weak leptoni urrent operator jµZ and the neutral weak hadroni urrentoperator Jµ

Z onneted with the propagator of the Z boson as
iMZ = −

〈
l(k′, h′)

∣∣jνZ(0)
∣∣l(k, h)

〉 igµν
m2

Z − q2
〈
N(p′, λp′)

∣∣Jµ
Z(0)

∣∣N(p, λp)
〉
, (5.4)where k (k′) and p (p′) are the momenta of the initial (�nal) eletron and proton, respetively,

h and h′ are the heliities of the inoming and outgoing eletrons, λp and λp′ of the initialand �nal protons. partile Qf T f
3 gfV gfA

e− −1 −1/2 −(1− 4 sin2 θW ) −1

u 2/3 1/2 (1− 8
3 sin

2 θW ) 1

d −1/3 −1/2 −(1− 4
3 sin

2 θW ) −1

s −1/3 −1/2 −(1− 4
3 sin

2 θW ) −1Table 5.1: Vetor and axial-vetor ouplings of the eletron and the light quarks u, d, s.80



5.1 Parity-Violating Eletron-Proton SatteringThe matrix element of the weak leptoni urrent operator is found as
〈
l(k′, h′)

∣∣jµZ(0)
∣∣l(k, h)

〉
=

( −g
4 cos θW

)
ūl(k

′, h′) γµ(geV − geAγ5)ul(k, h), (5.5)where the vetor-oupling geV and the axial vetor oupling geA of the eletron to the weakurrent have been introdued, whih are given by
geV = −(1− 4 sin2 θW ), geA = −1. (5.6)The weak oupling g is onneted with the eletromagneti oupling via g = e sin θW .The most general expression of the matrix element of the neutral weak hadroni urrentoperator is parametrized by 4 form fators,

〈
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∣∣N(p, λp)
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=
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4 cos θW
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1 γµ + FZ

2

i

2mN
σµνqν +GZ

A γ
µγ5 +GZ

p

qµ

mN
γ5

}
N(p, λp).(5.7)The weak form fators FZ

1 , FZ
2 , GZ

A, and GZ
p are real funtions of the momentum transferQ2 in the spaelike region. The last struture of Eq. (5.7), whih is related to the weakpseudosalar form fator Gp, does not ontribute to the amplitude, due to eletromagnetigauge invariane, whih implies qµjZ,µ = 0. Therefore, the pseudosalar struture vanisheswhen ontrating with the neutral weak leptoni urrent.In the momentum transfer region of interest the relation Q2 = −q2 ≪ m2

Z is valid.Therefore q2 an be negleted in the denominator of the Z boson propagator in Eq. (5.4),
1/(m2

Z − q2) ≃ 1/m2
Z , and one obtains
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1 (Q2) γµ + FZ

2 (Q2)
i

2mN
σµνqν +GZ

A(Q
2) γµγ5

}
N(p, λp),

(5.8)
where the ommonly used Fermi onstant GF has been introdued:

GF√
2
=

g2

8m2
Z cos2 θW

=
e2

8m2
W

. (5.9)As for eletromagneti form fators, it is more onvenient to use the Sahs form fators
GZ

E and GZ
M of the neutral weak urrent, de�ned by the linear ombinations

GZ
E(Q

2) = FZ
1 (Q2)− τFZ

2 (Q2),

GZ
M (Q2) = FZ

1 (Q2) + FZ
2 (Q2).

(5.10)
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Chapter 5 Two-Boson Exhange in Parity-Violating Eletron-Proton SatteringThe matrix elements of the proton weak urrent operator an be expressed in terms of theindividual quark �avor urrent operators. Negleting ontributions of heavy quarks, the c, band t quarks, one �nds
〈
N(p′ )

∣∣ Jµ
Z(0)

∣∣N(p)
〉( − g

4 cos θ

)−1

=

〈
N(p′ )

∣∣∣∣
(
1− 8

3
sin2 θW

)
ūγµu−

(
1− 4

3
sin2 θW

)
d̄γµd−

(
1− 4

3
sin2 θW

)
s̄γµs

−
(
ūγµγ5u− d̄γµγ5d− s̄γµγ5s

) ∣∣∣∣N(p)

〉

= N̄(p′ )




∑

q=u,d,s

(2T q
3 − 4Qq sin

2 θW )

(
F q
1 γ

µ + F q
2

i

2mN
σµνqν

)
+ 2T q

3 G
q,Z
A γµγ5



N(p),(5.11)where the �avor form fators F q

1,2, whih parametrize the vetor urrent, have been de�nedin Eq. (2.15). The quark �avor form fators give rise to the form fators of the neutral weakhadroni urrent:
GZ

E,M =

(
1− 8

3
sin2 θW

)
Gu

E,M −
(
1− 4

3
sin2 θW

)
Gd

E,M −
(
1− 4

3
sin2 θW

)
Gs

E,M . (5.12)Assuming isospin symmetry, one an use Eqs. (2.17) and (5.12) to express the weak formfators GZ
E,M in terms of the eletromagneti form fators of the proton and the neutron aswell as the strange form fator:

GZ
E,M =

(
1− 4 sin2 θW

)
Gp

E,M −Gn
E,M −Gs

E,M . (5.13)The weak axial form fator GZ
A an be related to the axial form fator of the nuleon:

GZ
A(Q

2) = GA(Q
2). (5.14)The axial form fator GA appears when parametrizing the nuleon matrix element of theaxial urrent operator, whih has been introdued before in Eq. (4.100).The leading-order amplitude of elasti ep-sattering inluding Z-exhange is given by thesum of the the eletromagneti amplitude de�ned in Eq. (2.21), whih is denoted asMγ inthis setion, and the neutral weak amplitudeMZ , given by Eq. (5.4):

dσ ∝ |M|2 = |Mγ +MZ |2

≃ |Mγ |2 + 2Re [MγM∗
Z ] .

(5.15)Due to the Z propagator, the amplitude MZ is suppressed by a fator q2/m2
Z ompared tothe eletromagneti amplitude at lower Q2 values.Instead of measuring the Z-exhange ontribution to the ross setion, one an aessthe neutral weak amplitude through the parity-violating asymmetry APV , whih arises inpolarized ep-sattering from the interferene of the eletromagneti and weak amplitudes.82



5.1 Parity-Violating Eletron-Proton SatteringThe eletromagneti interation, as a vetor-urrent interation, onserves parity, whereasthe mixed vetor and axial-vetor struture of the neutral weak urrent, violates parityonservation. The PV asymmetry is de�ned as
APV =

dσR − dσL
dσR + dσL

, (5.16)where dσR (dσL) refers to the ross setion for a right-handed (left-handed) eletron, i.e.an eletron with heliity +1/2 (−1/2). The neutral weak urrent for a right and left handedeletron an be written as:
〈
l(k′)

∣∣ jR,L
Z, µ(0)

∣∣l(k)
〉

=

( − g
cos θW

)
ū(k′, h′) γµ

[
geV − geAγ5

]
PR,L u(k, h), (5.17)with PR,L = 1

2(1± γ5), and where dσR and dσL are assoiated withM as
dσR ∝ |M

(
h = +1/2

)
|2, dσL ∝ |M

(
h = −1/2

)
|2. (5.18)In the leading-order approximation, the asymmetry is given by the interferene term of

Mγ andMZ :
APV

Born ≃
2Re

[
Mγ(h = +1/2)M∗

Z(h = +1/2) −Mγ(h = −1/2)M∗
Z (h = −1/2)

]

|Mγ(h = +1/2)|2 + |Mγ(h = −1/2)|2 . (5.19)
APV

Born an be written as:
APV

Born =− GFQ
2

e2
√
2
· AE +AM +AA

τ G2
M + εG2

E

,with AE = ε · GE G
Z
E ,

AM = τ · GM GZ
M ,

AA =− (1− 4 sin2 θW )
√
τ(1 + τ)

√
1− ε2 · GM GZ

A.

(5.20)
The asymmetry provides aess to the weak harge of the proton Qp

W :
Qp

W = 1− 4 sin2 θW . (5.21)Due to an aurate predition of Qp
W within the Standard Model, based on the Q2 depen-dene of sin2 θW , a preise measurement of Qp

W provides a signi�ant test of the validity ofthe Standard Model. Suh measurements are for instane performed at the JLab (Q-weakexperiment [87℄) and are proposed for the new MESA faility at Mainz.The asymmetry an alternatively be expressed through the proton and neutron eletro-magneti form fators, the strangeness form fators Gs
E,M and the axial form fators Gp

A, sep-arating APV into vetor (AV ), strange (AS) and axial ontributions (AA). Using Eq. (5.13)83



Chapter 5 Two-Boson Exhange in Parity-Violating Eletron-Proton Satteringyields
APV

Born =
GFQ

2

√
2e2

AV +AS +AA

ε
(
Gp

E

)2
+ τ

(
Gp

M

)2 ,with AV = −
[
ε(Gp

E)
2 + τ(Gp

M )2
] (

1− 4 sin2 θW
)
+ εGp

MG
n
E + τGp

MG
n
M ,

AS = εGp
EG

s
E + τGp

MG
s
M ,

AA =
(
1− 4 sin2 θW

)√
(1− ε2)τ(1 + τ)Gp

MG
Z
A.

(5.22)
The strangeness form fators Gs

E and Gs
M an be extrated from AS . Measurements of APVwith the aim to aess the strangeness ontributions of the nuleon have been performedat several failities, e.g. the SAMPLE experiment run at MIT-Bates [88, 89℄, HAPPEXundertaken at JLab/HALL A [90�93℄, the PVA4 experiment performed at MAMI [94�96℄and the G0 experiment at JLab/HALL C [97, 98℄. Sine the strangeness ontributions aresmall, the extration from the measured asymmetry an be very sensitive to even smallorretions, as two-boson exhange e�ets.5.2 Two-Boson-Exhange E�ets in Parity-Violatingep-Sattering5.2.1 General FormalismDue to the possibility to aess the small strangeness ontribution or the weak mixing anglefrom high preision PV asymmetries, it is neessary to be aware of radiative orretions astwo-boson exhange (TBE) to the PV asymmetry APV .For this purpose, we onsider TBE in the proess

p(p, λp) + e−(k, h)→ p(p′, λp′) + e−(k′, h′), (5.23)using the four-vetors and variables introdued in Eqs. (3.2) and (3.3).The leading-order TBE orretions to PV ep-sattering arise from di�erent ontribu-tions. The γZ-exhange proess, given by the γZ-diret and rossed box graphs, ontributesthrough the interferene with the 1γ-exhange proess, and the 2γ-exhange as interfereneterm with Z-exhange Born diagram. Furthermore, the e�ets of the interferene between1γ-exhange and 2γ-exhange proesses appear in the denominator of APV . The orrespond-ing Feynman graphs are presented in Fig. 5.2.The invariant amplitude haraterizing the γZ-exhange an be written in terms of 5generalized form fators:
iMγZ =

−iGF

2
√
2
ūl(k

′, h′)γµ(g
e
V − geAγ5)ul(k, h)

× N̄(p′, λp′)

{
γµδG̃Z

M −
Pµ

mN
δF̃Z

2 +
Pµ /K
m2

N

F̃Z
3 + γµγ5δG̃

Z
A +

Pµ /K
m2

N

γ5G̃3A

}
N(p, λp).(5.24)84



5.2 Two-Boson-Exhange E�ets in Parity-Violating ep-Sattering
1γ γZ

1Z 2γ

1γ 2γ

Figure 5.2: TBE orretions to APV : Contributions appearing in the numerator are illus-trated on the left panel (1γ × γZ and 1Z × 2γ interferene terms), orretionsto the leading term in the denominator on the right panel (1γ× 2γ interferene).For larity, the rossed box diagrams are not shown.These generalized weak form fators, δG̃Z
M , δF̃Z

2 , F̃Z
3 , δG̃Z

A and G̃3A are, as the 2γ-amplitudes,omplex funtions of two variables, e.g. Q2 and ν = K · P . They are suppressed by αemompared to the neutral weak form fators. Equivalently, one an introdue
δG̃Z

E(Q
2) = δG̃Z

M (Q2)− (1 + τ)δF̃2(Q
2). (5.25)By means of the relations

ūl /P ul N̄ /KN = ν ūl γµ ul N̄γ
µN − Q2

4
ūl γµγ5 ul N̄γ

µγ5N,

ūl /Pγ5 ul N̄ /KN = ν ūl γµγ5 ul N̄γ
µN − Q2

4
ūl γµ ul N̄γ

µγ5N,

ūl /P ul N̄ /Kγ5N = ν ūl γµ ul N̄γ
µγ5N − P 2 ūl γµγ5 ul N̄γ

µN + mN ūl γµγ5 ul N̄P
µN,

ūl /Pγ5 ul N̄ /Kγ5N = ν ūl γµγ5 ul N̄γ
µγ5N − P 2 ūl γµ ul N̄γ

µN + mN ūl γµ ul N̄P
µN,(5.26)the strutures of the matrix element of γZ-exhange, Eq. (5.24), an be redued to 6 inde-pendent strutures of the form

ūl γµ ul N̄γ
µN G̃1, ūl γµ ul N̄

Pµ

mN
N G̃2, ūl γµγ5 ul N̄γ

µγ5N G̃3,

ūl γµγ5 ul N̄γ
µN G̃4, ūl γµγ5 ul N̄

Pµ

mN
N G̃5, ūl γµ ul N̄γ

µγ5N G̃6.
(5.27)It is onvenient to study the proess in the laboratory frame and express the ross setionsand asymmetries as funtions of Q2 (or τ), the photon polarization ε and ν. In order85



Chapter 5 Two-Boson Exhange in Parity-Violating Eletron-Proton Satteringto ompare orretions from the interferene of di�erent pairs of diagrams, the di�erentontributions are alulated separately. The interferene between one-photon exhange andthe γZ-exhange reads
A1γ×γZ = APV

Born

(
1 + δ1γ×γZ

)

= − GFQ
2

√
2e2

1

εG2
E + τG2

M

Re
[
τ GM δG̃Z

M + ε GE δG̃
Z
E +

εν

m2
N

(
τ GM F̃Z

3 +GE F̃
Z
3

)

−
(
1− 4 sin2 θW

) (
ε′GM δG̃Z

A + ε τ (1 + τ)GM G̃3A

) ]
, (5.28)where the expression

ε′ =
√(

1− ε2
)
τ
(
1 + τ

) (5.29)has been introdued.The invariant amplitude giving rise to the 2γ-exhange orretions reads
M2γ =

e2

Q2
ūl(k

′) γµ ul(k) N̄ (p′)

[
δG̃M γµ − δF̃2

Pµ

mN
+ F̃3

Pµ /K
m2

N

]
N(p) (5.30)where the form fators δG̃M , δF̃2, and F̃3 are the two-photon amplitudes introdued inEq. 3.9.Corretions to the asymmetry arising from the interferene of the 2γ-amplitude and theBorn amplitude of Z-exhange an be found as

AZ×2γ = APV
Born

(
1 + δZ×2γ

)

= − GFQ
2

√
2e2

1

εG2
E + τG2

M

Re

[
τ GZ

M δG̃M + εGZ
E δG̃E +

εν

m2
N

(
τGZ

M F̃3 +GZ
EF̃3

)

−
(
1− 4 sin2 θW

) (
ε′GZ

Aδ G̃M + ε τ (1 + τ)GZ
A F̃3

)]
. (5.31)The e�ets of the 2γ-exhange amplitude interfering with the 1γ-exhange amplitude ap-pearing in the denominator yields:

A1γ×2γ = APV
Born

(
1 + δ1γ×2γ

)

= − GFQ
2

√
2e2

{
τ GM GZ

M + εGE G
Z
E −

(
1− 4 sin2 θW

)
ε′GM GZ

A

}

×
{
ε
(
G2

E + 2Re[GEδG̃E ]
)
+ τ
(
G2

M + 2Re[GM δG̃M ]
)
+

2εν

m2
N

(GE + τGM )ReF̃3

}−1

.(5.32)86



5.2 Two-Boson-Exhange E�ets in Parity-Violating ep-SatteringConsequently, the PV asymmetry inluding the leading order orretions in αem ausedby TBE is
APV = APV

Born

(
1 + δ

)

= − GF Q
2

√
2e2

[
τ GM GZ

M + εGE G
Z
E −

(
1− 4 sin2 θW

)
ε′GM GZ

A

+ Re
[
τ
(
GZ

M δG̃M +GM δG̃Z
M

)
+ ε

(
GZ

E δG̃E +GE δG̃
Z
E

) ]

+
εν

m2
N

Re
[
τ
(
GZ

M F̃3 +GM F̃Z
3

)
+
(
GZ

E F̃3 +GE F̃
Z
3

) ]

−
(
1− 4 sin2 θW

)
Re
[
ε′
(
GZ

A δG̃M +GM δG̃Z
A

)
+ (1 + τ) ε τ

(
GZ

A F̃3 +GM G̃3A

)]]

×
{
ε
(
G2

E + 2Re[GEδG̃E ]
)
+ τ
(
G2

M + 2Re[GM δG̃M ]
)
+

2εν

m2
N

(GE + τGM )ReF̃3

}−1

.(5.33)Two-photon exhange and γZ-exhange e�ets in PV ep-sattering have been alulatedin Refs. [99,100℄ within a parton fatorization approah using GPDs, and within a hadroniapproah in Refs. [101, 102℄. Several theoretial studies have been performed in order toreeive the γZ-orretions to the asymmetry at zero (or very small) momentum transfer [103�106℄, whih orresponds to forward sattering, e.g. within dispersion relation frameworks.5.2.2 Two-Boson Exhange within a perturbative QCD FatorizationApproahAnalogously to the 2γ-exhange proesses studied in Chapter 4, the pQCD fatorizationapproah an be applied in order to examine two-boson exhange e�ets in PV elasti ep-sattering. Sine the distribution amplitudes are proess independent quantities, the sameDAs as disussed for the 2γ-exhange orretions in Se. 4.2 appear in the TBE formalism.The e�ets of 2γ-exhange on the PV asymmetry within a pQCD fatorization approahan be diretly obtained from the results of the generalized 2γ-amplitudes, δG̃M , δG̃E ,and F̃3, found within this model, whih have been derived in Ref. [57℄, and adopting theseexpressions for Eqs. (5.31) and (5.32).To ompute the orretions aused by the γZ-box ontributions, at �rst the formulas ofthe γZ-exhange amplitudes, namely δG̃Z
M , δG̃Z

E , F̃Z
3 , δG̃Z

A and G̃3A, in terms of the DAshave to be de�ned.For this purpose, the proess is analyzed in the Breit frame, assuming that s = (p + k)2and the momentum transfer Q2 are large, s, Q2 ≫ m2
N . Therefore the masses of the protonand the eletron an be negleted in the alulation. The momenta of the initial and �nalstate proton an be expressed in the light-one basis nµ and n̄µ as:

pµ =
Q

2
n̄µ, p ′µ =

Q

2
nµ, qµ =

Q

2
nµ − Q

2
n̄µ, (5.34)87



Chapter 5 Two-Boson Exhange in Parity-Violating Eletron-Proton Sattering
N(p) N(p′)

e−(k) e−(k′)

γ(q1) Z(q2)

u

u

dFigure 5.3: Diagram of γZ-exhange using pQCD fatorization: The hard kernel desribesthe eletron sattering o� a three-quark state via photon and Z boson exhange.The gray blobs indiate the DAs of the initial and �nal nuleon.and the momenta of the inident and sattered leptons are
kµ = ζ

Q

2
nµ − (1− ζ) Q

2
n̄µ + k⊥, k′µ = −(1− ζ) Q

2
nµ + ζ

Q

2
n̄µ + k⊥,with |k⊥|2 = −ζ(1− ζ)Q2, ζ =

(1 + ξ)2

4ξ
, ξ =

k+

P+
.

(5.35)Using pQCD fatorization, the amplitude of the γZ-exhange is given as a onvolutionof the DAs of the inoming and outgoing nuleon and a hard sattering kernel, where theeletron satters at a three valene quark state via the exhange of a photon and a Z boson.A typial diagram of the fatorized proess is presented in Fig. 5.3. In the subproess, theinitial quarks arry the momentum fration xi of the proton, while after the sattering thequarks have the momentum yi p
′, with ∑i xi =

∑
i yi = 1.The proton-to-vauum matrix element as parametrized by the leading-order DAs of theproton has been introdued in Eq. (4.23). The DAs whih onvert the three valene quarkstate into a hadron with momentum p′ an be dedued from the hermitian onjugate expres-sion of the proton-to-vauum matrix element in terms of the proton DAs.In the leading-order expansion, the amplitude haraterizing the γZ-exhange is found as

AγZ =
∑

X̃=Ṽ ,Ã, T̃

∑

X=V,A, T

∫
d[yi] X̃(yi)

∫
d[xi]X(xi)

×
(

i g

4 cos θW

)
ūl(k

′) (geV γµ − geAγµγ5) ul(k)

×
[
N̄+(p′ ) Γd

X̃

]
γ′

[
Γd
]γ′γ[

Γd
X N+(p)

]
γ

[
Γu
X̃

]
β′α′

[
Γu1

]α′α[
Γu2

]β′β[
Γu
X

]
αβ
,

(5.36)
where V,A and T denote the vetor, axial and tensor DA of the proton. The expression X̃refers to the DAs of the outgoing nuleon de�ned by

X̃(z′i n̄ · p′) ≡ X†(z′i n̄ · p′) =
∫
d[yi] X(y1, y2, y3) exp

{
i
(
n̄ · p′

)∑

i

yizi

}
, (5.37)
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5.2 Two-Boson-Exhange E�ets in Parity-Violating ep-Satteringwith X̃ =
{
Ṽ , Ã, T̃

}
,and d[yi] = dy1 dy2 dy3 δ(1 − y1 − y2 − y3).

(5.38)The strutures Γu, d
X and Γu, d

X̃
are given by

[
Γu
V

]
αβ

=
Q

2

[/̄n C]
αβ
,

[
Γu
A

]
αβ

=
Q

2

[/̄n γ5 C]
αβ
,

[
Γu
T

]
αβ

=
Q

2

[/̄nγ⊥C]
αβ
,

[
Γd
V

]
γ
= [γ5]γ ,

[
Γd
A

]
γ
= [1]γ ,

[
Γd
T

]
γ
= [γ⊥ γ5]γ ,

[
Γu
Ṽ

]
β′α′

=
Q

2

[
C /n]

β′α′
,
[
Γu
Ã

]
β′α′

=
Q

2

[
C γ5 /n]

β′α′
,
[
Γu
T̃

]
β′α′

= −Q
2

[
C/nγ⊥]

β′α′
,

[
Γd
Ṽ

]
γ′

= [γ5]γ′ ,
[
Γd
Ã

]
γ′

= [1]γ′ ,
[
Γd
T̃

]
γ′

= [γ5 γ
⊥]γ′ .

(5.39)
In Eq. (5.36), Γq, with q = {u1, u2, d}, orresponds to the expression of the quark spinor linesin momentum spae. The indies α (β) and α′ (β′) are assoiated with the initial and �nal
u-quark lines, respetively, while the indies γ and γ′ refer to the inoming and outgoing
d-quarks.The hard sattering proess is given by the eletron-sattering o� a three quark state,

e−(k) + q(x1p) q(x2p) q(x3p)→ e−(k′) + q(y1p
′) q(y2p

′) q(y3p
′), (5.40)where a photon and a Z boson are exhanged. Similarly to the two-photon exhange reation,the ontributions where the two bosons ouple to di�erent quarks have to be onsidered inthe subproess, sine other diagrams are suppressed. The third quark is involved in thesattering proess through the exhange of a hard gluon. Taking all possibilities to attahthe photon and the Z boson to the quarks and all possible gluon exhanges into aount,the leading-order hard sattering proess inludes 48 diagrams (given in Appendix B).Inserting the results of the hard sattering proess into Eq. (5.36) gives rise to the weak

γZ-form fators as funtions of the DAs, whih yields
δGZ

M =−
(
4π

3

)2 αemαS

Q4

∫
d[xi]

1

x1x̄1x2

∫
d[yi]

1

y1ȳ1y2

1

D1
(2ζ − 1)x1y1

×
{
x̄1ȳ1

[
Qu g

u
V {(V ′ −A′)(V −A) + 4T ′T}(1, 3, 2)

+ Qu g
d
V {(V ′ −A′)(V −A) + 4T ′T}(1, 2, 3) + 2Qd g

u
V {V ′V +A′A}(3, 2, 1)

]

+ x1y1

[
Qu g

u
V {(V ′ −A′)(V −A) + 4T ′T}(1, 3, 2)

+ Qd g
u
V {(V ′ −A′)(V −A) + 4T ′T}(1, 2, 3) + 2Qu g

d
V {V ′V +A′A}(3, 2, 1)

]}
,(5.41)89
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Q2

m2
N

FZ
3 =−

(
4π

3

)2 αemαS

Q4

∫
d[xi]

1

x1x̄1x2

∫
d[yi]

1

y1ȳ1y2

1

D1
2(x1 + y1 − 2x1y1)

×
{
x̄1ȳ1

[
Qu g

u
V {(V ′ −A′)(V −A) + 4T ′T}(1, 3, 2)

+ Qu g
d
V {(V ′ −A′)(V −A) + 4T ′T}(1, 2, 3) + 2Qd g

u
V {V ′V +A′A}(3, 2, 1)

]

+ x1y1

[
Qu g

u
V {(V ′ −A′)(V −A) + 4T ′T}(1, 3, 2)

+ Qd g
u
V {(V ′ −A′)(V −A) + 4T ′T}(1, 2, 3) + 2Qu g

d
V {V ′V +A′A}(3, 2, 1)

]}
,(5.42)

δGZ
A =−

(
4π

3

)2 αemαS

Q4

∫
d[xi]

1

x1x̄1x2

∫
d[yi]

1

y1ȳ1y2

1

D1
(2ζ − 1)x1y1

×
{
x̄1ȳ1

[
Qu{(V ′ −A′)(V −A)− 4T ′T}(1, 3, 2)

+ Qu{(V ′ −A′)(V −A)− 4T ′T}(1, 2, 3) + 2Qd{V ′A+A′V }(3, 2, 1)
]

+ x1y1

[
−Qu{(V ′ −A′)(V −A) + 4T ′T}(1, 3, 2)

− Qd{(V ′ −A′)(V −A) + 4T ′T}(1, 2, 3) + 2Qu{V ′V +A′A}(3, 2, 1)
]}
,

(5.43)
Q2

m2
N

G3A =−
(
4π

3

)2 αemαS

Q4

∫
d[xi]

1

x1x̄1x2

∫
d[yi]

1

y1ȳ1y2

1

D1
2(x1 + y1 − 2x1y1)

×
{
x̄1ȳ1

[
Qu{(V ′ −A′)(V −A)− 4T ′T}(1, 3, 2)

+ Qu{(V ′ −A′)(V −A)− 4T ′T}(1, 2, 3) + 2Qd{V ′A+A′V }(3, 2, 1)
]

+ x1y1

[
−Qu{(V ′ −A′)(V −A) + 4T ′T}(1, 3, 2)

− Qd{(V ′ −A′)(V −A) + 4T ′T}(1, 2, 3) + 2Qu{V ′V +A′A}(3, 2, 1)
]}
,(5.44)with

D1 =
[
x̄1ζ + ȳ1ζ̄ − x̄1ȳ1 + iǫ

][
x̄1ζ̄ + ȳ1ζ − x̄1ȳ1 + iǫ

]
.In an analogous manner to the analysis of the 2γ-exhange in the timelike region, the heliity-�ip amplitude FZ

2 , whih behaves as FZ
2 ∼ 1/Q6, is suppressed within the pQCD alulation.90



5.2 Two-Boson-Exhange E�ets in Parity-Violating ep-SatteringUsing the form fator expressions in terms of the DAs, the in�uene of the γZ-exhange tothe PV asymmetry an be derived from Eq. (5.28).The 2γ-amplitudes for ep-sattering have been alulated within a pQCD fatorizationapproah in Ref. [57℄ and have been found as
δGM =−

(
4π

6

)2 αemαs

Q4
(2ζ − 1)

∫
d[xi]d[yi]

D2

x1y1
[x1x̄1x2][y1ȳ1y2]

×
[
Q2

u

[
(V ′ −A′)(V −A) + 4T ′T )

]
(1, 3, 2) + 2QuQd(V

′V +A′A)(2, 3, 1)

+ QuQd

[
(V ′ −A′)(V −A) + 4T ′T )

]
(1, 2, 3)

]
, (5.45)

ν

m2
N

F3 =−
(
4π

6

)2 αemαs

Q4

∫
d[xi]d[yi]

D2

2(x1 + y1 − 2x1y1)

[x1x̄1x2][y1ȳ1y2]

×
[
Q2

u

[
(V ′ −A′)(V −A) + 4T ′T )

]
(1, 3, 2) + 2QuQd(V

′V +A′A)(2, 3, 1)

+ QuQd

[
(V ′ −A′)(V −A) + 4T ′T )

]
(1, 2, 3)

]
, (5.46)with

D2 =
[
x1ζ̄ + y1ζ − x1y1 + iǫ

] [
x1ζ + y1ζ̄ − x1y1 + iǫ

]
.The third 2γ-amplitude δF̃2 is suppressed in this approah (as in the timelike ase). Theresults have been inserted into Eqs. (5.31) and (5.32) in order to reeive the 2γ-exhangeorretions to the PV asymmetry.As parametrization of the DAs the formulas given in Eq. (4.61) have been used, withthe parameters of the COZ and BLW model (table 4.1). To ompute the TBE orretions,an expliit expression of the form fators is needed. For the magneti form fator of theproton a variation of a polynomial model is used [107℄, where the free parameters of themodel have been obtained from a �t to the Rosenbluth data of GM , while the form fatorsratio µpGE/GM is parametrized by a �t of Pt/Pl to the results of polarization transfermeasurements [11℄, giving rise to:

GM (Q2) =
µp

1 + 3.19Q2 + 1.355Q4 + 0.151Q6
,

µpGE(Q
2)

GM (Q2)
= 1 + 0.13

(
Q2 − 0.04

)
.

(5.47)The neutral weak form fators are expressed through the eletromagneti form fators ofthe proton and neutron:
GZ

E,M =
(
1− 4 sin2 θW

)
Gp

E,M −Gn
E,M , (5.48)91
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Figure 5.4: Two-Boson exhange ontributions to the PV asymmetry APV as a funtion of εfor di�erent values of momentum transfer using the COZ (left panel) and BLWmodel (right panel) as parametrization of the DAs. Blak solid urve: totalorretions; red dotted urve: 1γ×γZ-ontribution; green dashed urve: Z×2γ-ontribution; blue dashed-dotted urve: 1γ × 2γ-ontribution.
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5.3 Conlusionswhere the eletromagneti strangeness form fators have been negleted. The form fators
Gn

E,M of the neutron have been parametrized using the ansatz of Ref. [108℄. The axial formfator is expressed by a dipole �t [84℄:
GA(Q

2) =
gA(

1 + Q2

m2
A

)2 , (5.49)with gA = 1.27 and the axial mass mA = 1.026 GeV.In Fig. 5.4 the results of the total TBE orretions to the asymmetry arising from γZ-exhange as well as 2γ-exhange, de�ned by
APV = APV

Born

(
1 + δ

)
, (5.50)are shown as a funtion of ε for three seleted values of momentum transfer, Q2 = 2, 3.3,and 9 GeV2. The plots in the left and right olumns orrespond to the COZ and BLWmodels, respetively, whih have been used for parametrizing the DAs. The total orretions,illustrated by the blak urves, are of order of 1% in maximum, where the TBE e�ets withinthe COZ model are about twie as large as when using the BLW desription. The TBE e�etsare dereasing for inreasing Q2. For higher momentum transfer, the dependene of the TBEorretions on Q2 is found to be small.In addition to the total orretions, the ontribution to APV from di�erent pairs of dia-grams are shown in Fig. 5.4. The largest orretions result from the interferene between 1γ-and 2γ-exhange (1γ × 2γ), entering in the denominator of the asymmetry, whih is shownby the blue urve. The e�ets of the 1γ- and γZ-interferene (1γ × γZ) and Z- and 2γ-interferene (Z × 2γ) are somewhat smaller ompared to the 1γ × 2γ ontribution and havethe opposite sign over a wide ε range. Therefore the orretions partially anel eah other,giving rise to small TBE e�ets in total.These results are similar to the �ndings of the hadroni alulation and the GPD basedalulations, presented in Refs. [99�101℄. Even though the Z × 2γ ontribution alulatedwithin the hadroni model di�ers in sign, the results show similar ε dependenies as well asomparable total orretions [101℄. However, the total TBE orretions obtained within theGPD alulation in Ref. [100℄ are slightly larger, leading to e�ets of ∼ 0.5 − 2.5 % for theonsidered kinematial range.5.3 ConlusionsIn this hapter the two-boson exhange orretions to parity-violating elasti ep-satteringhave been studied within a perturbative QCD fatorization approah, whih are of partiularinterest with regard to high-preision measurements of PV asymmetries. Using two di�erentparametrizations of the proton DAs, the TBE orretions are found to be of the order of 1%or less. The ontributions arising from the di�erent types of diagrams are at the few perentlevel, but have opposite sign. Therefore, the orretions partially anel eah other, givingrise to small total e�ets.
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Chapter 6Nuleon Form Fators in the UnphysialRegionThe eletromagneti form fators of the nuleon have been studied extensively in the spaelikeregion by means of elasti eletron-proton sattering, and forthoming experiments laim tomeasure the timelike form fators with high auray in the annihilation reations p p̄ →
e+ e− and e+ e− → p p̄. But the region of momentum transfer, whih is reahable, is exatlybound by the invariant mass of the nuleon pair, whih requires a momentum transfer ofat least q2thr = 4m2

N . The timelike region below the two nuleon threshold, 0 < q2 < 4m2
N ,whih is denoted as the unphysial region, is not aessible by the aforementioned annihilationproesses.However, due to the orrelation of the spaelike and timelike regions, the knowledge of theform fators in the unphysial region would be an important help towards �nding a omple-mentary piture of the nuleon eletromagneti struture. The spaelike and timelike regionsare onneted through dispersion relations, whih o�er a model-independent framework tostudy the eletromagneti form fators of the nuleons simultaneously in both regions. Sineseveral models predit a form fator behavior, whih is dominated by large ontributionsof vetor mesons in the below threshold region, an investigation of the form fators in theunphysial region provides the opportunity to test and onstrain suh models. The datawould be of partiular interest in order to improve form fator approahes, whih allow toonnet the spaelike and timelike form fators.Therefore, in Refs. [45, 109℄ the annihilation proess, where in addition a neutral pion isprodued,

p+ p̄ → π0 + e+ + e−, (6.1)has been studied. Sine the outgoing pion takes a part of the energy of the reation, theprodution of a lepton pair with an invariant mass below the (p + p̄)-annihilation thresholdis possible and thus this reation an be used to study the eletromagneti form fators inthe unphysial region. Moreover, this reation o�ers the possibility to aess the relativephases of GE and GM . An investigation of the disussed proess is proposed for the PANDAexperiment at FAIR. Feasibility studies for a measurement at PANDA have been performedin Ref. [110℄. However, a study of the timelike form fators from the p p̄ → π0e+e− proessrequires a model in order to deal with the unknown hadroni interation.In this hapter, the proess p p̄ → π0e+e− is analyzed as a means to provide onstraintson timelike nuleon form fators. In order to alulate the unknown hadroni reation pp̄→
π0γ∗, an approah inspired by Regge theory is used. To hek the onsisteny of this Reggepole model, we �rst test the approah on the proess of real photon prodution, p p̄→ π0γ,where data of the angular distribution of the ross setion exist. Subsequently, the Reggepole model is applied to the proess p p̄→ π0e+e−. 95
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p̄ π0

γ∗
e+

e−

p

Figure 6.1: Sketh of the proess p p̄→ π0e+e−6.1 Probing Nuleon Form Fators in the Unphysial Region6.1.1 Timelike Pion EletroprodutionAs disussed in Ref. [45℄, the reation
p̄(p1, λN1

) + p(p2, λN2
) → π0(qπ) + γ∗(q, λγ)

→ π0(qπ) + e−(k1, h1) + e+(k2, h2),
(6.2)where the lepton pair is produed from a photon with momentum q, as shown in Fig. 6.1,allows for studying the unphysial region q2 < q2thr = 4m2

N . We will refer to this proess astimelike pion eletroprodution.The momenta of the p p̄→ π0γ∗ reation an be ombined to the Mandelstam variables,
s = (p1 + p2)

2 = (qπ + q)2,

u = (p2 − qπ)2 = (p1 − q)2,

t = (p1 − qπ)2 = (p2 − q)2,

(6.3)whih satisfy the relation
s+ t+ u = 2m2

N +m2
π + q2, (6.4)where mπ is the pion mass and q2 is the virtuality of the photon.The amplitude of the proess onsists of the leptoni and the hadroni part, onneted bythe photon propagator

Aγ∗ = Lν
(−gµν

q2

)
Mµ

γ∗ . (6.5)The hadroni amplitude Mµ
γ∗ haraterizes the proess pp̄ → π0γ∗ and the leptoni ontri-bution Lν desribes the lepton pair prodution γ∗ → e+e−,

Lν = −e ūl(k1) γν vl(k2), (6.6)whih is alulable using QED. On the ontrary, for the investigation of the hadroni sub-proess a model desription is needed in order to deal with the unknown interplay of thepartiipating hadrons.96



6.1 Probing Nuleon Form Fators in the Unphysial Region
γ∗

p̄

p

ΓγNN

ΓπNN
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N

π0

e−

e+
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γ∗

p̄

p

e−

e+

ΓγNN

ΓπNN
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N

Figure 6.2: Born diagram model for p p̄→ π0e+e− desribed by a single nuleon exhange inthe u-hannel and t-hannel Feynman diagrams.In Ref. [109℄, the proess p p̄ → π0e+e has been studied within a Born diagram model,in whih the interation of the hadroni part results from the exhange of a single nuleon.The two orresponding Feynman diagrams, whih are shown in Fig. 6.2, are given by a u-hannel and t-hannel nuleon exhange. Another analysis of the reation has been performedwithin a fatorization approah, using the onept of the transition distribution amplitudes[111, 112℄. This approah is appliable in the kinemati range of larger momentum transfer
s at forward and bakward kinematis, where a lepton pair with high invariant mass isprodued. Thus this model does not over the region of interest, where the invariant massof the produed lepton pair is below the prodution threshold q2thr. Consequently, in thefollowing we will examine the Born diagram model in more detail.The amplitudes of the diagrams desribing the nuleon exhange an be written as

Aγ∗,u =− 1

q2
LµMµ

π0γ∗, u

=− 1

q2
Lµ N̄(p1) Γ

µ
γNN (q)

(
γ · (p2 − qπ) +mN

u−m2
N

)
ΓπNN (qπ)N(p2),

Aγ∗,t =−
1

q2
LµMµ

π0γ∗, t

=− 1

q2
Lµ · N̄(p1) ΓπNN (qπ)

(
γ · (qπ − p1) +mN

t−m2
N

)
Γµ
γNN (q)N(p2),with Mµ

γ∗ =Mµ
π0γ∗, u

+Mµ
π0γ∗, t

,

(6.7)
where the subsripts u and t of Aγ∗ refer to the amplitude with u-hannel and t-hannelnuleon exhange, respetively, and N̄(p1) (N(p2)) orresponds to the Dira spinor of theantiproton (proton). The strutures Γµ

γNN and ΓπNN are the parametrization of the γ∗NNand πNN verties, as indiated in Fig. 6.2.Within this approah, o�-shell e�ets of the exhanged nuleons have been negleted, henethe γ∗NN verties are parametrized by the on-shell proton eletromagneti form fators, in97



Chapter 6 Nuleon Form Fators in the Unphysial Regionterms of the Dira and Pauli form fators F1 and F2 given by
Γµ
γNN (q) = e

[
F1(q

2)γµ − i

2mN
F2(q

2)σµνqν

]
. (6.8)To desribe the πNN vertex both ases of pseudosalar as well as pseudovetor πNNoupling are taken into aount:

ΓπNN (qπ) = gπNN (m2
π)
(
λγ5 + (1− λ)qπ · γ

2m
γ5

)
, (6.9)where λ = 1 (λ = 0) leads to a vertex with a purely pseudosalar (pseudovetor) oupling,with the pion-nuleon onstant gπNN (m2

π).It is important to take both t-hannel and u-hannel nuleon exhange into aount in orderto onstrut a model, whih satis�es the eletromagneti gauge invariane. The amplitudes
Mµ

π0γ∗, u
andMµ

π0γ∗, t
themselves are not gauge invariant, but sine

qµMµ
π0γ∗, u

= e gπNN (m2
π) N̄(p1)F1(q

2)
(
−mN + /p2 − q/π)(/p2 − q/π +mN

u−m2
N

)

×
(
λγ5 + (1− λ)γ · qπ

2mN
γ5

)
N(p2)

= e gπNN (m2
π)F1(q

2) N̄(p1)

(
λγ5 + (1− λ)γ · qπ

2mN
γ5

)
N(p2),

qµMµ
π0γ∗, t

=e gπNN (m2
π) N̄(p1)

(
λγ5 + (1− λ)γ · qπ

2mN
γ5

)(
q/π − /p1 +mN

t−m2
N

)

× F1(q
2)
( /p1 − q/π +mN

)
N(p2)

= − e gπNN (m2
π)F1(q

2) N̄(p1)

(
λγ5 + (1− λ)γ · qπ

2mN
γ5

)
N(p2),

(6.10)
it follows

qµMµ
γ∗ = qµ

(
Mµ

π0γ∗, u
+Mµ

π0γ∗, t

)
= 0. (6.11)Nevertheless, it should be kept in mind, that the disussed approah implies that theproess an be approximately desribed by the exhange of a single nuleon in the u- and

t-hannel, whih is treated to be on-shell. When making suh assumptions, the question ofthe validity of suh a model arises, alling for the possibility to test the onsidered approah.6.1.2 Real PhotoprodutionSine at present no data of the proess of timelike pion eletroprodution (Eq. (6.2)) exist,we study the reation of real photoprodution,
p̄(p1) + p(p2)→ π0(qπ) + γ(q), (6.12)whih has been measured at Fermi National Aelerator Laboratory (Fermilab) [113℄, andwe test the preditions of the Born diagram model with the results of this experiment. Data98



6.1 Probing Nuleon Form Fators in the Unphysial Region
γ

γ

π0

π0

p̄

p

p̄

p

N N qπ − p1p2 − qπ

ΓγNN (q2 = 0)

ΓγNN (q2 = 0)ΓπNN

ΓπNNFigure 6.3: Born diagram model for p p̄→ π0 γof the angular dependene of the di�erential ross setion dσ/d cos θπ, where θπ is the .m.sattering angle of the pion, is available in the .m. energy range of
2.911GeV ≤ √s ≤ 3.686GeV, (6.13)overing an angular region of approximately −0.6 ≤ cos θπ ≤ 0.6.The unpolarized ross setion has the following form

dσ =
1

4
√

(p1 · p2)2 −m4
N

(
d3~qπ

(2π)32Eπ

)(
d3~q

(2π)32q0

)

× (2π)4δ(4)
(
p1 + p2 − qπ − q

) 1
4

∑

λNi
,λγ

|Aγ |2,
(6.14)where the subsript γ of the amplitude Aγ refers of the proess of real photoprodution.The u- and t-hannel amplitudes within the Born diagram model, as seen in Fig. 6.3, areobtained as

Aγ, u = ε∗µ ·Mµ
π0γ, u

= ε∗µ(q, λγ) · N̄(p1) Γ
µ
γNN (q2 = 0)

(
γ · (p2 − qπ) +mN

u−m2
N

)
ΓπNN (qπ)N(p2),

Aγ, t = ε∗µ ·Mµ
π0γ, t

= ε∗µ(q, λγ) · N̄(p1) ΓπNN (qπ)

(
γ · (qπ − p1) +mN

t−m2
N

)
Γµ
γNN (q2 = 0)N(p2),

(6.15)
where εµ(q, λγ) is the photon polarization vetor. For real photons, one has two polarizationstates, λγ = ±1, with qµ εµ(q, λγ) = 0. In the desription of Γµ

γNN in Eq. (6.15) the formfators
F1(q

2 = 0) = 1, F2(q
2 = 0) = κp = 1.79 (6.16)have been used.For the spin-averaged squared matrix element one �nds

1

4

∑

λNi
,λγ

∣∣Aγ

∣∣2 = 1

4

∑

λNi
,λγ

∣∣∣ε∗µ
(
Mµ

π0γ, u
+Mµ

π0γ, t

) ∣∣∣
2
. (6.17)99



Chapter 6 Nuleon Form Fators in the Unphysial RegionThe proess has been evaluated in the .m. frame of the (p̄p)-pair, in whih the momentumof the antiproton has been hosen as the z-diretion and the proess takes plae in the x-zplane. The nuleon momenta are given by
p1 =

√
s

2

(
1, 0, 0,

√
s− 4m2

N

s

)
, p2 =

√
s

2

(
1, 0, 0,−

√
s− 4m2

N

s

)
, (6.18)and the momenta of the mesons are

q =
(
q0, ~q

)
=
(
q0, |~q | sin θγ , 0, |~q | cos θγ

)
,

qπ =
(
Eπ,−~q

)
,

(6.19)with the photon and pion energies
q0 =

s−m2
π

2
√
s
, Eπ =

s+m2
π

2
√
s
. (6.20)The unpolarized di�erential ross setion is given by

dσ

d cos θγ
=

1

16π s
√
s− 4m2

N

|~q | 1
4

∑

λNi

(−gµν)
∣∣Mµ

π0γ, u
+Mµ

π0γ, t

∣∣2. (6.21)Using the Born diagram model for p p̄ → π0γ, we are not able to reprodue the resultsobtained in the E760 experiment at Fermilab. The ross setion dσ/d cos θπ found withinthe Born diagram model is about 4 to 5 orders of magnitude larger then the data, dependingon the value of the .m. energy √s. Simple �xes by introduing strong suppressions througho�-shell form fators do not lead to a orret energy dependene of the ross setions.For this reason, one an assume, that the Born diagram model is not suitable to desribethis proess and thus the proess p p̄→ π0e+e− as well. Therefore, we onsider an alternativemodel, whih is inspired by Regge theory. Within this model, the exhange of a lass ofpartiles with same internal quantum numbers is taken into aount, instead of a singlepartile exhange as in the Born diagram model.6.2 Regge TheoryBefore the advent of QCD as theory of the strong interation, Regge theory was been es-tablished as an approah to desribe hadroni reations at high .m. energies at forwardand bakward sattering angles. It is based on the idea of an analytial ontinuation of thesattering amplitude in the omplex angular momentum plane [114℄.Sattering proesses have been analyzed by taking spei� properties of the S-matrix intoaount. The S-matrix, whih desribes the transition of an initial partile state ∣∣a〉 to a�nal state ∣∣b〉, is given by
Sab =

〈
a
∣∣S
∣∣b
〉
= δab + i(2π)4 δ

(
∑

a

pa −
∑

b

pb

)
Aab, (6.22)
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6.2 Regge Theorywhere Aab is the sattering amplitude. In the ase of a 2→ 2 partile sattering proess, Aan be expressed as funtion of the invariant Mandelstam variables s and t: A(s, t). Crossingsymmetry orrelates the amplitudes of s-, t-, and u-hannel exhange, whih are desribedby the same funtion A for a di�erent parameter spae of the Mandelstam variables. Besidesusing unitarity of the S-matrix, S S† = 1, Regge theory postulates, that the S-matrix anbe analytially ontinuated in the omplex angular momentum plane, having only isolatedsingularities.A detailed disussion of Regge theory an be found in Ref. [115℄. Only the basi priniplesare outlined here.A 2 → 2 partile sattering proess is studied in the so-alled Regge limit, where themomentum transfer s is large and s≫ |t| (or equivalently s≫ |u| ). For simpliity, we �rstonsider a reation where the four external partiles have equal masses and do not arryinternal spin. The partial wave series of the amplitude in the t-hannel is given by
A(s, t) =

∑

l

(2l + 1)Al(t)Pl(cos θt),with Al(t) =
1

2

∫ 1

−1
dcos θ Pl(cos θt)A(s, t)and cos θt = 1 +
2s

t− 4m2
,

(6.23)
where l is the angular momentum and Pl are Legendre polynomials.The partial wave series an be rewritten as a ontour integral in the omplex angular-momentum plane, where the ontour C1 surrounds the positive real-axis,

A(s, t) = − 1

2i

∮

C1

dl (2l + 1)
A(l, t)

sinπl
Pl(− cos θt), (6.24)whih is known as Sommerfeld-Watson transformation. A(l, t) is the analyti ontinuationfor omplex values of l, whih mathes Al(t), if l reahes an integer value:

A(l, t) = Al(t) for l = 0, 1, 2, ... . (6.25)Using Cauhy's integral theorem, the residues of the integrand at the integer values l = nwith sin(nπ) → (−1)n(l − n)π give rise to Eq. (6.23).The ontour C1 an be deformed to another ontour, as presented by the dashed urves inFig. (6.4), given by C along Re(l) = −1/2 and the semi-irle, whih is extended to in�nity,where the singularities αi in the omplex l-plane have to be inluded. To ensure that theintegration over the semi-irle vanishes at in�nity, A(l, t) has to onverge for l → ∞. Toguarantee the onvergene, one has to separate the even and odd partial waves, suh that
A+(l, t) = Al(t) for l = 0, 2, 4, ... ,

A−(l, t) = Al(t) for l = 1, 3, 5... ,
(6.26)where A± are the analyti ontinuations of the even and odd partial wave amplitudes, re-spetively. On this aount, the signature S = ±1 has to be introdued, where S = +1(S = −1) orresponds to even (odd) partial waves. 101
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Figure 6.4: Integration ontours C1 and C in the omplex angular momentum plane as wellas the Regge pole indiated by l = αi(t).The integration an be performed by taking the singularities of AS(l, t) in the angularmomentum plane, l = αS
i (t), into aount by adding up their residues βSi (t), whih leads to

AS(s, t) =
1

2i

∫

C
dl (2l + 1)

S + e−iπ αS
i (t)

2
AS(l, t)Pl(− cos θt)

− π
∑

i

(2αS
i (t) + 1)

S + e−iπ αS
i (t)

2

βSi (t)

sin
(
παS

i (t)
)PαS

i (t)
(− cos θ),

(6.27)where the latter term on the r.h.s. of Eq. (6.27) is denoted as a Regge pole. The expressions
(S+e−iπ αS

i (t))/2 are the signature fators giving rise to the separated partial wave amplitudes
A±. In the high energy Regge limit, the dominant ontribution to the amplitude results fromthe pole term. The ontour integral over C along the imaginary axis has a s− 1

2 dependeneand an be negleted for s → ∞. Hene the amplitude redues to the seond part given inEq. (6.27). Applying the Regge limit to Eq. (6.27), one �nds that the leading ontributionto A an be written as
AS(s, t) ∝

∑

i

S + e−iπαS
i (t)

2

βSi (t)

Γ[αS
i (t) + 1] sin

(
παS

i (t)
)
(
s

s0

)αS
i (t)

, (6.28)where the saling fator s0 is onventionally hosen to be s0 = 1 GeV2. The Gamma funtionsuppresses poles in the unphysial (negative) angular momentum region.For proesses involving partiles with spin 1/2, suh as annihilation of two baryons into ameson pair, whih are relevant for the proesses studied in this hapter, the Regge amplitudeis given by [116℄:
AS ∝

∑

i

1

Γ
[
αS
i (t) +

1
2

] S + e−iπ(αS
i (t)+

1

2)

2

1

sinπ
(
αS
i (t) +

1
2

)
(
s

s0

)αS
i (t)−

1
2

. (6.29)
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6.2 Regge TheoryThe appropriate expression for the Regge amplitude orresponding to u-hannel exhangean be found in an analogous manner in the Regge limit with s≫ |u|.In the limit l → αi(t), the Regge pole redues to the Feynman pole, desribing a singlepartile exhange:
A(s, t) l → αi(t)−−−−−−→ βi(t)

t−m2
i

, (6.30)where 1/(t − m2
i ) represents the Feynman pole. The residue βi an be determined fromthe vertex struture of the single partile exhange amplitude. When suh a Regge poleours through an integer value of the angular momentum l, it orresponds to a partile (ora resonane). For a t-hannel proess, one expets to have poles whih are assoiated withthe exhange of a partile with mass mi and spin ji as

αi(t = m2
i ) = ji. (6.31)It is possible to group the partiles and resonanes with same internal quantum numbers, butdi�erent spin, into families, whih lie on a given Regge trajetory α. Phenomenologially, ithas been found that the Regge trajetories an be parametrized through a straight line:

αi(t) = αi(0) + α′
i(t−m2

i ), (6.32)where α(0) is the spin and mi is the mass of the �rst materialization of the trajetory. SuhRegge trajetories are named after the lowest-lying partile of αi(t).This proedure allows for onverting amplitudes desribing the exhange of a single parti-le, whih is the �rst materialization of a Regge trajetory, to Regge amplitudes of a giventrajetory. These so-alled reggeization is arried out by replaing a usual Feynman propa-gator through a Regge propagator, e.g. for baryon exhange as
1

t−m2
i

−→ DRegge
i (t, s) =

sαi(t)−
1
2

Γ
[
αi(t) +

1
2

] S + e−iπ(αi(t)+
1
2)

2

πα′
i

sinπ
(
αi(t) +

1
2

) , (6.33)whih orresponds to an e�etive summing up of higher-spin partiles lying on the orre-sponding Regge trajetory.Phenomenologially, it has been found that trajetories often satisfy the so-alled weakdegeneray, whih means, that both even- and odd-partial wave trajetories are equal:
α+(t) = α−(t). In addition, the ondition of the strong degeneray implies, that bothvertex funtions of the proess are the same. As a onsequene, the orresponding ampli-tude of a trajetory ful�lling the strong degeneray is haraterized by the trajetory α+with the residue β+. Suh a degenerate trajetory an be obtained by adding or subtratingthe trajetories of di�erent signatures,

β(t)

(
S + e−iπ(αi(t)+

1
2)

2
+
±S + e−iπ(αi(t)+

1
2)

2

)
= β(t)

{
e−iπ(αi(t)+

1
2).

1.
(6.34)This leads to a degenerate trajetory, whih has either a rotating or a onstant phase. Inthis work we assume strong degeneray of the baryon trajetories. 103
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Figure 6.5: Trajetories α(t) of the nuleon (blue solid urve) and the ∆(1232) resonane(green dashed urve). The data points orrespond to the partile positions in the
m2-spin-plane.In Fig. 6.5 the trajetories of the nuleon and ∆ resonane are shown, whih an approx-imately be expressed through

αN (t) =
1

2
+ 0.97GeV−2

(
t−m2

N

)
,

α∆(t) =
3

2
+ 0.9 GeV−2

(
t−m2

∆

)
,

(6.35)whih orrespond to the blue solid (αN ) and green dashed line (α∆) in Fig. 6.5. The pointsindiate the position of the partiles in the mass-spin plane.Using the expression of the Regge propagator in Eq. (6.33), the ross setion of a proess,whih is dominated by a given Regge trajetory, behaves as
dσ

dt
∝ 1

s2
|A(s, t)|2 ∝ F (t) s2α(t)−2. (6.36)If more than one trajetory is involved, at su�ient large values of s relative to a typialhadroni sale of 1 GeV2 (for given t), only the trajetory with the largest value of α(t) willprovide a signi�ant ontribution. Suh trajetories are denoted as leading trajetories.6.3 Real Photoprodution within a Regge FrameworkTo investigate the pp̄ → π0γ annihilation proess a Regge pole desription is onsidered,whih is based on the exhange of leading baryon Regge trajetories in the u-hannel and t-hannel. This approah allows to take the exhange of partiles with higher spins and higher104



6.3 Real Photoprodution within a Regge Frameworkmasses into aount, whih are expeted to ontribute signi�antly at large momentumtransfer. Suh a phenomenologial Regge pole approah has been suessfully applied toeletroprodution and photoprodution of pions and kaons, see e.g. Refs. [117, 118℄. Inpartiular, it has been widely applied in order to extrat π+ and K+ eletromagneti formfators from the π+ and K+ eletroprodution proess [119, 120℄.The kinemati region of this approah, whih has been introdued before as Regge limit,are the ranges of forward and bakward angles, s ≫ |t| and s ≫ |u|. In the kinematialregion s ∼ −t ∼ −u the reation has been investigated within the framework of generalizeddistribution amplitudes in Ref. [81℄.The dominant trajetories for the proess p p̄ → π0γ are the nuleon (N) trajetory and
∆ trajetory assoiated with the ∆(1232) resonane [115℄. The amplitude for Regge tra-jetory exhange an be obtained from the Born diagram by replaing the usual Feynmanpropagator of the single exhanged partile by the Regge propagator, while leaving the Feyn-man struture, giving rise to the residue of the Regge pole, unhanged. We assume, thatthe trajetories are degenerate, whih leads to a smooth behavior of the ross setion [115℄.Non-degenerate trajetories would manifest themselves in dips appearing in the ross setion.Sine the data do not show any dips in the measured range, suh an assumption seems tobe reasonable.In ase of an exhanged nuleon, the pole-like Feynman propagators of the u-hannel and
t-hannel, given by 1/(u −m2

N ) and 1/(t−m2
N ), are replaed in the following way

1

u−m2
N

⇒ DRegge
N (u, s) =

sαN (u)− 1
2

Γ
[
αN (u) + 1

2

] πα′
N

e−iπ(αN (u)+ 1

2)

sinπ
(
αN (u) + 1

2

) ,

1

t−m2
N

⇒ DRegge
N (t , s) =

sαN (t)− 1
2

Γ
[
αN (t) + 1

2

] πα′
N

e−iπ(αN (t) + 1
2)

sinπ
(
αN (t) + 1

2

) ,

(6.37)where the nuleon trajetory αN is of the form
αN (u) =

1

2
+ α′

N

(
u−m2

N

)
, αN (t) =

1

2
+ α′

N

(
t−m2

N

)
, (6.38)with α′

N = 0.97 GeV−2.Analogously to the �ndings of photoprodution and eletroprodution of pions at high en-ergies within a Regge pole model [117,118℄, we onsider a πNN oupling of the pseudosalartype, as
ΓπNN (qπ) = gπNN (m2

π)γ5, (6.39)where gπNN (m2
π) is the pion-nuleon oupling onstant.Besides inluding the nuleon Regge propagators, the exhange of the ∆ trajetory is takeninto aount. Starting from the Feynman diagrams in a Born model with a single ∆(1232)resonane exhange, as illustrated in Fig. 6.6, the amplitudes of the u- and t-hannel proessan be expressed by

A∆
γ = ε∗µ ·

(
M∆, µ

π0γ,u
+M∆, µ

π0γ,t

) (6.40)105
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M∆, µ

π0γ,u
=v̄(p1) Γ

α
γN∆

−i
u−m2

∆

(γ · pu +m∆)

×
{
gαβ −

1

3
γαγβ −

γαpu,β − γβpu,α
3m∆

− 2pu,α pu,β
3m2

∆

}
Γβ
Nγ∆u(p2),

M∆, µ
π0γ,t

=v̄(p1) Γ
α
πN∆

−i
t−m2

∆

(γ · pt +m∆)

×
{
gαβ −

1

3
γαγβ −

γαpt,β − γβpt,α
3m∆

− 2pt,α pt,β
3m2

∆

}
Γβ
Nγ∆u(p2),

(6.41)
with pu = p2− qπ, and pt = qπ − p1 and the mass of the ∆ resonane m∆ = 1.232 GeV. Thestrutures ΓγN∆ and ΓπN∆ are desribing the γN∆ verties and πN∆ verties, respetively.The ΓπN∆ vertex an be parametrized as follows [121℄:

Γα
γN∆(q) =i

√
2

3

3e(m∆ +mN )

2mN ((m∆ +mN )2 − q2)
{
gM (q2) εαµρσ p∆,ρ qσ

+ gE(q
2)
(
qαpµ∆ − q · p∆gαµ

)
iγ5 + gC(q

2)
(
qαqµ − q2gαµ

)
iγ5

}
,

(6.42)where p∆ is the 4-momentum of the intermediate ∆ state. In Eq. (6.42) the vertex dependson three eletromagneti form fators, gM (q2), gE(q2) and gC(q2), representing the strengthof the magneti dipole, eletri quadrupole and Coulomb quadrupole N → ∆ transitions. Inthe alulation, the eletri and Coulomb quadrupole terms have been negleted sine theirontributions have been found to be of the order of a few % [122℄. Therefore the γN∆ vertexdepends only on gM (q2), for whih gM (0) = 3.02 is used as γN∆ oupling strength. Bothamplitudes of Eq. (6.41) satisfy eletromagneti gauge invariane due to
qµ ε

αµρσ p∆,ρ qσ = 0. (6.43)The parametrization of the πN∆-vertex an be written as
Γα
πN∆(qπ) =−

hA
2fπm∆

γαµνqπ,µ p∆,ν T
†
a . (6.44)106



6.3 Real Photoprodution within a Regge FrameworkThe operator T †
a is the isospin 1/2 → 3/2 transition operator, fπ denotes the pion deayonstant and hA ≃ 2.85 is the πN∆ oupling onstant.The Feynman propagators in Eq. (6.41) are then replaed by the Regge propagators:

1

u−m2
∆

⇒ DRegge
∆ (u, s) =

sα∆(u)− 3
2

Γ
[
α∆(u) +

1
2

] πα′
∆

e−iπ(α∆(u)− 1

2)

sinπ
(
α∆(u)− 1

2

) ,

1

t−m2
∆

⇒ DRegge
∆ (t, s) =

sα∆(t)− 3

2

Γ
[
α∆(t) + 1

2

] πα′
∆

e−iπ(α∆(t)− 1
2)

sinπ
(
α∆(t)− 1

2

) ,

(6.45)where the ∆ Regge trajetory is of the form
α∆(u) =

3

2
+ α′

∆

(
u−m2

∆

)
, α∆(t) =

3

2
+ α′

∆

(
t−m2

∆

)
, (6.46)with α′

∆ = 0.9 GeV−2.The amplitude of the proess reggeized in the following way, whih ensures gauge invarianeof the Regge model amplitudes:
MN

π0γ,t = DRegge
N (t , s) (t −m2

N )
[
Mu +Mt

]
, (6.47)

MN
π0γ,u = DRegge

N (u, s) (u−m2
N )
[
Mu +Mt

]
, (6.48)and analogous expressions for the ∆-exhange diagrams. Contrating with the photon mo-mentum yields

qµ

(
MN

π0γ,t

)µ
= DRegge

N (t , s) (t −m2
N )
[
qµMµ

u + qµMµ
t

]
= 0,

qµ

(
MN

π0γ,u

)µ
= DRegge

N (u, s) (u−m2
N )
[
qµMµ

u + qµMµ
t

]
= 0.

(6.49)Note that the Regge approah implies s≫ |t|, s≫ |u|, so that both forward and bakwardregions are kinematially separated. In the kinemati region s ≫ |t| the Regge amplitudeof Eq. (6.47) is dominating, whereas in region of s ≫ |u| the u-hannel Regge amplitude(Eq. (6.48)) is the dominant one. Only in these limits there is no double ounting in thisproedure. In the intermediate angular region one is outside the range of the validity of aRegge approah.We next disuss the inlusion of the ∆-exhange Regge trajetories. As for the ∆ we arefurther away from the pole position than in the nuleon ase, the desription of the residuesof the Regge poles through their on-shell ouplings an be expeted to be modi�ed. We allowfor suh a redution of the oupling strengths of the ∆ Regge pole residue, leading to theamplitude
AF

γ = ε∗µ ·
(
MN

π0γ + F ·M∆
π0γ

)
, (6.50)where the parameter F will be obtained by a �t to the data.In Fig. 6.7, results for dσ/d cos θπ for several .m. energies √s inluding N trajetory ex-hange and (N+∆) trajetories exhange are presented as well as results using the approahof Eq. (6.50) in omparison with the data taken at the Fermilab [113℄. Fitting the availabledata leads to F ≈ 0.5. One noties, that the angular dependene of the data in the forwardand bakward regions is well reprodued. 107
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ΓπNN (qπ) = gπNN (m2
π)

q/π
2mN

γ5. (6.51)The results of the di�erential ross setion dσ/d cos θπ inluding N trajetory exhange areshown in Fig. 6.8 for several .m. energies √s using two di�erent pion-nuleon ouplings,109
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dσ

dt
∝ F (t) s2α(t)−2, for |t| ≪ s,and dσ

du
∝ F (u) s2α(u)−2, for |u| ≪ s,

(6.52)the ross setion dσ/dt, divided by the expeted s dependene of the leading Regge trajetoryis analyzed, in order to test the appliability of the model. At high energies the dominant
t dependene of the ross setion is expeted to arise rather from the sα(t) term than from
F (t).For small values of t or u the ∆ trajetory is the dominant one, therefore we ompute theross setion divided by s2α∆(t)−2:

dσ/dt

s2α∆(t)−2
∝ F (t) for t→ 0. (6.53)The results are presented in Fig. 6.9, where the ross setion dσ/dt divided by s2α∆(t)−2 isgiven as a funtion of −t for two di�erent .m. energies. One noties, that for −t → 0 theross setion (dσ/dt)/s2α∆(t)−2 shows a behavior, whih is approximately independent of s,as expeted from Regge theory, and approahes a onstant value. The existing ross setiondata, as indiated by the data taken at √s = 3.686 GeV in Fig. 6.9, have not yet reahedthe region of suh small values of −t, where an extrapolation of (dσ/dt)/s2α∆(t)−2 ould beperformed by a onstant.110



6.4 Timelike Pion Photoprodution within a Regge Framework6.4 Timelike Pion Photoprodution within a Regge Framework6.4.1 General Analysis of the Annihilation Cross SetionAfter speifying the Regge pole model, we study the proess
p̄(p1, λN1

) + p(p2, λN2
) → π0(qπ) + γ∗(q, λγ)

→ π0(qπ) + e−(k1, h1) + e+(k2, h2),
(6.54)in the framework of one-photon exhange, starting with a model independent analysis of theannihilation ross setion, whih will be performed by taking properties of the eletromag-neti interation into aount. The 5-fold di�erential ross setion for the proess is de�nedas

dσ =
1

4
√

(p1 · p2)2 −m4
N

(
d3~qπ

(2π)3 2Eπ

)(
d3~k1

(2π)3 2k01

)(
d3~k2

(2π)3 2k02

)

× (2π)4 δ
(
p1 + p2 − qπ − k1 − k2

) 1
4

∑

λNi
,hi

|Aγ∗ |2,
(6.55)with the spin-averaged squared matrix element |Aγ∗ |2,

|Aγ∗ |2 = 1

4

∑

λNi
,hi

|Aγ∗ |2, (6.56)where the amplitude Aγ∗ has been introdued in Eq. (6.5). In the analysis, the dependeneon the pion variables as well as on the kinemati variables of the lepton pair are taken intoaount, whih is assoiated with an experimental setup, where all three partiles of the �nalstate are deteted.The squared amplitude |Aγ∗ |2 an be deomposed into a hadroni and a leptoni ontri-bution:
|Aγ∗ |2 =

∑

λγ=0,±1

1

4

∑

λNi
,hi

∣∣∣
(
Mµ

γ∗ · ε∗µ(q, λγ)
) 1

q2

(
εν(q, λγ)ū(k1) eγ

ν v(k2)
)∣∣∣

2
,

=
1

q4

∑

λγ=0,±1

1

4

∑

λNi
,hi

∣∣∣Mµ
γ∗ · ε∗µ(q, λγ)

∣∣∣
2 ∣∣∣εν(q, λγ)Lν

∣∣∣
2
,

(6.57)where ε(q, λγ) is the polarization vetor of the virtual photon. Mµ
γ∗ is the amplitude ofthe hadroni proess pp̄ → π0γ∗ and Lµ is the amplitude of the leptoni reation. In theunpolarized ase it is given by:

∑

h1,h2

LµLν∗ = 4e2
(
kµ1 k

ν
2 + kν1 k

µ
2 −

1

2
k2gµν

)
, (6.58)whih is symmetri with respet to the interhange µ↔ ν. An expliit form of the hadroniontribution is not given at this point of the analysis. The separation of the amplitude isindependent of any spei� form of the hadroni interation. 111



Chapter 6 Nuleon Form Fators in the Unphysial Region
Φe+e−

θe+e−

θπ
p̄ p

π0

γ∗

e−

e+Figure 6.10: Kinematis of the p̄p→ π0e+e− proess.Both ontributions of Eq. (6.57),
∣∣Mµ

γ∗ ε∗µ(q, λγ)
∣∣2 and ∣∣εν(q, λγ)ū(k1) eγν v(k2)

∣∣2, (6.59)are Lorentz invariants, thus one an hoose any referene frame for the alulation. Theadvantage of suh a separation is, that one an easily alulate the hadroni and leptoniproesses in two di�erent referene frames.The hadroni proess, taking plae in the hadroni plane, whih is hosen to be the x-z-plane, is onsidered in the .m.-frame of the nuleon pair, with the three-momentum of theantiproton pointing in the diretion of the z-axis. The hadron and meson momenta havebeen introdued in Eq. (6.19). In the ase of a virtual photon, the photon and pion energiesare
q0 =

s−m2
π + q2

2
√
s

, Eπ =
s+m2

π − q2
2
√
s

. (6.60)The leptoni subproess γ∗ → e+e− is omputed in the γ∗-rest frame, with the 4-momentumof the virtual photon given by
q =

(√
q2, 0, 0, 0

) (6.61)and where the lepton momenta an be written as
k1 =

√
q2

2

(
1, sin θe+e− cos Φe+e− , sin θe+e− sinΦe+e− , cos θe+e−

)
,

k2 =

√
q2

2

(
1,− sin θe+e− cos Φe+e− ,− sin θe+e− sinΦe+e− ,− cos θe+e−

)
.

(6.62)Therefore, the angles θe+e− and Φe+e− are hosen as two independent kinemati variablesdesribing the leptoni subproess. The hadroni part of the amplitude depends on the .m.energy √s, the virtuality of the photon q2, and the Mandelstam variable t, whih give rise tothe pion sattering angle θπ. The kinematis is illustrated in Fig. 6.10. Suh a hoie of thereferene frames enables a simple identi�ation of the allowed kinematial range in terms ofthe 5 variables.112



6.4.1 The p̄p→ π0e+e− Proess within a Regge FrameworkThe integration over the phase spae an be performed using
1

(2π)5

(
d3~qπ
2Eπ

)(
d3~k1
2k01

)(
d3~k2
2k02

)
δ(4)
(
p1 + p2 − qπ − k1 − k2

)

=
1

(2π)5

(
d3~qπ
2Eπ

)(
d3~q

2q0

)
δ(4)
(
p1 + p2 − qπ − q

)
dq2
(
d3~k1
2k01

)(
d3~k2
2k02

)
δ(4)
(
q − k1 − k2

)
.(6.63)The leptoni part in the γ∗ rest frame is

(
d3~k1
2k01

)(
d3~k2
2k02

)
δ(4)
(
q − k1 − k2

)
=

1

8
dΩe+e− , (6.64)with the leptoni solid angle dΩe+e− . Evaluating the phase spae of the hadroni subproessin the .m. frame leads to

(
d3~qπ
2Eπ

)(
d3~q

2q0

)
δ(4)
(
p1 + p2 − qπ − q

)
dq2 =

1

4
√
s
|~q | dq2dΩγ , (6.65)where |~q | refers to the momentum of the virtual photon in the .m. frame. Finally, theexpression of the di�erential ross setion is reeived as

dσ

dt dq2 dΩe+e−
=

1

(2π)464s(s − 4m2
N )
|Aγ∗ |2. (6.66)Using the deomposition of the amplitude as presented in Eq. (6.57), the di�erential rosssetion of the reation an be expressed by

dσ

dt dq2 dΩe+e−
=

1

16π2s(s− 4m2
N )

e2

(4π)2 8 q2
4π

3
· W(θe+e− ,Φe+e−), (6.67)where W(θe+e− ,Φe+,e−) is the deay angular distribution of the e+e− pair, giving rise to theangular dependene of the lepton pair:

W(θe+e− ,Φe+e−) =
3

4π

[
sin2 θe+e−ρ00 + (1 + cos2 θe+e−)ρ11

+
√
2 sin 2θe+e− cos Φe+e−Re[ρ10] + sin2 θe+e− cos 2Φe+e−Re[ρ1−1]

]
.(6.68)The density matrix ρλλ′ is de�ned as

ρλλ′ =
(
Mµ

γ∗ ε∗µ(λγ)
)(
Mµ

γ∗ ε∗µ(λ
′
γ)
)∗
, for λγ , λ′γ = 0,±1. (6.69)The expression of W(θe+e− ,Φe+e−) in Eq. (6.68) is model independent, whih means thatit is not related to any partiular hoie of the hadroni interation in the proess. Alldependenes on the lepton variables θe+e− and Φe+e− are fully ontained in the expressionof Eq. (6.68), whih is a funtion of four di�erent independent angular strutures, namely

1, cos2 θe+e− , sin 2θe+e− cos Φe+e− , sin2 θe+e− cos 2Φe+e− . (6.70)113



Chapter 6 Nuleon Form Fators in the Unphysial RegionHene, the density matrix elements an be determined using di�erent angular on�gurations.The dependene on the hadroni variables s, cos θ and q2 is ompletely absorbed in thedensity matrix elements ρ.Not all of the density matrix elements ρλλ′ are independent. From Eq. (6.69) one aneasily see, that the density matrix satis�es
ρλλ′ = ρ∗λ′ λ. (6.71)Furthermore, from parity onservation one �nds the onstraints

ρ−λ−λ′ =
(
− 1
)λγ−λ′

γ ρλλ′ . (6.72)6.4.2 Results within a Regge FrameworkIn the previous subsetion the proess has been analyzed in the most general way, with-out de�ning the expliit form of the hadroni amplitude Mγ∗ . The expressions found inEqs. (6.68) and (6.67) are model independent. However, in order to obtain numerial resultsone has to use a model to haraterize the hadroni subproess. We hoose the Regge polemodel, whih has been used in Se. 6.1.1 for investigating the pp̄→ π0γ proess.Sine a virtual photon is produed, one has to speify the eletromagneti form fatorsparametrizing the γ∗NN and γ∗N∆ verties. For the eletromagneti form fators of thenuleon a VMD model is used, given in [48℄, for the purpose of the omputation of the rosssetion. Eventually, the aim of the present work is to provide a further onstraint on futureextrations of timelike nuleon form fators.For the magneti dipole form fator of the N → ∆ transition, we use the results in thelarge Nc limit, whih an be written as [123℄:
gM (q2) =

gM (0)

κV

[
F p
2 (q

2)− Fn
2 (q

2)
]
, (6.73)where F p

2 (Fn
2 ) is the Pauli form fator of the proton (neutron), for whih the desription ofthe VMD model will be used, and κV = κp − κn = 3.70.The results of the di�erential ross setion dσ/dt dq2 dΩe+e− as a funtion of cos θe+e− arepresented in Fig. 6.11 for several kinematial onditions. We display the N trajetory ontri-butions, orresponding to the red urves, and (N+∆) trajetory ontributions as introduedin Eq. (6.50), indiated by the blue urves, for the angles Φe+e− = 0 and Φe+e− = π. Thedependene on the angle Φe+e− appears as an asymmetri behavior of the ross setion withrespet to cos θe+e− . As virtuality of the photon q2 = 0.5 GeV2 and q2 = 1 GeV2 has beenhosen for the alulation.For Φe+e− = π/2, the resulting ross setion is symmetri, whih an be derived from thegeneral form of the deay angular distribution W, given by Eq. (6.68). The only strutureof W being an odd funtion of cos θ, the fator in front of ρ10, vanishes for Φe+e− = π/2.Using the Born diagram model suggested in Ref. [109℄, one obtains a ross setion, whihis 1 to 4 orders of magnitude larger than the results of the Regge pole model, depending onthe variation of the kinemati parameters s, q2 and θπ.The integrated ross setions an be used to investigate the density matrix elements ρλ, λ′ .114
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[
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,

(6.76)depending on the density matrix elements ρ00 and ρ11.Aordingly, an investigation of the di�erential ross setions dσ/dt dq2 dΩe+e− , as well asthe ross setions integrated over the azimuthal angle Φe+e− and the polar angle θe+e− , and
dσ/d cos θπdq

2 allows to aess all four density matrix elements ρλλ′ through a separation ofthe matrix elements from the angular dependenies of the ross setions.As seletive preditions, the results of the ross setions (6.74), and (6.75) for s = 5 GeV2,
q2 = 1 GeV2 and θπ = π/3 are shown in Fig. 6.12, using both N trajetory and (N + ∆)trajetory exhange given by Eq. (6.50). The ross setion integrated over the polar angle,shown in the left panel of Fig. 6.12, is symmetri with respet to cos θ, as one an inferfrom the general expression given in Eq. (6.74). The integrated ross setion of Eq. (6.75),presented in the right panel of Fig. 6.12, has a periodiity of π due to the cos 2Φe+e− struture.The t dependene of the density matrix elements ρλλ′ is presented in Fig. 6.13 using a
(N + ∆) trajetory exhange as introdued in Eq. (6.50) for the region s ≫ |t|, whih isdominated by the t-hannel Regge amplitude. The density matrix element ρ11, shown in theleft panel of Fig. 6.13, yields the dominant ontribution to the ross setion, sine it is aboutone order of magnitude larger ompared to the three other strutures, presented in the rightpanel of Fig. 6.13.An alternative alulation is the evaluation of the whole proess in the γ∗ rest frame. In116
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(6.77)Using the short-hand notation of the hadroni matrix element
Mµν ≡ Mµ

γ∗

(
Mν

γ∗

)∗ (6.78)the squared matrix element in terms of the hadroni tensor an be found as
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2
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2
sin2 θ

)

− sin θe+e− cos θe+e− cos Φe+e−
(
M31 +M13

)

+
1

2
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]
.

(6.79)
Integrating the angular deay distribution over the azimuthal angle and polar angle gives
∫ 2π
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)
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[
M33 +M11 +M22

]
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(6.80)
whih is in agreement with the results presented in Ref. [110℄, where the analysis of thereation has been performed in the γ∗ rest frame. Suh observables allow to aess di�erentombinations of the hadroni matrix elements.6.5 ConlusionsIn this hapter the proess pp̄ → π0e+e− has been studied, giving a model independentexpression of the ross setion in terms of the lepton pair angular distribution and presentingresults within a Regge pole approah. Suh a model desription is appliable for high-energyproesses in the forward and bakward angular regions.It has been found that a model based on nuleon and ∆ Regge trajetory exhangesprovides a good desription of the data of the real photoprodution proess pp̄ → π0γ inthe energy range of s ≃ 8.5 − 14 GeV2. Applying this model to pp̄ → π0e+e− allows forpreditions of the angular dependene of the di�erential ross setion, whih an be used toextrat the timelike form fators in the unphysial region as well as their phases, in kinematiswhih will be aessible by the PANDA�FAIR experiment.The Regge approah an be extended to study polarization observables for pp̄→ π0e+e−and furthermore, to the analysis of other proesses, suh as two-pion prodution, p p̄→ π0π0and p p̄→ π−π+, or the spaelike reation γ∗p→ π0p in the forward and bakward angularregime.
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Chapter 7Conlusions and OutlookIn this thesis di�erent aspets of probing the struture of the nuleon by means of theeletromagneti interation have been studied. The eletromagneti interation o�ers a learprobe, whih provides aess to the eletromagneti form fators, whih are one of the mostbasi observables regarding the omposite struture of the nuleon.The main fous of the thesis was on two-photon exhange orretions in form fator mea-surements, whih are expeted to explain the disrepany between the results of the formfator ratio GE/GM found in unpolarized Rosenbluth measurements and polarization exper-iments of elasti eletron-proton sattering. Understanding this disrepany is of partiularimportane towards �nding a onsistent desription of the eletromagneti form fators. Theappearane of the ontraditing form fator results has triggered a new �eld studying thein�uene of two-photon exhange orretions in order to reonile both experimental meth-ods.In this thesis a ombined analysis of high-preision Rosenbluth data and polarizationobservables for elasti eletron-proton sattering has been presented. The available rosssetion data and the results of polarization measurements, both performed at similar valuesof momentum transfer, allows for an empirial determination of the two-photon amplitudes.Using the assumption that two-photon exhange is the soure of the disrepany, the two-photon amplitudes have been found to be in the 2-3 % range. One amplitude (YM ) an bereliably extrated from the orretions to the unpolarized ross setion. Improving on theextration of the other two amplitudes requires a further improvement in the preision ofthe polarization experiments. The determination of the two-photon amplitudes allows for apredition of the e+p/e−p ross setion ratio, for whih dediated experiments are underway,giving rise to e�ets of several perent for the measured kinematial range of the experiments.Furthermore, 2γ-exhange in the orresponding rossed timelike annihilation proesses hasbeen studied. With regard to forthoming high preision measurements of the timelike formfators, it is important to estimate suh orretions. Two di�erent approahes have been usedin order to perform the alulation of the two-photon exhange ontribution to the timelikeannihilation proess pp̄ → e+e−, both based on the onept of fatorization. These studiesare the �rst alulations of timelike two-photon exhange orretions overing the region ofintermediate and larger momentum transfers, for whih the form fator measurements willbe performed.The �rst method is based upon perturbative QCD fatorization, allowing to fatorizethe amplitude of the proess into a non-perturbative part and a hard subproess, in whihall three valene quarks of the nuleon partiipate. The non-perturbative ontribution isrepresented by the Distribution Amplitudes of the proton and antiproton. Using di�erentparametrizations of the DAs, the 2γ-orretions to the ross setion were found to be small,leading to e�ets of ∼ 1% at most. In the seond approah the onept of Generalized119



Chapter 7 Conlusions and OutlookDistribution Amplitudes has been applied, whih are the timelike analogon of the GeneralizedParton Distributions. Within this model, the annihilation proess takes plaes only at asingle quark-antiquark pair in the hard part of the amplitude. The two-photon orretionsobtained within this approah are slightly larger, reahing values of ∼ 2% in maximum.However, the timelike 2γ-orretions are smaller than those found for the spaelike proess,whih suggests that the impat of two-photon exhange is less important for the extrationof the form fators in the timelike region. The small 2γ-exhange ontributions make ithallenging to observe suh e�ets in unpolarized ross setion measurements.Two-photon exhange in the reation pp̄ → e+e− manifests itself in an odd ontribu-tion with respet to forward and bakward .m. sattering angles, giving rise to a forward-bakward asymmetry. Sine the obtained two-photon ontributions depend on the parame-trizations of the DAs and GDAs, respetively, an extration of the orretions through anaurate measurement of the asymmetry o�ers the opportunity to probe and onstrain thesenon-perturbative objets.Moreover, the perturbative QCD fatorization approah has been applied to investigatethe two-boson exhange ontributions appearing in parity-violating elasti eletron-protonsattering. Parity violating asymmetries are sensitive to the interferene term of one-photonand Z boson exhange amplitudes of elasti ep-sattering, providing aess to the strangequark ontribution and the weak harge of the nuleon. Applying the pQCD fatorizationapproah, it was found that the two-boson exhange orretions to the asymmetry are in therange of . 1%, where the ontributions of di�erent exhange diagrams have opposite signsand partially anel eah other, leading to small orretions in total.In addition, the proess p p̄ → π0e+e− has been analyzed, whih attrated attention dueto the possibility to probe the nuleon eletromagneti form fators in the unphysial regionbelow the two-nuleon prodution threshold within this reation. No data of this proess existso far, but measurements are planned by forthoming experiments. Data of the form fatorsin the unphysial region would ertainly improve our understanding of nuleon struture.The annihilation proess has been investigated within a phenomenologial model based onRegge theory. Prior to this, the validity of the Regge approah has been tested in the proessof real photoprodution p p̄→ π0γ, for whih data in the energy range of s ≃ 8.5− 14 GeV2exist. It has been found that an approah inluding nuleon and∆ Regge trajetory exhangeprovides a good desription of the data of real photoprodution over the measured range.Subsequently, the reation p p̄ → π0e+e− has been analyzed, where model independentexpressions of the ross setion in terms of the angular distribution of the lepton pair as wellas preditions of the angular dependene of the ross setion within the Regge approah hasbeen presented.The disussed Regge based model an be extended to the analysis of further proesses, suhas the spaelike reation γ∗p → π0 p, or two-pion prodution, p p̄ → π0π0 and p p̄ → π−π+,in the forward and bakward angular regime. The latter proess represents an importantbakground reation with respet to timelike form fator measurements, whih are plannedin the near future by the PANDA experiment at FAIR.
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Appendix ANotations and ConventionsA.1 Lorentz VetorsThe ontravariant representation xµ and ovariant representation xµ of Lorentz vetors,whih are given by
xµ ≡ (x0, x1, x2, x3) = (x0, ~x), and xµ ≡ (x0, x1, x2, x3) = (x0,−~x), (A.1)respetively, are onneted through

xµ = gµνxν . (A.2)The metri tensor gµν is de�ned by
gµν :=




+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (A.3)A.2 Light-Cone CoordinatesLight-one oordinates have been introdued with respet to the light-one basis n and n̄and the transverse ontribution a⊥:

n̄µ =
(
1, 0, 0, 1

)
, nµ =

(
1, 0, 0,−1

)
,with n̄2 = n2 = 0. n̄ · n = 2

aµ⊥ =
(
0, a1, a2, 0

)
.

(A.4)Any 4-vetor an be deomposed with respet to the light-one basis as
pµ =

n̄µ

2
(n · p)︸ ︷︷ ︸ +

nµ

2
(n̄ · p)︸ ︷︷ ︸ + pµ⊥, (A.5)

p+ p−and an been expressed through the shorthand notation using p+, p−, p⊥:
pµ =

(
p+, p−, p⊥

)
≡
(
n · p, n̄ · p, p⊥

)
. (A.6)The salar-produt of two vetors is given by:

p1 · p2 = p+1 · p−2 + p−1 · p+2 + p1⊥ · p2⊥,in partiular: p2 = 2p+ · p− + p2⊥.
(A.7)
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Appendix A Notations and ConventionsA.3 Pauli and Dira MatriesThe Pauli matries are 2× 2 matries de�ned as
σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (A.8)whih satisfy

σiσj = 1+ i
3∑

k=1

ǫijkσk. (A.9)The Pauli spinors are de�ned by
χs= 1

2

=

(
1
0

)
, χs=− 1

2

=

(
0
1

)
. (A.10)The Dira matries are d× d matries (d ≥ 4), ful�lling the antiommutator relation

{γµ, γν} ≡ γµγν + γνγµ = 2gµν . (A.11)In this thesis, only the ase d = 4 has been onsidered. Additionally, the following ombina-tions of Dira matries have been used:
γ5 ≡ iγ0γ1γ2γ3, σµν ≡ i

2
[γµ, γν ] =

i

2
(γµγν − γνγµ) , (A.12)where γ5 ful�lls

{γ5, γµ} = 0, γ25 = 1. (A.13)Using light-one oordinates, the ombinations
γ± ≡

(
γ0 ± γ3

)
, γµ⊥ ≡

(
0, γ1, γ2, 0

) (A.14)an be introdued. Furthermore, one obtains the following relations:
γµ,† = γ0γµγ0, γ†5 = γ5, γT5 = γ5,

{γ±, γ±} = 0, {γ±, γ∓} = 4, {γ±, γµ⊥} = 0.
(A.15)For the traes over Dira matries one �nds:

Tr[γµγν ] = 4gµν

Tr[γµγνγργσ] = 4(gµνgρσ − gµρgνσ + gµσgνρ)

Tr[γµ1 · · · γµn ] = 0 for n odd
Tr[γ5] = 0

Tr[γ5γ
µγν ] = 0

Tr[γ5γ
µγνγργσ] = −4iǫµνρσ

Tr[γ5γ
µ1 · · · γµn ] = 0 for n odd. (A.16)

As an expliit representation of the Dira matries the Dira representation has been used:
γ0 =

( 12×2 0
0 −12×2

)
, γi =

(
0 σi

−σi 0

)
γ5 =

(
0 12×212×2 0

)
, (A.17)where σi are the Pauli matries.124



A.4 Dira SpinorsA.4 Dira SpinorsThe expansion of a fermion �eld is
ψ(x) =

∫
d3~p

(2π)3
1√
2p0

∑

s

{
a(p, s)u(p, s)exp(−ipx) + b†(p, s)v(p, s)exp(ipx)

}
,

ψ̄(x) =

∫
d3~p

(2π)3
1√
2p0

∑

s

{
b(p, s)v̄(p, s)exp(−ipx) + a†(p, s)ū(p, s)exp(ipx)

}
,

(A.18)where a† and b† reate a partile of kind a and b and u(p, s) and v(p, s) are the Dira spinors,whih satisfy
(γµpµ −m)u(p, s) = 0,

(γµpµ +m) v(p.s) = 0.
(A.19)The spinors ful�ll the ompleteness relations

∑

s

u(p, s)ū(p, s) = p/+m,

∑

s

v(p, s)v̄(p, s) = p/−m.
(A.20)In order to study transformation properties of ψ̄Γψ, where ψ(x) is a Dira spinor and Γis an arbitrary 4× 4 matrix, it is onvenient to deompose the expression with respet to itstransformation properties.A basis ontains 16 4×4 matries, whih are given by anti-symmetri ombinations of theDira matries:

1 salar 1

γµ vetor 4

σµν tensor 6

γµγ5 pseudovetor 4

γ5 pseudosalar 1

(A.21)where in the middle the transformation property of the matrix and on the r.h.s the numberof matries are given.The spinor of a spin-1/2-partile, with momentum ~p given by
~p = | ~p |




sin θ cosφ

sin θ sinφ

cos θ


 (A.22)and

E2 = m2 + |~p |2 (A.23)125



Appendix A Notations and Conventionsan be parametrized as
u(p,+) =

√
E +m




cos θ
2

sin θ
2 (cosφ+ i sinφ)

| ~p |
E+m cos θ

2

| ~p |
E+m sin θ

2 (cosφ+ i sinφ)



,

u(p,−) =
√
E +m




sin θ
2 (− cosφ+ i sinφ)

cos θ
2

| ~p |
E+m sin θ

2 (cosφ− i sinφ)

− | ~p |
E+m cos θ

2



,

(A.24)
and for antipartiles

v(p,+) =
√
E +m




| ~p |
E+m sin θ

2 (cos φ− i sinφ)

− | ~p |
E+m cos θ

2

sin θ
2 (− cosφ+ i sinφ)

cos θ
2



,

v(p,−) =
√
E +m




− | ~p |
E+m cos θ

2

− | ~p |
E+m sin θ

2 (cosφ+ i sinφ)

− cos θ
2

− sin θ
2 (cosφ+ i sinφ)



.

(A.25)
In some ases it is onvenient to use light front heliity spinors. The expression of thesespinors is obtained by a transformation of a spinor in the rest frame via a longitudinal anda transverse boost. The light front heliity spinors are given by

u(p,+) = N




p+ +m

p1 + ip2

p+ −m
p1 + ip2


 , u(p,−) = N




− p1 + ip2

p+ +m

p1 − ip2

− p+ +m


 ,

v(p,+) = −N




− p1 + ip2

p+ −m
p1 − ip2

− p+ −m


 , v(p,−) = −N




p+ −m
p1 + ip2

p+ +m

p1 + ip2


 ,with N−1 =

√
2p+,

(A.26)
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A.4 Dira Spinorswhere the “+“ and “−“ orrespond to a light-one heliity state of the partile with h = +1/2and h = −1/2, respetively. For m → 0 the light front heliity spinors are equivalent to theordinary heliity spinors.For a partile with four-momentum pµ, whih is moving fast in the +-diretion, one �nds
u(p,+) = N

(
(p+ +m)χ+

(p+ −m)χ+

)
, u(p,−) = N

(
(p+ +m)χ−

− (p+ −m)χ−

)
,

v(p,+) = N
(
−(p+ −m)χ−

(p+ +m)χ−

)
, v(p,−) = N

(
−(p+ −m)χ+

−(p+ +m)χ+

)
,with χ+ =

(
1
0

)
, χ− =

(
0
1

)
.

(A.27)
Using the projetors

Λ+ =
/̄n/n
4

=
γ−γ+

4
, Λ− =

/n/̄n
4

=
γ+γ−

4
, (A.28)gives

Λ+u(p,±) ∼ N p+

(
χ±

±χ±

)
∼
√
p+, Λ−u(p,±) ∼ N m

(
χ±

∓χ±

)
∼ 1√

p+
,

Λ+v(p,±) ∼ N p+

(
−χ∓

±χ∓

)
∼
√
p+, Λ−v(p,±) ∼ N m

(
χ∓

±χ∓

)
∼ 1√

p+
.(A.29)
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Appendix BAmplitudes within a pQCD FatorizationApproahIn this appendix the results of the di�erent diagrams of the hard subproesses ontributingto the 2γ-amplitude and γZ-amplitude alulated within the pQCD fatorization approahare given.B.1 Results of Two-Photon Exhange ContributionsThe amplitude for timelike two-photon exhange an be separated as
A2γ = Q2

uA
uu +QuQd(A

u1d +Au2d)

= Q2
u (A

uu
12 +Auu

34 ) +QuQd

(
Au1d

12 +Au1d
34 +Au2d

12 +Au2d
34

)
,

(B.1)with
Aq1q2

ij = Dq1q2
i +Dq1q2

j + rossed. (B.2)The supersript of Aq1q2 indiates to whih quarks the two photons ouple in the hardsubproess. The diagrams ontributing to the subproess are presented in table B.1. Theindies k of Dk in Eq. (B.2) refer to the gluon exhange as indiated in the diagrams oftable B.1. The amplitudes of the di�erent ontributions are found as
Auu

12 =
8G1
s3

ūlγµvl′

·
∫

d[xi]d[yi]

(x2x̄2x3)(y2ȳ2y3)

((V ′ +A′)(V +A) + 4T ′T )(1, 2, 3)

[x̄2(η − ȳ2) + ȳ2η̄][x̄2(y2 − η) + ȳ2η]

· N̄
(
(2η − 1)x2y2γ

µ
⊥ −

Pµ /K⊥

s
2(x2 + y2 − 2x2y2)

)
N,

(B.3)
Auu

34 =
8G1
s3

ūlγµvl′

·
∫

d[xi]d[yi]

(x2x̄2x3)(y2ȳ2y3)

((V ′ +A′)(V +A) + 4T ′T )(1, 2, 3)

[x̄2(η − ȳ2) + ȳ2η̄][x̄2(y2 − η) + ȳ2η]

· N̄
(
(2η − 1)x2y2γ

µ
⊥ −

Pµ /K⊥

s
2(x2 + y2 − 2x2y2)

)
N,

(B.4)
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Appendix B Amplitudes within a pQCD Fatorization Approah
Au1d

12 =
8G1
s3

ūlγµvl′

·
∫

d[xi]d[yi]

(x1x2x̄2)(y1y2ȳ2)

((V ′ +A′)(V +A) + 4T ′T )(1, 2, 3)

[x̄2(η − ȳ2) + ȳ2η̄][x̄2(y2 − η) + ȳ2η]

· N̄
(
(2η − 1)x2y2γ

µ
⊥ −

Pµ /K⊥

s
2(x2 + y2 − 2x2y2)

)
N,

(B.5)
Au1d

34 =
16G1
s3

ūlγµvl′

·
∫

d[xi]d[yi]

(x1x2x̄2)(y1y2ȳ2)

(V ′V +A′A)(1, 3, 2)

[x̄2(η − ȳ2) + ȳ2η̄][x̄2(y2 − η) + ȳ2η]

· N̄
(
(2η − 1)x2y2γ

µ
⊥ −

Pµ /K⊥

s
2(x2 + y2 − 2x2y2)

)
N,

(B.6)
Au2d

12 =
8G1
s3

ūlγµvl′

·
∫

d[xi]d[yi]

(x1x2x̄2)(y1y2ȳ2)

((V ′ +A′)(V +A) + 4T ′T )(1, 2, 3)

[x̄2(η − ȳ2) + ȳ2η̄][x̄2(y2 − η) + ȳ2η]

· v̄N ′

(
(2η − 1)x2y2γ

µ
⊥ −

Pµ /K⊥

s
2(x2 + y2 − 2x2y2)

)
uN ,

(B.7)
Au2d

34 =
16G1
s3

ūlγµvl′

·
∫

d[xi]d[yi]

(x1x2x̄2)(y1y2ȳ2)

(V ′V +A′A)(1, 3, 2)

[x̄2(η − ȳ2) + ȳ2η̄][x̄2(y2 − η) + ȳ2η]

· N̄
(
(2η − 1)x2y2γ

µ
⊥ −

Pµ /K⊥

s
2(x2 + y2 − 2x2y2)

)
N,

(B.8)
with G1 = e2

4

(
4π
3!

)2
αemαs.B.2 Results of γZ-Exhange ContributionsThe amplitude for γZ-exhange in ep-sattering an be expressed as
AγZ = Qu(A

uu +AudZ ) +QdA
uZd,with Auu = Au1u2Z

12 +Au1u2Z
34 +Au1Zu2

12 +Au1Zu2
34 ,

AudZ = Au1dZ
12 +Au1dZ

34 +Au2dZ
12 +Au2dZ

34 ,

AuZd = A
u1Z

d
12 +A

u1Z
d

34 +A
u2Z

d
12 +A

u2Z
d

34 ,

(B.9)
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B.2 Results of γZ-Exhange Contributions
x3 x2 x1

y3 y2 y1

q1

q2

×1
×3

×2

×4 Auu =Auu
12 +Auu

34

=Duu
1 +Duu

2 +Duu
3 +Duu

4 + rossed
x3 x2 x1

y3 y2 y1

q1

q2

1×
×3

2×

×4 Au1d =Au1d
12 +Au1d

34

=Du1d
1 +Du1d

2 +Du1d
3 +Du1d

4 + rossed
x3 x2 x1

y3 y2 y1

q1

q2

1×

×3

2× ×4

Au2d =Au2d
12 +Au2d

34

=Du2d
1 +Du2d

2 +Du2d
3 +Du2d

4 + rossed
Table B.1: Diagrams ontributing to the subproess of 2γ-exhange within the pQCD fa-torization approah. The ×'s indiate the possibilities to attah the gluon. Thesubsripts 1-4 ofDi refer to the gluon exhange as given in the Feynman diagrams.

131



Appendix B Amplitudes within a pQCD Fatorization ApproahAgain, the supersript of A indiates to whih quarks the photon and the Z boson ou-ple, while the subsript Z refers to the Z boson oupling. The Feynman diagrams of thesubproess are presented in table B.2.The amplitudes have been deomposed with respet to the vetor (V) and axial-vetor (A)ontribution, orresponding to a vetor and axial-vetor oupling of the hadroni urrent,respetively:
Auu, V =

8G2
Q4

guV ul′ γµ(g
e
V − geAγ5)ul

×
∫

d [xi] d[yi]

x1x̄1x2 y1ȳ1y2

1

[x̄1(y1 − ζ) + ȳ1ζ + iε]
[
[x̄1(ζ − ȳ1) + ȳ1ζ̄ + iε

]

×
{
2
[
(V ′ −A′)(V −A) + 4TT ′

]
(1, 3, 2) (x̄1 ȳ1 + x1y1)

× N̄ γµ⊥

{
(2ζ − 1)x1y1 +

/K⊥P
µ

Q2
2(x1 + y1 − 2x1y1)

}
N,

(B.10)
Auu,A =

8G2
Q4

guA ul′ γµ(g
e
V − geAγ5)ul

×
∫

d [xi] d[yi]

x1x̄1x2 y1ȳ1y2

1

[x̄1(y1 − ζ) + ȳ1ζ + iε]
[
[x̄1(ζ − ȳ1) + ȳ1ζ̄ + iε

]

×
{
− 2

[
(V ′ −A′)(V −A)− 4TT ′

]
(1, 3, 2) x̄1 ȳ1

+ 2
[
(V ′ −A′)(V −A) + 4TT ′

]
(1, 3, 2)x1y1

}

× N̄ γ5 γ
µ
⊥

{
(2ζ − 1)x1y1 +

/K⊥P
µ

Q2
2(x1 + y1 − 2x1y1)

}
N,

(B.11)
Au1Zd, V =

8G2
Q4

gdV ul′ γµ(g
e
V − geAγ5)ul

×
∫

d [xi] d[yi]

x1x̄1x2 y1ȳ1y2

1

[x̄1(y1 − ζ) + ȳ1ζ + iε]
[
[x̄1(ζ − ȳ1) + ȳ1ζ̄ + iε

]

×
{
2
[
(V ′ −A′)(V −A) + 4TT ′

]
(1, 2, 3) x̄1 ȳ1 + 4

[
V ′V +A′A

]
(3, 2, 1)x1y1

}

× N̄ γµ⊥

{
(2ζ − 1)x1y1 +

/K⊥P
µ

Q2
2(x1 + y1 − 2x1y1)

}
N, (B.12)132



B.2 Results of γZ-Exhange Contributions
Au2Zd, V = +

8G2
Q4

guV ul′ γµ(g
e
V − geAγ5)ul

×
∫

d [xi] d[yi]

x1x̄1x2 y1ȳ1y2

1

[x̄1(y1 − ζ) + ȳ1ζ + iε]
[
[x̄1(ζ − ȳ1) + ȳ1ζ̄ + iε

]

×
{
2
[
(V ′ −A′)(V −A) + 4TT ′

]
(1, 2, 3)x1y1 + 4

[
V ′V +A′A

]
(3, 2, 1) x̄1 ȳ1

}

× N̄ γµ⊥

{
(2ζ − 1)x1y1 +

/K⊥P
µ

Q2
2(x1 + y1 − 2x1y1)

}
N, (B.13)

Au1Zd, A =
8G2
Q4

gdA ul′ γµ(g
e
V − geAγ5)ul

×
∫

d [xi] d[yi]

x1x̄1x2 y1ȳ1y2

1

[x̄1(y1 − ζ) + ȳ1ζ + iε]
[
[x̄1(ζ − ȳ1) + ȳ1ζ̄ + iε

]

×
{
2
[
(V ′ −A′)(V −A)− 4TT ′

]
(1, 2, 3) x̄1 ȳ1 + 4

[
V ′V +A′A

]
(3, 2, 1)x1y1

}

× N̄ γ5 γ
µ
⊥

{
(2ζ − 1)x1y1 +

/K⊥P
µ

Q2
2(x1 + y1 − 2x1y1)

}
N, (B.14)

Au2Zd, A =
8G2
Q4

guV ul′ γµ(g
e
V − geAγ5)ul

×
∫

d [xi] d[yi]

x1x̄1x2 y1ȳ1y2

1

[x̄1(y1 − ζ) + ȳ1ζ + iε]
[
[x̄1(ζ − ȳ1) + ȳ1ζ̄ + iε

]

×
{
2
[
(V ′ −A′)(V −A) + 4TT ′

]
(1, 2, 3)x1y1 + 4

[
V ′A+A′V

]
(3, 2, 1) x̄1 ȳ1

}

× N̄ γ5 γ
µ
⊥

{
(2ζ − 1)x1y1 +

/K⊥P
µ

Q2
2(x1 + y1 − 2x1y1)

}
N, (B.15)with G2 =

1

16

(
4π

3

)2

αem αS
GF

2
√
2
.
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Appendix B Amplitudes within a pQCD Fatorization Approah
x1

x2

x3

y1

y2

y3

× ×
× ×
43

1 2

Au1u2Z = Au1u2Z ,V +Au1u2Z ,A

= Du1u2Z
1 +Du1u2Z

2 +Du1u2Z
3 +Du1u2Z

4

+ rossed
x1

x2

x3

y1

y2

y3

× ×
× ×
43

1 2

Au1Zu2 = Au1Zu2,V +Au1Zu2,A

= Du1Zu2

1 +Du1Zu2

2 +Du1Zu2

3 +Du1Zu2

4

+ rossed
x1

x2

x3

y1

y2

y3

× ×

× ×

43

1 2

Au1dZ = Au1dZ ,V +Au1dZ ,A

= Du1dZ
1 +Du1dZ

2 +Du1dZ
3 +Du1dZ

4

+ rossed
x1

x2

x3

y1

y2

y3

× ×

× ×

43

1 2

Au1Zd = Au1Zd,V +Au1Zd,A

= Du1Zd
1 +Du1Zd

2 +Du1Zd
3 +Du1Zd

4

+ rossed
x1

x2

x3

y1

y2

y3

× ×
× ×

43

1 2

Au2dZ = Au2dZ ,V +Au2dZ ,A

= Du2dZ
1 +Du2dZ

2 +Du2dZ
3 +Du2dZ

4

+ rossed
x1

x2

x3

y1

y2

y3

× ×
× ×

43

1 2

Au2Zd = Au2Zd,V +Au2Zd,A

= Du2Zd
1 +Du2Zd

2 +Du2Zd
3 +Du2Zd

4

+ rossedTable B.2: Diagrams ontributing to the subproess of γZ-exhange within the pQCD fa-torization approah. The ×'s indiate the possibilities to attah the gluon. Thesubsripts 1-4 ofDi refer to the gluon exhange as given in the Feynman diagrams.
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Appendix CForm Fator ParametrizationIn this appendix the form fator parametrizations, whih have been used in this thesis, aresummarized.C.1 Eletromagneti Nuleon Form FatorsSpaelike ModelsInverse polynomial model [107℄:
G i

E(Q
2),

G i
M (Q2)

µp
=
(
1 + p2Q

2 + p4Q
4 + · · · p2nQ2n

)−1
, (C.1)where the parameter obtained from �ts to the Rosenbluth data are

p2 p4 p6 p8

Gn
E 3.226 1.508 -0.3773 0.611

Gn
M/µn 3.19 1.335 0.151 -0.0114Friedrih-Walher parametrization [108℄:

G i
E(Q

2),
G i

M (Q2)

µp
= Gs(Q

2) + abQ
2Gb(Q

2),with Gs(Q
2) =

a10(
1 + Q2

a11

)2 +
a20(

1 + Q2

a21

)2 ,

Gb(Q
2) = e

− 1
2

(

(Q−Qb)
2

σb

)2

+ e
− 1

2

(

(Q+Qb)
2

σb

)2

,

(C.2)
where the parameters have been obtained from �ts to the form fators. In the ase of theneutron form fator it has been found:

a10 a11 a20 a21 ab Qb σb

Gn
E 1.04 1.73 -1.04 1.54 0.009 0.29 0.20

Gn
M/µn 1.012 0.770 -0.012 6.8 -0.011 0.33 0.14
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Appendix C Form Fator ParametrizationVMD ModelsIn Ref. [48℄, a nuleon form fator model for both spaelike as well as timelike eletromagnetiform fators has been presented.The spaelike parametrizations are given by
FS
1 (q

2) =
1

2
g(q2)

[
(1− βω − βφ)− βω

m2
ω

q2 −m2
ω

− βφ
m2

φ

q2 −m2
φ

]
,

F V
1 (q2) =

1

2
g(q2)

[
1− βρ − βρ

m2
ρ

q2 −m2
ρ

]
,

FS
2 (q

2) =
1

2
g(q2)

[
(0.12 + αφ)

m2
ω

q2 −m2
ω

− αφ

m2
φ

q2 −m2
φ

]
,

F V
2 (q2) =

1

2
g(q2)

[
− 3.706

m2
ρ

q2 −m2
ρ

]
,

(C.3)
with

g(Q2) =
1

(1− γq2)2 . (C.4)In order to take the non-negligible width of the ρ meson into aount, the propagator hasbeen replaed as
m2

ρ

q2 −m2
ρ

→
m2

ρ + 8Γρmπ/π

q2 −m2
ρ + (q2 − 4m2

π)Γρα(Q2)/mπ
, (C.5)with

α(Q2) =

(
Q2 + 4m2

π

Q2

)
2

π
log

(√
Q2 + 4m2

π +
√
Q2

2mπ

)
. (C.6)In the timelike region a phase has been introdued to the intrinsi form fators:

g(q2) =
1

(1− eiθγq2)2 . (C.7)The pole of the ρ meson has been modi�ed as
m2

ρ

q2 −m2
ρ

→
m2

ρ + 8Γρmπ/π

q2 −m2
ρ + (q2 − 4m2

π)Γρα(q2)/mπ − iΓρ4mπβ(q2)
, (C.8)with

α(q2) =

(
q2 − 4m2

π

q2

)
2

π
log

(√
q2 − 4m2

π +
√
q2

2mπ

)
,

β(q2) =

(
q2

4m2
π

− 1

)3/2(
q2

4m2
π

)−1/2

Θ
(
q2 − 4m2

π

)
.

(C.9)The free parameters are obtained by �tting the spaelike data, the phase from a �t to thetimelike data
βω = 1.102, βφ = 0.112, βρ = 0.672, αφ = −0.052,
γ = 0.25 GeV−2, θ = 53◦.

(C.10)
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C.2 Axial Nuleon Form FatorTimelike ModelsQCD-inspired form fator model:
|GE,M | =

B
q4
(
ln2 q2

Λ2 + π2
) , (C.11)where B is a free �t parameter.Improved �t of F2/F1 inluding logarithmi orretions to the power law fall o� as expetedfrom QCD [79℄:

F2

F1
= κp

1 +
(
Q2/0.791 GeV2

)2
ln7.1

(
1 +Q2/4m2

π

)

1 +
(
Q2/0.38 GeV2

)3
ln5.1 (1 +Q2/4m2

π)
. (C.12)C.2 Axial Nuleon Form FatorThe axial form fator in the spaelike region has been parametrized through a dipole form:

GA(Q
2) =

gA(
1 + Q2

m2
A

)2 , (C.13)with gA = 1.27 and mA = 1.026 GeV [84℄. In addition, this dipole parametrization has beenused in order to express the timelike axial form fator with Q2 → −q2.
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List of Aronyms
2γ two-photonDA Distribution AmplitudeFAIR Faility for Antiproton and Ion ResearhFermilab Fermi National Aelerator LaboratoryGDA Generalized Distribution AmplitudeGPD Generalized Parton DistributionJLab Thomas Je�erson National Aelerator FailityLEAR Low Energy Antiproton RingMAMI Mainz MirotronMESA Mainz Energy-Reovering Superonduting AeleratorPANDA Antiproton Annihilation at DarmstadtpQCD perturbative QCDPV parity-violatingQCD Quantum ChromodynamisQED Quantum EletrodynamisSLAC Stanford Linear Aelerator CenterSSA single spin asymmetryTBE two-boson exhangeVMD vetor meson dominane
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