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Abstra
tThe thesis investigates the nu
leon stru
ture probed by the ele
tromagneti
 intera
tion. Oneof the most basi
 observables, re�e
ting the ele
tromagneti
 stru
ture of the nu
leon, are theform fa
tors, whi
h have been studied by means of elasti
 ele
tron-proton s
attering withever in
reasing pre
ision for several de
ades. In the timelike region, 
orresponding withthe proton-antiproton annihilation into a ele
tron-positron pair, the present experimentalinformation is mu
h less a

urate. However, in the near future high-pre
ision form fa
tormeasurements are planned.About 50 years after the �rst pioneering measurements of the ele
tromagneti
 form fa
tors,polarization experiments stirred up the �eld sin
e the results were found to be in striking
ontradi
tion to the �ndings of previous form fa
tor investigations from unpolarized mea-surements. Triggered by the 
on�i
ting results, a whole new �eld studying the in�uen
eof two-photon ex
hange 
orre
tions to elasti
 ele
tron-proton s
attering emerged, whi
h ap-peared as the most likely explanation of the dis
repan
y.The main part of this thesis deals with theoreti
al studies of two-photon ex
hange, whi
his investigated parti
ularly with regard to form fa
tor measurements in the spa
elike as wellas in the timelike region. An extra
tion of the two-photon amplitudes in the spa
elike regionthrough a 
ombined analysis using the results of unpolarized 
ross se
tion measurements andpolarization experiments is presented. Furthermore, predi
tions of the two-photon ex
hangee�e
ts on the e+p/e−p 
ross se
tion ratio are given for several new experiments, whi
h are
urrently ongoing.The two-photon ex
hange 
orre
tions are also investigated in the timelike region in thepro
ess pp̄→ e+e− by means of two fa
torization approa
hes. These 
orre
tions are found tobe smaller than those obtained for the spa
elike s
attering pro
ess. The in�uen
e of the two-photon ex
hange 
orre
tions on 
ross se
tion measurements as well as asymmetries, whi
hallow a dire
t a

ess of the two-photon ex
hange 
ontribution, is dis
ussed. Furthermore, oneof the fa
torization approa
hes is applied for investigating the two-boson ex
hange e�e
ts inparity-violating ele
tron-proton s
attering.In the last part of the underlying work, the pro
ess pp̄ → π0e+e− is analyzed with theaim of determining the form fa
tors in the so-
alled unphysi
al, timelike region below thetwo-nu
leon produ
tion threshold. For this purpose, a phenomenologi
al model is used,whi
h provides a good des
ription of the available data of the real photoprodu
tion pro
ess
pp̄→ π0γ.
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ZusammenfasssungDie vorliegende Dissertation untersu
ht die Struktur des Nukleons mittels elektromagneti-s
her We
hselwirkung. Formfaktoren sind mit die elementarsten Observablen, wel
he die elek-tromagnetis
he Struktur des Nukleons widerspiegeln, und werden seit mehreren Jahrzehntenmit Hilfe elastis
her Elektron-Proton-Streuung mit steigender Genauigkeit bestimmt. Derzeitartige Berei
h, wel
her der Proton-Antiproton-Verni
htung in ein Elektron-Positronpaarentspri
ht, ist bislang experimentell weniger gut erfors
ht. Allerdings sind in naher ZukunftMessungen der Formfaktoren mit hoher Präzision geplant.Ungefähr 50 Jahre na
h den ersten bahnbre
henden Messungen der elektromagnetis
henFormfaktoren sorgten Polarisationsexperimente für Aufsehen, deren Ergebnisse in groÿemWiderspru
h zu den bisherigen Resultaten der Formfaktoruntersu
hungen standen. Ausge-löst dur
h diese widersprü
hli
hen Ergebnisse entstand ein neues Arbeitsfeld, wel
hes Zwei-Photon-Austaus
hkorrekturen zur elastis
hen Elektron-Proton-Streuung untersu
ht, die alswahrs
heinli
hste Erklärung der Diskrepanz gelten.Der Hauptteil der vorliegenden Arbeit bes
häftigt si
h mit theoretis
hen Studien des Zwei-Photon-Austaus
hes, der insbesondere mit Hinbli
k auf Messungen der Formfaktoren sowohlim raumartigen als au
h zeitartigen Berei
h untersu
ht wird. Eine kombinierte Analyse derDaten aus unpolarisierten Wirkungsquers
hnittsmessungen und Polarisationsexperimentenerlaubt eine Bestimmung der Zwei-Photon-Amplituden im raumartigen Berei
h. Eine Vor-hersage für den Ein�uss des Zwei-Photon-Austaus
hes auf das Verhältnis der e+p und e−pWirkungsquers
hnitte kann somit präsentiert werden, das momentan an vers
hiedenen Ex-perimenten untersu
ht wird.Die Zwei-Photon-Austaus
hkorrekturen werden zudem im zeitartigen Berei
h für den Pro-zess pp̄→ e+e− mittels zweier Faktorisierungsansätze untersu
ht. Die auf diese Weise erhal-tenen Korrekturen sind kleiner als jene, die für den raumartigen Streuprozess ermittelt wur-den. Der Ein�uss dieser Zwei-Photon-Austaus
hkorrekturen auf Messungen des Wirkungs-quers
hnittes sowie Asymmetrien, wel
he einen direkten Zugang zu Beiträgen des Zwei-Photon-Austaus
hes ermögli
hen, wird diskutiert. Auÿerdem wird einer der Faktorisierungs-ansätze zur Untersu
hung von E�ekten des Zwei-Boson-Austaus
hes in paritätsverletzenderElektron-Proton-Streuung angewandt.Im letzten Teil der vorliegenden Dissertation wird der Prozess pp̄→ π0e+e− mit dem Zieldie elektromagnetis
hen Formfaktoren im sogenannten unphysikalis
hen, zeitartigen Berei
hunterhalb der Produktionss
hwelle eines Nukleonpaares zu bestimmen, analysiert. Hierfürwird ein phänomenologis
hes Modell verwendet, wel
hes eine gute Bes
hreibung der vorhan-denen Daten für den Prozess der reellen Photoproduktion pp̄→ π0γ liefert.
v
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Chapter 1Introdu
tionThe idea of dis
rete 
onstituents building up all matter arose already thousands of years ago.Demo
ritus proposed the philosophi
al 
on
ept that all matter is 
omposed of indivisiblebuilding blo
ks, 
alled ατoµoς. This basi
 idea has been re
overed in the 18th and 19th
entury. At that time, all materials had been found to be made of 
ertain 
omponents, theatoms, whi
h were thought to be fundamental. However, the dis
overy of the ele
tron andnu
leus, as well as its 
onstituents, the proton and neutron, revealed the subatomi
 stru
tureand disproved the atoms' indivisibility.No eviden
e of the ele
tron being a 
omposite parti
le has been found until today. By
ontrast, sin
e the measurement of the proton magneti
 moment [1℄, whi
h di�ers signi�-
antly from the expe
ted value of a pointlike elementary parti
le, the question of the buildingblo
ks of the proton and neutron has emerged. A 
omplete des
ription of the proton andneutron internal stru
ture is still an unsolved problem of hadron and parti
le physi
s.Today the Standard Model of parti
le physi
s, as the theory of fundamental parti
lesand their intera
tions, des
ribes the 
omposition of matter and su

essfully explains a largevariety of phenomena of parti
le and hadron physi
s. Re
ently, the observation of a newboson at the Large Hadron Collider [2,3℄ is supposed to be the dis
overy of the last missingparti
le of the Standard Model, the Higgs boson.There are four fundamental for
es in nature, the strong for
e, the weak for
e, the ele
tro-magneti
 for
e and gravity, where the latter one is not in
luded in the Standard Model. Thefundamental 
onstituents 
an be 
lassi�ed into two 
ategories a

ording to how they intera
t,the leptons and the quarks, whi
h appear in three generations (or families) ea
h 
ontainingtwo parti
les. For ea
h of these parti
les a 
orresponding antiparti
le exists. The intera
tionbetween the parti
les is mediated via the so-
alled gauge bosons, to whi
h the parti
les 
an
ouple if they 
arry the 
harge of the appropriate intera
tion. The Higgs boson is essentialin order to explain the masses of the parti
les, whi
h are generated via the intera
tion withthe Higgs �eld. Leptons intera
t weakly, given by the ex
hange of the weak gauge bosons
W± and Z, and, in the 
ase of 
harged leptons, also ele
tromagneti
ally. By 
arrying anele
tri
 
harge, the parti
les 
an intera
t via 
ouplings to the photon, the transmitter ofthe ele
tromagneti
 intera
tion. Besides a weak and ele
tri
 
harge, the quarks 
arry anadditional 
harge, known as 
olor, whi
h enables them to 
ouple to gluons, the gauge bosonsmediating the strong for
e. The parti
les of the Standard Model are summarized in Fig. 1.1.The ele
tromagneti
 for
e is well des
ribed within a quantum �eld theory known as Quan-tum Ele
trodynami
s (QED), whose predi
tions have been tested experimentally with ex-tremely high a

ura
y. One 
an take advantage of the smallness of the ele
tromagneti

oupling, αem ∼ 1/137, whi
h enables a perturbative treatment of ele
tromagneti
 pro
essesas an expansion in terms of in
reasing powers of αem. QED and the weak intera
tion 
an beuni�ed to the ele
troweak gauge theory. 1
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Figure 1.1: Parti
les of the Standard Model: The un
harged leptons (νe, νµ, ντ ), the 
hargedleptons (e−, µ−, τ−) and the quarks (u, d, c, s, t, b), whi
h are arranged in threegenerations, as well as the gauge bosons of the weak (Z, W±), ele
tromagneti
(γ) and the strong intera
tion (g), and the Higgs boson (H).The theory of strong intera
tions, Quantum Chromodynami
s (QCD), des
ribes the inter-a
tion between quarks and gluons. The proton and neutron themselves, whi
h are denotedas nu
leons, are no elementary parti
les, just like all other observable strongly intera
tingparti
les, 
alled hadrons. Understanding the stru
ture of the nu
leon as a 
omplex systembuilt up of strongly intera
ting parti
les is one of the main tasks of hadron physi
s. Atpresent, the 
on
ept of the nu
leon is seen as a system 
ontaining three valen
e quarks andan arbitrary number of quark-antiquark pairs and gluons.The investigation of the nu
leon stru
ture is 
ompli
ated due to two remarkable features ofQCD. The �rst one, denoted as 
olor 
on�nement, manifests itself by the impossibility to ob-serve 
olored quarks and gluons as free parti
les. Therefore, the nu
leon stru
ture 
annot beinvestigated simply by a de
omposition into its 
onstituent parts. Instead, indire
t measure-ments have to be performed, whi
h allow 
on
lusions regarding the underlying properties ofthe nu
leon. The se
ond phenomenon, 
alled asymptoti
 freedom, 
hara
terizes the runningof the strong 
oupling αS , whi
h de
reases for in
reasing energies and even disappears, if theenergy tends to in�nity. The asymptoti
 freedom has been proved in [4, 5℄, rewarded by theNobel prize in 2004. A perturbative treatment of QCD at lower energies is not appli
able sofar due to large values of αS . A non-perturbative a

ess is given by latti
e gauge theories,where QCD is studied on a spa
e-time, whi
h is dis
retized into a �nite latti
e and evaluatednumeri
ally [6℄. Nevertheless, no analyti
al solutions of QCD at lower energies are known sofar.Besides numeri
al simulations using latti
e QCD, approa
hes to deal with pro
esses in-volving strongly intera
ting parti
les, su
h as nu
leons, at intermediate and low energies arene
essary. Anyhow, many rea
tions 
an be 
al
ulated at least in part by means of perturba-tive QCD (pQCD). This 
on
ept, known as QCD fa
torization, is based on the separationof the pro
ess into a part, for whi
h a perturbative treatment is appli
able, and a non-perturbative 
ontribution, whi
h has to be handled phenomenologi
ally. In order to dealwith hadroni
 rea
tions, su
h fa
torization approa
hes will be applied in the 
ourse of thisthesis.2
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 s
attering in theBorn approximationDespite the fa
t that the 
onstituents of the nu
leon 
annot be observed dire
tly, thereare several possibilities for probing properties of the proton and neutron. An ex
ellent toolto investigate the stru
ture of the nu
leon is ele
tron s
attering. Sin
e the interplay betweenthe ele
tron and the transferred photon is well des
ribed within QED, the ele
tromagneti
intera
tion provides a well known probe. Hen
e, one is able to infer information on the nu-
leon 
omposition from the results of s
attering experiments. The leading-order 
ontributionto elasti
 ele
tron-proton s
attering arises from the ex
hange of a single photon between theele
tron and proton, whi
h is known as the Born approximation and is depi
ted in Fig. 1.2.A milestone in the exploration of the sub-nu
lear stru
ture was rea
hed in the 1950s byHofstadter and 
ollaborators using elasti
 ele
tron-proton s
attering [7℄. These experimentsallowed for the �rst time to determine the so-
alled ele
tromagneti
 form fa
tors of thenu
leon, whi
h provided a 
onsiderable insight into the underlying stru
ture of the nu
leon,for whi
h Hofstadter was awarded the Nobel prize in 1961. Ele
tromagneti
 form fa
torsare the most basi
 observables re�e
ting the 
omposite nature of the nu
leon, giving rise tothe distribution of the 
harge and magneti
 moments inside the proton and neutron. Thisstru
ture is parametrized in terms of two form fa
tors, denoted as GE and GM , whi
h arefun
tions of the momentum transfer squared Q2, whi
h is mediated via the photon betweenthe ele
tron and the proton. This was the starting point for a large number of experiments,whi
h have measured the elasti
 ele
tron-proton s
attering 
ross se
tion with in
reasingpre
ision over a wide kinemati
al range in order to extra
t the ele
tromagneti
 form fa
tors.If ele
trons with higher energies s
atter o� nu
leons, the probability of an inelasti
 rea
tionis in
reasing, where instead of a single proton several parti
les are produ
ed in the �nal state.The high-energy s
attering pro
ess known as deep inelasti
 s
attering, e− + p → e− + X,is presented in Fig. 1.3, where X stands for a not further spe
i�ed hadroni
 �nal state.Measurements of su
h deep inelasti
 pro
esses have started in the 1960s, leading to signi�
antobservations 
on
erning the interiors of the proton. The results of these experiments 
an beexplained within the parton model, whi
h assumes that during the short intera
tion time thes
attering is performed at quasi-free pointlike obje
ts inside the nu
leon, denoted as partons[8℄. This was the �rst 
onvin
ing eviden
e for the existen
e of pointlike nu
leon 
onstituents,whi
h later have been identi�ed as quarks. These investigations have been awarded with theNobel prize in 1990. Within QCD fa
torization, the deep-inelasti
 s
attering 
ross se
tion3
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tor ratio µpGE/GM (with the magneti
 moment of the proton µp) ex-tra
ted in ele
tron-proton s
attering. The green data 
orrespond to the results ofRef. [10℄ via unpolarized measurements, the blue data points indi
ate the �ndingsof Refs. [9, 11℄ from polarization experiments.is given as a 
onvolution of the lepton-quark s
attering 
ross se
tion and a non-perturbative
ontribution denoted as parton distribution fun
tions, 
ontaining information on the partoni
nu
leon stru
ture.About 50 years after the pioneering experiments of Hofstadter et al. [7℄, form fa
tor inves-tigation through polarization measurements be
ame feasible, giving rise to additional andindependent experimental observables. However, the results of the form fa
tors extra
tedfrom polarization experiments are in striking 
ontradi
tion to the �ndings of the unpolarized
ross se
tion measurements [9℄. To illustrate this dis
repan
y, in Fig. 1.4 the results of theform fa
tor ratio GE/GM as found in the experiments of Refs. [9�11℄ are shown, where thegreen data points indi
ate the results of the unpolarized measurement [10℄ and the �ndings ofthe polarization experiments [9, 11℄ are represented by the blue data points. The noti
eabledi�eren
e between the two experimental methods is 
learly seen.These 
on�i
ting results led to intense studies, from both experimental and theoreti
alsides, attempting to explain and re
on
ile both experimental methods. Sin
e our under-standing of the ele
tromagneti
 stru
ture of the nu
leon is related to the knowledge of theele
tromagneti
 form fa
tors, it is of great importan
e to understand the dis
repan
y in orderto �nd a reliable pi
ture of the ele
tromagneti
 form fa
tors of the proton. Due to the fa
tthat all these measurements have been analyzed using the Born approximation, 
onsiderabledoubt on the validity of this approximation arose.Theoreti
al studies indi
ated that a possible explanation of the in
onsistent results 
anbe provided by two-photon ex
hange pro
esses, whi
h are next-to-leading order 
orre
tionsto the Born approximation. In the analysis of 
ross se
tion and polarization measurements,e�e
ts of the ex
hange of two or more photons have been negle
ted. Su
h 
ontributions aresuppressed by at least an additional fa
tor αem 
ompared to the leading terms, giving rise to
orre
tions of order of a few per
ent. Nevertheless, it has been shown that these 
orre
tions4



Figure 1.5: Sket
h of fa
torization approa
hes used in this thesis. Left panel: fa
torizationwithin the framework of GPDs. Right panel: fa
torization within a hard s
at-tering perturbative QCD approa
h. The purple regions are asso
iated with thepartoni
 subpro
esses, whi
h are dire
tly 
al
ulable, while the gray blobs indi
atethe non-perturbative 
ontributions.
an impa
t the form fa
tor extra
tion from the unpolarized 
ross se
tion measurementssigni�
antly.Elasti
 s
attering rea
tions allow only to reveal the form fa
tor stru
ture in the spa
elikeregion, 
orresponding to the region where the momentum transfer q2 = −Q2 of the pho-ton is negative. The timelike region of positive momentum transfer q2 
an be examinedwith the 
rossed pro
esses, as proton-antiproton annihilation into a lepton-antilepton pairor the vi
e versa rea
tion of the annihilation of a lepton-antilepton pair into a nu
leon andantinu
leon. A 
onsistent des
ription of the nu
leon ele
tromagneti
 stru
ture 
an only bea
hieved through detailed knowledge of the form fa
tors over the 
omplete kinemati
al range.So far, in the timelike regime only few data of the form fa
tors with less pre
ision exist. Newexperiments are planned to probe the form fa
tors to high a

ura
y in the timelike region.With regard to su
h a

urate experiments one has to be aware of two-photon ex
hange
ontributions, whi
h apparently have noti
eable e�e
ts on the extra
tion on spa
elike formfa
tors.The main part of this thesis deals with two-photon ex
hange 
orre
tions, whi
h are studiedin the spa
elike as well as in the timelike regions of momentum transfer. For this purpose,fa
torization approa
hes are applied for 
al
ulating the two-photon 
ontributions to timelikeannihilation pro
esses. Like the de
omposition of the deep inelasti
 s
attering 
ross se
tion,the 
onsidered fa
torization des
riptions state, that in high energy pro
esses the nu
leonsbehave like a set of free partons. The 
ross se
tion is then 
al
ulated from the 
ross se
tion ofthe pro
ess at parton level and the distribution fun
tions for �nding the 
orresponding partonstate in the hadrons. These fun
tions are non-perturbative obje
ts, whi
h are independentof the expli
it form of the partoni
 subpro
ess. This remarkable property allows to applyfa
torization models to two-photon ex
hange rea
tions, whi
h have been probed in otherpro
esses.The basi
 
on
epts of the two fa
torization approa
hes, whi
h are dis
ussed in this thesis,are sket
hed in Fig. 1.5. The purple regions indi
ate the pro
esses at the parton-level, whi
hare 
al
ulable within pQCD, while the gray blobs represent the non-perturbative parts. The�rst approa
h, illustrated in the left panel of Fig. 1.5, gives rise to the 
on
ept of the so-
alledgeneralized parton distributions (GPDs), whi
h e.g. have been dis
ussed extensively for the5



Chapter 1 Introdu
tionpro
ess of deeply virtual Compton s
attering. A single quark state of the involved hadronsparti
ipates in the partoni
 subpro
ess, whi
h is embedded into the nu
leons as des
ribedby the GPDs. The se
ond approa
h, presented by the graph in the right panel of Fig. 1.5,is based on hard s
attering perturbative QCD fa
torization, whi
h at parton level implies apro
ess with three a
tive valen
e quarks. The non-perturbative 
ontribution is given by theDistribution Amplitudes (DAs) of the nu
leon, des
ribing how the momenta of the nu
leonsare shared between the 
onstituents.With the aforementioned pro
esses it is not possible to rea
h the 
omplete allowed kine-mati
al range of the form fa
tors. The so-
alled unphysi
al region of momentum transfer,whi
h is the timelike region below the produ
tion threshold of two nu
leons, 
annot be a
-
essed. A part of the thesis fo
uses on the analysis of the pro
ess pp̄ → π0e+e− as a meansto provide 
onstraints on timelike nu
leon form fa
tors, parti
ularly in the unphysi
al region.OutlineThis thesis is organized as follows:In Chapter 2 an introdu
tion to the ele
tromagneti
 form fa
tors in the spa
elike andtimelike regions is given.Chapter 3 deals with the two-photon ex
hange e�e
ts in the elasti
 ele
tron-proton s
at-tering pro
ess. The general formalism of two-photon ex
hange is introdu
ed and the resultsof several model 
al
ulations are brie�y dis
ussed. In the se
ond part of the 
hapter a phe-nomenologi
al determination of the two-photon ex
hange 
orre
tions is presented. Using theavailable 
ross se
tion and polarization data, an extra
tion of the two-photon amplitudesis provided and predi
tions for experiments, whi
h are presently underway, are given. Theresults of this work appeared in Ref. [12℄.In Chapter 4 the two-photon ex
hange in the timelike region for the annihilation rea
tion
pp̄ → e+e− is studied. For the 
al
ulation of the two-photon ex
hange 
ontribution to the
ross se
tion of the pro
ess, two di�erent approa
hes are taken into a

ount, both based onfa
torization prin
iples, in oder to deal with the hadroni
 intera
tions. This work has in partbeen published in Ref. [13℄.In Chapter 5 one of the approa
hes used in the previous 
hapter is applied for the inves-tigation of the two-boson ex
hange 
ontribution in parity-violating elasti
 ele
tron-protons
attering. Besides the ex
hange of a photon, the Standard Model provides the possibilitythat ele
tron-proton s
attering is performed by the ex
hange of a Z boson. This Z bosonex
hange, even though it is suppressed at lower energies, manifests itself in a parity-violating
ontribution to the 
ross se
tion, whi
h 
an be a�e
ted by two-boson ex
hange 
ontributionsas well, namely two-photon or Z-photon ex
hange 
orre
tions.Chapter 6 is devoted to the pro
ess pp̄→ π0e+e−, with parti
ular fo
us on the possibilityto determine the nu
leon ele
tromagneti
 form fa
tors in the unphysi
al region. The anni-hilation rea
tion is analyzed within a phenomenologi
al model, allowing for predi
tions forforth
oming experiments. Sin
e no data of this rea
tion has been taken so far, the model is�rst tested for the rea
tion pp̄→ π0γ. The results of this work 
an be found in Ref. [14℄.Finally, a summary of the results and an outlook is given in Chapter 7.
6



Chapter 2Ele
tromagneti
 Form Fa
tors of the Nu
leonUnderstanding the internal stru
ture of the nu
leon as a 
omposite system, built up of quarksand gluons, is one of the most important unsolved problems in hadron physi
s.Sin
e the observation of the magneti
 moment of the proton [1℄, whi
h was found to be 2.8times larger than the expe
ted value for a fundamental pointlike parti
le, it is known thatthe proton is not an elementary parti
le but made of more fundamental 
onstituents.Starting in the 1950s, the stru
ture of the nu
leon has been studied by means of theele
tromagneti
 intera
tion. The results of these measurements 
an be expressed in terms ofthe ele
tromagneti
 form fa
tors of the nu
leon, whi
h are fun
tions des
ribing the internalstru
ture as it is seen by the ele
tromagneti
 probe. For the �rst time, a measurement ofthe ele
tromagneti
 form fa
tors has been performed by Hofstadter et al. [7℄ using elasti
ele
tron s
attering o� nu
leons, whi
h is still used for investigating the nu
leon stru
turenowadays.In this 
hapter the basi
 properties of the ele
tromagneti
 form fa
tors as well as theresults of the dedi
ated experiments are reviewed.2.1 Properties of Ele
tromagneti
 Form Fa
torsIn 
ontrast to elementary parti
les like the ele
tron, the nu
leon has an extended stru
ture,whi
h 
an be explored in ele
tromagneti
 pro
esses like elasti
 ele
tron-proton (ep-) s
at-tering. In the leading-order approximation of elasti
 ele
tron-proton s
attering, the Bornapproximation, the ele
tromagneti
 intera
tion is mediated by the ex
hange of a single pho-ton. The 
orresponding leading-order Feynman diagram is shown in Fig. 1.2.The ele
tron-photon intera
tion is fully des
ribed by the theory of ele
tromagneti
 inter-a
tions and 
an be 
al
ulated dire
tly within QED. Therefore ele
tron-s
attering provides a
lear probe to study properties of 
omposite systems. In 
ontrast to the ele
tron-photon ver-tex, the proton-virtual-photon intera
tion, en
oding information about the extended spatialdistribution in the nu
leon, 
annot be 
al
ulated from �rst prin
iples due to the unknowninterplay between the nu
leon and photon. However, any deviation between the measure-ments of the rea
tion and the results expe
ted for s
attering of two fundamental pointlikeparti
les is 
aused by the 
omposite nature of the proton. These deviations 
an be des
ribedin terms of the ele
tromagneti
 form fa
tors of the proton.To study the s
attering pro
ess in terms of proton form fa
tors, we �rst 
onsider theele
tromagneti
 
urrent of a pointlike Dira
 parti
le with 
harge qe (for the ele
tron qe = −e,with e > 0) whi
h is given by:
〈
l(k′)

∣∣jµem(0)
∣∣l(k)

〉
= qe ūl(k

′)γµul(k), (2.1)7



Chapter 2 Ele
tromagneti
 Form Fa
tors of the Nu
leonwhere jµem is the ele
tromagneti
 
urrent operator and k (k′) is the four-momentum of theinitial (�nal) parti
le. ul(k) and ūl(k
′) represent the Dira
 spinors of the in
oming andoutgoing parti
les, whi
h appear in the plane-wave solutions of the Dira
 equation. This
urrent is 
onserved, i.e. ∂µ jµem = 0, giving rise to

qµ
〈
l(k′)

∣∣jµem(0)
∣∣l(k)

〉
= 0, (2.2)where q = k− k′ is the momentum of the transmitted virtual photon. The Lorentz invariantfour-momentum transfer is de�ned as

Q2 = −q2 = −(k − k′)2 > 0. (2.3)In 
ontrast to jµem, the matrix element of the ele
tromagneti
 
urrent operator of thenu
leon, Jµ
em, as a system of strong intera
tion parti
les, 
annot be 
al
ulated from �rstprin
iples. Therefore, Jµ

em has to be parametrized by the most general stru
ture Γµ,
〈
N(p′)

∣∣Jµ
em(0)

∣∣N(p)
〉
= eN̄ (p′) ΓµN(p), (2.4)re�e
ting the ele
tromagneti
 properties of the nu
leon, with the Dira
 spinors N(p) and

N̄(p′) of the proton in the initial and �nal state, respe
tively.However, Γµ is restri
ted by Lorentz invarian
e, parity and 
harge 
onservation. The�rst 
ondition implies that Jµ
em has to transform in an analogous manner as jµem, whi
h isa Lorentz four-ve
tor, depending only on p and p′ or q = p′ − p. This allows to de
omposethe hadroni
 
urrent in terms of Dira
 bilinears, whi
h ful�ll the given transformation prop-erties. Parity and 
harge 
onservation 
onstrain the number of the allowed 
ontributions.In addition, the 
urrent Jµ

em has to satisfy the 
onservation of the ele
tromagneti
 
urrent.Consequently, the most general de
omposition of Γµ 
an be redu
ed to two independentLorentz stru
tures, whi
h are introdu
ed in 
ombination with two form fa
tors. Hen
e, thenu
leon ele
tromagneti
 
urrent 
an be expressed as
〈
N(p′)

∣∣Jµ
em(0)

∣∣N(p)
〉
= eN̄(p′)

[
F1(Q

2) γµ + F2(Q
2)

i

2mN
σµνqν

]
N(p), (2.5)with the nu
leon mass mN and σµν = i

2 [γ
µ, γν ]. The form fa
tors F1 and F2 are s
alar fun
-tions of the momentum transfer Q2 = −q2, the only independent kinemati
 s
alar quantity
onstru
ted from p, p′ and q for p2 = p′ 2 = m2

N . F1 and F2 are known as Dira
 form fa
tor(F1) and Pauli form fa
tor (F2). Eq. (2.5) des
ribes the parametrization of both 
urrents,the proton as well as the neutron ele
tromagneti
 
urrent.The form fa
tors are de�ned over the 
omplete range of momentum transfer−∞ < q2 <∞.In the spa
elike region of negative momentum transfer with q2 = −Q2 < 0, the form fa
tors
an be investigated in s
attering pro
esses. The 
orresponding 
rossed annihilation pro
essesallow to a

ess the form fa
tors in the timelike region (q2 > 0). Se
tion 2.3 deals with theform fa
tors in the timelike regime, whereas this se
tion fo
uses on the spa
elike form fa
tors.The ele
tromagneti
 
urrent operator is a hermitian operator. For spa
elike momentumtransfer, q2 < 0, this fa
t gives rise to
〈
N(p′)

∣∣Jµ
em(0)

∣∣N(p)
〉∗

=
〈
N(p)

∣∣Jµ †
em(0)

∣∣N(p′ )
〉
=
〈
N(p)

∣∣Jµ
em(0)

∣∣N(p′)
〉
. (2.6)8



2.1 Properties of Ele
tromagneti
 Form Fa
torsWith
〈
N(p′)

∣∣Jµ
em(0)

∣∣N(p)
〉∗

= eN̄(p)

[
F ∗
1 (Q

2) γµ − F ∗
2 (Q

2)
i

2mN
σµν(p′ − p)ν

]
N(p′),

〈
N(p)

∣∣Jµ
em(0)

∣∣N(p′)
〉

= eN̄(p)

[
F1(Q

2) γµ + F2(Q
2)

i

2mN
σµν(p − p′)ν

]
N(p′ ),

(2.7)one 
an 
on
lude, that the spa
elike form fa
tors must be purely real fun
tions, whereas thetimelike form fa
tors have to be treated as 
omplex fun
tions in general.If Q2 tends to zero, the photon 
an only probe the stati
 properties of the nu
leon. There-fore the form fa
tors are normalized to the 
harge and the magneti
 moment of the protonand neutron, as
F p
1 (0) = 1, F p

2 (0) = µp − 1 = κp,

Fn
1 (0) = 0, Fn

2 (0) = µn = κn,
(2.8)where F p

i and Fn
i are asso
iated with the form fa
tors of the proton and neutron, respe
tively.

κp,n is the anomalous magneti
 moment of the 
orresponding nu
leon, given by κp = 1.79and κn = −1.91.In some 
ases it is useful to 
onsider the isos
alar (FS
i ) and isove
tor (F V

i ) des
riptionof the form fa
tors indi
ating the isospin symmetry properties of the proton and neutron.These fa
tors are de�ned as
FS
i =

1

2
(F p

i + Fn
i ) , F V

i =
1

2
(F p

i − Fn
i ) . (2.9)In order to express observables, it is often 
onvenient to use the Sa
hs form fa
tors GEand GM instead of F1 and F2, given by the linear 
ombinations

GE(Q
2) = F1(Q

2) − τF2(Q
2),

GM (Q2) = F1(Q
2) + F2(Q

2) ,
(2.10)where τ is de�ned by τ = −q2/4m2

N = Q2/4m2
N . The Sa
hs form fa
tors are referred to as theele
tri
 (GE) and magneti
 form fa
tor (GM ) of the asso
iated nu
leon.In the limit Q2 → 0 the form fa
tors GE and GM have the stati
 values of 
harge and ofthe magneti
 moments µp,n of the proton and neutron, respe
tively:

GEp(0) = 1, GMp(0) = µp = 2.79

GEn(0) = 0, GMn(0) = µn = −1.91.
(2.11)In a parti
ular Lorentz frame, the so-
alled Breit frame, GE 
an be related to the Fouriertransform of the spatial 
harge distribution of the nu
leon and GM to the distributions of themagneti
 moments. In this frame, the three-momentum of the initial nu
leon is given by -~q/2,while the outgoing nu
leon 
arries ~q/2. Sin
e no energy in transferred, the four-momentumof the photon reads q = (0, ~q ). This leads to a hadroni
 ele
tromagneti
 
urrent of the form

〈
N (~q/2)

∣∣ J0
em(0)

∣∣N (−~q/2)
〉

= 2emN GE(~q
2 ),

〈
N (~q/2)

∣∣ ~Jem(0)
∣∣N (−~q/2)

〉
= ieχ†

s′ (~σ × ~q )χs GM (~q 2 ).

(2.12)
9



Chapter 2 Ele
tromagneti
 Form Fa
tors of the Nu
leonwhere ~σ refers to the Pauli matri
es and χ to the Pauli spinors, given in Appendix A, with theheli
ity of the initial (�nal) state nu
leon λp (λp′). A

ordingly, in analogy to nonrelativisti
physi
s, GE(~q) measures the Fourier transform of the ele
tri
 
harge distribution ρE(~r) and
GM (~q) the Fourier transform of the distribution of the magnetization ρM (~r). However, ea
hvalue of Q2 requires a parti
ular Breit frame and ρE,M(~r) are no observables.The slopes of the form fa
tors in the limit Q2 → 0 are de�ned as the ele
tri
 and magneti

harge radii of the nu
leon:

< r2E >= −6 dGE(Q
2)

dQ2

∣∣∣∣∣
Q2=0

, < r2M >=
−6

GM (0)

dGM (Q2)

dQ2

∣∣∣∣∣
Q2=0

. (2.13)If the momentum transfer tends to in�nity, the form fa
tors 
an be 
al
ulated in theframework of perturbative QCD, sin
e the (vanishingly) small 
oupling 
onstant αS of thestrong intera
tion allows for a perturbative treatment. Within these 
al
ulations, a s
alingbehavior of the form fa
tors has been derived, giving [15℄
F1 (Q

2) ∼ 1

Q4
, F2 (Q

2) ∼ 1

Q6
,

GM (Q2) ∼ 1

Q4
, GE(Q

2) ∼ 1

Q4
,

(2.14)whi
h are expe
ted to be valid at a su�
iently high momentum transfer.Alternatively, one 
an de�ne a set of quark �avor form fa
tors F q
1,2 and Gq

E,M , with q =
u, d, s to des
ribe the ele
tromagneti
 distribution of ea
h quark �avor inside the nu
leon.Contributions of quarks heavier than the strange quark have been negle
ted, sin
e these areexpe
ted to be small. The hadroni
 
urrent 
an be rewritten as

〈
N(p′)

∣∣Jµ
em(0)

∣∣N(p)
〉

=
〈
N(p′)

∣∣∣
∑

q=u,d,s

Qq q̄γ
µq
∣∣∣N(p)

〉

= eN(p′)

{
∑

q=u,d,s

Qq

[
F q
1 γ

µ + F q
2

i

2mN
σµνqν

]}
N(p)

(2.15)where Qq is the 
harge fra
tion of the quarks, with Qu = 2/3 and Qd,s = −1/3 . At the quarklevel, the ele
tromagneti
 form fa
tors 
an be de
omposed as
F p,n
1,2 (Q

2) =
∑

q=u,d,s

Qq F
q p,n
1,2 (Q2),

Gp,n
E,M(Q2) =

∑

q=u,d,s

Qq G
q p,n
E,M (Q2),

(2.16)su
h that G q p
E,M (G q n

E,M) refers to the 
ontribution from di�erent quark �avors q to theform fa
tor of the proton (neutron). Using isospin symmetry, giving rise to Gup
E = G dn

E ,
G d p

E = Gun
E and G s p

E = G s n
E , enables to express the proton and neutron form fa
tors interms of the quark distributions inside the proton:

Gp
E,M =

2

3
Gu

E,M (Q2)− 1

3
G d

E,M (Q2)− 1

3
G s

E,M (Q2),

Gn
E,M =

2

3
G d

E,M (Q2)− 1

3
Gu

E,M (Q2)− 1

3
G s

E,M (Q2),

(2.17)
10



2.2 Form Fa
tor Investigation using Elasti
 Ele
tron-Proton S
atteringwhere Gu
E,M , G d

E,M and G s
E,M are the 
ontributions of the u, d and s quarks in the proton.If not mentioned expli
itly, omitting the index p, n of the quark form fa
tors refers to the�avor form fa
tors of the proton. Flavor separation of the form fa
tors 
an be a
hieved byprobing di�erent hadrons.2.2 Form Fa
tor Investigation using Elasti
 Ele
tron-ProtonS
atteringThe elasti
 s
attering pro
ess

e−(k) + p(p)→ e−(k′) + p(p′) (2.18)in the Born approximation 
an be des
ribed in a frame-independent way by means of theLorentz-invariant Mandelstam variables. For the given pro
ess, they are de�ned as
s = (p + k)2 = (p′ + k′)2,

t = (p′ − p)2 = (k − k′)2 = −Q2,

u = (p − k′)2 = (p′ − k)2,

(2.19)satisfying the relation
s+ t+ u =

∑

i

m2
i = 2m2

N + 2m2
e, (2.20)where ∑im

2
i 
orresponds to the sum of the squared masses of all external parti
les of thepro
ess and me is the ele
tron mass.In most 
ases, it is a good approximation to negle
t the mass of the ele
tron in the
al
ulations, as it is mu
h smaller 
ompared to the nu
leon mass and the momentum transferof the pro
ess, m2

e ≪ m2
N , Q

2. If not mentioned otherwise, the formulas have been evaluatedin the ultrarelativisti
 limit for the ele
tron, in whi
h we 
an take me = 0.The invariant amplitude of the s
attering pro
ess is given by the matrix elements of theleptoni
 and the hadroni
 ele
tromagneti
 
urrents 
onne
ted with a photon propagator:
iM = e2 ūl(k

′) γν ul(k)

(
− igνµ
q2

)
N̄(p′) ΓµN(p). (2.21)The s
attering pro
ess is normally dis
ussed in the laboratory frame, presented in Fig. 2.1,where the initial nu
leon is at rest and the four-momentum of the in
oming ele
tron is givenby k = (E,~k ), where ~k is 
onventionally 
hosen to be in the z-dire
tion. The momentumtransfer 
an be expressed as

Q2 = 2EE ′
(
1− cos θlab

)
, (2.22)where θlab is the s
attering angle of the ele
tron in the laboratory frame and E and E ′ arethe energies of the initial and �nal ele
trons, respe
tively.The di�erential 
ross se
tion 
an be obtained in the laboratory frame as

(
dσ

dΩ

)

lab

=

(
1

4πmN Q2

E′

E

)2

|M| 2 (2.23)11



Chapter 2 Ele
tromagneti
 Form Fa
tors of the Nu
leon
k = (E,~k)

p = (mN , 0)

p′

q

k′ = (E ′, ~k′)

θ

Figure 2.1: Kinemati
s for elasti
 ep-s
attering in the laboratory frame.with the leptoni
 solid angle dΩ. The expression |M| 2 denotes the spin-averaged squaredmatrix element of Eq. (2.21).At present, the most important fa
ilities for form fa
tor investigation using ep-s
atteringare the Mainz Mi
rotron (MAMI), 
overing the the region of low Q2, and the ContinuousEle
tron Beam A

elerator Fa
ility (CEBAF) at the Thomas Je�erson National A

eleratorFa
ility (JLab) for the range of higher momentum transfer.2.2.1 Rosenbluth SeparationStarting with the pioneering work of Hofstadter [7℄ in the 1950s, the ele
tromagneti
 formfa
tors have been investigated in a large number of experiments using the Rosenbluth sepa-ration te
hnique. This method allows to extra
t both form fa
tors, GE and GM , from theunpolarized elasti
 s
attering 
ross se
tion.The 
ross se
tion depends on two kinemati
al variables, typi
ally taken to be the momen-tum transfer Q2 (or τ) and the polarization of the virtual photon ε, whi
h is related to thes
attering angle θlab by
ε =

(
1 + 2(1 + τ) tan2

(
θlab
2

))−1

. (2.24)In the one-photon ex
hange approximation, the di�erential 
ross se
tion of the rea
tion
an be written in terms of the 
ross se
tion for s
attering o� a pointlike parti
le, the Mott
ross se
tion (dσ/dΩ)Mott, and the ele
tri
 and magneti
 form fa
tors:
dσ

dΩ
=

(
dσ

dΩ

)

Mott

1

1 + τ

(
G2

E +
τ

ε
G2

M

)
, (2.25)where dσ/dΩ is the measured 
ross se
tion. Equation (2.25) is known as the Rosenbluthformula [16℄. The Mott 
ross se
tion is given by:

(
dσ

dΩ

)

Mott

=
α2
em cos2

(
θlab
2

)

4E2 sin4
(
θlab
2

) E
E′

(2.26)with the �ne stru
ture 
onstant αem = e2/4π ∼ 1/137.12



2.2 Form Fa
tor Investigation using Elasti
 Ele
tron-Proton S
attering

Figure 2.2: Overview of form fa
tor results obtained by Rosenbluth extra
tion: GM/µpGD(left panel) and GE/GD (right panel). The �gure is adapted from [17℄.Besides, it is 
onvenient to de�ne the redu
ed 
ross se
tion σR:
σR =

ε(1 + τ)

τ

(
dσ

dΩ

)/( dσ
dΩ

)

Mott

= G2
M +

ε

τ
G2

E .

(2.27)Sin
e the form fa
tors GE and GM are fun
tions of Q2 only, measuring the 
ross se
tion fordi�erent values of ε, while keeping Q2 �xed, allows a

ess to both form fa
tors from the εdependen
e of σR. A linear �t of σR to ε gives GE from the slope of the ε dependen
e of the
ross se
tion and GM from the inter
ept at ε = 0. This so-
alled Rosenbluth extra
tion ofthe form fa
tors requires that the energy of the initial ele
tron and the s
attering angle areadjusted in a way that Q2 is 
onstant while varying the photon polarization ε.The �ndings of the Rosenbluth experiments are, that both GE and GM follow the form ofan approximate dipole form fa
tor GD:
GE(Q

2) ≃ GM (Q2)

µp
≃ GD(Q

2),with GD(Q
2) =

1
(
1 + Q2

0.71GeV2

)2 .
(2.28)The approximate dipole behavior implies that the form fa
tor ratio 
an be found as

µpGE(Q
2)

GM (Q2)
≃ 1. (2.29)The results of the experiments are 
olle
ted in Fig 2.2, where the form fa
tors have beendivided by the standard dipole GD. One noti
es the in
reasing un
ertainties on the extra
ted13
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Figure 2.3: Kinemati
s for polarization transfer from a longitudinally polarized ele
tron onan unpolarized proton in the Born approximation.values of GE for large momentum transfer, starting at Q2 ∼ 1 GeV2. As one 
an see fromEq. (2.27), at large Q2 (τ ≫ 1) the redu
ed 
ross se
tion is dominated by the 
ontribution ofthe magneti
 form fa
tor GM , whereas the 
ontribution of GE is suppressed with 1/Q2. Thisfa
t makes an extra
tion of GE from the measured 
ross se
tion in
reasingly more di�
ultin the larger Q2 range, resulting in the rising error bars at larger Q2, as it is seen in Fig. 2.2.Besides the redu
tion of the GE 
ontribution at larger Q2 due to the fa
tor 1/τ inEq. (2.27), the relation G2
M ∼ µ2pG

2
E implies an additional suppression fa
tor of ∼ 8 in-dependent of Q2.2.2.2 Polarization Transfer MeasurementsAn alternative experimental te
hnique to a

ess the ele
tromagneti
 form fa
tors in elasti


ep-s
attering be
ame pra
ti
al in the late 1990's, the double polarization measurement. Thismethod allows for an investigation of the form fa
tors by s
attering a longitudinally polarizedele
tron beam from an unpolarized proton target and measuring the polarization of there
oiling proton,
~e (k) + p(p)→ e(k′) + ~p (p′), (2.30)whi
h will be referred to as polarization transfer method, or equivalently by using a polarizedele
tron beam and a polarized proton target.The kinemati
s of the rea
tion of Eq. (2.30) in the Born approximation is sket
hed inFig. 2.3.In the Born approximation, two non-zero polarization 
omponents of the re
oiling protonappear, the longitudinal (Pl) and the transverse (Pt) 
omponent:

Pl =
√

1− ε2(2h) G
2
M

σR
,

Pt = −
√

2ε(1 − ε)
τ

(2h)
GEGM

σR
,

(2.31)where h is the heli
ity of the in
ident ele
tron.Therefore, the ratio of the polarization 
omponents 
an be related to the ratio of the14



2.2 Form Fa
tor Investigation using Elasti
 Ele
tron-Proton S
atteringele
tri
 to magneti
 proton form fa
tors:
Pt

Pl
= −

√
2ε

τ(1 + ε)

GE

GM
. (2.32)The advantage of using the polarization transfer method in order to a

ess GE/GM is thatfor a given Q2 only one single measurement is ne
essary, if both polarization 
omponents
an be measured simultaneously. In the ratio, the ele
tron beam polarization drops out.These fa
ts redu
e systemati
 errors emerging through the variation of the beam energy ors
attering angle.The results of the form fa
tor ratio measurements using the polarization transfer methodare at varian
e with the Rosenbluth extra
tion of GE/GM . This ratio was found to benearly linear, de
reasing with in
reasing Q2, in 
ontrast to the well known s
aling-behaviorof µpGE/GM ∼ 1 determined by the Rosenbluth separation te
hnique. Therefore, as a goodapproximation the polarization results 
an be des
ribed by a straight line. A linear �t to theresults of these experiments leads to [11℄

µpGE(Q
2)

GM (Q2)
= 1− 0.13

(
Q2

GeV2 − 0.04

)
, (2.33)demonstrating the remarkable di�erent Q2 dependen
e of the form fa
tor ratio, presented inFig. 2.4.2.2.3 Dis
ussion of the Dis
repan
yThe 
ontradi
ting results of the Rosenbluth and polarization experiments have triggered alot of e�ort in order to understand and resolve the dis
repan
y. In Fig 2.4 the results of theextra
ted ratio µpGE/GM of both experimental methods are shown. The deviation betweenthe two te
hniques starts at values of about Q2 ∼ 1 GeV2 growing with the momentumtransfer.First, it was assumed that the dis
repan
y arises from un
ertainties in the Rosenbluthextra
tion of the proton form fa
tors, whi
h at high Q2 is very sensitive to even small
orre
tions due to the small 
ontribution of GE to the 
ross se
tion. A global reanalysis ofthe world 
ross se
tion data [19℄ shows that the data from previous Rosenbluth measurementsare 
onsistent with ea
h other. It was found, that the dis
repan
y is not 
aused by problemsin one or two single experimental setups and that the Rosenbluth data 
annot be broughtinto agreement with the results of the polarization transfer method by adjusting the datawithin the normalization un
ertainties.Furthermore, new data of a high-pre
ision Rosenbluth measurement of GE/GM be
ameavailable [20℄, in whi
h the �nal proton instead of the ele
tron has been dete
ted, 
on�rmingthe results of previous measurements. This dete
tion pro
edure redu
es the systemati
 un-
ertainties due to a weaker dependen
e of the 
ross se
tion on beam energy and s
atteringangle.In addition, the studies fo
used on the 
al
ulation of radiative 
orre
tions, whi
h are QED
orre
tions to �rst order of αem to ep-s
attering, 
aused by the ex
hange of a se
ond virtualphoton or the emission of a real bremsstrahlung photon. The leading-order 
orre
tions areillustrated in Fig. 2.5, where the 
orre
tions on the ele
tron side (diagrams a-d), whi
h areindependent of the nu
leon stru
ture, are shown on the left side and the Feynman graphs15
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Figure 2.4: Ratio of the ele
tri
 to magneti
 proton form fa
tors as a fun
tion of Q2. Thegreen data points indi
ate the results of the Rosenbluth extra
tion. The blue
ir
les, red squares and bla
k triangles are the results of the polarization experi-ments. The �gure is adapted from Ref. [18℄.on the right side (diagrams e-h) 
orrespond to the nu
leon stru
ture dependent 
orre
tions.To obtain results with high a

ura
y, the measured 
ross se
tions need to be 
orre
ted forradiative 
orre
tions, e�e
ting the 
ross se
tion typi
ally in the range of 10%-30%. Sin
ethese 
orre
tions are ε dependent, they 
an 
hange the slope of the Rosenbluth plot and
onsequently in�uen
e the results of the extra
ted form fa
tors. Polarization observables, asbeing ratios of 
ross se
tions are less sensitive to radiative 
orre
tions, espe
ially the ratio
GE/GM extra
ted from polarization transfer measurements, whi
h is a ratio of polarizationobservables.Radiative 
orre
tions have been applied in the analysis of the 
ross se
tions mostly usingthe standard formalism of Mo and Tsai [21,22℄. In these 
al
ulations any e�e
t of the protonstru
ture has been negle
ted, hen
e only the ele
tron 
orre
tions and the 
orre
tions on thenu
leon side in the soft photon approximation, i.e. when the additional virtual photon 
ar-ries a vanishing small momentum, have been taken into a

ount and several approximationshave been used for the 
omputation. Improvements of the radiative 
orre
tions have beenperformed in Refs. [23�26℄, su
h as in
luding hadron stru
ture e�e
ts and removing someother assumptions, nevertheless without a
hieving a re
on
iliation of both methods. How-ever, it has been shown, that the 
orre
tions required to bring the results into agreement areat the level of a few per
ent of the 
ross se
tion [19℄.One pro
ess whi
h has not been in
luded in all previous 
al
ulations of radiative 
orre
tionsis two-photon ex
hange (Fig. 2.5 h)) in the 
ase that both photons 
arry non-vanishingvirtualities, i.e. both photons are semi-hard or hard. In Ref. [27℄ it has been shown thattaking these 
orre
tions into a

ount may lead to signi�
ant ε dependent 
ontributions to16



2.3 Ele
tromagneti
 Form Fa
tors in the Timelike Region

a) electron vertex b) electron self-energy

c) vacuum polarization d) bremsstrahlung

e) proton vertex f) proton self-energy

g) bremsstrahlung

h) two-photon exchangeFigure 2.5: Lowest-order radiative 
orre
tions for elasti
 ep-s
attering: diagrams left (a-d)show the 
orre
tion graphs for the ele
tron side, diagrams one the right side (e-h)are graphs depending on the hadron stru
ture.the 
ross se
tion and provide a possible explanation of the form fa
tor results.In re
ent years, two-photon ex
hange has been studied extensively, from both experimentalas well as theoreti
al side. The following two 
hapters of this thesis deal with two-photonex
hange pro
esses, whi
h will be dis
ussed in the spa
elike as well as in the timelike regionsof momentum transfer.2.3 Ele
tromagneti
 Form Fa
tors in the Timelike RegionIn order to obtain a 
omplete des
ription of the ele
tromagneti
 stru
ture of the nu
leon,the investigation of the form fa
tors over the full range of momentum transfer is ne
essary.The measurements of the nu
leon form fa
tors at spa
elike momentum transfers, by meansof elasti
 ele
tron proton s
attering, are 
omplemented by measurements in the timelikeregion, through the 
orresponding 
rossed pro
esses p p̄→ e+ e− or e+ e− → p p̄, whi
h allowto a

ess the form fa
tors in the timelike region, starting from the threshold q2thr = 4m2
N .These pro
esses are related via the 
rossing symmetry. 17
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Spacelike Region

”Unphysical

Timelike Region

q24m2
N

Region”

Elastic ep-scattering

q2 < 0 q2 > 0

q2 = −Q2

Annihilation processes

Figure 2.6: Spa
elike and timelike regions and the appropriate pro
esses, whi
h 
an be usedto study ele
tromagneti
 form fa
tors. In the spa
elike region, with momentumtransfer q2 = −Q2 < 0, the form fa
tors 
an be investigated by means of s
atter-ing rea
tions. For the timelike region, de�ned by q2 > 0, annihilation pro
esses
an be used to a

ess the form fa
tors in the range q2 ≥ qthr = 4m2
N .2.3.1 A

essing Form Fa
tors in the Timelike RegionThe annihilation rea
tion p p̄ → e+ e− and the time-reserved pro
ess e+ e− → p p̄ o�er thepossibility to study the proton ele
tromagneti
 form fa
tors in the timelike region. In theBorn approximation the intera
tion is mediated through the ex
hange of one virtual photonwith positive momentum transfer q2 > 4m2

N , depi
ted in Fig 2.7.For investigating the pro
ess
p(p1) + p̄(p2)→ e−(k1) + e+(k2) (2.34)one 
an take advantage of the 
rossing relations, 
onne
ting the elasti
 ep-s
attering ampli-tude with the amplitude of the annihilation pro
ess. The 
rossing symmetry of the spa
elike

N̄

N e−

e+

e−

e+

N

N̄

γ∗ γ∗

q2 > 0 q2 > 0Figure 2.7: The timelike pro
esses NN̄ → e−e+ and e−e+ → NN̄ in Born approximation
18



2.3 Ele
tromagneti
 Form Fa
tors in the Timelike Regionand timelike momenta 
an be found as
p ←→ p1, p′ ←→ − p2,

k ←→ − k2, k′ ←→ k1.
(2.35)Introdu
ing the Mandelstam variables of the rea
tion Eq. (2.34),

s = q2 = (p1 + p2)
2 = (k1 + k2)

2,

t = (p1 − k2)2 = (p2 − k1)2,

u = (p1 − k1)2 = (p2 − k2)2,

(2.36)enables us to �nd the following relations with the Mandelstam variables of the spa
elikes
attering pro
ess: timelike spa
elike
s = q2 = (p1 + p2)

2 ←→ (p − p′)2 = −Q2,

t = (p1 − k2)2 ←→ (p + k )2 = s,

u = (p1 − k1)2 ←→ (p − k′)2 = u,

(2.37)with the variables of the timelike (spa
elike) on the left-hand side (right-hand side).Assuming one-photon ex
hange, the matrix element of the pro
ess 
an in an analogousmanner be expressed by two form fa
tors, e.g. the timelike Dira
 form fa
tor F1(q
2) andPauli form fa
tor F2(q

2):
iM = e2

[
ū(k1)γ

νv(k2)
] −igνµ

q2

[
N̄(p2)

(
F1γ

µ − i

2mN
F2σ

µνqν

)
N(p1)

]
, (2.38)where N(p1) and N̄(p2) stand for the Dira
 spinors of the in
oming proton and antiproton,respe
tively.A

ordingly, one 
an introdu
e the timelike ele
tri
 and magneti
 form fa
tors GE and

GM :
GE(q

2) = F1(q
2) + τF2(q

2),

GM (q2) = F1(q
2) + F2(q

2), (2.39)with τ = q2/4m2
N .In 
ontrast to the spa
elike form fa
tors, the form fa
tors in the timelike region are ingeneral 
omplex fun
tions of the momentum transfer q2.It is often 
onvenient to study the pro
ess pp̄→ e+e− in the 
enter-of-mass (
.m.) frame ofthe rea
tion. In this referen
e frame the 3-momenta of the in
oming nu
leons have oppositedire
tion, the proton 
onventionally 
hosen to be in the z-dire
tion, whi
h yields

p1 =

√
s

2

(
1, 0, 0,

√
τ − 1

τ

)
,

p2 =

√
s

2

(
1, 0, 0,−

√
τ − 1

τ

)
,

(2.40)
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Chapter 2 Ele
tromagneti
 Form Fa
tors of the Nu
leonwhere √s is the 
.m. energy. Identifying the rea
tion plane with the x-z-plane, allows one toexpress the momenta of the leptons as
k1 =

√
s

2

(
1, sin θ , 0 , cos θ

)
,

k2 =

√
s

2

(
1,− sin θ, 0 ,− cos θ

)
,

(2.41)where θ is the 
.m. s
attering angle of the ele
tron with respe
t to the proton.In the ultrarelativisti
 limit of vanishing lepton masses, the unpolarized di�erential 
rossse
tion in the 
.m. frame using the Born approximation 
an be found as,
(

dσ

d cos θ

)

1γ

=
α2
emπ

8m2
N

√
τ(τ − 1)

{ ∣∣GM (q2)
∣∣2(1 + cos2 θ) +

1

τ

∣∣GE(q
2)
∣∣2 sin2 θ

}
, (2.42)depending on the 
.m. s
attering angle, q2 and the moduli of the form fa
tors, |GM (q2)| and

|GE(q
2)|. An individual extra
tion of |GE | and |GM | 
an be a
hieved through a measurementof the 
ross se
tion over a wide range of cos θ at �xed q2.The total 
ross se
tion in the 1γ-approximation is obtained by integrating Eq. (2.42) overthe 
.m. s
attering angle, whi
h yields

σ =
παem

3m2
N

√
τ(τ − 1)

[
|GM (q2)|2 + 1

2τ
|GE(q

2)|2
]

=
παem

3m2
N

√
τ(τ − 1)

[
1 +

1

2τ

] ∣∣Geff (q
2)
∣∣2,

(2.43)where an e�e
tive form fa
tor has been introdu
ed, whi
h 
hara
terizes the deviation betweenthe total 
ross se
tion and the 
ross se
tion one would obtain for an annihilation pro
ess withonly pointlike parti
les parti
ipating. In terms of |GE | and |GM |, the e�e
tive form fa
toris given by
Geff (q

2) =

√
2τ |GM (q2)|2 + |GE |2

2τ + 1
. (2.44)Most experiments were able to extra
t the e�e
tive form fa
tor from the measured 
rossse
tion, but not |GE | and |GM | separately through a measurement of the angular dependen
e.Consequently, a statement regarding the individual form fa
tors 
an only be made by meansof assumptions, whi
h link one form fa
tor to the other. Often, the assumptions |GE | = |GM |or GE = 0 are used. In Fig. 2.8 the world data set on the e�e
tive form fa
tor Geff extra
tedfrom di�erent experiments using pp̄ → e+e−, e+e− → pp̄ and e+e− → p p̄ γ 
an be foundas a fun
tion of q2. In all 
ases, the assumption |GE | = |GM | has been used to analyze thedata, whi
h results in |GM | = Geff .Only two experiments have performed an individual determination of both form fa
tors,the PS170 experiment at LEAR [29℄, and the BaBar experiment at SLAC [30, 31℄, where inthe latter experiment the form fa
tors have been extra
ted through the initial state radiationrea
tion e+e− → p p̄ γ. The results of the ratio |GE/GM |, whi
h are presented in Fig. 2.9,in
lude large un
ertainties and are not 
onsistent with ea
h other, 
learly 
alling for futureexperiments.New measurements of the timelike form fa
tors are planned by the PANDA experiment atthe Fa
ility for Antiproton and Ion Resear
h (FAIR) [32℄ and the BES-III experiment at the20
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Figure 2.8: Results of the e�e
tive form fa
tor measured by various experiments as a fun
tionof q2. The �gure is adapted from Ref. [28℄. In the analysis the assumption
|GM | = |GE | = Geff has been made.Beijing Ele
tron Positron Collider II (BEPC-II). They will explore the at present still largelyun
harted timelike region in mu
h greater detail, bringing values of about s = 30 GeV2 intorea
h. Those experiments, whi
h also attempt to measure |GE | and |GM | separately withhigh pre
ision, will improve the knowledge of the ele
tromagneti
 form fa
tors in the timelikeregion and 
omplement our pi
ture of the nu
leon.By measuring the unpolarized 
ross se
tion Eq. (2.42) of the aforementioned annihilationpro
esses, only the moduli of the ele
tromagneti
 form fa
tors 
an be investigated, whereasthe phases of the form fa
tors 
an only be a

essed by taking additional observables intoa

ount, in parti
ular polarization observables. Due to the 
omplex stru
ture of the nu
leonform fa
tors, further polarization observables emerge in the timelike region. For instan
e,the single-spin asymmetry (SSA), when either the proton or the antiproton is polarizedperpendi
ular to the s
attering plane and does not require polarization of the leptons in the�nal state. The SSA is de�ned as

Ay =
dσ↑ − dσ↓
dσ↑ + dσ↓

, (2.45)where dσ↑ (dσ↓) denotes the 
ross se
tion for an in
oming nu
leon with positive (negative)perpendi
ular polarization. In the 
ase of a polarized proton the asymmetry in the 1γ-approximation reads
Ay = −2 sin θ cos θ Im [GEG

∗
M ]√

τ D

= −2 sin θ cos θ |GE ||GM | sin(φE − φM )√
τ D ,

(2.46)
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Figure 2.9: Results of the (timelike) form fa
tor ratio |GE |/|GM | as a fun
tion of q2: Green
ir
les display the data of the BaBar experiment [31℄, blue triangles refer to theresults of the PS170 experiment [29℄.where φE and φM 
orrespond to the phases of the ele
tri
 and magneti
 form fa
tors, re-spe
tively, and D is given by
D = |GM

∣∣2(1 + cos2 θ) +
1

τ

∣∣GE

∣∣. (2.47)Hen
e, measurements of both, the angular distribution of the unpolarized 
ross se
tion andthe SSA, 
an be used to get information on the moduli of the ele
tromagneti
 form fa
torsas well as their relative phases.2.3.2 Ele
tromagneti
 Form Fa
tors in the Unphysi
al RegionThe timelike region below the (p + p̄)-threshold, asso
iated with a momentum transfer of
0 < q2 < 4m2

N , is known as the unphysi
al region, sin
e these values of momentum transfer
annot be a

essed by annihilation pro
esses as p p̄ → e+e− or e+e− → p p̄. Anyhow, itis worth to explore the form fa
tors in that kinemati
al range, whi
h presumably 
ontainsimportant information 
on
erning the link between the spa
elike and timelike regimes. InFig. 2.10 a 
omparison of spa
elike and timelike form fa
tor data is shown. The gray 
oloredband indi
ates the unphysi
al timelike region. Information on the form fa
tors in thatkinemati
al range will 
ertainly improve our understanding of the internal nu
leon stru
ture.Several models predi
t large 
ontributions of ve
tor meson resonan
es in the unphysi
alregion, whi
h likewise impa
t the form fa
tor behavior in the above-threshold region as wellas in the spa
elike regime. A measurement of the form fa
tor o�ers the opportunity to
onstrain and disentangle su
h models.Furthermore, the threshold behavior of the nu
leon form fa
tors at q2 ∼ 4m2
N raisedattention due to the unexpe
ted sharp rising of the 
ross se
tion, when approa
hing thenear-threshold region. The enhan
ement of the 
ross se
tion entails a strong momentumtransfer dependen
e of the timelike form fa
tors in the q2 region 
lose to 4m2

N , whi
h hasnot been explained so far.22
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|/µ
p

q2 [GeV2]Figure 2.10: Comparison of spa
elike and timelike data of the form fa
tors |GM |/µp. The bluedata points 
orrespond to GM/µp extra
ted from Rosenbluth measurements,taken from Refs. [10, 20, 33�38℄. The green data points indi
ate the extra
tede�e
tive form fa
tor Geff/µp in the timelike region measured in the annihilationrea
tions p p̄→ e−e−, e+e− → p p̄ and e+e− → p p̄ γ. The data is adapted fromRefs. [29, 31, 39�44℄. The gray shaded area represents the unphysi
al region
0 < q2 < 4m2

N .Despite all this, no data of the form fa
tors in the unphysi
al regions exist so far. But, as apossible way to a

ess the form fa
tors below the threshold, an investigation of the rea
tion
p̄ p → π0e+e− has been proposed in Ref. [45℄ and of the pro
ess p̄ d → e+e−n in Ref. [46℄.An analysis of the former pro
ess with regard to the determination of the form fa
tors willbe given in Chapter 6.2.4 Form Fa
tor ModelsIn order to 
al
ulate observables 
on
erning the ele
tromagneti
 stru
ture of the nu
leon,parametrizations of the ele
tromagneti
 form fa
tors are required. Due to the numerous datasets in the spa
elike region, parametrizations based upon �ts to the data are 
ommonly usedfor spa
elike form fa
tors, su
h as the dipole parametrization presented in Eq. (2.28), or anexpression of the ratio GE/GM as found by �tting the polarization transfer data, e.g. thelinear �t given by Eq. (2.33). For instan
e, one 
an parametrize GM by the results obtainedin the Rosenbluth separation, for whi
h the extra
tion is expe
ted to be more a

urate thanthe one of the ele
tri
 form fa
tors, and GE is then expressed by the parametrization of GMand the form fa
tor ratio found in polarization transfer measurements.Other form fa
tor parametrizations rest upon model des
riptions, whi
h attempt to explainthe properties of the nu
leon form fa
tors. The earliest models of the nu
leon form fa
tors23
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γ∗

ρ, ω, φ, ...

N NFigure 2.11: VMD 
oupling of the photon to the nu
leon.are based on ve
tor meson dominan
e (VMD), 
orresponding to a photon intera
ting withthe nu
leon through the ex
hange of the lowest lying ve
tor mesons, as shown in Fig (2.11).In Ref. [47℄ a VMD based model of the proton and neutron form fa
tors has been presented,where the photon 
ouples to both, an intrinsi
 stru
ture, given by an intrinsi
 form fa
tor,and a meson 
loud, des
ribed within the VMD framework. A form fa
tor model for bothspa
elike as well as timelike ele
tromagneti
 form fa
tors has been presented in Ref. [48℄, bygeneralizing the �ndings of Ref. [47℄ and in
luding new data for �tting the free parametersof the model. This model is mostly used as parametrization of the timelike ele
tromagneti
nu
leon form fa
tor in the 
al
ulations presented in this thesis.The spa
elike form fa
tor parametrization of Ref. [48℄ is given by:
FS
1 (q

2) =
1

2
g(q2)

[
(1− βω − βφ)− βω

m2
ω

q2 −m2
ω

− βφ
m2

φ

q2 −m2
φ

]
,

F V
1 (q2) =

1

2
g(q2)

[
1− βρ − βρ

m2
ρ

q2 −m2
ρ

]
,

FS
2 (q

2) =
1

2
g(q2)

[
(0.12 + αφ)

m2
ω

q2 −m2
ω

− αφ

m2
φ

q2 −m2
φ

]
,

F V
2 (q2) =

1

2
g(q2)

[
− 3.706

m2
ρ

q2 −m2
ρ

]
,

(2.48)
where

g(q2) =
1

(1− γq2)2 (2.49)is the intrinsi
 form fa
tor, 
hara
terizing the size of the 
onstituent quarks inside the nu
leon.The masses of the ve
tor mesons are mω = 0.783 GeV, mφ = 1.019 GeV and mρ = 0.776 GeVand the free parameters are obtained by �tting the spa
elike data. To take the non-negligiblewidth of the ρ meson into a

ount, the propagator has been repla
ed as
m2

ρ

q2 −m2
ρ

→ m2
ρ + 8Γρmπ/π

q2 −m2
ρ + (q2 − 4m2

π) Γρα(Q2)/mπ
. (2.50)This model has been extended to the timelike region using Q2 → −q2. In addition a phase24
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tor models: blue solid 
urve: VMD model; green dashed 
urve:pQCD based model a

ording to Eq. (2.53).has been introdu
ed to the intrinsi
 timelike form fa
tors:
g(q2) =

1

(1− eiθγq2)2 , (2.51)where the phase θ is obtained from a �t to the timelike data. Furthermore, the pole of the
ρ meson has been modi�ed as

m2
ρ

q2 −m2
ρ

→
m2

ρ + 8Γρmπ/π

q2 −m2
ρ + (q2 − 4m2

π)Γρα(q2)/mπ − iΓρ4mπβ(q2)
. (2.52)Su
h a model predi
ts a resonan
e stru
ture of the form fa
tors in the unphysi
al region,due to the intera
tion of the ve
tor mesons.Another model, whi
h is also used to parametrize the timelike ele
tromagneti
 form fa
tors,is based on the predi
ted pQCD behavior of the form fa
tors. This model is given by ananalyti
al 
ontinuation of the dipole parametrization of the spa
elike form fa
tors. Themoduli of the form fa
tors are

|GE,M | =
B

q4
(
ln2 q2

Λ2 + π2
) , (2.53)with Λ = 0.3 GeV. The parameter B is a free parameter, in Ref. [49℄ it was found to be

B = 56.3 GeV2 for the proton and B = 77.15 GeV2 for the neutron.In Fig. 2.12 both models, the VMD model and the model based on pQCD behavior areshown for timelike momentum transfers. One 
an 
learly see the predi
ted resonan
e stru
-ture of the VMD model in the unphysi
al region arising from the poles of the ρ, ω and φmesons, whereas the pQCD based model gives a smooth behavior of |GM |, steeply rising for
q2 → 0. 25





Chapter 3Two-Photon Ex
hange in Elasti
Ele
tron-Proton S
atteringTriggered by the dis
repan
y between data of unpolarized Rosenbluth measurements andof polarization experiments, in re
ent years a whole new �eld studying the in�uen
e oftwo-photon ex
hange 
orre
tions to elasti
 ele
tron-nu
leon s
attering emerged, from bothexperimental and theoreti
al sides. In this 
hapter the e�e
ts of two-photon (2γ-) ex
hangein elasti
 ep-s
attering are presented. The general formalism of 2γ-ex
hange in terms ofthree generalized (2γ-) form fa
tors is introdu
ed and a brief dis
ussion of existing model
al
ulations as well as observables whi
h are dire
tly related to 2γ-ex
hange e�e
ts is given.Subsequently, a phenomenologi
al determination of the 2γ-amplitudes from elasti
 ep-s
attering data is presented. Motivated by new high-pre
ision measurements of polarizationobservables in ep-s
attering performed at JLab/Hall C [50℄, the available 
ross se
tion andpolarization data are used to provide an extra
tion of the two-photon ex
hange amplitudes.Furthermore, predi
tions for the e+p/e−p 
ross se
tion ratio, whi
h is presently under inves-tigation in several experimental setups, are given.3.1 Ele
tron-Proton S
attering beyond the BornApproximationIn order to 
al
ulate the two-photon ex
hange in elasti
 ele
tron-proton s
attering, we 
on-sider the pro
ess
p(p, λp) + e−(k, h) → p(p′, λp′) + e−(k′, h′ ), (3.1)where p (p′) and k (k′) are the momenta of the initial (�nal) proton and ele
tron, respe
tively,and λp (λp′), h (h′) are the 
orresponding heli
ities. The 2γ-ex
hange pro
ess is des
ribedby the dire
t and 
rossed box diagrams presented in Fig. 3.1, where the gray blobs indi
atethe unknown hadroni
 intera
tion of the 2γ-ex
hange rea
tion.For this purpose, we introdu
e the 4-ve
tors

Pµ =
1

2
(pµ + p′µ), Kµ =

1

2
(kµ + k′µ), Qµ = p′µ − pµ. (3.2)The s
attering pro
ess 
an be des
ribed by two independent variables, whi
h are 
hosen tobe

ν = K · P, Q2 = −q2 = −(p′ − p)2. (3.3)The invariant Mandelstam variables are de�ned as
s = (p+ k)2, t = (p′ − p)2 = −Q2, u = (p− k′)2, (3.4)27
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N(p) N(p′)

e−(k) e−(k′) e−(k′)e−(k)

N(p) N(p′)Figure 3.1: Dire
t and 
rossed box diagrams of two-photon ex
hange in elasti
 ele
tron-proton s
atteringgiving rise to
ν =

1

4

(
s+ u− 2m2

N

)
. (3.5)The general 
on
ept of two-photon ex
hange as explanation for the dis
repan
y betweenRosenbluth measurements and polarization experiments has been dis
ussed in Ref. [27℄. Ithas been shown, that taking Lorentz invarian
e, parity 
onservation, and 
harge 
onjugationinto a

ount, the general form of the two-photon ex
hange diagrams 
an be written in termsof an e�e
tive 
urrent-
urrent intera
tion with one additional stru
ture beyond those thatgave GE and GM . This expression 
an be derived starting with the most general expansionof the amplitude M of elasti
 ep-s
attering, permitting the ex
hange of more than a singlephoton

M = e2 ūl(k
′ ) Γe µ ul(k) N̄ (p′ ) Γµ

N N(p), (3.6)where the general Lorentz stru
tures Γµ
N and Γµ

e , with respe
t to a set of Dira
 bilinears andto the ve
tor basis de�ned by Pµ, Kµ, Qµ and Lµ = εµνρσPνKρQσ, 
an be written as
Γµ
N = a11 + b1γ5 + c1γ

µKµ + d1γ5γ
µKµ

Γµ
e = a21 + b2γ5 + c2γ

µPµ + d2γ5γ
µPµ.

(3.7)All other stru
tures either do not 
ontribution or 
an be redu
ed to the stru
tures above bymeans of the Dira
 equation. Therefore, the matrix 
an be expanded in terms of 16 Lorentzstru
tures. Taking parity 
onservation into a

ount redu
es the number to 8, sin
e terms
ontaining only one γ5 are not invariant under parity transformations. In addition, twostru
tures, namely ūl γ5 ul N̄ γ5 γ
µKµN and ūl γ5 γµPµ ul N̄ γ5N , are not invariant underCPT transformations , whi
h leads to 6 remaining amplitudes:

ūl(k
′)ul(k) N̄ (p′)N(p), ūl(k

′)ul(k) N̄ (p′)γµKµN(p),

ūl(k
′) γµP

µ ul(k) N̄ (p′)N(p), ūl(k
′) γµP

µ ul(k) N̄ (p′) γνKν N(p),

ūl(k
′) γ5 ul(k) N̄ (p′) γ5N(p), ūl(k

′) γ5γµP
µ ul(k) N̄ (p′) γ5γ

νKν N(p).

(3.8)In the limit of vanishing ele
tron masses, me → 0, the heli
ity of the leptons is 
onserved,whi
h implies invarian
e under the 
hirality transformation ul(k) → γ5ul(k) and ūl(k′) →28



3.1 Ele
tron-Proton S
attering beyond the Born Approximation
−ūl(k′)γ5. Stru
tures, whi
h 
hange sign under these transformations, des
ribe a heli
ity-�ipof the ele
tron and are suppressed by a fa
torme. Consequently, we 
an negle
t any stru
turegiven in Eq. (3.8), whi
h 
ontains either ūl(k′)ul(k) or ūl(k′) γ5 ul(k), when assumingme = 0.Hen
e, the s
attering pro
ess beyond the Born approximation, in the ultra-relativisti
limit, 
an be des
ribed by three independent amplitudes. By means of the Dira
 equationand elementary relations between the Dira
 matri
es, the most general matrix element ofelasti
 ele
tron-nu
leon s
attering 
an be expressed as [27℄:
M =

e2

Q2
ūl(k

′)γµul(k) N̄ (p′)

{
G̃M (Q2, ν)γµ − F̃2(Q

2, ν)
Pµ

mN
+ F̃3(Q

2, ν)
/KPµ

m2
N

}
N(p).(3.9)The three generalized form fa
tors G̃M , F̃2 and F̃3 are 
omplex fun
tions of two variables,e.g. Q2 and ν. Several equivalent representations of Eq. (3.9) exist. In some 
ases an axialparametrization of the matrix element has been used to 
al
ulate the 2γ-ex
hange pro
esses,where F̃3 is repla
ed by an axial-like term G̃A, using the relation

ūl(k
′)/Pul(k) N̄ (p′) /KN(p) =

s− u
4

ūl(k
′)γµul(k) N̄ (p′)γµN(p)

+
t

4
ul(k

′)γµγ5ul(k) N̄ (p′)γµγ5N(p).

(3.10)In the following, the representation of Eq. (3.9) will be used. The expressions for the axial-ve
tor expansion of the s
attering amplitude 
an be obtained through a simple transformationof the three generalized form fa
tors.We also introdu
e the �ele
tri
� amplitude G̃E , de�ned as
G̃E = G̃M − (1 + τ)F̃2, (3.11)whi
h is 
ommonly used to 
hara
terize 2γ-ex
hange.To identify the e�e
ts 
aused by multi-photon ex
hange, the amplitudes G̃M and G̃E 
anbe written as a de
omposition of the usual proton form fa
tor and a form fa
tor whi
horiginates from pro
esses in
luding the ex
hange of at least two photons. The additionalthird amplitude, F̃3, vanishes in the one-photon approximation:

G̃M (Q2, ν) = GM (Q2) + δG̃M (Q2, ν)

G̃E(Q
2, ν) = GE(Q

2) + δG̃E(Q
2, ν)

F̃3(Q
2, ν) = δF̃3(Q

2, ν)

(3.12)The 
omplex amplitudes δG̃M , δG̃E and δF̃3 are suppressed by αem 
ompared to the ele
-tromagneti
 form fa
tors GE and GM . Using Eq. (3.12), the squared matrix element of theelasti
 s
attering pro
ess 
an be expanded with respe
t to αem:
|M|2 = |M1γ |2 + 2Re[M∗

1γM2γ ] +O(α2
em), (3.13)with the ele
tri
 
harge appearing in Eq. (3.9) taken out. The amplitude M1γ is the am-plitude of the pro
ess in Born approximation andM2γ stands for the amplitude des
ribing

2γ-ex
hange, whi
h is suppressed by an additional fa
tor αem relative toM1γ . Consequently,29



Chapter 3 Two-Photon Ex
hange in Elasti
 Ele
tron-Proton S
atteringthe leading order 
orre
tion to the squared matrix element is given by the real part of theinterferen
e of 1γ- and 2γ-ex
hange pro
esses, 2Re[M∗
1γM2γ ], whi
h is of order αem 
om-pared to the Born 
ontribution. Higher order 
orre
tions in αem, e.g. terms ∝ |M2γ |2 or
ontributions 
aused by the ex
hange of three or more photons, are negle
ted in the following
al
ulations.The redu
ed 
ross se
tion in
luding the two-photon ex
hange 
orre
tions 
al
ulated up to�rst order 
orre
tions in αem be
omes

σR = G2
M +

ε

τ
G2

E + 2GMRe

(
δG̃M + ε

ν

m2
N

F̃3

)
+ 2

ε

τ
GERe

(
δG̃E +

ν

m2
N

F̃3

)
, (3.14)where the �rst two terms are the redu
ed 
ross se
tion in Born approximation given byEq. (2.27) and the se
ond part is the interferen
e term ∝ 2Re[M∗

1γM2γ ].The transverse and longitudinal polarization 
omponents 
an be found as
Pt = − 2h

1

σR

√
2ε(1 − ε)

τ

{
GEGM +GMRe

(
δG̃E +

ν

m2
N

F̃3

)
+GERe δG̃M

}
,

Pl = 2h
1

σR

√
1− ε2

{
G2

M + 2GMRe

(
δG̃M +

ε

1 + ε

ν

m2
N

F̃3

)}
,

(3.15)
orresponding to a polarization ratio Pt/Pl:
Pt

Pt
= −

√
2ε

τ(1 + ε)

GE

GM

{
1− Re

δG̃M

GM
+Re

δGE

GE
+

ν

m2
N

ReF̃3

(
1

GE
− 2ε

1 + ε

1

GM

)}
.(3.16)In Born approximation, these 
orre
tions vanish and the well known expressions for theseobservables, Eqs. (2.31) and (2.32), are re
overed.The expressions of the observables in
luding the 2γ 
ontributions presented in this se
tionare model-independent. However, the 2γ-amplitudes δG̃M , δG̃E and F̃3 
annot be 
al
ulatedfrom �rst prin
iples due to the unknown hadroni
 intera
tion. Therefore, di�erent approa
heshave been used in order to obtain quantitative results for the 
orre
tions. Some of theseapproa
hes will be dis
ussed in the following.3.2 Model Cal
ulations of Two-Photon Ex
hangeSin
e the form fa
tor dis
repan
y has been 
on�rmed, several model approa
hes have beenapplied to 
al
ulate 2γ-ex
hange 
orre
tions to the elasti
 s
attering pro
ess, where a few ofthese approa
hes will be reviewed in this se
tion.In the analysis of Ref. [27℄, it has been demonstrated, that two-photon ex
hange 
ontribu-tions are able to 
hange the Rosenbluth extra
tion of GE in a signi�
ant way, a�e
ting thepolarization transfer measurements only minimally. The 2γ-ex
hange 
orre
tions to the 
rossse
tion, as one might expe
t from perturbation theory, 
ould at large momentum transferbe 
omparable in size to the term 
ontaining G2

E in the Rosenbluth 
ross se
tion and 
on-sequently 
ould have a large impa
t on the extra
tion of GE . Furthermore, ε-dependent
orre
tions to the G2
M term 
an appear as well. These results obviously 
all for furtherpre
ise 
al
ulations.30
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Figure 3.2: Extra
ted ratio µpGE/GM in
luding 2γ-ex
hange 
al
ulated within a hadroni
approa
h using a single nu
leon as the hadron intermediate state. Bla
k 
ir
les(PT): results of GE/GM from polarization experiments; blue diamond (LT):results of GE/GM from Rosenbluth experiments; red squares (Lt + 2γ): GE/GMfrom Rosenbluth experiments in
luding the 2γ-
orre
tions. Figure adapted fromRef. [51℄.A model 
al
ulation of the dire
t and 
rossed box diagram of 2γ-ex
hange within a hadroni
approa
h has been done in Refs. [51�54℄, using nu
leons and resonan
es as intermediatestates to des
ribe the hadroni
 verti
es. In the �rst 
al
ulations [51, 52℄ only the elasti
nu
leon intermediate state has been used. The analysis has been extended by �rst in
ludingthe ∆(1232) resonan
e in the 
al
ulation of the 2γ-ex
hange 
orre
tions [53℄ and later bya larger set of spin-1/2 and spin-3/2 resonan
es as intermediate states [54℄. The results oftwo-photon ex
hange 
ontributions using an elasti
 nu
leon intermediate state are shown inFig. 3.2. The authors of Refs. [51, 52℄ found, that the elasti
 nu
leon 
ontributions have alarge e�e
t on the results of the Rosenbluth extra
tion and are able to resolve the dis
repan
ypartially. The e�e
t of the ∆ and higher mass resonan
es were found to be small, 
an
ellingthe 2γ-ex
hange 
ontribution of the nu
leon intermediate state in part. The hadroni
 modelis limited to low Q2, where the 
ontributions of the ex
ited intermediate states should besmall.In order to estimate the 2γ-ex
hange 
ontribution at larger Q2, a partoni
 
al
ulation wasperformed in Refs. [55,56℄, by relating the so-
alled generalized parton distributions (GPDs)of the proton to the 2γ-ex
hange diagrams. Within this fa
torization approa
h the amplitudeof the pro
ess is given as a 
onvolution of a hard subpro
ess and a soft non-perturbative part,whi
h 
an be parametrized by the GPDs. The 
orresponding Feynman diagram in the so-
alled handbag fa
torization is illustrated in Fig. 3.3, where in the hard subpro
ess, indi
atedby the hard s
attering amplitude H, the lepton s
atters o� one massless quark in the nu
leon:
e−(k) + q(pq)→ e−(k′) + q(p′q). (3.17)The two-photon 
ontribution to the elasti
 
ross se
tion 
an be obtained by 
al
ulatingthe 2γ-ex
hange dire
t and 
rossed box diagrams of the ele
tron-quark s
attering pro
ess.31
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tron-Proton S
attering
GPDs

H

N N

e− e−

p′qpq

Figure 3.3: Handbag fa
torization approximation of elasti
 ele
tron-nu
leon s
attering: inthe hard partoni
 subpro
ess H the ele
tron s
atters o� one single quark in thenu
leon. The soft pro
ess is parametrized by the GPDs of the nu
leon, presentedby the lower blob.
A

ordingly, the quarks are embedded in the nu
leon as des
ribed by the GPDs of the proton.This approa
h is valid at larger values of momentum transfer Q2 and 
enter-of-mass energy
s, with Q2, s≫ m2

N .The e�e
t of the hard two-photon 
orre
tions on the form fa
tor ratio extra
ted fromunpolarized Rosenbluth measurements is shown in Fig. 3.4. In the Q2 range of 2-3 GeV2the Rosenbluth results in
luding the 2γ-
orre
tions agree with the results from polarizationexperiments. However, at larger Q2 the 
orre
tions 
an partially re
on
ile both methods.The size of the 
orre
tions to the polarization results is small and within their experimentalun
ertainties, thus they are not presented in Fig. 3.4.In Refs. [57, 58℄, two-photon ex
hange has been studied at high Q2 in the framework ofperturbative QCD using the 
on
ept of hadron distribution amplitudes (DAs). The ampli-tude of the pro
ess appears as a 
onvolution of a non-perturbative 
ontribution parametrizedthrough the proton DA and a hard kernel H, whi
h 
an be 
al
ulated within perturbativeQCD. In the leading-order 
ontribution to the 2γ-ex
hange, as shown in Fig. 3.5, all threevalen
e quarks parti
ipate in the subpro
ess. The two ex
hanged photons, whi
h must havelarge virtualities, 
ouple to di�erent quarks and the third quark intera
ts via the ex
hangeof a hard gluon. In the 
al
ulation of Ref. [57℄ two di�erent models of DAs have been takeninto a

ount. The authors found a 2γ-e�e
t of a few per
ent, depending on the model forthe DAs.Two-photon ex
hange e�e
ts have been studied in Ref. [59℄ using the dispersion relationte
hnique for the nu
leon form fa
tors. Assuming, that the 2γ-ex
hange is responsible for thedi�eren
e between the two methods and that the e�e
t on the polarization ratio is negligible,the dispersion results were found to be in agreement with previous model 
al
ulations [51,56℄.In Ref. [60℄ the two-photon ex
hange amplitude has been 
omputed in the framework ofdispersion relations for nu
leon intermediate states using on-shell nu
leon form fa
tors. Theobtained e�e
ts are similar to those found within a hadroni
 approa
h [51℄, espe
ially in thesmaller Q2 region.32
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Q2 (GeV2)Figure 3.4: Rosenbluth extra
tion of the form fa
tor ratio R in
luding two-photon ex
hange
orre
tions obtained by a GPD based partoni
 approa
h. The results of theRosenbluth determination of GE/GM in
luding the 2γ-
orre
tions are presentedby the �lled squares. The polarization data are indi
ated by the 
ir
les and theRosenbluth extra
tion without two-photon 
orre
tions by blue triangles. The�gure is taken from Ref. [56℄.3.3 Observables related to Two-Photon Ex
hangeBesides sear
hing for e�e
ts beyond the Born approximation in the Rosenbluth 
ross se
tionsand polarization transfer experiments, two-photon ex
hange 
an be probed using observableswhi
h are dire
tly 
onne
ted with the 2γ-amplitudes. The 
omparison of positron-proton andele
tron-proton s
attering 
ross se
tions allows to a

ess the real part of the 2γ-amplitudes,whereas single spin asymmetries are related to the imaginary part.3.3.1 Comparison of Positron-Proton and Ele
tron-Proton S
atteringA dire
t experimental test of the two-photon ex
hange formalism 
an be obtained by the
omparison of the elasti
 positron-proton (e+p) and the elasti
 ele
tron-proton (e−p) s
at-tering 
ross se
tions. The ratio of these 
ross se
tions is de�ned as:
Re+e− =

σR(e
+p→ e+p)

σR(e−p→ e−p)
. (3.18)The 
ross se
tions in the Born approximation are the same for e+p and e−p s
attering, butthe interferen
e term of the 1γ and 2γ-amplitudes in the 
ross se
tion 
hanges its sign under33
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e−(k) e−(k′)

γ∗(q1) γ∗(q2)

u

u

dFigure 3.5: One possible diagram for elasti
 ep-s
attering with hard two-photon ex
hange.The gray blobs 
orrespond to the DAs of the in
oming and outgoing nu
leon,respe
tively.the inter
hange of e− and e+. Therefore the 2γ-ex
hange 
ontribution appears as a deviationof Re+e− from unity. The 
ross se
tion ratio 
an be written as
Re+e− =

|M1γ |2 − 2Re[M∗
1γM2γ ]

|M1γ |2 + 2Re[M∗
1γM2γ ]

≈ 1− 2 δ2γ ,

(3.19)where δ2γ is the two-photon ex
hange 
ontribution to the 
ross se
tion andM1γ andM2γ arethe amplitudes of the 1γ and 2γ pro
esses as dis
ussed in Eq. (3.13). Hen
e a measurementof Re+e− gives dire
t a

ess to the real part of the 2γ-ex
hange amplitudes and 
onsequentlyallows for tests of the two-photon ex
hange formalism.Early 
omparisons of e+p and e−p s
attering 
ould not yield to a 
lear 
onstraint on thetwo-photon ex
hange e�e
ts. The existing data, whi
h have quite large un
ertainties, hadmostly been taken at low Q2 and larger values of ε, where the 2γ-
orre
tions are expe
ted tobe small. However, new experiments, whi
h attempt to measure Re+e− with higher a

ura
y,are underway. The Olympus experiment at DESY [61℄, the E07-005 experiment performedat JLab [62℄, as well as the results taken at the VEPP-III storage ring in Novosibirsk [63℄, willprovide 
ross se
tion 
omparisons over a wide kinemati
 range. The Novosibirsk experimentalready reported data for two values of ε and Q2 [64℄:
Re+e− = 1.0160 ± 0.011 ± 0.003, for ε = 0.5, Q2 = 1.43GeV2

Re+e− = 0.9976 ± 0.0009 ± 0.003, for ε = 0.95, Q2 = 0.23GeV2.
(3.20)Further results of these experiments will give insight into the 2γ-formalism and disentangledi�erent models applied for 
al
ulating two-photon ex
hange 
orre
tions.3.3.2 Beam-Normal and Target-Normal Spin AsymmetriesThe imaginary part of the two-photon amplitudes 
an be a

essed through a single-spinasymmetry (SSA), when either the target or the beam is polarized normally to the s
attering34



3.4 Determination of Two-Photon Amplitudes from ep-S
attering Dataplane of the rea
tion. Due to time-reversal invarian
e, the SSA vanishes in the 1γ-ex
hangeapproximation and is suppressed by αem.The target-normal SSA An is de�ned as
An =

σN↑ − σN↓

σN↑ + σN↓
, (3.21)where σN↑ (σN↓) denotes the 
ross se
tion for a nu
leon spin parallel (anti-parallel) to thedire
tion normal to the s
attering plane. An is expe
ted to be of order of αem ∼ 10−2. It 
anbe expressed through the generalized form fa
tors, whi
h have been introdu
ed in Eq. (3.9),

An =

√
2ε(1 + ε)

τ

1

σR

{
−GM Im

[
δG̃E +

ν

m2
N

F̃3

]
+GE Im

[
δG̃M +

2ε

1 + ε

ν

m2
N

F̃3

]}
,(3.22)and depends on the imaginary part of the two-photon amplitudes δG̃M , δG̃E and F̃3.Polarizing an ultra-relativisti
 parti
le normally to its momentum leads to a suppressionof m/E, where m is the mass and E is the energy of the parti
le. Hen
e, the beam-normalSSA, whi
h requires a polarized ele
tron beam, is suppressed by an additional fa
tor of

me/Ee ∼ 10−3 − 10−4 and is expe
ted to be of the order of ∼ 10−5 − 10−6. It vanishesexpli
itly for me = 0, as it in
ludes an ele
tron-heli
ity �ip. The general form of the matrixelement in
luding the ele
tron-heli
ity �ip, whi
h has been derived in Ref. [65℄, 
ontains sixindependent amplitudes, hen
e three additional stru
tures besides the amplitudes introdu
edin Eq. (3.9).3.4 Determination of Two-Photon Ex
hange Amplitudes fromElasti
 ep-S
attering Data3.4.1 Measurement of E�e
ts beyond the Born Approximation inPolarization Transfer ObservablesIn 2010 the results of the GEp2γ experiment [50℄, whi
h was performed at JLab/Hall C,have been published. The aim of the experiment was the sear
h for e�e
ts beyond theBorn approximation in polarized elasti
 ele
tron-proton s
attering. The polarization ratio
R, de�ned by

R = −µp
√
τ(1 + ε)

2ε

Pt

Pl
, (3.23)and the longitudinal polarization 
omponent Pl have been measured separately at �xedmomentum transfer of Q2 = 2.5 GeV2 as a fun
tion of ε with high pre
ision.The results of the experiment 
an be seen from Fig 3.6. The new data of the ratio R arepresented by the �lled blue 
ir
les in the left plot, together with the results of the polarizationratio from the earlier GEp-I experiment [67℄ (open triangle). It 
an be 
learly seen thatthe data of the GEp2γ experiment improve the pre
ision of the previous measurement.No eviden
e of an ε dependen
e of the polarization ratio R has been found within theun
ertainties of ∼ 1%. In 
ontrast, the results of the polarization 
omponent Pl/P

Born
l ,presented in the right panel of Fig 3.6, show an ε dependent behavior, with an enhan
ementof Pl/P

Born
l of 2.3 %± 0.6% at ε = 0.785. 35
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Figure 3.6: Results of the GEp2γ experiment (blue 
ir
les) of R (left panel) and Pl/P
Born
l(right panel) as a fun
tion of ε at Q2 = 2.5 GeV2. The blue solid line shows a
onstant �t to the data, the other 
urves 
orrespond to predi
tions of di�erentmodels [51,56,57,66℄. The open triangle represents the result of the earlier GEp-Iexperiment. The star in the right plot indi
ates the ε value at whi
h the resultshave been normalized. The systemati
 un
ertainties are presented by the bla
kbands at the bottom of the panels. The �gure is adapted from Ref. [50℄.

In addition, predi
tions of three theoreti
al models, whi
h have been dis
ussed in Se
-tion 3.2, are presented in Fig. 3.6. One noti
es, that no model is able to explain both�ndings of the experiment, the ε independent behavior of R as well as the e�e
t of ∼ 2% on
Pl/P

Born
l at larger ε values, even though the predi
ted ε dependen
e for R of the di�erentmodels varies signi�
antly. The hadroni
 model [51℄ as well as the GPD-based approa
h [56℄and the pQCD 
al
ulation [57℄ �nd a larger e�e
t on R for smaller values of ε, while theresults of the 
al
ulations di�er in the sign of the two-photon 
ontribution. Furthermore,using the GPD model and the hadroni
 model, one obtains an insigni�
ant e�e
t on the εdependen
e of Pl/P

Born
l , whi
h is below 1%.Only the 
al
ulation of radiative 
orre
tions of Ref. [66℄ does not predi
t any measurable

ε dependent e�e
t on R. Within this approa
h the so-
alled stru
ture fun
tion method hasbeen used to 
al
ulate radiative 
orre
tions to elasti
 ep-s
attering in quasi-elasti
 kinemat-i
s. The authors of Ref. [66℄ found, that the 2γ-ex
hange 
orre
tions are negligible, butre
eive larger 
ontributions through initial state emission. However, several approximationshave been applied in the analysis and the results strongly depend on the experimental 
on-ditions. To 
al
ulate the box-diagrams of two-photon ex
hange, it has been assumed thatboth photons 
arry approximately half of the transferred momentum.The dis
ussed pre
ise measurement of the polarization observables, whi
h 
annot be ex-plained by existing 2γ-ex
hange model 
al
ulations, motivates to extra
t the two-photonamplitudes from the existing data within a phenomenologi
al approa
h.36



3.4 Determination of Two-Photon Amplitudes from ep-S
attering Data3.4.2 Phenomenologi
al Extra
tion of Two-Photon Ex
hange Amplitudesfrom ep-S
attering DataFor the extra
tion of the three 2γ-amplitudes δG̃M , δG̃E , and F̃3, whi
h have been introdu
edin Eq. (3.9), it is 
onvenient to de�ne the real part of the two-photon amplitudes relative tothe magneti
 form fa
tor,
YM (ν,Q2) = Re

(
δG̃M

GM

)
, YE(ν,Q

2) = Re

(
δG̃E

GM

)
,

Y3(ν,Q
2) =

ν

m2
N

Re

(
F̃3

GM

)
,

(3.24)sin
e these 
ombinations appear in the expression of the observables.The redu
ed 
ross se
tion of the rea
tion in
luding the 2γ-
orre
tions divided by G2
M thenreads

σR
G2

M

= 1 +
ε

τ

G2
E

G2
M

+ 2YM + 2ε
GE

τGM
YE + 2ε

(
1 +

GE

τGM

)
Y3. (3.25)The polarization transfer ratio R in the presen
e of 2γ-ex
hange 
an be written as:

R

µP
= −

√
τ(1 + ε)

2ε

Pt

Pl
=

GE

GM
+ YE −

GE

GM
YM +

(
1− 2ε

1 + ε

GE

GM

)
Y3. (3.26)For Pl separately, its expression relative to the 1γ-result PBorn

l of Eq. (2.31) is given by :
Pl

PBorn
l

= 1− 2ε

(
1 +

ε

τ

G2
E

G2
M

)−1

×
{[

ε

1 + ε

(
1− G2

E

τG2
M

)
+

GE

τGM

]
Y3

+
GE

τGM

[
YE −

GE

GM
YM

]}
.

(3.27)For the analysis of the two-photon ex
hange 
ontribution to elasti
 ele
tron-proton s
at-tering the data for the ε dependen
e of Pt/Pl and Pl/P
Born
l at Q2= 2.5 GeV2 [50℄ are used,whi
h have been dis
ussed before, and are 
ombined with a high-pre
ision Rosenbluth mea-surement of σR performed at JLab/Hall A [20℄, where data of the 
ross se
tion have beentaken at a similar value, Q2 = 2.64 GeV2. Negle
ting the small di�eren
e between the twovalues of momentum transfer (2.5 and 2.64 GeV2), the 
ombination of both experimentsallows for having three observables at the same value of Q2 to extra
t the three two-photonamplitudes YM , YE, and Y3.Firstly, the data for the polarization ratio R is �tted, whi
h is displayed in Fig. 3.7. TheJLab/Hall C experiment does not see any systemati
 2γ-e�e
t on Pt/Pl within their errorbars of the order of 1%. We performed a �t of −µp√ τ(1−ε)
2ε

Pt

Pl
assuming an ε independentpart A, whi
h in the Born approximation equals µp GE

GM
, supplemented an ε dependent part:

− µp
√
τ(1− ε)

2ε

Pt

Pl
= A+Bεc(1− ε)d. (3.28)Using a range of values for c and d, it has been found, that the value B is zero withinthe present error and that the extra
ted values of A are all equal within their error bars.37
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Figure 3.7: The ratio −µp√ τ(1+ε)
2ε

Pt

Pl
as a fun
tion of ε for Q2 = 2.5 GeV2. The data pointsare from the GEp-I experiment [9,67℄ (blue triangle) and from the GEp-2γ exper-iment [50℄ (red 
ir
les): the error bars show the statisti
al errors, the systemati
errors are given by the gray band. The solid 
urve is an ε independent �t, givenby Eq. (3.29).Therefore we 
on
lude, that the pre
ision of the present data [50℄ at Q2 = 2.5 GeV2 doesnot allow to extra
t any ε dependent part, in addition to the 
onstant value A.For this reason, an ε independent �t is used in the analysis, whi
h yields:

R = −µp
√
τ(1 + ε)

2ε

Pt

Pl
= 0.693 ± 0.006stat. ± 0.010sys., (3.29)indi
ated by the solid line in Fig. 3.7.The �tted value of R 
an be used in order to extra
t the ratio GE/GM of the 1γ-formfa
tors at Q2 = 2.5 GeV2, whi
h is a 
onstant at �xed Q2. These pro
edure is motivatedby the Regge limit assumption, whi
h predi
ts, that the 2γ-
orre
tions to Pt/Pl vanish for

ε → 1. Hen
e, in this limit R is dire
tly related to µpGE/GM . Sin
e we assume that theratio R is independent of ε for Q2=2.5 GeV2, R 
an be identi�ed with the form fa
tor ratio:
R = R(ε→ 1) = µp

GE

GM

∣∣∣∣
Q2=2.5GeV2

= 0.693. (3.30)In the next step the longitudinal polarization 
omponent is analyzed. Pl is 
onventionallydivided by its 1γ-value PBorn
l , whi
h is 
al
ulated a

ording to Eq. (2.31), using the valueof Eq. (3.30) as input for GE/GM . To �t the ε-dependen
e of Pl/P

Born
l , we �rst spe
ify itsbehavior for the limits ε → 0 and ε → 1, where the 2γ-
ontributions to Pl are expe
ted tobe zero. As 
an be seen from Eq. (3.27), for the limit ε→ 0 these statement 
an be derivedfrom the model independent expression of the observable Pl/P

Born
l in terms of YM , YE , and

Y3, giving rise to
Pl

PBorn
l

ε→ 0−−−→ 1. (3.31)The se
ond assumed limiting behavior 
an again be motivated from the Regge limit assump-tion for ε→ 1, as dis
ussed above.38
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Figure 3.8: The ratio Pl/P
Born
l as a fun
tion of ε for Q2 = 2.5 GeV2. The data points arefrom the GEp−2γ experiment [50℄: the error bars show the statisti
al errors, thesystemati
 errors are given by the gray band in the bottom. The star indi
atesthe ε value at whi
h the data have been normalized to the value 1. The two
urves 
orrespond to the �ts des
ribed in Eq. (3.32): Fit 1 (solid 
urve), Fit 2(dashed 
urve).Furthermore, perturbative QCD 
al
ulations of 2γ-ex
hange 
orre
tions [57,58℄ �nd, that

Pl/P
Born
l behaves as

Pl

PBorn
l

− 1→
{

(1− ε)1/2 for ε→ 1.

ε2 for ε→ 0.
(3.32)Nevertheless, the pQCD predi
tion is not expe
ted to hold a

urately at the relatively lowvalue of Q2 = 2.5 GeV2, so we refer to the pQCD behavior only as an example. Althoughthe data for Pl/P

Born
l show a de
rease for ε → 0, the fall-o� at Q2 = 2.5 GeV2 is fasterthan predi
ted from pQCD. At this values of Q2 one expe
ts to re
eive sizeable 
orre
tionsto the predi
ted behavior. Hen
e, we will not use the exa
t form of the perturbative QCDpredi
tion, but modify the simple fun
tional form in order to �nd the best �t to the availabledata, taking the predi
ted endpoint behavior into a

ount .Therefore, as �t of the data for Pl/P

Born
l two di�erent, purely phenomenologi
al, fun
-tional forms are used, whi
h depend on one parameter al:

Pl

PBorn
l

= 1 +

{
al ε

4(1− ε)1/2 (Fit 1).
al ε ln(1− ε)(1− ε)1/2 (Fit 2). (3.33)The �ts to the data, shown in Fig. 3.8, lead to the values

al = 0.11 ± 0.03stat. ± 0.06sys. (Fit 1).
al = − 0.032 ± 0.008stat. ± 0.020sys. (Fit 2). (3.34)Now we take a 
loser look on the Rosenbluth measurements of the redu
ed 
ross se
tion.As presented in Fig. 3.9, the pre
ise data of the JLab/Hall A Rosenbluth measurement [20℄39
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Figure 3.9: Rosenbluth plots for elasti
 ep-s
attering: redu
ed 
ross se
tion σR divided by
µ2p/(1 + Q2/0.712) as a fun
tion of ε at Q2 = 2.64 GeV2. Solid 
urve: linear�t to the JLab/Hall A 
ross se
tion data (
ir
les) [20℄. Dashed 
urve: Resultin the one-photon approximation, using the slope from the polarization data of
GE/GM . The gray band shows the systemati
 errors.of σR at Q2=2.64 GeV2 show a linear in
rease of the 
ross se
tion with respe
t to ε, therefore

σR
(µpGD)2

= a+ bε (3.35)is suggested, where the standard dipole form fa
tor GD has been fa
tored out, whi
h hasde�ned in Eq. (2.28).The �t to the data yields
a = 1.106 ± 0.006, b = 0.160 ± 0.009. (3.36)For the analysis, the 1γ-form fa
tors GE/GM as well as G2

M are needed. To extra
t the
2γ-amplitudes as well as the form fa
tor 
ombinations GE/GM and G2

M from the threeobservables, we have to make two assumptions. The �rst one was made in Eq. (3.28), wherethe ε independent part gives GE/GM , see Eq. (3.30). To �x the value of G2
M , it has beenassumed, that the 2γ-
orre
tions to σR vanish in the limit ε→ 1, whi
h is again motivatedby the Regge limit and in addition 
an be found as a result of model 
al
ulations of 2γ-ex
hange, e.g. in Ref. [57℄. By means of the aforementioned assumptions, the redu
ed 
rossse
tion at ε→ 1 is found as

σR(ε = 1, Q2) = G2
M +

G2
E

τ
. (3.37)The GE/GM value extra
ted from the �t to Pt/Pl and the �tted values of the parameters aand b entering in Eq. (3.35) allow to �x the value of G2

M as
(
GM

µpGD

)2

=
a+ b

1 + 1
τ (GE/GM )2

. (3.38)40



3.4 Determination of Two-Photon Amplitudes from ep-S
attering DataFor Q2 = 2.64 GeV2 one obtains:
(
GM

µpGD

)2

= 1.168 ± 0.010. (3.39)Having spe
i�ed the �ts of the observables Pt/Pl, Pl/P
Born
l , and σR de�ned in Eqs. (3.29),(3.32), (3.35), we next pro
eed to extra
t the two-photon amplitudes YM , YE , and Y3.The �tting pro
edure involves three steps. Firstly, a standard χ2-�t of the data for Pt/Pl(1 parameter), Pl/P

Born
l (1 parameters) and σR (2 parameters) is performed, using theassumptions of the limit behavior for ε → 1 and ε → 0 as des
ribed above. Se
ondly, bysolving Eqs. (3.25)-(3.27) with respe
t to the amplitudes Yi, the 2γ-amplitude as a fun
tionof the �tting parameters and G2

M and GE/GM are obtained. Thirdly, the 1σ error bands of
Yi are 
omputed from the statisti
al errors in the �tted observables, again using Eqs. (3.25)-(3.27). In the same way the systemati
 un
ertainties of the data are estimated.The results are presented in Fig. 3.10, where the 2γ amplitudes as a fun
tion of ε areshown in
luding the 1σ statisti
al error bands. The systemati
 errors are indi
ated by thehorizontal bands at the bottom of Fig. 3.10. The two di�erently 
olored bands 
orrespond tothe two di�erent �ts, whi
h have been used for Pl/P

Born
l , given by Eq. (3.34). One noti
es,that all three amplitudes are of the order of 2-3 %, whi
h is in agreement with the predi
tede�e
ts allowing to re
on
ile the dis
repan
y as found in Ref. [19℄.The amplitude, whi
h is best 
onstrained by the available data, is YM . This is be
ausethe amplitude YM is mainly driven by the 2γ-e�e
ts on the 
ross se
tion, for whi
h severalpre
ise data points over a large ε range exist. Negle
ting the smaller terms in the 
rossse
tion, whi
h are multiplied with GE/GM , leads to a 2γ-
ontribution σ2γR of the form

σ2γR ≃ YM + ε Y3, (3.40)dominated by YM for smaller values of ε. The error bands on YM originating from the twodi�erent �ts for Pl largely overlap. Ex
ept for the region where ε is large, the dominan
eof YM by the Rosenbluth data results in its approximate linear rise with ε. For ε → 1, YMhas to be
ome non-linear in order to provide, that YM + εY3 remains linear in this limit,whi
h we assumed in our analysis. How far the linearity of the Rosenbluth plot extends whenapproa
hing ε→ 1 is an open question, whi
h will be addressed by the results of a dedi
atedexperiment [68℄.In 
ontrast to YM , the amplitudes YE and Y3 are mainly driven by the polarization data.One noti
es from Fig. 3.10 that the error bands overlap in the range where data for all threeobservables exist (ε > 0.6). In the range of smaller ε, where there are less 
onstraints fromthe polarization data, one sees 
lear deviations between the two di�erent fun
tional formsfor the ε-dependen
e. We 
he
ked, that the same 
on
lusion is rea
hed for other forms of
Pl/P

Born
l . Hen
e one 
an 
on
lude that the available data allow to extra
t these amplitudesonly in the range ε > 0.6.The amplitudes YE and Y3 are at the 2-3 % level, showing a similar ε dependen
e, buthaving opposite sign. This 
an be explained by having a 
loser look at the ratio Pt/Pl. One
an see from Eq. (3.26), that the leading 
ontribution of 2γ-ex
hange to Pt/Pl is given by

(
Pt

Pl

)2γ

≃ YE + Y3. (3.41)41
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Figure 3.10: Extra
ted 2γ-amplitudes as a fun
tion of ε at Q2 = 2.64 GeV2 together withtheir 1σ-error bands. The two di�erent 
olored bands indi
ate the �ts of
Pl/P

Born
l as des
ribed in Eq.(3.32): Fit 1 (purple bands); Fit 2 (blue bands).The horizontal bands at the bottom of the plots show the systemati
 errors.

42
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tions for the e+p/e−p elasti
 
ross se
tion ratio Re+e− as a fun
tion of ε,together with their 1σ error bands.The absen
e of 2γ-e�e
ts in Pt/Pl implies, that YE and Y3 are of equal magnitude and ofopposite sign. Furthermore, the value of Y3 is nearly entirely driven by the data for Pl, as
an be seen from Eq. (3.27). When negle
ting the small terms proportional to GE/GM , one�nds that the observable is given by
P 2γ
l ≃ −2ε2/(1 + ε)Y3. (3.42)To improve on the extra
tion of YE and Y3 will require a further improvement in pre
ision ofthe polarization experiments and an a

urate data set 
overing a larger range of ε for bothpolarization observables.3.4.3 Positron-Proton versus Ele
tron-Proton S
atteringThe 
omparison of positron-proton to ele
tron-proton s
attering, dis
ussed in se
tion 3.3.1,provides a de�ned test of the 2γ-ex
hange formalism. The e+p elasti
 s
attering observablesare obtained from the ones for e−p (Eqs. (3.25)-(3.27)) by merely 
hanging the sign in frontof the 2γ-amplitudes. Therefore the ratio of the positron-proton to ele
tron-proton elasti
s
attering 
ross se
tion Re+e− , Eq. (3.18), gives rise to the 2γ-
ontributions to the 
rossse
tion.The extra
ted 2γ-amplitudes at Q2 = 2.64 GeV2 allowing for predi
tions of the ratio

Re+e− . The results of Re+e− are shown in Fig. 3.11 together with their 1σ error bands,where Fit 1 in Eq. (3.32) has been used. The ratio is dominated over most of the ε range bythe amplitude YM , whi
h is mainly determined from the 
ross se
tion, and therefore Re+e−depends very weakly on the fun
tional form of Pl. In the previous se
tion, it has been found,that the amplitude YM 
an be reliably extra
ted from the existing data. Consequently, thepresent data allow to provide a predi
tion for Re+e− at Q2 = 2.64 GeV2 over the full range of
ε, under the assumption that the Rosenbluth plot extends linearly all the way up to ε→ 1.43



Chapter 3 Two-Photon Ex
hange in Elasti
 Ele
tron-Proton S
atteringOne noti
es that for Q2 = 2.64 GeV2, Re+e− rises linearly to small ε, rea
hing Re+e− =
1.053 ± 0.004 for ε = 0.5.Measurements of Re+e− are underway at several experiments. The Olympus experimentwill 
over an ε region of ε ∼ 0.4 -0.9 and a momentum transfer up to ∼ Q2 = 2.25 GeV2,measuring Re+e− with an aimed a

ura
y of order of 1%. For the measured range of thisexperiment, the 2γ-
orre
tions to the e+p/e−p elasti
 
ross se
tion ratio are found to varyin the 1 - 6 % range.In Fig. 3.11, also predi
tions for two other values of momentum transfer are provided,
Q2 = 3.20 GeV2 and Q2 = 4.20 GeV2, where the high-pre
ision Rosenbluth experiment atJLab [20℄ has taken data of σR. At these higher values of Q2, a systemati
 measurementof the ε-dependen
e of the polarization observables has not yet been performed. For ouranalysis of the Q2 = 3.2 GeV2 and Q2 = 4.1 GeV2 data, we therefore have assumed that
Pt/Pl 
an be �tted by its 1γ-value proportional to GE/GM . One sees from Fig. 3.11, thatfor a �xed value of ε, the ratio in
reases with Q2. Nevertheless, for a detailed analysis ofthe Q2 dependen
e of the 2γ-amplitude and the ratio Re+e− pre
ise data for the polarizationobservables at higher momentum transfer values are needed.3.5 Con
lusionsIn this 
hapter the 
ombined analysis of high-pre
ision Rosenbluth data and 
onsiderablymeasurements of the polarization observables has been performed. This analysis allows foran extra
tion of the three 2γ-amplitudes using empiri
al results for the three observables andassuming, that for ε→ 1 the 2γ-amplitudes vanishes. The amplitudes are found to be at the2-3 % level, where one amplitude (YM ) 
an be reliably extra
ted from the 
orre
tions to theunpolarized 
ross se
tion. Predi
tions of the e+p/e−p 
ross se
tion ratio 
an be provided,for whi
h dedi
ated experiments are underway.To improve on the extra
tion, further a

urate data, in parti
ular of the polarizationobservables are required, 
overing a larger range of ε. If a measurement of the polarizationobservables at further 
ommon values of Q2 will be performed, 
on
lusions 
on
erning the
Q2 dependen
e of the 2γ-amplitudes and the e+p/e−p 
ross se
tion ratio 
an be drawn.
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Chapter 4Two-Photon Ex
hange in the TimelikeRegionA 
omplete understanding of the ele
tromagneti
 nu
leon stru
ture 
an only be a
hieved by
omplementing the study of the spa
elike nu
leon form fa
tors by its timelike 
ounterparts.The elasti
 s
attering pro
ess is related to the 
orresponding annihilation pro
esses via the
rossing symmetry. Sin
e two-photon ex
hange plays a 
ru
ial role in the extra
tion of thespa
elike ele
tromagneti
 form fa
tors from elasti
 ele
tron-proton s
attering, investigatingits in�uen
e in the timelike region seems to be an obvious task. Nevertheless, in the time-like region no 
omparable 
al
ulation has been done to determine the two-photon ex
hangee�e
ts for the annihilation pro
esses. However, forth
oming form fa
tor measurements atPANDA�FAIR or BES-III are aiming pre
isions that 
an be 
omparable in size to the two-photon ex
hange 
orre
tions. With the prospe
t of su
h high-a

ura
y measurements, adetailed knowledge of 
orre
tions, as two-photon ex
hange, is ne
essary.In this 
hapter the in�uen
e of two-photon ex
hange on the timelike annihilation rea
tions
p p̄ → e+e− and e+e− → p p̄ is studied. Firstly, the general properties of timelike 2γ-ex
hange pro
esses are presented in terms of generalized two-photon amplitudes, similarlyto the amplitudes introdu
ed in 
hapter 3. Sin
e a quantitative determination of the 2γ-amplitudes 
annot be a
hieved from �rst prin
iples, one has to resort to model des
riptions.In this 
hapter, two di�erent approa
hes will be dis
ussed, both based on the prin
iple offa
torization. This basi
 
on
ept des
ribes the possibility to separate (fa
torize) soft andhard momenta in the amplitude, whi
h s
hemati
ally 
an be expressed as

M =Msoft ⊗Mhard +O (1/Q) , (4.1)where ⊗ stands for a 
onvolution. The hard part of the amplitude 
an be 
al
ulated pertur-batively, whereas the soft part, whi
h 
ontains information on the internal stru
ture of thenu
leon, has to be handled phenomenologi
ally. The variable Q denotes a large s
ale and theexpression O (1/Q) indi
ates, that the fa
torized amplitude re
eives 
orre
tions from termswhi
h are suppressed in the 1/Q expansion. In the fa
torization model the fast-moving pro-ton and antiproton behave as a set of free partons. This allows to 
ompute the pro
ess as a
onvolution of the annihilation rea
tion performed at the parton-level and the distributionfun
tions for �nding the 
orresponding partoni
 
on�guration in the nu
leon.For the purpose of studying two-photon ex
hange e�e
ts for the pro
ess p p̄ → e−e+, we
onsider two di�erent models. First, the 2γ-ex
hange 
orre
tions at large momentum trans-fer are analyzed within the framework of pQCD, where the 
on
ept of nu
leon DistributionAmplitudes (DAs) is introdu
ed in order to deal with the soft part of the amplitude. More-over, as an alternative approa
h, an estimate of the 2γ-e�e
ts within a partoni
 
al
ulation is45



Chapter 4 Two-Photon Ex
hange in the Timelike Region
N(p1)

N̄(p2)

e−(k1)

e+(k2)

N(p1)

N̄(p2)

e−(k1)

e+(k2)Figure 4.1: Dire
t and 
rossed box diagrams of the timelike 2γ-ex
hange in the annihilationpro
ess pp̄→ e−e+given, where the 2γ-ex
hange pro
ess is related to the Generalized Distribution Amplitudes(GDAs), the timelike analogon of the Generalized Parton Distributions.4.1 Timelike Two-Photon Ex
hange: General FormalismFor the analysis of the 2γ-ex
hange in the timelike region, we 
onsider the annihilationpro
ess of a proton and a antiproton into a lepton pair,
p(p1, λN1

) + p̄(p2, λN2
)→ l−(k1, h1) + l+(k2, h2), (4.2)where the momenta of the proton (antiproton) and lepton (antilepton) are given by p1 (p2)and k1 (k2), and λN1

, λN2
, h1 and h2 denote the heli
ities of the nu
leons and leptons,respe
tively. The two-photon ex
hange 
orre
tions are given by the dire
t and 
rossed boxdiagrams in Fig. 4.1. We will 
on
entrate on the p p̄-annihilation pro
ess, but the results forthe reversed rea
tion, e+ e− → p p̄, 
an easily be inferred from these 
al
ulations.In order to des
ribe the pro
ess, we introdu
e the variables

q2 = (p1 + p2)
2, Pµ =

pµ1 − pµ2
2

, Kµ =
kµ1 − kµ2

2
, (4.3)and the Mandelstam variables

s = q2 = (p1 + p2)
2, t = (p1 − k2)2, u = (p1 − k1)2. (4.4)The annihilation pro
ess 
an be des
ribed through two independent kinemati
al invariants,whi
h are 
hosen as variables q2 and t.In the 1γ-ex
hange approximation the 
ross se
tion, given by Eq. (2.42), depends on theele
tri
 and magneti
 form fa
tor as

(
dσ

d cos θ

)

1γ

∝
[ ∣∣GM (q2)

∣∣2(1 + cos2 θ) +
1

τ

∣∣GE(q
2)
∣∣2 sin2 θ

]
. (4.5)As for the spa
elike s
attering pro
ess, the part of the 
ross se
tion 
ontaining |GE(q

2)|2 issuppressed for larger momentum transfer by 1/q2. Hen
e, an extra
tion of both form fa
torsfrom the measured 
ross se
tion at larger q2 values is very sensitive to even small 
orre
tions46



4.1 Timelike Two-Photon Ex
hange: General Formalismas 2γ-ex
hange, in parti
ular when one of the form fa
tors 
ontributes only a few per
ent tothe 
ross se
tion.Similarly to the spa
elike analysis, for vanishing lepton masses the matrix element in-
luding multi-photon ex
hange 
an be parametrized by three independent generalized formfa
tors. Using 
rossing relations, the amplitude in
luding multi-photon ex
hange 
an befound as
M = − e2

q2
ū(k2, h1) γµ v(k1,−h1)

× N̄(p2, λN2
)

[
G̃M (q2, t) γµ − F̃2(q

2, t)
1

mN
Pµ + F̃3(q

2, t)
1

m2
N

Pµ /K]N(p1, λN1
),(4.6)where negle
ting the masses of the leptons implies, that the ele
tron and the positron haveopposite heli
ities. The generalized form fa
tors G̃M , F̃2 and F̃3 are 
omplex fun
tions of q2and t. One 
an equivalently introdu
e

G̃E(q
2, t) ≡ G̃M (q2, t)−

(
1− τ

)
F̃2(q

2, t). (4.7)In order to identify the 1γ- and 2γ-ex
hange 
ontributions, it is 
onvenient to use the de-
ompositions
G̃M (q2, t) ≡ GM (q2) + δG̃M (q2, t),

G̃E(q
2, t) ≡ GE(q

2) + δG̃E(q
2, t),

F̃3(q
2, t) ≡ δF̃3(q

2, t),

(4.8)where, like in the spa
elike region, the form fa
tors δG̃M (q2, t), δG̃E(q
2, t), and δF̃3(q

2, t) are
omplex fun
tions, 
orresponding to pro
esses where at least two photons are ex
hanged and
GE and GM are the timelike ele
tromagneti
 form fa
tors, introdu
ed in Eq. (2.39). The
2γ-amplitudes are suppressed by αem 
ompared to the 1γ-form fa
tors.The pro
ess is 
onsidered in the 
.m. frame of the nu
leon pair, with the momenta givenby Eqs. (2.40) and (2.41). The variable t 
an be related to the 
.m. s
attering angle θbetween the in
ident proton and the outgoing ele
tron through

t = m2
N −

s

2
(1 + cos θ). (4.9)The 
ross se
tion in
luding the leading order 2γ-ex
hange 
orre
tions 
an be expressed as

(
dσ

d cos θ

)
=

α2
emπ

8m2
√
τ(τ − 1)

{
|GM |2(1 + cos2 θ) +

1

τ
|GE |2 sin2 θ

+ 2Re
[
GM δG̃∗

M

]
(1 + cos2 θ) + 2

1

τ
Re
[
GE δG̃

∗
E

]
sin2 θ

+ 2
(
Re
[
GM F̃3

∗]− 1

τ
Re
[
GE F̃3

∗])√
τ(τ − 1) cos θ sin2 θ

}
.

(4.10)
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Chapter 4 Two-Photon Ex
hange in the Timelike RegionIn the 1γ-ex
hange approximation, only the �rst line of Eq. (4.10) 
ontributes to the 
rossse
tion and the expression redu
es to the well known formula of the unpolarized 
ross se
tion,given by Eq. (2.42). The se
ond part of Eq. (4.10) represents the interferen
e of 1γ- and
2γ-ex
hange pro
esses. Due to the 
omplex nature of the timelike form fa
tors, the 
rossse
tion depends on the real as well as on the imaginary parts of the two-photon amplitudes.As dis
ussed in Ref. [69℄, the 2γ-amplitudes have a de�ned behavior with respe
t to the
.m. s
attering angle θ:

δG̃E,M (Q2,− cos θ) = − δG̃E,M (Q2, cos θ),

F̃3(Q
2,− cos θ) = F̃3(Q

2, cos θ),
(4.11)whi
h 
an be derived from the C-invarian
e of the ele
tromagneti
 hadroni
 
urrent. Con-sequently, the two-photon 
ontribution to the 
ross se
tion, as presented in Eq. (4.10), isan odd fun
tion with respe
t to the transformation cos θ ↔ − cos θ, in 
ontrast to the Born
ross se
tion, whi
h in an even fun
tion of cos θ. Hen
e, the forward-ba
kward asymmetry,de�ned by

Acos θ =

(
dσ

d cos θ

)
(cos θ)−

(
dσ

d cos θ

)
(− cos θ) = 2

(
dσ

d cos θ

)

2γ

(cos θ), (4.12)allows a dire
t extra
tion of the two-photon ex
hange 
orre
tions from the measured 
rossse
tions, where (dσ/d cos θ)2γ refers to the 2γ-
ontributions of (dσ/d cos θ).The forward-ba
kward asymmetry have been analyzed in Ref. [70℄ using the availabledata of the pro
ess pp̄ → e+e−γ of Ref. [30℄, whi
h have been taken in the energy range of
q2 ∼ 4− 7.3 GeV2. No systemati
 θ dependen
e has been observed within the un
ertaintiesof the experiment and an averaged value of the asymmetry over the measured range hasbeen found as Acos θ = 0.01± 0.02. However, sin
e the present data have large un
ertainties,more data with higher a

ura
y are needed for a detailed analysis of the forward-ba
kwardsymmetry.The unpolarized 
ross se
tion allows to a

ess the absolute value of the timelike formfa
tors. Their phases 
an be investigated by means of polarization observables. Theseobservables 
an be a�e
ted by two-photon ex
hange 
orre
tions as well, even though thee�e
t is expe
ted to be small. One observable enabling a

ess to the imaginary part of theele
tri
 and magneti
 form fa
tor, is the single spin asymmetry, Eq. (2.45), when either theproton or antiproton is polarized normally to the s
attering plane, whi
h does not require apolarization of the leptons in the �nal state. In the 
ase of a polarized proton the single spinasymmetry in
luding 2γ-ex
hange 
orre
tions up to next order in αem is given by

Ay = − 1√
τ D 2 sin θ

{(
Im[GEG

∗
M ] + Im[GEδG̃

∗
M ] + Im[δG̃EG

∗
M ]
)
cos θ

+
√
τ(τ − 1)

(
Im[GM F̃

∗
3 ] cos

2 θ + Im[GEF̃
∗
3 ] sin

2 θ
)}

,

(4.13)with
D = |GM

∣∣2(1 + cos2 θ) +
1

τ

∣∣GE

∣∣.48



4.2 Timelike Two-Photon Ex
hange Corre
tions at Large q²: pQCD ResultIn 
ontrast to spa
elike pro
esses, the SSA Ay in the timelike region does not vanish in theBorn approximation. Hen
e, the two-photon ex
hange appears in the asymmetry only as a
orre
tion term.Additional possibilities for extra
ting the phases of GE and GM 
an be o�ered by doublepolarization measurements, when both the proton and the antiproton are polarized. Two-photon ex
hange 
orre
tions to double polarization observables in terms of the 2γ-amplitudes
δG̃E , δG̃M , and F̃3 
an be found in Ref. [71℄.4.2 Timelike Two-Photon Ex
hange Corre
tions at Large q2:Perturbative QCD ResultThe des
ription of the timelike 2γ-ex
hange 
orre
tions presented in the previous se
tionis model independent, as it is derived from the general e�e
tive 
urrent-
urrent expression(Eq. (4.6)). However, for a quantitative determination of the 2γ-amplitudes a model ap-proa
h is needed. Only one model 
al
ulation of timelike 2γ-ex
hange 
orre
tions has beenperformed so far, namely a hadroni
 approa
h [72℄ using a nu
leon as intermediate statein the box graphs, whi
h is expe
ted to be appli
able only in the region of small values ofmomentum transfer.Due to the fa
t, that the planned high pre
ision measurements of the timelike form fa
torsattempt to a
hieve values of momentum transfer of q2 ∼ 30 GeV2 and based on the expe-rien
e, that 2γ-ex
hange a�e
ts the spa
elike form fa
tor extra
tion parti
ularly at largermomentum transfer, we take a model des
ription into a

ount, whi
h is suitable to study
2γ-ex
hange 
orre
tions at higher values of q2. This approa
h is based on the prin
iple ofQCD fa
torization giving rise to the nu
leon distribution amplitudes, whi
h will be �rstlyintrodu
ed. Subsequently, the 
omputation of the timelike 2γ-ex
hange within this approa
hwill be presented.4.2.1 Nu
leon Distribution Amplitudes and Perturbative QCDFa
torization Approa
hFor the study of ex
lusive high-energy pro
esses the 
on
ept of fa
torization has su

ess-fully been used, whi
h allows to separate the short-distan
e and long-distan
e physi
s. Theidea behind this is, that for pro
esses with higher momentum transfer the hadrons 
an be
onsidered as de�ned partoni
 states for the short period of intera
tion.Based on the fa
torization s
heme of Ref. [73℄, the hadroni
 amplitude of a pro
ess 
anbe expressed as a 
onvolution of a hard s
attering part H and a soft 
ontribution. Thehard pro
ess 
an be 
al
ulated dire
tly within the framework of perturbative QCD andthe soft non-perturbative 
ontribution is parametrized by the so-
alled hadron distributionamplitudes, des
ribing the hadroni
 stru
ture e�e
ts. We will refer to this 
on
ept as pQCDfa
torization approa
h. Su
h an approa
h is valid for su�
ient large values of the momentumtransfer Q.For this purpose, it is 
onvenient to use light-
one 
oordinates (see Appendix A), de�ned49



Chapter 4 Two-Photon Ex
hange in the Timelike Region
x1p

x2p

x3p

y1p
′

y2p
′

y3p
′

γ∗

p p′Φ Φ†HFigure 4.2: Proton form fa
tor in the framework of pQCD fa
torization. The hard s
atteringamplitude H 
orresponds to the pro
ess γqqq → qqq. Φ (Φ†) indi
ates the DAof the initial (�nal) proton state.by the light-
one basis
nµ = (1, 0, 0,−1), n̄µ = (1, 0, 0, 1),with n2 = n̄2 = 0 and n · n̄ = 2,

aµ⊥ = (0, a1, a2, 0),

(4.14)where n and n̄ are two light-like ve
tors and aµ⊥ is denoted as the transverse 
omponent ofthe four-momentum aµ. Any four-ve
tors 
an be de
omposed in that basis as
pµ =

n̄µ

2
(n · p)︸ ︷︷ ︸ +

nµ

2
(n̄ · p)︸ ︷︷ ︸ + pµ⊥, (4.15)

p+ p−where 
ommonly the short-hand notation
pµ → (p+, p−, p⊥) ≡ (n · p, n̄ · p, p⊥) (4.16)is used. Parti
les moving in the p+ dire
tion are denoted as 
ollinear parti
les, while parti
lesalong the p− dire
tion are denoted as anti-
ollinear parti
les. Additionally, we introdu
e theproje
tors

Λ+ =
/̄n /n
4
, Λ− =

/n /̄n
4
, (4.17)whi
h proje
t a spinor onto its "plus" and "minus" 
omponents. The spinor of a nu
leon

N(p, λp) 
an be de
omposed as
N(p, λp) = Λ+N(p, λp) + Λ−N(p, λp)

≡ N+(p, λp) + N−(p, λp),
(4.18)where in the 
ase of a 
ollinear parti
le N+ and N− s
ale as

N+(p, λp) ∼
√
p+, N− ∼ 1/

√
p+. (4.19)Using the pQCD fa
torization approa
h, one 
an for instan
e evaluate the spa
elike ele
-tromagneti
 form fa
tors at large momentum transfer Q2 = −q2 in the elasti
 ep-s
attering50



4.2 Timelike Two-Photon Ex
hange Corre
tions at Large q²: pQCD Result
x1p

x2p

x3p

y1p
′

y2p
′

y3p
′

γ∗

Figure 4.3: Hard subpro
ess γqqq → qqq within the framework of pQCD fa
torization.rea
tion. For this purpose the pro
ess, as shown in Fig. 4.2, is examined using the in�nitemomentum frame. The in
oming proton is fast moving along the z-axis, i.e. with momentum
p ∼ p+, and is stru
k by a highly virtual photon with large transverse momentum q2⊥ ∼ Q2.The matrix element 
an be expressed by a distribution amplitude of Φ(xi) for �nding agiven partoni
 state in the hadron and a fun
tion H, whi
h des
ribes the hard s
attering atthe partoni
 level. The subpro
ess 
onsists of three valen
e quarks moving approximately
ollinear, ea
h 
arrying a momentum fra
tion xi of the proton momentum, with∑3

i=1 xi = 1.Conventionally, x3 is 
hosen to be the momentum fra
tion of the valen
e d-quark.Within this approa
h, for instan
e the magneti
 form fa
tor GM 
an be fa
torized as
GM (Q2) =

∫ 1

0
dxi

∫ 1

0
dyiΦ

†(yi)H(Q2, xi, yi)Φ(xi). (4.20)The amplitude H 
hara
terizes the subpro
ess of the 3-valen
e quark state s
attering withthe virtual photon and produ
ing three (nearly 
ollinear) quarks in the �nal state, whi
h isillustrated in Fig. 4.3. It 
an be 
al
ulated from the Born diagram 
ontributions of
γ∗(q) + q(x1p) + q(x2p) + q(x3p)→ q(y1p) + q(y2p) + q(y3p) (4.21)using pQCD. The hard four-momentum of the virtual photon is transferred from quark lineto quark line via gluon ex
hange. A

ording to this, the ex
hange of at least two hard gluonsis required for the s
attering of one photon with large virtuality. Contributions of higherorder Fo
k states are suppressed and vanish for Q2 →∞.The DA Φ is the probability amplitude for �nding the three valen
e quark state in thein
oming nu
leon. It 
onverts the proton into the three valen
e quark state, des
ribing howthe momentum p is shared between the 
onstituents. The probability amplitude Φ† des
ribesthe overlap of the �nal quark state with the hadron. The distribution amplitudes are pro
essindependent quantities, i.e. they do not depend on the expli
it form of the hard s
atteringamplitude H. Therefore, the same proton DAs 
an be used for the 
al
ulation of two-photonex
hange pro
esses, for both spa
elike as well as timelike 2γ-ex
hange rea
tions.The nu
leon DAs are fundamental non-perturbative fun
tions, whi
h at present 
annot be
al
ulated from �rst prin
iples. They refer to proton-to-va
uum matrix elements built up ofquark and gluon �elds. In the in�nite momentum frame, the three quark matrix element isgiven by 〈

0
∣∣∣εijkuiα(z1n)ujβ(z2n)dkσ(z3n)

∣∣∣ p(p, λp)
〉 (4.22)in 
oordinate spa
e, where ∣∣p(p, λp)〉 de�nes the proton state with momentum p and heli
ity

λp and u, d are the quark-�eld operators of the up and down quarks, respe
tively. The Latin51



Chapter 4 Two-Photon Ex
hange in the Timelike Regionletters i, j, k refer to 
olor and the Greek letters α, β, γ stand for Dira
 indi
es. The ve
tor
n is an arbitrary light-like ve
tor and zi are real numbers satisfying ∑i zi = 1.The matrix element of Eq. (4.22) has been transformed into an expression given by a
omplete set of independent matri
es. For this purpose the three spinor produ
t of Eq. (4.22)has been de
omposed into a produ
t of two spinors and one remaining spinor, for whi
h amatrix representation 
an be used. These two matri
es have been expanded in terms of theDira
 bilinears.The most general de
omposition of the proton-to-va
uum matrix element, taking Lorentzinvarian
e, parity and spin 
onservation into a

ount, 
an be expressed by 24 independentfun
tions giving rise to the DAs [74℄. The de
omposition 
an be examined with respe
t tothe dependen
e on p+ ∼ Q of the di�erent 
ontributions.To the leading-order expansion in 1/p+, denoted as leading-twist or twist 3, only three DAs
ontribute, the ve
tor- (V), axial-ve
tor (A), and tensor (T) DAs. The proton-to-va
uummatrix element given as parametrization of the three leading-order DAs reads [74℄:

4
〈
0
∣∣∣εijkuiα(z1n)ujβ(z2n)dkσ(z3n)

∣∣∣ p
〉
= V (zi n · p) p+

[(
1

2
n̄ · γ

)
C
]

αβ

[
γ5N

+
]
σ

+ A(zi n · p) p+
[(

1

2
n̄ · γ

)
γ5 C

]

αβ

[
N+
]
σ

+ T (zi n · p) p+
[
1

2
iσ⊥n̄ C

]

αβ

[
γ⊥γ5N

+
]
σ
,

(4.23)
where C is the 
harge 
onjugation matrix and γ⊥ 
orresponds to the transverse 
omponentof γµ. The expression σ⊥n̄ is the shorthand notation for

σ⊥n̄ = n̄µ σ⊥µ, with σ⊥µ =
i

2
[γ⊥, γµ]. (4.24)In momentum spa
e, the DAs are given by the following expression:

X(zi n · p) =
∫
d[xi] X(x1, x2, x3) exp

{
−i (p · n)

∑

i

zixi

}
, X = {V,A, T} (4.25)with

d[xi] = dx1dx2dx3 δ(1− x1 − x2 − x3), (4.26)where xi is the 
ollinear momentum fra
tion of the proton 
arried by quark i.Due to the symmetry between the two up-quarks, the ve
tor and tensor DAs are symmetri
under the inter
hange of the �rst two arguments, whereas the axial DA is antisymmetri
:
V (x1, x2, x3) = V (x2, x1, x3),

T (x1, x2, x3) = T (x2, x1, x3),

A(x1, x2, x3) = −A(x2, x1, x3).

(4.27)In addition, the following property holds
T (x1, x2, x3) =

1

2
[V −A](x1, x3, x2) +

1

2
[V −A](x2, x3, x1), (4.28)52



4.2 Timelike Two-Photon Ex
hange Corre
tions at Large q²: pQCD Resultwhi
h allows to de�ne a single independent leading twist-3 proton DA given by a s
alarfun
tion Φ3 with mixed symmetry,
Φ3(x1, x2, x3) = [V −A](x1, x2, x3). (4.29)Therefore, the DAs 
an be rewritten as

V (x1, x2, x3) =
1

2

[
Φ3(x1, x2, x3) + Φ3(x2, x1, x3)

]
,

A(x1, x2, x3) =
1

2

[
Φ3(x2, x1, x3)− Φ3(x1, x2, x3)

]
,

T (x1, x2, x3) =
1

2

[
Φ3(x1, x3, x2) + Φ3(x2, x3, x1)

]
.

(4.30)
The dependen
e of the DAs on the momentum transfer s
ale Q2 is weak. This dependen
eis spe
i�ed by a renormalization group equation, whi
h requires, that Φ is only logarithmi-
ally dependent on Q2 [73℄.4.2.2 Timelike Two-Photon Ex
hange within a pQCD Fa
torizationApproa
hTo 
al
ulate the two-photon ex
hange 
ontribution of

p(p1, λN1
) + p̄(p2, λN2

)→ e−(k1, h1) + e+(k2,−h1) (4.31)at large momentum transfer q2, the fa
torization approa
h, whi
h has been dis
ussed in theprevious subse
tion, is 
onsidered. We follow the experien
e gained by the spa
elike pro
ess
ep→ ep, for whi
h the 2γ-amplitudes δG̃M and F̃3 were 
omputed at large momentum trans-fer Q within a perturbative QCD fa
torization approa
h [57, 58℄, whi
h 
an be generalizedto the annihilation 
hannel p p̄→ e+e−.A typi
al diagram of the leading order 
ontribution to the 2γ-ex
hange 
orre
tions is illus-trated in Fig. 4.4, where the gray blobs 
orrespond to the DAs of the proton and antiproton,and the hard part H is given by a three quark state and a three antiquark state, whi
hannihilate into two virtual photons. The 2γ-amplitudes 
an be expressed as 
onvolution of
H and the non-perturbative part, e.g. δG̃M 
an be written as

δG̃M (q2, t) =

∫
d[xi]

∫
d[yi]Φ(xi)H(q2, t, xi, yi)Φ

†(yi), (4.32)where the momentum fra
tions of the parti
ipating quarks and antiquarks are denoted by
xi and yi, respe
tively, whi
h satisfy ∑i xi = 1 and ∑i yi = 1.The subpro
essH is spe
i�ed by the ex
hange of two photons, whi
h 
ouple to two di�erentquarks. The third quark intera
ts via the ex
hange of a hard gluon. Contributions wherethe two photons 
ouple to the same quark are suppressed due to the fa
t, that this impliesat least one additional gluon ex
hange, whi
h in
ludes the fa
tor αs/q

2.An important feature of the approa
h is, that both photon virtualities, q1 and q2, must belarge:
q21 ∼ q22 ∼ q2. (4.33)53



Chapter 4 Two-Photon Ex
hange in the Timelike Region
e−

p

p̄

e+

x3 x2 x1

y3 y2 y1

Figure 4.4: Diagram for pp̄ → e+e− des
ribing the ex
hange of two hard photons usingthe framework of pQCD fa
torization. The gray blobs refer to the proton andantiproton DAs. The perturbative subpro
ess is given by the annihilation of athree quark state and a three antiquark state into two highly virtual photons.As all spe
tator quarks are involved in the hard s
attering pro
ess des
ribed by Eq. (4.32),we refer to it as the hard res
attering 
ontribution.Su
h an approa
h is valid at (asymptoti
) large values of q2. However, it is still anopen question at whi
h energy the asymptoti
 behavior sets in. One may expe
t, that atintermediate energies of ∼ 10 GeV2 the s
ale de�ning the appli
ability of the perturbativeexpansion is already large enough to apply the present formalism. A test of the validity ofthis approa
h 
an possibly be provided by future experiments.In the 
ase of s, t≫ m2
N , the mass of the nu
leons 
an be negle
ted and the momenta ofthe proton and antiproton in the 
.m.-frame 
an be expressed in the light-
one basis by thelight-like ve
tors n and n̄,

pµ
1 ≃
√
s
n̄µ

2
= (
√
s, 0, 0),

pµ
2 ≃
√
s
nµ

2
= ( 0,

√
s, 0),

(4.34)where the initial proton is moving 
ollinearly and the antiproton anti
ollinearly in the z-dire
tion. Consequently, the momentum transfer q is given by
qµ = −pµ

2 − pµ
1 = (−√s,−√s, 0). (4.35)54



4.2 Timelike Two-Photon Ex
hange Corre
tions at Large q²: pQCD ResultThe lepton momenta in the light-
one basis are de�ned as
kµ1 = η̄

√
s

2
nµ + η

√
s

2
n̄µ + kµ⊥ = ( η

√
s, η̄
√
s, k⊥),

kµ2 = η

√
s

2
nµ + η̄

√
s

2
n̄µ − kµ⊥ = ( η

√
s, η̄
√
s, −k⊥),

(4.36)where, at large momentum transfer, η, η̄ and k⊥ 
an be determined from
η ≃ − t

s
, η̄ ≡ 1− η ≃ −u

s
, k2⊥ ≃ ηη̄s, (4.37)with the restri
tion 0 < η < 1. The kinemati
 variable η 
an be expressed by the ele
tron
.m. s
attering angle θ:

η ≃ 1

2
(1 + cos θ). (4.38)The proton-to-va
uum matrix element parametrized by the proton DAs V , A and T , whi
hhas been introdu
ed in Eq. (4.23), 
an for the given pro
ess be expressed as:

4
〈
0
∣∣εijkuiα(z1 n)ujβ(z2 n)dkγ(z3 n)

∣∣p(p1, λN1
)
〉

= V (zi n · p1)
[√

s

2
(n̄ · γ) C

]

αβ

[
γ5N

+
]
γ

+A(zi n · p1)
[√

s

2
(n̄ · γ)γ5 C

]

αβ

[
N+
]
γ

+ T (zi n · p1)
[√

s

2
i(σ⊥n̄ C)

]

αβ

[
γ⊥γ5N

+
]
γ

≡ V
[
Γu
V

]
αβ

[
Γd
V N

+
]
γ
+A

[
Γu
A

]
αβ

[
Γd
AN

+
]
γ
+ T

[
Γu
T

]
αβ

[
Γd
T N

+
]
γ
. (4.39)Similarly, the matrix element of the antiproton state in terms of DAs yields

4
〈
0
∣∣εi′j′k′ ūj′β′(z

′
1 n̄) ū

i′

α′(z′2 n̄) d̄
k′

γ′ (z′3 n̄)
∣∣p̄(p2, λN2

)
〉

= − V †(z′1 n̄ · p2)
[√

s

2
C (n · γ)

]

β′α′

[
N̄+γ5

]
γ′ −A†(z′2 n̄ · p2)

[√
s

2
C γ5(n · γ)

]

β′α′

[
N̄+
]
γ′

+ T †(z′3 n̄ · p2)
[√

s

2
Ciσ⊥n

]

β′α′

[
N̄+γ⊥γ5

]
γ′

≡ V ′
[
Γu
V ′

]
β′α′

[
N̄+ Γd

V ′

]
γ′
+A′

[
Γu
A′

]
β′α′

[
N̄+ Γd

A′

]
γ′
+ T ′

[
Γu
T ′

]
β′α′

[
N̄+ Γd

T ′

]
γ′
, (4.40)where the 
omplex 
onjugated DAs read 55
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X ′(z′i n̄ · p2) ≡ X†(z′i n̄ · p2) =

∫
d[yi] X(y1, y2, y3) exp

{
i (n̄ · p2)

∑

i

yizi

}
,with X ′ = {V ′, A′, T ′}.

(4.41)The stru
tures Γu
X , Γd

X , Γu
X′ , and Γd

X′ presented in Eqs. (4.39, 4.40) are de�ned by
[
Γu
V

]
αβ

=

√
s

2

[/̄n C]
αβ
,
[
Γu
A

]
αβ

=

√
s

2

[/̄n γ5 C]
αβ
,
[
Γu
T

]
αβ

=

√
s

2

[
iσ⊥n̄C

]
αβ
,

[
Γd
V

]
γ
= [γ5]γ ,

[
Γd
A

]
γ
= [1]γ ,

[
Γd
T

]
γ
= [γ⊥ γ5]γ

(4.42)
[
Γu
V ′

]
β′α′

= −
√
s

2

[
C /n]

β′α′
,
[
Γu
A′

]
β′α′

= −
√
s

2

[
C γ5 /n]

β′α′
,
[
Γu
T ′

]
β′α′

=

√
s

2

[
C iσ⊥n

]
β′α′

,

[
Γd
V ′

]
γ′

= [γ5]γ′ ,
[
Γd
A′

]
γ′

= [1]γ′ ,
[
Γd
T ′

]
γ′

= [γ5 γ
⊥]γ′ . (4.43)The leading 
ontribution to the 2γ-ex
hange 
orre
tions is shown in the left panel ofFig. 4.5. It 
an be fa
torized in the following way

A2γ =

∫
d[z′j ]

〈
0
∣∣ūjβ′(z1n)ū

i
α′(z2n)d̄

k
γ′(z3n)

∣∣p2
〉
·
∫
d[zi]

〈
0
∣∣uiα(z1n)ujβ(z2n)dkγ(z3n)

∣∣p1
〉

· ūl(k1) Γl vl(k2) · Li
′i
α′α ⊗ Lj

′j
β′β ⊗Lk

′k
γ′γ

=
∑

X′=V ′,A′,T ′

∑

X=V,A,T

∫
d[yi]X

′(yi)

∫
d[xi]X(xi) · ūl(k1) Γl v(k2)

×
[
N̄+(p2) Γ

d
X′

]
γ′

[
Γd
]γ′γ[

Γd
X N+(p1)

]
γ

[
Γu
X′

]
β′α′

[
Γu1

]α′α[
Γu2

]β′β[
Γu
X

]
αβ(4.44)The se
ond line 
hara
terizes the hard res
attering pro
ess H, where

ūl Γl vl = ūl(k1, h1) Γl vl(k2,−h1) (4.45)denotes the leptoni
 part of the subpro
ess and
Li′iα′α ⊗ Lj

′j
β′β ⊗Lk

′k
γ′γ (4.46)represents the quark annihilation pro
ess. Γq, with q = {u1, u2, d}, is asso
iated with theexpression for the quark spinor line in the momentum spa
e. The indi
es α (β) and α′ (β′)
orrespond to the u-quark line and ū-quark line 
arrying the momentum x1p1 (x2p1) and

y1p2 (y2p2), respe
tively. The indi
es γ, and γ′ refer to the d-quark and d̄-quark lines. The56
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e−

p

p̄

e+

x3 x2 x1

y3 y2 y1

H

x3 x2 x1

y3 y2 y1

q1

q2

×

×

×

×

Figure 4.5: Leading pQCD 
ontribution to the 2γ ex
hange 
orre
tions for pp̄→ e+e−. Leftdiagram: Fa
torized amplitude of the pro
ess. Right diagram: One possible
ontribution to the hard res
attering 
ontribution H, where both photons 
oupleto the u-quarks. The ×'s indi
ate the other possibility to atta
h the gluon. Theother diagrams, where the photons intera
t with the u and d-quarks, are notshown for simpli
ity.expli
it expressions for Γq 
an be obtained from the Feynman rules of the elasti
 res
atteringpro
ess
qu1

(x1 p1) qu2
(x2 p1) qd(x3 p1) + q̄u1

(y1 p2) q̄u2
(y2 p2) q̄d(y3 p2) → γ∗(q1) + γ∗(q2)

→ e−(k1) + e+(k2).
(4.47)In the right panel of Fig. 4.5, one possible 
ontribution to the hard res
attering kernelis presented. The leading order 
ontribution of the hard res
attering amplitude AH 
an beintrodu
ed in the following way:

AH = Q2
uA

uu +QuQd(A
u1d +Au2d). (4.48)

Auu denotes the amplitudes, where the photons 
ouple to the two up-quarks, Au1d (Au2d)stands for one photon 
oupling to the u-quark with the momentum fra
tion x1 (x2), the otherphoton to the d-quark, with the 
harge fra
tion of the quarks Qu = +2/3, and Qd = −1/3.For ea
h of these photon 
ouplings four possibilities of gluon ex
hange between the quarkslines have to be 
onsidered, illustrated by the ×'s in Fig. 4.5:
Aij = Dij

1 +Dij
2 +Dij

3 +Dij
4 . (4.49)Ea
h diagram Dij in
ludes the sum of the dire
t and 
rossed box diagram. Consequently,all together one �nds 24 diagrams for the leading 2γ-ex
hange 
orre
tions, whi
h 
an be57
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omputed using pQCD. For instan
e, the hard subpro
ess 
ontribution, whi
h is illustratedin the right panel of Fig. 4.5, 
an be obtained from the 
orresponding Feynman rules as
Duu

1 = G ie4g2s
1

p2u p
2
g q

2
1 q

2
2

1

(q2 − k2)2
ul(k1)γ

µ(−q/2 − /k2)γνvl(k2)
× v̄(y1p2) γµ u(x1p1) v̄(y2p2) γν/pu γi u(x2p1) v̄(y3p2)γiu(x3p1), (4.50)where G is a global fa
tor and g2s(−q2) = 4π αs(−q2) is the 
oupling strength of the strongfor
e. The momenta of the ex
hanged gluon and the fermion propagator are given by

pg = −x1p1 − y1p2, pu = y3p2 + (1− x1)p1. (4.51)The 
ontributions of the di�erent diagrams as well as the 
orresponding Feynman graphsare given in Appendix B.The results of the perturbative 
al
ulation are embedded into Eq. (4.44) in order to obtainthe 2γ-amplitudes as a fun
tion of the DAs V,A, and T. Finally, the timelike 2γ-ex
hangeamplitudes δG̃M and s/m2F̃3 
an be found as :
δG̃M (q2, η) = − αemαs

q4

(
2π

3

)2∫ d[yi]

y1y2ȳ2

d[xi]

x1x2x̄2

4(2η − 1)x2 y2
[x2η̄ + y2η − x2y2] [x2η + y2η̄ − x2y2]

×
{
Qu

2
[
(V ′ +A′)(V +A) + 4T ′T

]
(3, 2, 1) (4.52)

+ QuQd

[
(V ′ +A′)(V +A) + 4T ′T

]
(1, 2, 3) + 2QuQd

[
V ′V +A′A

]
(1, 3, 2)

}
,

s

m2
F̃3(q

2, η) =
αemαs

q4

(
2π

3

)2∫ d[yi]

y1y2ȳ2

d[xi]

x1x2x̄2

2(x2 ȳ2 + x̄2 y2)

[x2η̄ + y2η − x2y2] [x2η + y2η̄ − x2y2]

×
{
Qu

2
[
(V ′ +A′)(V +A) + 4T ′T

]
(3, 2, 1) (4.53)

+ QuQd

[
(V ′ +A′)(V +A) + 4T ′T

]
(1, 2, 3) + 2QuQd

[
V ′V +A′A

]
(1, 3, 2)

}
,where the numbers in the bra
kets de�ne the order of the momentum fra
tion arguments ofthe DAs, e.g.

V ′V (3, 2, 1) = V ′(y1, y2, y3)V (x1, x2, x3), (4.54)and the abbreviations
x̄i = 1− xi, ȳi = 1− yi (4.55)have been used. As one 
an seen from Eqs. (4.52) and (4.53), the leading behavior of the58
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hange Corre
tions at Large q²: pQCD Result
fN r− r+(10−3 GeV2)COZ [76℄ 5.0± 0.5 4.0± 1.5 1.1 ± 0.3BLW [77℄ 5.0± 0.5 1.37 0.35QCDSF [78℄ 3.23 1.06 0.33Table 4.1: Parameters entering the proton DA (at µ = 1 GeV) for three parametrizations(COZ [76℄, BLW [77℄, and the latti
e evaluation from QCDSF [78℄) used in thiswork.heli
ity 
onserving 2γ-amplitudes is

δG̃M ∼
1

q4
,

s

m2
F̃3 ∼

1

q4
. (4.56)The heli
ity-�ip amplitude δF̃2 is suppressed in the large momentum transfer limit, sin
e itsbehavior is be found as

δF̃2 ∼
1

q6
. (4.57)Therefore, the amplitude is obtained to be zero in the leading order expansion of the analysis.In general, the timelike amplitudes are 
omplex fun
tions, but at tree level the expressionsof Eqs. (4.52) and (4.53) do not 
ontain an imaginary part expli
itly. In the 
al
ulationwe re
eive nontrivial imaginary 
ontributions by 
omputing leading logarithms with therenormalization of the strong 
oupling αs. The imaginary part is generated by timelikelogarithms, like

ln(−q2 − iε) = ln(q2)− iπ. (4.58)For the 
oupling αs in the timelike region we adopt the analyti
 
ontinuation [75℄:
αs(−q2) =

αs(q
2)

1− iβ0αs(q2)/4
+ · · · , (4.59)where

β0 = 11− 2

3
nf (4.60)is the leading term of the QCD β-fun
tion.In an analogous manner, one re
eives an imaginary 
ontribution whi
h originates fromthe evolution of the DAs. Nevertheless, the resulting imaginary 
ontributions provide smallnumeri
al e�e
ts in the regions of q2 whi
h will be dis
ussed below. We assume, that thes
ale of the running 
oupling as(µ2R) is smaller than q2 and use µR = 0.6 q2 for our numeri
al
al
ulations. However, this pro
edure has only a small e�e
t on the results, 
hanging µ2Rin the interval [0.5q2, q2], we �nd for the 2γ-ex
hange 
ontribution to the 
ross se
tion amaximum variation in the hard s
attering amplitude of about 10%.

59
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Figure 4.6: 3-dimensional plot of the DA Φ3 a

ording to the parametrizations in Eq. (4.61)as a fun
tion of x1 and x2. The left (right) panel 
orresponds to the resultsfound for the COZ (BLW) model. The dependen
e on x3 has been removed dueto ∑i xi = 1.To evaluate the 
onvolution integrals given in Eqs. (4.52, 4.53), a model for the DAs isneeded. In Ref. [74℄, a parametrization of the DAs is given by:
V (xi) ≃ 120x1x2x3 fN

[
1 + r+(1− 3x3)

]
,

A(xi) ≃ 120x1x2x3 fN r−(x2 − x1),

T (xi) ≃ 120x1x2x3 fN

[
1 +

1

2
(r− − r+) (1− 3x3)

]
,

(4.61)
where the DAs depend on the three parameters, namely fN , r+ and r−. For the 
al
ulationtwo phenomenologi
al models for the DAs, whi
h have been dis
ussed in the literature,are 
onsidered, whi
h will be referred to as COZ [76℄ and BLW model [77℄, as well as onedes
ription based on latti
e QCD 
al
ulations (QCDSF) [78℄. The 
orresponding parametersat µ = 1 GeV2 are presented in Table 4.1. One noti
es, that the parameters r+ and r− inthe BLW model and from latti
e 
al
ulations are nearly 
omparable, whereas the overallnormalization fN is about a fa
tor 2/3 smaller for the latti
e DA than in the des
ription ofthe BLW model. In 
ontrast to the BLW model and the latti
e 
al
ulations, the parameters
r+ and r− are about three times larger in the COZ des
ription of the nu
leon DAs.The DA Φ3 as a fun
tion of x1 and x2 is shown in Fig. 4.6, where in the left (right) panelthe DA obtained in the COZ (BLW) model is presented. One noti
es, that the dependen
eon x1 and x2 is similar for both models of the DAs, even though the COZ model gives alarger DA as when the BLW model is used.Below, we will provide 
al
ulations using the �rst two models, COZ and BLW. The resultsfollowing from the latti
e 
al
ulations 
an easily be approximated by s
aling the BLW results.All parameters from Table 4.1 have been evolved a

ording to the pro
edure given in Ref. [74℄.Using the parametrization of Eq. (4.61), the 
onvolutions integrals 
an be 
omputed and60
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hange Corre
tions at Large q²: pQCD Resultthe following expressions of the 2γ-amplitudes are obtained:
δG̃M = −

(
2π

3

)2

(120fN )2
8

9

αemαs

q4

×
{
(φ1 + φ0)

[
(η̄ − η)ηη̄ ln2

(
η̄

η

)
− 4ηη̄ ln

(
η̄

η

)
+ (η − η̄)(1− ηη̄π2)

]

+ φ2

[
− 3(ηη̄)2(η − η̄) ln2

(
η̄

η

)
+ ηη̄(1− 12ηη̄) ln

(
η̄

η

)

+ 3(η − η̄)ηη̄(1− ηη̄π2) + 1

4
(η − η̄)

]}
, (4.62)

s

m2
F̃3 =

(
2π

3

)2

(120fN )2
8

9

αemαs

q4

×
{
− 2(φ1 + 2φ0)

[
(η − η̄) ln

(
η̄

η

)
− ηη̄ ln2

(
η̄

η

)
+ 1− ηη̄π2

]

+ φ2

[
− 2ηη̄(1− 6ηη̄) ln2

(
η̄

η

)
− 12ζη̄(2η − 1) ln

(
η̄

η

)

+ 1− 12ηη̄ − 2ηη̄(1 − 6ηη̄)π2
]}
, (4.63)where the notation φi denotes the following 
ombinations of parameters r+, r−:

φ0 =
3

4
+

1

2
r− −

1

9
r2− −

3

2
r+ − r2+ +

1

3
r+r−.

φ1 =
1

2
r− +

1

9
r2− +

3

2
r+ +

5

2
r2+ −

5

6
r+r−,

φ2 =
7

18
r2− −

11

2
r2+ +

4

3
r+r−.

(4.64)
4.2.3 ResultsWe 
al
ulate the relative 2γ-
ontribution to the di�erential 
ross se
tion δ2γ , whi
h is de�nedby (

dσ

d cos θ

)
=

(
dσ

d cos θ

)

1γ

(1 + δ2γ) , (4.65)where the 
ross se
tion dσ/d cos θ is given by Eq. (4.10) and the 
ross se
tion in the Bornapproximation (dσ/d cos θ)1γ has been introdu
ed in Eq. (2.42). The two-photon ex
hange
ontribution δ2γ depends on the 
.m. s
attering angle θ and the 
.m. energy s = q2 as well ason the model for the nu
leon DAs. Furthermore, a des
ription of the timelike ele
tromagneti
form fa
tors GE and GM , whi
h enter the 1γ- as well as the 2γ-parts of the 
ross se
tion, isneeded. 61



Chapter 4 Two-Photon Ex
hange in the Timelike RegionWe �rst start with a simple des
ription of the magneti
 fa
tor GM , whi
h is inspired bythe predi
tions of pQCD for the ele
tromagneti
 form fa
tors (Model 1):
|GM | =

B
q4
(
ln2 q2

Λ2 + π2
) . (4.66)The parameter Λ is given by Λ = 0.3 GeV and B a free parameter, whi
h 
an be extra
tedfrom �tting data. In addition, for the �rst form fa
tor parameterization, the assumption

|GM | = |GE | is used and the imaginary parts of the form fa
tors have been negle
ted.As an alternative possibility (Model 2), following [79℄, an improved �t of the form fa
torratio F2(Q
2)/F1(Q

2) is 
onsidered, whi
h in
ludes logarithmi
 
orre
tions to the power lawfall-o� expe
ted from pQCD.In the previous se
tion it was mentioned, that the value of two-photon amplitude δF̃2 isunknown due to the suppression of δF̃2 within the fa
torization approa
h. Therefore, δG̃Eis estimated using a simple model:
δG̃E ≃ λ δG̃M , (4.67)where λ is a numeri
al parameter, for whi
h −1 < λ < 1 is used, whi
h 
an a

ount for theexpe
tation, that δGE s
ales as δGM in the large q2 limit.The results for δ2γ 
an be found in Fig. 4.7, where the relative 2γ-
ontribution to the 
rossse
tion for two di�erent values of momentum transfer, s = 6 GeV2 and s = 20 GeV2 isshown as a fun
tion of cos θ. The two aforementioned parametrizations of GE and GM areasso
iated with the blue (Model 1) and green (Model 2) 
olored bands. The bands des
ribethe variation of the parameter λ in Eq. (4.67). Furthermore, two di�erent models for thenu
leon DAs have been used, the COZ and BLW des
ription, whi
h 
orrespond to the leftand right plots in Fig. 4.7, respe
tively. One noti
es, that for both parametrizations of theele
tromagneti
 form fa
tors the results di�er only slightly. The 
orresponding bands overlapfor a large range of cos θ.The relative e�e
t of the two-photon ex
hange 
orre
tions is found to be smaller than 1%.For s = 20 GeV2, a slightly larger 2γ-ex
hange 
ontribution is obtained as for the lowervalue of q2. Both models of DAs produ
e a similar angular dependen
e, while the COZmodel leads to a 
ontribution whi
h is twi
e as large as when using the BLW model. Forthe assumed parametrization of δG̃E , the impa
t of the parameter λ on the results is small.The 2γ-
orre
tions show the required odd behavior with respe
t to cos θ and are in
reasingfor | cos θ| → 1.Moreover, we 
onsider one further model to parametrize the 1γ-form fa
tors GE and GMand 
ompare the results with the 2γ-ex
hange 
orre
tions we have obtained above. Wetake a VMD based model into a

ount, a

ording to Ref. [48℄, whi
h assumes, that theele
tromagneti
 intera
tion is des
ribed through the ex
hange of the lowest lying ve
tormesons ρ, ω, and φ, as dis
ussed in Se
. 2.4.The results are presented in Fig. 4.8, where δ2γ has been 
al
ulated for q2 = 6 GeV2 usingthe COZ model (left) and the BLW model (right) for the nu
leon DAs and the bands againrefer to the in�uen
e of the parameter λ in Eq. (4.67). The red bands 
orrespond to the�ndings of the VMD model and the blue bands indi
ate the results when using the pQCDinspired model (Model 1) as parametrization of GE and GM . One noti
es, that both modelslead to a similar angular behavior and to 
omparable quantitative results.62
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Figure 4.7: Relative two-photon 
ontribution to the 
ross se
tion at s = 6 GeV2 ands = 20 GeV2 as a fun
tion of cos θcm for two models of GE and GM as indi
atedin the text. Model 1: blue bands. Model 2: green bands. The bands des
ribethe 
ontribution for di�erent values of δG̃E given by −δG̃E < δG̃M < δG̃E . Theleft (right) panel 
orrespond to the 
al
ulation using the COZ (BLW) model forthe nu
leon DAs.
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Figure 4.8: Relative 2γ-
ontribution to the 
ross se
tion for q2= 6 GeV2 
al
ulated with theCOZ model (left plot) and BLW (right plot) using two di�erent parametrizationsof the form fa
tors. Blue bands: Model 1 (purely real form fa
tors). Red bands:Form fa
tors of Ref. [48℄ (VMD model). The bands des
ribe the 
ontribution fordi�erent values of δG̃E given by −δG̃M < δG̃E < δG̃M .
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Figure 4.10: Forward-ba
kward asymmetry a

ording to Eq. (4.12) as a fun
tion on q2. Bluedashed 
urve (green dotted 
urve): Results within pQCD fa
torization approa
hfor cos θ = 0.9 (cos θ = −0.9) 
al
ulated with the COZ model using Model 1 as
1γ-form fa
tor parametrization (purely real form fa
tor) and δGE = 0. Bla
ksolid 
urve: Acos θ = 1% as it has been found in the analysis of Ref. [70℄. Thedata points 
orrespond to the results of the analysis at ea
h q2 value, for whi
hthe data of Ref. [30℄ has been used.The dependen
e of δ2γ on the momentum transfer q2 is shown in Fig. 4.9. The 2γ-
orre
tions have been 
al
ulated as a fun
tion of q2 for δGE = 0 using three di�erent valuesof the 
.m. s
attering angle: cos θ = 0.6, 0.75 and 0.85 in the range of q2 = 4−30GeV2, wherethe parametrization of Eq. (4.66) (Model 1) has been used as model for the 1γ-form fa
tors.One �nds, that the absolute value of the 
orre
tions is in
reasing with q2 for larger values of

cos θ. Sin
e this growth is only logarithmi
, it 
annot 
hange the e�e
t quantitatively.The obtained results allow us to predi
t the forward-ba
kward asymmetry Acos θ, de�ned inEq. (4.12), whi
h gives rise to the two-photon 
orre
tions to the 
ross se
tion. The �ndingsfor the asymmetry 
al
ulated within the pQCD des
ription are shown in Fig. (4.10) for
cos θ = 0.9 (blue dashed 
urve) and cos θ = −0.9 (green dotted 
urve) using Model 1 for theele
tromagneti
 form fa
tors and the COZ des
ription of the DAs. Sin
e the 2γ-ex
hangea�e
ts the 
ross se
tion only slightly, the predi
ted asymmetry is small, espe
ially in thesmaller q2 range, where Acos θ has been analyzed. The solid bla
k line indi
ates Acos θ = 1%,whi
h has been found as average value of the forward-ba
kward asymmetry in the analysis ofthe data of the BaBar experiment [30℄. The experimental results of the asymmetry in
ludingthe error bars, whi
h have been found at the individual values of q2, are given by the datapoints in Fig. (4.10). The 
urrent data are a�e
ted with quite large un
ertainties of ∼ 5%,whi
h do not enable to 
onstrain the two-photon ex
hange 
orre
tions so far.In order to �nd 
onstraints on two-photon ex
hange e�e
ts in the timelike region, data of
Acos θ with higher pre
ision are needed. In parti
ular due to the fa
t that the form fa
torextra
tion is more sensitive to small 
orre
tions at larger momentum transfer, an extensionof the measured q2 range to higher values seems to be reasonable. 65



Chapter 4 Two-Photon Ex
hange in the Timelike RegionFurthermore, the single spin asymmetry Ay (introdu
ed in Eq. (4.13)) has been analyzed.As dis
ussed in the previous se
tion, only small imaginary parts of the 2γ-amplitudes δG̃Mand F̃3 are obtained within the fa
torization approa
h. Therefore the 2γ-
ontribution tothe SSA mostly results from the interferen
e of the real part of the 2γ-amplitudes and theimaginary part of the form fa
tors GE and GM . The relative 
ontribution to Ay is foundto be small for all parametrizations of GE and GM dis
ussed above. Logi
ally, the resulting
2γ-
ontribution to Ay using the 1γ-form fa
tor Model 1 of Eq. (4.66) is negligible due to thepurely real stru
ture of GE and GM in this model. A 2γ-e�e
t of the order of about 1%
an be found when 
onsidering the two form fa
tors parametrizations (Model 2 and VMDmodel), whi
h in
lude imaginary 
ontributions of GE and GM .To summarize the results, using a pQCD fa
torization approa
h we obtain small 2γ-ex
hange 
orre
tions to the 
ross se
tion in the pro
ess p p̄→ e+e− of about δ2γ . 1% in thestudied momentum transfer range of 4− 30 GeV2. The small 2γ-e�e
t makes it 
hallengingto observe su
h e�e
ts in unpolarized 
ross se
tion measurements. e.g. by PANDA�FAIR.Feasibility studies of the annihilation pro
ess at PANDA have been performed in [28℄. Sin
ethe value of the 2γ-
ontribution is sensitive to the 
hoi
e of the DAs, a pre
ise measurementof the pro
ess would in addition allow to probe and 
onstrain the DAs of the proton andantiproton.4.3 Partoni
 Cal
ulation of Timelike Two-Photon Ex
hange:Generalized Distribution Amplitude Approa
hAs an alternative approa
h for investigating the two-photon ex
hange in the timelike regionwe present a partoni
 des
ription, whi
h has been applied to obtain 2γ-ex
hange 
orre
tionsin elasti
 ele
tron proton s
attering using the 
on
ept of generalized parton distributions[55, 56℄. The results of the 
al
ulations have been presented in Se
. 3.2. In order to dealwith annihilation pro
esses the timelike 
ounterparts of the GPDs have to be introdu
ed, thegeneralized distribution amplitudes (GDAs), whi
h parametrize the matrix element betweena system of hadrons and the va
uum.4.3.1 Generalized Distribution AmplitudesIn order to des
ribe the timelike two-photon ex
hange within another model, we assume thefa
torization approa
h, as shown in Fig 4.11, where the amplitude of the pro
ess p p̄→ e+e−appears as 
onvolution of a soft transition matrix element, parametrized by the GDAs, anda hard subpro
ess H, where just a single quark-antiquark pair annihilates into a lepton pair,
H(qq̄ → e+e−).This so-
alled handbag fa
torization is expe
ted to be valid in the kinemati
al regionwhere s, −t and −u are large 
ompared to the hadroni
 s
ale (s, |t|, |u| ≫ m2

N ). For thiskinemati
al region the handbag 
ontribution is assumed to be dominant, as long as themomentum transfer values are not asymptoti
ally large. At high momentum transfer theleading 
ontribution with three valen
e quarks parti
ipating in the subpro
ess dominates,whi
h has been dis
ussed in Se
. 4.2. The value of momentum transfer, whi
h is su�
ientlylarge for the perturbative QCD approa
h to dominate, is still an unsolved problem.The validity of the fa
torization s
heme has been proven for several spa
elike pro
esses, asdeep inelasti
 s
attering or the Drell-Yan pro
esses, but no proof of the dis
ussed timelike66



4.3 Partoni
 Cal
ulation of Timelike Two-Photon Ex
hange: GDA Approa
h
q(q1)

q̄(q2)

e−(k2)

e+(k2)
p̄(p2)

p(p1)

H

Figure 4.11: Sket
h of a handbag approximation for the pro
ess pp̄ → e+e−. The left blobrepresents the GDAs, H denotes the hard subpro
ess.fa
torization approa
h exists. Arguments for the appli
ability of su
h a fa
torization havebeen dis
ussed in Ref. [80℄.The generalized distribution amplitudes, indi
ated by the left gray blob in Fig (4.11), are
omplex quantities, whi
h en
ode the physi
s of the soft transition,
p(p1) + p̄(p2)→ q(q1) + q̄(q2), (4.68)and 
annot be 
al
ulated from �rst prin
iples. They are fun
tions of three variables, the
.m. energy s = (p1 + p2)

2, the momentum fra
tion 
arried by the quark
z =

q+1
(p1 + p2)+

, (4.69)and the so-
alled skewness ζ,
ζ =

p+1
(p1 + p2)+

, (4.70)whi
h des
ribes how the total momentum of the pp̄-pairs is shared between the nu
leons.GDAs have been introdu
ed in Ref. [80℄ in order to study two-photon annihilation intobaryon-antibaryon pairs and have been used to analyze of the pro
ess p̄p → π0γ within thehandbag fa
torization approa
h in Ref. [81℄. The GDAs parametrize the matrix elementbetween a baryon state and the va
uum (or vi
e versa), as follows [80℄
(p1 + p2)

+

2

∫
dx−

2π
eizP

+x−〈
0
∣∣q̄(0)γ+q(x̄)

∣∣N(p1, λN1
)N̄(p2, λN2

)
〉

= φqV (z, ζ, s)v̄(p2, λN2
)γ+u(p1, λN1

) + φqS(z, ζ, s)
(p1 + p2)

+

2m
v̄(p2, λN2

)u(p1, λN1
),

(p1 + p2)
+

2

∫
dx−

2π
eizP

+x−〈
0
∣∣q̄(0)γ+γ5q(x̄)

∣∣N(p1, λN1
)N̄(p2, λN2

)
〉

= φqA(z, ζ, s)v̄(p2, λN2
)γ+γ5u(p1, λN1

)− φqP (z, ζ, s)
(p1 + p2)

+

2m
v̄(p2, λN2

)γ5u(p1, λN1
),(4.71)where φqi with i = V, S,A, P is the ve
tor, s
alar, axial and pseudos
alar GDA, and q refersto the quark �avor. GDAs are pro
ess independent quantities and a

ordingly 
an be appliedto the 2γ-ex
hange pro
ess for p̄p→ e+e−. 67



Chapter 4 Two-Photon Ex
hange in the Timelike RegionIntegrating Eq. (4.71) over z leads to the following sum rules:
F q
i (s) =

∫ 1

0
dz φqi (z, ζ, s), for i = V,A, P

(1− 2ζ)F q
S(s) =

∫ 1

0
dz φqS(z, ζ, s),

(4.72)where F q
i are the quark form fa
tors. Appropriate 
ombinations of the quark form fa
torsgive rise to the nu
leon form fa
tors of the ele
tromagneti
 and weak 
urrent, as

GM (s) =
∑

q

QqF
q
V (s), F2(s) =

∑

q

QqF
q
S(s). (4.73)4.3.2 Timelike Two-Photon Ex
hange within a GDA based Approa
hFor the analysis of

p(p1, λN1
) + p̄(p2, λN2

)→ e+(k1, h) + e−(k2,−h). (4.74)within a handbag fa
torization approa
h we use a symmetri
 frame and 
hoose the axes ofthe 
.m. frame su
h that the 3-momenta of the in
oming nu
leons are in the positive ornegative x-dire
tion and the pro
ess takes pla
e in the x-z plane. Using light-
one variables,with the shorthand notation p = (p+, p−, p⊥), the momenta of the nu
leons 
an be 
hosenas
p1 =

√
s

2
( 1, 1, β~e1 ) ,

p2 =

√
s

2
( 1, 1,−β~e1) ,

(4.75)with
β =

√
1− 4m2

N

s
=

√
τ − 1

τ
, (4.76)and ~e1 = (1, 0). The positron momentum (k1) and ele
tron momentum (k2) are given by

k1 =

√
s

2
(1 + sin θ, 1− sin θ, cos θ~e1 ) ,

k2 =

√
s

2
(1− sin θ, 1 + sin θ,− cos θ~e1) ,

(4.77)with the 
.m. s
attering angle θ. Using the Mandelstam variables
s = q2 = (p1 + p2)

2, t = (p1 − k1)2, u = (p1 − k2)2, (4.78)the 
.m. s
attering angle θ 
an be expressed with respe
t to s, t and u:
cos θ =

u− t√
s(s− 4m2

N )
, sin θ =

2
√
ut−m4

N√
s(s− 4m2

N )
. (4.79)
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4.3 Partoni
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ulation of Timelike Two-Photon Ex
hange: GDA Approa
h
p̄

p p

p̄

e+

e−

e+

e−Figure 4.12: Two-photon ex
hange pro
esses of pp̄→ e+e− in the handbag approximation.The pro
ess in the handbag approximation in terms of a soft pp̄ → qq̄ transition and thehard subpro
ess qq̄ → e+e−, whi
h o

urs through the ex
hange of two photons, is shownin Fig. 4.12. The amplitude has a similar stru
ture as the one of the γγ → p p̄ pro
ess,appearing as a 
onvolution of the GDAs φi and the hard pro
ess H. Following Ref. [80℄, it
an be found as:
Th,λN1

,λN2
=

1

(p1 + p2)+

{
1

2

[
Hh, 1

2

+Hh,− 1
2

] (
RV (s) N̄ (p2, λN2

) γ+N(p1, λN1
)

+ (1− 2ζ)RS(s)
(p1 + p2)

+

2mN
N̄(p2, λN2

)N(p1, λN1
)
)

+
1

2

[
Hh, 1

2

−Hh,− 1
2

] (
RA(s) N̄ (p2, λN2

) γ+γ5N(p1, λN1
)

− RP (s)
(p1 + p2)

+

2mN
N̄(p2, λN2

) γ5N(p1, λN1
)
)}

,

(4.80)
with the annihilation form fa
tors Ri, whi
h are obtained by integrating φi over z

Ri(s) =
∑

q

Q2
q

∫ 1

0
dz φqi (z, ζ, s), i = A,V, P

(1− 2ζ)RS(s) =
∑

q

Q2
q

∫ 1

0
dz φqS(z, ζ, s).

(4.81)Due to the 
hoi
e of the referen
e frame with a skewness of ζ = 1/2, the s
alar form fa
tor,entering with a fa
tor 1− 2ζ, de
ouples and does not 
ontribute to the amplitude.The hard partoni
 subpro
ess, the annihilation of a quark-antiquark pair into a leptonpair,
q(q1, λq) + q̄(q2,−λq)→ e+(k1,−h) + e−(k2, h), (4.82)
ontains the dire
t and 
rossed box diagram of the 2γ-ex
hange pro
ess, presented in Fig 4.13.It has been shown [80℄, that the pp̄→ qq̄ transition 
an only be soft if the quarks have smallvirtualities and approximately 
arry the momenta of the proton and antiproton, respe
tively.Therefore, the subpro
ess has been 
al
ulated using the assumption, that the quarks are on-shell. 69
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q(q1)

q̄(q2)

e−(k2)

e+(k1)

q(q1)

q̄(q2)

e−(k2)

e+(k1)Figure 4.13: Dire
t and 
rossed box diagrams of the hard subpro
ess qq̄ → e+e− in
ludingthe ex
hange of two photonsBy means of the approximation, that the masses of the quarks and of the leptons 
an benegle
ted, the general amplitude of the two-photon part is given by the expression
Hh,λq =

e2

q2
ū (k2, h) γµv (k1,−h)

× v̄ (q2,−λq)
(
f̃ q1γ

µ + f̃ q3
qµ1 − qµ2

2

k/2 − k/1
2

)
u (q1, λq) ,

(4.83)with the quark heli
ity λq = ±1
2 . For massless quarks, the heli
ity of the antiquark isopposite to the quark heli
ity and no analogon of the form fa
tor F̃2 in Eq. (4.6) emergesin the amplitude of the subpro
ess. We only 
onsider 
ontributions were both photons havenon-zero virtualities. The form fa
tors f̃ q1 , and f̃ q3 
an be obtained from the results of two-photon ex
hange 
orre
tions for the rea
tion e+e− → µ+µ−, for the 
ase that none of thephotons are soft. These 
al
ulations have been performed in Refs. [82, 83℄, and the resultshave been 
on�rmed in the 
ourse of the GPD 
al
ulation of 2γ-ex
hange in the 
rosseds
attering 
hannel [56℄. The real part of the form fa
tors has been found as

Re f̃ q1 =
e2

4π2

{
1

2
ln

∣∣∣∣
t̂

û

∣∣∣∣+
t̂− û
4 t̂ û

(
t̂ ln2

∣∣∣∣
t̂

ŝ

∣∣∣∣+ û ln

∣∣∣∣
û

ŝ

∣∣∣∣
)}

Re f̃ q3 =
e2

4π2
1

t̂ û

{
t̂ ln

∣∣∣∣
t̂

ŝ

∣∣∣∣+ û ln

∣∣∣∣
û

ŝ

∣∣∣∣+
t̂− û
2

(
t̂

û
ln2
∣∣∣∣
t̂

ŝ

∣∣∣∣−
û

t̂
ln2
∣∣∣∣
û

ŝ

∣∣∣∣
)}

.

(4.84)The variables ŝ, t̂, and û are the Mandelstam variables of the subpro
ess:
ŝ = (q1 + q2)

2, t̂ = (q1 − k1)2, û = (q2 − k1)2,with q2 = ŝ = −t̂− û.
(4.85)The hard annihilation amplitude results in

Hh,λq =
e2

ŝ

(
−f̃ q1

(
2h 2λq · ŝ+ û− t̂

)
+ f̃ q3

(
−û t̂

))

⇒ 1

2

[
Hh, 1

2

+Hh,− 1
2

]
=
e2

ŝ

(
f̃ q1 ( t̂− û )− f̃ q3 t̂ û

)

1

2

[
Hh, 1

2

−Hh,− 1
2

]
= −e

2

ŝ
f̃ q1 · ŝ · 2h.

(4.86)
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4.3 Partoni
 Cal
ulation of Timelike Two-Photon Ex
hange: GDA Approa
hSin
e the momenta of the quark and antiquark have to be 
lose to the nu
leon momenta,the hard annihilation pro
ess H will be evaluated using
t̂ ≃ t, û ≃ u, (4.87)for the Mandelstam variables of the subpro
ess.The amplitude in the fa
torized pro
ess 
an be rewritten using the ve
tor

ñµ =
1

(p1 + p2)+
(1, 0, 0,−1), (4.88)whi
h yields

Th, λN1
, λN2

=
1

2

[
Hh, 1

2

+Hh,− 1
2

]
RV (s) N̄(p2, λN2

) /̃nN(p1, λN1
)

+
1

2

[
Hh, 1

2

−Hh,− 1
2

] (
RA(s) N̄ (p2, λN2

) /̃nγ5N(p1, λN1
)

− RP (s)
1

2mN
N̄(p2, λN2

) γ5N(p1, λN1
)
)
.

(4.89)
The Dira
 stru
tures are then evaluated with respe
t to the nu
leon heli
ities λN1

and λN2
,using

N̄(p2, λN2
) /̃nN(p1, λN1

) = −1

2

(
1− 4λN1

λN2

)
,

N̄(p2, λN2
) /̃n γ5N(p1, λN1

) =
mN√
s

(
1 + 4λN1

λN2

)
−
√
s− 4m2

N

4s

(
2λN1

− 2λN2

)
,

N̄(p2, λN2
) γ5N(p1, λN1

) = −
√
s

2

(
1 + 4λN1

λN2

)
,

(4.90)
whi
h leads to
Th, λN1

, λN2
= − 1

2

[
Hh, 1

2

+Hh,− 1
2

]
RV (s)

1

2

(
1− 4λN1

λN2

)

+
1

2

[
Hh, 1

2

−Hh,− 1
2

]{
− RP (s)

√
s

4mN

(
1 + 4λN1

λN2

)

− RA(s)

(
mN√
s

(
1 + 4λN1

λN2

)
−
√
s− 4m2

N

4s

(
2λN1

− 2λN2

)
)}

.

(4.91)
The most general parametrization of the pp̄→ e+e− amplitude (Eq. (4.6)), depending onthe generalized form fa
tors G̃M , F̃2, and F̃3, 
an be evaluated as a fun
tion of the heli
ity71



Chapter 4 Two-Photon Ex
hange in the Timelike Regionof the proton and antiproton as well:
Th, λN1

, λN2
=
e2

s
ū(k2, h) γµ v(k1,−h)

× N̄ (p2, λN2
)

[
G̃Mγ

µ − F̃2
Pµ

mN
+ F̃3

Pµ

m2
N

(/k2 − /k1)]N (p1, λN1
)

=
e2

s

{
G̃M

[
− 2mN

√
ut−m4

s− 4m2
N

(
2λN1

+ 2λN2

)
− s

2

(
2λN1

− 2λN2

)

− u− t
2

√
s

s− 4m2
N

(
1− 4λN1

λN2

)]

+
F̃2

mN

[
−
√(

ut−m4
N

) (
s− 4m2

N

) 1

2

(
2λN1

+ 2λN2

)]

+
F̃3

m2
N

[
mN (u− t)

√
ut−m4

N√
s− 4m2

N

1

2

(
2λN1

+ 2λN2

)

−
√

s

s− 4m2
N

(
ut−m4

N

) 1

2

(
1− 4λN1

λN2

)] }
.

(4.92)

A 
omparison of Eqs. (4.91) and (4.92) allows to extra
t the 2γ-amplitudes and expressthem in terms of the GDAs, whi
h leads to
δG̃M = −

√
s− 4m2

N

s

1

s
·A,

δG̃E =

√
s− 4m2

N

s


 u− t
4(ut−m4

N )
· C +

1

2
√
ut−m4

N

· B


 ,

F̃3 =

√
s− 4m2

N

s

m2
N

ut−m4
N

· C,

(4.93)
where the variables A, B, C have been introdu
e, de�ned as

A =

∫ 1

0
dzf̃ q1 · ŝ

∑

q

Q2
q φ

q
A = ŝ f̃ q1 RA, (4.94)

B =

∫ 1

0
dzf̃ q1 · ŝ

(∑

q

Q2
q φ

q
A +

s

4m2
N

∑

q

Q2
q φ

q
P

)
= f̃ q1 ŝ

(
RA +

s

4m2
N

RP

)
. (4.95)

72



4.3 Partoni
 Cal
ulation of Timelike Two-Photon Ex
hange: GDA Approa
h
C =

u− t
s

∫ 1

0
dz f̃ q1 · ŝ

∑

q

Q2
q φ

q
A +

∫ 1

0
dz
(
f̃ q1 (t̂− û)− f̃ q3 t̂ û

)∑

q

Q2
q φ

q
V

=
u− t
s

ŝ f̃ q1 RA +
(
f̃ q1 (t̂− û)− f̃

q
3 t̂ û

)
RV ,

(4.96)4.3.3 ResultsFor an analysis of the two-photon ex
hange 
ontributions within the handbag approximation,information on the annihilation form fa
tors is required. However, no model 
al
ulation ofthese form fa
tors or GDAs exists so far. On a

ount of this, in previous studies the formfa
tors have been extra
ted phenomenologi
ally (see e.g. Refs. [80, 81℄).Combining Eqs. (4.73) and (4.81), one 
an relate the ve
tor annihilation form fa
tor RVto the magneti
 form fa
tor GM . We assume, that the u- and the d-quark form fa
tors ofthe proton ful�ll
F u
i =

1

2
F d
i , (4.97)and negle
t the form fa
tor 
ontributions of strange quarks and heavier quarks, whi
h yields

RV (s) = GM (s).The magneti
 form fa
tor has been extra
ted by �tting the timelike form fa
tor data. Thewidest data set at higher momentum transfer values is provided by the BaBar experiment [31℄,where the e�e
tive timelike form fa
tor Geff (de�ned in Eq. (2.44)) has been measured in therea
tion e+e− → p p̄ γ up to energies of s ∼ 20 GeV2. A �t of Geff to the data above s = 5GeV2 leads to
s2Geff ≃ 3.35 GeV4. (4.98)The results are presented in Fig. 4.14.The frequently used assumption |GM | = |GE | yields Geff = |GM |, therefore we will use asparametrization for RV :

s2 |RV (s)| = s2 |GM (s)| ≃ 3.35 GeV4. (4.99)In an analogous manner the axial annihilation form fa
tor RA 
an be expressed in termsof the axial form fa
tor of the nu
leon, GA. In the 
ase of isospin symmetry, the nu
leonmatrix element of the axial 
urrent operator Aa, µ(0) is parametrized by two form fa
tors,
〈
N(p′)

∣∣Aa, µ(0)
∣∣N(p)

〉
=
〈
N(p′)

∣∣∣ q̄ (0) γµγ5
τa

2
q(0)

∣∣∣N(p)
〉

= N̄(p′)

[
γµγ5GA(q

2) +
p′µ − pµ
2mN

GP (q
2)

]
τa

2
N(p),

(4.100)where GA is the axial form fa
tor, GP the pseudos
alar form fa
tor and τa are the Paulimatri
es. Using Eqs. (4.81) and (4.97), one �nds RA = GA.In the spa
elike region the measurements of GA(Q
2) indi
ates, that the form fa
tor 
an bedes
ribed very well by a dipole �t. We will adopt the dipole �t as parametrization of GA(s)in the timelike region, be
ause no data of the axial form fa
tor in the timelike regime existso far. Hen
e RA 
an be found as

RA(s) = GA(s) =
gA(

1− s
m2

A

)2 , (4.101)
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Figure 4.14: The timelike e�e
tive form fa
-tor |Geff | as a fun
tion of q2.The blue dashed 
urve rep-resents the �t a

ording toEq. (4.99) for q2 > 5 GeV2. Thedata are taken from Ref. [31℄.
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Figure 4.15: Integrated 
ross se
tion
dσ(| cos θ < 0.6|) for γγ → pp̄as a fun
tion of s. The bluedashed 
urve represents the �tgiven by Eq. (4.103). The dataare taken from Ref. [85℄.with the axial 
oupling 
onstant gA = 1.27 and the axial mass mA, for whi
h we use mA =

1.026 GeV [84℄.In Ref. [80℄ the pro
ess γγ → p p̄ has been evaluated within a handbag fa
torizationapproa
h and the di�erential 
ross se
tion has been found as
dσ

dt
=
4πα2

em

s2
1

sin2 θ

{∣∣Reff

∣∣2 +
∣∣RV

∣∣2 cos2 θ
}with Reff =

(∣∣RA +RP

∣∣2 + τ
∣∣RP

∣∣2
)1/2

.

(4.102)Sin
e the GDAs and 
onsequently the annihilation form fa
tors Ri are pro
ess independentquantities, Eq. (4.102) 
an be �tted to the data of the γγ → pp̄ 
ross se
tion in order toobtain Reff , whi
h 
an be used to extra
t RP . In our analysis, we use the data of the two-photon annihilation pro
ess γγ → p p̄ 
olle
ted at the BELLE experiment at the KEK-Bfa
tory [85℄, where we take the results of the integrated 
ross se
tion dσ(| cos θ| < 0.6) at thehighest measured s values, with 9 GeV2 < s < 16 GeV2, into a

ount. The result of the �t,whi
h gives
s2Reff ≃ 5.02 GeV4, (4.103)whi
h is presented in Fig. 4.15. In the analysis the des
ription of Eq. (4.99) has been usedas ve
tor form fa
tor RV in Eq. (4.102).The ratio |RP |/|RA| 
an be written as

|RP |
|RA|

= − 1

1 + τ
cos δ +

1

1 + τ

√
(1 + τ)

R2
eff

|RA|2
− (1 + τ) + cos2 δ (4.104)where δ is the relative phase of RA and RP .74



4.4 Con
lusionsAfter spe
ifying the parametrizations of the annihilation form fa
tors, Eqs. (4.99), (4.101)and (4.104), we 
an estimate the two-photon ex
hange 
ontribution to the 
ross se
tion.In addition, an expli
it expression of the ele
tromagneti
 form fa
tors GE,M is needed, forwhi
h a VMD based model is used, as given in Ref. [48℄.The results are shown in Fig. 4.16, where the relative 
ontribution of the 2γ-ex
hange
orre
tions to the 
ross se
tion, δ2γ , has been 
al
ulated as a fun
tion of cos θ for threedi�erent values of 
.m. energies, s = 6 GeV2, 9 GeV2, and 12 GeV2. We only present resultsfor the intermediate angular range, be
ause the GDA fa
torization des
ription is appli
ableonly for s ∼ t ∼ u ≫ m2
N . One �nds a 2γ-
ontribution of ∼ 1% in maximum, whi
h isin
reasing with the momentum transfer. The angular dependen
e is found to be similar tothe behavior obtained in Se
. 4.2, when using the pQCD fa
torization approa
h, even thoughthe results are inversed at cos θ = 0. Their relative 
ontribution is slightly larger within theGDA model approa
h. The 
olored bands in Fig. 4.16 
orrespond to the unknown relativephase of RA and RP , with −1 < cos δ < 1.The relative 2γ-ex
hange 
ontribution to the 
ross se
tion as a fun
tion of the 
.m. energy sis presented in Fig. 4.17 for three values of the 
.m. s
attering angle, cos θ = 0.3, 0.4 and 0.5,where the 
olored bands again stand for the variation of the phase cos δ. One noti
es, thatthe 2γ-ex
hange 
orre
tions are in
reasing with s at smaller values of momentum transferand rea
hing a maximum at s ∼ 17 GeV2. For cos θ = 0.5, the 
ontribution is found to be

|δ2γ | ∼ 1.6 % in the maximum.The results for the forward-ba
kward symmetry Acos θ, de�ned in Eq. (4.12), are shown inFig. 4.18, where Acos θ has been analyzed for cos θ = 0.5 (blue dashed 
urve) and cos θ = −0.5(green dotted 
urve) using cos δ = −1. The magnitude of Acos θ is in
reasing with themomentum transfer, approa
hing ∼ 0.5% for the largest 
onsidered values of s. The averagevalue of the asymmetry, Acos θ = 1% ± 2%, obtained in Ref. [70℄ is given by the bla
k solid
urve. Even though the results for the GDA model 
al
ulation are larger as when usingthe pQCD fa
torization approa
h, the existing data do not allow for signi�
ant tests of themodel 
al
ulations for two-photon ex
hange 
orre
tions so far.A more pre
ise understanding of the annihilation form fa
tors or the GDAs will 
ertainlyimprove the analysis of the 2γ-ex
hange within a GDA based approa
h.4.4 Con
lusionsIn this 
hapter the two-photon ex
hange 
ontributions to the timelike annihilation pro
ess
p p̄→ e+e− have been analyzed within two di�erent fa
torization approa
hes and predi
tionsfor the 2γ-ex
hange 
orre
tions to the 
ross se
tion as well as the forward-ba
kward asymme-try have been provided. With the view to forth
oming a

urate form fa
tors measurementsin the timelike region, it is important to be aware of these 
orre
tions.The pQCD fa
torization approa
h gives a 2γ-ex
hange 
ontribution whi
h is less than 1%over the studied kinemati
al range. However, at smaller momentum transfer one is probablyoutside of the validity of su
h an approa
h. Using a GDA based model, the 2γ-
orre
tionsare found to be somewhat larger, rea
hing values of ∼ 2% in the intermediate angularregion, where this approa
h is expe
ted to be appli
able. The results are smaller than the
2γ-
orre
tions found for the spa
elike ep-s
attering pro
ess, whi
h indi
ates that the 2γ-ex
hange e�e
ts are less signi�
ant for timelike form fa
tor extra
tion than for the spa
elike
ase. 75
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ording to Eq. (4.12) as a fun
tion of q2. Bluedashed 
urve (green dotted 
urve): Results within the GDA approa
h for cos θ =
0.5 (cos θ = −0.5) 
al
ulated for cos δ = −1. Bla
k solid 
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ise measurement pro-vides a test of the timelike two-photon ex
hange and o�ers the possibility to probe thetheoreti
al models used in this work.
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Chapter 5Two-Boson Ex
hange in Parity-ViolatingEle
tron-Proton S
atteringIn this 
hapter the in�uen
e of two-boson ex
hange in parity-violating ep-s
attering is dis-
ussed. Aside from a transmitted photon, the Standard Model provides the possibility thatele
tron-proton s
attering o

urs through the ex
hange of a Z boson. This Z boson ex-
hange, even though it is suppressed at lower energies, manifests itself in a parity-violating(PV) 
ontribution to the s
attering 
ross se
tion. The resulting parity-violating asymmetryo�ers a method to study the matrix elements of the neutral weak 
urrent operator of theproton and provides a

ess to the strange quark 
ontent of the nu
leon as well as dedi
atedtests of the Standard Model. This asymmetry 
an be a�e
ted by two-boson ex
hange, inparti
ular the ex
hange of a photon and Z boson (γZ).General aspe
ts of parity-violating ele
tron-proton s
attering will be presented in the �rstse
tion of this 
hapter. In the se
ond part, two-boson ex
hange e�e
ts are 
al
ulated withinthe pQCD fa
torization approa
h, whi
h has been introdu
ed in the previous 
hapter andwhi
h has been used to study 2γ-
orre
tions to the pro
ess p̄ p→ e+e−.5.1 Parity-Violating Ele
tron-Proton S
atteringThe leading 
ontribution to elasti
 ep-s
attering is given by the one-photon ex
hange am-plitude. Besides the ele
tromagneti
 me
hanism, the s
attering 
an pro
eed through theneutral weak intera
tion via the ex
hange of the neutral Z boson. Due to the large massof the Z boson, with mZ = 91.19 GeV, the neutral weak pro
ess is suppressed 
omparedto the ele
tromagneti
 one in the 
onsidered kinemati
al range of relatively low momentumtransfer. Sin
e the neutral weak 
urrent does not 
onserve parity, PV 
ontributions arisefrom the interferen
e terms between the ele
tromagneti
 and the weak amplitudes. ThesePV e�e
ts 
an be a

essed through asymmetries whi
h are sensitive to the interferen
e term.The neutral weak 
urrent operator jµZ is a linear 
ombination of a ve
tor and an axial-ve
tor 
oupling to the Z boson. For two pointlike fermions the matrix element of the operatoris given by
〈
f(k′)

∣∣jµZ(0)
∣∣f(k)

〉
=

( −g
4 cos θW

)
ūf (k

′ ) γµ
(
gfV − g

f
Aγ5

)
uf (k), (5.1)where uf (k) and ūf (k

′) are the Dira
 spinors of the in
ident and outgoing fermions withmomentum k and k′, respe
tively. The expressions gfV and gfA are asso
iated with the ve
torand axial-ve
tor 
ouplings of the parti
les:
gfV = 2T f

3 − 4Qf sin
2 θW , gfA = 2T f

3 , (5.2)79
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e− e−

p p

γ

e− e−

p p

Z

a) 1γ-exchange b) Z-exchangeFigure 5.1: Born diagrams of ep-s
attering for one-photon and single Z ex
hange.where T f
3 is the third 
omponent of the weak isospin and Qf the 
harge fra
tion of theparti
le f . The angle θW is the so-
alled Weinberg angle or weak mixing angle, whi
h 
anbe expressed by the masses of the Z boson, mZ , and the W± bosons, mW ,

cos θW =
mW

mZ
, with sin2 θW (mZ) = 0.231 [86℄. (5.3)The ve
tor and axial-ve
tor 
ouplings of the ele
tron and light quarks are given in table 5.1.The lowest-order amplitude of ep-s
attering in
luding neutral weak 
urrents is illustratedin Fig. 5.1, where the leading order 
ontribution of the weak intera
tion 
orresponds tothe ex
hange of a single Z boson between the ele
tron and the proton. It 
an be expressedthrough the neutral weak leptoni
 
urrent operator jµZ and the neutral weak hadroni
 
urrentoperator Jµ

Z 
onne
ted with the propagator of the Z boson as
iMZ = −

〈
l(k′, h′)

∣∣jνZ(0)
∣∣l(k, h)

〉 igµν
m2

Z − q2
〈
N(p′, λp′)

∣∣Jµ
Z(0)

∣∣N(p, λp)
〉
, (5.4)where k (k′) and p (p′) are the momenta of the initial (�nal) ele
tron and proton, respe
tively,

h and h′ are the heli
ities of the in
oming and outgoing ele
trons, λp and λp′ of the initialand �nal protons. parti
le Qf T f
3 gfV gfA

e− −1 −1/2 −(1− 4 sin2 θW ) −1

u 2/3 1/2 (1− 8
3 sin

2 θW ) 1

d −1/3 −1/2 −(1− 4
3 sin

2 θW ) −1

s −1/3 −1/2 −(1− 4
3 sin

2 θW ) −1Table 5.1: Ve
tor and axial-ve
tor 
ouplings of the ele
tron and the light quarks u, d, s.80



5.1 Parity-Violating Ele
tron-Proton S
atteringThe matrix element of the weak leptoni
 
urrent operator is found as
〈
l(k′, h′)

∣∣jµZ(0)
∣∣l(k, h)

〉
=

( −g
4 cos θW

)
ūl(k

′, h′) γµ(geV − geAγ5)ul(k, h), (5.5)where the ve
tor-
oupling geV and the axial ve
tor 
oupling geA of the ele
tron to the weak
urrent have been introdu
ed, whi
h are given by
geV = −(1− 4 sin2 θW ), geA = −1. (5.6)The weak 
oupling g is 
onne
ted with the ele
tromagneti
 
oupling via g = e sin θW .The most general expression of the matrix element of the neutral weak hadroni
 
urrentoperator is parametrized by 4 form fa
tors,

〈
N(p′, λp′)

∣∣Jµ
Z(0)

∣∣N(p, λp)
〉

=

( −g
4 cos θW

)
N̄(p′, λp′)

{
FZ
1 γµ + FZ

2

i

2mN
σµνqν +GZ

A γ
µγ5 +GZ

p

qµ

mN
γ5

}
N(p, λp).(5.7)The weak form fa
tors FZ

1 , FZ
2 , GZ

A, and GZ
p are real fun
tions of the momentum transferQ2 in the spa
elike region. The last stru
ture of Eq. (5.7), whi
h is related to the weakpseudos
alar form fa
tor Gp, does not 
ontribute to the amplitude, due to ele
tromagneti
gauge invarian
e, whi
h implies qµjZ,µ = 0. Therefore, the pseudos
alar stru
ture vanisheswhen 
ontra
ting with the neutral weak leptoni
 
urrent.In the momentum transfer region of interest the relation Q2 = −q2 ≪ m2

Z is valid.Therefore q2 
an be negle
ted in the denominator of the Z boson propagator in Eq. (5.4),
1/(m2

Z − q2) ≃ 1/m2
Z , and one obtains

iMZ ≃
−i g2

16m2
Z cos2 θW

ūl(k
′, h′) γµ(−1 + 4 sin2 θW + γ5)ul(k, h)

× N̄(p′, λp′)

{
FZ
1 (Q2) γµ + FZ

2 (Q2)
i

2mN
σµνqν +GZ

A(Q
2) γµγ5

}
N(p, λp)

= − iGF

2
√
2
ūl(k

′, h′) γµ(−1 + 4 sin2 θW + γ5)ul(k, h)

× N̄(p′, λ′p)

{
FZ
1 (Q2) γµ + FZ

2 (Q2)
i

2mN
σµνqν +GZ

A(Q
2) γµγ5

}
N(p, λp),

(5.8)
where the 
ommonly used Fermi 
onstant GF has been introdu
ed:

GF√
2
=

g2

8m2
Z cos2 θW

=
e2

8m2
W

. (5.9)As for ele
tromagneti
 form fa
tors, it is more 
onvenient to use the Sa
hs form fa
tors
GZ

E and GZ
M of the neutral weak 
urrent, de�ned by the linear 
ombinations

GZ
E(Q

2) = FZ
1 (Q2)− τFZ

2 (Q2),

GZ
M (Q2) = FZ

1 (Q2) + FZ
2 (Q2).

(5.10)
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Chapter 5 Two-Boson Ex
hange in Parity-Violating Ele
tron-Proton S
atteringThe matrix elements of the proton weak 
urrent operator 
an be expressed in terms of theindividual quark �avor 
urrent operators. Negle
ting 
ontributions of heavy quarks, the c, band t quarks, one �nds
〈
N(p′ )

∣∣ Jµ
Z(0)

∣∣N(p)
〉( − g

4 cos θ

)−1

=

〈
N(p′ )

∣∣∣∣
(
1− 8

3
sin2 θW

)
ūγµu−

(
1− 4

3
sin2 θW

)
d̄γµd−

(
1− 4

3
sin2 θW

)
s̄γµs

−
(
ūγµγ5u− d̄γµγ5d− s̄γµγ5s

) ∣∣∣∣N(p)

〉

= N̄(p′ )




∑

q=u,d,s

(2T q
3 − 4Qq sin

2 θW )

(
F q
1 γ

µ + F q
2

i

2mN
σµνqν

)
+ 2T q

3 G
q,Z
A γµγ5



N(p),(5.11)where the �avor form fa
tors F q

1,2, whi
h parametrize the ve
tor 
urrent, have been de�nedin Eq. (2.15). The quark �avor form fa
tors give rise to the form fa
tors of the neutral weakhadroni
 
urrent:
GZ

E,M =

(
1− 8

3
sin2 θW

)
Gu

E,M −
(
1− 4

3
sin2 θW

)
Gd

E,M −
(
1− 4

3
sin2 θW

)
Gs

E,M . (5.12)Assuming isospin symmetry, one 
an use Eqs. (2.17) and (5.12) to express the weak formfa
tors GZ
E,M in terms of the ele
tromagneti
 form fa
tors of the proton and the neutron aswell as the strange form fa
tor:

GZ
E,M =

(
1− 4 sin2 θW

)
Gp

E,M −Gn
E,M −Gs

E,M . (5.13)The weak axial form fa
tor GZ
A 
an be related to the axial form fa
tor of the nu
leon:

GZ
A(Q

2) = GA(Q
2). (5.14)The axial form fa
tor GA appears when parametrizing the nu
leon matrix element of theaxial 
urrent operator, whi
h has been introdu
ed before in Eq. (4.100).The leading-order amplitude of elasti
 ep-s
attering in
luding Z-ex
hange is given by thesum of the the ele
tromagneti
 amplitude de�ned in Eq. (2.21), whi
h is denoted asMγ inthis se
tion, and the neutral weak amplitudeMZ , given by Eq. (5.4):

dσ ∝ |M|2 = |Mγ +MZ |2

≃ |Mγ |2 + 2Re [MγM∗
Z ] .

(5.15)Due to the Z propagator, the amplitude MZ is suppressed by a fa
tor q2/m2
Z 
ompared tothe ele
tromagneti
 amplitude at lower Q2 values.Instead of measuring the Z-ex
hange 
ontribution to the 
ross se
tion, one 
an a

essthe neutral weak amplitude through the parity-violating asymmetry APV , whi
h arises inpolarized ep-s
attering from the interferen
e of the ele
tromagneti
 and weak amplitudes.82



5.1 Parity-Violating Ele
tron-Proton S
atteringThe ele
tromagneti
 intera
tion, as a ve
tor-
urrent intera
tion, 
onserves parity, whereasthe mixed ve
tor and axial-ve
tor stru
ture of the neutral weak 
urrent, violates parity
onservation. The PV asymmetry is de�ned as
APV =

dσR − dσL
dσR + dσL

, (5.16)where dσR (dσL) refers to the 
ross se
tion for a right-handed (left-handed) ele
tron, i.e.an ele
tron with heli
ity +1/2 (−1/2). The neutral weak 
urrent for a right and left handedele
tron 
an be written as:
〈
l(k′)

∣∣ jR,L
Z, µ(0)

∣∣l(k)
〉

=

( − g
cos θW

)
ū(k′, h′) γµ

[
geV − geAγ5

]
PR,L u(k, h), (5.17)with PR,L = 1

2(1± γ5), and where dσR and dσL are asso
iated withM as
dσR ∝ |M

(
h = +1/2

)
|2, dσL ∝ |M

(
h = −1/2

)
|2. (5.18)In the leading-order approximation, the asymmetry is given by the interferen
e term of

Mγ andMZ :
APV

Born ≃
2Re

[
Mγ(h = +1/2)M∗

Z(h = +1/2) −Mγ(h = −1/2)M∗
Z (h = −1/2)

]

|Mγ(h = +1/2)|2 + |Mγ(h = −1/2)|2 . (5.19)
APV

Born 
an be written as:
APV

Born =− GFQ
2

e2
√
2
· AE +AM +AA

τ G2
M + εG2

E

,with AE = ε · GE G
Z
E ,

AM = τ · GM GZ
M ,

AA =− (1− 4 sin2 θW )
√
τ(1 + τ)

√
1− ε2 · GM GZ

A.

(5.20)
The asymmetry provides a

ess to the weak 
harge of the proton Qp

W :
Qp

W = 1− 4 sin2 θW . (5.21)Due to an a

urate predi
tion of Qp
W within the Standard Model, based on the Q2 depen-den
e of sin2 θW , a pre
ise measurement of Qp

W provides a signi�
ant test of the validity ofthe Standard Model. Su
h measurements are for instan
e performed at the JLab (Q-weakexperiment [87℄) and are proposed for the new MESA fa
ility at Mainz.The asymmetry 
an alternatively be expressed through the proton and neutron ele
tro-magneti
 form fa
tors, the strangeness form fa
tors Gs
E,M and the axial form fa
tors Gp

A, sep-arating APV into ve
tor (AV ), strange (AS) and axial 
ontributions (AA). Using Eq. (5.13)83



Chapter 5 Two-Boson Ex
hange in Parity-Violating Ele
tron-Proton S
atteringyields
APV

Born =
GFQ

2

√
2e2

AV +AS +AA

ε
(
Gp

E

)2
+ τ

(
Gp

M

)2 ,with AV = −
[
ε(Gp

E)
2 + τ(Gp

M )2
] (

1− 4 sin2 θW
)
+ εGp

MG
n
E + τGp

MG
n
M ,

AS = εGp
EG

s
E + τGp

MG
s
M ,

AA =
(
1− 4 sin2 θW

)√
(1− ε2)τ(1 + τ)Gp

MG
Z
A.

(5.22)
The strangeness form fa
tors Gs

E and Gs
M 
an be extra
ted from AS . Measurements of APVwith the aim to a

ess the strangeness 
ontributions of the nu
leon have been performedat several fa
ilities, e.g. the SAMPLE experiment run at MIT-Bates [88, 89℄, HAPPEXundertaken at JLab/HALL A [90�93℄, the PVA4 experiment performed at MAMI [94�96℄and the G0 experiment at JLab/HALL C [97, 98℄. Sin
e the strangeness 
ontributions aresmall, the extra
tion from the measured asymmetry 
an be very sensitive to even small
orre
tions, as two-boson ex
hange e�e
ts.5.2 Two-Boson-Ex
hange E�e
ts in Parity-Violatingep-S
attering5.2.1 General FormalismDue to the possibility to a

ess the small strangeness 
ontribution or the weak mixing anglefrom high pre
ision PV asymmetries, it is ne
essary to be aware of radiative 
orre
tions astwo-boson ex
hange (TBE) to the PV asymmetry APV .For this purpose, we 
onsider TBE in the pro
ess

p(p, λp) + e−(k, h)→ p(p′, λp′) + e−(k′, h′), (5.23)using the four-ve
tors and variables introdu
ed in Eqs. (3.2) and (3.3).The leading-order TBE 
orre
tions to PV ep-s
attering arise from di�erent 
ontribu-tions. The γZ-ex
hange pro
ess, given by the γZ-dire
t and 
rossed box graphs, 
ontributesthrough the interferen
e with the 1γ-ex
hange pro
ess, and the 2γ-ex
hange as interferen
eterm with Z-ex
hange Born diagram. Furthermore, the e�e
ts of the interferen
e between1γ-ex
hange and 2γ-ex
hange pro
esses appear in the denominator of APV . The 
orrespond-ing Feynman graphs are presented in Fig. 5.2.The invariant amplitude 
hara
terizing the γZ-ex
hange 
an be written in terms of 5generalized form fa
tors:
iMγZ =

−iGF

2
√
2
ūl(k

′, h′)γµ(g
e
V − geAγ5)ul(k, h)

× N̄(p′, λp′)

{
γµδG̃Z

M −
Pµ

mN
δF̃Z

2 +
Pµ /K
m2

N

F̃Z
3 + γµγ5δG̃

Z
A +

Pµ /K
m2

N

γ5G̃3A

}
N(p, λp).(5.24)84



5.2 Two-Boson-Ex
hange E�e
ts in Parity-Violating ep-S
attering
1γ γZ

1Z 2γ

1γ 2γ

Figure 5.2: TBE 
orre
tions to APV : Contributions appearing in the numerator are illus-trated on the left panel (1γ × γZ and 1Z × 2γ interferen
e terms), 
orre
tionsto the leading term in the denominator on the right panel (1γ× 2γ interferen
e).For 
larity, the 
rossed box diagrams are not shown.These generalized weak form fa
tors, δG̃Z
M , δF̃Z

2 , F̃Z
3 , δG̃Z

A and G̃3A are, as the 2γ-amplitudes,
omplex fun
tions of two variables, e.g. Q2 and ν = K · P . They are suppressed by αem
ompared to the neutral weak form fa
tors. Equivalently, one 
an introdu
e
δG̃Z

E(Q
2) = δG̃Z

M (Q2)− (1 + τ)δF̃2(Q
2). (5.25)By means of the relations

ūl /P ul N̄ /KN = ν ūl γµ ul N̄γ
µN − Q2

4
ūl γµγ5 ul N̄γ

µγ5N,

ūl /Pγ5 ul N̄ /KN = ν ūl γµγ5 ul N̄γ
µN − Q2

4
ūl γµ ul N̄γ

µγ5N,

ūl /P ul N̄ /Kγ5N = ν ūl γµ ul N̄γ
µγ5N − P 2 ūl γµγ5 ul N̄γ

µN + mN ūl γµγ5 ul N̄P
µN,

ūl /Pγ5 ul N̄ /Kγ5N = ν ūl γµγ5 ul N̄γ
µγ5N − P 2 ūl γµ ul N̄γ

µN + mN ūl γµ ul N̄P
µN,(5.26)the stru
tures of the matrix element of γZ-ex
hange, Eq. (5.24), 
an be redu
ed to 6 inde-pendent stru
tures of the form

ūl γµ ul N̄γ
µN G̃1, ūl γµ ul N̄

Pµ

mN
N G̃2, ūl γµγ5 ul N̄γ

µγ5N G̃3,

ūl γµγ5 ul N̄γ
µN G̃4, ūl γµγ5 ul N̄

Pµ

mN
N G̃5, ūl γµ ul N̄γ

µγ5N G̃6.
(5.27)It is 
onvenient to study the pro
ess in the laboratory frame and express the 
ross se
tionsand asymmetries as fun
tions of Q2 (or τ), the photon polarization ε and ν. In order85



Chapter 5 Two-Boson Ex
hange in Parity-Violating Ele
tron-Proton S
atteringto 
ompare 
orre
tions from the interferen
e of di�erent pairs of diagrams, the di�erent
ontributions are 
al
ulated separately. The interferen
e between one-photon ex
hange andthe γZ-ex
hange reads
A1γ×γZ = APV

Born

(
1 + δ1γ×γZ

)

= − GFQ
2

√
2e2

1

εG2
E + τG2

M

Re
[
τ GM δG̃Z

M + ε GE δG̃
Z
E +

εν

m2
N

(
τ GM F̃Z

3 +GE F̃
Z
3

)

−
(
1− 4 sin2 θW

) (
ε′GM δG̃Z

A + ε τ (1 + τ)GM G̃3A

) ]
, (5.28)where the expression

ε′ =
√(

1− ε2
)
τ
(
1 + τ

) (5.29)has been introdu
ed.The invariant amplitude giving rise to the 2γ-ex
hange 
orre
tions reads
M2γ =

e2

Q2
ūl(k

′) γµ ul(k) N̄ (p′)

[
δG̃M γµ − δF̃2

Pµ

mN
+ F̃3

Pµ /K
m2

N

]
N(p) (5.30)where the form fa
tors δG̃M , δF̃2, and F̃3 are the two-photon amplitudes introdu
ed inEq. 3.9.Corre
tions to the asymmetry arising from the interferen
e of the 2γ-amplitude and theBorn amplitude of Z-ex
hange 
an be found as

AZ×2γ = APV
Born

(
1 + δZ×2γ

)

= − GFQ
2

√
2e2

1

εG2
E + τG2

M

Re

[
τ GZ

M δG̃M + εGZ
E δG̃E +

εν

m2
N

(
τGZ

M F̃3 +GZ
EF̃3

)

−
(
1− 4 sin2 θW

) (
ε′GZ

Aδ G̃M + ε τ (1 + τ)GZ
A F̃3

)]
. (5.31)The e�e
ts of the 2γ-ex
hange amplitude interfering with the 1γ-ex
hange amplitude ap-pearing in the denominator yields:

A1γ×2γ = APV
Born

(
1 + δ1γ×2γ

)

= − GFQ
2

√
2e2

{
τ GM GZ

M + εGE G
Z
E −

(
1− 4 sin2 θW

)
ε′GM GZ

A

}

×
{
ε
(
G2

E + 2Re[GEδG̃E ]
)
+ τ
(
G2

M + 2Re[GM δG̃M ]
)
+

2εν

m2
N

(GE + τGM )ReF̃3

}−1

.(5.32)86



5.2 Two-Boson-Ex
hange E�e
ts in Parity-Violating ep-S
atteringConsequently, the PV asymmetry in
luding the leading order 
orre
tions in αem 
ausedby TBE is
APV = APV

Born

(
1 + δ

)

= − GF Q
2

√
2e2

[
τ GM GZ

M + εGE G
Z
E −

(
1− 4 sin2 θW

)
ε′GM GZ

A

+ Re
[
τ
(
GZ

M δG̃M +GM δG̃Z
M

)
+ ε

(
GZ

E δG̃E +GE δG̃
Z
E

) ]

+
εν

m2
N

Re
[
τ
(
GZ

M F̃3 +GM F̃Z
3

)
+
(
GZ

E F̃3 +GE F̃
Z
3

) ]

−
(
1− 4 sin2 θW

)
Re
[
ε′
(
GZ

A δG̃M +GM δG̃Z
A

)
+ (1 + τ) ε τ

(
GZ

A F̃3 +GM G̃3A

)]]

×
{
ε
(
G2

E + 2Re[GEδG̃E ]
)
+ τ
(
G2

M + 2Re[GM δG̃M ]
)
+

2εν

m2
N

(GE + τGM )ReF̃3

}−1

.(5.33)Two-photon ex
hange and γZ-ex
hange e�e
ts in PV ep-s
attering have been 
al
ulatedin Refs. [99,100℄ within a parton fa
torization approa
h using GPDs, and within a hadroni
approa
h in Refs. [101, 102℄. Several theoreti
al studies have been performed in order tore
eive the γZ-
orre
tions to the asymmetry at zero (or very small) momentum transfer [103�106℄, whi
h 
orresponds to forward s
attering, e.g. within dispersion relation frameworks.5.2.2 Two-Boson Ex
hange within a perturbative QCD Fa
torizationApproa
hAnalogously to the 2γ-ex
hange pro
esses studied in Chapter 4, the pQCD fa
torizationapproa
h 
an be applied in order to examine two-boson ex
hange e�e
ts in PV elasti
 ep-s
attering. Sin
e the distribution amplitudes are pro
ess independent quantities, the sameDAs as dis
ussed for the 2γ-ex
hange 
orre
tions in Se
. 4.2 appear in the TBE formalism.The e�e
ts of 2γ-ex
hange on the PV asymmetry within a pQCD fa
torization approa
h
an be dire
tly obtained from the results of the generalized 2γ-amplitudes, δG̃M , δG̃E ,and F̃3, found within this model, whi
h have been derived in Ref. [57℄, and adopting theseexpressions for Eqs. (5.31) and (5.32).To 
ompute the 
orre
tions 
aused by the γZ-box 
ontributions, at �rst the formulas ofthe γZ-ex
hange amplitudes, namely δG̃Z
M , δG̃Z

E , F̃Z
3 , δG̃Z

A and G̃3A, in terms of the DAshave to be de�ned.For this purpose, the pro
ess is analyzed in the Breit frame, assuming that s = (p + k)2and the momentum transfer Q2 are large, s, Q2 ≫ m2
N . Therefore the masses of the protonand the ele
tron 
an be negle
ted in the 
al
ulation. The momenta of the initial and �nalstate proton 
an be expressed in the light-
one basis nµ and n̄µ as:

pµ =
Q

2
n̄µ, p ′µ =

Q

2
nµ, qµ =

Q

2
nµ − Q

2
n̄µ, (5.34)87
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tron-Proton S
attering
N(p) N(p′)

e−(k) e−(k′)

γ(q1) Z(q2)

u

u

dFigure 5.3: Diagram of γZ-ex
hange using pQCD fa
torization: The hard kernel des
ribesthe ele
tron s
attering o� a three-quark state via photon and Z boson ex
hange.The gray blobs indi
ate the DAs of the initial and �nal nu
leon.and the momenta of the in
ident and s
attered leptons are
kµ = ζ

Q

2
nµ − (1− ζ) Q

2
n̄µ + k⊥, k′µ = −(1− ζ) Q

2
nµ + ζ

Q

2
n̄µ + k⊥,with |k⊥|2 = −ζ(1− ζ)Q2, ζ =

(1 + ξ)2

4ξ
, ξ =

k+

P+
.

(5.35)Using pQCD fa
torization, the amplitude of the γZ-ex
hange is given as a 
onvolutionof the DAs of the in
oming and outgoing nu
leon and a hard s
attering kernel, where theele
tron s
atters at a three valen
e quark state via the ex
hange of a photon and a Z boson.A typi
al diagram of the fa
torized pro
ess is presented in Fig. 5.3. In the subpro
ess, theinitial quarks 
arry the momentum fra
tion xi of the proton, while after the s
attering thequarks have the momentum yi p
′, with ∑i xi =

∑
i yi = 1.The proton-to-va
uum matrix element as parametrized by the leading-order DAs of theproton has been introdu
ed in Eq. (4.23). The DAs whi
h 
onvert the three valen
e quarkstate into a hadron with momentum p′ 
an be dedu
ed from the hermitian 
onjugate expres-sion of the proton-to-va
uum matrix element in terms of the proton DAs.In the leading-order expansion, the amplitude 
hara
terizing the γZ-ex
hange is found as

AγZ =
∑

X̃=Ṽ ,Ã, T̃

∑

X=V,A, T

∫
d[yi] X̃(yi)

∫
d[xi]X(xi)

×
(

i g

4 cos θW

)
ūl(k

′) (geV γµ − geAγµγ5) ul(k)

×
[
N̄+(p′ ) Γd

X̃

]
γ′

[
Γd
]γ′γ[

Γd
X N+(p)

]
γ

[
Γu
X̃

]
β′α′

[
Γu1

]α′α[
Γu2

]β′β[
Γu
X

]
αβ
,

(5.36)
where V,A and T denote the ve
tor, axial and tensor DA of the proton. The expression X̃refers to the DAs of the outgoing nu
leon de�ned by

X̃(z′i n̄ · p′) ≡ X†(z′i n̄ · p′) =
∫
d[yi] X(y1, y2, y3) exp

{
i
(
n̄ · p′

)∑

i

yizi

}
, (5.37)
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5.2 Two-Boson-Ex
hange E�e
ts in Parity-Violating ep-S
atteringwith X̃ =
{
Ṽ , Ã, T̃

}
,and d[yi] = dy1 dy2 dy3 δ(1 − y1 − y2 − y3).

(5.38)The stru
tures Γu, d
X and Γu, d

X̃
are given by

[
Γu
V

]
αβ

=
Q

2

[/̄n C]
αβ
,

[
Γu
A

]
αβ

=
Q

2

[/̄n γ5 C]
αβ
,

[
Γu
T

]
αβ

=
Q

2

[/̄nγ⊥C]
αβ
,

[
Γd
V

]
γ
= [γ5]γ ,

[
Γd
A

]
γ
= [1]γ ,

[
Γd
T

]
γ
= [γ⊥ γ5]γ ,

[
Γu
Ṽ

]
β′α′

=
Q

2

[
C /n]

β′α′
,
[
Γu
Ã

]
β′α′

=
Q

2

[
C γ5 /n]

β′α′
,
[
Γu
T̃

]
β′α′

= −Q
2

[
C/nγ⊥]

β′α′
,

[
Γd
Ṽ

]
γ′

= [γ5]γ′ ,
[
Γd
Ã

]
γ′

= [1]γ′ ,
[
Γd
T̃

]
γ′

= [γ5 γ
⊥]γ′ .

(5.39)
In Eq. (5.36), Γq, with q = {u1, u2, d}, 
orresponds to the expression of the quark spinor linesin momentum spa
e. The indi
es α (β) and α′ (β′) are asso
iated with the initial and �nal
u-quark lines, respe
tively, while the indi
es γ and γ′ refer to the in
oming and outgoing
d-quarks.The hard s
attering pro
ess is given by the ele
tron-s
attering o� a three quark state,

e−(k) + q(x1p) q(x2p) q(x3p)→ e−(k′) + q(y1p
′) q(y2p

′) q(y3p
′), (5.40)where a photon and a Z boson are ex
hanged. Similarly to the two-photon ex
hange rea
tion,the 
ontributions where the two bosons 
ouple to di�erent quarks have to be 
onsidered inthe subpro
ess, sin
e other diagrams are suppressed. The third quark is involved in thes
attering pro
ess through the ex
hange of a hard gluon. Taking all possibilities to atta
hthe photon and the Z boson to the quarks and all possible gluon ex
hanges into a

ount,the leading-order hard s
attering pro
ess in
ludes 48 diagrams (given in Appendix B).Inserting the results of the hard s
attering pro
ess into Eq. (5.36) gives rise to the weak

γZ-form fa
tors as fun
tions of the DAs, whi
h yields
δGZ

M =−
(
4π

3

)2 αemαS

Q4

∫
d[xi]

1

x1x̄1x2

∫
d[yi]

1

y1ȳ1y2

1

D1
(2ζ − 1)x1y1

×
{
x̄1ȳ1

[
Qu g

u
V {(V ′ −A′)(V −A) + 4T ′T}(1, 3, 2)

+ Qu g
d
V {(V ′ −A′)(V −A) + 4T ′T}(1, 2, 3) + 2Qd g

u
V {V ′V +A′A}(3, 2, 1)

]

+ x1y1

[
Qu g

u
V {(V ′ −A′)(V −A) + 4T ′T}(1, 3, 2)

+ Qd g
u
V {(V ′ −A′)(V −A) + 4T ′T}(1, 2, 3) + 2Qu g

d
V {V ′V +A′A}(3, 2, 1)

]}
,(5.41)89
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attering
Q2

m2
N

FZ
3 =−

(
4π

3

)2 αemαS

Q4

∫
d[xi]

1

x1x̄1x2

∫
d[yi]

1

y1ȳ1y2

1

D1
2(x1 + y1 − 2x1y1)

×
{
x̄1ȳ1

[
Qu g

u
V {(V ′ −A′)(V −A) + 4T ′T}(1, 3, 2)

+ Qu g
d
V {(V ′ −A′)(V −A) + 4T ′T}(1, 2, 3) + 2Qd g

u
V {V ′V +A′A}(3, 2, 1)

]

+ x1y1

[
Qu g

u
V {(V ′ −A′)(V −A) + 4T ′T}(1, 3, 2)

+ Qd g
u
V {(V ′ −A′)(V −A) + 4T ′T}(1, 2, 3) + 2Qu g

d
V {V ′V +A′A}(3, 2, 1)

]}
,(5.42)

δGZ
A =−

(
4π

3

)2 αemαS

Q4

∫
d[xi]

1

x1x̄1x2

∫
d[yi]

1

y1ȳ1y2

1

D1
(2ζ − 1)x1y1

×
{
x̄1ȳ1

[
Qu{(V ′ −A′)(V −A)− 4T ′T}(1, 3, 2)

+ Qu{(V ′ −A′)(V −A)− 4T ′T}(1, 2, 3) + 2Qd{V ′A+A′V }(3, 2, 1)
]

+ x1y1

[
−Qu{(V ′ −A′)(V −A) + 4T ′T}(1, 3, 2)

− Qd{(V ′ −A′)(V −A) + 4T ′T}(1, 2, 3) + 2Qu{V ′V +A′A}(3, 2, 1)
]}
,

(5.43)
Q2

m2
N

G3A =−
(
4π

3

)2 αemαS

Q4

∫
d[xi]

1

x1x̄1x2

∫
d[yi]

1

y1ȳ1y2

1

D1
2(x1 + y1 − 2x1y1)

×
{
x̄1ȳ1

[
Qu{(V ′ −A′)(V −A)− 4T ′T}(1, 3, 2)

+ Qu{(V ′ −A′)(V −A)− 4T ′T}(1, 2, 3) + 2Qd{V ′A+A′V }(3, 2, 1)
]

+ x1y1

[
−Qu{(V ′ −A′)(V −A) + 4T ′T}(1, 3, 2)

− Qd{(V ′ −A′)(V −A) + 4T ′T}(1, 2, 3) + 2Qu{V ′V +A′A}(3, 2, 1)
]}
,(5.44)with

D1 =
[
x̄1ζ + ȳ1ζ̄ − x̄1ȳ1 + iǫ

][
x̄1ζ̄ + ȳ1ζ − x̄1ȳ1 + iǫ

]
.In an analogous manner to the analysis of the 2γ-ex
hange in the timelike region, the heli
ity-�ip amplitude FZ

2 , whi
h behaves as FZ
2 ∼ 1/Q6, is suppressed within the pQCD 
al
ulation.90



5.2 Two-Boson-Ex
hange E�e
ts in Parity-Violating ep-S
atteringUsing the form fa
tor expressions in terms of the DAs, the in�uen
e of the γZ-ex
hange tothe PV asymmetry 
an be derived from Eq. (5.28).The 2γ-amplitudes for ep-s
attering have been 
al
ulated within a pQCD fa
torizationapproa
h in Ref. [57℄ and have been found as
δGM =−

(
4π

6

)2 αemαs

Q4
(2ζ − 1)

∫
d[xi]d[yi]

D2

x1y1
[x1x̄1x2][y1ȳ1y2]

×
[
Q2

u

[
(V ′ −A′)(V −A) + 4T ′T )

]
(1, 3, 2) + 2QuQd(V

′V +A′A)(2, 3, 1)

+ QuQd

[
(V ′ −A′)(V −A) + 4T ′T )

]
(1, 2, 3)

]
, (5.45)

ν

m2
N

F3 =−
(
4π

6

)2 αemαs

Q4

∫
d[xi]d[yi]

D2

2(x1 + y1 − 2x1y1)

[x1x̄1x2][y1ȳ1y2]

×
[
Q2

u

[
(V ′ −A′)(V −A) + 4T ′T )

]
(1, 3, 2) + 2QuQd(V

′V +A′A)(2, 3, 1)

+ QuQd

[
(V ′ −A′)(V −A) + 4T ′T )

]
(1, 2, 3)

]
, (5.46)with

D2 =
[
x1ζ̄ + y1ζ − x1y1 + iǫ

] [
x1ζ + y1ζ̄ − x1y1 + iǫ

]
.The third 2γ-amplitude δF̃2 is suppressed in this approa
h (as in the timelike 
ase). Theresults have been inserted into Eqs. (5.31) and (5.32) in order to re
eive the 2γ-ex
hange
orre
tions to the PV asymmetry.As parametrization of the DAs the formulas given in Eq. (4.61) have been used, withthe parameters of the COZ and BLW model (table 4.1). To 
ompute the TBE 
orre
tions,an expli
it expression of the form fa
tors is needed. For the magneti
 form fa
tor of theproton a variation of a polynomial model is used [107℄, where the free parameters of themodel have been obtained from a �t to the Rosenbluth data of GM , while the form fa
torsratio µpGE/GM is parametrized by a �t of Pt/Pl to the results of polarization transfermeasurements [11℄, giving rise to:

GM (Q2) =
µp

1 + 3.19Q2 + 1.355Q4 + 0.151Q6
,

µpGE(Q
2)

GM (Q2)
= 1 + 0.13

(
Q2 − 0.04

)
.

(5.47)The neutral weak form fa
tors are expressed through the ele
tromagneti
 form fa
tors ofthe proton and neutron:
GZ

E,M =
(
1− 4 sin2 θW

)
Gp

E,M −Gn
E,M , (5.48)91



Chapter 5 Two-Boson Ex
hange in Parity-Violating Ele
tron-Proton S
attering

-2

-1

 0

 1

 2

 3

 4

 0  0.2  0.4  0.6  0.8  1

δ 
[%

]

ε

Q2 = 2 GeV2,  DA model: COZ

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

δ 
[%

]

ε

Q2 = 2 GeV2,  DA model: BLW

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.2  0.4  0.6  0.8  1

δ 
[%

]

ε

Q2 = 3.3 GeV2,  DA model: COZ

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1

δ 
[%

]

ε

Q2 = 3.3 GeV2,  DA model: BLW

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.2  0.4  0.6  0.8  1

δ 
[%

]

ε

Q2 = 9 GeV2,  DA model: COZ

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1

δ 
[%

]

ε

Q2 = 9 GeV2,  DA model: BLW

Figure 5.4: Two-Boson ex
hange 
ontributions to the PV asymmetry APV as a fun
tion of εfor di�erent values of momentum transfer using the COZ (left panel) and BLWmodel (right panel) as parametrization of the DAs. Bla
k solid 
urve: total
orre
tions; red dotted 
urve: 1γ×γZ-
ontribution; green dashed 
urve: Z×2γ-
ontribution; blue dashed-dotted 
urve: 1γ × 2γ-
ontribution.
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5.3 Con
lusionswhere the ele
tromagneti
 strangeness form fa
tors have been negle
ted. The form fa
tors
Gn

E,M of the neutron have been parametrized using the ansatz of Ref. [108℄. The axial formfa
tor is expressed by a dipole �t [84℄:
GA(Q

2) =
gA(

1 + Q2

m2
A

)2 , (5.49)with gA = 1.27 and the axial mass mA = 1.026 GeV.In Fig. 5.4 the results of the total TBE 
orre
tions to the asymmetry arising from γZ-ex
hange as well as 2γ-ex
hange, de�ned by
APV = APV

Born

(
1 + δ

)
, (5.50)are shown as a fun
tion of ε for three sele
ted values of momentum transfer, Q2 = 2, 3.3,and 9 GeV2. The plots in the left and right 
olumns 
orrespond to the COZ and BLWmodels, respe
tively, whi
h have been used for parametrizing the DAs. The total 
orre
tions,illustrated by the bla
k 
urves, are of order of 1% in maximum, where the TBE e�e
ts withinthe COZ model are about twi
e as large as when using the BLW des
ription. The TBE e�e
tsare de
reasing for in
reasing Q2. For higher momentum transfer, the dependen
e of the TBE
orre
tions on Q2 is found to be small.In addition to the total 
orre
tions, the 
ontribution to APV from di�erent pairs of dia-grams are shown in Fig. 5.4. The largest 
orre
tions result from the interferen
e between 1γ-and 2γ-ex
hange (1γ × 2γ), entering in the denominator of the asymmetry, whi
h is shownby the blue 
urve. The e�e
ts of the 1γ- and γZ-interferen
e (1γ × γZ) and Z- and 2γ-interferen
e (Z × 2γ) are somewhat smaller 
ompared to the 1γ × 2γ 
ontribution and havethe opposite sign over a wide ε range. Therefore the 
orre
tions partially 
an
el ea
h other,giving rise to small TBE e�e
ts in total.These results are similar to the �ndings of the hadroni
 
al
ulation and the GPD based
al
ulations, presented in Refs. [99�101℄. Even though the Z × 2γ 
ontribution 
al
ulatedwithin the hadroni
 model di�ers in sign, the results show similar ε dependen
ies as well as
omparable total 
orre
tions [101℄. However, the total TBE 
orre
tions obtained within theGPD 
al
ulation in Ref. [100℄ are slightly larger, leading to e�e
ts of ∼ 0.5 − 2.5 % for the
onsidered kinemati
al range.5.3 Con
lusionsIn this 
hapter the two-boson ex
hange 
orre
tions to parity-violating elasti
 ep-s
atteringhave been studied within a perturbative QCD fa
torization approa
h, whi
h are of parti
ularinterest with regard to high-pre
ision measurements of PV asymmetries. Using two di�erentparametrizations of the proton DAs, the TBE 
orre
tions are found to be of the order of 1%or less. The 
ontributions arising from the di�erent types of diagrams are at the few per
entlevel, but have opposite sign. Therefore, the 
orre
tions partially 
an
el ea
h other, givingrise to small total e�e
ts.
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Chapter 6Nu
leon Form Fa
tors in the Unphysi
alRegionThe ele
tromagneti
 form fa
tors of the nu
leon have been studied extensively in the spa
elikeregion by means of elasti
 ele
tron-proton s
attering, and forth
oming experiments 
laim tomeasure the timelike form fa
tors with high a

ura
y in the annihilation rea
tions p p̄ →
e+ e− and e+ e− → p p̄. But the region of momentum transfer, whi
h is rea
hable, is exa
tlybound by the invariant mass of the nu
leon pair, whi
h requires a momentum transfer ofat least q2thr = 4m2

N . The timelike region below the two nu
leon threshold, 0 < q2 < 4m2
N ,whi
h is denoted as the unphysi
al region, is not a

essible by the aforementioned annihilationpro
esses.However, due to the 
orrelation of the spa
elike and timelike regions, the knowledge of theform fa
tors in the unphysi
al region would be an important help towards �nding a 
omple-mentary pi
ture of the nu
leon ele
tromagneti
 stru
ture. The spa
elike and timelike regionsare 
onne
ted through dispersion relations, whi
h o�er a model-independent framework tostudy the ele
tromagneti
 form fa
tors of the nu
leons simultaneously in both regions. Sin
eseveral models predi
t a form fa
tor behavior, whi
h is dominated by large 
ontributionsof ve
tor mesons in the below threshold region, an investigation of the form fa
tors in theunphysi
al region provides the opportunity to test and 
onstrain su
h models. The datawould be of parti
ular interest in order to improve form fa
tor approa
hes, whi
h allow to
onne
t the spa
elike and timelike form fa
tors.Therefore, in Refs. [45, 109℄ the annihilation pro
ess, where in addition a neutral pion isprodu
ed,

p+ p̄ → π0 + e+ + e−, (6.1)has been studied. Sin
e the outgoing pion takes a part of the energy of the rea
tion, theprodu
tion of a lepton pair with an invariant mass below the (p + p̄)-annihilation thresholdis possible and thus this rea
tion 
an be used to study the ele
tromagneti
 form fa
tors inthe unphysi
al region. Moreover, this rea
tion o�ers the possibility to a

ess the relativephases of GE and GM . An investigation of the dis
ussed pro
ess is proposed for the PANDAexperiment at FAIR. Feasibility studies for a measurement at PANDA have been performedin Ref. [110℄. However, a study of the timelike form fa
tors from the p p̄ → π0e+e− pro
essrequires a model in order to deal with the unknown hadroni
 intera
tion.In this 
hapter, the pro
ess p p̄ → π0e+e− is analyzed as a means to provide 
onstraintson timelike nu
leon form fa
tors. In order to 
al
ulate the unknown hadroni
 rea
tion pp̄→
π0γ∗, an approa
h inspired by Regge theory is used. To 
he
k the 
onsisten
y of this Reggepole model, we �rst test the approa
h on the pro
ess of real photon produ
tion, p p̄→ π0γ,where data of the angular distribution of the 
ross se
tion exist. Subsequently, the Reggepole model is applied to the pro
ess p p̄→ π0e+e−. 95
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al Region
p̄ π0

γ∗
e+

e−

p

Figure 6.1: Sket
h of the pro
ess p p̄→ π0e+e−6.1 Probing Nu
leon Form Fa
tors in the Unphysi
al Region6.1.1 Timelike Pion Ele
troprodu
tionAs dis
ussed in Ref. [45℄, the rea
tion
p̄(p1, λN1

) + p(p2, λN2
) → π0(qπ) + γ∗(q, λγ)

→ π0(qπ) + e−(k1, h1) + e+(k2, h2),
(6.2)where the lepton pair is produ
ed from a photon with momentum q, as shown in Fig. 6.1,allows for studying the unphysi
al region q2 < q2thr = 4m2

N . We will refer to this pro
ess astimelike pion ele
troprodu
tion.The momenta of the p p̄→ π0γ∗ rea
tion 
an be 
ombined to the Mandelstam variables,
s = (p1 + p2)

2 = (qπ + q)2,

u = (p2 − qπ)2 = (p1 − q)2,

t = (p1 − qπ)2 = (p2 − q)2,

(6.3)whi
h satisfy the relation
s+ t+ u = 2m2

N +m2
π + q2, (6.4)where mπ is the pion mass and q2 is the virtuality of the photon.The amplitude of the pro
ess 
onsists of the leptoni
 and the hadroni
 part, 
onne
ted bythe photon propagator

Aγ∗ = Lν
(−gµν

q2

)
Mµ

γ∗ . (6.5)The hadroni
 amplitude Mµ
γ∗ 
hara
terizes the pro
ess pp̄ → π0γ∗ and the leptoni
 
ontri-bution Lν des
ribes the lepton pair produ
tion γ∗ → e+e−,

Lν = −e ūl(k1) γν vl(k2), (6.6)whi
h is 
al
ulable using QED. On the 
ontrary, for the investigation of the hadroni
 sub-pro
ess a model des
ription is needed in order to deal with the unknown interplay of theparti
ipating hadrons.96
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γ∗

p̄

p

ΓγNN

ΓπNN

(u− channel)
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π0

e−

e+

π0
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ΓγNN
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(t− channel)

N

Figure 6.2: Born diagram model for p p̄→ π0e+e− des
ribed by a single nu
leon ex
hange inthe u-
hannel and t-
hannel Feynman diagrams.In Ref. [109℄, the pro
ess p p̄ → π0e+e has been studied within a Born diagram model,in whi
h the intera
tion of the hadroni
 part results from the ex
hange of a single nu
leon.The two 
orresponding Feynman diagrams, whi
h are shown in Fig. 6.2, are given by a u-
hannel and t-
hannel nu
leon ex
hange. Another analysis of the rea
tion has been performedwithin a fa
torization approa
h, using the 
on
ept of the transition distribution amplitudes[111, 112℄. This approa
h is appli
able in the kinemati
 range of larger momentum transfer
s at forward and ba
kward kinemati
s, where a lepton pair with high invariant mass isprodu
ed. Thus this model does not 
over the region of interest, where the invariant massof the produ
ed lepton pair is below the produ
tion threshold q2thr. Consequently, in thefollowing we will examine the Born diagram model in more detail.The amplitudes of the diagrams des
ribing the nu
leon ex
hange 
an be written as

Aγ∗,u =− 1

q2
LµMµ

π0γ∗, u

=− 1

q2
Lµ N̄(p1) Γ

µ
γNN (q)

(
γ · (p2 − qπ) +mN

u−m2
N

)
ΓπNN (qπ)N(p2),

Aγ∗,t =−
1

q2
LµMµ

π0γ∗, t

=− 1

q2
Lµ · N̄(p1) ΓπNN (qπ)

(
γ · (qπ − p1) +mN

t−m2
N

)
Γµ
γNN (q)N(p2),with Mµ

γ∗ =Mµ
π0γ∗, u

+Mµ
π0γ∗, t

,

(6.7)
where the subs
ripts u and t of Aγ∗ refer to the amplitude with u-
hannel and t-
hannelnu
leon ex
hange, respe
tively, and N̄(p1) (N(p2)) 
orresponds to the Dira
 spinor of theantiproton (proton). The stru
tures Γµ

γNN and ΓπNN are the parametrization of the γ∗NNand πNN verti
es, as indi
ated in Fig. 6.2.Within this approa
h, o�-shell e�e
ts of the ex
hanged nu
leons have been negle
ted, hen
ethe γ∗NN verti
es are parametrized by the on-shell proton ele
tromagneti
 form fa
tors, in97



Chapter 6 Nu
leon Form Fa
tors in the Unphysi
al Regionterms of the Dira
 and Pauli form fa
tors F1 and F2 given by
Γµ
γNN (q) = e

[
F1(q

2)γµ − i

2mN
F2(q

2)σµνqν

]
. (6.8)To des
ribe the πNN vertex both 
ases of pseudos
alar as well as pseudove
tor πNN
oupling are taken into a

ount:

ΓπNN (qπ) = gπNN (m2
π)
(
λγ5 + (1− λ)qπ · γ

2m
γ5

)
, (6.9)where λ = 1 (λ = 0) leads to a vertex with a purely pseudos
alar (pseudove
tor) 
oupling,with the pion-nu
leon 
onstant gπNN (m2

π).It is important to take both t-
hannel and u-
hannel nu
leon ex
hange into a

ount in orderto 
onstru
t a model, whi
h satis�es the ele
tromagneti
 gauge invarian
e. The amplitudes
Mµ

π0γ∗, u
andMµ

π0γ∗, t
themselves are not gauge invariant, but sin
e

qµMµ
π0γ∗, u

= e gπNN (m2
π) N̄(p1)F1(q

2)
(
−mN + /p2 − q/π)(/p2 − q/π +mN

u−m2
N

)

×
(
λγ5 + (1− λ)γ · qπ

2mN
γ5

)
N(p2)

= e gπNN (m2
π)F1(q

2) N̄(p1)

(
λγ5 + (1− λ)γ · qπ

2mN
γ5

)
N(p2),

qµMµ
π0γ∗, t

=e gπNN (m2
π) N̄(p1)

(
λγ5 + (1− λ)γ · qπ

2mN
γ5

)(
q/π − /p1 +mN

t−m2
N

)

× F1(q
2)
( /p1 − q/π +mN

)
N(p2)

= − e gπNN (m2
π)F1(q

2) N̄(p1)

(
λγ5 + (1− λ)γ · qπ

2mN
γ5

)
N(p2),

(6.10)
it follows

qµMµ
γ∗ = qµ

(
Mµ

π0γ∗, u
+Mµ

π0γ∗, t

)
= 0. (6.11)Nevertheless, it should be kept in mind, that the dis
ussed approa
h implies that thepro
ess 
an be approximately des
ribed by the ex
hange of a single nu
leon in the u- and

t-
hannel, whi
h is treated to be on-shell. When making su
h assumptions, the question ofthe validity of su
h a model arises, 
alling for the possibility to test the 
onsidered approa
h.6.1.2 Real Photoprodu
tionSin
e at present no data of the pro
ess of timelike pion ele
troprodu
tion (Eq. (6.2)) exist,we study the rea
tion of real photoprodu
tion,
p̄(p1) + p(p2)→ π0(qπ) + γ(q), (6.12)whi
h has been measured at Fermi National A

elerator Laboratory (Fermilab) [113℄, andwe test the predi
tions of the Born diagram model with the results of this experiment. Data98



6.1 Probing Nu
leon Form Fa
tors in the Unphysi
al Region
γ

γ

π0

π0

p̄

p

p̄

p

N N qπ − p1p2 − qπ

ΓγNN (q2 = 0)

ΓγNN (q2 = 0)ΓπNN

ΓπNNFigure 6.3: Born diagram model for p p̄→ π0 γof the angular dependen
e of the di�erential 
ross se
tion dσ/d cos θπ, where θπ is the 
.m.s
attering angle of the pion, is available in the 
.m. energy range of
2.911GeV ≤ √s ≤ 3.686GeV, (6.13)
overing an angular region of approximately −0.6 ≤ cos θπ ≤ 0.6.The unpolarized 
ross se
tion has the following form

dσ =
1

4
√

(p1 · p2)2 −m4
N

(
d3~qπ

(2π)32Eπ

)(
d3~q

(2π)32q0

)

× (2π)4δ(4)
(
p1 + p2 − qπ − q

) 1
4

∑

λNi
,λγ

|Aγ |2,
(6.14)where the subs
ript γ of the amplitude Aγ refers of the pro
ess of real photoprodu
tion.The u- and t-
hannel amplitudes within the Born diagram model, as seen in Fig. 6.3, areobtained as

Aγ, u = ε∗µ ·Mµ
π0γ, u

= ε∗µ(q, λγ) · N̄(p1) Γ
µ
γNN (q2 = 0)

(
γ · (p2 − qπ) +mN

u−m2
N

)
ΓπNN (qπ)N(p2),

Aγ, t = ε∗µ ·Mµ
π0γ, t

= ε∗µ(q, λγ) · N̄(p1) ΓπNN (qπ)

(
γ · (qπ − p1) +mN

t−m2
N

)
Γµ
γNN (q2 = 0)N(p2),

(6.15)
where εµ(q, λγ) is the photon polarization ve
tor. For real photons, one has two polarizationstates, λγ = ±1, with qµ εµ(q, λγ) = 0. In the des
ription of Γµ

γNN in Eq. (6.15) the formfa
tors
F1(q

2 = 0) = 1, F2(q
2 = 0) = κp = 1.79 (6.16)have been used.For the spin-averaged squared matrix element one �nds

1

4

∑

λNi
,λγ

∣∣Aγ

∣∣2 = 1

4

∑

λNi
,λγ

∣∣∣ε∗µ
(
Mµ

π0γ, u
+Mµ

π0γ, t

) ∣∣∣
2
. (6.17)99



Chapter 6 Nu
leon Form Fa
tors in the Unphysi
al RegionThe pro
ess has been evaluated in the 
.m. frame of the (p̄p)-pair, in whi
h the momentumof the antiproton has been 
hosen as the z-dire
tion and the pro
ess takes pla
e in the x-zplane. The nu
leon momenta are given by
p1 =

√
s

2

(
1, 0, 0,

√
s− 4m2

N

s

)
, p2 =

√
s

2

(
1, 0, 0,−

√
s− 4m2

N

s

)
, (6.18)and the momenta of the mesons are

q =
(
q0, ~q

)
=
(
q0, |~q | sin θγ , 0, |~q | cos θγ

)
,

qπ =
(
Eπ,−~q

)
,

(6.19)with the photon and pion energies
q0 =

s−m2
π

2
√
s
, Eπ =

s+m2
π

2
√
s
. (6.20)The unpolarized di�erential 
ross se
tion is given by

dσ

d cos θγ
=

1

16π s
√
s− 4m2

N

|~q | 1
4

∑

λNi

(−gµν)
∣∣Mµ

π0γ, u
+Mµ

π0γ, t

∣∣2. (6.21)Using the Born diagram model for p p̄ → π0γ, we are not able to reprodu
e the resultsobtained in the E760 experiment at Fermilab. The 
ross se
tion dσ/d cos θπ found withinthe Born diagram model is about 4 to 5 orders of magnitude larger then the data, dependingon the value of the 
.m. energy √s. Simple �xes by introdu
ing strong suppressions througho�-shell form fa
tors do not lead to a 
orre
t energy dependen
e of the 
ross se
tions.For this reason, one 
an assume, that the Born diagram model is not suitable to des
ribethis pro
ess and thus the pro
ess p p̄→ π0e+e− as well. Therefore, we 
onsider an alternativemodel, whi
h is inspired by Regge theory. Within this model, the ex
hange of a 
lass ofparti
les with same internal quantum numbers is taken into a

ount, instead of a singleparti
le ex
hange as in the Born diagram model.6.2 Regge TheoryBefore the advent of QCD as theory of the strong intera
tion, Regge theory was been es-tablished as an approa
h to des
ribe hadroni
 rea
tions at high 
.m. energies at forwardand ba
kward s
attering angles. It is based on the idea of an analyti
al 
ontinuation of thes
attering amplitude in the 
omplex angular momentum plane [114℄.S
attering pro
esses have been analyzed by taking spe
i�
 properties of the S-matrix intoa

ount. The S-matrix, whi
h des
ribes the transition of an initial parti
le state ∣∣a〉 to a�nal state ∣∣b〉, is given by
Sab =

〈
a
∣∣S
∣∣b
〉
= δab + i(2π)4 δ

(
∑

a

pa −
∑

b

pb

)
Aab, (6.22)
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6.2 Regge Theorywhere Aab is the s
attering amplitude. In the 
ase of a 2→ 2 parti
le s
attering pro
ess, A
an be expressed as fun
tion of the invariant Mandelstam variables s and t: A(s, t). Crossingsymmetry 
orrelates the amplitudes of s-, t-, and u-
hannel ex
hange, whi
h are des
ribedby the same fun
tion A for a di�erent parameter spa
e of the Mandelstam variables. Besidesusing unitarity of the S-matrix, S S† = 1, Regge theory postulates, that the S-matrix 
anbe analyti
ally 
ontinuated in the 
omplex angular momentum plane, having only isolatedsingularities.A detailed dis
ussion of Regge theory 
an be found in Ref. [115℄. Only the basi
 prin
iplesare outlined here.A 2 → 2 parti
le s
attering pro
ess is studied in the so-
alled Regge limit, where themomentum transfer s is large and s≫ |t| (or equivalently s≫ |u| ). For simpli
ity, we �rst
onsider a rea
tion where the four external parti
les have equal masses and do not 
arryinternal spin. The partial wave series of the amplitude in the t-
hannel is given by
A(s, t) =

∑

l

(2l + 1)Al(t)Pl(cos θt),with Al(t) =
1

2

∫ 1

−1
dcos θ Pl(cos θt)A(s, t)and cos θt = 1 +
2s

t− 4m2
,

(6.23)
where l is the angular momentum and Pl are Legendre polynomials.The partial wave series 
an be rewritten as a 
ontour integral in the 
omplex angular-momentum plane, where the 
ontour C1 surrounds the positive real-axis,

A(s, t) = − 1

2i

∮

C1

dl (2l + 1)
A(l, t)

sinπl
Pl(− cos θt), (6.24)whi
h is known as Sommerfeld-Watson transformation. A(l, t) is the analyti
 
ontinuationfor 
omplex values of l, whi
h mat
hes Al(t), if l rea
hes an integer value:

A(l, t) = Al(t) for l = 0, 1, 2, ... . (6.25)Using Cau
hy's integral theorem, the residues of the integrand at the integer values l = nwith sin(nπ) → (−1)n(l − n)π give rise to Eq. (6.23).The 
ontour C1 
an be deformed to another 
ontour, as presented by the dashed 
urves inFig. (6.4), given by C along Re(l) = −1/2 and the semi-
ir
le, whi
h is extended to in�nity,where the singularities αi in the 
omplex l-plane have to be in
luded. To ensure that theintegration over the semi-
ir
le vanishes at in�nity, A(l, t) has to 
onverge for l → ∞. Toguarantee the 
onvergen
e, one has to separate the even and odd partial waves, su
h that
A+(l, t) = Al(t) for l = 0, 2, 4, ... ,

A−(l, t) = Al(t) for l = 1, 3, 5... ,
(6.26)where A± are the analyti
 
ontinuations of the even and odd partial wave amplitudes, re-spe
tively. On this a

ount, the signature S = ±1 has to be introdu
ed, where S = +1(S = −1) 
orresponds to even (odd) partial waves. 101



Chapter 6 Nu
leon Form Fa
tors in the Unphysi
al Region
Re(l)

Im(l)
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C
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Figure 6.4: Integration 
ontours C1 and C in the 
omplex angular momentum plane as wellas the Regge pole indi
ated by l = αi(t).The integration 
an be performed by taking the singularities of AS(l, t) in the angularmomentum plane, l = αS
i (t), into a

ount by adding up their residues βSi (t), whi
h leads to

AS(s, t) =
1

2i

∫

C
dl (2l + 1)

S + e−iπ αS
i (t)

2
AS(l, t)Pl(− cos θt)

− π
∑

i

(2αS
i (t) + 1)

S + e−iπ αS
i (t)

2

βSi (t)

sin
(
παS

i (t)
)PαS

i (t)
(− cos θ),

(6.27)where the latter term on the r.h.s. of Eq. (6.27) is denoted as a Regge pole. The expressions
(S+e−iπ αS

i (t))/2 are the signature fa
tors giving rise to the separated partial wave amplitudes
A±. In the high energy Regge limit, the dominant 
ontribution to the amplitude results fromthe pole term. The 
ontour integral over C along the imaginary axis has a s− 1

2 dependen
eand 
an be negle
ted for s → ∞. Hen
e the amplitude redu
es to the se
ond part given inEq. (6.27). Applying the Regge limit to Eq. (6.27), one �nds that the leading 
ontributionto A 
an be written as
AS(s, t) ∝

∑

i

S + e−iπαS
i (t)

2

βSi (t)

Γ[αS
i (t) + 1] sin

(
παS

i (t)
)
(
s

s0

)αS
i (t)

, (6.28)where the s
aling fa
tor s0 is 
onventionally 
hosen to be s0 = 1 GeV2. The Gamma fun
tionsuppresses poles in the unphysi
al (negative) angular momentum region.For pro
esses involving parti
les with spin 1/2, su
h as annihilation of two baryons into ameson pair, whi
h are relevant for the pro
esses studied in this 
hapter, the Regge amplitudeis given by [116℄:
AS ∝

∑

i

1

Γ
[
αS
i (t) +

1
2

] S + e−iπ(αS
i (t)+

1

2)

2

1

sinπ
(
αS
i (t) +

1
2

)
(
s

s0

)αS
i (t)−

1
2

. (6.29)
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6.2 Regge TheoryThe appropriate expression for the Regge amplitude 
orresponding to u-
hannel ex
hange
an be found in an analogous manner in the Regge limit with s≫ |u|.In the limit l → αi(t), the Regge pole redu
es to the Feynman pole, des
ribing a singleparti
le ex
hange:
A(s, t) l → αi(t)−−−−−−→ βi(t)

t−m2
i

, (6.30)where 1/(t − m2
i ) represents the Feynman pole. The residue βi 
an be determined fromthe vertex stru
ture of the single parti
le ex
hange amplitude. When su
h a Regge poleo

urs through an integer value of the angular momentum l, it 
orresponds to a parti
le (ora resonan
e). For a t-
hannel pro
ess, one expe
ts to have poles whi
h are asso
iated withthe ex
hange of a parti
le with mass mi and spin ji as

αi(t = m2
i ) = ji. (6.31)It is possible to group the parti
les and resonan
es with same internal quantum numbers, butdi�erent spin, into families, whi
h lie on a given Regge traje
tory α. Phenomenologi
ally, ithas been found that the Regge traje
tories 
an be parametrized through a straight line:

αi(t) = αi(0) + α′
i(t−m2

i ), (6.32)where α(0) is the spin and mi is the mass of the �rst materialization of the traje
tory. Su
hRegge traje
tories are named after the lowest-lying parti
le of αi(t).This pro
edure allows for 
onverting amplitudes des
ribing the ex
hange of a single parti-
le, whi
h is the �rst materialization of a Regge traje
tory, to Regge amplitudes of a giventraje
tory. These so-
alled reggeization is 
arried out by repla
ing a usual Feynman propa-gator through a Regge propagator, e.g. for baryon ex
hange as
1

t−m2
i

−→ DRegge
i (t, s) =

sαi(t)−
1
2

Γ
[
αi(t) +

1
2

] S + e−iπ(αi(t)+
1
2)

2

πα′
i

sinπ
(
αi(t) +

1
2

) , (6.33)whi
h 
orresponds to an e�e
tive summing up of higher-spin parti
les lying on the 
orre-sponding Regge traje
tory.Phenomenologi
ally, it has been found that traje
tories often satisfy the so-
alled weakdegenera
y, whi
h means, that both even- and odd-partial wave traje
tories are equal:
α+(t) = α−(t). In addition, the 
ondition of the strong degenera
y implies, that bothvertex fun
tions of the pro
ess are the same. As a 
onsequen
e, the 
orresponding ampli-tude of a traje
tory ful�lling the strong degenera
y is 
hara
terized by the traje
tory α+with the residue β+. Su
h a degenerate traje
tory 
an be obtained by adding or subtra
tingthe traje
tories of di�erent signatures,

β(t)

(
S + e−iπ(αi(t)+

1
2)

2
+
±S + e−iπ(αi(t)+

1
2)

2

)
= β(t)

{
e−iπ(αi(t)+

1
2).

1.
(6.34)This leads to a degenerate traje
tory, whi
h has either a rotating or a 
onstant phase. Inthis work we assume strong degenera
y of the baryon traje
tories. 103
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Figure 6.5: Traje
tories α(t) of the nu
leon (blue solid 
urve) and the ∆(1232) resonan
e(green dashed 
urve). The data points 
orrespond to the parti
le positions in the
m2-spin-plane.In Fig. 6.5 the traje
tories of the nu
leon and ∆ resonan
e are shown, whi
h 
an approx-imately be expressed through

αN (t) =
1

2
+ 0.97GeV−2

(
t−m2

N

)
,

α∆(t) =
3

2
+ 0.9 GeV−2

(
t−m2

∆

)
,

(6.35)whi
h 
orrespond to the blue solid (αN ) and green dashed line (α∆) in Fig. 6.5. The pointsindi
ate the position of the parti
les in the mass-spin plane.Using the expression of the Regge propagator in Eq. (6.33), the 
ross se
tion of a pro
ess,whi
h is dominated by a given Regge traje
tory, behaves as
dσ

dt
∝ 1

s2
|A(s, t)|2 ∝ F (t) s2α(t)−2. (6.36)If more than one traje
tory is involved, at su�
ient large values of s relative to a typi
alhadroni
 s
ale of 1 GeV2 (for given t), only the traje
tory with the largest value of α(t) willprovide a signi�
ant 
ontribution. Su
h traje
tories are denoted as leading traje
tories.6.3 Real Photoprodu
tion within a Regge FrameworkTo investigate the pp̄ → π0γ annihilation pro
ess a Regge pole des
ription is 
onsidered,whi
h is based on the ex
hange of leading baryon Regge traje
tories in the u-
hannel and t-
hannel. This approa
h allows to take the ex
hange of parti
les with higher spins and higher104



6.3 Real Photoprodu
tion within a Regge Frameworkmasses into a

ount, whi
h are expe
ted to 
ontribute signi�
antly at large momentumtransfer. Su
h a phenomenologi
al Regge pole approa
h has been su

essfully applied toele
troprodu
tion and photoprodu
tion of pions and kaons, see e.g. Refs. [117, 118℄. Inparti
ular, it has been widely applied in order to extra
t π+ and K+ ele
tromagneti
 formfa
tors from the π+ and K+ ele
troprodu
tion pro
ess [119, 120℄.The kinemati
 region of this approa
h, whi
h has been introdu
ed before as Regge limit,are the ranges of forward and ba
kward angles, s ≫ |t| and s ≫ |u|. In the kinemati
alregion s ∼ −t ∼ −u the rea
tion has been investigated within the framework of generalizeddistribution amplitudes in Ref. [81℄.The dominant traje
tories for the pro
ess p p̄ → π0γ are the nu
leon (N) traje
tory and
∆ traje
tory asso
iated with the ∆(1232) resonan
e [115℄. The amplitude for Regge tra-je
tory ex
hange 
an be obtained from the Born diagram by repla
ing the usual Feynmanpropagator of the single ex
hanged parti
le by the Regge propagator, while leaving the Feyn-man stru
ture, giving rise to the residue of the Regge pole, un
hanged. We assume, thatthe traje
tories are degenerate, whi
h leads to a smooth behavior of the 
ross se
tion [115℄.Non-degenerate traje
tories would manifest themselves in dips appearing in the 
ross se
tion.Sin
e the data do not show any dips in the measured range, su
h an assumption seems tobe reasonable.In 
ase of an ex
hanged nu
leon, the pole-like Feynman propagators of the u-
hannel and
t-
hannel, given by 1/(u −m2

N ) and 1/(t−m2
N ), are repla
ed in the following way

1

u−m2
N

⇒ DRegge
N (u, s) =

sαN (u)− 1
2

Γ
[
αN (u) + 1

2

] πα′
N

e−iπ(αN (u)+ 1

2)

sinπ
(
αN (u) + 1

2

) ,

1

t−m2
N

⇒ DRegge
N (t , s) =

sαN (t)− 1
2

Γ
[
αN (t) + 1

2

] πα′
N

e−iπ(αN (t) + 1
2)

sinπ
(
αN (t) + 1

2

) ,

(6.37)where the nu
leon traje
tory αN is of the form
αN (u) =

1

2
+ α′

N

(
u−m2

N

)
, αN (t) =

1

2
+ α′

N

(
t−m2

N

)
, (6.38)with α′

N = 0.97 GeV−2.Analogously to the �ndings of photoprodu
tion and ele
troprodu
tion of pions at high en-ergies within a Regge pole model [117,118℄, we 
onsider a πNN 
oupling of the pseudos
alartype, as
ΓπNN (qπ) = gπNN (m2

π)γ5, (6.39)where gπNN (m2
π) is the pion-nu
leon 
oupling 
onstant.Besides in
luding the nu
leon Regge propagators, the ex
hange of the ∆ traje
tory is takeninto a

ount. Starting from the Feynman diagrams in a Born model with a single ∆(1232)resonan
e ex
hange, as illustrated in Fig. 6.6, the amplitudes of the u- and t-
hannel pro
ess
an be expressed by

A∆
γ = ε∗µ ·

(
M∆, µ

π0γ,u
+M∆, µ

π0γ,t

) (6.40)105
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∆ ∆ pt = qπ − p1pu = p2 − qπ

ΓγN∆ (q2 = 0)

ΓγN∆ (q2 = 0)ΓπN∆

ΓπN∆Figure 6.6: Born model for p+ p̄→ π0 + γ des
ribed by the ex
hange of ∆(1232).with
M∆, µ

π0γ,u
=v̄(p1) Γ

α
γN∆

−i
u−m2

∆

(γ · pu +m∆)

×
{
gαβ −

1

3
γαγβ −

γαpu,β − γβpu,α
3m∆

− 2pu,α pu,β
3m2

∆

}
Γβ
Nγ∆u(p2),

M∆, µ
π0γ,t

=v̄(p1) Γ
α
πN∆

−i
t−m2

∆

(γ · pt +m∆)

×
{
gαβ −

1

3
γαγβ −

γαpt,β − γβpt,α
3m∆

− 2pt,α pt,β
3m2

∆

}
Γβ
Nγ∆u(p2),

(6.41)
with pu = p2− qπ, and pt = qπ − p1 and the mass of the ∆ resonan
e m∆ = 1.232 GeV. Thestru
tures ΓγN∆ and ΓπN∆ are des
ribing the γN∆ verti
es and πN∆ verti
es, respe
tively.The ΓπN∆ vertex 
an be parametrized as follows [121℄:

Γα
γN∆(q) =i

√
2

3

3e(m∆ +mN )

2mN ((m∆ +mN )2 − q2)
{
gM (q2) εαµρσ p∆,ρ qσ

+ gE(q
2)
(
qαpµ∆ − q · p∆gαµ

)
iγ5 + gC(q

2)
(
qαqµ − q2gαµ

)
iγ5

}
,

(6.42)where p∆ is the 4-momentum of the intermediate ∆ state. In Eq. (6.42) the vertex dependson three ele
tromagneti
 form fa
tors, gM (q2), gE(q2) and gC(q2), representing the strengthof the magneti
 dipole, ele
tri
 quadrupole and Coulomb quadrupole N → ∆ transitions. Inthe 
al
ulation, the ele
tri
 and Coulomb quadrupole terms have been negle
ted sin
e their
ontributions have been found to be of the order of a few % [122℄. Therefore the γN∆ vertexdepends only on gM (q2), for whi
h gM (0) = 3.02 is used as γN∆ 
oupling strength. Bothamplitudes of Eq. (6.41) satisfy ele
tromagneti
 gauge invarian
e due to
qµ ε

αµρσ p∆,ρ qσ = 0. (6.43)The parametrization of the πN∆-vertex 
an be written as
Γα
πN∆(qπ) =−

hA
2fπm∆

γαµνqπ,µ p∆,ν T
†
a . (6.44)106



6.3 Real Photoprodu
tion within a Regge FrameworkThe operator T †
a is the isospin 1/2 → 3/2 transition operator, fπ denotes the pion de
ay
onstant and hA ≃ 2.85 is the πN∆ 
oupling 
onstant.The Feynman propagators in Eq. (6.41) are then repla
ed by the Regge propagators:

1

u−m2
∆

⇒ DRegge
∆ (u, s) =

sα∆(u)− 3
2

Γ
[
α∆(u) +

1
2

] πα′
∆

e−iπ(α∆(u)− 1

2)

sinπ
(
α∆(u)− 1

2

) ,

1

t−m2
∆

⇒ DRegge
∆ (t, s) =

sα∆(t)− 3

2

Γ
[
α∆(t) + 1

2

] πα′
∆

e−iπ(α∆(t)− 1
2)

sinπ
(
α∆(t)− 1

2

) ,

(6.45)where the ∆ Regge traje
tory is of the form
α∆(u) =

3

2
+ α′

∆

(
u−m2

∆

)
, α∆(t) =

3

2
+ α′

∆

(
t−m2

∆

)
, (6.46)with α′

∆ = 0.9 GeV−2.The amplitude of the pro
ess reggeized in the following way, whi
h ensures gauge invarian
eof the Regge model amplitudes:
MN

π0γ,t = DRegge
N (t , s) (t −m2

N )
[
Mu +Mt

]
, (6.47)

MN
π0γ,u = DRegge

N (u, s) (u−m2
N )
[
Mu +Mt

]
, (6.48)and analogous expressions for the ∆-ex
hange diagrams. Contra
ting with the photon mo-mentum yields

qµ

(
MN

π0γ,t

)µ
= DRegge

N (t , s) (t −m2
N )
[
qµMµ

u + qµMµ
t

]
= 0,

qµ

(
MN

π0γ,u

)µ
= DRegge

N (u, s) (u−m2
N )
[
qµMµ

u + qµMµ
t

]
= 0.

(6.49)Note that the Regge approa
h implies s≫ |t|, s≫ |u|, so that both forward and ba
kwardregions are kinemati
ally separated. In the kinemati
 region s ≫ |t| the Regge amplitudeof Eq. (6.47) is dominating, whereas in region of s ≫ |u| the u-
hannel Regge amplitude(Eq. (6.48)) is the dominant one. Only in these limits there is no double 
ounting in thispro
edure. In the intermediate angular region one is outside the range of the validity of aRegge approa
h.We next dis
uss the in
lusion of the ∆-ex
hange Regge traje
tories. As for the ∆ we arefurther away from the pole position than in the nu
leon 
ase, the des
ription of the residuesof the Regge poles through their on-shell 
ouplings 
an be expe
ted to be modi�ed. We allowfor su
h a redu
tion of the 
oupling strengths of the ∆ Regge pole residue, leading to theamplitude
AF

γ = ε∗µ ·
(
MN

π0γ + F ·M∆
π0γ

)
, (6.50)where the parameter F will be obtained by a �t to the data.In Fig. 6.7, results for dσ/d cos θπ for several 
.m. energies √s in
luding N traje
tory ex-
hange and (N+∆) traje
tories ex
hange are presented as well as results using the approa
hof Eq. (6.50) in 
omparison with the data taken at the Fermilab [113℄. Fitting the availabledata leads to F ≈ 0.5. One noti
es, that the angular dependen
e of the data in the forwardand ba
kward regions is well reprodu
ed. 107
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Figure 6.7: Di�erential 
ross se
tion dσ/d cos θπ of p p̄→ π0γ for di�erent 
.m. energies √s;blue (dotted) 
urve: N traje
tory 
ontribution; purple (solid) 
urve: 
ross se
tionin
luding (N + ∆) Regge traje
tory ex
hange; green (dashed) 
urve: (N + ∆)
ontribution in
luding a redu
tion of the ∆ pole residue (F ≈ 0.5) a

ording toEq. (6.50). The data are taken from Ref. [113℄.
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Figure 6.8: Di�erential 
ross se
tion dσ/d cos θπ of p p̄ → π0γ for di�erent 
.m. energies√
s in
luding nu
leon Regge traje
tory ex
hange in the t-
hannel and u-
hannel:the blue (solid) 
urve 
orresponds to a pseudos
alar 
oupling of the πNN vertex(given by Eq. (6.39)), the green (dashed) 
urve des
ribes a pseudove
tor 
oupling(given by Eq. (6.51)). The data are taken from Ref. [113℄.The Regge model in
luding N and ∆ traje
tory ex
hange des
ribes the available datavery well. When only a N traje
tory ex
hange is in
luded in the amplitude, presented bythe blue dotted 
urve in Fig. 6.7, the obtained 
ross se
tions lie somewhat below the datapoints, in parti
ular for larger values of momentum transfer s. The Regge pole model gives abetter des
ription of the data when taking both N and ∆ traje
tory ex
hange into a

ount,even though the 
al
ulation gives to some extent a larger 
ross se
tion than the results ofthe experiment. The 
ross se
tion in
luding the redu
tion fa
tor F of the ∆-pole residue isin very good agreement with the experiment, as one 
an see from the green dashed 
urve inFig. 6.7, espe
ially in the regions s≫ |t| and s≫ |u|.In addition to the parametrization of the πNN vertex in Eq. (6.39), we 
onsidered a πNN
oupling of the pseudove
tor type,

ΓπNN (qπ) = gπNN (m2
π)

q/π
2mN

γ5. (6.51)The results of the di�erential 
ross se
tion dσ/d cos θπ in
luding N traje
tory ex
hange areshown in Fig. 6.8 for several 
.m. energies √s using two di�erent pion-nu
leon 
ouplings,109
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-t [GeV2]Figure 6.9: Cross se
tion dσ/dt divided by s2α∆(t)−2 for the pro
ess p p̄→ π0γ as a fun
tionof −t for di�erent values of √s using the des
ription a

ording to Eq. (6.50);blue solid 
urve: √s = 3.686 GeV; green dashed 
urve: √s = 10 GeV; the data
orrespond to the 
ross se
tion measured at √s = 3.686 GeV [113℄.pseudos
alar, indi
ated by the blue solid 
urve, and pseudove
tor 
oupling, shown by thegreen dashed 
urve. As one 
an see in Fig. 6.8, one did not �nd a satisfa
tory des
ription ofthe data in the forward and ba
kward regions when a pseusove
tor type of the 
oupling isused.Sin
e Regge theory gives as asymptoti
 behavior of the 
ross se
tion
dσ

dt
∝ F (t) s2α(t)−2, for |t| ≪ s,and dσ

du
∝ F (u) s2α(u)−2, for |u| ≪ s,

(6.52)the 
ross se
tion dσ/dt, divided by the expe
ted s dependen
e of the leading Regge traje
toryis analyzed, in order to test the appli
ability of the model. At high energies the dominant
t dependen
e of the 
ross se
tion is expe
ted to arise rather from the sα(t) term than from
F (t).For small values of t or u the ∆ traje
tory is the dominant one, therefore we 
ompute the
ross se
tion divided by s2α∆(t)−2:

dσ/dt

s2α∆(t)−2
∝ F (t) for t→ 0. (6.53)The results are presented in Fig. 6.9, where the 
ross se
tion dσ/dt divided by s2α∆(t)−2 isgiven as a fun
tion of −t for two di�erent 
.m. energies. One noti
es, that for −t → 0 the
ross se
tion (dσ/dt)/s2α∆(t)−2 shows a behavior, whi
h is approximately independent of s,as expe
ted from Regge theory, and approa
hes a 
onstant value. The existing 
ross se
tiondata, as indi
ated by the data taken at √s = 3.686 GeV in Fig. 6.9, have not yet rea
hedthe region of su
h small values of −t, where an extrapolation of (dσ/dt)/s2α∆(t)−2 
ould beperformed by a 
onstant.110



6.4 Timelike Pion Photoprodu
tion within a Regge Framework6.4 Timelike Pion Photoprodu
tion within a Regge Framework6.4.1 General Analysis of the Annihilation Cross Se
tionAfter spe
ifying the Regge pole model, we study the pro
ess
p̄(p1, λN1

) + p(p2, λN2
) → π0(qπ) + γ∗(q, λγ)

→ π0(qπ) + e−(k1, h1) + e+(k2, h2),
(6.54)in the framework of one-photon ex
hange, starting with a model independent analysis of theannihilation 
ross se
tion, whi
h will be performed by taking properties of the ele
tromag-neti
 intera
tion into a

ount. The 5-fold di�erential 
ross se
tion for the pro
ess is de�nedas

dσ =
1

4
√

(p1 · p2)2 −m4
N

(
d3~qπ

(2π)3 2Eπ

)(
d3~k1

(2π)3 2k01

)(
d3~k2

(2π)3 2k02

)

× (2π)4 δ
(
p1 + p2 − qπ − k1 − k2

) 1
4

∑

λNi
,hi

|Aγ∗ |2,
(6.55)with the spin-averaged squared matrix element |Aγ∗ |2,

|Aγ∗ |2 = 1

4

∑

λNi
,hi

|Aγ∗ |2, (6.56)where the amplitude Aγ∗ has been introdu
ed in Eq. (6.5). In the analysis, the dependen
eon the pion variables as well as on the kinemati
 variables of the lepton pair are taken intoa

ount, whi
h is asso
iated with an experimental setup, where all three parti
les of the �nalstate are dete
ted.The squared amplitude |Aγ∗ |2 
an be de
omposed into a hadroni
 and a leptoni
 
ontri-bution:
|Aγ∗ |2 =

∑

λγ=0,±1

1

4

∑

λNi
,hi

∣∣∣
(
Mµ

γ∗ · ε∗µ(q, λγ)
) 1

q2

(
εν(q, λγ)ū(k1) eγ

ν v(k2)
)∣∣∣

2
,

=
1

q4

∑

λγ=0,±1

1

4

∑

λNi
,hi

∣∣∣Mµ
γ∗ · ε∗µ(q, λγ)

∣∣∣
2 ∣∣∣εν(q, λγ)Lν

∣∣∣
2
,

(6.57)where ε(q, λγ) is the polarization ve
tor of the virtual photon. Mµ
γ∗ is the amplitude ofthe hadroni
 pro
ess pp̄ → π0γ∗ and Lµ is the amplitude of the leptoni
 rea
tion. In theunpolarized 
ase it is given by:

∑

h1,h2

LµLν∗ = 4e2
(
kµ1 k

ν
2 + kν1 k

µ
2 −

1

2
k2gµν

)
, (6.58)whi
h is symmetri
 with respe
t to the inter
hange µ↔ ν. An expli
it form of the hadroni

ontribution is not given at this point of the analysis. The separation of the amplitude isindependent of any spe
i�
 form of the hadroni
 intera
tion. 111
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Φe+e−

θe+e−

θπ
p̄ p

π0

γ∗

e−

e+Figure 6.10: Kinemati
s of the p̄p→ π0e+e− pro
ess.Both 
ontributions of Eq. (6.57),
∣∣Mµ

γ∗ ε∗µ(q, λγ)
∣∣2 and ∣∣εν(q, λγ)ū(k1) eγν v(k2)

∣∣2, (6.59)are Lorentz invariants, thus one 
an 
hoose any referen
e frame for the 
al
ulation. Theadvantage of su
h a separation is, that one 
an easily 
al
ulate the hadroni
 and leptoni
pro
esses in two di�erent referen
e frames.The hadroni
 pro
ess, taking pla
e in the hadroni
 plane, whi
h is 
hosen to be the x-z-plane, is 
onsidered in the 
.m.-frame of the nu
leon pair, with the three-momentum of theantiproton pointing in the dire
tion of the z-axis. The hadron and meson momenta havebeen introdu
ed in Eq. (6.19). In the 
ase of a virtual photon, the photon and pion energiesare
q0 =

s−m2
π + q2

2
√
s

, Eπ =
s+m2

π − q2
2
√
s

. (6.60)The leptoni
 subpro
ess γ∗ → e+e− is 
omputed in the γ∗-rest frame, with the 4-momentumof the virtual photon given by
q =

(√
q2, 0, 0, 0

) (6.61)and where the lepton momenta 
an be written as
k1 =

√
q2

2

(
1, sin θe+e− cos Φe+e− , sin θe+e− sinΦe+e− , cos θe+e−

)
,

k2 =

√
q2

2

(
1,− sin θe+e− cos Φe+e− ,− sin θe+e− sinΦe+e− ,− cos θe+e−

)
.

(6.62)Therefore, the angles θe+e− and Φe+e− are 
hosen as two independent kinemati
 variablesdes
ribing the leptoni
 subpro
ess. The hadroni
 part of the amplitude depends on the 
.m.energy √s, the virtuality of the photon q2, and the Mandelstam variable t, whi
h give rise tothe pion s
attering angle θπ. The kinemati
s is illustrated in Fig. 6.10. Su
h a 
hoi
e of thereferen
e frames enables a simple identi�
ation of the allowed kinemati
al range in terms ofthe 5 variables.112



6.4.1 The p̄p→ π0e+e− Pro
ess within a Regge FrameworkThe integration over the phase spa
e 
an be performed using
1

(2π)5

(
d3~qπ
2Eπ

)(
d3~k1
2k01

)(
d3~k2
2k02

)
δ(4)
(
p1 + p2 − qπ − k1 − k2

)

=
1

(2π)5

(
d3~qπ
2Eπ

)(
d3~q

2q0

)
δ(4)
(
p1 + p2 − qπ − q

)
dq2
(
d3~k1
2k01

)(
d3~k2
2k02

)
δ(4)
(
q − k1 − k2

)
.(6.63)The leptoni
 part in the γ∗ rest frame is

(
d3~k1
2k01

)(
d3~k2
2k02

)
δ(4)
(
q − k1 − k2

)
=

1

8
dΩe+e− , (6.64)with the leptoni
 solid angle dΩe+e− . Evaluating the phase spa
e of the hadroni
 subpro
essin the 
.m. frame leads to

(
d3~qπ
2Eπ

)(
d3~q

2q0

)
δ(4)
(
p1 + p2 − qπ − q

)
dq2 =

1

4
√
s
|~q | dq2dΩγ , (6.65)where |~q | refers to the momentum of the virtual photon in the 
.m. frame. Finally, theexpression of the di�erential 
ross se
tion is re
eived as

dσ

dt dq2 dΩe+e−
=

1

(2π)464s(s − 4m2
N )
|Aγ∗ |2. (6.66)Using the de
omposition of the amplitude as presented in Eq. (6.57), the di�erential 
rossse
tion of the rea
tion 
an be expressed by

dσ

dt dq2 dΩe+e−
=

1

16π2s(s− 4m2
N )

e2

(4π)2 8 q2
4π

3
· W(θe+e− ,Φe+e−), (6.67)where W(θe+e− ,Φe+,e−) is the de
ay angular distribution of the e+e− pair, giving rise to theangular dependen
e of the lepton pair:

W(θe+e− ,Φe+e−) =
3

4π

[
sin2 θe+e−ρ00 + (1 + cos2 θe+e−)ρ11

+
√
2 sin 2θe+e− cos Φe+e−Re[ρ10] + sin2 θe+e− cos 2Φe+e−Re[ρ1−1]

]
.(6.68)The density matrix ρλλ′ is de�ned as

ρλλ′ =
(
Mµ

γ∗ ε∗µ(λγ)
)(
Mµ

γ∗ ε∗µ(λ
′
γ)
)∗
, for λγ , λ′γ = 0,±1. (6.69)The expression of W(θe+e− ,Φe+e−) in Eq. (6.68) is model independent, whi
h means thatit is not related to any parti
ular 
hoi
e of the hadroni
 intera
tion in the pro
ess. Alldependen
es on the lepton variables θe+e− and Φe+e− are fully 
ontained in the expressionof Eq. (6.68), whi
h is a fun
tion of four di�erent independent angular stru
tures, namely

1, cos2 θe+e− , sin 2θe+e− cos Φe+e− , sin2 θe+e− cos 2Φe+e− . (6.70)113



Chapter 6 Nu
leon Form Fa
tors in the Unphysi
al RegionHen
e, the density matrix elements 
an be determined using di�erent angular 
on�gurations.The dependen
e on the hadroni
 variables s, cos θ and q2 is 
ompletely absorbed in thedensity matrix elements ρ.Not all of the density matrix elements ρλλ′ are independent. From Eq. (6.69) one 
aneasily see, that the density matrix satis�es
ρλλ′ = ρ∗λ′ λ. (6.71)Furthermore, from parity 
onservation one �nds the 
onstraints

ρ−λ−λ′ =
(
− 1
)λγ−λ′

γ ρλλ′ . (6.72)6.4.2 Results within a Regge FrameworkIn the previous subse
tion the pro
ess has been analyzed in the most general way, with-out de�ning the expli
it form of the hadroni
 amplitude Mγ∗ . The expressions found inEqs. (6.68) and (6.67) are model independent. However, in order to obtain numeri
al resultsone has to use a model to 
hara
terize the hadroni
 subpro
ess. We 
hoose the Regge polemodel, whi
h has been used in Se
. 6.1.1 for investigating the pp̄→ π0γ pro
ess.Sin
e a virtual photon is produ
ed, one has to spe
ify the ele
tromagneti
 form fa
torsparametrizing the γ∗NN and γ∗N∆ verti
es. For the ele
tromagneti
 form fa
tors of thenu
leon a VMD model is used, given in [48℄, for the purpose of the 
omputation of the 
rossse
tion. Eventually, the aim of the present work is to provide a further 
onstraint on futureextra
tions of timelike nu
leon form fa
tors.For the magneti
 dipole form fa
tor of the N → ∆ transition, we use the results in thelarge Nc limit, whi
h 
an be written as [123℄:
gM (q2) =

gM (0)

κV

[
F p
2 (q

2)− Fn
2 (q

2)
]
, (6.73)where F p

2 (Fn
2 ) is the Pauli form fa
tor of the proton (neutron), for whi
h the des
ription ofthe VMD model will be used, and κV = κp − κn = 3.70.The results of the di�erential 
ross se
tion dσ/dt dq2 dΩe+e− as a fun
tion of cos θe+e− arepresented in Fig. 6.11 for several kinemati
al 
onditions. We display the N traje
tory 
ontri-butions, 
orresponding to the red 
urves, and (N+∆) traje
tory 
ontributions as introdu
edin Eq. (6.50), indi
ated by the blue 
urves, for the angles Φe+e− = 0 and Φe+e− = π. Thedependen
e on the angle Φe+e− appears as an asymmetri
 behavior of the 
ross se
tion withrespe
t to cos θe+e− . As virtuality of the photon q2 = 0.5 GeV2 and q2 = 1 GeV2 has been
hosen for the 
al
ulation.For Φe+e− = π/2, the resulting 
ross se
tion is symmetri
, whi
h 
an be derived from thegeneral form of the de
ay angular distribution W, given by Eq. (6.68). The only stru
tureof W being an odd fun
tion of cos θ, the fa
tor in front of ρ10, vanishes for Φe+e− = π/2.Using the Born diagram model suggested in Ref. [109℄, one obtains a 
ross se
tion, whi
his 1 to 4 orders of magnitude larger than the results of the Regge pole model, depending onthe variation of the kinemati
 parameters s, q2 and θπ.The integrated 
ross se
tions 
an be used to investigate the density matrix elements ρλ, λ′ .114
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Figure 6.11: Di�erential 
ross se
tion dσ/dt dq2 dΩe+e− of pp̄ → π0e+e− as a fun
tion of
cos θe+e− . Red 
urves 
orrespond to the N traje
tory 
ontribution; red solid
urve: Φe+e− = 0; red dashed 
urve: Φe+e− = π. Blue 
urves 
orrespond tothe (N +∆) traje
tory 
ontribution in
luding a redu
tion of the ∆ pole residue(F ≈ 0.5) a

ording to Eq. (6.50); blue solid 
urve: Φe+e− = 0; blue dashed
urve: Φe+e− = π.The 
ross se
tion integrated over the azimuthal angle Φe+e−

dσ

d cos θπ dq2 d cos θe+e−
=

∫ 2π

0
dΦe+e−

dσ

d cos θπ dq2 dΩe+e−

=
|~q | e2

(16)2 4π3 q2 s
√
s− 4m2

N

[
sin2 θe+e−ρ00 +

(
1 + cos2 θe+e−

)
ρ11

](6.74)is sensitive to ρ00 and ρ11 and the 
ross se
tion integrated over the polar angle θe+e−

dσ

d cos θπ dq2 dΦe+e−
=

∫ 1

−1
d cos θe+e−

dσ

d cos θπ dq2 dΩe+e−

=
|~q |e2

(16)2 π4 q2 s
√
s− 4m2

N

1

6

[
ρ00 + 2ρ11 + cos 2Φe+e−Re [ρ1−1]

] (6.75)
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Figure 6.12: Cross se
tions de�ned by Eq. (6.74) (left) and Eq. (6.75) (right) of pp̄→ π0e+e−as a fun
tion of cos θe+e− and Φe+e− , respe
tively: Red (dashed) 
urve: Ntraje
tory 
ontribution; blue (solid) (N +∆) traje
tory 
ontribution a

ordingto Eq. (6.50).
an be analyzed in order to obtain in addition information on ρ1−1 from the Φ dependen
eof the 
ross se
tion.The 
ross se
tion integrated over the full lepton phase spa
e is given by
dσ

d cos θπ dq2
=

∫
dΩe+e−

dσ

d cos θπ dq2 dΩe+e−

=
|~q |e2

(16)2 π3 q2 s
√
s− 4m2

N

1

3

[
ρ00 + 2ρ11

]
,

(6.76)depending on the density matrix elements ρ00 and ρ11.A

ordingly, an investigation of the di�erential 
ross se
tions dσ/dt dq2 dΩe+e− , as well asthe 
ross se
tions integrated over the azimuthal angle Φe+e− and the polar angle θe+e− , and
dσ/d cos θπdq

2 allows to a

ess all four density matrix elements ρλλ′ through a separation ofthe matrix elements from the angular dependen
ies of the 
ross se
tions.As sele
tive predi
tions, the results of the 
ross se
tions (6.74), and (6.75) for s = 5 GeV2,
q2 = 1 GeV2 and θπ = π/3 are shown in Fig. 6.12, using both N traje
tory and (N + ∆)traje
tory ex
hange given by Eq. (6.50). The 
ross se
tion integrated over the polar angle,shown in the left panel of Fig. 6.12, is symmetri
 with respe
t to cos θ, as one 
an inferfrom the general expression given in Eq. (6.74). The integrated 
ross se
tion of Eq. (6.75),presented in the right panel of Fig. 6.12, has a periodi
ity of π due to the cos 2Φe+e− stru
ture.The t dependen
e of the density matrix elements ρλλ′ is presented in Fig. 6.13 using a
(N + ∆) traje
tory ex
hange as introdu
ed in Eq. (6.50) for the region s ≫ |t|, whi
h isdominated by the t-
hannel Regge amplitude. The density matrix element ρ11, shown in theleft panel of Fig. 6.13, yields the dominant 
ontribution to the 
ross se
tion, sin
e it is aboutone order of magnitude larger 
ompared to the three other stru
tures, presented in the rightpanel of Fig. 6.13.An alternative 
al
ulation is the evaluation of the whole pro
ess in the γ∗ rest frame. In116
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Figure 6.13: Density matrix elements as fun
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tory ex
hange a

ordingto Eq. (6.50). Left panel: density matrix ρ11; Right panel: ρ00 (blue solid
urve), ρ10 (red dashed 
urve), ρ1−1 (green dotted 
urve).this referen
e rest frame the polarization ve
tors of the virtual photon are given by

ε
(
λγ = ±1

)
=

1√
2

(
0, ∓1, −i, 0

)
,

ε
(
λγ = 0

)
=
(
0, 0, 0, 1

)
.

(6.77)Using the short-hand notation of the hadroni
 matrix element
Mµν ≡ Mµ

γ∗

(
Mν

γ∗

)∗ (6.78)the squared matrix element in terms of the hadroni
 tensor 
an be found as
∣∣Aγ∗

∣∣2 =
∣∣∣Lµ

1

q2
Mµ

∣∣∣
2

=
2e2

q2
4π

3
W (θe+e− ,Φe+e−)

=
2e2

q2

[
M33 (1− cos θe+e−) +

(
M11 +M22

)(
1− 1

2
sin2 θ

)

− sin θe+e− cos θe+e− cos Φe+e−
(
M31 +M13

)

+
1

2
cos2 θe+e− cos 2Φe+e−(M11 +M22)

]
.

(6.79)
Integrating the angular de
ay distribution over the azimuthal angle and polar angle gives
∫ 2π

0

∣∣Aγ∗

∣∣2 dΦe+e− =
2e2

q2
4π

3

∫ 2π

0
W (θe+e− ,Φe+e−) dΦe+e−

= 2π
e2

q2

[ (
2M33 +M11 +M22

)
+ cos2 θe+e−

(
M11 +M33 − 2M33

)]
,117



Chapter 6 Nu
leon Form Fa
tors in the Unphysi
al Region
∫ 1

−1

∣∣Aγ∗

∣∣2 d cos θe+e− =
2e2

q2
4π

3

∫ 2π

0
W (θe+e− ,Φe+e−) d cos θe+e−

=
8

3

e2

q2

[
M33 +M11 +M22 − 1

2
cos 2Φe+e−

(
M11 −M22

)]
,

∫ ∣∣Aγ∗

∣∣2 dΩe+e− =
2e2

q2
4π

3

∫
W (θe+e− ,Φe+e−) dΩe+e−

=
16π

3

e2

q2
[
M33 +M11 +M22

]
,

(6.80)
whi
h is in agreement with the results presented in Ref. [110℄, where the analysis of therea
tion has been performed in the γ∗ rest frame. Su
h observables allow to a

ess di�erent
ombinations of the hadroni
 matrix elements.6.5 Con
lusionsIn this 
hapter the pro
ess pp̄ → π0e+e− has been studied, giving a model independentexpression of the 
ross se
tion in terms of the lepton pair angular distribution and presentingresults within a Regge pole approa
h. Su
h a model des
ription is appli
able for high-energypro
esses in the forward and ba
kward angular regions.It has been found that a model based on nu
leon and ∆ Regge traje
tory ex
hangesprovides a good des
ription of the data of the real photoprodu
tion pro
ess pp̄ → π0γ inthe energy range of s ≃ 8.5 − 14 GeV2. Applying this model to pp̄ → π0e+e− allows forpredi
tions of the angular dependen
e of the di�erential 
ross se
tion, whi
h 
an be used toextra
t the timelike form fa
tors in the unphysi
al region as well as their phases, in kinemati
swhi
h will be a

essible by the PANDA�FAIR experiment.The Regge approa
h 
an be extended to study polarization observables for pp̄→ π0e+e−and furthermore, to the analysis of other pro
esses, su
h as two-pion produ
tion, p p̄→ π0π0and p p̄→ π−π+, or the spa
elike rea
tion γ∗p→ π0p in the forward and ba
kward angularregime.
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Chapter 7Con
lusions and OutlookIn this thesis di�erent aspe
ts of probing the stru
ture of the nu
leon by means of theele
tromagneti
 intera
tion have been studied. The ele
tromagneti
 intera
tion o�ers a 
learprobe, whi
h provides a

ess to the ele
tromagneti
 form fa
tors, whi
h are one of the mostbasi
 observables regarding the 
omposite stru
ture of the nu
leon.The main fo
us of the thesis was on two-photon ex
hange 
orre
tions in form fa
tor mea-surements, whi
h are expe
ted to explain the dis
repan
y between the results of the formfa
tor ratio GE/GM found in unpolarized Rosenbluth measurements and polarization exper-iments of elasti
 ele
tron-proton s
attering. Understanding this dis
repan
y is of parti
ularimportan
e towards �nding a 
onsistent des
ription of the ele
tromagneti
 form fa
tors. Theappearan
e of the 
ontradi
ting form fa
tor results has triggered a new �eld studying thein�uen
e of two-photon ex
hange 
orre
tions in order to re
on
ile both experimental meth-ods.In this thesis a 
ombined analysis of high-pre
ision Rosenbluth data and polarizationobservables for elasti
 ele
tron-proton s
attering has been presented. The available 
rossse
tion data and the results of polarization measurements, both performed at similar valuesof momentum transfer, allows for an empiri
al determination of the two-photon amplitudes.Using the assumption that two-photon ex
hange is the sour
e of the dis
repan
y, the two-photon amplitudes have been found to be in the 2-3 % range. One amplitude (YM ) 
an bereliably extra
ted from the 
orre
tions to the unpolarized 
ross se
tion. Improving on theextra
tion of the other two amplitudes requires a further improvement in the pre
ision ofthe polarization experiments. The determination of the two-photon amplitudes allows for apredi
tion of the e+p/e−p 
ross se
tion ratio, for whi
h dedi
ated experiments are underway,giving rise to e�e
ts of several per
ent for the measured kinemati
al range of the experiments.Furthermore, 2γ-ex
hange in the 
orresponding 
rossed timelike annihilation pro
esses hasbeen studied. With regard to forth
oming high pre
ision measurements of the timelike formfa
tors, it is important to estimate su
h 
orre
tions. Two di�erent approa
hes have been usedin order to perform the 
al
ulation of the two-photon ex
hange 
ontribution to the timelikeannihilation pro
ess pp̄ → e+e−, both based on the 
on
ept of fa
torization. These studiesare the �rst 
al
ulations of timelike two-photon ex
hange 
orre
tions 
overing the region ofintermediate and larger momentum transfers, for whi
h the form fa
tor measurements willbe performed.The �rst method is based upon perturbative QCD fa
torization, allowing to fa
torizethe amplitude of the pro
ess into a non-perturbative part and a hard subpro
ess, in whi
hall three valen
e quarks of the nu
leon parti
ipate. The non-perturbative 
ontribution isrepresented by the Distribution Amplitudes of the proton and antiproton. Using di�erentparametrizations of the DAs, the 2γ-
orre
tions to the 
ross se
tion were found to be small,leading to e�e
ts of ∼ 1% at most. In the se
ond approa
h the 
on
ept of Generalized119



Chapter 7 Con
lusions and OutlookDistribution Amplitudes has been applied, whi
h are the timelike analogon of the GeneralizedParton Distributions. Within this model, the annihilation pro
ess takes pla
es only at asingle quark-antiquark pair in the hard part of the amplitude. The two-photon 
orre
tionsobtained within this approa
h are slightly larger, rea
hing values of ∼ 2% in maximum.However, the timelike 2γ-
orre
tions are smaller than those found for the spa
elike pro
ess,whi
h suggests that the impa
t of two-photon ex
hange is less important for the extra
tionof the form fa
tors in the timelike region. The small 2γ-ex
hange 
ontributions make it
hallenging to observe su
h e�e
ts in unpolarized 
ross se
tion measurements.Two-photon ex
hange in the rea
tion pp̄ → e+e− manifests itself in an odd 
ontribu-tion with respe
t to forward and ba
kward 
.m. s
attering angles, giving rise to a forward-ba
kward asymmetry. Sin
e the obtained two-photon 
ontributions depend on the parame-trizations of the DAs and GDAs, respe
tively, an extra
tion of the 
orre
tions through ana

urate measurement of the asymmetry o�ers the opportunity to probe and 
onstrain thesenon-perturbative obje
ts.Moreover, the perturbative QCD fa
torization approa
h has been applied to investigatethe two-boson ex
hange 
ontributions appearing in parity-violating elasti
 ele
tron-protons
attering. Parity violating asymmetries are sensitive to the interferen
e term of one-photonand Z boson ex
hange amplitudes of elasti
 ep-s
attering, providing a

ess to the strangequark 
ontribution and the weak 
harge of the nu
leon. Applying the pQCD fa
torizationapproa
h, it was found that the two-boson ex
hange 
orre
tions to the asymmetry are in therange of . 1%, where the 
ontributions of di�erent ex
hange diagrams have opposite signsand partially 
an
el ea
h other, leading to small 
orre
tions in total.In addition, the pro
ess p p̄ → π0e+e− has been analyzed, whi
h attra
ted attention dueto the possibility to probe the nu
leon ele
tromagneti
 form fa
tors in the unphysi
al regionbelow the two-nu
leon produ
tion threshold within this rea
tion. No data of this pro
ess existso far, but measurements are planned by forth
oming experiments. Data of the form fa
torsin the unphysi
al region would 
ertainly improve our understanding of nu
leon stru
ture.The annihilation pro
ess has been investigated within a phenomenologi
al model based onRegge theory. Prior to this, the validity of the Regge approa
h has been tested in the pro
essof real photoprodu
tion p p̄→ π0γ, for whi
h data in the energy range of s ≃ 8.5− 14 GeV2exist. It has been found that an approa
h in
luding nu
leon and∆ Regge traje
tory ex
hangeprovides a good des
ription of the data of real photoprodu
tion over the measured range.Subsequently, the rea
tion p p̄ → π0e+e− has been analyzed, where model independentexpressions of the 
ross se
tion in terms of the angular distribution of the lepton pair as wellas predi
tions of the angular dependen
e of the 
ross se
tion within the Regge approa
h hasbeen presented.The dis
ussed Regge based model 
an be extended to the analysis of further pro
esses, su
has the spa
elike rea
tion γ∗p → π0 p, or two-pion produ
tion, p p̄ → π0π0 and p p̄ → π−π+,in the forward and ba
kward angular regime. The latter pro
ess represents an importantba
kground rea
tion with respe
t to timelike form fa
tor measurements, whi
h are plannedin the near future by the PANDA experiment at FAIR.
120



Appendix

121





Appendix ANotations and ConventionsA.1 Lorentz Ve
torsThe 
ontravariant representation xµ and 
ovariant representation xµ of Lorentz ve
tors,whi
h are given by
xµ ≡ (x0, x1, x2, x3) = (x0, ~x), and xµ ≡ (x0, x1, x2, x3) = (x0,−~x), (A.1)respe
tively, are 
onne
ted through

xµ = gµνxν . (A.2)The metri
 tensor gµν is de�ned by
gµν :=




+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (A.3)A.2 Light-Cone CoordinatesLight-
one 
oordinates have been introdu
ed with respe
t to the light-
one basis n and n̄and the transverse 
ontribution a⊥:

n̄µ =
(
1, 0, 0, 1

)
, nµ =

(
1, 0, 0,−1

)
,with n̄2 = n2 = 0. n̄ · n = 2

aµ⊥ =
(
0, a1, a2, 0

)
.

(A.4)Any 4-ve
tor 
an be de
omposed with respe
t to the light-
one basis as
pµ =

n̄µ

2
(n · p)︸ ︷︷ ︸ +

nµ

2
(n̄ · p)︸ ︷︷ ︸ + pµ⊥, (A.5)

p+ p−and 
an been expressed through the shorthand notation using p+, p−, p⊥:
pµ =

(
p+, p−, p⊥

)
≡
(
n · p, n̄ · p, p⊥

)
. (A.6)The s
alar-produ
t of two ve
tors is given by:

p1 · p2 = p+1 · p−2 + p−1 · p+2 + p1⊥ · p2⊥,in parti
ular: p2 = 2p+ · p− + p2⊥.
(A.7)
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Appendix A Notations and ConventionsA.3 Pauli and Dira
 Matri
esThe Pauli matri
es are 2× 2 matri
es de�ned as
σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (A.8)whi
h satisfy

σiσj = 1+ i
3∑

k=1

ǫijkσk. (A.9)The Pauli spinors are de�ned by
χs= 1

2

=

(
1
0

)
, χs=− 1

2

=

(
0
1

)
. (A.10)The Dira
 matri
es are d× d matri
es (d ≥ 4), ful�lling the anti
ommutator relation

{γµ, γν} ≡ γµγν + γνγµ = 2gµν . (A.11)In this thesis, only the 
ase d = 4 has been 
onsidered. Additionally, the following 
ombina-tions of Dira
 matri
es have been used:
γ5 ≡ iγ0γ1γ2γ3, σµν ≡ i

2
[γµ, γν ] =

i

2
(γµγν − γνγµ) , (A.12)where γ5 ful�lls

{γ5, γµ} = 0, γ25 = 1. (A.13)Using light-
one 
oordinates, the 
ombinations
γ± ≡

(
γ0 ± γ3

)
, γµ⊥ ≡

(
0, γ1, γ2, 0

) (A.14)
an be introdu
ed. Furthermore, one obtains the following relations:
γµ,† = γ0γµγ0, γ†5 = γ5, γT5 = γ5,

{γ±, γ±} = 0, {γ±, γ∓} = 4, {γ±, γµ⊥} = 0.
(A.15)For the tra
es over Dira
 matri
es one �nds:

Tr[γµγν ] = 4gµν

Tr[γµγνγργσ] = 4(gµνgρσ − gµρgνσ + gµσgνρ)

Tr[γµ1 · · · γµn ] = 0 for n odd
Tr[γ5] = 0

Tr[γ5γ
µγν ] = 0

Tr[γ5γ
µγνγργσ] = −4iǫµνρσ

Tr[γ5γ
µ1 · · · γµn ] = 0 for n odd. (A.16)

As an expli
it representation of the Dira
 matri
es the Dira
 representation has been used:
γ0 =

( 12×2 0
0 −12×2

)
, γi =

(
0 σi

−σi 0

)
γ5 =

(
0 12×212×2 0

)
, (A.17)where σi are the Pauli matri
es.124



A.4 Dira
 SpinorsA.4 Dira
 SpinorsThe expansion of a fermion �eld is
ψ(x) =

∫
d3~p

(2π)3
1√
2p0

∑

s

{
a(p, s)u(p, s)exp(−ipx) + b†(p, s)v(p, s)exp(ipx)

}
,

ψ̄(x) =

∫
d3~p

(2π)3
1√
2p0

∑

s

{
b(p, s)v̄(p, s)exp(−ipx) + a†(p, s)ū(p, s)exp(ipx)

}
,

(A.18)where a† and b† 
reate a parti
le of kind a and b and u(p, s) and v(p, s) are the Dira
 spinors,whi
h satisfy
(γµpµ −m)u(p, s) = 0,

(γµpµ +m) v(p.s) = 0.
(A.19)The spinors ful�ll the 
ompleteness relations

∑

s

u(p, s)ū(p, s) = p/+m,

∑

s

v(p, s)v̄(p, s) = p/−m.
(A.20)In order to study transformation properties of ψ̄Γψ, where ψ(x) is a Dira
 spinor and Γis an arbitrary 4× 4 matrix, it is 
onvenient to de
ompose the expression with respe
t to itstransformation properties.A basis 
ontains 16 4×4 matri
es, whi
h are given by anti-symmetri
 
ombinations of theDira
 matri
es:

1 s
alar 1

γµ ve
tor 4

σµν tensor 6

γµγ5 pseudove
tor 4

γ5 pseudos
alar 1

(A.21)where in the middle the transformation property of the matrix and on the r.h.s the numberof matri
es are given.The spinor of a spin-1/2-parti
le, with momentum ~p given by
~p = | ~p |




sin θ cosφ

sin θ sinφ

cos θ


 (A.22)and

E2 = m2 + |~p |2 (A.23)125



Appendix A Notations and Conventions
an be parametrized as
u(p,+) =

√
E +m




cos θ
2

sin θ
2 (cosφ+ i sinφ)

| ~p |
E+m cos θ

2

| ~p |
E+m sin θ

2 (cosφ+ i sinφ)



,

u(p,−) =
√
E +m




sin θ
2 (− cosφ+ i sinφ)

cos θ
2

| ~p |
E+m sin θ

2 (cosφ− i sinφ)

− | ~p |
E+m cos θ

2



,

(A.24)
and for antiparti
les

v(p,+) =
√
E +m




| ~p |
E+m sin θ

2 (cos φ− i sinφ)

− | ~p |
E+m cos θ

2

sin θ
2 (− cosφ+ i sinφ)

cos θ
2



,

v(p,−) =
√
E +m




− | ~p |
E+m cos θ

2

− | ~p |
E+m sin θ

2 (cosφ+ i sinφ)

− cos θ
2

− sin θ
2 (cosφ+ i sinφ)



.

(A.25)
In some 
ases it is 
onvenient to use light front heli
ity spinors. The expression of thesespinors is obtained by a transformation of a spinor in the rest frame via a longitudinal anda transverse boost. The light front heli
ity spinors are given by

u(p,+) = N




p+ +m

p1 + ip2

p+ −m
p1 + ip2


 , u(p,−) = N




− p1 + ip2

p+ +m

p1 − ip2

− p+ +m


 ,

v(p,+) = −N




− p1 + ip2

p+ −m
p1 − ip2

− p+ −m


 , v(p,−) = −N




p+ −m
p1 + ip2

p+ +m

p1 + ip2


 ,with N−1 =

√
2p+,

(A.26)
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A.4 Dira
 Spinorswhere the “+“ and “−“ 
orrespond to a light-
one heli
ity state of the parti
le with h = +1/2and h = −1/2, respe
tively. For m → 0 the light front heli
ity spinors are equivalent to theordinary heli
ity spinors.For a parti
le with four-momentum pµ, whi
h is moving fast in the +-dire
tion, one �nds
u(p,+) = N

(
(p+ +m)χ+

(p+ −m)χ+

)
, u(p,−) = N

(
(p+ +m)χ−

− (p+ −m)χ−

)
,

v(p,+) = N
(
−(p+ −m)χ−

(p+ +m)χ−

)
, v(p,−) = N

(
−(p+ −m)χ+

−(p+ +m)χ+

)
,with χ+ =

(
1
0

)
, χ− =

(
0
1

)
.

(A.27)
Using the proje
tors

Λ+ =
/̄n/n
4

=
γ−γ+

4
, Λ− =

/n/̄n
4

=
γ+γ−

4
, (A.28)gives

Λ+u(p,±) ∼ N p+

(
χ±

±χ±

)
∼
√
p+, Λ−u(p,±) ∼ N m

(
χ±

∓χ±

)
∼ 1√

p+
,

Λ+v(p,±) ∼ N p+

(
−χ∓

±χ∓

)
∼
√
p+, Λ−v(p,±) ∼ N m

(
χ∓

±χ∓

)
∼ 1√

p+
.(A.29)
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Appendix BAmplitudes within a pQCD Fa
torizationApproa
hIn this appendix the results of the di�erent diagrams of the hard subpro
esses 
ontributingto the 2γ-amplitude and γZ-amplitude 
al
ulated within the pQCD fa
torization approa
hare given.B.1 Results of Two-Photon Ex
hange ContributionsThe amplitude for timelike two-photon ex
hange 
an be separated as
A2γ = Q2

uA
uu +QuQd(A

u1d +Au2d)

= Q2
u (A

uu
12 +Auu

34 ) +QuQd

(
Au1d

12 +Au1d
34 +Au2d

12 +Au2d
34

)
,

(B.1)with
Aq1q2

ij = Dq1q2
i +Dq1q2

j + 
rossed. (B.2)The supers
ript of Aq1q2 indi
ates to whi
h quarks the two photons 
ouple in the hardsubpro
ess. The diagrams 
ontributing to the subpro
ess are presented in table B.1. Theindi
es k of Dk in Eq. (B.2) refer to the gluon ex
hange as indi
ated in the diagrams oftable B.1. The amplitudes of the di�erent 
ontributions are found as
Auu

12 =
8G1
s3

ūlγµvl′

·
∫

d[xi]d[yi]

(x2x̄2x3)(y2ȳ2y3)

((V ′ +A′)(V +A) + 4T ′T )(1, 2, 3)

[x̄2(η − ȳ2) + ȳ2η̄][x̄2(y2 − η) + ȳ2η]

· N̄
(
(2η − 1)x2y2γ

µ
⊥ −

Pµ /K⊥

s
2(x2 + y2 − 2x2y2)

)
N,

(B.3)
Auu

34 =
8G1
s3

ūlγµvl′

·
∫

d[xi]d[yi]

(x2x̄2x3)(y2ȳ2y3)

((V ′ +A′)(V +A) + 4T ′T )(1, 2, 3)

[x̄2(η − ȳ2) + ȳ2η̄][x̄2(y2 − η) + ȳ2η]

· N̄
(
(2η − 1)x2y2γ

µ
⊥ −

Pµ /K⊥

s
2(x2 + y2 − 2x2y2)

)
N,

(B.4)
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torization Approa
h
Au1d

12 =
8G1
s3

ūlγµvl′

·
∫

d[xi]d[yi]

(x1x2x̄2)(y1y2ȳ2)

((V ′ +A′)(V +A) + 4T ′T )(1, 2, 3)

[x̄2(η − ȳ2) + ȳ2η̄][x̄2(y2 − η) + ȳ2η]

· N̄
(
(2η − 1)x2y2γ

µ
⊥ −

Pµ /K⊥

s
2(x2 + y2 − 2x2y2)

)
N,

(B.5)
Au1d

34 =
16G1
s3

ūlγµvl′

·
∫

d[xi]d[yi]

(x1x2x̄2)(y1y2ȳ2)

(V ′V +A′A)(1, 3, 2)

[x̄2(η − ȳ2) + ȳ2η̄][x̄2(y2 − η) + ȳ2η]

· N̄
(
(2η − 1)x2y2γ

µ
⊥ −

Pµ /K⊥

s
2(x2 + y2 − 2x2y2)

)
N,

(B.6)
Au2d

12 =
8G1
s3

ūlγµvl′

·
∫

d[xi]d[yi]

(x1x2x̄2)(y1y2ȳ2)

((V ′ +A′)(V +A) + 4T ′T )(1, 2, 3)

[x̄2(η − ȳ2) + ȳ2η̄][x̄2(y2 − η) + ȳ2η]

· v̄N ′

(
(2η − 1)x2y2γ

µ
⊥ −

Pµ /K⊥

s
2(x2 + y2 − 2x2y2)

)
uN ,

(B.7)
Au2d

34 =
16G1
s3

ūlγµvl′

·
∫

d[xi]d[yi]

(x1x2x̄2)(y1y2ȳ2)

(V ′V +A′A)(1, 3, 2)

[x̄2(η − ȳ2) + ȳ2η̄][x̄2(y2 − η) + ȳ2η]

· N̄
(
(2η − 1)x2y2γ

µ
⊥ −

Pµ /K⊥

s
2(x2 + y2 − 2x2y2)

)
N,

(B.8)
with G1 = e2

4

(
4π
3!

)2
αemαs.B.2 Results of γZ-Ex
hange ContributionsThe amplitude for γZ-ex
hange in ep-s
attering 
an be expressed as
AγZ = Qu(A

uu +AudZ ) +QdA
uZd,with Auu = Au1u2Z

12 +Au1u2Z
34 +Au1Zu2

12 +Au1Zu2
34 ,

AudZ = Au1dZ
12 +Au1dZ

34 +Au2dZ
12 +Au2dZ

34 ,

AuZd = A
u1Z

d
12 +A

u1Z
d

34 +A
u2Z

d
12 +A

u2Z
d

34 ,

(B.9)
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B.2 Results of γZ-Ex
hange Contributions
x3 x2 x1

y3 y2 y1

q1

q2

×1
×3

×2

×4 Auu =Auu
12 +Auu

34

=Duu
1 +Duu

2 +Duu
3 +Duu

4 + 
rossed
x3 x2 x1

y3 y2 y1

q1

q2

1×
×3

2×

×4 Au1d =Au1d
12 +Au1d

34

=Du1d
1 +Du1d

2 +Du1d
3 +Du1d

4 + 
rossed
x3 x2 x1

y3 y2 y1

q1

q2

1×

×3

2× ×4

Au2d =Au2d
12 +Au2d

34

=Du2d
1 +Du2d

2 +Du2d
3 +Du2d

4 + 
rossed
Table B.1: Diagrams 
ontributing to the subpro
ess of 2γ-ex
hange within the pQCD fa
-torization approa
h. The ×'s indi
ate the possibilities to atta
h the gluon. Thesubs
ripts 1-4 ofDi refer to the gluon ex
hange as given in the Feynman diagrams.
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Appendix B Amplitudes within a pQCD Fa
torization Approa
hAgain, the supers
ript of A indi
ates to whi
h quarks the photon and the Z boson 
ou-ple, while the subs
ript Z refers to the Z boson 
oupling. The Feynman diagrams of thesubpro
ess are presented in table B.2.The amplitudes have been de
omposed with respe
t to the ve
tor (V) and axial-ve
tor (A)
ontribution, 
orresponding to a ve
tor and axial-ve
tor 
oupling of the hadroni
 
urrent,respe
tively:
Auu, V =

8G2
Q4

guV ul′ γµ(g
e
V − geAγ5)ul

×
∫

d [xi] d[yi]

x1x̄1x2 y1ȳ1y2

1

[x̄1(y1 − ζ) + ȳ1ζ + iε]
[
[x̄1(ζ − ȳ1) + ȳ1ζ̄ + iε

]

×
{
2
[
(V ′ −A′)(V −A) + 4TT ′

]
(1, 3, 2) (x̄1 ȳ1 + x1y1)

× N̄ γµ⊥

{
(2ζ − 1)x1y1 +

/K⊥P
µ

Q2
2(x1 + y1 − 2x1y1)

}
N,

(B.10)
Auu,A =

8G2
Q4

guA ul′ γµ(g
e
V − geAγ5)ul

×
∫

d [xi] d[yi]

x1x̄1x2 y1ȳ1y2

1

[x̄1(y1 − ζ) + ȳ1ζ + iε]
[
[x̄1(ζ − ȳ1) + ȳ1ζ̄ + iε

]

×
{
− 2

[
(V ′ −A′)(V −A)− 4TT ′

]
(1, 3, 2) x̄1 ȳ1

+ 2
[
(V ′ −A′)(V −A) + 4TT ′

]
(1, 3, 2)x1y1

}

× N̄ γ5 γ
µ
⊥

{
(2ζ − 1)x1y1 +

/K⊥P
µ

Q2
2(x1 + y1 − 2x1y1)

}
N,

(B.11)
Au1Zd, V =

8G2
Q4

gdV ul′ γµ(g
e
V − geAγ5)ul

×
∫

d [xi] d[yi]

x1x̄1x2 y1ȳ1y2

1

[x̄1(y1 − ζ) + ȳ1ζ + iε]
[
[x̄1(ζ − ȳ1) + ȳ1ζ̄ + iε

]

×
{
2
[
(V ′ −A′)(V −A) + 4TT ′

]
(1, 2, 3) x̄1 ȳ1 + 4

[
V ′V +A′A

]
(3, 2, 1)x1y1

}

× N̄ γµ⊥

{
(2ζ − 1)x1y1 +

/K⊥P
µ

Q2
2(x1 + y1 − 2x1y1)

}
N, (B.12)132



B.2 Results of γZ-Ex
hange Contributions
Au2Zd, V = +

8G2
Q4

guV ul′ γµ(g
e
V − geAγ5)ul

×
∫

d [xi] d[yi]

x1x̄1x2 y1ȳ1y2

1

[x̄1(y1 − ζ) + ȳ1ζ + iε]
[
[x̄1(ζ − ȳ1) + ȳ1ζ̄ + iε

]

×
{
2
[
(V ′ −A′)(V −A) + 4TT ′

]
(1, 2, 3)x1y1 + 4

[
V ′V +A′A

]
(3, 2, 1) x̄1 ȳ1

}

× N̄ γµ⊥

{
(2ζ − 1)x1y1 +

/K⊥P
µ

Q2
2(x1 + y1 − 2x1y1)

}
N, (B.13)

Au1Zd, A =
8G2
Q4

gdA ul′ γµ(g
e
V − geAγ5)ul

×
∫

d [xi] d[yi]

x1x̄1x2 y1ȳ1y2

1

[x̄1(y1 − ζ) + ȳ1ζ + iε]
[
[x̄1(ζ − ȳ1) + ȳ1ζ̄ + iε

]

×
{
2
[
(V ′ −A′)(V −A)− 4TT ′

]
(1, 2, 3) x̄1 ȳ1 + 4

[
V ′V +A′A

]
(3, 2, 1)x1y1

}

× N̄ γ5 γ
µ
⊥

{
(2ζ − 1)x1y1 +

/K⊥P
µ

Q2
2(x1 + y1 − 2x1y1)

}
N, (B.14)

Au2Zd, A =
8G2
Q4

guV ul′ γµ(g
e
V − geAγ5)ul

×
∫

d [xi] d[yi]

x1x̄1x2 y1ȳ1y2

1

[x̄1(y1 − ζ) + ȳ1ζ + iε]
[
[x̄1(ζ − ȳ1) + ȳ1ζ̄ + iε

]

×
{
2
[
(V ′ −A′)(V −A) + 4TT ′

]
(1, 2, 3)x1y1 + 4

[
V ′A+A′V

]
(3, 2, 1) x̄1 ȳ1

}

× N̄ γ5 γ
µ
⊥

{
(2ζ − 1)x1y1 +

/K⊥P
µ

Q2
2(x1 + y1 − 2x1y1)

}
N, (B.15)with G2 =

1

16

(
4π

3

)2

αem αS
GF

2
√
2
.
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Appendix B Amplitudes within a pQCD Fa
torization Approa
h
x1

x2

x3

y1

y2

y3

× ×
× ×
43

1 2

Au1u2Z = Au1u2Z ,V +Au1u2Z ,A

= Du1u2Z
1 +Du1u2Z

2 +Du1u2Z
3 +Du1u2Z

4

+ 
rossed
x1

x2

x3

y1

y2

y3

× ×
× ×
43

1 2

Au1Zu2 = Au1Zu2,V +Au1Zu2,A

= Du1Zu2

1 +Du1Zu2

2 +Du1Zu2

3 +Du1Zu2

4

+ 
rossed
x1

x2

x3

y1

y2

y3

× ×

× ×

43

1 2

Au1dZ = Au1dZ ,V +Au1dZ ,A

= Du1dZ
1 +Du1dZ

2 +Du1dZ
3 +Du1dZ

4

+ 
rossed
x1

x2

x3

y1

y2

y3

× ×

× ×

43

1 2

Au1Zd = Au1Zd,V +Au1Zd,A

= Du1Zd
1 +Du1Zd

2 +Du1Zd
3 +Du1Zd

4

+ 
rossed
x1

x2

x3

y1

y2

y3

× ×
× ×

43

1 2

Au2dZ = Au2dZ ,V +Au2dZ ,A

= Du2dZ
1 +Du2dZ

2 +Du2dZ
3 +Du2dZ

4

+ 
rossed
x1

x2

x3

y1

y2

y3

× ×
× ×

43

1 2

Au2Zd = Au2Zd,V +Au2Zd,A

= Du2Zd
1 +Du2Zd

2 +Du2Zd
3 +Du2Zd

4

+ 
rossedTable B.2: Diagrams 
ontributing to the subpro
ess of γZ-ex
hange within the pQCD fa
-torization approa
h. The ×'s indi
ate the possibilities to atta
h the gluon. Thesubs
ripts 1-4 ofDi refer to the gluon ex
hange as given in the Feynman diagrams.
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Appendix CForm Fa
tor ParametrizationIn this appendix the form fa
tor parametrizations, whi
h have been used in this thesis, aresummarized.C.1 Ele
tromagneti
 Nu
leon Form Fa
torsSpa
elike ModelsInverse polynomial model [107℄:
G i

E(Q
2),

G i
M (Q2)

µp
=
(
1 + p2Q

2 + p4Q
4 + · · · p2nQ2n

)−1
, (C.1)where the parameter obtained from �ts to the Rosenbluth data are

p2 p4 p6 p8

Gn
E 3.226 1.508 -0.3773 0.611

Gn
M/µn 3.19 1.335 0.151 -0.0114Friedri
h-Wal
her parametrization [108℄:

G i
E(Q

2),
G i

M (Q2)

µp
= Gs(Q

2) + abQ
2Gb(Q

2),with Gs(Q
2) =

a10(
1 + Q2

a11

)2 +
a20(

1 + Q2

a21

)2 ,

Gb(Q
2) = e

− 1
2

(

(Q−Qb)
2

σb

)2

+ e
− 1

2

(

(Q+Qb)
2

σb

)2

,

(C.2)
where the parameters have been obtained from �ts to the form fa
tors. In the 
ase of theneutron form fa
tor it has been found:

a10 a11 a20 a21 ab Qb σb

Gn
E 1.04 1.73 -1.04 1.54 0.009 0.29 0.20

Gn
M/µn 1.012 0.770 -0.012 6.8 -0.011 0.33 0.14
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Appendix C Form Fa
tor ParametrizationVMD ModelsIn Ref. [48℄, a nu
leon form fa
tor model for both spa
elike as well as timelike ele
tromagneti
form fa
tors has been presented.The spa
elike parametrizations are given by
FS
1 (q

2) =
1

2
g(q2)

[
(1− βω − βφ)− βω

m2
ω

q2 −m2
ω

− βφ
m2

φ

q2 −m2
φ

]
,

F V
1 (q2) =

1

2
g(q2)

[
1− βρ − βρ

m2
ρ

q2 −m2
ρ

]
,

FS
2 (q

2) =
1

2
g(q2)

[
(0.12 + αφ)

m2
ω

q2 −m2
ω

− αφ

m2
φ

q2 −m2
φ

]
,

F V
2 (q2) =

1

2
g(q2)

[
− 3.706

m2
ρ

q2 −m2
ρ

]
,

(C.3)
with

g(Q2) =
1

(1− γq2)2 . (C.4)In order to take the non-negligible width of the ρ meson into a

ount, the propagator hasbeen repla
ed as
m2

ρ

q2 −m2
ρ

→
m2

ρ + 8Γρmπ/π

q2 −m2
ρ + (q2 − 4m2

π)Γρα(Q2)/mπ
, (C.5)with

α(Q2) =

(
Q2 + 4m2

π

Q2

)
2

π
log

(√
Q2 + 4m2

π +
√
Q2

2mπ

)
. (C.6)In the timelike region a phase has been introdu
ed to the intrinsi
 form fa
tors:

g(q2) =
1

(1− eiθγq2)2 . (C.7)The pole of the ρ meson has been modi�ed as
m2

ρ

q2 −m2
ρ

→
m2

ρ + 8Γρmπ/π

q2 −m2
ρ + (q2 − 4m2

π)Γρα(q2)/mπ − iΓρ4mπβ(q2)
, (C.8)with

α(q2) =

(
q2 − 4m2

π

q2

)
2

π
log

(√
q2 − 4m2

π +
√
q2

2mπ

)
,

β(q2) =

(
q2

4m2
π

− 1

)3/2(
q2

4m2
π

)−1/2

Θ
(
q2 − 4m2

π

)
.

(C.9)The free parameters are obtained by �tting the spa
elike data, the phase from a �t to thetimelike data
βω = 1.102, βφ = 0.112, βρ = 0.672, αφ = −0.052,
γ = 0.25 GeV−2, θ = 53◦.

(C.10)
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C.2 Axial Nu
leon Form Fa
torTimelike ModelsQCD-inspired form fa
tor model:
|GE,M | =

B
q4
(
ln2 q2

Λ2 + π2
) , (C.11)where B is a free �t parameter.Improved �t of F2/F1 in
luding logarithmi
 
orre
tions to the power law fall o� as expe
tedfrom QCD [79℄:

F2

F1
= κp

1 +
(
Q2/0.791 GeV2

)2
ln7.1

(
1 +Q2/4m2

π

)

1 +
(
Q2/0.38 GeV2

)3
ln5.1 (1 +Q2/4m2

π)
. (C.12)C.2 Axial Nu
leon Form Fa
torThe axial form fa
tor in the spa
elike region has been parametrized through a dipole form:

GA(Q
2) =

gA(
1 + Q2

m2
A

)2 , (C.13)with gA = 1.27 and mA = 1.026 GeV [84℄. In addition, this dipole parametrization has beenused in order to express the timelike axial form fa
tor with Q2 → −q2.
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List of A
ronyms
2γ two-photonDA Distribution AmplitudeFAIR Fa
ility for Antiproton and Ion Resear
hFermilab Fermi National A

elerator LaboratoryGDA Generalized Distribution AmplitudeGPD Generalized Parton DistributionJLab Thomas Je�erson National A

elerator Fa
ilityLEAR Low Energy Antiproton RingMAMI Mainz Mi
rotronMESA Mainz Energy-Re
overing Super
ondu
ting A

eleratorPANDA Antiproton Annihilation at DarmstadtpQCD perturbative QCDPV parity-violatingQCD Quantum Chromodynami
sQED Quantum Ele
trodynami
sSLAC Stanford Linear A

elerator CenterSSA single spin asymmetryTBE two-boson ex
hangeVMD ve
tor meson dominan
e
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