# Bestimmung thermischer Untergrundparameter in Erdwärmesondenfeldern und Evaluierung tiefenaufgelöster Thermal Response Tests durch thermohydraulische Modellierungen

Dissertation zur Erlangung des akademischen Grades "Doktor der Naturwissenschaften"

im Promotionsfach Geologie / Paläontologie

am Fachbereich Chemie, Pharmazie und Geowissenschaften der Johannes Gutenberg-Universität Mainz

von

## **Florian Malm**

geb. in Limburg an der Lahn

Mainz 2013

D77



Dekan:

- 1. Berichterstatter:
- 2. Berichterstatter:

#### Erklärung

Ich versichere hiermit gemäß § 10, Abs. 3d der Promotionsordnung des Fachbereichs 09 (Chemie, Pharmazie und Geowissenschaften) der Johannes Gutenberg-Universität Mainz vom 24.07.2007, die als Dissertation vorgelegte Arbeit selbständig und nur unter Verwendung der in der Arbeit angegebenen Hilfsmittel (Literatur, Apparaturen, Material) verfasst zu haben. Ich habe oder hatte die hier als Dissertation vorgelegte Arbeit nicht als Prüfungsarbeit für eine staatliche oder andere wissenschaftliche Prüfung eingereicht. Ich hatte weder die jetzt als Dissertation vorgelegte Arbeit noch Teile davon bei einer anderen Fakultät bzw. einem anderen Fachbereich als Dissertation eingereicht.

Dipl. Geol. Florian Malm

v

### Inhaltsverzeichnis

| Anhangsverzeichnisxi                                                           |
|--------------------------------------------------------------------------------|
| Abbildungsverzeichnisxiii                                                      |
| Tabellenverzeichnisxvii                                                        |
| Symbol- und Gleichungsverzeichnisxix                                           |
| Kurzfassungxxiii                                                               |
| Abstractxxv                                                                    |
| Einleitung1                                                                    |
| Abschnitt I der Dissertation5                                                  |
| Einleitung und Überblick Abschnitt I7                                          |
| I-1 Übersicht über das Forschungsprojekt11                                     |
| I-2. Erfassung der Untergrundeigenschaften13                                   |
| I-2.1 Geologie und Hydrogeologie13                                             |
| I-2.2 Beschreibung der thermischen Eigenschaften nach VDI 464014               |
| I-2.2.1 Die Gesteinswärmeleitfähigkeit14                                       |
| I-2.2.2 Die ungestörte Bodentemperatur16                                       |
| I-2.3 Die Bestimmung der Untergrundparameter mit dem Thermal Response Test16   |
| I-2.3.1 Ermittlung der Gesteinswärmeleitfähigkeit17                            |
| I-2.3.2 Ermittlung der ungestörten Bodentemperatur im Zuge eines TRT18         |
| I-2.3.3 Ablauf der Messungen18                                                 |
| I-2.4 Neue Methoden zur tiefenaufgelösten Bestimmung der Untergrundparameter19 |
| I-2.4.1 Faseroptische Temperaturmessmethode21                                  |
| I-2.4.1.1 Ermittlung der ungestörten Bodentemperatur im Zuge eines eTRT22      |
| I-2.4.1.2 Enhanced Thermal Response Test (eTRT)24                              |
| I-2.4.1.2.1 Ablauf der Messungen24                                             |
| I-2.4.1.2.2 Ermittlung der tiefenabhängigen Wärmeleitfähigkeit mit dem eTRT25  |
| I-2.4.2 in-situ Grundwasserströmungsmessungen29                                |
| I-2.5 Vergleich der Ergebnisse von TRT und eTRT31                              |
| I-2.6 Vergleich der eTRT-Ergebnisse mit den Grundwasserströmungsmessungen32    |
| I-2.7 Beeinflussung der Untergrundwärmeleitfähigkeit durch Grundwasserfluss33  |

viii

| I-3. Temperaturüberwachung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 37                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| I-3.1 Messaufbau der Langzeitüberwachung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 37                                                                                           |
| I-3.2 Ergebnisse der Temperaturüberwachung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 38                                                                                           |
| I-3.3 Vergleich der Untergrundtemperaturen mit den Soletemperaturen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 39                                                                                           |
| I-3.4 Beeinflussung benachbarter Sonden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 41                                                                                           |
| I-4. Modellierungen des EWS-Feldes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45                                                                                           |
| I-4.1 Numerische Verfahren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 45                                                                                           |
| I-4.1.1 FEFLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46                                                                                           |
| I-4.1.2 SHEMAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 48                                                                                           |
| I-4.2 Analytische Verfahren zur Dimensionierung von Erdwärmesondenfeldern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56                                                                                           |
| I-4.2.1 EED-Modell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 56                                                                                           |
| I-4.2.2 EWS-Modell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 58                                                                                           |
| I-4.3 Vergleich der analytischen Simulationsprogramme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60                                                                                           |
| I-4.4 Vergleich VDI mit den analytischen Programmen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 62                                                                                           |
| I-4.5 Vergleich Wärmebedarf Planung und Wärmebedarf real                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 63                                                                                           |
| I-4.6 Gegenüberstellung des geplanten und des realen Wärmebedarfs mit EED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 64                                                                                           |
| 15. Zusemmenfessung der Erzehnisse von Absehnitt I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67                                                                                           |
| 1-5. Zusammentassung der Ergebnisse von Abschnitt I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 07                                                                                           |
| Abschnitt II der Dissertation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 71                                                                                           |
| Abschnitt II der Dissertation<br>Einleitung und Überblick Abschnitt II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71<br>73                                                                                     |
| I-5. Zusammenrassung der Ergebnisse von Abschnitt I<br>Abschnitt II der Dissertation<br>Einleitung und Überblick Abschnitt II<br>II-1. Methodik                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 71<br>73<br>75                                                                               |
| I-5. Zusammenrassung der Ergebnisse von Abschnitt I<br>Abschnitt II der Dissertation<br>Einleitung und Überblick Abschnitt II<br>II-1. Methodik<br>II-1.1 DTS-Messverfahren                                                                                                                                                                                                                                                                                                                                                                                                                                    | 71<br>73<br>75<br>75                                                                         |
| I-5. Zusammenrassung der Ergebnisse von Abschnitt I         Abschnitt II der Dissertation         Einleitung und Überblick Abschnitt II         II-1. Methodik         II-1.1 DTS-Messverfahren         II-1.1.1 Physikalische Grundlagen                                                                                                                                                                                                                                                                                                                                                                      | 71<br>73<br>75<br>75<br>75                                                                   |
| Abschnitt II der Dissertation<br>Einleitung und Überblick Abschnitt II<br>II-1. Methodik<br>II-1.1 DTS-Messverfahren<br>II-1.1.1 Physikalische Grundlagen<br>II-1.1.2 Messdurchführung                                                                                                                                                                                                                                                                                                                                                                                                                         | 71<br>73<br>75<br>75<br>75<br>75<br>76                                                       |
| Abschnitt II der Dissertation<br>Einleitung und Überblick Abschnitt II<br>II-1. Methodik<br>II-1.1 DTS-Messverfahren<br>II-1.1.1 Physikalische Grundlagen<br>II-1.2 Messdurchführung<br>II-1.2 Der enhanced Thermal Response Test (eTRT)                                                                                                                                                                                                                                                                                                                                                                       | 71<br>73<br>75<br>75<br>75<br>75<br>76<br>77                                                 |
| Abschnitt II der Dissertation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 71<br>73<br>75<br>75<br>75<br>76<br>76<br>77<br>77                                           |
| I-5. Zusammenrassung der Ergebnisse von Abschnitt I.         Abschnitt II der Dissertation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 71<br>73<br>75<br>75<br>75<br>76<br>76<br>77<br>77<br>77                                     |
| I-5. Zusammenrassung der Ergebnisse von Abschnitt II.         Abschnitt II der Dissertation.         Einleitung und Überblick Abschnitt II.         II-1. Methodik         II-1.1 DTS-Messverfahren.         II-1.1.1 Physikalische Grundlagen.         II-1.1.2 Messdurchführung         II-1.2 Der enhanced Thermal Response Test (eTRT)         II-1.2.1 Messaufbau und -durchführung         II-1.2.2 Auswertung der Ergebnisse         II-1.2.3 Auswertung des Relaxationsverhaltens                                                                                                                      | 71<br>73<br>75<br>75<br>75<br>76<br>76<br>77<br>77<br>78<br>80                               |
| I-3. Zusammenrassung der Ergebnisse von Abschnitt I         Abschnitt II der Dissertation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                              |
| I-5. Zusammenrassung der Ergebnisse von Abschnitt II         Abschnitt II der Dissertation         Einleitung und Überblick Abschnitt II         II-1. Methodik         II-1.1 DTS-Messverfahren         II-1.1 DTS-Messverfahren         II-1.1 Physikalische Grundlagen         II-1.2 Messdurchführung         II-1.2 Der enhanced Thermal Response Test (eTRT)         II-1.2.1 Messaufbau und -durchführung         II-1.2.2 Auswertung der Ergebnisse         II-1.2.3 Auswertung des Relaxationsverhaltens         II-1.2.4 Peclét-Zahl-Analyse         II-2. Vergleich zwischen LWL-Messungen und TRTs | 71<br>73<br>75<br>75<br>75<br>75<br>75<br>76<br>76<br>77<br>77<br>78<br>78<br>80<br>80<br>80 |
| I-3. Zusammenrassung der Ergebnisse von Abschnitt I         Abschnitt II der Dissertation         Einleitung und Überblick Abschnitt II         II-1. Methodik         II-1.1 DTS-Messverfahren         II-1.1 DTS-Messverfahren         II-1.1.2 Messdurchführung         II-1.2 Der enhanced Thermal Response Test (eTRT)         II-1.2.1 Messaufbau und -durchführung         II-1.2.2 Auswertung der Ergebnisse         II-1.2.3 Auswertung des Relaxationsverhaltens         II-1.2.4 Peclét-Zahl-Analyse         II-2.1 Messdurchführung         II-2.1 Messdurchführung                                |                                                                                              |
| I-5. Zusammenrassung der Ergebnisse von Abschnitt I         Abschnitt II der Dissertation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                              |

| II-3. Modellierung des eTRT mit Feflow                                | 87  |
|-----------------------------------------------------------------------|-----|
| II-3.1 Feflow                                                         | 87  |
| II-3.2 Modellaufbau                                                   | 92  |
| II-3.2.1 Geometrie                                                    | 92  |
| II-3.2.2 Meshing                                                      | 95  |
| II-3.2.3 3D-Einstellungen                                             | 96  |
| II-3.2.4 globale Randbedingungen und Parameter                        | 97  |
| II-3.3 Modellreihen                                                   | 99  |
| II-3.3.1 Modellreihe mit reiner Konduktion                            | 99  |
| II-3.3.2 Modellreihe Konduktion bei einem 3-Schicht-Modell            | 101 |
| II-3.3.3 Modellreihe Konduktion mit Wärmeeintragsänderungen           | 102 |
| II-3.3.4 Modellreihe 3-Schicht-Modell mit Grundwasserfluss            | 103 |
| II-3.4 Ergebnisse der Modellreihen                                    | 106 |
| II-3.4.1 Modellreihe mit reiner Konduktion                            | 106 |
| II-3.4.2 Modellreihe Konduktion bei einem 3-Schicht-Modell            | 118 |
| II-3.4.3 Modellreihe Konduktion mit Wärmeeintragsänderungen           | 124 |
| II-3.4.4 Modellreihe 3-Schicht-Modell mit Grundwasserfluss            | 129 |
| II-3.5 Kontrollmodellreihen mit verfeinertem Meshing                  | 138 |
| II-4. Vergleich der Ergebnisse                                        | 149 |
| II-4.1 Modellreihe mit reiner Konduktion                              | 149 |
| II-4.2 Modellreihe Konduktion bei einem 3-Schicht-Modell              | 149 |
| II-4.3 Modellreihe Konduktion mit Wärmeeintragsänderungen             | 150 |
| II-4.3.1 Theoretische Lösung mit schwankender Wärmezufuhr             | 150 |
| II-4.3.2 Lösung des Wärmezufuhrproblems über das Relaxationsverhalten | 156 |
| II-4.4 Modellreihe 3-Schicht-Modell mit Grundwasserfluss              | 158 |
| II-5. Diskussion der Modellierungsergebnisse                          | 161 |
| Zusammenfassung Abschnitt I und Abschnitt II                          | 163 |
| Literatur                                                             | 167 |

#### Anhangsverzeichnis

- Anhang 1: Rohtemperaturdaten des Vergleichs zwischen TRT- und LWL-Messungen (Dateninhaber: Stadtverwaltung Speyer)
- Anhang 2: Matlab Skripte

Die Rohdaten zu den Modellierungen in Abschnitt II befinden sich auf einer der Druckversion der Arbeit beiliegenden Daten-DVDr. Enthalten sind u.a.:

- Modellfiles der eTRT-Modellreihen "eTRT\_04" bis "eTRT\_07"
- Modellfiles der eTRT-Kontroll-Modellreihen "eTRT\_04.1\_c1-12"
- Modellfiles der eTRT-Kontroll-Modellreihen "eTRT\_03.1\_c1-7"
- Temperaturdaten der eTRT-Modellreihen "eTRT\_04" bis "eTRT\_07"
- Temperaturdaten der eTRT-Kontroll-Modellreihen "eTRT\_04.1\_c1-12"
- Temperaturdaten der eTRT-Kontroll-Modellreihen "eTRT\_03.1\_c1-7"
- Abbildungen der Modellierungen
- Dateien der erstellten Matlab Skripte

## Abbildungsverzeichnis

#### Abschnitt I

| Kapitel I-Ei | nleitung:                                                                 |      |
|--------------|---------------------------------------------------------------------------|------|
| Abb. I-0.1   | Die Nutzung oberflächennaher Geothermie (Agentur für Erneuerbare Energie) | S. 7 |
| Abb. I-0.2   | Unterschiedliche Wärmeleitfähigkeiten bei unterschiedlicher Bohrtiefe     | S. 9 |

#### Kapitel I-2:

| Abb. I-2.1  | Profil aus der GK25 von Rheinland-Pfalz, Blatt 6512 Kaiserslautern                 | S. 13 |
|-------------|------------------------------------------------------------------------------------|-------|
| Abb. I-2.2  | Schichtenprofil der Erdwärmesondenbohrungen in Kaiserslautern (Terra Therm GmbH)   | S. 15 |
| Abb. I-2.3  | Aufbauschema eines Thermal Response Test (GEHLIN 2002)                             | S. 16 |
| Abb. I-2.4  | Erdwärmesondenfeld der Firma Wipotec mit 40 eingebrachten Doppel-U-Sonden          | S. 21 |
| Abb. I-2.5  | Die optische Rückstreuung (ERBAŞ et al. 1999) und Abbildung eines LWL-Hybridkabels | S. 22 |
| Abb. I-2.6  | Tiefenprofil der ungestörten Bodentemperatur der Sonden S4, S8, S10 & S12          | S. 23 |
| Abb. I-2.7  | Messaufbau des eTRT                                                                | S. 24 |
| Abb. I-2.8  | Tiefenabhängige, absolute Temperaturen der Sonden S4, S8, S10 & S12                | S. 26 |
| Abb. I-2.9  | Temperaturverlauf [°C] der einzelnen Tiefenabschnitte über die logarithmische Zeit | S. 27 |
| Abb. I-2.10 | Tiefenabhängige Wärmeleitfähigkeiten der Sonden S4, S8, S10 & S12                  | S. 28 |
| Abb. I-2.11 | Abbildungen des geklüfteten und ungeklüfteten Bereichs im Bohrloch der Sonde S12   | S. 30 |
| Abb. I-2.12 | Vergleich der eTRT-Ergebnisse mit Grundwasserströmungsmessungen (PHREALOG)         | S. 35 |

### Kapitel I-3:

| Abb. I-3.1  | Jahresuntergrundtemperaturverlauf aller Sonden, 01.12.2008 - 30.11.2009            | S. 38 |
|-------------|------------------------------------------------------------------------------------|-------|
| Abb. I-3.2  | Jahresuntergrundtemperaturverlauf der Sonden in Gebrauch, 01.12.2008 - 30.11.2009  | S. 39 |
| Abb. I-3.3  | Jahressoletemperaturverlauf des Sondenfeldes, 01.12.2008 - 30.11.2009              | S. 39 |
| Abb. I-3.4  | Vergleich von Jahresuntergrund- und Jahressoletemperatur, 01.12.2008 - 30.11.2009_ | S. 40 |
| Abb. I-3.5  | Skizze eines wärmedurchströmten Körpers                                            | S. 41 |
| Abb. I-3.6  | Temperaturverlauf während der Heizphase, 19.01.2009 - 09.02.2009                   | S. 42 |
| Abb. I-3.7  | Temperaturverlauf während der Kühlphase, 27.07.2009 - 17.08.2009                   | S. 42 |
| Abb. I-3.8  | Temperaturverlauf der Sonden S10 & S15 in einer Tiefe von 50 Metern, Heizphase     | S. 43 |
| Abb. I-3.9  | Temperaturverlauf der Sonden S10 & S15 in einer Tiefe von 100 Metern, Heizphase    | S. 43 |
| Abb. I-3.10 | Temperaturverlauf der Sonden S8 & S12 in einer Tiefe von 50 Metern, Kühlphase      | S. 44 |
| Abb. I-3.11 | Temperaturverlauf der Sonden S8 & S12 in einer Tiefe von 100 Metern, Kühlphase     | S. 44 |

#### Kapitel I-4:

| Abb. I-4.1 | Kältefahnen einer Erdwärmesonde bei unterschiedlichen Fließgeschwindigkeiten    | S. 45 |
|------------|---------------------------------------------------------------------------------|-------|
| Abb. I-4.2 | Dreidimensionales Temperaturmodell mit drei Erdwärmesonden und Grundwasserfluss | S. 47 |
| Abb. I-4.3 | Temperaturisolinie bei 10,3°C. Schrägansicht                                    | S. 47 |
| Abb. I-4.4 | Temperaturisolinie bei 10,3°C. Seitenansicht                                    | S. 47 |
| Abb. I-4.5 | Vier Simulationen der Untergrundtemperaturen bei unterschiedlicher Dauer        | S. 52 |
| Abb. I-4.6 | Drei Simulationen der Untergrundtemperaturen bei variabler Fließgeschwindigkeit | S. 54 |
| Abb. I-4.7 | Drei Simulationen der Untergrundtemperaturen bei variabler Fließgeschwindigkeit | S. 54 |
| Abb. I-4.8 | Vier Simulationen der Untergrundtemperaturen bei variablem Wärmeeintrag         | S. 55 |
| Abb. I-4.9 | Zwei Simulationen der Untergrundtemperaturen bei variablem Wärmeeintrag         | S. 55 |
|            |                                                                                 |       |

| Abb. I-4.10 | Rechteckanordnung des EWS-Feldes                                                 | S. 57 |
|-------------|----------------------------------------------------------------------------------|-------|
| Abb. I-4.11 | Versetzte Sondenanordnung des EWS-Feldes                                         | S. 59 |
| Abb. I-4.12 | Monatliche Temperaturentwicklung des Trägerfluids im Jahr 50 nach Inbetriebnahme | S. 61 |
| Abb. I-4.13 | Die jährlichen minimalen und maximalen Monats-Temperaturen des Trägerfluids      | S. 65 |
| Abb. I-4.14 | Monatliche Temperaturentwicklung des Trägerfluids im Jahr 50 nach Inbetriebnahme | S. 65 |

#### Abschnitt II

## Kapitel II-1:

| Abb. II-1.1 | Die optische Rückstreuung (ERBAş et al. 1999) und Abbildung eines LWL-Hybridkabels | S. 76 |
|-------------|------------------------------------------------------------------------------------|-------|
| Abb. II-1.2 | Schematischer Aufbau eines LWL-Hybridkabels und Pig-Tail für DTS-Messungen         | S. 77 |
| Abb. II-1.3 | Messaufbau des eTRT                                                                | S. 78 |

## Kapitel II-2:

| Abb. II-2.1 | Temperaturanstiegskurven | der LWL-Messungen und der | TRT-Messungen | S. 85 |
|-------------|--------------------------|---------------------------|---------------|-------|
|-------------|--------------------------|---------------------------|---------------|-------|

## Kapitel II-3:

| Abb. II-3.1  | Modellgeometrie von Gesamtmodell, Sondennahfeld und Sondenquerschnitt             | S. 93  |
|--------------|-----------------------------------------------------------------------------------|--------|
| Abb. II-3.2  | Schema des Sondenquerschnitts                                                     | S. 94  |
| Abb. II-3.3  | Modellpositionen des LWL-Kabels innerhalb des Bohrlochs der eTRT-Modelle          | S. 95  |
| Abb. II-3.4  | Meshing für Modellposition 1                                                      | S. 96  |
| Abb. II-3.5  | Aufbau von Slices und Layern bei Feflow                                           | S. 96  |
| Abb. II-3.6  | Sinusförmige Variation des Wärmeeintrags von Modells "eTRT_06-7"                  | S. 103 |
| Abb. II-3.7  | Ausbreitung der Temperatur von Modell "eTRT_04-1.1" nach 3 Tagen Erhitzung        | S. 107 |
| Abb. II-3.8  | Ergebnisse der 6 Modellpositionen von Modell eTRT_04-1.1 bis 1.6                  | S. 109 |
| Abb. II-3.9  | Ergebnisse der 6 Modellpositionen von Modell eTRT_04-2.1 bis 2.6                  | S. 110 |
| Abb. II-3.10 | Ergebnisse der 6 Modellpositionen von Modell eTRT_04-3.1 bis 3.6                  | S. 111 |
| Abb. II-3.11 | Ergebnisse der 6 Modellpositionen von Modell eTRT_04-4.1 bis 4.6                  | S. 112 |
| Abb. II-3.12 | Ergebnisse der 6 Modellpositionen von Modell eTRT_04-5.1 bis 5.6                  | S. 113 |
| Abb. II-3.13 | Temperaturkurven von Observation Point 1 der Modelle eTRT_04-1.1 bis 1.6          | S. 115 |
| Abb. II-3.14 | Temperaturkurven von Observation Point 1 der Modelle eTRT_04-2.1 bis 2.6          | S. 115 |
| Abb. II-3.15 | Temperaturkurven von Observation Point 1 der Modelle eTRT_04-3.1 bis 3.6          | S. 116 |
| Abb. II-3.16 | Temperaturkurven von Observation Point 1 der Modelle eTRT_04-4.1 bis 4.6          | S. 116 |
| Abb. II-3.17 | Temperaturkurven von Observation Point 1 der Modelle eTRT_04-5.1 bis 5.6          | S. 117 |
| Abb. II-3.18 | Verteilung der berechneten und der den Modellen vorgegebenen Wärmeleitfähigkeiten | S. 117 |
| Abb. II-3.19 | Ergebnisse der Modelle eTRT_05-1 auf Slice 02, 08 und 14                          | S. 120 |
| Abb. II-3.20 | Ergebnisse der Modelle eTRT_05-2 auf Slice 02, 08 und 14                          | S. 121 |
| Abb. II-3.21 | Ergebnisse der Modelle eTRT_05-3 auf Slice 02, 08 und 14                          | S. 122 |
| Abb. II-3.22 | Wärmeleitfähigkeits-Tiefen-Diagramm der Modelle eTRT_05-1, 2 und 3                | S. 124 |
| Abb. II-3.23 | Ergebnisse der Modelle eTRT_06-1, 2 und 3                                         | S. 125 |
| Abb. II-3.24 | Ergebnisse der Modelle eTRT_06-4, 5 und 6                                         | S. 126 |
| Abb. II-3.25 | Ergebnisse der Modelle eTRT_06-7 und 8                                            | S. 127 |
| Abb. II-3.26 | Temperaturkurven von Observation Point 1 der Modelle eTRT_06-1 bis 6              | S. 128 |

| Abb. II-3.27 | Temperaturkurven von Observation Point 1 der Modelle eTRT_06-7 und 8      | S. 128 |
|--------------|---------------------------------------------------------------------------|--------|
| Abb. II-3.28 | Ergebnisse der Modelle eTRT_07-1 auf Slice 02, 08 und 14                  | S. 130 |
| Abb. II-3.29 | Ergebnisse der Modelle eTRT_07-2 auf Slice 02, 08 und 14                  | S. 131 |
| Abb. II-3.30 | Ergebnisse der Modelle eTRT_07-3 auf Slice 02, 08 und 14                  | S. 132 |
| Abb. II-3.31 | Ergebnisse der Modelle eTRT_07-4 auf Slice 02, 08 und 14                  | S. 133 |
| Abb. II-3.32 | Ergebnisse der Modelle eTRT_07-5 auf Slice 02, 08 und 14                  | S. 134 |
| Abb. II-3.33 | Wärmeleitfähigkeits-Tiefen-Diagramm der Modelle eTRT_07-1 bis 5           | S. 137 |
| Abb. II-3.34 | Modellgeometrie des normalen Meshs der Messreihen eTRT_04 bis eTRT_07     | S. 140 |
| Abb. II-3.35 | Modellgeometrie des Meshs GruidBuilder fein                               | S. 140 |
| Abb. II-3.36 | Modellgeometrie des Meshs Triangle fein 2                                 | S. 141 |
| Abb. II-3.37 | Modellgeometrie des Meshs Triangle fein 4                                 | S. 141 |
| Abb. II-3.38 | Temperaturkurven von Observation Point 1 der Modelle eTRT_04-4.1c0 bis c7 | S. 144 |
| Abb. II-3.39 | Temperaturkurven von Observation Point 1 der Modelle eTRT_04-3.1c0 bis c7 | S. 145 |
| Abb. II-3.40 | Konvergenzplot der Modellreihe eTRT_04-4.1c                               | S. 146 |
|              |                                                                           |        |

## Kapitel II-4:

| Abb. II-4.1 | Darstellung der Temperaturänderung $4\pi\lambda T_b^{q}/q_1$ als Funktion der Zeit $\alpha t/r_b^2$ | S. 152 |
|-------------|-----------------------------------------------------------------------------------------------------|--------|
| Abb. II-4.2 | Temperaturkurve von Modell eTRT_06-7 mit Abklingkurve (zwischen Tag 3 und 8)                        | S. 155 |
| Abb. II-4.3 | Darstellung der Auswertung nach dem Relaxationsverfahren für Modell eTRT_06-7                       | S. 157 |

#### Tabellenverzeichnis

### Abschnitt I

#### Kapitel I-2:

| Tab. I-2.1   | Wärmeleitfähigkeit, vol. Wärmekapazität und Wärmeentzugsleistung (aus VDI 4640)        | S. 15 |
|--------------|----------------------------------------------------------------------------------------|-------|
| Tab. I-2.2   | Die ungestörte Bodentemperatur für einige deutsche Städte (nach EED 2.0)               | S. 16 |
| Tab. I-2.3   | Ergebnisse des TRT (Bericht Lohr Consult)                                              | S. 19 |
| Tab. I-2.4   | Standardabweichung von $T_0$ und die ungestörte Bodentemperatur der Sonden $T_{0mean}$ | S. 22 |
| Tab. I-2.5   | Über den Messzeitraum gemittelte Heizleistung pro Meter Kabellänge                     | S. 25 |
| Tab. I-2.6   | Durchschnittliche Wärmeleitfähigkeit des Untergrundes im Bereich der Sonden            | S. 31 |
|              |                                                                                        |       |
| Kapitel I-3: |                                                                                        |       |

| Tab. I-3.1 | Schaltungsmodus der Sonden während der | Temperaturüberwachungsperiode  | S. 37 |
|------------|----------------------------------------|--------------------------------|-------|
|            |                                        | . en perata abernaciangepeneae | ••••  |

## Kapitel I-4:

| Tab. I-4.1  | Modellierte Wärmeentnahmeleistungen der Erdwärmesonden bei zwei Betriebsmodi       | S. 48 |
|-------------|------------------------------------------------------------------------------------|-------|
| Tab. I-4.2  | Wärmeentzugsleistung der Erdwärmesonden im alternierenden Modellierungsmodus       | S. 49 |
| Tab. I-4.3  | Abschätzung der Kältefahnenlänge von Modell 1 bis 6                                | S. 50 |
| Tab. I-4.4  | Kältefahnenlängen von Modell 1 bis 6                                               | S. 51 |
| Tab. I-4.5  | Kältefahnenlängen im Vergleich                                                     | S. 52 |
| Tab. I-4.6  | Heiz- und Kühlbedarf sowie der daraus berechnete Wärme- bzw. Kälteentzug           | S. 58 |
| Tab. I-4.7  | Durchschnittliche monatliche Soletemperatur                                        | S. 61 |
| Tab. I-4.8  | Bestimmung der Sondenlänge mit Hilfe von Entzugsleistungen nach VDI 4640, Blatt 2_ | S. 62 |
| Tab. I-4.9  | Wärmeentzug der Planungsgrundlage und der real benötigte Wärmeentzug               | S. 63 |
| Tab. I-4.10 | Kälteentzug der Planungsgrundlage und der real benötigte Kälteentzug               | S. 63 |
|             |                                                                                    |       |

### Abschnitt II

## Kapitel II-3:

| Tab. II-3.1  | Geometrie des Sondenquerschnitts                                                   | S. 94  |
|--------------|------------------------------------------------------------------------------------|--------|
| Tab. II-3.2  | Globale Modellparameter                                                            | S. 97  |
| Tab. II-3.3  | Wärmeleitfähigkeitskombinationen des Gesteins und des Verpressmaterials            | S. 100 |
| Tab. II-3.4  | ModelInamen der Modellreihe eTRT_04                                                | S. 100 |
| Tab. II-3.5  | Modellnamen der Modellreihe eTRT_05                                                | S. 101 |
| Tab. II-3.6  | Änderung des Wärmeeintrags bezüglich des Ausgangsmodells "eTRT_04-1.1"             | S. 102 |
| Tab. II-3.7  | Hydraulic Head Boundary Condition-Verteilung der Modellreihe eTRT_07               | S. 105 |
| Tab. II-3.8  | Flow Parameter und Filtergeschwindigkeiten der Modellreihe eTRT_07                 | S. 105 |
| Tab. II-3.9  | Reichweite der Temperaturausbreitung                                               | S. 107 |
| Tab. II-3.10 | Ergebnisse der Wärmeleitfähigkeitsberechnung Modellreihe eTRT_04                   | S. 108 |
| Tab. II-3.11 | Mittlere Abweichung der Wärmeleitfähigkeiten bei verschiedenen Modellpositionen    | S. 118 |
| Tab. II-3.12 | Wärmeleitfähigkeiten der Modelle eTRT_05-1 bis 3                                   | S. 123 |
| Tab. II-3.13 | Wärmeleitfähigkeiten der Slices 7 und 10 von Modell eTRT_05-1 und 3                | S. 123 |
| Tab. II-3.14 | Ergebnisse der Wärmeleitfähigkeitsberechnung Modellreihe eTRT_06                   | S. 129 |
| Tab. II-3.15 | Wärmeleitfähigkeiten der Modelle eTRT_07-1 bis 5 am linken, unteren Glasfaserkabel | S. 135 |

| Wärmeleitfähigkeiten der Modelle eTRT_07-1 bis 5 am rechten, oberen Glasfaserkabel | S. 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Berechnete Fließgeschwindigkeiten über die Péclet-Zahl-Analyse, $I = r_0$          | S. 138                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Berechnete Fließgeschwindigkeiten über die Péclet-Zahl-Analyse, I nach FOWLER 2000 | S. 138                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Meshingparameter der Kontroll-Modelle eTRT_04-4.1c und eTRT_04-3.1c                | S. 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ergebnisse der Wärmeleitfähigkeitsberechnung der Kontrollmodellierungen            | S. 143                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Meshingparameter der Kontroll-Modelle eTRT_04-4.1c4 bis c12                        | S. 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                    | Wärmeleitfähigkeiten der Modelle eTRT_07-1 bis 5 am rechten, oberen Glasfaserkabel<br>Berechnete Fließgeschwindigkeiten über die Péclet-Zahl-Analyse, I = r <sub>0</sub><br>Berechnete Fließgeschwindigkeiten über die Péclet-Zahl-Analyse, I nach FOWLER 2000<br>Meshingparameter der Kontroll-Modelle eTRT_04-4.1c und eTRT_04-3.1c<br>Ergebnisse der Wärmeleitfähigkeitsberechnung der Kontrollmodellierungen<br>Meshingparameter der Kontroll-Modelle eTRT_04-4.1c4 bis c12 |

### Kapitel II-4:

| Tab. II-4.1 | Fehler zur exakten Lösung bei unterschiedlichen $lpha t/r_b^2$                 | S. 153 |
|-------------|--------------------------------------------------------------------------------|--------|
| Tab. II-4.2 | Wärmeleitfähigkeit von Modell eTRT_06-7 berechnet mit dem Relaxationsverfahren | S. 157 |

## Symbol- und Gleichungsverzeichnis

### Abschnitt I

| Gle | Gleichung I-2.1 bis I-2.5: |                                                                |          |
|-----|----------------------------|----------------------------------------------------------------|----------|
|     | $T_{\mathrm{f}}$           | mittlere Fluidtemperatur [°C]                                  |          |
|     | Ż                          | Heizleistung [W]                                               |          |
|     | λ                          | Wärmeleitfähigkeit Untergrund [W/(m K)]                        |          |
|     | Н                          | Tiefe der EWS [m]                                              |          |
|     | t                          | Zeit [s]                                                       |          |
|     | α                          | Temperaturleitfähigkeit [m²/s]                                 |          |
|     | $ ho c_p$                  | volumetrische Wärmekapazität Untergrund [J/(m <sup>3</sup> K)] |          |
|     | r <sub>0</sub>             | Bohrlochradius [m]                                             |          |
|     | γ                          | Euler-Mascheroni-Konstante (0,5772)                            |          |
|     | $R_b$                      | thermischer Bohrlochwiderstand [(m K)/W]                       |          |
|     | Ts                         | Temperatur ungestörter Untergrund [°C]                         |          |
| Gle | ichung                     | I-3.1:                                                         | S. 40    |
|     | Ż                          | Wärmeleistung [W]                                              |          |
|     | λ                          | Wärmeleitfähigkeit [W/(m K)]                                   |          |
|     | Δx                         | Abstand zwischen x1 und x2 [m]                                 |          |
|     | А                          | wärmedurchströmte Fläche [m <sup>2</sup> ]                     |          |
|     | $\Delta T$                 | Temperaturdifferenz am Punkt x1 und x2                         |          |
| Gle | ichung                     | I-4.1 bis I-4.2:                                               | S. 49-50 |
|     | Va                         | Abstandsgeschwindigkeit [m/s]                                  |          |
|     | Vf                         | Filtergeschwindigkeit [m/s]                                    |          |
|     | φ                          | Porosität [-]                                                  |          |
|     | $\dot{V}$                  | Volumenstrom [m <sup>3</sup> /s]                               |          |
|     | А                          | Grundwasserquerschnittsfläche [m <sup>2</sup> ]                |          |
|     | R                          | Retardationsfaktor [-]                                         |          |
|     | $\rho_s c_s$               | volumetrische Wärmekapazität Gestein [J/(m <sup>3</sup> K)]    |          |
|     | $\rho_f c_f$               | volumetrische Wärmekapazität Fluid [J/(m <sup>3</sup> K)]      |          |
|     | 1                          | Länge der Kältefahne [m]                                       |          |
|     | t                          | Zeit [s]                                                       |          |
|     | $F_L$                      | Wärmeentnahmeleistung pro Länge [W/m]                          |          |
|     | $D_{t}$                    | transversaler Wärmedispersionskoeffizient [m <sup>2</sup> /s]  |          |
|     | $\Delta T_{x}$             | Differenz zur Hintergrundtemperatur [K]                        |          |
|     | $\lambda_{total}$          | Wärmeleitfähigkeit Gestein & Fluid [W/(m K)]                   |          |
|     | $\alpha_{\rm t}$           | transversale Dispersivität [m]                                 |          |

#### Abschnitt II

| leichung II                       | -1.1 bis II-1.3:                                                              | S. 79-80 |
|-----------------------------------|-------------------------------------------------------------------------------|----------|
| λ                                 | Wärmeleitfähigkeit [W/(m K)]                                                  |          |
| $\dot{Q_L}$                       | Heizleistung pro Längeneinheit des Messabschnitts [W/m]                       |          |
| m                                 | Steigung der Regressionsgeraden durch die Werte im Auswertebereich [-]        |          |
| n                                 | Anzahl Temperaturdaten im Auswertebereich [-]                                 |          |
| ti                                | Zeitpunkt i des Auswertebereichs [s]                                          |          |
| $\overline{\ln(t)}$               | arithmetisches Mittel der logarithmischen Zeitwerte im Auswertebereich [-]    |          |
| $T_i$                             | Temperatur i der Glasfaser [°C]                                               |          |
| T                                 | arithmetisches Mittel der Glasfaser-Temperaturwerte [°C]                      |          |
| r <sub>0</sub>                    | Bohrlochradius [m]                                                            |          |
| α                                 | Temperaturleitfähigkeit ( $\alpha = \lambda/(\rho c_p)$ ) [m <sup>2</sup> /s] |          |
| $ ho c_p$                         | volumetrische Wärmekapazität [J/(m <sup>3</sup> K)]                           |          |
| r                                 | Radius der Temperaturfront [m]                                                |          |
| t                                 | Dauer der konstanten Erhitzung [s]                                            |          |
| φ                                 | Porosität [-]                                                                 |          |
| th                                | Dauer des Aufheizvorgangs [s]                                                 |          |
| $\overline{\ln(\frac{t}{t-t_h})}$ | arithmetisches Mittel der logarithmischen Zeitwerte im Auswertebereich [-]    |          |
|                                   |                                                                               |          |

### Gleichung II-1.4 bis II-1.6: S. 81

| Pe                | Péclet-Zahl [-]                                                                            |
|-------------------|--------------------------------------------------------------------------------------------|
| Re                | Reynolds-Zahl [-]                                                                          |
| Pr                | Prandtl-Zahl [-]                                                                           |
| $\lambda_{kond}$  | konduktive Wärmeleitfähigkeit Gestein [W/(m K)]                                            |
| $\lambda_{total}$ | konduktive Wärmeleitfähigkeit Gestein + advektiver Anteil durch Grundwasserfluss [W/(m K)] |
| 1                 | charakteristische Länge [m]                                                                |
| v                 | Fließgeschwindigkeit Grundwasser [m/s]                                                     |
| ρ                 | Dichte Grundwasser [kg/m <sup>3</sup> ]                                                    |
| Cp                | spezifische Wärmekapazität Grundwasser [J/(kg K)]                                          |
|                   |                                                                                            |

 Gleichung II-2.1:
 S. 84

 m Steigung der Regressionsgeraden durch die Werte im Auswertebereich [-]

 ti Zeitpunkt i des Auswertebereichs [s]

  $\overline{\ln(t)}$  arithmetisches Mittel der logarithmischen Zeitwerte [-]

 Ti Temperatur i der Glasfaser [°C]

  $\overline{T}$  arithmetisches Mittel der Glasfaser-Temperaturwerte [°C]

| Gleici | hung II                                | -3.1 bis II-3.10: S. 87-91                                                                           |
|--------|----------------------------------------|------------------------------------------------------------------------------------------------------|
|        | S <sub>0</sub>                         | spezifischer Speicherkoeffizient (Kompressibilität) [m <sup>-1</sup> ]                               |
|        | h                                      | Hydraulic Head [m]                                                                                   |
|        | t                                      | Zeit [s]                                                                                             |
|        | $q_{\mathrm{i}}{}^{\mathrm{f}}$        | Vektor der Darcy Geschwindigkeit des Fluids [m/s]                                                    |
|        | Xi                                     | Raumkoordinate in einem kartesischen System [m]                                                      |
|        | $Q_{ ho}$                              | Quellen-/Senkenfunktion des Fluids für Massen ( $Q_C$ ), und Wärmetransport ( $Q_T$ ) (DIERSCH 2005) |
|        | Qeb                                    | Term der erweiterten Boussinesq-Approximation (DIERSCH 2005)                                         |
|        | φ                                      | Porosität [-]                                                                                        |
|        | $\rho^{\rm f}$                         | Dichte des Fluids [kg/m <sup>3</sup> ]                                                               |
|        | ρs                                     | Dichte der Festphase [kg/m <sup>3</sup> ]                                                            |
|        | Cf                                     | spezifische Wärmekapazität des Fluids [J/(kg K)]                                                     |
|        | Cs                                     | spezifische Wärmekapazität der Festphase [J/(kg K)]                                                  |
|        | Т                                      | Temperatur [°C]                                                                                      |
|        | T <sub>0</sub>                         | Referenztemperatur [°C]                                                                              |
|        | $\lambda_{ij}$                         | Tensor hydrodynamischer Thermodispersion [W/(m K)]                                                   |
|        | K <sub>ij</sub>                        | Tensor hydraulischer Konduktivität [m/s]                                                             |
|        | $\mathbf{k}_{ij}$                      | Tensor hydraulischer Permeabilität [m²]                                                              |
|        | ej                                     | Gravitations-Einheitsvektor (e <sub>j</sub> =-g <sub>j</sub> /g) [-]                                 |
|        | g                                      | Gravitationsbeschleunigung [m/s <sup>2</sup> ]                                                       |
|        | fμ                                     | konstitutive Viskositäts-Verhältnisfunktion [-]                                                      |
|        | $\boldsymbol{\mu}^{f}$                 | dynamische Viskosität des Fluids [Ns/m²]                                                             |
|        | $h_{i^{R}} \\$                         | fester Randbedingungswert für den Hydraulic Head [m]                                                 |
|        | $q_{n_h}$                              | normaler Darcy Fluss des Fluids [m/d]                                                                |
|        | $q_{\mathrm{h}}{}^{\mathrm{R}}$        | fester Randbedingungswert für den Darcy Fluss in oder aus dem Modell [m/d]                           |
|        | $\Phi_{\rm h}$                         | Fluid-Transfer-Koeffizient [d <sup>-1</sup> ]                                                        |
|        | $h_2^R$                                | fester Randbedingungswert für den Hydraulic Head [m]                                                 |
|        | $Q_{\rho^{W}}$                         | Quellenfunktion [m <sup>3</sup> /d]                                                                  |
|        | $Q_1{}^w \\$                           | fester Randbedingungswert für den Wasserzu- oder -abstrom [m³/d]                                     |
|        | $T_{i}{}^{R} \\$                       | fester Randbedingungswert für die Temperatur [°C]                                                    |
|        | $q_{n_T}$                              | normaler Wärmefluss [J/m²/d]                                                                         |
|        | $\mathbf{q}_{\mathrm{T}^{\mathrm{R}}}$ | fester Randbedingungswert für den Wärmefluss in oder aus dem Modell [J/m²/d]                         |
|        | $\Phi_{\mathrm{T}}$                    | Wärme-Transfer-Koeffizient [J/m²/K/d]                                                                |
|        | $T_3^R$                                | fester Randbedingungswert für die Temperatur [°C]                                                    |
|        | $Q_{T^W} \\$                           | Wärmequellenfunktion [J/d]                                                                           |
|        | $Q_1{}^w \\$                           | fester Randbedingungswert für den Wärmezu- oder -abstrom [J/d]                                       |
|        | P <sub>total</sub>                     | Gesamtparameter ( $\lambda$ oder $\rho c_p$ ) [W/(m K) oder J/(m <sup>3</sup> K)]                    |
|        | P <sub>fluid</sub>                     | Fluidparameter ( $\lambda$ oder $\rho c_p$ ) [W/(m K) oder J/(m <sup>3</sup> K)]                     |
|        | $P_{solid}$                            | Gesteinsparameter ( $\lambda$ oder $\rho c_p$ ) [W/(m K) oder J/(m <sup>3</sup> K)]                  |
|        | φ                                      | Porosität [-]                                                                                        |

|       |                                    |                                                                          | _  |         |
|-------|------------------------------------|--------------------------------------------------------------------------|----|---------|
| Gleic | hung II-                           | 3.11 bis II-3.13:                                                        | S. | 104     |
|       | V                                  | Durchflussrate [m <sup>3</sup> /s]                                       |    |         |
|       | $\mathbf{k}_{\mathrm{f}}$          | Durchlässigkeitsbeiwert [m/s]                                            |    |         |
|       | F                                  | durchströmte Fläche [m <sup>2</sup> ]                                    |    |         |
|       | i                                  | hydraulischer Gradient [-]                                               |    |         |
|       | h                                  | Druckhöhenunterschied [m]                                                |    |         |
|       | 1                                  | Länge der Fließstrecke [m]                                               |    |         |
|       | Vf                                 | Filtergeschwindigkeit [m/s]                                              |    |         |
|       |                                    |                                                                          |    |         |
| Gleic | hung II-                           | 4.1 bis II-4.7:                                                          | S. | 150-156 |
|       | Τ <sup>q</sup>                     | Temperatur [K]                                                           |    |         |
|       | r                                  | Radius [m]                                                               |    |         |
|       | t                                  | Zeit [s]                                                                 |    |         |
|       | q                                  | Wärmefluss [W/m]                                                         |    |         |
|       | λ                                  | Wärmeleitfähigkeit [W/(m K)]                                             |    |         |
|       | r <sub>b</sub>                     | Bohrlochradius [m]                                                       |    |         |
|       | α                                  | Temperaturleitfähigkeit [m²/s]                                           |    |         |
|       | J <sub>0</sub> (u), J <sub>1</sub> | (u) Bessel Funktion erster Ordnung                                       |    |         |
|       | Y <sub>0</sub> (u), Y <sub>1</sub> | (u) Bessel-Funktion zweiter Ordnung                                      |    |         |
|       | K <sub>v</sub> (x)                 | modifizierte Bessel-, bzw. MacDonald-Funktion                            |    |         |
|       | Γ(k)                               | Gamma-Funktion, $\Gamma(k)$ entspricht (k-1)! (ABRAMOWITZ & STEGUN 1964) |    |         |
|       | $T_{\mathrm{f}}$                   | Temperatur Fluid [K]                                                     |    |         |
|       | $\mathbf{q}_{\mathbf{k}}$          | konstanter Wärmefluss [W/m]                                              |    |         |
|       | γ                                  | Euler-Mascheroni-Konstante [-]                                           |    |         |
|       | R <sub>b</sub>                     | thermischer Bohrlochwiderstand [(m K)/W]                                 |    |         |

 $T_{s}$ 

 $\dot{Q_L}$ 

th

 $T_{b}$ 

th

 $Q_{total}$ 

Temperatur ungestörter Untergrund [°C]

ungestörte Temperatur der Glasfaser [°C]

eingebrachte Gesamtwärmemenge [J/m]

Dauer des Aufheizvorgangs [s]

Dauer des Aufheizvorgangs [s]

Heizleistung pro Längeneinheit des Messabschnitts [W/m]

#### Kurzfassung

Die oberflächennahe Geothermie leistet im Bereich der Nutzung regenerativer Wärme einen wichtigen Beitrag zum Klima- und Umweltschutz. Um die technische Nutzung oberflächennaher Geothermie zu optimieren und Risiken zu minimieren, ist die Kenntnis der Beschaffenheit des geologischen Untergrundes ausschlaggebend. Die Bestimmung von Untergrundparametern, wie z.B. der Wärmeleitfähigkeit der erbohrten Gesteine, ist eine zentrale Herausforderung an die Planer von Erdwärmesondenanlagen, um Unsicherheiten in der Planungsgrundlage von oberflächennahen Geothermieprojekten zu minimieren.

Die vorliegende Dissertation gliedert sich in zwei Abschnitte: Abschnitt I befasst sich mit der praktischen Qualitätssicherung an einem Beispielobjekt, Abschnitt II mit der Überprüfung einer neuen Messmethode zur Ermittlung von tiefenaufgelösten Wärmeleitfähigkeiten bei Erdwärmesonden mittels numerischer Modellierung.

In Abschnitt I zeigte sich, dass der enhanced Thermal Response Test (eTRT) ein wirksames Werkzeug zur Bestimmung tiefenaufgelöster Wärmeleitfähigkeiten bei Erdwärmesonden ist und überdies dazu beitragen kann, unverpresste, sowie von Grundwasser durchströmte Bereiche im Untergrund der Erdwärmesonde festzustellen.

Eine Temperaturüberwachung des Erdwärmesondenfeldes im ersten Betriebsjahr zeigte keine gegenseitige Beeinflussung einzelner Sonden. Mittels numerischer Modelle konnte gezeigt werden, dass Beeinflussungsmaxima von Fließgeschwindigkeit und Fließrichtung, sowie von der Dauer des Wärmeentzugs abhängig sind und die nicht zu erkennende Beeinflussung benachbarter Sonden alle drei Gründe als Ursache haben kann.

Die Dimensionierung des Erdwärmesondenfeldes wurde mittels zweier unterschiedlicher Modellierungsprogramme durchgeführt. Ein Vergleich der Ergebnisse zeigte, dass sie nur unwesentlich voneinander abweichen und die Effizienz des Feldes nicht beeinflussen. Der Vergleich zwischen dem geplanten und dem tatsächlichem Wärmebedarf des ersten Betriebsjahres ergab eine Abweichung von ca. 35%. Dies zeigt, dass die Nutzungsparameter (Wärme-, Kältebedarf, etc.) die Effizienz der Anlage maßgeblich beeinflussen können.

In Abschnitt II wurde der eTRT mittels numerischer Modellierung auf seine Reproduzierbarkeit hin überprüft. Bei einem rein konduktiven Wärmetransport im Untergrund zeigte sich, dass die Ergebnisse der berechneten Wärmeleitfähigkeiten sehr gut mit den im Modell vorgegebenen Wärmeleitfähigkeiten übereinstimmen. Selbst unter ungünstigen Bedingungen betrug die maximale Abweichung lediglich ca. 6% vom zu erwartenden Wert. Auch die vertikale Auflösung von Gesteinsschichten mit unterschiedlichen Wärmeleitfähigkeiten gelingt bei den Modellierungen sehr gut. Die Detektion von grundwasserdurchflossenen Schichten ist in den Modellen gut abbildbar und es zeigt sich eine große Abhängigkeit zwischen der Erhöhung der effektiven Wärmeleitfähigkeit und der Grundwasserfließgeschwindigkeit.

Problematisch bleibt die auch bereits bei Feldversuchen festgestellte hohe Abhängigkeit des Tests von einer konstanten Wärmezufuhr (konstante elektrische Spannung). Die Modelle, die sich mit Abfällen, bzw. Anstiegen der Wärmezufuhr, sowie fluktuierendem Wärmeeintrag befassten, liefern in der Modellierung ohne Nachbearbeitung keine brauchbaren Ergebnisse. Die Bestimmung der Wärmeleitfähigkeit über das Relaxationsverhalten des Untergrundes liefert jedoch auch bei Wärmeeintragsschwankungen hinreichend genaue Ergebnisse. Die mathematische Nachbearbeitung von fehlerhaften Temperaturkurven bietet zusätzlich einen Einstiegspunkt für weiterführende Forschung.

#### Abstract

Shallow geothermal energy plays a major role in the field of regenerative energy utilization, thereby making a significant contribution to the protection of climate and environment. To optimize the technical utilization of shallow geothermal district heating and to minimize uncertainties in the planning criteria, knowledge of the local geology is crucial. The determination of underground parameters, such as the thermal conductivity of the intersected rocks, is a central challenge for the planners of borehole heat exchangers (BHE).

This dissertation is divided into two main chapters: chapter I deals with the practical quality control at an example site. Chapter II describes the numerical testing of a new measuring method that determines depth dependent thermal conductivities for borehole heat exchangers.

In chapter I it was shown, that the enhanced thermal response test (eTRT) is a powerful tool for the determination of depth dependent thermal conductivities of BHEs. It can furthermore help to point out ungrouted zones as well as areas that are characterized by groundwater flow.

Temperature monitoring of the BHE-field during the first operating year has shown no mutual influence between single BHEs. With numerical modeling it has been shown, that influence maxima are dependent on flow velocity and flow direction, as well as the duration of the heat withdrawal. The observed lack of influence between the heat exchangers can be caused by the three parameters mentioned above.

The dimensioning of the BHE-field has been carried out using two different modeling programs. A comparison of the results showed, that they produce only insignificant differences which do not influence the efficiency of the field. The comparison between the results of the planned and the real heat demand of the first operating year showed a deviation of about 35%. This demonstrates that the utilization parameters such as heat or cooling demand can have a crucial effect on the efficiency of the facility.

In chapter II numerical modeling has been used to test the reproducibility of the eTRT. It has been shown that the calculated results are consistent with the given thermal conductivities of the models, when there is only conductive heat transport in the underground. Even under unfavorable conditions the maximum deviation from the expected value did not exceed 6%. The vertical resolution of rock layers with different thermal conductivities did show a good reproducibility as well. It was also shown that the method is capable of detecting layers with groundwater flow. A high dependency between the increase of effective thermal conductivity and groundwater flow velocity has been observed.

The models as well as observations from field experiments have shown that a stable heat supply (constant voltage) during the test is crucial. The models that contained an increase or a decrease as well as a fluctuation of the heat supply, provide no useful results without post-processing of the data. Only the evaluation of the thermal conductivity with the thermal relaxation behavior provides suitable results when the heat supply is fluctuating. The mathematical post-processing of flawed temperature data presents an entry point for further research.

Dissertationsschrift

Bestimmung thermischer Untergrundparameter in Erdwärmesondenfeldern und Evaluierung tiefenaufgelöster Thermal Response Tests durch thermohydraulische Modellierungen

#### Einleitung

Die Gewinnung von im Untergrund gespeicherter, geothermischer Wärme ist heute eine weltweit verbreitete Technologie zur Erzeugung von Heizwärme und elektrischer Energie. Da der natürliche geothermische Wärmefluss aus dem Erdinneren den weltweiten jährlichen Energiebedarf deutlich übersteigt (CLAUSER 2006, STOBER & BUCHER 2012), bietet die Geothermie ein enormes theoretisches Potential zur regenerativen Energieversorgung.

Die Nutzung von im Erdreich gespeicherter Wärme wird in zwei Hauptgruppen unterteilt. Zum einen die **Tiefe Geothermie**, bei der die Wärme meist über Tiefbohrungen mit mehr als 1.000 m Tiefe erschlossen wird und je nach Temperaturniveau der geförderten Fluide zur Strom- und Wärmeerzeugung verwendet werden kann. Zum anderen die **Oberflächennahe Geothermie**, deren geförderte Wärme ausschließlich zu Heiz- aber auch Kühlzwecken verwendet wird. Die Aufteilung beider Gruppen erfolgt über die Tiefe der Gewinnung. Geschieht die Förderung der Wärme aus Tiefenbereichen größer 400 m, so spricht man von Tiefer, liegt der Förderbereich darüber, so spricht man von Oberflächennaher Geothermie.

Das durch Oberflächennahe Geothermie erschlossene Temperaturniveau bewegt sich in Deutschland in den meisten Fällen in einem Temperaturbereich, der für eine direkte Heizung von Gebäuden ungeeignet ist (ca. 8-15°C). Aus diesem Grund wird die erschlossene Wärme mittels einer Wärmepumpe auf ein erhöhtes Temperaturniveau gehoben, welches für den Betrieb von Niedertemperatur-Heizsystemen (Fuß- / Wandbodenheizung, Flächenheizung, etc.) ausreichend ist (ca. 35-45°C). Im Bereich der Oberflächennahe Geothermie gibt es wiederum eine zweifache Einteilung der Wärmegewinnungssysteme. Man teilt sie in **offene** und **geschlossene Systeme** ein.

Als offene Systeme bezeichnet man die Nutzung von geothermischer Wärme durch die Direktentnahme eines Wärmeträgermediums aus dem Untergrund. In den meisten Fällen ist dies natürlich im Untergrund vorhandenes Grundwasser, welches über einen Entnahmebrunnen gefördert und nach der thermischen Nutzung durch einen zweiten Brunnen wieder in den Untergrund reinfiltriert wird. Es gibt jedoch auch Sondersysteme, bei denen z.B. Gruben- oder Drainagewässer zur Wärmegewinnung verwendet werden. Die Grubenwassernutzung nimmt unter dem Begriff der Oberflächennahen Geothermie zusätzlich eine Sonderstellung ein, da sie über das untertägige Grubengebäude oft auch Wärme aus Tiefen größer 400 m erschließen kann.

Als ein **geschlossenes System** bezeichnet man ein im Untergrund eingebrachtes Wärmetauschersystem, bei dem das Wärmeträgermedium nicht in direktem Kontakt zum

Umgebungsgestein steht. Zumeist handelt es sich bei den Wärmetauschern um in den Untergrund eingebrachte Rohre, die mit einem flüssigen Wärmeträgermedium gefüllt sind. Das Medium besteht meist aus einem Wasser / Frostschutzmittelgemisch, welches landläufig auch Sole genannt wird (nicht zu verwechseln mit dem hydrogeologischen Begriff der Sole). Wird dem Wärmeträgermedium an der Erdoberfläche z.B. durch eine Wärmepumpe Wärme entnommen, kann durch Zirkulation der im Rohr befindlichen Sole, die Umgebungswärme des Untergrundes durch das entstandene Temperaturgefälle dem Untergrund entzogen werden. Die im Untergrund erwärmte Sole wird mittels einer Zirkulationspumpe zur Wärmepumpe gebracht, dort durch die Entnahme der zwischengespeicherten Wärme herabgekühlt und wieder in den Sondenrücklauf reinjiziert. Der so entstandene Kreislaufprozess ermöglicht die Nutzung der geothermischen Wärme. Beispiele für geschlossene Systeme sind z.B. Erdwärmekollektoren und -körbe, Energiepfähle und Grabenkollektoren, sowie **Erdwärmesonden**.

**Erdwärmesonden** sind die in Deutschland gebräuchlichsten Systeme zum Entzug oberflächennaher Erdwärme. Sie bestehen aus einem vertikal in den Untergrund eingebrachten Wärmetauscher, der sich meist aus 2 bis 4, über U-Stücke am unteren Ende miteinander verbundenen Kunststoff-Rohren zusammensetzt. Diese sind über an die Sondenendstücke angebrachte Vertikalrohre mit dem Heizsystem des zu beheizenden (oder zu kühlenden) Objektes verbunden. Bei Erdwärmesonden sind in den meisten Fällen Wärmepumpen zur Nutzung der geförderten Wärme unerlässlich.

Die vorliegende Dissertationsschrift befasst sich in der Hauptsache mit der Nutzung von geothermischer Wärme durch Erdwärmesonden, sowie der Bestimmung von thermischen Untergrundparametern, die zur richtigen Bemessung von Erdwärmesondenanlagen benötigt werden. Hierfür wurden vor Ort-Messungen, als auch verschiedene Arten der Modellierung zur Beschreibung und Verifizierung der erhaltenen Daten durchgeführt.

**Abschnitt I** der vorliegenden Schrift ist dem ersten Teil des Abschlussberichts einer wissenschaftlichen Studie entnommen (MALM et al. 2010), die vom Autor als Mitarbeiter des Instituts für Geothermisches Ressourcenmanagement (igem) durchgeführt und vom Ministerium für Umwelt, Forsten und Verbraucherschutz, Rheinland-Pfalz (MUFV, RLP) beauftragt und finanziert wurde. Der vorliegende Abschnitt I wurde gegenüber dem am 23.06.2010 beim Ministerium eingereichten Bericht (MALM et al. 2010) im Rahmen der vorliegenden Dissertationsschrift überarbeitet und geringfügig erweitert.

Innerhalb des Forschungsprojekts wurden verschiedene Arten der Erfassung von Untergrundparametern an einem Erdwärmesondenfeld in Kaiserslautern getestet und die

Bemessung des Feldes sowie verschiedene Untergrundeigenschaften mit analytischen und numerischen Methoden überprüft. Abschnitt I stellt das ursprüngliche Dissertationsprojekt dar, welches zur Erweiterung der Dissertationsschrift um die Arbeiten im folgenden Abschnitt II ergänzt wurde. Der restliche, vom Autor nicht verfasste Teil des Forschungsberichtes kann in MALM et al. (2010) nachgelesen werden.

Abschnitt II der Arbeit bezieht sich auf eine ausgewählte Methode zur Ermittlung der Untergrundwärmeleitfähigkeit, dem bereits in Abschnitt I beschriebenen und innerhalb des Projektes durchgeführten enhanced Thermal Response Test (eTRT). Numerische Modellierungen sollen hier die Anwendbarkeit des Tests, sowie die möglichen Fehlerquellen und die Genauigkeit der Messergebnisse überprüfen und eventuelle Schwachstellen in Versuchsaufbau und Datenauswertung aufzeigen. Direktvergleiche zwischen verschiedenen Thermal Response Test-Arten sollen zusätzlich Hinweise zur Übertragbarkeit der erhaltenen Werte liefern.

#### Datenerhebung

Die im Rahmen der Dissertationsschrift bearbeiteten Daten wurden, falls nicht anders vermerkt, vom Autor im Rahmen seiner Tätigkeit für das Institut für geothermisches Ressourcenmanagement (igem) erhoben und dem Autor für die Erstellung seiner Dissertationsschrift überlassen. Mit der Durchführung des Thermal Response Tests aus Kapitel II-2 wurde das hydrogeologische Fachbüro André Voutta Grundwasserhydraulik (www.avoutta.de) vom igem im Rahmen eines Projektes für die Stadtverwaltung Speyer beauftragt. Die Daten wurden dem Autor vom Dateninhaber (Stadtverwaltung Speyer) zur Verwendung in seiner Dissertationsschrift freundlich überlassen.

#### **Abschnitt I der Dissertation**

Abschlussbericht

"Qualitätssicherung bei Erdwärmesondenfeldern für Heiz- und Kühlzwecke und Überprüfung ihrer Effizienz im Ziel 2 Gebiet"

#### Teil A: Das Erdwärmesondenfeld

Auftraggeber: Ministerium für Umwelt, Forsten und Verbraucherschutz Rheinland-Pfalz

Institut für Geothermisches Ressourcenmanagement (igem) Berlinstr. 107a · 55411 Bingen am Rhein · www.igem-energie.de

Dipl. Geol. Florian Malm

Einreichung und Veröffentlichung des Berichts am 23.06.2010 Überarbeitung und Ergänzung im Rahmen der vorliegenden Dissertationsschrift
## Einleitung und Überblick Abschnitt I

Die Nutzung von oberflächennaher Geothermie ist ein fester Bestandteil der regenerativen Energiegewinnung in Deutschland. Neben anderen erdgebundenen Wärmepumpensystemen wie Erdwärmekollektoren, -registern und -körben sowie einer thermischen Grundwasserdirektnutzung mittels Brunnenbohrungen, sind Erdwärmesonden die in Deutschland am weitesten verbreitete Anwendung zur Erschließung von im Untergrund vorhandener Wärme (Abb. I-0.1). Erdwärmesonden bieten gegenüber anderen alternativen Energiequellen wie etwa der Solarthermie oder der Biomasse den Vorteil, dass sie sowohl zum Heizen als auch zum Kühlen verwendet werden können.



Abbildung I-0.1 Die Nutzung oberflächennaher Geothermie (Agentur für Erneuerbare Energie).

Der Wärmeaustausch mit dem Untergrund erfolgt über Bohrungen in denen durch Rohre ein Wärmeträgermedium (Sole) gepumpt wird. Die Wärme des umgebenden Gesteins kann auf diese Weise von der Sole aufgenommen und mittels einer Umwälzpumpe nach oben zur Haustechnik befördert werden. Das so entstandene geschlossene Wärmetauschersystem im Untergrund wird, im Fall der Wärmegewinnung, mit einer Wärmepumpenanlage verbunden. Innerhalb der Wärmepumpe zirkuliert ein Arbeitsmittel, welches der Sole über einen Wärmetauscher (Verdampfer) Wärme entzieht und sie auf einem höheren Temperaturniveau über einen zweiten Wärmetauscher (Verflüssiger) an das Heizkörperfluid abgibt. Richtig ausgelegte Erdwärmesondenanlagen können so bis zu vier Teile Wärmeenergie aus einem Teil elektrischer Energie erzeugen.

Für die Errichtung einer Erdwärmesondenanlage, müssen zuerst Bohrungen in den Untergrund abgeteuft werden. Die Erdwärmesonden bestehen in der Regel aus vier HDPE-Rohren (Doppel-U-Sonde), von denen jeweils zwei am unteren Ende über U-Stücke

miteinander verbundenen sind. Diese Rohre werden in die Bohrlöcher abgelassen und dann mit einer Spezial-Zement-Mischung im Bohrloch verpresst. Die Verpressung ermöglicht eine gute thermische Anbindung der Rohre an den umgebenden Untergrund und ist auch für die Abdichtung der Bohrungen nötig. Sie verhindert damit einen hydraulischen Kurzschluss zwischen mehreren, übereinanderliegenden Grundwasserleitern und ist somit entscheidend für den Grundwasserschutz am Standort.

Um einzelne Erdwärmesonden und kleinere Erdwärmesondenanlagen zu planen, kann die Auslegung der Anlage entsprechend den Vorgaben der VDI 4640, Blatt 2 erfolgen. Diese Richtlinie gibt für bestimmte Gesteine und Vollbenutzungsdauern der Wärmepumpe Wärmeentzugsleistungen an, die bei der Bestimmung der jeweiligen Erdwärmesondenlänge helfen. Allerdings geben diese Tabellenwerte lediglich eine Richtgröße, bzw. -länge an, die mit einer relativ hohen Ungenauigkeit behaftet ist. Für kleinere Anlagen bietet diese Methode jedoch genügend Sicherheitsspielraum, um Fehldimensionierungen zu vermeiden. Bei Anlagen ab einer Gesamtleistung von 30 kW müssen jedoch spezielle Softwareprogramme verwendet werden, welche die Auslegung der Anlage detaillierter betrachten können.

Für solche Modellierungsprogramme (z.B. Earth Energy Designer, EWS, etc.), die auf einer analytischen Berechnungsmethode von Sondenlängen und Soletemperaturen beruhen, ist die Wahl der Eingabeparameter sehr wichtig. Vor allem die Wärmeleitfähigkeit des Untergrundes und des Verfüllmaterials, die ungestörte Bodentemperatur, der örtliche geothermische Wärmefluss (bzw. der geothermische Gradient), die monatlich aufgeteilte Heiz- und Kühlarbeit der Anlage (Wärme- und Kältebedarf des Objektes) sowie die vorgesehene Benutzungsdauer des Erdwärmesondensystems sind von großer Bedeutung. Während der monatliche Wärme- und Kältebedarf (inkl. Spitzenlast) von den Planern der Haustechnik ermittelt werden muss und die Wärmeleitfähigkeit des Verfüllmaterials vom Hersteller angegeben wird, ist eine schnelle Angabe der übrigen Parameter meist problematisch. Der geothermale Wärmefluss kann Standardkartenwerken (HURTER & CERMAK & RYBACH 1979, HUBER & PAHUD 1999b, HAENEL 2002. POLLACK et al. 2002) entnommen werden. Allerdings sind in diesen Karten keine kleinräumigen Unterschiede im lokalen Wärmefluss berücksichtigt. Für die Wärmeleitfähigkeiten des Gesteins können Tabellen zwar ungefähre Werte für gewisse Gesteinstypen angeben (z.B. aus der VDI 4640, Blatt 1), die Gegebenheiten vor Ort werden jedoch damit nicht mit ausreichender Genauigkeit abgebildet. Die ungestörte Bodentemperatur lässt sich mit der örtlichen durchschnittlichen Jahreslufttemperatur abschätzen, liefert jedoch ebenfalls keinen exakten, dem Untergrund entsprechenden Wert.

Um die angesprochenen Datenunsicherheiten zu minimieren, sind vor-Ort-Messungen der angesprochenen Parameter für größere Erdwärmesondenprojekte unerlässlich. Thermal Response Tests (TRTs) haben sich in den letzten zehn Jahren als nützliche Werkzeuge zur Bestimmung der in-situ-Wärmeleitfähigkeit und der ungestörten Untergrundtemperatur herausgestellt. Sie basieren auf der mathematischen Auswertung des zeitlichen Temperaturverlaufs, der sich bei einem konstantem Wärmeeintrag durch die in der Sonde zirkulierende Sole ergibt. Ein TRT liefert somit eine über die Bohrlänge der Sonde gemittelte Wärmeleitfähigkeit des Untergrundes und den Bohrlochwiderstand, der den Wärmeübertragungswiderstand zwischen Sole und dem umgebenden Gestein angibt.

Diese Messmethoden reichen jedoch nicht aus, um die Wärmetransportprozesse im Untergrund in ihrer Gänze zu beschreiben. Die effektiven Wärmeleitfähigkeiten des Gesteins können im Tiefenverlauf einer Bohrung je nach Geologie vor Ort durchaus beträchtlich variieren und somit zu Problemen bei der Bewertung der durch einen TRT erhaltenen Ergebnisse führen. Im Fall einer Untergrundgeologie mit einem thermisch schlecht leitenden Gestein im oberen Bereich der Bohrung sowie einem thermisch gut leitenden Gestein im unteren Bereich (Abb. I-0.2), gelten die Messwerte einer herkömmlichen Wärmeleitfähigkeitsmessung (TRT) nur für diese spezielle Bohrtiefe. Wird nun aufgrund der guten Gesamtwärmeleitfähigkeitswerte die Bohrtiefe weiterer Sonden verringert, so sinkt auch die effektive Gesamtwärmeleitfähigkeit dieser Sonden, da in diesem Fall der Anteil des thermisch schlecht leitenden Gesteins im oberen Bereich anteilig überwiegt. Eine Anpassung der Werte für die effektive Gesamtwärmeleitfähigkeit bei geringerer Bohrtiefe kann bis zu einem gewissen Maße über eine reine Interpretation des geologischen Profils der Bohrung und



über hinzugezogene tabellarische Wärmeleitfähigkeitswerte für verschiedene Gesteinstypen erfolgen. Allerdings handelt es sich dabei lediglich um Abschätzungen, deren Qualität von der Genauigkeit des geologischen Profils abhängt und bei denen z.B. feine Variationen der Wärmeleitfähigkeiten über die Tiefe nicht erfasst werden können.

Abbildung I-0.2 Gleiche Messmethode, gleiches Gestein, unterschiedliche vom TRT ermittelte Wärmeleitfähigkeiten bei unterschiedlicher Bohrtiefe (Beispielwerte). Ein weiterer Unsicherheitsfaktor bei der Planung von Erdwärmesondenanlagen ist das evtl. im Untergrund vorhandene fließende Grundwasser. Umströmt Grundwasser eine Erdwärmesonde, so führt es ständig thermisch unbelastetes Wasser mit sich und verringert somit die Auskühlung des näheren Untergrundes. Je nach Fließgeschwindigkeit und Porenraum ist diese Regenerierung des Untergrundes stärker oder schwächer ausgeprägt. Diese eigentlich für die Effizienz einer einzelnen Erdwärmesonde positive Auswirkung kann jedoch bei Erdwärmesondenfeldern (EWS-Feldern) zu einer Verstärkung der gegenseitigen Beeinflussung der Sonden führen, wenn die Sonden hintereinander im Abstrom des Grundwassers liegen. Im schlechtesten Fall kann dies zu einer verstärkten Auskühlung der Umgebung einzelner Sonden und damit zu einer Erniedrigung der Effizienz führen. Bei großen Erdwärmesondenfeldern ist es daher ratsam, sowohl die Wärmeleitfähigkeiten aller durchteufter Gesteinsschichten als auch die Auswirkungen des lokalen Grundwasserstroms zu untersuchen.

Des Weiteren ist bekannt, dass die bei der Planung eines Erdwärmesondenfeldes berechnete und der Dimensionierung zugrunde gelegte Jahresarbeitszahl der Erdwärmesondenanlage (Verhältnis des Wärmebedarfs zu dem für Umwälz- und Wärmepumpe aufgewandten Stromverbrauch; JAZ 4 = 1 Teil Strom, 4 Teile Wärme  $\rightarrow$  3 Teile Wärme aus dem Untergrund) teils erheblich von den realen Jahresarbeitszahlen einer Anlage im Gebrauch abweicht. Auch verschiedene Regelungsarten der Haustechnik können einen erheblichen Einfluss auf die Effizienz von Erdwärmesondenanlagen besitzen.

Das im Folgenden vorgestellte Forschungsprojekt zielte darauf ab, die genannten Unsicherheiten bei der Planung und dem Ausbau eines Erdwärmesondenfeldes mit neuen, innovativen Methoden zu minimieren und Verbesserungen für einen optimalen Ausbau einer Erdwärmesondenanlage zu definieren. Der Arbeitsbereich erstreckte sich sowohl über das Gebiet der Gebäudetechnik, als auch über die Bestimmung verschiedener geologischer und hydrogeologischer Parameter. Der Bericht des Forschungsprojektes wurde in zwei Teilbereiche getrennt. Der erdgekoppelte **Teil A** ist im Folgenden aufgeführt. **Teil B**, der sich mit der Haustechnik befasst, findet kann im Originalbericht (MALM et al. 2010) nachgeschlagen werden.

Die Erkenntnisse bezüglich Projektablauf und Durchführung der im Folgenden vorgelegten Auswertung im Hinblick auf weitere Projekte, wurden in einer Vorschlagsliste dargestellt und zusammengefasst (MALM et al. 2010). Aus dieser Liste lassen sich Handlungsabläufe für zukünftige Projekte ableiten.

### I-1 Übersicht über das Forschungsprojekt

Von 2007 bis 2008 wurde auf dem Firmengelände der Firma Wipotec eine weitere, an das Bestandsgebäude angegliederte Werkshalle gebaut. Die Firma Wipotec in Kaiserslautern ist ein Hersteller innovativer Wägetechnik im Industrie- und Handelssektor. Der Produktionsschwerpunkt liegt bei präzisen Hochgeschwindigkeitswägesystemen und intelligenter Wägetechnik. Die Entwicklung neuer Techniken und individueller Lösungen für Industriefragen steht seit über 20 Jahren im Vordergrund der Firmenphilosophie. Die Nutzung oberflächennaher Geothermie wurde bei der Werkserweiterung als bevorzugtes System zur Deckung des Heiz- und Kühlbedarfs der Werkshalle gewählt. Nach vorangegangener Dimensionierung wurde ein Erdwärmesondenfeld mit insgesamt 40 Sonden à 130 m Tiefe gebaut. Zwei Wärmepumpen vervollständigen das System.

An diesem Standort beauftragte das Ministerium für Umwelt, Forsten und Verbraucherschutz Rheinland-Pfalz (MUFV) das Institut für Geothermisches Ressourcenmanagement (igem) mit dem Forschungsvorhaben "Qualitätssicherung bei Erdwärmesondenfeldern für Heiz- und Kühlzwecke und Überprüfung ihrer Effizienz im Ziel 2 Gebiet".

Ziel des Projektes ist unter anderem die Erstellung einer Energiebilanz eines Erdwärmesondenfeldes bei vermuteter Grundwasserströmung in einem geklüfteten Aquifer. Das Projekt beinhaltet eine Dimensionierung des Erdwärmesondenfeldes nach VDI-Norm sowie nach verschiedenen analytischen Verfahren. Diese Modelle sollen miteinander verglichen und nach ihren Ein- und Ausgabeparametern bewertet werden. Gleichzeitig sollen die Eingabeparameter durch direkte Messungen im Versuchsfeld bestimmt werden. Hierzu wurde neben einem tiefenaufgelösten enhanced Thermal Response Test (eTRT) eine Langzeitüberwachung sowohl der Temperaturen im Untergrund (faseroptische Messungen) als auch der Energieströme der Wärmepumpenanlage angelegt.

Ein weiteres Ziel des Projektes war eine Einschätzung des Grundwassereinflusses auf das fertige Erdwärmesondenfeld. Die hierfür entscheidenden Parameter, wie tiefenabhängige Wärmeleitfähigkeit und Grundwasserfließeigenschaften, wurden in-situ bestimmt. Die Ergebnisse dieser Messungen wurden bewertet und mit numerischen Modellrechnungen verglichen.

Eine Beschreibung der Haustechnik sowie des integrierten Zählerkonzeptes zur Bestimmung der Arbeitszahlen und Optimierung des Betriebes der Anlage sowie die Auswertung der hausseitigen Feldüberwachung sind in **Teil B** des Originalberichtes (MALM et al. 2010) zusammengefasst.

Der folgende Bericht beschreibt die Methoden, die zur Bestimmung der benötigten Untergrundparameter angewendet wurden, sowie deren Ergebnisse und die damit zusammenhängenden Optimierungsmöglichkeiten für den laufenden Betrieb eines Erdwärmesondenfeldes. Die Ergebnisse einer Langzeittemperaturüberwachung des Untergrundes und numerischer Simulationen zeigen, dass fließendes Grundwasser nur unter speziellen Bedingungen größere, direkte Auswirkungen auf die Temperaturen der Nachbarsonden hat. Tiefenaufgelöste Wärmeleitfähigkeitsmessungen ergeben, dass Grundwasserfluss Auswirkungen auf die effektiven Wärmeleitfähigkeiten einzelner Sonden besitzt und deren Wärmeentzug verbessert. Es wird dargelegt, wie neue Möglichkeiten der Dimensionierung von großen Erdwärmesondenfeldern zu genaueren Ergebnissen der Sondenanzahl und -tiefe führen und dass neue, innovative Methoden zu einer Verbesserung der Planungssicherheit bei größeren erdgekoppelten Wärmepumpensystemen beitragen.

Der im Folgenden aufgeführte Projektablauf bezeichnet die wichtigsten zeitlichen Stationen der erdseitigen Anlagen- und Messtechnik. Angaben zum hausseitigen Projektablauf finden sich in Kapitel 10 von **Teil B** des Originalberichtes (MALM et al. 2010).

| Frühjahr 2007    | Bohrbeginn (Terra Therm)                                                               |
|------------------|----------------------------------------------------------------------------------------|
| Mai 2007         | Thermal Response Test (Lohr Consult)                                                   |
| April-Juni 2007  | $\label{eq:in-Situ} In-Situ \ Grundwasserflie \& geschwindigkeitsmessung \ (PHREALOG)$ |
| Juli-August 2007 | Einbau der Glasfaserkabel (igem)                                                       |
| Herbst 2007      | Spleißen der Glasfaserkabel (igem)                                                     |
| Dezember 2007    | Hausinstallation und erste Messung der Glasfaserkabel (igem)                           |
| März 2008        | Installation der Wärmepumpen                                                           |
| 20.0623.06.2008  | Durchführung des ersten eTRT (igem)                                                    |
| 29.0801.09.2008  | Durchführung des zweiten eTRT (igem)                                                   |
| 09.10.2008       | Konfigurations- und Fasereinstellungen (Start Heizperiode) (igem)                      |
| 01.12.2008       | Start der Temperaturüberwachung (igem)                                                 |
| 01.12.2009       | Ende der Temperaturüberwachung (igem)                                                  |

#### I-2. Erfassung der Untergrundeigenschaften

Um die Dimensionierung des Erdwärmesondenfeldes zu überprüfen und den Einfluss von Grundwasserströmung auf die Effizienz des Feldes zu erfassen, müssen die thermischen und hydraulischen Eigenschaften des Untergrundes hinreichend bekannt sein. Vor allem die effektive Wärmeleitfähigkeit des Untergrundes ist als entscheidender Faktor besonders wichtig, aber auch die ungestörte Untergrundtemperatur, die hydraulische Durchlässigkeit des Gesteins, sowie effektive Fließgeschwindigkeiten und -richtungen müssen für das Forschungsvorhaben erfasst werden. Diese Parameter sind die Basis für alle weiterführenden Untersuchungen und daher für die Ergebnisse des Projektes unerlässlich.

#### I-2.1 Geologie und Hydrogeologie

Die Bohrungen im Untersuchungsgebiet haben in ihrem Tiefenverlauf die Trifels-Schichten und die Staufer Schichten des Buntsandsteins erbohrt (Abb. I-2.1). Die Trifels-Schichten setzen sich aus grob- bis mittelkörnigen, kieselig gebundenen Sandsteinen zusammen, die in einzelnen Lagen geröllführend sein können (KONRAD et al. 1985). Die Staufer Schichten, die den unteren Teil der erbohrten Bereiche bilden, setzen sich ebenfalls aus grob- bis

mittelkörnigen, teils geröllführenden Sandsteinen zusammen, die teils schluffig-tonig gebunden sind und in die Konglomerat- sowie Ton- und Schlufflinsen eingeschaltet sein können (KONRAD et al. 1985).

Abbildung I-2.1 Profil aus der geologischen Karte (GK25) von Rheinland-Pfalz, Blatt 6512 Kaiserslautern mit Legende und Profilschnitt (NW-SE). Die schwarze Linie im Profilschnitt zeigt die ungefähre Position und Tiefe der Erdwärmesonden im Untersuchungsgebiet.



Die Hydrogeologie des Untersuchungsgebietes ist in den zwei erbohrten Schichten unterschiedlich. Während die Trifels-Schichten aufgrund ihres oft geringeren Anteils an Ton und Schluff insgesamt bessere Grundwasserleiter ergeben, sind die Staufer Schichten in vielen Bereichen aufgrund ihres höheren Ton- und Schluffanteils eher als Grundwasserhemmer zu betrachten (KONRAD et al. 1985). Die aus den Trifels-Schichten zufließenden

Grundwässer werden an der Grenze zu den Staufer Schichten häufig gestaut, was die Bedeutung dieser Grenze als Quellhorizont erhöht (KONRAD et al. 1985).

Insgesamt handelt es sich bei den erbohrten Schichten um Mischaquifere, die ein Fließen von Grundwasser sowohl in den porösen als auch in den geklüfteten Bereichen vorweisen. Die geklüfteten Bereiche sind in ihrer Durchlässigkeit in der Regel höher als in den porösen Bereichen. Die hydraulische Durchlässigkeit von Sandsteinen liegt im Allgemeinen bei  $k_f$ -Werten (Durchlässigkeitsbeiwerten) zwischen 10<sup>-4</sup> und 10<sup>-6</sup> m/s (KRAPP 1979).

## I-2.2 Beschreibung der thermischen Eigenschaften nach VDI 4640

Im Folgenden wird die Bestimmung der örtlichen thermischen Eigenschaften des Untergrundes nach VDI 4640 vorgestellt. Die VDI 4640 gibt für verschiedene Untergrundparameter Tabellen an, die eine grobe Bestimmung der jeweiligen Verhältnisse vor Ort ermöglichen.

## I-2.2.1 Die Gesteinswärmeleitfähigkeit

Die Richtlinie VDI 4640, Blatt 1 enthält für einige Gesteinstypen gemittelte Wärmeleitfähigkeiten und Wärmekapazitäten. Diese werden in der Regel für die Dimensionierung von Erdwärmesondenanlagen herangezogen, wenn keine Möglichkeit der Bestimmung dieser Parameter durch in-situ Versuche oder Labormessungen besteht.

Zur Bestimmung der Gesteinswärmeleitfähigkeiten nach VDI 4640 muss die Lithologie des Untergrundes bekannt sein. Eine Zuordnung der Lithologie kann anhand von Kartenwerken (Abb. I-2.1) und Archivdaten erfolgen, aber auch direkt vor Ort durch Probebohrungen aufgenommen werden. Von der ausführenden Bohrfirma Terra Therm wurde am 20.04.2007 ein Schichtenprofil aufgenommen (Abb. I-2.2). Das Profil zeigt analog zu den Daten aus der geologischen Karte (Abb. I-2.1) eine größtenteils homogene Gesteinsverteilung auf. Vorherrschend sind vor allem Sandsteine, die im unteren Bereich teils in geröllführende Sandsteine und Konglomerate übergehen. Die Gesteinswärmeleitfähigkeiten werden entsprechend der Gesteinsverteilung ebenfalls relativ homogen über die Tiefe verteilt sein. Laut Tabelle I-2.1 kann eine gemittelte Gesteinswärmeleitfähigkeit von ca. 2,3 W/(m K) für den erbohrten Gesteinsverband herangezogen werden.

Die VDI 4640, Blatt 2 gibt für Anlagen mit einer Heizleistung kleiner als 30 kW eine Tabelle mit spezifischen Entzugsleistungen an, nach der kleinere Anlagen dimensioniert werden können. Ein zusätzlich angegebenes Nomogramm kann bei der Dimensionierung ebenfalls helfen, es gilt jedoch nur bis zu einer maximalen Heizleistung von 10 kW. Wenn man die Tabelle I-2.1 mit den Entzugsleistungen für das Erdwärmesondenfeld in Kaiserslautern und den jährlichen Gesamtwärmeentzug der Anlage heranzieht, so kann man daraus die benötigte Gesamtlänge der Sonden berechnen (siehe Kapitel I-4.4).



Schichtenprofil Bohrung Wipotec GmbH Kaiserslautern (20.04.2007)

Tabelle I-2.1 Bandbreite der Wärmeleitfähigkeit und volumetrischen Wärmekapazität, sowie der theoretischen Wärmeentzugsleistung für Sandstein nach VDI 4640, Blatt 1, Wärmeentzugsleistung nach

Abbildung I-2.2 Schichtenprofil der

Kaiserslautern (Terra Therm GmbH).

|                                             | Sandstein<br>(0-130 m) |
|---------------------------------------------|------------------------|
| Wärmeleitfähigkeit [W/(m K)]                | 1,5 – 5,1 (2,3)        |
| Vol. Wärmekapazität [MJ/(m <sup>3</sup> K)] | 1,6 – 2,8              |
| Wärmeentzugsleistung [W/m]                  | 55 – 80                |

VDI 4640, Blatt 2.

Zusätzliche Labormessungen an wassergesättigtem Probenmaterial der Trifels-Schichten im Untersuchungsgebiet ergaben für deren Wärmeleitfähigkeit Werte von ca. 2,7 W/(m K).

I-2.2.2 Die ungestörte Bodentemperatur

Die ungestörte Bodentemperatur wird häufig über die mittlere Jahreslufttemperatur des Standortes abgeschätzt. Einige Dimensionierungsprogramme für Erdwärmesonden wie EED (Earth Energy Designer) besitzen eine eigene Datenbank mit durchschnittlichen ungestörten Bodentemperaturen für verschiedene Standorte (Tab. I-2.2).

| Tabelle I-2.2         Die ungestörte         Bodentemperatur |
|--------------------------------------------------------------|
| für einige deutsche Städte (nach EED Vers. 2.0).             |

| Stadt       | ungestörte      |
|-------------|-----------------|
|             | Bodentemp. [°C] |
| Berlin      | 8.7             |
| Bremen      | 9               |
| Dresden     | 9               |
| Düsseldorf  | 11              |
| Frankfurt/M | 8.9             |
| Gießen      | 9               |
| Hamburg     | 8.8             |
| Karlsruhe   | 10.9            |
| Köln        | 11              |
| Leipzig     | 8.5             |
| München     | 8.9             |
| Nürnberg    | 8.8             |
| Saarbrücken | 9               |
| Stuttgart   | 9.1             |

Der Deutsche Wetterdienst gibt als mittlere Jahreslufttemperatur für Kaiserslautern einen Wert von 9,4°C an, der als Richtwert für die zur Dimensionierung von Erdwärmesondenfeldern benötigten, ungestörten Bodentemperatur dienen kann.

## I-2.3 Die Bestimmung der Untergrundparameter mit dem Thermal Response Test

Ein konventioneller <u>Thermal Response Test</u> (GEHLIN 2002) wird zur Bestimmung verschiedener Untergrundparameter (Wärmeleitfähigkeit, Bohrlochwiderstand, ungestörte Untergrundtemperatur) verwendet und mittlerweile standardmäßig bei der Planung und

Dimensionierung von Erdwärmesondenfeldern eingesetzt. Der Test basiert auf der Zirkulation und gleichzeitigen Temperaturmessung von Soleflüssigkeit in den Rohren einer Erdwärmesonde mittels eines eigens dafür entwickelten Gerätes (Abb. I-2.3). Das Gerät besteht im Wesentlichen aus einer Umwälzpumpe, Temperaturfühlern am Vor- und Rücklauf, sowie einem Erhitzer.

> Abbildung I-2.3 Aufbauschema eines Thermal Response Test (GEHLIN 2002).



#### I-2.3.1 Ermittlung der Gesteinswärmeleitfähigkeit

Ein TRT wird an einer fertig ausgebauten und verpressten Erdwärmesonde durchgeführt (THOLEN & WALKER-HERTKORN 2008). Die Sole wird mit einer spezifischen Wärmeleistung erhitzt und die Sonde damit durchspült. Die Temperaturen in der Sole werden am Ein- und Auslauf der Sonde gemessen. Über die Kurve des Temperaturanstiegs der Sonde kann über die Linienquellentheorie nach folgender Formel eine über die Gesamtsondenlänge gemittelte Wärmeleitfähigkeit bestimmt werden (nach HELLSTRÖM 1991, GEHLIN 1998 und GEHLIN 2002):

$$T_{f} = \frac{\dot{Q}}{4\pi\lambda H} \left[ ln\left(\frac{4\alpha t}{r_{0}^{2}}\right) - \gamma \right] + \frac{\dot{Q}}{H}R_{b} + T_{s} = \frac{\dot{Q}}{4\pi\lambda H} ln(t) + \left[ \frac{\dot{Q}}{H} \left( \frac{1}{4\pi\lambda} \left[ ln\left(\frac{4\alpha}{r_{0}^{2}}\right) - \gamma \right] + R_{b} \right) + T_{s} \right]$$
(I-2.1)

 $T_{\mathrm{f}}$ mittlere Fluidtemperatur [°C] Ò Heizleistung [W] Wärmeleitfähigkeit Untergrund [W/(m K)] λ Η Tiefe der EWS, bzw. Länge des Messabschnitts bei eTRTs [m] Zeit [s] t Temperaturleitfähigkeit [m²/s]  $\alpha = \frac{\lambda}{\rho c_n}$ mit α volumetrische Wärmekapazität Untergrund [J/(m<sup>3</sup> K)] ρcp Bohrlochradius [m]  $\mathbf{r}_0$ Euler-Mascheroni-Konstante (0,5772...) γ thermischer Bohrlochwiderstand [(K m)/W]  $R_b$ Ts Temperatur ungestörter Untergrund [°C]

Die Gleichung beschreibt bei einer homogenen Umgebung eine Gerade mit der Steigung *m* und dem Achsenabschnitt *b*:

$$T_f = m \cdot \ln(t) + b \tag{I-2.2}$$

Hieraus folgt

$$\lambda = \frac{\dot{Q}}{4\pi mH} \qquad (I-2.3) \qquad \text{und} \qquad R_b = \frac{(b-T_s)H}{\dot{Q}} - \frac{1}{4\pi\lambda} \left( ln \left[ \frac{4\alpha}{r_0^2} \right] - \gamma \right) \qquad (I-2.4)$$

Da der Übergang von Sole zum Umgebungsgestein durch Bereiche mit teils unterschiedlichen Wärmeleitfähigkeiten (Sondenrohr & Verfüllmaterial) erfolgt, ist Gleichung I-2.1 lediglich in bestimmten Zeitbereichen der Messung anwendbar. Zur Bestimmung der Wärmeleitfähigkeit des Untergrundes muss deshalb für die Auswertung der

erhaltenen Temperaturdaten ein Zeitbereich gewählt werden, in dem die eingebrachte Wärme bereits tief in das Umgebungsgestein eingedrungen ist. Deshalb werden für die Berechnung der Steigung *m* Temperaturabschnitte gewählt, die ein gewisses Zeitkriterium (Gleichung I-2.5) erfüllen und die durch eine möglichst geringe Schwankung der eingebrachten Heizleistung gekennzeichnet sind (GEHLIN 2002, HELLSTRÖM 1991).

$$t > \frac{5r_0^2}{\alpha} \tag{I-2.5}$$

## I-2.3.2 Ermittlung der ungestörten Bodentemperatur im Zuge eines TRT

Die ungestörte Bodentemperatur wird zu Beginn eines TRT durch eine Zirkulation der Sole ohne gleichzeitige Erhitzung bestimmt. Hierbei ist zu beachten, dass die gemessenen Temperaturen am Anfang der Zirkulation durch die noch nicht ausreichende Durchmischung der zirkulierenden Flüssigkeit beeinflusst sind. Deshalb sollten die Werte der ersten Minuten nicht als Richtwert für die ungestörte Bodentemperatur verwendet werden. Gleichzeitig gilt zu beachten, dass bei längerem Zirkulationspumpenbetrieb die Wärmeentwicklung der Pumpen das Ergebnis ebenfalls verfälscht. Je nach Länge der Sonde und der Pumpleistung liegt das Zeitfenster zur Bestimmung der ungestörten Bodentemperatur zwischen ca. 15 und 30 Minuten nach Einschalten der Zirkulationspumpe.

#### I-2.3.3 Ablauf der Messungen

Zwei solcher Thermal Response Tests wurden von der Firma Lohr Consult zwischen dem 08.05. und 11.05.2007 und dem 14.05. und 20.05.2007 durchgeführt. Der erste Test wurde an Sonde S9, der zweite an Sonde S38 durchgeführt.

Der erste Messdurchlauf hatte an zwei Tagen Einbrüche in der Temperaturkurve (09.05. und 10.05.2007), was auf einen starken Abfall der eingebrachten Heizleistung hindeutet. Es ist davon auszugehen, dass die Messergebnisse durch diese Zwischenfälle zu stark verfälscht sind, als dass sie zu einem Vergleich der Wärmeleitfähigkeiten herangezogen werden könnten.

Der zweite Messdurchlauf (Bericht Lohr Consult) verlief, der Temperaturkurve nach zu urteilen, ohne Störungen und kann zu einer Bewertung herangezogen werden. Der Bericht sagt nichts über die Details der Berechnung wie die Wahl des Zeitabschnitts zur Bestimmung der Regressionsgeraden, die Bestimmung des Zeitkriteriums oder die Wahl des mathematischen Ansatzes aus. Eine Angabe der eingebrachten Heizleistung fehlt ebenfalls.

Die genauen Temperaturmessdaten sind nur in einer Graphik festgehalten und liegen dem Bericht nicht als Wertetabelle bei. Die ermittelte Wärmeleitfähigkeit, der Bohrlochwiderstand und die ungestörte Bodentemperatur sind in Tabelle I-2.3 festgehalten.

Tabelle I-2.3 Ergebnisse des TRT (Bericht Lohr Consult).

| Temperatur des ungestörten Untergrundes [°C] | ~ 10,8 |
|----------------------------------------------|--------|
| Wärmeleitfähigkeit aus Messung [W/(m K)]     | ~ 6    |
| Thermischer Bohrlochwiderstand [(m K)/W]     | ~ 0,08 |

# I-2.4 Neue Methoden zur tiefenaufgelösten Bestimmung der Untergrundparameter

Um die für die oberflächennahe Geothermie wichtigen Untergrundparameter zu bestimmen, stehen mittlerweile neben dem herkömmlichen TRT mehrere erweiterte Methoden zur Verfügung, die die Wärmeleitfähigkeiten und ungestörten Untergrundtemperaturen bestimmen können. Einige dieser Methoden ermöglichen eine tiefenaufgelöste Bestimmung dieser Parameter und können somit ein genaueres Bild über die Eigenschaften des Untergrundes liefern. Hierbei gibt es mehrere Methoden, die jeweils ihre Vor- und Nachteile besitzen.

# A TRT mit Temperaturprofilaufzeichnung

Eine zusätzliche Temperaturprofilaufzeichnung vor und jeweils in bestimmten Abständen nach einem herkömmlichen TRT zeigt Bereiche, in denen eine höhere effektive Wärmeleitfähigkeit des Untergrundes vorherrscht. Diese Bereiche kühlen nach dem Wärmeeintrag des TRT schneller aus und lassen sich so qualitativ beschreiben. Vergleicht man diese Ergebnisse mit vorhandenen Bohrprofilen und Tabellenwerten für verschiedene Gesteinswärmeleitfähigkeiten, so kann man eine grobe tiefenaufgelöste Abschätzung der Untergrundwärmeleitfähigkeiten vornehmen. Die ungestörte Bodentemperatur kann man der vor dem TRT durchgeführten Temperaturprofilmessung direkt entnehmen.

Diese Methode ist recht einfach mittels einer Temperaturmesssonde durchzuführen und benötigt zusätzlich lediglich das Bohrprofil der Erdwärmesonde und Tabellenwerte für Wärmeleitfähigkeiten (z.B. VDI 4640). Allerdings ist sie auch recht ungenau, da sie direkt von der Interpretation der Daten durch den durchführenden Geologen abhängt und kann damit tiefenaufgelöste Wärmeleitfähigkeiten nur qualitativ abbilden.

# B TRT mit Temperaturprofilaufzeichnung mittels der NIMO-T-Methode

Der Thermal Response Test mittels der NIMO-T-Methode setzt sich zusammen aus einem herkömmlichen TRT, einer Temperaturprofilaufzeichnung mit der NIMO-T-Messsonde und

einer numerischen Nachbearbeitung der erhaltenen Temperaturdaten, die eine quantitative, tiefenaufgelöste Wärmeleitfähigkeitsbestimmung ermöglicht (FORRER et al. 2008).

Die NIMO-T-Messsonde besteht aus einem kabellosen Schwimmer, der über seine Dichte eine spezifische Absinkgeschwindigkeit innerhalb eines Sondenrohres besitzt. Während des Absinkens werden permanent Druck und Temperatur gemessen, um jedem Temperaturwert über den Druck eine Tiefe zuweisen zu können. Nachdem die Sonde am Fuß der Sonde angekommen ist, wird sie mit einer am anderen Rohrende angebrachten Pumpe aus dem Rohr ausgespült. Die Sonde hat den Vorteil, dass sie kabellos ist und somit besser aus dem dünnen Sondenrohr entfernt werden kann. Auch entsteht so keine Verdrängung von Wasser durch das Kabel, was sonst zu Fluidbewegungen innerhalb des Sondenrohres führt und die Messergebnisse leicht verfälscht.

Die so erhaltenen Temperaturwerte vor der TRT-Messung und zu bestimmten Zeitpunkten in der thermischen Regenerationsphase (z.B. 1, 24 und 72 Stunden nach dem TRT), werden anschließend mittels numerischer Simulationen rückgerechnet. Die Wärmeleitfähigkeiten der Umgebung werden hierbei solange angepasst, bis die so erhaltenen Temperaturen der modellierten Sole mit den gemessenen übereinstimmen. Auf diese Art und Weise sind sowohl tiefenaufgelöste Wärmeleitfähigkeiten als auch Hinweise auf Grundwasserfluss in einzelnen Tiefenlagen nicht nur qualitativ, sondern auch quantitativ bestimmbar.

Ein gewisser Nachteil der Methode ist die über die Sonde ungleichmäßig in den Untergrund eingebrachte Wärme. Befinden sich im oberen Bereich der Sonde Abschnitte mit erhöhter Wärmeleitfähigkeit, so geht über diese Schichten schon ein Großteil der Wärme in den Untergrund. Die mit dem TRT eingebrachte Gesamtwärmemenge kann somit für eine genaue Berechnung nicht gleichmäßig über die Tiefe der Sonde aufgeteilt werden. Dies führt zu einer Verfälschung der Wärmeleitfähigkeitswerte, wenn die für die Berechnung herangezogene Wärmeleistung nicht an den Tiefenbereich angepasst wird.

# C eTRT mittels der Glasfasermesstechnik

Der enhanced Thermal Response Test (eTRT oder auch eGRT genannt) beruht auf der direkten, tiefenaufgelösten Temperaturmessung an Glasfaserkabeln während gleichzeitiger und gleichmäßiger Erhitzung des Untergrundes (DORNSTÄDTER et al. 2008). Die so erhaltenen Messergebnisse können direkt zur tiefenaufgelösten Wärmeleitfähigkeitsberechnung herangezogen werden. Der Test wurde im Versuchsfeld durchgeführt und wird im Folgenden eingehend beschrieben.

#### I-2.4.1 Faseroptische Temperaturmessmethode

Zur Bestimmung der Untergrundparameter wurde an 8 der 40 Sonden ein Temperaturmesssystem angebracht, welches die Temperaturen des Untergrundes tiefenaufgelöst messen kann. Zu diesem Zweck werden Glasfaserkabel an der Wandung der betreffenden Sondenrohre angebracht und in einer Schleife zusammengeschaltet (Abb. I-2.4). Die in Reihe geschalteten Kabel bestehen aus jeweils vier Glasfasern und vier Kupferlitzen (Abb. I-2.5).



Abbildung I-2.4 Erdwärmesondenfeld der Firma Wipotec mit 40 eingebrachten Doppel-U-Sonden. Die schwarze Linie zeigt den Verlauf des eingebrachten Glasfaser-Hybridkabels in den Sonden. An den drei quadratisch markierten Sonden wurden in-situ Grundwasserfließbestimmungen durchgeführt. Die Farben geben den Schaltungsmodus der Sonden wieder (Tab. I-3.1, siehe S. 37).

Die faseroptische Temperaturmessmethode bedient sich der Raman-Rückstreuung, die entsteht, wenn die Photonen eines Lasers mit den Elektronen des amorphen Quarzes der Glasfaser interagieren. Das rückgestreute Licht teilt sich in drei spektrale Bänder auf, das Rayleigh-Band sowie das Stokes- und das Anti-Stokes-Band (Abb. I-2.5). Das Anti-Stokes-Band ist direkt von der temperaturbedingten Gitterschwingung der Glasmoleküle abhängig. Da das Stokes-Band nahezu keine Temperaturabhängigkeit aufweist, kann so aus dem Verhältnis zwischen Stokes- und Anti-Stokes-Band unter Berücksichtigung weiterer Materialparameter die absolute Temperatur der Glasfaser an jedem Punkt der Messstrecke berechnet werden (ERBAŞ et al. 1999). Der räumliche Abstand eines gemessenen Punktes von der Lichtquelle wird über die gemessene Laufzeit zwischen dem Impuls und der Rückstreuung berechnet. Der Fehler der Temperaturmessungen liegt je nach Einstellung des Messgerätes bei ca. 0,1 K, die maximale Ortsauflösung bei ca. 15 cm Länge.





**Abbildung I-2.5** Aufteilung der optischen Rückstreuung (ERBAŞ et al. 1999) und Abbildung eines Glasfaserhybridkabels. Die grüne Kabelhülse beinhaltet die vier Glasfasern, die unteren Kabelhülsen die vier Kupferlitzen.

#### I-2.4.1.1 Ermittlung der ungestörten Bodentemperatur im Zuge eines eTRT

Die ungestörte Bodentemperatur T<sub>0</sub> ist bei der Bestimmung der Wärmeleitfähigkeit des Untergrundes nach der Linienquellentheorie, aber auch bei der Effizienz eines Erdwärmesondenfeldes im Betrieb eine der wichtigsten Einflussgrößen (SIGNORELLI 2004). Für einen eTRT ist es daher zwingend notwendig, die ungestörte Bodentemperatur jedes Tiefenabschnitts hinreichend genau zu bestimmen.

Die ungestörte Bodentemperatur T<sub>0</sub> wurde im Vorfeld des eTRT ortsaufgelöst bestimmt. Hierfür wurden am 29.08.2008 nach Installation des Temperaturmessgerätes die Temperaturen der Sonden S4, S8, S10 und S12 von 10:45 h bis 13:20 h aufgezeichnet (Abb. I-2.6). Von diesen insgesamt 94 Temperaturmesswerten dieses Zeitraums wurde für jeden Tiefenabschnitt der jeweiligen Sonde das arithmetische Temperaturmittel T<sub>0</sub> gebildet. Aus diesen ortsaufgelösten, ungestörten Bodentemperaturen ließ sich eine über die Sonde gemittelte, ungestörte Bodentemperatur T<sub>0mean</sub> bestimmen (Tab. I-2.4). Die Maximalwerte der in jedem Tiefenabschnitt der jeweiligen Sonde erhaltenen Standardabweichungen von T<sub>0</sub> sind ebenfalls in Tabelle I-2.4 eingetragen. Die durchschnittliche Lufttemperatur am 29.08.2008 betrug ca. 15,8°C, die Lufttemperatur zwischen 10:00 und 13:00h ca. 18,5°C (Daten nach Auskunft des Deutschen Wetterdienstes).

**Tabelle I-2.4** Standardabweichung der ungestörten Bodentemperaturen  $T_0$  der Sonden, sowie die über die gesamte Tiefe der Sonde gemittelte ungestörte Bodentemperatur  $T_{0mean}$ .

|                                                                       | S4    | S8    | S10   | S12   |
|-----------------------------------------------------------------------|-------|-------|-------|-------|
| Max. Standardabweichung von $T_0$ [°C]                                | 0,07  | 0,07  | 0,09  | 0,07  |
| Durchschnittliche, ungestörte Bodentemperatur T <sub>0mean</sub> [°C] | 11,89 | 11,92 | 11,23 | 11,65 |



Abbildung I-2.6 Tiefenprofil der ungestörten Bodentemperatur der Sonden S4, S8, S10 & S12 aufgelöst in 10 Zeitschritten.

## I-2.4.1.2 Enhanced Thermal Response Test (eTRT)

Ein enhanced Thermal Response Test (eTRT) zur Ermittlung tiefenaufgelöster Untergrundwärmeleitfähigkeiten wird mittels eines an der Wandung der Sondenrohre befestigten Glasfaser-Hybridkabels durchgeführt (DORNSTÄDTER et al. 2008, MALM 2009, MALM & DECKERT 2013). Das Kabel besteht aus jeweils vier Glasfasern und vier Kupferlitzen (Abb. I-2.5). Die Glasfasern werden an ein faseroptisches Temperaturmessgerät angeschlossen, welches über Laserimpulse die Temperaturen entlang der Kabelstrecke bestimmen kann.

Der Testaufbau ist ähnlich zum herkömmlichen Thermal Response Test (GEHLIN 2002). Allerdings erfolgt die für einen TRT erforderliche Wärmezuführung nicht über die Zirkulation von erwärmter Sole in den Sonden, sondern über das Anlegen einer elektrischen Spannung

an die vier Kupferlitzen des Kabels (Abb. I-2.7) wodurch Wärme freigesetzt wird. Die eingebrachte Heizleistung ist so für jeden Punkt entlang des Kabels gleich hoch. Die Temperaturen werden mittels der faseroptischen Messmethode entlang der gesamten Bohrlänge während der Aufheizung kontinuierlich gemessen. Auf diese Weise erhält man je nach eingestellter Ortsauflösung des Temperaturmessgerätes eine bestimmte Anzahl einzelner Segmente, die anhand des gemessenen Temperaturanstiegs bei der Erhitzung in eine effektive Wärmeleitfähigkeit des Untergrundes in der entsprechenden Tiefe umgerechnet werden können (DORNSTÄDTER et al. 2008).



Abbildung I-2.7 Messaufbau des eTRT.

Wie bei der Auswertung eines herkömmlichen TRTs kann über den zeitlichen Verlauf des Temperaturanstiegs für jeden einzelnen Messabschnitt der Sonde mit Hilfe der Kelvin'schen Linienquellentheorie eine über den Messabschnitt gemittelte Wärmeleitfähigkeit bestimmt werden (Gleichung I-2.1). Von den insgesamt acht mit Glasfaserkabeln versehenen EW-Sonden wurden in den Sonden S4, S8, S10 und S12 ein eTRT durchgeführt.

#### I-2.4.1.2.1 Ablauf der Messungen

Der eTRT wurde am 29.08.2008 um 15:27 h gestartet. Die Heizleistung wurde mit einem externen Datenlogger minütlich aufgezeichnet und über den Messzeitraum gemittelt (Tab. I-2.5). Die Ortsauflösung der Temperaturmessungen betrug ca. 1 m. Die Zeit pro

Messdurchlauf beträgt bei den gewählten Frequenzeinstellungen ca. 106 s. Das Ende des eTRT war am 01.09.2008 um 10:02 h, 66:35 h nach Start der Messungen.

 Tabelle I-2.5 Über den Messzeitraum gemittelte Heizleistung pro Meter Kabellänge.

|                                         | Alle Sonden |
|-----------------------------------------|-------------|
| Gemittelte Heizleistung pro Meter [W/m] | 9,1         |

# I-2.4.1.2.2 Ermittlung der tiefenabhängigen Wärmeleitfähigkeit mit dem eTRT

Die Temperaturen nach dem Start des Versuchs wurden mit dem Temperaturmessgerät aufgezeichnet und gespeichert. Der Temperaturverlauf über die Sondentiefe ist in Abbildung I-2.8 in verschiedenen Zeitschritten aufgetragen. Zonen mit geringer effektiver Wärmeleitfähigkeit haben einen relativ hohen Temperaturanstieg, Zonen mit hoher effektiver Wärmeleitfähigkeit einen relativ niedrigen Temperaturanstieg im Verlauf der Messung.

Auffällig ist in dieser Abbildung der hohe Temperaturanstieg in den obersten 30 m aller vier Sonden (Abb. I-2.8). Dies bedeutet, dass dieser Bereich eine sehr geringe effektive Wärmeleitfähigkeit besitzt. Der ebenfalls in der Graphik eingetragene Bereich der wasserungesättigten Zone (Messungen der Firma PHREALOG in MALM et al. 2010) deckt sich auffällig gut mit eben diesem Bereich des hohen Temperaturanstiegs. Die Sonden S4 und S8 zeigen zusätzlich einen starken Abfall des Temperaturanstiegs im Tiefenbereich zwischen ca. 30 und 60 m (Abb. I-2.8). Dies deutet auf hohe effektive Wärmeleitfähigkeiten hin.

Zur Berechnung tiefenaufgelöster Wärmeleitfähigkeiten wurde aus dem Temperaturanstieg der aufgezeichneten Temperaturdaten entsprechend Kapitel I-2.3.1 ein Auswertebereich festgelegt. Die Zeit zwischen dem 30.08.2008 11:04 h und dem 01.09.2008 05:59 h eignet sich aufgrund geringer Spannungsschwankungen in diesem Zeitraum für eine Berechnung der Wärmeleitfähigkeiten nach Kapitel I-2.3.1, Gleichung I-2.1.



tärkter Grundv

sättigte Zo

-T=0

T=2min

T=5min T=7min

T=10min

T=15min

T=20min

**-**T=61h



Tiefenabhängige Temperatur der Sonde S8

Tiefenabhängige Temperatur der Sonde S10 Tiefenabhängige Temperatur der Sonde S12 Temperatur [°C] Temperatur [°C] 10 15 20 25 30 35 40 10 15 20 25 30 35 40 0 0 < 20 20 Ungesättigte Zon Unge ättigte Zon T=0 T=2min 40 -T=0 40 T=5min T=2min T=7min T=5min T=10min T=7min T=15min T=10mi T=20min T=15mir T=30min T=20min Diefe 09 Tiefe 60 -T=1h T=30mir T=2h T=1h -T=61h T=2h 80 80 100 100 120 120 



0

20

40

Tiefe

80

100

120

IMA

Zu erkennen ist der starke Anstieg der gemessenen Temperaturen in den obersten 30 m Tiefe auch in Abbildung I-2.9, welche die Temperatur jedes Messpunkts des Kabelverlaufs von Sonde S12 über die Zeit aufgetragen darstellt.

Zu erkennen sind außer dem starken Temperaturanstieg auch zum Teil starke Unregelmäßigkeiten im Temperaturverlauf (Abb. I-2.9, roter Pfeil) und ein teilweises Abfallen der Temperaturen im hinteren Bereich der Messkurve (Abb. I-2.9, rote Gerade). Der schnelle Temperaturanstieg in den oberen Sondenabschnitten deutet auf sehr niedrige Wärmeleitfähigkeiten in diesen Bereichen hin. Bei sehr niedrigen Wärmeleitfähigkeiten machen sich Schwankungen in der Heizleistung stärker bemerkbar. Daher wurden aus diesen Bereichen keine Wärmeleitfähigkeiten abgeleitet.

Die Ursache für die niedrigen Wärmeleitfähigkeiten im oberen Horizont könnte in einer mangelhaften Verpressung dieser Tiefenbereiche liegen. Die nachweislich durch die Bohrfirma ordnungsgemäß verpresste Verfüllsuspension könnte nach dem Erreichen der Erdoberfläche langsam durch Klüftungen des Gesteins im Untergrund abgesackt sein. Der Druck in dieser offenen "Suspensionssäule" könnte ausgereicht haben, um die Verfüllung bis auf Niveau des stehenden Grundwassers abgesenkt zu haben.



Abbildung I-2.9 Temperaturverlauf [°C] der einzelnen Tiefenabschnitte über die logarithmische Zeit (Abbildung GTC Kappelmeyer). Die Farbcodierung beschreibt die unterschiedlichen Messpunkte des Kabels. Der Farbverlauf ist von blau (entspricht dem Kabelanfang) über gelb und rot zu grün (entspricht dem Kabelende). Man sieht, dass die Farben der ersten 30 m am Anfang und am Ende des Kabels einen anormal starken Temperaturanstieg besitzen. Die Pfeile und die rote Linie zeigen Bereiche mit Unregelmäßigkeiten (roter Pfeil) bzw. negativer Steigung (rote Linie) der Kurve. Der Auswertebereich der Berechnung ist mit dem schwarzen Kasten angegeben.



Abbildung I-2.10 Tiefenabhängige Wärmeleitfähigkeiten der Sonden S4, S8, S10 & S12. Die obersten 30 m sind aufgrund einer mangelhaften Verpressung nicht auswertbar. Der sichtbare Achsenausschnitt von 20 W/(m K) wurde gewählt, da bei den Sonden S4 und S8 die Werte durch den Einfluss des Grundwassers den realistischen Rahmen für Gesteinswärmeleitfähigkeiten teils weit überschreiten (Spitze der berechneten Wärmeleitfähigkeit von S8 bei ca. 270 W/(m K), S4 bei ca. 38 W/(m K)). Die Wärmeleitfähigkeiten im Tiefenverlauf der einzelnen Sonden liegen in der Regel zwischen 2 und 3 W/(m K) (Abb. I-2.10). Bei den Sonden S4 und S8 zeigt sich jedoch ein starker Anstieg in den effektiven Wärmeleitfähigkeiten zwischen 30 und 65 m Tiefe (Abb. I-2.10). Dieser starke Anstieg der Wärmeleitfähigkeitskurve kann nicht durch eine lithologische Änderung des geologischen Tiefenprofils sondern nur über einen verstärkten Einfluss advektiven Grundwassertransports erklärt werden.

## I-2.4.2 in-situ Grundwasserströmungsmessungen

Die Bestimmung von Grundwasserfließgeschwindigkeiten und ihren Fließrichtungen wird in herkömmlicher Art und Weise durch Pegelstandsmessungen und Pumpversuche durchgeführt. Bei diesen Verfahren werden unterschiedliche Pegelstandshöhen im Gelände eingemessen und über Triangulation Grundwasserisolinien gezeichnet. Die Differenz der unterschiedlichen Pegelhöhen bezeichnet den hydraulischen Gradient, der zwischen diesen beiden Höhen herrscht. Durch Pumpversuche kann der Durchlässigkeitsbeiwert (k<sub>f</sub>-Wert) des Gesteins ermittelt werden. Sind beide Werte bekannt (k<sub>f</sub>-Wert und hydraulischer Gradient), so kann die Abstandsgeschwindigkeit des Grundwassers zwischen zwei Punkten errechnet werden. Diese Methode ist bei einer kleinräumigen Betrachtung recht ungenau und kann auch nur bedingt für alle Tiefenbereiche einer Erdwärmesonde gelten.

Im Vorfeld der Fließgeschwindigkeitsmessungen wurden Kamerabefahrungen der Bohrlöcher durchgeführt, mittels derer man stark geklüftete von ungeklüfteten Zonen unterscheiden konnte (Abb. I-2.11). Aufgrund der Ergebnisse der Befahrung können anschließend die Positionen für eine Grundwasserfließbestimmung mittels der PHREALOG-Methode festgelegt werden. Ohne eine Kamerabefahrung kann es passieren, dass man die für eine Fließgeschwindigkeit interessanten Messtiefen übersieht und in den falschen Tiefen misst.

Um den direkten Einfluss des Grundwassers auf die Wärmeleitungseigenschaften des Untergrundes zu überprüfen, wurden an drei der Bohrungen vor dem Einbringen der Erdwärmesonden in-situ Grundwasserströmungsmessungen mit dem PHREALOG-System durchgeführt (SCHÖTTLER 2004). Dieses Messsystem basiert auf der optischen Erfassung von im Grundwasser mitgeführten Schwebstoffen im offenen Bohrloch. Die Transport-geschwindigkeit und -richtung der Schwebstoffe gibt hierbei Hinweise auf die Fließeigenschaften des Grundwassers (nach KLOTZ 1977). Eine statistische Auswertung der so über einen längeren Zeitraum gewonnenen Daten (in der Regel zwischen einer und drei Stunden) liefert genaue Werte über die Fließgeschwindigkeit und die Fließrichtung des

Grundwassers in der beobachteten Tiefe des Bohrlochs (Messungen der Firma PHREALOG in MALM et al. 2010).



Abbildung I-2.11 Geklüfteter (links) und ungeklüfteter (rechts) Bereich im Bohrloch der Sonde S12. Die Aufnahmen wurden jeweils in einer Tiefe von 50,52 m (links) und 47,40 m (rechts) gemacht.

Eine kurze Zusammenfassung der Ergebnisse der in-situ-Grundwasserfließbestimmungen aus dem Bericht der Firma PHREALOG (in MALM et al. 2010) ist im Folgenden noch einmal zusammengetragen.

# -S12 GW-Spiegel: 30,90 m uPOK

| Fließrichtung:       | 34 m-36 m     | WNW-SSE                                              |
|----------------------|---------------|------------------------------------------------------|
|                      | 47 m-66 m     | W-NNW                                                |
|                      | 70 m-90 m     | N-NE                                                 |
|                      | -unterhalb 47 | m generell Richtung N                                |
| Fließgeschwindigkeit | Formation:    | ~2,4·10 <sup>-6</sup> m/s                            |
| Fließgeschwindigkeit | Klüfte:       | ~2,7·10 <sup>-5</sup> m/s – 1,4·10 <sup>-4</sup> m/s |

# -S23 GW-Spiegel: 30,66 m uPOK

| Fließrichtung:     | 34 m-36 m     | WNW-SSE                   |
|--------------------|---------------|---------------------------|
|                    | 47 m-66 m     | W-NNW                     |
|                    | 70 m-90 m     | N-NE                      |
|                    | -unterhalb 47 | 7 m generell Richtung N   |
| Fließgeschwindigke | it Formation: | ~2,8·10 <sup>-6</sup> m/s |
| Fließgeschwindigke | it Klüfte:    | ~1,5·10 <sup>-4</sup> m/s |

# -S29 GW-Spiegel: ca. 31 m uPOK (starker Wasserzutritt bei 10,20 m uPOK)

| Fließrichtung:         | 70 m-90 m     | N-NE                      |
|------------------------|---------------|---------------------------|
|                        | -unterhalb 47 | m generell Richtung N     |
| Fließgeschwindigkeit F | ormation:     | ~2,4·10 <sup>-6</sup> m/s |
| Fließgeschwindigkeit k | Klüfte:       | ~4,7·10 <sup>-5</sup> m/s |

## I-2.5 Vergleich der Ergebnisse von TRT und eTRT

Ein direkter Vergleich der beiden Messmethoden ist schwierig, da die Messungen an unterschiedlichen Erdwärmesonden durchgeführt wurden. Dies macht eine direkte Korrelation der Messergebnisse schwierig. Störend sind auch die großen Schwankungen in den berechneten Wärmeleitfähigkeiten der obersten 30 m. Da in diesen Bereichen für die Sonden S4, S8 und S12 keine genauen Werte bestimmt werden konnten (außer, dass die Wärmeleitfähigkeiten aufgrund des hohen Temperaturanstiegs als relativ niedrig anzunehmen sind), müssen diese Werte bei einer Bestimmung der durchschnittlichen Wärmeleitfähigkeit des Untergrundes im Bereich der Sonden ausgelassen werden (Tab. I-2.6).

**Tabelle I-2.6** Durchschnittliche Wärmeleitfähigkeit des Untergrundes im Bereich der Sonden(bei den Sonden S4, S8 & S12 wurden für die Bestimmung des Mittelwertes die obersten30 m ausgelassen).

|                              | TRT | S4  | S8  | S10 | S12 |
|------------------------------|-----|-----|-----|-----|-----|
| Wärmeleitfähigkeit [W/(m K)] | ~ 6 | 6,3 | 6,2 | 3,1 | 2,6 |

Dennoch korrelieren die Werte der TRT-Messungen sehr gut mit den eTRT-Messungen an den Sonden S4 und S8. Die hohen Gesamtwärmeleitfähigkeiten der Sonden S4 und S8 sind auf den hohen advektiven Wärmeabtransport im Tiefenbereich zwischen 30 und 65 m Tiefe zurückzuführen. Man kann somit davon ausgehen, dass die mittels des herkömmlichen TRTs ermittelten hohen Wärmeleitfähigkeitswerte ebenfalls von einem verstärkten Grundwassereinfluss im Verlauf der Bohrung herrühren. Der eTRT liefert im Gegensatz zum TRT wertvolle Erkenntnisse über die tiefenabhängigen Unterschiede in den effektiven Wärmeleitfähigkeiten.

#### I-2.6 Vergleich der eTRT-Ergebnisse mit den Grundwasserströmungsmessungen

Es zeigte sich, dass die Hydrogeologie des Gebietes weitgehend mit den Angaben von KONRAD et al (1985) übereinstimmt. Die in-situ-Grundwassermessungen zeigen, dass die Fließrichtungen im Tiefenverlauf einer Bohrung teilweise recht stark variieren können. Auffallend ist hierbei vor allem, dass nicht in allen Tiefenbereichen eine generelle Fließrichtung in Richtung des nördlich liegenden und wahrscheinlich als Vorfluter dienenden Eselsbachs vorliegt. Gerade die oberen Bereiche der Bohrungen weisen eine auffallende Varianz in ihren Fließrichtungen auf. Mögliche Gründe hierfür wäre ein zu den unteren Bohrungsteilen unterschiedliches Druckgefälle in Richtung der südlich gelegenen Lauter. Hinzu kommt der durch die starke Klüftung des Gesteins sehr komplexe Aquifer.

Die Fließgeschwindigkeiten für die Sandsteinformation liegen hierbei in einem recht ähnlichen Bereich (2,4 bis 2,8·10<sup>-6</sup> m/s), während die Fließgeschwindigkeiten der geklüfteten Bereiche je nach Kluftöffnungsweite und generellem Fließverhalten stärker variieren (meist 2,7·10<sup>-5</sup> bis 1,4·10<sup>-4</sup> m/s, in einem Fall bis 6·10<sup>-3</sup> m/s). Generell lässt sich sagen, dass in geklüfteten Bereichen das ca. 10 bis 100-fache der Fließgeschwindigkeit des porösen Bereichs der Bohrungen erreicht werden kann.

Vergleicht man die Tiefenbereiche mit erhöhten Fließgeschwindigkeiten mit den aus dem eTRT ermittelten Wärmeleitfähigkeiten, so fällt auf, dass sich Bereiche mit erhöhter Fließgeschwindigkeit auch erwartungsgemäß in einer höheren Wärmeleitfähigkeit widerspiegeln (Abb. I-2.12). Hierbei kann vor allem der Bereich bei ca. 50 m Tiefe der Bohrung S12 herangezogen werden (Abb. I-2.12): Die hohe gemessene Fließgeschwindigkeit von ca. 6·10<sup>-3</sup> m/s spiegelt sich ebenfalls in einer Erhöhung der Wärmeleitfähigkeit in diesem Bereich auf 3,7 W/(m K) im Vergleich zum umgebenden Gestein (ca. 2,8 W/(m K)) wider.

Die Sonden S4 und S8, die bereits in ihrem Wärmeleitfähigkeitsprofil den Schluss auf höhere Grundwasserfließgeschwindigkeiten im Bereich zwischen 30 und 65 m Tiefe zulassen, konnten leider nicht untersucht werden, da die PHREALOG-Messmethode nur an offenen Bohrlöchern durchgeführt werden kann.

# I-2.7 Beeinflussung der Untergrundwärmeleitfähigkeit durch Grundwasserfluss

Fließendes Grundwasser hat einen direkten Einfluss auf die durch TRT und eTRT ermittelten Wärmeleitfähigkeiten. Da die für Response Tests verwendeten mathematischen Grundlagen nur für konduktiven Wärmetransport gelten, ergeben sich bei starkem Grundwasserfluss lediglich Schein-Wärmeleitfähigkeiten. Da die höchsten Wärmeleitfähigkeiten für herkömmliche Gesteine zwischen 6 und 7 W/(m K) liegen, sind höhere Werte in der Regel ausschließlich auf fließendes Grundwasser zurückzuführen und können nicht für eine spätere Dimensionierung der Erdwärmesondenanlage herangezogen werden.

Momentan existieren noch keinerlei Regelungen oder Empfehlungen aus Fachkreisen, wie man bei der Dimensionierung eines Erdwärmesondenfeldes bei starkem Grundwasserfluss (effektive Wärmeleitfähigkeit  $\geq$  7 W/(M K)) vorgehen sollte. Eine Möglichkeit wäre, auf die lithologische Aufnahme der Bohrungen zurückzugreifen, die Wärmeleitfähigkeitswerte unter Berücksichtigung des Grundwasserflusses auf einen plausiblen Wert für dieses Gestein festzulegen (fließendes Grundwasser hat meist einen positiven Effekt auf den Wärmeentzug) und das Feld mit diesem Wert zu dimensionieren.

Eine unabhängige Forschungsarbeit über diese Problematik könnte Richtlinien festlegen, aufgrund derer eine Handhabung der Dimensionierung von Erdwärmesondenfeldern bei starkem Grundwasserfluss möglich wäre.



und GFV-Messergebnissen siehe Anhang

Bohrung S12

## I-3. Temperaturüberwachung

Zur Langzeitüberwachung der Temperaturen im Untergrund des Erdwärmesondenfeldes in Kaiserlautern wurde das faseroptische Temperaturmessgerät nach der Durchführung der enhanced Thermal Response Tests (Kapitel I-2.4.1.2) fest in einem Schaltkasten des Produktionshallenneubaus der Firma Wipotec installiert. Das Messgerät wurde in das lokale Netzwerk der Firma eingegliedert und dem igem ein Remote-Access-Zugang auf eine lokale Serverpartition gewährt. Auf diese Weise waren eine Fernüberwachung der Datenaufzeichnung und eine Datenübertragung über das Internet möglich.

Die Langzeitüberwachung diente vor allem den Fragestellungen, ob das im Untergrund fließende Grundwasser einen Temperatureinfluss auf benachbarte Sonden während des Betriebes hat. Gleichzeitig sollte es zusammen mit dem Wärmemengenzählerkonzept (Kapitel 8.1 in MALM et al. 2010) dazu dienen, die Genauigkeit von Aussagen über die vorhergesagten Leistungen des Feldes zu überprüfen.

# I-3.1 Messaufbau der Langzeitüberwachung

Die Temperaturüberwachung des Feldes wurde zu Beginn der Heizperiode (Inbetriebnahme der Wärmepumpen am 10.10.2008) gestartet. Eine durchgängige einjährige Aufzeichnung der Temperaturen im Untergrund des Sondenfeldes erfolgte vom 01.12.2008 bis zum 30.11.2009. Die Schaltungsmodi einzelner Sonden im Feld sind in Abbildung I-2.4 und Tabelle I-3.1 dargestellt. Drei Sonden waren während der gesamten Überwachungsperiode aus dem laufenden Betrieb ausgenommen und drei andere Sonden permanent dem laufenden Betrieb der Anlage zugeschaltet. Die restlichen beiden Sonden wurden am 06.07.2009 innerhalb der Kühlperiode eingeschaltet, um den Temperaturanstieg des Untergrundes bei bereits voll laufender Kühlung zu dokumentieren.

**Tabelle I-3.1** Schaltungsmodus der überprüften Sonden während der Temperaturüberwachungsperiode(01.12.2008 bis 30.11.2009).

|                                           | S4 | S8 | S12 | S15 | S10 | S23 | S19 | S14 |
|-------------------------------------------|----|----|-----|-----|-----|-----|-----|-----|
| Permanent ausgeschaltet                   |    | X  |     |     | X   |     |     | X   |
| Ausgeschaltet vom 01.12.2008 – 06.07.2009 | Х  |    | х   |     |     |     |     |     |
| Eingeschaltet am 06.07.2009 08:00h        | X  |    | X   |     |     |     |     |     |
| Permanent eingeschaltet                   |    |    |     | Х   |     | Х   | Х   |     |

#### I-3.2 Ergebnisse der Temperaturüberwachung

Die Ergebnisse der Untergrundtemperaturaufzeichnungen in der Umgebung aller acht Sonden sind in Abb. I-3.1 abgebildet. Die unterschiedliche Betriebsweise der aufgezeichneten Sonden schlägt sich sehr gut in der Abbildung nieder. Während das Umfeld der drei permanent ausgeschalteten Sonden (S8, S10 und S14) in ihrem Jahrestemperaturverlauf relativ gleich bleibt, bewirken die drei permanent eingeschalteten Sonden (S15, S23, S19) einen ausgeprägten Jahresgang (Abb. I-3.1).

Beim Spleißen des Glasfaserkabels der Sonde S14 kam es zu einem fehlerhaften Spleiß, der nicht mehr korrigiert werden konnte. Aus diesem Grund wurde die Sonde S14 aus den nachfolgenden Betrachtungen ausgeschlossen.



**Abbildung I-3.1** Jahresuntergrundtemperaturverlauf aller Sonden vom 01.12.2008 bis zum 30.11.2009.

Trägt man nur die Umgebungstemperaturen der permanent eingeschalteten Sonden auf, so kann man den Jahresgang sehr gut erkennen (Abb. I-3.2). Eine Mittelwertbildung der Werte über jeweils eine Woche zeigt, dass die Untergrundtemperaturen am Ende der Überwachungsperiode (ca. 11,5°C) noch nicht wieder die Werte des Vorjahres (ca. 10,5°C) erreicht haben.



**Abbildung I-3.2** Jahresuntergrundtemperaturverlauf der Sonden in Gebrauch vom 01.12.2008 bis zum 30.11.2009.

## I-3.3 Vergleich der Untergrundtemperaturen mit den Soletemperaturen

Der Temperaturverlauf der Sole (gemessen an Vor- und Rücklauf des Feldes; Zählerkonzept in Kapitel 8.1 von MALM et al. 2010) über den Messzeitraum ist in Abbildung I-3.3 dargestellt. Auch hier zeigt sich, dass die Temperaturen am Ende der Überwachung (ca. 10°C) noch nicht wieder die Werte des Vorjahres (ca. 8,5°C) erreicht haben.



**Abbildung I-3.3** Jahressoletemperaturverlauf gemessen am Vor- und Rücklauf des Sondenfeldes vom 01.12.2008 bis zum 30.11.2009.

Ein direkter Vergleich zwischen den Temperaturen der Sole und den Temperaturen des Untergrundes (Glasfaserkabel in Verpressmaterial) kann wertvolle Hinweise auf die

Wechselwirkungen zwischen Betriebsmedium und dem Gestein des Untergrundes liefern. Es zeigt sich, dass der Untergrund die Temperaturen des Solestroms abgeschwächt wiedergibt (Abb. I-3.4).



**Abbildung I-3.4** Vergleich der Wochenmittel von Jahresuntergrund- und Jahressoletemperatur vom 01.12.2008 bis zum 30.11.2009.

Die Abschwächung der Temperaturen zwischen Sole und Glasfaserkabel kann mit dem Fourierschen Gesetz erklärt werden (HÄFNER et al. 1992):

$$\dot{Q} = \frac{\lambda}{\Delta x} \cdot A \cdot \Delta T \tag{I-3.1}$$

*Q* Wärmeleistung [W]

λ Wärmeleitfähigkeit [W/(m K)]

 $\Delta x \qquad \text{Abstand zwischen } x_1 \text{ und } x_2 \text{ [m]}$ 

- A wärmedurchströmte Fläche [m<sup>2</sup>]
- $\Delta T \qquad \mbox{Temperaturdifferenz am Punkt } x_1 \mbox{ und } x_2 \label{eq:stars}$

Bei einer konstanten Wärmeleistung  $\dot{Q}$  und einer konstanten Wärmeleitfähigkeit  $\lambda$  des durchflossenen Gesteins ist die Temperatur T<sub>2</sub> direkt abhängig von der Entfernung  $\Delta x$  zwischen der Rohrwand x<sub>1</sub> der Erdwärmesonde und dem Glasfaserkabel x<sub>2</sub> (Abb. I-3.5). Vergrößert sich die Entfernung  $\Delta x$  zwischen Rohrwand und Glasfaserkabel, so erhöht sich in gleichem Maße die Temperaturdifferenz  $\Delta T$ . Dies führt zu einer im Vergleich zu T<sub>1</sub> (Sondenrohrwand) geringeren Temperatur T<sub>2</sub> (Glasfaserkabel) bei vergrößertem Abstand zwischen x<sub>1</sub> (Sondenrohr) und x<sub>2</sub> (Glasfaserkabel).

Außerdem ist in der Realität die Ausrichtung des Wärmestroms radial, da sowohl das Bohrloch als auch die Sondenrohre eine zylinderförmige Geometrie besitzen. Außerhalb eines heißen Rohres (vergleichbar mit dem Sondenrohr) nimmt die Temperatur mit dem

Faktor r<sup>-1</sup> ab, da sich die Wärmeenergie über eine immer größer werdende Oberfläche mit zunehmendem Radius r [m] verteilt. Dies führt zu einer zusätzlichen Abschwächung der Temperaturen mit zunehmender Entfernung vom Sondenrohr. Aus diesen beiden Gründen wirken sich die Temperaturschwankungen der Sole mit geringerer Amplitude auf die Temperaturen der mit dem Glasfaserkabel gemessenen Sondenumgebung aus (Abb. I-3.4).



Abbildung I-3.5 Skizze eines wärmedurchströmten Körpers.

Der thermische Widerstand zwischen der Wärmequelle (bei TRTs die zirkulierte Sole; bei eTRTs der Heizdraht) und dem das Bohrloch umgebenden Gestein wird als Bohrlochwiderstand bezeichnet. Da sich die Position des Glasfaserkabels zwischen Sondenrohr und Bohrlochwand nicht genau festlegen lässt, ist eine genaue Berechnung des Bohrlochwiderstandes aus den erhaltenen Temperaturdaten nicht möglich. Bei der Kenntnis der Wärmeleitfähigkeit des Verfüllmaterials und einer Festlegung der Positionen der Sondenrohre im Bohrloch, ist es möglich, den Bohrlochwiderstand analytisch zu berechnen (HELLSTRÖM 1991), um somit eine Abschätzung des tatsächlichen Bohrlochwiderstandes zu erhalten. Im vorliegenden Fall kann man den Bohrlochwiderstand der vier untersuchten Sonden (Kapitel I-2.3) mit ca. 0,06 bis 0,09 (K m)/W angeben, was gut mit dem gemessenen Bohrlochwiderstand der herkömmlichen TRT-Messung übereinstimmt (Tab. I-2.3).

## I-3.4 Beeinflussung benachbarter Sonden

Um eine etwaige Beeinflussung benachbarter Sonden während des Betriebes festzustellen und auch einen möglichen Einfluss von Grundwasserfluss nachzuweisen, wurden drei der Sonden während der Überwachungsphase permanent ausgeschaltet und somit lediglich als Temperaturfühler verwendet.

Abbildung I-3.6 und Abbildung I-3.7 zeigen den Verlauf der gemittelten Umgebungstemperaturen der Sonden in der Heiz- und Kühlperiode. Bei den für den Betrieb verwendeten Sonden S15, S23 und S19 sind die Arbeits- und Ruhephasen der Anlage im Temperaturprofil sehr deutlich zu erkennen. Die Temperaturkurven der benachbarten, ausgeschalteten Sonden (S4, S8, S10 und S12) hingegen zeigen in beiden Arbeitsmodi der Anlage (Abb. I-3.6 und Abb. I-3.7) keine auffälligen, mit den eingeschalteten Sonden korrelierbaren Verläufe. Eine starke gegenseitige Beeinflussung der ausgewählten Sonden im ersten Betriebsjahr kann somit ausgeschlossen werden.



Abbildung I-3.6 Temperaturverlauf im Umfeld der Sonden während der Heizphase vom 19.01.2009 bis zum 09.02.2009.



**Abbildung I-3.7** Temperaturverlauf im Umfeld der Sonden während der Kühlphase vom 27.07.2009 bis zum 17.08.2009.
Den allgemeinen Fließrichtungsmessungen zufolge sollten die Sonden S8 und S10 im Bereich der natürlichen Fließrichtungsschwankungen des Grundwasserabstroms der Sonden S12 und S15 liegen. Bei einer Betrachtung einzelner Sondentemperaturen in ausgewählten Tiefenbereichen, ist hier ebenfalls keine größere, durch fließendes Grundwasser bedingte Beeinflussung benachbarter Sonden zu beobachten (Abb. I-3.8 bis Abb. I-3.11). Sowohl im Heizbetrieb (Abb. I-3.8 & Abb. I-3.9), als auch im Kühlbetrieb (Abb. I-3.10 & Abb. I-3.11) sind keine auffälligen Temperaturschwankungen der unbenutzten Sonden (S8 & S10) innerhalb des ersten Betriebsjahres zu erkennen.



**Abbildung I-3.8** Temperaturverlauf im Umfeld der Sonden S10 und S15 in einer Tiefe von 50 Metern während der Heizphase vom 19.01.2009 bis zum 09.02.2009.



**Abbildung I-3.9** Temperaturverlauf im Umfeld der Sonden S10 und S15 in einer Tiefe von 100 Metern während der Heizphase vom 19.01.2009 bis zum 09.02.2009.



**Abbildung I-3.10** Temperaturverlauf im Umfeld der Sonden S8 und S12 in einer Tiefe von 50 Metern während der Kühlphase vom 27.07.2009 bis zum 17.08.2009.



Abbildung I-3.11 Temperaturverlauf im Umfeld der Sonden S8 und S12 in einer Tiefe von 100 Metern während der Kühlphase vom 27.07.2009 bis zum 17.08.2009.

#### I-4. Modellierungen des EWS-Feldes

Ein Ziel des Projektes ist es, mittels computergestützter Modellierung den Einfluss von Grundwasserbewegungen auf die Temperaturen im Untergrund des EWS-Feldes zu bestimmen. Um Grundwasserbewegungen im Untergrund zu simulieren, werden in der Regel numerische Lösungsverfahren verwendet (KINZELBACH & RAUSCH 1995), die auch hier gewählt wurden. Weiterhin sollen verschiedene Methoden der EWS-Feld-Dimensionierung im Hinblick auf eine unterschiedliche Soletemperatur in Abhängigkeit von der Laufzeit verglichen werden. Deshalb wurde das EWS-Feld mittels verschiedener Methoden simuliert, um mögliche Unterschiede in den Modellierungsverfahren aufzudecken und einen Vergleich mit den aus der Temperaturüberwachung erhaltenen Daten zu erstellen. Hierbei wurden zwei numerische Modellierungsprogramme zur Grundwassersimulation und zwei analytische Programme zur EWS-Feld-Dimensionierung miteinander verglichen.

#### I-4.1 Numerische Verfahren

Bei advektivem Grundwasserfluss bilden sich im Gegensatz zu einem rein konduktiven Wärmetransport (konzentrische Auskühlung) asymmetrische Kältefahnen an Erdwärmesonden aus (Abb. I-4.1). Diese Kältefahnen können mittels numerischer Simulation modelliert werden.



Kältefahnen einer Erdwärmesonde bei unterschiedlichen Grundwasser-Fließgeschwindigkeiten (Grundwasserfließrichtung entlang des blauen Pfeils).

Zur numerischen Modellierung des Untergrundes am Standort des Erdwärmesondenfeldes der Firma Wipotec in Kaiserslautern, wurden die beiden kommerziell erhältlichen Programme Feflow und Shemat verwendet.

#### I-4.1.1 FEFLOW

Das Finite Elemente Modellierungsprogramm Feflow ist ein Standardtool zur Modellierung gekoppelter, thermohydraulischen Fragestellungen (DIERSCH 1993). Die neue Version 5.4 (seit 2009 erhältlich) bietet zusätzlich zu den bekannten Funktionen eine neue Möglichkeit zur Dimensionierung von Erdwärmesonden und Erdwärmesondenfeldern. Feflow ist damit die erste kommerziell erhältliche Software, die ein einfaches Dimensionieren von Erdwärmesonden mittels numerischer Methoden ermöglicht. Aus diesem Grund wurde die Anwendbarkeit der Software auf die Fragestellungen des Projektes im weiteren Verlauf geprüft und dargestellt.

Erdwärmesonden können mit der neuen Programmversion als eindimensionales Linienelement in ein dreidimensionales Gitter eingebracht werden. Diesem Linienelement können anschließend Eigenschaften einer Erdwärmesonde zugewiesen werden (z.B. Bohrlochdurchmesser, Verfüllmaterial, Sondentyp und -größe, Sole, Wärmeentzug, etc.). Diese einfache Zuordnung der sondenspezifischen Parameter ohne eine detaillierte dreidimensionale Darstellung der einzelnen Sonde ermöglicht eine schnelle Modellierung von Erdwärmesonden in komplexen dreidimensionalen Untergrundmodellen.

Es wurden verschiedene Modelle mit variablen Untergrund- und Sondeneigenschaften analog zu den angegebenen Eingangsdaten in Kapitel I-4.2.1 berechnet. Ein exemplarisches Temperaturmodell ist in Abbildung I-4.2, I-4.3 & I-4.4 dargestellt. In diesem Modell wurde ein konstanter basaler Wärmefluss als Temperaturrandbedingung und ein konstanter hydraulischer Gradient zwischen der vorderen und hinteren Modellseite (Abb. I-4.2, rechts oben und links unten) als Fließrandbedingung gewählt. Abbildung I-4.2 zeigt die modellierte Umgebung von drei modellierten Erdwärmesonden (in der Mitte der Abbildung). Eine einjährige Modellierung mit einem festgelegten Wärme- und Kälteentzug der Erdwärmesonden des Feldes zeigt, dass sich sehr deutliche Kältetrichter im Untergrund ausbilden (Abb. I-4.3). Bei einer statischen horizontalen Grundwasserbewegung mit einer Abstandsgeschwindigkeit von ca. 4·10<sup>-4</sup> m/s bildeten sich deutliche Kältefahnen in Fließrichtung des Grundwassers (Abb. I-4.4).



Abbildung I-4.2 Numerisches, dreidimensionales Temperaturmodell mit drei Erdwärmesonden und Grundwasserfluss (Legende: 9,8°C bis 12,2°C.



Abbildung I-4.3 Temperaturisolinie bei 10,3°C. Kältetrichter der drei modellierten Erdwärmesonden. Schrägansicht.



Abbildung I-4.4 Temperaturisolinie bei 10,3°C. Kältetrichter der drei modellierten Erdwärmesonden. Seitenansicht.

Das Programm eignet sich dennoch grundsätzlich sehr gut für eine genaue Darstellung von thermohydraulischen Prozessen im Untergrund von EWS-Feldern. Durch die neue Möglichkeit der numerischen Kopplung des umgebenden Temperaturfelds an Erdwärmesonden, erlaubt Feflow eine detailliertere Abbildung thermohydraulischer Wechselwirkungen zwischen Untergrund und Sonde. Dadurch bietet es sehr gute

Möglichkeiten, um Erdwärmesondenprojekte mit komplexen geologischen und hydrogeologischen Randbedingungen zu simulieren. Im Vergleich zu den in Kapitel I-4.2 vorgestellten analytischen Methoden sind die Berechnungen jedoch deutlich rechenintensiver.

## I-4.1.2 SHEMAT

Das Programm Shemat (CLAUSER 2003) ist ein numerischer, auf Finiten Differenzen basierender thermohydraulischer 3D-Modellierungscode. Das Programm wurde bereits für die Modellierung von Kältefahnen im Grundwasserabstrom von Erdwärmesonden benutzt (PANNIKE 2005).

Shemat wurde im Verlauf des Projektes für eine Überprüfung einer möglichen gegenseitigen Beeinflussung von Erdwärmesonden durch Grundwasserbewegungen verwendet. Eine in-situ Temperaturaufzeichnung zeigte keinerlei sichtbare gegenseitige Beeinflussung der Erdwärmesonden nach einer zwölfmonatigen Beobachtungsphase (Kapitel I-3.4).

Es wurden insgesamt zwölf Modellierungen mit jeweils unterschiedlichen Fließgeschwindigkeiten und unterschiedlichen Wärmeentzugsleistungen (Tab. I-4.1 & I-4.2) durchgeführt. Die Parameter des umgebenden Gesteins wurden analog zu den beschriebenen Parametern in Kapitel I-4.2 gewählt. Die Auswirkungen des Wärmeentzugs auf die Soletemperaturen einer einzelnen Sonde kann mit dem Programm Shemat nicht berücksichtigt werden.

**Tabelle I-4.1** Zur Modellierung angesetzte Wärmeentnahmeleistungen der Erdwärmesonden bei zwei Betriebsmodi ("Planung" bezeichnet die dem Dimensionierungszustand entsprechende Wärmeentnahme leistung und "Realität" die Wärmeentnahmeleistung die den aufgezeichneten Entnahmemengen nach dem ersten Betriebsjahr entspricht. Die Entnahmeleistung bezeichnet den modellierten Wärmeentzug pro Tiefenmeter der Sonde.

|                        | Planung          | Realität (nach 1 Jahr) |
|------------------------|------------------|------------------------|
| Entnahmeleistung [W/m] | 8,9              | 6,1                    |
| Modelle                | 1, 2, 3, 4, 5, 6 | 7, 8, 9                |

Die in Tabelle I-4.1 angegebenen Wärmeentnahmeleistungen entsprechen der durchschnittlichen geplanten bzw. realen Wärmeentzugsleistung nach dem ersten Betriebsjahr. Die dem Untergrund entnommene Wärme wird auf diese Art und Weise gleichmäßig über das Jahr verteilt. Da dies nicht dem realen Betrieb einer Erdwärmesondenanlage entspricht (im Winter viel Entzug, im Sommer wenig Entzug bis hin zu aktiver Wärmeeinspeisung in den Untergrund), wurden ebenfalls Modellierungen mit alternierenden Entzugsleistungen erstellt (Tab. I-4.2). Eine Wärmeeinspeisung in den Untergrund durch passive Kühlung wird in den vorliegenden Modellen nicht betrachtet.

|           | Wärmeentzugs-    | Wärmeentzugs-     |
|-----------|------------------|-------------------|
|           | leistung Planung | leistung Realität |
|           | [W/m]            | nach 1 Jahr [W/m] |
| Januar    | 26,3             | 17,5              |
| Februar   | 21,6             | 13,0              |
| März      | 13,8             | 8,6               |
| April     | 2,6              | 3,1               |
| Mai       | 0,4              | 0,5               |
| Juni      | 0                | 0                 |
| Juli      | 0                | 0                 |
| August    | 0                | 0                 |
| September | 0,2              | 0,9               |
| Oktober   | 5,7              | 5,3               |
| November  | 14,7             | 7,5               |
| Dezember  | 22,1             | 16,7              |
| Modelle   | 10, 11           | 12                |

Tabelle I-4.2 Wärmeentzugsleistung der Erdwärmesonden im alternierenden Modellierungsmodus.

Die Länge der zu erwartenden Kältefahne kann im Vorfeld eingehenderer Betrachtungen abgeschätzt werden. Eine mögliche Methode zur Abschätzung der Kältefahnenausbreitung ist in HÄHNLEIN et al. (2010), Gleichung 4.1 & 4.2 aufgeführt:

 $l = \frac{v_a t}{R}$  mit  $v_a = \frac{v_f}{\phi}$ ,  $v_f = \frac{\dot{v}}{A}$  und  $R = 1 + \frac{\rho_s c_s}{\phi \rho_f c_f}$  (I-4.1) Abstandsgeschwindigkeit [m/s] Va Filter- oder Darcygeschwindigkeit [m/s] Vf Porosität [-] φ Ż Volumenstrom [m<sup>3</sup>/s] А Grundwasserquerschnittsfläche [m<sup>2</sup>] R Retardationsfaktor [-] volumetrische Wärmekapazität Gestein [J/(m<sup>3</sup> K)] ρscs volumetrische Wärmekapazität Fluid [J/(m<sup>3</sup> K)] ρfCf Länge der Kältefahne [m] 1 t Zeit [s]

Wenn man die hieraus resultierenden Ergebnisse (Tab. I-4.3) mit den numerischen Modellen (Abb. I-4.5 & I-4.6) vergleicht, zeigt sich, dass die erkennbaren Abmessungen der Kältefahnen mit den analytisch erhaltenen Ergebnissen nur annähernd übereinstimmen.

| ModelInr. | Filtergeschwindigkeit         | Dauer der       | Länge der        |
|-----------|-------------------------------|-----------------|------------------|
|           | v <sub>f</sub> [m/s - m/d]    | Erhitzung t [d] | Kältefahne I [m] |
| 1         | 1,41·10 <sup>-6</sup> - 0,12  | 365             | 59,29            |
| 2         | 1,41·10 <sup>-6</sup> - 0,12  | 608             | 98,76            |
| 3         | 1,41·10 <sup>-6</sup> - 0,12  | 1825            | 296,44           |
| 4         | 1,41·10 <sup>-6</sup> - 0,12  | 18250           | 2964,38          |
| 5         | 1,41·10 <sup>-5</sup> - 1,21  | 365             | 592,88           |
| 6         | 1,41·10 <sup>-4</sup> - 12,10 | 365             | 5928,77          |

**Tabelle I-4.3** Abschätzung der Kältefahnenlänge von Modell 1 bis 6. Porosität des Gesteins  $\phi = 0,25$ ; vol.Wärmekapazität Gestein  $\rho_s c_s = 2,1 \text{ MJ/(m³ K)}$ ; volumetrische Wärmekapazität Gestein Fluid  $\rho_f c_f = 4,2 \text{ MJ/(m³ K)}$ .

Dieser Unterschied ist daher zu begründen, dass Gleichung I-4.1 die Länge der gesamten von der Temperaturanomalie beeinflussten Fläche angibt. Das bedeutet, dass der Temperaturunterschied in den Außenbereichen so gering ist, dass er in den Abbildungen (Abb. I-4.5 & I-4.6) nicht mehr zu erkennen ist.

Um eine Abschätzung der maximalen thermischen Abkühlungslänge für eine bestimmte Temperaturdifferenz zu erhalten, kann man bei stationären Fließverhältnissen für den zweidimensionalen Fall folgende Gleichung (HÄHNLEIN et al. 2010) annehmen:

$$x = \frac{F_L^2}{v_a \phi^2 (\rho_f c_f)^2 4\pi D_t \Delta T_x^2} \qquad \text{mit} \qquad D_t = \frac{\lambda_{total}}{\phi \rho_f c_f} + \alpha_t v_a \qquad (I-4.2)$$

| FL                | Wärmeentnahmeleistung pro Länge [W/m]                     |
|-------------------|-----------------------------------------------------------|
| Va                | Abstandsgeschwindigkeit [m/s]                             |
| φ                 | Porosität [-]                                             |
| $\rho_{f}c_{f}$   | volumetrische Wärmekapazität Fluid [J/(m <sup>3</sup> K)] |
| $D_t$             | transversaler Wärmedispersionskoeffizient [m²/s]          |
| $\Delta T_{x}$    | Differenz zur Hintergrundtemperatur [K]                   |
| $\lambda_{total}$ | Wärmeleitfähigkeit Gestein & Fluid [W/(m K)]              |
| $\alpha_t$        | transversale Dispersivität [m]                            |

Hieraus ergeben sich für den Fall eines gegen unendlich gehenden Betrachtungszeitraums bei verschiedenen Temperaturdifferenzen und Filtergeschwindigkeiten unterschiedliche Ausbreitungslängen (Tab. I-4.4). Man erkennt hier deutlich, dass die gewählte Temperaturdifferenz einen erheblichen Einfluss auf die erhaltenen Werte besitzt. **Tabelle I-4.4** Kältefahnenlängen von Modell 1 bis 6. Wärmeentnahmeleistung FL = 15 W/m; Porosität des Gesteins  $\phi$  = 0,25; volumetrische Wärmekapazität Gestein  $\rho_s c_s$  = 2,1 MJ/(m<sup>3</sup> K); volumetrische Wärmekapazität Gestein Fluid  $\rho_f c_f$  = 4,2 MJ/(m<sup>3</sup> K); Wärmeleitfähigkeit Gestein & Fluid  $\lambda_{total}$  = 2,17 W/(m K); abgeschätzte transversale Dispersivität  $\alpha_t$  = 0,1 [m].

| Filtergeschwindigkeit         | Temperatur-                   | Länge der            |  |
|-------------------------------|-------------------------------|----------------------|--|
| v <sub>f</sub> [m/s - m/d]    | differenz ∆T <sub>x</sub> [K] | Kältefahne x [m]     |  |
| 1,41·10 <sup>-6</sup> - 0,12  | 1                             | 1,09                 |  |
| 1,41·10 <sup>-5</sup> - 1,21  | 1                             | 3,7·10 <sup>-2</sup> |  |
| 1,41·10 <sup>-4</sup> - 12,10 | 1                             | 4,9·10 <sup>-4</sup> |  |
| 1,41·10 <sup>-6</sup> - 0,12  | 0,1                           | 109,36               |  |
| 1,41·10 <sup>-5</sup> - 1,21  | 0,1                           | 3,74                 |  |
| 1,41·10 <sup>-4</sup> - 12,10 | 0,1                           | 4,9·10 <sup>-2</sup> |  |
| 1,41·10 <sup>-6</sup> - 0,12  | 0,01                          | 10935,94             |  |
| 1,41·10 <sup>-5</sup> - 1,21  | 0,01                          | 373,52               |  |
| 1,41·10 <sup>-4</sup> - 12,10 | 0,01                          | 4,92                 |  |

Auch hier sind die erhaltenen Werte nur bedingt mit den Abbildungen vergleichbar. Anhand der Abbildung I-4.5 kann man erkennen, dass sich auch nach 5 Jahren noch kein stationärer Zustand der Kälteausbreitung gebildet hat. Darüber hinaus kann der Abstand der Temperaturfront von der Entnahmestelle eine Maximallänge nicht überschreiten, die aus dem Produkt von verstrichener Zeit und Abstandsgeschwindigkeit ( $l_{max} = v_a t$ ) gebildet wird.

Vergleicht man die Ergebnisse von Modell 1 miteinander (Tab. I-4.5), so kann man erkennen, dass die Temperaturisolinie bei eine Temperaturabsenkung von 1 K bereits nach einem Meter ihren stationären Zustand erreicht hat, die Linie bei einer Absenkung von 0,1 K aber erst nach über 100 m stationär wird. Wenn man die Länge der Kältefahne mit Retardation zum Vergleich heranzieht, kann man erkennen, dass nach einem Zeitraum von einem Jahr der stationäre Zustand für die 0,1 K-Isolinie noch nicht erreicht sein kann. Dies kann man auch in Abbildung I-4.5 erkennen. Während sich der blaue Bereich der stärksten Abkühlung um die oberste Sonde (ohne Beeinflussung der Nachbarsonden) auch nach 50 Jahren kaum noch verändert, zeigen die Bereiche mit weniger Abkühlung (gelb) noch kein stationäres Verhalten.

Dies zeigt, dass die Methode der Kältefahnenlängenabschätzung für den vorliegenden Fall durchaus brauchbare Ergebnisse liefert, sie jedoch numerische Modellierungen nicht ersetzen sollte.

| Filtergeschwindigkeit v <sub>f</sub> [m/s - m/d]                   | 1,41·10 <sup>-6</sup> - 0,12 |
|--------------------------------------------------------------------|------------------------------|
| Abstandsgeschwindigkeit va [m/s - m/d]                             | 5,64·10 <sup>-6</sup> - 0,49 |
| Länge der Kältefahne maximal I <sub>max</sub> nach 365 d [m]       | 177,86                       |
| Länge der Kältefahne mit Retardation I nach 365 d [m]              | 59,29                        |
| stationäre Kältefahnenlänge x bei ∆T <sub>x</sub> = 1 K [m]        | 1,09                         |
| stationäre Kältefahnenlänge x bei $\Delta T_x = 0,1 \text{ K }[m]$ | 109,36                       |
| stationäre Kältefahnenlänge x bei ∆T <sub>x</sub> = 0,01 K [m]     | 10935,94                     |
|                                                                    |                              |

Tabelle I-4.5 Kältefahnenlängen im Vergleich.

Abbildung I-4.5 zeigt die unterschiedliche gegenseitige Beeinflussung von Erdwärmesonden bei gleichbleibendem Wärmeentzug und konstanter Grundwasserfließgeschwindigkeit, aber unterschiedlicher Benutzungsdauer. Die Wärmeentzugsleistung richtet sich hier nach dem durchschnittlichen Wärmebedarf des geplanten Erdwärmesondenfeldes. Innerhalb des ersten Jahres beeinflussen die Erdwärmesonden sich nur minimal (Abb. I-4.5, Modell 1), Kältefahnen sind jedoch bereits nach 20 Monaten erkennbar (Abb. I-4.5, Modell 2). Nach fünf Jahren ist die Beeinflussung einzelner, im Abstrom gelegener Erdwärmesonden durch die überlagernden Kältefahnen anderer Sonden bereits deutlich zu sehen (Abb. I-4.5, Modell 3) und verstärkt sich im weiteren Verlauf zunehmend (Abb. I-4.5, Modell 4).



Abbildung I-4.5 Ausschnitte aus vier verschiedenen Simulationen des Temperaturfeldes in der Umgebung von jeweils vier Erdwärmesonden bei von in der Abbildung oben nach unten gerichteter Fließbewegung (Fließgeschwindigkeit ca. 1,4 · 10<sup>-6</sup> m/s; Wärmeentzugsleistung der Sonden ca. 8,9 W pro Meter Sondentiefe; Simulationsdauer 12 bis 600 Monate).

Die in Kapitel I-2.4.2 aus Messdaten ermittelten Fließgeschwindigkeiten des Grundwassers liegen in der Größenordnung von 2 bis 3 10<sup>-6</sup> m/s für die Gesteinsmatrix und von 0,5 bis 1,5.10<sup>-4</sup> m/s für den geklüfteten Bereich des Gesteins. Die simulierten Fließgeschwindigkeiten der folgenden Modellierungen mit Shemat wurden an die gemessenen Geschwindigkeiten angelehnt. Die Ergebnisse zeigen, dass eine Beeinflussung von Erdwärmesonden im ersten Betriebsjahr nur innerhalb eines gewissen Fließgeschwindigkeitsfensters gegeben ist. Sind die Fließgeschwindigkeiten des Grundwassers zu niedrig (Abb. I-4.6, Modell 1, 1,4·10<sup>-6</sup> m/s), so dominiert der konduktive Wärmetransport und die Kältefahne reicht nicht bis zur benachbarten Sonde. Sind die Fließgeschwindigkeiten zu hoch (Abb. I-4.6, Modell 6, 1,4·10<sup>-4</sup> m/s), so wird die Erdwärmesonde vom Grundwasser stark umspült und die entstehende Kältefahne ist lang und relativ schmal. Die Temperaturunterschiede zur Hintergrundtemperatur sind dabei ebenfalls nur minimal. Lediglich im mittleren Bereich der Fließgeschwindigkeiten (Abb. I-4.6, Modell 5, 1,4·10<sup>-5</sup> m/s) bilden sich ausgeprägte Kältefahnen, welche die benachbarten Sonden beeinflussen.

Es ist somit wahrscheinlich, dass die realen Fließraten der Gesteinsmatrix zu niedrig und die der geklüfteten Bereiche zu hoch sind für eine große Beeinflussung der Nachbarsonden. Da die Bestimmung der Fließrichtung des Grundwassers mit relativ großen Fehlern behaftet ist und sich die Fließrichtung zudem in Abhängigkeit von der Grundwasserneubildung des Gebietes im Verlauf eines Jahres durchaus um mehrere Grad ändern kann, ist es ebenfalls möglich, dass eine Kälte- oder Wärmefahne an den Nachbarsonden vorbei fließt und diese somit nicht oder nur wenig beeinflusst.

Eine einjährige Modellierung der Kältefahnen mit einer durchschnittlichen, dem realen Wärmeentzug entsprechenden Entzugsleistung (Tab. I-4.1) bei drei unterschiedlichen Grundwasserfließgeschwindigkeiten (Abb. I-4.7) ergab ein ähnliches Bild wie die Modellierungen der Planung (Abb.I-4.6). Aufgrund der allgemein niedrigeren Entzugsleistungen ist die Abkühlung der Temperaturen der Kältefahnen nicht so ausgeprägt wie im Planungsfall. Damit nimmt auch der Grad der gegenseitigen Beeinflussung ab.

Die Ergebnisse der mit über ein Jahr wechselnden Wärmeentzugsleistungen erstellten Modellierungen sind in Abbildung I-4.8 und Abbildung I-4.9 abgebildet. Abbildung I-4.8 zeigt den Planungsfall analog zu Abbildung I-4.5 und Abbildung I-4.9 die Realität analog zu Abbildung I-4.7. Durch den höheren Wärmeentzug in den Wintermonaten (Tab. I-4.2) sind die Kältefahnen bei den Modellierungen mit wechselnden Entzugsleistungen größer ausgebildet, als bei den Modellierungen mit kontinuierlichem Wärmeentzug.



Abbildung I-4.6 Ausschnitte aus drei verschiedenen Simulationen des Temperaturfeldes in der Umgebung von jeweils vier Erdwärmesonden bei drei Fließgeschwindigkeiten (Fließrichtung in der Abbildung von oben nach unten; Fließgeschwindigkeit ca. 1,4 · 10<sup>-4</sup> (Modell 6), 1,4 · 10<sup>-5</sup> (Modell 5) und 1,4 · 10<sup>-6</sup> m/s (Modell 1); Wärmeentzugsleistung der Sonden ca. 8,9 W pro Meter Sondentiefe; Simulationsdauer 12 Monate).



Abbildung I-4.7 Ausschnitte aus drei verschiedenen Simulationen des Temperaturfeldes in der Umgebung von jeweils vier Erdwärmesonden bei drei Fließgeschwindigkeiten (Fließrichtung in der Abbildung von oben nach unten; Fließgeschwindigkeit ca. 1,4 · 10<sup>-4</sup> (Modell 9), 1,4 · 10<sup>-5</sup> (Modell 8) und 1,4 · 10<sup>-6</sup> m/s (Modell 7);
 Wärmeentzugsleistung der Sonden ca. 6,1 W pro Meter Sondentiefe; Simulationsdauer 12 Monate).



Abbildung I-4.8 Ausschnitte aus vier verschiedenen Simulationen des Temperaturfeldes in der Umgebung von jeweils vier Erdwärmesonden bei von in der Abbildung oben nach unten gerichteter Fließbewegung (Fließgeschwindigkeit ca. 1,4 · 10<sup>-6</sup> m/s; Wärmeentzugsleistung der Sonden ca. 8,9 W pro Meter Sondentiefe bzw. nach Tab. I-4-2; Simulationsdauer 12 bis 20 Monate).



Abbildung I-4.9 Ausschnitte aus zwei verschiedenen Simulationen des Temperaturfeldes in der Umgebung von jeweils vier Erdwärmesonden bei von in der Abbildung oben nach unten gerichteter Fließbewegung (Fließgeschwindigkeit ca. 1,4 · 10<sup>-6</sup> m/s; Wärmeentzugsleistung der Sonden ca. 6,1 W pro Meter Sondentiefe bzw. nach Tab. I-4-2; Simulationsdauer 12 Monate).

Die Ergebnisse dieser Modellierungen liefern plausible Erklärungen für die in Kapitel I-3.4 festgestellte gegenseitige Nicht-Beeinflussung der Erdwärmesonden des Untersuchungsgebietes während des einjährigen Beobachtungszeitraums. Basierend auf den Modellierungen ist mit dem Beginn einer messbaren, leichten gegenseitigen Beeinflussung der Sonden nach spätestens 5 Jahren zu rechnen.

# I-4.2 Analytische Verfahren zur Dimensionierung von Erdwärmesondenfeldern

Die im Folgenden vorgestellten analytischen Programme bieten eine schnelle Möglichkeit die benötigte Anzahl und Länge der Sonden eines Erdwärmesondenfeldes zu berechnen. Basis der Berechnungen sind verschiedene Parameter des Untergrundes sowie der verwendeten Materialien und der geplanten Nutzung. Der Einfluss von Grundwasserbewegungen kann nicht in die Berechnungen mit einfließen.

# I-4.2.1 EED-Modell

Als Vergleichs- und Referenzmodell wurde ein an das Planungsmodell der Firma Peschla & Rochmes angelehntes Modell erstellt. Verwendet wurde das analytische Programm Earth Energy Designer (EED, HELLSTRÖM & SANNER 1995), welches auch Grundlage für das Modell der Planer war. EED arbeitet im Wesentlichen mit den auf der Linienquellentheorie basierenden g-Funktionen nach ESKILSON (1987), die die Berechnung der gegenseitigen Beeinflussung benachbarter Erdwärmesonden ermöglichen.

Die Eingangsparameter der Firma Peschla & Rochmes wurden soweit vorhanden übernommen und an die Parameter der im Rahmen des Projektes durchgeführten Messungen angepasst.

## Eingangsdaten

## Geologie:

| Wärmeleitfähigkeit [W/(m K)]:                  | 2,7  |
|------------------------------------------------|------|
| Wärmekapazität [MJ/(m³ K)]:                    | 2,0  |
| Bodentemperatur [°C]:                          | 10   |
| Geothermischer Wärmefluss [W/m <sup>2</sup> ]: | 0,07 |

| Erdwärmesonde:                             |                              |
|--------------------------------------------|------------------------------|
| Тур:                                       | Doppel-U                     |
| Sondenanzahl:                              | 40                           |
| Feldgeometrie:                             | 4x10 (rechteckig, Abb. 4-10) |
| Sondentiefe [m]:                           | 130                          |
| Sondenabstand [m]:                         | 10                           |
| Bohrlochdurchmesser [m]:                   | 0,137                        |
| Durchflussrate [m <sup>3</sup> /s]:        | 0,00061                      |
| Wärmeleitfähigkeit Füllmaterial [W/(m K)]: | 2,0                          |



Abbildung I-4.10 Rechteckanordnung des EWS-Feldes.

# Wärmeträgerfluid:

| Fluid:                                  | Monoethylenglykol (25%) & Wasser |
|-----------------------------------------|----------------------------------|
| Wärmeleitfähigkeit [W/(m K)]:           | 0,48                             |
| Wärmekapazität [MJ/(m <sup>3</sup> K)]: | 3,795                            |
| Dichte [kg/m <sup>3</sup> ]:            | 1052,0                           |
| Viskosität [kg/(m s)]:                  | 0,0052                           |
| Gefrierpunkt [°C]:                      | -14                              |
| Grundlast                               |                                  |
| Grunulasi.                              |                                  |
| Vorgegebene Jahresarbeitszahl Heizen:   | 4                                |
| Vorgegebene Jahresarbeitszahl Kühlen:   | Freies Kühlen (10000)            |
| Simulationsdauer [a]:                   | 50                               |

Der Wärme- und Kältebedarf der Grundlast ist in Tabelle I-4.6 wiedergegeben.

# Keine Spitzenlastbetrachtung

| Temperaturrandbedingungen: |    |
|----------------------------|----|
| Maximum [°C]:              | 21 |
| Minimum [°C]:              | 0  |

Die Ergebnisse der Dimensionierung mit EED sind in Kapitel I-4.3 eingehend erläutert.

|           | Heizen |              | Kühlen |              | Heizen & Kühlen |
|-----------|--------|--------------|--------|--------------|-----------------|
|           | %      | Bedarf [kWh] | %      | Bedarf [kWh] | Entzug [kWh]    |
| Gesamt    | 100    | 540.000      | 100    | 369.400      | -               |
| Januar    | 25,1   | 135.540      | 0,1    | 369          | 101.286         |
| Februar   | 18,6   | 100.440      | 0,3    | 1.108        | 74.222          |
| März      | 13,2   | 71.280       | 0,9    | 3.324        | 50.136          |
| April     | 2,4    | 12.960       | 6,3    | 23.270       | -13.550         |
| Mai       | 0,4    | 2.160        | 12,3   | 45.432       | -43.812         |
| Juni      | 0,0    | 0            | 19,4   | 71.656       | -71.656         |
| Juli      | 0,0    | 0            | 25,0   | 92.341       | -92.341         |
| August    | 0,0    | 0            | 21,6   | 79.782       | -79.782         |
| September | 0,2    | 1.080        | 10,8   | 39.891       | -39.081         |
| Oktober   | 5,4    | 29.160       | 2,4    | 8.865        | 13.005          |
| November  | 13,6   | 73.440       | 0,6    | 2.216        | 52.864          |
| Dezember  | 21,1   | 113.940      | 0,3    | 1.108        | 84.347          |

**Tabelle I-4.6** Heiz- und Kühlbedarf sowie der daraus berechnete Wärme- bzw. Kälteentzug (Jahresarbeitszahl (JAZ) Heizen: 4, direkte Kühlung).

# I-4.2.2 EWS-Modell

Das Programm EWS ist ein von Huber Energietechnik, Zürich entwickeltes Programm zur Dimensionierung von Erdwärmesonden und wurde im Auftrag des schweizerischen Bundesamtes für Energie (BFE) in Bern entwickelt (HUBER & PAHUD 1999a, HUBER 2005 & HUBER et al. 2001). Es basiert ebenfalls auf den mathematischen Grundlagen der g-Funktionen (ESKILSON 1987). Im Gegensatz zu EED ist in EWS die Geometrie des Erdwärmesondenfeldes frei wählbar, da die zugehörige g-Funktion direkt aus einer graphischen Eingabe der Feldgeometrie berechnet werden kann. Zusätzlich lassen sich in EWS bis zu zehn in ihren Materialeigenschaften unterschiedliche Gesteinshorizonte wählen.

Die für das EED-Modell verwendeten Eingabeparameter wurden weitestgehend übernommen. Alle Änderungen sind auf unterschiedliche Eingabemethoden zurückzuführen und wurden äquivalent zu den EED-Daten bestimmt.

## Eingangsdaten

| Geologie:                      |                                                |
|--------------------------------|------------------------------------------------|
| Wärmeleitfähigkeit [W/(m K)]:  | 2,7                                            |
| Wärmekapazität [J/(kg K)]:     | 770 (entspricht ca. 2,0 MJ/(m <sup>3</sup> K)) |
| Bodentemperatur [°C]:          | 10                                             |
| Geothermischer Gradient [K/m]: | 0,026 (entspricht ca. 0,07 W/m²)               |

| Erdwärmesonde:                             |                                                     |
|--------------------------------------------|-----------------------------------------------------|
| Тур:                                       | Doppel-U                                            |
| Sondenanzahl:                              | 40                                                  |
| Feldgeometrie:                             | 4x10 (versetzte Sondenanordnung, siehe Abb. I-4-11) |
| Sondentiefe [m]:                           | 130                                                 |
| Sondenabstand [m]:                         | 10                                                  |
| Bohrlochdurchmesser [m]:                   | 0,12                                                |
| Wärmeleitfähigkeit Füllmaterial [W/(m K)]: | 2,0                                                 |



Abbildung I-4.11 Versetzte Sondenanordnung des EWS-Feldes.

# Wärmeträgerfluid:

| Fluid:                                | Monoethylenglykol (25%) & Wasser                       |
|---------------------------------------|--------------------------------------------------------|
| Wärmeleitfähigkeit [W/(m K)]:         | 0,49                                                   |
| Wärmekapazität [J/(kg K)]:            | 3,800                                                  |
| Dichte [kg/m <sup>3</sup> ]:          | 1053,0                                                 |
| Viskosität [kg/(m s)]:                | 0,0052                                                 |
| Gefrierpunkt [°C]:                    | -14                                                    |
| Grundlast:                            |                                                        |
| Vorgegebene Jahresarbeitszahl Heizen: | 4                                                      |
| Vorgegebene Jahresarbeitszahl Kühlen: | 1000 (freies Kühlen: Zirkulation Sole ohne Wärmepumpe) |
| Simulationsdauer [a]:                 | 50                                                     |

Der Wärme- und Kältebedarf der Grundlast ist in Tabelle I-4.6 wiedergegeben.

## Keine Spitzenlastbetrachtung

| Temperaturrandbedingungen: |    |
|----------------------------|----|
| Maximum [°C]:              | 21 |
| Minimum [°C]:              | 0  |

Die Ergebnisse der Dimensionierung mit EWS sind in Kapitel I-4.3 eingehend erläutert.

### I-4.3 Vergleich der analytischen Simulationsprogramme

Es wurden insgesamt drei verschiedene Modelle aufgesetzt. Ein Modell wurde mittels des Programms EED (Feld-EED) erstellt. Die Sondenanordnung ist hierbei ein rechteckiges 4·10-Sonden-Feld (Abb. I-4.10), da in EED die Sondenanordnung nicht frei wählbar ist. Zusätzlich wurden zwei weitere Modelle mittels des Programms EWS (Feld-EWS und Feld-EWS-II) berechnet. Das erste Modell (Feld-EWS) wurde mit der gebohrten Sondenfeldgeometrie berechnet (Abb. I-4.11), während das zweite (Feld-EWS-II) mit einer rechtwinkligen Sondenanordnung analog zum Modell Feld-EED berechnet wurde (Abb. I-4.10). Die Ergebnisse der Berechnungen werden hinsichtlich ihrer mittleren Soletemperaturen miteinander verglichen.

Der direkte Vergleich zwischen den beiden unterschiedlichen Modellierungsprogrammen (Feld-EED und Feld-EWS) ergab nur geringfügige Unterschiede in den minimalen und maximalen monatlichen Soletemperaturen des jeweils ersten und letzten Simulationsjahres (Tab. I-4.7).

Auch der Vergleich zwischen unterschiedlicher Sondenanordnung (versetzte Sondenanordnung bei Feld-EWS, rechtwinklige Anordnung bei Feld EWS-II) mit dem Programm EWS ergab ebenfalls nur geringe Unterschiede (Tab. I-4.7).

Abbildung (Abb. I-4.12) gibt einen Überblick über die Temperaturentwicklung des EWS-Feldes, berechnet mit den beiden Modellierungsprogrammen. Sie zeigt, dass der Temperaturverlauf der Sole im letzten Simulationsjahr (Jahr 50) mit beiden Modellierungsprogrammen nahezu identisch ausfällt. Da beide Programme auf denselben mathematischen Grundlagen beruhen (ESKILSON 1987, HELLSTRÖM 1991), sind die Ergebnisse erwartungsgemäß ausgefallen.

|               | Vergleich EED und EWS  |         |        |         |
|---------------|------------------------|---------|--------|---------|
|               | Durchschnittl. monatl. |         |        |         |
|               | Soletemperatur         |         |        |         |
|               | 1.Jahr                 | 50.Jahr | 1.Jahr | 50.Jahr |
|               | Tmax                   | Tmax    | Tmin   | Tmin    |
| Feld-EED [°C] | 18,81                  | 18,18   | 3,89   | 2,41    |
| Feld-EWS [°C] | 18,71                  | 18,17   | 4,53   | 2,91    |
| Differenz [K] | 0,10                   | 0,01    | 0,64   | 0,50    |

 Tabelle I-4.7 Durchschnittliche monatliche Soletemperatur.

|                  | Vergleich EWS und EWS-II |         |        |         |
|------------------|--------------------------|---------|--------|---------|
|                  | Durchschnittl. monatl.   |         |        |         |
|                  | Soletemperatur           |         |        |         |
|                  | 1.Jahr                   | 50.Jahr | 1.Jahr | 50.Jahr |
|                  | Tmax                     | Tmax    | Tmin   | Tmin    |
| Feld-EWS [°C]    | 18,71                    | 18,17   | 4,53   | 2,91    |
| Feld-EWS-II [°C] | 18,66                    | 18,40   | 4,61   | 3,38    |
| Differenz [K]    | 0,05                     | 0,23    | 0,08   | 0,47    |



Abbildung I-4.12 Monatliche durchschnittliche Temperaturentwicklung des Trägerfluids in den Sonden im Jahr 50 nach Inbetriebnahme der EWS-Felder bei kontinuierlichem Betrieb; Modell Feld-EED und Feld-EWS.

#### I-4.4 Vergleich VDI mit den analytischen Programmen

Zum Vergleich der Ergebnisse der analytischen Dimensionierungsprogramme mit der Berechnungsmethode nach VDI 4640, Blatt 2 wurde die für den Wärmebedarf benötigte Gesamtsondenlänge aus der angegebenen Wärmeentzugsleistung der Wärmepumpen (ca. 220 kW) mit zwei verschiedenen Wärmeentzugsleistungen des Untergrundes berechnet (Tab. I-4.8). Die Wärmeentzugsleistungen des Untergrundes stehen für den für Sandstein höchstmöglichen Wärmeentzug bei wenig Heizbedarf und den geringstmöglichen Wärmeentzug bei hohem Heizbedarf.

Bei einem Vergleich mit der tatsächlich benötigten Sondenlänge von 130 m zeigt sich, dass das Feld bei einer Dimensionierung nach VDI unterdimensioniert wäre. Dies kann man am besten erkennen, wenn man die Soletemperaturen mit dem Programm EED berechnet, die bei einem tatsächlichen Erdwärmesondenfeld mit der nach VDI benötigten Sondenlänge entstehen würden. Die aus diesen Berechnungen erhaltenen Soletemperaturen liegen für Variante 1 unterhalb der für die meisten Wärmepumpenanlagen notwendigen Mindest-temperaturen von -5°C (Tab. I-4.8). Variante 2 hingegen liegt in einem Temperaturbereich der Sole, der gerade noch für einen Betrieb der Anlage ausreichend ist. Aufgrund der großen Varianz und Unsicherheit der spezifischen Wärmeentzugsleistungen des Untergrundes wäre ein nach VDI 4640, Blatt 2 dimensioniertes Erdwärmesondenfeld für den Wärme- und Kältebedarf in Kaiserslautern nicht empfehlenswert.

|                                              | Variante 1 | Variante 2 |
|----------------------------------------------|------------|------------|
| Wärmeentzugsleistung der Wärmepumpen [kW]    | ~220       | ~220       |
| Spezifische Entzugsleistung Untergrund [W/m] | 80         | 55         |
| Vollbenutzungsstunden [h]                    | 1800       | 2400       |
| Anzahl Sonden [-]                            | 40         | 40         |
| Länge pro Sonde [m]                          | 69         | 100        |
| Min. Soletemp. (EED) [°C]                    | -5,18      | -0,16      |
| Max. Soletemp. (EED) [°C]                    | 23,92      | 20,46      |

**Tabelle I-4.8** Bestimmung der jeweiligen Sondenlänge mit Hilfe spezifischer Entzugsleistungen nach VDI 4640, Blatt 2.

Dies zeigt, dass größere Anlagen nicht mit Hilfe der Tabellenmethode nach VDI 4640 dimensioniert werden sollten. Der Unterschied zwischen der tatsächlich benötigten Sondenlänge (130 m) und den Werten nach VDI 4640, wird zu einem großen Teil durch die gegenseitige Beeinflussung der einzelnen Sonden im Sondenfeldverband verursacht. Dies kann mit der VDI-Methode nicht berücksichtigt werden. Auch ist es mit der VDI-Berechnung nicht möglich, die einzelnen Haustechnik- und Untergrundparameter getrennt zu berücksichtigen. Aus diesem Grund gibt diese VDI-Richtlinie vor, dass bei Erdwärme-

sondenanlagen ab einer Leistung von 30 kW rechnergestützte Dimensionierungsmethoden (wie z.B. EED oder EWS) verwendet werden müssen.

### I-4.5 Vergleich Wärmebedarf Planung und Wärmebedarf real

Zwischen dem in der Planung verwendeten Wärmebedarf und dem Wärmebedarf aus der im Zuge dieser Studie über einen Zeitraum von einem Jahr angefertigten Energiebilanz (Kapitel 8.3 in MALM et al. 2010) ergeben sich zum Teil erhebliche Unterschiede (Tab. I-4.9 & I-4.10). Sowohl im Heiz- als auch im Kühlbetrieb ist eine Abnahme der benötigten Gesamtwärmemenge zu beobachten. Der Wärmeentzug aus dem Erdreich beträgt lediglich 68% des geplanten Wärmebedarfs, wohingegen lediglich 65% der Kältemenge benötigt wird.

|           | Wärmeentzug   | Wärmeentzug      | Differenz |
|-----------|---------------|------------------|-----------|
|           | Planung [kWh] | Realität [kWh]   | [kWh]     |
| Januar    | 101.655       | 67.800           | 33.855    |
| Februar   | 75.330        | 45.600           | 29.730    |
| März      | 53.460        | 33.400           | 20.060    |
| April     | 9.720         | 13.400 verteilt  | -         |
| Mai       | 1.620         | über April & Mai | -         |
| Juni      | 0             | 0                | 0         |
| Juli      | 0             | 0                | 0         |
| August    | 0             | 0                | 0         |
| September | 810           | 3.300            | -2.490    |
| Oktober   | 21.870        | 20.400           | 1.470     |
| November  | 55.080        | 28.200           | 26.880    |
| Dezember  | 85.455        | 64.700           | 20.755    |
| Gesamt    | 405.000       | 276.800          | 128.200   |

Tabelle I-4.9 Wärmeentzug der Planungsgrundlage und der real benötigte Wärmeentzug.

Tabelle I-4.10 Kälteentzug der Planungsgrundlage und der real benötigte Kälteentzug.

|           | Kälteentzug   | Kälteentzug      | Differenz |
|-----------|---------------|------------------|-----------|
|           | Planung [kWh] | Realität [kWh]   | [kWh]     |
| Januar    | 369           | 7.200            | -6.831    |
| Februar   | 1.108         | 7.300            | -6.192    |
| März      | 3.324         | 11.300           | -7.976    |
| April     | 23.270        | 42.200 verteilt  | -         |
| Mai       | 45.432        | über April & Mai | -         |
| Juni      | 71.656        | 35.600           | 36.056    |
| Juli      | 92.341        | 44.100           | 48.241    |
| August    | 79.782        | 46.400           | 33.382    |
| September | 39.891        | 23.100           | 16.791    |
| Oktober   | 8.865         | 11.400           | -2.535    |
| November  | 2.216         | 7.100            | -4.884    |
| Dezember  | 1.108         | 3.100            | -1.992    |
| Gesamt    | 369.363       | 238.800          | 130.563   |

#### I-4.6 Gegenüberstellung des geplanten und des realen Wärmebedarfs mit EED

Eine Berechnung der Soletemperaturen über einen Simulationszeitraum von 50 Jahren mit den Daten des realen Wärmebedarfs kann wertvolle Hinweise auf den zu erwartenden Temperaturverlauf der Wärmeträgerflüssigkeit und die Effizienz des Sondenfeldes liefern. Zu beachten gilt jedoch, dass sich diese neu gewonnenen Daten lediglich auf den Wärme- und Kälteverbrauch des ersten Betriebsjahres beziehen (Tab. I-4.9 & I-4.10). Die realen Verbräuche können über den angesetzten Betriebszeitraum von 50 Jahren durchaus variieren.

Der neue Berechnung mit EED (im laufenden Text "Feld- EED-II" genannt; basierend auf der Energiebilanz des ersten Betriebsjahres) wurden bis auf die Lastprofile der Grundlast (Tab. I-4.9 & I-4.10) dieselben Parameter wie bei der anfänglichen Modellierung (Feld-EED, Kapitel II-4.2.1) verwendet. Die Ergebnisse der Modellierungen zeigen, dass die Temperaturspanne zwischen Minimal- und Maximaltemperatur im Grundlastfall von Feld-EED-II im Vergleich zu Feld-EED (Abb. I-4.13) sinkt. Gleichzeitig kann man erkennen, dass die durchschnittlichen Grundlasttemperaturen von Feld-EED-II im Verlauf von 50 Jahren leicht steigen (von ca. 15,5°C auf ca. 16,5°C bei den maximalen Grundlasttemperaturen und von ca. 8°C auf ca. 9°C bei den minimalen Grundlasttemperaturen, Abb. I-4.13). Der leichte Anstieg der Temperaturen bei Feld-EED-II (Abb. I-4.13) wird durch die im Vergleich zum Planungsfall jährlich unterschiedliche Verteilung des Wärme- und Kälteentzugs hervorgerufen (vgl. Abb. I-4.14).

Die Ergebnisse des letzten simulierten Betriebsjahres ergab für Feld-EED-II eine weit geringere Temperaturspreizung als beim Modell Feld-EED (Abb. I-4.14). Dies ist eine direkte Auswirkung aus dem im Vergleich zur Planung niedrigeren realen Wärme- und Kältebedarf.

Bei einer weitergehenden Beobachtung des realen Wärme- und Kältebedarfs mittels der eingebauten Wärmemengenzähler (Kapitel 8.3 in MALM et al. 2010), kann, über das erste Betriebsjahr hinaus, die Berechnung Jahr für Jahr mit realen Zahlen neu angesetzt werden. Die so erhaltenen Ergebnisse können wertvolle Hinweise auf die Ausnutzung des im Untergrund zur Verfügung stehenden Wärme- und Kältepotentials liefern und helfen den Betrieb der geothermischen Anlage zu verbessern.



Abbildung I-4.13 Entwicklung der jährlichen minimalen und maximalen Monats-Durchschnitts-Temperaturen des Trägerfluids in den Sonden über 50 Jahre; Modell Feld-EED und Feld-EED-II.



Abbildung I-4.14 Monatliche durchschnittliche Temperaturentwicklung des Trägerfluids in den Sonden im Jahr 50 nach Inbetriebnahme der EWS-Felder bei kontinuierlichem Betrieb; Modell Feld-EED und Feld-EED-II.

#### I-5. Zusammenfassung der Ergebnisse von Abschnitt I

Im Zuge des Forschungsprojekts "Qualitätssicherung bei Erdwärmesondenfeldern für Heizund Kühlzwecke und Überprüfung ihrer Effizienz im Ziel 2 Gebiet" des Ministeriums für Umwelt, Forsten und Verbraucherschutz, Rheinland-Pfalz wurde ein Erdwärmesondenfeld mit 40 Sonden in Kaiserslautern (Wipotec GmbH) überprüft.

Ziel des Projektes war die Erstellung einer Energiebilanz zur Optimierung eines Erdwärmesondenfeldes und eine Überprüfung verschiedener Methoden zur Erfassung der Untergrundparameter.

An drei der Erdwärmesonden wurde mittels eines in-situ Grundwasserströmungsmessverfahrens das hydraulische Verhalten des Untergrundes überprüft. Grundwasserfließrichtung und -geschwindigkeit konnten in mehreren Tiefenbereichen ermittelt werden. Zusätzlich wurde eine Kamerabefahrung durchgeführt, die verschiedene Klüftungszonen erkennen ließ und einzelnen Tiefenbereichen zuordnen konnte.

Zusätzlich erfolgte an zwei Sonden ein herkömmlicher Thermal Response Test (TRT), während an vier Sonden ein enhanced Thermal Response Test (eTRT) durchgeführt wurde. Die Ergebnisse zeigen, dass fließendes Grundwasser im Untergrund des Erdwärmesondenfeldes die effektiven Wärmeleitfähigkeiten beeinflusst. Es zeigte sich außerdem, dass der tiefenaufgelöste eTRT hilft, sowohl Zonen mit verstärktem Grundwasserfluss zu detektieren als auch Mängel in der durchgängigen Verpressung der Erdwärmesonden aufzuzeigen. Selbst bei korrekter Durchführung der Sondenverpressung durch die beauftragte Bohrfirma kann es in stark geklüfteten Untergrundbereichen zu einer mangelhaften Verpressung der Sonde kommen.

Eine einjährige Temperaturüberwachung des laufenden Betriebs mittels an acht der Erdwärmesonden angebrachter Glasfaserkabel zeigte den Temperaturverlauf des Untergrundes in der Nähe der Sonden. Es konnte jedoch keine gegenseitige Beeinflussung von unterschiedlichen Erdwärmesonden festgestellt werden. Sämtliche Temperaturänderungen lagen innerhalb der messaufbaubedingten Fehlerbereiche. Ein Vergleich der Untergrundtemperaturen mit den mittleren Soletemperaturen ergab die erwartete direkte Abhängigkeit von Sole- und Untergrundtemperaturen im Nahbereich der Sonden.

Sowohl numerische als auch analytische Modellierungsprogramme wurden im Verlauf des Projekts verwendet. Numerische Programme eignen sich vor allem bei einer komplexen Geologie oder Hydrogeologie des Untergrundes. Es wurden zwei verschiedene numerische Programme verwendet.

Feflow ist ein Finite-Elemente-Code, der zur Modellierung von Fluid- und Stoffströmungsprozessen verwendet wird. Die neue Programmversion 5.4 beinhaltet erstmalig die Möglichkeit, Erdwärmesonden mit einfachen Linienelementen in ein dreidimensionales Modellierungsnetz einzufügen. Es zeigte sich, dass diese neuartige Methode gut funktioniert. Die benötigte Rechnerleistung und der benötigte Speicherplatz sind hoch. Insbesondere bei komplexen geologischen und hydrogeologischen Ausgangsvoraussetzungen scheint eine solche Simulation jedoch sehr sinnvoll.

Shemat ist ein Finite-Differenzen-Code, der für die Lösung thermohydraulischer Fragestellungen entwickelt wurde und vor allem im Bereich Fluid- und Reservoirmodellierung eingesetzt wird. Die Messungen der in-situ-Grundwasserfließgeschwindigkeit haben ergeben, dass sich die vor Ort befindlichen Fließgeschwindigkeiten im vorherrschenden Aquifer des Buntsandsteins in zwei hauptsächlichen Geschwindigkeitsbereichen bewegen. In geklüfteten Bereichen ist diese um zwei Größenordnungen höher, als in den ungeklüfteten. Diese Werte wurden für die numerischen Modellierungen in die Modelle übernommen.

Die Ergebnisse der Modellierungen liefern Gründe für die durch die einjährige Temperaturüberwachung festgestellte Nicht-Beeinflussung der beobachteten Erdwärmesonden. Ein Grund ist die Dauer der Temperaturüberwachung. Die Modelle zeigen, dass eine einjährige Überwachung in den meisten Fällen zu kurz ist, um eine Beeinflussung zu beobachten. Auch bei einer langsamen Grundwasserfließgeschwindigkeit wird der Einfluss größer, je länger die Simulationszeit angesetzt wird.

Ein zweiter Punkt ist die Fließgeschwindigkeit des Grundwassers. Fließt das Grundwasser bei einer einjährigen Simulationszeit langsam, so bleibt der Hauptteil des Wärmetransports konduktiv und beeinflusst die benachbarten Sonden nur minimal. Ist der Grundwasserfluss jedoch schnell, so bildet sich lediglich eine schmale, nur wenig abgekühlte Kältefahne aus, da der Sonde stetig Grundwasser mit einer ungestörten Temperatur zugeführt wird. Nur in einem mittleren Fließgeschwindigkeitsbereich ist die Beeinflussung durch benachbarte Sonden maximal (vgl. Kapitel I-4.1.2).

Als dritter Grund kann die Unsicherheit der Fließrichtung des Grundwassers angegeben werden. Da sich die Grundwasserfließrichtung bei sich verändernder Grundwasserneubildung über das Jahr gesehen durchaus um mehrere Grad ändern kann, ist es auch möglich, dass die Kälte- oder Wärmefahne an den benachbarten Sonden vorbei fließt und diese somit nicht oder nur wenig beeinflusst. Um die Dimensionierungen des Erdwärmesondenfeldes miteinander zu vergleichen wurden zwei analytische Programme verwendet. Es zeigt sich, dass die beiden analytischen Modelle, die mittels der Software EED und EWS erstellt wurden, in ihren Ergebnissen sehr ähnlich sind, da sie auf der gleichen Berechnungsgrundlage arbeiten. Diese kommerziell erhältlichen Modellierungstools eignen sich vor allem für eine schnelle und effiziente Dimensionierung von Erdwärmesondenfeldern bei relativ unkomplizierten geologischen und hydro-geologischen Verhältnissen. Ein Vergleich der analytischen Dimensionierungsprogramme mit einer Dimensionierung nach VDI 4640, Blatt 2 ergab, dass diese Richtlinie nicht für größere Erdwärmesondenfelder geeignet ist (wie auch in VDI 4640 vermerkt).

Ein Vergleich zwischen dem der Planung zugrunde liegenden Wärme- und Kältebedarf und dem real gemessenen Wärme- und Kältebedarf im ersten Betriebsjahr ergab einen um ca. 35% niedrigeren tatsächlichen Energiebedarf. Daraus resultierend ergibt sich eine niedrigere jährliche Sole- und Untergrundtemperaturspreizung. Eine über das erste Betriebsjahr hinausgehende Überwachung des jährlichen Wärme- und Kältebedarfs mit anschließender Neuberechnung der Soletemperaturen, kann Hinweise auf die Ausnutzung des im Untergrund zur Verfügung stehenden Wärme- und Kältepotentials liefern. Dies hilft, den Betrieb der geothermischen Anlage langfristig zu verbessern. Abschnitt II der Dissertation

Thermohydraulische Szenariomodellierungen des enhanced Thermal Response Tests

# Einleitung und Überblick Abschnitt II

Abschnitt I der Dissertation hat gezeigt, dass die thermischen und hydraulischen Untergrundparameter neben der Auslegung und dem Betrieb der Haustechnik einen großen Einfluss auf den Ertrag und die Effizienz von Erdwärmesondenanlagen besitzen. Die Ermittlung der Wärmeleitfähigkeiten des Untergrundes sowie die Wechselwirkungen zwischen gemessener Wärmeleitfähigkeit und tatsächlicher Gesteinswärmeleitfähigkeit bei einem gleichzeitigen Vorhandensein von hydraulischem Wärmetransport durch fließendes Grundwasser, ist eine der zentralen Fragen vieler wissenschaftlicher Arbeiten im Bereich der oberflächennahen (MALM 2009, MALM & DECKERT 2013, GEHLIN 1998, Geothermie GEHLIN 2002, SANNER et al. 2008, FORRER et al. 2008, WITTE et al. 2002, WAGNER & CLAUSER 2005, HÄHNLEIN et al. 2010, CHIASSON et al. 2000, GEHLIN & HELLSTRÖM 2003, DIAO et al. 2004, BARCENILLA et al. 2005, AFEI et al. 2007, SUTTON et al. 2003, HUBER & ARSLAN 2012, WAGNER et al. 2013, LEE & LAM 2007, WITTE 2002 & ZSCHOCKE et al. 2005).

Der vorliegende Abschnitt soll die bereits in Abschnitt I vorgestellte Methode zur Bestimmung einer tiefenaufgelösten Wärmeleitfähigkeit, den enhanced Thermal Response Test (DORNSTÄDTER et al. 2008, HEIDINGER et al. 2004, MALM 2009, MALM & DECKERT 2013, HESKE et al. 2011, RIEGGER et al. 2012, Kapitel I-2.4.1.2) näher erläutern, sowie Stärken und Schwächen der Methode herausarbeiten. Vergleiche zwischen herkömmlichen TRTs und dem eTRT, sowie die numerische Modellierung der Testdurchführung soll die Reproduzierbarkeit der mit dieser Methode erzielten Messergebnisse stützen.

#### II-1. Methodik

Faseroptische Temperaturmessmethoden wurden bereits 1982 erstmals von HARTOG & PAYNE vorgestellt. Die als Distributed Temperature Sensing (DTS) bekannte Messmethode wurde später u. A. von HURTIG et al (1994) zur Erstellung von Temperaturlogs in Bohrlöchern für die Geowissenschaften nutzbar gemacht. Seit 2004 wird die DTS-Methode für die tiefenaufgelöste Messung von Untergrundwärmeleitfähigkeiten (eTRT) verwendet (HEIDINGER et al. 2004, DORNSTÄDTER et al. 2008, MALM 2009, HESKE et al. 2011 & RIEGGER et al. 2012).

#### II-1.1 DTS-Messverfahren

Mittels des DTS-Messverfahrens können Temperaturen entlang eines Lichtwellenleiterkabels (LWL-Kabel) gemessen werden. Die erreichbaren Messgenauigkeiten liegen bei ca.  $\pm 0,3$  K der absoluten Temperaturwerte und bei ca.  $\pm 0,1$  K der Werte relativ zueinander (HURTIG et al. 1994). Die maximale Ortsauflösung liegt je nach Gerät bei ca. 0,15 m.

### II-1.1.1 Physikalische Grundlagen

Das DTS-Messverfahren basiert auf der Auswertung der Intensität und spektralen Zusammensetzung des rückgestreuten Lichts, das entsteht, wenn die Photonen eines Laser-Impulses mit den Elektronen des amorphen Quarzes der verwendeten Glasfaser interagieren (HURTIG et al. 1994). Das auf diese Art rückgestreute Licht teilt sich in drei spektrale Bänder auf: Das Rayleigh-Band, sowie das Stokes- und das Anti-Stokes-Band (Abb. II-1.1). Das Rayleigh-Band kann durch seine Eigenschaften verwendet werden, um Brüche oder Inhomogenitäten im Faserverlauf zu ermitteln (HURTIG et al. 1994). Die Raman-Rückstreuung wird von der thermisch beeinflussten molekularen Gitterschwingung der Glasfasermoleküle erzeugt. Die beiden Spektralbänder (Stokes- und Anti-Stokes-Band) unterscheiden sich in Ihren Intensitäten, da das Stokes-Band nur gering, das Anti-Stokes-Band jedoch stark von der Temperatur der Faser beeinflusst wird (HURTIG et al. 1994). Aus dem Verhältnis zwischen Stokes- und Anti-Stokes-Band unter Berücksichtigung weiterer Materialparameter kann somit die absolute Temperatur der Glasfaser an jedem Punkt der Messstrecke berechnet werden (ERBAS et al. 1999). Da die Geschwindigkeit der Lichtausbreitung in einer optischen Faser sehr gut bekannt ist, kann der räumliche Abstand des gemessenen Punktes von der Lichtquelle sehr genau über die Abnahme der Intensität des rückgestreuten Lichtes bestimmt werden (HURTIG et al. 1994).





Wavelength

**Abbildung II-1.1** Aufteilung der optischen Rückstreuung (ERBAŞ et al. 1999) und Abbildung eines Glasfaserhybridkabels. Die grüne Kabelhülse beinhaltet die vier Glasfasern, die unteren Kabelhülsen die vier Kupferlitzen.

Die so ermittelten Temperaturwerte lassen sich jedem räumlichen Punkt entlang der LWL-Kabelstrecke zuordnen und man erhält mit jedem Messdurchgang eine Kette von Temperaturmesswerten. Das Rauschen der Messwerte bzw. die Ungenauigkeit der Messwerte erhöht sich mit der Entfernung des gemessenen Punktes von der Strahlungsquelle.

## II-1.1.2 Messdurchführung

Im Rahmen der vorliegenden Dissertation wurde ein OTS40P-Messgerät der Firma LIOS Technologies für die faseroptischen Temperaturmessungen verwendet. Das Messgerät kann bis zu 4000 m LWL-Kabel messen und mittels einer Software (CHARON\_02) widergeben. Zur Durchführung einer Messung muss das für die Messung vorgesehene Glasfaserkabel an das Messgerät angeschlossen werden. Hierfür muss ein E2000-Stecker (Pig-Tail mit Schrägschliff) an das Kabel angespleißt werden. Über ein Remote-Desktop-Verfahren kann eine Fernkalibrierung des Gerätes von dem Gerätehersteller vorgenommen werden. Nach der Einstellung des Gerätes für den Messdurchgang kann die Messung der Temperaturen beginnen. Die beschriebene Messdurchführung wurde auch bei den Messungen in Abschnitt I, Kapitel I-2.4.1 angewandt.

#### II-1.2 Der enhanced Thermal Response Test (eTRT)

Der enhanced Thermal Response Test (eTRT) wird seit mehreren Jahren erfolgreich zur Ermittlung tiefenaufgelöster Wärmeleitfähigkeiten des Untergrundes bei Erdwärmesondenanlagen verwendet (HEIDINGER et al. 2004, DORNSTÄDTER et al. 2008, HESKE et al. 2011, RIEGGER et al. 2012, MALM 2009, MALM & DECKERT 2013 & HUBER 2013). Herkömmliche Messmethoden (z.B. TRTs, TRTs mit Temperatur-Logging, etc.) lassen bislang lediglich qualitätive Aussagen über die Wärmeleitfähigkeitsverteilung der Untergrundgesteine entlang der Bohrstrecke zu. Gerade bei einem komplexen geologischen Aufbau des Untergrundes oder erhöhtem Einfluss durch fließendes Grundwasser in durchteuften Aquiferen, bietet der eTRT gegenüber herkömmlichen Verfahren einen Mehrgewinn an geologischer Information (Kapitel I-2.4), der für die Dimensionierung einer größeren Erdwärmesondenanlage von großer Bedeutung ist.

## II-1.2.1 Messaufbau und -durchführung

Der eTRT wird mittels eines an der Wandung der Erdwärmesondenrohre befestigten Glasfaser-Hybridkabels durchgeführt (DORNSTÄDTER et al. 2008, HESKE et al. 2011, MALM 2009 & MALM & DECKERT 2013). Das Kabel setzt sich aus mehreren Komponenten zusammen (Abb. II-1.2). Für einen eTRT relevant sind vor allem die je nach Kabelausführung 2-4 Kupferadern (Querschnittsfläche 0,5 bis 1,5 mm<sup>2</sup>), sowie die in einem Schutzröhrchen gebündelten Glasfasern (Multimode G50/125 µm). Eine der Fasern wird an ein Pig-Tail mit E2000-Stecker angespleißt (50 µm Faserkern, sowie 8° Schrägschliff am Faserkontakt). Zur Messung der Temperaturen wird das LWL-Kabel über den Pig-Tail-Anschluss an das DTS-Messgerät angeschlossen.



**Abbildung II-1.2** Schematischer Aufbau eines handelsüblichen LWL-Hybridkabels mit 4 Kupferadern im Querschnitt (links). Spezial-Pig-Tail für DTS-Messungen (rechts, LIOS Technology 2011).

Die Berechnung der tiefenaufgelösten Wärmeleitfähigkeiten entlang des LWL-Kabels erfolgt analog zum Thermal Response Test (Kapitel I-2.3) über die Auswertung von Temperaturanstiegskurven während des gleichmäßigen Erhitzens des Untergrundes (GEHLIN 2002, GEHLIN 1998, SATTEL 1979, KÖNIG 1988).

Die Erhitzung des Untergrundes beim eTRT erfolgt über das Anlegen einer elektrischen Spannung an die Kupferadern des Kabels. Die Heizleistung ist hierbei für jeden Punkt der Kabelstrecke identisch (HUBER 2013). Zeitgleich werden die Temperaturkurven der Glasfaser im Kabel über das DTS-Messgerät bestimmt und aufgezeichnet (Abb. II-1.3). Man erhält somit entsprechend der örtlichen Auflösung DTSder Messeinstellungen eine feste Anzahl von Temperaturanstiegskurven entlang des LWL-Kabels.

Bei der Erwärmung des Untergrundes ist darauf zu achten, dass die elektrische Spannung über den Messzeitraum von ca. 72 Stunden möglichst gleichmäßig bleibt und keine größeren Schwankungen die Messungen stören.



Abbildung II-1.3 Messaufbau des eTRT.

#### II-1.2.2 Auswertung der Ergebnisse

Die mathematischen Grundlagen zur Ermittlung von Untergrund-Wärmeleitfähigkeiten mittels Thermal Response Tests gehen zurück auf das Zylinder- und Linienquellenmodell von CARSLAW & JAEGER (1959), sowie BLACKWELL (1953, 1954 & 1956) und wurden von MOGENSEN (1983) zur Nutzung bei Erdwärmesonden vorgeschlagen. GEHLIN (1998) entwickelte auf Grundlage der Arbeiten von ESKILSON (1987) und HELLSTRÖM (1991) den ersten Versuchsapparat zur Wärmeleitfähigkeitsmessung bei Erdwärmesonden. Der TRT ist mittlerweile zur Standardmethode bei der Ermittlung von Untergrundwärmeleitfähigkeiten geworden (SANNER et al. 2008, FORRER et al. 2008, WITTE et al. 2002 & WAGNER & CLAUSER 2005, WAGNER et al. 2013). Der eTRT bedient sich einer Abwandlung der Nadelsondenmethode (SATTEL 1979 & KÖNIG 1988), die auf den gleichen mathematischen Grundlagen (CARSLAW & JAEGER 1959) beruht.
Die Ermittlung der Wärmeleitfähigkeiten aus den gemessenen Temperaturanstiegskurven des eTRT erfolgt über Gleichung II-1.1 (nach GEHLIN 2002 & HELLSTRÖM 1991):

$$\lambda = \frac{\dot{q}_L}{4\pi m} = \frac{\dot{q}_L}{4\pi} \cdot \frac{\sum_{i=1}^n (\ln(t_i) - \overline{\ln(t)})^2}{\sum_{i=1}^n (\ln(t_i) - \overline{\ln(t)})(t_i - \overline{T})} \quad \text{für } t_1 > \frac{5r_0^2}{\alpha}$$
(II-1.1)

λ Wärmeleitfähigkeit des Messabschnitts [W/(m K)]  $\dot{Q_L}$ Heizleistung pro Längeneinheit des Messabschnitts [W/m] Steigung der Regressionsgeraden durch die Werte im Auswertebereich [-] m Anzahl Temperaturdaten im Auswertebereich [-] n Zeitpunkt i des Auswertebereichs [s] ti arithmetisches Mittel der logarithmischen Zeitwerte im Auswertebereich [-] ln(t)  $T_i$ Temperatur i der Glasfaser [°C] Ŧ arithmetisches Mittel der Glasfaser-Temperaturwerte [°C] Bohrlochradius [m]  $r_0$ volumetrische Wärmekapazität Untergrund [J/(m<sup>3</sup> K)]  $\rho c_p$  $\alpha = \frac{\lambda}{\rho c_m}$ Temperaturleitfähigkeit [m²/s] α mit

Man bezeichnet diese Methode auch als die Langzeitlösung der Wärmeleitungsgleichung für eine ideale Linienquelle in einem homogenen, isotropen Medium (HESKE et al. 2011). Diese Gleichung II-1.1 ist eine Näherung der exakten Lösung (HELLSTRÖM 1991) und gilt nur bei einer konstanten Wärmezufuhr  $\dot{Q}_L$  und wenn der Auswertebereich ( $t_1$  bis  $t_n$ ) der Temperaturen über die logarithmisch aufgetragene Zeit eine quasi-konstante Steigung *m* angenommen hat (Abb. II-2.1). Nach GEHLIN (2002) und HELLSTRÖM (1991) ist dies erfüllt, wenn folgendes Zeitkriterium gilt:  $t_1 > \frac{5r_0^2}{\alpha}$ . Der mathematische Fehler liegt in diesem Fall bei unter 10% (HELLSTRÖM 1991). Beachtet man diese Vorgabe nicht, so kann bei sehr kleinen *t* der Einfluss der Materialwärmeleitfähigkeit des Verpressmaterials auf die berechnete Gesamtwärmeleitfähigkeit Überhand nehmen und die Werte verfälschen.

Die Eindringtiefe der Temperaturfront in das umliegende Gestein nach einer Zeit *t* kann bei angenommenen isotropen Verhältnissen des Untergrundes mit der thermischen Diffusionslänge abgeschätzt werden (FOWLER 2000, TURCOTTE & SCHUBERT 2002, SPOHN 1997 & HELLSTRÖM 1991):

$$r = \sqrt{\alpha t}$$
 mit  $\alpha = \frac{\lambda_{fluid}\phi + \lambda_{rock}(1-\phi)}{(\rho c_p)_{fluid}\phi + (\rho c_p)_{rock}(1-\phi)}$  bei porösen Medien. (II-1.2)

| r         | Radius der Temperaturfront [m]                                                |
|-----------|-------------------------------------------------------------------------------|
| α         | Temperaturleitfähigkeit ( $\alpha = \lambda/(\rho c_p)$ ) [m <sup>2</sup> /s] |
| t         | Dauer der konstanten Erhitzung [s]                                            |
| λ         | Wärmeleitfähigkeit Fluid/Gestein [W/(m K)]                                    |
| $ ho c_p$ | volumetrische Wärmekapazität Fluid/Gestein [J/(m³ K)]                         |
| φ         | Porosität [-]                                                                 |

## II-1.2.3 Auswertung des Relaxationsverhaltens

Zusätzlich zur Auswertung der Temperaturanstiegskurve bei Aufheizung des Untergrundes, ist es möglich, die Abkühlungskurve nach dem Ende der Erhitzung für eine Berechnung der Wärmeleitfähigkeit heranzuziehen (DORNSTÄDTER et al. 2008 & HESKE 2011). Für die Berechnung der Wärmeleitfähigkeiten aus dem Relaxationsvorgang bedeutet dies nach Gleichung II-1.1:

$$\lambda = \frac{\dot{Q}_L}{4\pi m_{relax}} = \frac{\dot{Q}_L}{4\pi} \cdot \frac{\sum_{i=1}^n \left( ln\left(\frac{t_i}{t_i - t_h}\right) - \overline{ln}\left(\frac{t}{t_i - t_h}\right) \right)^2}{\sum_{i=1}^n \left( ln\left(\frac{t_i}{t_i - t_h}\right) - \overline{ln}\left(\frac{t}{t_i - t_h}\right) \right) (T_i - \overline{T})} f \ddot{u}r \ t > t_h \tag{II-1.3}$$

- λ Wärmeleitfähigkeit des Messabschnitts [W/(m K)]
- *Q*<sub>L</sub> Heizleistung pro Längeneinheit des Messabschnitts [W/m]
- n Anzahl Temperaturdaten im Auswertebereich [-]
- ti Zeitpunkt i des Auswertebereichs [s]
- th Dauer des Aufheizvorgangs [s]
- m<sub>relax</sub> Steigung der Relaxationsgeraden [K]

 $\ln(\frac{t}{t-t_{*}})$  arithmetisches Mittel der logarithmischen Zeitwerte im Auswertebereich [-]

- T<sub>i</sub> Temperatur i der Glasfaser [°C]
- $\overline{T}$  arithmetisches Mittel der Glasfaser-Temperaturwerte [°C]

### II-1.2.4 Peclét-Zahl-Analyse

Wenn im Untergrund Grundwasserfluss stattfindet, ist die mittels eines TRT bestimmte Wärmeleitfähigkeit die Summe aus der konduktiven Wärmeleitfähigkeit des Gesteins und einem advektiven Anteil, der durch den aktiven Abtransport von Wärme durch das die Erdwärmesonde umströmende Wasser hervorgerufen wird. Die mittels eines TRT oder eTRT berechneten Wärmeleitfähigkeitswerte liefern somit nur Bestandsaufnahmen der Wärmeleitfähigkeit des Untergrundes zu den während des Tests gegebenen Grundwasserbedingungen. Um mit einem durch advektiven Wärmetransport beeinflussten Wärmeleitfähigkeitswert die Grundwasserfließgeschwindigkeit zu berechnen, bedient man sich der Peclét-Zahl-Analyse. Die Peclét-Zahl ist das Produkt aus der Reynolds- und der Prandtl-Zahl. Mit der Péclet-Zahl kann das Verhältnis zwischen advektivem Wärmeabtransport und konduktiver Wärmeleitung in erster Näherung beschrieben werden (ZSCHOCKE 2005, DORNSTÄDTER et al. 2008, BARCENILLA et al. 2005, SUTTON et al. 2003, CHIASSON et al. 2000). Bei einer Péclet-Zahl größer eins überwiegt der advektive den konduktiven Wärmetransport.

$$Pe = Re \cdot Pr = \frac{\lambda_{total} - \lambda_{kond}}{\lambda_{kond}} = \frac{\lambda_{total}}{\lambda_{kond}} - 1 = \frac{lv\rho c_{p}}{\lambda_{kond}}$$
(II-1.4)

| Ре                | Péclet-Zahl [-]                                                                            |
|-------------------|--------------------------------------------------------------------------------------------|
| Re                | Reynolds-Zahl [-]                                                                          |
| Pr                | Prandtl-Zahl [-]                                                                           |
| $\lambda_{kond}$  | konduktive Wärmeleitfähigkeit Gestein [W/(m K)]                                            |
| $\lambda_{total}$ | konduktive Wärmeleitfähigkeit Gestein + advektiver Anteil durch Grundwasserfluss [W/(m K)] |
| 1                 | charakteristische Länge [m]                                                                |
| v                 | Fließgeschwindigkeit Grundwasser [m/s]                                                     |
| ρ                 | Dichte Grundwasser [kg/m <sup>3</sup> ]                                                    |
| Cp                | spezifische Wärmekapazität Grundwasser [J/(kg K)]                                          |

Hieraus folgt

$$v = \frac{\lambda_{total} - \lambda_{kond}}{l\rho c_{p}}$$
(II-1.5)

Um auf diesem Weg die Fließgeschwindigkeit mit einer ausreichenden Genauigkeit bestimmen zu können, muss die konduktive Wärmeleitfähigkeit des Untergrundes bekannt sein (Labormessungen, etc.), oder relativ gut abgeschätzt werden können. Bei bekanntem Grundwasserfluss und unbekannter konduktiver Wärmeleitfähigkeit ist es mit einer Umstellung auf Gleichung II-1.6 ebenfalls möglich hierfür einen Wert zu erhalten.

$$\lambda_{kond} = \lambda_{total} - lv\rho c_{\rm p} \tag{II-1.6}$$

Die Peclét-Zahl-Analyse eignet sich vor allem für eTRTs, da es damit möglich ist, tiefenbezogene Unterschiede in den Gesteinswärmeleitfähigkeiten zu detektieren und man auf diesem Weg Fließhorizonte ausmachen und in erster Näherung charakterisieren kann. Die Berechnung der beschriebenen Parameter mit Hilfe der Peclét-Zahl-Analyse ist abhängig von der Festlegung der charakteristischen Länge. Sie ist Bestandteil der Reynolds-Zahl, beschreibt in der Regel die Abmessungen des um- oder durchströmten Körpers (MESCHEDE 2006), ist prinzipiell jedoch frei wählbar. Sie hängt von der Art des zu lösenden Problemstellung ab (CHIASSON et al. 2000) und wird im Falle von Erdwärmesonden in der

Literatur unterschiedlich festgelegt. CHIASSON et al. 2000 legt die charakteristische Länge in seiner Problemstellung auf den Abstand zwischen zwei Bohrungen fest, BARCENILLA et al. 2005, SUTTON et al. 2003, ZSCHOKE 2005, sowie DORNSTÄDTER et al. 2008 legen sie mit dem Bohrlochdurchmesser der Erdwärmesonde fest.

## II-2. Vergleich zwischen LWL-Messungen und TRTs

Die Vergleichbarkeit von glasfaserbasierten Untergrund-Wärmeleitfähigkeitsmessungen (eTRTs) mit herkömmlichen Thermal Response Tests ist eine zentrale Frage bei der Bewertung der Reproduzierbarkeit von eTRT-basierten Messergebnissen. Aus diesem Grund wurde eine Sonde eines Erdwärmesondenfeldes in Speyer mit einem Glasfaserkabel versehen und an ein faseroptisches Temperaturmesssystem angeschlossen. Die Temperaturen wurden vor, während und nach der Durchführung eines TRT aufgezeichnet.

Das untersuchte Erdwärmesondenfeld dient zur Heizung und Kühlung der Salierschule in Speyer. Die Grundschule wurde 2010 eröffnet und ist mit ihrer Kopplung von Solarthermie, Photovoltaik und Geothermie die erste Energiegewinnschule in Rheinland-Pfalz. Mit der Durchführung des TRT wurde das hydrogeologische Fachbüro André Voutta Grundwasserhydraulik (www.avoutta.de) beauftragt. Die im Folgenden aufgeführten Ergebnisse (die Daten des TRT betreffend) wurden vom Autor der Dissertationsschrift auf Grundlage der zur Verfügung gestellten Rohdaten bearbeitet und ausgewertet.

## II-2.1 Messdurchführung

Nach dem Start der Erhitzung durch die TRT-Messapparatur wurden zeitgleich die Temperaturen an Vor- und Rücklauf der Sonde durch in das TRT-Messgerät eingebracht Temperaturfühler gemessen, als auch die direkten Temperaturen des Untergrundes im verpressten Bohrloch durch die DTS-Methode. Der Untergrund wurde mit konstanter Leistung über einen Zeitraum von ca. 65 Stunden erhitzt. Die aufgezeichneten Temperaturen beider Messgeräte (TRT-Messung und DTS/LWL-Messung, Anhang 1) wurden analog ausgewertet.

## II-2.2 Ergebnisse der Messungen

Die Ergebnisse der beiden Temperaturmessungen wurden auf eine einheitliche Zeitskala gebracht und gegeneinander geplottet (Abb. II-2.1). Die Kurve der DTS-Messungen mittels des LWL-Kabels beschreibt den Temperaturverlauf des arithmetischen Mittels der Messtrecke (Erdwärmesonde) entlang des Messkabels zum Zeitpunkt x.

Bereits in dieser Abbildung erkennt man, dass der Verlauf der beiden Temperaturkurven sich nicht gravierend voneinander unterscheidet. Die Kurve der DTS-Messungen verläuft leicht niedriger (ca. -0,2 bis 0,3 K), als die Kurve der TRT-Messungen. Dies lässt sich durch den

bereits in Kapitel I-3.3 festgestellten Unterschied zwischen gemessenen Sole- und Glasfaser-Temperaturen erklären.

## II-2.3 Berechnung der Wärmeleitfähigkeiten

Die Auswertung der Ergebnisse beider Temperaturanstiegskurven erfolgte gemäß Gleichung II-1.1. Der Auswertebereich wurde inversiv durch Einhaltung des Zeitkriteriums bestimmt. Die in den Untergrund eingebachte Heizleistung betrug im Mittel 8253 W bei einer Sondenlänge von 160 m. Aus diesen Werten folgt eine Heizleistung pro Längeneinheit  $\mathbf{Q}_{L}$  von rund **51,6 W/m**.

Die Steigung der Temperaturkurven im Auswertebereich wurde nach der allgemeinen Steigungsformel für Regressionsgeraden bestimmt (Gleichung II-2.1), wobei In(t<sub>i</sub>) die logarithmischen Zeitwerte (natürlicher Logarithmus der kumulierten Sekunden nach Beginn der Aufheizung des Untergrundes) und T die den Zeitwerten zugeordneten Temperaturwerte beschreibt.

$$m = \frac{\sum_{i=1}^{n} (\ln(t_i) - \overline{\ln(t_i)})(T_i - \overline{T})}{\sum_{i=1}^{n} (\ln(t_i) - \overline{\ln(t_i)})^2}$$
(II-2.1)

| т                   | Steigung der Regressionsgeraden durch die Werte im Auswertebereich [K] |
|---------------------|------------------------------------------------------------------------|
| ti                  | Zeitpunkt i des Auswertebereichs [s]                                   |
| $\overline{\ln(t)}$ | arithmetisches Mittel der logarithmischen Zeitwerte [-]                |
| Ti                  | Temperatur i der Glasfaser [°C]                                        |
| T                   | arithmetisches Mittel der Glasfaser-Temperaturwerte [°C]               |

Die beiden Steigungswerte für die TRT-Messung  $m_{TRT}$  und die DTS-Messung  $m_{DTS}$  haben folgende Werte (gerundet auf 2 Stellen hinter dem Komma):

$$m_{TRT} = 1,35 \text{ K}$$
  $m_{DTS} = 1,37 \text{ K}$ 



Abb. II-2.1 Temperaturanstiegskurven der LWL-Messungen und der TRT-Messungen.

Hieraus folgt für die Berechnung der Wärmeleitfähigkeiten nach Gleichung II-1.1 (gerundet auf 2 Stellen hinter dem Komma):

$$\lambda_{\text{TRT}} = 3,03 \text{ W/(m K)}$$
  $\lambda_{\text{DTS}} = 3,00 \text{ W/(m K)}$ 

Die Ergebnisse der Berechnungen zeigen, dass die Werte beider Messmethoden nur gering voneinander abweichen (ca. 1,3%). Da der maximale Fehler für Wärmeleitfähigkeitsberechnungen nach dem TRT-Prinzip bei ca. 10% liegt (GEHLIN 2002, HELLSTRÖM 1991), kann man von einer guten Übereinstimmung beider Werte sprechen.

## II-3. Modellierung des eTRT mit Feflow

Der glasfaserbasierte enhanced Thermal Response Test (eTRT) ist mittlerweile eine anerkannte und vielfach validierte Methode zur tiefenaufgelösten Wärmeleitfähigkeitsmessung an Erdwärmesonden (DORNSTÄDTER et al. 2008, HEIDINGER et al. 2004, MALM 2009, MALM & DECKERT 2013, HESKE et al. 2011, RIEGGER et al. 2012). Es bestehen dennoch Detailfragen zur Genauigkeit des Tests, sowie zu seinem Verhalten bei geschichteten, bzw. grundwasserdurchflossenen Gesteinsschichten und seiner Anwendbarkeit bei größeren Spannungsschwankungen der zur Wärmeeinbringung notwendigen Energieversorgung. Diese Fragen lassen sich mittels numerischer Modellierung des Tests bei verschiedenen Bedingungen beantworten. Die Arbeitsweise herkömmlicher TRTs wurde bereits mehrfach numerisch modelliert (SIGNORELLI 2004, SIGNORELLI et al. 2007). Numerische Modellierungen an faseroptischen enhanced Thermal Response Tests hingegen sind bislang noch neu. Aus diesem Grund wurden im Lauf der vorliegenden Arbeit vier verschiedenen Modellreihen entwickelt, die die angesprochenen Problemfelder numerisch simulieren. Zur Modellierung wurde das Programm Feflow<sup>®</sup> 6.0 (DHI-WASY GmbH) verwendet.

Die kommerzielle Software Feflow basiert auf der numerischen Methode der Finiten Elemente. Feflow ist im Bereich der Hydrogeologie und der oberflächennahen Geothermie eins der Standardprogramme zur Modellierung gekoppelter, thermohydraulischer Fragestellungen (DIERSCH 1993). Da es sich bei der vorliegenden Arbeit um eine praktische Überprüfung einer bei der Realisierung von Erdwärmesondenprojekten häufig verwendeten Messmethode (eTRT) handelt, wurde das Programm aus Gründen der Nachvollziehbarkeit der Modelle ausgewählt. Zur Erstellung der Modelle wurde die Programmversion 6.0 verwendet.

## II-3.1 Feflow

Die numerischen Berechnungen von Feflow basieren auf den Grundlagen der Boussinesq Approximation. Vollständig gesättigte Grundwasserströmung mit Massen- und insbesondere Wärmetransport in porösen Medien kann über die folgenden Grundgleichungen dargestellt werden (DIERSCH 2005):

$$S_0 \frac{\partial h}{\partial t} + \frac{\partial q_i^f}{\partial x_i} = Q_\rho + Q_{EB}(C, T)$$
(II-3.1a)

mit

$$Q_T = \left[\phi \rho^f c^f + (1 - \phi) \rho^s c^s\right] \frac{\partial T}{\partial t} + \rho^f c^f q_i^f \frac{\partial T}{\partial x_i} - \frac{\partial}{\partial x_i} \left(\lambda_{ij} \frac{\partial T}{\partial x_j}\right) + \rho^f c^f Q_\rho (T - T_0) \quad \text{(II-3.1b)}$$

$$q_i^f = -K_{ij}f_\mu \left(\frac{\partial h}{\partial x_j} + \frac{\rho^f - \rho_0^f}{\rho_0^f}e_j\right)$$
(II-3.1c)

$$K_{ij} = \frac{k_{ij}\rho_0^f g}{\mu_0^f}$$
(II-3.1d)

$$f_{\mu} = \frac{\mu_0^f}{\mu^f(C,T)}$$
(II-3.1e)

- S<sub>0</sub> spezifischer Speicherkoeffizient (Kompressibilität) [m<sup>-1</sup>]
- h Hydraulic Head [m]
- t Zeit [s]
- qif Vektor der Darcy Geschwindigkeit des Fluids [m/s]
- xi Raumkoordinate in einem kartesischen System [m]
- $Q_{\rho}$  Quellen-/Senkenfunktion des Fluids für Massen ( $Q_{C}$ ), und Wärmetransport ( $Q_{T}$ ) (DIERSCH 2005)
- Q<sub>EB</sub> Term der erweiterten Boussinesq-Approximation (DIERSCH 2005)
- Porosität [-]
- ρ<sup>f</sup> Dichte des Fluids [kg/m<sup>3</sup>]
- ρ<sup>s</sup> Dichte der Festphase [kg/m<sup>3</sup>]
- cf spezifische Wärmekapazität des Fluids [J/(kg K)]
- c<sup>s</sup> spezifische Wärmekapazität der Festphase [J/(kg K)]
- T Temperatur [°C]
- T<sub>0</sub> Referenztemperatur [°C]
- $\lambda_{ij}$  Tensor hydrodynamischer Thermodispersion [W/(m K)]
- K<sub>ij</sub> Tensor hydraulischer Konduktivität [m/s]
- k<sub>ij</sub> Tensor hydraulischer Permeabilität [m<sup>2</sup>]
- e<sub>j</sub> Gravitations-Einheitsvektor (e<sub>j</sub>=-g<sub>j</sub>/g) [-]
- g Gravitationsbeschleunigung [m/s<sup>2</sup>]
- f<sub>µ</sub> konstitutive Viskositäts-Verhältnisfunktion [-]
- μ<sup>f</sup> dynamische Viskosität des Fluids [Ns/m<sup>2</sup>]

Die Modellreihen wurden stets im vollständig wassergesättigten Raum durchgeführt, weshalb eine Beschreibung der Gleichungen für einen unvollständig wassergesättigten Modellraum (DIERSCH 2005) entfällt.

## Randbedingungen

In Feflow sind die Randbedingungen in Flow-, Mass Transport- und Heat-Randbedingungen unterteilt. Da die vorliegenden Modelle ohne Massentransport gerechnet wurden, sind im Folgenden lediglich die Flow- und die Heat-Randbedingungen von Feflow erläutert (aus DIERSCH 2005).

• Randbedingung erster Art (Dirichlet):

Die Dirichlet-Randbedingung (Hydraulic Head Boundary Condition) weist dem ausgewählten Modellknoten einen konstanten Druckspiegel zu und erzeugt somit einen konstanten Zufluss von hohem zu niedrigem Druckniveau.

$$h(x_i, t) = h_1^R(t)$$
 (II-3.2)

- hHydraulic Head [m]xiRaumkoordinate in einem kartesischen System [m]
- t Zeit [d]
- $h_{i^R} \qquad \mbox{ fester Randbedingungswert für den Hydraulic Head [m]}$
- Randbedingung zweiter Art (Neumann):

Die Neumann-Randbedingung (Flux Boundary Condition) wird für die Festlegung eines bestimmten Zu- oder Abstroms in oder aus dem Modell heraus verwendet.

$$q_{n_h}(x_i, t) = q_h^R(t)$$
 (II-3.3)

- $q_{n_h}$  normaler Darcy Fluss des Fluids [m/d]
- xi Raumkoordinate in einem kartesischen System [m]
- t Zeit [d]
- $q_{h^R}$  fester Randbedingungswert für den Darcy Fluss in oder aus dem Modell [m/d]

# • Randbedingung dritter Art (Cauchy):

Die Cauchy-Randbedingung (Transfer Boundary Condition) ist eine Kombination aus den Randbedingungen erster und zweiter Art und wird verwendet für die Festlegung des Wasseraustauschs mit einem Fließgewässer am Modellrand.

$$q_{n_h}(x_i, t) = -\Phi_h(h_2^R - h)$$
(II-3.4)

- $q_{n_h}$  normaler Darcy Fluss des Fluids [m/d]
- xi Raumkoordinate in einem kartesischen System [m]
- t Zeit [d]
- $\Phi_h$  Fluid-Transfer-Koeffizient [d<sup>-1</sup>]
- h<sub>2<sup>R</sup> fester Randbedingungswert für den Hydraulic Head [m]</sub>

• Randbedingung vierter Art (single well type):

Die Randbedingung vierter Art (Single Well Type Boundary Condition) wird verwendet um eine Punktquelle oder -senke in das Modell einzufügen.

$$Q_{\rho}^{w}(x_{i},t) = Q_{1}^{w}(x_{i},t) \tag{II-3.5}$$

 $Q_{\rho^{W}}$  Quellenfunktion [m<sup>3</sup>/d]

x<sub>i</sub> Raumkoordinate in einem kartesischen System [m]

t Zeit [d]

Q1<sup>w</sup> fester Randbedingungswert für den Wasserzu- oder -abstrom [m<sup>3</sup>/d]

# Heat-Randbedingungen

 Randbedingung erster Art (Dirichlet):
 Die Dirichlet-Randbedingung (Temperature Boundary Condition) weist dem ausgewählten Modellknoten einen konstanten Temperaturwert zu und erzeugt somit einen konstanten Wärmezufluss von hohem zu niedrigem Temperaturniveau.

$$T(x_i, t) = T_1^R(t)$$
 (II-3.6)

T Temperatur [°C]

xi Raumkoordinate in einem kartesischen System [m]

t Zeit [d]

Ti<sup>R</sup> fester Randbedingungswert für die Temperatur [°C]

# • Randbedingung zweiter Art (Neumann):

Die Neumann-Randbedingung (Heat Flux Boundary Condition) wird für die Festlegung eines bestimmten Wärmezu- oder -abstroms in oder aus dem Modell heraus verwendet.

$$q_{n_T}(x_i, t) = q_T^R(t)$$
 (II-3.7)

 $q_{n_T}$  normaler Wärmefluss [J/m<sup>2</sup>/d]

- xi Raumkoordinate in einem kartesischen System [m]
- t Zeit [d]
- $q_T^R$  fester Randbedingungswert für den Wärmefluss in oder aus dem Modell [J/m<sup>2</sup>/d]

• Randbedingung dritter Art (Cauchy):

Die Cauchy-Randbedingung (Transfer Boundary Condition) ist eine Kombination aus den Randbedingungen erster und zweiter Art und wird verwendet für die Festlegung des Wasseraustauschs mit einem Fließgewässer am Modellrand.

$$q_{n_T}(x_i, t) = -\Phi_T(T_3^R - T)$$
(II-3.8)

| $q_{n_T}$         | normaler Wärmefluss [J/m²/d]                      |
|-------------------|---------------------------------------------------|
| Xi                | Raumkoordinate in einem kartesischen System [m]   |
| t                 | Zeit [d]                                          |
| $\Phi_{\text{T}}$ | Wärme-Transfer-Koeffizient [J/m²/K/d]             |
| $T_3^R$           | fester Randbedingungswert für die Temperatur [°C] |

 Randbedingung vierter Art (heat sink/source type):
 Die Randbedingung vierter Art (Heat Sink/Source Type Boundary Condition) wird verwendet um eine Wärmepunktquelle oder -senke in das Modell einzufügen.

$$Q_T^w(x_i, t) = Q_1^W(x_i, t)$$
(II-3.9)

| $Q_{T^{W}}$    | Wärmequellenfunktion [J/d]                                     |
|----------------|----------------------------------------------------------------|
| Xi             | Raumkoordinate in einem kartesischen System [m]                |
| t              | Zeit [d]                                                       |
| $Q_{1^{W}} \\$ | fester Randbedingungswert für den Wärmezu- oder -abstrom [J/d] |

# Effektive Gesteinsparameter

Feflow betrachtet den Modellraum als Zwei-Phasen-System bestehend aus einem soliden und einem fluiden Teil. Der jeweilige Anteil des entsprechenden Parameters (Wärmeleitfähigkeit oder volumetrische Wärmekapazität) wird über die Porosität, also den Anteil von flüssiger zu fester Phase bestimmt (DIERSCH 2005):

$$P_{total} = P_{fluid}\phi + P_{solid}(1-\phi) \tag{II-3.10}$$

 $\begin{array}{ll} P_{total} & \mbox{Gesamtparameter} (\lambda \mbox{ oder } \rho c_p) \left[ W/(m \ K) \ \mbox{oder } J/(m^3 \ K) \right] \\ P_{fluid} & \mbox{Fluidparameter} (\lambda \ \mbox{oder } \rho c_p) \left[ W/(m \ K) \ \mbox{oder } J/(m^3 \ K) \right] \\ P_{solid} & \mbox{Gesteinsparameter} (\lambda \ \mbox{oder } \rho c_p) \left[ W/(m \ K) \ \mbox{oder } J/(m^3 \ K) \right] \\ \varphi & \mbox{Porosität [-]} \end{array}$ 

Die in Feflow verwendeten mathematischen Grundlagen und Gleichungen können im Detail in der Programmdokumentation "FEFLOW Reference Manual (DIERSCH 2005)", sowie den "FEFLOW White Papers I bis V" (DHI-WASY 2005a, 2005b & 2005c, DHI-WASY 2006 & DHI-WASY 2010) nachgelesen werden.

## II-3.2 Modellaufbau

Die im Folgenden aufgeführten und beschriebenen Modelle sollen einen dreitägigen eTRT mit unterschiedlichen Parametern (z.B. verschiedene Wärmeleitfähigkeiten des Untergrundes und der Verpressung der Sonde, unterschiedliche Sondengeometrie, Änderungen der Heizleistung, Grundwasserfluss, etc.) simulieren.

## II-3.2.1 Geometrie

Die im Rahmen der Dissertation erstellten dreidimensionalen Modelle besitzen eine quadratische Grundfläche von 10 m x 10 m und eine je nach Modellreihe unterschiedliche Tiefe. Der Mittelpunkt der Modellgrundfläche beschreibt ebenfalls den Mittelpunkt der diskretisierten Erdwärmesonde (Abb. II-3.1). Die Entfernung der Modellgrenzen vom Sondenmittelpunkt (5 m) wurde so gewählt, dass die Temperaturfront die Modellgrenze erst nach einer dreiwöchigen, konstanten Einheizphase (bei  $\alpha \approx 6 \cdot 10^{-6}$  W/m<sup>2</sup>) erreichen würde (Gleichung II-1.2). Der Abstand der Temperaturfront von der Heizquelle nach einer dreitägigen Heizperiode liegt selbst bei einer sehr hohen Temperaturleitfähigkeit bei ca. 1,9 m. Aus diesem Grund kann man davon ausgehen, dass die Modellgrenzen die Temperaturentwicklung im zentralen Bereich des Modells nicht beeinflussen.

Außerhalb des eigentlichen Bohrdurchmessers wurde eine Zone des Sondennahfeldes (Radius 1 m) eingerichtet (Abb II-3.1) innerhalb derer das Meshing verfeinert werden konnte. Der Bohrlochdurchmesser ist mit 20 cm sehr groß gewählt (Abb. II-3.1). Gängige Erdwärmesondenbohrungen besitzen meist einen Maximaldurchmesser von ca. 15-16 cm oder kleiner. Dieser im Modell vergrößerte Bohrlochdurchmesser wurde gewählt, um eine maximal mögliche Beeinflussung der ermittelten Ergebnisse durch die Verpressungszone zu erreichen. Wäre der Bohrlochdurchmesser kleiner, so würden eventuell in der Realität bei Bohrungen auftretende Auskolkungen des Bohrlochs während des Bohrvorgangs nicht berücksichtigt werden. Der vergrößerte Durchmesser simuliert somit eine Art worst-case-Szenario.



**Abbildung II-3.1** Modellgeometrie des Gesamtmodells, des Sondennahfeldes und der Sondenquerschnitts für Modellposition 1 (v.l.n.r., Abmessungen in Tab. II-3.1, Modellpositionen in Abb. II-3.3). Die Superelemente des Modells sind grau und schwarz umrandet, die Punkte sind rot und begrenzen die Superelemente.

Die Erdwärmesondenrohre sind in den folgenden Modellierungen statisch mit einem konstanten Abstand von 3,5 cm vom Bohrlochmittelpunkt und einem Winkel von jeweils 45° zueinander angeordnet. Dieser Rohrabstand von 7 cm (Abb. II-3.2) wird u. a. vom Standard-Programm zur Dimensionierung von Erdwärmesonden EED als empfohlener Abstandswert gehandelt. Dieser Rohrabstand kann in der Realität mit an den Sondenrohren angebrachten Abstandshaltern erreicht werden. Die Abstandshalter werden eingebaut, um eine gegenseitige Beeinflussung der Rohre zu minimieren und einen thermischen Kurzschluss zwischen auf- und abfließendem Solefluid bei aneinander liegenden Rohrbündeln zu verhindern. Es wurden die Daten und Abmessungen handelsüblicher PE-DN32er-Erdwärmesondenrohre verwendet, d.h. der Außendurchmesser der Erdwärmesondenrohre beträgt 32 mm und die Wandstärke 3 mm (Tab. II-3.1).

Das modellierte LWL-Kabel besitzt einen Durchmesser von 15 mm (Tab. II-3.1) und ist je nach Modell unterschiedlich im Bohrloch positioniert (Abb. II-3.2). Die Temperaturzuführung als auch die Temperaturaufzeichnung über die Messzeit erfolgte jeweils immer im Mittelpunkt der LWL-Kabel. Tabelle II-3.1 zeigt eine Zusammenfassung der wichtigsten, geometrischen Modelleinheiten.

| Bezeichnung                               | Wert  |
|-------------------------------------------|-------|
| Modellbreite & -höhe x, y [m]             | 10    |
| Radius Sondennahfeld r <sub>SNF</sub> [m] | 1     |
| Bohrradius r <sub>0</sub> [m]             | 0,1   |
| Rohrabstand z <sub>A</sub> [m]            | 0,07  |
| Außenrohrdurchmesser d <sub>AR</sub> [m]  | 0,032 |
| Stärke Rohrwand s <sub>RW</sub> [m]       | 0,003 |
| Durchmesser LWL-Kabel dLWL [m]            | 0,015 |

Tabelle II-3.1 Geometrie des Sondenquerschnitts (siehe Abb. II-3.2).

Die Modell-Geometrie wurde durch das Hinzufügen von Punktdaten, die mittels eines eigens entwickelten, externen Skripts erstellt wurden, erzeugt. Die Punktdaten wurden in Feflow mit Superelement-Polygonen verbunden. Jeder der in Abbildung II-3.1 grau hinterlegten Bereiche zwischen den Verbindungslinien der roten Punkte bezeichnet ein Superelement des Modells. Die einzelnen Modelle besitzen jeweils 127 Punkte und 104 Superelemente (Abb. II-3.1). Jedem Superelement wird beim Meshing des Modells eine je nach Einstellung unterschiedliche Anzahl von Knoten zugeordnet.

Insgesamt wurden 6 verschiedene Modellgeometrien erstellt (Abb. II-3.3), um eine unterschiedliche Position der LWL-Kabel innerhalb des Bohrlochs simulieren zu können.



**Abbildung II-3.2** Schema des Sondenquerschnitts (die roten Kreise entsprechen den verbauten LWL-Kabeln; Abmessungen in Tab. II-3.1).



Abbildung II-3.3 Modellpositionen des LWL-Kabels innerhalb des Bohrlochs der eTRT-Modelle.

#### II-3.2.2 Meshing

Zur Erstellung des Meshs wurde der in Feflow integrierte "Triangle Mesh Generator (© J. R. Shewchuk, v. 1.6 (2005))" verwendet. Der minimale Winkel an Knotenpunkten wurde mit 20° definiert und ein Refinement entlang ausgewählter Ränder der Polygone eingestellt. Zum Refinement ausgewählt wurden alle Polygonränder innerhalb des Bohrlochs. Dem Mesh-Generator wurde eine Anzahl von ca. 40.000 Knoten vorgegeben, die gradiert über die Modellfläche verteilt wurden (fein im Sondennahfeld, feiner im Bohrloch). Jede Schicht (Layer) der Modelle besteht aus ca. 80.000 Elementen (Tab. II-3.19). Das Meshing wurde für alle 6 Varianten der LWL-Kabelposition durchgeführt. In Abbildung II-3.4 ist das Mesh für Modellposition 1 (Abb. II-3.3) beispielhaft dargestellt.



Abbildung II-3.4 Meshing für Modellposition 1 (Abmessungen in Tab. II-3.1, Modellpositionen in Abb. II-3.3).

## II-3.2.3 3D-Einstellungen

In Feflow sind die Modelle sind aus Layern und Slices aufgebaut, wobei ein Layer eine weitgehend horizontale, dreidimensionale Zwischenschicht zwischen zwei zweidimensionalen Slices (Zwischenflächen) darstellt (Abb. II-3.5). Die Einstellungen zum dreidimensionalen Aufbau der Modelle sind je nach Modellreihe unterschiedlich. Während Modellreihe "FEFLOW eTRT\_04" und "FEFLOW eTRT\_06" jeweils lediglich aus 2 Layern (3 Slices) bestehen, besitzen die Modellreihen "FEFLOW eTRT\_05" und "FEFLOW eTRT\_07" jeweils 15 Layer (16 Slices) (Abb. II-3.5). Jede der Schichten (Layer) besitzt eine Dicke von 1 m. Bei allen wurden die Parameter des Modells von der obersten Schicht auf alle unteren projiziert. Lediglich bei Modellreihe "FEFLOW eTRT\_05" und "FEFLOW eTRT\_07" wurden den mittleren Schichten unterschiedliche Eigenschaften zugewiesen (siehe Kapitel II-3.3.2 & II-3.3.4).



## II-3.2.4 globale Randbedingungen und Parameter

Die jeweiligen Modellreihen mit ihren je 6 Modellgeometrien (Kapitel II-3.2.1) besitzen einige gemeinsame Randbedingungen und Modellparameter. Die gemeinsamen Randbedingungen und Parameter sind im Folgenden aufgeführt, die restlichen sind im jeweiligen Kapitel "Modellreihen" (Kapitel II-3.3) aufgeführt.

## Randbedingungen

Die Randbedingungen sind in Feflow in "Flow" und "Heat"-Randbedingungen unterteilt. Da die Temperaturen innerhalb des Modells die Zielgröße der Modellierungen ist, wurde weder im Inneren der Modelle, noch an den Rändern "Heat"-Randbedingungen angelegt. Bei einer Nichtangabe von Randbedingungen an den Modellrändern besitzen die Randzellen bei Feflow automatisch "no flow"-Eigenschaften.

Die "Flow"-Randbedingungen sind von Modellreihe zu Modellreihe variabel und in den entsprechenden Kapiteln gesondert aufgeführt. Grundsätzlich wurde bei den vorliegenden Modellen mit der "Hydraulic Head"-Randbedingung gearbeitet (erster Art / Dirichlet-Randbedingung, Gleichung II-3.2), die dem ausgewählten Knoten einen konstanten Druckspiegel zuweisen und einen in der Menge variablen Fluss von hohem zu niedrigem Druckniveau erzeugen.

## Modellparameter

Den Modelleinheiten wurde eine Vielzahl einzelner Parameter zugeordnet (Tab. II-3.2). Die als variabel angegeben Einheiten werden in den entsprechenden Kapiteln aufgeführt. Die den Modellen zugewiesenen Werte wurden an Literaturwerten (CLAUSER & HUENGES 1995, ČERMÁK & RYBACH 1982, VDI 4640 Blatt 1 2010) angelehnt.

|                    | In the Lem | La Marta   | Description         | Devestit           | Male was a taile also | 14/2          |
|--------------------|------------|------------|---------------------|--------------------|-----------------------|---------------|
|                    | Initialer  | Initiale   | Durchlassig-        | Porositat          | volumetrische         | vvarme-       |
|                    | Hydraulic  | Temperatur | keitsbeiwert        |                    | Wärmekapazität        | leitfähigkeit |
|                    | Head       |            |                     |                    | Feststoff             | Feststoff     |
|                    |            | To         | k <sub>f</sub>      | φ                  | ρc <sub>p</sub>       | λ             |
|                    | [m]        | [°C]       | [m/s]               | [-]                | [MJ/(m³ K)]           | [W/(m K)]     |
| Gestein            | 1          | 10         | 1·10 <sup>-4</sup>  | variabel           | 2                     | variabel      |
| Bohrlochverfüllung | 1          | 10         | 1⋅10 <sup>-6</sup>  | 1·10 <sup>-5</sup> | 2                     | variabel      |
| Rohrwand           | 1          | 10         | 1·10 <sup>-14</sup> | 1·10 <sup>-5</sup> | 2,016                 | 0,42          |
| Rohrfüllung        | 1          | 10         | 0,1                 | 0,5                | 4,2                   | 0,59          |
| LWL-Kabel          | 1          | 10         | 1·10 <sup>-10</sup> | 1·10 <sup>-5</sup> | 2                     | 2             |

 Tabelle II-3.2 Globale Modellparameter.

Wärmeleitfähigkeit Fluid:

0,59 W/(m K) 4,2 MJ/(m<sup>3</sup> K)

Volumetrische Wärmekapazität Fluid:

## Wärmeeintrag

Zur Simulation eines eTRT wurde dem jeweiligen Mittelpunktsknoten der beiden im Bohrloch befindlichen LWL-Kabel (Abb. II-3-2) eine Wärmeleistung pro Zeit aufgeprägt. Als Methode des Wärmeeintrags wurde die Heat Sink/Source-Randbedingung (Randbedingung vierter Art) ausgewählt, da diese einem Wärmeeintrag entlang einer Linie (Verbindung der Knoten über die Tiefe) entspricht (DIERSCH 2005). Ein durchschnittlicher Richtwert für die eingebrachte Wärmeleistung bei eTRTs entspricht ca. 15 W/m Kabelstrecke. Entsprechend diesem Wert wurden an den Modellknoten die folgenden Wärmeleistungen aufgebracht:

| Mittlere Slices LWL-Kabel-Mittelpunkt:              | 1,296.10 <sup>6</sup> J/d entspricht 15 W/m |
|-----------------------------------------------------|---------------------------------------------|
| Oberster und unterster Slice LWL-Kabel-Mittelpunkt: | 0,648.10 <sup>6</sup> J/d entspricht 15 W/m |

#### Zeitparameter

Als Grundeinstellung der Modellreihen wurde die Einstellung "Steady Flow / Transient Transport" gewählt. Die Gesamtdauer der simulierten Versuchsdurchführung beträgt analog zu den Empfehlungen für einen herkömmlichen TRT/eTRT 3 Tage (72 Stunden). Zur Festlegung der Zeitschritte wurde eine automatische Zeitschritt-Einstellung (Forward Adams-Bashforth / Backward Trapezoid, AB/TR) gewählt. Für den ersten Zeitschritt der Iteration wurde eine Länge von 0,0001 d angesetzt. Eine obere Grenze der Zeitschrittgröße wurde mit 0,01 d festgelegt.

## Messung der Temperatur

Der Temperaturanstieg nach dem Start des simulierten Wärmeeintrags wird in den Mittelpunktsknoten der beiden LWL-Kabel kontinuierlich bis zum Ende der Testperiode gemessen und aufgezeichnet. Die Aufzeichnung erfolgt über auf die Knoten gesetzte "Observation Points".

## Auswertebereich

Der Bereich für die eTRT-Auswertung wird aus Gründen der Vergleichbarkeit ohne Rücksicht auf das Zeitkriterium bei allen Modelle wie folgt festgelegt:  $2 d \le Auswertebereich \le 3 d$  $(t_1 = 2 d, t_n = 3 d)$ . Aufgrund des vergrößerten Bohrradius (Kapitel II-3.2.1) und des festgelegten Auswertebereichs, kann das Zeitkriterium (Kapitel II-1.2.2, Gleichung II-1.1) in einigen der Modelle nicht eingehalten werden. Da das Zeitkriterium eine Art Kontrollgröße für die praktische Durchführung des TRT darstellt und das Ziel der vorliegenden Modellierungen ein Vergleich der durch unterschiedliche Parameter entstandenen Fehler ist, kann jedoch auf die Einhaltung des Zeitkriteriums verzichtet werden.

## II-3.3 Modellreihen

Im Verlauf der vorliegenden Arbeit wurden vier verschiedene Modellierungsreihen gerechnet, um die Messmethode des eTRT numerisch zu überprüfen. Die Modellreihen teilen sich auf in eine Betrachtung des reinen konduktiven Wärmetransports mit einem konstanten Wärmeeintrag (Kapitel II-3.3.1), eine Modellierungsreihe mit einer drei-Schicht-Modellgeometrie (Kapitel II-3.3.2), eine Betrachtung des reinen konduktiven Wärmetransports mit einem variablen Wärmeeintrag (Kapitel II-3.3.3), sowie in die Modellierung einer durch advektiven Wärmeabtransport mittels fließendem Grundwassers beeinflussten Erdwärmesonde (Kapitel II-3.3.4).

## II-3.3.1 Modellreihe mit reiner Konduktion

Die Modellreihe "FEFLOW eTRT\_04" wurde erstellt, um die Auswirkungen verschiedener Kabelpositionen im Bohrloch, sowie unterschiedlicher Wärmeleitfähigkeiten des Umgebungsgesteins und der Bohrlochverpressung zu testen. Es wurden insgesamt 30 Modellszenarien gerechnet (Tab. II-3.4) und die Temperaturen im Inneren der LWL-Kabel aufgezeichnet.

## Randbedingungen

Die Heat-Randbedingungen sind gemäß Kapitel 3.2.4 gewählt. Jedem Knoten des gesamten Modellbereichs wurde eine Hydraulic Head Boundary Condition (erster Art, Dirichlet Boundary Condition) mit einem gemeinsamen, festen Druckspiegel von 1 m zugewiesen. Da es so im gesamten Modell keinen Druckgradienten zwischen den einzelnen Knoten gibt, kommt es zu keiner Wasserbewegung im Modellgebiet und somit zu einem reinen konduktiven Wärmetransport.

## Modellparameter

Die Parameter der Modelleinheiten wurden gemäß Kapitel 3.2.4 gewählt. Die Wärmeleitfähigkeit und die Wärmekapazität der Modelleinheiten werden in Feflow mit der Porosität und der Wärmeleitfähigkeit und Wärmekapazität des Fluids (Kapitel 3.2.4) zu Gesamtwerten verrechnet (Gleichung II-3.10). Der Porosität des Gesteins wurde deshalb ein niedriger Wert von 1.10<sup>-5</sup> zugewiesen, um den Einfluss der Fluideigenschaften zu minimieren.

Die Modellreihe besteht aus insgesamt 5 verschiedenen Variationen von Gesteins- und Verpressungswärmeleitfähigkeit (Tab. II-3.3), die jeweils mit den 6 Modellgeometrien (Abb. II-3.3) kombiniert wurden. Tabelle II-3.4 zeigt die Modellnamen aller 30 Kombinationen inkl. der verschiedenen Wärmeleitfähigkeiten und Positionen.

|             | Modell 1    | Modell 2    | Modell 3    | Modell 4    | Modell 5    |
|-------------|-------------|-------------|-------------|-------------|-------------|
|             | λ [W/(m K)] |
| Gestein     | 2           | 4           | 2           | 4           | 1           |
| Verpressung | 2           | 2           | 0,8         | 0,8         | 2           |

Tabelle II-3.3 Wärmeleitfähigkeitskombinationen des Gesteins und des Verpressmaterials.

Tabelle II-3.4 Modellnamen der Modellreihe eTRT\_04 (Einzelnamen

bestehend aus "Name der Modellreihe"-"Nr. Modell"."Modellposition").

| ModelIname  | Wärmeleitfähigke | Modellposition |               |
|-------------|------------------|----------------|---------------|
|             | Gestein          | Verpressung    | (Abb. II-3.3) |
|             | [W/(m K)]        | [W/(m K)]      |               |
| eTRT_04-1.1 | 2                | 2              | 1             |
| eTRT_04-1.2 | 2                | 2              | 2             |
| eTRT_04-1.3 | 2                | 2              | 3             |
| eTRT_04-1.4 | 2                | 2              | 4             |
| eTRT_04-1.5 | 2                | 2              | 5             |
| eTRT_04-1.6 | 2                | 2              | 6             |
| eTRT_04-2.1 | 4                | 2              | 1             |
| eTRT_04-2.2 | 4                | 2              | 2             |
| eTRT_04-2.3 | 4                | 2              | 3             |
| eTRT_04-2.4 | 4                | 2              | 4             |
| eTRT_04-2.5 | 4                | 2              | 5             |
| eTRT_04-2.6 | 4                | 2              | 6             |
| eTRT_04-3.1 | 2                | 0,8            | 1             |
| eTRT_04-3.2 | 2                | 0,8            | 2             |
| eTRT_04-3.3 | 2                | 0,8            | 3             |
| eTRT_04-3.4 | 2                | 0,8            | 4             |
| eTRT_04-3.5 | 2                | 0,8            | 5             |
| eTRT_04-3.6 | 2                | 0,8            | 6             |
| eTRT_04-4.1 | 4                | 0,8            | 1             |
| eTRT_04-4.2 | 4                | 0,8            | 2             |
| eTRT_04-4.3 | 4                | 0,8            | 3             |
| eTRT_04-4.4 | 4                | 0,8            | 4             |
| eTRT_04-4.5 | 4                | 0,8            | 5             |
| eTRT_04-4.6 | 4                | 0,8            | 6             |
| eTRT_04-5.1 | 1                | 2              | 1             |
| eTRT_04-5.2 | 1                | 2              | 2             |
| eTRT_04-5.3 | 1                | 2              | 3             |
| eTRT_04-5.4 | 1                | 2              | 4             |
| eTRT_04-5.5 | 1                | 2              | 5             |
| eTRT_04-5.6 | 1                | 2              | 6             |

## II-3.3.2 Modellreihe Konduktion bei einem 3-Schicht-Modell

Die Modellreihe "FEFLOW eTRT\_05" wurde erstellt um die Auswirkung von vertikalen Schichtwechseln mit unterschiedlichen Wärmeleitfähigkeiten zu untersuchen. Aus diesem Grund wurde die Modellgeometrie von Modellposition 1 um 15 Layer à 1 m Dicke erweitert. Den mittleren Layern zwischen 6 m und 9 m Tiefe wurden hier, im Vergleich zu den Schichten ober- und unterhalb, unterschiedliche Eigenschaften zugewiesen. Es wurden insgesamt 3 Modellszenarien gerechnet (Tab. II-3.5) und die Temperaturen im Inneren der LWL-Kabel aufgezeichnet.

## Randbedingungen

Die Heat-Randbedingungen sind gemäß Kapitel 3.2.4 gewählt. Jedem Knoten des gesamten Modellbereichs wurde eine Hydraulic Head Boundary Condition (erster Art, Dirichlet Boundary Condition) mit einem gemeinsamen, festen Druckspiegel von 1 m zugewiesen. Da es so im gesamten Modell keinen Druckgradienten zwischen den einzelnen Knoten gibt, kommt es zu keiner Wasserbewegung im Modellgebiet und somit zu einem reinen konduktiven Wärmetransport.

## Modellparameter

Die Parameter der Modelleinheiten wurden gemäß Kapitel 3.2.4 gewählt. Die Wärmeleitfähigkeit und die Wärmekapazität der Modelleinheiten werden in Feflow mit der Porosität und der Wärmeleitfähigkeit und Wärmekapazität des Fluids (Kapitel 3.2.4) zu Gesamtwerten verrechnet. Der Porosität des Gesteins wurde ein deshalb niedriger Wert von 1.10<sup>-5</sup> zugewiesen, um den Einfluss der Fluideigenschaften zu minimieren.

Die Modellreihe besteht aus insgesamt 3 verschiedenen Variationen von Gesteinswärmeleitfähigkeit der mittleren Gesteinsschicht (Tab. II-3.5).

Tabelle II-3.5 Modellnamen der Modellreihe eTRT\_05 (Einzelnamenbestehend aus "Name der Modellreihe"-"Nr. Modell).

| ModelIname | Wärmeleitfähigkeit Gestein |               |                 |  |
|------------|----------------------------|---------------|-----------------|--|
|            | Layer 1 bis 6              | Layer 7 bis 9 | Layer 10 bis 15 |  |
|            | [W/(m K)]                  | [W/(m K)]     | [W/(m K)]       |  |
| eTRT_05-1  | 2                          | 1             | 2               |  |
| eTRT_05-2  | 2                          | 2             | 2               |  |
| eTRT_05-3  | 2                          | 3             | 2               |  |

## II-3.3.3 Modellreihe Konduktion mit Wärmeeintragsänderungen

Änderungen der elektrischen Spannung (und damit der in den Untergrund eingebrachten Wärmeleistung) während der Testdurchführung sind eine der großen Unsicherheiten während der Durchführung von TRTs oder eTRTs. Um die Auswirkungen von Spannungsabfällen, bzw. -anstiegen, sowie variable Spannungsänderungen zu simulieren, wurde die Modellreihe "FEFLOW eTRT\_06" erstellt. Als Ausgangsmodell wurde das Modell "FEFLOW eTRT\_04-1.1" gewählt (Kapitel II-3.3.1). Alle Randbedingungen und Parameter der folgenden Modelle wurden analog zu diesem Startmodell gesetzt. Die einzige variable Randbedingung ist in der vorliegenden Modellreihe der Wärmeeintrag über die Mittelpunkte der Glasfaserkabel (Tab. II-3.6, Abb. II-3.6).

Der Bezugswärmeeintrag ist bei den folgenden Modellen der Eintrag gemäß Kapitel II-3.2.4:

Mittlere Slices LWL-Kabel-Mittelpunkt: Oberster und unterster Slice LWL-Kabel-Mittelpunkt:  $1,296 \cdot 10^6$  J/d entspricht 15 W/m  $0,648 \cdot 10^6$  J/d entspricht 15 W/m

**Tabelle II-3.6** Änderung des Wärmeeintrags mit Bezug zumAusgangsmodell "FEFLOW eTRT\_04-1.1".

| ModelIname | Änderung des Wärmeeintrags                |
|------------|-------------------------------------------|
|            | über die Messzeit [%]                     |
| eTRT_06-1  | +25%                                      |
| eTRT_06-2  | +15%                                      |
| eTRT_06-3  | +5%                                       |
| eTRT_06-4  | -5%                                       |
| eTRT_06-5  | -15%                                      |
| eTRT_06-6  | -25%                                      |
| eTRT_06-7  | ±5% (sinusförmige Variation, Abb. II-3.6) |
| eTRT_06-8  | 0% (entspricht "eTRT_04-1.1")             |



**Abbildung II-3.6** Sinusförmige Variation (±5% in Bezug auf den Bezugswärmeeintrag) des Wärmeeintrags von Modells "eTRT\_06-7" (Q<sub>i</sub> bezeichnet den Wärmeeintrag an den Knoten der mittleren Slices, Q<sub>b</sub> den Wärmeeintrag an den Knoten der äußeren Slices).

## II-3.3.4 Modellreihe 3-Schicht-Modell mit Grundwasserfluss

Fließendes Grundwasser im Nahbereich einer Erdwärmesonde führt zu einer Erhöhung der berechneten effektiven Wärmeleitfähigkeit bei der Durchführung von TRTs. Die mittels des TRT in den Untergrund eingebrachte Wärme wird aufgrund der hohen Wärmekapazität des Wassers aufgenommen und advektiv aus dem Nahbereich der Sonde gebracht (siehe auch Kapitel II-1.2.4). Dies führt zu einer im Testergebnis vermeintlich höheren Wärmeleitfähigkeit des die Sonde umgebenden Gesteins. Die Auswirkungen von Grundwasserfluss auf herkömmliche TRTs ist bereits vielfach beobachtet und untersucht (HÄHNLEIN et al. 2010, CHIASSON et al. 2000, GEHLIN & HELLSTRÖM 2003, WAGNER et al. 2013, DIAO et al. 2004, BARCENILLA et al. 2005, SUTTON et al. 2003, HUBER & ARSLAN 2012, LEE & LAM 2007, WITTE 2002, & ZSCHOCKE et al. 2005). Haupteinflussgröße ist die Grundwasserfließgeschwindigkeit. Nach dem Gesetz von Darcy (Gleichung II-3.11) steht die Durchflussrate V bei isotropen, porösen Medien in direkter Abhängigkeit zum hydraulischen Gradienten (Druckgefälle,

Gleichung II-3.12) der durchströmten Fläche, sowie dem Durchlässigkeitsbeiwert (LANGGUTH & VOIGT 2004):

$$V = k_f F i \tag{II-3.11}$$

mit

$$i = \frac{h}{l} \tag{II-3.12}$$

Hieraus ergibt sich für die Filter- oder Darcygeschwindigkeit v<sub>f</sub> (HÖLTING & COLDEWEY 2009):

$$v_f = \frac{v}{F} = k_f i \tag{II-3.13}$$

- V Durchflussrate [m<sup>3</sup>/s]
- k<sub>f</sub> Durchlässigkeitsbeiwert [m/s]
- F durchströmte Fläche [m<sup>2</sup>]
- i hydraulischer Gradient [-]
- h Druckhöhenunterschied [m]
- l Länge der Fließstrecke [m]
- v<sub>f</sub> Filtergeschwindigkeit [m/s]

Die Modellreihe "FEFLOW eTRT\_07" simuliert einen aus drei Schichten aufgebauten Untergrund. Auf der obersten und der untersten Schicht findet hierbei kein Grundwasserfluss statt. Die mittlere Schicht ist permeabel und je nach Modell durch eine unterschiedliche Filtergeschwindigkeit des fließenden Grundwassers gekennzeichnet. Das Modell besteht aus 15 Layern mit einer jeweiligen Dicke von 1 m. Die mittlere Schicht befindet sich zwischen 6 und 9 m Tiefe (Layer 7 bis 9). Die Geometrie und das Meshing des Modells entspricht dem Modell "FEFLOW eTRT\_04-1.1".

## Randbedingungen

Die Heat-Randbedingungen sind gemäß Kapitel 3.2.4 gewählt. Dem gesamten Modell wurde ein initialer Hydraulic Head von 1 m zugewiesen. Dem gesamten Modell wurden keine Hydraulic Head Boundary Conditions (erster Art, Dirichlet Boundary Condition) zugewiesen, bis auf die mittlere Schicht. Dort sind die Randbedingungen entsprechend Tabelle II-3.7 zugewiesen.

| ModelIname | Hydraulic Head Boundary Condition der mittleren<br>Schicht (Slice 7 bis 10) |                           |                                  |
|------------|-----------------------------------------------------------------------------|---------------------------|----------------------------------|
|            | Linker Rand<br>des Meshs<br>[m]                                             | Mitte des<br>Meshs<br>[m] | Rechter Rand<br>des Meshs<br>[m] |
| eTRT_07-1  | 2                                                                           | -                         | 1                                |
| eTRT_07-2  | 1,5                                                                         | -                         | 1                                |
| eTRT_07-3  | 1,1                                                                         | -                         | 1                                |
| eTRT_07-4  | 1,05                                                                        | -                         | 1                                |
| eTRT_07-5  | 1,01                                                                        | -                         | 1                                |

 Tabelle II-3.7 Hydraulic Head Boundary Condition-Verteilung der Modellreihe eTRT\_07.

Modellparameter und Grundwasserfließgeschwindigkeit

Die Heat Parameter wurden entsprechend dem Modell "FEFLOW eTRT\_04-1.1" gewählt. Die Flow Parameter sind in Tabelle II-3.8 aufgeführt. Der Durchlässigkeitsbeiwert  $k_f$  wurde im gesamten Modell auf einen Wert von1·10<sup>-4</sup> m/s festgelegt. Entsprechend der gewählten Randbedingungen und Parameter, ergibt sich bei einer steady state-Modellierung der Fließbedingungen die folgende Filtergeschwindigkeitsverteilung für die simulierten Modelle (Tab. II-3.8):

**Tabelle II-3.8** Flow Parameter und Filtergeschwindigkeiten in den mittleren Schichten der Modellreihe eTRT\_07(berechnet gemäß Gleichung II-3.11, II-3.12 & II-3.13).

| ModelIname | Druckhöhen-<br>unterschied h | Länge der<br>Fließstrecke I | Hydraulischer<br>Gradient i | Durchlässigkeits<br>-beiwert k <sub>f</sub> | resultierende<br>Filtergeschwindig-<br>keit v <sub>f</sub> |
|------------|------------------------------|-----------------------------|-----------------------------|---------------------------------------------|------------------------------------------------------------|
|            | [m]                          | [m]                         | [-]                         | [m/s]                                       | [m/s (m/d)]                                                |
| eTRT_07-1  | 1                            | 10                          | 0,1                         | 1.10 <sup>-4</sup>                          | 1·10 <sup>-5</sup> (0,864)                                 |
| eTRT_07-2  | 0,5                          | 10                          | 0,05                        | 1·10 <sup>-4</sup>                          | 5-10 <sup>-6</sup> (0,432)                                 |
| eTRT_07-3  | 0,1                          | 10                          | 0,01                        | 1·10 <sup>-4</sup>                          | 1-10 <sup>-6</sup> (0,0864)                                |
| eTRT_07-4  | 0,05                         | 10                          | 0,005                       | 1·10 <sup>-4</sup>                          | 5-10 <sup>-7</sup> (0,0432)                                |
| eTRT_07-5  | 0,01                         | 10                          | 0,001                       | 1.10 <sup>-4</sup>                          | 1-10 <sup>-7</sup> (0,00864)                               |

Da in dem vorliegenden Modell der advektive Wärmeabtransport durch fließendes Grundwasser untersucht werden soll, wurde für den durchströmten, mittleren Teil des Modells eine Porosität von 0,1 angesetzt. Da Feflow die Gesamtwärmeleitfähigkeit aus den jeweiligen Anteilen von Gesteins- und Fluidwärmeleitfähigkeit über die Porosität bestimmt (Gleichung II-3.10), wurde die Wärmeleitfähigkeit des Gesteins  $\lambda_{solid}$  so erhöht, dass die Gesamtwärmeleitfähigkeit  $\lambda_{total}$  einen Wert von 2 W/(m K) annimmt ( $\lambda_{solid} = 2,157$  W/(m K)). Die Wärmekapazität von Fluid und Gestein hingegen blieben unverändert zu den Angaben in Kapitel II-3.2.4.

## II-3.4 Ergebnisse der Modellreihen

In allen vier Modellierungsreihen wurden jeweils in den Mittelpunktsknoten der Glasfaserkabel (Abb. II-3.2) die Temperaturen pro Zeitschritt des Modells aufgezeichnet. Der Temperaturanstieg jedes einzelnen in den Modellen gesetzten Observation Points kann so gemäß Gleichung II-1.1 ausgewertet werden. Die so bestimmten Wärmeleitfähigkeiten können dann mit dem je nach Modell für das umgebende Gestein festgesetzten Wert verglichen werden.

## II-3.4.1 Modellreihe mit reiner Konduktion

Die Modellreihe "FEFLOW eTRT\_04" besteht aus insgesamt 30 Einzelmodellen mit je zwei Observation Points (OP), an denen der Temperaturanstieg während des Modelldurchlaufs aufgezeichnet wird. Die beiden OPs befinden sich auf dem jeweils mittleren Slice des jeweiligen 2-Layer-Modells. Da beide OPs im Mittelpunktsknoten des Glasfaserkabels und beide Kabel radialsymmetrisch zum Bohrlochmittelpunkt innerhalb des Bohrlochs liegen, kann man davon ausgehen, dass die Temperaturen sich pro Zeitabschnitt zwischen den beiden OPs nicht oder nur minimal verändern (Vergleiche zwischen den Temperaturkurven der beiden OPs haben dies bestätigt; die Unterschiede beginnen in der 4. Nachkommastelle). Aus diesem Grund wurden lediglich die Temperaturwerte von OP 1 zur Auswertung (Tab. II-3.10, Abb. II-3.18) und zur Abbildung in den Temperaturplots (Abb. II-3.13 bis II-3.17) herangezogen.

Die Temperatur breitet sich radial von den Glasfaserkabeln aus. Je nachdem, ob die beiden Glasfaserkabel nah am Bohrlochrand oder eng zusammen in der Mitte sitzen, erfolgt die Ausbreitung der Temperatur vor allem im Bohrloch selbst entweder annähernd radial oder oval bis hantelförmig bei weiter auseinander stehenden Glasfaserkabeln innerhalb der Modellgeometrie (Abb. II-3.7).



Abbildung II-3.7 Ausbreitung der Temperatur von Modell "eTRT\_04-1.1" nach 3 Tagen Erhitzung.

Legt man zur groben Abschätzung der Reichweite der Temperaturausbreitung in einem isotropen Medium Gleichung II-1.2 zugrunde, so ergibt sich eine Ausbreitungsverteilung entsprechend Tabelle II-3.9:

| Tabelle II-3.9 Reichweite der | Temperaturausbreitung | nach Gleichung II-1.2 (t = 3d). |
|-------------------------------|-----------------------|---------------------------------|
|-------------------------------|-----------------------|---------------------------------|

| Wärmeleitfähigkeit | Volumetrische  | Reichweite der |  |
|--------------------|----------------|----------------|--|
| des umliegenden    | Wärmekapazität | Temperatur-    |  |
| Materials          |                | ausbreitung    |  |
| [W/(m K)]          | [MJ/(m³ K)]    | [m]            |  |
| 1                  | 2              | 0,36           |  |
| 2                  | 2              | 0,51           |  |
| 4                  | 2              | 0,72           |  |

Vergleicht man die Ausbreitungswerte mit den Abbildungen II-3.8, II-3.9 und II-3.12, so erkennt man, dass die Werte mit der optischen Ausbreitung der Temperaturfront annähernd übereinstimmen.

Allgemein kann man in den Abbildungen II-3.8 bis II-3.12 erkennen, dass die Temperatur erwartungsgemäß dann am stärksten ansteigt, wenn sowohl die Kabel nah beieinander liegen (Modellpositionen 3 bis 5), sowie wenn die Wärmeleitfähigkeit der Verpressung, als auch in geringerem Maße die Wärmeleitfähigkeit des umgebenden Gesteins, niedrig sind (Abb. II-3.10, Abb. II-3.11 & Abb. II-3.12).

| ModelIname  | Wärmeleitfähigkeit $\lambda$ |             |           | Abweichung von | Maximale, nach 3 |
|-------------|------------------------------|-------------|-----------|----------------|------------------|
|             | Gestein                      | Verpressung | Berechnet | Gesteinswärme- | Tagen erreichte  |
|             |                              |             |           | leitfähigkeit  | Endtemperatur    |
|             | [W/(m K)]                    | [W/(m K)]   | [W/(m K)] | [%]            | [°C]             |
| eTRT_04-1.1 | 2                            | 2           | 2,02      | 1,2            | 20,47            |
| eTRT_04-1.2 | 2                            | 2           | 2,02      | 1,1            | 20,37            |
| eTRT_04-1.3 | 2                            | 2           | 1,98      | 0,9            | 23,14            |
| eTRT_04-1.4 | 2                            | 2           | 1,98      | 0,9            | 23,18            |
| eTRT_04-1.5 | 2                            | 2           | 1,99      | 0,5            | 21,77            |
| eTRT_04-1.6 | 2                            | 2           | 2,03      | 1,6            | 20,19            |
| eTRT_04-2.1 | 4                            | 2           | 4,01      | 0,2            | 18,16            |
| eTRT_04-2.2 | 4                            | 2           | 4,00      | 0,1            | 18,07            |
| eTRT_04-2.3 | 4                            | 2           | 3,92      | 1,9            | 21,13            |
| eTRT_04-2.4 | 4                            | 2           | 3,92      | 1,9            | 21,17            |
| eTRT_04-2.5 | 4                            | 2           | 3,94      | 1,5            | 19,75            |
| eTRT_04-2.6 | 4                            | 2           | 4,02      | 0,5            | 17,61            |
| eTRT_04-3.1 | 2                            | 0,8         | 2,00      | 0,0            | 23,12            |
| eTRT_04-3.2 | 2                            | 0,8         | 2,00      | 0,0            | 23,00            |
| eTRT_04-3.3 | 2                            | 0,8         | 1,91      | 4,7            | 29,91            |
| eTRT_04-3.4 | 2                            | 0,8         | 1,91      | 4,7            | 29,99            |
| eTRT_04-3.5 | 2                            | 0,8         | 1,92      | 3,9            | 26,74            |
| eTRT_04-3.6 | 2                            | 0,8         | 2,02      | 1,1            | 21,64            |
| eTRT_04-4.1 | 4                            | 0,8         | 3,96      | 1,0            | 20,63            |
| eTRT_04-4.2 | 4                            | 0,8         | 3,96      | 1,0            | 20,52            |
| eTRT_04-4.3 | 4                            | 0,8         | 3,77      | 5,7            | 27,92            |
| eTRT_04-4.4 | 4                            | 0,8         | 3,77      | 5,7            | 27,99            |
| eTRT_04-4.5 | 4                            | 0,8         | 3,80      | 4,9            | 24,73            |
| eTRT_04-4.6 | 4                            | 0,8         | 4,01      | 0,2            | 18,64            |
| eTRT_04-5.1 | 1                            | 2           | 1,03      | 3,5            | 24,02            |
| eTRT_04-5.2 | 1                            | 2           | 1,03      | 3,4            | 23,91            |
| eTRT_04-5.3 | 1                            | 2           | 1,01      | 1,4            | 26,36            |
| eTRT_04-5.4 | 1                            | 2           | 1,01      | 1,4            | 26,40            |
| eTRT_04-5.5 | 1                            | 2           | 1,02      | 1,8            | 25,01            |
| eTRT_04-5.6 | 1                            | 2           | 1,04      | 3,9            | 24,04            |

 Tabelle II-3.10 Ergebnisse der Wärmeleitfähigkeitsberechnung Modellreihe eTRT\_04 (nach Gleichung II-1.1).





## ModelIname: eTRT\_04-1.2

| Modellnr.:<br>Modellposition:                                 | 1<br>2                                             |
|---------------------------------------------------------------|----------------------------------------------------|
| Wärmeleitfähigkeit Gestein:<br>Wärmeleitfähigkeit Verfüllung: | 2 W/(m K)<br>2 W/(m K)                             |
| Wärmekapazität Gestein:<br>Wärmekapazität Verfüllung:         | 2 MJ/(m <sup>3</sup> K)<br>2 MJ/(m <sup>3</sup> K) |
| Wärmeeintrag:<br>Wärmeleistung:                               | konstant<br>15 W/m                                 |
| Testdauer:                                                    | 72 h                                               |
|                                                               |                                                    |



## ModelIname: eTRT\_04-1.5 ModelInr.: Modellposition: 5 Wärmeleitfähigkeit Gestein: 2 W/(m K) Wärmeleitfähigkeit Verfüllung: 2 W/(m K) Wärmekapazität Gestein: 2 MJ/(m<sup>3</sup> K) 2 MJ/(m<sup>3</sup> K) Wärmekapazität Verfüllung: konstant Wärmeeintrag: Wärmeleistung: 15 W/m Testdauer: 72 h



Temperature

- Continuous

11

N

FEFLOW (R)

0.1

#### ModelIname: eTRT 04-1.3

|                                                               |                            | <ul> <li>Contin</li> </ul> |
|---------------------------------------------------------------|----------------------------|----------------------------|
| Modellnr.:<br>Modellposition:                                 | 1<br>3                     |                            |
| Wärmeleitfähigkeit Gestein:<br>Wärmeleitfähigkeit Verfüllung: | 2 W/(m K)<br>2 W/(m K)     | 22                         |
| Wärmekapazität Gestein:<br>Wärmekapazität Verfüllung:         | 2 MJ/(m³ K)<br>2 MJ/(m³ K) | 222                        |
| Wärmeeintrag:<br>Wärmeleistung:                               | konstant<br>15 W/m         | 2                          |
| Testdauer:                                                    | 72 h                       | 1                          |
|                                                               |                            | 1                          |
|                                                               |                            | N                          |
| 0                                                             | 0,05 0,1<br>[m]            | FEFLO                      |

0.05

0.1



#### Modellname: eTRT 04-1.6

ModelIname: eTRT 04-1.4

Wärmekapazität Gestein:

Wärmekapazität Verfüllung:

Wärmeleitfähigkeit Gestein: 2 W/(m K)

Wärmeleitfähigkeit Verfüllung: 2 W/(m K)

4

2 MJ/(m<sup>3</sup> K)

2 MJ/(m<sup>3</sup> K)

konstant

0.05

0.05

0.05

0,1

15 W/m

72 h

ModelInr.:

Modellposition:

Wärmeeintrag:

Wärmeleistung:

Testdauer:

ModelInr.: Modellposition: 6 Wärmeleitfähigkeit Gestein: 2 W/(m K) Wärmeleitfähigkeit Verfüllung: 2 W/(m K) Wärmekapazität Gestein: 2 MJ/(m<sup>3</sup> K) Wärmekapazität Verfüllung: 2 MJ/(m<sup>3</sup> K) Wärmeeintrag: konstant Wärmeleistung: 15 W/m Testdauer: 72 h



11

N

0,1

Abbildung II-3.8 Ergebnisse der 6 Modellpositionen von Modell eTRT\_04-1.1 bis 1.6.









| Modellnr.:<br>Modellposition:                                 | 2<br>1                     | [°C]<br>30<br>29<br>28 |               |
|---------------------------------------------------------------|----------------------------|------------------------|---------------|
| Wärmeleitfähigkeit Gestein:<br>Wärmeleitfähigkeit Verfüllung: | 4 W/(m K)<br>2 W/(m K)     | 27<br>26<br>25<br>24   |               |
| Wärmekapazität Gestein:<br>Wärmekapazität Verfüllung:         | 2 MJ/(m³ K)<br>2 MJ/(m³ K) | 23<br>22<br>21<br>20   | X             |
| Wärmeeintrag:<br>Wärmeleistung:                               | konstant<br>15 W/m         | 19<br>18<br>17<br>16   |               |
| Testdauer:                                                    | 72 h                       | 15<br>14<br>13<br>12   | $\mathcal{A}$ |
|                                                               |                            | 11                     | XX            |

0.05

[m]

0.1

0.1





| Modellnr.:                     | 2                       |
|--------------------------------|-------------------------|
| Modellposition:                | 2                       |
| Wärmeleitfähigkeit Gestein:    | 4 W/(m K)               |
| Wärmeleitfähigkeit Verfüllung: | 2 W/(m K)               |
| Wärmekapazität Gestein:        | 2 MJ/(m <sup>3</sup> K) |
| Wärmekapazität Verfüllung:     | 2 MJ/(m <sup>3</sup> K) |
| Wärmeeintrag:                  | konstant                |
| Wärmeleistung:                 | 15 W/m                  |
| Testdauer:                     | 72 h                    |
|                                |                         |





Abbildung II-3.9 Ergebnisse der 6 Modellpositionen von Modell eTRT\_04-2.1 bis 2.6.



| ModelIname: eTRT_04-2.5                                       |                            | Temperature<br>- Continuous -    |
|---------------------------------------------------------------|----------------------------|----------------------------------|
| Modellnr.:<br>Modellposition:                                 | 2<br>5                     | [°C]<br>30<br>29<br>28           |
| Wärmeleitfähigkeit Gestein:<br>Wärmeleitfähigkeit Verfüllung: | 4 W/(m K)<br>2 W/(m K)     | 27<br>26<br>25<br>24             |
| Wärmekapazität Gestein:<br>Wärmekapazität Verfüllung:         | 2 MJ/(m³ K)<br>2 MJ/(m³ K) | 23<br>22<br>21<br>20             |
| Wärmeeintrag:<br>Wärmeleistung:                               | konstant<br>15 W/m         | 19<br>18<br>17                   |
| Testdauer:                                                    | 72 h                       | 15<br>14<br>13<br>12<br>11<br>10 |
| 0                                                             | 0,05 0,1<br>[m]            | FEFLOW (R)                       |













#### ModelIname: eTRT\_04-3.2

| Modellnr.:<br>Modellposition:                                 | 3<br>2                                             |
|---------------------------------------------------------------|----------------------------------------------------|
| Wärmeleitfähigkeit Gestein:<br>Wärmeleitfähigkeit Verfüllung: | 2 W/(m K)<br>0,8 W/(m K)                           |
| Wärmekapazität Gestein:<br>Wärmekapazität Verfüllung:         | 2 MJ/(m <sup>3</sup> K)<br>2 MJ/(m <sup>3</sup> K) |
| Wärmeeintrag:<br>Wärmeleistung:                               | konstant<br>15 W/m                                 |
| Testdauer:                                                    | 72 h                                               |
|                                                               |                                                    |



| ModelIname: eTRT_04-3.5                                       |                            | Temperature            |
|---------------------------------------------------------------|----------------------------|------------------------|
| ModelInr.:<br>ModelIposition:                                 | 3<br>5                     | [°C]<br>30<br>29<br>28 |
| Wärmeleitfähigkeit Gestein:<br>Wärmeleitfähigkeit Verfüllung: | 2 W/(m K)<br>0,8 W/(m K)   | 27<br>26<br>25<br>24   |
| Wärmekapazität Gestein:<br>Wärmekapazität Verfüllung:         | 2 MJ/(m³ K)<br>2 MJ/(m³ K) | 23<br>22<br>21         |
| Wärmeeintrag:<br>Wärmeleistung:                               | konstant<br>15 W/m         | 19<br>18<br>17         |
| Testdauer:                                                    | 72 h                       | 15<br>14<br>13<br>12   |
|                                                               |                            | N<br>N                 |

#### ModelIname: eTRT\_04-3.3

|                                                               |                            | - Contin              |
|---------------------------------------------------------------|----------------------------|-----------------------|
| Modellnr.:<br>Modellposition:                                 | 3<br>3                     | [°C                   |
| Wärmeleitfähigkeit Gestein:<br>Wärmeleitfähigkeit Verfüllung: | 2 W/(m K)<br>0,8 W/(m K)   | 2222                  |
| Wärmekapazität Gestein:<br>Wärmekapazität Verfüllung:         | 2 MJ/(m³ K)<br>2 MJ/(m³ K) | 2<br>2<br>2<br>2<br>2 |
| Wärmeeintrag:<br>Wärmeleistung:                               | konstant<br>15 W/m         | 2<br>1<br>1           |
| Testdauer:                                                    | 72 h                       | 1                     |
|                                                               |                            | 1                     |
|                                                               |                            | N                     |
| 0                                                             | 0,05 0,1<br>[m]            | FEFLOV                |

0.05





| ModelIname: eTRT_04-3.4                                       |                            | Temperature<br>- Continuous - |
|---------------------------------------------------------------|----------------------------|-------------------------------|
| Modellnr.:<br>Modellposition:                                 | 3<br>4                     | [°C]<br>30<br>29<br>28        |
| Wärmeleitfähigkeit Gestein:<br>Wärmeleitfähigkeit Verfüllung: | 2 W/(m K)<br>0,8 W/(m K)   | 27<br>26<br>25<br>24          |
| Wärmekapazität Gestein:<br>Wärmekapazität Verfüllung:         | 2 MJ/(m³ K)<br>2 MJ/(m³ K) | 23<br>22<br>21<br>20          |
| Wärmeeintrag:<br>Wärmeleistung:                               | konstant<br>15 W/m         | 19<br>18<br>17                |
| Testdauer:                                                    | 72 h                       | 15<br>15<br>14<br>13<br>12    |
|                                                               |                            | 11<br>10<br>N                 |
| 0                                                             | 0,05 0,1                   | FEFLOW (R)                    |

0,1

FEFLOW (R)

0.05

[m]

#### ModelInr.: 3 Modellposition: 6

Wärmeleitfähigkeit Gestein: 2 W/(m K) Wärmeleitfähigkeit Verfüllung: 0,8 W/(m K) 2 MJ/(m³ K) 2 MJ/(m³ K) konstant 15 W/m 72 h N 0.05 0,1



ModelIname: eTRT\_04-3.6

- Wärmekapazität Gestein: Wärmekapazität Verfüllung:
- Wärmeeintrag: Wärmeleistung:
- Testdauer:













| Modellname: eTRT 04-4 5                                       |                            | Temperature                              |
|---------------------------------------------------------------|----------------------------|------------------------------------------|
| Modellnr.:<br>Modellposition:                                 | 4<br>5                     | - Continuous -<br>[°C]<br>30<br>29<br>28 |
| Wärmeleitfähigkeit Gestein:<br>Wärmeleitfähigkeit Verfüllung: | 4 W/(m K)<br>0,8 W/(m K)   | 27<br>26<br>25<br>24                     |
| Wärmekapazität Gestein:<br>Wärmekapazität Verfüllung:         | 2 MJ/(m³ K)<br>2 MJ/(m³ K) | 23<br>22<br>21<br>20                     |
| Wärmeeintrag:<br>Wärmeleistung:                               | konstant<br>15 W/m         | 19<br>18<br>17<br>16                     |
| Testdauer:                                                    | 72 h                       | 15<br>14<br>13<br>12<br>11<br>10         |
| <u>0</u>                                                      | 0,05 0,1<br>[m]            | FEFLOW (R)                               |



ModelIname: eTRT\_04-4.2

| Modellnr.:                     | 4                       |
|--------------------------------|-------------------------|
| Modellposition:                | 2                       |
| Wärmeleitfähigkeit Gestein:    | 4 W/(m K)               |
| Wärmeleitfähigkeit Verfüllung: | 0,8 W/(m K)             |
| Wärmekapazität Gestein:        | 2 MJ/(m <sup>3</sup> K) |
| Wärmekapazität Verfüllung:     | 2 MJ/(m <sup>3</sup> K) |
| Wärmeeintrag:                  | konstant                |
| Wärmeleistung:                 | 15 W/m                  |
| Testdauer:                     | 72 h                    |

0.05

0.1





Abbildung II-3.11 Ergebnisse der 6 Modellpositionen von Modell eTRT\_04-4.1 bis 4.6.









0.05

0.1

0.1



#### ModelIname: eTRT\_04-5.2

| Modellnr.:                     | 5                       |
|--------------------------------|-------------------------|
| Modellposition:                | 2                       |
| Wärmeleitfähigkeit Gestein:    | 1 W/(m K)               |
| Wärmeleitfähigkeit Verfüllung: | 2 W/(m K)               |
| Wärmekapazität Gestein:        | 2 MJ/(m <sup>3</sup> K) |
| Wärmekapazität Verfüllung:     | 2 MJ/(m <sup>3</sup> K) |
| Wärmeeintrag:                  | konstant                |
| Wärmeleistung:                 | 15 W/m                  |
| Testdauer:                     | 72 h                    |
|                                |                         |



| 0                                                            | 0,05 0,1<br>[m]            | FEFLOW (R)                 |
|--------------------------------------------------------------|----------------------------|----------------------------|
| ModelIname: eTRT_04-5.5                                      |                            | Temperature                |
| Modellnr.:<br>Modellposition:                                | 5<br>5                     | [°C]<br>30<br>29<br>28     |
| Wärmeleitfähigkeit Gestein:<br>Wärmeleitfähigkeit Verfüllung | 1 W/(m K)<br>g: 2 W/(m K)  | 27<br>26<br>25<br>24       |
| Wärmekapazität Gestein:<br>Wärmekapazität Verfüllung:        | 2 MJ/(m³ K)<br>2 MJ/(m³ K) | 23<br>22<br>21<br>20       |
| Wärmeeintrag:<br>Wärmeleistung:                              | konstant<br>15 W/m         | 19<br>18<br>17             |
| Testdauer:                                                   | 72 h                       | 15<br>14<br>13<br>12<br>11 |
|                                                              |                            | 10<br>N                    |

0.05

0,05

0,1

0.1

5

4

2 MJ/(m<sup>3</sup> K) 2 MJ/(m<sup>3</sup> K)

konstant

15 W/m

72 h

ModelIname: eTRT 04-5.4

Wärmekapazität Gestein:

Wärmekapazität Verfüllung:

Wärmeleitfähigkeit Gestein: 1 W/(m K)

Wärmeleitfähigkeit Verfüllung: 2 W/(m K)

ModelInr.:

Modellposition:

Wärmeeintrag:

Wärmeleistung:

Testdauer:



Temperature

- Continuous

11 10

#### ModelIname: eTRT\_04-5.3

|                                                               |                            | - Cont |
|---------------------------------------------------------------|----------------------------|--------|
| Modellnr.:<br>Modellposition:                                 | 5<br>3                     | [*     |
| Wärmeleitfähigkeit Gestein:<br>Wärmeleitfähigkeit Verfüllung: | 1 W/(m K)<br>2 W/(m K)     |        |
| Wärmekapazität Gestein:<br>Wärmekapazität Verfüllung:         | 2 MJ/(m³ K)<br>2 MJ/(m³ K) |        |
| Wärmeeintrag:<br>Wärmeleistung:                               | konstant<br>15 W/m         |        |
| Testdauer:                                                    | 72 h                       |        |
|                                                               |                            |        |
| 0                                                             | 0,05 0,1                   | N      |
|                                                               | [m]                        | FEFLC  |



ModelIname: eTRT\_04-5.6 ModelInr.: 5 Modellposition: 6 Wärmeleitfähigkeit Gestein: 1 W/(m K) Wärmeleitfähigkeit Verfüllung: 2 W/(m K) Wärmekapazität Gestein: 2 MJ/(m<sup>3</sup> K) Wärmekapazität Verfüllung: 2 MJ/(m<sup>3</sup> K) Wärmeeintrag: konstant Wärmeleistung: 15 W/m 72 h Testdauer:



Abbildung II-3.12 Ergebnisse der 6 Modellpositionen von Modell eTRT\_04-5.1 bis 5.6.










Abbildung II-3.13 Temperaturkurven von Observation Point 1 der Modelle eTRT\_04-1.1 bis 1.6.



Abbildung II-3.14 Temperaturkurven von Observation Point 1 der Modelle eTRT\_04-2.1 bis 2.6.



Abbildung II-3.15 Temperaturkurven von Observation Point 1 der Modelle eTRT\_04-3.1 bis 3.6.



Abbildung II-3.16 Temperaturkurven von Observation Point 1 der Modelle eTRT\_04-4.1 bis 4.6.



Abbildung II-3.17 Temperaturkurven von Observation Point 1 der Modelle eTRT\_04-5.1 bis 5.6.



**Abbildung II-3.18** Verteilung der berechneten Wärmeleitfähigkeit (rot-graue Punkte) und der den Modellen vorgegebenen Gesteinswärmeleitfähigkeiten (blaue Balken) der Modelle eTRT\_04-1.1 bis 5.6.

Abbildung II-3.18 zeigt deutlich, dass die aus den Modellergebnissen berechneten Wärmeleitfähigkeiten nur in geringem Maße von den für das Umgebungsgestein festgesetzten Werten abweichen. Die Abweichungen sind dort am stärksten, wo der Einfluss eines schwach wärmeleitenden Verfüllmaterials am größten ist (Modell eTRT\_04-4.3 & 4.4). Insgesamt besitzen die vorliegenden Modelle eine mittlere Abweichung vom Wärmeleitfähigkeitswert des umgebenden Gesteins von ca. 2%. Bei einer Untersuchung der einzelnen Modellpositionen (Abb. II-3.3) zeigt sich, dass die Modelle mit den weit innen liegenden Glasfaserkabeln (Modellposition 3, 4 & 5), die höchsten mittleren Abweichungen vom festgelegten Wert für das Umgebungsgestein besitzen (Tab. II-3.11).

| Modell-  | Mittlere   |
|----------|------------|
| position | Abweichung |
|          | [%]        |
| 1        | 1,2        |
| 2        | 1,1        |
| 3        | 2,9        |
| 4        | 2,9        |
| 5        | 2,5        |
| 6        | 1,5        |

**Tabelle II-3.11** Mittlere Abweichungder Wärmeleitfähigkeiten beiverschiedenen Modellpositionen.

# II-3.4.2 Modellreihe Konduktion bei einem 3-Schicht-Modell

Die Modellreihe "FEFLOW eTRT\_05" besteht aus insgesamt 3 Einzelmodellen mit je 32 Observation Points (OP), an denen der Temperaturanstieg während des Modelldurchlaufs aufgezeichnet wird. Die OPs befinden sich in den Mittelpunktsknoten der beiden Glasfaserkabel auf allen 16 Slices des jeweiligen 15-Layer-Modells. So kann ein Wärmeleitfähigkeits-Tiefenprofil erstellt werden (Abb. II-3.22).

Die Temperaturausbreitung in den Modelle erfolgt aufgrund der identischen Geometrie analog zu Modellen 1.1, 2.1, 3.1, 4.1 und 5.1 der Modellreihe "FEFLOW eTRT\_04". In Modell 1 zeigt sich, dass die Temperaturen in der mittleren Schicht stärker ansteigen, als in den Schichten darüber oder darunter (Abb. II-3.19), was durch die in der mittleren Schicht geringeren Wärmeleitfähigkeit des umgebenden Gesteins bedingt ist (Tab. II-3.5). In Modell 2 ist die Temperaturentwicklung um die Sonde in allen Layern erwartungsgemäß gleich (Abb. II-3.20) und analog zu Modell 1.1 der Modellreihe "FEFLOW eTRT\_04". Die größere, dreidimensionale Auflösung des Modells (15-Layer) hat erwartungsgemäß keinerlei Auswirkungen auf die Temperaturen. In Modell 3 ist der Temperaturanstieg in der mittleren Schicht geringer, als in den Schichten darüber und darunter (Abb. II-3.21), was durch die in der mittleren Schicht höhere Wärmeleitfähigkeit des umgebenden Gesteins bedingt ist (Tab. II-3.5).

Die Wärmeleitfähigkeiten der einzelnen Tiefenabschnitte liegen je nach Modell sehr nahe an den Werten der umgebenden Gesteinseinheiten (Tab. II-3.12). Größere Abweichungen von der zu erwartenden Wärmeleitfähigkeit gibt es nur an den Übergangsslices zwischen den unterschiedlichen, modellierten Gesteinseinheiten. Der berechnete Wärmeleitfähigkeitswert an dieser Stelle stellt somit eine Misch-Wärmeleitfähigkeit zwischen den Wärmeleitfähigkeit vom jeweiligen Mittelwert der oberen, bzw. unteren Schicht zur mittleren Schicht beträgt maximal 2% (Tab. II-3.13).

| ModelIname: eTRT_05-1                                         |                                                    | Temperature<br>- Continuous - |  |
|---------------------------------------------------------------|----------------------------------------------------|-------------------------------|--|
| Modellnr.:<br>Slice:<br>Modellposition:                       | 1<br>2<br>1                                        | [°C]<br>30<br>29<br>28<br>27  |  |
| Wärmeleitfähigkeit Gestein:<br>Wärmeleitfähigkeit Verfüllung: | 2 W/(m K)<br>2 W/(m K)                             | 26<br>25<br>24<br>23          |  |
| Wärmekapazität Gestein:<br>Wärmekapazität Verfüllung:         | 2 MJ/(m <sup>3</sup> K)<br>2 MJ/(m <sup>3</sup> K) | 22<br>21<br>20<br>19          |  |
| Wärmeeintrag:<br>Wärmeleistung:                               | konstant<br>15 W/m                                 | 18<br>17<br>16<br>15          |  |
| Testdauer:                                                    | 72 h                                               | 14<br>13<br>12<br>11<br>10    |  |
| <u>0</u>                                                      | 0,05 0,1<br>[m]                                    | FEFLOW (R)                    |  |



| ModelIname: eTRT_05-1                                                                             |                                                                  | Temperature<br>- Continuous -                                 |
|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|
| Modellnr.:<br>Slice:<br>Modellposition:<br>Wärmeleitfähigkeit Gestein:<br>Wärmekapazität Gestein: | 1<br>8<br>1<br>1 W/(m K)<br>2 W/(m K)<br>2 MJ/(m <sup>3</sup> K) | [°C]<br>29<br>28<br>27<br>26<br>25<br>24<br>22<br>22<br>21    |
| Warmekapazitat Verfullung:<br>Wärmeeintrag:<br>Wärmeleistung:                                     | 2 MJ/(m <sup>3</sup> K)<br>konstant<br>15 W/m                    | 20<br>19<br>18<br>17<br>16<br>15                              |
| Testdauer:                                                                                        | 72 h                                                             | 14           12           11           N           FEFLOW (R) |



Abbildung II-3.19 Ergebnisse der Modelle eTRT\_05-1 auf Slice 02, 08 und 14.

| ModelIname: eTRT_05-2                                         |                                                    | Temperature<br>- Continuous -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17                |
|---------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Modellnr.:<br>Slice:<br>Modellposition:                       | 2<br>2<br>1                                        | [°C]<br>30<br>29<br>28<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X                 |
| Wärmeleitfähigkeit Gestein:<br>Wärmeleitfähigkeit Verfüllung: | 2 W/(m K)<br>2 W/(m K)                             | 26<br>25<br>24<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
| Wärmekapazität Gestein:<br>Wärmekapazität Verfüllung:         | 2 MJ/(m <sup>3</sup> K)<br>2 MJ/(m <sup>3</sup> K) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\bigwedge$       |
| Wärmeeintrag:<br>Wärmeleistung:                               | konstant<br>15 W/m                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |
| Testdauer:                                                    | 72 h                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | X                 |
| <u>•</u>                                                      | 0,05 0,1<br>[m]                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | X                 |
| ModelIname: eTRT_05-2                                         |                                                    | Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 17                |
| ModelInr.:<br>Slice:<br>ModelIposition:                       | 1<br>8<br>1                                        | Image: Second | X                 |
| Wärmeleitfähigkeit Gestein:<br>Wärmeleitfähigkeit Verfüllung: | 2 W/(m K)<br>2 W/(m K)                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |
| Wärmekapazität Gestein:<br>Wärmekapazität Verfüllung:         | 2 MJ/(m <sup>3</sup> K)<br>2 MJ/(m <sup>3</sup> K) | 22<br>21<br>20<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\bigwedge$       |
| Wärmeeintrag:<br>Wärmeleistung:                               | konstant<br>15 W/m                                 | 18<br>17<br>16<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
| Testdauer:                                                    | 72 h                                               | 14<br>13<br>12<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T                 |
| <u>0</u>                                                      | 0,05 0,1                                           | 10<br>N<br>FEFLOW (R)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | X                 |
| ModelIname: eTRT_05-2                                         |                                                    | Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\langle \rangle$ |
| ModelInr.:<br>Slice:<br>ModelIposition:                       | 1<br>14<br>1                                       | Image: Second | $\mathbf{x}$      |
| Wärmeleitfähigkeit Gestein:<br>Wärmeleitfähigkeit Verfüllung: | 2 W/(m K)<br>2 W/(m K)                             | 26<br>25<br>24<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
| Wärmekapazität Gestein:<br>Wärmekapazität Verfüllung:         | 2 MJ/(m <sup>3</sup> K)<br>2 MJ/(m <sup>3</sup> K) | 22<br>21<br>20<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
| Wärmeeintrag:<br>Wärmeleistung:                               | konstant<br>15 W/m                                 | 18<br>17<br>16<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
| Testdauer:                                                    | 72 h                                               | 14<br>13<br>12<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\bigwedge$       |
|                                                               |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |

Testdauer:

0,05 [m] 0 0,1 FEFLOW (R)

Abbildung II-3.20 Ergebnisse der Modelle eTRT\_05-2 auf Slice 02, 08 und 14.

| ModelIname: eTRT_05-3                                         |                            | Temp<br>- Con | oera<br>tinu                 |
|---------------------------------------------------------------|----------------------------|---------------|------------------------------|
| ModelInr.:<br>Slice:<br>ModelIposition:                       | 3<br>2<br>1                |               | [°C]<br>30<br>29<br>28<br>27 |
| Wärmeleitfähigkeit Gestein:<br>Wärmeleitfähigkeit Verfüllung: | 2 W/(m K)<br>2 W/(m K)     |               | 26<br>25<br>24<br>23         |
| Wärmekapazität Gestein:<br>Wärmekapazität Verfüllung:         | 2 MJ/(m³ K)<br>2 MJ/(m³ K) |               | 22<br>21<br>20<br>19         |
| Wärmeeintrag:<br>Wärmeleistung:                               | konstant<br>15 W/m         |               | 18<br>17<br>16<br>15         |
| Testdauer:                                                    | 72 h                       |               | 14<br>13<br>12<br>11         |
|                                                               |                            |               | 10                           |

0,05 [m]

0,05

[m]

0,1

FEFLOW (R)

0,1



| ModelIname: eTRT_05-3                                         |                                                    | Temperature<br>- Continuous - |
|---------------------------------------------------------------|----------------------------------------------------|-------------------------------|
| ModelInr.:<br>Slice:<br>ModelIposition:                       | 3<br>8<br>1                                        | [°C]<br>30<br>29<br>28<br>27  |
| Wärmeleitfähigkeit Gestein:<br>Wärmeleitfähigkeit Verfüllung: | 3 W/(m K)<br>: 2 W/(m K)                           | 26<br>25<br>24<br>23          |
| Wärmekapazität Gestein:<br>Wärmekapazität Verfüllung:         | 2 MJ/(m <sup>3</sup> K)<br>2 MJ/(m <sup>3</sup> K) | 22<br>21<br>20<br>19          |
| Wärmeeintrag:<br>Wärmeleistung:                               | konstant<br>15 W/m                                 | 18<br>17<br>16<br>15          |
| Testdauer:                                                    | 72 h                                               | 14<br>13<br>12<br>11<br>10    |
|                                                               | 0.05                                               |                               |



Abbildung II-3.21 Ergebnisse der Modelle eTRT\_05-3 auf Slice 02, 08 und 14.

| Tabelle II-3 12 | Wärmeleitfähigkeiten | der Modelle | ≤TRT   | 05-1  | his 3  |
|-----------------|----------------------|-------------|--------|-------|--------|
|                 | wanneleinanigkeiten  |             | CIIVI_ | _03-1 | 015 5. |

|       |       | Modell e         | [RT_05-1                |         |            | Modell eTRT_05-2 |                         |         |            | Modell eTRT_05-3 |                         |         |            |
|-------|-------|------------------|-------------------------|---------|------------|------------------|-------------------------|---------|------------|------------------|-------------------------|---------|------------|
| Slice | Tiefe | $\lambda_{calc}$ | $\lambda_{\text{rock}}$ | Δλ      | Abweichung | $\lambda_{calc}$ | $\lambda_{\text{rock}}$ | Δλ      | Abweichung | $\lambda_{calc}$ | $\lambda_{\text{rock}}$ | Δλ      | Abweichung |
| #     | m     | W/(m K)          | W/(m K)                 | W/(m K) | %          | W/(m K)          | W/(m K)                 | W/(m K) | %          | W/(m K)          | W/(m K)                 | W/(m K) | %          |
| 1     | 0     | 2,02             | 2                       | 0,02    | 1,1        | 2,02             | 2                       | 0,02    | 1,1        | 2,02             | 2                       | 0,02    | 1,1        |
| 2     | 1     | 2,02             | 2                       | 0,02    | 1,1        | 2,02             | 2                       | 0,02    | 1,1        | 2,02             | 2                       | 0,02    | 1,1        |
| 3     | 2     | 2,02             | 2                       | 0,02    | 1,1        | 2,02             | 2                       | 0,02    | 1,1        | 2,02             | 2                       | 0,02    | 1,1        |
| 4     | 3     | 2,02             | 2                       | 0,02    | 1,0        | 2,02             | 2                       | 0,02    | 1,1        | 2,02             | 2                       | 0,02    | 1,2        |
| 5     | 4     | 2,02             | 2                       | 0,02    | 1,2        | 2,02             | 2                       | 0,02    | 1,1        | 2,02             | 2                       | 0,02    | 0,8        |
| 6     | 5     | 2,06             | 2                       | 0,06    | 3,0        | 2,02             | 2                       | 0,02    | 1,1        | 2,01             | 2                       | 0,01    | 0,7        |
| 7     | 6     | 1,53             | 1                       | 0,53    | 53,0       | 2,02             | 2                       | 0,02    | 1,1        | 2,52             | 3                       | 0,48    | 16,0       |
| 8     | 7     | 1,00             | 1                       | 0,00    | 0,0        | 2,02             | 2                       | 0,02    | 1,1        | 3,01             | 3                       | 0,01    | 0,5        |
| 9     | 8     | 1,00             | 1                       | 0,00    | 0,0        | 2,02             | 2                       | 0,02    | 1,1        | 3,01             | 3                       | 0,01    | 0,5        |
| 10    | 9     | 1,53             | 1                       | 0,53    | 53,0       | 2,02             | 2                       | 0,02    | 1,1        | 2,52             | 3                       | 0,48    | 16,0       |
| 11    | 10    | 2,06             | 2                       | 0,06    | 3,0        | 2,02             | 2                       | 0,02    | 1,1        | 2,01             | 2                       | 0,01    | 0,7        |
| 12    | 11    | 2,02             | 2                       | 0,02    | 1,2        | 2,02             | 2                       | 0,02    | 1,1        | 2,02             | 2                       | 0,02    | 0,8        |
| 13    | 12    | 2,02             | 2                       | 0,02    | 1,0        | 2,02             | 2                       | 0,02    | 1,1        | 2,02             | 2                       | 0,02    | 1,2        |
| 14    | 13    | 2,02             | 2                       | 0,02    | 1,1        | 2,02             | 2                       | 0,02    | 1,1        | 2,02             | 2                       | 0,02    | 1,1        |
| 15    | 14    | 2,02             | 2                       | 0,02    | 1,1        | 2,02             | 2                       | 0,02    | 1,1        | 2,02             | 2                       | 0,02    | 1,1        |
| 16    | 15    | 2,02             | 2                       | 0,02    | 1,1        | 2,02             | 2                       | 0,02    | 1,1        | 2,02             | 2                       | 0,02    | 1,1        |

Tabelle II-3.13 Wärmeleitfähigkeiten der Slices 7 und 10 von Modell eTRT\_05-1 und 3

 $(\lambda_{rock} \ 1 \ bezeichnet \ die \ obere \ und \ untere \ Schicht, \ \lambda_{rock} \ 2 \ die \ mittlere \ Schicht \ des \ jeweiligen \ Modells).$ 

| Modell | Slice | λ <sub>rock</sub> 1 | λ <sub>rock</sub> 2 | Mittel- $\lambda_{rock}$ | $\lambda_{calc}$ | Δλ      | Abweichung |
|--------|-------|---------------------|---------------------|--------------------------|------------------|---------|------------|
| #      | #     | W/(m K)             | W/(m K)             | W/(m K)                  | W/(m K)          | W/(m K) | %          |
| 1      | 7     | 2                   | 1                   | 1,50                     | 1,53             | 0,03    | 2          |
| 1      | 10    | 2                   | 1                   | 1,50                     | 1,53             | 0,03    | 2          |
| 3      | 7     | 2                   | 3                   | 2,50                     | 2,52             | 0,02    | 0,8        |
| 3      | 10    | 2                   | 3                   | 2,50                     | 2,52             | 0,02    | 0,8        |



Abbildung II-3.22 Wärmeleitfähigkeiten der Modelle eTRT\_05-1, 2 und 3 aufgetragen über die Modelltiefe.

### II-3.4.3 Modellreihe Konduktion mit Wärmeeintragsänderungen

Die Modellreihe "FEFLOW eTRT\_06" besteht aus insgesamt 8 Einzelmodellen mit je 2 Observation Points (OP), an denen der Temperaturanstieg während des Modelldurchlaufs aufgezeichnet wird. Die OPs befinden sich in den Mittelpunktsknoten der beiden Glasfaserkabel des jeweiligen Modells.

Der Temperaturanstieg in den unterschiedlichen Modellen wird durch die unterschiedliche Wärmeeinbringung im Vergleich zum Standardmodell eTRT\_06-8 zum Teil stark verändert (Abb. II-3.23 bis II-3.27). Steigt der Wärmeeintrag linear an, so ist auch der Temperaturanstieg größer (Abb. II-3.26). Bei einem linearen Abfall des Wärmeeintrags wird auch der Temperaturanstieg mit der Zeit kleiner, bei starkem Gefälle (eTRT\_06-5 & 6) wird der Anstieg gegen Ende der Messdauer sogar negativ und die Temperaturkurve flacht wieder ab (Abb. II-3.26). Bei einer sinusförmigen Variation des Wärmeeintrags (±5% des Wärmeeintragswertes von 15 W/m), folgt auch die Temperaturkurve mit einem wellenförmigen Anstieg (Abb. II-3.27).



Abbildung II-3.23 Ergebnisse der Modelle eTRT\_06-1, 2 und 3.





Abbildung II-3.24 Ergebnisse der Modelle eTRT\_06-4, 5 und 6.





Temperature - Continuous -

ModelIname: eTRT\_06-7

Wärmeleitfähigkeit Gestein:

Wärmekapazität Gestein: Wärmekapazität Verfüllung:

Bezugs-Wärmeleistung:

Wärmeleitfähigkeit Verfüllung: 2 W/(m K)

7

1

2 W/(m K)

2 MJ/(m<sup>3</sup> K) 2 MJ/(m<sup>3</sup> K)

sinusförmig

variabel

15 W/m

±5%

ModelInr.:

Modellposition:

Wärmeeintrag:

Wärmeänderung:

Variation:

Abbildung II-3.25 Ergebnisse der Modelle eTRT\_06-7 und 8.



Abbildung II-3.26 Temperaturkurven von Observation Point 1 der Modelle eTRT\_06-1 bis 6.



Abbildung II-3.27 Temperaturkurven von Observation Point 1 der Modelle eTRT\_06-7 und 8.

| ModelIname | Wärmeleitfäh | igkeit λ    |           | Abweichung von                  | Maximale, nach 3                 |  |
|------------|--------------|-------------|-----------|---------------------------------|----------------------------------|--|
|            | Gestein      | Verpressung | Berechnet | Gesteinswärme-<br>leitfähigkeit | Tagen erreichte<br>Endtemperatur |  |
|            | [W/(m K)]    | [W/(m K)]   | [W/(m K)] | [%]                             | [°C]                             |  |
| eTRT_06-1  | 2            | 2           | 0.69      | 65.6                            | 22.80                            |  |
| eTRT_06-2  | 2            | 2           | 0.93      | 53.3                            | 21.87                            |  |
| eTRT_06-3  | 2            | 2           | 1.46      | 27.2                            | 20.93                            |  |
| eTRT_06-4  | 2            | 2           | 3.31      | 65.3                            | 20.00                            |  |
| eTRT_06-5  | 2            | 2           | -12.37    | 718.3                           | 19.11                            |  |
| eTRT_06-6  | 2            | 2           | -2.15     | 207.7                           | 18.58                            |  |
| eTRT_06-7  | 2            | 2           | 0.68      | 65.8                            | 20.72                            |  |

Tabelle II-3.14 Ergebnisse der Wärmeleitfähigkeitsberechnung Modellreihe eTRT\_06 (nach Gleichung II-1.1).

Die berechneten Wärmeleitfähigkeiten fallen im Vergleich zu den Wärmeleitfähigkeiten des umgebenden Gesteins durch eine teils große Abweichung auf (Tab. II-3.14). Dort wo der Temperaturanstieg am Ende der Messdauer ins Negative übergeht (eTRT\_07-5 und 6; Abb. II-3.26), erhält man in der Berechnung der Wärmeleitfähigkeiten ebenfalls negative Werte.

# II-3.4.4 Modellreihe 3-Schicht-Modell mit Grundwasserfluss

Die Modellreihe "FEFLOW eTRT\_07" besteht aus insgesamt 5 Einzelmodellen mit je 32 Observation Points (OP), an denen der Temperaturanstieg während des Modelldurchlaufs aufgezeichnet wird. Die OPs befinden sich in den Mittelpunktsknoten der beiden Glasfaserkabel auf allen 16 Slices des jeweiligen 15-Layer-Modells. So können Wärmeleitfähigkeits-Tiefenprofile erstellt werden (Abb. II-3.33). Da die angesetzte Grundwasserströmung (Kapitel II-3.3.4) die beiden Glasfaserkabel unterschiedlich umströmt (LWL-Kabel links unten wird fast frontal angeströmt, Kabel rechts oben liegt eher im Flussschatten der Erdwärmesonde), sind die Temperaturwerte und damit auch die Wärmeleitfähigkeitswerte der beiden OPs je Slice unterschiedlich. Aus diesem Grund wurden alle OPs zur Wärmeleitfähigkeitsberechnung herangezogen.

Während der Temperaturanstieg in den oberen und unteren Schichten der Modelle eTRT\_07-1 bis 5 analog zum Referenzmodell eTRT\_04-1.1 verläuft, ist der Anstieg der Temperatur in den jeweiligen mittleren, Grundwasser-durchströmten Schichten teils weit geringer.

| Modellname: eTRT_07-1                                                                                                                                                                                                                                        |                                                                                                                                                                | Temperature<br>- Continuous -                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Modellnr.:<br>Slice:<br>Modellposition:<br>Wärmeleitfähigkeit Gestein:<br>Wärmeleitfähigkeit Verfüllung:<br>Wärmekapazität Gestein:<br>Wärmekapazität Verfüllung:<br>Wärmeleistung:<br>Grundwasser:<br>Fließgeschwindigkeit:<br>Fließrichtung:<br>Testdauer: | 1<br>2<br>1<br>2 W/(m K)<br>2 W/(m K)<br>2 MJ/(m <sup>3</sup> K)<br>2 MJ/(m <sup>3</sup> K)<br>konstant<br>15 W/m<br>0,864 m/d<br>v.l.n.r.<br>72 h<br>0,05 0,1 | Contributed 5<br>30<br>29<br>27<br>26<br>24<br>22<br>21<br>20<br>19<br>18<br>17<br>16<br>15<br>14<br>12<br>11<br>10<br>N<br>CEFLOW (R) |
|                                                                                                                                                                                                                                                              |                                                                                                                                                                |                                                                                                                                        |

| Modellname: eTRT_07-1                                         |                            | Temp |
|---------------------------------------------------------------|----------------------------|------|
| Modellnr.:<br>Slice:<br>Modellposition:                       | 1<br>8<br>1                |      |
| Wärmeleitfähigkeit Gestein:<br>Wärmeleitfähigkeit Verfüllung: | 2 W/(m K)<br>2 W/(m K)     |      |
| Wärmekapazität Gestein:<br>Wärmekapazität Verfüllung:         | 2 MJ/(m³ K)<br>2 MJ/(m³ K) |      |
| Wärmeeintrag:<br>Wärmeleistung:                               | konstant<br>15 W/m         |      |
| Grundwasser:<br>Fließgeschwindigkeit:<br>Fließrichtung:       | 0,864 m/d<br>v.l.n.r.      |      |
| Testdauer:                                                    | 72 h                       | N    |
| 0                                                             | 0,05 0,1<br>[m]            | FEFL |





Abbildung II-3.28 Ergebnisse der Modelle eTRT\_07-1 auf Slice 02, 08 und 14.

| ModelIname: eTRT_07-2                                         |                                                    | Temperature<br>- Continuous - |
|---------------------------------------------------------------|----------------------------------------------------|-------------------------------|
| Modellnr.:<br>Slice:<br>Modellposition:                       | 2<br>2<br>1                                        | [°C]<br>30<br>29<br>28<br>27  |
| Wärmeleitfähigkeit Gestein:<br>Wärmeleitfähigkeit Verfüllung: | 2 W/(m K)<br>2 W/(m K)                             |                               |
| Wärmekapazität Gestein:<br>Wärmekapazität Verfüllung:         | 2 MJ/(m <sup>3</sup> K)<br>2 MJ/(m <sup>3</sup> K) | 22<br>20<br>19                |
| Wärmeeintrag:<br>Wärmeleistung:                               | konstant<br>15 W/m                                 | 18<br>17<br>16<br>15          |
| Grundwasser:<br>Fließgeschwindigkeit:<br>Fließrichtung:       | 0,432 m/d<br>v.l.n.r.                              | 14<br>13<br>12<br>11<br>10    |
| Testdauer:                                                    | 72 h                                               | 1 N O OR DOI                  |
|                                                               | [m]                                                | FEFLOW (R)                    |
| ModelIname: eTRT_07-2                                         |                                                    | Temperature                   |

|                                                               |                                                    | - Cont |
|---------------------------------------------------------------|----------------------------------------------------|--------|
| Modellnr.:<br>Slice:<br>Modellposition:                       | 2<br>8<br>1                                        |        |
| Wärmeleitfähigkeit Gestein:<br>Wärmeleitfähigkeit Verfüllung: | 2 W/(m K)<br>2 W/(m K)                             |        |
| Wärmekapazität Gestein:<br>Wärmekapazität Verfüllung:         | 2 MJ/(m <sup>3</sup> K)<br>2 MJ/(m <sup>3</sup> K) |        |
| Wärmeeintrag:<br>Wärmeleistung:                               | konstant<br>15 W/m                                 |        |
| Grundwasser:<br>Fließgeschwindigkeit:<br>Fließrichtung:       | 0,432 m/d<br>v.l.n.r.                              |        |
| Testdauer:                                                    | 72 h                                               | N      |
| 0                                                             | 0,05 0,1                                           |        |

[m]





Abbildung II-3.29 Ergebnisse der Modelle eTRT\_07-2 auf Slice 02, 08 und 14.

| ModelIname: eTRT_07-3                                                                                                                                                                                                                       |                                                                                                                                                                 | Temperature<br>- Continuous - |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Modellnr.:<br>Slice:<br>Modellposition:<br>Wärmeleitfähigkeit Gestein:<br>Wärmekapazität Gestein:<br>Wärmekapazität Verfüllung:<br>Wärmeeintrag:<br>Wärmeleistung:<br>Grundwasser:<br>Fließgeschwindigkeit:<br>Fließrichtung:<br>Testdauer: | 3<br>2<br>1<br>2 W/(m K)<br>2 W/(m K)<br>2 MJ/(m <sup>3</sup> K)<br>2 MJ/(m <sup>3</sup> K)<br>konstant<br>15 W/m<br>0,0864 m/d<br>v.l.n.r.<br>72 h<br>0.05 0.1 | FEFLOW (R)                    |
|                                                                                                                                                                                                                                             |                                                                                                                                                                 |                               |

| ModelIname: eTRT_07-3                                         |                                                    | Temp<br>- Cont |
|---------------------------------------------------------------|----------------------------------------------------|----------------|
| Modellnr.:<br>Slice:<br>Modellposition:                       | 3<br>8<br>1                                        | [              |
| Wärmeleitfähigkeit Gestein:<br>Wärmeleitfähigkeit Verfüllung: | 2 W/(m K)<br>2 W/(m K)                             |                |
| Wärmekapazität Gestein:<br>Wärmekapazität Verfüllung:         | 2 MJ/(m <sup>3</sup> K)<br>2 MJ/(m <sup>3</sup> K) |                |
| Wärmeeintrag:<br>Wärmeleistung:                               | konstant<br>15 W/m                                 |                |
| Grundwasser:<br>Fließgeschwindigkeit:<br>Fließrichtung:       | 0,0864 m/d<br>v.l.n.r.                             |                |
| Testdauer:                                                    | 72 h                                               | N              |
| 0                                                             | 0,05 0,1                                           |                |

[m]





Abbildung II-3.30 Ergebnisse der Modelle eTRT\_07-3 auf Slice 02, 08 und 14.

| Modellname: eTRT_07-4<br>Modellnr.:<br>Slice:<br>Modellposition:<br>Wärmeleitfähigkeit Gestein:<br>Wärmeleitfähigkeit Verfüllung<br>Wärmekapazität Gestein:<br>Wärmekapazität Verfüllung: | 4<br>2<br>1<br>2 W/(m K)<br>2 W/(m K)<br>2 MJ/(m <sup>3</sup> K)<br>2 MJ/(m <sup>3</sup> K) | Temperature<br>- Continuous -<br>[°C]<br>30<br>29<br>28<br>27<br>26<br>25<br>24<br>23<br>22<br>21<br>19 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Wärmeleitfähigkeit Gestein:<br>Wärmeleitfähigkeit Verfüllung<br>Wärmekapazität Gestein:<br>Wärmekapazität Verfüllung:<br>Wärmeeintrag:                                                    | 2 W/(m K)<br>2 W/(m K)<br>2 MJ/(m <sup>3</sup> K)<br>2 MJ/(m <sup>3</sup> K)<br>konstant    | 26<br>25<br>24<br>23<br>22<br>20<br>19<br>19<br>19                                                      |
| Wärmeleistung:<br>Grundwasser:<br>Fließgeschwindigkeit:<br>Fließrichtung:<br>Testdauer:                                                                                                   | 15 W/m<br>0,0432 m/d<br>v.l.n.r.<br>72 h                                                    | 16<br>15<br>14<br>13<br>12<br>11<br>10<br>N                                                             |
| 0                                                                                                                                                                                         | 0,05 0,1<br>[m]                                                                             | FEFLOW (R)                                                                                              |

|                                                               |                            | - Contin |
|---------------------------------------------------------------|----------------------------|----------|
| Modellnr.:<br>Slice:<br>Modellposition:                       | 4<br>8<br>1                | [°(      |
| Wärmeleitfähigkeit Gestein:<br>Wärmeleitfähigkeit Verfüllung: | 2 W/(m K)<br>2 W/(m K)     |          |
| Wärmekapazität Gestein:<br>Wärmekapazität Verfüllung:         | 2 MJ/(m³ K)<br>2 MJ/(m³ K) |          |
| Wärmeeintrag:<br>Wärmeleistung:                               | konstant<br>15 W/m         |          |
| Grundwasser:<br>Fließgeschwindigkeit:<br>Fließrichtung:       | 0,0432 m/d<br>v.l.n.r.     |          |
| Testdauer:                                                    | 72 h                       | N        |
| 0                                                             | 0,05 0,1                   |          |

[m]





Abbildung II-3.31 Ergebnisse der Modelle eTRT\_07-4 auf Slice 02, 08 und 14.

| <i>ModelIname:</i> eTRT_07-5                                                                                                                                                                                                  |                                                                                                                                              | Temperature<br>- Continuous -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Modellnr.:<br>Slice:<br>Modellposition:<br>Wärmeleitfähigkeit Gestein:<br>Wärmekapazität Gestein:<br>Wärmekapazität Verfüllung:<br>Wärmeeintrag:<br>Wärmeleistung:<br>Grundwasser:<br>Fließgeschwindigkeit:<br>Fließrichtung: | 5<br>2<br>1<br>2 W/(m K)<br>2 W/(m K)<br>2 MJ/(m <sup>3</sup> K)<br>2 MJ/(m <sup>3</sup> K)<br>konstant<br>15 W/m<br>0,00864 m/d<br>v.l.n.r. | Image: Second |
| Modellaamo: oTRT_07.5                                                                                                                                                                                                         | 72 h<br>0.05 0,1<br>[m]                                                                                                                      | FEFLOW (R)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ModelInr.:<br>Slice:<br>ModelInosition:                                                                                                                                                                                       | 5<br>8<br>1                                                                                                                                  | - Continuous -<br>[°C]<br>30<br>29<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| ModelInr.:<br>Slice:<br>ModelIposition:                       | 5<br>8<br>1                | [°C]<br>30<br>29<br>28<br>27 |
|---------------------------------------------------------------|----------------------------|------------------------------|
| Wärmeleitfähigkeit Gestein:<br>Wärmeleitfähigkeit Verfüllung: | 2 W/(m K)<br>2 W/(m K)     | 26<br>25<br>24<br>23         |
| Wärmekapazität Gestein:<br>Wärmekapazität Verfüllung:         | 2 MJ/(m³ K)<br>2 MJ/(m³ K) | 22<br>21<br>20<br>19         |
| Wärmeeintrag:<br>Wärmeleistung:                               | konstant<br>15 W/m         | 18<br>17<br>16<br>15         |
| Grundwasser:<br>Fließgeschwindigkeit:<br>Fließrichtung:       | 0,00864 m/d<br>v.l.n.r.    | 14<br>13<br>12<br>11<br>10   |
| Testdauer:                                                    | 72 h                       | N                            |
| 0                                                             | 0,05 0,1<br>[m] FI         | EFLOW (R)                    |





Abbildung II-3.32 Ergebnisse der Modelle eTRT\_07-5 auf Slice 02, 08 und 14.

|       |       | Modell e         | [RT_07-1.1              |         |            | Modell eTRT_07-2.1 |                         |         |            | Modell eTRT_07-3.1 |                         |         |            |
|-------|-------|------------------|-------------------------|---------|------------|--------------------|-------------------------|---------|------------|--------------------|-------------------------|---------|------------|
| Slice | Tiefe | $\lambda_{calc}$ | $\lambda_{\text{rock}}$ | Δλ      | Abweichung | $\lambda_{calc}$   | $\lambda_{\text{rock}}$ | Δλ      | Abweichung | $\lambda_{calc}$   | $\lambda_{\text{rock}}$ | Δλ      | Abweichung |
| #     | m     | W/(m K)          | W/(m K)                 | W/(m K) | %          | W/(m K)            | W/(m K)                 | W/(m K) | %          | W/(m K)            | W/(m K)                 | W/(m K) | %          |
| 1     | 0     | 2.04             | 2.00                    | 0.04    | 1.9        | 2.04               | 2.00                    | 0.04    | 2.0        | 2.04               | 2.00                    | 0.04    | 2.0        |
| 2     | 1     | 2.04             | 2.00                    | 0.04    | 1.9        | 2.04               | 2.00                    | 0.04    | 1.9        | 2.04               | 2.00                    | 0.04    | 1.9        |
| 3     | 2     | 2.05             | 2.00                    | 0.05    | 2.5        | 2.05               | 2.00                    | 0.05    | 2.4        | 2.04               | 2.00                    | 0.04    | 2.1        |
| 4     | 3     | 1.99             | 2.00                    | 0.01    | 0.5        | 2.00               | 2.00                    | 0.00    | 0.1        | 2.03               | 2.00                    | 0.03    | 1.4        |
| 5     | 4     | 2.12             | 2.00                    | 0.12    | 5.9        | 2.07               | 2.00                    | 0.07    | 3.6        | 2.02               | 2.00                    | 0.02    | 1.0        |
| 6     | 5     | 11.17            | 2.00                    | 9.17    | 458.6      | 6.72               | 2.00                    | 4.72    | 236.2      | 3.11               | 2.00                    | 1.11    | 55.3       |
| 7     | 6     | 31.67            | 2.00                    | 29.67   | 1483.3     | 19.96              | 2.00                    | 17.96   | 898.2      | 6.15               | 2.00                    | 4.15    | 207.3      |
| 8     | 7     | 38.92            | 2.00                    | 36.92   | 1846.2     | 27.52              | 2.00                    | 25.52   | 1276.2     | 8.81               | 2.00                    | 6.81    | 340.5      |
| 9     | 8     | 38.92            | 2.00                    | 36.92   | 1846.2     | 27.52              | 2.00                    | 25.52   | 1276.1     | 8.81               | 2.00                    | 6.81    | 340.5      |
| 10    | 9     | 31.67            | 2.00                    | 29.67   | 1483.3     | 19.96              | 2.00                    | 17.96   | 898.2      | 6.15               | 2.00                    | 4.15    | 207.3      |
| 11    | 10    | 11.17            | 2.00                    | 9.17    | 458.6      | 6.72               | 2.00                    | 4.72    | 236.2      | 3.11               | 2.00                    | 1.11    | 55.3       |
| 12    | 11    | 2.12             | 2.00                    | 0.12    | 5.9        | 2.07               | 2.00                    | 0.07    | 3.6        | 2.02               | 2.00                    | 0.02    | 1.0        |
| 13    | 12    | 1.99             | 2.00                    | 0.01    | 0.5        | 2.00               | 2.00                    | 0.00    | 0.1        | 2.03               | 2.00                    | 0.03    | 1.4        |
| 14    | 13    | 2.05             | 2.00                    | 0.05    | 2.5        | 2.05               | 2.00                    | 0.05    | 2.4        | 2.04               | 2.00                    | 0.04    | 2.1        |
| 15    | 14    | 2.04             | 2.00                    | 0.04    | 1.9        | 2.04               | 2.00                    | 0.04    | 1.9        | 2.04               | 2.00                    | 0.04    | 1.9        |
| 16    | 15    | 2.04             | 2.00                    | 0.04    | 1.9        | 2.04               | 2.00                    | 0.04    | 2.0        | 2.04               | 2.00                    | 0.04    | 2.0        |

 Tabelle II-3.15
 Wärmeleitfähigkeiten der Modelle eTRT\_07-1
 bis 5 am linken, unteren Glasfaserkabel.

|       |       | Modell eTRT_07-4.1 |                         |         |            | Modell eTRT_07-5.1 |                         |         |            |
|-------|-------|--------------------|-------------------------|---------|------------|--------------------|-------------------------|---------|------------|
| Slice | Tiefe | $\lambda_{calc}$   | $\lambda_{\text{rock}}$ | Δλ      | Abweichung | $\lambda_{calc}$   | $\lambda_{\text{rock}}$ | Δλ      | Abweichung |
| #     | m     | W/(m K)            | W/(m K)                 | W/(m K) | %          | W/(m K)            | W/(m K)                 | W/(m K) | %          |
| 1     | 0     | 2.04               | 2.00                    | 0.04    | 2.0        | 2.04               | 2.00                    | 0.04    | 2.0        |
| 2     | 1     | 2.04               | 2.00                    | 0.04    | 1.9        | 2.04               | 2.00                    | 0.04    | 2.0        |
| 3     | 2     | 2.04               | 2.00                    | 0.04    | 2.1        | 2.04               | 2.00                    | 0.04    | 2.0        |
| 4     | 3     | 2.03               | 2.00                    | 0.03    | 1.7        | 2.04               | 2.00                    | 0.04    | 1.9        |
| 5     | 4     | 2.02               | 2.00                    | 0.02    | 1.0        | 2.03               | 2.00                    | 0.03    | 1.6        |
| 6     | 5     | 2.60               | 2.00                    | 0.60    | 30.0       | 2.16               | 2.00                    | 0.16    | 7.8        |
| 7     | 6     | 4.22               | 2.00                    | 2.22    | 110.9      | 2.53               | 2.00                    | 0.53    | 26.6       |
| 8     | 7     | 5.70               | 2.00                    | 3.70    | 184.8      | 2.90               | 2.00                    | 0.90    | 44.8       |
| 9     | 8     | 5.70               | 2.00                    | 3.70    | 184.8      | 2.90               | 2.00                    | 0.90    | 44.8       |
| 10    | 9     | 4.22               | 2.00                    | 2.22    | 110.9      | 2.53               | 2.00                    | 0.53    | 26.6       |
| 11    | 10    | 2.60               | 2.00                    | 0.60    | 30.0       | 2.16               | 2.00                    | 0.16    | 7.8        |
| 12    | 11    | 2.02               | 2.00                    | 0.02    | 1.0        | 2.03               | 2.00                    | 0.03    | 1.6        |
| 13    | 12    | 2.03               | 2.00                    | 0.03    | 1.7        | 2.04               | 2.00                    | 0.04    | 1.9        |
| 14    | 13    | 2.04               | 2.00                    | 0.04    | 2.1        | 2.04               | 2.00                    | 0.04    | 2.0        |
| 15    | 14    | 2.04               | 2.00                    | 0.04    | 1.9        | 2.04               | 2.00                    | 0.04    | 2.0        |
| 16    | 15    | 2.04               | 2.00                    | 0.04    | 2.0        | 2.04               | 2.00                    | 0.04    | 2.0        |

|       |       | Modell e         | rrt_07-1.2              |         |            | Modell e         | Modell eTRT_07-2.2      |         |            | Modell eTRT_07-3.2 |                         |         |            |
|-------|-------|------------------|-------------------------|---------|------------|------------------|-------------------------|---------|------------|--------------------|-------------------------|---------|------------|
| Slice | Tiefe | $\lambda_{calc}$ | $\lambda_{\text{rock}}$ | Δλ      | Abweichung | $\lambda_{calc}$ | $\lambda_{\text{rock}}$ | Δλ      | Abweichung | $\lambda_{calc}$   | $\lambda_{\text{rock}}$ | Δλ      | Abweichung |
| #     | m     | W/(m K)          | W/(m K)                 | W/(m K) | %          | W/(m K)          | W/(m K)                 | W/(m K) | %          | W/(m K)            | W/(m K)                 | W/(m K) | %          |
| 1     | 0     | 2.04             | 2.00                    | 0.04    | 1.9        | 2.04             | 2.00                    | 0.04    | 2.0        | 2.04               | 2.00                    | 0.04    | 2.0        |
| 2     | 1     | 2.04             | 2.00                    | 0.04    | 1.9        | 2.04             | 2.00                    | 0.04    | 1.9        | 2.04               | 2.00                    | 0.04    | 1.9        |
| 3     | 2     | 2.05             | 2.00                    | 0.05    | 2.5        | 2.05             | 2.00                    | 0.05    | 2.4        | 2.04               | 2.00                    | 0.04    | 2.1        |
| 4     | 3     | 1.99             | 2.00                    | 0.01    | 0.5        | 2.00             | 2.00                    | 0.00    | 0.1        | 2.03               | 2.00                    | 0.03    | 1.4        |
| 5     | 4     | 2.12             | 2.00                    | 0.12    | 5.8        | 2.07             | 2.00                    | 0.07    | 3.5        | 2.02               | 2.00                    | 0.02    | 1.0        |
| 6     | 5     | 11.09            | 2.00                    | 9.09    | 454.4      | 5.54             | 2.00                    | 3.54    | 177.0      | 3.09               | 2.00                    | 1.09    | 54.7       |
| 7     | 6     | 31.30            | 2.00                    | 29.30   | 1465.2     | 19.65            | 2.00                    | 17.65   | 882.6      | 6.07               | 2.00                    | 4.07    | 203.4      |
| 8     | 7     | 38.62            | 2.00                    | 36.62   | 1831.0     | 27.14            | 2.00                    | 25.14   | 1256.9     | 8.68               | 2.00                    | 6.68    | 333.9      |
| 9     | 8     | 38.62            | 2.00                    | 36.62   | 1831.1     | 27.14            | 2.00                    | 25.14   | 1257.0     | 8.68               | 2.00                    | 6.68    | 333.9      |
| 10    | 9     | 31.30            | 2.00                    | 29.30   | 1465.2     | 19.65            | 2.00                    | 17.65   | 882.6      | 6.07               | 2.00                    | 4.07    | 203.4      |
| 11    | 10    | 11.09            | 2.00                    | 9.09    | 454.4      | 6.68             | 2.00                    | 4.68    | 233.9      | 3.09               | 2.00                    | 1.09    | 54.7       |
| 12    | 11    | 2.12             | 2.00                    | 0.12    | 5.8        | 2.07             | 2.00                    | 0.07    | 3.5        | 2.02               | 2.00                    | 0.02    | 1.0        |
| 13    | 12    | 1.99             | 2.00                    | 0.01    | 0.5        | 2.00             | 2.00                    | 0.00    | 0.1        | 2.03               | 2.00                    | 0.03    | 1.4        |
| 14    | 13    | 2.05             | 2.00                    | 0.05    | 2.5        | 2.05             | 2.00                    | 0.05    | 2.4        | 2.04               | 2.00                    | 0.04    | 2.1        |
| 15    | 14    | 2.04             | 2.00                    | 0.04    | 1.9        | 2.04             | 2.00                    | 0.04    | 1.9        | 2.04               | 2.00                    | 0.04    | 1.9        |
| 16    | 15    | 2.04             | 2.00                    | 0.04    | 1.9        | 2.04             | 2.00                    | 0.04    | 2.0        | 2.04               | 2.00                    | 0.04    | 2.0        |

 Tabelle II-3.16
 Wärmeleitfähigkeiten der Modelle eTRT\_07-1 bis 5 am rechten, oberen Glasfaserkabel.

|       |       | Modell el        | RT_07-4.2               |         |            | Modell e         |                         |         |            |
|-------|-------|------------------|-------------------------|---------|------------|------------------|-------------------------|---------|------------|
| Slice | Tiefe | $\lambda_{calc}$ | $\lambda_{\text{rock}}$ | Δλ      | Abweichung | $\lambda_{calc}$ | $\lambda_{\text{rock}}$ | Δλ      | Abweichung |
| #     | m     | W/(m K)          | W/(m K)                 | W/(m K) | %          | W/(m K)          | W/(m K)                 | W/(m K) | %          |
| 1     | 0     | 2.04             | 2.00                    | 0.04    | 2.0        | 2.04             | 2.00                    | 0.04    | 1.9        |
| 2     | 1     | 2.04             | 2.00                    | 0.04    | 1.9        | 2.04             | 2.00                    | 0.04    | 1.9        |
| 3     | 2     | 2.04             | 2.00                    | 0.04    | 2.1        | 2.04             | 2.00                    | 0.04    | 2.0        |
| 4     | 3     | 2.03             | 2.00                    | 0.03    | 1.7        | 2.04             | 2.00                    | 0.04    | 1.9        |
| 5     | 4     | 2.02             | 2.00                    | 0.02    | 1.0        | 2.03             | 2.00                    | 0.03    | 1.6        |
| 6     | 5     | 2.59             | 2.00                    | 0.59    | 29.7       | 2.15             | 2.00                    | 0.15    | 7.7        |
| 7     | 6     | 4.18             | 2.00                    | 2.18    | 108.8      | 2.52             | 2.00                    | 0.52    | 26.1       |
| 8     | 7     | 5.62             | 2.00                    | 3.62    | 181.2      | 2.88             | 2.00                    | 0.88    | 43.8       |
| 9     | 8     | 5.62             | 2.00                    | 3.62    | 181.2      | 2.88             | 2.00                    | 0.88    | 43.8       |
| 10    | 9     | 4.18             | 2.00                    | 2.18    | 108.8      | 2.52             | 2.00                    | 0.52    | 26.1       |
| 11    | 10    | 2.59             | 2.00                    | 0.59    | 29.7       | 2.15             | 2.00                    | 0.15    | 7.7        |
| 12    | 11    | 2.02             | 2.00                    | 0.02    | 1.0        | 2.03             | 2.00                    | 0.03    | 1.6        |
| 13    | 12    | 2.03             | 2.00                    | 0.03    | 1.7        | 2.04             | 2.00                    | 0.04    | 1.9        |
| 14    | 13    | 2.04             | 2.00                    | 0.04    | 2.1        | 2.04             | 2.00                    | 0.04    | 2.0        |
| 15    | 14    | 2.04             | 2.00                    | 0.04    | 1.9        | 2.04             | 2.00                    | 0.04    | 1.9        |
| 16    | 15    | 2.04             | 2.00                    | 0.04    | 2.0        | 2.04             | 2.00                    | 0.04    | 1.9        |



**Abbildung II-3.33** Wärmeleitfähigkeiten der Modelle eTRT\_07-1 bis 5 aufgetragen über die Modelltiefe (".1" bedeutet linker, unterer OP, ".2" rechter, oberer OP).

Die berechneten Wärmeleitfähigkeiten der Modelle eTRT\_07-1 bis 5 liegen jeweils über den vorgegebenen Gesteinswärmeleitfähigkeiten (Tab. II-3.15 & II-3.16, Abb. II-3.33). Je nach angesetzter Fließgeschwindigkeit ändert sich auch die Zunahme der Wärmeleitfähigkeit im durchflossenen Bereich (Abb. II-3.33). Die beiden Kurven der unterschiedlichen OP-Positionen pro Modell unterscheiden sich dabei ebenfalls leicht. Die berechnete Wärmeleitfähigkeit der OPs des unteren, linken Glasfaserkabels im durchflossenen Bereich ist jeweils höher, als die berechnete Wärmeleitfähigkeit im entsprechenden oberen, rechten Glasfaserkabel (Abb. II-3.33).

Bei der vorliegenden Modellreihe wurde eine Peclét-Zahl-Analyse durchgeführt, um aus den Wärmeleitfähigkeiten die vorherrschende Fließgeschwindigkeit des umströmenden Grundwassers zu erhalten (Gleichung II-1.5). Die Analyse führte zu Ergebnissen, die teils sehr stark von den dem Modell vorgegebenen Fließbedingungen abweichen (Tab. II-3.17 & II-3.18). Es zeigt sich, dass die charakteristische Länge I der entscheidende Faktor ist, der das Ergebnis der Berechnung bestimmt. Wird die charakteristische Länge entsprechend BARCENILLA et al. (2005), SUTTON et al. (2003), ZSCHOKE (2005) und DORNSTÄDTER et al. (2008) mit dem Bohrlochdurchmesser festgelegt, weichen die Ergebnisse sehr stark von den zu erwartenden Werten ab (Tab II-3.17). Wählt man hingegen den nach

HELLSTRÖM (1991), FOWLER (2000), SPOHN (1997) und TURCOTTE & SCHUBERT (2002) von der Temperaturanomalie betroffenen Bereich mittels der thermischen Diffusionslänge (Gleichung II-1.2), so erhält man Werte, die näher an den zu erwartenden Fließgeschwindigkeiten liegen (Tab. II-3.18).

**Tabelle II-3.17** Berechnete Fließgeschwindigkeiten über die Péclet-Zahl-Analyse (LU = links unten; RO = rechts oben;  $\lambda_{calc} = \lambda_{total}$ ,  $\lambda_{rock} = \lambda_{kond}$ ). Die charakteristische Länge I wurde entsprechend BARCENILLA et al. (2005), SUTTON et al. (2003), ZSCHOKE (2005) und DORNSTÄDTER et al. (2008) mit dem Bohrlochdurchmesser festgelegt.

| ModelIname  | $\lambda_{calc}$ | $\lambda_{rock}$ | I   | ρc <sub>p</sub> | V <sub>calc</sub>    | V <sub>Modell</sub>  | Δν                   | Abweichung |
|-------------|------------------|------------------|-----|-----------------|----------------------|----------------------|----------------------|------------|
|             | W/(m K)          | W/(m K)          | m   | MJ/(m³ K)       | m/s                  | m/s                  | m/s                  | %          |
| Modell 1 LU | 38,92            | 2,00             | 0,2 | 4,2             | 4,4·10 <sup>-5</sup> | 1,0·10 <sup>-5</sup> | 3,4·10 <sup>-5</sup> | 339,6      |
| Modell 1 RO | 38,62            | 2,00             | 0,2 | 4,2             | 4,4·10 <sup>-5</sup> | 1,0·10 <sup>-5</sup> | 3,4·10 <sup>-5</sup> | 336,0      |
| Modell 2 LU | 27,52            | 2,00             | 0,2 | 4,2             | 3,0·10 <sup>-5</sup> | 5,0·10 <sup>-6</sup> | 2,5·10 <sup>-5</sup> | 507,7      |
| Modell 2 RO | 27,14            | 2,00             | 0,2 | 4,2             | 3,0·10 <sup>-5</sup> | 5,0·10 <sup>-6</sup> | 2,5·10 <sup>-5</sup> | 498,5      |
| Modell 3 LU | 8,81             | 2,00             | 0,2 | 4,2             | 8,1·10 <sup>-6</sup> | 1,0·10 <sup>-6</sup> | 7,1·10 <sup>-6</sup> | 710,7      |
| Modell 3 RO | 8,68             | 2,00             | 0,2 | 4,2             | 8,0∙10 <sup>-6</sup> | 1,0·10 <sup>-6</sup> | 7,0·10 <sup>-6</sup> | 695,1      |
| Modell 4 LU | 5,70             | 2,00             | 0,2 | 4,2             | 4,4·10 <sup>-6</sup> | 5,0·10 <sup>-7</sup> | 3,9·10 <sup>-6</sup> | 779,9      |
| Modell 4 RO | 5,62             | 2,00             | 0,2 | 4,2             | 4,3·10 <sup>-6</sup> | 5,0·10 <sup>-7</sup> | 3,8·10 <sup>-6</sup> | 762,7      |
| Modell 5 LU | 2,90             | 2,00             | 0,2 | 4,2             | 1,1·10 <sup>-6</sup> | 1,0·10 <sup>-7</sup> | 9,7·10 <sup>-7</sup> | 967,1      |
| Modell 5 RO | 2,88             | 2,00             | 0,2 | 4,2             | 1,0·10 <sup>-6</sup> | 1,0·10 <sup>-7</sup> | 9,4·10 <sup>-7</sup> | 944,0      |

**Tabelle II-3.18** Berechnete Fließgeschwindigkeiten über die Péclet-Zahl-Analyse (LU = links unten; RO = rechts oben;  $\lambda_{calc} = \lambda_{total}$ ,  $\lambda_{rock} = \lambda_{kond}$ ). Die charakteristische Länge I wurde entsprechend mit dem Radius des von der Temperaturänderung betroffenen Bereichs nach FOWLER (2000), SPOHN (1997), TURCOTTE & SCHUBERT (2002) und HELLSTRÖM (1991) festgelegt.

| ModelIname  | $\lambda_{calc}$ | $\lambda_{rock}$ | I    | ρc <sub>p</sub> | Vcalc                | V <sub>Modell</sub>  | Δν                   | Abweichung |
|-------------|------------------|------------------|------|-----------------|----------------------|----------------------|----------------------|------------|
|             | W/(m K)          | W/(m K)          | m    | MJ/(m³ K)       | m/s                  | m/s                  | m/s                  | %          |
| Modell 1 LU | 38,92            | 2,00             | 0,51 | 4,2             | 1,7·10 <sup>-5</sup> | 1,0·10 <sup>-5</sup> | 7,3·10 <sup>-6</sup> | 72,7       |
| Modell 1 RO | 38,62            | 2,00             | 0,51 | 4,2             | 1,7·10 <sup>-5</sup> | 1,0·10 <sup>-5</sup> | 7,1·10 <sup>-6</sup> | 71,3       |
| Modell 2 LU | 27,52            | 2,00             | 0,51 | 4,2             | 1,2·10 <sup>-5</sup> | 5,0·10 <sup>-6</sup> | 6,9·10 <sup>-6</sup> | 138,7      |
| Modell 2 RO | 27,14            | 2,00             | 0,51 | 4,2             | 1,2·10 <sup>-5</sup> | 5,0·10 <sup>-6</sup> | 6,8·10 <sup>-6</sup> | 135,1      |
| Modell 3 LU | 8,81             | 2,00             | 0,51 | 4,2             | 3,2·10 <sup>-6</sup> | 1,0·10 <sup>-6</sup> | 2,2·10 <sup>-6</sup> | 218,5      |
| Modell 3 RO | 8,68             | 2,00             | 0,51 | 4,2             | 3,1·10 <sup>-6</sup> | 1,0·10 <sup>-6</sup> | 2,1·10 <sup>-6</sup> | 212,3      |
| Modell 4 LU | 5,70             | 2,00             | 0,51 | 4,2             | 1,7∙10 <sup>-6</sup> | 5,0·10 <sup>-7</sup> | 1,2·10 <sup>-6</sup> | 245,7      |
| Modell 4 RO | 5,62             | 2,00             | 0,51 | 4,2             | 1,7∙10 <sup>-6</sup> | 5,0·10 <sup>-7</sup> | 1,2∙10 <sup>-6</sup> | 238,9      |
| Modell 5 LU | 2,90             | 2,00             | 0,51 | 4,2             | 4,2.10-7             | 1,0.10-1             | 3,2.10-7             | 319,2      |
| Modell 5 RO | 2,88             | 2,00             | 0,51 | 4,2             | 4,1.10-'             | 1,0.10-1             | 3,1.10-7             | 310,1      |

# II-3.5 Kontrollmodellreihen mit verfeinertem Meshing

Um einen größeren Einfluss des Meshings auf die Modellergebnisse ausschließen zu können, wurden zwei Kalibrierungsmodellreihen (eTRT\_04-4.1c & eTRT\_04-3.1c, Tab. II-3.19) gerechnet, um eine Abweichung der berechneten Wärmeleitfähigkeiten zwischen den Modellen zu bestimmen. Als Vergleichsmodelle der Überprüfung wurden die Modelle eTRT\_04-4.1 und eTRT\_04-3.1 gewählt (Modell eTRT\_04-4.1c0 entspricht Modell eTRT\_04-3.1). Für beide

Kontrollmodellreihen wurden sämtliche Randbedingungen und Parameter analog zu den Vergleichsmodellen gewählt, lediglich das Meshing der Modelle und die Methode der Wärmeeinbringung sind hierbei unterschiedlich (Tab. II-3.19, Abb. II-3.34 bis Abb. II-3.37). Die neuen Meshes der Vergleichsmodelle wurden sowohl mit dem "Triangle Mesh Generator (© J. R. Shewchuk, v. 1.6 (2005))", als auch mit dem "GridBuilder Mesh Generator (© R. McLaren (2005))" erstellt. Die Meshs bestehen aus insgesamt zwischen ca. 40.000 und 340.000 Knoten und ca. 80.000 und 680.000 Elementen pro Slice bzw. Layer (Tab. II-3.19).

| ModelIname     | Mesh             | Anzahl Knoten &   | Methode des          | eingebrachte                    |
|----------------|------------------|-------------------|----------------------|---------------------------------|
|                |                  | Elemente pro      | Wärmeeintrags        | Wärmemenge                      |
|                |                  | Slice/Layer       |                      | (entspricht 15 W/m)             |
| eTRT_04-4.1_c0 | Triangle normal  | 39.892 / 79.081   | Heat nodal source BC | -1296000 J/d                    |
| eTRT_04-4.1_c1 | GridBuilder fein | 194.996 / 373.598 | Heat nodal source BC | -1296000 J/d                    |
| eTRT_04-4.1_c2 | Triangle fein 2  | 198.347 / 395.432 | Heat nodal source BC | -1296000 J/d                    |
| eTRT_04-4.1_c3 | Triangle fein 4  | 338.606 / 675.655 | Heat nodal source BC | -1296000 J/d                    |
| eTRT_04-4.1_c4 | Triangle normal  | 39.892 / 79.081   | Heat source solid    | 8145870119 J/(m <sup>3</sup> d) |
| eTRT_04-4.1_c5 | GridBuilder fein | 194.996 / 373.598 | Heat source solid    | 8145870119 J/(m <sup>3</sup> d) |
| eTRT_04-4.1_c6 | Triangle fein 2  | 198.347 / 395.432 | Heat source solid    | 8145870119 J/(m <sup>3</sup> d) |
| eTRT_04-4.1_c7 | Triangle fein 4  | 338.606 / 675.655 | Heat source solid    | 8145870119 J/(m <sup>3</sup> d) |
| eTRT_04-3.1_c0 | Triangle normal  | 39.892 / 79.081   | Heat nodal source BC | -1296000 J/d                    |
| eTRT_04-3.1_c1 | GridBuilder fein | 194.996 / 373.598 | Heat nodal source BC | -1296000 J/d                    |
| eTRT_04-3.1_c2 | Triangle fein 2  | 198.347 / 395.432 | Heat nodal source BC | -1296000 J/d                    |
| eTRT_04-3.1_c3 | Triangle fein 4  | 338.606 / 675.655 | Heat nodal source BC | -1296000 J/d                    |
| eTRT_04-3.1_c4 | Triangle normal  | 39.892 / 79.081   | Heat source solid    | 8145870119 J/(m <sup>3</sup> d) |
| eTRT_04-3.1_c5 | GridBuilder fein | 194.996 / 373.598 | Heat source solid    | 8145870119 J/(m <sup>3</sup> d) |
| eTRT_04-3.1_c6 | Triangle fein 2  | 198.347 / 395.432 | Heat source solid    | 8145870119 J/(m <sup>3</sup> d) |
| eTRT_04-3.1_c7 | Triangle fein 4  | 338.606 / 675.655 | Heat source solid    | 8145870119 J/(m <sup>3</sup> d) |

Tabelle II-3.19 Meshingparameter der Kontroll-Modelle eTRT\_04-4.1c und eTRT\_04-3.1c.

Die Art der Wärmeeinbringung wurde wie bereits erwähnt variabel angelegt (Tab. II-3.19). Während die Modelle c0 bis c3 eine Wärmeeinbringung in das Modell über eine Randbedingung vierter Art (Heat Nodal Source) an den Mittelpunktsknoten des diskretisierten LWL-Kabels besitzen (Eingabe in J/d), erfolgt bei den Modellen c4 bis c7 die Wärmeeinbringung über die Eingabe einer Heat Source bei den Materialparametern der festen Phase (Eingabe in J/(m<sup>3</sup> d)). Dieser Materialparameter wurde den Elementen innerhalb des diskretisierten LWL-Kabels zugewiesen (Abb. II-3.2).



**Abbildung II-3.34** Modellgeometrie des normalen Meshs ("Triangle normal", Tab. II-3.19) der Messreihen eTRT\_04 bis eTRT\_07 (Abmessungen in Tab. II-3.1, S. 94).



**Abbildung II-3.35** Modellgeometrie des Meshs GruidBuilder fein (Tab. II-3.19, Abmessungen in Tab. II-3.1).



Abbildung II-3.36 Modellgeometrie des Meshs Triangle fein 2 (Tab. II-3.19, Abmessungen in Tab. II-3.1).



**Abbildung II-3.37** Modellgeometrie des Meshs Triangle fein 4 (Tab. II-3.19, Abmessungen in Tab. II-3.1).

# Ergebnisse der Kontrollmodelle

Die Ergebnisse der Kontrollmodelle zeigen, dass in allen Modellen die Werte der berechneten Wärmeleitfähigkeiten fast identisch sind (Tab. II-3.20). Die maximale Abweichung vom Standard-Modell "eTRT\_04-4.1\_c0" beträgt lediglich ca. 0,006 W/(m K). Bei der Modellreihe "eTRT\_04-3.1\_c1 bis c7" beträgt die maximale Abweichung vom Standard-Modell "eTRT\_04-3.1\_c0" sogar nur ca. 0,002 W/(m K). Dies ist durch die annähernd identische Steigung aller Temperaturkurven im Auswertebereich der Wärmeleitfähigkeitsberechnungen zu erklären (Abb. II-3.38 & Abb. II-3.39).

Man kann jedoch auch sehr deutlich sehen, dass die Temperaturkurven untereinander einen teilweise sehr starken Versatz besitzen (Abb. II-3.38 & Abb. II-3.39). Dieser Versatz beträgt zum Teil bis zu 3,9°C (Tab. II-3.20). Während die Temperaturkurven der Modelle mit der Wärmeeinbringung über die Materialparameter (c4 bis c7) allgemein sehr ähnlich verlaufen, haben die Temperaturkurven bei einer Wärmeeinbringung über eine Randbedingung vierter Art (c0 bis c3) auch untereinander einen sehr starken Versatz (Abb. II-3.38 & Abb. II-3.39). Ursache für diesen Temperaturversatz ist die Art der Wärmeeinbringung.

Bei einer Wärmeeinbringung über eine Randbedingung vierter Art (Heat Source/Sink Type) kommt es an den Knoten und im Nahfeld der Einbringung zu fehlerhaft übersteigerten Temperaturwerten (mündliche Mitteilung Feflow Support 2012). Bei einer Wärmeeinbringung über die Materialparameter der Elementzellen (Heat Source Material Properties) treten diese Fehlmessungen an den Einbringungsknoten nicht auf (Modelle eTRT\_04-4.1\_c4 bis c7 & eTRT\_04-3.1\_c4 bis c7).

| ModelIname Wärmeleitfähigkeit λ      |                                      |                                          |           | Steigung der linearen                                 | Abweichung von Gesteins-  | Maximale, nach 3 Tagen  |
|--------------------------------------|--------------------------------------|------------------------------------------|-----------|-------------------------------------------------------|---------------------------|-------------------------|
|                                      | Gestein<br>(vorgegeben)<br>[W/(m K)] | Verpressung<br>(vorgegeben)<br>[W/(m K)] | Berechnet | Regression im Auswerte-<br>bereich (48h – 72h)<br>[-] | wärmeleitfähigkeit<br>[%] | erreichte Endtemperatur |
| eTRT 04-4 1 c0                       | 4                                    | 0.8                                      | 3.96      | 0.60                                                  | 1.00                      | 20.63                   |
| eTRT_04-4.1_c1                       | 4                                    | 0,8                                      | 3,97      | 0,60                                                  | 0,86                      | 24,52                   |
| eTRT_04-4.1_c2                       | 4                                    | 0,8                                      | 3,96      | 0,60                                                  | 1,07                      | 20,91                   |
| eTRT_04-4.1_c3                       | 4                                    | 0,8                                      | 3,96      | 0,60                                                  | 1,01                      | 23,31                   |
| Max. Abweichung von Standard-Mesh c0 |                                      | 0,00558                                  | 0,00085   | 0,14                                                  | 3,89                      |                         |
| eTRT_04-4.1_c4                       | 4                                    | 0,8                                      | 3,96      | 0,60                                                  | 1,03                      | 18,16                   |
| eTRT_04-4.1_c5                       | 4                                    | 0,8                                      | 3,96      | 0,60                                                  | 1,11                      | 18,40                   |
| eTRT_04-4.1_c6                       | 4                                    | 0,8                                      | 3,96      | 0,60                                                  | 1,02                      | 18,44                   |
| eTRT_04-4.1_c7                       | 4                                    | 0,8                                      | 3,96      | 0,60                                                  | 1,10                      | 18,45                   |
| Max. Abweichung von Mesh c4          |                                      | 0,00313                                  | 0,00048   | 0,08                                                  | 0,29                      |                         |
| Max. Abweichung v                    | Max. Abweichung von Standard-Mesh c0 |                                          | 0,00427   | 0,00065                                               | 0,11                      | 2,47                    |

Tabelle II-3.20 Ergebnisse der Wärmeleitfähigkeitsberechnung der Kontrollmodellierungen (nach Gleichung II-1.1).

| ModelIname                           | Wärmeleitfähigkeit λ |              | Steigung der linearen | Abweichung von Gesteins- | Maximale, nach 3 Tagen |                         |
|--------------------------------------|----------------------|--------------|-----------------------|--------------------------|------------------------|-------------------------|
|                                      | Gestein              | Verpressung  | Berechnet             | Regression im Auswerte-  | wärmeleitfähigkeit     | erreichte Endtemperatur |
|                                      | (vorgegeben)         | (vorgegeben) |                       | bereich (48h – 72h)      |                        |                         |
|                                      | [W/(m K)]            | [W/(m K)]    | [W/(m K)]             | [-]                      | [%]                    | [°C]                    |
| eTRT_04-3.1_c0                       | 2                    | 0,8          | 2,00                  | 1,19                     | 0,03                   | 23,12                   |
| eTRT_04-3.1_c1                       | 2                    | 0,8          | 2,00                  | 1,19                     | 0,11                   | 27,05                   |
| eTRT_04-3.1_c2                       | 2                    | 0,8          | 2,00                  | 1,20                     | 0,11                   | 23,44                   |
| eTRT_04-3.1_c3                       | 2                    | 0,8          | 2,00                  | 1,20                     | 0,12                   | 25,84                   |
| Max. Abweichung von Standard-Mesh c0 |                      | )            | 0,00190               | 0,00113                  | 0,09                   | 3,93                    |
| eTRT_04-3.1_c4                       | 2                    | 0,8          | 2,00                  | 1,19                     | 0,03                   | 20,64                   |
| eTRT_04-3.1_c5                       | 2                    | 0,8          | 2,00                  | 1,19                     | 0,11                   | 20,93                   |
| eTRT_04-3.1_c6                       | 2                    | 0,8          | 2,00                  | 1,19                     | 0,11                   | 20,97                   |
| eTRT_04-3.1_c7                       | 2                    | 0,8          | 2,00                  | 1,20                     | 0,12                   | 20,98                   |
| Max. Abweichung von Mesh c4          |                      | 0,00196      | 0,00117               | 0,10                     | 0,34                   |                         |
| Max. Abweichung von Standard-Mesh c0 |                      | 0,00189      | 0,00113               | 0,09                     | 2,47                   |                         |

Diese Problematik wird bislang nur in den Feflow White Papers V (DHI-WASY 2010) angesprochen und dort lediglich im Zusammenhang bei einer Benutzung der neu implementierten BHE-Funktion. Laut mündlicher Aussage des Feflow-Supports (2012) verhalten sich die am selben Knoten gemessenen Temperatur-, bzw. Head-Werte bei Heat und Flow-Randbedingungen vierter Ordnung allerdings identisch. Das heißt, dass grundsätzlich die am Knoten des Wärme- bzw. Flow-Eintrags gemessenen Werte vom Programm über- bzw. unterschätzt werden, je nachdem welches Vorzeichen der Eintrag besitzt. Dies kann man sehr deutlich in Abb. II-3.38 und Abb. II-3.39 erkennen.

Da sich die Temperaturfront der thermalen Beeinflussung des numerischen Netzes durch die Wärmeeinbringung am Anfang der Einbringung im Nahbereich des Einbringungsknotens befindet, ist dort in diesem zeitlichen Bereich auch die Verzerrung der absoluten Temperaturen am höchsten (Abb. II-3.38 & Abb. II-3-39). Zu einem späteren Zeitpunkt, wenn die Temperaturfront weiter vom Einbringungsknoten weg und damit der durch die Wärmeeinbringung beeinflusste Bereich größer ist, ist auch der Anstieg der Temperaturen nur noch minimal durch die Verzerrung beeinflusst. Dies bedeutet, dass es zu einem Versatz der Temperaturkurve kommt, die Kurve jedoch im zeitlich hinteren Bereich (Auswertebereich) parallel zu den von der Verzerrung unbeeinflussten Werten verläuft.



Abbildung II-3.38 Temperaturkurven von Observation Point 1 der Modelle eTRT\_04-4.1c0 bis c7.



Abbildung II-3.39 Temperaturkurven von Observation Point 1 der Modelle eTRT\_04-3.1c0 bis c7.

Da die Steigungen der Temperaturkurven im Auswertebereich und damit die berechneten Wärmeleitfähigkeiten in allen Kontrollmodellen beider Modellreihen bis in die dritte Nachkommastelle annähernd gleich sind (Tab. II-3.20), kann man die Ergebnisse der Haupt-Modellreihen eTRT\_04 bis eTRT\_07 als hinreichend aussagekräftig ansehen.

Um eine Konvergenz der Modelle an reale Temperaturwerte bei sehr feinem Meshing aufzuzeigen, wurden analog zu den Modellen eTRT\_04-4.1c4 bis c7 fünf weitere Modelle mit unterschiedlich feinem Meshing gerechnet, die jedoch nicht weiter auf ihre Wärmeleitfähigkeiten ausgewertet wurden (Tab. II-3.21, Abb. II-3.40). Das Modell mit der feinsten Auflösung (c7 mit ca. 340.000 Knoten) wurde hierbei als Referenzmodell herangezogen.

| ModelIname      | Mesh             | Anzahl Knoten pro<br>Slice/Layer | Endtemperatur [°C] | Temperaturdifferenz<br>zum Referenzmodell<br>eTRT_04-4.1c7 [°C] |
|-----------------|------------------|----------------------------------|--------------------|-----------------------------------------------------------------|
| eTRT_04-4.1_c4  | Triangle normal  | 39.802                           | 18,15660           | 0,29314                                                         |
| eTRT_04-4.1_c5  | GridBuilder fein | 194.996                          | 18,39953           | 0,05021                                                         |
| eTRT_04-4.1_c6  | Triangle fein 2  | 198.347                          | 18,44201           | 0,00773                                                         |
| eTRT_04-4.1_c7  | Triangle fein 4  | 338.606                          | 18,44974           | -                                                               |
| eTRT_04-4.1_c8  | Triangle grob    | 8.560                            | 18,36159           | 0,08815                                                         |
| eTRT_04-4.1_c9  | Triangle 1c      | 128.683                          | 18,44757           | 0,00217                                                         |
| eTRT_04-4.1_c10 | Triangle fein 3  | 245.346                          | 18,44959           | 0,00015                                                         |
| eTRT_04-4.1_c11 | Triangle fein 1b | 117.751                          | 18,22497           | 0,22477                                                         |
| eTRT_04-4.1_c12 | Triangle fein 1a | 78.908                           | 18,22240           | 0,22734                                                         |

**Tabelle II-3.21** Meshingparameter der Kontroll-Modelle eTRT\_04-4.1c4 bis c12(Wärmeeinbringung Heat source solid).



Abbildung II-3.40 Konvergenzplot der Modellreihe eTRT\_04-4.1c.

Bei einer Erhöhung der Knotenzahl numerischer Modelle sollten sich bei einem gleichmäßig verteilten Gitter die erhaltenen Endtemperaturwerte einem Optimalwert annähern, der am ehesten den realen Temperaturen bei einer Umsetzung des Modells in der Realität entspricht. Trägt man den Dekadischen Logarithmus der Knotenanzahl zum Dekadischen Logarithmus der Temperaturdifferenz zwischen Modell und Referenzmodell (c7) auf (Abb. II-3.40), so sollte eine lineare Abhängigkeit mit einer Steigung zwischen -1 und -2 der erhaltenen Werte erkennbar sein.

Die vorliegenden Werte zeigen nur eine schwache lineare Korrelation mit einem Bestimmtheitsmaß von lediglich 0,28 (Abb. II-3.40). Es zeigt sich, dass im vorliegenden Fall nicht nur die Anzahl der Knoten für die Unterschiede in den erhaltenen Temperaturwerten verantwortlich sind. Dies lässt darauf schließen, dass zusätzliche Faktoren, wie z.B. eine jeweils unterschiedliche Anordnung der Knoten im Nahbereich der Wärmeeinbringung, bzw. des modellierten Bohrlochs, Auswirkungen auf die erhaltenen Endtemperaturen besitzen können. Da die Knoten im Nahbereich der modellierten Erdwärmesonde von Modell zu Modell nicht gleichmäßig verteilt wurden, ist hier keine direkte Konvergenz zu den Werten des Modells mit der höchsten Knotenanzahl erkennbar. Da die Temperaturen jedoch nur wenig voneinander abweichen, kann man auch hier von einer guten Vergleichbarkeit der unterschiedlichen Modelle sprechen.

## II-4. Vergleich der Ergebnisse

Da die Kontrollmodelle eTRT\_04-4.1c0 bis c7 und eTRT\_04-3.1c0 bis c7 gezeigt haben, dass die Modelle auch bei verschiedenem Meshing vergleichbare Wärmeleitfähigkeitswerte liefern, ist es möglich, die Ergebnisse der vier Modellreihen mit der Durchführung und den Ergebnissen von enhanced Thermal Response Tests zu vergleichen und zu bewerten.

#### II-4.1 Modellreihe mit reiner Konduktion

Die Modellreihe eTRT\_04 hat gezeigt, dass die Ergebnisse der Modelle bei einem rein konduktiven Wärmetransport alle sehr nahe an den im Modell vorgegebenen Gesteinswärmeleitfähigkeiten liegen. Die größte Abweichung innerhalb der Modellreihe wurde erreicht bei einer rein innenliegenden Kabelgeometrie (Modellposition 3 & 4) und einer sehr geringen Wärmeleitfähigkeit des Verfüllmaterials (Modell 3 & 4). Selbst bei diesen Modellen jedoch wird ein Wert von ca. 6% Abweichung zur Gesteinswärmeleitfähigkeit nicht überstiegen (Tab. II-3.10).

Da man davon ausgehen kann, dass diese Konstellation in der realen Testdurchführung relativ selten vorkommt (kleinerer Bohrradius, Einhaltung des Zeitkriteriums bei der Messung, Befestigung der Glasfaserkabel alle 2-4 m außen an den Erdwärmesondenrohren, etc.), bzw. durch den Einsatz von speziell für Erdwärmesonden hergestellten Verfüllzementen (verbesserte Wärmeleitfähigkeit  $\ge 2$  W/(m K)) relativ einfach zu verhindern ist, kann man von einer sehr guten Reproduzierbarkeit der Ergebnisse eines eTRT bei rein konduktiven Untergrundbedingungen ausgehen.

### II-4.2 Modellreihe Konduktion bei einem 3-Schicht-Modell

Die Ergebnisse der Modellreihe eTRT\_05 haben gezeigt, dass auch die berechneten Werte auch bei einer geschichteten Geologie sehr nah an den für das Gestein festgelegten Werten liegen. Lediglich im direkten Übergangs-Slice zwischen zwei Schichten mit unterschiedlicher Wärmeleitfähigkeit, weichen die Ergebnisse stärker von den für das Gestein vorgegebenen Werten ab (Tab. II-3.13). Da sich die Wärme, die auf diesem Slice in den Untergrund abgegeben wird, gleichmäßig zur Hälfte in die obere (bzw. untere) Schicht verteilt (Brunnen-Funktion von Feflow), ist auch der Temperaturanstieg und damit die berechnete Wärmeleitfähigkeit direkt davon abhängig. Es hat sich gezeigt, dass die berechneten Wärmeleitfähigkeitswerte auf den entsprechenden Slices nur minimal von dem Mittelwert der Wärmeleitfähigkeiten zwischen oberer (bzw. untere) Schicht und der mittleren Schicht abweichen (max. 2%, Tab. II-3.13). Dies zeigt, dass der eTRT, auch im Fall eines stratigraphisch unterschiedlichen geschichteten Untergrundes mit unterschiedlichen Wärmeleitfähigkeiten, sehr gut reproduzierbare Ergebnisse liefert.

## II-4.3 Modellreihe Konduktion mit Wärmeeintragsänderungen

Spannungsänderungen während des Messbetriebs sind ein nicht zu unterschätzendes Problem bei der Durchführung von Thermal Response Tests. Auch die vorliegenden Modellierungsergebnisse der Testreihe eTRT\_06 zeigen dies deutlich. Selbst bei kleineren linearen Änderungen des Wärmeeintrags über den Messzeitraum, weichen die Ergebnisse deutlich von den vorgegebenen Gesteinswärmeleitfähigkeiten ab. Die Abweichungen sind zum Teil so stark, dass die Ergebnisse eine Aussage über die Untergrundwärmeleitfähigkeiten nicht zulassen (Tab. II-3.14). Da die Wärmequelle beim eTRT auch noch in unmittelbarer Nachbarschaft zum Temperatursensor steht (Kupferlitze und Glasfaser des LWL-Hybridkabels), sind die Auswirkungen von Spannungs- und damit Wärmeeintrags-schwankungen viel unmittelbarer in den Temperaturdaten festzustellen, als dies bei einem herkömmlichen TRT der Fall ist. Dies wurde auch in mehreren Feldversuchen beobachtet.

Wenn der Wärmeeintrag mit der Temperatur über die Messdauer aufgezeichnet wird, ist es lediglich in einfachen Fällen möglich, die Temperaturkurven der Rohdaten zu bereinigen und auf exakte Ergebnisse zu kommen. Die vorliegenden Modellierungen zeigen, dass eine nicht konstante Wärmezufuhr in den Untergrund eine der großen Fehlerquellen bei der herkömmlichen Auswertung von Thermal Response Tests mittels der Linienquellentheorie darstellt. Zur Lösung des Problems muss eine andere Herangehensweise gefunden werden.

### II-4.3.1 Theoretische Lösung mit schwankender Wärmezufuhr

Um eine Lösung des Problems schwankender Heizleistung bei TRTs und eTRTs zu erlangen muss man auf die Herleitung der für die Auswertung verwendeten Formeln zurückgehen. Die theoretische Herleitung der Linienquellenformel (Gleichung I-2.1 & II-1.1) ist in CARSLAW & JAEGER (1959) und HELLSTRÖM (1991) ausführlich erläutert. Sie leitet sich aus der folgenden Integral-Lösung der Laplace-Transformation ab (HELLSTRÖM 1991 nach CARSLAW & JAEGER 1959):

$$T^{q}(\mathbf{r},\mathbf{t}) = \frac{q}{4\pi\lambda} \left[ -\frac{1}{r_{b}} \frac{2}{\pi} \int_{0}^{\infty} \left( 1 - e^{-\alpha u^{2}t} \right) \frac{J_{0}(ur)Y_{1}(ur_{b}) - Y_{0}(ur)J_{1}(ur_{b})}{u^{2} [J_{1}^{2}(ur_{b}) + Y_{1}^{2}(ur_{b})]} du \right]$$
(II-4.1)
| Τ <sup>q</sup>                     | Temperatur [K] |                                 |  |  |  |  |  |  |  |  |
|------------------------------------|----------------|---------------------------------|--|--|--|--|--|--|--|--|
| r                                  | Radi           | us [m]                          |  |  |  |  |  |  |  |  |
| t                                  | Zeit [         | s]                              |  |  |  |  |  |  |  |  |
| q                                  | Wärr           | nefluss [W/m]                   |  |  |  |  |  |  |  |  |
| λ                                  | Wärr           | neleitfähigkeit [W/(m K)]       |  |  |  |  |  |  |  |  |
| r <sub>b</sub>                     | Bohr           | lochradius [m]                  |  |  |  |  |  |  |  |  |
| α                                  | Tem            | peraturleitfähigkeit [m²/s]     |  |  |  |  |  |  |  |  |
| J <sub>0</sub> (u), J <sub>1</sub> | (u)            | Bessel Funktion erster Ordnung  |  |  |  |  |  |  |  |  |
| Y <sub>0</sub> (u), Y              | ₁(u)           | Bessel-Funktion zweiter Ordnung |  |  |  |  |  |  |  |  |

Eine numerisch einfachere, programmierbare Lösung des vorigen Integrals ist mittels der folgenden Gleichungen gegeben (HELLSTRÖM 1991 nach VEILLON 1972 und BAUDOIN 1988):

$$T^{q}(\mathbf{r},\mathbf{t}) = \frac{q}{2\pi r_{b}\lambda} \sum_{j=1}^{j=10} \frac{V_{j}}{j} \frac{K_{0}(\omega_{j}r)}{\omega_{j}K_{1}(\omega_{j}r_{b})}$$
(II-4.2a)

mit

$$\omega_j = \sqrt{\frac{jln(2)}{\alpha t}} \tag{II-4.2b}$$

und

$$V_j = \sum_{k=Int(\frac{j-1}{2})}^{min(j,5)} \frac{(-1)^{j-5}k^5(2k)!}{(5-k)!\Gamma(k)k!(j-k)!\Gamma(2k-j+1)}$$
(II-4.2c)

 $K_v(x)$  modifizierte Bessel-, bzw. MacDonald-Funktion

Γ(k) Gamma-Funktion, Γ(k) entspricht (k-1)! für ganzzahlige k (ABRAMOWITZ & STEGUN 1964)

Eine Annäherung der Lösung von Gleichung II-4.1 mittels des Exponentialintegrals E<sub>1</sub> ist in CARSLAW & JAEGER (1959) und HELLSTRÖM (1991) wie folgt als Linienquellen-Approximation beschrieben:

$$T^{q}(\mathbf{r},\mathbf{t}) = \frac{q}{4\pi\lambda} E_{1}\left(\frac{r^{2}}{4\alpha t}\right) \tag{II-4.3}$$

Für lange Zeiträume  $\frac{\alpha t}{r^2} \ge 5$  kann das Integral  $E_1\left(\frac{r^2}{4\alpha t}\right)$  mit  $ln\left(\frac{4\alpha t}{r_b^2}\right) - \gamma$  angenähert werden.

Hieraus ergibt sich folgende Gleichung (HELLSTRÖM 1991, KRISTIANSEN 1982, GEHLIN 2002), die als Langzeitlösung der Linienquelle bezeichnet wird und die Grundlage darstellt zur Auswertung von TRTs (Gleichung I-2.1 & Gleichung II-1.1):

$$T^{q}(t) = \frac{q_{k}}{4\pi\lambda} \left[ ln\left(\frac{4\alpha t}{r_{b}^{2}}\right) - \gamma \right] \qquad \text{mit} \qquad q_{k} = konst. \tag{II-4.4}$$

T<sub>f</sub> Temperatur Fluid [K]

qk konstanter Wärmefluss [W/m]

γ Euler-Mascheroni-Konstante [-]



**Abbildung II-4.1** Darstellung der dimensionslosen Temperaturänderung  $4\pi\lambda T_b^q/q_1$  als Funktion der dimensionslosen Zeit  $\alpha t/r_b^2$  berechnet mit Beispielwerten bei  $r = r_b$  (nach HELLSTRÖM 1991). Rote, durchgezogene Linie = numerische Inversion der Laplace-Transform-Lösung (Gleichung II-4.2), grüne, gestrichelte Linie = Linienquellenapproximation (Gleichung II-4.3) und blaue, gepunktete Linie = Langzeitlösung der Linienquelle (Gleichung II-4.4). Gut zu erkennen ist der Unterschied zwischen der exakten Lösung (durchgezogene Linie) und der Näherung (gepunktete Linie) bei kleinen  $\alpha t/r_b^2$  (und damit kleinen t).

**Tabelle II-4.1** Fehler zur exakten Lösung bei Unterschiedlichen  $\alpha t/r_b^2$  (HELLSTRÖM 1991).

| αt/r <sub>b</sub> ² [-] | 5    | 10  | 20  | 50  | 100 |
|-------------------------|------|-----|-----|-----|-----|
| Fehler [%] ~            | 10,5 | 5,3 | 2,5 | 1,0 | 0,5 |

Da Gleichung II-4.4 eine mit vielfachen Vereinfachungen versehene Annäherung der exakten Lösung (Gleichung II-4.1) ist (HELLSTRÖM 1991), ergibt sich bei kleinen Zeitschritten *t* ein relativ großer Fehler zwischen der Lösung nach VEILLON (1972) (Gleichung II-4.2) und der Langzeitlösung der Linienquellenapproximation (Gleichung II-4.4). Dieser Fehler fällt erst ab einem Wert von rund  $\frac{\alpha t}{r_{z}^{2}} > 5$  auf einen Wert von unter 10% (Tab. II-4.1, Abb. II-4.1).

Für die Linienquellengleichung (II-4.4) gibt es ein Step-Pulse-Verfahren, bei der Änderungen des Wärmeeintrags berücksichtigt werden können (HELLSTRÖM 1991, YAVUZTURK & SPITLER 1999). Das Verfahren bedient sich Heavyside-Treppenfunktionen, um die schrittweise Änderung des Wärmeeintrags zu beschreiben (HELLSTRÖM 1991). Die Schrittlänge jedes Wärmepulses wird dabei so bestimmt, dass der Fehler zur exakten Lösung möglichst gering ist. Das bedeutet, dass es bei einer Änderung des Wärmeeintrags eine Mindestzeitlänge für einen vorgegeben Fehler gibt (Tab. II-4.1). Bei herkömmlichen Temperaturleitfähigkeiten für Gesteine bedeutet dies in Abhängigkeit vom Bohrlochdurchmesser, dass mindestens 2-3, oft sogar 30-40 Stunden zwischen einer Spannungsänderung liegen müssen (siehe Beispiel 1), damit der mathematische Fehler bei diesem Schritt unter 10% liegt (bei angestrebten kleineren Fehlern liegt die Zeit teilweise deutlich höher).

## Beispiel 1 für einen tolerierten Fehler von 10% (Tab. II-4.1):

$$\alpha = 1.10^{-6} \text{ m}^2/\text{s}, \qquad r_b = 0.15 \text{ m} \rightarrow t = \frac{5r_b^2}{\alpha} = \frac{5.0.15^2 m^2}{1.10^{-6} \frac{m^2}{s}} = 112500 \text{ s} = 31,25 \text{ h}$$

Die nötigen Zeitschrittlängen zwischen einzelnen Wärmeeintragsänderungen beim Step-Pulse-Verfahren sind somit auch bei günstigen Verhältnissen viel zu hoch, da sich die Schwankungen in der Realität meist minütlich oder sogar sekündlich ändern. Das Verfahren ist somit für die reale Anwendung bei sehr kurzfristigen Wärmeeintragsschwankungen nicht geeignet und wird deshalb auch meist bei langfristigen Änderungen im Wärmeeintrag verwendet (HELLSTRÖM 1991, YAVUZTURK & SPITLER 1999), wie z.B. die monatsweise Änderung des Eintrags beim Programm EED. Der Lösungsweg nach VEILLON 1972 und BAUDOIN 1988 (Gleichungen II-4.2a-c) liefert im Vergleich zur Linienquellenapproximation exaktere Werte und kann zur Berechnung herangezogen werden. Um mittels Gleichung II-4.2a den Temperaturanstieg bei einem eTRT simulieren zu können, muss die Gleichung analog zu Gleichung I-2.1 um die ungestörte Untergrundtemperatur T<sub>s</sub> und den Term des Bohrlochwiderstandes R<sub>b</sub> erweitert werden:

$$T^{q}(\mathbf{r}, \mathbf{t}) = \frac{q}{2\pi r_{b}\lambda} \sum_{j=1}^{j=10} \frac{V_{j}}{j} \frac{K_{0}(\omega_{j}r)}{\omega_{j}K_{1}(\omega_{j}r_{b})} + qR_{b} + T_{s}$$
(II-4.5)

R<sub>b</sub> thermischer Bohrlochwiderstand [(K m)/W]

T<sub>s</sub> Temperatur ungestörter Untergrund [°C]

Da die Ermittlung von  $\lambda$  aus obiger Gleichung durch die zusätzliche Unbekannte R<sub>b</sub> nicht eindeutig lösbar ist, wurde versucht mittels der Programmierung eines grid search Algorithmus mit wechselnden Werten für  $\lambda$  und R<sub>b</sub> zu einer Lösung zu kommen. Bei einer Berechnung einer Temperaturkurve nach Gleichung II-4.5 bewirkt eine Änderung der Werte für  $\lambda$  eine Änderung der generellen Steigung der dargestellten Kurve. Eine Änderung von R<sub>b</sub> bewirkt hingegen eine Parallelverschiebung des hinteren Teils der Temperaturkurve. Vergleicht man nun die aus Gleichung II-4.5 für beliebige  $\lambda$  und R<sub>b</sub> entstandene Temperaturkurve mit der Temperaturkurve, deren  $\lambda$ - und R<sub>b</sub>-Werte zu ermitteln sind (z.B. die Temperaturkurve aus einem TRT oder eTRT), so sollten die  $\lambda$ - und R<sub>b</sub>-Werte annähernd identisch sein, wenn die Quadrate der Differenzen zwischen den beiden Temperaturkurven möglichst klein sind. Summiert man die Differenzenguadrate im Auswertebereich (Tag 2 bis Tag 3, Abb. II-4.2), so erhält man einen Wert, der kleiner wird, je besser die Übereinstimmung zwischen der berechneten und der vorgegebenen Temperaturkurve ist. Ein Kontour-Plot der summierten Differenzenquadrate ist in Abbildung II-4.2 aufgetragen. Der rote Punkt bezeichnet den Punkt, an dem die Summe der Differenzenquadrate am niedrigsten ist. Dementsprechend sollten die Werte dieses Punktes für λ- und R<sub>b</sub>, annähernd mit den entsprechenden Werten der vorgegebenen Temperaturkurve identisch sein. Es zeigt sich allerdings, dass im vorliegenden, beispielhaften Fall die Werte voneinander abweichen (Abb. II-4.2). Die vorgegebene Temperaturkurve besitzt Werte für  $\lambda$ - und R<sub>b</sub> von 2 W/(m K) und ca. 0,18 (m K)/W. Die mittels des grid-search Algorithmus ermittelten Werte liegen jedoch bei 1,6 W/(m K) und 0,16 (m K)/W. Man erkennt zudem, dass zwar ein niedrigster Wert ermittelt werden konnte, dass aber in einer von links unten nach rechts oben ansteigenden Kurve ein Bereich liegt, in dem ähnlich niedrige Werte für  $\lambda$ - und R<sub>b</sub> liegen und somit auch hier die Aussage der Wärmeleitfähigkeitsermittlung nicht eindeutig ist.



**Abbildung II-4.2** Darstellung der Ermittlung der Wärmeleitfähigkeit des Untergrundes bei konstanter Wärmezufuhr mittels einer grid search Berechnung. Der rote Punkt im Kontour-Plot zeigt den besten Fit zwischen den beiden Temperaturkurven im Auswertebereich und somit die Werte für  $\lambda$  und R<sub>b</sub> an.

Aufgrund der nicht eindeutigen Ergebnisse liefert auch dieser Lösungsweg keine klaren Ergebnisse, die das Problem eines schwankenden Wärmeeintrags während TRT- und eTRT-Messungen zufriedenstellend lösen.

## II-4.3.2 Lösung des Wärmezufuhrproblems über das Relaxationsverhalten

Es ist möglich das Problem schwankenden Wärmeeintrags über das Relaxationsverfahren (Kapitel II-1.2.3) zu lösen. Die Herangehensweise erfolgt analog zur Methode nach HORNER (1951), die für die Bestimmung der hydraulischen Permeabilität über den Druckabbau in Bohrlöchern entwickelt wurde (Horner Plot). Für die Anwendung bei Thermal Response Tests bedeutet dies, dass zusätzlich zum Temperaturanstieg auch der Temperaturabfall nach Beendigung der Wärmezufuhr aufgezeichnet und ausgewertet wird (Gleichung II-1.3). Die dem Verfahren zugrunde liegende Gleichung wird nach DORNSTÄDTER et al. (2008) wie folgt beschrieben:

$$T^{q}(t) = \frac{\dot{q}_{L}}{4\pi\lambda} \ln\left(\frac{t}{t-t_{h}}\right) + T_{b}$$
(II-4.6)

| $\dot{Q_L}$ | Heizleistung pro Längeneinheit des Messabschnitts [W/m] |
|-------------|---------------------------------------------------------|
| λ           | Wärmeleitfähigkeit des Messabschnitts [W/(m K)]         |
| t           | Zeit [s]                                                |
| $t_{\rm h}$ | Dauer des Aufheizvorgangs [s]                           |
| $T_{b}$     | ungestörte Temperatur der Glasfaser [°C]                |

Die zur Auswertung benötigte Heizleistung  $\dot{Q}_L$  berechnet sich hierbei aus der Gesamtmenge der eingebrachten Wärme  $Q_{total}$  über dem Zeitabschnitt  $t_h$  des Aufheizvorgangs der Messung (Gleichung II-4.7). Mögliche Schwankungen der eingebrachten Wärme sind somit für die vorliegende Vorgehensweise unerheblich.

$$\dot{\boldsymbol{Q}}_L = \frac{\boldsymbol{Q}_{total}}{t_h} \tag{II-4.7}$$

 $\dot{Q_L}$  Heizleistung pro Längeneinheit des Messabschnitts [W/m]  $Q_{total}$  Eingebrachte Gesamtwärmemenge [J/m]

*th* Dauer des Aufheizvorgangs [s]

Mittels der so bestimmten mittleren Heizleistung lässt sich anhand des Relaxationsverfahrens (Kapitel II-1.2.3) die Wärmeleitfähigkeit der Beispielkurve von Modell eTRT\_06-7 (Abb. II-4.3) und Modell eTRT\_06-9 bestimmen (Tab. II-4.2). Das für den vorliegenden Lösungsweg neu erstellte Modell eTRT\_06-9 entspricht in seinen thermischen Eigenschaften hierbei Modell eTRT\_04-4.3 ( $\lambda_{rock}$  = 4 W/(m K),  $\lambda_{fill}$  = 0,8 W/(m K), Kabelposition 3). Beide Modelle wurden um die Temperaturabklingkurve (von Tag 3 bis Tag 8) erweitert und ausgewertet.

**Tabelle II-4.2** Berechnung der Wärmeleitfähigkeit von Modell eTRT\_06-7 ( $\lambda_{rock} = 2 \text{ W/(m K)}$ ) und Modell eTRT\_06-9 ( $\lambda_{rock} = 4 \text{ W/(m K)}$ ) mit dem Relaxationsverfahren. Der zur Berechnung verwendete Messabschnitt liegt zwischen Tag 6 und Tag 8.

| Modell    | eingebrachte<br>Wärme <i>Q<sub>total</sub></i> | Dauer der<br>Aufheizung <i>t</i> a | Steigung der<br>Relaxations-<br>geraden <i>m</i> rear | berechnete<br>Wärmeleit-<br>fähigkeit <i>1</i> | Abweichung<br>vom Modell-<br>wert Amer |  |  |
|-----------|------------------------------------------------|------------------------------------|-------------------------------------------------------|------------------------------------------------|----------------------------------------|--|--|
|           | [J/m]                                          | [s - d]                            | [K]                                                   | [W/(m K)]                                      | [%]                                    |  |  |
| eTRT_06-7 | 7,776·10 <sup>6</sup>                          | 2,592·10 <sup>5</sup> - 3          | 1,20                                                  | 1,99                                           | 0,6                                    |  |  |
| eTRT_06-9 | 7,776·10 <sup>6</sup>                          | 2,592·10 <sup>5</sup> - 3          | 0,64                                                  | 3,71                                           | 7,2                                    |  |  |

Tabelle II-4.2 zeigt deutlich, dass die Verwendung des Relaxationsverfahrens auch bei stark von Wärmeeintragsänderung betroffenen Messungen zu korrekten Ergebnissen führt (Abweichung von Modell eTRT\_06-7 bei unter 1%, von Modell eTRT\_06-9 bei ca. 7%). Damit das Verfahren jedoch verwendet werden kann, ist es nötig die Temperaturen auch nach Beendigung des Aufheizvorgangs weiter zu messen. Hierfür sollte mindestens dieselbe Zeit wie für den Aufheizvorgang verwendet werden.



**Abbildung II-4.3** Darstellung der Auswertung nach dem Relaxationsverfahren für Modell eTRT\_06-7. Der Auswertebereich liegt zwischen Tag 6 und Tag 8. Die Auswertung von Modell eTRT\_06-9 erfolgte analog.

## II-4.4 Modellreihe 3-Schicht-Modell mit Grundwasserfluss

In einer Vielzahl von Fällen durchteufen Erdwärmesonden Aquifere mit teils großen Grundwasserfließgeschwindigkeiten. Die Modellreihe eTRT\_07 hat diesen Fall simuliert und erwartungsgemäß erhöhte effektive Wärmeleitfähigkeiten bei Grundwasserfluss in der mittleren Schicht festgestellt. Die Höchstwerte für die effektive Wärmeleitfähigkeit sind hier erwartungsgemäß bei dem Modell mit der höchsten Grundwasserfließgeschwindigkeit (~86 cm/d, Modell eTRT\_07-1) anzutreffen. Der errechnete Wert übersteigt die konduktive Wärmeleitfähigkeit des Umgebungsgesteins um das nahezu 18,5-fache. Aber auch schon geringe Grundwasserfließgeschwindigkeiten (~8,6 mm/d, Modell eTRT\_07-5) bewirken einen Anstieg der effektiven Wärmeleitfähigkeit um ca. 45% (Tab. II-3.15 & II-3.16).

Gut zu beobachten ist auch ein leichter Unterschied in den Wärmeleitfähigkeiten der beiden Observation Points pro Modell. Die berechneten Wärmeleitfähigkeiten der linken, unteren OPs sind in allen Modellen leicht höher, als die berechneten Wärmeleitfähigkeiten der rechten, oberen OPs (Abb. II-3.33). Ursache hierfür ist die unterschiedliche Anströmung der beiden OPs (Strömungsrichtung bei allen Modellen von links, nach rechts). Die angeströmte Fläche der Bohrlochwand (linker Halbkreis der Bohrlochwand) liegt näher beim linken, unteren OP, als beim rechten, oberen OP, der schon leicht im Fließschatten der Erdwärmesonde liegt (rechter Halbkreis der Bohrlochwand). Dadurch erfährt der linke, untere OP einen stärkeren Wärmeabtransport durch das Grundwasser, als der rechte, obere, was sich in leicht erhöhten, berechneten Wärmeleitfähigkeiten widerspiegelt.

Die Modelle zeigen somit, dass fließendes Grundwasser einen nicht unerheblichen Teil zum Wärmeabtransport bei eTRTs beitragen kann. Die errechneten Werte für die effektive Wärmeleitfähigkeit ist zum Teil um ein Vielfaches höher, als der reale Gesteinswert. Bei periodisch auftretender Grundwasserströmung kann dies zu einer Überschätzung der Wärmeleitfähigkeit des Untergrundes und damit zu Dimensionierungsfehlern bei der Planung von Erdwärmesondenanlagen führen. Grundsätzlich sind aus eTRTs berechnete Werte über einer Wärmeleitfähigkeit von ca. 5 bis 6 W/(m K) kritisch, bzw. als durch Grundwasser beeinflusst zu sehen. Einheitliche Regelungen, wie bei von Grundwasser beeinflussten TRTs und eTRTs hinsichtlich der Dimensionierung und Planung vorgegangen werden sollte, existieren bislang nicht.

Eine Peclét-Zahl-Analyse (Gleichung II-1.4, II-1.5 & II-1.6) bei der vorliegenden Modellreihe führte zu Ergebnissen mit teils größeren Abweichungen zu den Erwartungswerten. Allgemein lässt sich sagen, dass die Festlegung der charakteristischen Länge auf den thermischen Einflussbereich der Sonde, bessere Ergebnisse liefert als die Festlegung des Parameters auf

den Bohrlochdurchmesser (Tab. II-3.17 & II-3.18). Es zeigte sich ebenfalls bei beiden Methoden, dass die Abweichungen von den zu erwartenden Fließgeschwindigkeiten mit deren tatsächlicher Abnahme zunehmen. Eine lineare Beziehung der Unterschiede zu den angesetzten Werten ist hierbei nicht zu erkennen. Als Ursache möglich sind Effekte, die von der unterschiedlichen Umströmung der Sonde bei den unterschiedlichen Modellen herrühren (unterschiedliche Fließgeschwindigkeiten im Umströmungsbereich der Sonde). Weiterführende Untersuchungen zu der Anwendbarkeit der Methode bei Modellrechnungen sind hier sinnvoll. Allgemein lässt sich sagen, dass die Werte, auch bei größerer Abweichung, doch zumindest in der richtigen Größenordnung liegen, weshalb die Methode für eine Abschätzung der Fließgeschwindigkeit in erster Näherung trotzdem geeignet ist.

## II-5. Diskussion der Modellierungsergebnisse

Die 4 unterschiedlichen Modellreihen aus Kapitel 3 haben gezeigt, dass der enhanced Thermal Response Test (eTRT) eine wirkungs- und sinnvolle Methode zur Bestimmung tiefenaufgelöster Wärmeleitfähigkeiten bei Erdwärmesondenprojekten ist. Die Unterschiede zwischen den berechneten zu den dem Gestein in den Modellen zugewiesenen Wärmeleitfähigkeiten sind selbst in ungünstigen Fällen nur minimal (bis max. ~6%). Da in den als ungünstig anzusehenden Modellen das Zeitkriterium nicht eingehalten wurde, wäre in der Realität, bei einer Einhaltung des Kriteriums durch eine Verlängerung der Testperiode (länger als 3 Tage), die Abweichung vom realen Untergrundwert sogar noch niedriger.

Unterschiede in den Gesteinswärmeleitfähigkeiten (Schichtaufbau des Untergrundes) bildet der Test in der Modellreihe sehr genau ab. Lediglich in den Übergangsbereichen zwischen den Schichten sind höhere Abweichungen möglich, da sich dort eine Misch-Wärmeleitfähigkeit zwischen der oberen und unteren Schicht einstellt. Dies wird hauptsächlich durch die relativ grobe Auflösung in der z-Richtung (1 m Slice-Abstand) hervorgerufen. Modellierungen mit einer feineren Auflösung des betreffenden Bereichs wurden aus Gründen der Vergleichbarkeit (reale Messpunktabstande ca. 1 m) nicht durchgeführt.

Bei Grundwasserfluss zeigen die Modelle, dass der advektive Wärmeabtransport erwartungsgemäß zu einer Erhöhung der berechneten, effektiven Wärmeleitfähigkeit führt. Hier kann der eTRT wertvolle Hinweise auf das Vorhandensein, die Lokation und die Stärke des anliegenden Grundwasserstroms liefern.

Schwankungen in der Wärmeeinbringung sind, wie bei herkömmlichen TRTs, auch bei eTRTs eine wichtige Fehlerquelle. Da die Temperaturmessung beim eTRT in direkter Nachbarschaft zur Wärmeerzeugung steht (beides untergebracht in einem LWL-Hybridkabel, ca. 1-2 mm Abstand), ist der Test anfälliger für Schwankungen in der Wärmeleistung (in der Praxis oft hervorgerufen durch Spannungsschwankungen beim Baustrom). Zur Vermeidung dieser Problematik können Geräte zur elektrischen Spannungskonstanthaltung der Wärmeeinbringung vorgeschaltet werden. Durch Spannungsschwankungen betroffene Temperaturkurven können in einfachen Fällen bei Kenntnis der Spannungsunterschiede bereinigt werden. Bei komplexen Spannungsverteilungen ist dies oft nicht oder nur unter großem mathematischen Aufwand möglich (Kapitel II-4.3.1). Mittels der Auswertung des Relaxationsverhaltens bei von Schwankungen betroffenen Kurven kann jedoch die Wärmeleitfähigkeit des Umgebungsgesteins mit hinreichender Genauigkeit bestimmt werden (Kapitel II-4.3.2).

## Zusammenfassung Abschnitt I und Abschnitt II

Die Nutzung regenerativer Energien zur Wärmeerzeugung ist weltweit ein wichtiger Punkt bei der Umsetzung von Klimaschutzzielen einerseits und der schrittweisen Entkopplung von kohlenwasserstoffbasierter Wärmenutzung andererseits. Die oberflächennahe Geothermie kann hier einen wichtigen Beitrag leisten. Unsicherheiten bei der Bewertung des geologischen Untergrunds sind jedoch gerade bei größeren Projekten ausschlaggebend für Erfolg oder Misserfolg des Projektes.

Um Unsicherheiten in der Planungsgrundlage solcher Projekte zu minimieren, ist die Bestimmung von Untergrundparametern, wie z.B. der Wärmeleitfähigkeit der erbohrten Gesteine, eine zentrale Herausforderung an die Planer von Erdwärmesondenanlagen. Aber auch im Betrieb erdgekoppelter Wärmepumpenanlagen sind Optimierungspotentiale gegeben, die über eine Aufzeichnung und Bewertung verschiedener überwachter Betriebsparameter (z.B. Wärmemengenzähler in der Anlage, Temperaturüberwachung des Untergrundes, etc.) ermittelt und umgesetzt werden können.

Die vorliegende Dissertation hat sich zum Einen mit der praktischen Qualitätssicherung an einem Beispielobjekt befasst (Abschnitt I, Forschungsprojekt "Qualitätssicherung bei Erdwärmesondenfeldern für Heiz- und Kühlzwecke und Überprüfung ihrer Effizienz im Ziel 2 Gebiet"), zum Anderen mit der Überprüfung einer neuartigen Messmethode zur Ermittlung von tiefenaufgelösten Wärmeleitfähigkeiten bei Erdwärmesonden mittels numerischer Modellierung (Abschnitt II, "Thermohydraulische Szenariomodellierungen des enhanced Thermal Response Tests").

In Abschnitt I zeigte sich, dass der enhanced Thermal Response Test ein wirksames Werkzeug zur Bestimmung und Bewertung tiefenaufgelöster Wärmeleitfähigkeiten bei Erdwärmesonden ist und überdies dazu beitragen kann, unverpresste Bereiche im Untergrund der Erdwärmesonde festzustellen und zu lokalisieren. Grundwasserströmung kann ebenfalls mittels des Tests in verschiedenen Tiefenbereichen lokalisiert und qualitativ bewertet werden. Schon bei kleineren Erdwärmesondenfeldern können solche, im Vorfeld des eigentlichen Ausbaus, z.B. an einer Probebohrung durchgeführten Messungen, zur Planungssicherheit und zur Kostenreduzierung durch Bohrmetereinsparung oder durch geringere jährliche Energiekosten beitragen. Die Einsparpotentiale hängen von der Anlagenart und -größe ab und bedürfen in jedem Fall einer Einzelfallbetrachtung.

Eine Temperaturüberwachung des Erdwärmesondenfeldes zeigte keine gegenseitige Beeinflussung der einzelnen Sonden. Mittels numerischer Modelle konnte gezeigt werden, dass Beeinflussungsmaxima von Fließgeschwindigkeit und Fließrichtung, sowie von der Dauer des Wärmeentzugs abhängig sind. Die nicht zu erkennende Beeinflussung benachbarter Sonden kann im vorliegenden Fall alle drei Gründe als Ursache haben. Die Eingangsparameter der Erdwärmesondenfeld-Dimensionierung wurden übernommen und mittels zweier Modellierungsprogramme miteinander verglichen. Die Ergebnisse weichen nur unwesentlich voneinander ab und beeinflussen die Effizienz des Feldes nicht. Ein Vergleich zwischen geplantem und tatsächlichem Wärmebedarf (im ersten Betriebsjahr) ergab eine Abweichung von ca. 35%. Dies zeigt, dass die Ermittlung der Nutzungsparameter (Wärme-, Kältebedarf, etc.) häufig nicht allzu genau ist, jedoch die Effizienz der Anlage maßgeblich beeinflussen kann.

In Abschnitt II wurde die bereits in Abschnitt I vorgestellte und verwendete Methode des enhanced Thermal Response Tests mittels numerischer Modellierung auf ihre Reproduzierbarkeit hin überprüft und Stärken und Schwächen des Tests herausgearbeitet. Es zeigte sich, dass bei einem rein konduktiven Wärmetransport im Untergrund die Ergebnisse der berechneten Wärmeleitfähigkeiten sehr gut mit den vorgegebenen Wärmeleitfähigkeiten übereinstimmen. Selbst unter ungünstigen Bedingungen betrug die maximale Abweichung ca. 6% vom zu erwartenden Wert. Auch die vertikale Auflösung von Gesteinsschichten mit unterschiedlicher Wärmeleitfähigkeit gelingt bei den Modellierungen mit dem Tests sehr gut. Die Detektion von grundwasserdurchflossenen Schichten ist in den Modellen gut abbildbar und es zeigt sich eine große Abhängigkeit zwischen der Erhöhung der effektiven Wärmeleitfähigkeit und der Grundwasserfließgeschwindigkeit.

Problematisch bleibt die auch bereits im Gelände festgestellte hohe Abhängigkeit des Tests von einer konstanten Wärmezufuhr (konstante elektrische Spannung). Die Modelle, die sich mit Abfällen, bzw. Anstiegen der Wärmezufuhr, sowie fluktuierendem Wärmeeintrag befassten, liefern in der Auswertung der Modellierung keine brauchbaren Ergebnisse. In solchen Fällen hat sich die Methode der Wärmeleitfähigkeitsbestimmung mittels des Relaxationsverfahrens als sinnvollste Lösung herausgestellt.

## Ausblick

Die angesprochenen Probleme bei einer nicht konstanten Wärmezufuhr sind bislang nicht hinreichend gelöst. Weiterführende Forschung sollte sowohl auf Seiten der Spannungskonstanthaltung, als auch auf der mathematischen Nachbearbeitung von fehlerhaften Temperaturkurven liegen (bei aufgezeichneter Wärmeeinbringung). Eine Anpassung der exakten Lösung nach Gleichung II-4.2 an die vorliegende Problemstellung hat sich als schwierig herausgestellt. Die Anwendung des Relaxationsverfahrens an der vorliegenden Problemstellung hat sich als die sinnvollste Methode zur Berechnung von mit Wärmeeintragsschwankungen belasteten Temperaturkurven erwiesen. Auch der bisherige Einbau der Glasfaserkabel beim eTRT ist noch nicht optimal. Durch das Anbringen der Kabel an der Außenwandung der Sondenrohre, muss das Kabel nach der Verpressung im Bohrloch verbleiben. Dies verursacht zusätzliche Kosten für den Auftraggeber, welche durch einen neuartigen Test vermeidbar wären (geschätzte Einsparungen von bis zu 30% möglich). Eine Neuentwicklung des Thermal Response Tests mit einem im Erdwärmesondenrohr eingebrachten Spezialkabel würde es erlauben, auch nachträglich tiefenaufgelöste Wärmeleitfähigkeiten des Umgebungsgesteins zu messen. Eventuelle Schwierigkeiten bei der Messdatenauswertung, die durch Konvektion innerhalb des Erdwärmesondenrohres hervorgerufen werden könnten, müssen hierbei jedoch besonders beachtet und untersucht werden.

Die Ermittlung des tatsächlichen Wärme- und Kältebedarfs von Gebäuden ist bislang ebenfalls nicht hinreichend gelöst und bedarf eingehender Untersuchungen im Bereich der Heizungs- und Gebäudetechnik. Hier ist vor allem eine hinreichende Überwachung des Anlagenbetriebes durch entsprechende Messtechnik (Temperatur- und Wärmemengenzähler) sinnvoll.

## Literatur

- ABRAMOWITZ, M. & STEGUN, I.A. (1964) Handbook of Mathematical Functions; 1046 S., National Bureau of Standards, Applied Mathematics Series 55, U.S. Department of Commerce, Washington.
- AFEI, T., DOTT, R. & HUBER, A. (2007) Heizen und Kühlen mit erdgekoppelten Wärmepumpen; Scientific Report; 76 S.; Bundesamt für Energie BFE Schweiz, Bern.
- BARCENILLA, J.R., NUTTER, D.W. & COUVILLION, R.J. (2005) Effective Thermal Conductivity for Single-Bore Vertical Heat Exchangers with Groundwater Flow; ASHRAE Transactions 111/2: 258-263.
- BAUDOIN, A. (1988) Stockage intersaisonnier de chaleur dans le sol par batterie
   d'éxchangeurs baionnette verticaux: modèle de prédimensionnement; 183 S.,
   L'Université de Reims Champagne-Ardenne, France (Dissertation).
- BLACKWELL, J.H. (1953) Radial-Axial Heat Flow in Regions Bounded Internally by Circular Cylinders; Canadian Journal of Physics **31/4**: 472-479.
- BLACKWELL, J.H. (1954) A Transient-Flow Method for Determination of Thermal Constants of Insulating Materials in Bulk; Journal of Applied Physics **25/2**: 137-144.
- BLACKWELL, J.H. (1956) The Axial-Flow Error in the Thermal-Conductivity Probe; Canadian Journal of Physics **34/4**: 412-417.
- CARSLAW, H.S. & JAEGER, J.C. (1959) Conduction of Heat in Solids; 510 S.; Oxford University Press, Oxford.
- ČERMÁK, V. & RYBACH, L. (1982) Thermal Conductivity and Specific Heat of Minerals and Rocks; In: Hellwege, K.-H. (ed), Landolt-Börnstein - Numerical Data and Functional Relationships in Science and Technology, Group V: Geophysics and Space Research, Volume 1: Physical Properties of Rocks, Subvolume A, V-1a: 305-343, Springer Verlag, Berlin.
- CERMÁK, V. & RYBACH, L. (1979) Terrestial Heat Flow in Europe; 328 S., Springer Verlag, Berlin.
- CHIASSON, A.D., REES, S.J. & SPITTLER, J.D. (2000) A Preliminary Assessment of the Effects of Groundwater Flow on Closed-Loop Ground-Source Heat Pump Systems; ASHRAE Transactions **106/1**: 380-393.

- CLAUSER, C. (2006) Geothermal Energy; In: Heinloth, K. (ed), Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, Group VIII: Advanced Materials and Technologies, Volume 3: Energy Technologies, Subvolume C: Renewable Energies, VIII-3C: 493-604, Springer Verlag, Berlin.
- CLAUSER, C. (2003): Numerical Simulation of Reactive Flow in Hot Aquifers; 332 S., Springer Verlag, Berlin.
- CLAUSER, C. & HUENGES, E. (1995): Thermal conductivity of rocks and minerals; In: AHRENS,T.J. (Eds.), Rock Physics & Phase Relations: A Handbook of Physical Constants;American Geophysical Union, 105-126.
- DHI-WASY (2005a) FEFLOW White Papers Vol. I; 366 S., WASY GmbH, Berlin.
- DHI-WASY (2005b) FEFLOW White Papers Vol. II; 112 S., WASY GmbH, Berlin.
- DHI-WASY (2005c) FEFLOW White Papers Vol. III; 42 S., WASY GmbH, Berlin.
- DHI-WASY (2006) FEFLOW White Papers Vol. IV; 122 S., WASY GmbH, Berlin.
- DHI-WASY (2010) FEFLOW White Papers Vol. V; 108 S., WASY GmbH, Berlin.
- DIAO, N., LI, Q. & ZHAOHONG, F. (2004) Heat transfer in ground heat exchangers with groundwater advection; International Journal of Thermal Sciences **43**: 1203-1211.
- DIERSCH, H.-J. (2005) WASY Software FEFLOW Reference Manual; 292 S., WASY GmbH, Berlin.
- DIERSCH, H.-J. (1993) GIS-based groundwater flow and transport modeling The simulation system FEFLOW; Praxis der Umwelt-Informatik Band 4 (Rechnergestützte Ermittlung, Bewertung und Bearbeitung von Altlasten): 187-208.
- DORNSTÄDTER, J., HEIDINGER, P. & HEINEMANN-GLUTSCH, B. (2008): Erfahrungen aus der Praxis mit dem enhanced Geothermal Response Test (EGRT); Tagungsband Der Geothermiekongreß 2008: 271-279, Karlsruhe.
- ERBAŞ, K., DANNOWSKI, G. & SCHRÖTTER, J. (1999): Reproduzierbarkeit und Auflösungsvermögen faseroptischer Temperaturmessungen für Bohrlochanwendungen: Untersuchungen in der Klimakammer des GFZ; 54 S., Scientific Technical Report 99/19, GeoForschungsZentrum Potsdam.
- ESKILSON, P. (1987) Thermal Analysis of Heat Extraction Boreholes; 244 S., University of Lund, Sweden (Dissertation).

- FORRER, S., MÉGEL, T., ROHNER, E. & WAGNER, R. (2008) Mehr Sicherheit bei der Planung von Erdwärmesonden; bbr **5**: 42-47.
- FOWLER, C.M.R. (2000) The Solid Earth An Introduction to Global Geophysics; 472 S., Cambridge University Press, Cambridge.
- GEHLIN, S. & HELLSTRÖM, G. (2003) Influence on thermal response test by groundwater flow in vertical fractures in hard rock; Renewable Energy **28/14**: 2221-2238.
- GEHLIN, S. (2002): Thermal Response Test Method Development and Evaluation; 191 S.; University of Luleå, Sweden (Dissertation).
- GEHLIN, S. (1998) Thermal Response Test In Situ Measurements of Thermal Properties in Hard Rock; 73 S., University of Luleå, Sweden (Licentiate Thesis).
- HÄFNER, F., SAMES, D. & VOIGT, H.-D. (1992) Wärme- und Stofftransport Mathematische Methoden; 626 S.; Springer Verlag, Berlin.
- HÄHNLEIN, S., MOLINA-GIRALDO, N., BLUM, P., BAYER, P. & GRATHWOHL, P. (2010) Ausbreitung von Kältefahnen im Grundwasser bei Erdwärmesonden; Grundwasser **15/2**: 123-133.
- HARTOG, A.H. & PAYNE, D.N. (1982) A fibre-optic temperature-distribution sensor; IEE Colloquium Optic Fibre Sensors.
- HEIDINGER, P., DORNSTÄDTER, J., FABRITIUS, A., WELTER, M., WAHL, G. & ZUREK (2004) EGRT – Enhanced Geothermal Response Tests; 8 S., GTC Kappelmeyer GmbH, Karlsruhe.
- HELLSTRÖM, G. (1991): Ground Heat Storage Thermal analysis of Duct Storage Systems; 262 S.; University of Lund, Sweden (Dissertation).
- HELLSTRÖM, G. & SANNER, B. (1994) PC-Programm zur Auslegung von Erdwärmesonden. IZW-Bericht **1/94**: 341-350; Karlsruhe.
- HESKE, C., KOHLSCH, O., DORNSTÄDTER, J. & HEIDINGER, P. (2011) Der Enhanced-Geothermal-Response-Test als Auslegungsgrundlage und Optimierungstool; bbr Sonderheft Oberflächennahe Geothermie 2011: 36-43.
- HÖLTING, B. & COLDEWEY, W.G. (2009) Hydrogeologie; 383 S., Spektrum Akademischer Verlag, Heidelberg.
- HORNER, D. R. (1951) Pressure Build-up in Wells; Proceedings 3rd World Petroleum Congress, May 28 June 6 1951: 503-521, Den Haag.

- HUBER, H. (2013) Experimentelle und numerische Untersuchungen zum Wärmetransportverhalten oberflächennaher, durchströmter Böden; 131 S., Mitteilungen des Instituts für Werkstoffe und Mechanik im Bauwesen der Technischen Universität Darmstadt **40** (Dissertation).
- HUBER, H. & ARSLAN, U. (2012) Geothermal Field Tests with Forced Groundwater Flow; Proceedings, Thirty-Seventh Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford CA, January 30 – February 1, 2012, SGP-TR-194.
- HUBER, A. (2005) Erdwärmesonden für Direktheizung Phase 1: Modellbildung und Simulation; Scientific Report; 66 S., Bundesamt für Energie BFE Schweiz, Bern.
- HUBER, A., GOOD, J., WIDMER, P. NUSSBAUMER, T., TRÜSSEL, D. & SCHMID, C. (2001) Gekoppelte Kälte- und Wärmeerzeugung mit Erdwärmesonden – Handbuch zum Planungsvorgehen; Scientific Report, 64 S., Bundesamt für Energie BFE Schweiz, Bern.
- HUBER, A. & PAHUD, D. (1999a) Erweiterung des Programms EWS für Erdwärmesondenfelder; Scientific Report, 94 S., Bundesamt für Energie BFE Schweiz, Bern.
- HUBER, A. & PAHUD, D. (1999b) Untiefe Geothermie: Woher kommt die Energie? Scientific Report, 18 S., Bundesamt für Energie BFE Schweiz, Bern.
- HURTER, S. & HAENEL, R. (2002) Atlas of Geothermal Resources in Europe; 93 S., Office for Official Publications of the European Geothermal Communities, Luxemburg.
- HURTIG, E., GROßWIG, S., JOBMANN, M., KÜHN, K. & MARSCHALL, P. (1994) Fibre-optic temperature measurements in shallow boreholes: Experimental application for fluid logging; Geothermics **23/4**: 355-364.
- KINZELBACH, W. & RAUSCH, R. (1995) Grundwassermodellierung; 283 S.; Gebrüder Borträger, Berlin.
- KLOTZ, D. (1977): Berechnung der Filtergeschwindigkeit einer Grundwasserströmung aus Tracerverdünnungsversuchen in einem Filterpegel; GSF-Bericht R 149: 45 S., GSF-Gesellschaft für Strahlen- und Umweltforschung mbH, München.
- KÖNIG, R. (1988) Bestimmung der Anisotropie der Wärmeleitfähigkeit von Gesteinen durch Labormessungen und Modellrechnungen; 223 S., Geophysikalisches Institut der Universität Karlsruhe (Diplomarbeit).

- KONRAD, J., BOR, J., EMMERMANN, K.-H., HÄFNER, F., HEITELE, H., HOHBERGER, K.-H., LOTHHAMMER, H. & RÉE, C. (1985): Geologische Karte von Rheinland-Pfalz 1:25.000 – Erläuterungen Blatt 6512 Kaiserslautern; 62 S., Geologisches Landesamt Rheinland-Pfalz, Mainz.
- KRAPP, L. (1979): Gebirgsdurchlässigkeit im linksrheinischen Schiefergebirge Bestimmung nach verschiedenen Methoden; Mitteilungen zur Ingenieurgeologie und Hydrogeologie 9: 313-347.
- KRISTIANSEN, J.I. (1982) The Transient Cylindrical Probe Method for Determination of Thermal Parameters of Earth Materials; 155 S., GeoSkrifter 18, Department of Geology, University of Aarhus, Denmark (Dissertation).
- LANGGUTH, H.-R. & VOIGT, R. (2004) Hydrogeologische Methoden; 1005 S., Springer Verlag, Berlin.
- LEE, C.K. & LAM, H.N. (2007) Effects of Groundwater Flow Direction on Performance of Ground Heat Exchanger Borefield in Geothermal Heat Pump Systems Using 3-D Finite Difference Method; Proceedings: Building Simulation 2007: 337-341.
- MALM, F. (2009): Der enhanced Thermal Response Test Ermittlung tiefenaufgelöster Untergrundwärmeleitfähigkeiten in der Praxis. Poster Tagung "TRT Symposium 2009", 16.09.2009, Göttingen.
- MALM, F., DECKERT, H., POHL, C. & LANGSHAUSEN, T. (2010) Qualitätssicherung bei Erdwärmesondenfeldern für Heiz- und Kühlzwecke und Überprüfung ihrer Effizienz im Ziel 2 Gebiet (Abschlussbericht); 74 S., Ministerium für Umwelt, Forsten und Verbraucherschutz Rheinland-Pfalz, Mainz.
- MALM, F. & DECKERT, H. (2013): Die Messung tiefenaufgelöster Untergrundwärmeleitfähigkeiten in geklüfteten Aquiferen bei Grundwassereinfluss an einem mittelgroßen Erdwärmesondenfeld; (in prep.).
- MESCHEDE, D. (2006) Gerthsen Physik; 1162 S., Springer Verlag, Berlin.
- MOGENSEN, P. (1983) Fluid to Duct Wall Heat Transfer in Duct System Heat Storages; Proceedings International Conference on Subsurface Heat Storage in Theory and Practice, Stockholm, Sweden, June 6-8, 1983: 652-657.
- PANNIKE, S. (2005): Ausbreitung der Kältefahnen oberflächennaher Erdwärmesonden in Lockergesteinen; 48 S., Universität Bremen (Diplomarbeit).

- POLLACK, H.N., HURTER, S. & JOHNSON, J.R. (1993) Heat Flow from the Earth's Interior: Analysis of the Global Data Set; Reviews of Geophysics **31/3**: 267-280.
- RIEGGER, M., HEIDINGER, P., LORINSER, B. & STOBER, I. (2012) Auswerteverfahren zur Kontrolle der Verfüllqualität in Erdwärmesonden mit faseroptischen Temperaturmessungen; Grundwasser 17/2: 91-103.
- SANNER, B., MANDS, E., SAUER, M.K. & GRUNDMANN, E. (2008) Thermal Response Test, A
   Routine Method to Determine Thermal Ground Properties for GSHP Design;
   9<sup>th</sup> International IEA Heat Pump Conference, 20 22 May 2008, Zürich, Switzerland.
- SATTEL, G. (1979) Aufbau einer Messapparatur zur Bestimmung thermischer Parameter von Gesteinen und Messung an tertiären Sedimenten; Geophysikalisches Institut der Universität Karlsruhe (Diplomarbeit).
- SCHÖTTLER, M. (2004): Erfassung der Grundwasserströmung mittels des GFV-Messsystems; Geotechnik **27**: 41-46.
- SIGNORELLI, S., BASSETTI, S., PAHUD, D. & KOHL, T. (2007) Numerical evaluation of thermal response tests; Geothermics **36/2**: 141-166.
- SIGNORELLI, S. (2004) Geoscientific Investigations for the Use of Shallow Low-Enthalpy Systems; 159 S., ETH Zürich, Switzerland (Dissertation).
- SPOHN, T. (1997) Planetologie; In: *Bergmann-Schaefer Lehrbuch der Experimentalphysik* Bd. **7**: 427:525, Walter de Gruyter, Berlin.
- STOBER, I. & BUCHER, K. (2012) Geothermie; 287 S., Springer Verlag, Berlin.
- STREB, C. (2012) Hydrochemische und hydraulische Untersuchungen eines gefluteten Bergwerks – Thermohydraulische Modellierung zur geothermischen Nutzung des Grubenpotentials; 179 S., Institut für Geowissenschaften der Universität Mainz (Dissertation).
- SUTTON, M.G., NUTTER, A.W. & COUVILLION, R.J. (2003) A Ground Resistance for Vertical Bore Heat Exchangers With Groundwater Flow; Journal of Energy Resources Technology **125**: 183-189.
- THOLEN, M. & WALKER-HERTKORN, S. (2008) Arbeitshilfen Geothermie; 228 S., wvgw Wirtschafts- und Verlagsgesellschaft Gas und Wasser mbH, Bonn.
- TURCOTTE, D.L. & SCHUBERT, G. (2002) Geodynamics; 456 S., Cambridge University Press, Cambridge.

- VDI 4640 Blatt 1 (2010) Thermische Nutzung des Untergrundes Grundlagen, Genehmigungen, Umweltaspekte; 33 S., Verein Deutscher Ingenieure, Düsseldorf.
- VDI 4640 Blatt 2 (2001) Thermische Nutzung des Untergrundes Erdgekoppelte Wärmepumpenanlagen; 43 S., Verein Deutscher Ingenieure, Düsseldorf.
- VDI 4640 Blatt 3 (2001) Thermische Nutzung des Untergrundes Unterirdische Thermische Energiespeicher; 42 S., Verein Deutscher Ingenieure, Düsseldorf.
- VDI 4640 Blatt 4 (2004) Thermische Nutzung des Untergrundes Direkte Nutzungen; 40 S., Verein Deutscher Ingenieure, Düsseldorf.
- VEILLON, F. (1972) Quelques nouvelles méthods pour le calcul numérique de la transformée inverse de Laplace; 102 S., Université de Grenoble, France (Dissertation).
- WAGNER, V., BLUM, P., KÜBERT, M. & BAYER, P. (2013) Analytical approach to groundwaterinfluenced thermal response tests of grouted heat exchangers; Geothermics **46**: 22-31.
- WAGNER, R. & CLAUSER, C. (2005) Evaluating thermal response tests using parameter estimation for thermal conductivity and thermal capacity; Journal of Geophysics and Engineering **2**: 349-356.
- WITTE, H.J.L. (2002) Ground Thermal Conductivity Testing: Effects of Groundwater on the Estimate; 3. Kolloquium des AK Geothermik der DGG, 3-4 October 2002, Aachen, Germany.
- WITTE, H.J.L., VAN GELDER, G.J. & SPITLER, J.D. (2002) In Situ Measurements of Ground Thermal Conductivity: The Dutch Perspective; ASHRAE Transactions **108/1**: 263-272.
- YAVUZTURK, C. & SPITLER, J.D. (1999) A Short Time Step Response Factor Model for Vertical Ground Loop Heat Exchangers; ASHRAE Transactions **105/2**: 475-485.
- ZSCHOCKE, A. (2005): Correction of non-equilibrated temperature logs and implications for geothermal investigations; Journal of Geophysics and Engineering **2**: 364-371.
- ZSCHOCKE, A., RATH, V., GRISSEMANN, C. & CLAUSER, C. (2005): Estimating Darcy flow velocities from correlated anomalies in temperature logs; Journal of Geophysics and Engineering **2**: 332-342.

"He that breaks a thing to find out what it is has left the path of wisdom."

## Dissertationsschrift

Bestimmung verschiedener Untergrundparameter an einem Erdwärmesondenfeld für Heiz- und Kühlzwecke und thermohydraulische Modellierungen des enhanced Thermal Response Tests

# Anhang 1: Rohtemperaturdaten des Vergleichs zwischen TRT- und LWL-Messungen

Dateninhaber: Aufnahme der TRT-Daten: Aufnahme der LWL-Daten: Stadtverwaltung Speyer André Voutta Grundwasserhydraulik Institut für Geothermisches Ressourcenmanagement (igem)

Verwendung der Daten mit freundlicher Genehmigung der Stadtverwaltung Speyer.

| t [s]     | T [°C]         | t [s]        | T [°C] | t [s]         | T [°C] | t [s] | T [°C] | t [s] | T [°C] | t [s] | T [°C] | t [s] | T [°C] | t [s]          | T [°C] | t [s] | T [°C] | t [s]          | T [°C] | t [s] | T [°C] | t [s] | т [°С]         |
|-----------|----------------|--------------|--------|---------------|--------|-------|--------|-------|--------|-------|--------|-------|--------|----------------|--------|-------|--------|----------------|--------|-------|--------|-------|----------------|
| 0         | 15.82          | 3421         | 18.04  | 6841          | 19.28  | 10261 | 19.97  | 13681 | 20.45  | 17101 | 20.81  | 20521 | 21.12  | 23950          | 21.36  | 27361 | 21.54  | 30781          | 21.72  | 34200 | 21.86  | 37621 | 22.01          |
| 60<br>120 | 15.80          | 3461         | 18.07  | 6900<br>6961  | 19.29  | 10321 | 19.98  | 13741 | 20.46  | 17160 | 20.82  | 20580 | 21.12  | 24001          | 21.30  | 27432 | 21.54  | 30841          | 21.72  | 34201 | 21.87  | 37661 | 22.01          |
| 180       | 15.88          | 3600         | 18.15  | 7021          | 19.32  | 10441 | 20.00  | 13861 | 20.48  | 17281 | 20.82  | 20701 | 21.14  | 24121          | 21.36  | 27541 | 21.55  | 30961          | 21.73  | 34399 | 21.88  | 37810 | 22.02          |
| 240       | 15.90          | 3661         | 18.18  | 7081          | 19.34  | 10501 | 20.01  | 13920 | 20.48  | 17341 | 20.83  | 20761 | 21.14  | 24182          | 21.37  | 27600 | 21.56  | 31021          | 21.73  | 34441 | 21.88  | 37861 | 22.02          |
| 300       | 15.91          | 3721         | 18.21  | 7171          | 19.36  | 10561 | 20.02  | 13980 | 20.49  | 17401 | 20.83  | 20821 | 21.14  | 24241          | 21.37  | 27664 | 21.56  | 31081          | 21.73  | 34501 | 21.88  | 37921 | 22.02          |
| 360       | 15.95          | 3781         | 18.24  | 7201          | 19.37  | 10621 | 20.03  | 14041 | 20.49  | 17461 | 20.84  | 20881 | 21.14  | 24301          | 21.38  | 27721 | 21.56  | 31147          | 21.73  | 34576 | 21.89  | 37980 | 22.03          |
| 420       | 15.97          | 3841         | 18.27  | 7261          | 19.39  | 10681 | 20.04  | 14101 | 20.50  | 17521 | 20.85  | 20941 | 21.15  | 24360          | 21.38  | 27781 | 21.56  | 31200          | 21.74  | 34621 | 21.89  | 38042 | 22.03          |
|           | 16.20          | 3960         | 18.32  | 7381          | 19.42  | 10801 | 20.05  | 14221 | 20.50  | 17641 | 20.86  | 21001 | 21.15  | 24491          | 21.38  | 27901 | 21.50  | 31321          | 21.74  | 34741 | 21.89  | 38161 | 22.03          |
| 601       | 16.22          | 4021         | 18.35  | 7441          | 19.43  | 10861 | 20.06  | 14281 | 20.52  | 17701 | 20.86  | 21121 | 21.17  | 24541          | 21.38  | 27973 | 21.57  | 31381          | 21.74  | 34801 | 21.90  | 38221 | 22.03          |
| 661       | 16.24          | 4081         | 18.37  | 7500          | 19.44  | 10920 | 20.08  | 14341 | 20.52  | 17761 | 20.87  | 21181 | 21.18  | 24601          | 21.39  | 28021 | 21.57  | 31457          | 21.74  | 34861 | 21.90  | 38281 | 22.03          |
| 721       | 16.26          | 4141         | 18.39  | 7560          | 19.46  | 10981 | 20.09  | 14401 | 20.53  | 17821 | 20.88  | 21240 | 21.18  | 24660          | 21.39  | 28081 | 21.58  | 31501          | 21.74  | 34921 | 21.90  | 38350 | 22.04          |
| 780       | 16.30          | 4201         | 18.42  | 7621          | 19.47  | 11041 | 20.10  | 14461 | 20.54  | 17881 | 20.88  | 21301 | 21.19  | 24723          | 21.40  | 28141 | 21.58  | 31560          | 21.75  | 34981 | 21.90  | 38400 | 22.04          |
| 901       | 16.37          | 4320         | 18.46  | 7741          | 19.40  | 11161 | 20.11  | 14580 | 20.54  | 18001 | 20.89  | 21301 | 21.19  | 24701          | 21.40  | 28261 | 21.58  | 31689          | 21.75  | 35101 | 21.90  | 38521 | 22.04          |
| 961       | 16.40          | 4381         | 18.49  | 7801          | 19.51  | 11221 | 20.12  | 14641 | 20.56  | 18061 | 20.90  | 21481 | 21.19  | 24900          | 21.41  | 28321 | 21.59  | 31741          | 21.75  | 35161 | 21.91  | 38582 | 22.05          |
| 1021      | 16.43          | 4441         | 18.52  | 7860          | 19.52  | 11281 | 20.13  | 14701 | 20.56  | 18121 | 20.90  | 21541 | 21.20  | 24961          | 21.41  | 28381 | 21.59  | 31801          | 21.75  | 35221 | 21.91  | 38641 | 22.05          |
| 1081      | 16.47          | 4500         | 18.53  | 7921          | 19.53  | 11341 | 20.14  | 14761 | 20.56  | 18181 | 20.90  | 21601 | 21.20  | 25032          | 21.41  | 28441 | 21.59  | 31861          | 21.76  | 35280 | 21.91  | 38700 | 22.05          |
| 1141      | 16.50          | 4561         | 18.56  | 7981          | 19.55  | 11405 | 20.15  | 14821 | 20.57  | 18240 | 20.91  | 21661 | 21.20  | 25081          | 21.41  | 28515 | 21.60  | 31921          | 21.76  | 35341 | 21.91  | 38761 | 22.05          |
| 1201      | 16.55          | 4620         | 18.61  | 8101          | 19.56  | 11521 | 20.10  | 14001 | 20.58  | 18361 | 20.91  | 21721 | 21.21  | 25201          | 21.42  | 28621 | 21.60  | 32041          | 21.70  | 35461 | 21.91  | 38891 | 22.06          |
| 1321      | 16.58          | 4741         | 18.62  | 8160          | 19.59  | 11580 | 20.18  | 15001 | 20.59  | 18421 | 20.92  | 21841 | 21.21  | 25264          | 21.42  | 28681 | 21.60  | 32101          | 21.77  | 35521 | 21.91  | 38941 | 22.06          |
| 1381      | 16.62          | 4801         | 18.64  | 8221          | 19.60  | 11641 | 20.18  | 15060 | 20.60  | 18481 | 20.93  | 21901 | 21.21  | 25321          | 21.43  | 28748 | 21.60  | 32161          | 21.77  | 35581 | 21.91  | 39001 | 22.06          |
| 1441      | 16.64          | 4861         | 18.67  | 8288          | 19.62  | 11701 | 20.19  | 15121 | 20.61  | 18541 | 20.94  | 21960 | 21.21  | 25381          | 21.43  | 28801 | 21.60  | 32231          | 21.78  | 35640 | 21.91  | 39061 | 22.06          |
| 1501      | 16.66          | 4921         | 18.69  | 8341          | 19.62  | 11760 | 20.20  | 15181 | 20.62  | 18601 | 20.94  | 22020 | 21.22  | 25441          | 21.43  | 28861 | 21.61  | 32281          | 21.78  | 35701 | 21.92  | 39123 | 22.06          |
| 1621      | 16.68          | 4981<br>5040 | 18.71  | 8401<br>8461  | 19.63  | 11820 | 20.21  | 15241 | 20.63  | 18721 | 20.95  | 22080 | 21.23  | 25574          | 21.44  | 28920 | 21.62  | 32341          | 21.78  | 35821 | 21.92  | 39181 | 22.06          |
| 1680      | 16.71          | 5101         | 18.76  | 8521          | 19.66  | 11941 | 20.23  | 15361 | 20.64  | 18781 | 20.97  | 22201 | 21.24  | 25621          | 21.44  | 29057 | 21.63  | 32463          | 21.78  | 35881 | 21.92  | 39301 | 22.07          |
| 1740      | 16.74          | 5161         | 18.78  | 8581          | 19.67  | 12001 | 20.24  | 15421 | 20.64  | 18841 | 20.97  | 22261 | 21.24  | 25681          | 21.44  | 29101 | 21.63  | 32520          | 21.79  | 35941 | 21.92  | 39361 | 22.07          |
| 1801      | 16.84          | 5220         | 18.80  | 8641          | 19.68  | 12061 | 20.25  | 15481 | 20.65  | 18901 | 20.98  | 22321 | 21.25  | 25741          | 21.45  | 29161 | 21.63  | 32581          | 21.80  | 36001 | 21.93  | 39432 | 22.07          |
| 1861      | 16.94          | 5280         | 18.83  | 8701          | 19.69  | 12121 | 20.25  | 15541 | 20.66  | 18961 | 20.98  | 22381 | 21.25  | 25806          | 21.45  | 29221 | 21.63  | 32641          | 21.80  | 36060 | 21.93  | 39480 | 22.07          |
| 1921      | 17.04          | 5341<br>5401 | 18.86  | 8821          | 19.71  | 12181 | 20.26  | 15661 | 20.66  | 19021 | 20.99  | 22441 | 21.20  | 25001          | 21.40  | 29289 | 21.03  | 32701          | 21.80  | 36120 | 21.94  | 39541 | 22.07          |
| 2041      | 17.18          | 5461         | 18.88  | 8881          | 19.73  | 12301 | 20.27  | 15721 | 20.67  | 19141 | 20.99  | 22560 | 21.27  | 25981          | 21.47  | 29401 | 21.64  | 32821          | 21.80  | 36241 | 21.94  | 39664 | 22.08          |
| 2101      | 17.23          | 5521         | 18.90  | 8941          | 19.75  | 12361 | 20.28  | 15780 | 20.68  | 19201 | 21.00  | 22620 | 21.28  | 26041          | 21.48  | 29461 | 21.64  | 32880          | 21.81  | 36301 | 21.95  | 39721 | 22.08          |
| 2161      | 17.28          | 5581         | 18.92  | 9000          | 19.76  | 12421 | 20.29  | 15841 | 20.68  | 19261 | 21.01  | 22680 | 21.28  | 26116          | 21.48  | 29522 | 21.64  | 32941          | 21.81  | 36361 | 21.95  | 39781 | 22.08          |
| 2221      | 17.32          | 5641         | 18.94  | 9061          | 19.77  | 12481 | 20.30  | 15900 | 20.68  | 19321 | 21.01  | 22740 | 21.28  | 26161          | 21.48  | 29581 | 21.65  | 33005          | 21.81  | 36420 | 21.95  | 39841 | 22.08          |
| 2201      | 17.37          | 5761         | 18.90  | 9121          | 19.70  | 12541 | 20.31  | 16021 | 20.09  | 19360 | 21.01  | 22870 | 21.20  | 26280          | 21.40  | 29041 | 21.05  | 33121          | 21.02  | 36541 | 21.95  | 39901 | 22.00          |
| 2401      | 17.46          | 5821         | 18.99  | 9241          | 19.80  | 12661 | 20.32  | 16081 | 20.71  | 19501 | 21.01  | 22921 | 21.29  | 26348          | 21.49  | 29761 | 21.65  | 33181          | 21.82  | 36601 | 21.96  | 40021 | 22.09          |
| 2461      | 17.49          | 5881         | 19.02  | 9301          | 19.81  | 12720 | 20.33  | 16141 | 20.71  | 19561 | 21.02  | 22981 | 21.29  | 26401          | 21.50  | 29831 | 21.66  | 33240          | 21.83  | 36661 | 21.96  | 40080 | 22.10          |
| 2521      | 17.54          | 5941         | 19.03  | 9361          | 19.82  | 12781 | 20.33  | 16201 | 20.72  | 19621 | 21.03  | 23041 | 21.29  | 26461          | 21.50  | 29880 | 21.66  | 33315          | 21.83  | 36721 | 21.97  | 40141 | 22.10          |
| 2581      | 17.57          | 6001         | 19.05  | 9421          | 19.83  | 12840 | 20.35  | 16261 | 20.73  | 19681 | 21.03  | 23101 | 21.30  | 26521          | 21.50  | 29941 | 21.66  | 33361          | 21.83  | 36781 | 21.97  | 40206 | 22.10          |
| 2041      | 17.61          | 6121         | 19.00  | 940 I<br>9541 | 19.65  | 12900 | 20.30  | 16320 | 20.74  | 19741 | 21.04  | 23176 | 21.30  | 26657          | 21.50  | 30064 | 21.00  | 33481          | 21.03  | 36900 | 21.97  | 40200 | 22.10          |
| 2760      | 17.68          | 6181         | 19.10  | 9601          | 19.87  | 13021 | 20.37  | 16441 | 20.75  | 19860 | 21.04  | 23280 | 21.30  | 26701          | 21.52  | 30121 | 21.67  | 33547          | 21.84  | 36961 | 21.97  | 40381 | 22.10          |
| 2820      | 17.71          | 6241         | 19.12  | 9660          | 19.88  | 13080 | 20.38  | 16501 | 20.75  | 19921 | 21.04  | 23341 | 21.31  | 26761          | 21.52  | 30181 | 21.69  | 33601          | 21.84  | 37021 | 21.97  | 40440 | 22.10          |
| 2881      | 17.74          | 6301         | 19.13  | 9721          | 19.88  | 13141 | 20.38  | 16561 | 20.76  | 19981 | 21.07  | 23410 | 21.31  | 26821          | 21.52  | 30240 | 21.70  | 33661          | 21.83  | 37081 | 21.98  | 40516 | 22.10          |
| 2941      | 17.77          | 6361         | 19.14  | 9781          | 19.89  | 13201 | 20.39  | 16621 | 20.76  | 20041 | 21.08  | 23461 | 21.31  | 26890          | 21.52  | 30301 | 21.70  | 33721          | 21.84  | 37141 | 21.98  | 40561 | 22.10          |
| 3003      | 17.81<br>17.84 | 6420<br>6480 | 19.16  | 9841<br>9001  | 19.91  | 13261 | 20.39  | 167/1 | 20.77  | 20101 | 21.09  | 23521 | 21.32  | 26941<br>27001 | 21.52  | 30373 | 21.69  | 33/8U<br>33857 | 21.84  | 37201 | 21.98  | 40620 | 22.11<br>22.11 |
| 3121      | 17.87          | 6541         | 19.20  | 9961          | 19.92  | 13381 | 20.40  | 16801 | 20.78  | 20221 | 21.03  | 23641 | 21.32  | 27061          | 21.53  | 30481 | 21.70  | 33901          | 21.85  | 37321 | 21.99  | 40748 | 22.11          |
| 3181      | 17.90          | 6601         | 19.21  | 10021         | 19.94  | 13441 | 20.42  | 16861 | 20.78  | 20281 | 21.10  | 23700 | 21.33  | 27122          | 21.53  | 30541 | 21.71  | 33961          | 21.85  | 37381 | 22.01  | 40801 | 22.11          |
| 3241      | 17.94          | 6661         | 19.23  | 10081         | 19.94  | 13501 | 20.42  | 16920 | 20.79  | 20341 | 21.11  | 23761 | 21.34  | 27181          | 21.53  | 30605 | 21.71  | 34021          | 21.85  | 37441 | 22.01  | 40861 | 22.11          |
| 3301      | 17.97          | 6721         | 19.25  | 10146         | 19.96  | 13561 | 20.43  | 16981 | 20.80  | 20401 | 21.11  | 23821 | 21.34  | 27240          | 21.53  | 30661 | 21.71  | 34089          | 21.86  | 37501 | 22.01  | 40921 | 22.12          |
| 3360      | 18.00          | 6781         | 19.26  | 10201         | 19.96  | 13621 | 20.44  | 17041 | 20.80  | 20461 | 21.12  | 23881 | 21.35  | 27301          | 21.54  | 30721 | 21.72  | 34141          | 21.86  | 37561 | 22.01  | 40980 | 22.11          |

| t [s] | T I°C1 | t [s] | L U.J. L | t [s] | T [°C] | t [s] | L U.J. L | t [s]          | T I°C1 | t [s] | T I°C1 | t [s] | T I°C1 | t [s]  | T I°C1         | t [s] | т гост І | t [s] | T I°C1 | t [s] | T I°C1 | t [s] | T [°C] |
|-------|--------|-------|----------|-------|--------|-------|----------|----------------|--------|-------|--------|-------|--------|--------|----------------|-------|----------|-------|--------|-------|--------|-------|--------|
| 41058 | 22 12  | 44464 | 22 25    | 47881 | 22.33  | 51301 | 22 42    | 54728          | 22.52  | 58141 | 22 60  | 61560 | 22.67  | 64981  | 22 76          | 68401 | 22.83    | 71821 | 22.91  | 75241 | 22.97  | 78661 | 23.07  |
| 41101 | 22.12  | 44521 | 22.18    | 47947 | 22.33  | 51361 | 22.42    | 54781          | 22.52  | 58212 | 22.60  | 61621 | 22.67  | 65041  | 22.77          | 68473 | 22.83    | 71881 | 22.91  | 75301 | 22.97  | 78721 | 23.07  |
| 41161 | 22.12  | 44580 | 22.26    | 48001 | 22.33  | 51420 | 22.42    | 54841          | 22.52  | 58261 | 22.60  | 61695 | 22.68  | 65101  | 22.78          | 68521 | 22.83    | 71957 | 22.92  | 75363 | 22.98  | 78780 | 23.08  |
| 41221 | 22.13  | 44641 | 22.26    | 48061 | 22.33  | 51482 | 22.42    | 54901          | 22.53  | 58321 | 22.60  | 61741 | 22.68  | 65161  | 22.78          | 68581 | 22.84    | 72001 | 22.92  | 75421 | 22.99  | 78841 | 23.08  |
| 41290 | 22.13  | 44701 | 22.26    | 48121 | 22.33  | 51541 | 22.42    | 54960          | 22.53  | 58380 | 22.60  | 61801 | 22.68  | 65221  | 22.78          | 68641 | 22.84    | 72061 | 22.91  | 75481 | 22.99  | 78900 | 23.07  |
| 41341 | 22.13  | 44774 | 22.26    | 48181 | 22.33  | 51601 | 22.43    | 55038          | 22.53  | 58444 | 22.60  | 61861 | 22.68  | 65311  | 22.78          | 68705 | 22.85    | 72121 | 22.91  | 75541 | 22.99  | 78961 | 23.07  |
| 41400 | 22.13  | 44821 | 22.26    | 48257 | 22.33  | 51661 | 22.43    | 55081          | 22.53  | 58501 | 22.60  | 61927 | 22.68  | 65341  | 22.78          | 68760 | 22.85    | 72189 | 22.91  | 75601 | 22.99  | 79021 | 23.07  |
| 41461 | 22.14  | 44881 | 22.25    | 48301 | 22.33  | 51721 | 22.43    | 55141          | 22.53  | 58560 | 22.60  | 61980 | 22.68  | 65400  | 22.78          | 68821 | 22.84    | 72241 | 22.92  | 75673 | 22.99  | 79081 | 23.07  |
| 41522 | 22.15  | 44940 | 22.24    | 48361 | 22.33  | 51791 | 22.44    | 55201          | 22.53  | 58621 | 22.61  | 62041 | 22.68  | 65461  | 22.79          | 68881 | 22.84    | 72301 | 22.92  | 75721 | 23.00  | 79141 | 23.08  |
| 41580 | 22.16  | 45006 | 22.24    | 48421 | 22.34  | 51841 | 22.43    | 55270          | 22.54  | 58681 | 22.60  | 62101 | 22.69  | 65521  | 22.79          | 68941 | 22.85    | 72361 | 22.92  | 75781 | 23.01  | 79201 | 23.08  |
| 41641 | 22.16  | 45061 | 22.25    | 48489 | 22.34  | 51901 | 22.44    | 55321          | 22.54  | 58754 | 22.59  | 62161 | 22.69  | 65581  | 22.79          | 69015 | 22.86    | 72421 | 22.92  | 75841 | 23.01  | 79260 | 23.09  |
| 41701 | 22.16  | 45121 | 22.24    | 48540 | 22.34  | 51960 | 22.45    | 55380          | 22.54  | 58801 | 22.59  | 62237 | 22.70  | 65641  | 22.79          | 69061 | 22.86    | 72480 | 22.93  | 75905 | 23.01  | 79321 | 23.09  |
| 41761 | 22.17  | 45181 | 22.24    | 48601 | 22.35  | 52022 | 22.45    | 55441          | 22.54  | 58861 | 22.59  | 62281 | 22.70  | 65701  | 22.79          | 69120 | 22.86    | 72541 | 22.93  | 75960 | 23.01  | 79380 | 23.09  |
| 41832 | 22.17  | 45241 | 22.25    | 48661 | 22.35  | 52081 | 22.44    | 55502          | 22.54  | 58920 | 22.59  | 62341 | 22.70  | 65761  | 22.79          | 69181 | 22.86    | 72601 | 22.93  | 76021 | 23.02  | 79441 | 23.09  |
| 41001 | 22.17  | 45315 | 22.25    | 48722 | 22.30  | 52141 | 22.45    | 00000<br>55601 | 22.54  | 50900 | 22.60  | 62401 | 22.70  | 65000  | 22.79          | 69247 | 22.87    | 72001 | 22.92  | 76151 | 23.02  | 79500 | 23.09  |
| 41940 | 22.17  | 40301 | 22.20    | 40701 | 22.30  | 52201 | 22.40    | 55021          | 22.04  | 59041 | 22.00  | 62521 | 22.70  | 65044  | 22.79          | 60361 | 22.07    | 72701 | 22.92  | 70101 | 23.02  | 79301 | 23.09  |
| 42001 | 22.17  | 40421 | 22.20    | 40041 | 22.30  | 52331 | 22.40    | 55740          | 22.04  | 59101 | 22.01  | 62581 | 22.70  | 66002  | 22.00          | 69/21 | 22.07    | 72840 | 22.92  | 76201 | 23.02  | 79621 | 23.09  |
| 42004 | 22.17  | 45548 | 22.25    | 48961 | 22.33  | 52381 | 22.40    | 55812          | 22.55  | 59221 | 22.01  | 62641 | 22.70  | 66061  | 22.00          | 69481 | 22.07    | 72040 | 22.92  | 76321 | 23.02  | 79740 | 23.10  |
| 42181 | 22.17  | 45601 | 22.25    | 49020 | 22.35  | 52440 | 22.40    | 55861          | 22.55  | 59295 | 22.02  | 62700 | 22.70  | 66121  | 22.00          | 69557 | 22.07    | 72963 | 22.92  | 76381 | 23.02  | 79801 | 23.10  |
| 42241 | 22.18  | 45661 | 22.26    | 49080 | 22.36  | 52501 | 22.47    | 55920          | 22.55  | 59340 | 22.63  | 62761 | 22.71  | 66181  | 22.80          | 69601 | 22.86    | 73021 | 22.94  | 76441 | 23.02  | 79861 | 23.10  |
| 42300 | 22.18  | 45721 | 22.26    | 49141 | 22.36  | 52563 | 22.46    | 55981          | 22.55  | 59401 | 22.63  | 62821 | 22.71  | 66241  | 22.80          | 69660 | 22.86    | 73081 | 22.94  | 76500 | 23.02  | 79921 | 23.10  |
| 42374 | 22.19  | 45781 | 22.26    | 49201 | 22.36  | 52621 | 22.47    | 56044          | 22.56  | 59461 | 22.63  | 62881 | 22.71  | 66310  | 22.80          | 69721 | 22.87    | 73141 | 22.93  | 76561 | 23.02  | 79981 | 23.11  |
| 42421 | 22.18  | 45857 | 22.26    | 49260 | 22.36  | 52681 | 22.47    | 56101          | 22.56  | 59528 | 22.63  | 62941 | 22.71  | 66361  | 22.79          | 69789 | 22.86    | 73200 | 22.94  | 76621 | 23.03  | 80041 | 23.11  |
| 42481 | 22.19  | 45900 | 22.26    | 49321 | 22.36  | 52741 | 22.47    | 56161          | 22.56  | 59581 | 22.63  | 63000 | 22.72  | 66420  | 22.79          | 69841 | 22.86    | 73273 | 22.94  | 76681 | 23.03  | 80101 | 23.11  |
| 42541 | 22.19  | 45961 | 22.27    | 49381 | 22.36  | 52800 | 22.48    | 56221          | 22.56  | 59641 | 22.64  | 63061 | 22.72  | 66480  | 22.80          | 69901 | 22.86    | 73321 | 22.94  | 76741 | 23.03  | 80161 | 23.11  |
| 42606 | 22.19  | 46021 | 22.27    | 49441 | 22.37  | 52872 | 22.48    | 56280          | 22.57  | 59700 | 22.64  | 63121 | 22.72  | 66542  | 22.81          | 69961 | 22.86    | 73381 | 22.94  | 76801 | 23.03  | 80221 | 23.11  |
| 42661 | 22.19  | 46090 | 22.28    | 49501 | 22.37  | 52921 | 22.48    | 56354          | 22.56  | 59761 | 22.64  | 63181 | 22.73  | 66601  | 22.81          | 70021 | 22.86    | 73441 | 22.94  | 76861 | 23.03  | 80281 | 23.11  |
| 42720 | 22.19  | 46141 | 22.28    | 49561 | 22.37  | 52981 | 22.48    | 56401          | 22.57  | 59837 | 22.65  | 63240 | 22.73  | 66661  | 22.81          | 70080 | 22.86    | 73505 | 22.94  | 76921 | 23.03  | 80341 | 23.11  |
| 42781 | 22.19  | 46201 | 22.28    | 49621 | 22.37  | 53041 | 22.48    | 56461          | 22.57  | 59880 | 22.65  | 63301 | 22.73  | 66721  | 22.82          | 70141 | 22.86    | 73561 | 22.94  | 76981 | 23.03  | 80401 | 23.11  |
| 42841 | 22.19  | 46260 | 22.28    | 49681 | 22.38  | 53104 | 22.48    | 56521          | 22.57  | 59941 | 22.64  | 63361 | 22.73  | 66781  | 22.82          | 70201 | 22.86    | 73621 | 22.94  | 77041 | 23.03  | 80461 | 23.12  |
| 42916 | 22.20  | 46322 | 22.28    | 49741 | 22.38  | 53161 | 22.48    | 56586          | 22.57  | 60001 | 22.64  | 63421 | 22.73  | 66850  | 22.82          | 70261 | 22.86    | 73681 | 22.95  | 77101 | 23.03  | 80521 | 23.11  |
| 42961 | 22.20  | 46381 | 22.29    | 49801 | 22.38  | 53221 | 22.49    | 56641          | 22.57  | 60070 | 22.64  | 63481 | 22.73  | 66900  | 22.81          | 70331 | 22.87    | 73741 | 22.96  | 77160 | 23.03  | 80590 | 23.12  |
| 43021 | 22.20  | 46501 | 22.29    | 49860 | 22.30  | 53261 | 22.49    | 56761          | 22.57  | 60181 | 22.04  | 63601 | 22.74  | 67021  | 22.01          | 70301 | 22.87    | 73861 | 22.96  | 77280 | 23.03  | 80701 | 23.11  |
| 43001 | 22.20  | 46561 | 22.30    | 49920 | 22.39  | 53/13 | 22.49    | 56821          | 22.57  | 60240 | 22.04  | 63660 | 22.74  | 67082  | 22.01          | 70440 | 22.00    | 73021 | 22.95  | 773/1 | 23.03  | 80760 | 23.11  |
| 43201 | 22.20  | 46631 | 22.20    | 50041 | 22.39  | 53461 | 22.49    | 56896          | 22.58  | 60302 | 22.64  | 63721 | 22.74  | 67141  | 22.82          | 70563 | 22.88    | 73981 | 22.95  | 77401 | 23.04  | 80821 | 23.11  |
| 43260 | 22.21  | 46681 | 22.29    | 50101 | 22.39  | 53521 | 22.49    | 56941          | 22.58  | 60361 | 22.65  | 63781 | 22.74  | 67201  | 22.82          | 70620 | 22.89    | 74047 | 22.96  | 77461 | 23.04  | 80881 | 23.12  |
| 43321 | 22.21  | 46741 | 22.29    | 50161 | 22.40  | 53580 | 22.49    | 57001          | 22.58  | 60421 | 22.65  | 63841 | 22.75  | 67260  | 22.82          | 70681 | 22.89    | 74101 | 22.96  | 77521 | 23.04  | 80941 | 23.12  |
| 43381 | 22.22  | 46801 | 22.30    | 50221 | 22.39  | 53645 | 22.49    | 57060          | 22.58  | 60481 | 22.65  | 63901 | 22.75  | 67321  | 22.82          | 70741 | 22.88    | 74160 | 22.96  | 77581 | 23.04  | 81001 | 23.12  |
| 43458 | 22.22  | 46864 | 22.30    | 50281 | 22.40  | 53701 | 22.49    | 57128          | 22.58  | 60541 | 22.65  | 63961 | 22.75  | 67391  | 22.83          | 70801 | 22.88    | 74221 | 22.96  | 77641 | 23.04  | 81061 | 23.13  |
| 43501 | 22.22  | 46921 | 22.30    | 50341 | 22.40  | 53761 | 22.50    | 57181          | 22.58  | 60611 | 22.65  | 64021 | 22.75  | 67441  | 22.83          | 70873 | 22.89    | 74281 | 22.96  | 77701 | 23.05  | 81130 | 23.13  |
| 43561 | 22.22  | 46981 | 22.30    | 50412 | 22.40  | 53820 | 22.50    | 57240          | 22.58  | 60660 | 22.65  | 64081 | 22.75  | 67501  | 22.83          | 70921 | 22.89    | 74357 | 22.96  | 77760 | 23.05  | 81181 | 23.12  |
| 43620 | 22.22  | 47041 | 22.31    | 50461 | 22.40  | 53881 | 22.50    | 57301          | 22.58  | 60721 | 22.65  | 64141 | 22.75  | 67560  | 22.83          | 70980 | 22.89    | 74401 | 22.96  | 77821 | 23.05  | 81241 | 23.12  |
| 43690 | 22.22  | 47101 | 22.31    | 50521 | 22.40  | 53954 | 22.50    | 57361          | 22.58  | 60781 | 22.65  | 64200 | 22.75  | 67623  | 22.83          | 71041 | 22.90    | 74461 | 22.97  | 77881 | 23.05  | 81300 | 23.11  |
| 43741 | 22.23  | 47173 | 22.31    | 50581 | 22.40  | 54001 | 22.50    | 57438          | 22.59  | 60844 | 22.66  | 64260 | 22.75  | 67681  | 22.83          | 71105 | 22.90    | 74521 | 22.97  | 77941 | 23.05  | 81362 | 23.11  |
| 43801 | 22.23  | 47220 | 22.31    | 50641 | 22.40  | 54060 | 22.50    | 57481          | 22.59  | 60901 | 22.66  | 64321 | 22.75  | 67741  | 22.83          | 71161 | 22.90    | 74589 | 22.97  | 78001 | 23.05  | 81421 | 23.11  |
| 43861 | 22.23  | 47281 | 22.31    | 50701 | 22.40  | 54121 | 22.50    | 57541          | 22.58  | 60961 | 22.66  | 64381 | 22.75  | 67801  | 22.84          | 71221 | 22.90    | 74640 | 22.97  | 78060 | 23.05  | 81481 | 23.11  |
| 43922 | 22.24  | 47341 | 22.31    | 50760 | 22.41  | 54186 | 22.50    | 57600          | 22.59  | 61021 | 22.66  | 64501 | 22.76  | 67022  | 22.84          | 71281 | 22.89    | 74701 | 22.97  | 78120 | 23.05  | 81541 | 23.12  |
| 43901 | 22.24  | 47400 | 22.32    | 50881 | 22.41  | 54241 | 22.01    | 57721          | 22.00  | 61153 | 22.00  | 64561 | 22.70  | 670.81 | 22.04<br>22.84 | 71/15 | 22.90    | 74822 | 22.91  | 78240 | 23.00  | 81670 | 23.11  |
| 44041 | 22.24  | 47521 | 22.32    | 50940 | 22.41  | 54361 | 22.51    | 57781          | 22.57  | 61200 | 22.00  | 64620 | 22.70  | 68041  | 22.04          | 71413 | 22.50    | 74881 | 22.31  | 78301 | 23.00  | 81721 | 23.12  |
| 44161 | 22.24  | 47580 | 22.32    | 51000 | 22.41  | 54420 | 22.51    | 57841          | 22.58  | 61261 | 22.67  | 64681 | 22.77  | 68100  | 22.84          | 71521 | 22.90    | 74941 | 22.98  | 78361 | 23.06  | 81781 | 23.12  |
| 44232 | 22.24  | 47641 | 22.32    | 51061 | 22.41  | 54496 | 22.51    | 57902          | 22.58  | 61321 | 22.67  | 64741 | 22.76  | 68164  | 22.83          | 71581 | 22.90    | 75000 | 22.98  | 78420 | 23.07  | 81841 | 23.13  |
| 44281 | 22.24  | 47715 | 22.32    | 51121 | 22.42  | 54541 | 22.51    | 57961          | 22.59  | 61386 | 22.67  | 64801 | 22.77  | 68221  | 22.82          | 71647 | 22.90    | 75061 | 22.98  | 78480 | 23.06  | 81902 | 23.13  |
| 44341 | 22.25  | 47761 | 22.33    | 51181 | 22.42  | 54600 | 22.51    | 58020          | 22.59  | 61441 | 22.67  | 64861 | 22.76  | 68281  | 22.82          | 71701 | 22.91    | 75131 | 22.98  | 78541 | 23.07  | 81961 | 23.13  |
| 44401 | 22.25  | 47821 | 22.32    | 51241 | 22.42  | 54661 | 22.51    | 58081          | 22.60  | 61501 | 22.67  | 64920 | 22.76  | 68341  | 22.83          | 71761 | 22.91    | 75181 | 22.97  | 78601 | 23.06  | 82020 | 23.13  |

| t [s] | T [°C] | t [s]  | T [°C] | t [s]  | T [°C] | t [s]  | T [°C] | t [s]  | T [°C] | t [s]  | T [°C] | t [s]  | T [°C] | t [s]  | T [°C] |
|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 82081 | 23.13  | 85501 | 23.20  | 88921 | 23.26  | 92341 | 23.30  | 95761 | 23.36  | 99181  | 23.43  | 102600 | 23.48  | 106021 | 23.52  | 109440 | 23.55  | 112867 | 23.58  | 116281 | 23.62  | 119701 | 23.64  |
| 82141 | 23.13  | 85561 | 23.18  | 88981 | 23.26  | 92401 | 23.30  | 95822 | 23.35  | 99241  | 23.42  | 102660 | 23.48  | 106081 | 23.52  | 109500 | 23.55  | 112921 | 23.58  | 116350 | 23.62  | 119761 | 23.64  |
| 82211 | 23.13  | 85620 | 23.18  | 89041 | 23.26  | 92461 | 23.31  | 95881 | 23.35  | 99302  | 23.42  | 102721 | 23.48  | 106141 | 23.52  | 109560 | 23.55  | 112981 | 23.58  | 116401 | 23.62  | 119821 | 23.64  |
| 82261 | 23.13  | 85694 | 23.19  | 89101 | 23.26  | 92521 | 23.31  | 95941 | 23.37  | 99360  | 23.42  | 102781 | 23.48  | 106201 | 23.53  | 109621 | 23.55  | 113041 | 23.58  | 116461 | 23.62  | 119881 | 23.64  |
| 82321 | 23.13  | 85741 | 23.20  | 89161 | 23.26  | 92581 | 23.31  | 96001 | 23.38  | 99421  | 23.43  | 102841 | 23.48  | 106261 | 23.52  | 109681 | 23.55  | 113101 | 23.58  | 116521 | 23.62  | 119940 | 23.64  |
| 82381 | 23.13  | 85801 | 23.20  | 89221 | 23.26  | 92641 | 23.31  | 96060 | 23.37  | 99481  | 23.43  | 102900 | 23.48  | 106321 | 23.52  | 109741 | 23.56  | 113176 | 23.59  | 116588 | 23.62  | 120000 | 23.64  |
| 82443 | 23.14  | 85861 | 23.20  | 89280 | 23.26  | 92701 | 23.31  | 96131 | 23.38  | 99541  | 23.43  | 102961 | 23.48  | 106381 | 23.52  | 109801 | 23.56  | 113220 | 23.59  | 116641 | 23.62  | 120061 | 23.64  |
| 82501 | 23.14  | 85926 | 23.20  | 89341 | 23.26  | 92761 | 23.31  | 96181 | 23.38  | 99612  | 23.43  | 103021 | 23.48  | 106441 | 23.53  | 109860 | 23.56  | 113281 | 23.59  | 116701 | 23.62  | 120121 | 23.64  |
| 82560 | 23.14  | 85981 | 23.20  | 89401 | 23.27  | 92820 | 23.31  | 96241 | 23.38  | 99661  | 23.43  | 103081 | 23.48  | 106500 | 23.53  | 109930 | 23.56  | 113341 | 23.59  | 116761 | 23.62  | 120181 | 23.64  |
| 82621 | 23.14  | 86041 | 23.21  | 89461 | 23.27  | 92881 | 23.31  | 96301 | 23.38  | 99720  | 23.43  | 103144 | 23.48  | 106560 | 23.53  | 109981 | 23.56  | 113409 | 23.59  | 116821 | 23.62  | 120241 | 23.64  |
| 82681 | 23.14  | 86101 | 23.21  | 89521 | 23.27  | 92940 | 23.31  | 96362 | 23.38  | 99781  | 23.43  | 103200 | 23.48  | 106621 | 23.53  | 110041 | 23.56  | 113461 | 23.59  | 116881 | 23.62  | 120300 | 23.64  |
| 82752 | 23.15  | 86161 | 23.21  | 89581 | 23.27  | 93001 | 23.31  | 96420 | 23.38  | 99844  | 23.44  | 103260 | 23.48  | 106681 | 23.53  | 110101 | 23.56  | 113521 | 23.59  | 116940 | 23.62  | 120361 | 23.65  |
| 82800 | 23.15  | 86236 | 23.21  | 89641 | 23.27  | 93061 | 23.31  | 96481 | 23.39  | 99900  | 23.43  | 103321 | 23.49  | 106741 | 23.53  | 110162 | 23.56  | 113580 | 23.59  | 117000 | 23.62  | 120421 | 23.64  |
| 82001 | 23.15  | 96241 | 23.21  | 89701 | 23.27  | 93121 | 23.31  | 96541 | 23.30  | 100021 | 23.43  | 103361 | 23.49  | 106861 | 23.53  | 110221 | 23.50  | 113041 | 23.59  | 117101 | 23.02  | 120461 | 23.04  |
| 82921 | 23.15  | 86401 | 23.21  | 80821 | 23.20  | 93101 | 23.31  | 96671 | 23.30  | 100021 | 23.44  | 103441 | 23.49  | 106021 | 23.53  | 110201 | 23.50  | 113761 | 23.59  | 117121 | 23.02  | 120341 | 23.04  |
| 830/1 | 23.10  | 86468 | 23.21  | 89880 | 23.28  | 03301 | 23.31  | 96720 | 23.30  | 100000 | 23.44  | 103561 | 23.40  | 106080 | 23.50  | 110/00 | 23.56  | 113821 | 23.50  | 1172/1 | 23.62  | 120661 | 23.65  |
| 83101 | 23.14  | 86521 | 23.21  | 800/1 | 23.20  | 93361 | 23.31  | 96781 | 23.38  | 100134 | 23.44  | 103621 | 23.49  | 100900 | 23.54  | 110400 | 23.50  | 113881 | 23.59  | 117241 | 23.02  | 120001 | 23.65  |
| 83161 | 23.15  | 86580 | 23.22  | 90001 | 23.27  | 93421 | 23.32  | 96841 | 23.38  | 100201 | 23.44  | 103681 | 23.49  | 107101 | 23.55  | 110521 | 23.50  | 113950 | 23.59  | 117361 | 23.62  | 120721 | 23.65  |
| 83221 | 23.15  | 86641 | 23.22  | 90061 | 23.27  | 93481 | 23.32  | 96903 | 23.38  | 100321 | 23.44  | 103741 | 23.49  | 107160 | 23.54  | 110581 | 23.57  | 114001 | 23.59  | 117421 | 23.62  | 120841 | 23.65  |
| 83294 | 23.15  | 86701 | 23.22  | 90120 | 23.27  | 93541 | 23.32  | 96961 | 23.39  | 100386 | 23.44  | 103801 | 23.49  | 107221 | 23.54  | 110641 | 23.57  | 114061 | 23.59  | 117481 | 23.62  | 120901 | 23.65  |
| 83341 | 23.16  | 86778 | 23.22  | 90180 | 23.27  | 93601 | 23.32  | 97021 | 23.39  | 100441 | 23.44  | 103861 | 23.49  | 107281 | 23.54  | 110702 | 23.57  | 114121 | 23.59  | 117541 | 23.62  | 120961 | 23.65  |
| 83401 | 23.15  | 86821 | 23.22  | 90240 | 23.27  | 93660 | 23.32  | 97081 | 23.40  | 100501 | 23.45  | 103921 | 23.50  | 107341 | 23.54  | 110761 | 23.56  | 114183 | 23.59  | 117601 | 23.62  | 121021 | 23.65  |
| 83461 | 23.16  | 86881 | 23.22  | 90300 | 23.28  | 93720 | 23.32  | 97141 | 23.39  | 100561 | 23.44  | 103981 | 23.50  | 107401 | 23.54  | 110821 | 23.56  | 114241 | 23.59  | 117660 | 23.63  | 121081 | 23.65  |
| 83526 | 23.16  | 86940 | 23.23  | 90361 | 23.27  | 93780 | 23.32  | 97212 | 23.40  | 100620 | 23.44  | 104040 | 23.50  | 107461 | 23.54  | 110880 | 23.57  | 114301 | 23.59  | 117720 | 23.63  | 121140 | 23.65  |
| 83580 | 23.16  | 87010 | 23.23  | 90421 | 23.28  | 93841 | 23.32  | 97261 | 23.39  | 100696 | 23.44  | 104101 | 23.50  | 107520 | 23.54  | 110941 | 23.57  | 114361 | 23.59  | 117780 | 23.62  | 121200 | 23.65  |
| 83641 | 23.16  | 87061 | 23.23  | 90480 | 23.29  | 93901 | 23.32  | 97321 | 23.40  | 100741 | 23.45  | 104161 | 23.51  | 107581 | 23.55  | 111011 | 23.57  | 114421 | 23.59  | 117840 | 23.62  | 121261 | 23.65  |
| 83701 | 23.16  | 87121 | 23.23  | 90541 | 23.28  | 93961 | 23.32  | 97381 | 23.40  | 100801 | 23.45  | 104221 | 23.51  | 107641 | 23.56  | 111061 | 23.56  | 114492 | 23.60  | 117901 | 23.63  | 121321 | 23.65  |
| 83761 | 23.17  | 87181 | 23.23  | 90601 | 23.28  | 94021 | 23.32  | 97445 | 23.40  | 100861 | 23.45  | 104280 | 23.51  | 107701 | 23.55  | 111121 | 23.57  | 114540 | 23.60  | 117961 | 23.63  | 121381 | 23.65  |
| 83836 | 23.17  | 87242 | 23.23  | 90660 | 23.28  | 94081 | 23.33  | 97501 | 23.40  | 100928 | 23.45  | 104340 | 23.51  | 107761 | 23.54  | 111180 | 23.57  | 114601 | 23.60  | 118021 | 23.63  | 121441 | 23.65  |
| 83881 | 23.17  | 87301 | 23.23  | 90721 | 23.28  | 94141 | 23.33  | 97561 | 23.40  | 100981 | 23.45  | 104401 | 23.51  | 107820 | 23.54  | 111243 | 23.57  | 114661 | 23.60  | 118081 | 23.63  | 121501 | 23.65  |
| 83940 | 23.17  | 87361 | 23.24  | 90781 | 23.28  | 94201 | 23.33  | 97620 | 23.40  | 101040 | 23.45  | 104461 | 23.52  | 107881 | 23.54  | 111301 | 23.56  | 114725 | 23.60  | 118141 | 23.62  | 121561 | 23.65  |
| 84001 | 23.17  | 87421 | 23.25  | 90841 | 23.28  | 94261 | 23.33  | 97681 | 23.40  | 101101 | 23.45  | 104521 | 23.52  | 107941 | 23.54  | 111361 | 23.56  | 114781 | 23.60  | 118201 | 23.62  | 121621 | 23.66  |
| 84068 | 23.17  | 87481 | 23.26  | 90901 | 23.28  | 94321 | 23.33  | 97754 | 23.40  | 101161 | 23.45  | 104581 | 23.52  | 108001 | 23.54  | 111421 | 23.56  | 114841 | 23.60  | 118261 | 23.63  | 121681 | 23.65  |
| 84121 | 23.17  | 87552 | 23.26  | 90961 | 23.29  | 94380 | 23.33  | 97801 | 23.40  | 101238 | 23.45  | 104640 | 23.52  | 108061 | 23.54  | 111480 | 23.57  | 114900 | 23.60  | 118321 | 23.62  | 121740 | 23.66  |
| 04101 | 23.17  | 07661 | 23.20  | 91020 | 23.29  | 94441 | 23.33  | 97001 | 23.40  | 101201 | 23.45  | 104701 | 23.52  | 100120 | 23.54  | 111002 | 23.37  | 114901 | 23.60  | 110301 | 23.03  | 121001 | 23.00  |
| 8/300 | 23.17  | 87721 | 23.20  | 91001 | 23.29  | 94561 | 23.33  | 97921 | 23.40  | 101341 | 23.40  | 104701 | 23.31  | 1082/1 | 23.54  | 111661 | 23.57  | 115081 | 23.00  | 118501 | 23.03  | 121001 | 23.66  |
| 84378 | 23.17  | 87784 | 23.25  | 91201 | 23.29  | 94622 | 23.34  | 98040 | 23.41  | 101465 | 23.46  | 104881 | 23.49  | 108301 | 23.54  | 111721 | 23.57  | 115141 | 23.60  | 118561 | 23.63  | 121921 | 23.66  |
| 84421 | 23.18  | 87841 | 23.26  | 91261 | 23 29  | 94681 | 23.33  | 98101 | 23.41  | 101521 | 23.46  | 104941 | 23 49  | 108361 | 23.54  | 111783 | 23.57  | 115201 | 23.60  | 118621 | 23.63  | 122041 | 23.66  |
| 84481 | 23.18  | 87900 | 23.26  | 91320 | 23.28  | 94741 | 23.33  | 98161 | 23.41  | 101581 | 23.46  | 105001 | 23.49  | 108420 | 23.54  | 111841 | 23.57  | 115266 | 23.61  | 118681 | 23.63  | 122101 | 23.66  |
| 84541 | 23.18  | 87961 | 23.26  | 91381 | 23.28  | 94801 | 23.34  | 98221 | 23.41  | 101640 | 23.46  | 105061 | 23.49  | 108480 | 23.54  | 111901 | 23.57  | 115321 | 23.60  | 118741 | 23.63  | 122161 | 23.66  |
| 84610 | 23.19  | 88042 | 23.25  | 91441 | 23.29  | 94861 | 23.34  | 98296 | 23.42  | 101701 | 23.46  | 105121 | 23.50  | 108541 | 23.54  | 111961 | 23.57  | 115381 | 23.60  | 118801 | 23.63  | 122221 | 23.66  |
| 84661 | 23.19  | 88081 | 23.26  | 91500 | 23.29  | 94921 | 23.34  | 98341 | 23.42  | 101761 | 23.46  | 105181 | 23.50  | 108601 | 23.55  | 112020 | 23.57  | 115441 | 23.60  | 118861 | 23.63  | 122281 | 23.66  |
| 84721 | 23.19  | 88140 | 23.26  | 91561 | 23.29  | 94981 | 23.34  | 98400 | 23.42  | 101821 | 23.46  | 105241 | 23.50  | 108661 | 23.54  | 112093 | 23.57  | 115501 | 23.60  | 118921 | 23.63  | 122341 | 23.66  |
| 84781 | 23.19  | 88222 | 23.26  | 91621 | 23.29  | 95050 | 23.34  | 98461 | 23.41  | 101880 | 23.46  | 105300 | 23.51  | 108721 | 23.55  | 112141 | 23.57  | 115576 | 23.60  | 118980 | 23.64  | 122401 | 23.66  |
| 84842 | 23.19  | 88261 | 23.26  | 91681 | 23.29  | 95101 | 23.34  | 98528 | 23.42  | 101941 | 23.46  | 105361 | 23.50  | 108781 | 23.56  | 112201 | 23.57  | 115621 | 23.59  | 119041 | 23.63  | 122461 | 23.66  |
| 84900 | 23.19  | 88321 | 23.26  | 91740 | 23.29  | 95160 | 23.35  | 98580 | 23.42  | 102000 | 23.47  | 105421 | 23.51  | 108841 | 23.56  | 112261 | 23.57  | 115681 | 23.59  | 119100 | 23.63  | 122521 | 23.66  |
| 84961 | 23.19  | 88380 | 23.26  | 91801 | 23.29  | 95220 | 23.35  | 98641 | 23.42  | 102061 | 23.46  | 105481 | 23.51  | 108901 | 23.56  | 112325 | 23.57  | 115741 | 23.59  | 119161 | 23.63  | 122581 | 23.67  |
| 85021 | 23.19  | 88441 | 23.26  | 91861 | 23.30  | 95282 | 23.35  | 98701 | 23.41  | 102121 | 23.47  | 105541 | 23.51  | 108961 | 23.56  | 112381 | 23.57  | 115808 | 23.59  | 119221 | 23.63  | 122641 | 23.67  |
| 85081 | 23.20  | 88501 | 23.26  | 91921 | 23.30  | 95341 | 23.35  | 98760 | 23.41  | 102181 | 23.47  | 105600 | 23.51  | 109020 | 23.55  | 112440 | 23.58  | 115860 | 23.59  | 119281 | 23.64  | 122700 | 23.66  |
| 85152 | 23.19  | 88561 | 23.26  | 91984 | 23.30  | 95401 | 23.36  | 98838 | 23.42  | 102241 | 23.47  | 105661 | 23.51  | 109081 | 23.55  | 112501 | 23.58  | 115921 | 23.60  | 119341 | 23.64  | 122761 | 23.67  |
| 85201 | 23.19  | 88621 | 23.26  | 92041 | 23.30  | 95461 | 23.35  | 98881 | 23.42  | 102301 | 23.46  | 105721 | 23.51  | 109141 | 23.55  | 112561 | 23.58  | 115981 | 23.62  | 119401 | 23.64  | 122821 | 23.67  |
| 85260 | 23.20  | 88681 | 23.26  | 92100 | 23.30  | 95521 | 23.36  | 98940 | 23.42  | 102361 | 23.47  | 105781 | 23.52  | 109201 | 23.55  | 112634 | 23.58  | 116041 | 23.62  | 119461 | 23.64  | 122880 | 23.67  |
| 85321 | 23.20  | 88740 | 23.26  | 92161 | 23.30  | 95590 | 23.35  | 99001 | 23.43  | 102421 | 23.47  | 105841 | 23.52  | 109261 | 23.55  | 112681 | 23.58  | 116118 | 23.62  | 119521 | 23.64  | 122941 | 23.67  |
| 85384 | 23.20  | 88801 | 23.20  | 92221 | 23.30  | 95641 | 23.30  | 99070 | 23.43  | 102481 | 23.47  | 105901 | 23.52  | 109321 | 23.55  | 112/41 | 23.58  | 116161 | 23.62  | 119581 | 23.04  | 123001 | 23.07  |
| 85441 | 23.20  | 88861 | 23.20  | 92281 | 23.30  | 95700 | 23.30  | 99121 | 23.43  | 102541 | 23.47  | 105961 | 23.53  | 109380 | 23.55  | 112801 | 23.58  | 116220 | 23.62  | 119641 | 23.04  | 123060 | 23.07  |

| t[s] T[°C]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t[s] T[°C]  | t[s] T[    | CIL t[s] T[°C]  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|-----------------|
| 123121 23.67 126553 23.71 129961 23.72 133381 23.74 136801 23.78 139406 23.83 141116 23.87 143460 23.89 146880 23.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50301 23.97 | 153721 23  | 99 157141 24.03 |
| 123181 23.67 126601 23.71 130021 23.73 133441 23.73 136860 23.79 139437 23.83 141147 23.87 143521 23.90 146941 23.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50361 23.97 | 153781 23  | 99 157201 24.02 |
| 123241 23.67 126660 23.72 130081 23.73 133500 23.74 136920 23.79 139469 23.83 141176 23.88 143581 23.89 147001 23.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50424 23.97 | 153841 23. | 99 157261 24.02 |
| 123301 23.67 126721 23.72 130141 23.72 133561 23.75 137006 23.79 139497 23.83 141210 23.88 143641 23.89 147061 23.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50480 23.97 | 153911 23. | 99 157320 24.03 |
| 123361 23.67 126785 23.71 130201 23.73 133621 23.75 137040 23.79 139526 23.83 141237 23.88 143700 23.90 147121 23.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50541 23.97 | 153961 23. | 99 157381 24.03 |
| 123421 23.67 126841 23.72 130261 23.72 133681 23.75 137101 23.80 139556 23.83 141267 23.88 143761 23.90 147181 23.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50601 23.98 | 154020 23. | 99 157441 24.03 |
| 123480 23.67 126901 23.72 130320 23.72 133740 23.75 137161 23.80 139587 23.83 141296 23.88 143821 23.90 147241 23.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50661 23.97 | 154080 24. | 00 157501 24.03 |
| 123541 23.67 126961 23.72 130381 23.72 133801 23.75 137221 23.80 139624 23.83 141327 23.88 143881 23.90 147301 23.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50733 23.97 | 154141 24. | 00 157561 24.03 |
| 123601 23.67 127021 23.72 130441 23.72 133861 23.75 137281 23.80 139646 23.83 141361 23.89 143941 23.90 147361 23.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50781 23.97 | 154201 24. | 00 157620 24.03 |
| 123661 23.67 127095 23.71 130500 23.72 133921 23.75 137340 23.80 139676 23.84 141386 23.89 144001 23.90 147421 23.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50840 23.98 | 154261 23. | 99 157681 24.03 |
| 123720 23.67 127141 23.71 130561 23.72 133981 23.75 137400 23.80 139707 23.84 141417 23.89 144061 23.90 147481 23.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50901 23.98 | 154321 23. | 99 157741 24.02 |
| 123781 23.67 127201 23.71 130621 23.71 134041 23.74 137461 23.80 139740 23.84 141446 23.89 144120 23.90 147541 23.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50965 23.97 | 154381 23. | 99 157801 24.03 |
| 123841 23.67 127261 23.72 130581 23.71 134101 23.74 137521 23.80 139766 23.84 141477 23.89 144181 23.90 147600 23.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51021 23.97 | 154441 23. | 99 157861 24.02 |
| 123901 23.67 127327 23.72 130741 23.72 134161 23.74 137581 23.80 139796 23.84 141507 23.88 144241 23.90 147661 23.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51081 23.98 | 154500 23. | 99 157921 24.03 |
| 123960 23.67 127361 23.72 130601 23.72 134221 23.74 137041 23.60 139627 23.64 141536 23.89 144301 23.69 147721 23.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51141 Z3.96 | 154501 23  | 99 157981 24.03 |
| 124021 23.07 127490 23.72 130001 23.71 13421 23.73 13770 23.61 130000 23.60 14400 23.50 147701 23.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51201 23.90 | 154691 23  | 99 158101 24.03 |
| 124000 23.07 127.00 2.072 130021 23.71 13401 23.75 137701 23.04 13004 23.04 141.07 23.08 144.09 23.00 147041 23.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51321 23.90 | 154740 23  | 90 158161 24.03 |
| 124200 23.67 127637 23.72 131041 23.73 13461 23.76 137881 23.81 139947 23.84 14167 56 23.87 144541 23.90 147961 23.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 51380 23.98 | 154801 23  | 99 158220 24.04 |
| 124260 23.67 127681 23.71 131101 23.74 134521 23.76 137941 23.81 139976 23.84 141686 23.87 144601 23.90 148020 23.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51441 23.98 | 154861 23  | 99 158281 24.05 |
| 124321 23.67 127741 23.71 131161 23.75 134581 23.76 138001 23.81 140011 23.84 141716 23.87 144660 23.91 148081 23.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51506 23.98 | 154920 23  | 99 158341 24.04 |
| 124391 23.67 127800 23.72 131221 23.74 134640 23.76 138061 23.81 140037 23.84 141746 23.87 144721 23.90 148141 23.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51561 23.98 | 154981 23. | 98 158401 24.05 |
| 124441 23.68 127869 23.72 131280 23.74 134701 23.76 138120 23.81 140066 23.84 141776 23.87 144781 23.91 148200 23.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51620 23.98 | 155041 23. | 99 158461 24.04 |
| 124501 23.68 127921 23.72 131341 23.75 134761 23.76 138181 23.81 140096 23.84 141807 23.86 144841 23.91 148260 23.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51681 23.98 | 155100 23. | 99 158521 24.05 |
| 124561 23.68 127981 23.72 131401 23.75 134820 23.76 138241 23.81 140127 23.84 141837 23.86 144901 23.91 148321 23.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51741 23.99 | 155161 23. | 99 158581 24.04 |
| 124622 23.68 128041 23.72 131461 23.75 134881 23.75 138301 23.81 140156 23.85 141867 23.86 144961 23.91 148381 23.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51815 23.99 | 155221 23. | 99 158641 24.05 |
| 124681 23.68 128101 23.72 131521 23.75 134941 23.74 138361 23.81 140186 23.85 141896 23.86 145021 23.91 148440 23.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51860 23.99 | 155281 23. | 99 158700 24.05 |
| 124741 23.68 128178 23.71 131580 23.75 135001 23.75 138421 23.81 140217 23.85 141927 23.86 145081 23.91 148501 23.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51921 23.99 | 155340 23. | 99 158761 24.05 |
| 124800 23.69 128221 23.72 131641 23.75 135061 23.75 138480 23.81 140246 23.85 141957 23.87 145141 23.91 148561 23.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51981 23.99 | 155400 24. | 00 158821 24.05 |
| 124861 23.68 128281 23.72 131700 23.75 138541 23.82 140282 23.85 141986 23.87 145200 23.91 148620 23.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52048 23.98 | 155461 24. | 00 158881 24.05 |
| 124931 23.69 128341 23.71 131/60 23.75 135181 23.76 138596 23.82 14030/ 23.85 142016 23.86 145261 23.91 146681 23.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52101 23.99 | 155521 24. | 00 158941 24.05 |
| 124961 23.69 126411 23.71 131820 23.75 135241 23.76 138026 23.82 140356 23.85 142047 23.87 145321 23.91 146740 23.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52161 23.99 | 155580 24. | 00 159001 24.05 |
| 125041 23.06 126401 23.71 131061 23.75 135301 23.77 130659 23.62 140306 23.65 14207 23.67 145041 23.91 146001 23.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52220 23.99 | 155041 24. | 00 159061 24.05 |
| 125101 23.00 126321 23.71 131941 23.73 135000 23.77 130007 23.62 140390 23.05 142100 23.06 149441 23.91 140000 23.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52201 23.99 | 155761 24  | 00 159121 24.05 |
| 12520 23.69 128643 23.71 132001 23.75 135481 23.76 138746 23.82 140456 23.85 142167 23.88 145561 23.92 149881 23.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52401 23.99 | 155821 24  | 00 159241 24.06 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 52461 23.99 | 155881 24  | 00 159300 24.05 |
| 125341 23.68 128760 23.72 132185 23.75 135601 23.76 138813 23.82 140516 23.86 142261 23.88 145681 23.92 149101 23.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52521 23.99 | 155941 24. | 00 159361 24.05 |
| 125401 23.68 128821 23.72 132241 23.75 135661 23.77 138836 23.82 140552 23.86 142321 23.88 145740 23.92 149160 23.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52589 23.99 | 156000 24. | 01 159420 24.05 |
| 125471 23.69 128881 23.72 132301 23.75 135721 23.77 138866 23.82 140576 23.86 142380 23.88 145801 23.92 149221 23.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52641 23.99 | 156061 24. | 01 159481 24.06 |
| 125521 23.69 128953 23.72 132361 23.75 135781 23.78 138896 23.82 140607 23.86 142441 23.88 145860 23.92 149281 23.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52701 23.99 | 156121 24. | 01 159541 24.06 |
| 125580 23.69 129001 23.72 132421 23.75 135841 23.79 138929 23.82 140636 23.86 142501 23.88 145921 23.92 149344 23.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52761 23.99 | 156181 24. | 01 159601 24.06 |
| 125641 23.69 129061 23.71 132481 23.75 135901 23.78 138957 23.82 140669 23.86 142561 23.89 145981 23.92 149401 23.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52822 23.99 | 156241 24. | 01 159661 24.06 |
| 125703 23.69 129120 23.72 132541 23.75 135961 23.78 138987 23.82 140697 23.86 142621 23.89 146041 23.92 149461 23.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52881 23.98 | 156300 24. | 01 159721 24.06 |
| 125761 23.69 129185 23.71 132601 23.76 136021 23.78 139016 23.82 140726 23.86 142681 23.89 146101 23.92 149520 23.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52941 23.99 | 156361 24. | 01 159780 24.06 |
| 125821 23.68 129241 23.71 132661 23.76 136081 23.78 139046 23.82 140757 23.86 142741 23.89 146161 23.92 149580 23.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 53001 23.99 | 156421 24. | 01 159841 24.06 |
| 125880 23.69 129301 23.71 132720 23.75 136141 23.78 139083 23.82 140787 23.86 142800 23.89 146221 23.92 149653 23.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 53061 23.98 | 156480 24. | 01 159901 24.06 |
| 125941 23.69 129361 23.71 132781 23.75 136201 23.77 139106 23.82 140823 23.86 142860 23.89 146281 23.92 149701 23.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 53131 23.98 | 156541 24. | 01 159961 24.07 |
| 126012 23.69 129420 23.72 132641 23.75 136260 23.78 139137 23.83 140846 23.86 142921 23.86 146341 23.92 149/61 23.96 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53180 23.98 | 156601 24. | 02 160021 24.07 |
| 126001 23.00 125700 23.71 132501 23.73 130521 23.70 139107 23.00 1440077 23.00 144201 23.00 140401 23.92 140827 23.90 10011 23.00 14201 23.00 140040 23.92 140827 23.90 12614 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 140040 23.00 1400400 23.00 140040 23.00 140040 23.00 140040 23.00 140040  | 53301 23.98 | 156720 24  | 01 1601/1 24.06 |
| 120121 2010 12011 2012 10201 2010 10001 2010 10001 2010 10007 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 2000 14000 14000 2000 14000 14000 2000 14000 14000 2000 14000 14000 2000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 140000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 14000 140000 140000 140000 14000 140000 140000 140000 14000 14000 1400000 | 53364 23.90 | 156781 24  | 02 160201 24.00 |
| 126244 23.69 129661 23.71 13381 23.76 136501 23.78 139256 23.83 140967 23.87 143161 23.89 146581 23.93 150001 23.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53421 23.99 | 156841 24  | 01 160261 24.07 |
| 126301 23.69 129720 23.71 133141 23.75 136561 23.79 139266 23.83 140996 23.87 14321 23.89 146641 23.93 150060 23.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53481 23,99 | 156901 24  | 02 160321 24.07 |
| 126361 23.69 129781 23.72 133200 23.74 136621 23.78 139317 23.83 141026 23.86 143281 23.89 146701 23.93 150121 23.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 53540 23,99 | 156961 24  | 02 160380 24.07 |
| 126420 23.69 129841 23.71 133261 23.74 136681 23.78 139353 23.83 141057 23.87 143352 23.89 146761 23.93 150193 23.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 53601 23.99 | 157020 24  | 02 160441 24.07 |
| 126491 22.72 120001 22.72 122221 22.74 136740 22.79 130276 22.92 144004 22.97 142401 22.90 146091 22.02 150044 22.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E2672 22.00 | 157080 24  | 02 160501 24.07 |

| t [s]  | T [°C] | t [s]  | T [°C] | t [s]   | T [°C] | t [s]  | T [°C] | t [s]  | T [°C] | t [s]  | T [°C] | t [s]  | T [°C] | t [s]  | T [°C] | t [s]  | T [°C] | t [s]  | T [°C] |
|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 160560 | 24.07  | 163981 | 24.11  | 167401  | 24.15  | 170820 | 24.20  | 174241 | 24.23  | 177661 | 24.27  | 181081 | 24.31  | 184501 | 24.33  | 187921 | 24.33  | 191341 | 24.34  |
| 160621 | 24.07  | 164041 | 24.11  | 167461  | 24.15  | 170881 | 24.19  | 174300 | 24.23  | 177737 | 24.27  | 181141 | 24.31  | 184561 | 24.33  | 187981 | 24.34  | 191401 | 24.33  |
| 160681 | 24.07  | 164110 | 24.12  | 167520  | 24.15  | 170941 | 24.19  | 174361 | 24.23  | 177781 | 24.28  | 181201 | 24.31  | 184621 | 24.33  | 188040 | 24.33  | 191461 | 24.33  |
| 160741 | 24.07  | 164161 | 24.12  | 167580  | 24.15  | 171000 | 24.20  | 174420 | 24.24  | 177841 | 24.27  | 181261 | 24.31  | 184681 | 24.33  | 188101 | 24.34  | 191521 | 24.33  |
| 160801 | 24.07  | 164221 | 24.12  | 167640  | 24.15  | 171061 | 24.21  | 174480 | 24.24  | 177901 | 24.27  | 181321 | 24.31  | 184741 | 24.33  | 188160 | 24.34  | 191581 | 24.33  |
| 160861 | 24.07  | 164281 | 24.12  | 167700  | 24.15  | 171121 | 24.21  | 174542 | 24.24  | 177960 | 24.27  | 181381 | 24.31  | 184801 | 24.33  | 188220 | 24.34  | 191640 | 24.33  |
| 160921 | 24.07  | 164341 | 24.12  | 167761  | 24.16  | 171181 | 24.21  | 174601 | 24.24  | 178021 | 24.28  | 181440 | 24.31  | 184861 | 24.33  | 188280 | 24.34  | 191701 | 24.33  |
| 160980 | 24.07  | 164418 | 24.13  | 167821  | 24.16  | 171241 | 24.21  | 174661 | 24.24  | 178081 | 24.28  | 181501 | 24.31  | 184921 | 24.33  | 188340 | 24.34  | 191761 | 24.33  |
| 161040 | 24.07  | 164460 | 24.13  | 167881  | 24.15  | 171301 | 24.21  | 174720 | 24.25  | 178141 | 24.27  | 181561 | 24.31  | 184981 | 24.33  | 188401 | 24.34  | 191821 | 24.33  |
| 161101 | 24.07  | 164520 | 24.13  | 167941  | 24.16  | 171361 | 24.21  | 174781 | 24.25  | 178201 | 24.27  | 181621 | 24.31  | 185041 | 24.33  | 188461 | 24.34  | 191880 | 24.33  |
| 161161 | 24.07  | 164581 | 24.13  | 168001  | 24.16  | 171421 | 24.20  | 174841 | 24.24  | 178261 | 24.27  | 181680 | 24.31  | 185101 | 24.33  | 188521 | 24.34  | 191940 | 24.33  |
| 161221 | 24.08  | 164650 | 24.13  | 168061  | 24.16  | 171481 | 24.21  | 174901 | 24.25  | 178321 | 24.28  | 181740 | 24.31  | 185161 | 24.34  | 188581 | 24.34  | 192001 | 24.33  |
| 161281 | 24.08  | 164701 | 24.13  | 168121  | 24.16  | 171541 | 24.20  | 174961 | 24.25  | 178381 | 24.28  | 181800 | 24.31  | 185220 | 24.34  | 188641 | 24.34  | 192061 | 24.33  |
| 161341 | 24.08  | 164761 | 24.13  | 168180  | 24.16  | 171601 | 24.20  | 175020 | 24.25  | 178441 | 24.28  | 181861 | 24.31  | 185281 | 24.34  | 188701 | 24.34  | 192121 | 24.33  |
| 161401 | 24.08  | 164821 | 24.13  | 168241  | 24.16  | 1/1661 | 24.20  | 175081 | 24.25  | 178510 | 24.28  | 181921 | 24.31  | 185340 | 24.33  | 188761 | 24.34  | 192181 | 24.33  |
| 161461 | 24.08  | 164881 | 24.13  | 168300  | 24.16  | 171721 | 24.21  | 175141 | 24.25  | 178560 | 24.28  | 181981 | 24.31  | 185401 | 24.33  | 188821 | 24.34  | 192241 | 24.33  |
| 161521 | 24.08  | 164940 | 24.13  | 168361  | 24.16  | 171781 | 24.21  | 175201 | 24.25  | 178620 | 24.28  | 182040 | 24.32  | 185461 | 24.33  | 188881 | 24.34  | 192301 | 24.33  |
| 161580 | 24.08  | 165001 | 24.13  | 168421  | 24.10  | 171841 | 24.21  | 175261 | 24.25  | 178681 | 24.27  | 182101 | 24.32  | 185521 | 24.33  | 188941 | 24.34  | 192361 | 24.33  |
| 161701 | 24.08  | 165101 | 24.12  | 1695401 | 24.10  | 171901 | 24.21  | 175320 | 24.25  | 170001 | 24.27  | 102101 | 24.32  | 105000 | 24.34  | 189004 | 24.34  | 192420 | 24.33  |
| 161761 | 24.09  | 165101 | 24.13  | 169601  | 24.10  | 171901 | 24.21  | 175441 | 24.20  | 179961 | 24.20  | 192221 | 24.32  | 195701 | 24.34  | 109001 | 24.34  |        |        |
| 161821 | 24.09  | 1652/1 | 24.13  | 168661  | 24.10  | 172021 | 24.21  | 175501 | 24.25  | 178021 | 24.20  | 1823/1 | 24.32  | 185761 | 24.34  | 180181 | 24.34  |        |        |
| 161881 | 24.09  | 165301 | 24.13  | 168721  | 24.10  | 172033 | 24.21  | 175561 | 24.25  | 178981 | 24.27  | 182401 | 24.32  | 185821 | 24.34  | 189241 | 24.34  |        |        |
| 161941 | 24.09  | 165361 | 24.12  | 168781  | 24.10  | 172201 | 24.20  | 175621 | 24.25  | 179050 | 24.20  | 182460 | 24.32  | 185881 | 24.34  | 189301 | 24.34  |        |        |
| 162001 | 24.09  | 165422 | 24 11  | 168841  | 24.16  | 172260 | 24 20  | 175681 | 24.25  | 179100 | 24.28  | 182520 | 24.32  | 185941 | 24.34  | 189361 | 24.34  |        |        |
| 162061 | 24.09  | 165481 | 24.11  | 168901  | 24.17  | 172321 | 24.21  | 175741 | 24.25  | 179161 | 24.28  | 182581 | 24.32  | 186001 | 24.34  | 189432 | 24.34  |        |        |
| 162121 | 24.09  | 165541 | 24.11  | 168960  | 24.16  | 172381 | 24.21  | 175800 | 24.25  | 179221 | 24.28  | 182641 | 24.32  | 186061 | 24.34  | 189481 | 24.34  |        |        |
| 162181 | 24.09  | 165600 | 24.11  | 169021  | 24.16  | 172441 | 24.21  | 175861 | 24.25  | 179282 | 24.28  | 182701 | 24.32  | 186121 | 24.33  | 189541 | 24.34  |        |        |
| 162241 | 24.09  | 165661 | 24.11  | 169081  | 24.16  | 172500 | 24.21  | 175921 | 24.25  | 179341 | 24.28  | 182761 | 24.32  | 186181 | 24.34  | 189601 | 24.34  |        |        |
| 162301 | 24.09  | 165721 | 24.12  | 169141  | 24.17  | 172561 | 24.21  | 175981 | 24.25  | 179401 | 24.30  | 182821 | 24.32  | 186241 | 24.34  | 189661 | 24.34  |        |        |
| 162361 | 24.09  | 165781 | 24.12  | 169201  | 24.17  | 172621 | 24.22  | 176041 | 24.25  | 179460 | 24.30  | 182881 | 24.32  | 186301 | 24.34  | 189721 | 24.35  |        |        |
| 162421 | 24.09  | 165841 | 24.12  | 169261  | 24.17  | 172681 | 24.22  | 176101 | 24.26  | 179521 | 24.30  | 182941 | 24.32  | 186361 | 24.34  | 189781 | 24.34  |        |        |
| 162481 | 24.09  | 165901 | 24.12  | 169321  | 24.16  | 172741 | 24.21  | 176161 | 24.25  | 179591 | 24.30  | 183001 | 24.32  | 186421 | 24.34  | 189841 | 24.34  |        |        |
| 162541 | 24.10  | 165961 | 24.12  | 169380  | 24.17  | 172800 | 24.22  | 176221 | 24.25  | 179640 | 24.31  | 183061 | 24.32  | 186481 | 24.33  | 189901 | 24.34  |        |        |
| 162601 | 24.09  | 166020 | 24.12  | 169441  | 24.16  | 172861 | 24.22  | 176280 | 24.25  | 179701 | 24.31  | 183121 | 24.32  | 186541 | 24.34  | 189961 | 24.34  |        |        |
| 162661 | 24.09  | 166081 | 24.12  | 169501  | 24.16  | 172920 | 24.22  | 176340 | 24.25  | 179760 | 24.31  | 183181 | 24.32  | 186601 | 24.34  | 190021 | 24.34  |        |        |
| 162721 | 24.09  | 166141 | 24.12  | 169561  | 24.16  | 172981 | 24.22  | 176401 | 24.25  | 179821 | 24.31  | 183241 | 24.32  | 186661 | 24.33  | 190080 | 24.33  |        |        |
| 162781 | 24.09  | 166201 | 24.13  | 169620  | 24.17  | 173041 | 24.22  | 176461 | 24.26  | 179881 | 24.31  | 183301 | 24.32  | 186721 | 24.33  | 190140 | 24.33  |        |        |
| 162841 | 24.09  | 166261 | 24.12  | 169680  | 24.17  | 173101 | 24.23  | 176520 | 24.26  | 179941 | 24.31  | 183361 | 24.32  | 186783 | 24.33  | 190201 | 24.32  |        |        |
| 162901 | 24.10  | 166321 | 24.13  | 169741  | 24.17  | 173161 | 24.22  | 176580 | 24.26  | 180001 | 24.31  | 183421 | 24.32  | 186841 | 24.34  | 190261 | 24.33  |        |        |
| 162961 | 24.10  | 166381 | 24.13  | 169801  | 24.18  | 173220 | 24.23  | 176641 | 24.26  | 180061 | 24.31  | 183481 | 24.32  | 186900 | 24.34  | 190321 | 24.32  |        |        |
| 163021 | 24.10  | 166441 | 24.13  | 169861  | 24.18  | 173281 | 24.23  | 1/6/01 | 24.26  | 180121 | 24.31  | 183541 | 24.33  | 186960 | 24.34  | 190381 | 24.32  |        |        |
| 163080 | 24.10  | 166501 | 24.13  | 169921  | 24.18  | 173341 | 24.22  | 1/6/61 | 24.20  | 180181 | 24.31  | 183600 | 24.33  | 187020 | 24.34  | 190440 | 24.33  |        |        |
| 163141 | 24.10  | 100001 | 24.13  | 170041  | 24.10  | 173401 | 24.23  | 176001 | 24.20  | 100241 | 24.31  | 100001 | 24.33  | 107000 | 24.34  | 190501 | 24.33  |        |        |
| 163201 | 24.10  | 166691 | 24.13  | 170041  | 24.10  | 173401 | 24.23  | 176040 | 24.20  | 100301 | 24.31  | 103721 | 24.32  | 107140 | 24.34  | 100621 | 24.33  |        |        |
| 163201 | 24.10  | 166741 | 24.13  | 170100  | 24.10  | 173520 | 24.23  | 170940 | 24.20  | 100301 | 24.31  | 103/00 | 24.33  | 107201 | 24.34  | 100691 | 24.33  |        |        |
| 163320 | 24.10  | 166901 | 24.14  | 170101  | 24.10  | 1736/1 | 24.23  | 177061 | 24.20  | 100420 | 24.31  | 192001 | 24.33  | 197221 | 24.34  | 1007/1 | 24.33  |        |        |
| 163440 | 24.10  | 166861 | 24.14  | 170221  | 24.19  | 173701 | 24.23  | 177121 | 24.27  | 180540 | 24.31  | 183061 | 24.32  | 197391 | 24.34  | 100801 | 24.34  |        |        |
| 163501 | 24.10  | 166921 | 24.14  | 170200  | 24.10  | 173761 | 24.23  | 177181 | 24.21  | 180601 | 24.31  | 184021 | 24.32  | 187440 | 24.34  | 190861 | 24.34  |        |        |
| 163561 | 24.03  | 166980 | 24.13  | 170401  | 24.10  | 173821 | 24 23  | 177241 | 24.27  | 180661 | 24.31  | 184081 | 24.32  | 187501 | 24.34  | 190921 | 24.34  |        |        |
| 163621 | 24 10  | 167040 | 24 15  | 170461  | 24 19  | 173880 | 24 23  | 177301 | 24 27  | 180721 | 24.31  | 184141 | 24.33  | 187561 | 24.34  | 190980 | 24.35  |        |        |
| 163681 | 24.10  | 167101 | 24.15  | 170520  | 24.19  | 173941 | 24.23  | 177361 | 24.27  | 180781 | 24.31  | 184201 | 24.33  | 187620 | 24.34  | 191041 | 24.35  |        |        |
| 163741 | 24.11  | 167161 | 24.14  | 170581  | 24.20  | 174001 | 24.23  | 177420 | 24.27  | 180841 | 24.31  | 184261 | 24.33  | 187680 | 24.34  | 191101 | 24.35  |        |        |
| 163801 | 24.10  | 167221 | 24.15  | 170641  | 24.19  | 174061 | 24.23  | 177481 | 24.27  | 180901 | 24.31  | 184320 | 24.33  | 187741 | 24.34  | 191161 | 24.35  |        |        |
| 163860 | 24.11  | 167281 | 24.15  | 170701  | 24.20  | 174121 | 24.23  | 177541 | 24.27  | 180960 | 24.31  | 184381 | 24.33  | 187801 | 24.34  | 191221 | 24.36  |        |        |
| 163920 | 24.11  | 167341 | 24.15  | 170761  | 24.20  | 174181 | 24.23  | 177601 | 24.27  | 181021 | 24.31  | 184441 | 24.33  | 187861 | 24.34  | 191281 | 24.35  |        |        |
|        |        |        |        |         |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |

### Daten der LWL-Messung

| 0         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         16.1         10054         19.71         15039         20.47         20023         20.93         25007         21.30         29991         21.56         3488         21.77         39959         21.96         44944         22.10         49928           175         16.87         5159         18.20         10142         19.73         15126         20.49         20110         20.93         25094         21.30         30078         21.56         34975         21.77         39959         21.96         44944         22.10         50015         263         16.92         5246         18.25         10229         19.74         15213         20.50         20188         20.94         25182         21.31         30166         21.55         35150         21.76         40134         21.96         45206         22.11         50102         30253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22.26         54824         22.38           22.25         54911         22.39           22.25         55086         22.39           22.26         55261         22.40           22.26         55348         22.40           22.26         555261         22.40           22.26         55348         22.40           22.26         555261         22.40           22.26         55523         22.40           22.27         55611         22.39           22.29         55698         22.40           22.30         55786         22.39           22.30         55873         22.39           22.39         55961         22.39           22.29         55964         22.39           22.29         56948         22.40 | 338<br>339<br>339<br>339<br>40<br>40<br>40<br>40<br>40<br>40<br>39<br>40<br>39<br>39                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 88       16.83       5071       18.16       10054       19.71       15039       20.47       20023       20.93       25007       21.30       29991       21.56       34975       21.77       39959       21.96       44944       22.10       49928         175       16.87       5159       18.20       10142       19.73       15126       20.49       20110       20.93       25094       21.30       30078       21.56       35062       21.76       40047       21.96       45031       22.10       50015         263       16.92       5246       18.25       10229       19.74       15213       20.50       20198       20.94       25182       21.31       30166       21.55       35150       21.76       40134       21.96       45118       22.10       50102         350       16.98       5334       18.29       10317       19.76       15301       20.51       20285       20.95       2569       21.30       30253       21.56       35237       21.77       40221       21.96       45206       22.11       50190         438       17.03       5421       18.33       10404       19.78       15838       20.52       20372       20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.25         54911         22.39           22.25         54999         22.39           22.26         55086         22.39           22.26         55261         22.40           22.26         55348         22.40           22.26         55523         22.40           22.26         55634         22.40           22.26         55523         22.40           22.27         55611         22.39           22.29         55698         22.40           22.30         55786         22.39           22.29         55961         22.39           22.29         55964         22.40           22.30         55786         22.39           22.29         55961         22.39           22.29         56948         22.40   | 39<br>39<br>39<br>40<br>40<br>40<br>40<br>40<br>40<br>39<br>40<br>39<br>39                                                                     |
| 175       16.87       5159       18.20       10142       19.73       15126       20.49       20110       20.93       25094       21.30       30078       21.56       35062       21.76       40047       21.96       45031       22.10       50015         263       16.92       5246       18.25       10229       19.74       15213       20.50       20198       20.94       25182       21.31       30166       21.55       35150       21.76       40134       21.96       45118       22.10       50102         350       16.98       5334       18.29       10317       19.76       15301       20.51       20285       20.95       25269       21.30       30253       21.56       35237       21.77       40221       21.96       45206       22.11       50190         438       17.03       5525       10.49       10404       19.78       15848       20.52       20372       20.96       25357       21.30       30341       21.56       35352       21.78       40309       21.98       45293       22.11       50277         525       17.09       5596       18.41       10579       19.80       15563       20.547       20.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.25         54999         22.39           22.25         55086         22.39           22.26         55174         22.40           22.26         55261         22.40           22.25         55436         22.40           22.25         55436         22.40           22.25         55436         22.40           22.26         55523         22.40           22.27         55611         22.39           22.30         55786         22.34           22.30         55873         22.39           22.30         55873         22.39           22.29         55961         22.39           22.29         56048         22.40                                                                                           | 39<br>39<br>40<br>40<br>40<br>40<br>40<br>40<br>39<br>40<br>39<br>39                                                                           |
| 263       16.92       5246       18.25       10229       19.74       15213       20.50       20198       20.94       25182       21.31       30166       21.55       35150       21.76       40134       21.96       45118       22.10       50102         350       16.98       5334       18.29       10317       19.76       15301       20.51       20285       20.95       25269       21.30       30253       21.56       35237       21.77       40221       21.96       45206       22.11       50190         438       17.03       5421       18.33       10404       19.78       15388       20.52       20372       20.96       25357       21.30       30341       21.66       35325       21.78       40309       21.98       45293       22.11       50277         525       17.09       5509       18.38       10492       19.79       15476       20.53       20460       20.96       25444       21.81       30428       21.58       35412       21.79       40396       21.84       45481       22.12       50455         612       17.14       5566       18.41       10579       19.80       15563       20.54       20635       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.25         55086         22.39           22.26         55174         22.40           22.26         55261         22.40           22.25         55436         22.40           22.26         55523         22.40           22.26         555436         22.40           22.27         55611         22.39           22.30         55786         22.30           22.30         55873         22.39           22.30         55873         22.39           22.29         55961         22.39           22.29         56048         22.40                                                                                                                                                                                  | <ol> <li>39</li> <li>40</li> <li>40</li> <li>40</li> <li>40</li> <li>40</li> <li>39</li> <li>40</li> <li>39</li> <li>39</li> <li>39</li> </ol> |
| 350       16.98       5334       18.29       10317       19.76       15301       20.51       20285       20.95       25269       21.30       30253       21.56       35237       21.77       40221       21.96       45206       22.11       50190         438       17.03       5421       18.33       10404       19.78       15388       20.52       20372       20.96       25357       21.30       30341       21.56       35232       21.78       40309       21.98       45293       22.11       50277         525       17.09       5509       18.38       10492       19.79       15476       20.53       20460       20.96       25444       21.18       35412       21.78       40309       21.98       45293       22.11       500277         521       17.09       5509       18.38       10492       19.79       15476       20.53       20.460       25444       21.31       30428       21.58       35510       21.80       40484       21.99       45468       22.12       50356         612       17.14       5568       18.45       10666       19.81       15651       20.54       20635       20.98       25619       21.33 <td< td=""><td>22.26         55174         22.40           22.26         55261         22.40           22.26         55348         22.40           22.25         55436         22.40           22.26         55523         22.40           22.27         55611         22.39           22.30         55786         22.30           22.30         55873         22.39           22.29         55961         22.39           22.29         56048         22.40</td><td>.40<br/>.40<br/>.40<br/>.40<br/>.40<br/>.40<br/>.39<br/>.40<br/>.39<br/>.39<br/>.39</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                           | 22.26         55174         22.40           22.26         55261         22.40           22.26         55348         22.40           22.25         55436         22.40           22.26         55523         22.40           22.27         55611         22.39           22.30         55786         22.30           22.30         55873         22.39           22.29         55961         22.39           22.29         56048         22.40                                                                                                                                                                                                                                                                           | .40<br>.40<br>.40<br>.40<br>.40<br>.40<br>.39<br>.40<br>.39<br>.39<br>.39                                                                      |
| 438       17.03       5421       18.33       10404       19.78       15388       20.52       20372       20.96       25357       21.30       30341       21.56       35325       21.78       40309       21.98       45293       22.11       50277         525       17.09       5509       18.38       10492       19.79       15476       20.53       20460       20.96       25444       21.31       30428       21.58       35412       21.79       40396       21.98       45381       22.12       50365         612       17.14       5596       18.41       10579       19.80       15563       20.54       20547       20.98       25532       21.32       30516       21.59       35500       21.80       40484       21.99       45468       22.13       50452         700       17.18       5683       18.45       10666       19.81       15651       20.54       20635       20.98       25619       21.33       30603       21.59       35587       21.80       40571       21.99       45468       22.14       50539         787       17.21       5771       18.49       10754       19.83       15738       20.56       20722       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.26         55261         22.40           22.26         55348         22.40           22.25         55436         22.40           22.26         55523         22.40           22.27         55611         22.39           22.30         55786         22.39           22.30         55873         22.39           22.30         55873         22.39           22.30         55873         22.39           22.29         55961         22.39           22.29         55961         22.39           22.29         56048         22.40                                                                                                                                                                                   | .40<br>.40<br>.40<br>.40<br>.39<br>.40<br>.39<br>.39<br>.39                                                                                    |
| 525       17.09       5509       18.38       10492       19.79       15476       20.53       20460       20.96       25444       21.31       30428       21.58       35412       21.79       40396       21.98       45381       22.12       50365         612       17.14       5596       18.41       10579       19.80       15563       20.54       20547       20.98       25532       21.32       30516       21.59       35500       21.80       40484       21.99       45468       22.13       50452         700       17.18       5683       18.45       10666       19.81       15651       20.54       20635       20.98       25619       21.33       30603       21.59       35587       21.80       40571       21.99       45566       22.14       50539         787       17.21       5771       18.49       10754       19.83       15738       20.56       20722       21.00       25706       21.33       30690       21.60       35705       21.81       40659       21.99       45643       22.14       50637         707       17.21       5771       18.49       10754       19.83       15738       20.56       20722       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.26         55348         22.40           22.25         55436         22.40           22.26         55523         22.40           22.27         55611         22.39           22.29         55698         22.40           22.30         55786         22.39           22.29         55961         22.39           22.29         55964         22.39           22.29         55961         22.39           22.29         56048         22.40                                                                                                                                                                                                                                                                           | .40<br>.40<br>.40<br>.39<br>.40<br>.39<br>.39<br>.39                                                                                           |
| 612       17.14       5596       18.41       10579       19.80       15563       20.54       20547       20.98       25532       21.32       30516       21.59       35500       21.80       40484       21.99       45468       22.13       50452         700       17.18       5683       18.45       10666       19.81       15651       20.54       20635       20.98       25619       21.33       30603       21.59       35587       21.80       40571       21.99       45556       22.14       50539         787       17.21       5771       18.49       10754       19.83       15738       20.56       20722       21.00       25706       21.33       30690       21.60       35575       21.81       40659       21.99       45643       22.14       50637         707       17.20       57771       18.49       10754       19.83       15738       20.56       20722       21.00       25706       21.60       35575       21.81       40659       21.99       45643       22.14       50627         707       17.09       40.50       20.57       21.80       25706       21.33       30690       21.60       35705       21.81 <td< td=""><td>22.25         55436         22.40           22.26         55523         22.40           22.27         55611         22.39           22.29         55698         22.40           22.30         55786         22.39           22.29         55961         22.39           22.29         55961         22.39           22.29         56948         22.40</td><td>.40<br/>.40<br/>39<br/>40<br/>39<br/>39</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22.25         55436         22.40           22.26         55523         22.40           22.27         55611         22.39           22.29         55698         22.40           22.30         55786         22.39           22.29         55961         22.39           22.29         55961         22.39           22.29         56948         22.40                                                                                                                                                                                                                                                                                                                                                                   | .40<br>.40<br>39<br>40<br>39<br>39                                                                                                             |
| 700         17.18         5683         18.45         10666         19.81         15651         20.54         20635         20.98         25619         21.33         30603         21.59         35587         21.80         40571         21.99         45556         22.14         50539           787         17.21         5771         18.49         10754         19.83         15738         20.56         20722         21.00         25706         21.33         30690         21.60         35675         21.81         40659         21.99         45643         22.14         50639           700         17.21         5771         18.49         10754         19.83         15738         20.56         20722         21.00         25706         21.33         30690         21.60         35675         21.81         40659         21.99         45643         22.14         50627                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22.26         55523         22.40           22.27         55611         22.39           22.29         55698         22.40           22.30         55786         22.39           22.30         55873         22.39           22.29         55961         22.39           22.29         56948         22.40                                                                                                                                                                                                                                                                                                                                                                                                               | .40<br>.39<br>40<br>39<br>39                                                                                                                   |
| 787 17.21 5771 18.49 10754 19.83 15738 20.56 20722 21.00 25706 21.33 30690 21.60 35675 21.81 40659 21.99 45643 22.14 50627                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22.27         55611         22.39           22.29         55698         22.40           22.30         55786         22.39           22.30         55873         22.39           22.29         55961         22.39           22.29         56048         22.40                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .39<br>40<br>39<br>39                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.29         55698         22.40           22.30         55786         22.39           22.30         55873         22.39           22.29         55961         22.39           22.29         56048         22.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .40<br>39<br>39                                                                                                                                |
| 8/5 17.22 5858 18.53 10841 19.85 15826 20.57 20810 21.01 25/94 21.33 30/78 21.60 35762 21.82 40746 21.99 45730 22.14 50714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22:30         55786         22:39           22:30         55873         22:39           22:29         55961         22:39           22:29         56048         22:40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .39<br>39                                                                                                                                      |
| 962 17.24 5946 18.56 10929 19.86 15913 20.58 20897 21.02 25881 21.32 30865 21.61 35849 21.82 40834 21.98 45818 22.14 50802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22.30         55873         22.39           22.29         55961         22.39           22.29         56048         22.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 39                                                                                                                                             |
| 1050 17.24 0033 18.59 11016 19.88 10000 20.59 20985 21.03 25969 21.33 30953 21.61 35937 21.82 40921 21.99 45905 22.15 50885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.29         55961         22.39           22.29         56048         22.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20                                                                                                                                             |
| 1137 17.24 0120 16.05 11104 19.05 10006 20.59 21072 21.04 20050 21.33 31040 21.61 30024 21.62 41006 21.99 49993 22.15 3097/<br>1234 17.24 6009 10.66 11404 10.04 16475 20.60 2446 24.04 20050 21.53 31040 21.61 30024 21.62 41006 21.99 49993 22.15 3097/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22.29 50046 22.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 39                                                                                                                                             |
| 1224  17.24  0200  16.00  11191  19.91  10175  20.00  21139  21.04  20144  21.33  31120  21.02  30112  21.03  41090  22.00  40000  22.16  51046  210112  21.03  41090  22.00  40000  22.16  51046  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210112  210                                                                                                                                                                                                                                         | 22 20 56135 22 /0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40                                                                                                                                             |
| 1300 17.24 638 18.72 11366 19.05 1635 1050 20.61 2134 21.05 2021 2.1.07 01215 2.1.02 0105 21.05 1105 2.2.06 1005 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 0105 22.16 01 | 22.29 56223 22.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40                                                                                                                                             |
| 1487 17.24 6470 18.75 11453 19.96 16438 20.62 21422 2105 26406 21.39 31390 21.62 36374 21.83 41358 22.01 46342 22.16 51326                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22.29 56310 22.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 39                                                                                                                                             |
| 1574 17.24 6557 18.78 11541 19.98 16525 20.62 21509 21.06 26493 21.39 31477 21.62 36461 21.83 41446 22.03 46430 22.16 51414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.28 56398 22.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .39                                                                                                                                            |
| 1662 17.24 6645 18.81 11628 20.00 16613 20.64 21597 21.07 26581 21.40 31565 21.63 36549 21.83 41533 22.03 46517 22.17 51501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.28 56485 22.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .39                                                                                                                                            |
| 1749 17.23 6732 18.84 11716 20.01 16700 20.64 21684 21.08 26668 21.39 31652 21.64 36636 21.83 41620 22.03 46605 22.17 51589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.29 56573 22.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .40                                                                                                                                            |
| 1837 17.21 6819 18.87 11803 20.02 16787 20.66 21772 21.08 26756 21.40 31740 21.64 36724 21.83 41708 22.02 46692 22.17 51676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.30 56660 22.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .40                                                                                                                                            |
| 1924         17.19         6907         18.90         11891         20.04         16875         20.66         21859         21.09         26843         21.40         31827         21.65         36811         21.84         41796         22.02         46780         22.17         51764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.31 56747 22.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .41                                                                                                                                            |
| 2011 17.18 6994 18.94 11978 20.06 16962 20.67 21946 21.10 26930 21.40 31915 21.65 36899 21.84 41883 22.03 46867 22.16 51851                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.31 56835 22.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .41                                                                                                                                            |
| 2099 17.18 7082 18.97 12066 20.07 17050 20.68 22034 21.11 27018 21.40 32002 21.65 36986 21.85 41971 22.04 46955 22.16 51938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.31 56922 22.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .41                                                                                                                                            |
| 2186       17.18       7169       19.00       12153       20.08       17137       20.68       22121       21.12       27105       21.41       32090       21.65       37074       21.86       42058       22.05       47042       22.16       52026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.31 57010 22.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .41                                                                                                                                            |
| 2274 17.18 7256 19.03 12240 20.09 17225 20.69 22209 21.12 27193 21.41 32177 21.66 37161 21.86 42145 22.05 47129 22.17 52113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.31 57097 22.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 42                                                                                                                                             |
| 2361 17.17 7344 19.06 12328 20.10 17312 20.70 22296 21.12 27280 21.41 32264 21.66 37248 21.87 42233 22.04 47217 22.17 52201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.31 57185 22.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 42                                                                                                                                             |
| 2449 17.17 7431 19.08 12415 20.12 17399 20.71 22384 21.12 27368 21.41 32352 21.66 37336 21.87 42320 22.04 47304 22.17 52288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.31 57272 22.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 42                                                                                                                                             |
| 2536 17.16 7519 19.10 12503 20.14 17487 20.71 22471 21.13 27455 21.42 32439 21.65 37423 21.88 42408 22.05 47392 22.16 52376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.32 57360 22.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 42                                                                                                                                             |
| 2624 17.17 7606 19.12 12590 20.16 17574 20.71 22559 21.13 27543 21.42 32527 21.66 37511 21.88 42495 22.05 47479 22.17 52463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.32 57447 22.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 42                                                                                                                                             |
| 2/11 17.17 7093 19.15 12678 20.17 17662 20.72 22046 21.14 27630 21.43 32614 21.67 37598 21.88 42583 22.06 47567 22.18 52551 2750 47567 22.18 52551 21.44 14.473 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14.14 14 | 22.32 57534 22.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 42                                                                                                                                             |
| 2/36 17.17 7/61 19.17 12/05 20.16 17/49 20.73 22/33 21.14 27/17 21.43 32/02 21.06 37/060 21.06 420/0 22.07 47/054 22.16 52030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22.32 57622 22.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 42                                                                                                                                             |
| 2000 17.10 7000 19.20 12033 20.20 17037 20.73 22021 21.13 27003 21.43 32767 21.09 3775 21.07 42739 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.19 32729 22.07 47742 22.07 47742 22.19 32729 22.07 47742 22.07 47742 22.19 32729 22. | 22.32 57707 22.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 41                                                                                                                                             |
| 3061 17 16 8043 19 26 1307 20 22 18012 20 77 22996 21 16 27980 21 44 32964 21 69 37948 21 88 42932 22 06 47016 22 19 52900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22.33 57884 22.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 41                                                                                                                                             |
| 3148 17.16 8131 19.28 13115 20.23 18099 20.77 23083 21.17 28067 21.45 33051 21.69 38035 21.89 43020 22.06 48004 22.20 52988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.33 57972 22.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .41                                                                                                                                            |
| 3236 17.19 8218 19.30 13202 20.25 18186 20.78 23171 21.17 28155 21.46 33139 21.70 38123 21.89 43107 22.06 48091 22.20 53075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.33 58059 22.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .42                                                                                                                                            |
| 3323 17.22 8305 19.33 13290 20.26 18274 20.79 23258 21.17 28242 21.48 33226 21.71 38210 21.89 43195 22.07 48179 22.21 53163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.33 58146 22.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .42                                                                                                                                            |
| 3410 17.26 8393 19.35 13377 20.28 18361 20.80 23346 21.18 28330 21.49 33314 21.71 38298 21.90 43282 22.07 48266 22.21 53250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.33 58234 22.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .43                                                                                                                                            |
| 3498 17.31 8480 19.37 13465 20.29 18449 20.81 23433 21.18 28417 21.49 33401 21.72 38385 21.91 43370 22.07 48354 22.21 53338                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.32 58321 22.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .44                                                                                                                                            |
| 3585       17.36       8568       19.38       13552       20.30       18536       20.82       23520       21.18       28504       21.49       33489       21.71       38473       21.91       43457       22.07       48441       22.21       53425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.33 58409 22.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .45                                                                                                                                            |
| 3673       17.41       8655       19.41       13640       20.31       18624       20.82       23608       21.20       28592       21.49       33576       21.71       38560       21.90       43544       22.08       48529       22.22       53513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.33 58496 22.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45                                                                                                                                             |
| 3760 17.46 8743 19.43 13727 20.32 18711 20.83 23695 21.20 28679 21.50 33663 21.71 38648 21.90 43632 22.09 48616 22.22 53600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.34 58584 22.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45                                                                                                                                             |
| 3848         17.52         8830         19.45         13814         20.34         18798         20.84         23783         21.22         28767         21.50         33751         21.72         38735         21.89         43719         22.09         48703         22.22         53687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.34 58671 22.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45                                                                                                                                             |
| 3935         17.57         8918         19.47         13902         20.35         18886         20.85         23870         21.23         28854         21.51         33838         21.73         38822         21.90         43807         22.09         48791         22.22         53775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.34 58759 22.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45                                                                                                                                             |
| 4022 17.62 9005 19.50 13989 20.36 18973 20.86 23958 21.23 28942 21.51 33926 21.73 38910 21.90 43894 22.09 48878 22.22 53862                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.34 58846 22.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 46                                                                                                                                             |
| 4110 17.67 9093 19.52 14077 20.37 19061 20.86 24045 21.23 29029 21.52 34013 21.73 38997 21.91 43982 22.09 48966 22.23 53950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.34 58933 22.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 46                                                                                                                                             |
| 4197 17.72 9180 19.54 14164 20.36 19148 20.86 24132 21.24 29117 21.53 34101 21.73 39085 21.92 44069 22.09 49053 22.24 54037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.36 59021 22.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 47                                                                                                                                             |
| +200 11.10 201 15.00 14202 20.30 12500 20.01 24220 21.20 2304 21.20 34100 21.14 39112 21.92 44107 22.10 49141 22.24 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 54124 5412 | 22.30 39106 22.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40<br>17                                                                                                                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22.37 59283 22.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 47                                                                                                                                             |
| 4547 17.88 9530 19.59 14514 20.42 19498 20.91 24482 21.26 29466 21.53 34450 21.76 39434 21.93 44419 22.09 49103 22.24 54387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.38 59371 22.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .48                                                                                                                                            |
| 4634 17.94 9617 19.61 14601 20.43 19585 20.91 24570 21.27 29554 21.54 34538 21.76 39522 21.93 44506 22.09 49490 22.23 54474                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.38 59458 22.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .48                                                                                                                                            |
| 4722 17.99 9705 19.64 14689 20.44 19673 20.91 24657 21.27 29641 21.54 34625 21.76 39609 21.94 44594 22.10 49578 22.24 54562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.38 59545 22.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .48                                                                                                                                            |
| 4809 18.04 9792 19.66 14776 20.44 19760 20.92 24745 21.28 29729 21.55 34713 21.76 39697 21.94 44681 22.09 49665 22.25 54649                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.38 59633 22.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .49                                                                                                                                            |
| 4897 18.08 9879 19.68 14864 20.45 19848 20.92 24832 21.28 29816 21.55 34800 21.77 39784 21.95 44769 22.09 49753 22.26 54736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                             |
#### Daten der LWL-Messung

| Bester         2-26         K-172         2-26         K-172         2-26         K-174         2-26         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t [s]          | T [°C] | t [s]          | T [°C] | t [s]          | T [°C] | t [s] | T [°C] | t [s] | T [°C] | t [s]          | T [°C] | t [s]          | T [°C] | t [s]          | T [°C] | t [s]  | T [°C] | t [s]  | T [°C] | t [s]   | T [°C] | t [s]  | T [°C] |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|----------------|--------|----------------|--------|-------|--------|-------|--------|----------------|--------|----------------|--------|----------------|--------|--------|--------|--------|--------|---------|--------|--------|--------|
| empty         2230         befy         2330         befy         2330 <t< td=""><td>59808</td><td>22.49</td><td>64792</td><td>22.60</td><td>69776</td><td>22.68</td><td>74760</td><td>22.77</td><td>79745</td><td>22.88</td><td>84729</td><td>22.96</td><td>89713</td><td>23.04</td><td>94697</td><td>23.12</td><td>99681</td><td>23.17</td><td>104665</td><td>23.27</td><td>109649</td><td>23.37</td><td>114633</td><td>23.44</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59808          | 22.49  | 64792          | 22.60  | 69776          | 22.68  | 74760 | 22.77  | 79745 | 22.88  | 84729          | 22.96  | 89713          | 23.04  | 94697          | 23.12  | 99681  | 23.17  | 104665 | 23.27  | 109649  | 23.37  | 114633 | 23.44  |
| bit with with with with with with with wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 59895          | 22.50  | 64879          | 22.60  | 69864          | 22.69  | 74848 | 22.77  | 79832 | 22.88  | 84816          | 22.97  | 89800          | 23.05  | 94784          | 23.13  | 99768  | 23.17  | 104752 | 23.27  | 109737  | 23.37  | 114721 | 23.44  |
| 00008         22.00         06124         22.60         0701         22.10         00031         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00         06051         22.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60070          | 22.50  | 65054          | 22.59  | 70038          | 22.70  | 74935 | 22.11  | 80007 | 22.00  | 84904<br>84991 | 22.90  | 89000          | 23.05  | 94072          | 23.13  | 99000  | 23.17  | 104640 | 23.20  | 109624  | 23.30  | 114000 | 23.44  |
| box         25.0         06.27         26.0         71.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         27.07         807.07         80.07         80.07 <td>60158</td> <td>22.50</td> <td>65142</td> <td>22.59</td> <td>70126</td> <td>22.71</td> <td>75110</td> <td>22.78</td> <td>80095</td> <td>22.90</td> <td>85079</td> <td>22.99</td> <td>90063</td> <td>23.06</td> <td>95047</td> <td>23.14</td> <td>100031</td> <td>23.18</td> <td>105015</td> <td>23.26</td> <td>109999</td> <td>23.39</td> <td>114983</td> <td>23.45</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60158          | 22.50  | 65142          | 22.59  | 70126          | 22.71  | 75110 | 22.78  | 80095 | 22.90  | 85079          | 22.99  | 90063          | 23.06  | 95047          | 23.14  | 100031 | 23.18  | 105015 | 23.26  | 109999  | 23.39  | 114983 | 23.45  |
| b032         22.50         65.71         27.00         75.80         27.97         80.80         27.00         80.20         23.0         80.20         23.1         10.000         23.1         10.007         23.0         10.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11.007         23.0         11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60245          | 22.50  | 65229          | 22.59  | 70213          | 22.71  | 75197 | 22.79  | 80182 | 22.90  | 85166          | 22.99  | 90150          | 23.06  | 95134          | 23.13  | 100118 | 23.18  | 105102 | 23.27  | 110086  | 23.39  | 115070 | 23.45  |
| ebbed         25.0         69.44         2.0.0         73.4         7.0.7         7.2.0         73.4         73.2         73.0         74.40         27.4           6007         2.0.0         69.47         2.0.0         74.40         27.0         86.44         2.0.0         85.37         2.1.6         10038         2.1.6         10038         2.1.6         10038         2.1.6         10038         2.1.6         10038         2.1.6         10038         2.1.6         10038         2.1.6         10038         2.1.6         10038         2.1.6         10038         2.1.6         10038         2.1.6         10038         2.1.6         10038         2.1.6         10038         2.1.6         10038         2.1.6         10038         2.1.6         10038         2.1.6         10038         2.1.6         10038         2.1.6         10038         2.1.6         10038         2.1.6         10038         2.1.6         10038         2.1.6         10038         2.1.6         10038         2.1.6         10038         2.1.6         10038         2.1.6         10038         2.1.6         10038         2.1.6         10038         2.1.6         10038         2.1.6         10038         2.1.6         10038         2.1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60333          | 22.50  | 65317          | 22.60  | 70301          | 22.70  | 75285 | 22.79  | 80269 | 22.90  | 85254          | 22.99  | 90238          | 23.06  | 95222          | 23.13  | 100206 | 23.18  | 105190 | 23.28  | 110174  | 23.39  | 115158 | 23.45  |
| 00007         22.00         06.40         22.00         06.44         22.00         06.42         23.00         06.967         23.01         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30         23.91         106.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60420          | 22.50  | 65404          | 22.60  | 70388          | 22.70  | 75372 | 22.79  | 80357 | 22.90  | 85341          | 22.99  | 90325          | 23.06  | 95309          | 23.14  | 100293 | 23.18  | 105277 | 23.29  | 110261  | 23.39  | 115245 | 23.45  |
| ebso         22.60         65.77         22.81         105.85         22.70         75.47         22.78         05.512         22.88         85.51         22.88         85.51         22.88         85.51         22.88         85.51         22.88         85.51         22.88         85.51         22.81         10.552         22.81         10.552         22.81         10.552         22.81         10.552         22.91         10.552         22.91         10.552         22.91         10.555         22.91         10.555         22.91         10.555         22.91         10.555         22.91         10.555         22.91         10.555         22.91         10.555         22.91         10.555         22.91         10.555         22.91         10.555         22.91         10.555         22.91         10.555         22.91         10.555         22.91         10.555         22.91         10.555         22.91         10.555         22.91         10.555         22.91         10.555         22.91         10.555         22.91         10.555         22.91         10.555         22.91         10.555         22.91         10.555         22.91         10.555         22.91         10.555         22.91         10.555         22.91         10.555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60507          | 22.50  | 65492          | 22.60  | 70476          | 22.70  | 75460 | 22.79  | 80444 | 22.89  | 85428          | 22.98  | 90412          | 23.06  | 95397          | 23.15  | 100380 | 23.19  | 105365 | 23.29  | 110349  | 23.39  | 115333 | 23.44  |
| 00000         2010         0004         2.00         00040         2.00         00040         2.00         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01         00040         2.01 <th< td=""><td>60595</td><td>22.50</td><td>65579</td><td>22.61</td><td>70563</td><td>22.70</td><td>75547</td><td>22.79</td><td>80532</td><td>22.89</td><td>85516</td><td>22.98</td><td>90500</td><td>23.06</td><td>95484</td><td>23.14</td><td>100468</td><td>23.19</td><td>105452</td><td>23.29</td><td>110436</td><td>23.38</td><td>115420</td><td>23.44</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 60595          | 22.50  | 65579          | 22.61  | 70563          | 22.70  | 75547 | 22.79  | 80532 | 22.89  | 85516          | 22.98  | 90500          | 23.06  | 95484          | 23.14  | 100468 | 23.19  | 105452 | 23.29  | 110436  | 23.38  | 115420 | 23.44  |
| 0.000         2.20         0.964         2.20         0.967         2.20         0.967         2.20         0.967         2.20         0.967         2.20         0.967         2.20         0.967         2.20         0.967         2.20         0.967         2.20         0.967         2.20         0.967         2.20         0.967         2.20         0.967         2.20         0.967         2.20         0.967         2.20         0.967         2.20         0.967         2.20         0.967         2.20         0.967         2.20         0.967         2.20         0.967         2.20         0.966         2.21         0.966         2.21         0.966         2.21         0.966         2.21         0.966         2.21         0.966         2.20         0.966         2.21         0.966         2.21         0.966         2.21         0.966         2.21         0.966         2.21         0.966         2.21         0.966         2.21         0.966         2.21         0.966         2.21         0.966         2.21         0.966         2.21         0.966         2.21         0.966         2.21         0.966         2.21         0.966         2.21         0.966         2.21         0.966         2.21 <t< td=""><td>60682</td><td>22.50</td><td>65666</td><td>22.62</td><td>70651</td><td>22.70</td><td>75635</td><td>22.78</td><td>80619</td><td>22.89</td><td>85603</td><td>22.98</td><td>90587</td><td>23.06</td><td>95571</td><td>23.14</td><td>100555</td><td>23.19</td><td>105539</td><td>23.29</td><td>110523</td><td>23.38</td><td>115508</td><td>23.44</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60682          | 22.50  | 65666          | 22.62  | 70651          | 22.70  | 75635 | 22.78  | 80619 | 22.89  | 85603          | 22.98  | 90587          | 23.06  | 95571          | 23.14  | 100555 | 23.19  | 105539 | 23.29  | 110523  | 23.38  | 115508 | 23.44  |
| b004         22.00         00930         22.00         70937         22.70         90847         22.00         90844         23.41         10938         23.20         10082         23.20         10082         23.20         10077         23.30         11977         23.41           6102         22.50         6614         22.62         7108         22.71         7586         22.00         8604         22.90         91074         23.00         90060         23.41         100674         23.01         11048         23.80         11148         23.80         11148         23.80         11114         23.80         11114         23.80         11114         23.80         11114         23.80         11114         23.80         11114         23.80         11114         23.80         11114         23.80         11114         23.80         11114         23.80         11114         23.80         11114         23.80         11114         23.80         11114         23.80         11114         23.80         11114         23.80         11114         23.80         11114         23.80         11187         23.80         11187         23.80         11187         23.80         11187         23.80         11187         23.80 <td>60857</td> <td>22.50</td> <td>658/1</td> <td>22.62</td> <td>70738</td> <td>22.70</td> <td>75809</td> <td>22.78</td> <td>80707</td> <td>22.90</td> <td>85778</td> <td>22.99</td> <td>90675</td> <td>23.00</td> <td>95059</td> <td>23.13</td> <td>100643</td> <td>23.19</td> <td>105627</td> <td>23.29</td> <td>110608</td> <td>23.38</td> <td>115683</td> <td>23.44</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60857          | 22.50  | 658/1          | 22.62  | 70738          | 22.70  | 75809 | 22.78  | 80707 | 22.90  | 85778          | 22.99  | 90675          | 23.00  | 95059          | 23.13  | 100643 | 23.19  | 105627 | 23.29  | 110608  | 23.38  | 115683 | 23.44  |
| 6103         22.0         6010         22.42         7000         22.71         7099         22.72         7099         22.72         7099         22.80         10503         22.90         10593         22.91         10593         22.91         10593         22.91         10597         23.91         11588         23.45           6124         22.60         6617         22.61         66168         22.61         66178         22.91         10597         23.01         111048         23.91         11503         23.91         11503         23.91         11503         23.91         11503         23.91         11503         23.91         11503         23.91         11503         23.91         11503         23.91         11503         23.91         11503         23.91         11503         23.91         11503         23.91         11503         23.91         11503         23.91         11503         23.91         11503         23.91         11503         23.91         11503         23.91         11503         23.91         11503         23.91         11503         23.91         11503         23.91         11503         23.91         11503         23.91         11503         23.91         11503         23.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60945          | 22.50  | 65929          | 22.02  | 70913          | 22.70  | 75897 | 22.70  | 80881 | 22.90  | 85866          | 22.99  | 90850          | 23.07  | 95834          | 23.14  | 100730 | 23.20  | 105802 | 23.29  | 110786  | 23.40  | 115770 | 23.44  |
| e1100         2.2.0         60104         2.2.0         71078         2.2.0         71078         2.2.0         71078         2.2.0         10577         2.2.0         10577         2.2.0         10577         2.2.0         10577         2.2.0         10577         2.2.0         10577         2.2.0         10587         2.2.0         10587         2.2.0         10587         2.2.0         10587         2.2.0         10587         2.2.0         10587         2.2.0         10587         2.2.0         10587         2.2.0         10587         2.2.0         10587         2.2.0         10587         2.2.0         10587         2.2.0         10587         2.2.0         10587         2.2.0         10587         2.2.0         10587         2.2.0         10587         2.2.0         10587         2.2.0         10587         2.2.0         10587         2.2.0         10587         2.2.0         10587         2.2.0         10587         2.2.0         10587         2.2.0         10587         2.2.0         10587         2.2.0         10587         2.2.0         10587         2.2.0         10587         2.2.0         10587         2.2.0         10587         2.2.0         10587         2.2.0         10587         2.2.0 <th< td=""><td>61032</td><td>22.50</td><td>66016</td><td>22.62</td><td>71000</td><td>22.71</td><td>75984</td><td>22.78</td><td>80969</td><td>22.90</td><td>85953</td><td>22.99</td><td>90937</td><td>23.06</td><td>95921</td><td>23.14</td><td>100905</td><td>23.21</td><td>105889</td><td>23.29</td><td>110873</td><td>23.39</td><td>115858</td><td>23.45</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 61032          | 22.50  | 66016          | 22.62  | 71000          | 22.71  | 75984 | 22.78  | 80969 | 22.90  | 85953          | 22.99  | 90937          | 23.06  | 95921          | 23.14  | 100905 | 23.21  | 105889 | 23.29  | 110873  | 23.39  | 115858 | 23.45  |
| e1294       22.50       66191       2.2.62       7175       2.2.71       75.8       2.2.71       75.8       2.2.71       75.8       2.2.71       75.8       2.2.71       75.8       2.2.71       75.8       2.2.71       75.8       2.2.71       75.8       2.2.71       75.8       2.2.71       75.8       2.2.71       75.8       2.2.71       75.8       2.2.71       75.8       2.2.71       75.8       2.2.91       6865       2.1.6       10152       2.3.0       111620       2.3.8       111620       2.3.8       111620       2.3.8       111620       2.3.8       111620       2.3.8       111620       2.3.8       111620       2.3.8       111620       2.3.8       111620       2.3.8       111620       2.3.8       111620       2.3.8       111620       2.3.8       111620       2.3.8       111620       2.3.8       111620       2.3.8       111620       2.3.8       111620       2.3.8       111620       2.3.8       111620       2.3.8       111620       2.3.8       111620       2.3.8       111620       2.3.8       111620       2.3.8       111620       2.3.8       111620       2.3.8       111620       2.3.8       111620       2.3.8       111620       2.3.8       111620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 61120          | 22.50  | 66104          | 22.62  | 71088          | 22.70  | 76072 | 22.80  | 81056 | 22.90  | 86040          | 22.99  | 91024          | 23.06  | 96009          | 23.14  | 100993 | 23.20  | 105977 | 23.29  | 110961  | 23.39  | 115945 | 23.45  |
| 6138       22.60       6677       2.2.62       71803       2.2.77       728.4       2.2.90       68213       2.2.90       91199       2.3.06       69617       2.3.16       10157       2.3.0       10157       2.3.0       10157       2.3.0       10157       2.3.0       10157       2.3.0       10157       2.3.0       10157       2.3.0       10157       2.3.0       10157       2.3.0       10157       2.3.0       10157       2.3.0       10157       2.3.0       10157       2.3.0       10157       2.3.0       10157       2.3.0       10157       2.3.0       10157       2.3.0       10157       2.3.0       10157       2.3.0       10157       2.3.0       10157       2.3.0       10157       2.3.0       10157       2.3.0       10157       2.3.0       10157       2.3.0       10157       2.3.0       10157       2.3.0       10157       2.3.0       10157       2.3.0       10158       2.3.0       10157       2.3.0       10158       2.3.0       10158       2.3.0       10158       2.3.0       10158       2.3.0       10158       2.3.0       10158       2.3.0       10158       2.3.0       10158       2.3.0       10158       2.3.0       10158       2.3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 61207          | 22.50  | 66191          | 22.62  | 71175          | 22.71  | 76159 | 22.80  | 81144 | 22.90  | 86128          | 22.99  | 91112          | 23.06  | 96096          | 23.14  | 101080 | 23.20  | 106064 | 23.30  | 111048  | 23.39  | 116032 | 23.46  |
| 61880       22.61       68366       22.62       71350       22.72       763.4       22.80       8130       22.90       9137       23.06       90271       23.15       101205       23.20       1062.82       23.31       111223       23.38       111221       23.38       111221       23.38       111232       23.38       111232       23.38       111232       23.38       111232       23.38       111232       23.38       111232       23.38       111232       23.38       111232       23.38       111232       23.38       111232       23.38       111232       23.38       111232       23.38       111232       23.38       111232       23.38       111232       23.38       111232       23.34       111342       23.38       111243       23.38       111243       23.34       111342       23.38       111442       23.38       111442       23.38       111442       23.38       111442       23.38       11144       23.44       11144       23.44       11144       23.44       11144       23.44       11144       23.44       11144       23.44       11144       23.44       11144       23.44       11144       23.44       111444       23.44       111454       23.45       1114574 <td>61294</td> <td>22.50</td> <td>66278</td> <td>22.62</td> <td>71263</td> <td>22.71</td> <td>76247</td> <td>22.80</td> <td>81231</td> <td>22.90</td> <td>86215</td> <td>22.99</td> <td>91199</td> <td>23.06</td> <td>96183</td> <td>23.14</td> <td>101167</td> <td>23.20</td> <td>106151</td> <td>23.30</td> <td>111136</td> <td>23.39</td> <td>116120</td> <td>23.46</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61294          | 22.50  | 66278          | 22.62  | 71263          | 22.71  | 76247 | 22.80  | 81231 | 22.90  | 86215          | 22.99  | 91199          | 23.06  | 96183          | 23.14  | 101167 | 23.20  | 106151 | 23.30  | 111136  | 23.39  | 116120 | 23.46  |
| Bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 61382          | 22.51  | 66366          | 22.62  | 71350          | 22.72  | 76334 | 22.80  | 81319 | 22.91  | 86303          | 22.99  | 91287          | 23.06  | 96271          | 23.15  | 101255 | 23.20  | 106239 | 23.31  | 111223  | 23.39  | 116207 | 23.46  |
| Bit Add       22.50       0 BB23       22.81       11.80       22.81       0 BB23       23.81       10.10.97       23.31       11.80       23.31       11.80       23.34       11.807       23.34         61732       22.51       66710       22.62       71707       22.73       77071       22.83       81643       22.80       91724       23.06       96706       23.15       101695       23.20       10676       23.32       111.80       23.30       11647       23.46         61919       22.51       66976       22.62       71767       22.73       7704       22.84       81934       22.80       9199       23.06       96876       23.15       101697       23.21       110603       23.22       111650       23.24       116817       23.42         62081       22.51       67676       22.43       77034       22.44       82018       22.93       87002       23.01       191694       23.15       101697       23.24       116835       23.34       110204       23.34       110204       23.34       110204       23.34       110217       23.24       116817       23.46       102342       23.11       101731       23.34       11201       23.44       1106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 61469          | 22.51  | 66453          | 22.62  | 71437          | 22.72  | 76422 | 22.81  | 81406 | 22.91  | 86390          | 23.00  | 91374          | 23.06  | 96358          | 23.14  | 101342 | 23.20  | 106326 | 23.31  | 111311  | 23.39  | 116295 | 23.46  |
| 61792       22.51       66716       22.82       7170       22.72       7864       22.81       81675       23.00       91637       23.07       96621       23.14       101605       23.20       11673       23.40       11673       23.40       11673       23.40       11673       23.40       11673       23.40       11673       23.40       11673       23.40       11673       23.40       11673       23.40       11673       23.40       11673       23.40       11673       23.40       11673       23.40       11673       23.40       11673       23.40       11673       23.40       11673       23.40       11673       23.40       11673       23.40       11673       23.40       11673       23.40       11673       23.41       11673       23.40       11673       23.41       11673       23.41       11673       23.41       11673       23.41       11673       23.41       11673       23.41       11673       23.41       11673       23.41       11673       23.41       11673       23.41       11673       23.41       11673       23.41       11673       23.41       11673       23.41       11673       23.41       11673       23.41       11673       23.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 61644          | 22.50  | 66628          | 22.01  | 71612          | 22.71  | 76509 | 22.81  | 81581 | 22.91  | 86565          | 23.00  | 91462<br>01570 | 23.06  | 96533          | 23.14  | 101430 | 23.19  | 106501 | 23.31  | 111/185 | 23.39  | 116470 | 23.40  |
| e1919       22.51       66803       22.62       71767       22.73       70774       22.92       86720       23.00       91714       23.08       90708       23.15       1016676       23.32       111660       23.40       116647       23.46         61996       22.51       66978       23.63       71162       22.47       76646       22.83       81931       22.92       8687       23.00       91696       23.01       91696       23.21       1018674       23.33       111855       23.44       1166107       23.46         62190       22.52       67153       22.64       72177       72.93       22.48       8216       22.93       87177       23.00       91687       23.14       102042       23.21       107036       23.33       11010       23.44       116904       23.44       107046       23.14       102042       23.21       107136       23.44       116904       23.44       116904       23.14       102194       23.21       107186       23.41       116904       23.44       116904       23.41       116904       23.44       116904       23.44       116904       23.41       116904       23.41       116904       23.41       116904       23.44 <td< td=""><td>61732</td><td>22.50</td><td>66716</td><td>22.62</td><td>71700</td><td>22.72</td><td>76684</td><td>22.82</td><td>81668</td><td>22.91</td><td>86653</td><td>23.00</td><td>91637</td><td>23.07</td><td>96621</td><td>23.14</td><td>101605</td><td>23.20</td><td>106589</td><td>23.32</td><td>111573</td><td>23.40</td><td>116557</td><td>23.46</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 61732          | 22.50  | 66716          | 22.62  | 71700          | 22.72  | 76684 | 22.82  | 81668 | 22.91  | 86653          | 23.00  | 91637          | 23.07  | 96621          | 23.14  | 101605 | 23.20  | 106589 | 23.32  | 111573  | 23.40  | 116557 | 23.46  |
| 61906       22.51       66691       22.62       71675       22.73       768.96       22.83       81943       22.93       80827       23.00       91719       23.20       101779       23.20       101764       23.32       11135       23.40       116719       23.46         62081       22.51       67055       22.64       77050       22.73       77044       22.84       82018       22.93       87002       23.00       91686       23.41       101654       23.21       10638       23.32       111303       23.40       116094       23.46         62264       22.52       67740       22.64       77212       22.73       77726       22.84       82193       22.93       87002       23.04       87177       23.06       87177       23.16       102129       23.21       10711       23.33       11248       23.44       11749       23.46       11749       23.46       11245       23.44       11749       23.46       11245       23.44       11749       23.44       11749       23.44       11749       23.44       11749       23.44       11749       23.44       11749       23.44       11749       23.44       11749       23.44       11749       23.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 61819          | 22.51  | 66803          | 22.62  | 71787          | 22.73  | 76771 | 22.82  | 81756 | 22.91  | 86740          | 23.00  | 91724          | 23.08  | 96708          | 23.15  | 101692 | 23.20  | 106676 | 23.32  | 111660  | 23.40  | 116644 | 23.46  |
| 6199       2.2.51       60978       2.2.83       71962       2.2.73       70946       2.2.84       81913       2.2.93       80915       2.3.10       91989       2.3.20       91087       2.3.21       101867       2.3.21       101867       2.3.21       101863       2.3.2       111823       2.3.01       111892       2.3.66         62169       2.2.52       67153       2.2.64       72137       2.7.37       77121       2.2.84       82109       2.3.03       87777       3.0.0       92717       2.3.15       101217       2.3.1       10708       2.3.3       111828       2.3.4       111699       2.3.45         62241       2.2.44       67328       2.2.44       7239       2.7.3       77380       2.2.44       8726       2.3.03       92245       2.3.04       97233       2.3.15       100217       2.3.1       107288       2.3.4       111282       2.3.42       117148       2.3.45         62606       2.2.54       67670       2.2.64       77609       2.2.64       87447       2.2.92       87748       2.3.16       100234       2.2.1       107048       2.3.41       111742       2.3.42       11742       2.3.4       11742       2.3.4       11742       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61906          | 22.51  | 66891          | 22.62  | 71875          | 22.73  | 76859 | 22.83  | 81843 | 22.92  | 86827          | 23.00  | 91811          | 23.08  | 96796          | 23.15  | 101779 | 23.20  | 106764 | 23.32  | 111748  | 23.40  | 116732 | 23.46  |
| 62061       22.51       67065       22.64       72060       22.73       77034       22.84       82018       22.94       87002       23.00       91986       23.06       99970       23.15       101954       23.21       101038       23.21       111923       23.40       111994       23.46         62264       22.52       67340       22.64       72212       22.73       77209       22.84       82218       22.08       8776       23.01       92164       23.08       97145       23.15       102129       23.21       107713       23.34       112085       23.41       117082       23.46         62344       22.54       67630       22.66       72309       22.77       77738       22.84       82388       22.92       8752       23.03       92424       23.07       97405       23.15       102304       23.21       107763       23.41       112080       23.41       111741       23.44       11744       23.46         62690       22.54       67676       22.66       72662       22.74       77684       22.88       8767       23.03       92688       23.07       97670       23.18       10246       32.22       107555       23.41       112079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 61994          | 22.51  | 66978          | 22.63  | 71962          | 22.73  | 76946 | 22.83  | 81931 | 22.93  | 86915          | 23.01  | 91899          | 23.08  | 96883          | 23.15  | 101867 | 23.21  | 106851 | 23.32  | 111835  | 23.40  | 116819 | 23.46  |
| 62169       22.52       67743       22.64       77121       22.83       87090       23.01       92074       23.08       9708       23.14       102129       23.21       107026       23.33       112010       23.34       112090       23.41       116994       23.45         62364       22.54       67418       22.64       77239       22.84       82281       22.92       87765       23.08       9723       23.15       102219       23.14       112105       23.34       112105       23.44       11762       23.45         62431       22.54       67503       22.66       72467       22.74       77868       22.86       82.92       87402       23.07       97408       23.16       102394       23.21       107376       23.34       112407       23.44       11744       23.46         62606       22.54       67678       22.64       77674       22.84       82600       22.92       87641       23.03       92614       23.07       97682       23.18       102654       23.22       107638       23.34       112472       23.44       11741       23.46         62680       22.55       67752       22.66       72767       23.18       102654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 62081          | 22.51  | 67065          | 22.64  | 72050          | 22.73  | 77034 | 22.84  | 82018 | 22.94  | 87002          | 23.00  | 91986          | 23.08  | 96970          | 23.15  | 101954 | 23.21  | 106938 | 23.32  | 111923  | 23.40  | 116907 | 23.46  |
| b225b       b224b       b234b       b24b       b24b <td>62169</td> <td>22.52</td> <td>67153</td> <td>22.64</td> <td>72137</td> <td>22.73</td> <td>77121</td> <td>22.83</td> <td>82106</td> <td>22.93</td> <td>87090</td> <td>23.01</td> <td>92074</td> <td>23.08</td> <td>97058</td> <td>23.14</td> <td>102042</td> <td>23.21</td> <td>107026</td> <td>23.32</td> <td>112010</td> <td>23.41</td> <td>116994</td> <td>23.46</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 62169          | 22.52  | 67153          | 22.64  | 72137          | 22.73  | 77121 | 22.83  | 82106 | 22.93  | 87090          | 23.01  | 92074          | 23.08  | 97058          | 23.14  | 102042 | 23.21  | 107026 | 23.32  | 112010  | 23.41  | 116994 | 23.46  |
| 02347       22.54       67145       22.64       77280       22.73       7738       22.84       67303       22.64       67303       22.64       77397       23.44       11260       23.45       11260       23.44       11260       23.44       11260       23.44       11260       23.44       11260       23.44       11260       23.44       11260       23.44       11260       23.44       11260       23.44       11260       23.44       11260       23.44       11260       23.44       11260       23.44       11260       23.44       11260       23.44       11260       23.44       11260       23.44       11260       23.44       11260       23.44       11260       23.44       11260       23.44       11260       23.44       11260       23.44       11764       23.46       11764       23.46       11764       23.46       117619       23.44       117619       23.44       117619       23.44       117619       23.44       117619       23.44       117619       23.44       117619       23.44       117619       23.44       117619       23.44       117619       23.44       117619       23.44       117619       23.44       117719       23.44       117619       23.44 </td <td>62256</td> <td>22.52</td> <td>67240</td> <td>22.64</td> <td>72224</td> <td>22.72</td> <td>77209</td> <td>22.84</td> <td>82193</td> <td>22.93</td> <td>8/1//</td> <td>23.02</td> <td>92161</td> <td>23.08</td> <td>97145</td> <td>23.15</td> <td>102129</td> <td>23.21</td> <td>107113</td> <td>23.33</td> <td>112098</td> <td>23.41</td> <td>117082</td> <td>23.45</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62256          | 22.52  | 67240          | 22.64  | 72224          | 22.72  | 77209 | 22.84  | 82193 | 22.93  | 8/1//          | 23.02  | 92161          | 23.08  | 97145          | 23.15  | 102129 | 23.21  | 107113 | 23.33  | 112098  | 23.41  | 117082 | 23.45  |
| G2519       G7703       L2.6       T7471       L2.6       B246       L2.2       B740       L3.0       D740       L3.0       D740 <thl3.0< th="">       D740       L3.0</thl3.0<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 62431          | 22.53  | 67415          | 22.04  | 72312          | 22.73  | 77383 | 22.04  | 82368 | 22.92  | 87352          | 23.03  | 92249<br>92336 | 23.08  | 97233          | 23.15  | 102217 | 23.21  | 107201 | 23.34  | 112100  | 23.42  | 117256 | 23.40  |
| 62606         22.54         67590         22.65         72574         22.47         77568         22.85         82543         22.92         87527         23.02         92511         23.07         97495         23.17         102479         23.22         107463         23.34         112477         23.41         117431         23.47           62683         22.54         67765         22.66         72749         22.74         77646         22.84         82718         22.92         87614         23.02         92598         23.07         97562         23.18         102566         23.22         107638         23.34         11253         23.40         117606         23.46           62866         22.55         67852         22.66         72847         27.47         77908         22.44         82893         22.92         87767         23.09         97757         23.18         1022916         23.22         107781         23.44         117897         23.44         11789         23.47         10304         23.22         107781         23.44         117896         23.44         117896         23.44         117896         23.44         117896         23.44         117896         23.44         117869         23.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 62519          | 22.54  | 67503          | 22.65  | 72487          | 22.74  | 77471 | 22.85  | 82456 | 22.92  | 87440          | 23.03  | 92424          | 23.07  | 97408          | 23.16  | 102392 | 23.21  | 107376 | 23.34  | 112360  | 23.42  | 117344 | 23.46  |
| 62683       22.54       67678       22.64       72662       22.74       77646       22.84       82630       22.92       87614       23.02       92588       23.07       97670       23.18       102666       23.22       107638       23.34       11253       23.40       117619       23.47         62781       22.55       67852       22.65       72837       22.74       777821       22.84       82705       23.03       92757       23.19       102654       23.22       107703       23.34       112822       23.35       112710       23.99       117694       23.46         63043       22.56       67940       22.65       73091       22.74       77966       22.84       82893       22.92       87677       23.03       92661       23.08       97452       23.18       102829       32.22       107703       23.44       117796       23.47       117818       23.47         63043       22.56       68152       22.66       73099       27.3       76033       22.44       82080       23.02       9306       23.09       96020       23.16       103004       23.23       107618       23.34       112852       23.41       117869       23.47       63363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 62606          | 22.54  | 67590          | 22.65  | 72574          | 22.74  | 77558 | 22.85  | 82543 | 22.92  | 87527          | 23.02  | 92511          | 23.07  | 97495          | 23.17  | 102479 | 23.22  | 107463 | 23.34  | 112447  | 23.41  | 117431 | 23.47  |
| 62781       22.56       67765       22.65       72749       22.74       77733       22.44       82718       22.91       87702       23.03       92686       23.07       97670       23.19       107638       23.22       107638       23.35       112622       23.39       117606       23.46         62868       22.55       67840       22.65       72837       22.74       77906       22.84       82805       22.92       87787       23.08       97757       23.19       102241       23.22       107781       23.44       112797       23.40       117761       23.47         63043       22.56       68027       22.66       73011       22.74       77906       22.84       82980       22.92       87964       23.02       93086       23.01       103004       23.23       107900       23.34       112872       23.44       117669       23.46         63131       22.56       68202       22.66       73186       22.73       78170       22.85       88139       23.02       93123       23.09       98107       23.17       103091       23.23       108075       23.35       113247       23.41       117803       23.47       10350       23.35       113241 <td>62693</td> <td>22.54</td> <td>67678</td> <td>22.64</td> <td>72662</td> <td>22.74</td> <td>77646</td> <td>22.84</td> <td>82630</td> <td>22.92</td> <td>87614</td> <td>23.02</td> <td>92598</td> <td>23.07</td> <td>97582</td> <td>23.18</td> <td>102566</td> <td>23.22</td> <td>107550</td> <td>23.34</td> <td>112535</td> <td>23.40</td> <td>117519</td> <td>23.47</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 62693          | 22.54  | 67678          | 22.64  | 72662          | 22.74  | 77646 | 22.84  | 82630 | 22.92  | 87614          | 23.02  | 92598          | 23.07  | 97582          | 23.18  | 102566 | 23.22  | 107550 | 23.34  | 112535  | 23.40  | 117519 | 23.47  |
| 62868       22.55       67852       22.65       72837       22.74       77821       22.84       82805       22.91       87789       23.03       92773       23.08       97757       23.19       102741       23.22       107725       23.35       112710       23.39       117694       23.47         63043       22.56       68027       22.65       73011       22.74       77986       22.84       82980       22.92       87964       23.02       92948       23.09       97932       23.17       102916       23.22       107900       23.34       112972       23.41       117869       23.47         63131       22.56       68156       22.93       88155       22.93       88159       23.09       9107       23.17       103004       23.23       108755       23.41       117956       23.44       117856       23.41       118031       23.47         63305       22.66       7364       22.73       78258       22.84       83242       22.94       88226       23.07       93286       23.17       103178       23.23       108638       23.42       118218       23.44       118181       23.47       11324       23.42       118218       23.48       63480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 62781          | 22.54  | 67765          | 22.65  | 72749          | 22.74  | 77733 | 22.84  | 82718 | 22.91  | 87702          | 23.03  | 92686          | 23.07  | 97670          | 23.19  | 102654 | 23.22  | 107638 | 23.35  | 112622  | 23.39  | 117606 | 23.46  |
| 62966       22.65       64940       22.65       73011       22.74       77906       22.84       82980       22.92       8767       23.08       97845       23.17       102296       23.22       107813       23.34       11297       23.40       117781       23.47         63131       22.56       68027       22.66       73099       22.73       78083       22.84       83068       22.92       8794       23.02       93036       23.09       98107       23.17       10304       23.23       107988       23.34       112972       23.41       118043       23.47         6303       22.56       68200       22.66       73166       22.73       78858       22.84       83042       22.94       88242       23.02       93123       23.09       98107       23.17       103017       23.23       108075       23.35       113059       23.41       118043       23.47         6303       22.55       68200       22.66       73361       22.73       78453       22.84       8330       22.93       8814       23.02       93285       23.17       103266       23.23       108250       23.35       113324       23.42       118218       23.47 <td< td=""><td>62868</td><td>22.55</td><td>67852</td><td>22.65</td><td>72837</td><td>22.74</td><td>77821</td><td>22.84</td><td>82805</td><td>22.91</td><td>87789</td><td>23.03</td><td>92773</td><td>23.08</td><td>97757</td><td>23.19</td><td>102741</td><td>23.22</td><td>107725</td><td>23.35</td><td>112710</td><td>23.39</td><td>117694</td><td>23.46</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 62868          | 22.55  | 67852          | 22.65  | 72837          | 22.74  | 77821 | 22.84  | 82805 | 22.91  | 87789          | 23.03  | 92773          | 23.08  | 97757          | 23.19  | 102741 | 23.22  | 107725 | 23.35  | 112710  | 23.39  | 117694 | 23.46  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62956          | 22.55  | 67940          | 22.65  | 72924          | 22.74  | 77908 | 22.84  | 82893 | 22.92  | 8/8//          | 23.03  | 92861          | 23.08  | 97845          | 23.18  | 102829 | 23.22  | 107813 | 23.34  | 112/9/  | 23.40  | 117780 | 23.47  |
| 6321622.566820222.667327422.737817022.848332222.948822623.029321123.099819523.1710309123.2310816323.3511314723.4111804323.476330522.566829022.657327422.737834522.848333022.938813423.029329823.1710317823.2310816323.3511314723.4111813123.476339322.556836722.667344922.737843322.848330022.938813423.029329823.1710326623.2310825023.3511323423.4211818023.486346022.556845522.66735622.747852022.848350522.958848923.039347323.119845723.1810341123.2210842523.3511340923.4311893323.476365522.556865922.677362322.777869522.848355222.968857623.039360023.119854223.1810352823.2210860723.3811340923.4211848123.476374322.5668727737822.777869522.848355222.968857623.039360023.119864223.1810352823.2210861023.3811349923.4211848123.4763743 </td <td>63131</td> <td>22.50</td> <td>68115</td> <td>22.00</td> <td>73099</td> <td>22.74</td> <td>78083</td> <td>22.04</td> <td>83068</td> <td>22.92</td> <td>88052</td> <td>23.02</td> <td>92940<br/>93036</td> <td>23.09</td> <td>97932</td> <td>23.17</td> <td>102910</td> <td>23.22</td> <td>107988</td> <td>23.34</td> <td>112005</td> <td>23.40</td> <td>117956</td> <td>23.47</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63131          | 22.50  | 68115          | 22.00  | 73099          | 22.74  | 78083 | 22.04  | 83068 | 22.92  | 88052          | 23.02  | 92940<br>93036 | 23.09  | 97932          | 23.17  | 102910 | 23.22  | 107988 | 23.34  | 112005  | 23.40  | 117956 | 23.47  |
| 63305       22.56       68290       22.65       73274       22.73       78258       22.84       83242       22.94       88226       23.02       93211       23.09       98195       23.17       103178       23.23       108163       23.35       113147       23.41       118131       23.47         63393       22.55       68377       22.66       73361       22.73       78435       22.84       83300       22.93       88314       23.02       93298       23.10       98282       23.17       103266       23.23       108250       23.35       113234       23.42       118218       23.48         63565       22.55       68652       22.66       73453       22.77       78630       22.84       83505       22.95       88489       23.03       93473       23.11       98369       23.22       108425       23.35       113409       23.42       118308       23.47         63655       22.56       68652       22.67       73711       22.75       78695       22.85       83660       22.97       88664       23.03       93735       23.11       98612       23.22       108612       23.37       113497       23.42       118481       23.47       13681                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63218          | 22.56  | 68202          | 22.66  | 73186          | 22.73  | 78170 | 22.85  | 83155 | 22.93  | 88139          | 23.02  | 93123          | 23.09  | 98107          | 23.17  | 103091 | 23.23  | 108075 | 23.35  | 113059  | 23.41  | 118043 | 23.47  |
| 63393       22.55       68377       22.65       73361       22.73       78345       22.84       83330       22.93       88314       23.02       93298       23.10       98282       23.17       103266       23.23       108250       23.35       113234       23.42       118218       23.48         63480       22.55       68465       22.66       73449       22.73       78433       22.84       83417       22.94       88401       23.03       93385       23.10       98369       23.17       103353       23.23       108338       23.35       113202       23.42       118306       23.48         63668       22.55       68652       22.66       73623       22.77       78602       22.84       83505       22.95       88489       23.03       93473       23.11       98547       23.18       103425       23.22       108612       23.35       113409       23.42       118481       23.47         63630       22.56       68877       7361       22.87       78695       22.85       83667       23.03       93735       23.11       98632       23.19       103616       23.22       108607       23.88       113547       23.42       118658       23.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 63305          | 22.56  | 68290          | 22.65  | 73274          | 22.73  | 78258 | 22.84  | 83242 | 22.94  | 88226          | 23.02  | 93211          | 23.09  | 98195          | 23.17  | 103178 | 23.23  | 108163 | 23.35  | 113147  | 23.41  | 118131 | 23.47  |
| 63480       22.55       68465       22.66       73449       22.73       78433       22.84       83417       22.94       88401       23.03       93385       23.17       103353       23.23       108338       23.35       113322       23.42       118306       23.48         63568       22.55       68552       22.66       73536       22.74       78520       22.84       83505       22.95       88489       23.03       93473       23.11       98457       23.18       103411       23.22       108425       23.55       113409       23.43       118393       23.47         63655       22.55       68639       22.67       73623       22.75       78608       22.84       83592       2.96       8576       23.03       93648       23.11       98642       23.18       103528       23.22       108612       23.37       113497       23.42       118481       23.47         63743       22.56       68727       22.67       73711       22.77       78782       22.85       83677       2.97       88751       23.03       93752       23.11       98719       23.18       103703       23.23       1138671       23.43       118655       23.47       18655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 63393          | 22.55  | 68377          | 22.65  | 73361          | 22.73  | 78345 | 22.84  | 83330 | 22.93  | 88314          | 23.02  | 93298          | 23.10  | 98282          | 23.17  | 103266 | 23.23  | 108250 | 23.35  | 113234  | 23.42  | 118218 | 23.48  |
| 63568       22.55       68552       22.66       73536       22.74       78520       22.84       83505       22.95       88489       23.03       93473       23.11       98457       23.18       103441       23.22       108425       23.35       113409       23.43       118393       23.47         63655       22.55       68639       22.67       73623       22.75       78608       22.84       83592       22.96       88576       23.03       93560       23.11       98632       23.18       103528       23.22       108612       23.37       113497       23.42       118481       23.47         63743       22.56       68727       22.67       73711       22.75       78695       22.85       83680       22.97       88664       23.03       93648       23.11       98632       23.19       103616       23.22       108607       23.88       1138671       23.42       118565       23.47         6330       22.57       68902       22.67       73866       22.75       78870       22.86       83855       22.95       88839       23.04       93923       23.11       98677       23.18       103703       23.24       10875       23.38       113846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63480          | 22.55  | 68465          | 22.66  | 73449          | 22.73  | 78433 | 22.84  | 83417 | 22.94  | 88401          | 23.03  | 93385          | 23.10  | 98369          | 23.17  | 103353 | 23.23  | 108338 | 23.35  | 113322  | 23.42  | 118306 | 23.48  |
| 63655       22.55       68639       22.67       73623       22.75       78608       22.84       83592       22.96       88576       23.03       93560       23.11       98544       23.18       103528       23.22       108512       23.37       113497       23.42       118481       23.47         63743       22.56       68727       22.67       73711       22.75       78695       22.85       83680       22.97       88664       23.03       93648       23.11       98612       23.21       108616       23.22       108600       23.38       113584       23.42       118658       23.46         63803       22.56       68814       22.67       73712       22.75       78872       22.85       83767       22.97       88751       23.03       93735       23.11       98719       23.81       103703       23.23       108607       23.38       113571       23.42       118655       23.47         63018       22.57       68989       22.67       73973       22.76       78977       22.86       83852       22.95       88839       23.04       93910       23.11       98607       23.18       103703       23.24       108775       23.38       113846                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 63568          | 22.55  | 68552          | 22.66  | 73536          | 22.74  | 78520 | 22.84  | 83505 | 22.95  | 88489          | 23.03  | 93473          | 23.11  | 98457          | 23.18  | 103441 | 23.22  | 108425 | 23.35  | 113409  | 23.43  | 118393 | 23.47  |
| 63743       22.56       68727       22.67       73711       22.75       7895       22.85       63800       22.97       80604       23.03       93745       23.11       96032       23.12       103616       23.22       108600       23.38       113674       23.43       118665       23.47         63830       22.56       68814       22.67       73788       22.77       7872       22.85       83767       22.97       88751       23.03       93735       23.11       980719       23.23       108687       23.38       113671       23.42       118655       23.47         63918       22.57       68899       22.67       73973       22.76       78957       22.86       83855       22.95       88839       23.04       93823       23.11       980719       23.18       103703       23.23       108687       23.38       113671       23.42       118650       23.47         64005       22.57       68989       22.67       73973       22.76       78957       22.86       83942       22.95       89913       23.10       98981       23.19       103965       23.24       108950       23.37       113934       23.43       118830       23.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 63655          | 22.55  | 68639          | 22.67  | 73623          | 22.75  | 78608 | 22.84  | 83592 | 22.96  | 88576          | 23.03  | 93560          | 23.11  | 98544          | 23.18  | 103528 | 23.22  | 108512 | 23.37  | 113497  | 23.42  | 118481 | 23.47  |
| 6330       22.50       60014       22.66       73786       22.74       70702       22.83       63017       22.84       106057       23.43       108057       23.44       118743       23.47         63918       22.57       68989       22.67       73973       22.76       78870       22.86       83852       23.04       9310       23.11       98807       23.18       103703       23.24       108667       23.38       113759       23.43       118743       23.47         64005       22.57       68989       22.67       73973       22.76       78957       22.86       83942       22.95       88926       23.04       93910       23.11       98807       23.18       103751       23.24       108622       23.38       113846       23.43       118830       23.47         64092       22.57       69077       22.67       74061       22.76       79045       22.86       84029       22.95       8913       23.05       93998       23.10       98812       23.19       103965       23.24       108950       23.37       113934       23.43       118830       23.47         64180       22.56       69164       22.67       74148       22.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63743          | 22.50  | 68727          | 22.67  | 73711          | 22.75  | 78695 | 22.85  | 83680 | 22.97  | 88664          | 23.03  | 93648          | 23.11  | 98632          | 23.19  | 103616 | 23.22  | 108600 | 23.38  | 113584  | 23.43  | 118568 | 23.46  |
| 64005       22.57       68067       22.67       74061       22.76       79075       22.86       84029       22.95       89013       23.05       93998       23.10       9884       23.19       103855       23.24       108850       23.37       113846       23.43       118830       23.47         64092       22.57       69077       22.67       74061       22.76       79045       22.86       84029       22.95       89013       23.05       93998       23.10       98981       23.19       103955       23.24       108950       23.37       113934       23.43       118918       23.47         64180       22.56       69164       22.67       74148       22.76       79133       22.87       84117       22.95       89101       23.05       94085       23.11       99069       23.19       104053       23.24       109037       23.37       114021       23.43       119005       23.48         64267       22.56       69251       22.66       74236       22.76       79308       22.86       84204       22.95       89188       23.11       99056       23.19       104140       23.25       109124       23.36       114109       23.43       119005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 63918          | 22.50  | 68902          | 22.00  | 73886          | 22.74  | 78870 | 22.00  | 83855 | 22.97  | 88839          | 23.03  | 93735          | 23.11  | 98807          | 23.10  | 103703 | 23.23  | 108775 | 23.30  | 113071  | 23.42  | 118743 | 23.47  |
| 64092       22.57       69077       22.67       74061       22.76       79045       22.86       84029       22.95       89013       23.05       93998       23.10       103965       23.24       108950       23.37       113934       23.43       118918       23.47         64180       22.56       69164       22.67       74148       22.76       79133       22.87       84117       22.95       89101       23.05       94085       23.11       99069       23.19       104053       23.24       109037       23.37       114021       23.43       119005       23.48         64267       22.56       69251       22.66       74236       22.76       79220       22.86       84204       22.95       89188       23.04       94172       23.11       99156       23.19       104140       23.25       109124       23.36       114109       23.43       119093       23.48         64355       22.57       69339       22.67       74323       22.76       79308       22.86       84292       22.96       89276       23.03       94260       23.12       99244       23.18       104228       23.25       109212       23.37       114196       23.43       119180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 64005          | 22.57  | 68989          | 22.67  | 73973          | 22.76  | 78957 | 22.86  | 83942 | 22.95  | 88926          | 23.04  | 93910          | 23.11  | 98894          | 23.18  | 103878 | 23.24  | 108862 | 23.38  | 113846  | 23.43  | 118830 | 23.47  |
| 64180       22.56       69164       22.67       74148       22.76       79133       22.87       84117       22.95       89101       23.05       94085       23.11       99069       23.19       104053       23.24       109037       23.37       114021       23.43       119005       23.48         64267       22.56       69251       22.66       74236       22.76       79220       22.86       84204       22.95       89188       23.04       94172       23.11       99156       23.19       104103       23.25       109124       23.36       114109       23.43       119093       23.48         64355       22.57       69339       22.67       74323       22.76       79308       22.86       84292       22.96       89276       23.03       94260       23.12       99244       23.18       104228       23.25       109212       23.37       114196       23.43       119180       23.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 64092          | 22.57  | 69077          | 22.67  | 74061          | 22.76  | 79045 | 22.86  | 84029 | 22.95  | 89013          | 23.05  | 93998          | 23.10  | 98981          | 23.19  | 103965 | 23.24  | 108950 | 23.37  | 113934  | 23.43  | 118918 | 23.47  |
| 64267 22.56 69251 22.66 74236 22.76 79220 22.86 84204 22.95 89188 23.04 94172 23.11 99156 23.19 104140 23.25 109124 23.36 114109 23.43 119093 23.48 64355 22.57 69339 22.67 74323 22.76 79308 22.86 84292 22.96 89276 23.03 94260 23.12 99244 23.18 104228 23.25 109212 23.37 114196 23.43 119180 23.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 64180          | 22.56  | 69164          | 22.67  | 74148          | 22.76  | 79133 | 22.87  | 84117 | 22.95  | 89101          | 23.05  | 94085          | 23.11  | 99069          | 23.19  | 104053 | 23.24  | 109037 | 23.37  | 114021  | 23.43  | 119005 | 23.48  |
| 64355 22.57 69339 22.67 74323 22.76 79308 22.86 84292 22.96 89276 23.03 94260 23.12 99244 23.18 104228 23.25 109212 23.37 114196 23.43 119180 23.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64267          | 22.56  | 69251          | 22.66  | 74236          | 22.76  | 79220 | 22.86  | 84204 | 22.95  | 89188          | 23.04  | 94172          | 23.11  | 99156          | 23.19  | 104140 | 23.25  | 109124 | 23.36  | 114109  | 23.43  | 119093 | 23.48  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 64355          | 22.57  | 69339          | 22.67  | 74323          | 22.76  | 79308 | 22.86  | 84292 | 22.96  | 89276          | 23.03  | 94260          | 23.12  | 99244          | 23.18  | 104228 | 23.25  | 109212 | 23.37  | 114196  | 23.43  | 119180 | 23.48  |
| 64442 22.57 69426 22.67 74410 22.76 79395 22.86 84379 22.96 89363 23.02 94347 23.12 99331 23.18 104315 23.26 109299 23.37 114284 23.43 119268 23.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64442          | 22.57  | 69426          | 22.67  | 74410          | 22.76  | 79395 | 22.86  | 84379 | 22.96  | 89363          | 23.02  | 94347          | 23.12  | 99331          | 23.18  | 104315 | 23.26  | 109299 | 23.37  | 114284  | 23.43  | 119268 | 23.48  |
| 0403U 22.58 09014 22.67 74498 22.75 70570 23.87 84467 22.96 84467 22.96 89451 23.03 94435 23.13 99419 23.18 104403 23.26 109387 23.37 114347 23.43 119355 23.48 64617 23.50 60661 23.66 10047 23.67 144456 23.75 70570 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 140442 23.67 14044 | 64530<br>64617 | 22.58  | 69514<br>60601 | 22.67  | 74498<br>74585 | 22.75  | 79482 | 22.86  | 84467 | 22.96  | 89451          | 23.03  | 94435          | 23.13  | 99419<br>00506 | 23.18  | 104403 | 23.26  | 109387 | 23.37  | 1143/1  | 23.43  | 119355 | 23.48  |
| 64705 22.60 69689 22.68 74673 22.76 79657 22.88 84642 22.95 89625 23.04 94610 23.13 99594 23.17 104578 23.27 109562 23.37 114546 23.44 119530 23.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64705          | 22.60  | 69689          | 22.68  | 74673          | 22.76  | 79657 | 22.88  | 84642 | 22.95  | 89625          | 23.03  | 94610          | 23.13  | 99594          | 23.17  | 104578 | 23.20  | 109562 | 23.37  | 114546  | 23.44  | 119530 | 23.49  |

#### Daten der LWL-Messung

| t [s]  | T [°C]         | t [s]  | T [°C] | t [s]  | т [°С] | t [s]  | T [°C]         | t [s]  | T [°C] | t [s]  | T [°C]         | t [s]  | T [°C] | t [s]  | T [°C]         | t [s]  | T [°C]         |
|--------|----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------------|--------|--------|--------|----------------|--------|--------|--------|----------------|--------|----------------|
| 119617 | 23.49          | 124601 | 23.54  | 129586 | 23.59  | 134570 | 23.62  | 139554 | 23.68  | 144538 | 23.70  | 149522 | 23.78          | 154506 | 23.82  | 159490 | 23.86          | 164474 | 23.89  | 169458 | 23.92          | 174443 | 23.98          |
| 119705 | 23.49          | 124689 | 23.53  | 129673 | 23.59  | 134657 | 23.62  | 139641 | 23.68  | 144625 | 23.70  | 149610 | 23.78          | 154594 | 23.82  | 159578 | 23.80          | 164562 | 23.89  | 169546 | 23.92          | 174530 | 24.00          |
| 119880 | 23.49          | 124864 | 23.53  | 129848 | 23.60  | 134832 | 23.62  | 139816 | 23.68  | 144800 | 23.70  | 149785 | 23.77          | 154769 | 23.80  | 159753 | 23.86          | 164737 | 23.88  | 169721 | 23.92          | 174705 | 24.01          |
| 119967 | 23.49          | 124951 | 23.54  | 129936 | 23.59  | 134920 | 23.63  | 139904 | 23.67  | 144888 | 23.71  | 149872 | 23.77          | 154856 | 23.80  | 159840 | 23.86          | 164824 | 23.88  | 169808 | 23.92          | 174792 | 24.00          |
| 120054 | 23.49          | 125039 | 23.54  | 130023 | 23.59  | 135007 | 23.63  | 139991 | 23.67  | 144975 | 23.71  | 149959 | 23.77          | 154943 | 23.79  | 159928 | 23.86          | 164911 | 23.87  | 169895 | 23.92          | 174880 | 24.00          |
| 120142 | 23.49          | 125126 | 23.53  | 130111 | 23.58  | 135095 | 23.63  | 140079 | 23.67  | 145063 | 23.71  | 150047 | 23.76          | 155031 | 23.79  | 160015 | 23.86          | 164999 | 23.87  | 169983 | 23.93          | 174967 | 24.00          |
| 120229 | 23.49          | 125214 | 23.54  | 130198 | 23.58  | 135182 | 23.63  | 140166 | 23.67  | 145150 | 23.71  | 150134 | 23.76          | 155118 | 23.79  | 160102 | 23.86          | 165086 | 23.87  | 170158 | 23.93          | 175055 | 24.00          |
| 120317 | 23.49          | 125389 | 23.53  | 130230 | 23.50  | 135357 | 23.03  | 140233 | 23.00  | 145325 | 23.71  | 150309 | 23.70          | 155293 | 23.80  | 160277 | 23.85          | 165261 | 23.87  | 170130 | 23.94          | 175230 | 24.01          |
| 120492 | 23.49          | 125476 | 23.54  | 130460 | 23.59  | 135444 | 23.62  | 140428 | 23.67  | 145412 | 23.71  | 150397 | 23.76          | 155381 | 23.81  | 160365 | 23.85          | 165349 | 23.88  | 170333 | 23.95          | 175317 | 24.02          |
| 120579 | 23.49          | 125564 | 23.54  | 130548 | 23.59  | 135532 | 23.62  | 140516 | 23.67  | 145500 | 23.72  | 150484 | 23.76          | 155468 | 23.82  | 160452 | 23.85          | 165436 | 23.89  | 170420 | 23.95          | 175404 | 24.02          |
| 120666 | 23.50          | 125651 | 23.54  | 130635 | 23.59  | 135619 | 23.61  | 140603 | 23.67  | 145587 | 23.71  | 150571 | 23.76          | 155556 | 23.82  | 160540 | 23.85          | 165523 | 23.89  | 170508 | 23.95          | 175492 | 24.01          |
| 120754 | 23.50          | 125739 | 23.54  | 130723 | 23.58  | 135707 | 23.61  | 140691 | 23.67  | 145675 | 23.72  | 150659 | 23.76          | 155643 | 23.81  | 160627 | 23.86          | 165611 | 23.89  | 170595 | 23.95          | 175579 | 24.01          |
| 120841 | 23.51          | 125826 | 23.53  | 130810 | 23.58  | 135794 | 23.62  | 140778 | 23.67  | 145762 | 23.71  | 150746 | 23.77          | 155730 | 23.81  | 160714 | 23.80          | 165786 | 23.90  | 170683 | 23.95          | 175007 | 24.00          |
| 121016 | 23.51          | 126001 | 23.52  | 130985 | 23.59  | 135969 | 23.63  | 140953 | 23.67  | 145937 | 23.72  | 150921 | 23.78          | 155905 | 23.82  | 160889 | 23.86          | 165873 | 23.90  | 170857 | 23.95          | 175842 | 24.00          |
| 121104 | 23.50          | 126088 | 23.53  | 131072 | 23.59  | 136056 | 23.63  | 141040 | 23.67  | 146025 | 23.70  | 151009 | 23.78          | 155993 | 23.82  | 160977 | 23.86          | 165961 | 23.89  | 170945 | 23.95          | 175929 | 24.01          |
| 121191 | 23.50          | 126176 | 23.54  | 131160 | 23.60  | 136144 | 23.63  | 141128 | 23.67  | 146112 | 23.70  | 151096 | 23.78          | 156080 | 23.81  | 161064 | 23.86          | 166048 | 23.89  | 171032 | 23.95          | 176017 | 24.01          |
| 121279 | 23.50          | 126263 | 23.54  | 131247 | 23.60  | 136231 | 23.63  | 141215 | 23.67  | 146199 | 23.71  | 151184 | 23.78          | 156168 | 23.81  | 161152 | 23.86          | 166136 | 23.90  | 171120 | 23.95          | 176104 | 24.01          |
| 121366 | 23.50          | 126351 | 23.55  | 131335 | 23.59  | 136319 | 23.63  | 141303 | 23.67  | 146287 | 23.71  | 151271 | 23.78          | 156255 | 23.81  | 161239 | 23.86          | 166223 | 23.90  | 171207 | 23.95          | 176191 | 24.02          |
| 121403 | 23.50<br>23.50 | 126438 | 23.55  | 131422 | 23.60  | 136406 | 23.03  | 141390 | 23.68  | 146374 | 23.72  | 151358 | 23.78          | 156430 | 23.81  | 161414 | 23.80          | 166398 | 23.89  | 171295 | 23.95          | 176366 | 24.02          |
| 121628 | 23.50          | 126613 | 23.56  | 131597 | 23.61  | 136581 | 23.63  | 141565 | 23.69  | 146549 | 23.74  | 151533 | 23.77          | 156517 | 23.81  | 161501 | 23.86          | 166485 | 23.89  | 171470 | 23.95          | 176454 | 24.02          |
| 121716 | 23.51          | 126701 | 23.56  | 131685 | 23.61  | 136668 | 23.62  | 141652 | 23.68  | 146637 | 23.75  | 151621 | 23.77          | 156605 | 23.82  | 161589 | 23.86          | 166573 | 23.90  | 171557 | 23.94          | 176541 | 24.03          |
| 121803 | 23.52          | 126788 | 23.56  | 131772 | 23.60  | 136756 | 23.62  | 141740 | 23.68  | 146724 | 23.74  | 151708 | 23.78          | 156692 | 23.83  | 161676 | 23.86          | 166660 | 23.90  | 171645 | 23.94          | 176629 | 24.02          |
| 121891 | 23.51          | 126876 | 23.55  | 131859 | 23.61  | 136843 | 23.62  | 141827 | 23.68  | 146811 | 23.74  | 151796 | 23.78          | 156780 | 23.83  | 161764 | 23.86          | 166748 | 23.90  | 171732 | 23.95          | 176716 | 24.02          |
| 121978 | 23.51          | 126963 | 23.55  | 131947 | 23.61  | 136931 | 23.63  | 141915 | 23.68  | 146899 | 23.73  | 151883 | 23.78          | 156867 | 23.84  | 161851 | 23.85          | 166835 | 23.90  | 171819 | 23.94          | 176803 | 24.02          |
| 122003 | 23.51          | 127030 | 23.56  | 132122 | 23.61  | 137106 | 23.63  | 142002 | 23.69  | 140900 | 23.74  | 152058 | 23.79          | 157042 | 23.83  | 162026 | 23.86          | 167010 | 23.90  | 171994 | 23.94          | 176978 | 24.02          |
| 122240 | 23.51          | 127225 | 23.56  | 132209 | 23.60  | 137193 | 23.64  | 142177 | 23.69  | 147161 | 23.74  | 152145 | 23.79          | 157130 | 23.82  | 162113 | 23.86          | 167097 | 23.91  | 172082 | 23.95          | 177066 | 24.03          |
| 122328 | 23.51          | 127313 | 23.56  | 132297 | 23.60  | 137281 | 23.65  | 142265 | 23.70  | 147249 | 23.73  | 152233 | 23.80          | 157217 | 23.83  | 162201 | 23.85          | 167185 | 23.92  | 172169 | 23.96          | 177153 | 24.03          |
| 122415 | 23.50          | 127400 | 23.56  | 132384 | 23.60  | 137368 | 23.65  | 142352 | 23.70  | 147336 | 23.72  | 152320 | 23.79          | 157304 | 23.83  | 162288 | 23.84          | 167272 | 23.93  | 172257 | 23.96          | 177241 | 24.03          |
| 122503 | 23.50          | 127488 | 23.56  | 132471 | 23.60  | 137455 | 23.65  | 142439 | 23.70  | 147424 | 23.73  | 152408 | 23.80          | 157392 | 23.84  | 162376 | 23.85          | 167360 | 23.93  | 172344 | 23.95          | 177328 | 24.04          |
| 122590 | 23.51          | 127575 | 23.50  | 132559 | 23.60  | 137543 | 23.00  | 142527 | 23.70  | 147511 | 23.74  | 152495 | 23.80<br>23.80 | 157479 | 23.84  | 162463 | 23.85          | 167535 | 23.93  | 172431 | 23.95          | 177503 | 24.03          |
| 122765 | 23.52          | 127750 | 23.55  | 132734 | 23.60  | 137718 | 23.65  | 142702 | 23.71  | 147686 | 23.73  | 152670 | 23.80          | 157654 | 23.84  | 162638 | 23.86          | 167622 | 23.93  | 172606 | 23.96          | 177590 | 24.03          |
| 122852 | 23.51          | 127837 | 23.55  | 132821 | 23.60  | 137805 | 23.64  | 142789 | 23.70  | 147773 | 23.74  | 152758 | 23.80          | 157742 | 23.83  | 162726 | 23.86          | 167710 | 23.93  | 172694 | 23.97          | 177678 | 24.03          |
| 122940 | 23.52          | 127925 | 23.56  | 132909 | 23.60  | 137893 | 23.65  | 142877 | 23.70  | 147861 | 23.75  | 152845 | 23.80          | 157829 | 23.83  | 162813 | 23.87          | 167797 | 23.93  | 172781 | 23.97          | 177765 | 24.04          |
| 123027 | 23.52          | 128012 | 23.57  | 132996 | 23.60  | 137980 | 23.65  | 142964 | 23.70  | 147948 | 23.75  | 152932 | 23.80          | 157916 | 23.84  | 162900 | 23.86          | 167884 | 23.93  | 172869 | 23.98          | 177853 | 24.05          |
| 123115 | 23.52<br>23.52 | 128100 | 23.57  | 133083 | 23.60  | 138067 | 23.65  | 143051 | 23.70  | 148036 | 23.74  | 153020 | 23.79          | 158004 | 23.85  | 162988 | 23.87          | 167972 | 23.93  | 172956 | 23.99          | 177940 | 24.04          |
| 123292 | 23.52          | 128275 | 23.57  | 133258 | 23.60  | 138242 | 23.65  | 143226 | 23.69  | 148211 | 23.75  | 153195 | 23.78          | 158179 | 23.85  | 163163 | 23.86          | 168147 | 23.93  | 173131 | 24.00          | 178115 | 24.04          |
| 123377 | 23.52          | 128362 | 23.57  | 133346 | 23.59  | 138330 | 23.65  | 143314 | 23.69  | 148298 | 23.75  | 153282 | 23.78          | 158266 | 23.84  | 163250 | 23.86          | 168234 | 23.93  | 173218 | 24.00          | 178202 | 24.04          |
| 123464 | 23.52          | 128449 | 23.57  | 133433 | 23.59  | 138417 | 23.66  | 143401 | 23.69  | 148385 | 23.76  | 153370 | 23.79          | 158354 | 23.84  | 163338 | 23.86          | 168322 | 23.94  | 173306 | 23.99          | 178290 | 24.04          |
| 123552 | 23.52          | 128537 | 23.57  | 133521 | 23.60  | 138505 | 23.66  | 143489 | 23.70  | 148473 | 23.76  | 153457 | 23.79          | 158441 | 23.84  | 163425 | 23.87          | 168409 | 23.94  | 173393 | 23.99          | 178377 | 24.04          |
| 123639 | 23.52          | 128624 | 23.56  | 133608 | 23.60  | 138592 | 23.65  | 143576 | 23.69  | 148560 | 23.77  | 153544 | 23.79          | 158529 | 23.84  | 163512 | 23.88          | 168497 | 23.94  | 173481 | 23.98          | 178465 | 24.04          |
| 123727 | 23.52<br>23.53 | 128712 | 23.50  | 133090 | 23.01  | 138767 | 23.00  | 143004 | 23.70  | 148048 | 23.76  | 153632 | 23.80<br>23.80 | 158703 | 23.84  | 163687 | 23.88<br>23.88 | 168671 | 23.94  | 173656 | 23.98          | 178640 | 24.03          |
| 123902 | 23.54          | 128887 | 23.56  | 133870 | 23.60  | 138854 | 23.65  | 143838 | 23.69  | 148823 | 23.76  | 153807 | 23.79          | 158791 | 23.84  | 163775 | 23.88          | 168759 | 23.95  | 173743 | 23.99          | 178727 | 24.04          |
| 123989 | 23.54          | 128974 | 23.56  | 133958 | 23.60  | 138942 | 23.65  | 143926 | 23.69  | 148910 | 23.76  | 153894 | 23.79          | 158878 | 23.85  | 163862 | 23.88          | 168846 | 23.95  | 173831 | 23.99          | 178815 | 24.05          |
| 124077 | 23.54          | 129061 | 23.57  | 134045 | 23.60  | 139029 | 23.66  | 144013 | 23.70  | 148998 | 23.76  | 153982 | 23.80          | 158966 | 23.84  | 163950 | 23.88          | 168934 | 23.94  | 173918 | 23.99          | 178902 | 24.05          |
| 124164 | 23.54          | 129149 | 23.58  | 134133 | 23.60  | 139117 | 23.66  | 144101 | 23.70  | 149085 | 23.77  | 154069 | 23.80          | 159053 | 23.85  | 164037 | 23.87          | 169021 | 23.94  | 174005 | 23.99          | 178989 | 24.05          |
| 124252 | 23.54          | 129236 | 23.59  | 134220 | 23.60  | 139204 | 23.66  | 144188 | 23.70  | 149172 | 23.77  | 154157 | 23.81          | 159141 | 23.85  | 164124 | 23.86          | 169109 | 23.93  | 174093 | 23.99          | 170164 | 24.04          |
| 124339 | 23.54<br>23.54 | 129324 | 23.59  | 134395 | 23.62  | 139292 | 23.67  | 144270 | 23.70  | 149200 | 23.77  | 154244 | 23.81          | 159228 | 23.86  | 164299 | 23.86          | 169283 | 23.93  | 174160 | 23.90<br>23.97 | 179252 | 24.04<br>24.06 |
| 124514 | 23.54          | 129499 | 23.59  | 134482 | 23.62  | 139466 | 23.67  | 144451 | 23.70  | 149435 | 23.77  | 154419 | 23.82          | 159403 | 23.86  | 164387 | 23.88          | 169371 | 23.92  | 174355 | 23.97          | 179339 | 24.07          |

#### Daten der LWL-Messung

| t [s]  | T [°C] | t [s]  | T [°C] | t [s]  | T [°C] |
|--------|--------|--------|--------|--------|--------|
| 179427 | 24.06  | 184413 | 24.15  | 189404 | 24.26  |
| 179514 | 24.06  | 184501 | 24.16  | 189491 | 24.26  |
| 179601 | 24.06  | 184588 | 24.16  | 189578 | 24.26  |
| 179689 | 24.06  | 184675 | 24.16  | 189666 | 24.26  |
| 179776 | 24.06  | 184763 | 24.15  | 189753 | 24.26  |
| 179864 | 24.07  | 184850 | 24.15  | 189841 | 24.26  |
| 179951 | 24.07  | 184938 | 24.15  | 189928 | 24.25  |
| 180039 | 24.07  | 185025 | 24.15  | 190016 | 24.25  |
| 180126 | 24.07  | 185113 | 24.15  | 190103 | 24.26  |
| 180214 | 24.06  | 185200 | 24.16  | 190191 | 24.26  |
| 180301 | 24.06  | 185287 | 24.17  | 190278 | 24.26  |
| 180389 | 24.06  | 185375 | 24.18  | 190365 | 24.26  |
| 180476 | 24.07  | 185462 | 24.18  | 190453 | 24.26  |
| 180563 | 24.07  | 185550 | 24.18  | 190540 | 24.25  |
| 180651 | 24.08  | 185637 | 24.18  | 190628 | 24.26  |
| 180738 | 24.09  | 185725 | 24.19  | 190715 | 24.26  |
| 180826 | 24.09  | 185813 | 24.19  | 190803 | 24.26  |
| 180913 | 24.09  | 185900 | 24.20  | 190890 | 24.25  |
| 181001 | 24.08  | 185988 | 24.20  | 190977 | 24.25  |
| 181088 | 24.08  | 186075 | 24.20  | 191065 | 24.25  |
| 181176 | 24.08  | 186163 | 24.20  | 191152 | 24.25  |
| 181263 | 24.09  | 186251 | 24.21  | 191240 | 24.25  |
| 101300 | 24.09  | 100330 | 24.22  | 191327 | 24.20  |
| 101430 | 24.10  | 100420 | 24.22  | 101502 | 24.20  |
| 101525 | 24.11  | 196601 | 24.22  | 101500 | 24.20  |
| 181700 | 24.11  | 186689 | 24.22  | 191677 | 24.25  |
| 181788 | 24.10  | 186777 | 24.22  | 191764 | 24.20  |
| 181875 | 24.11  | 186864 | 24.23  | 191852 | 24.26  |
| 181963 | 24.11  | 186952 | 24.23  | 191939 | 24.27  |
| 182050 | 24.10  | 187039 | 24.24  | 192027 | 24.28  |
| 182137 | 24.10  | 187127 | 24.25  | 192114 | 24.28  |
| 182225 | 24.10  | 187214 | 24.25  | 192202 | 24.28  |
| 182312 | 24.11  | 187302 | 24.25  | 192289 | 24.28  |
| 182400 | 24.11  | 187389 | 24.25  | 192377 | 24.29  |
| 182487 | 24.11  | 187477 | 24.25  |        |        |
| 182575 | 24.11  | 187564 | 24.25  |        |        |
| 182662 | 24.10  | 187652 | 24.26  |        |        |
| 182750 | 24.10  | 187740 | 24.25  |        |        |
| 182837 | 24.10  | 187827 | 24.25  |        |        |
| 182924 | 24.11  | 187915 | 24.24  |        |        |
| 183012 | 24.11  | 188003 | 24.24  |        |        |
| 183099 | 24.11  | 188090 | 24.24  |        |        |
| 193275 | 24.11  | 199265 | 24.23  |        |        |
| 183362 | 24.12  | 188353 | 24.22  |        |        |
| 183450 | 24.13  | 188440 | 24.22  |        |        |
| 183537 | 24.12  | 188528 | 24.22  |        |        |
| 183625 | 24.12  | 188616 | 24.22  |        |        |
| 183713 | 24.13  | 188703 | 24.23  |        |        |
| 183800 | 24.13  | 188791 | 24.23  |        |        |
| 183888 | 24.13  | 188878 | 24.23  |        |        |
| 183976 | 24.13  | 188966 | 24.24  |        |        |
| 184063 | 24.13  | 189054 | 24.24  |        |        |
| 184151 | 24.13  | 189141 | 24.25  |        |        |
| 184238 | 24.14  | 189229 | 24.25  |        |        |
| 184326 | 24.15  | 189316 | 24.26  |        |        |

# Dissertationsschrift

Bestimmung verschiedener Untergrundparameter an einem Erdwärmesondenfeld für Heiz- und Kühlzwecke und thermohydraulische Modellierungen des enhanced Thermal Response Tests

Anhang 2: Matlab Skripte

- Anhang 2.a) Matlab-Skript- und Funktionsfiles Relaxationsmethode
- Anhang 2.b) Matlab-Skript- und Funktionsfiles Temperaturberechnung von Erdwärmesonden
- Anhang 2.c) Matlab-Skript- und Funktionsfiles Wärmeleitfähigkeitsberechnung bei schwankendem Wärmeeintrag (Kontourplot)

## Anhang 2.a) Matlab-Skript- und Funktionsfiles Relaxationsmethode

#### **Relaxation-Method.m**

```
ş
% Thermal Conductivity Calculation of BHEs Using the Relaxation Method
oʻç
% used methods:
% Relaxation Method of the Line Source Approximation (RLS)
8
% Florian Malm 2013
% Sources:
% Malm 2013
% after Dornstädter et al. 2008 & Heske et al. 2011
2
 _____
% References:
% Malm, F. (2013) Bestimmung verschiedener Untergrundparameter an einem
% Erdwärmesondenfeld für Heiz- und Kühlzwecke und thermohydraulische
% Modellierungen des enhanced Thermal Response Tests; Universität Mainz
% (Dissertation).
º .
% Relaxation Method:
% Eq. II-1.3:
% tc = Q l/(4*pi*m)
% m
     = incline of the ln(t/(t-th))-T-matrix solved by linear
00
      regression of the data
§ _____
                    _____
o.c.
% start of script
clear:
  _____
% input variables
∞
t_hd = 3.0; % end of the heat injection [d]
t start = 6.0;
               % start of calculation [d]
t_end = 8.0;
               % end of calculation [d]
               % round to position after decimal point [-]
prec = 2.0;
tc rock = 2.0;
               % thermal conductivity of surrounding rock,
               % estimated through modeling or laboratory
               % measurements [W/(m K)]
               % important for the calculation of the
               % deviation
% selectable heat input method, choose input method with ifql variable
% _____
    = 30;
               % mean heat input [W/m]
Q l
ifql
   = 1;
               \% if ifgl = 1, then do calculation of Q l with
               % relax_m_calc_Q_l-script, else take Q_l from
               % input above
% _____
```

```
% load data sets
% data sets must be a time-temperature matrix (in accumulated seconds and
% degrees Celsius) and a time-heat-injection matrix (in accumulated days
and
% joule per day per meter) without a header in *.txt-ASCII-format
∞
% time-temperature-matrix, t(:,1) [s], T(:,2) [°C]
tT relax = load('t-T_relax_input.txt','-ASCII');
% time-heat-injection-matrix, t(:,1) [d], q(:,2) [J/d/m]
if ifql == 1
         = load('t-q relax input.txt','-ASCII');
  tq relax
end
% calculated variables
%
t h = t_h d^{24*60*60};
prec calc = ['%10.',num2str(round(prec)),'f'];
                  % position after decimal point [-]
olo
if ifql == 1
  tq_relax_s(:,1) = tq_relax(:,1)*60*60*24; % t(:,1) [s]
tq_relax_s(:,2) = tq_relax(:,2)/60/60/24; % q(:,2) [W/m]
  clear tq_relax;
end
    _____
8 ____
% calculate Q l [W/m]
8 -----
% build tq_data with relax_m_calc_Q_l.m -script
if ifgl == 1
 [Q 1] = relax m calc Q l(tq relax s,t h);
end
clear ifql;
% calculate thermal conductivity [W/(m K)]
0/9
% build tc with relax_m_calc_tc.m -script
•
[tc,T 0,m regr,r2] = relax m calc tc(tT relax,t h,t start s,t end s,Q l);
tc dev = 100*abs(tc-tc rock)/tc rock; % deviation from given tc [%]
alo
% output text
Tx01=' ';
Tx02='Calculation of the Thermal Conductivity with the Relaxation-Method';
Tx03=' (Malm 2013 after Dornstädter 2008 and Heske 2011)';
Tx04='-----
                                        ____!
Tx05='Input Parameters:';
Tx06=['End of Heat Injection after:
                                   ', ...
  num2str(t hd,prec calc),' d'];
Tx07=['Start of Calculation after:
                                   ', ...
  num2str(t start,prec_calc),'
                     d'];
                                   ', ...
Tx08=['End of Calculation after:
  num2str(t end,prec calc),' d'];
```

```
Tx09=['Given Thermal Conductivity of Rock:
                                                 ', ...
    num2str(tc_rock,prec_calc),' W/(m K)'];
Tx10='-----
                              _____
                                                   ____!!
Tx11='Output Parameters:';
Tx12=['Incline of the ln(t/(t-th))-T-Slope:
                                                  ', ...
    num2str(m_regr,prec_calc),' K'];
Tx13=['Coefficient of Determination R<sup>2</sup>:
                                                  ', ...
   num2str(r2,prec_calc),' -'];
                                                 ', ...
Tx14=['Calculated Thermal Conductivity of Rock:
   num2str(tc,prec_calc),' W/(m K)'];
Tx15=['Deviation from calculated to given TC:
                                                 ', ...
   num2str(tc_dev,prec_calc),' %'];
Tx16=['Calculated Temperature of Undisturbed Ground T0:
                                                 ', ...
   num2str(T_0,prec_calc),' °C'];
Tx17='----
                               -----';
Tx18=' ';
disp(Tx01);disp(Tx02);disp(Tx03);disp(Tx04);disp(Tx05);disp(Tx06);
disp(Tx07); disp(Tx08); disp(Tx09); disp(Tx10); disp(Tx11); disp(Tx12);
disp(Tx13); disp(Tx14); disp(Tx15); disp(Tx16); disp(Tx17); disp(Tx18);
clear Tx01 Tx02 Tx03 Tx04 Tx05 Tx06 Tx07 Tx08 Tx09 Tx10 Tx11 Tx12 Tx13;
clear Tx14 Tx15 Tx16 Tx17 Tx18;
§ _____
                            _____
% END OF SCRIPT
§ _____
```

# relax\_m\_calc\_Q\_l.m

```
function [Q l] = relax_m_calc_Q_l(tq_relax_s,t_h)
% calculate Q l [W/m] for Relaxation Method.m -script
06
% input arguments:
% tq_relax_s = time-heat-injection-matrix, t(:,1) [s], q(:,2) [W/m]
% t_h = end of the heat injection [s]
96
% output argument:
% Q l = mean heating power per unit length for two cables [W/m]
8 ------
qr_s = size(tq_relax_s);
y = 1;
for i=1:qr s(1)
   if tq relax s(i,1) < t h
      y=y+1;
   end
end
          = zeros(y,2);
:) = tq_relax_s(1:y,:);
tq data
tq data(1:y,:)
% calculate Q l
                                 % mean heat injection [W/m]
% mean heat injection [W/m]
% mean HI for two cables! [W/m]
mean_Q_data = mean(tq_data,1);
mean_Q_1 = abs(mean_Q_data(1,2));
     = mean Q 1*2;
Q 1
```

# relax\_m\_calc\_tc.m

```
= end of calculation [s]
= mean heating power per unit length for two cables [W/m]
% t end s
% Q l
     _____
% ____
% output arguments:
             = thermal conductivity of surrounding rock [W/(m K)]
% tc
% T_0 = undisturbed temperature of the underground [°C]
% m_regr = incline of the ln(t/(t-th))-T-slope [K]
% r2 = coefficient of determination R^2 [-]
%
§ _____
                             _____
% Relaxation Method:
% Eq. II-1.3:
% tc = Q_1/(4*pi*m)
% m
        = incline of the ln(t/(t-th))-T-matrix solved by linear
        regression of the data via the polyfit-function
8
2
% build tT data
8 -----
r s = size(tT relax); z = 0; m = 0; n = 0;
for i=1:r_s(1)
   if tT_relax(i,1) < t h</pre>
      z=z+1;
   end
   if tT relax(i,1) < t start s</pre>
     m=m+1;
   end
   if tT relax(i,1) <= t end s</pre>
     n=n+1;
   end
end
n = n-z; m = m-z;
             = zeros(n-m-1,2);
tT data
for i=1:n-m-1
   tT data(i,1) = log(tT relax(i+z+m+1,1)/(tT relax(i+z+m+1,1)-t h));
end
tT data(1:end,2) = tT relax(z+m+2:n+z,2);
                                     _____
%
% caclulate linear regression of ln(t/(t-th))-T-File
o's
lin regr = polyfit(tT data(:,1),tT data(:,2),1);
ç.____
% calculate thermal conductivity of surrounding rock
%
tc = Q_l/(4*pi*lin_regr(1)); % thermal conductivity [W/(m K)]
T_0 = lin_regr(2); % temperature undisturbed ground [°C]
m_regr = lin_regr(1); % incline of the ln(t/(t-th))-T-slope [K]
% calculate coefficient of determination R^2
% R^2 = (Pearson's Correlation Coefficient)^2 = corr(X,Y)^2
r2
     = corr(tT data(:,1),tT data(:,2))^2; % R^2 [-]
```

# Anhang 2.b) Matlab-Skript- und Funktionsfiles Temperaturberechnung von

Erdwärmesonden

# LSA-LSE-LSL.m

```
% -----
% Temperature Calculation of BHEs Using Various Methods
06
% used methods:
% Long Term Solution of the Line Source Approximation (LSA)
% Line Source Approximation using the Exponential Integral E1(x) (LSE)
% Numerical Inversion of the Laplace Transform Solution (LSL)
2
% Florian Malm 2013
% Sources:
% after Hellstroem 1991, pp. 150 & 153 (10.09 & 10.13)
% after Carslaw & Jaeger 1959, pp. 261
응 _____
                             _____
% References:
% -Baudoin, A. (1988) Stockage intersaisonnier de chaleur dans le sol par
% batterie d'echangeurs baionnette verticaux; L'Universite de Reims
% Champagne-Ardenne, France (Dissertation).
% -Carslaw, H.S. & Jaeger, J.C. (1959) Conduction of Heat in Solids;
% 510 p., Oxford University Press, Oxford.
% -Hellstroem, G. (1991) Ground Heat Storage; 262 p., University of Lund,
% Sweden (Dissertation).
% -Veillon F. 1972. Ouelques nouvelles methodes pour le calcul numerique
% de la transformée inverse de Laplace, Université de Grenoble, France
% (Dissertation).
٥<u>،</u>
% Line Source Approximation:
% Eq. 10.13: Tfq(t) = q1/(4*pi*tc) * [ln([4*a*t]/rb^2)-eulmas] + q1*Rb + T0
oc.
% Line Source Exponential Integral E1(x):
% Eq. 10.09: Tfq(t) = q1/(4*pi*tc) * E1(r^2/[4*a*t] + q1*Rb + T0
∞
% Numerical Inversion of Laplace Transform Solution:
% Eq. 10.06: Tq(r,t) = q1/(2*pi*rb*tc) *sum[j=1-->j=10]((Vj/j)
                    * KO(Wj*r)/wj*K1(wj*rb))
% Eq. 10.07: wj = sqrt[(j*ln(2))/(tdiff*t)]
% Eq. 10.08: Vj = sum[k=Int((j-1)/2)-->min(j,5)](((-1)^(j-5)*k^5*(2k)!)
               /((5-k)!*(k-1)!*k!*(j-k)!*(2k-j)!))
8
2
               note: (k-1)! = gamma(k); (2k-j)! = gamma(2k-j+1)
_____
% start of script
clear;
% input variables
06
tc = 2.0;
                         % thermal conductivity rock, W/(m K)
v_heat_cap = 2.0;
                          % vol. heat capacity, MJ/(m^3 K)
r = 0.15;
r_b = 0.15;
Q = 30;
                          % radius, m
                          % borehole radius, m
                         % constant heat input, W/m
8 ---
    _____
     = 0.188620138905809; % thermal borehole resistivity, (m K)/W
= 10; % undisturbed ground temperature, °C
RЬ
т О
```

```
% calculated variables
∞
       = abs(psi(1)); % Euler-Mascheroni-Constant, -
eulmas
       = tc/(v heat cap*1e6); % thermal diffusivity rock, m^2/s
t_diff
% import time-heat-input-dataset, n,2-matrix, s -- W/m
                               _____
    -----
tq_data = load('t-q_input.txt','-ASCII');
% tT_data = load('t-T_input.txt','-ASCII');
% \text{ tc}(\text{tT data}) = 2.74863 \text{ W/ (m K)}
∞
% Calculation of the
% Long Term Solution of the Line Source Approximation (LSA)
% (eq. 10.13, p. 153, Hellstroem 1991)
% calculation T-t-line
% -----
   = LineSource Approx(r,t diff,tq data,tc,eulmas,Q);
[T]
% Create plot a la Hellstroem (fig. 10.2, p. 152, Hellstroem 1991)
06
Hellplot=zeros(size(T));
Hellplot(:,1) = log((t_diff*tq_data(:,1))./r_b.^2);
Hellplot(:,2)=(4.*pi.*tc.*T(:,2))./tq data(:,2);
8 -----
% Calculation of the
% Line Source Approximation Using the Exponential Integral E1(x) (LSE)
% (eq. 10.09, p. 150, Hellstroem 1991)
% calculation T-t-line
% -----
[Tq]
    = LineSource(r,t_diff,tq_data,tc,Q);
% Create plot a la Hellstroem (fig. 10.2, p. 152, Hellstroem 1991)
8 -----
Hellplot LSE=zeros(size(Tq));
Hellplot_LSE(:,1)=log((t_diff*tq_data(:,1))./r_b.^2);
Hellplot_LSE(:,2) = (4.*pi.*tc.*Tq(:,2))./tq_data(:,2);
o.
% Calculation of the
% Numerical Inversion of Laplace Transform Solution (LSL)
% (eq. 10.06, 10.07 & 10.08, p. 150, Hellstroem 1991)
% calculation T-t-line
% _____
[Tt] = LineSource_Laplace(r,t_diff,tq_data,tc,r_b,Q);
% Create plot a la Hellstroem (fig. 10.2, p. 152, Hellstroem 1991)
Hellplot LSL=zeros(size(Tq));
Hellplot LSL(:,1)=log((t diff*tq data(:,1))./r b.^2);
Hellplot LSL(:,2)=(4.*pi.*tc.*Tt(:,2))./tq data(:,2);
```

```
٥<u>،</u>
% Result Plots
% T-t-plot
ok
                             % font size for the all fonts in the plot
fs=12;
scrsz = get(0, 'ScreenSize');
h b fig = [scrsz(3)/2 scrsz(4)/1.2];
pos_fig = [abs((scrsz(3)-h_b_fig(1))/2) abs((scrsz(4)-h_b_fig(2))/2)];
figure('Position',[pos fig(1) pos fig(2) h b fig(1) h b fig(2)])
subplot(2,1,1);
plot(T(1:end,1)/60/60/24,T(1:end,2),'.',Tq(1:end,1)/60/60/24, ...
    Tq(1:end,2), '--', Tt(1:end,1)/60/60/24, Tt(1:end,2), '-');
grid on;
% title('time-temperature plot line source');
xlabel('t [d]','fontsize',fs);
ylabel('T [°C]','fontsize',fs);
hleglentry1 = 'Langzeitlösung der Linienquellenapproximation';
hleqlentry2 = 'Linienquellenapproximation';
hleq1entry3 = 'exakte Lösung nach Veillon 1972';
hleq1 = leqend(hleq1entry1, hleq1entry2, hleq1entry3);
set(hleg1, 'Location', 'SouthEast');
y min = [min(T(:,2)) min(Tq(:,2)) min(Tt(:,2))];
y \max = [\max(T(:,2)) \max(Tq(:,2)) \max(Tt(:,2))];
axis([0 max(T(:,1))/60/60/24 round(min(y_min))-2 round(max(y_max))+2]);
set(gca, 'YTick', -100:2:100)
set(gca,'fontsize',fs);
% plot a la Hellstroem (fig. 10.2, p. 152, Hellstroem 1991)
% ln([a*t]/rb^2)
% (4*pi*tc*Tbq)/q1
§ _____
                     _____
subplot(2,1,2);
plot(Hellplot(1:end,1),Hellplot(1:end,2),'.',Hellplot LSE(1:end,1), ...
    Hellplot_LSE(1:end, 2), '--', Hellplot_LSL(1:end, 1), ...
    Hellplot LSL(1:end, 2), '-');
grid on;
% title('figure 10.2, p. 152, Hellstroem 1991');
hleg2entry1 = 'Langzeitlösung der Linienquellenapproximation';
hleg2entry2 = 'Linienquellenapproximation';
hleg2entry3 = 'exakte Lösung nach Veillon 1972';
hleg2 = legend(hleg2entry1, hleg2entry2, hleg2entry3);
set(hleg2, 'Location', 'SouthEast');
xlabel('ln(\alphat/r_b^2) [-]','fontsize',fs);
ylabel('4\pi\lambdaT_b^q/q_1 [-]','fontsize',fs);
set(gca, 'fontsize', fs);
o.
% END OF SCRIPT
```

### LineSource\_Approx.m

```
8
             q_vec(:,1) - time [s]
             q vec(:,2) - time-varying heat input [W/m]
8
          - thermal diffusivity of surrounding rock [m^2/s]
2
   а
%
   lambda - thermal conductivity of the surrounding rock [W/(m K)]
         - Euler-Mascheroni-constant [0,5772...]
8
   gamma
         - constant heat input [W/m]
8
  0
8 -----
                                             _____
% Output:
          - ntimesteps*2 matrix which contains:
8
  т
            T(:,1) - time [s]
8
            T(:,2) - temperature [°C]
8
8 _____
                                        _____
                -----
n
  = size(q vec,1);
  = zeros(n,2);
Т
for i = 1:n
   T(i,2)
            = (q_vec(i,2)/(4*pi*lambda))*(log((4*a*q_vec(i,1))/r^2) ...
               -gamma);
           = q vec(i,1);
   T(i,1)
end
```

#### LineSource.m

```
function [Tq] = LineSource(r,a,q vec,lambda,Q)
% LineSource computes heat injection from a pipe by a line source starting
% at t=0.
% [Tq] = LineSource(r,a,t,q,lambda)
§ _____
% Input Arguments:
%
  r - radius at which temperature is evaluated [m]
8
        - ntimesteps*2 matrix which contains:
  q_vec
2
            q vec(:,1) - time [s]
8
            q vec(:,2) - time-varying heat input [W/m]
° a
         - thermal diffusivity of surrounding rock [m^2/s]
 lambda – thermal conductivity of the surrounding rock [W/(m K)]
8
% Q - constant heat input [W/m]
°
                               _____
% Output:
% Tq
         - ntimesteps*2 matrix which contains:
8
           Tq(:,1) - time [s]
%
          Tq(:,2) - temperature [°C]
8 _____
               _____
                                 _____
n = size(q vec, 1);
Tq = zeros(n, 2);
for i = 1:n
           = (q vec(i,2)/(4*pi*lambda))*expint(r^2/(4*a*q vec(i,1)));
   Tq(i,2)
   Tq(i,1) = q_vec(i,1);
end
```

#### LineSource\_Laplace.m

```
% Eq. 10.06: Tq(r,t) = q1/(2*pi*rb*tc) *sum[j=1-->j=10]((Vj/j)
                       * KO(Wj*r)/wj*K1(wj*rb))
% Eq. 10.07: wj = sqrt[(j*ln(2))/(tdiff*t)]
% Eq. 10.08: Vj = sum[k=Int((j-1)/2)-->min(j,5)](((-1)^(j-5)*k^5*(2k)!)
                  /((5-k)!*(k-1)!*k!*(j-k)!*(2k-j)!))
                  note: (k-1)! = gamma(k); (2k-j)! = gamma(2k-j+1)
2
% Input Arguments:
8
  r - radius at which temperature is evaluated [m]
   r b
         - radius of the borehole [m]
8
   q vec - ntimesteps*2 matrix which contains:
8
             q_vec(:,1) - time [s]
q_vec(:,2) - time-varying heat input [W/m]
8
8
8
          - thermal diffusivity of surrounding rock [m^2/s]
   а
9
   lambda - thermal conductivity of the surrounding rock [W/(m K)]
8
   0
          - constant heat input [W/m]
8 -----
% Output:
8
  Τt
           - ntimesteps*2 matrix which contains:
8
             Tt(:,1) - time [s]
8
            Tt(:,2) - temperature [°C]
§ _____
                                   ------
n = size(q vec, 1);
Tt = zeros(n, 2);
for itime = 1:size(q vec,1)
   t = q \text{ vec}(\text{itime}, 1);
   q = q \text{ vec}(\text{itime}, 2);
   [Tt timestep] = ComputeLaplace(a,t,lambda,r,r b,q);
   Tt(itime,1) = t;
Tt(itime,2) = Tt_timestep;
end
8_____
function [S] = ComputeLaplace(a,t,lambda,r,r b,q)
% evaluates eq. 10.6 for a given timestep and q
S
 = 0;
for j=1:10
   [V_j]
   [V_j] = V_j_function(j);
[omega_j] = Omega_j(j,a,t);
   S = S + V j/j*besselk(0, omega j*r)/(omega j*besselk(1, omega j*r b));
end
S = S*q/(2*pi*r b*lambda);
o._____
function [omega j] = Omega j(j,a,t)
% computes omega j (eq. 10.7)
omega j = \operatorname{sqrt}(j \cdot \log(2) / (a \cdot t));
%_____
function [V j] = V j function(j)
% note: negative factorials can be expressed via the gamma function:
% --> n! = factorial(n) = gamma(n+1)
% --> (k-1)! = factorial(k-1) = gamma(k)
 = -> (2*k-j)! = factorial(2*k-j) = gamma(2*k-j+1) 
% note end.
k min = double(int32((j-1)/2));
k \max = \min([j,5]);
V j = 0;
```

# Anhang 2.c) Matlab-Skript- und Funktionsfiles Wärmeleitfähigkeitsberechnung bei schwankendem Wärmeeintrag (Kontourplot)

# Num\_LSL.m

```
_____
% Temperature Calculation of BHEs Using Various Methods
8
  _____
% used methods:
% Numerical Inversion of the Laplace Transform Solution (LSL)
2
% Florian Malm & Boris Kaus 2013
% -
% Sources:
% after Hellstroem 1991, pp. 150 & 153 (10.09 & 10.13)
% after Carslaw & Jaeger 1959, pp. 261
% _____
% References:
% -Baudoin, A. (1988) Stockage intersaisonnier de chaleur dans le sol par
% batterie d'echangeurs baionnette verticaux; L'Universite de Reims
% Champagne-Ardenne, France (Dissertation).
% -Carslaw, H.S. & Jaeger, J.C. (1959) Conduction of Heat in Solids;
% 510 p., Oxford University Press, Oxford.
% -Hellstroem, G. (1991) Ground Heat Storage; 262 p., University of Lund,
% Sweden (Dissertation).
% -Veillon F. 1972. Quelques nouvelles methodes pour le calcul numerique
% de la transformée inverse de Laplace, Université de Grenoble, France
% (Dissertation).
% Numerical Inversion of Laplace Transform Solution:
% Eq. 10.06: Tq(r,t) = q1/(2*pi*rb*tc) *sum[j=1-->j=10]((Vj/j)
                    * KO(Wj*r)/wj*K1(wj*rb))
8
% Eq. 10.07: wj = sqrt[(j*ln(2))/(tdiff*t)]
% Eq. 10.08: Vj = sum[k=Int((j-1)/2)-->min(j,5)](((-1)^(j-5)*k^5*(2k)!)
8
                /((5-k)!*(k-1)!*k!*(j-k)!*(2k-j)!))
                note: (k-1)! = gamma(k); (2k-j)! = gamma(2k-j+1)
8
8 _____
% start of script
% _____
      _____
clear:
profile on;
t = cputime;
start clock = clock;
% input constants ans variables
v_heat_cap = 2.0;
                       % vol. heat capacity, MJ/(m^3 K)
r = 0.1;
                        % radius, m
        = 0.1;
                         % borehole radius, m
r b
```

```
% undisturbed ground temperature, °C
T = 10;
<u>9</u>
% starting values for numeric forward modelling
% := 1 --> save end-time-temp.-matrix
if save
       = 1;
                      % := 0 --> don't save matrix
                      % := 1 --> save Num LSL Output-File
if save p = 1;
                      % := 0 --> don't save Num LSL Output-File
      = 1;
                      % := 1 --> do numeric modelling
if num
                      % := 0 --> do no numeric modelling
plot_lang = 0;
                      % plot language: 1 := english, 0 := german
tc = 1.00; = 0.100;
                      % thermal conductivity rock, W/(m K)
                      % thermal borehole resistivity, (m K)/W
tc_step = 0.01;
R_b_step = 0.001;
                      % tc step, W/(m K)
                      % Rb step, (m K)/W
comp_start = 2.0;
                      % start of comparation, d
comp_stal
comp_end = 3.0,
n1 = 201;
= 201;
1 0;
                      % end of comparaion, d
                      % matrix dimension for tc, -
                      % matrix dimension for R b, -
prec
       = 1.0;
                      % round to position after decimal point, -
8 ______
% tc = 2.74863;
% R_b = 0.188516548286207;
8 ---
   % calculated variables
eulmas = abs(psi(1)); % Euler-Mascheroni-Constant, -
comp_st_s = comp_start*60*60*24; % start of comparation, s
comp end s = comp end*60*60*24; % end of comparaion, s
8 -----
% import data
%
% import time-heat-input-dataset, n,2-matrix, s -- W/m
% import time-temperature-dataset, n,2-matrix, s -- °C
tq_data_in = load('t-q_input.txt','-ASCII');
tT data = load('t-T input.txt','-ASCII');
٥<u>،</u>
o's
% adapting of t-q-input-data
o's
% [tq data] = Num tq data adaption(tq data in,tT data);
tq data = tq data in;
°
                  _____
if if num == 1
  %
   % calculation T-t-line
   _____
   [mean err matrix,tc matrix,R b matrix] = Num mean err matrix ...
      (n1,n2,tc,R b,tc step,R b step,r,v heat cap,tq data,r b, ...
      T_0,tT_data,comp_st_s,comp_end_s,start_clock);
   8 -----
   [row,column] = find(mean err matrix==min(min(mean err matrix)));
  min mean error = mean err matrix(row, column);
   tc end = tc matrix(row,1);
   R \overline{b} end = R \overline{b} matrix(column, 1);
  tc = tc_end;
R_b = R_b_end;
   8 _____
```

```
end
```

```
%
% calculation for plot
٥<u>،</u>
% Calculation of the
% Numerical Inversion of Laplace Transform Solution (LSL)
% (eq. 10.06, 10.07 & 10.08, p. 150, Hellstroem 1991)
[Tt] = Num_LineSource_Laplace(r,v_heat_cap,tq_data,tc,r_b,R_b,T_0);
[delta T t] = Num delta T t(tT data, Tt, comp st s, comp end s);
if if save ==1
   savetext = ['T-t input WLF-',num2str(tc),' Rb-',num2str(R b),'.txt'];
   save(savetext, 'Tt', '-ASCII');
   clear savetext;
end
%
% calculation of runtime
%
e = cputime-t;
hr = floor(e/60/60);
mn = floor((e-hr*60*60)/60);
sc = e - hr * 60 * 60 - mn * 60;
if hr == 1
   if plot lang == 0
     hourtext = 'Stunde';
   else
     hourtext = 'hour';
   end
else
   if plot lang == 0
     hourtext = 'Stunden';
   else
     hourtext = 'hours';
   end
end
if mn == 1
   if plot lang == 0
     mintext = 'Minute';
   else
     mintext = 'minute';
   end
else
   if plot lang == 0
     mintext = 'Minuten';
   else
     mintext = 'minutes';
   end
end
if sc == 1
   if plot lang == 0
     sectext = 'Sekunde';
   else
     sectext = 'second';
   end
else
   if plot lang == 0
     sectext = 'Sekunden';
   else
     sectext = 'seconds';
   end
end
```

```
§ _____
% creation of Num LSL_Output-File
% Num LSL Output-File data content
2
   _____

      %
      1
      2
      3
      4
      5
      6
      7

      %
      1
      date and time:
      DD
      MM
      YYYY
      hh
      mm
      ss
      0

      %
      2
      calculation time:
      hr
      mn
      sc
      0
      0
      0

      %
      2
      calculation time:
      hr
      mn
      sc
      0
      0
      0

      %
      3
      calc.
      tc
      A
      b
      0
      0
      0

      %
      3
      calc.
      tc
      R
      b
      0
      0
      0

      %
      4
      min_err and Rbcalc:
      merr
      R
      b1
      R
      b2
      R
      b3
      R
      b4
      R
      b5
      ...

% 5 tc and data tc1 data1,1 data1,2 data1,3 data1,4 data1,5 ...
                               tc2 data2,1 data2,2 data2,3 data2,4 data2,5 ...
% 6 tc and data
87...
€ _____
if if num == 1
     c = clock;
     plop1
                    = horzcat(tc matrix, mean err matrix);
     plop2
                    = horzcat(min mean error, R b matrix');
     plop3
                    = zeros(1, size(plop2, 2));
     plop3(1,1) = tc; plop3(1,2) = R b;
                    = zeros(1, size(plop2, 2));
     plop4
     plop4(1,1) = hr; plop4(1,2) = mn; plop4(1,3) = sc;
      if c(1,3) < 10
           DD = ['0', num2str(c(1,3))];
      else
           DD=num2str(c(1,3));
     end
      if c(1,2) <10
           MM=['0',num2str(c(1,2))];
      else
           MM=num2str(c(1,2));
      end
      YYYY=num2str(c(1,1));
      if c(1, 4) < 10
           hh=['0',num2str(c(1,4))];
      else
           hh=num2str(c(1,4));
      end
      if c(1, 5) < 10
           mm = ['0', num2str(c(1, 5))];
      else
           mm = num 2 str(c(1, 5));
      end
      if c(1, 6) < 10
          ss=['0', num2str(round(c(1, 6)))];
      else
          ss=num2str(round(c(1, 6)));
      end
                      = zeros(1, size(plop2, 2));
     plop5
     plop5(1,1) = str2double(DD); plop5(1,2) = str2double(MM);
plop5(1,3) = str2double(YYYY); plop5(1,4) = str2double(hh);
plop5(1,5) = str2double(mm); plop5(1,6) = str2double(ss);
     plot output = vertcat(plop5,plop4,plop3,plop2,plop1);
      if if save p == 1
           plot_output_text=['Num_LSL_Output-File_',DD,'.',MM,'.',YYYY, ...
                 '_', hh, '-', mm, '-', ss, '_', num2str(n1), 'x', num2str(n2), '.txt'];
           save(plot_output_text, 'plot_output', '-ASCII');
           clear plot_output_text;
      end
      clear plop1 plop2 plop3 plop4 plop5 DD MM YYYY hh mm ss;
else
```

```
c = clock;
   plot_output = zeros(2,6);
plot_output = vertcat(c,plot_output);
   plot output(2,1) = hr; plot output(2,2) = mn; plot output(2,3) = sc;
   plot output(3,1) = tc; plot output(3,2) = R b;
end
8 --
                 _____
% % Result Plots and Text Output
· ♀ ♀ _____
___
       = 0; % zoom in X-left contour-plot
                                             --> 90
x cont a
x cont b = 0; % zoom in X-right contour-plot
                                            --> 104
y cont a = 0; % zoom in Y-down contour-plot
                                             --> 77
y cont b = 0; % zoom in Y-up contour-plot
                                             --> 117
cont lines = 300;
[plot out] = Num plot output(tT data,Tt,delta T t,if num,plot output, ...
   prec, hourtext, mintext, sectext, x cont a, x cont b, y cont a, y cont b, ...
   cont lines,plot lang);
plot out;
clear x cont a x cont b y cont a y cont b plot out;
% clear workspace
clear pos fig h b fig scrsz hleg1 hleg2 hleg3 prec calc;
profile viewer;
profile off;
% tq data30=tT data;
% n3=size(tq data30,1);
% for i=1:n3
% tq data30(i,2)=30;
% end
% save('t-q input-30W-m.txt','tq data30','-ASCII');
Num LineSource Laplace.m
```

```
function [Tt] = Num LineSource Laplace(r, cv, q vec, lambda, r b, Rb, T0)
% LineSource computes heat injection from a pipe by a line source starting
% at t=0.
8
8
  [Tt] = LineSource Laplace(r,a,t,q,lambda,r b,Rb,T0)
2
% --
     _____
% Numerical Inversion of Laplace Transform Solution*:
% *Hellstroem, G. (1991) Ground Heat Storage; 262 p., University of Lund,
% Sweden (Dissertation). p.150
% Eq. 10.06: Tq(r,t) = q1/(2*pi*rb*tc) *sum[j=1-->j=10]((Vj/j)
8
                       * KO(Wj*r)/wj*K1(wj*rb))
% Eq. 10.07: wj = sqrt[(j*ln(2))/(tdiff*t)]
% Eq. 10.08: Vj = sum[k=Int((j-1)/2)-->min(j,5)](((-1)^(j-5)*k^5*(2k)!)
8
                   /((5-k)!*(k-1)!*k!*(j-k)!*(2k-j)!))
8
                   note: (k-1)! = gamma(k); (2k-j)! = gamma(2k-j+1)
                     -----
8 -----
% Input Arguments:
% r - radius at which temperature is evaluated [m]
```

```
8
  r b
        - radius of the borehole [m]
   q vec - ntimesteps*2 matrix which contains:
8
8
           q vec(:,1) - time [s]
            q vec(:,2) - time-varying heat input [W/m]
9
   CV
         - volumetric heat capacity of surrounding rock [MJ/(m^3 K)]
9
   lambda - thermal conductivity of the surrounding rock [W/(m K)]
9
         - thermal borehole resistance [(m K)/W]
   Rb
8
        - starting temperature [°C]
   ΨО
8
8 -----
% Output:
          - ntimesteps*2 matrix which contains:
8
 Τt
8
           Tt(:,1) - time [s]
           Tt(:,2) - temperature [°C]
00
       _____
2
% start
%
% calculated variable
oʻ
a = lambda/(cv*le6); % thermal diffusivity rock, m^2/s
% create Tt-matrix
8 -----
n = size(q_vec,1);
Tt = zeros(n, 2);
for itime = 1:size(q_vec,1)
   t.
              = q vec(itime,1);
               = q_vec(itime, 2);
   [Tt timestep] = ComputeLaplace(a,t,lambda,r,r b,q,Rb,T0);
   Tt(itime,1) = t;
Tt(itime,2) = Tt_timestep;
end
% -
% calculation of:
% Eq. 10.06: Tq(r,t) = q1/(2*pi*rb*tc) *sum[j=1-->j=10]((Vj/j)
     * KO(Wj*r)/wj*K1(wj*rb))
8
8-----
function [S] = ComputeLaplace(a,t,lambda,r,r b,q,Rb,T0)
% evaluates eq. 10.6 for a given timestep and q
S = 0;
T t = T0;
for j = 1:10
   [V j]
           = V j function(j);
           = Omega_j(j,a,t);
   [omega j]
            = S + V_j/j*besselk(0,omega_j*r)/(omega j* ...
   S
                  besselk(1,omega j*r b));
              = T0+S; % note: uncertain if OK
   % T t
end
S = (S*q/(2*pi*r_b*lambda)) + q*Rb + T_t;
~
~
                                     _____
% calculation of:
% Eq. 10.07: wj = sqrt[(j*ln(2))/(tdiff*t)]
8-----
function [omega_j] = Omega_j(j,a,t)
% computes omega_j (eq. 10.7)
omega_j = sqrt(j*log(2)/(a*t));
8-----
% calculation of:
% Eq. 10.08: Vj = sum[k=Int((j-1)/2)-->min(j,5)](((-1)^(j-5)*k^5*(2k)!)
2
                /((5-k)!*(k-1)!*k!*(j-k)!*(2k-j)!))
2
                note: (k-1)! = gamma(k); (2k-j)! = gamma(2k-j+1)
§_____
```

#### Num\_delta\_T\_t.m

```
function [delta_T_t] = Num_delta_T_t(tT_data,Tt,comp_st_s,comp end s)
% creates t-delta-T-matrix with tT data and Tt
2
8
 [delta T t] = Num delta T t(tT data, Tt)
2
            _____
% _____
                            _____
% Input Arguments:
 tT_data- time-temperature n,2-matrix [s -- °C], givenTt- time-temperature n,2-matrix [s -- °C], calculated
8
8
        _____
8 _____
% Output:
  delta T t
9
               - time-delta-temperature n,2-matrix which contains:
8
                  tq data(:,1) - time [s]
                   tq data(:,2) - temperature [W/m]
8
% ____
% start
% cutting data-sets
olo
n = size(Tt, 1);
n \text{ comp} = 0;
for i = 1:n
   Tt count = Tt(i, 1);
   if Tt count < comp st s
      n comp = n comp + 1;
   end
end
n_{comp2} = n - n_{comp};
§ _____
                         _____
% creating delta-T-t-data
§ _____
delta T t = zeros(n comp2,2);
for i = 1:n comp2
   delta T t(i,1) = tT data(i+n comp,1);
   delta T t(i,2) = (tT data(i+n comp,2)-Tt(i+n comp,2))^2;
end
```

#### Num\_mean\_err\_matrix.m

```
function [mean_err_matrix,tc_matrix,R_b_matrix] = Num_mean_err_matrix ...
    (n1,n2,tc,R_b,tc_step,R_b_step,r,v_heat_cap,tq_data,r_b,T_0, ...
    tT_data,comp_st_s,comp_end_s,start_clock)
```

```
% creates tc-, R b- & mean err-matrix with tT data and Tt
2
  [mean err matrix,tc matrix,R b matrix] = Num mean err matrix(n1,n2, ...
2
     tc,R_b,r,t_diff,tq_data,r_b,T_0,tT_data,Tt)
9
2
% _____
% Input Arguments:
8
                   - length tc-matrix [-]
  n1
                   - length R b-matrix [-]
8
   n2
                   - starting value thermal conductivity [W/(m K)]
8
   tc
  R b
                   - starting value thermal borehole resistance [(m K)/W]
8
   tc step
                   - tc-step for mean error matrix [W/(m K)]
8
   R_b_step
                  - R b-step for mean error matrix [(m K)/W]
9
9
   r
                   - radius for temp-calculation [m]
   v_heat_cap - volumetric neat capacity ....,
tg data - time-heat-input n,2-matrix [s -- W/m]
9
9
                   - borehole radius [m]
9
   r b
   т_0
9
                  - undisturbed ground temperature [°C]
   i_o- undisturbed ground temperature [C]tT_data- time-temperature n,2-matrix [s -- °C], givencomp_st_s- starting time of comparison [s]comp_end_s- ending time of comparison [s]
9
8
8
e _____
         ___
             _____
% Output:
8
   mean err matrix - n1,n2-matrix which contains:
8
                     absolute value of mean deviation from tT data [K]
8
                   - n1,1-matrix of thermal conductivity values:
   tc matrix
8
                     tc matrix(1,1) = tc + tc step [W/(m K)]
8
                     tc matrix(2,1) = tc + tc step + tc step [W/(m K)]
8
                     . . .
8
                   - n2,1-matrix of thermal borehole resistance values:
   R b matrix
8
                     R b matrix(1,1) = R b + R b step [W/(m K)]
8
                     R b matrix(2,1) = R b + R b step + R b step [W/(m K)]
8
                     . . .
2
% start
ok
% building tc- and R b-matrices
tc matrix = zeros(n1,1);
R b matrix = zeros(n2,1);
mean err matrix = zeros(n1,n2);
for \overline{i} = \overline{1}:n1
    tc matrix(i, 1) = tc;
    tc = tc + tc step;
end
for i = 1:n2
    R b matrix(i, 1) = R b;
   R b = R b + R b step;
end
8 --
% calculating mean-error-matrix
% _____
count = 0;
count_end = n1*n2;
for i = 1:n1
    for j = 1:n2
       tsca = cputime;
       tc = tc matrix(i, 1);
       R_b = R_b_matrix(j,1);
         [Tt] = Num_LineSource_Laplace(r,v_heat_cap,tq_data,tc,r_b, ...
            R b,T 0);
```

```
[delta T t] = Num delta T t(tT data, Tt, comp st s, comp end s);
        mean err matrix(i,j) = sum(delta T t(:,2));
        % abs(mean(delta T t(:,2)))
        count = count + 1;
        tsce = cputime - tsca;
        rem time = tsce * (count end-count);
        hr rem = floor(rem_time/60/60);
        mn_rem = floor((rem_time-hr_rem*60*60)/60);
        sc rem = rem time-hr rem*60*60-mn rem*60;
         [start clock text] = Num LSL clock(start clock);
        TxCount01=[' ',num2str(count),' / ',num2str(count end), ...
            ' calculations, approx. ',num2str(hr_rem),' hr, ', ...
            num2str(mn_rem), ' min and ',num2str(round(sc_rem)), ...
' sec remaining, start: ',start_clock_text];
        disp(TxCount01);clear TxCount01;
    end
end
function [start clock text] = Num LSL clock(start clock)
sc DD = start clock(1,3);sc MM = start clock(1,2);
sc YYYY = start clock(1,1);sc hh = start clock(1,4);
sc mm = start clock(1,5);sc ss = round(start clock(1,6));
if sc DD < 10
    sct DD = ['0', num2str(sc DD)];
else
    sct DD = num2str(sc DD);
end
if sc MM < 10 \pm
   sct MM = ['0',num2str(sc_MM)];
else
    sct MM = num2str(sc MM);
end
sct YYYY = num2str(sc YYYY);
if sc hh < 10
   sct hh = ['0', num2str(sc hh)];
else
    sct hh = num2str(sc hh);
end
if sc mm < 10
    sct mm = ['0', num2str(sc mm)];
else
    sct mm = num2str(sc mm);
end
if sc ss < 10
    sct ss = ['0',num2str(sc ss)];
else
    sct ss = num2str(sc ss);
end
start clock text = [sct DD,'.',sct MM,'.',sct YYYY,' ',sct hh,':', ...
   sct mm,':',sct ss];
```

# Num\_plot\_output.m

```
function [plot_out] = Num_plot_output(tT_data,Tt,delta_T_t,if_num, ...
    plot_output,prec,hourtext,mintext,sectext,x_cont_a,x_cont_b, ...
    y_cont_a,y_cont_b,cont_lines,plot_lang)
% creates Output-Plot and Output-Text
%
% [plot_out] = Num_plot_output(tT_data,Tt,delta_T_t,if_num, ...
%    plot_output,prec,hourtext,mintext,sectext,x_cont_a,x_cont_b, ...
%    y_cont_a,y_cont_b)
```

```
٥،
% Input Arguments:
                - time-temperature n,2-matrix [s -- °C], given
8
  tT data
              - time-temperature n,2-matrix [s -- °C], calculated
  Tt- time-temperature n,2-matrix [s -- °C], calcdelta_T_t- time-delta-temperature n,2-matrix [s -- °C]if_num- grid search mode on = 1, else = 0plot_output- Output Fileprec- precision in digits after dot
  Τt
9
8
8
8
8

computing time hour
computing time minute
computing time second
zoom in X-left contour-plot
zoom in X-right contour-plot

  hourtext
8
  mintext
8
8
   sectext
8
   x cont a
8
   x cont b
  y_cont_a - zoom in Y-down contour-plo
y_cont_b - zoom in Y-up contour-plot
                - zoom in Y-down contour-plot
8
8
8 -----
% Output:
8
  plot out
                - Output value 1
% start
% -----
% Result Plots
% _____
                _____
% T-t-plot
plot out = 1;
fs=12;
                         % font size
ps=10;
                        % point size
scrsz = get(0, 'ScreenSize');
h b fig = [scrsz(3)/1.2 scrsz(4)/1.2];
pos fig = [abs((scrsz(3)-h_b_fig(1))/2) abs((scrsz(4)-h_b_fig(2))/2)];
figure('Position', [pos_fig(1) pos_fig(2) h_b_fig(1) h_b_fig(2)])
subplot(2,3,1);
plot(Tt(1:end,1)/60/60/24,Tt(1:end,2),'.',tT data(1:end,1)/60/60/24, ...
   tT data(1:end,2),'-');
grid on;
if plot lang == 0
   title('t-T Plot Linienquelle','fontsize',fs);
   hleq1 = legend('Temperatur berechnet [°C]','Temperatur real [°C]');
else
   title('t-T plot line source', 'fontsize', fs);
   hleg1 = legend('temperature calculated [°C]', 'temperature real [°C]');
end
set(hleg1, 'Location', 'NorthEast');
xlabel('t [d]','fontsize',fs);
ylabel('T [°C]','fontsize',fs);
y \min = \min(Tt(:,2));
y_max = max(Tt(:,2))+10;
axis([0 max(Tt(:,1))/60/60/24 round(min(y min))-2 round(max(y max))+2]);
set(gca, 'YTick', -100:2:100)
set(gca, 'fontsize',fs);
e _____.
                      % delta-T-t-plot
8 _____
                _____
subplot(2,3,4);
plot(delta_T_t(1:end, 1)/60/60/24, delta_T_t(1:end, 2));
grid on;
if plot_lang == 0
   title('t-\DeltaT^2 Plot', 'fontsize', fs);
else
```

2

```
title('t-\DeltaT^2 plot', 'fontsize', fs);
end
hleg2 = legend('\DeltaT^2');
set(hleg2,'Location','NorthEast');
xlabel('t [d]','fontsize',fs);
ylabel('\DeltaT^2 [K^2]','fontsize',fs);
set(gca, 'fontsize', fs);
% _____
                     _____
if if num == 1
   ofo
   % contour-plot mean-error-matrix
   subplot(2,3,[2 3 5 6]);
   contourf(plot output(4,2+x cont a:end-x cont b),plot output(5+ ...
      y cont a:end-y cont_b,1),plot_output(5+y_cont_a:end-y_cont_b, ...
      2+x cont a:end-x cont b), cont lines); % contourf(X,Y,Z(Y,X), #lines);
   grid on;
   grid (gca, 'minor');
   if plot lang == 0
      title('Kontur-Plot Summe der kleinsten Quadrate', 'fontsize', fs);
      hleq3 = legend('summierte Temperaturabweichung [K^2]');
      set(hleg3, 'Location', 'SouthEast');
      xlabel('thermischer Bohrlochwiderstand R b [(m
K)/W]','fontsize',fs);
      ylabel('Wärmeleitfähigkeit \lambda [W/(m K)]','fontsize',fs);
   else
      title('contour-plot mean-error-matrix','fontsize',fs);
      hleg3 = legend('sum of temperature deviation [K^2]');
      set(hleg3,'Location','SouthEast');
      xlabel('thermal borehole resistance R b [(m K)/W]','fontsize',fs);
      ylabel('thermal conductivity \lambda [W/(m K)]','fontsize',fs);
   end
   set(gca,'fontsize',fs);
   colorbar('location', 'eastoutside')
   hold on
   plot(plot output(3,2),plot output(3,1),'or','MarkerEdgeColor','k', ...
      'MarkerFaceColor', 'r', 'MarkerSize',ps);
   set(gca, 'fontsize', fs);
                             _____
   § _____
end
%
%
% text output
§ _____
prec calc = ['%10.',num2str(round(prec)),'f'];
Tx01=' ';
Tx02=' ';
if plot lang == 0
   Tx03=['Ergebnisse der numerischen Wärmeleitfähigkeitsberechnung', ...
       (Num LSL): '];
else
   Tx03=['Results of numerical thermal conductivity calculation', ...
       ' (Num LSL): '];
end
Tx05=' ';
if plot_lang == 0
   Tx06=['Berechnungszeit: ',num2str(plot_output(2,1)),' ',hourtext, ...
      ', ',num2str(plot_output(2,2)),' ',mintext,' und ', ...
      num2str(plot_output(2,3),prec_calc),' ',sectext,'.'];
else
```

```
Tx06=['calculation time: ',num2str(plot_output(2,1)),' ',hourtext, ...
        ', ',num2str(plot output(2,2)),' ',mintext,' and ', ...
        num2str(plot output(2,3),prec calc),' ',sectext,'.'];
end
Tx07=' ';
if plot lang == 0
                                                     ', ...
    Tx08=['Wärmeleitfähigkeit [W/(m K)]:
       num2str(plot_output(3,1))];
    Tx09=['Thermischer Bohrlochwiderstand [(m K)/W]: ', ...
       num2str(plot output(3,2))];
    if if num == 1
        Tx10=['Summe der kleinsten Quadrate [K^2]:
                                                     ', ...
          num2str(plot output(4,1))];
    else
        Tx10=' ';
    end
else
    Tx08=['thermal conductivity [W/(m K)]: ', ...
       num2str(plot output(3,1))];
    Tx09=['thermal borehole resistance [(m K)/W]: ', ...
       num2str(plot output(3,2))];
    if if num == 1
        Tx10=['least square sum [K^2]:
                                                      ', ...
           num2str(plot output(4,1))];
    else
        Tx10=' ';
    end
end
Tx11=' ';
disp(Tx01);disp(Tx02);disp(Tx03);disp(Tx04);disp(Tx05);disp(Tx06);
disp(Tx07);disp(Tx08);disp(Tx09);disp(Tx10);disp(Tx11);
clear Tx01 Tx02 Tx03 Tx04 Tx05 Tx06 Tx07 Tx08 Tx09 Tx10 Tx11;
% -
                                                             _____
```