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Abstract

In this thesis we investigate the phenomenology of supersymmetric particles at hadron
colliders beyond next-to-leading order (NLO) in perturbation theory. We discuss the
foundations of Soft-Collinear Effective Theory (SCET) and, in particular, we explicitly
construct the SCET Lagrangian for QCD. As an example, we discuss factorization and
resummation for the Drell-Yan process in SCET. We use techniques from SCET to im-
prove existing calculations of the production cross sections for slepton-pair production
and top-squark-pair production at hadron colliders. As a first application, we implement
soft-gluon resummation at next-to-next-to-next-to-leading logarithmic order (NNNLL) for
slepton-pair production in the minimal supersymmetric extension of the Standard Model
(MSSM). This approach resums large logarithmic corrections arising from the dynamical
enhancement of the partonic threshold region caused by steeply falling parton luminosities.
We evaluate the resummed invariant-mass distribution and total cross section for slepton-
pair production at the Tevatron and LHC and we match these results, in the threshold
region, onto NLO fixed-order calculations. As a second application we present the most
precise predictions available for top-squark-pair production total cross sections at the LHC.
These results are based on approximate NNLO formulas in fixed-order perturbation the-
ory, which completely determine the coefficients multiplying the singular plus distributions.
The analysis of the threshold region is carried out in pair invariant mass (PIM) kinemat-
ics and in single-particle inclusive (1PI) kinematics. We then match our results in the
threshold region onto the exact fixed-order NLO results and perform a detailed numerical
analysis of the total cross section.



Zusammenfassung

In dieser Arbeit untersuchen wir die Phänomenologie von supersymmetrischen Teilchen an
Hadronbeschleunigern jenseits der nächstführenden Ordnung (NLO) in der Störungstheorie.
Zuerst diskutieren wir die Grundlagen der Soft-Kollinearen Effektiven Theorie (SCET)
und konstruieren explizit den SCET Lagrangian der Quantenchromodynamik (QCD). Als
spezielle Anwendung diskutieren wir die Faktorisierung und die Resummierung von weichen
Gluonen für den Drell-Yan Produktionsprozess. Danach benutzen wir die SCET-Techniken,
um bereits bestehende Berechnungen des Produktionsquerschnittes der Sleptonpaarpro-
duktion und der Topsquarkpaarproduktion an Hadronbeschleunigern zu verbessern. Als
erste Anwendung implementieren wir die Resummation weicher Gluonen in nächst-zu-
nächst-zu-nächstführender logarithmischer Ordnung (NNNLL) für die Sleptonpaarproduk-
tion in der minimalen supersymmetrischen Erweiterung des Standardmodells (MSSM).
Mit diesem Ansatz werden große logarithmische Korrekturen, die von einer dynamischen
Erhöhung im “partonischen Grenzbereich” hervorgerufen werden und durch stark fallende
Partonluminositätsfunktionen ausgelöst werden, resummiert. Wir berechnen die resum-
mierte invariante Massenverteilung und den resummierten totalen Wirkungsquerschnitt
der Sleptonpaarproduktion am Tevatron und am LHC. Für diese Berechnung stimmen wir
unser resummiertes Ergebnis im partonischen Grenzbereich auf das exakte NLO Ergebnis
ab. Als zweite Anwendung präsentieren wir die präzisesten Vorhersagen für den totalen
Wirkungsquerschnitt der Topsquarkpaarproduktion am LHC. Diese Ergebnisse basieren
auf einer Näherung der störungstheoretischen NNLO Formeln, welche jedoch vollständig die
Koeffizienten der singulären Plusdistributionen bestimmen. Die Analyse des partonischen
Grenzbereiches wird zum einen für die Kinematik der invarianten Masse des produzierten
Teilchenpaares (PIM) und zum anderen für die Einteilchen-inklusive Kinematik (1PI) aus-
geführt. Danach stimmen wir wieder unsere Ergebnisse des partonischen Grenzbereichs auf
das exakte NLO Ergebnis ab und führen eine detaillierte numerischen Analyse des totalen
Wirkungsquerschnitts durch.
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1. Introduction

One of the main goals of the physics program at the Large Hadron Collider (LHC) is to
investigate the existence of supersymmetric (SUSY) partners of the known Standard Model
(SM) particles. If the masses of the SUSY partners are in the TeV range, they could soon
be accessible by the LHC. At hadron colliders, squarks and gluinos, the superpartners
of quarks and gluons respectively, are expected to be more abundantly produced relative
to the other supersymmetric particles since they carry a color charge. For this reason,
their experimental signatures will be affected by huge Quantum Chromodynamics (QCD)
backgrounds. An attractive alternative is to look for simple signatures coming from non-
colored partners. Good candidates are the leptonic superpartners (sleptons), which are
expected to be among the lightest supersymmetric particles. Furthermore, in many sce-
narios, they decay directly into their SM partners and the stable lightest supersymmetric
particle (LSP).
In order to put stringent bounds on the masses of SUSY particles at the LHC, it is

crucial to obtain precise theoretical predictions for physical observables such as the total
cross section and relevant differential distributions. In case of a discovery these observables
are even more important for investigating the properties of these particles. Reducing the
theoretical scale uncertainty by computing higher-order terms in the pertubative expansion
is a task which soon becomes prohibitive. A good alternative for improving the theoretical
predictions is to use soft-gluon resummation methods, which allow one to take into account
the dominant contributions of the higher-order terms [1,2]. These contributions arise from
large Sudakov logarithms, which originate as a left-over from the cancellation of virtual and
real soft divergences in a kinematic configuration where the invariant massM is close to the
partonic center of mass energy

√
ŝ, and hence there is little energy left for additional real

radiation. These logarithms must be resummed to all orders to improve the convergence
of the perturbative expansion.
In the last few years, a formalism based on Soft-Collinear Effective Theory (SCET),

which allows one to resum soft-gluon emissions directly in momentum space, was devel-
oped in [3, 4] and applied to QCD corrections for several processes of interest in collider
phenomenology, such as Drell-Yan scattering [5], Higgs production [6, 7], direct photon
production [8] and top-pair production [9, 10]. A similar approach was developed inde-
pendently in [11], where methods of SCET and Non-Relativistic QCD were used to resum
simultaneously soft and Coulomb gluons [11–13].
In this thesis, we use techniques from SCET to improve existing calculations of the

production cross sections for slepton-pair production and top-squark-pair production at
hadron colliders, taking into account higher order contributions. Currently, for slepton-
pair production, complete next-to-leading order (NLO) calculations are available in super-
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1. Introduction

symmetric QCD for the total cross section and for the differential distributions [14–16].
Expressions for the resummed invariant mass distribution and total cross section were
obtained in Mellin-moment space at next-to-leading logarithmic (NLL) accuracy [17]. In
this thesis we extend these results to next-to-next-to-next-to-leading logarithmic (NNNLL)
accuracy by means of SCET methods.
The steeply falling parton luminosities at large x dynamically enhance the contribution

of the partonic threshold region, z =M2/ŝ→ 1, which corresponds to the kinematic region
where the partonic center of mass energy is just sufficient to produce the slepton-pair with
invariant mass M . As a consequence, the gluon radiation in the final state is soft. In this
particular limit, it can be proven that the hard-scattering kernel factorizes into a product
of an hard function H and a soft function S. The hard function H is related to virtual
corrections, while the soft function S originates from the real emission of soft gluons. At
n-th order in perturbation theory the soft function involves singular plus distributions of
the form αn

s [ln
m(1− z)/(1 − z)]+, where m = 0, . . . , 2n− 1. The resummation of singular

threshold logarithms can be accomplished by solving Renormalization Group (RG) equa-
tions for the hard and the soft function in the effective theory. To obtain the best possible
predictions for the cross sections, we perform resummation at NNNLL accuracy and then
match the results onto NLO calculations.
The top-squarks (stops) belong to the third family of squarks and they are expected

to be the lightest colored supersymmetric particles. For this reason, they are likely to be
the first supersymmetric particles discovered at the LHC. The NLO total cross section for
stop-pair production has been available for more than ten years [18], but the associated
theoretical uncertainties are quite large. A more precise prediction is certainly welcome
and, indeed, is actually required for certain experimental analyses at the LHC. In this
thesis we present approximate NNLO formulas for the stop-pair production total cross-
section. These expressions are obtained by re-expanding the resummed formulas up to
O(α4

s) in fixed-order perturbation theory. Moreover, we are able to completely determine
the coefficients multiplying the singular plus distributions in the hard-scattering kernels up
to NNLO. We perform a detailed analysis of the higher order corrections in two different
kinematic schemes: pair invariant mass (PIM) and single-particle inclusive (1PI) kinemat-
ics. Finally we match our results in the threshold region with the exact results at NLO
in fixed-order perturbation theory and perform a detailed numerical analysis of the total
cross section.
The organization of the thesis is as follows. In Chapter 2 we give an introduction to

supersymmetry. We discuss the basic formalism and in particular we focus on the general
structure of SUSY Lagrangians. We also briefly discuss the particle content and interac-
tions of the Minimal Supersymmetric Standard Model (MSSM). In Chapter 3 we give an
extensive introduction to SCET. We first discuss the strategy of regions in order to expand
Feynman integrals in different momentum regions and, as a first example, we introduce the
SCET scalar Lagrangian which reproduces the results of the different terms of the expanded
scalar integrals. Then, in analogy to the scalar case, we derive the SCET Lagrangian for
the more complicated case of QCD. In Chapter 4 we explain the salient ingredients of
factorization and resummation in the effective theory by discussing the relevant theorems

9



1. Introduction

for Drell-Yan [5]. We apply these methods to the production of supersymmetric parti-
cles at hadron colliders, and we present the most precise available results for slepton-pair
production and stop-pair production. In Chapter 5 we perform a numerical analysis of
the resummed invariant mass distribution and total cross section for slepton-pair produc-
tion. We analyze the impact of resummation on these observables. We also study the
impact of SUSY virtual corrections on the cross sections. In Chapter 6 we review the
kinematics of stop-pair production in hadronic collisions and define the threshold region
in PIM and 1PI kinematics. We present the calculation of the stop-pair production hard
functions at NLO. The expressions for the soft functions are already known at NLO, they
were computed in [9,10] for top-pair production. By re-expanding the resummed formulas
at fixed-order in perturbation theory, we obtain the coefficients of the singular plus dis-
tributions at NNLO. Finally, we present a detailed numerical analysis of the total cross
section, including scale uncertainties, kinematic scheme uncertainties, Parton Distribution
Functions (PDFs) and αs uncertainties. Our conclusions are presented in Chapter 7.

10



2. Supersymmetry

2.1. Introduction

The Standard Model of particle physics works extremely well in describing the known
phenomena in high-energy physics and, so far, no experimental signal in neat contrast
with the SM predictions has been found.
On July 4th 2012, CMS and ATLAS, the two general purpose experiments operating at

the LHC, announced to the world the discovery of a new boson with a mass in the range
125-126 GeV, compatible with the hypothesis of a SM Higgs boson. As a consequence of
the Landau-Yang theorem, since the new boson decays into two photons, it cannot be a
vector (spin one) particle. If, as many people expect, it turns out that the new particle has
spin zero, this would be the first time that a fundamental scalar has ever been observed.
Certainly a lot of work has to be done in order to understand the properties of the new
boson, in particular to clarify whether this particle is really the SM Higgs boson or not.
In the first case we could ask ourselves what is the particle content of the Higgs sector,
namely if several other Higgs bosons are present. In the second case we will have to explain
the nature of the emerging new physics.
A major theoretical issue of the SM, known as the “gauge hierarchy problem”, is directly

related to the existence of scalar particles. The Higgs boson of the SM (and in general
any scalar particle) is not protected by any symmetry and it is radiatively unstable due
to the large discrepancy between the electroweak scale (∼ 246 GeV) and the new physics
scale which could be the Planck scale (∼ 1019 GeV). A conventional way to achieve the
stabilization of the electroweak scale is to invoke a new symmetry, Supersymmetry [19,20],
to protect scalar particles from acquiring masses of order the cutoff scale. Supersymmetry
predicts the existence of ”supersymmetric partners” for all of the SM particles. These are
expected to have masses of the order of a TeV, and therefore, they could be soon observed
at the LHC.
Before the start of the LHC data taking, physicists were very optimistic about Super-

symmetry. But after almost three years of LHC running, with 5 fb−1 of data collected at 7
TeV of center of mass energy and 19 fb−1 collected at 8 TeV, still there is no direct signal
of SUSY. On the other hand, we know that the SM is incomplete and we need to include
new physics at higher energy scales.
Between the several extensions of the SM, SUSY turned out to be extremely appealing

to many physicists since it has a number of positive features:

1. it provides a solution to the gauge hierarchy problem,
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2. Supersymmetry

2. it foresees the gauge coupling unification at the GUT scale, Fig. 2.1,

3. if R-parity is conserved, it provides an excellent dark matter candidate.

Figure 2.1.: Two loop RG evolution of the inverse of the couplings α−1a (Q) in the SM
(dashed lines) and in the MSSM (solid lines). In the MSSM, the sparticles
masses are varied between 500 GeV and 1.5 TeV and α3(mZ) is varied between
0.117 and 0.121. Figure taken from [21].

In the next paragraph we explain the origin of the “gauge hierarchy problem” [22] and
how this problem is resolved with the introduction of supersymmetry.
If we compute the radiative corrections to the Higgs boson mass, mh, we obtain quadratic

divergences in the cut-off scale ΛUV at which the theory stops to be valid and new physics
should appear. We first consider the fermionic contribution in Fig. 1.2 (left), with nf

different types of fermions of mass mf and λf as Yukawa coupling. If we consider the
fermion to be heavy, and as a first approximation we neglect the external Higgs momentum
squared, we find:

∆f m
2
h = nf

λ2f
8π2

(
−Λ2

UV + 6m2
f log

ΛUV

mf
− 2m2

f

)
+O

(
1/Λ2

UV

)
, (2.1)

where the quadratic divergence appears as ∆m2
h ∝ Λ2

UV. The cut-off scale scale ΛUV

is assumed to be of the order the GUT scale, MGUT ∼ 1016 GeV, or the Planck scale,
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2. Supersymmetry

h h h

f

φ

φ

Figure 2.2.: Diagrams contributing to the Higgs boson mass at one-loop. Fermionic con-
tribution (left) and scalar contributions (center, right).

MP ∼ 1019 GeV. As a consequence, the Higgs field is sensitive to the highest scale present
in the theory, and therefore its mass, which should be in the elecroweak scale range, is
unstable under radiative corrections. In the SM the Higgs boson is expected to be relatively
light and it would be always possible to renormalize the theory by choosing appropriate
counter-terms in order to get a Higgs mass around the electroweak scale. But this would
need an unjustifiable tuning of the parameters of the order O(10−34) which seems very
unnatural. Only scalar particles are affected by this problem. In the case of fermions the
chiral symmetry is protecting their masses from large radiative corrections (the divergence
is only logarithmic), while the local gauge symmetry prevents the photon to get a mass.
For scalar particles, like the Higgs boson, these symmetries are not present. However, all
the fermions and the electroweak gauge bosons of the SM obtain their masses from the
Higgs Vacuum Expectation Value (VEV), 〈H〉, therefore all the mass spectrum of the SM
is directly or indirectly sensitive to the highest scale in the theory.
If we consider the existence of a number nS of complex scalar particles with masses mS,

where their trilinear and quadrilinear couplings to the Higgs boson are given by vλS and
λS respectively, we can compute their contributions to the Higgs mass in Fig. 1.2 (center,
right) and we get

∆S m
2
h =

λSnS

16π2

(
−Λ2

UV + 2m2
S log

ΛUV

mS

)
− λ2SnSv

2

16π2

(
−1 + 2 log

ΛUV

mS

)
. (2.2)

We observe that the quadratic divergence is present again. If we now make the assumption
that the Higgs-scalar couplings and the Higgs-fermion couplings are related in the following
way

λ2f = −λS , (2.3)

and that the number of scalars is the double of the number of fermions, nS = 2nf , we then
obtain as a total contribution to the Higgs mass:

∆m2
h =

λ2fnf

4π2

((
m2

f −m2
S

)
log

ΛUV

mS

+ 3m2
f log

mS

mf

)
+O

(
1/Λ2

UV

)
, (2.4)

where the quadratic divergence is now cancelled in the sum and we are left with a loga-
rithmic divergence that also cancels out if we assume mS = mf .
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2. Supersymmetry

The systematic cancellation of the dangerous contributions to the Higgs boson mass
can be implemented through the introduction of a symmetry which relates the couplings
of the new scalars to the couplings of the standard fermions. Therefore the “hierarchy
problem” is finally stabilized. If supersymmetry is exact, mf = mS, the cancellation
between fermionic and bosonic contribution is complete and the logarithmic divergence
disappears. In the SM, one should also include in the radiative corrections to mh the
contributions of the Higgs boson itself and the ones of W/Z gauge bosons. By introducing
fermionic partners for these SM particles and by adjusting their couplings to the Higgs
boson, all the quadratically divergent corrections to the Higgs boson mass are canceled.
Since no supersymmetric partner with the same mass as the standard particles has

been observed, we conclude that supersymmetry has to be broken. Therefore the new
particles should be much heavier than the known particles. As a consequence of this mass
splitting, the hierarchy problem would be reintroduced again in the theory via ∆m2

h ∝
(m2

f −m2
S) log (ΛUV/mS). To keep the Higgs mass at the order of the electroweak scale we

need that the difference, m2
f −m2

S, is relatively small. Hence the new particles should not
be much heavier than 1 TeV.

2.2. Global N=1 supersymmetry

2.2.1. Supersymmetry algebra

In this section we will introduce the supersymmetry formalism following the discussion and
the notation of [23]. Supersymmetry is a symmetry transformation which turns fermions
into bosons and vice versa. For this reason, the supersymmetry generators Qα (α = 1, 2)
and their Hermitian adjoint operators Q̄β̇ (β̇ = 1, 2) should have a fermionic character and
carry spin angular momentum 1/2. From this follows that supersymmetry is a spacetime
symmetry, and therefore one needs to extend the Poincaré algebra to include the new
symmetry generators. The structures for such symmetries are restricted by the Haag-
Lopuszanski-Sohnius theorem for graded algebras [24] (as an extension of the Coleman-
Mandula theorem [25]) which states that supersymmetry algebras are the only graded Lie
algebras of symmetries of the S-matrix that are consistent with relativistic quantum field
theory.
The N = 1 supersymmetry algebra, usually called “superalgebra” is defined by the

following commuting and anti-commuting relations:

[Qα, Pµ] =
[
Q̄β̇, Pµ

]
= 0 , (2.5)

{Qα,Qβ} =
{
Q̄α̇, Q̄β̇

}
= 0 , (2.6)

{
Qα, Q̄β̇

}
= 2σµ

αβ̇
Pµ , (2.7)

[Pµ, Pν] = 0 , (2.8)
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2. Supersymmetry

where σ denotes the Pauli matrices, Qα, Q̄β̇ are the supersymmetry generators and Pµ is the

four-momentum generator of spacetime translations. The Greek indices (α, β, . . . , α̇, β̇, . . .)
run from one to two, where the undotted indices refer to the components of left-handed
Weyl spinors while the dotted indices refer to the components of right-handed Weyl spinors.
Equation (2.5) for the component µ = 0 implies that Qα commutes with the Hamiltonian
H = P 0, [Qα, H ] = 0. If we apply the Hamiltonian to the bosonic ground state we get
H|φ〉 = m|φ〉. Since we know that the supersymmetry transformation acts on a bosonic
state to obtain a fermionic state in the following way, Qα|φ〉 = |ψα〉, we get

H|ψα〉 = HQα|φ〉 = QαH|φ〉 = m|ψα〉 , (2.9)

showing that we have mass degenerate multiplets with spin difference 1/2: φ has spin 0
while |ψα〉 has spin 1/2.

Equation (2.7), using the relation σµ

αβ̇
σαβ̇
ν = 2gµν , directly implies that

H = P 0 =
1

4

(
Q̄1Q1 +Q1Q̄1 + Q̄2Q2 +Q2Q̄2

)
. (2.10)

Since Q̄α̇ are the Hermitian adjoint operators of Qα, the eigenvalues of H are positive
semidefinite, H ≥ 0. This implies that for supersymmetric theories the vacuum energy is
well defined.

2.2.2. Superfields

Before discussing the construction of a simple supersymmetric Lagrangian we have to define
a formalism where supersymmetry is manifest. It is convenient to define the superspace
as the set of coordinates/parameters of the extended symmetry group (which include the
Poincaré group and the supersymmetry generators Qα, Q̄β̇). The superspace coordinates
contain the usual spacetime coordinates (t, x, y, z) and, in addition, the Grassmann pa-

rameters θα (α = 1, 2), θ̄β̇ (β̇ = 1, 2) which fulfill the algebra:

{θα, θβ} = {θ̄α̇, θ̄β̇} = {θα, θ̄β̇} = 0 . (2.11)

A finite supersymmetry transformation is a geometric operation on the superspace and it
depends on (xµ, θ, θ̄). It is defined as follows:

S(x, θ, θ̄) = ei(θ
αQα+Q̄β̇ θ̄

β̇−xµPµ) . (2.12)

By multiplying two group elements using the Baker-Campbell-Hausdorff formula, one finds

S(x, θ, θ̄)S(y, α, ᾱ) = S(x+ y − iασµθ̄ + iθσµᾱ, θ + α, θ̄ + ᾱ) , (2.13)

where the multiplication of group elements induces a translation on the parameter space:

g(x, θ, θ̄) : (y, α, ᾱ)→ (x+ y − iασµθ̄ + iθσµᾱ, θ + α, θ̄ + ᾱ) . (2.14)

15



2. Supersymmetry

A superfield Φ(x, θ, θ̄) is defined as a function of the superspace coordinates which trans-
forms under a supersymmetry transformation in the following way:

S(y, α, ᾱ)
[
Φ(x, θ, θ̄)

]
= Φ(x+ y − iασµθ̄ + iθσµᾱ, θ + α, θ̄ + ᾱ) . (2.15)

By considering infinitesimal transformations of S(x, θ, θ̄) on a superfield Φ:

δSΦ =

[
α
∂

∂θ
+ ᾱ

∂

∂θ̄
− i(ασµθ̄ − θσµᾱ)∂µ

]
Φ , (2.16)

it is possible to find an explicit representation for the generators Pµ, Qα and Q̄β̇ in terms
of differential operators. One finds:

Pµ = i
∂

∂xµ
, (2.17)

Qα =
∂

∂θα
− iσµ

αβ̇
θ̄β̇∂µ , (2.18)

Q̄α̇ = − ∂

∂θ̄α̇
+ iθβσµ

βα̇∂µ . (2.19)

We are now ready to define the covariant derivative. As we have seen before, a super-
symmetry transformation acts as a coordinate transformation in the superspace:

θ′ = θ + α ,

θ̄′ = θ̄ + ᾱ ,

x′ = x+ y − iασµθ̄ + iθσµᾱ . (2.20)

If we consider ∂µ = ∂
∂xµ = ∂x′ν

∂xµ
∂

∂x′ν , given that ∂x′ν

∂xµ = δνµ we obtain ∂µ = ∂′µ. On the
contrary, by considering

∂α =
∂

∂θα
=
∂θ′β

∂θα
∂

∂θ′β
+
∂x′µ

∂θα
∂

∂x′µ
, (2.21)

where ∂θ′β

∂θα
= δβα and ∂x′µ

∂θα
= iσµ

αβ̇
ᾱβ̇, one finds

∂α = ∂′α + iσµ

αβ̇
ᾱβ̇∂µ . (2.22)

Therefore ∂α does not transform covariantly. We define a (super)covariant derivative as

Dα = ∂α + iσµ

αβ̇
θ̄β̇∂µ , (2.23)

and looking at our previous calculation we get:

D′α = ∂′α + iσµ

αβ̇
(θ̄β̇ + ᾱβ̇)∂µ ,
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2. Supersymmetry

= ∂′α + iσµ

αβ̇
θ̄′β̇∂′µ , (2.24)

which has the same form in the transformed coordinates. In analogy one defines

D̄α̇ = −∂α̇ − iσµ
βα̇θ

β∂µ . (2.25)

Moreover, by explicit computation, it can be shown that the covariant derivatives anti-
commute with the supersymmetry variation

Dα(δSΦ) = −δS(DαΦ) . (2.26)

It is convenient to introduce two different representations of the superalgebra; these will
be useful to simplify some expressions later. Instead of Eq. (2.12) we can consider

SL = ei(θQ−xP )ei(Q̄θ̄) , (2.27)

and
SR = ei(Q̄θ̄−xP )ei(θQ) . (2.28)

By applying the supersymmetry transformation S(y, α, ᾱ) to SL, SR we get

SL(x+ y + 2iθσµᾱ + iασµᾱ, θ + α, θ̄ + ᾱ) , (2.29)

SR(x+ y − 2iασµθ̄ − iασµᾱ, θ + α, θ̄ + ᾱ) . (2.30)

We also introduce left (L) and right (R) representations for the superfields in analogy to
(2.15), they transform under an infinitesimal supersymmetry transformation as

δΦL = (α∂θ + ᾱ∂θ̄ + 2iθσµᾱ∂µ)ΦL , (2.31)

δΦR = (α∂θ + ᾱ∂θ̄ − 2iασµθ̄∂µ)ΦR . (2.32)

This leads to the left and right representations of the superalgebra generators

QL = ∂θ , Q̄L = −∂θ̄ + 2iθσµ∂
µ , (2.33)

QR = ∂θ − 2iσµθ̄∂µ , Q̄R = −∂θ̄ , (2.34)

and one can define as follows the corresponding covariant derivatives:

DL = ∂θ + 2iσµθ̄∂µ , D̄L = −∂θ̄ , (2.35)

DR = ∂θ , D̄R = −∂θ̄ − 2iθσµ∂
µ . (2.36)

There is a simple relation between the three representations of the superfields that we have
introduced so far:

17



2. Supersymmetry

Φ(xµ, θ, θ̄) = ΦL(xµ + iθσµθ̄, θ, θ̄) , (2.37)

= ΦR(xµ − iθσµθ̄, θ, θ̄) , (2.38)

since they transform in the same way under supersymmetry transformations.
Here we discuss some specific examples of superfields. Superfields that fulfill the condi-

tion D̄Φ = 0 or DΦ = 0 are called scalar (or chiral) superfields. In particular a superfield
Φ(x, θ, θ̄) which satisfies the first condition is called a left-handed chiral (L) superfield,
while one which satisfies the second condition is usually called right-handed chiral (R)
superfield. As an example, we consider a left chiral superfield φL where D̄φL = 0. In
the L representation D̄ simplifies to D̄ = −∂/∂θ̄, this implies that φL is independent on
θ̄. Therefore if we expand φL(x, θ) as a Taylor series in θ only a finite number of terms
survives since θα (α = 1, 2) are anticommuting variables. We find:

φL(x, θ) = ϕ(x) + θαψα(x) + θαθβǫαβF (x) , (2.39)

where ϕ(x), F (x) are complex scalar fields and ψα(x) is a left-handed Weyl spinor. We
compute the effect of a supersymmetry transformation on the component fields of φL:

δSφL = (αQ+ Q̄ᾱ− iyµP µ)φL , (2.40)

taking yµ = 0 and substituting the expressions for QL and Q̄L we obtain

δSφL =
[
αβ∂β + (−∂α̇ + 2iθβσµ

βα̇∂µᾱ
α̇)
]
φL(x, θ) , (2.41)

and after rewriting φL in components, we get:

δSφL = αβ [∂βθ
αψα + ∂βθ

αθαF ] + 2iθβσµ
βα̇∂µ [ϕ+ θγψγ ] ᾱ

α̇

= αβψβ + 2αβθβF + 2iθβσµ
βα̇ᾱ

α̇∂µϕ+ 2iθβσµ
βα̇θ

γ(∂µψγ)ᾱ
α̇ . (2.42)

Comparing this expression to

δφL(x, θ) = δϕ+ θδψ + θ2δF , (2.43)

where θ2 ≡ θαθα, we can extract the infinitesimal transformations of the component fields
of a left chiral superfield:

δϕ = αβψβ , (2.44)

δψβ = 2αβF + 2iσµ
βα̇ᾱ

α̇∂µϕ , (2.45)

δF = −i(∂µψβ)σµ
βα̇ᾱ

α̇ . (2.46)
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2. Supersymmetry

The relations in Eqs. (2.44), (2.45) explicitly show that supersymmetry transforms fermions
into bosons and vice versa. Eq. (2.46) describes the transformation low for the auxiliary
field F .
As we have just seen, scalar superfields contain spin 0 bosons and spin 1/2 fermions. We

would like to introduce superfields which contain spin 1 bosons, this is indeed needed to
describe gauge interactions. We require for the vector (or gauge) superfield V (x, θ, θ̄) to
be a real field, V † = V . The expansion in components can be written as:

V (x, θ, θ̄) =

(
1 +

1

4
θ2θ̄2✷

)
C +

(
iθ +

1

2
θ2σµθ̄∂µ

)
χ

+
1

2
iθ2(M + iN) + (−iθ̄ + 1

2
θ̄2θσµ∂

µ)χ̄− 1

2
θ̄2(M − iN)

− θσµθ̄V
µ + iθ2θ̄λ̄− iθ̄2θλ+

1

2
θ2θ̄2D , (2.47)

where C,M,N,D are real scalar fields (spin 0), λ, λ̄ are Weyl spinors and V µ is a real
spin 1 field. The superpartner of the photon field V µ is identified with the spin 1/2 field λ
called photino.

2.2.3. Basic structure of supersymmetric Lagrangians

We are ready to discuss the general structure of supersymmetric Lagrangians. Looking at
Eq. (2.46), one can notice that the supersymmetry variation of the highest component (F -
term) of the chiral superfield is a total derivative. It can be also shown similarly that the
highest component (D-term) of a vector superfield transforms as a total derivative. This
means that a spacetime integral

∫
d4x of these quantities is invariant under supersymmetry

transformations (assuming that the fields fall off at infinity fast enough). The Lagrangian
density is a sum of superfields which are itself products of the elementary superfields that
we have just introduced: the scalar and vector superfields. An invariant action can be thus
obtained by

S =

∫
d4x

[∫
d2θd2θ̄K +

∫
d2θW + h.c.

]
. (2.48)

K is usually called Kähler potential, while W is called superpotential. K and W usually
contain products of superfields, therefore it is important to observe that any power φn of a
generic left chiral superfield (D̄φ = 0) automatically satisfy the condition D̄φn = 0, which
means that the multiplication of left chiral superfields is again a left chiral superfield.
The same holds for right chiral superfields. These are candidates for the terms in the
superpotential W. As an example we can compute the contribution of W = mφ2 to the
F -term in the Lagrangian density1. It is easier to work in the left handed representation

1The integration over d2θ = − 1

4
dθαdθβεαβ projects out the F component (or F -term) of W .
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φL = ϕ+ θαψα + θ2F , and by squaring φL we get

φ2
L = ϕ2 + 2ϕθαψα + θ2

(
2ϕF − 1

2
ψαψα

)
, (2.49)

hence we can read from Eq. (2.49) the F -term contribution to W = mφ2:

[
mφ2

]
F
=

∫
d2θW = m

[
2ϕF − 1

2
ψαψα

]
. (2.50)

The superpotential does not contain any derivative and in particular it does not contain
kinetic terms. For the kinetic terms we need the bilinear combinations contained in K.
The terms contained in K have the structure of a product between left haded and right-
handed superfields. For example we can consider the multiplication of φ with its complex
conjugate φ†. The superfield φL = ϕ + θαψα + θ2F belongs to the L-representation, and
taking the complex conjugate φ†L we have that

(φL)
† = ϕ∗ + θ̄ψ̄ + θ̄2F ∗ , (2.51)

which is in the R-representation, (φ†L)R, since it is independent of θ and satisfies DRφ
†
L = 0.

In order to multiply φ and φ† we have to bring (φL)
† back to the L-representation. This

can be simply done with the translation in Eqs. (2.37), (2.38):

(φ†L)L(x, θ, θ̄) = (φ†L)R(x− 2iθσµθ̄, θ̄) , (2.52)

where we added a second subscript (L, R) to clarify the representation. By expanding
(φ†L)R in components one gets

(φ†L)R(x− 2iθσµθ̄, θ̄) = ϕ∗ − 2i(θσµθ̄)∂
µϕ∗ − 2(θσµθ̄)(θσν θ̄)∂

µ∂νϕ∗ + θ̄ψ̄

− 2i(θσµθ̄)∂
µ(θ̄ψ̄) + θ̄2F ∗ . (2.53)

Finally we multiply φ and φ† and find

φφ†(x, θ, θ̄) = φ(x, θ)φ†(x− 2iθσθ̄) = φ(x, θ)e(−2iθσ
µ θ̄∂µ)φ†(x, θ̄) . (2.54)

After a long but straightforward calculation, extracting the D-term contribution, namely
the coefficient of θ2θ̄2, we obtain

∫
d2θd2θ̄(φφ†) = FF ∗ − ϕ∂µ∂µϕ∗ −

i

2
ψβσµ

βγ̇∂µψ̄
γ̇ . (2.55)

Now we have all the elements to construct a simple example of a supersymmetric La-
grangian for chiral superfields. The D-term contribution include the kinetics terms for the
scalar and the Weyl spinor, but we still have to add the mass term and the interactions.
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This is done by specifying the superpotential. We give a closer look to the Wess-Zumino
Model, where the superpotential is given by

W =
[
mφ2 + λφ3

]
. (2.56)

We already computed the F -term contribution of φ2 in Eq. 2.50, but we still need to expand
φ3 in components and take the coefficient of the highest component:

∫
d2θφ3 = 3ϕ2F − 3

2
ϕ(ψψ) . (2.57)

Putting everything together we find:

L =
[
φφ†
]
D
+
[
mφ2 + λφ3

]
F
, (2.58)

= (∂µϕ)(∂
µϕ∗) + FF ∗ − i

2
ψβσµ

βγ̇∂µψ̄
γ̇

+ m

[
2ϕF − 1

2
(ψψ) + h.c.

]
+ λ

[
3ϕ2F − 3

2
ϕ(ψψ) + h.c.

]
. (2.59)

We can eliminate the field F in favor of the scalar field ϕ using the Euler-Lagrange equa-
tions:

∂L
∂φ

= ∂µ
∂L

∂(∂µφ)
, (2.60)

since the derivatives of F do not appear in the expression in Eq. (2.59), we have

∂L
∂F

= 0 = F ∗ + 2mϕ− 3λϕ2 . (2.61)

F is an auxiliary field and by substituting F ∗ = −2mϕ + 3λϕ2 in Eq. (2.59) one gets

L = |∂µϕ|2 −
i

2
ψσµ∂µψ̄ + |2mϕ+ 3λϕ2|2

− m

[
2ϕ(2mϕ∗ + 3λϕ∗2) +

1

2
ψψ + h.c.

]

− λ

[
3ϕ2(2mϕ∗ + 3λϕ∗2) +

3

2
ϕ(ψψ) + h.c.

]
. (2.62)

This Lagrangian describes the interaction of a complex scalar field with a Weyl spinor both
with the same mass 2m.

2.2.4. Brief discussion on vector superfields

In Subsection 2.2.3 we have focused our discussion on chiral multiplets and how to build
simple Lagrangians for this type of superfields. Obviously, it is also possible to write down
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a Kähler potential and a superpotential for vector superfields, this is indeed needed to
construct gauge theories with spin 1 gauge bosons.
The main ingredient needed for the discussion of gauge interactions is the vector super-

field in Eq. (2.47) which satisfies the reality condition V = V †. V µ is the candidate for the
spin 1 gauge field and in an Abelian gauge theory like QED, it transforms under a gauge
transformation as

Vµ → Vµ + ∂µη , (2.63)

where η is a real scalar field.
We need to rephrase gauge transformations into a superfield terminology. It can be

shown that the correct generalization is obtained by considering the transformation

V → V + i(Λ− Λ†) , (2.64)

where V is a vector superfield and Λ is a chiral superfield. The combination i(Λ − Λ†) is
also a vector superfield. Using again the relations in Eqs. (2.37), (2.38):

Λ− Λ† = ϕΛ(x+ iθσµθ̄, θ) + θψΛ(x+ iθσµθ̄, θ) + θ2FΛ(x+ iθσµθ̄, θ)

− ϕ∗λ(x− iθσµθ̄, θ̄)− θ̄ψ̄Λ(x− iθσµθ̄, θ̄)− θ̄2F ∗Λ(x− iθσµθ̄, θ̄) , (2.65)

and after Taylor expanding ϕλ, ϕ
∗
λ we find

Λ− Λ† = iθσµθ̄∂
µ(ϕΛ + ϕ∗Λ) + . . . (2.66)

We observe that Vµ transforms as in Eq. (2.63) by defining the real field η = −(ϕΛ+ϕ
∗
Λ). If

one would consider all the remaining terms of the expansion in components in Eq. (2.66), it
is possible to show that the fields M,N, χ, C in Eq. (2.47) can be gauged away by making
an appropriate choice for (ϕΛ + ϕ∗Λ), ψ, F , F

∗. The remaining fields λ and D are gauge
invariant. This particular choice of the gauge is called the Wess-Zumino gauge and the
vector superfield assumes a simple form:

VWZ(x, θ, θ̄) = −θσµθ̄V µ + iθ2θ̄λ̄− iθ̄2θλ+
1

2
θ2θ̄2D , (2.67)

where it only contains V µ, λ and D.
We define a spinor chiral superfield Wα as the supersymmetric generalization of the

electromagnetic field strength:
Wα = (D̄D̄)DαV , (2.68)

where Dα and D̄α̇ are given in Eqs. (2.23), (2.25). For the expansion in components one
finds:

Wα(x, θ) = 4iλα − 4θαD + 4iθβσναβ̇σ
β̇
µβ(∂

µV ν − ∂νV µ)− 4θ2σµαβ̇∂
µλ̄β̇ . (2.69)

The Lagrangian density for a pure Abelian super Yang-Mills theory is obtained from the
F -component of the chiral superfield W αWα that is invariant under supersymmetry and
gauge transformations, in components it reads

1

32

∫
d2θW αWα = −1

4
VµνV

µν − i

2
λασµαγ̇∂

µλ̄γ̇ − i

2
σα
µβ̇
(∂µλ̄β̇)λα +

1

2
D2 , (2.70)
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where D is an auxiliary field and can be eliminated through the Euler-Lagrange equations,
for a pure gauge theory ∂L/∂D = 0 ⇒ D = 0. The fermionic superpartner λ of the gauge
boson V µ is usually called gaugino.
We study the coupling of the gauge bosons to matter fields with coupling constant g.

This is done by replacing the Kähler potential of a chiral superfield
[
φ†φ
]
D
by

[
φ†e(2gV )φ

]
D
= Dµϕ

∗Dµϕ+gϕ∗ϕD+F ∗F− i
2
ψ̄β̇σµαβ̇D

µψα+ig
[
ϕ∗(λψ)− (λ̄ψ̄)ϕ

]
, (2.71)

where Dµ = ∂µ + igVµ is the covariant derivative. In the full Lagrangian, namely con-
sidering the contributions in Eq. (2.70) and in Eq. (2.71), the scalar potential (the part
of the Lagrangian that does not contain derivative or fermions) assumes the structure
V = −1

2
D2 − gϕ∗Dϕ, and by making use of the Euler-Lagrange equations we find the

relation D = −gϕ∗ϕ. From this follows that (for zero superpotential):

VD =
1

2
D2 . (2.72)

If we also consider the superpotential for the chiral superfield we have:

V =
∑

i

F ∗i Fi +
1

2
D2 , (2.73)

where we have defined VF =
∑

i F
∗
i Fi.

With minimal work these results can be generalized to non-Abelian gauge theories. This
is done by introducing Vµ = V a

µ T
a and Λ = ΛaT a, where T a are the generators of the

non-Abelian gauge group. We define the gauge transformation for a chiral superfield:

φ→ e−iΛφ , φ† → φ†eiΛ
†
. (2.74)

Inspired by Eq. (2.64) and Eq. (2.74), the natural generalization of the gauge transforma-
tion to the non-Abelian gauge superfield V is given by

egV → e−igΛ
†
egV eigΛ . (2.75)

To probe the validity of this formula, we derive the infinitesimal transformation properties
of the vector field V , using the Baker-Campbell-Hausdorff formula:

exp(gV )→ exp

(
g(V + i(Λ− Λ†)− ig

2

[
Λ†, V

]
+
ig

2
[V,Λ] + . . .

)
(2.76)

therefore we finally get

V → V + i(Λ− Λ†)− ig

2

[
Λ+ Λ†, V

]
, (2.77)

where we recover the same result as in Eq. (2.64) for the Abelian case. Expanding in
components we read the infinitesimal gauge transformation for the gauge field V µ:

Vµ → Vµ − ∂µ(ϕΛ + ϕ†Λ)−
ig

2

[
ϕΛ + ϕ†Λ, Vµ

]
, (2.78)
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where Vµ is in the adjoint representation of the gauge group.
One constructs the spinor chiral superfield for non-Abelian groups in analogy with

Eq. (2.68):
Wα = D̄D̄

(
e−gVDαe

gV
)
, (2.79)

that transforms under gauge transformations as:

Wα → e−igΛWαe
igΛ . (2.80)

The quantity Tr [W αWα] is therefore gauge invariant and its F -component provides a
Lagrangian density for a pure supersymmetric Yang-Mills theory:

∫
d2θ

32g2
Tr [W αWα] = Tr

[
−1
4
GµνG

µν +
1

2
D2

]

− i
2
Tr
[
λασµαβ̇

(
∂µλ̄β̇ + ig[V µ, λ̄β̇]

)]

+
i

2
Tr
[(
∂µλ̄β̇ + ig[V µ, λ̄β̇]

)
σµαβ̇λ

α
]
, (2.81)

where Gµν = ∂µVν − ∂νVµ + ig[Vµ, Vν ] and λ = λaT a is in the adjoint representation of
the gauge group. The coupling to matter is given as before from the D-term contribution[
φ†e2gV φ

]
D
. The superpotential for the chiral superfield has to be invariant under gauge

transformations in Eq. (2.74). In the non-Abelian case, the scalar potential assumes the
form

V = VF + VD =
∑

i

F †i Fi +
1

2
DaDa , (2.82)

where Da = −gϕ†T aϕ from the Euler-Lagrange equations.
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2.3. The Minimal Supersymmetric Standard Model

In this section we briefly summarize the ingredients needed to construct a Minimal Super-
symmetric extension of the Standard Model (MSSM).
In order to extend the SM we need to include in the supersymmetry formalism all the

known SM particles. Therefore each of the known fundamental particles has to reside either
in a chiral or in a gauge supermultiplet together with the respective superpartner. The
fundamental particle and its superpartner differ by a 1/2 unit of spin. The names for the
scalar partners of the fermions are built by prepending an “s”, which stand for “scalar”, in
front of the name of the particle, i.e. “squarks” for the quarks partners or “sleptons” for
the leptons partners. The scalar superpartners are denoted with the same symbol as for the
SM particle plus a “∼” on top. The left-handed and the right-handed fermions transform
differently under gauge transformations, therefore they will reside in two different chiral
superfields each of them with a different superpartner. For example the superpartner
of a left-handed/right-handed electron will be called left-handed/right-handed selectron,
identified by the symbol ẽL/ẽR. Since the selectrons are scalar particles, the subscript L,
R identifies the chirality of their fermionic partners. The smuons and staus are denoted by
µ̃L, µ̃R, τ̃L, τ̃R, and the squarks by q̃L, q̃R where q = u, d, s, c, b, t. If we neglect their small
masses, the SM neutrinos are always left-handed, therefore we can drop the L subscript
and denote the sneutrinos by the their lepton flavor ν̃e, ν̃µ, ν̃τ . The Higgs boson will be
part of a chiral superfield, since it has spin 0. But it can be shown that just one chiral
superfield is not enough, indeed a second Higgs multiplet is needed. One reason for this
is that a second chiral multiplet is needed for the cancellation of the electroweak gauge
anomaly. The two Higgs supermultiplet have opposite hypercharges, Y = ±1/2, in order
to have the cancellation of the total contribution to the gauge anomaly, Tr [Y 3] = 0. The
second reason is that in supersymmetric theories only a Y = 1/2 Higgs chiral superfield
can give mass to the up-type quarks, and only a Higgs with Y = −1/2 can give masses
to down-type quarks and to the charged leptons. This is due to the fact that a general
superpotential contains only one type of chiral superfields, by convention it contains only
left handed chiral superfields. The two Higgs doublets, the one with Y = 1/2 and the one
with Y = −1/2 are called Hu, Hd respectively. Hu has weak isospin T3 = (1/2,−1/2) and
electric charge Q = (1, 0), it is identified by Hu = (H+

u , H
0
u). Similary the two components

of Hd are denoted by Hd = (H0
d , H

−
d ). The fermionic superpartners of the Higgs fields are

called Higgsinos and denoted by H̃u = (H̃+
u , H̃

0
u), H̃d = (H̃0

d , H̃
−
d ). The two Higgs doublets

just introduced will develop two different VEVs:

vu = 〈H0
u〉 , vd = 〈H0

d〉 , (2.83)

and it is convenient to parametrize their ratio as:

tan β ≡ vu/vd . (2.84)

Moreover they are related to the Z boson mass via

vSM = v2u + v2d =
2m2

Z

g′2 + g2
. (2.85)
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Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Ui (ũLi d̃Li) (uLi dLi) ( 3, 2 , 1
6
)

(×3 families) i=1,2,3 ui ũ∗Ri u†Ri ( 3, 1, −2
3
)

di d̃∗Ri d†Ri ( 3, 1, 1
3
)

sleptons, leptons Li (ν̃i ẽLi) (νi eLi) ( 1, 2 , −1
2
)

(×3 families) i=1,2,3 ei ẽ∗Ri e†Ri ( 1, 1, 1)

Higgs, higgsinos Hu (H+
u H0

u) (H̃+
u H̃0

u) ( 1, 2 , +1
2
)

Hd (H0
d H−d ) (H̃0

d H̃−d ) ( 1, 2 , −1
2
)

Table 2.1.: List of the chiral superfields in the MSSM. The fermionic components of the
chiral superfields are left-handed Weyl spinors. Table taken from [21].

Names spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

gluino, gluon g̃ g ( 8, 1 , 0)

winos, W bosons W̃± W̃ 0 W± W 0 ( 1, 3 , 0)

bino, B boson B̃0 B0 ( 1, 1 , 0)

Table 2.2.: List of the vector superfields in the MSSM. Table taken from [21].

Since the gauge bosons of the SM are spin 1 particles, they need to be part of vector
supermultiplets. Their fermionic superpartners are generically called gauginos. The W+,
W 0, W− and B0 are the gauge bosons of the elecroweak sector of the SM. Their spin

1/2 superpartners are denoted respectively by W̃+, W̃ 0, W̃− called winos and B̃0 called
bino. The interaction of the elecroweak gauge bosons with the Higgs field gives rise, after
elecroweak symmetry breaking, to a non diagonal mass matrix for the gauge bosons. After
diagonalization one finds the physical mass eigenstates: the Z boson and the photon, γ.
They are a combination of the gauge eigenstates W 0 and B0. We have the same mixing
in the gaugino sector, the fermionic superpartners of Z and γ are respectively the zino,
Z̃, and the photino, γ̃. The strong interactions in the SM (SU(3)C) are mediated by the
gluon, g, which is a color-octet spin 1 particle. Its fermionic color-octet superpartner is
called gluino and it is indentified by g̃.
We have just given a complete list of all the chiral and gauge superfields needed to

construct a minimal supersymmetric extension of the SM, we summarize them respectively
in Tables 2.1, 2.2.

2.3.1. Interactions in the MSSM

In Section 2.3 we already described the MSSM particle spectrum, and in Subsections 2.2.3
and 2.2.4 we discussed how to write down gauge interactions terms, Eq. (2.81), and the
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coupling to matter via, e.g. [
Ua†e2

∑
i(giV

iT i
ab)U b

]
D
.

To have a complete description of the model we still need to discuss the Yukawa couplings
and the Higgs potential.
The generalization of the SM Yukawa interactions are contained in the MSSM superpo-

tential which reads:

WMSSM = −ydijUa
i Hd ad̄j + yuijU

a
i ǫabH

b
uūj − yeijLa

iHd aēj + µHa
uǫabH

b
d , (2.86)

where Hu, Hd, U , L, ū, d̄, ē are the chiral superfields reported in Tab. (2.1). The Yukawa
couplings yu, yd, ye are 3x3 matrices in the family space with indices i, j = 1, 2, 3. The
SU(2)L weak isospin indices a, b = 1, 2 are explicitly written (ǫab is the total antisymmetric
tensor in two dimensions). The color indices are suppressed. The last term in Eq. (2.86) is
called the µ-term and it is the supersymmetric version of the Higgs mass term in the SM
scalar potential before electroweak symmetry breaking. We would like to make just a short
comment about the necessity of a second Higgs superfield. Since the superpotential must
be holomorphic in the chiral superfields we are not allowed to write down terms like UH∗d ū,
therefore we are obliged to introduce a new Higgs doublet Hu with the right hypercharge
quantum number, Y = +1/2. One can make the exercise of separating the several weak
isospin components in Eq. (2.86), and, just for simplicity, we consider the third generation
of chiral superfields. By explicitly writing the SU(2)L doublets as

U3 = (t b) , L3 = (ντ τ) , Hu = (H+
u H

0
u) , Hd = (H0

d H
−
d ) , ū3 = t̄ , d̄3 = b̄ , ē3 = τ̄ ,

(2.87)
one finds that the superpotential reads:

WMSSM = yt(tH0
u t̄− bH+

u t̄)− yb(tH−d b̄− bH0
d b̄)− yτ(ντH−d τ̄ − τH0

d τ̄)

+µ(H+
u H

−
d −H0

uH
0
d) . (2.88)

The expression for the superpotential in Eq. (2.86) is minimal in the sense it preserves both
baryon number (B) and lepton number (L). In the SM these two global symmetries are not
assumed by default in the construction of the Lagrangian, but they are a rather accidental
consequence of renormalizability. In the MSSM, by simply requiring gauge invariance and
renormalizability, but without assuming B and L invariance, we have that some other
terms are allowed in the superpotential:

∆WMSSM ∼ λijkU
a
i Laj d̄k + λ′ijkL

a
iLaj ēk + µ′iHa

uǫabL
b
i + λ′′ijkūd̄d̄ , (2.89)

where i, j, k = 1, 2, 3 are family indices. These interactions produce dangerous conse-
quences, the first three terms in Eq. (2.89) violate lepton number by one unit, ∆L = 1,
and the last term violate baryon number by one unit, ∆B = 1. These contributions, in
particular the terms with λ and λ′′ couplings, could combine and lead to proton decay
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with a rate which is several orders of magnitude larger than current experimental lim-
its. These terms should therefore be absent from the superpotential. In order to achieve
this we could directly postulate B and L conservation as global symmetries of nature, but
there is another viable way in supersymmetry. One can introduce a new discrete symmetry
called “R-parity” which forbids the problematic terms in Eq. 2.89 and allows the terms in
Eq. (2.86).
R-parity for a single particle is defined as

PR = (−1)3B+L+2S , (2.90)

where S is the spin of the particle. From Eq. (2.90) follows that superpartners don’t have
the same R-parity, due to the different spin. Thus R-parity doesn’t commute with super-
symmetry. It turns out that all of the SM particles and the Higgs bosons have R-parity,
PR = 1, while all of the newly introduced particles have R-parity, PR = −1. R-parity
conservation implies that every interaction vertex must contain an even number of super-
symmetric particles (namely R-parity odd particles). This means that supersymmetric
particles can only be produced in pair and that the lightest supersymmetric particle (LSP)
is stable. Moreover, if the LSP is neutral it provides a good dark matter candidate.

2.3.2. Soft supersymmetry breaking

We have already mentioned in the introduction that supersymmetry must be broken at
some energy scale in order that the supersymmetric partners are not mass degenerate with
the SM particles. Therefore we introduce in the Lagrangian extra soft terms (of positive
mass dimension) that explicitly break supersymmetry such that quadratic divergences are
absent. Soft supersymmetry breaking at low energies should be tought as the effect of a
spontaneous supersymmetry breaking of more fundamental theory at higher energy scales.
Soft supersymmetry terms have to respect gauge symmetries and R-parity. The possible
soft terms which can be introduced in the Lagrangian of a general theory exhibit the general
structure:

Lsoft = −m2
0 ijφ

∗
iφj −

[
1

2
m1/2 jλjλj +

1

6
Aijkφiφjφk +

1

2
bijφiφj + c.c.

]
, (2.91)

where m2
0 ij, bij are squared mass terms, m1/2 j are the gaugino mass terms for each gauge

group and Aijk are the trilinear couplings also called A-terms.
Following the general recipe in Eq. (2.91) we are able to specify the soft supersymmetry

breaking terms for the MSSM. These are explicitly given in [21]:

LMSSM
soft = −1

2

[
mg̃ g̃g̃ +mW̃ W̃ W̃ +mB̃B̃B̃ + c.c.

]

−
[
Au

ijŨiHu j ũ− Ad
ijŨiHd jd̃− Ae

ijL̃iHd j ẽ + c.c.
]
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−m2
U ij Ũ

∗
i Ũj −m2

L ij L̃
∗
i L̃j −m2

u ij ũ
∗
i ũj −m2

d ij
d̃
∗
i d̃j −m2

e ij ẽ
∗
i ẽj

−m2
Hu
H∗uHu −m2

Hd
H∗dHd − (bHuHd + c.c.) , (2.92)

where we have suppressed all the gauge indices. In Eq. (2.92), mg̃, mW̃ , mB̃ are respectively
the gluino, wino and bino mass terms. The A-terms in the second line of Eq. (2.92) have the
same structure as the Yukawa couplings in the superpotential in Eq. (2.86), in particular
Au, Ad, Ae are 3x3 matrices in the family space. In the third line of Eq. (2.92) we have the
squared mass terms for squarks and sleptons. The last line of Eq. (2.92) contains squared
mass terms for the Higgs fields, Hu and Hd and the mixed b-term contribution to the Higgs
potential. We will discuss the Higgs potential more extensively in the next subsection.
Compared to the supersymmetry-preserving part of the MSSM Lagrangian, the soft

supersymmetry breaking Lagrangian, LMSSM
soft , in Eq. (2.92), introduce a huge number of

new parameters which were not present in the SM. It is possible to count up tp 105
independent parameters: masses, phases and mixing angles which cannot be rotated away.
Fortunately there are many experimental constraints which require that many of these
parameters are small, therefore the soft supersymmetry breaking parameters cannot be
chosen randomly. In the past years, several different models were developed in order
to explain the origin of supersymmetry breaking and, consequently, of soft terms in the
MSSM Lagrangian. They usually predict masses and mixing angles for the MSSM particles
in terms of a small set of parameters which are typically given at a certain high energy
scale. By evolving the RG equations for the soft terms ”down“ to the electroweak scale, it
is possible to obtain a pattern for the mass spectrum of the undiscovered supersymmetric
particles. The most popular models for supersymmetry breaking are the supergravity
inspired MSSM (MSUGRA) scenarios and the gauge-mediated scenarios (GMSB). We are
not going to discuss these models for supersymmetry breaking in the present introduction to
supersymmetry, therefore if one is interested in an extensive analysis and related literature
we refer to [21].

2.3.3. Higgs potential in the MSSM

The scalar potential for the Higgs fields Hu = (H+
u , H

0
u), Hd = (H0

d , H
−
d ) receive contribu-

tions from different terms in the MSSM Lagrangian. As specified by the general formula
in Eq. (2.82) we find F -term contributions coming from the µ-term in Eq. (2.86), and D-
terms contributions coming from the gauge couplings in the Kähler potential. The F -term
contribution reads:

VF =
∣∣∣∂WMSSM

∂H0
u

∣∣∣
2

+
∣∣∣∂WMSSM

∂H0
d

∣∣∣
2

+
∣∣∣∂WMSSM

∂H+
u

∣∣∣
2

+
∣∣∣∂WMSSM

∂H−d

∣∣∣
2

,

= |µ|2(|H0
d |2 + |H0

u|2 + |H−d |2 + |H+
u |2) . (2.93)
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The D-term contribution has the following expression:

VD =
g′2

2

[
∑

ϕ

ϕ∗Y ϕ

]2
+
g2

2

3∑

a=1

[
2∑

i=1

(ϕ∗ , ϕ∗)i T
a

(
ϕ

ϕ

)

i

]2
, (2.94)

=
1

8
(g′2+g2)

(
|H0

u|2+|H+
u |−|H0

d |2−|H−d |2
)2
+
1

2
g2|H+

u H
0∗
d +H0

uH
−∗
d |2 , (2.95)

where g′ and g are the U(1)Y and SU(2) gauge couplings, Y and T a = σa/2 are the
hypercharge and SU(2) generators and ϕ ∈ {H0

d , H
−
d , H

+
u , H

0
u}, (ϕ, ϕ)1 = (H0

d , H
−
d ),

(ϕ, ϕ)2 = (H+
u , H

0
u). Finally we have to include the terms coming from the soft breaking

Lagrangian Lsoft, namely the contributions in the last line of Eq. (2.92). In total we find
for the Higgs scalar potential:

V = VF + VD + Vsoft (2.96)

= (|µ|2 +m2
Hu

)(|H0
u|2 + |H+

u |2) + (|µ|2 +m2
Hd
)(|H0

d |2 + |H−d |2)

+
[
b(H+

u H
−
d −H0

uH
0
d) + c.c.

]

+
1

8
(g′2+g2)

(
|H0

u|2+|H+
u |−|H+

u |2−|H−d |2
)2
+
1

2
g2|H+

u H
0∗
d +H0

uH
−∗
d |2 . (2.97)

The above expression for the Higgs potential can be simplified around the minimum.
One can use the SU(2)L invariance to rotate away a possible VEV at the minimum of the
potential, we can therefore set H+

u = 0. Moreover the minimum condition ∂V/∂H+
u = 0

implies that H−d = 0. We are therefore left with the expression:

V = (|µ|2 +m2
Hu

)(|H0
u|2) + (|µ|2 +m2

Hd
)(|H0

d |2)−
[
bH0

uH
0
d + c.c.

]

+
1

8
(g′2+g2)

(
|H0

u|2 − |H0
d |2
)2
, (2.98)

where b can be taken real and positive after a phase redefinition of H0
u and H0

d . We have to
make sure that the Higgs potential fulfills some important conditions in order to have the
correct pattern for elecroweak symmetry breaking. The potential should be bounded from
below for arbitrary large values of the scalar fields, in order for V to have a minimum. The
quartic interactions will stabilize the potential for almost every value of H0

u, H
0
d except

for the special D-flat directions, |H0
u| = |H0

d |. In this case the quartic contribution to V
vanishes. Thus we have to demand that the quadratic coupling is positive along the D-flat
directions. We get the condition:

2b < 2|µ|2 +m2
Hu

+m2
Hd
. (2.99)

The second condition requires that V doesn’t have a local minimum near H0
u = H0

d = 0.
This is done by imposing a negative determinant to the squared mass matrix for H0

u, H
0
d .

From this follows the inequality:

b2 > (|µ|2 +m2
Hu

)(|µ|2 +m2
Hd
) . (2.100)
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The two SU(2)L Higgs doublets in the MSSM correspond to eight real scalar degrees
of freedom. After elecroweak symmetry breaking, three of the eight degrees of freedom,
namely the would-be Nambu-Goldstone bosons G0, G±, become the longitudinal modes
of the three massive gauge bosons Z and W± respectively. By diagonalizing the mass
matrix one finds that the remaining five physical scalar Higgs fields correspond to one CP-
odd neutral pseudoscalar called A0, two CP-even neutral scalars h0 and H0, two charged
scalars H±. We assume h0 to be lighter than H0. One finds that the mass eigenvalues of
the physical Higgs scalars are:

m2
A0 =

2b

sin(2β)
, (2.101)

m2
h0 ,H0 =

1

2

(
m2

A0 +m2
Z ∓

√
m4

A0 +m4
Z − 2m2

A0m2
Z cos(4β)

)
, (2.102)

m2
H± = m2

A0 +m2
W . (2.103)

From Eqs. (2.101), (2.102), (2.103) follows that mA0 , mH0 , mH± can be arbitrarily large
since they grow like b/ sin(2β). On the contrary mh0 is bounded from above; this is shown
in [26], [27] and it is a consequence of Eq. (2.102) for mh0 . At tree level one finds that the
mass of the lighter MSSM Higgs boson cannot be heavier that the Z mass:

mh0 < mZ | cos(2β)| . (2.104)

However, the inequality in Eq. (2.104) gets important quantum corrections due to top and
stops loops. By including one-loop and two-loop radiative corrections one can get the
following upper bound in MSSM:

mh0
<∼ 135GeV , (2.105)

where it was assumed that all the supersymmetric particles contributing to m2
h0 in the

loops have masses lower or equal to 1 TeV.

2.3.4. Squarks and Sleptons Mixings

If we assume completely arbitrary soft terms for the MSSM in Eq. (2.92), the mass eigen-
states of squarks and sleptons are obtained by diagonalizing three 6 × 6 squared mass ma-
trices for up type squarks (ũL, c̃L, t̃L, ũR, c̃R, t̃R), down type squarks (d̃L, s̃L, b̃L, d̃R, s̃R, b̃R),
charged sleptons (ẽL, µ̃L, τ̃L, ẽR, µ̃R, τ̃R) and one 3 × 3 matrix for sneutrinos (ν̃e, ν̃µ, ν̃τ ).
Fortunately, there are experimental indications which tell us that most of these mixing an-
gles are very small. The RG equations for the running masses of the third family squarks
and sleptons are sensitive to the effects of large Yukawa couplings. Therefore stops, sbot-
toms and staus can have very different masses respect to the first two families of sfermions.
Moreover, they can have a significant mixing in pairs (t̃L, t̃R), (̃bL, b̃R), (τ̃L, τ̃R). On the con-
trary, the first and the second family sfermions have negligible Yukawa couplings, and this

31



2. Supersymmetry

produces 7 nearly degenerate unmixed states (ẽR, µ̃R), (ν̃e, ν̃µ), (ẽL, µ̃L), (ũR, c̃R), (d̃R, s̃R),

(ũL, c̃L), (d̃L, s̃L).
Now we are going to consider the squared mass matrix for top-squarks. There are several

important contributions: squared mass terms from soft terms and D-term scalar quartic
interactions when the neutral Higgs scalars get VEVs, F -terms proportional to m2

t when
we substitute the Higgs VEVs and finally trilinear scalar contributions from F -terms and
soft term after electroweak symmetry breaking. Putting all these different contributions
together we find that the stop squared mass matrix, in the gauge eigenstate basis (t̃L, t̃R),
has the following expression:

m2

t̃
=

(
m2

U33
+m2

t +
(
1
2
− 2

3
s2θW
)
m2

Z cos(2β) vSM (At sin(β)− µyt cos(β))
vSM (At sin(β)− µyt cos(β)) m2

ū33
+m2

t +
2
3
s2θWm

2
Z cos(2β)

)
,

(2.106)
where θW is the Weinberg angle. The squared mass matrix can be diagonalized by a
rotation matrix which gives the two stop mass eigenstates:

(
t̃1

t̃2

)
=

(
cos(α) sin(α)

− sin(α) cos(α)

) (
t̃L

t̃R

)
, (2.107)

where t̃1 is defined to be lighter between the two stops: m2
t̃1
< m2

t̃2
. The non-negligible

diagonal entries will produce an important mixing which increases the splitting between
the two mass eigenstates.
One can also compute the squared mass matrices for bottom squarks and staus in their

gauge eigenstates basis, which respectively read

m2

b̃
=

(
m2

U33
+
(
−1

2
+ 1

3
s2θW
)
m2

Z cos(2β) vSM
(
Ab sin(β)− µyb cos(β)

)

vSM
(
Ab sin(β)− µyb cos(β)

)
m2

d̄33
− 1

3
s2θWm

2
Z cos(2β)

)
, (2.108)

m2

τ̃ =

(
m2

L33
+
(
−1

2
+ s2θW

)
m2

Z cos(2β) vSM (Aτ sin(β)− µyτ cos(β))
vSM (Aτ sin(β)− µyτ cos(β)) m2

ē33
− s2θWm2

Z cos(2β)

)
. (2.109)

Since yb, yτ ≪ yt, the impact of mixing in sbottom and stau sectors depends on the value
of tan(β). If tan(β) is chosen to be small, tan(β) < 10, the mixing is small and the mass
eigenstates are nearly the same as the gauge eigenstates. On the contrary, if tan(β) is
larger, it is possible to obtain a significant mixing.
In our analysis of slepton-pair production in Chapter 5 and stop-pair production in

Chapter 6, we assume for simplicity that we have mixing only in the stau and stop sector.
As we will discuss later, this choice is motivated by the fact that the dependence of virtual
corrections from SUSY parameters is very mild.
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3.1. Introduction

SCET is an effective field theory (EFT) of QCD which offers a natural framework to
describe high-energy processes at hadron colliders. SCET has been developed over the last
ten years originally with a focus on B-physics and its foundations were posed in a series of
papers [28–34]. By now it has been applied in a large variety of processes, from B-meson
decay to collider physics processes.
Effective field theories are used, in quantum field theory (QFT), whenever one encounters

problems with two different scales, a high-energy scale Λh and a lower scale Λl. EFTs allow
one to expand physical quantities in the small ratios of scales and to separate the low-
energy contributions from the high-energy part. Performing the expansion usually greatly
simplifies the problem and is often necessary in order to attack a field theory problem
at all. In QCD, the low energy part is usually non-perturbative, while the high-energy
contribution can be computed perturbatively. Using an EFT one is able to separate the
two pieces and compute them with appropriate techniques. For hadron collider observables,
the leading non-perturbative low-energy part is typically encoded in the PDFs. However,
even in those cases where all scales in a given problem are in the perturbative domain, it
is necessary to separate the contributions associated with different scales. If this is not
done, higher-order corrections are enhanced by large logarithms of the scale ratios. For
processes described in SCET, like the Sudakov problem, the leading logarithmic terms at
n-th order in perturbation theory have the form αn

s ln
2n(Λh/Λl), where αs is the strong

coupling constant. These large logarithms can be resummed to all orders in SCET.
In the next chapter we will give an introduction to SCET, based on [35,36]. We will start

from the expansion of Feynman diagrams in different momentum regions and construct an
effective Lagrangian, which produces the different terms, which contribute to the expanded
diagrams. The technique we use for the expansion is called the strategy of regions and
is based on dimensional regularization. There are two different low energy regions con-
tributing in processes with energetic particles: the soft and the collinear regions. They are
respectively related to the possibility for the particles to split into collinear particles and
to emit soft particles. Therefore, as its name suggests, SCET includes different low energy
fields, which describes the collinear and the soft emissions. As a consequence of this, the
same QCD field is represented in the low-energy theory by different fields. We will analyze
the Sudakov problem in φ3 scalar theory, check that we reproduce the full theory result at
one-loop order. After this, we extend the construction to QCD.
To see the methods at work we study soft-gluon resummation for the inclusive Drell-Yan
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cross section pp → γ∗/Z + X → ℓ+ℓ− + X in Chapter 4 of this thesis. This is one of
the basic processes at hadron-colliders, and one of the first for which resummation was
performed in SCET [5].
During the last few years SCET has been used to perform higher-logarithm resummation

for many processes, up to now only for inclusive final states such as e+e− event shapes [37],
vector boson production [38], Higgs production [6,7,39] and top-pair production at hadron
colliders [9, 10, 40, 41].

3.2. The Strategy of Regions

The strategy of regions [42] is a technique which allows one to carry out asymptotic ex-
pansions of loop integrals, in dimensional regularization, around various limits [43]. The
expansion is obtained by splitting the integration into different regions and appropriately
expanding the integrand in each case. In the effective theory, the different regions will be
represented by different effective fields. The expanded integrals, obtained by means of the
strategy of regions technique, are in one-to-one correspondence to the Feynman diagrams
of the effective theory, regularized in dimensional regularization.
If one is simply interested in expanding some pertubative result in a small parameter, one

can work directly with the strategy of regions technique, without constructing an effective
Lagrangian. However, the use of an effective field theory offers important advantages when
one is interested in deriving all-order statements. In particular, one can use the effective
Lagrangian

• to derive factorization theorems,

• to resum logarithmically enhanced contributions at all orders in the coupling constant
using RG techniques.

In addition, in the effective field theory, gauge invariance is manifest at the Lagrangian
level, which is not the case for individual Feynman diagrams.

3.2.1. A Simple Example

In order to illustrate the main idea of the strategy of regions we start by considering
a simple integral, which we will expand using different methods, first using a cutoff to
separate two different regions and then with dimensional regularization. The integral we
will consider is

I =

∫ ∞

0

dk
k

(k2 +m2)(k2 +M2)
=

ln M
m

M2 −m2
. (3.1)

This corresponds to a self-energy one-loop integral with two different particle masses at
zero external momentum, evaluated in d = 2. We will assume a large hierarchy between
the masses, for example m2 ≪ M2, and will discuss the expansion of the integral around
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the limit of small m. Since we know the full result, we can obtain the expansion simply by
expanding the denominator on the right-hand side of (3.1)

I =
ln M

m

M2

(
1 +

m2

M2
+
m4

M4
+ · · ·

)
. (3.2)

Note that the integral is not analytic in the expansion parameter m/M because of the
presence of the logarithm. Our goal in the following is to obtain the expansion in Eq. (3.2)
by expanding the integrand in Eq. (3.1) before carrying out the integral. This is important
in cases where the full result is not available. It will also tell us what kind of degrees of
freedom the effective theory will contain.
A naive expansion of the integrand leads to trouble, because it gives rise to infrared (IR)

divergent integrals. In fact

k

(k2 +m2)(k2 +M2)
=

k

k2(k2 +M2)

(
1− m2

k2
+
m4

k4
+ · · ·

)
, (3.3)

cannot be used in place of the integrand of Eq. (3.1):

I 6=
∫ ∞

0

k

k2(k2 +M2)

(
1− m2

k2
+
m4

k4
+ · · ·

)
. (3.4)

This was to be expected since, if the expansion and integration commute, the result would
be analytic in m/M and we stressed above that this is not the case. So just from the form
of the result (3.2), it is clear the expansion and integration do not commute. The reason
for this is simply that the series expansion in Eq. (3.3) is valid only for k ≫ m2, while
the integration domain in Eq. (3.1) includes a region in which k2 ∼ m2, which contributes
to the integral. To account for this fact, we should split the integration into two regions.
We can do this by introducing a new scale Λ, such that m ≪ Λ ≪ M . We will call the
scale Λ a cut-off, even though the name is misleading. The role of Λ is to separate the two
momentum regions. We then obtain

I =

∫ Λ

0

dk
k

(k2 +m2)(k2 +M2)︸ ︷︷ ︸
I(I)

+

∫ ∞

Λ

dk
k

(k2 +m2)(k2 +M2)︸ ︷︷ ︸
I(II)

. (3.5)

We call the region [0,Λ] the low-energy region. In this region k ∼ m ≪ M , therefore
one can expand the integrand in the integral I(I) as follows

I(I) =

∫ Λ

0

dk
k

(k2 +m2)(k2 +M2)
=

∫ Λ

0

dk
k

(k2 +m2)M2

(
1− k2

M2
+

k4

M4
+ · · ·

)
. (3.6)

The scale Λ acts as an ultraviolet cut-off for the integrals on the right-hand-side (r.h.s.) of
the Eq. (3.6).

35



3. Soft-Collinear Effective Theory

The region [Λ,∞] is referred to as the high-energy region; in that region m ≪ k ∼ M ,
and one can expand the integrand according to

I(II) =

∫ ∞

Λ

dk
k

(k2 +m2)(k2 +M2)
=

∫ ∞

Λ

dk
k

k2(k2 +M2)

(
1− m2

k2
+
m4

k4
+ · · ·

)
. (3.7)

In the equation above, Λ acts as an infrared cut-off.
By integrating the first two terms on the r.h.s. of Eq. (3.6) one finds

I(I) ≈
M2 +m2

2M4
ln

(
1 +

Λ2

m2

)
− Λ2

2M4
= − 1

M2
ln
(m
Λ

)
− Λ2

2M4
+ . . . , (3.8)

since it was assumed above that Λ ≫ m. Similarly, by integrating the first term on the
r.h.s. of Eq. (3.7) one obtains

I(II) ≈
1

2M2
ln

(
1 +

M2

Λ2

)
= − 1

M2
ln

(
Λ

M

)
+

Λ2

2M4
+ . . . . (3.9)

Adding up the Eq. (3.8) and (3.9) one finally obtains

I = I(I) + I(II) = −
1

M2
ln
(m
M

)
+ . . . , (3.10)

which is the expected result (see Eq. (3.2)). When summing the results for the low-energy
and high-energy regions, the terms which depend on the cut off Λ cancel out; this is also
expected, since Λ is not present in the original integral but it was introduced in order to
split the original integral in the sum of two different terms. Since the final result cannot
depend on Λ, there should be a way to obtain the expansion without introducing this
additional scale. Our ultimate goal is to similarly expand Feynman loop integrals. It is
well known that the use of hard cut-offs is impractical in loop calculations; fortunately it
is possible to repeat the procedure by separating the low- and high-energy regions using
dimensional regularization. Let us rewrite the original integral as follows

I =

∫ ∞

0

dk k−ε
k

(k2 +m2)(k2 +M2)
, (3.11)

where we will send ε→ 0 at the end of the calculation. (For simplicity, we did not introduce
the d-dimensional angular integration so this is not exactly dimensional regularization).
The integral in the low-energy region k ∼ m≪M is

I(I) =

∫ ∞

0

dk k−ε
k

(k2 +m2)M2

(
1− k2

M2
+

k4

M4
+ · · ·

)
. (3.12)

Due to the fact that the integral in Eq. (3.12) is infrared safe in the region in which k → 0,
it is natural to take ε to be a positive real number since this renders the integral ultraviolet
finite as well. The integral in the high energy region is

I(II) =

∫ ∞

0

dk k−ε
k

k2(k2 +M2)

(
1− m2

k2
+
m4

k4
+ · · ·

)
. (3.13)
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The integral is ultraviolet safe, and we consider ε < 0, so that the integrand does not give
rise to an infrared singularity in the region where k → 0. By integrating the first term on
the r.h.s. of Eq. (3.12) one finds, at leading power in the expansion around m/M ,

I(I) ≈
m−ε

2M2
Γ
(
1− ε

2

)
Γ(
ε

2
) =

1

M2

(
1

ε
− lnm+O(ε)

)
. (3.14)

The integral of the first term on the r.h.s. of Eq. (3.13) is

I(II) ≈
M−ε

2M2
Γ
(
1 +

ε

2

)
Γ(−ε

2
) =

1

M2

(
−1
ε
+ lnM +O(ε)

)
. (3.15)

The poles in ε cancel in the sum of Eqs. (3.14) and (3.15), and the final result is again
the one obtained by means of the cut-off method in Eq. (3.10). One might be worried
that we choose ε > 0 in the low-energy region and ε < 0 in the high-energy region and
then combine the two. It is important to remember that the integrals in dimensional
regularization are defined for arbitrary ε: we only choose ε > 0 to be able to evaluate I(I)
as a standard integral, but by analytic continuation the resulting function on the right
hand side is uniquely defined for any complex-valued ε and can be combined with I(II).
The fact that, in both Eq. (3.12) and Eq. (3.13), the integration domain coincides with

the full integration domain of the original integral might be also surprising. However, one
should note that the two integrals scale differently; the low-energy integral I(I) contains an
overall factor of m−ε, whereas the high-energy integral I(II) contains an overall factor of
M−ε. When one keeps the complete dependence on m and M , the result is

I =
1

2
Γ
(
1− ε

2

)
Γ
(ε
2

) m−ε −M−ε
M2 −m2

. (3.16)

This form of the result clearly displays the low-energy and the high-energy part. Expanding
in one region, one ignores the region complementary to it and the full integral is recovered
only after adding the two contributions. Even though we integrate twice, over the full
integration domain, there is no double counting, since the two pieces scale differently. In
other words, the low energy integrals can never produce a factor of M−ε and the high
energy integrals can never produce a factor of m−ε.
To convince ourselves that there is indeed no double counting, let us now see what

happens if we insist in restricting the integration domains of the low- and high-energy
integrals, when using dimensional regularization. The integral in the low-energy region
would become in this case

I(I) =

∫ Λ

0

dk k−ε
k

(k2 +m2)M2

(
1− k2

M2
+

k4

M4
+ · · ·

)
,

=

[∫ ∞

0

dk −
∫ ∞

Λ

dk

]
k−ε

k

(k2 +m2)M2

(
1− k2

M2
+

k4

M4
+ · · ·

)
. (3.17)
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The first integral in the second line of the equation above is the same as the one in
Eq. (3.12). In the second integrand, which depends on the cutoff Λ, one can use the fact
that k ≥ Λ≫ m2 to expand the integrand in the small m limit
∫ ∞

Λ

dkk−ε
k

(k2 +m2)M2

(
1− k2

M2
+ · · ·

)
=

∫ ∞

Λ

dkk−ε
k

k2M2

(
1− m2

k2
− k2

M2
+ · · ·

)
.

(3.18)
At this point it is sufficient to observe that for dimensional reasons the integrals in the
equation above must behave as follows

∫ ∞

Λ

dk kn−ε ∼ Λn+1−ε . (3.19)

So the cutoff pieces scale as fractional powers of the cutoff. Since the Λ dependent terms
must cancel out completely in the calculation of I, one can also drop the Λ dependent
integrals from the start. Therefore, when regulating divergences by means of dimensional
regularization, one can integrate over the complete integration domain, in this case k ∈
[0,∞].

3.2.2. The Sudakov Problem

The example, considered in the previous section, was intended to bring to the attention
of the reader some general features that one encounters when dealing with the expansion
of Feynman diagrams occurring in physical processes. The general strategy to obtain the
expansion of a given Feynman integral in a given kinematic limit is the following [43]:

i) identify all regions of the integrand which lead to singularities in the limit under
consideration,

ii) expand the integrand in each region and integrate each expansion over the full phase
space,

iii) add the result of the integrations over the different regions to obtain the expansion
of the original full integral.

In order for the procedure to work, it is necessary to make sure that all of the expanded
integrals are properly regularized. We also stress that so far there is no general proof that
the above procedure always produces the correct result. Recent work towards such a proof
can be found in [44].
We now wish to consider the simplest possible example, a one-loop vertex correction

where we neglect the complications related to the spin of the particles; the momentum
regions that one finds in the calculation of the tensor integrals are the same as the regions
that one finds in the calculation of the scalar integral considered below. The vertex cor-
rection, depicted in Figure 3.1, requires the evaluation of the following Feynman integral:

I = iπ−d/2µ4−d
∫
ddk

1

(k2 + i0+) [(k + l)2 + i0+] [(k + p)2 + i0+]
, (3.20)
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k + l k + p

k

Figure 3.1.: One-loop vertex corrections. The Feynman diagram is shown here in terms
of fermions and photons. However, for simplicity, the spin structure of the
diagram is neglected in this section.

where d = 4 − 2ε is the dimensional regulator and µ is the ’t Hooft scale. We introduce
the following notation:

L2 ≡ −l2 − i0+ , P 2 ≡ −p2 − i0+ , Q2 ≡ −(l − p)2 − i0+ . (3.21)

The goal is to calculate the integral in Eq. (3.20) in the limit in which L2 ∼ P 2 ≪ Q2 that
is, in the case in which the external legs carrying momenta l and p have large energies but
small invariant masses.
Before going any further, we now need to introduce some basic notation used in SCET.

We introduce two light-like reference vectors in the direction of the momenta p and l in
the frame in which ~Q = 0:

nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,−1) . (3.22)

It is straightforward to verify that

n2 = n̄2 = 0 , and n · n̄ = 2 . (3.23)

Any vector can be then decomposed in a component proportional to n, a part proportional
to n̄, and a component perpendicular to both

pµ = (n · p) n̄
µ

2
+ (n̄ · p)n

µ

2
+ pµ⊥ ≡ pµ+ + pµ− + pµ⊥ . (3.24)

Splitting the vectors into their light-cone components turns out to be a useful way to
organize the expansion, since the different components scale differently. For the square of
the vector p one then finds

p2 = (n · p)(n̄ · p) + p2⊥ , (3.25)

while the scalar product between two vectors p and q becomes

p · q = p+ · q− + p− · q+ + p⊥ · q⊥ . (3.26)
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Q hardQCD H

M collinearSCET J

M 2/Q softSET S

Figure 3.2.: Chart of the regions and scales involved in the calculation. Q is the hard scale,
M the scale characterizing collinear physics, and M2/Q the soft scale. SET
stands for Soft Effective Theory.

In the following we will often identify a vector by means of its components in the n, n̄,
and ⊥ basis, with the notation

pµ = ( n · p︸︷︷︸
“+ comp.′′

, n̄ · p︸︷︷︸
“− comp.′′

, pµ⊥) . (3.27)

We now introduce an expansion parameter λ which vanishes in the limit in which we are
interested:

λ2 ∼ P 2

Q2
∼ L2

Q2
, and p2 ∼ l2 ∼ λ2Q2 . (3.28)

By choosing nµ such that pµ ≈ Qnµ/2 one finds that the components of p and l scale as
follows

pµ ∼
(
λ2, 1, λ

)
Q , and lµ ∼

(
1, λ2, λ

)
Q . (3.29)

At this stage it is necessary to distinguish the various regions of the integration momen-
tum which contribute to the integral. These regions are

• Hard Region (denoted by h in the following) where the components of the integra-
tion momentum scale as kµ ∼ (1, 1, 1)Q,

• Region Collinear to p (denoted by c) where k scales as kµ ∼ (λ2, 1, λ)Q,

• Region Collinear to l (denoted by c̄) where k scales as kµ ∼ (1, λ2, λ)Q,

• Soft Region (denoted by s) where k scales as kµ ∼ (λ2, λ2, λ2)Q.

In SCET, each region listed above is represented by a different field; the situation is
schematically illustrated in Figure 3.2.
It is interesting to observe that in the soft region the square of a four momentum is

proportional to λ4:

p2s ∼ λ4Q2 ∼ L2P 2

Q2
. (3.30)

The squared momenta scaling as λ4 are also often called ultra soft in the literature. The
interesting part about the presence of this contribution, is that it implies that the loop
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diagrams involve a scale which is smaller than the invariants which can be formed by the
external momenta.
In order to determine what integral to evaluate, when the integration momentum is

considered hard, we consider the way in which the terms in the propagators in Eq. (3.20)
scale. Clearly k2 ∼ λ0Q2; for the other two propagators one finds

(k + l)2 =

O(1)︷︸︸︷
k2 +2(

O(λ2)︷ ︸︸ ︷
k+ · l−+

O(1)︷ ︸︸ ︷
k− · l++

O(λ)︷ ︸︸ ︷
k⊥ · l⊥) +

O(λ2)︷︸︸︷
l2 = k2 + 2k− · l+ +O(λ) , (3.31)

and, similarly
(k + p)2 = k2 + 2k+ · p− +O(λ) . (3.32)

The contribution of the hard region to the integral I is therefore given by

Ih = iπ−d/2µ4−d
∫
ddk

1

(k2 + i0+) (k2 + 2k− · l+ + i0+) (k2 + 2k+ · p− + i0+)
; (3.33)

it coincides with the form factor integral with on shell external legs (i. e. calculated by
setting p2 = l2 = 0 from the start). The integral evaluates to

Ih =
Γ(1 + ε)

2l+ · p−
Γ2(−ε)

Γ(1− 2ε)

(
µ2

2l+ · p−

)ε

,

=
Γ(1 + ε)

Q2

(
1

ε2
+

1

ε
ln
µ2

Q2
+

1

2
ln2 µ

2

Q2
− π2

6

)
+O (ε) . (3.34)

The poles in ε are of infrared origin. More details on the calculation of Ih can be found in
Appendix A.1.1.
In the region collinear to p the integration momentum scales as kµ ∼ (λ2, 1, λ)Q. In this

region k2 ∼ λ2Q2, which implies that

(k + l)2 = 2k− · l+ +O(λ2) , (k + p)2 = O(λ2) . (3.35)

The collinear region integral is obtained by keeping only the leading term in each prop-
agator

Ic = iπ−d/2µ4−d
∫
ddk

1

(k2 + i0+) (2k− · l+ + i0+) [(k + p)2 + i0+]
,

= −Γ(1 + ε)

2l+ · p−
Γ2(−ε)

Γ(1− 2ε)

(
µ2

P 2

)ε

,

=
Γ(1 + ε)

Q2

(
− 1

ε2
− 1

ε
ln
µ2

P 2
− 1

2
ln2 µ

2

P 2
+
π2

6

)
+O(ε) . (3.36)

Some details on the calculation leading to the above result are collected in Appendix A.1.2.
We observe that the integral scales as P−2ε . The calculation of the integral in the region
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collinear to l is identical to the calculation presented in this section, except that one needs
to replace P 2 everywhere with L2 in the final result.
In the soft region all of the components of the integration momentum are proportional

to λ2. Therefore

k2 = O(λ4) , (k+l)2 = 2k−·l++l2+O(λ3) , and (k+p)2 = 2k+·p−+p2+O(λ3) . (3.37)

It follows that the integral in the soft region is simply

Is = iπ−d/2µ4−d
∫
ddk

1

(k2 + i0+) (2k− · l+ + l2 + i0+) (2k+ · p− + p2 + i0+)
,

= −Γ (1 + ε)

2l+ · p−
Γ(ε)Γ (−ε)

(
2µ2l+ · p−
L2P 2

)ε

,

=
Γ(1 + ε)

Q2

(
1

ε2
+

1

ε
ln
µ2Q2

L2P 2
+

1

2
ln2 µ

2Q2

L2P 2
+
π2

6

)
+O (ε) . (3.38)

The poles in the last line of Eq. (3.38) are of ultraviolet origin. As expected, the result
depends on the “new” soft scale Λsoft ∼ P 2L2/Q2. Further details on the calculation of
Is can be found in Appendix A.1.3.
One can now sum the results, obtained in the different regions, to obtain what was the

original goal of the calculation: an analytic expression for the integral in Eq. (3.20) in the
limit in which L2 ∼ P 2 ≪ Q2. One finds

Ih =
Γ (1 + ε)

Q2

(
1

ε2
+

1

ε
ln
µ2

Q2
+

1

2
ln2 µ

2

Q2
− π2

6

)

Ic =
Γ (1 + ε)

Q2

(
− 1

ε2
− 1

ε
ln
µ2

P 2
− 1

2
ln2 µ

2

P 2
+
π2

6

)

Ic̄ =
Γ (1 + ε)

Q2

(
− 1

ε2
− 1

ε
ln
µ2

L2
− 1

2
ln2 µ

2

L2
+
π2

6

)

Is =
Γ (1 + ε)

Q2

(
1

ε2
+

1

ε
ln
µ2Q2

L2P 2
+

1

2
ln2 µ

2Q2

L2P 2
+
π2

6

)

I≡Ih+Ic+Ic̄+Is =
1

Q2

(
ln
Q2

L2
ln
Q2

P 2
+
π2

3
+O(λ)

)
. (3.39)

The final result does not depend on the dimensional regulator ε and it coincides with
the one that would be obtained by evaluating directly the integral in Eq. (3.20) and then
expanding the result in the λ → 0 limit. We stress the fact that the infrared divergences
found in the hard region cancel out against the ultraviolet divergences found in the soft
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and collinear region. This feature is general and requires a non trivial interplay of the
logarithms found in the various integrals:

− 1

ε
ln
µ2

P 2
− 1

ε
ln
µ2

L2
+

1

ε
ln
µ2Q2

L2P 2
= −1

ε
ln
µ2

Q2
. (3.40)

The requirement that infrared divergences of the hard region should cancel against the
ultraviolet divergences of the soft and collinear regions leads to constraints that must be
satisfied by the infrared pole structure of a generic amplitude.

3.3. Scalar SCET

We now construct an effective field theory whose Feynman rules directly give the hard,
collinear, and soft integrals for the Sudakov form factor that we just considered in Section
3.2. Initially we restrict our derivation to the case of a scalar φ3 theory. The procedure
outlined in the following will be applied to QCD in section 3.4. However, since the different
components of the quark and gluon fields scale differently, the effective Lagrangian derived
from QCD will be more complicated than the one that we derive here for a scalar theory.

3.3.1. The Scalar SCET Lagrangian

The starting point of our discussion is the Lagrangian

L (φ) = 1

2
∂µφ(x)∂

µφ(x)− g

3!
φ3(x) , (3.41)

where φ is the scalar field and g the coupling constant of the theory. In order to derive
the SCET effective Lagrangian needed for the calculation of the Sudakov form factor in
this theory, one needs to split the scalar field into a sum of a field collinear to p, a field
collinear to l, and a soft field:

φ(x)→ φc(x) + φc̄(x) + φs(x) . (3.42)

It was not necessary to introduce, in the sum above, a field for the hard region, since these
contributions are absorbed into the Wilson coefficients, which are the “coupling constants”
of the effective theory. When constructing the effective Lagrangian, we assume that the
momenta of the different fields scale in the proper way.
By splitting each one of the fields according to Eq. (3.42), the original Lagrangian can

be written as the sum of four terms:

L(φ) = L (φc)︸ ︷︷ ︸
≡Lc

+L (φc̄)︸ ︷︷ ︸
≡Lc̄

+L (φs)︸ ︷︷ ︸
≡Ls

+Lc+s (φc, φc̄, φs) . (3.43)

The first three terms on the r.h.s. of the equation above are simply copies of the original
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φc

φc

φs
φc̄

φc̄

φs

Figure 3.3.: Interaction vertices generated from the Lagrangian Lc+s

φc

φs

φs

φc(x)φ
2
s(x) An energetic particle cannot

decay into two soft particles

A particle moving along the

+z direction cannot decay
φc

φc̄

φc̄

φc(x)φ
2
c̄(x) into two particle moving

along the −z direction

The “+ component” of the c field

is of order λ2, it cannot give rise
φc

φc̄

φs

φc(x)φc̄(x)φs(x) to a field with a “+ component”

of order 1, such as c̄

Figure 3.4.: Interaction forbidden by momentum conservation.

Lagrangian where all the fields are either collinear to p, collinear to l, or soft. The fourth
term in Eq. (3.42) describes the interaction of collinear and soft fields

Lc+s (φc, φc̄, φs) = −
g

2
φc

2φs −
g

2
φc̄

2φs , (3.44)

which give origin to the interaction vertices shown in Fig. 3.3. At first sight, it looks like
there should be many additional interaction terms, but the interactions between the fields
which do not appear in Eq. (3.43) are forbidden by momentum conservation, as is shown
in Fig. 3.4.
As a last step, one needs to expand each interaction term in its small momentum com-

ponents. This procedure is called derivative (or multipole) expansion [33]. Consider the
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Fourier transform of the fields in a given interaction term;

∫
ddxφ2

c(x)φs(x) =

∫
ddx

∫
ddp1
(2π)d

∫
ddp2
(2π)d

∫
ddps
(2π)d

φ̃c(p1)φ̃c(p2)φ̃s(ps)e
−i(p1+p2+ps)·x , (3.45)

where the tilde indicates the transformed fields. If, as we assumed, the momenta p1 and
p2 are collinear to p, while ps is soft, then the sum of the three momenta scales as

pµ1 + pµ2 + pµs ∼
(
λ2, 1, λ

)
Q . (3.46)

Consequently the components of x must scale as

xµ ∼
(
1,

1

λ2
,
1

λ

)
1

Q
. (3.47)

If one now considers the fact that all of the components of the soft momentum scale as λ2,
one finds that

ps · x = (ps)+ · x−︸ ︷︷ ︸
O(1)

+ (ps)− · x+︸ ︷︷ ︸
O(λ2)

+ (ps)⊥ · x⊥︸ ︷︷ ︸
O(λ)

. (3.48)

Since the derivatives of the soft field scale as the components of the soft momentum, the
Taylor expansion of the soft field around the point xµ− = (x · n̄)nµ/2 is

φs(x) = φs(x−)+x⊥ · ∂⊥φs(x−)︸ ︷︷ ︸
O(λ)

+ x+ · ∂−φs(x−)︸ ︷︷ ︸
O(λ2)

+
1

2

(
xµ⊥xν⊥∂

µ∂νφs(x−)︸ ︷︷ ︸
O(λ2)

)
+O(λ3) . (3.49)

Consequently, up to first order in λ, the interaction term between the collinear and soft
field can be rewritten as

∫
ddxφ2

c(x)φs(x) =

∫
ddxφ2

c(x)φs(x−) +O(λ) . (3.50)

The leading power scalar SCET Lagrangian has then the following form:

Leff =
1

2
∂µφc(x)∂

µφc(x)−
g

3!
φ3
c(x) +

1

2
∂µφc̄(x)∂

µφc̄(x)−
g

3!
φ3
c̄(x)

+
1

2
∂µφs(x)∂

µφs(x)−
g

3!
φ3
s(x)−

g

2
φ2
c(x)φs(x−)−

g

2
φ2
c̄(x)φs(x+) . (3.51)

3.3.2. Matching Procedure and Current Operator

In an effective theory, the hard contributions lead to matching corrections. The procedure
which allows the hard corrections to be taken into account is the following:

1) write down the most general form of the Lagrangian, including all the operators
which are compatible with the symmetry of the theory, each one of which will be
multiplied by arbitrary coefficients (the Wilson coefficients);
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ii) calculate a given interaction process both in the full theory and in the effective theory,

iii) fix the values of the Wilson coefficients in such a way that the results obtained in the
full and in the effective theory coincide.

In general, such matching corrections modify the effective Lagrangian. However, for the
case of SCET, it turns out that only the operators which involve collinear fields in different
directions get matching corrections. To describe the Sudakov form factor, we introduce an
external current coupling to two scalar fields

J = φ2 = (3.52)

and will consider the current at large momentum transfer. In the following, we first explain
why the matching corrections are absent for the Lagrangian derived in the last section and
then compute them for the current operator, which will involve collinear fields in both
directions.
To allow for the presence of matching corrections in the Lagrangian, we introduce Wilson

coefficients which multiply the interaction terms in Eq. (3.51); in particular the term
involving three collinear c fields will become

− g

3!
φ3
c(x)→ −

g

3!
Cφ3

c(x) ≡ −
g

3!

(
1 + g2C(1) + g4C(2) + · · ·

)
φ3
c(x) . (3.53)

In order to fix the coefficient C(1) one requires that the corrections of order g2 to the in-
teraction of three scalar fields are the same in the full theory and in the effective theory.
In the full theory these corrections coincide with the one-loop corrections to the φ3 vertex,
while in the effective theory one finds contributions originating from one-loop graphs and
contributions proportional to C(1). One obtains the following diagrammatic equation

φc

φc

φc
= + + · · ·+ g2C(1) , (3.54)

where all the external legs have momenta collinear to p, blue lines indicate collinear fields
in the effective theory, while red lines indicates the soft φ field in the effective theory.
The dots in Eq. (3.54) indicate two additional diagrams which can be obtained from the
second diagram by moving the internal soft line in the other two possible positions. All
of the loop integrals in Eq. (3.54) are scaleless, since they do not have internal masses
and all of the scalar products, that can be generated with the external legs momenta, will
be proportional to the square of the momentum p, which vanishes in the λ → 0 limit.
Since in dimensional regularization scaleless integrals evaluate to zero, we can conclude
that the one-loop matching condition is C(1) = 0. The same kind of reasoning applies
if one considers a larger number of loops; we can conclude that C = 1 to all orders in
perturbation theory. The same kind of reasoning can be applied to all of the interaction
terms appearing in Eq. (3.51).
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While the terms appearing in the Lagrangian in Eq. (3.51) do not receive matching
corrections, the terms originating from the current operator J do. The most general form
that the current operator can have in the effective theory is the following:

J → J2 + J3 + · · · = C2φcφc̄ +
C3

2!

(
φ2
cφc̄ + φcφ

2
c̄

)
+ · · · , (3.55)

where the subscript in Ji and Ci indicates the number of fields involved in the corresponding
operator. Moreover, one should consider the scaling of the derivative of collinear fields; as
was shown above, the projection of the derivative of the collinear field in a given direction
scales as the corresponding component of the momentum, therefore

n · ∂φc(x) ∼ λ2φc(x) , ∂µ⊥φc(x) ∼ λφc(x) , n̄ · ∂φc(x) ∼ λ0φc(x) , (3.56)

and similarly

n̄ · ∂φc̄(x) ∼ λ2φc̄(x) , ∂µ⊥φc̄(x) ∼ λφc̄(x) , n · ∂φc̄(x) ∼ λ0φc̄(x) . (3.57)

The derivatives n̄ · ∂φc and n · ∂φc̄ are not power suppressed, because the collinear fields
carry large energies in these directions. Even at leading power in λ, one needs to allow the
current operators in the EFT to contain an arbitrary number of terms of this kind. The
expansion of a collinear field along the collinear direction can be written as an infinite sum
over the non-power suppressed derivatives

φ(x+ tn) =

∞∑

i=0

ti

i!
n · ∂iφ(x) . (3.58)

Therefore, to include terms with arbitrarily high derivatives is equivalent to allowing for
non-locality of the collinear fields along the collinear directions. For example, the operator
J2 in Eq. (3.55) can be written as

J2(x) =

∫
dsdt C2(s, t, µ)φc (x+ sn̄)φc̄ (x+ tn) . (3.59)

The SCET operators are thus non-local along the light-cone directions. The non-locality
of the operators in position space is reflected in the dependence of the Wilson coefficients
on the large energies scales present in the problem. In fact, the Fourier transform of the
coefficient C2(s, t) will be

C̃2 (n̄ · p , n · l, µ) =
∫
dsdt eisn̄·pe−itn·lC2(s, t, µ) . (3.60)

To be precise, we have indicated that the Wilson coefficient C2(s, t, µ) will depend on the
renormalization scale µ. This dependence is governed by a RG equation and, as we will
show later, can be used to perform resummation. The function C̃2 must be expanded in
powers of the coupling constant g as follows

C̃2 = C̃
(0)
2 + g2C̃

(1)
2 + g4C̃

(2)
2 + · · · . (3.61)
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One can immediately see that the simple matching condition at order g0 leads to the
relation C̃

(0)
2 = 1. At this stage it is possible to write the matching equation which allows

one to fix of the value of C̃2 at order g2

p l
= C̃

(1)
2 (n̄ · p n · l︸ ︷︷ ︸

=Q2

)

φc φc̄
. (3.62)

The momenta p and l are both on-shell, and the diagram on the left-hand-side (l.h.s.) of
the equation above coincides with the hard region integral introduced in Section 3.2. On
the r.h.s. of the matching equation, one should also include the contribution of the one-loop
diagram with an internal soft leg multiplied by C̃

(0)
2 . However, that integral corresponds to

the soft region integral calculated in the previous section, but with on-shell external legs.
The latter vanishes in dimensional regularization if one sets p2 = l2 = 0 from the start, as
it is shown in Appendix A.1.3. One should also add on the r.h.s. the two one-loop diagrams
with the collinear leg corrections multiplied by C̃

(0)
3 , but they also vanish because they are

scaleless (p and l on-shell).
We now want to match the Feynman diagrams involving a current operator, two collinear

fields of type c̄, and one collinear field of type c onto the effective theory at lowest order
in the coupling constant. The relevant diagrammatic equation is

p
l1l2

+

p
l1l2

= C̃
(0)
2 + C̃

(0)
3 . (3.63)

The diagrams on the l.h.s. of the Eq. (3.63) are easily evaluated, since they involve only
single propagators carrying momenta

(p− l2)2 = −2p · l2 +O
(
λ2
)
= − (n · l2) (n̄ · p) +O

(
λ2
)

(3.64)

and (l1 + l2)
2. Since C̃

(0)
2 = 1 the first diagram on the l.h.s. and the first diagram on the

r.h.s. of Eq. (3.63) give identical contributions and drop out of the equation. The value of

the coefficient C̃
(0)
3 is therefore determined by the second diagram on the l.h.s. of Eq. (3.63):

C̃
(0)
3 (n · l1, n · l2, n̄ · p, µ) =

−g
− (n · l2) (n̄ · p) + i0+

. (3.65)

At this point, we would like to go back to the effective Lagrangian and extract the
form of the Wilson coefficients C0

2 and C0
3 in position space. The correspondence pµ ↔

i∂µ indicates that the Wilson coefficient C̃0
3 comes from an effective Lagrangian involving

inverse derivatives:

−g
− (n · l2) (n̄ · p) + i0+

←→ g

(
1

n̄ · ∂φc

)(
1

n · ∂φc̄

)
φc̄ . (3.66)
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The two derivatives scale both like λ0Q and therefore the current operator J3 is suppressed
by a factor 1/Q2. The presence of an inverse derivative is at first sight disturbing, but it
is again an effect of the non-locality mentioned above. Observe that the inverse derivative
of a field can be written as an integral

i

in · ∂ + i0+
φ(x) =

∫ 0

−∞
ds φ(x+ sn) ; (3.67)

in fact the relation above can be checked by applying the derivative to the r.h.s.

nµ

∫ 0

−∞
ds ∂µφ(x+ sn) = nµ

∫ 0

−∞
ds

1

nµ

∂

∂s
φ(x+ sn) = φ(x+ sn)|0∞ = φ(x) . (3.68)

It is a characteristic feature of SCET that the operators are non-local along the directions
of large light-cone momentum. In general, in order to write down the most general SCET
operators, one smears the fields along the light cone. Therefore the current operator in the
full theory, which is quadratic in the fields, will be replaced as follows

J = φ2(x)→ J2(x) + J3(x) + · · · , (3.69)

where the operator J2(x) has the form shown in Eq. (3.59), while

J3(x) =

∫ +∞

−∞
ds

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2C3(s, t1, t2, µ)φc(x+ sn̄)φc̄(x+ t1n)φc̄(x+ t2n)+(c↔ c̄) .

(3.70)
According to the discussion in this section, one finds that

C2(s, t, µ) = δ(s)δ(t) +O(g2) ,

C3(s, t1, t2, µ) = gθ(−s)δ(t1)θ(−t2) +O(g3) . (3.71)

In fact

C̃
(0)
2 =

∫ +∞

−∞
ds

∫ +∞

−∞
dteisn̄·pe−itn·l δ(s)δ(t) = 1 ,

C̃
(0)
3 = g

∫ +∞

−∞
ds

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2e

isn̄·pe−it1n·l1e−it2n·l2θ(−s)θ(−t2)δ(t1) ,

= g

∫ 0

−∞
ds

∫ 0

−∞
dt2e

isn̄·pe−it2n·l2 =
g

(n̄ · p) (n · l2)
. (3.72)

The dependence of the functions Ci on s, t is equivalent to the dependence of the coefficients
C̃i on the large energy scale in momentum space; the correspondence between the two
notations is given by

δ(s)↔ 1 , θ(−s)↔ 1

Q
. (3.73)
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3.3.3. Sudakov Form Factor in SCET

At this point, all of the pieces of the one-loop correction to the current operator of φ3

theory in the limit λ→ 0 are available. By employing the Feynman rules derived from the
SCET Lagrangian one finds

p l
= C̃

(1)
2

φc φc̄
+ C̃

(0)
3

φc φc̄

+ C̃
(0)
3

φc φc̄
+ C̃

(0)
2

φc φc̄
. (3.74)

It is perhaps useful to repeat that, in the relation above, the external squared momenta
p2 and l2 are small but not exactly equal to zero from the start as in the matching calcu-
lation. By employing the expressions of the Wilson coefficients provided in the previous
sections one can check that the four diagrams on the r.h.s. of Eq. (3.74) are the hard-region
integral, the two collinear region integrals, and the soft-region integral which were found
using the strategy of regions. For example, let us consider the third diagram in the r.h.s.
of Eq. (3.74); one finds that

C̃
(0)
3

p lk

k + l
∼ g

∫
ddk

1

(k2 + i0+) [(k + l)2 + i0+]

1

2k+ · p− + i0+︸ ︷︷ ︸
=C̃

(0)
3

. (3.75)

Similarly, one can prove that the fourth integral on the r.h.s. of Eq. (3.74) gives rise to
the integral in Eq. (3.38), simply by observing that the momentum in the soft internal line
scales like k2 ∼ λ4 and therefore one must neglect k2 in the two collinear propagators.
For order-by-order calculations, the direct application of the strategy of regions is more

efficient. However, SCET allows to study all-order properties of scattering amplitudes,
such as factorization theorems. As an example we discuss a factorization theorem for the
Sudakov form factor in Appendix A.2.

3.4. Generalization to QCD

The method which allowed us to write down the SCET Lagrangian for the scalar φ3 theory
in the previous section is analogous to the method that one employs to construct an
effective theory for QCD. In particular, the same momentum regions appear, since only
the numerators of the diagrams differ between the φ3 theory case and the QCD case.
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However, in the QCD1 case three complications arise:

i) different components of the quark field q(x) and of the gluon field Aµ(x) scale differ-
ently,

ii) the effective theory must simultaneously be gauge invariant and respect the power
counting,

iii) the non-local operators must involve Wilson lines to preserve gauge invariance.

To make things as simple as possible let us start by considering only one type of collinear
field, with a momentum which scales as

pµ ∼
(
λ2, 1, λ

)
Q . (3.76)

One then splits the gluon and quark fields into a collinear and a soft part

Aµ(x)→ Aµ
c (x) + Aµ

s (x) , ψ(x)→ ψc(x) + ψs(x) . (3.77)

We now consider the collinear part of the fermion field and we further split it into two
components as follows

ψc(x) ≡ ξ(x) + η(x) , (3.78)

where

ξ = P+ ψc ≡
n/n̄/

4
ψc , η = P− ψc ≡

n̄/n/

4
ψc . (3.79)

As a consequence of the definition of the operators P± and of the fact that n2 = n̄2 = 0
one finds that

n/ ξ(x) = 0 , and n̄/ η(x) = 0 . (3.80)

It is easy to check that P± are projection operators:

P+ + P− =
n/n̄/

4
+
n̄/n/

4
=

2n̄ · n
4

= 1 , (3.81)

and one can also immediately verify that P 2
+ = P+ and P 2

− = P−.

3.4.1. Power Counting

As a first step, we want to determine the powers of λ which characterize the scaling of the
components of the fermionic collinear field. This information can be obtained by looking
at appropriate two points correlators. We start from the ξ component2

〈0|T
{
ξ(x)ξ̄(0)

}
|0〉 =

n/n̄/

4
〈0|T

{
ψc(x)ψ̄c(0)

}
|0〉 n̄/n/

4
,

1The derivation of the SCET Lagrangian for supersymmetric QCD is exactly the same as in QCD since
the soft and collinear modes of the two theories are the same. The difference arise at the level of the
matching with current operators. In that case, the hard modes introduced by supersymmetry will enter
the Wilson coefficients of those operators.

2Observe that (n/n̄/ψc) = ψ†
c n̄/

†n/†γ0 = ψ̄cn̄/n/, which follows after inserting
(
γ0
)2

= 1 between the Dirac

matrices and using γ0γµ†γ0 = γµ.
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=

∫
d4p

(2π)4
i

p2 + i0
e−ip·x

n/n̄/

4
p/
n̄/n/

4
∼ λ4

1

λ2
= λ2 , (3.82)

where we employed the identity

n/n̄/

4
p/
n̄/n/

4
=
n/n̄/

4

[
n̄ · pn/

2
+ n · pn̄/

2
+ p/⊥

]
n̄/n/

4
= n̄ · pn/

2
∼ λ0 . (3.83)

Therefore ξ(x) ∼ λ. The correlator for the η component is

〈0|T {η(x)η̄(0)} |0〉 =
n̄/n/

4
〈0|T

{
ψc(x)ψ̄c(0)

}
|0〉n/n̄/

4
, (3.84)

=

∫
d4p

(2π)4
i

p2 + i0
e−ip·x

n̄/n/

4
p/
n/n̄/

4︸ ︷︷ ︸
=n·p n̄/

2

∼ λ4λ2
1

λ2
= λ4 ; (3.85)

the scaling of this component η(x) ∼ λ2. Finally for the soft field one finds

〈0|T
{
ψs(x)ψ̄s(0)

}
|0〉 =

∫
d4p

(2π)4
ip/

p2 + i0
e−ip·x ∼ (λ2)4λ2

1

λ4
= λ6 , (3.86)

so that ψs ∼ λ3.
The two-point correlator for the gluon field is

〈0|T {Aµ(x)Aν(0)} |0〉 =
∫

d4p

(2π)4
i

p2 + i0
e−ip·x

[
−gµν + (1− α)p

µpν

p2

]
; (3.87)

A glance to the second term in the square bracket shows that the gluon field scales like its
momentum, therefore Aµ

s (x) ∼ pµs and Aµ
c (x) ∼ pµc , or equivalently

n̄ · Ac ∼ λ0 , n ·Ac ∼ λ2 , Ac⊥ ∼ λ ; Aµ
s ∼ λ2 . (3.88)

The n̄ · As and As⊥ components of the soft gluon field are power suppressed relative to
the corresponding components of the collinear gluon field. The n · As component of the
soft gluon field scales the same way as the corresponding component of the collinear gluon
field.

3.4.2. Effective Lagrangian

The collinear fermion Lagrangian has a special form since the η components are of higher
order in λ than the ξ components and can therefore be integrated out. The covariant
derivative is as usual defined as

iDµ ≡ i∂µ + gAµ = i∂µ + g(Ac
a
µ + As

a
µ) t

a , (3.89)
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where the matrices ta are the usual generators of SU(3), in the fundamental representation.
For the moment, we will keep both the soft and collinear componets of the gluon field even
though As⊥ and As+ are power suppressed relative to the collinear gluon field. We will come
back to this point when discussing the soft-collinear interactions. By using the relations
n/ξ = ξ̄n/ = 0 and n̄/η = η̄n̄/ = 0, ξ̄D/⊥ξ = 0 and η̄D/⊥η = 0 one obtains 3

Lc = ψ̄c iD/ψc ,

=
(
ξ̄ + η̄

) [n/
2
in̄ ·D +

n̄/

2
in ·D + iD/⊥

]
(ξ + η) ,

= ξ̄
n̄/

2
in ·Dξ + ξ̄iD/⊥η + η̄iD/⊥ξ + η̄

n/

2
in̄ ·Dη . (3.90)

Since the action is quadratic, one can integrate out η exactly. An easy way to obtain the
Lagrangian that one arrives once the field η is integrated out makes use of the equations
of motion derived from the Lagrangian in Eq. (3.90). The equations of motion for ξ̄ are

∂µ
∂Lc

∂(∂µξ̄)
− ∂Lc

∂ξ̄
= −∂Lc

∂ξ̄
= − n̄/

2
in ·Dξ − iD/⊥η = 0 , (3.91)

or equivalently
n̄/

2
n ·Dξ = −D/⊥η . (3.92)

Similarly for η̄ one finds

D/⊥ξ = −
n/

2
n̄ ·Dη . (3.93)

From the latter one obtains

n̄/

2
D/⊥ξ = −

n̄/n/

4
n̄ ·Dη = −n̄ ·Dη . (3.94)

Solving for η one finds

η = − n̄/

2n̄ ·DD/⊥ξ , and η̄ = −ξ̄
←−
D/⊥

n̄/

2n̄ · ←−D
, (3.95)

where the arrow indicates that the covariant derivative is acting to the left. At this stage
one can insert Eqs. (3.95) in the collinear Lagrangian in order to eliminate η:

Lc = ξ̄
n̄/

2
in ·Dξ + ξ̄iD/⊥

1

in̄ ·DiD/⊥
n̄/

2
ξ + ξ̄i

←−
D/⊥

1

in̄ · ←−D
iD/⊥

n̄/

2
ξ

+ ξ̄i
←−
D/ ⊥

n̄/

2in̄ · ←−D
n/

2
in̄ ·D n̄/

2in̄ ·D︸ ︷︷ ︸
n/n̄/
4
=P+

iD/⊥ξ ,

3 Note that ξ̄D/⊥ξ = ξ̄P−D/⊥P+ξ = ξ̄D/⊥P−P+ξ = 0, where we have used {n/,D/⊥} = {n̄/,D/⊥} = 0.
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= ξ̄
n̄/

2
in ·Dξ + ξ̄iD/⊥

1

in̄ ·DiD/⊥
n̄/

2
ξ . (3.96)

In deriving the equation above we repeatedly used the fact that {n̄/,D/⊥} = 0 and in the
last line we used the fact that

P+D/⊥ξ = D/⊥P+ξ = D/⊥ξ . (3.97)

In the path integral, the integration over the fermionic fields η and η̄ gives (see for
example [45], page 110)

∫
D[η]D[η̄] exp

{
i

∫
d4x η̄

n/

2
in̄ ·Dη

}
∼ det

(
n/

2
in̄ ·D

)
. (3.98)

We will now show that this overall determinant is irrelevant. Observe that the determinant
is gauge invariant. In fact, if we indicate with V a SU(N) matrix, such that a quark field
transforms according to ψ → V ψ under gauge transformations, the determinant’s covariant
derivative will transform as D → V DV †. Therefore

det

(
n/

2
in̄ ·D

)
→ det

(
n/

2
V in̄ ·DV †

)
= det (V )︸ ︷︷ ︸

=1

det

(
n/

2
in̄ ·D

)
det
(
V †
)

︸ ︷︷ ︸
=1

,

= det

(
n/

2
in̄ ·D

)
. (3.99)

In the light cone gauge, where n̄ ·A = 0, the determinant is trivially independent from the
gluon field; since the determinant was just proven to be gauge independent, it does not
depend on the gluon field in any gauge, and is therefore an irrelevant factor multiplying
the path integral.
While the collinear quark Lagrangian has a somewhat complicated structure, the collinear

gluon Lagrangian is simply a copy of the QCD Lagrangian in which the gluon field Aµ is
replaced by the collinear gluon field Aµ

c . The same is true for the kinetic terms of the
Lagrangian for the soft fields,

Ls = ψ̄siD/sψs −
1

4
(F a

s )µν(F
a
s )

µν , (3.100)

where the covariant derivative and field strength tensor are defined as

iDµ
s = i∂µ + gAµ

s = i∂µ + g(Aa
s)

µta ,

ig(F a
s )

µνta = [iDµ
s , iD

ν
s ] = ig {∂µAν

s − ∂νAµ
s − ig [Aµ

s , A
ν
s ]} , (3.101)

= ig
{
∂µ(Aa

s)
ν − ∂ν(Aa

s)
µ + gfabc(Ab

s)
µ(Ac

s)
ν
}
ta .

Therefore, the kinetic terms of the SCET QCD Lagrangian are given by Eqs. (3.90), (3.100)
and by a standard kinetic term for the collinear gluons. We now need to consider the terms
describing the interactions between soft and collinear fields.
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3.4.3. Soft Collinear Interactions

The general construction of the soft-collinear interaction terms is somewhat involved and
beyond the scope of this thesis, it can be found in [33]. For collider physics applications,
it is usually sufficient to consider soft-collinear interactions at leading power. To obtain
the interactions at leading order in λ, let us remind ourselves of the scaling of the different
fields

(n · Ac, n̄ · Ac, Ac⊥) ∼
(
λ2, 1, λ

)
,

(n · As, n̄ ·As, As⊥) ∼
(
λ2, λ2, λ2

)
,

ξ ∼ λ , ψs ∼ λ3 . (3.102)

In the case of the φ3 theory the soft-collinear interactions were obtained by replacing
once the fields in the interaction term with a soft field

− g

3!

∫
d4xφ3(x) −→ − g

2!

∫
d4xφ2

c(x)φs(x−) . (3.103)

In the SCET Lagrangian for QCD, soft-collinear interactions involving soft quarks do not
appear at leading order, since ψs is power suppressed with respect to ξ. Furthermore, only
the n · As component of the soft gluon field is not power suppressed with respect to the
corresponding component of the collinear gluon field, so only this component enters the
leading soft-collinear interactions. Therefore one can replace

Aµ(x) −→ (n ·Ac(x) + n · As(x−))
n̄µ

2
+ n̄ · Ac(x)

nµ

2
+ Aµ

c⊥(x) . (3.104)

in the collinear Lagrangian. To summarize the SCET Lagrangian for QCD can be written
in a compact form as follows

LSCET = ψ̄siD/sψs + ξ̄
n̄/

2

[
in ·D + iD/c⊥

1

in̄ ·Dc

iD/c⊥

]
ξ − 1

4

(
F s,a
µν

)2 − 1

4

(
F c,a
µν

)2
. (3.105)

The various covariant derivatives which appear in Eq. (3.105) are given by

iDs = i∂ + gAs = i∂ + gAa
st

a ,

iDc = i∂ + gAc = i∂ + gAa
ct

a ,

in ·D = in · ∂ + g n · Ac(x) + g n · As(x−) , (3.106)

where we suppressed the Lorentz index. The field strengths are

igF s,a
µν t

a =
[
iDs

µ, iD
s
ν

]
,

igF c,a
µν t

a = [iDµ, iDν ] , (3.107)
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where the covariant derivative appearing in the commutator in the last line of Eq. (3.107)
is

Dµ = n ·Dn̄
µ

2
+ n̄ ·Dc

nµ

2
+Dc⊥ . (3.108)

The Lagrangian in Eq. (3.105) includes only one collinear sector, but in many appli-
cations one needs two or more collinear sectors. As in the case of the scalar φ3 theory,
we will in the following consider two collinear momenta p ∼ (λ2, 1, λ) and l ∼ (1, λ2, λ).
The second collinear sector in the Lagrangian can be obtained by replacing nµ ↔ n̄µ (i. e.
x+ ↔ x−) in the first collinear sector.

3.4.4. Gauge Trasformations

In the same way in which we expanded the Lagrangian, it is necessary to expand the
gauge transformations, and one must make sure that the gauge transformations respect
the scaling of the fields. For example, we will see that transforming a soft field by means of
a gauge transformation with gauge parameter α(x) will turn the soft field into a collinear
field if α(x) has collinear scaling.
We will consider two types of gauge transformations; the soft gauge transformation

Vs(x) = exp [iαa
s(x)t

a] , (3.109)

and the collinear gauge transformation

Vc(x) = exp [iαa
c (x)t

a] . (3.110)

The functions αa
s(x) have soft scaling (i. e. ∂αa

s(x) ∼ λ2αa
s(x)), and α

a
c (x) have collinear

scaling. We analyze the soft transformations first. Under a soft gauge transformation

the soft fields transform in the standard way

ψs(x) → Vs(x)ψs(x) ,

Aµ
s (x) → Vs(x)A

µ
s (x)V

†
s (x) +

i

g
Vs(x)

[
∂µ, V †s (x)

]
. (3.111)

The collinear fields transform instead as follows

ξ(x) → Vs(x−)ξ(x) ,

Aµ
c (x) → Vs(x−)A

µ
c (x)V

†
s (x−) . (3.112)

The gauge transformation matrices in Eq. (3.112) depend only on x− since, when trans-
forming the collinear fields, one needs to expand the soft fields around x− in order to avoid
inducing higher power corrections. In fact the expansion of the full soft gauge transforma-
tion follows the same pattern already encountered in Eq. (3.49)

Vs(x) = Vs(x−) + x⊥ · ∂Vs(x−)︸ ︷︷ ︸
O(λ)

+O(λ2) . (3.113)
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A detailed discussion of the gauge transformation properties of the non-abelian gauge
Lagrangian is provided in [33].
The transformation of the collinear gluon field differs from the standard one because it is

missing the term Vs[∂
µ, V †s ] ∼ λ2 . This term is a higher power correction for the Ac⊥ and

n̄ · Ac components of the collinear gluon field. The component n · Ac ∼ λ2 only appears
implicitly in the term n ·D (last line of Eq. (3.106)); this term n ·D transforms as expected

n · Ac(x) + n · As(x−) → Vs(x−) [n · Ac(x) + n · As(x−)]V
†
s (x−)

+
i

g
Vs(x−)

[
n · ∂, V †s (x−)

]
, (3.114)

in ·D → Vs(x−) in ·DV †s (x−) . (3.115)

Since the collinear gauge transformations involve a field with large energy, the soft
fields cannot transform under them:

ψs(x)→ ψs(x) , Aµ
s (x)→ Aµ

s (x) . (3.116)

The collinear fields instead transform as follows

ξ(x) → Vc(x)ξ(x) ,

Aµ
c (x) → Vc(x)A

µ
c (x)V

†
c (x) +

1

g
Vc(x)

[
i∂µ +

n̄µ

2
n · As(x−), V

†
c (x)

]
, (3.117)

which implies

Aµ
c⊥ → VcA

µ
c⊥V

†
c +

i

g
Vc
[
∂µ⊥, V

†
c

]
,

n̄ · Ac → Vcn̄ · AcV
†
c +

i

g
Vc
[
n̄ · ∂, V †c

]
,

n · Ac → Vcn · AcV
†
c +

i

g
Vc
[
n ·Ds(x−), V

†
c

]
. (3.118)

The last transformation law in the equation above ensures that

in ·D → Vc in ·DV †c . (3.119)

It is easy to check that the Lagrangian in Eq. (3.105) is separately invariant under
soft and collinear gauge transformations. The various covariant derivatives all transform
according to

Dµ → ViDµV
†
i ,

where i ∈ {s, c}, and the fermions transform according to

ψ → Viψ ,

with the replacement x → x− in the appropriate places. A complete discussion of the
gauge transformations and of the construction of the higher power terms can be found
in [33].
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3.4.5. Wilson Lines

While discussing the scalar φ3 theory, we encountered non-local operators (see Subsection
3.3.2 in particular Eq. (3.59)). In a gauge theory, a product of fields at different space time
points is gauge invariant only if the fields are connected by Wilson lines, defined as

[x+ sn̄, x] ≡ P exp

[
ig

∫ s

0

ds′ n̄ · A(x+ s′n̄)

]
. (3.120)

The operator P indicates the path ordering of the color matrices, such that

P[A(x)A(x+ sn̄)] = A(x+ sn̄)A(x) , for s > 0. (3.121)

The conjugate Wilson line is defined with the opposite ordering prescription. Under gauge
transformations the Wilson lines transform as follows (see Appendix A.3)

[x+ sn̄, x] −→ V (x+ sn̄) [x+ sn̄, x]V †(x) , (3.122)

therefore products of the form

ψ̄(x+ sn̄) [x+ sn̄, x]ψ(x) ,

are gauge invariant.
In SCET it is customary to work with Wilson lines which go to infinity4:

W (x) ≡ [x,−∞n̄] = P exp

[
ig

∫ 0

−∞
dsn̄ · A(x+ sn̄)

]
. (3.123)

The Wilson line along a finite segment can be written as a product of two Wilson lines
extending to infinity:

[x+ sn̄, x] = W (x+ sn̄)W †(x) ,

= P exp

[
ig

∫ 0

−∞
dt n̄ · A(x+ sn̄ + tn̄)

]
P exp

[
−ig

∫ 0

−∞
dt n̄ · A(x+ tn̄)

]
,

4To see that W (x) corresponds to [x,−∞n̄] let us start from the definition in Eq. (3.120); by setting
x = x′ − sn̄ one obtains

[x′, x′ − sn̄] ≡ P exp

[
ig

∫ s

0

ds′ n̄ · A(x′ − sn̄+ s′n̄)

]
.

One can then shift the integration variable according to s′ = t+ s to obtain

[x′, x′ − sn̄] ≡ P exp

[
ig

∫ 0

−s

dt n̄ ·A(x′ + tn̄)

]
.

Finally, one can send s→∞ and rename x′ → x to obtain Eq. (3.123).
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= P exp

[
ig

∫ s

0

dt n̄ · A(x+ tn̄)

]
. (3.124)

The Wilson lines extending to infinity transform as follows under gauge transformations

W (x)→ V (x)W (x)V †(−∞n̄) . (3.125)

If one considers gauge functions vanishing at infinity, such that V (−∞n̄) = 1, the combi-
nations

χ(x) ≡ W †(x)ψ(x) , and χ̄(x) ≡ ψ̄(x)W (x) , (3.126)

are gauge invariant and can be used as building blocks to construct non-local operators.
In Appendix A.3 it is shown that the covariant derivative of the Wilson lines along the

integration path in the exponent of the line vanishes; in our case in particular this implies
that

n̄ ·DW (x) = 0 . (3.127)

Since there are two kinds of gauge fields in the SCET Lagrangian, collinear gauge fields
and soft ones, it is possible to use two different types of Wilson lines,

Wc(x) = P exp

[
ig

∫ 0

−∞
ds n̄ · Ac(x+ sn̄)

]
( collinear)

and

Sn(x) = P exp

[
ig

∫ 0

−∞
ds n · As(x+ sn)

]
( soft) . (3.128)

As we will see in the following, the collinear Wilson lines are useful to construct operators,
while the soft Wilson lines are useful because of the structure of the soft interaction.

3.4.6. Decoupling Transformation

As seen In Subsection 3.4.3, the interaction between collinear quarks and soft gluons in
the SCET Lagrangian takes the form

Lc+s = ξ̄
n̄/

2
in ·Dξ , (3.129)

where the specific form of the covariant derivative in this case is given in Eq. (3.106). We
now redefine the fields ξ and Aµ

c (x) employing the soft Wilson line defined in Eq. (3.128)

ξ(x) → Sn(x−)ξ
(0)(x) ,

Aµ
c (x) → Sn(x−)A

(0)µ
c (x)S†n(x−) . (3.130)

As a consequence of this one finds that

in ·Dξ(x) → in ·D′Sn(x−)ξ
(0)(x) ,
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=
(
in · ∂ + gnµSn(x−)A

(0)µ
c (x)S†n(x−) + gn · As(x−)

)
Sn(x−)ξ

(0)(x) ,

=
(
in · ∂−Sn(x−) + Sn(x−)in · ∂ + Sn(x−) gn · A(0)µ

c (x)

+gn · As(x−)Sn(x−)
)
ξ(0)(x) ,

=
[
(in ·Ds−Sn(x−))︸ ︷︷ ︸

=0

+Sn(x−)in · ∂ + Sn(x−)gn · A(0)µ
c (x)

]
ξ(0)(x) ,

= Sn(x−)
(
in · ∂ + gn ·A(0)µ

c (x)
)
ξ(0)(x) ≡ Sn(x−)in ·D(0)

c ξ(0)(x) ,(3.131)

where we made use of the fact that the covariant derivative along the Wilson line is zero,
and of the fact that

nα ∂

∂xα
Sn(x−) = nα∂x

β
−

∂xα
∂

∂xβ−
Sn(x−) =

nαn̄α

2
nβ ∂

∂xβ−
Sn(x−) ≡ n · ∂−Sn(x−) . (3.132)

(Remember that xµ− = n̄ · xnµ/2.) In conclusion, under the field transformations in
Eq. (3.130), the Lagrangian in Eq. (3.129) changes as follows

Lc+s → ξ(0)
n̄/

2
in ·D(0)

c ξ(0)(x) ; (3.133)

the soft gluon field no longer appears in the collinear Lagrangian (the subscript and su-

perscript in the covariant derivative indicate that it depends on A
(0)
c only). This kind

of transformation is called a decoupling transformation, since it decouples the soft gluons
from the leading power collinear Lagrangian. However, it is important to stress that at
subleading powers soft-collinear interactions are still present in the Lagrangian.
The decoupling transformation plays an important role in the proofs of factorization

theorems, but does not imply that everything factorizes at leading power. For example,
to analyze the Sudakov problem, one needs to match the vector current operator onto an
effective theory operator; while the soft fields decouple from the Lagrangian, they are still
present in the current operator. To deal with the Sudakov problem we need to introduce
two collinear directions, as we did when considering the analogous problem in the φ3 theory.
For example, the QED current operator

Jµ(x) = ψ̄(x)γµψ(x) , (3.134)

corresponds to the SCET non-local operator

Jµ(x)→
∫
ds

∫
dtCV (s, t)χ̄c (x+ sn̄)γµ⊥χc̄(x+ tn) , (3.135)

where the fields χc and χc̄ are defined according to Eq. (3.126):

χc =W †
c ξc , n/χc = 0 ,
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p l

F (Q2, L2, P 2)

=

C̃V (Q
2)

J (P 2) J (L2)

S(Λ2
s)

+O
(
λ2
)

Figure 3.5.: Diagrammatic representation of the Sudakov form factor in QCD; the dia-
grams illustrate the separation of the various scales present in the problem.
The soft scale is Λ2

s = L2P 2/Q2.

χc̄ =W †
c̄ ξc̄ , n̄/χc̄ = 0 . (3.136)

Since

γµ = n/
n̄µ

2
+ n̄/

nµ

2
+ γµ⊥ , (3.137)

the only component surviving in Eq. (3.135) is γµ⊥. When applying the decoupling trans-
formations

χc(x) → Sn (x−)χ
(0)
c (x) ,

χc̄(x) → Sn̄ (x+)χ
(0)
c̄ (x) , (3.138)

the source term becomes

Jµ(x) =

∫
ds

∫
dtCV (s, t)χ̄

(0)
c (x+ sn̄)S†n (x−)Sn̄ (x+)γ

µ
⊥χ

(0)
c̄ (x+ tn) . (3.139)

Therefore the soft interactions do not cancel, and the Sudakov form factor receives low
energy contributions which describe a long range interaction between the fast moving
incoming and outgoing quarks. The situation is summarized in diagrammatic form in
Fig. 3.5, where the double lines represent the Wilson lines S.
Do the soft corrections factorize? It depends on the precise meaning that one attributes

to the word factorization. Unfortunately, there are two different definitions of the word
factorization which are employed in this context:

i) factorization = scale separation. In the source term in Eq. (3.139) the pieces associ-
ated to different scales are separated, so according to this definition the form factor
is factorized,

ii) factorization = no low energy interactions. The two collinear sectors in Eq. (3.139)
interact through soft interactions. So the form factor is not factorized in this sense.
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3.4.7. Gauge Invariant Building Blocks

In Eq. (3.126) of Subsection 3.4.5, we introduced the notation

χ(x) ≡ W †(x)ξ(x) = W †(x)
n/n̄/

4
ψ(x) . (3.140)

It is convenient to work with the field χ(x) instead of the ψ(x) because χ(x) is invariant
under collinear gauge transformations and this makes it easy to construct gauge invariant
operators. Similarly, one introduces gauge invariant building blocks for the collinear gluon
fields. We start by defining the block A as follows:

Aµ =W †(x)
(
iDc

µW (x)
)

(3.141)

From the definition above, it is possible to see that n̄ · A = 0, since n̄·DW = 0, as shown
in Appendix A.3 . The component n · A will instead have the expression

n · A =W †(x)
(
in ·DcW (x)

)
. (3.142)

Finally, the perpendicular component of the block A is

Aµ
⊥ =W †(x)

(
iDc

µ
⊥W (x)

)
. (3.143)

The notation above indicates that the covariant derivative acts only on the Wilson line. In
the literature the fields A⊥ are sometimes also defined as

Aµ
⊥ = W †(x)

[
iDc

µ
⊥,W (x)

]
. (3.144)

The two definitions are equivalent, as it can be seen by multiplying the commutator by a
test function f :

[
Dµ,W (x)

]
f(x) = Dµ

(
W (x)f(x)

)
−W (x)

(
Dµf(x)

)
=
(
DµW (x)

)
f(x) . (3.145)

For leading-power operators, it suffices to consider the perpendicular components of the
field A. In fact, n̄·A = 0 and n · A is power suppressed, since it involves the smallest
component of the momentum and gluon field.
The gauge invariance of the fields χ and A follows immediately from the behavior of the

fields ξ, the Wilson lines W , and the covariant derivatives under collinear gauge transfor-
mations.
It is possible to rewrite the collinear Lagrangian Lc as a function of gauge invariant

fields [34]. To do this, one needs to make use of the relation

W †iDµ
cW = W †

(
iDµ

cW
)
+W †Wi∂µ = Aµ + i∂µ ≡ iDµ , (3.146)

62



3. Soft-Collinear Effective Theory

Moreover, the relation

W †in̄ ·DcW =W †
(
in̄ ·DcW︸ ︷︷ ︸

=0

)
+ in̄ · ∂ = in̄ · ∂ (3.147)

leads to the identity

1

in̄ ·Dc

=WW † (in̄ ·Dc)
−1WW † =W

(
W †in̄ ·DcW

)−1
W † =W

1

in̄ · ∂W
† . (3.148)

By inserting repeatedlyW †W = 1 between the fields, the collinear Lagrangian in Eq. (3.96)
can then be rewritten as

Lc = χ̄
n̄/

2
(in ·D)χ+ χ̄iD/⊥

1

in̄ · ∂ iD/⊥
n̄/

2
χ . (3.149)

In order to rewrite the collinear gluon Lagrangian in terms of the A fields we observe that

W †FµνW ≡ W †F a
µνt

aW =
1

ig
W † [iDc,µ, iDc,ν]W =

1

g
(∂µAν − ∂νAν − i [Aµ,Aν ]) (3.150)

Therefore, by defining
Fµν ≡ ∂µAν − ∂νAν − i [Aµ,Aν ] , (3.151)

one finds that the kinetic term for the collinear gluons can be written as

− 1

4
F a
µνF

a,µν = −1
2
Tr [FµνF

µν ] = −1
2
Tr
[
W †FµνF

µνW
]
= − 1

2g2
Tr [FµνFµν ] . (3.152)

The leading soft-collinear interaction terms can be obtained by the replacement in
Eq. (3.104). At the level of invariant building blocks, this corresponds to the replace-
ment

Aµ(x)→ Aµ(x) +
n̄µ

2
W †(x)gn · As(x−)W (x) . (3.153)

3.5. Resummation by RG Evolution

In this section we will discuss the renormalization and the RG evolution of the Sudakov
form factor in the effective theory. The relevant factorization theorem (in the sense of scale
separation) was obtained in Subsection 3.4.6. This simple example illustrates the salient
features which one also encounters in the analysis of physical processes; the RG equations
are regulated by anomalous dimensions involving a logarithmic and a non-logarithmic part,
and they can be solved by means of the same methods which are also employed in more
complicated situations.
In the following, the Fourier transform of the matching coefficient of the current operator

C(s, t) in Eq. (3.139) will be indicated by C̃bare
V (Q2). The value of this Wilson coefficient

is determined in a way analogous to that discussed in the φ3-theory case, by matching it
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p l

= C̃bare
2 (Q2)×

Figure 3.6.: Matching condition which allows to obtain C̃bare
V (Q2). In the calculation of the

form factor one should set from the start p2 = l2 = 0.

to the calculation of the on-shell form factor, as shown diagrammatically in Fig. 3.6. The
matching procedure leads to the following result

C̃bare

V (Q2, µ) = 1 +
αbare
s

4π
CF

(
− 2

ε2
− 3

ε
− 8 +

π2

6
+O(ε)

)(
Q2

µ2

)−ε
+O

(
α2
s

)
. (3.154)

(The form factor is known to three-loop [46, 47].)
We can now define a renormalized Wilson coefficient by absorbing the divergences in a

Z factor as follows
C̃V (Q

2, µ) = lim
ε→0

Z−1
(
Q2, µ

)
C̃bare

V (Q2, µ) , (3.155)

where5 αbare
s = Zαµ

2εαs(µ) and

Z
(
Q2, µ

)
= 1 +

αs(µ)

4π
CF

(
− 2

ε2
+

2

ε
ln
Q2

µ2
− 3

ε

)
. (3.156)

Consequently, the renormalized Wilson coefficient C̃V at order αs is

C̃V (Q
2, µ) = 1 +

αs(µ)

4π
CF

(
− ln2 Q

2

µ2
+ 3 ln

Q2

µ2
+
π2

6
− 8

)
+O(α2

s) . (3.157)

It is easy to verify explicitly that the expression in Eq. (3.157) satisfies the following
differential equation:

d

d lnµ
C̃V (Q

2, µ) =

[
CFγcusp(αs) ln

Q2

µ2
+ γV (αs)

]
C̃V (Q

2, µ) , (3.158)

where the functions γcusp and γV are, up to order αs,

γcusp(αs) = 4
αs(µ)

4π
, and γV (αs) = −6CF

αs(µ)

4π
. (3.159)

5Zα is the coupling constant renormalization factor; since its expansion is Zα = 1 + O(αs), it does not
affect the functional form of Eq. (3.156).
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(We remind the reader that dαs/d lnµ ∝ α2
s.) Eq. (3.158) is the RG equation satisfied

by the Wilson coefficient C̃V and the function γcusp is the Cusp Anomalous Dimension.
Currently the on-shell form factor is known up to three loops, therefore it is possible
to extract the anomalous dimensions γcusp and γV up to order α3

s. The RG equation in
Eq. (3.158) contains an explicit logarithmic dependence on the scale µ, this feature is a
characteristic of problems involving Sudakov double logarithms.
The solution of the RG equation in Eq. (3.158) sums the logarithmic terms to all orders

in αs, in fact one obtains the solution:

C̃V (Q
2, µ) = exp

{∫ µ

µh

[
CFγcusp(αs) ln

Q2

µ′2
+ γV (αs)

]
d lnµ′

}
C̃V (Q

2, µh) , (3.160)

where the logarithm appears in the exponential. It is convenient to write the solution as
the product of the Wilson coefficient calculated at a high scale µh and an evolution matrix
U which “runs down” the scale from µh to µ:

C̃V (Q
2, µ) = U (µh, µ) C̃V (Q

2, µh) . (3.161)

In Eq. (3.160) we can rewrite the integration over the scale as an integration over the
coupling by changing the integration variable from µ′ to αs(µ

′) using

dαs(µ
′)

d lnµ′
= β (αs(µ

′)) . (3.162)

One can also rewrite the logarithm in the exponent (3.160) by employing the relation

ln
ν

µ′
=

∫ αs(ν)

αs(µ′)

dα

β(α)
. (3.163)

Finally the evolution matrix can be written in the form

U (µh, µ) = exp
[
2CFS(µh, µ)− AγV (µh, µ)

](Q2

µ2
h

)−CFAγcusp (µh,µ)

, (3.164)

where the quantities S and Aγ are defined as

S (ν, µ) = −
∫ αs(µ)

αs(ν)

dα
γcusp(α)

β(α)

∫ α

αs(ν)

dα′

β(α′)
,

Aγi(ν, µ) = −
∫ αs(µ)

αs(ν)

dα
γi(α)

β(α)
; (3.165)

with i ∈ {V, cusp}. It is straightforward to check that Eq. (3.161) with Eq. (3.164) indeed
solves the RG equation Eq. (3.158) by observing that

d

d lnµ
S (ν, µ) = −γcusp (αs(µ))

∫ αs(µ)

αs(ν)

dα′

β(α′)
,
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d

d lnµ
Ai (ν, µ) = −γi (αs(µ)) . (3.166)

Since dαs/β = d lnµ, one can conclude from Eqs. (3.165) that the functions Ai are respon-
sible for the resummation of the single logarithms and the function S for the resummation
of the double logarithms. Explicit expressions for of these functions can be obtained by
inserting the perturbative expansion of the beta and γ functions into Eqs. (3.165). By pa-
rameterizing the expansions of the beta function and anomalous dimensions γi as follows

β (αs) = −2αs

[
β0

(αs

4π

)
+ β1

(αs

4π

)2
+O(α3

s)

]
,

γcusp(αs) = γcusp

0

(αs

4π

)
+ γcusp

1

(αs

4π

)2
+O(α3

s) ,

γV (αs) = γV0

(αs

4π

)
+ γV1

(αs

4π

)2
+O(α3

s) , (3.167)

and by inserting these expansions into the integrands of Eqs. (3.165), one obtains

AγV (ν, µ) =
γV0
2β0

ln
αs(µ)

αs(ν)
+O(αs) ,

Aγcusp (ν, µ) =
γcusp

0

2β0
ln
αs(µ)

αs(ν)
+O(αs) ,

S (ν, µ) =
γcusp

0

4β2
0

[
4π

αs(ν)

(
r − 1

r
− ln r

)
+

(
γcusp

1

γcusp

0

− β1
β0

)
(1− r + ln r)

+
β1
2β0

ln2 r

]
+O(αs) , (3.168)

where r = αs(µ)/αs(ν). Note that S (ν, µ) contains a term proportional to 1/αs. By ex-
panding S (ν, µ) in terms of a single coupling αs(µ), one would find that this expansion
produces terms of the form αn

s (µ) ln
2n(µ/ν). Thus S (ν, µ) encodes the leading logarith-

mic terms. The way we organize the computation, which consists of eliminating large
logarithms in favor of coupling constants at different scales and then expanding in these
couplings, is called Renormalization Group Improved Perturbation Theory. The large log-
arithms count as 1/αs, as can be seen from Eq. (3.163) remembering that β(αs) ∼ α2

s.
We note that the fixed-order expression for the Wilson coefficient C̃V (Eq. (3.157)),

becomes meaningless when µ ≫ Q or µ ≪ Q, since in these cases the logarithms are
large and the product αs ln(Q

2/µ2) ∼ 1 cannot be used as a good expansion parameter.
In contrast, if µh is taken to be approximately equal to the scale Q, the expression in
Eq. (3.161) is valid for any value of µ for which αs is perturbative.
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4. Factorization and Resummation in

SCET: Drell-Yan process

4.1. Introduction

In this chapter we review the methods, based on the effective field theory, which allows one
to resum contributions coming from soft-gluon emissions. As an application we analyze the
Drell-Yan cross section, namely the production of a lepton pair of momentum q, together
with an arbitrary hadronic final state X at a hadron collider. By denoting the two colliding
hadrons by N1 and N2, it follows that the reaction of interest:

N1(P1) +N2(P2)→ γ∗/Z∗ +X(pX)→ ℓ−(p3) + ℓ+(p4) +X(pX) , (4.1)

is mediated by a virtual photon or a Z boson. This process is a prototype for a larger
class of processes that share a colorless boson as intermediate state mediator, i. e. γ, Z,
W , H . These are called Drell-Yan like processes. Since the relative final state factorizes in
the cross section, it will not be crucial for the following discussion. For simplicity we focus
on the case of an intermediate photon propagator and a leptonic final state.
We consider a situation where we are close to the reaction threshold, and the energy

of the radiation X is much smaller than the momentum transfer which is equal to the
invariant mass M2 = q2 of the lepton pair, where q = p3 + p4. Even if the energy E of the
radiation is large enough so that it can be computed perturbatively (E ≫ ΛQCD), we end
up with large logarithms of the energy of the soft radiation X over the invariant mass M .
We will first prove the factorization theorem which separates the physics associated with
the hard scale M from the soft physics, and then we will use the RG evolution to resum
the associated large logarithms. This was first achieved in [1, 2] while the SCET analysis
discussed below was performed in [5]. The relevant expansion parameter in the effective
theory is λ = E/M . Its soft fields are scaling as (λ2, λ2, λ2) and describe the radiation into
the final state together with collinear modes in the directions of the incoming hadrons.
In the center-of-mass frame, the cross section reads:

dσ

d4q
=

1

2s

∫
d3p4

(2π)32E4

d3p3
(2π)32E3

δ(4)(q − p3 − p4)

×
∑∫

X

∣∣〈ℓ+ ℓ−X|N1N2〉
∣∣2(2π)(4)δ(4)(P1 + P2 − pX − q) . (4.2)
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4. Factorization and Resummation in SCET: Drell-Yan process

Since we are working at leading power in the electromagnetic interaction, the leptonic part
thus factorizes from the hadronic part of the amplitude, which is given by:

〈ℓ+ ℓ−X|N1N2〉 =
e2

q2
ū(p3)γµv(p4) 〈X|Jµ(0)|N1N2〉 , (4.3)

where Jµ =
∑

q eqψ̄q γ
µ ψq is the electromagnetic-quark current. We now define the lepton

tensor

Lµν =

∫
d3p4

(2π)32E4

d3p3
(2π)32E3

δ(4)(q − p3 − p4)
∑

s

ū(p3)γνv(p4)v̄(p4)γµu(p3)

=

∫
d3p4

(2π)32E4

d3p3
(2π)32E3

δ(4)(q − p3 − p4)Tr [p/3γµ p/4γν ]

=
1

(2π)4
1

6π

(
qµqν − gµν q2

)
. (4.4)

The tensor structure is fixed by current conservation, which implies that the tensor is
transverse qµLµν = qνLµν = 0. The cross section is then given by the product of the lepton
tensor and a hadron tensor

dσ

d4q
=

1

2s

e4

(q2)2
LµνW

µν =
4πα2

3sq2
1

(2π)4
(−gµν)W µν . (4.5)

Here we have also used that the hadron tensor is transverse. It is given by

Wµν =
∑∫

X

〈N1N2|J†µ(0)|X〉〈X|Jν(0)|N1N2〉(2π)4δ(4)(P1 + P2 − pX − q)

=

∫
d4x e−iqx 〈N1N2|J†µ(x)Jν(0)|N1N2〉 , (4.6)

where to show that the two forms are equivalent, one can insert a complete set of states
between the two currents on the second line and then translate the current to zero using
the momentum operator Jµ(x) = eiPxJµ(0)e

−iPx.

4.2. Derivation of the Factorization Formula in SCET

We are now ready to derive the factorization theorem for the hadronic tensor. Above, we
have analyzed the electromagnetic current operator of a quark in the effective theory. The
result was given in (3.139) and reads

Jµ(x) =

∫
dr

∫
dtCV (r, t) χ̄P2 (x+ rn)S†n̄ (x)Sn (x) γ

µ
⊥χP1(x+ tn̄) . (4.7)
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This current describes an energetic quark in the direction of N1 and an anti-quark in the
direction of N2. There is also a second contribution, in which the directions of the quark
and anti-quark are interchanged. The above result for the current operator was obtained
after the decoupling transformation. The collinear and soft fields do not interact, but for
simplicity we drop the label on the fields and we write χP2 instead of χ

(0)
P2
.

The result for the current can now be inserted into the expression (4.6) for the hadronic
tensor. Since the different fields do not interact, the hadronic tensor factorizes into a soft
matrix element times collinear matrix elements. To obtain a simple form of the result, we
first rearrange the collinear fields using the Fierz identity. The identity rearranges spinors
as follows

ū1Γ1u2 ū3Γ2u4 =
∑

CAB ū1ΓAu4 ū3ΓBu2 (4.8)

Under Fierz transformation, the combination Γ1 ⊗ Γ2 = γµ ⊗ γµ is mapped into

γµ ⊗ γµ → −
1

2
γµ ⊗ γµ −

1

2
γµγ5 ⊗ γµγ5 + 1⊗ 1− γ5 ⊗ γ5 . (4.9)

The vector currents in SCET involve the matrix γµ⊥ instead of γµ. The two are related by

γµ = γµ⊥ + n/
n̄µ

2
+ n̄/

nµ

2
. (4.10)

However, since n̄/χP2 = n/χP1 = 0 the additional terms do not contribute and we can use
the Fierz relation (4.9) for the full vector current. Using the same properties of the SCET
spinors, we can then simplify the terms which appear on the right-hand side, which involve
collinear spinors in the same direction,

χ̄P1γ
µχP1 = nµχ̄P1

n̄/

2
χP1 χ̄P1χP1 = χ̄P1

n/n̄/

4
χP1 = 0 (4.11)

and analogously for the the spinor products involving γ5. In the second relation, we have
pulled out the projection operator out of the collinear fermion field and then annihilated
the anti-fermion with it. The final result for the Fierz identity for the two vector currents
in SCET then takes the simple form

χ̄P1γ⊥µχP2 χ̄P2γ
µ
⊥χP1 = χ̄P1

n̄/

2
χP1 χ̄P2

n/

2
χP2 + χ̄P1

n̄/

2
γ5χP1 χ̄P2

n/

2
γ5χP2 . (4.12)

Note that this relation involves an extra minus sign compared to (4.9), which arises from
anticommuting the fermion fields. The matrix element of the collinear fields will be the
PDF. Because of parity invariance of the strong interaction, the terms involving γ5 have
vanishing matrix elements and will be dropped in the following.
Because the collinear and soft sectors do no longer interact, each matrix element must

be a color singlet. When taking a collinear matrix element, we can thus average over color

χ̄P1,α
n̄/

2
χP1,β →

1

Nc

δαβ χ̄P1,δ
n̄/

2
χP1,δ , (4.13)
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where α, β, δ are the color indices of the fields. After this averaging, the color indices of
the soft Wilson lines are all contracted among themselves and the soft part of the matrix
element takes the form

ŴDY(x) =
1

Nc
Tr 〈0|T̄

(
S†n (x)Sn̄ (x)

)
T
(
S†n̄ (0)Sn (0)

)
|0〉 . (4.14)

We have absorbed one of the factors of N−1c into the definition of the matrix element so
that ŴDY(x) = 1 + O(αs). We need to use anti-time ordering on the Wilson lines which
arise from J†µ(x). The reason is that we are computing an amplitude squared, see the first
line of (4.6), so the propagators of the complex conjugate amplitude have the opposite i0+

prescription. The soft matrix element is a vacuum matrix element since the initial state
protons are composed of collinear fields and do not contain any soft partons. Soft partons
cannot be part of the proton since the soft scale E ≫ ΛQCD, but P

2
1 ∼ P 2

2 ∼ Λ2
QCD.

Next we turn to the collinear matrix elements. As a first simplification we perform the
multi-pole expansion. The matrix element contains both collinear and anti-collinear fields.
The position variable xµ thus scales conjugate to the sum of the collinear momenta, as
(1, 1, λ−1). At leading power, we can thus set x− and x⊥ to zero in the collinear fields (and
x+ and x⊥ in the anti-collinear matrix elements). After this, these matrix elements only
depend on the position space variable conjugate to the large momentum and have the form

〈N1(P1)|χ̄P1 (x+ + t′n̄)
n̄/

2
χP1(tn̄) |N1(P1)〉 = n̄ · P1

∫ 1

−1
dx1 fq/N1(x1, µ) e

i x1 (x++t′n̄−tn̄)·P1 .

(4.15)
The variables t and t′ appear in the convolutions with theWilson coefficients in the currents.
The non-perturbative quantities fq/N1

(ξ) are the usual PDFs [48]. The variable x1 is the
fraction of the proton momentum carried by the quark field. Negative values correspond
to the anti-quark distributions: fq̄/N1

(x1) = −fq/N1
(−x1). The reason that these matrix

elements are exactly the same as the PDFs defined in QCD is that in the absence of
soft interactions the collinear Lagrangian is completely equivalent to the standard QCD
Lagrangian and the SCET collinear quark field is related to the standard quark field ψ(x)

simply by χP1(x) = W †(x)n/n̄/
4
ψ(x). In terms of the QCD field the SCET matrix element

(4.15) reads

〈N1(P1)|ψ̄ (t′′n̄)
n̄/

2
[t′′n̄, 0]ψ(0) |N1(P1)〉 , (4.16)

where we set x+ = 0 and t′′ = t′ − t. In Eq. (4.16) we combined W (t′′n̄)W †(0) = [t′′n̄, 0]
into a finite length Wilson line connecting the two quark fields.
We are now ready to combine all the ingredients to get the following form of the hadronic

tensor

(−gµνW µν) =
1

Nc

∫ 1

0

dx1

∫ 1

0

dx2 s|C̃V (−ŝ, µ)|2
∫
d4x ŴDY(x, µ) e

i x·(x1 P1−+x2 P2+−q)

×
[
fq/N1(x1, µ)fq̄/N2(x2, µ) + (q ↔ q̄)

]
, (4.17)
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where s = n̄ · P1 n · P2 and ŝ = x1x2s are the hadronic and partonic squared center of
mass energy, respectively. This expression now contains the Fourier transform of the hard
matching coefficient

C̃V (−ŝ, µ) =
∫
dr

∫
dtCV (r, t, µ)e

−i x1 tn̄·P1e−i x2 rn·P2 (4.18)

where the exponentials arise from the matrix element (4.15). We can thus further simplify
(4.17) by replacing C̃V (−ŝ, µ) = C̃V (−q2, µ) since we are close to the production threshold.
For the cross section, we thus obtain

dσ =
d4q

(2π)4
4πα2

3q2Nc
|C̃V (−q2, µ)|2

∫ 1

0

dx1

∫ 1

0

dx2
∑

q

e2q
[
fq/N1

(x1, µ)fq̄/N2
(x2, µ) + (q ↔ q̄)

]

∫
d4x ŴDY(x) e

i x·(x1 P1−+x2 P2+−q) (4.19)

Let us now be a bit more specific and compute the cross section differential in the boson
mass M2 = q2. To compute it, we rewrite

∫
d4q =

∫
dM2

∫
d3q

2q0
. (4.20)

The electroweak boson near threshold is produced with small transverse momentum, since
the transverse momentum has to be balanced by the soft radiation. We thus have q0 =√
ŝ + O(λ2) and |~q| ∼ λ2. Since the denominator in Eq. (4.20) does not depend on ~q to

leading power, we can then perform the ~q integration. This yields δ(3)(~x), so that we need
the soft function only for ~x = 0. In addition, the following relation holds

(x1 P1− + x2 P2+ − q)(0) =
√
ŝ

2
(1− z) +O(λ4) (4.21)

where we defined

z ≡ M2

ŝ
. (4.22)

One finds that 1− z ∼ O(λ2). In order to prove Eq. (4.21) we start by observing that the

l.h.s. coincides with the energy of the additional final state partonic radiation, p
(0)
x . One

can then take the square of the partonic momentum conservation to obtain

ŝ =M2 + 2q · px , (4.23)

where the fact that in our approximation p2x ∼ 0 was used. In the partonic center of mass

frame, where x1l + x2p = 0, one has that ~q = −~px, so that |~q| = |~px| = p
(0)
x . Therefore

Eq. (4.23) can be rewritten as

ŝ =M2 + 2p(0)x

√
M2 +

(
p
(0)
x

)2
+
(
2p(0)x

)2
. (4.24)
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By solving the equation above with respect to p
(0)
x one finds

p(0)x =
M(1 − z)

2
√
z

, (4.25)

which coincides with Eq. (4.21) once the relation between ŝ, M , and z is applied.
Our final result for the cross section then reads

dσ

dM2
=

4πα2

3M2Nc
|C̃V (−M2, µ)|2

∫ 1

0

dx1

∫ 1

0

dx2
∑

q

e2q
[
fq/N1(x1)fq̄/N2(x2) + (q ↔ q̄)

]
×

× 1√
ŝ
WDY

(√
ŝ(1− z), µ

)
(4.26)

where the Fourier transformed soft function is defined as

WDY(ω, µ) =

∫
dx0

4π
ŴDY(x, µ) e

i x0ω/2 (4.27)

The result now shows that the perturbative expansion involves different scales. For the
hard function, the natural scale choice for the renormalization scale would is µ ∼M , while
the scale of the soft emissions is lower.

4.3. RG Equation for the Soft Function

In this section we derive the RG equation satisfied by the soft function WDY. For this
purpose we consider the production threshold limit where the full RG invariance of the
resummed cross section is ensured. We thus restrict ourselves to the collider threshold
region x1 ∼ x2 ∼ 1 where we have

√
s ≃
√
ŝ ≃M . (4.28)

In this limit, the small energy of the hadronic final state is given by EX ≃
√
s−M which

is the relevant hadronic quantity near the threshold, and thus we rewrite Eq. (4.26) as
follows1:

dσ

dEX

= −2H(s, µ)
∑

i,j={q,q̄}

∫ 1

0

dx1

∫ 1

0

dx2

∫ ∞

0

dω δ
(
ω −
√
ŝ(1− z)

)
×

×fi/N1
(x1, µ) fj/N2

(x2, µ)WDY(ω, µ) , (4.29)

where we use µ to indicate the factorization and renormalization scales and we have intro-
duced an integration over the energy of the soft radiation.

1The relation between Eq. (4.26) and Eq. (4.29) can be expressed as dσ
dM2 ≃ − 1

2
√
s

dσ
dEX

.
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In order to simplify the notation, in this section we consider the contribution of a single
quark flavor q. By comparing with Eq. (4.26), one can see that

H
(
M2, µ

)
≡ 4πα2

3M2Nc
|C̃V (−M2, µ)|2e2q . (4.30)

For our discussion it will be convenient to Laplace transform the cross section and its
various ingredients. We now first consider the renormalization of the PDFs in the limit
x→ 1 and then we will analyze the cross section itself.
For x→ 1, the PDFs satisfy the simplified Altarelli-Parisi equation

dfq/N(y, µ)

d lnµ
=

∫ 1

y

dx

x
P (x)fq/N (y/x, µ) , (4.31)

where the splitting function P (x) is given by

P (x) = 2CFγcusp(αs)

[
1

x̄

]

+

+ 2γfq(αs)δ(x̄) , (4.32)

The splitting function P (x) contains the part of the full Altarelli-Parisi kernel Pq←q(x)
which becomes singular in the threshold limit x̄ ≡ 1 − x → 0. The remainder is non-
singular and can be neglected in the threshold limit. The anomalous dimension at first
order in the strong coupling constant is γfq = 3CFαs/(4π). (The expansion of γfq to order
α2
s can be found in Appendix A.5.)
At this stage it is convenient to introduce the Laplace transform of the PDFs

f̃q/N (τ, µ) =

∫ 1

0

dx exp

(
−1− x
τeγE

)
fq/N (x, µ) ,

=

∫ ∞

0

dx̄ exp
(
− x̄

τeγE

)
fq/N (x, µ) . (4.33)

Since the quark PDF does not have support for x < 0, the integrand in the last line of
the equation above vanishes for x̄ > 1. In Appendix A.4 we prove that, in terms of the
Laplace transformed PDF, the RG equation for the PDFs becomes

df̃q/N (τ, µ)

d lnµ
= 2

[
CFγcusp(αs) ln τ + γfq(αs)

]
f̃q/N (τ, µ) . (4.34)

At this point we want to take the Laplace transform of the differential cross section,
Eq. (4.29). For this purpose we observe that the energy of the partonic radiation in the

final state, p
(0)
x , can be written as

ω

2
≡ p(0)x =

√
s−M︸ ︷︷ ︸
EX

− [(1− x1) + (1− x2)]
√
s

2
, (4.35)
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where EX is the energy of the complete hadronic final state, while the term within square
brackets represents the energy of the proton remnant. For the Laplace transform with
respect to EX we thus obtain

σ̃(κ) =

∫ ∞

0

dEX e
−EX/(κeγE ) dσ

dEX
,

= −H(s, µ)

∫ 1

0

dx1

∫ 1

0

dx2

∫ ∞

0

dωe
− 1

κeγE

[
ω
2
+

√
s

2
(1−x1)+

√
s

2
(1−x2)

]

×

×fq (x1, µ) fq̄ (x2, µ)WDY(ω, µ) ,

= −H(s, µ)f̃q

(
2κ√
s
, µ

)
f̃q̄

(
2κ√
s
, µ

)
s̃DY(2κ, µ) , (4.36)

where we introduced the Laplace transform of the soft function defined as

s̃DY(κ, µ) ≡
∫ ∞

0

dω e−ω/(κe
γE )WDY(ω, µ) . (4.37)

We point out that Eq. (4.36), the Laplace transform of the cross section, is simply given
by the product of the hard, soft, and collinear functions, where the latter coincide in this
case with the PDFs.
In order to derive the RG equation satisfied by the soft function, one observes that the

differential cross section must be independent of the scale µ, so that one finds

d

d lnµ
σ̃(κ) = [ΓH + 2Γf + Γs] σ̃(κ) = 0 , (4.38)

where the Γ’s indicate schematically the anomalous dimensions of the hard function, the
PDFs, and the soft function, respectively. The hard function is given by the absolute value
squared of CV . Its RG equation was discussed in detail in Section 3.5. For the Drell-Yan
process, the function CV (Q

2, µ2) is evaluated at Q2 = −M2 − i0+ so that

ΓH = ΓCV
+ Γ∗CV

= 2Re[ΓCV
] = 2

[
CFγcusp(αs) ln

M2

µ2
+ γV (αs)

]
. (4.39)

Using the explicit form of the anomalous dimension of the PDF Eqs. (4.34) and solving
Eq. (4.38) with respect to Γs one then finds

Γs = −4CFγcusp(αs) ln

(
2κ√
s

)
− 4γfq(αs)− 2CFγcusp(αs) ln

(
M2

µ2

)
− 2γV (αs) ,

≃ −4CFγcusp(αs) ln

(
2κ

µ

)
− 2

(
2γfq(αs) + γV (αs)

)
︸ ︷︷ ︸

≡γW

. (4.40)
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In the second line, we used that M ≃ √s in the threshold region to show that the depen-
dence on the hard scale cancels out.
The evolution equation satisfied by the Laplace transform of the soft function itself is

thus
d s̃DY(κ, µ)

d lnµ
=

[
−4CFγcusp(αs) ln

(
κ

µ

)
− 2γW (αs)

]
s̃DY(κ, µ) . (4.41)

The differential equation above can be solved in the same way as the RG equation for the
Wilson coefficient of the Sudakov form factor discussed in Section 3.5. One finds that the
solution has the following expression:

s̃DY(κ, µ) = exp
[
−4CFS(µs, µ) + 2AγW (µs, µ)

]
s̃DY(κ, µs)

(
κ2

µ2
s

)η

, (4.42)

where the functions S, and Aγcusp are defined in Eqs. (3.165), AγW is defined similarly to
the last of Eqs. (3.165) and η ≡ 2CFAγcusp(µs, µ).
To compute the resummed cross section in momentum space, we need to perform the

inverse Laplace transform. To do so, we observe that the κ-dependence of the solution is
very simple. To any order in perturbation theory, the function s̃DY(κ, µs) is a polynomial
in the logarithm

L = ln
κ2

µ2
s

, (4.43)

which is multiplied by a factor (κ2/µ2
s)

η in the solution of the evolution equation. In fact,
powers of logarithms can be simply obtained as derivatives with respect to η

Lm

(
κ2

µ2
s

)η

= ∂(m)
η

(
κ2

µ2
s

)η

. (4.44)

Because of this relation it is convenient to write the Laplace transformed function as
a function of the logarithm L and one can then replace s̃DY (L, µs) → s̃DY (∂η, µs) in
Eq. (4.42). Therefore the computation of the inverse Laplace transform comes down to
computing the inverse of κ2η. By dimensional analysis, the inverse must be given by
a function of η times ω2η−1. To determine the prefactor, let us compute the Laplace
transform of ω2η−1: ∫ ∞

0

dω e−ω/(κe
γE )ω2η−1 = Γ(2η) e2ηγE κ2η . (4.45)

From this result and our discussion above, we conclude that if one uses L as the first
argument in s̃DY the inverse transform can be written as [5]

WDY(ω, µ) = exp
[
−4CFS(µs, µ) + 2AγW (µs, µ)

]
s̃DY (∂η, µs)

e−2γEη

Γ(2η)

1

ω

(
ω

µs

)2η

. (4.46)

This expression for WDY(ω, µ) is well defined for η > 0, which is fulfilled for µs > µ.
However, in fixed-order computations the scale µ in the PDFs is typically chosen of order
the hard scale, µ > µs, and since the PDF fits were performed with this scale choice, we
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k

i i

j j

Figure 4.1.: One-loop Feynman diagram contributing to the soft function. The vertical line
(the “cut”) indicates that the gluon crossing is on-shell.

adopt the same choice in the effective theory. To be able to do so, we need the solution for
negative η which is obtained by analytic continuation. For instance, to obtain the result
for −1/2 < η < 0, it is necessary to employ the identity

∫ Ω

0

dω
f(ω)

ω1−2η =

∫ Ω

0

dω
f(ω)− f(0)

ω1−2η +
f(0)

2η
Ω2η , (4.47)

where f(ω) is a smooth test function. For the cases where η < −1
2
additional subtractions

are needed.

4.4. Soft Matrix Element

We want now to calculate the soft functionWDY at order αs. The calculation outlined below
is carried out in the momentum space, however, the soft function can also be calculated
in position space, see Appendix A.1.4. The function WDY at two loop order can be found
in [49]. In this section, we obtain the expression of the bare soft function; the poles in ε
must then be renormalized in the modified minimal subtraction scheme.
The calculation of the contribution to the soft function shown in the diagram in Fig. 4.1,

where a soft gluon is exchanged between the quark Wilson lines, plus the corresponding
contributions in which the gluon connects the other two lines2, requires to evaluate the
following integral

2The latter diagram gives the same contribution of the one shown in Fig 4.1. However, due to our
definition of the Fourier transform Eq. (4.27) an extra factor 1/2 multiplies the term of order g2 in
Eq. (4.48) and cancels against the factor of 2 arising from the sum of the two diagrams.
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WDY (ω, µ) = δ(ω) + µ4−d
∫

ddk

(2π)d

(
g
nµ
j

nj · k
T a

)

︸ ︷︷ ︸
Wilson Line

×
(
−gµν2πδ(k2)θ(k0)

)

︸ ︷︷ ︸
Cut Gluon Propagator

×

×
(
−g nµ

i

ni · k
T a

)
δ
(ω
2
− k0

)
, (4.48)

where k is the momentum of the gluon crossing the cut in the diagram. In the Drell-Yan
case, one has that the two collinear directions can be chosen back-to-back, so that

nµ
i ≡ nµ , and nµ

j = n̄µ . (4.49)

The integration measure can now be rewritten as follows
∫
ddk θ (k0) =

1

2

∫ ∞

0

dk+

∫ ∞

0

dk−

∫
dkd−2⊥ , (4.50)

where here k+ = k0 + kz = n · k and k− = k0 − kz = n̄ · k. Consequently, the integral in
Eq. (4.48) becomes

WDY (ω, µ) = δ(ω) +
µ4−dg2sCF

(2π)d−1

∫ ∞

0

dk+

∫ ∞

0

dk−

∫
dkd−2⊥

1

k+k−

×δ
(
k+k− + k2⊥

)
δ

(
ω

2
− k+ + k−

2

)
, (4.51)

and, after the evaluating the angular integrals one finds

WDY (ω, µ) = δ(ω) +
µ4−dg2sCF

(2π)d−1
Ωd−2

∫ ∞

0

dk+

∫ ∞

0

dk−

∫ ∞

0

dkT
kd−3T

k+ · k−
×

×δ
(
k+ · k− − k2T

)
δ

(
ω

2
− k+ + k−

2

)
, (4.52)

where the magnitude of the transverse spatial momentum is indicated by

kT ≡
√
−k2⊥ , (4.53)

and the d-dimensional solid angle is Ωd = 2πd/2/Γ(d/2).
After integrating over kT and k−, and after defining d = 4−2ε, the integral in Eq. (4.52)

can be rewritten as

WDY (ω, µ) = δ(ω) +
αs(4πµ

2)εCF

πΓ(1− ε)

∫ ω

0

dk+
1

(k+(ω − k+))1+ε , (4.54)
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where the upper limit of integration is determined by the fact that the last delta function
in Eq. (4.52) fixes k− = ω − k+ where both k+ and ω are positive. Therefore one is left
with the integral

WDY (ω, µ) = δ(ω) +
αs(4πµ

2)εCF

πΓ(1− ε)
1

ω1+2ε

∫ 1

0

dt
1

(t(1− t))1+ε

= δ(ω) +
αs(4πµ

2)εCF

πΓ(1− ε)
1

ω1+2ε

Γ2 (−ε)
Γ (−2ε)

= δ(ω) +
αs(4πµ

2)εCF

π

1

ω1+2ε

Γ(1− ε)
ε2Γ (−2ε) . (4.55)

This expression can be rewritten in terms of

µ2ε
MS
≡ e−εγEµ2ε(4π)ε , (4.56)

and as a result we find:

WDY (ω, µ) = δ(ω) +
αs

π
CF e

−εγE(µ2
MS
e2γE )ε

1

ω1+2ε

Γ(1− ε)
ε2Γ (−2ε) . (4.57)

In order to calculate the bare Laplace transform of the soft function s̃DY, one needs to
insert the result above in Eq. (4.37), where we identify κ = µMSe

L/2. By taking the Laplace
transform of the equation above and expanding for ε → 0 we obtain the unrenormalized
s̃DY at order αs, which reads

s̃DY(L, µ) = 1 +
αs

4π
CF

[
4

ε2
− 4L

ε
+ 2L2 +

π2

3

]
+O(α2

s) . (4.58)

Finally one can take the inverse Fourier transform with respect to omega of Eq. (4.57) to
get the expression in position space for ŴDY(x0, µ):

ŴDY(x0, µ) = 1 +
αs(−πµ2x20)

εCF

π

Γ(1− ε)
ε2

, (4.59)

which agrees with the result Eq. (A.34) in Appendix A.1.4. After introducing µMS and
expanding in ε→ 0 one finds

ŴDY(x0, µ) = 1 +
αs

4π
CF

[
4

ε2
+

4L0

ε
+ 2L2

0 +
π2

3

]
+O(α2

s) , (4.60)

where

L0 = ln

(
−1
4
µ2

MSx
2
0e

2γE

)
. (4.61)

It is easy to show, by applying the Laplace transform in Eq. (4.37) to Eq. (4.27), that the
soft function in position space ŴDY(x0, µ) has the same functional form of the soft function
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in Laplace space s̃DY(L, µ). Indeed, it is possible to obtain one from the other by replacing
the argument in the following way:

s̃DY(L, µ) = ŴDY

(
x0 =

−2i
eγEµMSeL/2

, µ

)
, (4.62)

which is equivalent to replace L0 with −L in Eq. (4.60). In the following we drop the
subscript MS for the scale µ.

4.5. Resummation of Large Logarithms

As shown in Eq. (4.26) the partonic Drell Yan cross section factors into the product of the
squared Wilson coefficient and the soft function. The product of these two terms describes
the hard scattering interactions at the parton level. Being more precise one can define the
hard-scattering kernel as

C(z,M, µf) ≡
∣∣∣C̃V (−M2, µf)

∣∣∣
2√

ŝWDY

(√
ŝ(1− z), µf

)
, (4.63)

following the notation employed in [5].
The hadronic cross section is obtained by integrating the product of the hard-scattering

kernel and the PDFs over the appropriate domain. In Section 3.5 we solved the RG
equation satisfied by the Wilson coefficient C̃V , cf. Eqs. (3.161), (3.164), while the solution
of the RG equation satisfied by the soft function is presented in Eq. (4.46). By combining
these two elements it is possible obtain a resummed formula for the hard scattering kernel.
The solution of the RG equation for C̃V that was derived in Eq. (3.164) is valid for

space-like momenta. Therefore the solution for time-like momenta needed in Drell-Yan
scattering, can be obtained from the one valid for space-like momenta by analytic contin-
uation. The sign of the imaginary part extracted from the logarithm in the RG equation
can be determined by writing explicitly the infinitesimal imaginary part of M2. The RG
equation becomes [5]

d

d lnµ
C̃V (−M2 − i0+, µ) =

[
CFγcusp(αs)

(
ln
M2

µ2
− iπ

)
+ γV (αs)

]
C̃V (−M2 − i0+, µ) ,

(4.64)
and its solution is

C̃V (−M2 − i0+, µf) = exp
[
2CFS(µh, µf)−AγV (µh, µf) + iπCFAγcusp(µh, µf)

]
×

×
(
M2

µ2
h

)−CFAγcusp (µh,µf )

C̃V (−M2, µh) . (4.65)

The functions S and Aγi are defined in Eqs. (3.165).
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In order to obtain the resummed result, we simply insert the solutions of RG equations
of the soft function, Eq. (4.46), and the hard function, Eq. (4.65), into Eq. (4.63). The
result can be simplified by making use of the following relations:

Aγi (µh, µf) = Aγi (µh, µs) + Aγi (µs, µf) ,

S (µh, µf)− S (µs, µf) = S (µh, µs)−Aγcusp (µs, µf) ln
µh

µs
, (4.66)

as well as γW = 2γfq + γV . In this way one finds

C(z,M, µf ) =
∣∣∣C̃V (−M2, µh)

∣∣∣
2

U(M,µh, µf , µs)

√
ŝ

ω

(
M

µs

)−2η
s̃DY (∂η, µs)

(µs

ω

)−2η e−2γEη

Γ(2η)
,

(4.67)
where the evolution function U is defined as

U(M,µh, µf , µs) = exp
[
4CFS (µh, µs) + 4Aγfq (µs, µf)− 2AγV (µh, µs)

]
×

×
(
M2

µ2
h

)−2CFAγcusp (µh,µs)

. (4.68)

The factor (µs/ω)
−2η in Eq. (4.67) can be moved to the left of the soft function s̃DY to get

C(z,M, µf ) =
∣∣∣C̃V (−M2, µh)

∣∣∣
2

U(M,µh, µf , µs)

√
ŝ

ω

(
M

ω

)−2η
s̃DY

(
ln
ω2

µ2
s

+ ∂η, µs

)
e−2γEη

Γ(2η)
.

(4.69)
The explicit z dependence of the hard-scattering kernel can be obtained by inserting the
relation ω =M(1− z)/√z. Finally, for the resummed result of the hard-scattering kernel,
one finds:

C(z,M, µf) =
∣∣∣C̃V (−M2, µh)

∣∣∣
2

U(M,µh, µf , µs)
z−η

(1− z)1−2η ×

×s̃DY

(
ln
M2(1− z)2

µ2
sz

+ ∂η, µs

)
e−2γEη

Γ(2η)
. (4.70)

As it was observed after Eq. (4.46), the formula above is well defined for η > 0, which
corresponds to the case µs > µf . In the physically more relevant case in which µs < µf ,
η < 0; consequently the integrals of ln(1− z)/(1− z)1−2η with test functions f(z) must be
defined using a subtraction at z = 1 and analytic continuation in η. This procedure gives
rise to plus distributions in the variable 1− z.
The resummed formula for the hard-scattering kernel, Eq. (4.70), is formally independent

from the hard scale µh and the soft scale µs. Since µh ∼ M and µs ∼ ω, the Wilson
coefficient C̃V and the soft function s̃DY in Eq. (4.70) are free of large logarithms and can
be evaluated in perturbation theory. (We remind the reader that µs ≫ ΛQCD.) A residual
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Table 4.1.: Different approximation schemes for the evaluation of the re-
summed cross-section formulae. Table taken from [5].

RG-impr. PT Log. approx. Accuracy ∼ αn
sL

k γcusp γV , γfq CV , s̃DY

— LL k = 2n 1-loop tree-level tree-level

LO NLL 2n− 1 ≤ k ≤ 2n 2-loop 1-loop tree-level

NLO NNLL 2n− 3 ≤ k ≤ 2n 3-loop 2-loop 1-loop

NNLO NNNLL 2n− 5 ≤ k ≤ 2n 4-loop 3-loop 2-loop

dependence on µs and µh in the hard-scattering kernel arises precisely form the fact that
the matching coefficients and the anomalous dimensions are evaluated up to a given order
in perturbation theory. The residual scale dependence can be employed to give an estimate
of the perturbative uncertainty. Similarly, the dependence on the factorization scale µf

cancels formally in the convolution of the hard-scattering kernel with the PDFs.
The fixed-order expression for the hard scattering kernel in perturbative QCD includes

terms which are singular in the z → 1 limit (plus distributions and Dirac delta functions).
These singular terms can be obtained by setting µs = µf = µh in Eq. (4.70) and by
expanding the formula in powers of αs. In particular this implies that after taking the
derivatives with respect to η, one should take the limit η = 0.
The resummed expression for the hard-scattering kernel can be evaluated at any desired

order in resummed perturbation theory. Different levels of accuracy require the evaluation
of the matching coefficients and anomalous dimensions at different orders in perturbation
theory; Table 4.1 summarizes the situation. There are two different ways to label the level
of accuracy at which a resummed formula is evaluated. In the counting scheme of RG-
improved perturbation theory, the LO approximation includes all terms of O(1), the NLO
approximation includes all of the terms of O(αs), and so on. However, in this counting one
should consider the fact that the large logarithms ln(µh/µs) are numerically ∼ 1/αs. In the
literature the alternative “leading logarithm” counting is often employed. NnLO accuracy
corresponds to Nn+1LL accuracy in the leading logarithm counting. A full analysis of the
Drell-Yan resummed cross section at NNNLL (matched to NNLO fixed-order calculations)
is carried out in [5].
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5. Soft-gluon resummation for

slepton-pair production

5.1. Introduction

In this chapter we will apply the soft-gluon resummation techniques discussed in Section 4
to improve the theoretical prediction for slepton-pair production at hadron colliders [50–53].
We will analyze this purely supersymmetric process and, as a byproduct, we will also study
the impact of SUSY virtual corrections for Drell-Yan process in the context of soft-gluon
resummation. These two processes can be considered together because they arise from
the same hard-scattering interaction: the annihilation of a quark-antiquark pair into a
virtual photon or Z boson, which then decays, respectively, into a slepton or a lepton pair.
The effect of strongly-interacting SUSY particles enters in the hard-scattering interaction
of both processes only at the one-loop level through the virtual exchange of squarks and
gluinos. Both processes are interesting and play an important role: Drell-Yan production
can be considered as a prototype for other collider processes and, among other things,
its cross section as a function of the invariant mass of the lepton pair can be used to
search for new heavy resonances. Sleptons are expected to be among the lightest SUSY
particles, which means that in many scenarios they decay directly into the corresponding
SM partners and the LSP, giving rise to simple signatures such as a pair of energetic leptons
plus missing energy.
Both processes have been studied extensively in the past. The calculation of the cross

section and rapidity distribution at NLO in αs for the Drell-Yan process in the SM has
been accomplished long ago [54], while the corresponding results at NNLO were obtained
more recently [55–60]. A study of Supersymmetric Quantum Chromodynamics (SUSY-
QCD) and electroweak corrections at NLO was performed in [61]. Results for the total
cross section for slepton-pair production at NLO in αs were obtained in [14–16]. The main
uncertainties in the theoretical predictions arise from the imperfect knowledge of the PDFs
and from the truncation of the perturbative expansion, which introduces a dependence on
the unphysical factorization and renormalization scales. The two sources of errors are of
comparable size. In particular, the uncertainty due to scale variations is smaller than
in similar production processes involving colored particles in the final states, like top-
quark-pair production or stop-pair production. This is because, at the partonic tree level,
(s)lepton-pair production is a purely electroweak process, and therefore at leading order
the uncertainty arise only from the variation of the factorization scale of the PDFs. The
uncertainty from the renormalization scale starts at order αs and is therefore suppressed.
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A reduction of the scale uncertainties is nevertheless desirable, because having a small
error on the cross section and the differential distributions allows one to extract interesting
information, such as the slepton masses, with better precision.
Resummation was first achieved at next-to-leading-logarithmic (NLL) order for the Drell-

Yan invariant-mass distribution in [1, 2], based on a method involving the solution of
certain evolution equations in Mellin moment space. It was later extended to the rapidity
distribution [62], and to N3LL order in [63, 64]. In the case of slepton-pair production,
the resummation was performed at NLL level for the invariant-mass distribution and total
cross section [17].
In this chapter we extend the previous analyses in various directions. First, we extend

the results of [5] for the Drell-Yan production of lepton pairs by including the contribution
from a virtual Z boson as well as SUSY-QCD corrections at order αs. In the case of slepton-
pair production, we extend the results of [17] by performing the threshold resummation
at N3LL order. While this has a minor effect on the total correction to the differential
distributions and cross section, it may be relevant for the theoretical uncertainty estimate.
We present results for the differential and total cross sections for the Tevatron and the
LHC with a center of mass energy of 7 and 14TeV following the analysis done by the
author in [65].
In Section 5.2 we recall the basic formulas for the differential distributions and define the

kinematics of the threshold region. Section 5.3 is devoted to a comprehensive phenomeno-
logical analysis. We estimate the relevance of SUSY-QCD corrections and the impact of
soft-gluon resummation on the invariant-mass distribution and the total cross section for
slepton-pair production. We also discuss the uncertainties due to scale variations and the
errors on the PDFs.

5.2. Kinematics and factorization at threshold

We consider the production of a (s)lepton pair with invariant mass M in hadron-hadron
collisions, at center of mass energy

√
s. The process involves the reaction

N1(P1) +N2(P2)→ γ∗/Z0∗ +X , (5.1)

where X represents an inclusive hadronic final state, followed by γ∗/Z0∗ → l̃−(p3) + l̃+(p4)
or l−(p3) + l+(p4). We start by focusing on the double-differential cross section in the

invariant mass M2 = q2 and rapidity Y = 1
2
ln q0+q3

q0−q3 of the (s)lepton pair in the center
of mass frame, where q = p3 + p4. This cross section can be calculated in perturbative
QCD and expressed in terms of convolutions of short-distance partonic cross sections with
PDFs:

d2σ

dM2dY
= σ0

∑

ij

∫
dx1dx2 C̃ij(x1, x2, s,M, µf) fi/N1

(x1, µf) fj/N2
(x2, µf) , (5.2)
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where µf is the factorization scale, fi/N (x, µf) gives the probability of finding a parton i
with longitudinal momentum fraction x inside the hadron N , and

σ0 =
4πα2

em

3NcM2s
for l−l+ , σ0 =

πα2
emβ

3
l̃

3NcM2s
for l̃−l̃+ , (5.3)

with βl̃ =
√

1− 4m2
l̃
/M2 denoting the 3-velocity of the slepton in the l̃− l̃+ rest frame. The

hard-scattering kernels C̃ij are related to the partonic cross sections and can be calculated
as power series in αs. At leading order (∼ α0

s) the sum involves only the channels (ij) =
(qq̄), (q̄q), with p1 = x1P1, p2 = x2P2. At NLO (∼ αs) one has to take into account
(ij) = (qq̄), (q̄q), (qg), (gq), (q̄g), (gq̄). Here we are interested in the evaluation of higher-
order radiative corrections near threshold, for which it is useful to define the quantity

τ ≡ M2

s
, (5.4)

and from this follows that the variable z = M2/ŝ, defined in Eq. (4.22), can be rewritten
as

z =
M2

ŝ
=

τ

x1x2
, (5.5)

where ŝ = x1x2s is the partonic center of mass energy squared. The partonic threshold
region is defined by the limit z → 1, in which the dynamics of the process is greatly
simplified. Since the partonic center of mass energy is just sufficient to create the (s)lepton
pair, there is no phase space available for the emission of additional energetic partons.
The cross section is dominated by the terms which are singular in the z → 1 limit, which
correspond to the virtual corrections and the real emission of soft gluons. Such terms only
arise for the (qq̄) and (q̄q) channels.
We define the couplings of the (s)fermions to a gauge boson i = γ, Z following the

notation of [66]. The relevant chiral currents

Jµ
f,i =

∑

f

(
gf,iL f̄γµPLf + gf,iR f̄γµPRf

)
,

Jµ

f̃ ,i
=

∑

f̃

(
gf̃ ,iL f̃ ∗L

←→
∂ µf̃L + gf̃ ,iR f̃ ∗R

←→
∂ µf̃R

)
, (5.6)

with PL/R = 1
2
(1∓ γ5), involve the couplings

gq,γL = gq̃,γL = eq , gq,γR = gq̃,γR = eq ,

gq,ZL = gq̃,ZL =
−1+ 4

3
s2θW

2sθW cθW
, gq,ZR = gq̃,ZR =

4
3
s2θW

2sθW cθW
,

gl,γL = g l̃,γL = 1 , gl,γR = g l̃,γR = 1 ,

gl,ZL = g l̃,ZL =
1−2s2θW
2sθW cθW

, gl,ZR = g l̃,ZR =
−2s2θW

2sθW cθW
,

gτ̃1,Z =
cos θτ̃−2s2θW
2sθW cθW

, gτ̃2,Z =
sin θτ̃−2s2θW
2sθW cθW

.

(5.7)
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Here sθW = sin θW , cθW = cos θW , where θW is the electroweak mixing angle. We con-
sider the possibility of mixing between the third-generation sleptons, introducing the mass
eigenstates τ̃1, τ̃2 and the corresponding mixing angle θτ̃ .
The leading contributions to the double-differential cross section arising near the partonic

threshold z → 1 can be written as [5]

d2σthresh

dM2dY
= σ0

∑

q

h(l,l̃)q

∫
dz

z
C(z,M,mq̃, mg̃, µf) (5.8)

×
[
fq/N1

(
√
τeY , µf) fq̄/N2

(
√
τ
z
e−Y , µf) + fq/N1

(
√
τ
z
eY , µf) fq̄/N2

(
√
τe−Y , µf)

2
+ (q ↔ q̄)

]
.

The coefficients h
(l,l̃)
q take into account the photon, Z boson, and γ-Z interference contri-

butions. For lepton-pair production they read

h(l)q =

[
e2q −

1

2

eq(g
q,Z
L + gq,ZR )(gl,ZL + gl,ZR )

1−m2
Z/M

2
+

1

4

(gq,ZL

2
+ gq,ZR

2
)(gl,ZL

2
+ gl,ZR

2
)

(1−m2
Z/M

2)
2

]
, (5.9)

while for the production of a slepton pair of type l̃

h(l̃)q =

[
e2q −

eq(g
q
L + gqR)g

l̃,Z

1−m2
Z/M

2
+

1

2

(gqL
2
+ gqR

2
)g l̃,Z

2

(1−m2
Z/M

2)
2

]
. (5.10)

The hard-scattering kernel C(z,M,mq̃, mg̃, µf) in (5.8) contains both SM and SUSY-QCD
corrections. The SM QCD corrections are known to two-loop order [57]. The SUSY
corrections arising at NLO are given by a vertex diagram with a gluino-squark-squark loop
plus external-leg corrections. They have been calculated in [15,17,61,67]. We recomputed
these contributions and find agreement with results in the literature. Integrating over the
rapidity, one obtains from (5.8) the single-differential cross section

dσthresh

dM2
= σ0

∑

q

h(l,l̃)q

∫ 1

τ

dz

z
C(z,M,mq̃, mg̃, µf) ff(τ/z, µf) , (5.11)

where

ff(y, µf) =

∫ 1

y

dx

x

[
fq/N1

(x, µf) fq̄/N2
(y/x, µf) + (q ↔ q̄)

]
(5.12)

defines the parton luminosity function.
The hard-scattering kernel C(z,M,mq̃, mg̃, µf) depends on the invariant massM and on

the masses of squarks and gluinos, mq̃ and mg̃. We will assume in our analysis that these
scales are of similar order. For z → 1 one can then distinguish two well separated mass
scales, the “hard” scale µh ∼M and the “soft” scale µs ∼ M(1−z)/√z =

√
ŝ(1−z), which

correspond to the energy of the emitted soft gluons. As shown in Eq. (4.63), the presence
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of these two scales is reflected in the factorization of the coefficient C(z,M,mq̃, mg̃, µf)
into a hard and a soft function,

C(z,M,mq̃, mg̃, µf) = H(M,mq̃, mg̃, µf)S(
√
ŝ(1− z), µf ) , (5.13)

where
H(M,mq̃, mg̃, µh) =

∣∣CV (−M2 − i0+, mq̃, mg̃, µh)
∣∣2 . (5.14)

Choosing the factorization scale µf in (5.8) close to µh or µs unavoidably causes the ap-
pearance of large logarithms in one of the two factors. Threshold resummation addresses
the problem of resumming these large logarithms to all orders in perturbation theory. The
proof of the factorization of the SUSY hard-scattering kernel in Eq. (5.13) follows closely
the derivation discussed for the Drell-Yan case in Chapter 4. However one should be care-
ful when considering the contribution of the Z boson as an intermediate mediator. In the
process of matching the current operator onto SCET operators one should distinguish be-
tween left and right chiral fields and their different couplings to the Z boson, in particular
the current Jµ

q,Z is matched onto

Jµ
q,Z → CV (−M2 − i0+, mq̃, mg̃, µ)

∑

q

(
gq,ZL χ̄P2S

†
n̄γ

µPLSnχP1 + gq,ZR χ̄P2S
†
n̄γ

µPRSnχP1

)
,

(5.15)
where the effective fields χP1 =W †

P1
ξP1 and χP2 = W †

P2
ξP2 are the gauge-invariant combina-

tions of collinear quark fields and collinear Wilson lines in SCET. The matching coefficient
CV depends on the time-like, hard momentum transfer M2. It is given by the on-shell
massless quark form factor [4], which in the present case must be calculated including
SUSY-QCD corrections. On the other hand, the soft function in Eq. (5.13) is insensitive
to short-distance physics, therefore its analytic expression is the same as for Drell-Yan. Its
expression up to order α2

s can be found in [5] and, as an example, it has been explicitly
computed at order αs in Eq. (4.57).
The resummation of threshold logarithms can be achieved directly in momentum space

by solving the RG equations for the hard and soft functions. In this way, one obtains for
the resummed hard-scattering kernel the compact expression in Eq. (4.70).
In the SM, the expression for CV has recently been derived up to three-loop order [68,69].

Including the additional virtual corrections of SUSY particles, the perturbative expansion
up to order O(α2

s) can be written as

CV (−M2, mq̃, mg̃, µh) = 1 +
αs

4π

[
c
(1)
V (−M2, µh) + c

(1)
V,SUSY(−M2, m2

q̃ , m
2
g̃)
]

+
(αs

4π

)2 [
c
(2)
V (−M2, µh) + c

(2)
V,SUSY(−M2, m2

q̃, m
2
g̃, µh)

]
, (5.16)

where c
(1)
V and c

(2)
V include the one- and two-loop QCD corrections present in the SM, while

c
(1)
V,SUSY and c

(2)
V,SUSY represent the additional QCD corrections arising in its SUSY extension.

In the following we will neglect the two-loop SUSY contribution, which we assume to be
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negligible since already c
(1)
V,SUSY will turn out to be very small. The explicit expressions for

c
(1)
V and c

(2)
V can be found in [5], while

c
(1)
V,SUSY = CF

{
5

2
−

m2
g̃

m2
g̃ −m2

q̃

+
2(m2

g̃ −m2
q̃)

M2
+

[
m4

g̃(
m2

g̃ −m2
q̃

)2 +
2m2

g̃

M2

]
ln
m2

g̃

m2
q̃

(5.17)

−
[
1 +

2(m2
g̃ −m2

q̃)

M2

]
fB(M

2, m2
q̃) + 2

[
m2

g̃

M2
+

(
m2

g̃ −m2
q̃

)2

M4

]
fC(M

2, m2
q̃, m

2
g̃)

}
.

For simplicity we assume degenerate squark masses for q̃L,R with q = u, d, s, c, b. The loop
functions fB and fC are provided in Appendix A.6. The evolution equation for CV in
(5.16) is the same as for the corresponding coefficient in the SM. As a result, c

(1)
V,SUSY does

not depend on the renormalization scale. Note that the Wilson coefficient CV is the same
for all currents in (5.6).

5.3. Systematic studies and phenomenology

We now present a detailed numerical analysis of the invariant-mass distribution and total
cross section for slepton-pair production at the Tevatron and LHC. As a byproduct, we will
also study the rapidity distribution for the Drell-Yan production of lepton pairs. Our goal is
to estimate the impact of soft-gluon resummation and the relevance of SUSY contributions
to these observables. To this end, we will either focus on the physical cross sections directly
or consider the K-factor defined as

dσ

dM2
= K(M2, m2

q̃, m
2
g̃, τ)

dσ

dM2

∣∣∣∣
LO

. (5.18)

The theoretical predictions depend on various input parameters, whose numerical values
are αem(MZ) = 1/128, sin θW = 0.23143, MZ = 91.188GeV, and ΓZ = 2.4952GeV. Our
assumptions for the masses of SUSY particles will be discussed in more detail below. For
the systematic analyses in Sections 5.3.1 and 5.3.2 we use the PDF set MSTW2008NNLO
[70, 71] and αs(MZ) = 0.117 with three-loop running in the MS scheme. Using a fixed set
of PDFs helps to illustrate more clearly the behavior of the perturbative expansion of the
hard-scattering kernel in higher orders of perturbation theory.
For appropriate choices of the hard and soft scales µh and µs, the expressions for the

hard-scattering kernel given in (4.70) resums the leading singular contributions to the
partonic cross sections in the limit where the partonic center of mass energy

√
ŝ is close to

the invariant mass M of the (s)lepton pair. In fixed-order perturbation theory, the leading
terms correspond to plus distributions of the form

[
1

1− z ln
M2(1− z)2

µ2
f z

]

+

. (5.19)
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For Drell-Yan type processes, it is well known that, after the hard-scattering kernels are
convoluted with the parton luminosities, these terms provide the dominant contributions
to the perturbative series for the cross sections, typically accounting for more than 90%
of the one- and two-loop corrections (see e.g. [5, 6, 9]). In realistic cases where the ratio
τ =M2/s is not very close to 1, the dominance of the region z . 1 in the calculation of the
cross section arises dynamically, due to the strong fall-off of the parton luminosities. Below
we will perform the resummation of the leading terms at different orders in RG-improved
perturbation theory. As specified in Table 4.1, at NNLL order, one evaluates (5.16) using
the one-loop approximations for the matching functions CV and s̃DY along with two-loop
(three-loop) expressions for the (cusp) anomalous-dimension functions. At N3LL order,
one uses the two-loop approximations for the matching functions along with three-loop
(four-loop) expressions for the (cusp) anomalous dimensions. The explicit expressions for
all relevant anomalous dimensions can be found in Appendix A.5. Note that the two-loop
virtual SUSY corrections c

(2)
V,SUSY in (5.17) and the four-loop cusp anomalous dimension

are currently unknown, but their numerical impact on the N3LL result is expected to be
negligibly small. In our N3LL results below, we include the known two-loop corrections to
the hard and soft functions and the relevant three-loop anomalous dimensions.
Subleading terms can be added to our resummed expressions by matching them to fixed-

order perturbation theory. To this end, we define

dσNnLL+NLO = dσNnLL|µh,µs,µf
+
(
dσNLO|µf

− dσNnLL|µh=µs=µf

)∣∣∣∣
O(αs)

. (5.20)

The first term on the right-hand side denotes the resummed prediction for the cross section,
while the second one includes those terms that are subleading in the z → 1 limit. They are
obtained by subtracting the fixed-order expression for the leading singular terms, derived
by setting all three scales equal in expression (4.70), from the complete fixed-order result.
This difference is then expanded to first order in αs. Since the matching to fixed-order
theory is somewhat cumbersome, we will sometimes restrict our analysis to the leading
singular terms only. This will be mentioned explicitly below.

5.3.1. Scale setting

An appropriate choice of the matching scales µh and µs, which enter in the resummation
formula (4.70), is crucial for the reduction of the remaining perturbative uncertainties in
our calculation. In the spirit of effective field theory, the choice of these scales is driven by
the requirement that the perturbative expansions of the matching coefficients CV and s̃DY

should be well behaved. Since the SUSY contributions to CV turn out to be very small (see
below), these effects play no role in the scale-setting procedure, which therefore proceeds
in analogy with the discussion for the Drell-Yan cross section presented in [5]. For the hard
matching scale, we adopt the default choice µdef

h =M .
The soft scale µs is set dynamically by minimizing the effect of the one-loop corrections

to the soft function s̃DY under the convolution integral (5.11). This scale therefore depends
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Figure 5.1.: Relative contribution of the one-loop correction to the soft function to the

cross section for slepton-pair production at the LHC (
√
s = 7TeV), for different

values of the pair invariant mass M (left). For each value of M we determine
the soft scale by taking the point at which the correction is minimal (right).

on the value of τ =M2/s and on the process under consideration. For the case of slepton-
pair production at the LHC (with

√
s = 7TeV), the result is shown in the left plot of

Figure 5.1 for different choices of the invariant mass M . Our default value for the soft
scale is chosen such that, for fixed M , the contribution of the one-loop correction to the
soft function to the cross section is minimized. The value of µs/M for which this condition
is satisfied is shown in the plot on the right. We observe that for sufficiently large values
of M the soft scale is indeed much smaller than the hard scale µh ∼ M , indicating the
relevance of threshold resummation. The corresponding plots for the Tevatron and the
LHC with

√
s = 14TeV would look similar. For practical purposes, the values of µs as a

function of M and s can be parametrized by means of the function

µdef
s =

M(1 − τ)
(a+ b τ 1/2)

c , (5.21)

where (a, b, c) = (1.1, 3.6, 1.9) for the Tevatron, (1.5, 4.8, 1.7) for the LHC with
√
s = 7TeV,

and (1.4, 3.6, 2.0) for the LHC with
√
s = 14TeV.

After the matching scales have been set, our results still exhibit a residual dependence
on the factorization scale µf , at which the PDFs are renormalized. As illustrated in
Figure 5.2 for the case of the K-factor for slepton-pair production at the LHC, we find that
after soft-gluon resummation this dependence is significantly weaker than in fixed-order
perturbation theory, already at NLL order. For this analysis only the leading singular
two-loop corrections are considered at NNLO, and this is denoted by a star (NNLO∗). It
follows that there is very little sensitivity to the choice of the factorization scale. Below
we take µdef

f =M as our default value.
In Figure 5.3, we study the K-factor for slepton-pair production at the LHC, showing

results obtained at different orders of perturbation theory. Only the leading singular terms
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Figure 5.2.: Factorization-scale dependence of the K-factor for slepton-pair production at

the LHC in fixed-order perturbation theory (left) and after soft-gluon resum-
mation (right). The NNLO∗ and N3LL+NLO results contain only the leading
singular two-loop corrections.

are included in all cases. The widths of the various bands reflect the scale uncertainties
inherent in the calculations. For the fixed-order results, they are obtained by setting the
renormalization scale µr equal to the factorization scale µf , and varying the common scale
between 0.5 and 2 times its default value. We performed an independent variation of the
two scales as well, but the corresponding uncertainty obtained by taking an envelope of
the maximum deviation from the default value does not differ appreciably from the result
in Figure 5.3. This is because at leading order the cross section depends on µf only, while
the dependence on µr starts at NLO and is therefore small. For the resummed results, the
error bands take into account the uncertainties associated with the scales µh, µs, and µf .
They correspond to the envelope of the predictions obtained by varying all three scales
simultaneously between 0.5 and 2 times their default values. We verified that the bands
obtained in this way do not differ in a significant way from those obtained by varying
the three scales individually, with the other two scales held fixed, and adding then the
three uncertainties in quadrature. It is evident that the convergence of the perturbative
expansion and the remaining scale uncertainties are greatly improved by means of soft-
gluon resummation. After resummation the three bands nicely overlap, and the scale
uncertainties are reduced significantly with each order. On the contrary, the fixed-order
results exhibit a slower convergence and larger scale uncertainties.

5.3.2. Impact of SUSY matching corrections

The existence of SUSY particles would affect our analysis in two ways. First, if sleptons
exist and are kinematically accessible at the Tevatron or LHC, these particles can be pair
produced, and via a measurement of their cross section and invariant-mass distribution

90



5. Soft-gluon resummation for slepton-pair production

LO

NLO*
NNLO*

s = 14 GeV

1000 2000 3000 4000 5000 6000 7000 8000
0.8

1.0

1.2

1.4

1.6

1.8

2.0

M @GeVD

K

NLL

NNLL

N
3LL

s = 14 GeV

1000 2000 3000 4000 5000 6000 7000 8000
0.8

1.0

1.2

1.4

1.6

1.8

2.0

M @GeVD

K

Figure 5.3.: K-factor for slepton-pair production at the LHC, at different orders in fixed-
order perturbation theory (left) and including the effects of soft-gluon resum-
mation (right). Only the leading singular terms are included.

one can address questions about the slepton masses and couplings. Secondly, strongly-
interacting SUSY particles (squarks and gluinos) can affect the hard-scattering kernels for
both lepton-pair and slepton-pair production at O(αs), via one-loop SUSY-QCD correc-
tions to the hard matching coefficient CV in (5.16). This second effect is obviously more
subtle than the first one. We will now address if and to what extent it will be possible to
probe for virtual effects of SUSY particles in high-precision measurements of the standard
Drell-Yan cross section.
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Figure 5.4.: Comparison of one-loop contributions to the hard matching coefficient CV

arising in the SM (solid lines) and in its SUSY extensions (dashed lines).

In Figure 5.4, we compare the one-loop SUSY-QCD contributions to the Wilson coeffi-
cient CV with the corresponding QCD contributions arising in the SM, for two representa-
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Figure 5.5.: Comparison of the scale uncertainty of the Drell-Yan K-factor for the LHC

(light bands) with the maximum possible deviation due to loop effects of SUSY
particles (dark bands). The left plot refers to fixed-order perturbation theory,
while the right one includes the effects of soft-gluon resummation. Only the
leading singular terms are included in the calculation.

tive choices of the squark and gluino masses. The first, mq̃ = 600GeV and mg̃ = 750GeV
(parameter point P1), represents an average value for the squark and gluino masses close to
the point SPS1a’ [72]. The second, given by mq̃ = 1200GeV and mg̃ = 500GeV (parame-
ter point P2), represents an alternative scenario with a lighter gluino and heavier squarks,
inspired by scenarios like SPS2 and SPS3 [73]. We observe that for all parameter choices
the SM loop corrections are at least a factor of about 3 larger in magnitude than the
SUSY corrections. The real part of the SUSY contributions reaches a maximum close to
the squark threshold, for M & 2mq̃, where the virtual contributions acquire an imaginary
part. For values ofM below threshold the SUSY corrections are yet much smaller. As a re-
sult, we find that the virtual SUSY effects are smaller than the residual scale uncertainties
in the calculation of the cross sections. This is shown in Figure 5.5, where we compare the
factorization-scale uncertainty (both at fixed-order and after resummation) of the SM-only
Drell-Yan K-factor with the maximum deviation arising if we include the virtual SUSY
contributions and scan the squark and gluino masses independently over the range between
400 and 2200GeV. For each value of M we choose the points in the (mq̃, mg̃) plane which
yield the largest up- and downward deviations. In the figure we consider Drell-Yan pro-
duction at the LHC with

√
s = 14TeV. At lower energy or for the Tevatron the impact of

virtual SUSY effects is even smaller. We observe that in fixed-order perturbation theory
the maximum possible deviation due to virtual effects of SUSY particles is always much
smaller than the residual scale dependence. After soft-gluon resummation the size of the
effects is comparable; however, in view of the fact that additional theoretical uncertainties
arise from the variation of the PDFs (not shown in the figure), we conclude that also in
this case the combined theoretical error is larger than the maximum possible SUSY effect.
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Figure 5.6.: Drell-Yan rapidity distribution at fixed M = 1600GeV at different orders in
perturbation theory. In both plots, the left half refers to fixed-order perturba-
tion theory, while the right half includes the effects of soft-gluon resummation.
The plot on the left refers to the SM, while the one on the right shows the
effects of virtual squarks and gluinos by the dashed bands.

On the one hand, these findings justify an approximation at N3LL order where in the
two-loop corrections to the hard matching coefficient CV in (5.16) one neglects the SUSY

contribution c
(2)
V,SUSY compared with the corresponding SM contribution c

(2)
V . This approx-

imation will be adopted in our N3LL predictions below. On the other hand, it appears
unlikely that it will be possible to probe for SUSY effects via virtual corrections to the
Drell-Yan cross section. To illustrate this latter point, we show in Figure 5.6 the result
for the Drell-Yan rapidity distribution in our SUSY model P1 (with mq̃ = 600GeV and
mg̃ = 750GeV) at a value of the pair invariant mass for which the SUSY effects are close
to maximal (cf. Figure 5.4). We consider the LHC with

√
s = 14TeV and restrict our anal-

ysis to the leading singular terms only. In the left plot we compare the results obtained at
different orders in fixed-order perturbation theory with the corresponding results obtained
after soft-gluon resummation. These distributions refer to the SM without SUSY effects.
We observe that resummation improves the convergence of the perturbative expansion and
leads to somewhat smaller scale variations at higher orders. The right plot zooms in on
the central region of the rapidity distribution and shows once again the results obtained
at leading and next-to-leading order with and without resummation. The dashed lines
indicate the shift of the NLO∗ and NNLL bands due to the presence of SUSY particles.
In both cases (with and without resummation) the shift amounts to a small enhancement
of the cross section, which however is only a fraction of the residual scale uncertainty in-
dicated by the widths of the bands. Note also that the additional PDF uncertainty is not
included in the plots.
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5.3.3. Invariant-mass distribution for slepton-pair production

A clear signal of SUSY would come from the direct production and detection of slepton
pairs. In this case, the very weak dependence on the squark and gluino masses can be seen
as an advantage, since it would make it possible to use a measurement of the slepton-pair
production cross section to extract the mass of the slepton produced, or alternatively to
set a limit on the slepton mass from an upper limit on the production cross section. The
sensitivity of the cross section (5.2) to the slepton mass ml̃ arises from the prefactor β3

l̃
in (5.3), and from the fact that the peak of the invariant mass distribution scales with
ml̃. After the determination of the matching and factorization scales in Section 5.3.1,
we are now ready to analyze the impact of soft-gluon resummation on the invariant-mass
distribution for slepton-pair production. For concreteness, we will consider the production
of a pair of scalar leptons l̃L, as this case has the largest cross section. For the SUSY
masses we take ml̃L

= 180GeV, mq̃ = 600GeV, and mq̃ = 750GeV.
Our results for the slepton invariant-mass distributions are shown in Figure 5.7 for the

Tevatron (top), the LHC with
√
s = 7TeV (center), and the LHC with

√
s = 14TeV (bot-

tom). Contrary to our previous treatment, from now on we consider the PDFs and αs at the
order which is appropriate for the expansion of the corresponding hard-scattering kernels.
Specifically, we use LO and NLO PDFs for the LO and NLO fixed-order results, and NLO
and NNLO PDFs for the resummed results at NLL, NNLL+NLO, and N3LL+NLO, since
in this case the resummed terms include the bulk of the perturbative corrections appearing
at one order higher in αs. Numerically, the NNLL+NLO (not shown in the figure) and
N3LL+NLO results turn out to be very close to each other, but the scale dependence of
the latter ones is further reduced. We thus consider the N3LL+NLO approximation as our
best prediction. The main effect of soft-gluon resummation is to increase the cross sections
slightly and to improve the convergence of the expansion. The resummation effects become
more relevant for larger invariant masses. For example, at the Tevatron the increase from
NLO to N3LL+NLO is 7% at 500GeV and 13% at 1000GeV. The corresponding increases
at the LHC are around 2% for both

√
s = 7TeV and 14TeV, indicating that at the LHC

resummation effects are less important.

5.3.4. Total cross section

We obtain the total cross sections by integrating the invariant-mass distributions over M .
In Table 5.1 we present results corresponding to the various approximations discussed in
the previous section. In this section we provide predictions for both the NNLL+NLO and
N3LL+NLO total cross sections, so that the effect of including higher-order logarithmic
terms can be seen. In the table the first error refers to the total scale variation, i.e. the
variation of µf for the fixed-order cross sections and the maximum deviation from the
default value obtained by varying µf , µh, and µs simultaneously for the resummed and
matched results. The second error takes into account the uncertainty of the PDFs at the
90% confidence level, which is estimated by evaluating the cross sections with the 40 sets
of PDFs provided by MSTW2008.
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Tevatron (SUSY point P1) LHC (7TeV, SUSY point P1)

σLO 1.31+0.17
−0.14

+0.08
−0.06 8.01+0.39

−0.36
+0.31
−0.34

σNLL 1.65+0.27
−0.20

+0.12
−0.08 9.59+1.25

−0.92
+0.41
−0.37

σNLO 1.83+0.09
−0.10

+0.14
−0.10 10.56+0.24

−0.22
+0.48
−0.43

σNNLL+NLO 1.93+0.06
−0.07

+0.14
−0.10 10.63+0.13

−0.17
+0.48
−0.37

σN3LL+NLO 1.96+0.05
−0.05

+0.14
−0.11 10.81+0.10

−0.08
+0.48
−0.37

LHC (14TeV, SUSY point P1) LHC (14TeV, SUSY point P2)

σLO 28.14+0.25
−0.34

+0.70
−0.94 1.88+0.09

−0.08
+0.07
−0.08

σNLL 33.36+4.60
−3.45

+1.10
−1.01 2.24+0.27

−0.20
+0.09
−0.08

σNLO 36.65+0.45
−0.35

+1.28
−1.19 2.45+0.05

−0.05
+0.11
−0.10

σNNLL+NLO 37.16+0.36
−0.46

+1.30
−1.03 2.47+0.03

−0.03
+0.11
−0.08

σN3LL+NLO 37.80+0.25
−0.12

+1.32
−1.05 2.51+0.02

−0.02
+0.11
−0.08

Table 5.1.: Total cross sections in fb. The first error refers to the perturbative uncertainties
associated with scale variations, the second to PDF uncertainties.

The results shown in the first three blocks of Table 5.1 refer to the production of a
slepton l̃L with mass ml̃L

= 180GeV (SUSY parameter point P1, with mq̃ = 600GeV and
mg̃ = 750GeV) at the Tevatron and the LHC. Note the relevance of the NLO correction,
which amounts to around 40% for the Tevatron and 30% for the LHC. As expected, the
resummation effects are larger at the Tevatron, where they amount to a 7% enhancement of
the NNLL+NLO cross section compared with the NLO result. At the LHC the resumma-
tion gives a smaller 3% additional contribution to the total cross section. The additional
contribution of the N3LL+NLO result compared to the NNLL+NLO approximation is
small, below 1%, but performing the resummation at N3LL order helps to further reduce
the scale uncertainty.
Since the effect of soft-gluon resummation becomes more important for higher invariant

masses, in Table 5.1 we provide also the total cross section for a heavier slepton l̃L with mass
ml̃L

= 360GeV (SUSY parameter point P2, with mq̃ = 1200GeV and mg̃ = 500GeV). We
only show results for the LHC with

√
s = 14TeV, because given the small cross sections

it would not be possible to observe the production of such heavy sleptons at the Tevatron
or during the low-energy phase of the LHC.
In Figure 5.8, we show the matched N3LL+NLO total cross section as a function of the

slepton mass. We now consider different types of sleptons, l̃L,R (with l = e, µ) and τ̃1,2.
For the staus, we assume a mixing angle θτ̃ = 70◦. The cross sections fall off steeply with
the slepton masses. At the Tevatron it will be difficult to observe sleptons with masses
exceeding about 250GeV, while at the LHC it should be possible to observe slepton-pair
production up to masses in the range 300–400GeV. In the upper plot we show the cross
sections at the Tevatron, focusing on the low mass region. The lower plots refer to the
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5. Soft-gluon resummation for slepton-pair production

LHC at 7 and 14TeV of center of mass energy. At the same value of slepton mass, the
slepton l̃L has the larger cross section, while the slepton l̃R has the lowest cross section.
The cross sections for the production of staus lie in between. We observe that owing to the
small scale uncertainty at N3LL+NLO, it would be straightforward to extract the masses
of the sleptons from measurements of the corresponding total cross sections.
We have compared our predictions for the LO and NLO fixed-order total cross sections for

slepton production with results provided by the program Prospino [15], finding agreement.
Despite the fact that it is difficult to compare our resummed results with those presented
in [17], because contrary to these authors we do not consider squark mixing, we still find a
reasonable agreement. We emphasize that the method developed here allows us to resum
soft gluons up to the N3LL order, so that we are able to get a smaller scale uncertainty
compared with [17].
The main result of our analysis is that, using soft-gluon resummation techniques, we

can reduce the theoretical uncertainty related to scale variations below the percent level,
making it a subdominant source of error. This is evident from the results collected in
Table 5.1, which show that the error due to uncertainties in the PDFs becomes dominant
beyond NLO. At this level of precision, one may ask whether the NNLO subleading terms
could also become relevant. While the full NNLO corrections have not yet been calculated
for the case of slepton pair production, we can estimate their relevance by considering the
case of Drell-Yan production of lepton pairs, for which the NNLO corrections are availble
[57]. In this case, we find that the additional correction due to the NNLO subleading terms
amounts to at most 1% of the NLO cross section. It is thus of the same order as the scale
uncertainty that we find at N3LL+NLO.

96



5. Soft-gluon resummation for slepton-pair production

NLO

LO

s = 1.96 TeV

400 500 600 700 800 900 1000 1100
0.000

0.002

0.004

0.006

0.008

0.010

M @GeVD

dΣ
�d

M
@f

b�
G

eV
D

N3LL+NLO
NLL

s = 1.96 TeV

400 500 600 700 800 900 1000 1100
0.000

0.002

0.004

0.006

0.008

0.010

M @GeVD

dΣ
�d

M
@f

b�
G

eV
D

NLO
LO

s = 7 TeV

400 500 600 700 800 900 1000 1100
0.00

0.01

0.02

0.03

0.04

M @GeVD

dΣ
�d

M
@f

b�
G

eV
D

N3LL+NLO
NLL

s = 7 TeV

400 500 600 700 800 900 1000 1100
0.00

0.01

0.02

0.03

0.04

M @GeVD

dΣ
�d

M
@f

b�
G

eV
D

NLO

LO

s = 14 TeV

400 500 600 700 800 900 1000 1100
0.00

0.02

0.04

0.06

0.08

0.10

0.12

M @GeVD

dΣ
�d

M
@f

b�
G

eV
D

N3LL+NLO

NLL

s = 14 TeV

400 500 600 700 800 900 1000 1100
0.00

0.02

0.04

0.06

0.08

0.10

0.12

M @GeVD

dΣ
�d

M
@f

b�
G

eV
D

Figure 5.7.: Invariant-mass distributions for slepton-pair production at the Tevatron and
LHC. The plots on the left show fixed-order results at LO and NLO, while
those on the right include the effects of soft-gluon resummation at NLL
and N3LL+NLO. The bands indicate the uncertainty associated with scale
variations.
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Figure 5.8.: Total cross sections for slepton-pair production as a function of the slepton
masses.
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6. Approximate NNLO formulas for

stop-pair production

6.1. Introduction

The supersymmetric particles which are expected to be most abundantly produced at
hadron colliders, are the ones which carry color charge: squarks and gluinos. Since SUSY
is broken (via the soft terms), the squark and gluinos mass spectrum plays a crucial role
in determining which among the colored superymmetric partners is the most accessible
experimentally. Given an underlying model for the soft terms at some input scale, the scalar
masses are evolved from a common high scale value down to the “low” scales accessible at
the LHC, the lighter of the two supersymmetric partners of the top-quark is expected to
be the lightest squark of the mass spectrum.
Precise theoretical predictions of the stop-pair production cross section are instrumental

in setting a lower bound on the lightest stop mass. Moreover, if the top-squarks will be
discovered, accurate predictions of the stop-pair cross section can be employed to deter-
mine the masses and other properties of these particles. For these reasons, the study of
the radiative corrections to the production of stop-pairs already has a quite long history.
The calculation of the NLO corrections to the stop-pair production within the context of
SUSY-QCD was completed 15 years ago [18]. As expected, it was found that the NLO
corrections significantly decrease the renormalization and factorization scale dependence of
the prediction when compared to the leading order (LO) calculation. Furthermore, NLO
SUSY-QCD corrections increase the value of the cross section if the renormalization and
factorization scales are chosen close to the value of the stop mass. The NLO SUSY-QCD
corrections are implemented in the computer programs Prospino and Prospino2 [74]. The
electroweak corrections to stop-pair production were studied in [75, 76]; while these cor-
rections have a quite sizable effect on the tails of the invariant mass and pT distributions,
they only have a moderate impact on the total cross section. The emission of soft gluons
represents a significant portion of the NLO SUSY-QCD corrections [77], which are large.
For this reason, the resummation of the NLL corrections was carried out in [78], where it
was found that the NLL corrections increase the cross section at the LHC by up to 10%
of its NLO value, while they further decrease the scale dependence of the prediction. In
these analysis, the resummation is carried out in the Mellin moment space.
Within the context of soft-gluon resummation in SCET, the production of top-squark

pairs can be studied in strict analogy to the production of top-quark pairs [9,10]. It the soft
limit, the partonic production cross sections for the stop and top-pair production factor into
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the product of hard and soft functions, which are matrices in color space. The soft functions
are identical for top-squark and top-quark production, and only the hard functions, which
include the full dependence on the SUSY parameters other than the lightest top-squark
mass, need to be recalculated for the stop-pair production.
In this thesis, we carry out the calculation of the hard functions for the stop-pair produc-

tion to NLO. By combining the NLO hard functions with the NLO soft function evaluated
in [9, 10], and with the anomalous dimensions which regulate RG equations satisfied by
the various terms in the factorized cross section, it is possible to resum NNLL soft gluon
emission corrections. This can be done both in PIM kinematics (in analogy to what was
done in [9]) and in 1PI kinematics (in analogy with [10]). Here we limit ourselves to re-
expand the resummed formulas in order to obtain approximate NNLO formulas for the pair
invariant mass distribution and the stop transverse momentum and rapidity distribution.
By integrating those formulas over the complete phase space, we obtain predictions for
the total top-squark-pair production cross section at the LHC, and we comment on the
phenomenological impact of the NNLO corrections arising from soft emission.
The chapter is organized as follows: In Section 6.2 we introduce our notation and con-

ventions, which are very similar to the ones employed in [9, 10]. Furthermore, we describe
the factorization of the stop-pair production cross section in the soft limit, both in PIM
and 1PI kinematics. In Section 6.3, we discuss the calculation of the soft and hard func-
tions up to NLO. Since the expressions for the NLO hard functions are too lengthy to be
typed here in analytic form, they can be provided by the author upon request. A Fortran
program which evaluates the hard functions for arbitrary values of their arguments is also
available. In Section 6.4, we write the RG equation satisfied by the hard and soft functions,
while in Section 6.5 we present approximate NNLO formulas for the stop-pair production
process. Predictions for the total top-squark-pair production cross section at the LHC can
be found in Section 6.6, together with an analysis of the phenomenological impact of the
approximate NNLO corrections on this observable.

6.2. Kinematics

We consider the following supersymmetric process:

N1(P1) +N2(P2)→ t̃1(p3) + t̃∗1(p4) +X(k) , (6.1)

where N1 and N2 indicate the incoming protons in the case of a proton-proton collider as
the LHC, while X is an inclusive hadronic final state. We treat the top-squarks as on-shell
particles and neglect their decay. At the lowest order in perturbation theory, two partonic
channel contribute to the process in Eq. (6.1):

q(p1) + q̄(p2)→ t̃1(p3) + t̃∗1(p4) ,

g(p1) + g(p2)→ t̃1(p3) + t̃∗1(p4) . (6.2)
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where the momenta of the incoming partons are related to the momenta of the incoming
hadrons by pi = xiPi (i = 1, 2). The relevant invariants for the hadronic scattering are

s = (P1 + P2)
2 , t1 = (P1 − p3)2 −m2

t̃1
, u1 = (P2 − p3)2 −m2

t̃1
. (6.3)

In order to describe the partonic scattering, we employ the invariants

ŝ = x1x2s = (p1 + p2)
2 , t̂1 = x1t1 , û1 = x2u1 ,

M2 = (p3 + p4)
2 , s4 = ŝ+ t̂1 + û1 = (p4 + k)2 −m2

t̃1
. (6.4)

In Born approximation one has that ŝ+ t̂1+ û1 = 0 and, consequently, M2 = ŝ and s4 = 0.
It is well known that the kinematic of the process allows to define different threshold

regions. Here we consider two different cases: the PIM kinematics, in which the threshold
region is defined by the limit ŝ → M2, and the 1PI kinematics, in which the threshold
region is approached by the limit s4 → 0. Both regions were employed in the study of
the top-quark-pair production cross section and differential distributions [79]. It should
be emphasized that in the PIM and 1PI threshold regions the top-squarks are not forced
to be nearly at rest, as it is the case in the threshold region defined by the limit β =√

1− 4mt̃1/ŝ → 0, which is often employed in the calculation of soft gluon corrections to
the total cross section [11,13,78]. We refer to the β → 0 limit as the production threshold
region.
Our goal is to employ both the PIM and 1PI kinematics to obtain approximate NNLO

formulas for the total top-squark-pair production cross section. Both approaches include
the numerically large contributions arising from the emission of soft gluons, but differ
among them and with the production threshold calculations in the kind of power suppressed
terms which are neglected.

6.2.1. PIM Kinematics

We focus first on the PIM kinematics approach. This kinematics was already introduced
for slepton-pair production and it is convenient to recall here the important kinematic
quantities:

z =
M2

ŝ
, τ =

M2

s
, βt̃1 =

√

1−
4m2

t̃1

M2
. (6.5)

Consequently, the PIM threshold limit ŝ→M2 corresponds to the limit z → 1. According
to the QCD factorization theorem [80], the differential cross section in M and θ (the
scattering angle of the top-squark with respect to the incoming partons beam in the partons
rest frame) is given by

d2σ

dMd cos θ
=
πβt̃1
sM

∑

i,j

∫ 1

τ

dz

z
ffij (τ/z, µf )CPIM,ij (z,M, cos θ, µf) , (6.6)
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where µf is the factorization scale, and the sum runs over the incoming partons. The
parton luminosity ff was defined in Eq. (5.12) as the convolution of the PDFs for the qq̄
case. It is trivial to extend this definition for generic incoming partons i and j:

ffi,j(y, µf) =

∫ 1

y

dx

x
fi/N1 (x, µf) fj/N2 (y/x, µf) ≡ fi/N1(y)⊗ fj/N2(y) . (6.7)

In the following we drop the subscript PIM (and the corresponding subscript 1PI) whenever
there is no ambiguity about the kinematic scheme used. In order not to make the notation
unnecessarily heavy, we do not indicate explicitly the dependence of the hard scattering
kernels on the SUSY parameters and on the top-quark mass mt. The SUSY parameters
we are referring to are: the two stop masses mt̃1 and mt̃2 , the mass mq̃ of the first two
families squarks and the sbottoms (which we assume to be degenerate), the gluino mass
mg̃, and the t̃1 − t̃2 mixing angle α defined in Eq. (2.107). The hard-scattering kernels Cij

in Eq. (6.6) are related to the partonic cross sections and can be calculated in perturbation
theory. Their expansion in powers of αs has the generic form

Cij = α2
s

[
C

(0)
ij +

αs

4π
C

(1)
ij +

(αs

4π

)2
C

(2)
ij +O(α3

s)

]
. (6.8)

Only the quark annihilation and gluon fusion channels contribute to Cij at lowest order in
perturbation theory; in particular

C
(0)
qq̄ = δ(1− z)CF

N

(
t1u1
M4
− mt̃1

M2

)
,

C(0)
gg = δ(1− z) 1

(N2 − 1)

(
CF

M4

t1u1
− CA

)(
t1u1
M4
−

2m2
t̃1

M2
+

2m4
t̃1

t1u1

)
, (6.9)

where N = 3 and the Mandelstam invariants t̂1 and û1 can be written in terms of ŝ and θ
as follows:

t̂1 = −
M2

2

(
1− βt̃1 cos θ

)
, û1 = −

M2

2

(
1 + βt̃1 cos θ

)
. (6.10)

In order to calculate higher order corrections to Cqq̄ and Cgg one needs to consider vir-
tual and real emission corrections to the Born approximation. Starting at order αs new
production channels, such as qg → t̃1t̃

∗
1q, open up. When working in the threshold limit

z → 1, the calculations are simplified by the fact that there is no phase-space available for
the emission of additional (hard) partons in the final state. Consequently, both the hard
gluon emission and the additional production channels are suppressed by powers of (1− z)
and can be neglected. By neglecting power suppressed terms in the integrand, Eq. (6.6)
can be rewritten as

d2σ

dMd cos θ
=
πβt̃1
sM

∫ 1

τ

dz

z

[
ffgg (τ/z, µf )Cgg (z,M, cos θ, µf)
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+ ffqq̄ (τ/z, µf )Cqq̄ (z,M, cos θ, µf) + ffq̄q (τ/z, µf )Cq̄q (z,M, cos θ, µf)
]
.

(6.11)

In the equation above the quark channel luminosity ffqq̄ is understood to be summed over
all light quark flavors.
In the soft gluon emission limit z → 1, the hard scattering kernels Cij factor into a

product of hard and soft functions:

Cij (z,M, cos θ, µf) = Tr
[
Hij(M, cos θ, µf)Sij(

√
s(1− z), cos θ, µf)

]
+O(1− z) , (6.12)

where we employ boldface fonts to indicate matrices in color space, such as the hard
functions Hij and the soft functions Sij. For simplicity we drop the explicit dependence
on the top mass and on the SUSY parameters from the arguments of the hard functions
Hij. We work in the s-channel singlet-octet color bases

(
cqq̄1
)
{a} = δa1a2δa3a4 ,

(
cqq̄2
)
{a} = tca2a1t

c
a3a4

,

(
cgg1
)
{a} = δa1a2δa3a4 ,

(
cgg2
)
{a} = ifa1a2c tca3a4 ,

(
cgg3
)
{a} = da1a2c tca3a4 , (6.13)

where ai represent the color index of the particle with momentum pi. We view these
structures as basis vectors |cI〉 in the space of color-singlet amplitudes. Inner products in
this space are defined through a summation over color indices as

〈cI | cJ〉 =
∑

{a}

(
cI
)∗
a1a2a3a4

(
cJ
)
a1a2a3a4

. (6.14)

This inner product is proportional but not equal to δIJ , so the basis vectors are orthogonal
but not orthonormal.
A factorization formula for the hard scattering kernels in the threshold region was derived

using SCET and Heavy-Quark Effective Theory (HQET) in [9] for the top-pair production
case. The derivation is similar to the one in Chapter 4 for the Drell-Yan case, but is
more involved due to the presence of additional color structures. A completely analogous
procedure can be followed to derive the factorization formula in Eq. (6.12) for the hard
scattering kernels of stop-pair production.
The hard functions are obtained from the virtual corrections and are ordinary functions

of their arguments. The soft functions arise from the real emission of soft gluons and
contain distributions which are singular in the z → 1 limit. Contributions of order αn

s to
the soft functions include terms proportional to plus distributions

[
lnm(1− z)

1− z

]

+

, (m = 0, · · · , 2n− 1) , (6.15)

as well as terms proportional to δ(1 − z). The plus distributions are defined through the
relation ∫ 1

0

dz

[
lnm(1− z)

1− z

]

+

g(z) ≡
∫ 1

0

dz
lnm(1− z)

1− z [g(z)− g(1)] , (6.16)
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and, consequently, one finds
∫ 1

τ

dz

[
lnm(1− z)

1− z

]

+

g(z) =

∫ 1

τ

dz
lnm(1− z)

1− z [g(z)− g(1)]− g(1)
∫ τ

0

dz
lnm(1− z)

1− z .

(6.17)
In particular, for the NLO and NNLO hard scattering kernels one has (dropping the

parton indices ij)

CPIM = α2
s

[
C

(0)
PIM +

αs

4π
C

(1)
PIM +

(αs

4π

)2
C

(2)
PIM +O(α3

s)

]
, (6.18)

where

C
(1)
PIM = D

(1,PIM)
1

[
ln(1− z)
1− z

]

+

+D
(1,PIM)
0

[
1

1− z

]

+

+ C
(1,PIM)
0 δ(1− z) +R(1,PIM)(z) ,

C
(2)
PIM = D

(2,PIM)
3

[
ln3(1− z)
1− z

]

+

+D
(2,PIM)
2

[
ln2(1− z)
1− z

]

+

+D
(2,PIM)
1

[
ln(1− z)
1− z

]

+

+D
(2,PIM)
0

[
1

1− z

]

+

+ C
(2,PIM)
0 δ(1− z) +R(2,PIM)(z) . (6.19)

The functionsD
(i)
j , C

(i)
0 , and R(i) depend on cos θ,M, µf , on the SUSY parameters and on

the top mass mt. The coefficients D
(1)
i , C

(1)
0 and R(1) can be obtained from results already

present in the literature [18]. In particular the functions R(i)(z) are finite for z → 1. One

of the main results of this thesis is the calculation of the coefficients D
(2)
j both in the quark

annihilation and gluon fusion channel. In principle we could also easily get all the scale
dependent terms in C

(2)
0 , in both channels, but due to an ambiguity discussed later, we

drop part of these terms in the numerical implementation.

6.2.2. 1PI Kinematics

The 1PI kinematics approach allows one to describe observables in which a single particle,
rather than a pair, is detected. In the laboratory frame one can write the stop rapidity (y)
and transverse momentum

(
pT =

√
p2x + p2y

)
distribution as

d2σ

dpTdy
=

2πpT
s

∑

ij

∫ 1

xmin
1

dx1
x1

∫ 1

xmin
2

dx2
x2

fi/N1
(x1, µf)fj/N2

(x2, µf)C1PI,ij

(
s4, ŝ, t̂1, û1, µf

)
.

(6.20)
The expansion of the 1PI hard scattering kernels C1PI in powers of αs has the same structure
shown in Eq. (6.8) for the PIM case. Obviously, also in this case only the qq̄ channel and
gg channel give a non vanishing contribution at lowest order in αs. In the laboratory
frame, the hadronic Mandelstam variables t1 and u1 are related to the stop rapidity and
transverse momentum through the relations

t1 = −
√
sm⊥e

−y , u1 = −
√
sm⊥e

y , (6.21)
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where m⊥ =
√
p2T +m2

t̃1
. Therefore the kinematic variables ŝ, s4, t̂1, and û1, which are

arguments of the 1PI hard functions, can be written in terms of pT , y, x1, and x2 using
Eq. (6.21) and Eq. (6.4). The lower limits of integration in Eq. (6.20) are

xmin
1 = − u1

s + t1
, xmin

2 = − x1t1
x1s+ u1

. (6.22)

In order to obtain the total cross section it is necessary to integrate the double-differential
distribution with respect to the stop rapidity and transverse momentum over the range

0 ≤ |y| ≤ 1

2
ln

1 +
√

1− 4m2
⊥/s

1−
√

1− 4m2
⊥/s

, 0 ≤ pT ≤
√
s

4
−m2

t̃1
. (6.23)

As in the case of PIM kinematics, in the 1PI kinematics soft emission limit s4 → 0, the
hard scattering kernels factor into the product of hard and soft functions:

Cij

(
s4, ŝ

′, t̂′1, û
′
1, µf

)
= Tr

[
Hij

(
ŝ′, t̂′1, û

′
1, µf

)
Sij

(
s4, ŝ

′, t̂′1, û
′
1, µf

)]
+O(s4) . (6.24)

As explained in [10], the notation above is used to emphasize that there are ambiguities in
the choice of the Mandelstam invariants ŝ′, t̂′1, and û

′
1, which can differ from ŝ, t̂1, and û1 by

power corrections that vanish at s4 = 0. For example explicit results for the hard and soft
functions can be rewritten employing either the relation ŝ′+ t̂′1+ û

′
1 = 0 or ŝ′+ t̂′1+ û

′
1 = s4.

Although the difference is due to terms suppressed by positive powers of s4, the two choices
produce different numerical results upon integration. We deal with this ambiguity in the
same way as in [10].
As in the PIM case, the 1PI hard and soft function are matrices in color space originating

from virtual and soft emission corrections, respectively. The hard functions are completely
identical to the ones encountered in the PIM kinematics case, provided that the variables
ŝ, t̂1, and û1 are written in terms of M and cos θ. The soft functions are different in the
PIM and 1PI cases, but in both cases they are identical to the ones employed for top-pair
production [9, 10].
The 1PI soft functions at order αn

s depend on plus distributions of the form
[
lnm(s4/m

2
t̃1
)

s4

]

+

, (m = 1, · · · , 2n− 1) . (6.25)

The plus distributions employed in 1PI kinematics are defined as follows

∫ m2
t̃1

0

ds4

[
lnm(s4/m

2
t̃1
)

s4

]

+

g(s4) ≡
∫ m2

t̃1

0

ds4
lnm(s4/m

2
t̃1
)

s4
[g(s4)− g(0)] , (6.26)

where g is a genetic smooth test function. With this definition, the integral up to a generic
upper extreme smax

4 is

∫ smax
4

0

ds4

[
lnm(s4/m

2
t̃1
)

s4

]

+

g(s4) =

∫ smax
4

0

ds4
lnm(s4/m

2
t̃1
)

s4
[g(s4)− g(0)]+

g(0)

m+ 1
lnm+1 s

max
4

m2
t̃1

.

(6.27)
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Therefore, the NLO and NNLO hard scattering kernel in 1PI kinematics have the fol-
lowing structure:

C1PI = α2
s

[
C

(0)
1PI +

αs

4π
C

(1)
1PI +

(αs

4π

)2
C

(2)
1PI +O(α3

s)

]
,

C
(1)
1PI = D

(1,1PI)
1

[
ln(s4/m

2
t̃1
)

s4

]

+

+D
(1,1PI)
0

[
1

s4

]

+

+ C
(1,1PI)
0 δ(s4) +R(1,1PI)(s4) ,

C
(2)
1PI = D

(2,1PI)
3

[
ln3(s4/m

2
t̃1
)

s4

]

+

+D
(2,1PI)
2

[
ln2(s4/m

2
t̃1
)

s4

]

+

+D
(2,1PI)
1

[
ln(s4/m

2
t̃1
)

s4

]

+

+D
(2,1PI)
0

[
1

s4

]

+

+ C
(2,1PI)
0 δ(s4) +R(2,1PI)(s4) . (6.28)

As in the PIM case, the NLO coefficients D
(1)
i , C

(1)
0 , R(1) can be in principle obtained from

the literature. The functions R(i)(s4) are finite for s4 → 0. In this work we are able to

derive exact expressions for the NNLO coefficients D
(2)
i and the scale-dependent terms in

the coefficient C
(2)
0 .

6.3. The Hard and Soft Functions at NLO

In this section we describe the calculation of the hard and soft matrices up to NLO in
perturbation theory.

6.3.1. Hard Functions

One of the main results of this thesis is the calculation of the stop-pair production hard
functions to NLO.
The hard functions are related to products of Wilson coefficients, as shown in [9,10]. To

obtain the Wilson coefficients one matches renormalized Green’s functions in SUSY-QCD
with those in SCET. The matching can be done with any choice of external states and IR
regulators. For simplicity we use on-shell partonic states for the process (qq̄, gg) → t̃1t̃

∗
1,

and dimensional regularization in d = 4− 2ε dimensions to regularize both the ultraviolet
(UV) and IR divergences. With this choice it follows that the loop graphs in SCET are
scaleless and vanish, so the effective-theory matrix elements are equal to their tree-level
expressions multiplied by a UV renormalization matrix Z. The matrix elements in SUSY-
QCD, on the other hand, are the virtual corrections to the (qq̄, gg) → t̃1t̃

∗
1 scattering

amplitudes. The matching condition then reads [81–83]

lim
ε→0

Z−1(ε,M, cos θ, µ) |M(ε,M, cos θ)〉 =
∑

m

〈〈Om〉〉tree |Cm(M, cos θ, µ)〉 , (6.29)
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whereM is the UV-renormalized virtual SUSY-QCD amplitude expressed in terms of αs

with nl = 5 active flavors and
∑

m〈〈Om〉〉tree is the tree-level partonic matrix element in
the effective theory summed over the spins m. We have moved the SCET renormalization
matrix Z to act on the SUSY-QCD amplitude, so that both sides of the equation are finite
in the limit ε→ 0. The explicit results for the matrix elements ZIJ in our color basis for
the qq̄ and gg channels can be found in [83].
In practice, we are not interested in the Wilson coefficients themselves, but rather in the

hard matrix HIJ . To calculate this, we first define

|Mren〉 ≡ lim
ε→0

Z−1(ε) |M(ε)〉 = 4παs

[∣∣M(0)
ren

〉
+
αs

4π

∣∣M(1)
ren

〉
+ . . .

]
, (6.30)

whereM(ε) andMren are the UV-renormalized and the IR and UV finite virtual SUSY-
QCD amplitude, respectively. The renormalized amplitude is expressed in terms of αs

with nl = 5 active flavors. The IR renormalization matrix Z can be easily obtained by
employing the results found in [83].
The perturbative expansion of the renormalized hard functions is defined as

Hij = α2
s

1

dR

(
H

(0)
ij +

αs

4π
H

(1)
ij + . . .

)
, (6.31)

where dR = N in the quark annihilation channel and dR = N2 − 1 in the gluon fusion
channel. The matrix elements can be written in terms of the renormalized SUSY-QCD
amplitudes and the color basis states cI as follows:

H
(0)
IJ =

1

4

1

〈cI |cI〉 〈cJ |cJ〉
〈
cI
∣∣M(0)

ren

〉 〈
M(0)

ren

∣∣ cJ
〉
,

H
(1)
IJ =

1

4

1

〈cI |cI〉 〈cJ |cJ〉

[ 〈
cI
∣∣M(0)

ren

〉 〈
M(1)

ren

∣∣ cJ
〉
+
〈
cI
∣∣M(1)

ren

〉 〈
M(0)

ren

∣∣ cJ
〉 ]

. (6.32)

The leading-order result for the qq̄ channel follows from the color decomposition of
a single diagram in Fig. (6.3.1) interfered with its color-decomposed complex conjugate
diagram, and it reads

H
(0)
qq̄ =

(
0 0

0 2

)
1

t̂1 + û1

[
t̂1û1

t̂1 + û1
+m2

˜̂t1

]
. (6.33)

For the gg channel we have to color-decompose the diagrams in Fig. (6.3.1) and interfere
them with their color-decomposed complex conjugate diagrams, we find

H(0)
gg =




1
N2

1
N

t̂1−û1

M2
1
N

1
N

t̂1−û1

M2

(t̂1−û1)2

M4
t̂1−û1

M2

1
N

t̂1−û1

M2 1




m4
˜̂t1

2t̂1û1

[
− 2M2

m2
˜̂t1

+
t̂1û1
m4

˜̂t1

+ 4 + 2
t̂21 + û21
t̂1û1

]
, (6.34)

where N = 3.
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q

q̄

t̃1

t̃∗1

Figure 6.1.: Diagram in the qq̄ channel contributing to the hard function matrix at LO.

g

g

g

g

g

g

g

g

t̃1

t̃∗1

t̃1

t̃∗1

t̃1

t̃∗1

t̃1

t̃∗1

Figure 6.2.: Diagrams in the gg channel contributing to the hard function matrix at LO.

In order to calculate the NLO hard functions, one needs to evaluate the one-loop virtual
corrections to the partonic scattering amplitudes, decomposed into the singlet-octet color
bases. Although results for one-loop diagrams interfered with the Born-level amplitudes
are known [18] and with some work it is possible to extract this information from the
Prospino code [18], the one-loop amplitude decomposed into color bases is not available
and must be calculated from scratch. We used the program Qgraf [84] to generate the
list of diagrams for stop-pair production both in the quark-antiquark channel and in the
gluon-gluon channel. By considering the first two families of squarks and the bottom
squarks as mass degenerate we found 40 diagrams in the quark-antiquark channel, 152
diagrams in the gluon-gluon channel and 30 diagrams in the ghost-antighost channel. This
last set of diagrams is not necessary for the computation itself but it was used as a check
for the cancellation of the unphysical polarizations of the initial state gluons. Since Qgraf
has some known problems dealing with Majorana fermions, and in particular in our case
with gluinos, we had to correct some relative signs between diagrams and give the correct
prescription to close the fermionic traces involving gluinos. We followed the prescriptions
discussed in [85], [86].
We wrote our in-house routines in the computer language FORM [87] and through all the

calculation we used the Pauli-Veltman metric and the conventions for the Feynman rules
given in [88] adapted to the SUSY case. The calculation was carried out in the following
steps both for the qq̄ and the gg channels.

• We substituted the SUSY-QCD Feynman rules in the one-loop and in the tree level
complex conjugate amplitudes.

• We color-decomposed the one-loop amplitude and we interfered it with the color-
decomposed complex conjugate tree-level amplitude, then we added the hermitian
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conjugate as described in Eq. (6.32).

• We computed the Dirac and color structures by means of some ad hoc routines.

• We adjusted the routing of the momenta in the single diagrams by making some
translations of the loop momentum in order to match the routing of the box topologies
subsectors and to use the reductions for those cases.

• We identified the diagrams with a t1 ↔ u1 or a s↔ u1, t1 symmetry in order to use
the same reduction tables for the direct and crossed diagrams.

• We generated the tensor reduction tables by using the program Reduze [89,90], and
we inserted the reductions to scalar integrals in our FORM routines.

• Then we inserted all the divergent scalar integrals analytically in order to have the
full control over the UV and IR poles of our expressions,

• for simplicity we wrote the finite parts of a small set of scalar integrals depending on
several different masses in terms of finite Passarino Veltman functions [91], they were
later evaluated numerically by employing one of the programs presented in [92–94].

• We renormalized the UV divergences by using the renormalization constants1 col-
lected in Appendix A.7.

• We analytic continued our scalar integrals in the relevant physical region.

• Finally, we verified the cancellation of the IR poles by applying the IR-renormalization
factor Z as described in Eq. (6.30) and we obtained a finite result for the hard func-
tion matrices at NLO.

We checked our results in several ways. The first non trivial check concerns the can-
cellation of IR divergences that we have just mentioned above. Second, we checked that
by multiplying the one-loop hard functions by the corresponding tree-level soft functions
and by subsequently taking the trace of the resulting color space matrix, we match the
numerical results for the NLO virtual corrections which can be extracted from the code
Prospino [74].
Unfortunately the outputs of our FORM codes are very long due to the several different

scales involved. For this reason we do not type them here, but they are available upon
request from the author. We also wrote a Fortran code which allows one to evaluate
rapidly the hard functions in any physical kinematic configuration and for any value of the
input parameters. The hard functions turned out to depend on 8 independent variables:
the kinematic quantities M and cos θ, the SUSY mass parameters mt̃1

, mt̃2
, mq̃, mg̃, the

mt̃1
−mt̃2

mixing angle α defined in Eq. (2.107) and the top mass mt.

1To the best of our knowledge, we didn’t find in the literature the explicit expressions of all the renor-
malization constants needed to renormalize the stop-pair production process, therefore for convenience
we provide them in Appendix A.7.
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6.3.2. Soft Functions

The soft functions are vacuum expectation values of soft Wilson-loop operators. These
functions are not sensitive to the spin of the particles involved, but they depend on the
color structure of the process. Consequently, the soft functions needed for the calculation
of the stop-pair production are precisely the same functions employed in the calculation of
the top-pair production. The calculation of the PIM soft function is described in [9], while
the calculation of the 1PI soft function is carried out in [10]. For convenience, the explicit
results for the soft function obtained in those two paper are collected in Appendix A.8.

6.4. RG Equations for Hard and Soft Functions

By employing the Laplace transformed soft functions given in Appendix A.8, we can define
the Laplace transformed hard scattering kernels as

c̃PIM (∂η,M, cos θ, µ) = Tr[H (M, cos θ, µ) s̃PIM (∂η,M, cos θ, µ)] ,

c̃1PI
(
∂η, ŝ

′, t̂′1, û
′
1, µ
)
= Tr[H

(
ŝ′, t̂′1, û

′
1, µ
)
s̃1PI

(
∂η, ŝ

′, t̂′1, û
′
1, µ
)
] , (6.35)

where ∂η is a differential operator with respect to the auxiliary variable η. The hard
scattering kernels in momentum space can be recovered through the relations

CPIM (z,M, cos θ, µ) = c̃PIM (∂η,M, cos θ, µ)

(
M

µ

)2η
e−2γEη

Γ (2η)

z−η

(1− z)1−2η

∣∣∣∣∣
η=0

,

C1PI

(
s4, ŝ

′, t̂′1, û
′
1, µ
)
= c̃1PI

(
∂η, ŝ

′, t̂′1, û
′
1, µ
) e−2γEη

Γ (2η)

1

s4


 s4√

m2
t̃1
+ s4µ




2η∣∣∣∣∣∣
η=0

. (6.36)

In order to evaluate the above formulas one needs to take the derivatives with respect to η,
and finally take the limit for η → 0. It is possible to show that this procedure is equivalent
to consider the quantities c̃i (L, · · · ) (i =PIM, 1PI) and operate the following replacements:
in PIM kinematics

1→ δ(1− z) ,

L→ 2P ′0(z) + δ(1− z) ln
(
M2

µ2

)
,

L2 → 4P ′1(z) + δ(1− z) ln2

(
M2

µ2

)
,

L3 → 6P ′2(z)− 4π2P ′0(z) + δ(1− z)
[
ln3

(
M2

µ2

)
+ 4ζ3

]
,
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L4 → 8P ′3(z)− 16π2P ′1(z) + 128ζ3P
′
0(z) + δ(1− z)

[
ln4

(
M2

µ2

)
+ 16ζ3 ln

(
M2

µ2

)]
,

(6.37)

where the distributions P ′n(z) are defined as

P ′n(z) =

[
1

1− z ln
n

(
M2(1− z)2

µ2z

)]

+

, (6.38)

and are related to the standard plus distributions

Pn(z) =

[
lnn(1− z)

1− z

]

+

, (6.39)

by the equation

P ′n(z) =

n∑

k=0

(
n

k

)
lnn−k

(
M2

µ2

)[
2kPk(z) (6.40)

+
k−1∑

j=0

(
k

j

)
2j(−1)k−j

(
lnj(1− z) lnk−j z

1− z − δ(1− z)
∫ 1

0

dx
lnj(1− x) lnk−j x

1− x

)]
.

In 1PI kinematics instead, one needs the following set of replacements to go from c̃1PI to
C1PI

1 −→ δ(s4) ,

L −→ 2P0(s4)− δ(s4)Lm ,

L2 −→ 8P1(s4)− 4LmP0(s4) + δ(s4)

(
L2
m −

2π2

3

)
− 4L4

s4
,

L3 −→ 24P2(s4)− 24LmP1(s4) +
(
6L2

m − 4π2
)
P0(s4) + δ(s4)

(
−L3

m + 2π2Lm + 16ζ3
)

− 6L4

s4

[
−L4 + 2 ln

s24
m2

t̃1
µ2

]
,

L4 −→ 64P3(s4)− 96LmP2(s4) +
(
48L2

m − 32π2
)
P1(s4) +

(
−8L3

m + 16π2Lm + 128ζ3
)
P0(s4)

+ δ(s4)

(
L4
m − 4π2L2

m − 64ζ3Lm +
4π4

15

)

− 8L4

s4

[
L2
4 − 3L4 ln

s24
m2

t̃1
µ2

+ 3 ln2
s24

m2
t̃1
µ2
− 2π2

]
, (6.41)
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where Lm = ln(µ2/m2
t̃1
) and L4 = ln(1 + s4/m

2
t̃1
).

Since the hard and soft functions are known up to NLO, is easy to determine the NLO
coefficient in the expansion of c̃ in powers of αs: suppressing the arguments and subscripts
one has

c̃ = α2
s

[
c̃(0) +

αs

4π
c̃(1) +

(αs

4π

)2
c̃(2) +O(α3

s)

]
, (6.42)

where

c̃(0) = Tr
[
H(0)s̃(0)

]
, c̃(1) = Tr

[
H(0)s̃(1)

]
+ Tr

[
H(1)s̃(0)

]
=

2∑

j=0

c
(1)
j Lj . (6.43)

It is important to observe that the trace of the product of the LO hard functions and NLO
soft functions contains the dependence of c(1) on L, and therefore it gives rise to the plus
distributions.
In order to obtain the coefficient c̃(2) one needs to know the hard and soft functions at

NNLO:

c̃(2) = Tr
[
H(0)s̃(2)

]
+ Tr

[
H(1)s̃(1)

]
+ Tr

[
H(2)s̃(0)

]
=

4∑

j=0

c
(2)
j Lj . (6.44)

The coefficients c
(2)
i (i = 1, · · · , 4) and the scale dependent part of c

(2)
0 can be reconstructed

by exploiting the information coming from the RG equations satisfied by the hard and soft
functions.
The hard functions satisfy a RG equation of the form

d

d lnµ
H = ΓHH +HΓ

†
H . (6.45)

In Eq. (6.45) the arguments of the function H and of the anomalous dimension matrix ΓH

are M, cos θ, and µ in the PIM case and ŝ′, t̂′1, û
′
1, and µ in the 1PI case. The matrices ΓH

were derived in [83], provided that one expresses the Mandelstam invariants in terms of
M and cos θ in PIM kinematics, and ŝ′, t̂′1 and û′1 in 1PI kinematics. For completeness we
provide the expressions up to two loop order for the anomalous dimensions matrices ΓH

(written in the PIM variables), both for the quark annihilation and gluon fusion channels.
Their expressions can be found in [9] and they read:

Γqq̄ =

[
CF γcusp(αs)

(
ln
M2

µ2
− iπ

)
+ CF γcusp(β34, αs) + 2γq(αs) + 2γQ(αs)

]
1

+
N

2

[
γcusp(αs)

(
ln

t̂21
M2m2

t̃1

+ iπ

)
− γcusp(β34, αs)

](
0 0

0 1

)

+ γcusp(αs) ln
t̂21
û21

[(
0 CF

2N

1 − 1
N

)
+
αs

4π
g(β34)

(
0 CF

2

−N 0

)]
, (6.46)
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and

Γgg =

[
N γcusp(αs)

(
ln
M2

µ2
− iπ

)
+ CF γcusp(β34, αs) + 2γg(αs) + 2γQ(αs)

]
1

+
N

2

[
γcusp(αs)

(
ln

t̂21
M2m2

t̃1

+ iπ

)
− γcusp(β34, αs)

]

0 0 0

0 1 0

0 0 1




+ γcusp(αs) ln
t̂21
û21






0 1

2
0

1 −N
4

N2−4
4N

0 N
4

−N
4


 +

αs

4π
g(β34)




0 N
2

0

−N 0 0

0 0 0





 , (6.47)

where the various anomalous dimension functions can be found in the Appendix A.5, and
the cusp angle β34 = iπ − ln(1 + βt̃1)/(1− βt̃1).
By employing the same notation of [9,10], one can split the anomalous dimension up to

two loop orders as follows

ΓPIM
H (M, cos θ, αs) = Γcusp(αs)

(
ln
M2

µ2
− iπ

)
+ γh (M, cos θ, αs) ,

Γ1PI
H

(
ŝ′, t̂′1, û

′
1, αs

)
= Γcusp(αs)

(
ln
ŝ′

µ2
− iπ

)
+ γh

(
ŝ′, t̂′1, û

′
1, αs

)
, (6.48)

where Γcusp is equal CFγcusp in the quark annihilation channel and CAγcusp in the gluon
fusion channel; γcusp represents the universal cusp anomalous dimension. The matrices γh

are defined through a direct comparison with Eq. (6.46) and Eq. (6.47).
By knowing the evolution equation of the hard functions and of the PDFs, and by

employing the scale invariance of the cross section, it is possible to derive the RG equation
satisfied by the soft function matrices. In PIM kinematics one finds [9]

d

d lnµ
s̃PIM

(
ln
M2

µ2
,M, cos θ, µ

)
= Γ

†
sPIMs̃PIM

(
ln
M2

µ2
,M, cos θ, µ

)

+ s̃PIM

(
ln
M2

µ2
,M, cos θ, µ

)
ΓsPIM . (6.49)

In the equation above the soft anomalous dimension ΓsPIM is given by

Γ̃sPIM = −
[
Γcusp(αs) ln

M2

µ2
+ 2γφ (αs)

]
1− γh (M, cos θ, αs) . (6.50)

In the equation above, the PDF anomalous dimension γφ is defined through the large x
limit of the Altarelli-Parisi splitting functions

P (x) = 2Γcusp(αs)

[
1

1− x

]

+

+ 2γφ(αs)δ(1− x) . (6.51)
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ŝ 9.0× 106 GeV2 mt̃2 1319.87 GeV

t̂1 −2.94979× 106 GeV2 mq̃ 1460.3 GeV

µ 1087.17 GeV mt 173.3 GeV

mt̃1 1087.17 GeV α 68.4◦

mg̃ 1489.98 GeV

Table 6.1.: Values of the input parameters employed to calculate the coefficients found in
Eqs. (6.54), (6.55), (6.57), (6.58). The angle α is the stop mixing angle. The
SUSY mass parameters and the stop mixing angle reported in this table refer
to the benchmark point 40.2.5 in [95].

In 1PI kinematic, the Laplace transformed soft function matrices obey the following
evolution equation [10]

d

d lnµ
s̃1PI

(
ln
ŝ′

µ2
, ŝ′, t̂′1, û

′
1, µ

)
= Γ

†
s1PIs̃1PI

(
ln
ŝ′

µ2
, ŝ′, t̂′1, û

′
1, µ

)

+ s̃1PI

(
ln
ŝ′

µ2
, ŝ′, t̂′1, û

′
1, µ

)
Γs1PI , (6.52)

where

Γ̃s1PI = −
[
Γcusp ln

ŝ′

µ2
+ 2γφ (αs) + Γcusp(αs) log

ŝ′m2
t̃1

t̂′1û
′
1

]
1− γh

(
ŝ′, t̂′1, û

′
1, mt̃1 , αs

)
.

(6.53)

If the one-loop hard and soft matrices, evolution equations, and anomalous dimensions
are known, it is possible to calculate the coefficients of the positive powers of L in the
expansion in Eq. (6.44) as well as in principle the scale dependent parts of the coefficient
proportional to L0.

6.5. Approximate NNLO Formulas

By employing the results described in the previous sections it is possible to obtain ap-
proximate NNLO formulas including the exact expressions of the coefficients multiplying
the plus distributions up to NNLO, both in PIM and in 1PI kinematics. The values of
the coefficients multiplying the various plus distributions and delta functions for arbitrary
values of the input parameters can be extracted from the Fortran code mentioned above.
For convenience, we include here the values of these coefficients, evaluated for the input
parameters listed in Table 6.1. The SUSY spectrum appearing there correspond to the
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benchmark point 40.2.5 in [95], which we use in the rest of our analysis as well. By defin-
ing Ĉ(i) = dRC

(i) (i = 0, 1, 2), in the quark annihilation channel with PIM kinematics one
finds

Ĉ
(0)
PIM,qq̄(z) = 0.118673 δ(1− z) ,

Ĉ
(1)
PIM,qq̄(z) = 2.53170

[
ln(1− z)
1− z

]

+

+ 1.18594

[
1

1− z

]

+

+ 0.834825 δ(1− z) + . . . ,

Ĉ
(2)
PIM,qq̄(z) = 27.0048

[
ln3(1− z)
1− z

]

+

+ 18.5403

[
ln2(1− z)
1− z

]

+

− 56.3923

[
ln(1− z)
1− z

]

+

+ 62.2067

[
1

1− z

]

+

− 29.5324 δ(1− z) + . . . , (6.54)

where the ellipses indicate terms which are subleading (and finite) in the z → 1 limit. In
the gluon fusion channel one finds instead

Ĉ
(0)
PIM,gg(z) = 0.348572 δ(1− z) ,

Ĉ
(1)
PIM,gg(z) = 16.7315

[
ln(1− z)
1− z

]

+

+ 13.6194

[
1

1− z

]

+

+ 9.50848 δ(1− z) + . . . ,

Ĉ
(2)
PIM,gg(z) = 401.555

[
ln3(1− z)
1− z

]

+

+ 852.324

[
ln2(1− z)
1− z

]

+

− 389.724

[
ln(1− z)
1− z

]

+

+ 535.481

[
1

1− z

]

+

+ 81.9942 δ(1− z) + . . . . (6.55)

It is important to remark that, in order to determine completely the coefficients multiply-
ing the plus distributions in C

(2)
ij,k (k ∈ {PIM, 1PI}), it is sufficient to know the anomalous

dimension regulating the RG equations for the hard and soft matrices at NNLO and the
hard and the soft function matrices at NLO. On the contrary, in order to completely de-
termine the coefficients multiplying the Dirac delta functions in the NNLO hard scattering
kernels, one would need to know the complete NNLO hard and soft matrices. Since those
matrices are know only at NLO, the cofactors of the delta functions at NNLO include only
the scale dependent terms. However, since the scale independent part of those coefficients
is unknown, the cofactor of the delta functions at NNLO in Eq. (6.54) and in the equations
below depend on an arbitrary second scale chosen to normalize the scale logarithms. In
fact, for any renormalization scale µ and normalization scale µ0 one can always rewrite

ln

(
µ2
0

µ2

)
= ln

(
µ2
1

µ2

)
+ ln

(
µ2
0

µ2
1

)
, (6.56)

where the second term can be reabsorbed in the unknown renormalization scale indepen-
dent piece. Since adding these additional µ-dependent terms one run the risk to artificially
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reduce the scale dependence, in Eq. (6.54) and Eq. (6.55) above, and for the 1PI kinemat-
ics as well, we drop the contribution from the two loop hard functions, in the same spirit
as [10, 96].
Similarly, one finds in 1PI kinematics for the quark annihilation channel

Ĉ
(0)
1PI,qq̄(s4) = 0.118673 δ(s4) ,

Ĉ
(1)
1PI,qq̄(s4) = 2.53170

[
ln(s4/m

2
t̃1
)

s4

]

+

− 2.03883

[
1

s4

]

+

+ 1.66798 δ(s4) + . . . ,

Ĉ
(2)
1PI,qq̄(s4) = 27.0048

[
ln3(s4/m

2
t̃1
)

s4

]

+

− 84.6523

[
ln2(s4/m

2
t̃1
)

s4

]

+

+ 34.0042

[
ln(s4/m

2
t̃1
)

s4

]

+

+ 98.7353

[
1

s4

]

+

− 166.272 δ(s4) + . . . , (6.57)

while for the gluon fusion channel one finds

Ĉ
(0)
1PI,gg(s4) = 0.348572 δ(s4) ,

Ĉ
(1)
1PI,gg(s4) = 16.7315

[
ln(s4/m

2
t̃1
)

s4

]

+

− 7.69240

[
1

s4

]

+

+ 7.68986 δ(s4) + . . . ,

Ĉ
(2)
1PI,gg(s4) = 401.555

[
ln3(s4/m

2
t̃1
)

s4

]

+

− 682.128

[
ln2(s4/m

2
t̃1
)

s4

]

+

− 512.616

[
ln(s4/m

2
t̃1
)

s4

]

+

+ 1511.18

[
1

s4

]

+

− 1299.25 δ(s4) + . . . . (6.58)

In this context, the ellipses indicate subleading terms in the s4 → 0 limit. Also in
Eqs. (6.57, 6.58), as in the PIM case, we drop the contribution of the two-loop hard
functions.

6.6. Total Cross Section

In this section we present a numerical study of the stop-pair production total cross section
at approximate NNLO accuracy.
To begin our analysis we describe in detail how we deal with the ambiguities due to

power suppressed terms related to 1PI kinematics. As we pointed out in Subsection 6.2.2,
there are power-suppressed ambiguities in the choice of the variables ŝ′, t̂′1 and û′1 of the
hard and soft functions. In the perturbative calculation of the hard and soft functions
one can set s4 = 0 everywhere and use ŝ′ + t̂′1 + û′1 = 0 to rewrite the hard-scattering
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kernels in several different forms. These rewritings are all formally equivalent in the limit
s4 → 0, but they affect the functional dependence of the hard-scattering kernels on x1
and x2. Therefore the numerical integration in (6.20) gives different results for the pieces
multiplying the plus-distributions in s4. Another obvious choice is to use ŝ′ + t̂′1 + û′1 = s4
before integration, again leading to numerically different answers which are equivalent in
the threshold limit s4 → 0.
We use the following procedure to fix this ambiguity. First, we set ŝ′ + t̂′1 + û′1 = 0 in

the hard-scattering kernels, and we use this to eliminate either t̂′1 or û′1 as an independent
variable. We then define the two cross sections

d2σt

dpTdy
=

2πpT
s

∑

i,j

∫ 1

−u1/(s+t1)

dx1
x1

∫ x1(s+t1)+u1

0

ds4
s4 − x1t1

× fi/N1
(x1, µf) fj/N2

(x2(s4), µf)Cij(s4, ŝ
′, t̂′1,−ŝ′ − t̂′1, mt, µf) , (6.59)

d2σu

dpTdy
=

2πpT
s

∑

i,j

∫ 1

−t1/(s+u1)

dx2
x2

∫ x2(s+u1)+t1

0

ds4
s4 − x2u1

× fi/N1(x1(s4), µf) fj/N2(x2, µf)Cij(s4, ŝ
′,−ŝ′ − û′1, û′1, mt, µf) . (6.60)

We have changed variables from x2 or x1 to s4 in the two equations, respectively, by using
Eq. (6.4). We find

x1(s4) =
s4 − x2u1
x2s + t1

, x2(s4) =
s4 − x1t1
x1s+ u1

. (6.61)

Finally, we drop all dependence on s4 in the hard-scattering kernels by using

t̂′1 = t̂1 = x1t1 , ŝ′ = x1x2(0)s (6.62)

in (6.59), and

û′1 = û1 = x2u1 , ŝ′ = x1(0)x2s (6.63)

in (6.60). It is easy to see that with this choice σt and σu are not necessarily the same,
although the difference is power suppressed. We take the average of the two as the final
result for the differential cross section:

d2σ

dpTdy
=

1

2

[
d2σt

dpTdy
+

d2σu

dpTdy

]
. (6.64)

Finally we integrate over the double-differential distribution in Eq. (6.64) to get the total
cross section in 1PI kinematics.
We employ PIMSCET and 1PISCET kinematic schemes described in [96]; these schemes also

include, on top of contributions which are singular in the soft limit, NNLO terms which
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are regular in the z → 1 (PIMSCET) or s4 → 0 (1PISCET) limit and which naturally arise
from the SCET formalism. Obviously, those terms do not represent the complete part of
the NNLO cross section which is regular in the soft limit, since this quantity can only be
obtained with a full calculation of this observable at NNLO accuracy. However, as shown
in [9,10], the regular terms appearing in the PIMSCET and 1PISCET kinematic approach arise
from the exact definition of the soft gluon emission energy and they improve the agreement
between exact and approximate formulas at NLO.
We present results which are obtained by averaging the ones obtained in the two kine-

matic schemes that we consider. We also adopt a conservative approach and consider
the difference between the predictions in the two kinematic schemes as an estimate of the
theoretical uncertainty associated with the use of approximate NNLO formulas. This is
justified by the fact that the two schemes neglect different power suppressed terms which
are formally subleading but which can nevertheless have a noticeable numerical impact
on the total cross section. To account for this uncertainty, the scale variation of the to-
tal cross section is obtained by setting the renormalization and factorization scales equal,
µR = µf = µ, and by varying this common scale, in both kinematic schemes, between
mt̃1/2 < µ < 2mt̃1 . We then look at the difference between the largest and smallest values
obtained. In summary, the central value and perturbative uncertainties for the combined
results at approximate NNLO accuracy are determined by employing the following defini-
tions

σ =
1

2
(σPIM + σ1PI) ,

∆σ+ = max
{
σPIM +∆σ+

PIM, σ1PI +∆σ+
1PI

}
− σ ,

∆σ− = min
{
σPIM +∆σ−

PIM
, σ1PI +∆σ−

1PI

}
− σ , (6.65)

where the subscripts 1PI and PIM indicate that the corresponding quantities are evaluated
in 1PISCET and PIMSCET kinematics, respectively, including the full set of NLO corrections
and the contribution of the NNLO terms present in the approximate formulas for that
scheme. Being more explicit, to obtain approximate NNLO results in fixed-order for both
PIM and 1PI kinematics, we compute

σNNLO, approx
k = σNLO + σ

(2), approx
k (6.66)

where k ∈ {PIM, 1PI} and σ
(2), approx
k is the approximate NNLO correction coming from

the coefficient C
(2)
PIM in Eq. (6.19) for PIM kinematics and from C

(2)
1PI in Eq. (6.28) for 1PI.

As it will been shown later, the total cross section is strongly dependent on the mass
of the produced particle, mt̃1 . Moreover, similarly to the slepton-pair production case,
the dependence of the total cross section on the SUSY parameters other than the mass
of the produced particles is relatively small. In order to show this behavior we fix the
value of the stop mass equal to mt̃1 = 1087.17 GeV, accordingly to the SUSY benchmark
point 40.2.5 in [95], listed in Table 6.1, and we give the predictions for the total cross
section for three different sets of the remaining SUSY parameters. The first set of SUSY
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parameters is the benchmark point 40.2.5. We refer to the second set of SUSY parameters
as “double”, where we choose mt̃2 = 2639.74 GeV, mq̃ = 2920.61 GeV, mg̃ = 2979.96 GeV,
α = 136.8◦ in an arbitrary way as the double of the corresponding values of the benchmark
point 40.2.5, the remaining parameters are set equal to the ones in Table 6.1. We refer
to the third SUSY set of parameters as “half” where we choose mt̃2 = 659.93 GeV, mq̃ =
730.15 GeV, mg̃ = 744.99 GeV, α = 34.2◦. In Table 6.6 we report the values of the
total cross sections, with the relative scale uncertainty, for the three different sets of SUSY
parameters discussed above. We observe that the numerical values are considerably close
to each other nonetheless the input parameters were chosen at the boundaries of very broad
intervals.

LHC 14 TeV MSTW2008

SUSY point mt̃1 [GeV] 1087.17

40.2.5 (σ ±∆σµ)NLO [pb] 44.2+4.9
−6.0 × 10−4

“double” (σ ±∆σµ)NLO [pb] 44.5+5.1
−6.1 × 10−4

“half” (σ ±∆σµ)NLO [pb] 42.4+4.0
−5.4 × 10−4

40.2.5 (σ ±∆σµ)approx.NNLO [pb] 44.3+1.3
−2.2 × 10−4

“double” (σ ±∆σµ)approx.NNLO [pb] 44.7+1.3
−2.3 × 10−4

“half” (σ ±∆σµ)approx.NNLO [pb] 42.3+0.6
−1.8 × 10−4

Table 6.2.: Stop-pair production cross sections at the LHC 14 TeV for three different sets
of the SUSY parameters described in the text. The stop mass is fixed to mt̃1 =
1087.17 GeV. The numbers are obtained by using MSTW2008 PDFs.

From now on in all of the plots and tables we fix the SUSY parameters to the values
corresponding to the benchmark point 40.2.5 in Table 6.1. The mass of the lightest stop
follows this rule, except in the figures in which we plot the cross section as a function of
the stop mass or when a different choice of the stop mass is explicitly indicated.
All of the numbers and plots are obtained by means of an in-house Fortran code in which

the approximate NNLO formulas are implemented. The NLO calculations, which are one
of the elements needed to obtain predictions at approximate NNLO accuracy, are carried
out by modifying the public version of Prospino [74].
As a first step, we compare the full NLO cross section with the approximate NLO cross

section given by the leading singular terms. In the approximate NLO results we keep all
of the terms proportional to δ(1 − z) (PIMSCET) and δ(s4) (1PISCET) which arise from the
NLO hard and soft functions. The purpose of this comparison is to establish to what
extent the leading terms in the threshold approximation reproduce the full cross section,
or, in other words, if the dynamical threshold enhancement of the soft emission region
takes place. This comparison is shown in Fig. 6.3, for the case of a hadronic center of
mass energy of 8 TeV. The two lines in the figure refer to two different choices of the PDF
set. NLO PDFs are employed in all of the four panels. One observes that the average
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Figure 6.3.: Comparison of the full NLO cross section with the approximate NLO one. All
panels refer to the LHC with a hadronic center of mass energy of 8 TeV. The
first and second row employ CT10 and MSTW2008 NLO PDFs, respectively.
The left and right columns show different ranges in the stop mass.

of the approximate PIM and 1PI NLO formulas reproduces very well the band obtained
by varying the factorization scale, put equal to the renormalization scale, in the full NLO
result. Similarly, it is reasonable to expect that the approximate NNLO formulas reproduce
to a good extent the unknown full NNLO corrections.
We now turn to the discussion of the approximate NNLO results. Before commenting on

the approximate NNLO predictions, we recall that the approximate NNLO formulas do not
include the terms proportional to the Dirac delta functions with arguments 1−z (PIMSCET)
or s4 (1PISCET) arising from the NNLO hard functions, since the scale independent parts
of the NNLO hard functions are unknown.
As expected, the approximate NNLO predictions for the pair production cross section

show a smaller scale dependence than the NLO calculations of the same quantity. This
is illustrated in Fig. 6.4, where two different LHC center of mass energies (8 TeV and
14 TeV) and two different stop quark masses (mt̃1 = 500 GeV and mt̃1 = 1087.17 GeV)
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Figure 6.4.: Scale dependence of the NLO and approximate NNLO cross sections. The left
panels refer to the production of a top-squark of mass mt̃1 = 500 GeV, the
right panels refer to the case mt̃1 = 1087.17 GeV. The two figures in the first
row are obtained for LHC at

√
s = 8 TeV, the ones in the second row refer to

the case
√
s = 14 TeV. All of the SUSY parameters other than mt̃1 are fixed

at the values of the benchmark point 40.2.5 [95].

are considered. In order to show the effect of the approximate NNLO corrections on the
scale dependence, both the NLO and approximate NNLO curves are plotted by using
MSTW2008 NLO PDFs. It is important to stress that what is here referred to as approxi-
mate NNLO scale uncertainty reflects in reality also a kinematic scheme uncertainty, which
is associated to the different sets of non-singular terms which are neglected in 1PISCET and
PIMSCET kinematics.

A more precise assessment of the impact of the approximate NNLO corrections on the
central value of the cross section and on the associated perturbative uncertainty can be
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LHC 7 TeV MSTW2008

mt̃1 [GeV] 500 1087.17

(σ ±∆σµ ±∆pdf)LO [pb] 34.4+15.8+3.8
−10.0−3.6 × 10−3 38.8+19.7+10.4

−12.1−8.2 × 10−6

(σ ±∆σµ ±∆pdf+αs)NLO [pb] 46.2+6.1+6.6
−7.0−5.3 × 10−3 49.6+8.0+15.2

−8.7−10.5 × 10−6

(σ ±∆σµ ±∆pdf+αs)approx.NNLO [pb] 46.2+1.7+8.0
−2.9−5.9 × 10−3 52.8+1.4+25.8

−3.6−12.1 × 10−6

KNLO 1.34 1.28

Kapprox.NNLO 1.34 1.36

Table 6.3.: Stop-pair production cross section for two different values ofmt̃1 at LHC 7 TeV.
The numbers are obtained by using MSTW2008 PDFs. Here and in the follow-
ing tables, all of the SUSY parameters (with the exception of mt̃1) are fixed at
the values prescribed by the benchmark point 40.2.5 [95].

LHC 7 TeV CT10

mt̃1 [GeV] 500 1087.17

(σ ±∆σµ ±∆pdf+αs)LO [pb] 30.1+12.2+7.1
−8.1−5.1 × 10−3 36.7+17.9+30.7

−11.3−13.4 × 10−6

(σ ±∆σµ ±∆pdf+αs)NLO [pb] 45.3+5.8+11.0
−6.6−8.1 × 10−3 58.4+9.3+49.9

−10.2−22.4 × 10−6

(σ ±∆σµ ±∆pdf+αs)approx.NNLO [pb] 46.7+1.7+11.6
−2.9−8.3 × 10−3 51.7+1.1+34.1

−3.6−18.6 × 10−6

KNLO 1.50 1.59

Kapprox.NNLO 1.55 1.41

Table 6.4.: Stop-pair production cross section for two different values ofmt̃1 at LHC 7 TeV.
The numbers are obtained by using CT10 PDFs.

obtained by comparing predictions for fixed values of the stop mass. This analysis is
presented in Tables 6.3 and 6.4, which refer to the LHC at a center of mass energy of
7 TeV, in Tables 6.5 and 6.6, which refer to the LHC with a center of mass energy of 8 TeV,
and in Tables 6.7 and 6.8, which refer to the LHC with a center of mass energy of 14 TeV.
In all tables we consider two different values of the lightest top-squark mass: i) the value
associated to the benchmark point 40.2.5, mt̃1 = 1087.17 GeV, and ii) a stop mass close
to the current lower bounds for this particle, mt̃1 = 500 GeV, as determined by searches
at the LHC. In all tables, the first uncertainty refers to the scale variation as explained
above, while the second uncertainty is obtained by scanning over the 90 % CL PDF sets
of the corresponding PDFs and by taking into account the error on αs(mZ). The numbers
for the cross section have been obtained by employing PDFs fitted at the corresponding
order: LO predictions are obtained by employing LO PDFs, NLO predictions employ NLO
PDFs, and approximate NNLO predictions employ NNLO PDFs.
In all cases listed in the tables, the inclusion of the approximate NNLO corrections

reduces the perturbative uncertainty, when expressed as a percentage of the central value,
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LHC 8 TeV MSTW2008

mt̃1 [GeV] 500 1087.17

(σ ±∆σµ ±∆pdf)LO [pb] 61.7+27.3+6.1
−17.5−6.0 × 10−3 11.5+5.6+2.5

−3.5−2.1 × 10−5

(σ ±∆σµ ±∆pdf+αs)NLO [pb] 83.4+10.5+10.6
−12.2−8.8 × 10−3 14.7+2.1+3.7

−2.5−2.8 × 10−5

(σ ±∆σµ ±∆pdf+αs)approx.NNLO [pb] 83.2+3.3+12.6
−4.9−9.9 × 10−3 15.3+0.3+5.8

−1.0−3.0 × 10−5

KNLO 1.35 1.29

Kapprox.NNLO 1.35 1.34

Table 6.5.: Stop-pair production cross section for two different values ofmt̃1 at LHC 8 TeV.
The numbers are obtained by using MSTW2008 PDFs.

LHC 8 TeV CT10

mt̃1 [GeV] 500 1087.17

(σ ±∆σµ ±∆pdf+αs)LO [pb] 54.0+21.2+11.0
−14.2−8.3 × 10−3 10.6+4.8+6.6

−3.1−3.2 × 10−5

(σ ±∆σµ ±∆pdf+αs)NLO [pb] 80.9+9.8+16.6
−11.4−13.1 × 10−3 16.5+2.3+10.4

−2.7−5.3 × 10−5

(σ ±∆σµ ±∆pdf+αs)approx.NNLO [pb] 83.6+3.6+19.0
−4.8−12.3 × 10−3 15.2+0.3+8.1

−1.0−4.7 × 10−5

KNLO 1.50 1.56

Kapprox.NNLO 1.55 1.44

Table 6.6.: Stop-pair production cross section for two different values ofmt̃1 at LHC 8 TeV.
The numbers are obtained by using CT10 PDFs.

by more than a factor of 2 with respect to the corresponding NLO prediction. We can
summarize the content of the tables as follows: the scale variation in the range mt̃1/2 ≤
µ ≤ 2mt̃1 can increase the NLO central value up to +[11, 16]% or lower it up to −[13, 18]%.
At approximate NNLO, the scale variation can increase the cross section central value up
to +[2, 5]% or decrease it up to −[5, 7]%. These considerations are valid both when one
employs CT10 PDFs or MSTW2008 PDFs.
In almost all cases illustrated in the tables, the PDF and αs uncertainty grows marginally

in the approximate NNLO predictions with respect to the NLO predictions. Another way
to look at the PDF and αs uncertainty in shown in Fig. 6.5, where this uncertainty band
is plotted as function of the top-squark mass in the range mt̃1 ∈ [200, 2000] GeV at the
LHC with center of mass energy of 8 TeV. The left panel refers to the case in which CT10
PDFs are employed, while the right panel refers to the case in which the PDFs employed
are MSTW2008. One sees that both bands become larger for large stop masses. The
approximate NNLO band in the left panel is almost everywhere inside the NLO band, while
in the right panel the approximate NNLO band is larger than the NLO band. However,
the bands obtained by using CT10 PDFs remain larger than the ones obtained when using
MSTW2008 PDFs.

123



6. Approximate NNLO formulas for stop-pair production

LHC 14 TeV MSTW2008

mt̃1 [GeV] 500 1087.17

(σ ±∆σµ ±∆pdf)LO [pb] 48.3+18.4+3.3
−12.4−3.4 × 10−2 33.5+13.8+3.7

−9.1−3.6 × 10−4

(σ ±∆σµ ±∆pdf+αs)NLO [pb] 66.4+7.7+6.2
−8.5−5.2 × 10−2 44.2+4.9+6.4

−6.0−5.1 × 10−4

(σ ±∆σµ ±∆pdf+αs)approx.NNLO [pb] 65.7+3.3+6.5
−3.4−6.2 × 10−2 44.3+1.3+7.8

−2.2−5.4 × 10−4

KNLO 1.38 1.32

Kapprox.NNLO 1.36 1.32

Table 6.7.: Stop-pair production cross section for two different values ofmt̃1 at LHC 14 TeV.
The numbers are obtained by using MSTW2008 PDFs.

LHC 14 TeV CT10

mt̃1 [GeV] 500 1087.17

(σ ±∆σµ ±∆pdf+αs)LO [pb] 42.6+14.4+5.0
−10.1−4.3 × 10−2 30.1+11.3+7.8

−7.7−5.2 × 10−4

(σ ±∆σµ ±∆pdf+αs)NLO [pb] 63.2+7.0+7.6
−7.8−6.6 × 10−2 44.11+4.8+11.7

−5.8−8.1 × 10−4

(σ ±∆σµ ±∆pdf+αs)approx.NNLO [pb] 65.9+3.4+8.2
−3.4−6.6 × 10−2 44.6+1.3+12.1

−2.1−7.8 × 10−4

KNLO 1.48 1.47

Kapprox.NNLO 1.55 1.48

Table 6.8.: Stop-pair production cross section for two different values ofmt̃1 at LHC 14 TeV.
The numbers are obtained by using CT10 PDFs.

The tables also include the values for the NLO and approximate NNLO K factors, which
are both normalized to the LO cross section:

KNLO =
σNLO

σLO
, Kapprox.NNLO =

σapprox.NNLO

σLO
. (6.67)

The NLO K factors tend to be slightly larger when CT10 PDFs rather than MSTW2008
PDFs are employed (roughly 1.5 vs 1.3), but they are not very sensitive to the collider
center of mass energy or to the mass of the top-squark. The ratioKapprox.NNLO/KNLO ranges
from 0.88 to 1.06, therefore the approximate NNLO corrections have only a moderate
impact on the central value of the NLO cross section.2 For top-squark masses smaller than
∼ 1 TeV, the central value for the approximate NNLO cross section falls well within the
NLO scale uncertainty band.
Finally, Figs. 6.7 and 6.6 show the cross section as a function of the top-squark mass up

to mt̃1 = 2 TeV for the LHC at 7, 8 and 14 TeV center of mass energy. In all cases, the
bands represent the residual perturbative scale uncertainties, obtained as explained above.

2In this numerical analysis we use NNLO PDFs together with our approximate NNLO results for the hard
scattering kernels. One could also make a different choice and use NLO PDFs with the approximate
NNLO formulas, in that case the impact on the central value of our predictions would be bigger.
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6. Approximate NNLO formulas for stop-pair production

In Fig. 6.7 we employ CT10 PDFs; one sees that, for large values of the stop mass, the
approximate NNLO band is below the NLO band at 7 and 8 TeV center of mass energy,
while, for the LHC at 14 TeV, the approximate NNLO band overlaps with the lower part
of the NLO band. As a comparison, just for the LHC 8 TeV, in Fig. 6.6 MSTW2008 PDFs
are employed. In this case, for large stop masses, the approximate NNLO scale uncertainty
bands tend to be slightly above the NLO bands.

Figure 6.5.: PDF+αs uncertainty on the total stop production cross section at the LHC
with center of mass energy of 8 TeV.

Figure 6.6.: Mass scans with MSTW2008 PDFs for the LHC at 8 TeV center of mass
energy. The bands represent the perturbative scale uncertainty at NLO and
NNLO.
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6. Approximate NNLO formulas for stop-pair production

Figure 6.7.: Mass scans with CT10 PDFs for the LHC at 7, 8, and 14 TeV center of mass
energies. The bands represent the perturbative scale uncertainty at NLO and
NNLO.
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7. Conclusions

Supersymmetry is certainly one of the best motivated scenarios for physics beyond the
SM. If supersymmetry is broken just above the electroweak scale, the supersymmetric
partners of the known SM particles are expected to have masses of the order of 1 TeV,
and they could soon be observed at the LHC. For these reasons it is important to have
precise theoretical predictions for the production cross sections of supersymmetric particles
at hadron colliders. In this thesis we have used effective field theory techniques to improve
upon existing calculations for slepton-pair production and stop-pair production by studying
higher-order perturbative corrections. Both of these processes are interesting and have a
number of positive discovery features. Sleptons are expected to be among the lightest
supersymmetric particles and, for a wide range of SUSY scenarios, they have a very simple
decay signature, consisting of a pair of energetic leptons plus missing energy. Top-squarks
are expected to be the lightest colored supersymmetric particles, and, for this reason, they
are likely to be abundantly produced at the LHC. Therefore, top-squarks might be the
most accessible supersymmetric particles in the near future.
We have given an introduction to supersymmetry. We discussed the basic formalism and

the construction of generic supersymmetric Lagrangians for chiral and vector superfields.
We also discussed the particle content and interactions of the MSSM. We have also given a
detailed introduction to SCET, first studying the scalar case and then generalizing the con-
struction to QCD. We also reviewed the main ingredients of factorization and resummation
in the effective theory by analyzing the relevant theorems for the Drell-Yan process. With
the aim of obtaining accurate predictions by taking into account the effects of soft-gluon
resummation, we have analyzed the slepton-pair production cross sections at the Tevatron
and LHC, together with the related cross section for the Drell-Yan production of a lepton
pair. This was done using methods of effective field theory, which allow us to perform the
resummation directly in momentum space. The factorized cross sections in the partonic
threshold region are expressed in terms of Wilson coefficiens of SCET operators. Solving
the RG equations obeyed by these operators allowed us to resum the large logarithms
arising due to soft gluon emissions to all orders in the strong coupling constant.
We have extended the results available in literature in various directions. For the Drell-

Yan process, we have calculated the effect of virtual SUSY QCD corrections at one-loop
order. In the case of slepton-pair production, we have extended previous results by per-
forming the resummation up to the N3LL level. Moreover, given the fact that we perform
the resummation not in Mellin moment space but directly in momentum space, our results
constitute an independent estimation of soft-gluon effects. We have provided a detailed
phenomenological analysis, presenting results valid for the Tevatron and for the LHC. We
find that the SUSY QCD corrections due to the exchange of squark and gluinos are very
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small in comparison to the associated SM QCD corrections, and also in comparison to
the uncertainties in the perturbative calculations. It would therefore be challenging if not
impossible to observe the effects of virtual SUSY particles in the Drell-Yan rapidity and
invariant mass distributions. We have found that soft-gluon resummation has a small effect
on the total cross sections for slepton-pair production, ranging from 7% at the Tevatron to
3% at the LHC for a slepton mass of 180GeV. This is a consequence of the fact that resum-
mation effects are important only for large values of the invariant mass, corresponding to
a region where the invariant-mass distribution is very small and gives a tiny contribution
to the total cross section. Resummation is therefore more important for colliders where
τ = M2/s is larger, i.e. the Tevatron, or for higher slepton masses. On the other hand, it
still proves useful for the reduction of the theoretical uncertainty due to scale variations.
We find that the scale uncertainty is reduced by about a factor of two when going from the
fixed-order NLO calculation to the N3LL+NLO result. The dominant uncertainties then
arise from other sources, such as the imperfect knowledge of the PDFs, the parameters of
the SUSY spectrum and the Monte-Carlo modeling of the experimental acceptances for
these SUSY final states.
We have studied the total stop-pair production cross section at the LHC, including

higher order perturbative corrections, in two different kinematic schemes, PIM and 1PI.
We carried out the calculation of the hard function matrices for stop-pair production up to
NLO. By combining the NLO hard and soft functions together with the relative anomalous
dimensions, we were able to resum soft gluon emissions to NNLL order. In particular by
re-expanding the resummed formula, it was possible to obtain expressions for the cross
section which are valid up to O(α4

s) in fixed-order perturbation theory. These results
allowed us to obtain analytic expressions for all of the coefficients multiplying the singular
plus distributions in the variables (1− z) and s4 up to NNLO order in the hard-scattering
kernels, depending on the kinematic scheme. In order to obtain better predictions and
better control over the subleading terms in the total cross section, we have presented
results obtained by averaging the ones in PIM and 1PI kinematics. We finally matched
our results in the threshold regions with the exact fixed-order NLO results. As in the
slepton case, it was shown that the total cross section depends strongly on the mass of the
produced particles. On the contrary, the dependence on the SUSY virtual parameters is
relatively weak. We have found that the inclusion of the approximate NNLO corrections
for the pair production cross section reduces the perturbative uncertainty, due to scale
dependence, by more than a factor two relative to the fixed-order NLO results. We recall
that, in our approach, the scale uncertainty also reflects a kinematic scheme uncertainty.
It turned out that, in our analysis, the ratio Kapprox.NNLO/KNLO ranged from 0.88 to 1.06,
which implies that the NNLO corrections have only a moderate impact on the central value
of the total NLO cross section. Moreover, for top-squark masses smaller than ∼ 1 TeV,
the central value for the approximate NNLO cross section falls well within the NLO scale
uncertainty band. We conclude by noting that the main theoretical uncertainties for stop-
pair production, after the inclusion of the approximate NNLO corrections, come from
the large uncertainties on the PDFs, especially when larger values of the stop mass are
considered.
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A. Appendix

A.1. One-Loop Integrals

In this Appendix we collect some details concerning the explicit calculation of the loop
integrals discussed in sections 3.2 and 4.

A.1.1. Integral Ih

In order to obtain the result in Eq. (3.34) for the integral Ih, we start by applying the
Feynman parameterization

1

abc
= 2

∫ 1

0

dx

∫ x

0

dy
1

[ay + b(x− y) + c(1− x)]3
, (A.1)

to the integral in Eq. (3.33). We then obtain

Ih = iπ−d/2µ4−d
∫
ddk

1

k2 (k2 + 2k− · l+) (k2 + 2k+ · p−)
,

= iπ−d/2µ4−d
∫ 1

0

dx

∫ x

0

dy

∫
ddk

2

χ3(x, y, k)
, (A.2)

where

χ3(x, y, k) = (k2 + 2k+ · p−)y + k2(x− y) + (k2 + 2k− · l+)(1− x) ,

= k2 + 2k · [py + l(1− x)] +O(λ) . (A.3)

The integral over the virtual momentum can be evaluated by employing the formula

∫
ddk

1

(k2 + 2k ·Q−M2)α
= (−1)α iπ

d
2

(M2 +Q2)α−
d
2

Γ
(
α− d

2

)

Γ (α)
. (A.4)

In this one finds
∫
ddk

1

χ3(x, y, k)
= −iπ

d
2

2
Γ

(
3− d

2

)
V

d
2
−3 (x, y) , (A.5)

with

V (x, y) = p2y + l2(1− x) + 2p · ly(1− x) = 2l+ · p−y(1− x) +O(λ2) . (A.6)
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Therefore, after rewriting the spacetime dimension as d = 4− 2ε, the integral Ih becomes

Ih =
Γ(1 + ε)

2l+ · p−

(
µ2

2l+ · p−

)ε ∫ 1

0

dx

∫ x

0

dy
1

[y(1− x)]1+ε . (A.7)

The integral over the Feynman parameters x and y gives

∫ 1

0

dx

∫ x

0

dy
1

[y(1− x)]1+ε = −1
ε

∫ 1

0

dxx−ε(1− x)−1−ε ,

= −1
ε

Γ(1− ε)Γ(−ε)
Γ(1− 2ε)

=
Γ2(−ε)

Γ(1− 2ε)
. (A.8)

By inserting the equation above in Eq.(A.7) one obtains Eq. (3.34) .

A.1.2. Integral Ic

In this appendix we evaluate the soft region integral in Eq. (3.36). We employ the following
parametrization of the integrand

1

abc
=

∫ ∞

0

dx1

∫ ∞

0

dx2
2

(a+ bx1 + cx2)3
, (A.9)

where we identify the denominators as follows: a = k2, c = 2l+ · k, and b = (k + p)2. In
this way one finds that

Ic = iπ−
d
2µ4−d

∫ ∞

0

dx1

∫ ∞

0

dx2

∫
ddk

2

[(1 + x1) (k2 + 2k · V −M2)]3
, (A.10)

with

V µ =
x1p

µ + x2l
µ
+

(1 + x1)
, M2 =

−x1p2
(1 + x1)

. (A.11)

At this stage it is possible to evaluate the integral over the virtual momentum by employing
the master formula Eq. (A.4); in this way one finds

Ic = µ2εΓ (1 + ε)

∫ ∞

0

dx1
1

(1 + x1)3

∫ ∞

0

dx2

(
P 2x1 + 2l+ · p−x1x2

(1 + x1)2

)−1−ε

= µ2εΓ (1 + ε)

∫ ∞

0

dx1
x−1−ε1

(1 + x1)1−2ε

∫ ∞

0

dx2
(
P 2 + 2l+ · p−x2

)−1−ε
, (A.12)

where p2 = −P 2. The integrals over x1 and x2 factor and one finds

Ic = µ2εΓ (1 + ε)P−2−2ε
Γ(1− ε)Γ(−ε)

Γ(1− 2ε)

∫ ∞

0

dx2 (1 + rx2)
−1−ε , (A.13)
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with r = 2l+ · p−/P 2. By replacing x2 → x′2/r one finds

Ic =

(
µ2

P 2

)ε
Γ (1 + ε)

2l+ · p−
Γ(1− ε)Γ(−ε)

Γ(1− 2ε)

∫ ∞

0

dx′2 (1 + x′2)
−1−ε

=

(
µ2

P 2

)ε
Γ (1 + ε)

2l+ · p−
Γ(1− ε)Γ(−ε)
εΓ(1− 2ε)

= −Γ (1 + ε)

2l+ · p−
Γ2(−ε)

Γ(1− 2ε)

(
µ2

P 2

)ε

, (A.14)

which is the result found in Eq. (3.36).

A.1.3. Integral Is

In this appendix we evaluate the soft region integral in Eq. (3.38). As a first step we apply
the Feynman parametrization in Eq. (A.9). By choosing a = k2, b = 2l+ · k + l2, and
c = 2p− · k + p2, the denominator of the integrand of Eq. (A.9) becomes

a+ bx1 + cx2 = k2 + 2k · (p−x1 + l+x2) + p2x1 + l2x2 . (A.15)

It is now possible to integrate over the virtual momentum by employing the master formula
in Eq. (A.4) so that one finds

Is = µ4−dΓ

(
3− d

2

)∫ ∞

0

dx1

∫ ∞

0

dx2
(
x1P

2 + x2L
2 + 2l+ · p−x1x2

) d
2
−α

, (A.16)

where P 2 = −p2 and L2 = −l2. To complete the evaluation of the integral we need to resort
to a series of changes of variables. One starts by replacing x1 → x′1/P

2 and x2 → x′2/L
2;

in this way the integral becomes (neglecting the prime superscript)

Is = µ2εΓ (1 + ε)

P 2L2

∫ ∞

0

dx1

∫ ∞

0

dx2 (x1 + x2 + ax1x2)
−1−ε , (A.17)

with a = 2l+ · p−/(P 2L2). It is now convenient to separate the integration variables; we
send x2 → x1x

′
2 to obtain

Is = µ2εΓ (1 + ε)

P 2L2

∫ ∞

0

dx1

∫ ∞

0

dx2x
−ε
1 (1 + x2 + ax1x2)

−1−ε . (A.18)

Then, we replace x2 → x′2/(1 + ax1); in this way one finds

Is = µ2εΓ (1 + ε)

P 2L2

∫ ∞

0

dx1
x−ε1

1 + ax1

∫ ∞

0

dx2 (1 + x2)
−1−ε ; (A.19)
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the two integrals are now factored. To complete the calculation we replace x1 → x′1/a to
obtain

Is = µ2εΓ (1 + ε)

P 2L2
a−1+ε

∫ ∞

0

dx1
x−ε1

1 + x1︸ ︷︷ ︸
=Γ(1−ε)Γ(ε)

∫ ∞

0

dx2 (1 + x2)
−1−ε

︸ ︷︷ ︸
= 1

ε

. (A.20)

Finally, one finds

Is =
Γ (1 + ε)

P 2L2

(
P 2L2

2l+ · p−

)(
2l+ · p−µ2

P 2L2

)ε
(−ε)Γ(ε)Γ(−ε)

ε
(A.21)

= −Γ (1 + ε)

2l+ · p−
Γ(ε)Γ(−ε)

(
2l+ · p−µ2

P 2L2

)ε

, (A.22)

which is the result in Eq. (3.38).
If the external legs are set on-shell at the beginning of the calculation (p2 = l2 = 0) the

integral vanishes, even if p · l 6= 0. This can be readily proved by setting p2 = l2 = 0 in
Eq. (A.16). By doing this one obtains

Is
(
p2 = 0, l2 = 0

)
= µ2εΓ (1 + ε)

∫ ∞

0

dx1

∫ ∞

0

dx2 (2l+ · p−)−1−ε (x1x2)−1−ε , (A.23)

where the two integrals in x1 and x2 factorize. It is now sufficient to prove that one of the
two integrals vanishes. Let us consider the x1 integration:

∫ ∞

0

dx1
1

x1+ε
, (A.24)

it develops an ultraviolet divergence for ε < 0 and an infrared divergence for ε > 0. In
order to give a mathematical meaning to this integral we split the integration region into
two parts using a regulator Λ: the infrared region for x1 < Λ and the ultraviolet region for
x1 > Λ: ∫ ∞

0

dx1
1

x1+ε
=

∫ Λ

0

dx1
1

x1+ε
+

∫ ∞

Λ

dx1
1

x1+ε
. (A.25)

On the r.h.s. the first integral is convergent for ε < 0, while the second one is convergent
for ε > 0. To distinguish the nature of the two divergencies we can use two different
regulators in the two different regions, by working out the integration for εI < 0 and for
εU > 0 we find ∫ ∞

0

dx1
1

x1+ε
= −Λ

−εI

εI
+

Λ−εU

εU
, (A.26)

where both integrals develop poles for εI = εU = 0. The r.h.s. can be analytically continued
for arbitrary values of εI and εU without any constraint, therefore we are free to identify εI
and εU. As a consequence of this, the integral in Eq. (A.26) vanishes. Another interesting
way of proving that ∫

ddk
1

k2(k · p1)(k · p2)
= 0 , (A.27)
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for any p1, p2 involves integration by parts identities. One starts from the fact that in
dimensional regularization

∫
ddk

∂

∂kµ
vµ

k2(k · p1)(k · p2)
= 0 , (A.28)

for any vµ. By choosing vµ = kµ applying the derivative to the integrand one obtains

0 =

∫
ddk

[
d− 4

(k2)(k · p1)(k · p2)

]
. (A.29)

Since in dimensional regularization one works in d 6= 4 (and then one takes the limit ε→ 0)
the relation above implies Eq. (A.27).

A.1.4. Soft Function in Position Space

In this appendix we descibe the calculation of the Drell-Yan soft function ŴDY(x, µf)

directly in position space. ŴDY(x, µf) can be expressed as a closed Wilson loop1 by the
product of the soft Wilson lines in the two currents:

ŴDY(x, µf) =
1

Nc
Tr 〈0|T̄

(
S†n (x)Sn̄ (x)

)
T
(
S†n̄ (0)Sn (0)

)
|0〉 ,

= 〈0|P exp
(
ig

∫

CDY

dyµA
µ(y)

)
|0〉 , (A.30)

where the trace is over color indices andT, T are the time and anti-time ordering operators.
We then expand the P ordered exponential in Eq. (A.30) as

ŴDY(x, µf) = 1 +
1

2
(ig)2CF

∫

CDY

dxµ1

∫

CDY

dxν2 Dµν(x1 − x2) , (A.31)

where Dµν(x1 − x2) is the cut gluon propagator. At order αs, the Wilson loop ŴDY(y, µf)
require the evaluation of the one-loop diagram shown in Fig. (4.1), plus the corresponding
diagram in which the gluon is attached to the other two lines. Using the Feynman rule
for the cut gluon propagator in position space2, we evaluate the contribution of the two

1This can be easily seen using the definition of the soft Wilson line

Sn(x) = 〈0|P exp
[
i

∫ 0

−∞
ds n · As(x+ sn)

]
|0〉 ,

where P indicates the path ordering of the color matrices.
2 The cut propagator Dµν(x) = −gµνD(x) is definded in position space as

D(x) =

∫
ddk

(2π)d
e−ikx2πθ(k0)δ(k

2) =
Γ(d/2− 1)

4πd/2
[−2(x+ − i0)(x− − i0)]1−d/2
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diagrams and we find

ŴDY(x, µf ) = 1 + 4g2µ2εCF

∫ 0

−∞
dt1

∫ ∞

0

dt2
Γ(1− ε)
4π2−ε (x− nt1 − n̄t2)2ε−2 , (A.32)

Assuming that x = (x0, 0, 0, 0) we obtain the factorization of the two integrals

ŴDY(x, µf) = 1 + 4g2µ2ε CF
Γ(1− ε)
4π2−ε

∫ 0

−∞
dt1(2t1 − x0)ε−1

∫ ∞

0

dt2 (x0 − 2t2)
ε−1 . (A.33)

By replacing t1 → x0t1/2, t2 → −x0t2/2 we find

ŴDY(x, µf ) = 1− g2µ2ε CF
Γ(1− ε)
4π2−ε

∫ 0

−∞
dt1 x

ε
0(t1 − 1)ε−1

×
∫ ∞

0

dt2 x
ε
0(t2 + 1)ε−1 ,

= 1− g2µ2εCF
Γ(1− ε)
4π2−ε x2ε0

∫ −1

−∞
dt1 (t1)

ε−1
∫ ∞

1

dt2 (t2)
ε−1 ,

= 1 + CF
αs

π

Γ(1− ε)
ε2

(
−µ2x20π

)ε
. (A.34)

If we define µ2ε
MS
≡ e−εγEµ2ε

f (4π)ε it is possible to rewrite ŴDY(x, µf) in the following way:

ŴDY(x, µMS) = 1 + CF
αs

π

Γ(1− ε)
ε2

e−εγE
(
−1
4
µ2
MS
x20e

2γE

)ε

. (A.35)

A.2. Factorization of the Sudakov Form Factor in d = 6

In this Appendix we want to employ the SCET Lagrangian derived from the φ3 theory
in Section 3.3 to prove a factorization theorem for the Sudakov form factor. In four
dimensions, the analysis is complicated by the fact that the coupling constant g is not
dimensionless. To avoid this problem, we will consider the theory in six dimensions. By
writing the action of the theory in d-dimensions

S =

∫
ddx

[
1

2
∂µφ(x) ∂

µφ(x)− g

3!
φ3(x) + J(x)

]
, (A.36)

which is dimensionless when setting ~ = 1, and by looking at the kinetic term, one can see
that the mass dimension of the field is

[φ] =
d− 2

2
; [φ] = 1 in d = 4 , [φ] = 2 in d = 6 .
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Similarly, by looking at the interaction term one can determine the mass dimension of the
coupling

[g] =
6− d
2

; [g] = 1 in d = 4 , [g] = 0 in d = 6 . (A.37)

At this stage, we want to study how the various fields in the effective theory scale in
terms of powers of λ in d = 6. We consider now the two-point correlator for collinear fields3

〈φc(x)φc(0)〉 ∼
∫

d6p︸︷︷︸
λ6

e−ip·x︸ ︷︷ ︸
λ0

i

p2︸︷︷︸
λ−2

∼ λ4 , (A.38)

and conclude that the collinear fields scale as φc ∼ λ2. One can carry out the same analysis
by considering the correlator of two soft fields (in this case all of the components of the
soft momentum scale as λ2)

〈φs(x)φs(0)〉 ∼
∫

d6p︸︷︷︸
λ12

e−ip·x︸ ︷︷ ︸
λ0

i

p2︸︷︷︸
λ−4

∼ λ8 , (A.39)

so that φs ∼ λ4.
Next, we determine the scaling of each of the terms which appear in the effective La-

grangian. Keeping in mind that the scaling of the integration measure is given by the
components of x which are conjugate to p, one finds

∫
d6x 1

2
∂µφc(x) ∂

µφc(x) ∼ 1
λ6 (λλ

2)
2

= λ0 ,

∫
d6x 1

2
∂µφs(x) ∂

µφs(x) ∼ 1
λ12 (λ

2λ4)
2

= λ0 ,

− g
3!

∫
d6xφ3

c(x) ∼ 1
λ6 (λ

2)
3

= λ0 ,

− g
3!

∫
d6xφ3

s(x) ∼ 1
λ12 (λ

4)
3

= λ0 ,

−g
2

∫
d6xφ2

c(x)φs(x−) ∼ 1
λ6 (λ

2)
2
λ4 = λ2 =⇒ Suppressed .

(A.40)

The terms originating from the current operator J = φ2 scale instead as follows

∫
d6x J2(x) ∝

∫
d6xφc(x)φc̄(x) ∼

1

λ4
λ2λ2 = λ0 , (A.41)

3We remind the reader that in Eq. (A.38) p is a collinear momentum in six dimension, where the compo-
nent in the collinear direction scales as λ0, the component anti-parallel to the collinear direction scales
as λ2 (as in the four dimensional case), and the four transverse directions scale proportionally to λ.
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Combinations involving more fields are powers suppressed, as it can be seen below:
∫
d6xφ2

c(x)φc̄(x) ∼
1

λ4
(
λ2
)2
λ2 = λ2 =⇒ Suppressed ,

∫
d6xφc(x)φc̄(x)φs(x) ∼

1

λ4
(
λ2
)2
λ4 = λ4 =⇒ Suppressed . (A.42)

Observe that the integration measure in Eqs. (A.42) scales as 1/λ4 because both the plus
and minus components of xµ are of λ0, since they are conjugate to a momentum which is
a sum of l-collinear and p-collinear momenta. Therefore d6x ∼ (p⊥)

−4 ∼ λ−4.
In summary we conclude that

∫
d6xLSCET =

∫
d6x [Lc + Lc̄ + Ls] +O

(
λ2
)
, (A.43)

while for the current operator one finds
∫
d6x J(x)→

∫
d6x

∫
ds

∫
dtC(s, t, µ)φc (x+ sn̄)φc̄ (x+ tn) +O

(
λ2
)
. (A.44)

Since soft-collinear interactions are power suppressed, it is possible to obtain a factorization
theorem.
Let us consider the following correlator

G(p, l, µ) =

∫
d6x1

∫
d6x2 e

−ip·x1+il·x2〈0|T {φc(x1)J(0)φc̄(x2)} |0〉 ,

=

∫
d6x1

∫
d6x2 e

−ip·x1+il·x2

∫
ds

∫
dtC(s, t, µ)×

× 〈0|T {φc(x1)φc(sn̄)} |0〉〈0|T {φc̄(tn)φc̄(x2)} |0〉 , (A.45)

Since the soft-collinear interactions are power suppressed, the fields φc and φc̄ do not
interact whith each other. Up to power suppressed terms, we now deal with two separate
theories and the matrix element in the first line reduces to a collinear matrix element of
the φc fields times a matrix element of the φc̄ fields.
Translation invariance implies that

〈0|T {φc(x1)φc(sn̄)} |0〉 = 〈0|T {φc(x1 − sn̄)φc(0)} |0〉 , (A.46)

and a similar relation for the other time ordered product. One can then carry out the
following changes of variables in Eq. (A.45):

x1 → x1 + sn̄ , and x2 → x2 + tn , (A.47)

to obtain

G(p, l, µ) =

∫
ds

∫
dtC (s, t, µ) e−isp·n̄+itl·nJ

(
p2
)
J
(
l2
)
, (A.48)
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p l

F (Q2, L2, P 2)

=
C̃2(Q2)

J (P 2) J (L2)

+O
(
λ2
)

Figure A.1.: Diagrammatic representation of the factorization theorem for the φ3 theory
in d = 6.

with

J
(
p2, µ

)
≡

∫
d6x1 e

−ip·x1〈0|T {φc(x1)φc(0)} |0〉 ,

J
(
l2, µ

)
≡

∫
d6x2 e

il·x2〈0|T {φc̄(0)φc̄(x2)} |0〉 . (A.49)

The functions J do not depend on s and t, and therefore the integral in Eq. (A.48) factors
out. By introducing the notation

C̃2 (n̄ · p, n · l, µ) ≡
∫
ds

∫
dtC (s, t, µ) e−isp·n̄+itl·n , (A.50)

one can rewrite the three-point correlator in Eq. (A.48) as the product of three functions

G(p, l, µ) = C̃2 (n̄ · p, n · l, µ)J
(
p2, µ

)
J
(
l2, µ

)
. (A.51)

We have factorized the Green function G into a product of a hard function C̃ and two jet
functions J . The jet function can be calculated within the full theory since the collinear
Lagrangian is identical to the complete φ3 Lagrangian. The content of the factorization
theorem is summarized in diagrammatic form in Fig. A.1. The nontrivial part of the
factorization theorem is that the hard function can be calculated at p2 = l2 = 0, so that
we have managed to factor a function of three variables into a product of three functions
of a single variable. The full Sudakov form factor is split into an high-energy contribution
(the hard function), and two low-energy contributions (the jet functions).
It would be interesting to use the factorization theorem to resum Sudakov logarithms

to all orders in the coupling constant; this can be done by employing RG tools within the
effective theory. The Sudakov logarithms have the form

(
g2
)n

lnn

(
p2l2

Q4

)
,
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so there is only a single logarithm at each order in perturbation theory. This is due to the
absence of a soft contribution to the Sudakov form factor (A.51): the double logarithms
arise in the interplay of soft and collinear contributions and will be present in the QCD
case.

A.3. Wilson Lines and Gauge Transformations

In this appendix, we derive a few fundamental properties of Wilson lines. We start by
considering a generic Wilson line connecting two space-time points y and z, for an Abelian
theory such as QED. In the Abelian case, no path ordering is needed, and we will indicate
a Wilson line as

[z, y]A ≡ exp

[
−ie

∫

P

dxµAµ(x)

]
, (A.52)

where P is a path which connects y with z, and where e = −g is the Abelian coupling
constant. In most cases, we drop the subscript indicating the gauge field; however, in
the following discussion we need to carry out gauge transformations, and it is therefore
convenient to indicate explicitly which gauge field appears in the Wilson line. The Wilson
line can be rewritten as

[z, y]A = exp

[
−ie

∫ sz

sy

ds
dxµ

ds
Aµ

(
x(s)

)
]
; (A.53)

where s is a variable parameterizing the path and sy, sz are such that

y ≡ x(sy) , z ≡ x(sz) . (A.54)

The Wilson lines employed in the rest of this appendix involve paths which are straight
segments, so that

x(s) = x0 + sn̄ , and
dxµ

ds
= n̄µ . (A.55)

Moreover we typically choose sy = 0 and rewrite sz → s and x0 → 0. In this appendix
however we will consider the more general case of Wilson lines along arbitrary paths.
Under a gauge transformation V (x) = eiα(x), the field Aµ(x) transforms as

Aµ(x)→ A′µ(x) = Aµ(x) +
1

g
∂µα(x) , (A.56)

and the Wilson line changes to

[z, y]A → [z, y]A′ ,

= exp

[
−ie

∫ sz

sy

ds
dxµ

ds
Aµ

(
x(s)

)
+ i

∫ sz

sy

ds
dxµ

ds
∂µα (x(s))

]
,
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= exp

[
−ie

∫ sz

sy

ds
dxµ

ds
Aµ

(
x(s)

)
+ i

∫ sz

sy

ds
d

ds
α (x(s))

]
,

= exp

[
−ie

∫ sz

sy

ds
dxµ

ds
Aµ

(
x(s)

)
+ iα (z)− iα (y)

]
,

= V (z) [z, y]A V
†(y) . (A.57)

From the last line above it is easy to see that if y = z (closed path) the Wilson loop is
gauge invariant.
Next, we will to prove that the covariant derivative of the Wilson line along the in-

tegration path is zero. To this end, we consider an intermediate point xµ ≡ xµ(s) and
compute

dxµ

ds
Dµ [x, y]A =

dxµ

ds
(∂µ + ieAµ(x)) [x, y]A ,

= ie
dxµ

ds

[(
− d

dxµ

∫ s

sy

dt
dxν

dt
Aν(x)

)
+ Aµ(x)

]
[x, y]A ,

= ie

[(
− d

ds

∫ s

sy

dt
dxν

dt
Aν(x)

)
+
dxµ

ds
Aµ(x)

]
[x, y]A ,

= ie

[
−dx

ν

ds
Aν(x(s)) +

dxµ

ds
Aµ(x)

]
[x, y]A ,

= 0 . (A.58)

The properties shown in Eqs. (A.57), (A.58) are valid also in the non-Abelian case; as
we show below. For the Wilson lines, the only difference in the non-Abelian case is that
the exponent is matrix-valued and we therefore need to specify an ordering prescription.
The proper prescription is to define

[z, y]A = P exp

[
ig

∫ sz

sy

dxµ

ds
Ab

µ (x(s)) t
b

]
, (A.59)

where P indicates the path ordering of the integrands in such a way that an integrand
evaluated at a given value of s appears to the right of integrands evaluated at larger values
of the parameter s, while it appears to the left of integrands evaluated at smaller values
of the parameter s. In the adjoint Wilson line [z, y]†A the symbols P indicates the opposite
ordering prescription with respect to the one just described. In the following, in order to
keep the notation compact, we introduce a symbol for the argument of the integrand in
Eq. (A.59):

F (s) ≡ dxµ

ds
Ab

µ (x(s)) t
b . (A.60)
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We use boldface fonts for F to indicate that these objects are matrices. By employing the
usual series representation of the exponential

ex =
∞∑

n=0

xn

n!
, (A.61)

one can rewrite the Wilson line as

[z, y]A =
∞∑

n=0

(ig)n

n!

∫ sz

sy

ds1

∫ sz

sy

ds2 · · ·
∫ sz

sy

dsnP {F (s1)F (s2) · · ·F (sn)} . (A.62)

The path ordering prescribes that the non-commuting functions F should be ordered con-
sidering the decreasing order of the arguments. Therefore, if s1 > s2 > · · · > sn, the
product of F ’s in the integrand should be F (s1)F (s2) · · ·F (sn). The integration region in
Eq. (A.62) is a n-dimensional hypercube. It is possible to subdivide the integration region
in n! subregions, which correspond to the n! possible ordering of the elements in the set
{s1, s2, · · · , sn}. The n! integration regions are simplexes, as it is easy to see by considering
the simple case in which n = 2, sy = 0, and sz = 1; in this case

∫ 1

0

ds1

∫ 1

0

ds2P {F (s1)F (s2)} =

∫ 1

0

ds1

∫ s1

0

ds2F (s1)F (s2) +

∫ 1

0

ds2

∫ s2

0

ds2F (s2)F (s1) ,

= 2

∫ 1

0

ds1

∫ s1

0

ds2F (s1)F (s2) . (A.63)

This procedure can be generalized to the n-dimensional case, each of the integration regions
give the same contribution so that one can eliminate the path ordering and multiply by n!
each term4 in Eq. (A.62):

[z, y]A =
∞∑

n=0

(ig)n
∫ sz

sy

ds1

∫ s1

sy

ds2 · · ·
∫ sn−1

sy

dsnF (s1)F (s2) · · ·F (sn) . (A.65)

We then redefine sy ≡ s0 and sz ≡ s and we calculate the derivative of the Wilson line
with respect to s

d

ds
[x(s), x(s0)]A =

d

ds

(
1+ ig

∫ s

s0

ds1F (s1) + (ig)2
∫ s

s0

ds1

∫ s1

s0

ds2F (s1)F (s2) + · · ·
)
.

(A.66)

4 Following the same procedure, but taking into account the opposite path ordering prescription, the
adjunct Wilson line can be written as

[z, y]
†
A =

∞∑

n=0

(−ig)n
∫ sz

sy

ds1

∫ sz

s1

ds2 · · ·
∫ sz

sn−1

dsnF (s1)F (s2) · · ·F (sn) . (A.64)
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It is easy to take the derivative in each term in the r.h.s. of the equation above by observing
that for a generic function g(s)

d

ds

∫ s

s0

dtg(t) = g(s) . (A.67)

Eq. (A.66) becomes

d

ds
[x(s), x(s0)]A = (ig)F (s) + (ig)2F (s)

∫ s

s0

ds2F (s2)

+(ig)3F (s)

∫ s

s0

ds2F (s2)

∫ s2

s0

ds3F (s3) + · · · ,

= (ig)F (s) [x(s), x(s0)]A ,

= (ig)
dxµ

ds
Ab

µ (x(s)) t
b [x(s), x(s0)]A . (A.68)

It is now trivial to see that

dxµ

ds

(
∂

∂xµ
− igAb

µ (x(s)) t
b

)
[x(s), x(s0)]A =

dxµ

ds
Dµ [x(s), x(s0)]A = 0 , (A.69)

and therefore the covariant derivative of the Wilson line along the path is zero also in the
non-Abelian case. Once an initial condition is specified, this first order differential equation
determines the Wilson line. The initial condition is simply that the Wilson line of zero
length is the identity matrix [x(sy), y]A = [y, y]A = 1. The Wilson lines along the path P
from y to z is the unique solution of the differential equation in Eq. (A.69) which satisfies
the initial condition [y, y]A = 1.
Finally, we are ready to prove that also in the non-Abelian case the Wilson line trans-

forms according to Eq. (A.57) under gauge transformations. Let us define the quantity

[x, y]A′ = V (x)[x, y]AV
†(y) , (A.70)

And prove that it satisfies the differential equation (A.69) when the covariant derivative
depends on the field A′, which is the gauge transformation of the field A. In fact

dxµ

ds
Dµ(A

′)[x, y]A′ =
dxµ

ds
Dµ(A

′)V (x)[x, y]AV
†(y) ,

=
dxµ

ds
V (x)Dµ(A)V

†(x)V (x)[x, y]AV
†(y) ,

= V (x)
dxµ

ds
Dµ(A)[x, y]A′V †(y) = 0 , (A.71)

where the last equality follows from the fact that [x, y]A is the solution of Eq. (A.69). Our
proof is completed by checking that [x, y]A′ also satisfies the correct initial condition

[y, y]A′ = V (y) [y, y]A︸ ︷︷ ︸
=1

V †(y) = 1 . (A.72)
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Therefore the non-Abelian Wilson lines transform according to Eq. (A.70) under gauge
transformations.

A.4. Evolution equation for the PDFs in Laplace space

In this Appendix we derive the expression in terms of the Laplace transform for the simpli-
fied Altarelli-Parisi evolution equation in Eq. (4.31). The Laplace transform of the PDFs
was defined in Eq. (4.33). One starts by rewriting Eq. (4.31) as

dfq/N(y, µ)

d lnµ
=

∫ ȳ

0

dx̄
[
P (x)fq/N (y + x̄, µ) +O(x̄)

]
, (A.73)

where x̄ ≡ 1− x and ȳ ≡ 1− y. We are working in the limit in which ȳ → 0, therefore the
subleading terms in x̄ in the integrand can be neglected. By taking the Laplace transform
of Eq. (A.73) with respect to y one finds

df̃(τ, µ)

d lnµ
=

∫ ∞

0

dȳ exp
(
− ȳ

τeγE

)∫ ∞

0

dx̄P (x)fq/N(y + x̄, µ)θ (ȳ − x̄) . (A.74)

The Laplace transform of a convolution of two function is the product of the Laplace
transforms of the two functions; in fact, by introducing the variable z = y+ x̄, the integral
in Eq. (A.74) factors as follows

df̃q/N(τ, µ)

d lnµ
=

(∫ ∞

0

dx̄ exp
(
− x̄

τeγE

)
P (x)

)(∫ ∞

0

dz̄ exp
(
− z̄

τeγE

)
fq/N(z, µ)

)

= P̃ (τ)f̃q/N (τ, µ) . (A.75)

Finally, one needs to calculate the Laplace transform of Eq. (4.32). A convenient way of
obtaining the Laplace transform of a plus distribution is the following: one evaluates the
integral ∫ ∞

0

dx̄ exp
(
− x̄

τeγE

) 1

x̄1−λ
= eγEλΓ(λ) τλ . (A.76)

It is then possible to expand both the integrand and the r.h.s. of the equation above in the
limit of vanishing λ :

1

x̄1−λ
=

1

λ
δ(x̄) +

[
1

x̄

]

+

+ λ

[
ln x̄

x̄

]

+

+ . . . .

eγEλΓ(λ) τλ =
1

λ
+ ln τ +

1

2

(
π2

6
+ ln2 τ

)
λ+ . . . . (A.77)

It is then straightforward to conclude that

P̃ (τ) = 2CFγcusp(αs) ln τ + 2γfq(αs) . (A.78)

This proves that Eq. (4.34) is satisfied.
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A.5. Anomalous Dimensions

For the conveninence of the reader, we collect here the explicit expressions of the coefficients
of the anomalous dimensions and the QCD β-function needed for slepton-pair production
and stop-pair production.
We first define the expansion coefficients of the anomalous dimensions and QCD β-

function as

Γcusp(αs) = Γ0
αs

4π
+ Γ1

(αs

4π

)2
+ Γ2

(αs

4π

)3
+ . . . ,

β(αs) = −2αs

[
β0
αs

4π
+ β1

(αs

4π

)2
+ β2

(αs

4π

)3
+ . . .

]
, (A.79)

and similarly for the other anomalous dimensions (recall that Γcusp = CFγcusp for the qq̄
channel, and Γcusp = CAγcusp for the gg channel). In terms of these quantities, the function
aΓ is given by [3, 97]

aΓ(ν, µ) =
Γ0

2β0

{
ln
αs(µ)

αs(ν)
+

(
Γ1

Γ0
− β1
β0

)
αs(µ)− αs(ν)

4π

+

[
Γ2

Γ0
− β2
β0
− β1
β0

(
Γ1

Γ0
− β1
β0

)]
α2
s(µ)− α2

s(ν)

32π2
+ . . .

}
, (A.80)

and the result for the Sudakov factor S reads

S(ν, µ) =
Γ0

4β2
0

{
4π

αs(ν)

(
1− 1

r
− ln r

)
+

(
Γ1

Γ0
− β1
β0

)
(1− r + ln r) +

β1
2β0

ln2 r

+
αs(ν)

4π

[(
β1Γ1

β0Γ0
− β2
β0

)
(1− r + r ln r) +

(
β2
1

β2
0

− β2
β0

)
(1− r) ln r

−
(
β2
1

β2
0

− β2
β0
− β1Γ1

β0Γ0

+
Γ2

Γ0

)
(1− r)2

2

]

+

(
αs(ν)

4π

)2
[(

β1β2
β2
0

− β3
1

2β3
0

− β3
2β0

+
β1
β0

(
Γ2

Γ0
− β2
β0

+
β2
1

β2
0

− β1Γ1

β0Γ0

)
r2

2

)
ln r

+

(
Γ3

Γ0

− β3
β0

+
2β1β2
β2
0

+
β2
1

β2
0

(
Γ1

Γ0

− β1
β0

)
− β2Γ1

β0Γ0

− β1Γ2

β0Γ0

)
(1− r)3

3

+

(
3β3
4β0
− Γ3

2Γ0
+
β3
1

β3
0

− 3β2
1Γ1

4β2
0Γ0

+
β2Γ1

β0Γ0
+

β1Γ2

4β0Γ0
− 7β1β2

4β2
0

)
(1− r)2
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+

(
β1β2
β2
0

− β3
β0
− β2

1Γ1

β2
0Γ0

+
β1Γ2

β0Γ0

)
1− r
2

]
+ . . .

}
, (A.81)

where r = αs(µ)/αs(ν).
The QCD beta function up to four loops is given by

β0 =
11

3
CA −

4

3
TFnf ,

β1 =
34

3
C2

A −
20

3
CATFnf − 4CFTFnf , (A.82)

β2 =
2857

54
C3

A +

(
2C2

F −
205

9
CFCA −

1415

27
C2

A

)
TFnf +

(
44

9
CF +

158

27
CA

)
T 2
Fn

2
f ,

β3 =
149753

6
+ 3564ζ3 −

(
1078361

162
+

6508

27
ζ3

)
nf +

(
50065

162
+

6472

81
ζ3

)
n2
f +

1093

729
n3
f .

where TF = 1/2 and nf is the number of active quark flavors.
The coefficients for the cusp anomalous dimension are [98]

γcusp

0 = 4 ,

γcusp

1 =

(
268

9
− 4π2

3

)
CA −

80

9
TFnf ,

γcusp

2 = C2
A

(
490

3
− 536π2

27
+

44π4

45
+

88

3
ζ3

)
+ CATFnf

(
−1672

27
+

160π2

27
− 224

3
ζ3

)

+ CFTFnf

(
−220

3
+ 64ζ3

)
− 64

27
T 2
Fn

2
f . (A.83)

For the four-loop coefficient γcusp

3 we use the Padé approximant γcusp

3 = γcusp 2
2 /γcusp

1 .
The anomalous dimension γq = γ q̄ can be determined from the three-loop expression for

the divergent part of the on-shell quark form factor in QCD [99]. The result was extracted
in [3]. In the notation of this thesis 2γq = γV . One obtains

γq0 = −3CF ,

γq1 = C2
F

(
−3
2
+ 2π2 − 24ζ3

)
+ CFCA

(
−961

54
− 11π2

6
+ 26ζ3

)
+ CFTFnf

(
130

27
+

2π2

3

)
,

γq2 = C3
F

(
−29

2
− 3π2 − 8π4

5
− 68ζ3 +

16π2

3
ζ3 + 240ζ5

)

+ C2
FCA

(
−151

4
+

205π2

9
+

247π4

135
− 844

3
ζ3 −

8π2

3
ζ3 − 120ζ5

)
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+ CFC
2
A

(
−139345

2916
− 7163π2

486
− 83π4

90
+

3526

9
ζ3 −

44π2

9
ζ3 − 136ζ5

)

+ C2
FTFnf

(
2953

27
− 26π2

9
− 28π4

27
+

512

9
ζ3

)

+ CFCATFnf

(
−17318

729
+

2594π2

243
+

22π4

45
− 1928

27
ζ3

)

+ CFT
2
Fn

2
f

(
9668

729
− 40π2

27
− 32

27
ζ3

)
. (A.84)

Similarly, the expression for the gluon anomalous dimension can be extracted from the
divergent part of the gluon form factor obtained in [99]. One finds

γg0 = −β0 = −
11

3
CA +

4

3
TFnf ,

γg1 = C2
A

(
−692

27
+

11π2

18
+ 2ζ3

)
+ CATFnf

(
256

27
− 2π2

9

)
+ 4CFTFnf ,

γg2 = C3
A

(
−97186

729
+

6109π2

486
− 319π4

270
+

122

3
ζ3 −

20π2

9
ζ3 − 16ζ5

)

+ C2
ATFnf

(
30715

729
− 1198π2

243
+

82π4

135
+

712

27
ζ3

)

+ CACFTFnf

(
2434

27
− 2π2

3
− 8π4

45
− 304

9
ζ3

)
− 2C2

FTFnf

+ CAT
2
Fn

2
f

(
−538
729

+
40π2

81
− 224

27
ζ3

)
− 44

9
CFT

2
Fn

2
f . (A.85)

These results for γq and γg are valid in conventional dimensional regularization, where
polarization vectors and spinors of all particles are treated as d-dimensional objects (so
that gluons have (2− 2ε) helicity states).
The first two coefficients of the anomalous dimension for massive quarks are [82].

γQ0 = −2CF ,

γQ1 = CFCA

(
−98

9
+

2π2

3
− 4ζ3

)
+

40

9
CFTFnf . (A.86)

The cusp anomalous dimension for massive partons which depends on hyperbolic angles
βIJ are given by [82, 100–102]

γcusp0 (β) = γcusp0 β coth β ,
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γcusp1 (β) = γcusp1 β coth β + 8CA

{
π2

6
+ ζ3 + β2

+coth2 β

[
Li3(e

−2β) + βLi2(e
−2β)− ζ3 +

π2

6
β +

β3

3

]

+cothβ

[
Li2(e

−2β)− 2β ln(1− e−2β)− π2

6
(1 + β)− β2 − β3

3

]}
(A.87)

(A.88)

g0(β) = 0,

g1(β) = coth β

[
β2 + 2β ln(1− e−2β)− Li2(e

−2β) +
π2

6

]
− β2 − π2

6
. (A.89)

The anomalous dimension describing the evolution of the quark PDFs near x = 1 is [8]

γ
fq
0 = 3CF ,

γ
fq
1 = C2

F

(
3

2
−2π2+24ζ(3)

)
+CFCA

(
17

6
+
22π2

9
−12ζ3

)
−CFTFnf

(
2

3
+
8π2

9

)
.(A.90)

Similarly, for the gluon case, one finds

γ
fg
0 = β0 ,

γ
fg
1 = C2

A

(
32

3
+12ζ3

)
− 16

3
CATFnf − 4CFTFnf . (A.91)

A.6. Loop Integrals for SUSY corrections in slepton-pair

production

Here we provide explicit expressions for the loop functions fB and fC appearing in (5.17),
distinguishing two kinematical regimes. Below the squark production threshold, i.e. for
M2 ≤ 4m2

q̃ , the two functions are real, while above threshold they develop an imaginary
part. We first give results for the function fB. Denoting x = 4m2

q̃/M
2, we obtain

fB(M
2, m2

q̃) = 2
√
x− 1 arctan

1√
x− 1

; x ≥ 1 ,

fB(M
2, m2

q̃) =
√
1− x

(
ln

1 +
√
1− x

1−
√
1− x

− iπ
)
; x < 1 . (A.92)
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To express the function fC in a compact form, it is convenient to define

y0 =
m2

q̃ −m2
g̃

M2
, y1 =

m2
g̃

m2
g̃ −m2

q̃

, y± =
1±
√
1− x
2

. (A.93)

For M2 ≤ 4m2
q̃ we then obtain

fC(M
2, m2

q̃, m
2
g̃) = Li2

(
y0 − 1

y0 − y1

)
− Li2

(
y0

y0 − y1

)
+ Li2

(
y0

y0 − y+

)

− Li2

(
y0 − 1

y0 − y+

)
+ Li2

(
y0

y0 − y−

)
− Li2

(
y0 − 1

y0 − y−

)
, (A.94)

while for M2 > 4m2
q̃ we get

fC(M
2, m2

q̃, m
2
g̃) =

π2

3
+ Li2

(
y0 − 1

y0 − y1

)
− Li2

(
y0

y0 − y1

)

+ Li2

(
y0

y0 − y+

)
+ Li2

(
y0 − y+
y0 − 1

)
+

1

2

[
ln

(
y0 − 1

y0 − y+

)
+ iπ

]2

+ Li2

(
y0

y0 − y−

)
+ Li2

(
y0 − y−
y0 − 1

)
+

1

2

[
ln

(
y0 − 1

y0 − y−

)
− iπ

]2
. (A.95)

In the special case of equal masses, mg̃ = mq̃, these results simplify significantly. We then
obtain

c
(1)
V,SUSY = CF

[
3− fB(M2, m2

q̃) +
2m2

q̃

M2
fC(M

2, m2
q̃ , m

2
q̃)

]
, (A.96)

where (with x = 4m2
q̃/M

2 as before)

fC(M
2, m2

q̃, m
2
q̃) = −2 arctan2 1√

x− 1
; x ≥ 1 ,

fC(M
2, m2

q̃, m
2
q̃) =

1

2

(
ln

1 +
√
1− x

1−
√
1− x

− iπ
)2

; x < 1 . (A.97)

A.7. Renormalization Constants for stop-pair production

In this appendix we summarize the renormalization constants needed to renormalize the
hard function for stop-pair production:

∆Zq = −g
2
s

2
CF

(
1

ε
+ln

µ2
R

m2
q̃

)
+
g2s
2
CF

[
m2

q̃ − 3m2
g̃

2(m2
g̃ −m2

q̃)
+

m4
g̃

(m2
g̃ −m2

q̃)
2
ln
m2

g̃

m2
q̃

]
, (A.98)
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∆Zt̃1 = −g2sCF

[1
ε
+ ln

µ2
R

m2
t̃1

+B0 f(m
2
t̃1
, m2

t , m
2
g̃)

−B′0(m2
t̃1
, m2

t , m
2
g̃)
(
m2

t +m2
g̃ −m2

t̃1
− 2mtmg̃ sin(2α)

) ]
, (A.99)

∆Zg =
g2s
2

(
−

2
3
CA + 1

3
Nl + 1

ε
+

2

3
CA log

m2
g̃

µ2
R

+
Nl

3
log

m2
q̃

µ2
R

+
2

3
log

m2
t

µ2
R

+
1

6
log

m2
t̃1

µ2
R

+
1

6
log

m2
t̃2

µ2
R

)
, (A.100)

∆Zgs = −g
2
s

2

(3CA −Nl − 1

ε
+

2

3
CA log

m2
g̃

µ2
R

+
Nl

3
log

m2
q̃

µ2
R

+
2

3
log

m2
t

µ2
R

+
1

6
log

m2
t̃1

µ2
R

+
1

6
log

m2
t̃2

µ2
R

)
, (A.101)

∆Zmt̃1
= 2CFg

2
s

(
2m2

t + 2m2
g̃ −m2

t̃1
− 2mtmg̃ sin(2α)

ε

)

+2CFg
2
s

(
m2

t +m2
g̃ +m2

t log
µ2
R

m2
t

+m2
g̃ log

µ2
R

m2
g̃

)

+2CFg
2
s

(
B0 f (m

2
t̃1
, m2

t , m
2
g̃) + log

µ2
R

m2
t̃1

)
(
m2

t +m2
g̃ −m2

t̃1
− 2mtmg̃ sin(2α)

)

+g2sCFm
2
t̃1

(
3

ε
+ 7 + 3 log

µ2
R

m2
t̃1

)
− g2sCF cos2(2α)m2

t̃1

(
1 +

1

ε
+ log

µ2
R

m2
t̃1

)

−g2sCF sin2(2α)m2
t̃2

(
1 +

1

ε
+ log

µ2
R

m2
t̃2

)
, (A.102)

where µR is the renormalization scale and ε = (4 − d)/2. In the above expressions the
scale dependence is explicit, therefore the loop function B0 f (m

2
t̃1
, m2

t , m
2
g̃) is intended to

be evaluated at the scale µ2
R = m2

t̃1
. The subscript f refers to the finite part, O(ε0), of

the loop function B0 (m
2
t̃1
, m2

t , m
2
g̃). ∆Zq, ∆Zg and ∆Zt̃1 are respectively the quark, gluon

and stop wave function renormalization constants. ∆Zgs is the renormalization constant
for the coupling gs and ∆Zmt̃1

is the mass counter term.
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A.8. NLO Soft Function Formulas for stop-pair

production

In this appendix we collect the results of the calculation of the NLO soft function in PIM
kinematics [9] and in 1PI kinematics [10].
Since the soft functions depend on the plus distributions, it is more convenient to work

with the Laplace-transformed functions. They are defined as

s̃ (L, µ) =

∫ ∞

0

dω exp

(
− ω

eγEµeL/2

)
W (ω, µ) ,

= Ŵ

(
x0 =

−2i
eγEµeL/2

, µ

)
. (A.103)

In Eq. (A.103) we omitted the dependence of the soft functions on the PIM or 1PI kinematic
variables and on the heavy particle masses, as well as the subscripts qq̄ or gg indicating
the channel. The equality in the second line of Eq. (A.103) was proven in [5] and follows
from the functional form of the position space Wilson loops [103].
The expansion of s̃ in powers of the strong coupling constant is

s̃ = s̃(0) +
αs

4π
s̃(1) +

(αs

4π

)2
s̃(2) +O(α3

s) . (A.104)

At leading order the soft functions are the same both in PIM and 1PI kinematics:

s̃
(0)
qq̄ =

(
N 0

0 CF

2

)
, s̃(0)gg =



N 0 0

0 N
2

0

0 0 N2−4
2N


 . (A.105)

The bare soft function at one-loop order in position space, can be written in d-dimensions
as

Ŵ
(1,k)
bare (ε, x0, µ) =

∑

ij

wijIkij(ε, x0, µ) , (k = PIM, 1PI) , (A.106)

where ε = (4− d)/2. The matrices wij are related to the products of color generators and
are the same for both kinematics. In the quark annihilation channel they are

wqq̄
12 = wqq̄

34 = −
CF

4N

(
4N2 0

0 −1

)
,

wqq̄
33 = wqq̄

44 =
CF

2

(
2N 0

0 CF

)
,

wqq̄
13 = wqq̄

24 = −
CF

2

(
0 1

1 2CF − N
2

)
,
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wqq̄
14 = wqq̄

23 = −
CF

2N

(
0 −N
−N 1

)
, (A.107)

while for the gluon fusion channel one finds

wgg
12 = −1

4



4N2 0 0

0 N2 0

0 0 N2 − 4


 ,

wgg
34 = −



CFN 0 0

0 −1
4

0

0 0 −N2−4
4N2


 ,

wgg
33 = wgg

44 =
CF

2N



2N2 0 0

0 N2 0

0 0 N2 − 4


 ,

wgg
13 = wgg

24 = −1
8




0 4N 0

4N N2 N2 − 4

0 N2 − 4 N2 − 4


 ,

wgg
14 = wgg

23 = −1
8




0 −4N 0

−4N N2 −(N2 − 4)

0 −(N2 − 4) N2 − 4


 . (A.108)

The functions Iiij are integrals over the soft gluon phase space. In PIM kinematics one
finds IPIM11 = IPIM22 = 0 and

IPIM12 = −
(

2

ε2
+

2

ε
L0 + L2

0 +
π2

6

)
,

IPIM33 = IPIM44 =
2

ε
+ 2L0 −

2

βt
ln xs ,

IPIM34 = −1 + x2s
1− x2s

[(
2

ε
+ 2L0

)
lnxs − ln2 xs + 4 lnxs ln(1− xs) + 4Li2(xs)−

2π2

3

]
,

IPIM13 = IPIM24 = −
[
1

2

(
L0 − ln

(1 + yt)
2xs

(1 + xs)2

)2

+
π2

12
+ 2Li2

(
1− xsyt
1 + xs

)
+ 2Li2

(
xs − yt
1 + xs

)]
,

IPIM14 = IPIM23 = I13(yt → zu) , (A.109)
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where xs = (1− βt̃1)/(1 + βt̃1), yt = −t̂1/m2
t̃1
− 1, zu = −û1/m2

t̃1
− 1, and

L0 = ln

(
− µ2x20e

2γE

4

)
. (A.110)

In 1PI kinematics one finds I1PI11 = I1PI22 = 0 and

I1PI12 = −


 2

ε2
+

2

ε

(
L0 − ln

ŝ′m2
t̃1

t̂′1û
′
1

)
+

(
L0 − ln

ŝ′m2
t̃1

t̂′1û
′
1

)2

+
π2

6
+ 2Li2

(
1−

ŝ′m2
t̃1

t̂′1û
′
1

)
 ,

I1PI33 =
2

ε
+ 2L0 −

2(1 + β2
t̃1
)

βt̃1
ln xs ,

I1PI44 =
2

ε
+ 2L0 + 4 ,

I1PI14 = I1PI24 = − 1

ε2
− 1

ε
L0 −

1

2
L2
0 −

π2

12
, (A.111)

I1PI13 = −
[
1

ε2
+

1

ε

(
L0 − 2 ln

t̂′1
û′1

)
+

1

2

(
L0 − 2 ln

t̂′1
û′1

)2

+
π2

12

+ 2Li2

(
1− t̂1

û′1xs

)
+ 2Li2

(
1− t̂′1xs

û′1

)]
,

I1PI23 = I ′13 (t̂1 ↔ û1) ,

I1PI34 =
1 + β2

t̃1

2βt̃1

[
−2
ε
ln xs − 2L0 lnxs + 2 ln2 xs − 4 ln xs ln(1− x2s)− 2Li2(x

2
s) +

π2

3

]
.
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