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1 Introduction

Chemical systems obey quantum mechanical laws [1]. Since the discovery of these laws,
research in the field of quantum chemistry has provided methods for the ab initio cal-
culation of molecular properties, for example energies and equilibrium structures, vibra-
tional frequencies, excitation energies as well as electrical and magnetic properties [2–4].
Although the first principles are known, their application to systems larger than the hy-
drogen atom has to rely on approximations. The driving force behind developments in
quantum chemistry is the desire to improve its predictive power for small systems and to
extend it to ever larger systems. Progress in computer science greatly assists this effort
through a rising computing capacity [5, 6].

For systems with a large energy difference between the ground and excited states,
including most closed-shell molecules, the Hartree–Fock approximation [2] offers a qual-
itatively correct theoretical description. It offers a simple picture of the electronic struc-
ture by modeling it as a single Slater determinant, in which the electrons occupy a set
of molecular orbitals. This concept has been important in framing the modern under-
standing of chemistry, as it provides a useful model for chemical reactivity based on the
occupied and the energetically lowest virtual (unoccupied) orbitals [1,7,8]. The Hartree–
Fock approximation has its limits. Being a mean-field approximation, it neglects the
correlated motion of the electrons due to their electrostatic repulsion. Nevertheless, it
serves as a convenient starting point for more accurate theories that account for electron
correlation by incorporating contributions of excited electronic configurations into the
system’s wave function. Mathematically, these excited configurations can be obtained
from the Hartree–Fock determinant by excitation operators that move electrons from oc-
cupied into virtual orbitals [3]. When aiming at predictions with chemical accuracy (i.e.,
errors in energy differences below 1 kcal/mol ≈ 4 kJ/mol), coupled-cluster theory [9–11]
with single and double excitations and an approximate inclusion of triple excitations,
CCSD(T), is the well-established method of choice [12–15].

However, the Hartree–Fock approximation breaks down for systems with ground
states that are either degenerate or energetically close to excited states (quasi-degenerate)
[16]. A qualitative description of the wave function requires more than one electronic
configuration in this case. As a consequence, coupled-cluster methods using a reference
function from Hartree–Fock theory fail, unless the maximum excitation level is increased
accordingly at the expense of computational efficiency [3]. Chemistry abounds with sys-
tems having electronic structures of such a complicated nature, as it occurs in many
transition states of chemical reactions [17] and during bond breaking processes [3] as well
as in open-shell states (e.g., diradicalic singlet states [18]) and a multitude of transition
metal compounds [19–21]. Multiconfigurational methods achieve a qualitatively correct
description of these systems by allowing several configurations in the wave function that
differ in the distribution of a number of electrons among a selected number of valence
orbitals, the so-called active orbitals [22–25].

The goal of this work is the development of a coupled-cluster method that can use a
multiconfigurational wave function as a reference and thereby carries over the accuracy
of CCSD(T) to systems with complicated electronic structure.

The past decades have witnessed the formulation of plenty of multireference coupled-
cluster (MRCC) approaches, but none has yet evolved into a standard method [26–29].
Most of the existing MRCC approaches fall short of at least one of three important
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1 INTRODUCTION

requirements: To reliably provide accurate results, the energy should scale correctly with
a system’s size (size-extensivity). Like the underlying multiconfigurational description, it
should treat all active orbitals on equal footing and be invariant with respect to a unitary
transformation of these orbitals (orbital invariance). At the same time, the ansatz for the
wave function should allow an efficient treatment of electron correlation, using a compact
parameterization that helps to keep the computational cost low.

The internally contracted ansatz is one of the few MRCC approaches that promise
to fulfill all of these requirements [30–33]. It results from the ansatz of single-reference
coupled-cluster theory by substituting a multiconfigurational wave function for the ref-
erence and by allowing excitation operators that can move electrons both into and out of
the active orbitals. However, these operators do not commute with each other and cause
a large number of terms in the working equations. This increased complexity has so
far prevented an implementation of internally contracted multireference coupled-cluster
(ic-MRCC) theory, despite its early formulation in the pioneering work by Banerjee and
Simons [34–37] thirty years ago. It is possible to simulate the method by expanding the
ic-MRCC wave function in a complete basis of determinants. Evangelista and Gauss [38]
have employed this strategy to study the method’s performance for small model systems,
confirm its orbital invariance and test approximations that restrict the working equa-
tions to a finite power in the wave function parameters (cluster amplitudes).1 However,
because of its factorial computational scaling, this implementation cannot offer a com-
putational advantage over an exact treatment of electron correlation and is limited to
very small systems.

In order to unfold the full potential of ic-MRCC theory, one has to derive and im-
plement the explicit expressions as a sum of tensor products that can be evaluated at
a reduced cost, an intractable task without help from automated implementation tech-
niques [32]. Automated approaches are not unprecedented in the implementation of
related theories. For instance, Neuscamman, Yanai and Chan [39] use this strategy in
the so-called canonical transformation theory (CT) [40–42]. In contrast to ic-MRCC the-
ory, CT theory involves a unitary transformation of the Hamiltonian. Because this would
lead to even more complex equations in a full realization of the method, the present CT
approach invokes several approximations that may seriously affect the accuracy of the
method [42,43].

Therefore, the subject of the present work is the development of ic-MRCC methods
with a favorable computational scaling while using only approximations that preserve
the methods’ inherent accuracy. To this end, ic-MRCC theory is implemented in a
program that allows an automated derivation and evaluation of the required expressions
and has been successfully used before in the context of other complicated electronic
structure theories [44, 45]. This automated approach enables the efficient realization of
different variants of the theory. Testing the performance of these variants on simple
model systems helps us not only to forge an ic-MRCC method of choice but also to gain
a deep understanding of many theoretical aspects of ic-MRCC theory. In particular, the
question how to best deal with linear dependencies between the working equations, a
common problem in internally contracted multireference approaches [31, 42, 46–52], has
not yet been answered in a satisfactory way and forms one of the focal points of this
thesis.

1A similar implementation of ic-MRCC theory exists due to J. Olsen (unpublished).
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The theoretical introduction (chap. 2) provides the foundation of this work, putting an
emphasis on electron correlation, and introduces the parent electronic structure theories
of ic-MRCC before ending with an overview of the existing MRCC approaches. Chapter 3
then lays out the details of ic-MRCC theory. It contains new insights on several aspects
of ic-MRCC theory, including its formal structure and complexity, its computational
scaling, and the impact of the treatment of linear dependencies on the method’s size-
extensivity. In the context of the latter aspect, two improved procedures are presented.
Benchmark studies of ic-MRCC theory on the potential energy surfaces of six model
systems (BeH2, HF, LiF, H2O, N2 and Be3) are discussed in chap. 4. These studies also
compare the performance of ic-MRCC theory with that of other multireference methods
and analyse the strengths and weaknesses of different flavors and approximations of
ic-MRCC theory. In chap. 5, the reader may find a perturbative analysis of ic-MRCC
theory and the formulation of various methods to approximately include triple excitations
based on perturbative arguments. These methods are tested on selected model systems
and applied to the calculation of the equilibrium structure and the harmonic vibrational
frequencies of the ozone molecule. The method ic-MRCCSD(T), which efficiently includes
the effect of triple excitations in a non-iterative manner on top of an ic-MRCC singles-
and-doubles (ic-MRCCSD) calculation, is further applied to the singlet-triplet splittings
of benzynes (C6H4), the structure and vibrational frequencies of Ni2O2 and the ring-
opening reaction of an azirine compound with the molecular formula C6H7NO. Finally,
chap. 6 aims to extend the applicability of ic-MRCC theory to large numbers of active
orbitals by truncating the cumulant expansion of the reduced density matrices of the
reference function. An application of ic-MRCCSD(T) to the potential energy surface of
the formally hextuply bonded chromium dimer closes this chapter and is followed by a
summary of this thesis and an outlook on the ic-MRCC method’s future.
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2 Theoretical fundamentals

2.1 The second-quantized electronic Schrödinger equation

Atoms and molecules are many-body systems consisting of positively charged nuclei and
negatively charged electrons, held together by the Coulomb interaction. In case of the
relatively light elements (up to the fourth row of the periodic table) and the molecular
properties studied in this work, the nuclei are to a very good approximation treated
as point particles, and non-relativistic quantum mechanics is employed with success.
As the current work focuses on time-independent properties of stationary states, the
time-independent Schrödinger equation serves as starting point. In addition, two further
common approximations are applied [2]:

The first is the Born–Oppenheimer approximation, which exploits that the nuclear
and electronic motion is correlated in a very one-sided manner: The nuclei are thou-
sands of times heavier than the electrons and therefore generally move much slower than
electrons. They essentially experience only the internuclear repulsion and an effective
potential created by the much faster moving electrons. The electrons, on the other hand,
are assumed to follow the nuclear motion instantaneously. From their perspective, the
nuclei appear to be ‘clamped’ in space, such that the nuclear kinetic energy can be ne-
glected to yield a Schrödinger equation for the electrons only. Thus, each electronic
state gives rise to a multidimensional potential energy surface which governs the nuclear
motion for this state.

The electronic wave function for a given molecular structure is a complex-valued
function of the N electrons’ spatial coordinates ri and spin coordinates σi (with i =
1, 2, . . . , N), to be combined into xi in the following. According to Pauli’s antisymmetry
principle, it must change its sign upon exchange of two electrons’ coordinates. The
simplest N -electron function meeting this requirement is a Slater determinant,

Φp1p2···pN (x1,x2, . . . ,xN ) =
1√
N !

∣∣∣∣∣∣∣∣∣

ϕp1(x1) ϕp2(x1) · · · ϕpN (x1)
ϕp1(x2) ϕp2(x2) · · · ϕpN (x2)

...
...

. . .
...

ϕp1(xN ) ϕp2(xN ) · · · ϕpN (xN )

∣∣∣∣∣∣∣∣∣
. (2.1)

It is composed of spin orbitals (one-electron functions) ϕp(x), which are products of nor-
malized and mutually orthogonal spatial orbitals φp(r) and either of the two one-electron
spin functions α(σ) (spin-up) or β(σ) (spin-down). If the spatial orbitals form a complete
one-particle basis, the set of all possible Slater determinants {Φp1···pN (x1, . . . ,xN )} spans
the complete space of N -electron functions and thus allows an exact representation of
the electronic wave function.

In practice, a theoretical description is only possible for a finite one-particle basis set.
This restriction of the one-particle basis set is the second common approximation and
introduces the basis set error. To keep this error small despite a finite basis set size, an
appropriate selection of basis functions is mandatory. An efficient choice for molecular
electronic structure calculations is an atomic orbital basis set constructed from linear
combinations of spherical-harmonic Gaussian-type orbitals, centered at the positions of
the nuclei.

The dependence of the wave function on the orbitals can be made implicit by turning
to the formalism of second quantization [3]. Each Slater determinant, featuring a number
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2 THEORETICAL FUNDAMENTALS

of occupied spin orbitals ϕp1 , ϕp2 , . . . , ϕpN , is then solely characterized by the occupancy
of the spin orbitals. It is constructed by creating N electrons in N spin orbitals on top
of a vacuum state |〉, using the creation operators â†p:

|Φp1p2···pN 〉 = â†p1 â
†
p2
· · · â†pN |〉. (2.2)

Operators acting on n electrons are then conveniently expressed in terms of their matrix
elements with respect to the spin orbitals, each of them associated with an excitation
operator âq1···qnp1···pn = â†q1 · · · â

†
qn
âpn · · · âp1 that first annihilates and then creates n electrons.

In the language of second quantization, the electronic Schrödinger equation takes the form

Ĥ|Ψ〉 = E|Ψ〉, (2.3)

with the electronic wave function |Ψ〉 and the second-quantized electronic Hamiltonian

Ĥ = hnuc +
∑

pq

hpq â
q
p + 1

4

∑

pqrs

gpqrs â
rs
pq. (2.4)

The internuclear repulsion energy

hnuc =
∑

k<l

ZkZl
Rkl

, (2.5)

with nuclear charges Zk and internuclear distances Rkl, is included in the electronic
Hamiltonian such that the energy E coincides with a Born–Oppenheimer potential energy
surface. The one-electron operator in Ĥ incorporates the kinetic energy of the electrons
and the attraction between electrons and nuclei at positions Rk,

hpq =
∫
dxϕ∗q(x)

(
− 1

2∇2 −
∑

k

Zk
|r−Rk|

)
ϕp(x), (2.6)

while the two-electron part involves the repulsion between electrons separated by r12,

gpqrs =
∫ ∫

dx1 dx2

(
ϕ∗r(x1)ϕ∗s(x2)ϕp(x1)ϕq(x2)

r12
− ϕ∗r(x1)ϕ∗s(x2)ϕq(x1)ϕp(x2)

r12

)
. (2.7)

Equations (2.5) to (2.7) make use of atomic units (1 Hartree = 1 Eh = 2 625.5 kJ/mol [2]).

2.2 Electron correlation

2.2.1 Fermi correlation & the Hartree–Fock method

Electrons interact with each other and hence their motion is correlated. The under-
lying statistical distribution corresponds to the absolute square of the wave function,
|Ψ(x1, . . . ,xN )|2, being the joint probability density of the electrons’ spatial positions
and spin orientations. For statistically independent particles, this joint probability den-
sity would be a product of probability densities for the individual particles, e.g.,

|Ψindep.|2 = |ϕp1(x1)|2|ϕp2(x2)|2 · · · |ϕpN (xN )|2. (2.8)

However, this form is only realized for a simple product of spin orbitals (Hartree product)
which lacks the proper antisymmetry for exchange of Fermions. Antisymmetrization thus
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2.2. Electron correlation

introduces some correlation between the Fermions, commonly called Fermi correlation.
In particular, an antisymmetric wave function ensures that two electrons cannot have the
same values for the spatial and spin coordinates and thereby enforces Pauli’s exclusion
principle. In general, Fermi correlation reduces the probability of finding two electrons
with their spins coupled to a triplet close to each other (Fermi hole). However, for two
electrons with spins coupled to a singlet, Fermi correlation may have the opposite effect
and increase the probability of finding them close to each other [53].

In second quantization, Fermionic wave functions are implicitly antisymmetrized and
operators acting on Fermions are represented by antisymmetric tensors. This intrinsi-
cally accounts for Fermi correlation. Also, the focus is shifted away from the correlation
between electronic coordinates towards the correlation between occupancies of spin or-
bitals. Since the occupancy of a spin orbital ϕp is probed by the number operator âpp,
the probability of finding certain spin orbitals occupied is given by the diagonal elements
of the reduced one-particle density matrix γ1, which is defined by

γqp = 〈Ψ|âqp|Ψ〉. (2.9)

The joint probability of finding two spin orbitals that are simultaneously occupied is on
the other hand given by the diagonal elements of the two-particle density matrix γ2, with

γrspq = 〈Ψ|ârspq|Ψ〉. (2.10)

In this framework, the occupancies of the spin orbitals are statistically independent when
γ2 is simply an antisymmetrized product of one-particle density matrices [53,54]:

γrspq = γrpγ
s
q − γspγrq . (2.11)

Statistical independence of spin orbital occupancies means that the electrons are uncor-
related except for Fermi correlation. From the trace relationship between γ2 and γ1,

∑

r

γqrpr = (N − 1)γqp, (2.12)

one can easily deduce that the condition (2.11) implies idempotency of γ1,
∑

r

γrpγ
q
r = γqp. (2.13)

Idempotency in turn restricts the possible eigenvalues of γ1 to zero and one. As the spin
orbital basis can always be rotated by a unitary transformation such that γ1 becomes
diagonal, it then falls into a set of occupied and unoccupied spin orbitals, a situation
only encountered for a single Slater determinant.

The essence of Hartree–Fock (HF) theory is to use a single determinant |0〉 as an
ansatz for the ground state wave function2 and variationally optimize the orbitals. In
unrestricted Hartree–Fock (UHF) theory the spin orbitals are merely constrained to
remain mutually orthogonal, whereas in restricted Hartree–Fock (RHF) theory a common
set of spatial orbitals is employed for both spin orientations [2].
2An exception is restricted open-shell Hartree–Fock (ROHF) theory, which uses a spin-adapted linear
combination of determinants for low-spin states. Here, we will consider ROHF theory as a special case
of MCSCF theory.
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2 THEORETICAL FUNDAMENTALS

The orbital optimization requires a unitary transformation of the spin orbitals [3],

ϕ̃p =
∑

q

ϕqUqp. (2.14)

Since any unitary matrix U can be written as the exponential of an anti-Hermitian matrix
κ (with κ† = −κ),

U = e−κ, (2.15)

it is possible to parametrize a (trial) determinant for a rotated orbital basis in the form

|0̃〉 = e−κ̂|0〉, (2.16)

with the anti-Hermitian operator

κ̂ =
∑

pq

κpq(â
q
p − â

p
q). (2.17)

Expanding the energy expectation value

Ẽ = 〈0|eκ̂Ĥe−κ̂|0〉 (2.18)

in terms of κ̂ with help of the Baker–Campbell–Hausdorff (BCH) expansion,

e−ÂĤeÂ = Ĥ + [Ĥ, Â] + 1
2 [[Ĥ, Â], Â] + 1

3! [[[Ĥ, Â], Â], Â] + . . . , (2.19)

we obtain the variational condition for the orbital rotations by setting the first derivative
of Ẽ with respect to κpq to zero. Since it is always possible to translate the parameters
κpq into orbital rotations according to Eq. (2.14) and set κpq = 0 afterwards without
affecting the trial determinant, it is sufficient to consider the variational condition in the
limit κ = 0, yielding

0 = 〈0|[Ĥ, âqp]|0〉. (2.20)

Equation (2.20) determines the wave function |0〉. In principle, its right-hand side can
be conveniently evaluated by choosing |0〉 as Fermi vacuum and representing excitation
operators in their normal ordered form with respect to that new vacuum. The relation-
ships between the excitation operators âqp, â

rs
pq and their normal ordered counterparts

{âqp}, {â
rs
pq} are [55]

âqp = {âqp}+ γqp, (2.21)

ârspq = {ârspq}+ γrp{âsq} − γsp{â
r
q} − γrq{â

s
p}+ γsq{ârp}+ γrpγ

s
q − γspγrq . (2.22)

Equations (2.21) and (2.22) can be thought of as applications of Wick’s theorem [56],
according to which an operator string is equal to a sum of products of normal ordered
operator strings and contracted operators. Each (binary) contraction here gives rise to an
element of γ1, which is zero for unoccupied orbitals (indexed by a, b, . . .) and Kronecker’s
delta for occupied orbitals (indexed by i, j, . . .), γji = δji . The electronic Hamiltonian,
Eq. (2.4), then takes the form

Ĥ = hnuc +
∑

i

hii + 1
2

∑

ij

gijij

︸ ︷︷ ︸
EHF

+
∑

pq

(hpq +
∑

i

gipiq

︸ ︷︷ ︸
fpq

){âqp}+ 1
4

∑

pqrs

gpqrs{ârspq}. (2.23)
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2.2. Electron correlation

Because normal ordered operators are defined such that their expectation values with
respect to the Fermi vacuum vanish, the scalar part of Eq. (2.23) is the energy expectation
value EHF = 〈0|Ĥ|0〉. It contains the internuclear repulsion energy, the kinetic energy
of the electrons, the electron-nuclear interaction, and a mean-field contribution from
the electron-electron interaction. The last two terms in Eq. (2.23) now describe only
one-particle and two-particle fluctuations around the mean field.

Applying Wick’s theorem to Eq. (2.20) leads to the sufficient condition

0 = fai = f ia, (2.24)

which is known as the Brillouin theorem [2].
In canonical Hartree–Fock theory, the orbitals are chosen such that they diagonalize

the Fock matrix fpq . This fulfills Eq. (2.24) and yields the orbital energies εp as diagonal
elements. The ground state wave function is then given by the determinant in which
the orbitals with the N lowest orbital energies are occupied. However, as fpq depends
on the occupied orbitals, the evaluation and diagonalization of the Fock matrix must
be iteratively repeated until self-consistency. Upon convergence, |0〉 is the Hartree–Fock
determinant and EHF the Hartree–Fock energy. It is worth noting that the Hartree–Fock
approximation is equivalent to neglecting the effective two-particle interaction from the
Hamiltonian, Eq. (2.23), emphasizing the mean-field nature of the approach.

2.2.2 Coulomb correlation & full configuration interaction

Correlation beyond a single determinant picture is due to the Coulomb interaction be-
tween the electrons and hence called Coulomb correlation. It implies that statistical
independence of orbital occupancies and idempotency of γ1 are no longer fulfilled. In-
stead of Eq. (2.11), one may now write

γrspq = γrpγ
s
q − γspγrq + λrspq, (2.25)

where the cumulant λrspq is a measure for the correlation between the occupancies of two
spin orbitals [54,57], see also sec. 6.2 and Ref. [P2]3 for details.

Within the given orbital basis, Coulomb correlation can be exactly recovered by
solving the Schrödinger equation in the full space of N -electron wave functions. This is
done in full configuration interaction (for short full CI, or FCI), where the wave function
is expanded as a linear combination of all N -electron Slater determinants:

|ΨFCI〉 =
1
N !

∑

p1···pN

|Φp1···pN 〉cp1···pN =
∑

I

|ΦI〉cI . (2.26)

In Eq. (2.26) we have merged all nonredundant strings of spin orbital indices into a single
index I for labeling the determinants.

Insertion of this ansatz into the Schrödinger equation, Eq. (2.3), and projection onto
the complete space of determinants yields an eigenvalue equation for the CI coefficients
cI , ∑

J

〈ΦI |Ĥ|ΦJ〉cJ = EcI . (2.27)

3Throughout this thesis, citations marked with a capital ‘P’ refer to the list of publications in app. A.3.
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2 THEORETICAL FUNDAMENTALS

FCI offers the exact solution of the electronic Schrödinger equation in a given one-electron
basis. However, due to the exponential scaling of the number of determinants with the
number of electrons and a high polynomial scaling with respect to the number of basis
functions, FCI calculations are only affordable for very small systems and basis sets. This
shortcoming, which might only be cured by the advent of the quantum computer [58],
has for decades motivated the search for and development of approximate methods.

2.2.3 Static vs. dynamic correlation

For most stable molecules with a closed-shell ground state, a FCI wave function based on
Hartree–Fock orbitals shows a large weight for the Hartree–Fock determinant (c2

0 / 1).
Small contributions from a large number of excited determinants serve to describe the
so-called dynamic correlation, which is due to the electrons avoiding each other instan-
taneously when moving through space. The reduced one-particle density matrix with
respect to |ΨFCI〉 is then nearly idempotent and has eigenvalues close to one or zero.

A different situation is encountered when several energetically low-lying determinants
are nearly degenerate and significantly contribute to the FCI wave function. The type
of correlation involved is called nondynamic or static correlation4 and is best explained
by an example: Figure 1 shows the energetics of the automerization reaction of cyclobu-
tadiene for an idealized reaction path and selected model wave functions. Reactant and
product, both being rectangular cyclobutadiene molecules, are connected by a square
transition state. Near the equilibrium structures, the Hartree–Fock determinant should
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Figure 1: Illustration of static correlation in the automerization of cyclobutadiene.

4Like most researchers in the field, I will use the terms ‘nondynamic’ and ‘static’ interchangeably. Some
authors (e.g., Refs. [59,60]) draw a further distinction according to which nondynamic correlation refers
to genuine multireference character due to near-degeneracy of several configuration state functions [16],
whereas the term static correlation is reserved for open-shell states whose spin-adapted description
requires a multideterminantal configuration.
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2.3. The multiconfigurational self-consistent field method

obviously contain the doubly occupied π orbital that stabilizes the shorter C–C double
bond. However, as C–C single and double bonds are exchanged in the course of the
automerization, this stabilizing (or bonding) orbital correlates to a destabilizing orbital
on the other side of the reaction channel (making this reaction thermally forbidden by
the Woodward–Hoffmann rules [8]). Hartree–Fock theory yields two separate potential
energy curves (red and blue curves in Fig. 1), depending on which π orbital is included in
the determinant, and is thus not able to describe a smooth transition between reactant
and product along the reaction path. Since the two corresponding determinants become
degenerate at the square transition state, at least a linear combination of both is required
in the wave function ansatz for a qualitatively correct description (indicated in Fig. 1 by
a red and blue striped curve).

Before turning to the generalization of this concept, it is worth discussing a possible
way to detect the presence of (strong) static correlation in systems less accessible to
chemical intuition than the automerization of cyclobutadiene. A general strategy is to
perform a quantum chemical calculation capable of at least partially recovering static
correlation and then inspect the eigenvalues of the reduced one-particle density matrix.
Interestingly, even the UHF method is flexible enough for this purpose due to its abil-
ity to break spin symmetry by using different sets of spatial orbitals for α and β spin
functions [61–63]. The spin symmetry can be restored by spin projection, turning the
UHF determinant into a multideterminantal wave function with a non-idempotent γ1.
Another way to obtain a spin-adapted characterization of the UHF solution is the defi-
nition of the spin-free reduced one-particle density matrix Γ1, whose elements refer to a
particular set of spatial orbitals (indexed by P,Q),

ΓQP = γQαPα + γ
Qβ
Pβ
. (2.28)

The spatial orbitals diagonalizing Γ1 are called natural orbitals (NOs) and the eigenvalues
of Γ1 are the natural orbital occupation numbers. UHF NO occupation numbers deviating
significantly from integer values indicate that the corresponding NOs are involved in static
electron correlation. In cases without an appreciable amount of static correlation and an
even number of electrons, all UHF NO occupation numbers generally become equal to
zero or two, and the UHF and RHF solutions become identical.5

2.3 The multiconfigurational self-consistent field method

Multiconfigurational self-consistent field (MCSCF) theory offers a genuine treatment of
static correlation based on multideterminantal spin eigenfunctions [3]. In essence, the
wave function is written as a CI-like linear combination of (selected) determinants and
one variationally optimizes both the CI coefficients and the orbitals. It is convenient to
use the same set of spatial orbitals for both α and β spin functions and to subdivide
the orbital space into inactive orbitals that are doubly occupied in all determinants
(indexed by i, j, . . .), so-called active orbitals with varying occupancies (u, v, . . .), and

5Although fractional UHF NO occupation numbers are a useful criterion for the occurrence of static
correlation, they might not always be reliable. For example, Hollett and Gill [64] have pointed out that
UHF is insensitive to near-degeneracies featuring an orbital energy difference that is small relative to
the orbital energies but large in absolute terms, as may happen for cationic systems. For alternative
indicators of static correlation, the reader is referred to Refs. [65–67].
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2 THEORETICAL FUNDAMENTALS

inactive virtual (or unoccupied) orbitals (a, b, . . .). The wave function thus consists of
determinants formed by creating a number of Nact active electrons on top of a core
determinant |0〉 containing all doubly occupied orbitals,

|Ψ0〉 =
1

Nact!

∑

u1···uNact

â†u1
· · · â†uNact

|0〉cu1···uNact
=
∑

µ

|Φµ〉cµ. (2.29)

If we impose no constraints on the CI coefficients cµ except the normalization condition∑
µ c

2
µ = 1, the determinants {|Φµ〉} cover all possibilities to distribute Nact electrons into

Mact active spin orbitals and hence form a complete active space (CAS), also denoted as
CAS(Nact,12Mact). This special case of MCSCF theory based on a CAS is called complete
active space self-consistent field (CASSCF) theory and will be used throughout this work.
This choice has the advantage that it keeps the amount of arbitrariness involved in the
active space design to a minimum and preserves the formally appealing property of orbital
invariance with respect to separate unitary transformations of doubly occupied, active
and virtual orbitals, respectively.

Variational optimization of the CI coefficients leads to an eigenvalue equation analo-
gous to Eq. (2.27), ∑

ν

〈Φµ|Ĥ|Φν〉cν = ECASSCF cµ. (2.30)

CASSCF may therefore be viewed as a FCI within a complete active space (CAS-CI),
yet equipped with an additional optimization of the orbitals.

The latter, as in Hartree–Fock theory, can be parametrized in terms of an anti-
Hermitian single excitation operator:

|Ψ̃0〉 = e−κ̂
∑

µ

|Φµ〉cµ = e−κ̂|Ψ0〉, (2.31)

with
κ̂ =

∑

iu

κiu(âui − â
i
u) +

∑

ua

κua(â
a
u − â

u
a) +

∑

ia

κia(â
a
i − â

i
a). (2.32)

Due to the invariance of the wave function, Eq. (2.29), with respect to orbital rotations
within the inactive orbital spaces (up to a phase factor), single excitations of the types
âji and âba are excluded from κ̂. Further, orbital rotations within the active space are
redundant in CASSCF as they can be fully modeled by the CI coefficients.

In analogy to Hartree–Fock theory, expansion of the energy expectation value

Ẽ = 〈Ψ0|eκ̂Ĥe−κ̂|Ψ0〉 (2.33)

around κ = 0 and differentiation with respect to κpq yields a variational condition for
the orbital rotations,

0 = 〈Ψ0|[Ĥ, âqp]|Ψ0〉, (2.34)

which is known as the generalized Brillouin theorem for MCSCF wave functions [68–70].
It should be mentioned that efficiently solving Eqs. (2.30) and (2.34) simultaneously

is far from trivial. A plethora of optimization algorithms has been devised for this
task, including second-order techniques based on the Newton–Raphson method. For
detailed accounts on the optimization procedures in use, we refer to surveys from the
literature [3, 22,24,25].
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2.4. The single-reference coupled-cluster method

2.4 The single-reference coupled-cluster method

In single-reference coupled-cluster (SRCC) theory [9–11, 15], the wave function is repre-
sented by an exponential expansion,

|ΨSRCC〉 = eT̂ |0〉. (2.35)

The reference function |0〉 is a single determinant, usually the Hartree–Fock determinant,
and the cluster operator

T̂ =
∑

ia

tiaâ
a
i

︸ ︷︷ ︸
T̂1

+ 1
4

∑

ijab

tijabâ
ab
ij

︸ ︷︷ ︸
T̂2

+ . . .+ 1
Nrank!2

∑

i1···a1···
t
i1···iNrank
a1···aNrank

â
a1···aNrank
i1···iNrank

︸ ︷︷ ︸
T̂Nrank

=
∑

ρ

τ̂ρtρ = τ̂ t

(2.36)
contains cluster amplitudes tρ associated with excitations from Mocc occupied orbitals
to Mvirt virtual orbitals. Equation (2.36) makes use of a shorthand notation in which τ̂
is a row vector of excitation operators and t is a column vector of cluster amplitudes. If
up to N -body excitations are included in T̂ (i.e., Nrank = N), the excited functions τ̂ρ|0〉
span the complete space of N -electron wave functions (the FCI space) and the SRCC
method becomes exact. In practice, if |0〉 is qualitatively close to the exact wave function,
it suffices to truncate T̂ after double or triple excitations for an accurate description of
dynamic correlation. The corresponding methods are called coupled-cluster with singles
and doubles (CCSD) and coupled-cluster with singles, doubles and triples (CCSDT),
respectively.

Coupled-cluster theory is traditionally formulated by means of a non-variational pro-
jection technique. In order to derive equations for the cluster amplitudes, one first inserts
the ansatz (2.35) into the Schrödinger equation and pre-multiplies it with the inverse of
the wave operator, e−T̂ , yielding

e−T̂ ĤeT̂︸ ︷︷ ︸
H̄

|0〉 = ESRCC |0〉, (2.37)

where we have defined the similarity transformed Hamiltonian H̄. The energy expression
then follows from projecting Eq. (2.37) onto the reference determinant,

ESRCC = 〈0|H̄|0〉, (2.38)

whereas equations for the cluster amplitudes result from projection onto the set of excited
determinants τ̂ρ|0〉,

0 = 〈0|τ̂ †H̄|0〉. (2.39)

The computational expense of SRCC methods is dominated by the evaluation of the
term 1

2

∑
ab g

ab
cdt

ij···
ab···, which scales like MNrank

occ MNrank+2
virt . The same scaling behavior is

true for the related configuration interaction based methods which use a linear wave
function ansatz. However, due to the exponential wave operator, truncated coupled-
cluster approaches have the advantage to yield size-extensive energies and to ensure the
correct separability of both energy and wave function for noninteracting systems (size-
consistency). We refer to sec. 3.3.3 for a more refined discussion of these properties.
Coupled-cluster calculations generally provide significantly higher accuracy than corre-
sponding CI calculations, rendering coupled-cluster theory the method of choice.
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2 THEORETICAL FUNDAMENTALS

2.5 Overview of multireference coupled-cluster theories

SRCC theory offers a systematic hierarchy of approximations converging towards FCI. It
excels at capturing dynamic correlation even when including only low excitation ranks,
but in systems with strong static correlation much higher clusters are needed for an
accurate description [3]. CASSCF has the converse strengths and weaknesses: While it
may provide a reasonable treatment of static correlation even with few active orbitals, an
accurate account of dynamic correlation within CASSCF requires exceedingly large active
spaces [23]. Figure 2 illustrates how one may regard both methods as possible routes
towards the exact solution with differing emphasis on the type of electron correlation
recovered. As both methods involve a rapidly rising computational scaling along their
hierarchies, neither allows an efficient and accurate description of systems with both
dynamic and strong static correlation. It is therefore desirable to find a ‘shortcut’ towards
the exact solution by merging both approaches into a multireference coupled-cluster
(MRCC) theory.

The related multireference configuration interaction (MRCI) method is straightfor-
wardly defined by selecting a set of active orbitals and employing all N -electron deter-
minants in the CI that have up to Nrank holes (electrons missing) in the doubly occupied
orbital space and up to Nrank particles (electrons) in the virtual orbital space. Espe-
cially MRCI methods with approximate corrections for size-inextensivity are accurate
for small systems and frequently in use [25]. However, despite decades of large efforts in
the development of MRCC methods [P6,27–29], the ‘perfect marriage’ of the exponential
cluster ansatz and a multideterminantal reference function has not been achieved yet.
Most of the existing MRCC methods to be discussed in the following therefore present a
compromise between formal rigorosity and practical efficiency.

Numerous methods attempt to describe static correlation within a single-reference
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Figure 2: Motivation of MRCC theory as a ‘shortcut’ towards FCI.

14



2.5. Overview of multireference coupled-cluster theories

framework by using multireference concepts such as subdividing the occupied and vir-
tual orbital spaces into an inactive and an active part. The most simplistic approach is
embodied by the tailored coupled-cluster method [71], which fixes certain cluster ampli-
tudes to values derived from a CAS-CI wave function and solves only for the remaining
amplitudes. The related reduced multireference CCSD (RMRCCSD) method [72] goes
further by admitting in the SRCC equations additional triples and quadruples amplitudes
that are predefined by an MRCI calculation. Active-space coupled-cluster methods [73]
offer an increased flexibility by determining these additional amplitudes through the
coupled-cluster formalism. The CASCC method [74, 75], for instance, extends the clus-
ter operator to selected higher excitations in such a way that the resulting space of excited
determinants is the same as in MRCI. The maximum excitation level in the CASCC wave
function then grows with the size of the active space, leading to an increasing complex-
ity of the method that can only be dealt with using general-order implementations of
SRCC theory [76]. Instead of basing the selection of included higher excitations on a
formal active space, it can also be guided by a special importance-selection function to
achieve an automatic adaptation of the theoretical model to the studied problem [77].
As an alternative to including additional parameters, it is possible to estimate the effect
of higher excitations from the so-called moments of the coupled-cluster equations, i.e.,
the projections of Eq. (2.37) onto higher excited determinants. This is the basis for the
renormalized and completely renormalized coupled-cluster approaches [78,79], which can
also be combined with active-space coupled-cluster theory [80].

One disadvantage of the methods described so far is that they introduce a bias towards
the reference function and therefore lack orbital invariance. In addition, an accurate
treatment of static correlation often goes along with a large number of parameters in these
models. Equation-of-motion (EOM) coupled-cluster theory offers a way to circumvent
these problems without leaving the single-reference framework: Starting from a correlated
description of a related state that may have a different spin symmetry or a different
number of electrons but is well represented by a single determinant, one can target the
state of interest via excitation operators involving spin-flip [81,82] or multi-ionization [83].
However, the need to choose orbitals suited for capturing both the dynamic correlation of
the initial system and the differential dynamic and static correlation of the target system
limits the accuracy of EOM-based approaches. These limitations may be expected to
become even more severe in future extensions of these methods with spin-flip or ionization
operators acting on more than two electrons.

Most MRCC methods built upon a multideterminantal reference function rely on
either of two strategies: The first one employs a separate cluster expansion for each
reference determinant as initially proposed by Jeziorski and Monkhorst [84],

|ΨJM〉 =
∑

µ

eT̂
µ |Φµ〉cµ. (2.40)

The original state-universal formulation [27, 84–86] simultaneously targets all the states
that can be modeled by the active space. As this may lead to numerical problems
whenever a low excited configuration involving virtual orbitals becomes near-degenerate
with a configuration from the active space (intruder state problem), various state-specific
MRCC methods targeting only one state have been devised. Most of these approaches
[87], comprising the so-called Brillouin–Wigner coupled-cluster (BW-MRCC) theory [88,
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2 THEORETICAL FUNDAMENTALS

89], the state-specific Mk-MRCCmethod introduced by the Mukherjee group [90–99], and
the single-root MRCC theory [100], impose additional restrictions (sufficiency conditions)
on the coupled-cluster equations in order to match the number of equations with the
number of parameters. A way to instead reduce the number of amplitudes to the number
of equations is explored in the MRexpT method [101,102].

Among these methods, Mk-MRCC theory has become the most popular approach,
owing to its size-extensivity and a relatively simple structure that can be implemented by
extending existing SRCC codes. However, the lack of orbital invariance of the Jeziorski–
Monkhorst ansatz [33] introduces an undesired arbitrariness in these approaches and
Mk-MRCC results may be very sensitive to the choice of orbitals [91, 103]. Further, the
computational cost of an Mk-MRCC calculation scales factorially with the size of the
active space, as each reference determinant has its own cluster operator. In order to
alleviate the latter shortcoming, one may treat inactive excitations as independent from
the reference functions (anonymous parentage approximation) and move the exponential
of this part of the cluster operator in front of the summation in Eq. (2.40) [104–106].
This corresponds to an internal contraction of the inactive excitations and is inspired by
the highly successful internally contracted approximation of MRCI theory [48,107].

The second strategy is a fully internally contracted ansatz, in which a single cluster
expansion acts onto the entire multideterminantal reference,

|Ψic〉 = eT̂ |Ψ0〉 = eT̂
∑

µ

|Φµ〉cµ. (2.41)

This ansatz is realized in the valence-universal Fock-space coupled-cluster theory, which
targets all states accessible by distributing any number of electrons in the active space,
including ionized and electron-attached states [108–110]. The desire to avoid numerical
instabilities from intruder states and the interest in accurate descriptions of individual
states has motivated the formulation of various state-specific internally contracted mul-
tireference approaches. The internally contracted MRCC (ic-MRCC) theory studied in
this thesis is rooted in the work of Banerjee and Simons [34–37] and has recently been
picked up by Evangelista and Gauss [38]. Its efficient implementation has been hindered
for decades by its complicated formal structure due to noncommuting excitation operators
in T̂ . The same is true for a variant using a generalized normal ordering [111–113] with
respect to the multideterminantal reference function, as proposed by Mukherjee [30,31],
for which not even pilot implementations have emerged prior to the present work.

A number of alternative internally contracted approaches exist: Nooijen and co-
workers [32,51,114,115] have put forth hybrid methods, designed to simultaneously treat
a target state and a number of excited states by diagonalizing a similarity transformed
Hamiltonian in an MRCI function space, restricted to singly excited configurations. The
cluster amplitudes needed for the similarity transformation are either obtained from
projected equations as in ic-MRCC theory, or from the simpler many-body equations,
which consist in requiring certain elements of the similarity transformed Hamiltonian (i.e.,
those corresponding to excitation operators) to vanish. The canonical transformation
theory by Yanai and Chan [40–42] is closely related to ic-MRCC theory, being a unitary
variant, equipped with approximations of intermediate operators with ranks beyond two
(cf. Ref. [43]). The unitary wave operator may also be combined with a variational
approach [46, 47, 116]. Yet another alternative internally contracted scheme is block
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correlated coupled-cluster theory [117, 118], where the purely active parts of excitations
are represented in terms of transitions from the ground state within the active space into
states with the same or a different number of active electrons.

All of these existing internally contracted schemes have important advantages in com-
mon, including orbital invariance and a compact parameterization of the wave function.
However, most of them are not fully size-extensive in their present form,6 and in view of
the compromises made in their formulations, they do not seem to tap the full potential
of ic-MRCC theory. The following chapters aim to close this gap by offering a rigorous
account of ic-MRCC theory, shedding light on unsettled issues such as its formal com-
plexity, computational scaling and size-extensivity, and by unveiling its predictive power
through benchmark applications.

6Although CT theory is expected to be size-extensive, a statement in Ref. [42] indicates that at least its
present implementation is not.
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3 Internally contracted multireference coupled-cluster
(ic-MRCC) theory

3.1 Basic ic-MRCC theory

3.1.1 The ic-MRCC ansatz and equations

In the ic-MRCC ansatz, Eq. (2.41), the exponential wave operator acts onto a CASSCF-
like reference function, Eq. (2.29). The cluster operator therefore should cover excitations
from the combined set of occupied and active orbitals (indexed by I, J, . . .) to the com-
bined set of active and virtual orbitals (A,B, . . .),

T̂ =
∑

IA

tIAâ
A
I + 1

4

∑

IJAB

tIJAB â
AB
IJ + . . . =

∑

ρ

τ̂ρtρ = τ̂ t. (3.1)

In analogy to single-reference coupled-cluster theory, we first insert the ic-MRCC
ansatz into the Schrödinger equation and pre-multiply with e−T̂ to obtain an equation
in terms of a similarity transformed Hamiltonian (H̄ = e−T̂ ĤeT̂ ),

H̄|Ψ0〉 = E|Ψ0〉. (3.2)

Projection onto the reference function straightforwardly yields an expression for the ic-
MRCC energy,

E = 〈Ψ0|H̄|Ψ0〉, (3.3)

while projection onto the excited functions τ̂ρ|Ψ0〉 initially results in

〈Ψ0|τ̂ †H̄|Ψ0〉 = E〈Ψ0|τ̂ †|Ψ0〉. (3.4)

The right-hand side of Eq. (3.4) may be nonzero for excitations within the active
space, i.e., for projections onto âuv···wx···|Ψ0〉. However, instead of considering purely active
excitations, it is easier to directly project Eq. (3.2) onto the reference determinants. The
resulting equations take the form of an eigensystem for the CI coefficients in the reference
function (for short reference coefficients),

∑

ν

〈Φµ|H̄|Φν〉cν = Ecµ. (3.5)

It becomes obvious that projections onto the reference space do not furnish enough
equations to uniquely determine both the purely active amplitudes twx···uv··· and the reference
coefficients cµ. We therefore consider the former as redundant parameters and set them
to zero. Equation (3.5) is then used to relax the reference function.7

Projections onto reference determinants are not the only redundant part of Eq. (3.4).
More redundancies arise due to linear dependencies between the excited functions τ̂ρ|Ψ0〉.
Section 3.2 is devoted to a detailed discussion of that issue. For the present context, it
suffices to point out that one can define a new set of excitation operators τ̂ ′ρ as linear
combinations according to

τ̂ ′ = τ̂X, (3.6)
7Alternatively we could fix the CI coefficients to their CASSCF values (which corresponds to solving
Eq. (3.5) for T̂ = 0), and account for the relaxation of the reference function by a nonredundant set of
purely active excitations. A comparison of these choices is presented in sec. 4.5.
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3 IC-MRCC THEORY

such that the (rectangular) matrix X transforms the excited functions τ̂ρ|Ψ0〉 into a set
of linearly independent functions τ̂ ′ρ|Ψ0〉. The cluster operator is then restricted to these
new excitations,

T̂ = τ̂ ′t′, (3.7)

and Eq. (3.4) becomes
0 = 〈Ψ0|τ̂ ′†H̄|Ψ0〉. (3.8)

The ic-MRCC solution simultaneously fulfills both the eigenvalue equations (3.5) and the
amplitude equations (3.8) [35,38].

Although different ways of removing redundant parameters from the original clus-
ter operator given in Eq. (3.1) generally lead to different ic-MRCC wave functions and
energies, all of these ic-MRCC methods properly converge to FCI when the maximum
excitation rank Nrank in the cluster operator reaches the number of (correlated) electrons.
A rationale for this property is provided in sec. 3.3.2 (see Ref. [P5] for a proof).

The discussion of the ic-MRCC theory’s structure in the following sections is largely
based on Ref. [P1].

3.1.2 Formal truncation & commutator approximations

Applying the BCH expansion, Eq. (2.19), to the similarity transformed Hamiltonian,

H̄ = e−T̂ ĤeT̂ = Ĥ + [Ĥ, T̂ ] + 1
2 [[Ĥ, T̂ ], T̂ ] + . . . , (3.9)

one may write the ic-MRCC equations (3.5) and (3.8) as series of terms with increasing
number of cluster operators. In SRCC theory the excitations in T̂ mutually commute
and hence each cluster operator in the nested commutator [· · · [Ĥ, T̂ ], T̂ · · · ] must be
contracted with the Hamiltonian. Since Ĥ contains only up to twofold excitations, the
expansion in Eq. (3.9) truncates at the quartic power in T̂ . Unfortunately, this is no
longer the case in ic-MRCC theory where excitation operators involving creation and
annihilation of active electrons do not commute with each other.

Figure 3a displays all possible cluster excitations for ic-MRCC theory with singles
and doubles (ic-MRCCSD) as antisymmetrized Brandow-type diagrams [119]. The oper-
ators are divided into sets of excitations with common number of inactive hole (nh) and

nh np = 0 np = 1 np = 2

0 —
âa

u âwa
uv âab

uv

1

âu
i âvw

ui âa
i âva

ui âab
ui

2
âuv

ij âua
ij âab

ij

Ĉ0 (Nact = 2)

Ĉ0 (Nact = 4)

Ĉ0 (Nact = 6)

(a) (b)

Figure 3: Diagrammatic representation of (a) the excitations in T̂ for Nrank = 2, with excitations
present in SRCCSD drawn in red, and (b) the reference function for Nact = {2, 4, 6}.
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3.1. Basic ic-MRCC theory

particle (np) indices, to be denoted as excitation classes. Since we choose the core deter-
minant |0〉 as Fermi vacuum, indices labeling active orbitals (valence lines) are depicted
as arrows pointing upwards and distinguished from genuine particle lines by the use of
filled triangular arrow heads.

The expansion in Eq. (3.9) does not naturally truncate in ic-MRCC theory, because
in principle it may contain infinite chains of contracted excitation operators with two or
more valence lines each. However, due to the exclusion of purely active cluster amplitudes,
each cluster operator contributes at least one hole or particle creation line to H̄. Since in
the ic-MRCC equations all of these inactive lines must be connected with hole or particle
annihilation lines, coming either from the Hamiltonian or from the projection onto excited
functions, the number of cluster operators in a term cannot exceed the total number of
annihilation and creation operators in Ĥ and (τ̂ ′ρ)†. Therefore the eigenvalue equations
(3.5) truncate at quartic power in T̂ , while the number of cluster operators Ncom in the
amplitude equations (3.8) is bounded by the maximum excitation rank according to

Ncom ≤ 4 + 2Nrank. (3.10)

The full ic-MRCCSD equations hence involve up to eightfold commutators, see Fig. 4b for
an example of such a term (in diagrammatic representation). In a full implementation
of ic-MRCC theory, terms with such a large number of cluster operators would have
detrimental impact on the efficiency of the method, both due to their sheer number (see
also Tab. 1 and 2) and their computational expense (see sec. 3.1.3). Fortunately, the use
of a qualitatively correct reference function guarantees that the cluster amplitudes need
to describe dynamic correlation only and consequently will stay small [35]. Terms of high
power in T̂ may then be neglected, rendering commutator approximations (truncations of
the BCH expansion) efficient approximations in ic-MRCC theory [38], as will be confirmed
in sec. 4.2.

Another important aspect is the formal truncation with the number of active elec-
trons. Due to our choice of Fermi vacuum, the reference function explicitly appears in
the ic-MRCC equations in form of an additional operator,

Ĉ0 =
1

Nact!

∑

u1···uNact

â†u1
· · · â†uNact

cu1···uNact
, (3.11)

which distributes Nact electrons into the active orbitals, |Ψ0〉 = Ĉ0|0〉, see Fig. 3b for a
diagrammatic representation. In order to identify similar terms for different numbers of

=
X†

(a) (b) (c)

Figure 4: Diagrams showing (a) the reduced two-particle density matrix, (b) a sample eightfold
commutator term and (c) a term involving the eight-particle density matrix.
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3 IC-MRCC THEORY

active electrons, we may substitute reduced density matrices γn for (contracted) products
of Ĉ0 and its adjoint. Diagrammatically these appear as operators with two vertices
(horizontal lines) as shown in Fig. 4a, one at the bottom and one at the top of a diagram
(see Figs. 4b and 4c for examples).

The rank of the reduced density matrices is bounded by the number of active electrons,

n ≤ Nact. (3.12)

Irrespective of the number of active electrons, n is further restricted by the truncation
scheme applied to the cluster operator and the commutator series. This comes from
the fact that a given number of cluster operators can only yield intermediates with a
finite number of uncontracted valence lines. Considering that these lines are eventually
connected to the 2n indices of a γn leads to the following upper bound in the ic-MRCC
energy expression:8

n ≤ Ncom(Nrank − 1) + 2. (3.13)

In the amplitude equations, the operator (τ̂ ′ρ)† provides additional lines, denoted as
open lines, and allows a larger number of T̂ operators in a term. However, even cluster
operators with open inactive lines must be connected to the Hamiltonian either directly
or indirectly through other cluster operators. From these considerations, finally the
following upper bounds result:

n ≤
{

(Ncom + 1)(Nrank − 1) + 2, if Ncom ≤ 5,
(Ncom + 1)(Nrank − 2) + 8, if Ncom ≥ 5.

(3.14)

As an example, when the cluster operator is truncated at double excitations, terms
including up to γ8 may arise, such as the diagram shown in Fig. 4c.9

Table 1 lists the numbers of topologically unique terms arising in ic-MRCCSD for
a selected range of powers in T̂ and ranks of reduced density matrices (where n = 0
characterizes terms without a reduced density matrix), based on an automated derivation
of the equations (see app. A.1.4 for details). Although the drastic increase in the number
of terms compared to single-reference CCSD can be partially attributed to the mere
existence of an additional active orbital space (as may be seen by comparing the number
of terms with Ncom ≤ 1), the major amount of terms is due to the variety of possible
connections among cluster operators.

Regarding the large number of terms generally arising in ic-MRCC theory, it is worth
discussing two special cases which result in major simplifications of the working equations:
The first is the absence of correlated doubly occupied orbitals. When all occupied orbitals
are either included in the active space or treated as an uncorrelated frozen core, the
cluster operator for ic-MRCCSD reduces to the three excitations shown in Fig. 3a for
nh = 0. The number of unique terms for this scheme is collected in Tab. 2. Indeed, this
strategy was followed in the original work of Banerjee and Simons [34].10 However, this
simplification is only practical for the smallest systems, as systems with many electrons
would either require very large active spaces or drastic frozen core approximations.
8The eigenvalue equations, on the other hand, do not contain reduced density matrices since the adjoint
of Ĉ0 does not occur.

9The operator drawn in blue in Fig. 4c indicates that the ic-MRCC equations are projections onto
〈Ψ0|τ̂ ′† = X†〈Ψ0|τ̂ , see also app. A.1.4.

10These authors went even further by additionally neglecting the semi-internal excitations associated
with âwauv , which is (in my experience) a very crude approximation for active spaces beyond CAS(2,2).
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3.1. Basic ic-MRCC theory

Table 1: Number of topologically unique terms in energy expression and amplitude equations for
CCSD and ic-MRCCSD, grouped by the number of cluster operators per term (Ncom) and the
rank of the reduced density matrix (n).

ic-MRCCSD (n)

Ncom CCSD 0 1 2 3 4 5 6 ...

Energy expression / Eigenvalue equations
0 1 1 1 1 0 0 0 0 0
1 2 5 11 9 2 0 0 0 0
2 1 11 39 44 16 3 0 0 0
3 0 10 58 96 55 15 2 0 0
4 0 4 32 79 67 28 6 1 0

Amplitude equations
0 2 5 11 9 2 0 0 0 0
1 13 73 255 255 95 12 0 0 0
2 21 542 2 664 3 452 1 713 367 28 0 0
3 8 2 518 16 822 27 932 17 899 5 119 673 34 0
4 1 7 845 70 155 148 521 120 507 44 384 7 763 664 ...
. . . 0 . . . . . . . . . . . . . . . . . . . . . ...

Table 2: Number of topologically unique terms in energy expression and amplitude equations for
special cases of ic-MRCCSD, grouped by the number of cluster operators per term (Ncom) and
the rank of the reduced density matrix (n).

ic-MRCCSD with Mocc = 0 (n) ic-MRCCSD without âwauv and âvwui (n)

Ncom 0 1 2 3 4 5 6 0 1 2 3 4
Energy expression / Eigenvalue equations

0 1 1 1 0 0 0 0 1 1 1 0 0
1 0 1 4 1 0 0 0 5 9 5 0 0
2 0 0 2 2 1 0 0 9 18 9 0 0
3 0 0 0 0 0 0 0 5 9 5 0 0
4 0 0 0 0 0 0 0 1 1 1 0 0

Amplitude equations
0 0 1 4 1 0 0 0 5 9 5 0 0
1 0 2 28 24 4 0 0 71 191 122 20 0
2 0 1 44 100 56 6 0 442 1 420 997 200 10
3 0 0 22 102 141 49 3 1 313 4 420 3 029 593 32
4 0 0 4 30 75 57 13 1 825 5 689 3 401 536 21
5 0 0 0 0 0 0 0 1 120 2 795 1 268 120 0
6 0 0 0 0 0 0 0 277 468 132 0 0
7 0 0 0 0 0 0 0 25 22 0 0 0
8 0 0 0 0 0 0 0 1 0 0 0 0

23



3 IC-MRCC THEORY

The second notable special case is ic-MRCC theory based on a CAS(2,2). Here, single
excitations âau are sufficient for generating the complete set of excited determinants that
have exactly one electron in the virtual orbital space. Double excitations of the type âwauv
acting on |Ψ0〉 can only create determinants from the very same set of functions. One
may therefore consider the amplitudes tuvwa as redundant and exclude them. The same
argument justifies the exclusion of tuivw in favor of tiu. Section 3.2.1 describes a general
procedure that naturally takes advantage of this type of redundancy. As the excitations
âwauv and âvwui (drawn in blue in Fig. 3a) trigger the largest number of terms in ic-MRCCSD
(e.g., 143 430 eightfold commutator terms containing exclusively these two excitations),
considerable simplifications result from their absence. Table 2 lists the total number of
terms for this case, with terms arising for a CAS(2,2) printed in boldface.

3.1.3 Computational scaling

The algorithm to solve the ic-MRCC equations, detailed in app. A.1.4, involves as rate
determining step the evaluation of the residual

Ω = 〈Ψ0|τ̂ †H̄|Ψ0〉. (3.15)

In SRCC theory, it is straightforward to characterize the scaling of the computational
cost for this step with increasing system size, because typically Mvirt � Mocc and the
dominating term with the highest scaling with respect to Mvirt also has the highest
overall computational scaling (with respect to both Mvirt and Mocc). Matters are more
complicated in ic-MRCC theory, as terms scaling polynomially with a high power inMact

may eventually become rate determining for large active spaces. Whereas the number of
inactive orbitals always grows with a system’s size or the basis set size, the number of
active orbitals depends on the multireference character of the studied problem and does
not generally increase with a system’s size. Therefore, the following analysis starts by
considering the scenario Mvirt � Mact, such that terms with the highest scaling with
respect toMvirt are dominating, and then focuses on the impact of the active space’s size
on the scaling behavior.

Restricting ourselves to the case Nrank = 2, the most expensive terms in Eq. (3.15)
scale like M4

virt. The only terms for which a contraction scaling like M4
virt is mandatory

contain the Hamiltonian vertex gabcd â
cd
ab. This is because in ic-MRCCSD there can be at

most four particle lines per term, two of them open and two connecting the Hamiltonian
with T̂ operators. Terms of this structure that contain Hamiltonian elements with less
than four particle indices can always be evaluated starting with an M3

virt contraction
through a particle line. The three possible structures of terms scaling like M4

virt are
depicted in Fig. 5. The first of these terms (Fig. 5a) is known from single-reference CCSD,
where it is equal to

∑
cd g

cd
ab(

1
2 t
ij
cd + tict

j
d). In ic-MRCCSD, a much larger number of terms

has this structure. However, all of these may be merged by defining an intermediate IIJab
(depicted as a box-shaped vertex), which is then contracted with the Hamiltonian in a
singleM2

occM
4
virt step. The other two terms shown in Figs. 5b and 5c are analogs arising in

ic-MRCCSD theory and scale likeMoccMactM
4
virt andM

2
actM

4
virt, respectively. Therefore,

each evaluation of the coupled-cluster residual involves only threeM4
virt contractions with

an approximate combined scaling of (Mocc +Mact)
2M4

virt. This is comparable to single-
reference CCSD. However, it stands in contrast to MRCC approaches that are built on
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3.1. Basic ic-MRCC theory
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∑
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Figure 5: Terms in ic-MRCCSD scaling formally like M4
virt.

the Jeziorski–Monkhorst ansatz, where the number of M4
virt contractions scales linearly

with the number of reference determinants, d. The latter grows exponentially with the
active space’s size, as the number of possibilities to distribute Nact electrons into Mact

spin orbitals is given by (
Mact

Nact

)
. (3.16)

The binomial coefficient in Eq. (3.16) may serve as an upper bound for d, which is
generally somewhat smaller due to spin and spatial symmetry constraints.

While the computational cost of the M4
virt terms in ic-MRCCSD theory is almost

independent of the active space’s size, the scaling with respect to the active space tends
to become steeper when moving to terms that scale with lower powers in Mvirt. Even
when the theory is truncated at Ncom = 2, two terms arise with contractions scaling like
M3

occMactM
3
virt, which is higher than the M3

occM
3
virt scaling of the second most expensive

contractions from SRCC theory. Figure 6 illustrates these two terms and how they can be
merged by factoring out a suitable intermediate involving γ1 and a unit tensor, leading
to a total of two contractions scaling like M3

occMactM
3
virt. Summation over repeated

indices is implied in Fig. 6 (Einstein summation convention). It should be noted that an
alternative contraction sequence (namely 1 3 2 ) exists with a scaling likeMoccMactM

4
virt.

Whether this route is more efficient depends on the actual sizes of the orbital spaces.
The number of active electrons impacts the formal scaling of ic-MRCC theory in two

ways: First, an increase in the number of active electrons can lead to a rising number
of terms. For example, the term in Fig. 7a only appears for Nact ≥ 4. Second, even
terms already present for a lower number of active electrons may require higher scaling
contractions. The diagram in Fig. 7b is for instance identical to the one shown in Fig. 7a
except for the number of active electrons involved. While the term in Fig. 7b is formally

1
2 + 1

2
3

3

= (1 − P̂ab)t
uk
bc gcd

katijdv(
1
2δv

u − γv
u)

1

2

3

M2
occM2

actMvirt

M3
occMactM3

virt

M3
occMactM3

virt

Figure 6: Terms in ic-MRCCSD scaling formally likeM3
occMactM

3
virt, shown as diagrams and in a

tensor notation. The permutation operator P̂ab interchanges indices a and b. Numbers in circles
indicate the contraction sequence, braces highlight the tensors involved in each contraction.
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3 IC-MRCC THEORY

best dealt with starting from γ4, in the evaluation of the term in Fig. 7a it is advantageous
to contract the operators Ĉ0 and Ĉ†0 with other operators first. This allows steps with a
reduced scaling (M4

actM
2
virt instead of M8

actM
2
virt) for the smaller active space.11

The scaling with respect to Mact generally rises with the number of cluster operators
in a term, as complicated networks of connections between operators may prevent a
reduction of the operator rank for several consecutive contractions. Figure 7c shows a
sample fourfold commutator term from the energy expression. Its evaluation involves
contractions with sums running over up to five active and three inactive indices. On the
other hand, the scaling with respect to the number of inactive orbitals generally decreases
with the number of cluster operators, because connections between T̂ operators are only
possible through active indices. For instance, one may easily deduce from the number
of inactive lines in the intermediates IIJab (Fig. 5) that terms with more than four T̂
operators must scale lower with Mvirt than M4

virt.
Especially when moving towards large active spaces, commutator approximations

become indispensable for a practically useful implementation of ic-MRCC theory, in
order to avoid huge numbers of terms scaling steeply with Mact. Further, at some point
it will become advantageous to factor out the reduced density matrices from the ic-
MRCC amplitude equations, thereby making the residual expression independent of Nact.
Figure 8 gives an overview of the computational scaling for Ncom ≤ 2 with respect to all
orbital spaces. The presented information is based on an automated factorization of the
residual expression (see app. A.1.2), followed by a manual analysis of those terms that
scale highest withMact for a given scaling behavior with respect to inactive orbitals. The
steepest scaling withMact, namelyM10

actMvirt, is found for contractions of γ5 (the highest
reduced density matrix arising in that case) with either semi-internal double excitations
or the Hamiltonian vertex gauvwâvwau . Taking the actual subdivision of active indices into

1

2

3

4

1

2

3

3

4

1

2

3

4

5

5

tu
′v′

bc cyzu′v′t
yz
adc

uvwxgcd
wx

1

2

3

4

M4
actM2

virt

M4
actM2

virt

M4
actM3

virt

M4
actM3

virt

cyzu′v′w′x′y′z′c
uvwxw′x′y′z′

tu
′v′

bc γuvwx
yzu′v′t

yz
adg

cd
wx

1

2

3

4

M12
act

M4
actM3

virt

M8
actM2

virt

M4
actM3

virt

γw
u′t

u′j
yz tzi

xvtxy
ubt

uv
wagab

ij
1

2

3

4

5

M2
occM3

actM2
virt

M2
occM5

actMvirt

M2
occM5

act

MoccM4
act

M2
act

(a) (b) (c)

Figure 7: Sample terms to demonstrate the effect of a larger number of active electrons and
higher commutators on the formal scaling of individual ic-MRCCSD terms.

11Note that the characterization of the formal scaling in terms of polynomials in Mact is only strictly
valid in the limit Mact → ∞. If Mact is small, a proper assignment of the formal scaling should also
take into account the actual subdivision of the active indices involved in a contraction into groups of
indices with permutational antisymmetry. For simplicity, we retain the notation using polynomials in
Mact, although the reader should keep in mind that the factual scaling with respect to Mact is usually
somewhat lower than indicated.
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Figure 8: Diagram showing the maximum value of v for terms scaling likeMh
occM

v
actM

p
virt in case

of ic-MRCCSD truncated at Ncom ≤ 2 (excluding terms needed for evaluating reduced density
matrices).
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Figure 9: Dependence of the estimated number of floating point operations (log. scale) on the
active space size for the following computational steps: the evaluation of γn [see Eq. (3.19)],
the M4

virt terms in MRCCSD methods based on the Jeziorski–Monkhorst (JM) and the in-
ternally contracted (ic) ansatz, a sample term from ic-MRCCSD scaling like M10

actMvirt [see
Eq. (3.17)], and the singular value decomposition (SVD) step [see Eq. (3.35)]. The plot assumes
a CAS(Nact,Nact), N = 40 and Mocc +Mact +Mvirt = 250.
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account, this scaling is more accurately characterized as

Mact

(
Mact

2

)(
Mact − 1

4

)(
Mact − 2

3

)
Mvirt. (3.17)

Hence, in contrast to MRCC methods based on the Jeziorski–Monkhorst ansatz, in which
all terms inherit a factorial scaling behavior from the active space, the expense for eval-
uating the ic-MRCC residual is limited by a polynomial in Mact.

Therefore, in case of very large active spaces, the formation of the reduced density
matrices γn according to

γwx···uv··· =
1

(Nact − n)!

∑

yz···
cwx···yz···c uv···︸︷︷︸

n

yz···︸ ︷︷ ︸
Nact−n

(3.18)

will eventually become the rate determining step, with
(

Mact

Nact − n

)(
Mact −Nact + n

n

)2

(3.19)

as an upper bound for the computational scaling. Figure 9 visualizes this issue and sum-
marizes the current discussion by comparing the scaling behaviour of selected computa-
tional steps in an ic-MRCCSD calculation with each other and with the most expensive
term in a competing Jeziorski–Monkhorst-based theory.

It should be mentioned that the relaxation of the reference function involves the
evaluation of 〈Φµ|H̄|Ψ0〉 (see app. A.1.4) and also contributes to an exponential scaling
with respect to the active space. For ic-MRCCSD with Ncom ≤ 2, active parts of H̄ with
ranks up to four can contribute, leading to a computational scaling similar to the one for
computing γ4.

3.2 The redundancy problem in ic-MRCC theory

Unlike in SRCC theory, the excited functions τ̂ρ|Ψ0〉 are not mutually orthogonal, leading
to a nontrivial overlap (or metric) matrix,

S = 〈Ψ0|τ̂ †τ̂ |Ψ0〉. (3.20)

Because Sσρ is zero for different inactive indices in (τ̂ρ)† and τ̂σ, S naturally falls into
a direct sum over individual excitation classes. In each excitation class, labeled by
the number of inactive hole (nh) and particle (np) indices, the metric can further be
decomposed into a tensor Snh,npact having solely active indices, and an antisymmetric unit
tensor with inactive indices only:

S =
⊕

nh,np

(
Snh,npact ⊗ 1nh,npinact

)
. (3.21)

The antisymmetric unit tensor 1 is a generalization of Kronecker’s delta and its elements
may be defined through determinants,

1p1p2···pnq1q2···qn =

∣∣∣∣∣∣∣∣∣

δp1q1 δp1q2 · · · δp1qn
δp2q1 δp2q2 · · · δp2qn
...

...
. . .

...
δpnq1 δpnq2 · · · δpnqn

∣∣∣∣∣∣∣∣∣
. (3.22)
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3.2. The redundancy problem in ic-MRCC theory

The explicit expressions of the blocks of S in ic-MRCCSD, collected in Tab. 3, consist
of unit tensors and up to three-particle reduced density matrices in the active space.
Table 3 also makes use of the one- and two-hole density matrices [P2,54,120], defined by

ηvu = δvu − γ
v
u, (3.23)

ηwxuv = γwxuv − δ
w
u γ

x
v + δxuγ

w
v + δwv γ

x
u − δ

x
vγ

w
u + 1wxuv . (3.24)

Linear dependencies in {τ̂ρ|Ψ0〉} occur whenever more than one distinct linear com-
bination of the functions τ̂ρ|Ψ0〉 leads to the same configuration. Linear dependencies
are always present in ic-MRCC theory for Nrank ≥ 2 and we may divide them into three
classes: (i) those between functions created by excitation operators of different rank, (ii)
remaining linear dependencies due to overparameterization, and (iii) near-linear depen-
dencies originating from small reference coefficients.

Linear dependencies of class (i) arise because summations over spectator excitations
(that excite an electron from an active orbital into the same orbital) involve the number
operator for active electrons, n̂act =

∑
u â

u
u. For the simplest case of single and double

excitations, these linear dependencies take the form
∑

u

âuAui |Ψ0〉 = Nactâ
A
i |Ψ0〉, (3.25)

and ∑

u

âuauv|Ψ0〉 = (Nact − 1)âav|Ψ0〉. (3.26)

Jeziorski and Monkhorst have early pointed out that such linear dependencies cause
infinitely many solutions to the amplitude equations [84]. In order to see this, first
realize that Eqs. (3.25), (3.26) and (3.15) imply the elements of the singles residual Ω1

to be linear combinations of elements from Ω2, e.g.,

Ωi
A =

1
Nact

∑

u

Ωui
uA. (3.27)

This in principle allows us to arbitrarily choose the singles amplitudes in T̂1 and only
solve for T̂2 by fulfilling Ω2 = 0. By virtue of Eq. (3.27) (and its analog for Ωu

a), Ω1 = 0
is then also satisfied. In an internally contracted MRCI method (or in the FCI limit,
see sec. 3.3.2) this does not pose a problem since the redundant components in the wave
operator simply destruct the reference function and therefore do not change the wave
function. However, in ic-MRCC theory, components in T̂ that destruct |Ψ0〉 may affect
the wave function (and hence the energy) through terms nonlinear in T̂ .

Spectator excitations generally give rise to additional, class (ii), linear dependencies,
because there are different linear combinations of them that leave the reference function
unchanged. Next to the number operator n̂act, they can also represent the spin operator
Ŝz, see Eq. (A.8) in the appendix for a definition. The relation

(Msn̂act −NactŜz)|Ψ0〉 = 0 (3.28)

therefore always implies a linear dependency for excitations containing both active an-
nihilators and creators. These linear dependencies stem from an overparameterization

29



3 IC-MRCC THEORY

T
ab

le
3:

N
on

ze
ro

bl
oc
ks

of
th
e
m
et
ri
c
m
at
ri
x
fo
r
ic
-M

R
C
C
SD

,g
ro
up

ed
by

ex
ci
ta
ti
on

cl
as
se
s.

In
th
e
co
m
pa

ct
no

ta
ti
on

us
ed

fo
r
n
h

=
0,
n
p

=
0,

om
is
si
on

of
th
e
su
bs
cr
ip
t
i
of

an
in
de
x
v i

im
pl
ie
s
a
su
m
m
at
io
n,

e.
g.
,δ

x v
γ
u

1
u

2
w
v

=
∑
i6=
j
(−

1)
i δ
x v

i
γ
u

1
u

2
w
v

j
.

n
h

n
p

=
0

n
p

=
1

n
p

=
2

0

S
u
,x

v
,w

=
−
γ
u
x

w
v

+
δx v
γ
u w

S
u
,x

1
x
2

v
,w

1
w

2
=
γ
u
x
1
x
2

w
1
w

2
v

+
δx v
γ
u
x

w
1
w

2

S
u
1
u
2
,x

v
1
v
2
,w

=
γ
u
1
u
2
x

w
v
1
v
2

S
u
1
u
2
,x

1
x
2

v
1
v
2
,w

1
w

2
=
γ
u
1
u
2
x
1
x
2

w
1
w

2
v
1
v
2

+
δx v
γ
u
1
u
2

w
v

−
δx v
γ
u
1
u
2
x

w
1
w

2
v

+
1
x
1
x
2

v
1
v
2
γ
u
1
u
2

w
1
w

2

S
u
,b

a
,v

=
δb a
γ
u v

S
u
,x
b

a
,v
w

=
δb a
γ
x
u
v
w

S
u
v
,b

w
a
,x

=
δb a
γ
u
v

w
x

S
u
v
,z
b

w
a
,x
y

=
δb a

(−
γ
z
u
v

w
x
y

+
δz w
γ
u
v

x
y

)
S
u
v
,c
d

a
b
,w
x

=
1
c
d
a
b
γ
u
v

w
x

1

S
i,
v

u
,j

=
δi j
η
v u

S
i,
w
x

u
,v
j

=
δi j

(−
γ
w
x

v
u
−
δw u
γ
x v

+
δx u
γ
w v

)

S
u
i,
x

v
w
,j

=
δi j

(−
γ
u
x

v
w

S
u
i,
y
z

v
w
,x
j

=
δi j

(γ
u
y
z

x
v
w
−
δy v
γ
u
z

x
w

−
δx v
γ
u w

+
δz v
γ
u
y

x
w

+
δy w
γ
u
z

x
v

+
δx w
γ
u v
)

−
δz w
γ
u
y

x
v

+
1
y
z
v
w
γ
u x
)

S
i,
b

a
,j

=
1
ib j
a

S
i,
v
b

a
,u
j

=
1
ib j
a
γ
v u

S
u
i,
b

v
a
,j

=
1
ib j
a
γ
u v

S
u
i,
x
b

v
a
,w
j

=
1
ib j
a
(−
γ
u
x

w
v

+
δx v
γ
u w

)
S
u
i,
c
d

a
b
,v
j

=
1
ic
d

j
a
b
γ
u v

2
S
ij
,w
x

u
v
,k
l

=
1
ij k
lη
w
x

u
v

S
ij
,v
b

u
a
,k
l

=
1
ij
b

k
la
η
v u

S
ij
,c
d

a
b
,k
l

=
1
ij
c
d

k
la
b

T
ab

le
4:

N
on

ze
ro

bl
oc
ks

of
th
e
G
N
O
-b
as
ed

m
et
ri
c
m
at
ri
x
fo
r
ic
-M

R
C
C
SD

(s
ee

se
c.

3.
2.
2)
,
gr
ou

pe
d
by

ex
ci
ta
ti
on

cl
as
se
s.

Fo
r
n
h

=
2
an

d
n
p

=
2,

th
e
m
et
ri
c
el
em

en
ts

ar
e
id
en
ti
ca
lt
o
th
e
on

es
sh
ow

n
in

T
ab

.3
.
Se
e
al
so

th
e
ca
pt
io
n
of

T
ab

.3
.

n
h

n
p

=
0

n
p

=
1

0

S̃
u
,x

v
,w

=
−
λ
u
x
w
v

+
η
x v
γ
u w

S̃
u
,x

1
x
2

v
,w

1
w

2
=
λ
u
x
1
x
2

w
1
w

2
v

+
η
x v
λ
u
x
w

1
w

2
+
γ
u w
λ
x
1
x
2

w
v

S̃
u
1
u
2
,x

v
1
v
2
,w

=
λ
u
1
u
2
x

w
v
1
v
2

S̃
u
1
u
2
,x

1
x
2

v
1
v
2
,w

1
w

2
=
λ
u
1
u
2
x
1
x
2

w
1
w

2
v
1
v
2
−
η
x v
λ
u
1
u
2
x

w
1
w

2
v

+
η
x v
λ
u
1
u
2

w
v

+
γ
u w
λ
u
x
1
x
2

w
v
1
v
2

+
η
x
1
x
2

v
1
v
2
γ
u
1
u
2

w
1
w

2
+

1 2
λ
u
x
w
v
λ
u
x
w
v

+
γ
u w
λ
u
x
v
1
v
2

−
λ
u
1
u
2

w
v
λ
x
1
x
2

w
v
−
λ
u
x
v
1
v
2
λ
u
x
w

1
w

2
−
η
x v
γ
u w
λ
u
x
w
v

S̃
u
,b

a
,v

=
δb a
γ
u v

S̃
u
,x
b

a
,v
w

=
δb a
λ
x
u
v
w

S̃
u
v
,b

w
a
,x

=
δb a
λ
u
v
w
x

S̃
u
v
,z
b

w
a
,x
y

=
δb a

(−
λ
z
u
v

w
x
y
−
γ
u x
λ
z
v
w
y

+
γ
v x
λ
z
u
w
y

+
γ
u y
λ
z
v
w
x
−
γ
v y
λ
z
u
w
x

+
γ
u
v

x
y
η
z w

)

1

S̃
i,
v

u
,j

=
δi j
η
v u

S̃
i,
w
x

u
,v
j

=
−
δi j
λ
w
x

v
u

S̃
u
i,
x

v
w
,j

=
−
δi j
λ
u
x
v
w

S̃
u
i,
y
z

v
w
,x
j

=
δi j

(λ
u
y
z

x
v
w
−
η
y v
λ
u
z
x
w

+
η
z v
λ
u
y
x
w

+
η
y w
λ
u
z
x
v
−
η
z w
λ
u
y
x
v

+
η
y
z
v
w
γ
u x
)

S̃
i,
b

a
,j

=
1
ib j
a

S̃
i,
v
b

a
,u
j

=
0

S̃
u
i,
b

v
a
,j

=
0

S̃
u
i,
x
b

v
a
,w
j

=
1
ib j
a
(−
λ
u
x
w
v

+
η
x v
γ
u w

)

30



3.2. The redundancy problem in ic-MRCC theory

related to admitting excitations both into and out of the active orbitals. Another instance
of this feature occurs whenever the number of active indices becomes large enough to
‘exhaust’ the reference space. This is easiest explained by an example: For Nact = 2,
all the excitations of the type âabuv create the same excited function when acting on the
reference function,

1
cuv

âabuv|Ψ0〉 = â†aâ
†
b|0〉, (3.29)

hence they yield only a single linearly independent component. Likewise, as mentioned
in sec. 3.1.2, for Nact = 2 the single excitations âau exhaust the reference space within
their excitation class, such that the double excitations âwauv are completely redundant.

Class (i) and (ii) linear dependencies will be denoted as exact linear dependencies,
as one may write them in the form τ̂ ′ρ|Ψ0〉 = 0. Near-linear dependencies of class (iii),
on the other hand, arise whenever a configuration in the reference function assumes a
small weight (�1). In the limit that a configuration vanishes (which may happen along
a reaction path on a potential energy surface), no excitation from this configuration is
possible and the linear dependency becomes exact.

Since there is no unique way to remove the redundant parameters in methods using an
internally contracted ansatz, various possibilities have been considered in the literature
[31, 42, 46–52]. Most of these restrict the cluster operator to a nonredundant set of
excitations according to Eqs. (3.6) and (3.7), and are based on a diagonalization (or
singular value decomposition, SVD) of the metric matrix,

s = U†SU. (3.30)

In Eq. (3.30), s is a diagonal matrix containing the eigenvalues (or singular values) of
S. A vanishing eigenvalue sρρ = 0 corresponds to an exact linear dependency. In the
present work, the transformation matrix X in Eq. (3.6) is chosen such that it performs
a canonical orthogonalization of the excited functions τ̂ρ|Ψ0〉, also known as Löwdin
orthogonalization [38,50,121]:

X = Us
− 1

2
η . (3.31)

The subscript η in s−1/2
η indicates that those matrix elements are set to zero for which

the corresponding eigenvalues are below a certain threshold η in order to exclude near-
linear dependencies. The metric matrix with respect to the orthogonalized functions
τ̂ ′ρ|Ψ0〉 hence becomes a truncated unit matrix with all elements belonging to discarded
excitations equal to zero,

S′ = X†SX = 1η. (3.32)

To ensure that the cluster operator is restricted to nonredundant amplitudes accord-
ing to Eq. (3.7) during the iterative solution of the ic-MRCC equations, it is sufficient to
project out the redundant components from the unconstrained amplitude vector traw in
each iteration:

t = Ptraw, (3.33)

with
P = XX−1 = U1ηU†. (3.34)

The computational cost associated with the removal of redundancies is dominated by
the matrix diagonalization, Eq. (3.30), which scales cubically with the dimension of the
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3 IC-MRCC THEORY

matrix. It does not depend on the number of inactive orbitals, as only the purely active
blocks Snh,npact need to be diagonalized. The largest number of active indices arises for
S1,0

act and S0,1
act, leading to an upper bound for the computational scaling of

(
Mact

Nrank

)3( Mact

Nrank − 1

)3
Mact�Nrank≈ 1

Nrank!3(Nrank − 1)!3
M6Nrank−3

act . (3.35)

The comparison with the scaling of other computational steps presented in Fig. 9 shows
that the SVD is unlikely to become a computational bottleneck in case of ic-MRCCSD.
Upon inclusion of triple excitations, however, a steep polynomial scaling likeM15

act results
for large active spaces, which may well become the rate determining step.

3.2.1 A sequential orthogonalization technique

Equations (3.25) and (3.26) exemplify that the metric matrix couples excitations of dif-
ferent rank, i.e., τ̂ρn and τ̂σm with n 6= m. A full orthogonalization according to Eqs. (3.30),
(3.31) and (3.6) therefore yields excitation operators τ̂ ′ρ that are linear combinations of
excitations with different ranks. This is an undesirable feature of the theory, because
(i) excitations of different rank usually arise in different orders of the corresponding
perturbation theory (see sec. 5.3) and should therefore be distinguished, (ii) it makes all
excitation operators dependent on Nrank, thus the definition of a perturbative triples cor-
rection (chap. 5) becomes less straightforward, and (iii) it causes a lack of size-extensivity,
to be discussed in more detail in sec. 3.3.3.

This mixing of excitations with different rank can be avoided by a stepwise procedure
starting from the lowest rank in each excitation class. Fink and Staemmler [50] have
reported such a procedure, however, without defining it in detail. The following outlines
the technique published in Ref. [P1]. The aim is to construct an operator basis {τ̂ ′ρn } that
yields an orthonormal set of functions τ̂ ′ρn |Ψ0〉 while the individual operators τ̂ ′ρn should
be linear combinations of excitation operators from the same rank, i.e., τ ′n = τnXn.

In order to project out the excited functions τ̂ρn |Ψ0〉 from higher excited functions,
one may use the projector

p̂n = 1−
∑

ρ

τ̂ ′ρn |Ψ0〉〈Ψ0|(τ̂ ′ρn )† = 1− τn|Ψ0〉XnX
†
n〈Ψ0|τ †n. (3.36)

Because the matrices Xn should individually transform the corresponding blocks of S
according to X†nSnXn = 1n,η, the definition of Xn has to be based on the diagonalization
of a projected metric matrix that does not couple excitations of different rank. In case
of single excitations, n = 1, no projection is needed and the transformation matrix
X1 = U1s

−1/2
1,η follows directly from the diagonalization of S1.12 For higher ranks n > 1,

the contributions from effective lower-rank excitations can be projected out according to

Sn,proj = 〈Ψ0|τ †nP̂nτn|Ψ0〉 = Sn −
n−1∑

m=1

S†mnXmX†mSmn, (3.37)

where

P̂n =
n−1∏

m=1

p̂m (3.38)

12The product X1X
†
1 in Eq. (3.36) is then given by the pseudoinverse S−1

1 , cf. Ref. [122].
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3.2. The redundancy problem in ic-MRCC theory

and
Smn = 〈Ψ0|τ †mτn|Ψ0〉. (3.39)

In order to derive an expression for Xn, it is advantageous to reformulate Eq. (3.37),
using instead of P̂n a projector Qn that can be applied to τn|Ψ0〉 from the right, satisfying

τn|Ψ0〉Qn = P̂nτn|Ψ0〉. (3.40)

It then follows immediately from the diagonalization

sn = U†nSn,projUn = U†nQ
†
nSnQnUn (3.41)

that the transformation matrices must be defined as

Xn = QnUns
− 1

2
n,η (3.42)

in order to fulfill X†nSnXn = 1n,η.
The construction of Qn requires knowledge of the explicit dependencies between

excitations of different rank. If these dependencies are known for all m < n in the
form

τm|Ψ0〉 = τn|Ψ0〉Znm, (3.43)

the projectors p̂m can be reformulated in terms of n-body excitations:

p̂m = 1− τn|Ψ0〉ZnmXmX†mZ†nm〈Ψ0|τ †n. (3.44)

Inserting Eq. (3.44) into Eq. (3.40), one may identify the desired projector with

Qn = 1n −
(
n−1∑

m=1

ZnmXmX†mZ†nm

)
Sn. (3.45)

In general, the relations (3.43) are not unique, and different choices of Znm lead to
different variants of ic-MRCC theory. The current work uses a definition based on the
following generalization of Eqs. (3.25) and (3.26) [P1]:

∑

u1···ug
â
u1···ugAB···
u1···ugv1···vhij···|Ψ0〉 =

(Nact − h)!
(Nact − h− g)!

âAB···v1···vhij···|Ψ0〉. (3.46)

Restriction of the sum in Eq. (3.46) to nonredundant index tuples and rearrangement
yields

âAB···v1···vhij···|Ψ0〉 =
g!(Nact − h− g)!

(Nact − h)!

∑

u1<···<ug
â
u1···ugAB···
u1···ugv1···vhij···|Ψ0〉. (3.47)

By comparison with Eq. (3.43) one can identify the elements of Znm with

(Znm)u1···ugy1···yhkl··· ,AB···
x1···xgCD··· ,v1···vhij··· =

(
Nact − h

g

)−1

1u1···ugy1···yhAB···kl···
x1···xgv1···vhCD···ij···. (3.48)

Equations (3.41), (3.42), (3.45) and (3.48) are the working equations of this sequential
orthogonalization technique. It is a recursive procedure, as the projectors Qn depend on
the transformation matrices of all lower ranks. Figure 10 illustrates how the recursive
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S1

6= 0

6= 0

6= 0

S2

6= 0

6= 0

6= 0

S3

τ̂ 1|Ψ0〉

〈Ψ0|τ̂ †
1

τ̂ 2|Ψ0〉

〈Ψ0|τ̂ †
2

τ̂ 3|Ψ0〉

〈Ψ0|τ̂ †
3

Projection

S1

= 0

= 0

= 0

Q†
2S2Q2

= 0

= 0

= 0

Q†
3S3Q3

τ̂ 1|Ψ0〉

〈Ψ0|τ̂ †
1

τ̂ 2|Ψ0〉Q2

Q†
2〈Ψ0|τ̂ †

2

τ̂ 3|Ψ0〉Q3

Q†
3〈Ψ0|τ̂ †

3

Figure 10: Illustration of the projection that decouples excitations of different rank in the metric.

projection ensures a decoupling of excitations with different ranks. This procedure also
leads to a natural truncation of the operator rank in each excitation class, because, for
a given active space, a finite number of active creation and annihilation operators are
sufficient to create all possible distributions of active electrons.

In contrast to a full orthogonalization, the sequential orthogonalization does not
affect purely inactive excitations. The resulting ic-MRCC theory thus inherits the size-
extensivity of SRCC with respect to parts of a system described by inactive orbitals, a
property termed core-extensivity [123–125]. However, the sequential orthogonalization
does not guarantee size-extensivity in the active space.

3.2.2 A technique based on the generalized normal ordering

A fully size-extensive ic-MRCC theory can be achieved within a formalism that takes the
multiconfigurational reference function |Ψ0〉 as Fermi vacuum [P4,30].

Such a generalized normal ordering (GNO) gives rise to an extended version of Wick’s
theorem, which is not limited to binary contractions but allows joint contractions involv-
ing any number of n annihilation operators and n creation operators [30, 111, 112]. In
analogy to Eqs. (2.21) and (2.22), relations between excitation operators in the two nor-
mal orderings result from applying the extended Wick theorem to a string of annihilation
and creation operators:

ârst···opq··· = {â
râsât · · · âqâpâo}0 + {ârâsât · · · âqâpâo}0 + . . .

+ {ârâsât · · · âqâpâo}0 + . . .+ {ârâsât · · · âqâpâo}0 + . . .

+ {ârâsât · · · âqâpâo}0 + . . .+ {ârâsât · · · âqâpâo}0 + . . .

+ {ârâsât · · · âqâpâo}0 + . . . .

(3.49)

While a binary contraction triggers an element of either the one-particle or the one-hole
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3.2. The redundancy problem in ic-MRCC theory

density matrix (with respect to the reference function),

âqâp = γqp, (3.50)

âpâ
q = δqp − γqp = ηqp, (3.51)

a joint contraction of 2n operators with n ≥ 2 always yields an n-body cumulant:

ârâsâqâp = −ârâsâpâq = −ârâqâ
sâp = . . . = λrspq, (3.52)

ârâsâtâqâpâo = . . . = λrstopq, (3.53)

. . . .

Equation (3.49) now takes the form

ârst···opq··· = ãrst···opq··· + γro ã
st···
pq··· + . . .+ γroγ

s
pã
t···
q··· + . . .+ λrsopã

t···
q··· + . . . , (3.54)

where operators normal ordered with respect to |Ψ0〉 are denoted as ãrs···pq··· = {ârs···pq···}0 and
the summations cover all nonredundant permutations of upper and lower indices. Only
purely active elements of the one-particle density matrix arise in Eq. (3.54), since there
are no hole annihilation operators in ârst···opq··· that could enable inactive elements γji = δji .
Introducing an antisymmetrized tensor product ⊗A that implicitly excludes redundant
permutations among the indices within each antisymmetric tensor [P2],13 Eq. (3.54) is
conveniently expressed as

τn = τ̃n + γ1⊗Aτ̃n−1 + (1
2γ1⊗Aγ1 + λ2)︸ ︷︷ ︸
〈Ψ0|τact

2 |Ψ0〉

⊗Aτ̃n−2 + . . . . (3.55)

As indicated in Eq. (3.55), each summand contains a factor identical to the fully con-
tracted contribution (i.e., the vacuum expectation value) of an excitation operator of
the same rank. This expectation value is given by an active reduced density matrix,
〈Ψ0|τ act

k |Ψ0〉 = γk, and therefore provides a straightforward definition of the cumulant
tensors (see, e.g., Eq. (2.25)), which are also purely active quantities. The relation be-
tween excitation operators in the two normal orderings then becomes

τn =
n∑

k=0

γk⊗Aτ̃n−k, with γ0 = τ̃0 = 1. (3.56)

Equation (3.56) can be inverted by recursively inserting the relations for lower ranks.
As there are no purely active excitations in the present ic-MRCC formalism, the sum in
Eq. (3.56) truncates at k = n− 1. While Eq. (3.56) then implies no difference for single
excitations, τ̃1 = τ1, double excitations with both active annihilators and creators differ
by an effective single excitation:

ãvaui = avaui − γvuaai , (3.57)

ãvwui = avwui − γvuawi + γwu a
v
i , (3.58)

ãwauv = awauv − γwu aav + γwv a
a
u. (3.59)

13The operator ⊗A is a Grassmann (or wedge) product with a modified prefactor. An example for its
action is (γ1⊗Aτ2)rstopq = γro â

st
pq − γso ârtpq − γtoâsrpq − γrp âstoq + γspâ

rt
oq + γtpâ

sr
oq − γrq âstpo + γsq â

rt
po + γtqâ

sr
po.
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Generally, the excitations can be transformed between the two normal orderings accord-
ing to

τ̃ = τY, (3.60)

τ = τ̃Y−1, (3.61)

where Y and its inverse are upper triangular matrices of the structure

Y =




1 Y12 Y13 · · ·
0 1 Y23 · · ·
0 0 1 · · ·
...

...
...

. . .


 , (3.62)

Y−1 =




1 −Y12 (Y12Y23 −Y13) · · ·
0 1 −Y23 · · ·
0 0 1 · · ·
...

...
...

. . .


 . (3.63)

With the cluster operator being invariant with respect to the normal ordering, T̂ =
τ t = τ̃ t̃, the GNO-based cluster amplitudes may be transformed by

t = Yt̃. (3.64)

Since t̃n only contributes to tk with k ≤ n and vice versa, a cluster operator truncated
at rank Nrank can be translated from one normal ordering to the other without including
additional excitation ranks. Likewise, it is possible to obtain the GNO-based residual
from the residual evaluated in the conventional particle-hole formalism by a simple trans-
formation:

Ω̃ = 〈Ψ0|τ̃ †H̄|Ψ0〉 = Y†Ω. (3.65)

Equations (3.65) and (3.64) allow the implementation of a fully GNO-based ic-MRCC
theory while circumventing the application of the extended Wick theorem to the residual
expression [P4].

The main difference to the approach detailed in the previous chapters is that the
removal of linear dependencies may now be conveniently based on the metric matrix in
the generalized normal ordering,

S̃ = 〈Ψ0|τ̃ †τ̃ |Ψ0〉, (3.66)

see Tab. 4 for explicit expressions. S̃ does not couple purely inactive excitations with
excitations involving additional active indices, because the generalized normal ordering
prevents contractions among active indices of the same operator. While this is sufficient
to ensure core-extensivity, S̃ further restricts the coupling between excitations with active
indices. Contractions between active indices on τ̃ † and τ̃ can only take place through
elements of δ, γ1, or through cumulants. As all of these quantities are extensive [P2,111],
GNO-based ic-MRCC theory is fully size-extensive. A more elaborate explanation of the
size-extensivity in ic-MRCC theory is given in sec. 3.3.3.
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3.3. Formal aspects of ic-MRCC theory

3.3 Formal aspects of ic-MRCC theory

Key features of ic-MRCC theory are the invariance with respect to unitary transforma-
tions within the three orbital spaces, the convergence towards FCI upon increasing Nrank

and its size-extensivity properties. Mathematical proof of these properties was published
in Refs. [P1,P4,P5,38] and will not be repeated here. Nevertheless, the following sections
shall provide a conceptual understanding of these key features.

3.3.1 Orbital invariance

Orbital rotations imply a unitary transformation of all strings of creation and annihilation
operators. In principle, all operators can be expressed in the rotated orbital basis by
a corresponding counter-rotation of the associated tensors. While operators involving
summations over the whole orbital space such as Ĥ are thus trivially orbital invariant,
summations over partial orbital spaces in the operator T̂ and the reference function |Ψ0〉
restrict the invariance of these quantities to orbital rotations within the hole, valence and
particle orbital spaces. The ic-MRCC method is called orbital invariant if the fulfillment
of the ic-MRCC equations and the ic-MRCC energy are independent of orbital rotations
within these three orbital spaces.

The ic-MRCC energy expression, Eq. (3.3), is an expectation value of Ĥ and T̂ with
respect to |Ψ0〉 and therefore orbital invariant. The eigenvalue equations (3.5) consist of
the same operators and merely translate an active orbital rotation into a corresponding
rotation of the reference coefficients. The residual Ω defined in Eq. (3.15) is also rotated.
If only exact linear dependencies are excluded in the construction of the excitation basis
{τ̂ ′}, fulfillment of Ω′ = 0 implies Ω = 0 and is independent of the orbital rotation.
However, if near-linear dependencies are excluded as well, Ω is generally nonzero upon
fulfillment of the ic-MRCC equations and orbital invariance hinges on the procedure
used for removing redundant excitations. Since the diagonalization of S is a unitary
transformation, the canonical orthogonalization naturally compensates for any active
orbital rotation and always leads to the same nonredundant excitation basis [38]. The
sequential orthogonalization also preserves orbital invariance, as it is based on Eq. (3.46),
which is an orbital invariant relationship between excitations of different rank [P1].

3.3.2 Convergence to the full configuration interaction limit

The equivalence of ic-MRCC theory and FCI in the limit Nrank = N is guaranteed by the
possibility to represent the FCI wave function with the ic-MRCC ansatz, as the ic-MRCC
equations are then projections of the Schrödinger equation onto the full space of excited
functions. Let us first recognize that the FCI wave function can be written in terms of
an ic-MRCI ansatz of the form

|Ψic-MRCI〉 = (1 + Ĉ)|Ψ0〉, (3.67)

where Ĉ is isomorphic to the cluster operator. While the coefficients in |Ψ0〉 are easily
obtained from projecting the FCI wave function onto the reference determinants, the
nonredundant amplitudes in Ĉ follow directly from projection upon the functions τ̂ ′ρ|Ψ0〉.
The redundant components of Ĉ are arbitrary, as they give no contribution to the wave
function when acting on |Ψ0〉.
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In order to obtain the corresponding cluster amplitudes, we can equate the ic-MRCI
wave function from Eq. (3.67) with the ic-MRCC ansatz

|Ψic-MRCC〉 =
(
1 + T̂ + F(T̂ )

)
|Ψ0〉. (3.68)

In Eq. (3.68), F(T̂ ) is a function at least quadratic in T̂ in accordance with the expo-
nential wave operator. Equations (3.67) and (3.68) lead to the following condition:

T̂ |Ψ0〉 =
(
Ĉ −F(T̂ )

)
|Ψ0〉, (3.69)

from which we can determine the values of the nonredundant cluster amplitudes by
projecting onto the functions τ̂ ′ρ|Ψ0〉. Because the right-hand side of Eq. (3.69) depends
quadratically on T̂ , this projection is done successively for excitation operators with
increasing number of inactive indices. Equation (3.69) allows one to freely choose the
redundant components of T̂ , and different choices may impact cluster amplitudes with
more inactive indices through F(T̂ ). However, as long as the cluster operator is not
truncated, each of these choices is a valid parameterization of the FCI wave function [P5].

3.3.3 Size-extensivity & size-consistency

A many-body theory is size-extensive [126–128] if the energy expression is a sum of con-
nected terms. For two noninteracting subsystems A and B with orbitals localized on
either subsystem, this means that each diagram consists of a connected product of ad-
ditively separable operators (i.e., X̂ = X̂A + X̂B). Since operators working on different
subsystems have no index in common, the only surviving contributions from connected
terms are the ones to the subsystems’ energies EA and EB, rendering the total energy
additively separable or size-consistent [129]. Additive separability for arbitrary parti-
tionings of an interacting system into artificial noninteracting fragments is a sufficient
criterion for size-extensivity [125]. Due to the orbital invariance of ic-MRCC theory,
size-consistency then also holds irrespective of the choice of orbitals.

In SRCC theory, connectedness of the residual Ω implies additive separability of the
cluster operator for noninteracting subsystems and thereby ensures size-extensivity. In
addition to this criterion, size-extensivity in ic-MRCC theory also requires additive sepa-
rability of the projection Pt from Eq. (3.33) and separability of the eigenvalue equations
(3.5). An important prerequisite for the connectedness of Ω is the connectedness of
H̄ = e−T̂ ĤeT̂ . This is fulfilled because the BCH expansion consists of nested commuta-
tors only.

While connectedness of H̄ directly ensures the separability of the eigenvalue equations
[P4], the residual expression may contain disconnected terms due to the occurrence of
reduced density matrices, which are not additively separable in contrast to the density
matrix cumulants [P2, 111]. The disconnected terms become apparent when inserting
Eq. (3.56) into the residual expression:

Ωn = 〈Ψ0|τ̂ †nH̄|Ψ0〉 =
n−1∑

k=0

γk⊗A〈Ψ0|τ̃ †n−kH̄|Ψ0〉 =
n−1∑

k=0

γk⊗AΩ̃n−k, (3.70)

where the residuals Ω̃n in the generalized normal ordering are connected by virtue of the
extended Wick theorem. Since Ω̃ is the residual in the GNO-based scheme from sec. 3.2.2,
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no disconnected terms are present in this case [30]. Even when using the particle-hole
normal ordering, the disconnected terms in Eq. (3.70) occur only for residual elements
with active indices and thus do not affect the core-extensivity of the method. Further,
they may cancel naturally upon fulfillment of the ic-MRCC equations, e.g., Ω1 = 0 leads
to a connected expression for Ω2.

Hence, the residual expression does not necessarily introduce a lack of size-extensivity
in ic-MRCC theory. Instead, the separability of the projection Pt is the critical issue.
The projector P has the same block structure as the metric matrix S. It mixes connected
amplitudes (with indices either on A or B) and disconnected amplitudes (with indices on
both A and B) whenever the corresponding excitation operators couple through the met-
ric matrix. An analysis of the product St reveals that the full orthogonalization approach
within the particle-hole normal ordering spoils the core-extensivity of the method. Core-
extensivity is restored by the sequential orthogonalization technique, as the projected
metric matrix does not couple excitations of different rank and therefore avoids a mixing
of purely inactive amplitudes with those involving active indices. Finally, GNO-based
ic-MRCC theory is fully size-extensive because the metric matrix S̃ avoids any coupling
between connected and disconnected excitations due to the extended Wick theorem.
For further details and numerical tests of these size-extensivity properties, the reader is
referred to Ref. [P4].
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4 Benchmark calculations

The ic-MRCC method described in chap. 3 has been implemented in the General Con-
traction Code (GeCCo) [P1,44], see app. A.1 for details.

This chapter’s aim is to evaluate the accuracy of the ic-MRCC method for (ground
state) energy calculations. Because the most meaningful assessment is a comparison to
FCI energies, which are the exact eigenvalues of the Hamiltonian in a given basis set,
the current study is limited to small model systems accessible to the FCI method. While
the small basis sets of double-zeta quality considered in this chapter are not sufficient
for quantitative predictions of potential energy surfaces, they nevertheless allow an as-
sessment of the correlation energy recovered by the ic-MRCC method and a clear-cut
comparison to competing electronic structure methods. An evaluation of the method’s
computational efficiency at the example of these model systems would, however, be point-
less. The reason for this is a large number of low-scaling terms in the ic-MRCC equations
that cause a significant computational overhead in small applications but have little im-
pact on the computational cost once the system size or basis set size is increased. For
benchmark applications allowing a comparison to experimental results, the reader is re-
ferred to secs. 5.6 and 6.5.

The current chapter is organized as follows: First, sec. 4.1 studies the overall per-
formance of ic-MRCC theory for six selected model systems, using a set of standard
approximations. Both the ic-MRCC equations and the energy expression are truncated
at quadratic power in T̂ and redundant amplitudes are eliminated by the sequential or-
thogonalization procedure described in sec. 3.2.1 (based on the core determinant |0〉 as
Fermi vacuum), using the threshold η = 10−6 for discarding small metric eigenvalues
unless otherwise noted. These default approximations turn ic-MRCC theory into an af-
fordable method while hardly impairing its intrinsic accuracy. A justification for these
approximations is provided in the subsequent sections, each of which focuses on an indi-
vidual aspect of ic-MRCC theory. The assessment of truncations in the BCH expansion
(sec. 4.2, see also Ref. [38]) is followed by an analysis of the neglect of metric eigenvalues
below η (sec. 4.3). Section 4.4 investigates various schemes to remove linear dependen-
cies between excitations of different rank, before the chapter closes with a discussion of
alternatives to the relaxation of the reference function (sec. 4.5).

All calculations employ CASSCF orbitals constructed from spherical Gaussian basis
functions. The active space sizes range from two electrons in two orbitals to six electrons
in twelve orbitals. The numerical data underlying the presented figures is collected in
app. A.2.

4.1 Performance of ic-MRCC for model systems

4.1.1 Insertion of a beryllium atom into hydrogen

The reaction BeH2 → Be + H2, illustrated in Fig. 11, offers a simple model process
featuring a transition state with strong multireference character [130]. At one side of
the reaction (z = 4 a0), the separated beryllium atom and hydrogen molecule are well
described by a closed-shell configuration 1a2

12a2
13a2

1 (Φ1), with 3a1 being the bonding σ
orbital of H2. The linear BeH2 molecule at the other side (z = 0 a0) is dominated by
the configuration 1σ2

g2σ2
g1σ2

u. Assuming a C2v reaction channel in which Be is placed
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Be

HH
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z

Figure 11: The C2v model path for the reaction BeH2 → Be + H2.

at the origin and the positions of the hydrogen nuclei are varied according to y(z) =
±(2.54 a0−0.46z) [131], this corresponds to 1a2

12a2
11b2

2 (Φ2). The orbital 1b2 is bonding,
but along the reaction path it evolves into the unoccupied py orbital of Be.

Figure 12a shows the potential energy of the 1A1 ground state along the model
reaction path, computed using the CASSCF and FCI methods and the cc-pVDZ basis
set [132]. The CASSCF wave function is based on the active orbitals 3a1 and 1b2 and
therefore consists of the two determinants Φ1 and Φ2. The energetically lowest CASSCF
orbital, mainly a Be 1s orbital, is not correlated in all subsequent calculations.

CASSCF accommodates the multireference character around the transition state at
z ≈ 2.8 a0 by gradually switching the weights of Φ1 and Φ2 in the wave function and thus
yields a qualitatively correct potential energy curve. However, as shown in the inset of
Fig. 12b, the errors of the CASSCF energy range between 60 and 80 mEh, which implies
a predicted energy barrier that is too high by about 10 kcal/mol. The desire to obtain
chemical accuracy, i.e., relative energies correct up to 1 kcal/mol (1.6 mEh), calls for an
accurate treatment of dynamic electron correlation.

The BeH2 model has been frequently used to benchmark multireference methods
[76, 90, 101, 133–137], including ic-MRCCSD [38]. Figure 12b compares the errors in the
potential energy curves of MRCI singles-and-doubles (MRCISD) with those of CASCCSD
and ic-MRCC, which fare among the best MRCC methods for this model system [P6,
38, 101]. As the CASCC results available in the literature [101] apply to a different
basis set, the present values were recomputed using Olsen’s Lucia code [138]. Both
MRCC methods clearly outperform MRCISD and lead to energy errors changing by
less than 2 mEh throughout the reaction path. Although CASCCSD can compete with
ic-MRCCSD in terms of accuracy, ic-MRCC theory is conceptually more appealing as
it is based on a true multiconfigurational reference function and treats both reference
determinants on an equal footing. When using CASCC, on the other hand, one is forced
to choose either Φ1 or Φ2 as reference function. Single and double excitations from the
second determinant are then accounted for by incorporating selected triple and quadruple
excitations in the cluster operator. Since it is not an internally contracted approach,
the number of cluster amplitudes is the same as in the corresponding MRCI method
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Figure 12: Potential energy along the model reaction path of the 1A1 ground state of BeH2.
Note the different energy scales.

and therefore usually larger than in ic-MRCC or in ic-MRCI.14,15 The single-reference
framework of CASCC theory introduces a bias towards the reference function. A close
inspection of the ic-MRCCSD curve in Fig. 12b reveals that for z < 2.8 a0 it is almost
parallel to the CASCC curve that uses the dominating determinant Φ2 as a reference,
whereas for larger values of z it more and more resembles the CASCC curve based on
Φ1.

Despite giving an accurate potential energy curve, the ic-MRCCSD method still fea-
tures a significant rise of the energy error near the transition state. It turns out that
this shortcoming can be essentially cured by including triple excitations [P1], as shown
in Fig. 12b. The dramatic improvement coming along with the incorporation of triples
motivates the formulation of a perturbative triples correction, to be detailed in chapter 5.

14The present example is somewhat exceptional due to its small number of orbitals. While there are 1 500
cluster amplitudes in CASCCSD, ic-MRCCSD has 1 616 elements in t (as defined in Eq. (3.1)). The
number of nonredundant elements in t′ (1 043) is indeed smaller. The reader is referred to sec. 4.1.5
for a more representative example.

15The reader might wonder why no numerical comparison between ic-MRCC and the internally con-
tracted variant of MRCI is presented. Using only a portion of the variational space of uncontracted
MRCI, ic-MRCI is an approximation to MRCI and always yields a higher energy than MRCI. An addi-
tional comparison to ic-MRCI results is thus considered as superfluous in the present context. Further,
in contrast to ic-MRCI, ic-MRCC should not be viewed as an approximation to any other MRCC
method but rather as a method in its own right, as to date there is no uncontracted MRCC method
meeting the same formal requirements such as invariance with respect to active orbital rotations.
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4.1.2 Hydrogen fluoride bond breaking

Bond breaking processes are classical examples of multireference cases. Labeling the
bonding and antibonding spatial orbitals of a system as φ1 and φ2, respectively, one
may qualitatively characterize a single bond breaking as a change from the dominant
configuration (φ1)2 to the negative linear combination of the configurations (φ1)2 and
(φ2)2 with equal weights. The spins of the unpaired electrons on the resulting fragments
are entangled, i.e., coupled to a singlet. If the bond breaking is described with a CAS(2,2),
the orbitals φ1 and φ2 constitute the natural CASSCF orbitals, since they diagonalize
the one-particle density matrix. In the event that both orbitals belong to the same
irreducible representation, as for the 3σ and 4σ orbitals of HF, they can be arbitrarily
rotated in a symmetry-adapted CASSCF description.

The present data is based on the Dunning–Hay basis set DZV, which is available in the
Gamess program [139] and in Ref. [103], and has been used to describe the HF molecule
with a multitude of MRCC approaches [93, 103, 140–142], including ic-MRCCSD [38].
Pseudocanonical orbitals are used, which diagonalize the active block of an effective Fock
matrix defined as [49,143]

(feff)pq = fpq +
∑

uv

gpuqv γ
v
u, (4.1)

and no frozen core approximation is applied. In the dissociation limit, the pseudocanon-
ical orbitals localize on the two atoms. The CASSCF wave function then becomes a
spin-adapted linear combination of the two determinants that have both orbitals 3σ and
4σ singly occupied, see Fig. 13a.

Figure 13b reveals that ic-MRCCSD is much more accurate than MRCISD and ic-
MRCCSDT is even competitive with MRCISDTQ. The nonparallelity error (NPE), which
is the difference between the maximum and the minimum error along the studied section
of the potential energy curve, is only 0.08 mEh for ic-MRCCSD and just 0.04 mEh in case
of ic-MRCCSDT. While the Mk-MRCCSD and Mk-MRCCSDT results from Ref. [141]
agree well with ic-MRCCSD and ic-MRCCSDT in the dissociation limit, they provide
a much less accurate description of the bond breaking process, with NPEs as large as
1.9 mEh and 1.1 mEh, respectively. In addition, the Mk-MRCC approach suffers from a
severe lack of orbital invariance in this example, as quite different potential energy curves
have been obtained from Mk-MRCCSD when using natural orbitals (Ref. [103], NPE >
2.1 mEh) or localized orbitals (Ref. [93], NPE = 1.4 mEh). It is worth emphasizing
that ic-MRCC theory is rigorously invariant with respect to active orbital rotations (see
sec. 3.3.1) and thus free of such problems.

4.1.3 Lithium fluoride avoided curve crossing

The dissociation of the lithium fluoride molecule is a challenging multireference problem
that exhibits a weakly avoided crossing of the 1Σ+ ground state and the lowest excited
state of same spatial and spin symmetry. Near the equilibrium bond length, the ground
state is dominated by the ionic configuration 1σ22σ23σ24σ21π4, where the 4σ orbital has
mainly F 2pσ character, and the excited state is essentially covalent, with one electron
in the 4σ orbital and another in the 5σ orbital of Li 2s type. Upon increasing the
internuclear distance, the electrostatic attraction between the ions at some point falls
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Figure 13: Potential energy surface of the 1Σ+ ground state of hydrogen fluoride.

below the difference between the ionization potential of Li and the electron affinity of F,
causing one electron to move (or rather ‘jump’) from the F atom to the Li atom [144–146].

This behavior can be qualitatively captured by a CAS(2,2). However, state-averaged
CASSCF (SA-CASSCF) calculations are required in order to avoid discontinuities in the
active orbitals along the dissociation process [146,147]. Following a benchmark study by
Varandas [148], the results presented in the following are based on using the cc-pVDZ
basis set for Li, the aug-cc-pVDZ basis set [149] for F, and a frozen core composed of
the three lowest orbitals corresponding to F 1s, Li 1s and F 2s. Figure 14a reveals that
SA-CASSCF underestimates the distance where the switching of the ionic and covalent
configurations occurs by about 5.5 a0 and predicts a more gradual transition than FCI.
As a consequence, the SA-CASSCF wave functions have a qualitatively wrong character
in the range 8 a0 < RLi–F < 13.5 a0 and are thus ill-suited as reference functions in a
subsequent MRCC computation.

This problem is solved in ic-MRCC theory by dynamically relaxing the reference
function in the presence of the cluster operator. As shown in Fig. 14b, ic-MRCCSD is
then able to accurately describe the potential energy surfaces of both states with NPEs
below 1.4 mEh. The relaxed reference functions predict the avoided crossing at virtually
the same distance as FCI, namely around RLi–F = 13.5 a0.

It is also striking that ic-MRCCSD yields very similar energy errors for both the
ionic and the covalent configuration, whereas MRCISD is much less accurate for the
ionic configuration than for the covalent one (by more than 4 mEh). One drawback of
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Figure 14: Potential energy surfaces of the X 1Σ+ ground state (X) and the B 1Σ+ excited state
(B) of lithium fluoride.

ic-MRCC, however, is that it does not yield mutually orthogonal states as MRCI does,
preventing a straightforward computation of properties depending on both states such
as transition moments. The nonorthogonality of the relaxed reference functions for the
two states is even visible in the plotted configuration weights at the bottom of Fig. 14b.

Considering the nontrivial task of targeting two states of same symmetry with the
ic-MRCC method, a few comments of a more technical nature are in place: Since control
over the target state is mainly achieved through a suitable initial guess for the reference
function [P1, 37], use of the relaxed reference function from a neighboring point on the
potential energy surface is often preferable to starting from the SA-CASSCF wave func-
tion. Yet, it is not possible to obtain a continuous energy surface of the excited state
with the ic-MRCC method, due to the special nature of the reference function for the
separated ions. In the dissociation limit, this reference function becomes exactly a single
determinant, with the F 2pσ orbital doubly occupied and the Li 2s orbital empty. Its
one-particle density matrix then becomes singular, which in turn implies redundancy of
excitations out of 5σ or into 4σ. Hence, when moving along the excited state surface
beyond the point of maximum multireference character, metric eigenvalues associated
with amplitudes such as t5σa steadily approach zero, forcing one to exclude them at some
point for numerical reasons. In addition, one now has to include double excitations of
the type âwauv , because the argument for excluding them, laid out in sec. 3.1.2, is not valid
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in this special case.16 As illustrated by two dashed ic-MRCCSD curves in Fig. 14b, the
exclusion of amplitudes belonging to small metric eigenvalues causes a discontinuity (or
at best a cusp) in the energy. While this problem is a rare exception for CAS(2,2) cases,
small discontinuities along a potential energy surface are an undesired but inevitable
feature for most larger active spaces.

4.1.4 Symmetric dissociation of the H2O molecule

The simultaneous breaking of both O–H bonds in the water molecule in the course of a
symmetric dissociation process (Fig. 15) has been extensively used as a model system for
benchmarking electronic structure methods [38,41,52,76,134,141,150–153]. The minimal
active space is a CAS(4,4) that comprises two sets of bonding and antibonding orbitals,
namely 3a1, 4a1, 1b2 and 2b2 [76]. Figure 16a displays the CASSCF and FCI potential
energy curves for the dissociation process, in which the O–H bonds are symmetrically
stretched starting from Re = 0.9929 Å and the H–O–H angle is held fixed at θe = 109.57◦.
The results are based on the cc-pVDZ basis set and on freezing the 1a1 orbital (O 1s).

As shown in Fig. 16b, ic-MRCCSD yields an accurate description of the dissociation,
with energy errors below 1.5 mEh and an NPE of 0.7 mEh [P5,P3]. The curve is almost
smooth despite a changing number of metric eigenvalues above the threshold η = 10−6.
The exclusion of amplitudes that are associated with small metric eigenvalues is necessary,
as the active two-particle density matrix becomes singular and causes a number of metric
eigenvalues that are still above η at RO–H = 2.6 Re to approach zero upon stretching the
molecule further. A more detailed analysis of this effect is presented in sec. 4.3.

The open symbols in Fig. 16b represent results for selected competing multireference
methods from the literature [41]. These are based on a CAS(6,5) that also includes the
2px orbital of O. Even though this ensures that all 2p orbitals of the isolated O atom are
treated as active, the 2px orbital remains essentially doubly occupied along the reaction.
Treating it as inactive therefore hardly affects the results, as Fig. 16b reveals for the case
of ic-MRCCSD.

The methods MRCI+Q, MR-ACPF and MR-AQCC are modifications of MRCISD,

O

HH

y

z

Figure 15: Symmetric dissociation of the water molecule.

16By virtue of the newly included double excitations, the ic-MRCC method based on a sequential orthog-
onalization turns into the SRCC method in the event of a single contributing reference determinant.
This was verified numerically for RLi–F = 30 a0. However, note that the double excitations in question
are again redundant in the dissociation limit, since excitations from the active orbital localized on F
to the active orbital on Li are ruled out by the size-consistency of SRCC theory.

47



4 BENCHMARK CALCULATIONS

-76.2

-76.0

-75.8
E
/E

h

CASSCF CAS(4,4)
FCI

0.0

0.2

0.4

0.6

0.8

1.0

w
ei
gh
t

1.0 1.6 2.2 2.8 3.4 4.0
RO-H/Re

3a1
21b2

2

4a1
21b2

2

3a1
22b2

2

4a1
22b2

2

3a14a11b22b2

(a) Potential energy curve (top) and weights of the
CASSCF configurations (bottom).

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E-
E F

C
I/
m
E h

1.0 1.6 2.2 2.8 3.4 4.0
RO-H/Re

MRCI+Q CAS(6,5)
MR-ACPF CAS(6,5)
MR-AQCC CAS(6,5)
CTSD CAS(6,5)
ic-MRCCSD CAS(6,5)
ic-MRCCSD CAS(4,4)

(b) Errors with respect to FCI.

Figure 16: Potential energy along the symmetric dissociation of the 1A1 ground state of H2O.

aimed at approximately restoring size-extensivity. They achieve this by estimating en-
ergy contributions from the missing disconnected higher excitations, most importantly
from T̂ 2

2 . While MRCI+Q accounts for these contributions through Davidson’s a poste-
riori correction [154, 155], the averaged coupled-pair functional (MR-ACPF, Ref. [133])
and the so-called averaged quadratic coupled-cluster theory (MR-AQCC, Ref. [156]) rely
on a priori modifications of the MRCISD energy functional. MR-ACPF rests upon the
assumption that the system consists of N/2 noninteracting electron pairs and yields ex-
act results for this special case. However, both MRCI+Q and MR-ACPF generally tend
to overcorrect for the effect of disconnected excitations [134,157] and thereby often give
energies beneath or close to FCI, as in the present example (see also sec. 4.1.5). In con-
trast to MR-ACPF, the related MR-AQCC method considers all electrons as interacting
and distributes the correlation energy in an averaged way over all

(
N
2

)
electron pairs.

Although not always yielding better results than MR-ACPF, MR-AQCC is known to be
more reliable and is usually preferred [25]. The size-extensivity corrected MRCI methods
are competitive with MRCC methods for model systems, and indeed MRCI+Q outper-
forms ic-MRCCSD in the present example, but the remaining lack of size-extensivity
renders these methods inferior to a size-extensive MRCC theory for larger systems (e.g.,
Ref. [118]).

The linear canonical transformation theory with singles and doubles (L-CTSD or, for
brevity, CTSD) is closely related to ic-MRCCSD. It is an internally contracted approach
that uses a unitary wave operator in conjunction with the rather radical approximation to
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neglect the effective three-body component of each intermediate commutator expression
in the BCH expansion [40–43]. The method is denoted as linear when this approximation
is applied at each commutator level, i.e., after each linear transformation of the (effective)
Hamiltonian. In addition, due to numerical reasons a rather large threshold of η =
10−2 for discarding small metric eigenvalues is used in CTSD. These approximations
are likely the reason for CTSD’s overshooting the energy by up to 1.9 mEh and for the
comparatively large NPE of 1.2 mEh.

4.1.5 Nitrogen triple bond breaking

The triple bond breaking of the N2 molecule is a prime example of a reaction with
strong static correlation, which involves six electrons in the orbitals 3σg, 3σu as well
as the orbital pairs 1πu and 1πg, hence requiring a CAS(6,6). Figure 17a shows the
energy surface of the 1Σ+

g ground state as computed with CASSCF and FCI for the
cc-pVDZ basis set and a frozen core consisting of the two orbitals 1σg and 1σu (N 1s).
The FCI calculations were performed with the Lucia code [138]. At the equilibrium
distance (around RN–N = 2.1 a0), the wave function is dominated by the closed-shell
configuration 3σ2

g1π4
u (with inactive orbitals omitted). Stretching the molecule first leads

to the breaking of the π bonds, indicated by a large contribution from the configuration
3σ2

g1π2
u1π2

g , until the system finally dissociates into two N atoms in their 4S ground state,
with the electronic spins still coupled to a singlet.

Figure 17b compares the performance of ic-MRCCSD with MRCI-based methods
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and several MRCC methods from the literature. The MRCISDTQ curve with an almost
constant error below 0.1 mEh is in excellent agreement with FCI and was therefore used
as benchmark in Refs. [P1,P3]. With a computational scaling like N10, MRCISDTQ is of
course far too expensive for most larger applications. While MRCISD is substantially less
accurate than most MRCC methods in absolute terms, its error is mainly systematic and
remains around 7 mEh with an NPE of only 0.6 mEh. The values from both MRCI+Q [42]
and MR-AQCC [141] overshoot the FCI energies. They exhibit a much smaller absolute
error than MRCISD, but at the expense of an NPE increased to at least 1.1 mEh.

All of the discussed MRCC methods provide a reasonable description around the
equilibrium bond length, but the curves for RMRCCSD [158] (also cf. Ref. [159]),
CASCCSD [158,160] and Mk-MRCCSD [93] tend to become inaccurate when stretching
the bond beyond RN–N = 3 a0. It is worth emphasizing that the Mk-MRCCSD ener-
gies are extremely sensitive to active orbital rotations. The plotted results are based on
localized orbitals, which is the most reliable choice to date [93], whereas use of pseudo-
canonical orbitals yields energies higher by up to 15 mEh [141]. Both RMRCCSD [72] and
CASCCSD employ a single determinant with occupancy 3σ2

g1π4
u as a reference function

and model excitations from other active space configurations by higher-rank excitation
operators. While RMRCCSD derives the values of the 97 440 additional amplitudes in T̂3

and T̂4 from the MRCISD wave function and subsequently solves the equations for the
2 089 singles and doubles amplitudes, CASCCSD solves the CC equations for up to se-
lected octuple excitations and therefore uses the same number of parameters as MRCISD,
namely 241 755. With this amount of flexibility in the wave function, CASCCSD is able
to accurately describe the N2 triple bond breaking with an NPE of about 0.7 mEh up to
RN–N = 4.2 a0. A similar accuracy is achieved by ic-MRCCSD, however based on a much
more compact parameterization that consists of 6 714 singles and doubles amplitudes as
defined by Eq. (3.1).

The results from the related linear canonical transformation theory [42] fluctuate
around the exact solution, but it is unclear to which extent this accuracy is due to
fortuitous compensation of errors from the various approximations used in CT theory.
The large thresholds for discarding metric eigenvalues (η = 10−1 for single excitations
and those double excitations involving three active indices, and η = 10−2 otherwise) are
likely the origin for rapid changes in the energy error of up to 0.9 mEh for a bond length
increased by 0.1 a0. The ic-MRCCSD curve is much smoother, although irregularities
caused by a truncation of the metric eigenvalues are visible. The remarkable finding that
the ic-MRCCSD curve improves upon raising the threshold to η = 10−4 indicates that
amplitudes that belong to very small metric eigenvalues can have a deteriorating effect
on the computed energies [P1,51]. The impact of η is more extensively studied in sec. 4.3.

4.1.6 Symmetric dissociation of linear Be3

The last model system presented here is a cut section of the ground state energy surface
of the beryllium trimer, Be–Be–Be, which is confined to be linear with two identical inter-
nuclear distances RBe–Be [161]. Since the true equilibrium structure of Be3 is not linear
but a unilateral triangle, the studied process is not related to a physical dissociation chan-
nel. Nevertheless the model offers a critical test for electronic structure methods, as the
potential wells encountered along the curve result from bonding situations quite different
from the ones in the previous examples. Because the ground state of the beryllium atom

50



4.1. Performance of ic-MRCC for model systems

-43.87

-43.86

-43.85

-43.84

-43.83
E
/E

h
CASSCF CAS(6,12)
FCI

10-2

10-1

1

w
ei
gh
t(
lo
g.
sc
al
e)

4 5 6 7 8 9 10
RBe-Be / a0

3 g
24 g

22 u
2

3 g
22 u

23 u
2

3 g
24 g

22 u3 u

3 g
24 g5 g2 u3 u

3 g4 g2 u
23 u4 u

3 g
22 u

23 u4 u

3 g
22 u

21 u
2

3 g
24 g

21 g
2

(a) Potential energy curve (top) and weights of the
dominant CASSCF configurations (bottom).

-2

0

2

4

6

8

10

E-
E F

C
I/
m
E h

4 5 6 7 8 9 10
RBe-Be / a0

CCSD(T)
CCSDT
MRCISD CAS(6,6)a
MRCISD CAS(6,6)b
MRCISD CAS(6,12)
D-USS(2)-BW CAS(6,6)a
ic-MRCCSD CAS(6,6)a =10-4

ic-MRCCSD CAS(6,6)b =10-6

ic-MRCCSD CAS(6,12) =10-6

(b) Errors with respect to FCI.

Figure 18: Potential energy surface of a 1Σ+
g dissociation path of linear Be3.

is dominated by the closed-shell configuration 1s22s2, the bonding in Be clusters cannot
be described within a mean-field approach. One may understand the bonding between
Be atoms as being facilitated by a hybridization of the 2s orbitals and the energetically
low-lying 2p orbitals. The resulting potential energy surfaces are rather flat and to a
large extent shaped by electron correlation [162,163].

The FCI energy curve displayed in Fig. 18a [161] has been computed using a [3s2p1d]
ANO basis set [164], keeping the lowest three RHF orbitals 1σg, 2σg and 1σu frozen.
Notably, the ic-MRCC formalism simplifies dramatically for this choice, as there are no
correlated doubly occupied orbitals left, reducing the number of terms in the ic-MRCCSD
equations to a few hundred, see Tab. 2. All of the present CASSCF calculations are
based on the same frozen core approximation at the RHF level, in order to allow a direct
comparison of the computed energy curves with the FCI benchmark. As the 2p orbitals
are essential for bonding and all of them are degenerate in the dissociation limit, an
appropriate choice for an active space comprises all of the twelve valence orbitals, i.e.,
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3σg, 4σg, 5σg, 2σu, 3σu, 4σu and the pairs 1πu, 2πu and 1πg. An inspection of selected
configurations’ weights in the CASSCF wave function (Fig. 18a, note the logarithmic
scale) reveals that the configuration 3σ2

g4σ2
g2σ2

u (with core orbitals omitted) remains
dominant throughout the model reaction, with most other configuration weights not
exceeding a few percent.

Despite the size of the active space, the CASSCF energy curve is essentially unbound,
emphasizing the importance of dynamic correlation for a bonding between the Be atoms.
Besides the minimum at RBe–Be = 4.25 a0, the FCI curve features a very shallow van
der Waals minimum at RBe–Be = 7.6 a0, the prediction of which requires an accurate
treatment of dynamic correlation as well. The model also offers a simple test for size-
consistency, as all of the methods discussed below are exact for two-electron systems and
should agree with FCI in the dissociation limit if they were size-consistent.

The fact that a closed-shell determinant dominates the CASSCF wave function raises
the question whether single-reference methods can provide a satisfactory description of
the Be3 model. While CCSD is certainly not sufficient [165] and gives errors larger than
the total height of the potential energy well (see Tab. A11), good results are achieved
with CCSD(T) (cf. Ref. [162]) and CCSDT, see Fig. 18b.

Brabec et al. used this model system to assess the performance of an a posteriori
correction to Brillouin–Wigner MRCC termed D-USS(2)-BW [166]. It is a diagonal cor-
rection employing Kowalski’s universal state-selective MRCC functional [167], which is
applicable to all Jeziorski–Monkhorst-based MRCC methods and is related to Λ cor-
rections in single-reference CC theory (see Ref. [168] for a review). While approaches
of this kind are commonly used to incorporate the effect of triple excitations, the D-
USS(2) correction is restricted to single and double excitations and aims at alleviating
shortcomings caused by the introduction of sufficiency conditions, such as the lack of
size-extensivity in BW-MRCC theory. Figure 18b shows the D-USS(2)-BW results from
Ref. [166] that use an active space consisting of 3σg, 4σg, 2σu, 3σu and 1πu, to be ab-
breviated as CAS(6,6)a. The D-USS(2)-BW values rely on RHF orbitals while CASSCF
orbitals were used for all other multireference approaches discussed in this section. Al-
though being much more accurate than MRCISD based on a CAS(6,6)a and in excellent
agreement with FCI at small internuclear distances, the D-USS(2)-BW results reveal a
pronounced size-consistency error of −1.9 mEh.

This problem is not shared by ic-MRCCSD, which exhibits negligible energy errors for
large values of RBe–Be. Yet the CAS(6,6)a is not large enough to provide a highly accurate
description of the bonding region with ic-MRCCSD. A small improvement is obtained
by switching to an alternative active space that includes all the σ orbitals, i.e., 3σg, 4σg,
5σg, 2σu, 3σu and 4σu, denoted as CAS(6,6)b. This active space is more balanced, as
it at least preserves the degeneracy among pσ and pπ orbitals in the dissociation limit.
It was also found to facilitate the convergence of the ic-MRCCSD equations, which was
so poor in the CAS(6,6)a calculations that solving the ic-MRCC equations in that case
required an increased metric eigenvalue threshold of η = 10−4.

The excellent results for the CAS(6,12) support that this is indeed the proper choice
of an active space for this example. Even MRCISD achieves very high accuracy and an
NPE below 0.5 mEh. Its performance is, however, clearly surpassed by ic-MRCCSD,
which features both absolute and nonparallelity errors below 0.08 mEh.
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4.2 Commutator approximations

As discussed in sec. 3.1.2, truncations of the commutator series in the BCH expansion,
Eq. (3.9), are indispensable for an efficient realization of the ic-MRCC method. Their
justification in ic-MRCC theory rests on the ability of the reference function to describe
the exact wave function qualitatively well, such that cluster amplitudes can stay small
(�1) and terms with many T̂ operators may be neglected [35]. Evangelista and Gauss
have carried out a thorough investigation of such commutator approximations and came
to the conclusion that terms quadratic in T̂ are essential for preserving the inherent
accuracy of ic-MRCC theory, whereas the neglect of higher than double commutators is
a viable approximation [38].

This is supported by results for the BeH2 and N2 model systems, presented in the
following. Figure 19 demonstrates that a truncation at the single commutator level
greatly deteriorates the accuracy of the ic-MRCCSD method and tends to overshoot
the FCI energies, in this case by up to 6 mEh. This approximation turns ic-MRCC
theory into a method of the coupled electron-pair approximations (CEPA) type, see
Refs. [50,169,170] and Ref. [171] for a review. Figure 19a uses individual restrictions on
the maximum commutator level for the amplitude equations and the eigenvalue equations
yielding the energy, denoted as Ncom(Ω) and Ncom(E), respectively. An exact evaluation
of the eigensystem, i.e., by settingNcom(E) = 4, is usually affordable, as the relatively few
additional terms (see Tab. 1) cause little extra effort. This leads to substantial changes
close to the transition state in the BeH2 model but fails to restore the accuracy of the
method. Therefore it is crucial to consider up to double commutators in the amplitude
equations. In the case of the BeH2 model, the exact evaluation of the eigensystem then
provides a moderate improvement of the ic-MRCC energy curves, lowering the NPEs by
about 0.1 mEh for both ic-MRCCSD and ic-MRCCSDT [P3].

The application to the N2 triple bond breaking (Fig. 19b) reveals that the linearized
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Figure 20: Impact of neglecting higher commutators on ic-MRCCSD energies.

ic-MRCC theory yields a much more irregular curve, possibly owing to an increased
sensitivity to a varying number of metric eigenvalues above η. The fluctuations around
the FCI curve up to RN–N = 3 a0 are reminiscent of the performance of CTSD (see
Fig. 17b). Indeed, the neglect of three-body components of commutators in CTSD in-
duces substantial errors at the twofold commutator level [43] and could therefore be a
major contributing factor to the error compensation in CTSD’s total energies.

Note the occurrence of a rare technical problem in ic-MRCCSD with Ncom(E,Ω) = 1
for the internuclear distance RN–N = 2.05 a0: Setting η = 10−6 leads to an oscillation
between two solutions when converging the ic-MRCC equations. The two results differ in
the number of included metric eigenvalues and are both displayed in the inset of Fig. 19b.
The solution with η = 1.02 · 10−6 excludes certain metric eigenvalues that are still above
10−6 but move slightly below 10−6 upon their inclusion. As a consequence, there is no
stable solution for the choice η = 10−6.

Figure 20 compares ic-MRCCSD approximations that include twofold or higher com-
mutators. For BeH2, a direct comparison to the untruncated ic-MRCCSD method in-
volving up to eightfold commutator terms is possible, as the number of terms in the
amplitude equations for a CAS(2,2) is still manageable (see Tab. 2). The maximum
absolute error caused by truncation at the double commutator level is about 144 µEh
and reduces to 39 µEh when solving the eigensystem exactly. The rapid convergence
of the commutator series is evident from the decrease of this error to about 5 µEh for
Ncom(E,Ω) = 3 and to well below 0.05 µEh for Ncom(E,Ω) = 4.

For the N2 system treated with a CAS(6,6), calculations including higher commuta-
tors quickly become intractable due to an exploding number of terms in the amplitude
equations (see Tab. 1). Figure 20b shows that the neglect of threefold commutators
affects the ic-MRCCSD energies by tens of µEh in most parts of the potential energy
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curve, and up to 0.2 mEh around RN–N = 3 a0 where the gradient of the total energy is
largest. Truncation at twofold commutators in this example hardly impacts the accuracy
of ic-MRCCSD. There is also no clear advantage of an exact treatment of the eigensystem
for relaxing the reference function.

Overall, the quadratic approximation of ic-MRCC theory can be expected to preserve
the inherent accuracy of the method, although an (approximate) incorporation of three-
fold commutators might be needed when aiming at very high precision in the order of
0.1 kcal/mol.

4.3 Truncation of the excitation basis

In the calculations discussed so far, the threshold η for discarding small metric eigenvalues
was kept at 10−6 in most cases. The following analysis aims at providing some idea about
the impact of this threshold on the numerical results. The N2 model system is well suited
for this purpose, as it relies on a rather large active space and features metric eigenvalues
that change dramatically along the dissociation process. Based on the converged ic-
MRCCSD calculations with η = 10−6 for this system, Fig. 21 shows the number of
metric eigenvalues falling between 10−x and 101−x (with an integer exponent x) for each
computed point on the energy curve. Since only purely active blocks of the metric are
diagonalized (see sec. 3.2), the plotted numbers of eigenvalues correspond to these active
blocks. The reader may think of Fig. 21 as a sequence of histograms for each value for
RN–N, which are extracted by slicing the diagram parallel to the x-axis. A number of
133 eigenvalues are numerically zero (i.e., below 10−14, not shown in Fig. 21) throughout
the reaction and correspond to exact linear dependencies.

For most internuclear distances, there is a clear-cut gap between significant (> 10−10)
and numerically vanishing eigenvalues. In principle it would be desirable to place the
threshold η into this gap, in order to avoid the arbitrariness involved in discarding a
number of nonredundant eigenvalues by setting it somewhere above the gap. It is evident
from Fig. 21 that the choice η = 10−6 complies with this condition only for the points
RN–N = 3 a0 and between RN–N = 3.5 a0 and RN–N = 4 a0. The strategy to choose η
unambiguously, e.g., by setting η = 10−10, was tested, but faced severe limitations on
both ends of the studied curve [P1].

The first limitation is immediately obvious from Fig. 21: When increasing the sepa-
ration between the atoms beyond RN–N = 4 a0, several eigenvalues start moving towards
the region of numerical noise. This happens because γ2 becomes singular upon dissoci-
ation. In the dissociation limit, the eigenvalues in question are exactly zero. However,
the contribution of the corresponding cluster amplitudes to the energy does not neces-
sarily vanish when approaching the dissociation limit. This is because these amplitudes
might incorporate determinants into the wave function that are otherwise only accessible
through higher-rank excitations. A numerically stable algorithm for solving the ic-MRCC
equations must at some point exclude near-linear dependencies and will therefore yield
certain energy changes in the process. The rise in the energy error for ic-MRCCSD with
η = 10−6 between RN–N = 5 a0 and RN–N = 7 a0 visible in Fig. 17b can be attributed to
this effect. In the curve for η = 10−4, this transition occurs before RN–N = 6 a0, which
helps to maintain the error with respect to FCI nearly constant.

A similar feature exists in the potential energy curves for the H2O model system, as
can be seen by comparing the results for η = 10−6 and η = 10−4 displayed in Fig. 22a.
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Figure 21: Histogram of eigenvalues for the active part of the metric matrix along the dissociation
of N2. The coordinate axis is not to scale.

Increasing η beyond 10−4 does not lead to further improvements, however. While η =
10−3 still provides a reasonably accurate energy curve, setting η = 10−2 deteriorates the
energies by up to about 1.5 mEh, especially around the equilibrium structure.

Figure 22b shows in more detail how the ic-MRCCSD energy depends on the threshold
η for selected points on the N2 energy surface ranging from the equilibrium structure to
RN–N = 3 a0. The energies remain most stable when setting η between 10−5 and 10−4.
Increasing η to 10−3 causes the energies to rise by up to 0.4 mEh. Even larger thresholds
yield energy changes of more than a mEh and therefore have a detrimental impact on
the accuracy of ic-MRCCSD.

Attempts to decrease η down to values that guarantee inclusion of all nonredundant
metric eigenvalues work well for RN–N = 3 a0 and RN–N = 2.75 a0. At the latter point,
however, a rather large energy shift of −0.4 mEh occurs when going from η = 10−5 to
η = 3 · 10−7. For smaller internuclear distances, the strategy to use the smallest possible
value for η encounters its second severe limitation: Small metric eigenvalues start to have
enormous influence on the energy, as exemplified by sudden energy drops below η = 10−6

for RN–N = 2.5 a0. The metric eigenvalues that are responsible for this feature appear to
decrease when approaching the equilibrium structure, as the energies for RN–N = 2.3 a0

and RN–N = 2.1 a0 remain stable down to η = 10−7 and η = 3 · 10−9, respectively. Their
effect on the energy becomes worse, though, as indicated by the dotted lines in Fig. 22b.
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No convergence was obtained in this region, probably due to a sensitive interdependence
between amplitudes associated with small eigenvalues and the reference function. The
results displayed in Fig. 22b are therefore based on fixing the reference coefficients to
their values from the last converged calculation and solving the equations for the cluster
amplitudes only (cf. sec. 4.5).

It is worth mentioning that such unphysical energy contributions do not arise in the
internally contracted variant of MRCI. This was verified numerically for RN–N = 2.3 a0.
Also, the ic-MRCI energy difference between η = 10−3 and η = 10−10 at RN–N = 6 a0

is only in the order of 1 µEh, in sharp contrast to the sensitive behavior of ic-MRCC in
this region. In order to rationalize the robustness of ic-MRCI, we recall that ic-MRCI is
invariant with respect to the procedure used to eliminate redundant amplitudes. Within
the sequential orthogonalization technique, exclusion of a small metric eigenvalue sρ
at a given excitation rank gives rise to an additional nonredundant excitation at the
next highest rank in the same excitation class, usually associated with a much larger
metric eigenvalue. Hence there are two equivalent ways to include the corresponding
excited function τ̂ ′ρ|Ψ0〉, both of them leading to the same coefficient c′ρ due to the linear
parameterization of the wave function. The only difference between the two possibilities
occurs in the CI coefficients in the nonorthogonal excitation basis, since

τ̂ ′ρ|Ψ0〉c′ρ =
∑

σ

τ̂σ|Ψ0〉Uρσs
− 1

2
ρ c′ρ (4.2)

involves the inverse square root of sρ. In this way, a small metric eigenvalue sρ may trig-
ger large contributions to the CI coefficients. If we include all ranks for the considered
excitation classes (until the active space is ‘exhausted’), ic-MRCI becomes equivalent to
uncontracted MRCI. In this limit, η has no influence on the number of included excita-
tions but merely fine-tunes which excitation ranks are used to parametrize the variational
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space. The internally contracted approximation is thus identical to a truncation of the
excitation rank (within a certain set of excitation classes), and the negligibility of small
metric eigenvalues is closely connected to the quality of this approximation, for which
there is sufficient numerical support [48].

In ic-MRCC theory, one may also expect a decreasing importance of higher excitation
ranks within the same excitation class (see sec. 5.6.1 for numerical evidence), which should
go hand in hand with a low impact of excitations with small metric eigenvalues. The latter
is clearly not always the case, likely because the cluster operator also appears on the left
of Ĥ and in higher powers, enabling large cluster amplitudes to have significant influence
on other residual elements and the energy [51]. However, the detailed mechanism behind
this effect is not well understood to date.

Overall, the present results suggest that the threshold for discarding small metric
eigenvalues should be chosen between 10−6 and 10−3 in order to prevent severe losses
of the accuracy of ic-MRCC theory. Note that this range of acceptable values for η lies
lower than the thresholds currently used in canonical transformation theory, for which a
similar analysis has been performed [42].

4.4 Removal of linear dependencies between operators of different rank

As described in sec. 3.2, all the procedures to remove linearly dependent cluster ampli-
tudes used in this work rely on canonical orthogonalizations of active blocks of the metric
matrix. Within this approach, however, there is some flexibility regarding the treatment
of linear dependencies between operators of differing rank. This section compares the fol-
lowing four selected techniques: (i) The complete omission of low-rank excitations in favor
of the highest possible rank in each excitation class is allowed by virtue of Eq. (3.46) and
will be denoted as ‘highest ranks only’ scheme. In the case of ic-MRCCSD, this method
employs double excitation operators only, as is done in second-order complete active
space perturbation theory (CASPT2, Ref. [49]). (ii) The ‘full orthogonalization’ proce-
dure is the one adopted by Evangelista and Gauss [38]. It does not distinguish between
operators of different rank and mixes all ranks within the same excitation class. (iii)
The default choice from the previous sections is the ‘sequential orthogonalization’, which
avoids a mixing of different ranks by sequentially orthonormalizing higher excitations to
the ones with lower ranks. The three schemes (i) to (iii) use operators normal ordered
with respect to the core determinant |0〉. They will be contrasted to (iv) the ‘GNO-
based’ technique described in sec. 3.2.2. The current implementation of this scheme for
ic-MRCCSD also makes use of a full orthogonalization of the underlying metric matrix.

Figure 23 compares the various schemes’ performances for the BeH2 model system.
The results for procedures (i) to (iii) are from Ref. [P1] and involve no commutator
approximation in the eigensystem for the cµ coefficients. Figure 23a shows the relative
energy differences between the four procedures for ic-MRCCSD, arbitrarily taking the
GNO-based scheme with Ncom(E) = 4 as a reference. All methods agree within 20 µEh.
An explanation for this is the fact that the main difference between the four schemes lies
in their treatment of (effective) single excitations, which are less important than double
excitations as they arise at higher order in perturbation theory (see sec. 5.3.2).

The situation changes dramatically when including triple excitations, as is obvious
from Fig. 23b. The significant errors for schemes (i) and (ii), which even exceed those from
ic-MRCCSD for large values of z, are a strong argument against these two procedures,
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4.4. Removal of linear dependencies between operators of different rank
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Figure 23: Comparison between different schemes to remove redundancies for the BeH2 model.

whereas the results for the sequential orthogonalization are excellent (NPE = 70 µEh).
In order to understand this behavior, it is worth to have a look at the excitation operators
included in the various schemes, illustrated in Fig. 24.17 Whereas scheme (i) uses only
the operator with highest rank in each occupation class, and the full orthogonalization
employs all of the displayed operators, the operators drawn in blue in Fig. 24 turn out
to be redundant for a CAS(2,2) and are completely projected out in a sequential orthog-
onalization. Of course, they can then be excluded from the start, greatly simplifying
the ic-MRCC equations. Among the schemes based on a particle-hole normal ordering,

nh np = 0 np = 1 np = 2 np = 3

0 — —
âa

u âwa
uv âab

uv

1

âu
i âvw

ui âwxy
uvi âa

i âva
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uvi âab
ui âwab

uvi âabc
uvi

2

âuv
ij âvwx

uij âua
ij âvwa

uij âab
ij âvab

uij âabc
uij

Figure 24: Excitations in the cluster operator for ic-MRCCSDT in the case of the BeH2 model.

17Note that no operator with three hole lines is present due to the frozen core approximation that leaves
only one doubly occupied orbital correlated. Operators annihilating three active electrons are not
possible for a CAS(2,2) and hence also excluded.
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4 BENCHMARK CALCULATIONS

the sequential orthogonalization is thus not only the most accurate but also the most
efficient one.

The bad performance of schemes (i) and (ii) for ic-MRCCSDT is mainly due to an
incorrect treatment of inactive double excitations âabij , which also contributes to a lack
of core-extensivity for these methods [P1, 32]. In scheme (i), such double excitations
are completely omitted in favor of the excitations âvabuij . The latter excitations are even
used to mimic double excitations on a noninteracting closed-shell subsystem, but the
corresponding cluster amplitudes cannot be extensive quantities anymore, as the active
orbitals labeled by u and v are localized on the distant open-shell fragment. This case
occurs in the dissociation limit of the BeH2 model, where the active space localizes on
the Be atom such that double excitations on the H2 fragment are simulated by discon-
nected triple excitation operators. Although the inactive double excitations are present
in procedure (ii), the full orthogonalization creates fixed linear combinations of the op-
erators âabij and âvabuij and therefore does not provide a fully extensive description of the
H2 fragment, either. The core-extensive sequential orthogonalization, on the other hand,
clearly distinguishes between double and triple excitations and guarantees that closed-
shell fragments are treated with the same inactive double excitations as when using the
ic-MRCCSD approximation. The GNO-based scheme, being fully size-extensive, is also
expected to yield an accurate ic-MRCCSDT energy curve.18 As |Ψ0〉 is the Fermi vac-
uum, the normal ordered excitations ãabij and ãvabuij are even orthogonal to each other from
the start. While it would make no difference whether one used a full or a sequential
orthogonalization for these operators, this is not true for pairs of operators that both
have active indices (cf. Tab. 4).
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Figure 25: Comparison of ic-MRCCSD methods using the core determinant as Fermi vacuum to
the GNO-based scheme (used as reference).

18At the time of writing this thesis, the GNO-based scheme is not yet available for triple excitations, as
I have only implemented the additional transformations (3.64) and (3.65) in a rudimentary form [P4].
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4.5. Treatment of purely active excitations

It is an interesting question whether a sequential orthogonalization could offer any
advantage over a full orthogonalization within the GNO-based approach. Answering this
question is beyond the scope of this work. Nevertheless, a comparison of schemes (ii) and
(iii) with (iv) for the H2O and N2 models, shown in Fig. 25, indicates that the energy
difference between the two procedures using a full orthogonalization is often smaller than
the one between (iii) and (iv), despite the fact that (iii) and (iv) have core-extensivity
in common. Further, procedure (iv) was found to give a potential energy curve for the
ground state of LiF less accurate than method (iii) by up to 2 mEh (see Tab. A4 in the
appendix). This suggests that it might be desirable to employ a sequential orthogonal-
ization technique even within the already size-extensive GNO-based framework.

4.5 Treatment of purely active excitations

In most ic-MRCC computations reported in this work, the reference function |Ψ0〉 is
dynamically relaxed in the presence of the cluster operator. As the metric matrix depends
on the reference coefficients cµ, it must then be recomputed and diagonalized several
times during the iterative procedure, preferably in each iteration, in order to achieve
a simultaneous fulfillment of Eqs. (3.5) and (3.8). This is computationally feasible in
ic-MRCCSD (see sec. 3.2), but it is worth to consider the following two alternative
approaches:

The first is based on the assumption that a CASSCF reference already constitutes a
good approximation to the projection of the exact wave function onto the model space
and simply dispenses with the relaxation of the reference function. The second approach
also fixes the reference coefficients at their CASSCF values, but includes additional purely
active excitations in the cluster operator in order to allow a corrected description within
the model space. For the purpose of the present section, these excitations will be called
internal excitations. While the latter scheme has less independent parameters than the
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Figure 26: Comparison of alternatives to the relaxation of the reference function in ic-MRCCSD.
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4 BENCHMARK CALCULATIONS

one based on a relaxed reference whenever Nrank < Nact/2, it also has the property
to converge towards FCI when increasing Nrank. Note that internal excitations such as
âvu and âwxuv contain an effective scalar component, which is redundant and has to be
projected out in the course of the sequential orthogonalization procedure.

Figure 26 illuminates the performance of these alternatives for the BeH2 and N2 model
systems. The use of a fixed reference without internal excitations leads to energies higher
by up to about 1 mEh and is therefore not recommended. This approximation is also
not suited in cases such as the LiF model (sec. 4.1.3), where the CASSCF wave functions
have qualitatively wrong character in large parts of the potential energy surface.

On the other hand, an inclusion of internal excitations even tends to give slightly
lower energies than a relaxation of the cµ. However, this minor improvement comes
at an increased computational cost for evaluating a much larger number of terms in
the ic-MRCCSD equations. In the calculations on N2, the number of individual terms
in the amplitude equations truncated at Ncom = 2 rises from 9 483 (Tab. 1) to 17 631
upon inclusion of internal singles and doubles. Whether such a scheme might become
a computationally attractive alternative to the one that relaxes the reference function,
depends on the extent to which an efficient factorization of the ic-MRCC equations is
possible.

62



5 Perturbative triples in ic-MRCC theory

5.1 Motivation

The benchmark applications from chap. 4 demonstrate the power of ic-MRCCSD to accu-
rately describe systems with strong static correlation. Nevertheless, higher than double
excitations may be needed for reliably achieving chemical accuracy (∼1 kcal/mol). The
applications of ic-MRCCSDT to BeH2 (sec. 4.1.1) and HF (sec. 4.1.2) exemplify that
inclusion of triples can lead to much increased accuracy. Unfortunately, full inclusion
of triples entails a much steeper scaling of the computational expense with system size,
namely N8 instead of N6 (assuming that Mvirt � Mact), drastically restricting the ap-
plicability of ic-MRCCSDT. This calls for an approximate treatment of triple excitations
that is able to improve the ic-MRCCSD model at a moderate extra cost.

There is a long history of perturbative triples models in SRCC theory. A common
strategy is to start from the CCSDT equations (or its Lagrange function, cf. sec. 5.2) and
neglect terms appearing at high orders in perturbation theory, including all N8 scaling
terms. This leads to the iterative models CCSDT-n with n = {1a, 1b, 2, 3} [172, 173]
and to CC3 [174]. These methods require to solve the equations for T̂1 and T̂2 in the
presence of T̂3 and therefore involve N7 steps in each iteration. One can also follow
a noniterative approach and use the converged singles and doubles amplitudes from a
CCSD calculation to compute approximate triples amplitudes and the resulting energy
correction in a single N7 step. This strategy was pioneered in the CCSD[T] model
[173], where the triples amplitudes are derived from fourth-order terms containing T̂2.
Additional inclusion of contributions from T̂1 by a selected fifth-order term has given rise
to CCSD(T) [12, 13, 175–177], a widely used method often called the ‘gold standard’ of
quantum chemistry [29]. There are alternative approaches aimed at curing deficiencies
of CCSD(T) in bond breaking situations [79,178–182] (see Ref. [168] for a review).

Since MRCC theories are designed to cope with static correlation, it is worthwhile
to pursue their multireference analogs of CCSD(T). This has been done for both the
tailored [183] and reduced [184] MRCC approaches as well as for spin-flip EOM coupled-
cluster theory [185] and a number of methods based on the Jeziorski–Monkhorst ansatz
[167, 186–190]. The following sections are dedicated to the development of perturbative
triples models in ic-MRCC theory [P3].

5.2 The ic-MRCC Lagrangian

The formulation of SRCC theory in terms of a Lagrange function has proven to be a
convenient starting point for the derivation of perturbative triples models [174]. It is
straightforward to construct a Lagrangian for the ic-MRCC method by adding to the
energy expression (3.3) the ic-MRCC equations (3.8) and (3.5), each equipped with a
Lagrange multiplier λ′ρ or c̄µ, and the normalization constraint of the reference function
(with the Lagrange multiplier α):

L = 〈Ψ0|H̄|Ψ0〉+
∑

ρ

λ′ρ〈Ψ0|(τ̂ ′ρ)†H̄|Ψ0〉+
∑

µ

c̄µ〈Φµ|(H̄ − E)|Ψ0〉 − α (〈Ψ0|Ψ0〉 − 1) .

(5.1)
The solution of the ic-MRCC equations is equivalent to requiring stationarity of L with
respect to a variation of the wave function parameters t′ρ, cµ and the Lagrange multipli-
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5 PERTURBATIVE TRIPLES IN IC-MRCC THEORY

ers. Since the normalization of |Ψ0〉 has no impact on the fulfillment of the ic-MRCC
equations, we can simplify this Lagrangian by setting the multiplier α to its value at the
stationary point of L. This is done by multiplying the condition 0 != ∂L/∂cµ with cµ and
summing over µ. Because the second and third term of Eq. (5.1) vanish at the stationary
point, it follows that α = 〈Ψ0|H̄|Ψ0〉/〈Ψ0|Ψ0〉, leading to

L =
〈Ψ0|H̄|Ψ0〉
〈Ψ0|Ψ0〉

+ 〈Ψ0|Λ̂H̄|Ψ0〉+ 〈Ψ0|(H̄ − E)|Ψ0〉. (5.2)

In Eq. (5.2), we have merged the Lagrange multipliers into the operator

Λ̂ =
∑

ρ

λ′ρ(τ̂ ′ρ)† = λ′τ ′† (5.3)

and the left-hand reference function

〈Ψ0| =
∑

µ

c̄µ〈Φµ|. (5.4)

Contrary to Eq. (5.1), the energy expression in Eq. (5.2) is explicitly normalized. A
further simplification results from multiplying the condition 0 != ∂L/∂c̄µ with cµ followed
by a summation over µ. This directly gives 〈Ψ0|H̄|Ψ0〉 = E〈Ψ0|Ψ0〉 and allows us to
rewrite the Lagrangian as

L = 〈Ψ0|H̄|Ψ0〉+ 〈Ψ0|Λ̂H̄|Ψ0〉 − E
(
〈Ψ0|Ψ0〉 − 1

)
. (5.5)

Equation (5.5) is a valid Lagrangian for ic-MRCC theory [P1], since the conditions 0 !=
∂L/∂λ′ and 0 != ∂L/∂c̄µ are identical to the ic-MRCC equations and L becomes the ic-
MRCC energy at its stationary point. This Lagrangian is more compact than Eqs. (5.1)
and (5.2) and therefore used throughout the current work.

5.3 Perturbative analysis

5.3.1 Dyall’s zeroth-order Hamiltonian

Single-reference approaches such as Møller–Plesset perturbation theory [191] and per-
turbative approximations to SRCC methods use the Fock operator, F̂ =

∑
pq f

p
q â

q
p, as

zeroth-order Hamiltonian. The operator F̂eff defined in Eq. (4.1) is the multireference
analog of the Fock operator in a sense that it is the effective one-particle operator of
the Hamiltonian normal ordered with respect to a CASSCF reference function [112].
Unfortunately, the CASSCF function is not an eigenfunction of F̂eff . In the widespread
complete active space perturbation theory (CASPT, Ref. [49]), this is remedied by intro-
ducing a projection operator onto the reference space. Formally more appealing is the
inclusion of the two-electron interactions between active electrons, which leads to Dyall’s
choice of a zeroth-order Hamiltonian, referred to as CAS/A [192]. In a generalization
that does not presume use of pseudocanonical CASSCF orbitals, the Dyall Hamiltonian
reads

ĤD = 〈0|Ĥ|0〉+
∑

ij

(feff)ij â
j
i +

∑

ab

(feff)ab â
b
a

︸ ︷︷ ︸
ĤD,inact

+
∑

uv

fuv â
v
u + 1

4

∑

uvwx

guvwxâ
wx
uv

︸ ︷︷ ︸
ĤD,act

, (5.6)
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5.3. Perturbative analysis

with the elements of the Fock matrix f and the effective Fock matrix feff as defined in
Eqs. (2.23) and (4.1), respectively. ĤD is employed in n-electron valence state perturba-
tion theory (NEVPT, Refs. [193,194]) and provides a subset of eigenfunctions that span
the complete active space,

ĤD|Ψm〉 = Em|Ψm〉, (5.7)

with E0 = ECASSCF.
While the Dyall Hamiltonian contains the active two-electron integrals, it is still a

sum of purely inactive and purely active contributions. This feature is important for ic-
MRCC theory, as replacement of Ĥ by Dyall’s Hamiltonian gives rise to a computationally
feasible approximate Jacobian (cf. Refs. [193,195]),

Aσρ =
∂2L(Ĥ→ĤD)

∂λ′ρ∂t′σ

∣∣∣∣
t′=0,λ′=0

= 〈Ψ0|(τ̂ ′ρ)†[ĤD, τ̂
′σ]|Ψ0〉, (5.8)

with a simple block structure similar to the metric matrix from Eq. (3.21),

A =
⊕

nh,np

(
Anh,np

inact ⊗ 1nh,npact,η + 1nh,npinact ⊗Anh,np
act

)
, (5.9)

where
(
Anh,np

inact

)ij···,cd···
ab···,kl··· = −

(
1nh−1,np

inact ⊗Af1,0
eff

)ij···cd···
kl···ab···

+
(
1nh,np−1

inact ⊗Af0,1
eff

)ij···cd···
kl···ab···

(5.10)

and
(
Anh,np

act

)u···,x···
v···,w··· =

∑

y···z···
u′···v′···

((
Xnh,np

act

)†)u···,z···
v···,y···

〈Ψ0|ây···z···[ĤD,act, â
v′···
u′···]|Ψ0〉

(
Xnh,np

act

)u′···,x···
v′···,w··· .

(5.11)
In Eq. (5.10), Anh,np

inact contains the hole-hole and particle-particle blocks of the effective
Fock operator and hence becomes diagonal in case of pseudocanonical CASSCF orbitals.
The diagonal elements of A are of practical relevance, as they constitute an efficient choice
for the denominators in the amplitude update step (see Ref. [P3] and app. A.1.4).19

As will become apparent in sec. 5.3.2, the use of ĤD as zeroth-order Hamiltonian leads
to an undesired coupling between excitations that receive a direct contribution from the
Hamiltonian through the first-order residual and other excitations. In order to allow a
clear-cut assignment of perturbation orders to excitation operators, it is advantageous to
simplify ĤD as follows. Application of the resolution of the identity

Î =
∑

m

|Ψm〉〈Ψm|+
∑

ρ

τ̂ ′ρ|Ψ0〉〈Ψ0|(τ̂ ′ρ)† (5.12)

to both sides of ĤD yields a representation in the basis of model space eigenfunctions
and excited functions,

ĤD =
∑

m

|Ψm〉Em〈Ψm|+
∑

ρ

τ̂ ′ρ|Ψ0〉(E0 +Aρρ)〈Ψ0|(τ̂ ′ρ)† +
∑

ρ 6=σ
τ̂ ′ρ|Ψ0〉Aσρ 〈Ψ0|(τ̂ ′σ)†.

(5.13)
19This observation was in fact the main motivation for choosing ĤD as starting point for defining pertur-
bative triples models. Attempts to neglect the effective active two-electron interaction in the amplitude
update step resulted in much worse rates of convergence.
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5 PERTURBATIVE TRIPLES IN IC-MRCC THEORY

The following perturbative analysis assumes that the off-diagonal elements Aσρ are much
less important than the diagonal elements Aρρ and neglects these terms in the zeroth-order
Hamiltonian:

Ĥ(0) =
∑

m

|Ψm〉Em〈Ψm|+
∑

ρ

τ̂ ′ρ|Ψ0〉(E0 +Aρρ)〈Ψ0|(τ̂ ′ρ)†. (5.14)

For numerical evidence in support of this assumption, see sec. 5.6.1. While simplifying the
perturbative analysis, this form of Ĥ(0) is unsuited for a definition of practical ic-MRCC
models with perturbative triples, because Eq. (5.13) relies on Eq. (5.7) and is therefore
only valid as long as the reference coefficients cµ are fixed at their CASSCF values. The
actual methods presented in sec. 5.4.2 will thus employ the full Dyall Hamiltonian.

It should be noted that, in principle, one can introduce an additional transformation of
the excitation operators τ̂ ′ρ that diagonalizes the active part of A and thereby eliminates
the third term of Eq. (5.13) analytically (cf. Ref. [193]). However, in the present context
this would lead to a mixing of excitations of different rank and is not pursued further.

5.3.2 Order-by-order analysis

The Lagrangian from Eq. (5.5) has four sets of stationarity conditions:

0 !=
∂L
∂c̄µ

= 〈Φµ|(H̄ − E)|Ψ0〉, (5.15)

0 !=
∂L
∂cµ

= 〈Ψ0|(H̄ − E)|Φµ〉+ 〈Φµ|Λ̂H̄|Ψ0〉+ 〈Ψ0|Λ̂H̄|Φµ〉, (5.16)

0 !=
∂L
∂λ′ρ

= Ω′ρ = 〈Ψ0|(τ̂ ′ρ)†H̄|Ψ0〉, (5.17)

0 !=
∂L
∂t′ρ

= 〈Ψ0|
∂H̄

∂t′ρ
|Ψ0〉+ 〈Ψ0|Λ̂

∂H̄

∂t′ρ
|Ψ0〉. (5.18)

Condition (5.15) is the eigensystem for the reference coefficients [Eq. (3.5)], and (5.17)
are the amplitude equations [Eq. (3.8)]. The conditions (5.16) and (5.18) determine the
Lagrange multipliers c̄µ and λ′ρ, respectively, and are not needed in a regular computation
of the ic-MRCC energy.

Let us now partition the Hamiltonian into Ĥ = Ĥ(0)+Ĥ(1) and expand all parameters
in orders of perturbation, e.g., t′ρ = t

′(0)
ρ + t

′(1)
ρ + t

′(2)
ρ + . . .. A shorthand notation will be

used to indicate perturbed reference functions, e.g., |Ψ(n)
0 〉 =

∑
µ |Φµ〉c(n)

µ .
Our starting point is to recognize that T̂ (0) = 0 and Λ̂(0) = 0 is a possible solution to

Eqs. (5.15) to (5.18) in zeroth order:

0 = 〈Φµ|(Ĥ(0) − E(0))|Ψ(0)
0 〉 = 〈Φµ|(E0 − E(0))|Ψ(0)

0 〉, (5.19)

0 = 〈Ψ0
(0)|(Ĥ(0) − E(0))|Φµ〉 = 〈Ψ(0)

0 |(E0 − E(0))|Φµ〉, (5.20)

0 = 〈Ψ(0)
0 |(τ̂ ′ρ)†Ĥ(0)|Ψ(0)

0 〉, (5.21)

0 = 〈Ψ0
(0)|[Ĥ(0), τ̂ ′ρ]|Ψ(0)

0 〉. (5.22)
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5.3. Perturbative analysis

Equations (5.19) and (5.20) are in accordance with taking the CASSCF coefficients for
both c(0)

µ and c̄(0)
µ and yield the CASSCF energy as zeroth-order energy, E(0) = E0. The

terms in Eqs. (5.21) and (5.22) vanish, because τ̂ ′ρ has at least one inactive index, which
cannot be compensated by Ĥ(0) or the reference function.

In first order, the stationarity conditions take the following form:

0 = 〈Φµ|
(
Ĥ(1) + [Ĥ(0), T̂ (1)]

)
|Ψ(0)

0 〉 − E(1)〈Φµ|Ψ(0)
0 〉+ 〈Φµ|(Ĥ(0) − E(0))|Ψ(1)

0 〉, (5.23)

0 = 〈Ψ(0)
0 |
(
Ĥ(1) + [Ĥ(0), T̂ (1)]

)
|Φµ〉 − E(1)〈Ψ(0)

0 |Φµ〉+ 〈Ψ0
(1)|(Ĥ(0) − E(0))|Φµ〉

+ 〈Φµ|Λ̂(1)Ĥ(0)|Ψ(0)
0 〉+ 〈Ψ(0)

0 |Λ̂(1)Ĥ(0)|Φµ〉, (5.24)

0 = 〈Ψ(1)
0 |(τ̂ ′ρ)†Ĥ(0)|Ψ(0)

0 〉+ 〈Ψ(0)
0 |(τ̂ ′ρ)†Ĥ(0)|Ψ(1)

0 〉+ 〈Ψ(0)
0 |(τ̂ ′ρ)†Ĥ(1)|Ψ(0)

0 〉

+ 〈Ψ(0)
0 |(τ̂ ′ρ)†[Ĥ(0), T̂ (1)]|Ψ(0)

0 〉, (5.25)

0 = 〈Ψ0
(1)|[Ĥ(0), τ̂ ′ρ]|Ψ(0)

0 〉+ 〈Ψ(0)
0 |[Ĥ(0), τ̂ ′ρ]|Ψ(1)

0 〉+ 〈Ψ(0)
0 |[Ĥ(1), τ̂ ′ρ]|Ψ(0)

0 〉

+ 〈Ψ(0)
0 |
(
[[Ĥ(0), T̂ (1)], τ̂ ′ρ] + [[Ĥ(0), τ̂ ′ρ], T̂ (1)]

)
|Ψ(0)

0 〉+ 〈Ψ(0)
0 |Λ̂(1)[Ĥ(0), τ̂ ′ρ]|Ψ(0)

0 〉.
(5.26)

Again, a number of terms vanish (printed in blue), in which operators with inactive
indices (including Ĥ(1)) annihilate a left-hand or right-hand reference function. The
condition (5.23) is a set of equations projected onto the reference determinants 〈Φµ|.
We can split it into two distinct conditions by separately considering projections onto
〈Ψ(0)

0 | and its complementary space spanned by {〈Φµ|Q̂}, where we have introduced the
projector Q̂ = 1 − |Ψ(0)

0 〉〈Ψ
(0)
0 |. Using Eq. (5.20), the projection onto 〈Ψ(0)

0 | directly
leads to E(1) = 0, whereas the projection onto the complementary model space yields a
homogeneous system of linear equations,

∑

ν

〈Φµ|Q̂(Ĥ(0) − E(0))|Φν〉c(1)
ν = 0, (5.27)

with the trivial solution c
(1)
µ = 0. In analogy to this, Eq. (5.24) results in c̄

(1)
µ = 0.

Hence, there is no first-order contribution to both the right-hand and left-hand reference
functions.

The third term of Eq. (5.25) is the initial contribution to the ic-MRCC residual. Due
to the generalized Brillouin theorem, Eq. (2.34), and the current choice of Ĥ(0), it is
zero for singly excited functions. In addition, the sequential orthogonalization procedure
(sec. 3.2.1) rules out projections onto triply and higher excited functions, since Ĥ(1) is a
two-body operator. Consequently, this term vanishes for all but doubly excited functions,

〈Ψ(0)
0 |(τ̂ ′ρn )†Ĥ(1)|Ψ(0)

0 〉 = 0 if n = {1, 3, 4, . . .}. (5.28)

Owing to the exclusion of the off-diagonal elements Aσρ from Ĥ(0), the last term in
Eq. (5.25) simplifies to

〈Ψ(0)
0 |(τ̂ ′ρ)†[Ĥ(0), T̂ (1)]|Ψ(0)

0 〉 = Aρρt
′(1)
ρ . (5.29)

As a result, the first-order contribution to the doubles amplitudes takes the simple form

t
′(1)
2,ρ = − 1

Aρρ
〈Ψ(0)

0 |(τ̂ ′ρ2 )†Ĥ(1)|Ψ(0)
0 〉. (5.30)
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This is analogous to SRCC theory, where the Brillouin theorem ensures that only double
excitations arise in first order of perturbation theory. Importantly, the first-order equa-
tions for the Lagrange multipliers λ′ρ, Eq. (5.26), turn out to be the Hermitian conjugate
of Eq. (5.25), such that λ

′(1)
2 = (t′(1)

2 )†.
In second order, Eqs. (5.15) to (5.18) become

0 = 〈Φµ|[Ĥ(1), T̂
(1)
2 ]|Ψ(0)

0 〉 − E(2)〈Φµ|Ψ(0)
0 〉+ 〈Φµ|(Ĥ(0) − E(0))|Ψ(2)

0 〉, (5.31)

0 = 〈Ψ(0)
0 |[Ĥ(1), T̂

(1)
2 ]|Φµ〉 − E(2)〈Ψ(0)

0 |Φµ〉+ 〈Ψ0
(2)|(Ĥ(0) − E(0))|Φµ〉

+ 〈Φµ|(T̂ (1)
2 )†

(
Ĥ(1) + [Ĥ(0), T̂

(1)
2 ]
)
|Ψ(0)

0 〉+ 〈Ψ(0)
0 |(T̂

(1)
2 )†

(
Ĥ(1) + [Ĥ(0), T̂

(1)
2 ]
)
|Φµ〉,
(5.32)

0 = 〈Ψ(0)
0 |(τ̂ ′ρ)†[Ĥ(1), T̂

(1)
2 ]|Ψ(0)

0 〉+ 1
2〈Ψ

(0)
0 |(τ̂ ′ρ)†[[Ĥ(0), T̂

(1)
2 ], T̂ (1)

2 ]|Ψ(0)
0 〉+Aρρt

′(2)
ρ ,

(5.33)

0 = 〈Ψ(0)
0 |
(
[[Ĥ(1), T̂

(1)
2 ], τ̂ ′ρ] + [[Ĥ(1), τ̂ ′ρ], T̂ (1)

2 ]
)
|Ψ(0)

0 〉+ λ′ρ(2)Aρρ

+ 〈Ψ(0)
0 |(T̂

(1)
2 )†

(
[Ĥ(1), τ̂ ′ρ] + [[Ĥ(0), T̂

(1)
2 ], τ̂ ′ρ] + [[Ĥ(0), τ̂ ′ρ], T̂ (1)

2 ]
)
|Ψ(0)

0 〉, (5.34)

where vanishing terms have been omitted from the start. We can obtain an expression for
the second-order energy by considering the projections of Eqs. (5.31) and (5.32) onto the
zeroth-order reference functions. In Eq. (5.32), this is formally achieved by multiplying
with c

(0)
µ and summing over µ. Inserting Eqs. (5.29) and (5.30) into the result, the

expressions derived from the last two terms of Eq. (5.32) turn out to cancel according to

〈Ψ(0)
0 |(T̂

(1)
2 )†

(
Ĥ(1) + [Ĥ(0), T̂

(1)
2 ]
)
|Ψ(0)

0 〉 = −
∑

ρ

Aρρ(t
′(1)
2,ρ )2 +

∑

ρ

Aρρ(t
′(1)
2,ρ )2 = 0. (5.35)

Consequently, both Eqs. (5.31) and (5.32) yield the same second-order energy contribu-
tion:

E(2) = 〈Ψ(0)
0 |[Ĥ(1), T̂

(1)
2 ]|Ψ(0)

0 〉 = −
∑

ρ

1
Aρρ

∣∣〈Ψ(0)
0 |(τ̂ ′ρ2 )†Ĥ(1)|Ψ(0)

0 〉
∣∣2. (5.36)

In the single-reference limit (Nact = 0), E(2) reduces to the second-order energy correction
of Møller–Plesset perturbation theory (MP2). Studying the performance of this variant
of multireference perturbation theory is beyond the scope of the present work.

The projections of Eqs. (5.31) and (5.32) onto the space {Q̂|Φµ〉} lead to two different
sets of linear equations determining c(2)

µ and c̄(2)
µ :20

∑

ν

〈Φµ|Q̂(Ĥ(0) − E(0))|Φν〉c(2)
ν =− 〈Φµ|Q̂[Ĥ(1), T̂

(1)
2 ]|Ψ(0)

0 〉, (5.37)

∑

ν

c̄(2)
ν 〈Φν |(Ĥ(0) − E(0))Q̂|Φµ〉 =− 〈Ψ(0)

0 |[Ĥ(1), T̂
(1)
2 ]Q̂|Φµ〉

− 〈Φµ|Q̂(T̂ (1)
2 )†

(
Ĥ(1) + [Ĥ(0), T̂

(1)
2 ]
)
|Ψ(0)

0 〉

− 〈Ψ(0)
0 |(T̂

(1)
2 )†

(
Ĥ(1) + [Ĥ(0), T̂

(1)
2 ]
)
Q̂|Φµ〉. (5.38)

20A rigorous way to achieve this projection for Eq. (5.32) is to evaluate (∂L/∂cµ)(2)−c(0)µ
P
ν (∂L/∂cν)(2).
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Turning to Eqs. (5.33) and (5.34), a comparison of these equations suggests that
the second-order contributions to T̂ and Λ̂ are also generally different. This stands in
contrast to SRCC theory, where λ

′(2)
n = (t(2)

n )† for n = {1, 2, 3} [177]. Additionally, in
SRCC theory, second-order contributions to the cluster amplitudes only affect singles,
doubles and triples. While the commutator [Ĥ(1), T̂

(1)
2 ] in the first term of Eq. (5.33)

has a maximum rank of three and can only yield contributions to T̂1, T̂2 and T̂3 due
to the sequential orthogonalization approach, the second term in Eq. (5.33) also gives
a nonzero residual for quadruple excitations with at least two active indices. In order
to reformulate the latter term, we expand the double commutator, insert Eq. (5.14) and
exploit that the two excitation operators in the expectation value 〈Ψ(0)

0 |(τ̂ ′ρ4 )†τ̂ ′σ2 τ̂
′υ
2 |Ψ

(0)
0 〉

commute. This yields

1
2〈Ψ

(0)
0 |(τ̂ ′ρ4 )†[[Ĥ(0), T̂

(1)
2 ], T̂ (1)

2 ]|Ψ(0)
0 〉

= 1
2

∑

συ

t
′(1)
2,σ t

′(1)
2,υ

(
Aρρ −Aσσ −Aυυ

)
〈Ψ(0)

0 |(τ̂ ′ρ4 )†τ̂ ′σ2 τ̂
′υ
2 |Ψ(0)

0 〉.
(5.39)

According to Eq. (5.9), the diagonal elements of A are sums of inactive effective Fock
matrix elements and active parts. As the inactive indices of (τ̂ ′ρ4 )† must match the
ones of τ̂ ′σ2 and τ̂ ′υ2 in the expectation value, the elements from feff cancel each other
out in (Aρρ − Aσσ − Aυυ), leaving a purely active contribution. In light of the fact that
triple excitations also receive a contribution from the first term in Eq. (5.33), it is fair to
assume that the second-order contribution to T̂4 is smaller than the one to T̂3. Therefore,
it is justified to restrict the perturbative improvement of the ic-MRCCSD method to the
approximate inclusion of triple excitations.

5.4 Approximations to the ic-MRCC Lagrangian

5.4.1 Neglect of triples with many active indices

Figure 27 shows all excitation operators present in the ic-MRCCSDT method. In the
excitation classes with nh = 3 or np = 3, three is the lowest excitation rank. Those triple
excitations, drawn in orange in Fig. 27, are analogs of the triple excitations in SRCC
theory and all of them should be treated on the same footing.21

The situation is somewhat different for the other triple excitations depicted in Fig. 27,
which involve active-to-active excitations. A significant portion of the corresponding
triply excited functions in these excitation classes is already covered by excitations of
lower rank (cf. the discussion in sec. 4.3). Even when the reference function is close to
a single determinant, an excited function that would be accessed by a triple excitation
in SRCC theory is often reached via a double excitation from a configuration with small
weight. Likewise, single excitations partially account for doubles with active-to-active
excitations. It is important to realize that this is not an artifact of ic-MRCC theory but
entirely due to the multiconfigurational nature of the reference function, which renders
even single excitations from minor configurations second-order quantities due to the
generalized Brillouin theorem, whereas the corresponding double excitations in SRCC
theory arise in first order of perturbation theory. The partial redundancy of triples with
21Of course, some types of triples with nh = 3 or np = 3 may be redundant for small active spaces, e.g.,
âuvwijk and âabcuvw in case of a CAS(2,2).
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nh np = 0 np = 1 np = 2 np = 3

0 —
âa

u âwa
uv âxya

uvw {5} âab
uv âxab

uvw {4} âabc
uvw {2}

1

âu
i âvw

ui âwxy
uvi {5} âa

i âva
ui âwxa

uvi {4} âab
ui âwab

uvi {3} âabc
uvi {2}

2

âuv
ij âvwx

uij {4} âua
ij âvwa

uij {3} âab
ij âvab

uij {2} âabc
uij {2}

3
âuvw

ijk {2} âuva
ijk {2} âuab

ijk {2} âabc
ijk {2}

Figure 27: Excitations in the cluster operator for ic-MRCCSDT. For each triple excitation, the
lowest triples model {n} is specified that considers this excitation.

active-to-active excitations suggests that the different types of triple excitations are not
all equally important. In fact, some of these excitation types are exactly redundant for
certain small active spaces (as long as η is set small enough to include all nearly linearly
dependent excitations in the lower ranks). The excitations highlighted in green in Fig. 27
are redundant for a CAS(4,4), and in case of a CAS(2,2) one may additionally exclude
the excitations shown in blue.

While we can expect triple excitations with many active indices to have little impact
on the ic-MRCC energy, they may largely increase the computational effort. In particular,
the excitations âwxyuvi and âxyauvw require the diagonalization of five-body density matrices.
As we have seen in Fig. 9, this is likely the rate determining step for large active spaces.

It is therefore recommended to neglect excitations with many active lines in the design
of an efficient ic-MRCC method with perturbative triples. To this end, we consider a
hierarchy of triples models {n}, where n is the maximum number of active indices in a
triple excitation with nh ≤ 2 and np ≤ 2. The choice advocated in this work is model {3}.
Like ic-MRCCSD, this triples model involves only diagonalizations of up to three-body
metric blocks. At the same time, it recovers most of the triples contribution, as will be
demonstrated in sec. 5.6.1.

5.4.2 Perturbative and commutator-based truncation

The ic-MRCC methods with perturbative treatment of triple excitations studied in this
work are based on the simple recipe to assign perturbation orders to the various opera-
tors in the ic-MRCC Lagrangian, Eq. (5.5), followed by a truncation of this Lagrangian
at a specific order. Similar strategies have been used with success in the development of
SRCC methods (e.g., Refs. [174, 196, 197]). The perturbative analysis in sec. 5.3.2 pro-
vides some guidance in the assignment of perturbation orders, but it takes the CASSCF
wave function as a starting point and is therefore only of limited value when devising
perturbative improvements on top of ic-MRCCSD. This also applies to SRCC theory.
A notable example for shortcomings of the perturbative analysis based on a Hartree–
Fock wave function is its inability to explain the importance of the famous ‘fifth-order
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term’ in CCSD(T), which results from the Lagrangian through the term 〈0|Λ̂1[Ĥ, T̂3]|0〉.
In contrast to the Hartree–Fock based perturbation theory, an analysis focused on the
CCSD wave function as zeroth-order solution can justify the inclusion of this term and
suggests that Λ̂1 should be treated on the same footing as Λ̂2 [175]. In addition to
this, the relaxed reference function in ic-MRCCSD generally differs from the CASSCF
wave function. This implies an increased significance of T̂1, as the generalized Brillouin
theorem does not hold for the relaxed reference. Further, the zeroth-order Hamiltonian
depends on the reference function, rendering the definition from Eq. (5.14) inconvenient
for practical applications.

These considerations motivate the following assignment of perturbation orders: Both
the left- and right-hand reference functions and the energy E are treated as zeroth-order
quantities. The Hamiltonian is split into the zeroth-order Dyall Hamiltonian ĤD and a
first-order remainder. The singles and doubles amplitudes and Lagrange multipliers in
T̂1, Λ̂1, T̂2 and Λ̂2 are assigned first order, while T̂3 and Λ̂3 are second-order operators.
With these assignments, the first terms scaling like N8 (with respect to the inactive
orbital space) arise in fifth order of perturbation theory, e.g., 〈Ψ0|Λ̂3[Ĥ, T̂3]|Ψ0〉. By
truncating the ic-MRCCSDT Lagrangian at fourth order, we exclude these terms and
obtain a new method called ic-MRCCSDT-1 [P3].

The method ic-MRCCSDT-1 is related to CCSDT-1a [172], but an application of the
described recipe to SRCC theory does not directly lead to CCSDT-1a. The reason for
this is that the three- and fourfold commutator terms in CCSD (and CCSDT-1a) have a
perturbation order higher than four and would be excluded in the present approach. A
modified procedure that applies the perturbative truncation only to terms not present in
the singles-and-doubles model is able to cure this deficiency. However, such a modification
makes no difference in ic-MRCC theory as long as we adhere to a truncation of the
BCH expansion after the twofold commutator. The presented ic-MRCCSDT-1 model
is thus a multireference analog of the quadratic approximation to CCSDT-1a. The ic-
MRCCSDT-1 Lagrangian reads

Lic-MRCCSDT-1 = 〈Ψ0|
(
ĤD + [Ĥ, T̂ ] + 1

2 [[Ĥ, T̂ ], T̂1 + T̂2] + 1
2 [[Ĥ, T̂1 + T̂2], T̂3]

)
|Ψ0〉

+ 〈Ψ0|
(
Λ̂1 + Λ̂2

)(
Ĥ + [Ĥ, T̂ ] + 1

2 [[Ĥ, T̂1 + T̂2], T̂1 + T̂2]

+ 1
2 [[ĤD, T̂1 + T̂2], T̂3] + 1

2 [[ĤD, T̂3], T̂1 + T̂2]
)
|Ψ0〉

+ 〈Ψ0|Λ̂3

(
Ĥ + [Ĥ, T̂1 + T̂2] + [ĤD, T̂3] + 1

2 [[ĤD, T̂1 + T̂2], T̂1 + T̂2]
)
|Ψ0〉

− E
(
〈Ψ0|Ψ0〉 − 1

)
.

(5.40)

In order to allow the three- and fourfold commutator terms from SRCC theory in
the ic-MRCC methods while simultaneously avoiding a large number of terms with high
powers in T̂2 (cf. Tab. 1), one has to apply different truncation criteria for single and
double excitations. The most elegant way to achieve this is to switch to a sequential
ansatz for the ic-MRCC wave function [P5],

|Ψ〉 = eT̂1eT̂2+T̂3 |Ψ0〉. (5.41)

The similarity transformation of the Hamiltonian then falls into a rank-conserving trans-
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formation with the singles operator,

H̃ = e−T̂1ĤeT̂1 , (5.42)

and a second transformation with the remaining excitation operators,22

H̄ = e−T̂2−T̂3H̃eT̂2+T̂3 . (5.43)

It is straightforward to truncate Eq. (5.42) at fourfold commutators and retain the trun-
cation at twofold commutators for Eq. (5.43), thereby including all terms present in
SRCC theory. This sequential ansatz gives rise to an ic-MRCC theory with the same
formal properties as the one based on the simultaneous ansatz from Eq. (2.41), and the
numerical differences between the two are often insignificant [P5] (see also Ref. [198] for
a valuable discussion).

It is possible to combine the sequential ansatz with a perturbative truncation while
treating T̂1 as first-order quantity. However, this requires the expansion of H̃ in the La-
grangian, in order to apply the truncation criterion consistently. A conceptually simpler
solution is to assign zeroth order to T̂1 and introduce a T̂1-transformed Dyall Hamilto-
nian, H̃D = e−T̂1ĤD e

T̂1 . The resulting ic-MRCC method then becomes analogous to the
CC3 model [174]. This model emphasizes the role of singles amplitudes as orbital relax-
ation parameters and is especially suited for the calculation of response properties [199].
In this work, the corresponding ic-MRCC3 approach will also treat Λ̂1 as zeroth-order
quantity, although this is not strictly necessary for achieving equivalence of ic-MRCC3
with CC3 in the single-reference limit. The ic-MRCC3 Lagrangian takes the following
form:

Lic-MRCC3 = 〈Ψ0|
(
H̃ + [H̃, T̂2 + T̂3] + 1

2 [[H̃, T̂2 + T̂3], T̂2] + 1
2 [[H̃, T̂2], T̂3]

)
|Ψ0〉

+ 〈Ψ0|Λ̂1

(
H̃ + [H̃, T̂2 + T̂3] + 1

2 [[H̃, T̂2 + T̂3], T̂2] + 1
2 [[H̃, T̂2], T̂3]

)
|Ψ0〉

+ 〈Ψ0|Λ̂2

(
H̃ + [H̃, T̂2 + T̂3] + 1

2 [[H̃, T̂2], T̂2]

+ 1
2 [[H̃D, T̂2], T̂3] + 1

2 [[H̃D, T̂3], T̂2]
)
|Ψ0〉

+ 〈Ψ0|Λ̂3

(
H̃ + [H̃, T̂2] + [H̃D, T̂3] + 1

2 [[H̃D, T̂2], T̂2]
)
|Ψ0〉

− E
(
〈Ψ0|Ψ0〉 − 1

)
.

(5.44)

An important aspect of both CCSDT-1a and CC3 regarding computational efficiency
is that the only term by which T̂3 contributes to the triples residual is 〈0|Λ̂3[F̂ , T̂3]|0〉.
With a diagonal Fock operator, the triples amplitudes can be directly computed in each
iteration from T̂2 and the (T̂1-transformed) Hamiltonian in a single step. By inserting the
equations for the triples into the residual expressions of the singles and doubles, one can
avoid the storage of triples amplitudes altogether [172, 174, 199]. This attractive feature
is lost in the current formulation of the ic-MRCCSDT-1 and ic-MRCC3 models. It might
be possible to simplify these methods by replacing [ĤD, T̂3] in Eq. (5.40) and [H̃D, T̂3] in
Eq. (5.44) by [Ĥ(0), T̂3], but this is beyond the scope of the current work.

22Reference [P5] postulates a fully sequential ansatz with the wave operator eT̂1eT̂2eT̂3 · · · . However,
similarity transformations of the Hamiltonian with T̂2 or higher excitation operators are not rank-
conserving and do not offer a clear computational advantage over using eT̂1eT̂2+T̂3+....
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5.5 The noniterative triples correction: ic-MRCCSD(T)

The essence of CCSD(T) is to perform the first iteration of CCSDT-1a using T̂1 and
T̂2 from a converged CCSD calculation and then evaluate the CCSDT-1a Lagrangian,
with Λ̂1 and Λ̂2 replaced by T̂ †1 and T̂ †2 , respectively. As discussed in sec. 5.3.2, the
replacement of Λ̂ by T̂ † in ic-MRCC is correct to first order in perturbation theory.
This also applies to the substitution of 〈Ψ0| for 〈Ψ0|. Starting from the ic-MRCCSDT-1
Lagrangian, Eq. (5.40), these replacements lead to a Lagrangian of the following form:

Lic-MRCCSD(T) = Eic-MRCCSD + ∆Edirect
(T) + t′†1 Ω′1,T + t′†2 Ω′2,T + λ′3Ω

′
3. (5.45)

In Eq. (5.45), no perturbative truncation is applied to the ic-MRCCSD energyEic-MRCCSD.
This requirement plays a role when using the sequential ansatz from Eq. (5.41). ∆Edirect

(T)

is a direct contribution of T̂3 to the energy and has no counterpart in single-reference
CCSD(T). t′1 and t′2 are the converged singles and doubles amplitudes from ic-MRCCSD
and Eq. (5.45) implicitly uses the relaxed reference function from ic-MRCCSD. Since
the corresponding ic-MRCCSD residuals are zero, Ω′1,T and Ω′2,T are restricted to terms
involving the operator T̂3.

The triples amplitudes follow from the condition Ω′3 = 0. With ic-MRCCSDT-1 as
starting point, the triples residual contains one T̂3 dependent term,

〈Ψ0|(τ̂ ′ρ3 )†[ĤD, T̂3]|Ψ0〉 =
∑

σ

Aσρ t
′
3,σ, (5.46)

where we have used Eq. (5.8). This term introduces a coupling between different triples
amplitudes and requires an iterative solution of the equations for T̂3. The corresponding
triples model will be denoted as ic-MRCCSD(T)it. In practice, it is advantageous to
neglect the off-diagonal matrix elements of A, which is in the spirit of the zeroth-order
Hamiltonian defined in Eq. (5.14). The resulting triples residual has the form

Ω′3,ρ = Aρρt
′
3,ρ + Ω′3,ρ

∣∣
T̂3=0

(5.47)

and allows to compute T̂3 in a single step:

t′3,ρ = − 1
Aρρ

Ω′3,ρ
∣∣
T̂3=0

. (5.48)

With this choice, the last term in Eq. (5.45) vanishes and we obtain the following ex-
pression for the perturbative correction to the ic-MRCCSD energy:

∆E(T) = ∆Edirect
(T) + t′†1 Ω′1,T + t′†2 Ω′2,T︸ ︷︷ ︸

t′†Ω′T

. (5.49)

Equations (5.48) and (5.49) are the working equations for ic-MRCCSD(T). In con-
nection with a simultaneous exponential ansatz for the wave function, we have

Ω′3
∣∣
T̂3=0

= 〈Ψ0|τ ′†3
(
Ĥ + [Ĥ, T̂1 + T̂2] + 1

2 [[ĤD, T̂1 + T̂2], T̂1 + T̂2]
)
|Ψ0〉, (5.50)

∆Edirect
(T) = 〈Ψ0|

(
[Ĥ, T̂3] + 1

2 [[Ĥ, T̂1 + T̂2], T̂3] + 1
2 [[Ĥ, T̂3], T̂1 + T̂2]

)
|Ψ0〉, (5.51)

t′†Ω′T = 〈Ψ0|
(
T̂ †1 + T̂ †2

)(
[Ĥ, T̂3] + 1

2 [[ĤD, T̂1 + T̂2], T̂3] + 1
2 [[ĤD, T̂3], T̂1 + T̂2]

)
|Ψ0〉.
(5.52)
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In case of the sequential ansatz from Eq. (5.41), these expressions read

Ω′3
∣∣
T̂3=0

= 〈Ψ0|τ ′†3
(
Ĥ + [Ĥ, T̂1 + T̂2] + [[ĤD, T̂1], T̂2]

+ 1
2 [[ĤD, T̂1], T̂1] + 1

2 [[ĤD, T̂2], T̂2]
)
|Ψ0〉, (5.53)

∆Edirect
(T) = 〈Ψ0|

(
[Ĥ, T̂3] + [[Ĥ, T̂1], T̂3] + 1

2 [[Ĥ, T̂2], T̂3] + 1
2 [[Ĥ, T̂3], T̂2]

)
|Ψ0〉, (5.54)

t′†Ω′T = 〈Ψ0|
(
T̂ †1 + T̂ †2

)(
[Ĥ, T̂3] + [[ĤD, T̂1], T̂3]

+ 1
2 [[ĤD, T̂2], T̂3] + 1

2 [[ĤD, T̂3], T̂2]
)
|Ψ0〉. (5.55)

The ic-MRCCSD(T) method used in this work involves two steps scaling like N7

with respect to the inactive orbital spaces. These steps occur in the evaluation of the
terms 〈Ψ0|τ ′†3 [Ĥ, T̂2]|Ψ0〉 and 〈Ψ0|T̂ †2 [Ĥ, T̂3]|Ψ0〉. In single-reference CCSD(T), one can
exploit Ω3 = 0 and insert the former term into the latter in order to avoid a second
N7 step. A similar simplification in ic-MRCCSD(T) requires additional approximations.
A first step is the neglect of the terms printed in blue in Eqs. (5.50) to (5.55). Due
to the sequential orthogonalization technique, this, in fact, is exact whenever η is set
small enough to include all nearly linearly dependent single and double excitations. A
further simplification results from treating T̂1 as second-order quantity. This makes no
difference for terms present in the single-reference limit, but leads to an exclusion of the
orange contributions from Eqs. (5.50) to (5.55). The green term is the last obstacle to a
straightforward simplification of the secondN7 step and its neglect allows a reformulation
according to

〈Ψ0|T̂ †2 [Ĥ, T̂3]|Ψ0〉 = −
∑

ρ

Aρρ(t
′
3,ρ)

2 + 〈Ψ0|[Ĥ, T̂ †2 T̂3]|Ψ0〉. (5.56)

This simplified version of ic-MRCCSD(T) will be denoted as ic-MRCCSD(T)simp.

5.6 Benchmark applications of ic-MRCC with perturbative triples

Unless otherwise noted, the results presented in this section rely on the same default
approximations as the ones from chap. 4, namely a truncation of the BCH expansion
after the double commutator and an elimination of redundant excitations by the sequen-
tial orthogonalization technique in conjunction with the threshold η = 10−6. Whether
a simultaneous exponential or the sequential ansatz from Eq. (5.41) is used will be indi-
vidually specified.

5.6.1 Applications to model systems

Figures 28, 29 and 30 compare the performance of various ic-MRCC methods with per-
turbative triples with that of ic-MRCCSD and ic-MRCCSDT for the model systems BeH2

(sec. 4.1.1), H2O (sec. 4.1.4) and N2 (sec. 4.1.5), respectively. In case of the BeH2 model,
both the simultaneous exponential eT̂1+T̂2+T̂3 (Fig. 28a) and the sequential exponential
eT̂1eT̂2+T̂3 (Fig. 28b) were used. A comparison of the energy curves for these two choices
reveals that the sequential ansatz offers a slightly improved description of the energy
surface in the region of maximum multireference character (see also Ref. [P5]). The rea-
son for this is the inclusion of up to fourfold commutators in H̃, defined in Eq. (5.42),

74



5.6. Benchmark applications of ic-MRCC with perturbative triples

0.0

0.5

1.0

1.5

2.0
E-
E F

C
I/
m
E h

0 1 2 3 4
z / a0

ic-MRCCSD
ic-MRCCSD(T)
ic-MRCCSDT-1
ic-MRCCSDT

(a) Simultaneous exponential ansatz.

0.0

0.5

1.0

1.5

2.0

E-
E F

C
I/
m
E h

0 1 2 3 4
z / a0

ic-MRCCSD (seq.)
ic-MRCCSD(T) (seq.)
ic-MRCC3 (seq.)
ic-MRCCSDT (seq.)

(b) Sequential ansatz.

Figure 28: Performance of ic-MRCC methods with triples for the BeH2 model system.

which takes into account higher powers of T̂1. A similar improvement can be obtained
within the simultaneous exponential ansatz by lifting the commutator approximation in
the eigenvalue equations (cf. Fig. 23b). The differences between the two ansätze are
negligible for the H2O and N2 model systems [P5], and the present discussion arbitrarily
employs the simultaneous ansatz for H2O and the sequential one in case of N2.

As shown in Figs. 28, 29a and 30a, the noniterative (T) correction is in excellent
agreement with the iterative methods ic-MRCCSDT-1 and ic-MRCC3, with maximum
deviations in the order of 0.1 mEh for BeH2 and H2O and around 0.25 mEh for N2. The
absolute errors of all triples models are much smaller than those of ic-MRCCSD. For
both BeH2 and H2O, perturbative inclusion of triple excitations also reduces the NPE
by more than a factor of three and recovers between 72% and 91% of the full triples
contribution. In the N2 dissociation, the perturbative triples models overestimate the
effect of triple excitations between R = 2.3 a0 and R = 3 a0. However, the irregularities
observed in this region mainly stem from the inclusion of small metric eigenvalues (cf.
Fig. 22b), as becomes obvious from a comparison with results for η = 10−4, shown in
Fig. 30b.

While triple excitations seem unable to cure anomalies due to small metric eigenvalues
near the equilibrium distance, they efficiently mitigate the drastic energy changes caused
by the exclusion of small metric eigenvalues when approaching the dissociation limit. The
rise in the ic-MRCCSD energy error observed when increasing the O–H bond length from
2.6Re to 3.8Re is reduced from 0.2 mEh to less than 0.04 mEh upon inclusion of triples.
In case of the energy change that occurs when stretching the N–N bond beyond 5 a0,
triple excitations yield a similar reduction from 0.6 mEh to 0.15 mEh (for η = 10−6).

Since the BeH2 system involves a CAS(2,2), all triple excitations beyond the triples
model {2} (defined in sec. 5.4.1) are exactly redundant and naturally excluded. A compi-
lation of the nonredundant excitation types for this example is found in Fig. 24 (diagrams
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Figure 29: Performance of ic-MRCC methods with triples (using a simultaneous exponential
ansatz) for the H2O model system.

drawn in black). The results for the systems H2O and N2 shown in Figs. 29a and 30a
are based on the model {3} and lead to similar conclusions as the higher model {4} [P3].

Figures 29b and 30b offer a comparison of the models {2}, {3} and {4} for ic-
MRCCSD(T). The close agreement between the models {3} and {4} confirms that ex-
citations with more than three active indices can be safely neglected. The difference
between these models is somewhat larger for N2 (0.15 mEh) than for H2O (0.03 mEh),
indicating that the importance of excitations with many active indices may increase with
the size of the active space. On the other hand, the deviations of the model {2} values
from those of {3} are significantly larger and suggest that one should not exclude excita-
tions of the types âvwauij and âwabuvi . Table 5 collects the mean absolute errors (MAEs) and
NPEs of the various ic-MRCCSD(T) methods. While both the MAEs and NPEs for H2O
and the MAEs for N2 exhibit systematic improvements along the hierarchy ic-MRCCSD

Table 5: Mean average error (MAE) and nonparallelity error (NPE) of ic-MRCCSD and various
ic-MRCCSD(T) models for the H2O and N2 model systems, given in mEh.

H2O (η = 10−6) N2 (η = 10−4)

Method MAE NPE MAE NPE

ic-MRCCSD 0.88 0.69 1.50 0.45
ic-MRCCSD(T){2} 0.32 0.35 0.65 0.29
ic-MRCCSD(T){3} 0.22 0.20 0.32 0.41
ic-MRCCSD(T){4} 0.22 0.19 0.27 0.44
ic-MRCCSD(T){3}it 0.23 0.19 0.32 0.42
ic-MRCCSD(T){3}simp 0.24 0.20 0.41 0.13
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Figure 30: Performance of ic-MRCC methods with triples (using a sequential exponential ansatz)
for the N2 model system.

and ic-MRCCSD(T){n} with n = 2, 3, 4, the {2} model achieves the lowest NPE for N2

within this hierarchy.
Remarkably, the noniterative (T) correction as enabled by Eq. (5.47) is in excellent

agreement with the full-blown iterative variant ic-MRCCSD(T)it that also takes into
account the off-diagonal elements of A.23 Further simplification of the ic-MRCCSD(T)
method by omitting the blue and orange terms in Eqs. (5.53) to (5.55) was also found to
yield only negligible changes (not shown), but additional neglect of the double commu-
tator term in Eq. (5.53) (printed in green) has significant impact on the energy curves.
Interestingly, this ic-MRCCSD(T){3}simp method yields the smallest NPE for the N2

model system among the studied methods. To which extent this may be fortuitous is
unclear at present. A possible explanation is that the green double commutator term
in Eq. (5.53) facilitates an unphysical effect of doubles amplitudes associated with small
metric eigenvalues on the triples amplitudes (cf. the discussion in sec. 4.3). This renders
ic-MRCCSD(T)simp a promising candidate for future studies.

5.6.2 Structure and vibrational frequencies of ozone

Let us now turn to the ozone molecule for a first comparison of ic-MRCC results with
experimental values. This example is scientifically relevant, as the detailed shape of the
potential energy surface of O3 has pronounced influence on the kinetics of the ozone
formation and is still subject to active research [200–202]. The equilibrium structure and
harmonic vibrational frequencies of O3 have often served as a litmus test for multirefer-

23The number of iterations needed in the solution of the equations for T̂3 in ic-MRCCSD(T)it is relatively
small (between 5 and 11 iterations in the present examples), which provides further evidence for the
diagonal dominance of A.
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ence approaches [91,189,203–206], ever since there are accurate experimental benchmarks
derived from high-resolution infrared [207] and ro-vibrational spectra [208], respectively.
Accurate and reliable theoretical predictions of these properties call for a full-fledged and
efficient MRCC method, as the computed values, in particular those for the frequencies
of the stretching modes, are very sensitive to the treatment of both static and dynamic
correlation and to the basis set used.

Adhering to the paradigm that dynamic correlation should be taken care of by the
cluster amplitudes, the natural choice for the active space is the minimal active space
consisting of two electrons in the orbitals 1a2 and 2b1, as suggested by an analysis
of UHF natural orbital occupation numbers [63]. The following ic-MRCC results [P1,
P3] are therefore based on a CAS(2,2). While an efficient calculation of equilibrium
structures and vibrational frequencies generally requires an implementation of analytic
energy gradients (e.g., Ref. [209]), a numerical differentiation is still feasible for the C2v-
symmetric ozone molecule, as there are only two total symmetric vibrational modes and
one asymmetric mode. Hence, the numerical structure optimizations carried out for the
ic-MRCC methods involved four calculations per iteration in a quasi-Newton–Raphson
procedure (at a step size of 2 · 10−6 a0). The computation of the frequencies ω1(a1) and
ω2(a1) required a diagonalization of the Hessian matrix obtained from nine single-point
calculations (at a step size of 10−3 a0). The evaluation of the asymmetric stretching
frequency ω3(b2) needed only one additional calculation in Cs symmetry after having
analytically eliminated the rotational degree of freedom (see, e.g., Ref. [210]).

Figure 31 shows the basis set convergence of the computed properties of O3 for ic-
MRCC methods with and without triple excitations in comparison to experimental data
[207,208] and the results from selected single-reference coupled-cluster methods [91,211]
and Mk-MRCC theory [91, 189]. All results are based on a frozen core that comprises
the three O 1s orbitals and the cc-pVXZ basis sets, abbreviated by XZ. In case of the
pentuple-zeta basis set, the ic-MRCC data as well as the vibrational frequencies from
CCSD(T) rely on the simplified basis set 5Z’, a variant of 5Z without h functions.24

Except for the bond angle θe, all of the studied properties exhibit significant contribu-
tions from triple excitations at the ic-MRCC level of theory. The ic-MRCCSDT results
for the DZ and TZ basis sets allow a direct assessment of the perturbative triples models,
revealing that the iterative models ic-MRCCSDT-1 and ic-MRCC3 slightly overestimate
the effect of triples by up to 19% whereas ic-MRCCSD(T) recovers between 62% and
93% of the full triples contribution. This is in contrast to the good agreement between
iterative and noniterative methods for the systems discussed in sec. 5.6.1. The likely
reason is a coupling of triples amplitudes to doubles amplitudes, since the compliance
of ic-MRCCSD(T) with ic-MRCCSD(T)it (see Tab. A15) rules out a significant coupling
among triple excitations through the matrix A. Considering the remarkable agreement
between ic-MRCCSDT-1 and ic-MRCC3 (which is the only method using a sequential
ansatz in the present section) on the other hand, higher powers of single excitations are
negligible.

In connection with large basis sets, ic-MRCCSD(T) yields an excellent equilibrium
structure, outperforming both CCSD(T) and Mk-MRCCSD(T). It also leads to more
accurate vibrational frequencies than Mk-MRCCSD(T), although the absolute deviations

24In the ic-MRCC calculations, this is due to current technical limitations: While the integral code of
Gamess is restricted to g functions, the Dalton interface to GeCCo is limited to 255 orbitals.
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Figure 31: Energy, structure and harmonic vibrational frequencies of ozone.

79



5 PERTURBATIVE TRIPLES IN IC-MRCC THEORY

Table 6: Comparison of the experimental equilibrium structure (in Å and degree) and harmonic
vibrational frequencies (in cm−1) of ozone with the best theoretical estimate derived from ic-
MRCC theory (published in Ref. [P3]).

re θe ω1(a1) ω2(a1) ω3(b2)

ic-MRCCSDT/cc-pVTZ 1.2819 116.56 1118.0 703.0 1069.3
Basis set correctiona −0.0072 +0.21 +15.5 +8.9 +22.3
Core-correlation effectb −0.0011 0.00 +1.2 +1.5 0.0
Best theoretical estimate 1.2737 116.77 1135 713 1092
Experimentc 1.2728 116.75 1133 715 1087

a Difference between ic-MRCCSD(T)/cc-pVTZ and ic-MRCCSD(T)/cc-pV5Z’.
b Difference between ic-MRCC3/cc-pVDZ using frozen core approximation and ic-MRCC3/cc-pCVDZ
(see Ref. [212] for the basis set) with all electrons correlated.

c Equilibrium structure from Ref. [207] and harmonic vibrational frequencies from Ref. [208].

from experiment for both stretching frequencies at the 5Z’ level are still rather large
(19 cm−1 for ω1 and 43 cm−1 for ω3). However, especially the asymmetric stretching
frequency ω3 is well known to be even more sensitive to the treatment of higher excitations
in SRCC theory, as the results from the methods CCSDT-n (with n = 1a, 1b, 1c, 2, 3),
CC3, CCSD(T) and CCSDT scatter over a range of several hundred wavenumbers [211].
It is also a showcase for the lack of orbital invariance in Mk-MRCC theory, where it varies
dramatically with a rotation of the active orbitals 2a′′ and 3a′′ (in Cs symmetry) [91].
The anomalous basis set convergence of ω3 at the Mk-MRCCSD(T) level is likely a
consequence of this lack of orbital invariance.

The present data suggests that a reliable prediction of the vibrational frequencies
of O3 with ic-MRCC theory demands an iterative and preferably full account of triple
excitations. Table 6 compiles best theoretical estimates, obtained from adding correc-
tions for basis set and core-correlation effects to the ic-MRCCSDT/cc-pVTZ results and
demonstrates that these estimates are in very good agreement with the experimental
values.

5.6.3 Singlet-triplet splitting of benzynes

The diradicals ortho-, meta- and para-benzyne, illustrated in Fig. 32, are the parent
systems of aryne chemistry [18, 213–215]. Their singlet-triplet splittings have been the
subject of various experimental [216,217] and theoretical studies [60,91,185,218–222]. As
the overlap between the essentially non-bonding orbitals at the radicalic centers shrinks
from o- to p-benzyne, the multireference character increases, rendering particularly p-
benzyne a valuable test system for multireference methods.

The ic-MRCC results for the singlet-triplet splittings [P3] are collected in Tab. 7
and stem from single-point calculations, using structures optimized at the CCSD(T)/cc-
pVDZ and Mk-MRCCSD/cc-pVTZ levels of theory [P5, 91] (see the table for details)
and keeping the six lowest CASSCF orbitals of C 1s type frozen. The data for the ic-
MRCCSD and ic-MRCCSD(T) methods in connection with a CAS(2,2) and the basis sets
cc-pVDZ and cc-pVTZ shows that the basis set error decreases from o- to p-benzyne while
the effect of triple excitations increases. When approximately corrected for differences
in the zero-point vibrational energies (ZPVE) between the singlet and triplet states,
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Figure 32: Structure of o-, m- and p-benzyne.

the ic-MRCCSD(T)/cc-pVTZ values for o- and m-benzyne already agree well with the
experimental numbers within 1 kcal/mol and are likely to further improve with increased
basis set size.

Whereas the perturbative triples correction is essential for an accurate singlet-triplet
splitting of m-benzyne, in the case of p-benzyne it leads to an overshooting of the experi-
mental value by about 1.4 kcal/mol. In order to judge whether an insufficient correlation
treatment is the reason for this, let us analyze the (T) correction in greater detail. Ta-
ble 8 lists the individual contributions of the various types of triple excitations to the (T)
correction for the absolute energy of singlet p-benzyne and the singlet-triplet splitting.

Table 7: Singlet-triplet splittings of o-, m- and p-benzyne in kcal/mol (published in Ref. [P3]).

orthoa metaa parab

CAS(2,2) CAS(2,2) CAS(2,2) CAS(2,2) CAS(8,8)
Method Basis set M trip

s = 0 M trip
s = 0 M trip

s = 0 M trip
s = 1 M trip

s = 0

ic-MRCCSD cc-pVDZ 33.685 17.368 3.715 3.729 4.652
cc-pVTZ 36.615 18.617 3.727
cc-pVQZc 3.742

ic-MRCCSD(T) cc-pVDZ 33.832 18.274 4.763 4.776 4.772d
cc-pVTZ 36.842 19.642 4.878

ic-MRCCSDTc cc-pVDZ 4.935
ZPVE corr.e −0.3 +0.7 +0.3
Experimentf 37.5±0.3 21.0±0.3 3.8±0.4

a Using RHF-CCSD(T)/cc-pVDZ structures for the singlet states and UHF-CCSD(T)/cc-pVDZ struc-
tures for the triplet states from Ref. [91].

b Using Mk-MRCCSD/cc-pVTZ structures for the singlet and triplet states from Ref. [P5].
c Published in Ref. [P5].
d Based on the triples model {3}. The values for {2} and {4} are 4.697 and 4.949, respectively.
e Zero-point vibrational energy (ZPVE) correction at CCSD(T)/cc-pVDZ level from Ref. [91].
f From Ref. [217].
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Table 8: Individual (T) energy corrections from the various types of triple excitations for the
singlet state of p-benzyne in kcal/mol, using the cc-pVTZ basis set. The contributions to the
singlet-triplet splitting are given in parentheses.

nh np = 1 np = 2 np = 3

1 — — −0.172 (+0.128)
2 — −2.294 (+0.994) −4.965 (−0.055)
3 −0.041 (+0.032) −2.195 (+0.244) −23.168 (−0.193)

The largest contributions to the total energies come from the excitation types âabcuij and
âabcijk , but they essentially cancel out when taking the difference between the energies of
the singlet and triplet state. The dominant term in the (T) correction is instead due to
excitations of the type âvabuij , which we may interprete as an external double excitation
coupled to an excitation within the active space. The importance of this excitation for
the singlet-triplet splitting is physically reasonable, since âvabuij effectively provides indi-
vidual double excitations for different reference functions and can therefore probe the
difference between the two states. In line with the expected trend that singlet states
have a larger correlation energy than triplet states [2], the resulting triples correction
increases the singlet-triplet splitting. It is also in good agreement with the full triples
contribution, as a comparison between ic-MRCCSD(T) and ic-MRCCSDT reveals for the
cc-pVDZ basis set.

Another critical issue is the choice of the active space. Expanding the active space
to a CAS(8,8) by inclusion of the π system leads to an ic-MRCCSD result close to
the ic-MRCCSD(T) value for a CAS(2,2). This demonstrates that ic-MRCC theory in
principle offers two strategies for achieving higher accuracy: An improvement of the
coupled-cluster model or an increase of the active space’s size. Remarkably, the effect
of triple excitations is much smaller for the CAS(8,8) than for the CAS(2,2). In fact,
both active spaces give about the same ic-MRCCSD(T) results, indicating that the ic-
MRCCSD(T) method is accurate enough to work well in connection with minimal active
spaces.

All of these findings support the high quality of the ic-MRCCSD(T) results and
suggest that the correlation treatment is not the source for their deviation from the
experimental singlet-triplet splitting of p-benzyne. The insensitivity with respect to basis
set sizes between cc-pVDZ and cc-pVQZ also rules out a large basis set error. Core-
correlation effects are also sufficiently small (+0.037 kcal/mol at the ic-MRCCSD/cc-
pCVDZ level, see Ref. [212] for the basis set). If we assume that the use of the Mk-
MRCCSD/cc-pVTZ equilibrium structures is unproblematic, the most likely source of
error in the theoretical value is the correction from the difference of zero-point vibrational
energies (cf. Refs. [218,223,224]). A computation of the structure and ZPVE correction
using ic-MRCC theory could resolve this issue, but this requires the implementation of
analytic energy gradients.

However, the problem might also lie in the experimentally derived value [217]. The
singlet-triplet splitting appears in the UV photoelectron spectrum of the p-benzyne anion
as a difference between the 0-0 transitions to the singlet and triplet states of the neutral
molecule. Unfortunately, the origin of the triplet band cannot be clearly distinguished
from the vibrational peaks of the singlet band. Therefore one cannot rule out a mis-
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assignment of the triplet origin by one quantum of vibrational energy. This gives rise
to the alternative values 2.1 kcal/mol and 5.5 kcal/mol for the singlet-triplet splitting
of p-benzyne, the latter being in closer agreement with the current best estimate from
ic-MRCC theory (5.2 kcal/mol).

Regarding the present application of ic-MRCC theory to triplet states, a few remarks
on the spin purity of the ic-MRCC wave function are in place. The present spin orbital
formalism is not spin-adapted and is found to give spin contamination in the wave func-
tion of nonsinglets. It also yields different energies for the various components of a spin
multiplet. An example for this is the slight deviation between the energies of the triplet
components with Ms = 0 and Ms = 1 for p-benzyne (denoted by M trip

s in Tab. 7). In or-
der to evaluate the spin contamination in the wave function, one could compute the spin
expectation value 〈Ψ0|(1 + Λ̂)e−T̂ Ŝ2eT̂ |Ψ0〉 [225]. Considering that it is straightforward
to enforce the correct spin symmetry for the reference function (see sec. A.1.3), we can
omit the trivial term 〈Ψ0|e−T̂ Ŝ2eT̂ |Ψ0〉 = 〈Ψ0|Ŝ2eT̂ |Ψ0〉 = S(S + 1). Replacement of Λ
by T̂ † for convenience then leads to the following measure for the spin contamination:

∆〈Ŝ2〉a = 〈Ψ0|T̂ †e−T̂ Ŝ2eT̂ |Ψ0〉. (5.57)

Alternatively, we could simply look at the deviation of the spin expectation value of the
excited function T̂ |Ψ0〉 from the expected result:

∆〈Ŝ2〉b =
〈Ψ0|T̂ †Ŝ2T̂ |Ψ0〉
〈Ψ0|T̂ †T̂ |Ψ0〉

− 〈Ψ0|Ŝ2|Ψ0〉 =
〈Ψ0|T̂ †[Ŝ2, T̂ ]|Ψ0〉
〈Ψ0|T̂ †T̂ |Ψ0〉

. (5.58)

In a rigorously spin-adapted theory based on a cluster operator expressed in terms of the
generators of the unitary group [34,94,106,226–229], Eqp =

∑
pq(ms(p)+ms(q))2âqp (where

ms(p) is the ms quantum number of spin orbital ϕp), the cluster operator commutes with
Ŝ2 such that both ∆〈Ŝ2〉a and ∆〈Ŝ2〉b vanish. While the degree of spin contamination in
the ic-MRCCSD/cc-pVDZ wave function for the triplet state of p-benzyne with Ms = 0
is negligible (∆〈Ŝ2〉a = 1.5 · 10−5, ∆〈Ŝ2〉b = 8.1 · 10−6), the Ms = 1 component exhibits
somewhat larger spin contamination (∆〈Ŝ2〉a = 9.2 · 10−4, ∆〈Ŝ2〉b = 3.2 · 10−3).25

It is worth noting that ic-MRCC calculations on the discussed benzyne systems are
computationally feasible, despite a large number of terms in the ic-MRCC equations.
For instance, on a single 3.0 GHz Intel R© Xeon processor (and using 3.7 GB of virtual
memory), the ic-MRCCSD/cc-pVTZ calculation on the singlet state of p-benzyne took
about 8 h, which is only a factor of 3.3 more than the duration of a SRCCSD calculation
performed with GeCCo under the same conditions. The (T) step required about 4 h
(using 12.7 GB of virtual memory).26 There is still room for improving the program’s
efficiency by factoring out suitable intermediates from the ic-MRCC equations, as the
present work only employs intermediates of the types discussed in sec. 3.1.3.

25Generally, I have not observed any spin contamination in ic-MRCC wave functions for singlets (inde-
pendent of the active space size).

26These timings should be taken with some caution, as they are sensitive to the amount of allocated
virtual memory and to other processes running simultaneously on the same node. A more careful
investigation of computational timings is certainly desirable, once more effort has been spent on making
the implementation more efficient.
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5.6.4 Structure and vibrational frequencies of Ni2O2

First-row transition metal compounds are challenging systems for multireference meth-
ods, as they often show strong static correlation due to partially filled d shells [19–21,230].
The binuclear transition metal oxide Ni2O2 has a rhombic structure of D2h symmetry
and an open-shell 1Ag ground state [231]. Hübner and Himmel [232] have studied it
with MRCI+Q in connection with a basis set of quadruple zeta quality and a large ac-
tive space of 28 electrons in 16 orbitals (O 2p, Ni 3d), providing valuable benchmarks
for several properties of Ni2O2. The ANO-RCC-VQZ basis set used in Ref. [232] is a
subset of the relativistic atomic natural orbital basis set by Roos et al. [233, 234] and
consists of a [7s,6p,4d,3f ,2g] contraction on Ni and a [5s,4p,3d,2f ] contraction on O. This
basis set is also feasible for ic-MRCCSD calculations, but the presented applications of
ic-MRCCSD(T) employ the smaller ANO-RCC-VTZ basis set (with a [6s,5p,3d,2f ] con-
traction on Ni and a [4s,3p,2d] contraction on O) in order to keep the virtual memory
requirements manageable. Like in Ref. [232], scalar relativistic effects are included by
a second-order Douglas–Kroll–Hess transformation of the Hamiltonian [235, 236]. The
frozen core in the correlation treatment contains the Ni 1s, 2s, 2p, 3s and O 1s orbitals.
This choice differs from the one in Ref. [232], in which the Ni 3p orbitals were also frozen.

The active space in the ic-MRCC calculations is a CAS(4,4) comprising the orbitals
1au, 4b2g, 2b1g and 6b3u (depicted in Fig. 33). For these orbitals, UHF/ANO-RCC-VTZ
yields occupation numbers of 1.304, 0.869, 1.131 and 0.696, respectively, whereas the
remaining natural orbitals have occupancies below 0.002 or above 1.998, indicating that
a CAS(4,4) is the minimal active space. The CASSCF calculations with 28 electrons in
18 orbitals (O 2p, Ni 3d, 4s) from Ref. [232] support this, showing occupation numbers
beyond 0.05 and 0.95 for all natural orbitals except those four.

Table 9 compares the equilibrium structure and the symmetric harmonic vibra-
tional frequencies of Ni2O2 obtained from MRCI+Q/ANO-RCC-VQZ with the current
results from ic-MRCCSD/ANO-RCC-VQZ and those from both ic-MRCCSD and ic-
MRCCSD(T){2} in connection with the ANO-RCC-VTZ basis set and the sequential
ansatz from Eq. (5.41). Energy gradients in the structure optimizations were evaluated
by numerical differentiation, and the harmonic frequencies were determined by diagonal-
izing the mass-weighed Hessian matrix, following a computation of the second derivatives
in a basis of symmetry-adapted coordinates. The ic-MRCCSD values for the minimal ac-
tive space differ from the MRCI+Q/CAS(28,16) results by up to 0.03 Å in the structural
parameters and 22 cm−1 in the vibrational frequencies. The basis set error for ANO-

Figure 33: Structure of Ni2O2 (from ic-MRCCSD(T){2}/ANO-RCC-VTZ) and contour plots of
the active orbitals (contour value=0.06).
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Table 9: Equilibrium structure (in Å and degrees) and harmonic vibrational frequencies for the
symmetric modes (in cm−1) of the 1Ag ground state of 58Ni216O2 (published in Ref. [P3]). The
basis sets ANO-RCC-VXZ are abbreviated by XZ.

Method Basis CAS RNi–Ni RO–O ]Ni–O–Ni ω1(ag) ω2(ag)

MRCI+Qa QZ (28,16) 2.289 2.750 79.6 706 342
ic-MRCCSD QZ (4,4) 2.26 2.73 79 728 358
ic-MRCCSD (seq.) TZ (4,4) 2.269 2.733 79.4 725 350
ic-MRCCSD(T){2} (seq.) TZ (4,4) 2.278 2.751 79.3 703 337
Experiment 79.3±2b —c —c

a From Ref. [232], based on a larger frozen core including also the Ni 3p orbitals.
b From Ref. [231], estimated from the isotopic effects on the vibrational frequencies of the b3g and b1u

modes for 58Ni216O18O and 60Ni216O18O (measured in a Ne matrix at 3 K).
c Not experimentally observed (IR-inactive vibrational modes).

Table 10: Vibrational frequency ω1 (in cm−1) for selected isotopologues of Ni2O2 (published
in Ref. [P3]). The harmonic frequencies obtained at the ic-MRCC/ANO-RCC-VTZ level are
compared to fundamental frequencies from experiment.

Isotopologue ic-MRCCSD (seq.) ic-MRCCSD(T){2} (seq.) Experimenta

58Ni216O2 725.3 703.1 —
58Ni216O18O 706.6 684.9 685.16
58Ni60Ni16O18O 706.1 684.4 684.50
60Ni216O18O 705.6 683.9 683.88
58Ni218O2 687.5 666.2 —

a Fundamental frequencies from Ref. [231] (measured in a Ne matrix at 3 K).

RCC-VTZ is rather small compared to these differences, as switching to this basis set
changes the Ni–Ni and O–O distances by less than 0.01 Å and the vibrational frequencies
by at most 8 cm−1. The perturbative triples correction brings the ic-MRCC results very
close to the MRCI+Q benchmark, with interatomic distances agreeing within 0.01 Å and
vibrational frequencies within 5 cm−1. This very good agreement emphasizes the power
of ic-MRCCSD(T) to provide high accuracy in combination with minimal active spaces.

While a rough estimate for the Ni–O–Ni angle is available from an experimental study
[231] and is in accordance with the theoretical results, the symmetric vibrational modes of
the most common isotopologue 58Ni216O2 induce no change in the dipole moment and are
not accessible by IR spectroscopy. However, they are observable for those isotopologues
of Ni2O2 that do not belong to the point group D2h. For the frequency ω1 of various
isotopologues, Table 10 shows a comparison of the computed harmonic frequency to the
fundamental frequency measured in a neon matrix at 3 K [231]. For ω2, no experimental
data is available. There is a stunning concordance of the ic-MRCCSD(T){2} results with
the experimental values, showing deviations below 0.3 cm−1. However, we may expect
this to be caused by fortuitous error compensation of various neglected contributions, e.g.,
those from anharmonicity, matrix effects, larger basis sets, core-correlation or spin-orbit
coupling.
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5.6.5 Ring-opening of the azirine compound C6H7NO

In order to demonstrate the applicability of the ic-MRCCSD(T) method to larger systems
than the ones in the previous sections, let us consider the ring-opening reaction of the
bicyclic azirine compound C6H7NO depicted in Fig. 34. Banert et al. [237] attempted
to synthesize this azirine compound by photolysis of 3-azido-2-methyl-cyclopent-2-en-1-
one, but only found evidence for the formation of the vinyl nitrene shown on the right
of Fig. 34. Theoretical calculations using CASSCF and CCSD(T) provided a possible
explanation for this, as the triplet state of the vinyl nitrene was found to be energetically
favored over the singlet azirine. The calculations by Banert et al. also indicated small
activation energies for the corresponding ring-opening process.

The current ic-MRCC results [P3], collected in Tab. 11, are based on single-point
calculations at the structures provided by Ref. [237]. Those are optimized with CASSCF,
using a CAS(6,6) and the split-valence double-zeta basis set 6-31G∗, also known as 6-
31G(d), which has additional d-type correlation functions on second-row atoms (C,N,O)
[238, 239]. All of the six active orbitals are mainly composed of basis functions that are
centered at the atoms of the three-membered azirine ring. The same basis set and active
space was employed in the present ic-MRCC calculations, with the only difference that
five spherical d functions were used per atom instead of six Cartesian components.

The ic-MRCCSD(T){3} results confirm the observations of Banert et al. and the rel-
ative energies agree well with the CCSD(T) values from Ref. [237] (within 0.9 kcal/mol),
except for the transition state of the singlet. However, a meaningful comparison is hin-
dered by the fact that CCSD(T) was applied to structures obtained with B3LYP [240]
and additional diffuse functions for non-hydrogen atoms in the basis set (6-31+G∗). We
should also keep in mind that one would have to optimize the structures at the ic-MRCC
level of theory in order to tap the method’s full potential. Although the perturbative
triples correction has a large effect on the absolute energies (about −20 kcal/mol), the
relative energies from ic-MRCCSD and ic-MRCCSD(T){3} differ by less than 1 kcal/mol.
In particular the results for the simplified variant ic-MRCCSD(T){3}simp are promising
as they agree with the regular ic-MRCCSD(T){3} values within 0.15 kcal/mol for both
absolute and relative energies.

The ic-MRCC calculations on C6H7NO were carried out on single Intel R© Xeon and
i7 processors with CPU frequencies ranging from 2.2 GHz to 3.3 GHz. Each ic-MRCCSD
calculation employed 7 GB of virtual memory and took between 2.3 d and 10 d, mainly

Figure 34: Ring-opening reaction of C6H7NO. Reproduced with permission from Ref. [P3]. Copy-
right 2012, American Institute of Physics.
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Table 11: Reaction energies for the ring-opening of the bicyclic azirine compound C6H7NO
through a transition state (TS) to a vinyl nitrene, for both the singlet and the triplet state.
Absolute energies for the singlet azirine are given in Eh, all other energies are given relative to
these values in kcal/mol.

Method CASSCFa CCSD(T)b ic-MRCCSDa ic-MRCCSD(T){3}
Basis set 6-31G∗ 6-31+G∗ 6-31G∗ 6-31G∗
Structurec CASSCF B3LYP CASSCF CASSCF

regulara simp

singlet azirine -360.59242 -361.64114 -361.67342 -361.67319
singlet TS 6.62 12.04 7.58 7.65 7.57
singlet nitrene 3.70 5.06 5.24 5.26 5.23
triplet azirine 59.49 44.78 46.28 45.68 45.73
triplet TS 69.52 56.39 56.92 56.61 56.50
triplet nitrene -3.63 -6.02 -6.98 -6.03 -6.17

a Published in Ref. [P3].
b From Ref. [237].
c Structures optimized with CASSCF(6,6)/6-31G∗ are from Ref. [237] and are based on Cartesian
Gaussians. In case of the singlet transition state, the active space used in Ref. [237] seems to have
accidentally contained one C–O π orbital. The structure optimization was therefore revised with an
active space located at the C–C–N heterocycle, which also gave a lower CASSCF energy.

depending on the number of iterations needed in the solution of the ic-MRCC equations.
The number of iterations required for converging the residual norm below ε = 10−8

varied from 32 (for the triplet nitrene) to 88 (for the singlet nitrene), stressing the need for
further improvements in the implemented solving algorithm (see app. A.1.4 for details). A
single iteration typically took 2 h, which is about a factor of 40 longer than an iteration in
a single-reference CCSD calculation under comparable conditions. Although this seems
large, let us contrast it with the fact that MRCC methods based on the Jeziorski–
Monkhorst ansatz multiply the timings of SRCC by the number of reference determinants,
i.e., by a much larger factor of 400 in the current case. The rate determining step in
each iteration was the evaluation of the ic-MRCC residual, Eq. (3.15). The solution of
the eigenvalue equation, Eq. (3.5), which is performed in each iteration, took only about
4 min. The (T) step used 24 GB of virtual memory and required about 21 h on average.
The neglect of the colored terms in Eqs. (5.50) to (5.52) reduced this duration to 9 h in an
ic-MRCCSD(T){3}simp run.27 These computational timings emphasize that especially
the (T) correction is an efficient way to obtain highly accurate ic-MRCC results. Future
efforts to speed up the ic-MRCC calculations have to focus on improvements in the
solution of the ic-MRCCSD equations.

27Note that the reformulation proposed in Eq. (5.56) is not implemented yet.
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6 Cumulant approximations in ic-MRCC theory

6.1 Motivation

According to the analysis from sec. 3.1.3, the computational scaling of the ic-MRCC
method is polynomial with respect to the size of the active space, except for the eval-
uation of reduced density matrices and the relaxation of the reference function. As
ic-MRCCSD truncated at the double commutator level involves reduced density matri-
ces of the reference function up to rank five [see Eq. (3.14)], the evaluation of γ5 becomes
the rate determining step for very large active spaces (cf. Fig. 9).

Because the γn are not extensive quantities, a simple neglect of high-rank density
matrices ruins the size-extensivity of ic-MRCC theory and is therefore not an option. A
neglect of high-rank cumulant tensors, on the other hand, offers a hierarchy of rigorously
size-extensive approximations with a reduced scaling with respect to the number of active
orbitals.

Approximations based on neglecting cumulants beyond λ2 or λ3 are quite common
in quantum chemistry. They form the basis of methods using the contracted Schrödinger
equation [241–244] or the related irreducible Brillouin conditions and irreducible con-
tracted Schrödinger equations [245–248] and belong to the defining approximations of
canonical transformation theory [41]. The extensive nature of cumulants has also mo-
tivated their use as central quantities of interest in density cumulant functional the-
ory [249,250].

6.2 Meaning of density cumulants

Cumulants are measures for statistical correlation. Given a set of random variables
and a corresponding probability distribution, they can be derived through a cumulant
generating function, the logarithm of the moment generating function [251–253]. The
elements of the tensors λn are n-body cumulants in this statistical sense [30, 111] and
they may be defined through a moment generating function in which the elements of γn
are the moments [53,54,254–256].

A concrete interpretation of the cumulants is possible if we identify the density oper-
ator ρ̂ = |Ψ〉〈Ψ| with the underlying multivariate probability distribution [257, 258] and
the occupation numbers of the spin orbitals with the random variables [P2]. The diag-
onal elements of γn are then readily interpreted as joint probabilities for finding n spin
orbitals occupied, and the corresponding diagonal elements from λn are the covariances
of the orbital occupation numbers [57]. For a generalization of this interpretation to the
off-diagonal elements of γn and λn, the reader is referred to Ref. [P2].

6.3 Formulation of cumulant approximations

The most straightforward way to realize cumulant approximations in the current formu-
lation of ic-MRCC theory is to expand the reduced density matrices that appear in the
residual expression in terms of cumulants and then neglect cumulants beyond a maxi-
mum rank nmax. In a general form, the relations between density matrices and cumulants
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read [P2]

γn =
∑

Pn
j=1 kj ·j=n

1∏n
j=1 kj !

n⊗

j=1

Aλ
⊗Akj
j , (6.1)

where the superscripted⊗A denotes powers of the modified wedge product from Eq. (3.55),
e.g., λ⊗A3

j = λj⊗Aλj⊗Aλj . Up to rank five, these expressions are

γ1 = λ1, (6.2)

γ2 = λ2 + 1
2λ⊗A2

1 , (6.3)

γ3 = λ3 + λ2⊗Aλ1 + 1
6λ⊗A3

1 , (6.4)

γ4 = λ4 + λ3⊗Aλ1 + 1
2λ⊗A2

2 + 1
2λ2⊗Aλ⊗A2

1 + 1
24λ⊗A4

1 , (6.5)

γ5 = λ5 + λ4⊗Aλ1 + λ3⊗Aλ2 + 1
2λ3⊗Aλ⊗A2

1

+ 1
2λ⊗A2

2 ⊗Aλ1 + 1
6λ2⊗Aλ⊗A3

1 + 1
120λ⊗A5

1 . (6.6)

A reduction of the computational scaling requires the insertion of the approximated
expressions for γk with k > nmax into the ic-MRCC residual equation. However, this
strategy leads to a dramatic increase in the number of terms, since for a given diagram,
one has to consider all topologically unique possibilities for assigning indices from different
cumulant tensors to the distinct indices of the original density matrix.

The number of additional terms can be significantly reduced by a compact factoriza-
tion of the approximated expressions for the γk. In a first step, we expand the remaining
cumulant tensors again in terms of reduced density matrices, which is equivalent to taking
the following relations as a starting point:

γ2 = λ2 + 1
2γ⊗A2

1 , (6.7)

γ3 = λ3 + γ2⊗Aγ1 − 1
3γ⊗A3

1 , (6.8)

γ4 = λ4 + γ3⊗Aγ1 + 1
2γ⊗A2

2 − γ2⊗Aγ⊗A2
1 + 1

4γ⊗A4
1 , (6.9)

γ5 = λ5 + γ4⊗Aγ1 + γ3⊗Aγ2 − γ3⊗Aγ⊗A2
1

− γ⊗A2
2 ⊗Aγ1 + γ2⊗Aγ⊗A3

1 − 1
5γ⊗A5

1 . (6.10)

After neglecting the λk with k > nmax, the expressions for γk can be conveniently inserted
into the relations for the higher ranks. This already results in simplifications for γk with
k > nmax + 1 due to the cancellation of terms. Taking nmax = 3 as an example, insertion
of the expression for γ4 into γ5 leads to zero prefactors for both γ3⊗Aγ⊗A2

1 and γ2⊗Aγ⊗A3
1 ,

leaving only

γ5
nmax=3≈ γ3⊗Aγ2 − 1

2γ⊗A2
2 ⊗Aγ1 + 1

20γ⊗A5
1 . (6.11)

In a second step, we factorize the resulting expressions by introducing appropriate
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intermediates. The final expressions used in the present work are

γ3 ≈ γ2⊗Aγ1 − 1
3γ⊗A3

1 =
(
γ2 − 1

3γ⊗A2
1

)
⊗Aγ1, (6.12)

γ4 ≈ 1
2γ⊗A2

2 − 1
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1 = 1
2

(
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6
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1

)
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(
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6
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1

)
, (6.13)

γ5 ≈ 1
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for nmax = 2,

γ4 ≈ γ3⊗Aγ1 + 1
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γ5 ≈ γ3⊗Aγ2 − 1
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for nmax = 3, and

γ5 ≈ γ4⊗Aγ1 + γ3⊗Aγ2 − γ3⊗Aγ⊗A2
1 − γ⊗A2

2 ⊗Aγ1 + γ2⊗Aγ⊗A3
1 − 1
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1
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(
γ2 − γ⊗A2

1

)
(6.17)

for nmax = 4.
The described approximations provide a systematic reduction of the computational

scaling with respect to the active space at a moderate increase of the number of terms
in the residual expression. While the current formalism allows the numerical assessment
of cumulant approximations in ic-MRCC theory and pilot applications to systems with
large active spaces, a truly efficient use of cumulant approximations might require a fully
GNO-based approach. This is because the evaluation of the GNO-based residual with
the extended Wick theorem yields expressions in terms of cumulants from the start, such
that a neglect of cumulant tensors goes along with a simplification of the equations.

6.4 Impact of cumulant approximations in ic-MRCC theory

Before studying the impact of cumulant approximations in ic-MRCC theory, it is worth
investigating the magnitude of the cumulant tensors for CASSCF wave functions. A de-
tailed analysis for a variety of systems was published in Ref. [P2]. The current discussion
will be limited to the H2O and N2 model systems described in secs. 4.1.4 and 4.1.5. The
cumulant norm

||λn|| =
∑

u1<···<un
v1<···<vn

(
λv1···vnu1···un

)2 (6.18)

is an orbital invariant quantity [P2] and serves as a convenient measure for a cumulant
tensor’s magnitude (cf. Ref. [259]).

Figure 35a shows how the cumulant norms vary along the symmetric dissociation of
the H2O molecule. As the underlying CASSCF wave function is based on a CAS(4,4),
the highest nonzero reduced density matrix is γ4. However, the rank of the cumulant
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Figure 35: Cumulant norms for CASSCF wave functions of model systems.

tensors is only restricted by the number of active spin orbitals, hence up to eight-body
tensors appear. While the high-rank cumulants are close to zero near the equilibrium
structure, those with even rank converge towards significant values in the dissociation
limit. Even the eight-body cumulant, which consists of a single element only, assumes
a value of λ8 ≈ −0.166667. Although CASSCF gives a size-consistent description for
the isolated atoms, cumulant tensors beyond λ4 (the highest possible cumulant tensor
on the O fragment) do not vanish despite their extensivity. This is because the atoms’
spins are coupled to a singlet, rendering the CASSCF wave function not multiplicatively
separable and causing nonzero values for both ||λ6|| and ||λ8||.

Figure 35b reveals how the cumulant norms depend on the rank for selected points
on the potential energy surface. Figure 35c plots similar data for the N2 model, where
the CAS(6,6) allows cumulant tensors up to λ12. Close to the equilibrium structures,
the cumulant norms decay approximately exponentially. This decreasing importance of
cumulants with increasing rank is expected for regions dominated by dynamic electron
correlation [54] and provides a justification for truncating the cumulant series. However,
with rising multireference character along the dissociation path, the decay of the cumulant
series becomes less pronounced. In the dissociation limit, cumulants with high ranks are
found to take exceedingly large values, such as λ12 ≈ −1.492119 in the case of N2.

An interesting aspect visible in Figs. 35b and 35c is that the cumulants with odd
ranks (excluding λ1) vanish in the dissociation limit. While this is not a general feature
of the cumulant series, it is characteristic for MCSCF wave functions with an electron-
hole symmetry in the active space. In the dissociation limits of both H2O and N2, each
active spin orbital assumes an occupation number of 1/2, and for each determinant in
the wave function there is another determinant with the same weight but with opposite
occupancies of the active orbitals (i.e., with electrons and holes exchanged). We may
then think of ρ̂ as a symmetric distribution function centered around its first moment
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(γ1, i.e., half occupancy for each spin orbital), which implies that all odd cumulants
vanish exactly [P2].

Let us now turn to a numerical assessment of cumulant approximations in ic-MRCC
theory. Figure 36 shows the errors of the ic-MRCCSD energies with respect to FCI
for the H2O model system, using cumulant approximations with nmax = {2, 3, 4} in
connection with three different thresholds for discarding small metric eigenvalues, η =
{10−2, 10−3, 10−4}. Since the highest reduced density matrix in this case is γ4, the results
for nmax = 4 use no cumulant approximation and are identical to the data presented in
Fig. 22a. Results for a similar study on the N2 molecule, using the sequential ansatz from
Eq. (5.41), are plotted in Fig. 37. Here, up to γ5 arises for residual equations truncated
at the double commutator level. The choice nmax = 4 constitutes a first approximation
in this case, namely the neglect of λ5.

Unfortunately, the current optimization algorithm (see app. A.1.4) failed to converge
to the ic-MRCC solution in many cases. This problem affected especially calculations
with a low nmax and became more severe when decreasing the threshold η. For this
reason, many of the curves shown in Figs. 36 and 37 are incomplete. The available
data indicates that the neglect of λ5 is an excellent approximation, inducing energy
errors less than 0.1 mEh for the N2 model. Discarding λ4 in addition yields energy
errors up to 0.3 mEh, rendering nmax = 3 also a viable approximation. Although the
tensors λ4 exhibit large norms in the dissociation limits (0.7 for H2O and 1.0 for N2,
respectively), their neglect only leads to small energy changes (about 0.01 mEh for H2O
and 0.06 mEh for N2). However, the more drastic approximation nmax = 2 deteriorates
the calculated energies for the N2 model by up to 3.4 mEh (Fig. 37a) and therefore cannot
be recommended for calculations aiming at high accuracy.

It is striking that even the neglect of λ5 triggers convergence problems for RN–N =
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Figure 36: Impact of cumulant approximations in ic-MRCCSD calculations on the H2O model
system.
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Figure 37: Impact of cumulant approximations in ic-MRCCSD calculations on the N2 model
system. Note the different scale for η = 10−2.

3.5 a0 and RN–N = 3.75 a0 when using η = 10−4. The only neglected terms in this
case are quadratic in T̂ . The fact that approximations in quadratic terms may spoil
the convergence is remarkable, considering that the amplitude update step described in
app. A.1.4 employs a linearized Jacobian and thereby only takes into account the impact
of cluster amplitudes on the residual at linear order. A possible explanation for the
deteriorating effect of cumulant approximations on the convergence is an overestimation
of residual elements corresponding to small metric eigenvalues, which would be in line
with the observed sensitivity of this problem with respect to the threshold η. We may
view such a residual element as a projection of H̄|Ψ0〉 onto

τ̂ ′ρ|Ψ0〉 = s
− 1

2
ρ ·

(∑
σ τ̂

σUρσ
)
|Ψ0〉, (6.19)

i.e., the inverse of the square root of a metric eigenvalue multiplied with a nearly linearly
dependent function that has a small norm. As s−1/2

ρ is large for a near-linear depen-
dency, the smallness of the resulting residual element relies on the fact that the linear
combination

∑
σ τ̂

σUρσ almost annihilates the reference function. However, the neglect
of cumulants approximates the reduced density matrix, i.e., the contracted product of
Ĉ†0 and Ĉ0. The operator τ̂ ′ρ then does not act on the original reference function any
more and might loose its ability to compensate for the large value of s−1/2

ρ . Attempts
to restore the convergence of the ic-MRCC equations by damping the effect of nearly
linearly dependent residual elements on the amplitude update have not been successful
yet. Further effort is needed to resolve this problem.
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6.5 Application to the chromium dimer

The chromium dimer is generally recognized as one of the most challenging systems for
multireference approaches [19,260,261]. As in the dissociation limit each chromium atom
has a 7S high-spin ground state with six unpaired electrons in the 4s and 3d orbitals,
the description of the 1Σ+

g ground state energy surface of Cr2 requires at least an active
space with twelve electrons in the orbitals 4sσg, 4sσu, 3dσg, 3dσu and the orbital pairs
3dπu, 3dπg, 3dδg and 3dδu. The resulting CAS(12,12) consists of as many as 107 216
determinants or 28 784 configuration state functions [262]. The bonding in Cr2 is complex
and has been the subject of controversial discussions: On the one hand, the six electrons
from each Cr atom formally offer the formation of a hextuple bond, consisting of a 4s–4s
σ bond and 3d–3d bonds of the types σ, π and δ. The δ bonds are somewhat weak, such
that the effective bond order estimated from the orbitals’ occupation numbers assumes a
value of around 4.5 [19,261]. Nevertheless, this is still a high bond order and in line with
the exceptionally short bond length of re = 1.6788 Å [263]. On the other hand, there
are several factors that weaken the bond [260,264]: The 4s orbitals hardly contribute to
the bonding at the equilibrium distance as they are much larger than the 3d orbitals and
have an optimum distance for bonding around RCr–Cr = 3 Å. The filled 3p orbitals, on
the contrary, have about the same size as the 3d orbitals and cause additional electron
repulsion in the region of the bonding electrons. These effects may explain why the Cr2
molecule has a relatively small harmonic force constant, ke = 353 N/m corresponding to
the vibrational frequency ωe = 480.6± 0.5 cm−1 [264], and a dissociation energy of only
D0 = 35.3 kcal/mol [265], both of which are even lower than the corresponding values
for the weakly bonded F2 molecule (ke = 470 N/m, D0 = 37 kcal/mol) [260].

The chromium dimer has been extensively studied experimentally [263–269] and the-
oretically [260,262,270–281]. Of particular importance is the photoelectron spectroscopic
study of Cr−2 by Casey and Leopold [264], who have reconstructed the potential energy
curve of Cr2 from the transitions to 30 vibrational states. This potential is plotted
in Fig. 38, using the value for re from Ref. [263] and De = 1.50 ± 0.04 eV, which
is an error-weighted average from the dissociation energies reported in the literature
(1.47 ± 0.06 eV [268], 1.45 ± 0.10 eV [269] and 1.56 ± 0.06 eV [265]). The potential is
highly anharmonic and exhibits a characteristic shelf below RCr–Cr = 3 Å, indicating
regions with different types of bonding. While the 3d–3d bonds become weaker when
separating the atoms, the interaction between the 4s orbitals first becomes more fa-
vorable. The resulting 4s–4s bond finally breaks when stretching the molecule beyond
RCr–Cr = 3 Å. Between RCr–Cr = 2.1 Å and RCr–Cr = 3 Å, the shape of the potential
is not uniquely determined by the experiment as the available spectral data in the cor-
responding energy range is sparse. Even the existence of a local minimum in the 4s–4s
bonding region is in accordance with experimental data [264,266,267] and has remained
an unresolved issue for decades.

The one common conclusion from the long history of theoretical studies on Cr2 is that
its description requires an accurate treatment of both static and dynamic correlation (in-
cluding correlation of the 3d core orbitals) and the use of large basis sets. While CASSCF
does not yield a bound potential at the experimental equilibrium bond length (see also
Fig. 38), single-reference CCSD(T) calculations either fatally underestimate the bond
energy (De = 0.38 eV) or dramatically overestimate the bond length (re = 2.54 Å), de-
pending on whether a restricted or unrestricted Hartree–Fock reference is used [272]. The
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failure of single-reference methods is understandable, considering that even at the experi-
mental equilibrium distance, the leading configuration in the CASSCF wave function has
a weight of only 47% [278].28 Recent calculations using very large basis sets and advanced
multireference approaches such as MR-AQCC based on a restricted active space of 1 516
configuration state functions [277] or CASPT2 in connection with density matrix renor-
malization group (DMRG, Refs. [282–284]) reference functions for a CAS(12,28) [279]
agree well with the experimental potential energy curve (within 0.15 eV and 0.3 eV, re-
spectively). Even though these studies present a convincing argument against a second
minimum in the 4s–4s bonding region, it should be noted that some other multireference
methods do predict a second minimum. Those include CIPT2 [275], a hybrid method
with a CI-like treatment of excitations from active orbitals and a perturbative treatment
of other excitations, and the third-order n-electron valence state perturbation theory
(NEVPT3, Ref. [276]).

Figure 38 presents ic-MRCCSD and ic-MRCCSD(T){3} potential energy curves com-
puted with the cc-pwCVTZ-DK basis set [285], keeping only 1s, 2s and 2p orbitals
uncorrelated and including scalar relativistic effects by a second-order Douglas–Kroll–
Hess transformation [236]. The results are based on the sequential ic-MRCC ansatz,
Eq. (5.41). The five-body cumulant tensor λ5 was neglected (nmax = 4), as a full evalua-
tion of γ5 would have been prohibitively expensive with the available resources. Figure 38
shows results for η = 10−2 and η = 10−3. Unfortunately, the latter choice did not yield
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Figure 38: Potential energy surface of the 1Σ+
g ground state of Cr2. The plotted energies ∆E =

E − E(RCr–Cr =∞) are relative to the dissociation limit.

28The same value is found in the present work. Interestingly, it increases to 53% during an ic-MRCCSD
calculation.
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convergence beyond RCr–Cr = 2.0 Å, whereas with η = 10−2 most of the considered
single-point calculations converged (except for RCr–Cr = 1.83 Å and RCr–Cr = 2.1 Å).
The ic-MRCCSD(T){3} curve for η = 10−2 differs from the experimental curve by up
to 0.5 eV and has a second minimum at around RCr–Cr = 2.5 Å. While a significant
portion of these deviations may be attributed to a too high threshold η (the results for
η = 10−2 and η = 10−3 differ by up to 0.2 eV), the basis set error for cc-pwCVTZ-DK is
still expected to be large. In particular, the accurate account of dynamic correlation in
the 3d–3d bonding region requires basis functions with high angular momentum. At the
DMRG-CASPT2 level of theory, the basis set error around re is as large as 0.6 eV [279],
letting us expect an important basis set effect also for ic-MRCC theory. At present we
cannot conclude whether the second minimum in the ic-MRCC curve is an artifact due
to either the large threshold η or the insufficient basis set.29

Although the perturbative triples correction to ic-MRCCSD lowers the absolute en-
ergies by as much as 0.7 eV (see Tab. A20), its impact on the relative energies is minute
(< 0.03 eV for η = 10−3). This suggests that higher-order correlation effects beyond
those recovered by ic-MRCCSD are negligible in the present example. Nevertheless, the
difference between the curves obtained with η = 10−2 and η = 10−3 is disturbingly large.
The increasing impact of the (T) correction when going from η = 10−3 to η = 10−2 indi-
cates that the exclusion of metric eigenvalues beyond 10−2 is partially compensated by
the triple excitations. However, within the triples model {3}, triple excitations with more
than three active indices are neglected, allowing no compensation for excluded double
excitations in the corresponding excitation classes.

We can derive spectroscopic constants from each ic-MRCCSD(T){3} curve by con-
structing a third-order polynomial in accordance with the four data points between
RCr–Cr = 1.63 Å and RCr–Cr = 1.78 Å.30 For η = 10−2, this procedure gives re = 1.692 Å,
De = −1.02 eV and ωe = 407 cm−1. A decrease of the threshold η to 10−3 brings
all of these three properties closer to the experimental values, yielding re = 1.691 Å,
De = −1.20 eV and ωe = 443 cm−1, respectively. However, the remaining deviations
from experiment are still large, with an equilibrium distance that is too large by more
than 0.01 Å, a dissociation energy too small in absolute terms by 0.3 eV and a har-
monic vibrational frequency that is too low by about 40 cm−1. An improvement of the
ic-MRCC results requires either a full account of γ5 or an implementation of cumulant
approximations that works in connection with low thresholds η. In addition, reliable
ic-MRCC calculations call for a reduction of the basis set error, which can be achieved
either by using larger basis sets or by combining the ic-MRCC method with explicitly
correlated techniques, as described in Ref. [P7].

29The use of larger basis sets with ic-MRCC is currently hampered by the limitations of the GeCCo
interfaces to Dalton and Gamess to either 255 orbitals or up to g functions, respectively.

30Note, however, that the present analysis can only provide rough estimates for the derivatives of the
potential energy curve, since the spacing between the data points is rather large (≈ 0.05 Å) and a
varying number of included metric eigenvalues causes discontinuities in the energy curve.
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7.1 Summary and conclusions

The main subject of this thesis is the development and benchmarking of internally con-
tracted multireference coupled-cluster (ic-MRCC) methods for the accurate theoretical
description of systems with complicated electronic structure. The work accomplished in
this effort embodies the following original contributions:

• The first implementation of ic-MRCC methods with the correct polynomial scaling
of computational cost with respect to system size. This has been achieved through
the automated expansion and termwise factorization of the working equations using
the GeCCo program. The implementation is in principle general, allowing for arbi-
trary excitation levels, and is currently used for ic-MRCC with singles and doubles
(ic-MRCCSD) and ic-MRCC with singles, doubles and triples (ic-MRCCSDT).

• A detailed analysis of ic-MRCC theory that provides a deep understanding of the
theory’s formal structure and complexity, its computational scaling and its most
important formal properties, with an emphasis on size-extensivity.

• The development of two techniques for removing redundancies from the parame-
terization of the wave function. While the first technique is core-extensive (i.e.,
extensive with respect to a growing number of inactive electrons and orbitals),
the second is fully size-extensive (also with respect to a growing active space) and
constitutes the first realization of an ic-MRCC theory that takes the multiconfigu-
rational reference function as Fermi vacuum in the second-quantized formalism.

• The development of both iterative and noniterative ic-MRCC methods that approx-
imately account for triple excitations, in particular the ic-MRCCSD(T) method.

• A reformulation of the theory of density matrix cumulants that simplifies their use
(e.g., for formulating cumulant approximations within the current ic-MRCCSD(T)
method) and offers a clear interpretation of their meaning in quantum mechanics,
and a numerical assessment of the cumulants’ magnitudes for multiconfigurational
wave functions.

• The investigation of different variants of ic-MRCC theory through benchmark ap-
plications to model systems. This includes the study of different schemes for remov-
ing redundancies from the cluster operator and different treatments of excitations
within the active space, as well as an assessment of hierarchies of approximations,
such as the truncation of the cluster operator after double or triple excitations, the
neglect of nearly linearly dependent excitations with corresponding metric eigen-
values below the threshold η, truncations of the commutator series of the similarity
transformed Hamiltonian, and cumulant approximations.

• Applications of the ic-MRCCSD(T) method to the equilibrium structure and vi-
brational frequencies of ozone and Ni2O2, the singlet-triplet splittings of benzynes,
the ring-opening of the azirine compound C6H7NO, and the ground state energy
surface of the chromium dimer.
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The following summarizes the main findings of the present work and the conclusions
drawn from them.

Due to the introduction of active orbitals that are only partially filled in the reference
function, the cluster operator in ic-MRCC theory consists of a non-commuting set of ex-
citation operators. This leads to a dramatic surge in the length and complexity of the
amplitude equations as compared to single-reference coupled-cluster (SRCC) theory. The
number of individual terms (i.e., unique products of tensor contractions) rises sharply
with the level of nested commutators considered in the expansion of the similarity trans-
formed Hamiltonian. A full implementation of ic-MRCCSD would involve up to eightfold
commutators and hundreds of thousands of individual terms. However, truncation after
the twofold commutator is found to preserve the inherent accuracy of the method (cor-
roborating results by Evangelista and Gauss [38]) while reducing the number of terms to
less than 10 000. Though this is still a large number of terms, it is manageable with the
help of automated techniques like the ones provided by the GeCCo program.

Key to an efficient implementation of this ic-MRCCSD method is a reduction of the
number of those terms that dominate the computational expense. Through a suitable
choice of intermediate expressions, the terms scaling most steeply with respect to the
inactive orbital spaces can be combined to yield a scaling comparable to single-reference
CCSD (N6) in the limit of small active spaces. When increasing the size of the active
space, the method’s cost will eventually scale exponentially with the number of active
electrons due to the necessity to compute the reduced density matrices of the reference
function (up to rank five, γ5). The optional relaxation of the reference function also con-
tributes to an exponential scaling with respect to the active space’s size. In most realistic
applications, however, there will be far more inactive than active orbitals. Although terms
scaling with respect to both the inactive and active orbital spaces may become rate deter-
mining, their scaling is always polynomial and does not exceed N ·M10

act. The ic-MRCC
method therefore has a fundamental advantage over Jeziorski–Monkhorst-based MRCC
theories in which each term from SRCC inherits an additional factorial scaling with re-
spect to the active space. This computational advantage is already realized within the
GeCCo program, as ic-MRCCSD calculations on the azirine compound C6H7NO took by
about a factor of 40 longer than a corresponding CCSD calculation, whereas the number
of reference determinants (400) in this case lets one expect a Jeziorski–Monkhorst-based
calculation (without internal contraction of inactive excitations) to take an additional
factor of ten times longer.

Ic-MRCC theory provides a hierarchy of size-extensive methods (ic-MRCCSD, ic-
MRCCSDT, etc.) that systematically converge towards the exact (FCI) solution of the
Schrödinger equation within a given basis set. Further, it is invariant with respect to a
rotation of the active orbitals, a feature not shared by most other MRCC approaches.

However, the internally contracted ansatz may be considered as overparameterized,
as generally linear dependencies between the ic-MRCC equations prevent a unique deter-
mination of all cluster amplitudes. A solution to this problem is a well-defined procedure
for eliminating redundant parameters from the cluster operator. Although there is some
flexibility in setting up such a procedure, the requirements of orbital invariance and
size-extensivity pose stringent constraints to its definition, rendering it not completely
arbitrary. The methods studied in this work rely on a canonical orthogonalization of
the set of functions that are created from the reference function through single, double,
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and—if needed—higher excitation operators, thereby fulfilling orbital invariance (proven
in Ref. [38]). In the course of this orthogonalization, excitations corresponding to eigen-
values of the excited functions’ overlap matrix below a threshold η are discarded in order
to remove exact and near-linear dependencies. In the current formalism, the excitation
operators act on spin orbitals (not spatial orbitals) and are normal ordered with respect
to a determinant composed of all filled inactive orbitals. While a full orthogonaliza-
tion covering all excitation levels at once turns out to spoil size-extensivity, a sequential
procedure that starts with single excitations and successively orthogonalizes the func-
tions of each excitation level to the ones from lower levels regains core-extensivity. Both
schemes yield similar results for ic-MRCCSD, but upon inclusion of triple excitations, the
core-extensive treatment of double excitations is crucial for a systematically enhanced ac-
curacy. The newly developed perturbative triples models therefore employ the sequential
orthogonalization.

A fully size-extensive ic-MRCC method is obtained when switching to a generalized
normal ordering (GNO) with respect to the multiconfigurational reference function. This
is because in the evaluation of the overlap between excited functions, the extended Wick
theorem involves as contraction tensors the reduced density matrix cumulants of the
reference function, which are extensive quantities and thereby prevent inextensive con-
tributions to the cluster amplitudes during the orthogonalization step. In the present
implementation of the GNO-based ic-MRCCSD method, the coupled-cluster residual is
still evaluated in a particle-hole normal ordering and then transformed to its representa-
tion in the GNO.

A critical issue in ic-MRCC theory is the choice of the aforementioned threshold
η. Whereas the internally contracted variant of multireference configuration interaction
(MRCI) is rather robust with respect to η and allows one to set η to very low values
(limited only by numerical precision), the same is not true for ic-MRCC theory. When
studying the N2 molecule near its equilibrium bond length, too small thresholds are
found to cause large artificial energy contributions, indicating that the elimination of
linear dependencies within the linear excitation space is not perfectly compatible with
the exponential cluster ansatz. Based on this study, the recommended choice for η is the
range 10−6 ≤ η ≤ 10−3.

The benchmark applications of ic-MRCCSD to the potential energy surfaces of six
selected model systems (BeH2, HF, LiF, H2O, N2 and Be3) certify that the method
already yields chemical accuracy in many cases, showing absolute errors with respect
to FCI of up to 10 kJ/mol and relative errors (nonparallelity errors) below 5 kJ/mol.
Inclusion of triple excitations significantly reduces the remaining errors. Both absolute
and relative errors for the model systems BeH2, H2O and N2 are as small as 1 kJ/mol
for the ic-MRCCSDT method. The noniterative incorporation of triples through ic-
MRCCSD(T) recovers most of this improvement over ic-MRCCSD, yielding errors below
2 kJ/mol.31

The enhanced accuracy of ic-MRCCSD(T) comes at a moderate extra effort, which
for small active spaces can be characterized by two steps scaling like N7 and may be
further reduced to a single N7 step in the future. Applications to H2O and N2 indicate
that one may safely neglect triple excitations with more than three active indices without

31As these error estimates rely on small basis sets of double-zeta quality (with polarization functions),
they might increase somewhat for larger basis sets.
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jeopardizing the inherent accuracy of the ic-MRCCSD(T) method. The resulting model,
denoted as ic-MRCCSD(T){3}, has the computational advantage that its orthogonaliza-
tion step requires only the diagonalization of reduced density matrices of the reference
function up to rank three instead of five.

In applications of ic-MRCC theory to the equilibrium structure and harmonic vibra-
tional frequencies of the ozone molecule and the transition metal oxide Ni2O2 as well
as to the singlet-triplet splittings of benzynes and the ground state energy surface of
Cr2, the (T) correction on top of ic-MRCCSD consistently improves the agreement be-
tween computed and experimental results. The sole exception to this is the singlet-triplet
splitting of p-benzyne, where the experimentally derived value is disputable. The ozone
molecule turns out to be a challenging case for ic-MRCC theory. Especially the computed
stretching frequencies are very sensitive to the treatment of triple excitations. The itera-
tive and noniterative approximate triples models yield results differing by tens of cm−1,
while the full ic-MRCCSDT method provides the most accurate estimate, agreeing with
experiment within 5 cm−1 for all vibrational modes.

The good agreement of the ic-MRCCSD(T) results for Ni2O2 based on a minimal
active space (four electrons in four orbitals) with values obtained from size-extensivity
corrected MRCI using a much larger active space (28 electrons in 16 orbitals) indicates
that the ic-MRCCSD(T) method is able to achieve high accuracy in connection with
minimal active spaces. The accordance of singlet-triplet splittings of p-benzyne, calcu-
lated with ic-MRCCSD(T) using either the minimal active space (two electrons in two
orbitals) or an enlarged active space (eight electrons in eight orbitals), supports this con-
clusion and demonstrates that ic-MRCCSD(T) is much less sensitive to the size of the
active space than ic-MRCCSD. Further recent applications of ic-MRCC methods using
different active space sizes provide additional evidence for these conclusions [P7].

The n-body cumulants (λn) of the reduced density matrices encode the statistical
information that the reference function has about the correlation between n orbitals’
occupancies. A neglect of high-rank cumulants offers a reduced computational scaling
with respect to the number of active orbitals without compromising the method’s size-
extensivity. The development of such cumulant approximations in ic-MRCC theory is
still at an experimental stage. Numerical tests indicate that the neglect of both λ5

and λ4 preserves the accuracy of ic-MRCCSD, whereas neglecting λ3 may significantly
influence the computed energies. Unfortunately, in the current implementation, these
approximations lead to convergence problems that need to be addressed in the future.
Nevertheless, the neglect of λ5 enabled first applications of ic-MRCC theory to the ground
state energy curve of the chromium dimer, using twelve electrons in twelve active orbitals.

Overall, the implemented ic-MRCC methods are already applicable in a routine man-
ner to systems with few atoms (containing up to eight second-row elements or two first-
row transition metal atoms) and moderate active spaces (up to eight electrons in eight
orbitals). Especially the ic-MRCCSD(T) method reliably yields chemical accuracy in
connection with minimal active spaces, making it one of the most accurate multirefer-
ence methods to date [29]. Considering that ic-MRCC theory is also one of the few
MRCC approaches fulfilling the most important formal requirements (size-extensivity,
moderate computational scaling, orbital invariance), it is fair to regard it as the most
promising MRCC method of the contemporary literature. By providing both a deep
theoretical understanding and a useful implementation of ic-MRCC theory, this work
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has laid the cornerstone for future development of ic-MRCC methods. Numerous appli-
cations of ic-MRCC theory, whether to accurately describe chemically relevant systems
with complicated electronic structure or to create valuable benchmarks for testing less
reliable but more affordable alternative methods, will undoubtedly follow.

7.2 Future perspectives

Despite the progress achieved in this work, the development of ic-MRCC methods into
standard tools of quantum chemistry requires additional efforts.

On the one hand, shortcomings of the present formulation and implementation of ic-
MRCC therory should be addressed. The high formal complexity of the theory demands
an efficient factorization of the working equations, possibly accompanied by additional
approximations. A reduction of the memory requirements, especially in the (T) step,
could be achieved by a batchwise evaluation of contributions from subsets of excita-
tions. Further, an improvement of the solving algorithm is desirable, in order to alleviate
convergence problems and reduce the number of iterations taken. The implementation
of GNO-based ic-MRCC theory should be extended to allow the use of the sequential
orthogonalization technique and the perturbative inclusion of triple excitations. The
evaluation of the GNO-based residual through the extended Wick theorem might also
be needed for exploiting the full potential of cumulant approximations in ic-MRCC the-
ory. Another important step to improve the present ic-MRCC approach would be its
spin-adaptation, based on using the generators of the unitary group as excitation oper-
ators [34, 94, 106, 226–229]. Finally, the disturbing sensitivity of ic-MRCC methods to
the threshold η justifies the search for alternative ways to eliminate linear dependencies
(see, e.g., Ref. [47]) or the introduction of suitable regularization or level-shift techniques
(e.g., Ref. [52]).

On the other hand, further theoretical advances are needed to enhance the versatility
of ic-MRCC theory. Present applications of ic-MRCC theory are limited to single-point
energy calculations for small systems. An extension of the applicability to structure
optimizations and the routine calculation of vibrational frequencies calls for an imple-
mentation of analytic energy gradients (e.g., Ref. [209]). The development of a linear
response theory for ic-MRCC methods to access a wider range of molecular properties is
already in progress, showing first promising results in the computation of excitation ener-
gies [286]. It is also worthwhile to explore alternative ways to target multiple states within
ic-MRCC theory, for instance through the use of many-body equations [115]. There are
several possibilities to enable ic-MRCC applications for larger systems. Explicitly corre-
lated techniques accomplish this by reducing the basis set requirements, and are already
being employed in ic-MRCC theory [P7]. A strategy for allowing larger active spaces is
the theory’s extension to the use of incomplete (e.g., Ref. [86]) or restricted [298] active
spaces. Other routes towards the description of larger systems that could be combined
with ic-MRCC theory are local correlation approaches [287–291] and the treatment of
different parts of a system by different electronic structure methods through embedding
schemes [292].

In view of these future prospects of ic-MRCC theory, the present work is the founda-
tion for a vivid development of powerful tools for the description of chemically interesting
and theoretically demanding systems.
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A Appendix

A.1 Implementation details

A.1.1 Technical setup

Most of the programming effort for this thesis was done in the General Contraction Code
(GeCCo, Ref. [44]), using the Fortran 90 programming language. GeCCo is interfaced
to a modified version of the Dalton program package [293], which carries out the HF or
MCSCF calculations and provides the matrix elements of the Hamiltonian in the basis of
molecular orbitals. A new interface to the MCSCF code of the Gamess program [139] was
created in order to allow ic-MRCC calculations with state-averaged CASSCF orbitals.
The Gamess interface was also used for some of the larger applications in this work.

A.1.2 GeCCo in a nutshell

The most essential features of GeCCo are a symbolic algebra that allows the automated
derivation of second-quantized expressions [226] and an algorithm for the evaluation of
these expressions, using string-based techniques [294–296]. Second-quantized operators
and expressions (formulas) are treated in the code as objects, and GeCCo provides a
multitude of operations (rules) for their definition, manipulation and evaluation. How-
ever, a GeCCo routine implementing a particular electronic structure theory is typically
not a mere sequence of such operations. Instead, rules performing certain tasks are
grouped into targets, lending the routine a modular structure. The individual targets are
linked by a network of dependencies. Once the execution of a primary target is requested
due to the user’s input, the program evaluates the dependency tree for this target to
control the order in which to carry out the involved targets. Figure A1 illustrates the
dependency tree for the evaluation of a single expression, with each target depicted as a
blue box.

We may divide the rules into three classes, namely (i) those operating on the algebraic
level, (ii) those creating an interface between the algebraic and numeric levels of the
program, and (iii) rules performing numeric operations.

evaluate

factorize formula

derive formula set up matrix element lists

define operators

Figure A1: Dependency tree for the evaluation of a formula in GeCCo.
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The first class subsumes the definition of operators, the derivation of quasi-vacuum
expectation values of operator products (e.g., the method-specific Lagrangian), the dif-
ferentiation of expressions with respect to Lagrange multipliers or other parameters,
rules for factoring out or expanding subexpressions, and more specific operations such
as the elimination of terms based on certain (e.g., perturbative) criteria. GeCCo’s op-
erator algebra is equivalent to a diagrammatic algebra that is based on antisymmetrized
Brandow-type diagrams [119]. Each excitation type (block) of an operator is character-
ized by the number of creation (C) and annihilation (A) operators in the hole, particle,
and valence orbital spaces, as exemplified in Fig. A2. In operator blocks consisting of an
antisymmetric tensor and an excitation operator, e.g., tijabâ

ab
ij , all annihilators or creators

belonging to the same orbital space are equivalent and need not be distinguished. In
special cases, however, a tensor may not be antisymmetric with respect to the exchange
of some indices of the same type. For instance, this happens for elements of the met-
ric matrix in ic-MRCC theory such as Sui,xbva,wj (see Tab. 3). In order to keep track of
inequivalent indices of the same type, GeCCo allows a partitioning of the indices into
different vertices. In a diagrammatic representation of an operator block, vertices ap-
pear as horizontal lines. The introduction of multiple vertices is also advantageous for
preserving the topological structure of diagrams when defining expressions for operators
through a differentiation. An example of an operator with two vertices is the residual
in ic-MRCC theory, see Fig. A2b. It is obtained according to Ωρ = ∂L/∂λρ and may
inherit active annihilation lines from Ĉ†0 at the top of a diagram in addition to the lines
originating from connections between Λ̂ and the operators on its right. In the deriva-
tion of quasi-vacuum expectation values, GeCCo employs Wick’s theorem and finds all
possible ways to distribute binary contractions in the considered operator product. The
resulting formulas are lists of individual terms (or diagrams).

In order to allow an efficient evaluation of expressions, a rule of type (ii) converts
them into lists of binary tensor contractions and—if needed—index reordering steps. This
factorization is often preceded by a recognition of predefined intermediates. For each
term in the final expression, GeCCo systematically runs through the various possible
contraction sequences and determines the one with the least computational cost. The
estimation of the computational cost for a contraction explicitly takes into account the
dimension of the contracted tensors and thus depends on the sizes of the orbital spaces.
To this end, objects called matrix element lists are defined, which contain the information
necessary for creating an interface between an operator and a corresponding tensor stored
on hard disk. GeCCo uses graphical techniques [297,298] for addressing and storing the

⇒
nh np nv

C 0 1 1
A 0 0 2

⇒

vertex nh np nv

1 C 0 0 0
A 0 0 2

2 C 0 1 1
A 0 0 0

(a) (b)

Figure A2: Representation of (a) the cluster excitation tuvwaâwauv and (b) the corresponding residual
in GeCCo.
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nonredundant elements of antisymmetrized tensors with arbitrary rank. The irreducible
representations of the orbitals are exploited along with the total symmetry of a tensor
and its Ms quantum number, significantly reducing the number of tensor elements for
Abelian point groups.

Finally, operations of type (iii) change the content of the matrix element lists. While
some rules perform individual tasks like the evaluation of a formula or, for instance, the
singular value decomposition of the metric matrix needed in ic-MRCC theory, others
trigger the iterative solution of systems of equations. GeCCo employs subspace-based
Davidson-type algorithms for eigenvalue problems and linear equation systems [299].
In the solution of nonlinear equations, the convergence is enhanced by Pulay’s direct
inversion in the iterative subspace (DIIS) method [300,301].

A.1.3 Implementation of uncontracted MRCI

The implementation of (uncontracted) MRCI methods in GeCCo is based on the energy
expectation value

E = 〈0|Ĉ†0ĤĈ0|0〉, (A.1)

where
Ĉ0 = υ̂c (A.2)

is a generalization of Eq. (3.11). The operators in the row vector υ̂ combine the creation
of Nact electrons with excitations of electrons out of the hole space and into the particle
space, see Fig. A3 for an example. When Ĉ0 is restricted to the excitation class with
nh = 0, np = 0, the MRCI method reduces to CAS-CI and is used in GeCCo to compute
the reference coefficients cµ before an ic-MRCC calculation.

The coefficients in c are determined by the eigenvalue equation

Hc = Ec, (A.3)

with
H = 〈0|υ̂†Ĥυ̂|0〉. (A.4)

nh np = 0 np = 1 np = 2

0
υ̂uv υ̂ua υ̂ab

1
υ̂uvw

i υ̂uva
i υ̂uab

i

2
υ̂uvwx

ij υ̂uvwa
ij υ̂uvab

ij

Figure A3: Blocks of Ĉ0 for (uncontracted) MRCISD with a CAS(2,2).
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Davidson’s algorithm [299] requires the evaluation of the matrix vector product Hc in
each iteration. The formula for this step is conveniently derived in GeCCo by differen-
tiating Eq. (A.1) with respect to the parameters in Ĉ†0.

32 Further, the diagonal elements
of H are needed for approximating (H − E · 1)−1 in the generation of new subspace
vectors. These diagonal elements are obtained by a summation of diagonal elements of
the Hamiltonian.

In the current spin orbital formalism, control over the spin quantum number S of
the state Ĉ0|0〉 requires additional effort. For states with Ms = 0, GeCCo can clearly
distinguish between states with even and odd S by enforcing the correct spin-flip sym-
metry in Ĉ0. Whenever spin-flip symmetry is not sufficient to ensure the desired spin
multiplicity, unwanted spin multiplicities are projected out according to

2S+1Ĉ0|0〉 = 2S+1ÔĈ0|0〉, (A.5)

using Löwdin’s projector [302]

2S+1Ô =
∏

K 6=S

Ŝ2 −K(K + 1)
S(S + 1)−K(K + 1)

. (A.6)

In second quantization, the square of the spin operator reads [3]

Ŝ2 = 1
2

(
Ŝ+Ŝ− + Ŝ−Ŝ+

)
+ Ŝ2

z , (A.7)

where
Ŝz =

∑

p

ms(p)âpp (A.8)

probes the Ms quantum number and the ladder operators

Ŝ± =
∑

φp=φq

(
ms(q)± 1

2

)(
ms(q)−ms(p)

)
âqp (A.9)

excite from a spin orbital withms(p) = −1
2 (spin function β) to the corresponding orbital

with ms(q) = 1
2 (spin function α) and vice versa.

A.1.4 Implementation of ic-MRCC theory

The derivation of the ic-MRCC equations in GeCCo starts from the Lagrange function

L = 〈0|Ĉ†0(1 + Λ̂)e−T̂ ĤeT̂ Ĉ0|0〉. (A.10)

In contrast to Eq. (5.5), Eq. (A.10) does not explicitly contain the Lagrange multipliers
c̄µ. Nevertheless, the derivation of the left-hand side of the eigenvalue equations (3.5)
is straightforward. It proceeds by deleting the terms that contain Λ̂ and differentiating
with respect to the parameters in Ĉ†0. The last term in Eq. (5.5) is also not needed as

32Note that GeCCo’s operator algebra treats Ĉ†0 and Ĉ0 independently. Differentiations with respect to
the parameters in either Ĉ†0 or Ĉ0 are therefore different from a mathematically rigorous differentiation
with respect to cµ.

108



A.1. Implementation details

it only contributes to the trivial right-hand side of the eigenvalue equation. The BCH
expansion is carried out up to a given commutator level Ncom in form of the summation

e−T̂ ĤeT̂ =
Ncom∑

n=0

n∑

k=0

(−1)k

k!(n− k)!
T̂ kĤT̂n−k. (A.11)

Initially this leads to the multiple occurrence of topologically identical terms. A subse-
quent summation of identical terms ensures that each individual term appears only once
and with its correct prefactor.33 Since disconnected terms aquire a prefactor of zero,
they naturally cancel out in this step.

When using the sequential ansatz from Eq. (5.41), the formula for the T̂1-transformed
Hamiltonian H̃ is defined separately, also with help of Eq. (A.11). In the Lagrangian
from Eq. (A.10), Ĥ is then replaced by H̃, and T̂ by a cluster operator without singles.
In order to circumvent a costly evaluation of the blocks of H̃ with three or four particle
indices, the explicit expressions for these blocks are inserted, leading to a few additional
terms containing Ĥ and T̂1.

The perturbative truncation of the ic-MRCCSDT Lagrangian closely follows the
recipe detailed in sec. 5.4.2. Instead of explicitly defining the Dyall Hamiltonian, Eq. (5.6),
the automated assignment of perturbation orders to the operators in a term takes into
account whether the Hamiltonian block corresponds to one of the blocks in the Dyall
Hamiltonian. In the event that a fourth-order term contains either f ij â

j
i or fab â

b
a, the

Fock operator is replaced by the effective Fock operator defined in Eq. (4.1). Since F̂eff

depends on Ĉ0, it has to be evaluated after each solution of the ic-MRCC eigenvalue
equations. The current procedure ensures this by inserting its explicit expression into
the Lagrangian. In methods based on the sequential ansatz, one cannot directly classify
the blocks of H̃ according to perturbation orders. It is therefore expanded in terms of
Ĥ and T̂1 prior to the perturbative truncation and factored out again afterwards. The
derivation of the ic-MRCCSD(T) Lagrangian additionally involves the removal of the
terms constituting the ic-MRCCSD residuals as well as a substitution of T̂ †1 and T̂ †2 for
Λ̂1 and Λ̂2, respectively. Further, the terms contributing to the ic-MRCCSD energy are
exempt from the perturbative truncation, as they should be retained independent of the
perturbation order assigned to T̂1. The (T) step currently requires a separate calculation
and reuses matrix element lists for Ĉ0 and T̂ from a previous ic-MRCCSD run.

The formula for the ic-MRCC residual follows from a differentiation of the Lagrangian
with respect to λ. In order to reduce the number of terms scaling highly with respect
to the number of inactive orbitals, the resulting formula is differentiated separately with
respect to the Hamiltonian vertices gABab â

ab
AB and gijIJ â

IJ
ij . This yields expressions for

intermediates of the type IIJAB, which are generalizations of the intermediates discussed
in sec. 3.1.3. These intermediates are then factored out prior to the factorization of the
formula for the residual.

33The identification of topologically identical terms relies on a comparison of diagrams after bringing
their operators into a canonical order. However, I was not able to find a canonicalization recipe that
provides a unique order for all diagrams with four or more T̂ operators. In order to obtain the correct
number of terms even for high commutator levels, the termwise comparison was extended to consider
all possible permutations of operators.
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The metric matrix can be derived as a second derivative of the expression

〈0|Ĉ†0T̂ †T̂ Ĉ0|0〉 = 〈0|T̂ †T̂ |0〉+
∑

n

γv1···vnu1···un〈0|
{
âun · · · âu1}T̂ †T̂{â†v1 · · · â†vn

}
|0〉 (A.12)

with respect to both t† and t. In Eq. (A.12), the expression
{
Â}B̂{Ĉ

}
shall indicate that

ÂĈ is a normal ordered product that can be contracted to the operator B̂ in between.
The braces surrounding B̂, printed in a smaller font than the ones embracing Â and Ĉ,
locally lift the normal ordering. In the current example, Â and Ĉ are the two vertices
of a reduced density matrix (cf. Fig. 4a). Hence, the implementation of the metric
matrix through the right-hand side of Eq. (A.12) directly leads to expressions in terms
of reduced density matrices. As the operators T̂ † and T̂ are contracted by at least
one inactive line, a mathematically correct second derivative of Eq. (A.12) leads to the
appearance of unit tensors (cf. Tab. 3). Within GeCCo’s algebra these unit tensors
have to be explicitly inserted before the differentiation, as the lines connecting T̂ † and
T̂ will otherwise simply disappear and leave the resulting operator with a reduced rank.
This feature can be deliberately exploited for a removal of all inactive lines in the metric
matrix. In this way, insertion of only the active unit tensors into contractions between
T̂ † and T̂ followed by double differentiation straightforwardly yields the formula for the
active parts of the metric matrix. Figure A4a shows a diagrammatic representation of the
active metric block that corresponds to the excitation âwauv and how the indices coming
from the excitation and deexcitation operator can be merged to the superindices σ and
ρ, in order to bring the metric tensor into matrix form.

The singular value decomposition is carried out individually for all possible subblocks
of Snh,npact with a given spatial symmetry and Ms quantum number for both indices σ and
ρ. A subblock may have contributions from all excitation ranks within one excitation
class. It is either diagonalized fully or sequentially according to the procedure detailed in
sec. 3.2.1. In case of subblocks with Ms = 0, we can achieve a block diagonal structure
by transforming into a basis of positive and negative linear combinations of excitations
related by spin-flip. The singular value decomposition is then performed on the two
resulting blocks. This prevents a mixing of singlet- and triplet-adapted excitations with
the same singular value, which would lead to spin contamination in the cluster operator.

Initially, the transformation matrix X, defined in Eq. (3.31), is stored on a matrix
element list of an operator with the same topological structure as S, while the matrix

ρ

σ

Xσρ = X + X

(a) (b) (c)

Figure A4: Sample block of (a) the active metric matrix and (b) the reordered transformation
matrix, and (c) the corresponding formula for the transformation of the cluster amplitudes.
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element list of S is overwritten with the projector P from Eq. (3.34). Both tensors are
subsequently reordered by moving the active annihilators from the first vertex to the last
vertex, as exemplified in Fig. A4b. This allows the definition of a simple formula for the
transformation

t = Xt′ (A.13)

that preserves the topological structure of the cluster operator, see Fig. A4c for an
example. Assigning the transformation operator to the matrix element list of P, the
same formula is used for carrying out the projection from Eq. (3.33). The transformation
of the residual into the orthogonal excitation basis according to

Ω′ = X†Ω (A.14)

also employs the same formula. To this end, a separate matrix element list for X† is
created by reordering the adjoint of the initial transformation matrix. Owing to GeCCo’s
way to order index strings in the addressing of tensor elements, matrix element lists
belonging to cluster amplitudes and residuals are isomorphic. This allows the direct
application of the transformation formula to the residual.

The GNO-based removal of redundant excitation operators described in sec. 3.2.2
requires the following additional steps: The derivation of the metric matrix S̃ from
Eq. (3.66) also starts from the right-hand side of Eq. (A.12). The reduced density ma-
trices are expanded in terms of cumulants according to Eq. (6.1). The removal of terms
involving self-contractions (i.e., terms in which a cumulant tensor is only contracted to
either T̂ † or T̂ ) yields the expression for 〈Ψ0|T̂ †T̂ |Ψ0〉 as evaluated with the extended
Wick theorem. The current implementation of the GNO-based scheme is limited to
ic-MRCCSD and a full diagonalization of the metric matrix,

s̃ = Ũ†S̃Ũ. (A.15)

As the cluster operator and the residual are still expressed with respect to |0〉 as Fermi
vacuum, the additional transformation between the two normal orderings according to
Eqs. (3.60) and (3.61) is taken into account by modifying the transformation matrix X̃
and the projector P̃ as follows:

X = YX̃ =
(

X̃1 + Y12X̃21 X̃12 + Y12X̃2

X̃21 X̃2

)
, (A.16)

P = YP̃Y−1 =
(

P̃1 + Y12P̃21 P̃12 + Y12P̃2 − P̃1Y12 −Y12P̃21Y12

P̃21 P̃2 − P̃21Y12

)
. (A.17)

Equations (3.57) to (3.59) imply that Y12 is essentially given by the negative one-particle
density matrix,

Y1,1
12 = −γ1, Y1,0

12 = −δ⊗Aγ1, Y0,1
12 = −δ⊗Aγ1. (A.18)

Figure A5a illustrates how the transformation with Y from the left is applied to both the
initial tensors X̃ and P̃. The additional transformation of P̃ with Y−1 from the right is
exemplified in Fig. A5b.

The evaluation of the preconditioner, a vector containing the diagonal elements of
the approximate Jacobian A defined in Eq. (5.8), is performed in two steps: First, the
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X
or

P′
=

X̃
or

P̃
+

X̃
or

P̃
P = P′ + P′

×

(a) (b)

Figure A5: Sample blocks of the modified (a) transformation matrix and (b) projector when
using the generalized normal ordering.

inactive part of the effective Fock operator from Eq. (4.1) is computed and its diagonal
elements are added to the preconditioner according to Eq. (5.10) and the first summand
in Eq. (5.9). However, the restriction of the unit tensors 1nh,npact,η to nonredundant excita-
tions is dropped. This allows us to compute the preconditioner only once, as it already
contains nonzero elements for nearly linearly dependent excitations that might enter the
calculation after a couple of iterations. Second, the diagonal blocks of the matrices Anh,np

act

defined in Eq. (5.11) are explicitly evaluated before adding their diagonal elements as
well. In GeCCo, the operator for Aact has the same topological structure as the one for
the active part of the metric. The formula for Aact is derived starting from

〈0|Ĉ†0Λ̂[Ĥ, T̂ ]Ĉ0|0〉. (A.19)

The insertion of the transformation formulas for Λ̂ and T̂ (see Fig. A4c for an example
of the latter) and double differentiation with respect to both λ′ and t′ directly yields the
desired expression.

The algorithm for the iterative solution of the ic-MRCC equations works as illus-
trated in Fig. A6. Starting from a cluster operator set to zero and the CASSCF wave
function as a reference, the residual Ω is computed. Although not strictly necessary, the
current ic-MRCC energy is also evaluated at this point, see Eq. (3.3). After evaluating
and diagonalizing the metric matrix, the residual is transformed to the orthogonal ex-
citation basis with help of the matrix X†. In this step, the residual’s matrix element
list is assigned to an operator with the same structure as T̂ . This implicit reordering of
the residual operator goes along with an additional sign change for some blocks, which
has to be explicitly taken care of. According to my experience, it is beneficial for the
convergence rate to perform the amplitude update in the orthogonalized basis, using the
diagonal elements of A as a denominator. If we estimate the impact of a change in
the cluster amplitudes on the residual by considering only terms linear in T̂ , this choice
corresponds to approximating the Hamiltonian by the zeroth-order Hamiltonian Ĥ(0)

defined in Eq. (5.14). The condition

0 != Ω′ρ + ∆Ω′ρ ≈ Ω′ρ +Aρρ∆t
′
ρ (A.20)

then immediately leads to the equation for the amplitude update shown in Fig. A6. Ap-
plying the DIIS method [300] for an enhanced convergence, both the amplitude guess
t[n] = t + ∆t[n] in the n-th iteration and the corresponding increment ∆t[n] are stored
as subspace vectors. The amplitude vectors are then extrapolated by the linear combi-
nation textr =

∑
nwnt

[n], with coefficients wn chosen such that they minimize the norm
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T̂ = 0, |Ψ0〉 = |ΨCASSCF〉

solve 〈Φµ|H̄|Ψ0〉 = Ecµ evaluate Ω

diagonalize S → X, X†, P

transform Ω X†
−−→ Ω′

amplitude update: ∆t′ρ = −Ω′ρ/A
ρ
ρ

back transform ∆t′ X−→ ∆t

DIIS extrapolation and projection: textr
P−→ t

|Ω′| ?
< ε done

yesno

Figure A6: Iterative solution of the ic-MRCC equations.

of the extrapolated error vector ∆textr =
∑

nwn∆t[n]. In the calculations performed in
this work, the subspace contained vectors from up to the last eight iterations. As the
amplitude vectors from different iterations belong to different metric matrices, the re-
dundant components of textr with respect to the current metric are removed by applying
the projector P. Note that this step is not needed when using a fixed reference function,
because the transformation matrices satisfy X† = X†P and X = PX and thus already
account for the projection. The iterative cycle is continued as long as the norm of the
residual in the orthogonal excitation basis still exceeds a convergence threshold ε. Before
evaluating the next residual, the reference function is updated by solving the eigenvalue
equation (3.5). This is done as described in app. A.1.3, with the difference that the
matrix vector product Hc contains the similarity transformed Hamiltonian instead of Ĥ.
Upon convergence, the remaining error in the ic-MRCC energy in Eh is usually less than
the threshold ε. I have also implemented an alternative algorithm in which each iteration
involves only a single update step for the reference function, carried out simultaneously
with the amplitude update according to

∆cµ = −〈Φµ|(H̄ − E)|Ψ0〉
〈Φµ|Ĥ|Φµ〉 − E

, (A.21)
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followed by a normalization of the reference function. However, this scheme was found
to provide convergence only for CAS(2,2) cases.

The correctness of the implementation of ic-MRCC theory relies to a great extent
on the reliability of the automated tools of the GeCCo program, which is supported by
the successful implementation of various advanced electronic structure methods such as
SRCC methods with explicitly correlated techniques (e.g., Ref. [44]). The implementa-
tion of multireference techniques started with the implementation of uncontracted MRCI
and an internally contracted variant thereof, allowing direct comparisons with literature
values at each stage. In order to verify the correctness of the implementation of ic-
MRCCSD, it was compared with Evangelista’s FCI-based pilot implementation [38] for
a small example (BeH2 model with the double-zeta basis set from Ref. [38] and using
the full orthogonalization scheme), revealing an agreement of the total energies within
10−10 Eh [P5]. A number of internal checks used to verify individual parts of the imple-
mentation lend further credence to its correctness beyond this single example. These tests
included random samples of terms in the ic-MRCC equations, checks of the idempotency
of projectors and the fulfillment of X†SX = 1η as well as a numerical verification of for-
mal properties such as the orbital invariance of the theory and its core-extensivity (for the
sequential orthogonalization) or full size-extensivity (for the GNO-based scheme) [P4].

A.2 Data corresponding to the figures

Table A1: Primary data for Fig. 12 (BeH2 model system). FCI energies are reported in Eh. The
results for all other methods are given as energy differences to FCI in mEh.

z / a0 FCIa CASSCF MRCISDa CASCCSDb ic-MRCCSDc ic-MRCCSDTc

(Φ1) (Φ2)

0 −15.8354756 62.2034 1.0819 0.4823 0.2970 0.3848 −0.0005
1 −15.8022622 64.4918 1.1675 0.4926 0.3163 0.4091 0.0025
2 −15.7366210 71.5254 1.4778 0.5561 0.5421 0.6719 0.0127
2.5 −15.6836446 76.8706 2.0498 1.2164 0.8837 1.0018 0.0197
2.625 −15.6696765 77.8854 2.2859 1.5002 1.0879 1.2288 0.0270
2.6875 −15.6633811 78.2010 2.4405 1.6404 1.2583 1.4163 0.0401
2.725 −15.6601303 78.3207 2.5635 1.7083 1.4045 1.5690 0.0557
2.75 −15.6583118 78.3736 2.6673 1.7388 1.5272 1.6905 0.0705
2.775 −15.6568705 78.4035 2.7944 1.7513 1.6714 1.8247 0.0893
2.8125 −15.6556164 78.3776 3.0329 1.7261 1.9146 2.0243 0.1234
2.85 −15.6556594 78.1739 3.3104 1.6484 2.1377 2.1546 0.1627
2.875 −15.6564315 77.8881 3.4916 1.5793 2.2386 2.1672 0.1881
2.9 −15.6577388 77.4932 3.6482 1.5081 2.2876 2.1162 0.2034
2.95 −15.6616025 76.5634 3.8517 1.3825 2.2502 1.8953 0.1817
3 −15.6665607 75.6615 3.9301 1.2866 2.1077 1.6579 0.1260
3.1 −15.6780097 74.0973 3.8985 1.1550 1.7575 1.3496 0.0570
3.25 −15.6962459 72.0535 3.6951 1.0186 1.3355 1.1301 0.0404
3.5 −15.7252893 68.9328 3.2990 0.8291 0.9112 0.9036 0.0377
4 −15.7605670 63.3380 2.6397 0.4909 0.4716 0.5228 0.0203

a Published in Ref. [P1].
b Computed with Lucia [138].
c Published in Ref. [P3].
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A APPENDIX

Table A3: Primary data for Fig. 13 (dissociation of HF). FCI energies are reported in Eh. The
results for all other methods are given as energy differences to FCI in mEh.

RH–F / a0 FCIa CASSCF MRCI Mk-MRCCb ic-MRCCd

SDb SDTQc SD SDT SD SDT

1 −99.555490 88.647 2.776 0.062 1.254 −0.004 1.169 −0.083
1.25 −99.972487 93.637 2.958 0.058 1.279 0.092 1.146 −0.065
1.5 −100.113242 97.390 3.118 0.055 1.372 0.194 1.147 −0.057
1.733 −100.146457 99.730 3.241 0.053 1.505 0.288 1.153 −0.056
1.75 −100.146980 99.855 3.249 0.053 1.516 0.295 1.154 −0.056
2 −100.138922 100.966 3.347 0.054 1.682 0.391 1.155 −0.057
2.25 −100.115746 100.746 3.412 0.057 1.836 0.484 1.151 −0.058
2.5 −100.088759 99.327 3.433 0.061 1.955 0.567 1.146 −0.061
2.75 −100.062848 96.943 3.405 0.065 2.028 0.630 1.147 −0.064
3 −100.040049 93.912 3.327 0.070 2.053 0.653 1.158 −0.069
3.466 −100.007886 87.825 3.085 0.076 1.954 0.463 1.196 −0.083
3.5 −100.006069 87.410 3.066 0.077 1.937 0.433 1.200 −0.083
4 −99.986564 82.448 2.796 0.081 1.404 −0.234 1.229 −0.094
5 −99.973063 78.570 2.561 0.085 0.146 −0.473 1.226 −0.096
5.199 −99.972218 78.325 2.546 0.085 0.251 −0.364 1.223 −0.097
6 −99.970733 77.905 2.524 0.086 0.889 −0.152 1.216 −0.095
8.665 −99.970266 77.792 2.519 0.086 1.211 −0.105 1.213 −0.094
10 −99.970264 77.792 2.519 0.086 1.211 −0.105 1.213 −0.094

a From Ref. [140].
b From Ref. [141].
c Published in Ref. [P1].
d Close to results published in Ref. [P1], which use up to fourfold commutator terms in the eigensystem.
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A.2. Data corresponding to the figures

Table A4: Primary data for Fig. 14 (dissociation of LiF). FCI energies are reported in Eh. The
results for all other methods are given as energy differences to FCI in mEh. Values in parentheses
indicate that small metric eigenvalues (below η = 10−4) were excluded.

RLi–F / a0 FCIa SA-CASSCF MRCISDa ic-MRCCSDb

Sequential orth. GNO-based

State X 1Σ+

2.5 −107.0960120 200.3848 10.2841 2.4595 2.7971
3 −107.1305303 202.7691 11.0058 2.3541 3.2900
3.5 −107.1190210 204.5679 11.6251 2.4196 3.5533
4 −107.0967924 205.8001 12.1408 2.5925 3.7522
6 −107.0175557 203.5872 12.9438 2.8080 4.1418
8 −106.9718998 193.5350 12.8488 2.6331 4.1714
10 −106.9451020 172.7575 12.7636 2.4743 4.1304
10.4 −106.9410635 168.8929 12.7444 2.4529 4.1266
10.8 −106.9373443 165.2732 12.7209 2.4365 4.1269
11.2 −106.9339082 161.8932 12.6891 2.4265 4.1342
11.6 −106.9307246 158.7404 12.6394 2.4257 4.1542
12 −106.9277679 155.7998 12.5421 2.4405 4.2014
12.5 −106.9243614 152.4019 12.1054 2.5104 4.3745
13 −106.9212629 149.3052 10.2471 2.7992 4.7625
13.5 −106.9186499 146.6909 7.8445 3.7045 3.9103
14 −106.9178186 145.8568 7.0674 3.2299 2.8987
14.5 −106.9177341 145.7690 7.0025 2.5307 2.5004
15 −106.9177131 145.7446 6.9896 2.4550 2.4521
15.2 −106.9177091 145.7393 6.9875 2.4484 2.4473
15.6 −106.9177043 145.7320 6.9852 2.4429 2.4432
20 −106.9176971 145.7076 6.9812 2.4395 2.4404
30 −106.9176964 145.6971 6.9801 2.4394 2.4403

State B 1Σ+

2.5 −106.8152906 144.4456 6.6396 2.4778 2.4954
3 −106.8713073 145.1999 6.8221 2.5476 2.5608
3.5 −106.8888907 146.9605 7.1397 2.6826 2.6915
4 −106.8957828 148.8794 7.4138 2.7930 2.7970
6 −106.9082536 154.4629 7.5995 2.8059 2.7977
8 −106.9147983 163.2704 7.3625 2.6399 2.6345
10 −106.9169531 183.5275 7.2014 2.5339 2.5313
10.4 −106.9171270 187.3352 7.1883 2.5218 2.5199
10.8 −106.9172558 190.9052 7.1833 2.5123 2.5111
11.2 −106.9173501 194.2411 7.1898 2.5052 2.5048
11.6 −106.9174175 197.3549 7.2170 2.5005 2.5010
12 −106.9174630 200.2610 7.2944 2.4985 2.5003
12.5 −106.9174916 203.6217 7.7093 2.5009 2.5062
13 −106.9174727 206.6870 9.5490 2.5124 2.5309
13.5 −106.9172010 209.2752 11.9359 2.5182 (2.3228) (2.3173)
14 −106.9153559 210.0876 12.6999 2.4618 (2.9628) (2.9625)
14.5 −106.9129511 210.1576 12.7541 2.2589 (2.9908) (2.9908)
15 −106.9106515 210.1679 12.7584 (2.9905) (2.9905)
15.2 −106.9097706 210.1683 12.7576 (2.9899) (2.9899)
15.6 −106.9080748 210.1673 12.7550 (2.9889) (2.9889)
20 −106.8939171 210.1631 12.7432 (2.9873) (2.9873)
30 −106.8772326 210.1740 12.7448 (2.9867) (2.9867)

a Published in Ref. [P1].
b Note that the ic-MRCCSD data published in Ref. [P1] is based on a different scheme to remove
redundancies between singles and doubles (the ‘highest rank only’ scheme).
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Table A5: Primary data for Fig. 16 (symmetric dissociation of H2O). FCI energies are reported
in Eh. The results for all other methods are given as energy differences to FCI in mEh. For
additional results from the literature, see Ref. [41].

RO–H/Re FCIa CASSCF ic-MRCCSD

CAS(4,4) CAS(6,5) CAS(4,4)a

1.0 −76.2388502 163.5374 1.3144 1.3026
1.2 −76.1802630 160.0714 1.2280 1.2749
1.4 −76.0990342 154.1005 1.0865 1.1867
1.6 −76.0290190 146.2722 0.9339 1.0539
1.8 −75.9781502 138.4840 0.8353 0.9496
2.0 −75.9455881 132.1731 0.7173 0.8295
2.2 −75.9272311 127.8834 0.6312 0.7310
2.4 −75.9179257 125.3881 0.5720 0.6604
2.6 −75.9134107 124.0672 0.5364 0.6162
2.8 −75.9111780 123.3829 0.5415 0.6583
3.0 −75.9100279 123.0206 0.5281 0.6696
3.2 −75.9094154 122.8218 0.5973 0.7703
3.4 −75.9090795 122.7088 0.6202 0.8197
3.6 −75.9088890 122.6433 0.6175 0.8156
3.8 −75.9087777 122.6051 0.7580 0.8481

a Published in Refs. [P3,P5].

Table A6: Primary data for Figs. 22a and 25a (symmetric dissociation of H2O, ic-MRCCSD),
given as energy differences to FCI in mEh.

RO–H/Re Sequential orthogonalization Full orth. GNO-based

η = 10−2 η = 10−3 η = 10−4 η = 10−6 η = 10−6

1.0 3.0704 1.3601 1.3323 1.3111 1.3158
1.2 1.8450 1.3758 1.3015 1.2843 1.2900
1.4 1.8296 1.3107 1.1944 1.1935 1.1974
1.6 1.9172 1.2881 1.0888 1.0577 1.0599
1.8 1.5249 1.2226 0.9953 0.9502 0.9514
2.0 1.2961 1.1021 0.8908 0.8291 0.8308
2.2 1.0884 1.0884 0.8219 0.7304 0.7324
2.4 1.0725 0.9654 0.8891 0.6597 0.6617
2.6 0.9561 0.8960 0.8960 0.6154 0.6173
2.8 0.9013 0.9013 0.8586 0.6574 0.6591
3.0 0.8752 0.8752 0.8382 0.6686 0.6703
3.2 0.8619 0.8619 0.8619 0.7690 0.7710
3.4 0.8546 0.8546 0.8546 0.8181 0.8202
3.6 0.8504 0.8504 0.8504 0.8140 0.8161
3.8 0.8480 0.8480 0.8480 0.8464 0.8485
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A.2. Data corresponding to the figures

Table A7: Primary data for Fig. 17 (N2 triple bond breaking). FCI energies are reported in Eh.
The results for all other methods are given as energy differences to FCI in mEh. For additional
results from the literature, see Refs. [42, 93,141,158,160].

RN–N / a0 FCIa CASSCF MRCIb ic-MRCCSD

SD SDTQ (η = 10−4) (η = 10−6)c

2.05 −109.2748399 186.5437 6.5876 0.0844 1.6303 1.6460
2.1 −109.2781206 187.3475 6.6270 0.0838 1.6296 1.6479
2.15 −109.2775711 188.1260 6.6636 0.0831 1.6295 1.6537
2.3 −109.2593821 190.3372 6.7601 0.0811 1.5544 1.6406
2.5 −109.2136504 193.0263 6.8682 0.0787 1.5233 1.5329
2.75 −109.1470625 195.8566 6.9884 0.0770 1.5155 1.2097
3 −109.0861916 197.6788 7.1006 0.0772 1.4404 1.3112
3.25 −109.0381329 197.8324 7.1820 0.0792 1.3266 1.4068
3.5 −109.0045545 195.9710 7.1870 0.0817 1.4386 1.4464
3.75 −108.9837811 192.7618 7.1073 0.0835 1.3464 1.2829
4 −108.9721625 189.4140 6.9909 0.0845 1.2407 1.1284
4.5 −108.9627305 184.7144 6.8108 0.0856 1.2071 0.9200
5 −108.9597981 182.4456 6.7293 0.0867 1.4915 0.8925
5.5 −108.9586119 181.3766 6.6915 0.0874 1.6199 0.9530
6 −108.9580173 180.8423 6.6683 0.0876 1.5645 1.2157
7 −108.9574155 180.4223 6.6417 0.0874 1.5263 1.5263
8 −108.9571750 180.3118 6.6280 0.0824 1.5135 1.5135
9 −108.9571224 180.2905 6.6306 0.0870 1.5166 1.5166
10 −108.9571109 180.2823 6.6305 0.0874 1.5166 1.5166

a Computed with Lucia [138].
b Published in Ref. [P1].
c Curve published in Ref. [P5].
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A.2. Data corresponding to the figures
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Table A10: Primary data for Fig. 22b (N2 triple bond breaking, ic-MRCCSD), given as energy
differences to FCI in mEh.

η \ RN–N = 2.1 a0 2.3 a0 2.5 a0 2.75 a0 3 a0

1 · 10−2 2.7269 2.9362 3.0107 3.9063 3.6452
3 · 10−3 2.2053 2.4503 2.3759 2.6185 2.3597
1 · 10−3 1.9321 1.9778 1.9795 1.7177 1.8356
3 · 10−4 1.8112 1.7019 1.6521 1.5392 1.5403
1 · 10−4 1.6296 1.5544 1.5233 1.5155 1.4404
3 · 10−5 1.5632 1.5501 1.5633 1.5473 1.4382
1 · 10−5 1.5669 1.6312 1.6115 1.5559 1.3632
3 · 10−6 1.6473 1.6448 1.6224 1.3942 1.3602
1 · 10−6 1.6479 1.6406 1.5329 1.2097 1.3112
3 · 10−7 1.4937 1.5346 0.5742 1.1447 1.3112
1 · 10−7 1.4611 1.4246 0.5742 1.1447 1.3112
3 · 10−8 1.3767 1.2124a 0.0059 1.1447 1.3112
1 · 10−8 1.3767 −1.6505a 0.0059 1.1447 1.3112
3 · 10−9 1.4296 −1.6505a 0.0059 1.1447 1.3112
1 · 10−9 −8.4653a −1.6505a 0.0059 1.1447 1.3112

a Reference coefficients cµ fixed at converged values from previous calculation (with larger η).
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A.2. Data corresponding to the figures
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A.2. Data corresponding to the figures

Table A12: Primary data for Fig. 28 (BeH2 model system), as published in Ref. [P3]. The results
for the various ic-MRCCx methods are given as energy differences to FCI in mEh.

Simultaneous ansatz Sequential ansatz

z / a0 SD(T) SDT-1 SD SD(T) 3 SDT

0 0.0768 0.0765 0.3846 0.0787 0.0781 −0.0010
1 0.0886 0.0859 0.4097 0.0913 0.0881 0.0029
2 0.1133 0.1058 0.6721 0.1132 0.1183 0.0126
2.5 0.2225 0.2326 1.0084 0.2259 0.2384 0.0195
2.625 0.3123 0.3176 1.2285 0.3053 0.3284 0.0158
2.6875 0.3863 0.3836 1.4036 0.3633 0.3913 0.0142
2.725 0.4435 0.4329 1.5421 0.4032 0.4329 0.0143
2.75 0.4872 0.4695 1.6495 0.4306 0.4601 0.0146
2.775 0.5345 0.5084 1.7648 0.4576 0.4845 0.0142
2.8125 0.6078 0.5670 1.9254 0.4940 0.5080 0.0100
2.85 0.6642 0.6100 2.0070 0.5124 0.4959 0.0008
2.875 0.6730 0.6145 1.9900 0.5024 0.4581 −0.0046
2.9 0.6477 0.5905 1.9234 0.4723 0.4027 −0.0064
2.95 0.5200 0.4756 1.7301 0.3838 0.2935 0.0001
3 0.3838 0.3560 1.5533 0.3077 0.2312 0.0114
3.1 0.2488 0.2492 1.3215 0.2370 0.2107 0.0282
3.25 0.2223 0.2431 1.1259 0.2221 0.2375 0.0367
3.5 0.2187 0.2433 0.8994 0.2135 0.2406 0.0331
4 0.1429 0.1584 0.5199 0.1386 0.1566 0.0172

Table A13: Primary data for Fig. 29 (H2O model system). The results for the various ic-
MRCCSDx methods (using a simultaneous exponential ansatz) are given as energy differences
to FCI in mEh.

RO–H/Re (T){2}a (T){3}a (T){4}a,b (T){3}it (T){3}simp T-1{3}a T{3}a

1.0 0.5146 0.3521 0.3251 0.3516 0.3637 0.3578 0.1527
1.2 0.5452 0.3439 0.3340 0.3478 0.3490 0.3487 0.1624
1.4 0.5236 0.3227 0.3409 0.3293 0.3229 0.4287 0.1809
1.6 0.4700 0.2919 0.2977 0.2991 0.3029 0.3310 0.1783
1.8 0.4086 0.2538 0.2472 0.2616 0.2810 0.2768 0.1686
2.0 0.3426 0.2162 0.2080 0.2247 0.2565 0.2350 0.1448
2.2 0.2809 0.1850 0.1803 0.1938 0.2357 0.2007 0.1257
2.4 0.2338 0.1638 0.1619 0.1725 0.2214 0.1770 0.1129
2.6 0.2043 0.1520 0.1513 0.1603 0.2138 0.1632 0.1058
2.8 0.1994 0.1577 0.1574 0.1658 0.1903 0.1667 0.1020
3.0 0.1935 0.1579 0.1578 0.1666 0.1923 0.1670 0.1018
3.2 0.2092 0.1755 0.1754 0.1869 0.1755 0.1794 0.0843
3.4 0.2165 0.1853 0.1852 0.1969 0.1681 0.1884 0.0857
3.6 0.2144 0.1846 0.1846 0.1962 0.1675 0.1881 0.0860
3.8 0.2167 0.1876 0.1876 0.2003 0.1716 0.1928 0.0867

a Published in Ref. [P3].
b Excluding excitation types âvwxuij and âxabuvw, which are redundant for CAS(4,4) when η → 0.
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A.2. Data corresponding to the figures

Table A15: Primary data for Fig. 31: Equilibrium structure (in Å and degree), harmonic vibra-
tional frequencies (in cm−1) and absolute energies (in Eh) of ozone (published in Ref. [P3]).

Method Basis re θe ω1(a1) ω2(a1) ω3(b2) E

CCSDa DZ 1.2590 117.3 1251 753 1237
TZ 1.2500 117.6 1278 763 1266
QZ 1.2438 117.7 1294 771 1282

CCSD(T)b DZ 1.284 116.6 1118 704 977
TZ 1.275 116.9 1153 716 1054
QZ 1.269 117.1 1169 725 1081
5Z 1.267 117.1
5Z’ 1.268 117.1 1169 725 1079

CCSDT DZa 1.2834 116.5 1127 706 1065
TZb 1.274 116.8 1163 717 1117

Mk-MRCCSD DZa 1.2764 115.9 1146 728 1239
TZa 1.2663 116.3 1180 739 1289
QZa 1.2594 116.5 1198 748 1310
5Zc 1.2579 116.5 1203 751 1314

Mk-MRCCSD(T)c TZ 1.2897 116.1 1081 694 1212
QZ 1.2829 116.3 1096 702 1141
5Z 1.2814 116.3 1097 704 1048

ic-MRCCSD DZ 1.2783 116.14 1135 724 1178 −224.89687
TZ 1.2677 116.48 1172 736 1238 −225.10788
QZ 1.2607 116.68 1192 746 1261 −225.17398
5Z’ 1.2602 116.72 1192 746 1261 −225.19133

ic-MRCCSD(T) DZ 1.2870 116.23 1102 702 1051 −224.91239
TZ 1.2782 116.54 1136 712 1107 −225.13545
QZ 1.2714 116.73 1153 721 1135 −225.20492
5Z’ 1.2710 116.75 1152 721 1130 −225.22351

ic-MRCCSD(T)it DZ 1.2870 116.23 1102 702 1050 −224.91239
TZ 1.2782 116.54 1136 712 1106 −225.13546
QZ 1.2714 116.73 1153 721 1127 −225.20494

ic-MRCCSDT-1 DZ 1.2923 116.24 1076 688 993 −224.91529
TZ 1.2835 116.55 1111 699 1053 −225.13910
QZ 1.2767 116.73 1127 708 1074 −225.20884

ic-MRCC3 (seq.) DZ 1.2922 116.25 1074 688 992 −224.91508
TZ 1.2836 116.56 1107 699 1050 −225.13902
QZ 1.2767 116.74 1123 708 1071 −225.20878

ic-MRCCSDT DZ 1.2914 116.26 1082 690 1005 −224.91499
TZ 1.2819 116.56 1118 703 1069 −225.13752

Experiment 1.2728d 116.75d 1133e 715e 1087e

a From Ref. [91].
b From Ref. [211].
c From Ref. [189].
d From Ref. [207].
e From Ref. [208].
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Table A16: Primary data for Figs. 35a and 35b: Cumulant norms ||λn|| for the H2O model.

n

RO–H/Re 1 2 3 4 5 6 7 8

1.0 1.97591 0.22266 0.03323 4.667·10−3 9.670·10−4 1.266·10−4 2.959·10−6 1.272·10−6

1.2 1.95017 0.32488 0.06646 1.201·10−2 3.006·10−3 5.163·10−4 2.986·10−5 9.432·10−6

1.4 1.89807 0.47740 0.12660 3.173·10−2 7.671·10−3 1.802·10−3 2.949·10−4 7.858·10−6

1.6 1.81242 0.67305 0.20398 8.350·10−2 1.600·10−2 5.536·10−3 3.177·10−4 9.768·10−5

1.8 1.70233 0.88229 0.26259 1.915·10−1 3.194·10−2 2.505·10−2 5.037·10−3 6.021·10−3

2.0 1.59235 1.06450 0.27160 3.453·10−1 5.109·10−2 8.608·10−2 1.160·10−2 3.689·10−2

2.2 1.50987 1.18825 0.23842 4.872·10−1 6.596·10−2 1.697·10−1 8.615·10−3 8.930·10−2

2.4 1.46201 1.25610 0.19107 5.776·10−1 7.074·10−2 2.316·10−1 2.796·10−3 1.302·10−1

2.6 1.43784 1.28973 0.14597 6.243·10−1 6.387·10−2 2.631·10−1 2.123·10−3 1.509·10−1

2.8 1.42602 1.30621 0.10844 6.471·10−1 5.173·10−2 2.771·10−1 2.480·10−3 1.597·10−1

3.0 1.42017 1.31444 0.07917 6.582·10−1 3.946·10−2 2.832·10−1 2.201·10−3 1.635·10−1

3.2 1.41723 1.31860 0.05716 6.637·10−1 2.913·10−2 2.860·10−1 1.738·10−3 1.651·10−1

3.4 1.41573 1.32071 0.04092 6.664·10−1 2.109·10−2 2.874·10−1 1.299·10−3 1.659·10−1

3.6 1.41497 1.32179 0.02907 6.679·10−1 1.507·10−2 2.880·10−1 9.428·10−4 1.663·10−1

3.8 1.41459 1.32234 0.02047 6.686·10−1 1.065·10−2 2.884·10−1 6.710·10−4 1.665·10−1

∞ 1.41421 1.32288 0 0.66927 0 0.28868 0 0.16667

Table A17: Primary data for Fig. 36 (symmetric dissociation of H2O, ic-MRCCSD), given as
energy differences to FCI in mEh. ‘n.c.’ stands for ‘not converged’.

η = 10−2 η = 10−3 η = 10−4

RO–H/Re nmax = 3 nmax = 2 nmax = 3 nmax = 2 nmax = 3 nmax = 2

1.0 3.0703 3.1971 1.3592 n.c. 1.3353 n.c.
1.2 1.8416 1.9424 1.3736 n.c. 1.2974 n.c.
1.4 1.8212 2.2454 1.3057 n.c. 1.1846 n.c.
1.6 1.9104 2.5266 1.2873 n.c. 1.1057 n.c.
1.8 1.5432 2.0550 1.2466 n.c. 1.0613 n.c.
2.0 1.3438 1.6939 1.1626 n.c. 1.0337 n.c.
2.2 1.1491 1.3683 1.1491 1.3683 0.9823 n.c.
2.4 1.1189 1.1990 1.0146 1.0940 0.9267 n.c.
2.6 0.9879 1.0139 0.9296 0.9514 0.9296 n.c.
2.8 0.9229 0.9320 0.9229 0.9320 0.8816 n.c.
3.0 0.8910 0.8947 0.8910 0.8947 n.c. n.c.
3.2 0.8745 0.8763 0.8745 0.8763 0.8745 0.8763
3.4 0.8655 0.8664 0.8655 0.8664 0.8655 0.8664
3.6 0.8605 0.8610 0.8605 0.8610 0.8605 0.8610
3.8 0.8577 0.8579 0.8577 0.8579 0.8577 0.8579
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A.2. Data corresponding to the figures
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Table A20: Primary data for Fig. 38 (dissociation of Cr2), given as total energies in Eh. ‘n.c.’
indicates calculations that either showed no or very slow convergence.

RCr–Cr η = 10−3, nmax = 4 η = 10−2, nmax = 4

/ Å CASSCF ic-MRCCSD ic-MRCCSD(T){3} ic-MRCCSD ic-MRCCSD(T){3}

1.5 -2099.226982 -2100.317734 -2100.343681 -2100.311148 -2100.338353
1.58 -2099.244657 -2100.336510 -2100.362800 -2100.328546 -2100.356301
1.63 -2099.249103 -2100.341277 -2100.367683 -2100.333898 -2100.361714
1.6788 -2099.250963 -2100.342715 -2100.369261
1.68 -2099.250991 -2100.334995 -2100.362990
1.73 -2099.251802 -2100.342265 -2100.368881 -2100.334567 -2100.362663
1.78 -2099.252512 -2100.341161 -2100.367694 -2100.333178 -2100.361335
1.83 -2099.253640 -2100.339718 -2100.366153 n.c.
1.9 -2099.256266 -2100.328919 -2100.357179
2.0 -2099.262005 -2100.335341 -2100.361609 -2100.326012 -2100.354453
2.1 -2099.269181 n.c.
2.2 -2099.276604 n.c. -2100.323922 -2100.353437
2.3 -2099.283417 -2100.325602 -2100.355114
2.4 -2099.289204 n.c. -2100.327221 -2100.356497
2.5 -2099.293860 -2100.328149 -2100.357166
2.7 -2099.300089 n.c. -2100.327901 -2100.356397
2.9 -2099.303177 -2100.325496 -2100.353488
3.1 -2099.304271 n.c. -2100.321916 -2100.349442
3.3 -2099.304249 -2100.317988 -2100.345106
∞ -2099.299459 -2100.299717 -2100.325380 -2100.299717 -2100.325380

A.3 Publications

[P1] Pilot applications of internally contracted multireference coupled cluster theory, and
how to choose the cluster operator properly
M. Hanauer and A. Köhn, J. Chem. Phys. 134, 204111 (2011).

[P2] Meaning and magnitude of the reduced density matrix cumulants
M. Hanauer and A. Köhn, Chem. Phys. 401, 50 (2012).

[P3] Perturbative treatment of triple excitations in internally contracted multireference
coupled cluster theory
M. Hanauer and A. Köhn, J. Chem. Phys. 136, 204107 (2012).

[P4] Communication: Restoring full size extensivity in internally contracted multirefer-
ence coupled cluster theory
M. Hanauer and A. Köhn, J. Chem. Phys. 137, 131103 (2012).

[P5] A sequential transformation approach to the internally contracted multireference
coupled cluster method
F.A. Evangelista, M. Hanauer, A. Köhn and J. Gauss, J. Chem. Phys. 136, 204108
(2012).

[P6] State-specific multireference coupled-cluster theory
A. Köhn, M. Hanauer, L.A. Mück, T.-C. Jagau and J. Gauss, WIREs Comput.
Mol. Sci. 3, 176 (2013).

[P7] Explicitly correlated internally contracted multireference coupled-cluster singles and
doubles theory: ic-MRCCSD-F12
W. Liu, M. Hanauer and A. Köhn, Chem. Phys. Lett. 565, 122 (2013).
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