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Abstract

A symbiotic diffusion is a solution to the system of stochastic differential equations{
dYt =

√
bYtZt dW 1

t ,

dZt =
√
bYtZt dW 2

t ,

where W 1 and W 2 are correlated Brownian motions with constant correlation coef-
ficient ρ ∈ [−1, 1]. We are concerned with the construction of so-called lookdown
representations for symbiotic diffusions and their discrete mass analoga. A lookdown
representation is a particle model where the particles, representing families or lin-
eages, are assigned levels that evolve in time and govern the reproductive dynamics.
Lookdown representations carry genealogical information. We study models, where
the levels take non discrete values in R+. This kind of lookdown construction was
introduced for the Dawson-Watanabe process by Kurtz and Rodrigues in 2011 (see
[KR11]).

The construction in [KR11] relies on a deterministic evolution of the levels. We modify
their approach insofar as the level motion will be random or deterministic only given
the level configuration of the partner population. We explore possible birth and death
mechanisms that allow for coupling of the branching events in both populations. In
the discrete mass setting, we construct lookdown representations for the whole range
of ρ ∈ [−1, 1]. In contrast to the Kurtz-Rodrigues model, continuity of the level paths
is lost and, in general, only right continuity remains. In the diffusive limit however,
the discontinuous paths converge to conditional geometric Brownian motions. We
construct lookdown representations of symbiotic diffusions for ρ ∈ [0, 1) as weak limits
of discrete mass models. For ρ = 0 (the mutually catalytic case) we also give an explicit
construction.
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6.1. The progenitor-level process Ǔ r . . . . . . . . . . . . . . . . . . . . . . . 83
6.2. The progenitor-mass process X̌r . . . . . . . . . . . . . . . . . . . . . . 88

6.2.1. A few words on tightness of the progenitor-density process . . . . 92
6.3. The progenitor-mass process as semimartingale . . . . . . . . . . . . . . 93

6.3.1. Informal considerations about the limit X̌ of the progenitor-
density process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

VII



Contents

A. Appendix 99
A.1. Poisson random measures . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.2. Corollary to Fubini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.3. Joint tightness in D[0,∞) . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.4. Weak convergence in D[0,∞) . . . . . . . . . . . . . . . . . . . . . . . . 105
A.5. The Markov Mapping Theorem . . . . . . . . . . . . . . . . . . . . . . . 106
A.6. Generator calculations for the progenitor-level system . . . . . . . . . . 107
A.7. The semimartingale characteristics of the progenitor-mass process . . . . 114

References 119

VIII



1. Introduction

Lookdown processes are probabilistic particle representations for the genealogies of
branching processes (with or without spatial motion) and for their diffusive limits
(for example Feller’s branching diffusion or the Dawson-Watanabe super Brownian
motion). The particles reproduce and die, and they may exhibit spatial movement in
some appropriate space, often interpreted as evolution of types. The main feature is
that each particle carries a level that governs the birth dynamics and the particle’s
time of death. Lookdown representations often exhibit a nested coupling property that
allows for elegant constructions of diffusive limits and limiting superprocesses. More
importantly, they provide (and retain in the limit) genealogical information on the
corresponding branching process.

Since the original “lookdown construction” of the Fleming-Viot measure-valued diffu-
sion, introduced by Donnelly and Kurtz in [DK96], this particular flavour of Poisson
constructions was applied to a variety of genealogical population models and particle
systems. In 1999, Donnelly and Kurtz published two articles concerning their lookdown
approach. With respect of the importance of the Fleming-Viot model for applications
in genetics and population biology, they extended their representation of this pro-
cess in [DK99a] to incorporate various selection and recombination mechanisms. In
[DK99b] they introduced a “modified lookdown construction” that provides a unified
approach to a number of particle systems with different birth and death mechanisms,
including linear and branching models. This modified lookdown approach allows for
the construction of the Dawson-Watanabe superprocess, as well as the Fleming-Viot
superprocess.

The Donnelly-Kurtz models have in common that the levels of the particles take dis-
crete values. We sketch the main idea for case of the modified lookdown from [DK99b]
with a simple branching birth and death mechanism: Let Nt = N0 +N b

t −Nd
t denote

the total population size at time t, where N b
t is the number of births up to time t and

Nd
t is the number of deaths up to time t. We choose the dynamics such that the total

mass process Nt is a simple critical Galton-Watson process. That is, N b and Nd both
have jumps of size +1 at rate Nt and the jumps come independently. The particles’
spatial locations evolve like Brownian motions between birth and death events.

Donnelly and Kurtz consider two particle representations: a classical model (I) and
their modified lookdown model (II). In the classical model, when a birth event happens,
one particle is chosen at random and gives birth to one offspring at the same location.
In case of a death event a particle is chosen at random to die. Labelling the particles
arbitrarily, we denote the particles positions by

(
Y 1
t , Y

2
t , . . . , Y

Nt
t

)
. The population at
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Chapter 1. Introduction

time t can be represented by the empirical measure

ZIt :=
Nt∑
i=1

δY it

since the enumeration was arbitrary.

In the modified lookdown model (II) the particles carry levels 1, 2, . . . , Nt. Let Xi
t

denote the spatial position of the particle with level i at time t. At the time of a death
event, the particle with the highest level dies. In case of a birth event at time t, the
levels in the population change: Two levels 1 ≤ i < j ≤ Nt are chosen at random.
The particle with level i is the parent and gives birth to a new particle with level j.
The newborn particle inherits the spatial position of its parent. All levels above j are
incremented by one. Levels below j remain unchanged (see Figure 1.1).

t

N(t)

Figure 1.1.: The modified Donnelly-Kurtz lookdown construction of a simple critical
Galton-Watson process. The name “lookdown construction” stems from
the fact that if one traces the ancestral line of one particle backwards in
time, one has to look down for the particle’s parent, when reaching its
birth event.

Let (X1
0 , X

2
0 , . . . , X

N0
0 ) have the same (exchangeable) distribution as (Y 1

0 , Y
2

0 , . . . , Y
N0

0 ).
Define the empirical measure

ZIIt :=
Nt∑
i=1

δXi
t
.

Theorem 1.1 in [DK99b] states that ZI and ZII have the same distribution, and for
all t ≥ 0, (X1

t , X
2
t , . . . , X

Nt
t ) is exchangeable. The authors show that under the proper

rescaling of the mass process, Pnt := Nn·t
n , the lookdown representation converges: Let

Nn and Xi,n correspond to the n-th stage of rescaling. The sequence of processes(
X1,n, X2,n, . . . , XNn

0 ,n
)

converges to (X1, X2, . . .) as n → ∞ and the sequence of
empirical measures

1
n

Nn
t∑

i=1
δ
Xi,n
t

2



converges in distribution to

Pt · lim
m→∞

1
m

m∑
i=1

δXi
t
,

where P is the limiting mass process.

In 2011 Kurtz and Rodrigues introduced a new type of lookdown construction in
[KR11]. The levels of the particles in this representation of the Dawson-Watanabe
superprocess are not discrete but take values in R+. (In this thesis, R+ denotes the
nonnegative numbers [0,∞).) The model is described in detail for the nonspatial
case in Section 2.1. The particles’ levels govern the birth dynamics in a way that is
essentially a continuous analogue of the birth mechanism in the discrete-level lookdown
constructions: Particles produce offspring with higher level than their own at rate
2 dtdu, where t is time and u the offspring’s level coordinate. Hence a particle with
low level produces more offspring than a high level particle, and the newborn’s level
is in a sense “uniformly distributed” above the parent’s level. The death mechanism
is fundamentally different from the one in the discrete-level constructions: The level
of a particle changes continuously in time, driven by an ordinary differential equation
(ODE). A given level goes to infinity in finite time and when it does, the corresponding
particle dies. Since the levels are all driven by the same ODE, the levels cannot
overtake. The order of a given set of levels does not change and the highest level particle
will die first. The same is true for the discrete level constructions, but there the deaths
are triggered by an external process. In the Kurtz-Rodrigues model, the remaining
lifetime of a particle is a deterministic function of its level. Since the dynamics are
tuned in such a way, that levels never overtake, the construction carries genealogical
information in a similar way as the Donnelly-Kurtz lookdown does: If we look for a
particle’s parent, we have to “look down” at particles with a lower level (see Figure
1.2). The particles with the lowest levels will have the majority of the offspring and
they will die last. They are the “progenitors” of the population. As in the Donnelly-
Kurtz model, particles are not interpreted as individuals of the branching populations,
but as lineages. One major benefit of the continuous level construction is that the
mass of the represented branching diffusion (or Dawson-Watanabe superprocess in the
spatial setting) is inherent in the level configuration since it is the asymptotic level
density. In the Donnelly-Kurtz models in contrast the mass has rather the character
of an auxiliary process that drives births and deaths at the particle stage.

The key for the construction in [KR11] is the so-called Markov Mapping Theorem (see
Theorem A.15 in [KR11] or Theorem A.5.1 in this thesis) that Kurtz first introduced
in [Kur98]. It gives conditions under which the projection of a Markov process retains
the Markov property. The heuristics behind the Markov Mapping Theorem can be
described as follows: The level dynamics are made in such a way that, at every time
t > 0, the levels in an interval [a, b] are independent and uniformly distributed, given
the total mass in [a, b]. But since the distribution of the level configuration is known,
one can “integrate out” the level information of the particles, retaining the total particle
mass. The level dynamics are tuned in such a way that the mass process performs as
desired. Note that the “uniformity” of the level system is not obvious, but the Markov
Mapping Theorem establishes this property.

3



Chapter 1. Introduction

t

u(t)

r

Figure 1.2.: The Kurtz-Rodrigues model, restricted to a level interval [0, r], is a look-
down representation of a simple critical Galton-Watson process (orange).
Compare the order of levels with Figure 1.1.

A recent example for particle representations that feature the lookdown philosophy is
the construction of a spatial Fleming-Viot process and other genealogical models by
Etheridge and Kurtz in [EK19]. The construction also relies heavily on the Markov
Mapping Theorem. The authors introduce a toolbox of birth and death mechanisms
in the continuous level setting, including multiple deaths, one for one replacement and
event based mechanisms. The different birth and death mechanisms and the appro-
priate level dynamics can be combined as independent “building blocks” in order to
assemble a particle representation. It is convenient to describe the individual mecha-
nisms in terms of Markov generators since the combination of these mechanisms simply
amounts to adding the generators.

The multiple-death mechanism in [EK19] plays an essential role in our models. It
stands halfway between the discrete level dynamics in [DK99b] and the continuous dy-
namics in [KR11]. Levels take values in R+, so the death mechanism may be combined
with birth or death mechanisms determined by the other building blocks in [EK19].
But the multiple death events are triggered by an external Poisson process, similarly
to the death events in the discrete level models. In case of a multiple death event
high level particles are killed, and the levels of the survivors jump upwards “to fill the
gaps”, thus conserving the uniform distribution of levels, without changing the order
of levels. Though the levels take values in R+, their order performs precisely a pure
death dynamics in the sense of the discrete level model described above.

In this thesis we will adapt the continuous-level lookdown approach introduced in
[KR11] and apply some of the ideas from [EK19] to obtain level representations of
symbiotic branching systems. We distinguish a continuous mass setting and a dis-
crete mass setting. Our models do not exhibit a spatial structure, so we deal with
diffusions or discrete mass branching processes. A symbiotic branching system is a
bivariate process (Yt, Zt)t≥0. The marginals Y and Z model the masses of two branch-
ing populations that feature “symbiotic” interaction. I.e., the branching rate of Yt is
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proportional to Zt and vice versa, and the pair (Y, Z) is correlated with a constant
correlation coefficient. Note that the established term “symbiotic” could be misleading
and should not be interpreted in a strict biological sense.

In the diffusive setting (Y, Z) is a solution to the system of stochastic differential
equations (SDE) {

dYt =
√
bYtZt dW 1

t

dZt =
√
bYtZt dW 2

t ,

where W 1 and W 2 are correlated Brownian motions with constant correlation coeffi-
cient ρ. The case “ρ = 0” is referred to as the mutually catalytic case. It is introduced
in [DP98] (Uniqueness is proven in [Myt98].) The “ρ ∈ (−1, 1)\{0}” cases are intro-
duced in [EF04] (The extremal case ρ = −1 is known as Wright-Fisher-Model and is
not covered in this thesis).

In the discrete mass setting, we denote the symbiotic masses by (M,N) := (Mt, Nt)t≥0
instead of (Y,Z). In [EF04], the authors propose a particle model for a discrete mass
symbiotic branching process: For every pair, consisting of one M -individual and one
N -individual, branching events happen at constant rate. In case of such an event, one
of the following alternatives happens: Either theM -particle or the N -particle branches
alone (i.e. it dies or gives birth), or a joint (simultaneous) branching event happens
that causes correlation of M and N . Positive correlation may be introduced to the
system by allowing for a simultaneous birth event in which the M -particle and the N -
particle give birth. Positive correlation may also be realized by a simultaneous death
event, where both the M - and the N -particle die. Negative correlation is realized by
allowing for a birth-death event, where one particle gives birth and the other particle
dies. We adopt the “building blocks”-idea from [EK19] and provide a toolbox of birth
and death mechanisms that allow for discrete mass symbiotic branching similar to the
Etheridge-Fleischmann particle model.

In Chapter 2, for the reader’s convenience, we briefly present the continuous-level look-
down construction from [KR11]. Then we construct a level representation of a mutually
catalytic diffusion from two independent Kurtz-Rodrigues models via a series of time
changes. In Chapter 3, we introduce a toolbox of discrete mass branching mechanisms
from which level representations of discrete mass symbiotic branching processes will
be assembled (for any correlation coefficient ρ ∈ [−1, 1]). Chapter 4 is dedicated to a
lookdown construction of Feller’s branching diffusion where the continuous level birth
mechanism of the Kurtz-Rodrigues construction is combined with a “killing” mecha-
nism similar to the multiple death mechanism in [EK19]. In Chapter 5, the ideas (and
the calculations) from Chapter 4 are used to construct a lookdown representation for
a symbiotic diffusion with ρ ∈ (0, 1) as a weak limit of models that are similar to those
of Chapter 3. In Chapter 6, we give some insight into the interplay of the low levels
in our constructions (namely our construction of Feller’s branching diffusion) and the
total mass process.

5





2. Lookdown-construction of mutually
catalytic diffusions

We call a solution (Y, Z) = (Yt, Zt)t≥0 to the stochastic system{
dYt =

√
bYtZt dW 1

t

dZt =
√
bYtZt dW 2

t ,
(2.1)

where W 1 and W 2 are independent Brownian motions and b > 0, a mutually catalytic
branching diffusion (sometimes a pair of mutually catalytic branching diffusions). If
the Brownian motions are correlated with constant correlation coefficient ρ 6= 0, we
call the system symbiotic. A solution Y to the stochastic differential equation

dYt =
√
bYt dWt + cYt dt, (2.2)

where W is a Brownian motion, we call Feller’s branching diffusion with drift or, in
the case c = 0, we call it simply Feller’s branching diffusion.

The Lookdown construction of a pair of mutually catalytic diffusions is quite straight-
forward, if one has the Kurtz-Rodrigues construction for the Feller’s branching diffusion
at hand. In the next section we introduce the latter shortly. Then we apply a cer-
tain type of generator calculation to a heuristically manifest candidate for the desired
level representation. This kind of calculation forms the basis of the Kurtz-Rodrigues
construction and we use it a lot, both to construct level representations rigorously
and to gain heuristic insights into the behaviour of a given level system. Finally, in
Section 2.3, we construct the level representation via a time change of two independent
Kurtz-Rodrigues representations of Feller’s diffusion.

2.1. Review of the Kurtz-Rodrigues construction

We consider Model 2.2 in [KR11]. It consists of one population of particles, all living
in the same place. So we do not have a spatial structure. The particles are numbered
arbitrarily. Let r > 0, b ≥ 0 and c ∈ R. Every particle i has a level U i,r = (U i,rt )t≥0
that evolves according to the differential equation u̇ = bu2−cu. The starting levels are
i.i.d. uniformly distributed in [0, r]. When a level reaches r, the corresponding particle
dies. Every particle i gives birth at instantaneous rate 2b(r − U i,rt ) and the offspring
gets a level, that is uniformly distributed in [U i,rt , r]. The number of particles in this
model form a Galton-Watson process with birth rate rb and death rate rb − c. The

7



Chapter 2. Lookdown-construction of mutually catalytic diffusions

model has the property that at any time t ≥ 0, conditioned on the number of particles
alive, the levels are i.i.d. uniformly distributed in [0, r].

This model exhibits a form of consistency that allows for coupling of models with
increasing branching rates and thus passing to the almost sure limit of the level dy-
namics for r → ∞. Envision the dynamics for r < ∞ the following way: For every
particle i we have a rate 2b Poisson point process on the space [0,∞)2, representing
“time× level”. We draw the death threshold r and the particle’s level trajectory in the
picture (cf. Figure 2.1).

0
0

r

time

le
ve

l

Figure 2.1.: Graphical representation of the birth and death mechanism of one particle
in the model of [KR11]. Blue: the particle’s level trajectory, red: the
threshold at which the particle dies.

Whenever the particle’s level passes below one Poisson point that is lower than r, one
offspring is born. The level-coordinate of the corresponding point is the offspring’s
level. If the threshold of death is increased to r′ > r, more births are occurring, but
the level trajectory and the offspring corresponding to points below r are not affected.
For every r > 0, the models are coupled and letting r →∞, the level systems converge
pathwise. The limiting model (Model 2.3 in [KR11]) features the property that at any
time t ≥ 0, the levels are a Poisson point process with intensity Yt, and Y = (Yt)t≥0
solves (2.2). In other words, the level system is a genealogical representation of Feller’s
branching diffusion with drift. We call it the Kurtz-Rodrigues representation (c.f.
Model 2.3 in [KR11]).

At this point, we fix some notation and give the formal setting of the Kurtz-Rodrigues
representation. The models we consider in this thesis are Markov processes with state
space SE , the space of locally finite counting measures on a metric space E, endowed
with the vague topology. E varies from model to model. For all spaces E that we

8



2.1. Review of the Kurtz-Rodrigues construction

consider in this thesis, SE is Polish (in fact it is for all locally compact second count-
able Hausdorff spaces E; see Theorem A2.3 in [Kal02]). For the Kurtz-Rodrigues
representation we have E = R+. A state at time t can be written as

Ut =
m∑
i=1

δU it
,

where U it is called the level of the particles i at time t. By leaving out the time
parameter, we denote the path of a process: U i := (U it )t≥0, etc. Since we have no
space in our models, we will not distinguish sharply the notions “level of a particle”
and “particle”. Depending on the context we will abuse a vector notation and we write
Ut =

(
U1
t , U

2
t , . . .

)
. Recall that the indexing is arbitrary.

We characterize the Kurtz-Rodrigues model by its generator. We use test functions of
the form

f(u) := exp
(∫

log g(x) u(dx)
)
,

where the function g : R+ → [0, 1] is continuously differentiable and there is an rg > 0,
such that g(x) = 1 for x ≥ rg. For simplicity’s sake, we write f(u) =

∏
i g(ui).

The Kurtz-Rodrigues representation is characterized by the generator

AKRf(u) := f(u)
∑
i

[
2b
∫ ∞
ui

(g(x)− 1) dx+
(
bu2
i − cu

)
· g
′(ui)
g(ui)

]
, (2.3)

with domain

DKR :=
{
f(u) :=

∏
i

g(ui) : 0 ≤ g ≤ 1 ∈ C1(R), g(x) = 1 for x ≥ rg

}
.

The first term of AKR characterizes the birth mechanism: Consider a parent particle
U i. In any level-interval [a1, a2], where U it ≤ a1 < a2, offspring is born at instantaneous
rate 2b(a2 − a1) and the offspring’s level is uniformly distributed in [a1, a2]. Thus in
any timespan the particle U i gives birth to infinitely many offspring. The second
term characterizes the movement of the particles (more precisely: the movement of
the particles’ levels). They move according to the differential equation u̇ = bu2 − cu.

In [KR11] it is proven that if U is a solution to the martingale problem given by (2.3),
then

Y := lim sup
r→∞

U [0, r)
r

exists and solves (2.2). This result is obtained by applying the Markov Mapping Theo-
rem A.5 in [KR11] (see also Theorem A.5.1). We use the same approach extensively in
this thesis. The procedure is as follows: The level system is represented as a counting
measure, so in the Kurtz-Rodrigues case the state space is S = SR+ . Let γ : S → S0 be
a projection to a “smaller” space S0 and let α be a stochastic kernel S0 → S satisfying
α(y, γ−1(y)) = 1. In the Kurtz-Rodrigues case γ(U) = lim supr→∞

U [0,r)
r and α(y, ·) is

9



Chapter 2. Lookdown-construction of mutually catalytic diffusions

the distribution of a Poisson point process on R+ with intensity y. Additional to some
technical conditions the authors show that AKR and the generator

CFDf̂(y) := by · d2

dy2 f̂(y) + cy · d
dy f̂(y)

of Feller’s branching diffusion with drift c satisfy the “intertwining relation”

CFD

∫
α(·, du) f(u) =

∫
α(·,du) AKRf(u).

The Markov Mapping Theorem then gives the above assertion. More precisely, it states
the following: Let Ỹ be a solution to CFD. Then there exists a solution U to the mar-
tingale problem for AKR such that the asymptotic mass density process Y is a solution
to the martingale problem given by CFD with the same distribution as Ỹ . Uniqueness
of the martingale problem for AKR implies uniqueness of the martingale problem for
CFD. And finally P

[
Ut ∈ Γ | FYt

]
= α(Yt,Γ) for all t ≥ 0 and any measurable Γ ⊂ S+

R .
In other words, Ut is a conditional Poisson point process with intensity Yt. We denote
by U (1) := min(U i)i the lowest level and by U (k) = min

{
U i : U i > U (k−1)

}
we denote

the k-th lowest level.

2.2. Heuristics for the level representation of mutually
catalytic branching diffusions

Our goal for this chapter is to construct a genealogical lookdown representation for a
mutually catalytic system (Y, Z) (see (2.1)), similar to the Kurtz-Rodrigues represen-
tation. Heuristically, we may think of the marginal Y as a conditional Feller branching
diffusion (without drift), whose branching rate is proportional to Z and vice versa.
One might reason that a level representation with state space SR+ × SR+ , that is ob-
tained from a pair of Kurtz-Rodrigues constructions, where we adapt the birth rates
and the differential equations accordingly, should do the trick.

Let

D :=
{
g ∈ C1(R+) : 0 ≤ g ≤ 1, there is 0 < rg <∞ such that g(x) = 1 for x ≥ rg

}
.

We consider test functions SR+ × SR+ → R of the form

f(u, v) := f1(u)f2(v) := exp
(∫

log g1(x) u(dx)
)
· exp

(∫
log g2(x) v(dx)

)
where g1, g2 ∈ D. We use the convention exp (log(0)) = 0. Call this class of test
functions DMC .

For u ∈ SR+ , write
λ(u) := lim sup

r→∞

1
r
u([0, r))

10



2.2. Heuristics for the level representation of mutually catalytic branching diffusions

for the asymptotic mass density. Note that the asymptotic density exists (almost
surely), if u is a Poisson point process.

We define formally the generator

AMCf(u, v) := A(1)f(u, v) +A(2)f(u, v)

:= f(u, v)
∑
i

λ(v)
[
2b
∫ ∞
ui

dx (g1(x)− 1) + bu2
i

g′1(ui)
g1(ui)

]

+ f(u, v)
∑
j

λ(u)
[
2b
∫ ∞
vj

dx (g2(x)− 1) + bv2
j

g′2(vj)
g2(vj)

]
.

Note that the map λ : SR+ → R+ is not continuous. So the image of AMC contains
noncontinuous functions and the Markov Mapping Theorem A.5 in [KR11] is not ap-
plicable. We choose a different approach for the construction, relying on random time
changes (see Section 2.3).

Note that in [KN11], one can find a version of the Markov Mapping theorem that
allows for generators that map not only to noncontinuous functions (c.f. Corollary 3.3
in [KN11]). We did not take this approach, but we used the generator calculations as
a tool to check, if our ideas are going in the right direction. (Behind the scenes we
used this tool repeatedly.)

We give some heuristics, why the intertwining relation may be used as a kind of “test
calculation”: If the level-dynamics is set up in such a way that the knowledge of masses
at time t does not provide information about the levels, then “forgetting” the level-
information does not ruin the Markov property. Recall that α is a stochastic kernel
R+ → SR+ with α(y, ·) being the law of a Poisson point process with intensity y.
Define

α(y, z; du,dv) := α(y,du)⊗ α(z,dv).

Let the level-process (U, V ) be a Markov process, adapted to the filtration F , with
generator (AMC ,DMC) and let FY,Z be the filtration generated by the mass-densities

(Yt, Zt) :=
(

lim sup
r→∞

1
r
Ut[0, r), lim sup

r→∞

1
r
Vt[0, r)

)

of the process. For f ∈ DMC , the process

Xt := E
[
f(Ut, Vt) | FY,Zt

]
−
∫ t

0
E
[
AMCf(Us, Vs) | FY,Zs

]
ds

is an F-martingale. Since FY,Z ⊂ F is a subfiltration, X is an FY,Z-martingale and

11



Chapter 2. Lookdown-construction of mutually catalytic diffusions

we have for s ≤ t and B ∈ FY,Zs

0 = E [(Xt −Xs)1B]

= E
[(
f(Ut, Vt)− f(Us, Vs)−

∫ t

s
AMCf(Uz, Vz) dz

)
1B

]
= E

[(
E
[
f(Ut, Vt) | FY,Zt

]
−E

[
f(Us, Vs) | FY,Zs

]
−
∫ t

s
E
[
AMCf(Uz, Vz) | FY,Zz

]
dz
)
1B

]
.

(2.4)

Assume now that α(Yt, Zt; du,dv) is the distribution of the levels at every time t > 0,
given FY,Zt . (This is not obvious; the property is a consequence of the Markov Mapping
Theorem.) We have then

E
[
f(Ut, Vt) | FY,Zt

]
=
∫
α(Yt, Zt; du,dv) f(u, v) and

E
[
AMCf(Ut, Vt) | FY,Zt

]
=
∫
α(Yt, Zt; du,dv) AMCf(u, v)

and Equation (2.4) shows that the mass-process (Y,Z) solves the martingale problem
for the generator

CMC

∫
α(y, z; du,dv) f(u, v) :=

∫
α(y, z; du,dv) AMCf(u, v) (2.5)

In the following calculation we integrate out the level information to check if the
intertwining relation (2.5) holds for the generator

CMC f̂(y, z) = yz

(
b · ∂

2

∂y2 f̂(y, z) + b · ∂
2

∂z2 f̂(y, z)
)
.

The calculation below should be understood to be formal.
Calculation 2.2.1. Define

βgi :=
∫ ∞

0
(1− gi(x)) dx, i = 1, 2. (2.6)

Recall that 1−gi has compact support. Hence the integrals in (2.6) are well-defined. If
X is a Poisson process with intensity measure µ, then for F ≥ 0 its Laplace transform
is given by

E
[
e−
∫
F dX

]
= exp

(∫ (
e−F (x) − 1

)
µ(dx)

)
(see Lemma A.1.1). In terms of our α and with fi(u) = exp (

∫
log gi(x) u(dx)) this

reads ∫
α(y,du) fi(u) = e−yβi , i = 1, 2.

So we have

f̂(y, z) :=
∫
α(y, z; du,dv) f(u, v)

=
∫
α(y,du) f1(u) ·

∫
α(z,dv) f2(v)

= e−yβg1 · e−zβg2 .

12



2.2. Heuristics for the level representation of mutually catalytic branching diffusions

And using (A.5) in Lemma A.1.1, we obtain for the birth part∫
α(y,du)

∫
α(z, dv) f(u, v)

∑
i

2bλ(v)
∫ ∞
ui

(g1(x)− 1) dx

=
∫
α(z,dv)λ(v)f2(v) ·

∫
α(y,du)

∏
k

g1(uk)
∑
i

2b
∫ ∞
ui

(g1(x)− 1) dx

= 2byze−yβg1e−zβg2

∫ ∞
0

g1(x)
∫ ∞
x

(g1(s)− 1) ds dx.

(2.7)

For the movement part we calculate, again using (A.5) and then partial integration,∫
α(y,du)

∫
α(z, dv) f(u, v)

∑
i

λ(v)bu2
i ·
g′1(ui)
g1(ui)

= yze−yβg1e−zβg2

∫ ∞
0

bx2g′1(x) dx

= yze−yβg1e−zβg2

(
bx2g1(x)

∣∣∣∣rg1

0
−
∫ rg1

0
2bxg1(x) dx

)

= yze−yβg1e−zβg2

(∫ rg1

0
2bx dx−

∫ rg1

0
2bxg1(x) dx

)
= yze−yβg1e−zβg2

∫ ∞
0

2bx(1− g1(x)) dx.

(2.8)

Using lemma A.2.1, we get∫ ∞
0

x(g1(x)− 1) dx =
∫ rg1

0

∫ x

0
(g1(x)− 1) ds dx

=
∫ rg1

0

∫ rg1

s
(g1(x)− 1) dx ds

=
∫ ∞

0

∫ ∞
x

(g1(s)− 1) ds dx.

(2.9)

We combine (2.7), (2.8) and (2.9) to obtain∫
α(y,du)

∫
α(z,dv)A(1)f(u, v)

= yze−yβg1e−zβg2 2b
∫ ∞

0
(g1(x)− 1)

∫ ∞
x

(g1(s)− 1) ds dx.

Observe that

2
∫ rg1

0
(g1(x)− 1)

∫ rg1

z
(g1(s)− 1) ds dz =

(∫ rg1

0
(1− g1(x)) dx

)2
.

Hence we obtain∫
α(y1, du)

∫
α(y2,dv)A(1)f(u, v) = yzbe−yβg1e−zβg2β2

g1 .

13



Chapter 2. Lookdown-construction of mutually catalytic diffusions

The same calculation for A(2) gives us for f̂(y, z) = e−yβg1e−zβg2 the intertwining
relation∫

α(y,du)
∫
α(z,dv)Af(u, v) = yzbe−yβg1e−zβg2β2

g1 + yzbe−yβg1e−zβg2β2
g1

= yz

(
b · ∂

2

∂y2 f̂(y, z) + b · ∂
2

∂z2 f̂(y, z)
)

= CMC

∫
α(y,du)

∫
α(z, dv) f(u, v).

♦

2.3. Construction via time change

While Calculation 2.2.1 gives the intertwining relation (2.5), the Markov Mapping
Theorem A.5 in [KR11] is not applicable. Instead we construct the lookdown rep-
resentation for the mutual catalytic diffusion “by hand” via successive time changes
starting from two independent Kurtz-Rodrigues representations of Feller’s branching
diffusion.

Because of technical reasons we stop the system, as soon as one of its mass densities
falls below some threshold δ > 0. Define the generator

AδMCf(u, v) := 1(δ,∞)
(
λ(u) ∧ λ(v)

)
·AMCf(u, v).

Theorem 2.3.1. Let (Y̌ , Ž) be a mutually catalytic branching diffusion, i.e., a solution
to (2.1). Let τ :=

{
s ≥ 0 : Y̌s ∧ Žs ≤ δ

}
and define (Y̌ δ

t , Ž
δ
t ) := (Y̌t∧τ , Žt∧τ ). The

local DSR+×SR+ [0,∞)-martingale problem (AδMC ,DMC) has a solution (U δ, V δ) with
continuous mass density processes

(
Y δ, Zδ

)
:=
(
lim sup
r→∞

1
r
U δ([0, r)), lim sup

r→∞

1
r
V δ([0, r))

)
.

We have (
Y δ, Zδ

) d=
(
Y̌ δ, Žδ

)
.

Remark 2.3.2. Note that the construction does not yield uniqueness of the level rep-
resentation.

Proof. Let (Ũ , Ṽ ) be a pair of two independent Kurtz-Rodrigues representations for
Feller’s branching diffusion. Its mass density process

(
Ỹ , Z̃

)
:=
(
lim sup
r→∞

1
r
Ũ([0, r)), lim sup

r→∞

1
r
Ṽ ([0, r))

)

14



2.3. Construction via time change

is a weak solution to the stochastic systemdỸt =
√

2bỸt dW 1
t ,

dZ̃t =
√

2bZ̃t dW 2
t ,

where W 1 and W 2 are independent Brownian motions. Let (F̃Ut )t≥0 and (F̃Vt )t≥0 be
right-continuous filtrations that Ũ and Ṽ are adapted to. Define the stopping times

τY := inf
{
s ≥ 0 : Ỹs ≤ δ

}
,

τZ := inf
{
s ≥ 0 : Z̃s ≤ δ

}
,

and denote the stopped processes by Ũ δt := Ũt∧τY , Ṽ δ
t := Ṽt∧τZ , Ỹ δ

t := Ỹt∧τY and
Z̃δt := Z̃t∧τZ . Denote by

AδKRf(u) := 1(δ,∞)(λ(u)) ·AKRf(u)

the generator of the stopped Kurtz-Rodrigues dynamics. Hence, for f ∈ DKR,

M̃U,f
t := f(Ũ δt )− f(Ũ δ0 )−

∫ t

0
AδKRf(Ũ δs ) ds,

M̃V,f
t := f(Ṽ δ

t )− f(Ṽ δ
0 )−

∫ t

0
AδKRf(Ṽ δ

s ) ds

are martingales with respect to F̃U or F̃V respectively.

Define random time changes t 7→ σYt and t 7→ σZt by the right inverse of the quadratic
variations 〈Ỹ δ〉t and 〈Z̃δ〉t, i.e.

σYt := inf
{
s ≥ 0 : 2b

∫ s

0
Ỹ δ
h dh ≥ t

}
,

σZt := inf
{
s ≥ 0 : 2b

∫ s

0
Z̃δh dh ≥ t

}
.

Define the time changed level dynamics Û δt := Ũ δ
σYt

and V̂ δ
t := Ṽ δ

σZt
. By the rule for

differentiation of inverse functions, the time change σYt solves the equation

σYt =
∫ t

0

1
2bỸ δ

σYs

ds.

Hence σYt is bounded, σYt ≤ t
2bδ , and by the Optional Sampling Theorem (cf. Theorem

7.29 in [Kal02]) we obtain that

M̃U,f

σYt
= f(Ũ δσYt )− f(Ũ δ0 )−

∫ σYt

0
AδKRf(Ũ δs ) ds

= f(Ũ δσYt )− f(Ũ δ0 )−
∫ t

0
AδKRf(Ũ δσYs ) · (σY )′s ds

= f(Û δt )− f(Û δ0 )−
∫ t

0
AδKRf(Û δs ) · 1

2bŶ δ
s

ds

15



Chapter 2. Lookdown-construction of mutually catalytic diffusions

is an (F̃U
σYt

)-martingale. An analogous consideration holds for M̃V,f

σZt
. Each of the time

changed level dynamics Û δ and V̂ δ solve the martingale problem for

AδBMf(u) := 1
2bλ(u)A

δ
KR

By a similar argument (or, alternatively, by the Dubins-Schwarz Theorem 18.4 in
[Kal02]) the mass densities

Ŷ δ := lim sup
r→∞

1
r
Û δ([0, r)),

Ẑδ := lim sup
r→∞

1
r
V̂ δ([0, r))

are stopped Brownian motions (hence the label “BM”). Recall that Û δ and V̂ δ are
defined on the same probability space. The generator of the joint process

(
Û δ, V̂ δ

)
is

AδBMf(u, v) := f2(v)AδBMf1(u) + f1(u)AδBMf2(v),

where f ∈ DMC .

Define the filtration F̂ by F̂t := F̃U
σYt
∨ F̃V

σZt
. We apply a second time change to obtain

the level representation of the mutually catalytic diffusion. Define

σt := inf
{
s ≥ 0 :

∫ s

0

1
2bŶ δ

h Ẑ
δ
h

dh ≥ t
}

and (
U δ, V δ

)
t

:=
(
Û δ, V̂ δ

)
σt
,(

Y δ, Zδ
)
t

:=
(
Ŷ δ, Ẑδ

)
σt
.

We check that
(
U δ, V δ

)
solves the local martingale problem for AδMC : We introduce

an upper threshold K > δ for the mass densities. Define the F-stopping time

τK := inf
{
s ≥ 0 : Y δ

s ∨ Zδs ≥ K
}
.

Note that σt solves the equation

σt = 2b
∫ t

0
Ŷ δ
σsẐ

δ
σs ds

= 2b
∫ t

0
Y δ
s Z

δ
s ds.

Hence we have
σt∧τK ≤ 2bK2t
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2.3. Construction via time change

and, by the Optional Sampling Theorem, the process

Mf
t∧τK := f(Û δσt∧τK , V̂

δ
σt∧τK

)− f(Û δ0 , V̂ δ
0 )−

∫ σt∧τK

0
AδBMf(Û δs , V̂ δ

s ) ds

= f(U δt∧τK , V
δ
t∧τK )− f(U δ0 , V δ

0 )−
∫ t∧τK

0
AδBMf(U δs , V δ

s ) · 2bY δ
s Z

δ
s ds

is a martingale. Finally we argue that τK →∞ almost surely: Let

τ̂K := inf
{
s ≥ 0 : Ŷ δ

s ∨ Ẑδs ≥ K
}

and observe that the inverse of the time change σ is

σ−1
t =

∫ t

0

1
2bŶ δ

h Ẑ
δ
h

dh.

We have for t <∞

lim
K→∞

P [τK ≤ t] = lim
K→∞

P
[
τ̂K ≤ σ−1

t

]
≤ lim

K→∞
P
[
τ̂K ≤

t

2bδ2

]
= 0,

since Ŷ δ and Ẑδ are Brownian motions, stopped when they hit δ. This implies

lim
K→∞

τK =∞ a.s.

and (U δ, V δ) solves the local martingale problem for AδMC .

An analogous consideration yields that (Y δ, Zδ) d= (Y̌ δ, Žδ).
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3. Lookdown-construction of symbiotic
branching particle systems

The construction in Chapter 2 gives us the solution to Equation (2.1) where the driving
Brownian motions are independent. In the following chapters, we are interested in
models where W 1 and W 2 are correlated, with constant correlation coefficient ρ. In
this setting, things get more complicated. The mechanism we choose to introduce the
correlation is the timing of births and deaths. Letting particles die simultaneously
in both populations, or give birth simultaneously in both populations, should lead to
positive correlation. And by killing particles in one of the populations when births
happen in the other population, we should end up with a negatively correlated model.
But for the moment it is not clear how to implement these simultaneous events for the
continuous mass model described in Chapter 2. In Chapter 5 a continuous mass model
with simultaneous deaths in both populations is introduced.

We take a step backwards and construct discrete mass particle systems (U r, V r) with
levels in the interval [0, r), for which the masses (M r, N r) are symbiotic discrete mass
branching systems. I.e. (M r, N r) is a càdlàg Markov process with values in N0 × N0,
where certain birth-death events happen at rates that are proportional to M r

t · N r
t .

Let a, a1, a2, b, b1, b2, c ∈ R+ and s1, s2, d1, d2 ∈ N. On the mass-stage the following
birth-death events are implemented:

Mutually catalytic deaths: M r is decreased by one at rate a1M
r
t N

r
t and, independently,

N r is decreased by one at rate a2M
r
t N

r
t .

Mutually catalytic births: M r is increased by s1 at rate b1M r
t N

r
t and, independently,

N r is increased by s2 at rate b2M r
t N

r
t .

Positively correlated symbiotic births: M r is increased by s1 and simultaneously N r is
increased by s2 at rate bM r

t N
r
t .

Positively correlated symbiotic deaths: M r is decreased by d1 and simultaneously N r

is decreased by d2 at rate aM r
t N

r
t .

Negatively correlated symbiotic births and deaths: M r is increased by s1 and simulta-
neously N r is decreased by d2 at rate cM r

t N
r
t (or vice versa).

(It should be understood that all parameters may be chosen independently for the
different mechanisms.)

On the level-stage our models are similar to the Model 2.2 in [KR11] with r <∞. But
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Chapter 3. Lookdown-construction of symbiotic branching particle systems

their behaviour for large r is seriously more difficult to handle as they lack a property
that turned out to be convenient in the original model of Kurtz and Rodrigues. The
Kurtz-Rodrigues construction features the strong notion of consistency mentioned in
the previous chapter: The models for r′ < ∞ can be obtained by restricting the
(r =∞)-model to [0, r′]. This allows for the construction of the (r =∞)-model as an
almost sure limit of the simpler r < ∞ models. We will see that the level systems in
this chapter lack this property.

We fix some notation, this time for the r < ∞ setting. In the discrete mass case, a
state can be written as

(U r, V r)t :=
(∑

i

δ
U i,rt

,
∑
j

δ
V j,rt

)
,

where (U i,r)i, (V j,r)j ∈ [0, r] are the levels of respective populations. So the state space
is S[0,r]×S[0,r]. Recall that the enumeration is arbitrary and we denote by U (k),r, V (k),r

the k-th lowest level of the respective population. Denote the masses of the particle
systems by M r

t := U rt ([0, r)) and N r
t := V r

t ([0, r)). Depending on the context we will
abuse notation and write U rt =

(
U1,r
t , . . . , U

Mr
t ,r

t

)
and V r

t =
(
V 1,r
t , . . . , V

Nr
t ,r

t

)
.

Let αr(m, du) be the distribution of a Poisson point process on [0, r], conditioned to
have mass m. When we use the vector notation for U r and V r the definition of αr
looks a bit ambiguous: In this vector setting αr(m, du) should be understood as joint
distribution of m independent, uniformly distributed random variables on [0, r]. We
denote the product measure

αr(m,n; du,dv) := αr(m, du)⊗ αr(n, dv).

At time t = 0, the levels are independent and uniformly distributed given (M0, N0),

P [(U r0 , V r
0 ) ∈ Γ |M0 = m,N0 = n] = αr(m,n; Γ) (3.1)

for measurable Γ ⊂ S[0,r] × S[0,r].

The paths of the individual levels are càdlàg and between jumps the dynamics are
driven by a system of ordinary differential equations. The motion of the levels makes
sure that the uniform distribution property (3.1) stays true for all t ≥ 0. The speed of
a U -level depends on the V -levels and vice versa,

U̇ i,rt =
Nr
t∑

j=1
F1(U i,rt , V j,r

t ), i = 1, . . . ,M r
t ,

V̇ j,r
t =

Mr
t∑

i=1
F2(U i,rt , V j,r

t ), j = 1, . . . , N r
t ,

where Fk : R+ × R+ → R, k = 1, 2 are to be defined for the different birth ant death
mechanisms in Section 3.1.
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3.1. Birth and death mechanisms

When a level reaches the upper bound r, the corresponding particle dies and its level
is removed from the ensemble. We will also introduce “killing” of particles by letting
the levels of one population jump simultaneously, e.g. when death is triggered by an
external Poisson point process. The highest levels jump to r and thus to their death,
the other levels are scaled up by the a common factor, thus preserving the uniform
distribution.

Reproduction is controlled by conditional Poisson processes, where the birth rate of
a particle i at time t > 0 depends on its level U i,rt and on the level configuration V r

t .
The same is true for the V -particles with reversed roles.

We use test functions of the form f(u, v) = f1(u) · f2(v) with

f1(u) = exp
(∫

log (g1(x))u(dx)
)

and f2(v) = exp
(∫

log (g2(x)) v(dx)
)
.

The functions g1, g2 : R+ → [0, 1] are continuously differentiable with g1(x) = g2(x) = 1
for x > r. We often write fk(u) =

∏
i gk(ui), k = 1, 2. We call this class of test functions

DrSBDM (for symbiotic branching of discrete masses).

Furthermore, we define λk by

e−λk = 1
r

∫ r

0
gk(z) dz, k = 1, 2

and we let

f̂(m,n) :=
∫
αr(m,n; du,dv) f(u, v)

= e−λ1me−λ2n.

Note that, by letting r →∞ with M0
r → Y0 and N0

r → Y0, heuristically we should pass
to corresponding continuous mass models, as for the Kurtz-Rodrigues-representation.
Note that the state spaces S[0,r], provided with the topology of vague convergence, is
Polish (cf. [Kal17], Theorem 4.2).

3.1. Birth and death mechanisms

The generators of the Markov models can be assembled from components, representing
birth and death mechanisms, that allow for a variety of population models. Following
the ideas in [EK19] we give a “toolbox of building blocks”, that can be used to establish
mutually catalytic branching as well as different kinds of symbiotic branching.

The calculations in the following subsections should be understood to be formal. They
are used in Section 3.2 to apply the Markov Mapping Theorem A.5 in [KR11] and
characterize our models. The dynamics in the models are chosen in such a way, that
at any time t > 0, the distribution of the levels, given the masses M r

t = m and
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Chapter 3. Lookdown-construction of symbiotic branching particle systems

N r
t = n, is αr(m,n; du,dv). Apart from the building blocks “mutually catalytic dying”

(Section 3.1.1) and “positive symbiotic dying” (Section 3.1.4) it is not obvious that
this distribution property holds. It is the Markov Mapping Theorem that ensures the
property. The models are “reverse engineered”, such that using αr to average out the
level-information, leads to the desired models for the masses (M r, N r). Note that the
uniform distribution αr is chosen for convenience. Other distributions would also work
and could be better adapted to different situations.

3.1.1. Mutually catalytic deaths

The building block for mutually catalytic deaths and the building block for mutually
catalytic births (see Section 3.1.2) are based on the ideas in Section 2.1 of [KR11]. The
model given by the following level dynamic is a representation of a mutually catalytic
pure death process, i.e., the marginals M r and N r of the mass-process (M r, N r) are
uncorrelated pure death processes where the death rates of M r and N r at time t ≥ 0
are proportional to M r

t ·N r
t .

Let a1, a2 ≥ 0. We start with positive masses (M r
0 , N

r
0 ) = (m0, n0) ∈ N × N and

independent, uniformly distributed levels, (U r0 , V r
0 ) ∼ αr(m0, n0; · , · ). The particles

do not generate offspring. The levels move upwards continuously, where the movement
is given by F1(ui, vj) = a1ui and F2(ui, vj) = a2vj . I.e., the levels solve the system of
conditional ordinary differential equations

U̇ i,rt =
Nr
t∑

j=1
F1(U i,rt , V j,r

t ) = a1N
r
t U

i,r
t , i ∈ {1, 2, . . . ,M r

t },

V̇ j,r
t =

Mr
t∑

i=1
F2(U i,rt , V j,r

t ) = a2M
r
t V

j,r
t , j ∈ {1, 2, . . . , N r

t }.

Recall that the domain of the generator is chosen in such a way that a particle dies
when its level reaches the threshold r. Define m := u ([0, r)) and n := v ([0, r)). The
generator of this process is

Armdf(u, v) = f(u, v)

 m∑
i=1

a1nui
g′1(ui)
g1(ui)

+
n∑
j=1

a2mvj
g′2(vj)
g2(vj)

 (3.2)

The division by g1(ui) and g2(vj) in (3.2) is there to cancel out the corresponding
factors in f(u, v),

f(u, v)/g1(ui) = f2(v) ·
m∏
k=1
k 6=i

g1(uk), f(u, v)/g2(vj) = f1(u) ·
n∏
k=1
k 6=j

g2(vk)

and should be understood this way if the denominator is zero.

Note that if the V -mass N r ≡ n was fixed, the U -population would be in the situation
of Model 2.1 in [KR11] and the time of survival for each particle was exponentially
distributed.
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3.1. Birth and death mechanisms

We presume the conditional level distribution αr and check that averaging out the
levels leads to the desired mass-dynamics.

Calculation 3.1.1. Recall that λk is defined by 1
r

∫ r
0 gk(z) dz = e−λk for k = 1, 2 and

thus
f̂(m,n) =

∫
αr(m, du)

∫
αr(n,dv)f(u, v) = e−λ1me−λ2n.

Using partial integration and g1(r) = 1, we have

∫
αr(m,du)

∫
αr(n, dv) f(u, v)

m∑
i=1

a1nui
g′1(ui)
g1(ui)

= a1mne
−λ1(m−1)e−λ2n 1

r

∫ r

0
zg′1(z) dz

= a1mne
−λ1(m−1)e−λ2n

(1
r
zg1(z)

∣∣∣r
0
− 1
r

∫ r

0
g1(z) dz

)
= a1mne

−λ1(m−1)e−λ2n
(
1− e−λ1

)
.

An analogous calculation for the second summand of Armd yields the intertwining re-
lation

Crmdf̂(m,n) :=
∫
αr(m, du)

∫
αr(n,dv)Armdf(u, v)

= a1mn(f̂(m− 1, n)− f̂(m,n)) + a2mn(f̂(m,n− 1)− f̂(m,n)).

The generator Crmd belongs to a mutually catalytic death process, as portrayed above.
♦

3.1.2. Mutually catalytic births

The next building block is “mutually catalytic births”. A model given by the level
dynamics of this block is a representation of a mutually catalytic pure birth process.
It is easy to allow for multiple simultaneous births within each of the populations
separately. So we include multiple births per subpopulation in this building block
although they are not needed later. The model that allows for birth events that
generate U - and V -offspring simultaneously is more complicated. It is introduced in
Section 3.1.3.

The marginals M r and N r of the mass-process (M r, N r) are uncorrelated pure birth-
processes, where the birth rates are proportional toM r

t N
r
t at every time t ≥ 0. For the

corresponding model with one population, i.e. a pure birth process, compare Section
3.4 from [EK19].

Every pair of a U -particle and a V -particle may give birth to U -particles or V -particles.
As stated above, this building block allows simultaneous births of U -particles and
simultaneous births of V -particles, but no simultaneous births of a U - and a V -particle.
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Chapter 3. Lookdown-construction of symbiotic branching particle systems

Let b1, b2 ≥ 0. Again we start with positive masses (M r
0 , N

r
0 ) = (m0, n0) > 0 and

independent, uniformly distributed levels on [0, r],

(U r0 , V r
0 ) ∼ αr(m0, n0; · , · ).

The pair (U i,r, V j,r) gives birth to s1 U -children at rate

b1
s1 + 1
rs1

(r − U i,rt )s1 ,

and, independently (i.e., driven by an independent conditional Poisson process), to s2
V -children at rate

b1
s2 + 1
rs2

(r − V j,r
t )s2 .

The levels of the U -offspring are independent, uniformly distributed on [U i,rt , r], and
the levels of the V -offspring are independent, uniformly distributed on [V j,r

t , r].

Since the offspring levels are always above their respective parent’s level, the birth
mechanism alone would lead to an accumulation of levels in the upper region of the
interval [0, r]. It is necessary that the levels move downwards to maintain the uniform
distribution. We choose a continuous movement given by

F1(ui, vj) = F1(ui) = b1

[
(r − ui)s1+1

rs1
− (r − ui)

]
, (3.3)

F2(ui, vj) = F2(vj) = b2

[
(r − vj)s2+1

rs2
− (r − vj)

]
, (3.4)

i.e., the system of ordinary differential equations

U̇ i,rt =
Nr
t∑

j=1
F1(U i,rt ) = b1N

r
t

[
(r − U i,rt )s1+1

rs1
−
(
r − U i,rt

)]
,

V̇ j,r
t =

Mr
t∑

i=1
F2(V j,r

t ) = b2M
r
t

[
(r − V j,r

t )s2+1

rs2
−
(
r − V j,r

t

)]
.

Recall that m = u ([0, r)) and n = v ([0, r)). The generator for the model is

Armbf(u, v) = A1,r
mbf(u, v) +A2,r

mbf(u, v)

= f(u, v)
m∑
i=1

n∑
j=1

[
b1
s1 + 1
rs1

∫ r

ui

dx1 · · ·
∫ r

ui

dxs1

( s1∏
k=1

g1(xk)− 1
)

+ F1(ui)
g′1(ui)
g1(ui)

]

+ f(u, v)
m∑
i=1

n∑
j=1

[
b2
s2 + 1
rs2

∫ r

vj

dy1 · · ·
∫ r

vj

dys2

( s2∏
k=1

g2(yk)− 1
)

+ F2(vj)
g′2(vj)
g2(vj)

]
.

Calculation 3.1.2. Again we check that averaging out the level information, using
the conditional distribution αr(m,n,du,dv), leads to the desired mass-model, i.e., the
generator

Crmbf̂(m,n) :=
∫
αr(m, du)

∫
αr(n,dv)Armbf(u, v)
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3.1. Birth and death mechanisms

belongs to a mutually catalytic birth process.

For the birth-part of A1,r
mb, we calculate∫

αr(m, du)
∫
αr(n,dv) f(u, v)

m∑
i=1

n∑
j=1

b1
s1 + 1
rs1

∫ r

ui

dx1 · · ·
∫ r

ui

dxs1

( s1∏
k=1

g1(xk)− 1
)

= b1ne
−λ2ne−λ1(m−1)

m∑
i=1

s1 + 1
rs1+1

∫ r

0
dui g1(ui)

∫ r

ui

dx1 · · ·
∫ r

ui

dxs1

( s1∏
k=1

g1(xk)− 1
)

= b1mne
−λ2ne−λ1(m−1)

(
e−λ1(s1+1) − s1 + 1

rs1+1

∫ r

0
dx g1(x)(r − x)s1

)
.

(3.5)

For the last step in (3.5), note that the offspring-levels are greater than the parent’s
level. Let U1,U2, . . . ,Us1+1 be independent, uniformly on [0, r] distributed random
variables, then

s1 + 1
rs1+1

∫ r

0
dui g1(ui)

∫ r

ui

dx1 · · ·
∫ r

ui

dxs1

s1∏
k=1

g1(xk)

= (s1 + 1) ·E
[
s1+1∏
k=1

g1(Uk) · 1
{
U1 = min

k
Uk
}]

= E
[
s1+1∏
k=1

g1(Uk)
]

=
(1
r

∫ r

0
dui g1(ui)

)s1+1
.

(3.6)

The calculation above fits our heuristics for the factor (s1+1) in the birth rate: Looking
backwards in time, birth events are coalescence events. If we have no level information
and (s1 + 1) particles are alive, the coalescence happens at overall rate b1(s1 + 1)
(backwards in time). In the model, where we do have level information, the same
should apply, but only the particle with the lowest level can be the parent. Hence the
birth rate (forwards in time) has to be adapted accordingly.

We continue with the motion-part of A1,r
mb. With partial integration and using the fact

F1(0) = F1(r) = 0 we obtain∫
αr(m,du)

∫
αr(n, dv) f(u, v)

m∑
i=1

n∑
j=1

F1(ui)
g′1(ui)
g1(ui)

= ne−λ2n
m∑
i=1

∫
αr(m, du) f1(u)

g1(ui)
F1(ui)g′1(ui)

= mne−λ2ne−λ1(m−1) 1
r

∫ r

0
dz F1(z)g′1(z)

= −mne−λ2ne−λ1(m−1) 1
r

∫ r

0
dz F ′1(z)g1(z)

= b1mne
−λ2ne−λ1(m−1)

(
s1 + 1
rs1+1

∫ r

0
dz g1(z)(r − z)s1 − 1

r

∫ r

0
dz g1(z)

)
.

(3.7)
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Chapter 3. Lookdown-construction of symbiotic branching particle systems

Combining equations (3.5) and (3.7) we obtain∫
αr(m, du)

∫
αr(n, dv)A1,r

mbf(u, v) = b1mne
−λ2n

(
e−λ1m+s1 − e−λ1m

)
.

The analogous calculation for A2,r
mb gives the intertwining relation for Armb and the

generator of a mutually catalytic pure birth process:

Crmbf̂(n,m) = b1mn
(
f̂(m+ s1, n)− f̂(m,n)

)
+ b2mn

(
f̂(m,n+ s2)− f̂(m,n)

)
.

♦

3.1.3. Positively correlated symbiotic births

Using the building blocks Armd and Armb only models can be assembled, where M r

and N r are uncorrelated. To introduce correlation, we adapt the ideas for the particle
representation of symbiotic branching systems in [EF04]. We want mechanisms in
our toolbox that allow for simultaneous branching events in the U - and in the V -
population. This building block allows for simultaneous births of U - and V -particles,
thus introducing positive correlation (see also simultaneous death events in Section
3.1.4).

Let s1, s2 ∈ N. We start with independent, uniformly distributed levels on [0, r]: Let
(M r

0 , N
r
0 ) = (m0, n0) ∈ N × N and (U r0 , V r

0 ) ∼ αr(m0, n0, · , · ). The simultaneous
births are achieved the following way: Each pair of a U -particle i and a V -particle j
gives simultaneously birth to s1 U -particles and s2 V -twins at rate

b
(s1 + 1)(s2 + 1)

rs1+s2
(r − ui)s1(r − vj)s2 .

The levels of the U -offspring are independent and uniformly distributed on [U i,rt , r],
the levels of the V -offspring on [V j,r

t , r] (see Figure 3.1). Again the levels perform
continuous movement, given by a system of ordinary differential equations with random
coefficients. Unlike in the Sections 3.1.1 and 3.1.2, the movement of the U -particles
does not only depend on the number of V -particles but also on their levels. The
movement is given by

U̇ i,rt =
Nr
t∑

j=1
F1(U i,rt , V j,r

t ),

V̇ j,r
t =

Mr
t∑

i=1
F2(U i,rt , V j,r

t ),

where

F1(ui, vj) = b
(s2 + 1)(r − vj)s2 + rs2

2rs2

[
(r − ui)s1+1

rs1
− (r − ui)

]
,

F2(ui, vj) = b
(s1 + 1)(r − ui)s1 + rs1

2rs1

[
(r − vj)s2+1

rs2
− (r − vj)

]
.
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3.1. Birth and death mechanisms

u(t)

v(t)

t

Figure 3.1.: Graphical representation of the positively correlated symbiotic birth mech-
anism for s1 = s2 = 1: For every pair of a U - and a V -particle exists a
conditional Poisson point process on R+ × [0, r]× [0, r] (time × U -level ×
V -level). The U - and the V -particle span a “window”. When the window
hits one of the Poisson points as the levels move along their trajectories,
a new U - and a new V -particle is born.

Writing m = u ([0, r)) and n = v ([0, r)), the corresponding generator is

Arpsbf(u, v)

= f(u, v)
m∑
i=1

n∑
j=1

[
b
(s1 + 1)(s2 + 1)

rs1+s2

∫
[ui,r]s1

dx
∫

[vj ,r]s2

dy
(

s1∏
k=1

g1(xk)
s2∏
l=1

g2(yl)− 1
)

+F1(ui, vj)
g′1(ui)
g1(ui)

+ F2(ui, vj)
g′2(vj)
g2(vj)

]
.
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Chapter 3. Lookdown-construction of symbiotic branching particle systems

Calculation 3.1.3. Use equation (3.6) to calculate for the reproduction part of the
generator

∫
αr(m,du)

∫
αr(n, dv) f(u, v)

m∑
i=1

n∑
j=1

b
(s1 + 1)(s2 + 1)

rs1+s2

×
∫

[ui,r]s1
dx
∫

[vj ,r]s2
dy
(

s1∏
k=1

g1(xk)
s2∏
l=1

g2(yl)− 1
)

= b
(s1 + 1)(s2 + 1)

rs1+s2
e−λ1(m−1)e−λ2(n−1)

m∑
i=1

n∑
j=1

∫ r

0
dui

∫ r

0
dvjg1(ui)g2(vj)

×
∫

[ui,r]s1
dx
∫

[vj ,r]s2
dy
(

s1∏
k=1

g1(xk)
s2∏
l=1

g2(yl)− 1
)

= bmne−λ1(m−1)e−λ2(n−1)
(
e−λ1(s1+1)e−λ2(s2+1)

−(s1 + 1)(s2 + 1)
rs1+s2+2

∫ r

0
dz1

∫ r

0
dz2g1(z1)g2(z2)(r − z1)s1(r − z2)s2

)
.

(3.8)

Note that

F1(0, vj) = F2(ui, 0) = F1(r, vj) = F2(ui, r) = 0. (3.9)

Observe that

∂1F1(ui, vj) = b
(s2 + 1)(r − vj)s2 + rs2

2rs2

[
1− (r − ui)s1(s1 + 1)

rs1

]
= b

2

(
1− (s1 + 1)(s2 + 1)

rs1+s2
(r − ui)s1(r − vj)s2

+ (s2 + 1)(r − vj)s2rs1

rs1+s2
− (s1 + 1)(r − ui)s1rs2

rs1+s2

)

and

∂2F2(ui, vj) = b

2

(
1− (s1 + 1)(s2 + 1)

rs1+s2
(r − ui)s1(r − vj)s2

+ (s1 + 1)(r − ui)s1rs2

rs1+s2
− (s2 + 1)(r − vj)s2rs1

rs1+s2

)
,

hence

∂1F1(ui, vj) + ∂2F2(ui, vj) = b

(
1− (s1 + 1)(s2 + 1)

rs1+s2
(r − ui)s1(r − vj)s2

)
. (3.10)

Applying partial integration, Equation (3.9) and Equation (3.10) we obtain for the
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3.1. Birth and death mechanisms

movement part
∫
αr(m, du)

∫
αr(n,dv) f(u, v) ·

m∑
i=1

n∑
j=1

(
F1(ui, vj)

g′1(ui)
g1(ui)

+ F2(ui, vj)
g′2(vj)
g2(vj)

)

= mne−λ1(m−1)e−λ2(n−1) 1
r2

∫ r

0
dz1

∫ r

0
dz2

(
F1(z1, z2)g′1(z1)g2(z2)

+F2(z1, z2)g′2(z2)g1(z1)
)

= −mne−λ1(m−1)e−λ2(n−1) 1
r2

∫ r

0
dz1

∫ r

0
dz2g1(z1)g2(z2)

(
∂1F1(z1, z2) + ∂2F2(z1, z2)

)
= −bmne−λ1(m−1)e−λ2(n−1)

(
e−λ1e−λ2

−(s1 + 1)(s2 + 1)
rs1+s2+2

∫ r

0
dz1

∫ r

0
dz2g1(z1)g2(z2)(r − z1)s1(r − z2)s2

)
.

(3.11)

Adding (3.8) and (3.11) gives us the intertwining relation for the desired generator

Cpsbf̂(m,n) :=
∫
αr(m, du)

∫
αr(n,dv) Apsbf(u, v)

= bmn
(
e−λ1(m+s1)e−λ2(n+s2) − e−λ1me−λ2n

)
= bmn

(
f̂(m+ s1, n+ s2)− f̂(m,n)

)
.

♦

3.1.4. Positively correlated symbiotic deaths

The second mechanism in our toolbox that introduces positive correlation is simulta-
neous deaths of U - and V -particles. This is inspired by Model 3.2 in [EK19]. We tried
to transfer this mechanism to the continuous mass case in a meaningful manner. Note
that some changes have to be made in order to achieve this task (see Chapter 5).

This death mechanism is fundamentally different from the mutually catalytic deaths
in Section 3.1.1, in that a conditional Poisson process triggers the death events. Hence
we call this type of deaths “killing” of particles. The levels do not move continuously,
but they jump. Fix a > 0 and d1, d2 ∈ N. Jumps occur at rate aM r

t N
r
t . For a level

configuration U let

ϕrk(U) := inf
{
s > 0 : #{i : s · U i ≥ r} ≥ dk

}
for k = 1, 2. (3.12)

When a jump occurs at time t > 0, the levels of both populations are multiplied by
the respective factors ϕr1(U rt ) and ϕr2(V r

t ). The jump kills d1 U -particles with highest
levels and d2 V -particles, provided there are enough particles alive. The dk-highest
level, k = 1, 2, is shifted onto the death threshold r, and the levels above it are shifted
beyond r. Recall that inf ∅ = ∞. If there are not enough particles in one of the
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Chapter 3. Lookdown-construction of symbiotic branching particle systems

subpopulations, all of this subpopulation’s particles die. Note that as before, the
particles with the highest levels will die next. The generator for this dynamics is

Arpsdf(u, v) = amn

( m∏
i=1

g1(ϕr1(u)ui)
)(

n∏
j=1

g2(ϕr2(v)vj)
)
− f(u, v)

 .
The lowest of the dying particles is put on r. If the levels were independent, uniformly
distributed on [0, r] before the jump, the remaining particles after the jump are also
independent, uniformly distributed on [0, r].

Note that, if the simultaneous death mechanism is implemented for d1 > 1 or d2 > 1,
the corresponding mass process is technically not a branching process.

Calculation 3.1.4. Let d = d1 ∧ m be the number of particles to be killed. Let
U1, . . . ,Um ∼ Unif [0,r] be independent, uniform random variables. Denote by U(k) the
k-th order statistics. The k lowest U ’s are uniformly distributed below U(k+1),

L
(
U1, . . . ,Uk

∣∣∣ U1, . . . ,Uk ≤ U(k+1)
)

= Unif [0,U(k+1)]k .

Hence, conditioned on
{
Ui < U(k)

}
, we have r

U(k+1)
Ui ∼ Unif [0,r]. Since g1(x) = 1 for

x ≥ r, we have

E
[
m∏
i=1

g

(
r

U(m−d+1)
Ui
)]

= E
[
m−d∏
i=1

g (Ui)
]

and thus

Crpsdf̂(n,m) =
∫
αr(m,du)

∫
αr(n, dv)Arpsdf(u, v,m, n)

= amn
(
f̂(m− (d1 ∧m), n− (d2 ∧ n))− f̂(n,m)

)
.

♦

3.1.5. Negatively correlated symbiotic births and deaths

For negative correlation, we want to have births in one population and deaths in the
other population simultaneously. We achieve this by using the conditional Poisson
point processes that trigger the births of U -particles to kill V -particles. Let b ≥ 0. For
this model the marginal M r of the mass process (M r, N r) is a pure birth process with
rate bM r

t N
r
t and the marginal N r is a pure death process with the same rate. Both

marginals are perfectly correlated; that is, when M r jumps, N r jumps simultaneously.

Every pair of particles (U i,r, V j,r) has s1 U -offspring at rate

b
s1 + 1
rs1

(r − U i,rt )s1 .
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The offspring levels are independent and uniformly distributed on [U i,rt , r]. If a birth
event happens, d2 V -particles are killed, i.e., the V -levels are multiplied by ϕr2(V r

t )
(see (3.12)). If there are enough V -particles alive, d2 of them are killed. Otherwise all
remaining v-particles die. Apart from these jumps, the V -levels do not change.

The movement of the U -particles, which compensates for the accumulation of levels
in the upper region of the interval [0, r], is continuous and is characterized by F1 in
equation (3.3). As before let m = u ([0, r)) and n = v ([0, r)). The generator of this
model is

Arnsbuf(u, v) =
m∑
i=1

n∑
j=1

b
s1 + 1
rs1

(r−ui)s1

[
f1(u)

∫ r

ui

dx1 · ·
∫ r

ui

dxs1

(
s1∏
k=1

1
r − ui

g1(xk)
)(

n∏
l=1

g2(ϕr2(v)vl)
)

− f(u, v)
]

+ f(u, v)
m∑
i=1

n∑
j=1

F1(ui)
g′1(ui)
g1(ui)

.

We obtain the generator of the model with negative symbiotic V -births by switching
the roles of the U - and the V -population,

Arnsbvf(u, v) = Arnsbuf(v, u).

Calculation 3.1.5. Using equation (3.6) and∫
αr(n,dv)

n∏
l=1

g2(ϕr2(v)vl) = e−λ2(n−(d2∧n)),

(cf. calculation 3.1.4) we obtain for the birth and death part of the generator∫
αr(m, du)

∫
αr(n,dv)

m∑
i=1

n∑
j=1

b
s1 + 1
rs1

(r − ui)s1

×
[
f1(u)

∫ r

ui

dx1 · · ·
∫ r

ui

dxs1

(
s1∏
k=1

1
r − ui

g1(xk)
)(

n∏
l=1

g2(ϕr2(v)vl)
)
− f(u, v)

]

= bmne−λ1(m−1)
[
s1 + 1
rs1+1

∫ r

0
dz g1(z)

∫ r

ui

dx1 · · ·
∫ r

ui

dxs1

s1∏
k=1

g1(xk)

×
∫
αr(n,dv)

n∏
l=1

g2(ϕr2(v)vl)− e−λ2n s1 + 1
rs1+1

∫ r

0
dx (r − x)s1g1(x)

]
= bmne−λ1(m−1)

[
e−λ1(s1+1)e−λ2(n−(d2∧n) − e−λ2n s1 + 1

rs1+1

∫ r

0
dx (r − x)s1g1(x)

]
.

With equation (3.7) we obtain the intertwining relation for Arnsbu and

Crnsbuf̂(m,n) =
∫
αr(m, du)

∫
αr(n,dv)Arnsbuf(u, v)

= bmn
(
f̂(m+ s1, n− (d2 ∧ n))− f̂(m,n)

)
,
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Chapter 3. Lookdown-construction of symbiotic branching particle systems

the generator of a negatively correlated symbiotic birth-death process, where d2 V -
particles die whenever a U -birth event happens. The same applies for Arnsbv and Crnsbv,
where

Crnsbvf̂(m,n) = bmn
(
f̂(m− (d1 ∧m), n+ s2)− f̂(m,n)

)
.

♦

3.2. Application of the Markov Mapping Theorem

In this section we apply the Markov Mapping Theorem from [KR11] to check that
models, assembled from the building blocks in Section 3.1, are indeed genealogical rep-
resentations of symbiotic branching particle systems. The reader can find the Markov
Mapping Theorem in Section A.5.

Consider a generator

Ar := Armd +Amb +Arpsb +Arpsd +Arnsbu +Arnsbv,

DrSBDM :=
{
f(u, v) := f1(u)f2(v) :=

m∏
i=1

g1(ui) ·
n∏
j=1

g2(vj) : 0 ≤ g1, g2 ≤ 1 ∈ C1(R+),

g1(x) = g2(x) = 1 for x ≥ r
}
,

that is assembled from the generators of Section 3.1. It should be understood that the
parameters, which govern the birth and death dynamics for the different mechanisms,
shall be chosen independently for each building block.

Lemma 3.2.1. Let m = u ([0, r)) and n = v ([0, r)). For each f ∈ DrSBDM , there
exists cf > 0 such that for all m,n ∈ N

|Arf(u, v)| ≤ m · n · cf .

Proof. We have 0 ≤ g1, g2 ≤ 1, g1(r) = g2(r) = 1 and u, v ≤ r. Since gk, k = 1, 2, are
continuously differentiable, the derivatives g′k take a maximal value on [0, r]. We check
the statement for each of the operators in Section 3.1:

(i) Mutually catalytic deaths:

|Armdf(u, v)| =

∣∣∣∣∣∣f(u, v)

 m∑
i=1

a1nui
g′1(ui)
g1(ui)

+
n∑
j=1

a2mvj
g′2(vj)
g2(vj)

∣∣∣∣∣∣
≤ mn

(
a1r

∥∥g′1∥∥∞ + a2r
∥∥g′2∥∥∞) .

(Recall that the division by g1(ui) and g2(vj) removes one respective factor from
the product f(u, v).)
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(ii) Mutually catalytic births:

|Armbf(u, v)| =
∣∣∣A1

mbf(u, v) +A2
mbf(u, v)

∣∣∣
≤
∣∣∣A1

mbf(u, v)
∣∣∣+ ∣∣∣A2

mbf(u, v)
∣∣∣

and

∣∣∣A1,r
mbf(u, v)

∣∣∣ =
∣∣∣∣∣f(u, v) · b1n

m∑
i=1

[
s1 + 1
rs1

∫ r

ui

dx1 · · ·
∫ r

ui

dxs1

( s1∏
k=1

g1(xk)− 1
)

+
(

(r − ui)s1+1

rs1
− (r − ui)

)
g′1(ui)
g1(ui)

]∣∣∣∣∣
≤ mnb1

[
(s1 + 1) + r

∥∥g′1∥∥∞] ,∣∣∣A2,r
mbf(u, v)

∣∣∣ ≤ mnb2 [(s2 + 1) + r
∥∥g′2∥∥∞] .

(iii) Positively correlated symbiotic births:∣∣∣Arpsbf(u, v)
∣∣∣

=
∣∣∣∣∣f(u, v)

m∑
i=1

n∑
j=1

[
b
(s1 + 1)(s2 + 1)

rs1+s2

∫
[ui,r]s1

dx
∫

[vj ,r]s2

dy
(

s1∏
k=1

g1(xk)
s2∏
l=1

g2(yl)− 1
)

+F1(ui, vj)
g′1(ui)
g1(ui)

+ F2(ui, vj)
g′2(vj)
g2(vj)

]∣∣∣∣∣,
where

|F1(ui, vj)| =
∣∣∣∣∣b(s2 + 1)(r − vj)s2 + rs2

2rs2

[
(r − ui)s1+1

rs1
− (r − ui)

]∣∣∣∣∣
≤ rb(s2 + 2),

|F2(ui, vj)| ≤ rb(s1 + 2).

Hence∣∣∣Arpsbf(u, v)
∣∣∣ ≤ mnb[(s1 + 1)(s2 + 1) + r(s2 + 2)

∥∥g′1∥∥∞ + r(s1 + 2)
∥∥g′2∥∥∞ ].

(iv) Positively correlated symbiotic deaths:

∣∣∣Arpsdf(u, v)
∣∣∣ =

∣∣∣∣∣∣amn
( m∏

i=1
g1(ϕr1(u)ui)

)(
n∏
j=1

g2(ϕr2(v)vj)
)
− f(u, v)

∣∣∣∣∣∣
≤ amn.
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Chapter 3. Lookdown-construction of symbiotic branching particle systems

(v) Negatively correlated symbiotic births and deaths:

|Arnsbuf(u, v)| =
∣∣∣∣∣
m∑
i=1

n∑
j=1

b
s1 + 1
rs1

f(u, v)
∫ r

ui

dx1 · · ·
∫ r

ui

dxs1

×
((

s1∏
k=1

g1(xk)
)
f2(ϕr2(v)v)
f2(v) − 1

)

+ f(u, v)
m∑
i=1

n∑
j=1

b

[
(r − ui)s1+1

rs1
− (r − ui)

]
g′1(ui)
g1(ui)

∣∣∣∣∣
≤ mnb

(
(s1 + 1) + r

∥∥g′1∥∥∞) .

Theorem 3.2.2. Let µ0 ∈ M1(N0 × N0) and define ν0 :=
∫
αr(y, z; · ) µ0(dy,dz).

There exists a unique solution (U r, V r) of the the DS[0,r]×S[0,r] [0,∞)-martingale problem
for (Ar, ν0) such that (M r, N r) := (U([0, r)), V ([0, r))) is a solution of the DN0×N0 [0,∞)-
martingale problem for (Cr, µ0), where

Cr = Crmd + Crmb + Crpsb + Crpsd + Crnsbu + Crnsbv.

For every t ≥ 0, Γ ∈ B(S[0,r] × S[0,r]), we have

P
[
(U rt , V r

t ) ∈ Γ
∣∣∣ FMr,Nr

t

]
= αr(M r

t , N
r
t ; Γ). (3.13)

Proof. Existence of (U r, V r) and the distribution property (3.13) follow from the
Markov Mapping Theorem A.5.1 with ψ(u, v) := m·n and γ(u, v) := (u([0, r)), v([0, r)))
where we use the notation of said theorem.

Uniqueness of the level system is straightforward (see, for example, Problem 28 in
Chapter 4.11 of [EK86]). The “motion part” of the dynamics, without births or other
jumps, is given piecewise by ordinary differential equations. Uniqueness of the motion
then follows from uniqueness of the solutions to the differential equations. We obtain
uniqueness of the level dynamics up to the first time one of the masses hit some fixed
m̃ by a perturbation result (see Theorem 4.10.3 from [EK86]). Letting m̃ → ∞, we
obtain uniqueness of the whole process. We omit the details.
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4. Lookdown-construction of Feller’s
branching diffusion with multiple deaths

In this chapter, we will give a lookdown construction for Feller’s branching diffusion
as a weak limit of models that use a jump-death mechanism, similar to Model 3.1.4.
But, while in Model 3.1.4 a fixed number of particles is killed per death event, we allow
for a random number of casualties in this model. This construction can be seen as a
preparation for the construction of a lookdown representation of a symbiotic diffusion
with positive correlation in Chapter 5.

Before we start with the construction of the level representation of Feller’s branch-
ing diffusion in Section 4.1, we give heuristics, why we use this special jump-death
mechanism in the level representation of a symbiotic branching diffusion. Recall that
symbiotic diffusions are solutions of the system{

dYt =
√
bYtZt dW 1

t ,

dZt =
√
bYtZt dW 2

t ,

where W 1 and W 2 are correlated Brownian motions with constant correlation coeffi-
cient ρ; i.e.

〈W 1,W 2〉t = ρ · t.

We tried to carry the symbiotic discrete mass systems of Chapter 3 to a meaningful
weak limit for r → ∞. Let us first consider the simultaneous birth model 3.1.3 and
observe why this approach does not lead to the desired result. Consider a family
(U r, V r)r of level representations that perform the simultaneous birth dynamics given
by Arpsb and assume for the moment weak convergence for r →∞. The limiting process
(U, V ) takes states in SR+ × SR+ , topologized by test functions that have compact
support. Now consider a particle U i, that gives birth at time t and fix a compact set
K1 ×K2 ⊂ R+ × R+ with U i ∈ K1. Only finitely many V -particles are in K2 at time
t, so the V -particle, that gives birth at the same time t is almost surely not in K2, due
to the “uniform” distribution of the particles. This means that, in the topology of the
state space of our limiting system, we are not able to identify the “birth partner” of a
given birth event and therefore cannot hope to see correlation of the masses when we
forget the level information.

We do not have this problem for the models with simultaneous deaths, however. The
particles that die simultaneously do not simply vanish without affecting the rest of the
population, but all particles jump. The simultaneous death event induces a decrease
in the particle density everywhere in R+, not only “at infinity”. A natural starting
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Chapter 4. Lookdown-construction of Feller’s branching diffusion with multiple deaths

point for the construction of a level representation of symbiotic branching diffusions
is a discrete mass model, built from the blocks Armb (mutually catalytic births) and
Arpsd (positively correlated symbiotic deaths) in Chapter 3. But we encounter a first
problem: While the consistency in the Kurtz-Rodrigues setting means that the discrete
mass models for r1 < r2 < . . . are coupled and the r → ∞ model can be obtained as
an almost sure limit, the models in Chapter 3 do not feature this type of consistency.
For illustration, consider a very simple mutually catalytic death model (U r, V r), given
by Armd. For r′ < r, the restriction (U r

∣∣
[0,r′], V

r
∣∣
[0,r′]) does not solve the martingale

problem for Ar′md, since the death rates in the restricted system are too high. Hence
we constructed the representation as a weak limit in Chapter 5.

There is another hoop we have to jump through, that we illustrate below by faulty
heuristics for the level dynamics in the simpler case of one population. We start with
a level system U r characterized by the the generator

Ãrf(u) = f(u)
m∑
i=1

[
2b
∫ r

ui

(g(x)− 1) dx+
(
bu2
i − brui

) g′(ui)
g(ui)

]

+ rbm

(
m∏
i=1

g

(
r

maxj uj
ui

)
− f(u)

)
,

D̃r :=
{
f(u) :=

m∏
i=1

g(ui) : 0 ≤ g ≤ 1 ∈ C2(R), g(x) = 1 for x ≥ r
}
.

Without proof we note that the system is a lookdown representation with “killing”
for a critical Galton-Watson process with birth and death rate rb. (To apprehend
this, compare the first term of Ãr with the U -dynamics given by the generator Armb
with s1 = 1 and set N r ≡ 1. The second term kills the highest level particle at a
rate that fits the first term.) We want to understand the movement of the levels for
large r, thus we have to sort out the interplay of the numerous small jumps, induced
by the killing, and the linear part of the differential equation. The problem is that
the jump factor r

maxj Uj,rt
depends on the highest level, and its fate as r → ∞ is

unclear. Define Y r
t := Mr

t
r . The levels at time t are i.i.d. uniformly on [0, r] given M r

t .
Hence r − maxj U j,rt is approximately exponential distributed with rate Y r

t for large
r. Furthermore the level U i,rt of one fixed particle at a given time t is asymptotically
independent of r − maxj U j,rt . This leads to the idea to treat the jump factor as a
random variable

ϕ := r

r − E
,

where E ∼ ExpY rt is conditionally independent of U r. We suppose (but we did not
prove) that the resulting models do indeed converge to a level representation for the
Feller’s branching diffusion. However, we changed the model fundamentally in the
course of our heuristic considerations: In the model we started with, the highest particle
is put onto the death threshold r when a death event happens. Thus precisely one
particle is killed per death event, and the jump factor is inherent in the system. In the
new model the jump factor is random, hence a random number of particles is killed:
Multiplication by ϕ in the i-th death event, amounts to killing all particles in the
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4.1. A birth-death process with jump induced deaths

interval [r − Ei, r], where Ei, i = 1, 2, . . . are independent, conditionally exponential
random variables. Informal calculations showed that for r → ∞ the model with the
random jump factor has a higher variance than the discrete mass models, where only
one particle is killed per death event. Hence it is not a reasonable candidate for the
limit.

We adapt the discrete mass models and implement a death mechanism that uses the
ideas from above but is slightly simpler (the “death region” is deterministic, condi-
tioned on the population size). In this chapter we introduce the new death mecha-
nism in a one population-model that converges (weakly) to a representation of Feller’s
branching diffusion. In this (simpler) setting we establish tightness and study the
limiting dynamics. In Chapter 5 we will be able to “recycle” a lot of the work and
construct a lookdown representation for a positively correlated symbiotic diffusion.

4.1. A birth-death process with jump induced deaths

We introduce a level representation of a birth-death process, where death events are
triggered by a conditional Poisson process. At a death event, particles of a whole region
near r are killed. In the limit, only the expectation and the variance of the number
of particles killed per event, should matter. The simplest setup we could think of is a
“death zone” that is deterministic given the total mass.

Consider one population U r of particles with levels in [0, r], so the state space is S[0,r].
We use again the vector notation when appropriate. Recall that (U i,r)i is an arbitrary
enumeration of the atoms, while U (k),r denotes the k-th lowest level. Let M r be the
number of particles and Y r := Mr

r the mass density.

At time t = 0, the levels are uniformly distributed on [0, r] given M r
0 . Particle U i,r

generates one offspring at rate b(r−U i,rt ). The offspring’s level is uniformly distributed
above the parent’s level. The continuous movement of the particles is chosen in such a
way that it compensates for the accumulation of particles in the higher region of [0, r],
due to births. The particles move according to the differential equation

U̇ i,rt = b
(
U i,rt

)2
− brU i,rt .

These birth dynamics are a non-spatial version of Model 3.4 in [EK19]. A particle is
considered dead when its level exceeds r. Fix a constant 0 < c < M

(r)
0 and assume

M r
t > c. The deaths are event based, and when a death event happens at time t all

particles in the interval
[
r(1− c

Mr
t

), r
]
are killed. The levels below the death threshold

are scaled up, such that they are uniformly distributed on [0, r]. To this end all levels
are multiplied by 1

1−c/Mr
t
.
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Chapter 4. Lookdown-construction of Feller’s branching diffusion with multiple deaths

c/Yt

0 r

Figure 4.1.: In a death event at time t particles in a “death zone” of width c
Y rt

= c·r
Mr
t

are killed. The remaining part of the interval is scaled up.

Since the birth dynamics are set up in such a way that, conditioned on M r
t , U rt is a

Poisson point process on [0, r] for every t ≥ 0, the number of individuals killed during
a single death event is binomially distributed, U rt [r(1− c

Mr
t

), r] ∼ Bin(M r
t ,

c
Mr
t

). If
M r
t ≤ c all remaining particles are killed in the next death event.

In order to keep the model simple, we choose to stay in the critical setting and the
death events are triggered at rate rbM r

t /c. Define

ϕ(U r) := 1(c,∞)(M r) · 1
1− c/M r

+ 1[0,c](M r) · r

minU r .

The generator of the process is

ArBDjdf(u) = f(u)
m∑
i=1

[
2b
∫ r

ui

(g(x)− 1) dx+ (bu2
i − brui)

g′(ui)
g(ui)

]

+ rbm

c

(
m∏
i=1

g (ϕ(u) · ui)− f(u)
)
,

DrBDjd :=
{
f(u) :=

m∏
i=1

g(ui) : 0 ≤ g ≤ 1 ∈ C2(R), g(x) = 1 for x ≥ r
}
.

(4.1)

BDjd stands for “birth death process with jump induced deaths”. Recall that αr(m, ·)
is the distribution of a Poisson point process on [0, r], conditioned to have mass m.

Theorem 4.1.1. Let µ0 ∈ M1(N) and define ν0 :=
∫
αr(y, · ) µ0(dy). There exists

a unique solution U r of the the DS[0,r] [0,∞)-martingale problem for (ArBDjd, ν0) such
thatM r := U([0, r)) is a solution of the DN0 [0,∞)-martingale problem for (CrBDjd, µ0),
where

CrBDjdf̂(m) =rbm
(
f̂(m+ 1)− f̂(m)

)
+ 1(c,∞)(m) · rbm

c

(
m∑
i=0

(
m

i

)(
c

m

)i (
1− c

m

)m−i
f̂(m− i)− f̂(m)

)

+ 1[0,c](m) · rbm
c

(
f̂(0)− f̂(m)

)
.

For every t ≥ 0 and Γ ∈ B(S[0,r]), we have

P
[
U rt ∈ Γ

∣∣∣ FMr

t

]
= αr(M r

t ,Γ).
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4.1. A birth-death process with jump induced deaths

Proof. The proof is very similar to the proof of Theorem 3.2.2. We check the inter-
twining relation ∫

αr(m, du) ArBDjdf(u) = CrBDjd

∫
αr(m, du) f(u). (4.2)

Defining
e−λ := 1

r

∫ r

0
g(z) dz,

we have
f̂(m) :=

∫
αr(m, du) f(u) = e−λm.

By Calculation 3.1.2 for Model 3.1.2 (mutually catalytic births), the relation∫
αr(m, du) f(u)

m∑
i=1

[
2b
∫ ∞
ui

(g(x)− 1) dx+ (bu2
i − brui)

g′(ui)
g(ui)

]
= rbm

(
f̂(m+ 1)− f̂(m)

)
is obvious (Consider the U -marginal of Model 3.1.2 for s1 = 1 and set N r ≡ 1). Assume
m > c, then ϕ(u) = 1

1−c/m . For the death part, we obtain∫
αr(m, du) rbm

c

(
m∏
i=1

g (ϕ(u) · ui)− f(u)
)

=
∫
αr(m, du) rbm

c

[
m∏
i=1

(
1[0,r)(ϕ(u)ui) · g(ϕ(u)ui) + 1[r,∞)(ϕ(u)ui)

)
− f(u)

]

= rbm

c

[(
1
r

∫ r
ϕ(u)

0
dz g(ϕ(u)z) + 1

r

∫ r

r
ϕ(u)

dz
)m
− f̂(m)

]

= rbm

c

[( 1
rϕ(u)

∫ r

0
dz g(z) + c

m

)m
− f̂(m)

]
= rbm

c

[((
1− c

m

)
e−λ + c

m

)m
− f̂(m)

]
= rbm

c

(
m∑
i=0

(
m

i

)(
c

m

)i (
1− c

m

)m−i
f̂(m− i)− f̂(m)

)
.

(4.3)

If m ≤ c, then ϕ(u) = r
minu and obviously∫

αr(m, du) rbm
c

(
m∏
i=1

g (ϕ(u) · ui)− f(u)
)

= rbm

c

(
f̂(0)− f̂(m)

)
.

Hence the relation (4.2) is valid and the assertion of the theorem follows from the
Markov Mapping Theorem A.5.1 with ψ(u) := m and γ(u) := u([0, r)), where we use
the notation of said theorem.

Uniqueness of the level system follows from uniqueness of the system that performs
only the continuous motion. By Theorem 4.10.3 in [EK86], we have uniqueness of the
level dynamics until the first time the mass hits some fixed m̃. Letting m → ∞, we
obtain uniqueness of the whole process.
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Chapter 4. Lookdown-construction of Feller’s branching diffusion with multiple deaths

Note that the level system given by ArBDjd does not feature the consistency property
of the Kurtz-Rodrigues model.

Before we proceed to proving convergence of the level dynamics, we try to lay our hands
on the limit heuristically and check if its mass density is indeed Feller’s branching
diffusion. We write y = m

r . Expanding
1

1−c/m = 1 +
∑∞
k=1

(
c
yr

)k
in a power series and

performing a Taylor approximation, we obtain

rbm

c

(
m∏
i=1

g (τ · ui)− f(u)
)

= r2by

c

(
f(u)

m∑
i=1

ui
g′(ui)
g(ui)

· (τ − 1) + 1
2f(u)

m∑
i=1

u2
i

g′′(ui)
g(ui)

· (τ − 1)2

+ 1
2f(u)

m∑
i=1

m∑
j=1
j 6=i

uiuj
g′(ui)g′(uj)
g(ui)g(uj)

· (τ − 1)2 + o(r−2)
)

= r2by

c

(
f(u)

m∑
i=1

ui
g′(ui)
g(ui)

·
(
c

yr
+ c2

y2r2

)
+ 1

2f(u)
m∑
i=1

u2
i

g′′(ui)
g(ui)

· c2

y2r2

+ 1
2f(u)

m∑
i=1

m∑
j=1
j 6=i

uiuj
g′(ui)g′(uj)
g(ui)g(uj)

· c2

y2r2 + o(r−2)
)
.

When we plug this in the generator ArBDjd, the “−brui”-term of the differential equa-
tion is cancelled out and we obtain a candidate for the particle representation of a
Feller’s branching diffusion with jump deaths,

AFDjdf(u) = f(u)
[∑

i

2b
∫ ∞
ui

(g(x)− 1) dx+
∑
i

(
bu2
i + bc

y
ui

)
g′(ui)
g(ui)

+ 1
2
∑
i

bc

y
u2
i

g′′(ui)
g(ui)

+ 1
2
∑
i 6=j

bc

y
uiuj

g′(ui)g′(uj)
g(ui)g(uj)

]
,

DFDjd :=
{
f(u) :=

∏
i

g(ui) : 0 ≤ g ≤ 1 ∈ C2(R), g(x) = 1 for x ≥ rg

}
.

(4.4)

Note that the mapping u 7→ y is not continuous in SR+ endowed with the vague
topology. Hence we cannot use the Markov Mapping Theorem A.5 of [KR11], because
AFDjdf is not continuous. In a test calculation we check that the intertwining relation
holds and that our heuristic arguments lead to the desired mass dynamics.

Calculation 4.1.2. Recall that α(y, ·) is the distribution of of a Poisson point process
on [0,∞] with intensity y. Define

βg :=
∫ ∞

0
(1− g(x)) dx.

Then we have for f ∈ DFDjd

f̂(y) :=
∫
α(y,du) f(u) = e−yβg
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(see Lemma A.1.1). See the lookdown representation of Feller’s branching diffusion in
[KR11] (or Equation 2.3) to apprehend∫

α(y,du)f(u)
∑
i

[
2b
∫ ∞
ui

(g(x)− 1) dx+ bu2
i

g′(ui)
g(ui)

]
= bye−yβgβ2

g . (4.5)

The remaining part of the generator is associated to perfectly correlated, conditional
geometric Brownian motions. Using Lemma A.1.1, we obtain∫

α(y,du)f(u)
[∑

i

bc

y
ui
g′(ui)
g(ui)

+ 1
2
∑
i

bc

y
u2
i

g′′(ui)
g(ui)

+ 1
2
∑
i 6=j

bc

y
uiuj

g′(ui)g′(uj)
g(ui)g(uj)

]

= bce−βgy
[∫ ∞

0
xg′(x) dx+

∫ ∞
0

1
2x

2g′′(x) dx+ y

2

(∫ ∞
0

xg′(x) dx
)2]

.

(4.6)

Integration by parts gives us∫ ∞
0

xg′(x) dx =
∫ rg

0
xg′(x) dx = rg −

∫ rg

0
g(x) dx =

∫ ∞
0

(1− g(x)) dx = βg (4.7)

and ∫ ∞
0

x2g′′(x) dx =
∫ rg

0
x2g′′(x) dx = −2

∫ rg

0
xg′(x) dx = −2βg. (4.8)

Putting (4.5), (4.6), (4.7) and (4.8) together, we obtain with f̂(y) := e−yβg

CFDjdf̂(y) :=
∫
α(y,du)AFDjdf(u) = b

(
1 + c

2

)
yβ2

ge
−yβg

= b

(
1 + c

2

)
yf̂ ′′(y).

This is the generator of Feller’s branching diffusion with branching rate b
(
1 + c

2
)
. ♦

4.2. Tightness of (U r, Y r)r

Let U r be the level representation given by ArBDjd (see (4.1)). Let k ∈ N and denote
by

Xr =
(
X1,r, X2,r, . . . , Xk+1,r) :=

(
U (1),r, U (2),r, . . . , U (k),r, Y r)

the Rk+1-valued process consisting of the k lowest levels and the mass density process.
Recall that SR+ is the space of locally finite counting measures on R+, endowed with
the vague topology. First we prove DRk+1 [0,∞)-tightness of the family (Xr)r, and
then we “lift” this result to DSR+ [0,∞)-tightness of (U r)r.

We expect tightness only until shortly before extinction. Let δ > 0 be some threshold
and let

τ r := inf{s ≥ 0 : Y r
s ≤ δ}
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Chapter 4. Lookdown-construction of Feller’s branching diffusion with multiple deaths

be the first time when the mass density coordinate hits δ or jumps below δ. Define the
stopped processes U r,δt := U rt∧τr , Y

r,δ
t := Y r

t∧τr and Xr,δ := Xr
t∧τr . In the following we

assume 0 < c < rδ such that the “strip of death” does not extend into the negatives.
We will prove a compact containment condition for the k lowest particles. Note that,
when a new particle with rank k or smaller is born, it is pigeon-holed in U (1,...,k),r.
Since the level of a given particle does explode, the “rearrangement” that happens
when a new low level particle is born is crucial for the containment.

The idea of the proof is the following: Given K > 0, we choose a partition of [0, T ]
that is coarse enough for the probability of the event that U (k),r is above K

2 at one of
the nodes to be small. (We use the “uniformity property” of the levels at fixed times
for this.) But then, given that U (k),r is below K

2 at every node of the partition, the
event

{
sup0≤s≤T U

(k),r
s > K

}
implies one of two possibilities: Either a particle came

down from K to K
2 between two nodes, or a new particle was born in [0,K] (and ended

up below K
2 ). We can bound these ascent and descent probabilities.

0 𝜁 2𝜁 3𝜁

K/2

K

∪

Figure 4.2.: On the event, that all k lowest particles are below K
2 at the nodes of a

partition of [0, T ], the following has to happen if sup0≤s≤T U
(k),r
s > K:

First U (k),r has to ascend from K
2 to K (red), then either U (k),r descends

to K
2 without negative jumps (green) or a birth happens below K (light

blue).

Lemma 4.2.1. Set the birth rate of the Model given by ArBDjd in (4.1) to b = 1. Let
k ∈ N, 0 < K < r and ζ > 0.

(i) For any start configuration ũ ∈ S[0,r] satisfying ũ(k) < K
2 , we have

Pũ

[
sup
s≤ζ

U (k),r,δ
s ≥ K

]
≤ 4ζ r2cδ

(rδ − c)2 ·
[
1− ζ

(
2K + 2rc

rδ − c

)]−2
.
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4.2. Tightness of (Ur, Y r)r

(ii) For any start configuration û ∈ S[0,r] satisfying û(k) > K, we have

Pû

[
inf
s≤ζ

U (k),r,δ
s ≤ K

2

]
≤ 4ζ r2cδ

(rδ − c)2 ·
[
1− ζ

(
4K + 2rc

rδ − c

)]−2

+ 16ζ r2cδ

(rδ − c)2 + 2ζK(k − 1)

Proof. We drop the δ in our notation, U (k),r = U (k),r,δ, Y r = Y r,δ, and agree on the
assumption that Y r > δ. We want to trace the particle U (k),r. Define the processes

J
(k),r,+
t :=

∑
0<s≤t

∆U(k),r
s >0

∆U (k),r
s and

J
(k),r,−
t :=

∑
0<s≤t

∆U(k),r
s <0

∆U (k),r
s ,

consisting of the upward jumps and downward jumps of U (k),r, respectively. We recall
the death-jump dynamics of U r: The particles jump upwards simultaneously at rate
r2Y r

c . At the time s of such a jump, the levels are multiplied by r
r−c/Y rs

, so the increment
of U (k),r is c

rY rs −c
U

(k),r
s . Adding and subtracting the compensator of the upward jumps,

we decompose U (k),r into a predictable bounded variation part, a compensated jump-
type martingale M (k),r with start M (k),r

0 = 0 and the downward jumps,

U
(k),r
t = U

(k),r
0 +

∫ t

0
ds

(
(U (k),r

s )2 − rU (k),r
s

)
+ J

(k),r,+
t + J

(k),r,−
t

= U
(k),r
0 +

∫ t

0
ds

(
(U (k),r

s )2 − rU (k),r
s + r2Y r

s

c
· c

rY r
s − c

U (k),r
s

)
+M

(k),r
t + J

(k),r,−
t

= U
(k),r
0 +

∫ t

0
ds

(
(U (k),r

s )2 + rc

rY r
s − c

· U (k),r
s

)
+M

(k),r
t + J

(k),r,−
t .

(4.9)

In order to estimate how far the level U (k),r moves, we will need the quadratic variation
of the martingale part:

〈M (k),r〉t =
∫ t

0
ds r

2Y r
s

c

(
c

rY r
s − c

U (k),r
s

)2

=
∫ t

0
ds r2cY r

s

(rY r
s − c)

2

(
U (k),r
s

)2

≤
∫ t

0
ds r2cδ

(rδ − c)2

(
U (k),r
s

)2
,

where the last inequality is true for r > c/δ.
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Chapter 4. Lookdown-construction of Feller’s branching diffusion with multiple deaths

(i) We turn to the ascent probability. Let ũ ∈ S[0,r] be a start configuration that
satisfies ũ(k) < K

2 . Define τ := inf
{
s > 0 : U (k),r

s ≥ K
}
. Using Chebyshev’s inequality

we estimate

Pũ

[
sup
s≤ζ

U (k),r
s ≥ K

]
= Pũ

[
U

(k),r
ζ∧τ ≥ K

]
= Pũ

[
U

(k),r
0 +

∫ ζ∧τ

0
ds

(
(U (k),r

s )2 + rc

rY r
s − c

· U (k),r
s

)
+M

(k),r
ζ∧τ + J

(k),r,−
ζ∧τ ≥ K

]

≤ Pũ

[
K

2 + ζ

(
K2 + rc

rδ − c
·K
)

+M
(k),r
ζ∧τ ≥ K

]
= Pũ

[
M

(k),r
ζ∧τ ≥

K

2 − ζ
(
K2 + rc

rδ − c
·K
)]

≤
Eũ

[
〈M (k),r〉ζ∧τ

]
[
K
2 − ζ ·

(
K2 + rc

rδ−c ·K
)]2

≤
ζ r2cδ

(rδ−c)2K
2[

K
2 − ζ ·

(
K2 + rc

rδ−c ·K
)]2

= 4ζ r2cδ

(rδ − c)2 ·
[
1− 2ζ

(
K + rc

rδ − c

)]−2
.

(4.10)

(ii) Next we estimate the probability that a particle starting above K descends to K
2

in the time interval [0, ζ]. Let û be a start configuration that satisfies û(k) > K. Define
the event Br

K that at least one of the k − 1 lowest particles gives birth to an offspring
below the threshold K in the time interval [0, ζ] and decompose on this event:

Pû

[
inf
s≤ζ

U (k),r
s ≤ K

2

]
≤ Pû

[{
inf
s≤ζ

U (k),r
s ≤ K

2

}
∩ (Br

K)c
]

+ Pû [Br
K ] .

Each particle with level ui gives birth to an offspring with level in [a, b], ui < a < b
with rate 2(b − a). So the probability that one of the (k − 1) lowest particles gives
birth to a child below K during a time interval of length ζ can be bounded by

P [Br
K ] ≤ 1− e−2ζK(k−1) ≤ 2ζK(k − 1). (4.11)

On the event that no particle with a level below K is born in the time interval of
length ζ, the particle U (k),r does not jump downwards across K. Therefore it hits K
if it starts above K and moves down to K

2 . Since U r is a strong Markov process, we
obtain

Pû

[{
inf
s≤ζ

U (k),r
s ≤ K

2

}
∩ (Br

K)c
]
≤ sup

û′∈Θr
Pû′

[{
inf
s≤ζ

U (k),r
s ≤ K

2

}
∩ (Br

K)c
]
,

where
Θr :=

{
û ∈ S[0,r] : û(k) = K, û([0, r)) ≥ δr

}
.
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4.2. Tightness of (Ur, Y r)r

Next, we decompose on the event that the particle U (k),r ascends to 2K before it
descends to K

2 : Let û
′ ∈ Θr. Then

Pû′

[{
inf
s≤ζ

U (k),r
s ≤ K

2

}
∩ (Br

K)c
]

≤ Pû′

[{
inf
s≤ζ

U (k),r
s ≤ K

2

}
∩
{

sup
s≤ζ

U (k),r
s < 2K

}
∩ (Br

K)c
]

+ Pû′

[
sup
s≤ζ

U (k),r
s ≥ 2K

]
.

(4.12)

Similarly as in (4.10), we estimate the ascent probability. Let

τ ′ := inf
{
s > 0 : U (k),r

s ≥ 2K
}
.

Then

Pû′

[
sup
s≤ζ

U (k),r
s ≥ 2K

]
≤ Pû′

[
U

(k),r
ζ∧τ ′ ≥ 2K

]
= Pû′

[
U

(k),r
0 +

∫ ζ∧τ ′

0
ds

(
(U (k),r

s )2 + rc

rY r
s − c

· U (k),r
s

)
+M

(k),r
ζ∧τ ′ + J

(k),r,−
ζ∧τ ′ ≥ 2K

]

≤ Pû′

[
K + ζ

(
(2K)2 + rc

rδ − c
· 2K

)
+M

(k),r
ζ∧τ ′ ≥ 2K

]

≤
Eû′

[
〈M (k),r〉ζ∧τ ′

]
[
K − ζ

(
4K2 + rc

rδ−c · 2K
)]2

≤
ζ r2cδ

(rδ−c)2 (2K)2[
K − ζ

(
4K2 + rc

rδ−c · 2K
)]2

= 4ζ r2cδ

(rδ − c)2 ·
[
1− 2ζ

(
2K + rc

rδ − c

)]−2
.

(4.13)

Now we turn to the descent probability, i.e. the first summand of the right hand side
of (4.12). On the event that the level does not reach 2K, we can stop at τ ′ without
changing the descent probability and, on the event that no birth happens, there are
no downward jumps. With

τ ′′ := inf
{
s > 0 : U (k),r

s ≤ K

2

}
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Chapter 4. Lookdown-construction of Feller’s branching diffusion with multiple deaths

we obtain

Pû′

[{
inf
s≤ζ

U (k),r
s ≤ K

2

}
∩
{

sup
s≤ζ

U (k),r
s < 2K

}
∩ (Br

K)c
]

≤ Pû′

[{
inf
s≤ζ

U
(k),r
s∧τ ′ ≤

K

2

}
∩ (Br

K)c
]

≤ Pû′

[{
U

(k),r
s∧τ ′∧τ ′′ ≤

K

2

}
∩ (Br

K)c
]

≤ Pû′

[
U

(k),r
0 +

∫ ζ∧τ ′∧τ ′′

0
ds

(
(U (k),r

s )2 + rc

rY r
s − c

· U (k),r
s

)
+M

(k),r
ζ∧τ ′∧τ ′′ ≤

K

2

]

≤ Pû′

[
M

(k),r
ζ∧τ ′∧τ ′′ ≤ −

K

2

]
≤ Pû′

[∣∣∣M (k),r
ζ∧τ ′∧τ ′′

∣∣∣ ≥ K

2

]

≤
4Eû′

[
〈M (k),r〉ζ∧τ ′∧τ ′′

]
K2

≤ 16ζ r2cδ

(rδ − c)2 .

(4.14)

We collect equations (4.13), (4.14) and (4.11) and obtain

Pû

[
inf
s≤ζ

U (k),r
s ≤ K

2

]
≤ Pû

[{
inf
s≤ζ

U (k),r
s ≤ K

2

}
∩ (Br

K)c
]

+ P [Br
K ]

≤ 4ζ r2cδ

(rδ − c)2 ·
[
1− 2ζ

(
2K + rc

rδ − c

)]−2

+ 16ζ r2cδ

(rδ − c)2 + 2ζK(k − 1).

Note that the mass densities Y r are not exactly Galton-Watson processes, since sev-
eral particles may die simultaneously. Nonetheless Y r converges to Feller’s branching
diffusion as r →∞.

Proposition 4.2.2. The mass densities (Y r)r are C-tight.

Proof. This is a simple application of Kolmogorov’s moment criterion for C-tightness
and can be done similarly as in [Kle06], 21.9, pp. 460. We omit the details.

In Section 4.3.1 we show that any limit point of (Y r)r has the semimartingale charac-
teristics of Feller’s branching diffusion.
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4.2. Tightness of (Ur, Y r)r

Theorem 4.2.3. The family
(
Xr,δ

)
r
is tight in DRk+1 [0,∞).

Proof. By Proposition 4.2.2 (Y r)r is C-tight. By Corollary VI.3.33 in [JS03] (see
Lemma A.3.3) the family (Xr,δ)r is tight if the process (U (1),r,δ, U (2),r,δ, . . . , U (k),r,δ) is
tight in DRk [0,∞). We suppress the δ in our notation, U (i),r := U (i),r,δ and set b = 1
for convenience.

We use Aldous’ Tightness Criterion (see Theorem 16.10 in [Bil99]). I.e., we show the
following two conditions:

(i) For all T > 0

lim
K→∞

lim sup
r→∞

P
[

sup
0≤s≤T

U (k),r
s > K

]
= 0

holds.

(ii) For each ε, η, T there exists γ0 and r0 such that, if γ ≤ γ0 and r ≥ r0, and if τ is
a discrete Xr-stopping time satisfying τ ≤ T , then

P
[

max
i=1,...,k

∣∣∣U (i),r
τ+γ − U (i),r

τ

∣∣∣ ≥ ε] ≤ η.

First, we check the compact containment condition (i). Let T > 0 and K > 4
δ log( 2

T ).
Let 0 < ζ < 2ζ < . . . < T be a partition of [0, T ]. Define the events that the k lowest
levels are below K

2 at the nodes of the partition,

Arj,K :=
{
U

(k),r
jζ <

K

2

}
and ArK :=

T/ζ⋂
j=0

Arj,K .

Then we have

P
[

sup
0≤s≤T

U (k),r
s > K

]
≤ P

[{
sup

0≤s≤T
U (k),r
s > K

}
∩ArK

]
+ P [(ArK)c] . (4.15)

First we treat the probability that one or more of the k lowest particles is above K
at the nodes of the partition. Since the levels of the whole system are independent
and identically distributed in [0, r] at times j · ζ, the number of particles below K

2 is
binomially distributed. Choose mesh size ζ = T/

⌊
Te

δK
4 − 1

⌋
. Then T

ζ + 1 ≤ Te
δK
4
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and we obtain

lim sup
r→∞

P [(ArK)c] ≤ lim sup
r→∞

T/ζ∑
j=0

P
[
(Arj,K)c

]

≤ lim sup
r→∞

(
T

ζ
+ 1

) k−1∑
i=0

Binrδ,K2r (i)

=
(
T

ζ
+ 1

) k−1∑
i=0

Poi δK
2

(i)

=
(
T

ζ
+ 1

)
e−

δK
2

k−1∑
i=0

δiKi

2i ·
1
i!

≤ Te−
δK
4

k−1∑
i=0

δiKi.

(4.16)

In order to decompose the first summand of (4.15), as depicted in Figure 4.2, define
the U r-stopping times

τj := inf
{
s > jζ : U (k),r

s ≥ K
}
.

Using the Markov property of U r,

P
[{

sup
0≤s≤T

U (k),r
s > K

}
∩ArK

]
≤

T/ζ−1∑
j=0

P [{τj ≤ (j + 1)ζ} ∩ArK ]

≤
T/ζ−1∑
j=0

P
[
{τj ≤ (j + 1)ζ} ∩Arj,K ∩Arj+1,K

]

=
T/ζ−1∑
j=0

E
[
E
[
1{τj≤(j+1)ζ}∩Arj,K · 1Arj+1,K

| FUrτj
]]

=
T/ζ−1∑
j=0

E
[
1{τj≤(j+1)ζ}∩Arj,K ·E

[
1Arj+1,K

| FUrτj
]]

≤
T/ζ−1∑
j=0

E
[
1{τj≤(j+1)ζ}∩Arj,K ·PUrτj

[
inf
s≤ζ

U (k),r
s ≤ K

2

]]
.

(4.17)

The set of level configurations

Θr :=
{
ũ ∈ S[0,r] : ũ(k) <

K

2 , ũ([0, r)) ≥ δr
}
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contains all states U rjζ can be in, given Arj,K . We obtain

P
[
{τj ≤ (j + 1)ζ} ∩Arj,K

]
≤ P

[
τj ≤ (j + 1)ζ | Arj,K

]
≤ sup

ũ∈Θr
Pũ [τ0 ≤ ζ]

= sup
ũ∈Θr

Pũ

[
sup
s≤ζ

U (k),r
s ≥ K

]
.

(4.18)

Recall that U (k),r exceeds K by jumping. On the event {τj ≤ (j + 1)ζ}, the set of level
configurations

Θ̂r :=
{
û ∈ S[0,r] : û(k) ≥ K, û([0, r)) ≥ δr

}
contains all states U rτj can be in, and we have

PUrτj

[
inf
s≤ζ

U (k),r
s ≤ K

2

]
≤ sup

û∈Θ̂r
Pû

[
inf
s≤ζ

U (k),r
s ≤ K

2

]
(4.19)

on the {τj ≤ (j + 1)ζ}. Plug (4.19) and (4.18) in the bound (4.17) to obtain

P
[{

sup
0≤s≤T

U (k),r
s > K

}
∩ArK

]
≤ T

ζ
sup
ũ∈Θr

Pũ

[
sup
s≤ζ

U (k),r
s ≥ K

]

× sup
û∈Θ̂r

Pû

[
inf
s≤ζ

U (k),r
s ≤ K

2

]
.

(4.20)

But Lemma 4.2.1 gives us

lim sup
r→∞

sup
ũ∈Θr

Pũ

[
sup
s≤ζ

U (k),r
s ≥ K

]
≤ 4c

δ
· ζ + o (ζ) (4.21)

and
lim sup
r→∞

sup
û∈Θ̂r

Pû

[
inf
s≤ζ

U (k),r
s ≤ K

2

]
≤ 20ζ c

δ
+ 2ζK(k − 1) + o(ζ) (4.22)

for ζ → 0.

Now we can piece together the compact containment condition: Plug equations (4.21)
and (4.22) in (4.20) to obtain

lim sup
r→∞

P
[{

sup
0≤s≤T

U (k),r
s > K

}
∩ArK

]
≤ ζ · 4Tc

δ

(20c
δ

+ 2K(k − 1)
)

+ o(ζ)

and with (4.15) and (4.16) we have

lim sup
r→∞

P
[

sup
0≤s≤T

U (k),r
s > K

]
≤ ζ · 4Tc

δ

(20c
δ

+ (k − 1)2K
)

+ Te−
δK
4

k−1∑
i=0

δiKi + o(ζ)

K→∞−−−−→ 0

since ζ ·K K→∞−−−−→ 0 according to prerequisites.
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Next we verify the structure condition (ii). Note that the uniform distribution property
of the particle representation holds only for FY -stopping times. But condition (ii) has
to be true for discrete FX -stopping times. Thus we have to trace the levels “by hand”,
as we did for condition (i).

Let ε, T > 0 and τ < T an FX stopping time that takes only finitely many values.
Proceeding similarly as in (4.9), we add and subtract the compensator of the upward
jumps, thus obtaining a martingale representation for the increment after τ ,

∣∣∣U (i),r
τ+γ − U (i),r

τ

∣∣∣ =
∣∣∣∣∣
∫ γ

0
ds

(
(U (i),r

τ+s )2 − rU (i),r
τ+s

)
+

∑
0<s≤γ∣∣∆U(i),r
τ+s

∣∣>0

∆U (i),r
τ+s

∣∣∣∣∣
≤
∣∣∣∣∣
∫ γ

0
ds

(
(U (i),r

τ+s )2 − rU (i),r
τ+s

)
+

∑
0<s≤γ

∆U(i),r
τ+s >0

∆U (i),r
τ+s

∣∣∣∣∣+
∣∣∣∣∣ ∑

0<s≤γ
∆U(i),r

τ+s <0

∆U (i),r
τ+s

∣∣∣∣∣
=
∣∣∣∣∣
∫ γ

0
ds

(
(U (i),r

τ+s )2 + rc

rY r
τ+s − c

· U (i),r
τ+s

)
+M (i),r

γ

∣∣∣∣∣+
∣∣∣∣∣ ∑

0<s≤γ
∆U(i),r

τ+s <0

∆U (i),r
τ+s

∣∣∣∣∣.

We will use the compact containment condition (i) and decompose on the event, that
U (k),r stays below a threshold K > 0. Let r0 = 2 cδ and let η > 0 be arbitrarily small.
Because of the compact containment condition (i) we find K such that for r > r0

P
[

sup
0≤s≤T

U (k),r
s ≥ K

]
≤ η

3k . (4.23)

For γ < γ′ := ε
2

(
K2 + 2c

δ K
)−1

and r > r0, we have

∫ γ

0
ds

∣∣∣∣∣(U (i),r
τ+s )2 + rc

rY r
τ+s − c

· U (i),r
τ+s

∣∣∣∣∣ ≤ γ ·
(
K2 + 2c

δ
K

)
<
ε

2 (4.24)

on the event
{

sup0≤s<T U
(k),r
s ≤ K

}
.

Proceeding as above, we will use the quadratic variation of the martingale M (i),r to
bound its increment. To this end we compute

〈M (i),r〉t =
∫ t

0
ds

r2cY r
τ+s(

rY r
τ+s − c

)2 (U (i),r
τ+s

)2

≤
∫ t

0
ds r2cδ

(rδ − c)2

(
U

(i),r
τ+s

)2

≤
∫ t

0
ds 4c

δ

(
U

(i),r
τ+s

)2
.
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4.2. Tightness of (Ur, Y r)r

The last inequality holds for r > r0 = 2 cδ . Define

σ := inf
{
s ≥ 0 : U (i),r

τ+s ≥ K
}
.

We obtain for r > r0 >
c
δ and γ < γ′′ := η

3k ·
(

16c
δε2K

2
)−1

P
[{∣∣∣M (i),r

γ

∣∣∣ > ε

2

}
∩
{

sup
0≤s<T

U (k),r
s ≤ K

}]
≤ P

[∣∣∣M (i),r
γ∧σ

∣∣∣ > ε

2

]

≤
4E
[
〈M (i),r〉γ∧σ

]
ε2

≤ γ · 16c
δε2

K2

<
η

3k ,

(4.25)

using Chebyshev’s inequality.

Finally, on the event
{

sup0≤s<T U
(k),r
s ≤ K

}
the instantaneous rate of downward jumps

at time t is bounded by (k − 1)2K. Let γ < γ′′′ := 1
2(k−1)K ·

η
3k . Then the probability

that U (i),r jumps downwards can be estimated by

P
[{∣∣∣∣ ∑

0≤s<γ
∆U(i),r

τ+s <0

∆U (i),r
τ+s

∣∣∣∣ > 0
}
∩
{

sup
0≤s<T

U (k),r
s ≤ K

}]

≤ 1− e−2(k−1)Kγ ≤ 2(k − 1)Kγ < η

3k . (4.26)

Combining equations (4.23), (4.24), (4.25) and (4.26), we obtain for γ < min(γ′, γ′′, γ′′′)

P
[∣∣∣U (i),r

τ+γ − U (i),r
τ

∣∣∣ > ε
]
≤ P

[{∣∣∣U (i),r
τ+γ − U (i),r

τ

∣∣∣ > ε
}
∩
{

sup
0≤s<T

U (k),r
s ≤ K

}]

+ P
[

sup
0≤s<T

U (k),r
s > K

]

≤ P
[{∫ γ

0
ds

∣∣∣∣∣(U (i),r
τ+s )2 + rc

rY r
τ+s − c

· U (i),r
τ+s

∣∣∣∣∣ > ε

2

}
∩
{

sup
0≤s<T

U (i),r
s ≤ K

}]

+ P
[{∣∣∣M (i),r

γ

∣∣∣ > ε

2

}
∩
{

sup
0≤s<T

U (k),r
s ≤ K

}]

+ P
[{∣∣∣∣ ∑

0≤s<γ
∆U(i),r

τ+s <0

∆U (i),r
τ+s

∣∣∣∣ > 0
}
∩
{

sup
0≤s<T

U (k),r
s ≤ K

}]

+ P
[

sup
0≤s<T

U (k),r
s > K

]
≤ 0 + 3 · η3k = η

k
.

51



Chapter 4. Lookdown-construction of Feller’s branching diffusion with multiple deaths

This implies condition (ii).

In the next step we “lift” the tightness of (U (1,...,k),r,δ)r to the case of the measure
valued family (U r,δ)r. We show that, for fixed C > 0 and for k large enough, the level
U (k),r,δ stays above C. Hence a testfunction with compact support “sees” only the k
lowest levels.

Recall that SR+ is the space of locally finite measures on [0,∞), equipped with the
topology of vague convergence and let C+

c be the set of non negative, continuous
functions on [0,∞) with compact support.

Theorem 4.2.4. There exists r0 > 0 such that the family
(
U r,δ, Y r,δ

)
r≥r0

is tight in
DSR+×R+ [0,∞).

Remark 4.2.5. By Prohorov’s Theorem,
(
U rn,δ, Y rn,δ

)
n
is weakly relatively sequen-

tially compact for any sequence rn →∞.

Proof. Again we confine ourselves to the level coordinate U r,δ, drop the δ in our nota-
tion and set b = 1. Theorem 16.27 in [Kal02], p. 324, states that it is enough to show
tightness of U r(f) :=

∫
f dU r in DR+ [0,∞) for every f ∈ C+

c . Let T > 0, f ∈ C+
c ,

C ≥ sup supp f and let r > 4C. We show that for k large enough, the k-th lowest
level stays above the threshold C (with high probability) and we deduce tightness of
(U r(f))r from tightness of (U (1),r, . . . , U (k),r)r.

We use similar arguments as in the proof of Theorem 4.2.3. We choose a partition
0 < ζ < 2ζ < . . . < T of [0, T ], such that the probability of the k-th level being above
2C at every node of the partition, is high. Let

Ari,k :=
{
U

(k),r
iζ > 2C

}
and Ark :=

T/ζ⋂
i=0

Ari,k.

By compact containment for any ε > 0, we can choose Lε > 0 such that

lim sup
r→∞

P
[

sup
0≤s≤T

Y r
s > Lε

]
< ε.
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We have

lim sup
r→∞

P [(Ark)
c] ≤ lim sup

r→∞
P
[
(Ark)

c ∩
{

sup
0≤s<T

Y r
s ≤ Lε

}]
+ ε

≤ lim sup
r→∞

T/ζ∑
j=0

P
[(
Arj,k

)c
∩
{
Y r
jζ ≤ Lε

}]
+ ε

≤ lim sup
r→∞

T/ζ∑
j=0

P
[(
Arj,k

)c ∣∣∣ Y r
jζ ≤ Lε

]
+ ε

≤ lim sup
r→∞

(
T

ζ
+ 1

)
BindrLεe, 2C

r
({k, k + 1, . . .}) + ε

=
(
T

ζ
+ 1

)
Poi2LεC ({k, k + 1, . . .}) + ε

=
(
T

ζ
+ 1

)
e−2LεC

∞∑
i=k

(2LεC)i

i! + ε

≤ 2
(
T

ζ
+ 1

)
e−2LεC (2LεC)k

k! + ε.

Choose mesh size ζ = T ·
⌊
Tek

⌋−1
and let ε→ 0 to obtain

lim sup
r→∞

P [(Ark)
c] k→∞−−−→ 0. (4.27)

Now define the U r-stopping times

τj := inf
{
s > jζ : U (k),r

s ≤ C
}
.

Using the strong Markov property of U r, we obtain

P
[{

inf
0≤s≤T

U (k),r
s ≤ C

}
∩Ark

]
≤

T/ζ−1∑
j=0

P
[
{τj ≤ (j + 1)ζ} ∩Arj,k ∩Arj+1,k

]

=
T/ζ−1∑
j=0

E
[
1{τj≤(j+1)ζ}∩Ar

j,k
·E
[
1Ar

j+1,k
| FUrτj

]]

≤
T/ζ−1∑
j=0

E
[
1{τj≤(j+1)ζ}∩Ar

j,k
·PUrτj

[
sup
s≤ζ

U (k),r
s ≥ 2C

]]
.

Given Arj,k, the set of level configurations

Θr :=
{
ũ ∈ S[0,r] : Ũ (k) ≥ 2C, δr ≤ ũ([0, r)) ≤ Lεr

}
contains all states U rjζ can be in, and, on {τj ≤ (j + 1)ζ},

Θ′r :=
{
ũ ∈ S[0,r] : ũ(k) ≤ C, δr ≤ ũ([0, r)) ≤ Lεr

}
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Chapter 4. Lookdown-construction of Feller’s branching diffusion with multiple deaths

contains all states U rτj can be in. With completely analogous arguments as in the proof
of Theorem 4.2.3 (cf. (4.18) and (4.19)) we obtain

P
[{

inf
0≤s≤T

U (k),r
s ≤ C

}
∩Ark

]
≤ T

ζ
sup
ũ∈Θr

Pũ

[
inf
s≤ζ

U (k),r
s ≤ C

]

× sup
ũ′∈Θ′r

Pũ′

[
sup
s≤ζ

U (k),r
s ≥ 2C

]
.

(4.28)

Now Lemma 4.2.1 (ii) gives us

lim sup
r→∞

sup
ũ∈Θr

Pũ

[
inf
s≤ζ

U (k),r
s ≤ C

]
≤ ζ ·

(20c
δ

+ (k − 1)4C
)

+ o(ζ) (4.29)

and Lemma 4.2.1 (i) gives us

lim sup
r→∞

sup
ũ′∈Θ′r

Pũ′

[
sup
s≤ζ

U (k),r
s ≥ 2C

]
≤ ζ · 4c

δ
+ o (ζ) . (4.30)

Plug (4.29) and (4.30) in (4.28) and we obtain with (4.27)

lim sup
r→∞

P
[

inf
0≤s≤T

U (k),r
s ≤ C

]
≤ lim sup

r→∞

(
P
[{

inf
0≤s≤T

U (k),r
s ≤ C

}
∩Ark

]
+ P [(Ark)c]

)
k→∞−−−→ 0.

(4.31)

On the event
{

inf0≤s≤T U
(k),r
s > C

}
, we have

U r(f) =
k∑
i=1

f(U (i),r).

Since
(
U (1),r, . . . , U (k),r

)
r
is tight, so is

(∑k
i=1 f(U (i),r)

)
r
because of Lemma A.4.1 and

the Continuous Mapping Theorem (see for example Theorem 2.7 in [Bil99]). Thus we
find a compact set K̃ ⊂ DR+ [0, T ) such that

sup
r>r0

P
[
k∑
i=1

f(U (i),r) /∈ K̃
]
<
ε

2

and because of (4.31) there is r0 > 0 and k ∈ N such that

sup
r>r0

P
[
U r(f) /∈ K̃

]
≤ sup

r>r0
P
[{
U r(f) /∈ K̃

}
∩
{

inf
0≤s≤T

U (k),r
s > C

}]
+ sup
r>r0

P
[

inf
0≤s≤T

U (k),r
s ≤ C

]

≤ sup
r>r0

P
[
k∑
i=1

f(U (i),r) /∈ K̃
]

+ sup
r>r0

P
[

inf
0≤s≤T

U (k),r
s ≤ C

]
≤ ε

2 + ε

2 .
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4.3. The dynamics of the level system Uδ in the limit

4.3. The dynamics of the level system U δ in the limit

In the typical two-step procedure for proving weak convergence of Xr,δ for r → ∞,
the second step would be to prove convergence of the finite dimensional distributions.
We substitute the second step by the approach described in [JS03], where the limit is
identified by its semimartingale characteristics (see below). To this end we use Theorem
IX.2.4 in [JS03] (see Theorem A.4.2 in the appendix). Our candidate for the limit is
given by the martingale problem (4.4), or to be more precise, it is Xδ = (U (1,...,k),δ, Y δ),
where U (1,...,k) are the k lowest particles of the system given by (4.4) and Y is Feller’s
branching diffusion.

Here lies a problem for the characterization of Xr,δ and therefore the characterization
of Xδ: While Y r is the Galton-Watson-like process, characterized by the generator
CrBDjd, we do not know the joint law of Y r and U (1,...,k),r. The lowest levels U (1,...,k),r,
representing the most persistent ancestors of the population, provide information on
the mass density Y r. Nevertheless our primary interest at this point is the level dy-
namics in the limit, and we do know the level dynamics in the r-th process, conditioned
on Y r. So one way to deal with the problem is to forgo the explicit characterization
of the mass density coordinate, but use Y r implicitly in the characterization of the
level dynamics. The mass density process Y r has the role of an auxiliary process
that converges jointly with U (1,...,k),r and provides us with a way to write down the
semimartingale characteristics of U (1,...,k),r.

In Chapter 6 we construct models X̃r where we retain a little more information from the
Poisson construction of the full level system and that allow for a joint characterization
of the lowest levels and the mass density.

We fix the notation for the calculations below. Let (Ω,A, (Ft)t≥0,P) be a stochastic
basis. Let O be the optional σ-field, i.e., the σ-field on Ω × R+ that is generated by
all càdlàg adapted processes. Define

Ω̃ := Ω× R+ × Rk, Õ := O ⊗ B(Rk).

Let µ be a random measure in the sense of [JS03], Definition II.1.3. I.e., µ(ω; dt, dx)
is a nonnegative measure on (R+ × Rk,B(R+) ⊗ B(Rk)) for every ω ∈ Ω. Let W an
Õ-measurable function on Ω̃. Define

W ∗ µt(ω) :=
∫

[0,t]×Rk

W (ω; s, x)µ(ω; ds, dx)

if ∫
[0,t]×Rk

|W (ω; s, x)| µ(ω; ds, dx) <∞.

A truncation function is a continuous bounded function that is the identity around 0.
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Chapter 4. Lookdown-construction of Feller’s branching diffusion with multiple deaths

We use h(x) = (h̃(xi))i, where

h̃(x) :=


x for |x| < 1
x · (2− |x|) for 1 < |x| ≤ 2
0 for 2 < |x| .

(4.32)

Consider a k-dimensional special semimartingale Z. Let ∆Zt := Zt − Zt− be the
process of the jumps of Z and define the empirical jump measure

µ(ω; dt, dx) :=
∑

s: ∆Zs(ω)6=0
δ(s,∆Zs(ω))(dt, dx).

We write ν(ω; dt, dx) for its predictable compensator (cf. [JS03], Theorem II.1.8).

Write

Ẑ(h)t :=
∑
s≤t

[
∆Zs − h(∆Zs)

]
and

Z(h)t := Zt − Ẑ(h)t

for the sum of big jumps up to time t and the process minus the big jumps respectively.

Let B̃t := Zt −
∑
s≤t ∆Zs be the process without jumps. Since ∆Z(h)t = h(∆Zt) we

have
Z(h)t = B̃t + ∆Z(h)t = B̃t + h ∗ µt.

Assume that the martingale part of Z is of the “pure jump”-type (cf. [JS03], Def-
inition I.4.11) and that Z has no predictable jumps. We obtain then the canonical
decomposition Z(h) = M(h) +B(h) with martingale part

M(h)t := h ∗ (µ− ν)t

and predictable finite variation part

B(h)t = B̃t + h ∗ νt. (4.33)

We use the notion of semimartingale characteristics as introduced in Chapter II of
[JS03]. The semimartingale Z is characterized by three processes (B, C̃, ν) where B is
the predictable bounded variation part of the canonical semimartingale decomposition,
C̃ is the covariation of the martingale part and ν is the predictable compensator of
the empirical jump measure. Note that B = B(h) and C̃ = C̃(h) depend on the
truncation function h. In [JS03] the identifier C is reserved for the covariation of the
continuous martingale part (which is independent of h), whereas C̃ is called “modified”
third characteristic. We keep this notation to provide consistency with the literature.
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4.3. The dynamics of the level system Uδ in the limit

If the continuous martingale part of Z is zero and if Z has no predictable jumps, the
modified second characteristic C̃ij(h) is defined in terms of the third characteristic ν,

C̃ij(h)t = 〈M i(h),M j(h)〉t
= 〈hi ∗ (µ− ν) , hj ∗ (µ− ν)〉t
= Cijt + hihj ∗ νt +

∑
s≤t

∆Bi
s∆Bj

s

= hihj ∗ νt.

(4.34)

4.3.1. The mass density coordinate Y δ,r in the limit r →∞

Before we turn to the dynamics of the low levels, we attend to the mass density
coordinate.

Recall that we denote by “⇒” weak convergence of processes in Skorohod topology.
We will use the following lemma frequently without notice.

Lemma 4.3.1. Let (Zr)r be tight in DR[0,∞) and ar
r→∞−−−→ 0. Then

arZ
r ⇒ 0 for r →∞.

Proof. The family (arZr)r is tight in DR[0,∞) and by compact containment of Zr

arZ
r f.d.d.−−−→ 0.

Let δ > 0 and let Y δ be a limit point of (Y r,δ)r. We suppress the subsequence notation.

Theorem 4.3.2. Let Y̌ be Feller’s branching diffusion. I.e., Y̌ solves the SDE

dY̌t =
√
b(2 + c)Y̌t dWt, (4.35)

W being Brownian motion. Let τ(δ) := inf
{
t ≥ 0 : Y̌t ≤ δ

}
and Y̌ δ

t := Y̌t∧τ(δ). Then

Y δ d= Y̌ δ.

Proof. Assume c
rδ ≤ 1. We drop the δ in our notation. The r-th processes Y r are

special semimartingales. Let (BY,r, C̃Y,r, νY,r) be the characteristics of Y r. Since Y r is
piecewise constant and Y r has no predictable jumps, the first and second characteristics
can be written in terms of the jump measure νY,r (cf. (4.33) and (4.34)).

Birth events happen at instantaneous rate r2bY r
t and in case of such an event one

particles with mass 1
r is born. When a death event happens at time t, all particles in
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Chapter 4. Lookdown-construction of Feller’s branching diffusion with multiple deaths

a “strip of death” [r− c/Y r
t , r] are killed. Since, given Y r

t , the particles are uniformly
distributed on [0, r], the number of particles killed is binomially distributed with pa-
rameters nrt := rY r

t and prt := c
rY rt

. The death events happen at rate r2bY rt
c . The

distribution of a jump at time t is

Br,Y rt
(dx) :=

nrt∑
i=0

(
nrt
i

)
(prt )i(1− prt )n

r
t−iδ− i

r
(dx).

The compensator of the jump measure is

νY,r(ω; dt, dx) = r2bY r
t dt · δ 1

r
(dx) + r2bY r

t

c
dt · Br,Y rt

(dx).

(Note that νY,r is random; we omit the notation of ω below.) Since Y r is piecewise
constant, we have

C̃Y,rt = h2 ∗ νY,rt

and
BY,r(h)t = h ∗ νY,rt .

Let (BY , C̃Y , νY ) be the semimartingale characteristics of Feller’s branching diffusion
(4.35),

BY
t = 0, C̃Yt =

∫ t

0
ds b (2 + c)Ys, νY (dt, dx) = 0.

We apply Theorem IX.2.4 in [JS03] (see also Theorem A.4.2 in the appendix). It is
enough to show

(Y r, BY,r, C̃Y,r)⇒ (Y,BY , C̃Y )

and
(Y r, g ∗ νY,r)⇒ (Y, g ∗ νY )

for all nonnegative continuous bounded functions g : R → R which are 0 around 0.
Note that we are talking about weak convergence in DRd [0,∞) with d = 3 or d = 2
respectively.

First we address BY . Let

(M r
3 )t := nrt (nrt − 1)(nrt − 2)(prt )3 + 3nrt (nrt − 1)(prt )2 + nrtp

r
t

the third moment of Binnr,pr . By the Continuous Mapping Theorem (c.f. Theorem
13.25 in [Kle06]) (M r

3 )r, (Y rM r
3 )r, etc. converge. We have

r2bY r
t

c

∫
Br,Y rt

(dx)h(x) = r2bY r
t

c

∫
Binnrt ,prt (dx) h

(
−x
r

)
= −rbY

r
t

c

∫
Binnrt ,prt (dx) x+Rrt

= −rbY r
t +Rrt ,
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where

Rr = r2bY r

c

∫
Binnr,pr(dx)

(
x

r
+ h

(
−x
r

))
= r2bY r

c

∫
Binnr,pr(dx) 1(r,∞)(x)

(
x

r
+ h

(
−x
r

))
≤ r2bY r

c

∫
Binnr,pr(dx) 1(r,∞)(x)x

r

≤ rnrbY r

c

∫
Binnr,pr(dx) 1(r,∞)(x)

≤ nrbY r

r2c
M r

3

⇒ 0

(4.36)

using Markov’s inequality for third moments of the (conditional) binomial distribution
and Lemma 4.3.1. Since the map x 7→

∫ ·
0 x(s) ds is a Skorohod-continuous functional

(Lemma A.4.1), we obtain

BY,r = h ∗ νY,r

=
∫ ·

0
ds

(
br2Y r

s h

(1
r

)
− rbY r

s +Rrs

)
⇒ 0.

We turn to the quadratic Variation C̃Y . We have

r2bY r
t

c

∫
Br,Y rt

(dx) h (x)2 = r2bY r
t

c

∫
Binnrt ,prt (dx) h

(
x

r

)2

= bY r
t

c

∫
Binnrt ,prt (dx) x2 +Rrt

= bY r
t

(
1 + c− c

rY r
t

)
+Rrt ,

where

|Rr| ≤ r2bY r
s

c

∫
Binnr,pr(dx)

∣∣∣∣∣h
(
−x
r

)2
−
(
x

r

)2
∣∣∣∣∣

= r2bY r
s

c

∫
Binnr,pr(dx) 1(r,∞)(x)

∣∣∣∣∣h
(
−x
r

)2
−
(
x

r

)2
∣∣∣∣∣

≤ bY r
s

c

∫
Binnr,pr(dx) 1(r,∞)(x)x2

≤ (nr)2 bY r
s

c

∫
Binn̂r,p̂r(dx) 1(r,∞)(x)

≤ (nr)2 bY r
s

r3c
M r

3

⇒ 0
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with Markov’s inequality for third moments of the conditional binomial distribution.
By Lemma A.4.1, we obtain

C̃Y,r = h2 ∗ νY,r

=
∫ ·

0
ds
(
br2Y r

s h

(1
r

)2
+ bY r

s

(
1 + c− c

rY r
s

)
+Rrs

)

⇒
∫ ·

0
ds b (2 + c)Ys.

We turn to the compensator of the jump measure. Let g : R→ [0,∞) be a nonnegative
continuous bounded function that is 0 in a neighbourhood of 0. Let Cg, εg > 0 such
that g ≤ Cg and g(x) = 0 for |x| < εg. Similarly as above, we obtain

r2bY r

c
·
∫

Br,Y r(dx) g(x) = r2bY r

c

∫
Binnr,pr(dx) g

(
−x
r

)
≤ r2bCgY

r

c

∫
Binnr,pr(dx) 1(rεg ,∞)(x)

≤ bCgY
r

rε3gc
M r

3

⇒ 0.

(4.37)

By Lemma A.4.1, we have

g ∗ νY,r =
∫ ·

0
ds

(
r2bY r

s g

(1
r

)
+ r2bY r

s

c
·
∫

Br,Y rs (dx) g(x)
)

⇒ 0.
(4.38)

By Lemma A.3.3, there is a subsequence (r′) ⊂ (r) such that for r′ →∞

(Y r′ , BY,r′ , C̃Y,r
′)⇒ (Y,BY , C̃Y ) and

(Y r′ , g ∗ νY,r′)⇒ (Y, g ∗ νY ),

and (Y r)r converges to the same limit as the subsequence (Y r′)r′ .

4.3.2. The low levels U (1,...,k),r,δ in the limit r →∞

We characterize the k lowest levels in the limit, U (1,...,k),δ, as a semimartingale via its
semimartingale characteristics. The procedure is similar to the proof of Theorem 4.3.2,
but the mass density processes (Y r)r act as auxiliary processes that allow us to write
down the characteristics of (U (1,...,k),r,δ)r. Write 0q for (0, . . . , 0) ∈ Rq.

Theorem 4.3.3. Let Xδ = (U (1,...,k),δ, Y δ) be the limit of a convergent subsequence of
the family

(
Xr,δ

)
r

=
(
U (1,...,k),r,δ, Y r,δ

)
r
. Then U (1,...,k),δ is a stopped semimartingale
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4.3. The dynamics of the level system Uδ in the limit

with characteristic triplet (B, C̃, ν). Define τ := inf{s : Ys ≤ δ}. The jump measure of
U (1,...,k),δ is

ν(dt, dx) = 1{t<τ}

k∑
q=2

2b(q − 1)
(
U

(q),δ
t − U (q−1),δ

t

)
dt · δ0q−1(dx1, . . . ,dxq−1)

×Unif [U(q−1),δ
t −U(q),δ

t ,0](dxq) · δU(q,...,k−1),δ
t −U(q+1,...,k),δ

t

(dxq+1, . . . ,dxk).

For the bounded variation part we have

Bi
t =

∫ t∧τ

0
ds

(
b
(
U (i),δ
s

)2
+ bc

Ys
U (i),δ
s

)
+ hi ∗ νt for i = 1, . . . , k,

and for the covariation of the martingale part we have

C̃ijt =
∫ t∧τ

0
ds bc

Ys
U (i),δ
s U (j),δ

s + hihj ∗ νt for i, j ∈ {1, . . . , k}.

In other words, between jumps and up to time τ the k lowest levels are a system of
perfectly correlated, conditional geometric Brownian motions. U (1,...,k),δ solves

dU (i),δ
t =

(
b
(
U

(i),δ
t

)2
+ bc

Yt
U

(i),δ
t

)
dt+

√
bc

Yt
· U (i),δ

t dWs for i = 1, . . . , k,

with W being the same Brownian motion for all coordinates i.

Remark 4.3.4. The path of a single particle of the full system is continuous. The
jumps of U (1,...,k),r,δ are attributed to the fact that we trace the k lowest particles and
newborn particles with low enough levels have to be pigeon-holed.

We will use the following lemma several times.

Lemma 4.3.5.
U (1,...,k),r,δ c

rY r,δ − c
⇒ 0,

for r →∞.

Proof. Tightness follows from tightness of (Xr,δ)r. Convergence of the finite dimen-
sional distributions follows from Y r

t ≥ δ and U r,δt ∼ αr(rY r,δ, ·) given Y r
t for all

t > 0.

For readability’s sake, we suppress the subsequence notation below.

Proof of Theorem 4.3.3. Recall that τ r = inf{s ≥ 0 : Y r
s ≤ δ}. As we did before,

we drop the δ in the notation; we write Xr, Br, etc. instead of Xr,δ, Br,δ, etc. Let
(Br, C̃r, νr) be the semimartingale characteristics of U (1,...,k),r. Note that the contin-
uous martingale part of U (1,...,k),r is zero and U (1,...,k),r has no predictable jumps. We
constitute νr as a sum

νr(ω; dt, dx) = νD,r(ω; dt, dx) + νB,r(ω; dt, dx),
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Chapter 4. Lookdown-construction of Feller’s branching diffusion with multiple deaths

where νD,r compensates the jumps induced by death events, νB,r compensates the
jumps induced by births among the lowest k levels. Note that the compensator νr is
random since the jumps depend on U (1,...,k),r and the auxiliary process Y r, but the ω
is omitted below.

Death jumps happen at time t with instantaneous rate r2bY rt
c and the height of the

jump for a particle with level ui is ui ·
(

r
r−c/Y rt−

− 1
)

= ui · c
rY rt−−c

. The compensator
for these jumps is

νD,r(dt, dx) = 1{t<τr}
r2bY r

t

c
dt · δ

U
(1,...,k),r
t · c

rY r
t
−c

(dx).

In the full level system, every particle ui gives birth with rate 2b(r− ui). The process
U (1,...,k),r displays only the birth of particles that are among the k lowest. Offspring
with rank q can only have a parent with rank smaller than q. Since the offspring’s
level is uniform above the parent’s level, offspring is born into the rank q at rate

2b(q − 1)
(
U

(q),r
t − U (q−1),r

t

)
.

If such a birth happens at time t, the q-th level U (q),r
t is the level of the newborn. Thus

U (q),r performs a uniformly distributed downward jump,

∆U (q),r
t ∼ Unif [U(q−1),r

t− −U(q),r
t− ,0] .

The coordinates U (1,...,q−1),r do not jump if a rank q particle is born and the coordinates
U (q+1,...,k),r jump down as the particles’ ranks shift up,

∆U (1,...,q−1),r
t = 0q−1,

∆U (q+1,...,k),r
t = U

(q,...,k−1),r
t− − U (q+1,...,k),r

t− .

The compensator for the birth jumps is

νB,r(dt, dx) = 1{t<τr}

k∑
q=2

2b(q − 1)
(
U

(q),r
t − U (q−1),r

t

)
dt · δ0q−1(dx1, . . . ,dxq−1)

×Unif [U(q−1),r
t −U(q),r

t ,0](dxq) · δU(q,...,k−1),r
t −U(q+1,...,k),r

t

(dxq+1, . . . ,dxk).

We apply Theorem IX.2.4 and Remark IX.2.21 in [JS03] (cf. Theorem A.4.2), i.e., we
take a convergent subsequence (U (1,...,k),r)r with limit U (1,...,k) and show

(U (1,...,k),r, Y r, Br, C̃r)⇒ (U (1,...,k), Y, B, C̃) and (4.39)
(U (1,...,k),r, Y r, g ∗ νr)⇒ (U (1,...,k), Y, g ∗ ν) (4.40)

for all nonnegative continuous bounded functions g : Rk → [0,∞) which are 0 around
0.
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4.3. The dynamics of the level system Uδ in the limit

Below we will use the Continuous Mapping Theorem repeatedly without mentioning it
explicitly every time (c.f. Theorem 13.25 in [Kle06]). For instance, withXr converging,
so does Xi,r · Xk+1,r = U (i),r · Y r, since the application of a continuous function is
Skorohod-continuous (see Lemma A.4.1), etc.

Use Skorohod’s Representation Theorem (see for example Theorem 4.30 in [Kal02])
and the continuity of Y to apprehend τ r stoch.−−−→ τ . This implies 1{s<τr} ⇒ 1{s<τ}.

Convergence of the third characteristics. Let us start with Condition (4.40), the
convergence of jump measures. For the births among the lowest levels, we obtain

g ∗ νB,r =
k∑
q=2

∫ ·
0

ds 1{s<τr}2b(q − 1)
(
U (q),r
s − U (q−1),r

s

)
× 1
U

(q),r
s − U (q−1),r

s

∫ 0

U
(q−1),r
s −U(q),r

s

dz g
(
0q−1, z, U

(q,...,k−1),r
s − U (q+1,...,k),r

s

)
⇒

k∑
q=2

∫ ·
0

ds 1{s<τ}2b(q − 1)
(
U (q)
s − U (q−1)

s

)
× 1
U

(q)
s − U (q−1)

s

∫ 0

U
(q−1)
s −U(q)

s

dz g
(
0q−1, z, U

(q,...,k−1)
s − U (q+1,...,k)

s

)
= g ∗ ν

(4.41)

because of Lemma A.4.1 and the Continuous Mapping Theorem.

By Lemma 4.3.5, we have
U (1,...,k),r c

rY r − c
⇒ 0

and therefore, since g is zero around zero,

r2bY r
t

c
· g
(
U

(1,...,k),r
t

c

rY r
t − c

)
⇒ 0.

By Lemma A.4.1 and the Continuous Mapping Theorem we have

g ∗ νD,r =
∫ ·

0
ds 1{s<τr}

r2bY r
s

c
g

(
U (1,...,k),r
s

c

rY r
s − c

)
⇒ 0. (4.42)

Equations (4.41) and (4.42) give us g ∗ νr ⇒ g ∗ ν. Since g ∗ ν and Y are continuous,
we have joint convergence

(U (1,...,k),r, Y r, g ∗ νr)⇒ (U (1,...,k), Y, g ∗ ν)

by Lemma A.3.3.
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Chapter 4. Lookdown-construction of Feller’s branching diffusion with multiple deaths

Convergence of the first characteristics. Since the particles in the r-th model move
according to the differential equation u̇ = bu2 − bru between jumps, we have

B̃i,r
t := U

(i),r
t −

∑
s≤t

∆U (i),r
s

=
∫ t

0
ds 1{s<τr}

(
b
(
U (i),r
s

)2
− brU (i),r

s

)
for i = 1, . . . , k. Define H i,r :=

{∥∥∥U (i),r c
rY r−c

∥∥∥
∞
< 1

}
. Since weak convergence in

DR+ [0,∞) to a continuous path implies weak convergence with respect to the uniform
topology, Lemma 4.3.5 gives us P

[
(H i,r)c

]
→ 0 for r →∞. Hence we have

r21(H i,r)c ⇒ 0 and
r2Y r1(H i,r)c ⇒ 0,

and thus

1(H i,r)c ·
(
r2bY r

c
h̃

(
U (i),r c

rY r − c

)
− brU (i),r

)

≤ 1(H i,r)c ·
(
r2bY r

c
+ br2

)
⇒ 0.

We obtain

r2bY r

c
h̃

(
U (i),r c

rY r − c

)
− brU (i),r

=
(
1H i,r + 1(H i,r)c

)
·
(
r2bY r

c
h̃

(
U (i),r c

rY r − c

)
− brU (i),r

)

⇒ bc

Y
U (i).

(4.43)

Hence we have for the bounded variation part

Bi,r = B̃i,r + hi ∗ νr

= B̃i,r + hi ∗ νD,r + hi ∗ νB,r

=
∫ ·

0
ds 1{s<τr}

(
b
(
U (i),r
s

)2
− brU (i),r

s + r2bY r
s

c
h̃

(
U (i),r
s

c

rY r
s − c

))
+ hi ∗ νB,r

⇒
∫ ·

0
ds 1{s<τ}

(
b
(
U (i)
s

)2
+ bc

Ys
U (i)
s

)
+ hi ∗ ν.

Convergence of the second characteristics. Finally, we address the covariation C̃.
We have

C̃ij,rt = hihj ∗ νrt = hihj ∗ (νD,r + νB,r)t.

64



4.3. The dynamics of the level system Uδ in the limit

Again, using Lemma 4.3.5 and Lemma A.4.1,

hihj ∗ νD,r =
∫ ·

0
ds 1{s<τr}

r2bY r
s

c
h̃

(
U (i),r
s

c

rY r
s − c

)
· h̃
(
U (j),r
s

c

rY r
s − c

)

=
∫ ·

0
ds 1{s<τr}

r2bY r
s

c

(
1Hi,r1Hj,r ·

c2

(rY r
s − c)2U

(i),r
s U (j),r

s

+ (1− 1Hi,r1Hj,r) · h̃
(
U (i),r
s

c

rY r
s − c

)
· h̃
(
U (j),r
s

c

rY r
s − c

))

⇒
∫ ·

0
ds 1{s<τ}

bc

Ys
U (i)
s U (j)

s .

(4.44)

Furthermore, we have
hihj ∗ νB,r ⇒ hihj ∗ ν.

Lemma A.3.3 gives us the simultaneous convergence

(U (1,...,k),r, Y r, Br, C̃r)⇒ (U (1,...,k), Y, B, C̃).
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5. Lookdown-construction of symbiotic
branching diffusions with positive
correlation

In this chapter we finalize the construction of a level representation of a symbiotic
diffusion. Recall that a symbiotic diffusion is a solution of the system{

dYt =
√
bYtZt dW 1

t

dZt =
√
bYtZt dW 2

t ,
(5.1)

where W 1 and W 2 are correlated Brownian motions with constant correlation coeffi-
cient ρ (i.e. 〈W 1,W 2〉t = ρ · t). In our case we will construct a system with 0 < ρ < 1.
We recapitulate briefly, why the lookdown construction of Feller’s branching diffusion
with jump-induced deaths in Chapter 4 provides us with a handle that enables the
coupling of two subpopulations: The death mechanism is not intrinsic in the system’s
deterministic motion. On the r-th stage it is triggered by an external Poisson process.
In the continuous mass limit this becomes manifest in the geometric Brownian motion
of the levels. Heuristically, a series of time changes as in the construction of the mutu-
ally catalytic system in Chapter 2 and coupling the noise that drives the level motion
should lead to a symbiotic level system. But these heuristics hold a problem: The
geometric Brownian motion of the levels arises in the weak construction of the level
system in Chapter 4. So we cannot simply assume that the noise that drives the level
motion in two separate level representations is coupled. Instead the noise coupling
has to be established in the discrete mass models. Hence we take a direct approach,
where we start with a discrete mass system similar to those in Chapter 3 and then
pass to a weak limit. We may trace back most of the technical computations to the
implementations in Chapter 4.

5.1. A symbiotic birth-death process with jump induced
deaths

We are concerned with level representations of discrete mass systems. The level systems
we construct in this section take values in S[0,r]×S[0,r], where S[0,r] is the space of locally
finite counting measures on [0, r].

Let c > 0 and 0 ≤ η ≤ 1. Recall the definition of the (corrected) jump factor from
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Chapter 5. Lookdown-construction of symbiotic branching diffusions with positive correlation

Section 4.1,

ϕ(u) := 1(c,∞)(u([0, r))) · 1
1− c/u([0, r)) + 1[0,c](u([0, r))) · r

mini ui
,

and denote by m := u([0, r)) and n := v([0, r)) the masses of u and v. We consider
the martingale problem

ArsBDjdf(u, v) = f(u, v)
(

m∑
i=1

[2bn
r

∫ r

ui

(g1(x)− 1) dx+
(
bn

r
u2
i − bnui

)
g′1(ui)
g1(ui)

]

+
n∑
j=1

[
2bm
r

∫ r

vj

(g2(x)− 1) dx+
(
bm

r
v2
j − bmvj

)
g′2(vj)
g2(vj)

]
+ (1− η)bmn

c

(
f2(v)

m∏
i=1

g1 (ϕ(u) · ui)− f(u, v)
)

+ (1− η)bmn
c

f1(u)
n∏
j=1

g2 (ϕ(v) · vj)− f(u, v)


+ η

bmn

c

 m∏
i=1

g1 (ϕ(u) · ui)
n∏
j=1

g2 (ϕ(v) · vj)− f(u, v)

 ,
DrsBDjd :=

{
f(u, v) := f1(u)f2(v) :=

m∏
i=1

g1(ui)
n∏
j=1

g2(vj) : 0 ≤ g1, g2 ≤ 1 ∈ C2(R),

g1(x) = g2(x) = 1 for x ≥ r
}
.

The label sBDjd stands for “symbiotic birth-death process with jump induced deaths”.
The model consists of two populations that perform the mutually catalytic birth mech-
anism from Section 3.1.2 on the one hand. On the other hand the model exhibits a
death mechanism, that is similar to the building block “Positively correlated symbiotic
deaths” in Section 3.1.4 but kills particles in a “strip of death”, similar to the model in
Section 4.1. The births in both subpopulations are triggered by independent Poisson
processes. The death events are partially coupled.

Recall the definition

αr(m,n; du,dv) := αr(m, du)⊗ αr(n,du),

where αr(m, ·) is the distribution of a Poisson point process on [0, r], conditioned to
have mass m.

Theorem 5.1.1. Let µ0 ∈ M1(N0 × N0) and define ν0 :=
∫
αr(m,n; · ) µ0(dm, dn).

There exists an unique solution (U r, V r) of the DS[0,r]×S[0,r] [0,∞)-martingale problem
for (ArsBDjd, ν0). This solution has the property that (M r, N r) := (U([0, r)), V ([0, r)))
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5.1. A symbiotic birth-death process with jump induced deaths

is a solution of the DN0×N0 [0,∞)-martingale problem for (CrsBDjd, µ0), where

CrsBDjdf̂(m,n) = bmn
(
f̂(m+ 1, n)− f̂(m,n)

)
+ bnm

(
f̂(m,n+ 1)− f̂(m,n)

)
+ 1(c,∞)(m) · (1− η)bmn

c

(
f̂2(n)

m∑
i=0

(
m

i

)(
c

m

)i (
1− c

m

)m−i
f̂1(m− i)− f̂(m,n)

)

+ 1[0,c](m) · (1− η)bmn
c

(
f̂(0, n)− f̂(m,n)

)
+ 1(c,∞)(n) · (1− η)bmn

c

(
f̂1(m)

n∑
j=0

(
n

j

)(
c

n

)j (
1− c

n

)n−j
f̂2(n− j)− f̂(m,n)

)

+ 1[0,c](n) · (1− η)bmn
c

(
f̂(m, 0)− f̂(m,n)

)
+ η

bmn

c

[(
1(c,∞)(m) ·

m∑
i=0

(
m

i

)(
c

m

)i (
1− c

m

)m−i
f̂1(m− i) + 1[0,c](m) · f̂1(0)

)

×
(
1(c,∞)(n) ·

n∑
j=0

(
n

j

)(
c

n

)j (
1− c

n

)n−j
f̂2(n− j) + 1[0,c](n) · f̂2(0)

)
− f̂(m,n)

]
.

For every t ≥ 0 and Γ ∈ B(S[0,r] × S[0,r]), we have

P
[
(U rt , V r

t ) ∈ Γ
∣∣∣ FMr,Nr

t

]
= αr(M r

t , N
r
t ; Γ).

Remark 5.1.2. The distinction of the cases “m ≤ c”, “m > c”, etc. makes the
generator CrsBDjd rather unwieldy. Since in the following sections we stop the process
when one of the mass densities Mr

r or Nr

r falls below some threshold δ > 0, and since
we are interested in the limit for r →∞, we may assume “m > c and n > c” for our
purposes.

Proof. The proof goes along the same lines as the proofs of Theorems 3.2.2 and 4.1.1.
In order to apply the Markov Mapping Theorem, we check the intertwining relation∫

αr(m,n; du,dv) ArsBDjdf(u, v) = CrsBDjd

∫
αr(m,n; du,dv) f(u, v). (5.2)

Recall the definitions
e−λi := 1

r

∫ r

0
gi(z) dz, i = 1, 2,

and
f̂(m,n) :=

∫
αr(m,n; du,dv) f(u, v) = e−λ1me−λ2n.

By Calculation 3.1.2 for Model 3.1.2 we have∫
αr(m,n; du,dv) f(u, v)

(
m∑
i=1

[2bn
r

∫ r

ui

(g1(x)− 1) dx+
(
bn

r
u2
i − bnui

)
g′1(ui)
g1(ui)

]

+
n∑
j=1

[
2bm
r

∫ r

vj

(g2(x)− 1) dx+
(
bm

r
v2
j − bmvj

)
g′2(vj)
g2(vj)

]
= bmn

(
f̂(m+ 1, n)− f̂(m,n)

)
+ bmn

(
f̂(m,n+ 1)− f̂(m,n)

)
.
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Chapter 5. Lookdown-construction of symbiotic branching diffusions with positive correlation

Assume m > c, then ϕ(u) = 1
1−c/m . As in Equation (4.3) we obtain

∫
αr(m,n; du,dv) (1− η)bmn

c

(
f2(v)

m∏
i=1

g1 (ϕ(u) · ui)− f(u, v)
)

= (1− η)bmn
c

(
f̂2(n)

m∑
i=0

(
m

i

)(
c

m

)i (
1− c

m

)m−i
f̂1(m− i)− f̂(m,n)

)
.

If m ≤ c we have

∫
αr(m,n; du,dv) (1− η)bmn

c

(
f2(v)

m∏
i=1

g1 (ϕ(u) · ui)− f(u, v)
)

= (1− η)bmn
c

(
f̂(0, n)− f̂(m,n)

)
.

Similar calculations for the remaining jump terms and cases give us the intertwining
relation (5.2). The assertion of the theorem follows from the Markov Mapping Theorem
A.5.1 with ψ(u, v) := m·n and γ(u, v) := (u([0, r)), v([0, r))), where we use the notation
of said theorem.

Similarly as before, uniqueness of the level system follows from uniqueness of the
system that performs only the continuous motion (no death events, no birth events).
By Theorem 4.10.3 in [EK86], we have uniqueness of the level dynamics until the first
time either the M r or N r hits some fixed m̃. Letting m̃ → ∞, we obtain uniqueness
of the whole process.

5.2. Tightness

In order to establish tightness of the level representation we stop the process when one
of the mass densities Y r := 1

rM
r or Zr := 1

rN
r hits or falls below some level δ > 0.

Define
τ rδ := inf {s ≥ 0 : Y r

s ∧ Zrs ≤ δ}

and denote by

U r,δt := U rt∧τr
δ
,

Y r,δ
t := Y r

t∧τr
δ

and

V r,δ
t := V r

t∧τr
δ
,

Zr,δt := Zrt∧τr
δ

the stopped processes.
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5.2. Tightness

In this section we proof tightness of the joint process (U r,δ, V r,δ, Y r,δ, Zr,δ). Similarly
as in Section 4.2 we show DR2k+2 [0,∞)-tightness of the family(

X̄r,δ
)
r

:=
(
U (1,...,k),r,δ, V (1,...,k),r,δ, Y r,δ, Zr,δ

)
r

first, and then we lift the result to the measure valued case.

The marginals U r,δ and V r,δ can be transformed to level representations that solve the
martingale problem for ArBDjd in Section 4.1 (see (4.1)) via a time change that has an
inverse with increments that are bounded in probability. This allows us to trace back
the tightness of X̄r,δ to the tightness of the family Xr,δ in Section 4.2.

Theorem 5.2.1. Assume supr E [Y r
0 ] , supr E [Zr0 ] <∞. The family

(
X̄r,δ

)
r
is tight in

DR2k+2 [0,∞).

Proof. Define the random time changes

σU,rt := inf
{
s ≥ 0 :

∫ s

0
Zr,δh dh ≥ t

}
,

σV,rt := inf
{
s ≥ 0 :

∫ s

0
Y r,δ
h dh ≥ t

}
.

Time changes σU,r and σV,r solve the equations

σU,rt =
∫ t

0

1
Zr,δ
σU,rs

ds,

σV,rt =
∫ t

0

1
Y r,δ

σV,rs

ds,

hence they are both bounded by t
δ . Observe that, by the Optional Sampling Theorem

(see Theorem 7.29 in [Kal02]), each of the processes

Ũ rt := U r
σU,rt

,

Ṽ r
t := V r

σV,rt
,

solves the martingale problem for ArBDjd (before they are stopped at time τ rδ ). I.e.
Ũ r,δt and Ṽ r,δ

t are level representations for the discrete mass birth-death processes with
jump induced deaths in Chapter 4.

Write Ỹ r,δ := 1
r Ũ

r,δ([0, r)) and Z̃r,δ := 1
r Ṽ

r,δ([0, r)). Now consider the random time
changes

τU,rt := inf
{
s ≥ 0 :

∫ s

0

1
Z̃r,δh

dh ≥ t
}
,

τV,rt := inf
{
s ≥ 0 :

∫ s

0

1
Ỹ r,δ
h

dh ≥ t
}
.
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Note that σU,r and σV,r are inverse to τU,r and τU,r. Hence we have(
U

(1,...,k),r,δ
t , V

(1,...,k),r,δ
t

)
=
(
Ũ

(1,...,k),r,δ
τU,rt

, Ṽ
(1,...,k),r,δ
τV,rt

)
.

By the rule for differentiation of inverse functions, the time changes τU,r and τV,r solve
the equations

τU,rt =
∫ t

0
Z̃r,δ
τU,rs

ds,

τV,rt =
∫ t

0
Ỹ r,δ

τV,rs
ds.

The processes Ỹ r,δ and Z̃r,δ are nonnegative martingales. By the maximum inequality
for martingales (cf. Proposition 7.15 in [Kal02]) we have for a, T > 0

a ·P
[
sup
t≤T

Z̃r,δt ≥ a
]
≤ E

[
Z̃r,δ0

]
= E

[
Zr,δ0

]
,

where the right hand side is bounded in r by assumption. Hence, for any ε > 0, there
exists K > 0 such that

lim inf
r→∞

P
[

sup
s,t∈[0,T ]

∣∣∣τU,rt − τU,rs

∣∣∣ ≤ K · |t− s|] ≥ 1− ε.

The same holds for (τV,r)r. The families
(
Ũ (1,...,k),r,δ)

r
and

(
Ṽ (1,...,k),r,δ)

r
are tight

in DRk [0,∞) by Theorem 4.2.3. By Lemma A.3.4, the processes
(
U (1,...,k),r,δ)

r
and(

V (1,...,k),r,δ)
r
are tight in DRk [0,∞).

The pair
(
U (1,...,k),r,δ, V (1,...,k),r,δ) is tight in DRk [0,∞)×DRk [0,∞) (endowed with the

product topology) but not necessarily in DRk×Rk (endowed with the Skorohod topol-
ogy; see Lemma A.3.6). Consider a limit point (U (1,...,k),δ, V (1,...,k),δ). From the proof
of Theorem 5.3.2 the semimartingale characteristics and therefore the discontinuities
of the marginal U (1,...,k),δ and of the marginal V (1,...,k),δ are apparent (see also Remark
5.3.5): The jumps of U (1,...,k),δ and V (1,...,k),δ are due to births among the k lowest par-
ticles. In a time interval [0, T ], T > 0, these births are triggered by 2(k−1) orthogonal
Poisson point processes with intensities that are bounded by

sup
0≤t≤T

(
2bU (k),δ

t Zδt ∨ 2bV (k),δ
t Y δ

t

)
<∞.

Hence the relevant births almost surely do not happen simultaneously, and U (1,...,k),δ

and V (1,...,k),δ almost surely do not jump simultaneously in [0, T ]. By Lemma A.3.6
the family

(
U (1,...,k),r, V (1,...,k),r)

r
is tight in DR2k [0,∞).

The family
(
Ỹ r,δ, Z̃r,δ

)
r
is C-tight and

Y r
t = Ỹ r

τU,rt

,

Zrt = Z̃r
τV,rt

.

By Lemma A.3.4
(
Y r,δ

)
r
and

(
Zr,δ

)
r
are C-tight. Hence by Lemma A.3.3 we have joint

tightness of the family
(
U (1,...,k),r,δ, V (1,...,k),r,δ, Y r,δ, Zr,δ

)
r
.
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5.2. Tightness

We lift DR2k+2 [0,∞)-tightness of (X̄r,δ) to the measure valued case. Again we may
trace the result back to the level representation of Feller’s branching diffusion in Chap-
ter 4.

Theorem 5.2.2. There exists r0 > 0 such that the family
(
U r,δ, V r,δ, Y r,δ, Zr,δ

)
r≥r0

is
tight in DSR+×SR+×R2.

Remark 5.2.3. By Prohorov’s Theorem,
(
U rn,δ, V rn,δ, Y rn,δ, Zrn,δ

)
n
is weakly rela-

tively sequentially compact for any sequence rn →∞.

Proof. Since
(
Y r,δ, Zr,δ

)
r≥r0

is C-tight, we confine ourselves to
(
U r,δ, V r,δ

)
r≥r0

(see
Remark A.3.7).

Recall the definition of the time changes τU,r, τV,r, σU,r and σV,r in the proof of
Theorem 5.2.1. The processes Ũ rt := U r

σU,rt

and Ṽ r := V r
σV,rt

are solutions to the
martingale problem given by ArBDjd (see (4.1)). In the proof of Theorem 4.2.4 it is
shown that for every f ∈ C+

c (R+) the families (Ũ r,δ(f))r :=
∫
f dU r,δ and (Ṽ r,δ(f))r

are tight in DR+ [0,∞). By the same arguments as in the proof of Theorem 5.2.1
tightness of (U r,δ(f))r and (V r,δ(f))r follows. By Theorem 16.27 in [Kal02] this implies
tightness of (U r,δ)r and (V r,δ)r in DSR+ [0,∞). For any limit points U δ, V δ ∈ SR+ and
for any T,K > 0 we have

sup
t≤T

(
U δ[0,K] ∨ V δ[0,K]

)
<∞. (5.3)

We interpret the pair (U r,δt , V r,δ
t ) as a measure Φ(U r,δt , V r,δ

t ) on R+ × {1, 2} by

Φ(U r,δt , V r,δ
t )(A× {i}) :=

{
U r,δt (A) if i = 1,
V r,δ
t (A) if i = 2.

The map Φ : SR+ ×SR+ → SR+×{1,2} is bijective and both Φ and Φ−1 are continuous.
Hence, by Lemma A.4.1, Φ and Φ−1 are continuous as maps of càdlàg paths. By the
Continuous Mapping Theorem (cf. Theorem 13.25 in [Kle06]) we have tightness of
(U r,δ, V r,δ)r if and only if the family (Φ(U r,δ, V r,δ))r is tight.

In order to prove tightness of (Φ(U r,δ, V r,δ))r, by Theorem 16.27 in [Kal02] it is enough
to consider test functions f ∈ C+

c (R+ × {1, 2}). I.e. we show tightness of

Φ(U r,δ, V r,δ)(f) :=
∫
f dΦ(U r,δ, V r,δ)

in DR+ [0,∞) for every f ∈ C+
c (R+ × {1, 2}).

Any function f ∈ C+
c (R+ × {1, 2}) can be written as

f(x, k) := 1{1}(k) · f1(x) + 1{2}(k) · f2(x),

where f1, f2 ∈ C+
c (R+). By Lemma A.3.6 the pair (U r,δ(f1), V r,δ(f2))r is tight in

DR[0,∞)×DR[0,∞). Let
(
U δ(f1), V δ(f2)

)
be a limit point in this sense. By Theorem

73



Chapter 5. Lookdown-construction of symbiotic branching diffusions with positive correlation

5.3.2 and Remark 5.3.5 the discontinuities of U δ(f1) and V δ(f2) are due to births into
the compact support of f1 and f2 respectively. Because of (5.3) the rate at which
particles are born into a compact interval during the time interval [0, T ] is bounded.
Hence there are only finitely many discontinuities up to time T > 0 and they almost
surely do not happen simultaneously, since the birth events are triggered by orthogonal
Poisson point processes. By Lemma A.3.6, the pair (U r,δ(f1), V r,δ(f2))r is tight in
DR2 [0,∞). This implies tightness of (Φ(U r,δ, V r,δ))r.

5.3. The level dynamics in the limit

We use the same techniques as in Section 4.3 to characterize the dynamics of the
k lowest U -levels and the k lowest V -levels. First we determine the semimartingale
characteristics of the mass process (Y r, Zr) in the limit r → ∞ and verify that we
obtain a symbiotic diffusion with correlation coefficient ρ = ηc

2+c . Then we determine
the semimartingale characteristics of (U (1,...,k),r, V (1,...,k),r) in the limit r → ∞, using
(Y r, Zr) as auxiliary process that enables us to write down the characteristics.

Define the truncation function h(x) = (h̃(xi))i, where

h̃(x) :=


x for |x| < 1
x · (2− |x|) for 1 < |x| ≤ 2
0 for 2 < |x| .

Let (Y δ, Zδ) be a limit point of (Y r,δ, Zr,δ)r. We suppress the subsequence notation.

Theorem 5.3.1. Let (Y̌ , Ž) be a symbiotic diffusion with ρ = ηc
2+c . I.e. (Y̌ , Ž) solves

the SDE

dY̌t =
√
b(2 + c)Y̌tŽt dW 1

t ,

dŽt =
√
b(2 + c)Y̌tŽt dW 2

t ,
(5.4)

where W 1, W 2 are correlated Brownian motions with correlation coefficient ρ = ηc
2+c .

Let τ := inf
{
t ≥ 0 : Y̌t ∧ Žt ≤ δ

}
and let

(
Y̌ δ
t , Ž

δ
t

)
:=
(
Y̌t∧τ , Žt∧τ

)
. Then

(
Y δ, Zδ

)
d=
(
Y̌ δ, Žδ

)
.

Proof. Assume c
rδ ≤ 1. We drop the δ in our notation. The r-th processes (Y r, Zr)

are special semimartingales. Denote by (B(Y,Z),r, C̃(Y,Z),r, ν(Y,Z),r) the characteristics
of (Y r, Zr).

Particles have weight 1
r . U -births and V -births happen independently at instanta-

neous rate r2bY r
t Z

r
t . At rate η r

2bY rt Z
r
t

c death events happen that affect both subpop-
ulations. In both populations additional death events happen independently at rate
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5.3. The level dynamics in the limit

(1 − η) r
2bY rt Z

r
t

c . In case of a death event at time t, in the affected subpopulation all
particles in a “strip of death” [r − c/Y r

t , r] (or [r − c/Zrt , r], respectively) are killed.
The assumption c

rδ ≤ 1 guarantees that the left border of the “strip of death” is not
negative and always a binomially distributed number of particles is killed per subpop-
ulation. If the U -population is affected by a death event, the number of U -particles
killed is binomially distributed with parameters nY,rt := rY r

t and pY,rt := c
rY rt

. If the
V -population is affected, the parameters are nZ,rt := rZrt and pZ,rt := c

rZrt
.

Define

Br,Y rt
(dx) :=

nY,rt∑
i=0

(
nY,rt
i

)
(pY,rt )i(1− pY,rt )n

Y,r
t −iδ(

− i
r
,0
)(dx),

Br,Zrt
(dx) :=

nZ,rt∑
i=0

(
nZ,rt
i

)
(pZ,rt )i(1− pZ,rt )n

Z,r
t −iδ(

0,− i
r

)(dx),

Br,(Y rt ,Zrt )(dx) :=
nY,rt∑
i=0

nZ,rt∑
j=0

(
nY,rt
i

)
(pY,rt )i(1− pY,rt )n

Y,r
t −i

×
(
nZ,rt
j

)
(pZ,rt )j(1− pZ,rt )n

Z,r
t −jδ(

− i
r
,− j

r

)(dx).

The compensator of the jump measure is

ν(Y,Z),r(dt, dx) = r2bY r
t Z

r
t dt ·

(
δ( 1

r
,0
)(dx) + δ(

0, 1
r

)(dx)
)

+ (1− η)r
2bY r

t Z
r
t

c
dt ·

(
Br,Y rt

(dx) + Br,Zrt
(dx)

)
+ η

r2bY r
t Z

r
t

c
dt · Br,(Y rt ,Zrt )(dx).

Since (Y r, Zr) is piecewise constant, we have

C̃
(Y,Z),r
t = h2 ∗ ν(Y,Z),r

t

and
B(Y,Z),r(h)t = h ∗ ν(Y,Z),r

t .

Let (B(Y,Z), C̃(Y,Z), ν(Y,Z)) be the semimartingale characteristics of the symbiotic dif-
fusion (5.4),

B
(Y,Z)
t = (0, 0),

C̃
(Y,Z),11
t = C̃

(Y,Z),22
t =

∫ t

0
ds b (2 + c)YsZs,

C̃
(Y,Z),12
t = C̃

(Y,Z),21
t =

∫ t

0
ds b(2 + c)YsZs ·

ηc

2 + c

ν(Y,Z)(dt,dx) = 0.
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Chapter 5. Lookdown-construction of symbiotic branching diffusions with positive correlation

In the following we show(
(Y r, Zr), B(Y,Z),r, C̃(Y,Z),r

)
⇒
(
(Y, Z), B(Y,Z), C̃(Y,Z)

)
and (

(Y r, Zr), g ∗ ν(Y,Z),r
)
⇒
(
(Y,Z), g ∗ ν(Y,Z)

)
for all nonnegative continuous bounded functions g : R2 → R which are 0 around 0.
Theorem IX.2.4 in [JS03] (see also Theorem A.4.2 in the appendix) then gives us the
assertion.

First we address B(Y,Z). We have

(1− η)r
2bY r

t Z
r
t

c

∫
Br,Y rt

(dx) h(x) = (1− η)r
2bY r

t Z
r
t

c

∫
BinrY rt , c

rY r
t

(dx) h
(
−x
r
, 0
)

=
(
−(1− η)rbY r

t Z
r
t , 0

)
+R1,r

t .

Further we have

(1− η)r
2bY r

t Z
r
t

c

∫
Br,Zrt

(dx) h(x) =
(
0, −(1− η)rbY r

t Z
r
t

)
+R2,r

t

and
η
r2bY r

t Z
r
t

c

∫
Br,(Y rt ,Zrt )(dx) h(x) =

(
−ηrbY r

t Z
r
t , −ηrbY r

t Z
r
t

)
+R3,r

t .

We have R1,r, R2,r, R3,r ⇒ 0 by similar arguments as in the proof of Theorem 4.3.2
(see (4.36)). By Lemma A.4.1 and the Continuous Mapping Theorem, we have

B(Y,Z),r = h ∗ ν(Y,Z),r

=
∫ ·

0
ds r2bY r

s Z
r
s

(
h
(1
r
, 0
)

+ h
(
0, 1
r

))
+
∫ ·

0
ds

((
−(1− η)rbY r

s Z
r
s , 0

)
+
(
0, −(1− η)rbY r

s Z
r
s

)
+R1,r

s +R2,r
s

)
+
∫ ·

0
ds

((
−ηrbY r

s Z
r
s , −ηrbY r

s Z
r
s

)
+R3,r

s

)
⇒ 0.

We turn to the quadratic Covariation C̃(Y,Z). We have

r2bY r
t Z

r
t

c

∫
BinrY rt , c

rY r
t

(dx) h̃
(
−x
r

)2
= bY r

t Z
r
t

(
1 + c− c

rY r
t

)
+Rrt ,

where Rr ⇒ 0 (cf. proof of Theorem 4.3.2). By Lemma A.4.1, we obtain

(C̃(Y,Z),r)11 = h1h1 ∗ ν(Y,Z),r

=
∫ ·

0
ds

(
r2bY r

s Z
r
s h̃
(1
r

)2
+ r2bY r

s Z
r
s

c

∫
BinrY rs , c

rY rs
(dx)h̃

(
−x
r

)2
)

=
∫ ·

0
ds

(
r2bY r

s Z
r
s h̃
(1
r

)2
+ bY rZr

(
1 + c− c

rY r

)
+Rr

)
⇒
∫ ·

0
ds b (2 + c)YsZs
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5.3. The level dynamics in the limit

and, by an analogous calculation,

(C̃(Y,Z),r)22 ⇒
∫ ·

0
ds b (2 + c)YsZs.

By similar arguments we obtain for i = 1, j = 2 and j = 1, i = 2

(C̃(Y,Z),r)ij = hihj ∗ ν(Y,Z),r

=
∫ ·

0
ds η r

2bY r
s Z

r
s

c

(∫
BinrY rs , c

rY rs
(dx1) h̃

(
−x1
r

))
×
(∫

BinrZrs , c
rZrs

(dx2) h̃
(
−x2
r

))
⇒
∫ ·

0
ds ηcbYsZs =

∫ ·
0

ds b(2 + c)YsZs ·
ηc

2 + c

Finally, we obtain in a similar calculation as in the proof of Theorem 4.3.2 (see (4.37)
and (4.38))

g ∗ ν(Y,Z),r ⇒ 0,

for any g : R2 → [0,∞) that is a nonnegative continuous bounded function, taking the
value 0 in a neighbourhood of 0.

By Lemma A.3.3, there is a subsequence (r′) ⊂ (r) such that for r′ →∞

((Y r′ , Zr
′), B(Y,Z),r′ , C̃(Y,Z),r′)⇒ ((Y,Z), B(Y,Z), C̃(Y,Z)) and

((Y r′ , Zr
′), g ∗ ν(Y,Z),r′)⇒ (Y, g ∗ ν(Y,Z)),

and (Y r, Zr)r converges to the same limit as the subsequence (Y r′)r′ .

Similarly as in Section 4.3, we identify the low levels in the limit, (U (1,...,k),δ, V (1,...,k),δ),
as a k-dimensional semimartingale, via its semimartingale characteristics. The mass
density processes (Y r,δ, Zr,δ)r act as auxiliary processes that allow us to write down
the characteristics of the low levels.

Theorem 5.3.2. Let X̄δ =
(
U (1,...,k),δ, V (1,...,k),δ, Y δ, Zδ

)
be the limit of a convergent

subsequence of the family
(
X̄r,δ

)
r
. Then

(
U (1,...,k),δ, V (1,...,k),δ

)
is a stopped semi-

martingale with characteristic triplet (B, C̃, ν). Define τ := inf{s ≥ 0 : Ys ∧ Zs ≤ δ}.
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The jump measure of
(
U (1,...,k),δ, V (1,...,k),δ

)
is

ν(dt,dx) = 1{t<τ}

[ k∑
q=2

2bZδt (q − 1)
(
U

(q),δ
t − U (q−1),δ

t

)
dt · δ0q−1(dx1, . . . ,dxq−1)

×Unif [U(q−1),δ
t −U(q),δ

t ,0](dxq) · δU(q,...,k−1),δ
t −U(q+1,...,k),δ

t

(dxq+1, . . . ,dxk)

× δ0k(dxk+1, . . . ,dx2k)

+
k∑
q=2

2bY δ
t (q − 1)

(
V

(q),δ
t − V (q−1),δ

t

)
dt · δ0k(dx1, . . . ,dxk)

× δ0q−1(dxk+1, . . . ,dxk+q−1) ·Unif [V (q−1),δ
t −V (q),δ

t ,0](dxk+q)

× δ
V

(q,...,k−1),δ
t −V (q+1,...,k),δ

t

(dxk+q+1, . . . ,dx2k)
]
.

The bounded variation part is, for i = 1, . . . , k,

Bi
t =

∫ t∧τ

0
ds

(
bZδs

(
U (i),δ
s

)2
+ bcZδs

Y δ
s

U (i),δ
s

)
+ hi ∗ ν

and, for i = k + 1, . . . , 2k,

Bi
t =

∫ t∧τ

0
ds

(
bY δ
s

(
V (i−k),δ
s

)2
+ bcY δ

s

Zδs
V (i−k),δ
s

)
+ hi ∗ ν.

For the covariation of the martingale part we have, for i, j ∈ {1, . . . , k},

C̃ijt =
∫ t∧τ

0
ds bcZ

δ
s

Y δ
s

U (i),δ
s U (j),δ

s + hihj ∗ νt,

for i, j ∈ {k + 1, . . . , 2k},

C̃ijt =
∫ t∧τ

0
ds bcY

δ
s

Zδs
V (i−k),δ
s V (j−k),δ

s + hihj ∗ νt,

and, for i ∈ {1, . . . , k} and j ∈ {k + 1, . . . , 2k},

C̃ijt =
∫ t∧τ

0
ds ηbcU (i),δ

s V (j−k),δ
s + hihj ∗ νt.

Remark 5.3.3. In other words, between jumps and up to time τ we see the following
dynamics:

(i) The k lowest levels of the U -population are a system of perfectly correlated, con-
ditional geometric Brownian motions. U (1,...,k),δ solves

dU (i),δ
t =

(
bZδt

(
U

(i),δ
t

)2
+ bcZδt

Y δ
t

U
(i),δ
t

)
dt+

√
bcZδt
Y δ
t

· U (i),δ
t dW 1

s ,

with W 1 being the same Brownian motion for all coordinates 1 ≤ i ≤ k.
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5.3. The level dynamics in the limit

(ii) The same holds for the k lowest levels of the V -population. V (1,...,k),δ solves

dV (j),δ
t =

(
bY δ
t

(
V

(j),δ
t

)2
+ bcY δ

t

Zδt
V

(j),δ
t

)
dt+

√
bcY δ

t

Zδt
· V (j),δ

t dW 2
s ,

with W 2 being the same Brownian motion for all coordinates 1 ≤ j ≤ k.

(iii) The driving Brownian motions W 1 and W 2 - and therefore the continuous mar-
tingale parts of U (i),δ and V (j),δ, i, j ∈ {1, . . . , k} - correlated with correlation
coefficient

ρ = ηbc ·
√

Y δ
t

bcZδt
·
√

Zδt
bcY δ

t

= η.

Remark 5.3.4. The path of a single particle of the full system is continuous. The
jumps of U (1,...,k),r,δ and V (1,...,k),r,δ are attributed to the fact that we trace the k lowest
particles and newborn particles with low enough levels have to be pigeon-holed.

Proof of Theorem 5.3.2. We suppress the subsequence notation and we drop the δ
in our notation. We denote by (Br, C̃r, νr) the semimartingale characteristics of(
U (1,...,k),r, V (1,...,k),r

)
. We constitute νr as a sum

νr(ω; dt, dx) = νD,r(ω; dt, dx) + νB,r(ω; dt, dx),

where νD,r compensates the jumps induced by death events, νB,r compensates the
jumps induced by births among the k lowest levels in both subpopulations.

Death events affect either one subpopulation alone or both subpopulations. At time
t both death jumps of the U -population and death jumps of the V -population are
triggered independently with instantaneous rate (1 − η) r

2bY rt Z
r
t

c . Simultaneous death
jumps of both populations happen at rate η r

2bY rt Z
r
t

c . In each case the affected particles
are multiplied by the factor ϕ(U r) = r

r−c/Y r or ϕ(V r) = r
r−c/Zr , respectively (the

correction for the case “rY r < c” is omitted; see Remark 5.1.2). So the height of the
jump of a U -particle at level ui is

ui ·
(

r

r − c/Y r
t−
− 1

)
= ui · c

rY r
t− − c

.

(Analogous for a V -particle.) Recall that τ r := inf{s : Y r
s ∧Zrs ≤ δ}. The compensator

for the death jumps is

νD,r(dt, dx) = 1{t<τr}

(
(1− η)r

2bY r
t Z

r
t

c
dt · δ(

U
(1,...,k),r
t · c

rY r
t
−c ,0

)(dx)

+ (1− η)r
2bY r

t Z
r
t

c
dt · δ(

0,V (1,...,k),r
t · c

rZr
t
−c

)(dx)

+ η
r2bY r

t Z
r
t

c
dt · δ(

U
(1,...,k),r
t · c

rY r
t
−c ,V

(1,...,k),r
t · c

rZr
t
−c

)(dx)
)
.
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Chapter 5. Lookdown-construction of symbiotic branching diffusions with positive correlation

For the birth induced jumps consider the U -population - analogous considerations hold
for the V -particles. At time t ≥ 0 every U -particle with level ui gives birth at rate
2bZrt (r−ui). The process U (1,...,k),r displays only the birth of particles that are among
the k lowest. Except for role of the mass density Zrt in the rate, the birth mechanism is
the same as in the particle representation for Feller’s branching diffusion in Chapter 4.
Write 0q for (0, . . . , 0) ∈ Rq. By analogous considerations as in the proof of Theorem
4.3.3 we obtain the compensator for the birth jumps:

νB,r(dt, dx) = 1{t<τr}

[ k∑
q=2

2bZrt (q − 1)
(
U

(q),r
t − U (q−1),r

t

)
dt · δ0q−1(dx1, . . . ,dxq−1)

×Unif [U(q−1),r
t −U(q),r

t ,0](dxq) · δU(q,...,k−1),r
t −U(q+1,...,k),r

t

(dxq+1, . . . ,dxk)

× δ0k(dxk+1, . . . ,dx2k)

+
k∑
q=2

2bY r
t (q − 1)

(
V

(q),r
t − V (q−1),r

t

)
dt · δ0k(dx1, . . . ,dxk)

× δ0q−1(dxk+1, . . . ,dxk+q−1) ·Unif [V (q−1),r
t −V (q),r

t ,0](dxk+q)

× δ
V

(q,...,k−1),r
t −V (q+1,...,k),r

t

(dxk+q+1, . . . ,dx2k)
]
.

We apply Theorem IX.2.4 and Remark IX.2.21 in [JS03] (cf. Theorem A.4.2). I.e., for a
convergent subsequence

(
U (1,...,k),r, V (1,...,k),r, Y r, Zr

)
with limit

(
U (1,...,k), V (1,...,k), Y, Z

)
we show(

U (1,...,k),r, V (1,...,k),r, Y r, Zr, Br, C̃r
)
⇒
(
U (1,...,k), V (1,...,k), Y, Z,B, C̃

)
and (

U (1,...,k),r, V (1,...,k),r, Y r, Zr, g ∗ νr
)
⇒
(
U (1,...,k), V (1,...,k), Y, Z, g ∗ ν

)
(5.5)

for all nonnegative continuous bounded functions g : R2k → [0,∞) which are 0 around
0.

Observe that τ r stoch.−−−→ τ and 1{s<τr} ⇒ 1{s<τ}.

Convergence of the third characteristics. We turn to Condition (5.5). By the anal-
ogous arguments as in the proof of Theorem 4.3.3 (see (4.41) and (4.42) we have

g ∗ νB,r ⇒ g ∗ ν

and
g ∗ νD,r ⇒ 0.

Since g ∗ ν, Y and Z are continuous, we have joint convergence(
U (1,...,k),r, V (1,...,k),r, Y r, Zr, g ∗ νr

)
⇒
(
U (1,...,k), V (1,...,k), Y, Z, g ∗ ν

)
by Lemma A.3.3.
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5.3. The level dynamics in the limit

Convergence of the first characteristics. Define for i = 1, . . . , 2k

B̃i,r
t := X̄i,r −

∑
s≤t

∆X̄i,r
s .

Between jumps, the particles in the r-th model move according to the differential
equations u̇ = bzu2 − brzu and v̇ = byv2 − bryv, respectively. Hence we have for
i = 1, . . . , k

B̃i,r
t =

∫ t

0
ds 1{s<τr}

(
bZrs

(
U (i),r
s

)2
− brZrsU (i),r

s

)
and, for i = k + 1, . . . , 2k,

B̃i,r
t =

∫ t

0
ds 1{s<τr}

(
bY r
s

(
V (i−k),r
s

)2
− brY r

s V
(i−k),r
s

)
.

By analogous arguments as in the proof of Theorem 4.3.3 (see (4.43)) we obtain

r2bY rZr

c
h̃

(
U (i),r c

rY r − c

)
− brZrU (i),r ⇒ bcZ

Y
U (i)

and
r2bY rZr

c
h̃

(
V (i),r c

rZr − c

)
− brY rV (i),r ⇒ bcY

Z
V (i).

Hence, for i = 1, . . . , k, we obtain for the bounded variation part

Bi,r = B̃i,r + hi ∗ νD,r + hi ∗ νB,r

=
∫ ·

0
ds 1{s<τr}

(
bZrs

(
U (i),r
s

)2
− brZrsU (i),r

s + r2bY rZr

c
h̃

(
U (i),r c

rY r − c

))
+ hi ∗ νB,r

⇒
∫ ·

0
ds 1{s<τ}

(
bZs

(
U (i)
s

)2
+ bcZs

Ys
U (i)
s

)
+ hi ∗ ν

and, for i = 1 + k, . . . , 2k, we have

Bi,r ⇒
∫ ·

0
ds 1{s<τ}

(
bYs

(
V (i−k)
s

)2
+ bcYs

Zs
V (i−k)
s

)
+ hi ∗ ν.

Convergence of the second characteristics. Finally, we address the covariation C̃.
Since X̄r has no continuous martingale part, we have

C̃ij,r = hihj ∗ νr = hihj ∗ (νD,r + νB,r).

Using Lemma 4.3.5 and Lemma A.4.1 and by as similar argument as in the proof of
Theorem 4.3.3 (see (4.44)) we have for i, j ∈ {1, . . . , k}

hihj ∗ νD,r =
∫ ·

0
ds 1{s<τr}

r2bY r
s Z

r
s

c
h̃

(
U (i),r
s

c

rY r
s − c

)
· h̃
(
U (j),r
s

c

rY r
s − c

)
⇒
∫ ·

0
ds 1{s<τ}

bcZs
Ys

U (i)
s U (j)

s .
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For i, j ∈ {k + 1, . . . , 2k} we obtain

hihj ∗ νD,r ⇒
∫ ·

0
ds 1{s<τ}

bcYs
Zs

V (i−k)
s U (j−k)

s .

And for i ∈ {1, . . . , k} and j ∈ {k + 1, . . . , 2k} we obtain

hihj ∗ νD,r =
∫ ·

0
ds 1{s<τr} · η

r2bY r
s Z

r
s

c
h̃

(
U (i),r
s

c

rY r
s − c

)
· h̃
(
V (j−k),r
s

c

rZrs − c

)
⇒
∫ ·

0
ds 1{s<τ} · ηbcU (i)

s V (j−k)
s .

Furthermore, we have for i, j ∈ {1, . . . , 2k}

hihj ∗ νB,r ⇒ hihj ∗ ν.

Lemma A.3.3 gives us the simultaneous convergence(
U (1,...,k),r, V (1,...,k),r, Y r, Zr, Br, C̃r

)
⇒
(
U (1,...,k), V (1,...,k), Y, Z,B, C̃

)
.

Remark 5.3.5. Assume only tightness of
(
U r,δ, Y r,δ, Zr,δ

)
r
and

(
V r,δ, Y r,δ, Zr,δ

)
r
(but

not joint tightness of
(
U r,δ, V r,δ, Y r,δ, Zr,δ

)
r
). Since the dynamics of U (1,...,k),r,δ depend

on the mass Zr,δ but not on the levels V r,δ, one can determine the characteristics of
the limit U (1,...,k),δ alone. The same holds for V (1,...,k),δ. It is then apparent that the
jumps of U (1,...,k),δ and V (1,...,k),δ are due to births among the k lowest particles. The
Poisson point processes that trigger those births are orthogonal.
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6. Addendum: The interplay of low levels
and the total mass

In this addendum we return to the level representation of Feller’s branching diffusion
from Chapter 4. Consider the process Xδ = (U (1,...,k),δ, Y δ), consisting of the k lowest
levels and the mass density, stopped when the mass density hits δ > 0. Originally,
we planned to characterize the dynamics of Xδ as a semimartingale. As stated in the
beginning of Section 4.3, we discontinued this approach because, at the r-th stage, we
could not write the characteristics of the marginal Y r in terms of U (1,...,k),r and Y r. At
first glance, it is not obvious to us that Xr = (U (1,...,k),r, Y r) is even a semimartingale
with respect to its own filtration. Working on these problems, we learned a lot about
the interplay of the lowest levels and the mass density. We will illustrate these insights
in this chapter. Note that the considerations in this chapter, in particular those in
Section 6.3.1, are of a more informal nature.

Let U r be the level representation of the birth-death process with jump-induced deaths,
characterized by ArBDjd and let M r := U r ([0, r)) be its total mass. One problem in
characterizing the (joint) dynamics of Xr = (U (1,...,k),r, Y r) is the following: When a
particle is born below U (k),r, the former k-th particle becomes the k+1-st particle and
thus vanishes from our accounting. But we do know its position until it dies: We know
the differential equation it follows between jumps; we know when it jumps, since all
particles jump simultaneously; and we know the jump height. Since its position gives
us information about the evolution of the total mass, the process Xr does not have the
Markov property. In order to get back the Markov property, we should keep track of
all particles that had rank k at some point in their past. We call these particles then
inactive progenitors. The currently k lowest particles are called active progenitors.
Note that the problem with the lost account of former progenitors does not occur if
k = 1: The only active progenitor is never replaced.

6.1. The progenitor-level process Ǔ r

In order to attain a process that consists of the active progenitors, the inactive pro-
genitors and the total mass, we define, as a first step, the progenitor-level process Ǔ r
by decomposing U r in subpopulations that are, in some sense, “fuelled” by different
progenitors. These subpopulations are numbered and, roughly speaking, the numbers
code the age of the subpopulation. The state space of Ǔ r is S[0,r]×N0 , the space of
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Chapter 6. Addendum: The interplay of low levels and the total mass

locally finite counting measures on [0, r]× N0. We may write

Ǔ r :=
∑
i

δǓ i,r :=
∑
i

δ(U i,r,N i,r).

The first coordinate of an atom, U i,r, is the level of the respective particle, the second
coordinate, N i,r, is the number of the subpopulation it belongs to. The subpopulation
with number 0 has a special role and is called the root. The other subpopulations are
called extractions.

The dynamics are as follows: At first, all particles belong to the root. When a new
active progenitor is born, the formerly k-th particle becomes an inactive progenitor.
This inactive progenitor and all root-particles above it, now form a new extraction.
They change their subpopulation-number to 1. From now on these particles and their
offspring are a birth-death process with a single progenitor and overall death rate
M r. Note that the levels of this newly formed extraction move essentially upwards
(relatively to U (1),r) and the extraction dies out when its lowest particle (the inactive
progenitor) dies. At the time of the exodus of the new extraction the root contains only
k particles (the active progenitors) which start to repopulate a new bulk. Whenever
a new active progenitor is born, a new extraction is formed this way. The newest
extraction always gets the subpopulation-number 1 and the other extractions move up
one slot. This leads to a decomposition of the population in the root and a changing
number of extractions. We characterize the system’s dynamics by its generator. Since
particles interact mostly within their respective subpopulation, it lends itself to use
the vector notation that is already indicated in the paragraph above: For n ∈ N0, we
define

Ǔ rn := Ǔ r(· × {n}) =
∑

i:N i,r=n
δU i,r ,

the counting measure (on [0, r]) representing the n-th subpopulation. We write then

Ǔ r =
(
Ǔ r0 , Ǔ

r
1 , . . .

)
.

The first entry Ǔ r0 houses the root, and the following entries (Ǔ rn)n≥1 house the extrac-
tions. Let M̌ r

n be the number of particles in the subpopulation n.

For each subpopulation we apply the same notational conventions that we used in
the previous chapters for the whole population: We identify the counting measure
Ǔ rn =

∑M̌r
n

i=1 δǓ i,rn
with the vector (Ǔ1,r

n , . . . , ǓM̌n,r
n ), when appropriate. The enumeration

(Ǔ i,rn )i should be understood as arbitrary labelling within the subpopulation n. We
write Ǔ (k),r

n for the k-th lowest particle in the subpopulation n.

For every n ∈ N0, let 0 ≤ gn ≤ 1 be differentiable, supn ‖g′n‖∞ ≤ 1 and gn(x) = 1 for
x ≥ r. The test functions have the form

f(u0, u1, . . .) :=
∏
n≥0

fn(un), (6.1)
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6.1. The progenitor-level process Ǔr

0 1 0 1 2

Figure 6.1.: The progenitor mass process consists of one root (in green and blue) and
a changing number of extractions (in red). Each extraction consists of a
branching bulk, fuelled by one progenitor. The root consists of a branching
bulk (in blue) that is fuelled by several progenitors (in green). These
progenitors may also give birth to a new progenitor, which leads to the
formation of a new extraction, consisting of the former k-th lowest particle
and the former bulk of the root.

where

fn(un) := exp
(∫

dun log gn
)

=
un[0,r)∏
i=1

gn(uin).
(6.2)

We denote this class of test functions by DrPL (the label PL stands for progenitor-level
process).

For simplicity, we set b = 1 for the rest of this chapter. We constitute the generator
of the progenitor-level process Ǔ r as a sum,

ArPLf(u1, u2, . . .) := (Arf +Ard +Ar0 +Are)f(u1, u2, . . .), (6.3)

where the summands are the generators of the different mechanisms at work: The
generator Arf models the formation of the extractions; Ard models the death-dynamics;
Ar0 characterizes the birth-dynamics in the subpopulation 0 (the root) and Are the
birth-dynamics in the extractions.
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The formation of extractions. Let τ1 < τ2 < . . . be the times at which offspring is
born below the k-th particle, later referred to as formation times. At time zero (and
up until τ1), all particles are in the root,

(Ǔ r0 )t = U rt for all 0 ≤ t < τ1.

At time τi the k + 1-st particle (the formerly k-th particle) becomes an inactive pro-
genitor. It takes all particles from the bulk of the root and forms the extraction Ǔ r1 ,

(Ǔ r1 )τi = (Ǔ (k,k+1,...),r
0 )τi−.

The other extractions move up one slot,

(Ǔ rn)τi = (Ǔ rn−1)τi− for n = 2, 3, . . .

Every particle Ǔ (i),r
0 generates offspring at rate 2(r−Ǔ (i),r

0 ) that is uniformly distributed
in
[
Ǔ

(i),r
0 , r

]
. Offspring with rank q can only have a parent with rank smaller than q,

so offspring is born into the rank q at time t at rate

2(q − 1)
(
(Ǔ (q),r

0 )t − (Ǔ (q−1),r
0 )t

)
.

When there are less than k particles in the root, no extractions are alive and M̌ r
0 is

the total mass. In this case the progenitors of the root are “filled up” before new
extractions are formed.

For un ∈ S[0,r], write mn := un[0, r). Write further u =
∑
n un and m := u[0, r). The

formation dynamics described above is modelled by the generator

Arff(u0, u1, . . .) := 1m≥k(u) ·
k∑
q=2

2(q − 1)(u(q)
0 − u

(q−1)
0 )

×
[
k−1∏
j=1

g0(u(j)
0 ) · 1

u
(q)
0 − u

(q−1)
0

∫ u
(q)
0

u
(q−1)
0

g0(x) dx ·
m0∏
j=k

g1(u(j)
0 ) ·

∏
n≥2

fn(un−1)

−f(u0, u1, . . .)
]

+ 1m<k(u) · f(u0, u1, . . .)
m0∑
i=1

2
∫ r

ui0

(g0(x)− 1) dx.

(6.4)

Note that in the case m < k, we have u1 = u2 = . . . = 0.

The death dynamics. All particles are subject to the same death zone dynamics. So
the upwards jumps in all extractions and the root are coupled. Recall that in the model
of ArBDjd, particles jump at rate rMr

t
c , and when doing so, their levels are multiplied

by
ϕ(U r) := 1(c,∞)(M r) · 1

1− c/M r
+ 1[0,c](M r) · r

minU r . (6.5)
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This corresponds to a death zone of width rc
Mr
t
.

The death dynamics are characterized by the generator

Ardf(u0, u1, . . .) := rm

c

(
f(ϕ(u) · u0, ϕ(u) · u1, . . .)− f(u0, u1, . . .)

)
. (6.6)

Note that the jump factor ϕ(u) depends on the mass of the full system.

The birth dynamics in the extractions. Particles that belong to an extraction gen-
erate offspring that belongs to the same extraction. The dynamics are given by the
model ArBDjd: All particles move according to the differential equation

u̇ = u2 − ru

and generate offspring at instantaneous rate 2(r − (Ǔ i,rn )t) and the offspring is placed
uniformly at random above the parent.

The birth dynamics in the extractions is characterized by the generator

Aref(u0, u1, . . .) := f(u0, u1, . . .)
∑
n≥1

mn∑
i=1

(
2
∫ r

uin

(gn(x)− 1) dx+
(
(uin)2 − ruin

)g′n(uin)
gn(uin)

)
.

(6.7)

The birth dynamics in the root. Between formation times, the root behaves like an
extraction with one difference: No particles are born below Ǔ

(k),r
0 . The births below

Ǔ
(k),r
0 are taken care of in the generator for the formation dynamics. Each of the

particles Ǔ (1,...,k),r
0 gives birth at rate r − Ǔ (k),r

0 to offspring with level that is uniform
above Ǔ (k),r

0 . The offspring belongs to the root. Particles with rank k + 1 or higher
show the usual birth behaviour and all particles move according to the differential
equation u̇ = u2 − ru.

The birth dynamics in the root is characterized by

Ar0f(u0, u1, . . .) := f(u0, u1, . . .)
(

2k
∫ r

u
(k)
0

(g0(x)− 1) dx+
m0∑

i=k+1
2
∫ r

u
(i)
0

(g0(x)− 1) dx

+
m0∑
i=1

(
(ui0)2 − rui0

)g′0(ui0)
g0(ui0)

)
.

(6.8)

Remark 6.1.1. The process Ǔ r is not adapted to the filtration generated by U r. By
colouring the particles according to their affiliation to the different extractions, we
gain genealogical information that is absent in the original system U r. But the process
Xr = (U (1,...,k),r, Y r) is adapted to both, the filtration generated by Ǔ r and the filtration
generated by U r.
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6.2. The progenitor-mass process X̌r

Since we want to analyze the interplay of low levels and the mass, the next step is to
“forget” the level information in the bulk of each subpopulation. We retain a projection
X̌r of Ǔ r that consists of the active and inactive progenitors’ levels and the mass of
each subpopulation. We call X̌r the progenitor-mass process.

Note that, after forgetting the level information in the bulks, the extraction numbers
of the progenitors are redundant information: The progenitors’ levels are ordered,

Ǔ
(1),r
0 ≤ . . . ≤ Ǔ (k),r

0 ≤ Ǔ (1),r
1 ≤ Ǔ (1),r

2 ≤ . . . ,

and we can infer the subpopulation number of a progenitor from its level’s rank.

Since the number of extractions varies over time, we represent the progenitor-mass
process as a measure valued process

X̌r := δ(Ǔ(1),r
0 ,M̌r

0 ) + . . .+ δ(Ǔ(k),r
0 ,M̌r

0 ) +
∑
n≥1

δ(Ǔrn,M̌r
n).

The state space of X̌r is S[0,r]×N. Every atom represents a progenitor, where the first
coordinate is the progenitor’s level. This time the second coordinate is the mass of its
subpopulation. When we write down the generator of X̌r or do generator calculations,
we use an informal vector notation

X̌r =
(
Ǔ

(1,...,k),r
0 , (Ǔ (1),r

n )n≥1, (M̌ r
n)n≥0

)
.

In order to determine the dynamics of this projection, we apply the Markov Mapping
theorem to Ǔ r. Let N ∈ N, 0 < u

(1)
0 < . . . < u

(k)
0 < u

(1)
1 < . . . < u

(1)
N < r, m0 ≥ k, and

let

x̌ = δ(u(1)
0 ,m0) + . . .+ δ(u(k)

0 ,m0) +
N∑
n=1

δ(u(1)
n ,mn) ∈ S[0,r)×N.

Conditioned on {X̌r = x̌}, the bulk-levels in extraction n ≥ 1 are independent and
uniformly distributed on [ǔ(1)

n , r]. The situation is similar for the root, but there the
bulk-levels are uniformly distributed above the level u(k)

0 . Let U i0 ∼ Unif [u(k)
0 ,r] and

U in ∼ Unif [u(1)
n ,r], i, n ∈ N, be independent, uniformly distributed random variables.

Note that it is possible that there are no extractions alive (N = 0) or that there are
only progenitors alive (m0 < k). Using the vector notation for X̌r, we define the
probability kernel

αr(x̌; · ) := αr
(
u

(1,...,k)
0 , (u(1)

n )1≤n≤N , (mn)0≤n≤N ; ·
)

:= L
(
δ
u

(1)
0

+ . . .+ δ
u

(k∧m0)
0

+
m0∑

i=k+1
δUi0

, δ
u

(1)
1

+
m1∑
i=2

δU i1
, . . . , δ

u
(1)
N

+
mN∑
i=2

δUiN

)
.

(6.9)
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6.2. The progenitor-mass process X̌r

The generator calculations are similar to the ones in the preceding chapters, but quite
lengthy. We exiled them to the Appendix (see A.6). We obtain the intertwining
relation∫

αr
(
u

(1,...,k)
0 , (u(1)

n )1≤n≤N , (mn)0≤n≤N ; du
)
ArPLf(u0, u1, . . .)

= CrPM

∫
αr
(
u

(1,...,k)
0 , (u(1)

n )1≤n≤N , (mn)0≤n≤N ; du
)
f(u0, u1, . . .). (6.10)

(PM stands for progenitor-mass process).

In order to write down the generator CrPM , we make some further definitions: Recall
the definition of DrPL (see (6.1) and (6.2)). For ũ ∈ [0, r) define

e−λn(ũ) := 1
r − ũ

∫ r

ũ
gn(z) dz

and
f̂n(ũ,m) := gn(ũ)e−λn(ũ)(m−1). (6.11)

Furthermore define, for ũ1 ≤ . . . ≤ ũk,

f̂0(ũ1, . . . , ũk,m) :=
k∧m∏
i=1

g0(ũi) · e−λ0(ũk)((m−k)∨0). (6.12)

(The truncation of the exponent deals with the case that less than k particles are
alive.) Finally, we define, for a valid state

x̌ = δ(u(1)
0 ,m0) + . . .+ δ(u(k∧m0)

0 ,m0) +
N∑
n=1

δ(u(1)
n ,mn) ∈ S[0,r]×N.

of X̌r,

f̂(x̌) :=
∫
αr(x̌; du) f(u)

=
∫
αr
(
u

(1)
0 , . . . , u

(k)
0 , (u(1)

n )n≥1, (mn)n≥0; du
)
f(u0, u1, . . .)

= f̂0(u(1)
0 , . . . , u

(k)
0 ,m0) ·

∏
n≥1

f̂n(u(1)
n ,mn).

(6.13)

(The product ranges over {n : mn > 0}). When appropriate, we use the vector
notation

f̂(x̌) = f̂
(
u

(1)
0 , . . . , u

(k)
0 , (u(1)

n )n≥1, (mn)n≥0
)
.

Note that the vector notation may be misleading in some circumstances (also in the
second line of (6.13)), because it suggests that there are at least k particles alive and
should not be interpreted that way. Note that if there are only m < k particles alive,
we have f̂(x̌) =

∏m
i=1 g0(u(i)

0 ).
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The generator CrPM is composed of summands that correspond to the mechanisms
described in Section 6.1,

CrPM f̂
(
u

(1,...,k)
0 , (u(1)

n )1≤n≤N , (mn)0≤n≤N
)

:=
(
Crf + Crd + Cr0 + Cre

)
f̂
(
u

(1,...,k)
0 , (u(1)

n )1≤n≤N , (mn)0≤n≤N
)
.

As before, we write u =
∑
n≥0 un and m = u([0, r)) and recall the definition of the

jump factor

ϕ := ϕ(x̌) := 1(c,∞)(m) · 1
1− c/m + 1[0,c](m) · r

u
(1)
0
.

The formation of new extractions is modelled by

Crf f̂
(
u

(1,...,k)
0 , (u(1)

n )n≥1, (mn)n≥0
)

:= 1[k,∞)(m) ·
k∑
q=2

2(q − 1)(u(q)
0 − u

(q−1)
0 )

[
k−1∏
j=1

g0(u(j)
0 ) · 1

u
(q)
0 − u

(q−1)
0

∫ u
(q)
0

u
(q−1)
0

g0(x) dx

× g1(u(k)
0 )e−λ1(u(k)

0 )(m0−k) ·
∏
n≥2

f̂n(u(1)
n−1,mn−1)− f̂

(
u

(1,...,k)
0 , (u(1)

n )n≥1, (mn)n≥0
)]

+ 1(0,k)(m) · f̂0(u(1,...,m)
0 ,m)

m∑
i=1

2
∫ r

u
(i)
0

dx (g0(x)− 1).

Death events are modelled by

Crd f̂
(
u

(1,...,k)
0 , (u(1)

n )n≥1, (mn)n≥0
)

= 1(c,∞)(m) · rm
c
·
[(

N0∑
l=0

(
N0
l

)
pl0(1− p0)N0−lf̂0

(
ϕu

(1,...,k)
0 ,m0 − l

))

×
∏
n≥1

(
Nn∑
l=0

(
Nn

l

)
pln(1− pn)Nn−lf̂n

(
ϕu(1)

n ,mn − l
))
− f̂

(
u

(1,...,k)
0 , (u(1)

n )n≥1, (mn)n≥0
)]

+ 1[0,c](m) · rm
c

[
f̂(0)− f̂

(
u

(1,...,k)
0 , (u(1)

n )n≥1, (mn)n≥0
)]
,

(6.14)

where the parameters fo the binomial distributions are

N0 := (m0 − k) ∨ 0, p0 := rc

(r − u(k)
0 )m

∨ 1,

Nn := (mn − 1), pn := rc

(r − u(1)
n )m

∨ 1.
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And the birth events are modelled by

Cr0 f̂
(
u

(1,...,k)
0 , (u(1)

n )n≥1, (mn)n≥0
)

=
∏
n≥1

f̂n(u(1)
n ,mn) ·

[
2k(r − u(k)

0 )
(
f̂0(u(1,...,k)

0 ,m0 + 1)− f̂0(u(1,...,k)
0 ,m0)

)
+ (r − u(k)

0 )(m0 − k)
(
f̂0(u(1,...,k)

0 ,m0 + 1)− f̂0(u(1,...,k)
0 ,m0)

)
+

k∑
i=1

((u(i)
0 )2 − ru(i)

0 ) d
du(i)

0
f̂0(u(1,...,k)

0 ,m1)
]

(6.15)

and

Cre f̂
(
u

(1,...,k)
0 , (u(1)

n )n≥1, (mn)n≥0
)

= f̂0(u(1,...,k)
0 ,m0)

∑
n≥1

∏
l≥1
l 6=n

f̂l(u
(1)
l ,ml) ·

[
2(r − u(1)

n )
(
f̂n(u(1)

n ,mn + 1)− f̂n(u(1)
n ,mn)

)

+ (r − u(1)
n )(mn − 1)

(
f̂n(u(1)

n ,mn + 1)− f̂n(u(1)
n ,mn)

)
+ ((u(1)

n )2 − ru(1)
n ) · d

du(1)
n

f̂n(u(1)
n ,mn)

]
.

(6.16)

We summarize the dynamics briefly:

• At rate 2(q−1)
(
(Ǔ (q),r

0 )t− (Ǔ (q−1),r
0 )t

)
a new root-progenitor with rank q is born

at time t. There are two cases to consider. Case 1: m0 ≥ k. The progenitor
with level (Ǔ (k),r

0 )t− is removed from the root and the new progenitor is pigeon-
holed into the root-progenitors. The mass of the root is set to k, and a new
extraction is formed. The new extraction has the progenitor-level (Ǔ (k),r

0 )t− and
mass (M̌ r

0 )t− − k + 1. The new extraction gets the number 1 and the other
extractions’ numbers are incremented by one. Case 2: m0 < k. When there
are less than k particles left, the active progenitors are “filled up” before new
extractions are formed.

• Death events happen at rate rMr
t
c (M r is the total number of particles). All pro-

genitors, whatever their extraction, are multiplied by ϕ(U rt ). This corresponds
to death zone of width rc

m . Due to the uniform distribution of the bulk-particles,
in each bulk a binomially distributed number of particles is killed. (Note that
the bulk particles’ levels are above their respective progenitors.) Note further
that, if one or more progenitor levels are shifted beyond the threshold r, the mass
argument of the test function in Crd has not to be reduced further, since it would
make no difference (see (6.11) and (6.12)).
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• Between formation times the bulk-mass of the root is a birth process with indi-
vidual birth rate r − (Ǔ (k),r

0 )t and immigration rate 2k
(
r − Ǔ (k),r

0
)
, due to the

k progenitors. The bulk mass of an extraction with number n ≥ 1 is a birth
process with individual rate r − (Ǔ (1),r

n )t and immigration rate 2(r − (Ǔ (1),r
n )t).

• All progenitors move according to the differential equation u̇ = u2 − ru.

With the formal calculations in Section A.6 at hand, we can apply the Markov Mapping
Theorem. Let

Šrstart :=
{
δ(u(1)

0 ,m0) + . . .+ δ(u(k)
0 ,m0) +

N∑
n=1

δ(un,mn) : m0 ≥ k, mn ∈ N, N ∈ N0,

0 < u
(1)
0 < . . . < u

(k)
0 < u

(1)
1 . . . < u

(1)
N < r

}
.

be the set of valid initial states of the progenitor-mass process.

Theorem 6.2.1. Let µ0 ∈M1(S[0,r]×N) be a initial distribution concentrated on Šrstart.
Define ν0 :=

∫
αr(y, · ) µ0(dy). There exists a solution Ǔ r of the the DS[0,r]×N0

[0,∞)-
martingale problem for (ArPL, ν0) (see (6.3)) such that

X̌r =
(
δ(Ǔ(1),r

0 ,M̌r
0 )t

+ . . .+ δ(Ǔ(k),r
0 ,M̌r

0 )t
+
∑
n≥1

δ(Ǔ(1),r
n ,M̌r

n)t

)
t≥0

is a solution of the DS[0,r]×N [0,∞)-martingale problem for (CrPM , µ0).

For every t ≥ 0, Γ ∈ B(S[0,r]×N0) we have

P
[
Ǔ rt ∈ Γ

∣∣∣ F X̌r

t

]
= α(X̌r

t ; Γ).

We call X̌r the progenitor-mass process.

Proof. The statement follows from calculations in A.6 and the Markov Mapping The-
orem A.5.1 with ψ(u) =

∑
nmn (see Lemma A.6.1), and

γ(u) = δ(u(1)
0 ,m0) + . . .+ δ(u(k)

0 ,m0) +
∑
n≥1

δ(u(1)
n ,mn),

where we use the notation of said theorem.

Uniqueness of the progenitor-level process is obtained along the same lines as in the
proof of Theorem 4.1.1.

6.2.1. A few words on tightness of the progenitor-density process

We rescale the masses and define

X̃r
t := δ(Ǔ(1),r

0 ,Y̌ r0 )t
+ . . .+ δ(Ǔ(k),r

0 ,Y̌ r0 )t
+
∑
n≥1

δ(Ǔ(1),r
n ,Y̌ rn )t

,
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6.3. The progenitor-mass process as semimartingale

where Y̌ r
n := M̌r

n
r . Similarly as we did earlier, we stop the processes shortly before

the total mass vanishes completely. Let δ > 0. Recall τ rδ = inf{s : Y r
s ≤ δ} is the

first time, when the total mass density coordinate falls below δ. Define the stopped
processes Ǔ r,δt := Ǔ rt∧τr

δ
and X̃r,δ := X̃r

t∧τr
δ
.

We check briefly that the progenitor-level system (Ǔ r,δ)r and the progenitor-density
system (X̃rδ)r are tight. We do not give complete proofs, but sketch the ideas.

Theorem 6.2.2. There is an r0 > 0 such that the family
(
Ǔ r,δ

)
r≥r0

is tight in the
Skorohod space DSR+×N

[0,∞).

Sketch of proof. Recall that U (i),r,δ is the overall i-th lowest level and let N (i),r,δ be
the subpopulation number of the corresponding particle. Denote by

ǓL,r,δ :=
L∑
i=1

δ(U(i),r,δ,N(i),r,δ),

the process consisting of the L particles with the overall lowest levels and their sub-
population numbers. The highest extraction number in ǓL,r,δ is at most L − k. Us-
ing this observation, one can easily adapt the proof of Theorem 4.2.3 and show that(
ǓL,r,δ

)
r≥r0

is tight in D(R+)L×NL0
[0,∞). One can then proceed as in the proof of

Theorem 4.2.4 and show tightness of the family
(
Ǔ r,δ

)
r≥r0

in DSR+×N0
[0,∞).

Theorem 6.2.3. The family
(
X̃r,δ

)
r≥r0

is tight in DSR+×R+ [0,∞).

Sketch of proof. Tightness of (Y r)r implies the compact containment condition for the
mass Y̌ r

n of the n-th extraction. The overall mass density Y r has no drift, hence the
drifts of the subpopulation densities Y̌ r

n sum up to zero. For each n, the drift of Y̌ r
n

is bounded from above (cf. (6.18)). Since for any T > 0, there are only finitely many
extractions alive at some point in [0, T ], the drift of Y̌ r

n is also bounded from below.
These considerations imply D-tightness of the family (Y̌ r

n )r in DR+ [0,∞). One may
use then tightness of

(
Ǔ r,δ

)
r≥r0

to show the assertion.

Remark 6.2.4. Note that progenitors’ levels (Ǔ (1),r,δ
n )r, n = 1, 2, . . . do explode. They

are not tight as R+-valued processes, but they are tight as atoms with regard to the
vague topology.

6.3. The progenitor-mass process as semimartingale

By stopping the process X̃r when the number of extractions exceeds some threshold
K ∈ N, we reduce the progenitor-density process to a finite dimensional setting. To
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this end we provide K ∈ N “slots” for extractions and agree on some dummy values
for extractions that do not exist at a given time. Define

(Ũ (i),r
n )t :=

{
(Ǔ (i),r

n )t if the respective progenitor exists at time t,
r if the respective progenitor does not exist at time t,

and define

(Ỹ r
n )t :=

 (M̌r
n)t
r if the respective extraction exists at time t,

0 if the respective extraction does not exist at time t.

Let
σrK := inf{s ≥ 0 : X̌r

s ([0, r)× N) > K + k}

be the first time, when more than K extractions exist. Define the process

X̃r,K
t :=

(
Ũ

(1,...,k),r
0 , (Ũ (1),r

n )1≤n≤K , (Ỹ r
n )0≤n≤K

)
t∧σrK

(6.17)

that takes values in [0, r]k+K × (R+)K+1.

The process X̃r,K is a semimartingale. (We determine its semimartingale character-
istics in Section A.7.) In Section 6.3.1 we will make some informal considerations
concerning the dynamics of the limit of the progenitor-density process X̌r,δ. But first
we revisit briefly the process Xr = (U (1,...,k),r, Y r) from Section 4.2. Note that σrK
is a stopping time with respect to the filtration, generated by Xr: Since the posi-
tions of former progenitors are adapted to the filtration FU(1,...,k),r , the formation- and
extinction-times of extractions are FU(1,...,k),r -stopping times. We assert that for any
K > 0 the stopped process (Xr

t∧σrK
)t≥0 is indeed a semimartingale with respect to its

own filtration:

Theorem 6.3.1. Let K > 0. The process (Xr
t∧σrK

)t is a semimartingale with respect
to its own filtration.

Proof. The process X̃r,K is a semimartingale with respect to its own filtration F X̃r,K .
Since Y r

t∧σrK
=
∑K
n=0(Y r

n )t∧σrK , the process (Xr
t∧σrK

)t is a F X̃r,K -semimartingale. The
filtration generated by (Xr

t∧σrK
)t is a subfiltration of F X̃r,K , hence (Xr

t∧σrK
)t is also a

semimartingale with respect its own filtration by Stricker’s Theorem (cf. Theorem II.4
in [Pro04]).
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6.3.1. Informal considerations about the limit X̌ of the progenitor-density
process

We stop the process X̃r,K , when the overall mass density Y r falls below some threshold
δ > 0. Recall the definition

τ rδ := inf{s : Y r
s ≤ δ}.

Define X̃r,K,δ
t := X̃r,K

t∧τr
δ
. The sequence (X̌r,δ)r is tight, but, by Remark 6.2.4, the

sequence of semimartingales X̃K,r,δ is not. Hence the machinery of Theorem IX.2.4 in
[JS03] cannot be put to use, in order to determine the dynamics in the limit. But we
deem some considerations, regarding the bounded variation and the quadratic variation
of the mass densities for “large r”, insightful.

The following calculations are in no way rigorous and should be understood as an
ad hoc approach to analyse the interplay of low levels and the mass density in the
limit. In Section A.7 we determine the semimartingale characteristics of X̃r,K,δ

t . The
characteristics are rather unwieldy, because of the “dummy values” for non existent
extractions and because of the intricacies that occur, when progenitors are in the death
zone. We refrain from these annoyances and consider benign situations.

For the rest of this section we drop the δ in our notation. Set b = 1 and assume
t < τ rδ ∧ σrK . Since we are interested in a “large r” scenario, we assume rδ > c, k.
(Hence we avoid situations where the death zone extends over the whole interval [0, r],
or, where active progenitors are dead.) We denote by

νX̃,r(ω; dt, dx) = νX̃,rd (ω; dt, dx) +
K∑
n=0

νX̃,rn (ω; dt, dx) + νX̃,rf (ω; dt, dx),

the predictable compensator of the empirical jump measure of X̃r,K
t (see Section A.7).

The measure νX̃,rd compensates the jumps induced by death events, νX̃,rn compensates
the jumps induced by births in the bulk of the n-th subpopulation and νX̃,rf compen-
sates the jumps induced by the genesis of new extractions (see (A.15), (A.16),(A.17)
and (A.18)).

First we examine the bounded variation part of Ỹ r
n , n ≥ 1. We assume that at time t the

progenitor of the considered subpopulation is not in the death zone, Ũ (1),r
n < r− c/Y r

t .
We are not interested in the portion of the drift that is caused by the “shifting” of
extractions after formation events. Hence we ignore the compensator of jumps that
are to due to formations of new extractions. Let

Nn,r
t := r · (Ỹ r

n )t − 1 and pn,rt := c(
r − (Ũ (1),r

n )t
)
· Y r

t
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and recall the definition of the truncation function h(x) = (h̃(xi))i in (4.32). We have

BỸn,r
t := hk+K+1+n(x) ∗ (νX̃,rn + νX̃,rd )

=
∫ t

0
ds

[(
r −

(
Ũ (1),r
n

)
s

) (
r
(
Ỹ r
n

)
s

+ 1
)
h̃

(1
r

)
+ r2Y r

s

c

∫
BinNn,r

s ,pn,rs
(dx) h̃

(
−x
r

)]

=
∫ t

0
ds


(
r −

(
Ũ

(1),r
n

)
s

) (
r
(
Ỹ r
n

)
s

+ 1
)

r
− r2Y r

s

c
·

c
(
r
(
Ỹ r
n

)
s
− 1

)
(
r −

(
Ũ

(1),r
n

)
s

)
· Y r

s

· 1
r

+Rrs


=
∫ t

0
ds

2
(
r −

(
Ũ

(1),r
n

)
s

)
r

+

(
r −

(
Ũ

(1),r
n

)
s

) (
r
(
Ỹ r
n

)
s
− 1

)
r

−
r
(
r
(
Ỹ r
n

)
s
− 1

)
(
r −

(
Ũ

(1),r
n

)
s

) +Rrs


=
∫ t

0
ds

2
(
r −

(
Ũ

(1),r
n

)
s

)
r

+

(
r −

(
Ũ

(1),r
n

)
s

)2 (
r
(
Ỹ r
n

)
s
− 1

)
− r2

(
r
(
Ỹ r
n

)
s
− 1

)
r
(
r −

(
Ũ

(1),r
n

)
s

) +Rrs


=
∫ t

0
ds

2
(
r −

(
Ũ

(1),r
n

)
s

)
r

+

(
−2r

(
Ũ

(1),r
n

)
s

+
(
Ũ

(1),r
n

)2
s

) (
r
(
Ỹ r
n

)
s
− 1

)
r
(
r −

(
Ũ

(1),r
n

)
s

) +Rrs


=
∫ t

0
ds

(
2− 2

(
Ũ (1),r
n

)
s

(
Ỹ r
n

)
s

)
+ o(1)

(6.18)

for large r. In a very similar calculation we see that the bounded variation part of the
root density is

BỸ0,r
t ≈

∫ t

0
ds 2

(
k −

(
Ũ

(k),r
0

)
s

(
Ỹ r

0
)
s

)
(6.19)

for large r. At this point the non-Markovian nature of (U (1,...,k),r, Y r) comes to light
again: Consider a state, where no extractions are alive, Y r

t =
(
Ỹ r

0
)
t
. The drift of Y r

is then solely given by (6.19),

dBY r

t ≈
(
2k − 2

(
Ũ

(k),r
0

)
t

(
Ỹ r

0
)
t

)
dt

=
(
2k − 2U (k),r

t Y r
t

)
dt.

The first drift term, 2k, is due to immigration, fuelled by the k progenitors of the root.
The second term, −2Ũ (k),r

1 Y r, is due to the fact that the knowledge of low levels tells
us, how long the process roughly persists. The second term forces the process to die
out, as U (k),r explodes.

Let τ be the time of a new extraction’s formation and assume there are no other
extractions alive at that time. We obtain for a short time span [τ, τ+ε] (again ignoring
the formation-term of the drift)

BY r

τ+ε −BY r

τ ≈
∫ τ+ε

τ
ds

[(
2k − 2

(
Ũ

(k),r
0

)
s

(
Ỹ r

0
)
s

)
+
(
2− 2

(
Ũ

(1),r
1

)
s

(
Ỹ r

1
)
s

)]
≈ ε

[
2k − 2U (k),r

τ Y r
τ + 2

]
.
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6.3. The progenitor-mass process as semimartingale

Hence, with the creation of the extraction, the drift increased by 2. As the new
progenitor and its extraction fade away, the overall drift returns to normal. These
considerations are in line with our intuition that the birth of a persistent family should
lead to a positive drift in the overall mass density.

Let n ≥ 1 and let
C̃n,rt := hk+K+1+n(x)2 ∗ (νX̃,rn + νX̃,rd )

be the quadratic variation of the n-th extraction’s mass density, where we ignore
the jumps that are due to formations of new extractions. Again we want to explore
informally, what happens with C̃n,r for “large r”. Using

r2Y r
s

c

∫
BinNn,r

s ,pn,rs
(dx) h̃

(
−x
r

)2
= Y r

s

c

∫
BinNn,r

s ,pn,rs
(dx) x2 +Rrs

= Y r
s

c
·
(
Nn,r
s pn,rs (1− pn,rs ) + (Nn,r

s )2 (pn,rs )2
)

+Rrs

= Y r
s

c
·
(
Nn,r
s pn,rs +

(
(Nn,r

s )2 −Nn,r
s

)
(pn,rs )2

)
+Rrs

=
r
(
Ỹ r
n

)
s
− 1

r −
(
Ũ

(1),r
n

)
s

+
c
(
(r
(
Ỹ r
n

)
s
)2 − 3r

(
Ỹ r
n

)
s

+ 2
)

(
r −

(
Ũ

(1),r
n

)
s

)2
Y r
s

+Rrs,

we obtain for large r

C̃n,rt =
∫ t

0
ds

[
2
(
r −

(
Ũ (1),r
n

)
s

)
+
(
r −

(
Ũ (1),r
n

)
s

) (
r
(
Ỹ r
n

)
s
− 1

)]
h̃

(1
r

)2

+
∫ t

0
ds r

2Y r
s

c

∫
BinNn,r

s ,pn,rs
(dx) h

(
−x
r

)2

=
∫ t

0
ds
[

2(r −
(
Ũ

(1),r
n

)
s
)

r2 +
(r −

(
Ũ

(1),r
n

)
s
)(r
(
Ỹ r
n

)
s
− 1)

r2

+
r
(
Ỹ r
n

)
s
− 1

r −
(
Ũ

(1),r
n

)
s

+
c
(
(r
(
Ỹ r
n

)
s
)2 − 3r

(
Ỹ r
n

)
s

+ 2
)

(
r −

(
Ũ

(1),r
n

)
s

)2
Y r
s

+Rrs

]

=
∫ t

0
ds
(
Ỹ r
n

)
s

(
2 +

c
(
Ỹ r
n

)
s

Y r
s

)
+ o(1).

For the root we obtain in a similar calculation,

C̃0,r
t ≈

∫ t

0
ds
(
Ỹ r

0
)
s

(
2 +

c
(
Ỹ r

0
)
s

Y r
s

)
.

So the volatility of an extraction’s mass density depends on the relative density of
the extraction. For large r we envision Ỹ r

n as a conditional branching diffusion with
branching rate 2 + cỸ rn

Y r , which is high if the overall mass is low compared to Ỹ r
n .
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Chapter 6. Addendum: The interplay of low levels and the total mass

For the covariation C̃ij,r of two extraction Ỹ r
i and Ỹ r

j , i, j ≥ 1 we obtain

C̃ij,r := hk+K+1+i(x)hk+K+1+j(x) ∗ νX̃,r

=
∫ t

0
dsr

2Y r
s

c

∫
Bin

N i,r
s ,pi,rs

(dxi) h
(
−xi
r

)
Bin

Nj,r
s ,pj,rs

(dxj) h
(
−xj
r

)
=
∫ t

0
ds
[
Y r
s

c
N i,r
s pi,rs N

j,r
s pj,rs +Rrs

]
≈
∫ t

0
ds
c
(
Ỹ r
i

)
s

(
Ỹ r
j

)
s

Y r
s

We obtain the same result for covariations between root and extraction,

C̃0i,r ≈
∫ t

0
ds
c
(
Ỹ r

1
)
s

(
Ỹ r
i

)
s

Y r
s

In a kind of “test calculation” the covariations sum up correctly to the quadratic
variation of the overall mass density (c.f. Theorem 4.3.2),

∑
i,j

C̃ij,r ≈
∫ t

0
ds

∑
i

Ỹ r
i

(
2 +

c
(
Ỹ r
i

)
s

Y r
s

)
+
∑
j: j 6=i

c
(
Ỹ r
i

)
s

(
Ỹ r
j

)
s

Y r
s


=
∫ t

0
ds

2Y r
s +

∑
i

c(Ỹ r
i

)2
s

Y r
s

+
∑
j: j 6=i

c
(
Ỹ r
i

)
s

(
Ỹ r
j

)
s

Y r
s


=
∫ t

0
ds Y r

s (2 + c).
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A. Appendix

A.1. Poisson random measures

Let (S,S) be a measurable space and ν a σ-finite measure on S. The following is
Lemma A.3 in [KR11].

Lemma A.1.1 (Poisson random measures process). Let ξ be a Poisson random mea-
sure with mean measure ν and f ∈ L1(ν), then

E
[
e
∫
f(z) ξ(dz)

]
= e

∫
(ef−1) dν , (A.1)

E
[∫

f(z) ξ(dz)
]

=
∫
fdν, (A.2)

Var
(∫

f(z) ξ(dz)
)

=
∫
f2 dν. (A.3)

Write ξ =
∑
i δZi. For g ≥ 0 with log(g) ∈ L1(ν) we have

E
[∏
i

g(Zi)
]

= e
∫

(g−1) dν . (A.4)

If hg, (g − 1) ∈ L1(ν), then

E
[∑

i

h(Zi)
∏
k

g(Zk)
]

=
∫
hg dν · e

∫
(g−1) dν , (A.5)

E

∑
i 6=j

h(Zi)h(Zj)
∏
k

g(Zk)

 =
(∫

hg dν

)2
e
∫

(g−1) dν . (A.6)

A.2. Corollary to Fubini

We phrase the trick from equation (3.6) as a small “ready to use” lemma.

Lemma A.2.1. Let f : [a, b]× [a, b]→ R be an integrable function, then

∫ b

a

(∫ y

a
f(x, y) dx

)
dy =

∫ b

a

(∫ b

x
f(x, y) dy

)
dx.
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Proof. Define ∆ := {(x, y) ∈ [a, b]× [a, b] : x ≤ y}. Then

∫ b

a

(∫ y

a
f(x, y) dx

)
dy =

∫ b

a

(∫ b

a
1∆(x, y) · f(x, y) dx

)
dy

=
∫ b

a

(∫ b

a
1∆(x, y) · f(x, y) dy

)
dx

=
∫ b

a

(∫ b

x
f(x, y) dy

)
dx.

A.3. Joint tightness in D[0,∞)

The lemmas in this section are concerned with the question, under which circumstances
D[0,∞)-tightness of marginals imply tightness of the joint process.

Lemma A.3.1. Let x1,r, x2,r, . . . , xn,r ∈ DR[0,∞). The family
{
(x1,r, x2,r, . . . , xn,r)

}
r

is relatively compact in DRn [0,∞), if (and only if)
{
xi,r

}
r and

{
xi,r + xj,r

}
r are rela-

tively compact in DR[0,∞) for all i, j = 1, . . . , n.

Proof. This is Problem 22 in Chapter 3 of [EK86].

Lemma A.3.2. Let X1,r, X2,r, . . . , Xn,r be tight processes in DR[0,∞). If Xi,r +Xj,r

is tight in DR[0,∞) for all i, j = 1, . . . , n, then Xr := (X1,r, X2,r, . . . , Xn,r) is tight in
DRn [0,∞).

Proof. Let ε > 0. Since
{
Xi,r

}
r and

{
Xi,r +Xj,r

}
r are tight, we findKi,Kij ⊂ DR[0,∞)

compact, such that

sup
r

P
[
Xi,r /∈ Ki

]
<

ε

n2 for i = 1, . . . , n,

sup
r

P
[
Xi,r +Xj,r /∈ Ki,j

]
<

ε

n2 for i, j = 1, . . . , n and i 6= j.

Define the set

K :=
{

(x1, x2, . . . , xn) ∈ DRn [0,∞) : xi ∈ Ki, x
i+xj ∈ Kij for i, j = 1, . . . , n, i 6= j

}
.

For any sequence {(x1,r, x2,r, . . . , xn,r)}r ⊂ K the sequence of coordinates {xi,r}r ⊂ Ki

and the sequence of sums {(xi,r + xj,r)}r ⊂ Kij are contained in compact sets, thus
they are relatively compact. Lemma A.3.1 states that {(x1,r, x2,r, . . . , xn,r)}r has a
convergent subsequence inDRn [0,∞). HenceK is relatively compact andK is compact
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in DRn [0,∞). Furthermore we have

sup
r

P
[
Xr /∈ K

]
≤ sup

r
P [Xr /∈ K]

≤
n∑
i=1

sup
r

P
[
Xi,r /∈ Ki

]
+

n∑
i,j=1
i 6=j

sup
r

P
[
Xi,r +Xj,r /∈ Ki,j

]

< ε.

Lemma A.3.3. If (Xr)r is a family of DRd1 [0,∞)-tight processes and (Y r)r is a family
of CRd2 [0,∞)-tight processes, then (Xr, Y r) is tight in DRd1+d2 [0,∞).

Proof. This is Corollary VI.3.33 in [JS03].

Lemma A.3.4. Let (Xn)n be tight (C-tight) in DRd [0,∞). Further let (τn(s))s be
random time changes with τn(0) = 0 that are strictly increasing and continuous in s.
Define

Y n
s := Xn

τn(s).

If for any ε, T > 0 there is K > 0 such that

lim inf
n→∞

P [|τn(t)− τn(s)| ≤ K · |t− s| for all s, t ∈ [0, T ]] ≥ 1− ε,

then (Y n)n is tight (C-tight) in DRd [0,∞).

Proof. Recall the definition of the modified modulus of continuity of a càdlàg path x,

w′T (x, ρ) := inf
(Ik)>ρ

max
k

sup
s,t∈Ik

|x(t)− x(s)| ,

where the infimum extends over all partitions of the interval [0, T ) into subintervals
Ik = [a, b) such that b − a ≥ ρ. The family (Y n)n is tight if and only if the following
conditions hold (cf. Theorem 16.8 in [Bil99] or Theorem 16.10 in [Kal02]):

(i) For each T > 0,

lim
a→∞

lim sup
n→∞

P
[

sup
0≤t≤T

|Y n
t | ≥ a

]
= 0.

(ii) For each T, η > 0,
lim
ρ→0

lim sup
n→∞

P
[
w′T (Y n, ρ) ≥ η

]
= 0.

Assume (Xn)n is tight. Let a, T, ε > 0. Define the events

AnK := {|τn(t)− τn(s)| ≤ K · |t− s| for all s, t ∈ [0, T ]} .
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According to prerequisites there exists K > 0 such that

lim sup
n→∞

P [(AnK)c] < ε

2 .

Since condition (i) holds for (Xn)n there exists a > 0 such that

lim sup
n→∞

P
[

sup
0≤t≤KT

|Xn
t | ≥ a

]
<
ε

2 .

Since τn is increasing and continuous, it maps [0, T ] → [0, τn(T )] one on one, and we
have

lim sup
n→∞

P
[

sup
0≤t≤T

|Y n
t | ≥ a

]
= lim sup

n→∞
P
[

sup
0≤t≤T

∣∣∣Xn
τn(t)

∣∣∣ ≥ a]

= lim sup
n→∞

P
[

sup
0≤t≤τn(T )

|Xn
t | ≥ a

]

≤ lim sup
n→∞

P [(AnK)c] + lim sup
n→∞

P
[{

sup
0≤t≤τn(T )

|Xn
t | ≥ a

}
∩AnK

]

≤ ε

2 + lim sup
n→∞

P
[

sup
0≤t≤KT

|Xn
t | ≥ a

]
< ε.

This implies condition (i) for (Y n)n.

We turn to the structure condition (ii). Let T, η, ε > 0 and let K, AnK be as above.
Since condition (ii) holds for (Xn)n there exists ρ > 0 such that

lim sup
n→∞

P
[
w′KT (Xn,Kρ) > η

]
<
ε

2 .

We have
w′T (Y n, ρ) = inf

(Ik)>ρ
max
k

sup
s,t∈Ik

|Y n
t − Y n

s |

= inf
(Ik)>ρ

max
k

sup
s,t∈τn(Ik)

|Xn
t −Xn

s |

= inf
(I′
k
) : τ−1

n (I′
k
)>ρ

max
k

sup
s,t∈I′

k

|Xn
t −Xn

s | ,

where in the last line the infimum extends over all partitions of [0, τn(T )) into subin-
tervals I ′k = [a, b) such that τ−1

n (b)− τ−1
n (a) > ρ.

We have {
(I ′k) > Kρ

}
∩AnK ⊆

{
(I ′k) : τ−1

n (I ′k) > ρ
}
∩AnK .

Hence, on the event AnK ,

w′T (Y n, ρ) ≤ inf
(I′
k
)>K·ρ

max
k

sup
s,t∈I′

k

|Xn
t −Xn

s |

= w′τn(T )(X
n,Kρ)

≤ w′KT (Xn,Kρ).
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We obtain

lim sup
n→∞

P
[
w′T (Y n, ρ) > η

]
≤ lim sup

n→∞
P [(AnK)c] + lim sup

n→∞
P
[{
w′T (Y n, ρ) > η

}
∩AnK

]
≤ ε

2 + lim sup
n→∞

P
[
w′KT (Xn,Kρ) > η

]
< ε.

Assume now that (Xn)n is C-tight. Recall the definition of the (regular) modulus of
continuity of a path x,

wT (x, ρ) := sup
0≤a≤a+ρ≤T

sup
s,t∈[a,a+ρ]

|x(t)− x(s)| .

The family (Y n)n is C-tight if and only if the condition (i) and the following condition
hold (cf. Proposition VI.3.26 in [JS03]):

(iii) For each T, ε, η > 0 there are n0 ∈ N and ρ > 0 with:

n ≥ n0 ⇒ P [wT (Y n, ρ) > η] ≤ ε.

Let K > 0 and AnK be as above. On the event AnK we have

wT (Y n, ρ) = sup
0≤a≤a+ρ≤T

sup
s,t∈[a,a+ρ]

|Y n
t − Y n

s |

= sup
0≤a≤a+ρ≤T

sup
s,t∈[τn(a),τn(a+ρ)]

|Xn
t −Xn

s |

≤ sup
0≤a≤a+Kρ≤T

sup
s,t∈[a,a+Kρ]

|Xn
t −Xn

s |

= wT (Xn,Kρ).

Similarly as above this implies condition (iii) for (Y n)n, since condition (iii) holds for
(Xn)n.

Lemma A.3.5. Let (E1, d1) and (E2, d2) be metric spaces. Let (xn)n ⊂ DE1 [0,∞)
and (yn)n ⊂ DE2 [0,∞) be convergent with limits x and y. If x and y do not jump
simultaneously, and, for any T > 0, the joint path (x, y) has only finitely many jumps
in [0, T ], then

(xn, yn) n→∞−−−→ (x, y) in DE1×E2 [0,∞).

Proof. Denote by Λ the set of all strictly increasing, continuous maps of [0,∞) onto
itself. By definition of convergence in Skorohod space there are families λxn, λyn ∈ Λ
such that (λxn)n, (λyn)n converge to the identity map uniformly, and, for each T > 0

sup
t≤T

d1(xn(λxn(t)), x(t)) n→∞−−−→ 0,

sup
t≤T

d2(yn(λyn(t)), y(t)) n→∞−−−→ 0.

103



Appendix

Consider a discontinuity of x at time t. Since x and y do not jump simultaneously and
there are only finitely many jumps of (x, y) in compact intervals, there exists ε > 0
such that y is continuous on (t−ε, t+ε). Considering also the jumps of y and choosing
the neighbourhoods small enough, we obtain times 0 = t1 < t2 < . . . such that the
consecutive intervals Ik := [tk, tk+1) have the following properties:

(a) Both x and y do not jump at the times t1, t2, . . .

(b) Both x and y are continuous on I1.

(c) If there is a jump of x in Ik, then y is continuous on Ik and vice versa.

(d) Intervals, where both x and y are continuous, and intervals with a jump alternate.

We construct a series of time changes piecewise on (Ik)k. Since (λxn)n and (λyn)n
converge uniformly to the identity map, we may assume without loss of generality that
λxn(tk) < λyn(tk+1) and λyn(tk) < λxn(tk+1). Define for t ∈ I2k

λn(t) :=
{
λxn(t) if x jumps on I2k,

λyn(t) if y jumps on I2k,

and interpolate linearly on the intervals with odd index. Then (λn)n ⊂ Λ and

sup
t∈[0,∞)

|λn(t)− t| ≤ sup
t∈[0,∞)

|λxn(t)− t|+ sup
t∈[0,∞)

|λyn(t)− t| n→∞−−−→ 0.

If x is continuous on Ik, then

sup
t∈Ik

d1
(
xn(λ̃n(t)), x(t)

)
n→∞−−−→ 0

for any series (λ̃n)n ⊂ Λ that converges uniformly to the identity map. Hence, by
construction, we have for any T > 0

sup
t≤T

(
d1(xn(λn(t)), x(t)) ∨ d2(yn(λn(t)), y(t))

)
n→∞−−−→ 0.

Lemma A.3.6. For each n ∈ N let (Ωn,An,Pn) be a probability space. Let Xn and Y n

be càdlàg processes, defined on Ωn, with values in metric spaces (E1, d1) and (E2, d2).
If (Xn)n and (Y n)n are tight, then (Xn, Yn) is tight in DE1 [0,∞)×DE2 [0,∞) endowed
with the product topology. If any limit point (X,Y ) of (Xn, Y n) has almost surely the
following properties:

(i) The marginals X and Y do not jump simultaneously.

(ii) (X,Y ) has only finitely many jumps in [0, T ] for any T > 0.

Then (Xn, Y n)n is tight in DE1×E2 [0,∞) endowed with the Skorohod topology.
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Proof. Let ε > 0. Since (Xn)n and (Y n)n are tight, there exist for any ε > 0 compact
sets Kε

X ⊂ DE1 [0,∞) and Kε
Y ⊂ DE2 [0,∞) such that

Pn [Xn /∈ Kε
X ] < ε

2 ,

Pn [Y n /∈ Kε
Y ] < ε

2 .

Define Kε := Kε
X ×Kε

Y , then

Pn [(Xn, Y n) /∈ Kε] < ε.

Hence (Xn, Yn) is tight in DE1 [0,∞)×DE2 [0,∞) endowed with the product topology.

Define

C := {(x, y) ∈ DE1×E2 [0,∞) : (x, y) has the properties (i) and (ii)} .

Lemma A.3.5 states that for any sequence ((xn, yn))n ⊂ DE1×E2 [0,∞) with xn → x,
yn → y and (x, y) ∈ C we have convergence (xn, yn)→ (x, y) in the Skorohod topology.
In other words, the identity map between DE1 [0,∞) × DE2 [0,∞) endowed with the
product topology andDE1×E2 [0,∞) endowed with the Skorohod topology is continuous
on C. The assertion follows by the Continuous Mapping Theorem (c.f. Theorem 13.25
in [Kle06]).

Remark A.3.7. If the limit point Y of (Y n)n is continuous, then (Xn, Y n)n is tight
in DE1×E2 [0,∞) endowed with the Skorohod topology. One may drop the assumption
that only finitely many jumps occur in [0, T ].

A.4. Weak convergence in D[0,∞)

Lemma A.4.1. (i) Let E and F be metric spaces, and let f : E → F be continuous.
Then x 7→ f ◦ x is a DE [0,∞)→ DF [0,∞)-continuous mapping.

(ii) The mapping f : x 7→
∫ ·

0 x(s) ds is DR[0,∞)→ DR[0,∞)-continuous.

Proof. These are the Problems 13 and 26 in Chapter 3 of [EK86].

Theorem A.4.2. Let (Zn)n be a family of d-dimensional semimartingales with char-
acteristics (Bn, C̃n, νn). Let Z be the limit process, defined on the stochastic basis
(Ω,A,F ,P).

(i) Assume F is the filtration generated by Z, and that the following conditions hold:

(Zn, Bn, C̃n)⇒ (Z,B, C̃) and (A.7)
(Zn, g ∗ νn)⇒ (Z, g ∗ ν) (A.8)

for all nonnegative continuous bounded functions g : R→ R which are 0 around
0. Then Z is a semimartingale on (Ω,A,F ,P) with characteristics (B, C̃, ν).
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(ii) Assume F is the filtration generated by (Z, Y ), where Y is an auxiliary càdlàg
process, and, for each n, let Y n be an adapted càdlàg process, defined on the same
stochastic basis as Zn. If

(Zn, Y n, Bn, C̃n)⇒ (Z, Y,B, C̃) and (A.9)
(Zn, Y n, g ∗ νn)⇒ (Z, Y, g ∗ ν), (A.10)

for all nonnegative continuous bounded functions g : R→ R which are 0 around
0, the assertion of (i) remains valid.

Proof. This is Theorem IX.2.4, p. 528, and Remark IX.2.21, p. 534, in [JS03]. In
[JS03] it is proven that it is enough, if the Conditions (A.8) and (A.10) are true for a
smaller class of functions g.

A.5. The Markov Mapping Theorem

For convenience we give a literal quotation of the Markov Mapping Theorem A.15 in
[KR11] and the accompanying entry:

Let (S, d) and (S0, d0) be complete, separable metric spaces, B(S) ⊂M(S) be the Ba-
nach space of bounded measurable functions on S, with ‖f‖ = supx∈S |f(x)|
and C(S) ⊂ B(S) be the subspace of bounded continuous functions. An operator
A ⊂ B(S) × B(S) is dissipative if ‖f1 − f2 − ε(g1 − g2)‖ ≥ ‖f1 − f2‖ for all
(f1, g1), (f2, g2) ∈ A and ε > 0; A is a pre-generator if A is dissipative and there
are sequences of functions µn : S → P(S) and λn : S → [0,∞) such that for each
(f, g) ∈ A

g(x) = lim
n→∞

λn(x)
∫
S

(
f(y)− f(x)

)
µn(x,dy)

for each x ∈ S. A is graph separable if there exists a countable subset {gk} ⊂ D(A) ∩ C(S)
such that the graph of A is contained in the bounded, pointwise closure of the linear
span of {(gk, Agk)}. [More precisely, we should say that there exists
{(gk, hk)} ⊂ A ∩ C(S) × B(S) such that A is contained in the bounded pointwise
closure of {(gk, hk)}, but typically A is single-valued, so we use the more intuitive
notation Agk.] These two conditions are satisfied by essentially all operators A that
might reasonably be thought to be generators of Markov processes. Note that A is
graph separable if A ⊂ L × L, where L ⊂ B(S) is separable in the sup norm topol-
ogy, for example, if S is locally compact, and L is the space of continuous functions
vanishing at infinity.

A collection of functions D ⊂ C(S) is separating if ν, µ ∈ P(S) and
∫
S f dν =

∫
S f dµ

for all f ∈ D imply µ = ν.

For an S0-valued, measurable process Y , F̂Yt will denote the completion of the σ-
algebra σ(Y (0),

∫ r
0 h(Y (s)) ds, r ≤ t, h ∈ B(S0)). For almost every t, Y (t) will be
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F̂Yt -measurable, but in general, F̂Yt does not contain FYt = σ(Y (s) : s ≤ t). Let
TY = {t : Y (t) is F̂Yt measurable}. If Y is cadlag and has no fixed points of discon-
tinuity [i.e., for every t, Y (t) = Y (t−) a.s.], then TY = [0,∞). DS [0,∞) denotes the
space of cadlag, S-valued functions with the Skorohod topology, andMS [0,∞) denotes
the space of Borel measurable functions, x : [0,∞) → S, topologized by convergence
in Lebesgue measure.

Theorem A.5.1. Let (S, d) and (S0, d0) be complete, separable metric spaces. Let
A ⊂ C(S)× C(S) and ψ ∈ C(S), ψ ≥ 1. Suppose that for each f ∈ D(A) there exists
cf > 0 such that

|Af(x)| ≤ cfψ(x), x ∈ A,

and define A0f(x) = Af(x)/ψ(x).

Suppose that A0 is a graph-separable pre-generator, and suppose that D(A) = D(A0) is
closed under multiplication and is separating. Let γ : S → S0 be Borel measurable, and
let α be a transition function from S0 into S [y ∈ S0 → α(y, ·) ∈ P(S) is Borel measur-
able] satisfying

∫
h◦γ(z)α(y,dz) = h(y), y ∈ S0, h ∈ B(S0), that is, α(y, γ−1(y)) = 1.

Assume that ψ̃(y) ≡
∫
S ψ(z)α(y,dz) <∞ for each y ∈ S0, and define

C =
{(∫

S
f(z)α(·,dz),

∫
S
Af(z)α(·,dz)

)
: f ∈ D(A)

}
.

Let µ0 ∈ P(S0), and define ν0 =
∫
α(y, ·)µ0(dy).

(a) If Ỹ satisfies
∫ t
0 E

[
ψ̃(Ỹ (s))

]
ds < ∞ for all t ≥ 0, and Ỹ is a solution of the

martingale problem for (C, µ0), then there exists a solution X of the martin-
gale problem for (A, ν0) such that Ỹ has the same distribution on MS0 [0,∞) as
Y = γ ◦X. If Y and Ỹ are cadlag, then Y and Ỹ have the same distribution on
DS0 [0,∞).

(b) For t ∈ TY ,
P
[
X(t) ∈ Γ | F̂Yt

]
= α(Y (t),Γ), Γ ∈ B(S).

(c) If, in addition, uniqueness holds for the martingale problem for (A, ν0), then
uniqueness holds for the MS0 [0,∞)-martingale problem for (C, µ0). If Ỹ has
sample paths in DS0 [0,∞), then uniqueness holds for the DS0 [0,∞)-martingale
problem for (C, µ0).

(d) If uniqueness holds for the martingale problem for (A, ν0), then Y restricted to
TY is a Markov process.

A.6. Generator calculations for the progenitor-level system

In this section we do the generator calculations in order to check the intertwining
relation (6.10). Let all notation be as in Chapter 6. Recall in particular the definition
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(and notation) of the class of test function DrPL (see (6.1) and (6.2)), the definition
of the generator ArPL (see (6.3), (6.4), (6.6), (6.7) and (6.8)) and the definition of the
kernel αr(x̌, ·), where x̌ ∈ S[0,r]×R+ is a valid state of X̌r (see (6.9)). Recall that

f̂(x̌) :=
∫
αr(x̌; du) f(u)

=
∫
αr
(
u

(1)
0 , . . . , u

(k)
0 , (u(1)

n )n≥1, (mn)n≥0; du
)
f(u0, u1, . . .)

= f̂0(u(1)
0 , . . . , u

(k)
0 ,m0) ·

∏
n≥1

f̂n(u(1)
n ,mn),

where

f̂0(u(1)
0 , . . . , u

(k)
0 ,m0) :=

k∏
i=1

g0(u(i)
0 ) · e−λ0(u(k)

0 )(m0−k)∨0,

f̂n(u(1)
n ,mn) := gn(u(1)

n )e−λn(u(1)
n )(mn−1).

We integrate the summands of ArPL = Arf + Ard + Ar0 + Are separately. The formation
part is straightforward,

Crf f̂
(
u

(1,...,k)
0 , (u(1)

n )n≥1, (mn)n≥0
)

:=
∫
αr
(
u

(1,...,k)
0 , (u(1)

n )n≥1, (mn)n≥0; du
)
Arff(u)

=
∫
αr
(
u

(1)
0 , . . . , u

(k)
0 , (u(1)

n )n≥1, (mn)n≥0; du
)
1m≥k(u) ·

k∑
q=2

2(q − 1)(u(q)
0 − u

(q−1)
0 )

×
[
k−1∏
j=1

g0(u(j)
0 ) · 1

u
(q)
0 − u

(q−1)
0

∫ u
(q)
0

u
(q−1)
0

g0(x) dx
m0∏
j=k

g1(u(j)
0 ) ·

∏
n≥2

fn(un−1)

−f(u0, u1, . . .)
]

+ 1m<k(u) · f(u)
m∑
i=1

2
∫ r

ui0

(g0(x)− 1) dx

= 1[k,∞)(m) ·
k∑
q=2

2(q − 1)(u(q)
0 − u

(q−1)
0 )

[
k−1∏
j=1

g0(u(j)
0 ) · 1

u
(q)
0 − u

(q−1)
0

∫ u
(q)
0

u
(q−1)
0

g0(x) dx

× g1(u(k)
0 )e−λ1(u(k)

0 )(m0−k) ·
∏
n≥2

f̂n(u(1)
n−1,mn−1)− f̂

(
u

(1,...,k)
0 , (u(1)

n )n≥1, (mn)n≥0
)]

+ 1(0,k)(m) · f̂0(u(1,...,m)
0 ,m)

m∑
i=1

2
∫ r

u
(i)
0

dx (g0(x)− 1).

We turn to the generator of the death dynamics. Abbreviate the jump factor ϕ := ϕ(u)
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(cf. (6.5)). We rewrite

Ardf(u0, u1, . . .) = rm

c

(∏
n≥0

mn∏
i=1

gn(ϕuin)− f(u0, u1, . . .)
)

= rm

c

(∏
n≥0

mn∏
i=1

(
1[0,r)(ϕuin)gn(ϕuin) + 1[r,∞)(ϕuin)

)
− f(u1, u2, . . .)

)
.

Assume u(k)
0 ≤ r − rc

m and u(1)
n ≤ r − rc

m for n ≥ 1. I.e. the progenitors are not in the
death zone. By definition of the jump factor we distinguish between the cases m > c
and m ≤ c:

Crd f̂
(
u

(1,...,k)
0 , (u(1)

n )n≥1, (mn)n≥0
)

:=
∫
αr
(
u

(1,...,k)
0 , (u(1)

n )n≥1, (mn)n≥0; du
)
Ardf(u)

= 1(c,∞)(m)

× rm

c

[
k∧m∏
j=1

g0(ϕu(j)
0 )
( 1
r − u(k)

0

∫ r

u
(k)
0

dz
(
1[0,r)(ϕz)g0(ϕz) + 1[r,∞)(ϕz)

))(m0−k)∨0

×
∏
n≥1

gn(ϕu(n)
n )

( 1
r − u(1)

n

∫ r

u
(1)
n

dz
(
1[0,r)(ϕz)gn(ϕz) + 1[r,∞)(ϕz)

))mn−1

−f̂
(
u

(1,...,k)
0 , (u(1)

n )n≥1, (mn)n≥0
)]

+ 1[0,c](m) · rm
c

[
f̂(0)− f̂

(
u

(1,...,k)
0 , (u(1)

n )n≥1, (mn)n≥0
)]
.

We have for m > c( 1
r − u(k)

0

∫ r

u
(k)
0

dz
(
1[0,r)(ϕz)g0(ϕz) + 1[r,∞)(ϕz)

))(m0−k)∨0

=
(

1
r − u(k)

0

∫ r
ϕ

u
(k)
0

g0(ϕz) dz + 1
r − u(k)

0

∫ r

r
ϕ

dz
)(m0−k)∨0

=
(

1
ϕ · (r − u(k)

0 )

∫ r

ϕu
(k)
0

g0(z) dz + r − r/ϕ
r − u(k)

0

)(m0−k)∨0

=
(

r − ϕu(k)
0

ϕ · (r − u(k)
0 )

e−λ0(ϕu(k)
0 ) + r − r/ϕ

r − u(k)
0

)(m0−k)∨0

=
((

1− rc

(r − u(k)
0 )m

)
e−λ0(ϕu(k)

0 ) + rc

(r − u(k)
0 )m

)(m0−k)∨0

=
(m0−k)∨0∑

l=0

(
m0 − k

l

)(
rc

(r − u(k)
0 )m

)l (
1− rc

(r − u(k)
0 )m

)[(m0−k)∨0]−l

×e−λ0(ϕu(k)
0 )[((m0−k)∨0)−l]
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and, with a very similar calculation for n ≥ 1,(
1

r − u(1)
n

∫ r

u
(1)
n

dz
(
1[0,r)(ϕz)gn(ϕz) + 1[r,∞)(ϕz)

))mn−1

=
mn−1∑
l=0

(
mn − 1

l

)(
rc

(r − u(1)
n )m

)l (
1− rc

(r − u(1)
n )m

)mn−1−l

e−λn(ϕu(1)
n )(mn−1−l).

If a progenitor is in the death zone, all particles of its subpopulation are killed. We
correct for this case by cutting the probability parameters off at 1 and obtain the form
of Crd in (6.14).

We turn to the birth dynamics in the extractions,

Cre f̂
(
u

(1,...,k)
0 , (u(1)

n )n≥1, (mn)n≥0
)

:=
∫
αr
(
u

(1,...,k)
0 , (u(1)

n )n≥1, (mn)n≥0; du
)
Aref(u)

=
∫
αr
(
u

(1,...,k)
0 , (u(1)

n )n≥1, (mn)n≥0; du
)

×f(u0, u1, . . .)
∑
n≥1

mn∑
i=1

(
2
∫ r

uin

(gn(x)− 1) dx+
(
(uin)2 − ruin

)g′n(uin)
gn(uin)

)
.

We treat the extractions separately. Fix n ≥ 1.∫
αr
(
u

(1,...,k)
0 , (u(1)

n′ )n′≥1, (mn′)n′≥0; du
)
f(u0, u1, . . .)

mn∑
i=1

2
∫ r

u
(i)
n

(gn(x)− 1) dx

= f̂0(u(1,...,k)
0 ,m0)

∏
l≥1
l 6=n

f̂l(u
(1)
l ,ml)

[
2gn(u(1)

n )e−λn(u(1)
n )(mn−1)

∫ r

u
(1)
n

dx (gn(x)− 1)

+ (mn − 1)gn(u(1)
n )e−λn(u(1)

n )(mn−2) 2
r − u(1)

n

∫ r

u
(1)
n

dz gn(z)
∫ r

z
dx (gn(x)− 1)

]

= f̂0(u(1,...,k)
0 ,m0)

∏
l≥1
l 6=n

f̂l(u
(1)
l ,ml)

[
2(r − u(1)

n )gn(u(1)
n )e−λn(u(1)

n )(mn−1)
(
e−λn(u(1)

n ) − 1
)

+ (mn − 1)gn(u(1)
n )e−λn(u(1)

n )(mn−2)

×
(

(r − u(1)
n )e−2λn(u(1)

n ) − 2
r − u(1)

n

∫ r

u
(1)
n

dz gn(z)(r − z)
)]
.

(A.11)

For the last equality we used Lemma A.2.1.
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We turn to the movement part. For the progenitor we obtain

∫
αr
(
u

(1,...,k)
0 , (u(1)

n′ )n′≥1, (mn′)n′≥0; du
)
f(u0, u1, . . .)((u(1)

n )2 − ru(1)
n )g

′
n(u(1)

n )
gn(u(1)

n )

= f̂0(u(1,...,k)
0 ,m0) ·

∏
l≥1
l 6=n

f̂l(u
(1)
l ,ml) · ((u(1)

n )2 − ru(1)
n )g′n(u(1)

n )e−λn(u(1)
n )(mn−1).

(A.12)

For the particles in the bulk we obtain, using partial integration,

∫
αr
(
u

(1,...,k)
0 , (u(1)

n′ )n′≥1, (mn′)n′≥0; du
)
f(u0, u1, . . .)

mn∑
i=2

((u(i)
n )2 − ru(i)

n )g
′
n(u(i)

n )
gn(u(i)

n )

= f̂0(u(1,...,k)
0 ,m0) ·

∏
l≥1
l 6=n

f̂l(u
(1)
l ,ml) · (mn − 1)gn(u(1)

n )e−λn(u(1)
n )(mn−2)

× 1
r − u(1)

n

∫ r

u
(1)
n

dz (z2 − rz)g′n(z)

= f̂0(u(1,...,k)
0 ,m0) ·

∏
l≥1
l 6=n

f̂l(u
(1)
l ,ml) · (mn − 1)gn(u(1)

n )e−λn(u(1)
n )(mn−2)

× 1
r − u(1)

n

(
−((u(1)

n )2 − ru(1)
n )gn(u(1)

n )−
∫ r

u
(1)
n

dz (2z − r)gn(z)
)

= f̂0(u(1,...,k)
0 ,m0) ·

∏
l≥1
l 6=n

f̂l(u
(1)
l ,ml) · (mn − 1)gn(u(1)

n )e−λn(u(1)
n )(mn−2)

× 1
r − u(1)

n

(
(r − u(1)

n )u(1)
n gn(u(1)

n )−
∫ r

u
(1)
n

dz rgn(z) + 2
∫ r

u
(1)
n

dz (r − z)gn(z)
)

= f̂0(u(1,...,k)
0 ,m0) ·

∏
l≥1
l 6=n

f̂l(u
(1)
l ,ml) · (mn − 1)gn(u(1)

n )e−λn(u(1)
n )(mn−2)

×
(
u(1)
n gn(u(1)

n )− re−λn(u(1)
n ) + 2

r − u(1)
n

∫ r

u
(1)
n

dz (r − z)gn(z)
)
.

(A.13)
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Combining (A.11), (A.12) and (A.13) we obtain for n ≥ 1∫
αr
(
u

(1,...,k)
0 , (u(1)

n′ )n′≥1, (mn′)n′≥0; du
)

× f(u0, u1, . . .)
mn∑
i=1

(
2
∫ r

u
(i)
n

(gn(x)− 1) dx+
(
(u(i)
n )2 − ru(i)

n

)g′n(u(i)
n )

gn(u(i)
n )

)

= f̂0(u(1,...,k)
0 ,m0) ·

∏
l≥1
l 6=n

f̂l(u
(1)
l ,ml) ·

[
2(r − u(1)

n )gn(u(1)
n )e−λn(u(1)

n )(mn−1)
(
e−λn(u(1)

n ) − 1
)

+ (mn − 1)gn(u(1)
n )e−λn(u(1)

n )(mn−2)
(

(r − u(1)
n )e−2λn(u(1)

n )

− 2
r − u(1)

n

∫ r

u
(1)
n

dz gn(z)(r − z)
)

+ ((u(1)
n )2 − ru(1)

n )g′n(u(1)
n )e−λn(u(1)

n )(mn−1)

+ (mn − 1)gn(u(1)
n )e−λn(u(1)

n )(mn−2)
(
u(1)
n gn(u(1)

n )− re−λn(u(1)
n )

+ 2
r − u(1)

n

∫ r

u
(1)
n

dz (r − z)gn(z)
)]

= f̂0(u(1,...,k)
0 ,m0) ·

∏
l≥1
l 6=n

f̂l(u
(1)
l ,ml) ·

[
2(r − u(1)

n )
(
f̂n(u(1)

n ,mn + 1)− f̂n(u(1)
n ,mn)

)

+ (r − u(1)
n )(mn − 1)f̂n(u(1)

n ,mn + 1) + ((u(1)
n )2 − ru(1)

n )g′n(u(1)
n )e−λn(u(1)

n )(mn−1)

+ u(1)
n (mn − 1)gn(u(1)

n )f̂n(u(1)
n ,mn − 1)− r(mn − 1)f̂n(u(1)

n ,mn)
]

= f̂0(u(1,...,k)
0 ,m0) ·

∏
l≥1
l 6=n

f̂l(u
(1)
l ,ml) ·

[
2(r − u(1)

n )
(
f̂n(u(1)

n ,mn + 1)− f̂n(u(1)
n ,mn)

)

+ (r − u(1)
n )(mn − 1)

(
f̂n(u(1)

n ,mn + 1)− f̂n(u(1)
n ,mn)

)
− u(1)

n (mn − 1)
(
f̂n(u(1)

n ,mn)− gn(u(1)
n )f̂n(u(1)

n ,mn − 1)
)

+ ((u(1)
n )2 − ru(1)

n )g′n(u(1)
n )e−λn(u(1)

n )(mn−1)
]

= f̂0(u(1,...,k)
0 ,m0) ·

∏
l≥1
l 6=n

f̂l(u
(1)
l ,ml) ·

[
2(r − u(1)

n )
(
f̂n(u(1)

n ,mn + 1)− f̂n(u(1)
n ,mn)

)

+ (r − u(1)
n )(mn − 1)

(
f̂n(u(1)

n ,mn + 1)− f̂n(u(1)
n ,mn)

)
+ ((u(1)

n )2 − ru(1)
n ) · d

du(1)
n

f̂n(u(1)
n ,mn)

]
(A.14)

112



A.6. Generator calculations for the progenitor-level system

For the last equality, recall that e−λn(u(1)
n ) = 1

r−u(1)
n

∫ r
u

(1)
n
gn(x) dx. Hence we obtain

((u(1)
n )2 − ru(1)

n ) · d
du(1)

n

f̂n(u(1)
n ,mn) = ((u(1)

n )2 − ru(1)
n ) · d

du(1)
n

gn(u(1)
n )e−λn(u(1)

n )(mn−1)

= ((u(1)
n )2 − ru(1)

n )

×
(
gn(u(1)

n )(mn − 1)e−λn(u(1)
n )(mn−2)

(
1

(r − u(1)
n )2

∫ r

u
(1)
n

gn(x) dx− gn(u(1)
n )

r − u(1)
n

)

+g′n(u(1)
n )e−λn(u(1)

n )(mn−1)
)

= gn(u(1)
n )(mn − 1)e−λn(u(1)

n )(mn−2)
(
−u(1)

n e−λn(u(1)
n ) + u(1)

n gn(u(1)
n )
)

+ ((u(1)
n )2 − ru(1)

n )g′n(u(1)
n )e−λn(u(1)

n )(mn−1)

= −u(1)
n (mn − 1)

(
f̂n(u(1)

n ,mn)− gn(u(1)
n )f̂n(u(1)

n ,mn − 1)
)

+ ((u(1)
n )2 − ru(1)

n )g′n(u(1)
n )e−λn(u(1)

n )(mn−1).

We obtain the form of Cre in (6.16) by summing over n ≥ 1.

We take the birth-dynamics of the integrated root process to be apparent and we
omit the generator calculation: If we ignore U (1,...,k−1),r, the k-th progenitor U (k)

1 and
the bulk U1 perform a birth dynamic with progenitor and the integrated process can
be obtained as in (A.14). The remaining progenitors U (1,...,k−1)

1 generate uniformly
distributed offspring in [U (k)

1 , r] with individual rate 2(r − U (k)
1 ), thus inducing immi-

gration at total rate 2(k − 1)(r − U (k)
1 ). This dynamics belong to the generator Cr0 in

(6.15).

In order to apply the Markov Mapping Theorem we need the following result:

Lemma A.6.1. For u =
∑
i δ(ui,ni) ∈ S[0,r]×N define

ψ(u) := m :=
∑
n

un([0, r)).

(Recall that un :=
∑
i:ni=n δui.) For each f ∈ DrPL there exists cf > 0 such that

|ArPLf(u)| ≤ cf · ψ(u).

Proof. We have 0 ≤ gn ≤ 1, gn(r) = 1 and un ≤ r. We check the statement for each
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of the operators in section 6.1. We have

∣∣∣Arff(u0, u1, . . .)
∣∣∣ ≤ ∣∣∣∣∣

k∑
q=2

2(q − 1)(u(q)
0 − u

(q−1)
0 )

[
k−1∏
j=1

g0(u(j)
0 )

× 1
u

(q)
0 − u

(q−1)
0

∫ u
(q)
0

u
(q−1)
0

g0(x) dx ·
m0∏
j=k

g1(u(j)
0 ) ·

∏
n≥2

fn(un−1)− f(u0, u1, . . .)
]∣∣∣∣∣

+
∣∣∣∣∣f(u0, u1, . . .)

m0∑
i=1

2
∫ r

ui0

(g0(x)− 1) dx
∣∣∣∣∣

≤ k2(r − 1) + 2mr.

Furthermore we have

|Ardf(u0, u1, . . .)| =
rm

c

∣∣∣f(ϕ(u) · u0, ϕ(u) · u1, . . .)− f(u0, u1, . . .)
∣∣∣ ≤ rm

c
.

Recall that the division by g1(ui1) in the operators Ar0 and Are removes the respective
factor from the product f(u1, u2, . . .). Finally we have

|Ar0f(u0, u1, . . .)| =
∣∣∣∣∣f(u0, u1, . . .)

(
2k
∫ r

u
(k)
0

(g0(x)− 1) dx+
m0∑

i=k+1
2
∫ r

u
(i)
0

(g0(x)− 1) dx

+
m0∑
i=1

(
(ui0)2 − rui0

)g′0(ui0)
g0(ui0)

)∣∣∣∣∣
≤ 2kr + 2(m0 − k)r +m0r

2

and

|Aref(u0, u1, . . .)| = f(u0, u1, . . .)
∑
n≥1

mn∑
i=1

(
2
∫ r

uin

(gn(x)− 1) dx+
(
(uin)2 − ruin

)g′n(uin)
gn(uin)

)
≤ m(2r + r2).

A.7. The semimartingale characteristics of the
progenitor-mass process

Let all notation be as in Chapter 6. In this section we determine the semimartingale
characteristics of X̃r,K (see Definition (6.17)). We stop the process X̃r,K , when the
overall mass density Y r falls below some threshold δ > 0. Recall the definition

τ rδ := inf{s : Y r
s ≤ δ}.

Define X̃r,K,δ
t := X̃r,K

t∧τr
δ
. Recall the definition of the truncation function h(x) = (h̃(xi))i

in (4.32). Denote by (BX̃,r, C̃X̃,r, νX̃,r) be the semimartingale characteristics of X̃r,K,δ.
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Since the continuous martingale part of X̃r,K,δ is zero and X̃r,K,δ has no predictable
jumps, the modified second characteristic C̃X̃,r(h) is defined in terms of the third
characteristic νX̃,r,

(C̃X̃,r)ij(h) = hihj ∗ νX̃,r.
For the first characteristic we have

BX̃,r(h) = B̃X̃,r + h ∗ νX̃,r,

where B̃X̃,r,δ := X̃r,K,δ −
∑
s≤·∆X̃r,K,δ

s is the process without jumps.

We constitute the third characteristic of X̃r,K,δ, the predictable compensator νX̃,r of
the empirical jump measure, as a sum

νX̃,r(ω; dt, dx) = νX̃,rd (ω; dt, dx) +
K∑
n=0

νX̃,rn (ω; dt, dx) + νX̃,rf (ω; dt, dx),

where νX̃,rd compensates the jumps induced by death events, νX̃,rn compensates the
jumps induced by births in the bulk of the n-th subpopulation and νX̃,rf compensates
the jumps induced by the genesis of new extractions.

We drop δ and K in our notation, X̃r = X̃r,K,δ, Ỹ r
n = Ỹ r,K,δ

n etc. Since we are
interested in the dynamics of X̌r for large r, we assume rδ > c, k and thus we omit
the cases, where [0, r] is completely in the “death zone” or where active progenitors
are dead. We have then for the jump factor of the death mechanism

ϕ(U r) = r

r − c/Y r
.

Because of our “dummy values” for extinct/non existent extractions we have to be
careful to set the levels of dying progenitors onto the threshold r. Otherwise we
would see continuous movement of dead progenitors due to the differential equation
u̇ = u2 − ru.

Jumps induced by death events Death jumps happen at instantaneous rate r2bY rt
c .

Consider a subpopulation, where the progenitor (or progenitors, in case of the root)
is not in the death zone. A progenitor with level u performs a jump with height
u ·
(

r
r−c/Y rt

− 1
)
. All bulk particles in the interval [r − c/Y r

t , r] are killed. Since the
bulk particles are uniformly distributed above the progenitor, the number of particles
killed is binomially distributed. If a death jump happens at time t, the parameters of
the binomial distribution for the root are

N0,r
t := r · (Ỹ r

0 )t − k and p0,r
t := c(

r − (Ũ (k),r
0 )t

)
· Y r

t

,

and the parameters for the n-th extraction are

Nn,r
t := r · (Ỹ r

n )t − 1 and pn,rt := c(
r − (Ũ (1),r

n )t
)
· Y r

t

.
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So the jump of Ỹ r
n is Bn,r,t-distributed, where

Bn,r,t(dx) :=
Nn,r
t∑
j=0

(
Nn,r
t

j

)
(pn,rt )j (1− pn,rt )N

n,r
t −j

δ− j
r
(dx).

If the progenitor is in the death zone, it jumps onto the threshold r and all bulk
particles are killed. Denote by m̃r

t := max{i = 1, . . . , k : (Ũ (i),r
0 )t < r − c/Y r

t } the
number of progenitors in the root that are not in the death zone. The compensator
for the death jumps is

νX̃,rd (dt, dx) = 1{t<τr
δ
∧σrK} ·

r2bY r
t

c
dt ·

k∏
i=1

δ((
r

r−c/Y r Ũ
(i),r
0

)
t
∧r
)
−
(
Ũ

(i),r
0

)
t

(dxi)

×
K∏
n=1

δ((
r

r−c/Y r Ũ
(1),r
n

)
t
∧r
)
−
(
Ũ

(1),r
n

)
t

(dxk+n)

×
(
1{(

Ũ
(k),r
0

)
t
<r−c/Y rt

} · B0,r,t(dxk+K+1)

+1{
(Ũ(k),r

0 )t≥r−c/Y rt
} · δ−(Ỹ r0 )t+ 1

r
m̃rt

(dxk+K+1)
)

×
K∏
n=1

(
1{(

Ũ
(1),r
n

)
t
<r−c/Y rt

} · Bn,r,t(dxk+K+1+n)

+1{
(Ũ(1),r
n )t≥r−c/Y rt

} · δ−(Ỹ rn )t(dxk+K+1+n)
)
.

(A.15)

Jumps induced by birth events in the bulks The compensator νn,r handles birth
events happening in the bulk of subpopulation n. X̃K,r accounts those as mass increase.

There are two birth mechanisms at work: branching of the bulk particles and immi-
gration fuelled by the progenitor(s). In the root the rate for the former birth type is(
r − Ũ (k),r

0

)(
rỸ r

0 − k
)
, and the rate for the latter birth type is 2k

(
r − Ũ (k),r

0

)
. For

the root this amounts to the compensator

νX̃,r0 (dt, dx) = 1{t<τr
δ
∧σrK} ·

(
r − Ũ (k),r

0

)(
rỸ r

0 + k
)

dt · δ 1
r
(dxk+K+1)

× δ0(dx1, . . . ,dxk+K , dxk+K+2, . . . ,dxk+2K+1),
(A.16)

In the n-th extraction births happen at rates
(
r− Ũ (1),r

n

)(
rỸ r

n −1
)
and 2

(
r − Ũ (1),r

n

)
.

The compensator for bulk births in the n-th extraction (n ≥ 1) is

νX̃,rn (dt, dx) = 1{t<τr
δ
∧σrK} ·

(
r −

(
Ũ (1),r
n

)
t

) (
r
(
Ỹ r
n

)
t
+ 1

)
dt · δ 1

r
(dxk+K+n+1)

× δ0(dx1, . . . ,dxk+K+n,dxk+K+n+2, . . . ,dxk+2K+1).
(A.17)

Jumps induced by formations of new extractions Although we do not use νX̃,rf in
our considerations in Section 6.3.1, we specify it for the sake of completeness. Births
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A.7. The semimartingale characteristics of the progenitor-mass process

among the k progenitors of the root lead to formation events as detailed in 6.1: If a
new progenitor with rank q is born at time t it takes the place of the formerly q-th
lowest particle, so Ũ (q),r

0 performs a uniformly distributed downward jump,

∆(Ũ (q),r
0 )t ∼ Unif [(Ũ(q−1),r

0 −Ũ(q),r
0 )t−,0] .

The coordinates Ũ (1,...,q−1),r
0 don’t jump and Ũ (q+1,...,k),r

0 jump down one rank,

∆(Ũ (1,...,q−1),r
0 )t = 0,

∆(Ũ (q+1,...,k),r
0 )t = (Ũ (q,...,k−1),r

0 − Ũ (q+1,...,k),r
0 )t−.

All extractions move on one slot to make room for the newly formed extraction. Its
progenitor has level (Ũ (k),r

0 )t− and its subpopulation mass is (Ỹ r
0 )t−− k−1

r . The jumps
induced by the formations are compensated by

νX̃,rf (dt,dx) = 1{t<τr
δ
∧σrK} ·

k∑
q=2

2(i− 1)
(
(Ũ (q),r

0 )t − (Ũ (q−1),r
0 )t

)
dt

× δ0(dx1, . . . ,dxq−1) ·Unif [(Ũ(q−1),r
0 −Ũ(q),r

0 )t,0](dxq)

× δ(Ũ(q,...,k−1),r
0 −Ũ(q+1,...,k),r

0 )t
(dxq+1, . . . ,dxk)

× δ(Ũ(k),r
0 −Ũ(1),r

1 )t
(dxk+1) ·

K∏
n=2

δ(Ũ(1),r
n−1 −Ũ

(1),r
n )t

(dxk+n)

× δ k
r
−(Ỹ r0 )t(dxk+K+1) · δ(Ỹ r0 )t− k−1

r
−(Ỹ r1 )t(dxk+K+2)

×
K∏
n′=2

δ(Ỹ r
n′−1−Ỹ

r
n′ )t

(dxk+K+n′+1).

(A.18)
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