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Abstract

Ultrafast spectroscopy is the method of choice to study carrier dynamics and coupling strengths

between electrons and other degrees of freedom (e.g. phonons, magnons, ...) in solids. Many

materials are investigated with time-resolved spectroscopy, ranging from well understood systems,

such as metals and semiconductors, to advanced materials with complex low temperature orders,

like high temperature superconductors, ferromagnets or multiferroics. Although the physics of sim-

ple metals like Cu and Au is well understood and many theoretical and experimental studies of the

electronic band structure, optical- and transport-properties and their temperature dependencies are

reported, some important parameters are still difficult to determine with adequate precision. One

such parameter is the electron-phonon coupling strength, which is a key parameter in describing the

phonon-mediated interaction between two electrons forming a Cooper pair in a superconductor.

In this thesis, a broadband ultrafast spectroscopy setup is designed to record the dynamics of optical

constants in thin Cu films upon excitation with a femtosecond optical pulse. The analysis of experi-

mental data is performed with a particularly developed model, which relates the optical conductivity

of thin Cu films to the electronic distribution function around the Fermi level. Moreover, this model

allows to determine the time-evolution of the electronic distribution function from the time-resolved

data and provides access to quantitatively follow the electronic thermalization and lattice heating

processes. Important parameters such as the electron thermalization time and the electron-phonon

coupling constant are determined. Further, a method is developed, which allows to read out the

electron-phonon coupling constant directly from the unprocessed data by using simple analytical

modeling. With the experimental data on the time evolution of the changes in the electronic dis-

tribution function at hand we are able to test the existing models of ultrafast carrier relaxation in

metals, and provide clues for the description of dynamics at times where the electronic distribution

is highly athermal.

Importantly, the presented approach could also be extended to advanced solids, like high temperature

superconductors, where the consensus on the coupling strengths between the different subsystems

and - correspondingly - on the nature of coupling bosons is still missing.
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Zusammenfassung

Die ultraschnelle optische Spektroskopie ist das Verfahren der Wahl um die Ladungsträgerdynamik

und die Kopplungstärke zwischen den Elektronen und anderen Freiheitsgraden in Festkörpern (z.B.

Phononen oder Magnonen) zu untersuchen. Viele Materialien unterschiedlicher Klassen, von Metallen

und Halbleitern bis zu modernen Materialien mit komplexen Ordnungsparametern, z.B. Hochtemper-

atursupraleiter, Ferromagnete und Multiferroika, wurden mit der zeitaufgelösten Spektroskopie un-

tersucht. Obwohl die physikalischen Eigenschaften einfacher Metalle wie Cu und Au gut verstanden

sind und viele theoretische und experimentelle Untersuchungen zur Bandstruktur, den optischen- und

den Transport-Eigenschaften und deren Temperaturabhängigkeit veröffentlicht wurden, ist es immer

noch eine Herausforderung, bestimmte aussagekräftige Parameter mit genügender Genauigkeit zu

bestimmen. Einer dieser Parameter ist die Elektron-Phonon-Kopplungsstärke, die einen Schlüssel-

parameter darstellt in der Beschreibung der phononen-vermittelten Wechselwirkungsstärke zwischen

zwei Elektronen, welche ein Cooper-Paar in einem Supraleiter bilden.

Im Rahmen dieser Doktorarbeit wurde ein breitbandiger ultraschneller Spektroskopieaufbau entwick-

elt, um die Dynamik der optischen Eigenschaften dünner Cu-Filme bei unterschiedlichen Anregedichten

zu messen. Die Analyse der experimentellen Daten wurde mit einem speziell entwickelten Mod-

ell durchgeführt, welches die optischen Eigenschaften dünner Kupferfilme mit der elektronischen

Verteilungsfunktion am Fermi-Niveau in Beziehung setzt. Auf kurzen Zeitskalen erlaubt das Modell

die Bestimmung der zeitlichen Entwicklung der elektronischen Verteilungsfunktion aus zeitaufgelösten

Daten und ermöglicht die quantitative Beschreibung der Elektronen-Thermalisierungs- und Gitter-

Aufheiz-Prozesse. Wichtige Parameter wie die Elektronen-Thermalisierung-Zeit und die Elektron-

Phonon-Kopplungskonstante werden bestimmt. In dieser Arbeit wird auch eine Methode entwickelt,

die es uns erlaubt, die Elektron-Phonon-Kopplungskonstante direkt aus den unbehandelten Daten

mit einfachen analytischen Beschreibungen zu bestimmen. Mit den experimentellen Daten über

die Zeitentwicklung der Änderungen der elektronischen Verteilungsfunktion können wir sowohl die

vorhandenen Modelle zur Beschreibung der Ladungsträger-Relaxation testen, als auch Möglichkeiten

erörtern, wie die Dynamik einer sehr athermalen elektronischen Verteilung beschreiben werden kann.

Bedeutend ist, dass das aufgezeigte Vorgehen auf komplexere Festkörper wie Hochtemperatursupralei-

ter angepasst werden kann, für welche immer noch keine Einigkeit über die Kopplungsstärke zwischen

den verschiedenen Untersystemen besteht und auch nicht über die Natur der Austauschteilchen.
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1 Introduction

Time-resolved spectroscopy is a novel method, that allows to study scattering dynamics directly as

a function of the time delay after excitation. Today, in the ultrafast spectroscopy it is technically

possible to achieve time resolutions in the attoseconds range to study the dynamics of particles with

very short lifetimes or scattering times (e.g. lifetime of atomic inner-shell vacancies [Dre+02]). In

a metal, the electronic lifetime of an excited electron is in the range of a few femtoseconds up to

several hundred femtoseconds [BMA15]. The electronic lifetime is related to the scattering rate at

other electrons and at phonons. The latter, also known as the electron-phonon scattering time is a

subject of research for more than hundred years [Dru00]. The first studies, up to the mid-eighties,

usually investigated the electron momentum-relaxation rates from carrier conductivity measurements.

These rates are linked to the transport electron-phonon coupling strength, which is an approximate

measure of the electron-phonon coupling strength λ [All+86; BAP82].

Ultrafast time-resolved spectroscopy is based on ultrashort optical pulses, which are generated by

laser systems [Kel10], in synchrotrons [Sch+00] or in free-electron lasers [Ack+07]. To study the

ultrafast relaxation phenomena, the generated pulses are used to excite the sample (pump pulse) and

to successively probe the resultant changes in the sample’s properties. E.g., the electronic lifetime as

a function of the energy above the Fermi level are experimentally determined with the time-resolved

two photon photoemission [PO97]. These experiments were performed on simple metals (e.g. Cu

and Au) quite extensively [BMA15]. Beyond that, a similar technique of time-resolved photoemission

has access to the time evolution of the electronic distribution function [Fan+92; Lis+04; Per+07] in

out of equilibrium. However, up to now, these experiments performed on metals are quite scarce.

In experiments on metals, femtosecond optical pulses are used to excite a small fraction of conduction

electrons. The excited electrons scatter at other electrons redistributing energy to all electrons of

the conduction band. During and after this electron thermalization process, the electrons scatter on

the lattice to heat it up until the entire system reaches a common temperature (which is higher than

before excitation). These processes, which take place on the femtosecond and picosecond timescale,

are followed by heat diffusion, so by the next excitation pulse the system has cooled down to the

initial temperature.

The first theoretical description of the fs-ps thermalization in a metal is based on the two temperature

model introduced by Kaganov et al. [KLT57] and applied to pump-probe experiments [EA+87; All87;
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BFI87; Bro+90] to determine electron-phonon coupling constants λ in various metals. These type

of pump-probe experiments are performed with ultrashort optical pulses to excite and subsequently

probe the changed optical properties (e.g. the change in reflectivity of the sample) of the metal as a

function of time delay between the pump and the probe [Hil11]. The different temporal characteris-

tics of the electronic and the lattice responses allow to disassemble the relative changes of the optical

properties into components which are related to the electronic and to the lattice subsystems [Bro+90;

Che+91; Per+07]. The problem herein is, that the model contains parameters which are not directly

measured. There are proportionality constants between the temperatures of the subsystems and the

measured change in optical constants. The relaxation times are simulated with the two temperature

model to determine the electron-phonon coupling constant.

However, it has been demonstrated that the two temperature model does not work in some met-

als [Fan+92; Lis+04; Gad+10], especially at low temperatures [GSL95]. In these metals the two

temperature model cannot reproduce the experimental data because the electrons do not thermalize

instantaneously (see Figure 1), which is one of the main assumptions of the two temperature model

[All87].

An alternative approach, which is not based on the assumption of the rapid electron thermalization,
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Figure 1: The electronic distribution function in a metal after optical excitation. A The
electronic distribution function is derived from numerical calculations [KA08] after the characteristic
electron-phonon relaxation time. Note the deviation between the result of the numerical calculations
and the description of the result with Fermi-Dirac distribution functions. B ARPES spectra show
a similar deviation between the electronic distribution function (assumed to be proportional to the
ARPES intensity) in Bi2Sr2CaCu2O8 after 50 fs and the Fermi-Dirac distribution function. The graphs
are taken from the supplementary of [Gad+10].

has been recently proposed. The model, which utilizes the linearized Boltzmann equations, was

introduced by Kabanov et al. [KA08; BK14], and applied to the time-resolved quasiparticle response
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to short laser pulses in cuprates [Gad+10]. Here the decay times are found which do not depend on

the excitation density, while the two temperature model predicts an increase of the decay time with

increasing excitation density.

Numerous groups go even beyond the two temperature model, introducing multi temperature models.

E.g. Dal Conte et al. [DC+12] proposed an extension of the two temperature model to describe

the time evolution of the quasiparticle response in cuprates based on four coupled subsystems with

different temperatures1(see Figure 2). Although this multi temperature analysis is fundamentally

different to the application of the linearized Boltzmann equations [Gad+10], both studies result in

similar values for the electron-phonon coupling constant λ in cuprates. The reason for this is, that

both studies use similar equations (comparable at low excitation densities) to connect the experimen-

tal time signal decay time of about 1 ps to λ. We should note, however, that the important sample

Energy (eV)Energy (eV) Energy (eV)

Π(
Ω)

δTSCP δTlatδTbe

Figure 2: Multi temperature model applied to the time-resolved data on

Bi2Sr2Ca0.92Y0.08Cu2O8+δ. The application of the four temperature model allows to disen-
tangle the contributions to the quasiparticle response in cuprates. Πbe covers the electronic
contribution to the total bosonic function (red), ΠSCP the contribution which is related to the
strongly coupled phonons (blue) and Πlat the contribution of all the other phonons (green). Each
component contributes to the quasiparticle response and its time-dependent strength is reproduced
in the appropriate inset. The upper panels show the microscopic mechanisms related to the different
components. The graph is taken from [DC+12].

dependent parameters, e.g. the critical temperature in superconductors, strongly depend on λ, be-

1Note that the electronic distribution function is found to be athermal in the analysis of Gadermaier et al. [Gad+10],

whereas it is assumed to be thermal in the analysis done by Dal Conte et al. [DC+12]. Both views are irreconcilable.
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cause λ appears in the exponent, i.e. Tc ∝ exp (−1/λ) [McM68; AM83; AD75]. Superconductors

are classified as the weak-coupling superconductors (e.g. Al, with λ = 0.44) and the strong-coupling

superconductors (e.g. Pb, with λ = 1.55) [AD75]. Thus, knowing λ with a precision better than

≈ 10 % is required. Systematic experimental studies of the relation between the critical tempera-

ture and λ are reported by Bergmann [BR73; Ber76] on disordered metals and by Gadermaier et al.

[Gad+14] on cuprate superconductors.

Beside superconductors, the scattering dynamics in the metallic state of a large amount of other

materials can be studied as well. In a broad definition, all materials which show a reasonably good

electrical conductivity can be considered to be metals. They are very heterogeneous considering the

complexity of the unit cell (from single atom up to several tens of atoms in e.g. organic metals and

superconductors [Sai+82; Yag+84]) and covers the range from perfect crystals to disordered systems

[Gra+77; SHC94], glasses [SI11; LL04] and chemically- and photo-doped semiconductors [NKG02;

Joy+13]; even liquids (e.g. Hg) can show metallic behavior. However, the characteristic electrical

(DC) and optical conductivity in equilibrium is basically described by the same classical theory, the

Drude model [Dru00]. The microscopic processes which are associated to the model parameters are

the electron-electron and the electron-phonon scattering [PN66; BP91; Gri81]. As already discussed

above, the time-resolved optical spectroscopy is sensitive to the electron scattering processes, but

needs input from theory to determine the electron-phonon coupling strength. The lack of knowledge

exists because of the unknown connection between the electronic distribution function and the optical

properties of the metal. Although it is known, that the redistribution of the electrons are responsible

for the observed dynamics in optical properties, the connection between both physical entities is

usually made in a heuristic way with lots of free parameters. The theoretical understanding of the

optical properties can be helpful to fix the models’ parameters and to link the experimental result to

the electronic distribution function of the metal. This function is the basis of all the models which

describe the electron relaxation process in a metal [All87; Sun+94; Lis+04; Car06; BK14]. The

theoretical models can be tested, if the experimental data allows one to determine the time evolution

of the electronic distribution function. And, it is of some advantage to start the analysis on a simple

metal with well known electronic structure and with one atom per unit cell to keep the relaxation

path simple (e.g. only acoustic phonons are present).

This work shows, how to experimentally access the electronic distribution function and its time evo-

lution in the simple metal Cu. The optical properties of thin Cu-films are probed in the range of the
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d-band to Fermi level transitions, both in equilibrium and as a function of time after optical excitation

at various excitation densities. To consistently describe the large data basis, a model is developed to

account for the optical properties at the upmost d-band to Fermi level transitions. The sensitivity of

these optical transitions to the changes of the electronic distribution function (see [RL72], Figure 3)

allows to quantitatively extract the electronic distribution function.

The two temperature model and various other models [Sun+94; Car06; Lis+04; BK14] are tested

Δ
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Energy

EnergyE0

E0 E1
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Figure 3: The upmost d-band to Fermi level transitions in Cu. The optical properties of
Cu at 2.1 eV arise from transitions from the top of the d-bands to the empty states at the Fermi
level. Changes in the transition probability are related to the thermal broadening of the electronic
distribution function around the Fermi level (open circles, schematically shown in the upper inset)
and to the shift of the Fermi level (closed circles and lower inset). The insets schematically show
the conduction band and the electronic distribution function. Note the changes in the electronic
distribution function at the Fermi level which directly affect the probability of the optically driven
transitions between the d-bands and the Fermi level. The optical properties of Cu are discussed in
Chapter 4. The figure is taken from [RL72].

using the experimental findings. The analysis provides access to the electron-electron thermalization

time and the electron-phonon coupling constant. It is confirmed that the two temperature model

well describes the relaxation process at times, when the electrons are already thermalized, while the

model of linearized Boltzmann equations can be applied at very low excitation densities. Further, we

modified the model of Lisowski et al. [Lis+04] to improve the agreement between the theory and
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the experiment at short time delays, where the electrons are strongly athermal. The modified model

shows good agreement with the experimental findings.

Chapter 2 introduces the electron scattering mechanisms, the electronic lifetime and the electron

relaxation-, multiplication- and recombination-rates. This presents the basis to understand the ap-

proximate solutions of Boltzmann equations which is the topic of Chapter 3. These solutions answer

the question of how the electrons thermalize after optical excitation and on which timescale the

energy of the electrons is transferred to the lattice. The electronic structure and the related optical

properties of Cu are elaborated in Chapter 4. The developed model is applied to the temperature de-

pendent optical properties which are known from the literature. This model further allows to access

the electronic distribution function from the experimental time-resolved broadband optical data. This

step is made in Chapter 5. Here, the electron thermalization time and the electron-phonon coupling

constant λ are determined. The way, this is done, is very elaborate and there are methods introduced,

to determine λ directly from the unprocessed experimental data. Chapter 5 further shows that the

electrons are strongly athermal up to several hundred femtoseconds. This non-thermal distribution

function during the first few hundred femtoseconds is the topic of Chapter 6. Here, different exten-

sions of the two temperature model, the model of the linearized Boltzmann equations and our own

approach are tested.
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2 Electron dynamics, scattering and lifetimes

This chapter introduces into the different concepts and views to describe the thermalization in metals

following excitations. Thermalization processes take place after pushing the metal out of equilibrium

and the metal turns back into locally established thermal equilibrium on a typically timescale of

picoseconds2. A sufficient time resolution is achieved with femtosecond optical pulses. The sketch in

Figure 4 describes the excitation-relaxation loop within the so called two temperature model (TTM)

applied to a simple metal after the excitation with an ultrashort optical laser pulse (see also Section

3.1). The parameters are taken to sketch the situation in a "typical metal", to exemplify a typical

relaxation process. First, the metal is in a thermal equilibrium, the electrons and the lattice are both

at the same temperature (e.g. room temperature of 300 K)

Tel = Tla = T0 = 300 K .

The electronic distribution in the metal is described by the Fermi-Dirac distribution function (state

1 in Figure 4)

f(E, T ) =
1

1 + exp ((E − EF)/(kB Tel))
.

The ultrashort laser pulse (∼50 fs) excites predominantly the electrons3, the lattice remains cold. In

the single-particle- and photon-electron-interaction picture, the energy of each absorbed photon is

directly transferred to one electron in the conduction band. The electronic distribution function has

a step-like shape after the excitation (see for example [DV+12]). This is shown in the graph at state

2 in the loop. The fraction of excited electrons compared to the number of electrons within the

same range (with E > EF − hν) is typically in the region of one-tenth of a percent up to a few

percent. In this example it is
Nexc

N0
=

Ūabs

(hν)2 D̄
= 3 % .

corresponding to the absorbed energy density Ūabs = 500 J/cm3 and the average photon energy of

hν = 1.5 eV. D̄ is the average density of states (in the range −hν < E < EF) which is almost

constant in the considered range and reads (free electron model, [AM11])

D̄ ≈ D(EF) =
(2 m)3/2

2π2 h̄3

√
EF = 3 · 1041 1

J cm3
.

2A non-homogeneously excited large volume of the metal requires the transport of heat to equilibrate. This relaxation

process evolve on timescales which depend on the size (distance s) of the volume and metal’s speed of sound (cs), it

is τht ≃ s/cs.
3Here, photon energies in the visible range are used with energies far above all phonon branches.
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This equation is based on the energy conservation law with the electronic heat capacity coefficient

of (here Cu is used as the prototype material)

γ =
(2 m)3/2

6 h̄3
k2

B

√
EF = 2 · 10−4 J

cm3 K2
.

The Fermi-Dirac distribution function at the highest temperature (blue solid line) is compared to the

distribution function in thermal equilibrium (red dotted line) in the graph at state 3 .

At later times the electrons lose their energy which is transferred to the lattice. This happens on a

picosecond timescale. The lattice finally heats up to

Tla = T0 +
Ūabs

cV

= T0 +
Ūabs

3 kB ρ
= 420 K .

This is the case at temperature above the Debye temperature, where the heat capacity cV is indepen-

dent of the temperature (if there are no optical phonon branches). The ion density is ρ = 0.09 ·1/Å
3
.

The typical rise time of the lattice temperature is

τe-p =
π kB Tel

3 h̄ λ 〈ω2〉 = 3 ps

with an electron-phonon coupling constant (see Section 2.2) of

λ
〈
ω2
〉

= 50 meV2 .

In the graph at state 4 the electronic distribution function at the new sample temperature (blue

solid line) is compared to the distribution function in the beginning (red dotted line). The absorbed

energy heats up the sample and this heat is transferred on a comparably long timescale to the

surrounding heat bath to cool down the sample to its previous temperature T0 (back to state 1 ).

The described relaxation process is microscopically based on scattering events between the particles in

the metal. In order to understand what is happen during the relaxation loop, the first things to focus

on are the scattering mechanisms. In a metal the scattering between quasiparticles is always present.

Electrons exchange energy and momentum with other electrons and with the lattice. These processes

in combination with the motion of the electrons and the phonons lead to an overall thermalization

of the metal. Out of equilibrium, the particles exchange energy and momentum to thermalize. The

interaction between the electrons and the lattice is described in Section 2.1. The electron-electron

interaction follows in Section 2.4.

The theoretical description of the particle dynamics is based on Boltzmann equations and the band

structure calculation. These statistical methods can consider the large number of electrons which
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is on the order of 1023. The band structure calculations solve the many-body problem and they

provide information about the electronic states screening the fixed ion positions. The ions can

oscillate around their equilibrium positions. The quantized excitation states are characterized by

the phonon dispersion relation. The only unknown parameters of the metal to fully characterize

its current state are the electron and phonon distribution functions. Their time dependencies are

determined with Boltzmann equations. These equations consider the movement and the scattering

of the quasiparticles. One electron can scatter at another electron, at the surface, at a phonon, at

a grain boundary or at an impurity. The (non-thermal) electrons lose their energy or momentum

which is transferred to other electrons until the electronic subsystem is thermalized and they transfer

energy to the phonons until the solid reaches its equilibrium state.

In the TTM model situation, the electron-electron-scattering is assumed to be much faster compared

to electron-phonon related energy transfer and the phonons are always thermally distributed during

the relaxation process (see Section 3.1). The Theory-sections 2.3, 2.5 and 2.2.1 help to prove these

assumptions. The electron-phonon energy exchange is described in Section 2.2, it is the link between

states 3 and 4 in Figure 4.

If the metal has a strong electron-phonon coupling, then the high energetic electrons have already

lost a part of their energy which is transferred to the lattice according to the spontaneous phonon

emission (Section 2.3) between states 2 and 3 . In this case, equation (1) is inapplicable.

2.1 The electron-phonon scattering

The electron, scattering at the lattice, changes its state and creates or annihilates phonons. The

scattering probability is characterized by Fermi’s golden rule. In this first order perturbation theory

one phonon, one electron and the empty final state (hole) are involved in the process. The electronic

distribution function changes over time [All87; KA08] as

ḟk =
2π
h̄

∑

k′,q

[ ∣∣∣Mk,k′,q

∣∣∣
2

δ(Ek − Ek′ + h̄ ωq) fk′ (nq + 1) (1− fk) δk′−k,q

+
∣∣∣Mk,k′,q

∣∣∣
2

δ(Ek − Ek′ − h̄ ωq) fk′ nq (1− fk) δk′−k,−q

−
∣∣∣Mk′,k,q

∣∣∣
2

δ(−Ek + Ek′ + h̄ ωq) fk (nq + 1) (1− fk′) δk−k′,q

−
∣∣∣Mk′,k,q

∣∣∣
2

δ(−Ek + Ek′ − h̄ ωq) fk nq (1− fk′) δk−k′,−q

]
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=
2π
h̄

∑

q

|Mq|2
[
δ(Ek − Ek+q + h̄ ωq) (fk+q (nq + 1) (1− fk)− fk nq (1− fk+q))

+δ(Ek − Ek+q − h̄ ωq) (fk+q nq (1− fk)− fk (nq + 1) (1− fk+q))

]
. (2)

This is the electron-phonon Boltzmann scattering term. The last equality holds if the scattering

matrix element is symmetric with respect to the generation and absorption of a phonon, has spherical

symmetry and does not depend on k and the direction of the spin, i.e. Mq ≡Mk,k′,q. The phonon

dispersion and the phonon distribution function have to be inversion symmetric (ωq = ω−q and

nq = n−q). To keep the notation simple, the different spin directions are included in k (k ↔ k, σ).

The spin conservation is not considered explicitely. If all fk at the same energy Ek are equal, then

equation (2) simplifies to

ḟ(E) = 2π

∞∫

−∞

∞∫

−∞

Q(ω, E, E′)

[
δ(E − E′ + h̄ω) (N(ω) (f(E′)− f(E)) + f(E′) (1− f(E)))

+δ(E − E′ − h̄ω) (N(ω) (f(E′)− f(E))− f(E) (1− f(E′)))

]
dE′ dω (3)

with the matrix elements

Q(ω, E, E′) =
1

D(E) h̄

∑

k,q

|Mq|2 δ(Ek − E) δ(Ek+q − E′) δ(ωq − ω) . (4)

The energy of the initial and the final state of the electron cannot be further apart than the energy of

the highest energetic phonon h̄ωmax. Electrons with energies below the threshold, E −EF ≤ h̄ωmax,

can recombine with an empty state (hole) below EF. Above the threshold the number of excited

quasiparticles is conserved.

2.2 Eliashberg function and phonon decay in Cu

The Eliashberg function is related to matrix elements of the electron-phonon coupling (equation (4)).

If the conduction band has a large bandwidth compared to the energy of phonons, and the density

of states varies slowly near EF, then the relation

Q(ω, E, E′) ≈ Q(ω, EF, EF) ≡ α2F (ω) (5)

holds (see [KA08] and [JZ16]), where α2F (ω) is the Eliashberg electron-phonon coupling function

(F (ω) is the phonon density of states).

If one is not interested in the coupling of the electrons to each specific phonon state (or if this is
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too difficult to determine) but to the whole bunch of phonons as such, then it is useful to take the

integrated electron-phonon coupling strength (see also [All87; BK14])

λ 〈ωn〉 = 2
∫ ∞

0
ωn−1 α2F (ω) dω , (6)

which is temperature independent. In transport experiments the resistivity (momentum relaxation)

and in superconductors the critical temperature [McM68] are related to λ and the energy relaxation

dynamics in metals is linked to a taylor expansion where the first order is proportional to λ
〈
ω2
〉

[All87].

In Cu the Eliashberg function has been determined theoretically by different authors and techniques

[JZ16; SS96; BAP82] and experimentally by Jansen et al. [JMW77; JMW78] based on electronic

tunneling experiments through metallic point contacts. The results are presented in Figure 5C. The

most striking differences in the spectra are the coupling strenghes between the electrons and the

different phonon branches. The experimental finding of Jansen et al. [JMW77; JMW78] and the

theoretical result of Ji and Zhang [JZ16] (they use the density functional theory implementation

ABINIT of Gonze et al. [Gon+09]) is, that the electrons are stronger coupled to the transversal

acoustical phonons than to the longitudinal acoustical phonons. Other authors, Savrasov & Savrasov

[SS96] and Beaulac et al. [BAP82] (ab initio calculations and linear response at zero temperature)

found similar coupling strengths to each of the phonon branches. If the coupling to all branches at

all frequencies is equal (flat coupling), one expect the Eliashberg function to have the same shape as

the phonon spectral function (green line, Figure 5C). The phonon density of states was measured by

Nilsson and Rolandson [NR73] at 80 K with neutron scattering and is shown in Figure 5B. According

to experimental results of Nicklow et al. [Nic+67], the phonon density of states does not change

much with temperature between 49 K and 300 K. The relation between the Eliashberg function and

the phonon density of states is in the case of a flat coupling

α2F (ω) =
λ · F (ω)

2
∫∞

0 F (ω) /ω dω
. (7)

The electron-phonon coupling constants are given in the Table 1. The more the electron-phonon

interaction is enhanced at higher frequencies (non-flat coupling), the more the phonon subsystem

departs from equilibrium during the process of relaxation. The phonon decay processes, however,

work towards the thermalization of the lattice subsystem. The phonon decay processes are described

in Subsection 2.2.1.

Interestingly, the situation in aluminum seems to be somewhat different from the situation in Cu
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Figure 5: Phonon dispersion, Eliashberg function and phonon damping in copper. A Phonon
dispersions of copper measured by Nilsson and Rolandson [NR73] at 80 K with neutron scattering.
The data points are fitted with first-nearest-neighbor (dashed line) and eighth-nearest-neighbor Born-
von Kármán model (solid line). B Phonon density of states based on data of A and compared
to calculations with the force-constant model of Nicklow et al. [Nic+67; NR73]. The phonon
density of states is plotted separately for each phonon branch together with the sum of all branches
(30 meV ≡ 7.25 THz). C Eliashberg function in copper theoretically investigated by Ji & Zhang
[JZ16], Savrasov & Savrasov [SS96] and Beaulac et al. [BAP82]. The results are compared to the
experimental result of Jansen et al. [JMW77] and to the frequency independent electron-phonon
coupling based on the phonon density of states (PDoS; green line; measured by Nilsson & Rolandson
[NR73]). In a disordered metal the coupling strength between electrons and low energy phonons is
enhanced. D Phonon line widths in copper due to phonon-phonon decay processes calculated by
Tang & Fultz [TF11]. The dotted line is at 0 K, the solid line at 300 K and the dashed line at 600 K.
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Beaulac et al.
[BAP82]

Savrasov &
Savrasov
[SS96]

Ji & Zhang
[JZ16]

Jansen et al.
[JMW77;
JMW78]

Flat coupling

λ 0.110 0.138 0.162 0.146 0.11
(assumed)

λ
〈
ω2
〉

46.1 meV2 65.1 meV2 54.5 meV2 44.0 meV2 41.1 meV2

Table 1: Electron-phonon coupling constants in Cu. The different values for the electron-phonon
coupling constant are achieved by theory (columns 1 to 3) and experiment (column 4 and 5). The
corresponding Eliashberg functions are presented in Figure 5.

(referring to the theoretical predictions presented in Figure 5C and the work of Waldecker et al.

[Wal+16]), although it is also a face centered cubic crystal. Waldecker et al. [Wal+16] found a

stronger coupling between the electrons and the longitudinal phonon modes compared to the coupling

to transversal modes. The difference might be related to the differences in the electronic structures.

If the metal is disordered, then the coupling to low energy phonons is pronounced compared to the

coupling to high energy phonons. In this case the Eliashberg function is linear proportional to the

phonon energy [BK14; Bel87], i.e.

α2F (ω) =
λ ω

2 ωD

. (8)

This is understood, if one takes into account, that the interacting electron and phonon can scatter

on other electrons or on impurities. I.e. if the electron-phonon interaction time is longer than the

electronic lifetime (qT l > 1, l is the electron mean free path and qT is the thermal phonon wavevector,

see [BKB98]), then the average scattering event is effectively a three particles scattering process of

a phonon, an electron and a third particle which can take over a part of the momentum to fulfill

the law of momentum conservation. This simplified picture is corroborated by the fact, that in a

disordered metal, "the electron-momentum is not any longer a well defined quantum number" and

Brillouin zones do not occur [Ber76].

2.2.1 Phonon decay

The phonons can decay via several decay channels. They can scatter at impurities, at electrons or

holes or they can decay via phonon-phonon interaction mechanisms. The most prominent phonon-

phonon interaction mechanisms are the phonon collision with other phonons and the anharmonic

decay of one phonon into two phonons. If the temperature is high enough, umklapp processes are

allowed. The phonon decay rates are indirectly measured via phonon line width analysis. This was
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done in neutron scattering experiments in Cu made by Larose & Brockhouse [Lar75; LB76]. The

fastest phonon decay is shown to happen to the longitudinal phonons at the Brillouin zone boundaries.

The lowest lifetime is 400 fs (Γ = 1.65 meV) at room temperature. The transversal phonons live

about 3 to 4 times longer until they decay (Γ ≈ 0.5 meV). In an ultrasonic experiment made by

Chang & Himmel [CH66] a consistent lifetime of 400 fs was found from the analysis of the line width

at 300 K [Loi77].

The phonon-phonon interactions are theoretically investigated by Tang & Fultz [TF11] (in Cu) with

an ab initio calculated interatomic force. The line width as a function of the wave vector for all

three phonon branches are presented in Figure 5D at three different temperatures. The lifetimes of

the longitudinal phonons are lowest at the X point (∼ 700 fs at 300 K). They predominantly decay

(98.2 %) into two transversal acoustic phonons. The decay rate of the transversal phonons is low at

the X point (lifetime is more than 10 ps at 300 K). The main anharomonic decay channel at X is TA

→ LA - TA (92 %). Closer to the Γ point, the predominant decay channel of transversal phonons is

TA → TA - TA with lowest lifetimes of about 3 ps at 300 K. One has to take the electron-phonon

scattering rate and the scattering at impurities into account to compare the simulation results to the

line width analysis of Larose & Brockhouse. The contribution of impurities may be low at 300 K and

the phonon decay contribution is low for transversal phonons which is known from the simulation.

Therefore the measured line widths of transversal phonons provide an idea of how the phonons are

affected by phonon-electron scattering. The measured lifetime of about 1 ps is the average time until

the phonon is absorbed in a phonon-electron scattering event (at 300 K). During this time period the

phonon already traveled through more than 12 unit cells (∼ 15 nm). For comparison, the electron

mean free path is 39 nm (2.6 times longer) at the same temperature [Zha+04].

In parts of the first Brillouin zone, the anharmonic phonon decay rate at room temperature is higher

than the scattering rate at electrons. During the energy transfer between the phonon subsystem and

the electronic subsystem (between states 3 and 4 in Figure 4), the anharmonic decay is able to

redistribute the phonon subsystem towards the equilibrium. The efficient rethermalization is required

for the application of the TTM. This is because the electron-phonon coupling matrix element is

expected to slowly vary with the phonon energy (compare the blue line with the green line in Figure

5C) and the thermal distribution function of phonons approximately goes with 1/ exp E/(kBT ).

Without any phonon decay, the phonon distribution will broaden. If the ratio between the numbers

of high and low energy phonons is remarkably higher compared to the equilibrium condition, then the
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overall number of phonons is lower than in equilibrium (comparing situations with the same energy in

the lattice subsystem). The electron-phonon scattering probability is related to number of phonons

(see equation (3); the process of stimulated phonon emission) and it is reduced in the case of a high

ratio between the numbers of high and low energy phonons.

2.3 Spontaneous phonon emission

The accessible final states of quasiparticles scattered at phonons are limited by the energy of the

highest energetic phonons with h̄ωmax. To determine the electron-phonon scattering rate in an excited

state, one commonly uses the spontaneous phonon emission4 which is equal to the implementation

of the "empty final state approximation". The empty final state approximation assumes that all

states in the (phonon energy) limited range around the initial energy of the electron are empty.

This approximation is applicable in case of a low density of non-thermal quasiparticles which are

widespread in their energy (quasiparticles with |E − EF| > kB T ). This condition may arise in metals

after off-resonant excitations (e.g. intraband excitations) with low excitation densities. Shortly

after excitation the phonons are still thermally distributed and the distribution of the electrons is

highly athermal (see Figure 4, state 2 ). In the empty final state approximation, the rate of the

energy transfer from the quasiparticles to the lattice is linearly dependent on the number of excited

quasiparticles (holes lose their energy the same as electrons). It is

∂Uel

∂t
= −αefs ·Nqp = −π h̄ λ

〈
ω2
〉
·Nqp . (9)

This result is derived in Section 8.1.1 and by Gusev & Wright [GW98] and Baranov & Kabanov

[BK14]. The result of Tas & Maris [TM94] is by a factor of 2 ln (2) different. The characteristic

energy loss time of a single quasiparticle is

τel-ph(E − EF) =
|E − EF|
π h̄ λ 〈ω2〉 . (10)

From equations (9) and (10) it follows that

∂Uel

∂t
= − Uel

τel-ph(〈E − EF〉)
,

which is related to the average energy loss time. The theoretical prediction for copper with [BAP82]

λ
〈
ω2
〉

= 46 meV2 ,

4The name spontaneous phonon emission is chosen in analogy to the spontaneous and field independent light

emission, because the phonon emission is independent of the number of phonons N(ω).
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results in

αefs = 0.22 eV/ps .

If this process is considered only, the relaxation of an excited electron with E − EF = 1.55 eV lasts

about 7 ps.5

2.4 The electron-electron scattering

The Boltzmann term of the electron-electron scattering within a single electron band reads [KA08]

ḟk =
2π
h̄

∑

p,q

|Vq|2 δ(Ek + Eq − Ek+q − Ep−q)

· [fk+q fp−q(1− fk)(1− fp)− fkfp(1− fk+q)(1− fp−q)] . (11)

It is based on Fermi’s golden rule and relate the change in the electronic distribution function to

the scattering matrix element Vq. Further the energy and the momentum conservation laws are

considered. The sums count all possible electronic transitions between filled initial and empty final

states which contribute to the change in fk. The states are characterized by their wavevectors. The

scattering matrix element is assumed to be spin independent and independent of the initial and

final wavevectors k and p. The electron-electron-related electronic lifetime is obviously given by the

second term of equation (11)

1

τk

=
2π
h̄

∑

p,q

|Vq|2 δ(Ek + Eq − Ek+q − Ep−q) [fp(1− fk+q)(1− fp−q)] . (12)

This presents the basis for the calculation of the electronic lifetime in the Fermi liquid theory [GV05].

2.5 The Fermi liquid theory and the electronic lifetime

The term "electronic lifetime" is ambiguous in the solid state physics. First of all, the electrons

within a solid are interacting and therefore one deals with quasiparticles. The electronic lifetime is

the average time one electronic quasiparticle stays wihin the same state. As already seen, the excited

quasiparticle can undergo different possible scattering events. It can scatter with phonons, other

quasiparticles or impurities. These scattering events can happen within the bulk or at the surface.

In the same manner as the excited electrons are quasiparticles, the unoccupied states below EF are

5Half the time is needed for an electron and a hole where both take half of the energy. The more quasiparticles

share the same overall energy, the faster the energy is dumped into the lattice subsystem as long as the empty final

states approximation holds (if the (competing) electron thermalization process and the Pauli blocking at the Fermi

level are negligible).
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hole-quasiparticles. In case of no specific asymmetry around the Fermi level, the excited holes have

the same lifetimes as the electrons. Their energy is measured with respect to the Fermi energy

Ehole = |Estate − EF|.

The electronic lifetime differs from its relaxation time. The relaxation time is the characteristic time

in which the quasiparticle has lost its energy (energy relaxation time) or initial momentum direction

(momentum relaxation time). The lifetime just refers to the fact that the electron changed its state

or the former empty state gets occupied. Every scattering event changes the state of the involved

quasiparticles from the initial state into the final state. This definition corresponds to equation (12)

if the lifetime is predominantly related to electron-electron scattering events.

The probability of electron-electron scattering increases with the energy of the quasiparticle. This is

because of the monotonic increase in the number of possible empty final states. Fermi liquid theory

predicts the electronic lifetime to follow [GV05; PN66]

τk,σ ≃
8 h̄ EF

π ξ3(rs)
· 1 + exp (−(Ek,σ − EF)/(kB T ))

(Ek,σ − EF)2 + (π kB T )2
, (13)

where EF is the Fermi energy, σ is the spin direction, k is the wave vector, Ek,σ the energy of the

electron, ξ3 is the geometrical factor in three dimensions

ξ3(rs) =

√
α3 rs

4π
arctan

(
π

α3 rs

)
+

1
2 (1 + π/(α3 rs))

(14)

with the Wigner-Seitz radius rs in units of the Bohr radius and α3 = 3
√

4/ (9π). For all that the

electron-electron interaction processes are only considered.

The lifetime is defined such, that it corresponds to the differential equation:

∂Nk,σ

∂t
= −Nk,σ

τk,σ
. (15)

Figure 6 shows simulations of the electronic lifetimes according to the equation (13) at different

electron energies and temperatures. The simulations are based on the parameters for Cu. In Cu

the lifetimes are considered as isotropic (depend only on |k|) and spin independent. The electronic

lifetime is energy dependent because of the different density of accessible empty final states (and

the density of possible scattering partners below the Fermi level which gain enough energy to scatter

into an empty final state above the Fermi level). The change in temperature causes a change in the

number of possible scattering partners for quasiparticles close to the Fermi level. Far from the Fermi

level the electronic lifetime is not affected by temperature changes.
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Figure 6: Fermi liquid theory. Energy and temperature dependence of the electronic lifetime.

The simulation is based on the electronic lifetime (equation (13)) with the parameters for Cu [AM11].
A Temperature dependence of the electronic lifetime at different electron energies relative to the
Fermi level. Electron-electron scattering processes are considered only. B Electronic lifetimes at
two different temperatures with (dotted line) and without (solid line) adding a constant electron-
phonon relaxation term (τe-p = 200 fs). The value of τe-p was chosen to describe the two photon
photoemission result of Cao et al. [Cao+97] which is reproduced in Figure 7C (significant deviations
from Fermi liquid theory appear below 0.4 eV and there are only two data points below 0.4 eV; τe-p

is determined with a large error bar).

Other scattering mechanisms are included by adding the corresponding scattering rates. The electron-

phonon scattering rate, the electron-impurity scattering rate and the electronic scattering rate (the

inverse of the Fermi liquid lifetime, equation (13)) add up (Matthiessen’s rule6). The lifetime of a

quasiparticles is

τ =
1

1/τe-e + 1/τe-p + 1/τe-i
. (16)

Usually the electron-impurity scattering rate is dominant at low temperatures and low electron ener-

gies. The lifetime related to the electron-phonon coupling τe-p may decrease linearly with temperature

above the Debye temperature (the linear dependence on the temperature is characteristic for metals,

see [All+86; AM11]). The energy dependence is considered to be weak for energies higher than the

energy of the upmost phonons (which is the Debye energy h̄ωD or the most energetic optical phonon

mode). In Figure 6B a constant lifetime (τe-p = 200 fs) is added to the electron-electron scattering

6 The Matthiessen rule holds if there are no interdependencies between the scattering mechanisms, see for example

Cao et al. [Cao+98] or text books [AM11].
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to account for the electron-phonon contribution to the electronic lifetime. At low electron energies

the electronic lifetime is reduced by the electron-phonon interaction (compare dotted and solid lines).

This happens because of the suppression of the electron-electron scattering at the Fermi level (also

known as Pauli blocking). The temperature dependence of τe-p is not considered in the simulation

in Figure 6B.

It is useful to determine the prefactor of equation (13), i.e. [GV05; QF58]

τ0 =
8 h̄

π ξ3(rs) EF

≈ 128√
3π2 ωp

, (17)

where ωp is the plasma frequency of the conduction electrons. The relation to the plasma frequency

is often used in publications, for example by Carpene [Car06]. The approximations made to derive

this expression differ from those found in Giuliani [GV05]. In Cu the value of the prefactor is

τ0 = 0.4456 fs.

2.6 The two photon photoemission experiments

The electronic lifetime is experimentally determined by two photon photoemission experiments (see

Figure 7). The two photon photoemission experiments are pump-probe experiments performed at

low excitation densities. A first short laser pulse (pump) excites a small amount of electrons in the

solid to an intermediate state. The energy of the photons are lower than the work function to prevent

the direct photoemission (the pulse intensities are low and high-harmonic effects are negligible). A

second time-delayed laser pulse (probe) further excite the electrons from the intermediate states into

vacuum levels to disengage them from the solid. The number of emitted electrons and their kinetic

energy are measured. The overall energy of the pump and probe photons has to be higher than the

work function

hνpump + hνprobe > Ework . (18)

Only a few electrons within the first surface layers are probed by this technique and the surface

has to be very clean and smooth. The polarization of the second pulse is perpendicular to the po-

larization of the first pulse to suppress coherent artefacts and wave mixing processes. The energy

of the intermediate state is determined from the measured kinetic energy of the emitted electrons

[PO97]. The number of detected electrons decreases as a function of time delay between the pump

and the probe. The characteristic relaxation time is thus connected to the electronic lifetime of the

intermediate state. At very low excitation densities, for which the contribution of secondary electrons
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Figure 7: Two photon photoemission in copper. A presents the two photon photoemission
intensities measured on cesiated copper (100) surface by Petek et al. [PO97]. The resonance
attributed to the initial states located in the upmost d-band is modeled with three gaussians. Two
of them are only present by excitation with p-polarized light (here the incident angle is 30◦). The
bubble shows the spin-orbit splitting at the X-point. B & C The electronic lifetime in copper as a
function of energy measured with the two photon photoemission by Cao et al. [Cao+97]. B shows
that the electronic lifetime is independent of the material of the cover layer which was used to lower
the work function. C compares the lifetimes which are measured at two different photon energies.
The local maximum at 1.5 eV is known as the d-band catastrophe [PO97]. A is taken from [PNO99],
B and C are taken from [Cao+97].

is insignificant, the relaxation time of the photoelectron intensity represents the electronic lifetime.

Secondary electrons are electrons changing their energy from the intermediate state after excitation,

into an intermediate state at a different energy. At high excitation densities the picture of single

excited electrons thus fails and the relaxation of the entire electronic distribution has to be consid-

ered in order to interpret the measured relaxation time correctly. The effect of secondary electron

generation "prolongs" the relaxation process. Another effect which can cause errors is the ballistic

motion of excited electrons from the surface region into the bulk (if present the measured lifetime

is reduced [BFI87]7). Other limitations of the technique are its energy and momentum resolution.

The experiment cannot distinguish between states of almost same energy and similar momentum.

Scattering events which change the state of the quasiparticle in energy or momentum by a smaller

amount than what can be detected, do not contribute to the measured relaxation time.

7Cao et al. [Cao+98] argued that the loss of electrons out of the probed volume by the ballistic transport is low at

low excitation densities, so the contribution of this effect to the measured relaxation time is rather small.
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The lifetimes as a function over the intermediate state energy were measured in different Cu samples

on the (100)-surface. The results taken from Cao et al. [Cao+97] are presented in Figure 7B and

C. The Cu surface was covered with cesium or potassium atoms to reduce the work function. Pump

and probe pulses have the same photon energies but different polarization. It is known from Cu band

structure calculations, that the photon energies of 1.63 eV are not sufficient to excite electrons from

the d-band states of copper. With higher photon energies (hν > 1.9 eV) electrons from the d-bands

are excited (compare inset on Figure 7A). The relaxation of the photoemission intensity shows an

unexpected local maximum at 1.5 eV (see Figure 7B). This local maximum was connected to the

surprisingly long (non-Fermi-liquid) lifetime of the d-band holes (see Section 4.3.1). The link to the

upmost d-band states is clear, the energy of those states is at about 1.9 eV below the Fermi level

and the photon energy is 3.38 eV, the maximum has to appear at 1.5 eV. Similar measurements using

different photon energies confirm this correlation [KHW98]. From this point of view it is obvious,

that the relaxation of the photoemission intensity is not related to the lifetime of the intermediate

state only. There is a contribution of secondary electrons which is related to Auger processes or

electron-electron scattering processes with nonhomogeneously excited intermediate states (discus-

sions and details about the Auger decay are found in [KHW98; Pet+00; Kno+00; KBB01], the

nonhomogeneous effect is explained in the following). The d-band density of states is more than one

order of magnitude larger than the density of states of the conduction band. The onset of the upmost

d-band at 1.9 eV below the Fermi level is very steep (see later on in Figure 21A). The populations

of the intermediate states which are pumped by electrons from the conduction band only is far lower

than the populations of states pumped with electrons from the d-band (by a factor of more than 10).

The separation between the different populated intermediate states is small because of the steep

d-band edge. The relaxation process is such, that most of the electrons lose their energy over time,

but there is always a possibility that some of the electrons temporarily gain a little amount of energy.

This results in a smearing of the steep edge between highly populated and the weakly populated

intermediate states and causes an increase in the photoemission relaxation time on the site of the

weakly populated states. This effect is a result of the secondary electrons and cannot be avoided

with a lowering of the excitation density because the relative differences between the populations in

the intermediate states remain the same.

Beside this "d-band catastrophe", the lifetimes of the electrons in lower energy states are also re-

markable. According to the electron transport measurements, the electronic lifetime in Cu at room
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temperature is much shorter than the lifetime which is determined at 0.5 eV and below. Yet, the

resistivity is mostly related to electron-phonon scattering and umklapp processes. In order to under-

stand the different results, one has to take a closer look into the technique. Although the electrons

change the states many times by electron-phonon scattering, the two photon photoemission may

not be sensitive to such events. Electron-phonon interactions mainly change the momentum of the

quasiparticles but the change in energy is limited to the energy of the involved phonons (≤ 20 meV in

Cu). The change in momentum may change the matrix element for the emission process (this effect

can either speed up or slow down the relaxation of the photoemission intensity), but how much the

measured electronic lifetime is affected by electron-phonon interaction mainly depends on the energy

resolution of the experiment. At typical energy resolutions in the range of 15-200 meV [Sch+94;

WF97; KHW98] and with a Debye energy of about 30 meV, each electron may need to scatter at

least 1 time with the highest energy resolution and up to more than than 7 times with the lowest

energy resolution at acoustical phonons for this to affect the observed population relaxation time.

On the other hand, a single electron-electron scattering event is enough to change the energy of

the quasiparticle by an amount that it counts to the depopulation of the state. Such events usually

overcome the energy resolution of the experiment. In common experiments with low momentum

resolution and no secondary electron contribution, the measured electronic lifetime follows the as-

sumption of the Fermi liquid theory (equation (13)). The characteristic energy dependence of the

electronic lifetime has been measured in Cu and it is plotted in the Figure 7C (open circles). At low

electron energies the lifetime saturates because of the scattering of the excited electrons with high

energetic acoustical phonons.

2.7 The quasiparticle multiplication rate

The interaction between the electron gas and the external field generates excited quasiparticles

which are out of equilibrium. If the number of excited quasiparticles is not too large, then the

interaction between the excited quasiparticles is negligible compared to the scattering at the thermally

excited quasiparticles located around the Fermi level. The Fermi liquid theory expression of the

electronic lifetime (equation (13)) is still valid in this situation. The assumption is that most of the

quasiparticles are in thermal equilibrium around the Fermi level and there is only a small amount

of quasiparticles which are out of equilibrium at higher energy levels (situations where the density

of the excited electrons is in the range of ≪ 1 %). The excited quasiparticles with high energy
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(|E − EF| ≫ 2 · (kB Tth)) contribute to the generation of new excited quasiparticles in almost every

scattering event. Each such scattering event generates two newly excited quasiparticle, an electron

and a hole. Here, the electronic subsystem is split into a part consisting of the non-thermally photo-

excited quasiparticles and the remaining thermal quasiparticles. The situation is sketched in Figure

8A. Statistically, the quasiparticle multiplication or cascade processes are described by averaging

Figure 8: Splitting of the electronic distribution function in thermal and non-thermal parts

and the probability factor γM. A Shortly after photo-excitation, the electronic distribution function,
f , can be (mathematically) split into thermal and non-thermal parts, f th and fnt. B The probability
to create new electron-hole pairs is described by the factor γM, which is determined by performing
the integrals in equation (19). This calculation additionally includes a few approximations to end up
with an analytic expression.

over the quasiparticle lifetime multiplied with the probability to create an electron-hole pair. A small

number of (non-thermally) excited quasiparticles give rise to new excitations of formerly thermal
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quasiparticles with the quasiparticle multiplication rate of

∂Nqp

∂t
≈ 2 · 2 ·

∞∫

kB T

dE D(E)
fnt(E) (1− fnt(E))

τFLT (E − EF)
·

E−EF∫
EF−E

dE′
∞∫

−∞

dEx

(
1− f th(E − Ex)

)

E−EF∫
EF−E

dE′
∞∫

−∞

dEx (1− f th(E − Ex))

· f th(E′)
(
1− f th(E′ + Ex)

) [
Θ(−(E′ − EF)) Θ(E′ + Ex − EF) Θ(E − Ex − EF)

· f th(E′) (1− f th(E′ + Ex))

−Θ(E′ − EF) Θ(−(E′ + Ex − EF)) Θ(−(E − Ex − EF))

]

(19)

= 4 ·
∞∫

kB T

dE D(E)
fnt(E) (1− fnt(E))

τFLT (E − EF)
· γM

(
E − EF

kB T

)

(in this approximation the momentum conservation is not considered). The nominator in equation

(19) counts the scattering events of high energetic electrons (see Figure 9C) which generate electron-

hole pairs, subtracting all scattering events doing the opposite (see Figure 9D). The denominator

E

EF

Quasiparticle
multiplication;
electron-electron
scattering

E

1 qp → 1 qp

E

A CB

electron

empty state

E

D

1 qp → 1 qp 1 qp → 3 qp 3 qp → 1 qp

Figure 9: Characterization of the electron-electron scattering events. A-D are sketches to
characterize the quasiparticle multiplication (or cascade) process. In A and B the number of excited
quasiparticle remains the same. C A high energy electron creates an additional electron-hole pair and
after scattering the energy of the scattered electron is partly transferred to the electron-hole pair. D

A statistically unlikely case would be, that an excited electron gains energy via recombination of an
electron-hole pair. In this case the number of excited quasiparticle would be reduced after scattering.

counts the total number of scattering events (sketched in Figure 9A-D). First prefactor of 2 is due

to the same dynamics for high energetic holes. The second prefactor 2 takes into account that each
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scattering event generates 2 excited quasiparticles. The probability to create a new electron-hole

pair, γM, as a function of the scaled energy, (E−EF)/(kB T ), is presented in Figure 8B. Here a few

approximations are made in order to get an analytic expression for γM.

Quasiparticles with high energies (|E − EF| ≫ 2 · (kB Tth)) are likely to excite an additional electron-

hole pair at every scattering event. In a situation with only high energy quasiparticles on the one

hand and thermal quasiparticles on the other hand, the quasiparticle multiplication rate simplifies to

∂Nqp

∂t
≈ 2
〈τ〉 Nqp ≈ 2 Nqp

〈
(E − EF)2

〉
+ (π kB Tth)2

τ0 E2
F

. (20)

The quasiparticle multiplication rate together with the description of their energy loss due to the

spontaneous phonon emission (Section 2.3) provide the opportunity to describe the initial quasipar-

ticle relaxation process prior to the quasiparticle thermalization. This opportunity will be used in

Section 6.2 to investigate the nature of the fast lattice heat up in Cu, which is seen in the experiment,

at short time delays.
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3 Multi-temperature models - Characterization

of the thermalization process

The Boltzmann equations describe the electron relaxation process. These equations are used to

perform many particle simulations. This chapter introduces approximations to simplify the many

particle problem which are sensitive to the excitation density. To begin with, in Section 3.1 the

high excitation density limit is treated, where the two temperature model is assumed to be valid. In

Section 3.3 is shown that the two temperature model is not applicable for Au at lower excitation den-

sities. Extensions to the two temperature model which are able to take the non-thermal electronic

distribution functions into consideration are presented in Section 3.4. These extensions split the

electronic subsystem into two parts. Both parts, the thermalized quasiparticles and the non-thermal

quasiparticles, are handled separately to focus directly on the different dynamics. The models which

are discussed, are the model of Sun et al. (Section 3.4), Carpene (Section 3.4.1) and Lisowski et

al. (Section 3.4.2). Finally, in the very low perturbation limit, the model of Baranov and Kabanov

[BK14] is used to describe the thermalization in metals (see Section 3.5).

3.1 The Two-Temperature-Model (TTM)

The TTM, which was introduced in the beginning of Chapter 3, predicts the relaxation dynamics

between a thermal electronic subsystem (at Tel) and a coupled (thermal) lattice subsystem at a

different temperature Tla [KLT57; AKP74; All87]. The model is based on the energy conservation

law and it is described by two coupled differential equations

∂Uel

∂t
= cel

∂Tel

∂t
= g · (Tla − Tel) , (21)

∂Ula

∂t
= cla

∂Tla

∂t
= −g · (Tla − Tel) . (22)

cel and cla are the electronic and lattice heat capacities. The factor g is a constant above the Debye

temperature (Tel, Tla ≫ ΘD), given by [All87]

g = π h̄ D(EF) λ
〈
ω2
〉

kB .
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The temperature dependence of g below ΘD are found in the publications of Kaganov et al. [KLT57]

and Allen [All87]8.

Tel and Tla as a function of time are plotted in Figure 10A in an example scenario (considering Cu).

A lattice heat capacity is used which is about two orders of magnitude higher than the electronic

heat capacity (cel ≪ cla). The final state is described by a higher temperature, where the lattice

Figure 10: The Two-Temperature-Model. A The TTM predicts the time evolution of the electron
and the lattice temperatures where the electrons are considered to be thermalized. The energy of
the electronic subsystem is transferred to the lattice by the electron-phonon interaction. The inset
shows the relaxation of the number of excited quasiparticles, where the reference is the number of
quasiparticles at 300 K which is 5.3 · 10−3 1/atom. In B the change in the electronic distribution
function (the reference is at 300 K) is plotted as a function of time. The high energy states depopulate
over time due to the decreasing thermal energy in the electronic subsystem. The result shows that
the exponent in the exponential tail of ∆f changes over time and the position of the maximum shifts
slightly to lower energies.

heats up by a few Kelvin. Initially, a temperature difference of several hundreds of Kelvin between

both subsystems was induced by photo-excitation. The electronic distribution function is plotted as

a function of energy at different time delays in Figure 10B. Besides the decreasing amplitude of ∆f ,

∆f also shows a narrowing over time. Below EF the holes show the same dynamics (not shown in

the figure).

The electron-phonon scattering alone does not keep the electronic distribution function thermal.

In order for the TTM to work, a very fast electron thermalization process is required. In Cu at

8Allen examines the deviation at low temperatures in a taylor expansion.
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Tel = 1000 K and Tla = 300 K average electron-electron scattering times within 2 kBTel around EF

of less than 200 fs are required (see Section 8.1.2, value (131)). Prolonged lifetimes slow up the

electron-phonon thermalization and increase the electron-phonon thermalization time. The quasipar-

ticles around the Fermi level have lifetimes on the required order of magnitude (see Section 2.5).

Therefore it is possible, that the rethermalization of the quasiparticles is fast enough to support the

TTM-like relaxation characteristics.

In metals without optical phonon branches, the influence of a non-thermalized lattice to the dynamics

of the electrons and holes may be low. In this case the lattice temperature reproduces the average

lattice temperature of all phonon branches (see Waldecker et al. [Wal+16] for more detailed descrip-

tion) or the temperature of the best thermal fit to the non-thermal distributions.

The TTM is often extended to multi temperature models, if additional subsystems are considered,

for example a spin subsystem or a subdivision of the phonon subsystem into the different phonon

branches [Wal+16]. Every additional subsystem extends the system of coupled differential equations

by one further equation.

3.1.1 The TTM in highly excited Gd(0001)

The TTM describes the thermalization process between the thermal electronic subsystem and a

thermal lattice subsystem which are at different temperatures. Optical excitations create a non-

thermal electronic subsystem, as pointed out in Figure 4. If the electron thermalization time is short

compared to the electron-phonon thermalization time, the electrons do not transfer energy to the

lattice up to the time at which the electrons are in thermal equilibrium. In this case the equation

(1) is valid and it allows to calculate the maximum electronic temperature which is reached shortly

after the excitation. In gadolinium (Gd) the electrons thermalize in less than 100 fs (at 1000 K) and

the lattice heating takes more than 600 fs. The fast electron thermalization may has something to

do with the high density of states at the Fermi level (factor 6 higher than in Cu), since s-, p-, d-

and f-states contribute to the density of states at EF [TS90]. Bovensiepen et al. & Lisowski et al.

measured the electronic distribution function of Gd with time-resolved photoemission [Bov07; Lis05].

They excited the electrons with ultrashort light pulses at 1.5 eV. The probe pulses at 4.2 eV further

excite the electrons into the vacuum where they are detected. The results are presented in Figure

11 and Figure 12. The photoelectron intensity is assumed to be proportional to the electronic

distribution function f . The TTM seems to describe the relaxation dynamics of f after 100 fs with
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Figure 11: Electron photoemission from the gadolinium surface. A and B are showing photoe-
mission spectra measured on a thin Gd(0001) film (thickness of 10 nm) with an absorbed fluence
of Fabs = 0.25 mJ/cm2 by Bovensiepen & Lisowski [Bov07; Lis05]. Approximately 0.5 % of the
conduction band electrons in the range between 1.5 eV below the Fermi level and EF are excited.
After 100 fs the electrons seem to be in thermal equilibrium. Note that the curves in B are plotted
with offset. The graphs are taken from Bovensiepen [Bov07].

an electron-phonon coupling constant of ([Lis05; TS90])

λ
〈
ω2
〉

= 67 meV2 . (23)

The experimentally determined electronic temperature is about 50 % lower than the theoretically

predicted maximum temperature of 1500 K, calculated with the equation (1) and based on the

absorbed fluence of 0.25 mJ/cm2 and the film thickness of 10 nm [Bov07; Hil+87]. However, in this

experiment the hot electrons were able to enter the (metallic) tungsten substrate, the related energy

transfer to the substrate was not considered in the calculation of the electronic temperature.

3.2 Electron- and electron-phonon-thermalization

The photo-excited out-of-equilibrium electronic distribution in a metal is unstable. Electron-electron

scattering aims to thermalize the electronic subsystem and the electron-phonon interaction equi-

librates the electronic subsystem with the phonons. The thermalization times are defined to be

characteristic to the electronic subsystem thermalization process (electron-electron thermalization
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Figure 12: Application of the TTM to Gd. A The temperature of the electronic subsystem
as function of time fitted with TTM on the basis of photoemission data presented in Figure 11.
The temperatures are taken from Fermi-Dirac fits to the experimental ∆f . B The energy in the
electronic subsystem (here the non-thermal part of ∆f is considered as well). C The electrons are
non-thermally distributed at 0 fs. After 200 fs the electrons are in thermal equilibrium. D Sketch of
the time evolution of the energy density. The y-axis is in arbitrary units. All graphs are taken from
Bovensiepen [Bov07].

time τe-e) or to the process of the electronic temperature relaxation (electron-phonon thermalization

time τe-ph). Contrary to the definitions of the lifetime and the scattering time (see Section 2.5),

the thermalization time is not an average over all particles. In general, the thermalization time is

the time delay after excitation, when a thermal distribution (e.g. electrons rearrange to Fermi-Dirac

distribution functions) is reestablished within the excited volume of the sample or any well defined

subsystem (electrons/ phonons/ spins). Thermalization times depend on material, temperature, the

type of excitation and the excitation density (see Figure 13B and C, showing that the electron ther-

malization time in Au depends on the excitation density).

In a simple metal the electronic subsystem and the phonon subsystem are weakly coupled.9 This

9These subsystems may be further separated into subsystems of different phonon branches, different spins, valleys

or bands; this section deals with the most degenerate case only.
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Figure 13: Thermalization times in metals. A Theoretical estimates of the quasiparticle thermal-
ization times within the electronic subsystem τe-e at very low excitation densities (Tel − Tla ≪ Tla)
and estimates of the time τe-ph after which the electron- and the phonon-subsystems are in thermal
equilibrium at the same temperature (see also [DD11]). The same parameters as for Cu are applied.
B and C show the electronic distribution function in Au measured by Fann et al. [Fan+92] with
time-resolved photoemission. The excitation densities were with 40 J/cm3 in B and 100 J/cm3 in C

quite high. The electrons need more than 1.3 ps to thermalize at the lower excitation density and
approximately 670 fs at the higher excitation density.

weak coupling between the electrons and phonons may allow the electronic subsystem to thermalize

first (one may approximate the electron thermalization time at very low excitation densities with the

electronic lifetime at E = EF + kB T known from Fermi liquid theory, see equation (13) for a 3D

metal and [GV05; DD11]). The approximate electron thermalization time τe-e in Cu is presented in

Figure 13A.

After the electrons are in thermal equilibrium, the excited quasiparticles lose their energy which

is transferred to the lattice and the excited electrons and holes at the Fermi level start to recom-

bine. The corresponding time is the electron-phonon thermalization time. At low temperatures the

electron-phonon thermalization time depends on the impurity concentrations in the metallic sample.

The limits are referred to as "clean" or "poor" metals (see Figure 13A). If a metal is clean, the mo-

mentum conservation has to be considered during the electron-phonon scattering event. In a poor

metal, the electron-phonon scattering process can be slower compared to the electron (momentum)

lifetime (1/ωD ≫ τ). The second electron, which is involved, can take or provide the additional mo-

mentum to achieve momentum conservation. One can turn a clean metal into a poor metal by adding
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impurities or by generation of vacancies. The disorder enhances the electron-electron scattering rate

more than the electron-phonon scattering rate (see [BKB98]). In poor metal the phonon trapping

is also enhanced (see [KA08; BW95]). Thus, the electron-phonon thermalization time may depend

on the sample’s impurity concentration, disorder and dimensionality. The thermalization times are

estimated to follow (see [DD11])

τpoor
e-ph (T ≪ ΘD) =

2 h̄2 ωD

π3 λ (kB T )2

τ clean
e-ph (T ≪ ΘD) =

1.76 h̄3 ω2
D

3π3 λ (kB T )3

τe-ph(T > ΘD) =
2 kB T

π h̄ λ 〈ω2〉 . (24)

These approximate thermalization times are plotted in Figure 13A as a function of the temperature

with the parameters of Cu. The result shows that at very low excitation densities and up to about

600 K, the electron-electron thermalization process in Cu takes longer than the thermalization of the

electrons with the lattice. For strong electron-phonon coupling the quasiparticles and the lattice may

reach the thermal equilibrium distribution the same time. In this case the electron- and electron-

phonon-thermalization time are indistinguishable. The coupling provides an additional channel for

the thermalization of the slower subsystem and the energy transfer rate between the excited high

energy quasiparticles and the "thermal" quasiparticles at the Fermi level can be lower than the energy

transfer to the lattice. The coupling between the electrons and phonons may also result in polaronic

ground states.

The different ω-dependencies of the Eliashberg functions for clean and poor metals (see Figure 5C)

are the reason for the different T dependencies of τe-ph at low temperatures T ≪ ΘD. One should

note that also λ is different in a metal with a high amount of impurities than in the same material

with no impurities (see [Mal+11]) and the electron-phonon coupling to low energy acoustical phonons

is enhanced compared to the coupling to high energy acoustical phonons in poor metals (see Section

2.2).

If the metal is split into more than two subsystems, the picture gets even more complicated. The situ-

ation of splitting the phonon subsystems into its different branches is investigated e.g. by Waldecker

et al. [Wal+16] on aluminum. They simulate the time evolution of the different temperatures of

each acoustic phonon branch considering different coupling strengths to each branch. In graphene for

example, optical phonons are involved in the thermalization process, the dynamics are measured and

analyzed by Malic et al. [Mal+11]. In high-temperature cuprate superconductors (above Tc), the

43



absorbed optical energy is assumed to heat up the subsystem of the bosonic excitations of electronic

origin which is strongly coupled to specific phonon modes which heat up as well. These subsystems

decay on different timescales and the energy is transferred to the remaining (previously unexcited)

phonon modes. The dynamics are described by an extended TTM [Per+07; DC+12; Cil+13].

As already seen on Gd (Section 3.1.1), the time-resolved photoemission is a suitable tool to deter-

mine the thermalization times of electrons. The thermalization processes in Au are experimentally

measured by Fann et al. [Fan+92] with results shown in Figure 13B and C.10 From Figure 13C one

can conclude, that the electron-phonon thermalization time is longer than the electron thermalization

time. This is because the temperature of the electrons after 670 fs is very high. For sure, at this

small excitation density, the lattice cannot heat up that much. Therefore the electrons do thermalize

first. The electron thermalization time depends on the excitation density (compare Figures 13B and

C). After the electrons are in thermal equilibrium, Tel decreases until electrons and phonons finally

reach the same temperature on a picosecond timescale. All-optical experiments [DV+12; Sch+87]

found the electron-phonon thermalization time to depend on the excitation density, too. Importantly,

however, the data of Fann et al. shows that the electrons in Au are still athermal after more than

300 fs. Because of that, the equation (1) fails and thus the TTM may not be valid.

3.2.1 Ultrafast electron diffraction results

To study structural dynamics in solids directly, time-resolved x-ray and ultrafast electron diffraction

(UED) are used. In particular, the intensity of the diffraction peaks (Bragg peaks) is sensitive to the

lattice temperature, i.e. disorder due to thermal motion. The Bragg peaks appear if the electrons,

which are scattered at the lattice planes, interfere constructively (Bragg condition). The higher the

lattice temperature, the more the Bragg peaks lose their intensity, which is transferred to the inelas-

tic background instead. This effect allows to study the temperature evolution of the lattice in UED

experiments after optical excitation.

Experiments on Cu are presented in Figure 14. The results of Klose et al. [Klo13; Eic+15] give

timescales for the lattice heating of 2 ps which is almost double the value measured by Ligges et al.

[Lig+09; Lig09]. The reason for this deviation is not clear. Note that the relative intensity decrease

of the (111)-peak is more than a factor of 2 larger in Figure 14A (Klose et al.) compared to Figure

10The photoemission technique is sensitive to changes in the distribution function above the Fermi level. Below

the Fermi level the electron density is high, thus the small changes are hard to detect. One expects, however, similar

dynamics of the photo-excited holes below the Fermi level (an antisymmetric ∆f in respect to the Fermi level).
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Figure 14: Ultrafast electron diffraction in Cu. The experiments are performed by Klose et al.
[Klo13; Eic+15] and Ligges et al. [Lig+09; Lig09]. A Relative intensity of the Cu-(111) diffraction
peak after excitation with a 50 fs optical pulse (hν = 1.55 eV, Uabs = 123 J/cm3). B Relative
intensity of different diffraction rings measured on polycrystalline Cu films, Uabs = 350 J/cm3. C

Lattice temperature over time calculated from the measured relative intensity in B (see [Lig09]). The
graphs are taken from [Eic+15] and [Lig+09; Lig09].

14B (Ligges et al.), whereas the excitation density used for the result in A is determined to be 1/3

of the excitation density used for B.

Ligges et al. determined a electron-phonon coupling constant of λ
〈
ω2
〉

= 61 meV2 with the appli-

cation of the TTM.

3.3 Failure of the TTM in the ultrafast thermalization approximation

Contrary to the situation in Gd, there are many metals (for example Au and Cu) which cannot be

satisfactory described within the TTM picture. The electron thermalization is substantially slower in

these metals and the ultrafast (instantaneous) electron thermalization approximation is not valid. In
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this situation equation (1) fails because of the large amount of energy may already be transferred to

the lattice during the electron thermalization process. Results on Au clearly show (see Figure 13B

and C; [DV+12; Sun+94]) such a slow electron thermalization process. However many all-optical

experiments consider the ultrafast electron thermalization approximation to hold (see for example

[DC+12]) without proving it. At high excitation densities or at high temperatures, the ultrafast

electron thermalization approximation is more likely to be applicable because the Pauli blocking is

less effective, thereby reducing the electronic lifetimes τFLT ∝ T −2
el (see Figure 13A).

The higher the excitation density, the higher is the electronic temperature of the new quasi-equilibrium

and the more scattering partners are available which reduces the electron thermalization time. In

contrast, the electron-phonon relaxation process slows down with increasing excitation density. Ac-

cording to the equations (24) and (1), the thermalization time

τe-ph ∝
√

Uabs at (Tel − T0)≫ T0 , (25)

grows sublinearly with Uabs.11

After the electrons are in thermal equilibrium, the further relaxation and the transfer of the energy

from the electrons to the lattice could be described by the TTM (such a description is performed

on experimental data of Cu and will be presented in Section 5.8). However, the temperature of the

electronic subsystem is in principle unknown since the equation (1) does not hold. Photoemission

experiments have access to the electronic temperature based on the measured electronic distribution

function, in all-optical experiments it is typically not possible to determine the electronic temperature.

Note, however, that time-resolved photoemission experiments are very scarce.

3.4 Extensions of the TTM

The TTM has several extensions to describe non-thermalized electrons. Models made by Sun et

al. [Sun+94], Carpene [Car06] and Lisowski et al. [Lis+04] split the electronic subsystems into

two subsystems. One subsystem describes the thermal part of the electronic quasiparticles and the

second one the non-thermal part. This approach is completely phenomenological. In the beginning,

the energy of the absorbed photons is fully transferred to the non-thermal quasiparticle subsystem.

The energy of this non-thermal quasiparticles is transferred to the thermal quasiparticles via electron-

electron scattering and to the lattice via electron-phonon scattering. The coupling between the

11The derivation is based on thermalized electrons, the proportionality can differ from this expression if the electrons

are non-thermally distributed.
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thermal quasiparticles and the lattice follows the TTM. These simplifications are such that e.g.

the model of Sun et al. provide an incomplete description only, because it does not provide any

information about the spectral shape of the non-thermal electronic distribution function and its time

evolution. The model of Carpene does not include rearrangements of the non-thermal distribution

function either, which is unphysical. The heat bath model of Lisowski et al. assumes the non-

thermal quasiparticles to rearrange very quickly. They form a Fermi-Dirac distribution with a very

high temperature far above the temperature of the thermal quasiparticles. This very quick initial

rearrangement seems to be supported by their experiment [Lis+04].

The extension of the TTM by Sun et al. models the time evolution of the energy density in the

different subsystems with three coupled differential equations

∂Unt

∂t
=

∂Uabs

∂t
− α Unt − β Unt , (26)

∂Uel

∂t
= cel

∂Tel

∂t
= −g · (Tel − Tla) + α Unt , (27)

∂Ula

∂t
= cla

∂Tla

∂t
= g · (Tel − Tla) + β Unt . (28)

In the beginning, all of the absorbed energy is in the non-thermal electronic subsystem. This energy

is transferred partially to the thermal quasiparticles and partially to the lattice. The shape of the

distribution function of the non-thermal electronic subsystem is not specified in this model. The first

application of this model was made within the same publication [Sun+94] and is presented in Figure

15. The dynamics of R and T are measured at different photon energies in Au. Although all transients

rely on the same d-band to Fermi level resonance, they are all measured and fitted separately (note

that both pump and probe are changed between each measurement). The transients are assumed to

additively consist of a fast component related to the non-thermal quasiparticles and a slow component

related to the thermal subsystem12. The Sun-model can describe each of the transients with such

a two component fit. β is kept constant at 1/ps and the amplitudes of the two components are

used as fit parameters. The change in the electronic distribution function and the contribution of

intraband transitions to the measured signal are not considered in the fits. α is found to be 2/ps.

The inverse of α is related to the electron thermalization time [Sun+94], giving

τth = 500 fs.

12The additivity of both components hold if the Fresnel equations and the sum over all multiple reflections in the

sample, which are connecting the dielectric function with R and T , are in good approximation linear (in the considered

range).
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Figure 15: Extension of the TTM by Sun et al. [Sun+94]. A & C Relative changes in reflectivity
and transmission measured on thin Au films with Uabs ≈ 0.75 J/cm3. The different transients are
measured as a function of time at different pump and probe photon energies (the probe photon
energies are double the energy of the pump photons). These transients are plotted vertically displaced
in steps of 0.5 · 10−3. The transients are labeled by the probe photon energies. The (barely seen)
dotted lines are best fits to the transients. They consist of two components which are shown in
B and D. The component with lower amplitude and faster decay represents the response of the
non-thermal quasiparticles, the other one represents the response of the thermal quasiparticles. The
fits are individually made on all transients. The amplitudes of each component of the fit at each
transient are presented in E and F. The solid and open circles give the contribution to the signal of
the thermal quasiparticles, while triangles and diamonds present the amplitudes of the non-thermal
quasiparticle components.

The spectral dependencies of the amplitudes are plotted in Figure 15E and F. These spectra repro-

duce the width of the characteristic upmost d-band to Fermi level transitions in Au (see Section 4.3

for further information) at 100 fs (the part of the non-thermal quasiparticles) and 350 fs (thermal

quasiparticles). If the non-thermal electronic distribution and the thermal one do not change their

spectral shape over time, then it is possible to decompose both components by performing the two

component analysis. However, the simulation in Section 6.2 show that the spectrum of the non-

thermal quasiparticles is spectrally broad at the beginning and narrows over time. The spectrum of

the thermal electrons, however, broadens over time because of the increasing electronic temperature.

Higher temperatures broadens the Fermi smearing around the Fermi level resulting in an increase in

the spectral width of the d-band to Fermi level transitions. This two component spectral analysis of
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Sun et al. is comparable to the result of the singular value decomposition (SVD of the data on Cu13,

presented in Section 5.5.2).

The physical meaning of α and β and their time dependence

The relaxation rate α is related to the electronic lifetime and β to the electron energy loss by

spontaneous phonon emission. It is useful to rewrite the energy exchange rate to

∂Unt

∂t
= Nnt

∂ 〈|Ent − EF|〉
∂t

+ 〈|Ent − EF|〉
∂Nnt

∂t

with Ent being the energy of a non-thermal quasiparticle and Nnt being the quasiparticle density of

the non-thermal subsystem. The electron-electron relaxation parameter reads

α ≈ −∂ 〈|Ent − EF|〉
∂t

/ 〈|Ent − EF|〉+ 2

〈
(Ent − EF)2

〉
+ (π kB Tel)

2

τ0 E2
F

. (29)

Here equation (20) is used. The energy exchange with phonons is governed by

β /
π h̄ λ

〈
ω2
〉

〈|Ent − EF|〉
. (30)

This is the result of the empty final state approximation (equation (9); see Section 2.3). This

approximation does not consider the electron-hole recombination at the Fermi level and is a good

approximation if the number of non-thermal quasiparticles is low in the region around the Fermi level

(Nnt(|E − EF| < kB Tla)≪ Nnt(|E − EF| > kB Tla)).

3.4.1 The model of Carpene

The model of Carpene [Car06] describes the dynamics of the non-thermal electronic distribution

function in metals. This model uses material parameters instead of the phenomenological α and β of

Sun et al. This makes the dynamics "predictive". The suggested non-thermal electronic distribution

function evolves like

∆fnt(E, t− t′) = ∆fexc(E, t′) exp

(
− t− t′

τ0

(
E − EF

EF

)2

− t− t′

τp

)
. (31)

∆fexc(E, t′) is the laser driven "step like" distribution function (see Figure 4 2 ). This initial

distribution function varies in time t′ following the absorption of a fraction of the pump pulse.

13The feature in Cu at 2.1 eV is basically the same kind of resonance (related to the upmost d-band to Fermi level

transitions) as the feature in Au at about 2.5 eV.
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The first exponential term describes the scattering with thermal electrons and the second term the

scattering with phonons. The energy loss based on the first process is added to the subsystem of

thermal electrons, while for the second process, it is added to the phonon subsystem. The energy

flow is similar to the model of Sun et al. (see Section 3.4).

Della Valle et al. [DV+12] provide the equation to calculate the non-thermal electronic distribution

function. The assumed changes of the electronic distribution function in Au are shown in Figure

16B after different time delays. The change in the optical properties of Au is related to the change

in the electronic distribution function ∆f (compare Figure 16A (d)-(f) with B). The responses of

the thermal and non-thermal quasiparticles add up to give the measured ∆T/T (see Figure 16A

(a)-(c)). The simulation is based on the model of Rosei [Ros74] to describe the upmost d-band

to Fermi level transitions in Ag.14 The agreement between theory and experiment is quantitative.

Heating effects of the lattice are not assumed to contribute to the measured response. In contrast

to the original model of Carpene, the simulations on Au by Della Valle et al. [DV+12] are based on

the experimentally estimated prefactor for the electronic lifetime τ0 = 7 fs (Fann et al. [Fan+92])

which is about one order of magnitude larger than the theoretical prediction of

τ0 =
128√

3π2 ωp

= 0.55 fs ,

see equation (17). The electron-phonon relaxation time of

τp = 1.38 ps

is used.

The model of Carpene suggests that the shape of the non-thermal part of the electronic distribution

function changes over time. The tails of the step-like distribution function decrease faster than the

region around the Fermi level. However, the equation (31) is the solution of the differential equation

which relates the changes in fnt over time to fnt times the scattering rate. This relation states that

every scattering event of a non-thermal electron decreases fnt at a certain electron energy and it

does not affect fnt at a lower energy. Thus, the possibility of a non-thermal electron to stay in the

non-thermal subsystem at a different energy level after scattering is not included in this model. This

could be the reason of the factor of 10 difference between the τ0 used and the theoretically predicted

14The model of Rosei is based on the assumption that the electronic transitions at the L-point of Ag, Au and Cu

are responsible for the measured upmost d-band to Fermi level response. The model includes several parameters to

describe the band dispersions at the L-point.
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Figure 16: Model of Carpene [Car06] and the findings of Della Valle et al. [DV+12] to

describe the time evolution of the electronic distribution function in Au and Ru. A Time-
resolved changes in transmission measured on Au at different wavelengths ((a), (b) and (c)). The
pump photon energy is 1.4 eV. (d), (e) and (f) show the simulated response based on the model of
Carpene. The response consists of two components arising from distribution changes in the thermal
and non-thermal electronic subsystems. B The electronic distribution function after (a) 10 fs, (b)
40 fs and (c) 300 fs is assumed by the model. C and D are the results of the model calculations
on Ru, which are based on one order of magnitude lower fluences compared to A and B. The time
evolution of both the electronic temperature and the electron energy density are shown. A and B

are taken from [DV+12], C and D from [Car06].

one.

In Figure 16C and D the temperature and energy density evolution of the subsystems in Ru are

presented and compared to the TTM predictions. The extracted electron-electron and the electron-

phonon thermalization times are 60 fs and 70 fs [Car06]. τp and τe-e are too close, thus the TTM

cannot describe the relaxation in such a metal and the simulations show this. The TTM predicts much

higher electronic temperatures than the extended model of Carpene. The thermalization process in

Ru is discussed in the following subsection in more detail.
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3.4.2 The model of Lisowski et al.

The model of Lisowski et al. [Lis+04; Lis05] is developed to explain the experimental results on

Ru(0001) (presented in Figure 17). The experimental technique is the time-resolved photoemission

which gives access to the electronic distribution function above the Fermi level (see Figure 17B).

For E < EF the experimental technique is not so sensitive because of the large number of electrons

contributing to the signal.

The model of Lisowski et al. [Lis+04; Lis05] is based on a strict separation between the thermal-
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Figure 17: Photoemission on Ru(0001) analyzed with the extended TTM of Lisowski et al.

[Lis+04; Lis05]. A Photoemission intensity on Ru(0001) at different time delays after excitation
(1.55 eV and an absorbed fluence of 580 µJ/cm2). The experimental data is reproduced with simu-
lated values of r(t), plotted in C. B Change in the electronic distribution function near the Fermi
level calculated from the experimental data of A. The model of Lisowski et al. is fitted to the ex-
perimental data with the fit parameter r(t). The dots in C give the found values. The experimental
r(t) is compared to the theoretically assumed r(t) (solid lines), which is the solution of the equation
(38). The figures are taken from Lisowski et al. [Lis+04; Lis05].

and non-thermal quasiparticle subsystems. The excited non-thermal quasiparticles are split apart

from the thermal quasiparticles with the time dependent variable r

Dnt(E) = r ·D(E) (32)

Del(E) = (1− r) ·D(E) , (33)

where D is the electronic density of states. The non-thermal quasiparticles operate on Dnt and

the thermal quasiparticles on Del. This is not a rigid separation as both subsystems interact by
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the exchange of energy, where r = r(t). This phenomenological splitting allows to work with two

separated electronic subsystems at different temperatures in the same metal. The non-thermal

electrons are assumed to redistribute quickly to a Fermi-Dirac distribution function. This assumption

is verified by the photoemission experiment performed by Lisowski et al. [Lis+04] and it is reasonable

from a theoretical point of view by taking the Fermi liquid theory into consideration15. These

assumptions change the problem to consist of two coupled quasi-thermal electronic subsystems at

different temperatures acting on separate parts of the electronic density of states. The differential

equations are16

∂Tnt

∂t
=

1
r γ Tnt

[
∂Uabs

∂t
− r · g · (Tnt − Tla)− γ (T 2

nt − T 2
el)/τth +

1
2

∂r

∂t
γ
(
T 2

el − T 2
nt

)]
(34)

∂Tel

∂t
=

1
(1− r) γ Tel

[
− (1− r) · g · (Tel − Tla) + γ (T 2

nt − T 2
el)/τth

]
(35)

∂Ula

∂t
= cla

∂Tla

∂t
= (1− r) · g · (Tel − Tla) + r · g · (Tnt − Tla) . (36)

On one hand, the TTM term which describes the coupling between thermal electrons and the lattice

can be used in both subsystems, thereby reducing the number of fit parameters. On the other

hand, the dynamics get more complicated because the temperature relaxation rates are related to

the relaxation rate of r (see the term which contains ∂r
∂t in the equation (34)).

The energy exchange between both electronic subsystems is supposed to be "proportional to the

energy difference in the two electronic subsystems"17 [Lis+04]

Etherm = γ (T 2
nt − T 2

el)/τth . (37)

Here τth is the electron thermalization time between the different electronic subsystems.

Note that the photoemission is also a surface sensitive technique. Additional diffusion terms within

the differential equations count for the loss of excited quasiparticles into the volume of the metal

(these terms are not considered in the equations (34) and (35), but they are considered in the fits

in Figure 17 and are found in [Lis+04]). The part of the relaxation which is not linked to diffusion

15The low values of the Sommerfeld constant (γ is split by r, typically r ≪ 1) leads to high equilibrium temperatures,

short electron lifetimes and thermalization times. The proportionality between the electronic lifetime and the electronic

temperature is given in the equation (13) and Figure 13A.
16The energy exchange term between the thermal and non-thermal subsystems does not depend on r. An energy

exchange is possible even in the case of r = 0, which is unphysical. A second noticeable problem is that the differential

equations in [Lis+04] and [Lis05] are not consistent. The term related to ∂r
∂t

is missing in [Lis05] and the energy

conservation is not achieved.
17This statement is not true because of the splitting of γ into its thermal and non-thermal parts. In the original

publications [Lis+04; Lis05] f is split instead of the density of states D (equations (32) and (33)), but in that case the

energy in each subsystem is ill defined, it is γ ·
(
T 2

el − T 2
0

)
/2 6=

∫
∞

−∞
D(E) (E − EF) (1−r) |f(E, Tel) − f(E, T0)| dE.
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are related to the temporal changes of the electronic distribution functions of the non-thermal part

∆fnl and the thermal ∆fel part of the excited quasiparticles. The parameter r is used as a time

dependent fit parameter. The rise time of r corresponds to the duration of the excitation pulse

and the time which the excited electrons need to rearrange into a Fermi-Dirac distribution function.

The amplitude of r depends linearly on the excitation density which can be seen in Figure 17C. An

additional differential equation is used to describe the time evolution of r [Lis05]

∂r

∂t
=

1

(hν)2 D(E)

∂Uabs

∂t
− r

τth

+
Tnt − T0

τsec
. (38)

r increases due to the photo-excitation of electrons (first term) and the generation of secondary

electrons (last term; time constant τsec) forming a Fermi-Dirac distribution and it decreases expo-

nentially with the electron thermalization time of τth = 65 fs [Lis05]. The photoemission intensity is

reproduced by r as seen in Figure 17C (solid lines).

Although the TTM extensions of Carpene and Lisowski et al. are to some extent phenomeno-

logic, application to experimental data show, that they can overcome the limitation of the TTM

(τe-e/τe-p ≪ 1) and determine the time evolution of the non-thermal electronic distribution function.

Thus, they can describe the electron dynamics in metals with large electron-electron thermalization

times.

3.5 Model of the linearized Boltzmann equations

The Boltzmann equations with included electron-phonon and electron-electron scattering terms is a

system of a large number of coupled differential equations. It seems to be impossible to solve this

problem analytically for every possible initial electron- and phonon-distribution functions. The TTM

can solve the problem for thermal distributions. A different simplification of the problem is to expand

the non-equilibrium part of the electronic distribution function. If ∆f is small, higher orders can be

neglected and the linearized Boltzmann equation can be transformed to a generalized Fokker-Planck

differential equation (Baranov & Kabanov [BK14]):

φ̇(ξ, t)

γ
=

∂

∂ξ

[
tanh

(
ξ

2

)
φ(ξ, t) +

∂

∂ξ
φ(ξ, t)

]
+

p(t) sinh (ξ/2)

2 cosh3 (ξ/2)
+

Ie-e

γ
. (39)

Here, ξ = (E − EF) / (kB T0), φ is the non-equilibrium correction of the electronic distribution

function according to

f(ξ) =
1

1 + exp ((E − EF) / (kB T0))
+ φ(ξ) ,
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Ie-e is the electron-electron collision integral and p refers to the non-equilibrium part of the phonon

distribution function. The parameter γ is proportional to the electron-phonon coupling constant λ

as [BK14]

γ =
π h̄ λ

〈
ω2
〉

kB T0
.

Solutions to the generalized Fokker-Planck equation are presented18 in Figure 18.

For high temperatures T0, the Fokker-Planck equation gives the energy relaxation rate [KA08;

A
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Figure 18: Model of Kabanov et al. [KA08; BK14]. A Relaxation of the electronic distribution
function φ (as a function of energy ξ) of a metal with κ1 = κ2 = 100.18 The inset presents the
energy relaxation of the electronic subsystem. After the electrons have transferred 90 % of their
initial energy to the lattice, the electrons are thermalized [BK14]. B The electronic distribution
function from the solution of the Fokker-Planck equation fitted with a Fermi-Dirac function. C &
D Energy relaxation & non-equilibrium quasiparticle density relaxation in metals with large κ1. The
dashed lines correspond to the approximate analytical solution (equation (41)). Figures A, C and D

are taken from [BK14], figure B from [Gad+10].

18The definitions

κ1 =
h̄ λ
〈
ω2
〉

λ ωD β kB T0

≈
π2 Cla

3 Cel

,

κ2 =
4 h̄2 λ

〈
ω2
〉

EF

π2 µ2
c (kB T0)3

are used. κ1 describes the average time a hot phonon survives until it is absorbed by the electronic subsystem and a

new electron-hole pair is created. κ2 describes the relative time the electrons need to thermalize. µc is the Coulomb

pseudopotential.
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BK14]

∂Uel

∂t
= −γ

∞∫

−∞

tanh (ξ/2) φ(ξ, t) dξ (40)

≈ −π h̄ λ
〈
ω2
〉
·Nqp . (41)

The last approximation holds if φ is negligible for |E − EF| < 2 kBT0, then the tanh is approximated

by a step function. In this situation the recombination rate of the quasiparticles is low and the

result of Section 2.3 (spontaneous phonon emission) is reproduced. The equation (40) additionally

includes the recombination of the quasiparticles at the Fermi level. In order to use this equation, it

is necessary to know ξ as a function of time. The differential equation (39) allows to determine ξ

numerically. Figure 18A present the solution of equation (39) for selected parameters. Simulations

which implement the equations (40) and (41) are shown in C and D.
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4 Electronic structure and optical properties of

Cu

A short optical pulse can drive the electronic subsystem into non-equilibrium. An ultrafast technique

which is sensitive to the changes in the electronic distribution function is the broadband optical

probing of electronic interband transitions with final states in the conduction band at the Fermi level.

The sharp fully filled d-band in Cu provides a source of electrons with well defined energy Ed and

the electronic transition to the states at the Fermi level is optically allowed. To be more precise, the

excitation of one d-band electron is only allowed if the final state at the Fermi level is empty because

of the Pauli exclusion principle. Therefore the optical transitions from the d-band to the Fermi level

are proportional to number of empty final states 1− f(E, T ) where the final state energy is

E = hν + Ed . (42)

hν is the photon energy. The situation is sketched in Figure 19 (left side). The number and the

distribution of the empty final states change with temperature. This affects the absorption coeffi-

cient which is a function of hν, as shown in Figure 19 (right side). The increase of the temperature

reduces the number of empty final states above the Fermi level and the absorption coefficient for

light with hν > EF − Ed as well. Photons with lower energy can only excite electrons from the

d-band into empty states below the Fermi level. The number of empty final states below the Fermi

level increases with increasing temperature resulting in an increase of the absorption coefficient for

the light consisting of lower energetic photons hν < EF − Ed.

The sketch in Figure 19 is a simplification of the real conditions in Cu. A general rule is that the

absorption of light is only possible if there is a dephasing between the electrons in the solid and the

electromagnetic wave (otherwise the electrons reemit the incoming light and the dielectric constant

is real). Dephasing is related to scattering events. The energy of the absorbed photon is not just

transferred to a single quasiparticle but to at least two quasiparticles. These processes are usually

taken into account by a damping constant (see Section 4.3.1). Another simplification in Figure 19 is

the energetically sharp density of states of the d-band. In Cu there are five d-bands and they all have

dispersions. The more elaborate optical properties related to the d-band to Fermi level transitions

are found in Section 4.3.
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Figure 19: Cu d-band to Fermi level transitions. An energetically sharp d-band provides an ideal
configuration to study the changes in the electronic distribution function at the Fermi level. The
graph on the left side shows the idealized density of states multiplied to the electronic distribution
function as function of energy relative to the Fermi level at 300 K and 400 K. The dotted line
indicates only the density of states. The right side shows the temperature dependent change in the
absorption coefficient. The increase in the number of excited electrons above the Fermi level reduces
the absorption coefficient for photons with sufficient energy to drive those transitions. Photons with
lower energy are more likely absorbed at higher temperatures because of the additional holes below
the Fermi level.

4.1 The electromagnetic response of a solid

The electromagnetic response of solids is related to their electronic structure19. The first electronic

interband transitions occur at photon energies in the infrared, visible or ultraviolett range. If the

transition is optically allowed, then electrons are excited from the initial into the final band and

photons are absorbed. The upmost d-band to Fermi level transition in Cu is an example for such a

transition (see Section 4.3). Each excited electron leaves a positively charged hole in the initial band.

At high photon energies the tightly bound electrons close to the ions can contribute to the optical

properties. In metals, semi-metals or excited semiconductors there is an additional contribution due

19Additionally, optical phonons can be excited with infrared electromagnetic radiation (if these phonons are infrared

active).
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to intraband transitions between the filled initial and the empty final states of the conduction band.

The electrons collective response to the electromagnetic field is approximated with the Drude model

(see Section 4.4).

The contributions of all optically allowed transitions to the dielectric function are additive because

all the corresponding polarization fields add up [DG02]

ǫ = 1 +
N∑

i=1

ǫ(i) . (43)

1 is the vacuum contribution and N is the number of allowed optical transitions within the solid.

The first step to identify the allowed interband transitions is to analyze the electronic structure of

the solid, which in a second step allows to determine the optical properties. If the link between

the electronic structure and the optical properties is made, then it is possible to determine the non-

equilibrium electronic distribution function ∆f using ultrafast optical pump-probe methods.

The electronic structure of Cu is known from numeric band structure calculations presented and

discussed in Section 4.2. Although Janak et al. [JWM75] already determined the dielectric function

of Cu, taking the band structure calculations into account, it is required to reproduce this result with

a simplified and adjustable model. Unfortunately, the computed dielectric function often show major

deviations from the measured experimental dielectric functions and even those differ substantially

between the various publications (e.g. compare [JC75] with [PS69]). The reasons for the deviations

are the approximations in the calculations (often temperature effects are not included), the quality

of the sample20 and so on. As a matter of fact, even recent temperature dependent band struc-

ture calculations do not properly include all the temperature-related effects (see for example in Ag:

Sundari et al. [SCT13] - although the theory is done carefully, the temperature dependencies of the

experimentally determined optical properties are not reproduced with a sufficient accuracy).

As discussed above, it can be useful to get a simplified and analytic expression for the dielectric

function with a few adjustable parameters, which are able to tune the expression that reproduces the

experimental dielectric function quantitatively at different temperatures. This analytic expression for

the optical properties is prepared by band structure approximations in Section 4.2. In Section 4.3

the analytic equation to describe the contribution of the upmost d-band to Fermi level transitions

to ǫ of Cu follows. In addition to the Drude component, this expression allows to reproduce the

experimental dielectric function and its temperature dependence up to photon energies of 3 eV. The

20Thin films for example can sustain stress and may be composed of several small grains rather than forming a single

crystal. Band structure calculations are performed for perfect single crystals at zero temperature (see Section 4.2).
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model parameters to reproduce the experimental data of the various publications are given in Section

4.6.

4.2 The electronic band structure

C

Energy (eV)D
(E
)
(s
ta
te
s/
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/a
to
m
)

Figure 20: Band structure of Cu. A The band structure of Cu computed by Janak et al. [JWM75].
B The simplified band structure is shown which is used to describe the optically driven upmost d-band
to Fermi level transitions. The upmost d-band is described by a flat band (solid blue line) or with
linear dispersion (dashed green line). The conduction band is described with cubic dispersion (yellow
dash-dotted line). The computed band dispersion between Γ and X is given as reference (dotted red
lines, reproduced from A - area sketched by a red square). C Density of states calculated by Bévillon
et al. [Bév+14]. The states are projected to the atomic wave functions in a sphere around the ions
[Tor+08]. The dotted line refers to the Fermi level.

Cu is a transition metal and has 29 electrons per atom. In a single atom the first 3 shells are fully

filled by 28 electrons. The last electron is in the 4th shell. It fills an orbital which is mostly a

linear combination of the 4s- and 4p-orbitals, influenced by 3d-orbitals (band structure calculations

based on linear combination of atomic orbitals are computed by Eschrig & Bergert [EB78]). Cu is

often used to test band structure calculation techniques. There are plenty of different band structure
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calculations on Cu with comparable results [JWM75; EB78; Bur63; DFJ68; MODS01; Wak65; Mij73;

EFN84; FC70; Bag+80; FWC75; Sno68; LSB81; Seg62; JGM81]. Differences in the calculated band

structures are mostly caused by the use of different screened potentials (the potential of the ions

screened by the first two shells). Comparing several band structure calculations, the band dispersions

differ slightly and the position of the Fermi level varies by about 0.5 eV. Some authors use experimental

results to find a reliable screened potential (see for example [JWM75]). Photoelectron spectroscopy,

studies of the optical properties and de Haas-van Alphen measurements provide further information

about the band structure. The results can be compared to the computed band structure. In order to

minimize the deviation between the computed band structure and the measured one, it is suitable to

adjust the shape of the screened potential. The experimental results are well reproduced with the self-

consistent X α potential [Sla72] which is based on two adjustable parameters. The corresponding

band structure is shown in Figure 20A. But besides the good agreement, the calculation is done

at zero temperature and it does not account for the temperature related changes in the optical

properties.

The band structure shows that eleven electrons per atom are in the bands below the Fermi level with

energies down to E − EF = -10 eV. Most bands below the Fermi level are flat (they have low band

dispersion) corresponding to 3d band dispersions. In an atom the 4s states are preferentially filled

compared to 3d states. E.g. K and Ca have electrons in the 4s shells and empty 3d-orbitals. In

analogy to this, one band starts with a 4s symmetry at E − EF = -10 eV. Another band which is

half-filled has 4p symmetry and crosses the Fermi level. The unfilled bands above the Fermi level

have spectrally broad 4s and 4p character (see [EB78; SE85] and Figure 20C). Most of the d-band

states are localized and filled (located below the Fermi level). The s-, p- and a small amount of

d-like quasiparticles are delocalized and mobile. Bévillon et al. [Bév+14] calculated a number of 1.9

free electrons per atom at room temperature.

The optical properties with photon energies up to 3 eV are mostly affected by the conduction band

electrons and the upmost d-band electrons (the lower lying d-bands contribute to ǫ1 but do not

cause much absorption; see for example [JWM75]). In order to simulate the optical properties, it is

useful to approximate the d-band and conduction band dispersions. In a simplified model of the band

dispersions an analytic expression for ǫ is obtained. The model of the upmost d-band is either done

with a delta function (blue solid line in Figure 20B and paragraph b) or with linear dispersion (green

dashed line and paragraph c). The models are intentionally simple in order to keep the amount of
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free parameters to a minimum. These parameters are then adjusted to reproduce the experimental

(see for example Section 4.6) or computed (Figure 21) dielectric function.

The conduction band is modeled with a cubic dispersion (see paragraph a). The choice of this

"unphysical" approximation is based on the fact, that the corresponding density of states is constant.

A nearly constant density of states around the Fermi level is also the result of many band structure

calculations (e.g. the calculation of Janak et al. [JWM75]) and the derivation of the optical properties

is greatly simplified by this fact. All the simplified bands are considered to be spherically symmetric.

A comparison of the corresponding density of states to the result of band structure calculations is

presented in Figure 21A.

a) Simplified conduction band

The conduction band is simplified in that way, that the resultant density of states is constant at the

Fermi level

Dc(E) = Dc . (44)

This corresponds to a cubic band dispersion

E(k) = Ec0 + r k3 . (45)

The dispersion between Γ and X is plotted in Figure 20B. The density of states at the Fermi level is

experimentally determined by the electronic heat capacity of

cV(T ) = γ · T = Dc k2
B π2/3 · T = 0.69

mJ

K2 mole
· T . (46)

measured at low temperatures [Phi71]. This gives a value of

Dc = 0.293
states

eV atom
(47)

(the value considers both spin directions). Whereas the simplified conduction band fails to describe

the whole band from the bottom at Γ to the top at X, it is a good approximation around the Fermi

level.

It turns out, that the momentum conservation is not important in the description of the upmost

d-band to Fermi level transition (Section 4.3). Thus, the simplified band structure needs to replicate

the density of states, the deviation in kF is unimportant because it does not affect the optical

properties.
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b) Upmost d-band described with a δ-peak

In this simple model the upmost d-band has zero dispersion

Ed(k) = Ed0 . (48)

The density of states of the upmost d-band reads

Dd(E) = 2 δ(E − Ed0) . (49)

The only independent parameter Ed0 is related to the onset of the absorption around 2 eV. It is

adjusted to reproduce the dielectric function in this spectral range (see Figure 20, Section 4.3).

c) Upmost d-band with linear dispersion

One needs only two free parameters to describe a spherically symmetric band with linear dispersion.

Of course this is an unphysical approximation, because at the Brillouin zone boundary the band needs

to have zero dispersion and this is not the case in this approximation. However the sharp edge in

the density of states is rendered (see Figure 21A) and electronic band structure calculations show

that the dispersion of the upmost d-band between Γ and the X-point is almost linear. The linear

dispersion reads

Ed(k) = Ed0 + a
√

k2
x + k2

y + k2
z .

The density of states of the upmost d-band is

Dd(E) =
(E − Ed0)2 V

π2 a3
.

The parameters Ed0 and a are determined to reproduce the optical properties (Figure 21B), V is the

volume of the unit cell. Two electrons per atom are in the band, this gives the maximum energy for

states in the band

Ed,max = Ed0 + a 3

√
6π2/V .

Ed,max is used to characterize the energetic separation between the d-bands and the Fermi level. This

separation is temperature dependent. There are two reasons for a temperature dependent separation

between the d-band and the Fermi level. First of all, the changes in the temperature cause the lattice

to expand and this expansion modifies the bandstructure. The effect is also known from alloys of Cu

and Au (rose gold). The color and the energy separation of the d-bands and the Fermi level change

with the concentration of Au atoms. The Au atoms are larger than the Cu atoms, so the lattice
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expands with Au concentration compared to pure Cu.

Secondly, a non-constant density of states at the Fermi level is the reason for a shift of the chemical

potential (the Fermi level and chemical potential are used as synonyms) with temperature (since

Dc is nearly constant around EF, this contribution is small). The temperature dependence of the

separation of the d-bands in respect to the Fermi level is characterized by21

EG(T ) = EF(T )− Ed,max(T ) = EG,0 + ∂EG/∂T · T . (50)

The dependence of EG on the electronic temperature Tel is theoretically investigated by Bévillon et

al. [Bév+14] at 0 K and with a fixed lattice constant. According to their result the Fermi level shifts

because of the different density of states below the Fermi level compared to the density of states

above the Fermi level. In addition the change in the electronic temperature triggers changes of the

bandstructure (e.g. bond hardening (in Au) or softening (in Bi) near the photo-induced melting

transition [Ern+09; Fri+07]). Due to the increased electronic pressure, stress is introduced into

the metal. The local electronic densities change and related to this, the electronic band structure

changes as well. With electronic temperatures in the range of 300 K up to 2000 K they surprisingly

found a quite large coefficient [Bév+14]

∂EG/∂Tel ≈ 400 µeV/K . (51)

If the electrons and the lattice heat up, then the lattice expansion reduces the electronic pressure

and the stress. Experimental results and lattice spacing dependent bandstructure calculations found

a negative change with temperature of the upmost d-band to Fermi level separation (see Table 2).

The approximate value is

∂EG/∂T ≈ -60 µeV/K .

Note that the sign is different compared to the value (51).

4.3 Upmost d-band to Fermi level transitions

In the photon energy range up to several eV, the optical properties of group 11 metals (Cu, Ag and

Au) are characterized by two different kind of electronic transitions. Light is absorbed by driving

intraband transitions in the conduction band (Drude response) or transitions between different bands.

In Cu the onset of the interband transitions is around 2.1 eV, in Au it is 2.6 eV and in Ag 4 eV. The

21The reference EG,0 is taken at T = 0 (instead of room temperature) to consider the published experimental optical

properties below room temperature.
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Data from Winsemius
et al.

Pells &
Shiga

Zallen Gerhardt Davis et al.

Method optical prop. optical prop. piezo-
reflectance

piezo-
reflectance

bandstructure
calculation

Analysed by Winsemius
et al.

Colavita et
al.

Antonangeli
et al.

Antonangeli
et al.

Antonangeli
et al.

∂EG/∂T (µeV/K) -100 -70 > -60 &
< 60

-50 -40

Table 2: Temperature dependence of the energy separation between the top of the upmost d-band
and the Fermi level. The piezo-reflectance measurements by Zallen [Zal66] and Gerhardt [Ger68]
allow to determine the change in the energy separation with change of the size of the unit cell. The
value of Davis et al. [DFJ68] results from lattice constant dependent bandstructure calculations.
The link between the temperature and the lattice expansion allows to determine ∂EG/∂T . This is
done by Antonangeli et al. [Ant+74]. The temperature dependent lattice expansion is measured by
Hahn [Hah70]. The energy shift of the d-band edge in ǫ2 is measured and analyzed by Winsemius
et al. [Win+76] and in addition the data of Pells and Shiga [PS69] is analyzed by Colavita et al.
[CMR75].

interband transitions together with the Drude related metallic reflection at lower photon energies

cause the redish color of Cu and the yellowish color of Au. Beside the differences in the positions of

the d-bands, the band structure of Ag and Au is similar to the one of Cu (Figure 20A).

The metallic state provides a good reflectivity in the spectral range of near-infrared to dc based on

the intraband transitions (metallic reflectivity; see [DG02]). This range of good reflectivity abruptly

ends at photon energies higher than the energy which is needed to excite electrons from the filled

d-bands into empty states of the half-filled conduction band around and above the Fermi level. The

reason for the steep rise of ǫ2 (see Figure 21B) is the following. The d-bands have large density of

states compared to the conduction band (Figure 21A), so if the photon energy increases by little

into the energy range where the d-band to Fermi level transitions are possible, then the number of

possible initial states increases dramatically. The higher the photon energy, the more d-electrons

contribute to the response and the more optical transitions become possible. According to these

transitions, the energy of an absorbed photon is transferred to the electronic subsystem of the metal

via excitation.

There are several models to analytically describe the d-band to Fermi level transitions. Firstly,

the most general models to describe interband transitions, the Lorentz model (gives the response of

a harmonic oscillator) or the Brendel-Bormann model [BB92] (this model assigns a "Gaussian line
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Figure 21: Density of states and dielectric function of Cu. Comparison between the band
structure calculations and the simplified model description of the band structure. A Density of
states below the Fermi level. The red dotted line, the cyan dash-dotted lines and the black line are
computed densities ([JWM75], [JGM81] and [Bév+14]). The Fermi levels in the data of Jepsen et
al. and Bévillon et al. are shifted by about 0.5 eV. The solid blue line and the green dashed line
are the density of states of the simplified bands. The dielectric function with all optical interband
transitions up to 4 eV are plotted in B (Drude is not included). The real and the imaginary part of
the dielectric function are calculated with different models (at 0 K; details in the text) and compared
to the band structure result of Janak et al. [JWM75] (red dotted line).

shape to every single mode") are not very accurate or they need plenty of parameters to describe all

possible transitions (see for example Rakić et al. [Rak+98]). More convincing is the so called critical

point model (see paragraph a) which generalizes the Lorentz model to "include the effects of k-space

integration on both lineshape and broadening parameters by changing the orders of the poles and

including phase factors" [Len+98]. The model was developed to represent the optical properties of

crystalline and amorphous Si (see Leng et al. [Len+98]). Moreover, it is able to describe the upmost

d-band to Fermi level transitions in Cu at room temperature ([RCZ11], the result is reproduced in

Figure 21B). The temperature dependence of the dielectric function is mentioned in [RCZ11] but not

described in detail. The problem is, that the electronic distribution function at the Fermi level and

its temperature dependence are not included in the critical point model. The model may reproduce

the temperature dependent shape of ǫ with the temperature dependent damping parameters, but if

the electronic distribution function is athermal, there is no rule how to modify the model to describe

the modified d-band to Fermi resonance (modified because of the different final state contribution).
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Parameter a) Critical
point model

[RCZ11]

b) δ-peak c) linear
dispersion

M yes yes yes

∂M/∂T yes yes yes

EG yes yes yes

∂EG/∂T yes yes yes

γ yes yes yes

∂γ/∂T yes no no

∆f no yes yes

free parameters at single
specific T

8 4 5

T -dependent parameters ≥ 3 2 2

Table 3: Overview over the most important model parameters of the upmost d-band to

Fermi level transitions. The table show which model includes which parameters. The critical point
model does not consider the modification of the final state distributions with temperature according
to ∆f . In order to describe the flattening of the edge in ǫ2 at 2.1 eV with increasing temperature
(see Figure 25B), the parameter γ is temperature dependent in this model. The critical point model
has 8 parameters (two extended Lorentz-oscillators). At least 3 of them are necessarily temperature
dependent to describe the published optical properties of Cu. Unfortunately Ren et al. [RCZ11] do
not describe the temperature dependence of their model parameters to compare the model predictions
to the temperature dependent optical data.

The model to describe the optical properties of the d-band to Fermi level transitions needs to include

a few physically important parameters which are listed in Table 3. The parameters which depend on

the changes in the band structure are EG (see Section 4.2) and the transition matrix element M .

At temperatures around and above the Debye temperature, the lattice spacing, the band structure

and all the mentioned parameters so far are expected to change linearly with temperature. The most

important input for the model is the change in the electronic distribution function ∆f at the Fermi

level. The change of the occupation at the Fermi level, the increased Fermi level smearing, causes

the edge in ǫ2 to flatten. Another important parameter is the damping constant γ which is related

to the dephasing process between the electron’s initial and final states and the electromagnetic field.

This work presents an analytical description of the d-band to Fermi level transitions which includes

all important parameters. The basis of this approach is the time dependent perturbation theory

(see Appendix 8.2.1) and the interaction of light and matter (Appendix 8.2.3). The model includes

the electronic distribution of the initial and the final states of the transitions. To keep the model

simple and the dielectric function analytic, the band structure is simplified according to Section
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4.2. The conduction band is given by a band with a constant density of states around the Fermi

level. The upmost d-band is represented with either a dispersionless band or a band with linear

dispersion. The electronic transitions between both bands are optically allowed. Figure 21B presents

model optical properties which reproduce the results of the electronic band structure calculation

[JWM75]. The equations to calculate the interaction of light with the electronic transitions between

the upmost d-band and the conduction band are based on the results of Section 8.2.6. Equation

(151) takes the density of states of the involved bands into account. The momentum conservation

is not considered within this model because the dephasing time is short (governed by interactions,

where a third particle (electron, phonon or impurity) takes the momentum to fulfill the momentum

conservation). At the Fermi level electron-electron interactions are suppressed compared to electron-

phonon interactions (see Section 2.6). The d-band holes are expected to have short lifetimes because

of the high scattering probability with electrons below the Fermi level (< 10 fs). However, Knorren et

al. [KBB01] found quite long d-band hole lifetimes of about 35 fs based on results from two photon

photoemission experiments (the hole lifetimes are discussed in Section 4.3.1).

a) Critical point model

The critical point model (see reference [Len+98]) generalizes the Lorentz model (see for example

[DG02]). A single critical point results in the dielectric function of

ǫ = C0 · [exp (i φ) · (E0 − hν − iΓ)µ + exp (−i φ) · (E0 + hν + iΓ)µ] . (52)

The equilibrium dielectric functions of Ag, Au and Cu are reproduced with a sum over a few single

critical points in addition to the Drude response. This model gives a better description of the optical

properties than the sum over Lorentz oscillators or the use of the Brendel Bormann model (compare

Rakić et al. [Rak+98]). The upmost d-band to Fermi level transition in Au is modeled by Etchegoin

et al. [ELRM06; ELRM07] with two critical points based on 6 free parameters (amplitudes C0,

relative positions E0 and damping constants Γ), the phase of φ = −π/2 and the orders of the poles

are µ = −1. In a similar manner Vial and Laroche [VL08] reproduce the optical properties of Au, Ag,

chromium and aluminum. The orange and violett dotted lines in Figure 21B are the result of Ren et

al. [RCZ11]. They adjusted the model parameters of three oscillators to the dielectric function of Cu

at room temperature measured by Johnson and Christy [JC72]. The upmost d-band to Fermi level

transitions in Cu are modeled with two critical points, one at 2.11 eV and a strongly damped one at

2.26 eV (see Ren et al. [RCZ11], 8 fit parameters, which are the two phases, the relative positions,
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the damping constants and the amplitudes; µ = −1 for both). The parameters are optimized to

the dielectric function at room temperature and the result is compared to calculations made at zero

temperature. The model parameter are not modified here to optimize the agreement between the

band structure ǫ and the model but with small changes a better agreement is certainly achievable.

b) Model with a δ-peak description of the d-band

The description is based on the simplified band structure which is described in Section 4.2. The

dielectric function is based on equation (151). The integration over the d-band can be performed

analytically. The upmost d-band to Fermi level transitions contribute to the dielectric function

according to

ǫ1(ν) = −2 e2 Dc

V ǫ0

∞∫

0




∣∣∣〈k′, c| ˆ̇r |k, d〉
∣∣∣
2

(2πν)2
+
∣∣〈k′, c

∣∣ r̂ |k, d〉
∣∣2

 (1− f(E))

·
(

Ed0 − E + hν

(Ed0 − E + hν)2 + (γd + γc)2
+

Ed0 − E − hν

(Ed0 − E − hν)2 + (γd + γc)2

)
dE

ǫ2(ν) =
2 e2 Dc

V ǫ0

∞∫

0




∣∣∣〈k′, c| ˆ̇r |k, d〉
∣∣∣
2

(2πν)2
+
∣∣〈k′, c

∣∣ r̂ |k, d〉
∣∣2

 (1− f(E))

·
(

γd + γc

(Ed0 − E + hν)2 + (γd + γc)2
− γd + γc

(Ed0 − E − hν)2 + (γd + γc)2

)
dE

with the Fermi-Dirac distribution function

f(E) =
1

1 + exp ((E − EF)/(kB T ))
.

The damping γ = γd + γc is described by a Lorentz function (equation (152)). ǫ1 is a symmetric

function of hν and ǫ2 is an antisymmetric function of hν.

The parameters γ, Ed0, Mcu =
∣∣∣〈k′, c| ˆ̇r |k, d〉

∣∣∣ and Mdi = |〈k′, c| r̂ |k, d〉| are adjusted to fit the

band structure result (see Figure 21B). The values are γ = 0.9 meV,22 Mcu = 1.26 · 105 m/s,

Mdi = 3.5 · 10−11 m and Ed0 = −2.18 eV.

22The fact that the electrons in the metal have finite lifetimes goes beyond the electronic structure description of

Janak et al. [JWM75]. Because of many-body effects like scattering, the particle’s self energy is complex (see e.g.

[MB15]). The damping parameter γ refers to the imaginary part of the self energy and at γ = 0 (correspond to a purely

real self energy), there is no absorption of light (ǫ2 ≡ 0), because the incident light is fully reemitted (for short pulses,

parts of the emitted light show up delayed and in the limit of continuous light, a detailed balance is established). The

Kubo-Greenwood equation (see [DG02]) used by Janak et al. provides a way to circumvent the problem of the purely

real self energy by considering the absorption of light only and neglecting the spontaneous and stimulated emissions.

Therefore, this value of γ is the result of an incomplete theory and does not have to reflect the experimental value.

With the exception of the damping parameter, ǫ2 derived by Janak et al., with its values for the joint density of states

and the matrix elements, is applicable.

69



c) Model with linear dispersion of the d-band (LD→F model)

The approximation of the upmost d-band with linear band dispersion is made in Section 4.2. The

resultant density of states provide a way to find an analytic expression for the upmost d-band to

Fermi level transition in Cu. Equations (151) and (152) give

ǫ1(ν) = −Dc
e2

ǫ0

Ec,max∫

Ed,max

(1− f(E))

Ed,max∫

Ed0

(Ed − Ed0)2

π2 a3




∣∣∣〈k′, c| ˆ̇r |k, d〉
∣∣∣
2

(2πν)2
+
∣∣〈k′, c

∣∣ r̂ |k, d〉
∣∣2



·
(

Ed − E + hν

(Ed − E + hν)2 + (γd + γc)2
+

Ed − E − hν

(Ed − E − hν)2 + (γd + γc)2

)
dEd dE

= A (M2
cu/ (2πν)2 + M2

di)

Ec,max∫

Ed,max

(1− f(E))
(
L(1)(E, hν) + L(1)(E,−hν)

)
dE (53)

ǫ2(ν) = Dc
e2

ǫ0

Ec,max∫

Ed,max

(1− f(E))

Ed,max∫

Ed0

(Ed − Ed0)2

π2 a3




∣∣∣〈k′, c| ˆ̇r |k, d〉
∣∣∣
2

(2πν)2
+
∣∣〈k′, c

∣∣ r̂ |k, d〉
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·
(

γd + γc

(Ed − E + hν)2 + (γd + γc)2
− γd + γc

(Ed − E − hν)2 + (γd + γc)2

)
dEd dE

= A (M2
cu/ (2πν)2 + M2

di)

Ec,max∫

Ed,max

(1− f(E))
(
L(2)(E, hν)− L(2)(E,−hν)

)
dE (54)

with

A = Dc
e2

ǫ0 π2 a3
= Dc

6 e2

ǫ0 V

1

(Ed,max − Ed0)3

γ = γd + γc

M2
cu =

∣∣∣
〈
k′, c

∣∣ ˆ̇r |k, d〉
∣∣∣
2

M2
di =

∣∣〈k′, c
∣∣ r̂ |k, d〉

∣∣2

L(1)(E, hν) =
E2

d0 − E2
d,max

2
+ 2 Ed0 Ed,max − 2 E2

d0 + (hν − E) (Ed,max − Ed0)

+
(
Ed0 E − Ed0 hν − E2

d0/2 + γ2/2− (E − hν)2/2
)

· ln
(

(E − Ed,max − hν)2 + γ2

(E − Ed0 − hν)2 + γ2

)
+ 2 (E − hν − Ed0) γ

·
(

arctan

(
Ed,max + hν − E

γ

)
− arctan

(
Ed0 + hν − E

γ

))
(55)

L(2)(E, hν) = γ (Ed,max − Ed0) + (E − hν − Ed0) γ ln

(
(E − Ed,max − hν)2 + γ2

(E − Ed0 − hν)2 + γ2

)

+
(
(E − hν − Ed0)2 − γ2

)

·
(

arctan

(
Ed,max + hν − E

γ

)
− arctan

(
Ed0 + hν − E

γ

))
(56)
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The parameters are adjusted to reproduce the dielectric function given by Janak et al. [JWM75].

They are found to be γ = 0.9 meV,22 Mcu = 1.07 · 105 m/s (less than 10 % of the Fermi velocity),

Mdi = 3.70 · 10−11 m (10 % of the lattice constant), Ed,max = −2.05 eV and Ed0 = −2.55 eV. The

result is plotted in Figure 21B (green dashed lines).

4.3.1 Dephasing of the d-band to Fermi level transitions

This subsection discusses the damping constant of the d-band to Fermi level transitions to reduce the

number of unknown parameters in the model describtion of the transitions. The damping constant

depends on the scattering rate of the electrons at the Fermi level and the scattering rate (the inverse

of the lifetime) of the d-band holes

γ = γd + γF .

These scattering rates include every scattering event or process which causes dephasing. At room

temperature the scattering rate at the Fermi level is determined by the electron-phonon interaction.

The dc-conductivity in the scattering time approximation reads

σDC = ǫ0 ω2
p τ(EF) ,

γF = h̄/τ(EF) .

The measured mean free path of 39 nm [Zha+04] corresponds to γF = 26.5 meV.

The transport electron-phonon coupling constant λtr is related to the conductivity above the Debye

temperature [Gri76; All+86]

σDC =
ǫ0 ω2

p

2π kB T λtr
.

In copper λtr is close to the coupling constant λ [BAP82]. Theoretical values for λ are in the range

of 0.11 to 0.15 [BAP82; Gri76; All+86; Mat98]. This gives

γF ≈ 2π kB T λtr = 18-24 meV

at room temperature (this approximation is valid in the high temperature limit).

According to the Fermi liquid theory, the d-band holes should have short lifetimes because of the

high scattering probability with other quasiparticles (τh < 10 fs→ γd > 66 meV). Line width analysis

from Knapp et al. [KHE79] of angle-resolved photoemission data yielded γd ≃ 100 meV at the top

of the upmost d-band and at room temperature. This result is in agreement to the short lifetime

scenario (note that the definition of γ in the paper differs to the definition used here by a factor of
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2).

On the other side Knoesel et al. [KHW98; KBB01] found a d-band hole lifetime of about 35 fs (γd =

19 meV) based on results from two photon photoemission experiments. Matzdorf et al. [Mat+94]

measured with high-resolution angle-resolved photoemission upper limits for the d-hole widths at

35 K. They found γd ≤ 26 meV at the top of the upmost d-band. With a similar technique, Thiry

et al. [Thi+79] found upper limits of 25 meV and 50 meV at the top of the d-band at two different

points of the Brillouin zone (W and X). These measurements were performed at room temperature.

Gerlach et al. [Ger+01] report 29 meV around the X point at room temperature. A systematic

test series to determine the temperature dependence of the d-hole decoherence time is made by

Petek et al. [PNO99] also around the X point. The result is a decreasing decoherence time with

increasing temperature below the room temperature. At room temperature the damping constant

is γd = 33 meV (similar measurements on Cu(111) and Cu(110) result in much lower lifetimes

corresponding to bigger damping constants [Pet+00]). Possible reasons why the d-band holes may

scatter less at other holes or phonons are because of their large mass, their localization, the low

spatial overlap and/or the small scattering matrix elements. Simulations are made to determine

the hole lifetimes (a few of them are tabled in [ZCE03]). The results ([Cam+00; Zhu+01; ZCE03;

Mar+02; Ger+01]) span a broad range from 18 fs up to 99 fs (γd = 7-37 meV) for the d-band hole

lifetime. The lifetime’s wave vector and energy dependence based on the calculations of Zhukov et

al. [Zhu+01] is reproduced in the Figure 22.

To sum it up, the line width of the upmost d-band to Fermi level transition is in the range of

γ ≈ 30-60 meV

at room temperature.

4.4 Drude model

The collective response of conduction electrons to electromagnetic waves is described by the Drude-

Sommerfeld model [DG02]. The dielectric function depend on the photon energy, it is

ǫ1(ν, T ) = − (h̄ωp)2

(hν)2 + γD(T )2
(57)

ǫ2(ν, T ) =
(h̄ωp)2 · γD(T )

(hν)3 + hν · γD(T )2
, (58)
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Figure 22: Lifetimes of the holes in the upmost d-bands in Cu. The d-band hole lifetimes are
simulated by Zhukov et al. [Zhu+01]. The k-dependence of the hole lifetimes shows that the longest
lifetimes appear in the upmost d-band states at the X-point. The graph is taken from [Zhu+01].

ωp is the plasma frequency which is the resonance frequency of the collective electron oscillation and

depends on the electron density. γD is the dephasing rate23 of the quasiparticles in the metal and

it is linear dependent on the temperature (Ohm’s law) around and above the Debye temperature

(T & ΘD)

γD(T ) = γD,0 + ∂γD/∂T · T . (59)

The higher the temperature, the more phonons are available to scatter on. The temperature depen-

dence of ǫ is sketched in Figure 23B. The dephasing can also occur from electron-electron scattering

and electron-impurity scattering events.

4.5 Electronic transitions at hν > 3 eV

The dielectric function of Cu above hν = 3 eV and below 6 eV is characterized by two prominent

features. At room temperature those features are at about 4.5 eV and 5 eV which is clearly seen in the

experimental data measured by Pells and Shiga [PS69; Pel67] (Figure 24A). It is seen in the figure

that the peak position, the width and the strength of the features change with temperature. Janak

et al. [JWM75] related the peak at 4.5 eV to transitions in the vicinity of the L-point and the feature

23γD is not exactly the sum of the scattering rates of the excited quasiparticles (electron & hole), because not every

scattering event induces a dephasing with the electromagnetic wave. Especially electron-electron scattering events do

not fully contribute to the dephasing.
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Figure 23: Optical properties of the conduction electrons - Drude model. A The metallic
conductivity gives a large negative ǫ1 at low frequencies. The absolute values of ǫ1 and ǫ2 decrease
with increasing photon energy. The width is related to the temperature dependent scattering rate
γ(T ), γ increases with temperature. In B the temperature dependence of the dielectric function is
shown. The temperature change has a higher impact on the imaginary part of the dielectric function
in comparison to the real part.

at 5 eV is known to be related to "temperature-sensitive transitions between nearly-free-electron-like

bands". The peaks are affected by changes in the electronic band structure. These changes are

triggered by the linear expansion of the lattice with increasing temperature. It is reasonable to

assume that the parameters depend on temperature linearly.

The optically allowed transitions between a filled state or band and an empty state or band are often

described with a Lorentz oscillator [DG02]. The optical properties of a Lorentz oscillator are

ǫ1(ν) =
E2

os

(
E2

res − (hν)2
)

(
E2

res − (hν)2
)2

+ (hν)2 · γ2
o

, (60)

ǫ2(ν) =
E2

os · hν · γo(
E2

res − (hν)2
)2

+ (hν)2 · γ2
o

. (61)

The parameters are the plasma frequency or oscillator strength

Eos(T ) = Eos,0 + ∂Eos/∂T · T , (62)

the resonance frequency

Eres(T ) = Eres,0 + ∂Eres/∂T · T (63)
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Figure 24: Temperature dependence of the high frequency dielectric function of Cu. The
reflectivity of bulk Cu (5 mm grain size) is measured at different input angles and polarizations
according to the method of Beattie and Conn [Bea55; BC55] which allows the reconstruction of
the dielectric function (dots in A, measured by Pells and Shiga [PS69]). The d-band to Fermi level
transitions and the Drude responses are reproduced with the LD→F and the Drude models (thick
lines; the models are described in Section 4.3 and 4.4, parameters listed in Table 5). The transitions
at higher photon energies are modeled with two temperature dependent Lorentz oscillators (thin
lines). The corresponding real part of the dielectric function is plotted in figure B, the parameters
are presented in Table 4.

and the damping constant

γo(T ) = γo,0 + ∂γo/∂T · T . (64)

Two temperature dependent oscillators can describe the features at 4.5 eV and 5 eV in Cu (thin lines

in Figure 24A). The parameters are used in a global fit which considers all data at every temperature

and minimizes the absolute deviations. Contributions from the d-band to Fermi level transitions and

intraband transitions of the conduction band are subtracted. The resultant parameters are listed in

Table 4.

The fits allow one to deduce the contribution of the transitions at 4.5 eV and 5 eV to the optical

properties at lower photon energies (e.g. hν < 3 eV). The contribution to ǫ2 below 3 eV is negligible.

However, ǫ1 is affected by these additional oscillators (their contribution to ǫ1(hν < 3 eV) is about

1). This contribution decreases with increasing temperature. The relation is

ǫ∞
1 (T ) = ǫ∞

1,0 + ∂ǫ∞
1 /∂T · T = 0.94− 6.06 · 10-4 · T .
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Oscillator Eos,0 (eV) ∂Eos/∂T

(meV/K)
Eres,0 (eV) ∂Eres/∂T

(µeV/K)
γo,0 (eV) ∂γo/∂T

(µeV/K)

1 0.1791 2.24 4.738 -474 0.1083 595

2 4.751 -2.64 5.172 -109 1.247 -413

Table 4: Parameters of the Lorentz oscillators and their temperature dependence. The
dielectric function of Cu in the range between 3 eV and 6 eV is reproduced with two Lorentz oscillators.
The parameters change linearly with temperature.

This holds well between 77 K and 575 K.

4.6 Application of the model to the published optical data on Cu

All contributions to the optical properties of Cu up to about 3.5 eV are discussed in the previous

sections. These contributions are all additive, summing up to

ǫ1 = 1 + ǫDrude
1 + ǫLD→F

1 + ǫ∞
1 , (65)

ǫ2 = ǫDrude
2 + ǫLD→F

2 . (66)

These equations are tested on the published temperature dependent dielectric function data. The

parameters of the best fits are listed in Table 5. The first test of the data of Pells and Shiga is

already presented in Section 4.5 Figure 24. The temperature dependence of the Drude component

and the temperature dependence of the upmost d-band to Fermi level transitions are assumed to be

linear in this large T -range in question.

The second test is the application of the model to the data of Hanekamp et al. [HLB82]. They

used a similar technique compared to Pells and Shiga (ellipsometry) to determine the dielectric

function of Cu. The dielectric function is presented in Figure 25 together with the best-fit curve

based on equations (65) and (66). They further tested the effective error of several systematic error

sources, for example the effect of oxygen monolayers on the Cu surface. The result is an almost

constant relative error within the test range. The fits are performed in this respect by weighting

the data with its reciprocal absolute values. The measured optical properties of a single sample at

different temperatures is considered together in one global fit to minimize the deviations between

the experiment and the model.

Further tests are on the data of Roberts [Rob60] and Johnson & Christy [JC75]. Roberts measured

two different bulk samples with different grain sizes (0.1 mm and 1 mm) in an ellipsometry-setup.

The energy resolution was rather low compared to the other experiments. Johnson & Christy [JC75]
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Figure 25: Dielectric function of the Cu-surface (110). The optical properties are measured with
ellipsometry by Hanekamp et al. [HLB82] at three different temperatures. The measured amplitude
component Ψ and the phase difference ∆ allow to calculate the real (A) and imaginary part (B)
of the dielectric function (dots). The dielectric function at all temperatures is fitted in a global fit
procedure with the equations (65) and (66) (lines). The found parameters are listed in Table 5.

measured the reflectivity of optically thick films and the transmission through a thin semitransparent

film (see Figure 26). Different films might have slightly different optical properties as showed by

Savaloni et al. [SK05] and similar on Au [Thè70] and Ag [DT71] thin films. Stress in the film because

of the different thermal expansion coefficients of the substrate and the film can influence the result,

especially the temperature dependence of the parameters (the lattice expansion may be triggered by

the substrate).

4.7 Thermomodulation spectroscopy

Even more challenging than describing the equilibrium dielectric function is the fit of thermomod-

ulation data. In thermomodulation experiments the temperature is periodically modulated. The

temperature related changes of the reflectivity and transmission through thin films is detected. The

main advantage of the modulation technique is the higher sensitivity to temperature changes, which

gives higher accuracy. The disadvantage of this technique is, although the changes in R and T are

of high precision, equilibrium ǫ1 and ǫ2 are needed to obtain ∆ǫ1 and ∆ǫ2.

Thermomodulation experiments were performed by Rosei and Lynch [RL72] on Cu. The thin semi-
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authors Hanekamp
et al.

Roberts Johnson
&

Christy*

Pells &
Shiga

Rosei &
Lynch

Rosei &
Lynch

published (year) 1982 1960 1975 1969 1972 1972

sample bulk
(110)-
surface

bulk films, diff.
thick-
nesses

bulk thin film thin film

technique ellipso-
metry

ellipso-
metry

R & T of
thin films

ellipso-
metry

thermo-
modulation

thermo-
modulation

range of T (K) 295 - 600 90 - 500 78 - 423 77 - 920 120 - 128 350 - 374

h̄ωp (eV) 9.99 9.49 9.27 [10] 9.61 9.90

γD,0 (meV) 18.8 25.8 62.3 51.2 [80] [-10]

∂γD/∂T (µeV/K) 70.5 60.0 133.3* 113.2 33.3 33.3

Mcu (105 m/s) 1.04 0.77 0.94 1.26 1.14 0.77

EG,0 (eV) 2.143 2.127 2.026* 2.128 2.1496 2.1065

∂EG/∂T (µeV/K) -70.1 -70.4 47.0* -36.0 -0.2 -10.2

ǫ∞
1,0 [1] [1] [1] (0.94) [1] [1]

∂ǫ∞
1 /∂T (10-4/K) -9.53 14.6 5.98* (-6.06) [-1.06] [-0.201]

Table 5: Fit parameters of the fits to the published temperature dependent optical properties

of Cu. For the fits the equations (65) and (66) are used to reproduce the experimental data measured
by Hanekamp et al. [HLB82], Roberts [Rob60], Johnson & Christy [JC75], Pells & Shiga [PS69] and
Rosei & Lynch [RL72]. In all fits the matrix element Mdi = 3.85 · 10−11, the d-band bandwidth of
EBW = Ed,max−Ed0 = 0.5 eV and the damping constant γ = 30 meV are kept constant. The values
in round brackets are taken from the data analysis in Section 4.5. The square brackets indicate
values which are less reliable because the fits are not sensitive to those values. A very sensitive
technique to determine the changes of the optical properties with increasing temperature is the
thermomodulation which is described in Section 4.7. *) The optical properties taken from Johnson
& Christy are determined from reflectivity and transmission measurements on different films in air.
The strain in those annealed films may be responsible to the different onset of the upmost d-band
to Fermi level transition and that this value decreases with increase of the temperature (all other
measurements have shown an increase with increasing temperature). All temperature dependencies
determined in the fit on this dataset are less reliable compared to the parameters of the other films.
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Figure 26: Optical properties of Cu films. Johnson and Christy [JC75] measured the reflectivity of
opaque films and the transmission through thinner semitransparent films at different temperatures.
The data of different samples are taken to determine the dielectric function, the result is shown
as dots in A and B. The experimental dielectric function is modeled with equations (65) and (66)
(lines). The parameters are listed in Table 5.

transparent films were "evaporated with an electron gun or a hot filament in a vacuum" [RL72]. They

measured two different films, one at 120 K and the other at 350 K. The dissipation of a periodically

applied current (120 kHz) in combination with a coupled heat bath modulates the temperature of

the sample in the experiment. The measured changes in R and T are presented in Figure 27A

and B. The graphs in Figure 28A and B compare two ways to determine ∆ǫ from the measured

∆R/R = (δR −R)/R and ∆T/T . The first way is to use the published dielectric function of Pells

and Shiga [PS69] to calculate R and T (use of the Fresnel equations [DAP94a; DAP94b], they give

R(ǫ) and T (ǫ)). The modulated δR and δT give the modulated δǫ in a second step (blue crosses in

the figure).

The second way is to fit ∆R/R and ∆T/T with a model which is known to reproduce ǫ1 and ǫ2

and their temperature dependence for differently prepared and processed samples (e.g. the model

needs parameters to consider the strain of thin films on substrate, different grain size and surface
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Figure 27: Thermomodulation of R and T and the related change in ǫ of Cu. A and B show
∆R/R and ∆T/T at two different temperatures measured by Rosei and Lynch [RL72] (crosses).
∆R/R and ∆T/T are most pronounced in the region of the d-band to Fermi level transitions at
2.1 eV. The width of this feature is related to the width of the Fermi smearing (∝ kB T ). The
thermomodulation data is reproduced based on the optical properties determined by the equations
(67) and (68) (lines), the parameters are listed in Table 5.

roughness). It is

∆R/R =
R(δǫ)−R(ǫ)

R(ǫ)
, (67)

∆T/T =
T (δǫ)− T (ǫ)

T (ǫ)
, (68)

∆ǫ = δǫ− ǫ .

δǫ and ǫ are determined with the equations (65) and (66). The model parameters are adjusted

to reproduce the experimental data which is presented in Figure 27 (solid lines). The temperature

increase caused by the applied current is a fit parameter, the results are a temperature increase of

8.2 K in the film measured at the low temperatures and 24.4 K in the other film at high temperature.

The thickness of the films are modulated

d(T ) = 45.5 nm ·
(
1 + 2.58 · 10−6/K · T

)
, film at 120 K

d(T ) = 31 nm ·
(
1 + 2.34 · 10−5/K · T

)
, film at 350 K .

The used lattice expansion coefficients are close to the ones measured at a bulk sample by Hahn

[Hah70]. At 120 K the relative bulk lattice expansion is about 1.2 · 10−5/K and at 350 K it is
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1.7 · 10−5/K.

The corresponding ∆ǫ are the black lines in Figure 28A-D. The fit model allows to decompose the

Figure 28: Thermomodulation of ǫ in Cu. The changes in R and T (Figure 27) allow to reconstruct
the change in the dielectric function ∆ǫ. Rosei & Lynch did this based on equilibrium values of ǫ

from Pells & Shiga [PS69]. ∆ǫ2 (presented in A and B) is determined at each measured photon
energy (blue dots). In addition the graphs A to D show ∆ǫ from the fits to ∆R/R and ∆T/T (black
lines). They partly consist of four different components which are described in the text.

response into its components. The result show that the change in EG (red dash-dotted line) is not

important at low temperatures but at higher temperatures. ∆f at the Fermi level affects the signal

around 2.1 eV (blue dotted line). Temperature induced excess electrons above the Fermi level lower

the transition probability at photon energies above the energy of the separation between the upmost
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d-band and the Fermi level (hν > 2.1 eV, where ∆ǫ2 is negative) and excess holes below the Fermi

level increase the transition probability at hν < 2.1 eV (positive values of ∆ǫ2). The temperature

dependence of the Drude component (∆γD, magenta dashed line) is already known from Figure 23.

∆ǫ∞
1 represent the changes in higher energetic transitions (green solid line, see Section 4.5).

82



5 Time-resolved broadband spectroscopy of Cu

thin films

The pump-probe technique is an experimental technique to measure the dynamical properties of

single atoms, few- or many-particle systems. The idea behind is to excite the system with the

so called pump pulse and to record the resulting changes of the sample by using the probe pulse.

Possible observations of certain processes are limited by the pulse duration of the pump pulse. If the

duration of the pump pulse is longer than the rise and relaxation time of a process, it is not possible

to investigate the process. The time resolution which was used for measuring the response of the

sample is limited by the pulse durations of the pump and the probe pulses. The pump pulse excites

the system into a non-equilibrium state and therby deposits the energy into the system. At the

beginning, the energy is usually located in the electronic subsystem followed by the thermalization

with other degrees of freedom (e.g. phonons or spins). These relaxation processes are recorded by

the probe pulse, which is delayed with respect to the pump pulse. Different kinds of probe pulses are

possible (e.g. light, x-rays, electrons) to gain information about the non-equilibrium state. These

pulses can be reflected, diffracted, scattered, absorbed and/or move through the excited sample.

This can result in a change of the amplitude, the phase, the beam divergence and direction, the

polarization, the pulse length and shape, the frequency, etc. In addition the probe pulses can be

used to emit electrons (in time-resolved photoemission experiments) or to break molecular bonds.

All the information about the non-equilibrium state is recorded as a function of time delay between

the pump- and the probe-pulses.

5.1 Setup of the NIR-pump and broadband-optical-probe setup

In an all-optical pump-probe setup the sample is pumped and probed with optical pulses. A broadband

probe continuum allows to measure the time-resolved response of the sample by recording the optical

properties of the non-equilibrium state after excitation. In solids visible light probes mostly the

charged quasiparticles which undergo interband transitions. Such electronic interband transitions are

probed to gain information about changes in the population of the electronic states, the electronic

distribution function, the lifetimes of the electronic states, etc. In Subsection 5.1.1 the generation of

ultrashort optical near-infrared (NIR) pulses is described. Subsection 5.1.2 gives information about
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the energy- and time-resolution of the experimental system. The experimental setup, which was

used to perform NIR-pump and broadband-probe laser spectroscopy in solids, is presented in the

Subsections 5.1.3 and 5.1.4. In such experiments it is important that the amount of energy is known

which is deposited in the solid by the absorption of the pump pulse. The excitation density is used

for the estimation of the maximum heating of the sample, cw-heating effects, the maximum number

of excited quasiparticles and the amount of energy which is necessary to drive phase transitions, etc.

The equations to determine the excitation density are given in Subsection 5.1.5.

5.1.1 The laser system

Ultrashort laser pulses are generated by a commercial temperature-stabilized mode-locked titanium-

sapphire (ti:sa) laser system. The laser system is manufactured by Coherent Inc. (Santa Clara, USA)

and it consists of a diode-pumped continuous wave (cw) laser for pumping the ti:sa crystal of an

oscillator system (the product name is "Micra"). The pump laser (named "Verdi") is a diode-pumped

Nd:Vanadate crystal (Nd:YVO4) operating at 1064 nm. A lithium triborate crystal is temperature

tuned to frequency double the 1064 nm laser light via type I phase matching condition. The doubled,

532 nm light leaves the Verdi cavity and enters the cavity of the oscillator. The output is 5 W with

a noise level below 0.03 % [Coh10].

The oscillator is designed to passively stabilize the mode-locked operation. Therefore modes with

different frequencies are phase locked to form ultrashort pulses with a repetition rate of 76 MHz

given by the length of the cavity. The ti:sa crystal acts as a Kerr lens for high photon densities.

The Kerr lens is a third order non-linear effect and is therefore proportional to the intensity of the

electromagnetic wave. The short laser pulses are more strongly focussed because the photon densities

are higher compared to the cw-laser mode. In the design of the laser cavity smaller foci gain more

power from the population inversion than large foci. The mode-locked operation is therefore preferred

and stable in this cavity. In addition, the ti:sa crystal self-phase modulates the short laser pulses and

the laser bandwidth is increased by the third order non-linear effect (also proportional to the photon

density) for the generation of shorter pulses. The pulses are kept short with a prism compressor

being part of the cavity. It reduces the chirp on the pulses which has its origin in the dispersive

optics inside the cavity. The laser light is not fully reflected by one cavity mirror and an output

of approximately 500 mW is achieved. The prism compressor is adjusted to provide operations for

pulses with a bandwidth of 40 nm centered at 800 nm [Coh07]. The Micra operates at 76 MHz and
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produces output pulses of less than 10 nJ. The high repetition rate limits the application of the laser

to spectroscopy on samples with a fast recovering time (good thermal contact to the heat bath) and

to spectroscopy at low excitation densities.

A regenerative amplifier (Coherent "RegA" Model 9000) is applied to overcome the limitations of

the oscillator. The amplifier consists of a cavity with a ti:sa crystal as active medium. The crystal is

pumped with a 10 W Nd:YVO4-Laser described above. A switchable Q-switch based on the acousto-

optic effect prohibits the cw-lasing inside the cavity. The Q-switch stops operation periodically for

hundreds of nanoseconds. These timings are electronically controlled, the repetition rate is usually

tuned to 283 kHz. The cavity dumper, a second acousto-optical crystal, uses a short acoustic pulse

to inject a single laser pulse from the oscillator in a double pass configuration. This happens during

the time where the Q-switch is off. Each round trip the pulse gets amplified in the ti:sa crystal. After

approximately 28 round trips the cavity dumper ejects the amplified pulses. To prevent non-linear

effects in the laser crystal, the oscillator pulses are stretched using a grating before entering the

amplifier [Coh97]. The pulses which have left the amplifier are compressed by a grating compressor

to a pulse duration of approximately 50 fs. The pulse energy is 5 µJ, the central wavelength is 800 nm

and the spectral width is 30 nm.

5.1.2 The energy- and time-resolution

The uncertainty principle states that the light pulses have to cover a set of different wavelengths

(usually the wavelengths are close together in a continuous spectral range). The shorter the pulses

are, the larger the minimum spectral range to cover. The pulses which have the highest compression

in time and energy are gaussian distributed (see the inset on the Figure 29 and [DR06]). The

uncertainty relation is

∆ν ·∆t ≥ 2 · ln (2)/π . (69)

The region above the blue line in Figure 29 is physically possible. Phase delays between different

spectral components of the pulse (chirp) are the reason for a lower time resolution compared to the

theoretically possible time resolution of the given spectral shape and width.

5.1.3 The time-resolved broadband spectroscopy

This section introduces the time-resolved broadband spectroscopy which is used to measure the

dielectric function of thin films time-resolved after excitation with an ultrashort laser pulse. The
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Figure 29: Uncertainty principle and spectral width of gaussian pulses. The uncertainty rela-
tion restrictes the maximum time resolution at a given energy resolution (minimum pulse duration-
bandwidth product, blue line). The amplified laser system operates at the point of the red cross.
The pulses are close to the minimum pulse duration-bandwidth product of gaussian pulses. The
system is a compromise between energy- and time-resolution. The inset show the spectrum of the
laser system (red solid line) which is described by a gaussian curve (green dashed line). The spectral
width is defined as the full width at half of the maximum of the gaussian (black line).

NIR pump and white light probe setup is designed to operate with a pulsed laser of a few hundred

kHz repetition rate, perfectly matching the laser system described above. The input pulses have a

negative chirp to finally provide laser pulses of 50 fs duration in the white light generating sapphire

crystal (probe) or in the sample (pump).

The setup is schematically presented in Figure 30. Most elements used are common in an all-optical

pump-probe setup. The laser pulse is split by the first polarizing beamsplitter cube (PBSC1) into

the pump and into the probe pulse with adjustable power ratio (angle of the λ/2).

Time delay and modulation unit A stage (Stage1) is used to control the time delay between

the pump and the probe pulses. The repetition rate of the laser system is high enough to perform

measurements in fast scan mode, which is realized with a periodically driven shaker. The shaker

modulates the time delay between the pump and the probe pulses in the double pass configuration,

which consists of the PBSC3, a λ/4, a retroreflector R2 and the endmirror M6. The shaker operates

with a displacement amplitude of 1.2 mm which gives a range in time delay of 32 ps (8/c · 1.2 mm =

32 ps). The frequency of the modulation is about 20 Hz, corresponding to 14000 laser shots during
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is mostly filtered by a dielectric mirror (DM) and damped. The white light pulses are guided with

reflective optics to keep the chirp as low as possible. The pulses are collimated and refocussed with

off-axis parabolic mirrors (PM1 and PM2) (lenses introduce dispersion and chromatic aberation).

The diameter of the foci on the sample is smaller than 50 µm for all spectral components of the

white light. Despite the fact that no chromatic abberation is introduced to the white light pulses

after the sapphire crystal, the foci are slightly separated on the sample (much less than 50 µm).

The generation of the white light is a third order non-linear process. The noise of the white light

is at least cubic to the noise of the amplifier. The noise can be reduced via differential detection,

where each white light pulse is split by a broadband beamsplitter (50/50BS) into two pulses with

approximately the same intensity. The first pulse called "Reference" (lower beam) measures the

sample’s properties before the pump pulse arrives and the second one ("Probe", upper beam) probes

the sample’s properties under the influence of the pump pulse. Both pulses are detected on separate

diode arrays. The signals from same photon energies are electronically subtracted and afterwards

digitalized in the A/D converter of the data acquisition board.

Detection unit The detection unit is a homemade prism-spectrometer with a very fast read out.

The beam is coupled into the prism at the Brewster angle. The prism splits the white light into it’s

spectral components. An array of 31 equivalent silicon diodes on reverse voltage linearly respond

to the incoming light (Diode Arrays). Each diode detects the light in a different wavelength range.

The response of the diode generates a current which gets amplified and finally digitalized in an

A/D converter. Each diode has its own amplifier, the probe and the reference signals are subtracted

electronically and the combined signal is the input of an A/D converter of a commercial multi-channel

measure card. The measure card is triggered by the shaker and samples with the frequency of the

regenerative amplifier. The wavelength range between 450 nm and 900 nm with a sub-100fs time-

resolution is covered by this setup. The time resolution is basically given by the pulse duration of

the output of the amplifier, it may slightly increase during the phase modulation in the sapphire

crystal. The setup switches between reflection and transmission geometry by moving mirror M13

with Stage2. Both geometries are adjusted in a way, that the same spectral parts of the white light

focus on the same diode. The mirrors M9-12 are used to steer the beams through the prism at the

diode arrays. L3 and L4 are achromats which refocus on the detector to achieve the best possible

wavelength resolution.
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Pump modulation unit The basic optics of the pump modulation unit are L1 to focus the pump

onto the sample (about 120 µm) and M3 which is used to optimize the spacial overlap between pump

beam and probe beam in the sample. Special improvements to diminish the low frequency noise,

which is mostly caused by the shaker, are made by performing additional reference measurements.

An additional reference measurement is recorded using a lockin technique. The highest possible

modulation frequency is half the frequency of the laser repetition rate, therefore the best possible

modulation is the modulation with a frequency, where every second pump pulse is cut out. An

electro-optic modulator (EOM) or Pockel’s cell is tuned to change the polarization of every second

pulse by 90◦. An analyzer (PBSC2) is used to filter these pulses. The detector possess a high

enough bandwidth to subtract the signal measured without excitation from the signal measured with

excitation. In contrast, a mechanical chopper can only reduce the noise at very low frequencies or

slow drifts of the laser beam, which arise from the shaker. In the special configuration of cutting the

pump pulses with a mechanical chopper during every second shaker period, it is possible to reduce

the noise arising from the mechanics of the shaker. The chopper can only be used, if the sample

does not show significant steady state heating under influence of the train of many pump pulses.

In the case of pronounced heating the chopper opens and the sample slowly heats up. After the

chopper closes the sample cools down. In this case, the reference measurement is taken at a different

temperature.

5.1.4 Setup calibration

The shaker, the detector and the spot sizes have to be calibrated in the setup.

Energy calibration The wavelength or photon energy of the light detected on each element of the

diode array is determined in the energy calibration procedure. Different bandfilters are introduced

into the white light to filter out small fractions of the spectrum. The filtered light arrives at one

or two diodes of the detector. This procedure allows the direct calibration of a few channels. All

other channels are calibrated by extrapolation. In a fit procedure the input angle of the light into

the prism is varied under consideration of the refraction of the prism, the distance to the detector

and the calibrated channels. The fit procedure results in the calibration of all channels.
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Time calibration The shaker produces a periodical time delay (sinusoidal). This periodical time

delay is calibrated with the mechanical delay-stage, which can be moved in calibrated steps. The

transient of a sample with high signal to noise ratio is measured at different stage positions. The

peak- or an edge-position of the transient give a good reference point. This position is related to

the calibrated time steps of the stage. All the data points of a transient are assigned to the different

time delays by extrapolation of the calibrated time steps with sinus functions.

Spot size calibration The foci of the pump and probe beams are measured at the sample’s position

with a CCD-camera. The known pixel size allows to reconstruct the gaussian beam profile and to

determine the full width at half maximum of it. The white light pulses are measured with different

bandpass filters. The spot sizes are below 50 µm at every measured wavelength.

5.1.5 Excitation density calculation

A rough estimate of the excitation power can be achieved by subtracting the power of reflected and

transmitted light from the power of the incoming light. This method overestimates the absorbed

power because the scattered light is not taken into account. If the material has high reflectivity

and the surface is grainy (grain sizes in the range of the wavelength of the light or larger), then the

absorbed power is lower compared to the estimated value. This method may thus fail on metals in

the infrared range. In Cu the reflectivity below hν = 1.7 eV is above 95 %. If the optical properties

of the material are known, then R and T are calculated with the Fresnel equations and the thin film

equation [DAP94a; DAP94b]. The absorbed excitation density reads

Ūabs = F · (1−R− T ) /d , (70)

d is the light penetration depth of the bulk sample or the thickness of the film. The fluence F is

F =
P

f · π/4 · σ2
FWHM

,

P denotes the averaged power, f is the repetition rate of the laser and σFWHM the full width at half

maximum of the gaussian beam profile inside the sample. The energy density absorption rate follows

the temporal profile of the pump pulse, it is

∂Uabs

∂t
= Ūabs ·

2
√

2 ln (2)

σFWHM

√
2π
· exp


−1

2

(
2
√

2 ln (2)

σFWHM

· t
)2

 .
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5.2 Dynamics of R and T

Thin copper films (24 nm thick) are measured with an ultrafast pump- and broadband-probe tech-

nique, which is described in the Section 5.1. The sample is excited with laser pulses centered at

1.55 eV and with a pulse duration of 50 fs. The pump pulses can excite electrons from the occupied

states of the conduction into the empty states of the conduction band only. The full width at half

maximum of the pump spot at the sample’s position is 160 µm, which is more than two times the

size of the probe spot. The excitation fluence is varied to span nearly two orders of magnitude in

excitation density. These fluences between 530 µJ/cm2 and 16.7 mJ/cm2 are sufficient to transiently

heat up the excited volume of the sample by 3 K at the lowest excitation density and up to 90 K at

the highest excitation density.

The dielectric function consists of a real and an imaginary part. Although they are related via

Kramers-Kronig (see for example [DG02]), it is advantageous to measure the optical properties in

two different configurations, in the reflection and the transmission geometry. The Fresnel equations

and the thin film equation connect ǫ with (R,T ) [DAP94a; DAP94b]. This allows us to determine

the dielectric function directly, where (ǫ1,ǫ2) are varied to reproduce (R,T ) at each wavelength. The

changes in reflectivity are measured subsequently to the changes in transmission at each fluence

to ensure that both datasets are measured under the same pumping conditions. The probe pulses

spanning one octave in frequency cover most of the dynamics around the upmost d-band to Fermi

level transition. The chirp (the higher frequency components of the pulse are delayed compared to

the lower frequency components because of lenses or windows in the beam path) of the white light

pulses is corrected in the data analysis procedure. It is determined by the amount and the dispersion

of the transparent media, where the probe beam has passed through. The recorded relative changes

in R and T are presented in Figure 31. Although the pump pulses excite the electrons only within

the conduction band, ∆R/R and ∆T/T are mostly related to changes of the interband transitions

between the upmost d-band and the Fermi level. This is seen as the pronounced feature around the

onset of the interband transitions at ≈ 2.1 eV. After excitation, the local minimum of R at 2.2 eV

is reduced at all time delays (compare inset on Figure 31A). The local maximum at 2.6 eV is much

less affected. In transmission the maximum at 2.15 eV and the kink at 2.35 eV are red shifted (inset

on Figure 31B). The main reason for these signals are the changes in the electronic distribution near

EF, which affect the transition probability from the upmost d-band to the Fermi level, as already
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Figure 31: Recorded relative changes in R and T of a thin copper film (Ūabs = 99 J/cm3).

The measured signal is pronounced around the interband transitions from the upmost d-band to the
Fermi level. The signals increase during the first 350 fs and partially recover within the following 3 ps
to an offset value. Note the different zero levels in both graphs. A presents the measured signal
in the reflection geometry ∆R/R. The separation between the upmost d-band and the Fermi level
is close to the zero crossing of the bipolar response. B The minimum in ∆T/T corresponds to the
separation between the upmost d-band to Fermi level.

discussed in Section 4.3. The structure in the optical properties which is related to these transitions

smears out as a consequence of the changes in the electronic distribution function, ∆f , at the Fermi

level.

The time evolution of the spectral shape is analyzed first by normalization of the spectra to the

maximum change at each time delay. A change of the spectral width over time allows to distinguish

whether the signal is based on the change in the matrix element, on an energy shift or on a change in

the characteristic width of the measured feature. The result is presented in Figure 32A and B. The

relaxation of the spectral shape of ∆R/R and ∆T/T shows a characteristic narrowing in time. This

spectral narrowing is related to the upmost d-band to Fermi level transitions (see Figure 32C and D)

and has its origin in the spectral width of ∆f at the Fermi level (Section 4.3). If the electrons are in

thermal equilibrium, this the spectral width of ∆f is expected to linearly decrease with a decreasing

electronic temperature

∆w = w0 + 2 · kB ∆Tel (71)
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Figure 32: Spectral shape of ∆R/R and ∆T/T over time and spectral analysis (Ūabs =

99 J/cm3). The spectra are normalized to the extremal change. A and B The feature at 2.15 eV
is seen in ∆R/R and ∆T/T and it narrows in time. The spectra are taken at the position of the
pump pulse (0 ps), the position of the maximum change (0.35 ps) and at 3 ps, where electrons and
phonons are almost thermalized. The response is decomposed into its components after 3 ps and
it is presented in C and D. Most of the signal originates from the upmost d-band to Fermi level
transitions. The additional components are more or less spectrally flat and they have less spectral
weight in this spectral range. The component analysis is based on the thermomodulation fits of
Section 5.3 and the linearized Fresnel equations (Section 5.4.1).

as further discussed in Subsection 5.2.1.25 w0 is a constant offset which is related to the damping

constant γ of the upmost d-band to Fermi level transitions (see Section 4.3.1). The resonant
25In thermal equilibrium ∆Tel is proportional to the width of ∆f ; ∆w is the convolution of ∆f with an almost

temperature-independent factor (essentially the Lorentz factors in the equations (53) and (54)). This results in the

presented linear equation.
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transition is at 2.14 eV, which corresponds to the transition between the initial states at the maximum

of the density of states of the upmost d-band and the final states at the Fermi level. This photon

energy is almost an isosbestic point in the data.

The flat spectral parts of the transmission (e.g. below 1.8 eV) rise on a longer timescale of about 1 ps.

This timescale corresponds to the rise of the lattice temperature. This feature is hard to observe in

the reflectivity data, it is visualized in Figure 32C. The intraband transitions (Drude) and ∆ǫ∞
1 are

responsible for this spectrally flat feature with slow rise time. ∆ǫ∞
1 has no effect on the absorption,

but changes in the Drude response lead to a reduction of the reflectivity and the transmission. This

gives an increased effective absorption

∆A = 1−∆R−∆T

(A is different from the absorbance which is related to the transmission data only). At 0 ps,26 ∆R/R

is almost equal to ∆T/T , resulting in a small change of ∆A. Over time, ∆R/R evolves to get

more bipolar (negative below 2.1 eV and positive above this point). ∆T/T is finally negative at all

measured photon energies with its minimum value at 2.15 eV. It is clear from this rough analysis that

the absorption ∆A rises over time at most photon energies.

The spectra at higher excitation densities are broader compared to the ones described in Figure

32, while the maximum changes in R and T rise approximately linearly with increasing excitation

density.

5.2.1 Relaxation of the spectral response

The width of the d-band to Fermi level resonance around 2.14 eV is continuously decreasing over

time to the final offset value of w0 +2 ·kB (Tnew − T0) according to equation (71). The temperature

rise of the sample to the final temperature Tnew is due to the absorbed energy density (discussed

in Section 5.3; equation (72)). The characteristic width of the resonance can be defined using the

contour lines at ±1/e of the normalized spectra. These lines are added to the normalized 2D-plots of

∆R/R and ∆T/T in Figure 33A and B. The relative width ∆w(t) = w(t)−w(5 ps) is compared to

∆R/R(2.2 eV) (it is shown below, in Section 5.8.1 and Figure 55, that ∆R/R(2.2 eV) is proportional

to ∆Tel) in Figure 33C and D at low and high excitation densities. As elaborated in Section 5.7,

260 ps is defined, that it corresponds to the time, where the measured quasiparticle response has grown to half of its

maximum signal strength. This calibration is done at one excitation density in transmission and used for reflectivity as

well and for the other datasets at all different excitation densities.
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Figure 33: The spectral dynamics of ∆R/R and ∆T/T . The spectra of ∆R/R (plotted in A)
and ∆T/T (plotted in B) are obtained from data plotted in Figure 31, where at each time delay the
data is normalized to the peak (in A the spectrum is separately normalized to 1 and -1 in the range
above and below the 0 contourline to get a proper definition for the spectral width of a bipolar but
asymmetric signal). The widths w are visualized with the contour lines at ±1/e and demonstrate
the spectral narrowing in time. In C and D ∆w (from ∆T/T ) is plotted as a function of time at
Ūabs = 33 J/cm3 and Ūabs = 163 J/cm3 (blue lines). The relaxation curve of ∆R/R at the resonance
frequency (red curve) shows an initial increase followed by a relaxation, contrarily ∆w starts at a high
level (very broad spectrum) and decreases over time. The transients are normalized to the values
at the electron thermalization time (the values are taken from Section 5.7). Note, the red and the
green lines overlap before the electrons are thermalized.

∆Tel is well defined only after a few hundred femtoseconds, and after the electrons are thermalized,

equation (71) holds. The initial width of ∆f , which is on the order of the photon energy of the
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excitation (hν = 1.55 eV), implies that ∆w starts at the same large initial value regardless of the

excitation density. ∆w decreases continuously afterwards. The experiment shows that during the

first few hundred femtoseconds the decay of ∆w (and with it also ∆f) at low excitation densities

is faster compared to the decay at high excitation densities. Interestingly, ∆w does not show any

kink or discontinuity corresponding to the electron thermalization time. Further, the normalized ∆w

and ∆R/R(2.2 eV) overlap already before the electrons are thermalized (referring to the electron

thermalization time as determined in Section 5.7). The reason for this is, that the non-thermally

distributed high energy quasiparticles contribute to the signal with very small signal strengths (small

wings with
∣∣∆T/T

∣∣
non-thermal

< 1/e and thus they are neglected in this analysis).

5.3 Thermomodulation fits

In Chapter 4 it is shown that the temperature dependent optical properties can be described using

the previously introduced simple model, just containing a few parameters. Of particular interest

in this work is the extraction of the photo-induced changes in the electronic distribution function.

At first the conventional thermomodulation analysis was applied to the data (studying changes in

optical constants upon heating the sample by ∆T ), where we know that the electronic distribution

is in thermal equilibrium. In this way the simple model of the optical properties can be parametrized

and used in a second step to study changes in the distribution function in non-equilibrium.

The time-resolved data of ∆R/R and ∆T/T show the relaxation to some constant value, which is

reached after about 5 ps. Thereby the metal reaches a new thermal equilibrium at a temperature

higher temperature compared to the temperature before the excitation. The optical properties (and

therefore ∆R/R and ∆T/T ) further evolve on a nanosecond timescale, on which the introduced

heat is dissipated to the substrate. The temperature of the quasi-equilibrium state at 5 ps can be

calculated from the absorbed energy (equation (70)). The energy conservation law gives

Tnew = T0 + Ūabs/cV . (72)

According to Section 4.7, the thermomodulation response is described by equations (65) and (66).

To parametrize the model for the optical properties of Cu thin films, which is necessary to describe

the thermomodulation, we have performed systematic studies. ∆R/R and ∆T/T are measured

at 12 different excitation densities27. In addition the equilibrium R and T are measured in a
27The maximum values of ∆R/R and ∆T/T scale approximately linear with excitation density. However, a rescale

of the response measured at one excitation density does not coincide with the response at a different excitation density

because the relaxation in ∆R/R and ∆T/T takes longer the higher the excitation density.
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h̄ωp (eV) γD,0 (meV) ∂γD/∂T

(µeV/K)
Mcu

(105 m/s)
EG,0 (eV) ∂EG/∂T

(µeV/K)
∂ǫ∞

1 /∂T

(10-4/K)

9 56.8 48.4 1.05 2.143 -21.41 -2.39

Table 6: Adjusted fit parameters to reproduce the thermomodulation and equilibrium optical

responses. The listed fit parameters are adjusted to give best agreement between the measured and
simulated R, T , ∆R/R and ∆T/T . The fit parameters agree (they are in the same range) with
the parameters which are able to reproduce published temperature dependent and thermomodulation
optical properties of Cu (see Table 5). The additional parameters used in the thermomodulation fits
are given in Table 7. Those parameters are not varied in order to improve the consistency between
model and experimental result.

Mdi

(10−11 m)
ǫ∞
1,0 EBW (eV) γ (meV) ΘD (K) D(EF)

(1/(eV atom))

3.85 1 0.5 30 303 0.293

Table 7: The sample independent model parameters. The fitting of the published optical proper-
ties of Cu show that some parameters do not need to be adjusted in order to achieve good agreement
between the model and the experimental optical properties.

FTIR-spectrometer (Bruker Corp., Billerica, USA) and ∆T/T is measured with a conventional ther-

momodulation technique (modulation of the temperature with Peltier-elements inside a commercial

uv-vis spectrometer). The dielectric function is related to R and T with Fresnel equations and thin

film formula taken from [DAP94a; DAP94b]. All the measurements are made on the same thin Cu

film with a film thickness of 24 nm (the film thickness is known from the growing rate and growing

time). All the data is reproduced with a single set of parameters given in the Tables 6 and 7. A few

parameters are known to be sample independent and taken from the previous analysis on published

optical properties (Section 4.6; Table 7). The more sensitive parameters, which are sample or exper-

iment specific28 (see Section 4.6), are varied to reproduce the experimental R and T , as well as the

thermomodulation ∆R/R and ∆T/T . The result of the fit procedure is presented in the Figure 34

and the related parameter values are given in Table 6. Figure 34A presents the equilibrium data and

B the fitting of the thermomodulation response (t = 5 ps) at the excitation density of 99 J/cm3.

28The parameters used for different samples may differ because of different grain sizes, strains, orientation of the

grains, surface roughness, CuO overlayers, impurity concentrations or any systematic error in the data processing

procedure.
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Figure 34: Comparison between the measured and simulated equilibrium and thermomod-

ulation spectra of R and T . The model parameters are determined from the global fit of 12
thermomodulation measurements taken from ultrafast pump-probe experiments (Section 5.2), the
equilibrium measurement of R and T at room temperature and a slow-scan thermomodulation spec-
trum measured with UV-Vis-spectrometer and Peltier elements. The fitted model is known from
equations (65) and (66). A Reflectivity (blue) and transmission (red) of the thin copper film are
measured at 300 K. The points are the result of the measurement and the curves are based on the
global fit. B The thermomodulation of R and T . The data is taken from dynamic data averaged in
the range between 5 ps and 9 ps measured at Ūabs = 99 J/cm3. The pump pulse heats up the sample
by about 29 K.

5.4 Reconstruction of ∆ǫ from experimental ∆R/R and ∆T/T

The result of Section 5.3) allows to determine the sample dielectric function ǫ. ǫ consists of a real

and an imaginary part and depends on the photon energy and the temperature. The photon energy

dependence is shown in Figure 35. The shape of the depicted dielectric function is characteristic

for Cu and close to the reported dielectric function [HLB82; JC72; PS69; Rob60; JK54]. Although

comparable, ǫ varies for different samples which is known from the analysis of the published data

described in Section 4.6. Thus, it is important to use ǫ which is characteristic for the sample in the

reconstruction procedure of ∆ǫ. This keeps the systematic error minimal.

The result of the reconstruction of ∆ǫ is presented in Figure 36A. The solid lines correspond to the

simulation of ∆ǫ based on the model (see equations (65) and (66)), whose parameters are adjusted

to describe the thermomodulation response (see Section 5.3). The directly reconstructed ∆ǫ (using

Fresnel equations and R and T from the simulation) is illustrated by the crosses which are connected
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Figure 35: Simulated ǫ1 and ǫ2 at 300 K. The dielectric function (Σ) of the 24 nm thick film (blue
solid lines) is compared to ellipsometric measurements of bulk Cu by Hanekamp et al. [HLB82] (red
solid lines). The different additive contributions to the dielectric function are plotted with dotted,
dashed dotted and dashed lines (contributions from higher energetic transitions, upmost d-band to
Fermi level transitions and intra-conduction-band transitions). A Real part of the dielectric function.
B Imaginary part of the dielectric function.

by dashed lines in Figure 36A. The reconstruction procedure is described in the following paragraph.

First R and T are determined from the simulated ǫ of the sample at room temperature. This allows

to calculate the changed reflectivity and transmission, dR = ∆R/R ·R+R and dT = ∆T/T ·T +T .

Afterwards the method of least squares was applied to find the corresponding dǫ (consisting of real

and imaginary parts). The resulting ∆ǫ corresponds to the measured ∆R/R and ∆T/T and is plot-

ted using crosses in Figure 36A. The arising deviations between the simulated and the reconstructed

∆ǫ are basically caused by the deviations between the experimental and the model based ∆R/R

and ∆T/T . The deviation between the experimental ∆ǫ and the simulated ∆ǫ shows a different

spectral characteristic compared to the differences between experiment and simulation of ∆R/R and

∆T/T (compare Figure 36A with Figure 34B). In particular, the deviations between the differently

determined ∆ǫ are pronounced around 2.4 eV, although the deviations in the data of ∆R/R and

∆T/T are small in the same energy range. The deviation is seen at all excitation densities with

similar relative amplitudes and is thus systematic and may be related to the influence of high energy

interband transitions (effects which are beyond the assumed energy independent contribution ǫ∞
1 ).

More details about the deviation enhancement are given in Subsection 5.4.1.
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Figure 36: Thermomodulation and maximum change in ǫ at Ūabs = 308 J/cm3. A ∆ǫ is
simulated based on the model and parameters of Section 5.3 (solid lines). For comparison, ∆ǫ is
reconstructed from the measured ∆R/R and ∆T/T (dashed lines, details about the procedure are
in the main text). B This graph shows the equilibrium ǫ in comparison to the maximally changed ǫ

(ǫmax
exc ) taken at the highest highest excitation density which was used and at a delay time of 0.35 ps.

The maximum in ǫ1 at 2.2 eV is suppressed whereas the cutted part of ǫ1 below 2 eV is not much
affected from excitation. In ǫ2 the edge at 2.2 eV flattens. Note that there is a difference in the
x-axes of both graphs.

The same method of least squares is used to extract ∆ǫ at short time delays from the experimental

∆R/R and ∆T/T . The theoretic description of the upmost d-band to Fermi level transitions shows

that ∆ǫ depends on ∆f . Therefore, ∆ǫ contains the information about ∆f . In a further step, the

theory about the upmost d-band to Fermi level transitions can be used to reconstruct ∆f from the

experimental ∆ǫ at short time delays. In Figure 36B the maximum change in ǫ is presented and it is

shown that the characteristics of the previously mentioned d-band to Fermi level transitions flatten at

short time delays. In ǫ1 the maximum at 2.2 eV is reduced and in ǫ2 the edge near 2.2 eV is smoothed

out.

∆ǫ is extracted from the experimental ∆R/R and ∆T/T with the method of least squares described

above. This procedure was applied successively on every experimentally gained data point (at dif-

ferent photon energies, time delays and excitation densities) to determine ∆ǫ(ν, t). The result at

Ūabs = 99 J/cm3 is presented in Figure 37. Again, the photo-induced changes are mainly a broad-

ening of the characteristic upmost d-band to Fermi level transitions. The change in ǫ2 leads to a

flattening of the edge at 2.1 eV and a lowering of the maximum at 2.4 eV. Between 2.1 eV and 2.4 eV
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Figure 37: Dynamics of the dielectric function (Ūabs = 99 J/cm3). The changes are based on the
experimental ∆R/R and ∆T/T and the samples ǫ at room temperature which is known from the
thermomodulation fit procedure (Section 5.3). The main contribution to the signal is caused by the
upmost d-band to Fermi level transition (compare Figure 39). A The time evolution of the change
in the real part of the dielectric function is shown. The extremum of ∆ǫ1 is at 2.2 eV. This change
lowers the kink known from equilibrium data, see Figure 35A. B The time evolution of the change
in the imaginary part of the dielectric function is shown. The maximum at 2.1 eV corresponds to a
flattening of the edge which is known from equilibrium data ǫ2 (Figure 35B).

there is a zero crossing acting as an isosbestic point. The change in ǫ1 is mostly a lowering of

the peak at 2.2 eV (referring to the equilibrium data, see Figure 35A) and an increase around the

position of the minimum at 1.9 eV. In between there is no isosbestic point. The time evolution of

∆ǫ is similar to the time evolution of ∆R/R and ∆T/T . The relaxation times are the same and the

spectra narrow over time (see Figure 39).

5.4.1 Fresnel equations and the thin film equation in the perturbative regime

The idea behind this subsection is to linearize the Fresnel equations in combination with the equation

for thin films for small changes in R and T . The small changes in R and T linearly depend on ∆ǫ

∆R

R
=

∂ ln (R)

∂ǫ1
∆ǫ1 +

∂ ln (R)

∂ǫ2
∆ǫ2 , (73)

∆T

T
=

∂ ln (T )

∂ǫ1
∆ǫ1 +

∂ ln (T )

∂ǫ2
∆ǫ2 , (74)
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with unknown partial derivatives. This approximation seems to be appropriate for Au using small

input angles at optical frequencies [Sun+94; DV+12]. The coefficients can be determined using a

set of thermomodulation data (at least two datasets). First of all, ∆ǫ is determined by the procedure

described in Section 5.4. In a second step, a fit procedure is performed to connect ∆R/R and

∆T/T to ∆ǫ at different excitation densities using equation (73) and (74). The insets to Figure 38

show the results. Although the relations between ∆ǫ and ∆R/R and ∆T/T include terms which

are not linear, the linearized Thin-Film-Fresnel-Equations (73) and (74) can reproduce ∆ǫ based on

experimental ∆R/R and ∆T/T at every time delay. The comparison is presented in Figure 38. Here

Figure 38: The result of ∆ǫ from the experimental ∆R/R and ∆T/T - exact vs. linearized

approach. ∆ǫ (A shows ∆ǫ1 and B shows ∆ǫ2, both share the same legends) is determined in
two different ways. The results on both ways are plotted at three different time delays. The dotted
lines present ∆ǫ from the experimental ∆R/R and ∆T/T based on the analytic expression with the
Fresnel equations and the equation for multiple reflections in thin films [DAP94a; DAP94b]. The
solid lines are based on the equations (75) and (76). The insets show the coefficients, which are
determined from the experimental data (∆R/R and ∆T/T ) at different excitation densities and the
corresponding ∆ǫ from Section 5.4.

the inverse functions are used:

∆ǫ1 =

∂ ln (T )
∂ǫ2

∆R
R + ∂ ln (R)

∂ǫ2

∆T
T

∂ ln (R)
∂ǫ1

∂ ln (T )
∂ǫ2

− ∂ ln (R)
∂ǫ2

∂ ln (T )
∂ǫ1

, (75)

∆ǫ2 =

∂ ln (T )
∂ǫ1

∆R
R + ∂ ln (R)

∂ǫ1

∆T
T

ln (R)
ǫ2

∂ ln (T )
∂ǫ1

− ∂ ln (R)
∂ǫ1

∂ ln (T )
∂ǫ2

. (76)
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5.5 Assignment of the parameters of the optical properties to ∆f- or Tla-sensitive

parameters

In order to study the measured spectra and their time dependence in more detail, it is helpful to

decompose the spectra into its components: the intraband transitions, the upmost d-band to Fermi

level transitions and the influence of high energy interband transitions on the dielectric function.

Since the goal is to determine the time evolution of the electronic distribution function, it is also im-

portant to consider the effect that might be related to the lattice heating. For example, the changes

in the Drude response are a result of changes in the Drude scattering rate, which is in turn linked to

the changes in the lattice temperature, Tla (note that at room temperature the conductivity is deter-

mined by the electron-phonon scattering rate). Since the electrons and the lattice are thermalized

on the picosecond-timescale (see Figure 31), and the absolute increase of the sample’s temperature

is known from the energy conservation law (the excitation density is determined with high accuracy),

the next step is to consider the contributions to ∆ǫ due to the lattice heating.

The lattice is assumed to heat up to its final temperature with a time constant of about 1 ps which

depends on the excitation density. Indeed, for the further data analysis an exponential time depen-

dence was used with the time constant equal to the relaxation time of the spectrally integrated

∆T/T and ∆R/R. The Drude scattering rate γD and ǫ∞
1 are assumed to linearly depend on the

lattice temperature. The temperature dependencies of these parameters are known from the thermo-

modulation fits (see Section 5.3, Table 6, T is replaced by Tla). These two components are linked

to the lattice temperature (as opposed to the link to the dynamics of the electronic subsystem).

This link is supported by their spectral shapes and their slow rise times observed in the experimental

∆ǫ (see Figure 39). The lattice temperature does not change much during the first 0.35 ps. Yet,

after 3 ps the lattice temperature has almost reached its highest value. The sign of ∆ǫ1 changes at

about 1.8 eV after 3 ps which is linked to the contribution of ∆ǫ∞
1 . Furthermore, Figure 39 shows

the characteristic line shape of the upmost d-band to Fermi level transitions narrowing on the energy

axis with increasing time delay.

The change in the Drude response affects the imaginary part of the dielectric function stronger than

the real part, despite the fact that in equilibrium the contribution of the Drude component to ǫ1 is

much larger than to ǫ2. To further investigate on the upmost d-band to Fermi level transitions, one

can easily subtract the Tla-dependent changes of the Drude- and ǫ∞
1 -component from the experimen-

103



Figure 39: Spectral relaxation characteristics of ∆ǫ. The spectra are taken at different time
delays (after 0 ps, 0.35 ps and 3 ps) and normalized to their extremal values. The excitation density
is Ūabs = 99 J/cm3. A Time evolution of ∆ǫ1. The spectral characteristic of the d-band to Fermi level
transitions narrow over time. After 3 ps, ∆ǫ∞

1 has larger contribution to ∆ǫ1 than the intraband
Drude-type transitions. B The temporal evolution of ∆ǫ2. The Drude component has a larger
contribution to ∆ǫ2 than to ∆ǫ1. This component rises slowly and it is almost absent up to 350 fs,
where ∆ǫ has its maximum.

tal ∆ǫ. These components are weakly depending on E and t as compared to the component of the

upmost d-band to Fermi level transitions.

5.5.1 Experimental approach to separate ∆f- and Tla-sensitive components of the optical

properties

The electron-electron scattering events transfer the photo-excited electronic subsystem into thermal

equilibrium. The thermal quasiparticles lose their energy which is transferred to the lattice, e.g.

as described by the TTM. In this limit, after the thermalization of the electrons, the system is

characterized with only two variables, the electronic and the lattice temperature. The measurements

performed at different excitation densities allow to compare different spectra taken at the same

electronic temperature, Tel, but at different lattice temperatures, Tla. For example the monotonically

decreasing Tel(t) at high excitation densities reaches after a certain time delay the Tel which is reached

after a shorter time delay at lower excitation densities. Comparing the data at selected excitation

densities and selected time delays with matching Tel, the only difference is Tla. This allows us to
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decouple the optical properties into electronic- and lattice-sensitive components. Such an analysis

is presented in Figure 40. Here, Tel and Tla are taken from the data analysis in Section 5.7, where

Tla is determined by the application of the energy conservation law. The spectral changes in ∆R/R

Figure 40: Spectral shape of ∆R/R and ∆T/T at the same Tel, yet at different Tla. The
spectra are taken at different excitation densities and at different time delays to compare the spectra
at the same Tel = 350 K (known from Section 5.7). A and B show the spectra of ∆R/R and ∆T/T

(references are R and T at 300 K). The deviations between the curves illustrate the Tla-dependencies
(both graphs share the same legend). C and D The blue curve subtracts out the Tla-dependence from
the dark blue and dark red curves in A and B. The red dotted lines correspond to the Tla-dependent
changes of the Drude scattering rate and of ǫ∞

1 (computed with the linearized Thin-Film-Fresnel-
Equations, see Section 5.4.1). The deviations between both curves indicate a Tla-dependent blue-shift
of the upmost d-band to Fermi level resonance.
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and ∆T/T which are related to an increase of Tla are marked by black arrows in Figure 40A and B.

Around 2.14 eV the Tla-dependent changes of ∆γD and ∆ǫ∞ are superimposed by the changes based

on ∆EG. In contrast to the result of the thermomodulation fits in Section 5.3 ∆EG increases in this

specific case with rising temperature and a rate of ∂EG/∂T ≈ 300 µeV/K. However, the changes in

∆EG can hardly be resolved using the energy resolution of the experimental setup. The data analysis

in this subsection considers only a few data points. On the contrary, in Section 5.3 (see Table 6)

the analysis includes the entire dataset and an opposite result is reached (see also Section 5.6.2 for

more detailed information).

5.5.2 Singular value decomposition (SVD)

The SVD is a mathematical method to factorize matrices (see for example [Gen07; Bey12]). The

decomposition of each matrix M gives the three well defined matrices V , S and W with

M = V · S ·W t .

V and W are unitary matrices and contain the information about each component of the factorization.

Every line represents the information of one component. S is a diagonal matrix and the singular

values are on the diagonal. The strength of each individual component is represented by a singular

value. The component with the largest singular value makes the highest contribution to M (the

smallest singular value component makes the highest contribution to the inverse of M).

Every time- and spectrally-resolved data set (∆R/R or ∆T/T ) is represented by a single matrix

∆R/R = VR · SR ·W t
R ,

∆T/T = VT · ST ·W t
T .

Each column of the matrix contains a spectrum at a single time delay and each row contains the

time evolution of the quasiparticle response at a single photon energy. In this specific application

of the SVD the matrices VR & VT contain the spectral and the matrices WR & WT contain the

temporal characteristics of each component.

First of all, the SVD can be applied to the experimental data to reduce the noise. The singular val-

ues of the noisy components are set to zero to reduce the noise in the experimental data. A second

application of the SVD is to decouple spectral components with different temporal characteristics.

The illustration of the dynamics of the surface plasmon resonance and the interband transitions

106



between the upmost d-band and the Fermi level in Au nanoparticle arrays gives a good example for

the decomposition of different components in the measured response. The study of the time evo-

lution of both spectral features in the plasmonic ferroelectric hybrid ITO/nano-Au/PZT (nano-Au

arrays of approx. 270 x 270 x 60 nm3 on indium tin oxide glass, embedded in a PZT matrix) allows to

identify the charge transfer between the nanoparticle Au array and PZT [Wan+16]. The SVD result

of ITO/nano-Au is illustrated in Figure 41. Component 1 is linked to the upmost d-band to Fermi

Figure 41: SVD of ∆T/T recorded on a periodic array of Au nanoparticle on ITO substrate.

A ∆T/T taken after excitation in the near-UV at 400 nm. B and the inset to B show the spectral
and temporal characteristics of the two most pronounced components. Component 1 is related to
the upmost d-band to Fermi level transition with a relative strength of 70 % and component 2 mostly
describes the photo-induced increase in transmission at the surface plasmon resonance at ≈ 1.7 eV
with a relative strength of 15 %.

level transitions in Au at around 2.5 eV; the corresponding relative singular value is 0.7. The second

component has a lower relative strength of 0.15. This component represents changes in the optical

properties, which are related to the surface plasmon resonance. It has a lower relaxation time as the

first component (see the inset to Figure 41B).

There is not always a distinct connection between a specific SVD component and a specific spec-

tral feature. A single SVD component consists of a constant spectral characteristic, whose signal

strength is changing over time. If the spectral shape of the optical feature changes over time, the

dynamics are represented by more than one SVD component. A closer look to the upmost d-band to

Fermi level transitions in Cu will show that these transitions are represented by more than one SVD
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component.

The idea behind the application of the SVD on the experimental ∆R/R and ∆T/T (Section 5.2,

Figure 31) is the attempt to separate the dynamics of the intraband Drude transitions from the

d-band to Fermi level transitions. The separation of both components is systematically analyzed in

Subsection 5.5.4.

The SVD is done numerically (using Matlab). It splits the experimental data (the 18 channels with

the highest signal strength) into 18 different additive components. The first three components and

their relative strenghs are plotted in Figure 42. Although the spectral shape of the components

in ∆R/R and ∆T/T may differ fundamentally (the spectral shape VR(ν) & VT (ν) depend on the

Fresnel equations and the thin film equation; ∆R/R and ∆T/T have different prefactors referring to

equations (73) and (74)), the temporal characteristics of the corresponding components should be

equal (the time evolutions of each component in WR(t) & WT (t) are the same as in Wǫ(t), which

is the result of the SVD of ∆ǫ). For the comparison of the components in ∆R/R and ∆T/T it

is important to do not confuse the different components. The SVD components of ∆R/R are or-

dered by their relative strengths beginning with the highest value. The corresponding components of

∆T/T are arranged in the same order, where component 3 is found to have higher strength compared

to component 2. The comparison of WR(t) and WT (t) (see Figure 42B and D) showed that the

temporal characteristics of the corresponding components are equal, as expected. The components

with lower relative strength were very noisy. At the highest excitation density of Ūabs = 308 J/cm3

the signal-to-noise ratio is larger than 1 for the first five components. At lower excitation densities

the signal of the components 4 and 5 are below the noise level.

The experimental ∆R/R and ∆T/T can be reasonably well described by a single component

(strength of about 70 %). This strongest component contains most of the dynamics induced by

the transitions from the upmost d-band to the Fermi level (see Figure 42B and D) and its spectral

characteristics (see Figure 42A and C). The spectral shape of the second and third components are

influenced by the upmost d-band to Fermi level transitions as well. In conjunction with component 1

component 2 describes a very fast spectral broadening over time up to 100 fs followed by a spectral

narrowing. Note, the components 1-3 simultaneously modify the optical properties before 2.5 ps. Af-

ter 2.5 ps component 3 becomes the component with the highest contribution to ∆R/R and ∆T/T ,

where component 2 is negligible. Under these considerations the first component describes the time

evolution of the average spectral shape of ∆R/R and ∆T/T . The changes over time in the width
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Figure 42: SVD of ∆R/R and ∆T/T after excitation with Ūabs = 99 J/cm3. In A and C the
spectral characteristics of the three components with the highest signal strengths S are plotted. B

and D show the temporal evolution of those components. The insets give the relative signal strength
of the 6 components with the highest relative strengths. The components 4-6 (and all components
with lower relative strengths) are noisy and their contribution to the signal is insignificant.

of the spectral feature is described by component 2. This spectral narrowing might be linked to

the thermalization of the electrons, i.e. the high energy quasiparticles lose their energy which is

transferred to the thermal electrons and to the lattice. The third component seems to describe a

blue-shift of the upmost d-band to Fermi level resonance up to 300 fs followed by a red-shift. The

spectral narrowing is also seen in the time evolution of ∆f (the spectral width is proportional to the

electronic temperature, verified in Section 5.2.1) and the spectral red-shift is found in Section 5.3.
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The spectral width remains approximately the same after about 1 ps, where component 2 reaches

its minimum and further evolves with the same temporal characteristics as the first component. A

possible explanation could be, that the minima determine the electron thermalization time which is

about 30 % larger compared to the result of the analysis in Section 5.8. To prove this interpretation

the dynamics of the thermal quasiparticles are simulated in Subsection 5.5.3.

5.5.3 SVD on ∆R/R and ∆T/T in case of thermalized quasiparticles

Up to now it is not clear, whether the components 2 and 3 describe dynamics related to non-

thermal quasiparticles or if these components are also present in case of thermalized quasiparticles

and narrowing of ∆f due to the cooling of the electrons. The answer is given in Figure 43. It shows

Figure 43: The upmost d-band to Fermi level resonance analyzed with SVD after 400 fs.

Comparison between the response of purely thermal quasiparticles in the simulation (dotted lines)
and the experimental data. The solid lines reproduce the result from the Figure 42A and C. The
dotted lines are the result of the SVD on the simulated ∆R/R and ∆T/T of thermalized electrons
with Tel taken from the Fermi-Dirac fits, Figure 51. Note, the legends are the same for A and B.

a simulation based on thermal quasiparticles assuming ∆Tel from ∆f from Figure 51 in Section

5.7. These ∆Tel as a function of time are chosen to be the basis for the simulation because they

best reproduce the experimental ∆R/R and ∆T/T . This makes the simulation result (dotted lines)

directly comparable to the experimental data (solid lines). The component 2 and 3 of the SVD

(red and green dotted lines in Figure 43) are still present with comparable lineshapes (red and green

solid lines). This implies that there is no specific component which purely describe non-thermal
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quasiparticles (and none of the mentioned components is related to any systematic error in the

experiment). In particular, the minimum of component 2 discussed in Section 5.5.2 is not linked

to the electron thermalization time. Even if ∆f is thermal during the entire relaxation process, the

modifications to the upmost d-band to Fermi level transitions over time (the spectral width and the

resonance position) are still parts of component 2 and component 3 of the SVD and there is still the

minimum of component 2 in WR and WT at about 1 ps.

5.5.4 SVD components compared to responses of the inter- and intraband transitions

The Figure 44 shows the comparison between the SVD on ∆R/R and ∆T/T (dotted lines) and

the separation of the quasiparticle response to the excitation pulse into the intraband (Drude) and

interband components (solid lines).

Although the agreement is not perfect, the SVD components 1 and 2 cover most of the upmost

Figure 44: The components of SVD compared to the components of the inter- and intraband

responses after 2 ps (Ūabs = 99 J/cm3). The quasiparticle response consists of intraband transitions
within the conduction band (Drude response) and interband transitions (upmost d-band to Fermi
level transitions and transitions between other bands ǫ∞

1 ). A The spectral characteristics correspond
to the different components of ∆R/R. B The same components but related to ∆T/T . A and B

share the same legends.

d-band to Fermi level transitions. The Drude response and the dielectric offset ǫ∞
1 are mostly part

of the component 3. In order to motivate this link, component 3 is known to remain as an offset

for longer time delays (Figure 42B and D). This offset indicates that this component is affected by
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the rise of the lattice temperature. The spectral shape of component 3 is close to the one which is

expected from the Drude response and the Drude response changes with the heating of the lattice.

However the spectral shape of the component 3 shows that this component contains also information

about the upmost d-band to Fermi level transitions (e.g. a shift of the resonance position). This

implies that the SVD is not able to purely separate Drude from the remaining interband transitions

of the quasiparticle response.

A systematic analysis of the strengths of the SVD component 3 is presented in Figure 45. If there

Figure 45: The strengths of the first 3 components of the SVD on ∆R/R (Ūabs = 99 J/cm3).

The simulation is based on thermal electrons as described in Section 5.5.3. The component strengths
of the experimental (dark blue bars) and the simulated ∆R/R (green bars) include intraband transi-
tions within the conduction band (Drude response) and interband transitions (upmost d-band to Fermi
level transitions and transitions between other bands, based on ǫ∞

1 ). The simulation ∆R/R|d→Fermi

takes the SVD of ∆R/R which includes only the upmost d-band to Fermi level transitions (yellow
bars).

are no contributions to ∆R/R from Drude, ǫ∞
1 and the time dependent spectral shift of the upmost

d-band to Fermi level resonance, then the strength of component 3 is negligible (yellow bars) and

the components 1 and 2 are only slightly modified (these modifications are not considered for the

filtering procedure, which is applied to the experimental data to isolate the d-band to Fermi level

resonance from the intraband and high energy interband transitions in the following).

To conclude, the SVD can be applied to the experimental ∆R/R and ∆T/T to eliminate the

contributions from intraband and high energy interband transitions. The filtering of the experimental
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data and the isolation of the upmost d-band to Fermi level transitions is performed with the selective

use of the components 1 and 2 of the SVD. This filtered data can be used to determine the electronic

temperature as a function of time and the electron-phonon coupling constant as discussed in Section

5.8.1. However, one should keep in mind that ignoring component 3 means to apply a coarse filter

which also removes the small contributions to component 3 from the dynamics of the upmost d-band

to Fermi level resonance.

5.6 Extracting the time evolution of the electronic distribution function

In this section the electronic distribution function ∆f is determined as a function of time delay from

the experimental ∆ǫ. This is possible because the part of the ∆ǫ which is linked to the upmost

d-band to Fermi level transitions depends on the electronic distribution function at the Fermi level.

The task is to invert the equations (53) and (54). This is done numerically (see Subsection 5.6.1).

In the following the definition of ∆f is given.

The Fermi level is a particular point of the energy axis. The electronic distribution function, f , is

often assigned in relation to the Fermi level because in thermal equilibrium, f is symmetrical identical

around EF. Thermomodulation gives rise to changes in the electronic distribution functions which

are

f(E − EF(T1), T1)− f(E − EF(T0), T0) . (77)

This difference contains two effects: the shift of the Fermi level with respect to the upmost d-band

(see Section 4.2, equation (51) is found to be invalid for the investigated Cu thin film) and the

change in the electronic distribution (e.g. due to an increase in the electronic temperature). Here,

∆f is defined to the reference energy EF(T1):

∆f(E − EF(T1), T1, T0) = f(E − EF(T1), T1)− f(E − EF(T1), T0) . (78)

The temperature dependent Fermi level shift does not contribute to ∆f in this definition (if ∆f is

plotted as a function of E−EF) to facilitate the mapping of the quasiparticle redistribution. Note, if

both types of quasiparticles, the excited electrons and the excited holes, equally interact with other

degrees of freedom, ∆f(E − EF(T1), T1, T0) is antisymmetric about E.

In the non-thermal regime at short time delays (t < 5 ps), one deals with time dependent electronic

distribution functions and Fermi levels. Equation (78) reads

∆f(E − EF(t), t, T0) = f(E − EF(t), t)− f(E − EF(t), T0) . (79)
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As it will be shown in Section 5.7, the electrons thermalize on a timescale in the range of 400-

800 fs depending on the excitation density. After the thermalization, f depends on the electronic

temperature

f(E − EF(t), t) ≡ f(E − EF(t), Tel) .

In Subsection 5.6.2 it is shown that the shift of EG, which includes a possible shift of EF due to

the variation of the density of states near EF (see equation (50)), is proportional to the lattice

temperature Tla. Tla is assumed to be well defined during the relaxation process and the lattice heats

up exponentially

Tla(t) ≈ T0 +
Uabs

cV

(1− exp (−t/τla)) . (80)

The characteristic timescale for τla is on the order of the relaxation time of ∆ǫ, τla & 1 ps (Section

5.4).

∆f is determined from ∆ǫ in the following Subsection 5.6.1.

5.6.1 Reconstruction of ∆f

The probability for the electronic transitions between the upmost d-band and the Fermi level depend

on f(E) at the Fermi level. The related ǫ (equations (53) and (54)) is basically given by two

integrations. The first integration over the d-band density of states is performed analytically, using

the model parameters for the studied thin film sample (see Tables 6 and 7). The second integration

over the energy range of the conduction band is an integration over an analytical term, including

a Lorentzian line broadening (lifetime effects), multiplied by (1 − f). The first step to reproduce

∆f from the measured ∆ǫ is to discretize equations (53) and (54). The second integration is also

discretized using the trapezoidal rule. The real and imaginary parts of the dielectric function read

ǫ1,i(T ) =
n∑

j=1

K1,ij · Fj(T ) , (81)

ǫ2,i(T ) =
n∑

j=2

K2,ij · Fj(T ) , (82)

∆ǫ1,i(T1, T0) =
n∑

j=1

K1,ij ·∆Fj(T1, T0) , (83)

∆ǫ2,i(T1, T0) =
n∑

j=1

K2,ij ·∆Fj(T1, T0) (84)
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with

Kx,ij = A Mi L
(x)
j,i ·





(E2 − E1) if j = 1 ,

(En − En−1) if j = n or

0.5 · (Ej+1 − Ej−1) otherwise,

Mi = M2
cu/ (2πνi)

2 + M2
di ,

Fj(T ) = f(Ej − EG(T ), T )− 1 ,

∆Fj(T1, T0) = f(Ej − EG(T1), T1)− f(Ej − EG(T0), T0) , (85)

f(E, T ) =
1

1 + exp (E/(kB T ))

L
(x)
j,i = L(x)(Ej , hνi) .

L(1)(E, hν) = −EBW ·
(

E − hν +
3
2

EBW

)
(86)

+
1
2

(
(E − hν + EBW)2 − γ2

)
ln

(
(E − hν + EBW)2 + γ2

(E − hν)2 + γ2

)
(87)

+2 γ (E − hν + EBW)

(
arctan

(
E − hν + EBW

γ

)
− arctan

(
E − hν

γ

))
(88)

L(2)(E, hν) =
(
(E − hν + EBW)2 − γ2

)

·
(

arctan

(
E − hν + EBW

γ

)
− arctan

(
E − hν

γ

))
(89)

+γ EBW + (E − hν + EBW) γ ln

(
(E − hν)2 + γ2

(E − hν + EBW)2 + γ2

)
(90)

Note a different range of E (compared to equations (53) and (54)):

E → E + Ed,max .

In fact, the equations (81) to (84) are matrix multiplications of the matrices K1 and K2 with the

vectors F and ∆F . The real and imaginary parts of those matrices are shown in Figure 47A and C.

They relate specific points (values of F or ∆F at specific E) of the electronic distribution function to

specific points of the dielectric function (at specific hν). The matrices are numerically inverted (see

Figure 47B and D). The inverted matrices are used to reconstruct the ∆f from the experimental

∆ǫ. The matrix and the inverse matrix relations are

ǫx = Kx · F ←→ F = K−1
x · ǫx (91)

∆ǫx = Kx ·∆F ←→ ∆F = K−1
x ·∆ǫx (92)

All the matrix elements are considered to be temperature independent. Because of this temperature

independence, the equations (91) and (92) hold even in the case of a non-thermal F or ∆F . ∆F
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Matrix rel. amplitude,
terms (86) & (87)

or (90)

rel. amplitude,
terms (88) or (89)

Width Width of inverse

K1 ∝ E2
BW, ∼ 80 % ∝ EBW · γ, ∼ 20 % ∝ |ln (EBW)|,

∼ 0.7 eV
2 · γ, ∼ 0.06 eV

K2 ∝ EBW · γ, ∼ 10 % ∝ E2
BW, ∼ 90 % ∝ E2

BW, ∼ 0.25 eV 2 · γ, ∼ 0.06 eV

Table 8: Matrix characteristics of K1 and K2. Values are taken at the resonance of hν = 2.15 eV,
the given dependencies hold if EBW ≫ γ.

can be obtained from the experimental ∆ǫ if the energy resolution is better than 2 γ = 60 meV (γ is

the dephasing rate, Section 4.3.1). This is because the widths of the peaks along the diagonals of

the inverse matrix elements are about 2 · γ (see Table 8 and compare with insets on Figure 47B and

D).

The procedure to determine ∆F is illustrated in Figure 46. The row of matrix K−1
2 at Ej = 2 eV

Figure 46: Procedure to reconstruct ∆f as function of Ej. A The light green and light red lines
are horizontal cuts through the matrix of Figure 47D. The cuts are oscillatory functions of hν with
the width of 2 · γ. The blue line is ∆ǫ2. The value of ∆F at a given Ej is the area under the curve
K-1

2 ·∆ǫ2 (red and green areas). B These areas under the curve give ∆F at specific energy levels
Ej (red and green crosses). The successive perfomance on each row of K-1

2 results in the blue line.

(light green or light red curve) is multiplied to ∆ǫ2 (red or green curve). The area below the curve

gives the value of ∆F at 2 eV (red dot in B) or at 2.3 eV (green dot). This procedure is done

successively for every discrete energy Ej , where Ej are chosen such, that the condition number of
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K1 and K2 are minimized. Here, different energy levels, E1,j and E2,j , are found to minimize the

condition numbers of K1 and K2. For every j, E1,j and E2,j differ by an average energy of about

20 meV. The condition number is a measure of the sensitivity of ∆f on any error in ∆ǫ. A large

condition number refers to high sensitivity. Matrices with the low condition numbers provide high

accuracies for the solution of related linear equations. The matrices presented in Figure 47A and C

are the result of the condition number minimization procedure29 to find optimized energy levels E1,j

and E2,j . The insets show the diagonal cuts from the lower left corner to the upper right corner.

Note that the x-axis of the cuts differ by about 20 meV because of the deviations in Ej . In fact, these

deviations double the resolution of the computed ∆f compared to the resolution of ∆ǫ. By the way,

a higher resolution of the experimental ∆ǫ could further improve the resolution of the extracted ∆f .

The insets to Figure 47 give the basic information about the mathematical relationship between the

physical quantaties. E.g. a gaussian input function is broadened by a lineshape with a single peak

(e.g. Figure 47C) and it is narrowed by an oscillatory lineshape (e.g. Figure 47D).

The next step to determine ∆f is to relate it to ∆F . The equations (79) and (85) provide this

relation:

∆f(E − EF(t), t, T0) = ∆Fj(t, T0) + f(Ej − EG(T0), T0)− f(Ej − EG(t), T0)

= f(Ej − EG(t), t)− f(Ej − EG(t), T0) (93)

with

E(j) = Ej + Ed,max(T1) .

EG depends on the lattice temperature as shown in Section 5.6.2. The equations (50) and (80) give

EG(t) = EF(t)− Ed,max(t) = EG,0 + ∂EG/∂T ·
(

T0 +
Uabs

cV

(1− exp (−t/τla))

)
. (94)

The analysis, which is described so far, allows to determine ∆f(t) from the experimental time-resolved

optical data. The result is presented in Figure 48. ∆f(E−EF) is found to be almost antisymmetric.

This is what is expected if the electrons and holes belong to the same band and if they follow similar

scattering characteristics. The small differences are seen after 1 ps, where the deviation between the

thermal distribution function and the experimental ∆f is lower above EF than below. I.e., after

0.6 ps there seems to be some excess holes at E < EF − 0.3 eV which are not expected from the

29The condition numbers are 60 in case of K1 and 80 in case of K2 (the inverse matrices have the same condition

numbers).
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Figure 47: Linear transformations between the F & ∆F and ǫ & ∆ǫ. The matrices A and C

give the linear transformation of F & ∆F at selected values Ej to ǫ & ∆ǫ of the upmost d-band to
Fermi level transitions taken at specific hνi. The matrices B and D give the inverse transformations.
The insets show the diagonal cut from the lower left corner to the upper right corner. The matrix
elements (i, j) are connected to the energies (hνi, Ej −EG) (the x-axes are not linear in energy but
in i and j). The insets on A and C show, that F & ∆F well above the Fermi level (specifically
at Ej − EG = -0.3 eV) contribute to ǫ1 & ∆ǫ1 far above the onset of the d-band to Fermi level
transition (at hν = 2.5 eV), but not to ǫ2 & ∆ǫ2 at the same energy. The characteristic widths of
the cuts which are shown in the insets, are given in Table 8.

thermal fit. In comparison, on the electronic side, the high energy tail is clearly seen after 0.3 ps

but vanishes by about 0.6 ps. However, the difference between the negative change in the electronic

distribution function below the Fermi level and the change above the Fermi level is likely within the
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of states is different at different electron energies around the Fermi level, then the Fermi level shifts

with temperature or with any athermal generation of electron-hole pairs. The analysis of the optical

data do not allow to distinguish between a shift of the upmost d-band and the change of the position

of the Fermi level. The application of the free electron model to the conduction band of Cu suggests

a shift of the Fermi level of less than 1 meV for heating the electron gas from 300 K to 1000 K. For

all metals with Fermi energies of about 7 eV (e.g. Cu) this effect seems negligible.

The time dependence of EG is determined from the experimental data by two different methods.

They are presented in Figure 49A & B and the results at two different excitation densities are shown

in Figure 49C and D. The first method is to fit the experimental ∆F (see equation (85)) using a

difference of two Fermi-Dirac distribution functions

∆F (Ej) =
1

1 + exp ((Ej − (EG(T0) + ∆EG)) / (kB Tel))
− 1

1 + exp ((Ej − EG(T0)) / (kB T0))

(95)

as illustrated in Figure 49A. The results are the blue lines in Figure 49C and D. The problem of this

method is that f is athermal below 1 ps and the fit might not adequately reproduce the experimental

data. However, important is the antisymmetry of ∆f(E − EF). If ∆F is also antisymmetric, then

the fit gives ∆EG = 0 even if the electrons are athermal, and ∆EG 6= 0 if ∆F (Ej − EF) has no

antisymmetry. A second method to determine ∆EG is to analyze the electron-hole imbalance. The

electronic distribution function is experimentally determined up to ∼ 0.25 eV above the Fermi level

and ∼ 0.4 eV below the Fermi level. The maximum range to check for electron-hole imbalance is from

-0.25 eV up to 0.25 eV relative to the Fermi level. The electron-hole imbalance is presented in Figure

49B. If the electron and hole scattering characteristics are equal, the number of electrons and holes

in the considered interval is essentially the same at every time delay (all these calculations assume a

constant density of states in the conduction band). Thus, EG is varied until the number of electrons

and holes are equal. The results at Ūabs = 33 J/cm3 and Ūabs = 260 J/cm3 are plotted in Figure 49C

and D (red curves). ∆EG shows different temporal characteristic according to the different methods

and to the different excitation densities. At the lower excitation density, the first method shows

changes up to 3 meV with the characteristic Tel-related time dependence. The second method shows

no relation between ∆EG and the deposit of the energy in the electronic subsystem. The expectation

from the thermomodulation fits (the values of Table 6) in combination with Tla(t) assumes changes

as weak as the noise level of the second method. However, the results of both methods lack the

systematics as a function of the excitation density. For the higher excitation density presented in
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Figure 49: Time dependent change of the position of the Fermi level relative to the upmost

d-band. A presents the technique of fitting the experimental ∆f at every time delay with the
function (95). The example is taken at Ūabs = 33 J/cm3 after 500 fs. Note that the curve is
asymmetric and does not go through the origin. The time evolution of the number of quasiparticles
(electrons and holes) at the same excitation density is presented in B. The amplitude of the weak
asymmetry is as small as the noise (plotted in the inset). C and D show the ∆EG as a function
of time at Ūabs = 33 J/cm3 and Ūabs = 260 J/cm3. It is determined from the experimental ∆F at
two different excitation densities with either the technique presented in A (blue line) or the variation
of ∆EG until there is the same amount of electrons and holes in a symmetric interval around the
Fermi level (red line, proportional to the violet line in B). These results are compared to the result
of the thermomodulation fits (see Section 5.3 and Table 6) which is based on the data where both,
the electrons and the lattice, are in thermal equilibrium and at the same temperature (yellow line).
These parameters are used to extrapolate ∆EG at short time delays based on Tla(t).
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Figure 49D, ∆EG, which is extracted this way, changes the sign during the relaxation process and

at other excitation densities it is positive or negative at all time delays. However, it is always within

±10 meV, i.e. the effect is weak: ∆EG ≪ kB Tel.

Up to now, ∆EG = ∂EG

∂T ·∆T is taken into account to reduce the deviation between the computed

and the experimental ∆ǫ in the thermomodulation fits (Section 5.3). The idea behind this section

was to extend this relation to the data at shorter time delays (yellow line in Figure 49A, the last

points are the result of the thermomodulation fit). The ∆EG, which is extracted by the two different

methods introduced in this section, are small and not systematic. It is likely, that the extracted ∆EG

is due to poor energy resolution (∼ 40 meV) or errors in the analysis.

5.6.3 Procedural error analysis

In the previous subsections the procedure to extract ∆f from the experimental ∆R/R and ∆T/T

was described. Beside the statistical error, due to the noise in ∆R/R and ∆T/T , the result may

also contain systematic or methodical errors because of the approximations and simplifications made

to model the optical properties of Cu. The analysis of the thermomodulation data provide the

possibility to estimate these procedural errors. On the one hand, ∆ǫ (for t > 5 ps) is extracted from

the experimental data (Section 5.4) and on the other hand, the thermomodulation with ∆F (∆T )

as an input allows to model ∆ǫ. The deviation between both ∆ǫ is quite large (compare red

crosses and green lines in Figure 50A and B), especially around 2.4 eV. Considering statistical error

of about ±10 %, it cannot account for this deviation. The deviation is systematic and substantial

and is basically related to the deviation between the experimental and the simulated ∆R/R and

∆T/T of the thermomodulation fits (see Section 5.3, Figure 34B). However, the deviation in ∆f

between the one which is known from the change in temperature and the one which is extracted

from the experimental data (see Figure 50C) is less pronounced. This is seen from the error bars

(dotted lines). Here, the statistical deviations are added to ∆ǫ based on random numbers to check

for the error propagation between ∆f and ∆ǫ. It turns out (see Figure 50C) that these small

statistical deviations are sufficient to reduce the deviation between the simulated (green line) and

the experimental ∆f (solid and dotted red lines). However, the oscillations of ∆f above 0.2 eV (see

Figure 50C) are not affected by noise. These oscillations above 0.2 eV are linked to the substantial

deviation in ∆ǫ2 between the thermomodulation fits and the experimental data around 2.4 eV (see

Figure 50B). This pronounced deviation might be linked to the smooth onset of interband optical
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Figure 50: The procedural error of the matrix inversion method analyzed in comparison to

the thermomodulation result at t > 5 ps. C The matrix inversion method is used to determine ∆f

(red solid lines) from the experimental ∆ǫ and the result is compared to the expectation (green solid
lines). A and B The upmost d-band to Fermi level parts of the experimental ∆ǫ (blue crosses and
red solid lines) are compared to ∆ǫ based on the simulated ∆f (green line) (with the corresponding
∆f plotted in C with a green solid line). Stochastic errors of ±10 % are added to the experimental
dielectric function (red dotted lines) and this error data is used to calculate error-∆fs which are
presented in C. The red markers "x" in C correspond to the points extracted from ∆ǫ1 and the red
markers "+" originate from ∆ǫ2. A and B share the same legend.

transitions from the lower lying d-bands to the Fermi level. So, the deviations in ∆f show different

characteristics compared to the deviations in ∆ǫ: The slowly varying deviation in ∆ǫ with respect

to the expected curve results in an erroneous oscillation in the reconstructed ∆f . This means,
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that the linear transformation to ∆f shows characteristics similar to a fourier transformation. The

conclusions are, that the error in ∆f is mainly based on the experimental noise, a simplified model

of the optical properties (to keep the number of adjustable parameters low), the (low) experimental

energy resolution and bandwidth. Although the deviations between the experimental ∆ǫ and the

simulated ∆ǫ are quite large, the related oscillations in the experimental ∆f do not prevent the

further analysis, which is carefully performed on ∆f .

5.7 The analysis of ∆f with Fermi-Dirac fits

The ∆f extracted from the experimental data allows one to test whether the electrons are thermally

distributed or not. The thermal fit is based on the Fermi-Dirac distribution function and reads

∆fth(Tel, E) =
1

1 + exp ((E − EF)/(kB Tel))
− 1

1 + exp ((E − EF)/(kB T0))
. (96)

The only fit parameter here is the electronic temperature Tel, T0 is the base temperature of 300 K.

The comparison between the fit and the experimental ∆f is presented in Figure 51A. The resulting

Figure 51: Experimental ∆f fitted with thermal distribution functions. A presents ∆f at
different time delays (crosses) after excitation with Ūabs = 99 J/cm3. The lines give the best fits
to the data based on thermal (Fermi-Dirac) distribution functions (compare also Figure 48). The
change in ∆f above or below the Fermi level corresponds to excess electrons or holes with respect
to the equilibrium distribution function at T0 = 300 K. The only fit parameter is the electronic
temperature Tel, which is plotted in B at three different excitation densities.

values of the fit parameter Tel(t) are plotted in Figure 51B for different excitation densities. It
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tion (96), cannot reproduce the experimental data properly. To describe the quality of the fits, the

deviation between the experimental datapoints and the fit curve is evaluated by means of the sum

of residuals

SR =
∑

i

|∆fth(Tel, Ei)−∆fi| . (98)

The deviations between the experimental points and the fit curve depends naturally also on the signal

to noise ratio. The noise-, systematic- or procedural-error-related deviation is assumed to consist of

a part which naturally scales with the signal amplitude and an additional constant offset (which will

dominate at low excitation densities or long time delays)

ςi ≈ ς0,i + ςsig · |∆fi| . (99)

The noise component, which is proportional to the signal strength, is also proportional to excitation

density fluctuations, which have their origin inside the laser system.30

The sum of residuals, SR, contains the deviations between the thermal electronic distribution function

used in the fit, ∆fth, and the noise- and errorless experimental electronic distribution function ∆f exp

and, in addition, the noise and errors, ςi (∆fi = ∆f exp
i +ςi). The upper limit to SR can be estimated

with the triangle inequality applied to the definition (98):

SR ≤
∑

i

∣∣∆fth(Tel, Ei)−∆f exp
i

∣∣+ ςi . (100)

If ∆f exp is thermal or if there are no noise and no errors (ςi ≡ 0), then the inequality (100) is in

fact an equation. If ∆f exp is thermal and the values of the offset of the noise and errors ς0,i (see

equation (99)) are insignificant, i.e. ς0,i ≪ ςsig · |∆fi|, then the relative deviation

rR =
SR

SA
(101)

is constant. Here

SA =
∑

i

|∆fi|

is the sum of all absolute changes of ∆f . The relative deviation reduces in this case to

rR = ςsig .

If
∑
i

∆fi is small compared to
∑
i

ς0,i, then rR is close to 1. If ∆f exp is thermal at temperatures

which are not too low (∆fi ≫ ς0,i at every i), then the relative deviation stays constant. If ∆fi

30Although the experimental data is processed with Fresnel equations and the equation for multiple reflections in

thin films, the linearized equations are a good approximation for all the data at hand (see Section 5.4.1, equations (73)

and (74)). Therefore the whole data processing is based on linear equations.
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(especially at the tails) reaches the offset noise level, then rR increases with decreasing ∆f . This

increase in rR arises mainly at longer time delays.

The sum of residuals and the relative deviation are evaluated at each time delay and presented in

Figure 53 for different excitation densities. rR drops during the first few hundred femtoseconds for all
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Figure 53: Quality of the thermal fits (estimation of the electron thermalization time, τth).

A Sum of the residuals of the thermal fits, SR (solid lines), compared to the sum of the absolute
changes of ∆f (SA, dashed lines). B Time dependence of the relative deviation rR. The global
minimum corresponds to the electron thermalization time. Around the minimum of rR, the deviation
between ∆f exp and the ∆fth follows the slope of SA (compare with A). After the minimum, rR

increases slowly over time. The increase is related to the decrease of the signal strength SA as
discussed in the text. The violet line marks the time of the peak in ∆ǫ. For both graphs both
legends are used.

excitation densities. This decrease in SR corresponds to ∆f exp approaching ∆fth. After this initial

decrease, SR and SA are parallel for some time. This gives constant rR and it indicates that the

electrons are nearly in thermal equilibrium (see equation (101)). The electron thermalization time

estimates are obtained from these graphs and they are found to be in the range between 0.4 ps (at

high excitation densities) and 0.8 ps (at low excitation densities). After the flat period, the relative

deviation increases again. This is because the tails of the spectra reach the offset noise and error

level (∆fi . ς0,i at the tails). This is also demonstrated by the increasing noise in SR and rR over

time.

127



5.8 The electron-phonon thermalization and the determination of the electron-

phonon coupling constant

The relaxation process after the electrons are thermalized (t ≥ τth) could be described by the TTM

(introduced in Section 3.1). This model contains the parameter of the electron-phonon coupling

strength λ (see Section 2.2). A standard optimization routine is used to optimize the agreement

between the numerical solutions of the system of coupled differential equations of the TTM (equa-

tions (21) and (22)) and the experimentally determined Tel. Here, the electron-phonon coupling

strength λ
〈
ω2
〉
, which essentially describes the energy exchange between the electronic and the

lattice subsystems via electron-phonon scattering events, is a fit parameter. Figure 54A presents this

result. The errorbars give the uncertainty of Tel, obtained from the quality of the Fermi-Dirac fits

to the experimental ∆f(t). The temperature of the lattice (at t ≥ τth) is known from the energy

conservation law. The electron-phonon coupling strength λ
〈
ω2
〉

is varied within a fit procedure to

reduce the deviation between the experimental and the computed Tel.

Figure 54B presents the parameter of the TTM fits at different excitation densities, λ
〈
ω2
〉
. The

errorbars are based on the uncertainty of Tel and the uncertainty of λ
〈
ω2
〉

in the application of the

TTM fit. The electron phonon coupling strength is found to be

λ
〈
ω2
〉

= 45 meV2 . (102)

This result agrees with the theoretically determined value of Beaulac et al. [BAP82] which is λ
〈
ω2
〉

=

46 meV2. Moreover, the determined λ
〈
ω2
〉

is independent of the excitation density as it should be.

This is a very important result. As it is mentioned in Section 2.2 (see Table 1), applications of

different models on different datasets result in different λ
〈
ω2
〉
. This important experimental result

allows on the one hand to test and optimize all these models, on the other hand, this improved

understanding of the electron-phonon interaction allows to improve the characterization of metals

and, in particular, superconductors.

5.8.1 Reading out ∆Tel from the experimental ∆R/R and ∆T/T

The non-thermal electron models such as the model of Sun et al. (see Section 3.4) split the elec-

tronic subsystem into two parts. The thermal part mostly covers the quasiparticles at the Fermi

level and the non-thermal part covers the high energy quasiparticles. The number of quasiparticles

at the Fermi level has a large impact on the optical properties near the upmost d-band to Fermi
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Figure 54: Thermal relaxation process described by the TTM; Determination of the electron-

phonon coupling constant λ
〈
ω2
〉
. A The TTM describes the relaxation of the electrons after they

are in thermal equilibrium (t > τth). The model is fitted to the experimental Tel with λ
〈
ω2
〉

being
the only fit parameter. The resultant λ

〈
ω2
〉

is plotted in B. The electron-phonon coupling constant
is found to have a value close to the theoretical prediction of 46 meV2 [BAP82]. The experiment
shows that λ

〈
ω2
〉

depends neither on Ūabs nor on Tel in agreement to the theoretical predictions. C

The time constant of the lattice heat up corresponds to the result of the ultrafast electron diffraction
experiment performed by Ligges et al. [Lig+09; Lig09]. The final lattice temperatures are nearly the
same in both experiments (T max

la = 390 K for Ūabs = 308 J/cm3 and T max
la = (405 ± 20) K for the

UED-experiment).

level resonance around 2.15 eV, whereas the contribution of non-thermal quasiparticles which are at

higher energies is negligible at the resonance. The proportionalities at the resonance are
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∆R/R(2.2 eV) ∝
∫ σ

−σ
|∆f | dE , (103)

∆T/T (2.14 eV) ∝
∫ σ

−σ
|∆f | dE . (104)

Here, σ is determined by the energy resolution of the probe beam at selected photon energies in

addition to the damping constant of the upmost d-band to Fermi level transitions (see Section 4.3.1).

In a small interval around the Fermi level, ∆f is a linear function of ∆Tel

∆f
∣∣
E≈EF

≈ ∆Tel · (E − EF)

kB T 2
0

exp ((E − EF) / (kB T0))

(1 + exp ((E − EF) / (kB T0)))2
(105)

as long as ∆Tel = Tel − T0 and |E − EF| are small, which is the case at low excitation densities. In

this approximation, equations (103), (104) and (105) result in

∆R/R(2.2 eV) ∝ ∆Tel (106)

∆T/T (2.14 eV) ∝ ∆Tel (107)

at low excitation densities. At high excitation densities with large ∆Tel the first order Taylor expan-

sion, given by approximation (105), may fail.

∆Tel as a function of time is known from the Fermi-Dirac fits to the experimental ∆f (see Figure

51B in Section 5.7). However, the discussed procedure to determine ∆Tel is quite elaborate. The

proportionalities (106) and (107) allow us to simplify the data analysis. The validity of the propor-

tionality (106) is tested in Figure 55 (the blue solid lines are ∆R/R(2.2 eV), scaled to match ∆Tel

at t > 5 ps, and they are compared to the experimental ∆Tel, the black solid lines). Figure 55

shows ∆Tel as a function of time at two different excitation densities. At low excitation densities the

proportionalities (106) and (107) are confirmed, whereas at high excitation densities (> 150 J/cm3)

the deviation between the black and the blue line in Figure 55B is most likely the result of the

approximation (105). The turning point is at about 150 J/cm3, which is clearly visible in Figure 55C.

The TTM is applied to ∆Tel(t) of the scaled ∆R/R(2.2 eV) transients (blue lines). The only fit

parameter is the electron-phonon coupling constant with the resulting value of λ
〈
ω2
〉

= 44 meV2.

This value is close to the earlier result (102) but is determined with much less experimental and math-

ematical effort. The points of intersections with the blue solid lines mark the electron thermalization

times, which are presented in Figure 55C. These points of intersection occur because at short time

delays, the electrons are not thermally distributed in the metal and the TTM does not consider the
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between an experimental transient and ∆Tel. Here, the whole spectra and not just a single transient

are taken into account. The SVD is used as a filter (described in Section 5.5.4) to filter out the

upmost d-band to Fermi level resonance and to neglect the other parts of the response like the

response due to intraband transitions. The optimized ∆R/R is integrated over the energy at every

time delay separately. If the electrons are described by a Fermi-Dirac distribution function, then the

integrated response is proportional to ∆Tel at every excitation density, i.e.

∆Tel =
1

2 ln (2) D(EF) kB

Nqp =
1

2 ln (2) D(EF) kB

∞∫

0

|∆f(E − EF)| dE

∝
∞∫

0

∆R

R

∣∣∣∣
d→Fermi

dν ,

referring to equation (129). The idea of the proportionality in the last step is that every excited

quasiparticle contributes to the measured response with the same spectral weight but shifted in energy

(holes contribute with different sign compared to excited electrons). This is a good assumption if

the response is purely related to the upmost d-band to Fermi level transitions.

5.8.2 Criticism of the two component method to analyse ∆T/T with the TTM

In the early beginnings of the ultrafast spectroscopy on metals (see [EA+87; All87; BFI87; Bro+90]),

the data were limited to a single transient taken at the photon energy of the used laser system. To

interpret the measured transient, some assumptions had to be made. One of those assumptions is to

expect the electrons to thermalize on a very short timescale (i.e. instantaneously). This assumption

allows to calculate the maximum electronic temperature, ∆T pred
el , based on equation (1). This

temperature is in the next step assigned to either the peak of the response or to the zero time delay.

Further, the response is assumed to consist of two different components, one is proportional to ∆Tel

and the other is proportional to ∆Tla, i.e.

∆T/T = Ael ·∆Tel + Ala ·∆Tla .

In Figure 56 this method is applied to the experimental ∆T/T in two different ways.

First, the TTM coupled differential equations are solved with variable parameters Ael, Ala and λ
〈
ω2
〉
.

It turns out (Figure 56A and B) that according to this analysis, the lattice has a large impact on the

response (Ala/(Ael + Ala) > 50 %, compare with Figure 56D) in contrast to the findings of Section

5.5.1 (compare Figure 40B (∝ ∆Tel) and D (∝ ∆Tla)), where the ∆Tla contribution to the response,
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equations of the TTM which is valid for small ∆Tel, i.e.

∂Tel

∂t
= g · (Tla − Tel) /(γ Tel) ≈ −g · (∆Tel) /(γ T0) .

The solution of this differential equation are exponential functions. The exponential fits to the

experimental ∆T/T result in λ
〈
ω2
〉

as presented in Figure 56D (yellow line). Note, that the quality

of the fits gets worse with increasing excitation density.

Using the methods presented in this subsection results in an excitation density dependent electron-

phonon coupling constant λ
〈
ω2
〉
, which is unphysical (at least in the narrow range of excitation

densities used). Also, both methods do not reproduce the experimental data well at short time

delays (see the deviations between the experimental transient and the TTM fits in Figure 56C). The

conclusion of this subsection is that the presented methods to apply the TTM to the experimental

data recorded at a single wavelength are insufficient to properly determine λ
〈
ω2
〉
.

However, the spectrally resolved study provides direct access to the time evolution of the electronic

distribution function and as a result, λ
〈
ω2
〉

is excitation density independent as expected.

134



6 Non-thermal electron dynamics

In Chapter 5 the introduced data analysis allows to estimate the electron thermalization time and

the electron-phonon coupling constant λ
〈
ω2
〉
. After the electrons are in thermal equilibrium, the

TTM is able to describe the electron-lattice thermalization process. However, the experiment is also

sensitive to the process of electron thermalization which takes place at shorter timescales. As there

is a lack of reliable theory to describe this process, the published models are tested in this chapter.

In particular the question concerning the very quick transfer of energy to the lattice in the first few

hundred femtoseconds is addressed.

The chapter starts with the application of the phenomenological TTM-extensions of Sun et al.,

Carpene et al. and Lisowski et al. (see Section 3.4) to the experimental data (∆f(t)) in Section 6.1.

All these models include a non-thermal electronic subsystem to describe the non-thermal part of ∆f .

The second section (Section 6.2) extrapolates the experimental data (∆f(t)) to the energy range

outside of the accessible window of our experiment (|E − EF| > 0.2 eV). The approach to describe

the energy relaxation of the electronic subsystem is to use the low-excitation-density approximations,

for example the spontaneous phonon emission (see Section 2.3) to describe the electron-phonon

energy exchange and an low-density approach to quantify the quasiparticle multiplication rate (see

Section 2.7) to determine the average quasiparticle energy as a function of time. After hundreds

of femtoseconds, these approximations fail and an extended version of the model of Lisowski et al

(Section 6.3) and the model of Baranov & Kabanov (Section 6.4) are tested to see, whether they

can describe the subsequent electron dynamics or not.

6.1 The extensions of the TTM

6.1.1 Analysis of the experimental data with the model of Sun et al.

Sun et al. [Sun+94] first extended the TTM considering an additional subsystem of non-thermal

electrons (the model is introduced in Section 3.4). This non-thermal electronic subsystem overcomes

the limitation of the TTM considering thermal electrons only. The TTM system of differential

equations is extended by one equation with two additional coupling parameters α and β. These

parameters represent the coupling of non-thermal quasiparticles to either the thermal quasiparticles

(α) or the lattice (β). α and β are assumed to be independent of the excitation density. In the
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beginning, the absorbed electromagnetic energy is fully transferred to the non-thermal quasiparticle

subsystem resulting in a step-like ∆f (see Figure 4). However, the time evolution of ∆f is unknown

and the model of Sun et al. does not provide any information about the spectral shape of ∆f at

time delays before the electrons are thermalized (at t < τth, where τth is the electron thermalization

time).

The model of Sun et al. is applied to the experimental ∆f(t) using the method of least squares. α

and β are varied in a way to reproduce the measured changes in the electronic temperatures, ∆Tel,

at each excitation density, focussing on the time delays with a defined ∆Tel (at t ≥ τth).31 The

resultant (numerical) solution of the coupled differential equations (equations (26), (27) and (28))

provide the information about the energy distribution across the different subsystems at short time

delays and it depends on the fit parameters and the boundary conditions (e.g. Ūabs). The result

at Ūabs = 99 J/cm3 is illustrated in Figure 57A. At other excitation densities, different values for α

and β are found as shown in Figure 57B. The extracted β is almost independent of the excitation

density as expected by the model. The large error bars of α and β include the uncertainty of

the experimental ∆Tel and the uncertainty of the fit. The inverse of α, which is τth, varies from

500 fs at intermediate excitation densities, up to 800 fs at low excitation densities. It turns out, that

the model of Sun et al. cannot describe the whole experimental dataset with an excitation density

independent parameter α. The electron-phonon time constant τp = 1/β, which is almost independent

of the excitation densities, is at about 400± 100 fs. The experimental ∆f in the accessible window

(-0.39 eV < E − EF < 0.25 eV) is not sufficient to test the energy distribution across the different

subsystems at short time delays according to the solution of the model’s differential equations. This

is because many excited quasiparticles are out of the experimental window and the amount of energy

stored in these high energy quasiparticles is unknown. So, the energy density of the high energy

quasiparticles is not detected and is missing in the integrated energy density (the cyan curve in Figure

57A). Interestingly, although the model assumes the energy of the pump pulse to be transferred to

the non-thermal electronic subsystem directly, the simulation suggests, that the maximum energy

in this subsystem is only around 65 %. This would imply, that the rest of the energy is already

transferred to the lattice and to the thermal electronic subsystem during the time when the light

interacts with the electrons (see also Section 6.2). At high excitation densities α and β have almost

the same value implying that both subsystems gain the same amount of energy per time (in the

31As the energy in the non-thermal electronic subsystem is decreasing exponentially over time (does not go to 0),

τth indicates the time at which the energy in the non-thermal electronic subsystem is negligible.
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Figure 57: Application of the extended TTM by Sun et al. [Sun+94]. A Energy densities of all
subsystems (thermal subsystem: green line, non-thermal subsystem: blue line) compared to the result
of the Fermi-Dirac fits (magenta line with dotted line for the quasi-temperatures prior to the electron
thermalization time). The integrated energy of the experimental spectra (cyan) underestimates the
real energy of all excited quasiparticles at short time delays because of the limited experimental
window (-0.39 eV < E − EF < 0.25 eV). The excitation density dependence of the fit parameters
α and β are plotted in B. The energy relaxation constant β between the non-thermal electronic
subsystem and the lattice is almost independent of the excitation density. α connects thermal and
non-thermal electronic subsystems and corresponds to the electron thermalization time, τth. This
time constant increases linearly with decreasing excitation density below 70 J/cm3.

stage of relaxation at short time delays). It would follow, that more than 15 % of the absorbed

energy is transferred to the lattice within the first hundred femtoseconds. So, the model implies a

very fast heating of the lattice in the beginning of the relaxation process in order to account for the

experimental ∆Tel at t > τth.

According to equation (30) one can estimate the average quasiparticle energy of the non-thermal

quasiparticles32

〈|Ent − EF|〉 /
π h̄ λ

〈
ω2
〉

β
≈ 0.1 eV . (108)

This finding does not correspond to the experimental value of 〈|Ent − EF|〉 which lies above 150 meV

in the first hundreds of femtoseconds even in the (unrealistic) case that there are no quasiparticles

at energies outside the experimental window (the experimental values are presented below in Figure

62C). In Section 6.2, we introduce a more elaborate model. This model suggests lower lattice heating

32The average energy is averaged over all non-thermal quasiparticles and over all times. The averaging over time is

weighted by the particle density of the non-thermal quasiparticles Nnt.
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rates compared the model of Sun et al. (see Figure 62B) and uses time dependent energy transfer

rates (β ≡ β(t)).

6.1.2 Analysis of the experimental data with the model of Carpene

The TTM extension of Carpene [Car06] (see Section 3.4.1) provides more information about the

non-thermal electronic subsystem compared to the model of Sun et al., because it suggests the

shape of the non-thermal ∆f . This allows us to test the model directly on the experimental ∆f

for higher accuracy. The energy relaxation rates α and β are replaced by the ∆f -relaxation-time-

constant τ0 for the interaction of non-thermal quasiparticles with thermal quasiparticles and τp for

the interaction of non-thermal quasiparticles with phonons (see equation (31)).33 Figure 58 presents

fits to the experimental ∆f . The experimental data was fitted over the entire spectral range and

Figure 58: Data analysis with the model of Carpene [Car06]. The solid lines are the result of
the model of Carpene. The dotted lines are best fits to the experimental data based on Fermi-Dirac
distribution functions (i.e. considering the electrons to be always in thermal equilibrium). A The
model of Carpene predicts the change in shape of the non-thermal ∆f over time [DV+12]. The model
parameters τ0 and τp are adjusted to reproduce the experimental ∆f (excited with Ūabs = 99 J/cm3).
B Relative deviations between the experimental ∆f and the result of the model. At low excitation
densities and short time delays the assumed ∆f of the model describes the experimental ∆f more
precisely than Fermi-Dirac distribution functions could do.

over all experimental time delays within a single fit procedure, adjusting the parameters τ0 and τp

33Note, the definitions of τp are similar in the model of Sun et al. (see Section 6.1.1) compared to the model of

Carpene but not exactly the same.
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(the fit procedure allows these parameters to be excitation density dependent).

The result of the fit procedure is plotted in Figure 58A (the related fit parameters are presented in

Figure 59B). ∆f is non-thermal at low excitation densities and short time delays (see Section 5.8).

In this range and at the tails of ∆f , the deviation between the Fermi-Dirac fits and the experimental

data is pronounced. Compared to the description with Fermi-Dirac distribution functions, the model

of Carpene gives an improved agreement between the experimental and computed ∆f at the tails

and at short time delays. The relative deviations between the experimental data and result of the

model integrated over the whole spectral range (rR; see equation (101) in Section 5.7) are presented

in Figure 58B as a function of time and at three different excitation densities. Although the Fermi-

Dirac functions are fitted to the experimental ∆f at each time delay separately (one free parameter

at each time delay), rR (dotted lines) are larger compared to the result of the application of the

model of Carpene, where the model assumes just two time independent free parameters (τ0 and τe-p)

to reproduce ∆f at every experimental time delay.

The resulting energy relaxation is plotted in Figure 59. The result is similar to the findings based

on the model of Sun et al. (compare to Figure 57A). The major difference is the larger deviation

between the simulated energy of the thermalized quasiparticles (green line) and the experimentally

estimated energy of the thermalized quasiparticles (magenta solid line). One can read out the

electron thermalization time, τth, by comparing the experimental electron energy (magenta line in

Figure 59) to the simulated energy of the thermal electrons (green line) considering the energy in the

non-thermal electron system (blue line). At the time, when the green and the magenta lines start

to overlap and the energy in the non-thermal part (blue line) is much smaller, the electrons can be

considered to be in thermal equilibrium. Based on this analysis the electron thermalization time is

larger compared to the result of the Fermi-Dirac fits (Section 5.8).

Importantly, the values of τ0 are found to be a factor of 10 to 60 larger than the theoretically

predicted value of 0.46 fs. The predicted value is far too small to properly describe the electron

dynamics within the model of Carpene. This result is comparable to the findings of Della Valle et al.

[DV+12] in Au (they used τ0 = 7 fs). The high values of τ0 correspond to a slow reshaping of the

non-thermal ∆fnt, where the corresponding variance remains large compared to the variance of the

thermalized quasiparticles (see Figure 59C). It can be easily verified (using (31)), that the equation
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which characterizes the variance is

〈
(Ent − EF)2

〉
(t) =

hν∫
−hν

E2 exp
(
−t/τ0 · ((E − EF) /EF)2

)
dE

hν∫
−hν

exp
(
−t/τ0 · ((E − EF) /EF)2

)
dE

=
EF
√

τ0√
t
·

EF

√
τ0

2
√

t
−

hν exp
(
−t/τ0 · (hν/EF)2

)

√
π erf

(√
t/τ0 · hν/EF

)


 , (109)

where hν = 1.55 eV is the pump photon energy.

The second parameter of the model of Carpene is the electron-phonon relaxtion time τp, which is

the same as previously discussed in the the model of Sun et al. (compare the inset on Figure 59B

with Figure 57B). This τp corresponds to (see inequality (108))

〈|Ent − EF|〉 / 0.1 eV . (110)

In contrast to the analysis based on the model of Sun et al., we have the opportunity to test this

inequality. The time evolution of 〈|Ent − EF|〉 in the non-thermal subsystem is plotted in Figure

59D. The calculation is based on the equation

〈|Ent − EF|〉 (t) =

hν∫
−hν

E exp
(
−t/τ0 · (E/EF)2

)
dE

hν∫
−hν

exp
(
−t/τ0 · (E/EF)2

)
dE

=
EF
√

τ0√
π t

·
1− exp

(
−t/τ0 · (hν/EF)2

)

erf
(√

t/τ0 · hν/EF

) .

Averaged up to 4 picoseconds, the average energy of each excited non-thermal quasiparticle is

〈|Ent − EF|〉 ≈ 0.3 eV

(based on the slightly excitation density dependent τp, see Figure 59D). This result is inconsistent

with the inequality (110) assuming τp describes the spontaneous phonon emission. The limitation

of the model of Carpene is, that it does not allow the non-thermal quasiparticles to remain in the

non-thermal subsystem after a single scattering event (discussed in Section 3.4.1). Furthermore,

it does not describe a quasiparticle multiplication process within the non-thermal subsystem (the

process is introduced in Section 2.7). This limitation of Carpene’s model may be the reason for the

presented inconsistency in 〈|Ent − EF|〉. To substantiate these statements, the number of excited

quasiparticle as a function of the time delay is compared to the results of other models (which include

the quasiparticle multiplication of non-thermal quasiparticles) below (see Figure 62A in Section 6.2).
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6.1.3 Analysis of the experimental data with the model of Lisowski et al.

The model of Lisowski et al. [Lis+04; Lis05] suggests deviding the conduction band electrons into

two parts (thermal and non-thermal) with the deviding parameter r (0 ≤ r < 1; see Section 3.4.2

for more details). In practice, this is done at the level of the density of states. The density of states

of the non-thermal quasiparticles is proportional to r (equation (32)) and the thermal quasiparticles

partly occupy the remaining states (their quantity is proportional to 1− r; see equation (33)). Both,

the thermal and the non-thermal subsystems are used, as if both of them are separately in thermal

equilibrium. Here, the non-thermal subsystem is at the higher temperature Tnt compared to the

thermal subsystem at the temperature Tel.

Simulations for different temporal dependencies of r are performed to verify whether the model can

describe the experimental dynamics or not. All simulations show, that the energy transfer from

the electronic subsystem to the lattice, governed by λ
〈
ω2
〉

= 46 meV2, is too slow to describe the

experimental data. Although the model is unable to describe the energy relaxation dynamics correctly,

in the following, the electron-phonon coupling strength g is taken as a free parameter to check if the

model can describe the shape of the non-thermal part of the experimental ∆f or not.34

The model is applied to the experimental ∆f(t) with a small number of free parameters. r is

assumed to rise with the absorption of light to a maximum value rmax. Thus, rmax depends on the

excitation density and it is used as a fit parameter. After the initial fast rise, r remains at rmax.

In this description, the electron thermalization is not characterized by the decrease in r but by the

decrease in Tnt − Tel.

The application of the model requires a modification of the term, which describes the energy exchange

between both electronic subsystems, equation (37), to consider the energy conservation law (in case

of an t-dependent r). The energy exchange between both electronic subsystems is supposed to

be proportional to the difference of the average quasiparticle energies multiplied by the number of

scattering events between particles of different subsystems

∂U

∂t

∣∣∣∣
nt→el

=
〈|E − EF|〉nt − 〈|E − EF|〉el

2 x
· Nsc,el + Nsc,nt

2
. (111)

The factor x present a measure of the average energy exchange between a thermal and a non-

thermal quasiparticle during each scattering event between them. This average energy exchange is

34The extended model of Lisowski et al. in combination with the description of the initial relaxation dynamics

(Section 6.2) is able to describe the experimental ∆f with the correct value of λ
〈
ω2
〉

(determined in Section 5.8) or

g, respectively. The result is given in Section 6.3, but additional parameters are required to perform this simulation.
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less (x > 1) or equal (x = 1) to the half of the difference of their averaged energies. The average

energy of a quasiparticle in a Fermi-Dirac distribution is

〈|E − EF|〉 =
π2 kB T

12 ln (2)
. (112)

The number of scattering events of non-thermal quasiparticles at thermal quasiparticles (see Fermi

liquid theory, Section 2.5) is

Nsc,nt =

√
Nel Nnt

τ0 E2
F

(〈
(E − EF)2

〉
nt

+ (π kB Tel)
2
)

. (113)

Thermal quasiparticles also scatter at non-thermal ones and the corresponding equation essentially

looks the same (because the non-thermal quasiparticles are described by the same distribution func-

tion, but different temperature)

Nsc,el =

√
Nel Nnt

τ0 E2
F

(〈
(E − EF)2

〉
el

+ (π kB Tnt)
2
)

. (114)

The rates of temperature changes are finally given by (including equations (111), (112), (113) and

(114))
∂Tnt

∂t

∣∣∣∣
nt→el

= − k2
B

r 8 τ0 E2
F x Tnt

· (Tnt − Tel)
√

(1− r) r Tel Tnt

(
T 2

el + T 2
nt

)
.

Here, x acts as a fit parameter and it is found to be independent of Ūabs. The value we obtain is

x = 12 .

This is a result of the application of the model of Lisowski et al. to the experimental data, as

discussed below. Such a high value of x corresponds to low energy exchange rates. If x takes the

lowest possible value of 1, then two excited and interacting quasiparticles will end up at the same

energy after scattering. This would result in an unstable non-thermal subsystem because the clear

separation of both particles before scattering turns into a situation where the two particles have the

same energy. After a few scattering events, it will be difficult to associate a particle with the non-

thermal subsystem any more. So, with such a low value of x, the model of Lisowski et al. would not

be applicable. Instead, the model requires the situation of two meta-stable electronic subsystems. If

the energy transfer between those two subsystems is too high, they cannot be distinguished any more

on the hundred femtoseconds timescale. If one electron belongs to the non-thermal and one to the

thermal subsystem and after scattering both electrons will have the same energy, then it is impossible

to separately count the resultant electrons to the individual subsystems. If the thermal electron gains
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only one tenth of the energy of the non-thermal electron (or even less), then this electron clearly

remains as part of the thermal subsystem after undergoing a scattering event. In other words, a large

electron-electron scattering rate at high quasiparticle energies is required to redistribute the non-

thermal part of the electronic subsystem and increase the number of non-thermal quasiparticles in

the first stage of the relaxation process. The scattering rates determine the second factor in equation

(111). This equation also relates the characteristic time for the energy loss of a quasiparticle in the

non-thermal subsystem to the electronic lifetime multiplied by x.

The result of the application of this model to the experimental data is presented in Figure 60. Here,

x, rmax and λ
〈
ω2
〉

are used as fit parameters. The experimental ∆f is considered as the composite

of the thermal and the non-thermal electronic subsystems. At short time delays, ∆f contains a

non-negligible number of non-thermal quasiparticles. The model reproduces this contribution, as

non-thermal quasiparticles, which are present as the wings of ∆f at energies |E − EF| > 0.2 eV (see

Figure 60A). The deviation between the experimental ∆f and the model calculation is - as expected

- reduced compared to the fits with the Fermi-Dirac distribution (Figure 60B). At later times, the

model reproduces the experimental ∆f with two distinct temperatures (Tel and Tnt), as accurately as

the single temperature fits (but with three parameters instead of one!). However, the result of fitting

the experimental data with this model is a slower electron thermalization compared to the earlier

findings (see Figure 55C black line). Here, the electron thermalization time is close to the electron-

phonon thermalization time (see a large deviation between the magenta and the green line in Figure

60C). Finally, the resulting electron-phonon coupling constant is a factor of two larger compared to

the theoretical prediction (λ
〈
ω2
〉

theo
= 46 meV2, [BAP82]), and it depends on the excitation density

(Figure 60D). Again, λ
〈
ω2
〉

is not expected to depend on excitation density [All87] around or above

ΘD. The parameter r is, however, in a good approximation linearly dependent on the excitation

density at these excitation densities. This is indeed expected because of an increasing number of

excited quasiparticles with increasing excitation density.

At 0.7 ps and Ūabs = 99 J/cm3, the simulation gives temperatures of

Tnt = 1950 K ,

Tel = 570 K .
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Thus, the model cannot describe the fast lattice heating (with the correct λ
〈
ω2
〉

= 46 meV2), but is

able to describe the experimental ∆f in the non-thermal regime at short time delays, however with

three distinct (time dependent) parameters (Tnt, Tel and r).

As we can see, none of the introduced extensions to the TTM, which were developed to describe the

electron thermalization process at short time delays, allows to adequately describe the experimental

data on Cu. Constants appear to be excitation density dependent (e.g. λ
〈
ω2
〉
) or their link to

other properties of the sample remains unclear (e.g. τ0). However, the application of the model of

Lisowski et al. did show that main problem that the models are facing is the fast energy transfer

from the electronic subsystem into the lattice subsystem on a hundred femtosecond timescale. This

energy transfer most be considered because the experiment shows a large discrepancy between the

absorbed energy density and the maximum electronic temperature. A rapid energy transfer to the

lattice requires a large number of excited quasiparticles which are generated during the first few

hundred femtoseconds (we are referring to the theory, which describes the spontaneous phonon

emission - see Section 2.3). This important part of the relaxation process is not considered in the

model of Carpene, while the model of Lisowski et al. ignores the stage of relaxation at short time

delays between the steplike electronic distribution function directly after the optical excitation and

the assumed Fermi-Dirac distributed non-thermal electronic subsystem. Indeed, the Fermi-Dirac

distributed quasiparticles have a reduced phonon rate because of a reduced number of accessible

final electronic states compared to the initial steplike change in the electronic distribution function

(see Figure 4). This issue is further discussed in Section 6.2.

6.2 Simulation of ∆f(|E − EF| > 0.2 eV) to account for the fast initial energy trans-

fer to the lattice

All the analysis within this subsection is aimed at getting an idea on how the distribution of the

excited quasiparticles is changing during the first few hundred femtoseconds. The experimental data

range within this first stage of relaxation is limited, and the rate equations used in this subsection are

just first approximations valid for the low perturbation regime. As such, the results of this section

should be considered as a rough approximation of the real dynamics, helping to understand the fast

energy transfer from the electronic subsystem to the lattice during the first few hundred femtoseconds.

In this subsection a method of extrapolation the experimental data to energies outside the limited

experimental window is presented. In the second step, the approximate differential equations to
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describe the time evolution of the number of excited quasiparticle, Nqp, and their energy density, Uel,

are introduced. These differential equations are solved and the result is presented and discussed at

the end of this subsection.

The electronic relaxation process is fully characterized by ∆f as a function of time delay and energy.

∆f has been determined experimentally but, in a limited energy interval. Especially at short time

delays, knowledge of ∆f over the broad energy range would be needed. However, the combination of

the known number of the excited quasiparticles and their total energy provides the means to perform

sensible extrapolations of ∆f outside of the experimentally accesible window (such reconstructions

are shown in Figure 61, dotted lines). If we know Nqp and Uel, we can extrapolate ∆f outside the

Figure 61: Extrapolation of ∆f to energies outside the experimental window. The experimental
∆f (solid lines) and its extrapolation to higher and lower electron energies beyond the limited
experimental window (dotted part of the lines) are plotted at selected time delays. The extrapolations
are designed to reproduce the energy and the number of excited quasiparticles according to the green
lines in Figure 62A and B. It can be seen that ∆f narrows over time as expected. The number of
quasiparticles is proportional to the area below the curve which increases over time up to 150 fs.

experimental window by

∆f(0.2 eV ≤ |E − Ef| ≤ Emax) = ∆f ep = const,

where Emax and ∆f ep are chosen such that Uel and Nqp are met. I.e., the parameters are determined

from the simulated number of excited quasiparticles Nqp and their overall energy Uel (green lines in
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Figure 62A and B), where the simulation is based on:

Nqp = D(EF)

(∫ 0.2

−0.2
|∆f exp(E)| dE + 2 ·∆f ep · (Emax − 0.2 eV)

)
,

Uel = D(EF)

(∫ 0.2

−0.2
E ∆f exp(E) dE + ∆f ep ·

(
E2

max − 0.2 eV2
))

.

This simulation (∆f ep-Simulation) uses two coupled differential equations to describe the time

evolution of the electron energy and the number of excited quasiparticles for short time delays

∂Nqp

∂t
=

2
hν
· ∂Uabs

∂t
(115)

+4 ·D(EF)

∞∫

−∞

∆f(E) · (1−∆f(E)) · γM

(
E − EF

kB Tel

)
· (E − EF)2 + (π kBTel)

2

τ0 E2
F

dE

−
[
(1− w(t)) · πD(EF) λ 〈ω〉 kB + w(t) · 2 ln (2) D(EF)2 k2

B π h̄ λ
〈
ω2
〉

γ Tel

]
· (Tel − Tla)

∂Uel

∂t
=

∂Uabs

∂t
− π h̄ λ〈ω2〉 ·Nqp − g · (Tel − Tla) . (116)

In the first equation, equation (115), the number of photo-excited quasiparticles (first term), the

quasiparticle multiplication rate (second term, see also Section 2.7 and Figure 63) and the electron-

phonon related recombination at the Fermi level (third term, see Figure 64B) are considered. Further,

equation (116), contains the energy of the absorbed pulse (first term), the spontaneous phonon

emission (second term, see also Section 2.3 and Figure 64A) and an electron-phonon thermalization

term (third term, mainly driving the process sketched in Figure 64B). Tel is the electronic temperature

taken from the Fermi-Dirac fits (see Section 5.7).

The model, based on the equations (115) and (116), includes three processes which are responsible

for the changes in the number of excited quasiparticles. Each absorbed photon generates two excited

quasiparticles, one electron and one hole. The excited quasiparticles have an average energy of

hν/2≫ kB T . This high energy quasiparticles have short lifetimes (see Fermi-Liquid theory, Section

2.5) and in every scattering event with a non-excited quasiparticle up to two quasiparticles are newly

excited (one electron and one hole) as sketched in Figure 63C. The idea is, that every high energy

quasiparticle which scatters at an electron below the Fermi level excites this electron and empties

the previously occupied state (generation of a hole). These scattering events multiply the number of

excited quasiparticles in a cascade process, because the generated secondary quasiparticles can further

create electron-hole pairs. At low energies, the quasiparticles recombine (by phonon emission), which

counteract the increase of the number of excited quasiparticles originating from the quasiparticle

multiplication process.
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Figure 62: Simulation of the initial quasiparticle number and energy dynamics. The model
description (equations (115) and (116)) and the extrapolation of the electronic distribution function
(Figure 61) allow to simulate the initial energy- and quasiparticle time evolution. The result is shown
in A and B and compared to the results of the different models which are previously described. Both
graphs share the same legend. C Relaxation of the average energy and the energy variance determined
from the extrapolated spectra. D Absolute rates for the excitation (generation), multiplication
and recombination of the excited quasiparticles. After 150 fs a turnover occurs, at which more
excited quasiparticles recombine than quasiparticles are newly generated within the quasiparticle
multiplication process. The average quasiparticle lifetime is plotted in the inset on the figure. The
curves are not smooth because of the experimental time resolution of about 60 fs.

The cascade electron multiplication processes are described by the second term in equation (115).

This term describes the average quasiparticle multiplication rate and takes the probability for the
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Figure 63: Characterization of the electron-electron scattering events. A-D are sketches to
characterize the quasiparticle multiplication (or cascade) process which is described in Section 2.7.
In A and B the number of excited quasiparticle remains unchanged. In C, a high energetic electron
creates an additional electron-hole pair. After scattering, the energy of the scattered electron is partly
transferred to a newly created electron-hole pair. D Statistically unlikely scattering events could be,
that excited electrons gain energy via recombination of electron-hole pairs. Individually, such events
could decrease the number of excited quasiparticles.

generation of electron-hole pairs γM and their lifetime (see Section 2.7 for the theoretical background)

into account. The quasiparticle multiplication rate is plotted in Figure 62D (blue line) as a function

of time. The quasiparticles at the Fermi level, which recombine in electron-phonon scattering events,

are considered in the third term of the equation (115) (see also Figure 64B). This term is based on

equations (128) and (130) (see Appendix 8.1.2). The factor w is used to dynamically switch between

the TTM-expression, which is valid for thermally distributed electrons, and the expression for the

recombination of electron-hole pairs in the case of a non-thermal electronic distribution function (it

can be separated into thermal and non-thermal parts). In the latter case, the probability to refill

the emptied states after each recombination event is enhanced because of the large density of high

energy quasiparticles. Thus, the recombination rate of thermally distributed quasiparticles is lower

compared to the case of non-thermally distributed quasiparticles. It is reasonable to use

w(t) =





0 t < 0.2 ps

t−0.2 ps
0.45 ps

0.2 ps ≤ t < 0.65 ps

1 t ≥ 0.65 ps

,

150





maxima of
〈
(E − EF)2

〉
initial

= (hν)2 /3 and 〈E − EF〉initial = hν/2.

The result of the ∆f ep-Simulation, which is based on the coupled differential equations (115) and

(116), show a fast energy transfer from the electronic subsystem to the lattice. In fact, it is fast

enough to explain the electronic temperatures which are found after about 700 fs (see Section 5.8),

which are far below the temperatures estimated for the case of negligible electron-phonon energy

transfer during the electron thermalization process. Thus, the simulation has the power to show,

that the whole relaxation process can be described consistently with Boltzmann equations based on

lowest order scattering terms (e.g. electron-hole recombination, electron-electron scattering). If the

contribution of higher order scattering terms (e.g. electron-electron scattering with an additional

created phonon) are not negligible, these processes could further accelerate the energy transfer

between the electrons and the lattice. However, this section shows, that the experimental data

presented in this work gives no evidence to consider higher order scattering terms in the Boltzmann

equations to account for the relaxation of a non-thermal electronic distribution function in a metal.

6.3 Extensions of the model by Lisowski et al.

The model of Lisowski et al. [Lis+04; Lis05] assumes non-thermal quasiparticles to rearrange to a

Fermi-Dirac distribution function on a very short timescale.35 The idea of this section is to describe

the short time delay dynamics (up to 150 fs) with the previously described model for the short

time delay dynamics (Section 6.2) and the second stage (t > 150 fs) by the model of Lisowski

et al. Here, ∆f is the sum of a broad high temperature Fermi-Dirac distribution function with

a decreasing amplitude (r(t)) and a Fermi-Dirac distribution function at much lower temperatures

(narrow distribution) with increasing amplitude (1− r(t)) (the quantity r represents the weight of

the thermal electrons). The simulated ∆f is fitted to the experimental data on ∆f(t) with (slightly)

modified differential equations as compared to Lisowski et al. (see equations (34)-(36) and (38) for

35In the beginning of the relaxation process the non-thermal electrons are steplike distributed (see Figure 4) and it

is expected that the electrons rearrange into a Fermi-Dirac distribution function as described in Section 3.4.2.
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comparison). The system of differential equations then reads:

∂Tnt

∂t
=

1
r γ Tnt

[
−r · g · (Tnt − Tla)− ∂U

∂t

∣∣∣∣
nt-el

]

∂Tel

∂t
=

1
(1− r) γ Tel

[
− (1− r) · g · (Tel − Tla) +

∂U

∂t

∣∣∣∣
nt-el

]

cla
∂Tla

∂t
= (1− r) · g · (Tel − Tla) + r · g · (Tnt − Tla) +

1
2

∂r

∂t
γ
(
T 2

el − T 2
nt

)
(117)

∂r

∂t
= −r/τr

∂U

∂t

∣∣∣∣
nt-el

=
〈|E − EF|〉nt − 〈|E − EF|〉el

2 x
· Nsc,el + Nsc,nt

2
.

The decreasing amplitude r reduces the energy in the non-thermal electronic subsystem and increases

the energy in the thermal subsystem. The difference between both energies is added to the lattice

subsystem (the last term of equation (117) accounts for that). The reason for this assumption is

the energy conservation law, and the fact that the number of excited quasiparticles is conserved,

if electron-electron scattering events are considered only. ∆f el, Nel and the related Tel linearly

increase with r and ∆fnt, Tnt linearly decreases with r, but the corresponding energies, Uel and Unt,

quadratically dependent on Tel and Tnt. Thus, the energy conservation law requires the number of

excited quasiparticles (Nnt +Nel) to decrease, if r is decreasing over time. The recombination of the

excited quasiparticles is realized by the electron-phonon coupling. The r-related lattice heating is

given by the last term in equation (117). The decreasing number of excited quasiparticles (Nnt +Nel)

with decreasing r also defines the time, at which the extension of the model of Lisowski et al. can

be applied to the experimental data. The idea is to model the electron multiplication process with

the model introduced in Section 6.2 until the number of excited quasiparticles reaches its maximum.

After this (for t > 150 fs), the non-thermal quasiparticles are assumed to be described by the Fermi-

Dirac distribution function and their dynamics are described by the extension of the model of Lisowski

et al. Here, the fit parameters are x (defined in Section 6.1.3, equation (111)) and τr (corresponds

to the electron thermalization time).

The initial values of r and Tnt (at t ≈ 150 fs) are estimated via

Tnt =

√
2 Unt

r γ
+ T 2

0 ,

rmax =
N2

qp π
2

2 ln (2) D(EF) · (12 · Unt · ln (2)− π2 kB T0 ·Nqp)
.

A good agreement with the experimental ∆f (see Figure 65) is found with
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Figure 65: Extension to the model of Lisowski et al. applied to dynamics for t > 150 fs.

The initial dynamics (t < 150 fs) are described by the model introduced in Section 6.2. A Shape
of ∆f at different time delays. The dots are the experimental result, the solid lines are the result
of this subsection and the dotted lines are the result of the Fermi-Dirac fits in Section 5.7. B

Deviation between the experimental ∆f and the model results. The dashed-dotted line shows the
normalized response SA. C Energy relaxation dynamics at the low excitation densities. The dotted
lines correspond to the reconstructed initial dynamics and the solid line to the extension of the model
of Lisowski et al. D Energy densities of the different subsystems at high excitation densities. The
inset show the relaxation of the parameter r. C and D belong to the same legends.

x = 4.5 , (118)

τr = 600 fs (119)
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and the electron-phonon coupling strength λ
〈
ω2
〉

= 45 meV2 (this value is taken from Section 5.8).

The non-thermal part of ∆f at short time delays is well reproduced by this model (Figure 65A and B).

At lower excitation densities and after more than 600 fs (Figure 65C) the modeled energy relaxation

dynamics is comparable to the result of the Fermi-Dirac fits, after the electrons are thermalized (for

t > 700 fs; compare the green line to the magenta line in Figure 65C). At higher excitation densities

the extracted thermalization time is longer compared to the result of the Fermi-Dirac fits, while the

maximum temperatures of the thermal electronic subsystem are much lower compared to the result

of the Fermi-Dirac fits (compare the green line to the magenta line in Figure 65D). Also, at high

excitation densities the deviation between the experimental data and the model ∆f is the same for

both, the description with the result of the Fermi-Dirac fits and with the extended model by Lisowski

et al. (see Figure 65B).

This section presents an extension of the model by Lisowski et al. which seems to describe the

experimental ∆f in a metal before the electrons are thermalized.

In metals with longer electron thermalization times or metals with strong electron-phonon coupling

(e.g. superconductors studied in the high temperature (normal) phase) the method of Section 5.8 may

not be applicable. To determine the electron-phonon coupling constant λ
〈
ω2
〉

from the experimental

∆f in such a case, one needs to understand and model the electron thermalization process.

6.4 Model of Baranov & Kabanov

The model of Kabanov et al. [BK14; KA08] is based on the linearized Boltzmann equation and it

is developed to describe the electronic relaxation process after photo-excitation in the low excitation

limit. It relates the linearized Boltzmann equation to a differential equation of the Fokker-Planck

type (see Section 3.5). The model allows to determine the time evolution of ∆f which can be

compared to the experimental ∆f(t) directly. While the exact solution, which is specific to the

investigated metal, can be obtained by solving the Fokker-Planck equation numerically [BK14], the

required computations are beyond the scope of this thesis. However, the approximate analytic solution

derived in [BK14], can be compared to the experimental data. This approximate solution linearly

relates ∆Uel to the quantity

x(t) =

t∫

−∞

∞∫

−∞

tanh (|E − EF| / (2 kB T0)) ∆f(E, t′) dE dt′ =

t∫

−∞

I(t′) dt′ (120)
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(the quantity I represents the number of excited quasiparticles Nqp in the limit where the recom-

bination of electron-hole pairs is negligible, see [BK14]). It turns out, that taking both kind of

electron-phonon scattering events, the cascade scattering and the recombination at the Fermi level

(see Figure 64), need to be considered to improve the agreement between the experimental data and

the output of the model.

The experimental Uel as a function of x is presented in Figure 66 at low and high excitation density.

Here, the time is monotonically increasing with x and the separation between each consecutive data

Figure 66: Model of Baranov, Kabanov & Alexandrov [BK14; KA08] applied to the experi-

mental Uel. Uel is plotted as a function of the integrated function I (equation (120)) with cyan dots
at different excitation densities in A & B. According to equation (40) a linear dependence is expected
(magenta lines are the results of the linear fit). Because of different reasons, the red crossed dots in
the beginning and in the end are not taken into account. The gradient of the curve is proportional
to the electron-phonon coupling parameter λ

〈
ω2
〉
. The excitation density dependence of the result-

ing electron-phonon coupling is plotted in the inset on the figure B. At low excitation densities the
theoretical prediction of λ

〈
ω2
〉

[BAP82] is reproduced. The initial dynamics are described by the
model of Section 6.2 (black lines).

point is 50 fs. The points in the beginning are excluded because the experimental data underesti-

mates Uel (due to the same reason the x-values are slightly too low as well; the reason for that is

that not all of the quasiparticles are counted because the experimental energy window is limited to

|E − EF| ≤ 0.38 eV). The reason for excluding the experimental points at larger time delays is that

at those points the relaxation process has already finished.

The linear dependence between Uel and
∫ t

−∞ I(t′) dt′ (see equation (40)) is likely to be valid at
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high temperatures and low excitation densities. The slope is related to the electron-phonon coupling

constant λ
〈
ω2
〉
. The inset on the Figure 66B shows the excitation density dependence of this pa-

rameter. At low excitation densities the theoretical prediction of λ
〈
ω2
〉

= 46 meV2 is reproduced

but at high excitation density λ
〈
ω2
〉

is reduced to about 30 meV2. As discussed above, λ
〈
ω2
〉

is

expected to be independent of the excitation density. The result indicate that the model cannot be

used to determine λ
〈
ω2
〉

from experimental data at high excitation densities. Another indication

that the model does not properly describe the experimental data is seen at t = 0 ps, where there is a

large deviation between the extrapolated Ūabs and the amount of energy deposited in the electronic

subsystem. The excitation density used in Figure 66A is 33 J/cm3 which is about 20 % more than

expected from the linear extrapolation (magenta line) to 0 ps (0 ps corresponds to the point 0 on the

x-axis).

An alternative description of the initial relaxation dynamics and the non-thermal electronic redistri-

bution is presented in Section 6.2 (black lines in Figure 66). After about 500 fs (see Figure 66A) and

more than 700 fs (estimated from the slope, see Figure 66B) the two curves (black and magenta)

overlap. The intersection time is a bit lower in reality because of the experimentally underestimated

I-values.

The analysis here shows, that the differential equation of the Fokker-Planck type which was intro-

duced by Kabanov et al. [BK14; KA08] is likely able to describe the electron dynamics in metals

at very low excitation densities. Gadermaier et al. [Gad+10] found good agreement of the model

with the data on cuprate superconductors, studied in the high temperature (normal) phase. However,

here the slope of the electron energy loss is studied in more detail and an upper limit of applicabil-

ity (excitation density of about 30 J/cm3) is found. Below this density the model of Kabanov and

Baranov shows good agreement with the experimental data, while above the model underestimate

the electron-phonon coupling strength.
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7 Summary and conclusions

The electron dynamics in the prototype metal Cu were investigated in this thesis. A near-infrared

pump and white light probe setup was developed to focus on the electron interband transitions at

about 2.1 eV. It could be shown that these transitions are sensitive to the changes in the electronic

distribution near the Fermi level. Based on the linear response framework, a model was developed

to describe the interband transitions (including the dynamics of intraband and high energy interband

transitions). Here, the white light records changes in the interband transition probabilities between

the upmost d-band and states near EF, whose distribution is time dependent. We applied the devel-

oped model to our equilibrium data, the published dielectric function and thermomodulation data.

This allows to model the temperature dependence of the optical properties and the thermomodula-

tion data of [RL72]. Further, we can address the data at short time delays, where the electronic

distribution function is not thermal, to quantitatively determine the dynamics of the electronic distri-

bution function, ∆f(t). ∆f(t) is studied after excitation with different excitation densities, spanning

more than one order of magnitude.

The electrons are found to thermalize on a timescale of 400-800 fs, dependending on the excitation

density. This contradicts the instantaneous electron thermalization assumption which is a basis of

the TTM [All87; Bro+90]. This observation is in agreement with other findings [Fan+92; Lis+04;

Gad+10]. However, the TTM can be used to describe ∆f at time delays after the electrons are

in thermal equilibrium (using the experimentally measured electronic temperatures). The electronic

temperatures are found to be substantially lower than the electronic temperatures which are expected

as a result of the instantaneous electron thermalization. In fact, nearly half of the absorbed energy

is found to be transferred to the lattice subsystem before the electrons are thermalized. Importantly,

the analysis reproduced the theoretically predicted value for the electron-phonon coupling constant

in Cu [BAP82]:

λ
〈
ω2
〉

= 45 meV2

for a broad range of excitation densities. This coupling strength differs substantially from the reported

values [EA+87; Bro+90], which were based on single color pump-probe measurements and the

instantaneous electron thermalization assumption of the TTM.

The stage of relaxation at short time delays is found to proceed through the combined electron-

electron and electron-phonon relaxation. This stage ends with the thermalization of the electronic
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subsystem on a 500 fs timescale. We found that none of the extensions of the TTM [Sun+94;

Car06; Lis+04] properly describes the experimental ∆f(t) during this stage. The energy is quickly

transferred to the lattice subsystem, which can be explained by the high electron-phonon scattering

probability for high energy electrons (where the number of excited electrons is small compared to

the accessible empty states). Simulations are performed to extrapolate the experimental ∆f(t) to

regions outside the experimental window to reproduce the number of excited electrons and their

average energy. These simulations, combined with the model of Lisowski et al. [Lis+04; Lis05],

are consistent with the experimental ∆f and these results confirm the electron thermalization times

which are found by the Fermi-Dirac fits to the experimental ∆f . Further, at low excitation densities

another model seems to be applicable, the model of the linearized Boltzmann equations [BK14]. This

model allows to determine the electron-phonon coupling constant at low excitation densities. The

result is consistent with the other results of this work.

The presented results are based on a very elaborate method to measure and analyze the time-resolved

dynamics in metals. Therefore, a way to circumvent the time consuming analysis associated with

the determination of ∆f(E, t) is developed. This simple analysis is directly based on the time-

and wavelength-resolved relative change in transmission, ∆T/T (ν, t). At first the method of SVD

is applied to ∆T/T (ν, t) to reduce the influence of the intraband Drude transitions. The filtered

data at the upmost d-band to Fermi level transition resonance is shown to be proportional to the

electronic temperature at low excitation densities and after the electrons are thermalized. The TTM

was applied to the filtered data, giving correct values for the electron-phonon coupling constant

and the increasing deviation between the TTM and the experimental data allows to determine the

electron thermalization time.

The present study enhances our understanding of the electron thermalization and lattice heating

processes. An independent test of available models is presented and additionally a way to address

electron-boson coupling strengths in advanced correlated solids like high-Tc superconductors, where

the knowledge of coupling strengths is still a matter of discussion.
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8 Appendix

8.1 Electron-Phonon scattering and thermalization

The energy density of the electronic subsystem is given by

Uel =
∑

k

D(Ek) Ek fk =

∫ ∞

−∞
D(E) E f(E) dE .

After excitation the electrons are out of equilibrium and because of the electron-phonon interaction,

this electron energy density decays over time. The equation (3) (or equivalent the equation (2))

presents the electron-phonon scattering which is a term in Boltzmann equations. The related changes

to the electron energy density and the number of excited quasiparticles are

U̇el

∣∣
el-ph

= 2π

∞∫

−∞

∞∫

−∞

∞∫

−∞

[
δ(E − E′ + h̄ω) ·

(
(f(E′)− f(E)) N(ω) + f(E′) (1− f(E))

)

+δ(E − E′ − h̄ω) ·
(
(f(E′)− f(E)) N(ω)− f(E) (1− f(E′))

) ]

·α2F (ω) E D(E) dE′ dω dE , (121)

Ṅqp

∣∣
el-ph

= 4π

EF∫

−∞

∞∫

−∞

EF∫

−∞

[
δ(E − E′ + h̄ω) ·

(
(f(E′)− f(E)) N(ω) + f(E′) (1− f(E))

)

+δ(E − E′ − h̄ω) ·
(
(f(E′)− f(E)) N(ω)− f(E) (1− f(E′))

) ]

·α2F (ω) D(E) dE′ dω dE . (122)

For the same reasons the phonon density increases over time [All87]

Ṅ(ω) = 2π

∞∫

−∞

∞∫

−∞

α2F (ω) ·
[
δ(E − E′ + h̄ω) · (N(ω) + 1)f(E′) (1− f(E))

−δ(E − E′ − h̄ω) ·N(ω) f(E′) (1− f(E))
]
D(E′)/F (ω) dE′ dE ,

where N is the distribution function of phonons. The corresponding time derivative of the energy

density is

U̇el

∣∣
el-ph

= −U̇la

∣∣
el-ph

= −2π

∞∫

−∞

∞∫

−∞

∞∫

−∞

α2F (ω)
[
δ(E − E′ + h̄ω) (N(ω) + 1)f(E′) (1− f(E))

−δ(E − E′ − h̄ω) ·N(ω) f(E′) (1− f(E))
]
D(E′) dE′ dE dω . (123)

8.1.1 The empty final states approximation

The empty final states approximation is applicable in the case of non-thermal electronic distribution

where the number of excited quasiparticles is small compared to the accessible empty states, and the
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average energy of the non-thermal quasiparticles is quite large (if 〈|E − EF|〉nt ≫ kB T ). This state

is a result of photo-excitation with light in the visible spectral range at low excitation densities. The

photons may generate high energy quasiparticles in metals with comparatively low density (f((E −

EF) ≫ kB T ) ≪ 1). The low density non-thermal part of f is considered in the empty final

state approximation. The energy range of accessible final states after scattering at phonons is

limited by the energy conservation law to the range ±h̄ωD around the initial state. The empty final

states approximation assumes the accessible final states to be empty. The non-thermal quasiparticle

distribution function is given by

∆fnt(E, t) = f(E, t)− fthermal(E, T ) .

∆fnt is assumed to be small at all energies |∆fnt(E, t)| ≪ 1 and time delays, where the empty final

states approximation holds. The number of non-thermal quasiparticles is

Nnt(t) =

∫ ∞

−∞
|∆fnt(E, t)| D(E) dE .

A rate for the energy transfer to the lattice for non-thermal quasiparticles is given by (see equation

(123))

U̇nt

∣∣
el-ph

≈ −2π

∞∫

−∞

∞∫

−∞

∞∫

−∞

α2F (ω) h̄ω
[
δ(
∣∣E − E′

∣∣+ h̄ω) · (N(ω) + 1) ∆fnt(E
′, t) (124)

−δ(
∣∣E − E′

∣∣− h̄ω) ·N(ω) ∆fnt(E
′, t)

]
D(E′) dE′ dE dω (125)

= −2π

∞∫

−∞

α2F (ω) h̄ω dω ·Nnt(t) = −π h̄ λ
〈
ω2
〉
·Nnt(t) . (126)

Compared to the result of Tas & Maris [TM94], this result is by a factor of 2 · ln (2) larger and

corresponds to the spontaneous phonon emission rate derived by Gusev & Wright [GW98] and

Baranov & Kabanov [BK14] (see Section 2.3).

8.1.2 The thermal-electron-phonon relaxation process

Section 8.1.1 deals with the non-thermal part of ∆f . If the electronic and the phonon distribution

functions are thermal, the equations (121) and (122) have analytic solutions [KLT57; All87], which

are used in the TTM. If the electronic temperature Tel differs from the lattice temperature Tla,

then the energy and number of excited quasiparticles in the electronic subsystem changes over time
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according to

U̇th

∣∣
el-ph

= πD(EF) h̄ λ
〈
ω2
〉

kB (Tla − Tel) and (127)

Ṅth

∣∣
el-ph

= πD(EF) λ 〈ω〉 kB (Tla − Tel) . (128)

These equations are derived for conduction bands whose bandwidth is large compared to kB T and

for temperatures above the Debye temperature, without any high energy optical phonon branches

(i.e. h̄ω ≪ kB Tel and h̄ω ≪ kB Tla for the majority of the phonon states). If optical phonons

are involved in the relaxation process, or if the temperature is very low, higher orders in the Taylor

expansion (equation (14) in [All87]) with different powers of λ 〈ωx〉 (equation (14) in [All87]) have

to be considered.

A thermal electronic distribution has the temperature dependent number of excited quasiparticles

Nth(Tel) = 2 ln (2) D(EF) kB Tel . (129)

This equation relates the number of the excited quasiparticles to the excess energy. It is obvious

that the equations (127), (128) and (129) are inconsistent and either equation (127), equation (128)

or none of them are valid. If equation (127) is valid, there needs to be a mechanism (beside the

electron-phonon interaction) to keep the electrons in thermal equilibrium. This mechanism has to

conserve the energy of the electronic subsystem (e.g. the electron-electron interaction) and modify

the equation (128) by adding an additional term (this will be referred to as the thermal-electron-

phonon relaxation process).

Apart from the electron-phonon coupling, the quasiparticles undergo collisions and they redistribute

due to electron-electron interaction. If the redistribution is fast enough, the electronic distribution

stays in thermal equilibrium after each electron-phonon scattering event and the equation (128) is

modified to

Ṅth

∣∣
el-ph

= 2 ln (2) D(EF) kB Ṫel =
2 ln (2) D(EF)2 k2

B π h̄ λ
〈
ω2
〉

γ Tel

(Tla − Tel) , (130)

with the use of the equation (127). The quasiparticle multiplication rate (from the electron-electron

scattering events) which is required to support the thermal-electron-phonon relaxation process is

given by

Ṁ =
Ṅ th

qp − Ṅ e-p
qp

N th
qp

=

(
3 h̄ λ

〈
ω2
〉

π kB Tel

− πλ 〈ω〉
2 ln (2)

)
Tla − Tel

Tel

.
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The higher the electronic temperature, the lower is the multiplication rate which is needed to keep

the electronic subsystem in thermal equilibrium. A negative Ṁ points out the necessity that electron-

hole pairs recombine with the transfer of the related energy to an excited electron or hole. Usually

such events are statistically unlikely (see Figure 63D in Section 6.2). A positive Ṁ refers to the

generation of electron-hole pairs. In Cu the parameters are λ
〈
ω2
〉

= 46 meV2 and λ 〈ω〉 = 2.16 meV

[BAP82]. The multiplication rate at Tel = 1000 K and Tla = 300 K is

Ṁ =
1

200 fs
. (131)

The electron-phonon relaxation annihilates too many electron-hole pairs and new pairs need to be

generated in electron-electron scattering events. If the electron-electron scattering rate is too low,

∆f would remain too broad with respect to the expected thermal Fermi-Dirac distribution function.

The maximum average time to newly excite a quasiparticle and to keep the electronic subsystem in

thermal equilibrium during the energy exchange with the lattice is

τM = 1/Ṁ = 200 fs . (132)

This time is short compared to electronic lifetimes at the Fermi level, which are in the range of 300-

700 fs (see Section 2.5) and τM gets even shorter at higher electronic temperatures. Simultaneously,

the average quasiparticle lifetime decreases with increasing temperatures. Figure 67 compares the av-

erage quasiparticle lifetime based on the Fermi liquid theory (blue line) to the maximum time for the

generation of new excited quasiparticles which are required to support the thermal-electron-phonon

relaxation process (red dashed line).

This section points out the necessary conditions for the use of two different approximations to

describe time-resolved experimental data. The first approximation is the empty final state approxi-

mation (see Section 8.1.2) which can be used at short time delays, where the density of non-thermally

excited quasiparticles is low. The second approximation is used in the limit, where the electrons are

in thermal equilibrium (see Section 8.1.2). Here, the role of the electron-electron interaction during

the electron-phonon thermalization process is discussed.

8.2 The linear response framework

The result of this section (in particular the result of the Subsection 8.2.6) has been the starting point

for the theory to describe the optical properties of Cu (see Chapter 4).
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Figure 67: The maximum time for the generation of new excited quasiparticle to support

the thermal-electron-phonon relaxation process in Cu. The average electronic lifetime (blue
solid line) seems to be too large to support the thermal-electron-phonon relaxation process up to
about 1300 K. The maximum time for the generation of excited quasiparticles is presented with the
red dashed line (see equation (132) at a lattice temperature of Tla = 300 K). However, the Fermi
liquid lifetime is close to the requirement and in consideration of the fact that the Fermi liquid
theory is developed for high energy quasiparticles with (E − EF)≫ kBT , it is reasonable to expect
the electrons to remain in thermal equilibrium during the exchange of energy between electrons and
phonons. To emphasize this, the factor 1/2 is multiplied to 〈τFLT〉. The factor 1/2 arises because
the lifetime of thermal quasiparticles is the sum of Fermi liquid lifetime of the scatterer and of the
scattering partner. This implies that 1/2 · 〈τFLT〉 is the lifetime of every excited quasiparticle in
thermal equilibrium independent of its energy. Considering the lifetime of thermal quasiparticles, the
thermal-electron-phonon relaxation process is supported at electronic temperatures above 700 K.

This section begins with the linear response framework. Although this topic is a part of standard text

books (e.g. [DG02]), it is emphasized in this section that the line width of features in the dielectric

function is related to the lifetime or dephasing time of the electrons in a solid. Further, the theory

is developed to consider both, the photo-induced electric current and the dipole-moment density.

The general theory of the linear response is described in the second quantization in Subsection 8.2.1.

The external fields can have an influence on observables (e.g. the current in a metal). The general

equation to determine the expectation value of observables is derived in Subsection 8.2.2. The

subsequent Subsection 8.2.3 specifies the expectation value to external electric fields. Further, the

general wave equation in solids is derived in Subsection 8.2.4 and the dielectric function is defined in

Subsection 8.2.5. The application of the theory to crystalline solids is described in Subsection 8.2.6.
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In the Subsection 8.2.7 different line shapes are discussed. The Lorentzian line shape is preferentially

used in the further analysis because most of the integrations which had to be performed and contained

the Lorentzian line shape can be solved analytically.

8.2.1 The time dependent perturbation

The time evolution of non-relativistic systems are described by the Schrödinger equation

i h̄
∂

∂t

∣∣∣Ψ̃(t)
〉

= H(t)
∣∣∣Ψ̃(t)

〉
.

Ψ̃ is the wave function of the entire system which describes both, the excited material and the

external fields. H is the system Hamiltonian, which also contains the time dependent external fields.

In the following, the system is split into three subsystems. These subsystems are: the external fields

(e.g. an electromagnetic wave), the excited system (e.g. the electrons in a solid) and the coupled

heat bath (e.g. the phonons in a solid). The Hamilton operators of each subsystem contain coupling

terms to the other subsystems. The wave function of the entire system is approximately the product

of all subsystem wave functions and the time evolutions of these wave functions are the solutions to

the Schrödinger equation with the time evolution operator, Û , defined by

|Ψ(t)〉 = Û(t) |Ψ〉 ,

where |Ψ〉 is the subsystem’s wave function (at t = 0, where the external fields are not yet applied to

the excited material). The Hamiltonian of the subsystem, which is disturbed (at t > 0) by external

fields, is the sum of three operators

H(t) = H0 + Hsc(t) + H ′(t) ,

where H0 is the Hamilton operator of this subsystem without both, external fields and the coupling

to the heat bath (e.g. a solid at T = 0). H ′ describes the interaction with the external fields,

(e.g. absorption of light) and Hsc describes the coupling to the heat bath (e.g. via electron-phonon

interaction). The time evolution operator has the following properties:

i h̄
∂

∂t
Û(t) = H(t) Û(t) = (H0 + Hsc(t) + H ′(t)) Û(t) (133)

Û(t) = exp (−i H(t)/h̄ · t)

Û †(t) = Û−1(t) .
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It is convenient to separate the Hamilton operator which describes the interaction with external fields

H ′ in equation (133) by

Û ′(t) = exp (i (H0 + Hsc(t))/h̄ · t) Û(t) , (134)

where

Û ′†(t) = Û ′−1(t) = Û †(t) exp (−i (H0 + Hsc(t))/h̄ · t) (135)

Û ′†(t) · Û ′(t) = 1

i h̄
∂

∂t
Û ′(t) = H(t) Û(t)

= exp (i (H0 + Hsc(t))/h̄ t) H ′(t) exp (−i (H0 + Hsc(t))/h̄ · t) Û ′(t) . (136)

The solution of the differential equation (136) within the first order of perturbation theory, and its

complex conjugated counterpart are

Û ′ ≈ 1 +
1
i h̄

t∫

−∞

exp (i (H0 + Hsc(t
′))/h̄ · t′) H ′(t′) exp (−i (H0 + Hsc(t

′))/h̄ · t′) dt′ ,

Û ′† ≈ 1− 1
i h̄

t∫

−∞

exp (i (H0 + Hsc(t
′))/h̄ · t′) H ′(t′) exp (−i (H0 + Hsc(t

′))/h̄ · t′) dt′ .

8.2.2 The time dependent expectation value

An observable of the system could be affected by the time dependent perturbation. The expectation

value is

〈
Ô
〉

(t) = 〈Ψ0| Û †(t) Ô Û(t) |Ψ0〉 .

The expectation value is time independent only if the operators Ô and Û commute. A full set of

states of the fermionic many particle system is required to calculate the expectation value. It is given

by

∑

...,nk,l,...

|..., nk,l, ...〉 ≡
∑

n

|Ψ0〉 ,

where nk,l = {0, 1} is the number of particles in the state which is characterized by l and k (for

electrons in a solid, l counts the bands and k refers to the electron’s wave vector). The expectation
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value reads

〈
Ô
〉

(t) =
∑

n′

∑

n′′

〈
Ψ′

0

∣∣ Ô
∣∣Ψ′′

0

〉

· 〈Ψ0|

1− 1

i h̄

t∫

−∞

exp

(
i
H0 + Hsc(t

′)

h̄
· t′

)
H ′(t′) exp

(
−i

H0 + Hsc(t
′)

h̄
· t′

)
dt′




· exp (i (H0 + Hsc(t))/h̄ · t)
∣∣Ψ′

0

〉
·
〈
Ψ′′

0

∣∣ exp (−i (H0 + Hsc(t))/h̄ · t)

·

1 +

1
i h̄

t∫

−∞

exp

(
i
H0 + Hsc(t

′)

h̄
· t′

)
H ′(t′) exp

(
−i

H0 + Hsc(t
′)

h̄
· t′

)
dt′


 |Ψ0〉

Because of the uncertainty relation, it takes infinitely long to obtain the exact energy. The interaction

with the heat bath induces a localization of the particles in time, thus, the particles are described

by wave packets. The line shape of such a wave packet usually depends on the time lag to the

localization event:

g(t, t′) = g(t− t′) .

If this function is not exactly known, one could assume a Gaussian or Lorentzian line shape with a

characterizing width, σsc. The width is antiproportional to the average scattering time τsc and may

depend on the temperature.

The observable changes over time according to

〈
Ô
〉

(t) ≈
〈
Ô
〉

+
∑

n′

〈
Ψ′

0

∣∣ 1
i h̄

t∫

−∞

exp (i (ω′
0 (t′ − t) + (Hsc(t

′) t′ −Hsc(t) t)/h̄)) H ′(t′)

· exp (−i (ω0 (t′ − t) + (Hsc(t
′) t′ −Hsc(t) t)/h̄)) dt′ |Ψ0〉 〈Ψ0| Ô

∣∣Ψ′
0

〉

−〈Ψ0|
1
i h̄

t∫

−∞

exp (i (ω0 (t′ − t) + (Hsc(t
′) t′ −Hsc(t) t)/h̄)) H ′(t′)

· exp (−i (ω′
0 (t′ − t) + (Hsc(t

′) t′ −Hsc(t) t)/h̄)) dt′
∣∣Ψ′

0

〉 〈
Ψ′

0

∣∣ Ô |Ψ0〉

=
〈
Ô
〉

+
1
i h̄

∑

n′

t∫

−∞

dt′

〈
Ψ′

0

∣∣H ′(t′) |Ψ0〉 〈Ψ0| Ô
∣∣Ψ′

0

〉
exp (i (ω0 − ω′

0) (t− t′)) g(t− t′, σsc) g(t− t′, σ′
sc)

−〈Ψ0|H ′(t′)
∣∣Ψ′

0

〉 〈
Ψ′

0

∣∣ Ô |Ψ0〉 exp (i (ω′
0 − ω0) (t− t′)) g(t− t′, σsc) g(t− t′, σ′

sc) .

The first term is the expection value without perturbation, the second term describes the energy

absorption and the third term the energy emission. Higher order terms with multiples of H ′ are

beyond the scope of the linear response framework.
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8.2.3 The response of matter to external electric fields

The energy is the time derivative of the action of electric fields to solids:

Eem-el(t) =
1
c

∂

∂t

N∑

i=1

qi [xi(t) ·A(xi, t)] =
N∑

i=1

qi

[
ẋi(t) ·A(xi, t)/c + xi(t) · Ȧ(xi, t)/c

]

=
N∑

i=1

qi [ẋi(t) ·A(xi, t)/c− xi(t) ·E(xi, t)]

=

∞∫

−∞

[J(x, t) ·A(x, t)/c− P (x, t) ·E(x, t)] dx .

The first term describes the interaction of light with electric currents and the second term describes

the interaction between light and dipoles. The energy of the current in the sample under the influence

of the external electric field is

Ec =

∞∫

−∞

J(x, t) ·A(x, t)/c dx .

The spatial distribution of charges provides an additional energy term

Ep =

∞∫

−∞

−P (x, t) ·E(x, t) dx .

In many-particle systems the current density

J(x, t) =
N∑

i=1

qi ẋi(t) δ(x− xi)

and the dipole-moment density

P (x, t) =
N∑

i=1

qi xi(t) δ(x− xi)

are used to describe the interaction with external fields. Here, N denotes the number of particles.

Transferred to quantum mechanics and into the Schrödinger picture, the corresponding current and

dipole-momentum operators are time independent. If Ψn with n ∈ {1,∞} is a full set of orthogonal

eigenstates of the many-particle system, then

Ĵ = q/V ·
∑

n

∑

m

〈n| ˆ̇r |m〉 c†
n cm and (137)

P̂ = q/V ·
∑

n

∑

m

〈n| r̂ |m〉 c†
n cm (138)

are operators for the current and polarization densities. The expectation value of every single-particle

operator is

Ô =
∑

n

∑

m

〈n| ô |m〉 c†
n cm .
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The expectation values change under the influence of external electric fields. The expectation value

in the first order of perturbation theory reads

〈
Ô
〉

(x, t) =
〈
Ô
〉

0
−
∑

n′

1
i h̄

·
t∫

−∞

〈
Ψ′

0

∣∣
[
Ĵ ·A(x, t′)/c + P̂ ·E(x, t′)

]
|Ψ0〉 〈Ψ0| Ô

∣∣Ψ′
0

〉

· exp (i (ω0 − ω′
0) (t− t′)) g(t− t′, σsc) g(t− t′, σ′

sc) (139)

−〈Ψ0|
[
Ĵ ·A(x, t′)/c + P̂ ·E(x, t′)

] ∣∣Ψ′
0

〉 〈
Ψ′

0

∣∣ Ô |Ψ0〉

· exp (i (ω′
0 − ω0) (t− t′)) g(t− t′, σsc) g(t− t′, σ′

sc) dt′ (140)

=
∞∑

n=1

∞∑

m=1

〈Ψ0| 〈n| ô |m〉 c†
n cm |Ψ0〉 −

q

i h̄

∑

n′

t∫

−∞

· 〈Ψ0| 〈m| ô |n〉 c†
m cn

∣∣Ψ′
0

〉 〈
Ψ′

0

∣∣ 〈n|
[
ˆ̇r ·A(x, t′)/c + r̂ ·E(x, t′)

]
|m〉 c†

n cm |Ψ0〉

· exp (i (ω0 − ω′
0) (t− t′)) g(t− t′, σsc) g(t− t′, σ′

sc)

−〈Ψ0| 〈n|
[
ˆ̇r ·A(x, t′)/c + r̂ ·E(x, t′)

]
|m〉 c†

n cm

∣∣Ψ′
0

〉 〈
Ψ′

0

∣∣ 〈m| ô |n〉 c†
m cn |Ψ0〉

· exp (i (ω′
0 − ω0) (t− t′)) g(t− t′, σsc) g(t− t′, σ′

sc) dt′ .

The wave function changes by removing one electron from the state i and subsequently adding one

electron to the state j

〈
Ψ′

0

∣∣ c†
j ci |Ψ0〉 .

The multiplications of the time steps of the initial state wave function and the final state wave

function are expected to be approximately given by the multiplications of the time steps of the

emptied initial state i and the newly filled state j:

exp (i (ω′
0 − ω0) (t− t′)) g(t− t′, σsc) g(t− t′, σ′

sc)

≈ exp (i (ωj − ωi) (t− t′)) g(t− t′, σi) g(t− t′, σj) .
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The corresponding expectation value is

〈
Ô
〉

(x, t) =
∞∑

n=1

∞∑

m=1

〈Ψ0| 〈n| ô |m〉 c†
n cm |Ψ0〉 −

q

i h̄

·
t∫

−∞

〈Ψ0| 〈m| ô |n〉 c†
m cn 〈n|

[
ˆ̇r ·A(x, t′)/c + r̂ ·E(x, t′)

]
|m〉 c†

n cm |Ψ0〉

· exp (i (ωm − ωn) (t− t′) g(t− t′, σm) g(t− t′, σn)

−〈Ψ0| 〈n|
[
ˆ̇r ·A(x, t′)/c + r̂ ·E(x, t′)

]
|m〉 c†

n cm 〈m| ô |n〉 c†
m cn |Ψ0〉

· exp (i (ωm − ωn) (t− t′)) g(t− t′, σm) g(t− t′, σn) dt′

=
∞∑

m=1

〈m| ô |m〉 fm −
∞∑

n=1

q

i h̄

·
t∫

−∞

〈m| ô |n〉 〈n|
[
ˆ̇r ·A(x, t′)/c + r̂ ·E(x, t′)

]
|m〉 (1− fn) fm

· exp (i (ωm − ωn) (t− t′)) g(t− t′, σm) g(t− t′, σn)

−〈n|
[
ˆ̇r ·A(x, t′)/c + r̂ ·E(x, t′)

]
|m〉 〈m| ô |n〉 (1− fm) fn

· exp (i (ωm − ωn) (t− t′)) g(t− t′, σm) g(t− t′, σn) dt′

=
∞∑

m=1

〈m| ô |m〉 fm −
∞∑

n=1

q

i h̄

·
t∫

−∞

〈m| ô |n〉 〈n|
[
ˆ̇r ·A(x, t′)/c + r̂ ·E(x, t′)

]
|m〉 (fm − fn)

· exp (i (ωm − ωn) (t− t′)) g(t− t′, σm) g(t− t′, σn) dt′ .

The terms in the first order of perturbation theory, where n = m, add up to zero.

In many applications, the electromagnetic waves form a wave packet with a finite coherence time,

τν , and the spectral width, σν = τ−1
ν . The associated vector potential reads

A(x, t) = 1/2 (A1(x, t) + A2(x, t))

=
c

2
[E0 exp (i q x− i 2πν t) + E∗

0 exp (−i q∗ x + i 2πν t)] g(|t| , σν) .

This definition takes the wave packet to be symmetric in time with respect to t = 0. The central

frequency of the wave packet is denoted with ν.36

The electric field is defined by

E(x, t) = − ∂

c ∂t
A(x, t) . (141)

36The vector potential does not need to have the same line shape as the band electrons. Here the same line shape,

g, is assumed.

171



It follows that the electric field splits up into two parts, which propagate in opposite directions:

E(x, t) = E1(x, t) + E2(x, t) = E1(x, t) + E∗
1(x, t) .

8.2.4 The electromagnetic wave equation

The wave vector of electromagnetic wave packets inside the many-particle systems is determined by

the wave equation [DG02]

∇ · (∇E1) = µ0 µ1
∂2

∂t2
D1 + µ0 µ1

∂

∂t
J1

which is based on Maxwell’s equations. A similar equation holds for the second component E2.

Wave packets with large spatial extent (or plane waves) have well defined wave numbers, q, and the

coupling to the medium is given by

|q|2 E1 = −µ0 µ1
∂2

∂t2
D1 − µ0 µ1

∂

∂t
J1 . (142)

Note that most of the parameters are complex (e.g. q, E1, etc.). If the electromagnetic wave packet

is long

(τν ≫ τm) & (τν ≫ τn) ,

then the photo-induced current and polarization follow the electric field of the wave packet and the

shape of the electromagnetic wave remains unchanged. The current and polarization responses are,

in the first order of perturbation theory, given by

J = 1/2 (J1 + J2) = 1/2 (σ E1 + σ∗ E2) , (143)

P = 1/2 (P 1 + P 2) = 1/2 ǫ0 (χ E1 + χ∗ E2) (144)

D1 = P 1 + ǫ0 E1 = ǫ ǫ0 E1

.

In addition to the standard text book case [DG02], both, the complex conductivity and the complex

polarization responses are considered. This gives a more general solution to the problem of the

interaction between light and matter, which is applicable even in the case that the material is neither

a simple metal nor a pure insulator. Phase-delays are considered for both responses. Thus the

conductivity σ and the polarizability χ are complex quantities, both being independent of each other

and depend on the frequency of the electromagnetic wave.
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The current and the polarization are measurable quantities. Because of the causality the response

of the solid follows the perturbation and not vice versa. The causality requires that the conductivity

and the polarizability are (independently) Kramers-Kronig invariant.

The electromagnetic wave equation (142) in solids, with the above definitions (equations (141), (143)

and (144)) reads

|q|2 ∂

c ∂t
A1 = −µ1 ǫ

∂3

c3 ∂t3
A1 − µ0 µ1 σ

∂2

c ∂t2
A1 . (145)

8.2.5 The response of matter to electromagnetic plane waves

If the electromagnetic wave packet is spatially extended and thus described by plane waves, then the

wave equation (145) reduces to

|q|2 =
µ1

c2

(
ǫ (2πν)2 + i σ

2πν

ǫ0

)
. (146)

The linear response is then

〈
Ô
〉

1
(x, t) =

∞∑

m=1

〈m| ô |m〉 fm +
∞∑

n=1

q

h̄
〈m| ô |n〉 (fm − fn) 〈n|

[
i ˆ̇r− r̂ 2πν

]
|m〉

·
t∫

−∞

E1(x, t′)

i 2πν
exp (i (ωm − ωn) (t− t′)) g(t− t′, σm) g(t− t′, σn) dt′

=
∞∑

m=1

〈m| ô |m〉 fm +
∞∑

n=1

q

h̄
〈m| ô |n〉 (fm − fn) 〈n|

[
ˆ̇r

2πν
+ i r̂

]
|m〉 E1(x, t)

·
t∫

−∞

exp (i (ωm − ωn + 2πν) (t− t′)) g(t− t′, σm) g(t− t′, σn) dt′ (147)

with

E1(x, t) = E1(x) exp (−i 2πν t) =
A1(x, t) c

i 2πν
=

A0 c

i 2πν
exp (i q x− i 2πν t) . (148)

The result of the integration is a complex quantity with real and imaginary parts

Im,n
2 (ν)− i Im,n

1 (ν) ≡ Im,n(ν, t)

=

t∫

−∞

exp (i (ωm − ωn + 2πν) (t− t′)) g(t− t′, σm) g(t− t′, σn) dt′

=

∞∫

0

exp (i (ωm − ωn + 2πν) s) g(s, σm) g(s, σn) ds . (149)

173



The substitution of t clarifies that the response is time independent. The dielectric function and the

conductivity are (see the operator definitions (137) and (138) and the equation (147))

χ(ν) =
e2

ǫ0 V h̄

∞∑

m=1

∞∑

n=1

(fm − fn)

(
〈m| r̂ |n〉 〈n| r̂ |m〉 (Im,n

1 (ν) + i Im,n
2 (ν))

+ 〈m| r̂ |n〉 〈n| ˆ̇r |m〉 1
2πν

(Im,n
2 (ν)− i Im,n

1 (ν))

)

σ(ν) =
e2

V h̄

∞∑

m=1

∞∑

n=1

(fm − fn)

(
〈m| ˆ̇r |n〉 〈n| ˆ̇r |m〉 1

2πν
(Im,n

2 (ν)− i Im,n
1 (ν))

+ 〈m| ˆ̇r |n〉 〈n| r̂ |m〉 (Im,n
1 (ν) + i Im,n

2 (ν))

)

ǫ̂(ν) = 1 + χ(ν) .

The wavevector of the electromagnetic wave inside the material is given by equation (146) and reads

|q|2 =
e2µ1

ǫ0 c2 V h̄

∞∑

m=1

∞∑

n=1

(fm − fn)
(
〈m| ˆ̇r |n〉 〈n| ˆ̇r |m〉+ 〈m| r̂ |n〉 〈n| r̂ |m〉 (2πν)2

)

· (Im,n
1 (ν) + i Im,n

2 (ν))

(150)

In optical experiments with monochromatic light, it is not possible to distinguish between the phase

delay of the photo-induced current and the amplitude of the dielectric response. Further, for the same

reasons, the phase delay of the dielectric response is equal to the amplitude of the photo-induced

currents. The response can be decoupled into the current and dielectric responses by their different

wavelength-dependencies.

Because of the difficulties to decouple the response into current and dielectric components, it is

convenient to define the dielectric function ǫ with

|q|2 =
µ1

c2
(2πν)2 (ǫ1 + i ǫ2) .

This equation is used in publications on optical properties in solids. ǫ can be determined from re-

flectivity and transmission experiments taking the Fresnel equations into account [DAP94a; DAP94b].

8.2.6 The response of electrons described by Bloch waves

In crystalline solids, the electrons can be described by Bloch waves (see any book about solid state

physics). For Bloch waves the sum over all states can be transformed into an integration over the
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k-space of the first Brillouin zone

|m〉 → |k, l〉
∞∑

m=1

→ V

(2π)3

∑

l

∫

Vk

dk = V
∑

l

∞∫

0

D(E) dE .

Here, l counts the electronic bands and D is the density of states. The integration over k-space

is transformed to an integration over energy. Here, the dispersion relation E(k) is considered. A

convenient approximation to simplify the integration is to assume spherical symmetry for small k

within the first Brillouin zone. Here the density of states transforms to

D(E) =
2 V

(2π)3

1
|∇kE| =

2 V

2π2

(k(E))2

|∇kE| .

Considering plane waves, the dielectric function is

ǫ = 1 + χ1 + i χ2 (151)

with (x = 1,2)

χx =
e2

ǫ0 V (2πν)2

∑

l

∞∫

0

∑

l′

∞∫

0

D(E) D(E′) (f(E)− f(E′)) Ix(E, E′, ν, γ, γ′)

(
〈k, l| r̂

∣∣k′, l′
〉 〈

k′, l′
∣∣ r̂ |k, l〉 (2πν)2 + 〈k, l| ˆ̇r

∣∣k′, l′
〉 〈

k′, l′
∣∣ ˆ̇r |k, l〉

)
dE′ dE

and

Im,n
x (ν)/h̄→ Ix(E, E′, γ, γ′, ν) .

8.2.7 Common damping terms of wave packets

Gaussian pulse shape

The Gaussian pulse shape is

gG(s, σ) = exp
(
−s2 σ2/2

)
.

The prefactor is taken to be 1 to set the amplitude to 1 at s = 0 (the fourier transformation gives

a normalized line shape as a function of energy). The integration of equation (149) is performed

to obtain an expression for the dielectric function (151) in the case of a Gaussian line shape of the
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responding particles. It is

Im,n
2 (ν)− i Im,n

1 (ν) = −
∞∫

0

exp (i (ωm − ωn + 2πν) s) gG(s, σm) gG(s, σn) ds

=

√
π

2 (σ2
m + σ2

n)
exp

(
−(ωm − ωn + 2πν)2

2 (σ2
m + σ2

n)

)

·

1− i erfi


ωm − ωn + 2πν√

2 (σ2
m + σ2

n)




 .

Rewriting the parameters in units of energy results in

I2(ν, E − E′)− i I1(ν, E − E′) = h̄

√
π

2 (γ2 + γ′2)
exp

(
−(E − E′ + hν)2

2 (γ2 + γ′2)

)

·

1− i erfi


 E − E′ + hν√

2 (γ2 + γ′2)




 .

Lorentzian pulse shape

An exponential decay

gL(s, σ) = exp (− |s| σ)

corresponds to a Lorentzian line shape in energy space. The damping factor I is defined in equation

(149) and the dielectric function with Lorentzian damping uses

Im,n
2 (ν)− i Im,n

1 (ν) =
(σm + σn) + i (ωm − ωn + 2πν)

(ωm − ωn + 2πν)2 + (σm + σn)2
.

In the main text the parameters are defined in units of energy, this gives

I2(ν, E − E′)− i I1(ν, E − E′) = h̄
(γ + γ′) + i (E − E′ + hν)

(E − E′ + hν)2 + (γ + γ′)2
. (152)
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