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Abstract

Theory of quantum many-body systems plays a key role in understanding
the properties of phases of matter found in nature. Due to the exponential
growth of the dimensions of the Hilbert space with the number of parti-
cles, quantum many-body problems continue to be one of the greatest
challenges in physics and most of these systems are impossible to study
exactly. We therefore need efficient and accurate numerical algorithms to
understand them. In this thesis, we exploit a new numerical technique
known as Tensor Network algorithms to study exotic phases of matter in

three different investigations in one and two spatial dimensions.

In the first part, we use Matrix Product States which is a one-dimensional
ansatz of the Tensor Network family to study trivial and topological phases
of matter protected by symmetries in a spin-2 quantum chain. For this,
we investigate a Heisenberg-like model with bilinear, biquadratic, bicubic
and biquartic interactions with an additional uniaxial anisotropy term.
We also add a staggered magnetic field afterwards to break the symmetries

protecting the topological phases and study their ground state properties.

In the second part of the thesis, we use Tensor Network States in 2D
known as Projected Entangled Pair States to study frustrated quantum
systems in a kagome lattice, more specifically, the XXZ model. We study
the emergence of different magnetization plateaus by adding an external
magnetic field and show the delicate interplay between the number of unit

cells and the symmetry of the ground state.

Finally, we propose an algorithm based on Tensor Networks to study open
dissipative quantum systems in 2D. We then use it to investigate the spin-
1/2 Ising and the XYZ model in a square lattice, both of which can be

realized experimentally using cold Rydberg atoms.
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Each path is only one of a million paths. Therefore, you must always keep
i mind that a path is only a path. If you feel that you must not follow
it, you need not stay with it under any circumstances. Any path is only
a path. There is no affront to yourself or others in dropping it if that is
what your heart tells you to do. But your decision to keep on the path or
to leave it must be free of fear and ambition. I warn you: look at every
path closely and deliberately. Try it as many times as you think necessary.

Then ask yourself and yourself alone one question. It is this:

Does this path have a heart?

All paths are the same. They lead nowhere. They are paths going through
the bush or into the bush or under the bush. Does this path have a heart
1s the only question. If it does, then the path is good. If it doesn’t, then it

s of no use.

Carlos Castaneda






Chapter 1

Introduction

Humanity owe its civilization to the discovery of new materials. The importance of
such discoveries is highlighted by the fact that different eras of civilization are often
named after them: be it the stone, iron or bronze age. From learning how to use tools
made of stone to the discovery of iron and steels leading to the industrial revolution,
the yearning to discover and develop new materials has never stopped. Today, as our
struggle for non-renewable sources of energy gets more alarming, we have to be more
and more reliant on renewable forms like the sun and the wind. Converting these
raw forms of resources into electricity require electronic devices and this ultimately
means finding new materials that have extraordinary properties.

The computer was invented to perform simple computations; now its use has
become inevitable in our everyday life. Unfortunately, even the power of such tradi-
tional computing, which is based on the silicon chips, is on the verge of collapse and
it seems certain that Moore’s law [1] will ultimately hit the ceiling in the years to
come. One of the ways to solve the crisis posed by the failure of Moore’s law would
be through the use of quantum computers. Unlike traditional computers, quantum
computers would obey the laws of quantum mechanics and its applications have far-
reaching consequences in physics, computer science and other related fields. One of
the key ingredients in the successful development of quantum computers is Topologi-
cally Ordered state [2] which exhibits a new kind of quantum order characterized by
non-local topological properties. The importance of these topological states of matter
has been brought into the limelight by the 2016 Nobel Prize for Physics awarded to
Thouless, Haldane and Kosterlitz for their works on it [3]. Such phases of matter
are characterized by interesting features such as robust ground state degeneracy, per-
fectly conducting edge states, quasi-particle fractional statistics, etc and they have

promising applications in quantum computation [1].
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Furthermore, with the discovery of exotic scientific phenomena like superconduc-
tivity, superfluidity, quantum magnetism, materials like polymers, semiconductors,
quantum matters, etc, it will not be over optimistic to assume that there is a lot
of hope in taking our civilization to the next level. These exotic materials and phe-
nomena can be harnessed for the purpose of next-level computing and also in many
useful everyday applications such as electromagnetic superconducting propelled trains
(maglev), more efficient power transmission, cheap solar cells, more efficient LEDs,
telecommunications, aiding medical sciences, etc.

The above examples are only few of the prospects of finding new materials and this
forms the basic motivation of researchers working in the condensed matter physics
community. However, understanding the basic properties of matter is not easy be-
cause elementary particles are governed by the laws of quantum mechanics. In addi-
tion to this, one of the most fascinating properties of materials science is that even if
we understand the properties of every single particle, their collective behavior is often
drastically different from their individual properties. This phenomenon is beautifully
characterized by the words of Aristotle [5]: The whole is more than the sum of its
parts. This means that understanding the properties of an atom or an electron is
not enough. One needs to understand what happens when a collection of such parti-
cles combine to form a system. This is known as emergence and gives rise to many
interesting and complicated phenomena such as the ones mentioned above. This re-
quires a proper understanding of the quantum many-body theory as they involve a
large number of particles and most of the realistic materials are many-body systems
anyway.

Our attempt to study quantum many-body systems is often hampered by the curse
of dimensionality. This means that the number of parameters required in studying a
realistic material scales exponentially with the number of particles. To give a simple
example, consider a system containing many particles where each particle is a 2-level
system. For a realistic material containing of the order of 10?® such particles, the
total number of parameters required to describe the system is ~ O(2'%"). To give an
overview, this number is much larger than the estimated total number of atoms in the
observable universe (~ O(10%)) [6]. Therefore, an exact description of such a realistic
material is impossible and hence only a few systems can be exactly studied. For
the rest, one has to make numerical approximations and/or study simplistic models
that capture the physics of the real materials. To achieve this, a lot of numerical
techniques have been developed over the years, each with their own advantages and

limitations. Mention may be made of the Exact Diagonalization method (ED) [7],



Quantum Monte Carlo method (QMC) [8], Series Expansion (SE) [9], Continuous
Unitary Transformations (CUT) [10, 1], Tensor Network techniques e.g. [12], Mean
Field Theory (MFT) [13] etc.

This thesis is about the use of one such technique based on Tensor Networks.
These techniques exploit the properties of entanglement between the particles to solve
the many-body problem as we will discuss in Chapter 2 and 3 of the thesis. We will use
these techniques to investigate three different kinds of systems: (i) a spin-2 chain with
Heisenberg-like interactions, (ii) a frustrated 2D system in a kagome lattice with XXZ
interaction and (iii) an open dissipative spin-1/2 Ising and XYZ model in a square
lattice. The first model is interesting because, as we will show, it hosts many exotic
phases of matter which cannot be described using the conventional theory of phase
transitions. One of them is the Symmetry Protected Topological phases of matter
which have been proposed as a resource in measurement-based quantum computing
and other areas of quantum information [14, 15, 16]. Our motivation for investigating
the second model is inspired by the search for quantum spin liquid which have been
suggested as one of the possible mechanisms to explain high-7, superconductivity [17].
The kagome lattice provides a good playground to explore these phases because it is
highly frustrated. Our investigation of the dissipative spin-1/2 Ising and XYZ model
is motivated by the fact that systems, in nature, are not isolated and therefore it is
very important to include the effects of the environment. This is to be seen from
the context that there are hardly any numerical techniques available to study open
dissipative systems in 2D that takes into account the correlations in the system. It
has a number of important implications because dissipation can be used to engineer
topological phases of matter [18] and also in the context of driven dissipative universal
quantum computation [19]. The important results of our investigation can be found
in Chapter 4, 5 and 6. Below, we provide a detailed outline of the whole thesis.

In Chapter 2, we make a formal introduction to the concept of entanglement. We
briefly discuss the history, importance and its applications. We introduce the concept
of qubits and give the formal definition of entanglement and show how one can quan-
tify it. For this, we introduce the concept of Schmidt Decomposition which is a very
important tool and its relationship to the Singular Value Decomposition used in linear
algebra. Finally in this chapter, we introduce some important concepts relevant in the
context of condensed matter physics such as the Variational Principle and Quantum
Phase Transitions. We also take the example of the spin-1/2 Transverse Field Ising

model and familiarize ourselves with concepts such as symmetry broken states, local
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order parameters, etc which will be very useful in understanding Symmetry Protected
Topological phases of matter to be discussed in Chapter 4 of the thesis.

In Chapter 3, we introduce Tensor Network (TN) States. We discuss its history
and the motivation behind using this technique. We then systematically describe
the two major families of TN States: the Matrix Product States (MPS) and the
Projected Entangled Pair States (PEPS) which will then be used in the rest of the
thesis. We discuss their properties and give some important examples. Details on
how to compute the ground states of the many-body Hamiltonian and expectation
values of operators with these techniques can be found in Appendix B and C. Other
TN states are also discussed briefly.

In Chapter 4, we investigate two novel and exotic phases of matter in 1D. These
are the Symmetry Protected Topological (SPT) and Symmetry Protected trivial (SPt)
phases of matter. We give their definitions and explain how they are different from
the conventional phases of matter. We then show that, using our technique, we can
obtain several effective spin-1 SPT and SPt phases that have never been obtained
before in a spin-2 chain numerically. For this, we study a spin-2 Heisenberg like
model with bilinear, biquadratic, bicubic and biquartic interactions with additional
uniaxial anisotropy and a staggered magnetic field. We show how conveniently TN
algorithms can be used to distinguish the several spin-1 SPT(t) phases based on the
irreducible representation of the symmetries protecting them. This chapter contains
the first two publications of the author along with other details.

Chapter 5 is dedicated to studying Frustrated Quantum systems. These systems
are very delicate due to the high quantum fluctuations and they often host a lot
of exotic phases of matter in 2D. After defining and describing some properties of
frustrated systems, we introduce one of the most difficult problems in the field of
condensed matter physics: the Kagome Heisenberg Antiferromagnet (KHAF). We
use infinite Projected Entangled Pair States (iPEPS) to study this model and show
that our TN ansatz provides a very good approximation compared to other existing
techniques based on the ground state energy of this model. As a generalization of
this model, we further study the XXZ model with a field in the kagome lattice and
study the 1/3 magnetization plateau as a function of the anisotropy term. We study
this using a 6-site, 12-site iPEPS and a 9-site iPESS (infinite Projected Entangled
Simplex States). This chapter contains the third publication of the author along with
additional details.

In Chapter 6, we use the iPEPS to study open dissipative quantum systems in 2D.

These are systems that are governed by the Lindbladian master equation. We use the



fact that any valid physical density operator can be vectorized and hence we can use
the usual iTEBD (infinite Time Evolving Block Decimation) algorithm to study these
systems. To probe the validity of our algorithm, we investigate the dissipative spin-
1/2 Ising model in 2D in the thermodynamic limit. This is particularly interesting
because of the controversies surrounding its phase diagram and also because of its
experimental relevance using cold Rydberg atoms. We also investigate the spin-1/2
XYZ model to show that our algorithm is not limited to one specific model.

Finally, we review the whole thesis and make important conclusions concerning

the different results. We also suggest possible future directions of our investigation.






Chapter 2

Entanglement and its consequences

Quantum entanglement, a phenomenon that has evoked the sharpest of reactions from
the scientific community as well as the general population, was once described by
Albert Einstein as “spooky action at a distance”. It is the phenomenon by which the
measurement of an entangled part affects the other part irrespective of the distance
between them. The remark by Einstein reveals how uncomfortable he was with the
concept of non-locality. But ironically, it was Einstein’s discovery of the law of photo-
electric effect [20] (earning him the Nobel Prize in 1921) that led to the revolution
in quantum theory. Later on, Einstein along with Podolsky and Rosen formulated
the famous EPR paradox [21]. In this paper, they argued that quantum theory is
incomplete because they could not accept the concept of non-locality. They attributed
the failure of quantum theory to some hidden variable. This led John Bell to derive
his well-known inequality [22] which, when tested experimentally, would verify if there
was indeed a hidden variable or quantum mechanics was complete. The experiment
was finally performed and it was found that the Bell inequality was violated meaning
that the local realist view cannot be correct [23, 24]. This proved that entanglement
is real and quantum theory is complete. It is worth mentioning that recently, there
has been a surge in the number of experiments filling the various loopholes that had
existed associated with the previous Bell experiments [25, 26, 27, 28].

Not only is quantum theory correct, it was realized that the properties of quantum
mechanics can be exploited to our advantage. It turns out that entanglement can be
used as a resource after alll Understanding the concept of entanglement could have
far reaching consequences in science. It has led to successfully conducting the first
quantum teleportation experiments [29]. Quantum algorithms such as Shor’s [30],
Grover’s search [31], etc have been shown to be much more superior than the clas-
sical algorithms we are used to for certain problems. We are currently racing to

build the world’s first quantum computer although there have been several claims so

7
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far on its realization. For example, in 2011, D-Wave Systems announced the “first
commercially available Quantum computer” called the D-Wave One, claiming a 128
qubit processor. Prior to their publication in Nature [32] explaining details of their
mechanisms, there was a lot of criticism from the academics community on the quan-
tum model of the machine [33, 31]. Besides D-Wave, there has also been a lot of
work on this front by scientists at IBM, Google, Microsoft, etc. The 2012 Nobel Prize
in Physics was awarded to David J. Wineland and Serge Haroche for their work on
quantum optics paving the way for the development of quantum computers [35]. By
the time this thesis was written, a quantum simulator with 51 qubits was announced
by a group of US researchers [36]. Quantum cryptography is another emerging ap-
plication exploiting the properties of quantum mechanics to perform cryptographic
tasks such as quantum key distribution [37]. Besides its application in computing,
quantum information has motivated new perspectives in studying properties of quan-
tum many-body systems. In this thesis, we will see how we can use the properties of
quantum entanglement for studying such systems using Tensor Network algorithms.
Before we get into the details of this, let us familiarize ourselves with some basic

properties of entanglement first.

2.1 Qubits

A bit is any 2-level system. The computers we see around us are based on classical
bits. It means that a signal can be ‘ON’ or ‘OFF’, ‘0" or ‘1’, etc. Unlike a classical bit,
a quantum bit, also known as a qubit, can exist in any linear combination of the two
states. A qubit is a unit of quantum information, a quantum mechanical two-level
system. It could be the polarization of a photon (vertical or horizontal polarization)
or the spin of a spin-1/2 particle (up or down).

The two states in which a qubit may be measured are known as basis states. The
two computational basis states are usually written as |0) and |1). A generic state [i))

of a qubit is a linear combination of these two states:

) = al0) + 511), (2.1)

where o and [ are complex numbers representing the probability amplitudes of the
two states respectively. By definition, they satisfy |a|?> + |8|> = 1. There is a very
convenient and visual way of representing quantum states. It is known as the Bloch

sphere representation. Bloch sphere is the geometrical representation of pure quantum
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Figure 2.1: Bloch sphere representation of a pure quantum state ).

states of a two-level system (qubit). In this representation, any generic pure state as

in Eq. 2.1 can also be written as

1) = cos (g) |0) + €"*sin (g) 1), (2.2)

where 6 and ¢ are the polar and azimuthal angle of a point on the surface of the
sphere. Thus, any physical state of a qubit can be parameterized in terms of two
real parameters ¢ and ¢. This results in the state |¢)) = |0) when # = 0 and |¢)) =
¢®|1) when § = 7. Thus, the two orthogonal states lie opposite to each other in
a Bloch sphere. This is shown in Fig. 2.1. The above discussion is only valid for
the representation of pure states. If we want to represent mixed states, we need to
use density matrices. A physical density matrix p has the following properties: (i)
Trace(p) = 1 (ii) p = p' (iii) positive semi definiteness i.e. no negative eigenvalues of
p. The density matrix for a pure state |¢) is simply the projector [¢)(¢)| and for an
ensemble of states |t);) each prepared with probability p;, it is

p="> i) (yl. (2.3)
J
The Bloch sphere can also be used to represent mixed states. They lie in the interior
of the sphere.

2.2 Defining and quantifying entanglement

A pure state is said to be entangled if it cannot be expressed as a product state of
the wave functions of the subsystems. To illustrate this with an example, consider

two systems defined over the Hilbert spaces H; and H, such that

9
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V)1 € Hi, [¥)2 € Ha. (2.4)

A new composite system can be defined by the tensor product of these two Hilbert
spaces:

Hs = Hy @ Ho. (2.5)

In terms of the basis states, we have

{101, 1)1} € Ha,
{10)2, [1)2} € Ha, (2.6)
{10)1 @ [0)2,]0)1 @ [1)2, |1)1 ® |0)2, [1)1 @ [1)2} € Hs.

We can now construct two possible states defined in H3 as follows:

) = (101 [0} + [0)s @ 1)) =

1 1

V2 V2

The prefactors are the normalization constants and the tensor product symbol has

(10}10) + 10)[1)),
(10]0) +1)[1)).

2

Sl

(2.7)

|#) (10)1 @[0)2 + 1)1 © [1)2)

been omitted in the RHS of the above equations for simplicity.
From the definition of entanglement, we see that the wave function |¢) is entangled
because it cannot be expressed as a tensor product of the wave functions of the

subsystems i.e.
|#) # )1 @ [¢)2 = entangled, (2.8)

while the wave function |¢) is separable because it can be decomposed into a tensor

product of its subsystems i.e.
1) =10)1 ® (]0)2 + |1)2) = separable. (2.9)

Until now, we have only considered the case of pure states. However, most sys-
tems in nature and experiments are mixed since quantum systems cannot be isolated
perfectly from the surroundings. For generic mixed states, we say that a given state

p comprising of n parts is entangled if

p#> pirf@pke- @k, (2.10)
k

where pj, is the probability distribution function and p¥ is the density matrix rep-

resenting the nth state of the given p. Otherwise, it is separable. Checking the

10
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separability of a quantum state can be done using a method known as Schmidt de-
composition for pure states which will be discussed in the subsequent sections. For
mixed states, such a decomposition does not exist and one has to use other concepts
such as entanglement negativity, bound entanglement, PPT states [38, 39], etc. To
quantify bipartite entanglement in pure states, we use von Neumann entropy which
is an extension of the classical Gibbs entropy. As it measures entanglement in a bi-
partite system, it is also referred to as entanglement entropy. For a formal definition,
consider a bipartite pure state |¢)) € Ha ® Hp. We can define the reduced density

matrix of a subsystem by tracing out the other subsystem i.e

pa =tp([¥)(Y]), pp = tra(l)(@]). (2.11)

The von Neumann entropy of such a partition is defined as

S(pa) = —tr(palnpa) = S(pp). (2.12)

By properties of a reduced density matrix, p4 can be expressed in terms of its eigen-

values as

pA:ZI/a|a>A(a|A (2.13)

where v, is the eigenvalue of the different basis and y is the rank of the reduced

density matrix p4. Then, we see that the von Neumann entropy is

X
S(pa) = —ZVQ In v,. (2.14)
a=1

We will show how we can compute the reduced density matrix of a subsystem from a
bipartite state using a method known as Schmidt decomposition. The von Neumann
entropy defined in this way can be used to study the phase diagram of a Hamiltonian.
A product state will have a vanishing entropy while a maximally entangled state will
have S = In(x) where x is the Schmidt rank of the system. This is the upper bound
of the entanglement entropy. The von Neumann entropy is not a unique measure of
bipartite entanglement. There are other quantities such as Renyi entropy [40], single
copy entanglement [11, 12], etc. For multipartite systems, one needs to use other
measures such as Geometric entanglement [13], 3-tangle [11] for tripartite systems,

etc.

11
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2.3 Schmidt Decomposition and SVD

The Schmidt decomposition can be used to obtain the reduced density matrix of a
bipartite system which can then be used to obtain other quantities such as entangle-

ment entropy, entanglement spectrum, etc. The theorem can be stated as follows.

Theorem: Given a pure state |¢) consisting of two parts A and B, there exists

orthonormal states |i4) of system A and |ig) of B such that
X
= Ailia)lis), (2.15)

where );’s are positive real numbers satisfying >, A? = 1. They are known as Schmidt
coefficients and are related to the eigenvalues of the reduced density matrix of the
bipartition. It is a very useful quantity as we will explain it later. The number of
non-zero Schmidt coefficients is the Schmidt rank. From Eq. 2.13, we see that the

reduced density matrix of the subsystems are given by

pa = trp([¢¥)(¢]) Z/\2|2A (ial,

(2.16)
pi = tra(|v){(y]) Z)\Q\ZB (ipl-

Thus, one can see that the Schmidt coefficients of a bipartition is the square root of
the eigenvalues of the reduced density matrix of each of the subsystems and it does
not depend on whether we trace out system A or B from the composite system. The
vectors |ia)and|ig) are called Schmidt vectors. Now, consider the states in Eq. 2.7,

we see that

|¢>X:17)\1:]-

6) 1y =2, A1 = X = 1/V/2. (2.17)

Thus, a state is separable iff the Schmidt rank of its decomposition xy = 1. Hence,
the Schmidt decomposition of a state is a very powerful tool to determine if a state
is entangled or not simply by looking at its Schmidt rank and entropy. The proof of
the Schmidt theorem can be done by using what is known as Singular Value Decom-

position (SVD) in linear algebra. We provide it below.

Proof: Consider the case where the subsystems A and B have the state space of the

same dimension. Let us assume |j) and |k) to be any fixed orthonormal bases for

12



2.4. ENTANGLEMENT IN CONDENSED MATTER

systems A and B, respectively. Then [¢) can be written as

[0) = auli)lk), (2.18)

ik
where a is a matrix of some complex numbers a;,. By the definition of singular value
decomposition, we can express any matrix a (real or complex) as a = u * s * v where
s is a diagonal matrix with non-negative elements, and v and v are unitary matrices.

Therefore, we can write the above expression as
) = Zujzszzvzk‘]>‘k> (2.19)
ijk

Now, we can define new vectors [ia) = D wjlj), i) = D, virlk), Ai = si, We can
express Eq. 2.19 as

) =D Ailia)lin), (2.20)

which is in the Schmidt form. Besides its applications in quantifying entanglement
properties, SVD allows us to make lower-ranked matrix approximations which is a
very crucial step in our TN algorithms. This will be discussed in the later part of the

thesis.

2.4 Entanglement in condensed matter

Before we conclude this chapter, it will be useful to introduce some concepts related
to entanglement in the context of condensed matter systems. All these properties and
results will be used in the later chapters when we study specific problems of interest.

2.4.1 Variational Principle

Theorem: Consider a Hamiltonian H (for simplicity, let us consider H with a discrete

spectrum) and let Ey be its lowest energy eigenvalue. Then the variational principle
states that (V|H|V) > Ey ¥V | ).

Proof: We can write the eigenvalue equation:

H|yp) = El¢p) (2.21)

and from the spectral theorem we also know that

E;eSpec(H)

13
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Now,

(WHW) = Y (Tln) (o,

XisAjE€Spec(H)

Xi€Spec(H)

> ) Bl = E

Xi€Spec(H)

HIiha ) (1| V)

lk (2.23)

As we see, Fj represents a lower bound to the expectation value of H. We can
use this principle to find an upper bound to the ground state energy by searching for
the state |¢,) out of a certain set of states that gives the infimum of the expectation

value of H:

(GalHIg)
f—_""7
o e 0w

Thus, we can approximate the ground state of any Hamiltonian with the lowest

(2.24)

expectation value of the ground state energy. The variational principle forms the
basis of many numerical techniques used to study condensed matter systems including
some TN methods such as DMRG [15, 10], variational PEPS [17], etc.

2.4.2 Quantum Phase Transitions

Quantum phase transition can simply be defined as the transition between different
phases of matter at zero temperature when we vary a physical parameter such as
the magnetic field. In order to illustrate it, let us take the example of the spin-
1/2 Transverse Field Ising model in 1D. We will discuss the concepts of local order
parameters, spontaneous symmetry breaking, how to detect phase transitions, etc for
this model. The nearest-neighbor spin-1/2 Ising model in a transverse field in 1D
is a relatively simple and well-understood problem in the field of condensed matter
theory. This model is gapped, meaning that the correlation function of the ground

state should decay exponentially. The Hamiltonian can be written as follows
H=-% 0i0; —h, Zof, (2.25)
(4.7) i
where 0;'% are the familiar Pauli matrices residing on site i of our chain. The Pauli

matrices are used to represent the quantum degrees of freedom. In the basis where

0” is diagonal, they can be written in the following matrix form
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2.4. ENTANGLEMENT IN CONDENSED MATTER

As we can see, the operator ¢* has two eigenvalues +1 and —1. We can use the two
eigenstates corresponding to these two eigenvalues as the possible configuration of an
Ising spin i.e | 1) and | |). The first term in the Hamiltonian in Eq. 2.25 represents
interaction between different spins. We assume that the coefficient of this interaction
strength is one. The symbol (7, j) means that we only consider nearest-neighbor spin
interactions. The negative sign means that the spins prefer ferromagnetic alignment.
The second term in the Hamiltonian corresponds to an external transverse magnetic
field. Thus, we can see that the Hamiltonian describes ferromagnetic interaction
along the ¢* direction along with an external field in ¢ direction.

The ground state of the Hamiltonian in Eq. 2.25 depends on the parameter h,.
So, let us consider two opposing limits i.e. when h, < 1 and h, > 1. When h, < 1,
the first term of the Hamiltonian dominates. For example, when h, = 0, the ground
state of the Hamiltonian is the state where all the spins are pointing either up or

down due to the ferromagnetic nature of interaction i.e.
(=TT o [ =TT (2.27)

In the thermodynamic limit, a system always chooses one of the above two states as
its ground state. This is known as the spontaneous breaking of the Zy symmetry. Let
us consider the other scenario in which A, > 1. In this case, the second part of the

Hamiltonian dominates. The ground state of the Hamiltonian in this case will be

+)=111-) (2.28)

where | =) = (| i+ 1))/vV2 and | <) = (| 1) — | 1):)/v/2 are the two eigenstates
of 0® with eigenvalues +1. This means that there is a critical value h, = h,. at which
the ground state changes qualitatively from one to the other. This is where the phase
transition takes place and we call this h,. the quantum critical point (QCP). It is
possible to have more then one QCP for a Hamiltonian. But for the Ising model with
a transverse field, there is only one QCP. The system is known to be gapless at QCP.
This means that the energy gap separating the ground state and the first excited
state is zero at this point. This is not true for a gapped system which lies on either
side of the QCP in our model. In order to study the phase diagram of the model one
needs to identify a local order parameter. It is a quantity that detects the spontaneous
breaking of a certain symmetry of the model. A suitable local order parameter in our
case could be the magnetization or the expectation value of the o* operator. This

quantity should be non-zero for ground states when h, < 1 and zero for the other case.
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CHAPTER 2. ENTANGLEMENT AND ITS CONSEQUENCES

In the next chapter, we will investigate phase of matter exhibited by a spin-2 chain
with a particular Hamiltonian that goes beyond the above discussions of symmetry
broken phases. These are phases of matter that do not break any symmetries of the
Hamiltonian and cannot be distinguished using the concept of local order parameters

as we discussed before.

16



2.5. SUMMARY

2.5 Summary

Quantum entanglement is a phenomenon in which the measurement of the quantum
state of one particle affects the state of the other particle. This phenomenon has no
classical counterpart. The properties of quantum entanglement can be exploited for
applications in quantum teleportation, quantum computing, cryptography, developing
new algorithms and studying many-body systems in nature.

A quantum state is usually represented using the Dirac notation for a pure state
and a density matrix for a mixed state. Unlike a classical state, a quantum state
can exist as a linear superposition of several states. Pure states are represented
on the surface of a Bloch sphere while mixed states lie in the interior of the Bloch
sphere. A pure state is said to be entangled if it cannot be expressed as the product
of its subsystems. It is possible to quantify entanglement for pure states using the
von Neumann entropy. We can use the Schmidt decomposition to compute the von
Neumann entropy of a pure state. This decomposition is related to the singular
value decomposition in linear algebra. For mixed states, the von Neumann entropy
quantifies the ‘mixedness’ of the system and one needs to use other measures to
quantify entanglement.

Entanglement has very important consequences in the context of quantum many-
body systems. For example, the properties of entanglement can be used to identify
quantum phase transitions in these systems where they are known to diverge at the
critical point. To identify different phases, one can define some local order parameter
that is zero in one phase and non-zero in the other. However, there are phases of
matter that go beyond such classifications. They will be discussed in Chapter 4 of
the thesis.
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Chapter 3

Tensor Network States

Numerical techniques play a very important role in the study of quantum many-body
systems. In the introductory part of the thesis, we have already mentioned some
important numerical techniques. These techniques come with their own disadvan-
tages. Exact Diagonalization (ED) [7] techniques can only study small systems far
from the thermodynamic limit where the phase transition occurs. Mean Field The-
ory (MFT) [13] cannot incorporate the effect of quantum correlations in the system.
Quantum Monte Carlo (QMC) [3] is a very well known technique in the field but it
suffers from the infamous sign problem, therefore it is not so suitable for studying
fermionic and frustrated systems. There are other techniques like Series Expansion
(SE) [9] (which relies on perturbation theory calculations), Continuous Unitary Trans-
formation (CUT) [10, 11] (which relies on the approximate solution of a system of
infinitely-many coupled differential equations), and many more, each with their own
limitations on either the system size or the kind of models they can study.

In this chapter, we will describe in detail one new technique: Tensor Network
technique. TN techniques do not suffer from any of the problems mentioned. In fact,
one of its advantages is its flexibility. It can be used for studying different kinds

of systems both in one and two spatial dimensions for finite and infinite systems

[18, 19, 50, 51, 52]. One can impose different boundary conditions [53, 51, 55] and
even implement symmetries [56, 57]. It can also be used to study bosonic [58, 59],
fermionic [60, 61, 62] or frustrated spin systems [63, G4, 65, 66]. TN algorithms can

even be used to study dissipative open quantum systems and thermal states [07, 68].
Nowadays, TN theory is being used in other fields of study like AdS/CFT correspon-
dence in quantum gravity [69, 70, 71, 72, 73, 74] and quantum chemistry [75, 76].
The most popular example of a TN algorithm is the Density Matrix Renormalization
Group (DMRG) introduced by Steven White in 1992 [15, 16]. This technique has been
one of the most successful algorithms to study gapped 1D systems. Besides DMRG,
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CHAPTER 3. TENSOR NETWORK STATES

there are many other algorithms available now to study both 1D and 2D quantum mat-
ter using TN such as the Time Evolving Block Decimation (TEBD) [77, 78, 79, 52],
Projected Entangled Pair States (PEPS) [30, 50], Tensor Renormalization Group
(TRG) [21], Multi-scaled Entanglement Renormalization Ansatz (MERA) [82], con-
tinuous Matrix Product States (cMPS) and continuous Tensor Networks [33, 8],
Higher Order Tensor Renormalization Group (HOTRG) [85], etc.

Although TN techniques have various advantages and their popularity has in-
creased drastically over the recent years, they are not free from limitations either.
However, their drawbacks are not due to the type or size of systems but rather due
to the amount and structure of entanglement present in the system. For example,
it is known that MPS cannot reproduce the properties of critical or scale invariant
systems where the correlation length is known to diverge [30, 87]. We will soon see
that TN states are parameterized by something known as the ‘bond dimension” which
quantifies the amount of entanglement present in the system. However, in most of
the cases we are interested in, it is possible to handle the issue of entanglement with a
reasonable value of bond dimension within our computational limit. This is because
of the following reasoning.

A quantum many-body system can be represented by specifying the coefficients of
its wave function in a given basis. As we have discussed, the number of these coeffi-
cients scales exponentially with the number of particles and for a many-body system,
it is impossible to access all the regions of the Hilbert space exactly when the number
of particles involved is very large. However, it turns out that not all the regions of the
Hilbert space are relevant for us. Most realistic materials can be approximated by a
Hamiltonian that have only local interactions (finite range interactions). It is possible
to show that the low energy states of local gapped Hamiltonian obey the so-called
area law for the entanglement entropy in 1D [88, 89, 90]. In 2D, this is known to be
true for any temperature 7. For these states, the entanglement entropy scales with
the boundary of the system and not with its volume (shown in Fig. 3.1(a)). Therefore,
they can be efficiently represented by TNs because these states target the relevant
corner of the Hilbert space satisfying the area law [91, 92]". Thus, instead of targeting
the whole Hilbert space which is almost impossible and not even relevant for us, we
can directly target the tiny corner of the Hilbert space with our TN states (shown in
Fig. 3.1(b)). Not only this, it will become clearer in the next section of this chapter

that not only is TN an efficient way of representing many-body quantum states, it

!There are states that satisfy the area law but cannot be approximated using Tensor Net-
works [93].
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Many-body Hilbert Space

States obeying area law —>

Tensor Network States

Figure 3.1: (a) Entanglement entropy between system A and B scales with the bound-
ary (area law); (b) Many realistic materials obeying the area law in nature corresponds
to a tiny corner in the Hilbert space.

also provides intuition about the structure of entanglement present in different parts
of the system. The other good thing about TN is its simplicity. Rather then writ-
ing complicated equations involving lots of coefficients and indices, one can simply
draw TN diagrams and perform calculations based on it. Therefore, it can be used
a new language for condensed matter physics. This is illustrated in the next section
of the chapter. We will also discuss some properties and examples of two important
families of TN states: MPS and PEPS. Before we get into the details, let us provide
some introduction and motivation to TN techniques in general. Our review of TNs

in this chapter is based on [12]. More detailed and extended reviews can be found

in[ I ) Y ) Y ]'

3.1 Tensor Network representation

A tensor is defined as a multi-dimensional array of complex numbers. The rank of a
tensor is given by the number of its indices. Thus, a scalar is a rank-0 tensor (s), a
vector a rank-1 tensor (v;), a matrix a rank-2 tensor (m;;) and so on. We can define a
tensor with an arbitrary number of indices. We will now introduce the diagrammatic
notation of tensors. We will represent a tensor with a ball and its index with a line
coming out from it. Tensors of rank 0, 1 and 2 are shown in Fig. 3.2. We will assume
that every index can assume D(d) different values. This number could be the bond
dimension or the physical dimension of our tensor network. We will explain this in

more detail later on.
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@ a scalar Q a vector
a matrix arank-3
tensor

Figure 3.2: Diagrammatic notation of elementary tensors.

Now, we will explain how we can make basic tensor operations using the notation
we just introduced. An index contraction of the tensors is defined as the sum over all
possible values of the repeated indices of a set of tensors. For example, the product

of two matrices can be written as
D
Cir = Ay;Bj (3.1)
j=1

We can define more complicated tensor operations such as

D

F= Y AysByCuswBup (3.2)

Pogyys,tu,v=1

where A, B, C, E are tensors having different number of indices. This is an example
of a simple case where we assume that every leg has the same dimension D. In
principle, this does not have to be the case. The result of this operation is just a
scalar as there is no open index left. The common indices are the ones over which the
tensors have been contracted. The above two operations can be denoted in the TN
language as in Fig. 3.3. Thus, instead of writing complicated equations with large
numbers of indices, it is much simpler to denote it in the TN language. TNs are like

the Feynman diagrams in quantum field theory: they can be used to understand the
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(a)%:%: o(D° %)Q: oD’ C%): o(D* @

Figure 3.4: Following different orders of contraction for the same TN. The order of
contraction in (b) is obviously more efficient.

structure and pattern of entanglement in a much more intuitive and visual manner.
It is worth mentioning here that determining the optimum order of contraction is
indeed a very important step in contracting the tensors. This is what determines the
efficiency of a TN algorithm mostly. For example, let us consider the contraction of
the TN in Fig. 3.4. It is a TN comprising of two tensors with two indices and two
tensors with three indices. For simplicity, let us assume that each of the index has
the same bond dimension D. In Fig. 3.4(a), we start the tensor network contraction
from the two right-most tensors while in Fig. 3.4(b), we start the contraction with
the two left-most tensors. We see that in the former case, the order of contraction is
at most O(D?) while in the latter case, the order of contraction is at most O(D*) and
hence a better option. Thus, one needs to be careful in choosing the optimum order
of contraction. In the remaining part of the thesis, we will try to use TN diagrams
as much as possible.

Let us now turn ourselves to the discussion of how one can represent quantum
many-body states using TN language. Consider a quantum many-body system of N
particles. Let us say that each particle can be described with p different states. Thus,
we have a system of N p-level particles. For a spin-1/2 particle, the value of p is 2 as
the spins can point either up or down. For a spin-1 particle, p = 3 and so on. The
many-body wave function [¢)) for such a quantum many body system can be written

in the following way

)= D Ciiinlin) ® i) ® - - -lin), (3.3)
ivin.in
once we choose an individual basis |i,) for the states of each particle r = 1,2,...NV.

In the above equation, C; are pV complex numbers (independent up to a nor-

192... 0N

malization constant). The symbol ® denotes the tensor product of the states of all
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-

Figure 3.5: Decomposition of the big tensor C' into a network of smaller ranked
tensors: (a) a 1D TN known as Matrix Product States (MPS) with open boundary
conditions; (b) a 2D TN known as Projected Entangled Pair States (PEPS) with open
boundary conditions; (c¢) an arbitrary TN. It can be seen that all the TNs represent
the wave function of a system with 9 particles.

the individual particles in the system and ¢, = 1, .., p for each of them. We can think
of the coefficient C;,;, ;, as a tensor of N indices where each index i, can take up
to p different values. This tensor has p" coefficients. This means that the number of
parameters that are required to describe the wave function in the above equation is
exponentially large in the system size. Each index in the tensor is called the physical
index and the value of p is what we call the physical dimension of our TN.

One of the main aims of TN is to reduce the complexity in the representation of
such quantum many-body states by replacing the ‘big’ tensor C' with a TN of ‘smaller’
tensors. By ‘big’ and ‘small’, we refer to the rank of the respective tensors. Thus,
we will decompose our huge tensor C' into a network of smaller ranked tensors which
are much easier to handle. This can be done in many different ways depending on
the system we are studying. This is illustrated in Fig. 3.5. The TN in Fig. 3.5(a) is
the well known Matrix Product States [98, 99] used to represent 1D phases of matter.
The one in Fig. 3.5(b) is used to represent 2D phases of matter and are known as
Projected Entangled Pair States [30, 50]. We will be using these two TN states to
investigate our different models in the rest of the chapter. In Fig. 3.5, we see that a

big tensor C' can be decomposed into a network of smaller tensors. In doing so, we

24



3.1. TENSOR NETWORK REPRESENTATION

iz ;1o Qg

Figure 3.6: The given TN can be decomposed into the states |in(a)) and |out(a)) for
a 4 x 4 block of a 6 x 6 PEPS.

notice that we have introduced extra degrees of freedom beside the physical index.
These are the indices connecting the different tensors in the network. These indices
have a very important physical meaning in the sense that they represent the structure
of the many-body entanglement in the quantum state |¢)). They are known as bond
indices or ancillary indices. And the maximum values these indices can take is known
as the bond dimension of the TN, usually referred to as D or y. We will use the
symbol y to represent the bond dimension of our TN in 1D systems and D for the
same in 2D systems.

Let us now understand how the bond dimension of a TN is related to the entan-
glement contained in the system. Imagine we have a TN as shown in Fig. 3.0. As we
have mentioned, this is a 2D TN known as Projected Entangled Pair States. Let us
assume that all the indices have the same bond dimension D. For this state, let us
estimate the entanglement entropy of a block of linear length L (shown in the figure).
Let & = ajas...ayp, be the combined index of all the TN indices across the boundary
of the block. If each index can take D values, then the combined index of our block
@ can take D*" values. Now, let us express our wave function in the following way

(ignoring the normalization).
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DAL

Z lin(@)) ® |out(a)). (3.4)

Tracing out the outer part of the wave function, we obtain the density matrix of

the inner part as

ZX in(@)) (in(a")], (3.5)
where X5 s = (out(@)|out(@)). The reduced density matrix of the inner part, as
can be clearly seen, has a rank that is at most D**. This is true if we also consider
the reduced density matrix of the outer part by tracing out the inner part. Now, we
know that the entanglement entropy S(L) = —tr(p;, log pin) is upper-bounded by the

logarithm of the rank of p;,. Thus, finally we arrive at the following conclusion that
S(L) <4Llog D, (3.6)

which is an upper-bound version of the area law for entanglement entropy [$5, 89, 90].
Also, we can see from the above equation that every broken bond index contribute
at most log D to the total entanglement entropy. It is also very clear from the above
equation that for a tensor network with D = 1, the entanglement entropy S(L) = 0, no
matter the size of the block. This corresponds to no entanglement in the system; this
type of ansatz is used for example in the mean field theory °. In our TN algorithms,
one can put more entanglement in the system by simply increasing the value of D.
The above result has a very important consequence in the TN theory. It means that
the ground states of Hamiltonians with local interactions and obeying area law can be
accurately approximated using TNs. In the next section, we describe in more detail
the important properties and some examples of two important families of TN: Matrix
Product States (MPS) and Projected Entangled Pair States (PEPS).

3.1.1 Matrix Product States

Matrix Product States (MPS) are the most popular examples of the TN family. They
are very well-suited to study gapped 1D quantum many-body systems with local
interactions using methods like Density Matrix Renormalization Group (DMRG) [15,

], Time Evolving Block Decimation (TEBD) [77, 78, 79, 52], Power Wave Function
Renormalization Group (PWFRG) [100], etc. MPS consists of one-dimensional array

2A Tensor Network with bond dimension 1 means that there is no entanglement in the system
and therefore just a product state. This is equivalent to replacing the interactions by a mean local
field created by the other particles at every site.
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(a) (b)

Figure 3.7: Matrix Product States with (a) Open boundary conditions (b) Periodic
boundary conditions

of tensors. An example is shown in Fig. 3.5(a). Each tensor is used to represent one
site in the many body system and the tensors are connected together by the bond
indices each of which can take up to D different values. The open index corresponds
to the physical index of each site which can take p different values e.g. p = 2 for a
spin-1/2 particle. In the context of condensed matter theory, the boundary condition
of the MPS is often important. In Fig. 3.7 we show two different MPS each with 6
sites (or tensors) with different boundary conditions. In principle, for such a finite
MPS, all the tensors could be different. It is also possible to construct an infinite
MPS by assuming some translational invariance over the 1D lattice. What we mean
is that in the thermodynamic limit, a quantum state can be represented by an infinite
MPS by choosing some unit cell that is repeated over the whole lattice. For example,
for a unit cell of two tensors, our MPS will be made up of these two tensors repeated
periodically. This is the kind of unit cell, we will be using in simulating our model in
Chapter 4 of the thesis. It is worth reminding that MPS can represent the low energy
states of most of the gapped local Hamiltonians in 1D with a very high accuracy
with a reasonably finite value of D. This is because MPS satisfy the area law scaling
of the entanglement entropy which is also satisfied by the ground states of gapped
1D local Hamiltonian. For sufficiently large bond dimensions of the MPS, one can
cover other states beyond the area law and in principle the entire Hilbert space. But
this is not so relevant in most of the cases. One limitation of the MPS is that it
cannot reproduce the properties of critical or scale-invariant systems in 1D. This is
because such systems are known to have diverging correlation length and it known
that the correlation length of an MPS is always finite [30, 87]. Other important details
such as the canonical form, computing the expectation values of the MPS, etc will

be discussed in Chapter 4 and Appendix B of the thesis. Let us now discuss some
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1 1 _ 2 2 _ 2,1/(2]\])
0 1

Figure 3.8: Non-zero components of the tensors in the GHZ state.

important and famous examples of 1D systems that can be represented accurately
using MPS.
(a) GHZ state: The GHZ (Greenberger-Horne-Zeilinger) state [101] of N spin-
1/2’s can be written as
1

V2

where |0) and |1) could be the eigenstates of the Pauli o, operator. Although there

(GHZ) = —=(|0)*" +[1)*Y) (3.7)

is no unique measure of multipartite entanglement, many measures define this state
to be maximally entangled and is known to violate certain N-partite entanglement.
Despite having non-trivial entanglement properties, such a state can be represented
by an MPS with bond dimension D = 2 and periodic boundary conditions. The
non-zero coefficients of the tensor in this case is shown in Fig. 3.8.

(b) AKLT model: The 1D AKLT (Affleck-Kennedy-Lieb-Tasaki) model is one
of the few examples of a parent Hamiltonian whose ground state has an exact MPS
representation [102, ]. It is also the first analytical example of a model satisfying
the Haldane conjecture [104, | which states that antiferromagnetic Heisenberg
spin-chains with integer spins must have a finite excitation gap. This is very relevant
in our case because it is an example of what is known as a ‘Symmetry Protected
Topological” phases of matter [106] which is what Chapter 4 of the thesis is about.
The AKLT Hamiltonian of spin-1 chain is given by following

. 1 - -
H=> 8§+ g(SZ-SZ-H)Z (3.8)

where §Z is the vector of spin-1 operators at site ¢ where we assume an infinite size
system. The ground state of this AKLT model has an exact MPS with bond dimension
D = 2. This can be understood by considering a collection of spin-1/2 singlets, whose
spins are paired and projected into spin-1 subspace. The construction of the MPS

representing its ground state is shown in Fig. 3.9. The MPS tensors can always be
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(a) (b)
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Figure 3.9: The AKLT ground state. (a) The spin-1/2 particles forming singlets
\/Lﬁ (|01) — |10)) are depicted by the black lines. They are projected by pairs into the

spin-1 subspace depicted by the Grey blocks. (b) Non-zero components of the tensors
of the infinite MPS with a one-site unit cell in terms of ¢; = \/§0+, &9 = V/20_ and
g3 = 0,. (c) There is a gauge degree of freedom such that one can use the usual
spin-1/2 Pauli matrices for the coefficient of the tensors so that oy = 0., 02 = 0, and
03 = 0,.

written in terms of the three spin-1/2 Pauli matrices due to the gauge freedom. The

details of the construction can be found in [$7] for the interested readers.

3.1.2 Projected Entangled Pair States

Projected Entangled Pair States (PEPS) are the natural generalization of MPS to
higher spatial dimensions. Here, we consider the case of 2D systems only. This
TN ansatz forms the basis of Chapter 5 and 6 of this thesis. Besides, (infinite)
PEPS, there are other algorithms to study 2D systems such as Tensor Renormalization
Group (TRG) [21], Second Renormalization Group (SRG) [107], Higher Order Tensor
Renormalization Group (HOTRG) [¢5] and other methods based on Corner Transfer
Matrices (CTM) and Corner Tensors [51, , , 110].

As we have seen in Fig. 3.5(b), PEPS correspond to a 2D array of tensors. Like
MPS, they can have open or periodic boundary conditions (Fig. 3.10 left and right).
They also have 2 kinds of index, physical index p and bond index D. A PEPS could
be defined on a square or lattices such as triangular, honeycomb, kagome, etc. MPS
and PEPS share many other similar properties. Just like MPS, the tensors in a finite
PEPS could all be different or in the case of the thermodynamic limit (the infinite
case), one can could also assume certain translational invariance. In Chapter 5, we
work with 2 and 4-site unit cell repeated periodically. Also, like the case of MPS,
PEPS can represent any quantum state of the many-body Hilbert space if the bond
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Figure 3.10: Projected Entangled Pair States with 9 sites with open and periodic
boundary conditions (left and right).

dimension is sufficiently large. In order to cover the entire region of the Hilbert
space, the bond dimension needs to be exceptionally large. In practice, it is known
that the value of D required to represent a 2D state is very low compared to MPS. For
example, a PEPS with bond dimension D = 2 can already handle critical states [111].
This is one of the differences with MPS that can handle only exponentially decaying
correlation function. PEPS also satisfy the 2D area law scaling of the entanglement
entropy. Another difference with MPS is that, unlike MPS where exact contraction
of the tensors can be done efficiently, the exact contraction of the PEPS is considered
a §P-Hard problem [I12] in the language of computational complexity. This class of
problems is related to counting the number of solutions to NP-Complete problems.
This is a class of very difficult problems in computational complexity for which there
is no classical (or even quantum) algorithm that can solve the problems in this class
using polynomial resources in the size of the input. This means that exact contraction
of two arbitrary PEPS of N sites will take O(exp(/NV)) time. However, this is not so
much of a serious problem as there are several numerical algorithms available to
approximate the environment of a PEPS to a very large accuracy such as Corner
Transfer Matrices (CTM) [51, ], Higher Order Tensor Renormalization Group
(HOTRG) [25], etc. Details on how to compute the environment, the ground state,
the expectation value using the environment is described in Appendix C of the thesis.
Now, let us discuss a few examples of 2D model that can be described using PEPS.
(a) Toric Code model: Perhaps the most important Hamiltonian with PEPS
as a ground state, the Toric Code introduced by Kitaev [113] is a spin-1/2 model on

the links of a 2D square lattice. This Hamiltonian can be written as:

H=-J,) A—J,)» B, (3.9)
s p
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Figure 3.11: Toric code with star and plaquette operators.

where A; and B, are star and plaquette operators defined as

A, = Hag[ﬁﬂ, B, = HU?] (3.10)

TEs Tep
i.e. Ay isthe product of o, operators for the spins around a star and B, is the product
of o, operators for the spin around a plaquette. This is shown in Fig. 3.11. This is a
very interesting model because it can be viewed as a lattice instance of a Z, lattice
gauge theory. It is also the simplest model known that exhibits topological order [2].
The ground state of the system is the 41 eigenstate of all the stabilizer operators
(the set of star and plaquette operators {A,} and {B,}). For an infinite 2D square

lattice, the ground state is unique and can be written as

|\IJTC> _ H (I ‘;AS) H (I ";Bp) ’O>®N%oo (3'11)

S p

Since the state |0)®V7 is already a +1 eigenstate of the operators B, for any pla-

quette p, we can write the above equation as

W) =] @\@@N% (3.12)

S

Thus the ground state of this Toric Code Hamiltonian can be written as a PEPS with
D = 2 and a 2-site unit cell with tensors A and B as defined in Fig. 3.12. Thus,
even a PEPS with D = 2 can already handle topologically ordered states of matter.
Besides the Toric Code, other models that can be written exactly as PEPS include
the 2D Cluster State, 2D Resonating Valence Bond State, 2D AKLT model, etc.
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(I+As

Figure 3.12: The Toric Code ground state can be written as a PEPS as defined in (a)
and (b).

3.1.3 Other Tensor Network States

Besides MPS and PEPS, there are various other families of TN states such as con-
tinuous Matrix Product States (cMPS) and continuous Tensor Networks [33, 8],
Tree Tensor Network (TTN) [114, , 116], Multi-scaled Entanglement Renormal-
ization Ansatz (MERA) [92], Projected Entangled Simplex States (PESS) [117] and
many more. The continuous Matrix Product States and continuous Tensor Network
states can be used to describe systems beyond the quantum lattice models such as
quantum field theories and continuum models. The Tree Tensor Network method
is useful for simulating many-body quantum systems that has a tree-like structure
like highly-branched polymers. The MERA is a class of quantum many-body states
on a D-dimensional lattice that can be efficiently simulated with a classical com-
puter. This technique is based on entanglement renormalization [1 18], a novel coarse-
graining scheme for many-body quantum systems on a lattice. The Projected Entan-
gled Simplex States is very similar to the PEPS we described but they extend the
pair-correlation basis of PEPS to a simplex.

There are other important concepts in Tensor Network theory which we do not

discuss in this thesis such as implementation of symmetries (this can improve the
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efficiency of the algorithms to a very large extent), simulating fermionic systems
(this can be done by introducing a fermionic swap gate which takes care of the sign
problem), relationship between TNs and the holographic principle and the AdS/CFT

correspondence. A more detailed review on some of these topics can be found in [119].

3.2 Summary

In this chapter, we have introduced a new kind of numerical technique for studying
quantum many-body systems known as Tensor Network techniques. These techniques
are based on writing the coefficients of the quantum many-body wave function in dif-
ferent arrangement of tensors which are multidimensional arrays of complex numbers.
Unlike the other existing numerical techniques, the limitations of TN states are of
different nature i.e. the amount of entanglement content in the system. TN diagrams
provide a very simple and intuitive representation of quantum many-body states. So,
instead of writing long and complicated equations, one can use these diagrams to rep-
resent our tensor operations. TN states, by construction, obey area law and therefore
they are the ideal ansatz to study gapped phases of matter.

Two important families of TN that will be used in the rest of this thesis are the
Matrix Product States and Projected Entangled Paired States. MPS are nothing but
1D array of tensors used to represent gapped quantum phases of matter in 1D. An
MPS with bond dimension 2 can already represent highly non-trivial 1D systems such
as the AKLT state. Similarly, PEPS can be used to represent 2D phases of matter
including critical states. A PEPS with bond dimension 2 can handle topologically
ordered states such as the Toric code. Besides MPS and PEPS, there are several
other families of TN states which can be used to represent different kinds of systems

and geometries efficiently.
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Chapter 4

Symmetry Protected Topological
and trivial phases

Haldane conjectured in 1983 that integer-spin Heisenberg antiferromagnet chains dif-
fer qualitatively from the half-integer case [104, |. He suggested that integer-spin
chains should have a finite excitation gap with an exponential decay of the ground
state correlation function while the half-integer case should be gapless with power-law
decay of the ground state spin correlations. This came as a surprise to many people
working in the field because his conjecture marked a huge deviation from what Bethe
had found in 1931 [120]. The Bethe ansatz solution had predicted gapless excitations
for the spin-1/2 chain and it was thought that other spin chains would have similar
behavior. This issue remained in large for a while because of the non-rigorous nature
of Haldane’s argument involving topological terms in quantum-field theories. The
numerical and experimental evidence of the existence of a finite gap for the case of
s = 1 spin chain finally came [121, , , , , , , ] and further devel-
opments made the situation more clear. For example, Lieb, Schultz and Mattis had
already provided the rigorous proof of zero-gap in 1961 for spin s = 1/2 chain [129].
This proof was later extended for any arbitrary half-integer spin s but it was shown
that it failed for integer spin s chain [130]. The Lieb-Schultz-Mattis theorem states
that any half-integer spin chain with essentially any local Hamiltonian respecting the
translational and rotational symmetry either has a zero gap or has degenerate ground
states corresponding to spontaneously broken parity.

The Haldane phase of the spin-1 chain belongs to a new class of quantum mat-
ter known as the Symmetry Protected Topological phase, the definition of which
falls beyond the conventional Landau symmetry breaking theory [131]. According to
this theory, most conventional phases of matter and their phase transitions can be

understood in terms of spontaneous breaking of a certain symmetry in the system.
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Therefore, most conventional phases of matter can be described using a local order
parameter which gives a non-zero value in one phase and zero in the other. We have
discussed this kind of phase transition in Chapter 2 of this thesis by taking the ex-
ample of the spin-1/2 transverse field Ising model. Symmetry Protected Topological
(SPT) phases of matter, on the other hand, cannot be characterized using such local
order parameters because there is no spontaneous breaking of symmetries taking place
in these phases. They are ‘short-range’ entangled states meaning that they can be adi-
abatically connected to product states if one breaks the symmetries protecting them.
The ground state of the AKLT model [102] which was also discussed in the previous
section was the first model to satisfy the properties of the Haldane conjecture for a
spin-1 system. SPT phases have exotic properties: for example the Haldane phase of
the spin-1 chain has a hidden string order [132], two-fold degeneracy in the entangle-
ment spectrum [133] of the reduced density matrix of one of the bipartition, etc, all
of which are protected by symmetries. We will discuss these properties in more detail
in the subsequent sections. Because of their exotic properties that remain robust
against any perturbations that preserve the symmetries of the SPT, these phases of
matter have been proposed as a resource in measurement-based quantum computing
and other areas of quantum information in 1D and 2D [14, 15, 16].

It is worth mentioning that SPT phases are different from the so called ‘Intrinsic
Topological Order’ which are also characterized by the absence of a local order pa-
rameter and are ‘long-range’ entangled. The difference between them is that while
intrinsic topological order are robust against any local perturbations, SPT phases are
robust only against local perturbations that preserve the symmetry. The term ‘Topo-
logical Order’ usually refers to the latter long-range entangled states. Such states
usually have gapless boundary excitations which are protected by the topology of the
system. An example would be the Fractional Quantum Hall States [134]. It is for
this reason that Symmetry Protected Topological phases are also sometimes called as
Symmetry Protected trivial phases because they can be adiabatically connected to a
product state by some path that destroys the symmetries of the SPT. This is not to
be confused with our definition of Symmetry Protected trivial phases which are also
‘short-ranged’ entangled states that are adiabatically connected to a product state
but by a path that preserves the symmetries of the phase. It is easy to get tricked
and confused by these nomenclatures. But we will stick to the latter nomenclature
throughout this thesis. We will use the abbreviation SPT for Symmetry Protected
Topological phases and SPt for Symmetry Protected trivial phases which are quite

different from each other. Our nomenclature is consistent with the one in Ref. [135].
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In 1992, Oshikawa conjectured the existence of an intermediate, effective spin-1
Haldane phase in higher spin-chains [136]. The search for such an effective spin-1
Haldane phase has received considerable interest since then and has only been found
recently [137, , | for a spin-2 chain. In all these investigations, the focus
was to find the well-known spin-1 Haldane phase. However, from the perspective of
SPT phases, this is not the only spin-1 SPT phase that can be realized in a spin-2
chain [110] and so there must be more effective spin-1 ‘Haldane-like’ phases. In this
chapter, we investigate a spin-2 quantum chain with a Heisenberg-like bilinear, bi-
quadratic, bicubic and biquartic nearest-neighbor interactions. We will show that it
is possible to realize several other effective spin-1 SPT phases besides the Haldane
phase corresponding to different projective representations of the Zy x Zy + T sym-
metry group where Z, is some 7 rotation in the spin internal space and T is time
reversal. Besides the spin-1 SPT phases, the model also exhibits an SO(5) Haldane
phase which is also an SPT. We also study the phase transitions between the dif-
ferent SPT phases and describe them using Conformal Field Theory. We also study
the extension of SPT phases to what is known as SPt or Symmetry Protected trivial
phases. We do this by adding a staggered magnetic field to our existing spin-2 model.
We will study its properties and discuss how it is different from the SPT phases.

4.1 SPT phases in spin-2 chain

Having discussed the origin and context of our problem, let us now jump directly
into the investigation of Symmetry Protected Topological phases in a spin-2 quantum
chain using our TN algorithms. It is worth mentioning here that our algorithms have
been tested with several benchmarking results but we did not include them in this
thesis. For this chapter, we use the infinite Matrix Product States with the iTEBD
algorithm with a two-site unit cell. We go up to bond dimension xy = 120 which proves
sufficient for our purpose. This section in entirely based on the publication [111] by
the author.

4.1.1 Model and symmetries

We investigate the following spin-2 chain

H=3 > (8 S0) + D} () (4.1)
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in the thermodynamic limit. The first term involves the spin-spin Heisenberg interac-
tions but with terms up to the fourth power. In the absence of the biquadratic, bicubic
and biquartic spin-spin interaction, this model would be just the spin-2 Heisenberg
model. The second term in the Hamiltonian is the uniaxial anisotropy term. In the
limit of very large D, the ground state of the above Hamiltonian is described by
a state in which all the sites are in the |S* = 0) states. This model was studied
in [139] for specific values of J, ie. J; = —11/6,J, = —31/180,J;5 = 11/90 and
Jy = 1/60. For these specific values of J,’s and when D = 0, the above Hamiltonian
is an exactly solvable point with SO(5) symmetry and has an exact MPS as its ground
state [112, ]. To see this, we notice that the model in this limit can be rewritten
as

H =2 [Py(j,j + 1)+ Pi(4,j + 1)), (4.2)

j

where Ps.(j,j + 1) projects onto total spin-Sr states of neighboring sites j and
j + 1. To identify the SO(5) symmetry, we work in the standard S* basis |m) (m =
+2,41,0) and define the SO(5) Cartan generators

L™ = [2)(2] — | — 2)(-2 (4.3)
L = [1)(1] = [ = 1){~1]. (4.4)
By defining additionally
5_ 1 ot
L” = \/§|2><O| +10)(—2| 4+ H.c. (4.5)
35 L _ o
L> = \/§|1)<O|+\O)( 1|+ H.c. (4.6)

the SO(5) commutations relations
(L) LY = i(0ae L7 4 6pq L% — Gaq L*® — 6pe L) (4.7)

fix the ten generators L%(1 < a < b < 5). In the limit described previously, the
Hamiltonian commutes with all the ten operators } . L%, and therefore has SO(5)
symmetry.

When D > 0 the SO(5) symmetry is explicitly broken down to U(1) x U(1) [139].

This is easy to see if we rewrite the uniaxial anisotropy term using
(Sz)Q — 4(L12)2 + (L34)2. (48)

This implies that the operators ) i L}Q and i L§?4 commute with the full Hamiltonian
H as well as with each other, implying a U(1) x U(1) symmetry. Additionally, the
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Hamiltonian in this regime has several point group symmetries including site-centered
inversion I, time reversal T, as well as a set of Zy symmetries corresponding to 7

rotations of the form
uab — eiwLab (49)

for all L. The Z, operators form a (Zy x Z)? group, whose elements can be chosen
as {1,u'?} x {1,u'®} x {1,v**} x {1,u'?}. As shown in [139], the model in this
regime has two SPT phases: (i) one for low D, called the SO(5) Haldane phase, and
(ii) one for intermediate D, corresponding to an intermediate spin-1 Haldane phase.
The symmetries protecting these phases, as well as their different characterizations,
were also discussed. In our case, we would like to investigate the above model for
arbitrary values of J,. When we change the values of J,’s from the SO(5) symmetric
values, the Hamiltonian has a [U(1) x Zy] + T symmetry where U(1) corresponds to
S, conservation. We focus, however on the reduced discrete symmetry Zy x Zy + T,
so that in principle we could also add terms breaking the U(1) symmetry down to Z.
Such a symmetry is known to protect up to 16 different possible SPT phases [110]
of which four of them are typical of spin-1 chains. The 16 phases can be understood
by defining four different Symmetry Protected Topological Order parameters, each of
which can take two unique values +1 and —1 and symmetry operators acting on the
bond index of the MPS [111]. We will discuss these in more detail shortly. We will
first study the phase diagram of the above model for arbitrary values of the interaction
strength J, and the anisotropy D; and therefore the symmetry relevant for us will be
(Zy x Zy) +T. We focus on four two dimensional projections of the phase diagram
obtained by fixing all the J, except one to the values mentioned above. Thus, we
study the four two-dimensional planes (J;, D), (J2, D), (J3, D) and (J4, D) with the

rest of interaction parameters fixed to the values mentioned for each case.

4.1.2 Identifying SPT phases

We now study our phase diagram using a number of properties which we discuss one

by one.

Entanglement spectrum:

Let us consider the ground state of a 1D gapped system written as a translationally
invariant MPS of length L (L >> 1). Such an MPS has the following form

) = > T ATy, Aliris), (4.10)

39



CHAPTER 4. SYMMETRY PROTECTED TOPOLOGICAL AND TRIVIAL
PHASES

(a)
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Fa y, I'b yy Ta y, I'p ),

Figure 4.1: (a) A translationally invariant MPS of length L. All the tensors are
identical here. (b) A translationally invariant MPS of infinite length and unit-cell of
two sites. All the tensors appear alternately in this case.

where I'; are y x y matrices with y being the bond dimension of the MPS and A
is a real diagonal matrix of dimension y X y. The index ¢ is the physical index
corresponding to the spin states on each site. The pictorial representation is shown

in Fig. 4.1(a). The matrices I" and A can be chose such that they satisfy the following

Zr AT = ZFWF =1, (4.11)

they are said to be in the so—called canomcal form of the MPS. The pictorial represen-

form

tation is shown in Fig. 1.2(a). Our iTEBD algorithm automatically ensures that our
ground state MPS is already in this form. This canonical form automatically ensures

that the following transfer matrix

has a right eigenvector 9, with eigenvalue A = 1. One can similarly construct a
transfer matrix with a similar left eigenvector and eigenvalue.
The wave function of the 1D chain described in Eq. 4.10 can be Schmidt decom-

posed at a certain bond as

= alaL)|aR), (4.13)

where |aL) and |aR) (o = 1,...,x) are orthonormal basis vectors of the left and

right partition respectively. In the limit . — oo, and under the canonical conditions
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described above, the Schmidt eigenvalues A\, are simply the entries of the matrix A.
The \2’s are the eigenvalues of the reduced density matrix of this partition. They
are known as entanglement spectrum. It was Haldane and Li [145] who proposed that
the entanglement spectrum can be used as a finger print to identify topological order
in general. The spin-1 Haldane phase, for example, is known to have a degeneracy
of two in the entanglement spectrum of their ground state [133] while for the SO(5)
Haldane phase, it was shown to have a four-fold degeneracy in the entanglement
spectrum [139]. Such degeneracies produced by a virtual cut in the system mimics
the physical edge states in these states and they are protected by the symmetries of the
Hamiltonian i.e. they are there as long as the symmetries present are not broken. For
example, the degeneracy pattern in the spin-1 Haldane phase is known to be protected
by either the spatial inversion (bond-centered) or the time reversal symmetry. It is
worth mentioning that from the numerical perspective, the iTEBD algorithm gives
us this information for free while computing the ground state. Fig. 4.1(b) is a Matrix
Product State of infinite size and with a unit cell of two sites. Thus, all the tensors in
this case appear alternately. This TN is the one we use in our numerical simulations.
Thus, the entanglement spectrum is merely the entries of the diagonal matrices A4
or Ap in our case. For an infinite MPS of two-site unit cell, the canonical form is
depicted in the following sections in Fig. 41.8(a). Details on how to transform any
generic MPS into the canonical form and its consequences can be found in Ref. [12].

For now, we want to understand the action of symmetries on our MPS and how it
leads to non-trivial degeneracy of the entanglement spectrum. If our wave function
|¢)) is invariant under a local symmetry ¥, (a unitary matrix acting on the spin

basis), then the action of this symmetry on the I matrices can be written as [110]

> Saly =™ - UlniUs, (4.14)

where Uy, are unitary matrices acting on the bond indices of the MPS that commute
with the A matrices and forms a projective representation of the symmetry of the
wave function. €* is a phase factor. This action is illustrated in Fig. 4.2(b). For the

case of spatial inversion, the above transformation can be written as

7 = . UiT,U; (4.15)

2

where U; is a unitary matrix and %’ is the phase factor corresponding to the inversion
symmetry. Applying this transformation one more time to the above, we get
I, = 2% (U, U UU;

— SOTIURAT; = 9 U U7, (4.16)
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Figure 4.2: (a) Left and right canonical condition of a translationally invariant iMPS.
(b) Action of a symmetry operator on a translationally invariant iMPS.

I
L 1

where we have used the properties of the canonical condition of the I' and A matrices.
Therefore, U;U; is an eigenvector of the transfer matrix 7' with eigenvalue %7, But
we know that the eigenvalue of T"is A = 1 and this value is unique. So, e?% =1 and
we can write U U; = €11 where ¢; is a phase. Hence, it follows that UIT = Ure 1,
Repeating this relation one more time, we get e=2¢7 = 1 ie. ¢; = 0 or 7. This
fact that ¢; can only take discrete values (0 or 7) leads to phase transition between
different states which cannot be characterized using the Landau paradigm. When
¢ = m, then U; is an antisymmetric matrix which means that all its eigenvalues are
at least doubly degenerate which is what we see in the entanglement spectrum of the
Haldane phase protected by this symmetry. Our argument follows from Ref. [133].
One can show the same for time reversal symmetry. For the SO(5) Haldane phase
with quadruple degeneracy, it is beyond the scope of these two symmetries and one
needs to consider the (Z x Z)? symmetry which allows a non-trivial four-dimensional
irreducible projective representation. The details of this argumentation can be found
in Ref. [139]. The non-trivial degeneracy in the entanglement spectrum for the two
SPT phases is shown in Fig. 4.3. The Large-D phase has no degeneracy in the
entanglement spectrum of its ground state MPS. This is a trivial state and is the
ground state of our Hamiltonian (Eq. 4.1) when D — oco. We can see that in the
SO(5) Haldane phase, the Schmidt coefficients are always grouped into clusters of
four with the same magnitude while in the case of Intermediate Haldane phase, they
are grouped into clusters of two with the same magnitude. However, there is no such

pattern for the Large-D phase. We can now use this criteria of the degeneracy of
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Figure 4.3: Values of the Schmidt coefficients for the SO(5) Haldane phase (left),
Intermediate Haldane phase (middle) and the Large-D phase (right) for an MPS with
bond dimension x = 40. We can easily see that for the SO(5) Haldane phase, there
is a four-fold degeneracy in the entanglement spectrum, the IH phase has two-fold
degeneracy and the Large-D phase has no degeneracy.

the entanglement spectrum to study the phase diagram of our model with arbitrary
values of .J,’s and D by projecting it into four two-dimensional planes. This is shown
in Fig. 4.4. Thus, we identify three different phases based on the entanglement
spectrum. We find a small green region in all the four planes with degeneracy four
in the entanglement spectrum. This is the SO(5) Haldane phase region. The blue
region has degeneracy two in the entanglement spectrum. This is the Intermediate or
spin-1 Haldane phase region and we see that this region is very large in all the four
planes. The other phase is the one shown in Grey region. It does not exhibit any
degeneracy in the entanglement spectrum and hence is a trivial phase. In order to
confirm these three phases, we will compute something known as the ‘String Order

Parameter’.

String Order Parameter

It is known that the ground state of the spin-1 Haldane phase has a perfectly hidden
antiferromagnetic order [132]. It means that in the S, basis, the | + 1) and | — 1)
states appear alternately with arbitrary number of |0)s in between. An example of
an allowed configuration would then look like: | +100—10+1—10+ 1000 —10+1—
14 1—100+ 1 — 10000000000 + 100 — 1+ 1 — 1). On removing the zeros in between,
onewouldget |[+1—-1+1-141-14+1-141-14+1-1+1-14+1-1), an
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Figure 4.4: Degeneracy in the entanglement spectrum of the reduced density matrix
of a bipartition for the four two-dimensional planes. In each (J,, D) plane, the rest
of the J,’s are fixed to their SO(5) symmetric point. The green region in each plane
with degeneracy four is the SO(5) Haldane phase, the blue region with degeneracy
two is the spin-1 SPT phase and the Grey region with degeneracy one is a trivial
phase.
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Phase oo

SO(5) Haldane #0 | #0
Intermediate Haldane | =0 | #£ 0
Large D =0]|=0

Table 4.1: Distinguishing the SO(5) Haldane phase from the Intermediate Haldane
phase using the two String Order Parameters defined in Eq. 1.18.

antiferromagnetic state. Such a hidden AF order can be measured by the so-called
‘String Order Parameter’ which gives a non-zero value for the Haldane phase and zero

for the trivial phase. It is defined as

k-1
0%, = lim <S§” 11 exp(msla)sg> : (4.17)
|k—j|—o00 )
I=j+1
where S, for example, could be the spin-1 S* operator at site i. For the case of our

spin-2 model, we can define two new SOPs (String Order Parameters) as follows

k-1
O% = lim <le-2 H exp(iﬂL}Q)L,ﬁ2>

k—j|—o0
Ll I=j+1

1 (4.18)
O3 = . _152 N <L§.’4 12]111 exp(z'ﬁL?4)L24>

where L'? and L3* were previously defined as the Cartan generators of the SO(5) group
in the S* basis written as L'? = |2)(2] — | — 2)(—=2] and L3 = [1){1] — | — 1)(-1].
It was shown in Ref. [139] that these two SOPs can be used to distinguish the spin-
1 SPT (or the Intermediate Haldane) phase from the SO(5) Haldane phase. This
can be understood from Table 4.1. In order to understand intuitively how the SOPs
change for different phases, let us consider the case for which D = 0 and the J,’s
are fixed to their SO(5) symmetric values. In this case, the MPS ground state is
known to have a perfect hidden string order in the S* basis i.e. |2) and | — 2) states
appear alternately in the configuration of our MPS if we ignore the |0) and | 4+ 1)
states in between. Similarly, if we remove the |0) and | + 2) states in between, we
will find that |1) and | — 1) states also appear alternately. Therefore, this hidden
string order of the | & 1) and | + 2) states is reflected in the non-zero value of O'?
and O3* as seen in the table. The Intermediate Haldane phase (or the spin-1 SPT)
is found when we increase the value of D but not too much. This is why this phase

is also known as the Intermediate D phase. In this case, what happens is that on
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Figure 4.5: Nonlocal String Order Parameter O34 for all the four two-dimensional
planes. This quantity is non-zero both for SO(5) Haldane phase and Intermediate
Haldane phase and zero for the other regions.

increasing D, the uniaxial anisotropy starts suppressing both the | £+ 2) and | + 1)
states but with greater effect on the former one. Therefore, the string order for the
| £ 2) states is destroyed while the string order for | & 1) states stay. Hence, this
phase has a non-zero value for @3 and a zero value for O'2. This is because the L!?
and L3* operator act on the | +2) and | £ 1) states respectively. In the third case,
when D is really large, we expect it to destroy the string order of both the | +1) and
| &+ 2) states completely. Therefore, both the string orders O'? and O3 is zero in this
case. The numerical support of our argument is provided in Fig. 4.5 and Fig. 4.6.

In Fig. 4.5, we compute the value of the string order parameter O** for all the points
in the four different planes (Jy, D), (Ja, D), (Js, D) and (Jy, D). We can see that this
quantity is non-zero for both the SO(5) region and the Intermediate Haldane phase
region. In order to distinguish between the two, we compute the SOP O'2 for all the
points in the different planes. We only show it for the (J;, D) and (J5, D) plane here
in Fig. 4.6. It is worth mentioning that in Fig. 4.5, the SOP O3* seem to disappear
in the middle of the IH region in (a), (c¢) and (d). This led us to suspect that there
could indeed be a phase transition in these regions although there is no such hint
from the plot of the entanglement spectrum in Fig. 4.4. If there is indeed a phase

transition between different TH regions, it is beyond the scope of the entanglement
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Figure 4.6: Nonlocal String Order Parameter O'? for the two planes (J;, D) and
(J3, D) plane. This quantity is non-zero for the SO(5) Haldane phase and zero for
the other phases.

spectrum or the SOPs to distinguish them. One needs to have a detailed study of the
projective representation of the symmetries protecting the IH phase. But before we
take a look at these quantities, we would like to confirm that there is indeed a phase
transition from what we find based on the behavior of the entanglement entropy in

these regions. This is discussed in the next section.

Entanglement entropy

We have already discussed in detail the concept of entanglement entropy (also known
as von Neumann entropy) in Chapter 2 of the thesis. Let us revise. Given a bipartite
pure state |¢)) € Ha ® Hp, one can express the wave function as follows using the
Schmidt theorem

) = Z/\i|iA>|iB>7 (4.19)

where |i4s) and |ig) are some orthonormal states of system A and B and \; are
positive real numbers satisfying Y, A? = 1 known as Schmidt coefficients and y is the
Schmidt rank. As we know, the Schmidt coefficients are related to the eigenvalues of
the reduced density matrix of the bipartition. Let us see how. Our wave function in

the above equation can be written in the form of a density matrix as

p= Z Alia)lip) (ip|(ial. (4.20)
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Figure 4.7: Entanglement entropy of half an infinite chain for the four two-dimensional
planes.

In order to get the reduced density matrix of the subsystems, one needs to trace out

the other subsystem. Doing this, we get the density matrix of the two subsystems as

pa = trp(|[vap)(Yas|) Z)\ |24)(ial

(4.21)
pe =tra(|Yap)(Vas|) Z)\Q\ZB (ip]

i.e. the eigenvalues of the reduced density matrices of the bipartition is equal to the
squares of the Schmidt coefficients of the bipartition. Therefore, from Eq. 2.14, one

can write the von Neumann entropy as
X
S(pa) = S(ps) = —>_ A In ). (4.22)

These \;’s are very easy to extract from our numerical simulations. They are nothing
but the entries of the diagonal matrices A4 or Ap in Fig. 1.1 (b). The form of this
TN in this figure is automatically ensured when we compute the ground state of our
Hamiltonian using the iTEBD algorithm and by the choice of our number of unit cells
(two in this case). We then plot this entanglement entropy for the same parameter
regime as in Fig. 1.4 for all the four planes. This is shown in Fig. 1.7. From this figure,

one can get an idea of where the entropy diverges and therefore locate the critical
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region in the phase diagrams. We can see that the location of the phase transition
agrees very well with the plots in Fig. 1.5 where the non-local string order parameter
seems to vanish exactly at these regions. The nature of these phase transitions will

be described shortly in the following sections.

Projective representation of Z, x Z, + T symmetry

The confirmation of the existence of phase transitions in the middle of the Interme-
diate Haldane (IH) phase region in (Ji, D), (Js, D) and (J4, D) plane automatically
ensures that the IH phases lying on either side of the phase transition are indeed
different. The distinction between these different IH phases cannot be done using the
entanglement spectrum or the SOPs as they have the same degeneracy and non-zero
value of @34, These phases are, however, actually effective spin-1 SPT phases having
different projective representations of the Zy x Zy + T symmetry group where Z, is
some 7 rotation in the spin internal space and T is the time reversal. Let us try to
understand them in more detail.

In Ref. [1410] a complete classification of all the SPT phases protected by (Zy x
Z,)+T symmetry is provided, based on the grounds of group-theory properties. This
classification is summarized in Table I of that paper, where it is seen that there are a
total of 16 different phases, and which introduces the notation Ty, T}, T, and 7T, used
in this paper for the typical spin-1 SPT phases. However, it is possible to understand
in a much simpler way the 16 phases in spin chains with (Zy x Zy) +T symmetry. This
goes as follows: in MPS language, we have a set of (projective) symmetry operators
R,, R, and R, which are actually the matrix representations of 7 rotations around
the x axis, m rotations around the z axis, time reversal T" acting on the bond indices.
Without loss of generality, we choose B2 = R? =1 (if R2 = —1, it is always possible
to redefine R, and R, by multiplying a factor i, so RZ = 1 is just a gauge choice).
The nontrivial sign w = +1 denotes the commutation relation between R, and R,
which cannot be gauged away. This means, R, R, = wR,R,. Together with the sign
B = +1 defined from R? = (1, there are in total four choices:(1) w = 1,8 = 1, (2)
w=1,=-1B3)w=-1,=1and (4) w= —1,5 = —1. For each of the above
four choices, there are still four possibilities:(a) [R., Ry] = 0 and [R,, R:] = 0, (b)
R,,R;] =0and {R,,R;} =0, (¢c) {R,, R} =0and [R,, R;] =0and (d) {R,,R;} =0
and {R,, R;} = 0. Other commutators are all fixed by the above relations. The above
four choices correspond to the index 7 in Table I of Ref. [110], and we label them
by the values of signs ;4 = £1 and v = +1 defined respectively from R, R; = uR;R,
and R,R;, = vR,R,. Thus, there are in total 4 x 4 = 16 phases (la, 1b, lc, 1d, 2a,
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2b,..., 4d), which can be labeled uniquely by the four signs (5, w, u, V). For the sake of
clarity, let us rewrite the four different relations from which these SPTO parameters

can be extracted

R = p1 (4.23)
R.R, = wR.R, (4.24)
R.Ry = pRiR, (4.25)
R.R, = vRR,. (4.26)

Let us mention that in their paper, operators R,, R, and R; do not correspond
to the gauge that we are using here, where R2 = R? = 1. To recover the above
results, one has to remove a factor “2” for R, and R, in Table I of that reference, so
that they square to 1. Then one can check that the commutation relations among
R,,R, and R; just correspond to the above 16 cases. Before we start classifying the
different phases based on the values of these SPTO parameters (5,w, u,v), let us
discuss briefly how to obtain them from a numerical perspective. As we can see from
the above commutation relations, the most important step involved is in extracting
the matrices R,, R, and R;. We will explain briefly here how to extract these matrices
for one particular case, the R, matrix for example. We list the important steps of

this process as follows:

1. Define the local symmetry operators as X = €™, Y = ™ Z = €™ where

S* SY and S* are the usual spin-2 operators.

2. Make sure that the MPS tensors are in their canonical form. In our case, we use
the iTEBD algorithm to simulate the ground state of our Hamiltonian using an
iMPS of two-site unit cell. The iTEBD algorithm automatically ensures that
the tensors in the ground state are in their canonical form. This is shown in

Fig. 1.8(a) for clarity.

3. Apply the local symmetry operator to the tensors as shown in Fig. 4.8(b) and

obtain the relevant transfer matrix.

4. Extract the eigenvector of this transfer matrix and take its complex conjugate
transpose. In Fig. 1.8(b), the eigenvector is denoted by W. We can now obtain
the matrix U, = WT. We therefore obtain the R, matrix from this. The other

matrices R, and R; can be obtained similarly.
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Figure 4.8: (a) Left and right canonical conditions of an iMPS of two-site unit cell (b)
Extracting the projective representation matrix of the symmetry operator X = ™",

The matrices R,, R, and R; can now be obtained from the U,, U, and U; matrices
using the definition U, = R,,U, = R, and U; = R;K. Here K is the complex
conjugation operation, defined by KAK~! = A* and K = K~!. The important
steps involved are shown in Fig. 1.8 for illustrations. The procedure explained in
Ref. [133] is just a simple MPS calculation, and we address the interested reader to
that reference for further information. In this reference, the procedure shown is for an
infinite MPS with one-site translational invariance which is different from our case.
Once the above matrices have been determined as we explained, we normalize
them so that R2 = R? = 1, and R? = U;KU,;K = U,U;} = +1. Let us assume that
all these matrices are y x x, with x the MPS bond dimension. It is easy to see that

the parameters (5, w, i1, ¥) can now be computed as

5 = Lume) = Lewruk) = Lewur (4.27)
X X X
1

w = ;tr(RszRlRi) (4.28)

1 1 1

no= ;tr(RxRtRLRI):;tr(RzUtKRLKUJ):;tr(RxUtRfUtT) (4.29)
1 1 1

v = ;tr(RthRlRZ):;tr(RzUtKRlKUJ):;tr(RzUtRZUtT). (4.30)

Once the SPTO parameters have been computed, the different spin-1 SPT phases can
be identified based on the classification scheme used in [110]. Of the 16 SPT phases
protected by Zs x Zy + T symmetry, four of them can be realized in a spin chain.

These effective spin-1 SPT phases based on the different values of SPTO parameters
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| Phase | B [ w | p | v |
To=1H | -1 || -1 [ -1 || -1
T, 1| 1 | 1 | +1
T, 1| 1 | +1 [ +1
T. 1 -1 || 1| 1

Table 4.2: Different effective spin-1 SPT phases protected by (Z x Z3)+T symmetry.

are listed in Table 4.2. The numerical results of where these SPT phases are found
in the phase diagram of our model are shown in Fig. 4.9. In this way, we are able to
determine precisely to which one of the 16 SPT phases protected by (Zy x Zy) + T
symmetry belongs a given MPS.

4.1.3 Final phase diagram and phase transitions

In the previous sections, we have identified the different SPT phases based on their
entanglement properties, hidden string orders, etc. Not only this, we have also distin-
guished between the different spin-1 SPT phases using the projective representation
of the Zy, x Zy + T symmetry which cannot be done otherwise using the previous
techniques. Based on all these results, we plot the final phase diagram of our spin-2
model for the four different planes. This is shown in Fig. 4.10. It can be seen from
this figure that the SO(5) Haldane phase characterized by a quadruple degeneracy in
the entanglement spectrum, non-zero value of the SOPs O'2 and O3* appear in all
the four planes. The four different planes (a,b,c and d) correspond to the (J;, D),
(Jo, D), (J3, D) and (Jy, D) plane respectively. The (J;, D) plane is marked with the
presence of three different effective spin-1 SPT phase: the Tj, the T}, and the T, phase.
The (J3, D) plane has only the T, phase for the parameter regime considered in this
study. The (J3, D) plane is very similar to the (J;, D) plane with almost the same
phases. The (Jy, D) plane is marked with the presence of Tj phase and the T, phase
which were not present in the other planes. All these Ty, T,, T, and T, phases are
effective spin-1 SPT phases characterized by a double degeneracy of the entanglement
spectrum and non-vanishing value of the SOP @34, Of all these phases, we noticed
that the T, phase has a very large entanglement entropy. There are two possible
scenarios for this. The first possibility is that the 7} phase is a gapped phase with
a very small gap. The second possibility is that it is indeed a gapless critical phase
(which is a bit counter-intuitive to the definition of SPT phase). We have explicitly

checked that the entropy seems to increase with the bond dimension in this phase and

52



4.1.

SPT PHASES IN SPIN-2 CHAIN

—_
Q
~

oo
O
] 1
&
S o L Ty
a
O
= VANV VWY, W W
o VIV OV VIV VvV vivoovoodss
o L . . . . . . . .
-199 -1985 -1.98 -1.975 —1J97 -1.965 -1.96 -1.955 -1.95
1
(b)
[ T
&
g ! 4
€
© ;
<
5]
a
o
= ¥ sk
o
U) L L L I I
0.1155 0.116 0.3J165 0.117 0.1175
3
(©)g : : :
o]
2 —
£
® T
5 o 0 Tx
a
C—s—e / —o—6—
o A4 A A4 A4
n L L L L L L L L
0.0165 0.017 0.0175 0.018 J 0.0185 0.019 0.0195 0.02

4

Figure 4.9: SPT parameters (/3,w, u, v) for (a) the (J;, D) plane at D = 1, (b) the
(J5,D) at D = 1.5, and (c) the (Jy, D) plane at D = 1. The data are consistent with
four different effective spin-1 SPT phases, separated by vertical red dashed lines.

large-D

1

bl,

-B.S -225 -2 _1;175 -15-125 -1 _025 -0.2 -0.15

(d)4

0

-0.1 -0.05
JZ

0.03

014 &1

0.015 0.02 0.025

P

Figure 4.10: Final phase diagram of our spin-2 chain in the four two-dimensional
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effective spin-1 SPT phases. The dashed line in each panel corresponds to the SO(5)
symmetric point for D = 0.
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therefore the second possibility seems more likely. If this is indeed the case, we can
say that the T, phase in our model exhibits both gapless degrees of freedom and to
some extent, SPT order, which deserves further investigations. It is worth mentioning
that the possibility of the existence of gapless SPT phases have been reported in some
cases [117].

Before we discuss other interesting features of the phase diagram, it is important
that we describe the phase transition between the different SPT phases in the different
planes. It is known that the entanglement entropy of a block of length L obeys the

following scaling law [118, , , , 150]
S(L) ~ g log L + O(1/L) (4.31)

for L > 1 where c is the central charge of the transition. After extracting the value
of this central charge, one can understand the phase transition using the CFT de-
scription. For example, consider the phase transition between two different spin-1
SPT phases T, and Tp in (J;, D) plane in Fig. 4.10. We compute the entanglement
entropy at this region for a block of different lengths (up to L = 100) for increasing
bond dimensions (up to xy = 120). The scaling of this entanglement entropy with
both the system size L and log L is shown in Fig. 4.11. By making an appropriate
fit for this scaling, we extract the central charge of this transition and found it to be
¢ =3 x 0.6528 =~ 2. Such a transition can be understood in terms of five Majorana
fermions [139]. A detailed description of the phase transition in terms of these Majo-
rana field theories can be found in appendix A of the thesis. A similar behavior was
obtained for the phase transitions between the other spin-1 SPT phases. Meanwhile,
the phase transition between the SO(5) Haldane phase and Intermediate Haldane
phase and the phase transition between IH phase and the Large-D phase was found
to correspond to a CFT with central charge ¢ = 2 x % = 1. The Majorana field theory
of these transitions is described in Ref. [139].

Besides the topological phases, we find a number of interesting features in our
model which we discuss very briefly here. For example, in the (J4, D) plane, we find
a candidate for gapless phase which we call gJ4 which has an entanglement spectrum
degeneracy of 2 but no string order. We conjecture this phase to be in the XY
universality class, as this was also found in other spin-2 chains. We also find very
high and low- J phases at every planes which are topologically trivial and which
correspond to different symmetry-breaking orders (e.g. ferromagnetic). An in-depth
analysis of all these phases, together with the phase diagram of the model in the full

parameter space could be really interesting for future studies.
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4.2 SPt phases in spin-2 chain

Having discussed the concept of Symmetry Protected Topological phases, their clas-
sification based on the projective representation of the symmetries protecting them
and their phase transitions, in this section, let us discuss a new class of material
known as the Symmetry Protected trivial phases (SPt) phases. Symmetry Protected
trivial phases are the product-state analog of Symmetry Protected Topological (SPT)
phases. They can be adiabatically connected to a product state by some path that
preserves the protecting symmetry unlike the SPT phases that can be connected to
the product state only by a path that breaks the protecting symmetry. Thus, SPT
and SPt phases can be adiabatically connected to each other when interaction terms
that break the symmetries protecting the SPT are added in the Hamiltonian. How-
ever, two distinct SPt phases cannot be adiabatically connected to each other unless
the symmetries protecting them is explicitly broken in the Hamiltonian. In other
words, there are distinct product states that can be infinitely close in the limiting
regions of a given phase diagram yet separated by a quantum critical point with
diverging correlation lengths between them. These phases of matter were studied
for the first time in [135] in the context of a spin-1 chain. The SPt phases found
there are protected by a combination of site-centered inversion (/) and a 7 rotation
about the z axis. It is worth reminding here that according to the convention used

by Wen [106], SPT phases are also called Symmetry Protected trivial states because
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there is no long-range entanglement (or intrinsic topological order such as string-net
models). In our convention, (i) SPT means that the corresponding quantum states
cannot be fully disentangled without breaking the protecting symmetry (equivalently,
they are not adiabatically connected to a product state by any path preserving the
symmetry), and (ii) SPt means that the corresponding quantum states can be fully
disentangled without breaking the protecting symmetry (equivalently, they are adia-
batically connected to a product state by some path preserving the symmetry). Our
convention here is, however, compatible with the one in Ref. [135].

In this section, we will investigate the existence of different SPt phases in the
spin-2 chain discussed previously along with their phase transitions. This study can
be understood in the context of generalizations of SPt phases for higher spin-chains.
We use the same numerical tool as we did before in the previous section i.e. Matrix
Product States with iTEBD algorithm to obtain the ground states. We will charac-
terize the phases of this model by studying quantities such as entanglement entropy,
symmetry-related non-local order parameters and 2-site fidelities. The field theory
description of the quantum phase transitions is also discussed in Appendix A. This

section is based on the publication [151] by the author.

4.2.1 Model and symmetries

We will simply add a staggered magnetic field to our Hamiltonian in Eq. 4.1 for a
spin-2 chain. The reason for this will be apparent soon. The Hamiltonian of our

model now has the following form.
4 .
H=> > J1,(S;-Si)"+ DY (5> —h. Yy _(-1)8;, (4.32)
ioy=t j j

where 5'] and S7 are the usual spin-2 vector and its z component, D is a uniaxial
anisotropy and h, is a staggered magnetic field, and J,’s are values of bilinear, bi-
quadratic, bicubic and biquartic couplings, respectively, for v = 1,...,4. We have
already discussed the case for which D = 0 and for specific values of J,’s for which
the model has an exact SO(5) symmetry and the ground state can be written as an
MPS with bond dimension 4. We have also discussed in detail the case for an arbi-
trary J, and non-zero values of D. Now, let us discuss the case for which D and h,
in the above Hamiltonian are non-zero but .J,’s are fixed to their SO(5) symmetric
values (i.e. J; = —11/6,J, = —31/180, J5 = 11/90, J, = 1/60). In this case, the
presence of the staggered field destroys all the symmetries protecting the SPT order.
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However, the model is still symmetric under site-centered inversion /s and 7 rotations

with either the u'? or the u3* defined as

112 . 134
U12 — emL ,U34 — ezwL ’ (433)

where L'? = |2)(2| — | — 2)(=2| and L** = |1)(1] — | — 1)(—1| are the SO(5) Cartan
generators. We can then define quantized SPt order parameters using the combined

symmetries as follows

ro_ 12
Iy =1 xu

4.34
Ly =1, x u* (4:34)

which are also exact symmetries of the Hamiltonian in this regime. As we shall see
later, the presence of these two symmetries protect three trivial phases in our model,
separated by quantum critical points corresponding to ¢ = 1 CFTs. One of these
phases is adiabatically connected to the intermediate Haldane phase for h, = 0, and

corresponds to an intermediate SPt phase.

4.2.2 Identifying SPt phases

Our aim, now, is to study the phase diagram of the spin-2 quantum Hamiltonian in
Eq. 4.32, where the couplings J, are fixed to the SO(5) point, and both D and h,
can take finite values. For the sake of simplicity, we restrict ourselves to the case
D > 0 and h, > 0. In our numerical simulations, we approximated the ground state
of the system by an infinite MPS with a 2-site unit cell using the iTEBD algorithm
as before. We used MPS of bond dimension up to y = 100, which turned out to be
already sufficient for our purpose. We compute the following parameters numerically

which are described in detail along with important discussions of the results as follows.

Entanglement entropy

As a first numerical calculation we computed the entanglement entropy (von Neumann
entropy) of half an infinite chain, which can be extracted easily from the MPS tensors.
Details on how to extract the entanglement entropy from the ground state MPS were
already discussed in the previous section. We compute this for a very large number
of points in the (D, h,) plane. This is shown in Fig. 1.12. The left part of the figure
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Figure 4.12: (a) Entanglement entropy of half an infinite chain for y = 100, aerial
view. The two red dashed lines correspond to the asymptotic laws in Eq. 4.35 for
the entropy maxima at D > 1. The horizontal orange line corresponds to h, = 1.5,
for which the entanglement entropy is plotted on the right panel. (b) Entanglement
entropy of half an infinite chain for A, = 1.5 and different bond dimensions x. Results
largely overlap within our precision away from criticality. The two maxima on the
right-hand side tend to get closer as y and D increases (not shown).

shows the entanglement entropy of half an infinite chain from the ground state MPS
of bond dimension y = 100. The right part of the figure also shows the same quantity
but for h, = 1.5 and for different bond dimensions. From this, we can see that
the entanglement entropy increases with the bond dimension y at the two regions
marked as D.; and D. In the limit y — oo, we expect such entropies to diverge,
thus pinpointing two quantum critical lines separating three phases. As we shall see,
this interpretation is also consistent with the analysis of nonlocal order parameters.
We also find that the maxima for the entanglement entropy in the critical lines follows

the following laws for the two critical regions
hz ~ a; + 3D(left),
(4.35)
h, ~ a, + D(right),

when D > 1, and for some constants q;(left) and a,(right). Such a behavior is
expected [152] and we provide an intuitive argument as following. For h, = D, we
find that the non-interacting part of the Hamiltonian in Eq. 4.32 for an even site j

can be written using the usual spin-2 z basis as

D((212)2[ + [ = D){=1]) + 6] = 2)(-2[) (4.36)
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with a similar result for odd sites but interchanging |2) with | —2) and |1) with | —1).
This means that for large enough D, the dominant low-energy physics will happen
mostly in the 2-dimensional local subspace spanned by {|0),|1)} for even sites and
{]0),] — 1)} for odd sites. So, locally, the low-energy physics in this limit resembles
that of a spin-1/2 system. After projecting the interacting part of the Hamiltonian
into this local basis, one gets a behavior similar to that of the spin-1/2 XXZ model,
which in its critical region has ¢ = 1 CFT. Similarly, for h, = 3D we find that the

non-interacting piece of Eq. 4.32 for an even site is given by
D(=2(] = 2)(=2[ + | = D(=1]) + 4[1)(1] + 10]2)(2), (4.37)

again with a similar result for odd sites but interchanging |2) with | —2) and |1) with
| —1). This could also suggest that for large D, the dominant physics happens in
a 2-dimensional local subspace, namely, the one spanned by {| — 2),| — 1)} for even
sites and {]2), |1)} for odd sites. Following the same argumentation as before, the
relevant low-energy properties in this limit would then be that of some spin-1/2 XXZ
model with ¢ = 1. Of course, this is just an intuitive argument and needs to be taken
with care, but it would be in agreement with the field theory description in the case
of having critical lines. Nevertheless, as we shall discuss, it is also plausible that one
has a scenario with first-order transitions, and therefore these limiting cases should
be taken with care.

Indeed, these results are also compatible with the numerical study of the scaling
of the entanglement entropy. As shown in Fig. 4.13, the scaling of the entanglement
entropy S(L) of a block of size L is compatible in both cases with the CFT scaling

in the thermodynamic limit as we discussed before
S(L) ~ g InL+¢, (4.38)

with central charge ¢ ~ 1, once again in agreement with the previous considerations
(in the above equation, ¢} is a non-universal constant for an infinite chain, but for open
boundary conditions it may also include the Affleck-Ludwig boundary entropy [153]).
More precisely, at h, = 1.5 and for the first critical point D, we get ¢ = 0.2501 x 3 ~
0.75, whereas for the second critical point D, we get ¢ = 0.34 x 3 =~ 1.02. The lower
numerical central charge at D.; can be explained by the fact that this is a fine-tuned
quantum phase transition between two trivial phases, corresponding to product states
under renormalization group theory. It is thus expected that the central charge is
slightly underestimated by this fact, since trivial phases have very little entanglement.

The same would be expected for the numerical central charge at D., . However, this
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Figure 4.13: Entanglement entropy of a block of size L, at the two maxima of Fig. 4.12
for h, = 1.5: (a) at Dy = 0.5; (b) at Dy, = 3. The orange dashed line is a fit to the
law in Eq. 4.38 in the scaling region. The values of the bond dimension are the same
as in Fig. 4.12.

point is in the middle of a region with more entanglement (see Fig. 4.12), which
apparently softens the underestimation of ¢. Our conclusion is that both lines are
compatible with a critical behavior, and seem to correspond to CFTs with central
charge ¢ = 1 which can be described using two sine-Gordon bosons and one Majorana
fermion. The details of this explanation can be found in Appendix A of the thesis.
In any case, we would like to stress that within our accuracy we cannot rule out the
possibility that the first phase transition is indeed first order, with a saturation of
the entanglement entropy in the bond dimension of the MPS. This scenario would
also be a plausible explanation of the observed low value for the central charge in our

calculations.

Two-site fidelities

It is clear that introducing the staggered field term breaks explicitly the symmetries
protecting the SPT phases at h, = 0. Thus, for large values of h, one may expect

distinct polarized phases. In order to identify them, we have computed the two-site
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Figure 4.14: Two-site fidelities fy, fi and f as defined in Eq. 1.39 at h, = 4, signaling
3 different trivial phases for y = 100.

fidelities defined as follows

o= 5 (O1oaal0) + (Olpesenl0)),
1= 5 (poad ) + (=gl = 1), (4.39)
o= 5 (20poad) + (~2peven] = 2),

where poqq is the 1-site reduced density matrix of the system for an odd site, and
analogously for peye,. The results are shown in Fig. 4.14, and clearly show that the
ground state of the system tends to be in three different trivial phases, which have
the following product states as representatives for large h,: |2, —2,2,—2...) for small
D, |1,—1,1,—1...) for intermediate D, and |0,0,0,0...) for large D.

Nonlocal order parameter

Our numerical calculations also indicate that the three distinct trivial phases dis-
cussed above are in fact protected by symmetries. More specifically, the symmetries
protecting the phases are those specified in Eq. 4.34: I, and I}, consisting of site-
centered inversion combined with a 7 rotation according to operator u'? or u** in
Eq. 4.33. Therefore, one can define some nonlocal order parameters that can be used
to distinguish the three trivial phases. Such nonlocal order parameters can be com-
puted very easily in the MPS framework. Such calculations were proposed for the first
time in [141] in the context of SPT phases. Let us review here briefly for the sake of
completeness how to compute this for an infinite-size MPS with translational invari-
ance at every two sites (which is what we used in our simulations). The different steps
are summarized in Fig. 4.15. First, given an infinite MPS in canonical form and with

a two-site unit cell, we can define two tensors A and B as in Fig. 4.15(a) satisfying
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H O3, H 03, H Representative H Phase H
-1 +1 12,-2,2, -2, ...) small D
+1 -1 |1,—1,1,—1,...) | intermediate D
+1 +1 1, —-1,1,-1,...) Large D

Table 4.3: Different SPt phases found in our spin-2 quantum chain. The one for
intermediate D corresponds to an intermediate SPt phase.

right-canonical conditions as in Fig. 4.15(b). The symmetry operator I’ = I x Z5 acts
on the MPS tensors as shown in Fig. 1.15(c), which for our spin-2 case will be defined
at a later stage, and where the site-centered inversion I, simply takes the transpose
of the bond indices in the MPS tensors A and B. Matrices u4 and ug correspond to
representations of the symmetry operators acting on the MPS bond indices, and can
be computed from the dominant right eigenvectors of 2-site MPS transfer matrices
as shown in Fig. 41.15(d). In turn, angles 64 and 6p can be extracted from the single-
site MPS transfer matrices as shown in Fig. 4.15(e). Finally, angles ¢4 and ¢p are
computed as in Fig. 1.15(f). With all the data extracted in this way, one can then

define the SPt nonlocal order parameter following [111] as
04 = ¢i0a=24) — 41 (4.40)

Equivalently, one can also define O using 65 and ¢ 5. Let us stress at this point that
the non-local order parameter depends on the definition of the 7w rotation operator
u. In our spin-2 case, we use the following different operators defined in Eq. 4.33 in

order to distinguish the different phases emerging in our model as follows
ul? — emL”7 w3t = emLM7 (4.41)

where L'? and L3 are the SO(5) Cartan generators defined previously. Using these
definitions of the operations, one can now distinguish the different phases in our
model. This is shown in Fig. 4.16. Thus, we have classified the different SPt phases

using the two operators. The results are summarized in the Table 4.3.
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Figure 4.15: (a) MPS tensors A and B are defined;(b) tensor A satisfies the right
canonical condition (similarly for B); (c) action of the symmetry operator I’ = Iy X Z
on tensor A (similarly for B); (d) matrix ul, is the right eigenvector of a 2-site MPS
transfer matrix (TM), with eigenvalue ¢((?4+98)) (one reaches a similar conclusion by
interchanging A with B); (e) the phase (e¥4) (highlighted in red) can be extracted
using uL and a 1-site MPS transfer matrix built with tensor A (one reaches a similar
conclusion by interchanging A and B); (f) the phase (ei*4) (highlighted in red) can

be extracted as shown in the diagram, where x is the MPS bond dimension.

A
--- 0y,

non-local order
parameter

Figure 4.16: Nonlocal order parameters O1}, and O%, as in Eq. 1.10 at h, = 4 deter-
mining 3 different SPt phases, for y = 100.
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4.3 Conclusions and outlook

In this chapter, we have discussed the concept of Symmetry Protected Topological
(SPT) and Symmetry Protected trivial (SPt) phases which are different from the
conventional phases of matter and therefore lies beyond the Landau paradigm of phase
classification. The usual techniques used in classifying conventional phases of matter
cannot be applied in these cases. To give a formal definition, SPT phases of matter
are short-range entangled states that can be adiabatically connected to a product
state only after we destroy the symmetries protecting them. Two SPT phases cannot
be adiabatically connected to each other without removing the symmetries protecting
them. Because SPT phases are robust against any local external perturbations that
preserve the symmetry, they have been proposed as a resource in certain measurement-
based quantum computing and other areas of quantum information. The Haldane
phase of the spin-1 chain is a very important example of such SPT phases. This is a
gapped phase characterized by interesting properties such as non-trivial degeneracy
of the entanglement spectrum, presence of hidden string orders, etc. The search for
spin-1 Haldane phase in higher spin-chains has been a hot topic of research since it
was conjectured in 1992. Symmetry Protected trivial (SPt) phases, on the other hand,
are the product state analogue of SPT phases. These are short range entangled states
that can be adiabatically connected to product states by some path that preserves the
symmetry. Just like SPT phases, two SPt phases cannot be adiabatically connected to
each other unless we remove the symmetries protecting them. The main conclusions

and outlook of this chapter are summarized below.

e Using a spin-2 quantum chain with a Heisenberg-like bilinear, biquadratic, bicu-
bic and biquartic interactions along with an uniaxial anisotropy term, our stud-
ies have confirmed the existence of several effective spin-1 SPT phases. Not
only did we find the spin-1 Haldane phase in our study, we also found other
spin-1 SPT phases which are also typical of the Haldane phase protected by
Zy X Zy + T symmetry. All these phases were studied using a number of quan-
tities such as entanglement spectrum, string order parameter, entanglement

entropy, projective representation of the symmetries protecting the phases, etc.

e Our studies also form the first numerical evidence of phase transitions between
different spin-1 SPT phases. These phase transitions can be described using a

¢ = 2 CFT which can be understood in terms of five Majorana fermions.
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e During our investigation, we have found a phase namely the 7, phase that has
the properties of an SPT but possibly exhibiting gapless degrees of freedom.
This is somewhat counter-intuitive to the definition of SPT phases which are
gapped and therefore deserves further investigation. It will also be interesting
to explore the full phase diagram of our model in all the possible regimes. These

ideas could form the basis of a possible future work.

e We have also shown how to characterize an SPt phase based on a number of
properties such as entanglement entropy and its scaling, nonlocal order param-
eters, 2-site fidelities, etc as well as how to distinguish it from an SPT phase.
We have also shown that just like the case of SPT, our spin-2 model also con-
tain an effective spin-1 SPt phase when we add an external staggered magnetic
field to it. We found three distinct SPt phases protected by a combination of

site-centered inversion and 7 rotation along one of the axes.

e We also studied the phase transition between the different SPt phases and found
that they can be described with a ¢ = 1 conformal field theory which can be

understood in terms of two sine-Gordon bosons and one Majorana fermion.

e Concerning perspectives, it would be interesting to determine whether an SPt
phase with negative value of both nonlocal order parameters O} and O3} could
also exist in a simple quantum spin chain. Another interesting open problem is
the characterization of SPt phases in 2D. We leave the study of these problems

for the future.
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Chapter 5

Frustrated Quantum Systems

Early studies of frustrated quantum systems date back to the study of the antifer-
romagnetic Ising model on the triangular lattice by G.H. Wannier [154] and R.M.F.
Houtappel [155] in 1950. The Heisenberg helical structure which is also a frustrated
system was discovered independently by A. Yoshimori, J. Villain and T.A. Kaplan
in 1959 [156, , |. Such systems gained more importance in the context of the
study of spin glasses by G. Toulouse and J. Villain in 1977 [159, |. Although
the investigation of such frustrated quantum systems started a long time back, many
properties of frustration still continue to be a puzzle in the era of modern physics
and pose some of the hardest challenges in condensed matter physics. Because of the
presence of large amounts of quantum fluctuations in such systems, they are a perfect
playground for realizing exotic quantum many-body states such as the quantum spin
liquid' and also serves as an excellent testing ground for approximations and theories.
Apart from the fact that most materials in nature do not have a bipartite structure
and hence are frustrated, the study of frustrated quantum systems also serves as an
important platform in the theoretical understanding of high-7, superconductors (An-
derson’s RVB theory for example) [17]. Before getting into any details, let us try to
understand how frustration arises and how one can define it formally.

Let us consider two spins S; and gj (classical or quantum) interacting with a
strength J. Their interaction energy can then be written as E = —J(gi . §J) As-
suming these spin vectors to be of unit length, we see that for J > 0 (ferromagnetic
interaction), the minimum energy is given by F, = —J when S, I 5’] (i.e. when
the spins are parallel). For the case of J < 0 (antiferromagnetic interaction), we see

that the minimum energy FE.;, = —.J is obtained when 5?2 ™ §j (i.e. when they

LA Quantum Spin liquid is defined as a disordered state that preserves all the symmetries of the
parent Hamiltonian.
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Figure 5.1: Possible ground states of the ferromagnetic Hamiltonian where all the
spins are aligned parallel to each other. The ground state does not depend on the
structure of the lattice and the energy constraints of all the individual bonds are fully
satisfied here.

are antiparallel). Now the following cases can arise for the two different kinds of
interactions:

Case 1: For a nearest-neighbor ferromagnetic interaction, the ground state is the
configuration where all the spins are aligned in parallel to one another. In this case,
the energy constraint of the interaction of every pair of spins is fully satisfied. This
condition will be fulfilled for all kinds of lattice structures such as the square lattice,
triangular lattice or a 1D chain. There is no frustration in this kind of model. This
is shown in Fig. 5.1.

However, for an antiferromagnetic interaction, the configuration of the ground
state will depend on the lattice structure as follows

Case 2(a): For lattices containing no elementary triangles (i.e. bipartite, square
or simple cubic), the ground state is the configuration where each spin is antiparallel
to its neighbor So, in this case also, the energy constraints for all the bonds can
be fully satisfied and there is no frustration in the system. This is illustrated in
Fig. 5.2(a) for a square lattice.

Case 2(b): Now, consider the case when the spins reside on lattices containing
elementary triangles (non-bipartite structures such as triangular, fcc or hep lattices).
In such a scenario, we see that a ground state where all the bonds have a perfectly
antiferromagnetic interaction is not possible to construct. Hence the system is said
to be frustrated. This is illustrated in Fig. 5.2(b).

Based on the above illustrations, we are now in a position to formally define
‘Frustration’. A system is said to be frustrated if the minimum of the total energy

does not correspond to the minimum of each bond, or in other words, if the energy
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Figure 5.2: (a) Ground state of an antiferromagnetic Hamiltonian in which the neigh-
boring spins are aligned in opposite directions to each other in a square lattice. The
energy constraints of all the bonds are simultaneously satisfied and there is no frus-
tration in the system. (b) In the case of a triangular lattice, all the neighboring spins
cannot be aligned antiparallel to each other and therefore, the system is said to be
frustrated.

constraint of every bond cannot be simultaneously satisfied’. Basically, frustration
is usually caused by (a) competition of different kinds of interactions and/or (b)
the lattice geometry (triangular lattice, fcc, etc). For the former case, one can take
the example of a square lattice where there is ferromagnetic interaction on three of
the bonds and an antiferromagnetic interaction on the remaining bond. It can be
seen easily that in such a system, the energy constraints of all the bonds cannot be
simultaneously satisfied and therefore it is frustrated. There is another interesting
definition of frustration owing to G. Toulouse [161]. According to him, a plaquette is

said to be frustrated if the parameter

P =] sien(J(i,5)) (5.1)
(i.5)

is negative. P is the product of the signs of the interaction of all the bonds around the
plaquette. An antiferromagnetic (ferromagnetic) interaction has a negative (positive)
sign by convention. One can check quickly the examples described above that this
is indeed the case. It is worth mentioning that frustration often leads to a lot of
interesting phenomenon in physics such as ground state degeneracy, order-by-disorder,
etc but it is beyond the scope of this thesis to get into the details of these mechanisms.
Examples of highly frustrated lattices include the triangular, kagome, pyrochlore
structures, etc. In the next section, we would like to discuss a paradigmatic example

of a frustrated quantum system, the ground state of which is controversial even in

2‘Frustration-freeness’ of a Hamiltonian is also often related to the commutivity of its terms.
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Figure 5.3: (a) Highly frustrated kagome lattice due to the presence of corner shar-
ing triangles. The lattice can be considered as composed of elementary triangles
and hexagons. (b) Traditionally woven Japanese bamboo baskets having a kagome
pattern.

the present day. This is the spin-1/2 Kagome Heisenberg Antiferromagnet (KHAF).
We will study this model using our TN algorithms and see how it compares with the

existing state-of-the-art techniques.

5.1 The Kagome Heisenberg Antiferromagnet

The kagome lattice is a highly frustrated lattice due to the presence of corner shar-
ing triangles (shown in Fig. 5.3). The word ‘kagome’ comes from the two Japanese
words ‘kago’ meaning basket and ‘me’ meaning eyes. It refers to the pattern of
a traditionally woven Japanese bamboo basket (shown in Fig. 5.3(b)). Given the
high geometric frustration of the lattice, finding the ground state of the spin-1/2
kagome Heisenberg antiferromagnet is considered to be one of the hardest problems
in condensed matter physics and hence it is very hard to tackle this problem either
numerically or analytically. This is because of strong quantum fluctuations, giving
rise to many low-energy states competing to be the true ground state. Even after

more than 20 years of study, there is still no clear consensus about the nature of its

ground state [162, , , , , , |. Many techniques have been used
so far to attack this problem such as MERA [168], Coupled Cluster Methods [169],
Variational Monte Carlo [170], Density Matrix Renormalization Group [171, 172] and

many others. There have been two proposals for the ground state of this model:

one is the so-called quantum spin liquid (QSL), proposed by Anderson [173]. This
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is a very exotic state because the ground state does not break any symmetry of the
parent Hamiltonian in this case. It is very difficult to get a cartoon picture of how
such a state would look like but it can be considered as a liquid of spins just like a
classical liquid where the molecules form a dense and strongly correlated state with-
out forming any static order. As these states do not break any symmetry, there is
no local order parameter that can be used to classify them and hence fall beyond
Landau’s theory of phase transition [131]. Such a state has only been seen in a few
materials [174]. The other possible ground state for such a model that has been
proposed is the Valence Bond Crystal (VBC). In this case, two spins can form a sin-
glet which is also known as valence bond due to their antiferromagnetic interaction.
The ground state would then be a configuration where every spin is bound to some
singlet. Such an ordering breaks the lattice symmetry because there is only one spe-
cific arrangements of the valence bonds. It also lacks the long-range entanglement
and hence is not topologically ordered. However, if we take equal superposition of
all the possible configurations of the valence bonds without preferring any specific
order, then we will have what is known as the Resonating Valence Bond (RVB) state
which is a type of Quantum Spin Liquid proposed by Anderson [173]. Thus, it is
possible to construct, in principle, a quantum spin liquid from superposition of all
the possible VBCs by introducing quantum fluctuations which prohibit the ground
state from choosing any specific valence bond order. While the energetically lowest
study has claimed a Zs quantum spin liquid for the ground state of the Kagome
Heisenberg Antiferromagnet [172], there are other studies that favor a Valence Bond
Crystal (VBC) [175]. Recently, it was claimed that the ground state of this model
is a gapless spin liquid [176]. There are also some experimental results that favor
a Zy quantum spin liquid as the ground state of this model [174]. This is based
on the investigation of many naturally occurring mineral compounds such as Her-
bertsmithite (ZnCus(OH)sCly), Volborthite(CuzV,07(OH), - 2H,0) and Vesignieite
(BaCu3(OH)4Cly) that has a kagome structure with the spin-1/2 Heisenberg antifer-
romagnetic interaction. Using our TN techniques, we will also investigate the nature
of the ground state of this model.

The Hamiltonian of this model can be written as follows

—

H=Y"5-5; (5.2)
(4,3)

where S; = (57,5Y,57) and S¥, SY and S7 are the usual spin-1/2 operators at a

particular site and the sum is over all nearest-neighbor sites in the kagome lattice.
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Figure 5.4: Mapping the spins in the kagome lattice to a square lattice. Three spin-
1/2s in the kagome lattice is mapped to a single spin in the coarse-grained square
lattice. The mapping preserves the locality of interactions.

The interaction is Heisenberg antiferromagnetic and the interaction strength is taken
to be unity for simplicity. As we mentioned, such kinds of interaction can also be
found in nature in many mineral compounds. In this thesis, we will restrict ourselves
only with the spin-1/2 case. Studies for higher spins in the kagome lattice can be
found in Ref. [177, , , , ).

Using our infinite Projected Entangled Pair States (iPEPS) technique, we would,
first of all, like to compute the ground state of the Hamiltonian in Eq. 5.2. This can
be done using the so-called Simple Update (SU) [181, 182], Full Update (FU) [183] or
Fast Full Update (FFU) [184] techniques which are all based on iPEPS. The simple
update does not take into account the environment of the tensors while updating the
specific tensors while the full update does. The fast full update, as the name suggests,
is a faster and more stable version of the full update technique. In this technique,
the environment and the specific tensors are simultaneously updated throughout the
evolution. The details of these techniques can be found in Appendix C of the thesis for
the interested readers. These techniques use the imaginary time evolution (iTEBD)
algorithm. But before using the above techniques directly, one needs to map the spins
in the kagome lattice to a square lattice. It should be possible to program an iPEPS
code directly in the kagome lattice. Still, thanks to this mapping, we are able to use
the code for the square lattice, which is much more convenient to program. Moreover,
there is the added advantage that the coarse-graining takes exactly into account the
interactions between the three spins being coarse-grained. The mapping is shown in
Fig. 5.4. Tt can be seen from this mapping that three spins in the kagome lattice are
mapped to a single site in the coarse-grained square lattice. Also, two kagome links

correspond to one single link in the square lattice. Because all the nearest-neighbors in
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the kagome lattice are mapped to either a single site or nearest-neighbor in the square
lattice, such a mapping automatically ensures the locality of interactions. Now that
we have a square lattice, we can use the full iPEPS machinery to compute the ground
state of our model using the different update schemes. We use an iPEPS algorithm
with 2 and 4-site unit cell so that in the original kagome lattice we have a 6 and
12-site unit cell. But for most parts of our algorithm, we will be using the 2-site unit
cell in the square lattice. To see how our technique compares with the existing results
and other techniques, we will first of all, compute the ground state energy of our
model. It is worth mentioning here that our iPEPS algorithm has been bench marked
with several other models such as the Classical Ising model, Quantum Ising model,
etc in the square lattice by computing observables such as energy, magnetization,
etc [183, |. We, however, do not present the bench marking results here in this

thesis for reasons of brevity.

5.1.1 Energy and nature of the ground state

The ground state energy of the Hamiltonian is defined as

(to[to)
where [1)g) is the ground state wave function of our Hamiltonian H and FEj is the
ground state energy. Thus, once we have the ground state wave function using the
different update schemes, we can easily compute the energy as defined above. We
shall compute this for different bond dimensions D of the iPEPS. We know that D is
the refining parameter of our wave function and it quantifies the amount of entangle-
ment we allow in the system. Another important thing to be mentioned here before
presenting the numbers is that in order to compute observables such as the expec-
tation value of the energy or magnetization, one needs to compute the environment
of the ground state tensors. This is often the bottleneck in our computations since
we consider an infinite system and exact contraction of PEPS tensors is known to be
a computationally hard problem [112]. However, one can efficiently approximate the
environment of the iPEPS tensors using techniques such as Corner Transfer Matrix
Renormalization Group (CTMRG) [51], Higher Order Tensor Renormalization Group
(HOTRG) [25], etc. In this thesis, we will only use the CTMRG technique to com-
pute the environment. The bond dimension of the environment x is also an important
parameter to be considered here. The details on how to compute the environment

using this technique can also be found in Appendix C of the thesis.
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H D H X H Energy (Simple Update) H Energy (Fast Full Update) H
2 4 -0.418976421 -0.419483175
3 9 -0.425157130 -0.424253237
4 16 -0.429085014 -0.429323201
5) 20 -0.429881267 N/A

Table 5.1: Ground state energy per site for the Kagome Heisenberg Antiferromagnet
for different bond dimensions of the iPEPS D and bond dimension of the environment
x using the simple update and fast full update technique. The energy for D = 5 could
not be computed using the fast full update due to computational limitations. The
numbers provided in this table are only for bench marking purposes. In principle, it
is possible to go to larger bond dimensions. See Ref. [186].

The ground state energy per site of the KHAF are shown in Table 5.1 for different
bond dimensions D for the iPEPS and bond dimension y for the environment for the
different update schemes. In this table, we have only shown the ground state energy
per site for bond dimensions D = 2,3,4,5 of the iPEPS. The environment bond
dimensions are y = 4,9, 16, 20 respectively. Usually, it is enough for the environment
bond dimension to be the square of the PEPS bond dimension i.e. x oc D?. We could
not take y = 25 for the case of D = 5 for computational reasons. The computed
energies were obtained using both the simple update and fast full update technique.
We also see that the fast full update technique tends to give better energies because
it takes into account the full environment while updating the tensors. The energy
for D = 5, however, with fast full update could not be computed due to limitations
on computational memory. Thus, we can see from Table 5.1 that the best value
of the energy is given by D = 5 simple update which is -0.429881267. The best
energy obtained so far for this model is -0.4386 using DMRG [172]. Thus, we can
already see that the energy obtained using our technique is going towards this value
even with small bond dimensions of the iPEPS. However, it needs to be pointed out
here that it is not the purpose of this thesis to push our computational limit and
therefore a one-to-one comparison with our technique would not be fair. To have a
comparison on fairer grounds using our technique, one can take a look at Ref. [180]
where the model was studied for large bond dimensions of the iPEPS and environment.
The energies were then extrapolated for infinite bond dimension of the iPEPS using
CTMRG method and the energy obtained was -0.43448 This is shown in Fig. 5.5.
Moreover, there is still so much more scope in pushing the computational limit of
our calculations using different tactics like incorporating symmetries in the tensors

so that the computations are much more efficient, using GPUs instead of CPUs to
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Figure 5.5: Ground state energy per site computed using our iPEPS technique for
different bond dimensions D. The energies have been computed using the CTM
technique for the environment. The energies were then extrapolated for infinite bond
dimensions. This plot has been taken from Ref. [187]

perform computations, parallelizing the code, using faster and more efficient matrix
decomposition techniques, etc, just to name a few. These are some of the things that
we would like to do in the future.

Let us now probe the nature of the ground state of the model that we have
computed using our iPEPS. For this, we will plot something known as the bond
strength map. We will compute the energy of every individual bond of the kagome
lattice and plot the relative energies of every link in the kagome lattice. This will
give us an idea of some of the symmetries our ground state wave function has. For a
quantum spin liquid that does not break any symmetries, all the links in the kagome
lattice should have similar energies (up to the computational precision). This will
not be the case for other forms of ground state. The bond strength map of the
ground state of our model is shown in Fig. 5.6 for different bond dimensions D of
the iPEPS. From this, we can say that our numerical technique does not give us any
hint of a quantum spin liquid. Instead, the spins are arranged in specific patterns
of singlets and hence would be some kind of a Valence Bond Crystal. It is indeed
possible that the quantum spin liquid ground state is realized only for larger bond
dimensions of the iPEPS since they are known to be long-range entangled. But within

our computational limit, we are unable to give a definitive conclusion on this.
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Figure 5.6: Bond strength map of the KHAF for different bond dimensions (D =
2,3,4,5) of the iPEPS. We see that the spins form specific pairs of singlets for all the
bond dimensions and therefore, it is unlikely that the ground state will be a quantum
spin liquid. However, it is difficult to infer how the bond strength map will change
for the case of infinite bond dimension of the iPEPS.
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5.1.2 KHATF in the presence of a field

Having probed the ground state of the Kagome Heisenberg Antiferromagnet, we would
now like to ask the question “What happens when we introduce an external magnetic
field to such a frustrated system?” The answer to this question is highly non-trivial
and in fact leads to the emergence of many exotic phases of matter occurring as mag-
netization plateaus with extremely interesting physics. For example it was shown
that introducing an external magnetic field to the kagome Heisenberg model leads
to the emergence of 1/3 magnetization plateaus [13%, , , ]. However, this
claim was contested by several other studies [192, 193]. In Ref. [194], it was clarified
that during the process of magnetization, the magnetization plot does not appear as
a curve but rather as a staircase of heights. This was attributed to the possible finite
size effects of the numerical technique used. They also noticed that the value of mag-
netization jumped from 7/9 to the full saturation value. Then in 2013, these so-called
plateaus were probed once again for systems in the thermodynamic limit by means
of a grand canonical analysis so that there is no finite size effects [195]. The study
found the existence of five different plateaus at fractions M /Mg, = 0,1/9,1/3,5/9
and 7/9 as well as a magnetic jump from the 7/9 plateau to the full saturation value
at M /Mg, = 1. The process of saturation occurred exactly at Hgy/J = 3. Mgy is
the full magnetization, Hg, the value of the external field at which the saturation
occurred and J is the strength of the antiferromagnetic interaction in the Hamilto-
nian. In ref. [186], the nature and existence of these magnetization plateaus were
investigated thoroughly using iPEPS for the spin-S (i.e. S = 1/2,1,3/2,2) kagome
Heisenberg antiferromagnets. The Hamiltonian in the presence of the external field

can be written as
H=> 8-S—h> 5 (5.4)
(i,3) i

where the first term is the Heisenberg antiferromagnetic interaction summed over
all the nearest-neighbors. The second term is the external field along z direction
and & is the value of the external field. S; and 5‘} is the usual spin vectors and
S? is the z-component of the spin vector at a particular site. They found that the
magnetization curve hosted a large number of exotic phases of matter in the presence
of the external field. We will try to give an overview of these phases here. The different
magnetization plateaus found in these studies for different spin S kagome Heisenberg
antiferromagnet is shown in Fig. 5.7. From this plot, we can see the emergence of

several magnetization plateaus for the spin-1/2 case such as 1/9,1/3,5/9 and 7/9
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Figure 5.7: Emergence of different magnetization plateaus for different spin S kagome
Heisenberg antiferromagnet. The figure has been taken from Ref. [186] with permis-
sion from the authors.

plateaus. Besides this, they also found plateaus for the spin-1, spin-3/2 and spin-
2 kagome Heisenberg antiferromagnet. For instance, for the S = 1 case, we see
plateaus at M /Mg, = 1/3,7/9,8/9, for the spin S = 3/2, we see the plateaus at
1/3,23/27,25/27 and finally for spin S = 2 at 1/3,8/9,17/18 values of the reduced
magnetization. It is beyond the scope of this thesis to discuss all the plateaus for
the different spin models. Therefore, we will restrict ourselves only to the case of
spin-1/2 which is also the most interesting and widely studied case because of the
large amount of quantum frustration present in the system.

The different phases seen in Fig. 5.7 can be classified using Table 5.2 based on the
breaking (preserving) of symmetries like the U(1) spin rotational symmetry, trans-
lational symmetry Gr, Cg rotation symmetry and reflection symmetry along two
orthogonal axis o, and o, of the ground state. Thus, the 1/9 plateau in this case
was found to be a Valence Bond Crystal Solid (VBCS). Such an incompressible phase
preserves the U(1) spin rotational symmetry, breaks the translation symmetry into
a V3 x /3 structure, breaks the Cy rotation symmetry entirely and has reflection
symmetry along only one axis. The 1/3 plateau is found to be degenerate between
the so-called Nematic and Solid 1 phase. The Nematic phase preserves both the U(1)
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5.2. THE KAGOME XXZ MODEL

H Nature of phase H U(1) H Gr H Cs H Ou H Oy H
Spin Liquid (SL) v v v v v
Simplex Solid (SiSo) v v Cs v X
Superfluid (SF) X v v v v
Solid 1 (S1) v V3xV3 | v v v
Solid 2 (S2) v V3xV3 | Gy v v
VBC-Solid (VBCS) v V3x V3| x v X
Nematic (N) v v Cy v v
Supersolid 1 (SS1) X V3 x V3 v v v
Supersolid 2 (SS2) X V3xV3 | Gy v v
Super VBCS (SVBCS) X V3 x V3 X v X
Supernematic (SN) X v Cy v v

Table 5.2: Classification of the different plateaus based on the symmetries of the
ground state.

spin rotational symmetry and translational symmetry Gr. However, it breaks the
Cg rotation symmetry to a Cy meaning that it is symmetric under rotation by =. It
also has reflection symmetry along the two axes o, and o,. On the other hand, the
Solid 1 phase preserves the U(1) spin rotational symmetry but breaks the translation
symmetry into a v/3 x v/3 structure. It preserves the rest of the other symmetries.
The 5/9 plateau then belongs to the Solid 2 phase which is very similar to the Solid 1
phase except that it breaks the Cg to a Cy rotation. Lastly, the 7/9 plateau was also
found to belong to the Solid 1 phase. All these plateaus are incompressible phases
because, by increasing the magnetic field, we cannot increase their magnetization. In
the next section, we will move towards investigating the existence and properties of
these plateaus for a more general model i.e. the XXZ model in the kagome lattice
with antiferromagnetic interaction. The Kagome Heisenberg Antiferromagnet would
then just be a single point in the phase diagram of the general XXZ model. The next

section of the chapter is based on the publication [196] of the author.

5.2 The Kagome XXZ model

The Hamiltonian of the Kagome XXZ model with antiferromagnetic interaction can

be written as follows

H=> cosf(SISy+ SISY) +sin6 (S7S;) —h>_S;, (5.5)
(i) i
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where S® = 0&/2 is the spin-1/2 ath operator at site i, h is the magnitude of the
magnetic field, € is the anisotropy angle, and the interaction is for nearest-neighbor
spins. For generic values of h and @ this Hamiltonian has U(1) symmetry under spin
rotations around the z-axis. Different interesting points can be accessed by tuning

the parameter 0, namely:
1. The Heisenberg point for § = 7.
2. The XY point for 6§ = 0.
3. The Ising point for 6 = 7.

Although there have been a lot of studies recently on the magnetization plateaus of
the Heisenberg point 6 = 7 /4 as we discussed in the previous section, the case for the
XY point has been particularly controversial and the general XXZ model has not been
studied so far. For example, in Ref. [197], it was claimed that the 1/3 magnetization
plateau does not exist in the XY point. What is more interesting is that in Ref. [198],
it was claimed that the 1/3 plateau exists and that it could be a chiral spin liquid
at the XY point. These confusion initially instigated our investigation and we would
also like to ask the question that if the 1/3 plateau exists at the XY point, what is
the nature of its ground state and what happens to it as we tune the anisotropy angle
f i.e. as we go from the XY point to the Ising point passing through the Heisenberg
point. We will give the answers to these questions by studying the zero-temperature
phase diagram of the model in this section.

In order to obtain the ground state of the above Hamiltonian, we will use an
additional numerical technique which is very similar to the iPEPS technique that we
described in the previous section. This technique is known as the iPESS (infinite
Projected Entangled Simplex State) [117]. It is simply a variation of the usual iPEPS
technique except that here we use additional simplex tensors. In this technique, we
use an embedded cluster of 9 sites as shown in Fig. 5.8. Thus, there are 9 different
site tensors and 6 different simplex tensors which are repeated all over the kagome
lattice in the thermodynamic limit’. So, finally in the end, we end up using two
different techniques: (i) a 9-site iPESS techniques based on simplex tensors and (ii)
the usual iPEPS technique with 6 and 12-site unit cell in the kagome lattice (the

mapping of the kagome lattice to the square lattice for this case has been discussed

3The numerical simulations using the iPESS techniques were done in the group of Prof. Poilblanc
in Toulouse. Here, we have presented the results for the sake of completeness and to provide a
comparison with our techniques.
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Figure 5.8: Tensor Network of 9 sites per unit cell composed of 9 site tensors and 6
simplex tensors. Figure taken from Ref. [180] with permission from the authors.

in the previous section). We used simple update in both the techniques because of
its efficiency. For the second technique, we also used the so called fast full update
but since it did not bring any significant difference in the results, we employ the
simple update in the remainder of this chapter. The second approach based on the
coarse-grained kagome lattice is less efficient but it has more variational parameters,
which can handle a larger amount of entanglement in the wave function. In all cases,
our refining parameter is the iPEPS bond dimension D, which controls the amount

of entanglement in the tensor network, and which we consider up to D = 5.

5.2.1 Phase diagram

In this section, we will investigate the ground state phase diagram of our XXZ model
as a function of the anisotropy angle # and the external magnetic field h. Let us
first investigate the existence of the different magnetization plateaus for different
parameter regimes of our XXZ model using the two different techniques. This is
shown in Fig. 5.9 for the 9-site iPESS and Fig. 5.10 for the 6-site iPEPS. Let us,
first of all, take a look at the former case. On the horizontal axis is the value of
the anisotropy angle 6 and on the vertical axis is the value of the external magnetic
field A. Thus 6 = 0 on the horizontal axis is the XY point, # = 0.25 the Heisenberg
point and 6 = 0.5 the Ising point. From this figure, we can clearly see the existence
of 1/3 magnetization plateau both for D = 3 and D = 5. The 1/3 plateau can
be seen in all parameter regimes (i.e. all values of 6) of the XXZ model using the

9-site iPESS technique. Using this technique, one can also see the existence of other
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Figure 5.9: Emergence of different magnetization plateaus using the 9-site iPESS
technique in different parameter regimes of the model. The results are for bond
dimensions D = 3 and D = 5 for the iPESS algorithm.

plateaus besides the 1/3 such as the 1/9, 5/9 and 7/9 plateaus in different regimes
of the model. This is similar to what was earlier found for the Heisenberg case but
we also find it for the XY point and other values of the anisotropy angle. Now, let
us look at Fig. 5.10. It is the same phase diagram but using the other technique
i.e. 6-site iPEPS. Here also, we can find the 1/3 magnetization plateaus for different
bond dimensions D = 3 and D = 5 before it saturates into the full magnetization in
different parameter regimes of the model including the XY point. For concreteness,
in Fig. 5.11 we show the magnetization curve, i.e. m, as a function of the external
field h obtained with the 6-site algorithm, for different values of the anisotropy angle
0 € [0,7/2]. We observe the presence of a very prominent magnetization plateau at
m, = %, for all the scanned values of 6, including the XY, Heisenberg and Ising points.
Away from the Ising point we also see a jump towards the saturation value m, = 1 for
several values of 6 [189]. The width of the plateau increases as we tune # from the XY
towards the Ising point, see Fig. 5.12. Results for the 12-site algorithm are essentially
identical. It is worth noting that the 6 and 12-site iPEPS techniques do not find the
presence of 1/9, 5/9 and 7/9 plateaus. This is because they are not commensurate
with the expected magnetic structure of the other plateaus. Thus, we realize that

incorporating the correct lattice symmetry is quite important while using the iPEPS
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Figure 5.10: 1/3 magnetization plateaus found using the 6-site iPEPS technique in
different parameter regimes of the model. The results are for bond dimensions D = 3
and D =5 for the iPEPS algorithm. The phase diagram is identical using the 12-site
unit cell.

technique. However, based on these two independent numerical techniques, we can
confirm the presence of the 1/3 magnetization plateau at the XY point of the XXZ

Hamiltonian which was one of the main goals of our investigation.

5.2.2 The 1/3 plateau: Lattice Nematic vs Solid orders

Now that we have confirmed the existence of several magnetization plateaus (including
the most prominent 1/3 plateau at the XY point) in the XXZ model using the two
different techniques, we would like to focus on the nature of the ground state of
these 1/3 plateaus and see if they undergo phase transition as we move from the
XY to the Ising through the Heisenberg point. In order to probe this, we will plot
the longitudinal magnetization at every site as well as the link energy terms (h;;) at
every different link (without the Zeeman term), for the 6-site iPEPS and the 9-site
iPESS calculations, for points in the m, = 1/3 plateau and four different anisotropy
angles #. This is shown in the right panel of Fig. 5.13 for the 9-site iPESS technique.
Using this technique, we found that for every possible value of the anisotropy angle
0, Nematic and Solid 1 orders are degenerate in energy within our accuracy. Let us

remind ourselves that the Nematic phase breaks the Cy rotation symmetry into Co
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Figure 5.11: Magnetization m, (along the field) as a function of the external magnetic
field A in intervals of Ah = 0.1 for values of the anisotropy angle 6 € [0,7/2] at
intervals of Af = /20, computed with the 6-site approach with bond dimension
D = 3. The magnetization saturates at m, = 1 (dotted line), and there is clearly a
plateau at m. = 3 (dotted line) for all 6, including the XY point at § = 0.
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Figure 5.12: Left-most (hy) and right-most (he) values of the field at the m. = 5

plateau for the different considered angles. The width of the plateau is given by
hs — hi. The parameters of the simulations are the same as in Fig. 5.11. At the Ising
point # = 7/2 we find hy — h; = 2 up to our finite-Ah resolution (Ah = 0.1), in
agreement with the exact classical result.

while preserving the rest of the symmetries such as the U(1) spin rotation, translation
and reflection symmetry along two orthogonal axes. The Solid 1 phase on the other
hand breaks the translation symmetry to a v/3 x v/3 structure while preserving the
rest of the symmetries. The structures in Fig. 5.13 are examples of what we obtain
in some runs of the algorithm. The red (blue) dot corresponds to positive (negative)
value of magnetization and the red (blue) links correspond to positive (negative) value
of the energy per links of the kagome lattice. By running the algorithm with different
random initial conditions, we get either a Nematic or V3 x /3 Solid 1 state, both
with the same energy.

In the case of the 6 and 12-site iPEPS, we also find degenerate ground states
between Nematic and Valence Bond Crystal Solid. The Valence Bond Crystal Solid
in this case breaks the Cg rotation, breaks the translation symmetry into a 1 x 2
structure and has reflection symmetry only along one axis. Some examples of what
we obtain in different runs of our 6 and 12-site algorithm are shown in the left panel
of Fig. 5.13. Thus, we show the Nematic ground state for § = 7/10,7/4 and 0.357
and 1 x 2 Valence Bond Crystal-Solid for § = 0.457. However, we found that the
degeneracy between the Nematic and the VBC-Solid seems to be slightly lifted in
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Figure 5.13:  Magnetization (along the field) at every site and link energy terms
(hi;j) at every link, for the coarse-grained approach with 6-site unit cell (6 different
sites and 12 different links) (left) and the 9-site iPESS approach (9 different sites and
18 different links), and bond dimension D = 3, for several anisotropy angles. Red
means positive, blue means negative, and the thickness indicates the magnitude in
absolute value. We observe a clear competition between Nematic and Solid orders.
For the 6-site PEPS we show Nematic for § = 7/10,7/4,0.35m and 1 x 2 VBC-
Solid for # = 0.457. For the 9-site PESS we see degenerate Nematic and V3 x V3
VBC-Solid orders for all values of 6 (see text). For illustration, Nematic (VBC-Solid)
order is shown for § = 7/4,0.457 (§ = 7/10,0.357). The approximate values (up
to three significant digits) of the on-site magnetization and link energy terms are as
follows: (i) for § = w/10: red link =~ 0.067, blue link ~ —0.232, red dot ~ 0.653, blue
dot ~ —0.309 (same within these digits for both panels); (ii) for = 7/4: red link
0.127, blue link ~ —0.245, red dot left &~ 0.758, red dot right ~ 0.736, blue dot
—0.495 (same within these digits for both panels expect for the red dot); (iii) for
0 = 0.357: red link ~ 0.174, blue link ~ —0.242, red dot =~ 0.858, blue dot ~ —0.710
(same within these digits for both panels); (iv) for 6 = 0.457: red link ~ 0.237, blue
link ~ —0.247, red dot = 0.978, blue dot ~ —0.956 (same within these digits for both
panels).

QX
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a) Nematic b) 1x2VBC-Solid c) \B x \/§Solid 1

Figure 5.14: Different types of order in the kagome lattice, following the classification
from Table 5.2: (a) Nematic, which breaks Cg-symmetry down to Cy and is 3-fold
degenerate; (b) 1x 2 VBC-Solid, which breaks (i) Cs symmetry completely, reflection-
symmetry about one axis, and (ii) translation symmetry down to a 1 x 2 unit cell; (c)
V3 x /3 Solid 1, which breaks translation symmetry down to a V3 x /3 unit cell.
The first two structures in (a) and (b) can be accommodated in a 6-site unit cell, and
(c) in a 9-site unit cell. To make this more evident, we show a possible labeling of
the different links for such unit cells: 12 links for the 6-site, 18 for the 9-site.

the 6 and 12-site iPEPS approaches in favor of the Nematic order for XY anisotropy,
in the vicinity of the Heisenberg point (with a typically relative energy difference of
~ 0.1% at the Heisenberg point) and for a small Ising anisotropy, and in favor of VBC-
Solid order close to the Ising point. This is true even for the largest bond dimension
we could reach. The stability of one phase with respect to the other is assessed
when systematically obtaining the same one in different runs of our algorithms with
different initial conditions. Thus, we see that there is no phase transition of the
1/3 magnetization plateaus as we go between different regimes of the XXZ model,
rather we see a strong competition between Nematic and Solid orders both for the
9-site iPESS and the 6 and 12-site iPEPS algorithm for most values of the anisotropy
angle. In order to have a clearer overview of how these phases look like for the different
unit cells in the larger picture of the infinite kagome lattice, we give a representative
diagram in Fig. 5.14. The numbering in the figure shows how the different links in
the unit cell will get repeated in the entire kagome lattice. The first two structures
in (a) and (b) can be accommodated in a 6-site unit cell and (c) in a 9-site unit cell.
There are 12 different links for the 6-site and 18 for the 9-site.

Last but not the least, before concluding this chapter, we would like to discuss once
again about the claim that the m, = 1/3 plateau at the XY point could be a chiral
spin liquid [198]. We have already seen using the two techniques that even the 1/3
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Figure 5.15: First 60 “entanglement energies” of the state at the m, = % plateau for
the XY point, obtained by the 6-site iPEPS approach with D = 3. The partition
corresponds to half an infinite cylinder with a width of 12 sites, and the cylinder
contraction uses a 2-site periodicity as in Ref. [199]. The spectrum is symmetric in
the momentum k in the transverse cylinder direction, and therefore the computed
state is non-chiral.

plateau at the XY point is degenerate between the Nematic and Solid orders. Another
check, that will add weight to our conclusion would be to compute the entanglement
spectrum of the iPEPS wave function obtained from the 6-site iPEPS, for half an
infinite cylinder of width 12, within the m, = 1/3 plateau at the XY point. Details
on how to compute the entanglement spectrum from the iPEPS wave function can be
found in Ref. [199, 200]. For a chiral state, the entanglement spectrum should not be
symmetric under time-reversal. However, we find that it is perfectly symmetric under
time-reversal and therefore we do not find any further evidence for this state to be
chiral. This is shown in Fig. 5.15. However, we would like to be careful about making
any definitive conclusion on the chiral nature of this state. Indeed, it is possible that
the state itself is not chiral but it is also possible that our iPEPS wave function need

much higher bond dimension to see the chiral nature of this phase.

5.2.3 Comparing the two different techniques

Having plotted the phase diagram of our model and having found the exact nature
of the ground state of the 1/3 plateaus using the different numerical techniques in
different regimes of the model, we would like to see how the two techniques compare

with each other from the energy point of view, for example. We have already seen

88



5.2. THE KAGOME XXZ MODEL

-0.167 09-site PESS 5 -0.172195
0.18 *12-site PEPS -0.172200
% +6-site PEPS 0=0457
© _gn ~0.172205
o ‘ , -0.172210
s 0= AN — =0 1-0.238
o> ~0-24 ' g_ T -0.239
4
—0.26 /—0.240
028 & 0041
O 5 i F 2
0

Figure 5.16: Comparison of the ground state energy per site ey without the Zeeman
term at the m, = % plateau for different values of the anisotropy angle 6 € [0, 7 /2], for
different approaches: (i) iPESS with 9-site unit cell, (ii) coarse-grained iPEPS with
6-site unit cell, and (iii) coarse-grained iPEPS with 12-site unit cell. The simulations
are for D = 3 in all cases. The lowest variational energy is given by the coarse-grained
iPEPS with 6-site unit cell. Higher bond dimensions in the iPEPS/iPESS lead to the
same conclusions when compared on equal footing. The insets show zooms at the
Heisenberg point 6 = /4, for which the difference is relatively big, and for § = 0.457
close to the Ising point, where the ground state is close to classical (in fact separable
at the Ising point § = 7/2) and therefore the energy differences are relatively small.

that the 9-site iPESS technique can find additional plateaus like 1/9, 5/9 and 7/9
while the 6 and 12-site iPEPS cannot because of the incommensurability of the unit
cell with the expected magnetic structure. In order to compare the energies of the two
techniques, we will compute the ground state energy per site. In order to compute
the energy, we will use environment tensors which can be computed using the Corner
Transfer Matrix (CTM) algorithm. It is worth noting that because the number of
unit cells in each technique is different, one needs different CTM algorithms based
on the periodicity of the ground state wave function. The comparison between the
different techniques is shown in Fig. 5.16. In this figure, we show the ground state
energy per site (excluding the magnetic field term) in the m, = 3 plateau phase as
a function of the anisotropy angle 0, as computed with our three methods. We see

that the 6-site approach is the one that produces the lowest variational energy. The
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difference with the 9-site iPESS is around the third digit, roughly 1%, whereas the
difference with the 12-site iPEPS is even smaller, around 0.1%. However, these small
differences should be taken with caution, given the different approximations involved
in the methods used. The fact that the 9-site iPESS approach produces higher energy
may be a consequence of the smaller number of variational parameters in this ansatz.
The quasi-degeneracy between the 6-site and the 12-site PEPS energies shows that
a doubling of the unit cell is preferred over a quadrupling. From this, we learn that
having lower energy is not enough while investigating such phases of matter but
one also needs the right kind of unit cells that is commensurate with the expected

magnetic structures of these phases.

5.3 Conclusions and outlook

In this chapter, we have introduced the concept of frustration in quantum systems. A
system is said to be frustrated if the minimum of the total energy does not correspond
to the minimum energy of each bond. A very popular example of such a system is the
nearest-neighbor antiferromagnetic Ising model on a triangular lattice. Frustration
is usually caused by the presence of different kinds of competing interactions in the
system or the lattice geometry of the model. The kagome lattice is a highly frustrated
system found in nature due to the presence of corner-sharing triangles. In this context,
the spin-1/2 Kagome Heisenberg Antiferromagnet is one of the hardest problems in
condensed matter physics because of its frustration and hence the large amounts of
quantum fluctuations present in the system. Therefore, this system is very hard to
study either numerically or analytically. The ground state of the KHAF is still a
controversial issue in the field with some claiming it to be a Valence Bond Crystal
and others claiming it to be a Quantum Spin Liquid. Such a quantum spin liquid has
been proposed as a potential mechanism to explain high 7, superconductors. The

main results of our investigation in this chapter are summarized below.

e We have studied the ground state of the Kagome Heisenberg Antiferromagnet
using our Tensor Network techniques i.e. iPEPS specifically. We did this by
mapping three spins in the kagome lattice to a single site in the square lat-
tice and using the usual iPEPS algorithm with a 2-site unit cell, thus in turn,

allowing a 6-site unit cell in the original kagome lattice.

e We have seen that our technique offers a good competition to the existing

numerical techniques based on the ground state energy per site of this model.
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Using our technique, we do not find evidence of a quantum spin liquid as the
ground state, rather what we find is a valence bond crystal. However, there is
so much scope in pushing our computational efforts and this is something we

would like to do in the future.

Introducing an external magnetic field to such a model can give rise to magne-
tization plateaus at specific values of the magnetization. We have also investi-
gated the existence and presence of such magnetization plateaus for the general
antiferromagnetic XXZ model in the kagome lattice of which the KHAF is just
a point in the phase diagram. This was done using two techniques: (i) a 9-site
iPESS technique (which is a variation of the usual iPEPS technique) and (ii)
a 6 and 12-site iPEPS technique (which was obtained by coarse-graining three
spins in the kagome lattice to a single site in the square lattice with a 2 and

4-site unit cell).

Using these two techniques, we confirmed the existence of the controversial
m, = 1/3 plateau and found no evidence of it to be a chiral spin liquid using
our iPEPS approximation at the XY point. We also found additional plateaus
such as 1/9, 5/9 and 7/9 using the 9-site iPESS but did not find them using
the 6 and 12-site iPEPS.

Specifically, we studied the 1/3 plateau in different regimes of the XXZ model
such as the XY, Heisenberg and the Ising point. We found that these plateaus
do not undergo any phase transition as we move between different regimes of our
model. Rather, what we find is that these plateaus are degenerate in Nematic
and Solid 1 order with the 9-site iPESS technique and Nematic and Valence
Bond Crystal Solid with the 6 and 12-site iPEPS technique. This degeneracy
seems to be slightly lifted in the 6 and 12-site iPEPS technique in favor of the
Nematic order for XY anisotropy, in the vicinity of Heisenberg point and for a
small Ising anisotropy and in favor of a Valence Bond Crystal Solid close to the

Ising point.

We also compared the two techniques by computing the ground state energies
of the 1/3 plateaus. We found that the 6-site technique gives us lower energy
(around 1%) than the 9-site technique because it has a higher effective bond
dimension and hence able to handle more entanglement in the system. The

12-site unit cell has a slightly higher energy then the 6-site unit cell (around
0.1%).
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Indeed, it remains to be seen what happens to the phase diagram of the model for
higher spins such as S = 1,3/2,2, etc and the emergence of the different plateaus
therein. It also remains to be seen if the non-chiral nature of the 1/3 plateau in the
XY point is due to low bond dimension of the iPEPS or indeed if the state is not chiral
anyways. For this, one needs to use iPEPS with a very large bond dimension. This
computational bottleneck can be improved by implementing symmetries for example
in our TN algorithms. One can also think of using faster and more efficient matrix
decomposition techniques and GPUs for computations. Recently, it has been shown
that PEPS can be used to realize chiral topological order by explicitly constructing
chiral PEPS [201] but it still remains to be seen if such a state can be realized

numerically from a chiral Hamiltonian.
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Chapter 6

Open Dissipative Quantum
Systems

In the previous chapters, we discussed Symmetry Protected Topological (trivial) and
other exotic phases of matter arising out of frustration in a quantum system. We
mainly studied their ground state properties while assuming that the system is per-
fectly isolated from the rest of the environment. In reality, no system can be com-
pletely isolated from its environment. By ‘system’, we mean anything that is under
our observation and by ‘environment’, we mean anything that is not a part of our
system. The environment could, thus, be the rest of the laboratory, the rest of the
universe or even beyond. Because it is often so difficult to study the entire ‘system
+ environment’, usually we neglect the effects of the environment and consider only
the system. We then have what is known as a ‘closed system’. However, all systems
in nature, as expected, are not isolated and cannot be described by a pure state. We
therefore need to include the environment for a complete description of the system.
The system is then said to be open. In this case, the mixed states are denoted by a
density matrix p instead of a wave function |¢)) which are used for pure states. We
have already discussed in detail the notion of pure and mixed states in Chapter 2 of
the thesis. Examples of systems interacting with environment include heat transfer,
quantum decoherence, etc. The process of exchange of information (i.e. energy, par-
ticles, etc) between system and environment usually leads to dissipation. Dissipation
can lead to different kinds of dynamics in open quantum system. One such dynamics
is the Markovian evolution. In this, we assume that the evolution has no memory i.e.
it does not depend on the history of the system. One can give a formal definition of
Markovian evolution as follows: A dynamics is said to be of Markovian nature if the
state p(t + dt) only depends on the state of the system immediately before i.e. p(t)

for an infinitesimal §t. In other words, the evolution of a system cannot depend on
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(a) the state of the environment and (b) the state p(t') for some t' < t. An example
of such an evolution would be the spontaneous emission of a photon from an atomic
system where the photons are not reabsorbed by the atom (i.e. information does not
flow back into the system). On the other hand, there can be non-Markovian evolution
where the system possesses some sort of memory during the evolution. Let us not
go too much into the details of non-Markovian dynamics as we are only interested
in the former kind in this thesis. Aspects on non-Markovian dynamics using Tensor
Network States would be an interesting field in the future though.

In the context of quantum many-body systems, dissipation often leads to many
interesting physics such as decoherence of complex wave functions [202], quantum
thermodynamics [203], engineering topological order [13], driven dissipative univer-
sal quantum computation and dissipative phase transitions [19], etc all of which are
being intensely studied at the moment. Despite their obvious importance, under-
standing the effects of dissipation in quantum many-body systems continues to be a
very difficult problem. This is mainly because of two reasons. First, open quantum
systems exhibit the same complexity class as equilibrium systems i.e. the number of
parameters required to describe such systems scales exponentially with the system
size '. Second, there are physical constraints on the density matrix which can be used
to represent them such as positivity, hermiticity and trace one. For example, it has
been shown that checking the positivity of a Matrix Product Operator (which can be
used to represent a density matrix) in the thermodynamic limit is a computationally
intractable problem [2041]. Because of these reasons, efficient numerical tools for the
study of open quantum many-body systems are quite rare and continue to remain a
challenge.

In this chapter, we present a numerical method which can be used to study such
open dissipative quantum systems in 2D lattices of infinite size (i.e. in the thermo-
dynamic limit). The method that we propose here is based on Tensor Networks and
is, in fact, particularly simple and efficient, as well as the first approach that uses
TNs to target 2D dissipation. To probe the validity of our algorithm, we investigate
the dissipative 2D quantum Ising model for spin-1/2, which is of relevance for contro-
versies concerning dissipation for interacting Rydberg atoms [205]. We will compare
our results with those obtained by a variational algorithm based on a product and
a correlated ansatz [206]. We will also investigate a spin-1/2 XYZ model to address

some controversies regarding its phase diagram. Before getting into the details of our

1As a matter of fact, it scales as O(d?") where d is the physical dimension of a particle and N
is the number of particles. So it is even worse then systems in equilibrium which scales as O(d").
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technique, let us go through some of the recent developments in TN algorithms for
studying open quantum systems in 1D. This chapter is based on the paper [207] by

the author which has been accepted for publication.

6.1 Recent developments in TN for open systems

As we have seen, open quantum systems are described by mixed states p(t). For
Markovian systems, the evolution is generated by a Liouvillian operator £, and can
be cast in the form of a master equation for the reduced density matrix of the quantum

system. The master equation has the following form

d

= Lp]

i[H,p| + Z ( upLT - _LT L — %pLLLu) , oy

where p is the density matrix of the system, £ is the Liouvillian superoperator, H

the Hamiltonian of the system, and {L,, LL} are the Lindblad operators responsible
for the dissipation, also known as the jump operators.

In 2004, Verstraete et al [67] introduced the concept of Matrix Product Density

Operator (MPDO) which extended the Matrix Product States (MPS) formalism from

pure to mixed states. Let us recall that an MPS can be written in the following form

Z A LAY sy, sN) (6.2)

where the A’s are matrices whose dimension is bounded by some fixed number D and
d is the physical dimension of the Hilbert space. An MPDO p of N d-level particles

with (Dy, Dy, ..., Dy)-dimensional bonds were then defined as

d
p= Z (M7 M) 81,y sn) X (sh, - syl (6.3)

/ A
81,87,-,SN,SNy=1

Sk ,Sh .
where M,*"* are D} x Dj., matrices that can be decomposed as

d
M =S A (A7) (6.4
a=1
where dj is at most dDyDyyq1 and the matrices AZ’k are of size Dy X Diyq. Such

construction of MPDOs automatically ensures the positivity of the reduced density
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(a) 1)) (b) P

Figure 6.1: (a) Writing a wave function [¢)) as an MPS for 6 sites. Each site has
a physical dimension d. (b) A density matrix p can be written as an MPDO, an
extension of the MPS formalism. Such a construction automatically ensures positivity
of the density matrix.

RAAAAAS - (1))

3alies Sh884

Figure 6.2: (a) Defining an MPS |¥) over the enlarged Hilbert space using ancilas (in
red) (b) Taking the projector of the MPS with ancillas (c¢) Tracing out the ancillas
from the projector to obtain the MPDO p.

matrix p. This is shown in Fig. 6.1. This MPDO can be expressed in terms of a
pure state MPS by defining it over a larger Hilbert space and using the concept of
purification [208]. This can be done by associating an ancilla with a Hilbert space of
dimension dj with each physical system. One can then choose an orthonormal basis
|sk, ar) for these physical and ancilla indices. The corresponding MPS for this system

can be written as
| W) = Z Z AT LAY N s1aq, .., syay) (6.5)
ST yeeny SN Q1,...,ON

The MPDO p can be obtained by tracing over the ancillas i.e. p = Tr, (J¥)(¥]).
This process is illustrated in Fig. 6.2. The original A; matrices can be recovered

from M, by doing some eigenvalue decomposition. To determine the evolution of a
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P B o)

Figure 6.3: Choi isomorphism: vectorizing a density matrix written in terms of an
MPO. In TN diagram, it is simply reshaping one of the indices and gluing it with the
other thereby giving us an MPS.

Hamiltonian of a mixed state in real and imaginary time, they simply simulated the
evolution of the purification by updating the Ay matrices using an iterative procedure
similar to the standard DMRG in this technique. The purification could then be used
to reconstruct the density operator at any time and compute the expectation values of
the observables. Although the MPDOs in Ref. [(7] are positive by construction, it was
shown in Ref. [209] that such MPDO description of the mixed states are not exactly
equivalent to the one obtained using local purification schemes. In particular, it was
shown that the bond dimension of the locally purified MPS D’ is not upper bounded
by the bond dimension of the MPDO D. In fact, the local purification techniques
can be much more costly than the MPDO form itself. Thus, they concluded that a
description of mixed states which is both efficient and locally positive semi definite
does not exist and that one can only make approximations.

Around the same time, Zwolak and Vidal [65] proposed another technique to study
the mixed state dynamics in one dimensional lattice systems. Their technique, which
is also based on TNs;, used the Time Evolving Block Decimation (TEBD) to simulate
the real time Markovian dynamics given by a master equation with nearest-neighbor
couplings. At the heart of this algorithm, lies the concept of ‘Choi isomorphism’. It
is more of a mathematical trick and it states that one can rewrite the coefficients of
a matrix as those of a vector. In other words, this is simply turning a bra index into
a ket index for a density matrix (understanding the coefficients of p as those of a
vectorized density matrix denoted by |p);). And in the language of TN diagrams, it
can be regarded as reshaping one of the legs and gluing it with the other (Fig. 6.3).
Once vectorized, |p); now lives in the n-fold tensor product of C,2 and the master

equation can be written in the vector form. The mixed state will now look like as
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follows
d2-1 d2—1

p)e = Z o Z Cirein 1) ® -+ ® in)y. (6.6)

i1=0  in=0
where |4;); is an orthonormal basis of Cz for site . Further assuming that the
Liouvillian superoperator £ can be decomposed into terms involving at most nearest-
neighbors i.e. Llp] = >, Li41[p], one could in principle use the usual TEBD algo-
rithm to solve Eq. 6.1 by starting from some initial Matrix Product Operator (MPO)
(shown in in the left side of Fig. 6.3). This was the basic idea behind the technique
in Ref. [68]. Although the technique proved to be extremely simple and efficient, the
issue of positivity still remained at large. In fact, checking the positivity of a reduced
density matrix is known to be a very hard problem in physics [20].

Another approach was taken in Ref. [210] to solve the problem of positivity. In
this approach, instead of expressing p directly as an MPO, at every stage of the
algorithm, p was kept in its locally purified p = X X, where the purification operator

X is decomposed as a variational tensor network.

(XJeroew = 3 Al pBlsas | ANlsxr (6.7)

Tl N mi,mo My _1

MmN 1
where 1 < 5, <d,1<m < Kand1l<m <D. AU are rank-four tensors with
physical dimension d, bond dimension D and Kraus dimension K. Then, a tech-
nique similar to the usual TEBD was used to update the tensors. Such an approach
never required to contract the two TN layers (X and XT) together, thereby ensuring
positivity at all times.

In Ref. [211], a very interesting approach based on MPO was taken for finding
the steady states of dissipative 1D systems governed by the master equation of the
Lindbladian form, % = L[p], where L is the Liouvillian superoperator. In this tech-
nique, instead of doing the full real time evolution of the Liouvillian, they proposed
a variational method that searches for the null eigenvector of £ which is, by defini-
tion, the steady state of the master equation in the Lindbladian form. Their results
were based on the principle that if p, is the steady state of the Lindbladian master
equation satisfying £A|ps>ﬁ = 0, then |p,); will also be the ground state of the non-
local Hamiltonian £1£ (since it is Hermitian and positive semi-definite) where |p,)s
is the vectorized form of the steady state density matrix. Then using a variational
algorithm, they directly targeted the ground state of L1£ to find the steady state of
the Lindbladian master equation for a finite chain. One of the reasons why directly

targeting the ground state of L might be advantageous is that unlike imaginary
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time evolution, where the sequence of states visited by the algorithm is unimportant,
the simulation of a master equation requires us to follow real time evolution. There-
fore, if there are errors in the intermediate states visited by the algorithm, it may
lead to problems in the convergence of our steady state. For example, some of the
intermediate states may require large bond dimensions of the MPO although it is
known that the final steady state can be well-represented by an MPO of small bond
dimensions [212, 213]. A very similar approach was taken in Ref. [211] where the
algorithm instead of doing a time-evolution, searched for the null eigenvalue of the
Liouvillian superoperator £ by sweeping along the system. Their method claimed
to work even in the weakly dissipative regime by slowly tuning the dissipation rates
along the sweeps. In another paper [215], this idea was applied to infinite 1D systems
(i.e. the thermodynamic limit) using a hybrid technique of both imaginary and real
time evolution. They took a local auxiliary Hamiltonian H whose ground state is a
good approximation to the ground state of the nonlocal Hamiltonian L by taking
its £ root as

H=> (LIL)V*F (6.8)

rez

where £ = Yorez L, since L is a translationally invariant local operator. The k*" root
was taken in order to yield faster convergence. The idea is that if the gap between
the two lowest eigenvalues of EAIEAT is less than one, then £ > 1 will increase the
gap since ﬁiﬁr is positive semi definite, thereby achieving faster convergence to the
ground state.

In the next section, we will discuss how to extend the above ideas for the case
of 2D lattice systems in the thermodynamic limit. We will propose a simple TN
algorithm based on iPEPS to target the steady state of a dissipative Markovian
system governed by the Lindbladian master equation. So far, to the best of our
knowledge, our technique is the first TN application of 2D steady states. There
are some other techniques which are not based on TNs such as the variational ansatz
technique [206] which approximates the steady state by minimizing a suitable norm of
the full quantum master equation. Besides, there are other techniques based on Mean
Field [216] and Cluster Mean Field [217] approaches. However, these approaches do
not take into account the correlations present in the system. There is also this Corner
Space Renormalization method [218] that solves the master equation in a corner of
the Hilbert space through an iterative procedure. This technique also does not take
into account the true 2D correlations present in the system. We will not go into the

details of these techniques and instead jump directly into our problem.
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6.2 Application in 2D dissipative systems

As we have seen, the vectorized form of the Lindbladian Eq. 6.1 can be written as

d
— =L 6.9
7P = Lylo) (6.9)
where the vectorized Liouvillian operator is given by
Li=—i(HR1-10H")

1 1 (6.10)
* T * 7T
+) (L#®Lu—§LuLH®1—§1®LuLH> .
“w
In the above equation, the symbol of tensor product ® separates operators acting on
either the Lh.s. (ket) or the r.h.s. (bra) of p in its matrix form. Whenever £y is

independent of time, Eq. 6.9 can be formally integrated as

[p(T)); = €"1p(0)), (6.11)

which for very large times T may yield a steady state

p2)e = Jim |p(T))s (612)

From the above equations, is easy to see that the state |p,)4 is the right eigenvector

of L4 corresponding to zero eigenvalue, so that
Lilp; = 0. (6.13)

Next, let us consider the special but quite common case in which the Liouvillian £ can
be decomposed as a sum of local operators. For nearest-neighbor terms, one has the
generic form L[p] = 3, . LI9)[p], where the sum (i, j) runs over nearest-neighbors.
In the “vectorized” notation (f), this means that £y =3, Egi’j].

The combination of the expressions above yields a parallelism with the calculation
of ground states of local Hamiltonians by imaginary time evolution, which we detail in
Table 6.1. Given this parallelism, it is clear that one can adapt, at least in principle,
the methods to compute imaginary time evolution of a pure state as generated by local
Hamiltonians, to compute also the real time evolution of a mixed state as generated by
local Liouvillians. This was, in fact, the approach taken in Ref. [68] for finite-size 1D
systems, using Matrix Product Operators (MPO) to describe the 1D reduced density
matrix, and proceeding as in the Time Evolving Block Decimation (TEBD) algorithm
for ground states of 1D local Hamiltonians [77, 78] as we have discussed previously.

Inspired by this, our method for 2D systems proceeds by representing the reduced
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H Ground states \ Steady states H
_ ij _ [i,4]
H=2, Pl Ly =2 Ly
o—TH oTL:
|€o) |ps)s
{eolH]eo) = € :(ps| Lyl ps)s = 0
Imaginary time Real time

Table 6.1: Parallelism between the calculation of ground states by imaginary time
evolution, and the calculation of steady states by real time evolution. On the left
hand side, H is a Hamiltonian that decomposes as a sum of local terms 7! |eg) is
the ground state of H with eigenvalue ey, and T is the imaginary time. The terms
on the right hand side have been explained in the text.

Figure 6.4: TN diagram for the PEPO for p on a 2D square lattice, with bond
dimension D and physical dimension d. When vectorized, it can be understood as a
PEPS for |p); with physical dimension d?.

density operator p by a Projected Entangled Pair Operator (PEPO) “ with physical
dimension d and bond dimension D, see Fig. 6.4 (left). Such a construction does not
guarantee the positivity of the reduced density matrix. However, we shall see later
that this lack of exact positivity is not too problematic in our numerical simulations.
Once vectorized, the PEPO can be understood as a Projected Entangled Pair State
(PEPS) of physical dimension d? and bond dimension D, as shown also in Fig. (.4
(right). Next, we notice that for the case of an infinite size 2D system, this setting is
actually equivalent to that of the iPEPS algorithm to compute ground states of local
Hamiltonians in 2D in the thermodynamic limit. Thus, in principle, we can use the
full machinery of iPEPS to tackle as well the problem of 2D dissipation and steady
states. There seems to be, however, one problem with this idea: unlike in imaginary
time evolution, we are now dealing with real time. In the master equation, part of the

evolution is generated by a Hamiltonian H, and part by the Lindblad operators L,,.

2Projected Entangled Pair Operators are simply the operator version of Projected Entangled Pair
States (PEPS), in the same way that Matrix Product Operator (MPO) are the operator version of
Matrix Product States (MPS) for the 1D case.
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The Hamiltonian part corresponds actually to a unitary “Schrodinger-like” evolution
in real time, which typically increases the “operator-entanglement” in |p)y, up to a
point where it may be too large to handle for a TN representation (e.g., 1D MPO
or 2D PEPO) with a reasonable bond dimension. Luckily, this is not a dead-end:
if the dissipation is strong compared to the rate of entanglement growth, then the
evolution drives the system into the steady state before hitting a large entanglement
region. Here we show that, quite surprisingly, this is indeed the case for 2D dissipative
systems. Thus, in principle, the stronger the dissipation, the better our algorithm
should be. We will show this by computing what we call the operator-entanglement

entropy which is defined as follows
Sop (p) = —trg (o4 logoy) , (6.14)

where oy = trg (|p)s 4(p|), |p)s is the vectorized reduced density matrix and trg is the
partial trace over the sites for which we wish to compute the entropy. In a nutshell:
this is the entanglement entropy of |p)y, the vectorized density matrix, understood as
a pure state. This is the relevant measure of correlations for our purposes, since it is
upper-bounded directly by the bond dimension of the PEPO. Namely, if the PEPO

has bond dimension D, then for a block of L x L sites one has
Suplp) < ALlog D, (6.15)

which means that we can use it to quantify how large needs to be our bond dimension
D for the PEPO, being this directly connected to the computational cost and the
accuracy of the method [219]. Details on how to compute this quantity is shown in
Appendix C of the thesis. In the next section, we have shown a figure showing how
increasing the dissipation strength in the spin-1/2 Ising model lowers the operator-
entanglement entropy (which never exceeds the support of the PEPO) and therefore
improves the performance of our algorithm. Regarding settings where dissipation
is not so strong, our algorithm could be a good starting point to compute steady
states in the strong-dissipation regime. The strength of the dissipation can then
be lowered down adiabatically, and using as initial state the one pre-computed for
slightly-stronger dissipation. In this way one may get rid of local minima and obtain
good results also in the weak dissipation regime. However, this is only an intuitive
guess and we have not tested it explicitly.

With this in mind, our algorithm just applies the iPEPS machinery to compute
the time evolution in 2D with a local Liouvillian £ and some initial state. For

the examples shown in this thesis, we use the so-called simple update scheme [181]
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Figure 6.5: The trace of p maps to the contraction of a 2D TN.

for the time evolution of the PEPO, Corner Transfer Matrices (CTM) [51] for the
calculation of observables and random initial states. To check whether we have a

good approximation of a steady state or not, we compute the parameter

A= y{ps|Lelps)y (6.16)

For a good steady state approximation, this parameter should be close enough to
zero, since we have A = 0 in the exact case. Another quantity that we used to check
the validity of the simulations is the sum of negative eigenvalues of the (numerical)

reduced density matrices of the system. More precisely, we define

€n = Z vi (pn) (6.17)
il <0

where p, is the reduced density matrix of n contiguous spins in the steady state and
v;i(pn) its eigenvalues, with only the negative ones entering the sum. In an exact case,
this quantity should be equal to zero. However, the different approximations in the
method may produce a small negative part in p,, which can be easily quantified in
this way. It is worth mentioning as a word of caution: notice that A and €, can be
used to benchmark our calculations, but they do not characterize the distance to the
steady state.

The computational cost of this algorithm is the one of the chosen iPEPS strat-
egy. In our case, we work with a simple update for the evolution with a 2-site unit
cell, which has a cost of O(d*D® + d*?D?), and Trotter time steps ot = 0.1 — 0.01.
Moreover, the CTM method for expectation values is essentially the one used to ap-
proximate classical partition functions on a 2D lattice (see Fig. 6.5), which has a
cost of O(dD* + x*D* + x3D?), x being the CTM bond dimension. The overall ap-
proach is remarkably efficient. To have an idea of how efficient this is, let us imagine
the following alternative strategy: we consider the Hermitian and positive semi def-

inite operator Egﬁﬁ, and target |p); as its ground state. This ground state could be
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computed, e.g., by an imaginary time evolution. The problem, however, is that the
crossed products in E;Eﬁ are nonlocal, and therefore the usual algorithms for time

evolution are difficult to implement unless one introduces extra approximations in

the range of the crossed terms [215]. Another option is to approximate the ground
state variationally, e.g., via the Density Matrix Renormalization Group [15, 1(] or
similar approaches [220), ] in 1D, or variational PEPS in 2D [80]. In the thermo-

dynamic limit, however, this approach does not look very promising because of the
nonlocality of L’gﬁu mentioned before. In any case, one could always represent this
operator as a PEPO (in 2D), which would simplify some of the calculations, but at
the cost of introducing a very large bond dimension in the representation of Egﬁﬁ.
For instance, if a typical PEPO bond dimension for £y is ~ 4, then for Egﬁﬂ it is
~ 16, which in 2D implies extremely slow calculations. Another option would be to
target the variational minimization of the real part for the expectation value of L
[220]. This option, however, is also dangerous in 2D because of the presence of many
local minima. Additionally, the correct norm to perform all these optimizations is
the one-norm of £(p) which, in contrast to the more usual 2-norm, is a hard figure
of merit to optimize with variational TN methods. The use of real-time evolution is
thus a safer choice in the context of the approximation of 2D steady states. We will
now demonstrate our algorithm by applying it to a spin-1/2 dissipative Ising model

and later to the XYZ model in a square lattice.

6.2.1 The Ising model

Having described our algorithm in detail, let us now use it to benchmark against
some existing methods and results. For this, we will first simulate a dissipative spin-
1/2 quantum Ising model on an infinite 2D square lattice where dissipation pumps
one of the spin states into the other. This model has also received considerable
interest lately because it can be realized experimentally using ultracold Rydberg
atoms [221, ]. Moreover, the phase diagram of its non-equilibrium steady state
is still a matter of controversy. Initially, it was predicted that the model exhibits a
bistable phase [223, |, but several numerical and analytical calculations have cast
doubts on this claim and predict instead a first order transition. In particular, a
variational approach [205, | predict that the bistable phase is replaced by a first
order transition which is also supported by arguments derived from a field-theoretical
treatment of related models within the Keldysh formalism [225]. Furthermore, it is

an open question whether the model supports an antiferromagnetic phase [223, ,
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Figure 6.6: Operator-entanglement entropy throughout the evolution for a block of
2 x 2 unit cell with D = 2, V = 0.5, h,/y = 10, and different values of v. The
stronger the dissipation, the weaker the entanglement. A similar behavior is observed
for larger D.

, , |. The master equation of this model follows the one in Eq. 6.1, where

the Hamiltonian part is given by

Z ol Z [y == Z oll (6.18)

with a(@ the a-Pauli matrix at site ¢, V' the interaction strength, h,, h, the trans-
verse and parallel fields respectively, and where the sum over (i, j) runs over nearest-
neighbors. The dissipative part is given by the operators L, = ﬁa[i‘], so that in this
particular case pu is a site index, and where o_ is the usual spin-lowering operator.
In our simulations, we first set V' = 5v,v = 0.1, h, = 0 in order to compare with
the results in Ref. [206], which uses a correlated variational ansatz with states of the
form p = 1, pi + 324 Cij Iei; Pk, Where p; are single site density matrices and
C;; account for correlations. Before going to the phase diagram of the model, let
us first probe the growth of the operator-entanglement entropy S, as we discussed
in the previous section for the given dissipation strength. This is shown in Fig. 6.6.
Thus, one can see that the growth of entanglement gets killed in the presence of
strong dissipation and drives the evolution to its steady state. We will study the
phase diagram of the parameters for the blue plot in Fig. 6.6 i.e. when v = 0.1. We
now compute the density of spins-up ny = Y20 (1 + o)) /2N (N is the system’s
size) as a function of h, /7, for which it is believed to exist a first order transition in

the steady state from a “lattice gas” to a “lattice liquid”. This transition is clearly
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Figure 6.7: Non-equilibrium steady state phase diagram of the quantum dissipative
spin-1/2 Ising model. (Left), we compute the density of spins-up ny = S0 (1 +
UE])> /2N (N is the system’s size). The solid lines are based on the results obtained
from a variational technique based on a correlated and a product ansatz [205]. On
the right panel, we compute the purity of n-site reduced density matrix given by
I, = tr(p,) for D = 6 for several values of n.

observed in our simulations in the left panel of Fig. 6.7, where simulations for D = 5,6
agree with the correlated variational ansatz in the location of the transition point at
hy/~v ~ 6. In fact, as the bond dimension D increases, we observe that there is more
tendency towards agreeing with the correlated variational ansatz. We also observe
a non-monotonic convergence in D, which may be due to a stronger effect of the
approximations in the transition region, and which remains to be fully understood.
Other quantities can also assess this transition, e.g., the purity of the n-site reduced
density matrix I';, = tr(p,), which we plot in the right panel of Fig. 6.7 for D = 6.
We can also see from this plot that the steady states ps for low h, /v are quite close
to a pure state (for which I',, = 1V¥n). Results with other bond dimensions do not
give a significant difference. From these plots, we do not see any region with bistable
behavior for large bond dimensions. It is worth mentioning that for bond dimension
D =1 (which is equivalent to the mean field approximation) and D = 2, we do find
the bistable region (shown in Fig. 6.8). However, we also find that the size of the
bistable region shrinks as we increase the bond dimension of our TN and it disappears
for D > 3. Similar behavior has been observed for the case of 1D dissipative XY
model [228].

Now coming back to the phase diagram in Fig. 6.7, we can validate our simulations
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Figure 6.8: Bistable region for D = 1 (mean field) and D = 2. The region disappears
for larger bond dimensions.

by computing the parameters A and e, introduced previously, which we show in the
left and right panel of Fig. 6.9 respectively. From this plot, one can see that A is
always quite close to zero in our simulations, being at most |A| ~ 0.03, so that the
approximated py is close to the exact steady state. Moreover, one can also see that
€, is always rather small, e.g., for D = 6 it is at most ¢, ~ —0.017 for the 4-site
density matrix close to the transition region (similar conclusions hold for other bond
dimensions). This implies that the negative contribution to the numerical reduced
density matrix is quite small, and therefore, does not lead to large errors. In practice,
we see that €, seems to be extensive in n away from the transition region, more
specifically, €, ~ ney + O(1/n), with €, very close to zero.

Next, we introduce non-zero values of the parallel field h,. In some regions of
the phase diagram, mean field and correlated state variational methods predict the
existence of an “antiferromagnetic” (AF) phase, where n, attains different values
between nearest-neighbors in the square lattice [205]. In our simulations we have also
found this antiferromagnetic region up to D = 5, see Fig. 6.10 for V = 5v,v = 0.1,
where for comparison we also show the data from Ref. [205] for the variational ansatz
with product states. Quite surprisingly, however, we find no AF phase for D = 6,7,8
and 9 around this region. The AF phase thus disappears for larger bond dimensions

and for these values of the parameters.
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o 2 4 6 8 10

Figure 6.9: (Left) we compute the parameter A = 4(p,|Ly|ps)s up to D = 6. The value
should be zero in the exact case but we see that in our simulations, the approximations
are quiet good. (Right) we also compute the sum of negative eigenvalues of different
n-site density matrices given by €, = Zﬂw ~oVi(pn). We see that the sum of the
negative eigenvalues are also not too large here.

6.2.2 The XYZ model

To show that the success of our algorithm is not just limited to the dissipative spin-
1/2 Ising model, we also simulated the dissipative spin-1/2 XYZ model on an infinite

2D square lattice. The Hamiltonian of this model can be written as follows

H = Z (Joorol + Jyoy0) + J.olo?) (6.19)
(i.7)

where the sum is over nearest-neighbor terms, o, , . are the different Pauli operators
along different directions at a particular site and J,, . are the coefficients of their
interactions respectively. The Lindbladian of this dissipative model is given by the
same jump operators as described in the previous spin-1/2 Ising model i.e. L, =
V70" . The steady state phase diagram of this model is highly non-trivial compared
to the XXZ model. It can be shown that the XXZ model does not experience a
phase transition in its steady state phase diagram. However, new types of magnetic
orders may emerge for the XYZ case due to competition between precessional and
dissipative dynamics. Such a model can also be implemented in systems of ultracold
atoms with anisotropic superexchange or dipolar interactions. This model has been
analyzed recently by Mean Field (MF) [216], Cluster Mean Field (CMF) [217] and

Corner Space Renormalization methods [229]. In particular, in Ref. [217], a possible
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Figure 6.10: AF region found using (a) variational ansatz based on [205] (b) D = 2

(¢) D=3 (d) D =4 and (e) D = 5 iPEPS technique. The AF region disappears for
higher bond dimensions (6, 7, 8 and 9) in our simulations.
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Figure 6.11: Ferromagnetic order parameter for the dissipative XYZ model, for J, =
0.5, J, = 1 and D = 4, as an average of |M,| = [(0,)| over the two sites a and b
in our 2D PEPO construction of p. As we can see, there is no re-entrance of the
ferromagnetic order at large values of J, /7.

re-entrance of the ferromagnetic phase at large coupling was discussed. The authors
claimed that the phenomenon of re-entrance could be an artifact of the CMF approach
used and would disappear for large cluster sizes.

We investigated this model using our dissipative iPEPS algorithm and we did not
find the re-entrance phenomenon that was seen in previous studies. This is shown
in Fig. 6.11 for J, = 0.5, J, = 1 and D = 4. The ferromagnetic order parameter
is plotted then as a function of J,/y. Thus, we did not observe the phenomenon of
re-entrance for large values of J, /v for these parameters. The plots for higher bond
dimensions do not differ significantly. We also computed the parameters €, and A as
described in the previous section for these points. They are shown in Fig. 6.12. In
these plots, one can see larger errors around the regions of phase transitions. Higher
bond dimensions did not change the conclusion. Thus, we can conclude that our
algorithm provides a good approximation of the steady states for the dissipative XYZ
model as well. An investigation into the full phase diagram of the model remains

pending and is something we would like to do in the future.

6.3 Conclusions and outlook

In this chapter, we have discussed dissipative open quantum systems. Such a system

obeys the Lindbladian master equation if we assume the evolution to be Markovian.
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Figure 6.12: (Left) €, which is the sum of the negative eigenvalues of a four-site
reduced density matrix is shown for the points in the phase diagram for D = 4.
(Right) A which is the expectation value of £ is also shown for the same parameter
and bond dimensions. Larger bond dimensions did not change the conclusion.

One can find the steady state of this system using this equation. However, solving
this master equation for a many-body system is extremely hard as the number of
parameters required to describe such a system scales exponentially with its size. The
physical constraints of the reduced density matrix such as positivity, hermiticity and
trace one are also a problem in their numerical investigation. Recently, there have
been some advances using TN approaches to solve these systems for 1D systems.
The numerical techniques for 2D systems are much more rare. This was the main
motivation of our work. The important highlights of our work in this chapter can be

listed as follows

e We have proposed a TN algorithm to study the steady states of 2D open dis-
sipative quantum systems in the thermodynamic limit. At the heart of our
technique lies the concept of ‘Choi’ isomorphism where we rewrite the coeffi-
cients of a matrix as those of a vector. Based on the strong parallelism between
finding the ground state of a Hamiltonian and the steady state of a Liouvillian,
we make use of the existing iPEPS techniques for finding the ground state. The

implementation of our technique is extremely simple and efficient.

e We benchmark our algorithm by investigating a dissipative spin-1/2 quantum
Ising model which is relevant for the on-going experiments with ultracold Ryd-
berg atoms. The phase diagram of this model is also still not very clear. Our
results were compared with another technique based on a variational technique

using a correlated and a product ansatz.
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e Our results support the existence of a first order transition in this model, while
we find no evidence for a bistable region for large bond dimensions. We also do
not find the existence of antiferromagnetic region in the phase diagram studied

previously for large bond dimensions.

e We also investigated the dissipative spin-1/2 XYZ model using our technique.
Our results do not support the reappearance of ferromagnetic phase as claimed
previously. An investigation into the full phase diagram of the model remains

to be done in the future.

Our method is the first TN implementation to compute steady states in 2D quantum
lattices. This method for studying open 2D dissipative systems has opened up a lot of
new interesting windows which we would like to study in the future such as engineering
of topologically ordered states by dissipation in 2D quantum lattice systems. It
could also be applied to finite temperature states, provided that a microscopic model
for the coupling to the heath bath is included. Finally, it would be interesting to
understand these results in the context of area laws for rapidly mixing dissipative

quantum systems [230].
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Chapter 7

General conclusions and outlook

7.1 Thesis overview

This thesis was comprised of four important sections. The first section contained the
first three chapters where we discussed the concept of entanglement and introduced
Tensor Network techniques. To be more specific, the first chapter provided the context
of our work and the thesis in a very general setting. We discussed the importance of
investigating new, exotic phases of matter and phenomena in the context of our ever
increasing demand for energy and resources. We also reasoned why it is so difficult
to study such quantum many-body systems. In Chapter 2, we discussed briefly the
history of quantum entanglement and its formal definition and how we can quantify
it. We also described some important topics such as the Schmidt decomposition, the
variational principle and quantum phase transitions in the context of entanglement.
It was realized that entanglement could be key to understanding the properties of
quantum many-body physics. In Chapter 3, we introduced Tensor Network States to
study such systems. We explained their importance and advantages compared with
the existing numerical techniques. We also described some important examples of
TN states such as Matrix Product States and Projected Entangled Pair States which
were used in the rest of the chapters.

The remaining sections contained important results on Symmetry Protected Topo-
logical (trivial) phases, frustrated quantum systems and open dissipative quantum
systems. In Chapter 4, we discussed Symmetry Protected Topological and trivial
phases in a spin-2 quantum chain with a Heisenberg-like nearest-neighbor Hamil-
tonian. We simulated the ground state of this model using MPS and iTEBD and
studied its phase diagram based on several properties such as the entanglement spec-
trum, entanglement entropy, string order parameters, projective representation of

the symmetries protecting the phases, etc. We found several spin-1 SPT phases and
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studied the phase transition between them using Conformal Field Theories. We also
found a candidate that could be a gapless SPT phase. Moreover, we learned that
unlike SPT, SPt phases are adiabatically connected to product states by some path
that preserves the protecting symmetry. In the process, we found three such phases
separated by quantum phase transitions and also described them using CFT.

In the next section in Chapter 5, we discussed frustrated quantum systems and
how the iPEPS can be used to study such systems in a kagome lattice. We made some
comparisons of the ground state energy of the kagome Heisenberg antiferromagnet
with other existing numerical techniques. We also found that our ground state for
this model using our technique gives us a Valence Bond Crystal. We then studied the
XXZ model in a kagome lattice in the presence of an external field. We found several
magnetization plateaus of which we took a particular interest in the 1/3 plateau.
Based on our numerics, we found that such a state is not a chiral spin liquid. We also
found that in all regimes of our phase diagram, the 1/3 plateau is degenerate between
the Nematic state and Valence Bond Crystal Solid. Our studies were based on two
independent iPEPS approach: a 6 and 12-site usual iPEPS coarse graining three sites
in the kagome lattice to one site in the square lattice and a 9-site iPESS approach. We
found that the 6-site approach gives us lower energy because it has more variational
parameters. On the other hand, the 9-site approach gives us additional plateaus such
as 1/9, 5/9 and 7/9 because the magnetic structure of these plateaus is commensurate
with the number of unit cells.

Chapter 6 of this thesis dealt with open quantum systems in 2D. We proposed
a simple TN algorithm that can be used to simulate the steady state of 2D dissipa-
tive quantum system in the thermodynamic limit. We demonstrated our algorithm
by investigating a spin-1/2 dissipative quantum Ising model that has experimental
relevance with ultracold Rydberg atoms. We found a first order phase transition in
the phase diagram of this model and found no bistability issues. We also did not find
antiferromagnetic regions for higher bond dimensions in the phase diagram as sug-
gested by previous studies. We also investigated the dissipative spin-1/2 XYZ model

briefly and found no re-entrance of the ferromagnetic region as claimed previously.

7.2 Perspectives and outlook

To sum things up, this thesis has demonstrated that Tensor Network algorithms are

extremely useful for studying exotic quantum many-body systems based on their
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entanglement properties: be it one dimensional gapped phases of matter or two di-
mensional quantum systems. It can even be used to describe mixed states. Our
studies have opened up a lot of interesting and exciting questions which we are will-
ing to investigate in the future. For example, in Chapter 4, we found a certain T},
phase which is SPT and seems to exhibit gapless degrees of freedom. Recently, there
has been some investigation on such gapless SPT phases [117]. It would be certainly
interesting to find the exact nature of this phase. The full phase diagram of our
spin-2 Hamiltonian also remains to be explored. In our study of frustrated quantum
systems, we found that our numerical simulations do not support the existence of a
chiral spin liquid at the 1/3 plateau of the XY point of the XXZ model. However, it is
not definitely clear if this is so because the state itself is not chiral or if PEPS cannot
capture such a chiral state. In Ref. [201], it was shown that, in principle, PEPS can
be used to describe chiral topological order but a numerical realization starting from
a chiral Hamiltonian has not been achieved so far. It remains to be seen if this can
be done if we push our computational limit.

The study on our dissipative open quantum system has also opened up a lot of new
windows for the future. Effects of dissipation could be used to engineer exotic phases
of matter displaying Topological order, etc. For example, in Ref. [18], dissipation
was used to engineer topological phases in atomic quantum wires of spinless atomic
fermions in an optical lattice coupled to a bath. And in Ref. [231], a scheme was pro-
posed to generate Pfaffian states using cold bosonic atoms using strong three-body
dissipation. Thus, in principle, well-engineered dissipation can be useful. Further-
more, it would be interesting to study the effects of dissipation on 2D topological
phases such as the Toric code or find ways to stabilize them at finite temperature.
This will have potential applications in quantum computing. The other interesting
aspect of this problem includes dissipative quantum phase transitions, non-Markovian
dynamics of open quantum system using TN, area laws for mixed states in the context
of rapidly mixing systems, etc.

Efforts towards advancing the existing TN algorithms, for example, to make them
more efficient, user-friendly and providing access to larger users are also worth mak-
ing. Recently, we started running our algorithms in GPUs instead of CPUs and
found much improvement in the efficiency especially for simulations involving higher
bond dimensions. There are other ways to improve the existing techniques such as
using more efficient matrix decomposition methods, implementing symmetries in the

tensors, etc. Of course, we expect a lot of numerical studies of quantum many-body
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systems using TN algorithms with increased computational effort and new implemen-
tation techniques in the years to come. This will eventually overcome some of the
existing limitations of TN algorithms such as the high computational cost of running
an iPEPS full update simulation with large bond dimensions. The rapid development
of TN algorithms should not, however, be seen in the context of competition with
the existing numerical techniques. There is no ultimate technique available to study
nature. In fact, their strength lies only when they are used in complement with one
another. Since nature obeys the laws of quantum mechanics, and so far we are mostly
performing simulations using classical computers, the basic philosophical question of
how close can we simulate nature? is something that may be answered eventually
with the help of quantum computers. This is a quest I would like to keep pursuing

and provides enough motivation to continue working beyond this PhD thesis!
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Appendix A

Field Theory description of the
spin-2 QPT

Having discussed the concept of entanglement entropy (von Neumann entropy) as a
measure of bipartite entanglement in Chapter 2, we will now see how this can be used
for understanding critical systems, for example, in a spin chain. For such a critical
system, the entanglement entropy is known to diverge and as such, the entropy grows
proportional to log! for large lengths of the subsystem [ in an infinitely long chain. At
the critical point where the correlation length diverges, the field theory is massless,

and is a Conformal Field Theory (CFT). At this point, the von Neumann entropy of

a subsystem of length [ was calculated by Holzhey et al. [232]. In that paper and in
Ref. [233] and [231], it was shown that the entropy of a subsystem A of length [ is
given by

Sa ~ (c/3)log(l/a), (A1)

where ¢ is the central charge' of the CFT and a is the lattice spacing of the spin
chain. We will not go into the details of the derivation here. Further generalizations
of the above formula can be made based on the boundary conditions and finite length
L of the system. For our purpose, Eq. A.1 is the relevant formula to be used. For
the model in Eq. 1.1 of Chapter 4, the phase transitions between SO(5) Haldane/IH
and IH/large-D were studied in Ref. [139] where it was shown that the system can

be described at low energies using an effective field theory of five Majorana fermions
Ea=1,...,5):

5 2 4
Hor = —iv ) _(ERDuEh — E10:L8) — imn Y EREL — ima ) ERED — imsRE] (A.2)
a=1 a=1 a=3

'The central charge is the Casimir operator that commutes with all other symmetry operators of
the theory.
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where v and m, are velocity and masses of the Majoranas. For the IH (or 7j) phase,
three fermions have negative masses my and mgs, and two have positive mass my,
producing three Majorana edge modes forming spin-1/2 edge states. The phase tran-
sitions happen whenever m; = 0 (SO(5)/IH), or ms = 0 (IH/large-D). In both cases,
two Majorana fermions become massless, and hence these transitions correspond to
a CFT with central charge ¢ = 2 x 1/2 = 1. For the transitions between the differ-
ent effective spin-1 SPT phases, we see from the numerics that T, T, and T, also
have spin-1/2 edge modes because of the two-fold degeneracy in the entanglement
spectrum. If we try to describe them using the Majorana field theory, then three
Majorana masses must be negative and two positive. If this is the case, then the
only possibility is that the three Majoranas with negative mass are different from
those in the Tj phase (otherwise the phases could be deformed into each other with-
out closing the gap). Thus, if the field theory is correct in this regime, then phase
transitions amongst the Ty, T, T, and T, phases can be viewed as processes of sign
exchange amongst Majorana masses. To change their sign, some of these masses must
be zero at some point, which implies a quantum phase transition described by a CF'T.
To check the plausible validity of this picture we compute the central charge of the
T, — Tp transition in Fig. 1.9(b) for D = 1.5 using the scaling of the entanglement
entropy of a block of length L. Our result in Fig. 1.11 agrees with ¢ = 3 x 0.6528 ~ 2
which means that 4 out of the 5 Majoranas would become massless at criticality
and interchange the signs of their masses. A similar behavior is found for the other
transitions between the effective spin-1 SPT phases in Fig. 4.9.

For the model in Eq. 4.32, we have two critical points at D.; and D. as shown
in Fig. 1.12. Doing a similar scaling of the entanglement entropy as a function of
log L where L is the length of our MPS, we obtain a central charge of ¢ = 1 at both
the points. We provide the field theory description of this as follows. The model in
Eq. 1.32 admits a simple field theory description in terms of two bosonic sine-Gordon
fields and one massive Majorana fermion field. This description is a generalization of
the one in Ref. [135], and equivalent under refermionization, for Luttinger parameters
K, = Ky =1, to the five Majorana field theory introduced above for the case of the
SPT phases. The Hamiltonian density reads

Heg = Hbl + Hbz + Hf, (A3)

with
U;

Hy, = o (Ki(aﬁi)Q + %(@ﬁbi)Q) + gi cos (2¢y), (A4)
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the two bosonic sectors for ¢ = 1,2, and

Hy = —iv (§r0:Er — §00:81) — 1MERSL (A.5)

the Majorana fermionic sector. In these equations, 6; and ¢; are dual fields satisfying
[¢i(z), 0:(x")] = i(m/2)(sgn(z — 2') + 1), and &g/ () is a right/left moving Majorana
fermion field. The strategy to derive Eq. A.3 is essentially the same as in Refs. [139,

|, so we refer the reader to those references for further details. The description
of the quantum phase transitions is thus quite easy thanks to the field theory above.
In particular, the Majorana field remains always gapped and therefore plays no role
in the description of the quantum phase transitions. However, we include it so that
the connection to the five Majorana field theory in Ref. [I11] is more transparent.
We thus expect critical behaviors corresponding to the two massless bosons with
Ky, Ky < 2,and (i) g1 =0, and (ii) go = 0. Both regions correspond, independently,
to two different quantum critical lines with the central charge ¢ = 1 of a free massless

boson. As we have seen, this is what we got in our numerical results.
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Appendix B

TN algorithms in 1D

B.1 Finding ground states: iTEBD algorithm

There are several techniques available to find the ground state of a 1D Hamilto-
nian based on Matrix Product States such as Density Matrix Renormalization Group
(DMRG) [15, 16], Time Evolving Block Decimation (TEBD) [77, 78], etc. In this
appendix, we will describe in detail how the TEBD can be used to find the ground
states of 1D Hamiltonians for the case of infinite systems, also known as iTEBD.
This is the algorithm we used for our simulations in Chapter 4 of the thesis. This
technique can also be used for the case of finite, open and even periodic boundary
condition after some modifications. Let us now consider a 1D Hamiltonian of the

following form

H - Zhj’j+1’ (Bl)
J

i.e. we assume that our Hamiltonian is translationally invariant and can be decom-
posed as a sum of nearest-neighbor terms. One can also consider other kinds of
interactions depending on the problem.

Let us now start from some initial state [¢)y) written in the form of an infinite
Matrix Product States (iMPS) with some bond dimension x. To do this, we assume
some translational invariance and define some unit cells. In our case, we assume a
translational invariance with a 2-site unit cell. If we want to evolve our state with

some Hamiltonian H for some time ¢, we need to compute

[(t)) = ™" J1)o). (B.2)

We now divide our Hamiltonian into odd and even parts i.e H = Hyqq + Heven Where
Hoqqg = Zj odd Pjj+1 and Heyen = Zj oven jj+1- We assume that the operators h; ;11

do not commute with each other for the odd and the even j. We can therefore make
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use of the Suzuki Trotter approximation to decompose our evolution operator e~ ¢

as

€—i5t(Hodd+Heven) _ e—iHoddéte—iHevencit + O(5t2) (B3)

where 6t is a small time step and O(t?) is the error associated with the approxi-
mation. Since all the terms in Hyqq commute (and also Heyen), We can now write it
as
—iHoqadt ,—iHevendt _ —ihj j+16t —ihj 415t .

e jl;!d e jl;[en e (B.4)
Thus, in order to find our state in time ¢, we need to apply the above operator to
our state t/0t times. In the above decomposition of our Hamiltonian, we have used
the first order Suzuki-Trotter approximation. One can also use the second order
approximation which is very easy to implement. It is worth noting that during the
evolution of the state, the bond dimension of our iMPS grows with the number of
steps and therefore it is necessary to truncate it with some effective bond dimension
X'. This can be done while performing the Singular Value Decomposition (discussed
also in Chapter 2) by keeping only the y most relevant singular values. The above
algorithm is used for performing a real time evolution of our state. In order to obtain
the ground state, we use the imaginary time evolution which corresponds to simply
substituting the it in the evolution operator e~ with 7 i.e. e ™. In the limit
T — 00, such an evolution will give us the ground state of our Hamiltonian H.

W)G) — lim e_TH‘wO>

7o [[em T [¢ho) ||

where [1)¢) is the ground state of the Hamiltonian and [t)) is some initial state which

(B.5)

is not orthogonal to the ground state. The whole algorithm for finding the ground

state can be summarized as follows:

(a) Start from some initial iMPS with a unit cell with a fixed number of sites say
2. This can be done by starting from some initial tensors ['4, I'g, A4, and Ap.

The TN constructed from these tensors is shown in Fig. B.1(a).

(b) Apply the evolution operator defined as g = e+ to the even links. This
can be done by simply applying this operator on the link between I'4 and I'g.
This process will give us the tensor C. This is shown in Fig. B.1(b).

(c¢) Perform a Singular Value Decomposition on C' and retain only the x largest
singular value. This process of truncation is important or the bond dimension
of our iMPS will grow. x is the truncation parameter here. Now, reshape it to

obtain new tensors defined as I',, Iy and X, as shown in Fig. B.1(c).
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Figure B.1: (a) Initial iMPS defined by tensors I'4, I's, A4 and Ag; (b) The evolution
operator g = e 97".i+1 acts on the even links of the iMPS and gives tensor C; (c) SVD
is performed on C' and new tensors Iy, I'; and X/, are obtained with truncated bond
dimension y after reshaping them; (d) the same evolution operator is now applied to
the odd links to obtain C’; (e) SVD is performed on C” and new tensors I}, I, and N
are obtained with bond dimension y; (f) steps (a)-(e) are repeated until convergence
to obtain the ground state of the Hamiltonian.

(d) Repeat step (b), but this time by applying the evolution operator to the odd
links of the iMPS. This can be done by applying it to the link between I'; and
I['",. This will give us tensor C’. See Fig. B.1(d).

(e) Repeat step (c), but this time on the tensor C’. This will give us new tensors
Iy, I and M. Along with X, from step (c), we have a new updated iMPS.
This completes one Trotter step. See Fig. B.1(e).

(f) Repeat steps (a)-(e) until convergence. This will give us the ground state of our

Hamiltonian.

The different steps of the algorithm have been illustrated in Fig. B.1. Thus, we have
the ground state of our Hamiltonian in the form of iMPS with bond dimension y. The
tensors in the ground state are said to be in the so-called canonical form which we
have discussed in detail in Chapter 4 of the thesis. The SVD steps in the algorithm
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automatically ensures the canonical form of the iMPS. Now, we can use the ground

state iMPS to compute ground state observables. We discuss this in the next section.

B.2 Computing observables

To extract information from the ground state, one can compute the expectation value
of local operators. This can be done exactly without any need for approximation for
an MPS. For infinite MPS with open boundary conditions such as the ones we have
been discussing, we show how this can be done. For an MPS with N sites, the
calculation of the exact expectation values can be done in O(Npx?) time where y is
the bond dimension of the MPS. For an iMPS, the calculation can be done exactly
in time O(px?®). We use the so-called transfer matrix technique for this.

Let us consider the problem of computing the expectation value of a local operator
O of our ground state iMPS. We assume that our ground state is already in the

canonical form here. The important steps of the algorithm are given below.

(a) Define the transfer matrix 7" using the tensors I'4, I'p, A4 and Ap from the

ground state iMPS as shown in Fig. B.2(a).

(b) Perform an eigenvalue decomposition of the matrix 7" and extract the largest
eigenvalue w; and the corresponding left and right eigenvectors (L;| and |R;).
This is shown in Fig. B.2(b).

(¢) The expectation value of the local operator O can be computed by contracting
the tensors as shown in the right hand side of the equality of Fig. B.2(c). The
logic of the last equality comes from the fact that if we multiply the transfer
matrix T with itself N times, then for N — oo, only the largest eigenvalue and

its corresponding eigenvector survives.

Thus, one can compute the observables from our iMPS tensors exactly using the
transfer matrix technique as illustrated in Fig. B.2. One can use a similar process for
computing two-point correlations, energy, etc. For finite MPS, one can contract the

TN exactly without using the transfer matrix technique.
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(b)

Eigen Decomposition
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0,

Figure B.2: (a) The transfer matrix 7" is defined using the tensors in the iMPS
ground state. (b) We perform eigenvalue decomposition of 7" and extract the largest
eigenvalue w; and the corresponding left and right eigenvectors (L;| and |R;). (c)
The expectation value of the local operator O can be obtained by contracting the
tensors as shown in the right hand side of the equality using (L] and |R;).
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Appendix C
TN algorithms in 2D

In this section, we discuss some of the optimization schemes for computing the ground
states of 2D Hamiltonians using infinite Projected Entangled Pair States (iPEPS). We
limit ourselves only to the case of nearest-neighbor interacting Hamiltonians in this
thesis, but the algorithm can be extended to include higher order interaction terms in
general. We also show how to compute local observables once we have the ground state
wave function. There are several update schemes available in the iPEPS formalism
for computing the ground state of the 2D Hamiltonian such as the simple [181, ],
full [183], fast full [184] and the variational update [17]. In this thesis, we have made
use of the first three update schemes. We also consider a system of infinite size so
that we can assume translational invariance by taking a unit cell with a fixed number

of sites. We discuss the different update schemes in the following sections.

C.1 Simple update

As the name suggests, the simple update scheme is by far the simplest and the most
efficient update scheme for iPEPS. It updates the tensors only locally without taking
into account the effect of the environment. Now, let us see how we can find the ground
states of infinite, translationally invariant 2D systems using this scheme. Consider a

2D Hamiltonian that can be written as the sum of nearest-neighbor terms as follows:
H="> hil (C.1)
(i.3)

In order to compute the ground state of H, we will once again perform the imaginary
time evolution as in Eq. B.5. We will discuss the case of a square lattice with two
sites unit cell. This means that we will have two unique tensors I'4 and I'p repeated

all over the square lattice for an infinite system as shown in Fig. C'.1. The \’s are the
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Figure C.1: iPEPS with a two-site unit cell. Four different links (up, right, down and
left) are depicted with four different colors in the diagram.

matrices on every link. We can see that corresponding to the two-site unit cell, there
are four different links in the network. We start our update process by dividing our

Hamiltonian into four different parts corresponding to the four links as follows
H = Hy + Hg + Hp + Hi, (C.2)

In this case, one complete Trotter time step will consist of updating the four different
links of the 2D tensor network with the corresponding part of the Hamiltonian (i.e.

we apply Hy to link U and so on) as follows
e—5TH ~ 6_6THU€_6THR6_6THD€_6THL + 0(57_2) (03)

Repeating this step a large number of times (N — oo) gives us the ground state
of our Hamiltonian as in Eq. B.5. Details on how to apply the update for a single
link is similar to what we described for the case of 1D chain in Appendix B. The
computational complexity or the leading order for the cost of the tensor update
depends on the contraction order we choose. A very naive tensor contraction for
this update scheme has a complexity of O(d*D°) where d is the physical dimension
and D is the bond dimension of the iPEPS for every iteration. It is worth reminding
here that although the simple update approach works very well and efficiently in
phases with a large gap and a small correlation length, it may not be very accurate
for problems close to quantum critical points with large correlation lengths. We
therefore need the full update to tackle these problems. We will discuss them briefly

in the subsequent sections.
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C.2 Computing observables

Once we have computed the ground state tensors of our 2D Hamiltonian, we need
to be able to compute observables out of it. However, this is not an easy task given
that we have to first compute the infinite-sized environment of the sites where we
want to compute the observables. Because there is no such thing as the canonical
form of the PEPS as in the case of 1D MPS, exact contraction of the PEPS for the
purpose of computing the environment is extremely inefficient. In fact it was shown
that this is a #P - Hard problem [112]. Luckily, there are several approximation
schemes available to compute the environment of our tensors such as the boundary
MPS technique [50], Higher Order Transfer Renormalization Group (HOTRG) [87],
Corner Transfer Matrix Renormalization Group (CTMRG) [51], etc. In this section,
we will discuss the CTMRG technique which is also what we used in all our simulations
in this thesis. To keep things simple, we will only discuss the case of a one-site unit
cell in the TN i.e we assume that the tensor A is repeated everywhere in the infinite
lattice. The actual algorithm used in this thesis has a two-site unit cell structure.
Now, let us consider the problem of computing an observable at a particular site for
our infinite 2D system. The exact contraction required for this purpose is shown in
the left panel of Fig. (".2(a). One can think of this as the 2D network of tensors shown
in the right side of Fig. (".2(a). This network consist of the blue tensors a everywhere
except at the point where we want to compute the observable. The tensors a can be
easily obtained from the tensors A and AT by simply contracting their physical indices.
The orange tensor in the center can be obtained similarly if we include the observable
while contracting A and Af. The target now is to find the environment of the tensor
in the middle by finding a set of fixed point tensors {C'1,C2,C3,C4,T1,T2,T3,T4}.
C1,02,C3,C4 correspond to the four corner transfer matrices while the two half-
column and half-row matrices are given by T'1,72,T3,T4.

In order to find these fixed-point tensors, we perform iteratively coarse-graining
moves in up, down, right and left directions until the environment converges. This
technique is, therefore, also known as the directional corner transfer matrix algo-
rithm [51]. This is illustrated in Fig. (.4 and described below in detail:

(1) Insertion: We insert a new set of tensors comprising of a, the half-column
matrices T'1 and T'3.

(2) Absorption: We absorb this new column into our initial tensors on the left
border i.e. C'1, T4 and C'4 to obtain the new tensors nC'1, nT4 and nC4.
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(a)
.. new TN with bond
* indices doubled
(b)
C1 T1 C2
CTMRG
R T4$T2
C4 T3 C3

Figure C.2: (a) (left) Computing an observable at a particular site for the iPEPS;
(right) the tensors can be contracted with its conjugate counterpart to obtain the
new TN with their bond indices doubled. (b) The environment of the new TN is
approximated using some fixed point tensors {C'1,C2,C3,C4,T1,T2,T3,T4}.

(3) Renormalization: Because the new tensors {nC1,nT4,nC4} has dimensions
larger then the original ones {C'1,7T4,C4}, we need to renormalize them with
isometry Z(Z7Z = 1) so that the dimensions do not grow excessively with the

successive iterations.

There are different ways to define the isometry Z. One possibility is to use the
eigenvalue decomposition of nC1nC1" + nC4nC4" = nZAnZ'. This is shown in
Fig. C.4. We can then obtain the isometry Z which we want to use from nZ by
keeping the entries which correspond to the D largest eigenvalues of A. Note that the
above process is for a move along one direction. One needs to repeat the process for
the other three directional moves up, right and down. This forms one iteration and we
repeat the process until the environment converges. The computational complexity,
for example, for a naive absorption step would be O(x?D?). The figure shown in (.4
is for a one-site unit cell. For a two-site unit cell (which is actually the one used in
this thesis), the steps are similar but one needs to find additional isometries. This
is shown in Fig. C".5. Once we have computed the fixed-point tensors, we can easily
calculate the expectation value of our observable by contracting the TN shown in the
right side of Fig. C'.2(b).
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C1 T1 C2

(1) Insertion
T4 T2 —_ >

Cc4 T3 C3

T1
nC1 c1 Tl 02
I I
nT4 2 (3) Renormalization
> T2
1
nCd [ e

C4 T3 C3

Figure C.3: A directional move of the CTM algorithm. It involves the three steps
of insertion, absorption and renormalization. The process has to be done for all the
directional moves i.e up, right, down and left.

A
e + R -
S

Figure C.4: Finding the isometries for the renormalization for one of the directional
moves. They are then used to find the updated tensors of the environment.
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Figure C.5: (a) Inserting the tensors a and b for a two-site unit cell. (b) Defining the
isometries nZ and nW which are then truncated afterwards and used for renormliza-
tion.
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Figure C.6: |V) is the state where we apply the two-body gate to the initial state.
|W) is the approximated state after absorbing the two-body gate.

C.3 Full and fast full update

Although the simple update scheme provides a very efficient mechanism for the simu-
lations of several 2D quantum many-body systems, this method may be less accurate
when it comes to studying critical systems close to quantum phase transitions that
have large correlation lengths. This is because the simple update takes into account
only the short range correlation between two tensors. It neglects the rest of the en-
vironment while making the update. The full update technique takes care of this by
minimizing the distance between two states |¥) and |¥) defined in Fig. (.6 while tak-
ing into account the full environment of the tensors. |¥) is the original state where we
apply the Hamiltonian link h;; for one of the links and ]‘il) is the new approximated
state after absorbing the two-body gate. We keep the bond dimensions of the two
states to be equal. The target is to find new tensors for every update of a link that

best approximates the original state by minimizing the distance § defined as

5= ||1w) — 1) || = (o) — (@) — (B + (). (C.4)

This distance § can be written in the form of a TN diagram as shown in Fig. C.7
where the blue tensors {E1, E2, E3, E4, E5, E6} correspond to the environment of
the tensors. We now start from some initial state | W) where we fix all the tensors in

the system except the tensor A’ and find the minimum of § with respect to A’ i.e.
-2 b o ot .o
min H WY — ) H = min (A/U\/Af —ATM - MU c) . (C.5)

Here A’ is a vector containing all the components of the tensor A’. A can be under-
stood as a matrix after removing the tensors A’ and A™ from the last term of the

right-hand side of Fig. C".7. Similarly, M and C can be obtained from this figure.
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A B A B A B A B
(E3
§ =&t ) — —~ +
A* B* A/* B/* A* B* A/* B/*

Figure C.7: The distance ¢ between the two states defined in Eq. C'.4 can be written
in terms of a TN. Here, the Grey tensors represent the environment of the tensors
A and B before applying the two-body gate. A’ and B’ represent the approximated
tensors that minimize the distance 9.

Now, in order to find the A’ that minimizes the distance §, we simply differentiate it

with respect to A’ and equate it to zero as follows

0

—

oA

(E'T/\//Y/ AN - M C) —0. (C.6)

Solving this, we get
NA =M (C.7)

Thus, we obtain the first tensor A’ which minimizes the distance between |¥) and
|U). Now, we can fix all the tensors except B’ and find the optimal B’. This process
needs to be repeated for all the links in our lattice. This will form one time step of our
evolution. Repeating this step for a large number of times, until we get convergence
in both A" and B’, will give us the ground state of our Hamiltonian. This is the basic
idea behind the full update scheme of iPEPS. This technique is not so computationally
efficient because it requires us to recompute the environment of the tensors at every
step of the algorithm. There are several techniques by which we can improve the
efficiency of the full update scheme. One of them is that instead of recomputing the
environment at every step of the algorithm, we re-use the environment of the previous
tensors. This way, we need to compute the environment from scratch only once during
the start of the algorithm. This is the main idea behind the fast full update scheme
of iPEPS which we have implemented and also used during this thesis, but we refer

the readers to Ref. [181] for details on the algorithm.

C.4 Operator entanglement entropy

In what follows we explain two procedures to compute S,,(p): one fully taking into

account the environment of the block, and one approximately taking into account
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Figure C.8: TN for the operator oy, obtained after tracing out the degrees of freedom
of the environment of a 2 x 2 block in the vector |p);. We omit the name of the tensors
for clarity of the diagram. Open indices of oy are shown in red.

some of the properties of the simple update.

Full calculation

The calculation taking into account the full environment follows the tensor contraction
from Fig. C.8. In this case, we compute oy by tracing out the degrees of freedom
outside the block, as shown in the figure. The corresponding contraction can be

approximated in the thermodynamic limit using the CTM methods explained above.

Simple calculation

For the case of a phase with small correlation length, and using the information
obtained from the simple update (namely, tensors at the sites and at the links), it is
indeed possible to approximate, up to a good accuracy, the TN in Fig. (.8 by the one
in Fig. C.9. In this approximation, one does not take the surrounding environment
of the block fully into account. Instead, the effect of the environment is replaced
by the effect of the A tensors surrounding the block, which amounts to a mean-field
approximation of the effective environment. Moreover, one can see that in such a

case the eigenvalues of oy can be approximated with good accuracy by the product
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Figure C.9: TN for the operator oy for a 2 x 2 block in the vector |p)4, with a mean-
field approximation of the effective environment. We omit the name of the tensors
for clarity of the diagram. Open indices of oy are shown in red.

of the squares of the surrounding A tensors, i.e.,

eig(oy) ~ H ()\[i])2, (C.8)

i€Eboundary

and therefore the operator entanglement entropy reads

Solp) = Y Sy (C.9)

i€boundary

with
D

S =57 (A1) 1og (A)”. (C.10)

a=1
This approximation works very well in gapped phases computed via the simple update,

and it is the one that we used in the main text.
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