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Freude heißt die starke Feder
in der ewigen Natur.

Freude, Freude treibt die Räder
in der großen Weltenuhr.

Blumen lockt sie aus den Keimen,
Sonnen aus dem Firmament,

Sphären rollt sie in den Räumen,
die des Sehers Rohr nicht kennt!

— Friedrich von Schiller, An die Freude —





ZUSAMMENFASSUNG

In den vergangenen Jahren hat es einen gewaltigen Fortschritt in der Hand-
habung ultrakalter Gase gegeben. Laser-Kühlmethoden erlauben Zugang zum
Quantenregime und Experimente haben eine Präzision erreicht, die die Kon-
trolle und Messung einzelner Atome zulässt. Durch ausgefeilte Lasertechniken
können optische Gitter mit verschiedenen Geometrien erzeugt, Wechselwirkun-
gen präzise eingestellt und neue Konzepte wie z.B. künstliche Eichfelder umge-
setzt werden. Einerseits erlauben kalte Atome als Quantensimulatoren die Studie
kondensierter Materie - die relevanten Freiheitsgrade des Ursprungssystems wer-
den dafür auf das experimentell besser zugängliche Setup abgebildet. Anderer-
seits ermöglicht die Kombination verschiedener experimenteller Komponenten
das Design neuer Materialien, sogenannter synthetischer Quantenmaterie, die
nicht zwangsläufig außerhalb der Versuchsumgebung existiert.

Gleichzeitig erweitern Konzepte aus der Quanteninformation unser Verständ-
nis von Quantenphasen insgesamt. Das Konzept der Quantenverschränkung revo-
lutioniert die Beschreibung von Vielteilchensystemen, indem es (Hilbert-
raum-)Wellenfunktionen durch intuitive Tensornetzwerke ersetzt. Das Verständ-
nis dieser Tensoren als elementare Bausteine ermöglicht die Erklärung von Phä-
nomenen wie topologischen Zuständen in einem Bottom-up-Ansatz. Zudem er-
lauben Tensornetzwerke eine effiziente Beschreibung von Vielteilchen-Zuständen
und können deshalb für numerische Simulationen genutzt werden.
In dieser Arbeit konzentrieren wir uns auf eindimensionale fermionische Sys-

teme und untersuchen den Einfluss von verschiedenen Faktoren wie z.B. Wech-
selwirkungen, inneren Freiheitsgraden, künstlichen Eichfeldern, Symmetrien und
verschiedenförmigen Potentialen. Während die Wirkung der Einzelkomponen-
ten wohlbekannt sein mag, bietet die Kombination verschiedener solcher Fak-
toren spannende neue Physik. Die theoretische Untersuchung wird durch die
Möglichkeit der Realisierung in den oben genannten Experimenten ermutigt.
Wir nutzen dazu - neben analytischen und störungstheoretischen Ansätzen -
Tensornetzwerk-Methoden als numerische Technik. Insbesondere untersuchen
wir drei Beispiele exotischer eindimensionaler fermionischer Systeme: (i) eine
Creutz-Hubbard-Leiter, in der Wechselwirkungen und topologische Eigenschaften
im Wettstreit stehen; wir erforschen das gesamte Phasendiagramm und erklä-
ren die (topologischen) Übergänge durch effektive Theorien; (ii) ein ringför-
miges System mit einer ähnlichen mikroskopischen Leiterarchitektur, die als ef-
fektive Theorie relativistischer, masseloser Fermionen verstanden werden kann;
für diese sogenannten Weyl-Fermionen erforschen wir die Gleichstrom-Antwort
auf externe Felder; wir finden, dass Wechselwirkungen in bestimmten Parame-
terbereichen den diamagnetischen Strom entlang des Rings verstärken; (iii) ein
fermionisches Multikomponentengas mit SU(N)-Wechselwirkungen in einer har-
monischen Falle; wir bieten ein pädagogisches Verständnis der Symmetrie und
stellen eine Verbindung zur Magnetisierung und zur experimentell messbaren
Impulsverteilung der Energiezustände her.





ABSTRACT

Recent years have seen a tremendous step forward in the manipulation of ultra-
cold atomic gases. Laser cooling techniques give access to the quantum regime
and experiments have reached a level, at which control and measurement of in-
dividual atoms is possible. Sophisticated laser schemes provide optical lattices
with different geometries, and allow the precise tuning of interactions and the
realization of new concepts such as artificial gauge fields. On the one hand, cold
atoms can be used as quantum simulators to study condensed matter systems
by mapping the relevant degrees of freedom of the original system to the ex-
perimentally better accessible setup. On the other hand, combining different
experimental features permits the design of new phases of matter, so-called syn-
thetic quantum matter, which may or may not exist outside the experimental
environment.

At the same time, concepts from quantum information are pushing the frontier
of our understanding of quantum phases as a whole. The concept of entangle-
ment revolutionizes the description of quantum many-body states by replacing
(Hilbert space) wave functions with intuition-charged tensor networks. Taking
these tensors as elementary building blocks makes it possible to explain phenom-
ena like topology in a bottom-up approach. Moreover, tensor networks permit
an efficient description of quantum many-body states and are therefore exploited
for numerical simulations.
In this thesis, we focus on one-dimensional fermionic systems and explore the

influence of different ingredients such as interactions, internal degrees of free-
dom, artificial gauge fields, symmetries and differently-shaped trapping poten-
tials. While the individual effects might be well understood, the combination of
these factors offers new exciting physics. Theoretical research on such systems
is encouraged by the forthcoming realizability in the above-mentioned experi-
ments. For our investigation, we employ - besides analytical and perturbative
approaches - tensor network methods as a numerical means. In particular, we
study three instances of exotic one-dimensional fermionic systems: (i) a Creutz-
Hubbard ladder model with a competition between interactions and topological
features; we lay out the complete phase diagram and explain the (topological)
phase transitions through effective theories; (ii) a ring-shaped system with a
similar microscopic ladder architecture, which can be understood as an effective
theory of relativistic massless fermions; for these Weyl fermions, we explore the
current response to external fields; we find that in certain regimes, the interac-
tions enhance the diamagnetic current flowing along the ring; (iii) a fermionic
multi-component gas in a harmonic trap interacting through SU(N)-symmetric
contact potentials; we offer a pedagogic understanding of the symmetry and
establish a link to the magnetization and to the experimentally accessible mo-
mentum distribution of the energy eigenstates.
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1
INTRODUCTION

A man grows stale if he works all the time on insoluble problems,
and a trip to the beautiful world of one dimension will refresh his imagination

better than a dose of LSD.

— Freeman Dyson

To understand the physical world we live in on a fundamental level, a mi-
croscopical approach on the atomic scale is required. The phenomena occurring
in this regime are necessarily quantum-mechanical. While the equations of mo-
tion for single particles in external fields can in principle be solved, the more
interesting physical characteristics of many-body systems often emerge from the
interplay of the individual components. Describing such interacting systems fully
requires a number of coefficients that scales exponentially in the number of con-
stituents. This makes exact calculations of their behavior impossible as the in-
formation to store quickly exceeds the resources available in classical computers.
Richard Feynman proposed a new approach to access the properties of con-

densed matter systems [1]. His idea was to use more controllable setups of quan-
tum particles to encode the relevant degrees of freedom of complex real materials,
for which the isolated control of single ingredients is usually complicated. When
Feynman put forward this revolutionary idea of quantum simulations, he did not
specify a particular setup. Nevertheless, since then a whole zoo of such purpose-
built analog quantum computers has emerged and comprises such diverse setups
as ultracold atoms [2], trapped ions [3], superconducting circuits with Josephson
junctions [4] and photonic technologies [5]: Quantum simulators have become re-
ality and the control and understanding they offer might pave the way towards
universal quantum computation.
In cold atomic setups, particles are cooled to extremely low temperatures to

access the quantum regime. Due to the ultra-low coupling to the environment,
the setup allows the measurement of ground state properties and therefore offers
a particularly apt platform for the study of quantum phenomena [2, 6–8]. Optical
manipulation of the constituents gives control over the effective dimensionality,
lattice geometry and the internal state dependence of kinetic terms, thereby
allowing for the realization of such exotic effects as synthetic gauge fields [9–11]
and spin-orbit coupling [12]. Interactions can be tailored in strength and range
by tuning external parameters [13] or by selecting constituents which are, e.g.,
strongly dipolar. The fact that these different contributions can be to a great
extent individually controlled and combined accounts for the great success of
ultracold atoms. Another reason for the popularity of the setup might be the
fact that it offers the most intuitive access to the simulation of quantum effects
in solid state systems: Apart from interactions with phonons, the hopping of
atoms in the optical lattice imitates very intuitively the electron dynamics in an
atomic lattice.
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The extreme control and tunability of physical phenomena in quantum simu-
lators has instilled the imagination of the scientific community beyond the mere
imitation and understanding of existing physical phenomena. The development
goes towards the creative combination of the available ingredients such as to
discover or engineer new exotic phases of matter, which might not even exist in
condensed matter systems, and which form a category of their own: synthetic
quantum matter.
Spurred by the same ideas about a quantum computer, a whole new re-

search branch about quantum information theory has flourished in the last three
decades. Advances thereof have, among other milestones, significantly altered
our understanding of what a quantum phase is by identifying entanglement as
a fundamental concept [14–16]. The description of quantum many-body states
in terms of tensor networks (instead of full Hilbert space wave functions) ex-
ploits the favorable scaling of this entanglement in the low energy spectrum of
local Hamiltonians [17–20]. Numerical methods based on tensor networks allow
us to access the strongly correlated regime of many-body systems where other
techniques fail [21, 22]. Complementary to quantum simulations, they therefore
advance our understanding of quantum many-body systems.
In the light of synthetic quantum matter, analytical and numerical approaches

(such as tensor networks) assist the experimental progress: theoretical calcula-
tions allow us to predict physical behavior and can therefore guide the experi-
mental efforts into promising directions. In this respect, one-dimensional systems
serve a two-fold purpose: On the one hand, they can be appreciated as physical
systems of their own right, which due to strong quantum fluctuations display
physics significantly different from higher dimensions. On the other hand, in the
form of quasi-one-dimensional systems, they can be used as a test-bed to explore
the minimum requirements to construct higher-dimensional theories.

In this thesis, we consider one-dimensional fermionic setups and investigate the
influence of different features that can be implemented in cold atom experiments.
These components can be described as geometrical (i.e. concerning the graph-
structure of a lattice), topological (i.e. being connected to non-local properties
of the system) and symmetrical (i.e. related to some invariant property of the
system). In fact, these categories are not exclusive and their effects are tightly
interwoven. While the individual factors might be well understood, our ambition
is to combine them in a way that allows for interesting new physics. A guiding
principle for all systems is the presence of interactions that correlate the be-
havior of the individual particles. To access the strongly correlated physics and
to account for the different microscopic ingredients, we employ tensor network
methods as a versatile and powerful technique.

The thesis is organized as follows:

• In Chapter 2, we present general concepts that play a role in the study
of one-dimensional synthetic quantum matter. We introduce these com-
ponents pedagogically and contextualize them with respect to each other
and to current research. The ideas shown here represent the building blocks
that we combine in the following chapters.
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• In Chapter 3, we study the imbalanced Creutz-Hubbard ladder. This fer-
mionic lattice model combines aspects of lattice geometry and artificial
gauge fields to display flat-band physics with topological features. We study
the stability of the topological phase with respect to interactions and lay
out the full phase diagram using matrix product state methods. We then
describe limiting parameter regimes through effective models, shining a
new light on the mechanisms at work in topological phase transitions. The
results of this project were published in Ref. [23].

• Chapter 4 addresses the current response to an external field of a ring of
interacting fermions with linear dispersion. These Weyl fermions have a
relevance both in field theories and in topological insulators. The setup
chosen here to model the dispersion is similar to the Creutz-Hubbard lad-
der in the previous chapter. We show that unlike conventional Hubbard
interactions, nearest-neighbor interactions can have an enhancing effect on
currents in the ring. The output of this work can also be found in Ref. [24].

• In Chapter 5, we investigate a continuum model of fermions with differ-
ent internal states in a harmonic trap. Scattering of these particles gives
rise to SU(N)-symmetric interactions. The symmetry is closely related to
magnetic ordering and we therefore study the role of interactions in the
formation of magnetic structures. Our research refines earlier results in the
limit of strong interactions and extends these to the (only numerically ac-
cessible) regime of intermediate interactions. A particular focus is put on
the identification of symmetry features in experimentally accessible prop-
erties. The results obtained here were published in Refs. [25, 26].

• Finally, we present some conclusions and discuss possible directions of
future research in Chapter 6.

The focus of the main body of this thesis is on one-dimensional fermionic models
and the physics arising in these models. Nevertheless, the numerical techniques
involved in our studies and the possible experimental implementation of the
models are highly relevant aspects that also deserve their place in this work:

• Most of our numerical results in interacting systems were obtained using
tensor networks. In Appendix A, we explain how these tensor networks
efficiently represent many-body ground states and explain their importance
both as a quantum-informational concept and as a numerical technique. We
give details on the specific tensor networks used in our projects.

• In Appendix B, we present a more in-depth introduction to cold atomic
experiments and thereby detail the implementation of the concepts ad-
dressed in Chapter 2. Moreover, we present technical specifications for the
experimental realization of the models presented in Chapters 3-5.

• Finally, in Appendix C, we show details of calculations and proofs that
were too long for the main text, but can be of interest for researchers
working on related questions.





2
RECURRING CONCEPTS

The target of this thesis is to explore the interplay of different effects on one-
dimensional fermionic systems. Our investigation is focused on such features
which are unattainable or hard to tune in traditional condensed matter systems,
but within reach in the context of cold atom experiments. In this chapter, we
specify the phenomena that we are interested in and lay out their fundamental
concepts. We discuss and contextualize the ideas with respect to previous re-
search and give pedagogical examples. The combination of two or more of these
basic ingredients and the new physics arising therefrom is then studied in depth
at the hand of several instances in Secs. 3-5.

In Sec. 2.1, we address the overall framework of quantum simulators and cold
atoms; in Sec. 2.2, we specify on one-dimensional fermionic systems. Sec. 2.3
introduces interactions; in particular, we discuss how they are special in one di-
mension and how they can be technically treated. We then add internal degrees
of freedom or a finite second spatial dimension to enter the regime of quasi-one-
dimensional systems (Sec. 2.4). If the so-obtained systems allow for hopping-
processes that correspond to closed loops in the lattice graph, artificial gauge
fields can be realized. These are studied next (Sec. 2.5). Artificial gauge fields
can have two significant influences: On the one hand, they can drive currents in
the system (Sec. 2.6). On the other hand, combined with specific system geome-
tries, they can alter the dispersion relation of free fermions such as to display
topological features. Sec. 2.7 discusses the occurrence of such topological effects
and their characteristics. The last ingredient relevant for our studies are symme-
tries. In Sec. 2.8, we motivate their relevance for both physical phenomena and
for efficient numerical methods. Finally, in Sec. 2.9, we introduce Jordan-Wigner
transformations as an often-used tool in our research. While not a physical in-
gredient itself, the technique allows the mapping between fermionic and spin
systems and therefore adds an additional perspective to our understanding.

2.1 quantum simulators and cold atoms

Purpose-built quantum simulators that address particular questions about a
physical system are important as they allow us to understand processes in other,
more complicated systems. In particular, such simulations can avoid nuisances
like defects and decoherence that can obscure the study of fundamental pro-
cesses in condensed matter systems. Moreover, quantum simulators might allow
the engineering of other interesting quantum matter phases, which do not nec-
essarily occur naturally, from scratch. In the last decade, experimentalists have
reached unprecedented levels of control in the preparation and measurement of
all kinds of quantum particles and systems [27–29]. This giant leap towards scal-
able purpose-built quantum simulators can be most vividly followed in ultracold
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atoms with or without optical lattices [2, 6]. While earlier experiments focused
on benchmarking and the individual addressing of single particles, since then a
lot of inherent many-body features have been tested. Some milestones in this re-
spect were the creation of Bose-Einstein condensates (BECs) [30] and the proof
of their interference in a double-well setup [31], the demonstration of superfluid-
Mott [32] and BEC-BCS transitions [33], the measurement of the equation of
state of universal fermion gases [34], and the observation of Anderson [35, 36]
and many-body localization [37]. An abundance of even further reaching features
can today be implemented in cold atom systems: different lattice geometries [38],
long-range interactions [13] and synthetic gauge fields [10] to name just a few.
At the same time also the possibilities to perform measurements have advanced,
and now allow control with single site precision [39] and the determination of
e.g. nearest-neighbor correlations [40].
In the following, we focus on those features that play a role in one-dimensional

systems and discuss their physical consequences. Details on the technical imple-
mentation with ultracold atoms can be found in App. B.

2.2 one-dimensional fermionic systems

For a long time, one-dimensional systems have only been relevant as an intellec-
tual gedankenexperiment or as a sandbox model in a first step towards more com-
plex higher-dimensional systems. More recently, the setup has gained relevance
in the study of chemical compounds such as polymers and organic compounds
or of bulk materials with one-dimensional structures (like organic superconduc-
tors [41]). It was further pushed by progress in nanotechnology now allowing the
realization of quantum wires such as carbon nanotubes [42, 43] and Josephson
junction arrays [4].
Today, however, the most accessible and tunable environments for the inves-

tigation of one-dimensional physics are certainly cold atom experiments. Here,
the one-dimensional confinement is obtained through counter-propagating laser-
pairs at wavelengths λi = 2π/ki which, using the ac-Stark shift, form an optical
potential

Vext(r) =
∑

i∈{x,y,z}
V0,i sin2 (kiri) . (1)

The amplitudes of the potential can be tuned such that the confinement is much
stronger in two directions than in the third, V0,y,V0,z � V0,x. For deep optical
lattices, the confinement on each lattice site is approximately harmonic with
frequencies ωi. For sufficiently low temperatures kT . h̄ωi, particles can only
occupy the lowest radial mode and the system is truly one-dimensional. The
periodic potential in x-direction then gives rise to an effective lattice model. Al-
ternatively, if the potential along the axial direction is turned off, the gas remains
weakly confined in this direction due to the residual harmonic potential caused by
the Gaussian profiles of the remaining lasers [2]; in this case, a one-dimensional
continuum model is realized. The setups outlined here lay the foundation for all
further manipulations of one-dimensional systems.
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Up to this point, we have described a system of free fermions (considering
only kinetic energy and external potentials). For such free models, the methods
used for the study of one-dimensional physics do not differ conceptually from
their higher-dimensional counterparts. We discuss next how interactions alter
the picture.

2.3 effects of interactions

For non-interacting systems as considered so far, there is no significant differ-
ence to higher-dimensional systems: dispersion relations are calculated in the
same fashion, etc. However, interactions in one-dimensional systems are special
as the Fermi liquid picture which is valid for higher dimensions does not apply.
Without interactions, particles at T = 0 occupy the lowest possible energy lev-
els - up to the Fermi level or surface where the momentum distribution has a
discontinuity. For dimensions higher than one, this does not change much when
(weak) interactions are switched on. The only difference is that the elementary
particles are no longer individual electrons, but instead electrons dressed with
density fluctuations (particle-hole excitations) which behave like free fermions
and are therefore called quasi-particles [44]. In one dimension, such perturba-
tive approaches fail, as electrons that want to move along the one-dimensional
system affect neighboring particles and an individual motion is impossible; par-
ticle dynamics become collective and the system becomes strongly correlated.
The Fermi liquid picture then gets replaced by the Luttinger liquid picture. A
particular feature of this model consists in a so-called spin-charge separation:
for spinful fermions, the charges and spin of an excitation decouple and move
independently.
Thanks to powerful analytical techniques like the Bethe ansatz [45] or bosoniza-

tion [44], many aspects of interacting one-dimensional systems are well under-
stood. With respect to numerical methods, we note that in particular, inter-
actions do not pose a problem to tensor network methods that we use as the
primary tool for our study of interacting systems in all interaction regimes where
perturbative approaches fail.
In cold atomic systems, interactions are due to scattering events between par-

ticles, which correlate the physics of the individual atoms. In the simplest case
of s-wave scattering, particles can be modeled as interacting through contact
pseudo-potentials, which in lattice models translate into on-site interactions. For
fermions, however, this is only possible if the particles have some label distin-
guishing them. For fully identical fermions, the Pauli-principle forbids the spatial
concurrence, but the particles might then scatter through higher channels (e.g.
p-wave). In a lattice, this yields nearest-neighbor interactions. While (electron-
electron) interactions in condensed matter systems are limited by charge and
distance and therefore hard to manipulate, in cold atom experiments so-called
Feshbach resonances can be tuned to change the interaction strength and sign,
and enable us (together with the control of lattice depth which tunes the hopping
parameter) to explore the competition between kinetic terms and interactions
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in a wide range. Laying out the full phase diagram in terms of interactions is
therefore not only a theoretical exercise.
In particular for spin-carrying, interacting particles moving in a periodic po-

tential like the one introduced in Eq. (1), the tight-binding approximation offers
an economical theoretical description of the physics. It arises naturally when
expanding the field operators in a discretized basis of maximally localized single-
particle (Wannier) wave functions centered around the minima of the potential.
The (partial) overlap of these Wannier functions gives rise to a kinetic term de-
scribing the hopping between neighboring sites and a second on-site term due
to the two-body interactions. The resulting Hamiltonian represents the so-called
Hubbard model and reads [46]

H = −t
∑
j,σ

c†j+1,σcj,σ +
U

2
∑
j

nj,↑nj,↓ + h.c., (2)

where the index j labels the minima of the periodic potential (dubbed lattice
sites) and σ ∈ {↑, ↓} identifies the internal state of the particles. The operator
c†j,σ (cj,σ) has the effect of creating (annihilating) a particle and nj,σ measures
the presence of a particle with spin σ on lattice site j. In typical applications,
terms that emerge due to higher than s-wave scattering processes and lead to
e.g. nearest-neighbor interaction terms are often dominated by the on-site term
and therefore neglected in this model.
The effective second-quantized model (2) can describe cold atom setups [47,

48] (details in App. B.1), but is historically motivated through the study of
electrons in atomic crystals [49] and in particular can explain metal-insulator
transitions: For strong repulsive interactions, U � t and half-filling (i.e. one
particle per lattice site j), the ground state of the Hubbard model realizes a so-
called Mott insulator, in which particles are localized on the individual sites of
the lattice; without interactions, the system is metallic. In the following sections,
we show how the Hubbard model can be “upgraded” to describe even more
exciting physics.

2.4 geometry in one-dimensional systems

We define a quasi-one-dimensional system as a system where in addition to
the first spatial direction (which can be of infinite extent in the sense that we
extrapolate the finite number of lattice sites L→∞), particles can tunnel along
a second dimension with a finite number of states. In a lattice system, the second
dimension can indeed correspond to physical sites along a spatial direction, i.e. to
minima of the lattice potential. Alternatively - and experimentally more feasible
in cold atomic experiments - the second direction can correspond to an internal
degree of freedom, e.g. hyperfine levels. The latter alternative is dubbed synthetic
dimension [50]. Hopping along such a synthetic dimension corresponds to the
change of an internal state of the particle. In the example of fermionic particles
with spin, this could correspond to a spin flip of the kind c†i,↑ci,↓, or a spin-
orbit coupling c†i+1,↑ci,↓. The condition of hopping along the second dimension
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makes quasi-one-dimensional systems different from traditional systems like the
Hubbard model (2) which also consider internal states.
Experimentally, the tunneling along a synthetic dimension can be obtained

through two-photon Raman transitions (more about this in App. B). Compared
to a physical second dimension, the implementation with internal states has the
advantage of sharp boundaries [11]. Interactions along a synthetic dimension are
often (if not always) long-range. This is at a difference with respect to most
setups with two spatial dimensions.
An important feature of quasi-one-dimensional systems is the fact that parti-

cles can take different paths to reach another site in the system. Similar to pe-
riodic boundary conditions, this feature allows particles to move around closed
lines and motivates the following sections on artificial gauge fields and currents.

2.5 artificial gauge fields and flat band physics

Charged particles moving along alternative paths through a magnetic field pick
up a relative phase dependent on the magnetic flux enclosed by the paths. This
phenomenon is called Aharonov-Bohm effect. Although ultracold atoms usually
do not carry a charge, the same physics can be obtained in this setup using
artificial gauge fields. We will introduce these two notions first.

Artificial gauge fields can lead to energy dispersions with flat bands. These
can lead to interesting physical features such as flat-band ferromagnetism [51]
or pair superfluidity [52, 53]. Our interest in flat bands arises from their oc-
currence in systems with topological features such as the integer quantum Hall
effect (see also Sec. 2.7). For partial fillings of flat energy bands, particles can
choose their ground state from a highly degenerate manifold. In an interacting
system, the resulting lack of a relevant comparative energy scale renders a per-
turbative approach invalid and the many-body ground state emerges from the
manifold non-trivially. This is relevant for another, even more intricate, topo-
logical phase, the fractional quantum Hall state. Investigating one-dimensional
flat band systems with topological properties in the presence of interactions is
therefore interesting: It may shed new light on known facts in higher dimensions
and possibly lead to discover new phases. We therefore shortly explain how such
flat-band systems can be constructed.

artificial gauge fields. Consider some contour C that is limiting a
two-dimensional region S. For simplicity, let us assume that S is lying in the xy-
plane and has a surface A. If the xy-plane is pierced by a homogeneous magnetic
field B = Bez, we can write the electromagnetic potential in Coulomb gauge
(with ∇×A = B and ∇ ·A = 0) as A = Br

2 eϕ. A charged particle surrounding
S on the contour picks up a phase

ϕ =
e

h̄

∮
C

A · dr =
eB

2h̄

∮
C
r dr = Φ

Φ0
, (3)

which is proportional to the flux Φ = BA piercing the region S. Φ0 = e
h is called

a flux quantum.
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Figure 1: Analogy between the Aharonov-Bohm effect and localized states
due to magnetic or artificial gauge fields. (a) A particle can travel along
two paths in a double-slit experiment before interfering on a screen. The area
enclosed by the paths is pierced by a magnetic flux Φ. In addition to the
effect of different path lengths, the wave-functions corresponding to the two
paths are therefore shifted by a phase ϕ ∼ Φ/Φ0. This is independent of
whether the magnetic field actually extends to the region of the paths and
shows the physical importance of gauge fields. For equal path lengths and
ϕ = π, negative interference is observed on the screen. (b) In a cold atom
lattice, the same effect can be simulated using artificial gauge fields. When
hopping around a closed path in the lattice, the particle picks up a phase ϕ.
In the given example, this leads to a negative interference on the right-most
site after two hoppings - or alternatively, in a time evolution after T = π/t.
The particle is can therefore never travel to this site and oscillates between
the left and the center sites.

If alternatively, we pierce the system with a flux-tube B̃ = Φδ(r)ez, we observe
the same effect. This is curious as in the second case, the magnetic field does
not extend to the path taken by the particle. We can rewrite the phase as

ϕ =
e

h̄

∮
C

A · dr =
e

h̄

∫
S
(∇×A) · dS =

e

h̄

∫
S

B · dS, (4)

where in the second step, we apply Stokes’ theorem. This shows that only the
flux piercing the enclosed region is relevant, not the specifics of the magnetic field
at the contour. We could also split the contour into two segments and compare
the phase taken up by a particle traveling along the two paths. The resulting
interference is called Aharonov-Bohm effect and has been experimentally demon-
strated [54]. It shows the physical relevance of gauge potentials beyond a mere
mathematical convenience to describe electric and magnetic fields.
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According to the Peierls substitution, the effect of a slowly varying vector po-
tential along some path (here in x-direction) can be absorbed in a tight-binding
Hamiltonian as [55]

c†m+1,ncm,ne
iϕm,n with ϕm,n =

e

h̄

∫ (m+1)a

ma
A(x,na) · exdx. (5)

Unlike electrons in a condensed matter system, particles in a cold atomic
setup are neutral and therefore a priori cannot couple to gauge fields and mimic
the effect of charged particles. However, artificial or synthetic gauge fields can
be created by dressing either the hopping along the physical direction through
laser-assisted tunneling [9, 56] or by equipping the internal transitions (along
the synthetic direction) with a phase. In particular, the phases imprinted on the
hopping terms are then no longer limited by the constraints that apply to the
original Peierls substitution. Alternative schemes rely on shaking or modulation
of the lattice (for details see App. B).
The analogy between the Aharonov-Bohm effect in a double-slit experiment

and artificial gauge fields on a lattice fragment is demonstrated in Fig. 1. In
cold atoms, a generalization of the latter setup from a single plaquette to two-
dimensional lattices allows the realization of the Harper-Hofstadter Hamilto-
nian [57, 58]. In quasi-one-dimensional systems, gauge fields were used to demon-
strate the existence of chiral edge currents [59, 60], which are connected to topo-
logical edge states. We discuss such topological phenomena and their link to the
introduced setup in the following section.

flat band physics. Particles in a flat energy band cannot move due to
the vanishing slope in their dispersion, v = ∂εk/∂k = 0 (even if the band is not
completely filled). This leads to localization and makes flat-band insulators yet
another type of insulator than band-, Anderson or Mott insulators. In lattice
models, depending on the geometry, flat-band physics can arise either without
or with (artificial) gauge fields. Examples are given in Fig. 2.
While a priori, a system can have both curved and flat dispersion bands,

models can be designed such that all the bands are flat. The approach relies on
a combination of lattice geometry and artificial gauge fields: If the flux enclosed
by a minimal hopping circle in the lattice-graph (i.e. around a so-called plaquette)
corresponds to a π-phase (ϕ = π) and if for any path of a given length one can
find a second path of the same length to interfere with, the hopping along these
two paths leads to negative interference (compare Fig. 1).
To illustrate the localization in a simple example, let us take a microscopical

perspective at a single particle on a four-site plaquette, where the hoppings have
phases as indicated in Fig. 1b. The action of the Hamiltonian on a particle on
the leftmost site is then

H(c†1 |0〉) = t(−c†2 − ic
†
3) |0〉 (6)

H2(c†1 |0〉) = t2(−c†1c2 + ic†1c3 + ic†4c2 − c†4c3)(−c†2 − ic
†
3) |0〉

= t2 (−1(−1) + i(−i))︸ ︷︷ ︸
=2

(c†1 |0〉) + t2 (i(−1)− 1(−i))︸ ︷︷ ︸
=0

(c†4 |0〉) (7)
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Figure 2: Different lattice geometries allowing for flat dispersion bands and
localized states. (a) On a sawtooth lattice, the hopping amplitudes (black
labels) can be chosen such that certain states (with the amplitudes for eigen-
states indicated in red) are completely localized (yellow shaded). In this setup,
a flat dispersion band occurs without artificial gauge fields. Not all eigenstates
of the model are localized. (b) The diamond chain and (c) the Creutz ladder
offer examples where a similar affect is obtained through an artificial gauge
field reflected by the complex hopping amplitudes. Here, however, all energy
bands are flat and the localized states are given by plaquettes consisting of
five and four sites, respectively. (d) A two-dimensional flat-band system can
be realized on the dice-lattice [52, 64]. The latter three examples are instances
of Aharonov-Bohm cages, in which negative interference forces all states of
the system to be localized. As a consequence, all bands are flat. The negative
interference is obtained through a π-flux through any closed loop in the lattice
geometry.

and therefore, under time-evolution (with time τ)

e−iHτ c†i,` |0〉 = cos(tτ )c†1 |0〉 −
iH

t
sin(tτ )(−c†2 − ic

†
3) |0〉 , (8)

the particle oscillates between the leftmost and the center-site without ever reach-
ing the right site. If we take a large numbers of such plaquettes, we can, e.g.,
construct Josephson diamond chains [61] or Creutz ladders [62, 63] (see Fig. 2).
On these lattices, we can build superpositions of oscillating states on neighbor-
ing sites, for which oscillations are completely suppressed. Due to the origin of
the localization effect, these completely localized eigenstates of the Hamiltonian
are called Aharonov-Bohm cages [52]. We will encounter such Aharonov-Bohm
cages in Chapters 3 and 4.

2.6 currents

Transport phenomena yield a very direct access to the phase properties in a
system: Currents flowing through the bulk of a system distinguish conductors
from insulators, edge currents are indicative of topological properties and closely
related to persistent currents in non-simply connected geometries. In cold atomic
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setups, currents can be induced and controlled through the earlier introduced
artificial gauge fields [65, 66].
In general, the current density j in some point in space is related to the charge

density ρ at the same point through the continuity equation

∇ · j = −∂ρ
∂t

. (9)

For a one-dimensional system in x-direction, the current I and the current den-
sity j = jxex are equivalent, simplifying the above to:

∂I

∂x
= −∂ρx

∂t
, (10)

where ρx describes the one-dimensional density. Assume that we consider a region
of our one-dimensional system V and study the currents entering and leaving
this subsystem. In integral notation, this yields

IR − IL = − ∂

∂t

∫
V
ρxdV , (11)

where L labels the current entering the volume from the left and R identifies the
current leaving it to the right. If we consider the energy eigenstate of a system,
the density distribution of particles will be time-independent, necessitating IR =

IL (Kirchhoff law): The inflow of particles equals the outflow.
We now assume a general tight-binding setup

H =
∑
j,l

∑
σj ,σl

c†j,σjTj,σj ,l,σlcl,σl , (12)

with annihilation (creation) operators c(†), where j and l label physical sites,
and the indices σj and σl indicate internal degrees of freedom. The tensor
T contains the hopping coefficients. If the number of particles in the system
N̂ =

∑
j,σj c

†
j,σjcj,σj is conserved, [H, N̂ ] = 0, this requires a zero net-current. In

particular, if we split our system into two subsystems, the net-current of particles
between these two subsystems should be zero for any solution. The above consid-
erations allow us to find a generic definition for the currents. Assume, we have
a region in our lattice containing sites p through q. The total current (“outflow
from the region”) then is

ÎR − ÎL = −e ∂
∂t

 q∑
j=p

∑
σ

nj,σ

 = − ie
h̄

H,
q∑
j=p

∑
σ

nj,σ

 (13)

and it is easy to identify the current over a particular link as

Î(x,σ)→(x′,σ′) = −
ie

h̄

(
Tx′,σ′,x,σc

†
x′,σ′cx,σ − h.c.

)
. (14)

The expectation value of the current can then be written as

I(x,σ)→(x′,σ′) =
2e
h̄
Im
[
Tx′,σ′,x,σ 〈c†x′,σ′cx,σ〉

]
. (15)
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Note that this notation also allows us to understand hoppings along a second
(possibly synthetic) dimension σ → σ′ as currents.

If a system is now described by a real Hamiltonian, also the correlations are
real and no currents flow. If, on the contrary, the Hamiltonian is complex, and
in particular Tx′σ′,x,σ = eiϕ

∣∣Tx′σ′,x,σ
∣∣,

I(x,σ)→(x′,σ′) = −
e

h̄

〈
c†x′,σ′

∣∣∣ ∂T
∂ϕ

∣∣∣cx,σ

〉
= − e

h̄

∂

∂ϕ
〈Hx′,σ′,x,σ〉 = −

e

h̄

∂Ex′,σ′,x,σ
∂ϕ

,
(16)

i.e. the current can be understood in terms of the phase-dependence of the kinetic
energy of a state.

currents in quasi-one-dimensional systems. For the eigenstate
of a one-dimensional system with open boundary conditions, no current is ex-
pected to flow between any two subsystems. Otherwise, the state would be un-
stable. However, a quasi-one-dimensional setup does allow flows. With two sites
(species) in the second (synthetic) dimension, transport can manifest in the form
of opposing currents along the legs (Meissner phase) or as currents around in-
dividual plaquettes (vortex phases) [67–69]. Note that the nomenclature hints
at the relevance of quasi-one-dimensional system for higher-dimensional super-
conducting setups. With higher numbers of species, even more intricate current
patterns are possible [70].

currents in rings. In a system with periodic boundary conditions, con-
trary to the above, a current through a cut of the system can occur. This is the
case if the system encircles a magnetic flux Φ. Following the Peierls prescription,
on a periodic lattice with L sites such a phase can be distributed along the ring
such that the phase acquired by a particle jumping from one site to the next
enters the Hamiltonian as

Tx+1,σx+1,x,σx ∝ exp (iϕ) with ϕ =
2π
L

Φ
Φ0

. (17)

In analogy to Eq. (16), a current through a link of the ring can be written

Îx→x+1 = − e
h̄

∂Hx,x+1
∂ϕ

, (18)

where Hx,x+1 collects all the possible hoppings through the cut. Equivalently, we
can consider the total Hamiltonian H and write

Î = − e

h̄L

∂H

∂ϕ
, (19)

which, due to the Kirchhoff law and the one-directedness of the graph, is equiv-
alent to the above. In terms of the total flux piercing the ring, this is

Î = −eΦ0
2πh̄

∂H

∂Φ
= −∂H

∂Φ
, (20)
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where we used ϕ = 2π
L

Φ
Φ0

and Φ0 = h
e . The Hellmann-Feynman theorem then

allows us to determine the current from the flux-dependence of the energy E of
a state |φ〉:

I = 〈φ|Î|φ〉 H.F .
= −∂ 〈φ|H|φ〉

∂Φ
= −∂E

∂Φ
with E = 〈φ|H|φ〉 . (21)

Currents originating from an enclosed magnetic flux are called persistent currents
due to the fact that they are not driven by a force (as in the case of a (static)
electric or alternating magnetic field) and therefore do not dissipate energy. We
investigate such currents in more detail in Chapter 4.

2.7 topological effects

classification. Traditionally, classical and quantum phases were under-
stood in Landau’s theory of spontaneous symmetry-breaking: The energy land-
scape of a system is described as a function of external parameters (e.g. the
temperature) and local observables, the order parameters. If the system displays
a symmetry, the free energy is symmetric with respect to the corresponding order
parameter for any value of the external parameter. When the external parameter
is tuned, a phase transition can occur in which the system changes from a dis-
ordered phase, where the free energy is minimal for a vanishing order parameter
(and the ground state therefore displays the symmetry), to an ordered phase.
In the later, the minima of the (still symmetric) free energy lie at finite values
of the order parameter (“Mexican hat potential”). To minimize the energy, the
symmetry of the state is then spontaneously broken.
More recently, it was found that phase transitions exist which cannot be

treated with the above formalism [71–75]. In topological phase transitions, the
ground state does not break any symmetry of the Hamiltonian. Today, topo-
logical properties in quantum many-body systems offers a new paradigm for
understanding phases of matter. This categorization focuses on the states them-
selves, and less on the underlying Hamiltonian. The categorization distinguishes
two classes of states: long-ranged entangled (LRE) states and short-range en-
tangled (SRE) states. A state is called a long-range entangled if it cannot be
transformed under a local-unitary transformation [14, 76]

U = T
[
e−i

∫ 1
0 dg H̃(g)

]
, (22)

where H̃ contains only local Hermitian terms, to a fully unentangled (i.e. prod-
uct) state. States that are no product state but neither connectible through such
a time evolution have different topologies and are also called (intrinsic) topolog-
ical states. All other states are called short-range entangled. They can be further
distinguished by asking whether they are still connectible through a transfor-
mation like the above if H̃ displays some symmetry. States which under this
constraint are unconnectible are considered different symmetry-protected topo-
logical states (SPT). Symmetry-breaking states also fall into the SRE-category.
Note that the above classification and terminology is not unanimously used by
all authors.
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occurrence. In a cold two-dimensional gas of electrons which is exposed
to a strong magnetic field, the Hall (i.e. transverse) conductance is quantized [77].
This effect is known as the integer quantum Hall (IQH) effect, and the (very
precise) quantization of the conductance σH can be connected to a topological
invariant ν, i.e. a quantity that does not change under continuous deformation
of the setup, via

σH = ν
e2

h
, (23)

where e is the electron charge, and h the Planck constant. The topological quan-
tum number, the so-called Chern number, is determined as [78]

ν =
i

2π
∑∫

d2k

∫
d2r

(
∂ψ∗

∂k1

∂ψ

∂k2
− ∂ψ∗

∂k2

∂ψ

∂k1

)
(24)

=
i

4π
∑∮

dkj
∫

d2r

(
ψ∗

∂ψ

∂kj
− ∂ψ∗

∂kj
ψ

)
, (25)

and can only take integer values. Here, ψ denotes the wave function, the sum
runs over the occupied subbands and the integrals over the unit cells in position
and momentum space, respectively. The quantity below the integral is the so-
called Berry connection that we will use in Chapter 3; the full expression is
related to the Kubo formula that we will encounter in Chapter 4.
The above system has the property of being insulating (i.e. gapped) in the bulk

and the observed conductivity is exclusively due to quantized currents flowing
on the edge of the material. No deformation can alter this quantization and only
if the bulk gap closes, the edge current can change. The IQH state was the first
physical system to be found to display intrinsic topological order. In quantum
spin Hall (QSH) states occurring in semi-conductors with spin-orbit coupling [79,
80], a chiral spin current flows (instead of a charge current). This system has
a time-reversal symmetry that protects the phase, which categorizes the QSH
state as an SPT phase.
If the interaction of particles is taken into account in the quantum Hall ef-

fect [81, 82], this gives rise to fractional quantum Hall (FQH) states that lead to
a new variety of topological phenomena such as fractional statistics (for which
a wave function acquires a phase different from the bosonic/fermionic ±1 un-
der the exchange of particles), fractional charges of quasi-particles, composite
fermions (bound states of an electron and quantized vortices), etc. While hard
to pinpoint unambiguously in real materials, technical advances have brought
the topological phenomena closer to realization with cold atom systems using
the earlier introduced ingredients [83]. In particular, the realization of FQH
physics has stirred a remarkable number of suggestions for experimental imple-
mentation [84–91]. In addition, experimentalists also advance techniques for the
measurement of indicators of topological states, e.g. of topological invariants [92]
or of entanglement signatures [93].

quantum phases in one dimension. In one dimension, all phases
which are possible according to the above categorization have been completely
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identified [14–16, 94, 95] (see also Sec. 2.8). Long-range entangled states can-
not exist in one dimension, and without symmetries all states would belong to
the same phase. With symmetry, all non-trivial gapped phases are then either
symmetry-breaking or SPT phases [76]. Let us discuss the two possibilities at
the hand of simple paradigmatic models.
Take as a first example the one-dimensional transverse-field Ising model

H = −J
N−1∑
j=1

σxj σ
x
j+1 − hz

N∑
j=1

σzj , (26)

which is invariant with respect to the parity P =
∏
j σ

z
j : [H,P ] = 0. In the

thermodynamic limit N → ∞, the ground state is unique for hz > J and
for hz � J given by |ψ〉 = |↑ . . . ↑〉, where |↑〉 is the eigenstate to the eigen-
value 1 of the operator σz. For hz < J , the ground state is doubly degenerate
and in the limit hz = 0, the manifold is spanned by |ψ←〉 = |← . . .←〉 and
|ψ→〉 = |→ . . .→〉, where |←〉 and |→〉 are the eigenstates of σx. The two given
states break the symmetry, i.e. the parity does not have a defined value ±1:
〈ψ→|P |ψ→〉 = 〈ψ←|P |ψ←〉 = 0.
On the contrary, in the fermionic model of a one-dimensional p-wave super-

conductor, the so-called Kitaev chain [96]

H = −
N−1∑
j=1

(
−w(c†jcj+1 + c†j+1cj) + ∆cjcj+1 + ∆∗c†jc

†
j+1

)
− µ

N∑
j=1

(
c†jcj −

1
2

)
,

(27)

where for simplicity ∆ = ∆∗ = ω, the fermionic parity P = eiπ
∑

ni is always
conserved. For 2ω < µ, the ground state is unique and can be adiabatically
connected to a product state. For 2ω > µ, the ground state is degenerate with
two states |ψ0〉 (with even parity) and |ψ1〉 (with odd parity) and cannot be
connected through a symmetry-preserving transformation (22) to the large-ω
phase: it is an SPT phase.

edge states. Continuing with the above example, the degeneracy of the
SPT phase can be understood in terms of so-called Majorana modes. A conven-
tional fermion splits into two Majoranas, a2j−1 = −i(cj − c†j) and a2j = cj + c†j ,
which are their own anti-particles in the sense a†j = aj . In this notation, the
Hamiltonian (27) reads

H =
i

2

−µ N∑
j=1

a2j−1a2j + 2ω
N−1∑
j=1

a2ja2j+1

 . (28)

For µ = 0, the edge Majoranas a1 and a2N do not appear in this Hamiltonian
and are unpaired. Recombining these Majoranas to a physical mode with zero
energy d†d = (ia2Na1 + 1)/2 allows us to give an intuitive picture to the SPT-
character of the phase: The operator ia2Na1 measures the parity of the ground
states and is equivalent to the presence (d†d |ψ0〉 = 1 |ψ0〉, odd) or absence
(d†d |ψ1〉 = 0 |ψ1〉, even) of the edge mode. Only this very non-local measure can
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distinguish the two phases. For finite µ < 2ω, the edge Majorana modes are no
longer exactly localized on the outmost sides, but decay exponentially into the
bulk. As a consequence, in the thermodynamic limit, the two Majoranas stay
well separated.

The above is a minimal working example of topological edge effects, but we can
understand it in close analogy with more complex examples such as the AKLT
state in spin-1 chains [97] or the earlier mentioned edge currents in quantum Hall
or quantum spin Hall states. In particular, the Majorana edge modes share with
the latter the feature of being localized, of carrying zero energy and of needing
a closing of the bulk energy gap to change the topological nature of the system.
We will re-encounter topological states with edge modes in Chapter 3.

2.8 symmetries

Symmetry is a fundamental concept for all physical systems. We say that a
Hamiltonian has a certain symmetry G if it is invariant under a unitary (or
anti-unitary) representation U(g) for all elements g of this group, i.e.

[H,U (g)] = 0 ∀ g ∈ G. (29)

For continuous symmetries, the generators of the unitary operation also commute
with the Hamiltonian (e.g. the momentum operator for a translation symmetry)
and the corresponding observable is a conserved quantity. The action of an oper-
ator associated with a discrete symmetry (such as parity) is a non-infinitesimal
change of the system. If such a symmetry is present, the wave function is invari-
ant under the effect of the (anti-)unitary operator apart from a multiplicative
factor that identifies the symmetry sector. In both cases, the invariant quantity
allows to label different sectors of the Hamiltonian. In our research, symmetries
fulfill different purposes:
In condensed matter systems, the presence of symmetries categorizes the possi-

ble phases (symmetry-breaking and symmetry-protected topological phases, see
above). In particular for one-dimensional systems, beyond the fermionic parity
(compare Sec. 2.7) all physical phases can be fully categorized by three discrete
symmetries: time-reversal T , charge conjugation (or particle-hole symmetry) C
and the combination (chiral symmetry) S = T C [98]. The time-reversal sym-
metry is anti-unitary and represented by an operator T = UTK, where UT is
unitary andK is the complex conjugation. A time-reversal symmetric system ful-
fills UTH∗U †T = H. The (anti-unitary) charge conjugation symmetry C = UCK

similarly has the property UCH∗U †C = −H. The combination of the two yields
the chiral symmetry with USHU †S = −H. The presence of these symmetries and
their eigenvalues define the SPT-character according to the Altland-Zirnbauer
classification [98, 99]. In this work, we will investigate a topological insulator
protected by a chiral symmetry in Chapter 3.
In our models, we often consider systems in which the particle number is con-

served and which therefore display a U(1)-symmetry. Cold atom experiments,
however, offer the possibility to engineer systems with much higher continuous
symmetries such as the SU(N) group [100]. In condensed matter systems, the
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SU(2)-group appears naturally in systems which are invariant under spin rota-
tions. Here, higher symmetries with N > 2, however, are usually not guaranteed
by fundamental principles and emerge only in rather exotic materials [101]. In
particle physics, on the contrary, such symmetries are highly relevant. The cold
atomic setup can therefore serve as a test-bed for high-energy theories, and in
addition, might lead to new exotic quantum matter phases. The achievement
of high symmetries in cold atoms is based on the use of alkaline-earth or Yt-
terbium atoms, for which the nuclear spin decouples from the electronic spin.
Scattering between such particles is then usually independent of the internal
state and leads to interactions that preserve the symmetry. We discuss systems
with SU(N)-symmetry and their properties in more detail in Chapter 5.

In numerical simulations, the presence of symmetries permits to greatly re-
duce the necessary computational effort. In an exact diagonalization, projec-
tions to the subspaces with the different quantum numbers of the symmetry
operator make the original problem block-diagonal, and the diagonalization can
be performed for each of these lower-dimensional blocks individually. In tensor
networks, both Abelian and non-Abelian symmetries can be implemented [102,
103]. In our programs we only make use of the former, but we note that for non-
Abelian symmetries, we can exploit the respective largest Abelian subgroups.
The earlier introduced SU(N) symmetry, e.g., can be treated in terms of N − 1
U(1)-symmetries which can be implemented with our methods. Technical details
of how such an implementation is achieved in tensor networks can be found in
App. A.

2.9 fermion-spin correspondence

It turns out that one-dimensional systems of spins, fermions or hard-core bosons
(i.e. bosons that cannot occupy the same state due to infinite repulsive inter-
actions) can all be mapped into each other [104, 105] and therefore, they can
technically be treated in the same fashion. Here, we will discuss the Jordan-
Wigner transformation [105] as a means to map a spin chain to a fermionic
chain and vice-versa. Despite the mathematical equivalence, spin and fermionic
systems describe physically distinct systems. We will reconcile these two facts
by picking up the example of the Ising model and the Kitaev chain introduced
earlier. We show that the two are mathematically equivalent and retrace why
anyway, they are topologically different.
Just as a spin-1/2 particle can be in two different states, any site of a fermionic

(or hard-core bosonic) lattice can be characterized by the absence or presence of
a particle. Naively, one could therefore suggest a mapping between a spin lattice
and a fermionic lattice by associating the raising and lowering operators of the
spins (σ+j = (σxj + iσyj )/2 and σ−j = (σxj − iσ

y
j )/2) with the creation- and the

annihilation operators of the fermions (c†j and cj). However, spin and fermionic
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operators do not display the same commutation relations: While on-site indeed
both operator sets are anti-commutative,

{σ+j ,σ−j } = 1 and {σ+j ,σ+j } = {σ
−
j ,σ−j } = 0, (30)

{c†j , cj} = 1 and {c†j , c
†
j} = {cj , cj} = 0, (31)

the exchange of operators on different sites i and j is commutative for spins, but
anti-commutative for fermions:

[σ+i ,σ−j ] = 0 and [σ+i ,σ+j ] = [σ−i ,σ−j ] = 0, (32)

{c†i , cj} = 0 and {c†i , c
†
j} = {ci , cj} = 0. (33)

Luckily it turns out that for finite systems a method exists to map between
a spin and a fermionic lattice, the so-called Jordan-Wigner transformation. By
introducing an ordering of all sites in the lattice, the transformation can be
written as

c†j =
∏
i<j

eiπ
∑

σ+i σ
−
i σ+j =

∏
i<j

(−σzi )σ+j (34)

or

σ+j =

(
e
iπ
∑

i<j
ni
)
c†j =

∏
i<j

(1− 2ni)c†j , (35)

where nj = c†jcj . It can easily be checked that the commutation relations for the
two systems are correctly reproduced under this transformation. If we visualize
the two operators, we see that the fermionic creation and annihilation operators
in spin notation have a Jordan-Wigner string of σz-matrices on all sites that
occur prior in the ordering. The terms therefore give a sign to the respective
observables that depends on the parity (even/odd number of up-spins). Similarly,
when writing the spin operators, we see that a sign gets attributed to the operator
depending on the parity of the particle number on the previous sites. Number
operators, on the contrary, are strictly local in the spin basis, nj = 1

2 (σ
z
j + 1), as

the Jordan-Wigner strings of the involved operators c†j and cj cancel each other.
Correlators between sites i and j display a Jordan-Wigner string on all sites in
the ordering between i and j: c†icj = σ+i (−σzi+1) . . . (−σzj−1)σ

−
j .

Now, spin models with nearest-neighbor coupling are mapped by the transfor-
mation to a nearest-neighbor fermionic model and vice versa. In particular, the
transformation relates the quantum Ising model (26) to the Kitaev chain (27) if
one sets J = 2ω and hz = µ. In Sec. 2.7, we discussed that the earlier system
displays a transition between a disordered and a symmetry-broken (or ordered)
phase, while the latter displays a symmetry-protected topological phase. This is
interesting because both Hamiltonians (26) and (27) possess a Z2-symmetry.
The symmetry of the fermionic system is protected because the fermionic

parity cannot be broken [98]. If, in the fermionic model for simplicity we consider
the case h = 0, we find two degenerate ground states with opposite parity which
consist of an equally weighted mixture of all the basis states of the operator nj .
For any finite region in the bulk, the number of particles in both states can be
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either even or odd and no local measurement can distinguish between them. The
two states (and their parity) can only be distinguished by measuring the parity
of the full system or by looking at the edges and determining the occupation of
the (Majorana) edge mode c†Nc1 + c†Nc

†
1 + h.c. [95]. This is clearly a very non-

local feature. Similarly, for the Ising model, hz = 0 yields any superposition of
|← . . .←〉 and |→ . . .→〉 as the ground state, including the parity-conserving
state |ψ+〉 = |← . . .←〉+ |→ . . .→〉. For perturbations that preserve the parity
(in particular the transverse field), the ground state is always symmetric under
simultaneous spin flip of the whole chain along the x-direction (i.e. application of
the parity operator). Why then do we call the spin phase with hz < J symmetry-
breaking? While not all the questions on symmetry-breaking in (finite) quantum
systems have been answered [106, 107], an intuition can be built on the fact
that, while formally the same, the states of the Ising chain and of the Kitaev
chain have different properties due to the non-local basis of the fermionic system.
In particular, the fermionic correlations c†icj = σ+i (−σzi+1) . . . (−σzj−1)σ

−
j are

obviously different from spin correlations σ+i σ
−
j which do not contain a Jordan-

Wigner string. Therefore the particles in the two systems display inherently
different physics.
The above ideas are intended to give a rough idea of how the different as-

pects of symmetry, topology and the Jordan-Wigner transformation are inter-
connected. For more formal approaches, see Refs. [15, 108].
Jordan-Wigner transformations are also an important method to take care

of the non-locality of the fermionic exchange relations when treating fermionic
systems (even when quasi-one-dimensional) using tensor network methods. We
present some further considerations on this issue in App. A.3.





3
THE IMBALANCED CREUTZ -HUBBARD MODEL :
A PARADIGMATIC 1D TOPOLOGICAL INSULATOR

In the previous chapter, we have introduced different specifications of one-dimen-
sional fermionic systems. Here, we present a first instance of a setup in which
several of these features are combined to explore new physics: We take a system
of fermions on the so-called Creutz ladder as an instance of a one-dimensional
topological insulator and explore the effects of imbalance and repulsive Hubbard
interactions on this setup.
As discussed in Sec. 2.7, the advances in quantum simulations, and in partic-

ular in ultracold atomic gases in optical lattices, have enabled experimentalists
to realize topological insulators. The role of interactions on topological phases,
however, is less explored. This is true both experimentally and theoretically.
Theoretical investigation is rendered particularly difficult by the fact that many
of the standard tools used for the identification of a topological phase rely on
analytical methods. For example, winding and Chern numbers are usually de-
termined through the non-interacting band structure and the topological classi-
fication stems from the Hamiltonian matrix [109, 110]. For strongly correlated
systems, attempts of generalization are being made [111–113], but general numer-
ically cheap and quantitatively reliable methods barely exist [114]. Nonetheless,
developing an understanding of the interplay between topological phases and
interactions is a highly relevant issue. The paradigmatic example in this context
is the integer quantum Hall effect of a two-dimensional fermionic gas exposed to
a magnetic field [82, 115]. With interactions, the phenomenon “upgrades” to the
fractional quantum Hall effect [116] and allows for excitations with fractional
statistics which could e.g. play a role in the development of quantum comput-
ers [117, 118].
It is interesting to explore the interplay between topology and interactions

in a one-dimensional setup in a sandbox like fashion. We therefore take up the
quasi-one-dimensional, so-called Creutz model which is known to have topologi-
cal properties and study the effect of repulsive Hubbard interactions. This allows
us to probe the stability of the topological phase when exposed to strong correla-
tions. The Creutz ladder, a model originally developed in the field of high energy
physics [62] and later transported to condensed matter by the same author [63],
has been studied previously with bosons [119, 120]. Recently, it was shown that
the Creutz ladder when charged with spinful fermions and exposed to attractive
interactions gives rise to a BCS description [121]. For spinless fermions, we are
aware of only a single study, however with a different focus on an additional
superconductor s-wave pairing [122].
Due to slight differences in the model, the imbalanced Creutz ladder stud-

ied by us belongs to a different symmetry class than the original model and
therefore realizes a different SPT phase. The effect of Hubbard interactions on
this kind of topological insulator is widely unexplored. We show that, unlike in
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the bosonic case, a projection onto a single flat band is insufficient: All bands
and edge modes have to be retained to fully account for the effects of correla-
tions and topological effects. To be more precise, we investigate the influence of
both an energy imbalance (between the two fermionic species appearing in the
model) and of Hubbard interactions. We show that the two adjustments to the
original flat-band model evoke a competition between the topological phase and
two types of (orbital) quantum magnetism. At large imbalance, the system is
driven through a phase transition of Ising universality towards a paramagnetic
phase. For large interactions, on the contrary, long-range ferromagnetic order
arises as in the symmetry-broken phase of the quantum Ising model. Away from
these limiting scenarios, we introduce effective theories by mapping the original
system to models of quantum magnetism. This allows us to predict the critical
lines for weak, intermediate and strong interactions and to identify the different
underlying conformal field theories (CFT).
The procedure is as follows: In Sec. 3.1, we introduce the Creutz model and

our alterations to it. We then make a detailed analysis of the different regimes
(Sec. 3.2): In the non-interacting model, we focus on the toplogical insulator
phase and analyze and explain the topological properties. For weak interactions,
we predict the critical line through a self-consistent mean-field approach. For the
opposite case of strong interactions, we write an effective super-exchange model.
We then evaluate the intermediate regime. In Sec. 3.3, the analytical prediction
is backed by a numerical study, allowing us to lay out the full phase diagram.
We complete the study by presenting an interpretation of the topological phase
transitions in terms of impurity physics and effective edge theories (Sec. 3.4).
Details of the implementation of the model with cold atoms in optical lattices
are given in App. B.2.1.
The results presented in this chapter have been published in Ref. [23].

3.1 setup

The model of interest is given by

HπCH = HπC + VHubb, HπC = HFB + Vimb, (36)

where we collect the kinetic terms HFB and the imbalance term Vimb in the free-
fermionic model HπC. VHubb is a repulsive Hubbard on-site interaction. We will
henceforth refer to the full model as the imbalanced Creutz-Hubbard model.
To detail the Hamiltonian, we introduce a one-dimensional ladder lattice where

the sites (rungs) have a distance a and are labeled j ∈ {1, . . . ,N} and the legs
(labeling an internal degree of freedom) are denoted ` ∈ {u, d}. The fermionic
operator c†j,` (cj,`) creates (annihilates) a particle at a given site. The kinetic
term reads

HFB =
∑
j,`

(
−t̃c†j+1,`cj, ¯̀ + is`t̃c

†
j+1,`cj,` + h.c.

)
, (37)

where su/d = ±1 and ¯̀ labels the opposite rung to `, namely ū = d and d̄ = u.
HFB contains all kinetic terms of the full model: The first term describes diagonal
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`= u

`= d

Figure 3: Hopping and interaction processes in the imbalanced Creutz-
Hubbard model. The sites of the two-legged ladder are represented by blue
(` = u) and yellow (` = d) dots. Particles can hop from one site to another
along the grey lines. For the complex hopping amplitudes, we indicate the
direction by arrows. The imbalance terms are expressed as on-site hoppings.
Moreover, particles on the same lattice site j interact through a repulsive
Hubbard interaction U .

tunneling, the second term horizontal tunneling along the legs of the ladder (see
Fig. 3).
Depending on the implementation of the model, a hopping term of the type

c†
j(+1),`cj, ¯̀ can refer to two physically different processes. On the one hand, it
can correspond to an actual (i.e. physical) hopping in the direction orthogonal
or diagonal with respect to the underlying one-dimensional system. This justifies
the expression quasi-one-dimensional system as the system physically extends
(finitely) into a second dimension. On the other hand, u and d can also be under-
stood as labels for the two states of an internal two-level system. In this image,
a half-filled chain, in which every site i is singly-occupied, can be understood
as an orbital magnet: Depending on the pattern of occupation, we can label a
state e.g. as an orbital (anti-)ferro- or paramagnet. An important difference be-
tween the fermionic ladder model and a simple spin-1/2 chain is the possibility
to double-occupy a physical site.

One particularity of the Creutz-model are the imaginary hopping coefficients
±it̃. For neutral atoms, these can originate from artificial gauge fields (compare
Sec. 2.5). As a consequence, the particles acquire a phase factor e±iϕ when
moving from one site to the next. In the setup at hand, we have ϕ = ±π

2 →
e±iϕ = ±i and a particle following a triangular or lozenge-shaped unit-cell path
on the lattice encircles a π-flux (see Fig. 6).
The imbalance term

Vimb =
∑
j,`

∆ε
2 s`nj,` (38)

favors the occupation of one particle species energetically (u for ∆ε < 0, d for
∆ε > 0). The imbalanced Creutz ladder HπC differs from the original Creutz
model [62], in which a vertical hopping tvc

†
j,`cj, ¯̀ is considered instead of an

imbalance.
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Figure 4: Complete phase diagram of the imbalanced Creutz-Hubbard model.
The model has three gapped phases: a topological insulator phase (TI), an
orbital paramagnet (oPM) and an orbital ferromagnet phase (oFM). Stars
denote critical points as determined numerically, the dashed lines are results
of a perturbative approach (yellow) and a self-consistent mean-field analysis
(red). In addition, we determine the transition between topological insulator
and orbital ferromagnet analytically (red dot). The blue lines are guides to
the eye for the critical lines, their label shows the central charge describing
the corresponding conformal field theory.

The second term in Eq. (36) describes a repulsive (Vv > 0) interaction between
particles occupying the same lattice site,

VHubb =
∑
j,`

Vv
2 nj,`nj, ¯̀. (39)

3.2 regimes and transitions

In this section, we explore the different parameter regimes of the Hamiltonian in
Eq. (36). Fig. 4 shows the phase diagram containing the various results as a visual
aid for the following discussion. Starting from the pure flat-band model (37), we
discuss features and properties in the topological insulator regime (Sec. 3.2.1).
We then turn to the two additional terms.

First, we consider the influence of the imbalance (38) which still can be treated
in the formalism of free fermions. We explain how the introduction of the energy
imbalance between the two fermionic species induces a phase transition to a
physically trivial phase. We then give an alternative explanation to the transition
by rewriting the system as a double-copy of the one-dimensional quantum Ising
model.
For the interacting model, we distinguish three parameter regimes:
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Weak interactions can be understood as a ferromagnetic coupling between the
two chains in the Ising model description. We can explore the influence of this
coupling on the individual chains through a self-consistent mean-field approach
that allows us to analytically predict the critical line (Sec. 3.2.2).
We then turn to the opposite limit of strong interactions (Sec. 3.2.3). We

derive an effective spin model in an analog fashion to the Heisenberg model
arising in the strong-coupling limit of the Hubbard model. This effective model
explains the observed orbital paramagnetic and ferromagnetic phases and yields
a prediction of the critical line separating them.
Eventually, we study the intermediate regime, in which neither the kinetic

term nor the interaction can be treated in a perturbative manner (Sec. 3.2.4).
However, it turns out that indeed an effective model arises that correctly predicts
the phase transition for the balanced model.

3.2.1 Non-interacting regime

For free fermions, we can solve the model analytically. This allows us to identify
two phases in this regime. We first diagonalize the Hamiltonian and discuss its
features and then characterize the two occurring phases.
For periodic boundary conditions, the kinetic part of the Hamiltonian (36) can

be Fourier-transformed, c`(q) =
∑
j e

iqajcj,`/
√
N , and re-written in spinor-basis

Ψ(q) = (cu(q), cd(q))
T as

HπC =
∑
q∈BZ

Ψ†(q) [B(q) ·σ]Ψ(q) (40)

with B(q) = 2t̃(∆ε − cos(qa), 0, sin(qa))T and the vector of Pauli matrices
σ = (σx,σy,σz)T . We denote q ∈ BZ = (−π/a,π/a] the permitted quasi-
momenta and set a = 1 in the following. The dispersion relation is easily ob-
tained through diagonalization as

ε±(q) = ±ε(q) = ±2t̃

√
1 +

( 4t̃
∆ε

)2
+ 2

( 4t̃
∆ε

)
sin q. (41)

For ∆ε/t̃ = 4, the single-particle gap closes indicating a phase transition (see
Fig. 5a).
To identify the topological nature of the system, we study the symme-

try of the Hamiltonian. The Altland-Zirnbauer classification allows a cate-
gorization of topological phases in one dimension according to their time-
reversal, their parity and their chiral symmetry [98, 99] (compare Sec. 2.8).
For the Hamiltonian at hand, we can find a chiral symmetry operator
Uchiral = σy fulfilling UchiralH(−q)U †chiral = −H(q). However, the component
Bz(q) = ∆ε/2 + 2t̃ sin(q) does not have a defined parity under q ↔ −q. As a
consequence, neither a time-reversal operator with UTH(−q)∗U †T = +H(q) nor a
particle-hole operator with UCH(−q)∗U †C = −H(q) can be found. Therefore pos-
sible topological phases in the imbalanced Creutz ladder fall into the AIII-class
of the Altland-Zirnbauer classification. This is different from the conventional
Creutz ladder, which belongs to the BDI-class due the presence of time-reversal
and particle-hole symmetry.
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Figure 5: Dispersion relation and winding of the imbalanced Creutz ladder.
(a) Dispersion bands of the imbalanced Creutz ladder in different regimes:
in the TI-phase with flat bands (∆ε/t̃ = 0.0, purple), at the critical point
(∆ε/t̃ = 4.0, red) and in the oPM-phase (∆ε/t̃ = 8.0, orange). (b) Winding
of the spinor (Bx(q),By(q)) for the same parameters: Within the topological
phase the spinor encircles the origin (black cross), while in the non-topological
phase it does not.

To determine whether the two phases separated by the above-found critical
point are SPT or trivial, it is instructive to revisit the Hamiltonian in Eq. (40).
As a Bloch-vector, B(q)/N identifies the direction on the Bloch-sphere in which
the Hamiltonian is diagonalized. Due to the symmetry properties of the system,
the Bloch sphere is constrained to the xz-plain. For ∆ε/t̃ < 4, the Bloch vector
describes a circle around the origin when running the wave vector through the
Brillouin zone q ∈ (−π/a,π/a]. This property identifies a quantized winding
number W = 1 in this parameter regime. For ∆ε/t̃ > 4, on the contrary, the
origin is not enclosed by the path, i.e.W = 0. Fig. 5b illustrates this finding. We
therefore dub the first phase with ∆ε/t̃ < 4 an AIII-topological insulator and
the second phase a trivial phase.
More formally (but equivalently), the topological property can also be iden-

tified by integrating the Berry connection A±(q) = i 〈ε±(q)|∂q|ε±(q)〉 over the
Brillouin zone, where |ε±(q)〉 are the spin eigenstates of the Hamiltonian (40).
This yields the so-called Zak phase ϕZak,± =

∫
BZ dq A±(q) [123]. If we define

the flatness parameter f = 4t̃/ε, we obtain

ϕZak,± =
∫

BZ
dq 1 + f−1 sin q

2(1 + f−2 + 2f−1 sin q) = πθ(f− 1), (42)

i.e. the Zak phase takes the value ϕZak,± = π for the upper and lower band in
the topological phase and ϕZak,± = 0 in the non-topological region. We discuss
properties of the former in the following section.
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Figure 6: Interference patterns in the Creutz ladder. The blue and yellow dots
indicate sites on the upper and on the lower leg, respectively. The arrows
correspond to hopping processes on the lattice. Left and middle: Due to the
π-flux encountered for any double-hopping not returning to the original site,
destructive interference occurs constraining the dynamics of a particle to a
site and its nearest neighbors. Right: By choosing superpositions with the
appropriate phase difference, negative interference can be obtained for single-
hopping processes. This is used for the definitions of Aharonov-Bohm cages in
Eqs. (43) and (45).

Figure 7: Eigenstates of the balanced Creutz ladder. The bulk solutions (43) to
the Creutz ladder without imbalance (∆ε = 0) can be expressed in terms of
localized Aharonov-Bohm cages. Destructive interference prevents these states
from delocalizing (compare Fig. 6). Edge states of the systems (45) involve
single physical sites only and have zero energy.
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3.2.1.1 Topological insulator phase

In the particular case of perfect balance (∆ε = 0), we observe that ∂kε±(k) = 0:
The model displays completely flat bands in the dispersion. As a consequence,
the particles’ velocity is zero and they cannot propagate along the lattice. Micro-
scopically, the effect can be understood through the particular artificial gauge
field (see also Sec. 2.5). The phase acquisition of a particle after two hoppings
leads to a destructive interference of the particle’s wave function at next-to-
nearest neighbor sites. This is shown in Fig. 6. The resulting flat-band insulator
is neither a band insulator nor a Mott insulator. In fact, it shares aspects of
both: As for a band-insulator, the insulating property is not due to correlations;
however, like in a Mott-insulator, the particles are localized.
While a particle placed on some site (j, `) would start to oscillate between the

original site and the neighboring sites, we can find a basis of the Hamiltonian in
terms of Aharonov-Bohm cages (compare Sec. 2.5) for which any movement is
suppressed:

|+2t̃〉j = w†j,+ |0〉 , w
†
j,+ =

1
2
(
ic†j,u + c†j,d − c

†
j+1,u − ic

†
j+1,d

)
,

|−2t̃〉j = w†j,− |0〉 , w
†
j,− =

1
2
(
ic†j,u + c†j,d + c†j+1,u + ic†j+1,d

)
.

(43)

The eigenstates are superpositions of particles living on the four possible sites
of neighboring rungs of the ladder (see Fig. 7).
The flat-band Hamiltonian can be equivalently described in this plaquette basis

as

HFB =
∑
j

∑
α=±

εαw
†
j,αwj,α, (44)

where every plaquette has the same energy ε± = ±2t̃. For periodic boundary con-
ditions, we find 2N of these plaquette states. For open boundary conditions, how-
ever, we can only form 2(N −1) “bulk” states, and we require 2N − (2N − 2) = 2
more states to fully determine a basis. These missing states reside on the left-
and right-most sites,

|0〉L = l† |0〉 , l† =
1√
2

(
c†1,u + ic†1,d

)
,

|0〉R = r† |0〉 , r† = 1√
2

(
c†N ,u − ic

†
N ,d

)
,

(45)

and yield an additional contribution
∑
η=l,r εηη

†η to the above Hamiltonian
with εl = εr = 0: a pair of zero-energy topological edge states (see again Fig. 7).

Turning on the imbalance ∆ε then leads to an effective hopping between these
plaquettes

Vimb =
∆ε
4

N−1∑
j=2

(
w†j−1,+ −w

†
j−1,−

) (
wj,+ +wj,−

)
+

∆ε
4
∑
α=±

√
2
(
−l†w1,α − iαr

†wN−1,α

)
+ h.c.,

(46)
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and results in a deforming of the flat energy bands up to ∆ε = 4t̃, where the
gap closes and reopens (see Fig. 5a). An important observation in this context
is that the edge modes maintain zero energy throughout the TI-region (if we
restrict ourselves to the thermodynamic limit, L → ∞). While no longer exclu-
sively localized on sites 1 and L, the zero-energy modes anyway preserve their
edge character as the probability of finding the modes decays exponentially with
distance from the boundary, i.e. pj ∝ e−j/ξ(∆ε,t̃) with some characteristic length
ξ(∆ε, t̃). As a consequence, in the thermodynamic limit, the two modes reside in
distinct regions of the chain. For ∆ε/t̃→ 4, the characteristic length ξ increases
and diverges at the critical point, “merging” the two edge modes and destroying
the topological character.

3.2.1.2 Orbital paramagnetic phase

As the leg imbalance ∆ε is increased above the critical point, the system changes
into an orbital paramagnet, in which all the particles tend to occupy the lower
leg. In the limit of ∆ε� t̃, writing the Hamiltonian in real-space spinor notation
yields

HπC =
∑
q∈BZ

Ψ†j(Bi ·σ)Ψj (47)

with Bj ≈ (0, 0, ∆ε), demonstrating the paramagnetic property. To make the
classification even more evident, we explore an analogy of the imbalanced Creutz
ladder to a pair of Ising chains in the next section.

3.2.1.3 Ising chain correspondence

A first similarity of the Creutz ladder model to the Ising model is its duality
under the transformation

Ψj = (cj,u, cj,d)t →Wj = e−i
π
4 σ

z
j (wj,+,wj,−)t. (48)

Upon exchange ∆ε/4↔ t̃, the original model HπC in Eq. (37) takes the form of
the latter model (44), i.e.

HπC(t̃, ∆ε)→ ∆ε
4t̃ HπC

(
t̃, 16t̃2

∆ε

)
. (49)

The self-similar point ∆ε = (4t̃)2/∆ε corresponds to the earlier discussed crit-
ical point ∆ε/t̃ = 4. Due to this correspondence, we expect the same re-
sults for the observables 〈c†jσ3cj〉 at some point in phase space (t̃, ∆ε) and for
〈w†jσ3wj〉 = 〈c

†
j (−σ1 − iσ3) cj+1 + h.c.〉 in (∆ε/4, 4t̃). This means that the two

terms in the original Hamiltonian can be treated on the same footing. The ob-
servation is reminiscent of the self-duality of the quantum Ising model [124] and
motivates a closer look. Indeed, we find that the canonical transformation

rj,1 =
ij√
2

(
icj,u + (−1)jc†j,d

)
,

rj,2 =
ij√
2

(
cj,u + i(−1)jc†j,d

) (50)
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converts the description to

HπC =− t̃
∑
j

∑
n=1,2

(
r†j,nrj+1,n + r†j,nr

†
j+1,n + h.c.

)
+

∆ε
4
∑
j

∑
n=1,2

(
2r†j,nrj,n − 1

)
.

(51)

While the correctness of the transformation (50) can be easily checked a posteri-
ori, the transformation rules are not evident a priori. A step-by-step derivation
(using Majorana fermions) can therefore be found in App. C.1.

In the new notation, we can identify two fully independent subsystems, which
do not display particle number conservation. Both terms can be identified as
Ising models [125]. Under the Jordan-Wigner transformation

r†j,n =
∏
l<j

(
−σzl,n

)
σ+j,n, (52)

the Hamiltonian takes the form

HπC =
∑
j

∑
n=1,2

(
−t̃σxj,nσxj+1,n +

∆ε
4 σzj,n

)
. (53)

As the Creutz ladder model and the two-copy Ising model are equivalent, they
are described by the same mathematics. Nonetheless, it is instructive to compare
some physical features from the two very different perspectives. If we take into
account all possible fillings for our model, we can make the following observations
for systems with open boundary conditions:

• In the thermodynamic limit, the ground state in the TI-phase of the Creutz
ladder model is quadruple-degenerate. The ferromagnetic ground state of
each Ising model is doubly degenerate (the two possible polarizations),
yielding a total degeneracy of four, in agreement with the above.

• In the same limit, the ground state in the orbital paramagnetic phase of
the Creutz ladder is unique. This is in agreement with the disordered phase
in the Ising model, where both copies have a unique ground state.

• If the Creutz ladder with open boundary conditions becomes finite, the
ground state loses its degeneracy. The localized and exponentially decay-
ing left and right edge modes can then couple and obtain an energy (ex-
ponentially small in the system length). The earlier quadruple degeneracy
resolves to a 1-2-1-degeneracy. When interpreting a finite Ising model as
a Kitaev-Majorana chain (compare Sec. 2.9), likewise, the edge Majoranas
couple and lead to a splitting between the formerly degenerate even and
odd-parity state. As this happens in two copies of the model, we observe
the said degeneracy of 1, 2 and 1 for the lowest states.

It should be stressed that while the two edge modes in the Creutz ladder cor-
respond to the absence/presence of a fermion on the left or right boundary, the
edges in the Kitaev model are single Majoranas [126], and populating the (single)
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edge mode in this model means recombining the two (possibly far away) edges
to form a single fermion. This is a highly non-local process. The presence of the
second Ising chain, however, permits a recombination of the two left-boundary
modes or of the two right-boundary modes, respectively, to build a localized
fermion. Differently stated: In the thermodynamic limit, the left- and right-edge
modes of the Creutz ladder do not communicate. They can be populated in-
dependently and both have zero energy. Two instances of the Ising model are
therefore necessary to construct these localized modes.
Having discussed the two models from an energy perspective, let us now iden-

tify equivalent observables. The particle number
∑
j,` nj,` of the Creutz ladder

translates into∑
j,`
nj,` =

∑
j,`
c†j,`cj,` =

∑
i

(i(r†j,1rij,2 − r
†
j,2rj,1) + 1). (54)

Note that this term resembles the one found in current descriptions (compare
Sec. 2.6).
In particular, in the limiting case ∆ε/t̃ � 4, both the Creutz ladder and

the Ising model are particle number-conserving. Depending on the prefactor of
the imbalance, this corresponds then to completely filled or completely vacant
models. In the opposite limit of total balance (∆ε = 0), we only know that∑
j 〈r
†
j,1rj,1 + r†j,2rj,2〉 = N , but all possible particle distributions between the

two legs contribute equally to the state.
The imbalance of the Creutz ladder (with ∆nj ≡ c

†
j,ucj,u − c

†
j,dcj,d) translates

to ∑
j

∆nj =
∑
j

r†j,1rj,1 + r†j,2rj,2 − 1 =
1
2
∑
j,n

σzj,n, (55)

i.e. to the sum of the transverse (paramagnetic) magnetizations of the two Ising
models.

3.2.2 Weakly-interacting regime

We now consider the model with Hubbard-like interactions for the first time. In
particular, we take a look at the regime of small interactions Vv � t̃, ∆ε and
study how these interactions alter the results of the non-interacting model. To
this end, we further explore the analogy of the Creutz ladder to the quantum
Ising model made in the section above.
Applying the canonical transformation (50) to the interaction term (39) yields

HHubb =
Vv
2
∑
j

[
r†j,1rj,1 + r†j,2rj,2 + ir†j,1rj,2 − ir

†
j,2rj,1 − 2r†j,1rj,1r

†
j,2rj,2

]
. (56)

For half-filling, the relation (54) entails 〈r†i,1ri,2 − r
†
i,2ri,1〉 = 0, simplifying the

Hamiltonian to

HHubb,hf =
Vv
2
∑
j

[
r†j,1rj,1 + r†j,2rj,2 − 2r†j,1rj,1r

†
j,2rj,2

]
. (57)
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The Jordan-Wigner transformation (52) translates this expression to a ferromag-
netic coupling between the two Ising models (53):

HHubb,hf =
Vv
4
∑
j

[
1− (σzj )1(σ

z
j )2
]

. (58)

Up to this point, the derivation has been exact: In all parameter regimes,
the imbalanced Creutz-Hubbard model can be understood as two coupled quan-
tum Ising chains. In the following, we will study the transverse ground state
magnetization of the individual Ising chains for different model parameters,
m(∆ε,Vv, t̃) = 〈σzj,n〉, in a mean-field approach. We therefore first note the ana-
lytical result for a simple Ising chain [127]:

M (α) = −

21−α2

πα (Π(α2,α)−K(α)) for α < 1

2α2−1
πα2 Π(1/α2, 1/α) for α > 1.

(59)

Here, we define M(α) ≡ m(∆ε,Vv = 0, t̃) and α = ∆ε/4t̃. Π and K are full
elliptical integrals of the first and of the third kind, respectively.
For weak interactions, Vv � t̃, we can treat the mutual effect of the chains

on each other through a mean-field decoupling which renormalizes the original
transverse magnetization term:

HπCH ≈
∑
j,n

(
−t̃σxj,nσxj+1,n +

∆ε− Vvmn̄(∆ε,Vv, t̃))
4 σzj,n

)
. (60)

In the effective field of the respective other subsystem, the critical point is there-
fore shifted. Using the solution for the magnetization of the non-interacting sys-
tem (59) and the symmetry between the two chains, we can determine a stable
solution for the self-consistent mean-field approach by iteratively solving

mn(∆ε,Vv, t̃) =M

(
∆ε− Vvmn̄(∆ε,Vv, t̃)

4t̃

)
. (61)

Fig. 8 compares the numerically found magnetizations for different interaction
strengths with this self-consistent mean-field prediction: The approximation de-
scribes the magnetization very accurately for considerably large interactions
(Vv ≈ t̃).

We can even go beyond the numerical approach, and solve the self-consistency
equation (61) for small Vv. We therefore assume for the critical magnetization
Mc =

2
π +O(Vv) and obtain to lowest order in Vv:

∆ε
t̃

= 4− 2
π

Vv
t̃
+O

(
V 2

v
t̃2

)
. (62)

The equation predicts a critical line separating the topological and the non-
topological phase in the weak-coupling limit. The red dashed line in Fig. 8 shows
its agreement with the numerical results (presented in Sec. 3.3).
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Figure 8: Exact density imbalances and mean-field magnetizations. For different
interaction strengths (from bottom to top: Vv/t̃ = 1, 2, 3, 4), the continuous
lines (purple) show the ground state imbalance (or equivalently, the mean-
field magnetization) 〈∆nj〉 = 〈σzj 〉 as obtained through MPS calculations on
a lattice with N = 256 sites. The dashed lines (red) are the analytical results
from a self-consistent mean-field approach. The approximative result remains
admissibly precise for rather large interactions. In orange, for comparison the
exact analytical result for the density imbalance (magnetization) at Vv = 0.

3.2.3 Strongly-interacting regime

In the limit Vv � t̃, the ground state of the system is described by a Mott
insulator phase in which double-occupancy of a rung is fully suppressed due
to the strong on-site repulsion. The effective model can then be understood in
analogy to the Heisenberg model which emerges in the strong-coupling limit of
the Hubbard model. The ground state is obtained through a second-order process
during which a rung of the ladder is occupied by two fermions. Introducing

T yj =
1
2
(
−ic†j,ucj,d + ic†j,dcj,u

)
, T zi =

1
2
(
c†j,ucj,u − c

†
j,dcj,d

)
, (63)

and using second-order degenerate perturbation theory [128], the effective model
can be written as

P†rH2
πCHPr

E1 −E0
= 1

4JN + J
∑
j

T yj T
y
j+1 + ∆ε

∑
j

T zj . (64)

Here, E1−E0 is the energy difference between the ground state and the first ex-
cited manifold, J = −8t̃2/Vv, and the Gutzwiller operator Pr = Πi(1−ni,uni,d)
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projects the kinetic part of the Hamiltonian onto the ground state manifold of
the Mott insulator. This orbital quantum Ising model predicts the existence of
two phases: for large imbalances a disordered orbital paramagnetic phase, which
we already encountered in Sec. 3.2.1, and for small imbalances a long-range or-
bital ferromagnetic phase. In addition, we expect a phase transition to occur
for

∆ε
t̃

=
4t̃
Vv

, (65)

as indicated by the yellow dashed line in Fig. 4.
For strong interactions, the effective Ising model (64) predicts two phases: a

symmetry-broken phase with long-range order [129]

limr→∞〈T yj T
y
j+r〉 =

1
4
(
1− h2

) 1
4 , (66)

where h = 2∆ε/|J | < 1, and a disordered phase (h > 1) with 〈T yj T
y
j+r〉 = 0. For

the non-interacting model, we find

〈T yj T
y
j+r〉 = 0, (67)

i.e. absence of long-range order. This demonstrates that the topological phase
for small interactions and the orbital ferromagnetic phase for strong interactions
cannot be connected adiabatically. Therefore we expect a interaction-induced
topological quantum phase transition for intermediate interactions. This is stud-
ied in the next section.

3.2.4 Intermediate regime

In the regime of intermediate interactions, the earlier approaches do not work
as neither the interaction term nor the hopping can be treated in a perturbative
fashion. In the following, we consider the model without imbalance and derive
an effective description that allows us to identify the critical point between the
topological and the orbital ferromagnetic phase, based on some simple assump-
tions.
As a first step, we rewrite the interaction Hamiltonian (39) in terms of the

Aharonov-Bohm cages (43):

VHubb =
N−1∑
j=2

timb
(
w†j−1,+ −w

†
j−1,−

) (
wj,+ +wj,−

)
+
∑
α=±

√
2timb

(
−l†w1,α − iαr

†wN−1,α

)
+ h.c.

(68)

The notation is motivated by the fact that the we want to understand the influ-
ence of interactions on the eigenstates of the balanced Creutz ladder. We find
that three distinct physical processes contribute in the plaquette picture,

VHubb = Vnn + Vpt + Vdt, (69)
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which we will analyze individually in the following.
The first contribution is a nearest-neighbor interaction

Vnn =
Vv
2
∑
α=±

(nln1,α + nrnN−1,α) +
Vv
4

N−1∑
j=2

∑
α,β=±

nj−1,αnj,β, (70)

where nj,α = w†j,αwj,α with α ∈ {+,−} are the number operators in the plaque-
tte basis, and nη = η†η with η ∈ {l, r} are the corresponding edge terms.
The effective repulsion between the fermions can be understood in a new

ladder scheme in which the two legs are given by the two flat energy bands with
positive/negative energy. In addition, we find a pair-tunneling term

Vpt = J̃
N−1∑
j=2

(
w†j−1,+wj−1,−

(
w†j,−wj,+ +w†j,+wj,−

))
+ h.c. (71)

where J̃ = −Vv/4. This term corresponds to an anti-correlated pair tunneling
along the rungs of neighboring sites. Finally, there is a density-assisted tunneling
term

Vdt = Td

N−1∑
j=2

(nj−1,+ + nj−1,− − nj+1,+ − nj+1,−)w
†
j,+wj,−

+ 2Td
(
nlw

†
1,+w1,− − nrw

†
N−1,+wN−1,−

)
+ h.c.

(72)

with Td = Vv/4. The first term describes an on-site tunneling under the con-
dition that there is a particle number imbalance between the nearest-neighbor
sites. Apart from this bulk term, there is also a contribution, which couples the
hopping on the outmost plaquettes to the edge modes.

Let us discuss the effect of these different contributions: While the correlated
hopping terms in Eqs. (71) and (72) modify the distribution of particles on the
rungs of the ladder, they will not change the distribution between neighboring
sites as all terms conserve the on-site occupation. Therefore, the nearest-neighbor
interaction term in Eq. (70) will only contribute a constant energy. Following
the same argumentation, the bulk contribution of the density-assisted tunneling
in Eq. (72) will be negligible due to the homogeneity following from the transla-
tional invariance of the bulk. The edge coupling, however, cannot be neglected
and will play a role in the explanation of the topological transition.
We can reshuffle the Hamiltonian and write HπCH = Hbulk +Hedge +Hb−e,

where we collect the bulk and edge contribution in Hbulk and Hedge, respectively,
and the coupling between edge and bulk in Hb−e. Defining an effective spinor-
basis

T̃ xj =
1
2
(
w†j,+wj,− +w†j,−wj,+

)
, T̃ zi =

1
2
(
w†j,+wj,+ −w

†
j,−wj,−

)
(73)

allows us to identify the bulk part of the Hamiltonian as yet another effective
quantum Ising model

Hbulk =
Vv
4 N +

N−1∑
j=1

4t̃T̃ zj +
N−1∑
j=2

4J̃ T̃ xj−1T̃
x
j . (74)
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Conceptually, this mapping is similar to the one performed in the strong coupling
limit (see Eq. (63)). We can go backwards and re-express the spin operators in
terms of a new set of spinless fermionic operators fi and f †i :

T̃ zj = f †j fj − 1
2 , T̃ xj = 1

2f
†
j eiπ

∑
l<j

f†
l
f
l + h.c. (75)

For periodic boundary conditions (fN = f1), we then obtain energy bands for
single-particle excitations

ε̃±(q) = ±ε̃(q) = ±2|J̃ |
√

1 + f̃2 − 2f̃ cos q (76)

with f̃ = 8t̃/Vv. It is easy to see that ε̃±(q = 0) = 0 for f̃ = 1 identifies the
critical point as Vv/t̃ = 8.

3.3 phase diagram and numerical study

In the previous section, we studied phases and transitions in the model with
analytical means. To complete the phase diagram evoked in Fig. 4, we now
present results of a numerical study with matrix product states (MPS). This
allows us to access also the strongly correlated regimes which are not accessible
to an analytical or perturbative investigation. Details of the numerical technique
can be found in App. A.4.

3.3.1 TI-oPM transition

As shown in Sec. 3.2.2, the mapping of the Creutz ladder to a pair of quantum
Ising models allows us to predict a critical line separating the topological insula-
tor from the orbital paramagnetic phase for weak interactions (see Eq. (62)). We
can use the density imbalance or equivalently the transverse magnetization of
the corresponding Ising models as an indicator for the phase transition. In partic-
ular, we determine the critical points for cuts through the parameter space with
fixed Vv/t̃ by studying the divergence of the susceptibility of the magnetization
χ∆n = ∂ 〈∆n〉/∂(∆ε/t̃) in Fig. 9.

Alternatively, we can study the behavior of the degeneracy of the ground state
for different fillings. To be precise, we define the one- and two-particle energy
gaps as

E∆ = lim
N→∞

1
2 [E(N + 2) +E(N − 2)− 2E(N)] , (77)

Eδ = lim
N→∞

[E(N + 1) +E(N − 1)− 2E(N)] , (78)

where E(x) is the ground state energy of the system with x particles. We observe
that a single particle which is added to (subtracted from) the half-filled model
will occupy (evacuate) a zero-energy edge mode in the topological phase. In the
non-topological phase, on the other hand, a particle added to the system will
occupy a mode in the upper energy band. Lifting it therefore costs a non-zero
energy E(N + 1)−E(N). This is reflected by the behavior of Eδ. The energy gap
E∆, on the contrary, is non-zero in any gapped phase, as in both the topological
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(a)

(b)

Figure 9: Paramagnetic susceptibility along the TI-oPM transition. We study
the divergence of the paramagnetic susceptibility χ∆n as an indicator of the
phase transition. (a) The susceptibility is shown for Vv/t̃ = 4 in finite chains
of length N = 8 (blue), N = 16 (yellow), N = 32 (green), N = 64
(red), N = 128 (violet) and N = 256 (brown). The inset presents the un-
derlying measured paramagnetic magnetization |∆n|. (b) Finite-size scaling
of the susceptibility peak parameters (yellow dots) to identify the critical
point in the thermodynamic limit. The blue dashed line is a fit of the form
∆εc(N) = ∆εc(1 + aN−1 + bN−2), yielding ∆ε = 1.857.



40 the imbalanced creutz-hubbard model

Figure 10: Energy gaps along the TI-oPM transition. For finite chains, we deter-
mine the single-particle gap Eδ (dashed lines) and the two-particle gap E∆
(continued lines). Eδ converges to zero in the topological phase due to the
presence of a zero-energy edge mode, and to a non-zero value in the param-
agnetic phase. E∆ is non-zero in the two phases; its gap-closing indicates the
critical point. Blue: N = 8, yellow: N = 16, green: N = 32, red: N = 64,
violet: N = 128.

and the non-topological system, at least one of the particles has to overcome the
energy gap. At the critical point, the gap closes. We can use these definitions to
identify a conventional insulator by E∆ = Eδ = 0 and the topological insulator
by E∆ 6= Eδ = 0. Indeed, Fig. 10 shows that the predicted behavior is observed.

The two approaches yield the critical points indicated by yellow stars in Fig. 4.
We observe that the mean-field approach (62) predicts the phase boundary well
for small interaction strength. Towards larger interactions, the actual critical
line deviates from the linear prediction towards larger imbalances.

3.3.2 oFM-oPM transition

For the transition between the orbital ferromagnetic and the paramagnetic phase,
we have developed an effective quantum Ising model description in Sec. 3.2.3 pre-
dicting a critical line ∆ε

t̃
= 4t̃

Vv
. To test this prediction, we calculate observables

of the effective Ising model, namely the paramagnetic magnetization 〈T zj 〉 and
the ferromagnetic magnetization 〈T yj 〉 (63). As the determination of the latter
can suffer from incomplete symmetry breaking (superpositions of the two pos-
sible symmetry-broken states, we instead measure the zero-momentum orbital
magnetic structure factor [130]

STyTy (k) =
1
N2

∑
l,j

eik(l−j)
〈
T yl T

y
j

〉
. (79)
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(a)

(b)

Figure 11: Paramagnetic susceptibility and ferromagnetic magnetization
along the oFM-oPM transition. (a) Paramagnetic susceptibility for a
cut through the phase diagram at Vv = 16.0 and different system lengths.
The inset shows a fitted finite-size scaling of the susceptibility maxima to
identify the critical imbalance: ∆εc(N) = ∆εc(1+ aN−1 + bN−2) and yields
∆εc/t̃ = 0.266. (b) Ferromagnetic magnetization along the same line. Blue:
N = 8, yellow: N = 16, green: N = 32, red: N = 64, violet: N = 128.
The dashed black lines show the analytical TD-limit prediction for a quan-
tum Ising model, where we fixed the critical point at ∆εc/t̃ and the maximal
magnetization 〈T yi 〉max = 0.48. For comparison, the effective Ising model (66)
predicted ∆εc/t̃ = 0.25 and 〈T yi 〉max = 0.5.
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Figure 12: Susceptibility of the paramagnetic magnetization along the TI-
oFM transition. The measured susceptibility ∂|〈T̃ zi 〉|/∂(Vv/t̃) is shown for
chains of different length in the balanced Creutz-Hubbard ladder (∆ε/t̃ = 0).
The inset shows the scaling of the maxima position with system size. An
extrapolation of the data using Vv,c,num(N) = Vv,c,num(1 + aN−1) yields
(Vv/t̃)c,num = 8.003. This agrees well with the theoretical TD-limit result
of a quantum Ising model (Vv/t̃)c,num = 8 (black dashed line in main plot).
Blue: N = 8, yellow: N = 16, green: N = 32, red: N = 64, violet: N = 128,
brown: N = 256.

We find that the two quantities show the expected behavior of a quantum Ising
transition, with a renormalization of the critical point and the maximal ferro-
magnetic magnetization as the only differences (see Fig. 11). The prediction of
the effective model and the numerical results (yellow stars in Fig. 4) agree well
even for moderate interaction strengths.

3.3.3 TI-oFM transition

For the transition between the topological insulator and the orbital ferromagnet,
we determined a critical point at Vv/t̃ = 8 in the balanced model (∆ε/t̃ = 0) in
Sec. 3.2.4. The effective model (74) identifies the paramagnetic susceptibility as a
valid indicator of the transition (Fig. 12). Indeed, we observe that the divergence
of this quantity continues to indicate a transition in the model with imbalance.
This allows us to determine the critical line between topological insulator and
orbital paramagnet, shown by stars in Fig. 4.

3.3.4 Conformal field theories of the critical lines

An alternative approach to understand the nature of quantum phase transi-
tion (in addition to the conventional study of critical scaling of observables)
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Figure 13: Entanglement entropy scaling and central charges of the various
transition lines. The scaling of the entanglement entropy with respect to
size of the bi-partitions is studied for the three transitions in the model:
TI-oFM transition (blue, ∆ε/t̃ = 4.0, Vv/t̃ = 1.857, N = 128), oFM-oPM
transition (green, ∆ε/t̃ = 16.0, Vv/t̃ = 0.266, N = 128) and TI-oPM transi-
tion (yellow, ∆ε/t̃ = 0.0, Vv/t̃ = 8.0, N = 128). The dashed lines present fits
in the range N/4 < l < N/2 to identify the central charge c in Eq. (80). The
numeric results cTI−oFM = 1.003, coFM−oPM = 0.524 and cTI−oPM = 0.503
agree well with the expected values of 1, 1/2, 1/2.

is the study of quantum-informational features. A quantity of particular inter-
est in this context is the so-called entanglement entropy S(l) = −Tr{ρl log ρl},
which can be extracted in a bi-partition after site l from the density matrix
ρl = TrL−l{|εgs〉 〈εgs|} where |εgs〉 is the ground state. For a critical system with
open boundary conditions, the entanglement entropy links directly to the central
charge c of the conformal field theory underlying the critical phase [17, 18]

S(l) =
c

6 ln
(2L
π

sin πl
L

)
+ const. (80)

As the entanglement entropy is a conceptual building block of tensor networks,
it is easily accessible in the numerical simulation (compare App. A.1.1).

For the weak-coupling limit, we argued that the phase transition can be de-
scribed by two instances of the Ising model. Due to the fact that the critical
point in a single quantum Ising model has a conformal charge c = 1

2 [131], we
therefore expect a central charge c = 1

2 + 1
2 = 1 for the transition in the free

imbalanced Creutz ladder. An alternative perspective is the following: In the
non-interacting limit, the model at the critical point can be understood as a
massless Dirac fermion with central charge c = 1 (compare also Sec. 4.1.1).
In the strong-coupling limit, we found an effective description through an-

other quantum Ising model, predicting a central charge c = 1
2 . Finally, for the

intermediate regime, we understood the relevant physics explaining the transi-
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tion between topological insulator and ferromagnetic phase by yet another Ising
model, hence again we expect c = 1

2 . An analysis of the entanglement entropy
scaling on the critical lines confirms all three predictions (see Fig. 13).
A curious observation is the following: The central charge c = 1 reigning at

weak interactions seems to split into two massless Majorana fermions c = 1/2
at the tri-critical point (compare Fig. 4). The Majorana fermions then control
the critical properties of the other two critical lines. As the charge is conserved
in the tri-critical point, c = 1/2 + 1/2 = 1, the two Majoranas that paired to
form the Dirac fermion become unpaired.

3.4 outlook: edge behavior and quantum impurity pictures

The understanding of the transition from the topological to the trivial phases can
be further advanced by studying how the bulk mediates between the localized
edge modes and leads to their disappearance at the critical point. The following
argumentation was brought forward by a co-author of Ref. [23], A. Bermudez.
We outline it here to complete the picture of the Creutz-Hubbard model.

non-interacting system and fano-anderson physics. The free
part of the Hamiltonian in plaquette notation (44)+(46) can be rewritten as

H = Hbulk +Hedge +Hb−e, (81)

where Hbulk contains all the bulk terms of type ω†i,σωj,τ , Hedge contains the zero-
energy edge modes l†l and r†r, and Hb−e contains the coupling terms between
bulk and edges of type l†ω1,σ, r†ωN−1,σ, etc.
Diagonalizing the bulk part of the Hamiltonian leads to the energy bands

in Eq. (41) and propagating wave solutions for periodic boundary conditions.
These propagating modes can be superposed to form standing-wave solutions
γ±(qn) of the problem with open boundary conditions (compare App. C.2). In
the diagonal basis of the bulk, the bulk-edge coupling reads

Hb−e =
∑
n,α

(gln,αl
† + grn,αr

†)γα(qn) + h.c. (82)

with (here unspecified) coupling constants gl/rn,α.
In this notation the system can be interpreted as a type of Fano-Anderson

model [132, 133]. The original model describes the coupling of a localized state
of fixed energy εc (an impurity) to a continuum of states, i.e. some energy band
ω1 ≤ εk ≤ ω2. The solution then depends on whether the energy of the impu-
rity is within the band. However, not the original impurity energy εc has to be
considered, but the (a-priori unknown) energy of the hybridized particle ε̃c. If
ω1 ≤ ε̃c ≤ ω2, the renormalized state lies within the energy band and no local-
ized state exists in the system as the continuum particles might hop on and off
the impurity site. On the other hand, if the energy is outside the band, a true
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localized state does exist. The energy of the dressed impurity then fulfills the
self-consistency condition [134]

ε̃c = εc +
∑
k

A2
k

ε̃c − εk
, (83)

where Ak is the coupling amplitude between the continuum and the impurity
state.
The analogy to our model is straight-forward. A slight difference is the pres-

ence of two bands and two impurities in the present setup. The hybridization
can alter the modes l and r through shifting ∆εη and broadening Γη, such that
εη = 0→ ∆εη − iΓη/2. However, the first effect is prevented by the particle-hole
symmetry of the problem, and the broadening, which is dependent of the spectral
density of the bulk bands, evaluates to zero as the bulk bands remain gapped
for ∆ε < 4t̃. Regardless, another effect, a bulk-mediated tunneling between the
edges can be derived which is described by the effective Hamiltonian

He−e = teer
†l+ h.c. with tee =

∑
n,α

grn,α(g
l
n,α)

∗

αε(qn)
. (84)

For gapped bulk bands, this edge-edge tunneling decreases exponentially with
the distance of the edges, such that it is fully suppressed in the thermodynamic
limit for ∆ε < 4t̃. At the critical point, however, the band gap vanishes and the
former topological edge modes are no longer exponentially localized.

interacting system and bulk-mediated edge-edge interac-
tions. In Secs. 3.2.4 and 3.3.3, we have studied the interaction-induced tran-
sition between a topological and a trivial phase. The derivation of the critical
point was done by analyzing the gap-closing in the dispersion relation and the
behavior of local order parameters. However, the previous analysis did not reveal
the topological character of the transition. For the free model, we saw above that
the on-set of the topological phase can be understood by looking at the effec-
tive theory of the edges. In the following, we qualitatively argue that a similar
interpretation can be applied to understand the interaction-induced transition.
In particular, due to the symmetry ε̃α(+q) = ε̃α(−q) the dispersion relation

(76) allows the construction of standing wave solutions γ̃±(qn) which respect the
boundary condition fN = f0 = 0 and are constructed here as Bogoliubov modes
from the earlier operators f(qn) and f †(−qn) (see again App. C.2).
In close analogy to Eq. (82), the bulk-edge coupling in the interaction Hamil-

tonian (68)

Hb−e = Vv(nlT̃
x
1 − nrT̃ xN−1), (85)

takes the form

Hb−e =
∑
n,α

(g̃ln,αl
†l − g̃rn,αr

†r )γ̃α(qn) + h.c. (86)

Again, this coupling to the dispersive bulk bands can in principal have the effect
of shifting and dephasing the zero-energy edge modes, εη = 0 → ε̃η = ∆εη +
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iΓ̃η/2, and mediate an edge-edge interaction through spin-wave excitations of
the bulk. For Vv < 8t̃, the dephasing is made impossible due to the vanishing
spectral density at the energy of the edge modes. The effect of level-shifts and
edge-edge interactions can be summed up as

He−e = ∆εlnl + ∆εrnr + Ueenlnr (87)

with

∆εη = −
∑
n,α

∣∣∣g̃ηn,α

∣∣∣2
ε(qn)

, Uee =
∑
n,α

g̃ln,αg̃
r
n,α

ε(qn)
+ h.c. (88)

Unlike for the free model, there is no particle-hole symmetry preventing a level-
shift here, which then depends on the filling of the Bogoliubov-levels for the bulk
ground state.
The effective model allows the following explanation for the phase transition:

The effective interaction in Eq. (87) cannot have an effect as for half-filling the
two edge-modes are not populated simultaneously. The energy shift ∆εη cannot
destroy the topological degeneracy as ∆εl = ∆εr and a dephasing does not take
place as long as the Bogoliubov excitations are gapped. This is no longer the
case at Vv = 8t̃: The edge modes are then not localized excitations anymore and
the topological nature is destroyed.



4
CURRENT BEHAVIOR OF
INTERACTING WEYL FERMIONS ON A RING

In this chapter, we explore the current response of interacting Weyl fermions (i.e.
massless relativistic fermions) in one-dimensional ring traps. We use a geometry
similar to the Creutz ladder presented in the previous chapter to mimic the linear
dispersion of such particles in a lattice-discretized setup. Different to the earlier
study, here we consider a periodic lattice to model a one-dimensional ring and
allow for different kinds of interactions. We study the response of the currents
flowing in the ring with respect to these interactions.

Similar to the dissipation-less currents observed in superconducting rings [135–
137], it was shown that normal metal rings at extremely low temperatures display
a persistent current when threaded by a magnetic flux [138]. Although very
small, the signal was observed experimentally in stacks of mesoscopic copper
rings [139], in single GaAs loops [140], in gold [141] and in aluminum rings [142].
The effect is related to the fact that, if the phase coherence length of the electrons
extends beyond the ring-circumference [143], a magnetic flux through the ring is
perceived by the electrons as a non-gaugeable Aharonov-Bohm phase [144]. This
is the case at zero temperature. For small rings, the effect persists at sufficiently
low finite temperature and with weak static disorder.
Beyond condensed matter realizations, ring-shaped setups have also attracted

the attention of the cold atom community. Gases of dipolar atoms can be confined
and rotated through the quadrupole magnetic field of circular current carrying
wires [145, 146]. In an alternative setup, Bose-Einstein condensates are confined
in a toroidal geometry through an optical potential of Gaussian laser-beams [147,
148]. In such experiments, a persistent flow of the BEC for more than 40 seconds
was reported. In addition, the latter experiment demonstrated the possibility of
creating a tunable weak link which can control the current in a similar fash-
ion to superconducting quantum interference devices (SQUIDs) and suggested
the emergence of vortex-anti-vortex pairs at a critical velocity. In recent years,
the setup was further advanced by introducing rotating weak links to induce
super-currents through stirring [149, 150] or through artificial gauge fields (see
Sec. 2.5). The decay behavior was studied with two-component gases [151], and
the quantization in the current-phase relation was reported [152]. Theoretical
studies have addressed the influence of interactions [153, 154].
The earlier results in one-dimensional setups relate to massive, non-relativistic

particles. Our realization of Weyl fermions, on the contrary, requires a linear dis-
persion, which can be modeled using a lattice discretization. In two dimensions,
effective massless particles (or excitations) occur in form of Dirac cones [155]
at the Fermi level of graphene, and can be imitated in artificial honeycomb lat-
tices [156]. In cold atoms, advances in this direction have been made by the
realization of triangular and hexagonal lattices [157, 158], the controlled cre-
ation, movement and merging of Dirac points in Fermi gases with a tunable
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honeycomb lattice [38] and the experimental realization of the topological Hal-
dane model [159]. In one dimension, ring-shaped optical lattices can be obtained
using spatial light modulators (SLM) [160] or co-propagating Laguerre-Gauss
beams, i.e. light beams carrying angular momentum [161].
Our particular interest in fermions with linear dispersion stems from their

unique electromagnetic properties. For graphene-like structures, a large diamag-
netic response was predicted at half-filling [162–164] and zero-response elsewhere.
Interactions which are commonly associated with a suppression of a diamagnetic
response lead to interesting features such as a paramagnetic response in doped
samples, and hence the concept of many-body orbital paramagnets [165, 166]. Dif-
ferent suggestions for the observed behavior have related it to the breaking of
Galilean invariance [166], lattice and pseudo-spin effects [167, 168], topological
features [169, 170] and to quantum metric tensor [171]. The recently discovered
Weyl semi-metals and Fermi arc states [172–175] represent a three-dimensional
analog of graphene and further motivate the investigation of Weyl fermions in
different dimensions.
Here, we study a ring-shaped lattice model that displays the linear dispersion

of Weyl fermions. The model is a particular fixed-parameter version of a Creutz
ladder and therefore similar to the one in the previous section. In this chapter,
however, we do not study topological properties, but we are interested in the
so-called Drude weight [143] which characterizes the dc-conductivity of the sys-
tem. We assume different types of interactions (of Hubbard on-site and nearest-
neighbor type) and make extensive calculations of the conductivity for different
particle densities and therefore employ both analytical techniques (perturbation
theory) and tensor network calculations. For exclusive on-site interactions, we
show that the Drude weight of the interacting Weyl fermions displays a similar
behavior as known from other setups, in particular the Hubbard model: The dia-
magnetic response of the current is suppressed with growing interactions. This
situation is completely altered when allowing for nearest-neighbor interactions
which are asymmetric in the sense that they are different for the different inter-
nal states (of the pseudo-spin) of the particles. We show that in this case, the
diamagnetic current shows an exotic interaction-driven enhancement.
We proceed as follows: We first introduce the circular lattice model which is

in the focus of our study (Sec. 4.1). We motivate the model through a derivation
from the Dirac Hamiltonian describing relativistic fermions in quantum field
theory (QFT) and discuss its relevance from a topological insulator point of
view. We then turn to the response of a ring to a magnetic flux (Sec. 4.2). We
discuss the relation between flux and current and show a derivation of current-
current responses and electrical conductivity using linear response theory. In
particular, we introduce and contextualize the so-called Drude weight. In Sec. 4.3
we explain the physics of the non-interacting system. We then demonstrate how
the effect of weak interactions can be tackled through a perturbation theory
approach (Sec. 4.4). In Sec. 4.5, we present our numerical results for different
combinations of on-site and nearest-neighbor interactions and compare them to
the perturbation theory. To further underline the universality of the setup, we
briefly discuss the scaling in the continuum and thermodynamic limit (Sec. 4.6).
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Figure 14: Weyl fermions on a ring lattice: hopping and interaction terms.
Schematic view of the periodic ladder geometry used to model the dispersion
relation of Weyl fermions. The insets show the tunneling terms appearing in
the Creutz model (90) and the different types of studied interactions (96).

Due to the periodic boundary conditions needed for the description of the
ring, numerical calculations using standard MPS techniques become challenging.
We therefore employ binary tree tensor networks, which better account for the
geometry. Details on the method are given in App. A.5. Some specifics of possible
cold atom implementations are discussed in App. B.2.2. The results presented
in this chapter have been published in [24].

4.1 model and derivation

In this section, we introduce the model under consideration. We first present
the Hamiltonian and discuss its features. In Sec. 4.1.1, we take a QFT perspec-
tive to explain the origin of the model and demonstrate its discretization. We
then discuss the same model from the condensed matter perspective of topolog-
ical insulators (Sec. 4.1.2). In Sec. 4.1.3, we explain how interactions enter the
picture.

The Hamiltonian describing the physics of our system is given as

H = Hkin +Hint (89)

with a kinetic contribution Hkin and an interaction term Hint. The first term is
similar to the imbalanced Creutz ladder introduced in the previous chapter (36)
and given by

Hkin =
L∑
j=1

[c†j+1(itσz − gσx)e
iϕcj + h.c.]

︸ ︷︷ ︸
Hkin,‖

+
L∑
j=1

[m̃c†jσxcj + h.c.]

︸ ︷︷ ︸
Hkin,⊥

, (90)
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Figure 15: Dispersion relation of a Weyl fermion. The dashed dark red line shows
the linear dispersion of a Weyl fermion, which results from the masslessness of
the theory. A naive attempt to mimic this dispersion on a lattice (m = g = 0)
leads to fermion doubling (light red): Apart from the linear behavior around
k = 0, another Dirac-point is found at k = ±π. By adding additional terms
following the Wilson prescription (t = g = m̃), we can get rid of this spurious
discretization effect.

where we choose a slightly different notation, and explicitly distinguish the ki-
netic terms that move a particle along the ring (Hkin,‖) or not (Hkin,⊥). The
fermionic operators are two-component spinors cj = (cj,↑, cj,↓)T and ↑ and ↓
denote the internal states. Particles can hop along the legs of this ladder with
hopping parameter t (and thereby pick up a phase ±π

2 → exp(±iπ2 ) = ±i) or hop
diagonally changing the site and the internal state simultaneously (inter-chain
hopping g). In contrast to the model in the previous chapter, there is no imbal-
ance term but instead hopping along the rungs of the ladder, i.e. a spin-flipping
term m̃ (see Fig. 14).
It is crucial to note here that the Hamiltonian possesses periodic boundary

conditions (cL+1 = c1) and our setup therefore has a ring-shaped geometry.
A magnetic flux Φ threading the ring translates into a uniform vector potential
along the ring reflected by a Peierls phase ϕ = (2π/L)(Φ/Φ0) that particles pick
up when hopping from one site to a neighboring one. The constant Φ0 = h/e
is called the flux quantum. Alternatively, in the setup of cold atoms, we can
consider the phase as the effect of an artificial gauge field (compare Sec. 2.5).
The Fourier transform of this Hamilton reads

Hkin =
∑
k

c†k

{
t sin(k̃a)σz +

[
m̃− g cos(k̃a)

]
σx
}
ck, (91)



4.1 model and derivation 51

where k ∈ {−π
a
(L−1)

2L , . . . ,− 2π
La , 0, 2π

La , . . . , πa} and k̃ = k + ϕ/a incorporates the
shift induced in the momenta by the phase ϕ; a is the lattice spacing. If we
choose the parameters t = m̃ = g, the dispersion relation reads

ε±(k) = ∓2t sign(ka) sin
(
ka

2

)
. (92)

This dispersion displays a single Dirac-Weyl crossing at k = 0 and ε(k) ≈ ±h̄vFk
with vF = ta/h̄ for k � 2π/a (see Fig. 15). For later use, we note the operators
in the eigenbasis, i.e. with Hkin =

∑
k εs(k)d

†
k,sdk,s,

d†k,s =
∑
σ

Nσ
k̃,sc
†
k,σ, (93)

where s = ± is the index of the valence (−) or the conduction band (+) and the
form-factors are given as

N↑k,s = sgk/[2(1− sfk)]1/2 and N↓k,s = (1− sfk)/[2(1− sfk)]1/2 (94)

with gk = sign(ka) sin(ka/2) and fk = sign(ka) cos(ka/2).

We consider interactions between the originally free fermions (90),

Hint =
∑
σ,σ′

∑
i,j
vσ,σ′
ij ni,σnj,σ′ (95)

with

vσ,σ′
ij =

1
2 (Uδi,jδσ̄,σ′ + V δj,i±1δσ,σ′ + Ṽ δj,i±1δσ̄,σ′), (96)

where σ̄ labels the opposite spin to σ (see again Fig. 14). The first term describes
on-site Hubbard interactions acting between fermions with different pseudo-spin.
The other two terms describe nearest-neighbor interactions between particles
with the same (V ) or with different spin (V ′). We will see later that the presence
of the nearest-neighbor terms significantly alters the physics of the model if they
are asymmetric, i.e. V − V ′ 6= 0.

4.1.1 Relativistic QFT perspective

We introduced the dispersion relation (92) as that of a Weyl fermion. To moti-
vate this notion, we present now a derivation of the Hamiltonian (91) from the
perspective of relativistic quantum field theory.
In QFT, the dynamics of relativistic fermions is described by the Dirac equa-

tion, which in Hamiltonian notation reads [176]

HD =
∑
µ,ν

∫
Λd

ddk
(2π)d Ψ†µ(k) [hD(k)]µν Ψν(k). (97)

Here Ψ(k) and Ψ†(k) are the spinor fermionic field operators, which fulfill
{Ψµ(k), Ψ†ν(k′)} = (2π)dδµ,νδ(k− k′) and

hD(k) = h̄c
d∑
i=1

αiki +mc2β. (98)
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Furthermore, m is the particle mass, c is the speed of light, and αi and β are
the Dirac matrices. Due to the specifications of the latter, one can determine
the dispersion relation as εD,±(k) = ±c

√
h̄2k2 +m2c2. In the particular case of

particles with m = 0, the dispersion becomes linear, εD,±(k) = ±ch̄ |k|. Such
massless fermions are the afore-mentioned Weyl fermions.
To discretize the field, we can introduce a Bravais lattice with lattice constant

a, Λ = {r : ri/a ∈ Z ∀ 1 ≤ i ≤ d}, and obtain in real space

H̃D =
∑
r∈Λ

ad
(
ih̄c

2a

d∑
i=1

Ψ†(r)αiΨ(r + aui) +
mc2

2 Ψ†(r)βΨ(r) + h.c.
)

, (99)

where {ui} are the unit vectors of the lattice.
However, when transforming this discretized Hamiltonian back to momentum

space one obtains H̃D =
∫

BZ
ddk
(2π)dΨ†(k)h̃D(k)Ψ(k) when integrating over the

Brillouin zone BZ = (−π/a,π/a]d, and

h̃D(k) =
h̄c

a

∑
i

αi sin(kia) +mc2β, (100)

which is obviously different from the original expression (98).
To discuss the ramifications of the discretization, we now focus on the case

of a one-dimensional model, d = 1. This allows us to simplify the notation and
to account for the specifics of our model. If we index the sites of the Bravais
lattice and introduce second quantization, Ψ(x) → (ci,↑, ci,↓)T/

√
a, the lattice-

discretized Hamiltonian (99) becomes

H̃D =
∑
i

ih̄ca

2 c†iαici+1 +
mc2

2 c†iβci + h.c. (101)

and, after Fourier transformation,

H̃D =
∑
k

c†kh̃D(k)ck with h̃d(k) =
h̄c

a
α1 sin(ka) +mc2β. (102)

While this expression correctly reproduces the energy for long wavelength
k � π/a, it yields a second point in the Brillouin zone, k = π/a, with a similar
linear dispersion (see also Fig. 15). This is problematic as these fermion doublers
will couple to the Dirac QFT at k = 0 as soon as interaction terms are included
in the model. Due to the Nielsen-Ninomiya theorem [177, 178], fermion doubling
is an inevitable process in discretization if all symmetries of the original setup
are to be conserved. However, by giving up the chiral symmetry, we can follow
the prescription by Wilson [179] and introduce an additional mass-shift term
c2δm

2 c†iβci+1 in the Hamiltonian (101). In the Fourier-transformed model, this
results in

H̃D =
h̄c

a
α1 sin(ka) + (m+ δm cos(ka))c2β. (103)

In particular, to have a single massless fermion at k = 0, we can set δm = −m.
We can then shift the mass of the particle at k = π/a to a very high energy on
the order of the cut-off by setting 2mc2 = h̄c/a⇒ m = h̄/2ac.
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By identifying the Dirac matrices in terms of Pauli matrices as α1 = σz and
β = σx, one can identify the terms in our model (91) (without a field, ϕ = 0) with
their field-theoretic counterpart. The hopping along the legs of the ladder ±it
corresponds to the kinetic energy, the vertical hopping identifies the mass term
as m̃ = mc2, and the diagonal hopping corresponds to the mass-shift (g = δm c2).
By then setting m̃ = g, we make the theory massless at k = 0 and the additional
condition t = m̃ = g moves the mass of the particle at k = π/a to high energies.
Our parameters relate to the continuum model as t = m̃ = g = h̄c/a.
To complete the derivation of our lattice model from QFT, we note that

the effect of a an electromagnetic potential would enter as a momentum-shift
k→ k + e

cA in the Dirac Hamiltonian (98) and propagate through the deriva-
tion to the lattice discretization (103). The effect is therefore in one-to-one agree-
ment with the one that we have incorporated into our lattice model through the
Peierls substitution (compare Eq. (91)).

4.1.2 Topological insulator perspective

From a condensed matter perspective, one can also appreciate the necessity of
avoiding fermion doubling. We note once again the similarity between the Creutz
Hamiltonians in this (91) and in the previous chapter (40). Similar to the earlier
model, we can identify parameter regimes in our model which are associated
with different winding numbers (compare Eq. 42). Namely, we can identify a
phase with t = g < |m̃| which corresponds to a topological insulator, and a
phase with t = g > |m̃|, which is topologically trivial. The parameter choice
t = g = m̃, which is in the focus of our attention, therefore indicates the critical
point between these two gapped phases. Notably, such a critical phase occurs at
the surface of two-dimensional topological insulators [180].
If we had followed the derivation from the continuum without taking care

of the fermion doubling, we would have wound up with the Hamiltonian (100),
which is equivalent to the choice g = 0 in our model. In that case, the winding
number (or the Zak phase) evaluates to zero for both t > m̃ and t < m̃, indicating
two topologically trivial insulators, and the lattice model would have failed to
reproduce the topological invariant of a single massive QFT. This is due to the
fact that the fermion doubling yields two Dirac points at k = 0 and k = π/a
that yield contributions with opposite signs that cancel. The Wilson prescription
gets rid of this spurious effect.

4.1.3 Interactions

The on-site interactions in Eq. (95) can be derived from contact interactions
between the Weyl fermions in the field-perspective,

Hint,on =
∫

dx
∫

dx′
∑
µ,ν

ψ†µ(x)ψ
†
ν(x
′)

[
u

2 δ(x− x
′)δµ,ν̄

]
ψν(x

′)ψµ(x). (104)
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Discretization of the lattice casts these into

Hint,on =
u

a

∑
j

c†j,↑cj,↑c
†
j,↓cj,↓ =

u

a

∑
j

nj,↓nj,↑, (105)

where again, we associated the spinor components of the relativistic particles
with the internal degree of freedom on our lattice, Ψ(x = ja)→ (cj,↑, cj,↓)T/

√
a

and substituted
∫ La

0 → a
∑L
j=1. We see that we can associate the contact inter-

action in the continuum model with the Hubbard interactions of our lattice, if
we require U = u

a .
A field-theoretic motivation of the nearest-neighbor interactions is more intri-

cate. Let us assume that

Hint,nn =
∫

dx
∫

dx′
∑
µ,ν

[
v

2δµ,ν +
v′

2 δµ,ν̄

]
δ′(x− x′)ψ†µ(x)ρν(x′)ψµ(x). (106)

For convenience, we introduced a density operator ρσ(x) = ψ†σ(x)ψσ(x). We can
now use the identity f(x)δ′(x) = f ′(x)δ(x) and again discretize:

Hint,nn =
∫

dx
∑
µ,ν

[
v

2δµ,ν +
v′

2 δµ,ν̄

]
ψ†µ(x)ρ

′
ν(x)ψµ(x) (107)

= lim
a→0

a
∑
j

∑
µ,ν

[
v

2δµ,ν +
v′

2 δµ,ν′

]

ψ†µ(ja)

(
lim
b→0

ρν(ja+ b) − ρν(ja)
b

)
ψµ(ja).

(108)

If, in particular, we choose a = b in the discretized model, we obtain

Hint,nn =
∑
j

∑
µ,ν

[
v

2a2 δµ,ν +
v′

2a2 δµ,ν′

]
(nj,µnj+1,ν − nj,µnj,ν) . (109)

A comparison with our lattice Hamiltonian (95) shows that we can associate
V = v

a2 and V ′ = v′

a2 . Additionally, the above expression renormalizes the on-
site interactions such that effectively U = 1

a (u−
v′

a ).

4.2 persistent currents and drude weight

In the previous section, we have introduced a fermionic lattice model that cap-
tures the physics of relativistic, massless fermions. Due to the ring-shaped geom-
etry of our setup, a magnetic flux piercing the ring leads to an Aharonov-Bohm
effect: Independent of whether the magnetic field extends to the ring, the corre-
sponding gauge field has a physical effect on the fermions on the ring (compare
Sec. 2.5). This is reflected by a (Peierls) phase in the tunnelings in the lattice
Hamiltonian.
Here, we want to develop an understanding of how this gauge field can be

interpreted physically and how it affects the dynamics of the particles on the
ring. We therefore study the linear response to the gauge potential. We will see
that this response manifests as a current flowing in the ring. This is interesting,
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as the system does not exhibit a potential difference that drives the current, and
leads to the notion of persistent currents (compare Sec. 2.6). We can then con-
ceive two scenarios: One possibility is that the current counter-acts the external
magnetic field. Due to the fact that the circular flow of a current is equivalent
to an orbital magnet, it is called diamagnetic. Alternatively, the current can en-
hance the external field, and is then named paramagnetic. The Drude weight D
quantifies this finding.
To have a pedagogical approach to the matter, we first introduce the basic con-

cepts of linear response theory (LRT) in Sec. 4.2.1. We then apply the LRT to the
model at hand and show how the Drude weight quantifies the current response
to a (time-independent) gauge field (Sec. 4.2.2). We also demonstrate that the
Drude weight can be directly linked to the flux-dependence of the ground state
energy, which will be of high relevance for the later perturbative and numerical
study.

4.2.1 Basics of linear response theory

Consider a system in the Heisenberg picture with Hamiltonian H0 and a pertur-
bation caused by some external parameter φ(t) coupling to an operator B of the
system. The perturbation Hsource = φ(t)B(t) is turned on at some point t0 in
time, i.e. φ(t) = 0 for t < t0. The full Hamiltonian then reads

H = H0 +Hsource. (110)

The influence on some observable A of a slight perturbation (i.e. in first order)
can be written as 〈A(t)〉 = 〈A(t)〉unpert + 〈δA(t)〉. We are interested in the
proportionality factor χ between the linear perturbation and the perturbing pa-
rameter φ, 〈δA(t)〉 =

∫
dt′ χAB(t, t′)φ(t′). χ is called the susceptibility. 〈δA(t)〉

can be determined through the so-called Kubo formula [181]

〈δA(t)〉 = − i
h̄

∫ t

−∞
dt′ 〈[A(t),B(t′)]〉φ(t′)

= − i
h̄

∫ ∞
−∞

dt′ θ(t− t′) 〈[A(t),B(t′)]〉φ(t′).
(111)

We can therefrom extract the susceptibility as

χAB(τ ) = −
i

h̄
〈[A(τ ),B(0)]〉 θ(τ ), (112)

where τ = t− t′ and θ is the Heaviside step-function. We note that the result
can be Fourier-transformed to obtain the susceptibility in spectral form as

〈δA(ω)〉 = χAB(ω)φ(ω) with χAB(ω) = lim
ε→0

∫ +∞

−∞
dt ei(ω+iε)tχAB(t) (113)

and observe that it is “local” in ω: A system reacts to a perturbation with a given
frequency with a response at the same frequency. At T = 0, the susceptibility
can be decomposed in the exact eigenstates decomposition

χAB(ω) =
1
h̄

lim
ε→0

∑
n6=0
〈0|A|n〉 〈n|B|0〉

[ 1
ω+ ∆εn + iε

− 1
ω− ∆εn + iε

]
(114)
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where ∆εn = (En − E0)/h̄ and En are the eigenenergies of the unperturbed
system. The infinitesimal ε guarantees the convergence for t > 0.

Without going into detail, we note that any response χ can be split into a
real component χ′ and an imaginary component χ′′ such that χ = χ′+ iχ′′. The
imaginary part is called the dissipative (or absorptive) part as it identifies the
capacity of a system to absorb energy at a given frequency. The real part is
named the reactive part. For later use, we note

χ′AB(ω) =
1
h̄

∑
n6=0
〈0|A|n〉 〈n|B|0〉 P

( 2∆εn
ω2 − ∆ε2n

)
(115)

where we use the Dirac relation [182]

lim
η+→0

1
x− a+ iη

= P
( 1
x− a

)
− iπδ(x− a), (116)

with the Cauchy principal value P.

4.2.2 Linear response theory and Drude weight

Let us now turn back to the problem at hand: a ring pierced by a magnetic flux.
In the kinetic part of our lattice Hamiltonian (90), we included the magnetic flux
through the Peierls phase . Let us assume for a moment a more general gauge
field A(t) = A(t)eϕ and therefore

Hkin,‖ =
L∑
i=1

[c†i+1(itσz − gσx)e
iϕ(t)ci + h.c.] (117)

with ϕ(t) = ea
h̄ A(t) =

2π
L

Φ(t)
Φ0

. Such a gauge field corresponds to an electric field
E = Ȧ(t) that drives a current. We want to determine the optical conductivity
σ which establishes the relation between this electric field and the current, and
which in its most general form is defined as [134]

Iα(r, t) =
∫

d3r′
∫ t

−∞
dt′ σαβ(r− r′, t− t′)Eβ(r′, t′). (118)

Here, we consider only one-dimensional systems and the conductivity tensor σ
becomes a scalar. If, in addition, we drop the spatial dependence (homogeneous
field) and Fourier-transform the conductivity to frequency space, we obtain

I(ω) = σ(ω)E(ω). (119)

For small fields, we can expand the Hamiltonian as

H(ϕ(t)) = H(ϕ = 0)− ϕ(t)︸︷︷︸
= ea
h̄
A(t)

[
h̄L

e
Îp

]
− ϕ2(t)

2 Hkin,‖(ϕ = 0) +O(ϕ(t)3)

(120)

with the paramagnetic current operator defined in terms of the general current
operator Î (19) as Îp ≡ Î(ϕ = 0). We established earlier that the (physical)
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current is defined as the negative derivative of the energy with respect to the
field, and therefore

Î(ϕ) = Îp +
eϕ

h̄L
Hkin,‖ +O(ϕ2) (121)

= Îp +
e2a

h̄2L
AHkin,‖ +O(ϕ2). (122)

This current has two contributions: a paramagnetic term and a stress tensor
that in the one-dimensional case is just presented by the kinetic energy of the
hopping along the ring. Using A(ω) = E(ω)

iω , we can re-express the current as

Î = Îp +
1
iω

(
e2a

h̄2L
Hkin,‖

)
E. (123)

Let us first consider the paramagnetic component coupling to the external mag-
netic field. This expression corresponds to Hsource in Eq. (110). Using Eq. (114),
we can therefore calculate a (paramagnetic) current-current response

Ip(ω) = aLχII(ω)A(ω) (124)

where

χII(ω) = lim
ε→0

1
h̄

∑
n6=0

∣∣∣〈0|Îp|n〉∣∣∣2 ( 1
ω+ ∆εn + iε

− 1
ω− ∆εn + iε

)
(125)

with a real contribution (compare Eq. (115))

χ′II(ω) =
2
h̄

∑
n6=0

∣∣∣〈0|Îp|n〉∣∣∣2 P ( ∆ε
ω2 − ∆ε2n

)
. (126)

If we insert the expression for the paramagnetic current in Eq. (123) and compare
it to the definition of the conductivity (119), we find

σ(ω) =
1
iω

[
aLχII(ω) +

(
e2a

h̄2L
Hkin,‖

)]
. (127)

The imaginary component of the conductivity can be written as

σ′′(ω) =
2e2a

Lh̄2ω

1
2 〈−Hkin,‖〉 −

h̄

e2P
∑
n6=0

∣∣∣〈0|LÎp|n〉∣∣∣2 ∆εn
∆ε2n − ω2

 . (128)

The real part of this optical conductivity can be split into two contributions
as [183–185]

σ′(ω) = Dδ(ω) + σreg(ω) (129)

where the Drude weight (or charge-stiffness) D is given as

D =
1
2 [ωσ

′′(ω)]ω→0 =
1
L

(
e2a

h̄2

)1
2 〈−Hkin,‖〉 −

(
h̄2

e2

)∑
n6=0

∣∣∣〈0|LÎp|n〉∣∣∣2
En −E0

 .

(130)
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In the optical conductivity (129), the Drude weight appears as the pre-factor
of a delta peak at ω = 0. It therefore expresses the infinite response to a constant
(non-oscillating) (dc-)field [183]. This fact explicitly relates the Drude weight to
a persistent current and is different from the response to an oscillating (ac-)field
(Lenz law).

The derivative of the ground state energy with respect to the flux Φ can be
written as

∂2E

∂Φ2
H.F .
=

∂

∂Φ

(〈
ψ(Φ)

∣∣∣∣∂H∂Φ

∣∣∣∣ψ(Φ)

〉)
=

〈
ψ(Φ)

∣∣∣∣∣∂2H

∂Φ2

∣∣∣∣∣ψ(Φ)

〉
+ ((∂Φ〈ψ(Φ)|)H |ψ(Φ)〉+ 〈ψ(Φ)|H(∂Φ |ψ(Φ)〉)).

(131)

If we plug in the expansion of the Hamiltonian in Eq. (120) and apply first-order
perturbation theory,

∂ |φ(Φ)〉
∂Φ

∣∣∣∣
Φ=0

=
2πh̄
eΦ0︸ ︷︷ ︸
=1

∑
n 6=0

〈n|Îp|0〉
E0 −En

|n〉 , (132)

we obtain

∂2E

∂Φ2

∣∣∣∣∣
Φ=0

=
e2

h̄2

 1
L2 〈−Hkin,‖〉 −

2h̄2

e2

∑
n6=0

∣∣∣〈n|Îp|0〉∣∣∣2
En −E0

 . (133)

Comparison with the Drude weight (130) then establishes the relation [143]

D =
La

2π
∂2E

∂Φ2

∣∣∣∣∣
Φ=0

. (134)

As anticipated earlier, the Drude weight determines qualitatively and quanti-
tatively the transport properties of a ring: For insulators (which could be either
a band or Mott insulator), D vanishes; for ideal conductors, D saturates [185,
186]. The distinction between metal and isolator through the Drude weight can
also be appreciated by observing that D is inversely proportional to the effective-
mass tensor [187]. Therefore D → 0 corresponds to an infinite mass impeding
transport.
Using the current-flux relation (21), we can write

D = −La2π
∂I

∂Φ
. (135)

We see that a positive Drude weight describes a current that counter-acts the
magnetic field (diamagnetic), while a negative Drude weight describes a current
sustaining the field (paramagnetic). For completeness we note that in the liter-
ature, definitions differ depending on whether or not the derivative is written
with respect to the flux Φ or the Peierls phase ϕ, and also on whether a factor
of 2π is separated in the definition (129) [185, 188, 189].
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Figure 16: Dispersion relation of the Creutz-Hubbard model and expectation
value of the spin. We re-address the lattice-dispersion of a single Weyl
fermion introduced in Fig. 15. The colors of the bands indicate the contribu-
tion of the two species ↑ and ↓ to the different modes or, differently stated, the
effective spin 〈ni,↑ − ni,↓〉. Around the Fermi level, a spin-momentum locking
occurs: the spin of a mode is definite and determines the travel direction of
the particle, which is proportional to the slope of the dispersion.

Note that the Drude weight is closely related to the Meissner fraction of a
superfluid. However, the two quantities are distinguishable by the order in which
the limit in the frequency ω → 0 and the (in our derivation due to homogeneity
not considered) wavelength k → 0 are taken [190, 191]. The peculiarities of the
distinction remain subject to debate [189].

4.3 free weyl fermions

In absence of interactions, we can understand the full dynamics of the Weyl
fermions by looking at the dispersion relation (92) and Fig. 16. In Sec. 2.6, we
derived the current in a lattice system from a microscopical perspective and
therefrom established the macroscopic expression I = −∂E/∂Φ (21). We can
understand the macroscopic expression in yet another microscopical image by
rephrasing the current as

I = −∂E
∂Φ

= −
(
∂ϕ

∂Φ

)
︸ ︷︷ ︸

= 2π
LΦ0

= e
h̄L

∑
k̃occ

∂εk̃
∂ϕ

= − e

h̄La

∑
k̃occ

∂εk̃
∂k̃

= − e

La

∑
k̃occ

vk̃ (136)

with vk = 1
h̄
εk
k , i.e. as the charged sum over the velocity of the occupied modes.

From the field-theoretic perspective, the infinity of modes below the Fermi
level (compare Fig. 15) could a-priori be problematic. However, it can be shown
that an appropriate regularization of the field theory can fix this problem. The
observed current behavior is then exactly the one observed in the lattice [192].
This confirms that only particles close to the Fermi level contribute significantly
to the persistent current and justifies the use of a finite lattice.
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Figure 17: Currents in the non-interacting system. In red, the current in the half-
filled lattice system with fermion doubling (m/t = g/t = 0), in orange the
current for the system with a single Dirac-point (m/t = g/t = 1). Both
systems display a sawtooth-periodicity with Φ/Φ0 = n where n ∈ Z. The
current in the system with two Dirac-cones is twice as large as in the case of
a single Dirac point. Both currents were calculated for a system with an even
number of sites. Note that an odd number leads to a parity-induced shift of
the curves by Φ/Φ0 = 1/2 (dashed lines).

Close to the Fermi level, all particles have the same velocity (i.e. slope of the
dispersion), but differ in the direction of travel. In fact, the (pseudo-)spin asso-
ciated with a mode is directly coupled to the particle’s velocity. More precisely,
the modes with k ≈ 0 display have a defined spin ↑ or ↓, as can be seen from
Eq. 93. This spin-momentum coupling or chirality is visualized in Fig. 16 and a
characteristic property of Weyl fermions.
Let us discuss shortly the observed current behavior (see Fig. 17). The current

is periodic with respect to the applied flux. This periodicity is fully analogous
to the one observed in a superconductor. Moreover, the current is always such
that the total magnetic flux (of the combined system of external field and the
current) is a multiple of the flux quantum Φ0. Microscopically, we observe that
for Φ = nΦ0 with n ∈ Z, there is a degeneracy between any allowed left-moving
mode k and its right-moving counterpart at −k. This degeneracy leads to an
undefined current value. For Φ 6= nΦ0, the symmetry is broken, and a defined,
directed current is observed.
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Mathematically, the current shape is obtained by summing over the contribu-
tions of all occupied modes; in the particular case of half-filling,

I =
2et
h̄L

∑
k̃occ

∂

∂ϕ

∣∣∣∣sin(ka+ ϕ

2

)∣∣∣∣ (137)

=
et

h̄L

[
sign(ϕ)

[
cos

(
ϕ

2

)
+ cos

(
π+ ϕ

2

)]
+

∑
0<k̃occ<

π
a

[
cos

(
ka+ ϕ

2

)
− cos

(−ka+ ϕ

2

)]
︸ ︷︷ ︸

=−2 sin(ka/2) sin(ϕ/2)

]
. (138)

where we rewrite the sum in pairs of positive and negative momenta and in-
troduce an additional term to avoid over-counting. In the limit of large L, this
yields a characteristic sawtooth shape,

I
L→∞
=

et

h̄L

(
sign(ϕ)−ϕ

∑
k̃>0

sin
(
ka

2

)
︸ ︷︷ ︸

=
L
π

)
=

et

h̄L

(
sign(Φ)− 2 Φ

Φ0

)
(139)

= 2I0

(1
2 −

Φ
Φ0
−
⌊1

2 −
Φ
Φ0

⌉)
, (140)

where first, we restrain ourselves to −1 < Φ
Φ0

< 1, and only in the last step
we use the periodicity of the flux-dependence to generalize to arbitrary fluxes.
The expression is equivalent to the one found in a continuum model [192]. The
maximal current corresponds to a single charge traveling with Fermi velocity
along the perimeter of the ring,

I0 =
e

La

ta

h̄
=
evF
La

. (141)

For the model with two Dirac points, we observe that the current is twice as
large due to the presence of the Fermi doubling (see Fig. 17). Another relevant
effect is the so-called parity shift: Depending on the parity of the particle number
in the system, the current is shifted by Φ = Φ0/2.
The most relevant quantity for our study, however, is the Drude weight, which

we derived in Eq. (134). To avoid ambiguities due to the parity shift (in particular
in the determination of para- and diamagnetic currents [185]), here and in the
following, we will use the definition [187, 193, 194]

D =


La
2π

∂2E
∂Φ2

∣∣∣
Φ/Φ0=0

if L odd,

La
2π

∂2E
∂Φ2

∣∣∣
Φ/Φ0=1/2

if L even,
(142)

i.e. we study the current shift around the continuous zero-crossing of the current.
The motivation behind this procedure is that D refers to the response of an
equilibrium between the charge carriers. It therefore makes sense to calculate it
at the value of Φ where the ground state energy has a minimum [187]. If we
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Figure 18: Drude weight for the non-interacting system. For different fillings of
the lattice, we plot the Drude weight. For ρ � 1, the current response in-
creases linearly with the number of particles: every particle is moving in an
almost empty lattice and can react independently to an applied field. For
ρ ≈ 1, the presence of other particles prevents a linear scaling, the Drude
weight saturates.

allow for different fillings ρ of the dispersion band, a straight forward calculation
yields

D0(ρ) =

(
vF e

2

πh

)
︸ ︷︷ ︸

=
2tae2
h2 =Dmax

π

2L cos
(
π

2 (1− ρ)
)

cot
(
π

2L

)
. (143)

Here, ρ = 1 corresponds to a density of one particle per lattice site j (often called
half-filling due to the possibility to occupy two internal states). The Drude weight
for different particle densities is shown in Fig. 18.

4.4 perturbation theory

Our following study of the Drude weight of the interacting Weyl fermions will
rely on numerical, essentially exact calculations. Nevertheless, the results can be
substantiated with those from a many-body diagrammatic perturbation theory
that we introduce shortly in this section and will compare to when presenting
our numerical results. We acknowledge that this derivation was originally done
by M. Bischoff, a co-author of Ref. [24].
We have shown in Sec. 4.2 that the Drude weight can be understood as a

property of the ground state, namely the second derivative of the ground state
energy with respect to an applied flux (134). We also presented the Drude weight
for the free fermions in Eq. (143). In the presence of weak interactions, we
can study the perturbative change to the flux-dependent energies. This shift
translates into a correction of the free-fermionic Drude weight.
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Figure 19: Diagrams of the perturbation theory. (a) The Hartree diagram and
(b) the Fock diagram represent the processes contributing in first order per-
turbation theory to the ground state energy in Eq. (146). The second-order
processes (150)+(151) are represented by the Hugenholtz diagrams in (c) and
(d). The continuous lines correspond to propagators, the dashed lines identify
inter-particle interactions.

As the perturbation contributions can be understood as scattering events, for
convenience, we start by expressing the interaction term of the Hamiltonian in
momentum basis,

Hint =
1
L

∑
s,s′;r,r′

∑
k,k′,q

W srr′s′
kk′q d†k+q,sd

†
k′−q,rdk′,r′dk,s′ , (144)

where s, s′, r, r′ label the energy bands, on which the respective operators act,
and W srr′s′

kk′q =
∑
σ,σ′ v

σ,σ′
q Nσ

k+q,sN
σ′
k′−q,rN

σ′
k′,r′N

σ
k,s′ . The Fourier transformation

of the interaction coefficients (96) yields

vσ,σ′
q = [Uδσ̄,σ′/2 + V cos(q)δσ,σ′ + Ṽ cos(q)δσ̄,σ′ ]. (145)

We now expand the energy perturbatively with respect to the two-particle
interactions. In the above language, the first order perturbation term can be
expressed as

E1(Φ) =
1
L

∑
σ,k,k′

(W−−−−k,k′,0 (Φ)−W−−−−k,k′,k−k′(Φ)), (146)

where W−−−−k,k′,0 and W−−−−k,k′,k−k′ are the Hartree and the Fock term, respectively.
This yields for the Drude weight

D1 =
π

2L2

∑
k,k′

(gkgk′ − fkfk′)
(
vσ,σ̄
k−k′ − v

σ,σ
k−k′ + vσ,σ

0 − vσ,σ̄
0

)
(147)

=
π

L2 (V − Ṽ )
csc2(π/(2L)) sin2(πρ/2)

1 + 2 cos(π/L)

× cos(π/L)[cos(π/L)− cos(πρ)],
(148)

and in the thermodynamic limit

lim
L→∞

D1 =
4
π
(V − V ′) sin4(πρ/2). (149)
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As the original free fermionic theory is gapless, the second-order processes in
the perturbation theory have to be treated carefully. The strategy here is to
first determine the contributions in the finite system and then study the scaling
for L → ∞. Two possible processes contribute to the energy E2 = E

(1)
2 +E

(2)
2 ,

which are represented by Hugenholtz diagrams in Fig. 19 and given as

E
(1)
2 =

1
L2

∑
k,k′,q

1
ε−(k̃′)− ε+(k̃′)

[(k−, k′+|v|k−, k′−)− (k−, k′+|v|k′−, k−)]

× [(k′−, q−|v|k′+, q−)− (k′−, q−|v|q−, k′+)]
(150)

and

E
(2)
2 = − 1

4L2

∑
k,k′,q

(k−, k′−|v|k̄+, k̄′+)− (k−, k′−|v|k̄′+, k̄+)
ε−(k̃)− ε+(k̄) + ε−(k̃′)− ε+(k̄′ + 2ϕ)

× [(k̄+, k̄′+|v|k−, k′−)− (k̄+, k̄′+|v|k′−, k−)].
(151)

In these expressions, the bracketed terms evaluate to

(ks, k′s′ |v|qr, q′r′) =
U

2
∑
σ

Nσ
k̃,sN

σ̄
k̃′s′N

σ
q̃,rN

σ̄
q̃′r′ (152)

for on-site interactions U and

(ks, k′s′ |v|qr, q′r′) =
∑
σ

[V cos(k− q)Nσ
k̃,sN

σ
k̃′s′N

σ
q̃,rN

σ
q̃′r′

+ Ṽ cos(k− q)Nσ
k̃,sN

σ̄
k̃′s′N

σ
q̃,rN

σ̄
q̃′r′ ] (153)

for the nearest-neighbor interactions V and V ′. Through algebraic manipulations
we find that E(2)

2 always evaluates to zero. Therefore

E2 = E
(1)
2 = − 1

32L2t

∑
k′

1
gk̃′

{
U2
[∑

k

sin
(
k− k′

2

)]2

+ 2
[∑

k

sin
(
k− k′

2

)[
(Ṽ + V ) cos(k− k′) + (Ṽ − V )(cos k̃− cos k̃′ + 1)

] ]2}
.

(154)

Now, for the U -dependent term we can evaluate the Drude weight contribution
by taking the derivative with respect to Φ and obtain

DU
2 = − U2

32L2t

2π
L

∑
k′

(
2ġk′ − gk′ g̈k′

g3
k′

){
sin
(
k− k′

2

)}2
. (155)

In the limit L→∞, the energy can be expressed as the integral

lim
L→∞

DU
2 = − U

2

8π2 sin4
(
πρ

4

)∫
k′occ

2− sin2(k′/2)
sin(k′/2) sgn(k′)dk′. (156)

The limit of the V -dependent contribution is less evident. We spare it here
and note that we evaluated the term numerically, checking the convergence for
L→∞.
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Figure 20: Drude weight suppression for on-site interactions. (a) The Drude

weight D (in units of the non-interacting Drude weight D0) for the model
with exclusive on-site interactions (V = V ′ = 0) is reduced with respect to
the non-interacting system. Red: V /t = 0.0625, orange: V /t = 0.5, blue:
V /t = 2.0, violet: V /t = 4.0. (b) Comparison of the results from DMRG
(crosses) and second-order perturbation theory for small U (dashed lines),
showing a good agreement. Red: U/t = 0.0625, orange: U/t = 0.125, blue:
U/t = 0.25, violet: U/t = 0.5. The numerical results were determined in a
system with L = 32 lattice sites.

4.5 current response for different types of interactions

We have developed an understanding of the current response in a system of
free Weyl fermions and explored the limit of weak interactions. We now turn to
arbitrary interaction strengths and present the results of our numerical studies.
Along the way, we also discuss the predictions from perturbation theory and
compare the results. For technical details of the simulations, we refer the reader
to App. A.5.

4.5.1 On-site interactions

If the particles are interacting only through on-site interactions U (i.e. V =

V ′ = 0), we observe a suppression of the Drude weight, D < D0. This is shown
in Fig. 20a.
Indeed, the first order correction to the Drude weight (149) evaluates to zero,

D1 = 0. The second-order contribution D2 (156) can only be negative, i.e. lead-
ing to a suppression with respect to D0. The agreement of the second-order
perturbation theory with the exact results is presented in Fig. 20b. Note that
for the free Weyl fermions, the Drude weight scaling is reminiscent of the one
found in the Hubbard model [185].
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Figure 21: Drude weight enhancement for inhomogeneous nearest-neighbor in-
teractions with V > V ′. (a) The (numerically determined) relative Drude
weight D/D0 for fixed V = 2V ′ is plotted against the filling ρ: The current
response shows an interaction-dependent enhancement. Red: V /t = 0.0625,
orange: V /t = 0.5, blue: V /t = 2.0, violet: V /t = 4.0. (b) For weak inter-
actions, the numerical result (crosses) are shown together with the second-
order perturbation theory calculations (dashed lines): they show good agree-
ment. Red: V /t = 0.0625, orange: V /t = 0.125, blue: V /t = 0.25, violet:
V /t = 0.5. Both plots show results for systems with L = 64 sites.
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Figure 22: Drude weights for combined on-site and nearest-neighbor interac-
tions. The relative Drude weight is shown for fixed V /t = 2V ′/t = 4.0
and different on-site interactions: At intermediate fillings the Drude weight
enhancement is stable for comparably large on-site interactions. Only for
U � V , the Drude weight is suppressed. Red: U = 0, orange: U = V , blue:
U = 3V , violet: U = 10V .
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Figure 23: Drude weight suppression for inhomogeneous nearest-neighbor in-
teractions with V < V ′. (a) The relative Drude weight D/D0 for fixed
V ′ = 2V is plotted against the filling ρ: The current response shows an
interaction-dependent suppression. Red: V ′/t = 0.0625, orange: V ′/t = 0.5,
blue: V ′/t = 2.0, violet: V ′/t = 4.0. (b) The same quantity for weak interac-
tions: Tensor network results (crosses) are compared to the perturbation the-
ory prediction. Red: V ′/t = 0.0625, orange: V ′/t = 0.125, blue: V ′/t = 0.25,
violet: V ′/t = 0.5; here L = 32.

4.5.2 Nearest-neighbor interactions

For nearest-neighbor interactions we find a quite different behavior. As our per-
turbation theory results show, the effect on the Drude weight depends on the
difference of the inter- and the intra-species interactions (V −V ′) (149). We can
therefore distinguish different cases.
If the interaction is equal for the fermions with same and different pseudo-spin,

the first order term of the perturbation theory is suppressed, D1 = 0. Indeed,
the numerical analysis shows that D = D0 for all fillings (with small corrections
for ρ = 1).
On the other hand, if the interaction between particles of the same pseudo-

spin dominates the one with opposite spin, we expect an enhancement of the
Drude weight, D1 > 0. In the following, we fix V = 2V ′ and present the results
of our numerical study in Fig. 21. In particular, we observe that for intermediate
fillings, the effect leads to an amplification of the current response to up to 25 %.
The agreement for small interactions with the perturbation theory is shown
in Fig. 21b. Notably, the effect does not only exist on a perturbative scale, but
subsists for comparably large interactions V ,V ′ � t. For physical setups, nearest-
neighbor interactions often occur with on-site interactions of the same order. We
therefore also study the competition of the interactions. The results are shown
in Fig. 22: The enhancement of the Drude weight is stable for a large range of
on-site interactions. Only comparably strong on-site interactions (here U ≈ 10V )
lead to a suppression of the Drude weight for all the fillings.



68 current behavior of interacting weyl fermions on a ring

For completeness, we also present results for the case V < V ′, in particular
V ′ = 2V (Fig. 23). The observed Drude weight suppression further validates the
predictions of the perturbation theory.

4.6 continuum vs. thermodynamic limit

The results presented in the above section were obtained for discretized lattice
rings. The obtained results converge fast in the number of lattice sites and can
therefore be seen as a good approximation to the limit L→∞. We can interpret
these results in two ways: One possibility is to keep the parameters of our Hamil-
tonian and the lattice constant fixed and to increase the number of sites on the
lattice. This would physically correspond to an increase in the circumference of
the ring and yields a scaling towards a thermodynamic limit. Alternatively, we
can consider a ring of a given finite length and decrease the lattice spacing in
consequent numerical simulations. In this scenario, the parameters of the lattice
Hamiltonian are chosen such as to represent a discretization of the continuum
problem (compare Sec. 4.1.1). We discuss the equivalence of the two perspectives
in the following.
Thermodynamic limit perspective. To consider the thermodynamic limit, we

assume a lattice ring encircling a solenoid with flux Φ. The lattice constant a
and all the coefficients of the model (89) are kept constant when increasing the
number of lattice sites L. In the case of free fermions, we can see from Eq. (141)
that the maximal current scales like I ∝ 1/L with increasing number of lattice
sites. This decrease is quite intuitive: With growing number of lattice sites, the
diameter of the ring extends and the constant circulation caused by the flux
entails a weaker current in larger distance. The Drude weight (143), however,
converges to a constant. If we include interactions, we observe the changes of
the Drude weight as discussed in the previous section.
Continuum perspective. In the continuum problem, we consider Weyl fermions

moving around a flux Φ on a ring with fixed physical length La ≡ L̃ and velocity
c = vF . To account for these properties, the coefficients of the lattice model have
to be adapted as t = h̄vF/a, U = u/a and V = v/a2 (compare Secs. 4.1.1 and
4.1.3). In the example of the free fermions, we see that neither the current (141)
nor the Drude weight (143) is affected by such a scaling, i.e. (by construction)
they are convergent with L→∞. In the study of the Drude weight, the contin-
uum and the thermodynamic limit of the lattice model can therefore be treated
equivalently.
If we include interactions and want to derive definitive statements about the

continuum model from the lattice model with fixed t,U ,V and V ′, these coef-
ficients should scale proportionally when increasing the number of lattice sites.
This is indeed the case for the hopping t ∝ 1/a and the on-site interactions
U ∝ 1/a. It is, however, not true for the nearest-neighbor interactions v ∝ 1/a2

and v′ ∝ 1/a2. Nonetheless, we can draw conclusions valid for the continuum
model from our results. In particular, if we take a continuum configuration with
some fixed vF , u, and require v, v′ ∝ ua, the results of the discretization with
lattice constant a fully apply.



5
INTERACTING SU(N ) -FERMIONS IN A HARMONIC TRAP

In the previous sections, we first studied an intrinsic lattice system. We then
looked at a hybrid of a continuum and a lattice system, i.e. a field theory which
can be discretized and also plays an important role for lattice systems that are
realizable with optical lattices. We now turn to an inherently continuous system
of fermions with different internal states confined in a harmonic potential and
interacting through a SU(N)-invariant contact potential. Thereby, we explore
still another aspect of the interplay of interactions, geometry and symmetry in
one-dimensional systems. Interestingly, we will see how the symmetry of the
interactions between the particles can lead again to an organized system, which
- despite the continuity of the underlying problem - can be understood as an
effective lattice system in the limit of strong interactions.
The organization of particles with different internal states within a one-di-

mensional confinement is closely linked to the question of magnetic ordering.
Quantum magnetism is usually understood as a lattice phenomenon, but it does
also occur in continuous systems [195]. Conceptually, the phenomenon can be
understood by mapping the internal degrees of freedom of strongly interacting
multi-component particles in continuous systems to a SU(N)-spin chain. We
will see that this leads to a so-called Sutherland Hamiltonian [196, 197] (com-
pare Eq. (185)). Such continuous magnetic systems can be considered attractive
alternatives to lattice systems where the accessible coupling-parameter range is
limited [198]. Due to the advances in the control of ultracold gases, the setup has
recently stirred a great experimental interest [199, 200] and a renewed theoret-
ical attention [201–204]. Apart from the magnetism aspect, the understanding
of fermionic systems with a larger SU(N)-symmetry is also of interest for other
fields: In particle physics, e.g., SU(3)-symmetries occur in quantum chromody-
namics; in nuclear physics, an SU(6)-symmetry might unify the description of
baryons and mesons [195, 205].
Our investigation here is driven by the question of how to explore emergent

magnetic structures with simple experimental techniques. To this end, we de-
velop an intuitive understanding of how the particle numbers in the mixture
constrain the eigenstates to particular representations of the SU(N)-symmetry.
In order to identify the different magnetic structures in the physical system, it is
important to understand how their symmetry connects to experimentally acces-
sible features. We therefore analyze density and momentum distributions of the
particles and discuss in particular a signature which occurs in the momentum
distributions of contact-interacting particles, the so-called Tan contact. By ex-
ploiting the Lieb-Mattis theorem on the energetic ordering of SU(N)-symmetric
states [206], we establish a connection between the symmetry of the states and
their Tan contacts. The latter, due to their accessibility in time-of-flight mea-
surements, permit an identification of the magnetic structure/symmetry.
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We proceed as follows: We first introduce the model of interest and the cor-
responding Hamiltonian (Sec. 5.1). We then study the symmetry of the setup
in Sec. 5.2: Starting from a two-particle example, we introduce the notion of
Young diagrams and how they can be used to characterize the symmetry un-
der commutation of particles. We generalize to systems of N particles and see
that Young diagrams correspond to the irreducible representation of the SN -
symmetry group which classifies the permutations of N particles. This group is
closely related to the SU(κ)-symmetry of particles with κ internal states, and
therefore relevant for our understanding of the system. In Sec. 5.3, we present
experimentally accessible observables. We then combine the acquired knowledge
of symmetries and observables to explore different interaction regimes: After a
short discussion of free fermions (Sec. 5.4), we turn to the opposite regime of
strong interactions in Sec. 5.5, for which we derive an effective description in
terms of a spin-lattice model. We characterize the states by their symmetry and
establish a connection to the measured Tan contacts. This analysis is extended
to the intermediate regime in Sec. 5.6. Due to the inaccessibility via analytical
calculations, we explore it by means of MPS calculations and a scaling approach
that allows us to transfer the results to larger particle numbers. In Sec. 5.7, we
open the model to mixtures of both fermions and bosons and discuss how the
previous results generalize. Details of how to address this continuous problem
with MPS are presented in App. A.4. Specifications of an (existing) experimental
setup to realize the presented model can be found in App. B.2.3.
The findings of this section have been partially published in Refs. [25] and

[26].

5.1 model and hamiltonian

We consider a κ-component Fermi gas, consisting of N =
∑κ
ν=1Nν particles

of mass m, which are trapped in a one-dimensional confinement and interact
through a contact potential. This setup is described by a Hamiltonian

H = H0 +Hint, (157)

where we collect the kinetic energy and the external potential in H0 and the
interactions in Hint.
If we approximate the trapping potential with a one-dimensional harmonic

trap of frequency ω (and characteristic length aho =
√
h̄/mω), the free Hamil-

tonian reads

H0 =
κ∑
ν=1

Nν∑
j=1

(
− h̄2

2m
∂2

∂x2
j,ν

+
1
2mω

2x2
j,ν

)
. (158)

The two-body interaction potential Hint arises due to scattering of particles and
is described by v(x− x′) = g1D δ(x− x′), where g1D = −2h̄2/ma1D and a1D is
the 1D effective scattering length [207]. If the scattering length is independent
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of the internal state of the particles, the interaction becomes SU(κ)-symmetric.
In this scenario, the interaction part of the Hamiltonian reads

Hint = g1D

κ∑
ν<ν′

Hint,(ν,ν′) ≡ g1D

κ∑
ν<ν′

Nν∑
j=1

Nν′∑
j′=1

δ(xj,ν − xj′,ν′) (159)

= g1D
∑

1≤i<j≤N
δ(xi − xj)

 . (160)

The definition (159) explicitly excludes the interaction between fermions of the
same species, as no s-wave scattering can occur between them. Without changing
the physics, we can include such terms (160), knowing that they will never yield
a contribution due to the anti-symmetry of the wave functions.
The effect of the interactions can be reformulated in terms of a cusp-condition

for each pair of coordinates which belong to different species, x = xj,ν − xj′,ν′ ,

1
g1D

[
∂xΨ(x = 0+)− ∂xΨ(x = 0−)

]
=

2m
h̄2 Ψ(x = 0), (161)

with the many-body wave function Ψ = Ψ(X) = Ψ(x1, . . . xN ) and the coordi-
nate vector X = (x1, . . . ,xN ) = (x1,1, . . . xN1,1,x1,2, . . . xN2,2, . . . ,x1,κ . . . xNκ,κ).

For later use, we note that we can make the problem dimensionless by writing
the energy in terms of the harmonic oscillator frequency ω and the distances in
terms of the harmonic oscillator length, x̃ = x/aho:

H = h̄ω

 κ∑
ν=1

Nν∑
j=1

(
−1

2
∂2

∂x̃2
j,ν

+
1
2 x̃

2
j,ν

)
+ α

∑
1≤i<j≤N

δ(x̃i − x̃j)

 (162)

The dimensionless effective interaction parameter α = ahomg1D/h̄2 = 2aho/a1D
then relates the effective scattering length a1D to the harmonic oscillator length
aho.

5.2 symmetry of the system

Our target in this chapter is to establish a link between the symmetry of the
eigenstates of the Hamiltonian (157) and experimentally accessible properties.
For systems of electrons with spin, a close relation between the symmetry of a
state and its magnetic structure was shown [206]. Namely, it was proven that
ground states of electrons in an arbitrary symmetric potentials with different
total spins S < S′ will be ordered energetically as E(S) < E(S′). This means
that the many-body system realizes an unmagnetized ground state if the total
spin is not fixed a priori. In the same paper, it was demonstrated that a similar
ordering relation also holds for system with more than two species (κ > 2),
and therefore a higher symmetry SU(κ). This motivates the identification of the
irreducible representations of the symmetry in the states of our system, which
we then can link to experimentally accessible quantities.

In this section, we therefore develop an intuition of the SU(κ) group and
the related SN group of permutations of N objects. As a warm-up, we review



72 interacting su(n)-fermions in a harmonic trap

Figure 24: Symmetries of two-particle states and Young diagrams. (a) Two
fermions in orbitals m and n and internal states σ (blue) and τ (yellow)
display an anti-symmetric commutation relation (163), indicated by two ver-
tically stacked boxes. The overall wave function (with index c) can be split
into an orbital and a spin component. If the wave function is symmetric in
the orbital part (horizontally stacked boxes), it has to be anti-symmetric un-
der spin-exchange (164) and vice versa (165). (b) If both particles have the
same spin, σ = τ , they are necessarily symmetric under spin-exchange and
the orbital exchange is anti-symmetric. (c) Likewise, if two particles share
the same orbital label, n = m, the orbital exchange is symmetric, and the
spin-exchange anti-symmetric.

the symmetry and notation for states of two (identical) particles (Sec. 5.2.1).
Based on general considerations on the symmetric and anti-symmetric exchange
of particles, we introduce Young diagrams, which a diagrammatic labeling of the
irreducible representations of the SN -symmetry, and discuss the connection to
the SU(κ) group (Sec. 5.2.2). We then show how to construct the permissible
diagrams for a given mixture of fermions and explain the pouring principle, which
establishes an energy ordering between the ground states of different symmetry
sectors (Sec. 5.2.3).

5.2.1 Symmetry of states - part I

Assume that a single fermion in an eigenstate of some potential is fully char-
acterized by its orbital n (energy level) and its internal state σ ∈ {1, . . . ,κ},
for which we use the terms spin or species interchangeably. The single-particle
wave function can then be written as |m,σ〉 = |m〉 ⊗ |σ〉. If there are two par-
ticles in the system, one could imagine a state |m,σ〉 ⊗ |n, τ〉, where the first
two entries (m,σ) label one particle and the other two entries (n, τ ) the other
particle. We know, however, that for fermions the many-body wave function is
anti-symmetric, and the above notation fails to deliver this property. If we de-
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note a valid many-body state as |m,σ;n, τ〉a, the exchange of the labels of the
two particles - the first takes (n, τ ), the second takes (m,σ) - leads to a change
of the sign of the wave function:

|n, τ ;m,σ〉a = − |m,σ;n, τ〉a . (163)

The state can then be read as: One of the particles has labels (m,σ), the other
particle has labels (n, τ ) - but due to the indistinguishability of the two particles,
we cannot tell which particle has which label.

The exchange of only the spin-label τ ↔ σ can have either an anti-symmetric
or a symmetric effect (see Fig. 24). The first case corresponds to |m,σ;n, τ〉a =
− |m, τ ;n,σ〉a. If we want to express this state in the basis of the labeled, indi-
vidual particles, we have to choose signs such that the above condition and the
overall constraint (163) are fulfilled. We then obtain

|m,σ;n, τ〉a =
1
2 (|m,σ〉 ⊗ |n, τ〉 − |m, τ〉 ⊗ |n,σ〉

+ |n,σ〉 ⊗ |m, τ〉 − |n, τ〉 ⊗ |m,σ〉)

=
1
2 (|m,n〉+ |n,m〉)︸ ︷︷ ︸

|m;n〉s

(|σ, τ〉 − |τ ,σ〉)︸ ︷︷ ︸
|τ ;σ〉a

(164)

where in the last step, we have permuted the dimensions such that the orbital
degrees of freedom appear first and the spins second. We observe that, as a
consequence of the anti-symmetric spin, the orbital is then symmetric. On the
other hand, if the spin-exchange is symmetric, |m,σ;n, τ〉a = |m, τ ;n,σ〉a, it
follows

|m,σ;n, τ〉a =
1
2 (|m,σ〉 ⊗ |n, τ〉+ |m, τ〉 ⊗ |n,σ〉

− |n,σ〉 ⊗ |m, τ〉 − |n, τ〉 ⊗ |m,σ〉)

=
1
2 (|m,n〉 − |n,m〉)︸ ︷︷ ︸

|m;n〉a

(|σ, τ〉+ |τ ,σ〉)︸ ︷︷ ︸
|τ ;σ〉s

(165)

and we find an anti-symmetric exchange for the orbitals.
We can now write the orbital part of the wave function in position basis,
|n〉 =

∫∞
x=−∞ φn(x) |x〉 where φn(x) = 〈x|n〉. For an anti-symmetric orbital func-

tion |m;n〉a = − |n;m〉a, the exchange of coordinates (positions) is equivalent to
the exchange of orbital labels in the sense that the earlier also inverts the sign:

〈x1,x2|m;n〉a =
1
2 (〈x1,x2|m,n〉 − 〈x1,x2|n,m〉)

=
1
2 (〈x1|m〉 〈x2|n〉 − 〈x1|n〉 〈x2|m〉)

=
1
2 (φm(x1)φn(x2)− φn(x1)φm(x2))

= −1
2 (φm(x2)φn(x1)− φm(x1)φn(x2)) = −〈x2,x1|m;n〉a .

(166)
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We therefore use the terms orbital and spatial symmetry interchangeably in the
following, in particular when the labels m and n do no longer correspond to the
energy eigenlevels of the harmonic oscillator.
The above is basic knowledge. Often, however, the distinction between orbital

and spin degree of freedom is blurred through unclear notation, and the duality
between the two is therefore unclear. We have refreshed it here to make more
advanced statements about the symmetries of the many-body states of more
than two particles in the following.

5.2.2 SN -symmetry, SU(κ)-symmetry and Young tableaux

Consider a function of N variables, e.g. the orbital part of our wave function
|m1,σ1; . . . ;mN ,σN 〉 in position basis, ψ(x1,x2, . . . ,xN ). Alternatively, we could
look at the spin component of the wave function, and then had the spin labels
for the N particles as arguments. Let us assume that ψ(x1,x2, . . . ,xN ) is an
eigenfunction of the Hamiltonian. Due to the invariance of the Hamiltonian under
any permutation P of particles, the wave function ψ(xP (1), . . . ,xP (N)) is also an
eigenfunction belonging to the same value. Then, in particular, any permutation
of two particles can entail a sign +1 (symmetric) or -1 (anti-symmetric orbital
exchange).

SN -symmetry. We can characterize these permutations by their effect on
the wave function as e.g. “Any exchange of two particles is anti-symmetric”, “Any
exchange is symmetric”, “N − 1 particles behave anti-symmetric under exchange,
but symmetric with respect to the last”, etc. This classification corresponds
to so-called cycles, and leads to the irreducible representations (irreps) of the
symmetry group SN . These irreps can be visualized through so-called Young
diagrams (see Fig. 25a): N boxes are aligned such that the number of boxes in
every consecutive column and row does not increase. If all boxes are aligned in
a row, this means that the wave function is fully symmetric under any exchange
of two particles. For a Young diagram with all boxes aligned in a column, any
exchange of two particles is anti-symmetric. All other Young diagrams describe
mixed symmetries, i.e. states that are symmetric to certain permutations and
anti-symmetric with respect to others.

su(κ)-symmetry. We can now associate each of the particles with a fermio-
nic species ν ∈ {1, . . . ,κ} and fill the diagrams with these labels. Graphically,
we indicate this by painting the boxes in different colors. Due to the overall
anti-symmetry of the fermionic wave function, the spatial exchange of two par-
ticles of the same species is necessarily anti-symmetric (compare Fig. 24). As
a consequence, only boxes in the same column can share the same color. On
the other hand, for two particles in different species, the order of the species
(the color ordering) does not matter (Fig. 25b). We can therefore avoid over-
counting by demanding that the index of the species (or the associated color)
does not decrease in vertical direction and has to increase in horizontal direc-
tion. The so-labeled Young diagrams are called Young tableaux. We observe that
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Figure 25: Simple examples of Young diagrams and tableaux. (a) All possible
Young diagrams with N = 4 particles. (b) The commutation rules for a
symmetric (left) and an anti-symmetric exchange (right) in diagrammatic
notation. (c) For N distinguishable particles (here: N = 3 and κ = 3, blue,
yellow and red), N ! permutations are possible which fall into irreducible
subspaces of the symmetric group SN . These irreducible subspaces are given
by the possible Young diagrams with three boxes. To obtain the degeneracy d
of these representations, one can count the so-called standard Young tableaux
which are built by filling the boxes such that the colors increase in their
ordering along rows and columns (dashed box). At the same time, d represents
the multiplicity of the same tableaux (tableaux that are equivalent under the
rule in (b)); therefore here:N ! = 3! = 1 ·1+ 2 ·2+ 1 ·1. Alternatively, one can
fill the Young diagrams with all possible combinations of species for which the
ordering is strictly increasing in every row and non-decreasing in each column.
Counting these then yields the multiplicities D of the respective irreps of the
SU(κ)-group (decouplet, octet, singlet). The degeneracy d of these irreps is
equivalent to the multiplicity of the standard Young tableaux. Therefore we
find for the 3⊗ 3⊗ 3 representation of SU(3): 33 = 1 · 10 + 2 · 8 + 1 · 1.
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Figure 26: Permissible Young diagrams for the spatial/orbital wave function
of given particle configurations. (a) For the example of N = 6 particles
with κ = 3 species distributed as N1 = 3 (blue), N2 = 2 (red) and N3 = 1
(yellow), we show the permitted symmetries of the orbital wave function. The
dual spin symmetry is obtained by transposing the diagrams. (b) For later
use, we also present the possible symmetries of a similar mixture where the
first species is bosonic and the spatial exchange of same-species particles is
symmetric.

these Young tableaux generate a basis of the κ⊗ . . .⊗ κ-representation of SU(κ)
(see Fig. 25c). Physically, the SU(κ)-symmetry expresses the invariance under a
“rotation” in the κ-dimensional label space. A state is energetically degenerate
to another if its commutation relations are not altered - independently of the
particular labeling of the particles. This is captured by the multiplicity obtained
by counting the tableaux created following the above instructions and known as
the Wigner-Eckart theorem for the SU(2)-group.
For further details on the relation between the SU(κ) and the SN -symmetry,

we refer the reader to the standard literature [208]. Here, we summarize that the
above construction rules allow us to efficiently describe the symmetry of a state.
In the following, we show how to construct the allowed Young diagrams for a
given fermionic mixture.

5.2.3 Symmetry of states - part II

Whenever two particles in the wave function pairwise exchange their spin label in
symmetric fashion, the permutation of the orbital label must be anti-symmetric
and vice-versa in order to preserve the overall anti-symmetry of the wave func-
tion. As an example, assume some state |Ψ〉 = |m1, τ1;m2, τ2;m3, . . . ,mN , τN 〉,
where {m1, . . . ,mN} labels the orbital quantum number and {τ1, . . . , τN} repre-
sents the spin states of the particles.
If all particles in the systems are fermions, any exchange of two particles has to

be anti-symmetric, |. . . ;mx, τx; . . . ;my, τy; . . .〉 = − |. . . ;my, τy; . . . ,mx, τx; . . .〉.
For particles of the same species, τx = τy, the exchange of spin labels is necessar-
ily symmetric and as a consequence the orbital wave function is anti-symmetric
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Figure 27: Young diagrams for a system of six particles. For a system of six
particles, we show all the (in principal) possible Young diagrams: to the
very left, the completely anti-symmetric configuration, to the very right the
Young tableau of a fully symmetric state; in between intermediate symmetries
which are symmetric with respect to particle exchange within columns, anti-
symmetric with respect to rows. The red arrows indicate the pouring principle
for the orbital symmetry: The further left a diagram, the higher the associated
ground state energy with that symmetry configuration.

under any exchange within the same species. For the exchange of particles of
different species (with different spin), the exchange of spin-labels is not con-
strained and can be either symmetric or anti-symmetric. In the first case, the
orbital wave function is then anti-symmetric under this exchange and vice-versa.
For a given mixture, this allows a construction of all the allowed orbital symme-
tries of the overall wave function as exemplified in Fig. 26. The corresponding
Young diagram for the exchange of spin labels then quite intuitively corresponds
to the transposed diagram [208, 209]. If not otherwise stated, in the following,
we assume that Young diagrams reflect the spatial symmetry of a system.

pouring principle. For very general setups of particles interacting via a
symmetric potential, it has been shown that a deep connection exists between the
symmetry and the energy of a state [206], which is called the pouring principle
due to its visual nature in terms of Young diagrams. Namely, if a diagram A can
be obtained from a diagram B by moving a box (or several) to the down left (it
is “poured”), then the ground state energy in this symmetry sector has a higher
energy then the latter, E(A) > E(B) (E(A) ≥ E(B) for pathological systems).
We refer to this finding in the following as the generalized Lieb-Mattis theorem
and give an example in Fig. 27.

5.3 quantities of interest

In this section, we introduce measurable quantities that we later want to link
to the previously introduced symmetries of the many-body wave function. We
focus on density and momentum distributions, which are experimentally well
accessible. We then present a particular property of the momentum distributions
of contact-interacting particles, the so-called Tan contact, and contextualize it.
For the different interaction regimes, the quantities will then be explicitly studied
in Secs. 5.4-5.6.
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If we write the orbital wave function in position basis, Ψ(x1, . . . ,xN ), we ob-
tain the one-body density matrix for any component ν ∈ {1 . . . N} by integrating
out all but one degree of freedom,

ρν(x,x′) = Nν

∫
dx2 . . . dxNΨ(X)Ψ(X ′) (167)

where X = (x,x2 . . . ,xN ) and X ′ = (x′,x2 . . . ,xN ) and the coordinates were
reordered such that x and x′ belong to the same species ν. Physically, the one-
body density matrix measures first-order spatial coherence between two particles
of species ν in positions x and x′. We will see that in the limit of free fermions
or in the opposing limit of infinite interactions, ρν can be obtained from an
exact solution of the many-body wave function. In the case of finite interactions,
we obtain the one-body density matrix from DMRG calculations in the lattice-
discretized problem (details in App. A.4).

density distributions. The probably most intuitive property of a state
is its density distribution, i.e. the probability to find a particle of a chosen species
in a particular region of space. We are particularly interested in this feature, as
the probabilities of finding particles of different species in different regions of the
trap can reflect some ordering with respect to the different species and might
reveal a magnetic ordering of the system. The density distribution is obtained
as the “diagonal” of the one-body density matrix (167),

nν(x) =
∫

dx′ρν(x,x′)δ(x− x′) = ρν(x,x) (168)

and fulfills the normalization condition
∫
nν(x)dx = Nν .

momentum distributions. The momentum distribution is defined as
the Fourier transform of the one-body density matrix :

nν(k) =
1

2π

∫ ∫
dxdx′ρν(x,x′)e−ik(x−x′). (169)

It is of particular interest as it is experimentally accessible through spin-selective
time-of-flight techniques (see also App. B.2.3).

tan contacts. For eigenstates in the interacting system, the most striking
feature of the momentum distribution is a power-law decay for large momenta.
The weight of the momentum distribution tails is fixed by the so-called Tan
contact:

Cν ≡ limk→∞nν(k)k
4. (170)

This feature is common to systems of particles interacting through contact poten-
tials, independent of the statistics and the dimension of the gas [210–212]. The
decay behavior nν(k) ∝ k−4 is robust and solely relies on the delta-shape of the
interaction. The value of the Tan contact, on the contrary, depends on the parti-
cle type, the interaction strengths and the type of confinement. Interestingly, the
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Tan contacts can be linked to other physical properties of the system. In partic-
ular, as a two-body quantity it is linked to the interaction energy through [213]

Cν =
g1Dm

2

2πh̄4 〈Hint,ν〉 =
g1Dm

2

2πh̄4

∑
ν 6=ν′
〈Hint,(ν,ν′)〉 . (171)

This connection between the measurable momentum distribution and the inter-
nal (symmetry-dependent) interaction energies will become important later on.
The total momentum distribution is obtained by summing over the different
species, n(k) ≡

∑
ν nν(k). As a consequence, the scaling behavior passes down

and we obtain a total Tan contact

C = g1Dm
2

πh̄4 〈Hint〉 . (172)

Note the different prefactors, which are due to the over-counting
∑
ν 〈Hint,ν〉 =

2 〈Hint〉.

5.4 free fermions

The energy eigenstates of a free particle in a harmonic trap are well-known as

φn(x) =
1√

2nn!

(
mω

πh̄

)1/4
Hn

(√
mω

h̄
x

)
e−

mωx2

2h̄ (173)

where Hn(z) is the n-th Hermite polynomial Hn(z) = (−1)nez2 ∂n

∂zn (e
−z2

) and
n ∈N0. The n-th level has an energy of En = h̄ω(n+ 1

2 ).
Due to their fermionic nature, particles of the same species ν cannot have the

same orbital quantum number and therefore, in the ground state they occupy
the Nν lowest levels. Particles of different components, on the contrary, are not
subdued to the Pauli exclusion principle. As a consequence, any component ν
of the mixture will occupy the lowest Nν levels independently, yielding density
distributions

nν(x) =
Nν−1∑
n=0
|φn(x)|2 . (174)

Examples thereof are given in Fig. 28a.
Without interactions, the wave functions of the particles display the same

form in momentum as in real space,

φn(k) =
1√

2nn!

( 1
πh̄mω

)1/4
Hn

√ h̄

mω
k

 e−h̄k2/(2mω), (175)

and as a consequence also the density and the momentum distributions share
the same shape, compare Figs. 28b(top) and 30a. The number of peaks in the
two distributions is equal to the number of fermions in the respective component.
The amplitude of these oscillations decays inversely with the particle number.
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Figure 28: Density profiles for different fermionic (and bosonic) mixtures and
interaction strengths. The plots show density distribution of N = 6 parti-
cles distributed onto three species as (a) 2F + 2F + 2F , (b) 3F + 2F + 1F , (c)
2B + 2F + 2F . The top row corresponds to free fermions (α = 0.0), followed
by α = 1.0, α = 10.0 and α = 100.0. In the bottom row, dashed lines indicate
the analytical results of the strong-coupling limit.

5.5 strong-coupling limit

We now turn to the opposite regime of 1/α→ 0. In this limit, we find a highly
degenerate ground state, which becomes non-degenerate for finite interactions.
The physics of the ground state manifold can be cast into an effective Hamilto-
nian that takes the form of a spin lattice-model. We present the derivation in
Sec. 5.5.1. Using solutions of this spin model, we can then construct the con-
tinuum density and momentum distributions and measure the Tan contacts of
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all states of the manifold. We show the procedure and discuss the results in
Sec. 5.5.2.

5.5.1 Effective model

In the limit of strong interactions, particles “mimic” the Pauli exclusion principle
in the sense that the wave function is always suppressed whenever two particles
coincide in space, Ψ(xi = xj) = 0. This so-called fermionization is a consequence
of the cusp-condition (161) for 1/α→ 0. The inverse is not true: From the fact
that the wave function is zero for some xi = xj , we cannot deduce that it is
anti-symmetric under the exchange of particles.
The fermionization has even further consequences: Assume that the orbital

quantum numbers of the free problem (and the corresponding wave func-
tions (173)) were still valid solutions in the limit of strong interactions. If two
particles in different species then had the same orbital quantum numbers, their
orbital wave function would be necessarily symmetric and Ψ(xi− xj) = 0 could
not be fulfilled. On the contrary, if all particles occupy different orbitals, we
can construct a wave function that is fully anti-symmetric by writing the Slater
determinant

ΨA(x1, . . . ,xN ) =
1√
N !

det[φi−1(xj)]i,j=1,...,N . (176)

It is easy to check that this function fulfills the cusp-condition (also for any finite
interaction) and has an energy E∞0 = h̄ω

∑N−1
ν=0 ν.

For α → ∞, solutions of the cusp-condition do not need to be differentiable
in xi = xj , and we can imagine further solutions of the form [214, 215]

Ψ(x1, . . . ,xN ) =
∑
SN

aPχP (x1, . . . ,xN )ΨA(x1, . . . ,xN ), (177)

where the sum runs over all elements of the symmetric group SN , and

χP (x1, . . . ,xN ) =

1 if xP (1) < . . . < xP (N),

0 otherwise.
(178)

For example, a general solution for two particles is

Ψ(x1,x2) =
1√
2
[a12ΨA(x1,x2)θ(x2 − x1) + a21ΨA(x1,x2)θ(x1 − x2)] , (179)

where θ is the Heaviside step-function. By choosing a12 = a21 = 1, we obtain
a solution which is anti-symmetric under exchange of positions, while for a12 =

−a21 = 1 the solution is symmetric.
For a system with more particles, similar considerations on the anti-symmetry

allow us to deduce that all coefficients corresponding to permutations of positions
of particles of the same species are equal. Therefore, the number of independent
coefficients is reduced to the multinomial coefficient D{Nκ} = N !

N1!N2!···Nκ! . Lin-
early independent solutions of the type (177) span the ground state manifold
with energy E∞0 , which therefore is D{Nκ} degenerate.
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For finite, but large interactions, we can make a perturbative approach in
1/g1D and therefore define the energy-slope with respect to the inverse interac-
tion strength

K ≡ − ∂E

∂g−1
1D

=
∂ 〈H〉
∂g−1

1D
= −

〈
∂H

∂g−1
1D

〉
= g1D 〈Hint〉 , (180)

where we have used the Hellmann-Feynman theorem in the third step. By plug-
ging in our wave function ansatz (177) and using the cusp-condition (161) for a
substitution, we obtain

K =
h̄4

m2

∑
P ,Q∈SN

(aP − aQ)2αP ,Q (181)

with

αP ,Q = αk =
∫

dx1 . . . dxN χ(x1 ≤ x2 ≤ . . . ≤ xN )δ(xk − xk+1)

[
∂ΨA

∂xk

]2
,

(182)

where P and Q are equal up to a transposition of two consecutive coordinates
at positions k and k + 1, and 0 otherwise. Note that αk does not explicitly
depend on P and Q, but only on the sites between which the permutation takes
place. The spatial symmetry implies αk = αN−k. Finding the ground state then
amounts to maximizing K. The problem can be simplified by using the equality
of subsets of coefficients in the wave function (177). As mentioned earlier, this
linear dependence reduces the dimension of the effective problem to dimension
D{Nκ}, and we can define a snippet basis asnip of linear independent coefficients.
In this basis, we can write the Hamiltonian as Heff = E∞0 + h̄4

m2g1D
V with

Vij =

αi,j if i 6= j,

−
∑
k 6=i αi,k if i = j.

(183)

The minimal eigenvector of the matrix represents the ground state of the system.
However, we can get a much better physical intuition, and thereby return to

the duality between orbital and spin symmetry. We first note that the snippet
basis (labeled by the set of D{Nκ} independent coefficients) corresponds to dif-
ferent orders of a given set of spins in the one-dimensional system. Let us take
the example of a three particle state with κ = 2. The wave function takes the
form

Ψ( x1,x2︸ ︷︷ ︸
species 1=↑

, x3︸︷︷︸
species 2=↓

) =



. . .

a231χ(x2 < x3 < x1)ΨA(x1,x2,x3)→ |↑↓↑〉

a312χ(x3 < x1 < x2)ΨA(x1,x2,x3)→ |↓↑↑〉

a321χ(x3 < x2 < x1)ΨA(x1,x2,x3)→ |↓↑↑〉

. . .

(184)
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and we see that every coefficient aijk is associated with an ordering of spins
in space. We observe that the commutation of the coordinates of the particles
in species 1 leads to the same spatial ordering of the spins and - as discussed
previously - results in the same prefactor (a312 = a321) as a consequence of the
necessary anti-symmetry in the orbital wave function. On the other hand, the
permutation in the ordering of different spins leads to a different spin config-
uration, and therefore in general a231 6= a312. The discussed reduction of the
dimension of the matrix αP ,Q can be understood as a projection onto different
spatial spin orderings. These orderings can then be taken as good quantum num-
bers of an emergent SN -symmetry [216]. Due to the fact that αj is only non-zero
for a transposition of two consecutive coordinates, we can define an exchange
operator for site j and j + 1, Pj,j+1, and the Hamiltonian takes the form [215]

Heff = E∞0 +
N−1∑
j=1

Jj(Pj,j+1 − I), (185)

with Jj = N !h̄4

m2g1D
αj . The operator Pj,j+1 now commutes spins 1, . . . ,κ on sites j

and j+ 1 of the effective spin-lattice model with N sites. To make the spin-model
nature more transparent, we choose a set of generators of the SU(κ)-symmetry
in the defining representation {T [k]}k=1,...,κ2−1. For example for κ = 2, these
generators are the Pauli matrices, for κ = 3 the Gell-Mann matrices (apart
from pre-factors). In general, T [k] are traceless, Hermitian κ× κ-matrices with
an identity relation

κ2−1∑
µ=1

T
[µ]
αβ T

[µ]
γδ =

1
2

(
δαδδβγ −

1
κ
δαβδγδ

)
. (186)

The elements of the permutation operator describing a transition from spins α
and γ to β and δ (on sites j and j + 1 respectively) are given by [Pj,j+1]βδαγ =

δαδδβγ . The identity-operator that projects a spin-pair onto itself can be written
as [1j,j+1]βδαγ = δαβδγδ. It is easy to check that

∑
µ

[
T
[µ]
j

]
αβ

[
T
[µ]
j+1

]
γδ

=
1
2

(
δαδδβγ −

1
κ
δαβδγδ

)
(187)

=
1
2 [Pj,j+1]

βδ
αγ −

1
2κ [1j,j+1]

βδ
αγ . (188)

In the spin basis, we can then rewrite Heff in Eq. (185) as

Heff = EF +
N−1∑
i=1

Jj

(
2Tj ·Tj+1 −

κ− 1
κ

1

)
. (189)

This writing of the effective Hamiltonian makes its SU(κ)-symmetry transparent.
Due to the fact that the coupling constants are always positive (Jj > 0), the spin
state will try to realize the least symmetric - and therefore the least magnetic -
spin wave function possible for a given mixture. This fact is dual to the fact that
the orbital wave function will try to achieve the most symmetric configuration.
In the special case of κ = 2, we obtain a site-dependent Heisenberg model [214].
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Note that the Hilbert space of the effective model (189) has dimension κN ,
while the earlier snippet basis had dimension D{Nκ}. This is no contradiction
as the spin model allows all possible spin configurations of N particles and
κN =

∑
{Nκ}D{Nκ}. By projecting onto a basis of those spin states representing

a fixed mixture, one obtains the reduced dimensions.

5.5.2 Density and momentum distributions, Tan contacts

derivation. Eigenvectors of the matrix (183) or equivalently solutions of
the effective spin Hamiltonian (189) represent eigenstates of the general Hamil-
tonian in the limit of strong interactions. We are interested in the spatial and
momentum structure of these states. We therefore study the one-body density
matrix (167) in this limit.
Every permutation P ∈ SN can be labeled as Pik where i is the posi-

tion of the first particle and k ∈ {1, . . . , (N − 1)!} denotes the permutation
of the remaining N − 1 particles. The wave function then takes the form
Ψ(X) =

∑N
i=1

∑(N−1)!
k=1 aikχPik (X)ΨA(X), where X = (x1, . . . ,xN ). To deter-

mine ρ(x1,x′1) for two coordinates x1 and x′1, we can always assume x1 < x′1 as
ρ(x1,x′1) = ρ(x′1,x1). We can then write

ρν(x1,x′1) = Nν

∑
1≤i≤j≤N

ρ(ij)ν (x1,x′1) (190)

with ρ(ij)ν (x1,x′1) being defined in Eq. (167) and the integral limits chosen such
that (i− 1) coordinates are smaller than x1 and (j − 1) coordinates are smaller
than x′1. Using the fact that

∫
dx2 . . . dxN χPik (X)χPil (X

′) · · · 6= 0 only if k = l

and the permutation symmetry of ΨA, we can express the latter as a Vander-
monde determinant, and obtain

ρν(x1,x′1) = NνGN
∑

1≤i≤j≤N
Cij

∑
P ,Q∈SN−1

ε(P )ε(Q)

N∏
l=2

∫ Uij

Lij

dz(z − x1)(z − x′1)φP (l)−1(z)φQ(l)−1(z),
(191)

with GN = 2N−1
√
πN !(N−1)! , Cij =

∑(N−1)!
k=1 aikajk

(i−1)!(j−i)!(N−j)! and (Lij ,Uij) = (−∞,x1) if
l ≤ i, (x′1,+∞) if l > j and (x1,x′1) otherwise.
Eq. (191) allows us to determine the momentum and density distributions

analytically. Moreover, similar to Eq. (180), we have direct access to the species-
resolved Tan contacts via

Cν =
1

2π

κ∑
µ=1
µ6=ν

N−1∑
k=1

∑
P∈σN (µ,ν,k)

(aP − a(τk◦P ))
2αk, (192)

where σN (µ, ν, k) is the set of all permutations for which the particles on sites
k and k + 1 are in species µ and ν; τk is the transposition of these particles.
Finally, we can probe the symmetry of the state by checking the sign-change of
a given wave function under exchange of two spins. This allows us to directly lay
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(a) (b)

Figure 29: Tan contacts and Young diagrams for states in the limit of strong
interactions. (a) The (rescaled) interaction energy parameter K (which is
proportional to the Tan contact) for all the states in the ground state manifold
at 1/α → 0 for different mixtures of fermions. The plot shows the energy
splitting at finite α. The colors identify the orbital symmetries of the states
associated with the Young diagrams given in (b). For the sake of readability,
states with different symmetry corresponding to the same mixture are slightly
left-right shifted. The ordering of the ground states following the pouring
principle is evident (compare Fig. 27).

out the corresponding Young diagrams. Alternatively, we one can make a more
formal approach and measure so-called class-sum operators [25], which identify
the irreducible representation likewise.

application. We now have all the tools at hand to describe the physics
in the limit of strong interactions. We observe that the density distribution of a
mixture under strong interactions differs significantly from the non-interacting
regime (see Fig. 28). This is a combined effect of the interactions and the sym-
metry constraints that a particular mixture has to fulfill.
In the energy spectrum of the effective Hamiltonian (189), we can identify the

irreducible representation (i.e. the Young tableau) for any state (see Fig. 29).
Indeed, we observe that for a given mixture, only those diagrams are realized
which agree with the construction rules in Sec. 5.2.3 (see in particular Fig. 26).
We also observe that within the set of permissible diagrams, a mixture realizes
the most symmetric one. Moreover, the ground state energies for different dia-
grams are ordered with respect to the symmetry. This is in agreement by the
pouring principle of the Lieb-Mattis theorem. Indeed, knowledge of the interac-
tion energy (or equivalently the energy slope K) allows a direct identification of
the particle mixture - given that the system indeed realizes a ground state. Vice
versa, for a given mixture, knowledge of K makes it possible to identify a state
and therefore its symmetry. We observe that the spectra for different mixtures
are degenerate within a given symmetry sector. This is an important finding:
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Figure 30: Momentum distributions for different interaction strengths. For a
system with κ = 3 species and N1 = 3 (green), N2 = 2 (cyan), N3 = 1
(violet), the momentum distributions of the three species are shown for (a)
free fermions (α = 0), (b) intermediate interactions (α = 10) and (c) strong
interactions (α = 100).
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Figure 31: Momentum distribution tails and Tan contacts. For the same mixture
as in Fig. 30 (3F + 2F + 1F ), we exemplarily show the relation between mo-
mentum distribution tails and Tan contacts: The plot shows the numerically
determined momentum distribution tails at interaction strength α = 10.0
on a log-log scale. Crosses show the numerical results, the continuous lines
are guides to the eye. The dashed lines represent the functions Cνk−4 with
the Tan contacts Cν as determined from the interaction energy. As expected,
the momentum distribution converge to these lines for large momenta. De-
viations from the power-law behavior at very large momenta are due to the
discretization in the numerical problem.

The Young tableau fully determines the constraints on an ansatz wave function
and therefore the possible energy eigenstates.
The parameter K is linked through the interaction energy to a Tan contact (or

a set of Tan contacts for the different species, see Eqs. (171),(172) and (180)). We
therefore propose to use spin-dependent time-of-flight measurements to identify
K through the slope of the resulting momentum distributions. This yields direct
access to the symmetry of the measured state.
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Figure 32: Scaling of Tan contacts for different mixtures. For different mixtures
(gray: 2F + 2F + 2F , blue: 3F + 2F + 1F , yellow: 4F + 2F , green: 3F + 3F ),
the total Tan contacts are plotted against the interaction strength. The Young
diagrams identify the symmetry of the respective state. We observe that the
Tan contacts are ordered with respect to their symmetry along the pouring
principle for all interaction strengths.

5.6 intermediate regime

5.6.1 Numerical results

In the previous two sections, we have established exact results for the two limits
of vanishing and strong interactions. The regime of finite interactions, on the
contrary, is not accessible analytically. We therefore perform a MPS/DMRG-
study which allows us to determine and measure the ground states for any given
mixture in the full parameter regime. Details of the numerical method are given
in App. A.4.
In Fig. 28, we show the deformation of the ground state density distribution

for different particle mixtures when increasing the interaction strength. We ob-
serve a qualitative change in the distributions when correlation effects become
important. A comparison of the results at strong, but finite interactions with
the exact result for α → ∞ confirms the previous analytical study and allows
us to determine a range in the interaction parameter (α . 100) for which the
strong-coupling result remains quasi-exact.
Likewise, in the momentum distributions, we can identify the onset of strong

correlations by a narrowing of the curves and an enhancement of the high-
momentum tails, indicating the fermionization process. An example is given
in Fig. 30. The higher probability to find the particles for strong interactions
at large momenta is reflected by increasing Tan contacts. We also show an ex-
ample of how the Tan contacts identify in the momentum distribution tails in
Fig. 31. For different mixtures, we present the Tan contacts at finite interactions
in Fig. 32.
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(a) (b)

Figure 33: Scaling of Tan contacts in homogeneous mixtures. (a) Exact and
MPS results for the Tan contacts Cν in balanced mixtures with up to N = 12
particles as a function of the parameter α0/2 = aho/(|a1D|N1/2) ∝ g1D.
The rescaling of the Tan contacts with the factor N5/2 leads to a collapse of
all data with the same κ (but possibly different N) onto a single curve. The
results are compared to the perturbative local density approximation (201) in
second (dashed lines) and third order (continuous lines). Blue: κ = 2, yellow:
κ = 3, green: κ = 4, red: κ = 5, violet: κ = 6. (b) Once the limiting value
Cg1D→∞ is factored out, the data collapses completely. This proves the very
weak dependence on the number of species κ.

For strong interactions we established a link between the symmetry of a state
and its Tan contact. In our line of argumentation, we first connected the sym-
metry to the order of the ground state energies via the Lieb-Mattis theorem.
In the limit α → ∞, the energy splitting is directly proportional to the energy
slope, which again is proportional to the interaction energy and therefore to the
Tan contact. As a consequence, the ground states with different symmetries are
ordered with respect to their Tan contacts. For intermediate interactions, the
ground state energies are a priori not necessarily proportional to their slope and
we would be missing a link in the chain of arguments. However, in our numerical
observations we observe that the Tan contacts indeed remain ordered (compare
Fig. 32). We therefore conjecture that they continue to identify the symmetry
of a state.

5.6.2 Scaling approach and local density approximation

As demonstrated above, we have the necessary tools at our disposal to deter-
mine Tan contacts from interaction energies in the numerics. We could use these
results to compare to those measured in an experiment in the tails of momen-
tum distributions. However, our numerical techniques are limited to explore
systems with only a few particles (N . 12). In actual experimental setups, on
the contrary, the trap might be charged with a much higher number (compare
App. B.2.3). We therefore present a scaling approach that - based on very gen-
eral assumptions - allows us to predict the scaling of the Tan contacts with the
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particle number. We then outline how to determine formally exact results within
a local density approximation. The results were originally derived by M. Rizzi in
our joint publication [25], and are presented here to complement the numerical
study.

scaling approach. In a harmonic potential, fermions occupy a number of
orbitals which scales with the number of particles. This is true both in the limit
of free fermions, where the lowest pνN levels for all κ species are occupied inde-
pendently (with pν = Nν/N being the fraction of particles in one species), and
for a system with infinitely strong interactions, which shows the same level occu-
pation as a single-species gas due to fermionization. From the Hamiltonian (162)
we see that if orbitals up to a level in O(N) are occupied, the non-interacting
contribution to the energy scales like O(N2)h̄ω. We can write the total energy
as

E = h̄ωN2f(α,N , {pν}), (193)

where f is a function that can only intensively depend on N .
In the thermodynamic limit of N → ∞, the energy per particle O(N)h̄ω

clearly diverges. Fixing the Fermi energy in the limit α → ∞ to E(∞)
F = Nh̄ω

then amounts to rescaling the interaction parameter α0 = α/
√
N . Therefore

E/N = E
(∞)
F f(α0, {pµ}) with f(0, {pν}) =

∑
ν p

2
ν/2 and f(α0 → ∞, {pν}) =

1/2. The scaling of the Tan contact can be derived from Eq. (172) with g1D =

h̄ωahoα0
√
N to be

Ctot(α0) =
1

πα3
ho
N5/2α2

0
∂f(α0, {pµ}

∂α0
. (194)

This scaling is confirmed in Fig. 33, where the rescaled Tan contacts determined
numerically for finite interactions collapse onto a single curve when rescaling
the axes. The N5/2-scaling of Tan contacts is also observed in Monte Carlo
simulations [217].

local density approximation. The above result can be further re-
fined and an explicit form of f can be derived. For a homogeneous, periodic
system with length L and N particles interacting through a contact potential
α ∝ 1/a1D, the physics of the model is fully determined by a single parameter
γ = mg1D/h̄2ρ = (1/ρ)/a1D, relating the average particle distance 1/ρ = L/N
to the scattering length. This yields a local energy

ε[ρ, γ] = h̄2

2mρ
3e(γ) (195)

where e(γ) is a dimensionless equation of state which can be determined via a
Bethe-ansatz [218].

For the problem in the harmonic potential, we are encouraged by the above
result to find a similar solution which only depends on the parameter α and
relates the harmonic oscillator length (instead of the average particle distance)
to the scattering length. We therefore assume that the expression for the density-



90 interacting su(n)-fermions in a harmonic trap

dependent energy density (195) is locally correct, and write the total energy as
a functional of the local density ρ(x),

E(ρ) =
∫

(ε[ρ, γ] + [Vext(x)− µ]ρ(x)) dx (196)

where Vext = mω2x2/2. The minimization condition δE[ρ]/δρ = 0 yields

3
2
h̄2

m
ρ2e(γ)− g1D

2 e′(γ) = µ− Vext(x) (197)

with
∫
ρ(x)dx = N . This fixes the chemical potential. If, in addition, we demand

the positivity of the right-hand side of the equation (which yields a compact
support with the Thomas-Fermi radius R = aho(2Nµ/E(∞)

F )0.5), the equation
can be solved with respect to ρ. Combining this solution with the Hellmann-
Feynman theorem (180) and the Tan relation (172) yields

Ctot =
g1Dm

2

2πh̄4

∫
dx ρ2(x)e′

[
mg1D
h̄2ρ(x)

]
. (198)

By changing variables µ = µ̃EF , z = x/R and r(z) = ahoρ(x)/
√
N (with

normalization condition
√

2µ̃
∫ 1
−1 r(z)dz = 1), the minimization condition (197)

becomes

3r(z)2e

[
α0
r(z)

]
− α0r(z)e

′
[
α0
r(z)

]
= 2µ̃(1− z2). (199)

This expression only depends on α0, confirming the earlier claim that the prob-
lem is fully described by a single parameter (the rescaled α).
In the particular case of a balanced mixture, the dimensionless equation of

state can be expanded for α0 →∞ as [218]

e(γ) =
π2

3

[
1− 4Z1(κ)

γ
+

12Z1(κ)2

γ2 − 32
γ3

(
Z1(κ)

3 − Z3(κ)π2

15

)
+O

( 1
γ4

)]
(200)

where Z1(κ) = − 1
κ [Ψ( 1

κ ) +CEuler] and Z3(κ) = [ζ(3, 1/κ)− ζ(3)]/κ3 with the
digamma-function ψ, the Euler constant CEuler and the Riemann function ζ. By
using this to solve Eq. (199) and plugging the result into Eq. (198), we obtain
up to second order in 1/α0

Cν(α0) =
N5/2

πκa3
ho

[
128
√

2Z1(κ)

45π2 +
2(315π2 − 4096)Z1(κ)2

81π4α0

−64
√

2
(
25(1437π2 − 14336)Z1(κ)3 + 1728π4Z3(κ)

)
14175π6α2

0

]
.

(201)

Fig. 33 demonstrates that this analytical expression describes correctly the scal-
ing of the Tan contacts for strong interactions.
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Figure 34: Symmetries of bosons and fermion-boson mixtures. (a) Two bosons
in orbitals m and n and internal states σ (blue) and τ (yellow) display a
symmetric commutation relation. If the wave function is (anti-)symmetric in
the orbital part, it also has to be (anti-)symmetric under spin exchange (see
Eqs. (202) and (203)). (b) For mixtures of fermions and bosons, the total wave
function is only constrained by the commutation rules within the two sub-
sets. The overall wave function can have different symmetries then. Here, we
present an example of three particles, two of which are fermions. If the third
particle (red) is also a fermion, the overall wave function is anti-symmetric
(top). If it is a boson, the total wave function can also be symmetric under
exchange of the boson with the fermions (bottom). In this case, the Young
diagrams for the orbital and spin degree of freedoms are no longer transposes
(as for fermions) or identical (as for bosons). The green arrow indicates the
energy-ordering of the ground states according to the pouring principle.
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5.7 outlook: boson-fermion mixtures

The above results were obtained for fermionic setups which are in the main focus
of this thesis. They can, however, be quite easily generalized to setups that
contain mixtures of fermions and bosons. Here, we outline the generalization
shortly and discuss the resulting differences.

symmetries. The principal difference to purely fermionic mixtures is the
fact that the overall wave function does no longer obey the anti-symmetry con-
dition (163).

Bosons. If we consider the exchange of two bosons, the many-body wave function
does not change its sign, |m,σ;n, τ〉 = |n, τ ;m,σ〉. Possible solutions therefore
have the form

|m,σ;n, τ〉 = 1
2 (|m,σ〉 ⊗ |n, τ〉+ |m, τ〉 ⊗ |n,σ〉

+ |n,σ〉 ⊗ |m, τ〉+ |n, τ〉 ⊗ |m,σ〉)

=
1
2 (|m,n〉+ |n,m〉)︸ ︷︷ ︸

|n;m〉s

(|σ, τ〉+ |τ ,σ〉)︸ ︷︷ ︸
|τ ;σ〉s

(202)

where we have again permuted the dimensions to order orbital and spin degrees
of freedom. Alternatively,

|m,σ;n, τ〉 = 1
2 (|m,σ〉 ⊗ |n, τ〉 − |m, τ〉 ⊗ |n,σ〉

− |n,σ〉 ⊗ |m, τ〉+ |n, τ〉 ⊗ |m,σ〉)

=
1
2 (|m,n〉 − |n,m〉)︸ ︷︷ ︸

|m;n〉a

(|σ, τ〉 − |τ ,σ〉)︸ ︷︷ ︸
|τ ;σ〉a

.
(203)

We observe that the bosonic solution can be either symmetric or anti-symmetric
in both orbital and spin. More generally, for a bosonic many-body system, we
observe that in order to fulfill the symmetry criterion, the Young diagrams de-
scribing the orbital and the spin exchange have to be identical (see Fig. 34a).

Fermions and bosons. For a mixture of fermions and bosons, the symmetry of the
overall wave function can have any symmetry which is permissible and respects
the symmetry under exchange of bosons and the anti-symmetry under exchange
of fermions. We demonstrate this in Fig. 34b.

ordering of states. As a consequence of the different symmetry decom-
positions for fermions and bosons, the Young diagrams representing the orbital
and the spin symmetry are no longer dual (i.e. identical or transposed, compare
Fig. 34b). A pouring principle describing the ordering of states with respect the
orbital symmetry therefore does not translate into a similar rule for the spin
symmetry.
For free particles with a given mixture, the ground state is obtained by occu-

pying the lowest orbitals for every species separately. As bosons are not subdued
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to the Pauli principle, they will all occupy the lowest orbital, and the orbital
wave function is completely symmetric under exchange of any two bosons. By
building the according Young tableau (and those of possible excited states), it is
easy to verify that the pouring principle for the orbital wave function still applies.
The difference to the case of a totally anti-symmetry or totally symmetric wave
function consists in the fact that states with different spin symmetry can realize
the same orbital symmetry. As the orbital symmetry determines the energy of
a ground state without interactions completely, we conclude that ground states
with a given orbital symmetry can be degenerate (see again Fig. 34).

In the strongly interacting limit, we can proceed as follows: We observe that
coefficients in the wave function ansatz (177) are linearly dependent if they cor-
respond to an exchange of identical bosons, and aP = −aQ (compare Eq. (179)).
We can change the definition of the coefficients in the effective Hamiltonian (182),
such that αP ,Q ≡ αk if P and Q are equal up to a transposition of two consecu-
tive particles that are either distinguishable or indistinguishable bosons at sites
k and k+ 1. In the reduced basis of DN ,κ linearly independent coefficients asnip,
the eigenstates are now found by solving the diagonalizing the matrix V with

Vij =

αi,j if i 6= j

−
∑

d,k 6=i αi,k − 2
∑

b,k 6=i αi,k if i = j,
(204)

where the index d indicates elements between the snippets that transpose distin-
guishable particles, while b labels elements between sectors which correspond to
a transposition of identical bosons.
The set of coefficients asnip identifies the orbital wave function (177) uniquely.

In particular, we find that independent of the chosen mixture, the states obey
the Lieb-Mattis theorem in the orbital part of the wave function.
For a general boson-fermion mixture, the different exchange relations make it

difficult to derive an effective spin model of the kind (189) due to different com-
mutation relations for bosons. Here, we do not attempt to solve the problem, but
rather give an intuitive outline of the problem. Consider the two-particle wave
function introduced in Eq. (179) and let us assume that the two particles are dis-
tinguishable. If the total wave function (orbital and spin) was anti-symmetric,
we would call these particles distinguishable fermions. A symmetry of the or-
bital wave function would then correspond to an anti-symmetry in the spin
wave function and vice versa. We discussed for the orbital wave function that
a symmetry would yield a12 = −a21, and we could write the spin projection as
|ψ〉s ∝ a12 |↑↓〉+ a21 |↓↑〉 = a12(|↑↓〉− |↓↑〉). It would therefore correctly describe
the symmetry of the spin problem as anti-symmetric.
Without further adaptations, we would then get a false result for a system

of distinguishable bosons. This needs to be taken into account when writing
an effective spin model in the spirit of Eq. (185). For systems which are purely
fermionic or bosonic, the problem has been addressed in Ref. [215]. In particular,
in the effective spin description of a purely bosonic system, the signs of all αj in
the spin Hamiltonian (185) change sign. To obtain the effective spin model for a
mixture of bosons and fermions, one has to first determine the global symmetry
of the mixture (compare Fig. 34) which fixes the overall exchange statistics for
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(a) (b)

(c)

Figure 35: Ground state density distributions for different boson-fermion mix-
tures at strong interactions. The plots present exact results for the density
distribution in the limit 1/α → 0. (a) A mixture of one fermionic (orange)
and one bosonic (red) species with three particles each, 3F + 3B , (b) two
fermionic and one bosonic species with two particles each, 2F + 2F + 2B , (c)
one fermionic and two bosonic species with two particles each, 2F + 2B + 2B .
The Young diagrams indicate the orbital symmetry of the states.

any pair of particles. This knowledge permits a statement on whether a (anti-
)symmetric commutation in the orbital wave function induces a symmetric or
anti-symmetric exchange in the spin wave function.

density and momentum distributions, tan contacts. Let us
now discuss the observable quantities for boson-fermion mixtures and put them
into a wider context.
From a mean-field level, a spatial separation between the different species is

expected for increasing interactions [219]. However, such considerations become
invalid in the regime of strong interactions due to the increasing importance of
quantum fluctuations. Nevertheless, for two-species mixtures a spatial separation
was also predicted using Luttinger liquid [195] and local density approximation
approaches [220, 221]. Exact results for small systems [222] confirm the pre-
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diction. Here, we present (numerically) exact density distributions for different
binary and ternary mixtures at all interaction strengths: In Fig. 28c, we exem-
plarily show the deformation of such distributions under increasing interactions.
Fig. 35 displays the density distributions for different binary and ternary mix-
tures in the limit of strong interactions. Our results confirm the spatial separa-
tion, which can also be understood through the symmetry considerations for the
strongly interacting regime: In order to minimize the costly anti-symmetric ex-
changes (compare Eq. (204)), fermions orientate towards the edges. For ternary
mixtures, we find that density distributions do not only depend on interaction
strength but also on the type of the mixture. This shows that the separation is
not exclusively an interaction effect, but depends on the underlying symmetry
(compare Figs. 35b and 35c). The study at finite interactions shows that the
interplay of symmetry and interactions determines the distribution also for a
wide range in the intermediate regime.

The momentum distributions of boson-fermion mixtures show the same quali-
tative changes as the fermionic systems when increasing the interaction strength.
However, for balanced mixtures, the Tan contacts differ for fermionic and bosonic
species. We observe that the Tan contact of purely fermionic systems (171) then
generalizes to

Cν =
g1Dm

2

2πh̄4 (1 + δνν′) 〈Hint,(ν,ν′)〉 (205)

which is still consistent with the definition of the total Tan contact Ctot =∑κ
ν=1 Cκ (172). The latter is then linked to different energy slopes K and again,

experimental measurements with spin-resolved time-of-flight measurements could
be used to identify the nature of a mixture or - for a given mixture - its symmetry.





6
CONCLUS IONS

In this thesis, we have taken a very broad perspective on the exciting field of
designed physical systems that can be realized in cold atom experiments. The
highly tunable setup offers a new paradigm in our understanding of quantum
many-body systems. Beyond the mere simulation of the physics occurring in ex-
isting materials, cold atoms allow the unprecedented possibility of creating syn-
thetic quantum matter (i) by exploring parameter regimes of theoretical models
that are unattainable in currently known materials and (ii) by combining in-
teresting properties that lead to new, emergent features. In this context, we
focused on (quasi-)one-dimensional systems which - as we demonstrated - offer
very rich physics. In future research, the models and results presented here can
be understood as building blocks in a bottom-up approach to even more intricate
higher-dimensional designs.

As a first step, we gave an overview of aspects that we considered interesting to
investigate in the above framework. Starting from general aspects of cold atomic
setups (an appendix was dedicated to experimental details), we identified and
reviewed components that are individually relevant and implementable. One as-
pect that we considered were features that concern the geometry of the lattice
and therefore influence how the fermions can move through the system. In par-
ticular, if closed paths exist, they allow the creation of artificial gauge fields that
play a role for both quasi-one-dimensional and ring-shaped systems. Such artifi-
cial gauge fields can drive currents in the system and are also highly-relevant for
topological features. We also commented on symmetries as a ubiquitous feature
in physical systems and on their particular role with respect to the previous
aspects. We motivated our interest in interactions and the resulting strongly cor-
related physics, which can no longer be addressed with simple analytical means.
As interactions are a recurring ingredient in all our models, we made heavy use
of numerical calculations in the form of tensor networks. To offer a self-contained
image of such tensor networks and their importance beyond numerics, we pre-
sented them in a comprehensive appendix.

We then turned to concrete physical setups that combine two or more of the
above ingredients:

• In the imbalanced Creutz-Hubbard ladder, we investigated the competition
between topological features and interaction effects. We made use of a
variety of analytical methods (mapping to effective models, perturbation
theory, etc.) and presented extensive numerical results to explore features
of the model. The techniques employed could be relevant for other strongly
correlated topological insulators; our predictions can be tested in state-of-
the-art cold atomic experiments. We laid out the full phase diagram of
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the model and showed that an originally topological phase of the AIII-
class can be driven to two different non-topological phases by adding only
on-site repulsive interactions. We established the nature of the transitions
and found that the critical line corresponds to a Dirac CFT at weak in-
teractions, but splits into two critical lines with Majorana CFT for strong
interactions. We substantiated this numerical finding in the entanglement
entropy scaling with effective theories in limiting cases of the model, and
identified experimentally accessible signatures of the different phases.
Follow-up research on the same setup could investigate the nature and the
effective quantum field theory of the tri-critical point at which the critical
line with an integer central charge splits into two critical lines with half-
integer charge. Future research could also focus on different fillings of the
model. In this scenario, new features such as fractional effects might emerge
which could be interpreted in analogy to the fractional quantum Hall ef-
fect in two-dimensional systems. In the same context, topological phases
could occur that are entirely interaction-driven and disappear at zero in-
teractions. Another target for follow-up studies could be the exploration
of similar lattices with a higher number of sites in the synthetic lattice
direction. Such designs could be employed to advance the understanding
of bulk-edge behavior from a microscopic perspective and eventually allow
an extrapolation to the true two-dimensional regime.

• With Weyl fermions in one-dimensional ring traps we studied the effect of
repulsive interactions on the current response of particles with an exotic
linear dispersion on a circular lattice. For the investigation, we combined
a perturbative approach with numerical results obtained with the recently
developed method of binary tree tensor networks. We motivated our in-
terest in Weyl fermions through their relevance for both quantum field
theory and topological insulator research. We found that a new exotic en-
hancement of the diamagnetic response occurs for certain configurations
of nearest-neighbor interactions and demonstrated that the effect persists
over a large interaction range. Moreover, we put forward ideas to realize
the setup with ultracold atoms. Nevertheless, the tunability of the Drude
weight of interacting Weyl fermions can be considered a more general phe-
nomenon with relevance also for other setups.
Future investigations could target the origin of the discovered phenomenon
and therefore address currents flowing in the Creutz ladder on a microscop-
ical level. It would also be interesting to have a deeper understanding of
the influence of lattice effects. In this respect, alternative implementations
of linearly-dispersive particles could be envisioned. Finally, in addition to
the ring-implementation proposed here, the theory could also be tested on
other platforms, for example through transport experiments in cold atom
wires.

• In the setup of harmonically trapped fermions with SU(N)-invariant inter-
actions, we studied the interplay of symmetry and strong correlations in a
continuous one-dimensional system. Therefore, we combined exact results
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in the limiting cases with numerical results for the regime of intermediate
interactions. Our MPS calculations proved the relevance of tensor network
calculations for (discretized) continuum problems, where it is a priori un-
clear if the underlying assumption on entanglement scaling is fulfilled. For
the SU(N)-symmetric fermions, we provided an intuitive understanding of
the symmetry and its reflection in the commutation relations of the orbital
and spin components of the many-body wave function. We pedagogically
reviewed the steps leading to an effective spin model for strong interac-
tions and established a strong link between the resulting magnetization of
a state and measurable signatures in its momentum distribution. Using a
combination of numerical calculations and a local-density ansatz, we gener-
alized our results to higher particle numbers and intermediate interactions.
Finally, by looking at mixtures of both fermions and bosons, we further
substantiated the importance of symmetry on the observed physics and
confirmed earlier results on boson-fermion separation.
For future investigations, one could anticipate the implementation of the
SU(N)-symmetry in tensor networks. This would expand the reach of the
numerical simulations to considerably higher particle numbers. It would
also be exciting to fully understand the energy ordering of states with re-
spect to their symmetry (including the cases not covered by the Lieb-Mattis
theorem). More ambitiously, both theoretical and analytical research could
try to integrate the ideas of other physical communities for which high sym-
metries are important.

As this summary shows, we addressed diverse timely subjects in cold atomic
matter which encourage further investigation. From a broader perspective, the
scope and the versatility of ultracold atoms and synthetic quantum matter will
further expand. Interdisciplinary approaches will allow other fields of physics
to benefit from the results obtained through quantum simulations. At the same
time, backed through international research initiatives, quantum phenomena are
receiving a wider attention and quantum technologies are even beginning to raise
the interest of private businesses. It is hard to predict what exactly the future
will bring, but it surely will be exciting.





A
NUMERICAL METHOD :
VARIAT IONAL OPTIMIZAT ION WITH TENSOR
NETWORKS

In the main body of this thesis, we focus on physical properties of the studied
one-dimensional fermionic systems and their interpretation. Nonetheless, a con-
siderable time of the investigation period was devoted to understanding, writing,
improving and applying tensor network methods. Actually, besides the intrin-
sically numerical results, much of the theoretical and analytical understanding
presented in this thesis was stimulated by earlier numerical investigation. Con-
versely, the analytical findings then encouraged further numerical studies. It is
therefore just to give some credit to this powerful method. The section at hand is
not intended to give a comprehensive picture, but rather to present those aspects
that were particularly relevant for our work. For a more complete introduction,
the reader is referred to our publication in Ref. [223].
Why tensor networks? In the study of quantum many-body systems, advanced

numerical tools are an essential means of exploring regimes unaccessible to ana-
lytic calculations. Naive brute-force approaches would be too costly due to the
exponential growth of the Hilbert space with the number of constituents. A
plethora of such techniques exists, and each of them has its advantages and dis-
advantages: Bosonization is powerful in predicting the universal behavior, but
fails to explain microscopic features. Monte Carlo methods struggle with the
so-called sign problem and mean-field methods like DMFT are limited to higher
dimensions due to the strong quantum fluctuations in one-dimensional systems.

If the temperature of a system is small compared to its inherent energy scales,
tensor networks present a powerful alternative to these schemes. They rely on
the fact that in many realistic systems, the exponentially large Hilbert space is
only populated in a small, physically relevant subspace. This is related to the fact
that under certain conditions, the ground state entanglement in a bipartition of
a system does not scale with the volume of a subsystem, but instead with its
surface. In particular for gapped lattice systems, this is the case if the interactions
are of finite range or decay sufficiently fast with the distance. This finding has
been rigorously proven for a multitude of systems in the so-called area laws [20].

Originally developed as matrix product states (MPS) to understand the work-
ing of the density matrix renormalization group (DMRG) [224–227], tensor net-
works have evolved to a research field of its own. Today, they are not only used for
one-dimensional systems, but also for higher dimensions (e.g. in two dimensions
as projected entangled pair states (PEPS) [228]) and even outside their original
condensed matter perimeter, e.g. to simulate lattice gauge theories [229]. More-
over, while first only used as a numerical tool, tensors can now be understood as
“quantum informational building blocks”, the composition of which can explain
e.g. topological behavior [16, 94, 95].
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With respect to numerical simulations, a tensor network can be understood
as an ansatz which is then optimized to represent a low-energy many-body state
(most often the ground state) of a system. This ansatz is minimally biased in the
sense that the only constraint is the assumption of a certain (limited) entangle-
ment in the system, and this assumption can be loosened during optimization
when necessary. Once calculated, tensor networks can be efficiently stored and
subsequently any kind of expectation value (local observables, correlations and
global quantities) can be determined.
A certain class of tensor networks is particularly apt for variational ground

state search in the spirit of DMRG: So called loop-free tensor networks do not
contain cycles in the graph which represents the linkage of the tensors. The
above-mentioned matrix product states are one instance of this class, but we
will see that the generalization of MPS also allows for other geometries which
may better reflect certain system properties like gaplessness or periodic boundary
conditions.
In the following section (Sec. A.1), we first define loop-free tensor networks

and show how operators can be written in the tensor framework. We shortly
discuss how to install gauges in tensor networks and give an introduction on
how to implement (Abelian) symmetries in the tensors. In Sec. A.2 we outline a
generic DMRG method to find the ground state of a system, and explain how the
stability of this method is affected by the loop-freedom of the network. Sec. A.3
discusses shortly the technical aspect of treating fermionic systems with the help
of Jordan-Wigner transformations. The rest of the chapter is then devoted to the
description of instances of the particular tensor networks, which we used in the
study of the physical systems: In Sec. A.4, we define MPS and then give details
of their application on the different models. In Sec. A.5, we proceed likewise for
so-called binary tree tensor networks (bTTN).

a.1 tensor networks

a.1.1 Tensor networks in general

What is a tensor? In a narrow definition, we consider a tensor a multidimensional
array of numbers. The rank of a tensor determines this dimensionality. Elements
of the array are labeled by a corresponding number of indices. A tensor of rank
0 is a scalar, a rank-1 tensor is a vector (ai), a rank-2 tensor is a matrix (Aij),
etc. We will see later on how to generalize the definition in the presence of
symmetries. Graphically, we can represent tensors by boxes (or circles) with a
number of links equal to the rank of the tensor (Fig. 36a). Two tensors A and
B, which have a dimension for which the corresponding indices αm and βn can
take the same values in {1, . . . ,D}, can be contracted. A contraction is defined
as

Cα1,...,αm−1,αm+1,...,αM ,β1,...,βn−1,vn+1,...,βN =
D∑

αm,βn=1
Aα1,...,αMBβ1,...,βN δαm,βn .

(206)



A.1 tensor networks 103

Figure 36: Basic ingredients for tensor network methods. (a) A convenient graph-
ical representation of tensors, where each leg represents an index of the math-
ematical object: this allows for an intuitive pictorial sketch of tensor networks.
(b) Contraction of two tensors over a common index αm = βn. (c) Schmidt
decomposition of the tensor containing the coefficients of a Hilbert space wave
function into two smaller tensors corresponding to subsystems: The vertical
legs correspond to the physical degrees of freedom, while the horizontal legs
(virtual links) carry information about the entanglement between the two sub-
systems. The process can be iterated to obtain a tensor network with smaller
tensors. (d) A generic loop-free tensor network. (e) Pictorial representation
of the expectation value of a multi-site observable, represented by a matrix
product operator (MPO). (f) A matrix product state (MPS). (g)-(h) Besides
the (linear) decomposition into MPS, other tensor network architectures can
be employed for the description of one-dimensional systems. Here, we show
binary tree tensor networks (bTTN). The representation in (g) hints at the
hierarchical renormalization of entanglement in bTTN, the representation in
(h) focuses on their aptness for setups with periodic boundary conditions.
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In terms of diagrams, the process is represented by a connection of the corre-
sponding links (see Fig. 36b).
What is a tensor network? A tensor network constitutes a collection of tensors

which are linked, i.e. there exists a rule of how to contract the tensors in the set.
An example of a generic tensor network is given in Fig. 36(d).

How do tensor networks represent physical states? The wave function of a
many-body system of L constituents with physical dimension d living in some
Hilbert space H is given as

|Ψ〉 =
d∑

i1,...,iL=1
ci1,...,iL |i1, . . . , iL〉 , (207)

i.e. the number of coefficients needed in this description scales exponentially in L,
and dim(H) = dL. In the notation introduced above, we can understand ci1,...,iL
as the elements of a rank-L tensor. We can now introduce a bipartition at some
physical site of the system such that we obtain two subsystems of constituents
with L = (i1, . . . , ix) and R = (ix+1, . . . , iL). For these, we can define Hilbert
spaces HL and HR with dim(HL) = dx and dim(HR) = dL−x, respectively. It
is then always possible to write any state of the full Hilbert space in terms of a
so-called Schmidt decomposition,

|Ψ〉 =
κ∑
j=1

λj |ϕL,j〉 ⊗ |ϕR,j〉 , (208)

where {|ϕL,j〉} and {|ϕR,j〉} are sets of pairwise orthogonal states in HL and
HR, respectively, and κ = min{dim(HL),dim(HR)}.

The descendingly ordered set of Schmidt coefficients {λj} (often also in the
form {− log(λj)}) is called the entanglement spectrum of the bipartition and for
normed states

∑
j λ

2
j = 1, i.e. the values express probabilities of encountering a

subsystem state in the overall wave function. The quantity S = −
∑
j λ

2
j log(λ2

j )

is called the entanglement entropy and represents the quantum version of the
von Neumann entropy. For a pure state, i.e. λ1 = 1 and λj = 0 for j > 1,
the system is unentangled (S = 0). On the contrary, for a maximally entangled
state λj = 1/

√
κ and S = log κ. To understand the scaling of the entanglement

between a growing system L and a large environment R, we can assume x� L.
For a system with local dimension d, the maximally possible entanglement then
scales like S = x log d, i.e. linear in the size of the system.
However, for a great variety of (gapped) systems with local interactions, the

entanglement entropy over a bipartition of the ground state does not scale with
the size of the bipartition, but instead with its surface. This is called area law.
For a one-dimensional system, the entanglement entropy therefore saturates with
growing length of a subsystem. This behavior is reflected by the scaling of the
values λj : either λj = 0 for j > k and some given k, or λj ∝ e−cj with some
constant c. In the first case, it is easy to see that the number of states needed in
the description (208) is drastically reduced. In the second case, we can impose
an upper limit D to the number of states to keep, discard all others, and then
renormalize the retained, λ2

j → λ2
j/(

∑D
i=1 λ

2
i ) for λj ≤ D. This is at the heart

of the density-matrix renormalization group (DMRG). The connection to its
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traditional form becomes more transparent when explicitly writing the density
matrix of subsystem L by tracing out all degrees of freedom of subsystem R:
ρL = TrR |Ψ〉 〈Ψ| =

∑
j λ

2
j |ϕL,j〉 〈ϕL,j |.

Diagrammatically, we can understand the splitting of a tensor with higher
rank (207) into two tensors of smaller rank (208) as shown in Fig. 36c. If for
the blocks in the subsystems further Schmidt decompositions are performed, we
obtain a tensor network. Indeed, following this prescription, we always end up
with a loop-free tensor network. For completeness, we note that tensor networks
can be designed such that they contain loops by construction. This is e.g. the case
for PEPS or the multi-scale entanglement renormalization ansatz (MERA) [230].
For a given quantum many-body state with L constituents |Ψ〉, a general tensor
network is then given by a set of tensors T [j], the contraction of which would
lead to a tensor Ti1,...,iL equal or similar to the coefficient tensor in Eq. (207);
namely,

|Ψ〉 ≈
∑

i1,...,iL
Ti1,...,iL |i1, . . . , iL〉

=
∑

i1,...,iL

∑
α1,...,αL

T [1]
{i}1,{α}1T

[2]
{i}2,{α}2 . . . T

[NT ]
{i}NT ,{α}NT

|i1, . . . , iL〉 ,
(209)

where NT is the number of tensors in the network and Nα is the number of
virtual (i.e. non-physical) links; {i}x and {α}x label the sets of physical and
virtual links connected to some tensor T [x] in the network (compare Fig. 36d).

a.1.2 Operators and observables, MPOs

Any operator acting on a single site j with local dimension d can be written
as a matrix of the same dimension. In the graphical notation, its action is then
obtained by contracting the matrix to the according physical link. Operators
that act on two or more sites (e.g. correlators), but have local representations
in terms of matrices, can be applied similarly. The expectation value is then
obtained by contracting the object with the tensor network representing the
conjugate transpose of the wave function (commonly represented by horizontally
mirroring the original tensor network, compare Fig. 36e).
Often, one encounters operators which consist of the sum of a large number

of locally acting operators. Treating such terms in the tensor network formalism
can be tedious as one needs to keep track of the different terms and their network
representation. It can then be favorable to use so-called matrix product operators
(MPOs) [231, 232]. These take the form (compare Fig. 36e):

Ô =
∑

{ij},{i
′
j}

∑
{αj}

M
[1],α1
i1,i′1

M
[2],α1,α2
i2,i′2

. . .M
[L],αL−1
iL,i′L

|i1〉 〈i′1| ⊗ |i2〉 〈i′2| ⊗ . . .⊗ |iL〉 〈i′L| .

(210)

The additional links {αj} between the locally acting operators make it possible
to include all the terms appearing in an operator. A given instance of the set
{αj} then uniquely identifies a summand. If the terms in the operator (e.g. in a
Hamiltonian) are site-independent, the same tensorM ≡M [j] can be used on all



106 variational optimization with tensor networks

sites and a smart assignment between local operators and index-pairs can lead
to to an efficient scaling of the virtual dimension dim(α) even with long-range
terms [233].

a.1.3 Loop-free tensor networks and gauges

The tensor network description of a state has gauge freedoms. For example, ma-
trices X and Y with the property X · Y = 1 can be introduced on any virtual
link and then absorbed into the respective adjacent tensor without changing the
physical content of the description. For loop-free tensor networks, i.e. networks
without cycles in their graph, the whole gauge freedom is determined by such
link-local operations. By fixing a particular gauge, we can give the tensors a par-
ticular shape which can reduce the number of explicit contractions necessary in
certain computations. Therefore, the prescription can lead to great advantages
in the numerical calculations.
We concentrate here on the so-called unitary gauge. For a chosen tensor T [i]

(center), this gauge can be installed by performing the following procedure: First,
label all the tensors in the tensor network according to their graph-distance with
respect to the center. Starting from the most distant tensor, then perform the
following steps and iterate until the center is reached:

• QR-decompose the tensor at hand T [j] such that

T [j]
{ρ},η =

dξ∑
ξ=1
Q{ρ},ξRξ,η, (211)

where the index {ρ} collects all the links of the tensor pointing away
from the center, and η labels the link towards it. The dimension dξ might
be reduced with respect to the dimension of the original link dim(η) as
dξ = min(

∏
dim({ρ}), dim(η)). The tensor Q has the property of being

isometric. This means that the contraction of the tensor with its conjugate
over the links {ρ} yields an identity,∑

{ρ}
Q{ρ},ξQ{ρ},ξ′ = δξ,ξ′ . (212)

• Update the tensor T [j] → T̃ [j] = Q[j].

• Contract the matrix R[j] to the adjacent tensor in the graph towards the
center T [i].

The isometry property of the network is shown and applied in Fig. 38a. Once
the gauge is installed, changing the center of the gauge from some tensor T [i]

to some other tensor T [j] is simple, as only those tensors of the network are
affected which lie on a direct path between the two. It is then sufficient to apply
the above method on this subset (compare Fig. 38c).
Note that the above prescription yields a unique tensor network only due to

its property of loop freedom. We will see in Sec. A.2 how the absence of loops
also allows for stable optimization schemes.
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(a) (b)

(c)

Figure 37: Symmetric tensors and tensor networks. (a) The defining feature of a
symmetric tensor is its invariance under the application of representations
of the symmetry. By definition, representations of the kind Wj(g) (W †j (g))
act on outgoing (ingoing) links. (b) The internal structure of a symmetric
tensor is such that for a set of quantum numbers {li, lj , . . .} on the links, a
degeneracy tensor (of dimension ∂li · ∂lj · . . .) can only exist if the fusion rule
for this set holds. (c) A point-wise global symmetry acts on the physical legs
of some tensor network, which is equipped with a selector-link only containing
a single non-degenerate sector with some quantum number of the symmetry
`select. (1) Representations of the symmetry can be installed on the virtual
links such that (2) we can exploit the properties of symmetric tensors, see (a).
The overall action of the symmetry is then the multiplication with a phase
ei`selectg. `select therefore controls the quantum number of the physical state.

a.1.4 Symmetries in tensor networks

Symmetries that occur in physical problems usually go along with conserved
quantities. More precisely, a system is considered to have a symmetry described
by a group G, if for any element g ∈ G a unitary representation U (g) can be
found such that [U(g),H ] = 0. In this case, there is an operator commuting
with the Hamiltonian and the Hamiltonian becomes block-diagonal when writ-
ten in the basis of that operator. As a consequence, the eigenvalues (and the
corresponding states) of the Hamiltonian can be found by diagonalizing these
blocks. Numerically, this can lead to a substantial speed-up with respect to the
original problem.

An eigenstate of a symmetric Hamiltonian |ψ`,m,∂〉, i.e. a state with the prop-
ertyH |ψ`,m,∂〉 = E`,∂ |ψ`,m,∂〉, can be labeled by the quantum number `, possible
higher quantum numbersm, and an additional label ∂, which distinguishes states
that cannot be further distinguished by the symmetry. The action of the symme-
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try is then U(g) |ψ`,m,∂〉 =
∑
m′W

[`]
m,m′(g) |Ψ`,m′,∂〉 where W [`](g) is the `-sector

matrix associated with the group element g.
In particular, Abelian symmetries are characterized by their commutative

property [U (g),U (g′)] = 0 ∀g, g′ and have one-dimensional unitary irreducible
representations W [l](g) = eilg. Typical examples for Abelian symmetries are
the U(1)-symmetry, which reflects e.g. particle number conservation, or the Z2-
symmetry representing a parity. Let us concentrate on the earlier to better under-
stand the terminology: The U(1)-symmetry group is also called the continuous
planar rotation group. The group element parameter g can take values of an an-
gle, i.e. from [0, 2π), and the group operation is g ◦ g′ = (g + g′) mod 2π. The
irreducible representations are labeled by integers ` ∈ Z. The fusion rule when
joining two objects is `⊗ `′ = `+ `′.

The fact that the Clebsch-Gordan coefficients are therefore just Kronecker-
deltas is similarly true for other Abelian symmetries. This fact allows for an
easy implementation of Abelian symmetries in tensor networks: We upgrade any
link in the network to be symmetric by associating a quantum number to each
index-value α ∈ {1, . . . , dim(α)} of a link. As several index values can share
the same quantum number, we introduce an additional label ∂` running over
the degenerate subspace: α ≡ (l, ∂`). The action of a symmetry applied to this
link-sector with label ` is then ei`g and [W (g)]jk = ei`gδjk ∀g ∈ G.
A tensor is then only called invariant under the action of a symmetry, if it

fulfills
∑
j `in,j =

∑
j `out,j (see Fig. 37a). Here, those links which are acted on

with W †j (and therefore with the inverse irreducible representation `† = −`)
are represented with an ingoing arrow (and vice versa). The tensor architecture
used in our simulations is fully based on such invariant tensors. Technically, this
already leads to a severe reduction of coefficients in a tensor. Take as an example
a (traditional) N -leg tensor with indices i1, . . . , iN and associated dimensions
d1, . . . , dN . Such a tensor stores a number of coefficients

∏
dj . In our invariant

symmetric tensors, only those coefficients will be stored which are allowed by the
fusion rules of the symmetry:

∑
δ∑ lj,in,

∑
lj,out

∏
dim(∂lj ). The original number-

tensor is thereby split into a number of smaller blocks (degeneracy tensors).
Conceptually, the internal scheme of a symmetric tensor is shown in Fig. 37b.
The numerical routines for all tensor operations then explicitly perform only

operations that respect the symmetry constraints. For example, in a contraction
of two symmetric tensors, the routine keeps track of all involved quantum num-
bers, and performs the contraction only for those degeneracy tensors which are
compatible by the fusion-rules. This yields a significant speed-up. For a quanti-
tative discussion of the gain, see Ref. [223].
Two types of symmetries are particularly apt to be implemented in tensor

networks: global point-wise symmetries and lattice gauge symmetries. We focus
on the first kind here. Global point-wise symmetries are such symmetries that
have a group representation which can be written as a direct product of local
terms, U(g) = ⊗jVj(g). To control the quantum number N of a state, we attach
an additional link (selector link) to one of the tensors which has dimension 1
and is labeled by this quantum number: `select = N (see Fig. 37c). If we act with
the global point-wise symmetry on the physical legs of the network and expand



A.2 variational ground state finding 109

(a)

(b) (c)

Figure 38: Variational optimization and gauges. (a)-(b) Effective norm Neff and
effective Hamiltonian Heff (grey shaded) with respect to a chosen tensor (red)
of a tensor network (yellow) and a Hamiltonian MPO (beige). The installed
gauge (arrows, compare Eq. (212)) permits to contract the effective norm to
the identity. (c) Having optimized a tensor, the next tensor is addressed. The
gauge-center is therefore moved.

identities on the virtual links as 1 = W †j (g)Wj (g), we can use the invariance
of the tensors to absorb the operators on the physical legs and transport the
action towards the selector link tensor. We then see that the application of the
global symmetry operator has the same effect as the multiplication with a phase
eigN . The representation at the selector link therefore determines the sector of
the physical state.
We note that symmetries which are not of such a point-wise form (e.g. trans-

lational invariance) also play an important role in condensed and cold atomic
physics (compare Sec. 2.8). While there are ways to address such symmetries
with particular tensor network architectures [234–236], to the present they can-
not be treated in a general fashion.

a.2 variational ground state finding

The conceptual idea of DMRG in the language of tensor networks is to consider
the tensor network as a variational ansatz, the coefficients of which are adapted
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in order to optimally approximate the ground state of the system. Therefore
the coefficients in the ansatz are optimized such that a local energy expression
is minimized. In a single-site optimization, this local energy term is obtained
by selecting a single tensor of the network and treating all other sites of the
system as an environment, which when contracted with the Hamiltonian yields
another, effective Hamiltonian. The ground state thereof is taken to update the
coefficients in the considered tensor. This is done iteratively over all tensors
in the network and then repeated until some convergence criterion is matched.
To be more precise, the core idea of the variational algorithm consists of the
following steps:
Initialization. First, the tensor network is initialized: This includes fixing the

network geometry, i.e. the tensors and their linkage, and determining the bond
dimension D of the virtual links. If the tensors contain symmetries, the sectors
for each link and their degeneracies have to be chosen, which can be done using
different approaches [223].
Optimization. The target of the algorithm is to minimize the energy for a

given Hamiltonian, min 〈ψ|H|ψ〉〈ψ|ψ〉 , and to find the corresponding state |ψ〉. We
can reformulate the problem by considering the conservation of the norm as
a constraint which can be treated using Lagrange multipliers. We then target
min(〈ψ|H|ψ〉 − λ 〈ψ|ψ〉). Let us assume that we do not want to access all the
coefficients of the system simultaneously, but only those in some tensor Tj ; we
therefore reduce the problem to finding min(T †j HeffTj −λT

†
j NeffTj ), where Heff

and Neff are effective expressions obtained from contracting the Hamiltonian
and (or) the remaining tensors of the network (see Figs. 38a and 38b). If we
understand the tensor Tj as a vector, we can write the minimum condition as

∇Tj
(
T †j HeffTj − λT

†
j NeffTj

)
= 0⇒ HeffTj = λNeffTj . (213)

This is a generalized eigenvalue problem, and algorithms to solve the problem
suffer from numerical instabilities. However, the absence of loops in the tensor
network permits to always gauge the network such that Neff = 1 (see again
Fig. 38a). The problem then reduces to finding the minimal eigenvalue of Heff ,
which can be performed numerically by standard methods like the Arnoldi algo-
rithm [237].
Sweeping. Subsequently, we address a neighboring tensor, change the gauge

to have this tensor as the center (see Fig. 38c) and repeat the optimization step.
We proceed this way until we have visited all the tensors in the network. This
is called a sweep. The order of addressing the tensors is determined beforehand.
We continue to sweep through the network until we observe that the energy
of the variational ground state converges. To check if the tensor network is a
sufficiently good approximation to the actual ground state of the system, the
DMRG-process can be repeated with an increased virtual bond dimension D̃ to
test the convergence in this parameter.
Two-site optimization. With the above method, in each step the coefficients of

a single tensor are optimized. This scheme can easily get stuck in local minima
of the energy [227]. For symmetric tensor networks, single-site optimization fails
due to the fact that it only allows the optimization of the contents of the degen-
eracy sectors within a tensor, but does not permit to re-negotiate the dimensions
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of the sectors themselves. From a physical perspective (here a system with fixed
particle numbers), this prevents particles from being moved through the lat-
tice, i.e. the initial particle distribution of the system cannot be changed. We
therefore introduce a so-called two-site optimization. The algorithm follows the
same steps as described above. However, in the optimization, the coefficients of
two neighboring tensors T [i] and T [j] are addressed simultaneously. This is com-
putationally more expensive, but yields a significant advantage: The optimized
tensor T̃ [i,j] has the same form (link and degeneracy sectors) as the contraction
of T [i] and T [j]. The reverse operation of splitting T̃ [i,j] into two new tensors T̃ [i]

and T̃ [j] permits to open sectors (and degeneracy tensors) in the single tensors
which are compatible with the fusion rules, but might not have existed before
the optimization. Technically, the splitting is performed using a singular value
decomposition (SVD):

T̃ [i,j]
(i1...ir)(ir+1...in)

=
dk∑
k=1

T̃
[i]
(i1...ir)k

λkT̃
[j]
k(ir+1...in)

. (214)

The link between the two new tensors has a total dimension
dk = min(

∏r
j=1 dim(ij),

∏n
j=r+1 dim(ij)). As the coefficients λk quantify the

entanglement as discussed in Sec. A.1.1, this yields an efficient control of the
precision of the ansatz. Either, only a fixed number of states D is kept in each
step, or a threshold is defined that controls the minimum probability of an en-
tangled state to be kept. The diagonal matrix λ = diag({λk}) is then contracted
into one of the neighboring tensors.
Recently, a so-called single-site method with subspace expansion [238, 239] has

been presented as a more advanced method that combines the computational
efficiency of single-site optimization with the advantages of symmetric tensors.

a.3 mapping of fermionic problems

In Sec. 2.9, we introduced Jordan-Wigner transformations as a means of mapping
fermionic systems to spin systems. As pointed out earlier, this can be interesting
to understand the equivalence of certain physical phenomena. As a consequence,
also the language for fermionic and spin problems can be used interchangeably.
We demonstrated this in several examples (e.g. when rewriting the Creutz ladder
in terms of coupled spin chains in Sec. 3). However, there is still another aspect
to Jordan-Wigner transformations which makes them equally relevant for the
implementation of physical systems with tensor network states. In this section,
we will discuss some aspects of this.

Due to their quantum-informational justification through area laws, tensor
network descriptions rely heavily on the locality of the terms occurring in a
Hamiltonian. On the contrary, fermions display statistics that are non-local in
the sense that an exchange of any two particles, independent of their location, has
to be considered by a phase-factor -1 (anti-symmetry of the wave function). The
Jordan-Wigner formalism mediates between these seemingly opposing concepts.
Namely, it allows us to express a fermionic operator of the type c†i by a series of
spin operators

∏
i<j σ

z
i σ

+
j , a so-called Jordan-Wigner string. The crucial point
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(a) (b)

Figure 39: Assignment of a Jordan-Wigner string to different physical se-
tups. (a) In the ladder geometry of the Creutz-Hubbard model, we choose
a sawtooth-like ordering. Hopping terms in the underlying model therefore
lead to operators which are maximally third-nearest neighbors in the spin
description (marked in yellow). (b) In the quasi-one-dimensional lattice dis-
cretization of the SU(N)-fermions, no processes involving hopping between
different species occur. We therefore apply a snake-like ordering. All terms
in the Hamiltonian and in observables involve only Jordan-Wigner strings
within a single species.

is that this Jordan-Wigner string consists of a set of local operators which can
be efficiently contracted in the tensor network formalism and allow for an easy
implementation with matrix product operators.
So far, we have not given a meaning to the notation i < j in the above

expression. For quasi-one-dimensional systems, there is no a-priori ordering, and
we can assign a such to our liking. It can therefore be advantageous to take
the geometry and the symmetries of a system explicitly into consideration. To
illustrate this idea, we pick up two of the models studied in the main-text.
In the Creutz-Hubbard model (Sec. 3), we considered a two-species fermionic

lattice with inter-leg hopping. Any correlation (or hopping) c†i,σcj,σ′ is repre-
sented as an operator σ+i,σ

∏
(−σz)σ−j,σ′ , where the product runs over all sites

that appear in the chosen ordering between (i,σ) and (j,σ′). It can be instruc-
tive to keep this Jordan-Wigner string short to avoid confusion in the mapping
and to guarantee an efficient representation as MPO. In this example, this can
be realized by choosing a saw-tooth like ordering (see Fig. 39a).
On the contrary, for the SU(N)-fermions in the harmonic trap (Sec. 5), we

considered a model in which the number of particles in each species is conserved
explicitly. In the discretized model (compare Sec. A.4), hoppings (or correla-
tions) of the kind c†i,σcj,σ′ therefore only occur with σ = σ′. As a consequence,
a saw-tooth like ordering as in the previous example would only lead to unnec-
essarily long Jordan-Wigner strings. If instead we choose a snake-like ordering
(see Fig. 39b), we avoid such spurious strings. We emphasize that the ordering
assigned here does not necessarily need to reflect the distance of the sites in the
tensor network description.
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a.4 matrix product states

a.4.1 General

Matrix product states (MPS) represent the most known and used tensor net-
works for the description of one-dimensional systems. They are characterized by
the fact that every physical site of the system is assigned one tensor and there
are no “meta”-levels of tensors involved, i.e. the description (209) simplifies to

|Ψ〉 ≈
∑

i1,...,iN

∑
α1,...,αL

T [1]
i1,α1
T [2]
α1,i2,α2

. . . T [NT ]
αN−1,iN |i1, . . . , iN 〉 . (215)

Pictorially, this tensor network is shown in Fig. 36f. Historically, the variational
scheme of DMRG [224, 225] existed prior to the notion of tensor networks. MPS
emerged later as a very convenient representation of the variational space [240]
which lead to a very intuitive quantum-informational interpretation [241]. The
technical details of MPS have been described and discussed in great detail, e.g.
in Ref. [227].

a.4.2 Application in present work

In the present work, matrix product states were used to study all those se-
tups with open boundary conditions. While conceptually displaying the struc-
ture (215), our tensors were equipped with one or more symmetries as introduced
in Sec. A.1.4. To this end, the Abelian Symmetric Tensor Networks Library de-
veloped together with Prof. Montangero and coworkers in Ulm was employed.

The code makes explicit use of the MPO formalism (compare Sec. A.1.2) both
for the Hamiltonian in the variational optimization and for the operators in the
later measurement of observables. The variational optimization uses a two-site
scheme and calls an Arnoldi algorithm (ARPACK [242]) to solve the eigenprob-
lem. The precision of the eigensolver can either be fixed or dynamically adapted
during a sweep by setting it to a defined fraction of the difference between the
energies reached for the previous two tensors in the optimization. This accounts
for the fact that at the beginning of the DMRG algorithm, the randomly initial-
ized tensor network is not yet a good approximation to the ground state and
therefore a very precise optimization with respect to the still “wrong” environ-
ment is superfluous. With convergence towards a final energy, the precision is
then automatically increased.

su(n)-fermions in a harmonic trap. In order to determine the den-
sity and momentum distributions and the contacts in the finitely interacting
model, we used a code with the above specifications which in particular im-
plements multiple Abelian symmetries (particle number conservation for each
fermionic species). We reproduce here the technical details presented in Ref. [25].
To be able to do MPS calculations on a discretized lattice, we transfer the

original, continuous Hamiltonian into its discretized equivalent. We therefore
choose a region of the trap which is sufficiently large to contain the full ground
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state (ζaho) and cover it with a grid (in dimensionless units, the region x̃ ∈
[−ζ/2,+ζ/2]). The lattice contains L sites, i.e. we set x̃j = (j − (L+ 1)/2)∆x̃
with ∆x̃ = ζ/L and j ∈ {1, . . . ,L} labeling the j-th site in the lattice. The
discretized equivalent of the model (162) then reads

Ĥ = − t2

L−1∑
j=1

∑
σ

(
c†j,σcj+1,σ + h.c.

)
+

L∑
j=1

∑
σ

(
v

2

(
j − L+ 1

2

)2
+ t

)
c†j,σcj,σ

+ U
L∑
j=1

∑
σ 6=σ′

nj,σnj,σ′ , (216)

where the index j labels the lattice site and σ labels the N internal SU(N)-
invariant levels (species). The operators cj,σ and c†j,σ are the creation- and
annihilation-operators for a fermion at site j and of species σ, and nj,σ mea-
sures the occupation of the site, nj,σ = c†j,σcj,σ. The coefficients of this model
relate to the ones of the dimensionless continuum model as t = 1/∆x̃2, v = ∆x̃2

and U = α/∆x̃. Subsequently, the fermionic model is mapped to a spin model.
All calculations were then performed with increasing numbers of sites (i.e. di-

minishing lattice spacing, ∆y → 0) and the quantities of interest were finite-size
scaled to recover the continuum limit. The maximum number of lattice sites con-
sidered was L = 216 (∼= (0.02− 0.08)aho), and depending on the configuration,
the virtual bond dimension of the MPS was chosen m = 200− 500, correspond-
ing to maximally discarded probabilities . 10−6. The CPU time needed for the
individual calculations depended strongly on the number of particles, the num-
ber of species and the interaction strength; for L = 216 and m ≈ 250, it ranged
on a scale t ≈ 1− 14d.
The Tan contacts were calculated through measurement of the interaction

energy of the ground state. Density distributions were determined through mea-
surement of site-occupation in the discretized model; momentum distributions
were obtained by Fourier transformation of measured (fermionic) two-point cor-
relators:

n(k) =
1
L

L∑
j,l=1

ei(j−l)k 〈c†jcl 〉 . (217)

In the numerical (spin) implementation, the fermionic two-point correlators are
measured as a multi-point observable containing a Jordan-Wigner string.

creutz-hubbard model. For the Creutz-Hubbard model, the U(1)-sym-
metry of particle number conservation in the model was considered in the numer-
ical calculations to explicitly address the case of half-filling. Simulations were run
on lattices with up to L = 256 sites and with virtual bond dimensions m ≈ 500.
The CPU time needed for a single simulation ranged in the order t ≈ 2− 5 d.
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a.5 binary tree tensor networks

a.5.1 General

As the name suggests, tree tensor networks [243] are characterized by the fact
that their graph is a tree, the free links of which correspond to the physical
degrees of freedom (see Fig. 36g). Unlike for MPS, not every tensor possesses
physical links. A physical intuition of the structure can be developed by going
from the physical links at the bottom of the graph towards the top. In particular
for a binary tree, two physical links enter each tensor of the lowest level from
below and one virtual link from above. When interpreting the physical legs as
input channels and the virtual link as an output channel, the process can be un-
derstood as a renormalization step, which maps the physical degrees of freedom
to an effective (virtual) degree of freedom. This renormalization is repeated when
ascending further in the tree. If the bond dimension of the virtual links is fixed,
from a certain level on, this mapping from two legs to a single one is no longer
exact (bijective), but takes the form of a projection. Unlike other real space renor-
malization schemes (e.g. the Kadanoff renormalization [244]), the scheme does
not retain the lowest energy levels, but those states that constitute the most rele-
vant contribution in terms of entanglement with the rest of the system. It can be
proven that tree tensor networks can reproduce the algebraic correlation decay
found in gapless systems [245]. Practically, binary tree tensor networks are par-
ticularly apt to simulate systems with periodic boundary conditions [246, 247].
On the one hand, neighboring sites have a maximally graph-distance ∝ log(L),
while it would be ∝ L for an MPS. This is hinted at in Fig. 36h. On the other
hand, due to the absence of loops, binary trees are numerically more feasible
than other schemes which might offer a smoother entanglement distribution (in
the sense that the graph-distance for neighbors with same physical distance is
equal), e.g. MERA [230].

a.5.2 Application in present work

persistent currents of weyl fermions. In the present work, we
use an implementation of a binary tree tensor network for the simulation of the
Weyl fermions on a ring. The code exploits the Abelian symmetry of particle
number conservation, which allows us to control the filling of the system. The
variational optimization can be solved as simple eigenvalue problems due to
the implementation of an adaptive gauge [246], which we introduced earlier for
the general problem of optimization in loop-free tensor networks. Both two-site
optimization and single-site optimization with subspace-expansion were used.
The number of lattice sites used were in the range L = 16 − 128, the bond
dimensions were m = 100− 200. Typical CPU times, e.g. for L = 64 and m =

100, were t ≈ 2− 5 d.
The Drude weight (134) is given as the second derivative of the ground state

energy with respect to the flux. A naive numerical differentiation of ∂E2/∂Φ2|Φ0

requires to determine the finite difference (E(Φ0− h)− 2E(Φ) +E(Φ0 + h))/2
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with some h → 0. Instead we use that the first derivative of the ground state
energy, i.e. the current, is directly accessible due to the Hellmann-Feynman law:
I = −∂E/∂Φ = −〈Ψ|∂H∂Φ |Ψ〉. This observable is a sum over correlations which
can be precisely measured for a given state. Due to the symmetry of the problem
(E(Φ0 + h) = E(Φ0 − h) and I(Φ0 + h) = −I(Φ0 − h)), up to an error O(h2)

we can then determine the Drude weight from a single data point: D(Φ0) ≈
2I(Φ0 + h/2)/h.



B
EXPERIMENTAL IMPLEMENTATION
WITH ULTRACOLD ATOMS

The systems investigated in this thesis share the property of being simulatable
in cold atom setups. Comprehensive reviews of the techniques needed to realize
such setups have been presented e.g. in Refs. [2, 6, 7]. As the focus of this work
is the investigation of properties of the fermionic systems, we revise only shortly
the technical ingredients needed for the experimental realization - first for quasi-
one-dimensional fermionic systems in general (Sec. B.1), then for the particular
setups occurring in this work (Sec. B.2).

b.1 generalities of cold atom experiments

trapping and cooling of particles. To access the quantum prop-
erties of most particle systems, temperatures close to absolute zero are required.
In modern cold atom experiments, indeed extremely low temperatures T ∼ nK
can be obtained [248]. To this end, typically a variation of cooling schemes is
applied.
Different laser cooling methods exist which can reduce the kinetic energy of

particles in a gas [249–251]: The most common method, Doppler cooling, relies on
the fact that atoms perceive the frequency of an applied laser shifted due to their
own relative movement. This property can be exploited by tuning the frequency
of a laser slightly below some electronic transition in the atom. Only for atoms
moving towards the laser, the laser frequency occurs higher (blue-shifted) and
can be absorbed. Due to momentum conservation, this slows down the atom.
As the direction of a later photon emission is random, it will not alter the
net-momentum when averaged over many absorption-emission events. Further
laser-cooling techniques include Sisyphus cooling, resolved sideband cooling and
Raman sideband cooling.

Evaporative cooling is based on the idea that when lowering a trapping poten-
tial, fast particles can overcome the energy barrier and escape, thereby taking
away the high-momentum tail of the Boltzmann distribution of the previous
equilibrium distribution. The remaining particles can then find a new thermo-
dynamic equilibrium at a lower temperature as they exchange energy through
scattering and thereby thermalize. In bosonic gases, this technique allows e.g. the
realization of BECs using Rubidium atoms [30]. For fermions, re-equilibration
is hindered by the fact that the Pauli principle prevents an efficient energy ex-
change through scattering. Here, sympathetic cooling [252–254] finds application:
In a boson-fermion mixture, the bosons are cooled evaporatively and build a cool
bath for the fermions which equilibrate to this environment through scattering
with the bosons. This has been demonstrated e.g. for 6Li fermions with 7Li or
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23Na bosons [255]. Alternatively, fermions with different nuclear or atomic spin
can be used to have distinguishable subsets (e.g. with 40K atoms [256]).

lattices. Optical lattices are built using counter-propagating laser beam-
pairs forming a standing wave E(r, t) with the laser wavelength λL = 2π/kL
determining the spatial periodicity. If the laser frequency ωL is far off-resonant
with respect to transitions of the atoms, the electric field induces a dipole moment
d = α(ωL)E(r, t), where α is the frequency-dependent polarizability tensor.
This dipole couples to the field, resulting in a shift of the electronic energies
(ac-Stark shift). If the electric field is space-dependent, the atoms feel an optical
potential [257]

Vdip(r) = −
1
2 〈d ·E(r)〉 ∝ α(ωL)

2 |E(r)|2 , (218)

where here I ∝ |E(r)|2 represents the time-averaged intensity of the field. The
averaging is justified because the motion of the atoms is much slower than the
time-scale imposed by the oscillation of the field ∝ 1/ωL. By combining orthog-
onal sets of counter-propagating beam-pairs, one can obtain a periodic three-
dimensional potential

Vlatt(r) = V0

3∑
i=1

sin2(kLri) (219)

with a maximal value V0 ∝ Γ/ω3
0∆. Here, Γ is the decay rate of the excited

state and we assume that the detuning ∆ = ωL−ω0 between the laser frequency
and an atomic resonance ω0 is small compared to the transition frequency itself,
∆� ω0, to allow for a rotating wave approximation. Moreover, we assume that
|∆| � Γ in order to avoid scattering of the photons ∝ (Γ/∆)2.
If the lattice is sufficiently deep, a particle in a potential minimum (i.e. at

a site of the lattice) perceives its confinement as almost quadratic. In experi-
ments, the harmonic oscillator frequency ωpot =

√
V0/mkL can be on the or-

der ωpot ≈ 100 kHz [2]. Its energy h̄ωpot can be compared to the recoil energy
ER = h̄2k2

L/2m, i.e. the kinetic energy due to the absorption/emission of a
quantum of the field (e.g. ER/h̄ ≈ 1 kHz for 87Rb). Reformulating the energy as
h̄ωpot = 2ER(V0/ER)1/2 reveals that lattice depths can be obtained which are
multiples of the typical recoil energies.
The cubic lattice in Eq. (219) can be altered by choosing laser-pairs with

different wavelengths. Other geometries (e.g. triangular lattices) can be obtained
by arranging laser-pairs non-perpendicularly [38, 156]. Moreover, optical lattices
can be made spin-dependent by addressing a shift that depends on the hyperfine
sublevels to a resonance [257].

tight-binding models. The wave functions for particles in the periodic
potential (219) (or a generalization thereof) are given by Bloch functions, and
the corresponding energy spectrum forms bands. If the lattice is deep, V0 �
ER, these energy bands are well separated. If in addition, the temperature is
sufficiently low (kBT � h̄ω0), only the lowest band will be populated. As the
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particles are localized around the respective minima of the lattice, it is then
justified to expand the Bloch functions in terms of maximally localized Wannier
functions. By projecting all the field operators involved in the description of
the system onto the lowest band and expanding them in the Wannier basis, one
obtains a so-called tight-binding model. In detail: If a field operator of the system
ψ̂σ(r) is expanded in localized Wannier functions wj(r), ψ(r) =

∑
j fj,σwj(r)

where fj,σ is the annihilation operator for a particle of species σ at site j, the
original field Hamiltonian

H =
∑

σ∈{↑,↓}

∫
d3r ψ̂†σ(r)

[
−h̄2

2m ∇
2 + Vext,σ(r)

]
ψ̂σ(r) (220)

with an external potential Vext comprising the possibly spin-dependent optical
lattice Vlatt (219) and possibly an additional external trapping potential Vtrap,
takes the tight-binding form

H =
∑
σ=↑,↓

∑
i<j

−tσijf
†
i,σfj,σ +

∑
j

εj,σ
2 nj,σ

+ h.c. (221)

with nj,σ = f †j,σfj,σ. The tunneling or hopping coefficient can be evaluated as

tσij =
∫

d3r w∗i,σ(r)
[
−h̄2

2m ∇
2 + V (r)

]
wj,σ(r). (222)

Due to the similarity of the Wannier functions to harmonic oscillator solutions
(compare Eq. (173)), their amplitude decays exponentially with the distance
between sites. As a consequence, terms that go beyond nearest neighbors are
often neglected. The energy offset

εj,σ =
∫

d3r Vext,σ(r) |wj,σ(r)|2 (223)

contains the effects of all the potentials felt by the particles.

interactions. Usually, the Hamiltonian (220) also contains a pseudo-po-
tential term

∫
d3r

gσ,σ′
2 ψ̂†σ(r)ψ̂

†
σ′(r)ψ̂σ′(r)ψ̂σ(r) due to s-wave scattering between

either bosons or fermions of distinguishable species (σ 6= σ′). Here, gσ,σ′ =

4πh̄2aσ,σ′/m and aσ,σ′ is the scattering length. In the tight-binding model, the
resulting on-site interaction reads

Hint =
∑
j

∑
σ 6=σ′

Uσ,σ′

2 nj,σnj,σ′ (224)

for fermions with different internal state, or (for simplicity assuming homoge-
neous interactions U = Uσ,σ′)

Hint =
∑
j

U

2 nj(nj − 1) (225)

for bosons. We use nj =
∑
σ nj,σ and Uσ,σ′ = g

∫
d3r |wj,σ(r)|2

∣∣wj,σ′(r)∣∣2.



120 experimental implementation with ultracold atoms

Beyond these naturally occurring interactions, the scattering length can be
manipulated through so-called Feshbach resonances, so far as to change its sign,
i.e. changing from repulsive to attractive interactions [13]. The concept relies on
scattering atoms in an ultracold gas coupling to a weakly-bound molecular state
if the free and the bound state are energetically close. The resonance can be tuned
using either magnetic [258] or optical methods [259]. Feshbach resonances were
the major ingredient for tuning the BEC-BCS crossover [33] and for suppressing
interactions and observing Anderson localization [35, 36].

artificial gauge fields. In Sec. 2.5, we have discussed how a charged
particle acquires a phase when moving along a closed path in a magnetic field
(Aharonov-Bohm phase). Neutral atoms as used in cold atom experiments do not
carry a charge and therefore cannot couple to a gauge field. However, various
ways exist to make neutral particles pick up a geometric phase using artificial
gauge fields [10].

One possibility consists in rotating the atomic gas: The resulting Coriolis force
in the rotating frame takes the same form as the Lorentz force which charged par-
ticles would experience in a magnetic field. This approach has e.g. been demon-
strated through vortex creation in two-dimensional Bose-Einstein condensates
[260, 261].
A possible way of introducing a Peierls phase into the describing tight-binding

model is to shake a lattice [262, 263]. Therefore, a periodic inertial force is
applied. Under time-averaging, this renormalizes the tunneling coefficients of
the Hamiltonian (and possibly changes their sign). For particularly clever choices
of the driving force, the elements can be made complex [264]. For details, see
Sec. B.2.1.
In the special case of quasi-one-dimensional models, yet another approach con-

sists in mapping the smaller physical dimension onto internal degrees of freedom,
e.g. hyperfine states (synthetic dimension). A hopping along this dimension is
then described by a change of the internal state. Physically, the phase imprint-
ing can be achieved through two-photon Raman transitions [11]. This technique
has been successfully used to proof chiral edge states in both bosonic [59] and
fermionic systems [60].

b.2 experimental implementation of the presented models

b.2.1 Creutz-Hubbard ladder

In this section, we demonstrate how to implement the fermionic Creutz-Hubbard
ladder (36) experimentally. The ideas put forward are part of our publication [23]
and were originally developed by A. Bermudez.
By using a deep optical lattice with a strong confinement along two directions,

i.e. V0,y,V0,z � V0,x � ER (compare Eq. (219)), we obtain a one-dimensional
system of the kind (221)+(224). In particular, when considering a gas with two
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hyperfine states that we label |↑〉 and |↓〉, the tight-binding Hamiltonian takes
the form

H =
N∑
j=1

∑
σ=↑,↓

(
−tf †j+1,σfj,σ +

εσ
2 nj,σ + h.c.

)
+
∑
j

U↑↓nj,↑nj,↓, (226)

where t is the nearest-neighbor hopping amplitude, εσ is the (here site-indepen-
dent) energy of the electronic levels and U↑↓ is the on-site interaction.

In order to implement the complex tunneling (37), we could apply one of
the techniques discussed in the above section. As an alternative, we detail here
the implementation using a periodic modulation of the lattice with generalized
Raman-assisted tunneling [56] in spin-independent optical lattice. A first step
consists in introducing a state-independent energy gradient by tilting the optical
lattice. This can be achieved through acceleration or through an additional ac-
Stark effect and yields

Htilt =
∑
j,σ

∆j f †j,σfj,σ (227)

where the tilt ∆� V0,x does not modify inter-site terms of the original Hubbard
model. However, it is chosen such that the original intra-leg tunneling is impeded:
t � ∆. The idea is to re-activate the tunneling against the gradient using a
variety of ideas.

To start off, we install the inter-leg hopping terms via a two-photon Raman
scheme [56]. Therefore, three additional laser beams are used. A first pair of
lasers with frequencies ω1 and ω2 is tuned such that it effectively couples the
↑-level on site j with the ↓-level on site j + 1, i.e. ω1 − ω2 = (ε↓ − ε↑) + ∆. The
lasers is set such that during the process a recoil momentum δk = (k1−k2) · ex
is transferred to the particle as to enable the tunneling. Similarly, the laser
pair with frequencies ω1 and ω3 enables the transition between the ↓-level on
site j with the ↑-level on site j + 1. Therefore, ω1 − ω3 = (ε↑ − ε↓) + ∆ and
δk̃ = (k1 − k3) · ex. If we apply a rotating wave approximation, this yields

HRaman =
∑
j

1
2
(

Ωf †j+1,↓fj,↑ + Ω̃f †j+1,↑fj,↓

)
+ h.c. (228)

with

Ω = Ω12e
−π4

√
V0x
ER , Ω̃ = Ω13e

−π4

√
V0x
ER (229)

and Ω12, Ω13 being the Rabi frequencies of the two-photon processes. We as-
sume here that the transferred momenta are reciprocal to the wavelength of the
original lattice, in the sense that δk · λ = 2πn with n ∈ Z (and a similar condi-
tion holds for the second beam pair). Another condition that has to be met is
|Ω12| , |Ω13| � ∆, i.e. on-site Raman transitions are highly off-resonant and can
be neglected.

In order to establish the complex intra-leg tunneling, we introduce an intensity-
modulated optical lattice that takes the form

Hdriving =
∑
i,σ
Vd,σ(t) sin2(kdx

0
i )f
†
i,σfi,σ, (230)
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and the intensity of this ac-Stark shift for each of the hyperfine states is modu-
lated periodically in time, Vd,σ(t) = Vd,0 sin(ωd,σt−φσ) with frequency ωd,σ and
phase φσ. We assume Vd,0 � V0,x here to avoid a periodic modulation on bare
tunnelings of the original Hubbard model and only consider the resulting periodic
driving of the on-site energies. In particular, if the wavelength of the intensity-
modulated optical lattice is twice the one of the original lattice (λd = 2λ), only
even sites are subjected to a periodic modulation. Under the resonance condition
nωd,σ = ∆, n ∈ Z, the nearest-neighbor hopping can be restored by absorbing
energy quanta from the periodic driving. Setting ωd,σ = ∆/2 leads to

Hh = −tJ2

(
Vd,0
∆

)∑
i,σ
e−i2φσf †i+1,σfi,σ + h.c., (231)

where J2(x) is the second-order Bessel function of the first kind [58, 265] and the
phases of the periodic modulations must fulfill φ↑ = −φ↓. As a consequence, also
the inter-leg hopping (228) will be off-resonantly modified by driving, altering
the expression to

Hd =
Ω
2 J0

(
Vd,0
∆

)∑
i

(
f †i+1,↓fi,↑ + f †i+1,↑fi,↓

)
+ h.c. (232)

We note that also on-site Raman transitions can be activated due to the intensity-
modulated lattice. However, this spurious effect can be suppressed by appropri-
ate tuning of Vd,0 with respect to ∆.

Last, we establish an imbalance between the two internal states. This can be
done by detuning the Raman lasers in Eq. (228) slightly from resonance, which
yields (in rotating wave approximation)

Hlocal =
δ

2
∑
i

(
f †i,↑fi,↑ − f

†
i,↓fi,↓

)
. (233)

The parameters of our model (36) can now easily be retrieved by associating
the operators fi,↑ → ci,u and fi,↓ → ci,d and identifying

th = +tJ2

(
Vd,0
∆

)
, θ = 2φ↑, td = −Ω

2 J0

(
Vd,0
∆

)
, ∆ε = δ/2. (234)

This completes the derivation.

b.2.2 Weyl fermions on a ring

The Creutz ladder considered in Sec. 4, namely Eq. (89), is very similar to the one
discussed in the previous section. Similar schemes can therefore be envisioned for
its realization. Slight differences in the description also make the model amenable
to experiments making use of the ‘toolbox’ proposed in Ref. [266], where Raman
transitions are combined with a bi-chromatic super-lattice and a staggered opti-
cal potential.
However, certain particularities have to be considered, namely the circular

form of the lattice and the relevance of nearest-neighbor interactions. The first
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issue can be addressed by modeling the optical lattice cylindrically using pairs of
Laguerre-Gauss beams [161]. These beams carry angular momentum and there-
fore allow the realization of angular or cylindrical lattices. Artificial gauge fields
through plaquettes on the cylinder surface can then be realized using additional
Laguerre-Gauss lasers for two-photon Raman processes (similar to the prescrip-
tions above); a rotation of the lattice potential around the cylinder axis permits
to model a synthetic magnetic flux piercing the cylinder. Another possibility is
the creation of circular lattices using spatial light modulation [160]. With this
technique, the phase of an incoming laser can be modified locally, allowing for
designed intensity patterns.
In order to obtain nearest-neighbor interactions, the use of dipolar atoms

or molecules can be considered [267–270]. Indeed, recently the observation of
long-range spin-exchange interactions [271] and the realization of an extended
Hubbard model [272] have been reported for this setup. Alternatively, the nat-
urally occurring interactions could be dressed through lattice-shaking [262] or
cavity resonances [273].

b.2.3 SU(N)-invariant fermions

The realization of harmonically trapped fermions that interact through SU(N)-
invariant interactions has been reported in Ref. [199]. In this experiment, the
nuclear spin states of 173Yt atoms with I = 5/2 were chosen as internal states,
allowing the realization of an SU(N)-symmetry with N ≤ 2I + 1 = 6 spin
components. The invariance of the interaction relies on the fact that the nuclear-
spin nature has no influence on the interaction strength. Moreover, no spin-
changing collisions occur. The low-temperature regime (here T/TF < 0.3 where
TF is the Fermi temperature) is obtained with the standard methods discussed
before. The gas of atoms (with approximately 6000 atoms per species) is then
confined in a deep two-dimensional lattice with an effective radial confinement
ω⊥ = 2π× 25 kHz (or V0/ER = 40 where ER is the recoil energy). Together with
a weak axial confinement at ωx ≈ 2π × 80 Hz this leads to ≈ 600 cigar-shaped
fermionic wires (with ≈ 20 atoms in the central wire). Due to the high frequency,
only the radial ground state is then non-negligibly occupied, so that the setup
allows the study of true one-dimensional phenomena. The depth of the radial
confinement also efficiently prevents a coupling between the different wires.
The interactions between the particles are described by a dimensionless pa-

rameter α = −2h̄2/ma1D (compare Sec. 5.1). The one-dimensional scattering
length a1D is a function of the three-dimensional scattering length a and the
radial scattering length a⊥ =

√
h̄/mω⊥: a1D ≡ a1D(a, a⊥) [207]. As a conse-

quence, the interaction strength is tunable through the frequency of the radial
confinement.
To register the momentum distribution of the particles, spin-selective time-

of-flight measurements can be performed. The trapping potential is therefore
released and the detectable after-flight positions can be mapped back to the in-
trap momenta. Density distributions can be measured using in-situ imaging [10].
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For alternative implementations of SU(N)-symmetries in cold atom experiments,
see Ref. [195].



C
DETAILED PROOFS AND DERIVATIONS

This section is dedicated to calculations that would impair reading fluency in
the main text, but nevertheless constitute important results and deserve their
place in this thesis.

Sec. C.1 presents an approach to reveal the identity between the Creutz-
Hubbard model and a pair of coupled Ising chains. In Sec. C.2, we discuss ana-
lytical solutions in one-dimensional systems with open boundary conditions. In
particular we show under which conditions such solutions exist and give exam-
ples.

c.1 equivalence between imbalanced creutz ladder and a
pair of ising chains

In the following, we present an in-depth derivation of the equivalence of the im-
balanced Creutz ladder model (36) and a set of two Ising models (53). While a
posteriori this equivalence can be easily checked, an a priori identification of the
transformation rules is difficult due to their complexity (site-dependence, com-
plex phases and mixing of creation and annihilation operators, compare Eq. (50)).
The path is also different from a simple diagonalization of the model which is
routinely done through Fourier transformation and consequent diagonalization
of the spinor basis. It is therefore presented here in a step-by-step fashion. The
conceptual idea is to first find a convenient basis, in which we can visualize the
different hopping processes. This is done by changing to a Majorana notation,
which then allows us to determine the basis change to “disentangle” the two
Ising chains.
We consider the free partHπC of the Creutz-Hubbard Hamiltonian (36), which

in spinor notation cj = (cj,u, cj,d)T reads

HπC = t̃
∑
j

c†j (−iσ3 − σ1) cj+1 +
∆ε
4
∑
j

c†jσ3cj + H.c. (235)

Via the transformation cj = (−iσ3)j c̃j , the phases of the intra-leg hopping is
gauged to the inter-leg hopping terms. This allows us to make the hopping
along the two legs look more alike at the price of having site-dependent diagonal
hopping terms:

HπC = t̃
∑
j

c̃†j

(
−1 + (−1)jσ2

)
c̃j+1 +

∆ε
4
∑
j

c̃†jσ3c̃j +H.c. (236)

We now define two sets of Majorana fermions uj,1, uj,2 and dj,1, dj,2, with the
characteristic properties

u†j,1 = uj,1 and {uj,1ul,1} = δj,l, (237)
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Figure 40: “Disentangling” the two Ising chains. (a) The original model written
in terms of Majoranas (239). Connected sites correspond to Majorana terms
appearing in the Hamiltonian; the arrowheads determine the sign of the co-
efficient (here for j odd). (b) Simple graphical rules allow us to simplify the
description. Namely, whenever two Majoranas point towards a third with
arrows of the same color (amplitude), the addition/subtraction leads to a
simplification. (c) Application of this rule leads to a stepwise simplification
of the description until (d) in a new Majorana basis, the visualization of
Eq. (241) reveals two unconnected subsystems, underlined here by differ-
ent colors of the Majoranas. For better understanding, an additional site is
shown here. (e) Returning to standard fermionic operators yields two copies
of a Kitaev-Majorana chain (244).

and similar relations for uj,2, dj,1 and dj,2. In particular, we choose uj,1

uj,2

 =

1 1
i −i

 c̃†j,u

c̃j,u

 ,

 dj,1

dj,2

 =

1 1
i −i

 c̃†j,d

c̃j,d

 . (238)

The Hamiltonian can be expressed in the new basis mj = (uj,1, dj,1,uj,2, dj,2)T
as

HπC =
i

4

t̃∑
j

mT
j ·

2i(−1)j+1σ2 −21

21 2i(−1)j+1σ2

 ·mj+1

+
∆ε
4
∑
j

mT
j ·

 0 2σ3

−2σ3 0

 ·mj

 .

(239)
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The terms occurring in this Hamiltonian are visualized in Fig. 40a. The diagram
helps us to identify a new Majorana basis m̃j = (aj , ãj , bj , b̃j) with

aj =
dj,1 + uj,2√

2
, ãj =

uj,1 + dj,2√
2

,

bj =
uj,1 − dj,2√

2
, b̃j =

dj,1 − uj,2√
2

.
(240)

In this basis, the Hamiltonian reads

HπC =
2i
4

t̃∑
j

m̃T
j

 0 I + (−1)jσ3

−(I + (−1)jσ3) 0

 m̃j+1

+
∆ε
4
∑
j

m̃j

−iσ2 0
0 −iσ2

 m̃j

 (241)

and corresponds to two independent Majorana systems, as can be easily seen in
Fig. 40d. We can define new (standard) fermionic operators to better understand
the independent chains:

aj

ãj

bj

b̃j

 =


i −i 0 0
1 1 0 0
0 0 i −i
0 0 1 1




pj,1

p†j,1

pj,2

p†j,2

 for j odd,


aj

ãj

bj

b̃j

 =


0 0 i −i
0 0 1 1
i −i 0 0
1 1 0 0




pj,1

p†j,1

pj,2

p†j,2

 for j even.

(242)

The crucial observation is that the Hamiltonian then consists of two independent
parts (Fig. 40e):

HπC =
∑
n=1,2

t̃∑
j

(−1)n
(
i(−1)jp†j,npj+1,n − ip

†
j,np

†
j+1,n +H.c.

)

+
∆ε
4
∑
j

(
2p†j,npj,n − 1

) .

(243)

After an additional (aesthetic) transformation pj,n = (−1)ni2j+1r†j,n (if j odd)
or pj,n = r†j,n (if j even), we find the two decoupled systems in the form of
Kitaev-Majorana chains:

HπC =− t̃
∑
j

∑
n=1,2

(
r†j,nrj+1,n + r†j,nr

†
j+1,n +H.c.

)
+

∆ε
4
∑
j

∑
n=1,2

(
2r†j,nrj,n − 1

)
.

(244)



128 detailed proofs and derivations

The full transformation from the original to the new basis ( ˜̃pj = (rj,1, r†j,2)T )
can then be written as

rj,1 =
ij√
2

(
icj,u + (−1)jc†j,d

)
,

rj,2 =
ij√
2

(
cj,u + i(−1)jc†j,d

)
.

(245)

Finally, the Ising models (53) are revealed through a Jordan-Wigner transforma-
tion (52).

c.2 open boundary conditions and exact solutions for one-
dimensional chains

In this section, we address the problem of exact solutions for free particles in
finite one-dimensional lattice systems with open boundary conditions. Often such
systems are addressed by constructing standing-wave solutions from two counter-
propagating waves of the same system with periodic boundary conditions. The
resulting solutions are then proportional to sin(kx+ϕ), where in a system with
L sites the phase ϕ and the wave vector k are chosen such that the wave function
has amplitude zero on the (virtual) sites 0 and L+ 1. Here we show that this
strategy is misleading under certain circumstances and prove that standing-wave
solutions with a single wavelength are not always possible. We then discuss the
exceptional, solvable cases. The notation follows Ref. [274].

model and target. We study the very general Hamiltonian

H = h0

L∑
j=1

(
c†jcj −

1
2

)
− t

L∑
j=1

(
c†jcj+1 + γc†jc

†
j+1 +H.c.

)
, (246)

i.e. a non-interacting fermionic chain with hopping t, pair-creation and -anni-
hilation γt and on-site potential h0. Via a Jordan-Wigner transformation, this
model can be shown to be equivalent to an Ising model for γ = ±1 and to the
XY-model for γ = 0. In spin notation, the potential then takes the role of a
paramagnetic term.
Via the mapping cj = 1

2 (aj + ibj), c
†
j = 1

2 (aj − ibj), we find an alternative
description in terms of Majoranas (a†j = aj , b

†
j = bj), the Kitaev-Majorana

chain [96] (compare Sec. 2.7):

H =
ih0
2

L∑
j=1

ajbj −
it

2

L−1∑
j=1

[(1− γ)ajbj+1 + (1 + γ)aj+1bj ]. (247)

We can rewrite the Hamiltonian in compact notation with vectors
a = (a1, . . . , aL)T and b = (b1, . . . , bL)T as

H =
i

4
(

aT bT
) 0 B

−BT 0


︸ ︷︷ ︸

=B̃

 a
b

 , (248)
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where

B =



h0 −t(1− γ) 0 0
−t(1 + γ) h0 −t(1− γ) . . . 0

0 −t(1 + γ) h0 0
... . . . ...

0 0 0 . . . h0


. (249)

is a real matrix. The target is to find vectors of the kind vTk = (fTk ,−igTk ) that
diagonalize the block matrix B̃ (i.e. v†kB̃vk = εk) for open boundary conditions.
These vectors will correspond to the amplitudes of the Majoranas at the respec-
tive site of the chain.

In the following, we first show that the diagonalization of the model with
ansatz eigenfunctions with a single frequency k,

fk(j) ∝ eikj , gk(j) ∝ eikjeiθk , (250)

and linear combinations of this eigenvector and its complex conjugate are in-
sufficient to describe a solution if γ /∈ {0, 1,−1}. In particular, we show how
an imbalance between the number of free parameters in the ansatz functions
and boundary conditions prevents such solutions. For (i) cases with a reduced
number of boundary constraints, (ii) a case with particular symmetric dispersion
relations, we then determine the solutions.

impossibility of solving the general problem with a single
frequency eigenfunction. In order to find eigenvectors of the Hamil-
tonian, the coefficients in fk and gk have to fulfill the conditions

Bgk = εkfk and BT fk = εkgk. (251)

In the bulk, this yields the equivalent equations

−t(1 + γ)gk(n− 1) + h0gk(n)− t(1− γ)gk(n+ 1) = εkfk(n),
−t(1− γ)fk(n− 1) + h0fk(n)− t(1 + γ)fk(n+ 1) = εkgk(n).

(252)

With the ansatz (250) we find that the eigenfunctions are associated with an
energy εk and a phase θk that are given by

εk =
√
(h0 − 2t cos k)2 + 4γ2t2 sin2 k, (253)

θk = arg
(
h0
2 − t cos k− iγt sin k

)
. (254)

Due to the symmetry ε−k = εk and θ−k = −θk, any linear combination of two
counter-propagating waves fk(j)

gk(j)

 = a

 fk(j)

gk(j)

+ b

 f−k(j)

g−k(j)

 (255)
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also solves the bulk equations. It is important here that the symmetry of the
dispersion relation only allows superpositions of waves at two (and not more)
wave numbers k and −k.

In addition to these bulk equations, any valid solution has to also fulfill the
boundary equations

h0gk(1)− t(1− γ)gk(2) = εkfk(1), (256)
h0fk(1)− t(1 + γ)fk(2) = εkgk(1), (257)

−t(1 + γ)gk(L− 1) + h0gk(L) = εkfk(L), (258)
−t(1− γ)fk(L− 1) + h0fk(L) = εkgk(L). (259)

If site 0 was part of the bulk, the ansatz function would fulfill

−t(1 + γ)gk(0) + h0gk(1)− t(1− γ)gk(2) = εkfk(1). (260)

instead of Eq. (256). To satisfy Eq. (260) with a solution of Eq. (256), the condi-
tion −t(1 + γ)gk(0) = 0 has to be fulfilled. In a similar fashion, the comparison
of bulk and boundary conditions for Eqs. (257)-(259) imposes similar constraints.
The full set reads

−t(1 + γ)gk(0) = 0, (261)
−t(1− γ)fk(0) = 0, (262)

−t(1− γ)gk(L+ 1) = 0, (263)
−t(1 + γ)fk(L+ 1) = 0. (264)

In the case γ 6= ±1, the boundary conditions simplify to

f(0) = g(0) = f(L+ 1) = g(L+ 1) = 0. (265)

With the ansatz (255) we then get the following constraints on the coefficients:

a+ b = 0, (266)
a sin θk = 0, (267)

a sin(k(L+ 1)) = 0, (268)
a sin(k(L+ 1) + θk) = 0. (269)

For the solution to be non-trivial (a = −b 6= 0), we need the following three
equations to be fulfilled:

θk = nπ, (270)
k(L+ 1) = mπ, (271)

k(L+ 1) + θk = pπ, (272)

where n,m, p ∈ Z. Using the definition of θk (254), Eq. (270) is equivalent to

arg(h0/2− t cos k− iγt sin k) = nπ ⇔ γt sin k = 0. (273)

For k 6= nπ, this is impossible under the condition γ 6= 0, which concludes our
proof. We stress once again that this impossibility is closely related to the sym-
metry of the dispersion relation. The possible ansatz (255) has an insufficient
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number of free parameters to respect all boundary constraints (261)-(264). Be-
low, we discuss the different parameter choices for which solutions do exist. In
particular, we show (for h0 = 0) that systems with more symmetric dispersion
relations allow to construct solutions that respect all of the above constraints.

solvable cases.

The case γ = 0. From Eq. (254) we obtain θk = 0. Then, the allowed
momenta fulfill k(L+ 1) = nπ and the resulting functions are

fk(j) = sin(kj), gk(j) = sin(kj). (274)

This kind of solution which is exact for the XY-model with magnetic field is
often - mistakenly - also given for the generic system.
The case γ = ±1. For γ = 1, the constraint on f(0) and g(L+ 1) is lifted as

Eqs. (262) and (263) are always fulfilled, and only the conditions (261) and (264)
constrain the coefficients. This allows for solutions with linear combinations of
only two counter-propagating waves with wave vectors ±k. As a consequence, the
allowed wave vector of the permitted modes have to fulfill k(L+ 1)− θk = nπ

and we obtain the known solution for the Ising model [129]:

fk(j) = sin(kj − θk), gk(j) = sin(kj). (275)

Interestingly, the constraint on the wave vector allows L real solutions for h0 > 1,
but only L− 1 real solutions for h0 < 1. The “missing” solution then possesses a
complex wavenumber. Consequently, the solution has an amplitude which decays
into the bulk (as sin(kx)→ sinh(κx) for k = iκ), and represents the edge modes
in the Kitaev chain picture.
In the same fashion, for γ = −1, the constraints on g(0) and f(L+ 1) are

lifted. Then Eqs. (262) and (263) allow modes with k(L+ 1) + θk = nπ and

fk(j) = sin(kj), gk(j) = sin(kj + θk). (276)

The case h0 = 0. In the absence of a potential/magnetic field, we observe
that the dispersion relation ε(k) has a higher symmetry,

ε(k) = ε(−k) = ε(π− k) = ε(−π+ k), (277)
θ(k) = −θ(−k) = π− θ(π− k) = −π+ θ(π+ k). (278)

This allows us to make a more elaborate ansatz than in Eq. (255) with four free
parameters:

f(k1, k2)(j) = aeik1j + be−ik1j + ceik2j + de−ik2j

= fk(j) = aeikj + be−ikj + cei(π−k)j + de−i(π−k)j ,
(279)

g(k1, k2)(j) = aei(k1j+θk1 ) + be−i(k1j+θk1 )

+ cei(k2j+θk2 ) + de−i(k2j+θk2 )

= gk(j) = aei(kj+θk) + be−i(kj+θk)

− cei((π−k)j−θk) − de−i((π−k)j−θk).

(280)
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In the non-trivial case (γ 6= ±1), these function have to fulfill the conditions

fk(0) = 0, gk(0) = 0, fk(L+ 1) = 0, gk(L+ 1) = 0, (281)

which impose the following constraints on the coefficients:

a+ d = −(b+ c), (282)
(a− d)eiθk = −(b− c)e−iθk , (283)

(a± d)eik(L+1) = −(b± c)e−ik(L+1), (284)

(a∓ d)ei(k(L+1)+θk) = −(b∓ c)e−i(k(L+1)+θk). (285)

Here, the upper sign corresponds to an odd length of the chain, the lower sign
to an even length.
Chains of odd length. Let us first consider a chain of odd length. Combining

Eq. (282) with Eq. (284) and Eq. (283) with Eq. (285), we find the conditions

sin(k(L+ 1))(b+ c) = 0, (286)
sin(k(L+ 1))(b− c) = 0. (287)

These conditions are only fulfilled for k(L+ 1) = nπ. Otherwise, they yield the
trivial solution a = b = c = d = 0. In the first case, the coefficients are then not
fully determined, and can be chosen as

fk(j) =

(a− d)e
iθk sin(kj − θk) for j odd,

(a+ d) sin(kj) for j even,
(288)

gk(j) =

(a+ d) sin(kj + θk) for j odd,

(a− d)eiθk sin(kj) for j even.
(289)

In particular, we can find two linearly independent solutions with a = d and
a = −d. This choice makes the model similar to the even chain presented below.
Chains of even length. For a chain of even length, there are two possible

solutions: Combining Eq. (282) with Eq. (285) and Eq. (283) with Eq. (284)
yields

sin(k(L+ 1) + θk)(b+ c) = 0, (290)
sin(k(L+ 1)− θk)(b− c) = 0. (291)

If we choose b = −c, we steadily get the discretization k(L+ 1)− θk = nπ and
coefficients with a = −be−i2θk = ce−i2θk = −d, and therefore functions of the
form (up to an overall phase and normalization)

f1
k (j) = sin(kj − θk) + sin((π− k)j + θk) (292)

=

2 sin(kj − θk) for j odd,

0 for j even,
(293)

g1
k(j) = sin(kj)− sin((π− k)j) (294)

=

0 for j odd,

2 sin(kj) for j even.
(295)
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The alternative choice (b = c) yields a = −b = −c = d and the discretization
k(L+ 1) + θk = nπ with functions

f2
k (j) = sin(kj)− sin((π− k)j) (296)

=

0 for j odd,

2 sin(kj) for j even,
(297)

g2
k(j) = sin(kj + θk) + sin((π− k)j − θk) (298)

=

2 sin(kj + θk) for j odd,

0 for j even.
(299)

Due to the symmetry of the problem, it is sufficient to consider wave numbers
0 < k < π/2, where the cases k = 0 and k = π/2 are excluded as they yield the
trivial solution of zero-vectors. Assume for simplification that 0 < k < π/2 and
γ > 0. As a consequence 0 < θk < π/2. The modes k1 (with index n in discretiza-
tion condition) and k2 (with index m) fulfill k1 = π − k2 if n+m < L+ 2 (for
the first quantization condition) and if n+m < L (for the second quantization
condition). Due to the symmetry of the problem, the modes k1 and k2 can be un-
ambiguously chosen by selecting n from {1, . . . ,L/2} or from {1, . . . ,L/2− 1},
respectively. This yields L/2+L/2− 1 = L− 1 solutions. For |γ| < 1, the addi-
tional mode is obtained by solving tanh(κ(N + 1)) = ±γ coth(κ), and then defin-
ing k = π/2± iκ. For |γ| > 1, we can find an additional imaginary solution iκ ful-
filling tanh(κ(N + 1)) = γ tanh(κ) for γ > 0 and tanh(κ(N + 1)) = −γ tanh(κ).
|γ| = 1 then marks the transition point of a gapped regime with edge modes
and the gapless XY-regime.
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