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Abstract

This thesis is concerned with the calculation of virtual Compton scattering (VCS)
in manifestly Lorentz-invariant baryon chiral perturbation theory to fourth order
in the momentum and quark-mass expansion. In the one-photon-exchange approx-
imation, the VCS process is experimentally accessible in photon electro-production
ep → e′p′γ and has been measured at the MAMI facility in Mainz, at MIT-Bates,
and at Jefferson Lab. Through VCS one gains new information on the nucleon
structure beyond its static properties, such as charge, magnetic moments, or form
factors. The nucleon response to an incident electromagnetic field is parameterized
in terms of 2 spin-independent (scalar) and 4 spin-dependent (vector) generalized
polarizabilities (GP). In analogy to classical electrodynamics the two scalar GPs
represent the induced electric and magnetic dipole polarizability of a medium. For
the vector GPs, a classical interpretation is less straightforward. They are derived
from a multipole expansion of the VCS amplitude.
This thesis describes the first calculation of all GPs within the framework of mani-
festly Lorentz-invariant baryon chiral perturbation theory. Because of the compar-
atively large number of diagrams—100 one-loop diagrams need to be calculated—
several computer programs were developed dealing with different aspects of Feynman
diagram calculations. One can distinguish between two areas of development, the
first concerning the algebraic manipulations of large expressions, and the second
dealing with numerical instabilities in the calculation of one-loop integrals. In this
thesis we describe our approach using Mathematica and FORM for algebraic tasks,
and C for the numerical evaluations.
We use our results for real Compton scattering to fix the two unknown low-energy
constants emerging at fourth order. Furthermore, we present the results for the
differential cross sections and the generalized polarizabilities of VCS off the proton.





Zusammenfassung

Die vorliegende Dissertation befasst sich mit der Berechnung der virtuellen Compton-
Streuung (VCS) in manifest Lorentz-invarianter baryonischer chiraler Störungstheorie
bis zur vierten Ordnung in der Impuls- und Quarkmassenentwicklung. In der Ein-
photonaustauschnäherung ist der VCS-Prozess experimentell in der Photonelektro-
produktion ep → e′p′γ zugänglich und wurde am Beschleuniger MAMI in Mainz,
sowie am MIT-Bates und am Jefferson Lab gemessen. Durch VCS erhält man
neue Informationen über die Struktur des Nukleons jenseits seiner statischen Eigen-
schaften wie Ladung, magnetisches Moment oder Formfaktoren. Das Verhalten
des Nukleons unter dem Einfluss elektromagnetischer Felder wird durch 2 spin-
unabhängige (skalare) und 4 spinabhängige (vektorielle) generalisierte Polarisier-
barkeiten (GP) parametrisiert. In Analogie zur klassischen Elektrodynamik lassen
sich die 2 skalaren GPs als induzierte elektrische und magnetische Dipole deuten.
Für die vektoriellen GPs ist eine klassische Interpretation deutlich schwieriger. Sie
werden über eine Multipolentwicklung der VCS-Amplitude hergeleitet.
Diese Arbeit stellt die erste Berechnung aller GPs in manifest Lorentz-invarianter
baryonischer chiraler Störungstheorie dar. Hierfür müssen 100 Einschleifendiagramme
berechnet werden. Aufgrund der vergleichsweise großen Anzahl an Einschleifendia-
grammen wurden im Rahmen dieser Arbeit verschiedene Computerprogramme zur
Berechnung von Feynmandiagrammen entwickelt. Man kann hier zwei Entwick-
lungsstränge unterscheiden. Zum einen benötigen wir Computerprogramme zur
algebraischen Manipulation großer Ausdrücke, zum anderen stellt sich das Prob-
lem von numerischen Instabilitäten bei der Berechnung der Einschleifenintegrale.
Wir stellen in dieser Arbeit unsere Vorgehensweise dar, wobei für den algebraischen
Teil Mathematica und FORM verwendet wurden, und der numerische Teil durch
C-Programme realisiert wurde.
Wir benutzen unsere Ergebnisse für die reelle Compton-Streuung, um die beiden un-
bekannten Niederenergiekonstanten der vierten Ordnung zu bestimmen. Schließlich
präsentieren wir unsere Resultate für die differentiellen Wirkungsquerschnitte und
die generalisierten Polarisierbarkeiten für VCS am Proton.
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Chapter 1

Introduction

There is a rich history of analyzing the nucleon structure by means of an electromag-
netic probe. The deviation of the nucleon magnetic moment from the theoretical
predictions of a point-like spin-1

2
particle, as seen in early experiments by Frisch and

Stern [FS 33], indicates the composite nature of the nucleon. In later experiments by
Hofstadter et al. [HBY 58] the internal structure of nucleons was investigated using
electron-nucleon scattering. From the experiments one could deduce the electro-
magnetic form factors which, in the nonrelativistic limit, allow for an interpretation
as the spatial distribution of charge and the magnetic moments inside the nucleon.
In recent years the investigation of the nucleon structure at low energies has drawn
much attention on the experimental as well as the theoretical side [DW 07].

Quantum chromodynamics (QCD) is by now the established gauge theory of
the strong interactions and a lot of effort has been put forth in the quest of under-
standing the implications of QCD at very low energies. QCD itself is a remarkably
beautiful theory, given its simplicity compared to the large variety of phenomena
it ought to describe. There is, however, a caveat concerning the low-energy do-
main of QCD. Because the coupling constant of QCD grows with decreasing energy
[GW 73, Pol 73] a perturbative treatment in terms of an expansion in the strong
coupling is not possible. This led to an increasing activity in the field of effec-
tive field theories (EFT). Starting from the pioneering work by Weinberg [Wei 79],
Gasser and Leutwyler introduced a consistent framework for the effective theory of
QCD at very low energies [GL 84, GL 85] called chiral perturbation theory (χPT).
The main ingredients in the construction of χPT are the underlying global sym-
metries of the strong interactions. QCD exhibits a chiral symmetry in the limit of
massless quarks. Assuming this symmetry to be approximately realized in nature,
one further analyzes the hadronic spectrum in the low-energy domain. The crucial
observation here is that the pions have comparatively small masses. This can be
explained by the assumption that the chiral symmetry of QCD is spontaneously
broken, thus giving rise to nearly massless Goldstone bosons, the pions. Given the
symmetry properties, the effective action is constructed in such a way that the sym-
metries of the effective and fundamental theory coincide. However the knowledge of
global symmetries of QCD does not suffice to completely fix the low-energy EFT.
The physical matrix elements are encoded in the Green functions calculable from
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the Lagrangian of the EFT. Symmetries of the Lagrangian manifest themselves in
terms of identities among different Green functions, which are called Ward identities.
Thus the sum of all Ward identities represent the complete restrictions coming from
symmetries. In χPT the Ward identities imply a promotion of the global symmetries
of QCD to local ones, enhancing the restrictions of symmetries on the low-energy
structure of the theory. Since χPT is an EFT the Lagrangian contains an infinite
number of interaction terms. Weinberg proposed a method to ascribe the degree
of importance to certain diagrams contributing to a given physical matrix element,
the so called Weinberg power counting. In contrast to the strong coupling constant
of QCD the interaction between pions becomes weaker at low energies, therefore
the perturbation series is organized as an expansion in small momenta of pions and
the quark masses. The formulation of Gasser and Leutwyler was first applied to
the sector of pseudoscalar mesons and later extended to the case of meson-baryon
interactions [GSS 88]. The extensions to the baryonic sector proved to be rather
involved, as the straightforward generalization of the power counting did not work
as expected. Subsequently different methods were developed for the description of
meson-baryon reactions. Among the first formulations, heavy-baryon chiral per-
turbation theory (HBχPT) gained most success as a consistent framework for the
description of meson-baryon interactions [JM 91, Ber+ 92, EM 96]. HBχPT is con-
structed similarly to heavy-quark effective theory. The nucleon field is divided into
heavy and light components, where the heavy components are integrated out. Sub-
sequently the nonlocal contributions generated by integrating out the heavy compo-
nents are expanded in local interaction terms suppressed with powers of the nucleon
mass. This essentially amounts to an expansion of the relativistic Lagrangian in in-
verse powers of the nucleon mass. In the late 90’s new manifestly Lorentz-invariant
formulations of baryonic chiral perturbation theory (BχPT) have been developed
[ET 98, BL 99, GJ 99, Goi+ 01, Fuc+ 03, SGS 04]. These formulations use appro-
priate renormalization schemes to restore the power counting in the baryonic sector.
In this thesis we use the infrared regularization scheme by Becher and Leutwyler
[BL 99] in its reformulated version of [SGS 04].

We use χPT to investigate the low-energy structure of QCD in electromagnetic
reactions of nucleons. Electromagnetic interactions are particularly useful for the
examination of QCD, since we use the cleanest possible probe, the electron. The
interactions of electrons are described by QED, which is by far the best-tested quan-
tum field theory. Because the electron is a point-like particle it does not exhibit any
internal structure effects. The nucleon is, in contrast to the electron, a composite
object. This composite structure manifests itself in an excitation spectrum, and we
can describe nucleons by their response to electromagnetic probes, parameterized by
form factors or polarizabilities. These observables are intimately connected to the
dynamics of the constituents making up the nucleon, the quarks. Therefore the mea-
surement of quantities such as form factors or polarizabilities reveals the properties
of QCD at low energies. Particularly we are interested in information on the struc-
ture of the nucleon, beyond the information gained by form factor measurements.
With the advent of coincidence techniques Compton scattering off the proton be-
came an experimentally feasible tool for the investigation of the nucleon structure.
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In Compton scattering the nucleon response is parameterized by the nucleon polar-
izabilities. In classical electrodynamics a medium containing freely moving charges
acquires a polarization if exposed to an external electromagnetic field. The degree
of polarizability is a measure of the rigidity. The induced electric dipole moment ~P
is due to a deformation of the charge distribution and is proportional to the strength
of the applied electric field

~P = α~E. (1.1)

The constant of proportionality is called electric polarizability. Correspondingly,
the induced magnetic dipole moment is related via the magnetic polarizability β to
the strength of the magnetic field ~B. Since the nucleon has spin degrees of freedom
the Compton scattering amplitude is parameterized by 6 invariant amplitudes. In
addition to the two spin-independent (scalar) polarizabilities α and β, four more
polarizabilities exist [Rag 93, Rag 94]. These vector polarizabilities characterize the
spin-flip transition amplitudes, and in the classical analogy describe the interac-
tions of an electromagnetic field with a permanent magnetic dipole that has internal
structure. The polarizabilities attributed to different types of interactions of the nu-
cleon with the electromagnetic field can be written in an effective phenomenological
Hamiltonian illustrating the classical interpretation. For example the electric and
magnetic polarizabilities correspond to the following effective Hamiltonian

H =
1

2
α~E2 +

1

2
β ~B2. (1.2)

Making the incoming photon virtual, one gains information about the spatial distri-
bution of polarization, very similar to the situation for the form factors. In analogy
to the real Compton scattering (RCS) case, one can introduce polarizabilities param-
eterizing the structure information of the nucleon. In [GLT 95] the virtual Compton
scattering (VCS) process was parameterized using generalized polarizabilities (GP).
The VCS process is experimentally accessible in the photon electro-production pro-
cess ep → e′p′γ. The most recent data from laboratories in Mainz (MAMI), MIT-
Bates and Newport News (Jefferson Lab) are of high quality and allow for a test of
theoretical predictions.

There are a lot of theoretical predictions for Compton scattering including a wide
variety of approaches, e.g. constituent quark model [DR 84] , the MIT bag model
[Sch+ 84], the Skyrme model [SM 92], linear sigma model [MD 96], dispersion the-
ory [Pas+ 00], and heavy-baryon chiral perturbation theory [Ber+ 93, Hem+ 97a,
Hem+ 97b, Hem+ 98, Hem+ 00, GHM 00, VKMB 00, BHM 03]. The leading-order
HBχPT calculations in [Hem+ 97a] indicated a good description of the scalar elec-
tric and magnetic polarizability, nearly reproducing the experimental values. Sub-
sequent calculations of the next-to-leading order effects yielded large corrections,
casting serious doubts about the convergence of the chiral expansion. This work
provides the first complete fourth-order calculation of all GPs in the framework of
relativistic BχPT.

This thesis is organized as follows. In Chapter 2 we give a short introduction
to chiral perturbation theory. To that end we introduce the QCD Lagrangian and
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discuss its symmetry properties. Furthermore we present the Lagrangians necessary
for the calculations in this work. Chapter 3 discusses details of the VCS process.
This concerns in particular the kinematics, the definition of the genuine VCS process
and the definition of physical observables. A short introduction to the concept of
GPs is also given in this chapter. Moreover we give the definitions of all quantities,
which have been calculated in this thesis. Technical details of the calculation are
discussed in Chapter 4. Here we summarize the most problematic parts of our calcu-
lation, concerning in particular the problems arising for the 100 one-loop diagrams.
We outline our approach, with the emphasis on a discussion of the use of computer
programs. To that end we describe our implementations as well as modifications to
existing programs. The results are collected in Chapter 5. We compare our theoret-
ical predictions with experimental data and previous calculations in the framework
of HBχPT. Finally, in Chapter 6 we give a conclusion and an outlook for future
investigations.



Chapter 2

QCD and chiral perturbation
theory

Within the Standard Model of particle physics the strong interactions between
quarks and gluons is described by quantum chromodynamics (QCD). The low-energy
properties of QCD are governed by a chiral symmetry and the effective field theory
describing the physics of these degrees of freedom that are relevant in this domain
is called chiral perturbation theory (χPT).

Effective field theories (EFT) have become a successful tool in quantum field
theoretical calculations. In the construction of EFTs one takes advantage of the
often present separation of scales, thus if one is interested in physics taking place
well below a certain scale Λ one constructs a theory well suited for processes below
this scale only. There are two approaches in the construction of an EFT. The first
one could be called a top down approach, where we know the fundamental theory but
calculations turn out to be cumbersome. In this case we can cast the contributions of
particles much heavier than the scale of the problem we are interested in, into local
effective interactions. This amounts to a modification of the high-energy behavior
of the fundamental theory. In technical terms we integrate out the heavy modes
and perform an operator product expansion (OPE), so that we end up with a local
field theory containing only the relevant degrees of freedom and additional local
effective interaction terms generated by the OPE. The additional interaction terms
are suppressed with powers of the large scale Λ, therefore for processes much below
this scale one needs only a limited number of additional effective interactions. The
expansion coefficients of the OPE can be calculated from the fundamental theory,
which amounts to a matching of both theories at some intermediate scale, where one
can expect both descriptions to work reasonably well. There are a lot of examples of
EFT’s employing the above reasoning such as Fermi-theory or heavy quark effective
theory.

The second method of constructing an EFT relies solely on the symmetry prop-
erties of the fundamental theory. In this approach one constructs an effective action
such that all symmetries of the effective action coincide with the symmetries of the
fundamental theory. The particle content and the dynamics of the fields of the fun-
damental theory is not invoked in the construction of the EFT. χPT is an example



6 QCD and chiral perturbation theory

of an EFT constructed in this way, i.e. based only on the symmetry properties of
QCD.

In light of the above discussion this chapter introduces the Lagrangian of QCD
and its symmetries. Furthermore we present the Lagrangians of the mesonic and
baryonic sectors of χPT relevant for this work. We closely follow the extensive
introduction to χPT in [Sch 03].

2.1 QCD

QCD is a non-Abelian gauge theory with a color SU(3) gauge group describing the
interactions of quarks and gluons. In addition the quarks come in six different flavors
called up (u), down (d), strange (s), charm (c), bottom (b) and top (t). Besides the
different masses associated with each flavor, the dynamics of QCD is not affected
by flavor.

The QCD Lagrangian is given by

LQCD =
∑

f

q̄f (iD/−mf )qf − 1

4
Gµν,aGµν

a . (2.1)

The quark fields qf are color triplets (r(ed), g(reen) and b(lue))

qf =




qf,r

qf,g

qf,b


 , (2.2)

where f denotes the flavor index. The covariant derivative containing the gauge
potential Aµ,a describing the gluons is given by

Dµ




qf,r

qf,g

qf,b


 = ∂µ




qf,r

qf,g

qf,b


− ig

8∑
a=1

λa

2
Aµ,a




qf,r

qf,g

qf,b


 , (2.3)

where λa are the Gell-Mann matrices obeying the commutation relations

[
λa, λb

]
= 2ifabcλc, (a, b, c = 1, . . . , 8).

Finally the field strength tensor reads

Gµν,a = ∂µAν,a − ∂νAµ,a + gfabcAµ,bAν,c. (2.4)

The only free parameters in the Lagrangian of Eq. (2.1) are the six quark masses mf

and the strong coupling constant g. The quark masses exhibit a hierarchy pattern
with the masses of u, d, and s being much smaller than the ones of c, b and t
[Yao+ 06],




mu = (0.0015− 0.003) GeV
md = (0.003− 0.007) GeV

ms = (0.95± 0.25) GeV


 ¿ 1 GeV ≤




mc = 1.25 GeV
mb = (4.2− 4.7) GeV

mt = 174 GeV


 . (2.5)
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In contrast to the Abelian case of QED the squared field strength tensor of the
QCD Lagrangian in Eq. (2.1) gives rise to self interactions among gluons involving
vertices of three gluons with strength g and a four gluon vertex with strength g2.

From the point of view of gauge invariance the strong-interaction Lagrangian
could also involve a term of the type

Lθ =
g2θ̄

64π2
εµνρσ

8∑
a=1

Ga
µνGa

ρσ, (2.6)

where εµνρσ denotes the totally antisymmetric Levi-Cività tensor. This so-called
θ-term violates P and CP symmetry, however since experiments indicate that con-
tributions violating P and CP are negligible, i.e. θ̄ is very small, we use the P - and
CP - invariant Lagrangian of Eq. (2.1) in this work.

2.1.1 Massless QCD

Bearing the hierarchy of the quark masses in Eq. (2.5) in mind let us consider, as a
first approximation, the theoretical limit in which the masses of u, d and s are sent
to zero1 and the masses of c, b and t are sent to infinity. In Leutwyler’ s terminology
this limit represents a theoretical paradise, as there are no dimensionless couplings
and all transition probabilities of physical interest are unambiguously determined
by the Lagrangian2. The QCD Lagrangian in this limit reads

L0
QCD =

∑

l=u,d,s

q̄liD/ ql − 1

4
Gµν,aGµν

a . (2.7)

Note that the covariant derivative D/ ql acts on color and Dirac indices only, but is
independent of flavor. In order to see the symmetry properties of L0

QCD let us first
define the chirality projectors PR/L

PR =
1

2
(1 + γ5) = P †

R, PL =
1

2
(1− γ5) = P †

L, (2.8)

where the indices R and L refer to right-handed and left-handed, respectively. The
following properties are easily verified using the definitions in Eq. (2.8)

PR + PL = 1,

P 2
R = PR, P 2

L = PL,

PRPL = PLPR = 0.

(2.9)

The projectors acting on the quark fields single out the right-handed and left-handed
components of the quark fields, respectively,

qR = PR q, qL = PL q. (2.10)

1For reasons that will be obvious later this limit is referred to as the chiral limit.
2This is true since the strong coupling g can be related to an intrinsic scale (ΛQCD) and all

momenta can be expressed within units of this scale.
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Using the properties of PR/L in Eq. (2.9) the Lagrangian in Eq. (2.7) can be written
as

L0
QCD =

∑

l=u,d,s

(q̄R,liD/ qR,l + q̄L,liD/ qL,l)− 1

4
Gµν,aGµν

a . (2.11)

One clearly sees that the right-handed and left-handed components of the quark
fields decouple in the massless limit of QCD. The Lagrangian L0

QCD is invariant
under independent U(3) global transformations of the left-handed and right-handed
components,




uL

dL

sL


 7→ UL




uL

dL

sL


 = exp

(
−i

8∑
a=1

ΘL
a

λa

2

)
e−iΘL




uL

dL

sL


 ,




uR

dR

sR


 7→ UR




uR

dR

sR


 = exp

(
−i

8∑
a=1

ΘR
a

λa

2

)
e−iΘR




uR

dR

sR


 . (2.12)

The full symmetry group of the Lagrangian is U(3)L×U(3)R, which can be decom-
posed as the product of

S = SU(3)L × SU(3)R × U(1)V × U(1)A. (2.13)

Using Noether’s theorem one can derive conserved currents associated to the
above transformations

Lµ,a = q̄Lγµ λa

2
qL, ∂µL

µ,a = 0,

Rµ,a = q̄Rγµ λa

2
qR, ∂µR

µ,a = 0. (2.14)

Instead of these chiral currents one often uses linear combinations,

V µ,a = Rµ,a + Lµ,a = q̄γµ λa

2
q, (2.15)

Aµ,a = Rµ,a − Lµ,a = q̄γµγ5
λa

2
q, (2.16)

transforming under parity as vector and axial-vector current densities, respectively,

P : V µ,a(~x, t) 7→ V a
µ (−~x, t), (2.17)

P : Aµ,a(~x, t) 7→ −Aa
µ(−~x, t). (2.18)

One also obtains a conserved singlet vector current resulting from a transformation
of all left-handed and right-handed quark fields by the same phase,

V µ = q̄RγµqR + q̄LγµqL = q̄γµq, ∂µV
µ = 0. (2.19)

The singlet axial-vector current,

Aµ = q̄RγµqR − q̄LγµqL = q̄γµγ5q, (2.20)
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originates from a transformation of all left-handed quark fields with one phase and
all right-handed with the opposite phase. From the conserved currents one easily
derives conserved charges Qa

V/A which generate the symmetry group S.

The symmetry with respect to SU(3)L × SU(3)R is called chiral symmetry, this
explains why the massless limit of QCD is referred to as the chiral limit. The U(1)V

is related to baryon number conservation. At the quantum level the Abelian anomaly
is responsible for the U(1)A not being a symmetry of L0

QCD. This can be seen by
explicitly calculating the divergence of the corresponding axial singlet current

∂µA
µ =

3g2

32π2
εµνρσGµν

a Gρσ
a .

Taking these considerations into account we have 9 conserved vector charges Q0
V ,

. . . , Q8
V and 8 conserved axial charges Q1

A, . . . , Q8
A generating the group

G = SU(3)R × SU(3)L × U(1)V. (2.21)

As was shown by Vafa and Witten [VW 84], the ground state of QCD is necessarily
invariant under the subgroup generated by the vector charges. For the axial charges,
however, there are two possibilities:

1. Qa
A|0〉 = 0: The ground state is invariant under chiral rotations, and the sym-

metry is realized in the so-called Wigner-Weyl mode. The spectrum consists
of degenerate multiplets that transform irreducibly under the full symmetry
group S and thus contain degenerate states of opposite parity.

2. Qa
A|0〉 6= 0: The ground state is not invariant under the full symmetry group.

S is realized in the so-called Nambu-Goldstone mode. This phenomenon is
called spontaneous breakdown of a symmetry and the spectrum of the theory
consists of the multiplets of the subgroup H = SU(3)V×U(1)V which leaves the
vacuum invariant. In this case the axial charges acting on the ground state
QA|0〉 generate multiplets, which carry the same energy and momentum as
the ground state, giving rise to a multiplet of massless particles, the so-called
Goldstone bosons.

The experimental situation strongly implies that the second case is realized. There-
fore we conclude that QCD in the massless limit is, on the classical level, invariant
under the symmetry group S = SU(3)R×SU(3)L×U(1)V×U(1)A, where the U(1)A

is subject to an anomaly and does not survive quantization and the chiral symmetry
C = SU(3)R × SU(3)L is spontaneously broken to the subgroup C ′ = SU(3)V. The
number of generators of the chiral symmetry is nC = 16 whereas the number of
the generators of the group C ′ is nC′ = 8. Therefore, according to the Goldstone
theorem, we expect nC − nC′ = 8 massless Goldstone bosons. In fact the spec-
trum of QCD contains eight pseudoscalar mesons having comparatively small, but
non-vanishing masses, namely kaons, pions, and etas.
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2.1.2 Explicit symmetry breaking in QCD

So far we have considered the massless limit of QCD. Of course in nature the quarks
have non-vanishing masses, which break the chiral symmetry explicitly as the La-
grangian contains a term

LM = −q̄Mq = −(q̄RMqL + q̄LMqR), (2.22)

where M is the quark mass matrix given by

M =




mu 0 0
0 md 0
0 0 ms


 . (2.23)

This gives rise to additional contributions to the divergences of the vector and axial-
vector currents

∂µV
µ,a = iq̄

[
M,

λa

2

]
q,

∂µA
µ,a = i

(
q̄L{λa

2
,M}qR − q̄R{λa

2
,M}qL

)
= iq̄{λa

2
,M}γ5q,

∂µV
µ = 0,

∂µA
µ = 2iq̄Mγ5q +

3g2

32π2
εµνρσGµν

a Gρσ
a ,

(2.24)

where the axial anomaly is taken into account as well. As the divergences are
proportional to the quark masses, we conclude that for small quark masses chiral
symmetry is an approximate symmetry of QCD. Note that in the case of equal quark
masses for u,d and s the quark mass matrix is proportional to the identity matrix,
thus the eight vector currents are still conserved in accordance with the eightfold
way introduced by Gell-Mann and Ne’eman [GMN 64].

2.2 Chiral Ward identities

In quantum field theory the objects we are mostly concerned with are vacuum ex-
pectation values of time ordered products of operators, the so-called Green func-
tions. The Green functions are related to physical transition amplitudes via the
Lehmann-Symanzik-Zimmermann formalsim (LSZ) [LSZ 55]. As will be shown be-
low the symmetry properties of the theory impose relations among different Green
functions.

As an example of a Green function and the consequences emerging from symme-
tries let us first take a look at the vacuum expectation value involving an axial-vector
current and a pseudoscalar density

Gµ,ab
AP (x, y) = 〈0|T [Aµ

a(x)Pb(y)]|0〉
= Θ(x0 − y0)〈0|Aµ

a(x)Pb(y)|0〉+ Θ(y0 − x0)〈0|Pb(y)Aµ
a(x)|0〉,
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(2.25)

where the axial-vector current (see Eq. (2.16)) and the pseudoscalar density are
defined as

Aµ,a = q̄γµγ5
λa

2
q,

Pa = iq̄γ5λaq.

The time ordering has been made explicit using the Heavyside function Θ with the
properties

Θ(x) =

{
1 , for x > 0

0 , for x ≤ 0
.

Let us take the divergence of the above Green function

∂x
µGµ,ab

AP (x, y)

= δ(x0 − y0)〈0|Aa
0(x)Pb(y)|0〉 − δ(x0 − y0)〈0|Pb(y)Aa

0(x)|0〉
+Θ(x0 − y0)〈0|∂x

µAµ
a(x)Pb(y)|0〉+ Θ(y0 − x0)〈0|Pb(y)∂x

µAµ
a(x)|0〉

= δ(x0 − y0)〈0|[Aa
0(x), Pb(y)]|0〉+ 〈0|T [∂x

µAµ
a(x)Pb(y)]|0〉,

where we made use of ∂x
µΘ(x0 − y0) = δ(x0 − y0)g0µ = −∂x

µΘ(y0 − x0). Note that
the derivative acting on Θ generates an equal-time commutator. The divergence
of the axial-vector current vanishes in the case of an exact symmetry, whereas the
equal time commutator in the first part is in general different from zero and depends
on the underlying symmetries. The equal-time commutation relations of the quark
fields in the Heisenberg picture are given by

{qα,r(~x, t), q†β,s(~y, t)} = δ3(~x− ~y)δαβδrs, (2.26)

{qα,r(~x, t), qβ,s(~y, t)} = 0, (2.27)

{q†α,r(~x, t), q†β,s(~y, t)} = 0, (2.28)

where α and β are Dirac indices and r and s flavor indices, respectively. Using these
relations and the explicit expression for Aa

0(x) and Pb(y) the commutator reads

[Aa
0(~x, t), Pb(~y, t)] = δ3(~x− ~y)ifabcSc(~x, t),

where

Sa(x) = q̄(x)λaq(x).

As the symmetry in our case is only approximate the divergence of the axial-vector
current gives a non vanishing contribution and for the considered Green function we
obtain

∂x
µGµ,ab

AP (x, y) = δ4(x− y)ifabc〈0|Sc(x)|0〉
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+i〈0|T [q̄(x){λa

2
,M}γ5q(x)Pb(y)]|0〉. (2.29)

In the above derivation we have made use of a naive time ordering T which is not
covariant, however in the calculation of the commutator we have omitted the so-
called Schwinger term containing an additional derivative on the δ function. Both
effects cancel in our case, thus leading to a correct result. We have seen that
symmetry arguments relate the divergence of a Green function containing an axial-
vector current to some linear combination of other Green functions. This was first
realized in the context of the U(1) gauge invariance of QED, where the vector current
is exactly conserved and gives rise to the identity [War 50]

Γµ(p, p) = − ∂

∂pµ

Σ(p), (2.30)

which relates the electromagnetic vertex of an electron at zero momentum transfer,
γµ + Γµ(p, p), to the electron self energy, Σ(p). Such symmetry relations among
Green functions are called Ward identities3. The Ward identity for our example is
called a chiral Ward identity, as the underlying symmetry is the chiral symmetry
SU(3)L × SU(3)R.

Chiral Ward identities are crucial to the construction of χPT, as the global
symmetries we have established so far are not sufficient to fully determine the low-
energy structure of our theory. Working out all possible Ward identities in the
above way is a tedious task, fortunately there is a compact and more elegant way
of obtaining all Green functions of a theory using the path integral. Having the
Lagrangian of a theory all possible Green functions are encoded in the so-called
generating functional. For the Green functions involving currents one introduces
auxiliary fields, called sources or external fields.

Following the procedure of Gasser and Leutwyler [GL 84, GL 85], we introduce
into the Lagrangian of QCD the couplings of the nine vector currents and the eight
axial-vector currents as well as the scalar and pseudoscalar quark densities to exter-
nal c-number fields vµ(x), vµ

(s), aµ(x), s(x), and p(x),

L = L0
QCD + Lext = L0

QCD + q̄γµ(vµ +
1

3
vµ

(s) + γ5a
µ)q − q̄(s− iγ5p)q. (2.31)

The external fields are given by

vµ =
8∑

a=1

λa

2
vµ

a , aµ =
8∑

a=1

λa

2
aµ

a , s =
8∑

a=0

λasa, p =
8∑

a=0

λapa (2.32)

and the isoscalar vector current vµ
(s) is proportional to the unit matrix. The ordinary

three flavor QCD Lagrangian is recovered by setting vµ = vµ
(s) = aµ = p = 0 and

s = diag(mu,md,ms) in Eq. (2.31). We define the generating functional as

exp(iZ[v, a, s, p]) = 〈0|T exp

[
i

∫
d4xLext(x)

]
|0〉, (2.33)

3The generalization to non-vanishing momentum transfer and more complicated groups is called
Ward-Fradkin-Takahashi identities [War 50, Fra 55, Tak 57].
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where all Green functions are obtained by functional derivatives with respect to
the external fields. The generating functional is related to the vacuum-to-vacuum
transition amplitude in the presence of external fields [GL 84, GL 85],

exp[iZ(v, a, s, p)] = 〈0out|0in〉v,a,s,p, (2.34)

where the dynamics is determined by the Lagrangian of Eq. (2.31). As an example,
let us consider the two-point function of the axial-vector currents of Eq. (2.16) of
the “real world,” i.e., for s = diag(mu,md, ms), and the “true vacuum” |0〉,

〈0|T [Aa
µ(x)Ab

ν(0)]|0〉 =

(−i)2 δ2

δaµ
a(x)δaν

b (0)
exp(iZ[v, a, s, p])

∣∣∣∣
v=a=p=0,s=diag(mu,md,ms)

.

(2.35)

An important aspect of the generating functional of Eq. (2.33) is invariance under
local gauge transformations of the external fields which ultimately defines the sym-
metry properties of the Green functions we are interested in4. To be more specific the
Lagrangian of Eq. (2.31) is invariant under local SU(3)L × SU(3)R transformations
with the external fields transforming according to

(
vµ + aµ

) 7→ VRrµV
†
R + iVR∂µV

†
R,(

vµ − aµ

) 7→ VLlµV
†
L + iVL∂µV

†
L ,

v(s)
µ 7→ v(s)

µ − ∂µΘ,

s + ip 7→ VR(s + ip)V †
L ,

s− ip 7→ VL(s− ip)V †
R, (2.36)

where

(
VL, VR

) ∈ SU(3)L × SU(3)R.

Let us stress that the generating functional is the essential link between the
underlying theory and the effective theory. We construct our effective theory in
accordance to the locally gauge-invariant generating functional of Eq. (2.33).

2.3 Chiral perturbation theory

Having discussed the symmetries of QCD we are now in the position to construct
the corresponding effective theory for low-energy hadronic processes, chiral pertur-
bation theory. χPT originates from the pioneering work by Weinberg [Wei 79] and
was systematically worked out by Gasser and Leutwyler [GL 84, GL 85]. One of
the biggest accomplishments of χPT is to cast previous findings based on current

4Note that this is only true in the absence of anomalies.
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algebra and the partially conserved axial-vector current (PCAC) hypothesis into a
systematic framework allowing for the calculation of corrections.

In χPT the effective degrees of freedom are the experimentally observed hadronic
states, rather than the fundamental degrees of freedom of QCD, namely quarks and
gluons. Contrary to the implications of the name χPT, it is in fact non-perturbative
in the strong coupling constant g. The perturbative series is rather realized as a
Taylor series expansion in powers of the momenta over some scale Λ, with Λ typically
chosen to be of the order of 1 GeV.

In this work we restrict ourselves to the two flavor case. Moreover we work
in the so-called isospin symmetric limit where mu = md = m. According to the
discussion in the previous section the chiral SU(2)L×SU(2)R is spontaneously broken
to the subgroup SU(2)V. Experimental evidence for the spontaneous symmetry
breaking can be seen in the hadronic spectrum, where the pion mass is much smaller
than the masses of other hadrons and the fact that mass-degenerate states with
opposite parity are missing. Applying the Goldstone theorem to the SU(2) case
we expect 6 − 3 = 3 massless Goldstone bosons with spin 0. Taking into account
the explicit symmetry breaking due to the small quark mass m one identifies the
pions as Goldstone bosons5. Even though the symmetries restrict the number of
possible terms, the most general Lagrangian still contains an infinite number of
terms. Clearly in perturbative calculations a pattern organizing the Lagrangian is
required.

2.3.1 Power counting

Let us first set up a scheme for the organization of the infinitely many terms con-
tributing to the most general effective Lagrangian. In constructing such a scheme
we exploit the fact that the interaction of Goldstone bosons becomes weak at low
energies6. We start by organizing the terms in the Lagrangian according to the
number of derivatives acting on pion fields and powers of quark masses,

L = L2 + L4 + . . . ,

where the subscript denotes the number of derivatives or powers of the quark mass
respectively. Note that derivatives acting on pion fields yield momenta of pions
in the corresponding Feynman rule. We are interested in perturbative calculations
of physical matrix elements using a Feynman diagrammatic approach. Therefore
we need a scheme assessing the importance of an individual diagram generated
by the interactions of the above Lagrangian. Weinberg proposed such a scheme,
called Weinberg’s power counting [Wei 79]. Any Feynman diagram contributing to
a physical matrix element M is a function of the quark masses and the momenta of
pions

M = D1(mq, pi) +D2(mq, pi) + . . . .

5Strictly speaking Goldstone bosons are massless, therefore the pions are referred to as pseudo
or would-be Goldstone bosons in the literature.

6This is in marked contrast to the underlying theory where the strong coupling of QCD increases
at lower energies.
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Considering the behavior of a physical matrix element M(mq, pi) under a linear
rescaling of the pion momenta pi 7→ t pi and a quadratic rescaling of quark masses
mq 7→ t2mq, we write

M(mq, pi) 7→ M(t2 mq, t pi) = D1(t
2 mq, t pi) +D2(t

2 mq, t pi) + . . . ,

= tD1 D1(mq, pi) + tD2D2(mq, pi) + . . . .

In this way one assigns a chiral order D to each individual diagram contributing to
M. We obtain the general expression

D = 2 +
∞∑

n=0

2
(
n− 1

)
N2n + 2 NL, (2.37)

for the chiral order of an individual Feynman diagram. N2n denotes the number of
vertices from the Lagrangian L2n and NL stands for the number of loops. Obviously
for small values of t diagrams with an increasing chiral order D are suppressed and
those with smaller D prevail. In this way in a calculation to a fixed order in D only
a limited number of diagrams from the most general Lagrangian contribute. We
rewrite Eq. (2.37) using the relation

NV = NI −NL + 1,

where NV is the total number of vertices7 and NI is the number of internal pion
lines, and obtain for D

D = 4 NL − 2 NI +
∞∑

n=0

2n N2n. (2.38)

This definition of the chiral order is convenient, as we assign the following chiral
orders to individual components of a Feynman diagram:

1. Integration in 4 dimensions counts as chiral order 4,

2. a pion propagator counts as chiral order −2,

3. a vertex from L2n counts as chiral order 2n.

Essentially counting the powers of pion propagators, pion momenta and powers of
loop momenta determines the importance of an individual diagram, hence the name
power counting. Of course when organizing the most general effective Lagrangian
according to the number of derivatives and quark masses we had this power counting
in mind.

7Note that NV =
∑
n

N2n.
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2.3.2 Mesonic Lagrangian

Since the essential link between χPT and QCD is the generating functional of Eq.
(2.33) the task at hand is to construct an effective Lagrangian invariant under local
C = SU(2)L×SU(2)R transformations. In [CWZ 69, Cal+ 69] a procedure has been
developed how a spontaneously broken symmetry is realized on quantum fields. To
that end it is convenient to collect the Goldstone boson fields in a unitary 2 × 2
matrix U

U(x) = exp
(iΦ(x)

F

)
, Φ(x) =

3∑
i=1

τiΦi =

(
π0

√
2 π+√

2 π− −π0

)
, (2.39)

where the τi are the Pauli matrices. U transforms under chiral transformations
according to

U(x) 7→ VR U(x)V †
L , (2.40)

where
(
VL, VR

) ∈ SU(2)L×SU(2)R now depend on x. The transformation properties
of the external sources are the same as displayed in Eq. (2.36) with the obvious
substitution

(
VL, VR

) ∈ SU(2)L × SU(2)R. Introducing the definitions

rµ = vµ + aµ, lµ = vµ − aµ, χ = 2B
(
s + ip

)
,

the covariant derivative acting on U is given by

DµU = ∂µU − irµU + iUlµ.

For the construction of higher-order terms it is useful to define the field strength
tensors of the external fields,

fR
µν = ∂µrν − ∂νrµ − i

[
rµ, rν

]
,

fL
µν = ∂µlν − ∂νlµ − i

[
lµ, lν

]
,

which under chiral transformations behave as

fR
µν 7→ VRfR

µν V †
R,

fL
µν 7→ VLfL

µν V †
L .

The construction of the effective Lagrangian uses the above defined quantities as
building blocks. They have a well defined behavior with respect to chiral symmetry
and the discrete symmetries C and P . The chiral orders of the building blocks are
given by

U = O(q0), DµU = O(q1), rµ, lµ = O(q1), fR/L
µν = O(q2), χ = O(q2),

where q denotes a small quantity such as pion momenta and meson masses.
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Due to Lorentz invariance the mesonic Lagrangian only contains terms with even
powers in the momenta or pion masses. As we are only interested in the coupling of
the pions to an external electromagnetic field Aµ in the following we use

vµ = rµ = lµ = −e
τ3

2
Aµ, v(s)

µ = −e

2
Aµ. (2.41)

The lowest-order Lagrangian reads [GL 84]

L2 =
F 2

4
Tr[DµU(DµU)†] +

F 2

4
Tr(χU † + Uχ†). (2.42)

Note that the leading-order Lagrangian describes the interaction of any even number
of pions, e.g. ππ → ππ or ππ → ππππ. We have two coupling constant at leading
order, F which is related to the pion decay constant Fπ = F +O(q2) and B which
is related to scalar quark condensate. The corresponding quantities are defined in
the chiral limit. The pion mass is related to B according to

M2
π = 2 B

(mu + md

2

)
= 2 Bm̂.

Let us stress that the above construction of the effective mesonic Lagrangian
can only generate terms with an even number of pions. The Lagrangian has an
additional symmetry not present in QCD called intrinsic parity, more specifically
the Lagrangian of Eq. (2.42) is invariant under transformations

φ(x) → −φ(x).

However in the Lagrangian at fourth order a term occurs due to the chiral anomaly,
which is responsible for the interaction of an odd number of mesons. The Lagrangian
describing such processes was derived by Wess, Zumino and Witten [WZ 71, Wit 83].
In the calculation of VCS the only relevant vertex is π0γ∗γ∗ and we only display the
corresponding Lagrangian

LWZW = − e2

32π2Fπ

εµναβFµνFαβπ0, (2.43)

where

Fµν = ∂µAν − ∂νAµ. (2.44)

Note that the WZW-Lagrangian does not contain any free parameters if one con-
siders the number of colors to be fixed, Nc = 3.

2.4 Baryonic Lagrangian

So far we have only considered the interactions of pions among each other and with
the electromagnetic field. When including nucleons we proceed in analogy to the



18 QCD and chiral perturbation theory

previous section, giving the basic building blocks and their behavior under chiral
transformations first.

The external fields transform in the same way as in the previous section. The
nucleons are collected in an isospinor

Ψ =

(
p
n

)
,

where p and n denote the proton and neutron four component Dirac field, respec-
tively. The behavior of Ψ under chiral transformation is given in terms of the
so-called compensator K(VL, VR, U),

Ψ 7→ K(VL, VR, U)Ψ, (2.45)

Ψ̄ 7→ Ψ̄K†(VL, VR, U). (2.46)

We denote the square root of U by u, u2(x) = U(x), and define the SU(2)-valued
function K(VL, VR, U) by

u(x) 7→ u′(x) =

√
VRUV †

L ≡ VRuK−1(VL, VR, U), (2.47)

i.e.

K(VL, VR, U) = u′−1VRu =

√
VRUV †

L

−1

VR

√
U.

Using the definition of the so-called chiral connection [Eck 95]

Γµ =
1

2

[
u†(∂µ − irµ)u + u(∂µ − ilµ)u†

]
, (2.48)

the covariant derivative is given by

DµΨ = (∂µ + Γµ − iv(s)
µ )Ψ. (2.49)

It can be shown that the covariant derivative defined in this way transforms under
chiral rotations in the same way as the isospinor nucleon field Ψ,

Dµ Ψ 7→ K(VL, VR, U) Dµ Ψ. (2.50)

At leading order there exists another Hermitian building block, the so-called vielbein
[Eck 95],

uµ ≡ i
[
u†(∂µ − irµ)u− u(∂µ − ilµ)u†

]
, (2.51)

which under parity transforms as an axial vector. For the construction of higher
order terms it is convenient to define further building blocks8

χ± = u†χu† ± uχ†u,

f±µν = ufL
µνu

† ± u†fR
µνu,

v(s)
µν = ∂µv

(s)
ν − ∂νv

(s)
µ (2.52)

8Note that in Ref. [Fet+ 00] the vector current contains the isoscalar part.
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which transform according to

X 7→ K(VL, VR, U) X K−1(VL, Vr, U), X = uµ, χ±, f±µν ,

v(s)
µν 7→ v(s)

µν . (2.53)

Furthermore the covariant derivative acting on the building blocks transforms in
the same way as the building blocks themselves. The lowest order Lagrangian reads
[GSS 88]

L(1)
πN = Ψ̄

(
iD/−m +

gA

2
γµγ5uµ

)
Ψ, (2.54)

where m is the nucleon mass in the chiral limit and gA is the nucleon axial-vector
coupling constant, also in the chiral limit. The Lagrangians up to fourth order have
been constructed in [GSS 88, EM 96, Fet+ 00]. Here we only display the terms
necessary for our calculations.

The next-to-leading-order pion-nucleon Lagrangian contains seven low-energy
constants ci

9

L(2)
πN = c1Tr(χ+)Ψ̄Ψ− c2

4m2

[
Ψ̄Tr (uµuν) DµDνΨ + h.c.

]
+

c3

2
Ψ̄Tr

(
uµ uµ

)
Ψ

+Ψ̄
[
i
c4

4
[uµ, uν ] +

c6

2
f+

µν +
c7

2
v(s)

µν

]
σµνΨ + · · · ,

(2.55)

where h.c. refers to the Hermitian conjugate. The relevant parts of the Lagrangians
of order three and four read [Fet+ 00]

L(3)
πN =

d6

2m

[
Ψ̄ i[Dµ, F̃+

µν ]D
νΨ + h.c.

]
+

d7

2m

[
Ψ̄ i[Dµ, Tr

(
F+

µν

)
]DνΨ + h.c.

]
+ . . . ,

(2.56)

L(3)
πN = −e54

2
Ψ̄

[
Dλ,

[
Dλ, Tr

(
F+

µν

)]]
σµνΨ− e74

2
Ψ̄

[
Dλ,

[
Dλ, F̃

+
µν

]]
σµνΨ

+ e89Ψ̄ Tr
(
F+

µν

)
Tr

(
F+µν

)
Ψ− e90

4m2

[
Ψ̄ Tr

(
F+

λµ

)
Tr

(
F+λ

ν

)
DµνΨ + h.c.

]

+ e91Ψ̄ F̃+
µνTr

(
F+µν

)
Ψ− e92

4m2

[
Ψ̄ F̃+

λµTr
(
F+λ

ν

)
DµνΨ + h.c.

]

+ e93Ψ̄ Tr
(
F̃+

µνF̃
+µν

)
Ψ− e94

4m2

[
Ψ̄Tr

(
F̃+

λµF̃
+λ

ν

)
DµνΨ + h.c.

]

− e105

2
Ψ̄ Tr

(
F+

µν

)
Tr (χ+) σµνΨ− e106

2
Ψ̄ F̃+

µνTr (χ+) σµνΨ

− e117

8m2

[
Ψ̄ Tr

(
F−

λµF
−λ

ν + F+
λµF

+λ
ν

)
DµνΨ + h.c.

]

+
e118

2
Ψ̄ Tr

(
F−

µνF
−µν + F+

µνF
+µν

)
Ψ + . . . . (2.57)

Note that F±
µν in the above equations corresponds to f±µν if one includes the isoscalar

vector current in the vector current vµ. Moreover in the above equations the follow-
ing definition is used

X̃ = X − 1

2
Tr (X) . (2.58)

9With the substitutions f+
µν → F+

µν − 1
2Tr(F+

µν) and v
(s)
µν → 1

4Tr(F+
µν) as well as c6 → c6/(4m)

and c7 → (c6 + c7)/(2m) one arrives at the next-to-leading order Lagrangian of [Fet+ 00].



20 QCD and chiral perturbation theory

The abbreviation Dn
αβ...ω = {Dα, {Dβ, {. . . , Dω}}} is used for the totally sym-

metrized product of n covariant derivatives. The corresponding Feynman rules are
given in Appendix A.

2.4.1 Power counting in BχPT

The power counting in the baryonic sector is marked with problems as was first
stated by Gasser, Sainio. and Svarc [GSS 88]. The generalization of the power
counting from the mesonic sector is realized by assigning the following chiral orders
to the individual components of a diagram:

1. The nucleon propagator counts as chiral order −1,

2. vertices from the Lagrangian L(n)
πN count as chiral order n,

3. the mesonic power counting stays the same.

Eventually at some stage in a perturbative calculation loop corrections arise, which
due to their divergence have to be treated carefully. The usual way in mesonic χPT
is to use dimensional regularization and the so-called modified minimal subtraction
scheme of χPT (M̃S). When the same methods were applied to one-loop diagrams
in BχPT one explicitly saw a breakdown of the power counting. The breakdown
comprised of terms with smaller chiral dimension in the result than expected. As
an example let us take a look at the self-energy of the nucleon. Let us first establish
the chiral orders of the diagrams in Fig. 2.1 using the above power counting.

1. The left diagram in Fig.2.1 has chiral order (n is the space-time dimension)

D = n + 2 · 1− 1− 2 = n− 1 → 3.

2. The right diagram in Fig.2.1 has chiral order

D = n + 1 · 2− 2 = n =→ 4.

An explicit calculation of the diagrams in dimensional regularization in combination
with the M̃S-scheme shows that the left diagram in Fig. 2.1 actually contains terms
violating power counting, whereas the right diagram fulfills power counting.

However one has to keep in mind that the power counting was obtained by
rescaling the momenta and quark masses of a physical matrix element and looking at
the behavior of individual diagrams contributing to this matrix element. Therefore

p p − k

k

p
1 1

p p

k

2

Figure 2.1: Self-energy diagrams.
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power counting should be applied to renormalized diagrams only, thus the validity
of a power counting scheme depends on the choice of the renormalization scheme.
This was already realized in Ref. [GSS 88].

The first solution to this problem was given by the non-relativistic limit using
techniques borrowed from heavy-quark effective theory. This approach is called
heavy-baryon chiral perturbation theory (HBχPT) and essentially amounts to an
expansion in inverse powers of the nucleon mass in the relativistic Lagrangian
[JM 91, Ber+ 92]. The caveat in HBχPT is that manifest Lorentz invariance is
lost. Moreover, in higher orders in the chiral expansion, the expressions due to 1

m

corrections of the Lagrangian become increasingly complicated. Subsequently sev-
eral manifestly Lorentz-invariant renormalization schemes have been developed that
also result in a proper power counting [ET 98, BL 99, GJ 99, Goi+ 01, Fuc+ 03].
The most commonly used scheme is the so-called infrared regularization (IR) of
Becher and Leutwyler [BL 99], which, in its reformulated version of Ref. [SGS 04]
is also applied in this work.

2.4.2 Infrared regularization

Let us illustrate the main ideas of IR by looking at the left diagram of Fig. 2.1. In
the calculation of the self-energy the following integral appears

IπN = i

∫
dDk

(2π)D

1

[k2 −M2 + i0+] [(k − p)2 −m2 + i0+]
, (2.59)

where D denotes the number of space-time dimensions and the masses m and M refer
to the nucleon mass in the chiral limit and the lowest-order pion mass, respectively.
Using the Feynman parametrization formula

1

ab
=

∫ 1

0

dz

[az + b(1− z)]2
, (2.60)

with a = (k−p)2−m2 + i0+ and b = k2−M2 + i0+, and performing the integration
over loop momenta k we obtain

IπN = − 1

(4π)D/2
Γ(2−D/2)

∫ 1

0

dz [A(z)](D/2)−2 , (2.61)

where
A(z) = −p2(1− z)z + m2z + M2(1− z)− i0+.

In the approach of Becher and Leutwyler, the integral IπN in Eq. (2.61) is split
into the so-called infrared singular part I and the regular part R,

I = − 1

(4π)D/2
Γ(2−D/2)

∫ ∞

0

dz [A(z)](D/2)−2 , (2.62)

R =
1

(4π)D/2
Γ(2−D/2)

∫ ∞

1

dz [A(z)](D/2)−2 . (2.63)
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One can prove that the infrared singular part I satisfies power counting, thus all
power counting violating terms are encoded in the regular part R. In contrast to
the infrared singular part the regular part allows for an expansion in a Taylor series
in the external momenta and the quark masses. Therefore using an appropriate
renormalization procedure one can compensate these terms in the redefinition of the
coupling constants and fields of the most general Lagrangian. Indeed the Green
functions obtained from a one-loop diagram separated into an infrared singular
and regular part separately satisfy the Ward identities of the theory. This ensures
that regular parts can be incorporated in the coupling constants and fields of the
most general Lagrangian. If one drops the regular part of the integral IπN the
resulting expression satisfies power counting. Note that I and R contain additional
divergences not present in IπN therefore these divergences have to cancel exactly.

We use the reformulated version of IR in this work. In Ref. [SGS 04] it has been
shown that the regular part of any integral can be constructed without resorting to
a splitting of the Feynman parameterized integral. Starting from a parameterized
version of the integral, e.g. the Feynman parameter representation of Eq. (2.61),
one constructs the regular part by performing a Taylor expansion of the integrand
in small quantities with subsequent interchange of summation and integration. This
coincides with the chiral expansion of the regular part R calculated in [BL 99]. The
expansion of the regular part of IπN to third order reads

R = − 1

16π2

[
1− p2 −m2

2m2
+

3M2

2m2

+

(
p2 −m2

)(
p4 + m4 − 2m2

(
p2 + 3M2

))

6m2
+ . . .

]
.

The main advantage of the reformulated version is that we can use the standard
definition of the one-loop integrals, i.e. we do not have to calculate the infrared
singular part explicitly. Therefore we can use standard libraries for the calculation of
one-loop integrals such as the LoopTools library [Hah 01] and explicitly subtract the
regular part in order to get the IR regularized integrals. The calculation of the chiral
expansion of the regular part R is well suited for an implementation in a computer
algebra system (CAS). We have implemented this procedure in Mathematica using
the Schwinger parameter representation of the one loop integrals. At present the
subtraction terms for integrals up to four denominators and tensor rank four is
implemented. For calculational details see Appendix D.



Chapter 3

Virtual Compton scattering

Electromagnetic interactions of nucleons are a useful tool to get insight to the nu-
cleon structure as well as the underlying dynamics governing the low-energy regime
of QCD. Among the first scattering experiments using an electromagnetic probe was
the elastic electron scattering off the proton. The results deviate from the electron
scattering off a point-like spin-1

2
particle, indicating the composite structure of the

nucleon. The corresponding response functions of the nucleon are called form factors,
which allow for an interpretation as the spatial distribution of charge and magnetic
moments inside the nucleon. The electromagnetic interaction we are interested in is
Compton scattering on the proton. In this process we gain new information on the
structure of the nucleon, which can be interpreted as the polarizability of a medium
exposed to an external electromagnetic field. The polarizability of systems predom-
inantly governed by electromagnetic interactions, e.g atoms, is approximately given
by its volume. For nucleons the polarizabilities are four orders of magnitude smaller
than its volume, thus indicating the prominent role of strong interactions. In analogy
to the form factors, the spatial distribution of electric or magnetic polarizabilities
can be measured by going from the real case to the virtual Compton scattering case.

Virtual Compton scattering (VCS) is accessible in the photon electro-production
process e p → e′ p′ γ. In the calculation of electro-production processes of mesons,
e.g. pion electro-production, one usually employs the one-photon-exchange approx-
imation. This approximation is justified, because one produces a strongly inter-
acting particle and the cross sections are relatively large. As we are interested
in the production of a photon, this approximation might be inaccurate. In fact,
the radiative corrections give sizeable contributions to the cross section for photon
electro-production. In Ref. [Van+ 00] the contributions from QED radiative correc-
tions were found to give a 20 % effect on the cross sections in the MAMI kinematics.
However, given the comparatively large mass of the nucleon the radiative correc-
tions from the hadronic part of the process are expected to be strongly suppressed
compared to the leptonic sector. Consequently, if one incorporates the effects of
the QED radiative corrections in the experimental data analysis, the one-photon-
approximation for the hadronic part is still valid.

In this chapter we lay out the basic formalism of the VCS process. This concerns
in particular
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Figure 3.1: Kinematics of the reaction e p → e′ p′ γ.

• the general kinematics for e p → e′ p′ γ,

• the definition of the VCS process,

• and the definition of derived quantities, in particular polarizabilities.

First the separation of the genuine VCS process from competing processes in photon
electro-production is discussed in detail. Next we establish model-independent con-
straints on the VCS process and give appropriate parameterizations of the hadronic
part. Thereafter we introduce the concept of polarizabilities as a means to parame-
terize the new information on the structure of the nucleon exclusively accessible in
the VCS process. Finally, the definitions of the physical observables calculated in
this work are explicitly given.

3.1 Kinematics

In this section we define the kinematics and notations used in this work. The initial
and final four momenta of the nucleon with mass mN are denoted by pi and pf ,
respectively. The initial and final electron momenta are k and k′, the electron mass
is me and the final state photon momentum is q2. The components of the momenta
are specified as

pµ
i =

(
Ei, ~p

)
, pµ

f =
(
Ef , ~p

′),
kµ =

(
ωi, ~k

)
, k′µ =

(
ωf , ~k

′),
qµ
2 =

(
ω′, ~q ′

)
. (3.1)

The spin of the initial (final) state nucleon is given by Si (Sf ), the initial (final)
state electron spin is denoted si (sf ) and the polarization state of the final photon
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is abbreviated with λ′. The four momentum of the virtual photon is given by
qµ
1 = (k − k′)µ = (ω, ~q). In the following a bar denotes the absolute value of a three

vector x̄ = |~x| and x̂ denotes the unit vector in the direction of ~x. For the VCS
process one has in general three independent kinematical variables. It is convenient
to introduce the three Mandelstam variables

s =
(
pi + q1

)2
, t =

(
q1 − q2

)2
, u =

(
pi − q2

)2
, (3.2)

satisfying the relation s + t + u = 2 m2
N + q2

1. As we are interested in space-like
virtuality we set q2

1 = −Q2.
The coordinate system in Fig. 3.1 is defined as in [GLT 95, GV 98]. The z

direction is fixed by the propagation of the virtual photon and the polar angle θ
describes the angle between the virtual and real photon. Thus the basis of our
coordinate system is given by

êz = q̂,

êy =
q̂ × q̂′

sin θ
,

êx = êy × êz. (3.3)

We work in the VCS center of mass frame, which is specified by

~p = −~q, (3.4)

~p ′ = −~q ′. (3.5)

In the above coordinate system the three-momenta of the real and virtual photon
have the following form

~q = q̄




0
0
1


 , (3.6)

~q ′ = ω′




sin θ
0

cos θ


 . (3.7)

The two polarization states of the real photon are described by the polarization
vectors

~ε ′
(
λ′ = ±1

)
=

1√
2



∓ cos θ
−i

± sin θ


 . (3.8)

The electron scattering plane and the reaction plane are rotated by the azimuthal
angle φ. The three-momenta of the electrons in the reaction plane are given by

~k = ωi




sin α cos φ
sin α sin φ

cos α


 , (3.9)
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~k′ = ωf




sin α′ cos φ
sin α′ sin φ

cos α′


 , (3.10)

where the electron scattering angle is given by the difference of α′ and α, i.e.

θe = α′ − α.

Finally, for later use, we define the polarization parameter of the virtual photon to
be

ε =
(ωi + ωf )

2 − q̄2

(ωi + ωf )2 + q̄2
. (3.11)

3.1.1 Differential cross section

Having set the kinematics we proceed with the differential cross section for the
photon electro-production process e p → e′ p′ γ,

dσ =
m2

N m2
e

2Efωfω′
1√(

pi · k
)2 −m2

Nm2
e

1(
2π

)5 |M| 2

× δ(4)
(
pi + k − pf − k′ − q2

)
d3p′ d3k′ d3q′, (3.12)

where the complete information on the dynamics of the process is encoded in the
invariant matrix element M. The bar indicates that the spin sum has been carried
out, this concerns the spin sums over the final proton and electron spins as well
as the real photon polarizations and the spin-averaging over the initial proton and
electron spins. Usually experiments detect the final electron in coincidence with the
final state proton1, the photon is then reconstructed via a cut on the missing mass
spectrum around q2

2 = 0. Moreover experimental cross sections are analyzed in the
laboratory frame. Performing suitable Lorentz transformations the differential cross
section for the unpolarized process then reads

dσlab

dωf,lab dΩe′,lab dΩp′,lab

=
1

4

m2
N m2

e(
2π

)5

ωf,lab

ωi,lab

s−m2
N

s
|M| 2. (3.13)

3.2 Definition of the VCS process

There are several contributions to the photon electro-production process, the VCS
process being one of them. The final real photon may not be emitted from the
proton but rather from the initial or final electron as depicted in the diagrams (b)
and (c) of Fig. 3.2. This subprocess represents the Bethe-Heitler process and can
be calculated using QED and the phenomenological form factors of the nucleon.

1The direct measurement of the photon polarization would require a secondary electromagnetic
reaction, thus further decreasing the counting rates.
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Figure 3.2: Feynman diagrams for the process e p → e′ p′ γ. Diagram (a) is the
genuine VCS process, (b) and (c) are the Bethe-Heitler diagrams.

The process we are interested in is depicted in diagram (a) of Fig. 3.2, which is
the genuine VCS process. This process contains new information on the nucleon
structure exclusively accessible in the VCS process. The invariant matrix elements
can be decomposed into the contributions from VCS and the Bethe-Heitler part,
M = MVCS +MBH, which leads to interference terms in the spin-averaged squared
matrix elements for the photon electro-production process

|M| 2 =
1

4

∑
j

(
MVCS +MBH

)(
MVCS,∗ +MBH,∗

)
, j = {si, sf , Si, Sf , λ

′}

= |MVCS| 2 + |MBH| 2 +MVCSMBH,∗ +MVCS,∗MBH. (3.14)

Separating the hadronic and leptonic parts the Lorentz-invariant matrix element for
the genuine VCS process γ∗p → γp′ reads2

MVCS =
e

q2
1

χ†fε
′∗
µ Hµνχi ū(k′, sf )γν u(k, si), (3.15)

= −ie2 χfε
′∗
µ Hµν aν χi = Mγ∗γ. (3.16)

The polarization vector aν is related to the electron current according to

aν =
(
0,~a

)
, ~a = ~εT +

q2
1

ω2
~ε · q̂ q̂ = ~εT +

q2
1

ω2
εz q̂,

εµ =
e

q2
1

ū(k′)γµu(k). (3.17)

Using current conservation the polarization vectors aµ and εµ are related through the
gauge transformation εµ → aµ = εµ + ζqµ

1 , with the particular choice ζ = −~ε · ~q/ω2.
Note that the polarization vector aν contains a longitudinal component. The Pauli
space parametrization of the hadronic part is given by [Hem+ 97b],

ε′∗µ Hµνaν = ie2
{
~ε ′∗ · ~εT A1 + ~ε ′∗ · q̂ ~εT · q̂ ′ A2

+ i~σ · (~ε ′∗ × ~εT

)
A3 + i~σ · (q̂ ′ × q̂

)
~ε ′∗ · ~εT A4

+ i~σ · (~ε ′∗ × q̂
)
~εT · q̂ ′ A5 + i~σ · (~ε ′∗ × q̂ ′

)
~εT · q̂′ A6

2In the following we suppress the spin index of the Dirac and Pauli spinors.



28 Virtual Compton scattering

− i~σ · (~εT × q̂ ′
)
~ε ′∗ · q̂ A7 − i~σ · (~εT × q̂

)
~ε ′∗ · q̂ A8

+
q2
1

ω2
εz

[
~ε ′∗ · q̂ A9 + i~σ · (q̂ × q̂ ′

)
~ε ′∗ · q̂ A10

+ i~σ · (~ε ′∗ × q̂
)
A11 + i~σ · (~ε ′∗ × q̂ ′

)
A12

]}
. (3.18)

χi and χf denote the two-component Pauli spinors of the incoming and outgo-
ing nucleon, respectively, and σi are the Pauli matrices. The advantage of this
parametrization over the one in Ref. [GLT 95] is that in the real Compton scatter-
ing limit simple relations between the Ai arise from time-reversal invariance.

The parametrization in Eq. (3.18) is a generalization of the parametrization for
the real Compton scattering case in Ref. [BKM 95]. All amplitudes Ai are functions
of three independent kinematical variables. Furthermore the amplitudes A1 to A8

are purely transverse, whereas A9 to A12 are purely longitudinal. Therefore, in the
real Compton scattering (RCS) limit (q2

1 = 0) the amplitudes A9 to A12 do not
contribute and time-reversal invariance gives rise to the constraints

A7 = A5, (3.19)

A8 = A6, (3.20)

resulting in six independent structures for the RCS case.
Since we are interested in the calculation of the hadronic part we split the squared

matrix element of VCS into a leptonic and a hadronic tensor

|MVCS|2 =
1

4

∑
j

MVCSMVCS,∗, j = {si, sf , Si, Sf , λ
′} (3.21)

=
e6

4 (q2
1)

2
lVCS
µν W µν , (3.22)

where the leptonic tensor lµν

lVCS
µν =

∑
si,sf

ū(k′) γµ u(k) ū(k) γν u(k′), (3.23)

is well-known (see e.g. [DT 92]), while the hadronic tensor W µν

W µν =
1

e4

∑

Si,Sf ,λ′
χ†f ε′∗ρ Hρµχi χ

†
i ε′λH

†,λν χf , (3.24)

is specific for VCS.
The matrix element for the Bethe-Heitler process can be calculated using QED

and electromagnetic nucleon form factors,

MBH = i
e3

t
ε′∗,µLµν ū(pf )Γ

ν(pf , pi)u(pi), (3.25)

where the leptonic part Lµν reads

Lµν = ū(k′)
(
γµ 1

/k′ + /q1
−me + i0+

γν + γν 1

/k − /q2
−me + i0+

γµ
)
u(k), (3.26)
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and the photon-nucleon vertex function Γν(pf , pi) is given by

Γν(pf , pi) = F1

(
q2

)
γν +

iκ

2mN

F2

(
q2

)
σνρqρ, with q = pf − pi. (3.27)

F1 and F2 denote the Dirac and Pauli form factors respectively and κ is the nucleon
magnetic moment3. For a calculation of the BH part see for example [GV 98].

3.2.1 Low-energy theorems

Using fundamental symmetries, such as Lorentz and gauge invariance as well as
crossing symmetry, low energy theorems (LET) have been derived for Compton
scattering. For RCS Thirring [Thi 50] showed that the scattering amplitude to
leading order in the photon energy is solely described by the charge and the mass of
the target, which corresponds to the well-known Thomson limit in classical electro-
dynamics. Subsequently Low [Low 54] and Gell-Mann and Goldberger [GMG 54]
analyzed Compton scattering on spin-1

2
particles, and derived a relation between

the term linear in the photon energy and the magnetic moments of the spin-1
2

par-
ticle. Generalizations of the LETs for the VCS case have been considered in Ref.
[GLT 95, SKK 96]. In the derivation of LETs for VCS one decomposes the VCS am-
plitude into a nucleon pole part4, or Born part Hµν

B , and the residual, or non-Born,
amplitude Hµν

R ,

Hµν = Hµν
B + Hµν

R . (3.28)

The separation is such that Hµν
B contains all nucleon pole terms in the s- and u-

channel, whereas the residual part contains all terms regular in the limit qµ
2 → 0.

The Born part is illustrated in Fig. 3.3, where the hatched blobs stand for the
photon-nucleon vertex function in Eq. (3.27),

Hµν
B = − e2

4π
ū(pf )

[
Γν(pf , pi + q1)

/pi
+ /q1

+ mN

s−m2
N

Γµ(pi + q1, pi)

+ Γµ(pf , pi − q2)
/pi
− /q2

+ mN

u−m2
N

Γν(pi − q2, pi)
]
u(pi). (3.29)

The LET for VCS essentially states that, to next-to-leading order in the photon
energy, i.e. up to and including linear terms, the VCS amplitude is completely fixed
by the Born part. Thus no information beyond the electromagnetic form factors and
static properties of the nucleon enter in the VCS process. New information on the
nucleon structure can only be extracted from the non-Born part of the VCS process.
Of course the decomposition of Eq. (3.28) is not unique, however in [SKK 96] it has
been shown that using the vertex function of Eq. (3.27) ensures that the Born and
non-Born part are separately gauge invariant. As we are interested in contributions
to VCS beyond the LET we concentrate on the calculation of the non-Born part in
this work. Nevertheless in a theory obeying the above symmetries the LET has to
be fulfilled.

3Note that any parametrization of the photon-nucleon vertex function which is on-shell equiv-
alent, e.g. Sachs form factors, leads to the same result for the BH process.

4In the literature the nucleon pole part is often referred to as the Born part of the amplitude.
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Figure 3.3: Contributions from intermediate nucleon pole diagrams.

In the following we focus on the residual part of the amplitude. For reasons of
convenience we work in the four component Dirac space, where the invariant VCS
amplitude reads

Mγ∗γ = −ie2 ū(pf )εµ Mµν
R ε′∗ν u(pi), (3.30)

= χ†fε
′∗
µ Hµν

R ενχi. (3.31)

It is always desirable to work with a set of amplitudes which only depend on the
dynamics of the system with the kinematics being factored out. For VCS the con-
struction of such a set of amplitudes, especially one which is free of kinematical
singularities, is by no means a trivial task. The first construction of a pole free
tensor basis was given by Tarrach [Tar 75]. For the VCS process we use the set of
invariant amplitudes constructed in [Dre+ 98],

Mµν
R =

12∑
i=1

ρµν
i fi(q

2
1, q1 · q2, q1 · P ), (3.32)

where P = pf + pi and the tensor basis ρµν
i is defined in Eq. (B.2) in Appendix B.

It is convenient to introduce the kinematical variable ν,

ν =
s− u

4mN

, (3.33)

which changes sign under photon-crossing (s ↔ u). In the following we choose the
amplitudes fi to depend on the three independent kinematical variables t, Q2 and
ν. The relation to the four-momenta in Eq. (3.32) reads

q2
1 = −Q2,

q1 · q2 = −1

2

(
t + Q2

)
,

q1 · P = 2 mN ν, (3.34)

where we have used the definitions in Eq. (3.2) and q2
2 = 0 for the real photon.

The particular choice of the ρµν
i is such that for the real photon point Q2 = 0 the

corresponding amplitudes are either even or odd with respect to crossing,

fi (0, ν, t) = + fi (0,−ν, t) , (i = 1, 2, 6, 11),

fi (0, ν, t) = − fi (0,−ν, t) , (i = 4, 7, 9, 10). (3.35)
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The remaining amplitudes f3, f5, f8, f12 do not contribute, because the correspond-
ing tensors vanish in this limit. Using nucleon crossing combined with charge con-
jugation, one arrives at constraints on the amplitudes for arbitrary virtuality Q2,

fi

(
Q2, ν, t

)
= + fi

(
Q2,−ν, t

)
, (i = 1, 2, 5, 6, 7, 9, 11, 12),

fi

(
Q2, ν, t

)
= − fi

(
Q2,−ν, t

)
, (i = 3, 4, 8, 10). (3.36)

From Eqs. (3.35) and (3.36) it follows that f7 and f9 vanish at the real photon
point. In the calculations of VCS using dispersion relations, it is convenient to work
with 12 amplitudes Fi that are all even in ν. Keeping in mind that the non-Born
amplitudes are regular functions in the limit ν → 0 one can define the Fi as

Fi(Q
2, ν, t) = fi(Q

2, ν, t), (i = 1, 2, 5, 6, 7, 9, 11, 12),

Fi(Q
2, ν, t) =

1

ν
fi(Q

2, ν, t), (i = 3, 4, 8, 10).
(3.37)

3.3 Generalized polarizabilities

So far we have established the general structure of the VCS tensor in Eq. (3.32)
in terms of invariant amplitudes fi. In the next step we look at the low-energy
representation of the VCS process. As was shown in Ref. [GLT 95] the general
VCS amplitude expanded to terms linear in the energy of the outgoing photon ω′,
can be described using so-called generalized polarizabilities. The term generalized
polarizability originates from the analysis of real Compton scattering, where the
contributions beyond the LET can be parameterized in terms of 6 independent
structure functions, which, in a classical theory, correspond to induced magnetic
and electric dipole moments [Rag 93, Rag 94]. Among these polarizabilities two are
spin-independent and allow for an interpretation as the deformation of the nucleon
charge distribution and magnetization under the influence of an incident photon.
They are called electric (α) and magnetic (β) polarizabilities. We first elaborate on
the structure functions of VCS and then address the limit to the RCS case.

In order to illuminate notations and the definition of the generalized polarizabili-
ties (GP) we recall the construction of the multipoles [GLT 95]. We start by writing
the partial wave decomposition of the regular part of the hadronic tensor

Hµν
R (~q m, ~q ′ m′) =

N
∑

L,M,L′,M ′

3∑

ρ,ρ′=0

gρ′ρ′ V
ν(ρ′ L′ M ′, q̂ ′)Hρ′ L′M ′,ρ L M

R (q̄ m, ω′ m′)gρρ V µ ∗(ρL M, q̂),

(3.38)

where m (m′) are the projection of the incoming (outgoing) nucleon spin on the
z-axis, L (L′) is the angular momentum of the initial (final) photon and the index ρ
(ρ′) indicates the type of multipole (ρ = 0 scalar, ρ = 1 magnetic, ρ = 2 electric, and
ρ = 3 longitudinal). The basis vectors V µ are functions of the spherical harmonics
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YLM , satisfying the relations

∑
L,M

3∑
ρ=0

gρρV
µ(ρL M, k̂) V ν ∗(ρL M, k̂′) = gµνδ(k̂ − k̂′), (3.39)

∫
dk̂V µ ∗(ρL M, k̂) Vµ(ρ′ L′ M ′, k̂ = gρρ′δLL′δMM ′ . (3.40)

We choose the basis to be [GLT 95]

V µ(0LM, k̂) =
(
YLM(k̂),~0

)
, (3.41)

V µ(1LM, k̂) =
(
0, ~MLM(k̂)

)
, (3.42)

V µ(2LM, k̂) =
(
0, ~ELM(k̂)

)
, (3.43)

V µ(3LM, k̂) =
(
0, ~LLM(k̂)

)
, (3.44)

where the magnetic ( ~M), electric (~E) and longitudinal ( ~L) vectors are defined by

~MLM(k̂) = ~YL
LM(k̂), (3.45)

~ELM(k̂) =

√
L + 1

2L + 1
~YL−1

LM (k̂) +

√
L

2L + 1
~YL+1

LM (k̂), (3.46)

~LLM(k̂) =

√
L

2L + 1
~YL−1

LM (k̂)−
√

L + 1

2L + 1
~YL+1

LM (k̂), (3.47)

using the definition

~Y l
LM(k̂) =

∑

λ,µ

〈lλ, 1µ|LM〉Ylλ(k̂)ê(µ), µ = 0,±1, (3.48)

and ê(µ) denotes the helicity eigenstate of a photon with momentum k. For symme-
try reasons the outgoing photon is at first not assumed to be real, i.e ρ′ runs from
0 to 3. Using Eq. (3.40) one can write the multipoles as

Hρ′ L′M ′,ρ L M
R (q̄ m, ω′ m′) =

1

N
∫

dq̂

∫
dq̂ ′ Vµ(ρLM, q̂)Hµν

R (~qm, ~q ′m′)V ∗
ν (ρ′L′M ′, q̂′).

(3.49)

Utilizing current conservation, i.e. qµH
µν
R = 0, constraints arise between multipoles

with ρ, ρ′ = 0, 3

Hρ′L′M ′,3LM
R (q̄m, ω′,m′) = −ω

q̄
Hρ′L′M ′,0LM

R (q̄m, ω′,m′), (3.50)

H3L′M ′,ρLM
R (q̄m, ω′,m′) = −H0L′M ′,ρLM

R (q̄m, ω′,m′), (3.51)

therefore one can eliminate ρ′, ρ = 3 in favor of ρ, ρ′ = 05. Through an appropriate
redefinition of the basis vectors

W µ(ρLM, q̂) = V µ(ρLM, q̂), (ρ = 1, 2) (3.52)

5This amounts to replacing the longitudinal multipoles with the corresponding charge or scalar
multipoles.
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W µ(0LM, q̂) = V µ(0LM, q̂) +
ω

q̄
V µ(3LM, q̂), (3.53)

the multipoles can be defined with ρ (ρ′) running from 0 to 2. Using the Wigner-
Eckart theorem the dependence of the multipoles on magnetic quantum numbers of
the photons and nucleons can be expressed via Clebsch-Gordan coefficients and we
define the reduced multipoles as

H
(ρ′L′,ρL)S
R (q̄, ω) =
∑

m,m′,M,M ′
(−1)

1
2
+m′+L+M〈1

2
−m′,

m

2
|Ss〉〈L′M ′, L−M |Ss〉Hρ′L′M ′,ρLM

R (q̄m, ω′m′),

(3.54)

where the spins of the nucleons have been combined to the total spin S and any of
the projections s can be taken. In the nomenclature of the reduced multipoles ρ (ρ′)
characterizes the incoming (outgoing) photon, ρ = 0 scalar or charge type, ρ = 1
magnetic type, ρ = 2 electric type, whereas L (L′) denotes the angular momentum of
the incoming (outgoing) photon. We furthermore distinguish multipoles with S = 0
(scalar multipoles) describing a transition without spin-flip of the nucleons, and
S = 1 (vector multipoles) describing a spin-flip transition. The reduced multipoles
are subject to selection rules

S = 0, 1, |L′ − s| ≤ L ≤ L′ + S, (−1)ρ′+L′ = (−1)ρ+L (ρ, ρ′ = 0, 1, 2),

stemming from parity and angular momentum conservation.
We are interested in the low-energy behavior of the reduced multipoles, i.e.

(q̄, ω′) → (0, 0). If the outgoing photon is real the case of electric transitions (ρ′ = 2)
can be related to charge multipoles (ρ′ = 0) using Siegert’s theorem [Sie 37]. How-
ever, the incoming photon is virtual and the electric multipole cannot be replaced
with the charge multipoles anymore. In [GLT 95] so-called mixed multipoles Ĥµν

R

were introduced, which are no longer characterized by a well-defined multipole type
but have the desired low-energy behavior. The definition of the GPs in terms of
reduced and mixed multipoles read

P (ρ′L′,ρL)S(q̄) =
[ 1

ω′L′ q̄L
HR(ρ′L′, ρL)S(q̄, ω′)

]
ω′=0

, (ρ, ρ′ = 0, 1) (3.55)

P̂ (ρ′L′,L)S(q̄) =
[ 1

ω′L′ q̄L+1
ĤR(ρ′L′, L)S(q̄, ω′)

]
ω′=0

, (ρ′ = 0, 1). (3.56)

The expansion of the reduced multipoles to leading order in ω′, can be parameterized
using the above GPs,

H
(1L′,ρL)S
R (q̄, ω′) = ω′L

′
q̄LP (1L′,ρL)S(q̄) +O(

ω′L
′+1

)
, (3.57)

H
(2L′,ρL)S
R (q̄, ω′) = −ω′L

′
q̄L

√
L′ + 1

L′
P (0L′,ρL)S(q̄) +O(

ω′L
′+1

)
, (3.58)

H
(1L′,2L)S
R (q̄, ω′) = −ω′L

′
q̄L

[√L + 1

L

ω0

q̄
P (1L′,0L)S(q̄) +

√
2L + 1

L
q̄P̂ (1L′,L)S(q̄)

]
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+O(
ω′L

′+1
)
, (3.59)

H
(2L′,2L)S
R (q̄, ω′) = ω′L

′
q̄L

√
L′ + 1

L′

[√L + 1

L

ω0

q̄
P (0L′,0L)S(q̄) +

√
2L + 1

L
q̄P̂ (0L′,L)S(q̄)

]

+O(
ω′L

′+1
)
, (3.60)

where

ω0 = mN − Ei.

Since the VCS amplitudes are expanded to terms linear in ω′ the final state only al-
lows for electric and magnetic dipole transitions (L′ = 1). Taking the selection rules
into account, we are left with 10 independent multipoles and thus 10 GPs as well,
where 3 are of scalar (spin-independent) and 7 of vector type (spin-dependent).
An indication that not all of the GPs are independent was first seen in an ex-
plicit calculation in the linear sigma model [MD 96], where a relation between the
scalar polarizabilities was found. In [Dre+ 97] this relation was derived in a model-
independent way employing charge conjugation and nucleon crossing, and later in
[Dre+ 98] the analysis was extended to the spin-dependent GPs leading to three
additional relations. The relations read

0 =

√
3

2
P (01,01)0(q̄2) +

√
3

8
P (11,11)0(q̄2) +

3q̄2

2ω0

P̂ (01,1)0(q̄2) , (3.61)

0 = P (11,11)1(q̄2) +

√
3

2
ω0P

(11,02)1(q̄2) +

√
5

2
q̄2P̂ (11,2)1(q̄2) , (3.62)

0 = 2ω0P
(01,01)1(q̄2) + 2

q̄2

ω0

P (11,11)1(q̄2)−
√

2q̄2P (01,12)1(q̄2)

+
√

6q̄2P̂ (01,1)1(q̄2) , (3.63)

0 = 3
q̄2

ω0

P (01,01)1(q̄2)−
√

3P (11,00)1(q̄2)−
√

3

2
q̄2P (11,02)1(q̄2) . (3.64)

Thus, assuming charge conjugation and nucleon crossing symmetry, one can describe
the residual part of the VCS tensor using 6 instead of 10 independent generalized
polarizabilities. Two of the scalar polarizabilities are generalizations of the electric
and magnetic polarizabilities of RCS,

α(q̄2) = − e2

4π

√
3

2
P (01,01)0(q̄2), β(q̄2) = − e2

4π

√
3

8
P (11,11)0(q̄2), (3.65)

thus one conveniently eliminates P̂ (01,1)0 using Eq. (3.61). For the spin-dependent
GPs, however, it is not obvious which are preferable.

The leading-order terms in ω′ of the amplitudes Ai defined in Eq. (3.18) read

A1 = ω′
√

Ei

mN

[
−

√
3

2
ω0P

(01,01)0(q̄2)− 3

2
q̄2P̂ (01,1)0(q̄2)−

√
3

8
q̄ cos θP (11,11)0(q̄2)

]

+O(ω′2) ,



3.3 Generalized polarizabilities 35

A2 = ω′
√

Ei

mN

[√
3

8
q̄P (11,11)0(q̄2)

]
+O(ω′2) ,

A3 = ω′
√

Ei

mN

3

4

[
−2ω0P

(01,01)1(q̄2) +
√

2q̄2
[
P (01,12)1(q̄2)−

√
3P̂ (01,1)1(q̄2)

]

+
(
−q̄P (11,11)1(q̄2) +

√
3

2
ω0q̄P

(11,02)1(q̄2) +

√
5

2
q̄3P̂ (11,2)1(q̄2)

)
cos θ

]

+O(ω′2) ,

A4 = ω′
√

Ei

mN

3

4

[
−q̄P (11,11)1(q̄2)−

√
3

2
ω0q̄P

(11,02)1(q̄2)−
√

5

2
q̄3P̂ (11,2)1(q̄2)

]

+O(ω′2) ,

A5 = −A4 ,

A6 = O(ω′2) ,

A7 = ω′
√

Ei

mN

3

4

[
q̄P (11,11)1(q̄2)−

√
3

2
ω0q̄P

(11,02)1(q̄2)−
√

5

2
q̄3P̂ (11,2)1(q̄2)

]
+O(ω′2) ,

A8 = ω′
√

Ei

mN

[
− 3√

2
q̄2P (01,12)1(q̄2)

]
+O(ω′2) ,

A9 = ω′
√

Ei

mN

[
−ω0

√
3

2
P (01,01)0(q̄2)

]
+O(ω′2) ,

A10 = ω′
√

Ei

mN

[
−3
√

3

2
√

2
ω0q̄P

(11,02)1(q̄2)

]
+O(ω′2) ,

A11 = ω′
√

Ei

mN

[
−3

2
ω0P

(01,01)1(q̄2) +
3
√

3

2
√

2
ω0q̄ cos θP (11,02)1(q̄2)

]
+O(ω′2) ,

A12 = ω′
√

Ei

mN

[√
3ω0

2q̄

[
P (11,00)1(q̄2)−

√
2q̄2P (11,02)1(q̄2)

]]
+O(ω′2) .

Since we extract the fi of Eq. (3.32) in our calculation, we need to establish the
connection between the GPs and the fi. Evaluating Eq. (3.32) in the center of mass
frame one can get another low-energy expansion of the Ai [Dre+ 98]. Subsequently
using the relations arising from charge conjugation and nucleon crossing symmetry
the GPs can be expressed as functions of the fi, and the explicit expressions read

P (01,01)0(q̄2) =

√
2

3

√
Ei + mN

2Ei

[
f1(q̄

2)− 2mN
q̄2

ω0

f2(q̄
2)

]
= −4π

e2

√
2

3
α(q̄2),

P (11,11)0(q̄2) = −
√

8

3

√
Ei + mN

2Ei

f1(q̄
2) = −4π

e2

√
8

3
β(q̄2),

P̂ (01,1)0(q̄2) =
4

3
mN

√
Ei + mN

2Ei

f2(q̄
2),

P (01,12)1(q̄2) =

√
2

3

√
Ei + mN

2Ei

mNω0

q̄2

[
8mNf6(q̄

2) + f7(q̄
2) + 4mNf9(q̄

2)
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+ 4f11(q̄
2)− ω0f12(q̄

2)
]
,

P (11,02)1(q̄2) =
2
√

2

3
√

3

√
Ei + mN

2Ei

[ ω2
0

2q̄2
f5(q̄

2) +
1

2
f7(q̄

2) + 2f11(q̄
2) +

mNω2
0

q̄2
f12(q̄

2)
]
,

P (01,01)1(q̄2) =
1

3

√
Ei + mN

2Ei

ω0

[
f5(q̄

2) + f7(q̄
2) + 4f11(q̄

2) + 4mNf12(q̄
2)

]
,

P (11,00)1(q̄2) =
2

3
√

3

√
Ei + mN

2Ei

[(
ω2

0 − 3mNω0

)
f5(q̄

2) + q̄2f7(q̄
2)

+ 4q̄2f11(q̄
2) +

(
3mN q̄2 − 6m2

Nω0 + 2mNω2
0

)
f12(q̄

2)
]
,

P (11,11)1(q̄2) = −2

3

√
Ei + mN

2Ei

mNω2
0

q̄2

[
f5(q̄

2) + ω0f12(q̄
2)

]
,

P̂ (11,2)1(q̄2) = −2
√

2

3
√

5

ω0

q̄2

[( ω2
0

2q̄2
− mNω0

q̄2

)
f5(q̄

2) +
1

2
f7(q̄

2) + 2f11(q̄
2)

]
,

P̂ (01,1)1(q̄2) =
1

3
√

6

√
Ei + mN

2Ei

ω0

q̄2

[(
4mN − 2ω0

)
f5(q̄

2) + 16m2
Nf6(q̄

2)+

2
(
mN − ω0

)
f7(q̄

2) + 8m2
Nf9(q̄

2) + 8
(
mN − ω0

)
f11(q̄

2)

− 6mNω0f12(q̄
2)

]
. (3.66)

In the above equations, due to the expansion in ω′, the invariant amplitudes are
functions of the three-momentum of the incoming photon, i.e. fi(q̄

2) ≡ fi|ω′=0=
fi(2mNω0, 0, 0). In terms of the kinematical invariants introduced in Eq. (3.34) this
corresponds to ν → 0 and t → −Q2.

3.3.1 Observables

In general the GPs are only accessible in polarization experiments, with the excep-
tion of α(q̄2). For unpolarized experiments the extraction of four linear combinations
of GPs was suggested in [GLT 95], which, using the abbreviation Q2

0 = −2mNω0,
are given by

PLL(q̄) = −2
√

6mNGE(Q2
0)P

(01,01)0(q̄2) , (3.67)

PTT (q̄) =
3

2
GM(Q2

0)
[
2ω0P

(01,01)1(q̄2) +
√

2q̄2
(
P (01,12)1(q̄2) +

√
3P̂ (01,1)1(q̄2)

)]
,

(3.68)

PLT (q̄) =

√
3

2

mN q̄√
Q2

0

GE(Q2
0)P

(11,11)0(q̄2)

+

√
3
√

Q2
0

2q̄
GM(Q2

0)
(
P (11,00)1(q̄2) +

q̄2

√
2
P (11,02)1(q̄2)

)
, (3.69)

P ′
LT (q̄) =

√
3

2

mN√
Q2

0

GE(Q2
0)

(
2ω0P

(01,01)0(q̄2) +
√

6q̄2P̂ (01,1)0(q̄2)
)
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− 3

2

√
Q2

0GM(Q2
0)P

(01,01)1(q̄2) , (3.70)

with GE(Q2
0) and GM(Q2

0) denoting the electric and magnetic Sachs form factors
respectively. In [Dre+ 98] it was shown that P ′

LT and PLT satisfy the relation

PLT (q̄) +
q̄

ω0

P ′
LT (q̄) = 0 . (3.71)

The conclusion is that for an unpolarized experiments 3 structure functions are
extractable, which are parameterized by 5 generalized polarizabilities.

The RCS limit corresponds to Q2 → 0. The relations between the fi and the
polarizabilities of RCS by Ragusa [Rag 94] read

α(0) =
e2

4π

(−f1,0 − 4m2
Nf2,0

)
, (3.72)

β(0) =
e2

4π
f1,0, (3.73)

γ1 =
e2

4π

(−8m2
Nf4,1 − 4mNf10,1 − 4f11,0

)
, (3.74)

γ2 =
e2

4π
4mNf10,1, (3.75)

γ3 =
e2

4π

(
4mNf6,0 + 2f11,0

)
, (3.76)

γ4 = − e2

4π

(
4mNf10,1 + 2f11,0

)
. (3.77)

The subscript denotes differentiation with respect to ν, i.e.

fi,a =
∂a

∂νa
fi(Q

2, ν)|ν=0, (3.78)

or equivalently using Eq. (3.37)

fi,0 = F̄i(Q
2) (i = 1, 2, 5, 6, 7, 9, 11, 12), (3.79)

fi,1 = F̄i(Q
2) (i = 3, 4, 8, 10), (3.80)

where

F̄i(Q
2) = Fi(Q

2, ν = 0, t = −Q2). (3.81)

In [Bab+ 98] linear combinations of the spin-dependent polarizabilities have
been defined, which allow for a straightforward physical interpretation in terms
of the interaction of the nucleon with an external electromagnetic field. For the
spin-dependent transitions four parameters are needed, which describe the electric
and magnetic dipole transitions (γE1E1 and γM1M1) and dipole-quadrupole transi-
tions (γM1E2 and γE1M2) respectively. The relations between the polarizabilities of
[Rag 94] and [Bab+ 98] read

γE1E1 = −γ1 − γ3, (3.82)
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γ Nγ N

(a) (b)

Figure 3.4: Illustration of the helicity cross section. Double arrows denote the the
spin projection. The helicity 3/2 (a) and helicity 1/2 (b) transitions are depicted.

γM1M1 = γ4, (3.83)

γE2M1 = γ2 + γ4, (3.84)

γM2E1 = γ3. (3.85)

Moreover in the forward (backward) kinematics, the RCS amplitudes only depend
on the sum (difference) of α and β and the forward spin polarizability γ0 (backward
spin polarizability γπ). The forward and backward spin polarizability are defined as

γ0 = γ1 − γ2 + 2γ4 = −γE1E1 − γM1M1 − γM1E2 − γE1M2, (3.86)

γπ = γ1 + γ2 + 2γ4 = −γE1E1 + γM1M1 + γM1E2 − γE1M2. (3.87)

The RCS amplitude for forward scattering (θ = 0, q̂ = q̂ ′) is particularly inter-
esting, because it allows for the investigation of sum rules. As mentioned above the
RCS amplitude depends on two structure functions

T (ν, θ = 0) = ~ε ′∗ · ~ε f(ν) + i~σ · (~ε ′∗ × ~ε
)
g(ν). (3.88)

The expansion of the structure functions f and g reads

f(ν) = − e2

4π

e2
N

mN

+
(
α + β)ν2 +O(ν4), (3.89)

g(ν) = − e2

4π

κ2
N

2m2
N

ν + γ0ν
3 +O(ν5). (3.90)

The first term on the right hand side of Eq. (3.89) is the well-known Thomson limit,
whereas the sum of the electric and magnetic polarizability is related to the total
photo absorption cross section via the Baldin sum rule [Bal 60]

α + β =
1

2π2

∞∫

ν0

dν ′
σγN→X(ν ′)

ν ′2
. (3.91)

For the structure function g(ν) the first term involves the anomalous magnetic mo-
ment of the nucleon and can be related to the weighted integral over the difference
of the helicity cross sections (see Fig. 3.4) according to the Gerasimov-Drell-Hearn
sum rule [Ger 66, DH 66]

− e2

4π

κ2
N

2m2
N

=

∞∫

ν0

dν ′
σ3/2(ν

′)− σ1/2(ν
′)

ν ′
. (3.92)
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The forward spin polarizability γ0 fulfills the corresponding sum rule [GMG 54,
GMGT 54]

γ0 = − 1

4π2

∞∫

ν0

dν ′
σ3/2(ν

′)− σ1/2(ν
′)

ν ′3
. (3.93)

Finally in [L’v+ 01] the generalized scalar polarizabilities were introduced. They
are defined in a fully covariant framework as opposed to the multipole decomposi-
tion of [GLT 95]. In order to fully recover the induced electric polarization it is
mandatory to include, in addition to the longitudinal polarizability αL, the trans-
verse electric polarizability αT . This in turn affects the local response of the nucleon
to an external electromagnetic field, i.e. the polarizability has to be treated as tensor
rather than a scalar quantity. More specifically, if the nucleon is exposed to a static
and uniform electric field ~E, the polarizability can be written as

Pi(~r) = 4παij(~r) Ej. (3.94)

The generalized scalar polarizabilities in terms of our invariant amplitudes are de-
fined as

αL(Q2) = − e2

4π

√
1− Q2

4m2
N

[
F̄1 + (4m2

N −Q2)F̄2 −Q2(2F̄6 + F̄9 − F̄12)
]
, (3.95)

αT (q2
1) = αL(Q2) +

e2

4π
Q2

√
1− Q2

4m2
N

[
4m2

N −Q2

2mN

F̄3 − 2F̄6 − F̄9

+
1

mN

F̄10 + F̄12

]
. (3.96)

In particular, if the longitudinal and transverse polarizability are equal, the polariza-
tion of the nucleon points in the direction of the external electric field. In this case
the longitudinal polarizability suffices to fully describe the induced polarization.
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Technical details

In this chapter we present technical details of our calculation. This concerns in par-
ticular the computer aided calculation of Feynman diagrams. More specifically we
give an account of the existing programs used in this work and further elaborate on
self-written programs as well as the adjustments of the existing programs necessary
for calculations in BχPT. It is worth noting that using the reformulated version of
the infrared regularization scheme allows us to use most of the programs developed
in the high-energy physics community, especially concerning the numerical evalua-
tion of the one-loop integrals, e.g. LoopTools [Hah 01]. This is a major advantage
of the relativistic calculation over heavy-baryon chiral perturbation theory.

With the growing complexity of perturbative calculations, foremost in high-
energy physics, a lot of improvements and new developments in the automatiza-
tion of several common tasks have emerged in recent years. There is a large va-
riety of programs specialized on certain aspects of Feynman diagram evaluations,
e.g. FeynArts, FormCalc, FeynCalc, LoopTools [Hah 01, HPV 99, MBD 91] or the
FF library [OV 90]. Some projects aim at providing a complete environment for
the calculation of Feynman diagrams, e.g. GiNaC/Xloops [BFK 00, BD 02] or Di-
ana/aITALC [TF 00, LR 06]. For the algebraic part most programs use modern
computer algebra systems (CAS), such as Mathematica, Maple or FORM [Ver 00].
The numerical part of the calculation is usually carried out using either C or FOR-
TRAN. Deciding which programs are best suited depends on the problem at hand
as well as personal taste. A full account of the strengths and weaknesses of the
various programs is beyond the scope of this work. Therefore we merely state our
preferences concerning the calculations in this work. As we are most familiar with
Mathematica and FORM, we choose programs based on these CAS over other sys-
tems. Whenever the loss in performance is not too large, we chose convenience
over efficiency. Moreover, in an attempt to keep the calculations as transparent as
possible, we prefer algorithms which emulate calculations performed by hand over
computer optimized algorithms. Even though we did not intend to provide a gen-
eral purpose system for calculations in BχPT, most of the programs have been kept
as general as possible. Since we use existing C-code for the calculation of physical
observables from our invariant amplitudes, we choose C for numerical evaluation of
the amplitudes. The C-code for the numerical calculation of Compton scattering
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observables (CSO) was developed by Barbara Pasquini [Pas 05].

We split the calculation into three distinct parts. The first part is concerned
with the generation of the diagrams contributing to the given process. In the second
part algebraic simplifications are performed, e.g. Dirac or isospin algebra. Finally
the numerical evaluation is carried out, e.g. calculation of cross sections. In the
following we give an account of the implementations of these three steps. We will
mostly concentrate on the problems arising in the calculation of one-loop diagrams.

4.1 Diagram generation

The generation of diagrams is based on the Lagrangian, providing the complete
dynamics of the theory. One starts out by deriving all possible Feynman rules,
which may contribute to a given process. Because the number of possible interaction
terms quickly grows with the chiral order, already this step is rather cumbersome in
BχPT. The Lagrangian of Ref. [Fet+ 00] contains 7 terms at order O(q2), 23 terms
at order O(q3) and 118 terms at order O(q4). Furthermore, given the nonlinear
representation of the pions, each order contains all interactions with any number
of pions. Therefore, in order to obtain the Feynman rules, one has to expand the
Lagrangian of each order to the sought-after number of pions. Only a limited number
of all possible terms at each order is actually necessary to derive all Feynman rules
needed in this work. The necessary Feynman rules are given in Appendix A. We
have checked the manually derived Feynman rules with expressions obtained using
the Phi package by Frederik Orellana. Phi is an extension to the FeynCalc package,
supporting the expansion of Lagrangians in terms of pion fields.

Using these rules one has to draw all possible diagrams contributing to the given
process. The complexity of this task grows with an increasing number of particles in
the initial and final state and, for BχPT, with the chiral order one is interested in.
The one-loop calculation of the nucleon self-energy to order O(q4) requires the calcu-
lation of two diagrams, whereas for VCS we need to calculate 100 one-loop diagrams.
Given the relatively large number of diagrams the use of a computer based diagram
generator is highly desirable. Of course the available diagram generators were not
developed for χPT calculations, but rather for calculations within the Standard
Model where up to several thousands of diagrams contribute to a given process. In
fact our demands on the diagram generator differ from the Standard Model. Since
we are working with an effective field theory (EFT) we need non-renormalizable
vertices, i.e. vertices with more than 4 adjacent lines. Moreover, we need vertices
with the same number of adjacent lines but different chiral order. The list of avail-
able general purpose diagram generators matching our needs is rather short. There
are two packages we are aware of, the Fortran program QGRAF [Nog 93] and the
Mathematica package FeynArts [Hah 01]. They substantially differ in design and
functionality. Both require model files, defining the theory, as input from the user.
QGRAF is certainly more efficient in producing symbolical expressions for a large
number of diagrams, thus for large scale calculations QGRAF seems to be a better
choice. However since we are more familiar with Mathematica and the possibility
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2 → 2

T1 T2 T3 T4

Figure 4.1: Topologies for a 2 → 2 scattering process at tree order.

of interactive usage as well as graphical output we choose FeynArts over QGRAF.
FeynArts allows for non-renormalizable vertices, but there is no built-in support for
topologically identical vertices of different chiral order. Consequently we developed
Mathematica code implementing the desired feature. In the following we give a
short introduction to FeynArts and give details of our modifications.

Specifying the number of external particles, the loop order and the type of ver-
tices, i.e. the number of adjacent lines, FeynArts generates the possible topologies.
The graphical output for a scattering process is shown in Fig. 4.1. It is possible to
discard subsets of topologies, e.g. topologies contributing to wave function correc-
tions. In the next step the lines are attributed with particle fields from a user defined
model as depicted in Fig. 4.2. The model has to be provided in two separate files,
one for the generic structure of particles, propagators and vertices, and one defining
the types of particles and couplings specific for the model. The generic model con-
tains only general information on the structure of the particles. More specifically,
one defines the Lorentz and isospin structure of the propagators and vertices, e.g.
one can define a generic vector field having isospin and Lorentz indices. The model
file in turn specifies the actual particle content and particle attributes, as well as the
possible vertices among the defined particles, e.g. a charged massive vector particle

γ e → γ e

T1 P1 N1

γ

e

γ

ee

T2 P1 N2

γ

e

γ

e

e

Figure 4.2: Insertion of fields in the topologies of Fig. 4.1 using the predefined QED
model of FeynArts. Note that after insertions of fields only two topologies from Fig.
4.1 are left over.
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interacting with a nucleon. For more details of the basic techniques and usage of
FeynArts we refer to [Hah 01, KBD 90].

Even though FeynArts does not support vertices of the same topological type
but different chiral orders from the outset, it has a built-in system for the generation
of counter term diagrams. We exploit this feature to set up a modified version of
FeynArts suitable for our calculations in BχPT. In fact, the only modification to
the FeynArts source code concerns the graphical representation of the counter term
diagrams in Mathematica and postscript files. All other modifications are separate
extensions of FeynArts with self-written Mathematica code or appropriately adapted
model files.

Without resorting to details of the inner working of FeynArts we briefly outline
our approach. Instead of counter term vertices we define the various vertices of
BχPT, where the chiral order corresponds to the counter term order. We generate
the diagrams of the process in the standard way, which, in its Mathematica rep-
resentation, is a list of the vertices and propagators making up each diagram. We
first analyze the propagators for each diagram and assign a preliminary chiral order
to each diagram. The user has to provide the maximum chiral order and the loop
number. Based on these numbers and the preliminary chiral order of the diagram, a
list of possible counter term (CT) vertices1 resulting in diagrams with a chiral order
smaller or equal to the maximum chiral order is generated. Finally, for each element
in the list of possible CT vertices a separate diagram is generated. The graphical
output is shown in Fig. 4.3. More importantly we also get symbolic expressions for
all diagrams to a given process, in particular FeynArts also generates the correct
symmetry factors. We have checked that the symbolic expressions generated by Fey-
nArts agree with manually defined expressions based on the graphics output only,
however, in our calculation we use the latter expressions, as the distribution of the
momenta turns out to be more convenient. All diagrams relevant for our calculation
are displayed in Appendix F.

4.2 Calculation of invariant amplitudes

As FeynArts generates the diagrams in Mathematica form it is most convenient to
use Mathematica based packages, e.g. FeynCalc [MBD 91] or FormCalc [HPV 99],
for the algebraic simplifications. In the early stages of this work we used the Feyn-
Calc package in combination with self-written extensions, most of which were also
used for the calculation of pion electro-production performed at the same time in
our group [Leh 07]. Unfortunately Mathematica has severe limitations concerning
the complexity of algebraic expressions it can handle. This limitation shows up
only for the more complicated diagrams, in particular the box diagrams are subject
to problems in the size of intermediate expressions. To overcome this limitation
we implemented a procedure, in which formally higher-order terms are discarded,
thus considerably reducing the size of the problem. More specifically, one discards

1Note that we use the counter term vertices in FeynArts as placeholders for the vertices of the
BχPT lagrangian of corresponding chiral order. We do not generate counter term diagrams.
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Figure 4.3: Graphical output of the modified FeynArts version for the topologies in
Fig. 4.1 to chiral order O(q3).

higher-rank tensor integrals by virtue of rescaling the loop momenta and retaining
only contributions to a specific chiral order. Even with this simplification the cal-
culation of some diagrams is still very slow, it takes typically one hour for the most
complicated diagrams. Let us stress that from a conceptual point of view this proce-
dure is completely consistent, as we only drop terms which are beyond the accuracy
of our calculation. Moreover, if the perturbative series converges reasonably well,
the size of the dropped terms should be small. However the above procedure has
the drawback that constraints on the amplitudes stemming from symmetries, e.g.
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crossing symmetry, are not exact anymore, i.e. the constraints or relations among
the amplitudes are only valid up to terms of higher order. The FormCalc package
addresses some of the issues related to calculational limitations of Mathematica. In
fact FormCalc is aimed at combining the advantages of Mathematica concerning
user friendliness and large amount of predefined functions with the computational
speed of FORM. However FormCalc is not best suited for our purposes, as the pri-
mary goal of FormCalc is to calculate squared matrix elements within the Standard
Model. Nevertheless we adopted FormCalc’s philosophy and wrote a Mathematica
program serving as an interface between Mathematica and FORM, letting FORM
handle the cumbersome algebraic simplifications. This approach enabled us to cal-
culate the full amplitudes without discarding any terms, thus the amplitudes exactly
fulfill all restrictions coming from symmetry relations.

Mathematica interface

FORM is a computer algebra system tailor-made for quantum field theoretical cal-
culations involving very large expressions. For most of the tasks needed in our
calculation, FORM is significantly faster than Mathematica. This is mostly due to
the rather restrictive and limited set of possible manipulations and built-in func-
tions. On the other hand Mathematica is, because of its interactive use and the
large amount of predefined functions, much more user-friendly than FORM. We
combine the advantages of both systems in a hybrid approach using Mathematica
and FORM, where the communication between both is realized via text files. The
flow of the calculation is controlled by Mathematica.

Mathematica has several built-in functions for the generation and manipulation
of text files. Moreover one can start external programs from within Mathematica.
We use both properties to set up an interface between FORM and Mathematica.
Note that some parts of this interface are not specific to the calculations in this
work and thus can be used in a more general context. The first obstacle in setting
up such an interface is the difference in semantics between FORM and Mathemat-
ica. In FORM all variables have to be declared in a preamble first, followed by a
local expression representing the actual input, thereafter commands are put defining
the actions of the FORM program. We developed a Mathematica package which,
starting from an expression in Mathematica syntax, generates the preamble and the
local expression in FORM syntax. For common functions, such as the metric tensor
and Dirac and Pauli matrices, we have to specify the notations. It is convenient
to use the notations defined in the FeynCalc package. This ensures compatibility
with older programs based on this package. The FORM instructions for a calcula-
tional task are encapsulated in FORM procedures, which will be described below.
For a given task the corresponding FORM procedure is appended to the preamble
and local expression, and subsequently written to a file with the suffix frm. Next
we invoke the FORM binary with the Mathematica-generated file as input. The
FORM program performs all calculations defined in the FORM procedures and fi-
nally generates a file which in turn is read back into Mathematica. All of the above,
especially the execution of the FORM binary, is running from within Mathematica,
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using only built-in functions2.

The FORM program

In the following we describe the calculational steps implemented in various self-
written FORM procedures. Since the programming paradigm in FORM is very
different from Mathematica, the Mathematica versions of the procedures serve as
useful checks on the FORM result.

In a first step we separate the isospin algebra elements from the Dirac algebra
elements. The resulting expression can be generically written as

D ∼ ū(pf )γi1 γi2 . . . γirγα1 . . . γαn u(pi) pα1
1 . . . pαn

n︸ ︷︷ ︸
spinor chain

· τa1τa2 . . . τaN︸ ︷︷ ︸
isospin

, (4.1)

where τi and γα are the Pauli and Dirac matrices respectively. We start the cal-
culation by performing the isospin algebra. To that end we repeatedly apply the
relation

τaτ b = δab + iεabcτ c, (4.2)

until at most one Pauli matrix is left over.
In the next step the spinor chain is simplified. First all pairs of momenta in the

spinor chain are eliminated3, e.g.

ū(pf )/pγµγν/pu(pi). (4.3)

Using the relation

{
γµ, γν

}
= 2 gµν , (4.4)

we commute the utmost right momentum to the left until we can use the identity

/p · /p = p2. In the next step we use (4.4) to shift pf (pi) to the left (right) until the
Dirac equation

ū(pf )/pf
= ū(pf )mN , (4.5)

/pi
u(pi) = mN u(pi), (4.6)

is applicable. Subsequently we order the spinor chain, starting with the uncontracted
indices µ and ν followed by the loop momentum /k, and the photon momenta /q1
and /q2

. In principle the ordering has to be supplied by the user with the above
ordering being the default. The procedure for the isospin algebra is only called in
the beginning, whereas the procedure for the Dirac algebra is applied to several
intermediate expressions.

2Note that FormCalc uses a C-program to rewrite the syntax.
3Note that our expressions never contain a pair of identical indices, thus no explicit dependence

on the dimension D occurs. Nevertheless we implemented all procedures acting on Dirac matrices
in D dimensions.
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The next procedures implement the identification and simplification of one-loop
integrals. It gathers all denominators containing the user-defined loop momentum
k into one single function

1

k2 −m2
1

1

(k + p1)2 −m2
2

. . . = I
({k, m1}, {k + p1,m2}, . . .

)
. (4.7)

Thereafter all terms proportional to powers of k2 are reduced, using the identity

D ∼
∫

dDk

(2π)D
A(k, pi) · k2I

({k, m1}, {k + p1,m2}, . . .
)

=

∫
dDk

(2π)D
A(k, pi) · k2

[k2 −m2
1][(k + p1)2 −m2

2] + . . .
,

=

∫
dDk

(2π)D
A(k, pi) · (k2 −m2

1) + m2
1

[k2 −m2
1][(k + p1)2 −m2

2] + . . .
,

=

∫
dDk

(2π)D
A(k, pi) ·

{ 1

[(k + p1)2 −m2
2] + . . .

+
m2

1

[k2 −m2
1][(k + p1)2 −m2

2] + . . .

}
,

=

∫
dDk

(2π)D
A(k − p1, pi) · I

({k, m2}, . . .
)

+

∫
dDk

(2π)D
A(k, pi) ·m2

1 I
({k,m1}, {k + p1, m2}, . . .

)
,

where in the last line the substitution k → k − p1 has been made in the first
term4. At this stage the use of the infrared regularization scheme already manifests
itself. All loop integrals containing only nucleon masses are discarded, as their
contributions can be compensated by appropriate redefinitions of the various low-
energy constants. Let us take a look at the above reduction of an integral containing
only one denominator with a pion mass, e.g. a self-energy type diagram

I1 =

∫
dDk

(2π)D

k2

[k2 −M2
π ][(k + p1)2 −m2

N ]
, (4.8)

=

∫
dDk

(2π)D

1

[(k + p1)2 −m2
N ]

+

∫
dDk

(2π)D

M2
π

[k2 −M2
π ][(k + p1)2 −m2

N ]
, (4.9)

=
»»»»»»»»»»»∫

dDk

(2π)D

1

[k2 −m2
N ]

+

∫
dDk

(2π)D

M2
π

[k2 −M2
π ][(k + p1)2 −m2

N ]
, (4.10)

=

∫
dDk

(2π)D

M2
π

[k2 −M2
π ][(k + p1)2 −m2

N ]
. (4.11)

One has to keep in mind that in the reduction of integrals, one drops all contributions
coming from integrals containing only nucleon masses. For terms proportional to
k · pi and /k we split the scalar product5, i.e.

k · pi = pβ1

i kβ1 , /k = γα1kα1 .

4Note that the expressions contain an integral over k which is translational invariant.
5Note that after the Dirac algebra is performed at most /k can occur within spinor chains.
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We are left with products of the denominators containing k, abbreviated with I(. . . ),
and uncontracted loop momenta. We collect the indices of the loop momenta and
the I(. . . ) in the functions Ĩ, e.g.

D ∼ i

∫
dDk

(2π)D
k · p1 k · p2 kµ kν

1

[k2 −m2
1][(k + p1)2 −m2

2] . . .

= pβ1

1 pβ2

2 · Ĩ({k, m1}, {k + p1,m2}, . . . ; {β1, β2, µ, ν}).

After applying this procedure all terms containing the loop momentum k are cast
into the functions Ĩ. Thus at this step the diagrams can be written as

D = (i1 + i2τ
3) · F(q1, q2, pi, pf )

α1...αn · Ĩ({k,m1}, . . . ; {α1, . . . , αn}), (4.12)

where i1 and i2 are real numbers, and the function F is independent of k. The
decomposition of the tensorial integrals Ĩ is done using the LoopTools notation.
LoopTools supplies the coefficients of the Passarino-Veltman (PV) decomposition6

of the one-loop tensorial integrals [PV 79]. The basic definitions for the LoopTools
functions are given in Appendix C.1.2. One basically replaces the tensor integrals
with the most general parametrization using metric tensors and combinations of the
external four-momenta running in the loop, e.g.

Ĩ
({k,m1}, {k + p1,m2}; {α, β}) = − 1

16π2

[
gαβB00

(
p2

1,m
2
1,m

2
2

)
+ pα

1pβ
1B11

(
p2

1,m
2
1,m

2
2

)]
.

(4.13)

The tensor coefficients can be either calculated numerically via the LoopTools li-
brary or analytically reduced to scalar integrals. In [DD 06] a compact recursion
formula for the PV decomposed tensor coefficients was given, which is best suited
for an implementation in a Mathematica program. The explicit reduction to scalar
integrals for the above example reads

B00(p
2
1,m

2
1,m

2
2) =

1

6

(
2B0

(
p2

1,m
2
1,m

2
2

)
m2

1 + m2
1 + m2

2 −
p2

1

3
+ A0

(
m2

2

)

− (m2
1 −m2

2 + p2
1)

2p2
1

[−A0

(
m2

1

)
+ A0

(
m2

2

)

+ B0

(
p2

1,m
2
1,m

2
2

) (
m2

1 −m2
2 + p2

1

)])
, (4.14)

B11(p
2
1,m

2
1,m

2
2) =

1

18p4
1

((
p2

1 − 3
(
m2

1 + m2
2

))
p2

1 − 6A0

(
m2

1

) (
m2

1 −m2
2 + p2

1

)

+ 6B0

(
p2

1, m
2
1, m

2
2

) (
(p2

1)
2 +

(
m2

1 − 2m2
2

)
p2

1 +
(
m2

1 −m2
2

)2
)

+ 6A0

(
m2

2

) (
m2

1 −m2
2 + 2p2

1

))
. (4.15)

The explicit expressions for the tensor coefficients quickly grow in size for higher-
rank tensors. Therefore, and for reasons we will discuss later, it is convenient to keep

6Note that the PV decomposition is not carried out explicitly.
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the tensor coefficients in the LoopTools notation. At this stage we have arrived at
expressions for the diagrams, where the complete dependence on the loop momenta
is encoded in scalar tensor coefficients. Moreover the expressions have only two
uncontracted indices, namely µ and ν.

The next procedure concerns the chiral order of individual terms, in order to
determine the subtraction terms needed for the reformulated version of IR. To that
end all scalar products of pi, pf , q1 and q2 are replaced using the three Mandelstam
invariants ν, t, Q2 and the nucleon mass. The Mandelstam variables have been
defined in Eq. (3.2) and the relations to the scalar products read

pi · pi = p2
i = m2

N , pf · pf = p2
f = m2

N , (4.16)

q1 · q1 = q2
1 = −Q2, q2 · q2 = q2

2 = 0, (4.17)

pi · pf = −1

2
t + m2

N , q1 · q2 = −1

2

(
t + Q2

)
, (4.18)

q1 · pi =
1

2

(
s + Q2 −m2

N

)
, q1 · pf = −1

2

(
u + Q2 −m2

N

)
, (4.19)

q2 · pi = −1

2

(
u−m2

N

)
, q2 · pf =

1

2

(
s−m2

N

)
(4.20)

ν =
s− u

4mN

, s + t + u = 2m2
N −Q2. (4.21)

We rescale the Mandelstam variables according to their respective chiral orders

ν 7→ ℵ ν, t 7→ ℵ2 t, Q2 7→ ℵ2Q2,

where ℵ denotes a small quantity. Furthermore we rescale the momenta of the
incoming and outgoing photons, qµ

1 7→ ℵ qµ
1 and qµ

2 7→ ℵ qµ
2 , as well as the pion mass

M2
π 7→ ℵ2M2

π and the propagators

1

p2
j −M2

π

7→ 1

ℵ2

1

p2
j −M2

π

,
1

p2
j −m2

N

7→ 1

ℵ
1

p2
j −m2

N

, (4.22)

where pj is some linear combination of the external momenta, independent of the
loop momentum k. In this way each term multiplying a tensor coefficient is assigned
a chiral order N , according to which we determine the subtraction terms for the
individual tensor coefficients7. Let us illustrate this procedure by a typical example.
Suppose a diagram has been reduced to the following form

Dµν =
e2 τ 3

64π2F 2
π

Q2

(pi − q1)2 −m2
N

ū(pf )γ
µ u(pi) qν

2 ·B11(Q
2, M2

π ,m2
N)

+
e2

32π2F 2
π

1

(pi − q1)2 −m2
N

ū(pf )γ
ν u(pi) qµ

1 ·B00(Q
2,M2

π ,m2
N). (4.23)

Rescaling this expression according to the above prescription we get

Dµν =
e2 τ 3

64π2F 2
π

(
Q2 · ℵ2

)
(
(pi − q1)2 −m2

N) · ℵ ū(pf )γ
µ u(pi)

(ℵ · qν
2

) ·B11(Q
2,M2

π ,m2
N)

7Note that only the coefficients of the one-loop integrals are rescaled, since we are interested in
the determination of the chiral order of the subtraction terms for these integrals.
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+
e2

32π2F 2
π

1(
(pi − q1)2 −m2

N

) · ℵ ū(pf )γ
ν u(pi)

(ℵ · qµ
1

) ·B00(Q
2,M2

π ,m2
N),

=
e2 τ 3

64π2F 2
π

Q2

(pi − q1)2 −m2
N

ū(pf )γ
µ u(pi) qν

2 · ℵ(2−1+1) ·B11(Q
2,M2

π ,m2
N)

+
e2

32π2F 2
π

1

(pi − q1)2 −m2
N

ū(pf )γ
ν u(pi) qµ

1 · ℵ(−1+1) ·B00(Q
2,M2

π ,m2
N).

(4.24)

We see that in Eq. (4.24) the factors multiplying the tensor coefficients have chiral
order 2 and 0 for the first and second terms respectively. Since we are interested
in a calculation of VCS to fourth order in BχPT using the reformulated IR, all
contributions analytic in the pion mass and small momenta with chiral order lower
or equal to four have to be subtracted. Let us stress that in the calculation of matrix
elements the polarization vectors of the incoming and outgoing photon, which we
treat as small quantities, have to be taken into account. Thus the expression in
Eq. (4.24) will eventually be multiplied with the polarization vectors, increasing the
chiral order of all terms by 2. Therefore if we neglect the polarization vectors we
need to subtract all analytic contributions up to and including terms of chiral order
2. Consequently, if the chiral order of the prefactor of a tensor coefficient is denoted
by N , we need to calculate the subtraction terms of the tensor coefficient to order
2−N . For our example we get

Dµν
1 =

e2 τ 3

64π2F 2
π

Q2

(pi − q1)2 −m2
N

ū(pf )γ
µ u(pi) qν

2 · ℵ(2) ·B11(Q
2, M2

π ,m2
N)

+
e2

32π2F 2
π

1

(pi − q1)2 −m2
N

ū(pf )γ
ν u(pi) qµ

1 · ℵ(0) ·B00(Q
2,M2

π , m2
N),

=
e2 τ 3

64π2F 2
π

Q2

(pi − q1)2 −m2
N

ū(pf )γ
µ u(pi) qν

2 ·B(0)
11 (Q2,M2

π ,m2
N)

+
e2

32π2F 2
π

1

(pi − q1)2 −m2
N

ū(pf )γ
ν u(pi) qµ

1 ·B(2)
00 (Q2, M2

π ,m2
N), (4.25)

where the superscript in the tensor coefficients denotes the order to which the sub-
traction terms are needed. The calculation of the subtraction terms has been im-
plemented in a Mathematica program.

In the last step we identify the tensor structures K̃µν
i given in Eq. (B.5) in the

Appendix and store the results in Mathematica format.
The calculation of the 100 one-loop diagrams in FORM takes approximately 10

minutes on a Pentium 4 (4 GHz) with 2 GB RAM. All results are stored in one file,
which is roughly 33 MB large. This concludes the FORM part of the calculation.

Mathematica programs

All further manipulations are carried out in Mathematica. To that end the expres-
sions for all one-loop diagrams are read from the FORM generated file. As we want
to calculate the invariant amplitudes fi, we need to extract the coefficients of ρµν

i ,
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defined in Eq. (B.2), from the results of the diagrams. However, given the com-
plexity of the ρµν

i , a direct extraction from the FORM expressions is unfeasible. We

instead use the K̃µν
i , identified by the FORM program, to reconstruct the fi. To

that end we simply express the ρµν
i in terms of the K̃µν

i , and by comparing coeffi-

cients we arrive at relations between the coefficients of the K̃ and ρ structures. The
details of the extraction are given in Appendix B.

As pointed out in Section 3.2.1, we need to separate the amplitudes in Born
and non-Born parts. The Born part is calculated by performing an expansion of
the amplitudes in s (u) around s = m2

N (u = m2
N) keeping only terms up to and

including 1/(s − m2
N) (1/(u − m2

N)). By subtracting the Born part from the full
result one arrives at the non-Born part. The expressions for the full result and the
non-Born part are very lengthy, we therefore refrain from explicitly giving the results
in this work.

In principle, for the purpose of numerical evaluation of the invariant amplitudes,
we could stop here, since the LoopTools package offers the possibility for a numerical
calculation of the one-loop integrals in Mathematica. However since we have existing
C code for the calculation of all observables from the invariant amplitudes, we have
collected the results in a C program. The C program has been generated using
Mathematica. It consists of source files for each of the 12 invariant amplitudes
fi, containing the contributions from all loop diagrams in the form of an array of
complex numbers. The index of the array corresponds to a specific diagram, i.e.
one can take a look at the contributions of individual diagrams to the respective
invariant amplitude. Especially one can investigate classes of diagrams, for example
only contributions from diagrams at chiral order O(q3). Let us stress that the one-
loop integrals in the final expression are supposed to be the IR regulated integrals.
Therefore in the Mathematica program, which writes out the C code, the integrals
are replaced by subtracted integrals. The subtracted integrals have been calculated
using Mathematica. Details concerning the calculation of the subtraction terms are
given in Appendix D.

4.3 Derivatives of one-loop-functions

For the calculation of the generalized polarizabilities, defined in Eq. (3.66), we need
the invariant amplitudes8 F̄i(Q

2). In the extraction of the Fi for the full VCS process
one inevitably introduces a factor of 1/ν, even though the ρµν

i were constructed such
that the non-Born part is free of kinematical singularities. Since we construct the
non-Born part by subtracting the Born part from the full amplitudes, the singularity
for ν remains as an artefact. This is because our results for the non-Born part
are complicated functions of tensorial integrals for which the cancelation of the
singularity is not easily seen. Therefore we have to take special care of the limit
ν → 0 in our calculation. In order to get an explicit cancelation of the kinematical
singularity we have to reduce the tensorial integrals to scalar ones and subsequently
perform an expansion in ν around 0. In this expansion derivatives of scalar one-loop

8From now on we use the Fi defined in Eq. (3.37) instead of the fi.
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functions arise. In the following we briefly describe our procedure of obtaining the
correct limit for ν → 0.

First of all we have to reduce all tensorial integrals to scalar ones. To that end
we implemented the reduction of the tensorial integrals according to the Passarino-
Veltman (PV) scheme using the recursive formula given in [DD 06]. The Mathe-
matica program is capable of reducing integrals in the PV scheme up to rank 7,
even though the highest tensor rank in our calculation is four. Let us illustrate this
reduction by two examples

B1(−1

2
x, M2

π ,m2
N) = − 1

2x

[
2
(
A0(M

2
π)− A0(m

2
N)

)

+ (t + Q2 + 4mNν − 2M2
π)B0(−1

2
x,M2

π ,m2
N)

]
,

(4.26)

where

x = (t + Q2 + 4mNν − 2m2
N),

C0012(−Q2, t, 0,M2
π ,M2

π ,M2
π) =

1

288
(
t + Q2

)2

[
(t + Q2)(48M2

π + t + 7Q2)

+ 72(t + Q2)M4
π C0(−Q2, t, 0,M2

π ,M2
π ,M2

π)

+ 6(t2 + 2t(M2
π + Q2)− 8Q2M2

π)B0(t, M
2
π , M2

π)

+ 6Q2(10M2
π + Q2)B0(−Q2,M2

π ,M2
π)

− 12(t + Q2)A0(M
2
π)

]
. (4.27)

The last example illustrates a problem concerning the PV reduction. In the limit
t → −Q2 the right hand side of Eq. (4.27) is singular, which indicates the breakdown
of this reduction scheme for special kinematics. The failure of the PV scheme can
be traced back to the vanishing of the so-called Gram determinant. We will elab-
orate on how to handle this problem in detail in the next section. In fact through
the reduction of tensorial integrals we get additional negative powers of ν, further
aggravating the situation.

After reduction of all tensor integrals to scalar ones we perform an expansion
in ν around 0. The coefficient of ν0 contains scalar integrals as well as derivatives
of scalar integrals. In the calculation of the derivatives we adopted the techniques
presented in [DS 98], where the derivatives of the 2- and 3- point integrals have been
calculated. The crucial observation is that any derivative of a scalar n-point one-
loop integral can be expressed as a function of the integral itself and mass derivatives
of (n-1)-point integrals. The details of the derivation are given in Appendix C.2,
where the derivatives of 4-point functions are also calculated. We have implemented
the formulas in a Mathematica program, which is used recursively for higher-order
derivatives. In our calculation the maximum number of derivatives for the 2-point
function (B’s) was 6, for the 3-point functions (C’s) 7 and for the 4-point functions
(D’s) we needed up to 5 derivatives. Let us stress that we have explicitly (analyti-
cally) checked that all amplitudes Fi are regular in the limit t → −Q2 and ν → 0,
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i.e. all terms proportional to negative powers of ν vanish exactly. It is worth noting
that the final result comprises of scalar 1-, 2- and 3-point functions only. This is
due to the fact that the Gram determinants of all 4-point functions are proportional
to ν, thus in the limit ν → 0 these functions reduce to simpler ones.

4.4 Exceptional kinematics

We have seen that, for some cases, the calculation of tensorial integrals is involved.
Especially in the calculation of the Born part tensor integrals arise for which the
PV reduction scheme fails. Let us stress that the singularities one encounters are
due to the reduction scheme, and not properties of the tensor coefficients. The
PV scheme is plagued by the occurrence of inverse Gram determinants. These
determinants depend only on the external momenta running in the loop, thus it is
possible to have a kinematical situation in which the determinant exactly vanishes,
leading to a singular behavior for the tensor coefficients. In the following we refer to
the kinematics for which the Gram determinant vanishes as exceptional kinematics.
For most calculations the problem of vanishing Gram determinants usually shows
up only at a few points in phase space, e.g. the extreme forward limit in 2 → 2
processes, and in most cases these contributions may be neglected. However in our
calculation the problem persists for a large region in phase space.

Several strategies have been developed to cope with the problem of reducing ten-
sorial integrals for exceptional kinematics. One can distinguish between approaches
based on a fully numerical calculation of tensor coefficients, e.g, [Fer+ 03], and ana-
lytical calculations employing different reduction schemes for exceptional kinematics
[Dav 91, DD 06, DS 98]. Also admixtures of both approaches are being used. Since
we are interested in analytical expressions we follow the analytical approach of Ref.
[DD 06].

Let us briefly describe the approach by Denner and Dittmaier. For the case of a
non-vanishing Gram determinant the conventional Passarino-Veltman reduction is
used. If the Gram determinants are very small the case for 1- and 2-point integrals
is handled differently from the case for 3- and 4-point functions. The 1- and 2-point
functions allow for an explicit numerically stable calculation. The 3- and 4-point
integrals on the other hand are reduced to 2- and 3-point functions respectively. In
[DD 06] several reduction schemes are proposed, depending on the explicit form of
the kinematics. Using the standard scalar integrals A0, B0, C0 and D0, the tensor
coefficients are iteratively deduced up to terms systematically suppressed by small
Gram determinants or by other kinematical determinants in specific kinematical
configurations. We have implemented the explicit formula for the iterative calcu-
lation of tensor coefficients given in Ref. [DD 06]. For our calculation it turns out
that only the so-called Gram expansion and the expansion in Gram and modified
Cayley determinants is necessary. Let us stress that we have implemented these
procedures in Mathematica as well as in C. Moreover we would like to emphasize
that, as a first step, only the reduction for exactly vanishing Gram determinants has
been implemented.
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The C program is written as an extension to the LoopTools package. A function
tests for each integral, i.e. tensor coefficient and scalar integrals, if the corresponding
Gram determinant ∆ is smaller than some user defined threshold parameter. If ∆ is
larger than the threshold parameter the function invokes the LoopTools package and
returns the corresponding result using the standard PV scheme. For the case of very
small ∆, separate routines are called, in which the algorithms of [DD 06] have been
implemented. Note that within these routines the LoopTools package is still used
for the calculation of the scalar integrals. Which routine is called depends on an
estimate of certain kinematical determinants, roughly determining the accuracy of
each routine. Thereafter the most promising routine calculates all tensor coefficients
corresponding to the kinematical configuration up to tensor rank 4. The results are
saved using the STL map container, serving as a lookup table. In this way all tensor
coefficients belonging to a specific kinematical configuration have to be calculated
only once and upon reuse can be read off the lookup table. This procedure enor-
mously speeds up the calculation, as the number of tensor coefficients is quite large
in our expressions. However there is still a small performance decrease with respect
to the calculation using LoopTools only, nevertheless all numerical calculations take
at the order of minutes. Even though the reduction for exceptional kinematics was
only implemented up to terms suppressed by one power of the Gram determinant
(or modified Cayley determinant), we found sufficient numerical stability for our
purposes. To that end we have varied the threshold parameter over the range of
10−4 − 10−6, where no significant changes to our results were observed, i.e. a few
percent for the integrals and even less for the observables.

Since the programming paradigm of Mathematica and C are completely differ-
ent, the Mathematica implementation serves as a useful check of the C program. To
that end we checked that the numerical limits of the tensor coefficients for certain
kinematical configurations using LoopTools agree with the results using the Mathe-
matica program9. More importantly the Mathematica implementation is used in the
calculation of the generalized polarizabilities, where derivatives of the tensor coeffi-
cients are needed. Note that the majority of one-loop integrals allow for a reduction
in the conventional PV scheme. We encounter vanishing Gram determinants fore-
most in the Born part of the amplitudes and for the kinematical limit t → −Q2 and
ν → 0. However we have also encountered numerical problems for the calculation
in the kinematics of the MAMI experiment. These instabilities were handled based
purely on the C program.

Let us illustrate the reduction for exceptional kinematics with the help of two ex-
amples. First let us take a look at the limit t → −Q2 for the tensor coefficient in Eq.
(4.27), which is a common example for the calculation of generalized polarizabilities.
The reduction in the limit of vanishing Gram determinant reads

C0012(−Q2,−Q2, 0,M2
π , M2

π ,M2
π) =

1

M2
π

(
4M2

π + Q2
)
[
−A0(M

2
π)

+ M2
π

(−1 + B0

(−Q2,M2
π ,M2

π

))]
. (4.28)

9Let us stress that checking all cases is practically impossible, so we restricted ourselves to
integrals at kinematical configurations of interest in our calculation.
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Another example emerging in the non-Born part reads

C0(m
2
N , 0,m2

N ,M2
π ,M2

π , m2
N) =

B0(m
2
N ,M2

π ,m2
N)−B0(m

2
N ,M2

π ,M2
π)

m2
N −M2

π

. (4.29)

From these two examples one can already see that, for vanishing Gram determi-
nant, the reduction gives simpler results. Let us stress that the implementation of
the reduction of tensor coefficients is crucial for obtaining analytic results for the
generalized polarizabilities.



Chapter 5

Results

In this chapter we present the results for virtual Compton scattering (VCS) to
fourth order in manifestly Lorentz-invariant baryon chiral perturbation theory. We
compare our results to the experiments and discuss some aspects of the convergence
of the series. At fourth order new unknown low-energy constants (LECs) enter in
the calculation. Restricting ourselves to the VCS case on the proton only two new
coupling constants appear. Below we present procedure for fitting the two unknown
LECs using experiments on real Compton scattering off the proton.

5.1 Fitting procedure

For the masses and coupling constant at leading order we use the following values
[Yao+ 06]

mN = 0.9383 GeV, Mπ = 0.1346 GeV, (5.1)

gA = 1.267, Fπ = 0.0924 GeV. (5.2)

Note that we use the neutral pion mass and the proton mass. All LECs from
the second- and third-order Lagrangians are known from fits to the nucleon form
factors or πn scattering. The invariant amplitudes F1 and F2 receive additional
contributions from 4 linear combinations of LECs at the fourth order

e±x = (2e90 + e94 + e117)± e92 , (5.3)

e±y = (2e89 + e93 + e118)± e91 . (5.4)

Restricting ourselves to VCS on the proton we are left with e+
x and e+

y . These
are specific to VCS and thus cannot be extracted from a fit to other observables.
However they contribute not only to VCS but also to RCS. More specifically the
unknown LECs are related to the static electric and magnetic polarizabilities α and
β. In order to find the best fit, we used three different methods to obtain the values
of e+

x and e+
y . Let us start by summarizing the values for the known LECs.
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5.1.1 Known low energy constants

An account of the available values for the coupling constants at second order, using
results for πN scattering [BM 00, FMS 98], was given in [Mei 06]. For c1 and c3 we
use the central values stated in [Mei 06], c2 and c4 are taken from [SGS 05], i.e.

c1 = −0.9 GeV−1, (5.5)

c2 = 2.66 GeV−1, (5.6)

c3 = −4.7 GeV−1, (5.7)

c4 = 2.45 GeV−1. (5.8)

In [Mei 06] it is argued that the fairly large values for c2,3 (c4) are mostly generated by
∆(1232) (ρ) exchange. The coupling constants c6 and c7 contribute to the magnetic
moments of the nucleon. Since the order four contributions to the magnetic moments
essentially amount to a quark mass renormalization, we choose to use the linear
combinations

c̃6 = c6 − 4 M2
π e106, (5.9)

c̃7 = c7 − 16 M2
π e105. (5.10)

Because the one-loop amplitudes for VCS start at order 3, the modifications from
using these linear combinations for the loop part start at order five. Thus the
difference is beyond the accuracy of our calculation and it is justified to use c̃6 and
c̃7 in the loop part as well. The LECs are fixed using the anomalous magnetic
moments of the nucleon κp/n

1. The relations read

c̃6 =
κv

4mN

, c̃7 =
κs

2mN

, (5.11)

where the isoscalar and isovector anomalous magnetic moment are defined as

κp =
1

2

(
κs + κv

)
= 1.793, κn =

1

2

(
κs − κv

)
= −1.913. (5.12)

Using the experimental values for the magnetic moments, the two LECs read

c̃6 = 0.987 GeV−1, (5.13)

c̃7 = −0.064 GeV−1. (5.14)

At third order two LECs contribute, namely d6 and d7. They are accompanied by
the fourth order LECs e54 and e74. These LECs may be fitted to the electromagnetic
radii of the nucleons. Here we use the values from [SGS 05]

d6 = 0.98 GeV−2, d7 = 0.24 GeV−2, (5.15)

e54 = −0.26 GeV−3, e74 = −0.9 GeV−3. (5.16)

1Note that this amounts to fixing the magnetic moments to the tree order calculation only.
Since in our calculation the anomalous magnetic moments contribute only in the one-loop part the
one-loop corrections for the anomalous magnetic moments may be discarded.
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Fit e+
x e+

y χ2 α β

I -4.52 1.50 (371.95/101)=3.68 12.17 1.65
II −4.61± 0.30 0.85± 0.12 (136.6/69)=2.37 15.83 1.77
III −4.85± 0.30 1.17± 0.09 (308.4/101)=3.05 14.75 -0.07

Table 5.1: Summary of the values for the LECs e+
x and e+

y as obtained from three

different fits. e+
x and e+

y are given in GeV−3, α and β are given in units of 10−4 fm3.

5.1.2 Unknown low energy constants

In the following we describe three different approaches to fitting the unknown LECs
e+

x and e+
y . All fits use data from RCS only.

Fit I

In the first fit we simply fix the LECs to the experimental values of α and β from
[Leo+ 01]2,

α = 12.17 × 10−4 fm3, β = 1.65× 10−4 fm3. (5.17)

This leads us to the following values for the fourth order LECs

e+
x = −4.52 GeV−3, e+

y = 1.50 GeV−3. (5.18)

The photon Energy dependence of the experimental data is completely neglected in
this fit.

Fit II

Next we use the fitting procedure proposed in Ref. [Bea+ 03], utilizing the fact that
the expansion used in our calculations works best in a certain domain. Here the
LECs are fitted to the experimental data on differential cross sections of RCS on
the proton well below pion threshold, i.e. Eγ,

√
|t| ≤ 0.18 GeV. To that end we use

the data from [Mac+ 95, Fed+ 91, Zie+ 92, Leo+ 01], which amounts to a total of
69 data points. We use the program package MINUIT from the CERNlib to fix the
LECs. The fitted values are

e+
x =

(−4.61± 0.30
)
GeV−3, e+

y =
(
0.85± 0.12

)
GeV−3. (5.19)

Fit III

In the last fit we drop the upper limit from the second fit, and fix the LECs using
the complete data set from [Mac+ 95, Fed+ 91, Zie+ 92, Leo+ 01] for RCS, which

2Note that the Baldin sum rule was used to constrain the fit in [Leo+ 01].
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Figure 5.1: Differential cross sections for RCS off the proton as function of the lab
photon energy Eγ and at different scattering angles. The full, dashed and dotted
lines correspond to fit I, II and III respectively. The vertical lines correspond to the
upper limit Eγ,

√
|t| ≤ 0.18 GeV. Data points are taken from [Mac+ 95, Fed+ 91,

Zie+ 92, Leo+ 01].

amounts to 101 data points. Performing again a least χ2 fit we obtain the following
values

e+
x =

(−4.85± 0.30
)
GeV−3, e+

y =
(
1.17± 0.09

)
GeV−3. (5.20)

Additionally we have fitted the experimental data using the constraint on the
sum of α and β coming from the Baldin sum rule, i.e. α+β = 13.82×10−4 fm3, and
utilizing a modified definition of χ2 accounting for normalization errors of different
data sets [Bar+ 01]. However, the so obtained values are compatible with the above
fits, therefore in the following we use the above values for the unknown LECs at
fourth order.

The fitted values for e+
x and e+

y are summarized in Table 5.1. We conclude that
a fairly good description of the differential cross sections for RCS on the proton can
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be obtained with rather natural coupling constants at fourth order. If we use the
nucleon mass as the natural scale of the problem the dimensionless couplings read

ẽ+
x ≈ −1.55, ẽ+

y ≈ 1.07 , (5.21)

where

e+
x,y =

(
ẽ+

x,y

mN

)3

. (5.22)

The results for the differential cross sections are shown in Fig.5.1.

5.2 Real Compton scattering

The results for RCS are obtained by performing the limit Q2 → 0 in the amplitudes
calculated for VCS. Therefore the comparison to previous calculations in HBχPT
and covariant BχPT serves as a strong check on our results. Let us stress that the
IR formulation of Becher and Leutwyler [BL 99] is constructed such that in the limit
of mN →∞ the HBχPT results are reproduced. This holds true in the reformulated
version of IR we are using.

The quantities of interest in RCS are the polarizabilities of the nucleon. In the
following we use the definitions of Babusci et al. [Bab+ 98]. Let us first collect the
results of HBχPT to fourth order for the spin-dependent polarizabilities [VKMB 00,
GHM 00].

γE1E1 =
αe g2

A

96π2F 2
πM2

π

[
−5 +

11πMπ

4mN

(
2 + τ 3

)]
, (5.23)

γM1M1 =
αe g2

A

96π2F 2
πM2

π

[
−1 +

πMπ

4mN

(
15 + 4κv + 4

(
1 + κs

)
τ 3

)]
, (5.24)

γE1M2 =
αe g2

A

96π2F 2
πM2

π

[
1− πMπ

4mN

(
6 + τ 3

)]
, (5.25)

γM1E2 =
αe g2

A

96π2F 2
πM2

π

[
1− πMπ

4mN

(
1 + 2κv − 2

(
1 + κs

)
τ 3

)]
, (5.26)

γ0 =
αe g2

A

24F 2
πM2

π

[
1− π Mπ

8mN

(
15 + 3κv +

(
6 + κs

)
τ 3

)]
. (5.27)

The scalar polarizabilities have been calculated in [Ber+ 93] and are given by

α =
αe

96π2F 2
πMπ

[
5πg2

A − 2Mπ

(
c̃ + 2c2 ln µ

)

+
g2

A Mπ

mN

(
27 + 8τ 3 + 12

(
2 + τ 3

)
ln µ

)]
+ δᾱ, (5.28)

β =
αe

96π2F 2
πMπ

[1

2

(
π g2

A − 4
(
2c2 − c̃ + 2c2 ln µ

))
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+
g2

A Mπ

mN

(
13 + 6

(
1 + κs

)
τ 3 + 12

(
2 +

(
1 + κs

)
τ 3

)
ln µ

)]
+ δβ̄, (5.29)

where

c̃ = 4c1 + c2 − 2c3, µ =
Mπ

mN

, αe =
e2

4π
, (5.30)

δᾱ and δβ̄ parameterize the contributions coming from the fourth-order Lagrangian.
Expanding our results, displayed in Appendix E, in m−1

N we exactly reproduce
the above expressions. This serves as a powerful check on the consistency of our
calculation. The forward spin-polarizability γ0 is also accessible in a calculation of
doubly virtual Compton scattering (VVCS) in the forward limit. This has been
carried out in covariant BχPT using the infrared renormalization scheme in Ref.
[BHM 03]. Results are explicitly given for the chiral expansion of γ0 for the proton
and neutron, which we have to compare to

γ0 =
e2 g2

A

96π3F 2
π M2

π

[
1− π µ

8

(
3
(
5 + κv

)
+

(
6 + κs

)
τ 3

)

− µ2

4

(
50 + 3κs + 15κv + 3

(
10 + 5κs + κv

)
τ 3

+
(
60 + 6κs + 22κv

)
+ 2

(
22 + 11κs + 3κv

)
ln µ

)

+
15π µ3

64

(
65 + 21κs + 32κv +

(
60 + 42κs + 17κv

)
τ 3

)
]
. (5.31)

Our result perfectly agrees with Ref. [BHM 03]. Since we use a different strategy
for the calculation of γ0 and additionally employ the reformulated IR scheme, the
above check is very non-trivial.

We have summarized the numerical values of the polarizabilities for RCS in Tab.
5.2. No unknown LECs enter in the leading order results, whereas at next-to-leading
order the two LECs of Eqs. (5.3) and (5.4) contribute to α and β. More precisely the
combination e+

x +2 e+
y enters in α while β only receives contribution proportional to

e+
y . Let us stress that the fitted LECs at fourth order are of rather natural size, thus

the inclusion of heavier degrees of freedom, e.g. ∆ (1232 MeV), is not mandatory
to describe the experimental data reasonably well. The values in our covariant
calculation substantially differ from the ones obtained in HBχPT3. In HBχPT the
expansion is performed in the ratio Mπ/mN , therefore we expect the corrections of
next-to-leading order to be suppressed by a factor of around 1/7. Clearly this is
not the case and the relatively large corrections are mostly due to large prefactors
spoiling the convergence of the series. One of the problems is the fairly large value
for the isovector anomalous magnetic moment κv ≈ 3.07. In this context it is worth
noting that the good description of α and β at leading order in HBχPT is a mere
coincidence. Our results also indicate large corrections at next-to-leading order,

3Note that our results correspond to the resummation of an infinite number of specific terms
in HBχPT.
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This work HBχPT DR
O(q3) O(q4) O(q3) O(q4) HDPV BGLMN

α 6.93 12.17∗ 13.6 − 11.0 11.9
β −1.93 1.65∗ 1.4 − 1.0 1.9

γE1E1 −3.22 −2.54 −5.7 −1.4 −4.3 −3.4
γM1M1 −0.23 −3.09 −1.1 3.3 2.9 2.7
γE1M2 0.65 0.76 1.1 0.2 −0.01 0.3
γM1E2 0.81 0.21 1.1 1.8 2.1 1.9

γ0 1.99 4.67 4.6 −3.9 −0.7 −1.5
γπ 3.16 −1.11 4.6 6.3 9.3 7.8

Table 5.2: Theoretical predicitons for the scalar and vector polarizabilities. The
HBχPT predictions are from [Hem+ 98, VKMB 00] and the fixed-t dispersion rela-
tion analysis are from [Hol+ 00] and [Bab+ 98]. The values marked with an asterisk
have been fitted. The scalar polarizabilities are in units of 10−4 fm3 and the vector
polarizabilities are given in units of 10−4 fm4.

however the absolute values of the corrections are smaller than in HBχPT, with the
exception of the backward spin-polarizability γπ. The comparison to the dispersive
analysis shows disagreement for all polarizabilities, not only for the absolute values
but in some cases also for the sign. This disparity indicates that there are large
contributions from effective degrees of freedom in the dispersive analysis, which
are not explicitly present in our calculation. The model input for the dispersive
analysis is the pion electro-production amplitudes from MAID 2007 [DKT 07], which
incorporates the most prominent nucleon excitations and resonances in the range of
1-2 GeV. Since we are only working with nucleons and pions all contributions from
resonances and excited states are buried in the LECs of our theory.

A conclusion on the convergence of covariant BχPT based on the numbers in Tab.
5.2 would be premature, since at next-to-leading order new LECs contribute, i.e.
e+

x , e+
y , c6 (κv) and c7 (κs). The magnitude of the next-to-leading order corrections

depends on the LECs, which cannot be fixed impeccably. Therefore it is not incon-
ceivable that for certain values of LECs the series converges. One can still observe
that the absolute size of the corrections is smaller in the covariant calculation.

5.3 Virtual Compton scattering

In this section we present the main results for VCS off the proton to fourth order in
BχPT, using the coupling constants from the previous section.
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Figure 5.2: Differential cross sections for the photo electro-production off the proton
as a function of the outgoing photon energy in the MIT-Bates kinematics. Descrip-
tion of the curves is the same as in Fig. 5.1. Data points are from [Bou+ 06].

5.3.1 Differential cross sections

Let us first take a look at the differential cross sections for different kinematics. This
allows us to estimate the range of applicability of our calculation. Note that in the
following we use our results for the VCS process and resort to phenomenological
form factors of the proton when calculating cross sections.

In Fig. 5.2 we show the results for the reaction ep → e′p′γ from the MIT-Bates
experiment [Bou+ 06]. We see that our calculation nicely describes the out-of-plane
measurements over the whole range of the outgoing photon energy. For in-plane
kinematics the agreement between theory and experiment is limited to moderate
values of the outgoing photon energy, i.e. q′ ≤ 80 MeV. The differential cross
sections are largely dominated by the Bethe-Heitler and Born parts, however we
expect the effect of the VCS process to be enhanced for the out-of-plane kinematics
at higher values of q′. It is interesting to note that for in-plane kinematics the
contributions from the VCS process are expected to be very small. As can be seen
in Fig. 5.2 this is not the case, indicating the limitations of our approach for the
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Figure 5.3: Differential cross section for the reaction ep → e′p′γ as a function of the
photon scattering angle θ in the MAMI kinematics specified in the plot. Again the
full, dashed and dotted lines correspond to fit I, II and III respectively. Data points
are from [Roc+ 00].

description of VCS4.

The experiments at the MAMI facility in Mainz are performed at a relatively
large photon virtuality of Q2 = 0.33 GeV2. Since we perform an expansion in
momenta over a characteristic scale Λ, e.g. Λ = 4πFπ or Λ = mN , at this value of
Q2 the applicability of BχPT is questionable at best. In Fig. 5.3 the differential
cross section for photon electro-production in the MAMI kinematics [Roc+ 00] is
shown. We reproduce the experiment only up to photon energies of about 45 MeV.
For larger q′ and scattering angles around −50◦, the theoretical predictions largely
overestimate the measured cross sections.

From the plots for the differential cross sections we can already see that the
description using BχPT will fail for larger values of q′ in the MAMI setup, whereas
in the MIT-Bates kinematics we can expect reasonable description of experiments
up to a photon lab energy of about 80 MeV.

4One should keep in mind that we use the fitted values from the RCS differential cross sections.
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Figure 5.4: The electric αE1(Q
2) (left panel) and magnetic βM1(Q

2) (right panel)
generalized polarizabilities. The full lines represents our result using the LECs ob-
tained in fit I, the dashed lines are results from HBχPT at order O(q3) [Hem+ 97a].

5.3.2 Generalized polarizabilities

We now give our results for the generalized polarizabilities defined in section 3.3.
First we give results for the Q2 dependence of the generalized scalar polarizabilities
α(Q2) and β(Q2).

Our results are shown in Fig. 5.4, together with predictions from HBχPT at
third order [Hem+ 97a]. In this plot we use the values for LECs as obtained by the
fit to the experimental values of the static electric and magnetic polarizabilities, i.e.
fit I. Thus the results match exactly the experimental points at Q2 = 0, however
the Q2 dependence can be viewed as a prediction. Clearly our results deviate from
the ones obtained in HBχPT. It should be noted that the leading order HBχPT
results receive large contributions at fourth order, thus the good agreement with
experiment seems to be accidental. In our opinion the MAMI point at Q2 = 0.33
GeV2 is most probably beyond the range of applicability of BχPT. We will comment
on the convergence of both series below. For now let us state that the Q2 dependence
of the scalar polarizabilities is in accordance with the MIT-Bates point.

Next we show the results for the spin-dependent polarizabilities. The results
in Fig. 5.5 show a comparison between a dispersive analysis, the HBχPT calcula-
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Figure 5.5: Results for the spin-dependent generalized polarizabilities. Full line is
the dispersive result using MAID 2007 as input [DPV 03]. Thick long-dashed and
thick dashed lines are our results at order O(q3) (leading order) and O(q4) (next-to-
leading order) respectively. Thin long-dashed and thin dashed lines are the results
of HBχPT at O(q3) (leading order) and O(q4) (next-to-leading order) respectively
[KV 02, KPV 04].

tion to fourth order and our results. One can see that the results in our covariant
calculation largely differ form the HBχPT and dispersion theoretical results. The
difference between the leading and next-to-leading order results is less pronounced
in our calculation compared to heavy baryon. We also see that the fourth order
contributions show a different trend for the GPs in the lower panel of Fig. 5.5, i.e.
P (01,12)1 and P (11,02)1. If one assumes the dispersive analysis to be a good approxi-
mation for the real world, one can conclude that neither HBχPT nor our calculation
successfully describe the Q2 dependence of the GPs. However the measurement of
the Q2 dependence of the GPs requires double polarization experiments and so far
there are no published data for a direct measurement of the GPs. Thus the picture
remains inconclusive as to which of the curves give the best description.

Contrary to the spin-dependent GPs the structure functions accessible in an
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Figure 5.6: Comparison between the unpolarized structure functions calculated by
dispersion relation (DR) [Pas+ 01] (left column), HBχPT at O(q3) (thin lines in
right column) [Hem+ 97b, Hem+ 00] and our results at order O(q4) (thick lines in
right column). Upper row: Result for PLL−PTT /ε with ε = 0.62 (solid lines) and ε =
0.9 (dashed-dotted lines) compared to the results for αE1 only and ε = 0.62 (dashed
lines). The DR results for ε = 0.62 and ε = 0.9 are obtained with Λα = 1.79 GeV and
Λα = 0.7 GeV, respectively. Lower row: Results for PLT (solid line) compared to the
results for βM1 only (dashed line). The data are from [Leo+ 01, Bou+ 06, Roc+ 00].

unpolarized experiment have been measured. In Fig. 5.6 we show a comparison
between the results obtained from a dispersive analysis [Pas+ 01], HBχPT to O(q3)
[Hem+ 97b, Hem+ 00] and our results. The structure functions are linear combi-
nations of the GPs defined in Eqs. (3.68 - 3.70). In order to make the effects of
the spin-dependent polarizabilities explicit, we plot the spin-independent (dashed
lines) part together with the full result (solid lines). In the dispersive approach the
Q2 dependence of the electric (αE1) and magnetic (βM1) dipole polarizabilities have
been parameterized using a dipole ansatz, i.e.

αE1(Q
2) =

αE1(0)(
1 + Q2/Λ2

α

)2 . (5.32)
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Figure 5.7: PTT as a function of Q2 as obtained by DR (solid line) [Pas+ 00],
HBχPT at leading (thin dashed line), next-to-leading order (thin short-dashed line)
[Hem+ 97b, KV 02] and our calculation at leading order (thick dashed line) and
next-to-leading order (thick short-dashed line).

The effect of the spin-dependent GPs increases with larger values of Q2 in all models,
however the effect is very pronounced in the HBχPT calculations. In accordance
with the results obtained in DR, our calculation is less sensitive to contributions from
the spin-dependent GPs. As expected we again fail to describe the experimental
point for MAMI kinematics. In Fig. 5.7 the situation is shown for PTT , which
only depends on the spin-dependent GPs. At fourth order in BχPT this quantity is
purely fixed by gA and the anomalous magnetic moments κN , thus our calculations
are pure predictions of the theory. One observes that PTT receives large contributions
at next-to-leading order in HBχPT, and largely deviates from the DR result. Our
result on the other hand supports the DR analysis for Q2 ≤ 0.1 GeV2. Moreover
the convergence of PTT is improved in our covariant calculation. The large next-to-
leading order effects cast serious doubt on the convergence of the HBχPT calculation
for the spin-dependent polarizabilities. Since PLL is proportional to α(Q2) and PLT

receives contributions from β(Q2), a good understanding of the spin-dependent GPs
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Figure 5.8: Predictions for the generalized dipole polarizabilities of the proton. The
solid line represents the DR results with MAID 2007 as input and Λα = 0.6 for the
dipole parametrization of αL(Q2). The thick long-dashed and thick dashed lines are
our results of covariant BχPT. The thin long-dashed line is the leading order result
of HBχPT [Hem+ 97b, Hem+ 97a, Hem+ 00].

is mandatory in order to extract the scalar polarizabilities from an unpolarized
experiment. Our results agree with the DR analysis for PTT , therefore supporting
the extraction of α(Q2) from the unpolarized experiments.

Finally we present the results for the generalized electric dipole polarizabilities
introduced in [L’v+ 01]. In order to completely recover the polarization of the
nucleon induced by an external electromagnetic field one needs 2 scalar electric
dipole polarizabilities. These generalized dipole polarizabilities are denoted by αL

and αT , which are equal at the real photon point. A difference between αL and
αT results in an orientation-dependent polarization of the nucleon, and therefore a
complicated spatial distribution of dipole density. In Fig. 5.8 we show the results
for αL and αT together with the difference of both. Our results are shown for fit I.
In contrast to the leading order HBχPT results the covariant calculation is in fairly
good agreement with the DR analysis up to Q2 = 0.1 GeV2. The difference of the
longitudinal and transverse electric dipole polarizabilities is smaller in the covariant
calculation and with increasing order tends to the DR result. Our calculation thus
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supports the DR perception that the nucleon is predominantly polarized parallel to
the orientation of the incident electric field.



Chapter 6

Summary and conclusions

In this thesis we have performed a calculation of virtual Compton scattering (VCS)
off the nucleon to fourth order in manifestly Lorentz-invariant BχPT using the re-
formulated version of the infrared regularization scheme [SGS 04]. This represents
the first complete fourth-order calculation of the generalized polarizabilities in rela-
tivistic BχPT. We have calculated the contributions to VCS beyond the low-energy
theorems, which are parameterized using six generalized polarizabilities [GLT 95].
To that end the calculation of 100 one-loop diagrams is necessary. We lessened
the calculational burden by implementing various routines for the computer-aided
calculation of the most demanding tasks. The first part of this thesis is concerned
with the implementation and modification of computer programs helpful for the cal-
culations in BχPT in general. As a second part we have successfully applied these
programs in the calculation of VCS.

The first obstacle is the diagram generation, for which we have used the Mathe-
matica (MMA) package FeynArts [HPV 99]. We have set up extensions to FeynArts,
accounting for vertices of the same type, i.e. with the same number of particles at-
tached to a vertex, but different chiral order. Additionally we changed parts of
the FeynArts source code adapting the graphical representation of diagrams to our
needs. Because of the severe limitations in speed or size of intermediate expres-
sions we decided to use FORM [Ver 00] for the cumbersome task of the algebraic
simplifications. We have followed a hybrid approach merging the advantages of
MMA and FORM, similar to FormCalc [HPV 99]. To that end we have imple-
mented a MMA interface delegating parts of the calculation to FORM. We have
implemented FORM procedures performing isospin and Dirac algebra simplifica-
tions, identification of one-loop integrals and decomposition of tensor integrals in
the LoopTools notation. The Dirac algebra procedures are capable of eliminating
multiple occurrences of momenta and indices, and the ordering of momenta and
indices either lexicographically or user-defined. All procedures work in D dimen-
sions by default. The FORM procedure for the identification of one-loop integrals
performs elementary reductions of even powers of the loop momentum in the nu-
merator. Subsequently the tensor structure, i.e. uncontracted loop-momenta, is
identified and cast into one single function, which in turn is decomposed accord-
ing to the notations introduced in the LoopTools package. The calculation of all
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100 one-loop diagrams takes about 10 minutes on an ordinary personal computer.
These results comprise of the genuine VCS process as well as the parts fixed by
the low-energy theorems (LET). In order to separate the genuine VCS contributions
we further analyzed the amplitudes by subtracting all nucleon pole contributions.
This causes severe problems in the numerical evaluation of the tensor coefficients
using LoopTools. LoopTools employs the Passarino-Veltman reduction scheme for
the calculation of tensor coefficients. This reduction scheme is plagued by the occur-
rence of so-called Gram determinants. Unfortunately these determinants vanish for
most of the nucleon pole diagrams, thus demanding special treatment. This problem
also persists for a large region in phase space for the MAMI kinematics. We have
therefore implemented different reduction schemes introduced in the work of Denner
and Dittmaier [DD 06], coping with the problem of exceptional kinematics. More
specifically we have implemented the reductions corresponding to an expansion in
Gram determinants and in modified Cayley and Gram determinants to leading or-
der. Since we use existing C code the implementation was necessarily done in C,
nevertheless we have a working implementation of the reduction schemes in MMA as
well. The C implementation is designed as an extension to LoopTools, i.e. for safe
kinematics the standard LoopTools library is called. For exceptional kinematics the
C program calculates all tensor coefficients up to rank 4 and saves them together
with the kinematical setup in a lookup table. In this way all numerical instabilities
in our calculation are tamed. The implementation of the reduction schemes turned
out to be crucial for the calculation of the generalized polarizabilities (GP) as well.
Since the GPs are defined in terms of the invariant amplitudes at very specific kine-
matics, the problem of exceptional kinematics is enhanced. Moreover one inevitably
introduces kinematical singularities in the extraction of the invariant amplitudes.
These singularities should vanish for the genuine VCS process, however we obtained
the genuine VCS contribution by subtracting the nucleon pole parts from the full
results. Thus the regularity of our amplitudes is not easily seen. We have there-
fore performed a Laurent series expansion in the critical variable ν. Unfortunately
this gives rise to derivatives of the one-loop integrals. To that end we have first
reduced all tensor one-loop integrals to scalar ones with the above mentioned imple-
mentations. Finally we have implemented the calculation of derivatives of one-loop
integrals in a MMA program. This program is based on the results of Devaraj and
Stuart [DS 98] for the 2- and 3-point functions, which was extended to the 4-point
function in this work.

All of these developments were necessary to arrive at analytic expressions for all
GPs to fourth order in relativistic chiral perturbation theory. This also enabled us
to perform very non-trivial checks on our calcualtions, in comparing our results with
previously obtained results from heavy-baryon χPT and partial results in relativistic
BχPT.

In the expressions for VCS off the nucleon four new low-energy constants (LEC)
appear at fourth order, two for the proton and neutron respectively. The new
constants only contribute to the scalar polarizabilities α and β. We have performed
three different fits using the available data on real Compton scattering (RCS) only.
The data is described reasonably well with rather natural values for the coupling
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constants. Next we have collected our results for the polarizabilities of RCS. To
that end we have taken the real-photon limit in our amplitudes and separated the
contributions from third and fourth order. We see large differences to the heavy-
baryon results for all polarizabilities. Since the spin-dependent polarizabilities do
not get contributions from tree graphs they are pure predictions of our theory.
All LECs contributing here are fixed from fits to either the anomalous magnetic
moments or πn scattering. The convergence of the series seems not to be reached
at fourth order, although the absolute corrections to the polarizabilities are smaller
than in HBχPT. We also see that our results are in conflict with predictions from the
dispersive analysis. This might indicate that contributions from nucleon resonances
to the polarizabilities, which are not explicitly incorporated in our calculations, are
very important.

Using the fitted values from RCS we have calculated the differential cross sec-
tions for the MIT-Bates and the MAMI experiments. We have seen that while the
description for the MIT-Bates cross section is reasonable for moderate values of the
outgoing photon lab energy, the cross section for the MAMI kinematics are largely
overestimated already at very small values of the outgoing photon momentum. This
can be attributed to the fairly large virtuality of Q2 = 0.33 GeV2 at which the MAMI
experiment operates. We conclude that our calculations seem to be not applicable
for the MAMI kinematics.

As a next quantity we have compared the results for the structure functions
accessible in an unpolarized experiment. We have compared our results with a
dispersion theoretical analysis and the results from HBχPT. The first striking ob-
servation is that our results are in much better agreement with the DR analysis than
the HBχPT results, especially concerning the insensitivity of PLL − PTT /ε to the
spin-dependent GPs. Additionally we see a much better-behaved convergence in the
structure function PTT . Thus we support the DR perception that the scalar polar-
izabilities of the nucleon are extractable from unpolarized measurements. However
the GPs themselves substantially differ from the DR analysis. For an extraction of
all GPs double polarization experiments are needed. Therefore the picture remains
inconclusive as to which model describes the GPs best.

Finally we have shown results for the generalized dipole polarizabilities of the
nucleon as introduced in [L’v+ 01]. In accordance with DR we see only small dif-
ferences between αL and αT .

We have seen that for some quantities the convergence of the series is not too
good. It would be very interesting to see if the inclusion of the ∆ and vector mesons
as explicit degrees of freedom considerably improves the convergence. Additionally,
the inclusion of the ∆ and vector mesons should enlarge the range of applicabil-
ity of BχPT, which seems to be necessary for the VCS experiments performed at
MAMI and JLAB. We have also calculated the invariant amplitudes for VVCS, how-
ever the calculation of observables was not completed. Therefore these amplitudes
should prove useful as the basis for future calculations of observables in VVCS. The
programs developed in the course of this work have already been used for other
calculations in our group. We hope they will be helpful for future calculations not
only in BχPT. However, some effort is required to improve the user-friendliness of
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the programs and, of course, to further develop the routines. One example would be
to implement the reduction schemes of Denner and Dittmaier beyond leading order,
or improve the FORM programs for the algebraic simplifications. Exploratory cal-
culations including the ∆ clearly indicate that some improvements need to be made
for the FORM program.



Appendix A

Feynman rules

Here we list the Feynman rules needed for the calculations of VCS as derived from
the Lagrangians of [GSS 88, Fet+ 00]. All photon momenta are assumed to be
incoming.

A.1 Propagators
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The coupling constants ex and ey are linear combinations of the coupling con-
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2δab τ 3 − δ3a τ b − δ3b τa

)
}
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pi

a, p1

µ, q1

pf

b, p2

ν, q2

2

e2

2F 2
πm2

N

{
8ic3 m2

N (δab − δ3aδ3b) gµν

+ c2

[
2 gµνε3ab

(
1+ τ 3

)
(p2 − p1) · (pi + pf )− 4iδ3aδ3b

(
pµ

fp
ν
f + pµ

i p
ν
i

)

+ ε3ab
(
1+ τ 3

) (
(pµ

2 − pµ
1)

(
pν

i + pν
f

)
+ (pν

2 − pν
1)

(
pµ

i + pµ
f

))

+ 2iδab

((
2pµ

fp
ν
f + 2pµ

i p
ν
i

)
1− (pµ

1p
ν
2 + pν

1p
µ
2)

(
1+ τ 3

)) ]}

a, p1

µ, q1

b, p22

e εabc (pµ
1 + pµ

2)

a, p1

µ, q1

b, p2

ν, q2

2

2ie2 (δab − δ3aδ3b) gµν



Appendix B

Basis of the Compton tensor

The most general form of the Compton tensor Mµν for the VVCS process γ∗+N →
γ∗ + N has been given by Tarrach [Tar 75].
All tensor structures Kµν

i are built up from the Lorentz structures qµ
1 , qµ

2 , P µ, Qµ,
γµ, γµγν and gµν , where q1 (q2) is the momentum of the incoming (outgoing) photon
and pi (pf ) is the momentum of the incoming (outgoing) nucleon.

Kµν
1 = gµν , Kµν

13 = qµ
2 qν

1 /Q, Kµν
25 = qµ

2 γν + qν
1γ

µ,

Kµν
2 = qµ

1 qν
2 , Kµν

14 = (qµ
1 qν

1 + qµ
2 qν

2 ) /Q, Kµν
26 = qµ

2 γν − qν
1γ

µ

Kµν
3 = qµ

2 qν
1 , Kµν

15 = (qµ
1 qν

1 − qµ
2 qν

2 ) /Q, Kµν
27 =

[
(P µγν + P νγµ) , /Q

]
,

Kµν
4 = qµ

1 qν
1 + qµ

2 qν
2 , Kµν

16 = P µP ν /Q, Kµν
28 =

[
(P µγν − P νγµ) , /Q

]
,

Kµν
5 = qµ

1 qν
1 − qµ

2 qν
2 , Kµν

17 = (P µqν
1 + P νqµ

2 ) /Q, Kµν
29 =

[
(qµ

1 γν + qν
2γ

µ) , /Q
]
,

Kµν
6 = P µP ν , Kµν

18 = (P µqν
1 − P νqµ

2 ) /Q, Kµν
30 =

[
(qµ

1 γν − qν
2γ

µ) , /Q
]
,

Kµν
7 = P µqν

1 + P νqµ
2 , Kµν

19 = (P µqν
2 + P νqµ

1 ) /Q, Kµν
31 =

[
(qµ

2 γν + qν
1γ

µ) , /Q
]
,

Kµν
8 = P µqν

1 − P νqµ
2 , Kµν

20 = (P µqν
2 − P νqµ

1 ) /Q, Kµν
32 =

[
(qµ

2 γν − qν
1γ

µ) , /Q
]
,

Kµν
9 = P µqν

2 + P νqµ
1 , Kµν

21 = P µγν + P νγµ, Kµν
33 =

[
γµ, γν

]
,

Kµν
10 = P µqν

2 − P νqµ
1 , Kµν

22 = P µγν − P νγµ, Kµν
34 =

{[
γµ, γν

]
, /Q

}
,

Kµν
11 = gµν /Q, Kµν

23 = qµ
1 γν + qν

2γ
µ,

Kµν
12 = qµ

1 qν
2 /Q, Kµν

24 = qµ
1 γν − qν

2γ
µ, (B.1)

pi

µ, q1

pf

ν, q2

Figure B.1: VVCS process γ∗ + N → γ∗ + N .
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where

P = pi + pf ,

Q = q1 + q2,

and [·, ·], {·, ·} denote the commutator and anti-commutator, respectively.
In fact the number of independent tensors can be reduced by two nontrivial relations
among several of the Kµν

i , thus leaving us with 32 independent tensors. The number
of independent tensors for Compton scattering can also be deduced from counting
the helicities of the involved particles.

For virtual Compton scattering we will work with a gauge-invariant tensor basis
ρµν

i which incorporates current conservation at both photon vertices. The construc-
tion of such a basis, and the avoidance of kinematical singularities has been outlined
by Bardeen and Tung [BT 68] and explained in more detail in [Dre+ 97, FS 98]. Here
we only list the 12 independent tensors relevant for VCS introduced in [Dre+ 98],

ρµν
1 = −q1 · q2 gµν + qµ

2 qν
1 ,

ρµν
2 = − (q1 · P )2 gµν − q1 · q2 P µP ν + q1 · P (P µqν

1 + P νqµ
2 ) ,

ρµν
3 = q1 · P q2

1 gµν − q1 · Pqµ
1 qν

1 − q2
1P

νqµ
2 + q1 · q2 P νqµ

1 ,

ρµν
4 = P µP ν /Q− q1 · P (P µγν + P νγµ) + i q1 · Pγ5εµναβQαγβ,

ρµν
5 =

1

4
P νqµ

1 /Q +
q2
1

4
(P µγν − P νγµ)− q1 · P

2
qµ
1 γν +

i

4
q2
1ε

µναβQαγβ,

ρµν
6 = −2 q1 · q2P

µP ν + q1 · P (P µqν
1 + P νqµ

2 ) + 2 mN q1 · q2 (P µγν + P νγµ)

− 2 mN q1 · P (qµ
2 γν + qν

1γ
µ) + i q1 · P (qµ

2 σναQα − qν
1σ

µαQα)

+ 2 i q1 · q2q1 · Pσµν + 2 imN q1 · q2γ
5εµναβQαγβ,

ρµν
7 =

1

4
(P µqν

1 − P νqµ
2 ) /Q− q1 · q2

2
(P µγν − P νγµ) +

q1 · P
2

(qµ
2 γν − qν

1γ
µ) ,

ρµν
8 =

q1 · P
2

qµ
1 qν

1 −
q2
1

4
(P µqν

1 − P νqµ
2 )− q1 · q2

2
P νqµ

1 −
mN

2
qµ
1 qν

1 /Q

+ mN q1 · q2q
µ
1 γν − mN

2
q2
1 (qµ

2 γν − qν
1γ

µ) +
i

4
q2
1 (qµ

2 σναQα − qν
1σ

µαQα)

+
i

2
q1 · q2q

2
1σ

µν ,

ρµν
9 =

q1 · P
2

(P µqν
1 − P νqµ

2 )−mN q1 · q2 (P µγν − P νγµ) + mN q1 · P (qµ
2 γν − qν

1γ
µ)

+
i

2
q1 · q2 (P µσναQα + P νσµαQα)− i

2
q1 · P (qµ

2 σναQα + qν
1σ

µαQα) ,

ρµν
10 = −2 q1 · Pgµν + P µqν

1 + P νqµ
2 + 2 mN gµν /Q− 2 mN (qµ

2 γν + qν
1γ

µ)

− i qµ
2 σναQα + i qν

1σ
µαQα − 2 i q1 · q2σ

µν ,

ρµν
11 = (P µqν

1 + P νqµ
2 ) /Q− 2 q1 · P (qµ

2 γν + qν
1γ

µ) + 2 i q1 · q2γ
5εµναβQαγβ,

ρµν
12 = −q2

1

2
P µPν +

q1 · P
2

P νqµ
1 + mN q2

1P
µγν −mN q1 · Pqµ

1 γν

− i

4
q2
1 (P µσναQα + P νσµαQα) +

i

2
q1 · Pqµ

1 σναQα +
i

2
q2
1q1 · Pσµν
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+
i

2
mN q2

1γ
5εµναβQαγβ. (B.2)

We use the conventions of Bjorken and Drell [BD 64], in particular σµν = i[γµ, γν ]/2
and the sign of the Levi-Cività symbol is fixed by ε0123 = −ε0123 = 1.

The VCS tensor Mµν can be written as

Mµν =
12∑
i=1

fi

(
Q2, ν, t

)
ρµν

i , (B.3)

where the basis in Eq. (B.2) is such that not only the ρµν
i but also the coefficients

fi are free of kinematical poles. Moreover as the basis of Eq. (B.2) is a particularly
suitable linear combination of the tensors in Eq. (B.1) the fi are either even or odd
functions with respect to nucleon crossing combined with charge conjugation:

fi

(
Q2, ν, t

)
= + fi

(
Q2,−ν, t

)
, (i = 1, 2, 5, 6, 7, 9, 11, 12),

fi

(
Q2, ν, t

)
= − fi

(
Q2,−ν, t

)
, (i = 3, 4, 8, 10). (B.4)

B.1 Extraction of the fi

Extracting the fi from the calculated diagrams using the exact linear combinations
of tensors spelled out in Eq. (B.2) is a cumbersome task. We therefore use a more

convenient set of easy-to-identify basis tensors K̃µν
i :

K̃µν
1 = gµν , K̃µν

13 = P νqµ
2 , K̃µν

25 = qµ
1 γν ,

K̃µν
2 = /q1

gµν , K̃µν
14 = qµ

1 qν
2/q1

, K̃µν
26 = qµ

2 γν ,

K̃µν
3 = γµγν

/q1
, K̃µν

15 = qν
1q

µ
2 /q1

, K̃µν
27 = qν

1γ
µ ,

K̃µν
4 = γµγν , K̃µν

16 = qµ
1 qν

1/q1
, K̃µν

28 = qν
2γ

µ ,

K̃µν
5 = qµ

1 qν
2 , K̃µν

17 = qµ
2 qν

2/q1
, K̃µν

29 = γν
/q1

P µ ,

K̃µν
6 = qν

1q
µ
2 , K̃µν

18 = P µP ν
/q1

, K̃µν
30 = γµ

/q1
P ν ,

K̃µν
7 = qµ

1 qν
1 , K̃µν

19 = P µqν
1/q1

, K̃µν
31 = γν

/q1
qµ
1 ,

K̃µν
8 = qµ

2 qν
2 , K̃µν

20 = P µqν
2/q1

, K̃µν
32 = γµ

/q1
qν
2 ,

K̃µν
9 = P µP ν , K̃µν

21 = P νqµ
1 /q1

, K̃µν
33 = γν

/q1
qµ
2 ,

K̃µν
10 = P µqν

1 , K̃µν
22 = P νqµ

2 /q1
, K̃µν

34 = γµ
/q1

qν
1 .

K̃µν
11 = P µqν

2 , K̃µν
23 = P µγν

K̃µν
12 = P νqµ

1 , K̃µν
24 = P νγµ , (B.5)

The relation to the original basis of Eq. (B.1) is given by

Kµν
1 = K̃µν

1 , Kµν
2 = K̃µν

5 , Kµν
3 = K̃µν

6 , Kµν
4 = K̃µν

7 + K̃µν
8 ,

Kµν
5 = K̃µν

7 − K̃µν
8 , Kµν

6 = K̃µν
9 , Kµν

7 = K̃µν
10 + K̃µν

13 , Kµν
8 = K̃µν

10 − K̃µν
13 ,
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Kµν
9 = K̃µν

11 + K̃µν
12 , Kµν

10 = K̃µν
11 − K̃µν

12 , Kµν
11 = 2K̃µν

2 , Kµν
12 = 2K̃µν

14 , Kµν
13 = 2K̃µν

15 ,

Kµν
14 = 2

(
K̃µν

16 + K̃µν
17

)
, Kµν

15 = 2
(
K̃µν

16 − K̃µν
17

)
, Kµν

16 = 2K̃µν
18 ,

Kµν
17 = 2

(
K̃µν

19 + K̃µν
22

)
, Kµν

18 = 2
(
K̃µν

19 − K̃µν
22

)
,

Kµν
19 = 2

(
K̃µν

20 + K̃µν
21

)
, Kµν

20 = 2
(
K̃µν

20 − K̃µν
21

)
,

Kµν
21 = K̃µν

23 + K̃µν
24 , Kµν

22 = K̃µν
23 − K̃µν

24 ,

Kµν
23 = K̃µν

25 + K̃µν
28 , Kµν

24 = K̃µν
25 − K̃µν

28 ,

Kµν
25 = K̃µν

26 + K̃µν
27 , Kµν

26 = K̃µν
26 − K̃µν

27 ,

Kµν
27 = 4

(
−K̃µν

10 − K̃µν
12 + K̃µν

29 + K̃µν
30 − K̃µν

9 + K̃µν
23 mN + K̃µν

24 mN

)
,

Kµν
28 = 4

(
−K̃µν

10 + K̃µν
12 + K̃µν

29 − K̃µν
30 + K̃µν

23 mN − K̃µν
24 mN

)
,

Kµν
29 = 2

(
−K̃µν

11 − K̃µν
12 + 2

(
K̃µν

31 + K̃µν
32 − K̃µν

5 − K̃µν
7 + K̃µν

25 mN + K̃µν
28 mN

))
,

Kµν
30 = 2

(
K̃µν

11 − K̃µν
12 + 2

(
K̃µν

31 − K̃µν
32 + K̃µν

5 − K̃µν
7 + K̃µν

25 mN − K̃µν
28 mN

))
,

Kµν
31 = 2

(
−K̃µν

10 − K̃µν
13 + 2

(
K̃µν

33 + K̃µν
34 − K̃µν

6 − K̃µν
7 + K̃µν

26 mN + K̃µν
27 mN

))
,

Kµν
32 = 2

(
K̃µν

10 − K̃µν
13 + 2

(
K̃µν

33 − K̃µν
34 − K̃µν

6 + K̃µν
7 + K̃µν

26 mN − K̃µν
27 mN

))
,

Kµν
33 = 2

(
K̃µν

4 − K̃µν
1

)
,

Kµν
34 = 4

(
K̃µν

23 − K̃µν
24 + 2

(
−K̃µν

2 + K̃µν
25 − K̃µν

27 + K̃µν
3

))
.

Writing the Compton tensor as

Mµν =
34∑
i=1

κi K
µν
i (B.6)

and using the above relations we can extract the coefficients κi of the diagrams in
terms of the basis in Eq. (B.1). Taking Eq. (B.3) and Eq. (B.6) to be equal and
by comparison of coefficients, we find

f1 = κ3,

f2 =
−κ11 + (κ7 + κ8 − 2 (κ31 − κ32)) mN + (κ14 + κ15) Q2

2ν m2
N

,

f3 =
−2mN (κ8 − 2 κ31)− (κ14 + κ15) Q2

mNQ2
,

f4 = κ16,

f5 = 4 (κ19 − κ20) ,

f6 =
κ11 − 4mN κ32 − (κ14 + κ15) Q2

4νm2
N

,

f7 = 4κ18,
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f8 = −2 (κ14 + κ15)

mN

,

f9 =
2κ31

ν mN

,

f10 =
κ11

2mN

,

f11 = κ17,

f12 = −2 (κ29 + κ30)

ν mN

.

As the κi’s are not independent this solution is not unique, however it has the
practical advantage that all odd functions in ν (i = 3, 4, 8, 10) are not suppressed
with an additional power of ν.



Appendix C

One-loop integrals

In this Appendix we give the basic definitions for the one-loop integrals needed in this
work as well as explicit formulas for derivatives of one-loop integrals. For numerical
evaluations of the one-loop integrals we use the LoopTools library [HPV 99] which is
based on the FF library [OV 90]. Keeping this Appendix as self-contained as possible
we recall some definitions of the LoopTools package for the one-loop integrals, further
information can be found in [HPV 99] and the user manual.

C.1 Definitions of the one-loop integrals

p1

pN

p2

pN−1

k m1

k + q1

m2

mN

k + qN−1

For a general N -point one-loop integral we write

TN
µ1,...µp

=

(
2 πµ

)4−D

iπ2

∫
dDk

kµ1 · · · kµp[
k2 −m2

1

][(
k + q1

)2 −m2
2

]
. . .

[(
k + qN−1

)2 −m2
N

] ,

where the momenta qi are related to the external momenta pi as

qi =
i∑

j=1

pj, (C.1)

momentum conservation yields

N∑
j=1

pj = 0. (C.2)
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In the following we will use the abbreviation pij = (pi + pj). The nomenclature for
the scalar integrals is A0 for T 1, B0 for T 2, C0 for T 3 and D0 for T 4.

C.1.1 Scalar integrals

One-point function

A0

(
m2

)
=

(
2 πµ

)4−D

iπ2

∫
dDk

1

k2 −m2
.

Two-point function

B0

(
p2

1,m
2
1,m

2
2

)
=

(
2 πµ

)4−D

iπ2

∫
dDk

1[
k2 −m2

1

][(
k + p1

)2 −m2
2

] .

Three-point function

C0

(
p2

1, p
2
2, p

2
12,m

2
1,m

2
2,m

2
3

)
=

(
2 πµ

)4−D

iπ2

∫
dDk

1[
k2 −m2

1

][(
k + p1

)2 −m2
2

][(
k + p1 + p2

)2 −m2
3

] .

Four-point function

D0

(
p2

1, p
2
2, p

2
3, p

2
4, p

2
12, p

2
23,m

2
1,m

2
2,m

2
3,m

2
4

)
=

(
2 πµ

)4−D

iπ2

∫
dDk

1[
k2 −m2

1

][(
k + p1

)2 −m2
2

][(
k + p1 + p2

)2 −m2
3

][(
k + p4

)2 −m2
4

] .

C.1.2 Tensor Coefficients

In order to have a compact notation for the tensor decomposition we use the notation
of Denner and Dittmaier [DD 06] in which curly brackets denote symmetrization
with respect to Lorentz indices in such a way that all non-equivalent permutations
of Lorentz indices on metric tensors g and momenta p contribute with weight 1.
More specifically we have

{
gp

}µνρ

i1
= gµνpρ

i1
+ gνρpµ

i1
+ gµρpν

i1
,

{
gpp

}µνρσ

i1i2
= gµνpρ

i1
pσ

i2
+ gµρpν

i1
pσ

i2
+ gµσpν

i1
pρ

i2
+ gνρpσ

i1
pµ

i2
+ gρσpν

i1
pµ

i2
+ gσνpρ

i1
pµ

i2
,
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{
gg

}µνρσ
= gµνgρσ + gµρgνσ + gµσgρν . (C.3)

Using the above abbreviations we can write the tensor integrals as

Bµ = qµ
1 B1,

Bµν = gµν B00 + qµ
1 qν

1B11,

Bµνρ =
{
gq

}µνρ

1
B001 + qµ

1 qν
1q

ρ
1 B111,

Cµ =
2∑

i=1

qµ
i Ci,

Cµν = gµν C00 +
2∑

i,j=1

qµ
i qν

j Cij,

Cµνρ =
2∑

i=1

{
gq

}µνρ

i
C00i +

2∑

i,j,k=1

qµ
i qν

j q
ρ
k Cijk,

Cµνρσ = {gg
}µνρσ

C0000 +
2∑

i,j=1

{
gqq

}µνρσ

ij
C00ij +

2∑

i,j,k,l=1

qµ
i qν

j q
ρ
kq

σ
l Cijkl,

Dµ =
3∑

i=1

qµ
i Di,

Dµν = gµν D00 +
3∑

i,j=1

qµ
i qν

j Dij,

Dµνρ =
3∑

i=1

{
gq

}µνρ

i
D00i +

3∑

i,j,k=1

qµ
i qν

j q
ρ
k Dijk,

Dµνρσ = {gg
}µνρσ

D0000 +
3∑

i,j=1

{
gqq

}µνρσ

ij
D00ij +

3∑

i,j,k,l=1

qµ
i qν

j q
ρ
kq

σ
l Dijkl.

The qi are defined in Eq. (C.1).

C.2 Derivative of one-loop integrals

In this section we adapt the derivatives of the one-loop two- and three-point functions
calculated by Devaraj and Stuart [DS 98] to our conventions. Furthermore we will
give explicit formulas for the derivatives of the four-point function.

C.2.1 Derivative of the 2- and 3-point functions

Here we give explicit results for the derivatives of the 2-point functions in the nota-
tions of [HPV 99].

∂

∂p2
B0

(
p2,m2

1,m
2
2

)
=

1

D

[
B0

(
0,m2

1,m
2
1

) (−p2 + m2
1 −m2

2

)
m2

1



C.2 Derivative of one-loop integrals 87

− (
p2 + m2

1 −m2
2

) (
p2 −m2

1 +
(
B0

(
0,m2

2,m
2
2

)
+ 1

)
m2

2

)

+ B0

(
p2,m2

1,m
2
2

) (−m4
1 +

(
p2 + 2m2

2

)
m2

1 −m4
2 + p2m2

2

)]
,

=
1

D

[(
−p2 + m2

1 + m2
2

)
p2 − A0

(
m2

2

)(
p2 + m2

1 −m2
2

)

− A0

(
m2

1

)(
p2 −m2

1 + m2
2

)

+ B0

(
p2,m2

1,m
2
2

)(
p2

(
m2

1 + m2
2

)
−

(
m2

1 −m2
2

)2)]
,

where

D = p2
(
m4

1 − 2
(
p2 + m2

2

)
m2

1 +
(
p2 −m2

2

)2
)

.

Some special cases read

∂

∂p2
B0

(
p2,m2

1,m
2
2

)∣∣∣
p2=0

=
m4

1 − 2A0

(
m2

2

)
m2

1 −m4
2 + 2A0

(
m2

1

)
m2

2

2
(
m2

1 −m2
2

)3 ,

∂

∂p2
B0

(
p2,m2

1,m
2
2

)∣∣∣
p2=0,m2

1=m2
2=m2

=
1

6m2
.

For the derivatives with respect to the masses we have

∂

∂m2
1

B0

(
p2,m2

1,m
2
2

)
=

1

D

[
−A0

(
m2

1

)(
−p2 + m2

1 + m2
2

)

+ m2
1

(
2A0

(
m2

2

)
−

(
B0

(
p2, m2

1, m
2
2

)
− 1

)(
p2 −m2

1 + m2
2

))]
,

where

D = m2
1

(
m4

1 − 2
(
p2 + m2

2

)
m2

1 +
(
p2 −m2

2

)2)
.

Some special cases are given by

∂

∂m2
1

B0

(
p2, m2

1,m
2
2

)∣∣∣
p2=0

=
m2

1

(
−m2

1 + m2
2 + A0

(
m2

2

))
− A0

(
m2

1

)
m2

2

m2
1

(
m2

1 −m2
2

)2 ,

∂

∂m2
1

B0

(
p2,m2

1,m
2
2

)∣∣∣
p2=0,m2

1=m2
2=m2

= − 1

2m2
.

One can get the derivatives with respect to m2 by exploiting the symmetry of the
2-point function under permutation of its mass arguments.

The derivatives of the 3-point function have been calculated in [DS 98]. They
can be expressed as a sum over the scalar 3-point function C0 and mass-derivatives
of the 2-point function B0. To see this it is advantageous to first express B0 and C0

in terms of Feynman parameters.
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The Feynman parameter representation of B0 reads

B0

(
p2,m2

1,m
2
2

)
= ∆−

1∫

0

dx ln
(
m2

1 (x− 1)− (
m2

2 + p2 (x− 1)
)
x
)
,

and

∆ = − 2

D − 4
− γE + ln 4π,

where D is the number of space-time dimension and γE = −Γ′(1) is Euler’s constant.
The divergent part of B0 is parameterized by ∆, which would be put equal to zero in
the MS scheme1. From this one easily obtains the Feynman parameter representation
of the mass derivatives of B0

∂

∂m2
1

B0

(
p2,m2

1,m
2
2

)
= −

1∫

0

dx
1− x

p2 x2 + (m2
2 −m2

1 − p2) x + m2
1

,

∂

∂m2
2

B0

(
p2,m2

1,m
2
2

)
= −

1∫

0

dx
x

p2 x2 + (m2
2 −m2

1 − p2) x−m2
1

.

(C.4)

The Feynman parameter representation of C0 reads

C0

(
p2

1, p
2
2, p

2
12,m

2
1,m

2
2,m

2
3

)
=

1∫

0

dx

x∫

0

dy
1

a x2 + b y2 + c x y + d x + e y + f
, (C.5)

=

1∫

0

dx

x∫

0

dy
1

D
.

The coefficients in Eq. (C.5) are given by

a = −p2
1, b = −p2

2, c = p2
1 + p2

2 − p2
12,

d = p2
1 + m2

1 −m2
2, e = p2

12 − p2
1 + m2

2 −m2
3, f = −m2

1.

The derivatives of C0 with respect to any argument can be written as

C ′
0 =

1∫

0

dx

x∫

0

dy
αx2 x2 + αy2 y2 + αxy xy + αx x + αy y + α1

D2
, (C.6)

where the coefficients αi are summarized in Table C.1.

1The M̃S scheme of chiral perturbation theory corresponds to ∆ = −1.
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The task at hand is to find a basis of integrals which can be expressed as linear
combinations of C0 and mass-derivatives of B0 and at the same time uniquely de-
scribe the polynomial in the numerator of Eq. (C.6). In [DS 98] such a basis has
been constructed:

I1 =

1∫

0

dx

x∫

0

dy
y

(
2 by + cx + e

)

D2
, I2 =

1∫

0

dx

x∫

0

dy
y

(
2 ax + cy + d

)

D2
,

I3 =

1∫

0

dx

x∫

0

dy
x

(
2 by + cx + e

)

D2
, I4 =

1∫

0

dx

x∫

0

dy
2 ax + cy + d

D2
,

I5 =

1∫

0

dx

x∫

0

dy
2 by + cx + e

D2
, I6 =

1∫

0

dx

x∫

0

dy
dx + ey + 2f

D2
.

Using partial integration and the Feynman parametrization of Eq. (C.4) and
(C.5) one can show that

I1 = C0 − ∂

∂m2
3

B0

(
p2

12,m
2
1,m

2
3

)
,

I2 = − ∂

∂m2
3

B0

(
p2

2,m
2
2,m

2
3

)
+

∂

∂m2
3

B0

(
p2

12,m
2
1,m

2
3

)
,

I3 = − ∂

∂m2
3

B0

(
p2

12, m
2
1, m

2
3

)
+

∂

∂m2
2

B0

(
p2

1,m
2
1,m

2
2

)
,

I4 =
( ∂

∂m2
1

+
∂

∂m2
3

)
B0

(
p2

12, m
2
1, m

2
3

)−
( ∂

∂m2
2

+
∂

∂m2
3

)
B0

(
p2

2,m
2
2,m

2
3

)
,

I5 =
( ∂

∂m2
1

+
∂

∂m2
2

)
B0

(
p2

1,m
2
1,m

2
2

)−
( ∂

∂m2
1

+
∂

∂m2
3

)
B0

(
p2

12,m
2
1,m

2
3

)
,

I6 =
( ∂

∂m2
2

+
∂

∂m2
3

)
B0

(
p2

2,m
2
2,m

2
3

)
. (C.7)

C ′
0 w.r.t. αx2 αy2 αxy αx αy α1

p2
1 1 0 −1 −1 1 0

p2
2 0 1 −1 0 0 0

p2
12 0 0 1 0 −1 0

m2
1 0 0 0 −1 0 1

m2
2 0 0 0 1 −1 0

m2
3 0 0 0 0 1 0

Table C.1: Numerator coefficients αi in Eq. (C.6) for derivatives of C0.
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We can now perform the decomposition of C ′
0 in terms of the above basis

C ′
0 =

6∑
a=1

βa Ia.

By comparison of coefficients we get a set of linear equations




0 0 c 0 0 0
2b c 0 0 0 0
c 2a 2b 0 0
0 0 e 2a c d
e d 0 c 2b e
0 0 0 d e 2f







β1

β2

β3

β4

β5

β6




=




αx2

αy2

αxy

αx

αy

α1




.

From these equations we can solve the βi and thus express C ′
0 as a sum over C0 and

mass-derivatives of B0’s. As noted in [DS 98] the derivatives of C0 with respect to
any of its mass arguments reduces to B0’s only.

C.2.2 Derivative of the 4-point function

We proceed in complete analogy to the derivation in the previous section. The
four-point function in terms of Feynman parameters is given by

D0(p
2
1, p

2
2, p

2
3, p

2
4, p

2
12, p

2
23,m

2
1,m

2
2,m

2
3,m

2
4) =

1∫

0

dx

x∫

0

dy

y∫

0

dz
1

D
, (C.8)

where

D = (a x2 + b y2 + c z2 + d x y + e x z + f y z + g x + h y + i z + j)2. (C.9)

The coefficients are given by

a = −p2
1, b = −p2

2, c = −p2
3,

d = p2
1 + p2

2 − p2
12, e = p2

12 + p2
23 − p2

2 − p2
4, f = p2

2 + p2
3 − p2

23,

g = p2
1 + m2

1 −m2
2, h = p2

12 − p2
1 + m2

2 −m2
3, i = p2

4 − p2
12 + m2

3 −m2
4,

j = −m2
1.

We define a set of basis integrals as follows,

I1 =

1∫

0

dx

x∫

0

dy

y∫

0

dz z
∂

∂z

1

D
,

I2 =

1∫

0

dx

x∫

0

dy

y∫

0

dz x
∂

∂z

1

D
,
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I3 =

1∫

0

dx

x∫

0

dy

y∫

0

dz y
∂

∂z

1

D
,

I4 =

1∫

0

dx

x∫

0

dy

y∫

0

dz z
∂

∂y

1

D
,

I5 =

1∫

0

dx

x∫

0

dy

y∫

0

dz x
∂

∂y

1

D
,

I6 =

1∫

0

dx

x∫

0

dy

y∫

0

dz
∂

∂y

y

D
,

I7 =

1∫

0

dx

x∫

0

dy

y∫

0

dz
∂

∂y

1

D
,

I8 =

1∫

0

dx

x∫

0

dy

y∫

0

dz z
∂

∂x

1

D
,

I9 =

1∫

0

dx

x∫

0

dy

y∫

0

dz
∂

∂x

x

D
,

I10 =

1∫

0

dx

x∫

0

dy

y∫

0

dz
∂

∂z

(
z

1

D

)
. (C.10)

The integrals in Eq. (C.10) can be expressed as functions of D0 and derivatives of

3-point functions. First let us define the modified denominator D̃̃D̃D obtained from D
in (C.9) by performing the substitutions

D̃̃D̃D = D(z → z′ y, y → y′ x).

With this definition and using partial integration the basis integrals of (C.10) read

I1 =

1∫

0

dx

x∫

0

dy

y∫

0

dz z
∂

∂z

1

D
(C.11)

=

1∫

0

dx

x∫

0

dy


 z

D

∣∣∣
y

0
−

y∫

0

dz
1

D




=

1∫

0

dx

x∫

0

dy
z

D

∣∣∣
y

0
−

1∫

0

dx

x∫

0

dy

y∫

0

dz
1

D
,
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I2 =

1∫

0

dx

x∫

0

dy

y∫

0

dz x
∂

∂z

1

D
(C.12)

=

1∫

0

dx

x∫

0

dy x
1

D

∣∣∣
y

0
,

I3 =

1∫

0

dx

x∫

0

dy

y∫

0

dz y
∂

∂z

1

D
(C.13)

=

1∫

0

dx

x∫

0

dy y
1

D

∣∣∣
y

0
,

I4 =

1∫

0

dx

x∫

0

dy

y∫

0

dz z
∂

∂y

1

D
(C.14)

=

1∫

0

dx

1∫

0

dy′
1∫

0

dz′ x2 y′2 z′
(

∂

∂y′
1

D̃̃D̃D
− z′

y′
∂

∂z′
1

D̃̃D̃D

)

=

1∫

0

dx

1∫

0

dz′ x2 z′
(

y′2

D̃̃D̃D

∣∣∣
1

0

)
−

1∫

0

dx

1∫

0

dy′ x2 y′
(

z′2

D̃̃D̃D

∣∣∣
1

0

)
,

I5 =

1∫

0

dx

x∫

0

dy

y∫

0

dz x
∂

∂y

1

D
(C.15)

=

1∫

0

dx

1∫

0

dy′
1∫

0

dz′ x2y′
(

∂

∂y′
1

D̃̃D̃D
− z′

y′
∂

∂z′
1

D̃̃D̃D

)

=

1∫

0

dx

1∫

0

dz′ x2

(
y′

D̃̃D̃D

∣∣∣
1

0

)
−

1∫

0

dx

1∫

0

dy′ x2

(
z′

D̃̃D̃D

∣∣∣
1

0

)
,

I6 =

1∫

0

dx

x∫

0

dy

y∫

0

dz
∂

∂y

y

D
(C.16)

=

1∫

0

dx

x∫

0

dy

y∫

0

dz
1

D
+

1∫

0

dx

1∫

0

dy′
1∫

0

dz′ x2y′2
(

∂

∂y′
1

D̃̃D̃D
− z′

y′
∂

∂z′
1

D̃̃D̃D

)

=

1∫

0

dx

1∫

0

dz′ x2

(
y′2

D̃̃D̃D

∣∣∣
1

0

)
−

1∫

0

dx

1∫

0

dy′ x2 y′
(

z′

D̃̃D̃D

∣∣∣
1

0

)
,
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I7 =

1∫

0

dx

x∫

0

dy

y∫

0

dz
∂

∂y

1

D
(C.17)

=

1∫

0

dx

1∫

0

dy′
1∫

0

dz′ xy′
(

∂

∂y′
1

D̃̃D̃D
− z′

y′
∂

∂z′
1

D̃̃D̃D

)

=

1∫

0

dx

1∫

0

dz′ x

(
y′

D̃̃D̃D

∣∣∣
1

0

)
−

1∫

0

dx

1∫

0

dy′ x

(
z′

D̃̃D̃D

∣∣∣
1

0

)
,

I8 =

1∫

0

dx

x∫

0

dy

y∫

0

dz z
∂

∂x

1

D
(C.18)

=

1∫

0

dx

1∫

0

dy′
1∫

0

dz′ x3 y′2 z′
(

∂

∂x

1

D̃̃D̃D
− y′

x

∂

∂y′
1

D̃̃D̃D

)

=

1∫

0

dy′
1∫

0

dz′y′2 z′
(

x3

D̃̃D̃D

∣∣∣
1

0

)
−

1∫

0

dx

1∫

0

dz′ x2 z′
(

y′3

D̃̃D̃D

∣∣∣
1

0

)
,

I9 =

1∫

0

dx

x∫

0

dy

y∫

0

dz
∂

∂x

x

D
(C.19)

=

1∫

0

dx

x∫

0

dy

y∫

0

dz
1

D
+

1∫

0

dx

1∫

0

dy′
1∫

0

dz′ x3 y′
(

∂

∂x

1

D̃̃D̃D
− y′

x

∂

∂y′
1

D̃̃D̃D

)

=

1∫

0

dy′
1∫

0

dz′y′
(

x3

D̃̃D̃D

∣∣∣
1

0

)
−

1∫

0

dx

1∫

0

dz′ x2

(
y′2

D̃̃D̃D

∣∣∣
1

0

)
,

I10 =

1∫

0

dx

x∫

0

dy

y∫

0

dz
∂

∂z

(
z

1

D

)
(C.20)

=

1∫

0

dx

x∫

0

dy
z

D

∣∣∣
y

0
.

We arrive at relations between the basis integrals of (C.10) and Feynman parameter
representations of D0 and derivatives of C0 with respect to its mass arguments, more
specifically

I1 =
∂

∂m2
4

C0(1, 2, 4)−D0,

I2 =
∂

∂m2
2

C0(1, 2, 4) +
∂

∂m2
4

C0(1, 2, 4)− ∂

∂m2
2

C0(1, 2, 3)− ∂

∂m2
3

C0(1, 2, 3),
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I3 =
∂

∂m2
4

C0(1, 2, 4)− ∂

∂m2
3

C0(1, 2, 3),

I4 =
∂

∂m2
4

C0(1, 3, 4)− ∂

∂m2
4

C0(1, 2, 4),

I5 =
∂

∂m2
3

C0(1, 3, 4) +
∂

∂m2
4

C0(1, 3, 4)− ∂

∂m2
2

C0(1, 2, 4)− ∂

∂m2
4

C0(1, 2, 4),

I6 =
∂

∂m2
3

C0(1, 3, 4) +
∂

∂m2
4

C0(1, 3, 4)− ∂

∂m2
4

C0(1, 2, 4),

I7 =
∂

∂m2
1

C0(1, 3, 4) +
∂

∂m2
3

C0(1, 3, 4) +
∂

∂m2
4

C0(1, 3, 4)

− ∂

∂m2
1

C0(1, 2, 4)− ∂

∂m2
2

C0(1, 2, 4)− ∂

∂m2
4

C0(1, 2, 4),

I8 =
∂

∂m2
4

C0(2, 3, 4)− ∂

∂m2
4

C0(1, 3, 4),

I9 =
∂

∂m2
2

C0(2, 3, 4) +
∂

∂m2
3

C0(2, 3, 4) +
∂

∂m2
4

C0(2, 3, 4)

− ∂

∂m2
3

C0(1, 3, 4)− ∂

∂m2
4

C0(1, 3, 4),

I10 =
∂

∂m2
4

C0(1, 2, 4).

The arguments of C0 indicate the propagators, numbered according to their appear-
ance in D0, e.g. C0(1, 2, 3) represents D0 with the fourth propagator omitted.

Using the Feynman parameter representation for D0 in Eq. (C.8) any derivative
of D0 can be written as

D′
0 =

1∫

0

dx

x∫

0

dy

y∫

0

dz

αx2 x2 + αy2 y2 + αz2 z2 + αxy x y + αxz x z + αyz y z + αx x + αy y + αz z + α1

D3/2
,

(C.21)

where the αi are given in Table C.2.

On the other hand the derivatives of D0 can be decomposed into a sum over the
basis integrals Ia of Eq. (C.10)

D′
0 =

10∑
a=1

βa Ia.
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D′
0 w.r.t. αz2 αy2 αx2 αxy αxz αzy αz αy αx α1

p2
1 0 0 2 −2 0 0 0 2 −2 0

p2
2 0 2 0 −2 2 −2 0 0 0 0

p2
3 2 0 0 0 0 −2 0 0 0 0

p2
4 0 0 0 0 2 0 −2 0 0 0

(p1 + p2)
2 0 0 0 0 2 −2 0 2 −2 0

(p2 + p3)
2 0 0 0 0 −2 2 0 0 0 0

m2
1 0 0 0 0 0 0 0 0 −2 2

m2
2 0 0 0 0 0 0 0 −2 2 0

m2
3 0 0 0 0 0 0 −2 2 0 0

m2
4 0 0 0 0 0 0 2 0 0 0

Table C.2: Numerator coefficients αi in Eq. (C.21) for derivatives of D0.

Thus by comparison of coefficients one gets a set of linear equations




−4c 0 0 −2f 0 c 0 −2e c −3c
0 0 −2f 0 0 −3b 0 0 b b
0 −2e 0 0 −2d a 0 0 −3a a
0 −2f −2e 0 −4b −d 0 0 −d d
−2e −4c 0 −2d −2f e 0 −4a −e −e
−2f 0 −4c −4b 0 −f 0 −2d f −f
−2i 0 0 −2h 0 i −2f −2g i −i
0 0 −2i 0 0 −h −4b 0 h h
0 −2i 0 0 −2h g −2d 0 −g g
0 0 0 0 0 j −2h 0 j j







β1

β2

β3

β4

β5

β6

β7

β8

β9

β10




=




αz2

αy2

αx2

αxy

αxz

αyz

αz

αy

αx

α1




.

As the solutions for the βi are quite lengthy we refrain form displaying them here.
Given the above considerations we can calculate the derivatives of D0 as a sum

over D0 and mass derivatives of C0. Furthermore the mass derivatives of C0 can be
expressed by B0’s thus leading to a closed form expression for D′

0.



Appendix D

Subtraction terms

We use the infrared regularization of Becher and Leutwyler [BL 99] in its reformu-
lated version of Ref. [SGS 04]. The reformulated version of IR is a prescription of
how to obtain the terms, analytic in quark masses and small momenta, which violate
power counting to a given order. Essentially the power-counting-violating terms are
calculated by expanding the integrand of a one-loop integral, parameterized either
using Feynman or Schwinger parameters, in small quantities to a given order. Upon
interchange of summation and integration the individual terms in the expansion
allow for an easy calculation. This procedure is consistent with the IR of Becher
and Leutwyler up to terms of higher order in the expansion of the integrand. Thus
the difference between IR by Becher and Leutwyler and the reformulated version
is shifted to terms, which are beyond the accuracy of a given calculation. The big
advantage of the reformulated version is that one can use the standard definition
of the one-loop integrals. The infrared regulated integrals are constructed by sub-
tracting the power-counting-violating terms from the original integral, hence these
terms are called subtraction terms.

In order to calculate the subtraction terms we first perform the Schwinger param-
etrization of one-loop integrals, see [Dav 91] and references therein. To that end we
rewrite the denominators using the identity

1(
q2 −M2 + iε

)α =
i−α

Γ(α)

∞∫

0

dx1 xα−1
1 eix1

(
q2−M2

)
−ε x1 . (D.1)

Using the above trick the integration over the loop momentum amounts to a gaussian
integral in D dimensions, for which we may write

∫
dDk exp

[
i A k2 − 2i B k

]
= i1−D/2πD/2A−D/2 exp

[−i
B2

A

]
. (D.2)

For a general N -point one-loop integral A is a function of the sum of the xi. The
remaining exponential can be eliminated by appropriate substitutions of the xi. By
choosing the substitution to be such that

∑
i xi = λ and using

∞∫

0

dλλαe−iβλ = i−α−1Γ(α + 1)β−α−1, (D.3)
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one can always eliminate one parameter in the representation of a one-loop integral.
Thus any N -point one-loop integral can be parameterized by N−1 parameters. Let
us illustrate the above considerations by a simple example1.

I(p,m1,m2) = i

∫
dD k

(2π)n

1[
k2 −m2

1

][(
k + p

)2 −m2
2

] ,

(D.1)
=

i i−2

Γ(1)2

∫
dDk

(2π)D

∞∫

0

dx1

∞∫

0

dx2 exp
[
ik2

(
x1 + x2

)
+ 2i k · p x2

− i(x1 m2
1 + x2 (m2

2 − p2))
]
,

(D.2)
= −i2−D/2

∞∫

0

dx1

∞∫

0

dx2
πD/2

(2π)D

(
x1 + x2

)−D/2
exp

[
−i

p2x2
2

(x1 + x2)

]

× exp[−i(x1 m2
1 + x2 (m2

2 − p2))],

= −i2−D/2 πD/2

(2π)D

∞∫

0

dλ

1∫

0

dξ λ1−D/2 exp
[
−i

λ2(1− ξ)2p2

λ

]

× exp[−i(λξ m2
1 + λ(1− ξ) (m2

2 − p2))],

= −i2−D/2 πD/2

(2π)D

∞∫

0

dλ

1∫

0

dξ λ1−D/2

× exp
[
−i λ

{
(1− ξ)2p2 + ξ m2

1 + (1− ξ) (m2
2 − p2)

}]
,

(D.3)
= − πD/2

(2π)D

1∫

0

dξ Γ(2−D/2)
[
(1− ξ)2p2 + ξ m2

1 + (1− ξ) (m2
2 − p2)

]2−D/2

,

(D.4)

where the substitutions x1 = λξ and x2 = λ(1−ξ) were made. The divergence of the
integral for D → 4 is encoded in the Γ-function. A possible scenario for the above
example would be the nucleon self-energy. We set m1 = Mπ, p = pi and m2 = mN ,
where pi is the momentum of the nucleon. The expression thus reads

I(pi,Mπ,mN) = − πD/2

(2π)D

1∫

0

dξ Γ(2−D/2)

×
[
(1− ξ)2p2

i + ξ M2
π + (1− ξ) (m2

N − p2
i )

]2−D/2

. (D.5)

Now we rescale all expressions according to their chiral order, note that the nucleon
is almost on-shell, i.e. p2

i ≈ m2
N ,

Mπ 7→ ℵMπ, (p2
i −m2

N) ≡ ∆N 7→ ℵ∆N .

1For the sake of readability we drop the iε prescription.



98 Subtraction terms

For the rescaled integral we obtain

I(pi,Mπ,mN) = − πD/2

(2π)D

1∫

0

dξ Γ(2−D/2)

×
[
(1− ξ)2(∆N ℵ+ m2

N) + ξ M2
π ℵ2 − (1− ξ) ∆N ℵ

]2−D/2

. (D.6)

The expansion of the integrand around the small quantities up to first order reads

I(pi,Mπ,mN) = − πD/2

(2π)D

1∫

0

dξ Γ(2−D/2)

×
[(

m2
Nξ2

)D/2−2 − ℵ
2

(
D − 4)

(
m2

Nξ2
)D/2−3

∆N ξ(1− ξ) +O(ℵ2)
]

(D.7)

We exchange integration and summation and use the identity

1∫

0

dx xα−1(1− x)β−1 =
Γ(α) Γ(β)

Γ(α + β)
, (D.8)

and obtain2

IST(pi,Mπ,mN) = − πD/2

(2π)D
Γ(2−D/2)

[(
m2

N

)D/2−2 Γ(D − 3)

Γ(D − 2)

− ℵ
2

(
D − 4

)(
m2

N

)D/2−3
∆N

Γ(D − 4)

Γ(D − 2)
+O(ℵ2)

]
. (D.9)

The integral is subsequently expanded around D = 4, and the divergences are dis-
carded according to the M̃S scheme. Note that the term linear in ℵ generates an
additional contribution to the divergent part, not present in the original integral.
This additional divergence is compensated by the according divergence in the in-
frared singular part.

The infrared regulated integrals are obtained by subtracting the so-obtained
terms form the original integrals.

We have written a Mathematica program implementing the above algorithm
for integrals with up to four denominators and up to tensor rank 4. There is no
restriction on the chiral order of the subtraction terms, except for computational
boundaries of Mathematica. The program expects the integrals in LoopTools nota-
tion and the order to which subtraction terms should be calculated as input. The
maximum chiral order of the 2-point integrals in our calculation was 4, for the 3-
point integrals 3, and for the 4-point integrals we needed subtraction terms up to
order 2.

2The superscript ST stands for subtraction term. IST(pi,Mπ,mN ) is the power counting vio-
lating part of the integral to a specific order.



Appendix E

Results

Most of our results are too large to be displayed in this work. The most compact
results we obtained are the invariant amplitudes F̄i(Q

2) at the real photon point
Q2 = 0. We used these expressions to check against the heavy-baryon results in
previous works. The coupling constants c6 and c7 (e105 and e106) can be related to
the magnetic moments κp/n of the proton and neutron according to

c6 =
κv

4mN

, c7 =
κs

2mN

, (E.1)

where

κp =
1

2

(
κs + κv

)
, κn =

1

2

(
κs − κv

)
. (E.2)

For a more extensive discussion of the coupling constants see Chapter 5.
The explicit expressions for the one-loop part read

F̄1(Q
2 = 0) =

1

576m7
N

(
M3

π − 4m2
NMπ

)2
π2F 2

π

[
48g2

Am12
N

+ 48M2
π

[−3
(
15τ 3 +

(
8τ 3 + 6

)
κs + 2

(
τ 3 + 2

)
κv + 13

)
g2

A

+ 16mNc1 − 4mN

(
c2 + 2c3

)]
m10

N + 4M4
π

[(
36τ 3 + 12

(
4τ 3 + 15

)
κs

+ 6
(
11τ 3 − 72

)
κv − 1079

)
g2

A + 24mN

(−4c1 + c2 + 2c3

)]
m8

N

+ M6
π

[(
2256τ 3 + 27

(
57τ 3 + 25

)
κs + 3

(
321τ 3 + 469

)
κv + 4420

)
g2

A

+ 48mNc1 − 12mN

(
c2 + 2c3

)]
m6

N −M8
πg2

A

[
1071τ 3 +

(
861τ 3 + 459

)
κs

+
(
435τ 3 + 357

)
κv + 1340

]
m4

N + 3M10
π g2

A

[
44

(
τ 3 + 1

)
+ 3

(
16τ 3 + 7

)
κs

+
(
7τ 3 + 10

)
κv

]
m2

N + 6M12
π τ 3g2

A

(
κv − κs

)]

+
g2

A A0

(
m2

N

)

384m3
N

(
M3

π − 4m2
NMπ

)2
π2F 2

π

[
32m6

N

+ 16M2
π

[−90τ 3 − 3
(
19τ 3 + 9

)
κs − 3

(
τ 3 + 7

)
κv − 85

]
m4

N

+ 8M4
π

[
158

(
τ 3 + 1

)
+ 9

(
11τ 3 + 9

)
κs + 3

(
9τ 3 + 13

)
κv

]
m2

N

− 3M6
π

[
72

(
τ 3 + 1

)
+

(
45τ 3 + 39

)
κs +

(
15τ 3 + 17

)
κv

]]
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+
A0

(
M2

π

)

192m3
N

(
M3

π − 4m2
NMπ

)2
π2F 2

π

[
64c2m

7
N − 8

(
24τ 3 + 47

)
g2

Am6
N

− 192τ 3g2
Aκsm

6
N + 8M2

π

[(
155τ 3 +

(
93τ 3 + 63

)
κs + 3

(
9τ 3 + 11

)
κv

+ 158
)
g2

A + 20mNc2

]
m4

N + 4M4
π

[−(
185

(
τ 3 + 1

)
+ 9

(
12τ 3 + 11

)
κs

+
(
42τ 3 + 45

)
κv

)
g2

A − 23mNc2

]
m2

N + 3M6
π

[
3
(
τ 3 + 1

)(
7κs + 3

(
κv + 4

))
g2

A

+ 4mNc2

]]

+
g2

A B0

(
m2

N ,M2
π ,m2

N

)

192m3
N

(
M3

π − 4m2
NMπ

)2
π2F 2

π

[−16m8
N + 48M2

π

[
19τ 3 + 6

(
2τ 3 + 1

)
κs

+ 2
(
τ 3 + 2

)
κv + 22

]
m6

N − 24M4
π

[
78τ 3 +

(
46τ 3 + 36

)
κs

+ 3
(
5τ 3 + 6

)
κv + 79

]
m4

N −M6
π

[−848
(
τ 3 + 1

)− 9
(
55τ 3 + 51

)
κs

− 3
(
65τ 3 + 69

)
κv

]
m2

N − 9M8
π

(
τ 3 + 1

)[
7κs + 3

(
κv + 4

)]]
, (E.3)

F̄2(Q
2 = 0) =

1

9216m7
NM2

π

(
4m2

N −M2
π

)3
π2F 2

π

[
−8448g2

Am12
N

+ 192M2
π

[(
239τ 3 + 24

(
7τ 3 + 3

)
κs + 24

(
τ 3 + 1

)
κv + 73

)
g2

A

+ 32mNc2

]
m10

N − 64M4
π

[
72mNc2 − g2

A

(
936τ 3 + 6

(
16τ 3 − 57

)
κs

+ 12
(
12− 13τ 3

)
κv + 2543

)]
m8

N + 48M6
π

[
24mNc2

− g2
A

(
5
(
361τ 3 + 425

)
+ 2

(
614τ 3 + 63

)
κs + 12

(
24τ 3 − 11

)
κv

)]
m6

N

− 12M8
π

[
8mNc2 − g2

A

(
3030τ 3 + 9

(
347τ 3 + 107

)
κs + 3

(
381τ 3 − 239

)
κv

+ 1238
)]

m4
N −M10

π g2
A

[
8
(
819τ 3 − 167

)
+

(
8691τ 3 + 3519

)
κs

+ 3
(
1241τ 3 − 819

)
κv

]
m2

N + 3M12
π g2

A

[
21

(
7τ 3 − 5

)
+ 4

(
58τ 3 + 27

)
κs

+ 36
(
3τ 3 − 2

)
κv

]]

+
g2

A A0

(
m2

N

)

384m5
NM2

π

(
4m2

N −M2
π

)3
π2F 2

π

[
−352m8

N

− 24M2
π

[−85τ 3 − 8
(
7τ 3 + 3

)
κs − 8

(
τ 3 + 1

)
κv − 89

]
m6

N

− 4M4
π

[
557τ 3 + 6

(
59τ 3 + 45

)
κs + 90

(
τ 3 + 1

)
κv + 559

]
m4

N

+ 2M6
π

[
9
(
25τ 3 + 23

)
κs +

(
τ 3 + 1

)(
69κv + 358

)]
m2

N

− 3M8
π

(
τ 3 + 1

)(
15κs + 5κv + 24

)]

+
A0

(
M2

π

)

384m5
NM2

π

(
4m2

N −M2
π

)3
π2F 2

π

[
−16

(
16mNc2

− g2
A

(
24κsτ

3 + 48τ 3 + 85
))

m8
N − 4M2

π

[
g2

A

(
913τ 3 + 72

(
8τ 3 + 5

)
κs

+ 120
(
τ 3 + 1

)
κv + 971

)− 48mNc2

]
m6

N

− 12M4
π

[
4mNc2 − g2

A

(
239τ 3 +

(
151τ 3 + 123

)
κs + 41

(
τ 3 + 1

)
κv + 241

)]
m4

N

−M6
π

[
g2

A

(
9
(
55τ 3 + 51

)
κs +

(
τ 3 + 1

)(
153κv + 788

))− 4mNc2

]
m2

N

+ 3M8
π

(
τ 3 + 1

)
g2

A

(
15κs + 5κv + 24

)]
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+
g2

A B0

(
m2

N ,M2
π ,m2

N

)

384m5
NM2

π

(
4m2

N −M2
π

)3
π2F 2

π

[
352m10

N

+ 8M2
π

[−351τ 3 − 72
(
3τ 3 + 1

)
κs − 24

(
τ 3 + 1

)
κv − 437

]
m8

N

+ 120M4
πg2

A

[
49τ 3 +

(
31τ 3 + 21

)
κs + 7

(
τ 3 + 1

)
κv + 51

]
m6

N

− 2M6
π

[
4
(
448τ 3 + 451

)
+ 3

(
377τ 3 + 315

)
κs + 315

(
τ 3 + 1

)
κv

]
m4

N

+ 4M8
π

[
9
(
15τ 3 + 14

)
κs +

(
τ 3 + 1

)(
42κv + 215

)]
m2

N

− 3M10
π

(
τ 3 + 1

)(
15κs + 5κv + 24

)]
, (E.4)

F̄4(Q
2 = 0) =

g2
A

768m5
NM2

π

(
4m2

N −M2
π

)3
π2F 2

π

[
64

(
κsτ

3 + 6τ 3 + 3κv + 7
)
m10

N

− 8M2
π

[
402τ 3 + 3

(
129τ 3 + 89

)
κs + 3

(
69τ 3 + 77

)
κv + 82

]
m8

N

+ 8M4
π

[
154τ 3 − 3

(
421τ 3 − 65

)
κs +

(
179τ 3 − 915

)
κv − 568

]
m6

N

+ 2M6
π

[−30
(
τ 3 − 55

)
+

(
4199τ 3 − 381

)
κs +

(
2971− 353τ 3

)
κv

]
m4

N

+ M8
π

[−2
(
7τ 3 + 387

)− 3
(
707τ 3 − 69

)
κs +

(
179τ 3 − 1493

)
κv

]
m2

N

+ M10
π

[
7
(
25τ 3 − 3

)
κs +

(
123− 17τ 3

)
κv + 60

]]

+
g2

A A0

(
m2

N

)

192m5
NM2

π

(
4m2

N −M2
π

)3
π2F 2

π

[
16

(
κsτ

3 + 3
(
2τ 3 + κv + 5

))
m8

N

− 2M2
π

[
602τ 3 +

(
463τ 3 + 267

)
κs +

(
207τ 3 + 331

)
κv + 630

]
m6

N

+ M4
π

[
2
(
593τ 3 + 597

)
+ 21

(
51τ 3 + 43

)
κs +

(
627τ 3 + 731

)
κv

]
m4

N

+ M6
π

[−366
(
τ 3 + 1

)− (
353τ 3 + 333

)
κs − 3

(
75τ 3 + 79

)
κv

]
m2

N

+ 12M8
π

(
τ 3 + 1

)(
3κs + 2κv + 3

)]

+
g2

A A0

(
M2

π

)

192m5
NM2

π

(
4m2

N −M2
π

)3
π2F 2

π

[
−8

(
82τ 3 +

(
43τ 3 + 12

)
κs

+
(
12τ 3 + 41

)
κv + 105

)
m8

N + M2
π

[(
1709τ 3 + 1197

)
κs

+ 3
(
698τ 3 +

(
291τ 3 + 403

)
κv + 722

)]
m6

N − 4M4
π

[
379τ 3 +

(
347τ 3 + 300

)
κs

+
(
207τ 3 + 236

)
κv + 381

]
m4

N + M6
π

[
402

(
τ 3 + 1

)
+

(
389τ 3 + 369

)
κs

+ 3
(
83τ 3 + 87

)
κv

]
m2

N − 12M8
π

(
τ 3 + 1

)(
3κs + 2κv + 3

)]

+
g2

A B0

(
m2

N ,M2
π ,m2

N

)

192m5
NM2

π

(
4m2

N −M2
π

)3
π2F 2

π

[
−16

(
κsτ

3 + 3
(
2τ 3 + κv + 5

))
m10

N

+ 10M2
π

[(
127τ 3 + 63

)
κs + 3

(
62τ 3 +

(
17τ 3 + 33

)
κv + 70

)]
m8

N

− 20M4
π

[
4
(
41τ 3 + 42

)
+

(
139τ 3 + 105

)
κs +

(
75τ 3 + 97

)
κv

]
m6

N

+ M6
π

[
2
(
941τ 3 + 945

)
+

(
1741τ 3 + 1533

)
κs +

(
1053τ 3 + 1181

)
κv

]
m4

N

−M8
π

[
438

(
τ 3 + 1

)
+ 5

(
85τ 3 + 81

)
κs + 3

(
91τ 3 + 95

)
κv

]
m2

N

+ 12M10
π

(
τ 3 + 1

)(
3κs + 2κv + 3

)]
, (E.5)
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F̄6(Q
2 = 0) =

g2
A

18432m7
NM2

π

(
4m2

N −M2
π

)3
π2F 2

π

[
−768

((
3τ 3 − 1

)− 2τ 3κs + 2κv

)
m12

N

− 96M2
π

[
42τ 3 + 9

(
17τ 3 + 7

)
κs + 3

(
25τ 3 + 59

)
κv + 214

]
m10

N

− 32M4
π

[−906τ 3 + 9
(
99τ 3 − 245

)
κs + 3

(
53− 847τ 3

)
κv − 46

]
m8

N

− 8M6
π

[−1038τ 3 +
(
2853− 4069τ 3

)
κs +

(
1917τ 3 + 299

)
κv + 1746

]
m6

N

− 12M8
π

[
6
(
227τ 3 − 181

)
+

(
967τ 3 + 735

)
κs +

(
1531τ 3 − 497

)
κv

]
m4

N

+ 8M10
π

[
612τ 3 + 3

(
74τ 3 + 183

)
κs + 3

(
296τ 3 − 79

)
κv − 448

]
m2

N

−M12
π

[
63

(
7τ 3 − 5

)
+

(
101τ 3 + 459

)
κs +

(
699τ 3 − 175

)
κv

]]

+
g2

A A0

(
m2

N

)

384m5
NM2

π

(
4m2

N −M2
π

)3
π2F 2

π

[
−16

((
3τ 3 + 7

)
+ 2τ 3κs − 2κv

)
m8

N

− 2M2
π

[−26τ 3 +
(
113τ 3 + 63

)
κs +

(
75τ 3 + 217

)
κv − 46

]
m6

N

+ M4
π

[−6
(
3τ 3 + 5

)
+

(
265τ 3 + 219

)
κs +

(
287τ 3 + 409

)
κv

]
m4

N

− 2M6
π

[−τ 3 +
(
44τ 3 + 42

)
κs +

(
55τ 3 + 62

)
κv − 1

]
m2

N

+ 3M8
π

(
τ 3 + 1

)(
3κs + 4κv

)]

+
g2

A A0

(
M2

π

)

384m5
NM2

π

(
4m2

N −M2
π

)3
π2F 2

π

[
8
((

13τ 3 + 25
)

+ 6τ 3κs − 30κv

)
m8

N

+ M2
π

[−2
(
41τ 3 + 55

)
+

(
375τ 3 + 321

)
κs +

(
373τ 3 + 751

)
κv

]
m6

N

+ 2M4
π

[
11τ 3 − 17

(
10τ 3 + 9

)
κs −

(
195τ 3 + 262

)
κv + 13

]
m4

N

+ M6
π

[−2
(
τ 3 + 1

)
+

(
97τ 3 + 93

)
κs + 2

(
61τ 3 + 68

)
κv

]
m2

N

− 3M8
π

(
τ 3 + 1

)(
3κs + 4κv

)]

+
g2

A B0

(
m2

N ,M2
π , m2

N

)

384m5
NM2

π

(
4m2

N −M2
π

)3
π2F 2

π

[
16

((
3τ 3 + 7

)
+ 2τ 3κs − 2κv

)
m10

N

+ 2M2
π

[−2
(
39τ 3 + 73

)
+

(
89τ 3 + 63

)
κs +

(
75τ 3 + 337

)
κv

]
m8

N

+ 20M4
π

[
5τ 3 − (

32τ 3 + 27
)
κs −

(
33τ 3 + 58

)
κv + 7

]
m6

N

+ 2M6
π

((
214τ 3 + 195

)
κs + 2

(−6τ 3 +
(
125τ 3 + 162

)
κv − 7

))
m4

N

+ 2M8
π

[
τ 3 − (

53τ 3 + 51
)
κs −

(
67τ 3 + 74

)
κv + 1

]
m2

N

+ 3M10
π

(
τ 3 + 1

)(
3κs + 4κv

)]
, (E.6)

F̄10(Q
2 = 0) =

g2
A

6144m6
NM2

π

(
4m2

N −M2
π

)3
π2F 2

π

[
−1024

((
3τ 3 + 4

)
+ 3τ 3κs + κv

)
m12

N

+ 256M2
π

[
187τ 3 +

(
84τ 3 + 75

)
κs + 9

(
7τ 3 + 2

)
κv + 98

]
m10

N

+ 64M4
π

[
1110τ 3 +

(
1129τ 3 + 927

)
κs +

(
1411τ 3 + 2209

)
κv + 2102

]
m8

N

− 64M6
π

[
728τ 3 + 3

(
457τ 3 + 102

)
κs +

(
347τ 3 + 1647

)
κv + 1844

]
m6

N

+ 32M8
π

[
78τ 3 +

(
1142τ 3 − 297

)
κs +

(
809− 601τ 3

)
κv + 1120

]
m4

N

− 4M10
π

[−544τ 3 +
(
1675τ 3 − 1101

)
κs +

(
519− 1961τ 3

)
κv + 1152

]
m2

N
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−M12
π

[
42

(
7τ 3 − 5

)
+

(
447− 461τ 3

)
κs +

(
779τ 3 + 7

)
κv

]]

+
g2

A A0

(
m2

N

)

192m4
NM2

π

(
4m2

N −M2
π

)3
π2F 2

π

[
−32

((
3τ 3 + 8

)
+ 3τ 3κs + κv

)
m8

N

+ 8M2
π

[
229τ 3 + 3

(
42τ 3 + 25

)
κs +

(
63τ 3 + 64

)
κv + 238

]
m6

N

− 2M4
π

[
2
(
532τ 3 + 537

)
+

(
635τ 3 + 555

)
κs + 335

(
τ 3 + 1

)
κv

]
m4

N

−M6
π

[−(
433τ 3 + 411

)
κs −

(
τ 3 + 1

)(
229κv + 704

)]
m2

N

− 3M8
π

(
τ 3 + 1

)(
15κs + 8

(
κv + 3

))]

+
g2

A A0

(
M2

π

)

192m4
NM2

π

(
4m2

N −M2
π

)3
π2F 2

π

[
16

((
49τ 3 + 68

)

+ 3
(
11τ 3 + 4

)
κs + 3

(
4τ 3 + 5

)
κv

)
m8

N

+ 4M2
π

[−853τ 3 − 5
(
100τ 3 + 69

)
κs − 5

(
49τ 3 + 50

)
κv − 878

]
m6

N

+ M4
π

[
2762τ 3 + 15

(
111τ 3 + 97

)
κs +

(
867τ 3 + 869

)
κv + 2774

]
m4

N

+ M6
π

[−2
(
239τ 3 + 228

)
κs −

(
τ 3 + 1

)(
253κv + 776

)]
m2

N

+ 3M8
π

(
τ 3 + 1

)(
15κs + 8

(
κv + 3

))]

+
g2

A B0

(
m2

N ,M2
π ,m2

N

)

192m4
NM2

π

(
4m2

N −M2
π

)3
π2F 2

π

[
32

((
3τ 3 + 8

)
+ 3τ 3κs + κv

)
m10

N

− 8M2
π

[
327τ 3 + 3

(
64τ 3 + 33

)
κs +

(
87τ 3 + 94

)
κv + 374

]
m8

N

+ 10M4
π

[
554τ 3 + 3

(
109τ 3 + 83

)
κs +

(
165τ 3 + 167

)
κv + 566

]
m6

N

− 2M6
π

[
1733τ 3 +

(
1049τ 3 + 933

)
κs +

(
548τ 3 + 549

)
κv + 1739

]
m4

N

+ M8
π

[(
523τ 3 + 501

)
κs +

(
τ 3 + 1

)(
277κv + 848

)]
m2

N

− 3M10
π

(
τ 3 + 1

)(
15κs + 8

(
κv + 3

))]
, (E.7)

F̄11(Q
2 = 0) =

g2
A

3072m6
N

(
M3

π − 4m2
NMπ

)2
π2F 2

π

[
64

((
2τ 3 − 3

)
+ 2τ 3κs − 2κv

)
m10

N

+ 32M2
π

[
45κsτ

3 + 26τ 3 + 3
(
8τ 3 + 9

)
κv + 20

]
m8

N

+ 8M4
π

[−34τ 3 + 3
(
53τ 3 − 29

)
κs +

(
167− 127τ 3

)
κv + 178

]
m6

N

+ 16M6
π

[
τ 3 − (

136τ 3 + 57
)
κs −

(
59τ 3 + 131

)
κv − 48

]
m4

N

+ M8
π

[(
787τ 3 + 639

)
κs + 31

(
21τ 3 + 25

)
κv + 96

]
m2

N

+ M10
π

[−2
(
43τ 3 + 45

)
κs − 2

(
45τ 3 + 43

)
κv

]]

+
g2

A A0

(
m2

N

)

768m4
N

(
M3

π − 4m2
NMπ

)2
π2F 2

π

[
16

((
2τ 3 + 1

)
+ 2τ 3κs − 2κv

)
m6

N

+ 8M2
π

[
31κsτ

3 + 12τ 3 +
(
24τ 3 + 41

)
κv + 9

]
m4

N

+ 2M4
π

[−50
(
τ 3 + 1

)− 5
(
25τ 3 + 21

)
κs −

(
121τ 3 + 137

)
κv

]
m2

N

+ 9M6
π

(
τ 3 + 1

)(
5κs + 5κv + 2

)]
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+
g2

A A0

(
M2

π

)

768m4
N

(
M3

π − 4m2
NMπ

)2
π2F 2

π

[
−8

(
3
(
2τ 3 − 3

)− 10τ 3κs + 34κv

)
m6

N

− 4M2
π

[
42τ 3 +

(
107τ 3 + 60

)
κs +

(
100τ 3 + 149

)
κv + 46

]
m4

N

+ M4
π

[
118

(
τ 3 + 1

)
+ 5

(
59τ 3 + 51

)
κs +

(
287τ 3 + 319

)
κv

]
m2

N

− 9M6
π

(
τ 3 + 1

)(
5κs + 5κv + 2

)]

+
g2

A B0

(
m2

N ,M2
π ,m2

N

)

768m4
N

(
M3

π − 4m2
NMπ

)2
π2F 2

π

[
−16

((
2τ 3 + 1

)
+ 2τ 3κs − 2κv

)
m8

N

− 24M2
π

[
7κsτ

3 + 2τ 3 +
(
8τ 3 + 25

)
κv + 6

]
m6

N

+ 2M4
π

[
2
(
67τ 3 + 71

)
+ 3

(
113τ 3 + 75

)
κs +

(
321τ 3 + 435

)
κv

]
m4

N

− 4M6
π

[
34

(
τ 3 + 1

)
+

(
85τ 3 + 75

)
κs +

(
83τ 3 + 91

)
κv

]
m2

N

+ 9M8
π

(
τ 3 + 1

)(
5κs + 5κv + 2

)]
. (E.8)



Appendix F

Diagrams for VCS

Here we display all diagrams contributing to VCS at O(q4) in BχPT. We group the
diagrams according to their symmetry with respect to nucleon crossing and charge
conjugation.
One-loop diagrams marked with an asterisk have a symmetry factor of 1

2
.

The one-loop diagrams have been generated using the FeynArts [Hah 01] package.
We modified the counter term routines of the FeynArts package to account for
vertices of different chiral order.
Taking into account the crossed diagrams we have a total of 43 diagrams at order
O(q3) and 57 additional diagrams at order O(q4) .

F.1 Tree-order diagrams

3

D1, O(q3)

4

D2, O(q4)

1

4

D3, O(q3)
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Form factor type diagrams

1 1 1 1

D4, O(q1)

1 2 2 1

D5, O(q2)

2 1 1 2

D6, O(q2)

1 3 3 1

D7, O(q3)

3 1 1 3

D8, O(q3)

2 2 2 2

D9, O(q3)
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1 4 4 1

D10, O(q4)

4 1 1 4

D11, O(q4)

2 3 3 2

D12, O(q4)

3 2 2 3

D13, O(q4)

F.2 One-loop diagrams

Four denominators

1 1 1 1 1 1 1 1

D14, O(q3)
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1 1 1

2

D15, O(q4)

1 1 1

2

D16, O(q4)

1 2 1 1 1 1 2 1

D17, O(q4)

1 1 2 1 1 2 1 1

D18, O(q4)

1 1

2 2

1 1

22

D19, O(q4)

1 2 1

2

D20, O(q4)

1 2 1

2

D21, O(q4)



F.2 One-loop diagrams 109

Three denominators

1 1 1 1 1 1

D22, O(q3)

1 1 1 1 1 1

D23, O(q3)

1 1

2

1 1

2

D24, O(q3)

1 1

2

1 1

2

D25, O(q3)

1 1

2

D26, O(q3)
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1 2 1 1 2 1

D27, O(q4)

1 2 1 1 2 1

D28, O(q4)

1 2 1 1 2 1

D29, O(q4)

2

2 2

D30, O(q4)

Form factor type diagrams

1 1 1 1 1 1 1 1

D31, O(q3)
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1 1 1 1 1 1 1 1

D32, O(q3)

1 1 1

2

1 1 1

2

D33, O(q3)

1 1 1

2

1 1 1

2

D34, O(q3)

2 1 1 1 1 1 1 2

D35, O(q4)
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1 1 2 1 1 2 1 1

D36, O(q4)

2 1 1 1 1 1 1 2

D37, O(q4)

2 1 1

2

1 1 2

2

D38, O(q4)

2 1 1

2

1 1 2

2

D39, O(q4)
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Two denominators

1 1 1 1

D40, O(q3)

2

2

D∗
41, O(q4)

2

2

D∗
42, O(q4)

2

2

D∗
43, O(q4)

Form factor type diagrams

1 1 1 1 1 1

D44, O(q3)

1 1 1 1 1 1

D45, O(q3)
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1 1 1 1 1 1

D46, O(q3)

1 1 1 1 1 1

D47, O(q3)

1 1

2

1 1

2

D∗
48, O(q3)

1 1

2

1 1

2

D∗
49, O(q3)
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2 1 1 1 1 2

D50, O(q4)

2 1 1 1 1 2

D51, O(q4)

2 1 1 1 1 2

D52, O(q4)

2 1 1 1 1 2

D53, O(q4)

1 2

2

2 1

2

D∗
54, O(q4)
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2 1

2

1 2

2

D∗
55, O(q4)

1 2

2

2 1

2

D∗
56, O(q4)

2 1

2

1 2

2

D∗
57, O(q4)

One denominator

2

D∗
58, O(q4)
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Form factor type

1 1 1 1

D∗
59, O(q3)

1 1 1 1

D∗
60, O(q3)

2 1 1 2

D∗
61, O(q4)

1 2 2 1

D∗
62, O(q4)
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2 1 1 2

D∗
63, O(q4)

1 2 2 1

D∗
64, O(q4)

Self energy type diagrams

1 1 1 1 1 1 1 1

D65, O(q3)

1 2 1 1 2 1

D∗
66, O(q4)
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2 1 1 1 1 1 1 2

D67, O(q4)

1 1 1 2 2 1 1 1

D68, O(q4)
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