
Detection of Small Buried Objects:

Asymptotic Factorization and MUSIC

Dissertation zur Erlangung des Grades

“Doktor der Naturwissenschaften”

am Fachbereich Physik, Mathematik und Informatik

der Johannes Gutenberg–Universität Mainz

Roland Griesmaier

geboren in Innsbruck

Mainz 2008



D77 Mainzer Dissertation



iii

Abstract

We are concerned with the analysis and numerical solution of the inverse
scattering problem to reconstruct the number and the positions of a collec-
tion of finitely many small perfectly conducting scatterers buried within the
lower halfspace of an unbounded three–dimensional two–layered background
medium from near field measurements of time–harmonic electromagnetic
waves.

For this purpose, we first study the corresponding direct scattering prob-
lem in detail and derive an asymptotic expansion of the scattered field as
the size of the scatterers tends to zero. Integral equation methods and a fac-
torization of the corresponding near field measurement operator are applied
to prove this result.

Then, we use the asymptotic expansion of the scattered field to justify
a noniterative MUSIC–type reconstruction method for the solution of the
inverse scattering problem. We propose a numerical implementation of this
reconstruction method and provide a series of numerical experiments that
confirm our theoretical results.

Because our proof of the asymptotic expansion for the scattering prob-
lem in the two–layered background medium is quite technical, we discuss
a reduced model problem in advance to explain the basic ideas of our ap-
proach to verify asymptotic expansions of this type more clearly. We study
the electrostatic potential in a conductor consisting of finitely many small
insulating inclusions embedded within a bounded homogeneous background
medium, corresponding to an electric current applied at the boundary of the
conductor, and prove an asymptotic expansion of this scalar potential at the
boundary of the conductor, as the size of the inclusions tends to zero.
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Chapter

Chapter 1

Introduction

In this work, we consider a simple model problem for the electromagnetic
exploration of perfectly conducting objects buried within the lower halfspace
of an unbounded two–layered background medium. In possible applications,
such as, e.g., humanitarian demining, or more generally the exploration of
the grounds subsurface to detect and identify buried objects, the two layers
would correspond to air and soil. Moving a set of electric devices parallel to
the surface of ground to generate a time–harmonic field, the induced field
is measured within the same devices. The goal is to retrieve information
about the position and the shape of buried scatterers from these data.

This problem originated in the project “HuMin/MD — Metal detec-
tors for humanitarian demining — Development potentials in data analy-
sis methodology and measurement” [61], supported by the German Federal
Ministry of Education and Research. The aim of this project has been to
reduce the number of false alarms produced by metal detectors used for hu-
manitarian demining. For this purpose mathematical methods for analyzing
data obtained from devices, which are idealizations of devices made up of
standard off–the–shelf metal detectors, have been developed. The construc-
tion and investigation of such a method is also the main objective of the
present thesis.

In mathematical terms, we consider an inverse obstacle scattering prob-
lem for time–harmonic electromagnetic waves in a two–layered background
medium. Before we start to investigate this specific problem, we give a very
brief introduction to inverse obstacle scattering for time–harmonic electro-
magnetic waves and summarize some numerical approaches for solving such
problems.

Broadly speaking, inverse obstacle scattering for time–harmonic elec-
tromagnetic waves seeks to recover the position and the shape of inhomo-
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2 1. Introduction

geneities in a known background medium from measurements of electro-
magnetic fields at a single frequency. These fields can be described by time–
harmonic Maxwell’s equations, which form a system of vector valued linear
partial differential equations, together with appropriate boundary and ra-
diation conditions. Writing the total field as the sum of the incident field
and the scattered field, the direct (scattering) problem in this context is to
determine the scattered field from a knowledge of the incident field and the
properties of the scatterers, i.e., to solve the partial differential equation.
On the other hand, the corresponding inverse (scattering) problem consists
in recovering information about the scatterers from a knowledge of (one or
many) scattered fields on a surface near or far away from the scatterers, i.e.,
in reconstructing the differential equation and/or its domain of definition
from the behavior of (one or many of) its solutions [39]. We are mainly
interested in the latter problem, which is well known to be nonlinear and
ill–posed in the sense that the solution of the problem, i.e., the shape and
the position of the scatterers, does not depend continuously on the scattered
fields in any reasonable norm.

Over the past thirty years a considerable amount of work has been ded-
icated to the development of the mathematical theory and numerical algo-
rithms for this inverse problem. For a survey on the state of the art we
refer the reader to the monograph by Colton and Kress [39] and their re-
cent review article [40]; see also Colton, Coyle, and Monk [36], Isakov [66],
Kirsch [71], and Pike and Sabatier [93].

A classical attempt to solve this problem is to formulate it as a nonlinear
(ill–posed) operator equation and to use regularized nonlinear optimization
techniques such as e.g. regularized Newton–type methods; cf. e.g. [39] and
Engl, Hanke, and Neubauer [48]. The advantage of these methods is that
they require as data only the scattered field for one incident field. But this
approach has two major drawbacks. First, nonlinear optimization techniques
typically need a priori information about the obstacles, like for instance their
number or their approximate position, which is in general not available, and
second, such methods usually solve the forward problem in each iteration
step, which is computationally very expensive.

So–called decomposition methods, as e.g. the Dual Space Method due to
Colton and Monk [41,42] or the method due to Kirsch and Kress [77], over-
come the latter disadvantage by breaking up the inverse problem into two
parts. First the scattered field is reconstructed from the known data by an-
alytic continuation, which is linear but ill–posed, and then the boundaries
of the scatterers are reconstructed as the location where the boundary con-
dition for the total field is satisfied, which is a nonlinear process. We refer
to [39,40] for details and additional references.

Influenced by decomposition methods a new class of solution methods
has been developed during the last ten years. These methods are nonit-
erative and use no or at least less a priori information on the unknown
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scatterers, but only seek to recover limited (qualitative) information about
the scattering objects. They have been termed qualitative methods and
examples are the Linear Sampling Method introduced first by Colton and
Kirsch [37], the Factorization Method by Kirsch [72], Ikahata’s Probe Method
[64], and the Method of Singular Sources developed by Potthast [94]. A com-
mon feature of these methods is that they use criteria on the known data to
decide whether a point (or a curve or a set) in the search domain belongs
to a scatterer or not. These criteria can be implemented by sampling the
search domain, using an appropriate collection of points (or curves or sets).
A drawback of most qualitative methods is that they require the knowledge
of much more measurement data than iterative methods or decomposition
methods. But recently also qualitative methods, which use only scattering
data for one incident field, have been developed by Kusiak and Sylvester [84],
by Potthast, Kusiak, and Sylvester [96], and by Luke and Potthast [85]. As
a starting point to qualitative methods we refer the reader to the recent
review articles by Colton and Kress [40] and by Potthast [95] and to the
monographs by Cakoni and Colton [24] and by Kirsch and Grinberg [76].

Also the study of two–layered background media has over the past years
been the subject of extensive research. In this work, we develop a reconstruc-
tion method for two–layered background media that is particularly adapted
to the mine detection application mentioned above. In the course of the
project [61] several reconstruction methods for this problem have been pro-
posed: Reformulating the inverse scattering problem as a least squares op-
timization problem and applying a direct search method, Delbary et al. [46]
developed an iterative reconstruction method. Among qualitative methods,
the Linear Sampling Method was studied by Gebauer et al. [52] and by
Cakoni, Fares, and Haddar [25]. Moreover, the Factorization Method was
applied by Kirsch [75] and in combination with low frequency approxima-
tions by Gebauer, Hanke, and Schneider [53]; see also Gebauer [51].

Although these methods give good reconstructions of the position and
shape of buried scatterers in case of sufficiently accurate data, they turn out
to be quite sensitive to noise contained in these data. This is of course due to
the ill–posedness of the inverse problem. For the mine detection application
it would be useful to have a method at hand that can handle bigger amounts
of noise, even if it reconstructs only the approximate positions of the scat-
terers. Knowing these positions, for instance a decomposition method can
be used to reconstruct the shapes of the scatterers in a post processing step.
Of course, information on the shape of buried objects is necessary to identify
mines.

In order to handle the ill–posedness of the inverse problem we incor-
porate a priori knowledge on the measurement device and the scatterers
available from our application. Standard off–the–shelf metal detectors used
for humanitarian demining work at very low frequencies around 20 kHz;
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cf. e.g. Guelle et al. [57]. Depending on the medium, this corresponds to
wavelengths of several kilometers. Thus, the typical size of the objects of
interest, i.e., mines or even only the metal parts contained in mines, which
is only a few centimeters, is very small with respect to the wavelength of
the incident field. We use this information to construct a noniterative re-
construction method that is more robust against noise in the data. This
method is a generalization of a method, which was originally developed for
electrical impedance tomography by Brühl, Hanke, and Vogelius [22]. It
belongs to the class of MUSIC–type reconstruction methods, applied first to
inverse scattering problems by Devaney [47]. The method is based on an
asymptotic expansion of the scattered field as the size of the scatterers tends
to zero. Similar reconstruction methods for inverse electromagnetic obstacle
scattering were recently investigated by Ammari et al. [4] and Iakovleva et
al. [62].

Asymptotic expansions of the scattered field in case of small scatterers
have already been studied in the context of low frequency scattering more
than 100 years ago. In 1897 Lord Rayleigh [97] observed that a small per-
fectly conducting obstacle illuminated by an electromagnetic wave gives rise
to a scattered field that can be ascribed to equivalent electric and magnetic
dipoles. The corresponding dipole moments are given as integrals of certain
electric and magnetic potentials over the surface of the scatterer. Keller,
Kleinman, and Senior [69] pointed out that these dipole moments can be
written in terms of the electric and magnetic field at the obstacle, mul-
tiplied by a matrix, called the electric and magnetic polarizability tensor,
respectively. The elements of these matrices depend only on the geometry
of the scatterers.

The asymptotic expansion we are going to prove is essentially of the same
structure. But there is a fundamental difference between low frequency ex-
pansions and asymptotic expansions for small obstacles: In low frequency
expansions the wavenumber, i.e., a parameter in the differential equation
governing the wave motion, is supposed to be small, while in expansions of
the scattered field in case of small scatterers the size of the inhomogeneities
is assumed to be small, which is information on the domain of definition
of the differential equation. For a comprehensive presentation of classical
low frequency scattering we refer to Dassios and Kleinman [44]. Asymptotic
expansions for small inhomogeneities were first studied by Friedman and
Vogelius in their work [49] on inverse conductivity problems. Since then
expansions of this type have been derived for a variety of different prob-
lems. For an introduction to this topic we refer the interested reader to the
monographs [7,8] by Ammari and Kang. Asymptotic expansions of electro-
magnetic fields in case of small scatterers were studied by Ammari et al. in
[10, 12, 14] for boundary value problems in bounded domains and in [4, 15]
for scattering problems in unbounded homogeneous background media. But
no rigorous analysis for layered background media has been available so far.
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We investigate the direct scattering problem in unbounded two–layered
background media in detail and end up with an asymptotic expansion of the
scattered field as the size of the scatterers tends to zero, which is uniform
with respect to the incident field. Considering only the leading order term
in this expansion, we construct a characterization of the scatterers in terms
of the given data. Implementing this criterion numerically in a sampling
method, we obtain a noniterative visualization method for the approximate
positions of the unknown scatterers.

Outline:

In Chapter 2, we start with a reduced model problem. We study the electro-
static potential in a conductor consisting of finitely many insulating inclu-
sions of small diameter embedded in a homogeneous background medium,
corresponding to a current applied at the boundary of the conductor. We
derive an asymptotic expansion of this scalar potential at the boundary of
the conductor as the size of the inclusions tends to zero. This result is of
interest on its own and has previously been investigated in [49], by Ammari
and Kang [5], and by Capdeboscq and Vogelius [26] using different methods.
Because this problem is less technical than the full electromagnetic scatter-
ing problem in the two–layered medium, it allows for a simpler presentation
of our approach to prove this kind of asymptotic expansions.

In Chapter 3, we consider the direct scattering problem for small per-
fectly conducting scatterers buried within the lower halfspace of an un-
bounded two–layered background medium. We describe our model for the
measurement process and derive an asymptotic expansion of the scattered
field corresponding to some dipole excitation on the measurement device as
the size of the scatterers tends to zero.

In Chapter 4, we use this asymptotic expansion to construct a char-
acterization of the positions of the scatterers in terms of the correspond-
ing scattered fields. This characterization is implemented numerically in a
MUSIC–type reconstruction method. At the end of this chapter we present
numerical results.

In Appendix A, we recall the definitions and some important proper-
ties of electric and magnetic polarizability tensors. Appendix B is devoted
to a representation theorem for electromagnetic fields in two–layered me-
dia, and we study reciprocity relations for the corresponding dyadic Green’s
functions. In Appendix C, we comment on the uniqueness of solutions to a
boundary value problem and a transmission problem for Maxwell’s equations
in two–layered background media.
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Remarks:

The results of Chapter 2, which have been obtained jointly with Habib
Ammari and Martin Hanke, have already been published [3]. Some of the
developments of Chapter 3 and Chapter 4 have been published in [56].
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Chapter 2

Asymptotic Factorization

for the Laplace Equation

In this chapter, we consider a reduced model problem. We study the elec-
trostatic potential in a conductor consisting of finitely many insulating in-
clusions of small diameter embedded in a homogeneous reference medium
corresponding to an electric current applied at the boundary of the con-
ductor. The electrostatic potential in the conductor is harmonic outside the
inclusions and satisfies homogeneous Neumann boundary conditions on their
boundaries. The normal derivative of the voltage potential on the boundary
of the conductor is proportional to the applied current. For a derivation of
this model from Maxwell’s equations we refer the reader to Cheney, Isaacson,
and Newell [33].

Here, the direct problem is to calculate the voltage potential in the con-
ductor, given the position and the shape of the inclusions and the boundary
current. The corresponding inverse problem is to recover the position and
the shape of the inclusions from a knowledge of the electrostatic potential
on the boundary of the conductor corresponding to (one or many) boundary
currents. More precisely, we suppose in this chapter that the Neumann–to–
Dirichlet operators, which map currents on the boundary of the conductor
to the corresponding boundary voltages, are given, both with and without
inclusions. This latter problem is a special case of the inverse conductivity
problem, a classical inverse boundary value problem. We refer the reader to
[33] and to Borcea [18,19] for review articles on that topic.

Uniqueness of solutions to inverse problems of this type is known, cf.
e.g. Isakov [65] and Kohn and Vogelius [78]. But the problem has also been
shown to be nonlinear and ill–posed; see Alessandrini [2].

Among other qualitative methods for solving this inverse problem, the
Factorization Method has shown to be quite successful in recent years.
For inverse conductivity problems this reconstruction method was devel-
oped by Brühl [21], Hähner [58], Kress [79], and Kress and Kühn [82]. It
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has been extended to the halfspace geometry by Hanke and Schappel [60],
and Gebauer [50] succeeded in generalizing the method to a large class of
real elliptic problems; cf. also Kirsch [74] and Nachman, Päivärinta, and
Teirilä [90].

According to our general strategy, we assume that the inclusions are
of small diameter and incorporate this a priori information to handle the
ill–posedness of the inverse problem. For this purpose, we examine the
corresponding direct problem in detail and derive an asymptotic expansion
of the measurement operator, which is the difference of the Neumann–to–
Dirichlet operators with and without inclusions, as the size of the inclusions
tends to zero. Our proof of this expansion is based on a factorization of the
measurement operator developed in [21]. We use layer potential techniques
to describe the three operators occurring in this factorization, expand them
separately as the size of the inclusions tends to zero and use these expan-
sions to calculate the leading order term in the asymptotic expansion of the
measurement operator.

Over the past twenty years asymptotic expansions for the electrostatic
potential in presence of low volume fraction inhomogeneities have been stud-
ied intensively. In [49] Friedman and Vogelius deduced the leading order
term in this asymptotic expansion for insulating and perfectly conduct-
ing inclusions using variational methods. Cedio–Fengya, Moskow, and Vo-
gelius [29] proved similar formulas for penetrable inhomogeneities. Using
layer potential techniques Ammari and Kang [5] extended these asymptotic
expansions including higher order terms. Capdeboscq and Vogelius [26] gen-
eralized the formula for the leading order term to the case of inclusions that
are just measurable with small Lebesgue measure. This generalization en-
compasses also the formulas for inhomogeneities of small thickness derived
by Beretta et al. [16, 17].

Reconstruction methods for the inverse problem under consideration,
which make use of these asymptotic expansions of the solution of the corre-
sponding direct problem have, e.g., been developed by Ammari, Moskow,
and Vogelius [12], by Ammari and Seo [13], by Brühl, Hanke, and Vo-
gelius [22], in [29], and by Kang and Lee [67]. Among those, MUSIC–type
algorithms seem to be very stable and therefore particularly useful for noisy
data; cf. [22] and Hanke and Brühl [59] for details and numerical results.
As pointed out by Cheney [34], in [59], and by Kirsch [73], there is a strong
relation between MUSIC–type methods and Linear Sampling Methods or
Factorization Methods. Our way of proving the asymptotic formula enables
us to clarify the connection between these methods completely.

For surveys on imaging of low volume fraction inhomogeneities in the
context of inverse boundary value problems we refer the reader to the mono-
graphs [7, 8] by Ammari and Kang and to Capdeboscq and Vogelius [28].
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The outline of this chapter is as follows. After a short presentation of our
notation in the next section and recalling two results from functional analy-
sis, which we apply frequently in this work, we study surface potentials for
the Laplace equation in Section 2.2. In Section 2.3, we set up the model, we
are going to use, and in Section 2.4, we review the factorization of the mea-
surement operator, i.e., of the difference of the two Neumann–to–Dirichlet
operators mentioned above. Here and in the following two sections, we re-
strict our derivations to the case of a single inclusion. In order to establish
the asymptotic expansion, we require some technical estimates; these are
found in Section 2.5. Then, in Section 2.6, we derive the main result of
this chapter, the asymptotic expansion of the measurement operator. Mul-
tiple inclusions are treated in Section 2.7. Finally, we comment on how the
asymptotic formula can be used to solve the inverse problem numerically in
Section 2.8, and we explain the connection between Factorization Methods
and MUSIC–type methods in detail.

2.1 Preliminaries

First a word about notation: Vectors are distinguished from scalars by the
use of bold typeface (but this convention does not, in general, carry over
to operators). By x = (x1, x2, . . . , xn)

⊤ we denote a generic point in R n,
n ≥ 2, where (·)⊤ denotes the transpose of a vector or matrix. Throughout
let x ·y be the standard scalar product of x ,y ∈ R n and let |x | denote the
Euclidean norm of x .

Suppose D ⊂ R n is a bounded open set of class C2,α, 0 < α < 1. The
standard real valued Sobolev spaces Hr(D), Hr

loc( R n), and Hr
loc( R n \D),

r ∈ R , and Hs(∂D), s ∈ [−2, 2], are defined on D, R n, R n \D, and on the
boundary ∂D, respectively. For 1/2 < r ≤ 2 let γ0 : Hr(D) → Hr−1/2(∂D)
be the corresponding trace operator. We refer the reader to McLean [86,
pp. 57–107] for details. For any regular vector field u ∈ C∞(D)3, we define
the normal trace γn(u) := ν·u |∂D. Then, γn can be extended to a continuous
linear map γn from H (div, D; R 3) :=

{

u ∈ L2(D)3
∣

∣ divu ∈ L2(D)
}

to

H−1/2(∂D); see Monk [88, Theorem 3.24].
For Banach spaces X and Y we denote by L(X,Y ) the set of all bounded

linear operators on X to Y . Together with the usual operator norm ‖ ·‖ this
is also a Banach space. We write L(X) for L(X,X), and by I : X → X we
denote the identity operator. Throughout we let scalar operators operate
on vectors component–wise and vector operators on matrices column by
column. Moreover, in our estimates we shall use a generic positive constant
C everywhere different.

In the next two lemmas, we recall the Fredholm alternative and a simple
but useful result from functional analysis in the form we will apply them
later.
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Theorem 2.1. Let A : X → X, B : Y → Y be compact adjoint operators
in a dual system 〈X,Y 〉. Then, either I−A and I−B are bijective or I−A
and I −B have nontrivial nullspaces.

Proof. This result is a part of the Fredholm alternative. For a proof we refer
the reader to Kress [79, Theorem 4.15].

Lemma 2.2. Let A,B ∈ L(X) be bounded linear operators on a Banach
space X. Assume that A−1 and B−1 exist. Then,

‖A−1 −B−1‖ ≤ ‖A−1‖‖B−1‖‖A−B‖.

Proof. Noting that

B−1 −A−1 = B−1(A−B)A−1,

the assertion follows directly from the definition of the operator norm.

2.2 Neumann Function and Surface Potentials

In this section, we collect some results concerning fundamental solutions and
boundary integral operators occurring in potential theory.

The function

Φ0(x − y) :=











− 1

2π
log |x − y |, x ,y ∈ R n, x 6= y , n = 2,

1

(n− 2)ωn
|x − y |2−n, x ,y ∈ R n, x 6= y , n ≥ 3,

(2.1)

where ωn denotes the area of the (n− 1)–dimensional unit sphere, is called
fundamental solution for the Laplace equation. It satisfies

∆xΦ0(x − y) = −δ(x − y), x ,y ∈ R 3,

where δ denotes the Dirac–delta distribution.
Suppose Ω ⊂ R n, n ≥ 2, is a bounded domain of class C2,α, 0 < α < 1,

and denote by ν the unit outward normal to ∂Ω relative to Ω. We denote
by N the Neumann function for ∆ in Ω, i.e., for all y ∈ Ω, N(·,y) is the
unique distributional solution of

∆xN(x ,y) = −δ(x − y), x ∈ Ω, (2.2a)

∂N

∂ν(x )
(x ,y) = − 1

|∂Ω| , x ∈ ∂Ω, (2.2b)

together with the normalization condition
∫

∂ΩN(x ,y) ds(x ) = 0. Here,
|∂Ω| denotes the area of ∂Ω. Then, N is symmetric in its arguments on
(Ω × Ω) \ diag(Ω × Ω), i.e.,

N(x ,y) = N(y ,x ), (x ,y) ∈ (Ω × Ω) \ diag(Ω × Ω),
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(cf. [7, p. 30]), and for each y ∈ Ω it is of the form

N(x ,y) = Φ0(x − y) + pN (x ,y), (2.3)

where pN (·,y) solves the boundary value problem

∆xpN (x ,y) = 0, x ∈ Ω,

∂pN
∂ν(x )

(x ,y) = − 1

|∂Ω| +
1

ωn

(x − y) · ν(x )

|x − y |n , x ∈ ∂Ω,

with
∫

∂Ω pN (x ,y) ds(x ) = −
∫

∂Ω Φ0(x − y) ds(x ). Note that ∂pN
∂ν

∣

∣

∂Ω
(·,y)

is continuous and therefore this problem has a unique classical solution;
cf. [79, Theorem 6.28]. Because Φ0 is symmetric, it follows that also pN
is symmetric in its arguments in Ω × Ω. As a consequence, pN (x , ·) is a
harmonic function on Ω for all x ∈ Ω.

Let D ⊂ R n be a bounded open set of class C2,α, 0 < α < 1, consisting
of finitely many domains such that the boundary of every component of D
is connected. We denote the unit outward normal to ∂D relative to D by
ν, too. Given a function φ ∈ C(∂D), the single layer potential and double
layer potential with density φ are defined by

(S0
Dφ)(x ) :=

∫

∂D
Φ0(x − y)φ(y) ds(y), x ∈ R n \ ∂D,

and

(D0
Dφ)(x ) :=

∫

∂D

∂Φ0(x − y)

∂ν(y)
φ(y) ds(y), x ∈ R n \ ∂D.

Then, S0
Dφ is continuous throughout R n and the following trace formulas

hold (cf. [79, p. 78–82]):

∂S0
Dφ

∂ν

∣

∣

∣

±

∂D
(x ) =

((

∓ 1

2
I +K0

D
⊤
)

φ
)

(x ), x ∈ ∂D, (2.4a)

D0
Dφ
∣

∣

∣

±

∂D
(x ) =

((

± 1

2
I +K0

D

)

φ
)

(x ), x ∈ ∂D, (2.4b)

where K0
D is defined by

(K0
Dφ)(x ) :=

∫

∂D

∂Φ0(x − y)

∂ν(y)
φ(y) ds(y), x ∈ ∂D,

and K0
D
⊤

is the transpose of K0
D, i.e.,

(

K0
D
⊤
φ
)

(x ) =

∫

∂D

∂Φ0(x − y)

∂ν(x )
φ(y) ds(y), x ∈ ∂D.
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Furthermore, the normal derivative of the double layer potential D0
Dφ is

continuous across ∂D.

The expressions S0
D, D0

D, K0
D, and K0

D
⊤

can be extended such that they
define bounded linear operators

S0
D : H−1/2(∂D) → H1

loc( R n), (2.5a)

D0
D

∣

∣

D
: H1/2(∂D) → H1(D), (2.5b)

D0
D

∣

∣

R
n\D

: H1/2(∂D) → H1
loc( R n \D), (2.5c)

K0
D : H1/2(∂D) → H1/2(∂D), (2.5d)

K0
D
⊤

: H−1/2(∂D) → H−1/2(∂D), (2.5e)

and the jump conditions remain valid for these operators; cf. [86, Theo-

rem 6.11]. Moreover, K0
D as well as K0

D
⊤

is compact (cf. Nédélec [91,
Theorem 4.4.1]) and −1

2I + K0
D has trivial nullspace in H1/2(∂D) (see

[7, Lemma 2.5]). Hence, by Theorem 2.1, −1
2I + K0

D and −1
2I + K0

D
⊤

are invertible on H1/2(∂D) and H−1/2(∂D), respectively.

Because K0
D1 = −1

2 (cf. [79, p. 79]), we get for each φ ∈ H−1/2(∂D) that

∫

∂D

(

−1

2
I +K0

D
⊤
)

φ ds = −
∫

∂D
φ ds.

Thus, −1
2I +K0

D
⊤

maps

H
−1/2
⋄ (∂D) :=

{

φ ∈ H−1/2(∂D)
∣

∣

∣

∫

∂D
φ ds = 0

}

to H
−1/2
⋄ (∂D). In the same way, we find that 1

2I+K0
D
⊤

maps H−1/2(∂D) to

H
−1/2
⋄ (∂D), and from [7, Lemma 2.5] we get that 1

2I+K0
D
⊤

is one to one on

H
−1/2
⋄ (∂D). Hence, by Theorem 2.1, 1

2I+K0
D
⊤

is invertible on H
−1/2
⋄ (∂D).

Next, we consider modified surface potentials. Let now D be a bounded
open set of class C2,α that is compactly contained in Ω such that the bound-
aries of all components of D are connected. For φ ∈ C(∂D) we define

(SNDφ)(x ) :=

∫

∂D
N(x ,y)φ(y) ds(y), x ∈ Ω \ ∂D,

(DN
Dφ)(x ) :=

∫

∂D

∂N(x ,y)

∂ν(y)
φ(y) ds(y), x ∈ Ω \ ∂D.

According to (2.3), and because pN (·,y) is C2 (with respect to both vari-
ables) for y in any compact subset of Ω, we find that SNDφ is continuous in
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Ω and obtain the following trace formulas:

∂SNDφ
∂ν

∣

∣

∣

±

∂D
(x ) =

((

∓ 1

2
I +K0

D
⊤
)

φ
)

(x ) +

∫

∂D

∂pN (x ,y)

∂ν(x )
φ(y) ds(y),

(2.6a)

DN
Dφ
∣

∣

∣

±

∂D
(x ) =

((

± 1

2
I +K0

D

)

φ
)

(x ) +

∫

∂D

∂pN (x ,y)

∂ν(y)
φ(y) ds(y)

(2.6b)

for x ∈ ∂D. Define

(PND φ)(x ) :=

∫

∂D

∂pN (x ,y)

∂ν(y)
φ(y) ds(y), x ∈ ∂D, (2.7)

and let
KN
Dφ := K0

Dφ+ PND φ. (2.8)

Then, we can write (2.6) as follows:

∂SNDφ
∂ν

∣

∣

∣

±

∂D
(x ) =

((

∓ 1

2
I +KN

D
⊤
)

φ
)

(x ), x ∈ ∂D, (2.9a)

DN
Dφ
∣

∣

∣

±

∂D
(x ) =

((

± 1

2
I +KN

D

)

φ
)

(x ), x ∈ ∂D, (2.9b)

where KN
D

⊤
is the transpose of KN

D .
Recalling (2.3), the mapping properties of the boundary integral opera-

tors from (2.5) and that pN (·,y) is C2 (with respect to both variables) for
y in any compact subset of Ω, we find that the expressions SND , DN

D , KN
D ,

and KN
D

⊤
can be extended such that they define bounded linear operators

SND : H−1/2(∂D) → H1(Ω),

DN
D

∣

∣

D
: H1/2(∂D) → H1(D),

DN
D

∣

∣

Ω\D
: H1/2(∂D) → H1(Ω \D),

KN
D : H1/2(∂D) → H1/2(∂D),

KN
D

⊤
: H−1/2(∂D) → H−1/2(∂D).

The jump relations (2.9) remain valid for these operators. Moreover, PND
gives rice to a compact operator

PND : H1/2(∂D) → H1/2(∂D),

and so the corresponding dual operator

PND
⊤

: H−1/2(∂D) → H−1/2(∂D)

and the operators KN
D and KN

D
⊤

are compact, too.
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Lemma 2.3. The operators −1
2I +KN

D and −1
2I +KN

D
⊤

have trivial null-

space in H1/2(∂D) and H−1/2(∂D), respectively.

Proof. Let φ ∈ H−1/2(∂D) be a solution of the homogeneous equation
(

−1
2I +KN

D
⊤)
φ = 0 and define v := SNDφ. Then, by (2.9a),

∂v

∂ν

∣

∣

∣

+

∂D
=
(

−1

2
I +KN

D
⊤
)

φ = 0,

and v solves the Neumann problem

∆v = 0 in Ω \D, ∂v

∂ν

∣

∣

∣

∂Ω
= c,

∂v

∂ν

∣

∣

∣

∂D
= 0,

where c := − 1
|∂Ω|

∫

∂D φ ds is constant. From the Divergence Theorem (cf.

[88, Theorem 3.19]), we obtain c = 0. Thus, we find that v is constant in
Ω \D and therefore also on ∂D. Because ∆v = 0 in D, this yields that v is

constant in D. From (2.9a), we see that φ = − ∂v
∂ν

∣

∣

∣

+

∂D
+ ∂v

∂ν

∣

∣

∣

−

∂D
= 0. Hence,

N
(

−1
2I +KN

D
⊤)

= {0}.
By Theorem 2.1, also N

(

−1
2I +KN

D

)

= {0} in H1/2(∂D).

So, by Lemma 2.3 and Theorem 2.1, −1
2I +KN

D and −1
2I +KN

D
⊤

are

invertible on H1/2(∂D) and H−1/2(∂D), respectively.
Because pN (x , ·) is harmonic in D for all x ∈ ∂D, we find that

KN
D 1 = K0

D1 + PND 1 = −1

2
+

∫

∂D

∂pN (·,y)

∂ν(y)
ds(y) = −1

2
.

Thus, we get as above that −1
2I + KN

D
⊤

maps H
−1/2
⋄ (∂D) to H

−1/2
⋄ (∂D).

Also as a consequence of this harmonicity, we find that the subspace of
constant functions in H1/2(∂D) is contained in the nullspace of PND . More-
over, applying the harmonicity of pN (·,y) in D for all y ∈ ∂D, we see that

PND
⊤

maps H−1/2(∂D) to H
−1/2
⋄ (∂D). Therefore, we may in the following

consider PND and PND
⊤

as dual operators from

H
1/2
⋄ (∂D) :=

{

φ ∈ H1/2(∂D)
∣

∣

∣

∫

∂D
φ ds = 0

}

to H1/2(∂D) and H−1/2(∂D) to H
−1/2
⋄ (∂D), respectively.

2.3 Mathematical Setting

In this section, we set up the mathematical model we are going to use.
Let Ω ⊂ R n, n ≥ 2, denote a bounded domain of class C2,α, 0 < α < 1,
and assume that Ω is filled with a homogeneous material with constant



15

ν

ν

Ω

Dδ,1

Dδ,2
Dδ,3

Dδ,4

Figure 2.1: Sketch of the geometrical setup.

conductivity σ0 := 1. Suppose that Ω contains a finite number of well
separated small insulating inclusions, each of the form Dδ,l := zl + δBl,
1 ≤ l ≤ m, where Bl ⊂ R n is a bounded open set of class C2,α, 0 < α <
1, containing the origin that consists of finitely many domains such that
the boundary of every component of Bl is connected. The points zl ∈ Ω,
1 ≤ l ≤ m, that determine the position of the inclusions are assumed to
satisfy

|zj − zl| ≥ d0 for j 6= l and dist(zl, ∂Ω) := inf
x∈∂Ω

|zl − x | ≥ d0

for some constant d0 > 0, 1 ≤ j, l ≤ m. The value of 0 < δ ≤ 1, the common
order of magnitude of the size of the inclusions, is assumed to be small
enough such that the inclusions are disjoint and compactly contained in Ω.
So, the total collection of inclusions takes the form Dδ :=

⋃m
l=1(zl + δBl).

Throughout we denote by ν the unit outward normal to ∂Ω, ∂Dδ,l, and ∂Bl
relative to Ω, Dδ,l, and Bl, 1 ≤ l ≤ m, respectively. Later we will also
consider the special case of a single inclusion. Then, we omit the subscripts
l to simplify the notation.

Given the piecewise constant conductivity distribution

σδ(x) :=

{

0, x ∈ Dδ,

1, x ∈ Ω \Dδ,

and prescribing a boundary current f ∈ H
−1/2
⋄ (∂Ω) on ∂Ω, let uδ denote the

corresponding electrostatic potential in presence of the inclusions Dδ, i.e.,
the unique weak solution

uδ ∈ H1
⋄,∂Ω(Ω \Dδ) :=

{

u ∈ H1(Ω \Dδ)
∣

∣

∣

∫

∂Ω
u|∂Ω ds = 0

}
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to

∆uδ = 0 in Ω \Dδ, (2.10a)

∂uδ
∂ν

= f on ∂Ω, (2.10b)

∂uδ
∂ν

= 0 on ∂Dδ. (2.10c)

On the other hand, the so–called background potential u0 is the electrostatic
potential for the same input current f but without inclusions. That is, u0

denotes the unique weak solution

u0 ∈ H1
⋄ (Ω) :=

{

u ∈ H1(Ω)
∣

∣

∣

∫

∂Ω
u|∂Ω ds = 0

}

to

∆u0 = 0 in Ω, (2.11a)

∂u0

∂ν
= f on ∂Ω. (2.11b)

The relations between the applied boundary current f and the boundary
voltages uδ|∂Ω and u0|∂Ω define bounded linear operators

Λδ : H
−1/2
⋄ (∂Ω) → H

1/2
⋄ (∂Ω), f 7→ uδ|∂Ω

and

Λ0 : H
−1/2
⋄ (∂Ω) → H

1/2
⋄ (∂Ω), f 7→ u0|∂Ω,

called the Neumann–to–Dirichlet operators associated with the boundary
value problems (2.10) and (2.11), respectively. These mappings are in fact
isomorphisms between these spaces. This follows from the existence and
uniqueness of solutions of the corresponding Dirichlet boundary value prob-
lems, the continuous dependence of these solutions on their boundary values
and from the continuity of normal trace operator γn.

2.4 Factorization of Λδ − Λ0

In this section, we recall a factorization of the difference of the Neumann–
to–Dirichlet operators Λδ − Λ0, which was developed in [21]; cf. also [59].
Here and in the following two sections, we restrict ourselves to the case of a
single inclusion, i.e., Dδ = z + δB.

In order to explain this factorization, we need to study two additional
boundary value problems and a diffraction problem. First, we consider the
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boundary value problem

∆vδ = 0 in Ω \Dδ, (2.12a)

∂vδ
∂ν

= 0 on ∂Ω, (2.12b)

∂vδ
∂ν

= φ on ∂Dδ, (2.12c)

which for φ ∈ H
−1/2
⋄ (∂Dδ) has a unique weak solution vδ ∈ H1

⋄,∂Ω(Ω \Dδ).
Thus, we may define

Lδ : H
−1/2
⋄ (∂Dδ) → H

1/2
⋄ (∂Ω), φ 7→ vδ|∂Ω, (2.13)

which is a bounded linear operator that takes Neumann data on ∂Dδ and
maps them onto the associated Dirichlet values on ∂Ω. Recalling (2.10) and
(2.11) we find that Lδ(−∂u0

∂ν

∣

∣

∂Dδ
) = Lδ(

∂uδ
∂ν

∣

∣

∂Dδ
− ∂u0

∂ν

∣

∣

∂Dδ
) = (uδ − u0)|∂Ω.

A short computation reveals that the dual operator L⊤
δ of Lδ is given in

terms of the problem

∆v′δ = 0 in Ω \Dδ, (2.14a)

∂v′δ
∂ν

= −ψ on ∂Ω, (2.14b)

∂v′δ
∂ν

= 0 on ∂Dδ, (2.14c)

which for ψ ∈ H
−1/2
⋄ (∂Ω) has a unique weak solution

v′δ ∈ H1
⋄,∂Dδ

(Ω \Dδ) :=
{

u ∈ H1(Ω \Dδ)
∣

∣

∣

∫

∂Dδ

u|∂Dδ
ds = 0

}

,

through

L⊤
δ : H

−1/2
⋄ (∂Ω) → H

1/2
⋄ (∂Dδ), ψ 7→ v′δ|∂Dδ

. (2.15)

Note that apart from the normalization condition (2.14) coincides with the
boundary value problem (2.10) and hence L⊤

δ f = −uδ|∂Dδ
+ cδ with

cδ :=
1

|∂Dδ|

∫

∂Dδ

uδ|∂Dδ
ds,

where |∂Dδ| denotes the surface measure of ∂Dδ.
Next, we consider a diffraction problem with inhomogeneous jump con-

dition. For any χ ∈ H
1/2
⋄ (∂Dδ), the system of equations

∆wδ = 0 in Ω \ ∂Dδ, (2.16a)

∂wδ
∂ν

= 0 on ∂Ω, (2.16b)

[wδ]∂Dδ
= χ, (2.16c)

[

∂wδ
∂ν

]

∂Dδ

= 0, (2.16d)
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possesses a unique weak solution wδ with wδ|Ω\Dδ
∈ H1

⋄,∂Ω(Ω \ Dδ) and

wδ|Dδ
∈ H1(Dδ). Here, [ · ]∂Dδ

denotes the difference between the respective
traces from outside and inside the boundary ∂Dδ. Because of (2.16d),

Fδ : H
1/2
⋄ (∂Dδ) → H

−1/2
⋄ (∂Dδ), χ 7→ −∂wδ

∂ν

∣

∣

∣

∂Dδ

, (2.17)

is a well–defined bounded linear operator. Especially for χ := −uδ|∂Dδ
+ cδ,

the function

wδ :=

{

−uδ + u0 in Ω \Dδ,

−cδ + u0 in Dδ,

is the solution to (2.16). Thus, Fδ(−uδ|∂Dδ
+ cδ) = −∂u0

∂ν

∣

∣

∂Dδ
.

In sum, we have shown that the following diagram is commutative:

H
−1/2
⋄ (∂Ω)

L⊤
δ

��

Λδ−Λ0
// H

1/2
⋄ (∂Ω)

H
1/2
⋄ (∂Dδ)

Fδ
// H

−1/2
⋄ (∂Dδ)

Lδ

OO

f
_

��

�

// (uδ − u0)|∂Ω

−uδ|∂Dδ
+ cδ

�

// −∂u0

∂ν

∣

∣

∂Dδ

_

OO

This yields the following lemma; cf. [21, p. 1338]:

Lemma 2.4. With Lδ, L
⊤
δ , and Fδ defined by (2.13), (2.15), and (2.17),

respectively, the difference of the Neumann–to–Dirichlet Λδ − Λ0 maps can
be factorized as

Λδ − Λ0 = LδFδL
⊤
δ . (2.18)

2.5 First Estimates

In the following, we often have to deal with changes of coordinates. There-
fore, we introduce some notation. Given φ ∈ C(∂Dδ) and ψ ∈ C(∂B), we
define φ̂, (φ)∧ ∈ C(∂B) and ψ̌, (ψ)∨ ∈ C(∂Dδ) by

(φ)∧(ξ) := φ̂(ξ) := φ(δξ + z ), ξ ∈ ∂B, (2.19a)

(ψ)∨(x ) := ψ̌(x ) := ψ
(x − z

δ

)

, x ∈ ∂Dδ, (2.19b)

respectively. The same notation will also be used for functions in H1/2(∂Dδ)
orH−1/2(∂Dδ) andH1/2(∂B) orH−1/2(∂B), respectively. This makes sense,
because the corresponding Sobolev spaces on R n−1 are invariant under such
regular changes of coordinates; cf. [86, Theorem 3.23]. Moreover, we apply
this notation to functions in H1(Dδ) and H1(B) in the same way.
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For bounded open sets D ⊂ R n of class C2,α, 0 < α < 1, we use the
following norm on H1/2(∂D) (cf. Girault and Raviart [54, p. 8]):

‖φ‖H1/2(∂D) := inf
u∈H1(D)
u|∂D=φ

‖u‖H1(D), φ ∈ H1/2(∂D).

The dual space H−1/2(∂D) shall be equipped with the corresponding dual
norm

‖ψ‖H−1/2(∂D) := sup
φ∈H1/2(∂D)

φ6=0

|〈ψ, φ〉∂D|
‖φ‖H1/2(∂D)

, ψ ∈ H−1/2(∂D),

where 〈·, ·〉∂D denotes the dual pairing between H1/2(∂D) and H−1/2(∂D).

The following lemma examines the scaling properties of these norms
under changes of coordinates as in (2.19).

Lemma 2.5. Suppose 0 < δ ≤ 1. There exist constants c > 0 and C > 0

independent of δ such that for each φ ∈ H
1/2
⋄ (∂Dδ) and ψ ∈ H

−1/2
⋄ (∂Dδ),

δ
n−2

2 c‖φ̂‖H1/2(∂B) ≤ ‖φ‖H1/2(∂Dδ) ≤ δ
n−2

2 ‖φ̂‖H1/2(∂B), (2.20a)

δ
n
2 ‖ψ̂‖H−1/2(∂B) ≤ ‖ψ‖H−1/2(∂Dδ) ≤ δ

n
2C‖ψ̂‖H−1/2(∂B). (2.20b)

Proof. Let φ ∈ H
1/2
⋄ (∂Dδ) and ψ ∈ H

−1/2
⋄ (∂Dδ). By a change of coordi-

nates, ξ := x−z
δ , we observe that for all u ∈ H1

⋄ (Dδ),

‖u‖2
H1(Dδ) =

∫

Dδ

(

|u(x )|2 + |∇xu(x )|2
)

dx

= δn
∫

B

(

|u(δξ + z )|2 +
1

δ2
|∇ξu(δξ + z )|2

)

dξ

= δn
∫

B

(

|û(ξ)|2 +
1

δ2
|∇ξû(ξ)|2

)

dξ.

Thus,

‖u‖2
H1(Dδ) ≤ δn−2‖û‖2

H1(B),

because we have assumed that 0 < δ ≤ 1, and therefore

‖φ‖H1/2(∂Dδ) ≤ δ
n−2

2 ‖φ̂‖H1/2(∂B).

On the other hand, the Poincaré inequality (cf. [88, Lemma 3.13]) im-
plies that there exists a constant c > 0 independent of δ such that for
all u ∈ H1

⋄ (Dδ),

δn−2c‖û‖2
H1(B) ≤ δn−2‖∇ξû‖2

L2(B) = ‖∇xu‖2
L2(Dδ) ≤ ‖u‖2

H1(Dδ).
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Hence,

δ
n−2

2 c‖φ̂‖H1/2(∂B) ≤ ‖φ‖H1/2(∂Dδ),

and we have shown (2.20a).
For the dual norm we obtain by a change of coordinates and by applying

(2.20a) that

‖ψ‖H−1/2(∂Dδ) = sup
φ∈H1/2(∂Dδ)

φ6=0

|〈ψ, φ〉∂Dδ
|

‖φ‖H1/2(∂Dδ)

≥ sup
φ∈H1/2(∂Dδ)

φ6=0

δn−1|〈ψ̂, φ̂〉∂B|
δ

n−2

2 ‖φ̂‖H1/2(∂B)

= δ
n
2 sup
φ̂∈H1/2(∂B)

φ̂6=0

|〈ψ̂, φ̂〉∂B|
‖φ̂‖H1/2(∂B)

= δ
n
2 ‖ψ̂‖H−1/2(∂B)

and in the same way

‖ψ‖H−1/2(∂Dδ) ≤ sup
φ∈H1/2(∂Dδ)

φ6=0

δn−1|〈ψ̂, φ̂〉∂B|
δ

n−2

2 c‖φ̂‖H1/2(∂B)

= c−1δ
n
2 sup
φ̂∈H1/2(∂B)

φ̂ 6=0

|〈ψ̂, φ̂〉∂B|
‖φ̂‖H1/2(∂B)

= δ
n
2C‖ψ̂‖H−1/2(∂B).

Here, we put C := c−1.

In the next lemma, we investigate the scaling properties of the integral

operators KN
Dδ

and KN
Dδ

⊤
under changes of coordinates as in (2.19).

Lemma 2.6. Let φ ∈ H
1/2
⋄ (∂Dδ) and ψ ∈ H−1/2(∂Dδ). Then,

KN
Dδ
φ = (K0

Bφ̂)∨ + (EK φ̂)∨, (2.21a)

KN
Dδ

⊤
ψ = (K0

B
⊤
ψ̂)∨ + (E⊤

Kψ̂)∨, (2.21b)

where EK is a bounded linear operator, independent of φ, which is O(δn) in

L(H
1/2
⋄ (∂B), H1/2(∂B)) as δ → 0, and E⊤

K is the transpose of EK , which is

O(δn) in L(H−1/2(∂B), H
−1/2
⋄ (∂B)) as δ → 0.

Proof. Let φ ∈ H
1/2
⋄ (∂Dδ). By a change of variables, ξ := x−z

δ and
η := y−z

δ , we see that for a.e. x ∈ ∂Dδ,

(K0
Dδ
φ)(x ) =

1

ωn

∫

∂Dδ

(x − y) · ν(y)

|x − y |n φ(y) ds(y)

=
1

ωn

∫

∂B

(δξ − δη) · ν(η)

|δξ − δη|n φ(δη + z )δn−1 ds(η)

=
1

ωn

∫

∂B

(ξ − η) · ν(η)

|ξ − η|n φ̂(η) ds(η) = (K0
Bφ̂)(ξ).
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Recalling (2.8), it remains to estimate the norm of PNDδ
φ. For this purpose,

we denote by P̃NDδ
φ the extension of PNDδ

φ to H1(Dδ), which is obtained
canonically from (2.7) via

(P̃NDδ
φ)(x ) :=

∫

∂Dδ

∂pN (x ,y)

∂ν(y)
φ(y) ds(y), x ∈ Dδ.

Then, because pN and ∇xpN are uniformly bounded near the inclusion Dδ,

‖PNDδ
φ‖2

H1/2(∂Dδ)
=
(

inf
u∈H1(Dδ)
u|∂Dδ

=PN
Dδ
φ

‖u‖H1(Dδ)

)2
≤ ‖P̃NDδ

φ‖2
H1(Dδ)

=

∫

Dδ

∣

∣

∣

∫

∂Dδ

∂pN (x ,y)

∂ν(y)
φ(y) ds(y)

∣

∣

∣

2
dx

+

∫

Dδ

∣

∣

∣
∇x

∫

∂Dδ

∂pN (x ,y)

∂ν(y)
φ(y) ds(y)

∣

∣

∣

2
dx

≤
∫

Dδ

(∫

∂Dδ

(

∣

∣

∣

∂pN (x ,y)

∂ν(y)

∣

∣

∣

2

+
∣

∣

∣
∇x

∂pN (x ,y)

∂ν(y)

∣

∣

∣

2
)

ds(y)

∫

∂Dδ

|φ(y)|2 ds(y)

)

dx

≤ Cδn−1‖φ‖2
L2(∂Dδ)

∫

Dδ

1 dx ≤ Cδ2n−1‖φ‖2
L2(∂Dδ)

for a positive constant C that is independent of δ. Moreover, applying the
Sobolev Embedding Theorem (see [86, Theorem 3.27]), we find that

‖φ‖2
L2(∂Dδ) = δn−1‖φ̂‖2

L2(∂B) ≤ Cδn−1‖φ̂‖2
H1/2(∂B)

with a positive constant C that is independent of δ. Combining these two
estimates and (2.20a) yields that

‖(PNDδ
φ)∧‖2

H1/2(∂B)
≤ Cδ2−n‖PNDδ

φ‖2
H1/2(∂Dδ)

≤ Cδn+1‖φ‖2
L2(∂Dδ)

≤ Cδ2n‖φ̂‖2
H1/2(∂B)

.
(2.22)

Thus, we define

EKϕ := (PNDδ
ϕ̌)∧, ϕ ∈ H

1/2
⋄ (∂B),

and obtain the first part of the desired result. The second part follows by
duality.

In the following, according to our remarks at the end of Section 2.2, we

consider −1
2I + K0

Dδ

⊤
and −1

2I + KN
Dδ

⊤
as operators in L(H

−1/2
⋄ (∂Dδ)).

From Lemma 2.6, we get for all φ ∈ H
−1/2
⋄ (∂Dδ) that

(

−1

2
I +KN

Dδ

⊤
)

φ =
((

−1

2
I +K0

B
⊤

+ E⊤
K

)

φ̂
)∨
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and thus,
(

−1

2
I +KN

Dδ

⊤
)−1

φ =
((

−1

2
I +K0

B
⊤

+ E⊤
K

)−1
φ̂
)∨
.

So, we obtain from Lemma 2.2 that
(

−1

2
I +KN

Dδ

⊤
)−1

φ =
((

−1

2
I +K0

B
⊤
)−1

φ̂
)∨

+ (Ẽ⊤
K φ̂)∨, (2.23)

where Ẽ⊤
K is a bounded linear operator, independent of φ, which is O(δn)

in L(H
−1/2
⋄ (∂B)) as δ → 0.

2.6 Asymptotic Expansion

In this section, we first expand the three operators Lδ, L
⊤
δ , and Fδ occurring

in the factorization (2.18) of the difference of the Neumann–to–Dirichlet
operators Λδ − Λ0 separately as the inhomogeneity size δ tends to zero.
Then, we use these expansions to calculate the leading order term in the
asymptotic expansion of Λδ − Λ0.

We first consider the boundary value problem (2.12) and the operator

Lδ from (2.13). For φ ∈ H
−1/2
⋄ (∂Dδ) we define vδ ∈ H1

⋄,∂Ω(Ω \Dδ) by

vδ := SNDδ

(

−1

2
I +KN

Dδ

⊤
)−1

φ.

Then, vδ is a solution to (2.12), and by a change of coordinates and by
applying (2.23) we have

vδ|∂Ω =

∫

∂Dδ

N(·,y)
((

−1

2
I +KN

Dδ

⊤
)−1

φ
)

(y) ds(y)

=

∫

∂B
N(·, δη + z )

((

−1

2
I +KN

Dδ

⊤
)−1

φ
)

(δη + z )δn−1 ds(η)

= δn−1

∫

∂B
N(·, δη + z )

((

−1

2
I +K0

B
⊤
)−1

φ̂
)

(η) ds(η)

+ δn−1

∫

∂B
N(·, δη + z )(Ẽ⊤

K φ̂))(η) ds(η).

By Taylor expansion, we obtain for x ∈ ∂Ω and η ∈ ∂B as δ → 0 that

N(x , δη + z ) = N(x , z ) + δ∇yN(x , z ) · η + O(δ2).

Recalling that −1
2I + K0

B
⊤

and Ẽ⊤
K map H

−1/2
⋄ (∂Dδ) to H

−1/2
⋄ (∂Dδ),

this gives

vδ|∂Ω = δn∇yN(·, z ) ·
∫

∂B
η
((

−1

2
I +K0

B
⊤
)−1

φ̂
)

(η) ds(η)

+ δn∇yN(·, z ) ·
∫

∂B
η(Ẽ⊤

K φ̂)(η) ds(η) + O(δn+1).
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Because Ẽ⊤
K is O(δn) in L(H

−1/2
⋄ (∂B)), we find that

∥

∥

∥
∇yN(·, z ) ·

∫

∂B
η(Ẽ⊤

K φ̂)(η) ds(η)
∥

∥

∥

H1/2(∂Ω)

≤ C max
1≤j≤3

∣

∣

∣

∫

∂B
ηj(Ẽ

⊤
K φ̂)(η) ds(η)

∣

∣

∣

≤ C‖Ẽ⊤
K φ̂‖H−1/2(∂B) max

1≤j≤3
‖ηj‖H1/2(∂B)

≤ Cδn‖φ̂‖H−1/2(∂B)

So, as δ → 0,

vδ|∂Ω = δn∇yN(·, z ) ·
∫

∂B
η
((

−1

2
I +K0

B
⊤
)−1

φ̂
)

(η) ds(η) + O(δn+1).

The last term on the right–hand side is bounded by Cδn+1‖φ̂‖H−1/2(∂B) in

H
1/2
⋄ (∂Ω), where the constant C > 0 is independent of δ and φ. We define

L : H
−1/2
⋄ (∂B) → H

1/2
⋄ (∂Ω),

Lϕ := ∇yN(·, z ) ·
∫

∂B
η
((

−1

2
I +K0

B
⊤
)−1

ϕ
)

(η) ds(η). (2.24)

Then, L is a bounded linear operator, and we have shown the following
asymptotic formula.

Proposition 2.7. For all φ ∈ H
−1/2
⋄ (∂Dδ),

Lδφ = δnLφ̂+ ELφ̂, (2.25)

where EL is a bounded linear operator, independent of φ, which is O(δn+1)

in L(H
−1/2
⋄ (∂B), H

1/2
⋄ (∂Ω)) as δ → 0.

Remark 2.8. Note that by duality the transpose E⊤
L of EL is O(δn+1) in

L(H
−1/2
⋄ (∂Ω), H

1/2
⋄ (∂B)), too.

Next, we consider the asymptotic behavior of the operator L⊤
δ from

(2.15). Let φ ∈ H
−1/2
⋄ (∂Dδ) and ψ ∈ H

−1/2
⋄ (∂Ω). For X ∈ {Ω, B,Dδ} we

denote by 〈·, ·〉∂X the dual pairing between H
1/2
⋄ (∂X) and H

−1/2
⋄ (∂X) and

use (2.25) to calculate

〈

φ,L⊤
δ ψ
〉

∂Dδ
=
〈

Lδφ, ψ
〉

∂Ω
=
〈

δnLφ̂+ ELφ̂, ψ
〉

∂Ω

=
〈

φ̂, δnL⊤ψ + E⊤
Lψ
〉

∂B
=
〈

φ, δ(L⊤ψ)∨ + δ1−d(E⊤
Lψ)∨

〉

∂Dδ
,

where L⊤ : H
−1/2
⋄ (∂Ω) → H

1/2
⋄ (∂B) is the transpose of L. Recalling Re-

mark 2.8, we obtain the following asymptotic formula.
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Proposition 2.9. For all ψ ∈ H
−1/2
⋄ (∂Ω),

L⊤
δ ψ = δ(L⊤ψ)∨ + δ1−d(E⊤

Lψ)∨,

where E⊤
L is a bounded linear operator, independent of ψ, which is O(δn+1)

in L(H
−1/2
⋄ (∂Ω), H

1/2
⋄ (∂B)) as δ → 0.

We now derive the operator L⊤ explicitly. Let φ ∈ H
−1/2
⋄ (∂B) and

ψ ∈ H
−1/2
⋄ (∂Ω). Recalling the definition of the operator L from (2.24), we

find that
〈

Lφ, ψ
〉

∂Ω

=

∫

∂Ω
∇yN(x , z ) ·

(∫

∂B
η
((

−1

2
I +K0

B
⊤
)−1

φ
)

(η) ds(η)

)

ψ(x ) ds(x )

=

(∫

∂Ω
∇yN(x , z )ψ(x ) ds(x )

)

·
∫

∂B
η
((

−1

2
I +K0

B
⊤
)−1

φ
)

(η) ds(η)

=

(∫

∂Ω
∇yN(x , z )ψ(x ) ds(x )

)

·
∫

∂B
φ(ξ)

((

−1

2
I +K0

B

)−1
η
)

(ξ) ds(ξ).

Note that in the last line of this computation η is the surface variable on
∂B and therefore (−1

2I+K0
B)−1η is defined component–wise for this vector

valued function. Because N solves (2.2) together with its normalization
condition, we find that

v :=

∫

∂Ω
N(x , z )ψ(x ) ds(x )

solves

∆v = 0 in Ω,
∂v

∂ν
= ψ on ∂Ω, (2.26)

together with the normalization
∫

∂Ω v ds = 0. Thus,

∫

∂Ω
∇yN(x , z )ψ(x ) ds(x ) = ∇v(z ),

which means that

L⊤ψ = ∇v(z ) ·
((

− 1

2
I +K0

B

)−1
η
)

, (2.27)

where v is the solution of (2.26).

We return to the diffraction problem (2.16) and to the operator Fδ from

(2.17). Given χ ∈ H
1/2
⋄ (∂Dδ), we define wδ with wδ|Ω\Dδ

∈ H1
⋄,∂Ω(Ω \Dδ)

and wδ|Dδ
∈ H1(Dδ) by

wδ := DN
Dδ
χ.
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Then, wδ is a solution to (2.16), and from (2.9b), we obtain that

wδ|−∂Dδ
=
(

−1

2
I +KN

Dδ

)

χ.

Now, we consider the interior Dirichlet problem

∆w = 0 in Dδ, w = ϕ on ∂Dδ, (2.28)

where ϕ ∈ H1/2(∂Dδ), and introduce the corresponding interior Dirichlet–
to–Neumann operator

Υδ : H1/2(∂Dδ) → H
−1/2
⋄ (∂Dδ), Υδϕ :=

∂w

∂ν

∣

∣

∣

∂Dδ

.

Because wδ solves the diffraction problem (2.16), we can write

∂wδ
∂ν

∣

∣

∣

∂Dδ

= Υδ

(

−1

2
I +KN

Dδ

)

χ.

The interior Dirichlet–to–Neumann operator Υ : H1/2(∂B) → H
−1/2
⋄ (∂B)

on ∂B is defined in the same way as Υδ. Note that these Dirichlet–to–
Neumann maps are bounded linear operators. This follows from the ex-
istence and uniqueness of solutions of the corresponding Dirichlet bound-
ary value problems, the continuous dependence of these solutions on their
boundary values and from the continuity of normal trace operator γn. In
order to investigate the asymptotic behavior of ∂wδ

∂ν

∣

∣

∂Dδ
as δ → 0, we take a

closer look at the scaling properties of Υδ.

Lemma 2.10. Let ϕ ∈ H1/2(∂Dδ). Then,

Υδϕ = δ−1(Υϕ̂)∨.

Proof. Suppose w ∈ H1(Dδ) is a solution to (2.28). By a change of variables,
ξ := x−z

δ , we find that ŵ satisfies

∆ξŵ = δ2(∆xw)∧ = 0 in B,

∂ŵ

∂ν

∣

∣

∣

∂B
= δ
(∂w

∂ν

∣

∣

∣

∂Dδ

)∧
on ∂B,

ŵ|∂B =
(

w|∂Dδ

)∧
on ∂B.

Hence,

(

Υ(ŵ|∂B)
)∨

=
(∂ŵ

∂ν

∣

∣

∣

∂B

)∨
= δ

∂w

∂ν

∣

∣

∣

∂Dδ

= δΥδ(w|∂Dδ
).
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Therefore, applying Lemma 2.10 and Lemma 2.6, we can calculate

∂wδ
∂ν

∣

∣

∣

∂Dδ

= Υδ

(

− 1

2
I +KN

Dδ

)

χ

= δ−1

(

Υ
((

−1

2
I +KN

Dδ

)

χ
)∧
)∨

= δ−1
(

Υ
(

−1

2
I +K0

B

)

χ̂
)∨

+ δ−1
(

ΥEK χ̂
)∨
.

Note that according to Lemma 2.6 the operator EF := δ−1ΥEK is O(δn−1)

in L(H
1/2
⋄ (∂Dδ), H

−1/2
⋄ (∂Dδ)) as δ → 0. We define

F : H
1/2
⋄ (∂B) → H

−1/2
⋄ (∂B), Fϕ := −Υ

(

−1

2
I +K0

B

)

ϕ. (2.29)

Then, F is a bounded linear operator, and we have shown the following
asymptotic formula.

Proposition 2.11. For all χ ∈ H
1/2
⋄ (∂Dδ),

Fδχ = δ−1(Fχ̂)∨ + (EF χ̂)∨,

where EF is a bounded linear operator, independent of χ, which is O(δn−1)

in L(H
1/2
⋄ (∂B), H

−1/2
⋄ (∂B)) as δ → 0.

We now put our results together and obtain the following asymptotic
expansion of the factorization of the difference of the Neumann–to–Dirichlet
operators Λδ − Λ0 from Lemma 2.4.

Theorem 2.12. Let f ∈ H
−1/2
⋄ (∂Ω). Then,

(Λδ − Λ0) f = δnLFL⊤f + O(δn+1) (2.30)

in H
1/2
⋄ (∂Ω) as δ → 0. More precisely, the last term on the right–hand side

is bounded by Cδn+1‖f‖H−1/2(∂Ω), where the constant C > 0 is independent
of δ and f .

Proof. From Proposition 2.9, we obtain that

L⊤
δ f = δ(L⊤f)∨ + δ1−n(E⊤

L f)∨.

So, by Proposition 2.11,

FδL
⊤
δ f = (FL⊤f)∨ + δ−n(FE⊤

L f)∨ + δ(EFL
⊤f)∨ + δ1−n(EFE

⊤
L f)∨.

With the help of Proposition 2.7 we find that

(Λδ − Λ0)f = LδFδL
⊤
δ f = δnLFL⊤f + δn+1LEFL

⊤f + LFE⊤
L f

+ δLEFE
⊤
L f +ELFL

⊤f + δELEFL
⊤f + δ−dELFE

⊤
L f + δ1−dELEFE

⊤
L f.

Now, the assertion follows from the estimates given in Proposition 2.7,
Proposition 2.11, and Proposition 2.9 and from the continuity of the op-
erators L, F , and L⊤.
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The following diagrams illustrate the factorization Λδ − Λ0 = LδFδL
⊤
δ

from Lemma 2.4 and the leading order term LFL⊤ of the corresponding
asymptotic factorization Λδ−Λ0 = δnLFL⊤ +O(δn+1) from Theorem 2.12:

H
−1/2
⋄ (∂Ω)

L⊤
δ

��

Λδ−Λ0
// H

1/2
⋄ (∂Ω)

H
1/2
⋄ (∂Dδ)

Fδ
// H

−1/2
⋄ (∂Dδ)

Lδ

OO
H

−1/2
⋄ (∂Ω)

L⊤

��

H
1/2
⋄ (∂Ω)

H
1/2
⋄ (∂B)

F
// H

−1/2
⋄ (∂B)

L

OO

Finally, let f ∈ H
−1/2
⋄ (∂Ω) and let u0 be the solution to (2.11). We

calculate LFL⊤f explicitely. As (2.11) and (2.26) coincide for ψ = f , we
obtain from (2.27) that

L⊤f = ∇u0(z ) ·
((

−1

2
I +K0

B

)−1
η
)

.

Thus, by (2.29),

FL⊤f = −∇u0(z ) · Υη = −∇u0(z ) · ν(η),

where ν denotes the unit outward normal to ∂B relative to B, because ηl
is the unique harmonic function on B with Dirichlet data ηl|∂B, 1 ≤ l ≤ n.
So, by (2.24),

LFL⊤f

= −∇yN(·, z ) ·
∫

∂B
η

(

(

− 1

2
I +K0

B
⊤
)−1

(

ν · ∇u0(z )
)

)

(η) ds(η)

= ∇yN(·, z ) · M0
B∇u0(z ),

(2.31)

where the matrix M0
B ∈ R n×n is the magnetic polarizability tensor cor-

responding to B; cf. Definition A.1. Altogether, we obtain the following
corollary.

Corollary 2.13. Let f ∈ H
−1/2
⋄ (∂Ω) and let u0 be the corresponding solu-

tion of (2.11). Then,

(Λδ − Λ0) f = δn∇yN(·, z ) · M0
B∇u0(z ) + O(δn+1)

in H
1/2
⋄ (∂Ω) as δ → 0. More precisely, the last term on the right–hand side

is bounded by Cδn+1‖f‖H−1/2(∂Ω), where the constant C > 0 is independent
of δ and f .
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2.7 Multiple Inclusions

In this section, we extend the results obtained so far to the practically
important case of finitely many well separated small inclusions as introduced
in Section 2.3. Basically, the results and their proofs for a single inclusion
from the previous sections can be adopted with few minor modifications,
which we will comment on now.

The factorization of the Neumann–to–Dirichlet operator from Lemma 2.4
can be generalized as described in [21]. For this purpose, it is convenient to
set ∂Dδ = ∂Dδ,1 × · · · × ∂Dδ,m and to interpret the relevant Sobolev spaces
accordingly as product spaces, e.g.

H
±1/2
⋄ (∂Dδ) = H

±1/2
⋄ (∂Dδ,1) × · · · ×H

±1/2
⋄ (∂Dδ,m).

The operator Lδ is again defined by (2.12) and (2.13), where the inner
Neumann boundary condition should be understood component–wise, i.e.,
∂vδ
∂ν = φl on ∂Dδ,l, 1 ≤ l ≤ m, for φ = (φ1, . . . , φm)⊤ ∈ H

−1/2
⋄ (∂Dδ). For

the definition of the corresponding dual operator L⊤
δ we consider again the

boundary value problem (2.14), whose solution v′δ is unique up to an ad-
ditive constant. If we fix an arbitrary solution v′δ of (2.14) and define
cl :=

(∫

∂Dδ,l
v′δ|∂Dδ,l

ds
)/

|∂Dδ,l|, 1 ≤ l ≤ m, then the transpose of Lδ is

given by

L⊤
δ : H

−1/2
⋄ (∂Ω) → H

1/2
⋄ (∂Dδ), ψ 7→ (v′δ|∂Dδ,1

− c1, . . . , v
′
δ|∂Dδ,m

− cm).

The definition of the operator Fδ remains unchanged, if the boundary con-
ditions on ∂Dδ are interpreted component–wise. With these definitions the
factorization of Λδ−Λ0 stated in Lemma 2.4 holds true in the case of multiple
inclusions as well.

Next, we generalize the asymptotic expansions derived in the previous
section to the case of multiple inclusions. First, we reconsider the op-

erator Lδ from (2.13). For φ = (φ1, . . . , φm)⊤ ∈ H
−1/2
⋄ (∂Dδ) we define

vδ ∈ H1
⋄,∂Ω(Ω \Dδ) by

vδ :=

m
∑

l=1

SNDδ,l
al,

where a := (a1, . . . , am)⊤ ∈ H
−1/2
⋄ (∂Dδ) solves the system of integral equa-

tions

Aa = φ,
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with

A :=





















−1
2I +KN

Dδ,1

⊤ ∂SN
Dδ,2

∂ν

∣

∣

∣

∂Dδ,1

. . .
∂SN

Dδ,m

∂ν

∣

∣

∣

∂Dδ,1

∂SN
Dδ,1

∂ν

∣

∣

∣

∂Dδ,2

−1
2I +KN

Dδ,2

⊤
. . .

∂SN
Dδ,m

∂ν

∣

∣

∣

∂Dδ,2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∂SN

Dδ,1

∂ν

∣

∣

∣

∂Dδ,m

∂SN
Dδ,2

∂ν

∣

∣

∣

∂Dδ,m

. . . −1
2I +KN

Dδ,m

⊤





















.

As the small inclusions are assumed to be well separated from each other
and from the boundary ∂Ω, we can estimate the nondiagonal entries of the

matrix A, using the regularity of SNDδ,l
ϕl, ϕl ∈ H

−1/2
⋄ (∂Dδ,l), away from

∂Dδ,l, 1 ≤ l ≤ m. Set

B :=











−1
2I +KN

B1

⊤
0 . . . 0

0 −1
2I +KN

B2

⊤
. . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . −1
2I +KN

Bm

⊤











and note that B is invertible by Lemma 2.3 and Theorem 2.1. In the same
way as in the proof of Lemma 2.3, we obtain that the nullspace of A is
trivial, too. Because A is just a compact perturbation of −1

2 I , where I

denotes the identity operator on H−1/2(∂Dδ), Theorem 2.1 yields that A is
invertible. Similarly to Lemma 2.6 we get the following result, where we use

the maximum row sum of L(H
−1/2
⋄ (∂Bj), H

−1/2
⋄ (∂Bl)) norms, 1 ≤ j, l ≤ m,

as norm on L(H
−1/2
⋄ (∂B)).

Lemma 2.14. Let ϕ ∈ H
−1/2
⋄ (∂Dδ). Then,

Aϕ = ( Bϕ̂)∨ + ( EAϕ̂)∨,

where EA is a bounded linear operator, independent of ϕ, which is O(δn) in

L(H
−1/2
⋄ (∂B)) as δ → 0.

Proof. Let ϕ = (ϕ1, . . . , ϕm) ∈ H
−1/2
⋄ (∂Dδ) and 1 ≤ j 6= l ≤ m. Using the

regularity of N(x ,y) in a neighborhood of (x ,y) ∈ Ω × Ω with x 6= y and
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applying (2.20b), we obtain

∥

∥

∥

(∂SNDδ,j
ϕj

∂ν

∣

∣

∣

∂Dδ,l

)∧l
∥

∥

∥

2

H−1/2(∂Bl)
≤ C

∥

∥

∥

(∂SNDδ,j
ϕj

∂ν

∣

∣

∣

∂Dδ,l

)∧l
∥

∥

∥

2

L2(∂Bl)

= Cδ1−n
∥

∥

∥

∂SNDδ,j
ϕj

∂ν

∣

∣

∣

∂Dδ,l

∥

∥

∥

2

L2(∂Dδ,l)

= Cδ1−n
∫

∂Dδ,l

∣

∣

∣

∫

∂Dδ,j

∂N(x ,y)

∂ν(x )
ϕj(y) ds(y)

∣

∣

∣

2
ds(x )

≤ Cδ1−n
∫

∂Dδ,l

∥

∥

∥

∂N(x , ·)
∂ν(x )

∥

∥

∥

2

H1/2(∂Dδ,j)
‖ϕj‖2

H−1/2(∂Dδ,j)
ds(x )

≤ Cδ‖ϕj‖2
H−1/2(∂Dδ,j)

∫

∂Dδ,l

1 ds ≤ Cδ2n‖(ϕj)∧j‖2
H−1/2(∂Bj)

.

Here, (·)∧l denotes the transformation from (2.19), applied to the lth inho-
mogeneity Dδ,l, 1 ≤ l ≤ m.

So, we find from Lemma 2.2 that for any ϕ ∈ H
−1/2
⋄ (∂Dδ),

A−1ϕ = ( B−1ϕ̂)∨ + ( ẼAϕ̂)∨,

where ẼA is a bounded linear operator, independent of ϕ, which is O(δn)

in L(H
−1/2
⋄ (∂B)) as δ → 0. Calculating along the lines of Section 2.6, we

obtain the following asymptotic formula:

vδ
∣

∣

∂Ω
= δn

m
∑

l=1

∇yN(·, zl) ·
∫

∂Bl

η
((

−1

2
I+K0

Bl

⊤
)−1

φ∧l
l

)

(η) ds(η)+O(δn+1)

as δ → 0, where (·)∧l again denotes the transformation from (2.19), applied
to the lth inclusion Dδ,l. The last term on the right–hand side is bounded
by

Cδn+1 max
1≤l≤m

‖φ∧l
l ‖H−1/2(∂Bl)

inH
1/2
⋄ (∂Ω), where the constant C > 0 is independent of δ and φ. Therefore,

if we define

L : H
−1/2
⋄ (∂B1) × · · · ×H

−1/2
⋄ (∂Bm) → H

1/2
⋄ (∂Ω),

Lϕ :=
m
∑

l=1

∇yN(·, zl) ·
∫

∂Bl

η
((

−1

2
I +K0

Bl

⊤
)−1

ϕl

)

(η) ds(η), (2.32)

Proposition 2.7 remains valid in the case of finitely many well separated
small inclusions.
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As in Section 2.6, we find by duality that Proposition 2.9 remains valid
in case of finitely many well separated small inclusions too and that the
adjoint operator

L⊤ : H
−1/2
⋄ (∂Ω) → H

1/2
⋄ (∂B1) × · · · ×H

1/2
⋄ (∂Bm)

of L is given by

L⊤ψ=

(

∇v(z1) ·
((

−1

2
I +K0

B1

)−1
η
)

, . . . ,∇v(zm) ·
((

−1

2
I +K0

Bm

)−1
η
)

)

,

(2.33)
where v is the corresponding solution of (2.26).

We return to the diffraction problem (2.16) and the operator Fδ from

(2.17). For χ = (χ1, . . . , χm) ∈ H
1/2
⋄ (∂Dδ) we define wδ :=

∑m
l=1 DN

Dδ,l
χl.

Then, for 1 ≤ j ≤ m,

∂wδ
∂ν

∣

∣

∣

∂Dδ,j

= Υδ,j

(

−1

2
I +KN

Dδ,j

)

χj + Υδ,j

m
∑

l=1
l 6=j

(

DN
Dδ,l

χl
)∣

∣

∂Dδ,j
,

where Υδ,j is the interior Dirichlet–to–Neumann operator on ∂Dδ,j . Using
Lemma 2.10 and the continuity of the interior Dirichlet–to–Neumann oper-
ator Υl on ∂Bl, 1 ≤ l ≤ m, we can estimate as in the proof of Lemma 2.6
that
∥

∥

∥

∥

(

Υδ,j

m
∑

l=1
l 6=j

(

DN
Dδ,l

χl
)∣

∣

∂Dδ,j

)∧j
∥

∥

∥

∥

H−1/2(∂Bj)

= Cδ−1

∥

∥

∥

∥

Υj

( m
∑

l=1
l 6=j

(

DN
Dδ,l

χl
)∣

∣

∂Dδ,j

)∧j
∥

∥

∥

∥

H−1/2(∂Bj)

≤ Cδ−1 max
1≤l≤m
l 6=j

∥

∥

∥

(

(

DN
Dδ,l

χl
)∣

∣

∂Dδ,j

)∧j
∥

∥

∥

H1/2(∂Bj)

≤ Cδn−1 max
1≤l≤m

‖χ∧l
l ‖H1/2(∂Bl)

,

(2.34)

where the constant C > 0 is independent of δ and χ. We define

F : H
1/2
⋄ (∂B1) × · · · ×H

1/2
⋄ (∂Bm) → H

−1/2
⋄ (∂B1) × · · · ×H

−1/2
⋄ (∂Bm),

Fϕ:=
(

−Υ1

(

−1

2
I +K0

B1

)

ϕ1, . . . ,−Υm

(

−1

2
I +K0

Bm

)

ϕm

)

. (2.35)

Combining (2.34) with the Lemmas 2.6 and 2.10, we find that Proposi-
tion 2.11 remains valid in the case of finitely many well separated small
inclusions.
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Proposition 2.15. Theorem 2.12 holds true in the case of finitely many
well separated small inclusions, if L, F , and L⊤ are given as in (2.32),
(2.35), and (2.33), respectively.

Finally, let M0
B1
, . . . , M0

Bm
denote the magnetic polarizability tensors

corresponding to B1, . . . , Bm, respectively. In case of finitely many well
separated small inclusions, Corollary 2.13 reads as follows.

Corollary 2.16. Let f ∈ H
−1/2
⋄ (∂Ω) and let u0 be the corresponding solu-

tion of (2.11). Then,

(Λδ − Λ0) f = δn
m
∑

l=1

∇yN(·, zl) · M0
Bl
∇u0(zl) + O(δn+1)

in H
1/2
⋄ (∂Ω) as δ → 0. More precisely, the last term on the right–hand side

is bounded by Cδn+1‖f‖H−1/2(∂Ω), where the constant C > 0 is independent
of δ and f .

2.8 Determining the Position of the Inclusions

In this section, we restrict ourselves again to the case of a single inhomo-
geneity Dδ = z +δB, although we mention that the whole theory also works
for multiple inclusions.

We consider the problem of locating the inclusion Dδ from the boundary
measurements Λδ −Λ0. In particular we want to compare the Factorization
Method as developed in [21,59] and the MUSIC–type method considered in
[22,59]. The fact that there is a relation between Factorization Methods and
MUSIC–type methods has already been pointed out earlier by Cheney [34],
Kirsch [73], and by Hanke and Brühl [59]. Using the asymptotic analysis
from the previous sections, we can clarify the connection between these
methods completely.

The Factorization Method got its name from the factorization of the
difference of the Neumann–to–Dirichlet operators Λδ − Λ0 given in (2.18).
The first observation to be made is that the range of the operator Lδ fully
determines the inclusion Dδ. To see this, let y ∈ Ω and define a test function

uy,d := d · ∇yN(·,y), d ∈ R n.

Then, uy,d solves

∆uy,d = 0 in Ω \ {y}, ∂uy,d
∂ν

= 0 on ∂Ω. (2.36)

Therefore, y ∈ Dδ implies gy,d := uy,d|∂Ω ∈ R(Lδ), because uy,d|Ω\Dδ
solves

(2.12) for φ =
∂uy,d

∂ν

∣

∣

∂Dδ
. Moreover, as solutions to (2.36) are uniquely de-

termined by their Cauchy data on ∂Ω (see Dautray and Lions [45, Corollary
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11, p. 262]), also the converse is true, because of the singularity of uy,d in y .
Hence,

y ∈ Dδ if and only if gy,d ∈ R(Lδ). (2.37)

Now, the key result of the Factorization Method is that the range of Lδ can
be computed from Λδ and Λ0 by

R
(

(Λδ − Λ0)
1/2
)

= R(Lδ). (2.38)

Thus, the inclusion Dδ is found by calculating gy,d for every test point y ∈ Ω
and checking whether gy,d ∈ R((Λδ−Λ0)

1/2), which is an infinite dimensional
space. This range criterion can be implemented numerically by applying
the Picard criterion; cf. [79, Theorem 15.18]. In practical computations this
means that an infinite dimensional series has to be checked for convergence
from finitely many data. We refer the reader to [20, 59] for details and
numerical results.

On the other hand, it follows from the asymptotic expansion (2.30) that
for small values of δ the operator Λδ−Λ0 is well approximated by δnLFL⊤.
The derivation of the MUSIC–type method starts by considering only this
leading order term. Defining the linear operators

R : R n → H
1/2
⋄ (∂Ω), Ra := a · ∇yN(·, z )|∂Ω,

S : H
−1/2
⋄ (∂B) → R n, Sϕ :=

∫

∂B
η
((

−1

2
I +K0

B
⊤
)−1

ϕ
)

(η) ds(η),

an easy computation shows that their dual operators are

R⊤ : H
−1/2
⋄ (∂Ω) → R n, R⊤ψ = ∇v(z ),

S⊤ : R n → H
1/2
⋄ (∂B), S⊤a = a ·

(

−1

2
I +K0

B

)−1
η,

respectively, where v is the corresponding solution of (2.26) and η denotes
the surface variable on ∂B. From (2.24), we find that

L = RS, L⊤ = S⊤R⊤, and LFL⊤ = RSFS⊤R⊤.

Recalling (2.29) and Definition A.1, we see that

SFS⊤ = M0
B,

where we identify the matrix M0
B with the corresponding linear operator on

R n. Hence,

LFL⊤ = RM0
BR

⊤;

cf. (2.31).
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It is clear from the definition of R that gy,d ∈ R(R) if y = z . The
converse can again be proven by using that solutions to (2.36) are uniquely
determined by their Cauchy data on ∂Ω. Thus,

y = z if and only if gy,d ∈ R(R). (2.39)

It has been shown in [22] that

R(RM0
BR

⊤) = R(R). (2.40)

Thus, the position z of the inclusion Dδ can be determined by calculating
gy,d for every test point y ∈ Ω and checking whether gy,d ∈ R(RM0

BR
⊤),

which is a finite dimensional space. This range criterion can be implemented
very simply by calculating the angle β(y) between gy,d and R(RM0

BR
⊤).

Unfortunately, RM0
BR

⊤ is not known in practise. But, as already men-
tioned, RM0

BR
⊤ ≈ δ−n(Λδ − Λ0) is a good approximation for small values

of δ. Thus, it can be shown that

R(RM0
BR

⊤) ≈ R(Λδ − Λ0),

and so approximations βδ(y) of β(y) can be computed by using R(Λδ−Λ0)
instead of R(RM0

BR
⊤) in the definition of these angles. Plotting the values

of cotβδ(y) for an appropriate collection of sampling points y ∈ Ω we expect
to see large values for points y which are close to the position of the inclusion
z . For details and numerical results we refer the reader to [22,59]. Note that
this MUSIC–type method does not reconstruct the shape of the inclusion,
as the Factorization Method does. It gives just an idea of the position z of
the small inclusion.

Now, we come to our conclusion. We have seen that the theoretical
foundations of the Factorization Method and the MUSIC–type method are
the range criteria (2.37) and (2.39) together with the range identities (2.38)
and (2.40). As for a ∈ R n,

0 = a ·
(

−1

2
I +K0

B
⊤
)−1

η =
(

−1

2
I +K0

B
⊤
)−1

(a · η),

where η is again the surface variable on ∂B, is equivalent to a ·η = 0, which
is equivalent to a = 0, we find that the operator S⊤ is injective with finite
dimensional range. Hence, R(S) = N (S⊤)a = R n, i.e., S is surjective.
Here, N (S⊤)a denotes the annihilator of N (S⊤) in R n. So we find that
R(L) = R(RS) = R(R), and thus (2.39) is equivalent to

y = z if and only if gy,d ∈ R(L).

This shows that the characterization of the inclusion used in the MUSIC–
type reconstruction method is exactly the asymptotic version of the char-
acterization of inclusion from the Factorization Method as the size of the
inclusion tends to zero.



Chapter

Chapter 3

Asymptotic Factorization

for Maxwell’s Equations

In this chapter, we consider the direct scattering problem in two–layered
background media outlined in the introduction. We study the scattered
electromagnetic field due to a collection of finitely many small perfectly
conducting scatterers buried within the lower halfspace of an unbounded
two–layered background medium. Excitations of incident fields and mea-
surements of scattered fields are restricted to the measurement device, which
is supposed to be contained in a bounded sheet parallel to the surface of
ground in the upper halfspace. The incident fields, we are going to use, are
superpositions of electromagnetic fields due to so–called magnetic dipoles
on the measurement device. Note that by Biot–Savart’s law electromag-
netic fields generated by time–harmonic currents in any wire loop contained
in the measurement device can be ascribed to such a magnetic dipole distri-
bution on the measurement device; cf., e.g., Delbary et al. [46] for details.

We introduce the near field measurement operator that maps magnetic
dipole distributions on the measurement device, which generate the incident
fields, to the corresponding scattered fields on the same device. Then, we
derive an asymptotic expansion of this operator as the size of the scatterers
tends to zero, which, of course, also yields an asymptotic expansion of the
scattered field corresponding to any dipole excitation on the measurement
device.

Our proof of this asymptotic formula is based on a factorization of the
measurement operator in terms of three appropriate boundary integral op-
erators. A similar factorization has previously been studied by Gebauer et
al. [52] to justify a Linear Sampling Method for the corresponding inverse
scattering problem; see also Gebauer, Hanke, and Schneider [53]. We apply
layer potential techniques to describe the three operators occurring in this
factorization separately as the size of the scatterers tends to zero and use
these expansions to compute the leading order term in the asymptotic ex-

35



36 3. Asymptotic Factorization for Maxwell’s Equations

pansion of the full measurement operator. This generalizes the approach we
used in Chapter 2 for a boundary value problem in electrostatics.

In contrast to our work, Ammari et al. used variational methods to prove
similar formulas for boundary value problems in bounded domains [10, 14]
and (in combination with representation formulas) for scattering problems
in unbounded homogeneous background media [15]. For unbounded two–
layered background media the leading order term of the asymptotic expan-
sion of the scattered field has been mentioned without proof by Iakovleva
et al. [62]; see Ammari et al. [4] for a related formal derivation for homo-
geneous background media. However, no rigorous analysis for near field
measurements in two–layered background media has been available so far.

The outline of this chapter is as follows. After introducing some ad-
ditional notation in Section 3.1, we study dyadic Green’s functions, sur-
face potentials, and boundary integral operators arising in electromagnetic
scattering theory for two–layered background media in Section 3.2 and Sec-
tion 3.3. Then, in Section 3.4, we describe the mathematical model we are
going to use and introduce the near field measurement operator that de-
scribes our measurement process. In Section 3.5, we derive a factorization
of this operator, and Section 3.6 and Section 3.7 are devoted to the main
result of this chapter, the asymptotic expansion of the measurement opera-
tor as the size of the scatterers tends to zero. Here, we restrict ourselves to
the case of a single scatterer. Multiple scatterers are treated in Section 3.8.

3.1 Preliminaries

First, we introduce additional notation and recall some facts concerning
function spaces used in the context of Maxwell’s equations. Some results
are stated without proofs. For details we refer the reader to Buffa, Costabel,
and Sheen [23] and to Monk [88].

In this and the following chapter, we always work in R 3. We denote by
(e1, e2, e3) the usual Cartesian basis of R 3, by x = (x1, x2, x3)

⊤ a generic
point in R 3, and by Br(x ) the ball of radius r > 0 centered at x . Through-
out, let x · y and x × y be the standard scalar product and the vector
product of x ,y ∈ R 3.

Suppose D ⊂ R 3 is a bounded open set of class C2,α, 0 < α < 1, and
denote by ν the unit outward normal to ∂D relative to D. In the following,
we consider the complex valued Sobolev spacesHr(D; C ), Hr

loc( R 3; C ), and
Hr

loc( R 3 \D; C ), r ∈ R , and Hs(∂D; C ), s ∈ [−2, 2], which are defined on
D, R 3, R 3 \D, and on the boundary ∂D, respectively. For 1/2 < r ≤ 2,
let γ0 : Hr(D; C ) → Hr−1/2(∂D; C ) be the corresponding standard trace
operator.
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We define

L2
t (∂D) :=

{

a ∈ L2(∂D; C )3
∣

∣ ν · a = 0 on ∂D
}

,

H s
t (∂D) :=

{

a ∈ Hs(∂D; C )3
∣

∣ a ∈ L2
t (∂D)

}

, s ∈ [0, 2],

H (div, D) :=
{

u ∈ L2(D; C )3
∣

∣ divu ∈ L2(D; C )
}

,

H (curl, D) :=
{

u ∈ L2(D; C )3
∣

∣ curlu ∈ L2(D; C )3
}

,

and denote by Hloc(div, R 3 \D) and Hloc(curl, R 3 \D) the space of func-
tions u ∈ L2

loc( R 3 \D; C )3 so that u |O ∈ H (curl, O) and u |O ∈ H (div, O)
for every bounded open subset O ⊂ R 3 \ D, respectively. Moreover, let
H−s
t (∂D) be the dual space of H s

t (∂D) for s ∈ [0, 2].
The surface gradient ∇∂D and the surface vector curl curl∂D are defined

on ∂D in the usual way by a localization argument, and they can be extended
to continuous linear operators

∇∂D : H3/2(∂D; C ) → H
1/2
t (∂D), curl∂D : H3/2(∂D; C ) → H

1/2
t (∂D).

The dual operators of −∇∂D and curl∂D are the surface divergence div∂D
and the surface scalar curl curl∂D, respectively. So, we can introduce the
Hilbert spaces

H
−1/2
div (∂D) :=

{

a ∈ H
−1/2
t (∂D)

∣

∣ div∂D a ∈ H−1/2(∂D; C )
}

,

H
−1/2
curl (∂D) :=

{

a ∈ H
−1/2
t (∂D)

∣

∣ curl∂D a ∈ H−1/2(∂D; C )
}

.

For any regular vector field u ∈ C∞(D; C )3, we define the normal trace
γn(u) := ν ·u |∂D, the tangential trace γt(u) := ν×u |∂D, and the projection
on the tangent plane πt(u) := (ν × u |∂D) × ν. Moreover, let n(a) := ν · a
and r(a) := ν × a for any regular vector field a ∈ C∞(∂D; C )3 on ∂D.
Then, γn, γt, πt, n, and r can be extended to continuous linear surjective
operators

γn :H (div, D) → H−1/2(∂D),

γt :H (curl, D) → H
−1/2
div (∂D), πt :H (curl, D) → H

−1/2
curl (∂D)

and

n :Hs(∂D; C )3 → Hs(∂D; C ), r :H s
t (∂D) → H s

t (∂D), s ∈ [−1, 1].

The extension of r is an isomorphism with r−1 = −r = r⊤ (with slight

abuse of notation), which maps H
−1/2
div (∂D) to H

−1/2
curl (∂D) and vice versa.

For u ∈ H (curl, D) we have γt(u) = r(πt(u)) and πt(u) = −r(γt(u)). The
trace operators for Hloc(div, R 3 \D) and Hloc(curl, R 3 \D), also denoted
by γn, γt, and πt, respectively, are defined analogously and fulfill the same
properties. For the matter of readability, we will often use the classical



38 3. Asymptotic Factorization for Maxwell’s Equations

notation for the trace operators and for the operators n and r on Sobolev
spaces also.

The space H
−1/2
curl (∂D) can be naturally identified with the dual space

of H
−1/2
div (∂D), and we have the following integration by parts formula. For

any u ∈ H (curl, D) and v ∈ H (curl, D) it holds that

∫

D
curlu · v dx −

∫

D
u · curlv dx = 〈γt(u), πt(v)〉∂D, (3.1)

where 〈·, ·〉∂D denotes the dual pairing between H
−1/2
curl (∂D) and H

−1/2
div (∂D).

We note that for any a ∈ H
−1/2
t (∂D),

div∂D a = curl∂D r(a) and curl∂D a = −div∂D r(a). (3.2)

Furthermore, for any f ∈ H1(D) (or f ∈ H1
loc( R 3 \D)),

∇∂Dγ0(f) = πt(∇f), (3.3)

curl∂Dγ0(f) = −r(∇∂Dγ0(f)) = −γt(∇f), (3.4)

and finally, for u ∈ H (curl, D) (or u ∈ Hloc(curl, R 3 \D)), it holds that

−div∂D γt(u) = curl∂D πt(u) = γn(curlu). (3.5)

3.2 Fundamental Solutions and Green’s Functions

3.2.1 Homogeneous Medium

We assume that R 3 is filled with a homogeneous material with constant
electric permittivity ε and constant magnetic permeability µ, where µ is pos-
itive, whereas ε may be complex with positive real and nonnegative imagi-
nary part. The associated wavenumber is k := ω

√
εµ, where we assume that

ω > 0. If ε /∈ R , then k is taken to have positive imaginary part.

First, we recall the fundamental solution of the scalar Helmholtz equa-
tion, given by

Φk(x − y) :=
1

4π

ei k|x−y |

|x − y | , x ,y ∈ R 3, x 6= y . (3.6)

It satisfies

∆xΦk(x − y) + k2Φk(x − y) = −δ(x − y), x ,y ∈ R 3,

where δ denotes the Dirac–delta distribution. Note that for k = 0 the
function Φk reduces to the fundamental solution of the Laplace equation as
defined in (2.1).
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Next, we define the (matrix valued) dyadic Green’s function G for time–
harmonic Maxwell’s equations in homogeneous medium as the (distribu-
tional) solution of

curlx curlx G(x ,y) − k2 G(x ,y) = δ(x − y) I 3, x ,y ∈ R 3,

together with the Silver–Müller radiation conditions

∫

∂BR(0)

∣

∣

∣

x

R
× G(x ,y) +

i

k
curlx G(x ,y)

∣

∣

∣

2
ds(x ) = o(1),

∫

∂BR(0)

∣

∣

∣

x

R
× curlx G(x ,y) + i kG(x ,y)

∣

∣

∣

2
ds(x ) = o(1),

as R→ ∞. Here, I 3 denotes the 3× 3 identity matrix. The dyadic Green’s
function G has the following representation, cf. Nédélec [91, Theorem 5.2.1],

G(x ,y) = Φk(x −y) I 3 +
1

k2
∇x divx

(

Φk(x −y) I 3

)

, x ,y ∈ R 3,x 6= y .

(3.7)

3.2.2 Two–Layered Medium

We decompose the space R 3 = R 3
+ ∪ Σ0 ∪ R 3

− in a hyperplane

Σ0 := {x ∈ R 3 | x3 = 0}

and the two halfspaces

R 3
+ := {x ∈ R 3 | x3 > 0} and R 3

− := {x ∈ R 3 | x3 < 0}

above and below Σ0. For convenience, we set R 3
0 := R 3 \ Σ0. We assume

that both halfspaces are filled with homogeneous materials with electric
permittivity ε and magnetic permeability µ given by

ε(x ) :=

{

ε+, x ∈ R 3
+,

ε−, x ∈ R 3
−,

µ(x ) :=

{

µ+, x ∈ R 3
+,

µ−, x ∈ R 3
−,

(3.8)

and we require that ε+ as well as µ± are positive numbers, whereas ε−
may be complex with positive real and nonnegative imaginary part. The
associated (discontinuous) wavenumber is k := ω

√
εµ, where we assume

ω > 0. If ε− /∈ R , then k is taken to have positive imaginary part.
For this two–layered background medium we have to distinguish between

the electric and the magnetic dyadic Green’s functions. The electric dyadic
Green’s function Ge is the (distributional) solution of

curlx
1

µ(x )
curlx Ge(x ,y) − ω2ε(x ) Ge(x ,y) =

1

µ(x )
δ(x − y) I 3, (3.9)
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x ,y ∈ R 3, together with the Silver–Müller radiation conditions

∫

∂BR(0)

∣

∣

∣

x

R
× Ge(x ,y) +

i

k(x )
curlx Ge(x ,y)

∣

∣

∣

2
ds(x ) = o(1), (3.10a)

∫

∂BR(0)

∣

∣

∣

x

R
× curlx Ge(x ,y) + i k(x ) Ge(x ,y)

∣

∣

∣

2
ds(x ) = o(1) (3.10b)

as R → ∞. On the other hand, the magnetic dyadic Green’s function Gm

is the (distributional) solution of

curlx
1

ε(x )
curlx Gm(x ,y) − ω2µ(x ) Gm(x ,y) =

1

ε(x )
δ(x − y) I 3, (3.11)

x ,y ∈ R 3, together with the Silver–Müller radiation conditions

∫

∂BR(0)

∣

∣

∣

x

R
× Gm(x ,y) +

i

k(x )
curlx Gm(x ,y)

∣

∣

∣

2
ds(x ) = o(1), (3.12a)

∫

∂BR(0)

∣

∣

∣

x

R
× curlGm(x ,y) + i k(x ) Gm(x ,y)

∣

∣

∣

2
ds(x ) = o(1) (3.12b)

as R → ∞. Note that we are using x as an independent variable and y

denotes the position of the source.
For derivations of these Green’s functions we refer to Delbary et al. [46]

and to [88, pp. 318–327]; see also Petry [92], Cutzach and Hazard [43],
Muniz [89], and Sommerfeld [99]. From [88, 89] we find that Ge and Gm

can be written as

Ge/m(x ,y) = Πe/m(x ,y) +
1

k(x )2
∇x divx Πe/m(x ,y), (3.13)

x ,y ∈ R 3
0, x 6= y . Here, the (matrix valued) functions Πe and Πm are of

the form

Πe/m(x ,y) = Φk(x )(x − y) I 3 +F e/m(x ,y), x ,y ∈ R 3
0, x 6= y , (3.14)

and they solve

(∆x + k(x )2)Πe/m(x ,y) = −δ(x − y) I 3, x ,y ∈ R 3
0,

together with jump conditions on Σ0, which can be derived using the conti-
nuity of the tangential components of Ge/m(·,y), (1/µ) curlx Ge(·,y), and
(1/ε) curlx Gm(·,y) across Σ0. The (matrix valued) functions F e and Fm

solve

(∆x + k(x )2)F e/m(x ,y) = 0, x ,y ∈ R 3
0,

and F e(·,y) and Fm(·,y) are smooth functions (with resp. to both variables)
in R 3

0 for y in any compact subset of R 3
0.
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3.3 Surface Potentials for Maxwell’s Equations

In this section, we collect some results concerning boundary integral oper-
ators arising in electromagnetic scattering theory. Although well known to
experts, some of these results where not available to us in citable form.

3.3.1 Homogeneous Medium

We start with a homogeneous medium with (constant) wavenumber k as
introduced in Section 3.2.1.

Let D ⊂ R 3 be a bounded open set of class C2,α, 0 < α < 1, and denote
by ν the unit outward normal to ∂D relative to D. Given a continuous
scalar function f ∈ C(∂D; C ), the single layer potential with density f is
given by

(SkDf)(x ) :=

∫

∂D
Φk(x − y)f(y) ds(y), x ∈ R 3 \ ∂D.

Then, SkDf is continuous throughout R 3 (cf. Colton and Kress [38, Theo-
rem 2.12]), and if f ∈ C0,α(∂D; C ), the following continuity result holds for
the tangential trace of first derivative of SkDf :

ν(x ) ×∇SkDf
∣

∣

±

∂D
(x ) = ν(x ) ×

∫

∂D
∇xΦk(x − y)f(y) ds(y), x ∈ ∂D,

(3.15)
where the integral exists as a Cauchy principal value, i.e., ν × ∇SkDf is
continuous across ∂D, too; cf. [38, Theorem 2.17]. The expression SkD can
be extended to a bounded linear operator

SkD : H−1/2(∂D; C ) → H1
loc( R 3; C ); (3.16)

cf. [86, Theorem 6.11].

Lemma 3.1. The right–hand side of (3.15) can be extended to a bounded

linear operator from H−1/2(∂D; C ) to H
−1/2
div (∂D) such that (3.15) remains

valid for densities f ∈ H−1/2(∂D; C ).

Proof. From (3.16), we find that

∇SkD : H−1/2(∂D; C ) → L2
loc( R 3; C )3

is bounded. Because curl∇SkDf = 0 for any f ∈ H−1/2(∂D; C ), we obtain
that

∇SkD : H−1/2(∂D; C ) → Hloc(curl, R 3) (3.17)

is bounded too. Hence, the tangential traces of ∇SkDf from outside and
inside the boundary ∂D are well defined and equal. Recalling the bounded-
ness of the trace operator γt from Hloc(curl, R 3 \D) (resp. H (curl, D)) to

H
−1/2
div (∂D), we find that the right–hand side of (3.15) can be extended to

a bounded linear operator from H−1/2(∂D; C ) to H
−1/2
div (∂D).
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Given a continuous tangential vector field

a ∈ T (∂D) :=
{

b ∈ C(∂D; C )3
∣

∣ ν · b = 0 on ∂D
}

,

the vector potential with density a is given by

(Ak
Da)(x ) :=

∫

∂D
Φk(x − y)a(y) ds(y), x ∈ R 3 \ ∂D.

Then, Ak
Da is continuous throughout R 3. On the boundary, we have

ν(x )×curlAk
Da
∣

∣

±

∂D
(x ) =

∫

∂D
ν(x )×curlx

(

Φk(x−y)a(y)
)

ds(y)± 1

2
a(x )

(3.18)
for x ∈ ∂D and

ν × curl curlAk
Da
∣

∣

+

∂D
= ν × curl curlAk

Da
∣

∣

−

∂D
; (3.19)

cf. [39, Theorem 6.11]. Furthermore, for

a ∈ T 0,α(∂D) :=
{

b ∈ C0,α(∂D; C )3
∣

∣ ν · b = 0 on ∂D
}

,

0 < α < 1, it holds that

ν · curlAk
Da
∣

∣

+

∂D
= ν · curlAk

Da
∣

∣

−

∂D
; (3.20)

cf. [38, Theorem 2.24]. Next, for 0 < α < 1, we introduce the spaces

Tdiv(∂D) :=
{

b ∈ T (∂D)
∣

∣ div∂D b ∈ C(∂D; C )
}

,

T
0,α
div (∂D) :=

{

b ∈ T 0,α(∂D)
∣

∣ div∂D b ∈ C0,α(∂D; C )
}

,

T
0,α
curl(∂D) :=

{

b ∈ T 0,α(∂D)
∣

∣ curl∂D b ∈ C0,α(∂D; C )
}

.

Given a ∈ T (∂D) and b ∈ T
0,α
curl(∂D), we define

(Mk
Da)(x ) :=

∫

∂D
ν(x ) × curlx

(

Φk(x − y)a(y)
)

ds(y),

(Nk
Db)(x ) := ν(x ) × curl curl

∫

∂D
Φk(x − y)ν(y) × b(y) ds(y)

= −ν(x ) ×
∫

∂D
∇xΦk(x − y)(curl∂D b)(y) ds(y)

+ k2ν(x ) ×
∫

∂D
Φk(x − y)ν(y) × b(y) ds(y)

for x ∈ ∂D. Then, Mk
D is a bounded linear operator from Tdiv(∂D)

to T
0,α
div (∂D), and Nk

D is a bounded linear operator from T
0,α
curl(∂D) to

T
0,α
div (∂D); cf. [39, Theorems 6.16 and 6.17]. By interchanging the order
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of integration, it can be seen that the transpose Mk
D
⊤

of Mk
D with respect

to the bilinear form 〈a , b〉 :=
∫

∂D a · b ds, a , b ∈ T (∂D), is given by

Mk
D
⊤
a = ν ×Mk

D(ν × a), a ∈ T (∂D).

The operator Nk
D is symmetric; cf. [39, p. 171].

Lemma 3.2. (i) The expression Ak
D can be extended to a bounded linear

operator

Ak
D : H

−1/2
div (∂D) → Hloc(curl, R 3).

(ii) The operators Mk
D and Mk

D
⊤

have compact extensions

Mk
D : H

−1/2
div (∂D) → H

−1/2
div (∂D), Mk

D
⊤

: H
−1/2
curl (∂D) → H

−1/2
curl (∂D).

(iii) The operator Nk
D has a bounded extension

Nk
D : H

−1/2
curl (∂D) → H

−1/2
div (∂D).

Proof. (i) From [86, Theorem 6.11], we obtain a continuous extension

Ak
D : H−1/2(∂D; C )3 → H1

loc( R 3; C )3. (3.21)

This implies the desired result.

(ii) From Kirsch [70, Theorem 4.2], we obtain continuous extensions

Mk
D,M

k
D
⊤

: L2
t (∂D) → H 1

t (∂D).

Thus, by duality, we get another bounded extension

Mk
D : H−1

t (∂D) → L2
t (∂D),

and recalling the interpolation property of Sobolev spaces (cf. [86, Theo-
rem B.2]), we find that

Mk
D : H

−3/4
t (∂D) → H

1/4
t (∂D)

is bounded, too.

Given a continuous function f ∈ C(∂D; C ), we define

(

Kk
D
⊤
f
)

(x ) :=

∫

∂D

∂Φk(x − y)

∂ν(x )
f(y) ds(y), x ∈ ∂D.

Then,

Kk
D
⊤

: H−3/4(∂D; C ) → H1/4(∂D; C )
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is bounded; cf. [91, Theorem 4.4.1]. Using (3.1), (3.3), and (3.4), the op-
erators ∇∂D and curl∂D can be extended to continuous operators from
Hr(∂D; C ) to H r−1

t (∂D) for 1/2 ≤ r ≤ 2. Accordingly, div∂D and curl∂D
are continuous from H 1−r

t (∂D) to H−r(∂D; C ). So we can define

H s
div(∂D) :=

{

a ∈ H s
t (∂D)

∣

∣ div∂D a ∈ Hs(∂D; C )
}

, s ∈ [−1, 1/2].

Because the operators SkD and Ak
D have continuous extensions

SkD :H−3/4(∂D; C ) → H
3/4
loc ( R 3; C ),

Ak
D :H

−3/4
t (∂D) → H

3/4
loc ( R 3; C )3

(cf. [86, Theorem 6.12]), we can extend a result for continuous tangential
vector fields, proven in [39, p. 170], by a density argument (as, e.g., done by
Mitrea, Mitrea, and Pipher in the proof of [87, Lemma. 4.2]) to obtain the
identity

divAk
Da = SkD div∂D a , a ∈ H

−3/4
div (∂D). (3.22)

Hence, AD is bounded from H
−3/4
div (∂D) to H

3/4
loc (div, R 3), and so its normal

trace on ∂D is well defined, and

ν · Ak
D

∣

∣

∂D
: H

−3/4
div (∂D) → H1/4(∂D; C )

is bounded, too. Generalizing a formula from [39, p. 169] by a density
argument, we find that

div∂DM
k
Da = −k2ν ·Ak

Da
∣

∣

∂D
−Kk

D
⊤

div∂D a , a ∈ H
−3/4
div (∂D). (3.23)

Thus, combining these results, we obtain that

Mk
D : H

−3/4
div (∂D) → H

1/4
div (∂D)

is bounded. The embedding operator

It,s : H t
div(∂D) → H s

div(∂D)

is compact for −1 ≤ s < t ≤ 1/2. This follows from the embedding theorem
for standard Sobolev spaces Hs(∂D), −1 ≤ s ≤ 1/2 (cf. [86, Theorem 3.27])
in the same way as in the proof of a corresponding result for Hölder spaces
in [39, Theorem 6.15]. So, we find that

Mk
D : H

−1/2
div (∂D) → H

−1/2
div (∂D)

and the corresponding dual operator

Mk
D
⊤

= rMk
Dr : H

−1/2
curl (∂D) → H

−1/2
curl (∂D) (3.24)

are compact.
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(iii) Combining (3.17) and (3.21), we find that

∇SkD curl∂D +k2Ak
Dr :H

−1/2
curl (∂D) → Hloc(curl, R 3)

is bounded. Thus, recalling the boundedness of the trace operator γt from

Hloc(curl, R 3 \D) (resp. H (curl, D)) to H
−1/2
div (∂D) and Lemma 3.1, we

find that the operator Nk
D can be extended to a continuous linear operator

from H
−1/2
curl (∂D) to H

−1/2
div (∂D).

It can be seen straightforwardly that the formulas (3.18), (3.19), and

(3.20) remain valid for densities a ∈ H
−1/2
div (∂D).

3.3.2 The Potential Theoretic Limit k = 0

Substituting Φk by Φ0 in the definitions above, we obtain integral operators

A0
D : H

−1/2
div (∂D) → Hloc(curl, R 3), M0

D : H
−1/2
div (∂D) → H

−1/2
div (∂D),

M0
D
⊤

: H
−1/2
curl (∂D) → H

−1/2
curl (∂D), N0

D : H
−1/2
curl (∂D) → H

−1/2
div (∂D).

The mapping properties and jump relations mentioned in the previous sec-
tion remain valid for k = 0 (cf. [38, 86]). Furthermore, the integral oper-
ators S0

D, D0
D, and K0

D introduced in Section 2.2 on real–valued Sobolev
spaces will in the following be considered as operators on the corresponding
complex–valued Sobolev spaces.

Next, we study the invertibility of ±1
2I +M0

D and ±1
2I +M0

D
⊤
. The

proof of the following lemma is essentially the same as the proof of [38,
Theorem 5.5] for continuous densities.

Lemma 3.3. Assume that all components of D are simply connected and
that the complement of D is connected. Then, the operators 1

2I +M0
D and

1
2I+M

0
D
⊤

have trivial nullspace in H
−1/2
div (∂D) and H

−1/2
curl (∂D), respectively.

Proof. Let a ∈ N
(

1
2I +M0

D

)

and set

E := curlA0
Da in R 3 \D.

From (3.18), we find that ν × E |+∂D = 0. The potential theoretic form
of the representation theorem [38, Theorem 4.13] for the vector Helmholtz
equation can be generalized to Sobolev spaces in the same way as done in
[88, Theorems 9.2 and 9.4] for a similar representation formula for Maxwell’s
equations. Applying this formula to the vector potential A0

Da and taking
the divergence, we get

divA0
Da =

∫

∂D

∂Φ0(x − y)

ν(y)
(divA0

Da)(y) ds(y) = D0
D(divA0

Da)
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in R 3 \ D. Recalling (3.22), we find that divA0
Da ∈ H1

loc( R 3 \ D; C ).
Taking the trace on ∂D from outside, using (2.4b), shows that

divA0
Da
∣

∣

+

∂D
∈ N

(

−1

2
I +K0

D

)

.

Hence (cf. Ammari and Kang [7, Lemma 2.5]), we have that divA0
Da = 0

on ∂D, and from the uniqueness property for the Dirichlet problem for
harmonic functions, it follows that divA0

Da = 0 in D and in R 3 \D. Thus,

curlE = −∆A0
Da + ∇ divA0

Da = 0 and divE = div curlA0
Da = 0

in R 3 \D. This means that E is a harmonic vector field in D and R 3 \D.

Using integration by parts (3.1), we find that

∫

R
3\D

E ·E dx =

∫

R
3\D

curlA0
Da ·E dx

= −
∫

∂D
(ν ×A0

Da) ·
(

(ν ×E) × ν
)

ds = 0,

from which we conclude that E = 0 in R 3 \D.

From the jump relations (3.18) and (3.20), we find that a = −ν ×E |−∂D
and ν ·E |−∂D = 0 on ∂D. Because all components ofD are simply connected,
there exists a harmonic scalar potential q ∈ H1(D) such that E = ∇q;
cf. [88, Theorem 3.37]. From ν · E |−∂D = 0 we obtain that ∂q

∂ν = 0 on ∂D.

Hence, E = ∇q = 0 in D and a = 0. So, N
(

1
2I+M0

D

)

= {0} in H
−1/2
div (∂D).

By Theorem 2.1, N
(

1
2I +M0

D
⊤)

= {0} in H
−1/2
curl (∂D) also.

So, if all components of D are simply connected and the complement of
D is connected, we find from Lemma 3.3 and Theorem 2.1 that 1

2I + M0
D

and 1
2I +M0

D
⊤

are invertible on H
−1/2
div (∂D) and H

−1/2
curl (∂D), respectively.

Recalling (3.24), which remains true in the potential theoretic limit, we

observe that for any a ∈ H
−1/2
div (∂D)

(1

2
I ±M0

D
⊤
)

(ν × a) = ν ×
(1

2
I ∓M0

D

)

a . (3.25)

Thus, if all components of D are simply connected and the complement of

D is connected, −1
2I +M0

D and −1
2I +M0

D
⊤

are invertible on H
−1/2
div (∂D)

and H
−1/2
curl (∂D), respectively, too.

Lemma 3.4. (i) The operators ±1
2I +M0

D are isomorphisms on

H
−1/2
div,0 (∂D) :=

{

a ∈ H
−1/2
div (∂D)

∣

∣ div∂D a = 0
}

.
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(ii) For any f ∈ H1/2(∂D; C ),

(

±1

2
I +M0

D
⊤
)−1

∇∂Df = −∇∂D

(

∓1

2
I +K0

D

)−1
f. (3.26)

Proof. Part (i) follows at once, because for k = 0 the identity (3.23) reduces
to

div∂DM
0
Da = −K0

D
⊤

div∂D a , a ∈ H
−1/2
div (∂D). (3.27)

By duality, we obtain from (3.27) for any f ∈ H1/2(∂D; C ) that

M0
D
⊤∇∂Df = −∇∂DK

0
Df.

Thus,
(

±1

2
I +M0

D
⊤
)

∇∂Df = −∇∂D

(

∓1

2
I +K0

D

)

f,

which yields (3.26).

3.3.3 Two–Layered Medium

Let D ⊂ R 3
− be a bounded open set of class C2,α, 0 < α < 1, such that

dist(D,Σ0) ≥ d0 for some constant d0 > 0. Given a continuous tangential
vector field a ∈ T (∂D), we define the modified vector potential with density
a by

(Ae/m
D a)(x ) :=

∫

∂D
Πe/m(x ,y)a(y) ds(y)

=(Ak−
D a)(x ) +

∫

∂D
F e/m(x ,y)a(y) ds(y), x ∈ R 3 \ ∂D,

and boundary integrals

(R
e/m
D a)(x ) :=

∫

∂D
ν(x ) × curlx

(

F e/m(x ,y)a(y)
)

ds(y), x ∈ ∂D,

(3.28)

(M
e/m
D a)(x ) :=

∫

∂D
ν(x ) × curlx

(

Πe/m(x ,y)a(y)
)

ds(y) (3.29)

=(M
k−
D a)(x ) + (R

e/m
D a)(x ), x ∈ ∂D.

Because F e/m(·,y) is smooth (with resp. to both variables) in R 3
0 for y

in any compact subset of R 3
0, Ae/m

D can be extended to a bounded linear
operator

Ae/m
D : H

−1/2
div (∂D) → Hloc(curl, R 3

0),

and R
e/m
D and M

e/m
D define compact operators

R
e/m
D : H

−1/2
div (∂D) → H

−1/2
div (∂D), M

e/m
D : H

−1/2
div (∂D) → H

−1/2
div (∂D).
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Moreover, Ae/m
D a is continuous across ∂D,

ν × curlAe/m
D a

∣

∣

±

∂D
=
(

±1

2
I +M

e/m
D

)

a , (3.30)

and
ν × curl curlAe/m

D a
∣

∣

+

∂D
= ν × curl curlAe/m

D a
∣

∣

−

∂D
. (3.31)

Finally, we want to study the invertibility of the operators 1
2I + Mm

D

and 1
2I + Mm

D
⊤. The proof of the following lemma is essentially the same

as the proof of [38, Theorem 4.23] for homogeneous medium and continuous
densities.

Lemma 3.5. Assume that the exterior of D is connected and that the
wavenumber k− is not a Maxwell eigenvalue for D. Then, 1

2I +Mm
D and

1
2I +Mm

D
⊤ have trivial nullspace in H

−1/2
div (∂D) and H

−1/2
curl (∂D), respec-

tively.

Proof. Let a ∈ N
(

1
2I + Mm

D

)

and define the electromagnetic field (E ,H )
by

E :=
ε−
ε

curlAk
Da , H :=

1

iωµ
curlE in R 3 \ ∂D.

Then, E and H form a radiating solution of Maxwell’s equations, and by
(3.30),

ν ×E
∣

∣

+

∂D
=
(1

2
I +Mm

D

)

a = 0.

From the uniqueness of solutions of the exterior Maxwell boundary value
problem (cf. Appendix C) we find that E = 0 in R 3 \D. Because by (3.31)
iωµH = curl

ε−
ε curlAk

Da has continuous tangential components across the

boundary ∂D, we obtain that ν ×H
∣

∣

−

∂D
= 0. Therefore, (H ,− ε−

µ−
E) forms

a solution to the interior Maxwell problem with homogeneous boundary
condition. Recalling the assumption on k−, we find that H = E = 0 in D.
Finally, again from (3.30), we obtain that a = ν × E

∣

∣

+

∂D
− ν × E

∣

∣

−

∂D
= 0.

Therefore, N
(

1
2I +Mm

D

)

= {0} in H
−1/2
div (∂D).

By Theorem 2.1, N
(

1
2I +Mm

D
⊤
)

= {0} in H
−1/2
curl (∂D) also.

So, if the exterior of D is connected and k− is not a Maxwell eigen-
value for D, we find from Lemma 3.5 and Theorem 2.1 that 1

2I +Mm
D and

1
2I +Mm

D
⊤ are invertible on H

−1/2
div (∂D) and H

−1/2
curl (∂D), respectively.

3.4 Mathematical Setting

In this section, we set up the mathematical model we are going to use. We
decompose the space R 3 = R 3

+∪Σ0∪ R 3
− as in Section 3.2.2 in a hyperplane

Σ0 corresponding to the surface of the ground and the two halfspaces R 3
+
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and R 3
− above and below Σ0 representing air and ground, respectively. As

above, both halfspaces are filled with homogeneous materials with electric
permittivity ε and magnetic permeability µ given by (3.8), and we require
that ε+ as well as µ± are positive numbers, whereas ε− may be complex with
positive real and nonnegative imaginary part to allow for soil materials that
are conducting. The associated (discontinuous) wavenumber is k := ω

√
εµ,

where we assume ω > 0. If ε− /∈ R , then k is taken to have positive
imaginary part.

In the following, we investigate radiating solutions of time–harmonic
Maxwell’s equations

curlH + iωεE = 0, curlE − iωµH = 0 (3.32)

in the exterior of some compact set C ⊂ R 3. By this, we understand (cf.,
e.g., [43, 88]), solutions E ,H ∈ Hloc(curl, R 3 \ C) which obey the integral
radiation condition
∫

∂BR(0)

∣

∣

∣

∣

x

R
×H (x )+

( ε(x )

µ(x )

)1/2
E(x )

∣

∣

∣

∣

2

ds(x ) = o(1) as R→ ∞. (3.33)

As mentioned by Kirsch [75], the radiation condition (3.33) makes sense
due to the following regularity result by Weber [100]: Let R > 0 be such
that C is contained in the open ball BR(0) and set G := R 3 \ BR(0).
Observing that the boundary condition on ∂G is not necessary to derive
the regularity results in G in Theorem 2.2 and Theorem 2.9 in [100], we
obtain from Theorem 2.9 in [100] that the solutions E , H of (3.32) belong-
ing to Hloc(curl, R 3 \ C) satisfy E |M∩G±

, H |M∩G±
∈ Hs(M ∩ G±; C )3

for all s ∈ N and all open bounded sets M such that M ⊂ G, where
G± := R 3

± \BR(0). Sobolev’s embedding theorem (cf. Agmon [1, Theo-
rem 3.9]), yields that E |G±

, H |G±
∈ Cs(G±; C )3 for all s ∈ N .

Recalling the electric and the magnetic dyadic Green’s function Ge and
Gm from Section 3.2.2, we mention that for any d ∈ C 3 and y ∈ R 3

0 it holds
that ( Ge(·,y)d , 1

iωµcurlx Ge(·,y)d) and (− 1
iωεcurlx Gm(·,y)d , Gm(·,y)d)

are radiating solutions of Maxwell’s equations (3.32) in R 3 \ {y}.
We denote by

Σd := {x ∈ R 3
+ | x · e3 = d} ⊂ R 3

+

the hyperplane parallel to the surface of the ground at height d > 0, and
we assume that measurements and excitations are restricted to an open
bounded sheet M ⊂ Σd supporting the measurement device. A time–
harmonic excitation given by a magnetic dipole density ϕ ∈ L2(M) :=
L2(M; C )3 on M leads to a primary electromagnetic field (E i,H i) satis-
fying (3.32) in R 3 \M, where the magnetic field has the form

H i = k2
+

∫

M
Gm(·,y)ϕ(y) ds(y); (3.34)
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R 3
+

R 3
−

M

ν

e3

Σ0

Dδ,1

Dδ,2

Dδ,3

Dδ,4

d

Figure 3.1: Sketch of the geometrical setup.

cf. [99].

We suppose that R 3
− contains a finite number of well separated small

perfectly conducting scatterers, each of the form Dδ,l := zl+δBl, 1 ≤ l ≤ m,
where Bl ⊂ R 3 is a bounded open set of class C2,α, 0 < α < 1, containing
the origin, that consists of finitely many domains such that every compo-
nent of Bl is simply connected and its boundary is connected. The points
zl ∈ R 3

−, 1 ≤ l ≤ m, that determine the position of the scatterers are as-
sumed to satisfy

|zj − zl| ≥ d0 for j 6= l and dist(zl,Σ0) ≥ d0

for some constant d0 > 0, 1 ≤ j, l ≤ m. The value of 0 < δ ≤ 1, the common
order of magnitude of the size of the scatterers, is assumed to be small
enough such that the scatterers are disjoint and compactly contained in R 3

−.
So, the total collection of scatterers takes the form Dδ :=

⋃m
l=1(zl + δBl).

Throughout, we denote by ν the unit outward normal to ∂Dδ,l and ∂Bl
relative to Dδ,l and Bl, 1 ≤ l ≤ m, respectively.

The perfect conductor sitting in Dδ induces a secondary field (E s,H s)
which is a radiating solution of (3.32) in R 3 \Dδ subject to the boundary
condition

ν ×E s = −ν ×E i on ∂Dδ. (3.35)

For a mathematical treatment of this direct problem we refer the reader to
[43, 46, 88]. We define the near field measurement operator Gδ, which maps
given excitations ϕ to the corresponding secondary magnetic fields H s|M
on M, i.e.,

Gδ : L2(M) → L2(M), Gδϕ := H s|M. (3.36)
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Note that, because H s is analytic in a neighborhood of M, its trace on M
is a well–defined member of L2(M). As in Gebauer et al. [52, Theorem 2.1],
it can be seen that Gδ is a compact operator.

3.5 Factorization of Gδ

In this section, we derive a factorization of the measurement operator Gδ
from (3.36) similar to the one developed in [52], but here we do not restrict
ourselves to tangential excitations and measurements.

We consider an arbitrary tangential vector fieldψ ∈ H
−1/2
div (∂Dδ) and de-

note by (Eψ,H ψ) the associated radiating solution of the exterior Maxwell
boundary value problem

curlH ψ + iωεEψ =0, curlEψ − iωµH ψ = 0 in R 3 \Dδ, (3.37a)

ν ×Eψ =ψ on ∂Dδ. (3.37b)

Uniqueness of solutions of this problem is stated in Appendix C, and exis-
tence of solutions will be shown in the next sections by reducing the bound-
ary value problem to an integral equation of the second kind and applying
Riesz–Fredholm theory. We define

Lδ : H
−1/2
div (∂Dδ) → L2(M), Lδψ := H ψ|M. (3.38)

Then, Lδ is a bounded linear operator. In particular, we mention that
if E i and H s are the primary electric and secondary magnetic fields in-
troduced in Section 3.4, respectively, then ψ := −ν × E i|∂Dδ

belongs to

H
−1/2
div (∂Dδ), and this choice of ψ yields H ψ = H s. This means that

Lδ : −ν ×E i|∂Dδ
7→ H s|M.

Next, we introduce the bilinear form

〈ϕ1,ϕ2〉M :=

∫

M
ϕ1 ·ϕ2 ds for ϕ1,ϕ2 ∈ L2(M), (3.39)

and denote by L⊤
δ : L2(M) → H

−1/2
curl (∂Dδ) the corresponding transpose of

Lδ.

Proposition 3.6. Let ϕ ∈ L2(M) and denote by H i and H s the associated
primary and secondary magnetic fields introduced in Section 3.4. Then,

L⊤
δ ϕ =

1

iωµ+
(ν ×H |∂Dδ

) × ν on ∂Dδ, (3.40)

where H = H i + H s is the total magnetic field.
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Proof. Given ψ ∈ H
−1/2
div (∂Dδ), let (Eψ,Hψ) be the radiating solution of

(3.37). From Theorem B.1, we obtain that for any y ∈ R 3 \Dδ,

Hψ(y) =

∫

∂Dδ

ε(y)

ε(x )

(

Gm⊤(x ,y)(ν × curlHψ)(x )

+ (curlx Gm)⊤(x ,y)(ν ×Hψ)(x )
)

ds(x ).

Therefore, applying (3.37a) and (3.37b), we find that

iωµ+〈ϕ, Lδψ〉M = iωµ+

∫

M
ϕ(y) ·Hψ(y) ds(y)

= iωµ+

∫

M
ϕ(y) ·

(∫

∂Dδ

ε+
ε−

(

Gm⊤(x ,y)(ν × curlHψ)(x )

+ (curlx Gm)⊤(x ,y)(ν ×Hψ)(x )
)

ds(x )

)

ds(y)

=

∫

∂Dδ

ψ(x ) · k2
+

∫

M
Gm(x ,y)ϕ(y) ds(y) ds(x )

+

∫

∂Dδ

(ν ×Hψ)(x ) · iωµ+ε+
ε−

∫

M
curlx Gm(x ,y)ϕ(y) ds(y) ds(x ).

Recalling formula (3.34) for the incident field and the boundary condition
(3.35), we obtain

iωµ+〈ϕ, Lδψ〉M

=

∫

∂Dδ

ψ(x ) ·H i(x ) ds(x ) − 1

iωε−

∫

∂Dδ

(ν ×Hψ)(x ) · curlH i(x ) ds(x )

=

∫

∂Dδ

ψ(x ) ·H i(x ) ds(x ) +

∫

∂Dδ

Hψ(x ) · (ν ×E s)(x ) ds(x ).

Then, integration by parts (cf. (3.1)) and applying Maxwell’s equations gives
for the second term
∫

∂Dδ

Hψ(x ) · (ν ×E s)(x ) ds(x )

=

∫

BR(0)\Dδ

(

curlHψ(x ) ·E s(x ) −Hψ(x ) · curlE s(x )
)

dx

+

∫

∂BR(0)

x

R
×E s(x ) ·Hψ(x ) ds(x )

=

∫

BR(0)\Dδ

(

Eψ(x ) · curlH s(x ) − curlEψ(x ) ·H s(x )
)

dx

−
∫

∂BR(0)
E s(x ) · x

R
×Hψ(x ) ds(x ).
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With another partial integration, we thus obtain
∫

∂Dδ

Hψ(x ) · (ν ×E s)(x ) ds(x ) =

∫

∂BR(0)

x

R
×H s(x ) ·Eψ(x ) ds(x )

−
∫

∂Dδ

(ν ×H s)(x ) ·Eψ(x ) ds(x ) −
∫

∂BR(0)
E s(x ) · x

R
×Hψ(x ) ds(x )

=

∫

∂Dδ

H s(x ) · (ν ×Eψ)(x ) ds(x )

+

∫

∂BR(0)

(

x

R
×H s(x ) +

( ε(x )

µ(x )

)1/2
E s(x )

)

·Eψ(x ) ds(x )

−
∫

∂BR(0)
E s(x ) ·

(

x

R
×Hψ(x ) +

( ε(x )

µ(x )

)1/2
Eψ(x )

)

ds(x ).

From the radiation condition (3.33) and the finiteness condition (B.9), we
obtain that the integrals over ∂BR(0) vanish as R→ ∞. Therefore, recalling
(3.37b),

iωµ+〈ϕ, Lδψ〉M =

∫

∂Dδ

H (x ) ·ψ(x ) ds(x ) =
〈

(ν ×H |∂Dδ
) × ν,ψ

〉

Dδ
.

Finally, we consider the diffraction problem

curlH d + iωεEd = 0, curlEd − iωµH d = 0 in R 3 \ ∂Dδ, (3.41a)

with the jump conditions
[

(ν ×H d) × ν
]

∂Dδ
= χ,

[

ν ×Ed
]

∂Dδ
= 0 on ∂Dδ. (3.41b)

Here, χ ∈ H
−1/2
curl (∂Dδ) is a given tangential field on ∂Dδ, and the square

brackets denote the differences between the respective traces from outside
and inside. We are looking for a radiating solution (Ed,H d) of this problem.
Uniqueness of solutions is stated in Appendix C, and existence of solutions
will be shown later by writing them in terms of layer potentials. Given the
solution, we define

Fδ : H
−1/2
curl (∂Dδ) → H

−1/2
div (∂Dδ), Fδχ := ν ×Ed|∂Dδ

. (3.42)

Then, Fδ is a bounded linear operator. For χ = (ν × H |∂Dδ
) × ν, i.e., the

tangential component of the total magnetic field corresponding to some exci-
tation ϕ ∈ L2(M) as described in Section 3.4, the solution of the diffraction
problem (3.41) can be constructed from the corresponding primary and the
secondary fields, namely

Ed =

{

E s, x ∈ R 3 \Dδ,

−E i, x ∈ Dδ,
H d =

{

H s, x ∈ R 3 \Dδ,

−H i, x ∈ Dδ.
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Consequently,

Fδ : (ν ×H |∂Dδ
) × ν 7→ ν ×E s|∂Dδ

= −ν ×E i|∂Dδ
.

In sum, we have shown that the following diagram is commutative:

L2(M)

iωµ+L⊤
δ

��

Gδ
// L2(M)

H
−1/2
curl (∂Dδ)

Fδ
// H

−1/2
div (∂Dδ)

Lδ

OO

ϕ
_

��

�

// H s|M

(ν ×H |∂Dδ
) × ν �

// −ν ×E i|∂Dδ

_

OO

This yields the following theorem; cf. [52] for a corresponding result for
tangential densities ϕ on M.

Theorem 3.7. Given Lδ from (3.38) and Fδ from (3.42), the measurement
operator Gδ from (3.36) admits the factorization

Gδ = iωµ+LδFδL
⊤
δ . (3.43)

3.6 First Estimates

In the following two sections, we restrict ourselves to the case of a single
scatterer, i.e., Dδ = z + δB. Multiple scatterers are studied in Section 3.8.

We often have to deal with changes of coordinates. For this purpose, we

apply the notation introduced in (2.19) also to functions in H
−1/2
div (∂Dδ) or

H
−1/2
curl (∂Dδ) and H

−1/2
div (∂B) or H

−1/2
curl (∂B), respectively.

For bounded open sets D ⊂ R 3 of class C2,α, 0 < α < 1, we use the

following norms on H
−1/2
div (∂D) and H

−1/2
curl (∂D):

‖a‖
H

−1/2

div
(∂D)

:= inf
u∈H (curl,D)
γt(u)=a

‖u‖H (curl,D) for a ∈ H
−1/2
div (∂D),

‖b‖
H

−1/2

curl
(∂D)

:= inf
u∈H (curl,D)
πt(u)=b

‖u‖H (curl,D) for b ∈ H
−1/2
curl (∂D).

A simple calculation (cf. Lemma 2.5 for a similar result) yields the following
scaling properties of these norms under changes of coordinates as in (2.19).

Suppose a ∈ H
−1/2
div (∂Dδ), b ∈ H

−1/2
curl (∂Dδ) and assume 0 < δ ≤ 1. Then

δ
3

2 ‖â‖
H

−1/2

div
(∂B)

≤ ‖a‖
H

−1/2

div
(∂Dδ)

≤ δ
1

2 ‖â‖
H

−1/2

div
(∂B)

, (3.44a)

δ
3

2 ‖b̂‖
H

−1/2

curl
(∂B)

≤ ‖b‖
H

−1/2

curl
(∂Dδ)

≤ δ
1

2 ‖b̂‖
H

−1/2

curl
(∂B)

. (3.44b)

In order to derive the asymptotic expansion in Section 3.7, we need to
expand the fundamental solution

Φk−(x − y) = Φk−

(

(δξ + z ) − (δη + z )
)

= Φk−

(

δ(ξ − η)
)
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for x = δξ + z 6= δη + z = y ∈ ∂Dδ, i.e., ξ 6= η ∈ ∂B, as δ → 0. From

ei k−δ|ξ−η| = 1 + i k−δ|ξ − η| −
k−

2δ2|ξ − η|2
2

− i k−
3δ3|ξ − η|3

6
+ O(δ4)

follows that

Φk−(x − y)

=
1

δ

(

1

4π|ξ − η| +
i k−δ

4π
− k−

2δ2|ξ − η|
8π

− i k−
3δ3|ξ − η|2

24π
+ O(δ4)

)

.

(3.45)

Furthermore, we need an asymptotic expansion for

∇xΦk−(x − y) =

(

i k− − 1

|x − y |

)

Φk−(x − y)
x − y

|x − y | . (3.46)

With (3.45), it follows that

∇xΦk−(x − y)

=
1

δ2

(

− 1

4π|ξ − η|2 − k−
2δ2

8π
− i k−

3δ3|ξ − η|
12π

+ O(δ4)

)

ξ − η
|ξ − η| .

In sum, we obtain the following formulas:

Φk−(x − y) =
1

δ

(

Φ0(ξ − η) +
i k−δ

4π
+ O(δ2)

)

as δ → 0,

(3.47)

∇xΦk−(x − y) =
1

δ2

(

∇ξΦ0(ξ − η) − k−
2δ2

8π

ξ − η
|ξ − η| + O(δ3)

)

as δ → 0.

(3.48)

Remark 3.8 (Eigenvalues). In Section 3.3.3, we had to assume that the
wavenumber k− is not a Maxwell eigenvalue for the bounded open set D, to
obtain the invertibility of the operators 1

2I +Mm
D and 1

2I +Mm
D

⊤. Now, we
explain, why this assumption yields no restrictions for our analysis.

Maxwell eigenvalues for D are wavenumbers κ so that Maxwell’s equa-
tions (3.32) in D with homogeneous boundary condition ν ×E |∂D = 0 have
a nontrivial solution. That means, if κ is a Maxwell eigenvalue for D, the
variational problem of finding

E ∈ H0(curl, D) :=
{

v ∈ H (curl, D)
∣

∣ ν × v |∂D = 0
}

such that
∫

D
curlE · curlv dx = κ2

∫

D
E · v dx for all v ∈ H0(curl, D), (3.49)
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has a nontrivial solution; cf. [88, pp. 95–98]. If Imκ > 0, it is well known that
solutions of the interior Maxwell problem are unique (cf. [88, Theorem 4.17])
and thus κ is no eigenvalue. On the other hand there exists a discrete set
of real eigenvalues κj > 0, j ∈ N , for D that accumulates only at infinity;
cf. [88, Theorem 4.18].

Let {kj}j∈N be the set of Maxwell eigenvalues corresponding to the
reference set B. By a change of coordinates in the variational formulation
(3.49), we find that {δ−1kj}j∈N is the set of eigenvalues corresponding to
the set Dδ = z + δB, 0 < δ ≤ 1. Therefore, we can assume henceforth in
the derivation of the asymptotic expansion without loss of generality that
δ is small enough so that k− /∈ {δ−1kj}j∈N , i.e., that k− is no Maxwell
eigenvalue for the sets Dδ considered hereafter.

In the next lemma, we investigate the scaling properties of the integral
operator Mm

Dδ
.

Lemma 3.9. Let a ∈ H
−1/2
div (∂Dδ). Then,

Mm
Dδ

a = (M0
Bâ)∨ + (EmM â)∨,

where EmM is a bounded linear operator, independent of a , which is O(δ2) in

L(H
−1/2
div (∂B)) as δ → 0.

Proof. Let a ∈ H
−1/2
div (∂Dδ) and aj ∈ Tdiv(∂Dδ), j ∈ N , such that aj

converges to a in H
−1/2
div (∂Dδ). For fixed j and x ∈ Dδ, we observe by a

change of variables ξ := x−z
δ and η := y−z

δ that

(M0
Dδ

aj)(x ) =

∫

∂Dδ

ν(x ) × curlx

(

aj(y)
1

4π|x − y |

)

ds(y)

=

∫

∂B
ν(ξ) × 1

δ
curlξ

(

âj(η)
1

4πδ|ξ − η|

)

δ2 ds(η)

= (M0
Bâj)(ξ),

i.e., M0
Dδ

aj = (M0
Bâj)

∨. From (3.48), we find that

∇x(Φk− − Φ0)(x − y) =
1

δ2

(

−k−
2δ2

8π

ξ − η
|ξ − η| + O(δ3)

)

for x 6= y as δ → 0. Again by a change of coordinates, we calculate for
x ∈ ∂Dδ,

(

(M
k−
Dδ

−M0
Dδ

)aj
)

(x ) =

∫

∂Dδ

ν(x )×
(

∇x(Φk− − Φ0)(x − y) × aj(y)
)

ds(y)

=

∫

∂B
ν(ξ) ×

(

1

δ2

(

−k−
2δ2

8π

ξ − η
|ξ − η| + O(δ3)

)

× âj(η)

)

δ2 ds(η)

= δ2
∫

∂B
ν(ξ) ×

((

−k−
2

8π

ξ − η
|ξ − η| + O(δ)

)

× âj(η)

)

ds(η)

=: (E
k−
M âj)(ξ).
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The kernel of E
k−
M is pseudo–homogeneous of class −2 (cf. [91, pp. 168–

175]) and hence E
k−
M is continuous from H−1/2(∂B; C )3 into H3/2(∂B; C )3;

cf. [91, Theorem 4.3.2]. So E
k−
M is also continuous from H

−1/2
div (∂B) into

H
−1/2
div (∂B), in particular it is O(δ2) in L(H

−1/2
div (∂B)) as δ → 0. Thus,

by the continuity properties of the operators M
k−
Dδ

, M0
B, and E

k−
M , letting

j → ∞, we obtain that

M
k−
Dδ

a = (M0
Bâ)∨ + (E

k−
M â)∨.

Recalling (3.29), it remains to estimate the norm of RmDδ
a . For this

purpose, we denote by R̃mDδ
a the extension of RmDδ

a to H (curl, Dδ) (with
respect to the trace operator γt), which is obtained canonically from (3.28)
via

R̃mDδ
a :=

∫

∂Dδ

curlxF
m(·,y)a(y) ds(y) in Dδ.

Then, because Fm is smooth near the scatterer,

‖RmDδ
a‖2

H
−1/2

div
(∂Dδ)

= inf
u∈H (curl,Dδ)
γt(u)=Rm

Dδ
a

‖u‖2
H (curl,Dδ) ≤ ‖R̃mDδ

a‖2
H (curl,Dδ)

=

∫

Dδ

∣

∣

∣

∫

∂Dδ

curlxF
m(x ,y)a(y) ds(y)

∣

∣

∣

2
dx

+

∫

Dδ

∣

∣

∣curlx

∫

∂Dδ

curlxF
m(x ,y)a(y) ds(y)

∣

∣

∣

2
dx

≤
∫

Dδ

(

‖curlxF
m(x , ·)‖2

H
−1/2

curl
(∂Dδ)

+ ‖curlx curlxF
m(x , ·)‖2

H
−1/2

curl
(∂Dδ)

)

‖a‖2

H
−1/2

div
(∂Dδ)

dx

≤ Cδ3‖a‖2

H
−1/2

div
(∂Dδ)

∫

Dδ

1 dx ≤ Cδ6‖a‖2

H
−1/2

div
(∂Dδ)

.

Using (3.44), we find that

‖(RmDδ
a)∧‖

H
−1/2

div
(∂B)

≤ δ−
3

2 ‖RmDδ
a‖

H
−1/2

div
(∂Dδ)

≤ δ−
3

2Cδ3‖a‖
H

−1/2

div
(∂Dδ)

≤ δ
1

2Cδ
3

2 ‖â‖
H

−1/2

div
(∂B)

= Cδ2‖â‖
H

−1/2

div
(∂B)

.

Thus, we define

EmMb := E
k−
M b + (RmDδ

b̌)∧, b ∈ H
−1/2
div (∂B),

and obtain the desired result.
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For a ∈ H
−1/2
div (∂Dδ), Lemma 3.9 yields
(1

2
I +Mm

Dδ

)

a =
((1

2
I +M0

B + EmM

)

â
)∨

and thus,
(1

2
I +Mm

Dδ

)−1
a =

((1

2
I +M0

B + EmM

)−1
â
)∨
.

So, we obtain from Lemma 2.2 that
(1

2
I +Mm

Dδ

)−1
a =

((1

2
I +M0

B

)−1
â
)∨

+ (ẼmM â)∨, (3.50)

where ẼmM is a bounded linear operator, independent of a , which is O(δ2)

in L(H
−1/2
div (∂B)) as δ → 0.

3.7 Asymptotic Expansion

In this section, we first expand the three operators Lδ, L
⊤
δ , and Fδ occurring

in the factorization (3.43) of the measurement operator Gδ separately as
the inhomogeneity size δ tends to zero. Then, we use these expansions to
calculate the leading order term in the asymptotic expansion of Gδ.

First, we consider the exterior Maxwell problem (3.37) and study the
asymptotic behavior of the operator Lδ from (3.38). A radiating solution of
this problem is given by

Eψ :=
ε−
ε

curlAm
Dδ

(1

2
I +Mm

Dδ

)−1
ψ in R 3

0 \Dδ,

H ψ :=
1

iωµ
curlEψ

= − iωε−

∫

∂Dδ

Gm(·,y)
((1

2
I +Mm

Dδ

)−1
ψ
)

(y) ds(y) in R 3
0 \Dδ.

By Taylor expansion, we obtain for x ∈ M and η ∈ ∂B as δ → 0 that

Gm(x , δη + z ) = Gm(x , z ) + δ
3
∑

j=1

∂Gm

∂yj
(x , z )ηj + O(δ2).

Thus, by a change of coordinates, η := y−z
δ , and applying (3.50), we have

H ψ(x ) = − iωε−

∫

∂B
Gm(x , δη + z )

((1

2
I +Mm

Dδ

)−1
ψ
)

(δη + z )δ2 ds(η)

= − iωε−δ
2

∫

∂B
Gm(x , δη + z )

((1

2
I +M0

B

)−1
ψ̂
)

(η) ds(η) + O(δ4)

= − iωε−δ
2 Gm(x , z )

∫

∂B

((1

2
I +M0

B

)−1
ψ̂
)

(η) ds(η)

− iωε−δ
3

∫

∂B

3
∑

j=1

ηj
∂Gm

∂yj
(x , z )

((1

2
I +M0

B

)−1
ψ̂
)

(η) ds(η) + O(δ4)
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for x ∈ M as δ → 0. The last term on the right–hand side is bounded
by Cδ4‖ψ̂‖

H
−1/2

div
(∂B)

uniformly for x ∈ M, where the constant C > 0 is

independent of δ and ψ. We define L0 : H
−1/2
div (∂B) → L2(M),

L0a := − iωε− Gm(·, z )

∫

∂B

((1

2
I +M0

B

)−1
a
)

(η) ds(η), (3.51)

and L1 : H
−1/2
div (∂B) → L2(M),

L1a := − iωε−

∫

∂B

3
∑

j=1

ηj
∂Gm

∂yj
(·, z )

((1

2
I +M0

B

)−1
a
)

(η) ds(η). (3.52)

Then, L0 and L1 are bounded linear operators, and we have shown the
following asymptotic behavior.

Proposition 3.10. For all ψ ∈ H
−1/2
div (∂Dδ),

Lδψ = δ2L0ψ̂ + δ3L1ψ̂ + ELψ̂,

where EL is a bounded linear operator, independent of ψ, which is O(δ4) in

L(H
−1/2
div (∂B),L2(M)) as δ → 0.

Remark 3.11. Note that by duality the transpose E⊤
L of EL is O(δ4) in

L(L2(M),H
−1/2
curl (∂B)).

Next, we consider the asymptotic behavior of the operator L⊤
δ from

(3.40). Let ϕ ∈ L2(M) and ψ ∈ H
−1/2
div (∂Dδ). For X ∈ {B,Dδ}, we denote

by 〈·, ·〉∂X the dual pairing between H
−1/2
div (∂X) and H

−1/2
curl (∂X), and 〈·, ·〉M

is the bilinear form from (3.39). Using Proposition 3.10, we can calculate

〈L⊤
δ ϕ,ψ〉∂Dδ

=
〈

ϕ, Lδψ
〉

M
=
〈

ϕ, δ2L0ψ̂ + δ3L1ψ̂ + ELψ̂
〉

M

=
〈

δ2L⊤
0 ϕ+ δ3L⊤

1 ϕ+ E⊤
Lϕ, ψ̂

〉

∂B

=
〈

(L⊤
0 ϕ)∨ + δ(L⊤

1 ϕ)∨ + δ−2(E⊤
Lϕ)∨,ψ

〉

∂Dδ
,

where L⊤
0 , L

⊤
1 : L2(M) → H

−1/2
curl (∂B) are the dual operators of L0 and L1,

respectively. Recalling Remark 3.11, we obtain the following asymptotic
behavior.

Proposition 3.12. For all ϕ ∈ L2(M),

L⊤
δ ϕ = (L⊤

0 ϕ)∨ + δ(L⊤
1 ϕ)∨ + δ−2(E⊤

Lϕ)∨,

where E⊤
L is a bounded linear operator, independent of ϕ, which is O(δ4) in

L(L2(M),H
−1/2
curl (∂B)) as δ → 0.
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Now, we calculate the operators L⊤
0 and L⊤

1 explicitly. Let ϕ ∈ L2(M)

and a ∈ H
−1/2
div (∂B). Recalling the definition of the operator L0 from (3.51),

we find that

〈ϕ, L0a〉M

=

∫

M

(

− iωε− Gm(x , z )

∫

∂B

((1

2
I +M0

B

)−1
a
)

(η) ds(η)

)

·ϕ(x ) ds(x )

=

(

− iωε−

∫

M
Gm⊤(x , z )ϕ(x ) ds(x )

)

·
∫

∂B

((1

2
I +M0

B

)−1
a
)

(η) ds(η).

Recalling (B.7b) and (3.34), we obtain

〈ϕ, L0a〉M =
1

iωµ+
H i(z ) ·

∫

∂B

((1

2
I +M0

B

)−1
a
)

(η) ds(η)

=

∫

∂B

1

iωµ+

((1

2
I +M0

B
⊤
)−1

πt
(

H i(z )
)

)

(ξ) · a(ξ) ds(ξ),

where πt denotes the projection on the tangent plane to ∂B. Therefore, we
have

L⊤
0 ϕ =

1

iωµ+

(1

2
I +M0

B
⊤
)−1

πt(H
i(z )). (3.53)

In the same way, we obtain from (3.52) that

〈ϕ, L1a〉M

=

∫

M

(

− iωε−

∫

∂B

3
∑

j=1

ηj
∂Gm

∂yj
(x , z )

((1

2
I +M0

B

)−1
a
)

(η) ds(η)

)

·ϕ(x ) ds(x )

=
3
∑

j=1

(

− iωε−

∫

M

(

∂Gm

∂yj
(x , z )

)⊤

ϕ(x ) ds(x )

)

·
∫

∂B
ηj

((1

2
I +M0

B

)−1
a
)

(η) ds(η)

=

3
∑

j=1

(

1

iωµ+

∂H i

∂yj
(z )

)

·
∫

∂B
ηj

((1

2
I +M0

B

)−1
a
)

(η) ds(η)

=

∫

∂B

1

iωµ+

(

(1

2
I +M0

B
⊤
)−1

πt

( 3
∑

j=1

ηj
∂H i

∂yj
(z )

))

(ξ) · a(ξ) ds(ξ).

Note that in the last line of this computation ηj is the jth component of the
surface variable on ∂B. Therefore, we have

L⊤
1 ϕ =

1

iωµ+

(1

2
I +M0

B
⊤
)−1

πt

( 3
∑

j=1

ηj
∂H i

∂yj
(z )

)

. (3.54)
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We return to the diffraction problem (3.41) and the operator Fδ from

(3.42). Given χ ∈ H
−1/2
curl (∂Dδ), we define

Ed := − 1

iωε
curl

µ−
µ

curlAe
Dδ

(ν × χ) in R 3
0 \ ∂Dδ,

H d :=
µ−
µ

curlAe
Dδ

(ν × χ) in R 3
0 \ ∂Dδ.

Then, (Ed,H d) is a radiating solution to (3.41), and recalling (3.14), (3.22),
and (3.2), we find that

ν ×Ed
∣

∣

∂Dδ
(x )

= − 1

iωε−
ν(x ) × curlx curlx

∫

∂Dδ

Πe(x ,y)(ν × χ)(y) ds(y)

= iωµ−ν(x ) ×
∫

∂Dδ

Φk−(x − y)(ν × χ)(y) ds(y)

+
1

iωε−
ν(x ) ×

∫

∂Dδ

∇xΦk−(x − y)(curl∂Dδ
χ)(y) ds(y)

− 1

iωε−
ν(x ) × curlx curlx

∫

∂Dδ

F e(x ,y)(ν × χ)(y) ds(y) .

Remark 3.13. The previous formula employs a slight abuse of notation,

because pointwise evaluation is not defined for elements of H
−1/2
div (∂Dδ).

Nontheless, we prefer this notation for the sake of readability.

Define PDδ
: H

−1/2
curl (∂Dδ) → H

−1/2
div (∂Dδ) by

PDδ
a := − 1

iωε−
ν × curl curl

∫

∂Dδ

F e(·,y)(ν × a)(y) ds(y)

for a ∈ H
−1/2
curl (∂Dδ). Then, we can see as in the proof of Lemma 3.9 that

‖(PDδ
a)∧‖

H
−1/2

div
(∂B)

≤ Cδ2‖â‖
H

−1/2

curl
(∂B)

.

Therefore, by a change of coordinates, applying (3.47) and (3.48), we obtain
(

ν ×Ed
∣

∣

∂Dδ

)∧
(ξ)

= iωµ−ν(δξ + z ) ×
∫

∂B
Φk−(δ(ξ − η))(ν × χ)(δη + z )δ2 ds(η)

+
1

iωε−
ν(δξ + z ) ×

∫

∂B
∇xΦk−(δ(ξ − η))(curl∂Dδ

χ)(δη + z )δ2 ds(η)

+ O(δ2)

= δ−1 1

iωε−
ν(ξ) ×

∫

∂B
∇ξΦ0(ξ − η)(curl∂B χ̂)(η) ds(η)

+ δ iωµ−ν(ξ) ×
∫

∂B
Φ0(ξ − η)(ν × χ̂)(η) ds(η)

+ δ iωµ−ν(ξ) ×
∫

∂B

1

8π

ξ − η
|ξ − η|(curl∂B χ̂)(η) ds(η) + O(δ2)
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as δ → 0. The O(δ2)–term in (3.47) and the O(δ3)–term in (3.48) de-
fine pseudo–homogeneous kernels of class −3 (cf. [91, pp. 168–174]), i.e.,
the corresponding integral operators are continuous from H−1/2(∂B; C )3

to H3/2(∂B; C )3 (H5/2(∂B; C )3 if ∂B is smooth enough); cf. [91, The-

orem 4.4.1]. Thus, these operators are also continuous from H
−1/2
curl (∂B)

to H
−1/2
div (∂B), and together with the (constant) O(δ)–term in (3.47) they

lead to terms of order O(δ2) in H
−1/2
div (∂B) in the asymptotic expansion of

ν ×Ed|∂Dδ
as δ → 0.

We define F0 : H
−1/2
curl (∂B) → H

−1/2
div (∂B),

(F0a)(ξ) :=
1

iωε−
ν(ξ) ×

∫

∂B
∇ξΦ0(ξ − η)(curl∂B a)(η) ds(η)

= − 1

iωε−
N0
Ba ,

(3.55)

and F1 : H
−1/2
curl (∂B) → H

−1/2
div (∂B),

(F1a)(ξ) := iωµ−
(

ν ×A0
B(ν × a)

∣

∣

∂B

)

(ξ)

+ iωµ−ν(ξ) ×
∫

∂B

1

8π

ξ − η
|ξ − η|(curl∂B a)(η) ds(η). (3.56)

From Lemma 3.2 (in the potential theoretic limit), we find that F0 and the
first part of F1 are bounded. Moreover, because the kernel of the second
part of F1 is homogeneous of class −2 (cf. [91, Sec. 4.3.2]) also the second
part of F1 is continuous. We obtain the following asymptotic behavior.

Proposition 3.14. For all χ ∈ H
−1/2
curl (∂Dδ),

Fδχ = δ−1(F0χ̂)∨ + δ(F1χ̂)∨ + (EF χ̂)∨, (3.57)

where EF is a bounded linear operator, independent of χ, which is O(δ2) in

L(H
−1/2
curl (∂B),H

−1/2
div (∂B)) as δ → 0.

Next, we consider the boundary value problem of finding u ∈ H (curl, B)
such that

curl curlu = 0 in B, (3.58a)

divu = 0 in B, (3.58b)

ν × u = c on ∂B, (3.58c)

where c ∈ H
−1/2
div (∂B) is a given tangential function. We show that (3.58)

has at most one solution and use this fact to prove that L0F0 = 0 on

H
−1/2
curl (∂B) and F0L

⊤
0 = 0 on L2(M).
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Lemma 3.15. Let c ∈ H
−1/2
div (∂B). Then, the boundary value problem

(3.58) has at most one solution in H (curl, B).

Proof. Applying an integration by parts (3.1), we obtain for any solution
u ∈ H0(curl, B) of (3.58) with homogeneous boundary condition c = 0
that

0 =

∫

B
curl curlu(x ) · u(x ) dx

=

∫

B
|curlu(x )|2 dx +

〈

γt(curlu), πt(u)
〉

∂B
=

∫

B
|curlu(x )|2 dx .

Hence, curlu = 0 in B, and because the boundaries of all components of B
are assumed to be connected, we obtain from [88, Theorems 3.41 and 3.42]
a scalar potential p ∈ H1(B; C ) with γ0(p) = 0 on ∂B such that u = ∇p.
Because ∆p = divu = 0 in B by (3.58b), we have p = 0 in B. Hence,
u = ∇p = 0 in B.

Proposition 3.16. Let ϕ ∈ L2(M) and a ∈ H
−1/2
curl (∂B). Then, L0F0a = 0

and F0L
⊤
0 ϕ = 0.

Proof. Given ϕ ∈ L2(M), we find by (3.53) and (3.55) that on ∂B

F0L
⊤
0 ϕ =

1

ω2ε−µ+
N0
B

(1

2
I +M0

B
⊤
)−1

πt
(

H i(z )
)

=
1

ω2ε−µ+
ν × curl curlA0

B

(

ν ×
(1

2
I +M0

B
⊤
)−1

πt
(

H i(z )
)

)

,

where H i(z ) is given by (3.34). An easy computation applying (3.25) (for
k = 0) shows that

ν ×
(

±1

2
I +M0

B
⊤
)−1

πt(·) = −
(

∓1

2
I +M0

B

)−1
γt(·). (3.59)

Therefore,

F0L
⊤
0 ϕ = − 1

ω2ε−µ+
ν × curl curlA0

B

(

−1

2
I +M0

B

)−1
γt
(

H i(z )
)

.

Now, let

u := curlA0
B

(

−1

2
I +M0

B

)−1
γt
(

H i(z )
)

in B.

Then, u is a solution to (3.58) with c = γt
(

H i(z )
)

. Because solutions
to (3.58) are unique by Lemma 3.15 and obviously the constant function
v := H i(z ), in B, is a solution for (3.58) with ν × v |∂B = γt

(

H i(z )
)

too,
we obtain that u = H i(z ) is constant in B. Hence,

F0L
⊤
0 ϕ = − 1

ω2ε−µ+
γt(curlu) = 0 on ∂B.
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Because N0 and therefore also F0 is symmetric with respect to the dual

pairing 〈·, ·〉∂B between H
−1/2
curl (∂B) and H

−1/2
div (∂B), also L0F0a = 0 for

each a ∈ H
−1/2
curl (∂B).

Recalling Theorem 3.7, we can put our results together and obtain the
following asymptotic expansion of the measurement operator Gδ.

Theorem 3.17. Let ϕ ∈ L2(M). Then,

Gδϕ = iωµ+δ
3
(

L0F1L
⊤
0 ϕ+ L1F0L

⊤
1 ϕ
)

+ O(δ4)

in L2(M) as δ → 0. More precisely, the last term on the right–hand side
is bounded by Cδ4‖ϕ‖L2(M), where the constant C > 0 is independent of δ
and ϕ.

The proof of this theorem follows straightforwardly from the previous
propositions and Theorem 3.7.

Finally, we calculate L0F1L
⊤
0 ϕ and L1F0L

⊤
1 ϕ for ϕ ∈ L2(M) explicitly.

Lemma 3.18. For each ϕ ∈ L2(M), we have

F0L
⊤
1 ϕ = − 1

ω2ε−µ+
γt
(

curlH i(z )
)

on ∂B. (3.60)

Proof. Given ϕ ∈ L2(M), we find from (3.54) and (3.55) by applying (3.59)
that

F0L
⊤
1 ϕ =

1

ω2ε−µ+
N0
B

(1

2
I +M0

B
⊤
)−1

πt

( 3
∑

j=1

ηj
∂H i

∂yj
(z )

)

=
1

ω2ε−µ+
ν × curl curlA0

B

(

ν ×
(1

2
I +M0

B
⊤
)−1

πt

( 3
∑

j=1

ηj
∂H i

∂yj
(z )

))

= − 1

ω2ε−µ+
ν × curl curlA0

B

(

−1

2
I +M0

B

)−1
γt

( 3
∑

j=1

ηj
∂H i

∂yj
(z )

)

.

Let

u := curlA0
B

(

−1

2
I +M0

B

)−1
γt

( 3
∑

j=1

ηj
∂H i

∂yj
(z )

)

in B.

Then, u is a solution to (3.58) with c = γt
(
∑3

j=1 ηj
∂H i

∂yj
(z )
)

. Because

solutions to (3.58) are unique by Lemma 3.15 and v(ξ) :=
∑3

j=1 ξj
∂H i

∂yj
(z ),

ξ ∈ B, is a solution to (3.58) with ν × v |∂B = γt

(

∑3
j=1 ηj

∂H i

∂yj
(z )
)

too,

we obtain that u(ξ) =
∑3

j=1 ξj
∂H i

∂yj
(z ) for a.e. ξ ∈ B. An easy calculation

shows that curlu = curlH i(z ) in B, which ends the proof.
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Lemma 3.19. For each ϕ ∈ L2(M) we have

F1L
⊤
0 ϕ = −µ−

µ+
γt

(

A0
B

(

−1

2
I +M0

B

)−1
γt
(

H i(z )
)

)

on ∂B. (3.61)

Proof. Given ϕ ∈ L2(M), we find from (3.53) and (3.56) by applying (3.2)
and (3.59) that on ∂B

(F1L
⊤
0 ϕ)(ξ) =

µ−
µ+

(

γt

(

A0
B

(

ν ×
(1

2
I +M0

B
⊤
)−1

πt
(

H i(z )
)

)

))

(ξ)

+
µ−
µ+
ν(ξ) ×

∫

∂B

1

8π

ξ − η
|ξ − η|

(

curl∂B

(1

2
I +M0

B
⊤
)−1

πt
(

H i(z )
)

)

(η) ds(η)

= − µ−
µ+

(

γt

(

A0
B

(

−1

2
I +M0

B

)−1
γt
(

H i(z )
)

))

(ξ)

+
µ−
µ+
ν(ξ) ×

∫

∂B

1

8π

ξ − η
|ξ − η|

(

div∂B

((

−1

2
I +M0

B

)−1
γt
(

H i(z )
)

)

)

(η) ds(η).

(3.62)

By Lemma 3.4 (i), −1
2I+M0

B is an isomorphism on H
−1/2
div,0 (∂B). Therefore,

because

div∂B γt
(

H i(z )
)

= −γn
(

curl
(

H i(z )
))

= 0

by virtue of (3.5), we find that

div∂B

((

−1

2
I +M0

B

)−1
γt
(

H i(z )
)

)

= 0.

Hence, the second term on the right–hand side of (3.62) vanishes and we
obtain the desired result.

Proposition 3.20. For each ϕ ∈ L2(M), we have

L1F0L
⊤
1 ϕ =

1

iωµ+

µ−
µ+

curlx Ge(·, z ) M∞
B curlH i(z ) on M,

where the matrix M∞
B ∈ R 3×3 is the electric polarizability tensor corre-

sponding to B; cf. Definition A.1.

Proof. Let ϕ ∈ L2(M). By (3.60) and (3.52),

L1F0L
⊤
1 ϕ

= − 1

iωµ+

∫

∂B

3
∑

j=1

ηj
∂Gm

∂yj
(·, z )

((1

2
I +M0

B

)−1
γt
(

curlH i(z )
)

)

(η) ds(η)
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on M. Applying (3.59), we find that

−
∫

∂B

3
∑

j=1

ηj
∂Gm

∂yj
(·, z )

((1

2
I +M0

B

)−1
γt
(

curlH i(z )
)

)

(η) ds(η)

=
3
∑

j=1

∂Gm

∂yj
(·, z )

∫

∂B
ηj I 3

(

ν×
(

−1

2
I+M0

B
⊤
)−1

πt
(

curlH i(z )
)

)

(η) ds(η)

on M. Because by (3.3),

πt
(

curlH i(z )
)

= πt
(

∇η

(

curlH i(z ) · η
))

= ∇∂B

(

curlH i(z ) · η
)

,

on ∂B, where η denotes the coordinate function in a neighborhood of ∂B,
we can apply (3.26) and (3.4) to obtain for 1 ≤ j ≤ 3 that
∫

∂B
ηj I 3

(

ν ×
(

−1

2
I +M0

B
⊤
)−1

πt
(

curlH i(z )
)

)

(η) ds(η)

=

∫

∂B
πt(ηj I 3)

⊤
(

curl∂B

(1

2
I +K0

B

)−1
(

curlH i(z ) · η
)

)

(η) ds(η).

From the duality of curl∂B and curl∂B and from (3.5), we find
∫

∂B
πt(ηj I 3)

⊤
(

curl∂B

(1

2
I +K0

B

)−1
(

curlH i(z ) · η
)

)

(η) ds(η)

=

∫

∂B

(

ν · curl(ηj I 3)
)⊤

(ξ)

(

((1

2
I +K0

B

)−1
η
)

(ξ) · curlH i(z )

)

ds(ξ).

An easy calculation reveals that

3
∑

j=1

∂Gm

∂yj
(·, z )curlη(ηj I 3)

⊤ =
(

curly Gm⊤
)⊤

(·, z ).

Applying (B.7b) and (B.8), we observe that

(

curly Gm⊤
)⊤

(·, z ) =
µ−
µ+

curlx Ge(·, z ).

So, we find that

iωµ+L1F0L
⊤
1 ϕ

=
µ−
µ+

curlx Ge(·, z )

∫

∂B
ν(ξ)

(

((1

2
I +K0

B

)−1
η
)

(ξ) · curlH i(z )

)

ds(ξ)

=
µ−
µ+

curlx Ge(·, z )

(∫

∂B

((1

2
I +K0

B
⊤
)−1

ν
)

(η)η⊤ ds(η)

)

curlH i(z )

=
µ−
µ+

curlx Ge(·, z ) M∞
B curlH i(z ),

where the matrix M∞
B ∈ R 3×3 is the electric polarizability tensor corre-

sponding to B; cf. Definition A.1.
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Proposition 3.21. For each ϕ ∈ L2(M), we have

L0F1L
⊤
0 ϕ = iωε−

µ−
µ+

Gm(·, z ) M0
BH i(z ),

where M0
B ∈ R 3×3 is the magnetic polarizability tensor corresponding to B;

cf. Definition A.1.

Proof. Let ϕ ∈ L2(M) and set

w := A0
B

(

−1

2
I +M0

B

)−1
γt
(

H i(z)
)

in B.

As in the proof of Proposition 3.16, we find that curlw = H i(z ) in B. So,
recalling (3.20), we obtain that

γn

(

curlA0
B

(

−1

2
I +M0

B

)−1
γt
(

H i(z)
)

)

= ν ·H i(z ) on ∂B. (3.63)

By (3.61) and (3.51),

L0F1L
⊤
0 ϕ = iωε−

µ−
µ+

Gm(·, z )

∫

∂B

(

(1

2
I +M0

B

)−1
γt(w)

)

(η) ds(η)

on M. Observing that I 3 = ∇ηη on ∂B, where η again denotes the surface
variable on ∂B, and applying (3.3), we can calculate
∫

∂B

((1

2
I +M0

B

)−1
γt(w)

)

(η) ds(η)

=

∫

∂B
πt( I 3)

⊤
((1

2
I +M0

B

)−1
γt(w)

)

(η) ds(η)

=

∫

∂B

((1

2
I +M0

B
⊤
)−1

∇∂Bη
)⊤

(ξ)γt(w)(ξ) ds(ξ).

Applying (3.26), the duality of −∇∂B and div∂B, and (3.5), we have
∫

∂B

((1

2
I +M0

B
⊤
)−1

∇∂Bη
)⊤

(ξ)γt(w)(ξ) ds(ξ)

=

∫

∂B

(

−∇∂B

(

−1

2
I +K0

B

)−1
η
)⊤

(ξ)γt(w)(ξ) ds(ξ)

=

∫

∂B

((

−1

2
I +K0

B

)−1
η
)

(η)(−γn(curlw))(η) ds(η).

Finally, recalling (3.63), we obtain
∫

∂B

((

−1

2
I +K0

B

)−1
η
)

(η)(−γn(curlw))(η) ds(η)

= −
∫

∂B

((

−1

2
I +K0

B

)−1
η
)

(η)
(

ν(η) ·H i(z )
)

ds(η)

= −
∫

∂B
ξ
((

−1

2
I +K0

B
⊤
)−1

(

ν ·H i(z )
)

)

(ξ) ds(ξ)

= M0
BH i(z ),
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where the matrix M0
B ∈ R 3×3 is the magnetic polarizability tensor corre-

sponding to B; cf. Definition A.1.

From Theorem 3.17, Proposition 3.20, and Proposition 3.21, we obtain
the following corollary.

Corollary 3.22. Let ϕ ∈ L2(M) and let H i be the corresponding incident
field from (3.34). Then,

Gδϕ = δ3
(

−k2
− Gm(·, z ) M0

BH i(z )

+
µ−
µ+

curlx Ge(·, z ) M∞
B curlH i(z )

)

+ O(δ4)

in L2(M) as δ → 0. More precisely, the last term on the right–hand side
is bounded by Cδ4‖ϕ‖L2(M), where the constant C > 0 is independent of δ
and ϕ.

3.8 Multiple Scatterers

The results of the previous sections can be extended to the practically im-
portant case of finitely many well separated small scatterers as introduced
in Section 3.4. This generalization works essentially in the same way as in
Section 2.7 for the electrostatic case. However, we include the main steps
for the sake of completeness.

Again we set ∂Dδ := ∂Dδ,1 × · · · × ∂Dδ,m and ∂B := ∂B1 × · · · × ∂Bm
and interpret the relevant Sobolev spaces accordingly as product spaces.
Boundary conditions on ∂Dδ should be understood component–wise.

We start by reconsidering the operator Lδ introduced in (3.38). For any

ψ = (ψ1, . . . ,ψm) ∈ H
−1/2
div (∂Dδ), we define H ψ ∈ Hloc(curl, R 3 \Dδ) by

H ψ = − iωε−

m
∑

l=1

∫

∂Dδ,l

Gm(·,y)al(y) ds(y),

where a := (a1, . . . ,am)⊤ ∈ H
−1/2
div (∂Dδ) solves the system of integral equa-

tions
Aa = ψ,

with A given by

















1
2I +Mm

Dδ,1
ν × curlAm

Dδ,2

∣

∣

∣

∂Dδ,1

. . . ν × curlAm
Dδ,m

∣

∣

∣

∂Dδ,1

ν × curlAm
Dδ,1

∣

∣

∣

∂Dδ,2

1
2I +Mm

Dδ,2
. . . ν × curlAm

Dδ,m

∣

∣

∣

∂Dδ,2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ν × curlAm
Dδ,1

∣

∣

∣

∂Dδ,m

ν × curlAm
Dδ,2

∣

∣

∣

∂Dδ,m

. . . 1
2I +Mm

Dδ,m

















.
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Because the small scatterers are assumed to be well separated from each
other and from the interface Σ0, we can estimate the nondiagonal entries of

the matrix A using the regularity of Am
Dδ,l

bl, bl ∈ H
−1/2
div (∂Dδ,l), away from

∂Dδ,l, 1 ≤ l ≤ m. Set

B :=









1
2I +Mm

B1
0 . . . 0

0 1
2I +Mm

B2
. . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 1

2I +Mm
Bm









,

and note that B is invertible by Lemma 3.5 and Theorem 2.1. In the same
way as in the proof of Lemma 3.5 we obtain that the nullspace of A is trivial,
too. Because A is just a compact perturbation of 1

2 I , where I denotes the

identity operator on H
−1/2
div (∂Dδ), Theorem 2.1 yields that A is invertible.

Similar to Lemma 3.9 we get the following result, where we use the maximum

row sum of L(H
−1/2
div (∂Bj),H

−1/2
div (∂Bl)) norms, 1 ≤ j, l ≤ m, as norm on

L(H
−1/2
div (∂B)) in this context.

Lemma 3.23. Let b ∈ H
−1/2
div (∂Dδ). Then

Ab = ( Bb̂)∨ + ( EAb̂)∨,

where EA is a bounded linear operator, independent of b, which is O(δ2) in

L(H
−1/2
div (∂B)) as δ → 0.

Proof. Let b = (b1, . . . , bm) ∈ H
−1/2
div (∂Dδ) and 1 ≤ j 6= l ≤ m. Using the

regularity of Πm(x ,y) in a neighborhood of (x ,y) ∈ R 3
−× R 3

− with x 6= y ,
we obtain as in the proof of Lemma 3.9 that

∥

∥

(

ν × curlAm
Dδ,j

bj
∣

∣

∂Dδ,l

)∧l
∥

∥

H
−1/2

div
(∂Bl)

≤ Cδ2‖b∧j

j ‖
H

−1/2

div
(∂Bj)

.

Here, (·)∧l denotes the transformation from (2.19), applied to the lth scat-
terer Dδ,l, 1 ≤ l ≤ m.

So, we find from Lemma 2.2 that for any b ∈ H
−1/2
div (∂Dδ)

A−1b = ( B−1b̂)∨ + ( ẼAb̂)∨,

where ẼA is a bounded linear operator, independent of b, which is O(δ2)

in L(H
−1/2
div (∂B)) as δ → 0. Calculating along the lines of Section 3.7 we

obtain the following asymptotic formula:

H ψ|M = − iωε−δ
3
m
∑

l=1

Gm(·, zl)
∫

∂Bl

((1

2
I +M0

Bl

)−1
ψl

∧l

)

(η) ds(η)

− iωε−δ
3
m
∑

l=1

∫

∂Bl

3
∑

j=1

ηj
∂Gm

∂yj
(·, zl)

((1

2
I +M0

Bl

)−1
ψl

∧l

)

(η) ds(η)

+ O(δ4)
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in L2(M) as δ → 0. The last term on the right–hand side is bounded by
Cδ4 max1≤l≤m ‖ψl∧l‖

H
−1/2

div
(∂Bl)

, where the constant C > 0 is independent

of δ and ψ. Therefore, if we define L0 : H
−1/2
div (∂B) → L2(M),

L0a := − iωε−

m
∑

l=1

Gm(·, zl)
∫

∂Bl

((1

2
I +M0

Bl

)−1
al

)

(η) ds(η), (3.64)

and L1 : H
−1/2
div (∂B) → L2(M),

L1a := − iωε−

m
∑

l=1

∫

∂Bl

3
∑

j=1

ηj
∂Gm

∂yj
(·, zl)

((1

2
I +M0

Bl

)−1
al

)

(η) ds(η),

(3.65)
Proposition 3.10 remains valid in the case of finitely many well separated
small scatterers.

As in Section 3.7, we find by duality that Proposition 3.12 remains valid
in the case of finitely many well separated small scatterers too and that the

dual operators of L0 and L1 are given by L⊤
0 : L2(M) → H

−1/2
curl (∂B),

L⊤
0 ϕ =

(

1

iωµ+

(1

2
I +M0

B1

⊤
)−1

πt
(

H i(z1)
)

, . . . ,

1

iωµ+

(1

2
I +M0

Bm

⊤
)−1

πt
(

H i(zm)
)

)

, (3.66)

and L⊤
1 : L2(M) → H

−1/2
curl (∂B),

L⊤
1 ϕ =

(

1

iωµ+

(1

2
I +M0

B1

⊤
)−1

πt

( 3
∑

j=1

ηj
∂H i

∂yj
(z1)

)

, . . . ,

1

iωµ+

(1

2
I +M0

Bm

⊤
)−1

πt

( 3
∑

j=1

ηj
∂H i

∂yj
(zm)

))

, (3.67)

where H i is the corresponding incident field from (3.34).

We return to the diffraction problem (3.41) and the operator Fδ from

(3.42). For χ = (χ1, . . . ,χm) ∈ H
−1/2
curl (∂Dδ), we define

Ed := − 1

iωε

m
∑

l=1

curl
µ−
µ

curlAe
Dδ,l

(ν × χl) in R 3
0 \ ∂Dδ,

H d :=
µ−
µ

m
∑

l=1

curlAe
Dδ,l

(ν × χl) in R 3
0 \ ∂Dδ.
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Then, (Ed,H d) is a radiating solution to (3.41) and for 1 ≤ j ≤ m,

ν ×Ed
∣

∣

∂Dδ,j
= − 1

iωε−
ν × curl curlAe

Dδ,j
(ν × χj)

∣

∣

∂Dδ,j

− 1

iωε−

m
∑

l=1
l 6=j

ν × curl curlAe
Dδ,l

(ν × χl)
∣

∣

∂Dδ,j
.

As in the proof of Lemma 3.23, we can estimate for 1 ≤ l ≤ m that
∥

∥

∥

(

ν × curl curlAe
Dδ,l

(ν × χl)
∣

∣

∂Dδ,j

)∧j
∥

∥

∥

H
−1/2

div
(∂Bj)

≤ Cδ2‖χ∧l
l ‖

H
−1/2

curl
(∂Bl)

.

Thus,

∥

∥

∥

( 1

iωε−

m
∑

l=1
l 6=j

ν × curl curlAe
Dδ,l

(ν × χl)
∣

∣

∂Dδ,j

)∧j
∥

∥

∥

H
−1/2

div
(∂Bj)

≤ Cδ2 max
1≤l≤m

‖χ∧l
l ‖

H
−1/2

curl
(∂Bl)

, (3.68)

where the constant C > 0 is independent of δ and χ. Recalling (3.55) and

(3.56), we define F0 : H
−1/2
curl (∂B) → H

−1/2
div (∂B),

F0a =
(

− 1

iωε−
N0
B1

a1, . . . ,−
1

iωε−
N0
Bm

am

)

, (3.69)

and F1 : H
−1/2
curl (∂B) → H

−1/2
div (∂B),

(F1a)(ξ) :=

(

iωµ−
(

ν ×A0
B1

(ν × a1)
∣

∣

∂B1

)

(ξ)

+ iωµ−ν(ξ) ×
∫

∂B1

1

8π

ξ − η
|ξ − η|(curl∂B1

a1)(η) ds(η), . . . ,

iωµ−
(

ν ×A0
Bm

(ν × am)
∣

∣

∂Bm

)

(ξ)

+ iωµ−ν(ξ) ×
∫

∂Bm

1

8π

ξ − η
|ξ − η|(curl∂Bm am)(η) ds(η)

)

. (3.70)

Combining (3.68) with the derivation of (3.57) in Section 3.7, we find that
Proposition 3.14 remains true in the case of finitely many well separated
small scatterers.

Proposition 3.24. Theorem 3.17 holds true in the case of finitely many
well separated small scatterers, if L0, L1, F0, F1, L

⊤
0 , and L⊤

1 are given as
in (3.64), (3.65), (3.69), (3.70), (3.66), and (3.67), respectively.

Finally, let M0
B1
, . . . , M0

Bm
and M∞

B1
, . . . , M∞

Bm
denote the magnetic and

electric polarizability tensors corresponding to B1, . . . , Bm, respectively. In
the case of multiple scatterers, Corollary 3.22 reads as follows.
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Corollary 3.25. Let ϕ ∈ L2(M) and let H i be the corresponding incident
field from (3.34). Then,

Gδϕ = δ3
m
∑

l=1

(

−k2
− Gm(·, zl) M0

Bl
H i(zl)

+
µ−
µ+

curlx Ge(·, zl) M∞
Bl

curlH i(zl)
)

+ O(δ4) (3.71)

in L2(M) as δ → 0. More precisely, the last term on the right–hand side
is bounded by Cδ4‖ϕ‖L2(M), where the constant C > 0 is independent of δ
and ϕ.



Chapter

Chapter 4

Reconstruction of Small

Scatterers from Near Field

Measurements

In this chapter, we study the inverse obstacle scattering problem outlined in
the introduction and reconstruct the number and the positions of a collection
of finitely many small perfectly conducting scatterers buried within the lower
halfspace of an unbounded two–layered background medium using near field
measurements of scattered electromagnetic waves.

We consider the same measurement setup as studied in the previous
chapter (cf. Section 3.4), and we apply the asymptotic expansion of the
near field measurement operator as the size of the scatterers tends to zero
from Corollary 3.25 to justify a noniterative MUSIC–type reconstruction
method for the numerical solution of the inverse problem. This reconstruc-
tion method is an extension of a reconstruction method, which was originally
developed for electrical impedance tomography by Brühl, Hanke, and Vo-
gelius [22]. Similar methods have recently been suggested by Ammari et
al. [4] for homogeneous background media and by Iakovleva et al. [62] for
two–layered background media.

Considering only the leading order term in the asymptotic expansion
of the measurement operator, we construct a criterion on the range of this
leading order term that tells us, whether a given point in the lower halfs-
pace belongs to the set of asymptotically small scatterers or not. We de-
rive this characterization for three different measurement setups: First, we
study excitations of the incident field due to magnetic dipole distributions on
the measurement device with arbitrary three–dimensional polarizations and
measure the complete scattered field on the same device; secondly, we study
incident fields excited by magnetic dipole distributions on the measurement
device with polarizations tangential to the measurement device and measure
only the tangential components of the scattered fields on the same device;
and thirdly, we consider excitations of the incident field corresponding to
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magnetic dipoles on the measurement device with polarizations normal to
the measurement device and measure only the normal components of the
scattered fields. The last case is particularly relevant for applications of our
reconstruction method to more realistic models for the measurement device
including special coil geometries; cf., e.g., Delbary et al. [46].

So far, the characterization of the positions of the scatterers holds only
in case of asymptotically small scatterers. But recalling the asymptotic
expansion of the measurement operator and applying perturbation theory
for linear operators, we derive a similar criterion on the range of the full
measurement operator, which tells us whether a point in the lower halfspace
can be assumed to be close to an extended small buried scatterer or not.

Sampling a search domain in the lower halfspace, using a finite collection
of points, we implement this characterization numerically using orthogonal
projections on appropriate subspaces of the range of the measurement op-
erator. This procedure leads to a noniterative visualization method for the
approximate positions of the unknown small scatterers.

This chapter is organized as follows. In Section 4.1, we derive characteri-
zations of the positions of the scatterers for the three different measurement
setups, and the numerical implementation of these criteria in a sampling
method is outlined in Section 4.2 and Section 4.3. Finally, in Section 4.4,
we present numerical results obtained with this reconstruction method for
numerically simulated forward data.

4.1 A Characterization of the Scatterers

In this section, we derive a characterization of the positions of the scatterers
in terms of the range of the leading order term of the asymptotic expansion
of the measurement operator Gδ as the size of the scatterers tends to zero.
We study three different measurement setups:

• three–dimensional excitations and three-dimensional measurements,

• tangential excitations and tangential measurements,

• normal excitations and normal measurements.

4.1.1 Three–Dimensional Excitations and Measurements

First, we study the measurement setup as introduced in Section 3.4, i.e., the
incident fields (E i,H i) are given as superpositions of electromagnetic fields
due to magnetic dipole distributions on M with arbitrary three–dimensional
dipole densities ϕ ∈ L2(M) (cf. (3.34)), and we measure all three compo-
nents of the corresponding scattered magnetic fields H s on M.
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We introduce the operator T : L2(M) → L2(M), describing the leading
order term in the asymptotic expansion (3.71), given by

Tϕ :=
m
∑

l=1

(

−k2
− Gm(·, zl) M0

Bl
H i(zl) +

µ−
µ+

curlx Ge(·, zl) M∞
Bl

curlH i(zl)
)

.

(4.1)
Because (3.34) implies that H i depends linearly on ϕ, it follows that T is
linear. From Corollary 3.25, we obtain that

Gδ = δ3T + O(δ4) (4.2)

as δ → 0 in L(L2(M)). Next, we define the operator R : C 3×2m → L2(M)
by

Ra := k2
−

m
∑

l=1

(

Gm(·, zl)al +
µ−
µ+

curlx Ge(·, zl)am+l

)

(4.3)

for a = (a1, . . . ,a2m) ∈ C 3×2m, al ∈ C 3. Endowing C 3×2m with the
bilinear form

〈a , b〉
C

3×2m :=
2m
∑

l=1

al · bl

for a = (a1, . . . ,a2m), b = (b1, . . . , b2m) ∈ C 3×2m with al, bl ∈ C 3, using
(3.34), (B.7b), and (B.8), we obtain that

〈Ra ,ϕ〉M =
〈

k2
−

m
∑

l=1

(

Gm(·, zl)al +
µ−
µ+

curlx Ge(·, zl)am+l

)

,ϕ
〉

M

=
m
∑

l=1

al · k2
−

∫

M
Gm⊤(x , zl)ϕ(x ) ds(x )

+
m
∑

l=1

al+m · k2
−

µ−
µ+

∫

M
(curlx Ge)⊤(x , zl)ϕ(x ) ds(x )

=
m
∑

l=1

(

al ·
µ−
µ+

H i(zl) + al+m · µ−
µ+

curlH i(zl)
)

for a ∈ C 3×2m and ϕ ∈ L2(M). So, the transpose R⊤ : L2(M) → C 3×2m

of R is given by

R⊤ϕ =
µ−
µ+

(

H i(z1), . . . ,H
i(zm), curlH i(z1), . . . , curlH i(zm)

)

. (4.4)

Lemma 4.1. The operator R is injective.

Proof. Suppose a ∈ C 3×2m such that Ra = 0, i.e.,

k2
−

m
∑

l=1

(

Gm(·, zl)al +
µ−
µ+

curlx Ge(·, zl)am+l

)

= 0 on M.
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Then,

H̃ := k2
−

m
∑

l=1

(

Gm(·, zl)al +
µ−
µ

curlx Ge(·, zl)am+l

)

together with the associated electric field Ẽ := −1/(iωε)curlH̃ is a radi-
ating solution of Maxwell’s equations (3.32) in R 3 \⋃m

l=1{zl} that satisfies
H̃ |M = 0. Now, we follow the proof of Gebauer et al. [52, Theorem 3.2]:
Because H̃ has analytic Cartesian components in R 3

0\
⋃m
l=1{zl}, the tangen-

tial projection (e3×H̃ |Σd
)×e3 has analytic components, too. Because they

vanish on M, they must vanish everywhere in Σd, i.e., (Ẽ , H̃ ) is a radiating
solution of Maxwell’s equations (3.32) in the halfspace {x ∈ R 3 | x ·e3 > d }
with (e3×H̃ |Σd

)×e3 = 0. We can apply the reflection principle and extend
H̃ to all of R 3 by

H̃ e(x ) :=

{

H̃ (x ), x · e3 ≥ d,

−α(H̃ (α(x ))), x · e3 < d,

where α denotes the reflection operator

α : R 3 → R 3, α(x ) := x − 2(x · e3 − d)e3. (4.5)

Because by construction the tangential components of H̃ e and curlH̃ e are
continuous across Σd and (Ẽ e, H̃ e) with Ẽ e := −1/(iωε+)curlH̃ e satisfies
the Silver–Müller radiation condition, we find that (Ẽ e, H̃ e) is a radiating
solution of Maxwell’s equations with constant coefficients

curlH̃ e + iωε+Ẽ e = 0, curlẼ e − iωµ+H̃ e = 0 in R 3.

As a consequence (cf. Colton and Kress [39, p. 163]), H̃ e vanishes every-
where in R 3, and therefore H̃ vanishes in {x ∈ R 3 | x · e3 > d }. Accord-
ingly, H̃ = 0 in R 3

+ because of its analyticity. In particular, Ẽ and H̃ have
vanishing tangential components on Σ0. Because these tangential compo-
nents are continuous across Σ0, it now follows from Holmgren’s theorem (cf.
Kress [80, Theorem 2.4, p. 179]) that the field (Ẽ , H̃ ) is also zero in a neigh-
borhood of Σ0 in R 3

−, because it is a solution of the homogeneous Maxwell

equations with constant coefficients ε− and µ−. Accordingly, H̃ = 0 in
R 3 \⋃m

l=1{zl} because of its analyticity.

Now, let l ∈ {1, . . . ,m} and consider the asymptotic behavior of H̃ (x ) as
x → zl. For any b ∈ R 3 we have limt→0 H̃ (zl+tb) = 0. A short calculation
shows that the singularity of Gm(·, zl) in zl is of order 3, while the singularity
of curlx Ge(·, zl) in zl is of order 2; see Section B.3 for details. So, taking
into account the structure of the singularity of Gm(·, zl) (cf. (B.11)), we
obtain from

lim
t→0

Gm(zl + te3, zl)al = 0
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that al = 0. Indeed, otherwise the singularity of Gm(·, zl)al at zl would
imply that limt→0 |H̃ (zl + te3)| = ∞. Then, considering the structure of
the singularity of curlx Ge(·, zl) (cf. (B.10)), we find from

lim
t→0

curlx Ge(zl + te1, zl)am+l = 0,

lim
t→0

curlx Ge(zl + te2, zl)am+l = 0

that am+l = 0. As l ∈ {1, . . . ,m} was arbitrary, we are done.

Corollary 4.2. The operator R⊤ is surjective.

Proof. This result follows from Lemma 4.1 and the well–known relation
R(R⊤) = N (R)a between ranges and null spaces of dual operators with finite
rank. Here, N (R)a denotes the annihilator of N (R) in C 3×2m.

Comparing the formulas (4.3) and (4.4) for R and R⊤ and the definition
(4.1) of T , we find that these operators are related by

T = RMR⊤, (4.6)

where the operator M : C 3×2m → C 3×2m is given by

Ma :=
µ+

µ−

(

−M0
B1

a1, . . . ,−M0
Bm

am,
1

k2
−

M∞
B1

am+1, . . . ,
1

k2
−

M∞
Bm

a2m

)

.

From the symmetry and positive definiteness of the magnetic and elec-
tric polarizability tensors M0

B1
, . . . , M0

Bm
and M∞

B1
, . . . , M∞

Bm
(cf. Propo-

sition A.6), we conclude that M is symmetric and invertible. Taking a
closer look at the range of T , we first we observe that R(T ) ⊂ R(R). Next,
we show that this inclusion is actually an equality.

Proposition 4.3. The range of T has dimension 6m and is given by

R(T ) = spanC

{

Gm(·, zl)ej , curlx Ge(·, zl)ej
∣

∣ j = 1, 2, 3; l = 1, . . . ,m
}

.

Proof. The surjectivity of R⊤ and M implies R(T ) = R(RMR⊤) = R(R).
The proposition is then an immediate consequence of (4.3) and Lemma 4.1.

Now, we present the main tool for the reconstruction of the small scatter-
ers, the characterization of their positions z1, . . . , zm in terms of the leading
order term T of the asymptotic expansion of the measurement operator Gδ.

Proposition 4.4. Let d = (d1,d2) ∈ ( C 3 × C 3) \ {(0, 0)}, y ∈ R 3
− and

gy,d := ( Gm(·,y)d1 + curlx Ge(·,y)d2)|M.

Then, gy,d ∈ R(T ) if and only if y ∈ {z1, . . . , zm}.



78 4. Reconstruction of Small Scatterers

Proof. Assume that gy,d ∈ R(T ). As a consequence of Proposition 4.3, gy,d
may be represented as

gy,d =
m
∑

l=1

(

Gm(·, zl)al + curlx Ge(·, zl+m)al+m
)

on M,

with a1, . . . ,a2m ∈ C 3. But then both,

H a :=
m
∑

l=1

(

Gm(·, zl)al +
µ+

µ
curlx Ge(·, zl+m)al+m

)

and

H b := Gm(·,y)d1 +
µ+

µ
curlx Ge(·,y)d2

together with the corresponding electric fields are radiating solutions of
Maxwell’s equations (3.32) in R 3 \ (

⋃m
l=1{zl} ∪ {y}) that coincide on M.

Hence, H̃ := H a −H b together with the associated electric field Ẽ is a ra-
diating solution of (3.32) in R 3 \ (

⋃m
l=1{zl} ∪ {y}) that satisfies H̃ |M = 0.

Following the proof of Lemma 4.1, we conclude that (Ẽ , H̃ ) vanishes every-
where in R 3 \ (

⋃m
l=1{zl}∪ {y}). Thus, H a = H b in R 3 \ (

⋃m
l=1{zl}∪ {y}).

This is only possible if y ∈ {z1, . . . , zm}, and we have established the neces-
sity of this condition. The sufficiency follows from Proposition 4.3.

4.1.2 Tangential Excitations and Measurements

In this section, we assume that the incident fields (E i,H i) are given as
superpositions of electromagnetic fields due to magnetic dipole distributions
on M with tangential dipole densities

ϕ ∈ L2
t (M) :=

{

a ∈ L2(M)
∣

∣ e3 · a = 0
}

,

and we measure only the tangential components (e3 × H s|M) × e3 of the
corresponding scattered magnetic fields on M.

We introduce the projection operator Pt : L2(M) → L2
t (M),

Ptφ := (e3 × φ) × e3,

and denote by P⊤
t : L2

t (M) → L2(M) the corresponding transpose. Then,
we can define the tangential measurement operator Gδ,t : L2

t (M) → L2
t (M),

Gδ,tϕ := PtGδP
⊤
t ϕ.

Because Pt and P⊤
t are bounded and linear, we find from Corollary 3.25

that

Gδ,t = δ3PtTP
⊤
t + O(δ4) (4.7)
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in L(L2
t (M)) as δ → 0. The factorization (4.6) of the leading order term of

the asymptotic expansion becomes

PtTP
⊤
t = (PtR)M(PtR)⊤.

Exactly as in Lemma 4.1, we can prove that PtR is injective, and thus
(PtR)⊤ is surjective. So, we find that R(PtTP

⊤
t ) = R(PtR), and recalling

(4.3), we obtain the following proposition.

Proposition 4.5. The range of PtTP
⊤
t has dimension 6m and is given by

R(PtTP
⊤
t ) = spanC

{

Pt( Gm(·, zl)ej) ,
Pt(curlx Ge(·, zl)ej)

∣

∣ j = 1, 2, 3; l = 1, . . . ,m
}

.

Using this result, the following range characterization of the positions
of the scatterers z1, . . . , zm can be verified in the same manner as Proposi-
tion 4.4.

Proposition 4.6. Let d = (d1,d2) ∈ ( C 3 × C 3) \ {(0, 0)}, y ∈ R 3
− and

g ty,d := Pt
((

Gm(·,y)d1 + curlx Ge(·,y)d2

)∣

∣

M

)

.

Then, g ty,d ∈ R(PtTP
⊤
t ) if and only if y ∈ {z1, . . . , zm}.

4.1.3 Normal Excitations and Measurements

In this section, we assume that the incident fields (E i,H i) are given as
superpositions of electromagnetic fields due to magnetic dipole distributions
on M with normal dipole densities

ϕ ∈ L2
n(M) :=

{

a ∈ L2(M)
∣

∣ e1 · a = e2 · a = 0
}

,

and we measure only the normal components e3 ·H s|M of the corresponding
scattered magnetic field on M.

We introduce the projection operator Pn : L2(M) → L2
n(M),

Pnφ := (e3 · φ)e3,

and denote by P⊤
n : L2

n(M) → L2(M) the corresponding transpose. Then,
we can define the normal measurement operator Gδ,n : L2

n(M) → L2
n(M),

Gδ,nϕ := PnGδP
⊤
n ϕ.

Because Pn and P⊤
n are bounded and linear, we find from Corollary 3.25

that
Gδ,n = δ3PnTP

⊤
n + O(δ4) (4.8)

in L(L2
n(M)) as δ → 0. The factorization (4.6) of the leading order term of

the asymptotic expansion becomes

PnTP
⊤
n = (PnR)M(PnR)⊤.
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Lemma 4.7. The operator PnR is not injective and

N (PnR) = {0}m × ( C e3)
m.

Proof. Suppose a ∈ C 3×2m such that PnRa = 0, i.e.,

k2
−

m
∑

l=1

(

e3 ·
(

Gm(·, zl)al
)

+
µ−
µ+

e3 ·
(

curlx Ge(·, zl)am+l

)

)

= 0 on M.

Then,

H̃ := k2
−

m
∑

l=1

(

Gm(·, zl)al +
µ−
µ

curlx Ge(·, zl)am+l

)

together with the associated electric field Ẽ := −1/(iωε)curlH̃ is a ra-
diating solution of Maxwell’s equations (3.32) in R 3 \ ⋃m

l=1{zl} that sat-
isfies e3 · H̃ |M = 0. Because H̃ has analytic Cartesian components in
R 3

0 \
⋃m
l=1{zl}, the normal component e3 · H̃ |Σd

on Σd is analytic, too. Be-
cause it vanishes on M, it must vanish everywhere on Σd, i.e., H̃3 := e3 · H̃
is a radiating solution of Helmholtz’s equation

∆H̃3 + k2
+H̃3 = 0 (4.9)

in the halfspace {x ∈ R 3 | x · e3 > d } with H̃3|Σd
= 0. We can apply the

reflection principle and extend H̃3 to all of R 3 by

H̃e
3(x ) :=

{

H̃3(x ), x · e3 ≥ d,

−H̃3(α(x )), x · e3 < d,

where α denotes the reflection operator from (4.5). Because by construction

H̃e
3 and ∂H̃3

∂e3
are continuous across Σd and H̃e

3 satisfies the Sommerfeld radi-

ation condition, we find that H̃e
3 is a radiating solution of Helmholtz’s equa-

tion (4.9) with constant coefficient in R 3. As a consequence (cf. [39, p. 20]),
H̃e

3 vanishes everywhere in R 3, and so H̃3 vanishes in {x ∈ R 3 | x · e3 > d }.
Accordingly, H̃3 = 0 in R 3

+ because of its analyticity. Because [µH̃3]Σ0
= 0

and
[

∂H̃3

∂e3

]

Σ0

= 0 (cf. Cutzach and Hazard [43, p. 439] or Cessenat [30,

pp. 32–33]), it now follows from Holmgren’s theorem (cf. Kress [81, The-
orem 2.2, p. 41]), that H̃3 is also zero in a neighborhood of Σ0 in R 3

−,
because it is a solution of the homogeneous Helmholtz equation with con-
stant coefficient k−. Accordingly, H̃3 = 0 in R 3 \ ⋃m

l=1{zl} because of its
analyticity.

Now, let l ∈ {1, . . . ,m} and consider the asymptotic behavior of H̃3(x )
as x → zl. For any b ∈ R 3, we have limt→0 H̃3(zl + tb) = 0. As already
mentioned, the singularity of Gm(·, zl) in zl is of order 3, while the singu-
larity of curlx Ge(·, zl) in zl is of order 2; see Section B.3 for details. So,
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taking into account the structure of the singularity of Gm(·, zl) (cf. (B.11)),
we obtain from

lim
t→0

(

e3 · Gm(zl + te3, zl)al
)

= 0,

lim
t→0

(

e3 · Gm(zl + t(e1 + e3), zl)al
)

= 0,

lim
t→0

(

e3 · Gm(zl + t(e2 + e3), zl)al
)

= 0

that al = 0. Then, considering the singularity of curlx Ge(·, zl) in zl
(cf. (B.10)), we find from

lim
t→0

(

e3 · curlx Ge(zl + te1, zl)am+l

)

= 0,

lim
t→0

(

e3 · curlx Ge(zl + te2, zl)am+l

)

= 0

that e1 · am+l = e2 · am+l = 0. Because l ∈ {1, . . . ,m} was arbitrary, we
have shown that N (PnR) ⊂ {0}m × ( C e3)

m.
On the other hand, it follows from (B.10) that e3 · ( 1

µcurlx Ge(·, zl)e3)
is bounded in a neighborhood of zl, and therefore an entire solution of
a transmission problem for Helmholtz’s equation satisfying the Sommer-
feld radiation condition. Thus, e3 · ( 1

µcurlx Ge(·, zl)e3) = 0; cf. Kristens-
son [83] if k ∈ R and Petry [92, Satz 2.3] if k /∈ R . So we obtain that
{0}m × ( C e3)

m ⊂ N (PnR).

Again it is clear that R(PnTP
⊤
n ) ⊂ R(PnR). Next, we show that this

inclusion is actually an equality.

Proposition 4.8. The range of PnTP
⊤
n has dimension 5m and is given by

R
(

PnTP
⊤
n

)

= spanC

{

Pn
(

Gm(·, zl)ej1
)

,

Pn
(

curlx Ge(·, zl)ej2
) ∣

∣ j1 = 1, 2, 3; j2 = 1, 2; l = 1, . . . ,m
}

.

Proof. Because the range of PnR is finite dimensional and M is symmetric,
we find that

R(PnR) = N
(

(PnR)⊤
)a
, (4.10a)

R
(

(PnR)M(PnR)⊤
)

= N
(

(PnR)M(PnR)⊤
)a
. (4.10b)

Let φ ∈ N ((PnR)M(PnR)⊤). Then,

0 =
〈

φ, (PnR)M(PnR)⊤φ
〉

M
=
〈

(PnR)⊤φ,M(PnR)⊤φ
〉

C
3×2m

and because the electric and magnetic polarizability tensors are positive
definite, we conclude that φ ∈ N ((PnR)⊤). Therefore,

N ((PnR)M(PnR)⊤) ⊂ N ((PnR)⊤),

and from (4.10), we obtain that R(PnR) ⊂ R((PnR)M(PnR)⊤). This means
that R(PnR) = R(PnTP

⊤
n ). The proposition follows now from (4.3) and

Lemma 4.7.
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Proposition 4.9. Let d = (d1,d2) ∈ ( C 3 × C 3)\ ( C (0, e3)), y ∈ R 3
− and

gny,d := Pn
((

Gm(·,y)d1 + curlx Ge(·,y)d2

)∣

∣

M

)

.

Then, gny,d ∈ R(PnTP
⊤
n ) if and only if y ∈ {z1, . . . , zm}.

Proof. Assume that gny,d ∈ R(PnTP
⊤
n ). As a consequence of Proposition 4.8,

gny,d may be represented as

gny,d =
m
∑

l=1

(

Pn( Gm(·, zl)al) + Pn(curlx Ge(·, zl+m)al+m)
)

on M,

with a1, . . . ,am ∈ C 3 and am+1, . . . ,a2m ∈ C 3 \ ( C e3). But then both,

H a :=
m
∑

l=1

(

Gm(·, zl)al +
µ+

µ
curlx Ge(·, zl+m)al+m

)

and
H b := Gm(·,y)d1 +

µ+

µ
curlx Ge(·,y)d2

together with the corresponding electric fields are radiating solutions of
Maxwell’s equations (3.32) in R 3\(

⋃m
l=1{zl}∪{y}) and their normal compo-

nents coincide on M. Hence, H̃ := H a −H b together with the associated
electric field Ẽ is a radiating solution of (3.32) in R 3 \ (

⋃m
l=1{zl} ∪ {y})

that satisfies e3 · H̃ |M = 0. We follow the proof of Lemma 4.7 and conclude
that H̃3 vanishes everywhere in R 3 \ (

⋃m
l=1{zl} ∪ {y}), which means that

Ha
3 = Hb

3 in R 3\(
⋃m
l=1{zl}∪{y}). This is only possible if y ∈ {z1, . . . , zm},

and we have established the necessity of this condition. The sufficiency fol-
lows directly from Proposition 4.3.

4.2 Determining the Positions of the Scatterers

In this section, we discuss an implementation of the range criteria developed
in the previous section in a reconstruction algorithm. We focus only on the
case of three–dimensional excitations and measurements. Tangential and
normal excitations and measurements can be addressed in essentially the
same manner.

To implement the range criterion from Proposition 4.4, we need orthog-
onal projections of the test functions gy,d on the finite dimensional range
space R(T ) and its orthogonal complement. However, in practise we do not
measure the leading order term T of the asymptotic expansion (4.2) but only
the full measurement operator Gδ. By (4.2), Gδ is a good approximation of
δ3T for small values of δ. Hence, we can use perturbation theory for linear
operators to approximate the singular values and singular vectors of T by
the singular values and singular vectors of Gδ.
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Let (·, ·)L2(M) denote the (complex) scalar product on L2(M), and for
any bounded linear operator A ∈ L(L2(M)) let A∗ ∈ L(L2(M)) be the
adjoint operator of A with respect to this scalar product. Because Gδ is a
compact operator on L2(M), it admits a singular value decomposition

Gδϕ =
∞
∑

l=1

σδl (ϕ, v
δ
l )L2(M)u

δ
l , ϕ ∈ L2(M),

where ((σδl )
2)l∈N are the eigenvalues of G∗

δGδ, written in decreasing order
with multiplicity, σδl ≥ 0, (v δl )l∈N is a corresponding complete orthonormal
system of eigenvectors of G∗

δGδ, and (ul)l∈N is a complete orthonormal
system of eigenvectors of GδG

∗
δ ; cf. Kress [79, Theorem 5.16]. Similarly, the

finite rank operator T can be decomposed as

Tϕ =
6m
∑

l=1

σl(ϕ, vl)L2(M)ul, ϕ ∈ L2(M),

with σ1 ≥ σ2 ≥ · · · ≥ σ6m > 0.
From (4.2), we obtain that

G∗
δGδ = δ6T ∗T + O(δ7), (4.11)

in L(L2(M)) as δ → 0. So, applying Theorem V.4.10 from Kato [68], we
get the following asymptotic formula for the singular values as δ → 0:

(σδl )
2 = δ6σ2

l + O(δ7), l ∈ N , (4.12)

where we have set σl = 0 for l ≥ 6m. Next, let

P δl :L2(M) → spanC {uδ1 , . . . ,uδl }, l ∈ N ,

Pl :L2(M) → spanC {u1, . . . ,ul}, l = 1, . . . , 6m,

denote the orthogonal projections onto these subspaces, respectively. To
simplify the presentation we suppose in the following that all eigenvalues of
G∗
δGδ and T ∗T are simple. But this assumption is not essential and could be

omitted by choosing the eigenvectors corresponding to multiple eigenvalues
appropriately . For 1 ≤ l ≤ 6m, let Γδ,l be a rectifiable, simple closed
curve that encloses an open set containing the eigenvalues (σδ1)

2, . . . , (σδl )
2

in its interior and (σδl+1)
2, (σδl+2)

2, . . . in its exterior. Then, by [68, III-(6.19),
p. 178] we can write

P δl = − 1

2π i

∫

Γδ,l

R(ζ,GδG
∗
δ) dζ,

where the operator valued function R(·, GδG∗
δ) is the resolvent of GδG

∗
δ

(cf. [68, p. 173]). If δ is small enough, we find from (4.12) that Γδ,l also
belongs to the resolvent set of δ6TT ∗, and thus we can write

Pl = − 1

2π i

∫

Γδ,l

R(ζ, δ6TT ∗) dζ,
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where R(·, δ6TT ∗) denotes the resolvent of δ6TT ∗. Therefore,

P δl − Pl = − 1

2π i

∫

Γδ,l

(

R(ζ,GδG
∗
δ) − R(ζ, δ6TT ∗)

)

dζ

=
1

2π i

∫

Γδ,l

R(ζ,GδG
∗
δ)
(

GδG
∗
δ − δ6TT ∗

)

R(ζ, δ6TT ∗) dζ,

and so

∥

∥P δl −Pl
∥

∥ ≤ |Γδ,l|
2π i

max
ζ∈Γδ,l

∥

∥R(ζ,GδG
∗
δ)
∥

∥

∥

∥GδG
∗
δ−δ6TT ∗

∥

∥ max
ζ∈Γδ,l

∥

∥R(ζ, δ6TT ∗)
∥

∥.

Here, ‖ · ‖ denotes the operator norm in L(L2(M)), and |Γδ,l| is the length
of Γδ,l. Again from (4.12), we find that Γδ,l can be chosen such that
|Γδ,l| = O(δ6) as δ → 0. Moreover, by [68, V-(3.16), p. 272],

∥

∥R(ζ,GδG
∗
δ)
∥

∥ = 1/dist(ζ,Σ(GδG
∗
δ)),

∥

∥R(ζ, δ6TT ∗)
∥

∥ = 1/dist(ζ,Σ(δ6TT ∗)),

where Σ(GδG
∗
δ) and Σ(δ6TT ∗) denotes the spectrum of GδG

∗
δ and δ6TT ∗,

respectively. So, we find that

‖R(ζ,GδG
∗
δ)‖ = ‖R(ζ, δ6TT ∗)‖ = O(δ−6)

uniformly for ζ ∈ Γδ,l as δ → 0. Using this and recalling (4.11), we obtain
that

P δl = Pl + O(δ), l = 1, . . . , 6m, (4.13)

as δ → 0 in L(L2(M)).

In Proposition 4.4, we have seen that a test point y ∈ R 3
− coincides

with one of the positions zl, l = 1, . . . ,m, if and only if gy,d ∈ R(T ),
or equivalently (I − P6m)gy,d = 0. That means, if we decompose the test
function orthogonally as gy,d = P6mgy,d+(I−P6m)gy,d and define the angle
β(y) ∈ [0, π/2] by

cotβ6m(y) :=
‖P6mgy,d‖L2(M)

‖(I − P6m)gy,d‖L2(M)
,

then we have

y ∈ {zl | l = 1, . . . ,m} ⇐⇒ β6m(y) = 0 ⇐⇒ cotβ6m(y) = ∞.

As already mentioned, we cannot compute β6m(y), because P6m corresponds
to the leading order term T of the asymptotic expansion (4.2), but what we
measure is the full measurement operator Gδ. However, in view of (4.13), for
small values of δ the projected test function P6mgy,d is well approximated
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by P δ6mgy,d, and the projections P δp can be computed for each p ∈ N by
means of the singular value decomposition of the measurement operator Gδ.
Hence, for p ∈ N , we define the angle βδp(y) ∈ [0, π/2] by

cotβδp(y) :=
‖P δp gy,d‖L2(M)

‖(I − P δp )gy,d‖L2(M)
=

(

∑

j≤p |(uδj , gy,d)L2(M)|2
∑

j>p |(uδj , gy,d)L2(M)|2

)1/2

.

(4.14)
If we plot cotβδ6m(y) (resp. βδ6m(y)), we expect to see large values (resp. val-
ues close to zero) for points y which are close to the positions zl, l = 1, . . . ,m.

Estimating the number of scatterers

As the number m of unknown scatterers is usually not known a priori, it
has to be estimated somehow. Two different strategies are available: On the
one hand, recalling (4.12), m may be estimated by looking for a gap in the
set of singular values σδl , l ∈ N , of Gδ. This works if δ is small enough and
the noise level is not too high. Otherwise it may give misleading results.

On the other hand, we can plot cotβδp(y) (resp. βδp(y)) for increasing
values of p, until the number of reconstructed scatterers does not increase
any more. This is reasonable, because for subspaces U ⊂ R(T ) the assertion
of Proposition 4.4 reduces to

gy,d ∈ U =⇒ y ∈ {z1, . . . , zm}.
So, testing whether gy,d is contained in a subspace U ⊂ R(T ), we can only
expect to reconstruct a (possibly empty) subset of {z1, . . . , zm}. The num-
ber of reconstructed scatterers is monotonically increasing (not strictly) as
dim(U) increases, until all m scatterers are reconstructed for dim(U) = 6m.
Numerical experiments indicate that the number of scatterers is constant
for moderately sized p > 6m.

Both strategies have been successfully tested in [22] (for an inverse con-
ductivity problem).

Approximation of the singular value decomposition of Gδ

In practise, we can of course not measure the full measurement operator
Gδ, but only finitely many data corresponding to scattered fields excited by
finitely many incident fields. In order to calculate approximations of the
singular values and the singular vectors of the infinite dimensional operator
Gδ from these discrete measurements, we follow Gebauer [51, pp. 90–91] (see
also [52]) and proceed in the spirit of Galerkin methods. Here, we formulate
this in a rather general way, but in the next section we present a concrete
numerical implementation.

Let J : CN → L2(M) be an injective operator, and assume that the
measurement data are collected in a matrix M ∈ CN×N such that

M ≈ J∗GδJ. (4.15)
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Because J∗J : CN → CN is self–adjoint and positive definite, we can define
the inverse of its square root Q := (J∗J)−1/2. Then, JQQJ∗ : L2(M) →
L2(M) is the orthogonal projection on the finite dimensional subspace R(J),
and

JQQJ∗GδJQQJ
∗ : L2(M) → L2(M) (4.16)

is called the Galerkin projection of Gδ on R(J). Let now (σ̃l)
N
l=1, (ṽl)

N
l=1,

and (ũl)
N
l=1 be the singular values and singular vectors of QMQ. Then,

(σ̃l)
N
l=1, (JQṽl)

N
l=1, and (JQũl)

N
l=1 are approximations of the singular values

and singular vectors of the Galerkin projection of Gδ on R(J) from (4.16).
Recalling (4.15), this can be seen as follows:

JQQJ∗GδJQQJ
∗(JQṽl) = JQ(QJ∗GδJQ)ṽl

≈ JQ(QMQ)ṽl = σ̃l(JQũl).

Using (JQũl)
N
l=1 as approximations of the singular vectors (uδl )

N
l=1 of Gδ,

we get an approximation cot β̃δp(y) of cotβδp(y) from (4.14) for any y ∈ R 3
−

and 0 < p < N . Depending on the data error

e := ‖QJ∗GδJQ−QMQ‖2,

we have to decide how many of these singular values and singular vectors
we actually use in the reconstruction algorithm.

Now, we are prepared to formulate Algorithm 4.2 for reconstructing the
number and the positions of a collection of finitely many small perfectly
conducting scatterers buried within the lower halfspace of an unbounded
two–layered background medium.

Remark 4.10. In case of tangential or normal excitations and measurements
as considered in Sections 4.1.2 and 4.1.3 the reconstruction method works
essentially in the same way. We just have to use the modified test func-
tions g ty,d and gny,d according to Propositions 4.6 and 4.9 instead of gy,d.
Moreover, in case of normal excitations and measurements the range of the
leading order term PnTP

⊤
n of the asymptotic expansion (4.8) of the normal

measurement operator Gδ,n has dimension 5m, where m is the number of
scatterers, and not dimension 6m as in the other two cases. This has to be
taken into account.

4.3 Numerical Implementation

In this section, we describe our numerical implementation of Algorithm 4.2.

First, we explain the approximation of the measurement operator Gδ by
a finite dimensional matrix. For this purpose, we consider for any y ∈ M the
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Algorithm 4.1 Reconstruction of number and positions of the scatterers

Require: measurement data M ∈ CN×N , M ≈ J∗GδJ
1: compute the singular values (σ̃l)

N
l=1 and singular vectors (ũl)

N
l=1 of QMQ

2: according to the data error e consider in the following only the first N0

singular values and singular vectors
3: choose the dipole polarization d = (d1,d2) ∈ ( C 3 × C 3) \ {(0, 0)} for

the test function gy,d
4: if the data error e and the scatterers are small enough then

5: estimate the number of scatterers m by looking for a gap in the set of
singular values (σ̃l)

N0

l=1

6: on a sampling grid of points yj ∈ R 3
−, j = 1, 2, . . . , calculate

cot β̃δ6m(yj) :=

(

∑

l≤6m |(JQũδl , gyj ,d)L2(M)|2
∑

6m<l≤N0
|(JQũδl , gyj ,d)L2(M)|2

)1/2

7: visualize cot β̃δ6m(yj), j = 1, 2, . . .
8: else

9: p = 6
10: repeat

11: on a sampling grid of points zj ∈ R 3
−, j = 1, 2, . . . , calculate

cot β̃δp(yj) :=

(

∑

l≤p |(JQũδl , gyj ,d)L2(M)|2
∑

p<l≤N0
|(JQũδl , gyj ,d)L2(M)|2

)1/2

12: visualize cot β̃δp(yj), j = 1, 2, . . .
13: p = p+ 6
14: until no further scatterers have been reconstructed in the last few

steps or p = N0

15: end if

matrix valued function H s(·,y) such that the jth component of H s(·,y) is
the scattered field corresponding to the incident field excited by a magnetic
dipole with polarization ej in y . Then, we discretize the measurement device
M and replace it by an equidistant rectangular n × n grid Mh with step
size h. For any y ∈ Mh we evaluate H s(·,y) on Mh and collect these data

column by column in a matrix Gδ,h ∈ C 3n2×3n2

, henceforth called discrete
measurement operator . With an appropriate ordering of rows and columns
this is a complex symmetric matrix due to the reciprocity principle. We
mention that Gδ,h is often also called the multi–static response matrix .

Next, in accordance with the discrete measurement operator Gδ,h, let

J : C 3n2 → L2(M) be an injective operator that maps finite dimensional

vectors v ∈ C 3n2

on (sufficiently smooth) functions V ∈ L2(M) such
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that the values of V on Mh (written as one column) are equal to v . By
superposition, we can represent Gδ as an integral operator (cf. [52, p. 2038])

such that for any u ∈ C 3n2

,

GδJu =

∫

M
H s(·,y)(Ju)(y) ds(y).

So, we find for u , v ∈ C 3n2

that

v · J∗GδJu =

∫

M
(Jv)(x ) · (GδJu)(x ) ds(x )

=

∫

M
V (x ) ·

∫

M
H s(x ,y)(Ju)(y) ds(y) ds(x )

≈ (D2
hv) ·Gδ,hD2

hu = v ·D2
hGδ,hD

2
hu ,

where Dh denotes the diagonal matrix, whose entries are the square roots
of the weights of the tensor trapezoidal quadrature rule for the integral over
M, given the function values on Mh. Therefore,

J∗GδJ ≈ D2
hGδ,hD

2
h,

and we have constructed a finite dimensional approximation of the mea-
surement operator Gδ as required in (4.15). We can now proceed as in the
previous section to obtain approximations of the singular values and the
singular vectors of Gδ. If U ∈ L2(M) is a (sufficiently smooth) function

and u ∈ C 3n2

is the vector that consists of the values of U on Mh, then
for all v ∈ C 3n2

,

(J∗U ) · v =

∫

M
U ·V ds ≈ (D2

hu) · v .

So,

J∗Ju = J∗U ≈ D2
hu ,

which means that Q := (J∗J)−1/2 corresponds to D−1
h . Let (σδh,l)

3n2

l=1,

(v δh,l)
3n2

l=1, and (uδh,l)
3n2

l=1 be the singular values and singular vectors of

QJ∗Gδ,hJQ = DhGδ,hDh.

Then, as seen before, (σδh,l)
3n2

l=1, (JQv δh,l)
3n2

l=1, and (JQuδh,l)
3n2

l=1 are approxima-
tions of the singular values and singular vectors of the Galerkin projection of
Gδ on R(J). Therefore, we will use (σδh,l)

3n2

l=1, (D−1
h v δh,l)

3n2

l=1, and (D−1
h uδh,l)

3n2

l=1

as finite dimensional approximations of the singular values and singular vec-
tors of Gδ on Mh in the numerical implementation of Algorithm 4.2.



89

Remark 4.11. Kirsch proved in [73, Theorem 2.1] (see also [4, Proposi-
tion 6.3]) that for any number m of buried scatterers there exists a lower
bound for number of grid points n2 of the discretized measurement device
Mh such that for this and all finer grids the range criterion from Proposi-
tion 4.4 also holds for the discretized measurement setup. But no explicit
lower bound for the number of grid points on the measurement device that
is sufficient to recover a given number of scatterers is provided. Our numer-
ical experience indicates that n2 is a relatively small number, e.g. n2 = 9
in case of m = 2 scatterers. Therefore the singular value decomposition of
DhGδ,hDh is rather cheap to compute.

However, this singular value decomposition usually only approximates
the dominant singular values and the corresponding singular vectors of
DhGδ,hDh. Of course, the situation gets worse, if the data contain errors,
which will always be the case in practise. To estimate the error contained in
simulated or measured data for DhGδ,hDh, we measure the non–symmetric
part of this matrix, i.e.,

ẽ :=
∥

∥Dh

(

Gδ,h −G⊤
δ,h

)

Dh

∥

∥

2
,

because this should be zero for exact data and of order of the data error
otherwise. By the Bauer–Fike Theorem (cf. Golub and Van Loan [55, Theo-
rem 7.2.2]), the singular values ofDhGδ,hDh are perturbations of those of the
corresponding unperturbed matrix and the perturbations are bounded by ẽ.
This means that the singular values of DhGδ,hDh, which are larger than
ẽ, will go through a comparatively small relative change. From [55, Corol-
lary 8.1.11] we find that the same holds for orthogonal projections on sub-
spaces spanned by the corresponding singular vectors.

On the other hand, it turns out that at least slightly more than 6m sin-
gular vectors are necessary to distinguish m buried scatterers, regardless of
the noise level. So, in practise the number of scatterers that can be recovered
with the reconstruction algorithm is restricted according to the number of
singular values that can be approximated stably, i.e., according to the noise
level. In our numerical experiments we work with n2 = 36 grid points on
the measurement device, which leads to a discrete measurement operator
Gδ,h ∈ C 108×108. For the reconstruction of up to two buried scatterers we
use only the first 20 singular vectors.

For our numerical examples, we simulate the discrete measurement op-
erator Gδ,h numerically. For this purpose, we use a modified and extended
version of a boundary element method with piecewise constant ansatz func-
tions that was developed in the course of the BMBF–project [61] by Roland
Potthast and his group in Göttingen; see also [46].

We implemented Algorithm 4.2 by modifying and extending the code for
the Linear Sampling Method from [52], which was developed by Christoph
Schneider.
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4.4 Numerical Results

In this section, we present our numerical results for the following exper-
imental setup: The measurement device operates on a square M of size
50 × 50 cm2 parallel to the surface of ground, centered at (0, 0, 10) cm. We
discretize M using an equidistant rectangular 6×6 grid Mh ⊂ M with step
size h = 10 cm. The incident fields imposed on Mh have a frequency of
20 kHz, which corresponds to an angular velocity of ω = 1.26 · 105 s−1.

We consider two different types of background media.

Homogeneous background medium: The whole R 3 is assumed to be
empty, i.e., vacuum,

ε+ = ε− = ε0 = 8.85 · 10−12 Fm−1,

µ+ = µ− = µ0 = 1.26 · 10−6 Hm−1.

Accordingly, k+ = k− = 4.22 · 10−4 m−1, and the corresponding wavelength
is λ+ = λ− = 14.9 km.

Two–layered background medium: The upper halfspace is supposed to
be empty,

ε+ = ε0 = 8.85 · 10−12 Fm−1,

µ+ = µ0 = 1.26 · 10−6 Hm−1,

while the lower halfspace is assumed to be filled with soil,

ε− = ε0

(

εr + i
σ

ωε0

)

= 8.67 · 10−11 + i 5.95 · 10−9 Fm−1,

µ− = (1 + χ)µ0 = 1.26 · 10−6 Hm−1,

where
σ = 7.5 · 10−4 Sm−1, χ = 1.9 · 10−5, εr = 9.8.

The electromagnetic parameters for the lower halfspace are measurement
data for a soil consisting of a poor clay sand (St2) taken by Igel and
Preetz [63] in course of the project [61]. Accordingly, k+ = 4.22 · 10−4 m−1

and k− = (7.77+i 7.66) ·10−3 m−1. So the wavelengths in the two halfspaces
are λ+ = 14.9 km and λ− = 0.81 km, respectively. This setup is meant to
represent a realistic test case for subsurface exploration using commercial
off–the–shelf metal detectors.

4.4.1 Asymptotic Behavior of the Singular Values

First, we illustrate the asymptotic behavior of the singular values from
(4.12). For this purpose, we consider a perfectly conducting small scatterer
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Dδ = z + δB, 0 < δ ≤ 1, with z = (0, 0,−20) cm, where B is an ellipsoid
with semi axes of length (9, 7, 5) cm (aligned with the coordinate axes) cen-
tered at the origin. We simulate the corresponding discrete measurement
operator Gδ,h ∈ C 108×108 for the homogeneous background medium using
the boundary element method mentioned above with 1216 triangles on the
boundary of the scatterer for δ = 1, δ = 10−1, and δ = 10−2. Then, we cal-
culate the singular values (σδh,l)

108
l=1 of DhGδ,hDh, which are approximations

of the singular values of the measurement operator Gδ, and plot the first 20
of them for δ = 1, δ = 10−1, and δ = 10−2 on the left hand side of Figure 4.1.
According to (4.12) and Proposition 4.3, we expect to see 6 singular values of
order O(δ3), while the remaining singular values should be of order O(δ4).
This qualitative behavior is indeed verified by the numerical simulations.
Observe that the first 6 singular values appear in two close triples. This is
a typical feature we found in many of our numerical simulations for single
scatterers. By Proposition 4.3, the range of the leading order term T of the
asymptotic expansion of Gδ is spanned by the columns of the 3 × 3 tensors
Gm(·, z ) and curlx Ge(·, z ). This may explain this triplet structure.

Next, we consider tangential and normal excitations and measurements
as studied in Section 4.1.2 and Section 4.1.3, respectively. We visualize the
approximations of the first 20 singular values of the tangential measure-
ment operator Gδ,t = PtGδP

⊤
t and of the normal measurement operator

Gδ,n = PnGδP
⊤
n for δ = 1, δ = 10−1, and δ = 10−2 on the right–hand side of

Figure 4.1. In case of tangential excitations and measurements, according
to (4.7) and Proposition 4.5, we also expect 6 singular values of order O(δ3),
while the remaining singular values should be of order O(δ4). But for nor-
mal excitations and measurements, recalling (4.8) and Proposition 4.8, we
anticipate only 5 singular values of order O(δ3) and the remaining singular
values should have smaller magnitude. Again, this qualitative behavior is
verified by the numerical example.

In a second example, we do the same simulations for the two–layered
background medium. The corresponding approximations of the first 20 sin-
gular values of the full measurement operator Gδ, the tangential measure-
ment operator Gδ,t, and the normal measurement operator Gδ,n for δ = 1,
δ = 10−1, δ = 10−2, and δ = 10−3 can be found in Figure 4.2. Although
the theoretical predictions are also fulfilled by these simulations, the gap
between the first 6 (resp. 5) singular values and the singular values corre-
sponding to higher order terms in the asymptotic expansion is not as distinct
as for the homogeneous background medium.

For further studies of the eigenvalue structure of the discrete measure-
ment operator Gδ,h we refer to [4], Chambers and Berryman [31,32], and to
[62]. Our results are in accordance with these investigations.
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Figure 4.1: Singular values of the measurement operators Gδ (left), Gδ,t, and Gδ,n

(right) for δ = 1, δ = 10−1, and δ = 10−2 (top down) in homogeneous background
medium (+ . . . full excitations and measurements, ◦ . . . tangential excitations and
measurements, ∗ . . . normal excitations and measurements).



93

0 5 10 15 20
10

−12

10
−10

10
−8

10
−6

10
−4

0 5 10 15 20
10

−25

10
−20

10
−15

10
−10

10
−5

0 5 10 15 20
10

−30

10
−25

10
−20

10
−15

10
−10

0 5 10 15 20
10

−30

10
−25

10
−20

10
−15

10
−10

Figure 4.2: Singular values of the measurement operators Gδ, Gδ,t, and Gδ,n for
δ = 1, δ = 10−1, δ = 10−2, and δ = 10−3 (from left to right and top down) in
two–layered background medium (+ . . . full excitations and measurements, ◦ . . . tan-
gential excitations and measurements, ∗ . . . normal excitations and measurements).

4.4.2 Choosing the Test Dipole Direction

In this and the following example, we apply Algorithm 4.2 to reconstruct
the location of two small perfectly conducting ellipsoids with semi axes of
length (0.1, 0.2, 0.3) cm and (2, 3, 1) cm (aligned with the coordinate axes)
buried in the lower halfspace of the two–layered background medium at
position z1 := (−15, 15,−10) cm and z2 := (15,−15,−40) cm, respectively.
We consider three–dimensional excitations and measurements, where the
simulated forward data have been obtained using the boundary element
method with 612 triangles per scatterer and contain an estimated numerical
error of 3%. Additionally, we perturb these data by a uniformly distributed
relative error of 1%.

Figure 4.3 shows approximations of the first 20 singular values of the
measurement operator Gδ. Note that in contrast to (4.12) and Proposi-
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Figure 4.3: Singular values of the measurement operators Gδ (+ . . . without addi-
tional noise, ◦ . . . with 1% uniformly distributed noise).

tion 4.3 there is no distinct gap after the first 12 singular value. One reason
for this may be the (numerical) error contained in the forward data. On the
other hand, recalling the singular value decompositions in Figure 4.2, the
scatterers seem not to be small enough to lead to the perfect asymptotic be-
havior for this background medium. However, here the iterative procedure
described in Algorithm 4.2 can be used to estimate the number of scatterers.

We study the influence of the polarization vector d ∈ ( C 3× C 3)\{(0, 0)}
of the test function gy,d (cf. Proposition 4.4) on the performance of the recon-
struction method. For this purpose, we consider four different polarization
vectors: d = (e1, 0), d = (e3, 0), d = (0, e1), and d = (0, e3). The first two
polarizations correspond to test functions that are magnetic dipoles (sin-
gularity of order 3), while the latter two polarizations correspond to test
functions that are curls of electric dipoles (singularity of order 2). The val-
ues of cot β̃δ12 (with N0 = 20) corresponding to these test functions are used
to visualize the location of the scatterers on a three–dimensional equidis-
tant rectangular sampling grid with step size 0.5 cm on the search domain
[−25, 25]2 × [−50, 0] cm3.

We start by studying the test function gy,d with polarization vector
d = (e1, 0). Figure 4.4 shows horizontal cross sections of cot β̃δ12(y) cor-
responding to this test function for y3 = −10 cm and y3 = −40 cm. The
position of the lower scatterer is well reconstructed, but the position of the
upper scatterer can hardly be estimated from these visualizations. Note that
away from buried scatterers these visualizations should be close to white (de-
pending on the noise level). This was the case in all our numerical examples.
It turned out to be better not to use automatic scaling for the coloraxis in
these cross sectional plots but the same coloraxis throughout the search
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Figure 4.4: Cross–sectional plots of cot β̃δ
12

(y) with polarization vector d = (e1, 0)
for y3 = −10 cm and y3 = −40 cm with 1% noise.

Figure 4.5: Isosurface plots cot β̃δ
12

= 15 and cot β̃δ
12

= 175 with polarization
vector d = (e1, 0) and with 1% noise.

domain. Figure 4.5 shows isosurface plots cot β̃δ12 = 15 and cot β̃δ12 = 175.
From these visualizations the positions of both scatterers can be estimated.
The gray areas on the coordinate planes are the orthogonal projections of
the red surfaces on these planes. We emphasize that these plots should not
be mistaken as reconstructions of the shape of the scatterers. They give
just an idea of possible positions of buried objects; these can be expected to
be inside the (red) surfaces. In contrast to the Factorization Method, our
method does not allow a binary test for whether some point belongs to a
scatterer or not.

Next, we consider the test function gy,d with polarization d = (e3, 0).
Figure 4.6 shows horizontal cross sections of cot β̃δ12(y) for y3 = −10 cm and
y3 = −40 cm. Here, the position of both scatterers can be well estimated.
Note that the values of the local maxima of cot β̃δ12 are larger for this choice
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Figure 4.6: Cross–sectional plots of cot β̃δ
12

(y) with polarization vector d = (e3, 0)
for y3 = −10 cm and y3 = −40 cm with 1% noise.

Figure 4.7: Isosurface plots cot β̃δ
12

= 75 and cot β̃δ
12

= 250 with polarization
vector d = (e3, 0) and with 1% noise.

of the polarization vector. This is preferable, because it allows for a bet-
ter identifiability of possible scatterers. Figure 4.7 shows isosurface plots
cot β̃δ12 = 75 and cot β̃δ12 = 250.

Considering the test functions gy,d with polarization vectors d = (0, e1)
and d = (0, e3), we found from numerical experiments that the positions of
the two scatterers cannot be reconstructed from visualizations of cot β̃δ12. For
the present example the values of cot β̃δ12 in the search domain correspond-
ing to these polarization vectors are between 0 and 3 and the function has
no distinct local maxima, which would indicate scatterers. Recalling Propo-
sition 4.3 and the singular value decomposition in Figure 4.3, this can be
explained as follows: By Proposition 4.3, the range R(T ) of the leading order
term T of the asymptotic expansion (4.2) of the measurement operator Gδ
is spanned by the columns of Gm(·, z1)|M, Gm(·, z2)|M, curlx Ge(·, z1)|M,
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and curlx Ge(·, z2)|M, where z1 and z2 are the positions of the two scatter-
ers. The reconstruction algorithm essentially checks, whether the function
gy,d belongs to this 12–dimensional range space or not. But in the singular
value decomposition ofGδ in Figure 4.3 only two triples of singular values are
separated from the others (which are smaller than the estimated numerical
error in the simulated forward data). The numerical experiments indicate
that the corresponding 6–dimensional subspace of R(T ) is spanned by the
columns of Gm(·, z1)|M and Gm(·, z2)|M — for the corresponding test func-
tions the reconstruction algorithm works. On the other hand, the subspace
spanned by the following 6 singular vectors seems not to be spanned by the
columns of curlx Ge(·, z1)|M and curlx Ge(·, z2)|M — for the corresponding
test functions the reconstruction method fails. Figure 4.3 indicates that this
is due to the numerical error contained in the forward data.

So, for this particular example the test function gy,d with d = (e3, 0)
would be an appropriate choice for the reconstruction algorithm. However,
it is not clear that the field due to the magnetic dipoles in the asymptotic
expansion of the scattered field (3.71) always dominates the field due to the
corresponding electric dipoles, as it does in this example. In the following
examples, we use the test function gy,d with polarization vector d = (e3, e3),
which is a combination of an electric and a magnetic dipole and thus works
irrespective of which part of the field dominates. With this test function we
obtained good reconstructions for a varietey of numerical examples. (We
mention that for normal excitations and measurements a test function gy,d
with polarization vector d = (e3, e1) or d = (e3, e2) would be more appro-
priate.)

4.4.3 Three–Dimensional, Tangential, and Normal Excita-

tions and Measurements

In this example, we compare numerical results for the three measurement
setups considered in Section 4.1. For this purpose, we reconstruct the two
perfectly conducting ellipsoidal scatterers described in Section 4.4.2 using
three–dimensional, tangential, and normal excitations and measurements.
The forward data used in these experiments have been obtained as in the
previous example, but here we perturb these data by a uniformly distributed
relative error of 3% (instead of 1% before).

We start with three–dimensional excitations and measurements. The val-
ues of cot β̃δ12 for the test function gy,d with polarization vector d = (e3, e3)
are used to visualize the location of the scatterers on a three–dimensional
equidistant rectangular sampling grid with step size 0.5 cm on the search do-
main [−25, 25]2 × [−50, 0] cm3. Figure 4.8 shows horizontal cross sections of
cot β̃δ12(y) for y3 = −10 cm and y3 = −40 cm. Isosurface plots cot β̃δ12 = 25
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Figure 4.8: Cross–sectional plots of cot β̃δ
12

(y) for three–dimensional excitations
and measurements with 3% noise at y3 = −10 cm and y3 = −40 cm.

Figure 4.9: Isosurface plots cot β̃δ
12

= 25 and cot β̃δ
12

= 140 for three–dimensional
excitations and measurements with 3% noise.

and cot β̃δ12 = 140 can be found in Figure 4.9. The positions of both scatter-
ers can be estimated from these visualizations. Due to the higher amount
of noise contained in the forward data for this example, the local maxima of
cot β̃δ12 are not as distinct as in Section 4.4.2 (cf. Figure 4.6). If we perturb
the simulated forward data by a uniformly distributed relative error of 5%,
the reconstructions of the positions of the scatterers get worse, but still two
scatterers are reconstructed. For higher amounts of noise the method no
longer recovers both scatterers.

Comparing the MUSIC–type reconstruction method proposed here with
the Linear Sampling Method from [52], using amongst others this example,
we found that the Linear Sampling Method is more sensitive to uncorrelated
noise. Using forward data containing 1% uniformly distributed relative error
the position of both scatterers has also been reconstructed by the linear
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Figure 4.10: Cross–sectional plots of cot β̃δ
12

(y) for tangential excitations and
measurements with 3% noise at y3 = −10 cm and y3 = −40 cm.

Figure 4.11: Isosurface plots cot β̃δ
12

= 20 and cot β̃δ
12

= 85 for tangential excita-
tions and measurements with 3% noise.

sampling method. But with 3% noise (or more) in the data the Linear
Sampling Method failed to reconstruct both scatterers. Similar observations
were made by Hanke and Brühl [59] for inverse conductivity problems.

Next we consider tangential excitations and measurements as introduced
in Section 4.1.2. We use the modified test function g ty,d with polarization

vector d = (e3, e3) (cf. Proposition 4.6) and compute the values of cot β̃δ12
corresponding to the tangential measurement operator Gδ,t = PtGδP

⊤
t on

the sampling grid as used before to visualize the location of the scatterers.
Figure 4.10 shows horizontal cross sections of cot β̃δ12(y) for y3 = −10 cm and
y3 = −40 cm. Isosurface plots cot β̃δ12 = 85 and cot β̃δ12 = 20 can be found in
Figure 4.11. Expectedly, the reconstructions for tangential excitations and
measurements are worse than for fully three–dimensional excitations and
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Figure 4.12: Cross–sectional plots of cot β̃δ
10

(y) for normal excitations and mea-
surements with 3% noise at y3 = −10 cm and y3 = −40 cm.

Figure 4.13: Isosurface plots cot β̃δ
10

= 10 and cot β̃δ
10

= 85 for normal excitations
and measurements with 3% noise.

measurements, but the approximate positions of both scatterers can still be
estimated.

For normal excitations and measurements (cf. Section 4.1.3) we use the
modified test function gny,d with polarization vector d = (e3, e3) (cf. Propo-

sition 4.9) and compute the values of cot β̃δ10 corresponding to the normal
measurement operator Gδ,n = PnGδP

⊤
n on the sampling grid as used be-

fore to visualize the location of the scatterers. Figure 4.12 shows horizontal
cross sections of cot β̃δ10(y) for y3 = −10 cm and y3 = −40 cm. Isosurface
plots cot β̃δ10 = 10 and cot β̃δ10 = 85 can be found in Figure 4.13. The po-
sitions of both scatterers can be estimated from these visualizations. The
reconstructions are not as sharp as for fully three–dimensional excitations
and measurements but comparable or even a bit better than for tangential
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excitations and measurements.

4.4.4 Two Examples where the Method Fails

In this section, we point out some limitations of the MUSIC–type recon-
struction method. For this purpose, we slightly modify the geometrical
setup considered in the previous two examples such that the reconstruction
algorithm no longer recovers the positions of both scatterers and explain
this behavior theoretically.

First, we try to reconstruct the positions of two small perfectly conduct-
ing ellipsoids with semi axes of length (1, 2, 3) cm and (2, 3, 1) cm (aligned
with the coordinate axes) buried in the lower halfspace of the two–layered
background medium at position (−15, 15,−10) cm and (15,−15,−40) cm,
respectively. Note that this is the same geometry as studied in Section 4.4.2
and Section 4.4.3, but here the diameter of the upper scatterer is 10 times
larger than before. We consider three–dimensional excitations and mea-
surements, where the forward data have been obtained using the boundary
element method with 612 triangles per scatterer and contain an estimated
numerical error of 2%. Additionally, we perturb these data by a uniformly
distributed relative error of 3%.

We use the test function gy,d with polarization vector d = (e3, e3) and
compute the values of cot β̃δ12 on the same sampling grid as used in the pre-
vious examples to visualize the location of the scatterers. Figure 4.14 shows
horizontal cross sections of cot β̃δ12(y) for y3 = −10 cm and y3 = −40 cm.
Note that only the position of the upper scatterer can be estimated from
these plots. Approximations of the first 20 singular values of the measure-
ment operator Gδ and an isosurface plot cot β̃δ12 = 100 can be found in
Figure 4.15.

Recalling the asymptotic formula (3.71), we find that the magnitude of
the scattered field due to the upper scatterer in this example is approxi-
mately 1000 times larger than in the previous two examples, because the
diameter of this scatterer is 10 times larger than before. On the other hand,
the magnitude of the scattered field due to the lower scatterer remains un-
changed. Comparing the singular value decompositions in Figure 4.3 and
Figure 4.15, in particular the first two triples of singular values, this behavior
can indeed be observed in the numerical simulations. Due to the larger scat-
tered field also the absolute error contained in the forward data increases
dramatically. This noise largely dominates the information on the lower
scatterer contained in the forward data and thus only the upper scatterer is
recovered by the reconstruction algorithm.

Next, we try to reconstruct the positions of two perfectly conducting
ellipsoids with semi axes of length (0.1, 0.2, 0.3) cm and (2, 3, 1) cm (aligned
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Figure 4.14: Cross–sectional plots of cot β̃δ
12

(y) at y3 = −10 cm and y3 = −40 cm
with 3% noise.
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Figure 4.15: Singular values of the measurement operators Gδ (+ . . . without
additional noise, ◦ . . . with 3% uniformly distributed noise) and isosurface plot
cot β̃δ

12
= 100 with 3% noise.

with the coordinate axes) buried in the lower halfspace of the two–layered
background medium at position (−40, 40,−10) cm and (40,−40,−40) cm,
respectively. Note that these are the same ellipsoids as studied in the Sec-
tions 4.4.2 and 4.4.3, but here they are no longer buried directly under-
neath the measurement device. We consider three–dimensional excitations
and measurements, where the forward data have been obtained using the
boundary element method with 612 triangles per scatterer and contain an
estimated numerical error of 1%. Additionally, we perturb these data by a
uniformly distributed relative error of 3%.

We use the test function gy,d with d = (e3, e3) and compute the val-
ues of cot β̃δ12 on a three–dimensional equidistant rectangular sampling grid
with step size 0.5 cm on the search domain [−50, 50]2 × [−50, 0] cm3 to
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Figure 4.16: Cross–sectional plots of cot β̃δ
12

(y) at y3 = −10 cm and y3 = −40 cm
with 3% noise.
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Figure 4.17: Singular values of the measurement operators Gδ (+ . . . without
additional noise, ◦ . . . with 3% uniformly distributed noise) and isosurface plot
cot β̃δ

12
= 65 with 3% noise.

visualize the location of the scatterers. Figure 4.16 shows horizontal cross
sections of cot β̃δ12(y) for y3 = −10 cm and y3 = −40 cm. Only the position
of the lower scatterer can be estimated from these plots. Approximations
of the first 20 singular values of the measurement operator Gδ and an iso-
surface plot cot β̃δ12 = 100 can be found in Figure 4.17. As can be seen
from the singular value decomposition, the singular values corresponding to
the upper scatterer are below the noise level and thus this scatterer is not
reconstructed.

However, it is a success that the reconstruction method recovers the lower
scatterer, even though it is not buried directly underneath the measurement
device. In practise it is typically possible to move the measurement device
around while searching for buried objects.
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4.4.5 Test Functions for Homogeneous Background Media

For two–layered background media, evaluating the test functions gy,d on the
discrete measurement device Mh for each sampling point y in the search
domain (cf. Algorithm 4.2) is computationally very expensive. These test
functions are superpositions of magnetic dyadic Green’s functions and the
curl of electric dyadic Green’s functions (cf. Proposition 4.4), which are not
known in closed form for two–layered background media, but only via Hankel
transforms of their matrix elements. So, evaluating test functions gy,d on
the measurement device means to evaluate these Hankel transforms.

On the other hand, the dyadic Green’s function for homogeneous back-
ground media is known explicitly (cf. (3.7)) and can be evaluated very effi-
ciently. Numerical experiments show that for low frequencies as considered
here the Green’s functions for two–layered media do not differ very much
from the Green’s functions for homogeneous media. Thus, we apply in this
example the test function gy,d for the homogeneous background medium to
reconstruct two small scatterers buried in the lower halfspace of the two–
layered background medium.

For this purpose, we consider the same example as studied in Sec-
tion 4.4.2 and Section 4.4.3: Two perfectly conducting ellipsoids with semi
axes of length (0.1, 0.2, 0.3) cm and (2, 3, 1) cm (aligned with the coordi-
nate axes) are buried in the lower halfspace of the two–layered background
medium at position (−15, 15,−10) cm and (15,−15,−40) cm, respectively.
We consider three–dimensional excitations and measurements, where the
forward data have been obtained using the boundary element method (for
the two–layered background medium) with 612 triangles per scatterer and
contain an estimated numerical error of 3%. Additionally we perturb these
data by a uniformly distributed relative error of 3%.

The values of cot β̃δ12 on a three–dimensional equidistant rectangular
sampling grid with step size 0.5 cm on the search domain [−25, 25]2 ×
[−50, 0] cm3 corresponding to the test function gy,d for the homogeneous
background medium with polarization vector d = (e3, e3) are used to vi-
sualize the location of the scatterers. Figure 4.18 shows horizontal cross
sections of cot β̃δ12(y) for y3 = −10 cm and y3 = −40 cm. Isosurface plots
cot β̃δ12 = 20 and cot β̃δ12 = 85 can be found in Figure 4.19. The reconstruc-
tions are slightly worse than the ones obtained in Section 4.4.3 with the test
function for two–layered background medium (cf. Figure 4.8 and Figure 4.9),
but the approximate position of both scatterers can be estimated.

The reconstruction applying the test function for homogeneous back-
ground medium in this section was 85 times faster than the reconstruc-
tion using the test function for the two–layered background medium in Sec-
tion 4.4.3.
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Figure 4.18: Cross–sectional plots of cot β̃δ
12

(y) corresponding to a test function
for the homogeneous background medium at y3 = −10 cm and y3 = −40 cm with
3% noise.

Figure 4.19: Isosurface plots cot β̃δ
12

= 20 and cot β̃δ
12

= 85 corresponding to a test
function for the homogeneous background medium with 3% noise.

4.4.6 Spatial Resolution of the Reconstruction Algorithm

Finally, we investigate the spatial resolution of the MUSIC–type reconstruc-
tion algorithm for the measurement setup as introduced at the beginning of
Section 4.4 working at a frequency of 20 kHz. For simplicity, we consider
the homogeneous background medium and assume that two perfectly con-
ducting spheres with radius 1 cm are buried underneath the measurement
device at position (−a/2, 0,−10) cm and (a/2, 0,−10) cm, respectively, with
a ∈ {5, 7.5, 10, 12.5, 15, 20} cm.

We consider three–dimensional excitations and measurements, where the
forward data have been obtained using the boundary element method with
616 triangles per scatterer and contain an estimated numerical error of 1.3%.
Additionally, we perturb these data by a uniformly distributed relative error
of 1%.
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Figure 4.20: Cross–sectional plots of cot β̃δ
12

(y) for y3 = −10 cm with 1% noise.

The values of cot β̃δ12 on a three–dimensional equidistant rectangular
sampling grid with step size 0.5 cm on the search domain [−25, 25]2 ×
[−50, 0] cm3 corresponding to the test function gy,d for the homogeneous
background medium with polarization vector d = (e3, e3) are used to vi-
sualize the location of the scatterers. Figure 4.20 shows horizontal cross
sections of cot β̃δ12(y) for y3 = −10 cm and a ∈ {5, 7.5, 10, 12.5, 15, 20} cm.
Here, the red circles indicate the position and the size of the two scatterers.
Note that for a ≥ 12.5 cm the two scatterers can be perfectly distinguished
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in the reconstructions. For a = 10 cm and even more for a = 7.5 cm the vi-
sualization starts smearing out the two scatterers to one. But for a = 5 cm
(and also for smaller values of a) the reconstruction method determines
only a single object positioned in the center of mass of both scatterers. This
means that the two scatterers are no longer reconstructed as two individual
small objects but as one small object consisting of two components.

Figure 4.21 shows approximations of the first 20 singular values of the
measurement operator Gδ for a ∈ {5, 7.5, 10, 12.5, 15, 20} cm and for differ-
ent noise levels. For a = 20 cm, the first 6 singular values are clearly
distinguished from the others, and the numerical results in Figure 4.20 in-
dicate that the corresponding 6 singular vectors contain information on the
positions of both scatterers. But the smaller the distance a between the two
scatterers is, the smaller becomes the gap after the first 6 singular values
and the bigger becomes the gap between the first and the second triple of
singular values. For distances a such that the order of magnitude of the
second triple of singular values is close to the noise level of 1%, the recon-
structions in Figure 4.20 show just one object, that must be characterized
by the first three singular vectors.

Not surprisingly, we found that the resolution of the reconstruction al-
gorithm, i.e., the minimal value of the distance a such that both scatterers
are reconstructed independently, strongly depends on the amount of noise,
which we add to the forward data. Figure 4.22 shows horizontal cross sec-
tions of cot β̃δ12(y) for y3 = −10 cm corresponding to forward data which
have only been perturbed by 0.3% uniformly distributed noise. In these
visualizations the resolution is significantly better than in Figure 4.20. For
a ≥ 7.5 cm both scatterers are reconstructed separately. For a = 5 cm
the visualization smears out but still information on both scatterers is re-
covered. Note that for a = 5 cm the second triple of singular values in
Figure 4.21 is still above but close to the noise level of 0.3%. On the other
hand, horizontal cross sections of cot β̃δ12(y) for y3 = −10 cm corresponding
to forward data, which have been perturbed by 3% uniformly distributed
noise, can be found in Figure 4.23. Only for a ≥ 15 cm both scatterers
are reconstructed seperatedly. Note that already for a = 7.5 cm the two
scatterers are reconstructed as one scatterer located in their center of mass.
Recalling Figure 4.21, we find that for a ≤ 12.5 the second triple of singular
values is close to or below the noise level of 3%.

Next, we analyzed whether the number of grid points of the discretized
measurement device Mh, in particular the step size h of this measurement
grid, has an influence on the resolution of the reconstruction algorithm.
For this purpose, we repeated the previous numerical experiments for an
equidistant 11 × 11 grid Mh ⊂ M with step size h = 5 cm (instead of a
6 × 6 grid with h = 10 cm in the previous example). The reconstructions
do not change significantly, and the resolution does not improve for this
finer measurement grid. Further experiments with a 3×3 measurement grid
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Figure 4.21: Singular values of the measurement operators Gδ (+ . . . without ad-
ditional noise, ▽ . . . with 0.3% uniformly distributed noise, △ . . . with 1% uniformly
distributed noise, � . . . with 3% uniformly distributed noise).
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Figure 4.22: Cross–sectional plots of cot β̃δ
12

(y) for y3 = −10 cm with 0.3% noise.

(step size h = 25 cm) and a 21×21 measurement grid (step size h = 2.5 cm)
confirmed that the resolution of the reconstruction algorithm is independent
of the number of grid points and the step size of the measurement grid. (Of
course there must be sufficiently many grid points to obtain enough data to
compute the number of singular vectors required for the reconstruction of
two scatterers; cf. Remark 4.11.)

To explain this behavior theoretically, we recall Corollary 3.25 and as-
sume for a moment that the scattered field on the measurement device due
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Figure 4.23: Cross–sectional plots of cot β̃δ
12

(y) for y3 = −10 cm with 3% noise.

to two small scatterers located at z1, z2 ⊂ R 3
− is exactly described by the

leading order term in the asymptotic expansion (3.71), i.e., as a superposi-
tion of fields due to electric and magnetic dipoles located at z1 and z2. The
MUSIC–type reconstruction algorithm computes for each sampling point y

in the search domain a test function gy,d, which is a superposition of an
electric and a magnetic dipole in y , and compares its values on the mea-
surement device with the measurement data to check whether such a test
dipole pattern is contained in these data or not. So, according to Proposi-
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tion 4.4, it suffices to distinguish the values of two test functions gz1,d and
gz2,d on the measurement device M in order to distinguish the correspond-
ing two small scatterers located at z1 and z2 by means of the reconstruction
method. Recalling the result due to Kirsch [73, Theorem 2.1] (see also
[4, Proposition 6.3]) mentioned in Remark 4.11, the same is true for the dis-
crete measurement device Mh, provided the number of grid points is large
enough, which we assume henceforth. Thus, under the assumption that the
leading order term in the asymptotic expansion (3.71) is sufficient to de-
scribe the scattering process and in absence of noise and numerical errors,
the resolution of the reconstruction algorithm is theoretically arbitrarily fine.

Now, we consider the exact model: By Corollary 3.25, the scattered field
due to two small scatterers is well approximated by the field due to ap-
propriate superpositions of electric and magnetic dipoles located near these
scatterers. However, if the scatterers are very close to each other, their
scattered field is also well approximated by the field due to an appropri-
ate superposition of electric and magnetic dipoles located near the center of
mass of both scatterers, because the two scatterers can be interpreted as one
small scatterer consisting of two components. The MUSIC–type reconstruc-
tion algorithm marks sampling points in the search domain in accordance
with the quality of the approximations of parts of the measurement data by
the test dipole fields with singularities in these sampling points. The better
this approximation is, the larger is the value of cot β̃δ12 in the visualizations.
This explains that the visualizations smear out the two scatterers to one if
they get close to each other and finally show just one object located in the
center of mass of both scatterers, because the closer the two scatterers are
to each other, the better the corresponding scattered field is approximated
by the field due to an appropriate dipole source located in the center of mass
of these scatterers.

It is also clear that if the forward data contain noise, the reconstructions
are less sharp, because then more dipole patterns due to test dipoles near
the scatterers approximate parts of the measurement data at comparable
but lower quality.

What remains to explain is why with increasing noise level closely spaced
scatterers are reconstructed as one object for increasing distances: As al-
ready mentioned, two closely spaced small scatterers can on the one hand
approximately be considered as two dipole sources that can in this example
be acribed to the singular vectors corresponding to the first 6 singular values
of the measurement operator. On the other hand, they can be considered
as one dipole corresponding to the 3 dominating singular vectors. Recalling
Figure 4.21, in presence of noise the 3 dominant singular vectors can be ap-
proximated more stably than the others. Thus, closely spaced scatterers are
reconstructed as one object located in the center of mass of these scatterers
also for larger distances, because the information that there are two objects
is more sensitive to noise than the information on the approximate position
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of the center of mass of both objects.

Note that, in order to investigate the resolution of the reconstruction
algorithm, we studied just one particular example that does not cover all
possible situations of interest. If for instance the two scatterers are not of
equal size, the situation changes significantly; cf. Section 4.4.4. Finally, we
mention that the reconstruction of closely spaced scatterers has recently also
been studied in the context of inverse conductivity problems by Ammari et
al. [9] (see also [4]).
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Appendix A

Polarizability Tensors

In this chapter, we recall the definition and some important properties of
electric and magnetic polarizability tensors. These tensors are essential com-
ponents of the asymptotic formulas developed in Chapter 2 and Chapter 3,
but they also occur in various other contexts such as for instance Rayleigh
approximations of acoustic scattering, electromagnetic scattering, and elas-
ticity (see Dassios and Kleinman [44] and Keller, Kleinman, and Senior [69])
or hydrodynamics of irrotational flows of incompressible inviscid fluids past
rigid surfaces (see Schiffer and Szegö [98]).

The definition of polarizability tensors is not consistent in the literature.
Here, we give a definition involving boundary integral operators similar to
the one by Ammari and Kang [7, p. 45], but with a different sign for the
magnetic polarizability tensor. Then, we show that this definition is equiv-
alent to the one given in [44], by Friedman and Vogelius in [49], and in [69].
Note that recently polarizability tensors are often just called polarization
tensors, but historically these were different quantities; cf. [44, pp. 163-169]
and [69, p. 17].

Definition A.1. For a bounded open set B ⊂ R n of class C2,α, we define
the magnetic polarizability tensor M0

B ∈ R n×n by M0
B := (m0

jl)
n
j,l=1 with

m0
jl := −

∫

∂B
yl

((

−1

2
I +K0

B
⊤
)−1

νj

)

(y) ds(y), 1 ≤ j, l ≤ n.

Furthermore, we define the electric polarizability tensor M∞
B ∈ R n×n by

M∞
B := (m∞

jl )
n
j,l=1 with

m∞
jl :=

∫

∂B
yl

((1

2
I +K0

B
⊤
)−1

νj

)

(y) ds(y), 1 ≤ j, l ≤ n.

Next, we show that this definition is equivalent to the ones given in [49],
[44, p. 166], and [69]. We start with the magnetic polarizability tensor and
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introduce the functions vl, 1 ≤ l ≤ n, which solve the exterior boundary
value problem

∆vl = 0 in R n \B, (A.1a)

∂vl
∂ν

= νl on ∂B, (A.1b)

vl(y) = o(1) as |y | → ∞. (A.1c)

Such functions vl exist and are unique; cf. Kress [79, Theorem 6.28]. For
n = 2 the necessary condition

∫

∂B νl(y) ds(y) = 0, 1 ≤ l ≤ n, follows from
the Divergence Theorem (cf. Monk [88, Theorem 3.19]).

Lemma A.2. For 1 ≤ j, l ≤ n the elements m0
jl of the magnetic polarizabil-

ity tensor M0
B satisfy

m0
jl =

∫

∂B
νj(y)

(

yl − vl(y)
)

ds(y).

Proof. Let 1 ≤ j, l ≤ n. We define φl :=
(

−1
2I +K0

B

)−1
yl and ul := DBφl.

Then, we obtain from the jump relations (2.4) that ul|−∂B = yl, and so ul|B
is the unique solution to

∆ul = 0 in B, ul|−∂B = yl.

Therefore, ul|B = yl, and we have ∂ul
∂ν

∣

∣

+

∂B
= ∂ul

∂ν

∣

∣

−

∂B
= νl on ∂B. Thus,

ul|R
n\B solves (A.1), and from the uniqueness of solutions to (A.1) we get

ul|R
n\B = vl. Again from (2.4), we obtain that

φl = ul|+∂B − ul|−∂B = vl|∂B − yl.

This gives

m0
jl = −

∫

∂B
yl

((

−1

2
I +K0

B
⊤
)−1

νj

)

(y) ds(y)

= −
∫

∂B
νj(x )

((

−1

2
I +K0

B

)−1
yl

)

(x ) ds(x )

= −
∫

∂B
νj(x )φl(x ) ds(x )

=

∫

∂B
νj(x )

(

xl − vl(x )
)

ds(x ).

Remark A.3. Closely related to the magnetic polarizability tensor M0
B is

the virtual mass tensor WB := (Wjl)
n
j,l=1 with

Wjl := −
∫

∂B
νj(y)vl(y) ds(y), 1 ≤ j, l ≤ n;

cf. [44, p. 166], [69], and [98].
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To show the equivalence for the electric polarizability tensor, we intro-
duce the functions wj , 1 ≤ j, l ≤ n, which solve the exterior boundary value
problem

∆wj = 0 in R n \B,

wj = yj on ∂B,

wj(y) = O(1) as |y | → ∞, n = 2,

wj(y) = o(1) as |y | → ∞, n ≥ 3.

Such wj exist and are unique; cf. [79, Theorem 6.24]. We also need a function
ϑ that satisfies

∆ϑ = 0 in R n \B,

ϑ = 1 on ∂B,

ϑ(y) = O(1) as |y | → ∞, n = 2,

ϑ(y) = o(1) as |y | → ∞, n ≥ 3.

Lemma A.4. For 1 ≤ j, l ≤ n, the elements m∞
jl of the electric polarizability

tensor M∞
B satisfy

m∞
jl =

∫

∂B
yl

(

νj(y) − ∂wj
∂ν

(y)
)

ds(y), n = 2,

m∞
jl =

∫

∂B
yl

(

νj(y) − ∂wj
∂ν

(y)
)

ds(y)

+
(

∫

∂B

∂ϑ

∂ν
ds
)−1(

∫

∂B

∂wj
∂ν

ds
)(

∫

∂B

∂wl
∂ν

ds
)

, n ≥ 3.

Proof. Let 1 ≤ j, l ≤ n. We define ψj :=
(

1
2I +K0

B
⊤)−1

νj and uj := SBψj .
Then, we obtain from the jump relations (2.4) that

∂uj

∂ν

∣

∣

−

∂B
= νj , and so uj |B

solves

∆uj = 0 in B,
∂uj
∂ν

∣

∣

∣

−

∂B
= νj .

Therefore, uj |B = yj + cj for some constant cj ∈ R , and we find that
uj |+∂B = uj |−∂B = yj + cj . So, uj |R

n\B solves the exterior boundary value
problem

∆uj = 0 in R n \B,

uj = yj + cj on ∂B,

uj(y) = o(1) as |y | → ∞.

Note that for n = 2 the last equation follows from the fact that
∫

∂B
ψj(y) ds(y) = 0;
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cf. [79, p. 86]. So, we can write

uj = wj + cjϑ.

Observe that

ψj =
∂uj
∂ν

∣

∣

∣

−

∂B
− ∂uj
∂ν

∣

∣

∣

+

∂B
= νj −

∂wj
∂ν

∣

∣

∣

∂B
− cj

∂ϑ

∂ν

∣

∣

∣

∂B
.

For n = 2, it is clear that ϑ ≡ 1. Therefore, ∂ϑ
∂ν

∣

∣

∂B
= 0, and we obtain

m∞
jl =

∫

∂B
yl

((1

2
I +K0

B
⊤
)−1

νj

)

(y) ds(y)

=

∫

∂B
ylψj(y) ds(y)

=

∫

∂B
yl

(

νj(y) − ∂wj
∂ν

(y)
)

ds(y).

For n ≥ 3, the function ϑ is nontrivial, and from the maximum principle
(cf. [79, Corollary 6.9]) we find that ∂ϑ

∂ν

∣

∣

∂B
< 0. Because

0 =

∫

∂B
ψj(y) ds(y) =

∫

∂B

(

νi(y) − ∂wj
∂ν

(y) − cj
∂ϑ

∂ν
(y)
)

ds(y),

we obtain that

cj =

(∫

∂B

∂ϑ

∂ν
(y) ds(y)

)−1 ∫

∂B

∂wj
∂ν

(y) ds(y). (A.2)

As above,

m∞
jl =

∫

∂B
yl

((1

2
I +K0

B
⊤
)−1

νj

)

(y) ds(y)

=

∫

∂B
ylψj(y) ds(y)

=

∫

∂B
yl

(

νj(y) − ∂wj
∂ν

(y) − cj
∂ϑ

∂ν
(y)
)

ds(y).

(A.3)

Inserting (A.2) into (A.3) and applying Green’s Theorem (cf. [79, Theo-
rem 6.3]) yields the assertion. Here, we used that bounded harmonic func-
tions U in an exterior domain satisfy

U(x ) = U∞ + O
(

1

|x |

)

, ∇U(x ) = O
(

1

|x |n−1

)

, |x | → ∞, (A.4)

uniformly for all directions, where U∞ is some constant; cf. [79, p. 74].
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Remark A.5. Closely related to the electric polarizability tensor M∞
B is the

polarization tensor QB := (Qjl)
n
j,l=1 with

Qjl = −
∫

∂B
yl
∂wj
∂ν

(y) ds(y), 1 ≤ j, l ≤ n, n = 2,

Qjl = −
∫

∂B
yl
∂wj
∂ν

(y) ds(y)

+
(

∫

∂B

∂ϑ

∂ν
ds
)−1(

∫

∂B

∂wj
∂ν

ds
)(

∫

∂B

∂wl
∂ν

ds
)

, 1 ≤ j, l ≤ n, n ≥ 3;

cf. [44, p. 165], [69], and [98].

Proposition A.6. The magnetic and the electric polarizability tensor are
symmetric and positive definite.

Proof. Based on the representations of these tensors given in Lemma A.2
and Lemma A.4, this has been proven in [49]. We include the proof for the
sake of completeness.

The fact that M0
B and M∞

B are symmetric follows from Green’s Theorem
(cf. [79, Theorem 6.3]) and the decay condition (A.4). To verify that M0

B is
positive definite we compute for x ∈ R n through integration by parts and
use of (A.4) that

n
∑

j,l=1

m0
jlxjxl =

n
∑

j,l=1

xjxl

∫

B
∇yyj · ∇yyl dy

+

n
∑

j,l=1

xjxl

∫

R
3\B

∇yvj(y) · ∇yvl(y) dy

=|B||x |2 +

∫

R
3\B

∣

∣

∣
∇y

(

n
∑

j=1

xjvj(y)
)∣

∣

∣

2
dy ≥ |B||x |2,

where |B| denotes the measure of B. Analogously, we obtain for M∞
B , n = 2

and x ∈ R n that
n
∑

j,l=1

m∞
jl xjxl = |B||x |2 +

∫

R
3\B

∣

∣

∣
∇y

(

n
∑

j=1

xjwj(y)
)∣

∣

∣

2
dy ≥ |B||x |2.

Finally, for n ≥ 3 and x ∈ R n,

n
∑

j,l=1

m∞
jl xjxl = |B||x |2 +

∫

R
3\B

∣

∣

∣∇y

(

n
∑

j=1

xjwj(y)
)∣

∣

∣

2
dy

−
(

∫

R
3\B

|∇yϑ(y)|2 dy
)−1

(∫

R
3\B

∇y

(

n
∑

j=1

xjwj(y)
)

· ∇yϑ(y) dy

)2

≥ |B||x |2,
by Cauchy–Schwarz’s inequality.
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We mention that over the past years several generalizations of polariz-
ability tensors have been introduced and collect some of them in the follow-
ing:

• The consideration of transmission problems instead of boundary value
problems, i.e., penetrable inhomogeneities instead of insulating or per-
fectly conducting inhomogeneities, leads to so–called general polar-
izability tensors; cf. Cedio–Fengya, Moskow, and Vogelius [29] and
[44, pp. 167-168].

• In the course of justifying asymptotic expansions of boundary voltage
potentials in presence of small penetrable inhomogeneities including
higher order terms Ammari and Kang [5] introduced generalized po-
larization tensors, which are extensions of general polarizability ten-
sors. The properties of these tensors have been studied by Ammari
and Kang [6–8]. Electric and magnetic polarizability tensors can be
generalized in the same way; cf. [7, p. 45].

• Developing a representation formula for boundary voltage perturba-
tions caused by internal conductivity inhomogeneities of low volume
fraction that requires minimal regularity from the boundaries of these
inhomogeneities, Capdeboscq and Vogelius [26] extended general po-
larizability tensors in the sense of measure theory. The elements of
these tensors are regular Borel measures. Their properties have been
studied by Capdeboscq and Vogelius [27, 28].
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Appendix B

Representation Theorem

and Reciprocity Relations

B.1 Representation Theorem

In this section, we consider representation formulas for electric and mag-
netic fields in two–layered background media. For this purpose, we study
the mathematical setting as introduced in Section 3.4. In addition, let the
bounded set D ⊂ R 3

0 be the open complement of an unbounded domain
of class C2,α, 0 < α < 1, such that D is compactly contained in R 3

0, and
denote by ν the unit outward normal to ∂D relative to D.

We mention that the formulas (B.3) and (B.5), which we are going to
prove, have already been stated without proof by Cutzach and Hazard [43].
Our proof roughly follows Colton and Kress [38, pp. 110–116] and Ammari
and Latiri–Grouz [11].

Theorem B.1. Let E ,H ∈ Hloc(curl, R 3 \D) be a solution to Maxwell’s
equations

curlH + iωεE = 0, curlE − iωµH = 0 in R 3 \D, (B.1)

satisfying the Silver-Müller radiation condition

∫

∂BR(0)

∣

∣

∣

∣

x

R
×H (x )+

( ε(x )

µ(x )

)1/2
E(x )

∣

∣

∣

∣

2

ds(x ) = o(1) as R→ ∞. (B.2)

Then, we have for any y ∈ R 3
0 \D the Stratton–Chu formula

H (y) =

∫

∂D

ε(y)

ε(x )

(

Gm⊤(x ,y)(ν × curlH )(x )

+ (curlx Gm)⊤(x ,y)(ν ×H )(x )
)

ds(x ). (B.3)
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Remark B.2. A similar representation formula holds for the electric field E :
Let E ,H ∈ Hloc(curl, R 3 \D) be a solution to Maxwell’s equations (B.1)
satisfying the Silver-Müller radiation condition

∫

∂BR(0)

∣

∣

∣

∣

x

R
×E(x )−

(µ(x )

ε(x )

)1/2
H (x )

∣

∣

∣

∣

2

ds(x ) = o(1) as R→ ∞. (B.4)

Then, we have for any y ∈ R 3
0 \D the Stratton–Chu formula

E(y) =

∫

∂D

µ(y)

µ(x )

(

Ge⊤(x ,y)(ν × curlE)(x )

+ (curlx Ge)⊤(x ,y)(ν ×E)(x )
)

ds(x ). (B.5)

This formula can be proven in the same way as Theorem B.1.

Proof of Theorem B.1. First, we observe that as a consequence of the radi-
ation condition (B.2),

∫

∂BR

|ν ×H |2 ds = O(1) and

∫

∂BR

|E |2 ds = O(1) (B.6)

as R→ ∞. This can be proven in the same way as done by Monk [88, p. 231]
for homogeneous background medium.

Let y ∈ R 3
0 \D and choose R > 0 large enough so that BR(0) contains

y . Moreover, let r > 0 be small enough such that Br(y) is contained in
BR(0). From Maxwell’s equations for E and H we obtain

curl
1

ε
curlH = ω2µH in R 3 \D.

So, we see from (3.11) for x ∈ BR(0) \Br(y) that

0 =
(

curlx
1

ε(x )
curlx Gm(x ,y)

)⊤
H (x ) − ω2µ(x ) Gm⊤(x ,y)H (x )

=
(

curlx
1

ε(x )
curlx Gm(x ,y)

)⊤
H (x ) − Gm⊤(x ,y)curl

1

ε(x )
curlH (x ).
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Integration by parts (3.1) yields

0 =

∫

BR(0)\Br(y)∪D

(

(

curlx
1

ε(x )
curlx Gm(x ,y)

)⊤
H (x )

− Gm⊤(x ,y)curl
1

ε(x )
curlH (x )

)

dx

=

∫

∂BR(0)

1

ε(x )

(

(

ν(x ) × curlx Gm(x ,y)
)⊤

H (x )

− Gm⊤(x ,y)(ν × curlH )(x )

)

ds(x )

−
∫

∂Br(y)∪∂D

1

ε(x )

(

(

ν(x ) × curlx Gm(x ,y)
)⊤

H (x )

− Gm⊤(x ,y)(ν × curlH )(x )

)

ds(x )

=: I∂BR(0) + I∂Br(y) + I∂D.

For the first integral I∂BR(0) on the right–hand side we get

I∂BR(0)

= −
∫

∂BR(0)

1

ε(x )

(

(

curlx Gm(x ,y)
)⊤
(x

R
×H (x ) +

i

k(x )
curlH (x )

)

−
(x

R
× Gm(x ,y) +

i

k(x )
curlx Gm(x ,y)

)⊤
curlH (x )

)

ds(x ).

From (B.6) and the radiation conditions (3.12) and (B.2), we obtain that
I∂BR(0) vanishes as R→ ∞.

Applying (3.13), we obtain that

I∂Br(y) =

∫

∂Br(y)

1

ε(x )

(

(

curlxΠ
m(x ,y)

)⊤
(ν ×H )(x )

+
(

Πm(x ,y) +
1

k(x )2
∇x divx Πm(x ,y)

)⊤
(ν × curlH )(x )

)

ds(x ).

Because Πm(x ,y) = Φk(x )(x −y) I 3 +O(1) on ∂Br(y) as r → 0, this yields

lim
r→0

I∂Br(y)

=
1

ε(y)
lim
r→0

(∫

∂Br(y)

(

curlx(Φk(x )(x − y) I 3)
)⊤

(ν ×H )(x ) ds(x )

−
∫

∂Br(y)
iωε(x )Φk(x )(x − y)(ν ×E)(x ) ds(x )

+

∫

∂Br(y)

1

iωµ(x )

(

∇x divx(Φk(x )(x − y) I 3)
)⊤

(ν ×E)(x ) ds(x )

)

.
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Using Stoke’s theorem (cf. [38, p. 61]), we find that

0 =

∫

∂Br(y)
ν(x ) · curlx

(

E(x ) divx(Φk(x )(x − y) I 3)
)

ds(y)

=

∫

∂Br(y)
ν(x ) ·

(

iωµ(x )H (x ) divx(Φk(x )(x − y) I 3)

−E(x ) ×∇x divx(Φk(x )(x − y) I 3)
)

ds(y).

Thus,

lim
r→0

∫

∂Br(y)

1

iωµ(x )

(

∇x divx(Φk(x )(x − y) I 3)
)⊤

(ν ×E)(x ) ds(x )

= lim
r→0

∫

∂Br(y)
(ν ·H )(x ) divx(Φk(x )(x − y) I 3) ds(x ).

Then, because on Br(y) holds that Φk(x )(x − y) = O(1
r ) and

divx(Φk(x )(x − y) I 3) =
1

4πr2
ν(x ) · I 3 + O

(1

r

)

,

curlx(Φk(x )(x − y) I 3) =
1

4πr2
ν(x ) × I 3 + O

(1

r

)

,

we obtain

lim
r→0

I∂Br(y) =
1

ε(y)
lim
r→0

1

4πr2

(∫

∂Br(y)
(ν(x ) × I 3)

⊤(ν ×H )(x ) ds(x )

+

∫

∂Br(y)
(ν ·H )(x )(ν(x ) · I 3) ds(x )

)

=
1

ε(y)
lim
r→0

1

4πr2

∫

∂Br(y)
H (x ) ds(x ) =

1

ε(y)
H (y).

This yields the desired result.

B.2 Reciprocity Relations

In this section, we prove reciprocity relations for the electric and magnetic
dyadic Green’s functions Ge and Gm defined in Section 3.2. We mention
that these formulas have been previously stated without proof by Chew [35,
p. 411], in [43], and by Iakovleva et al. [62].

Lemma B.3. Let x ,y ∈ R 3
0 with x 6= y . Then,

µ(y) Ge(x ,y) = µ(x ) Ge⊤(y ,x ), (B.7a)

ε(y) Gm(x ,y) = ε(x ) Gm⊤(y ,x ). (B.7b)
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Remark B.4. Throughout, we denote by curlx Ge/m the curl of Ge/m with
respect to the first variable and by curly Ge/m the curl of Ge/m with respect
to the second variable.

Proof of Lemma B.3. Let x ,y ∈ R 3
0 with x 6= y and choose R > 0 large

enough so that BR(0) contains x and y . Moreover, let r > 0 be small
enough such that Br(x ) and Br(y) are disjoint subsets of BR(0), which do
not intersect the interface Σ0. From (3.9) and an integration by parts (3.1),
we obtain

0 =

∫

BR(0)\Br(x )∪Br(y)

(

curlx
1

µ(z )
curlx Ge(z ,x )

− ω2ε(z ) Ge(z ,x )
)⊤

Ge(z ,y) dz

=

∫

BR(0)\Br(x )∪Br(y)

( 1

µ(z )
(curlx Ge)⊤(z ,x )curlx Ge(z ,y)

− ω2ε(z ) Ge⊤(z ,x ) Ge(z ,y)
)

dz

+

∫

∂BR(0)

1

µ(z )

(

ν(z ) × curlx Ge(z ,x )
)⊤

Ge(z ,y) ds(z )

−
∫

∂(Br(x )∪Br(y))

1

µ(z )

(

ν(z ) × curlx Ge(z ,x )
)⊤

Ge(z ,y) ds(z ).

Another integration by parts and applying (3.9) yields

0 =

∫

∂BR(0)

1

µ(z )

(

(

ν(z ) × curlx Ge(z ,x )
)⊤

Ge(z ,y)

+
(

ν(z ) × Ge(z ,x )
)⊤

curlx Ge(z ,y)
)

ds(z )

−
∫

∂(Br(x )∪Br(y))

1

µ(z )

(

(

ν(z ) × curlx Ge(z ,x )
)⊤

Ge(z ,y)

+
(

ν(z ) × Ge(z ,x )
)⊤

curlx Ge(z ,y)
)

ds(z ).

From the radiation condition (3.10), we find as in the proof of Theorem B.1
that the integral over ∂BR(0) vanishes as R→ ∞. Therefore,

∫

∂Br(x )

1

µ(z )

(

(

ν(z ) × curlx Ge(z ,x )
)⊤

Ge(z ,y)

+
(

ν(z ) × Ge(z ,x )
)⊤

curlx Ge(z ,y)
)

ds(z )

= −
∫

∂Br(y)

1

µ(z )

(

(

ν(z ) × curlx Ge(z ,x )
)⊤

Ge(z ,y)

+
(

ν(z ) × Ge(z ,x )
)⊤

curlx Ge(z ,y)
)

ds(z ),
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and so,

1

µ(y)

(∫

∂Br(x )

µ(y)

µ(z )

(

Ge⊤(z ,y)
(

ν(z ) × curlx Ge(z ,x )
)

+ (curlx Ge)⊤(z ,y)
(

ν(z ) × Ge(z ,x )
)

)

ds(z )

)⊤

=
1

µ(x )

∫

∂Br(y)

µ(x )

µ(z )

(

Ge⊤(z ,x )
(

ν(z ) × curlx Ge(z ,y)
)

+ (curlx Ge)⊤(z ,x )
(

ν(z ) × Ge(z ,y)
)

)

ds(z ).

Now, (B.7a) follows from the representation formula (B.5).

Formula (B.7b) can be proven in the same way.

Lemma B.5. Let x ,y ∈ R 3
0 with x 6= y . Then,

k2(y)curlx Ge(x ,y) = k2(x )(curlx Gm)⊤(y ,x ). (B.8)

Proof. Let x ,y ∈ R 3
0 with x 6= y and choose R > 0 large enough so that

BR(0) contains x and y . Moreover, let r > 0 be small enough such that
Br(x ) and Br(y) are disjoint subsets of BR(0), which do not intersect the
interface Σ0. As in the proof of Lemma B.3, applying two times integration
by parts, we obtain that

0 =

∫

BR(0)\Br(x )∪Br(y)

(

curlx
1

µ(z )
curlx Ge(z ,x )

− ω2ε(z ) Ge(z ,x )
)⊤ 1

ω2ε(z )
curlx Gm(z ,y) dz

= −
∫

∂(Br(x )∪Br(y))

1

k(z )2

(

(

ν(z ) × curlx Ge(z ,x )
)⊤

curlx Gm(z ,y)

− Ge⊤(z ,x )
(

k(z )2ν(z ) × Gm(z ,y)
)

)

ds(z )

= − 1

k(x )2

∫

∂Br(x )

(

Gm⊤(z ,y)
(

ν(z ) × (k(z )2 Ge(z ,x ))
)

+ (curlx Gm)⊤(z ,y)
(

ν(z ) × curlx Ge(z ,x )
)

)⊤
ds(z )

+
1

k(y)2

∫

∂Br(y)

(

Ge⊤(z ,x )
(

ν(z ) × (k(z )2 Gm(z ,y))
)

+ (curlx Ge)⊤(z ,x )
(

ν(z ) × curlx Gm(z ,y)
)

)

ds(z ).

Applying (3.9), (3.11), (B.3), and (B.5) we obtain (B.8).
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Remark B.6. We assumed in Section 3.2.2 that the electric and magnetic
dyadic Green’s functions Ge and Gm satisfy the radiation conditions (3.10)
and (3.12), respectively. From the representation formulas (B.3) and (B.5)
and from Lemma B.3 we can deduce that the radiation condition (B.2)
implies (B.4) and vice versa. Moreover, recalling the beginning of the proof
of Theorem B.1, we obtain that radiating solutions of Maxwell’s equations in
two–layered background media as introduced in Section 3.2.2 automatically
satisfy the finiteness conditions

∫

∂BR

|H |2 ds = O(1) and

∫

∂BR

|E |2 ds = O(1); (B.9)

see also Colton and Kress [39, p. 162] for a similar result for homogeneous
background media.

B.3 Singularities of the Dyadic Green’s Functions

We study the nature of the singularities of the electric and magnetic dyadic
Green’s function Ge/m(·,y) (cf. Section 3.2) and of curlx Ge/m(·,y) in a
point y ∈ R 3

− with dist(y ,Σ0) > d0 for some constant d0 > 0. Because
the matrix valued function Ge/m(·,y) differs from the dyadic Green’s func-
tion G(·,y) for homogeneous background medium with constant wavenum-
ber k− in a neighborhood of y only by a smooth matrix valued function
(cf. Section 3.2.2), it is sufficient to consider the singularities of G(·,y)
and curlx G(·,y) in y . Moreover, recalling (3.6) and (3.7), we find that
we can analyze without loss of generality the singularities of G(·, 0) and
curlx G(·, 0) in 0.

From (3.46), we see that

curlx G(x , 0) = ∇xΦk−(x ) × I 3

=
(

i k− − 1

|x |
)

Φk−(x )
1

|x |





0 −x3 x2

x3 0 −x1

−x2 x1 0



 ,
(B.10)

x 6= 0, has a singularity of order 2 in x = 0. Furthermore, because for
1 ≤ j, l ≤ 3,

(

∇x divx(Φk− I 3)
)

jl
(x )

= −k2
−Φk−(x )

xjxl
|x |2 +

1

|x |
(

i k− − 1

|x |
)

Φk−(x )
(

δjl −
3xjxl
|x |2

)

,

x 6= 0, where δjl denotes the Kronecker–delta, we find that G(x , 0) has a
singularity of order 3 in x = 0. Recalling (3.7), the corresponding term of
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order −3 is given by

1

k2
−

1

|x |2 Φk−(x )
1

|x |2





|x |2 − 3x2
1 −3x1x2 −3x1x3

−3x1x2 |x |2 − 3x2
2 −3x2x3

−3x1x3 −3x2x3 |x |2 − 3x2
3



 . (B.11)
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Appendix C

Uniqueness Theorems

In this chapter, we comment on uniqueness of solutions to the exterior
Maxwell problem and to the Maxwell transmission problem in two–layered
background media as introduced in Section 3.4, which are given as follows.

Assume that the bounded set D ⊂ R 3
− is the open complement of an

unbounded domain of class C2,α, 0 < α < 1, such that D is compactly
contained in R 3

− and denote by ν the unit outward normal to ∂D relative
to D.

Exterior Maxwell problem:

Find E ,H ∈ Hloc(curl, R 3 \ D) satisfying Maxwell’s equations (3.32) in
R 3 \D, the Silver-Müller radiation condition (3.33), and the boundary con-
dition

ν ×E = ψ on ∂D,

where ψ ∈ H
−1/2
div (∂D) is a given tangential vector field.

Maxwell transmission problem:

Find E and H with E |D,H |D ∈ H (curl, D) and E |
R

3\D,H |
R

3\D ∈
Hloc(curl, R 3 \ D) satisfying Maxwell’s equations (3.32) in R 3 \ ∂D, the
Silver-Müller radiation condition (3.33), and the transmission conditions

[(ν ×H ) × ν]∂D = χ, [ν ×E ]∂D = φ on ∂D,

where χ ∈ H
−1/2
curl (∂D) and φ ∈ H

−1/2
div (∂D) are given tangential vector

fields.

In order to prove uniqueness of solutions to these problems we have
to distinguish two cases: If the electric permeability ε− is real, i.e., the
medium in the lower halfspace is nondissipative, uniqueness of solutions of
the exterior Maxwell problem and the Maxwell transmission problem has
been shown by Cutzach and Hazard [43] and by Kirsch [75], respectively.
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For Im ε− > 0, we will prove uniqueness of solutions of these problems by
similar arguments as used by Petry [92, pp. 61–63] for a uniqueness result
for transmission problems in a multiply layered background medium under
more restrictive assumptions. We mention that a similar uniqueness proof
for the exterior Maxwell problem (with a slightly different decay condition
for the lower halfspace) has recently been given by Delbary et al. [46].

Proposition C.1. Let Im ε− = 0. Then, the exterior Maxwell problem and
the Maxwell transmission problem have at most one solution.

Proof. Uniqueness of solutions to the exterior Maxwell problem in nondis-
sipative media has been shown in [43, Proposition 2.5]. For the Maxwell
transmission problem this has been proven in [75, Theorem 3.4].

Proposition C.2. Let Im ε− > 0. Then, the exterior Maxwell problem has
at most one solution.

For the proof of this proposition we need the following two technical
lemmas.

Lemma C.3. Suppose Im ε− > 0 and let (E ,H ) be a solution of the exterior
Maxwell problem with ψ = 0. Then, for any R > 0 such that D ⊂ BR(0),

ω

∫

BR(0)∩R
3
+

(µ+|H |2 − ε+|E |2) dx = i

∫

∂(BR(0)∩R
3
+)
ν ×H ·E ds,

ω

∫

(BR(0)∩R
3
−)\D

(µ−|H |2 − ε−|E |2) dx = i

∫

∂(BR(0)∩R
3
−)
ν ×H ·E ds.

Proof. Using

div(H ×E) = curlH ·E −H · curlE = iωε|E |2 − iωµ|H |2,
we find that

i div(H ×E) = ωµ|H |2 − ωε|E |2.
Let R > 0 such that D ⊂ BR(0). Then, applying the Divergence Theorem
(cf. Monk [88, Theorem 3.24]), we obtain

ω

∫

BR(0)∩R
3
+

(µ+|H |2 − ε+|E |2) dx = i

∫

BR(0)∩R
3
+

div(H ×E) dx

= i

∫

∂(BR(0)∩R
3
+)
ν ·H ×E ds = i

∫

∂(BR(0)∩R
3
+)
ν ×H ·E ds.

Recalling that ν ×E |∂D = 0, the second equation follows analogously.

Lemma C.4. Suppose Im ε− > 0 and let (E ,H ) be a solution of the exterior
Maxwell problem with ψ = 0. Then,

Re

∫

∂BR(0)
ν ×H ·E ds = o(1) as R→ ∞.
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Proof. From Lemma C.3 and the continuity of the tangential components
of E and H across Σ0, we find that

i

∫

∂BR(0)
ν ×H ·E ds = ω

∫

BR(0)∩R
3
+

(µ+|H |2 − ε+|E |2) dx

+ ω

∫

(BR(0)∩R
3
−)\D

(µ−|H |2 − ε−|E |2) dx .

Because Im ε+ = 0, taking the imaginary part yields

Re

∫

∂BR(0)
ν ×H ·E ds = ω Im ε−

∫

(BR(0)∩R
3
−)\D

|E |2 dx . (C.1)

So,

lim inf
R→∞

(

Re

∫

∂BR(0)
ν ×H ·E ds

)

≥ 0. (C.2)

The radiation condition (3.33) and the decay condition (B.9) give

∫

∂BR(0)

∣

∣

∣ν ×H ·E +
( ε

µ

)1/2
E ·E

∣

∣

∣ ds = o(1) as R→ ∞.

Thus,

∫

∂BR(0)
ν ×H ·E ds+

∫

∂BR(0)

( ε

µ

)1/2
|E |2 ds = o(1) as R→ ∞,

and therefore

lim sup
R→∞

(

Re

∫

∂BR(0)
ν ×H ·E ds

)

≤ 0. (C.3)

The statement now follows from (C.2) and (C.3).

Proof of Proposition C.2. From Lemma C.4 and (C.1), we obtain that

0 = lim
R→∞

(

ω Im ε−

∫

(BR(0)∩R
3
−)\D

|E |2 dx
)

.

Therefore, E = H = 0 in R 3
− \D. In particular, E and H have vanishing

tangential components on Σ0. As they are continuous across Σ0, it now fol-
lows from Holmgren’s theorem (cf. [80, Theorem 2.4, p. 179]) that (E ,H )
is zero in a neighborhood of Σ0 in R 3

+, because it is a solution of the homo-
geneous Maxwell system with constant coefficients ε+ and µ+. Accordingly,
E = H = 0 in R 3

+ because of its analyticity.

Proposition C.5. Let Im ε− > 0. Then, the Maxwell transmission problem
has at most one solution.

Again, we need two technical lemmas for the proof of this result.
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Lemma C.6. Suppose Im ε− > 0 and let (E ,H ) be a solution of the
Maxwell transmission problem with χ = φ = 0. Then, for any R > 0
such that D ⊂ BR(0),

ω

∫

D
(µ−|H |2 − ε−|E |2) dx = i

∫

∂D
ν ×H ·E ds,

ω

∫

BR(0)∩R
3
+

(µ+|H |2 − ε+|E |2) dx = i

∫

∂(BR(0)∩R
3
+)
ν ×H ·E ds,

ω

∫

(BR(0)∩R
3
−)\D

(µ−|H |2 − ε−|E |2) dx = i

∫

∂(BR(0)∩R
3
−)
ν ×H ·E ds

− i

∫

∂D
ν ×H ·E ds.

Proof. These formulas can be proven in the same manner as the formulas
in Lemma C.3.

Lemma C.7. Suppose Im ε− > 0 and let (E ,H ) be a solution of the
Maxwell transmission problem with χ = φ = 0. Then,

Re

∫

∂BR(0)
ν ×H ·E ds = o(1) as R→ ∞.

Proof. From Lemma C.6 and the continuity of the tangential components
of E and H across ∂D and Σ0, we find that

i

∫

∂BR(0)
ν ×H ·E ds = ω

∫

BR(0)∩R
3
+

(µ+|H |2 − ε+|E |2) dx

+ ω

∫

BR(0)∩R
3
−

(µ−|H |2 − ε−|E |2) dx .

Because Im ε+ = 0, taking the imaginary part yields

Re

∫

∂BR(0)
ν ×H ·E ds = ω Im ε−

∫

BR(0)∩R
3
−

|E |2 dx . (C.4)

So,

lim inf
R→∞

(

Re

∫

∂BR(0)
ν ×H ·E ds

)

≥ 0.

From the radiation condition (3.33) and the decay condition (B.9) we find
as in the proof of Lemma C.4 that

lim sup
R→∞

(

Re

∫

∂BR(0)
ν ×H ·E ds

)

≤ 0.

This yields the assertion.
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Proof of Proposition C.5. From Lemma C.7 and (C.4), we obtain that

0 = lim
R→∞

(

ω Im ε−

∫

BR(0)∩R
3
−

|E |2 dx
)

.

Therefore, E = H = 0 in R 3
− and as in the proof of Proposition C.2 we

find from Holmgren’s theorem that E = H = 0 in R 3
+.
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Chapter

Notation

Symbol Explanation Ref., p.

Vectors, matrices, and sets

R n n–dimensional real Euclidean space
C n n–dimensional complex Euclidean space

(e1, . . . , en) standard basis of R n

x = (x1, . . . , xn) generic point in R n or C n

x · y standard scalar product on R n, also used
on C n (bilinear)

x componentwise complex conjugate on C n

|x | Euclidean norm on R n and C n

(·)⊤ transpose of a vector or matrix
I 3 3 × 3 identity matrix

Br(x ) ball of radius r centered at x

D bounded open set
∂D boundary of D
|∂D| area of ∂D

dist(x,D) distance from point x to set D 15

ν unit outward normal vector

Dδ,l, Dδ scalable inclusion or scatterer 15, 50
Bl, B shape of scalable inclusion or scatterer 15, 50
zl, z position of scalable inclusion or scatterer 15, 50
δ scaling parameter 15, 50

M0
B magnetic polarizability tensor 113

M∞
B electric polarizability tensor 113

Σ0 surface of ground 39
R 3

+ upper half space 39
R 3

− lower half space 39
R 3

0 R 3 \ Σ0 39
M measurement device 49

139
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Mh discrete measurement device 87

Function spaces

C∞(D) space of restrictions to D of infinitely
differentiable functions on R n, real valued

L2(D) space of square integrable functions on D,
real valued

Hr(D) Sobolev space on D, real valued 9
Hr

loc( R n) Sobolev space on R n, real valued 9

Hr
loc( R n \D) Sobolev space on R n \D, real valued 9

L2(∂D) space of square integrable functions on ∂D,
real valued

Hs(∂D) Sobolev space on ∂D, real valued 9

‖ · ‖H±1/2(∂D) norm on H±1/2(∂D) 19

〈·, ·〉∂D dual pairing between H1/2(∂D)

and H−1/2(∂D) 19

H1
⋄ (D) Sobolev space on D, real valued 16

H1
⋄,∂Ω(Ω \D) Sobolev space on Ω \D, real valued 15

H
±1/2
⋄ (∂D) Sobolev space on ∂D, real valued 12, 14

C∞(D; C ) space of restrictions to D of infinitely
differentiable functions on R n, complex
valued

L2(D; C ) space of square integrable functions on D,
complex valued

Hr(D; C ) Sobolev space on D, complex valued 36
Hr

loc( R n; C ) Sobolev space on R n, complex valued 36

Hr
loc( R n \D; C ) Sobolev space on R n \D, complex valued 36

L2(∂D; C ) space of square integrable functions on ∂D,
complex valued

Hs(∂D; C ) Sobolev space on ∂D, complex valued 36

H (div, D) Sobolev space on D, complex valued 37
H (curl, D) Sobolev space on D, complex valued 37

Hloc(div, R 3 \D) Sobolev space, complex valued 37

Hloc(curl, R 3 \D) Sobolev space, complex valued 37

L2
t (∂D) tangential square integrable vector fields

on ∂D, complex valued 37
H s
t (∂D) Sobolev space on ∂D, complex valued 37

H
−1/2
div (∂D) Sobolev space on ∂D, complex valued 37

H
−1/2
curl (∂D) Sobolev space on ∂D, complex valued 37
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‖ · ‖
H

−1/2

div
(∂D)

norm on H
−1/2
div (∂D) 54

‖ · ‖
H

−1/2

curl
(∂D)

norm on H
−1/2
curl (∂D) 54

〈·, ·〉∂D dual pairing between H
−1/2
curl (∂D)

and H
−1/2
div (∂D) 38

L2(M) square integrable vector fields on M,
complex valued 49

〈·, ·〉M bilinear form on L2(M) 51
(·, ·)M complex scalar product on L2(M)

L(X,Y ) bounded linear operators on X to Y
L(X) L(X,X), bounded linear operators on X
‖ · ‖ operator norm on L(X,Y )

Functional notation

γ0 standard trace operator 9, 36
γn normal trace 9, 37
γt tangential trace 37
πt projection on the tangent plane 37
n normal component operator 37
r rotation operator 37

|±∂D trace from outside or inside
[ · ]∂D jump of the trace across ∂D, inwards

∇∂D surface gradient 37
curl∂D surface vector curl 37
div∂D surface divergence 37
curl∂D surface scalar curl 37

R(A) range (image) of linear operator A
N (A) null space (kernel) of linear operator A
A⊤ transpose of an operator A, dual operator
I identity operator
δ Dirac–delta distribution

Λ0, Λδ Neumann–to–Dirichlet operator 16
Gδ measurement operator 50
Gδ,t measurement operator, tangential 78
Gδ,n measurement operator, normal 79

Gδ,h discrete measurement operator 87

Lδ operator, factorization 17, 51
Fδ operator, factorization 18, 53
L operator, asymptotic factorization 23
F operator, asymptotic factorization 26
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L0, L1 operator, asymptotic factorization 59
F0, F1 operator, asymptotic factorization 62

T operator, characterization 75
R operator, characterization 33, 75
M operator, characterization 77

gy,d test function 77
g ty,d test function, tangential 79

gny,d test function, normal 82

βp angle, reconstruction method 84
βδp angle, reconstruction method 85

β̃δp angle, reconstruction method 86

Fundamental solutions and Green’s functions

Φ0 fundamental solution, Laplace equation 10
N Neumann function, Laplace equation 10
pN kernel function 11

Φk fundamental solution, Helmholtz equation 38
G dyadic Green’s function,

homogeneous medium 39
Ge electric dyadic Green’s function,

two–layered medium 39
Gm magnetic dyadic Green’s function,

two–layered medium 40

Πe/m Hertz vector 40

F e/m kernel function 40

Integral operators

S0
D single layer potential, Laplace equation 11

D0
D double layer potential, Laplace equation 11

K0
D double layer operator, Laplace equation 11

SND modified single layer potential 12
DN
D modified double layer potential 12

KN
D modified double layer operator 13

PND boundary integral operator 13

SkD single layer potential 41
Ak
D vector potential 42

Mk
D boundary integral operator 42

Nk
D boundary integral operator 42

A0
D vector potential, zero frequency 45



Notation 143

M0
D boundary integral operator, zero frequency 45

N0
D boundary integral operator, zero frequency 45

Ae/m
D modified vector potential 47

M
e/m
D boundary integral operator 47

R
e/m
D boundary integral operator 47

Physical notation

σδ, σ0 electric conductivity 15
ε, ε+, ε− electric permittivity 39
µ, µ+, µ− magnetic permeability 39
k, k+, k− wave number 39
ω angular velocity 39

Other notation

C generic positive constant
ωn area of the (n− 1)–dimensional unit sphere

ϕ̂, (ϕ)∧ change of coordinates 18
ϕ̌, (ϕ)∨ change of coordinates 18

O Landau symbol
o Landau symbol
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Index

asymptotic factorization
of the operator Gδ, 64
of the operator Λδ − Λ0, 26

asymptotic formula
for the boundary potential, 27,

32
for the scattered field, 68, 72

direct scattering problem, 2
double layer operator, 11

mapping properties of, 12
modified, 13

mapping properties of, 13
double layer potential, 11

jump relations for, 11
mapping properties of, 12
modified, 12

jump relations for, 13
mapping properties of, 13

dyadic Green’s function
homogeneous medium, 39
two–layered medium

electric, 39
magnetic, 40
reciprocity relation, 122
singularity, 125

eigenvalue
Maxwell’s equations, 55

electric permittivity, 49
electric polarizability tensor, 113

factorization
asymptotic, see asymptotic fac-

torization
of the operator Λδ − Λ0, 18
of the operator Gδ, 54

Factorization Method, 32
connection to MUSIC–type

reconstruction methods, 34

Fredholm alternative, 10
fundamental solution

Helmholtz equation, 38
asymptotic expansion of, 54

Laplace equation, 10

Galerkin projection, 86
Green’s dyadic, see dyadic Green’s

function

Hertz vector, 40

ill–posed, 2
incident field, 49
inverse conductivity problem, 7
inverse scattering problem, 2

jump relations
double layer potential, 11, 13
single layer potential, 11, 13, 41
vector potential, 42, 48

magnetic dipole distribution, 49
magnetic permeability, 49
magnetic polarizability tensor, 113
mathematical setting

inverse conductivity problem, 14
inverse scattering problem, 48

Maxwell eigenvalue, 55
Maxwell problem

exterior, 127
transmission, 127

Maxwell’s equations, 49
measurement operator, 50
measurement device, 49

discrete, 87
measurement operator

asymptotic expansion of, 27, 32,
68, 72

discrete, 87
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normal, 79
tangential, 78

multi–static response matrix, 87
multiple inclusions, 28
multiple scatterers, 68
MUSIC–type reconstruction method

inverse conductivity problem, 33
connection to Factorization

Methods, 34
inverse scattering problem, 87

algorithm, 87
numerical implementation, 86
numerical results, 90
spatial resolution, 105

Neumann function, 10
Neumann–to–Dirichlet operator, 16

perfect conductor, 50
polarizability tensor

electric, 113
magnetic, 113
properties of, 117

polarization tensor, 117
potential

double layer, see double layer po-
tential

single layer, see single layer po-
tential

vector, see vector potential

radiating solution, 49
radiation condition, 39, 40, 49, 125
range criterion

inverse conductivity problem, 34
inverse scattering problem, 77

normal data, 82
tangential data, 79

scattered field, 50
scattering problem

direct, 2
inverse, 2

Silver–Müller radiation condition, 39,
40, 49, 125

single layer potential, 11, 41
jump relations for, 11, 41
mapping properties of, 12
modified, 12

jump relations for, 13

mapping properties of, 13
singular value decomposition

approximation of, 85
asymptotic behavior of, 83
of the operator Gδ, 83
of the operator T , 83

Stratton–Chu formula, 119, 120
surface divergence, 37
surface gradient, 37
surface scalar curl, 37
surface vector curl, 37

test function
inverse conductivity problem, 32
inverse scattering problem, 77

for normal data, 82
for tangential data, 79

trace operator, 9, 36
normal, 37
projection on tangent plane, 37
tangential, 37

vector potential, 42
jump relations for, 42
mapping properties of, 43
modified, 47

jump relations for, 48
mapping properties of, 47

zero frequency, 45
jump relations for, 45
mapping properties of, 45

virtual mass tensor, 114

wavenumber, 49


