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Summary

For an infinite field F , we study the integral relationship between the Bloch group B2(F ) and

the higher Chow group CH2(F, 3) by proving some relations corresponding to the functional

equations of the dilogarithm. As a second result, the groups involved in Suslin’s exact sequence

0 → TorZ1 (F×, F×)∼ → CH2(F, 3) → B2(F ) → 0

are identified with homology groups of the cycle complex Z2(F, •) computing Bloch’s higher

Chow groups.

Using these results, we give explicit cycles in motivic cohomology generating the integral

motivic cohomology groups of some specific number fields and determine whether a given

cycle in the Chow group already lives in one of the other groups of Suslin’s sequence. In

principle, this enables us to find a presentation of the codimension two Chow group of an

arbitrary number field.

Finally, we also prove some relations in the higher Chow groups of codimension three

modulo 2-torsion coming from relations in the higher Bloch group B3(F )⊗Z [1
2

]
. Further, we

can prove a series of relations in CH3(Q(ζp), 5) for a primitive pth root of unity ζp. This relates

the higher Bloch group B3(F )⊗Z [1
2

]
and the motivic cohomology group CH3(F, 5) ⊗Z [1

2

]

of a number field F .
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Zusammenfassung

Wir untersuchen den Zusammenhang zwischen der Blochgruppe B2(F ) und der höheren

Chowgruppe CH2(F, 3) mit ganzzahligen Koeffizienten für einen unendlichen Körper F , in-

dem wir die Gültigkeit von Relationen in der Chowgruppe beweisen, die zu charakterisierenden

Funktionalgleichungen des Dilogarithmus korrespondieren. Als weiteres Ergebnis können wir

die Gruppen, welche durch Suslins kurze exakte Sequenz

0 → TorZ1 (F×, F×)∼ → CH2(F, 3) → B2(F ) → 0

in Beziehung stehen, mit Homologiegruppen des Zykelkomplexes Z2(F, •), der die höheren

Chowgruppen berechnet, identifizieren.

Mit diesen Ergebnissen geben wir explizite Zykel in der motivischen Kohomologie von

ausgewählten Zahlkörpern an, die ihre höheren Chowgruppen in Kodimension zwei erzeugen.

Außerdem bestimmen wir, ob ein gegebener Zykel in der Chowgruppe schon in einer der

anderen Gruppen aus Suslins Sequenz enthalten ist.

Letztlich beweisen wir die Gültigkeit einiger Relationen in den höheren Chowgruppe in

Kodimension drei mit Koeffizienten in Z [1
2

]
von unendlichen Körpern, die von definierenden

Relationen in der höheren Blochgruppe B3(F )⊗Z [1
2

]
kommen. Wir können sogar eine Serie

von Relationen in CH3(Q(ζp), 5) für eine primitive p. Einheitswurzel ζp beweisen. Durch

diese Relationen bringen wir die höhere Blochgruppe B3(F ) ⊗ Z [1
2

]
und die motivische Ko-

homologiegruppe CH3(F, 5) ⊗ Z [1
2

]
eines Zahlkörpers F in Verbindung.
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Introduction

In modern mathematics progress is very often made by a clever combination of seemingly

unrelated branches of classical themes or by viewing old problems in the light of some recent

development in some other area of mathematical investigation.

As a specific example of such progress, this thesis deals with motivic cohomology. This

theory grew out of Grothendieck’s vision to merge algebraic topology and what later became

called arithmetic algebraic geometry to generalize the notion of singular homology of topologi-

cal spaces to arbitrary schemes over Spec(Z). This should produce some sort of “universal” or

“underlying” cohomology theory of which the more familiar theories to be found in algebraic

or arithmetic geometry, e. g. (algebraic) De Rham, ℓ-adic, étale, crystalline cohomology, or

in number theory, e. g. Galois cohomology, are just so-called realizations. In other words,

Grothendieck envisioned a theory encapsulating all the information about the cohomology

of a scheme, but revealing only part of its information when one studies one of its more

well-known realizations.

The idea can roughly be described as follows: Decompose an arbitrary scheme over some

base into its building blocks, which one can think of as an affine open cover or smooth parts

or irreducible components, and associate to these building blocks so-called “motives”. The –

yet to define – cohomology groups of those motives should contain all the information that is

available.

But as one knows, arbitrary schemes can be terribly complicated, and standard methods

in algebraic geometry did not suffice for translating topological notions into the category of

schemes over some base. In section 16 of “En guise d’Avant-Propos” of his famous “Récoltes

et Semailles”, Grothendieck describes his way of thinking of motives:

“. . .Contrairement à ce qui se passait en topologie ordinaire, on se trouve donc placé

là devant une abondance déconcertante des théories cohomologiques différentes. On avait

l’impression très nette qu’en un sens, qui restait d’abord très flou, toutes ces theories devaient

≪revenir au même≫ , qu’elles ≪donnaient les mêmes résultats≫ . C’est pour parvenir à ex-

primer cette intuition de ≪paranté≫ entre théories cohomologiques différentes, que j’ai dégagé

la notion de ≪motif≫ associé à une variété algébrique.

Par ce terme j’étends suggérer qu’il s’agit du ≪motif commun≫ (ou de la raison commune)

sous-jacent à cette multitude d’invariants cohomologiques différentes associés à la variété, à

l’aide de la multitude de toutes les théories cohomologiques possibiles à priori. [. . . ]”
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Further, he explains that motivic cohomology should be the basic motive from which other

cohomology theories are just facets:

“Ainsi, le motif associé à une variété algébrique constituerait l’invariante cohomologique

≪ultime≫ , ≪par excellence≫ , dont tous les autres (associeés aux différentes théories coho-

mologiques possible) se déduiraient, comme autant d’≪incarnations≫ musicales, ou de ≪réali-

sations≫ différentes. Toutes les propriétés essentielles de ≪la cohomologie≫ de la variété

se ≪liraient≫ (ou ≪s’entendraient≫ ) déjà sur le motif correspondant, de sorte que les pro-

priétés et structures familières sur les invariants cohomologiques particularisés (l-adique ou

cristallins, par exemple), seraient simplement le fidèle reflet des propriétés et structures in-

ternes au motif.”

According to Grothendieck, motives can be considered as geometrical objects which link

geometric and arithmetic properties of algebraic varieties:

“Dans ma vision des motifs, ceux-ci constituent une sorte de ≪cordon≫ très caché et très

délicat, reliant les propriétés algébro-géométriques d’une variété algébrique, à des propriétés

de nature ≪arithmétique≫ incarnées par son motif. Ce dernier peut être considéré comme un

objet de nature ≪géométrique≫ dans son esprit même, mais où les propriétés ≪arithmétiques≫

subordonnées à la géométrie se trouvent, pour ainsi dire, ≪mises à nu≫ .”

The theory of motives is still very incomplete and relies on very deep conjectures on

algebraic cycles, the so-called standard conjectures. Either the description of motives or of

the concrete realization functors is far from being understood up to now. One way to describe

motives is to think of them as objects in a yet to be constructed category. This is very abstract

and complicated. We do not go into the details of this line of development. The other

possibility to describe them is by finding a cohomology theory with the expected “universal”

properties envisioned by Grothendieck. This is the path we follow in this thesis: We will

compute motivic cohomology in some cases explicitly, where some concrete information is

available.

At the beginning of the 1980s A. Bĕılinson, P. Deligne and S. Lichtenbaum pursued

Grothendieck’s ideas for smooth schemes X over a field k, and described a “universal” or

a “motivic” cohomology theory with coefficients in an abelian group A as a family of functors

Hp,q(•, A) : Sm/k −→ Ab, X 7→ Hp,q
M (X,A)

indexed by p and q satisfying several formal properties. The different approaches of a concrete

description of these functors had advantages as well as disadvantages compared to the other

ones, but they were all rather abstract. Nowadays there are several more or less explicit

constructions for the cohomology groups conjectured above given by S. Bloch, E. Friedlander,

A. Suslin, V. Voevodsky et al. which are known to be isomorphic at least for schemes over a

field of characteristic zero.

In the present thesis, we examine motivic cohomology groups for schemes consisting of

just one point, namely Spec(F ) for a number field F , and give some arithmetic applications.

This is the most easy case where an explicit description of these groups is possible because of
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their relations to other, better understood, groups. The motivation behind studying motivic

cohomology groups naturally has two aims. At first, one hopes to achieve some understanding

of the theory by computing some easy examples, and secondly, one would like to gain new, or

more refined, information compared to known theories by making use of comparison theorems.

An example of the latter motivation stems from algebraic K–theory: Generalizing Atiyah’s

topological K–theory, D. Quillen gave the definition of higher algebraic K–groups. Because

of their arithmetic significance, e. g. in deep conjectures in algebraic number theory such as

the Bĕılinson conjectures about special values of L-functions or the Bloch-Kato conjecture in

arithmetic geometry, it is a major goal of modern number theory to compute higher K–groups

for number fields explicitly. Their crucial relation to the motivic cohomology of a number

field is given by

grq
γK2q−1(F ) ⊗Q ∼= H1,q

M (Spec(F ),Z) ⊗Q ∼= H1,q
M (Spec(F ),Q),

where grq
γ denotes the graded piece of weight q of the γ-filtration in K–theory, and where the

last isomorphism is a general property of motivic cohomology of number fields. One has to

mention that Bĕılinson originally defined motivic cohomology by this equality!

Therefore, the study of motivic cohomology groups of a number field serves at least two

purposes, namely acquiring knowledge about the conjectured universal cohomology theory

for schemes in the baby case of a scheme consisting of one point only, and on the other hand

gaining new methods of calculating the algebraic K–groups of a field: If it is at least possible

to compute the rational motivic cohomology groups of a field, one may add them up to

computing the corresponding rational K–group. Unfortunately, it is not possible to approach

the integral K–groups in the same way, but with the help of a certain spectral sequence

CH−q(X,−p − q) ⇒ K−p−q(X)

for an equidimensional scheme over a field k, one can at least in principle compute the integral

K–groups as well.

Since we are interested in explicit calculations in motivic cohomology, we shall use S.

Bloch’s candidate for motivic cohomology, the higher Chow groups. These offer for some pur-

poses the most concrete description in terms of cohomology groups of certain algebraic cycles

in projective space over a field. The higher Chow groups of a number field are conjectured

to possess another remarkable property: They might be described – at least rationally – by

the so-called Bloch groups. These groups are roughly subquotients of free abelian groups

over the non-zero elements of a number field with integer coefficients modulo some relations

coming from universal functional equations of polylogarithms. This is another great example

of the merging of two seemingly completely different branches of mathematics. Therefore,

one can – and we will – use the theory of polylogarithms to gain information on the theory of

motives. This is done in the following way: There are computer algorithms producing lots of

elements in the Bloch groups – at least in low degree – which can be mapped to elements in

the algebraic K–group of the corresponding field or equivalently to the motivic cohomology
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group. In case we had a good understanding of these groups and especially their relationship,

we could use computer power to find explicit elements or generators in motivic cohomology.

In order to make the rational isomorphism between the higher Chow groups and Bloch

groups explicit, S. Müller-Stach and H. Gangl have investigated a concrete map ρ2 being

believed to induce the isomorphism ρ2 ⊗Q : B2(F ) ⊗Q ∼=−→ CH2(F, 3) ⊗Q in codimension

two. These authors and J. Zhao have also provided strong evidence for a map in codimension

three to be a candidate inducing the conjectured isomorphism.

The purpose of this thesis is to refine their results to the integral setting. We shall prove

universal relations in the integral higher Chow group CH2(F, 3) for infinite fields F coming

from the defining relations of the Bloch group B2(F ) of these fields. With these relations

we obtain an explicit presentation of the higher Chow groups in codimension two for some

number fields.

Some results are also obtained in codimension three, but mostly up to 2-torsion, because

there are no appropriate cycles avaliable in CH3(F, 5) which can be used to extend the results

of [GMS99] and [Zha07]. There are only partial results on relations involving cyclotomic

elements corresponding to the trilogarithm function evaluated at roots of unity.

Let us now take a closer look at the different chapters:

After surveying motivic cohomology of a field, chapter 1 collects basic definitions and

properties of the dilogarithm and trilogarithm functions accompanied with their single-valued

variants. We introduce the main objects of this thesis, i. e. the Bloch group B2(F ) of a field

F as well as its generalization, S. Bloch’s higher Chow groups and their main properties as

far as needed. After that we shall also recall a generalized Abel – Jacobi map due to M. Kerr,

J. D. Lewis and S. Müller-Stach from higher Chow groups to Deligne – Bĕılinson cohomology

which helps detecting torsion cycles. With the help of the injectivity of this map we can

conclude that cycles with nonzero (or non-torsion) image in Deligne – Bĕılinson cohomology

must have been nonzero (or non-torsion) in the higher Chow group. There is nothing new in

this chapter except, of course, the presentation.

Chapter 2 presents the results in codimension two. Applying a result of E. Nart, we can

slightly simplify computations in the higher Chow group: There are acyclic subcomplexes of

the complex computing the higher Chow groups. In the sequel, we shall work in one particular

quotient only. Then we set up some fundamental relations needed to prove Abel’s five-term

relation in the Chow group in several versions. As corollaries, we also get an inversion relation.

Therefore, we obtain a presentation of the higher Chow groups of an arbitrary field F with

generators that depend on the field F and the relations just proved. In some examples, we

determine these generators concretely, but it is clear how one can use this approach in general

to find a presentation of the Chow group of an arbitrary infinite field F . The rest of the chapter

is devoted to exploring the difference between the two choices of an acyclic subcomplex to

be divided out at the beginning. It turns out that one can divide out two subcomplexes:

both of them are acyclic. But one cannot divide out both of them simultaneously without

modifying the resulting motivic cohomology group. It turns out that dividing out both of
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them leads to the Bloch group, whereas the difference is related to the Tor-group of Suslin’s

exact sequence: We close the chapter with an explicit description of the Bloch group and the

group Tor(F×, F×)∼ in terms of algebraic cycles.

Chapter 3 uses and extends the ideas of chapter 2 to prove the Kummer – Spence –

relation, a series of distribution relations, an inversion relation, and Goncharov’s relation in

CH3(F, 5)⊗Z [ 1
2

]
under the assumption of the integral Bĕılinson– Soulé vanishing conjecture

in codimension two. But even under this strong assertion, the technical problems are much

harder in this codimension three Chow groups. Another problem one has to face is that there

are no suitable cycles in the integral higher Chow group.

We work around this problem by tensoring with Z [12], i. e. neglecting 2-torsion. But it

turns out that some of the cycles we would like to use cannot be contained in the image of a

map Z[F×] → Z3(F, 5) inducing the rational isomorphism B3(F ) ⊗Q ∼=−→ CH3(F, 5) ⊗Q.

From the present point of view we cannot prove much beyond what is done in the present

thesis in codimenson three, but as we will see there is still a lot to do.
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Chapter 1

Motivic cohomology of a field

1.1 What is motivic cohomology of a field?

Having glimpsed at the theory of motivic cohomology in the introduction, it is time to be

a little more concrete. For us, motivic cohomology will be the Zariski hypercohomology of

certain (motivic) complexes of sheaves. This approach is due to Bĕılinson.

We will only consider nonsingular varieties in this thesis. So let X for the moment be a

smooth projective variety over a field k. It was A. Bĕılinson who noticed that the algebraic

K–theory of X can be re-indexed to give a universal cohomology theory with coefficients inQ: If one isolates a graded piece grq
γK2q−p(X) of weight q of the γ-filtration in algebraic

K–theory and defines this to be the universal cohomology group Hp,q
M (X,Q), then H•,•

M (•,Q)

gives rise to a candidate for the conjectured cohomology theory.

In order to define an integral version of this theory, Bĕılinson considered truncations of

Zariski direct images of the étale sheaves µ⊗i
m and their hypercohomology groups. He also

noted that these satisfy the formal axioms of a Weil cohomology theory, which led him to his

famous conjectures asserting the integral motivic cohomology for a smooth variety X over

a field be given by the Zariski hypercohomology Hp,q
M (X,Z) := Hp

Zar(X,Z(q)X ) of certain

natural chain complexes of sheaves Z(•)X , where we shall drop the subscript if the context is

clear, subject to the following conditions:

• Z(0)X is the constant sheaf ZX , and Z(i)X = 0 for i < 0.

• Z(1)X = O×
X [−1], i. e. the sheaf O×

X understood as a complex of sheaves concentrated

in degree 1

• For a strictly Hensel local scheme S over a field k and an integer ℓ prime to char(k),

one has

Hp,q(S,Z/ℓZ) =

{

µ⊗q
ℓ (S), p = 0, q > 0,

0, else,

where µℓ(S) denotes the group of ℓth roots of unity in S.

1



2 1. MOTIVIC COHOMOLOGY OF A FIELD

• Hn,n
M (Spec(k),Z) ∼= KM

n (k) so that motivic cohomology agrees with Milnor K–theory

for fields k.

• H2n,n
M (X,Z) ∼= CHn(X), where CHn(X) denotes the classical Chow group of codimen-

sion n cycles on a smooth projective X modulo rational equivalence.

• For a smooth X over a field there should be a spectral sequence

Ep,q
2 = Hp,q

M (X,Z) ⇒ K2q−p(X)

giving rise to a rational isomorphism

Hp,q
M (X,Z) ⊗Q ∼= grq

γK2q−p(X) ⊗Q.

There is a rather explicit construction of these motivic cohomology groups due to Spencer

Bloch, namely his higher Chow groups, which we shall introduce later. In our case, where

X = Spec(F ) consists of just the generic point, the computation of Zariski hypercohomology

of Z(•)X boils down to a computation of the “ordinary” homology, i. e. no hyperhomology

of a certain complex. This simplifies concrete computations enormously.

According to Bĕılinson’s formula Hp,q
M (X,Z)⊗Q ∼= grq

γK2q−p(X)⊗Q, we can also use the

knowledge of the algebraic K–groups of a number field to determine the motivic cohomology

groups abstractly: As one can see in an article by C. Weibel [Wei05], the algebraic K–groups

of local and global fields are abstractly well-known. So, having determined the appropriate

graded piece of the γ-filtration, one knows the corresponding motivic cohomology group. If

one is interested in finding an explicit set of generators in terms of algebraic cycles – the

geometric objects from Grothendieck’s intuition of the nature of motives – for this group,

then one can find them by checking the order of lots of elements until an element of the

correct order is found. This can be done by a regulator map to some suitable cohomology

theory, but this is a tedious task.

There is a more conceptional approach to this problem of finding generators due to S.

Bloch, Don Zagier et al. who study the so-called Bloch groups Bm(F ) of a field F . These

groups are defined inductively and can – in principle – be described rather easily as the

kernel of an explicit map modulo some relations coming from functional equations of the mth

polylogarithm. These groups have the advantage that one can use a computer to produce

many elements in short time. The general conjecture predicts that these groups are isomorphic

– at least modulo torsion – to certain motivic cohomology groups of a field. The easiest case

is given by m = 2: One considers the map

β2 : Z[F×] → Λ2F×, [a] 7→ a ∧ (1 − a)

and defines

B2(F ) :=
ker β2

〈

[x] + [y] + [1 − xy] +
[

1−x
1−xy

]

+
[

1−y
1−xy

]〉 , x, y ∈ F×, xy 6= 1.



1.1. WHAT IS MOTIVIC COHOMOLOGY OF A FIELD? 3

The five-term relation in the denominator characterizes a single-valued version of the dilog-

arithm function more or less uniquely in the sense that every measurable function on C
satisfying this relation is a multiple of this single-valued dilogarithm [Blo]. Unfortunately,

despite some progress in low degrees, it is not clear at all how the higher Bloch groups can

be presented explicitly in codimension greater than two. Even in codimension three, there

is only some agreement about what relations to divide out for the definition. Therefore our

approach to motivic cohomology via Bloch groups appears to be at most partly promising.

The next problem one has to face is the unknown integral relation between the Bloch groups

and the higher Chow group. The only result is a theorem of Suslin in codimension two, where

he uses (stability results for) the group homology of GL(F ) to prove that there is an exact

sequence

0 → TorZ1 (F×, F×)∼ → CH2(F, 3) → B2(F ) → 0,

where B2(F ) denotes the Bloch group in the sense of Suslin defined as the kernel of an explicit

map modulo a relation corresponding to the five-term relation for the dilogarithm, and where

the tilde indicates a nontrivial Z/2Z – extension of the Tor-group. In codimension three, one

would have to investigate H3(GL(F ),Z) for a number field F , which seems to be hard work.

But nevertheless, it is worth exploring the connection between Bloch groups and higher Chow

groups, because there is a lot of beauty in this approach.

A more formal approach to motivic cohomology of a field was initiated by A. Goncharov.

He defines certain complexes whose cohomology is supposed to calculate the rational motivic

cohomology. Unfortunately, there will be no opportunity to use this and subsequent ideas of

his to compute Chow groups or motivic cohomology groups explicitly.

The structure of the present chapter is the following. In the next section, we collect some

basic facts about polylogarithms and Bloch groups. Starting with the dilogarithm and its

single-valued variant, the Bloch Wigner dilogarithm, we focus on the Bloch group and its

significance in geometry and arithmetic, we then concentrate on the trilogarithm where the

state of knowledge is located somewhere between the completely explicit description of the

dilogarithm and the classical Bloch group and the general, abstract picture. We shall collect

some facts about the trilogarithm and the Bloch group B3(F ). In the next subsection, the

general picture is sketched. The main conjecture is due to D. Zagier. Abstractly, the Bloch

groups Bm(F ) and their relation to the algebraic K–groups K2m−1(F ) are reviewed. This

leads to a conjectured expression of the value of the Dedekind ζ-function of a number field F

at the integer m in terms of the mth polylogarithm evaluated at elements of the Bloch- resp.

the K–group of F .

After this excursion to polylogarithms, our approach to motivic cohomology, the higher

Chow groups, will be explored at the end of this chapter, where we list some properties

and finally a certain regulator map from the higher Chow groups to Deligne – Bĕılinson

cohomology which is needed to detect torsion and non-torsion cycles in the Chow groups.



4 1. MOTIVIC COHOMOLOGY OF A FIELD

1.2 Polylogarithms and Bloch groups

1.2.1 The dilogarithm and number theory

The dilogarithm is defined by the power series

Li2(z) :=

∞∑

n=1

zn

n2
, z ∈ C, |z| < 1.

This definition generalizes the Taylor expansion for the usual logarithm around 1, namely

− log(1 − z) =
∞∑

n=1

zn

n
=: Li1(z).

By analytic continuation, the dilogarithm can be extended to a function

Li2(z) = −
∫ z

0
log(1 − t)

dt

t
, z ∈ C \ [1,∞).

This is a multivalued function with monodromy 2πi log |z| on crossing the branch cut [1,∞).

One only knows a few examples, where the value of the dilogarithm can be given in closed

form. These are

Li2(0) = 0, Li2(1) =
π2

6
,

Li2(−1) = −π2

12
, Li2(

1

2
) =

π2

12
− 1

2
log2(2),

Li2

(

3 −
√

5

2

)

=
π2

15
− log2

(

1 +
√

5

2

)

, Li2

(

−1 +
√

5

2

)

=
π2

10
− log2

(

1 +
√

5

2

)

,

Li2

(

1 −
√

5

2

)

= −π2

15
+

1

2
log2

(

1 +
√

5

2

)

, Li2

(

−1 −
√

5

2

)

= −π2

10
+

1

2
log2

(

1 +
√

5

2

)

.

The dilogarithm satisfies a number of functional equations. There are the elementary ones

like the so-called reflection properties

Li2(z) = −Li2(
1

z
) − Li2(1) −

1

2
log2(z), z ∈ C \ [1,∞),

Li2(z) = −Li2(1 − z) + Li2(1) − log(z) log(1 − z), z ∈ C∩ ]0, 1[

which give rise to the following remarkable fact: The six functions

Li2(z), Li2(1 − z), Li2

(
1

z

)

, Li2

(
1

1 − z

)

, Li2

(
z − 1

z

)

, Li2

(
z

z − 1

)

are equal modulo elementary functions, i. e. constants, logarithms and products of logarithms.
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In the following, we would like to call these elementary functions to be “of lower order”

compared to the dilogarithm or more generally to the mth polylogarithm. So if an identity of

mth polylogarithms is said to hold up to terms of lower order, we neglect all nth polylogarithms

and products of these for n < m.

The next series of functional equation of the dilogarithm is given by the distribution

property

Li2(z
n) = n

∑

ζn=1

Li2(ζz), |z| < 1, n ∈ N.

But the most important relation is given by the five-term relation found and rediscovered by

Abel, Kummer, Spence and others, which can be stated in the following form:

Li2(x) + Li2(y) + Li2

(
1 − x

1 − xy

)

+ Li2(1 − xy) + Li2

(
1 − y

1 − xy

)

=
π2

6
− log(x) log(1 − x) − log(y) log(1 − y) + log

(
1 − x

1 − xy

)

log

(
1 − y

1 − xy

)

for x, y ∈ C \ {0, 1}, xy 6= 1. There are several other forms of this relation to be found in

literature, but up to 2-torsion they are all equivalent modulo the reflection properties of the

dilogarithm mentioned above.

Further, there is a six-term relation of the form

Li2(x) + Li2(y) + Li2(z) =
1

2

[

Li2

(

−xy

z

)

+ Li2

(

−yz

x

)

+ Li2

(

−zx

y

)]

for 1
x + 1

y + 1
z = 1 due to Kummer and Newman.

In order to remove the multivalued character of the dilogarithm, one can consider the

function Li2(z) + i arg(1 − z) log |z|, where we choose the branch of arg lying between −π

and π. This function turns out to be continuous. But even more is true, when one considers

its imaginary part: There is a single-valued variant, called the Bloch – Wigner dilogarithm,

namely

D(z) := P2(z) := Im(Li2(z) + log |z| log(1 − z))

for z ∈ P1C \ {0, 1,∞} satisfying (beside others) the following properties:

• D is real analytic on P1C−{0, 1,∞}, and continuous on the compactified complex plane

when one sets D(0) = D(1) = D(∞) = 0.

• All of the functional equations valid for the ordinary dilogarithm can be expressed in

terms of the Bloch – Wigner dilogarithm, and then all lower order terms disappear. For

example, we have an exact 6-fold symmetry

D(x) = −D(1 − x) = D

(
1

1 − x

)

= −D

(
x

x − 1

)

= D

(

1 − 1

x

)

= −D

(
1

x

)
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and there is the so-called clean five-term relation

D(x) + D(y) + D(1 − xy) + D

(
1 − x

1 − xy

)

+ D

(
1 − y

1 − xy

)

= 0, x, y ∈ C, xy 6= 1.

Remark 1.2.1. If we define

D̃(z0, . . . , z3) := D

(
z0 − z2

z0 − z3
· z1 − z3

z1 − z2

)

, zi ∈ P1C,

then the five-term relation can be written in the most symmetric form

4∑

i=0

(−1)iD̃(z0, . . . , ẑi, . . . , z4), zi ∈ P1C.

In terms of hyperbolic geometry, this curiosity can be interpreted geometrically:

Let H3 be the Lobachevsky space, which we can think of (according to the half-space

model) as C × R+ and let I(z0, . . . , z3) denote the ideal geodesic simplex with vertices at

points z0, . . . , z3 of ∂H3 ∼= P1C. Thus, the vertices are at infinity; but nevertheless, the

hyperbolic volume of such an simplex is finite. In particular, it is given by

vol(I(z0, . . . , z3)) = D̃(z0, . . . , z3).

By a Möbius transformation, three points can be chosen equal to z0 = 0, z1 = 1, z2 = ∞,

and one obtains the special case of the expression above: vol(I(0, 1,∞, z)) = D(z). The

geometrically well-known fact that the “signed volume”
∑4

i=0(−1)ivol(I(z0, . . . , ẑi, . . . , z4))

vanishes is equivalent via the expression for the volume of such a tetrahedron to the most

symmetric form of the five-term relation.

0 1

z

z0

z1

z2z3

vol = D(z)

vol = D̃(z0, . . . , z3)

C R+

+i∞

Figure 1.1: Volumes of hyperbolic tetrahedra

Unfortunately, this geometric interpretation of functional equations for polylogarithms is

no longer valid in higher dimensions because of general properties of hyperbolic n-spaces (cf.

the remarks at the end of [GZ00, sect. 2]). ♦
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Let us now recall the Bloch groups and their connection to algebraic K–theory or motivic

cohomology. This is where polylogarithms play the important role. S. Bloch and D. Zagier

initiated an approach to an explicit presentation of algebraic K–groups in term of so called

Bloch groups which are defined as subquotients of free abelian groups on the invertible ele-

ments of a number field F modulo specific relations coming from functional equations of the

polylogarithmic functions. This approach links the rather complicated algebraic K–theory to

the not less complicated but more explicit theory of polylogarithms: We state some notions

from Suslin’s article [Sus91] keeping an eye on Bloch’s original definition in [Blo], some new

aspects in Dupont and Sah [DS82] as well as Lichtenbaum’s comparison in [Lic89].

We shall not stress too many details of algebraic K–theory. The facts to be remembered

are that this theory associates to fields or more general rings – such as discrete valuation

rings or local rings – a sequence of abelian groups indexed by nonnegative integers. These

groups are defined in a highly nonconstructive way, but nevertheless serve as special invariants

attached to these fields or rings. The first one for example, K0, is known as the classical

Grothendieck group of isomorphism classes of finitely generated, projective modules over a

given ring regarded as monoid under direct summation, and K1 includes the units in a given

ring. If the reader wants to, he might as well take

Kn(F ) ⊗Q ∼=
⊕

q≤n

2q−p=n

Hp,q
M (F,Z) ⊗Q

as the definition of the higher K–groups, although historically K–theory was invented before

motivic cohomology. In general, the algebraic K–groups of rings can be complicated, but

in case of a number field, the following result tells us that the Q-rank of these K–groups is

especially easy to describe:

Theorem 1.2.2 (Borel [Bor77]). For a number field F with r1 real and r2 pairs of conjugate

complex embeddings F →֒ C we have

rk(Kn(F ) ⊗Q) =







1, n = 0,

0, n ≥ 2 even,

r1 + r2 − 1, n = 1,

r2, n = 2m − 1,m even,

r1 + r2, n = 2m − 1,m odd.

There are two important filtrations defined on the algebraic K–groups of infinite fields.

We shall quickly recall them for the sake of completeness. Both of them are linked via the

so-called rank conjecture due to Suslin (unpublished). The work of Gangl and Müller-Stach

heavily relies on the validity of this conjecture as we will see later in remark 1.3.10.

First we define an increasing filtration (cf. explanations in [Hai94]), the so-called γ-
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filtration on Kn(F ) ⊗Q by

Fm
γ Kn(F ) ⊗Q := ⊕n

j=mK(j)
n (F ) ⊗Q,

where K
(j)
n (F ) ⊗Q denotes the jth eigenspace of the Adams operation Ψk on Kn(F ) ⊗Q, i.

e. the part of the rational K–group where Ψk acts via multiplication with k.

If we interpret Kn(F )⊗Q as the primitive part of Hn(GL(F ),Q), then it makes sense to

define another increasing filtration F rank
• on Kn(F ) ⊗Q by

F rank
r Kn(F ) ⊗Q := Im (Hn(GLr(F ),Q) →֒ Hn(GL(F ),Q))

⋂

Kn(F ) ⊗Q
for r ≥ 1. The content of the rank conjecture is that this filtration is the complement of the

γ-filtration in an algebraic K–group of an infinite field:

Conjecture 1.2.3. Let F be an infinite field. For n ≥ 1 and all r ≥ 0 there is a direct sum

decomposition

Kn(F ) ⊗Q = F rank
r Kn(F ) ⊗Q⊕F r+1

γ Kn(F ) ⊗Q.

Remark 1.2.4. This conjecture has been settled for number fields by Borel and Yang [BY94],

and there has been some progress on arbitrary infinite fields by Gerdes, Suslin, de Jeu et al..

♦

Closely related to the algebraic K3 of a field is its Bloch group, which we are going to

introduce now. Let us denote by Z[F×] the free abelian group with basis {[a], a ∈ F× \ {1}}
and then consider the Z-linear homomorphism

β2 : Z[F×] → Λ2F×, [a] 7→ a ∧ (1 − a)

defined on the generators. By a well-known theorem of Matsumoto on the presentation of the

second Milnor K–group KM
2 (F ) by symbols we have that coker(β2) = KM

2 (F ) ∼= K2(F ) up

to 2-torsion again.

Definition 1.2.5 ([Sus91]). The Scissors’ congrence group p(F ) is given by the quotient ofZ[F×] by a variant of the five-term relation, namely

[a] − [b] +

[
b

a

]

−
[

1 − b

1 − a

]

+

[
1 − b−1

1 − a−1

]

.

The Bloch group of Suslin is defined via the short exact sequence

0 → B2(F ) → p(F )
λ→ F× ∧ F× → KM

2 (F ) → 0,

where λ([a]) := a ⊗ (1 − a).

Remark 1.2.6. This definition is not unique in the following way. There are several slightly in-

equivalent definitions found in literature. We do not recall their history and the developments

which led to changes, but instead just mention some variants:
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• Dupont and Sah show in [DS82] that the five-term relation implies 2([a] + [ 1a ]) = 0 if

char(F ) 6= 2, and that the five-term relation together with the inversion relation imply

6([a] + [1 − a]) = 0.

• There are variants of this definition, where the set of generators is extended to include

0, 1 and where more relations are introduced. Precise descriptions can be found in [Blo],

[Zag91], [DS82], and for an overview compare [Lic89]. But as shown in loc. cit., [DS82],

and [Cat96, Proposition 2] they all differ by at most 6-torsion.

• Considering an algebraically closed field or ignoring torsion, all of these definitions are

equivalent as one knows again from [DS82, App. A] and [Cat96, Prop. 2].

• The above exact sequence also holds in greater generality, e. g. for semilocal rings with

infinite residue fields (cf.[EVG00])

• In order to generalize this definition later on, we shall mention that an important variant

of this definition is given in [GZ00]:

B2(F ) :=
A2(F )

C2(F )
:=

ker(β2)

〈five-term relation〉 .

♦

The Bloch group (in the way we introduced it) satisfies a number of interesting properties

among which are the following:

Theorem 1.2.7 ([Sus91]). Let F be an arbitrary infinite field.

• We have an exact sequence

0 → TorZ1 (F×, F×)∼ → Kind
3 (F ) → B2(F ) → 0, (1.2.1)

where TorZ1 (F×, F×)∼ is the unique non-trivial extension of TorZ1 (F×, F×) by Z/2Z,

and Kind
3 (F ) := Coker(KM

3 (F ) → K3(F )) denotes the indecomposable part of algebraic

K–theory.

• The element cF := [x] + [1 − x] ∈ B2(F ) is independent of the choice of x ∈ F× − {1}.

• cF is at most 6-torsion. If
√
−1 ∈ F , then cF is 3-torsion. If a primitive 3rd root of

unity ζ3 is contained in F , then cF is 2-torsion, and if both
√
−1, ζ3 ∈ F , then cF = 0.

• In general: If F is formally real, the order of cF is equal to six. In particular, B2(Q)

is a cyclic group of order 6 generated by the element cQ.

• The Bloch group is rationally invariant.

• For F = F , the Bloch group is uniquely divisible.
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• As remarked in [EVG00], C. Weibel has computed B2(k) in the variant of [GZ00] in

case of a finite field k with more than five elements and has also obtained a rational

isomorphism to (Quillen’s) algebraic K–group K3(k).

So obviously Kind
3 (F ) ⊗ Q ≃ B2(F ) ⊗ Q abstractly. The next interesting question for

us is how to relate the two groups explicitly, because knowing this, one can find elements in

the Bloch group mapping to a basis of the K–group. Bloch and others contributed to some

results in this direction leading to a famous conjecture in the general case. Roughly, we will

introduce a regulator map from K–theory to a lattice in Rn which can be expressed in terms

of polylogarithms for K3(F ) and K5(F ), but conjecturally in any degree. To shed some light

on this circle of ideas, we recall some number theory and the relevant constructions. The

main reference will be [GZ00].

The main ingredient of the reasoning will be to express a particular ζ-value of the number

field in question by special values of the dilogarithm: We will see that this ζ-value can be

expressed by elements in a corresponding algebraic K–group (this is a theorem of Borel)

and by Suslin’s exact sequence and some work of Bloch and Zagier, we can express the ζ-

value mentioned above in terms of the dilogarithm evaluated at elements in the Bloch group

corresponding to the elements in the algebraic K–group. But in general, one does not know

these elements. Knowing the relationship between the Bloch group and the algebraic K–

group, we can use the explicit description of the Bloch group to obtain explicit elements in

the K–group. Let us start with a classical example:

Example 1.2.8. Consider a number field F with OF as ring of integers, then the Dedekind

ζ-function of F is defined as

ζF (s) :=
∏

p⊂OF
p prime

(

1 − 1

N(p)s

)−1

=
∑

06=a⊂OF

1

N(a)s
.

In general, we have the well-known class number formula also by Dedekind: Let r1 be the

number of real embeddings of F , and r2 be the number of (conjugate) pairs of complex ones.

Further set n := r1 +2r2, and let RF be the regulator, hF the class number, ωF be the number

of roots of unity in F , and ∆F be the discriminant of F . Then

lim
s→1

(s − 1)ζF (s) =
2r1+r2πr2RF hF

ωF |∆F |1/2
.

In the case of a imaginary quadratic number field F = Q(
√
−d) with discriminant d there is

a slightly easier expression, namely Humbert’s formula

ζF (2) =
4π2

d
√

d
Vol(H3/SL2(OF )),

where H3 is the hyperbolic 3-space on which SL2(OF ) acts as a discrete group of symmetries.

By the insight of Lobachevsky, the volume of a general hyperbolic tetrahedron can be expressed
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as a combination of a fixed number of values of the Bloch – Wigner dilogarithm introduced

above [Thu], cf. remark 1.2.1. �

So we can conclude that for an imaginary quadratic number field F the value ζF (2) can

be expressed in terms of the Bloch – Wigner dilogarithm and some irrational multiples of a

power of π. A similar result holds for more general number fields as well: For a number field

F with just one pair of conjugate complex embeddings, the value of ζF (2) can be expressed as

sums over products of Bloch – Wigner dilogarithms with algebraic arguments. More precisely,

there exists an element ξ ∈ Q such that ζF (2) = |∆F |−1/2π2D(ξ).

Example 1.2.9. Consider the example from [Zag07]:

ζQ(
√
−7)(2) =

4π2

3 · 73/2

(

2D

([
1 +

√
−7

2

])

+ D

([−1 +
√
−7

4

]))

is a comparably easy expression of that kind. For convenience, we demonstrate that the argu-

ment of the Bloch – Wigner dilogarithm is also contained in the Bloch group B2(Q(
√
−7)):

We have to show that 2 ·
[

1+
√
−7

2

]

+
[
−1+

√
−7

4

]

∈ ker(β2) or in other words that

2 · 1 +
√
−7

2
∧
(

1 − 1 +
√
−7

2

)

+
−1 +

√
−7

4
∧
(

1 − −1 +
√
−7

4

)

= 0.

But if we abbreviate η := 1−
√
−7

2 and µ := −1−
√
−7

2 , then we can see that

2 · 1 +
√
−7

2
∧
(

1 − 1 +
√
−7

2

)

= 2 · 1 +
√
−7

2
∧ 1 −

√
−7

2
= 2(−µ) ∧ η,

−1 +
√
−7

4
∧
(

1 − −1 +
√
−7

4

)

=
−1 +

√
−7

4
∧ 5 −

√
−7

4
=

1

µ
∧ η2

µ
,

but further

2(−µ) ∧ η +
1

µ
∧ η2

µ
= µ2 ∧ η − µ ∧ η2 = 2µ ∧ η − 2µ ∧ η = 0.

So we see that 2
[

1+
√
−7

2

]

+
[
−1+

√
−7

4

]

∈ ker(β2). The numerical equality of both expressions

for the ζ-value above can be checked by computer. �

This is just an instance of the following theorem (cf. [GZ00, Sect. 1]):

Theorem 1.2.10. Let F be a number field with r1 real and r2 pairs of complex embeddings.

Then

• The Bloch group B2(F ) is finitely generated of rank r2.

• Let ξ1, . . . , ξr2 be a Q-basis of B2(F )⊗Q and σ1, . . . , σr2 be a set of complex embeddings
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(none of which are conjugate) of F into C such that [F : C] = n := r1 + 2r2. Then

ζF (2) ∼Q× |∆F |−1/2π2n det
(

D (σi(ξj))1≤i,j≤r2

)

,

where ∼Q× denotes “proportional up to unit in Q”.

This theorem is the first step towards a general conjecture due to Bloch and Zagier which

can be stated roughly by saying that the elements in the Bloch group come from elements in

algebraic K–theory. We shall state this conjecture in section 1.2.3 after we have collected the

right notions to understand its whole content.

Notation . Let F be a number field with r1 real and r2 pairs of complex embeddings and

consider the algebraic K–group K2m−1(F ). Then we define the dimension of the target R-

vector space of th Borel regulator as

n∓ :=

{

r1 + r2, m odd,

r2, m even.

Another fundamental tool in algebraic K–theory is the existence of regulator mappings

from algebraic K–theory to Deligne cohomology. We shall define Deligne – Bĕılinson coho-

mology later in section 1.3.2, but here just mention that because there is a natural inclusion

K2m−1(F ) →֒ K2m−1(C) for every number field F and m ≥ 1, these regulators can be inter-

preted as maps

K2m−1(C) → C/A(m),

where A ∈ {Z,Q,R} and A(n) := (2πi)nA for some n > 0. The first regulators are given by

log : K1(C) ∼= C× → C/Z(1), and log | · | : K1(C) ∼= C× → C/R(1) ∼= R.

In the following we give a rough idea how to construct a regulator maps

K3(C) → C/Q(2), resp. K3(C) → C/R(2) ∼= R(1).

The second one is due to Borel, and we will explain the so-called Borel regulator in general

since this is not more difficult than the special case concerning K3. The reader is advised to

refer to [Rap88] for more details: Let H•
c (G,R) be the continuous cohomology of a Lie group

G with R–coefficients. Then one knows that

H•
c (GL(C),R) = Λ•R(u1, u3, . . .),

where u2n−1 are certain topological cohomology classes which can be lifted to elements cn ∈
H2n−1

c (GL(C),R(n−1)), the so-called Borel classes. Considered as functionals on homology,

these classes induce a map

regn,C : K2n−1(C) ⊗Q→ R(n − 1),
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given by the composition

K2n−1(C) ⊗Q := π2n−1(BGL(C)+) ⊗Q Hurewicz−→ H2n−1(GL(C),Q)
cn−→ R(n − 1).

So we define the Borel regulator

regBorel
m,F : K2m−1(F ) ⊗Q→ (ZHom(F,C) ⊗R(m − 1))+ = R(m − 1)n∓ ,

where (·)+ denotes the subspace invariant with respect to complex conjugation, by the com-

position

regBorel
m,F : K2m−1(F ) ⊗Q→

⊕

Hom(F,C)

(K2m−1(C) ⊗Q)

∏
regm,C−→ R(m − 1)n∓

mapping K2m−1(F )/torsion isomorphically onto a cocompact lattice Regm,F , whose covolume

is a rational multiple of |∆F |1/2ζF (m)/πmn∓ [Bor77]. In other words:

Theorem 1.2.11. Let F be a number field of degree n with r1 real and r2 pairs of conjugate,

complex embeddings denoted by σ1, . . . , σr1+r2 . Then there are elements γi ∈ K2m−1(F ) ⊗Q
and a constant c ∈ Q× such that

ζF (m) = c · πmn∓

|∆F |
1
2

det
(
regm,F (σj(γi))

)

i,j
with 1 ≤ i ≤ n±, 1 ≤ j ≤ r1 + r2.

Thus, we conjecture a connection between algebraic K–groups and Bloch groups. Indeed:

Theorem 1.2.12 (Bloch [Blo], Suslin [Sus86]). For each number field F there exists a map

φ : K3(F ) → B2(F ). Further, both groups are canonically isomorphic up to torsion.

Moreover, by the isomorphism of the theorem the Borel regulator map on K3(F ) corre-

sponds to the Bloch – Wigner dilogarithm on B2(F ).

Remark 1.2.13. The Borel regulator in algebraic K–theory introduced above can be seen as

a natural generalization of the Dirichlet regulator from standard algebraic number theory.

Additionally, there is another regulator map due to Bĕılinson [Bei85] from the algebraic K–

theory of algebraic varieties X over R to Deligne – Bĕılinson cohomology, which in case

X = Spec(O) for the ring of integers O of a number field F is of the form:

regBei
m,F : K2m−1(O) ⊗Q −→ H1

D(Spec(O),R(m)).

But as Rapoport demonstrated, the Borel regulator and the Bĕılinson regulator coincide

up to a non-zero rational factor in case of a number field (cf. [Rap88]). Moreover, in [Gil01]

the precise relationship

regBorel
m,F = 2 · regBei

m,F

is proved. Therefore, we shall not introduce the definition of the Bĕılinson regulator formula.
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This fact shows that the Borel regulator and its properties can be used in our case to

detect “interesting” cycles in algebraic K–theory generating the K–groups or the motivic

cohomology groups of a number field: Via the coincidence of the two regulators we have a

more explicit description of the Bĕılinson regulator. On the contrary: If we could not use the

proportionality of the Bĕılinson regulator and the Borel regulator with its connection to the

polylogarithm, our approach to motivic cohomology via the Bloch groups would possibly lead

astray. We will come back to these regulators and some explicit expressions for computing

them in section 1.3.2. ♦

So we arrive at the following commutative diagram combining the results of Bloch, Suslin,

and Zagier:

B2(F ) ⊗Q ∼= //

(D◦σ1,...,D◦σr2 )
&&LLLLLLLLLL

K3(F ) ⊗Q
reg

Borel
2,FxxrrrrrrrrrrRr2 .

(1.2.2)

The work of Müller-Stach and Gangl [GMS99] was an attempt to make the top isomor-

phism explicit using the description of K–theory for a field by motivic cohomology.

Example 1.2.14. Finding elements in the Bloch group of a number field which can be used

as arguments of the Bloch – Wigner dilogarithm to express ζF (2) in the sense of the theorem

above, is equivalent – via Bloch’s map inducing the isomorphism in the previous theorem –

to giving a Q-basis of the indecomposable part of K3(F ): Let F = Q(ζℓ), where ℓ is an odd

prime and ζℓ an ℓth root of unity. Then one verifies that ℓ · [ζi
ℓ] ∈ B2(F ) for all i. Bloch shows

in [Blo] that {ℓ · [ζℓ], . . . , ℓ · [ζ
ℓ−1
2

ℓ ]} maps to a basis of K3(F ) ⊗Q.

Further, using the formula D(ζi
ℓ) = Im(

∑∞
m=1

ζmi
ℓ

m2 ), he also computes that the lattice inR ℓ−1
2 generated by the vectors

(

D(ℓζi
ℓ), . . . ,D(ℓζ

i(ℓ−1)
2

ℓ )

)

, i = 1, . . . ,
ℓ − 1

2
,

has a volume equal to

2
1−ℓ
2 ℓ

3(ℓ−1)
4

∏

χ

|L(2, χ)|,

where χ runs through the odd Dirichlet characters of F and L(s, χ) denotes the Dirichlet

L-function corresponding to χ. �

The second regulator map, K3(C) → C/Q(2), which is also denoted by c2, can be de-

scribed via the multivalent dilogarithm function Li2. This is unpublished work of Bloch and

Wigner (cf. [DS82]): For x ∈ C such that |x − 1
2 | < 1

2 define

ρ(x) =
1

2

[

log(x) ∧ log(1 − x) + 2πi ∧ 1

2πi

(

Li2(1 − x) − Li2(x) − π2

6

)]

∈ Λ2C
with all logarithms taken to be the principal branches. One shows that this function is
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invariant under monodromy, and therefore extends to a single-valued function

ρ : C \ {0, 1} → Λ2C.

As explained in [Hai94], this function induces a homomorphism H3(SL2(C)) → C/Q(2) and

completes the following commutative diagram

K3(C)
c2 //

proj
��

C/Q(2)

gr2
γK3(C),

ρ
88qqqqqqqqqq

where c2 denotes a Borel class. One finally shows that the map ρ constructed above extends

to the whole K–group inducing the regulator c2 on all of K3(C).

As a further variant of the dilogarithm with no special use for us in the following, one

should mention the Rogers dilogarithm L(x). It is defined as

L(x) := Li2(x) +
1

2
log(x) log(1 − x), 0 < x < 1,

together with its extension to the whole of R by setting L(0) := 0, L(1) := π2

6 and

L(x) :=







π2

3 − L(x−1), x > 1,

−L
(

x
x−1

)

, x < 0.

This function is not continuous at infinity since one computes

lim
x→+∞

L(x) = 2L(1) =
π2

3
, lim

x→−∞
L(x) = −L(1) = −π2

6
.

But if one considers the function only modulo π2/2, then the resulting function L(x) :=

L(x) (modπ2

2 ) is monotone, increasing, continuous, real-valued on the real numbers, and even

real analytic except for 0 and 1, where it is continuous only. Comparable to the Bloch – Wigner

dilogarithm, the modified Rogers dilogarithm also satisfies “clean” functional equations, in

particular the reflection properties for x ∈ R:

L(x) + L(1 − x) − L(1) = 0, L(x) + L(x−1) + L(1) = 0

and the five-term relation for x, y ∈ R, xy 6= 1:

L(x) + L(y) + L

(
1 − x

1 − xy

)

+ L(1 − xy) + L

(
1 − y

1 − xy

)

= 0.

The special values of the dilogarithm mentioned at the beginning of this subsection also clean
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up: E. g. one simply has

L

(
1

2

)

=
π2

12
, L

(

3 −
√

5

2

)

=
π2

15
.

These special values of the Rogers dilogarithm are closely linked to torsion elements in

the Bloch group B2(Q). In fact, an element [a] ∈ B2(Q) is known to be torsion if and only if

its Bloch – Wigner dilogarithm in all complex embeddings vanishes (reflecting the fact that

the image of this function is a lattice in a suitable real vector space detecting “the free part”

of the Bloch group of a number field) and its Rogers dilogarithm in all its real embeddings

is a rational multiple of π2. By an elementary consideration (cf. [Zag07]) one can show that

the only numbers αi ∈ C \ {0, 1} for which [αi] lies in B2(C) are

αi ∈
{

−1,
1

2
, 2,

±1 ±
√

5

2
,
3 ±

√
5

2

}

.

1.2.2 The trilogarithm and number theory

Let us now recall the first generalization of the facts from the preceding subsection: We

consider the classical trilogarithm function

Li3(z) =

∞∑

m=1

zm

m3
, z ∈ C, |z| < 1,

which can be extended by analytic continuation to a covering of P1C − {0, 1,∞}:

Li3(z) :=

∫ z

0
Li2(t)

dt

t
.

There is also a single-valued version of the trilogarithm given by

P3(z) := Re

(

Li3(z) − Li2(z) log |z| + 1

3
Li1(z) log2 |z|

)

.

Functional equations for the trilogarithm are very complicated in general and involve lots

of terms of lower order, i. e. products of dilogarithms and elementary functions. Among the

easier ones are an inversion relation

Li3(z) = Li3(z
−1) − 1

6
log3(z) − π2

6
log(z)

a series of distribution relations

Li3(z
n) = n2

∑

ζn=1

Li3(ζz)
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and the three-term relation

Li3(z)+Li3

(
1

1 − z

)

+Li3

(

1 − 1

z

)

= −Li3(1)+
1

6
log3(z)+

π2

6
log(z)− 1

2
log2(z) log(1− z).

On the other hand there is a very general functional equation for the trilogarithm which

is given in terms of the single-valued function P3 (cf. remarks in [Gan03, sect.3]). Denote by

cr(a, b, c, d) the cross ratio of four points a, b, c, d ∈ P1C defined by cr(a, b, c, d) := a−c
a−d · b−d

b−c :

Theorem 1.2.15 (Wojtkowiak). Let φ : P1C → P1C be a rational function, Ai, Bj , Ck,Dl ∈P1C, and finally {i, j, k, l} ∈ {1, 2}. Then, denoting by deg(φ) the degree of φ, we have

∑

i,j,k,l

(−1)i+j+k+l




∑

αi,βj ,γk,δl

P3(cr(αi, βj , γk, δl)) − deg(φ) · P3(cr(Ai, Bj , Ck,Dl))



 = 0,

where αi, βj , γk, δl run through the preimages of Ai, Bj , Ck,Dl respectively, with multiplicities.

On the contrary, Goncharov [Gon95a] found a functional equation of the trilogarithm in

three variables α1, α2, α3 in terms of configuration spaces. His equation can be stated in the

following form, where we use the shorthand notation βi = 1 − αi + αiαi−1, i = 1, 2, 3:

Theorem 1.2.16. Let γ(α1, α2, α3) ∈ Z[Q(α1, α2, α3)] be a formal linear combination given

by

γ(α1, α2, α3) =
3∑

i=1

([
1

αi

]

+ [βi] +

[
αiαi−1

βi

]

+

[
βi

βi+1αi+2

]

+

[
βiαi+1

−βi+1

])

+

[ −1

α1α2α3

]

−
3∑

i=1

([
βi

αi−1

]

+

[
βi

βi+1αiαi−1

]

+ [1]

)

.

Then P3(γ(α1, α2, α3)) = 0.

This relation will be referred to as Goncharov’s relation. As shown in [Gan03], Goncharov’s

relation is a special case of Wojtkowiak’s relation.

Remark 1.2.17. There is a generalization to polylogarithms of a real variable, namely

Ln(x) =
n−1∑

j=0

(− log |x|)j
j!

Lin−j(x) +
(− log |x|)n−1

n!
log |1 − x|, |x| ≤ 1,

and

Ln (x) = (−1)n−1Ln

(
1

x

)

, |x| > 1.

♦

Searching for a generalization of the relationship between B2(F ) and K3(F ) from the pre-

vious subsection, one would like to define some higher Bloch group B3(F ) rationally mapping
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to (a part of) the algebraic K5(F ). This is not so easy, and we defer it to the next subsection

as it better fits the context there. More precisely, there is an inductive process to construct

higher Bloch groups which are conjectured to be isomorphic rationally to a graded part of

algebraic K–groups. We just introduce a certain map:

Definition 1.2.18. Consider the map

β3 : Z[F×] → B2(F ) ⊗ F×, [x] 7→ {x}2 ⊗ x, [1] 7→ 0,

where {x}2 denotes the image of x in B2(F ). The kernel of this map will be denoted by

A3(F ).

Remark 1.2.19. A naive generalization of the Bloch group, B3(F ), would be to consider the

quotient of A3(F ) by a group of suitable relations. But as we will see in the next subsection,

the resulting group does not map to the right regulator lattice in a real vector space. This

definition would only suffice for F = Q or F not real. ♦

Nevertheless, let us discuss a group of suitable relations. It turns out that for general

number fields, we have to modify the definition of A3(F ) before dividing out the group of

relations yet to be defined in order to obtain a suitable Bloch group. We need some preparation

(cf. [Gon95b]):

Let V 3 be a three dimensional vector space over F . For a fixed volume form ω and six

vectors l1, . . . , l6 in general position in V 3, set ∆(li, lj , lk) := 〈ω, li ∧ lj ∧ lk〉 ∈ F× for pairwise

distinct i, j, k. For a complex-valued function f : V 3 → C let further

Alt6(f(l1, . . . , l6)) :=
∑

σ∈S6

(−1)sgn(σ)f(lσ(1), . . . , lσ(6)).

Then one sets

r3(l1, . . . , l6) := Alt6

{
∆(l1, l2, l4)∆(l2, l3, l5)∆(l3, l1, l6)

∆(l1, l2, l5)∆(l2, l3, l6)∆(l3, l1, l4)

}

∈ Z[F×].

One can show [Gon95b] that this quantity does not depend on the length of the vectors li
and in consequence is a generalized cross ratio of 6 points on the projective plane.

Theorem 1.2.20. For any 7 points (z1, . . . , z7) in generic position in P2C we have

7∑

i=1

(−1)iP3(r3(z1, . . . , ẑi, . . . , z7)) = 0.

Further, if one chooses x ∈ P2C, then the function c5(g0, . . . , g5) := P3(r3(g0x, . . . , g5x))

defined for all gi ∈ GL3(C) such that (g0x, . . . , g5x) is in general position, is a measurable

5-cocycle representing a nontrivial cohomology class of the group GL3(C).
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Definition 1.2.21. We let C3(F ) be the subgroup of Z[F×] generated by the relations

[z] + [z−1] = 0, [z] +

[
1

1 − z

]

+

[

1 − 1

z

]

= [1], z ∈ F×,

and
∑7

i=1(−1)ir3(z1, . . . , ẑi, . . . , z7) = 0 for generic configurations of 7 points in the projective

plane over F , where we set [0] = [∞] = 0.

Remark 1.2.22. The relation
∑7

i=1(−1)ir3(z1, . . . , ẑi, . . . , z7) = 0 is a more symmetric variant

of Goncharov’s relation from theorem 1.2.16. ♦

There is a result due to Goncharov generalizing theorem 1.2.7, which was conjectured by

Zagier:

Theorem 1.2.23 (Goncharov [Gon95b]). For any number field F with r1 real embeddings

σ1, . . . , σr1 and r2 pairs of complex ones σr1+1, σr1+1 . . . , σr1+r2, σr1+r2, there exist elements

ξ1, . . . , ξr1+r2 ∈ ker(β3) ⊗Q such that

ζF (3) = π3r2 |∆F |−1/2 det (P3(σj(ξi))1≤i,j≤r1+r2) .

Example 1.2.24. The following is due to Zagier:

ζQ(
√

5)(3) =
24

25
√

5
· P3(1) ·

(

P3

(

1 +
√

5

2

)

− P3

(

1 −
√

5

2

))

.

This and many more numerical examples can be found in [Zag91]. �

Rationally, one knows (cf. [Gon94]) that there are maps

grrank
3−i K6−i(F ) ⊗Q→ H i(BF (3) ⊗Q),

where grrank
• denotes the graded quotient of the rank filtration, expected to be isomorphism.

This is known for i = 3.

1.2.3 Generalizations

The classical mth polylogarithm function is defined by

Lim(z) :=

∞∑

k=1

zk

km
, (m = 1, 2, . . . ; z ∈ C, |z| < 1).

It is a function which can be analytically continued to a multivalued function onP1C−{0, 1,∞}
by using the integral expression

Lim(z) =

∫ z

0
Lim−1(t)

dt

t
, Li1(z) = − log(1 − z).
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Many of the conjectures on polylogarithms, however, require a single-valued variant Pm(z) of

Lim(z), which is known to exist [Ram86]. Concretely, one uses the expression which can be

found in [GZ00]:

Pm(z) :=

{

Rem

(∑m
r=0

2rBr

r! Lim−r(z) logr |z|
)
, |z| < 1,

(−1)m−1Pm(z−1), |z| ≥ 1,

where Rem denotes “the real part of” for m odd and “the imaginary part of” for m even.

Moreover, Br is the rth Bernoulli number (B0 = 1, B1 = −1/2, B2 = 1/6, . . .).

Remark 1.2.25. For m ≥ 2, the functions Pm(z) can be extended to the whole complex plane:

They are real analytic on C − {0, 1} and can be extended continuously to the whole of P1C
by setting Pm(0) = Pm(∞) = 0 and Pm(1) =

{

ζ(m), m odd,

0, else.
♦

There is strong evidence for the following conjectures, which we will assume in the follow-

ing, because it lies at the heart of the definition of the higher Bloch groups:

Conjecture 1.2.26. • Every Pm, m ≥ 2, satisfies a nontrivial functional equation in

several variables with constant coefficients. We define a functional equation to be trivial,

if it can be derived from the inversion relation Pm(z) = (−1)m−1Pm(z−1) and one of

the distribution relations. Pm(zn) = nm−1
∑

ζn=1 Pm(ζz) with n ∈ N.

• Every functional equation of the higher polylogarithm reflects some structure of the cor-

responding Bloch- or K–group [Zag91].

Remark 1.2.27. For the dilogarithm, this non-trivial relation in question is the five-term

relation, since as shown by Wojtkowiak (cf. the remarks in [Gan03, sect. 2]), any functional

equation for the dilogarithm with C-rational expressions in one variable as arguments can be

written as a sum of five-term relations.

For the trilogarithm Goncharov’s relation seems to be this universal relation mentioned in

the conjecture. In general the search for such a characterizing functional equation is a major

goal in the theory of polylogarithms.

For higher polylogarithms, i. e. up to degree 7, the results on functional equations are

surveyed in [Gan03]. The general case is widely believed. ♦

Let us now see what is known and conjectured about the relationship between K2m−1(F )

and ζF (m) on the one hand and the mth polylogarithm on the other hand for m > 3: Two

aspects of this relationship are of current interest, one initiated by Zagier [Zag91], the other

one by Goncharov [Gon95a]. We will quickly review both of them.

In [Zag91], Zagier has given candidates for higher degree Bloch groups (m ≥ 3). These

are also defined as kernels of an explicit map βm analogous to the above β2 modulo implicit

relations coming from characterizing functional equations of the mth polylogarithm. Let us

review this construction.
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The explicit map under consideration is the following:

βm = βm,F : Z[F ] → Symm−2F× ⊗ Λ2F×, [z] 7→
{

z⊗(m−2) ⊗ (z ∧ (1 − z)), z 6= 0, 1

0 z = 0, or z = 1.

It is easy to see that β2 coincides with our previous map. Unfortunately, as mentioned in

[GZ00] (cf. also [Zag91]), it is not enough to consider the whole kernel of this map. One

needs another condition. In order to formulate it, we need to observe that if we choose

ξ :=
∑

ni[ai] ∈ kerβm, then for every homomorphism φ : F× → Z the element ιφ(ξ) :=
∑

niφ(ai)[ai] ∈ kerβm−1 ⊂ Am−1. So the following definition makes sense:

Am(F ) :=
{
ξ ∈ Z[F ]

∣
∣ ιφ(ξ) ∈ Cm−1(F ) ∀φ ∈ Hom(F×,Z)

}
.

The problem with the definition of Cm(F ) is that one does not know explicitly all necessary

functional equations for higher polylogarithms. Therefore, we shall just give a numerically

usable working definition for these groups:

Cm(F ) := {ξ ∈ Am(F ) |Pm(σ(ξ)) = 0 ∀ embeddings σ : F →֒ C} .

But in order to give a more precise definition of the groups containing the necessary relations

to be divided out, one must introduce a homotopic or function field definition of these groups,

which is also valid for arbitrary number fields (cf. [GZ00]):

C∗
m(F ) := {ξ(1) − ξ(0) | ξ(t) ∈ Am(F (t))} .

As remarked in [GZ00], an element ξ(t) ∈ Z[F (t)] lies in ker(βm,F (t)) if and only if t 7→
Pm(ξ(t)) is the constant map. Therefore C∗

m(F ) is the subgroup of Cm(F ) generated by

specializations of the functional equations to values in F . But caution:

Remark 1.2.28. One has to note that although obviously C∗
m(F ) ⊆ Cm(F ), the reverse inclu-

sion is known only for m = 2 (cf. [GZ00, Sect. 2]). ♦

Definition 1.2.29. Let F be a number field. Then the nth higher Bloch group for n ≥ 3 is

defined as the quotient

Bn(F ) =
An(F )

Cn(F )
.

The Bloch groups are constructed in a way that the following picture should be true:

For a number field F let us also define the map Pm,F : Bm(F ) → Rn∓ by composing the

inclusion Bm(F ) → Bm(Rr1) × Bm(Cr2) with the polylogarithmic function Pm applied in

every coordinate.

Conjecture 1.2.30. For a number field F and for every m ≥ 1 there is a rational isomor-

phism between the Bloch groups Bm(F ) ⊗Q and K2m−1(F ) ⊗Q which makes the following



22 1. MOTIVIC COHOMOLOGY OF A FIELD

natural generalization of diagram 1.2.2 commute:

Bm(F ) ⊗Q �

�

/

∼=
�
�

�

�
Pm,F

**VVVVVVVVVVVVVVVVVVVVV
Bm(R)r1 × Bm(C)r2

(Pm,...,Pm)

��
K2m−1(F ) ⊗Q

regm,F

// Rn∓ .

(1.2.3)

More precisely one hopes for the following generalization of Borel’s results on the image

of the regulator and the ζ-value at a special integer:

Conjecture 1.2.31 (Zagier). Let F be a number field. Recall the definition of n∓ from

notation: The image of the modified mth polylogarithm Pm,F : Bm(F ) → Rn∓ is commensu-

rable with the Borel regulator lattice Regm,F ⊂ Rn∓ . In particular,

• the higher Bloch groups Bm(F ) = Am(F )/Cm(F ) are finitely generated of rank n∓.

• Let ξ1, . . . , ξn∓ be a Q-basis of Bm(F ) ⊗Q and σ1, . . . , σn∓ run through all embeddings

not conjugate. Then

ζF (m) ∼Q× |∆F |−
1
2 πmn± det

(
Pm(σi(ξj))1≤i,j≤n∓

)
.

Example 1.2.32. By definition ζQ(2n) = P2n(1) = ζ(2n) ∼Q× π2n. The only general result

apart from the theorems above in this direction is the Klingen-Siegel theorem. For totally real

fields F , one has

ζF (2n) ∼Q×

π2r1n

|∆F |
1
2

.

Note also that for n = 1 we recover the classical Dedekind formula we encountered before:

Ress→1(ζF (s)) =
πr2 · 2r1+r2 · hF

w · |∆F |
1
2

RF ,

where hF is the class number of F , RF the classical regulator known from standard number

theory, and w the number of roots of unity in F . �

We close this section with an overview of a more general and conceptional approach to

Bloch groups, namely via Goncharov’s motivic complexes presented in [Gon95a]. Note that

with Gn(F ) := Z[F×]/C∗
n(F ) the definition of Am(F ) can be written as

Am(F ) = ker
(Z[F ]

ι→ F× ⊗ Z[F ]/C∗
m−1(F )

)

,

where ι is defined by [x] 7→ x ⊗ [x] and [0] 7→ 0. Since βmC∗
m(F ) = 0, we can also write

Bm(F ) = ker
(

Gm(F )
βm→ Gm−1(F ) ⊗ F×

)

with a map βm induced by ι. Note that G2(F ) = B2(F ) and that G3(F ) = B3(F ). More
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generally, if we define

Rn(F ) := {{∞}, {0}} ∪ {ξ(0) − ξ(1) | |ξ(t) ∈ An(F (t))},

then Goncharov shows that βm(Rm(F )) = 0 so that one gets a map

βm : Gm(F ) → Gm−1(F ) ⊗ F×,m ≥ 3, β2 : G2(F ) → Λ2F×,

where we have βk(x1 ∧ . . . ∧ xm−k ⊗ [x]) = x1 ∧ . . . ∧ xm ∧ x ⊗ [x] except for the last degree,

where β2 is given by β(x1 ∧ . . . ∧ xm−2 ⊗ [x]) = x1 ∧ . . . ∧ xm−2 ∧ x ∧ (1 − x).

Additionally, we have βm ◦ βm−1 = 0 for all n so that there is a complex

Γ(m,F ) :Gm(F )
βm→ F× ⊗ Gm−1(F )

βm−1→ Λ2F× ⊗ Gm−2(F )
βm−2→ . . .

. . .
β3→ Λm−2F× ⊗ G2(F )

β2→ ΛmF×,

The cohomology at the first degree is immediately recognized as Bm(F ). In general, one has

the following expectation:

Conjecture 1.2.33 (Goncharov [Gon95b]). The rational motivic cohomology of a field can

be computed as the homology of Goncharov’s complex: H iΓ(n,F ) ⊗Q ≃ grγ
nK2n−i(F ) ⊗Q.

Further, the composition grγ
nK2n−1(C) ⊗ Q → H1(Γ(n,C)) ⊗ Q Pn,C−→ R is a nonzero

rational multiple of the Borel regulator.

Remark 1.2.34. As a consequence of this conjecture, one would obtain a description

Km(F ) ⊗Q =
⊕

n

H2n−m(Γ(n,F ) ⊗Q),

which would lead to a generalization of the description of Milnor K–groups in terms of

symbols.

This has been achieved in the case n = 3, where Goncharov used his complex to prove

Zagier’s conjecture on ζF (3). But as already mentioned, it is not clear whether his relations

generate all functional equations of the trilogarithm. They just generate a common version

of the Bloch group B3(F ). ♦

Remark 1.2.35. Although Zagier’s conjecture is still open, there is a partial result due to

Bĕılinson– Deligne and later de Jeu (cf. remarks in [Gon95b]) stating that for a number field

F , there is a map

ln : ker(βn) ⊗Q→ K2n−1 ⊗Q
such that for any σ : F →֒ C, one has regBorel

n,F (σ ◦ ln(y)) = Pn(σ(y)) for y ∈ F . ♦
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Remark 1.2.36. In summary, one expects Goncharov’s complexes to be the weight n motivic

cohomology complexes conjectured by Bĕılinson and Lichtenbaum. In the next sections, we

present a different approach to motivic cohomology of a number field via Bloch’s higher Chow

groups, which are more practical for concrete computations, which is our ultimate goal. ♦

1.3 Motivic cohomology via Bloch’s higher Chow groups

In order to study the motivic cohomology of a number field, we choose Bloch’s candidate,

the higher Chow groups. This offers some advantages. First of all, they can be described

rather easily though they may be hard to compute in general. But since we want to find

an integral presentation of motivic cohomology, the higher Chow groups have very good

properties, namely the comparison map inducing an isomorphism for smooth schemes X:

grp
γKn(X) ⊗ Z [ 1

(n − 1)!

]

≃ CHp(X,n) ⊗ Z [ 1

(n − 1)!

]

.

In some sense, the relationship between Bloch’s Chow groups and the graded parts of algebraic

K–groups is better than a priori asserted in the conjectural framework of motivic cohomology,

because there only a rational isomorphism was expected. As mentioned in the introduction,

there is also a spectral sequence abutting to K–theory as we will see in theorem 1.3.4.

A second advantage of this approach is that there is a regulator map from higher Chow

groups to Deligne – Bĕılinson cohomology. This regulator map can be seen to generalize and

refine Borel’s regulator map from K–theory. We will give an overview of these matters later.

Our aim is to generalize ideas of H. Gangl, S. Müller-Stach and J. Zhao to present higher

Chow groups, i. e. motivic cohomology and therefore algebraic K–groups of a number

field explicitly in terms of fractional algebraic cycles modulo certain relations coming from

functional equations of polylogarithms. So let us describe Bloch’s candidates for motivic

cohomology in some detail.

1.3.1 Bloch’s higher Chow groups

Since there are many good expositions in the literature, we will only consider the cubical

version keeping in mind that Levine [Lev94] established a quasi-isomorphism to the “original”

simplicial version due to S. Bloch [Blo86].

We let

�n
F = (P1

F \ {1})n

with coordinates (z1, . . . , zn) be the algebraic standard cube with 2n faces of codimension 1,

∂�n
F =

n⋃

i=1

{(z1, . . . , zn) ∈ �n
F | zi ∈ {0,∞}},
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and faces of codimension k,

∂k�n
F =

⋃

i1<...<ik

{(z1, . . . , zn) ∈ �n
F | zi1 , . . . , zik ∈ {0,∞}}.

Definition 1.3.1. For a smooth quasi-projective variety X over F , we now let Zp(X,n) =

cp(X,n)/dp(X,n) be the quotient of the free abelian group cp(X,n) generated by integral

closed algebraic subvarieties of codimension p in X ×�n
F which are admissible (i. e. meeting

all faces of all codimensions in codimension p again – or not at all) modulo the subgroup

dp(X,n) of degenerate cycles (i. e. pull-backs of coordinate projections �n → �n−1).

These groups form a simplicial abelian group:

. . . Zr(X, 3)
→→→→ Zr(X, 2)

→→→ Zr(X, 1) →→ Zr(X, 0).

Definition 1.3.2. Bloch’s higher Chow groups CHr(X,n) are the homology groups of the

above complex, where the boundary is given by

∂ =
∑

i

(−1)i−1(∂0
i − ∂∞

i ),

and ∂0
i , ∂∞

i denote the restriction maps to the faces zi = 0 resp. zi = ∞:

CHp(X,n) := πn(Zp(X, •)) = Hn(Zp(X, •), ∂).

Theorem 1.3.3 (Friedlander, Voevodsky, [FV99]). Assume that k admits resolution of sin-

gularities and let X be a smooth quasi-projective variety over k. Then Bloch’s higher Chow

groups are isomorphic to the motivic cohomology groups:

CHp(X,n) ≃ H2p−n,p
M (X,Z).

These groups satisfy several important properties including the following (for the proofs

see [Blo86], [Blo94b], [Tot82]):

• Functoriality: The groups CH•(X, •) are covariant for proper maps and contravari-

ant for flat maps. Further, they are contravariant for all maps between smooth affine

schemes X and Y .

• Products: If X is smooth, there is a product

CHp(X, r) ⊗ CHq(X, s) → CHp+q(X, r + s).

• Homotopy invariance: For any equidimensional scheme X over a field F , we have

CH•(X,n) ≃ CH•(X ×A1
F , n).
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• Localization: If X is quasi–projective over a field F and if W ⊂ X is a closed subvariety

of pure codimension r, then one has a localization sequence:

. . . → CH•−r(W,n) → CH•(X,n) → CH•(X − W,n) → . . . .

The relevant facts and conjectures for the groups CHp(F, n) for an arbitrary infinite field

F are the following. Note that most of them are properties expected for a motivic cohomology

theory by Bĕılinson, Lichtenbaum et al. :

Theorem 1.3.4 ([BL95], [Lev94]). Let X be a smooth, quasi-projective variety of dimension

d over a field F . Let further grq
γKn(X) be the qth piece of the weight filtration of Quillen’s

K–theory of X. Then

grq
γKn(X) ⊗ Z [ 1

(n + d − 1)!

]

≃ CHq(X,n) ⊗ Z [ 1

(n + d − 1)!

]

.

Moreover, for an equidimensional scheme X over a field there is a spectral sequence

CH−q(X,−p − q) ⇒ K−p−q(X)

for p, q ∈ Z abutting to K–theory.

Theorem 1.3.5 ([EVMS02]). If R is an essentially smooth, semi-local F–algebra over an

infinite field F , then there is a surjective morphism from Milnor K–theory to the higher

Chow groups:

KM
n (R) ։ CHn(R,n), n ≥ 1.

Several people ([Blo86], [Nar89], [Tot82], and [Sus86]) have contributed to an explicit

calculation of these groups.

Theorem 1.3.6. 1. When X is a smooth variety, then

CH1(X,n) = H2−n,1
M (X,Z) =







Pic(X), n = 0,

Γ(X,O×
X ), n = 1,

0, n ≥ 2.

2. For X = Spec(F ) for a number field F and p ≥ 1 we have

CHp(F, n) = H2p−n,p
M (F,Z) =







0, p > n,

KM
p (F ), p = n,

? p < n.

The last entry is only known in very few cases, e. g.

CH2(F, 3) ≃ Kind
3 (F ) := coker(KM

3 (F ) → K3(F ))
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is known by [Sus86] and later [BL95]. But one at least hopes for the following vanishing

conjectures:

Conjecture 1.3.7 (Bĕılinson, Soulé). If X is smooth, then CHp(X,n)⊗Q = 0 for 2 ≤ 2p ≤ n.

Equivalently, H i,p
M(X,Z) ⊗Q = 0 if i < 0, or if i = 0 and p > 0.

Remark 1.3.8. This conjecture is still an open problem for p ≥ 2. Additionally, there is also

an integral version of this conjecture, which is also much less believed to be true, though it is

true for p < 2 as well. ♦

Conjecture 1.3.9. If F satisfies the rank conjecture of Suslin, e. g. if F is a number field,

then the higher Chow groups CHp(F, p + q), q ≥ 0 are generated by linearly embedded cycles,

i. e. cycles which can be parametrized via products of Möbius transforms in each coordinate.

Remark 1.3.10. The latter conjecture is a theorem of Gerdes for q = 0, 1 [Ger91], and due to

unpublished work of Elbaz-Vincent, for CH3(F, 5) ⊗ Q as well. This is the crucial fact for

the work of Gangl, Müller-Stach and Zhao. Note in particular that we do not know whether

CH3(F, 5) is generated by linearly embedded cycles before tensoring with the rationals. ♦

The approach of Gangl, Müller-Stach, and Zhao to relating Bloch groups and higher Chow

groups explicitly consists of starting with a certain fractional cycle in the Chow group which

can be transformed via reparametrization or addition of boundaries into a sum of other cycles

yielding a relation between the starting cycle and some new ones. In this way, the authors

prove the universal relations for the polylogarithms which appear in the definition of the

corresponding Bloch groups.

Having proved all of the relations occurring in the definition of the Bloch group, one

obtains a map Bm(F ) → CHm(F, 2m − 1). This is very technical and up to now only possible

modulo torsion. Then one needs to show that this map indeed induces an isomorphism

rationally, as conjectured by Zagier.

The following special fractional cycles C
(m)
a play the crucial role in all that follows. By ar-

guments presented in the next subsection, these cycles “correspond” to the mth polylogarithm

for m ≥ 2 in a way that the mapZ[F×] → Z2(F, 3), [a] 7→ C(2)
a

is supposed to induce the rational isomorphism between the Bloch group and the higher

Chow group. This fits the general philosophy that polylogarithmic elements generate motivic

cohomology groups of number fields or – more general – Shimura varieties.

We now come to the definition: Given a rational map φ : (P1
F )n → (P1

F )m, let

Zφ := φ∗((P1
F )n) ∩ �m

be the cycle associated to φ in the sense of [Ful98, sect. 1.4]. Then let x = (x1, . . . , xn) and

define

[φ1(x), . . . , φm(x)] := Z(φ1(x),...,φm(x)).
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We will use this notation in the rest of this work.

Definition 1.3.11. For a ∈ F× and every n ≥ 2 we set

C(n)
a :=

[

1 − a

xn−1
, 1 − xn−1

xn−2
, 1 − xn−2

xn−3
, . . . , 1 − x2

x1
, 1 − x1, xn−1, xn−2, . . . , x1

]

∈ Zn(F, 2n−1).

1.3.2 The Abel – Jacobi map

As we have seen, the higher Chow groups are rationally a refinement of Quillen’s algebraic

K–theory. In particular, modulo torsion they are isomorphic to graded pieces of the K–

groups. So it is natural to ask for a refined regulator map from these groups to a suitable

cohomology theory which specializes the Borel regulator. Such a regulator map was proposed

by Bloch in [Blo94a]. The suitable cohomology theory for us is Deligne – Bĕılinson cohomology

H•
D(X,Z(•)) and the corresponding map

CHp(X,n) → H2p−n
D (X,Z(p)),

is seen to be a generalization of Griffiths’ Abel – Jacobi map.

In this section we shall introduce a regulator map due to Kerr, Lewis, and Müller-Stach

[KLMS06] suitable for our purposes from Bloch’s higher Chow groups to Deligne – Bĕılinson

cohomology generalizing Bĕılinson’s regulator map, i. e. with a real-valued part coinciding

with the Bĕılinson regulator.

Therefore we start by surveying the basic definition of Deligne – Bĕılinson cohomology

H•
D(X,Z(•)) for a smooth (quasi-)projective variety X as in [EV88] and then introduce the

Abel – Jacobi map

Φp,n : CHp(X,n) → H2p−n
D (X,Z(p)) (1.3.1)

of Lewis, Müller-Stach and Kerr [KLMS06].

Remark 1.3.12. We shall work in the analytic topology and define Ωk
X to be the sheaf of

holomorphic k-forms on X. In contrast, we let Ωp,q
X∞ be the sheaf of C∞ (p, q)-forms on X and

′Ωp,q
X∞ be the sheaf of distributions over Ω−p,−q

X∞ . If we are only interested in the total degree,

we set Ωk
X∞ := ⊕p+q=kΩ

p,q
X∞ as well as D(Ωk

X∞) := ⊕p+q=k
′Ωp,q

X∞ . Finally, cohomology groups

without subscript denote Betti cohomology groups. ♦

Definition 1.3.13. Let X/C be a smooth projective variety of complex dimension m and

let A ⊆ R be a subring. Then the Deligne complex is defined asAD(p) : A(p) → OX → Ω1
X → · · · → Ωp−1

X
︸ ︷︷ ︸

=:Ω•<p
X

,

where A(p) := (2πi)pA. (Naive) Deligne cohomology is defined as the analytic hypercoho-

mology of this complex:

H i
D(X,A(p)) := Hi

an(AD(p)).
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We also need an expanded definition of Deligne cohomology for smooth quasiprojective

varieties: Let Z be of that kind with a good compactification Z with a normal crossing divisor

(NCD) E. Also recall that if µ : A• → B• is a morphism of complexes, then the cone complex

is given by

Cone(A• µ−→ B•) := A•[1] ⊕ B•,

where the differential δ : A•+1 ⊕ B• → A•+2 ⊕ B• is given by δ(a, b) = (−da, µ(a) + db).

Definition 1.3.14. Write C•(Z,A(p)) for the complex of singular C∞-chains in Z with

coefficients in A(p), and let ′Ci := C−1. Then define

′C•(Z,E,A(p)) := ′C•(Z,A(p))/ ′C•
E(Z,A(p)),

where ′C•
E(Z,A(p)) is the subcomplex of chains supported on E. Deligne homology ′H•

D(Z,A(p)),

as defined in [Jan88], is given by the cohomology of the cone complex

Cone



′C•(Z,E,A(p)) ⊕




⊕

i+j=•,i≥p

′ΩZ
∞〈E〉(Z)




ǫ−l−→ ′Ω•

Z
∞〈E〉(Z)



 [−1],

where ǫ and l are natural maps of complexes as defined in [Jan88]. In addition, we set

Ω•
Z
〈E〉 := Ω•

Z
(log E) to be the de Rham complex of meromorphic forms on Z, holomorphic

on U := Z−E, with at most logarithmic poles along E. Further Ω•
Z

∞〈E〉 := Ω•
Z
〈E〉⊗Ω•

Z
Ω•

Z
∞ .

At last, ′Ω•
Z

∞〈E〉 := Ω•
Z
〈E〉 ⊗Ω•

Z

′Ω•
Z

∞ .

Via Poincaré duality, we can now also define Deligne cohomology as the dual of Deligne

homology just introduced. For further details we refer to [KLMS06] and references therein.

The key point of this complicated construction, which we only roughly sketched, is that for

our purposes, namely computing the Deligne – Bĕılinson cohomology of the quasiprojective

variety �n as target space of the Abel – Jacobi map of [KLMS06], we can concretely describe

the cohomology groups in terms of those for a smooth projective variety. Then one can make

use of the following machinery:

There is a short exact sequence

0 → Ω•<p
X [−1] → AD(p) → A(p) → 0,

which in turn (with some work) gives another short exact sequence

0 → H2p−n−1(X,C)

F pH2p−n−1(X,C) + H2p−n−1(X,Z(p))
→ H2p−n

D (X,Z(p))

→ H2p−n(X,Z(p))
⋂

F pH2p−n−1(X,C) → 0.

Now let

CHp
hom(X,n) := ker{CHp(X,n) → H2p−n

D (X,Z(p)) → H2p−n(X,Z(p))}
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be the group of cycles in CHp(X,n) homologically equivalent to zero. Then we have an

induced regulator map

Φp,n : CHp
hom(X,n) → H2p−n−1(X,C)

F pH2p−n−1(X,C) + H2p−n−1(X,Z(p))
=: Jp,n(X),

where Jp,n(X) is called the generalized intermediate Jacobian. Topologically these Jacobians

are isomorphic to some Cm/Zn for n ≤ 2m. In order to make this map explicit, we need to

recall currents on smooth varieties.

Definition 1.3.15. An d–current on the quasiprojective variety X of complex dimension m

is a section of the sheaf ′Dd
X∞ := D(Ω2m−d

X∞ ) of distributions of C∞ forms on X.

We will associate to a given meromorphic function f ∈ C(X) the oriented (2m− 1)-chain

Tf := f−1(R−) as in [KLMS06, 5.1]. The orientation is chosen so that ∂Tf = (f) = |f0|−|f∞|.
We are interested a particular current on �n: Let

T n := Tz1 ∩ . . . ∩ Tzn a topological n–chain

and

Rn = R(z1, . . . , zn) := log(z1)d log(z2) ∧ . . . ∧ d log(zn)

+ (−1)n−1
(
2πi log(z2)d log(z3) ∧ . . . ∧ d log(zn) · δTz1

+ . . .

. . . + (2πi)n−1 log(zn) · δTz1∩...∩Tzn−1

)

∈ ′Dn−1
�n

F
.

Remark 1.3.16. Via pullback, one can pretend that T n, Rn be currents on X × �n
F . But

then one has to make sure that the cycle class Z ∈ CHp(X,n) is in real good position, i. e.

intersects the faces of the real n-cube in an admissible way. ♦

Proposition 1.3.17 ([KLMS06], Sect. 5.7). The Abel – Jacobi map Φp,n from (1.3.1) for

X = Spec(F ) is given in the following form for a cycle class [Z] ∈ CHp(F, 2p − 1):

1

(−2πi)p−1

∫

Z

R2p−1 ∈ C/Z(p) ∼= H1
D(Spec(F ),Z(p)).

Example 1.3.18. Consider a cycle class [Z] ∈ CH2(F, 3) intersecting the real 3–cube in an

admissible way. Then we have

−Φ2,3[Z] =

∫

Z∩Tz1

log(z2)d log(z3) + 2πi
∑

p∈Z∩Tz1∩Tz2

log(p) (1.3.2)

as image of the cycle class. �

Remark 1.3.19. As argued in [KLMS06], Sect. 5.7, one can show that every element in the

Bloch group B2(C) can be completed to a higher Chow cycle [Z] by adding decomposable



1.3. MOTIVIC COHOMOLOGY VIA BLOCH’S HIGHER CHOW GROUPS 31

cycles which do not contribute to the regulator of the element in question. The real part of

Φ2,3 then agrees with the Borel regulator. ♦

Remark 1.3.20. By the injectivity of the Bĕılinson regulator for number fields, checking

whether a given cycle class is torsion amounts to checking this property for the image under

the Abel – Jacobi map. However, this check might be a bit technical, since one has to provide

real transversality of the currents involved. ♦
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Chapter 2

Explicit computations in

codimension two

In this chapter we prove universal relations in CH2(F, 3) for arbitrary number fields F . As

mentioned in the introduction, D. Zagier initiated a program (extending Bloch’s results on K3

[Blo]) studying the complicated algebraic K–groups of a number field using their relation to

higher Bloch groups. Modulo torsion, the Bloch groups as introduced before are conjectured to

be isomorphic to the corresponding motivic cohomology groups, which in turn are isomorphic

to a graded piece of the algebraic K–groups. Integrally, Zagier’s program should amount to

the search for an analogous result to Suslin’s exact sequence relating the classical Bloch group

and the indecomposable part of K3.

The present chapter is based on the following ideas: Gangl and Müller-Stach in [GMS99]

use the (generalized) Totaro cycles of [BK95] corresponding to the mth polylogarithm to prove

universal relations in CHm(F, 2m − 1) for m = 2, 3 coming from functional equations of the

polylogarithms. In this way they construct a homomorphism ρ2 : B2(F ) → CH2(F, 3) which

is supposed, in view of [Sus91], [Sus86], to induce an isomorphism

ρ2 ⊗Q : B2(F ) ⊗Q ∼=→ Kind
3 (F ) ⊗Q ∼= CH2(F, 3) ⊗Q,

where Kind
3 (F ) denotes the indecomposable part of Quillen’s algebraic K–group K3(F ) de-

fined as the quotient of K3(F ) by the Milnor K–group KM
3 (F ). In order that this map to be

an isomorphism modulo torsion, one has to work out an inverse to it. Gangl and Müller-Stach

have made some remarks on these matters in [GMS99] and also have some work on this in

progress.

The new feature in this chapter is that we verify the relations in question integrally

and refine the results known modulo torsion: First of all, we prove some auxiliary relations

between cycles occurring in the complex computing the Chow group in codimension two.

Then, we are ready to prove refined versions of the relations Gangl and Müller-Stach proved

in [GMS99]. This already suffices to find a presentation of the integral motivic cohomology

33
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groups of number fields. We give some explicit generators in some interesting cases.

After that we obtain an identification of the other groups of Suslin’s exact sequence with

certain homology groups of a subcomplex of the complex computing motivic cohomology. In

this way, we can determine, whether a given cycle in CH2(F, 3) already lives in one of the

subgroups.

At the end of the chapter we obtain some more symmetric relations in the quotient

C2(F, 3)/∂C2(F, 4) reflecting the symmetry in some particular functional equations of the

dilogarithm.

2.1 The setup

Our aim is to prove some universal relations in CH2(F, 3) for an arbitrary infinite field. Unlike

Gangl/Müller-Stach we do not use the alternating cycles of Bloch and Kř́ıž since they are

only defined over Q, but simply the classical Totaro cycles [Tot82] mentioned at the end of

section 1.3.1:

Ca := C(2)
a := Z(1− a

x
,1−x,x) =

[

1 − a

x
, 1 − x, x

]

∈ Z2(F, 3).

To simplify our computations in the quotient Z2(F, 3)/∂Z2(F, 4), we divide out several

acyclic subcomplexes of Z2(F, •) consisting of cycles with a constant coordinate entry on the

right- or left-hand side:

Lemma 2.1.1. The following subcomplexes of Z2(F, •) are acyclic:

Z ′(F, •) := . . . → Z1(F, 1) ⊗ Z1(F, 3) → Z1(F, 1) ⊗ Z1(F, 2) → Z1(F, 1) ⊗ ∂Z1(F, 2) → 0

resp.

Z ′′(F, •) := . . . → Z1(F, 3) ⊗ Z1(F, 1) → Z1(F, 2) ⊗ Z1(F, 1) → ∂Z1(F, 2) ⊗ Z1(F, 1) → 0.

Proof. First, one checks that both of them are complexes. This follows at once from the fact

that both complexes are truncated versions of Z1(F, •) tensored with Z1(F, 1), which does

not change homology.

The acyclicity of both subcomplexes is essentially the acyclicity result of Nart [Nar89],

who explicitly constructs a contracting homotopy. His proof carries over literally to our

integral setting. Again the acyclicity is not changed by tensoring the whole subcomplex by

Z1(F, 1).

Remark 2.1.2. As we will see in section 2.4, dividing out both of them at once does change

the homology. ♦

From now on, we define

C2(F, •) := Z2(F, •)/Z ′(F, •),
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and use this quotient for explicit computations since the homology H3(C
2(F, •)) still computes

CH2(F, 3).

Note that there are some easy cycles in the Chow group consisting of just one element,

the cyclotomic elements: C1 is the most easy one, because ∂(C1) = (0, 1) ∈ Z2(F, 2), which

just vanishes by definition. We shall demonstrate this kind of computations done throughout

this thesis in order to make the reader familiar with them: As Ca =
[
1 − a

x , 1 − x, x
]
, we have

∂Ca = (1 − a, a) ∈ Z2(F, 2),

where the symbol on the right-hand side corresponds to the restriction of Ca to the zero of

1−a/x intersected with �2. Note that restricting Ca to zeros and poles of the other coordinate

functions does not contribute to the boundary since these points (i. e. boundaries) are not

contained in �2.

More generally nCζn
for a primitive nth root of unity – if it is contained in the field F :

∂(Cζn
) = (1− ζn, ζn) and since we divide out the subgroup Z1(F, 1)⊗∂Z1(F, 2) in degree two

of Z2(F, •), where the right factor consists of formal sums of the form
∑

i ni([aibi]− [ai]− [bi])

with ni ∈ Z and ai, bi ∈ F× for all i, it immediately follows, that

∂(nCζn
) = n∂(Cζn

) = 0 ∈ Z2(F, 2)/(Z1(F, 1) ⊗ ∂Z1(F, 2)).

When it comes to finding explicit generators for the higher Chow groups of concrete cyclotomic

fields, these n · Cζn
or combinations of them will be the canonical candidates.

These elements are called cyclotomic elements also because of their image in Deligne –

Bĕılinson cohomology: We see from formula (1.3.2) and the fact that log(1) = 0 that

Φ2,3[C1] =

∫ 1

0
log(1 − x)d log(x) = Li2(1) =

π2

6

since T1−1/x ∩T1−x = {1}. By the same argument as above, we see that nCζn
is a nullhomol-

ogous cycle in CH2(F, 3) corresponding via the regulator map to the function n · Li2(ζn).

Let us now set up the basic tools for performing calculations with algebraic cycles in

C2(F, •): splitting cycles with a product of two rational functions in one coordinate.

Remark 2.1.3. One has to care especially for the admissibility condition mentioned in the

survey on higher Chow groups (definition 1.3.1). In our setting, a fractional cycle Z =

[f(x), g(x), h(x)] is called admissible if and only if the following holds: Every zero or pole

occurring more than once among the divisors of f, g or h has to be in the preimage of 1 of

one of the other functions.

This is easy to see: an admissible cycle must intersect each face of the algebraic n-cube

properly and so no coordinate may have a zero or pole of order greater than one. It also

may not meet the intersection of two faces of the n-cube. But the condition for any cycle

stated above on the zeros and poles of a fractional cycle assures that the cycles with “bad”

intersection behavior are empty because one of the coordinates is equal to one.
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In this and in the next chapter, we have basically either used integral versions of the cycles

Gangl and Müller-Stach used, which certainly does not change admissibility, or checked the

admissibility of all cycles occurring and will not stress this point any more. The general

relations in this section are of course always valid for admissible cycles only. We note that

the admissibility condition is very strict. It is very easy to obtain cycles which turn out to be

not admissible. But relations involving inadmissible cycles are useless. This is what causes

the most severe problems in proving relations in the cubical higher Chow groups.

♦

Notation . For a rational function f , we denote by div(f) its divisor, i. e. its zeros and poles

together with their multiplicities.

Proposition 2.1.4. Let f, g, h1, h2 be rational functions of one variable x such that all cycles

occurring are admissible. Then the following identities hold in C2(F, 3)/∂C2(F, 4).

[h1(x)h2(x), f(x), g(x)] = [h1(x), f(x), g(x)] + [h2(x), f(x), g(x)]

−
∑

x0∈div(f)

±
[
z − h1(x0)h2(x0)

z − h1(x0)
, z, g(x0)

]

+
∑

x0∈div(g)

±
[
z − h1(x0)h2(x0)

z − h1(x0)
, z, f(x0)

]

,

[f(x), h1(x)h2(x), g(x)] = [f(x), h1(x), g(x)] + [f(x), h2(x), g(x)]

+
∑

x0∈div(f)

±
[
z − h1(x0)h2(x0)

z − h1(x0)
, z, g(x0)

]

,

[f(x), g(x), h1(x)h2(x)] = [f(x), g(x), h1(x)] + [f(x), g(x), h2(x)] .

Proof. Each relation is the boundary of one of the following terms:
[

z−h1(x)h2(x)
z−h1(x) , z, f(x), g(x)

]

,
[

f(x), z−h1(x)h2(x)
z−h1(x) , z, g(x)

]

,
[

f(x), g(x), z−h1(x)h2(x)
z−h1(x) , z

]

. One just has to keep in mind that

terms with a constant in the left coordinate are being divided out.

Before going on to proving something with these rules, let us examine the different types

of terms occurring in our complex C2(F, •). Note also that in addition to terms of the form

[f(x), g(x), c] for rational functions f, g and a constant c as encountered in the proposition,

there is another kind of terms with a constant coordinate possible, namely [f(x), c, g(x)].

Proposition 2.1.5. Any admissible term of the form [f(x), c, g(x)] ∈ C2(F, 3) for some

Möbius transformations f, g and a constant c ∈ F× can be expressed as a sum of terms of the

form

Z(a, c) :=

[

1 − 1 − a

x
, c, 1 − x

]

=

[
x − a

x − 1
, c, x

]

and terms with a constant in the right coordinate.

Proof. Consider a generic admissible term Z := [f(x), c, g(x)]. Under the reparametrization

x 7→ g−1(x) such a Z is mapped onto the still admissible term [f(g−1(x)), c, x]. Then by

invoking the above proposition sufficiently often, one can factor f(g−1(x)) into terms of
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the form ai−x
1−x . Note that the denominator guarantees admissibility. Again reparametrizing

x 7→ 1 − x, we produce several terms of the form Z(ai, c) for certain constants a, c and other

terms with a constant on the right.

Our next goal is to show that terms with a constant coordinate on the right from propo-

sition 2.1.4 can be expressed via the Z(a, b) as well.

Remark 2.1.6. The main motivation behind these considerations is based on computing the

images of terms with a constant in the middle or on the right under the map inducing the

Abel – Jacobi map from section 1.3.2: Pick constants a, b ∈ F× such that there is an n ∈ N
satisfying n∂Z(a, b) = n(b, a) + n(a, b) = 0. One computes:

−nΦ2,3[Z(a, b)] = n

∫ 1−a

0
log(b)d log(1 − x) = n log(a) log(b).

On the other hand let Z = [f(x), g(x), c] be admissible and such that n∂Z = 0. Then by

computing the Abel – Jacobi map, one notices that only the last term survives:

−nΦ2,3[Z] = 2πin
∑

p∈Z∩Tf(x)∩Tg(x)

log(c)(p).

From the theory of the dilogarithm function, one recognizes terms of the first kind as being the

correction term of the Rogers dilogarithm eliminating the multivalent character of Li2, while

the ones of the second kind correspond to the monodromy of the dilogarithm crossing the

branch [1,∞). For this reason, we will sometimes refer to both of these ones as “monodromy

terms” or “lower order terms”. ♦

Remark 2.1.7. The appearance of those terms in proposition 2.1.4 is the reason for the main

technical problems in the sequel. These “lower order terms” appear as soon as one tries to

prove polylogarithmic identities in the higher Chow groups and make concrete computations

with the relations quite tedious. One needs some way of eliminating them to simplify com-

putations. In codimension two, we were quite successful in eliminating technical problems,

but already in codimension three, we would still need more additional assumptions in order

to simplify the expressions. ♦

Let us return to the relation between the different terms and some more technical lemmas.

Lemma 2.1.8. The following relation holds in C2(F, 3)/∂C2(F, 4) for rational functions f

and g provided all of the terms are admissible:

[f(x), g(x), c] = − [f(x), c, g(x)] +
∑

x0∈div(f)

±Z(c, g(x0)).

Proof. The relation is just the boundary of
[

f(x), z−c
z−1 , g(x), z

]

∈ C2(F, 4).

So both kinds of cycles with one constant are related to each other. In particular, one
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trivially has [
x − a

x − b
, x, c

]

= −
[
x − a

x − b
, c, x

]

+ Z(c, a) − Z(c, b).

Favorably, the whole right hand side should be expressible in terms of the Z(a, b). Indeed:

Lemma 2.1.9. Let a, b, c ∈ F×. Then there is a cycle W ∈ C2(F, 4) whose boundary gives

rise to the following relation in C2(F, 3)/∂C2(F, 4) provided all the terms are admissible:

[f(x), c, g(x)] = −
[

1

f(x)
, c, g(x)

]

+
∑

x0∈div(g)

±
([

z − 1

z − f(x0)
, c, z

]

+ Z(c, f(x0))

)

.

Proof. Set W := −
[

z−1
z−f(x) , z, c, g(x)

]

, compute its boundary to be

[f(x), c, g(x)] +

[
1

f(x)
, c, g(x)

]

+
∑

x0∈div(g)

±
[

z − 1

z − f(x0)
, z, c

]

and then use the lemma above.

Corollary 2.1.10. With all assumptions of the lemma we have in C2(F, 3)/∂C2(F, 4):

[
x − a

x − b
, c, x

]

= Z(c,
a

b
),

Z(a, c) = Z(c, a).

Proof. One applies the lemma to calculate

[
x − a

x − b
, c, x

]

= −
[

x − b

x − a
, c, x

]

+

[
x − 1

x − a
b

, c, x

]

+ Z(c,
a

b
),

dividing the numerator and denominator of first coordinate of the second term by b, we have

= −
[

x − b

x − a
, c, x

]

+

[
xb − b

xb − a
, c, x

]

+ Z(c,
a

b
),

substituting x 7→ xb−1 in the second term gives

= −
[

x − b

x − a
, c, x

]

+

[
x − b

x − a
, c, xb−1

]

+ Z(c,
a

b
).

Splitting the second term in the last coordinate gives the first term and one term with two

constant coordinates, i. e. a negligible term. So

[
x − a

x − b
, c, x

]

= Z(c,
a

b
).



2.1. THE SETUP 39

For the second assertion use the lemma to obtain

Z(a, c) =

[
x − a

x − 1
, c, x

]

= −
[
x − 1

x − a
, c, x

]

+

[
x − 1

x − a
, c, x

]

+ Z(c, a) = Z(c, a).

In summary, [
x − a

x − b
, x, c

]

= Z(c, a) − Z(c, b) − Z(c,
a

b
). (2.1.1)

Trivially, one also derives
[

x−a
x−b , x, c

]

=
[

x−a
x− a

b

, x, c
]

by comparing the corresponding right-

hand sides. Note finally that

[
x − a

x − b
, x, c

]

+

[
x − b

x − a
, x, c

]

=

[
x − 1

x − a
b

, x, c

]

.

Corollary 2.1.11. Let a, b, c ∈ F× such that all cycles occurring are admissible, and as-

sume that F contains an nth primitive root of unity ζn. Then the following relations hold in

C2(F, 3)/∂C2(F, 4):

n

[
x − a

x − b
, x, ζn

]

= n
(

Z(a, ζn) − Z(
a

b
, ζn) − Z(b, ζn)

)

= 0.

Proof. The relation follows trivially from equation (2.1.1) and proposition 2.1.4.

Example 2.1.12. So we can express the rules for splitting cycles entirely from proposition

2.1.4 in terms of the Z–cycles:

[h1(x), h2(x), f(x)g(x)] = [h1(x), h2(x), f(x)] + [h1(x), h2(x), g(x)]

[h1(x), f(x)g(x), h2(x)] = [h1(x), f(x), h2(x)] + [h1(x), g(x), h2(x)]

+
∑

x0∈div(h1)

± (Z(h2(x0), f(x0)g(x0)) − Z(h2(x0), f(x0)) − Z(h2(x0), g(x0)))

and

[f(x)g(x), h1(x), h2(x)] = [f(x), h1(x), h2(x)] + [g(x), h1(x), h2(x)]

+
∑

x0∈div(h2)

± (Z(h1(x0), f(x0)g(x0)) − Z(h1(x0), f(x0)) − Z(h1(x0), g(x0)))

−
∑

x0∈div(h1)

± (Z(h2(x0), f(x0)g(x0)) − Z(h2(x0), f(x0)) − Z(h2(x0), g(x0))) .

We shall not use this variant any more, because one does not gain any new information

compared to proposition 2.1.4. It does show that the “defect” of a term to be multiplicative in

one coordinate is given by a sum Z(a, bc) − Z(a, b) − Z(a, c) for some constants a, b, c ∈ F×

or by a monodromy term of the dilogarithm in the sense of remark 2.1.6. �

In the sequel, we will make use of one more trick: Permuting coordinate entries:
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Lemma 2.1.13. Let f, g, h be rational functions in one variable, and let all of the cycles be

admissible. Then the following identities hold in C2(F, 3)/∂C2(F, 4):

[f(x), g(x), h(x)] = − [f(x), h(x), g(x)] +
∑

x0∈div(f)

±Z(h(x0), g(x0)),

[f(x), g(x), h(x)] = − [g(x), f(x), h(x)] +
∑

x0∈div(g)

±Z(f(x0), h(x0)),

[f(x), g(x), h(x)] = − [h(x), g(x), f(x)] +
∑

x0∈div(f)

±Z(h(x0), g(x0))

−
∑

x0∈div(g)

±Z(f(x0), h(x0)) +
∑

x0∈div(h)

±Z(f(x0), g(x0)).

Proof. Compute the boundary of
[

f(x), z−g(x)
z−1 , h(x), z

]

for the first,
[

z−f(x)
z−1 , g(x), z, h(x)

]

for

the second, and
[

z−f(x)
z−1 , g(x), h(x), z

]

and
[

z−g(x)
z−1 , h(x), z, f(x)

]

for the last relation.

Example 2.1.14. The following relations hold in C2(F, 3)/∂C2(F, 4):

[

1 − a

x
, x, 1 − x

]

= −Ca + Z(a, 1 − a).

So we can define

C̃a :=
[

1 − a

x
, 1 − x, x

]

−
[

1 − a

x
, x, 1 − x

]

,

and see that C̃a = 2Ca − Z(a, 1 − a), in particular C̃1 = 2C1. We shall use this variant of

terms in C2(F, 3)/∂C2(F, 4) later on. They play the role of the Rogers dilogarithm: The image

of C̃a under the map inducing the Abel – Jacobi map (1.3.2) is easily seen to be 2Li2(a) +

log(a) log(1 − a), which is equal to twice the Rogers dilogarithm. Expressing relations for the

dilogarithm in terms of these elements eliminates terms of lower order. �

Remark 2.1.15. At this point, one can see that if we had chosen a different permutation of

words in the definition of Ca, the difference would be at worst a term of the form Z(a, 1− a).

But in the sequel we will mainly specialize relations to roots of unity. This leads to all lower

order terms vanishing – at least after multiplying with an integer big enough. Therefore, a

different permutation of the coordinates of the Ca-terms leads to slightly different relations,

but up to torsion they clearly coincide. ♦

2.2 Relations

With the aid of proposition 2.1.4 we are now ready to mimic the proofs of several relations as in

[GMS99]. The ideas will be more or less the same: Starting with a suitable reparametrization

of a Totaro cycle, we break this term up into pieces which can be identified or at least glued

together to other Totaro cycles giving a relation between certain Totaro cycles and some lower

order terms. Throughout this section, F denotes an arbitrary infinite field.
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Proposition 2.2.1. For a ∈ F× − {1} the following identity holds in C2(F, 3)/∂C2(F, 4):

Ca + C1−a − C1 = Z(a, 1 − a). (2.2.1)

Proof. One easily calculates

Ca =

[
x − a

x
, 1 − x, x

]

=

[
x − a

x − 1
, 1 − x, x

]

+

[
x − 1

x
, 1 − x, x

]

=

[

1 − 1 − a

x
, x, 1 − x

]

+ C1.

Next one makes use of lemma 2.1.13 to see that this is equivalent to

Ca = −C1−a + Z(1 − a, a) + C1.

The claim follows from corollary 2.1.10.

Remark 2.2.2. Notice the analogy with

Li2(z) + Li2(1 − z) − Li2(1) = − log(z) log(1 − z), z ∈ C \ [1,∞),

a functional equation of the dilogarithm. ♦

Remark 2.2.3. If we rewrite this relation in terms of C̃a instead of Ca, then we see that

C̃a =

[
x − a

x
, 1 − x, x

]

−
[
x − a

x
, x, 1 − x

]

=

[
x − a

x − 1
, 1 − x, x

]

+

[
x − 1

x
, 1 − x, x

]

−
[
x − a

x − 1
, x, 1 − x

]

−
[
x − 1

x
, x, 1 − x

]

= −C̃1−a + C̃1.

This was what we expected: Earlier we remarked that the image of C̃a under the map inducing

the Abel – Jacobi map is given by the Rogers dilogarithm whereas Ca just gives the ordinary

dilogarithm. ♦

The following distribution relations are more interesting:

Proposition 2.2.4. Let a ∈ F× and assume F contains a primitive nth root of unity ζn.

Then the following relation holds in C2(F, 3)/∂C2(F, 4):

nCan = n2
n∑

j=1

C
ζj
na

+ 2

n∑

i=2

[

z −
∏i

j=1(1 − ζj
na)

z − (1 − ζi
na)

, z, an

]

. (2.2.2)

Proof. We prove the formula for n = 2, the general case follows by repetition of similar

arguments, mainly proposition 2.1.4: First note that 2Ca2 =
[

1 −
(

a
z

)2
, 1 − z2, z2

]

by the
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push-forward property of algebraic cycles (cf.[Ful98, 1.4]).

2Ca2 =

[

1 −
(a

z

)2
, 1 − z2, z2

]

=
[

1 − a

z
, 1 − z2, z2

]

+
[

1 +
a

z
, 1 − z2, z2

]

= 2
[

1 − a

z
, 1 − z, z2

]

+ 2
[

1 +
a

z
, 1 − z, z2

]

+

[
z − (1 − a2)

z − (1 − a)
, z, a2

]

+

[
z − (1 − a2)

z − (1 + a)
, z, a2

]

= 4Ca + 4C−a +

[
z − (1 − a2)

z − (1 − a)
, z, a2

]

+

[
z − (1 − a2)

z − (1 + a)
, z, a2

]

,

(2.2.3)

and the assertion in case n = 2 follows from the fact that in the quotient C2(F, 3)/∂C2(F, 4)

we have [z−a
z−b , c, z] = [ z−a

z− a
b

, c, z] for a, b, c ∈ F× and so

2Ca2 = 4Ca + 4C−a + 2

[
z − (1 − a2)

z − (1 − a)
, z, a2

]

.

For general n we have nCan =
[
1 −

(
a
z

)n
, 1 − zn, zn

]
. Then one uses prooposition 2.1.4 to split

each coordinate into linear factors. The result follows by reparametrizing appropriately.

Remark 2.2.5. Note that no Z-terms occur: The corresponding functional equation for the

dilogarithm also has no lower order terms. The other terms in proposition 2.2.4 with a

constant in the right coordinate reflect the monodromy of the dilogarithm depending on the

choice of a. ♦

Now let us turn to the five-term relation. We shall prove it with various simplifications

of the lower order terms. The first one is a refined relation of the one Gangl and Müller-

Stach proved. After that, one can use the relations from the previous subsection and some

symmetry considerations to simplify it modulo 2-torsion.

Proposition 2.2.6. Let a, b ∈ F× − {1} such that a 6= b, 1 − b. Then the following relation

holds in C2(F, 3)/∂C2(F, 4):

Va,b :=Ca(1−b)
b(1−a)

− C 1−b
1−a

+ C1−b − Ca
b

+ Ca − Z

(
1

b
,

1

1 − a

)

−
[
z − 1

z − b
, z, 1 − b

]

+

[
z − b−a

b(1−a)

z − b−a
1−a

, z,
1 − b

1 − a

]

+

[
z − 1

z − (1 − a)
, z, a

]

+

[
z − b−a

b(1−a)

z − b−a
b

, z,
a

b

]

= 0.

(2.2.4)

Proof. We mimic the proof of [GMS99] making use of the basic proposition 2.1.4. We start
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with the following reparametrization t 7→ a(1−t)
t(1−a) of Ca(1−b)

b(1−a)

:

Ca(1−b)
b(1−a)

=

[
b − t

b(1 − t)
,

t − a

t(1 − a)
,
a(1 − t)

t(1 − a)

]

=

[
b − t

b(1 − t)
,

t − a

t(1 − a)
,
a

t

]

+

[
b − t

b(1 − t)
,

t − a

t(1 − a)
,
1 − t

1 − a

]

=

[
b − t

1 − t
,

t − a

t(1 − a)
,
1 − t

1 − a

]

+

[

z − 1

z − 1
b

, z,
1

1 − a

]

+

[
b − t

b(1 − t)
,
t − a

t
,
a

t

]

+

[
b − t

b(1 − t)
,

1

1 − a
,
a

t

]

+

[
z − b−a

b(1−a)

z − b−a
b

, z,
a

b

]

−
[

z − 1

z − (1 − a)
, z, a

]

.

=

[
b − t

1 − t
,
t − a

1 − a
,
1 − t

1 − a

]

+

[
b − t

1 − t
,
1

t
,
1 − t

1 − a

]

+

[
b − t

b
,
t − a

t
,
a

t

]

+

[
1

1 − t
,
t − a

t
,
a

t

]

+

[
b − t

b(1 − t)
,

1

1 − a
,
a

t

]

+

[
z − b−a

b(1−a)

z − b−a
1−a

, z,
1 − b

1 − a

]

+

[

z − 1

z − 1
b

, z,
1

1 − a

]

+

[
z − b−a

b(1−a)

z − b−a
b

, z,
a

b

]

−
[

z − 1

z − (1 − a)
, z, a

]

we obtain after some inversions

Ca(1−b)
b(1−a)

= C 1−b
1−a

− C1−b +

[
b − t

1 − t
,
1

t
,

1

1 − a

]

+ Ca
b
− Ca

+

[
b − t

b(1 − t)
,

1

1 − a
,
a

t

]

+

[
z − b−a

b(1−a)

z − b−a
1−a

, z,
1 − b

1 − a

]

+

[
z − 1

z − b
, z, 1 − b

]

+

[

z − 1

z − 1
b

, z,
1

1 − a

]

+

[
z − b−a

b(1−a)

z − b−a
b

, z,
a

b

]

−
[

z − 1

z − (1 − a)
, z, a

]

.

At the end of the proof we also show that

[
b − t

1 − t
,
1

t
,

1

1 − a

]

+

[
b − t

b(1 − t)
,

1

1 − a
,
a

t

]

= Z

(
1

b
,

1

1 − a

)

−
[

z − 1

z − 1
b

, z,
1

1 − a

]

to conclude

Ca(1−b)
b(1−a)

= C 1−b
1−a

− C1−b + Ca
b
− Ca + Z

(
1

b
,

1

1 − a

)

+

[
z − 1

z − b
, z, 1 − b

]

−
[

z − b−a
b(1−a)

z − b−a
1−a

, z,
1 − b

1 − a

]

−
[

z − b−a
b(1−a)

z − b−a
b

, z,
a

b

]

−
[

z − 1

z − (1 − a)
, z, a

]

.
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So it remains to show the following:

[
b − t

b(1 − t)
,

1

1 − a
,
a

t

]

=

[
b − t

1 − t
,

1

1 − a
,
1

t

]

−
[

z − 1

z − 1
b

, z,
1

1 − a

]

= −
[

b − t

1 − t
,
1

z
,

1

1 − a

]

+ Z

(
1

b
,

1

1 − a

)

−
[

z − 1

z − 1
b

, z,
1

1 − a

]

.

Adding the other term
[

b−t
1−t ,

1
t ,

1
1−a

]

gives the desired result.

Remark 2.2.7. Using the C̃a-terms instead of Ca, we can again get rid of the Z-term, but

for the price of several more terms with a constant in the right coordinate. We shall use the

relation just stated and only simplify the extra terms a little in the following corollaries. ♦

Corollary 2.2.8. For a ∈ F× − {1} terms of the form
[

z−1
z−a , z, 1 − a

]

are 2-torsion in

C2(F, 3)/∂C2(F, 4).

Proof. Compute 0 = Va,b − V1−b,1−a for a, b ∈ F× − {1}, a 6= b, 1 − b to obtain

2

[
z − 1

z − a
, z, 1 − a

]

= 2

[
z − 1

z − (1 − b)
, z, b

]

.

Specializing b = −1, we obtain the result for a 6= −1, 2. But for a = 2 the result holds by

corollary 2.1.9, and for a = −1, one concludes by proposition 2.1.4

2

[
z − 1

z + 1
, z, 2

]

=

[
z − 1

z + 1
, z, 2

]

−
[
z − 1

z + 1
, z,

1

2

]
(2.1.1)

= 2Z(−1, 2) − 2Z

(

−1,
1

2

)

and by the symmetry of Z(a, b) and again (2.1.1)

= 2

[
z − 1

z − 2
, z,−1

]

.

But this expression vanishes again by corollary 2.1.11.

Corollary 2.2.9. Let a, b ∈ F× − {1} such that a 6= b, 1 − b. Then the following relation

holds in C2(F, 3)/∂C2(F, 4):

0 = Ca(1−b)
b(1−a)

−C 1−b
1−a

+ C1−b − Ca
b

+ Ca − Z(b, 1 − a)

−
[
z − 1

z − b
, z, 1 − b

]

+

[
z − b−a

b(1−a)

z − b−a
1−a

, z,
1 − b

1 − a

]

+

[
z − 1

z − (1 − a)
, z, a

]

(2.2.5)

+

[
z − 1

z − a
, z, 1 − b

]

+

[
z − b−a

b(1−a)

z − b−a
b

, z,
a

b

]

.
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Proof. Use the proposition and the fact that

Z

(
1

b
,

1

1 − a

)

= Z(b, 1 − a) +

[
z − 1

z − a
, z, 1 − b

]

.

Corollary 2.2.10. Let a, b ∈ F× − {1} such that a 6= b, 1 − b. Then the following relation

holds in C2(F, 3)/∂C2(F, 4):

2V ′(a, b) := 2Ca(1−b)
b(1−a)

− 2C 1−b
1−a

+ 2C1−b − 2Ca
b

+ 2Ca − 2Z(b, 1 − a)

+ 2

[
z − b−a

b(1−a)

z − b−a
1−a

, z,
1 − b

1 − a

]

+ 2

[
z − 1

z − a
, z, 1 − b

]

+ 2

[
z − b−a

b(1−a)

z − b−a
b

, z,
a

b

]

= 0.
(2.2.6)

Corollary 2.2.11. Let a, b ∈ F× − {1}, a 6= b, 1 − b. Then

2

[
z − 1

z − a
, z, 1 − b

]

= 2

[
z − 1

z − (1 − b)
, z, a

]

in C2(F, 3)/∂C2(F, 4).

Proof. Compute 2V ′(a, b) − 2V ′(1 − b, 1 − a).

Now we come to an inversion formula, which will be valuable afterwards.

Proposition 2.2.12. For c = a/b ∈ F× such that a, b 6= 1, a 6= b, 1 − b, b
b−1 , the following

inversion relation holds in C2(F, 3)/∂C2(F, 4):

2
(

Cc + C 1
c
− 2C1

)

= Z(a, 1 − a) + Z(b, 1 − b) + Z

(
1

a
, 1 − 1

a

)

+ Z

(
1

b
, 1 − 1

b

)

− Z

(
1

b
,

1

1 − a

)

− Z

(

b,
a

a − 1

)

− Z

(
1

a
,

1

1 − b

)

− Z

(

a,
b

b − 1

)

(2.2.7)

−
[

z − a−b
1−b

z − a−b
a(1−b)

, z,
b(1 − a)

a(1 − b)

]

−
[

z − 1

z − (1 − a)
, z, a

]

−
[

z − a−b
1−b

z − b−a
b

, z,
a

b

]

+

[
z − 1

z − b
, z, 1 − b

]

plus the additional monodromy terms

−
[

z − a−b
a(1−b)

z − a−b
1−b

, z,
1 − a

1 − b

]

−
[

z − 1

z − (1 − 1
a)

, z,
1

a

]

−
[

z − a−b
a(1−b)

z − a−b
a

, z,
b

a

]

+

[

z − 1

z − 1
b

, z, 1 − 1

b

]

−
[

z − b−a
1−a

z − b−a
b(1−a)

, z,
a(b − 1)

b(a − 1)

]

−
[

z − 1

z − (1 − b)
, z, b

]

−
[

z − a−b
1−a

z − a−b
a

, z,
b

a

]

+

[
z − 1

z − a
, z, 1 − a

]

−
[

z − b−a
b(1−a)

z − b−a
1−a

, z,
1 − b

1 − a

]

−
[

z − 1

z − (1 − 1
b )

, z,
1

b

]

−
[

z − b−a
b(1−a)

z − b−a
b

, z,
a

b

]

+

[

z − 1

z − 1
a

, z, 1 − 1

a

]

.

Proof. This is proven just as in the proof of [GMS99, Thm. 2.4]. One has only to collect all

extra terms.
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If we use our results modulo 2-torsion, then we can improve the result:

Proposition 2.2.13. For c = a/b ∈ F× such that a, b 6= 1, a /∈ {b, 1 − b, b
b−1}, the following

inversion relation holds in the quotient C2(F, 3)/∂C2(F, 4):

0 = 4
(

Cc + C 1
c
− 2C1

)

− 2Z(b, 1 − a) − 2Z(a, 1 − b)

− 2Z

(
1

b
, 1 − 1

a

)

− 2Z

(
1

a
, 1 − 1

b

)

+ 2Z(b, 1 − b) + 2Z

(
1

b
, 1 − 1

b

)

+ 2

[
z − b−a

b(1−a)

z − b−a
1−a

, z,
1 − b

1 − a

]

+ 2

[
z − 1

z − a
, z, 1 − b

]

+ 2

[
z − b−a

b(1−a)

z − b−a
b

, z,
a

b

]

+ 2

[
z − a−b

a(1−b)

z − a−b
1−b

, z,
1 − a

1 − b

]

+ 2

[
z − 1

z − b
, z, 1 − a

]

+ 2

[
z − a−b

a(1−b)

z − a−b
a

, z,
b

a

]

+ 2

[

z − a−b
a−1

z − a−b
b(a−1)

, z,
a(1 − b)

b(1 − a)

]

+ 2

[

z − 1

z − 1
a

, z, 1 − 1

b

]

+ 2

[

z − a−b
a−1

z − a−b
a

, z,
b

a

]

+ 2

[

z − b−a
b−1

z − b−a
a(b−1)

, z,
b(1 − a)

a(1 − b)

]

+ 2

[

z − 1

z − 1
b

, z, 1 − 1

a

]

+ 2

[

z − b−a
b−1

z − b−a
b

, z,
a

b

]

.

(2.2.8)

Proof. Compute 2V ′(a, b)+2V ′( 1
a , 1

b ) and subtract (2Cb +2C1−b−2C1−Z(b, 1−b))+(2C 1
b
+

2C1− 1
b
− 2C1 − 2Z

(
1
b , 1 − 1

b

)
and then add the corresponding expression with a and b inter-

changed. Finally use (2.1.1) when needed.

Remark 2.2.14. Using corollary 2.2.11, this formula can still be improved noting that in

C2(F, 3)/∂C2(F, 4) we have

[

z − 1

z − 1
a

, z, 1 − 1

b

]

=

[
z − 1

z − a
, z, 1 − b

]

−
[
z − 1

z − a
, z,−b

]

for every allowed combination of a, b. This cancels several of the extra terms in the middle

columns but gives new ones. So we do not pursue this here.

It is also possible to use the multiplicativity of the Z-terms (2.1.1) in order to have one

Z-term, Z(ab, ab), only at the end resembling the functional equation of the dilogarithm, but

this again produces several terms with a constant in the right coordinate. Therefore, we shall

not make this explicit. ♦

2.3 Application to number fields

In this section, we use the relations from the preceding section in combination with the Abel –

Jacobi map introduced earlier to find explicit generators for the Chow groups of some number

fields. The strategy is the following:
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According to the general philosophy of cyclotomic elements generating motivic cohomology

groups, we shall try to use the relations from the last section to find (cyclotomic) elements in

the Chow group which are n-torsion if the Chow group has a summand of order n. With the

help of the Abel – Jacobi map, in particular with its injectivity, we can test if the order of a

given cycle is at least n. The combination of both results assures that the order of the cycle

in question is exactly n so that it is a generator of a summand of order n of the Chow group.

Note that by Bloch’s result presented in example 1.2.14, we already know cycles generating

the free part of the codimension two Chow groups of cyclotomic fields. The interesting task

is to find generators of the torsion part.

Luckily, the orders of the algebraic K3 of local and global fields are well-known abstractly.

Let us recall some key results from [Wei05]:

Theorem 2.3.1. [Wei05, Thm. 0.1] Let F be a number field with r1 real and r2 conjugate

pairs of complex embeddings, and let OS be the ring of S-integers for some multiplicative

subset S of prime ideals in the ring of integers OF of F . Then K3(OS) ∼= K3(F ). Further,

K3(F ) ∼=
{Zr2 ⊕ Z/w2(F )Z, F is totally imaginary,Zr2 ⊕ Z/2w2(F )Z⊕ (Z/2Z)r1−1, F has a real embedding,

where the integer w2(F ) is defined as follows: Let F be a separable closure of F and

G = Gal(F/F ) be the absolute Galois group. The abelian group µ of all roots of unity in F

is known to be a G-module with the action

G × µ → µ, (g, ζ) 7→ g(ζ).

We write µ(2) for the abelian group µ made into a G-module by letting g ∈ G act on µ as

ζ 7→ g2(ζ). If F is a global or local field, then it is proved in [Wei05, cor. 2.3.1] that the

group µ(2)G on invariants is a finite group with its order denoted by w2(F ).

This quantity can be computed explicitly using the results cited in [Wei05]. First of all,

according to proposition 2.3 in loc. cit., there is a decomposition:

w2(F ) =
∏

ℓ prime

w
(ℓ)
2 (F ), w

(ℓ)
2 (F ) := max{ℓν |Gal(F (µℓν )/F ) has exponent 2},

with w
(ℓ)
2 (F ) := ℓ∞ in case there is no maximum. According to corollary 2.3.1, loc. cit.,

for a global or local field F , the numbers w2(F ) are finite for all i. Thus one only needs

to determine the factors w
(ℓ)
2 (F ) which are not equal to 1 to determine the whole number

w2(F ). This can be done with the help of the following results. Recall that a field F is called

non-exceptional if Gal(F (µ2ν )/F ) is cyclic for every ν and exceptional otherwise.

Proposition 2.3.2. [Wei05, prop. 2.7] Fix a prime ℓ 6= 2, and let F be a field of character-

istic 6= ℓ. Let s be maximal such that F (µℓ) contains a primitive ℓsth root of unity. Then if

r = [F (µℓ) : F ] and t = logℓ(2), the numbers w
(ℓ)
2 := w

(ℓ)
2 (F ) are:
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1. if µℓ ∈ F then w
(ℓ)
2 = ℓs+t,

2. if µℓ /∈ F and 2 ≡ 0 (r) then w
(ℓ)
2 = ℓs+t,

3. if µℓ /∈ F and 2 6≡ 0 (r) then w
(ℓ)
2 = 1.

Proposition 2.3.3. [Wei05, prop. 2.8] Let F be a field of characteristic 6= 2. Let s be

maximal such that F (
√
−1) contains a primitive 2ath root of unity. Then the 2-primary

numbers w
(2)
2 := w

(2)
2 (F ) are:

1. if
√
−1 ∈ F then w

(2)
2 = 2s+1,

2. if
√
−1 /∈ F , then w

(2)
2 =

{

2s+1, F is exceptional,

2s, F is non-exceptional.

As remarked in [Wei05, p.7], the integer w2(F ) is always divisible by 24. Real quadratic

number fields are especially easy: One can show for every square-free integer D > 0 that

w2(Q(
√

D)) = 24k with k = D in case D ∈ {2, 5} and k = 1 else. This is why we chose

these two extraordinary number fields among our explicit examples. The result is an easy

consequence of reinterpreting w2(F ) as w2(F ) = 2
∏

ℓ prime ℓn(ℓ), where n(ℓ) is equal to the

maximal non-negative integer such that F contains Q(ζℓn + ζ̄ℓn).

In Weibel’s article it is remarked that Bass and Tate have proved the isomorphism

KM
3 (F ) ∼= (Z/2Z)r2 ,

and by results of Merkurjev and Suslin one knows that this group injects into the Quillen

K–group so that one can in principle compute the indecomposable K3 of a given number

field abstractly. We are now going to determine explicit generators of the K–groups, i. e. of

higher Chow groups of some number fields, especially for some of those, whose torsion part

is not of order 24; this is already covered by the first example, which we are going to discuss

next.

2.3.1 CH2(Q, 3)

Let us start with an easy example. By the work of Lee and Szczarba [LS76] and Suslin [Sus86]

we know that CH2(Q, 3) ∼= Kind
3 (Q) ∼= (Z/48Z)/(Z/2Z) ∼= Z/24Z.

There are the cyclotomic elements C1 and C−1 in the Chow group. We already know

from the distribution relation for n = 2 that 2C1 = −4C−1 ∈ CH2(Q, 3). Now we use the

inversion relation to obtain a second relation between C1 and C−1. For this we specialize by

setting b = −a. Noting that for each five-term relation the last two extra terms are 2-torsion,
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we use twice (2.2.7) and forget these terms at once:

8C−1 − 8C1 = 2Z

(

−a,
a

a − 1

)

+ 2Z

(

−1

a
,

1

1 − a

)

+ 2Z

(
1

a
,

1

1 + a

)

+ 2Z

(

a,
a

1 + a

)

+ 2Z

(

−1

a
, 1 +

1

a

)

+ 2Z

(
1

a
, 1 − 1

a

)

+ 2Z(−a, 1 + a) + 2Z(a, 1 − a)

− 2

[

z − 2a
1+a

z − 2
1+a

, z,
1 − a

1 + a

]

− 2

[

z − 2
1+a

z − 2a
1+a

, z,
1 − a

1 + a

]

− 2

[

z − 2a
a−1

z − 2
1−a

, z,
1 + a

1 − a

]

− 2

[

z − 2
1−a

z − 2a
a−1

, z,
1 + a

1 − a

]

.

(2.3.1)

Since the admissible cycle

[

z−1
z−x−a

x−b

, z, x, c

]

∈ C2(F, 4) bounds to

[
x − a

x − b
, x, c

]

+

[
x − b

x − a
, x, c

]

−
[

x − 1

x − a
b

, x, c

]

= 0 ∈ C2(F, 3)/∂C2(F, 4),

we can further simplify:

8C−1 − 8C1 = 2Z

(

−a,
a

a − 1

)

+ 2Z

(

−1

a
,

1

1 − a

)

+ 2Z

(
1

a
,

1

1 + a

)

+ 2Z

(

a,
a

1 + a

)

+ 2Z

(

−1

a
, 1 +

1

a

)

+ 2Z

(
1

a
, 1 − 1

a

)

+ 2Z(−a, 1 + a) + 2Z(a, 1 − a)

+ 2

[
z − 1

z − a
, z, 1 + a

]

− 2

[
z − 1

z + a
, z, 1 − a

]

.

(2.3.2)

Unfortunately, we do not have any information about the orders of the terms on the right-

hand side in general. But we have freedom of choice for the parameter a. If we choose the

constants of the extra terms on the right hand side resp. one of the constants in the Z–terms

to be a root of unity, we can control the order of the extra terms. In order to be able to

choose suitable constants, the following theorem due to Levine helps:

Proposition 2.3.4 ([Lev89], cor. 4.6). Let E be an arbitrary field and F an extension of E.

Then the map Kind
3 (E) → Kind

3 (F ) induced by the inclusion E →֒ F is injective.

Since we know that Kind
3 (E) ∼= CH2(E, 3), this result can be applied in the following

way: Returning to equation (2.2.8), we specialize further by setting a = i :=
√
−1 to deduce

a second relation between C1 and C−1. Combining this relation with 2C1 = −4C−1 from the

distribution relation, we obtain a relation of the form nC1 = 0 ∈ C2(F, 3)/∂C2(F, 4) for some

n. This n is an upper bound of the order of C1 ∈ CH2(Q(i), 3). This bound cannot be lower
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in CH2(Q, 3) by the proposition above.

8C−1 − 8C1 = 2Z

(

i,
1 + i

2

)

+ 2Z

(

−i,
1 − i

2

)

+ 2Z(−i, 1 + i) + 2Z(i, 1 − i)

+ 2

[
z − 1

z − i
, z, 1 + i

]

− 2

[
z − 1

z + i
, z, 1 − i

]

.

Since terms of the form [•, •, ζ] for a primitive n-th root of unity are n-torsion, and since

2
[

z−1
z−i , z, 1 + i

]

−2
[

z−1
z+i , z, 1 − i

]

= 2
[

z−1
z−i , z, 1+i

1−i

]

, the following terms survive multiplication

by 2:

16C−1 − 16C1 = 4Z

(

i,
1 + i

2

)

+ 4Z

(

−i,
1 − i

2

)

+ 4Z(−i, 1 + i) + 4Z(i, 1 − i).

Now we make use of (2.1.1) several times to obtain:

16C−1 − 16C1 = 4Z(i, 1) + 4Z(−i, 1) = 0.

So if we combine Levine’s result with the relation 2C1 = −4C−1 coming from the distribution

relation, we immediately see that

24C1 = 48C−1 = 0 ∈ CH2(Q(i), 3),

and because of the injectivity proved in Levine’s theorem, it is clear that C1 must be 24-torsion

in CH2(Q, 3) as well. Computing the image of C1 under the Abel – Jacobi map from equation

(1.3.2) to be Li2(1) = π2

6 , which is an element of order 24 in H1
D(Spec(Q),Z(2)) = C/(4π2Z).

Since we also know that the order of the Chow group is exactly 24, this makes C1 a generator

of CH2(Q, 3). Thus we have proved:

Proposition 2.3.5. The group CH2(Q, 3) ∼= Z/24Z is generated by the cycle C1 ∈ CH2(Q, 3).

2.3.2 CH2(Q(i), 3)

Proposition 2.3.6. The torsion part of the group CH2(Q(i), 3) ∼= Z⊕Z/24Z (cf. [Wei05])

is generated by the cycle C1 ∈ CH2(Q(i), 3) The free part is generated by 4Ci or equivalently

by 4C−i.

Proof. The first part is clear by what we have seen in the last paragraph and the second

assertion follows from the fact that ∂(Ci) = (1− i, i) so that not Ci but 4Ci ∈ CH2(Q, 3) and

further that the image of 4Ci under the Abel – Jacobi map has a non-vanishing imaginary

part indicating that 4Ci is non-torsion in the Chow group. The same reasoning applies to

C−i.

Remark 2.3.7. The group CH2(Q(ζ3), 3) ∼= Z2 ⊕ Z/24Z is treated analogously: By Levine’s

result C1 can be chosen as generator of the torsion part of CH2(Q(ζ3), 3).
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The free part of the Chow group is generated by 3Cζ3 respectively 3Cζ2
3

as can be seen by

computing the Abel – Jacobi map again. ♦

Remark 2.3.8. Consulting Weibel’s article again, especially propositions 2.7 and 2.8, one can

compute the numbers w2(F ) for number fields rather easily and one can also see that the

number very often is equal to 24. The theorem of Levine 2.3.4 combined with the Abel

– Jacobi map of Kerr, Lewis and Müller-Stach implies that whenever the torsion part of

CH2(F, 3) for a number field F has order 24, it is generated by C1. ♦

2.3.3 CH2(Q(ζ5), 3)

A number field with a more interesting Chow group is treated in this example: We are looking

for a generator of the torsion part of the second higher Chow group with order equal to 120.

We use the distribution relation for the fifth roots of unity:

5C1 = 25C1 + 25Cζ5 + 25Cζ2
5

+ 25Cζ̄2
5

+ 25Cζ̄5

and using that 24C1 = 0

−150(Cζ5 + Cζ̄5)) = 150(Cζ2
5

+ Cζ̄2
5
)).

Now we use the inversion relation (2.2.7) with a = ζ3
5 , b = ζ2

5 : We can already simplify the

relation a little: Terms with a fifth root of unity in the right coordinate are 5-torsion, while

terms of the form
[

z−1
z−a , z, 1 − a

]

are 2-torsion. Note also that (
1−ζ3

5

1−ζ2
5
)10 = 1. So we multiply

the entire relation by 10 and get

20Cζ5 + 20Cζ̄5 − 16C1 = 10
(
Z
(
ζ3
5 , 1 − ζ3

5

)
+ Z

(
ζ2
5 , 1 − ζ2

5

)
+ Z

(
ζ̄3
5 , 1 − ζ̄3

5

)

+Z
(
ζ̄2
5 , 1 − ζ̄2

5

)
− Z

(

ζ̄2
5 ,

1

1 − ζ3
5

)

− Z

(

ζ2
5 ,

ζ3
5

ζ3
5 − 1

)

− Z

(

ζ̄3
5 ,

1

1 − ζ2
5

)

− Z

(

ζ3
5 ,

ζ2
5

ζ2
5 − 1

))

.

Remark 2.3.9. Note that we have already settled the admissibility of Z(a, b) for arbitrary

a, b ∈ F×. So one does not need to care when specializing to some primitive roots of unity. ♦

Now one applies equation (2.1.1) several times and keeps in mind that terms with an nth

root of unity in the rightmost coordinate are n-torsion:

20Cζ5 + 20Cζ̄5
− 16C1 = 10Z

(

ζ̄2
5 ,

1 − ζ3
5

1 + ζ3
5

)

+ 10Z

(

ζ2
5 ,

1 + ζ2
5

1 − ζ2
5

)

+ 10Z

(

ζ̄3
5 ,

1 − ζ2
5

1 + ζ2
5

)

+ 10Z

(

ζ3
5 ,

1 + ζ3
5

1 − ζ3
5

)

.
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Let us use (2.1.1) again to see that Z
(

ζ̄3
5 ,

1−ζ2
5

1+ζ2
5

)

= Z
(

ζ2
5 ,

1−ζ2
5

1+ζ2
5

)

+ Z
(

−1,
1−ζ2

5

1+ζ2
5

)

and analogously for

ζ̄2
5 in the first coordinate:

= −10Z

(

−1,
1 − ζ3

5

1 + ζ3
5

)

− 10Z

(

−1,
1 − ζ2

5

1 + ζ2
5

)

= −10Z

(

−1,
(1 − ζ3

5 )(1 + ζ̄3
5 )

(1 − ζ̄3
5 )(1 + ζ3

5 )

)

= −10Z(−1, 1) = 0.

Putting this together, we conclude that 60(Cζ5 + Cζ̄5) = 0 ∈ C2(F, 3)/∂C2(F, 4) so that in

the end

−300(Cζ5 + 60Cζ̄5) = 300(Cζ2
5

+ 60Cζ̄2
5
) = 0.

Remembering that Cζ5 /∈ CH2(Q(ζ5), 3), but 5Cζ5 ∈ CH2(Q(ζ5), 3), we can deduce that the

higher Chow cycle 5(Cζ5 + Cζ̄5) or equivalently 5(Cζ2
5

+ Cζ̄2
5
) is 60-torsion.

Using the Abel – Jacobi map (1.3.2) we compute the image of this cycle in Deligne –

cohomology H1
D(Spec(Q(ζ5)),Z(2)) ∼= C/4π2Z to be π2/15 so that the order of this cycle is

exactly 60. Remembering that C1 ∈ CH2(Q(ζ5), 3) is of order 24, we deduce analogously to

the former examples:

Proposition 2.3.10. The torsion part of the group CH2(Q(ζ5), 3) ∼= Z2 ⊕Z/120Z is gener-

ated by C1 + 5(Cζ5 + Cζ̄5) ∈ CH2(Q(ζ5), 3).The free part is generated by 5Cζ5 and 5Cζ2
5
.

Remark 2.3.11. The generators of the free part of the Chow group are not unique in the

following sense: Note that the inversion relation implies that Totaro cycles with conjugate

pairs of roots of unity as their arguments are equal modulo torsion. Therefore we can also

choose 5Cζ3
5

and 5Cζ4
5

as generators. Only the independence of the roots of unity is important.

♦

Remark 2.3.12. By standard class field theory one knows thatQ(
√

5) →֒ Q(ζ5) is the maximal

real subfield. One may ask for a generator of the higher Chow group of the former field coming

from a generator of the higher Chow group of the latter field.

Unfortunately, there seems to be no canonical way of constructing such a generator. One

knows by the theorem of Levine or the formal property of the higher Chow groups to allow

Galois descent that taking Galois conjugates of the generators of CH2(Q(ζ5), 3) and pushing

them forward to CH2(Q(
√

5), 3) via the canonical inclusion Q(
√

5) →֒ Q(ζ5) that there is a

linear combination of cycles in CH2(Q(
√

5), 3) generating this group equivalent to the ones

that come descent from CH2(Q(ζ5), 3), but there is no obvious way of constructing them.

For example, one can make use of the Abel – Jacobi map once again to check that the

image of the cycle

(C 1
2
(
√

5−1) − C 1
4
(
√

5−1)2) ∈ CH2(Q(
√

5), 3)

in Deligne – Bĕılinson cohomology is equal to π2/30 showing that the order of this cycle is at

least 120. In accordance with the result above on the cyclotomic field containing this quadratic

field, its order must be equal to 120 turning it into a generator of CH2(Q(
√

5), 3). However,
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without the aid of the relations among special values of the dilogarithm from [Lew82] and the

regulator map of [KLMS06] to determine the order of explicit elements in the Chow group,

there would be no way of detecting cycles of this kind. ♦

2.3.4 CH2(Q(ζ8), 3)

As a last example we consider another cyclotomic field, namely Q(ζ8), containing three

quadratic subfields. In order to find a generator of its Chow group, we shall start with a

distribution relation again:

8C1 = 64
(

Cζ8 + Ci + Cζ3
8

+ C−1 + Cζ5
8

+ C−i + Cζ7
8

+ C1

)

.

Using the distribution relation for the fourth roots of unity, i. e.

4C1 = 16(Ci + C−1 + C−i + C1),

we deduce – using 24C1 = 0 again:

−8C1 = 64
(

Cζ8 + Cζ3
8

+ Cζ5
8

+ Cζ7
8

)

−192(Cζ8 + Cζ7
8
) = 192(Cζ3

8
+ Cζ5

8
).

Let us now try to relate the terms in brackets using the inversion relation and some auxiliary

relations between terms with a constant on the right. Note in particular that we already

multiplied by 8 in order to kill torsion terms:

16Cζ8 + 16Cζ7
8
− 8C1 = 8Z(ζn

8 , 1 − ζn
8 ) + 8Z

(
ζn−1
8 , 1 − ζn−1

8

)
+ 8Z

(
ζ̄n
8 , 1 − ζ̄n

8

)

+ 8Z
(
ζ̄n−1
8 , 1 − ζ̄n−1

8

)
− 8Z

(

ζ̄n−1
8 ,

1

1 − ζn
8

)

− 8Z

(

ζn−1
8 ,

1

1 − ζ̄n
8

)

− 8Z

(

ζ̄n
8 ,

1

1 − ζn−1
8

)

− 8Z

(

ζn
8 ,

1

1 − ζ̄n−1
8

)

− 8

[
z − 1

z − ζn
8

, z, 1 − ζn−1
8

]

− 8

[
z − 1

z − ζn−1
8

, z, 1 − ζn
8

]

.

Now let us simplify the terms above:

16Cζ8+16Cζ7
8
− 8C1 = −8Z

(
ζn
8 , (1 − ζn

8 )(1 − ζ̄n−1
8 )

)
− 8Z

(
ζ̄n
8 , (1 − ζ̄n

8 )(1 − ζn−1
8 )

)

− 8Z
(
ζn−1
8 , (1 − ζn

8 )(1 − ζ̄n−1
8 )

)
− 8Z

(
ζ̄n−1
8 , (1 − ζ̄n

8 )(1 − ζn−1
8 )

)

− 8

[
z − 1

z − ζn
8

, z, 1 − ζn−1
8

]

− 8

[
z − 1

z − ζn−1
8

, z, 1 − ζn
8

]

= −8Z
(
ζn
8 , (1 − ζn

8 )(1 − ζ̄n−1
8 )

)
− 8Z

(
ζ̄n
8 , (1 − ζn

8 )(1 − ζ̄n−1
8 )

)
− 8Z

(
ζn
8 , ζ̄8

)

− 8Z
(
ζn−1
8 , (1 − ζn

8 )(1 − ζ̄n−1
8 )

)
− 8Z

(
ζ̄n−1
8 , (1 − ζn

8 )(1 − ζ̄n−1
8 )

)

− 8Z(ζ̄n−1
8 , ζ̄8) − 8

[
z − 1

z − ζn
8

, z, 1 − ζn−1
8

]

− 8

[
z − 1

z − ζn−1
8

, z, 1 − ζn
8

]
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and further

= −8Z(ζn
8 , ζ̄8) − 8Z(ζ̄n−1

8 , ζ̄8).

The last step follows from the fact that

−8Z(ζn
8 , (1 − ζn

8 )(1 − ζ̄n−1
8 ))−8Z(ζ̄n

8 , (1 − ζn
8 )(1 − ζ̄n−1

8 ))

= 8

[
z − 1

z − ζn
8

, z, (1 − ζn
8 )(1 − ζ̄n−1

8 )

]

= 8

[
z − 1

z − ζn
8

, z, 1 − ζ̄n−1
8

]

and analogously for the other term. Now it is easy to see that

0 = 8Z(ζn
8 , 1) = 64Z(ζn

8 , ζm
8 )

since extra terms are 8-torsion. So we conclude

128Cζ8 + 128Cζ̄8 + 16C1 = 0

or in other words

394(Cζ8 + Cζ̄8) = 0.

Again, not Cζ8 , but 8Cζ8 ∈ CH2(Q(ζ8), 3) so that the cycle 8(Cζ8 + Cζ̄8) = 8(Cζ3
8

+ Cζ̄3
8
) is

48-torsion.

Again invoking a regulator argument as in the above case, we calculate the image of this

cycle in H1
D(Spec(Q(ζ5)),Z(2)) ∼= C/4π2Z to be π2/12 so that the order of this cycle is

exactly 48.

Proposition 2.3.13. The torsion part of the group CH2(Q(ζ8), 3) ∼= Z2⊕Z/48Z is generated

by the elements {8(Cζ8 + Cζ̄8
)} ∈ CH2(Q(ζ5), 3).

Remark 2.3.14. One knows that Q(ζ8) contains three quadratic subfields, namely Q(
√

2),Q(
√
−2), and Q(i). It is easy to see that 4(Ci + C−i) ∈ CH2(Q(ζ8), 3) already lives in

CH2(Q(i), 3) and also generates this group. Unfortunately, it is far more complicated to find

generators of the other two quadratic subfields.

The idea of constructing generators is the following: One considers Gal(Q(ζ8) |Q(
√
±2))

and take Galois conjugates of the generators of the higher Chow group of the cyclotomic field.

A descent argument as above ensures that there is a cycle in the quadratic subfield generating

its higher Chow group. In practice, this is not constructive. But with the help of [Lew82]

again, one finds that

2C(
√

2−1)4 − 12C(
√

2−1)2 + 8C√
2−1 = C1.

Indeed, half of the left hand side is a cycle in CH2(Q(
√

2), 3) having order 48, i. e. a generator

of the Chow group.

A clever linear combination of terms evaluated at algebraic arguments certainly gives a

generator of CH2(Q(
√
−2), 3). But this is not the intention of this section. ♦
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Remark 2.3.15. The above results can be explained in the following way: As one knows from

[Bor77] and [Wei05], the group K3(F ) for a number field F with r1 real and r2 pairs of

conjugate complex places is given by Kind
3 (F ) ∼= Zr2 ⊕ T , where T is a torsion group. It is

also proved in that article that the torsion part of the K–group of a cyclotomic field Q(ζp),

p an odd prime, is the same as the one of the maximal real subfield Q(ζp + ζp). Thus in

order to compute generators for the codimension two Chow group of a cyclotomic field, it

suffices to compute generators for the maximal real subfield. But for those subfields, which

we considered in the examples, there are canonical candidates expected to generate the Chow

group. ♦

2.3.5 A remark on Qp

Since our techniques apply to infinite fields, it is worth also considering p-adic fields. The idea

is quite simple. From [Wei05, Sect.5], one knows that if E is a local field with residue fieldFq of characteristic p, then the Milnor K–groups are uncountable, uniquely divisible abelian

groups for n ≥ 3. Further, they are summands of the Quillen K–groups. These in turn can

be described rather well, at least abstractly.

Proposition 2.3.16. [Wei05, Prop. 5.3] If i > 0 there is a summand of K3(E) isomorphic

to K3(Fq) ∼= Z/w2(Fq)Z, where

w2(Fq) =

{

24, q = 2, q = 3,

q2 − 1, else.

The complementary summand is uniquely ℓ-divisible for every prime ℓ 6= p, i. e., a Z(p)-module.

Since we are interested in the indecomposable part of K3(E), we have to determine the

Milnor K-group KM
3 (E). But as remarked in [Wei05, Sect. 5], this is only known to be an

uncountable, uniquely divisible abelian group. Thus we see that

Kind
3 (E) ∼= Z/w2(E)Z⊕ M,

where M denotes the quotient of a Z(p)-module by the Milnor K-group. Further, w2(E) is

divisible by 24.

Proposition 2.3.17. Let F = Qp for p = 2, 3, 5. Then there is a summand in the group

CH2(F, 3) generated by C1 ∈ CH2(F, 3) subject to the usual relations: the distribution rela-

tions (2.2.2), the five-term relation (2.2.4), and relation (2.2.1).

Proof. From the discussion above, the Chow group CH2(F, 3) of the fields in question contains

a finite direct summand of order 24. We know that C1 ∈ CH2(Q, 3) is of order 24 and by

Levine’s theorem (proposition 2.3.4) above, its order cannot decrease in any extension.

For the other p-adic fields, one might speculate that cyclotomic elements comparable to the

generators for the Chow groups of cyclotomic fields generate the Chow group. Unfortunately,
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there is no explicit regulator available in order to check whether certain elements are nontrivial

in the Chow group of a p-adic field. The Abel – Jacobi map used in this thesis for number

fields might not suffice as p-adic fields cannot be canonically embedded into C. A more

natural approach seems to be to embed p-adic fields into Cp and to prove a new regulator

formula in the p-adic setting – perhaps using Coleman integrals. But this is another direction

of research.

Therefore, we cannot and will not say anything nontrivial about Chow groups of p-adic

fields.

2.4 Detecting the Bloch group

Let us briefly return to the general setup. Our computations so far took place in the complex

Z2(F, •)/(Z1(F, 1) ⊗ Z1(F, • − 1)). We could have used the complex

Z2(F, •)/(Z1(F, • − 1) ⊗ Z1(F, 1))

as well, but we already claimed that we could not divide out both subcomplexes at one time

because the resulting quotient would not compute CH2(F, 3). Let us shed some more light

on this in the present section:

The basic proposition 2.1.4 used for proving relations in the Chow group, has a more

simple form in the quotient Z2(F, •)/
(
Z1(F, 1) ⊗ Z1(F, • − 1) + Z1(F, • − 1) ⊗ Z1(F, 1)

)
:

[h1(x)h2(x), f(x), g(x)] = [h1(x), f(x), g(x)] + [h2(x), f(x), g(x)]

[f(x), h1(x)h2(x), g(x)] = [f(x), h1(x), g(x)] + [f(x), h2(x), g(x)] (2.4.1)

[f(x), g(x), h1(x)h2(x)] = [f(x), g(x), h1(x)] + [f(x), g(x), h2(x)] .

This follows at once since we divide out the terms with a constant on the right hand side.

Thus the relations derived in the last paragraph simplify with only the Z-terms surviving

apart from the C-terms. Concretely:

Proposition 2.4.1. Let a, b, ζ ∈ F× subject to the conditions ζn = 1, a, b 6= 0, a 6= b, 1 − b,

then the following relations hold in the quotient

(
Z2(F, 3)/

(
Z1(F, 1) ⊗ Z1(F, 2) + Z1(F, 2) ⊗ Z1(F, 1)

))
/∂Z2(F, 4) :

nCan − n2
∑

ζn=1

Cζa = 0,

Ca + C1−a − C1 = Z(a, 1 − a),

Ca(1−b)
b(1−a)

− C 1−b
1−a

+ Ca
b
− C1−b + Ca = Z(1 − a, b),
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and

2
(

Ca
b

+ C b
a
− 2C1

)

= Z(a, 1 − a) + Z(b, 1 − b) + Z

(
1

a
, 1 − 1

a

)

+ Z

(
1

b
, 1 − 1

b

)

− Z(b, 1 − a) − Z

(
1

b
, 1 − 1

a

)

− Z(a, 1 − b) − Z

(
1

a
, 1 − 1

b

)

.

Proof. These relations are proved exactly as in the preceding section but using the above

equations (2.4.1) instead. Note that in the last relation, we used the proof of (2.2.6) but

starting with the five-term relation (2.2.5).

Using the basic relations (2.4.1) above, several manipulations of the additional terms in

those relations are possible, which allows us to put them into the following form reflecting

the functional equations for the dilogarithm even better: We have the variant of (2.1.1):

Z(ab, c) = Z(c, ab) =
[

1 − c

x
, ab, 1 − x

]

=
[

1 − c

x
, a, 1 − x

]

+
[

1 − c

x
, b, 1 − x

]

= Z(c, a) + Z(c, b) = Z(a, c) + Z(b, c).

Using these new facts, the last relation from above can be transformed into the following

shape:

2
(

Ca
b

+ C b
a
− 2C1

)

= Z(ab, ab).

We can even go one step further picking up the terms C̃a introduced earlier as being equal to

2Ca − Z(a, 1 − a) in the quotient C2(F, 3)/∂C2(F, 4) or even in

(
Z2(F, 3)/

(
Z1(F, 1) ⊗ Z1(F, 2) + Z1(F, 2) ⊗ Z1(F, 1)

))
/∂Z2(F, 4)

giving rise to the “homogeneous” relations

nC̃an − n2
∑

ζn=1

C̃ζa = 0,

C̃a + C̃1−a − C̃1 = 0,

C̃a(1−b)
b(1−a)

− C̃ 1−b
1−a

+ C̃a
b
− C̃1−b + C̃a = 0,

2
(

C̃a
b

+ C̃ b
a
− 2C̃1

)

= 0.

The proof of these relations consists of repeating the steps of the proofs of [GMS99] once

more noting that the Z-terms vanish as well. In the same way as in loc. cit., we can deduce

from these relations that 6C̃1 = −12C̃−1 = 0 in the quotient. But since

C̃1 =

[

1 − 1

x
, 1 − x, x

]

−
[

1 − 1

x
, x, 1 − x

]

= 2C1
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according to lemma 2.1.13, this is equivalent to 12C1 = 24C−1 = 0 in the quotient. This gives

rise to the following variant of the homogeneous relations in

(
Z2(F, 3)/

(
Z1(F, 1) ⊗ Z1(F, 2) + Z1(F, 2) ⊗ Z1(F, 1)

))
/∂Z2(F, 4) :

nC̃an − n2
∑

ζn=1

C̃ζa = 0, (2.4.2)

6
(

C̃a + C̃1−a

)

= 0, (2.4.3)

C̃a(1−b)
b(1−a)

− C̃ 1−b
1−a

+ C̃a
b
− C̃1−b + C̃a = 0, (2.4.4)

6
(

C̃a
b

+ C̃ b
a

)

= 0. (2.4.5)

Thus we can prove the first result of this section which is essentially a variant of [Cat96,

Proposition 5]:

Proposition 2.4.2. Consider the quotient of the free abelian group PF of symbols C̃ai
in

(
Z2(F, 3)/(Z1(F, 1) ⊗ Z1(F, 2) + Z1(F, 2) ⊗ Z1(F, 1))

)
/∂Z2(F, 4)

by relation (2.4.4). Then the map

φ : Z2(F, 3) → Z[F×], C̃a 7→ [a],

induces an isomorphism of groups

φ : PF ⊗ Z [1

6

]

→ B2(F ) ⊗ Z [1

6

]

.

If F = F , then both groups are integrally isomorphic.

Proof. The proof in [Cat96] can be transferred almost literally: If we allow coefficients in Z[16 ]

in PF , our variant of the five term relation (2,4,4) used to define PF can be transformed into

Cathelineau’s relation by combining it with the relations (2.4.3) and (2.4.5) Then one just

copies the proof from [Cat96].

Going one step further, we should be able to recover the Tor-group of Suslin’s exact

sequence (1.2.1) in terms of a certain homology group:

Lemma 2.4.3. There is a short exact sequence

0 → G → H3(Z
2(F, •)/(Z ′(F, •) + Z ′′(F, •))) → H3(Z

2(F, •)/Z ′(F, •)) → 0,

where G ⊂ H2(Z
2(F, •)) is given by G := {∑na,b[a] ⊗Z [b]

∣
∣a, b ∈ ∂Z1(F, 2), na,b ∈ Z}.



2.4. DETECTING THE BLOCH GROUP 59

Proof. Consider the short exact sequence

0 →Z ′′(F, •)/
(
Z ′(F, •) ∩ Z ′′(F, •)

)
→ Z2(F, •)/Z ′(F, •) →

→ Z2(F, •)/
(
Z ′(F, •) + Z ′′(F, •)

)
→ 0

(2.4.6)

inducing the long exact sequence in homology

. . . → H3

(
Z ′(F, •)

Z ′(F, •) ∩ Z ′′(F, •)

)

→ CH2(F, 3) →

→ H3

(
Z2(F, •)

Z ′(F, •) + Z ′′(F, •)

)

→ H2

(
Z ′(F, •)

Z ′(F, •) ∩ Z ′′(F, •)

)

→ . . . .

(2.4.7)

Further, consider the short exact sequence

0 → Z ′(F, •) ∩ Z ′′(F, •) → Z ′(F, •) → Z ′(F, •)/Z ′(F, •) ∩ Z ′′(F, •) → 0

with associated long exact sequence

. . . → H3(Z
′(F, •))

︸ ︷︷ ︸

=0

→H3(Z
′(F, •)/Z ′(F, •) ∩ Z ′′(F, •)) →

→ H2(Z
′(F, •) ∩ Z ′′(F, •)) → H2(Z

′(F, •))
︸ ︷︷ ︸

=0

→ . . . ,

where the vanishing of the homology groups is just the acyclicity result of Nart [Nar89]. Now

Z ′(F, •) ∩ Z ′′(F, •) in degree two is given by ∂Z1(F, 2) ⊗ ∂Z1(F, 2). Obviously, all elements

of the intersection have vanishing boundary. Further, none of them is the boundary of an

element in degree three, because Z ′(F, 3) ∩ Z ′′(F, 3) consists of terms with a constant on the

left and on the right, i. e. which are pull-backs of a coordinate projection, and so vanish by

the definition of the complex Z2(F, 3).

Can one describe the elements of G more explicitly? The condition [a] ∈ ∂Z1(F, 2) implies

that if a = a1a2 ∈ F×, then [a] − [a1] − [a2] = 0 ∈ ∂Z1(F, 2). Thus we can write elements in

∂Z1(F, 2) ⊗ ∂Z1(F, 2) in the form

∑

na1,a2,b1,b2 [a1a2] ⊗ [b1b2], a1, a2, b1, b2 ∈ Z[F×]

with the property

∑

na1,a2,b1,b2 ([a1a2] − [a1] − [a2]) ⊗ ([b1b2] − [b1] − [b2]) = 0.

There is a connection to the group TorZ1 (F×, F×)∼, the unique nontrivial extension of

the Tor-group by Z/2Z. So let us describe this group more explicitly. Choose an injective

resolution of F× of the form

I• : Z[F× × F×] → Z[F×] → F× → 0,
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where the first map is given by ([a, b]) 7→ [a] + [b] − [ab]. Then

TorZ1 (F×, F×) = H1(I• ⊗ F×) =
ker(Z[F×] ⊗ F× → F× ⊗ F×)

im(Z[F× × F×] ⊗ F× → Z[F×] ⊗ F×)
.

So there should be a bijective morphism between cycles Z ∈ Z2(F, 3) and elements of the

Tor–group, which are given by
∑

na1,a2,b[a1a2] ⊗ [b] with a1, a2, b ∈ F× and na1,a2,b ∈ Z
subject to the condition

∑

na1,a2,b([a1a2] − [a1] − [a2]) ⊗ [b] = 0.

Lemma 2.4.4. The map

Z2(F, 3) ∋
∑

na1,a2,b

[
z − a1a2

z − a1
, z, b

]

7→
∑

na1,a2,b[a1a2] ⊗ [b] ∈ Z[F×] ⊗ F×

with a1, a2, b ∈ F× induces an isomorphism

H :=

{

X ∈ Z2(F, 3) | |X =
∑

na1,a2,b

[
z − a1a2

z − a1
, z, b

]

, ∂X = 0

}

→ TorZ1 (F×, F×)

Proof. The condition ∂X = 0 is equivalent to the condition

∑

na1,a2,b (([a1a2] − [a1] − [a2]) ⊗ [b] = 0 ∈ Z2(F, 2).

Thus follows that there is a one-to-one correspondence between elements in X ∈ H and

elements in the Tor-group.

Therefore we are led to the following proposition

Proposition 2.4.5. The group TorZ1 (F×, F×)∼ can be identified with the group

G ⊂ H3

(
Z1(F, • − 1) ⊗ Z1(F, 1)

(Z1(F, • − 1) ⊗ Z1(F, 1)) ∩ (Z1(F, 1) ⊗ Z1(F, • − 1))

)

from lemma 2.4.3.

Proof. In Z2(F, 3) ⊗ Z [1
2

]
one can identify terms of the form Z(a, b) for admissible choices

of a, b ∈ F× with terms of the form [z−a
z−1 , z, b]. To see this, we copy ideas from [GMS99] and

originally from [BK95]: Let S2
∼= Z/2Z be the symmetric group with two elements acting on

Z(F, •) by permuting the rightmost two coordinates. Now define sgn : Sn → Z/2Z to be the

unique non-trivial character and also define the idempotent

Alt2 : Z2(F, •) ⊗Z [1

2

]

→ Z2(F, •) ⊗ Z [1

2

]

, Z 7→ 1

2

∑

g∈S2

sgn(g)g(Z).

One easily checks that the differential ∂ commutes with Alt2 so that there is a complex

Z(F, •) ⊗ Z [1
2

]
with a differential induced by Alt2 ◦ ∂.
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Then it is easy to see that in Z2(F, 3) ⊗ Z [1
2

]
we have

Z(a, b) =

[
x − a

x − 1
, x, b

]

,

because they just differ by a permutation of the two right coordinates. But these terms are

n-torsion in case b is an nth root of unity. In other words, modulo 2-torsion, elements of

the form
∑

na1,a2,b(Z(a1a2, b) − Z(a1, b) − Z(a2, b)) ∈ G are contained in H from the lemma

above, i. e. in Tor(F×, F×). G is the non-trivial Z/2Z – extension of Tor(F×, F×).

With these results, one can immediately determine whether a given cycle in CH2(F, 3) of

a number field is already contained in B2(F ) or the Tor-group.

2.5 More symmetric relations

Unfortunately the relations derived in section 2.2 do not reflect the symmetries of their ar-

guments. This means that given a functional equation of the dilogarithm in n terms whose

arguments are invariant under the action of the full symmetric group of order n by transla-

tion, this invariance is not preserved among the extra terms occurring in the corresponding

relation among the Totaro cycles. Consider the five-term relation (2.2.4) for example. We

cannot write it in the form
5∑

i=1

(nCqi
+ mR(qi)) = 0,

where {qi}5
i=1 denote the five arguments of the Totaro cycles, and R(qi) denotes some linear

combination of terms in C2(F, 3)/∂C2(F, 4) with a constant coordinate somewhere depending

on the argument qi.

In this section we obtain cycles in C2(F, 3)/∂C2(F, 4) symmetric in their arguments whose

image under the Abel – Jacobi map restricted to the real part coincides with functional

equations of the dilogarithm. For this we make use of the following proposition [KLMS06, p.

18]:

Proposition 2.5.1. Given any element
∑

i mi[ai] ∈ B2(C), then
∑

i miCai
∈ Z2(F, 3) for

some number field F may be completed to a higher Chow cycle Z by adding “decomposable”

elements in Z1(F, 1)∧Z1(F, 2). The real part of the image of Z under the Abel – Jacobi map

is then computed by
∑

i miD(ai) ∈ R, where D denotes the Bloch – Wigner dilogarithm.

Thus if we start with sum of Totaro cycles corresponding to a functional equation of the

dilogarithm and complete these cycles to a higher Chow cycle in a symmetric way, then the

image of this higher Chow cycle under the Abel – Jacobi map vanishes by assumption, and our

higher Chow cycle as well. In summary, we obtain a symmetric relation in C2(F, 3)/∂C2(F, 4).

This leads to a very general symmetric relation in C2(F, 3)/∂C2(F, 4) reflecting a general

functional equation of the dilogarithm.
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Let us look at some motivating examples: We let F ⊂ C be an infinite field as usual, and

consider the following functional equation of the dilogarithm. We write A := a2 − a + 1 for

some a ∈ F×. Then

Li2

(
1

A

)

+ Li2

(
(1 − a)2

A

)

+ Li2

(
a2

A

)

= lower order terms

or equivalently

D

(
1

A

)

+ D

(
(1 − a)2

A

)

+ D

(
a2

A

)

= 0.

This is a special case of functional equations of the dilogarithm whose arguments can be

expressed as roots of the equation xn(x − 1)m = t for some nonnegative integers n,m and a

constant t ∈ F×, namely

x2(x − 1) = t, t = −a2(1 − a)2

A3
.

If we set

q1(a) :=
√

A, q2(a) :=

√

A

a2
, q3(a) :=

√

A

(1 − a)2
,

then the above relation can be written in the form

3∑

i=1

Li2

(
1

q2
i

)

= lower order terms ⇐⇒
3∑

i=1

D

(
1

q2
i

)

= 0.

One notes that the symmetric group S3 generated by a 7→ 1 − a and a 7→ 1
a permutes the qi

but leaves t invariant. We can now show:

Proposition 2.5.2. Let a ∈ F× −{1,−ζ3,−ζ2
3}. Denote by {qi}3

i=1 as above the roots of the

equation x2(x − 1) = −a2(1−a)2

A3 . Then – counting indices modulo 3:

3∑

i=1

(

C 1

q2
i

−
[

z + 1
qi+1qi+2

z − 1
qi+1

, z,
1

q2
i

]

+ 2Z

(

− 1

qi
,

1

qi+1

))

= 0 ∈ C2(F, 3)/∂C2(F, 4). (2.5.1)

Proof. One easily computes the vanishing boundary of the relation above by summing up

the boundaries of the different summands and using the fact that the boundaries live in

Z1(F, 2)/(Z1(F, 1) ⊗ ∂Z1(F, 2)):

∂(C 1

q2
i

) =

(

− 1

qi+1qi+2
,

1

q2
i

)

∂

([
z + 1

qi+1qi+2

z − 1
qi+1

, z,
1

q2
i

])

=

(

− 1

qi+1qi+2
,

1

q2
i

)

−
(

1

qi+1
,

1

q2
i

)

−
(

− 1

qi+2
,

1

q2
i

)

=

(

− 1

qi+1qi+2
,

1

q2
i

)

− 2

(
1

qi+1
,− 1

qi

)

− 2

(

− 1

qi+2
,

1

qi

)
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and further

2∂Z

(
1

qi+1
,− 1

qi

)

= 2

(
1

qi+1
,− 1

qi

)

+ 2

(

− 1

qi
,

1

qi+1

)

.

This already proves the result by the proposition quoted above: The image of this cycle under

the Abel – Jacobi map is given by

3∑

i=1

D

(
1

q2
i

)

= 0

since it is just a functional equation of the dilogarithm.

Remark 2.5.3. This proof shows that in order to prove a relation in the Chow group we only

have to show that a given linear combination of terms in Z2(F, 3) is a higher Chow cycle. If

it is by construction only a completed relation corresponding to a functional equation of the

dilogarithm, then this cycle automatically vanishes in the Chow group. ♦

Proposition 2.5.4. With the same assumptions as above, the following relation holds in the

quotient C2(F, 3)/∂C2(F, 4):

0 =
3∑

i=1

(

2C
− q2

i
qi+1qi+2

+

[
z + 1

qi+1qi+2

z − 1
qi+1

, z,
1

q2
i

]

+ Z

(
1

q2
i

,
1

q2
i

)

−2Z

(
1

q2
i

,− q2
i

qi+1qi+2

)

− 2Z

(

− 1

qi
,

1

qi+1

))

.

Proof. This is a consequence of the relation above and proposition 2.2.1.

Remark 2.5.5. The extra terms needed to complete the Totaro cycles to a Chow cycle appear

to be rather ad hoc. But if we rewrite these relations in terms of the antisymmetric C̃a, then

they become rather analogous. ♦

Proposition 2.5.6. Let a ∈ F× such that a /∈ {1,−ζ3,−ζ2
3}, and let again A := a2 − a + 1.

Set again

q1(a) :=
√

A, q2(a) :=

√

A

a2
, q3(a) :=

√

A

(1 − a)2
.

Then the following relations hold in C2(F, 3)/∂C2(F, 4):

0 =

3∑

i=1

(

C̃ 1

q2
i

−
[

z + 1
qi+1qi+2

z − 1
qi+1

, z,
1

q2
i

]

+

[
z − q2

i

z − qi
, z,

1

qi+1qi+2

])

(2.5.2)

0 =

3∑

i=1

(

C̃
−

qi+1qi+2

q2
i

+

[
z + qi+1qi+2

q2
i

z + qi+1qi+2
, z,

1

q2
i

]

−
[
z − q2

i

z − qi
, z,−qi+1qi+2

q2
i

]

+

[
z + qi+1qi+2

z + qi+1
, z,

1

q2
i

])

.

(2.5.3)



64 CHAPTER 2. EXPLICIT COMPUTATIONS IN CODIMENSION TWO

Proof. As above, one only needs to compute the boundaries keeping in mind that ∂C̃a =

(1 − a, a) − (a, 1 − a).

Even the five-term relation can be simplified and written much more elegantly in the

following way:

Proposition 2.5.7. Let a, b ∈ F× be two distinct elements of a number field such that a 6= b

and ab 6= 1. Let further be

q1 := a, q2 := b, q3 := 1 − ab, q4 :=
1 − a

1 − ab
, q5 :=

1 − b

1 − ab

such that the five-term relation for the Bloch – Wigner dilogarithm,
∑5

i=1 D(qi) = 0, holds.

Then the following relation holds in C2(F, 3)/∂C2(F, 4):

0 =

5∑

i=1

(

C̃qi
−
[
z − qi−2qi+2

z − qi−2
, z, qi

])

. (2.5.4)

Proof. Making use of the identity 1 − qi = (q−1
i−1 − 1)(q−1

i+1 − 1) = qi−2qi+2, we compute the

following boundaries in Z2(F, 2)/Z1(F, 1) ⊗ ∂Z1(F, 2), which sum up to zero:

∂(C̃qi
) = (1 − qi, qi) − (qi, 1 − qi) = (qi−2qi+2, qi) − (qi, qi−2qi+2)

= (qi−2qi+2, qi) − (qi, qi+2) − (qi, qi−2),

∂

[
z − qi−2qi+2

z − qi−2
, z, qi

]

= (qi−2qi+2, qi) − (qi−2, qi) − (qi+2, qi).

Again we use the Abel – Jacobi map to determine that the image vanishes. The image of the

terms C̃qi
vanishes because it is given by the Rogers dilogarithm, which satisfies a “clean”

functional equation without extra terms.

More generally, we can prove the following theorem which can be seen as a step towards

an explicit description of a map ρ′2 : B2(F ) −→ CH2(F,3)
im(Tor(F×,F×)∼)

, namely we show how to

complete a rather general relation coming from a functional equation of the dilogarithm with

a strong inherent symmetry to a higher Chow cycle preserving the symmetry:

Proposition 2.5.8. Consider an infinite field F and a relation for the Bloch – Wigner

dilogarithm of the form s ·∑m
i=1 D(ai) = 0, s ∈ N such that there is a (not necessarily unique)

factorization of ai and 1 − ai into elements pµ ∈ F×:

ai = ±
k∏

j=1

p
n(σi(j))
σi(j)

and 1 − ai = ±
k′
∏

j′=1

p
n(σi(j′))
σi(j′)

for σ ∈ G, where G denotes a finite groups which acts on the set {ai} via permutation, and

where there are numbers k,m ∈ N; s, n(j) ∈ Z. Then we have the following relation in
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C2(F, 3)/∂C2(F, 4):

0 = s ·
m∑

i=1

(

C̃ai

+

k∑

j=2




z ∓∏j

ℓ=1 p
n(σi(ℓ))
σi(ℓ)

z − p
n(σi(j))
σi(j)

, z,±
∏

j′

p
n(σi(j′))
σi(j′)



+
∑

j with

n(σi(j))>1




z − p

n(σi(j))
σi(j)

z − pσi(j)
, z,±

∏

j′

p
n(σi(j′))
σi(j′)





∓
k′
∑

j′=1




z ∓

∏j′

ℓ=1 p
n(σi(ℓ))
σi(ℓ)

z − p
n(σi(j′))
σi(j′)

, z,±
∏

j

p
n(σi(j))
σi(j)



∓
∑

j′ with

n(σi(j′))>1




z − p

n(σi(j′))
σi(j′)

z − pσi(j′)
, z,±

∏

j

p
n(σi(j))
σi(j)











(2.5.5)

Proof. A straightforward computation as before shows that the boundaries of the lower order

terms cancel each other except for those which are canceled by the boundaries of the Totaro

cycles. Then again invoking the proposition from [KLMS06, p. 18] we see that we obtained

a relation in C2(F, 3)/∂C2(F, 4) since by assumption we started with a non-trivial element in

the Bloch group.

Remark 2.5.9. The results in this section aim at two targets. First, they show that we can

prove more symmetric relations in C2(F, 3)/∂C2(F, 4). But still this is not so easy: We only

showed that they exist. The ultimate goal would be to start with a reparametrization of a

symmetric fractional cycle in C2(F, 4), which bounds the five-term relation as stated above.

This would be a beautiful extension of the proofs of [GMS99]. Here we just give the results

without finding a way via reparametrizations and breaking up cycles in order to somehow

derive these symmetric relations.

On the other hand, one would like to have an explicit map inducing the isomorphism

B2(F ) → CH2(F, 3)

im(TorZ1 (F×, F×)∼)

and coinciding with ρ2 ⊗ Q from [GMS99] rationally. But this again seems still far away.

The functional equations we started with in the proposition are surely contained in the Bloch

group, more precisely the arguments of the dilogarithms involved. The proposition above

associates to these special elements in the Bloch group a higher Chow cycle contained in
CH2(F,3)

im(TorZ1 (F×,F×)∼
. But as we have mentioned, our cycle is not unique. Further, in order to

define a map inducing the above isomorphism, we would need to know how to associate a

cycle to every element in the Bloch group in a unique way. It is not clear how to extend our

result to the whole Bloch group. But still, it might be a starting point. ♦
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Chapter 3

Explicit computations in

codimension three

In Gangl’s and Müller-Stach’s paper and also in Zhao’s work there was some progress on a

map

ρ3 : Z[F×] → Z3(F, 5), [a] 7→ C(3)
a

being supposed to induce an isomorphism

ρ3 ⊗Q : B3(F ) ⊗Q ∼=−→ CH3(F, 5) ⊗Q
based on the one discussed for codimension two Chow groups and the corresponding Bloch

group.

In Zhao’s recent work [Zha07], the proof of the main relations of a variant of the higher

Bloch group B3(F ), namely Goncharov’s relation, has been completed. The proofs of a

distribution relation and an inversion relation were already settled modulo the three term

relation in [GMS99]. These results together with a yet to be found proof of the three-term

relation would imply the welldefinedness of the map in question.

Unfortunately, the complexity of the formulas is much higher integrally because of torsion

effects. Additionally, the relation between the higher Bloch group and the higher Chow group

is not known: There is no exact sequence comparable to the one of Suslin. Neither does one

know much about the Bloch group itself. It is not clear whether it is finitely generated.

Proving relations in the Chow group is possible by copying the proofs of Gangl, Müller-

Stach and Zhao. Of course, there are many lower order terms corresponding to monodromy

behavior of the trilogarithm. These terms make the relations in the integral setup seem far

too complicated to be used for finding generators of the Chow groups of some number fields.

But before trying to find relations, one has to look for cycles. It is not so easy to produce

cycles in the Chow group corresponding to the trilogarithm or its special values at cyclotomic

arguments. It seems to be very hard to produce anything beyond cyclotomic elements. Maybe

this is enough for some purposes, but then one cannot use the proofs of the relations from

67



68 CHAPTER 3. EXPLICIT COMPUTATIONS IN CODIMENSION THREE

literature, since they are useless for the special cyclotomic elements.

The first section of this chapter explores the setup in which computations take place.

We set up some new auxiliary relations needed for proving relations in the integral Chow

group in codimension three, and which are an extension of those used by Gangl, Müller-Stach

and Zhao. Under the assumption of the integral version of the Bĕılinson– Soulé vanishing

conjecture 1.3.7 in codimension two, there are also be several acyclic subcomplexes to be

divided out. Additionally, we obtain some technical lemmas used for computations in the

Chow group. We note that the integral Bĕılinson-Soulé conjecture is a daring assumption

whose justification is not clear at all. We close the introduction with an discussion of special

cyclotomic elements derived by M. Kerr from a general procedure sketched in [Neu88] and

the proof a series of distribution relations in C3(F, 5)/∂C3(F, 6) ⊗ Z [1
2

]
.

In the following section, we give a proof of the Kummer – Spence – relation using the

strategy of [GMS99] in C3(F, 5)/∂C3(F, 6) ⊗ Z [1
2

]
. In section three we sketch the integral

version of the proof of an inversion relation. In the fourth section we demonstrate a proof of

Goncharov’s relation in C3(F, 5)/∂C3(F, 6) ⊗ Z [1
2

]
using the strategy of [Zha07].

Remark 3.0.10. Also note that we have to care for the admissibility of all of our cycles.

Luckily, this was done before by Gangl, Müller-Stach and Zhao. Nevertheless, we checked the

admissibility of all terms and do not comment on this any more. ♦

3.1 The setup

In this section we generalize the results of the previous section to the more complicated

situation. In order to compute the codimension three Chow group of the spectrum of an

infinite field F , we need to compute the homology in degree five of the cycle complex Z3(F, •)
introduced in section 1.3.1. We are interested in special cycles parametrized by constants in

F×, which are supposed to generate the whole Chow group. In particular, we consider the

following cycles due to Bloch and Kř́ıž [BK95]

Ca := C(3)
a =

[

1 − a

y
, 1 − y

x
, 1 − x, y, x

]

∈ Z3(F, 5)

generalizing the Totaro cycles in Z2(F, 3). Note that we cannot use the alternating cycles

of [BK95]. since they can only compute the rational higher Chow groups. Finding the right

cycles in the Chow group is a rather delicate problem which we will address below.

First of all, we divide out some subcomplexes of Z3(F, •) to simplify computations as in

the last chapter:

Proposition 3.1.1. Assume the integral Bĕılinson– Soulé vanishing conjecture in the form

CH2(F, n) = 0 for n ≥ 4. Then the subcomplex generated of Z3(F, •) by the following three
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subcomplexes is acyclic:

D1(F, •) : . . . → Z1(F, 1) ⊗ Z2(F, 5) → Z1(F, 1) ⊗ Z2(F, 4) → Z1(F, 1) ⊗ ∂Z2(F, 4) → 0,

D2(F, •) : . . . → Z2(F, 2) ⊗ Z1(F, 3) → Z2(F, 2) ⊗ Z1(F, 2) → Z2(F, 2) ⊗ ∂Z1(F, 2) → 0,

D3(F.•) : . . . → Z2(F, 3) ⊗ Z1(F, 3) → Z2(F, 3) ⊗ Z1(F, 2) → Z2(F, 3) ⊗ ∂Z1(F, 2) → 0.

Proof. It is clear that Di(F, •), i = 1, 2 are constructed to be complexes. D3(F, • + 1) is only

a well-defined complex in the quotient Z3(F, • + 1)/(D1(F, •) + D2(F, • + 1) as ∂Z2(F, 3)) ⊂
Z2(F, 2). The first complex is acyclic assuming the Bĕılinson– Soulé vanishing conjecture

integrally in codimension two. This implies that D2(F, • + 1) ⊂ D1(F, •) is also acyclic.

D3(F, •) is acyclic if one uses the theorem of Nart [Nar89] proving that Z1(F, •) is acyclic.

Remark 3.1.2. One really has to stress the point that the integral version of the Bĕılinson–

Soulé conjecture for number fields is probably to restrictive. It is by no means clear that this

assumption is justified. Nevertheless it does not suffice for our purposes of finding explicit

elements in the higher Chow groups in codimension three. ♦

Thus, let us denote the quotient

Z3(F, •)
D1(F, •) + D2(F, •) + D3(F, •)

by C3(F, •) in accordance with the previous section. From the preceding discussion follows

that this complex still computes CH3(F, 5). Terms contained in one of the acyclic subcom-

plexes will be called negligible.

Now, we come back to the question which cycles to choose as generators for computations

in the Chow group: Observe that ∂Ca = [1− a
x , 1− x, a, x]− [1− a

x , 1− x, x, x]: In particular

∂C1 = [1− 1
x , 1 − x, x, x], which is not known to be zero. So one first has to find some cycles

in the Chow group whose image under the Abel – Jacobi map is a trilogarithm. This is a

torsion effect because now the C-terms do not live in the alternating cycle complex C3(F, •)
of [GMS99], any more. One can only observe that

C ′
a := [1 − a

y
, 1 − y

x
, 1 − x, y, x] − [1 − a

y
, 1 − y

x
, 1 − x, x, y]

has boundary equal to [1 − a
x , 1 − x, a, x] − [1 − a

x , 1 − x, x, a]. So ∂C ′
1 = 0 at least. But then

Cζn
has boundary [1 − ζn

x , 1 − x, ζn, x] − [1 − ζn

x , 1 − x, x, ζn]. One can show that the latter

vanishes in C3(F, •) since it lives in Z2(F, 3) ⊗ ∂Z1(F, 2), but this does not hold a priori for

the former one.

Remark 3.1.3. From this discussion we can see that it is absolutely hopeless to prove relations

in the integral Chow group CH3(F, 5), because the C-terms, i. e. Boch – Kř́ıž cycles, involved

are mostly not contained in the Chow group. To have more sensible relations, we use the

ideas from the proof of proposition 2.4.5 and let the symmetric group S2 act via permutation

of the two rightmost coordinates of an element of Z(F, •). To define this action, we need
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to consider Z(F, •) ⊗ Z [1
2

]
, whose homology computes CH3(F, 5) ⊗ Z [1

2

]
. Thus, we shall

investigate relations in the Chow group modulo 2-torsion. ♦

Remark 3.1.4. Reading [Neu88] carefully, one also recognizes Bĕılinson’s construction of cyclo-

tomic elements ℓ̃a,b(w) ∈ K2m−1(Q(ζn))⊗Q for some nth root of unity w in motivic cohomol-

ogy. In order to have the desired properties according to his conjectures, it is necessary that

c ·nm−1ℓ̃a,b(w) ∈ K2m−1(Q(ζn))⊗Q or equivalently via Zagier’s conjecture ∈ Bm(Q(ζn))⊗Q.

The constant c is not important, but the exponent, m − 1, of n is.

In our case, we have special“cyclotomic elements” n ·Cζi
n
∈ CH3(F, 5) ⊗Z [1

2

]
. But they

are not in accordance with Bĕılinson’s construction: Considered as the images of the map

B3(Q(ζn)) → CH3(Q(ζn), 5) due to Bloch and Kř́ıž [BK95], our elements have no preimages

in the Bloch group because of the well-known fact that nm−1[ζn] ∈ Bm(Q(ζn)). ♦

Remark 3.1.5. M. Kerr explained to me his special cyclotomic elements in the higher Chow

group CH3(Spec(Q(ζℓ)), 5) ⊗Q given by

Z(ζℓ) := − 1

ℓ2

[
x

x − 1
,

y

y − 1
, 1 − ζℓxy, xℓ, yℓ

]

− 1

2ℓ2

[
x

x − 1
,

1

1 − ζℓx
,
(y − xℓ)(y − x−ℓ)

(y − 1)2
, xℓy, x−ℓy

]

,

(3.1.1)

which are part of an inductive procedure sketched in [Neu88] to construct cyclotomic elements

in motivic cohomology generalizing the Bloch and Kř́ıž – cycles. One checks that these cycles

are contained in the rational Bloch group B3(Q(ζℓ)) ⊗Q, and one further shows that their

image in Deligne – Bĕılinson cohomology is given by

Φ3,5(Z(ζℓ)) = Li3(ζℓ).

The fact that the Z(ζℓ) are contained in the (rational) Bloch group is important for using them

as cyclotomic elements in motivic cohomology coming from the higher Bloch group. More

precisely from the definition one immediately observes that ℓ2Z(ζℓ) ∈ B3(Q(ζℓ))⊗Z [1
2

]
, but

ℓZ(ζℓ) /∈ B3(Q(ζℓ)) ⊗ Z [12] as requested by Bĕılinson [Bei85]. ♦

Remark 3.1.6. From a more conceptional point of view, one might interpret these problems

concerning the right cycles in the following way: The Bloch – Kř́ıž cycles C
(3)
a in codimension

three are expected to generate the whole Chow group of a number field modulo torsion. But

it seems as if they do not generate the whole group integrally as well. As we will see below in

proposition 3.1.26, Kerr’s cycles at least satisfy a distribution relation in C3(F, 5)/∂C3(F, 6)

without extra terms. This is a big advantage over the Bloch – Kř́ıž cycles, which demonstrates

their importance.

Note that it is also possible that we still need more complicated generators of the torsion

part of the Chow group than the ones of Kerr. ♦

Now one needs some rules equivalent to proposition 2.1.4.

Proposition 3.1.7. Let

[f1(y), f2(x, y), f3(x), f4(y), f5(x)]
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be an admissible cycle in projective 5-space, where all fi are rational functions and f2 is a

product of fractional linear transformations when considered as a function in the variable y.

Then the following relations hold in C3(F, 5)/∂C3(F, 6):

• Suppose additionally that one can write f1(y) = g(y) · h(y) for some rational functions
g and h. Then

[g(y)h(y), f2(x, y), f3(x), f4(y), f5(x)] =

[g(y), f2(x, y), f3(x), f4(y), f5(x)] + [h(y), f2(x, y), f3(x), f4(y), f5(x)]

−
∑

div(f2)

±
[
z − g(y(x))h(y(x))

z − g(y(x))
, z, f3(x), f4(y(x)), f5(x)

]

+
∑

div(f3)

±
[
z − g(y)h(y)

z − g(y)
, z, f2(x0, y), f4(y), f5(x0)

]

−
∑

div(f4)

±
[
z − g(y0)h(y0)

z − g(y0)
, z, f2(x, y0), f3(x), f5(x)

]

+
∑

div(f5)

±
[
z − g(y)h(y)

z − g(y)
, z, f2(x0, y), f3(x0), f4(y),

]

.

(3.1.2)

• Suppose that one can write f2(x, y) = g(x, y) · h(x, y) for some rational functions g, h.
Then

[f1(y), g(x, y)h(x, y), f3(x), f4(y), f5(x)] =

[f1(y), g(x, y), f3(x), f4(y), f5(x)] + [f1(y), h(x, y), f3(x), f4(y), f5(x)]

+
∑

div(f1)

±
[
z − g(x, y0)h(x, y0)

z − g(x, y0)
, z, f3(x), f4(y0), f5(x)

]

−
∑

div(f3)

±
[

f1(y),
z − g(x0, y)h(x0, y)

z − g(x0, y)
, z, f4(y), f5(x0)

]

−
∑

div(f5)

±
[

f1(y),
z − g(x0, y)h(x0, y)

z − g(x0, y)
, z, f3(x0), f4(y)

]

.

(3.1.3)

• Suppose that one can write f3(x) = g(x) · h(x) for some rational functions g and h.
Then

[f1(y), f2(x, y), g(x)h(x), f4(y), f5(x)] =

[f1(y), f2(x, y), g(x), f4(y), f5(x)] + [f1(y), f2(x, y), h(x), f4(y), f5(x)]

−
∑

div(f1)

±
[

f2(x, y0),
z − g(x)h(x)

z − g(x)
, z, f4(y0), f5(x)

]

+
∑

div(f2)

±
[

f1(y(x)),
z − g(x)h(x)

z − g(x)
, z, f4(y(x)), f5(x)

]

+
∑

div(f5)

±
[

f1(y),
z − g(x0)h(x0)

z − g(x0)
, z, f3(x0), f4(y)

]

.

(3.1.4)
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• Suppose that one can write f4(y) = g(y) · h(y) for some rational functions g and h.

Then

[f1(y), f2(x, y), f3(x), g(y)h(y), f5(x)] =

[f1(y), f2(x, y), f3(x), g(y), f5(x)] + [f1(y), f2(x, y), f3(x), h(y), f5(x)]

+
∑

div(f1)

±
[

f2(x, y0), f3(x),
z − g(y0)h(y0)

z − g(y0)
, z, f5(x)

]

−
∑

div(f2)

±
[

f1(y(x)), f3(x),
z − g(y(x))h(y(x))

z − g(y(x))
, z, f5(x)

]

+
∑

div(f3)

±
[

f1(y), f2(x0, y),
z − g(y)h(y)

z − g(y)
, z, f5(x0)

]

−
∑

div(f5)

±
[

f1(y), f2(x0, y), f3(x0),
z − g(y)h(y)

z − g(y)
, z

]

.

(3.1.5)

• Suppose that one can write f5(x) = g(x) · h(x) for some rational functions g and h.

Then

[f1(y), f2(x, y), f3(x), f4(y), g(x)h(x)] =

[f1(y), f2(x, y), f3(x), f4(y), g(x)] + [f1(y), f2(x, y), f3(x), f4(y), h(x)]

−
∑

div(f1)

±
[

f2(x, y0), f3(x), f4(y0),
z − g(x)h(x)

z − g(x)
, z

]

+
∑

div(f2)

±
[

f1(y(x)), f3(x), f4(y(x)),
z − g(x)h(x)

z − g(x)
, z

]

.

(3.1.6)

The choice of the sign depends on the divisor: zeros get positive signs, poles negative ones.

Proof. Compute the boundaries of
[

z−g(y)h(y)
z−g(y) , z, f2(x, y), f3(x), f4(y), f5(x)

]

,
[

f1(y), z−g(x,y)h(x,y)
z−g(x,y) , z, f3(x), f4(y), f5(x)

]

,
[

f1(x), f2(x, y), z−g(x)h(x)
z−g(x) , z, f4(y), f5(x)

]

,
[

f1(x), f2(x, y), f3(x), z−g(y)h(y)
z−g(y) , z, f5(x)

]

, and
[

f1(x), f2(x, y), f3(x), f4(y), z−g(x)h(x)
z−g(x) , z

]

.

Let now (gj)j∈I be rational functions in zero, one or two variables. Then a term in

C3(F, 5)/∂C3(F, 6) ⊗ Z [12] with a superscript i and and a subscript (±, g1;±, g2; . . . ,±, g|I|)

on the right indicates that in addition there is also another term with the rational function

g1, . . . , g|I| in place of the ith coordinate and with the corresponding sign, i. e. the sign left

of the function.
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Example 3.1.8.

[

1 − a

x
, 1 − y

x
, 1 − x, y, x

]1

(+,1+ a
x
)
=
[

1 − a

x
, 1 − y

x
, 1 − x, y, x

]

+
[

1 +
a

x
, 1 − y

x
, 1 − x, y, x

]

= Ca + C−a,
[

1 − a

x
, 1 − y

x
,
1 − x

x
, y, x

]3

(+,1−x;+, 1
x
)

=

[

1 − a

x
, 1 − y

x
,
1 − x

x
, y, x

]

+
[

1 − a

x
, 1 − y

x
, 1 − x, y, x

]

+

[

1 − a

x
, 1 − y

x
,
1

x
, y, x

]

.

Now we shall look at some special cycles giving rise to useful relations:

Lemma 3.1.9. Let

Z :=

[

f(x), g(x),
z − h1(x)h2(x)

z − h1(x)
, z,

y − h3(x)h4(x)

y − h3(x)
, y

]

∈ C3(F, 6) ⊗ Z [1

2

]

be a surface with rational functions f, g, h1, h2 in one variable chosen to guarantee the admis-

sibility of Z. Then Z gives rise to the following relation in C3(F, 5)/∂C3(F, 6) ⊗ Z [1
2

]
:

[

f(x), g(x), h1(x)h2(x),
y − h3(x)h4(x)

y − h3(x)
, y

]3

(−,h1;−,h2)

=

−
[

f(x), g(x),
y − h1(x)h2(x)

y − h1(x)
, y, h3(x)h4(x)

]5

(+,h3;+,h4)

.

Proof. Compute the boundary of Z.

Corollary 3.1.10. With the same assumptions on the rational functions as above the follow-

ing relation holds in C3(F, 5)/∂C3(F, 6) ⊗ Z [1
2

]
:

[

f(x), g(x),
y − h1(x)

y − 1
, y, h2(x)h3(x)

]5

(+,h2;+,h3)

= 0.

An analogous result holds for the third and fifth coordinate interchanged.

Proof. Set h2(x) = 1 and change the numbering:

[

f(x), g(x),
y − h1(x)

y − 1
, y, h2(x)h3(x)

]5

(−,h2;−,h3)

=

−
[

f(x), g(x), h1(x),
y − h2(x)h3(x)

y − h2(x)
, y

]3

(+,1;+,h1)

= 0.

By symmetry the second assertion follows easily.

With this, one obtains:
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Proposition 3.1.11. Let f, g, h1, h2 be rational functions in one variable such that the follow-

ing terms are admissible. Then the following relation is satisfied in C3(F, 5)/∂C3(F, 6)⊗Z [ 1
2

]
:

[

f(x), g(x),
y − h1(x)h2(x)

y − h1(x)
, y, h(x)

]

=

[

f(x), g(x), h(x),
y − h1(x)h2(x)

y − h1(x)
, y

]

.

Proof. Consider the element

Z :=

[

f(x), g(x),
z − h(x)

z − 1
,
y − h1(x)h2(x)

y − h1(x)
, y, z

]

∈ C3(F, 6)

and compute its boundary. The assertion follows from the corollary.

We can derive two more easy special cases of this proposition:

Corollary 3.1.12. With the same assumptions as in the lemma, the following relations are

satisfied in C3(F, 5)/∂C3(F, 6) ⊗ Z [1
2

]
:

[

f(x), g(x), h1(x)h2(x),
z − h1(x)h2(x)

z − h1(x)
, z

]3

(−,h1;−,h2)

= 0.

The same relation holds if the product is placed in the fifth coordinate.

Let g be a product of linear transformations considered as rational function in one of the

variables, and let a, b ∈ F×. Then

[f(x), g(x), h(x), ab, h1(x)]4(−,a;−,b) = 0.

The same holds if the constants are placed in the third or fifth coordinate.

Proof. For the first claim combine lemma 3.1.9 and proposition 3.1.11. The second claim is

proved combining corollary 3.1.10 and proposition 3.1.11.

Remark 3.1.13. Let us introduce one more special notation. In the following, lots of sums of

the form
∑

div(g) Z occur where Z ∈ C3(F, 5)/∂C3(F, 6)⊗Z [1
2

]
. This means that depending

on which of the variables x0 or y0 occurs in Z, we let this variable run through the divisors

of the rational function g. ♦

We continue by proving the following generalization of [GMS99, Lem. 2.8]

Lemma 3.1.14. Let fi, i = 1, 3, 4, 5; g, h be rational functions in one variable. Let further be
f2 be a product of linear transformations of the form (a1x + b1y + c1)/(a2x + b2y + c2). Set
y = y(x) to be the solution of f2(x, y) = 0,∞ respectively. Assume that one has f4(y(x)) =
f5(x) = g(x)h(x) and that g(y(x)) = g(x) or g(y(x)) = h(x). Then the following relations
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hold in C3(F, 5)/∂C3(F, 6) ⊗ Z [1
2

]
for admissible terms:

2Z(f1, f2, f3, f4, f5) =

Z(f1, f2, f3, f4, g) + Z(f1, f2, f3, f4, h) + Z(f1, f2, f3, g, f5) + Z(f1, f2, f3, h, f5)

−
∑

div(f1)

±
[

f2(x, y0), f3(x), f4(y0),
z − f5(x)

z − g(x)
, z

]

+
∑

div(f3)

±
[

f1(y), f2(x0, y),
z − f4(y)

z − g(y)
, z, f5(x0)

]

−
∑

div(f5)

±
[

f1(y), f2(x0, y), f3(x0),
z − f4(y)

z − g(y)
, z

]

and further

2Z(f1, f2, f3, f4, f5) =

2Z(f1, f2, f3, g, h) + 2Z(f1, f2, f3, g, g) + 2Z(f1, f2, f3, h, g) + 2Z(f1, f2, f3, h, h)

−
∑

div(f1)

±
([

f2(x, y0), f3(x), f4(y0),
z − f5(x)

z − g(x)
, z

]

−
[

f2(x, y0), f3(x), g(y0),
z − f4(x)

z − g(x)
, z

]3

(+,h(y0))

)

−
∑

div(f3)

±
([

f1(y), f2(x0, y),
z − f5(y)

z − g(y)
, z, g(x0)

]5

(+,h(x0))

−
[

f1(y), f2(x0, y),
z − f4(y)

z − g(y)
, z, f5(x0)

])

−
∑

div(f5)

±
[

f1(y), f2(x0, y), f3(x0),
z − f4(y)

z − g(y)
, z

]

+
∑

div(g),div(h)

±
[

f1(y), f2(x0, y), f3(x0),
z − f5(y)

z − g(y)
, z

]

.

Proof. For the first relation compute the boundary of the following term in C3(F, 6):

[

f1(y), f2(x, y), f3(x), f4(y),
z − f5(x)

z − g(x)
, z

]

−
[

f1(y), f2(x, y), f3(x),
z − f4(y)

z − g(y)
, z, f5(x)

]

.

The second relation is proved by computing the boundary of

[

f1(y), f2(x, y), f3(x), g(y),
z − f4(x)

z − g(x)
, z

]

+

[

f1(y), f2(x, y), f3(x), h(y),
z − f4(x)

z − g(x)
, z

]

and subtracting the boundary of

[

f1(y), f2(x, y), f3(x),
z − f5(y)

z − g(y)
, z, g(x)

]

+

[

f1(y), f2(x, y), f3(x),
z − f5(y)

z − g(y)
, z, h(x)

]

.

Now one invokes the lemma from above.

Remark 3.1.15. In case f4 = f5 in the above lemma, then the second relation simplifies

drastically:

Z(f1, f2, f3, f4, f5) =

Z(f1, f2, f3, g, h) + Z(f1, f2, f3, g, g) + Z(f1, f2, f3, h, g) + Z(f1, f2, f3, h, h),
(3.1.7)
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which is proved by computing the boundary of

[

f2(x), f3(x),
z − ab

z − a
, z,

y − g(x)h(x)

y − g(x)
, y

]

∈ C3(F, 6) :

One obtains

0 =

[

f2(x), f3(x), ab,
y − g(x)h(x)

y − g(x)
, y

]3

(−,a;−,b)

+

[

f2(x), f3(x),
z − ab

z − a
, z, g(x)h(x)

]5

(−,g(x);−,h(x))

.

But the latter terms vanish in C3(F, 5)/∂C3(F, 6) ⊗ Z [1
2

]
because of the second relation of

corollary 3.1.12. The result follows. ♦

In order to extend Zhao’s proof of Goncharov’s relation [Zha07] in our setting, we still

need some more preparation:

Proposition 3.1.16. For some rational functions fi, i = 1, 3, 4, 5; g, h in one variable and p, q
rational functions of two variables satisfying the following: The only non-constant solution
of p(x, y) = 0 and p(x, y) = ∞ resp. of q(x, y) = 0 and q(x, y) = 0 is y(x) = x. Then the
following relations hold in C3(F, 5)/∂C3(F, 6) ⊗Z [1

2

]
:

[f1(y),p(x, y), g(x)h(x), f4(y), f5(x)] + [f1(y), q(x, y), g(x)h(x), f5(y), f4(x)]

= [f1(y), p(x, y), g(x), f4(y), f5(x)]3(+,h(x)) + [f1(y), q(x, y), g(x), f5(y), f4(x)]3(+,h(x))

−
∑

div(f1)

±
([

p(x, y0),
z − g(x)h(x)

z − g(x)
, z, f4(y0), f5(x)

]

+

[

q(x, y0),
z − g(x)h(x)

z − g(x)
, z, f5(y0), f4(x)

])

and

[f1(y),p(x, y), f3(x), g(y)h(y), f5(x)] + [f1(y), q(x, y), f3(x), f4(y), g(x)h(x)]

= [f1(y), p(x, y), f3(x), g(y), f5(x)]4(+,h(y)) + [f1(y), q(x, y), f3(x), f4(y), g(x)]5(+,h(x))

+
∑

div(f1)

±
[

q(x, y0), f3(x), f4(y0),
z − g(x)h(x)

z − g(x)
, z

]

+
∑

div(f3)

±
[

f1(y), p(x0, y),
z − g(y)h(y)

z − g(y)
, z, f5(x0)

]

−
∑

div(f5)

±
[

f1(y), p(x0, y), f3(x0),
z − g(y)h(y)

z − g(y)
, z

]

.

Proof. Compute the boundary of

[

f1(y), p(x, y),
z − g(x)h(x)

z − g(x)
, z, f4(y), f5(x)

]

+

[

f1(y), q(x, y),
z − g(x)h(x)

z − g(x)
, z, f5(y), f4(x)

]
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for the first relation and the one of
[

f1(y), p(x, y), f3(x),
z − g(y)h(y)

z − g(y)
, z, f5(x)

]

−
[

f1(y), q(x, y), f3(x), f4(y),
z − g(x)h(x)

z − g(x)
, z

]

for the second.

Corollary 3.1.17. In case g(x) = α ∈ F× and h(x) = f3(x) we obtain a special case of the

proposition:

[f1(y),p(x, y), αf3(x), f4(y), f5(x)] + [f1(y), q(x, y), αf3(x), f5(y), f4(x)]

= [f1(y), p(x, y), α, f4(y), f5(x)]3(+,f3(x)) + [f1(y), q(x, y), α, f5(y), f4(x)]3(+,f3(x))

−
∑

div(f1)

±
([

p(x, y0),
z − αf3(x)

z − α
, z, f4(y0), f5(x)

]

+

[

q(x, y0),
z − αf3(x)

z − g(x)
, z, f5(y0), f4(x)

])

.

We will have to make use of the above proposition in case the first coordinate is a product

as well:

Proposition 3.1.18. With the same assumptions as above the following identity of terms in
C3(F, 5)/∂C3(F, 6) ⊗ Z [12] holds:

[g(y)h(y), p(x, y), f3(x), f4(y), f5(x)] + [g(y)h(y), q(x, y), f3(x), f5(y), f4(x)]

= [g(y), p(x, y), f3(x), f4(y), f5(x)]1(+,h(y)) + [g(y), q(x, y), f3(x), f5(y), f4(x)]1(+,h(y))

+
∑

div(f3)

±
([

z − g(y)h(y)

z − g(y)
, z, p(x0, y), f4(y), f5(x0)

]

+

[
z − g(y)h(y)

z − g(y)
, z, q(x0, y), f5(y), f4(x0)

])

−
∑

div(f4)

±
([

z − g(y0)h(y0)

z − g(y0)
, z, p(x, y0), f3(x), f5(x)

]

−
[
z − g(y)h(y)

z − g(y)
, z, q(x0, y), f3(x0), f5(y)

])

+
∑

div(f5)

±
([

z − g(y)h(y)

z − g(y)
, z, p(x0, y), f3(x0), f4(y)

]

−
[
z − g(y0)h(y0)

z − g(y0)
, z, q(x, y0), f3(x), f4(x)

])

−
∑

div(p)

[
z − g(y(x))h(y(x))

z − g(y(x))
, z, f3(x), f4(y(x)), f5(x)

]

−
∑

div(q)

[
z − g(y(x))h(y(x))

z − g(y(x))
, z, f3(x), f5(y(x)), f4(x)

]

.

Proof. The expression

[
z − g(y)h(y)

z − g(y)
, z, p(x, y), f3(x), f4(y), f5(x)

]

+

[
z − g(y)h(y)

z − g(y)
, z, q(x, y), f3(x), f5(y), f4(x)

]

has the desired relation as its boundary.

Corollary 3.1.19. In case g(y) = α ∈ F× and h(y) = f1(y) this proposition amounts to the
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following relation in C3(F, 5)/∂C3(F, 6) ⊗ Z [1
2

]
:

[αf1(y), p(x, y), f3(x), f4(y), f5(x)] + [αf1(y), q(x, y), f3(x), f5(y), f4(x)]

= [f1(y), p(x, y), f3(x), f4(y), f5(x)] + [f1(y), q(x, y), f3(x), f5(y), f4(x)]

and lower order terms

+
∑

div(f3)

±
([

z − αf1(y)

z − α
, z, p(x0, y), f4(y), f5(x0)

]

+

[
z − αf1(y)

z − α
, z, q(x0, y), f5(y), f4(x0)

])

−
∑

div(f4)

±
([

z − αf1(y0)

z − α
, z, p(x, y0), f3(x), f5(x)

]

−
[
z − αf1(y)

z − α
, z, q(x0, y), f3(x0), f5(y)

])

+
∑

div(f5)

±
([

z − αf1(y)

z − α
, z, p(x0, y), f3(x0), f4(y)

]

−
[
z − αf1(y0)

z − α
, z, q(x, y0), f3(x), f4(x)

])

−
∑

div(p)

[
z − αf1(y(x))

z − α
, z, f3(x), f4(y(x)), f5(x)

]

−
∑

div(q)

[
z − αf1(y(x))

z − α
, z, f3(x), f5(y(x)), f4(x)

]

.

The next and last proposition will be helpful for Zhao’s proof:

Proposition 3.1.20. Let s, t, u, v ∈ F be constants chosen to guarantee admissibility in all
of the terms involved. Then the following identity hold in C3(F, 5)/∂C3(F, 6) ⊗ Z [1

2

]
:

2

[
u − y

v − y
, 1 − y

x
,
1 − sx

1 − tx
, y, x

]

= 2Cus − 2Cvs − 2Cut + 2Cvt

plus terms of lower order:

+ 2

[

1 − u

x
,

z − 1

z − (1 − tx)
, z, u, x

]

+ 2

[

1 − v

x
,

z − 1

z − (1 − tx)
, z, v, x

]

− 2

[

1 − u

x
,

z − 1−sx
1−tx

z − (1 − sx)
, z, u, x

]

− 2

[

1 − v

x
,

z − 1−sx
1−tx

z − (1 − sx)
, z, v, x

]

− 2

[

z − 1

z − (1 − v
y )

, z, 1 − sy, y,
1

s

]

+ 2

[

z − 1

z − (1 − v
y )

, z, 1 − ty, y,
1

t

]

plus more terms of lower order

+ 2

[

z − u−y
v−y

z − (1 − u
y )

, z, 1 − sy, y,
1

s

]

− 2

[

z − u−y
v−y

z − (1 − u
y )

, z, 1 − ty, y,
1

t

]

+ R(u, s) − R(u, t) − R(v, s) + R(v, t),

where R(u, s) is defined by

R(u, s) :=2

[

1 − us

y
, 1 − y

x
, 1 − x,

1

s
,
x

s

]

+ 2

[

1 − us

y
, 1 − y

x
, 1 − x,

y

s
,
1

s

]
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plus more extra terms

−
[

1 − us

x
, 1 − x, u,

z − x
s

z − x
, z

]

+

[

1 − us

x
, 1 − x,

z − u

z − us
, z,

x

s

]

−
[

1 − us

x
, 1 − x, us,

z − x
s

z − x
, z

]3

(−, 1
s
)

+

[

1 − us

x
, 1 − x,

z − u

z − us
, z, x

]5

(+, 1
s
)

+

[

1 − us

x
, 1 − x,

x

s
,
z − x

s

x
, z

]

−
[

1 − us

x
, 1 − x,

z − x
s

z − x
, z,

x

s

]

+

[

1 − us

x
, 1 − x, x,

z − x
s

z − x
, z

]3

(+, 1
s
)

−
[

1 − us

x
, 1 − x,

z − x
s

z − x
, z, x

]5

(−, 1
s
)

.

The right-hand side except for the C-terms will be denoted by R1(s, t, u, v).

Proof. The proof first makes use of proposition 3.1.7 two times. The first and the third
coordinate have to be split and some resulting terms inverted. In the end, we will be able to
identify the C-terms of the claim. Let us start by splitting the first coordinate of the given
term:

[
u − y

v − y
, 1 − y

x
,
1 − sx

1 − tx
, y, x

]

=

[

1 − u

y
, 1 − y

x
,
1 − sx

1 − tx
, y, x

]1

(+, y
y−v

)

+

[
z − u−y

v−y

z − (1 − u
y )

, z, 1 − sy, y,
1

s

]

−
[

z − u−y
v−y

z − (1 − u
y )

, z, 1 − ty, y,
1

t

]

.

The second term now has to be inverted:

[

1 − u

y
, 1 − y

x
,
1 − sx

1 − tx
, y, x

]1

(+, y
y−v

)

=

[

1 − u

y
, 1 − y

x
,
1 − sx

1 − tx
, y, x

]1

(−,1− v
y
)

−
[

z − 1

z − (1 − v
y )

, z, 1 − sy, y,
1

s

]

+

[

z − 1

z − (1 − v
y )

, z, 1 − ty, y,
1

t

]

.

Then we split the third coordinate in the same way to obtain

[

1 − u

y
, 1 − y

x
,
1 − sx

1 − tx
, y, x

]1

(−,1− v
y
)

=

[

1 − u

y
, 1 − y

x
, 1 − sx, y, x

]3

(+, 1
1−tx

)

−
[

1 − v

y
, 1 − y

x
, 1 − sx, y, x

]3

(−, 1
1−tx

)

−
[

1 − u

x
,

z − 1−sx
1−tx

z − (1 − sx)
, z, u, x

]

−
[

1 − v

x
,

z − 1−sx
1−tx

z − (1 − sx)
, z, v, x

]

.

Now we shall invert some coordinates again:

[

1 − u

y
, 1 − y

x
, 1 − sx, y, x

]3

(+, 1
1−tx

)

−
[

1 − v

y
, 1 − y

x
, 1 − sx, y, x

]3

(−, 1
1−tx

)
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which is the same as

=

[

1 − u

y
, 1 − y

x
, 1 − sx, y, x

]3

(−,1−tx)

−
[

1 − v

y
, 1 − y

x
, 1 − sx, y, x

]3

(+,1−tx)

+

[

1 − u

x
,

z − 1

z − (1 − tx)
, z, u, x

]

+

[

1 − v

x
,

z − 1

z − (1 − tx)
, z, v, x

]

.

After the obvious reparametrizations we have to get rid of the constants in the fourth and fifth

coordinate. For this, we shall use proposition 3.1.14:

2

[

1 − us

y
, 1 − y

x
, 1 − x,

y

s
,
x

s

]1

(−,1−ut
y

)

− 2

[

1 − vs

y
, 1 − y

x
, 1 − x,

y

s
,
x

s

]1

(+,1− vt
y

)

= 2Cus − 2Cut − 2Cvs + 2Cvt

+ R(u, s) − R(u, t) − R(v, s) + R(v, t),

where the R-terms are there to denote all the extra terms coming from an application of the

second formula of proposition 3.1.14. Adding everything up gives the asserted formula.

Corollary 3.1.21. With the same assumptions as in the proposition, the following identity
holds as well:

2

[
1 − uy

1 − vy
, 1 − x

y
,
s − x

t − x
, y, x

]

= 2Cus − 2Cvs − 2Cut + 2Cvt

− 2

[

1 − s

x
,
1 − ux

1 − vx
,
z − x

z − 1
, s, x

]

+ 2

[

1 − t

x
,
1 − ux

1 − vx
,
z − x

z − 1
, t, x

]

− 2

[
s − y

t − y
, 1 − uy,

z − 1
u

z − 1
, y, z

]

+ 2

[
s − y

t − y
, 1 − vy,

z − 1
v

z − 1
, y, z

]

+ 2

[
s − y

t − y
, 1 − y

x
,
1 − ux

1 − vx
, y, x

]

+ 2

[

z, 1 − ux,
z − s−x

t−x

z − 1
,
1

u
, x

]

− 2

[

z, 1 − vx,
z − s−x

t−x

z − 1
,
1

v
, x

]

− 2

[

z − 1−uy
1−vy

z − 1
, 1 − s

y
, z, y, s

]

+ 2

[

z − 1−uy
1−vy

z − 1
, 1 − t

y
, z, y, t

]

+ R1(s, t, u, v).

The right-hand side except for the C-terms will be denoted by R2(s, t, u, v).

Proof. We reduce to the proposition: Taking the boundary of [
z− 1−uy

1−vy

z−1 , 1− x
y , s−x

t−x , z, y, x] gives

[
1 − uy

1 − vy
, 1 − x

y
,
s − x

t − x
, y, x

]

=

[

1 − x

y
,
s − x

t − x
,
1 − uy

1 − vy
, y, x

]

−
[

z − 1−uy
1−vy

z − 1
, 1 − s

y
, z, y, s

]

+

[

z − 1−uy
1−vy

z − 1
, 1 − t

y
, z, y, t

]

.
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Taking the boundary of [z, 1 − x
y ,

z− s−x
t−x

z−1 , 1−uy
1−vy , y, x] further transforms the first term on the

right-hand side into

[

1 − x

y
,
s − x

t − x
,
1 − uy

1 − vy
, y, x

]

= −
[
s − x

t − x
, 1 − x

y
,
1 − uy

1 − vy
, y, x

]

+

[

z, 1 − ux,
z − s−x

t−x

z − 1
,
1

u
, x

]

−
[

z, 1 − vx,
z − s−x

t−x

z − 1
,
1

v
, x

]

.

After changing the roles of x, y, we invert the right two coordinates in the first term on the

right-hand side: Take the boundary of [s−y
t−y , 1 − y

x , 1−ux
1−vx , z−x

z−1 , y, z]:

−
[
s − y

t − y
, 1 − y

x
,
1 − ux

1 − vx
, x, y

]

=

[
s − x

t − x
,
1 − ux

1 − vx
,
z − x

z − 1
, x, z

]

−
[

1 − s

x
,
1 − ux

1 − vx
,
z − x

z − 1
, s, x

]

+

[

1 − t

x
,
1 − ux

1 − vx
,
z − x

z − 1
, t, x

]

−
[

s − y

t − y
, 1 − uy,

z − 1
u

z − 1
, y, z

]

+

[

s − y

t − y
, 1 − vy,

z − 1
v

z − 1
, y, z

]

+

[
s − y

t − y
, 1 − y

x
,
1 − ux

1 − vx
, y, x

]

.

Now apply the proposition to the last term on the right-hand side.

Remark 3.1.22. Note that already these auxiliary relations appear very complicated with all

the extra terms. It seems to be almost impossible to find a combination of these terms which

vanishes. Further we do not have any results as to the orders of these terms as we had for

the extra terms in CH2(F, 3). ♦

Let us, nevertheless, prove a first relation with these rules: A distribution relation.

Proposition 3.1.23. If F contains a primitive nth root of unity ζ. Then every a ∈ F× gives
rise to a distribution relation in C3(F, 5)/∂C3(F, 6) ⊗ Z [1

2

]
:

n2Can = n4
n∑

i=1

Cζa + n

n∑

i=2

[

z −∏i
j=2(1 − ζj a

x)

z − (1 − a
x )

, z, 1 − xn, an, xn

]

− n
n∑

i=2

[

1 − a

x
,
z −

∏i
j=2(1 − ζjx)

z − (1 − ζix)
, an, xn

]

− n3
n∑

i,j=2

[

1 − ζi a

x
, 1 − x, ζia,

z − xj

z − x
, z

]

.

Proof. We just prove the case n = 2:

4Ca2 =

[

1 −
(

a

y

)2

, 1 −
( y

x

)2

, 1 − x2, y2, x2

]

=

[

1 − a

y
, 1 −

(y

x

)2

, 1 − x2, y2, x2

]1

(+,1+ a
y
)

,
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which we split piece by piece in the following:

= 2

[

1 − a

y
, 1 − y

x
, 1 − x2, y2, x2

]1

(+,1+ a
y
)

+ 2

[

z − (1 − a2

x2 )

z − (1 − a
x )

, z, 1 − x2, a2, x2

]

= 4

[

1 − a

y
, 1 − y

x
, 1 − x, y2, x2

]1

(+,1+ a
y
)

− 2

[

1 − a

x
,
z − (1 − x2)

z − (1 − x)
, z, a2, x2

]1

(+,1+ a
x
)

+ 2

[

z − (1 − a2

x2 )

z − (1 − a
x)

, z, 1 − x2, a2, x2

]

= 8

[

1 − a

y
, 1 − y

x
, 1 − x, y, x2

]1

(+,1+ a
y
)

− 4

[

1 − a

x
, 1 − x,

z − x2

z − x
, z, x2

]1

(+,1+ a
x
)

− 2

[

1 − a

x
,
z − (1 − x2)

z − (1 − x)
, z, a2, x2

]1

(+,1+ a
x
)

+ 2

[

z − (1 − a2

x2 )

z − (1 − a
x)

, z, 1 − x2, a2, x2

]

.

Then finally

4Ca2 = 16Ca + 16C−a

− 8

[

1 − a

x
, 1 − x, a,

z − x2

z − x
, z

]3

(−,−a)

+ 8

[

1 − a

x
, 1 − x, x,

z − x2

z − x
, z

]1

(+,1+ a
x
)

− 4

[

1 − a

x
, 1 − x,

z − x2

z − x
, z, x2

]1

(+,1+ a
x
)

− 2

[

1 − a

x
,
z − (1 − x2)

z − (1 − x)
, z, a2, x2

]1

(+,1+ a
x
)

+ 2

[

z − (1 − a2

x2 )

z − (1 − a
x)

, z, 1 − x2, a2, x2

]

.

According to proposition 3.1.11, the second and the third of the extra terms vanish in the

quotient C3(F, 5)/∂C3(F, 6) ⊗ Z [1
2

]
proving the claim for n = 2.

Now we can easily deduce

Lemma 3.1.24. C−1 = −3
4C1 ∈ CH3(Q, 5) ⊗ Z [1

2

]
.

Proof. First note that ∂C1 = 0 and 2∂(C−1) = 0 in the Chow group. Then one uses the

distribution relation for n = 2 to obtain 4C1 = 16C1 + 16C−1 ∈ C3(F, 5)/∂C3(F, 6) ⊗ Z [12].
Dividing by 4 proves the assertion.

Remark 3.1.25. As we have discussed in the introduction to this chapter, this result is in some

way very weak. The homology of C3(F, •) ⊗ Z [1
2

]
in fact only computes the Chow group

CH3(F, 5) ⊗ Z [1
2

]
, and ℓCζℓ

/∈ B3(F ), not even in B3(F ) ⊗ Z [1
2

]
. Nevertheless, one can use

M. Kerr’s cycles (3.1.1) and a similar proof of the distribution relation. This will be a relation

without extra terms in the Chow group: ♦

Proposition 3.1.26. Let Z(ζℓ) ∈ CH3(Q(ζℓ), 5) be the cycles from (3.1.1). Then the fol-
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lowing relation holds in CH3(Q(ζℓ), 5):

2n2ℓ2Z(ζn
ℓ ) =

n∑

i=1

2n4ℓ2Z(ζi
ℓ).

Proof. We start in the case n = 2 with a reparametrization of 8ℓ2Z(ζ2
ℓ ), namely

−8ℓ2Z(ζ2
ℓ ) = 2

[
x2

x2 − 1
,

y2

y2 − 1
, 1 − ζ2

ℓ x2y2, x2ℓ, y2ℓ

]

+

[
x2

x2 − 1
,

1

1 − ζ2
ℓ x2

,
(y2 − x2ℓ)(y2 − x−2ℓ)

(y2 − 1)2
, x2ℓy2, x−2ℓy2

]

= 4

[
x

x − 1
,

y2

y2 − 1
, 1 − ζ2

ℓ x2y2, x2ℓ, y2ℓ

]

+ 2

[
x

x − 1
,

1

1 − ζ2
ℓ x2

,
(y2 − x2ℓ)(y2 − x−2ℓ)

(y2 − 1)2
, x2ℓy2, x−2ℓy2

]

as one obtains by computing the boundaries of 2[
z− x2

x2
−1

z− x
x−1

, z, y2

y2
−1 , 1 − ζ2

ℓ x2y2, x2ℓ, y2ℓ] resp. the one

of [
z− x2

x2
−1

z− x
x−1

, z, 1
1−ζ2

ℓ
x2 , (y2

−x2ℓ)(y2
−x−2ℓ)

(y2
−1)2 , x2ℓy2, x−2ℓy2] with the aid of proposition 3.1.7, and by the

obvious reparametrizations. Note that all extra terms immediately cancel each other.

= 8

[
x

x − 1
,

y

y − 1
, 1 − ζ2

ℓ x2y2, x2ℓ, y2ℓ

]

+ 2

[
x

x − 1
,

1

1 − ζℓx
,
(y2 − x2ℓ)(y2 − x−2ℓ)

(y2 − 1)2
, x2ℓy2, x−2ℓy2

]2

(+, 1
1+ζℓx

)

as one obtains as above by computing the boundaries of 4[ x
x−1 ,

z− y2

y2
−1

z− y
y−1

, z, 1 − ζ2
ℓ x2y2, x2ℓ, y2ℓ] resp.

2[ x
x−1 ,

z− 1

1−ζ2
ℓ

x2

z− 1
1−ζℓx

, z, (y2
−x2ℓ)(y2

−x−2ℓ)
(y2−1)2 , x2ℓy2, x−2ℓy2].

= 8

[
x

x − 1
,

y

y − 1
, 1 − ζℓxy, x2ℓ, y2ℓ

]3

(+,1−ζℓxy)

+ 4

[
x

x − 1
,

1

1 − ζℓx
,
(y − xℓ)(y − x−ℓ)

(y − 1)2
, x2ℓy2, x−2ℓy2

]2

(+, 1
1+ζℓx

)

by computing the boundaries of 8[ x
x−1 , y

y−1 ,
z−(1−ζ2

ℓ x2y2)

z−(1−ζ2
ℓ
xy)

, z, x2ℓ, y2ℓ] resp. the one of the expressions

4[ x
x−1 , 1

1−ζℓx ,
z− (y2

−x2ℓ)(y2
−x−2ℓ)

(y2
−1)2

z− (y−xℓ)(y−x−ℓ)

(y−1)2

, z, x2ℓy2, x−2ℓy2]2
(+, 1

1+ζℓx
)
.

= 16

[
x

x − 1
,

y

y − 1
, 1 − ζℓxy, xℓ, y2ℓ

]3

(+,1+ζℓxy)

+ 8

[
x

x − 1
,

1

1 − ζℓx
,
(y − xℓ)(y − x−ℓ)

(y − 1)2
, xℓy, x−2ℓy2

]2

(+, 1
1+ζℓx

)
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by computing the boundaries of 8[ x
x−1 , y

y−1 , 1 − ζℓx, z−x2ℓ

z−xℓ , z, y2ℓ]3(+,1+ζℓx) resp. of the expressions

4[ x
x−1 , 1

1−ζℓx , (y−xℓ)(y−x−ℓ)
(y−1)2 , z−x2ℓy2

z−xℓy
, z, x−2ℓy2]2

(+, 1
1+ζℓx

)
.

= 32

[
x

x − 1
,

y

y − 1
, 1 − ζℓxy, xℓ, yℓ

]3

(+,1+ζℓxy)

+ 8

[
x

x − 1
,

1

1 − ζℓx
,
(y − xℓ)(y − x−ℓ)

(y − 1)2
, xℓy, x−ℓy

]2

(+, 1
1+ζℓx

)

by computing the boundaries of 16[ x
x−1 , y

y−1 , 1 − ζℓx, xℓ, z−y2ℓ

z−yℓ , z]3(+,1+ζℓx) resp. of the expressions

4[ x
x−1 , 1

1−ζℓx , (y−xℓ)(y−x−ℓ)
(y−1)2 , xℓy, z−x−2ℓy2

z−x−ℓy
, z]2

(+, 1
1+ζℓx

)
.

But the right-hand side is just equal to −16
(
2ℓ2Z(ζℓ) + 2ℓ2Z(−ζℓ)

)
. Whence the claim in

general follows by a repetition of similar arguments.

Corollary 3.1.27. Let F ⊃ Q be any number field. Then the following relation holds in

CH3(F, 5):

−96Z(1) = 128Z(−1).

Proof. Since −1 is contained in any number field, the cycles Z(1) and Z(−1) are defined in

the Chow group. Then the claim is an easy application of the proposition for ℓ = n = 2.

Remark 3.1.28. Unfortunately, we cannot go much beyond this distribution relations for Kerr’s

cycles with computations in the integral Chow groups. This is because the defining relations

of the Bloch group B3(F ) are too complicated to choose all the cycles involved among the

cyclotomic elements. Alternatively, we would need some cycles defined over Z representing

the trilogarithm for arbitrary arguments in F×: These are not yet available.

We can only reprove relations from [GMS99] and [Zha07] in C3(F, 5)/∂C3(F, 6) ⊗ Z [1
2

]

knowing that this will only provide a map B3(F ) ⊗ Z [1
2

]
→ CH3(F, 5) ⊗ Z [1

2

]
. ♦

3.2 The Kummer – Spence – relation modulo 2-torsion

In this section, we mimic the steps of Gangl’s and Müller-Stach’s proof of the Kummer –

Spence – relation in C3(F, 5)/∂C3(F, 6) ⊗ Z [1
2

]
. The steps are the same as in the both

authors took, but there are many more extra terms to consider because of proposition 3.1.7.

We have to remark – as pointed out in a preliminary version of [Zha07] – that there is a

slight flaw in Gangl’s and Müller-Stach’s proof of this relation, because the proof uses an

inversion relation which the authors derive from the Kummer – Spence relation. We fix this

little problem as suggested by Zhao. In consequence, our relation differs from the original

relation in [GMS99] by several applications of the inversion relation to be derived in the next

section. Our result is the following:
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Proposition 3.2.1. Let a, b ∈ F× subject to the conditions a, b 6= 0, 1 and a 6= b, 1 − b. Let

further

KS(a, b) := C b(1−b)
a(1−a)

+ Ca(1−b)
b(1−a)

− C ab
(1−a)(1−b)

− 2C b
a

− 2C b
1−a

− 2C 1−b
a

− 2C 1−b
1−a

+ 2C 1
a

+ 2C 1
1−a

+ 2C b
b−1

.

Then the following relation holds in C3(F, 5)/∂C3(F, 6) ⊗Z [1
2

]
.

4KS(a, b) = 4
∑

y0=b,1−b




z −

(
1 − y0

x

) (

1 − y0

1−x

)

z −
(
1 − y0

x

) , z,
(

1 − x

a

)(

1 − x

1 − a

)

, y0, x





− 4
∑

x0=a,1−a





(

1 − b

y

)(

1 − b

1 − y

)

,
z −

(
1 − y0

x

) (

1 − y0

1−x

)

z −
(
1 − y0

x

) , z, y, x0





+

[

1 − b(1 − b)

y(1 − y)
, 1 − y(1 − y)

x(1 − x)
, 1 − x(1 − x)

a(1 − a)
,

1

a(1 − a)
, x(1 − x)

]

+

[

1 − b(1 − b)

y(1 − y)
, 1 − y(1 − y)

x(1 − x)
, 1 − x(1 − x)

a(1 − a)
, y(1 − y),

1

a(1 − a)

]

− 4

[
y − (1 − b)

y − 1
,
x − 1

x
,
(

1 − x

a

)(

1 − x

1 − a

)

, y, x

]

− 4




z −

(

1 − (1−b)
1−x

)
x−1

x

z − x−1
x

, z,
(

1 − x

a

)(

1 − x

1 − a

)

, 1 − b, x





+ 4
∑

x0=a,1−a




y − (1 − b)

y − 1
,
z −

(

1 − y
1−x0

)
x0−1

x0

z − x0−1
x0

, z, y, x0





+ 4

[
(1 − b) − x

1 − x
,
x − a

1 − a
· x − (1 − a)

ax
, b,

z − 1

z − x
, z

]

+ 4

[
y − (1 − b)

y − 1
,

x

x − 1
,
(

1 − x

a

)(

1 − x

1 − a

)

, y, x

]

+ 4




z −

(

1 − (1−b)
x

)
x

x−1

z − x
x−1

, z,
(

1 − x

a

)(

1 − x

1 − a

)

, 1 − b, x





− 4
∑

x0=a,1−a




y − (1 − b)

y − 1
,
z −

(

1 − y
x0

)
x0

x0−1

z − x0

x0−1

, z, y, x0





−
[

z − (1 − b
1−ay )

z + ay
1−ay

, z, 1 − y, ay, a

]

−




z − (1 − b

1−(1−a)y )

z + (1−a)y
1−(1−a)y

, z, 1 − y, (1 − a)y, a





+ 4
∑

x0=a,1−a




z − (1−b)−y

(1−b)(1−y)

z − (1−b)−y
1−y

, z,
y − x0

1 − x0
,
1 − y

y
,
1 − x0

x0




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and some more terms

+ 4




z − (1−b)−x

(1−b)(1−x)

z − (1−b)−x
1−x

, z,
x − a

1 − a
· x − (1 − a)

a
,

b

1 − b
,
1 − x

x





− 4
∑

x0=a,1−a

[

(1 − b) − y

(1 − b)(1 − y)
,
z − y−x0

y(1−x0)

z − y−x0

1−x0

, z,
1 − y

y
,
1 − x0

x0

]

+ 4

[

(1 − b) − x

(1 − b)(1 − x)
,
z − x−a

1−a · x−(1−a)
a

z − x−a
1−a

, z,
b

1 − b
,
1 − x

x

]

+ 4

[
(1 − b) − y

(1 − b)(1 − y)
,

y − x

y(1 − x)
,

x − a

x(1 − a)
,
1 − y

y
,

a

1 − a

]

+ 4

[
(1 − b) − y

(1 − b)(1 − y)
,

y − x

y(1 − x)
,

x − a

x(1 − a)
,

a

1 − a
,
1 − x

x

]

− 4

[

(1 − b) − x

(1 − b)(1 − x)
,
z − x−(1−a)

xa

z − x−(1−a)
a

, z,
b

1 − b
,
1 − x

x

]

− 4

[

(1 − b) − x

(1 − b)(1 − x)
,
z − x−a

x(1−a)

z − x−a
1−a

, z,
b

1 − b
,
1 − x

x

]

+ 4

[
(1 − b) − y

(1 − b)(1 − y)
,

y − x

y(1 − x)
,
x − (1 − a)

xa
,
1 − y

y
,
1 − a

a

]

+ 4

[
(1 − b) − y

(1 − b)(1 − y)
,

y − x

y(1 − x)
,
x − (1 − a)

xa
,
1 − a

a
,
1 − x

x

]

+ 4

[

1 − b

ay
, 1 − y

x
, 1 − x, a, x

]

+ 4

[

1 − b

ay
, 1 − y

x
, 1 − x, y, a

]

+ 4

[

1 − b

(1 − a)y
, 1 − y

x
, 1 − x, 1 − a, x

]

+ 4

[

1 − b

(1 − a)y
, 1 − y

x
, 1 − x, y, 1 − a

]

+ 4

[

1 − 1 − b

ay
, 1 − y

x
, 1 − x, a, x

]

+ 4

[

1 − 1 − b

ay
, 1 − y

x
, 1 − x, y, a

]

− 4

[

1 − 1

ay
, 1 − y

x
, 1 − x, a, x

]

− 4

[

1 − 1

ay
, 1 − y

x
, 1 − x, y, a

]

+ 4

[

1 − 1 − b

(1 − a)y
, 1 − y

x
, 1 − x, 1 − a, x

]

+ 4

[

1 − 1 − b

(1 − a)y
, 1 − y

x
, 1 − x, y, 1 − a

]

− 4

[

1 − 1

(1 − a)y
, 1 − y

x
, 1 − x, 1 − a, x

]

− 4

[

1 − 1

(1 − a)y
, 1 − y

x
, 1 − x, y, 1 − a

]

− 4

[

z − 1

z − −ay
1−ay

, z, 1 − y, ay, a

]

− 4




z − 1

z − −(1−a)y
1−(1−a)y

, z, 1 − y, (1 − a)y, 1 − a





− 4
∑

y0=b,1−b



1 − y0

x
,
z −

(
1 − x

a

) (

1 − x
1−a

)

z −
(
1 − x

a

) , z, y0, x





+ 4
∑

x0=a,1−a




z −

(

1 − 1−b
1−y

)(

1 − 1−b
y

)

z −
(

1 − 1−b
y

) , z, 1 − y

x0
, y, x0



 .

Proof. We proceed in several steps along the lines of the proof in [GMS99]. The new ingre-

dients are proposition 3.1.7 and in particular propositions 3.1.11 and 3.1.14, which help to

show the vanishing of several terms occurring in the course of the proof.
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1st step: Let us start with an application of (3.1.7):

4Cφ1(b) =

[

1 − b(1 − b)

y(1 − y)
, 1 − y(1 − y)

x(1 − x)
, 1 − x(1 − x)

a(1 − a)
,
y(1 − y)

a(1 − a)
,
x(1 − x)

a(1 − a)

]

=

[

1 − b(1 − b)

y(1 − y)
, 1 − y(1 − y)

x(1 − x)
, 1 − x(1 − x)

a(1 − a)
, y(1 − y), x(1 − x)

]

+

[

1 − b(1 − b)

y(1 − y)
, 1 − y(1 − y)

x(1 − x)
, 1 − x(1 − x)

a(1 − a)
,

1

a(1 − a)
, x(1 − x)

]

+

[

1 − b(1 − b)

y(1 − y)
, 1 − y(1 − y)

x(1 − x)
, 1 − x(1 − x)

a(1 − a)
, y(1 − y),

1

a(1 − a)

]

.

Here, and in the next splitting, we use (3.1.7) again:

=

[

1 − b(1 − b)

y(1 − y)
, 1 − y(1 − y)

x(1 − x)
, 1 − x(1 − x)

a(1 − a)
, y, x

]

+

[

1 − b(1 − b)

y(1 − y)
, 1 − y(1 − y)

x(1 − x)
, 1 − x(1 − x)

a(1 − a)
, 1 − y, x

]

+

[

1 − b(1 − b)

y(1 − y)
, 1 − y(1 − y)

x(1 − x)
, 1 − x(1 − x)

a(1 − a)
, y, 1 − x

]

+

[

1 − b(1 − b)

y(1 − y)
, 1 − y(1 − y)

x(1 − x)
, 1 − x(1 − x)

a(1 − a)
, 1 − y, 1 − x

]

+

[

1 − b(1 − b)

y(1 − y)
, 1 − y(1 − y)

x(1 − x)
, 1 − x(1 − x)

a(1 − a)
,

1

a(1 − a)
, x(1 − x)

]

+

[

1 − b(1 − b)

y(1 − y)
, 1 − y(1 − y)

x(1 − x)
, 1 − x(1 − x)

a(1 − a)
, y(1 − y),

1

a(1 − a)

]

.

Now we chose another parametrization for the first four types of terms to obtain eight terms of the

same shape:

= 4

[(

1 − b

y

)(

1 − b

1 − y

)

,
(

1 − y

x

)(

1 − y

1 − x

)

,
(

1 − x

a

)(

1 − x

1 − a

)

, y, x

]

+

[

1 − b(1 − b)

y(1 − y)
, 1 − y(1 − y)

x(1 − x)
, 1 − x(1 − x)

a(1 − a)
,

1

a(1 − a)
, x(1 − x)

]

+

[

1 − b(1 − b)

y(1 − y)
, 1 − y(1 − y)

x(1 − x)
, 1 − x(1 − x)

a(1 − a)
, y(1 − y),

1

a(1 − a)

]

.

Then one splits the second coordinate:

4Cφ1(b) = 4

[(

1 − b

y

)(

1 − b

1 − y

)

, 1 − y

x
,
(

1 − x

a

)(

1 − x

1 − a

)

, y, x

]2

(+,1− x
1−y

)

+ 4
∑

y0=b,1−b




z −

(
1 − y0

x

) (

1 − y0

1−x

)

z −
(
1 − y0

x

) , z,
(

1 − x

a

)(

1 − x

1 − a

)

, y0, x





− 4
∑

x0=a,1−a





(

1 − b

y

)(

1 − b

1 − y

)

,
z −

(

1 − y
x0

)(

1 − y
1−x0

)

z −
(

1 − y
x0

) , z, y, x0




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plus extra terms

+

[

1 − b(1 − b)

y(1 − y)
, 1 − y(1 − y)

x(1 − x)
, 1 − x(1 − x)

a(1 − a)
,

1

a(1 − a)
, x(1 − x)

]

+

[

1 − b(1 − b)

y(1 − y)
, 1 − y(1 − y)

x(1 − x)
, 1 − x(1 − x)

a(1 − a)
, y(1 − y),

1

a(1 − a)

]

.

2nd step: The next step consists of re-starting again and performing several manipulations
with Cφ2(b). The results from above are kept for later. We consider

Cφ2(b) =

[
b − y

b(1 − y)
,

y − x

y(1 − x)
,

x − a

x(1 − a)
,
a(1 − y)

y(1 − a)
,
a(1 − x)

x(1 − a)

]

=

[
b − y

b(1 − y)
,

y − x

y(1 − x)
,

x − a

x(1 − a)
,
1 − y

y
,
1 − x

x

]

+

[
b − y

b(1 − y)
,

y − x

y(1 − x)
,

x − a

x(1 − a)
,
1 − y

y
,

a

1 − a

]

+

[
b − y

b(1 − y)
,

y − x

y(1 − x)
,

x − a

x(1 − a)
,

a

1 − a
,
1 − x

x

]

and split the third coordinate by applying proposition 3.1.7:

=

[
b − y

b(1 − y)
,

y − x

y(1 − x)
,
x − a

1 − a
,
1 − y

y
,
1 − x

x

]3

(+, 1
x
)

−
[

b − x

b(1 − x)
,
z − x−a

x(1−a)

z − x−a
1−a

, z,
1 − b

b
,
1 − x

x

]

+

[
b − y

b(1 − y)
,

y − x

y(1 − x)
,

x − a

x(1 − a)
,
1 − y

y
,

a

1 − a

]

+

[
b − y

b(1 − y)
,

y − x

y(1 − x)
,

x − a

x(1 − a)
,

a

1 − a
,
1 − x

x

]

.

But notice that

2

[
b − y

b(1 − y)
,

y − x

y(1 − x)
,
1

x
,
1 − y

y
,
1 − x

x

]

= 2

[

1 +
1 − b−1

y
, 1 − y

x
, 1 + x, y, x

]

= 2C1−b−1

by an application of (3.1.7) with g(x) = g(y) = −1 and using the corollary 3.1.12.

3rd step: We copy these manipulations for Cφ3(b) arriving at:

2Cφ3(b) = 2

[
b − y

b(1 − y)
,

y − x

y(1 − x)
,
x − (1 − a)

a
,
1 − y

y
,
1 − x

x

]

+ 2C1−b−1

− 2

[

b − x

b(1 − x)
,
z − x−(1−a)

xa

z − x−a
1−a

, z,
b

1 − b
,
1 − x

x

]

+ 2

[
b − y

b(1 − y)
,

y − x

y(1 − x)
,
x − (1 − a)

xa
,
1 − y

y
,
1 − a

a

]

+ 2

[
b − y

b(1 − y)
,

y − x

y(1 − x)
,
x − (1 − a)

xa
,
1 − a

a
,
1 − x

x

]

.
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4th step: Let us add 2Cφ2(1−b) and 2Cφ3(1−b), by gluing them in the third coordinate:

2Cφ2(1−b) + 2Cφ3(1−b) = 2

[
(1 − b) − y

(1 − b)(1 − y)
,

y − x

y(1 − x)
,
x − a

1 − a
· x − (1 − a)

a
,
1 − y

y
,
1 − x

x

]

+ 2

[

(1 − b) − x

(1 − b)(1 − x)
,
z − x−a

1−a · x−(1−a)
a

z − x−a
1−a

, z,
1 − b

b
,
1 − x

x

]

+ 4C b
b−1

plus more terms with a constant coordinate

− 2

[

(1 − b) − x

(1 − b)(1 − x)
,
z − x−a

x(1−a)

z − x−a
1−a

, z,
b

1 − b
,
1 − x

x

]

+ 2

[
(1 − b) − y

(1 − b)(1 − y)
,

y − x

y(1 − x)
,

x − a

x(1 − a)
,
1 − y

y
,

a

1 − a

]

+ 2

[
(1 − b) − y

(1 − b)(1 − y)
,

y − x

y(1 − x)
,

x − a

x(1 − a)
,

a

1 − a
,
1 − x

x

]

− 2

[

(1 − b) − x

(1 − b)(1 − x)
,
z − x−(1−a)

xa

z − x−(1−a)
a

, z,
b

1 − b
,
1 − x

x

]

+ 2

[
(1 − b) − y

(1 − b)(1 − y)
,

y − x

y(1 − x)
,
x − (1 − a)

xa
,
1 − y

y
,
1 − a

a

]

+ 2

[
(1 − b) − y

(1 − b)(1 − y)
,

y − x

y(1 − x)
,
x − (1 − a)

xa
,
1 − a

a
,
1 − x

x

]

.

For the moment, we will just focus on the first term keeping all of the terms with a constant coordinate

in mind. We proceed by splitting the second coordinate:

2

[
(1 − b) − y

(1 − b)(1 − y)
,

y − x

y(1 − x)
,
x − a

1 − a
· x − (1 − a)

a
,
1 − y

y
,
1 − x

x

]

= 2

[
(1 − b) − y

(1 − b)(1 − y)
,
y − x

1 − x
,
x − a

1 − a
· x − (1 − a)

a
,
1 − y

y
,
1 − x

x

]2

(+, 1
y
)

+ 2




z − (1−b)−x

(1−b)(1−x)

z − b−x
1−x

, z,
x − a

1 − a
· x − (1 − a)

a
,

b

1 − b
,
1 − x

x





− 2
∑

x0=a,1−a

[

(1 − b) − y

(1 − b)(1 − y)
,
z − y−x0

y(1−x0)

z − y−x0

1−x0

, z,
1 − y

y
,
1 − x0

x0

]

and again split the first coordinate, where the second term – the one with 1
1−b in the left coordinate

– vanishes in C3(F, 5)/∂C3(F, 6) ⊗ Z [ 1
2

]
:

2

[
(1 − b) − y

(1 − b)(1 − y)
,
y − x

1 − x
,
x − a

1 − a
· x − (1 − a)

a
,
1 − y

y
,
1 − x

x

]

= 2

[
(1 − b) − y

1 − y
,
y − x

1 − x
,
x − a

1 − a
· x − (1 − a)

a
,
1 − y

y
,
1 − x

x

]

+ 2
∑

x0=a,1−a




z − (1−b)−y

(1−b)(1−y)

z − (1−b)−y
1−y

, z,
y − x0

1 − x0
,
1 − y

y
,
1 − x0

x0



 .
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Now let us split the last two coordinates:

2

[
(1 − b) − y

1 − y
,
y − x

1 − x
,
x − a

1 − a
· x − (1 − a)

a
,
1 − y

y
,
1 − x

x

]

= 2

[
(1 − b) − y

1 − y
,
y − x

1 − x
,
x − a

1 − a
· x − (1 − a)

a
, 1 − y, 1 − x

]

+ 2

[
(1 − b) − y

1 − y
,
y − x

1 − x
,
x − a

1 − a
· x − (1 − a)

a
,
1

y
, 1 − x

]

+ 2

[
(1 − b) − y

1 − y
,
y − x

1 − x
,
x − a

1 − a
· x − (1 − a)

a
, 1 − y,

1

x

]

+ 2

[
(1 − b) − y

1 − y
,
y − x

1 − x
,
x − a

1 − a
· x − (1 − a)

a
,
1

y
,
1

x

]

.

Now note that twice the first term is equal to 2T1 as is [GMS99]. Further, for twice the

second we have

= −2T3 − 2
∑

x0=a,1−a

[
(1 − b) − y

1 − y
,
y − x0

1 − x0
,
z − 1

z − y
, z, x0

]

,

while twice the third one is

= −2T4 + 2

[
(1 − b) − x

1 − x
,
x − a

1 − a
· x − (1 − a)

ax
, b,

z − 1

z − x
, z

]

.

The fourth at last is

= 2T2 − 2
∑

x0=a,1−a

[
(1 − b) − y

1 − y
,
y − x0

1 − x0
,
z − 1

z − y
, z,

1

x0

]

.

Now we go on with one more manipulation:

2T2 = 2

[
y − (1 − b)

y − 1
, 1 − y

x
,
(

1 − x

a

)(

1 − x

1 − a

)

, y, x

]

+ 2

[
y − (1 − b)

y − 1
,

x

x − 1
,
(

1 − x

a

)(

1 − x

1 − a

)

, y, x

]

+ 2

[

z −
(
1 − 1−b

x

)
x

x−1

z − x
x−1

, z,
(

1 − x

a

)(

1 − x

1 − a

)

, 1 − b, x

]

− 2
∑

x0=a,1−a




y − (1 − b)

y − 1
,
z −

(

1 − y
x0

)
x0

x0−1

z − x0

x0−1

, z, y, x0



 .

Let us denote the first term by 2T ′

2. Analogously denote the first term on the right-hand side by 2T ′

4:

2T4 = 2

[
y − (1 − b)

y − 1
, 1 − y

1 − x
,
(

1 − x

a

)(

1 − x

1 − a

)

, y, x

]

+ 2

[
y − (1 − b)

y − 1
,
x − 1

x
,
(

1 − x

a

)(

1 − x

1 − a

)

, y, x

]
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and further

+ 2




z −

(

1 − 1−b
1−x

)
x−1

x

z − x−1
x

, z,
(

1 − x

a

)(

1 − x

1 − a

)

, 1 − b, x





− 2
∑

x0=a,1−a




y − (1 − b)

y − 1
,
z −

(

1 − y
1−x0

)
x0−1

x0

z − x0−1
x0

, z, y, x0



 .

Now we have the last two steps:

2T1 + 2T ′
2 = 2Z1 − 2

∑

x0=a,1−a




z −

(

1 − b
y

)(
y−(1−b)

y−1

)

z −
(

1 − b
y

) , z, 1 − y

x0
, y, x0





as well as

2T3 + 2T ′
4 = 2Z2 − 2

∑

x0=a,1−a




z −

(

1 − b
y

)(
y−(1−b)

y−1

)

z −
(

1 − b
y

) , z, 1 − y

1 − x0
, y, x0



 .

In summary: 2Cφ2(1−b) +2Cφ3(1−b) = 2Z1 − 2Z2 +4C b
b−1

± . . ., where . . . should denote terms

of lower order, i. e. with one constant entry. Adding 8Cφ1(b) as well, we arrive at

8
3∑

i=1

Cφi(b) = 16Z1 + 16C b
b−1

± . . . .

The last step: Split Z1 from [GMS99]:

2Z1 = 2

[(

1 − b

1 − y

)(

1 − b

y

)

, 1 − y

x
,
(

1 − x

a

)(

1 − x

1 − a

)

, y, x

]

= 2

[

1 − b

1 − y
, 1 − y

x
,
(

1 − x

a

)(

1 − x

1 − a

)

, y, x

]

+ 2

[

1 − b

y
, 1 − y

x
,
(

1 − x

a

)(

1 − x

1 − a

)

, y, x

]

+ 2
∑

x0=a,1−a




z −

(

1 − b
1−y

)(

1 − b
y

)

z −
(

1 − b
y

) , z, 1 − y

x0
, y, x0





= 2

[

1 − b

1 − y
, 1 − y

x
, 1 − x

a
, y, x

]

+ 2

[

1 − b

1 − y
, 1 − y

x
, 1 − x

1 − a
, y, x

]

+ 2

[

1 − b

y
, 1 − y

x
, 1 − x

a
, y, x

]

+ 2

[

1 − b

y
, 1 − y

x
, 1 − x

1 − a
, y, x

]

− 2
∑

y0=b,1−b



1 − y0

x
,
z −

(
1 − x

a

)(

1 − x
1−a

)

z −
(
1 − x

a

) , z, y0, x




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and further

+ 2
∑

x0=a,1−a




z −

(

1 − b
1−y

)(

1 − b
y

)

z −
(

1 − b
y

) , z, 1 − y

x0
, y, x0



 .

Let us identify some terms:

2Z1 = 2C b
a

+ 2

[

1 − b

ay
, 1 − y

x
, 1 − x, a, x

]

+ 2

[

1 − b

ay
, 1 − y

x
, 1 − x, y, a

]

+ 2C b
1−a

+ 2

[

1 − b

(1 − a)y
, 1 − y

x
, 1 − x, 1 − a, x

]

+ 2

[

1 − b

(1 − a)y
, 1 − y

x
, 1 − x, y, 1 − a

]

+ 2

[

1 − b

1 − ay
, 1 − y

x
, 1 − x, ay, ax

]

+ 2

[

1 − b

1 − (1 − a)y
, 1 − y

x
, 1 − x, (1 − a)y, (1 − a)x

]

− 2
∑

y0=b,1−b



1 − y0

x
,
z −

(
1 − x

a

)(

1 − x
1−a

)

z −
(
1 − x

a

) , z, y0, x





+ 2
∑

x0=a,1−a




z −

(

1 − b
1−y

)(

1 − b
y

)

z −
(

1 − b
y

) , z, 1 − y

x0
, y, x0





= 2C b
a

+ 2

[

1 − b

ay
, 1 − y

x
, 1 − x, a, x

]

+ 2

[

1 − b

ay
, 1 − y

x
, 1 − x, y, a

]

+ 2C b
1−a

+ 2

[

1 − b

(1 − a)y
, 1 − y

x
, 1 − x, 1 − a, x

]

+ 2

[

1 − b

(1 − a)y
, 1 − y

x
, 1 − x, y, 1 − a

]

+ 2

[

1 − 1 − b

ay
, 1 − y

x
, 1 − x, ay, ax

]

+ 2

[

− ay

1 − ay
, 1 − y

x
, 1 − x, ay, ax

]

+ 2

[

1 − 1 − b

(1 − a)y
, 1 − y

x
, 1 − x, (1 − a)y, (1 − a)x

]

+ 2

[

− (1 − a)y

1 − (1 − a)y
, 1 − y

x
, 1 − x, (1 − a)y, (1 − a)x

]

− 2

[

z − (1 − b
1−ay )

z + ay
1−ay

, z, 1 − y, ay, a

]

− 2




z − (1 − b

1−(1−a)y )

z + (1−a)y
1−(1−a)y

, z, 1 − y, (1 − a)y, a





− 2
∑

y0=b,1−b



1 − y0

x
,
z −

(
1 − x

a

)(

1 − x
1−a

)

z −
(
1 − x

a

) , z, y0, x




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plus the following extra terms

+ 2
∑

x0=a,1−a




z −

(

1 − b
1−y

)(

1 − b
y

)

z −
(

1 − b
y

) , z, 1 − y

x0
, y, x0



 .

Now, we have to invert some terms:

2Z1 = 2C b
a

+ 2

[

1 − b

ay
, 1 − y

x
, 1 − x, a, x

]

+ 2

[

1 − b

ay
, 1 − y

x
, 1 − x, y, a

]

+ 2C b
1−a

+ 2

[

1 − b

(1 − a)y
, 1 − y

x
, 1 − x, 1 − a, x

]

+ 2

[

1 − b

(1 − a)y
, 1 − y

x
, 1 − x, y, 1 − a

]

+ 2

[

1 − 1 − b

ay
, 1 − y

x
, 1 − x, ay, ax

]

− 2

[

1 − 1

ay
, 1 − y

x
, 1 − x, ay, ax

]

+ 2

[

1 − 1 − b

(1 − a)y
, 1 − y

x
, 1 − x, (1 − a)y, (1 − a)x

]

− 2

[

1 − 1

(1 − a)y
, 1 − y

x
, 1 − x, (1 − a)y, (1 − a)x

]

− 2

[

z − 1

z − −ay
1−ay

, z, 1 − y, ay, a

]

− 2




z − 1

z − −(1−a)y
1−(1−a)y

, z, 1 − y, (1 − a)y, 1 − a





− 2
∑

y0=b,1−b



1 − y0

x
,
z −

(
1 − x

a

)(

1 − x
1−a

)

z −
(
1 − x

a

) , z, y0, x





+ 2
∑

x0=a,1−a




z −

(

1 − b
1−y

)(

1 − b
y

)

z −
(

1 − b
y

) , z, 1 − y

x0
, y, x0





− 2

[

z − (1 − b
1−ay )

z + ay
1−ay

, z, 1 − y, ay, a

]

− 2




z − (1 − b

1−(1−a)y )

z + (1−a)y
1−(1−a)y

, z, 1 − y, (1 − a)y, a



 .

Finally:

2Z1 = 2C b
a

+ 2C b
1−a

+ 2C 1−b
a

+ 2C 1−b
1−a

− 2C 1
a
− 2C 1

1−a

+ 2

[

1 − b

ay
, 1 − y

x
, 1 − x, a, x

]

+ 2

[

1 − b

ay
, 1 − y

x
, 1 − x, y, a

]

+ 2

[

1 − b

(1 − a)y
, 1 − y

x
, 1 − x, 1 − a, x

]

+ 2

[

1 − b

(1 − a)y
, 1 − y

x
, 1 − x, y, 1 − a

]

+ 2

[

1 − 1 − b

ay
, 1 − y

x
, 1 − x, a, x

]

+ 2

[

1 − 1 − b

ay
, 1 − y

x
, 1 − x, y, a

]

− 2

[

1 − 1

ay
, 1 − y

x
, 1 − x, a, x

]

− 2

[

1 − 1

ay
, 1 − y

x
, 1 − x, y, a

]

+ 2

[

1 − 1 − b

(1 − a)y
, 1 − y

x
, 1 − x, 1 − a, x

]

+ 2

[

1 − 1 − b

(1 − a)y
, 1 − y

x
, 1 − x, y, 1 − a

]
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plus the rest

− 2

[

1 − 1

(1 − a)y
, 1 − y

x
, 1 − x, 1 − a, x

]

− 2

[

1 − 1

(1 − a)y
, 1 − y

x
, 1 − x, y, 1 − a

]

− 2

[

z − 1

z − −ay
1−ay

, z, 1 − y, ay, a

]

− 2




z − 1

z − −(1−a)y
1−(1−a)y

, z, 1 − y, (1 − a)y, 1 − a





− 2
∑

y0=b,1−b



1 − y0

x
,
z −

(
1 − x

a

)(

1 − x
1−a

)

z −
(
1 − x

a

) , z, y0, x





+ 2
∑

x0=a,1−a




z −

(

1 − b
1−y

)(

1 − b
y

)

z −
(

1 − b
y

) , z, 1 − y

x0
, y, x0





− 2

[
z − (1 − b

1−ay )

z + ay
1−ay

, z, 1 − y, ay, a

]

− 2




z − (1 − b

1−(1−a)y )

z + (1−a)y
1−(1−a)y

, z, 1 − y, (1 − a)y, a



 .

Then the assertion follows.

3.3 An inversion relation modulo 2-torsion

The above variant of the Kummer – Spence – relation can now be used in the same way as

Gangl and Müller-Stach did in their paper [GMS99] to derive an inversion relation:

Proposition 3.3.1. With the assumptions of the previous section, an inversion of the fol-

lowing shape holds in C3(F, 5)/∂C3(F, 6) ⊗ Z [1
2

]
:

32(Ca + C 1
a
) = lower order terms.

Proof. Let us consider 〈x〉 := Cx − C 1
x

and further A := 1 − 1
a , B := 1 − 1

b . We explain the

strategy of the proof and just give the resulting formula. The intermediate expressions are

not valuable.

First, we subtract the Kummer – Spence – relation with arguments (a, 1− b) from the one

with arguments (a, b). This gives the expression (cf. [GMS99])

4KS(b, a) − 4KS(b, 1 − a) = 4〈A/B〉 + 4〈AB〉 + 8〈1/A〉

plus pages of extra terms with a constant somewhere. Similarly, we have

4KS(a, b) − 4KS(a, 1 − b) = 4〈B/A〉 + 4〈BA〉 + 8〈1/B〉 (3.3.1)

plus pages of extra terms with a constant somewhere. Adding both expressions gives

8〈AB〉 − 16〈A〉 − 16〈B〉 = lower order terms.
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Then one substitutes A 7→ B/A,B 7→ BA and rewrites the expression in the form

16〈B/A〉 + 16〈BA〉 − 8〈B2〉 = lower order terms

and uses the distribution relation for n = 2 and 3.3.1 to find

16〈B/A〉 + 16〈BA〉 − 8〈B2〉 = lower order terms

−32〈1/B〉 − 8〈B2〉 = lower order terms

−32〈1/B〉 = lower order terms

as was to be proven.

3.4 The Goncharov – relation modulo 2-torsion

In this section, our aim is to prove the Goncharov – relation in C3(F, 5)/∂C3(F, 6) ⊗ Z [12].
We do this in the same way as Zhao did in his article [Zha07], but again making use of the

appropriate rules settled in the first section. Further, we prove the relation making use of the

inversion relation from the last section. In the proof we shall not use the inversion relation,

but in order to arrive at the relation given in the proposition, one has to use the inversion

relation.

We decided not to write down the explicit shape of the relation. This is very complicated

and takes a lot of space. One may criticize this missing formula, but our justification is that

one does not gain any information by seeing the whole relation explicitly. If one had further

arguments to simplify the extra terms, one could simplify the steps in the proof and write

down explicitly an easier relation.

Remark 3.4.1. We use Zhao’s notation [Zha07] freely. The interested reader should keep

Zhao’s article at hand in order to understand all our steps. We also note that there is some

overlap with our notation from the last chapter. For example, we introduced some elements

Z(a, b) ∈ C2(F, 3)/∂C2(F, 4). Zhao also defines elements in Z3(F, 5 denoted by Z(a, b). But

this should not cause too much confusion, because we do not use the notation from the last

chapter in the following. ♦

Define for a ∈ F×−{1} the expression T (a) := Ca +C1−a +C1− 1
a
∈ C3(F, 5)/∂C3(F, 6)⊗Z [1

2

]
. Copying ideas from Gangl and Müller-Stach [GMS99], we can show that T (a)−T (b) =

lower order terms for a, b 6= 0, 1. Thus, both expression are equal modulo lower order terms.

As Zhao did, we set η := T (a). Our result is the following:

Proposition 3.4.2. For any combination of parameters a, b, c ∈ P1
F the following relation
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holds in C3(F, 5)/∂C3(F, 6) ⊗Z [1
2

]
:

R(a, b, c) := C−abc+
⊕

cyc(a,b,c)

(

Cac−a+1 + C ca−a+1
ca

− C ca−a+1
c

+Ca(bc−c+1)
a−1−ac

+ C bc−c+1
b(ca−a+1)

+ Cc − C bc−c+1
bc(ca−a+1)

− η

)

= lower order terms,

where cyc(a, b, c) denotes a cyclic permutation of the three variables provided none of the

terms in R(a, b, c) except for η is equal to C1 or not admissible.

Proof. We shall start with recalling some abbreviations of [Zha07]: Let f(x) := x,A(x) :=

(ax − a + 1)/a, and B(x) := bx − x + 1 for some constants a, b ∈ F . Denote further by

k(x) := B(x)/abxA(x) and l(y) := 1 − k(c)/k(y), and let lastly be µ := −(ab − b + 1)/a.

Let us start with

Ck(c) :=

[

1 − k(c)

y
, 1 − y

x
, 1 − x, y, x

]

.

1st step: By lemma 3.1.14, we can write

8Ck(c) = 8

[

1 − k(c)

y
, 1 − y

x
, 1 − x,

aby

µ
,
abx

µ

]

− 8

[

1 − k(c)

y
, 1 − y

x
, 1 − x,

ab

µ
, x

]

− 8

[

1 − k(c)

y
, 1 − y

x
, 1 − x, y,

ab

µ

]

.

With the reparametrization (x, y) 7→ (k(x), k(y)) this can be written as

= 2

[

l(y), 1 − k(y)

k(x)
, 1 − k(x),

B(y)

µyA(y)
,

B(x)

µxA(x)

]

− 8

[

1 − k(c)

y
, 1 − y

x
, 1 − x,

ab

µ
, x

]

− 8

[

1 − k(c)

y
, 1 − y

x
, 1 − x, y,

ab

µ

]

.

The next step consists of expressing the first term in another way: We let

Z (f1, f2) :=

[

l(y), 1 − k(y)

k(x)
, 1 − k(x), f1(y), f2(x)

]

so that

8Ck(c) = 2Z

(
B

µfA
,

B

µfA

)

− 8

[

1 − k(c)

y
, 1 − y

x
, 1 − x,

ab

µ
, x

]

− 8

[

1 − k(c)

y
, 1 − y

x
, 1 − x, y,

ab

µ

]

.



3.4. THE GONCHAROV – RELATION MODULO 2-TORSION 97

In the sequel, we often have to determine the zeros and poles of l(y). As one can check, the zeros are

y = c and y = c−1−ac
a(bc−c+1) , whereas the pole is at y = 1

1−b . Note further that the pole of l is a zero of

B. So when we write
∑

y0
in the following, we shall mean one term with y0 = c and another term

with y0 equal to the second zero of l. Something similar applies for 1 − k(y)/k(x) as well: The zeros

are y(x) = x and y(x) = −A(x)/B(x) whereas the pole is y(x) = 1 − 1/a. Again, the pole does not

produce any extra terms because the resulting term will be 2-torsion. We shall simply write
∑

yx
for

the sum over the zeros:

8Ck(c) = −2Z

(
µfA

B
,

B

µfA

)

+ 2
∑

yx



1 − k(c)

k(yx)
, 1 − k(x),

z − 1

z − µyxA(yx)
B(yx)

, z,
B(x)

µxA(x)





− 8

[

1 − k(c)

y
, 1 − y

x
, 1 − x,

ab

µ
, x

]

− 8

[

1 − k(c)

y
, 1 − y

x
, 1 − x, y,

ab

µ

]

and further

= 2Z

(
µfA

B
,
µfA

B

)

+ 2
∑

y0



1 − k(y0)

k(x)
, 1 − k(x),

µy0A(y0)

B(y0)
,

z − 1

z − B(x)
µxA(x)

, z





+ 8

[

1 − k(c)

y
, 1 − y

x
, 1 − x,

ab

µ
, x

]

+ 8

[

1 − k(c)

y
, 1 − y

x
, 1 − x, y,

ab

µ

]

.

In the same way as in [Zha07], the first expression can be split using lemma 3.1.14 again
with the following result:

8Ck(c) = 8Z(A, A) + 2
∑

y0



1 − k(y0)

k(x)
, 1 − k(x),

µy0A(y0)

B(y0)
,

z − 1

z − B(x)
µxA(x)

, z





+ 8

[

1 − k(c)

y
, 1 − y

x
, 1 − x,

ab

µ
, x

]

+ 8

[

1 − k(c)

y
, 1 − y

x
, 1 − x, y,

ab

µ

]

.

Before going on, we shall recall the Zhao’s notation: We set

α =
bc − c

bc − c + 1
, δ =

1

b
, v(x) =

abx + 1

aA(x)
,

g(x) =
B(x)

(b − 1)x
, h(x) = (b − 1)x p4(x, y) =

µ(x − y)

A(y)B(x)
,

q4(x, y) =
y − x

A(y)
, s4(x, y) =

(b − 1)(y − x)

B(y)
, r4 =

(b − 1)(y − x)

xB(y)
,

w4(x, y) =
y − x

B(x)(y − 1)
, l1(y) = 1 − y

c
, l2(y) =

a(bc − c + 1)y + ca − a + 1

(ca − a + 1)B(y)
.

We also need the following terms:

Y1 :=

[

l1(y),
y − x

A(y)
,

abx + 1

ax − a + 1
, (1 − b)y,

B(x)

(b − 1)x

]

, ,

Y2 :=

[

l1(y),
(y − x)(ab − b + 1)

aA(y)B(x)
,

abx + 1

ax − a + 1
,

B(y)

(b − 1)y
, (1 − b)x

]
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and

Y3 :=

[

l2(y),
y − x

A(y)
,

abx + 1

ax − a + 1
, (1 − b)y,

(b − 1)x

B(x)

]

,

Y4 :=

[

l2(y),
(y − x)(ab − b + 1)

aA(y)B(x)
,

abx + 1

ax − a + 1
,
(b − 1)y

B(y)
, (1 − b)x

]

.

2nd step: Let us start with some preliminary considerations: Zhao defined four terms
Z1, . . . , Z4 which he used in his proof:

Z1

(
b − 1

µ
A,

b − 1

µ
A

)

:=

[

l(y), q4(x, y),
x − 1

x
,
b − 1

µ
A(y),

b − 1

µ
A(x)

]

,

Z2

(
b − 1

µ
A,

b − 1

µ
A

)

:=

[

l(y),
A(y)

y

(

1 − µx

A(y)B(x)

)

,
x − 1

x
,
b − 1

µ
A(y),

b − 1

µ
A(x)

]

,

Z3

(
b − 1

µ
A,

b − 1

µ
A

)

:=

[

l(y), q4(x, y), δv(x),
b − 1

µ
A(y),

b − 1

µ
A(x)

]

,

Z4

(
b − 1

µ
A,

b − 1

µ
A

)

:=

[

l(y),
A(y)

y

(

1 − µx

A(y)B(x)

)

, δv(x),
b − 1

µ
A(y),

b − 1

µ
A(x)

]

.

We shall now throw away some terms with constants by using proposition 3.1.7 and lemma
3.1.14:

2Z1

(
b − 1

µ
A,

b − 1

µ
A

)

= 2Z1(A, A)

+ 2

[

l(y), q4(x, y),
x − 1

x
,
b − 1

µ
, A(x)

]

+ 2

[

l(y), q4(x, y),
x − 1

x
, A(y),

b − 1

µ

]

,

2Z3

(
b − 1

µ
A,

b − 1

µ
A

)

= 2Z3(A, A)

+ 2

[

l(y), q4(x, y), δv(x),
b − 1

µ
, A(x)

]

+ 2

[

l(y), q4(x, y), δv(x), A(y),
b − 1

µ

]

,

2Z2

(
b − 1

µ
A,

b − 1

µ
A

)

= 2

[

l(y), 1 − µx

A(y)B(x)
,
x − 1

x
,
b − 1

µ
A(y),

b − 1

µ
A(x)

]2

(+, A(y)
y

)

+ 2
∑

y0




z − A(y0)

y0

(

1 − µx
A(y0)B(x)

)

z − A(y0)
y0

, z,
x − 1

x
,
b − 1

µ
A(y0),

b − 1

µ
A(x)





− 2



l(y),
z − A(y)

y

(

1 − µ
A(y)b

)

z − A(y)
y

, z,
b − 1

µ
A(y),

1 − b

ab − b + 1





+ 2

[

l(y),
z − 1

z − A(y)
y

, z,
1

1 − a
,
b − 1

µ
A(y)

]

2Z4

(
b − 1

µ
A,

b − 1

µ
A

)

= 2

[

l(y),
A(y)

y

(

1 − µx

A(y)B(x)

)

, v(x),
b − 1

µ
A(y),

b − 1

µ
A(x)

]3

(+, 1
b
)

− 2
∑

y0

[
A(y0)

y0

(

1 − µx

A(y0)B(x)

)

,
z − δv(x)

z − 1
b

, z,
x − 1

x
,
b − 1

µ
A(y0),

b − 1

µ
A(x)

]

.
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Now we break up Z
(

b−1
µ A, b−1

µ A
)

:

Z

(
b − 1

µ
A,

b − 1

µ
A

)

=

[

l(y), q4(x, y), 1 − k(x),
b − 1

µ
A(y),

b − 1

µ
A(x)

]2

(+,
A(y)

x (1− µx
A(y)B(x) ))

,

where the first term will be denoted by Z ′

(
b−1
µ A, b−1

µ A
)

and the second by Z ′′

(
b−1
µ A, b−1

µ A
)

+
∑

y0




z − (1 − k(y0)

k(x) )

z − y0−x
A(y0)

, z, 1 − k(x),
b − 1

µ
A(y0),

b − 1

µ
A(x)





−
[

l(y),
z − (1 − k(y))

z − y−1
A(y)

, z,
b − 1

µ
A(y),

1 − b

ab − b + 1

]

−



l(y),
z − (1 − k(y))

z − y+ 1
ab

A(y)

, z,
b − 1

µ
A(y),

b − 1

b



 .

Further, we see that

2Z ′

(
b − 1

µ
A,

b − 1

µ
A

)

= 2

[

l(y), q4(x, y), δv(x),
b − 1

µ
A(y),

b − 1

µ
A(x)

]3

(+, x−1
x

)

− 2
∑

y0

[
y0 − x

A(y0)
,
z − (1 − k(x))

z − x−1
x

, z,
b − 1

µ
A(y0),

b − 1

µ
A(x)

]

,

where the first term is recognized to be 2Z1

(
b−1
µ A, b−1

µ A
)

while the second is just equal to

2Z3

(
b−1
µ A, b−1

µ A
)

. In rather the same way, we imitate the reasoning of [Zha07] to see

2Z ′′

(
b − 1

µ
A,

b − 1

µ
A

)

=

[

l(y), p4(x, y), 1 − k(x),
1

g(y)
,
b − 1

µ
A(x)

]

+

[

l(y), 1 − y

x
, 1 − k(x),

b − 1

µ
A(y),

1

g(x)

]

which is equal to

= 2Z2

(
b − 1

µ
A,

b − 1

µ
A

)

+ 2Z4

(
b − 1

µ
A,

b − 1

µ
A

)

+ 2
∑

y0

([
µ(x − y0)

A(y0)B(x)
,
z − (1 − k(x))

z − x−1
x

, z,
(b − 1)y0

B(y0)
,
b − 1

µ
A(x)

]

+

[

1 − y0

x
,
z − (1 − k(x))

z − x−1
x

, z,
b − 1

µ
A(y0),

1

g(x)

])

+

[

l(y), p4(x, y),
1 − k(x)

1 − δv(x)
,

1

g(y)
,
b − 1

µ
A(x)

]

+

[

l(y), 1 − y

x
,

1 − k(x)

1 − δv(x)
,
b − 1

µ
A(y),

1

g(x)

]

.
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Now we can quote from [Zha07] again that 2Z
(

b−1
µ A, b−1

µ A
)

= 2
∑4

i=1 Zi

(
b−1
µ A, b−1

µ A
)

plus

lower order terms and so we finally see

8Ck(c) = 8Z

(
b − 1

µ
A,

b − 1

µ
A

)

+ 2
∑

y0



1 − k(y0)

k(x)
, 1 − k(x),

µy0A(y0)

B(y0)
,

z − 1

z − B(x)
µxA(x)

, z





+ 8

[

1 − k(c)

y
, 1 − y

x
, 1 − x,

ab

µ
, x

]

+ 8

[

1 − k(c)

y
, 1 − y

x
, 1 − x, y,

ab

µ

]

− 8

[

l(y), 1 − k(y)

k(x)
, 1 − k(x),

b − 1

µ
, A(x)

]

− 8

[

l(y), 1 − k(y)

k(x)
, 1 − k(x), A(y),

b − 1

µ

]

which by means of the relations derived at the beginning of this step is the same as

=
4∑

i=1

Zi

(
b − 1

µ
A,

b − 1

µ
A

)

+ lower order terms.

Remark 3.4.3. Note our abbreviation. Lower order terms are again those with a constant in

one of the coordinates and terms which can be written as a product of two terms, i. e. are

contained in Z2(F, 3) ∧ Z1(F, 2). ♦

3rd step: Let us proceed by considering the reparametrization ρx : x 7→ −A(x)/B(x) and

ρxZ2

(
b − 1

µ
A,

b − 1

µ
A

)

+ ρxZ4

(
b − 1

µ
A,

b − 1

µ
A

)

=

[

l(y), q4(x, y), v(x),
b − 1

µ
A(y),

1

g(x)

]

+

[

l(y), p4(x, y), v(x),
1

g(y)
,
b − 1

µ
A(x)

]

.

By lemma 3.1.14, we deduce

=

[

l(y), q4(x, y), v(x),
A(y)

−µy
,

1

g(x)

]4

(+,−h(y))

+

[

l(y), p4(x, y), v(x),
1

g(y)
,
A(x)

−µx

]5

(+,−h(x))

−
∑

y0

[

µ(x − y0)

A(y0)B(x)
, v(x),

(b − 1)y0

B(y0)
,
z − b−1

µ A(x)

z − (1 − b)x
, z

]

+

[

l(y),
y + 1

ab

A(y)
,
z − b−1

µ A(y)

z − (1 − b)y
, z,

1 − b

ab − b + 1

]

−
[

l(y),
y

A(y)
,

1

1 − a
,
z − b−1

µ A(y)

z + h(y)
, z

]

leading to the following expression for the first four terms on the right-hand side:

[

l(y), q4(x, y), v(x),
A(y)

−µy
,

1

g(x)

]4

(+,−h(y))

+

[

l(y), p4(x, y), v(x),
1

g(y)
,
A(x)

−µx

]5

(+,−h(x))

= X1 − X2

−
∑

y0

[
y0 − x

A(y0
, v(x), (1 − b)y0,

z − 1

z − g(x)
, z

]

+

[

l(y),
aby + 1

ay − a + 1
,

z − 1

z − k(y)
, z,

ab − b + 1

1 − b

]

+

[

l(y),
(ab − b + 1)y

ay − a + 1
,

1

1 − a
,

z − 1

z − g(y)
, z

]

.
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Then we put X2 in a different way:

2X2 = 2 [l(y), q4(x, y), v(x),−h(y), g(x)] + 2 [l(y), p4(x, y), v(x), g(y),−h(x)]

+ 2
∑

y0

[
µ(x − y0)

A(y0)B(x)
, v(x),

B(y0)

(b − 1)y0
.
z − (1 − b)x

z + 1
, z

]

− 2

[

l(y),
y + 1

ab

A(y)
,
z − (b − 1)y

z + 1
, z,

ab − b + 1

1 − b

]

− 2

[

l(y),
y

A(y)
,

1

1 − a
,
z − (b − 1)y

z + 1
, z

]

.

We now want to compute X1: First define

Z̃(f1, f2) := [l(y), p4(x, y), v(x), f1(y), f2(x)]

so that one can write

X1 = Z̃

(
(b − 1)f

B
,

A

−µf

)

+ Z̃

(
A

−µf
,
(b − 1)f

B

)

+

[

l(y),
B(x)

−µ
, v(x),

A(y)

−µy
,

1

g(x)

]

+
∑

y0

[
z − y0−x

A(y0)

z + B(x)
µ

, z, v(x),
A(y0)

−µy0
,

1

g(x)

]

−



l(y),
z − y+ 1

ab

A(y)

z + 1
b

, z,
A(y)

−µy
,

1 − b

ab − b + 1



−
[

l(y),
z − y

A(y)

z − 1−b
µ

, z,
1

1 − a
,
A(y)

−µy

]

+

[

l(y),
z − 1

z + 1
, z,

A(y)

−µy
,
(1 − a)(1 − b)

ab − b + 1

]

.

We proceed by finding

Z3

(
A

f
,
A

f

)

) =

[

l(y), q4(x, y), v(x),
A(y)

y
,
A(x)

x

]

+

[

l(y), q4(x, y), v(x),
−1

µ
,
A(x)

x

]

+

[

l(y), q4(x, y), v(x),
A(y)

y
,
−1

µ

]

and the first term is seen to be equal to

Z̃

(
A

f
,
A

f

)

−
[

l(y),
−µ

B(x)
, v(x),

A(y)

y
,
A(x)

x

]

−
∑

y0




z − µ(x−y0)

A(y0)B(x)

z − y0−x
A(y0)

, z, v(x),
A(y0)

y0
,
A(x)

x





+

[

l(y),
z − 1+aby

ay−a+1

z − 1+aby
(ay−a+1)b

, z,
A(y)

y
, ab − b + 1

]

−
[

l(y),
z + µy

A(y)

z + µ
, z,

1

1 − a
,
A(y)

y

]

.

It is easy to see that Z3

(
A
B , A

B

)
= Z̃

(
A
B , A

B

)
, but further note that

Z3

(
f

B
,
f

B

)

=

[

l(y),
y − x

yB(x)
, v(x),

y

B(y)
,

x

B(x)

]

+

[

l(y),
y − x

yB(x)
, v(x),

y

B(y)
, 1 − b

]

+

[

l(y),
y − x

yB(x)
, v(x), 1 − b,

x

B(x)

]

,
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where the first term on the right-hand side again can be written as

Z̃

(
f

B
,
f

B

)

−
[

l(y),
−µy

A(y)
, v(x),

y

B(y)
,

x

B(x)

]

−
∑

y0




z − µ(x−y0)

A(y0)B(x)

z − −µy0

A(y0)

, z, v(x),
y0

B(y0)
,

x

B(x)





+

[

l(y),
z + 1+aby

ay−a+1

z − −µy
A(y)

, z,
y

B(y)
,

−1

ab − b + 1

]

+

[

l(y),
z + µy

A(y)

z + µy
A(y)

, z,
1

1 − a
,

y

B(y)

]

.

With the help of this and lemma 3.1.14, one computes

X1 = Z̃

(
A

B
,
A

B

)

− Z̃

(
A

−µf
,

A

−µf

)

− Z̃

(
(b − 1)f

B
,
(b − 1)f

B

)

+ lower order terms

= Z̃

(
A

B
,
A

B

)

− Z̃

(
1

−µ
,
A

f

)

− Z̃

(
A

f
,

1

−µ

)

− Z̃

(

b − 1,
(b − 1)f

B

)

− Z̃

(
(b − 1)f

B
, b − 1

)

− Z̃

(
A

f
,
A

f

)

− Z̃

(
f

B
,
f

B

)

+ lower order terms

and expresses the Z̃–terms via the Z–terms as above.

Let us now decompose X2: With the notations of [Zha07], we find

X2 =

4∑

i=1

Yi

+

[
z − l(y)

z − l1(y)
, z,

y + 1/ab

A(y)
,−h(y),

ab − b + 1

1 − b

]

−
[

z − l(y)

z − l1(y)
, z,

y

A(y)
,

1

1 − a
,−h(y)

]

+

[
z − l(y)

z − l1(y)
, z,

1 + aby

ay − a + 1
, g(y),

1 − b

ab

]

+

[
z − l(y)

z − l1(y)
, z,

µy

A(y)
,

1

1 − a
, g(y)

]

.

4th step: Our aim is to compute Y1 + Y2: Again, we follow the notation of [Zha07]:

[αl1, q4, δv, gh, gh] + [αl1, s4, δv, gh, gh]

= [αl1, q4, δv, g, gh]4(+,h) + [αl1, s4, δv, gh, g]5(+,h)

+

[
c − x

A(c)
, δv(x), B(c),

z − B(x)

z − (b − 1)x
, z

]

+

[

αl1(y),
(b − 1)(1 + aby)

ab(by − y + 1)
,

z − B(y)

z − (b − 1)y
, z,

ab − b + 1

ab

]

−
[

αl1(y),
(b − 1)(ay − a + 1)

a(by − y + 1)
,

z − B(y)

z − (b − 1)y
, z,

ab − b + 1

a

]

.

Then we derive step by step:

[αl1, q4, δv, gh, g] + [αl1, s4, δv, g, gh]

= [αl1, q4, δv, gh, g] + [αl1, r4, δv, g, gh]2(+, 1
x
) +




z − (b−1)(c−x)

xB(c)

z − 1
x

, z, δv(x),
B(c)

(b − 1)c
, B(x)




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and

−



αl1(y),
z − (b−1)(aby+1)

B(y)

z + ab
, z, g(y),

ab − b + 1

ab



+



αl1(y),
z − (b−1)(ay−a+1)

a(by−y+1)

z − a
a−1

, z, g(y),
ab − b + 1

a





and getting rid of the constants in the middle of the first two terms, we see that

[αl1, q4, δv, gh, g] + [αl1, r4, δv, g, gh]

= [αl1, q4, v, gh, g]3(+,δ) + [αl1, r4, v, g, gh]3(+,δ)

−
[
c − x

A(c)
,
z − δv(x)

z − δ
, z, B(c), g(x)

]

−
[
(b − 1)(c − x)

B(c)
,
z − δv(x)

z − δ
, z,

B(c)

(b − 1)c
, B(x)

]

.

Now we again replace the second coordinate in one of the terms:

[αl1, q4, v, gh, g] + [αl1, r4, v, g, gh]

= [αl1, q4, v, gh, g] + [αl1, w4, v, g, gh]2
(−,

(b−1)(y−1)B(x)
xB(y) )

−




z − (b−1)(c−x)

xB(c)

z − c−x
B(x)(c−1)

, z, v(x),
B(c)

(b − 1)c
, B(x)



+



αl1(y),
z − (1−b)(aby+1

B(y)

z − 1+aby
(y−1)(ab−b+1)

, z, g(y),
ab − b + 1

ab





−
[

αl1(y),
z − r4(

a−1
a , y)

z − w4(
a−1

a , y)
, z, g(y),

ab − b + 1

a

]

.

A complicated step consists of getting rid of the constants in the first coordinate:

[αl1, q4, v, gh, g] + [αl1, w4, v, g, gh] = [l1, q4, v, gh, g] + [l1, w4, v, g, gh]

+

[
z − αl1(y)

z − α
, z,

1 + aby

(ay − a + 1)b
, B(y),

ab − b + 1

1 − b

]

+

[
z − αl1(y)

z − α
, z,

1 + aby

(ab − b + 1)(y − 1)
, g(y),

ab − b + 1

ab

]

−
[
z − αl1(y)

z − α
, z,

ay − a + 1

(ab − b + 1)(y − 1)
, g(y),

ab − b + 1

a

]

−
[

z − 1

z − α
, z,

a(bx − x + 1)

ab − b + 1
, v(x), g(x)

]

−
[
z − αl1(y)

z − α
, z,

ay

ay − a + 1
,

1

1 − a
, B(y)

]

−
[

z − 1

z − α
, z,

1

b
, v(x), B(x)

]

.

We go on:

[l1, w4, v, g, gh] = [l1, p4, v, g, gh]2
(−, A(y)

µ(1−y)
)

−
[
z − w4(x, c)

z − p4(x, c)
, z, v(x),

B(c)

(b − 1)c
, B(x)

]

+

[

l1(y),
z − w4(−1/ab, y)

z − p4(−1/ab, y)
, z, g(y),

ab − b + 1

ab

]

−
[

l1(y),
z − w4(

a−1
a , y)

z − p4(
a−1

a , y)
, z, g(y),

ab − b + 1

a

]

.



104 CHAPTER 3. EXPLICIT COMPUTATIONS IN CODIMENSION THREE

Then we go on by splitting the product gh:

[l1, q4, v, gh, g] + [l1, p4, v, g, gh] = [l1, q4, v, h, g]4(+,g) + [l1, q4, v, g, h]5(+,g)

+

[
µ(x − c)

A(c)B(x)
, v(x),

B(c)

(b − 1)c
,
z − B(x)

z − g(x)
, z

]

−
[

l1(y),
1 + aby

(ay − a + 1)b
,
z − B(y)

z − g(y)
, z,

ab − b + 1

1 − b

]

−
[

l1(y),
y

A(y)
,

1

1 − a
,
z − B(y)

z − g(y)
, z

]

and finally see that

[l1, q4, v, h, g]4(+,g) + [l1, p4, v, g, h]5(+,g)

= [l1, p4, v, g, h] + [l1, p4, v, h, g] + 2[l1, p4, v, g, g]− [l1, q4/p4, v, g, g]

−
[

z − c−x
A(c)

z + µ
B(x)

, z, v(x), g(c), g(x)

]

−
[

l1(y),
z − 1

z + 1
, z, g(y),

ab − b + 1

(1 − a)(1 − b)

]

+

[

l1(y),
z − q4(−1/ab, y)

z − p4(−1/ab, y)
, z, g(y),

ab − b + 1

1 − b

]

+

[

l1(y),
z − q4(0, y)

z − p4(0, y)
, z,

1

1 − a
, g(y)

]

.

Now we perform something similar with two other terms, which we have also seen before:

[αl1, q4, δv, gh, h] + [αl1, s4, δv, h, gh] = [l1, q4, δv, gh, h] + [l1, s4, δv, h, gh]

+

[
z − αl1(y)

z − α
, z,

1 + aby

(ay − a + 1)b
, B(y),

ab − b + 1

ab

]3

(−, (b−1)(1+aby)
ab(by−y+1)

)

plus more terms

+

[
z − αl1(y)

z − α
, z,

(b − 1)(1 + aby)

abB(y)
,−h(y),

ab − b + 1

ab

]

−
[
z − αl1(y)

z − α
, z,

(b − 1)(ay − a + 1)

(by − y + 1)a
,−h(y),

ab − b + 1

a

]

−
[

z − 1

z − α
, z,

a(bx − x + 1)

ab − b + 1
, δv(x), (b − 1)x

]

+

[
z − αl1(y)

z − α
, z,

ay

ay − a + 1
,

δ

1 − a
, B(y)

]

.

The second term on the right-hand side is equal to

[l1, s4, δv, h, gh] = [l1, q4, δv, h, gh]2
(−, B(y)

(b−1)A(y)
)

−




z − (b−1)(c−x)

B(c)

z − c−x
A(c)

, z, δv(x), (b − 1)c, B(x)



−
[

l1(y),
z − s4(

a−1
a , y)

z − 1
, z,−h(y),

ab − b + 1

a

]

+

[

l1(y),
z − s4(−1/ab, y)

z − q4(−1/ab, y)
, z,−h(y),

ab − b + 1

ab

]
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and so

[l1, q4, δv, gh, h] + [l1, q4, δv, h, gh] = [l1, q4, δv, g, h] + [l1, q4, δv, h, g] + 2[l1, q4, δv, h, h]

+

[
c − x

A(c)
, δv(x), (b − 1)c,

z − B(x)

z − (b − 1)x
, z

]

+

[

l1(y),
aby + 1

b(ay − a + 1)
,

z − B(y)

z − (b − 1)y
, z,

1 − b

ab

]

−
[

l1(y), q4(0, y),
1

1 − a
,
z − B(y)

z − h(y)
, z

]

.

Getting rid of the constants in the first two terms, we find

[l1, q4, δv, g, h] + [l1, q4, δv, h, g] = [l1, q4, v, g, h]3(+,δ) + [l1, q4, δv, h, g]3(+,δ)

−
[
c − x

A(c)
,
z − δv(x)

z − δ
, z,

bc − c + 1

(b − 1)c
, h(x)

]

−
[
c − x

A(c)
,
z − δv(x)

z − δ
, z, (b − 1)c, g(x)

]

.

Finally:

[l1, q4, δv, g, h] = [l1, p4, δv, g, h]2
(−, −µ

B(x)
)

+

[
z − q4(x, c)

z − p4(x, c)
, z, v(x), g(c), h(x)

]

−
[

l1(y),
z − q4(

−1
ab , y)

z − p4(
−1
ab , y)

, z, g(y),
1 − b

ab

]

−
[

l1(y),
z − q4(0, y)

z − p4(0, y)
, z,

1

1 − a
, g(y)

]

.

Summing up all together, we see that

Y1 + Y2 = [αl1, q4, δv, gh, gh] − [l1, p4, v, g, g] − [l1, q4, δv, h, h] + lower order terms.

5th step: We shall now compute Y3 + Y4. Additionally, we set y2 := l−1
2 (0):

2(Y3 + Y4) = 2[l2(y), q4(x, y), v(x), h(y), g(x)] + 2[l2(y), p4(x, y), v(x), g(y), h(x)]

= −2[l2(y), q4(x, y), v(x), h(y),
1

g(x)
] − 2[l2(y), p4(x, y), v(x),

1

g(y)
, h(x)]

− 2

[
y2 − x

A(y2)
, v(x), (b − 1)y2,

z − 1

z − g(x)
, z

]

− 2

[

l2(y),
aby + 1

ay − a + 1
,

z − 1

z − g(y)
, z,

1 − b

ab

]

+ 2

[

l2(y),
(ab − b + 1)y

ay − a + 1
,

1

1 − a
,

z − 1

z − g(y)
, z

]

.

Now since −2[l2(y), q4(x, y), v(x), h(y), 1
g(x) ] − 2[l2(y), p4(x, y), v(x), 1

g(y) , h(x)] is just as well

−2[l2(y), q4(x, y), v(x),−h(y), 1
g(x) ] − 2[l2(y), p4(x, y), v(x), 1

g(y) ,−h(x)], we can proceed by

finding

− 2

[

l2(y), q4(x, y), v(x),−h(y),
1

g(x)

]

− 2

[

l2(y), p4(x, y), v(x),
1

g(y)
,−h(x)

]

= +2

[

l2(y), q4(x, y),
1

v(x)
,−h(y),

1

g(x)

]

+ 2

[

l2(y), p4(x, y),
1

v(x)
,

1

g(y)
,−h(x)

]

+ 2

[

q4(x, y2),
z − 1

z − v(x)
, z,−h(y2),

1

g(x)

]

+ 2

[

p4(x, y2),
z − 1

z − v(x)
, z,−h(y2),

1

g(x)

]
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and the first two terms can be written as

2

[

l2(y),
ab(y − x)

1 + aby
,

1

v(x)
,−h(y),

1

g(x)

]

+ 2

[

l2(y),
(ab − b + 1)(y − x)

(1 + aby)B(x)
,

1

v(x)
,

1

g(y)
,−h(x)

]

− 2

[

l2(y),
1

v(y)
,

1

v(x)
,

1

g(y)
,−h(x)

]

− 2

[

l2(y),
1

v(y)
,

1

v(x)
,−h(y),

1

g(x)

]

− 2

[
z − y2−x

A(y2)

z − aA(y2)
aby2+1

, z,
1

v(x)
, (1 − b)y2,

1

g(x)

]

− 2



l2(y),
z − y+1/ab

A(y)

z − 1
v(y)

, z,−h(y),
1 − b

ab − b + 1



+ 2

[

l2(y),
z − y

A(y)

z − 1
v(y)

, z, 1 − a,−h(y)

]

− 2




z − µ(x−y2)

A(y2)B(x)

z − 1
v(y2)

, z,
1

v(x)
,

ab

ab − b + 1
,−h(x)





− 2

[

l2(y),
z + 1+aby

ay−a+1

z − aA(y)
aby+1

, z,
1

g(y)
,
b − 1

ab

]

+ 2

[

l2(y),
z − 1

z − 1
v(y)

, z,
1

g(y)
,
(1 − a)(1 − b)

−a

]

− 2



l2(y),
z + µy

A(y)(1−b)

z − (ab−b+1)y
(aby+1)(1−b)

, z, 1 − a,−h(y)



 .

But now we again rewrite the first two terms to find

2

[

l2(y),
ab(y − x)

1 + aby
,

1

v(x)
,−h(y),

1

g(x)

]

+ 2

[

l2(y),
(ab − b + 1)(y − x)

(1 + aby)B(x)
,

1

v(x)
,

1

g(y)
,−h(x)

]

= −τa,c(Y1 + Y2)

−
[
(ab − b + 1)(y2 − x)

(1 + aby2)B(x)
,

1

v(x)
,− (ac − a + 1)(1 − b)

ab − b + 1
,

z − 1

z + h(x)
, z

]

+

[

l2(y),
aby

1 + aby
, 1 − a,

z − 1

z + h(y)
, z

]

.

6th step: Let us perform the following decompositions:

Z3(A, A) = [l1(y)ε1(A), q4(x, y), v(x), A(y), A(x)]1(+,l2(y)ε2(A))

+

[
z − l(y)

z − ε1(A)l1(y)
, z,

y + 1/ab

A(y)
, A(y),−ab − b + 1

ab

]

= T3(A) + T4(A) +

[
z − ly

z − ε1(A)l1(y)
, z,

y + 1/ab

A(y)
, A(y),

−1 − ab + b

ab

]

Z3

(
A

B
,
A

B

)

= T1(f) + T2(f)

2Z3

(
A

f
,
A

f

)

= 2

[

l(y),
y − x

yB(x)
,
x − 1

x
,

y

A(y)
,

x

A(x)

]

+ 2

[

l(y),
y − x

yB(x)
,
x − 1

x
,
−1

µ
,

x

A(x)

]

+ 2

[

l(y),
y − x

yB(x)
,
x − 1

x
,

y

A(y)
,
−1

µ

]

.
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We concentrate on the first term:
[

l(y),
y − x

yB(x)
,
x − 1

x
,

y

A(y)
,

x

A(x)

]

= −
[

l(y),
y − x

yB(x)
,
x − 1

x
,
A(y)

y
,

x

A(x)

]

+

[

l(x),
x − 1

x
,

z − 1

z − x
A(x)

, z,
x

A(x)

]

−
[

l(y),
(1 − y)b

y
,

z − 1

z − y
A(y)

, z,
−1(ab + a − 1

(1 − b)2

]

−
[

l(y),
y − 1

yb
,

z − 1

z − A(y)
y

, z,
a

1 − a

]

−
[

l(y),
x − 1

x
,

z − 1

z − y
A(y)

, z,
a

ab − b + 1

]

=

[

l(y),
y − x

yB(x)
,
x − 1

x
,
A(y)

y
,
A(x)

x

]

−
∑

y0

[

y0 − x

y0B(x)
,
x − 1

x
,
A(y0)

y0
,

z − 1

z − x
A(x)

, z

]

−
[

l(y), 1 − b,
z − 1

z − y
A(y)

, z,
−1(ab + a − 1

(1 − b)2

]

−
[

l(y),
y − 1

yb
,

z − 1

z − A(y)
y

, z,
a

1 − a

]

.

Then, we get rid of a superfluous term:

[

l(y),
y − x

yB(x)
,
x − 1

x
,
A(y)

y
,
A(x)

x

]

=

[

l(y), 1 − x

y
,
x − 1

x
,
A(y)

y
,
A(x)

x

]2

(+, 1
B(x)

)

+
∑

y0

[
z − y0−x

y0B(x)

z − (1 − x
y0

)
, z,

x − 1

x
,
A(y0)

y0
,
A(x)

x

]

−
[

l(y),
z − (y−1)b

y

z − b
, z,

A(y)

y
,
1

a

]

and further

+



l(y),
z − y−(1− 1

a
)

yB(1− 1
a
)

z − (1 − a−1
ay

, z,
1

1 − a
,
A(y)

y



 .

Now the first term can be transformed:

[

l(y), 1 − x

y
,
x − 1

x
,
A(y)

y
,
A(x)

x

]

=

[

l(y), 1 − x

y
,
(1 − a)(x − 1)

x
,
A(y)

y
,
A(x)

x

]3

(−,1−a)

+
∑

y0

[

1 − x

y0
,
z − (1−a)(x−1)

x

z − (1 − a)
, z,

A(y0)

y0
,
A(x)

x

]

= T1

(
A

f

)

+ T2

(
A

f

)

+

[
z − l(y)

z − l1(y)
, z, 1 − 1

y
,
A(y)

y
,
a − 1

a

]

−
[

l(y), 1 − x

y
, 1 − a,

A(y)

y
,
A(x)

x

]

+
∑

y0

[

1 − x

y0
,
z − (1−a)(x−1)

x

z − (1 − a)
, z,

A(y0)

y0
,
A(x)

x

]

.
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Now we use the abbreviation ρx,y := ρy ◦ ρx and look at

ρx,y[l1, p4, v, g, g] = −
[

ε2(A)l2(y), 1 − x

y
,
x − 1

x
, A(y),

1

A(x)

]

+

[

ε2(A)l2(y), 1 − x

y
,
x − 1

x
,

µ

b − 1
,

1

A(x)

]

+

[

ε2(A)l2(y), 1 − x

y
,
x − 1

x
,

1

A(y)
,

µ

b − 1

]

+

[

ε2(A)l2(x),
x − 1

x
,

z − 1

z − A(x)
, z,

1

A(x)

]

−
[

ε2(A)l2(y),
y − 1

y
,

z − 1

z − A(y)
, z, a

]

−
[

ε2(A)l2(y), 1 − a − 1

ay
,

1

1 − a
,

z − 1

z − A(y)
, z

]

and with one more inversion we find

= T2(A)

−
[

1 − x

y2
,
x − 1

x
, A(y2),

z − 1

z − A(x)
, z

]

+

[

ε2(A)l2(x),
x − 1

x
, A(x),

z − 1

z − A(x)
, z

]

+

[

ε2(A)l2(y), 1 − x

y
,
x − 1

x
,

µ

b − 1
,

1

A(x)

]

+

[

ε2(A)l2(y), 1 − x

y
,
x − 1

x
,

1

A(y)
,

µ

b − 1

]

−
[

ε2(A)l2(y),
y − 1

y
,

z − 1

z − A(y)
, z,

a

1 − a

]

−
[

ε2(A)l2(y), 1 − a − 1

ay
,

1

1 − a
,

z − 1

z − A(y)
, z

]

.

Lastly, we see

2[l1, q4, δv, h, h] = 2 [l1(y), q4(x, y), δv(x), y, x]

+ 2 [l1(y), q4(x, y), δv(x), b − 1, x] + 2 [l1(y), q4(x, y), δv(x), y, b − 1]

and the first term is seen to be

2 [l1(y), q4(x, y), δv(x), y, x] = 2T3(f) +

[

l1(y),
A(y)

y
, δv(x), y, x

]

+ 2

[
z − c−x

A(c)

z − A(c)
c

, z, δv(x), c, x

]

− 2



l1(y),
z − y+1/ab

A(y)

z − A(y)
y

, z, y,− 1

ab





+ 2

[

l1(y),
z − 1

z − A(y)
y

, z, y, 1− 1

a

]

.

7th step: As in [Zha07] the last step consists of a splitting of Ck(c). We proceed in several
steps:

T1(f) =

[

1 − y

c
, 1 − x

y
, 1 − 1

x
, y, x

]

=

[

1 − 1

cy
, 1 − y

x
, 1 − x,

1

y
,
1

x

]

= −
[

1 − 1

cy
, 1 − y

x
, 1 − x, y,

1

x

]

+

[

1 − 1

cx
, 1 − x,

z − 1

z − x
, z,

1

x

]
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and so

T1(f) = C 1
c
−
[

1 − 1

cy
, 1 − x,

1

c
,
z − 1

z − x
, z

]

.

Since the last two steps, i. e. inverting the two right coordinates occur several times in the

following, we shall denote the last term with Z(c) and keep in mind that

[

l1(y), 1 − x

y
, 1 − 1

x
, y, x

]

= C 1
c
−
[

1 − 1

cy
, 1 − x,

1

c
,
z − 1

z − x
, z

]

.

T2(f) =

[
y2 − y

y2B(y)
, 1 − x

y
, 1 − 1

x
, y, x

]

=

[

1 − y

y2
, 1 − x

y
, 1 − 1

x
, y, x

]1

(+, 1
B(y)

)

= C 1
y2

− Z(y2) −
[

B(y), 1 − x

y
, 1 − 1

x
, y, x

]

= C 1
y2

− Z(1/y2) − C1−b + Z(1 − b).

T3(f) =

[

1 − y

c
, 1 − x

y
,
abx + 1

abA(x)
, y, x

]

=

[

1 +
1

abcy
, 1 − y

x
,

x − 1

x(b − ab) + 1
,
1

y
,
1

x

]

+

[

1 +
1

abcy
, 1 − y

x
,

x − 1

x(b − ab) + 1
,− 1

ab
,
1

x

]

+

[

1 +
1

abcy
, 1 − y

x
,

x − 1

x(b − ab) + 1
,
1

y
,− 1

ab

]

.

We split the first term in the third coordinate and obtain

[

1 +
1

abcy
, 1 − y

x
,

x − 1

x(b − ab) + 1
,
1

y
,
1

x

]

=

[

1 +
1

abcy
, 1 − y

x
, 1 − x,

1

y
,
1

x

]3

(+, 1
1−x(ab−b)

)
[

+
1

abcx
,
z − x−1

x(b−ab)+1

z − (1 − x)
, z,

−1

abc
,
1

x

]

which is equal to

= C
−

1
abc

− Z

(

− 1

abc

)

−
[

1 +
1

abcy
, 1 − y

x
, 1 − x(ab − b),

1

y
,
1

x

]

+

[

1 +
1

abcx
,

z − 1

z − (1 − x(ab − b))
, z,− 1

abc
,
1

x

]

Now we turn to the third term:

[

1 +
1

abcy
, 1 − y

x
, 1 − (ab − b)x,

1

y
,
1

x

]

=

[

1 +
a − 1

acy
, 1 − y

x
, 1 − x,

1

y
,
1

x

]

+

[

1 +
a − 1

acy
, 1 − y

x
, 1 − x, ab − b,

1

x

]

+

[

1 +
a − 1

acy
, 1 − y

x
, 1 − x,

1

y
, ab − b

]

.
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And the first term is seen to be

[

1 +
a − 1

acy
, 1 − y

x
, 1 − x,

1

y
,
1

x

]

= C 1−a
ac

− Z

(
ac

a − 1

)

= C1− ac−a+1
ac

− Z

(
ac

a − 1

)

.

A similar reasoning can be applied to τa,cT3(f), where τa,c :=
(

ab−b+1
b(a−1) , ab−b+1

ac−a+1

)

. Keep in

mind that ab − b + 1 = −aµ:

τa,cT3(f) =

[

1 − ab − b + 1

ca − a + 1
y, 1 − x

y
, 1 +

a

−aµx − 1
, y, x

]

=

[

1 − ab − b + 1

(ca − a + 1)y
, 1 − y

x
,
1 − (1−a)x

−aµ

1 − x
−aµ

,
1

y
,
1

x

]

=

[

1 − 1

(ca − a + 1)y
, 1 − y

x
,
1 − (1 − a)x

1 − x
,
1

y
,
1

x

]

+

[

1 − 1

(ca − a + 1)y
, 1 − y

x
,
1 − (1 − a)x

1 − x
,−aµ,

1

x

]

+

[

1 − 1

(ca − a + 1)y
, 1 − y

x
,
1 − (1 − a)x

1 − x
,
1

y
,−aµ

]

.

The first term can be split:

[

1 − 1

(ca − a + 1)y
, 1 − y

x
,
1 − (1 − a)x

1 − x
,
1

y
,
1

x

]

=

[

1 − 1

(ca − a + 1)y
, 1 − y

x
, 1 − (1 − a)x,

1

y
,
1

x

]3

(+, 1
1−x

)

+

[

1 − 1

(ca − a + 1)y
,

z − (1−a)x
1−x

z − (1 − a)x
, z,

1

y
,
1

x

]

=

[

1 − 1 − a

(ca − a + 1)y
, 1 − y

x
, 1 − x,

1 − a

y
,
1 − a

x

]

−
[

1 − 1

(ca − a + 1)y
, 1 − y

x
, 1 − x,

1

y
,
1

x

]

+

[

1 − 1

(ca − a + 1)x
,

z − 1

z − (1 − x)
, z, ca− a + 1,

1

x

]

+

[

1 − 1

(ca − a + 1)y
, 1 − y

x
,

1

1 − x
,
1

y
,
1

x

]

+

[

1 − 1

(ca − a + 1)y
,

z − (1−a)x
1−x

z − (1 − a)x
, z,

1

y
,
1

x

]

= C 1−a
ca−a+1

− Z

(
ca − a + 1

1 − a

)

− C 1
ca−a+1

+ Z(ca − a + 1)

+

[

1 − 1 − a

(ca − a + 1)y
, 1 − y

x
, 1 − x, 1 − a,

1

x

]

+

[

1 − 1 − a

(ca − a + 1)y
, 1 − y

x
, 1 − x,

1

y
, 1 − a

]

+

[

1 − 1

(ca − a + 1)x
,

z − 1

z − (1 − x)
, z, ca− a + 1,

1

x

]

+

[

1 − 1

(ca − a + 1)y
, 1 − y

x
,

1

1 − x
,
1

y
,
1

x

]

+

[

1 − 1

(ca − a + 1)y
,

z − (1−a)x
1−x

z − (1 − a)x
, z,

1

y
,
1

x

]

.

Let us now turn to T2(A). We silently use the reparametrization xi 7→ xi +
a−1

a for xi = x, y:

T2(A) =

[
cb−c+1

µc − y

b−1
acµ − y

, 1 − y

x
,

1 − x
a

1 − 1−a
a x

,
1

y
,
1

x

]



3.4. THE GONCHAROV – RELATION MODULO 2-TORSION 111

and further

T2(A) = −
[

cab−ca+a
aµc − y
b−1
acµ − y

, 1 − y

x
,

1 − x
a

1 − 1−a
a x

, y,
1

x

]

+

[
cb−c+1

µc − x
b−1
acµ − x

,
1 − x

a

1 − 1−a
a x

,
z − 1

z − x
, z,

1

x

]

−
[

cb−c+1
µc − y

b−1
acµ − y

, 1 − ay,
z − 1

z − y
, z,

1

a

]

+

[
cb−c+1

µc − y

b−1
acµ − y

, 1 − a

a − 1
y, ,

z − 1

z − y
, z,

a

a − 1

]

=

[
cb−c+1

µc − y
b−1
acµ − y

, 1 − y

x
,

1 − x
a

1 − 1−a
a x

, y, x

]

−
[

1 − cab − ca + a

aµcx
,

1 − x
a

1 − 1−a
a x

,
µc

cb − c + 1
,
z − 1

z − x
, z

]

+

[

1 − b − 1

acµx
,

1 − x
a

1 − 1−a
a x

,
acµ

b − 1
,
z − 1

z − x
, z

]

−
[

cb−c+1
µc − y

b−1
acµ − y

, 1 − ay,
z − 1

z − y
, z,

1

a

]

+

[
cb−c+1

µc − y

b−1
acµ − y

, 1 − a

a − 1
y,

z − 1

z − y
, z,

a

a − 1

]

.

We are now in the position to apply proposition 3.1.20 to obtain

[
cb−c+1

µc − y
b−1
acµ − y

, 1 − y

x
,

1 − x
a

1 − 1−a
a x

, y, x

]

= C
−

cb−c+1
c(ab−b+1)

− C 1−b
ab−b+1

− C (cb−c+1)(a−1)
c(ab−b+1)

+ C (1−b)(a−1)
ab−b+1

+ lower order terms.

The same reasoning also applies to τa,cT2(A). Let us set

β :=
1 − b − abc + 2bc − c + ab + ab2c − b2c

b(a − ac − 1)
, γ :=

ab2 − b2 + 2b − ab − 1

−ab
.

Then we have

τa,cT2(A) =

[

β − y

γ − y
, 1 − y

x
,
1 − ab−b

ab−b+1x

1 − −1
ab−b+1x

,
1

y
,
1

x

]

=

[

β − y

γ − y
, 1 − y

x
,
1 − ab−b

ab−b+1x

1 − −1
ab−b+1x

, y, x

]

−
[

1 − β

x
,
1 − ab−b

ab−b+1x

1 − −1
ab−b+1x

,
1

β
,
z − 1

z − x
, z

]

+

[

1 − γ

x
,
1 − ab−b

ab−b+1x

1 − −1
ab−b+1x

,
1

γ
,
z − 1

z − x
, z

]

−
[
β − y

γ − y
, 1 − ab − b + 1

ab − b
y,

z − 1

z − y
, z,

ab − b

ab − b + 1

]

+

[
β − y

γ − y
, 1 + (ab − b + 1)y,

z − 1

z − y
, z,

−1

ab − b + 1

]

and applying 3.1.20 to the first term again, we conclude

τa,cT2(A) = C
1− c(ab−b+1

ca−a+1

− C1− ab−b+1
a

− C bc−c+1
b(ca−a+1)

+ C
1− ab−(1−b)

ab

+ lower order terms.



112 CHAPTER 3. EXPLICIT COMPUTATIONS IN CODIMENSION THREE

Using the reparametrization from above we have:

T3(A) =

[

1 − a

(ca − a + 1)y
, 1 − y

x
, 1 +

µ

b
x,

1

y
,
1

x

]

=

[

1 +
ab − b + 1

b(ca − a + 1)y
, 1 − y

x
, 1 − x,

−µ

by
,
−µ

bx

]

= C
−

ab−b+1
b(ca−a+1)

− Z

(

−b(ca − a + 1)

ab − b + 1

)

+

[

1 +
ab − b + 1

b(ca − a + 1)y
, 1 − y

x
, 1 − x,

−µ

by
,
1

x

]

+

[

1 +
ab − b + 1

b(ca − a + 1)y
, 1 − y

x
, 1 − x,

1

y
,
−µ

b

]

and

T4(A) =

[
cab−ca+a
cab−cb+c + y

ab−a
ab−b+1 + y

, 1 − y

x
, 1 +

ab − b + 1

ab
x,

1

y
,
1

x

]

=

[
bc−c+1

bc + y
b−1

b + y
, 1 − y

x
, 1 − x,

−µ

by
,
−µ

bx

]

=

[
bc−c+1

bc + y
b−1

b + y
, 1 − y

x
, 1 − x,

1

y
,
1

x

]

+

[
bc−c+1

bc + y
b−1

b + y
, 1 − y

x
, 1 − x,

−µ

b
,
1

x

]

+

[
bc−c+1

bc + y
b−1

b + y
, 1 − y

x
, 1 − x,

1

y
,
−µ

b

]

,

where the first term is seen to be

[
bc−c+1

bc + y
b−1

b + y
, 1 − y

x
, 1 − x,

1

y
,
1

x

]

=

[
bc−c+1

bc + y

−y
, 1 − y

x
, 1 − x,

1

y
,
1

x

]1

(+, 1
b−1

b
+y

)

= C bc−c+1
bc

+ Z

(
bc

bc − c + 1

)

− C1− 1
b

+ Z

(
b

b − 1

)

.

For the next two identifications we start with another reparametrization, namely xi 7→ 1−a
axi−a

for xi = x, y. With this we show

T1

(
A

f

)

=

[
(ca − a + 1) − acy

ac − acy
,
x − y

x − 1
, 1 − ax, y, x

]

=

[
(ca − a + 1) − acy

ac − acy
, 1 − y

x
, 1 − ax, y, x

]2

(+, x
1−x

)

+




z − x−(1−a−1

ac
)

x−1

z − x
1−x

, z, 1 − ax, 1 − a − 1

ac
, x



−
[

(ca − a + 1) − acy

ac − acy
,

z − 1−ay
1−a

z − (1 − ay)
, z, y,

1

a

]

.

The first term will now be treated in the following way:

[
(ca − a + 1) − acy

ac − acy
, 1 − y

x
, 1 − ax, y, x

]

=

[
(ca − a + 1) − cy

ac − cy
, 1 − y

x
, 1 − x, y, x

]

+

[
(ca − a + 1) − cy

ac − cy
, 1 − y

x
, 1 − x, a, x

]

+

[
(ca − a + 1) − cy

ac − cy
, 1 − y

x
, 1 − x, y, a

]
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so that we can split the first coordinate

[
(ca − a + 1) − acy

ac − acy
, 1 − y

x
, 1 − x, y, x

]

= C ca−a+1
c

+ Z

(
c

ca − a + 1

)

− Ca + Z

(
1

a

)

.

Analogously, we obtain

T2

(
A

f

)

=

[
−c(ab−b+1)

ca−a+1 + y

−ab−b+1
a + y

, 1 − y

x
, 1 − ax, y, x

]2

(+, x
1−x

)

+




z − x− c(ab+b+1)

ca−a+1

x−1

z − x
1−x

, z, 1 − ax,
c(ab + b + 1)

ca − a + 1
, x





−




z − x−ab−b+1

a

x−1

z − x
1−x

, z, 1 − ax,
ab − b + 1

a
, x



−
[

− c(ab+b+1)
ca−a+1 + y

−ab−b+1
a + y

,
z − 1−ay

1−a

z − (1 − ay)
, z, y,

1

a

]

so that finally the first term is equal to

C ac(ab+b+1)
ca−a+1

+ Z

(
ca − a + 1

ac(ab + b + 1)

)

− Cab−b+1 + Z

(
1

ab − b + 1

)

+

[
−ac(ab−b+1)

ca−a+1 + y

−(ab − b + 1) + y
, 1 − y

x
, 1 − x, a, x

]

+

[
−ac(ab−b+1)

ca−a+1 + y

−(ab − b + 1) + y
, 1 − y

x
, 1 − x, y, a

]

.

For the final two identifications we make use of the reparametrization xi 7→ xi−1
b−1 for xi = x, y

and obtain

T1(B) =

[

1 − y

bc − c + 1
,

a(x − y)

ab − b + 1 − ay
,
x − ab−b+1

ab

x − ab−b+1
a

, y, x

]

=

[

1 − y

bc − b + 1
,
x − y

−y
,
x − ab−b+1

ab

x − ab−b+1
a

, y, x

]2

(+, −ay
ab−b+1−ay

)

+




z + x−(bc−c+1)

µ+bc−c+1

z −
(

1 − x
bc−c+1

) , z,
x − ab−b+1

ab

x − ab−b+1
a

, bc − c + 1, x





−



1 − y

bc − c + 1
,
z −

ab−b+1
b

−ay

ab−b+1−ay

z −
ab−b+1

ab
−y

−y

, z, y,
ab − b + 1

ab





+



1 − y

bc − c + 1

z − 1

z −
ab−b+1

a
−y

−y

, z, y,
ab − b + 1

a





−
[

1 − y

bc − c + 1
,
z − ay

ab−b+1−ay

z − 1
, z,

1

b
, y

]

.
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Now the first term is transformed:

[

1 − y

bc − b + 1
,
x − y

−y
,
x − ab−b+1

ab

x − ab−b+1
a

, y, x

]

=

[

1 − 1

(bc − b + 1)y
, 1 − y

x
,
1 − ab−b+1

ab x

1 − ab−b+1
a x

,
1

y
,
1

x

]

=

[

1 − 1

(bc − b + 1)y
, 1 − y

x
, 1 − ab − b + 1

ab
x,

1

y
,
1

x

]3

(+, 1

1−
ab−b+1

a
x
)

−




1 − 1

(bc − c + 1)x
,

z − x− ab−b+1
ab

x− ab−b+1
a

z − (x − ab−b+1
ab )

, z, bc− c + 1,
1

x




 ,

where the first term on the right-hand side is

[

1 − ab − b + 1

ab(bc − c + 1)y
, 1 − y

x
, 1 − x,

ab − b + 1

aby
,
ab − b + 1

abx

]

= C ab−b+1
ab(bc−c+1)

− Z

(
ab(bc − c + 1)

ab − b + 1

)

+

[

1 − ab − b + 1

ab(bc − c + 1)y
, 1 − y

x
, 1 − x,

ab − b + 1

ab
,
1

x

]

+

[

1 − ab − b + 1

ab(bc − c + 1)y
, 1 − y

x
, 1 − x,

1

x
,
ab − b + 1

ab

]

,

whereas the second one can be written as

−
[

1 − 1

(bc − b + 1)y
, 1 − y

x
, 1 − ab − b + 1

a
x,

1

y
,
1

x

]

+

[

1 − 1

(bc − c + 1)x
,

z − 1

z − (1 − ab−b+1
a x)

, z, bc− c + 1,
1

x

]

=

[

1 − ab − b + 1

ay(bc − c + 1)
, 1 − y

x
, 1 − x,

ab − b + 1

ay
,
ab − b + 1

ax

]

= C ab−b+1
a(bc−c+1)

− Z

(
a(bc − c + 1)

ab − b + 1

)

+

[

1 − ab − b + 1

ay(bc − c + 1)
, 1 − y

x
, 1 − x,

ab − b + 1

a
,
1

x

]

+

[

1 − ab − b + 1

ay(bc − c + 1)
, 1 − y

x
, 1 − x,

1

x
,
ab − b + 1

a

]

+

[

1 − 1

(bc − c + 1)x
,

z − 1

z − (1 − ab−b+1
a x)

, z, bc− c + 1,
1

x

]

.
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Analogously, we treat the last case:

τa,cT1(B) =

[

1 − ab − b + 1

a(bc − c + 1)
y,

(y − x)(ab − b + 1)

y(ab − b + 1) − ab
,
(x − 2)(ab − b + 1) + a

x(ab − b + 1) − ab
, y, x

]

=

[

1 +
µ

bc − c + 1
y,

y − x

y + b
µ

,
x − (2 − µ)

x + b
µ

, y, x

]

=

[

1 +
µ

bc − c + 1
y,

y − x

y
,
x − (2 − µ)

x + b
µ

, y, x

]2

(+, y

y+ b
µ

)

+






z − (x− µ
bc−c+1 )(ab−b+1)

ab− µ
bc−c+1 (ab−b+1)

z −
µ

bc−c+1+x
µ

bc−c+1−
b
µ

, z,
x − (2 − µ)

x + b
µ

,−a(bc− c + 1)

ab − b + 1
, x






−



1 +
µ

bc − c + 1
y,

z − (y−(2−µ))(ab−b+1)
y(ab−b+1)−ab

z − (2−µ)−y
y

, z, y, (2 − µ)





+



1 +
µ

bc − c + 1
y,

z − (y+ b
µ

)(ab−b+1)

y(ab−b+1)−ab

z −
b
µ
−y

y

, z, y,− b

µ





+

[

1 +
µ

bc − c + 1
y,

z − y
y+ b

µ

z − 1
, z,

2 − µ

− b
µ

, y

]

.

Then we again find

[

1 +
µ

bc − c + 1
y,

y − x

y
,
x − (2 − µ)

x + b
µ

, y, x

]

=

[

1 +
µ

(bc − c + 1)y
, 1 − y

x
,
1 − (2 − µ)x

1 + b
µx

,
1

y
,
1

x

]

=

[

1 +
µ

(bc − c + 1)y
, 1 − y

x
, 1 − (2 − µ)x,

1

y
,
1

x

]3

(+, 1

1+ b
µ

x
)

−



1 +
µ

(bc − c + 1)x
,

z − 1−(2−µ)x

1+ b
µ

x

z − (1 − (2 − µ)x)
, z,

bc − c + 1

−µ
,
1

x



 ,

where the first term is transformed into

C µ(µ−2)
(bc−c+1)

− Z

(
(bc − c + 1)

µ(µ − 2)

)

+

[

1 +
µ(2 − µ)

(bc − c + 1)y
, 1 − y

x
, 1 − x, 2 − µ,

1

x

]

+

[

1 +
µ(2 − µ)

(bc − c + 1)y
, 1 − y

x
, 1 − x,

1

x
, 2 − µ

]

,
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and the second term from above into

−
[

1 +
µ

(bc − c + 1)y
, 1 − y

x
, 1 +

b

µ
x,

1

y
,
1

x

]

+

[

1 +
µ

(bc − c + 1)x
,

z − 1

z − (1 + b
µx)

, z,−bc− c + 1

µ
,
1

x

]

= −C1− b
bc−c+1

+ Z

(
b(bc − c + 1)

b(bc − c + 1) − µ2

)

−
[

1 +
b

(bc − c + 1)y
, 1 − y

x
, 1 − x,− b

µy
,
1

x

]

+

[

1 +
b

(bc − c + 1)y
, 1 − y

x
, 1 − x,

1

y
,− b

µ

]

−
[

1 +
µ

(bc − c + 1)x
,

z − 1

z − (1 + b
µx)

, z,−bc− c + 1

µ
,
1

x

]

.

The result follows.

Remark 3.4.4. In summary, we extended Zhao’s proof of the Goncharov relation to be valid

in the quotient C3(F, 5)/∂C3(F, 6) ⊗ Z [1
2

]
by also computing all of the extra terms which

vanish rationally. Unfortunately, those are far too many to use the relations for practical

computations in the Chow group. For this reason we did not write it down explicitly in

closed form. Since our proof follows Zhao rather close, one may also consult the original

article for more details. ♦



Concluding remarks

In this thesis we obtained a presentation of the integral higher Chow groups of number fields

explicitly. The importance of knowing explicit elements in motivic cohomology is apparent

in the conjectures of Bĕılinson and – concentrating on number fields only – Zagier. More

generally, a presentation of the algebraic K–groups of number fields in more accessible terms

than the very definition is one of the goals of modern number theory or arithmetic algebraic

geometry.

As we have explained, the approach to motivic cohomology and regulator maps via Bloch

groups and the theory of polylogarithms is a fruitful way – at least in case one is just interested

in describing the free part of motivic cohomology groups of number fields. So it was natural

to extend this approach to acquire information on the torsion part as well. This is what was

the goal of the present work.

In chapter two we obtained several results concerning the codimension two Chow groups

of a number field. With our methods we could find explicit cycles which can be used in

connection with the relations we proved in these groups to write down an explicit presentation

for some concrete number fields. We could see that the relations in the Chow groups are a

little more complicated than they are without considering torsion. In principle, our methods

suffice to compute a set of generators of the codimension two Chow groups of an arbitrary

number field. Unfortunately, our methods do not suffice for p-adic fields because of a missing

regulator map into a suitably well-understood cohomology group.

A disadvantage of this approach certainly is that one needs to know the abstract structure

of the algebraic K–group of the number field in question in order to know which order the

generator has to have.

The natural next step to codimension three Chow groups of a number field is already

unequally harder. We could not use integral versions of the cycles supposed to generate the

rational Chow group in this codimension since they are not elements in the integral Chow

group! Neglecting 2-torsion solves this problem, but it is not clear which role in the interplay

of the Bloch group and the higher Chow group these cycles take. We also had to deal with an

exploding complexity of the relations to be proved in the motivic cohomology groups which

makes it impossible from the present point of view to obtain explicit elements in codimension

three. Successfully, there are cycles which represent the so-called cyclotomic elements in

motivic cohomology. But we could only prove easy relations in the higher Chow groups not
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sufficing for an explicit presentation.

This is where a further investigation should begin. One needs to know more and “bet-

ter” cycles living in the integral Chow group, which fulfill relations of the type valid in the

corresponding Bloch group with fewer extra terms than ours. In addition one needs to know

the validity of the integral Bĕılinson– Soulé vanishing conjecture for the motivic cohomology

of number fields on which our computations rely. As a different line of development, one

may try to deduce explicit formulas for a p-adic regulator in order to find cycles generating

the codimension two Chow groups of a p-adic field. This involves p-adic polylogarithms and

p-adic analysis, but the results might be interesting not only because the K–theory of p-adic

fields is not known in many cases. Thus, knowing explicit elements might help to determine

the orders of torsion parts of the K–groups.

So it seems as if we explored the limit of what can be said about the approach to integral

higher Chow groups of number fields via Bloch groups up to now. To get new results, one

either has to affirm deep conjectures in the theory of motives, or one needs better cycles for

which the desired relations coming from the Bloch groups hold without too many extra terms

so that one can extract explicit information about the generators of the integral higher Chow

groups.
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