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Summary

The present thesis is a contribution to the theory of algebras of pseudodifferential operators
on singular settings. In particular, we focus on the b-calculus and the calculus on conformally
compact spaces in the sense of Mazzeo and Melrose in connection with the notion of spectral
invariant transmission operator algebras.

We summarize results given by Gramsch, Ueberberg and Wagner [46] and Lauter [60] on the
construction of Ψ0- and Ψ∗-algebras and the corresponding scales of generalized Sobolev spaces
using commutators of certain closed operators and derivations.

In the case of a manifold with corners Z we construct a Ψ∗-completion Ab(Z, bΩ
1
2 ) of the

algebra of zero order b-pseudodifferential operators Ψ0
b,cl(Z, bΩ

1
2 ) in the corresponding C∗-closure

B(Z, bΩ
1
2 ) ↪→ L (L2(Z, bΩ

1
2 )). The construction will also provide that localised to the (smooth)

interior Z̊ of Z the operators in the Ab(Z, bΩ
1
2 ) can be represented as ordinary pseudodifferential

operators.
In connection with the notion of solvable C∗-algebras - introduced by Dynin [32] - we calculate

the length of the C∗-closure of Ψ0
b,cl(F, bΩ

1
2 ,RE(F )) in B(F, bΩ

1
2 ,RE(F )) by localizing B(Z, bΩ

1
2 )

along the boundary face F using the (extended) indical familiy IBFZ . Moreover, we discuss how
one can ”localise” solving ideal chains in neighbourhoods Up of arbitrary points p ∈ Z. This
localisation process will recover the singular structure of Up; further, the induced length function
lp is shown to be upper semi-continuous.

We give construction methods for Ψ∗- and C∗-algebras admitting only infinite long solving
ideal chains. These algebras will first be realized as unconnected direct sums of (solvable)
C∗-algebras and then refined such that the resulting algebras have arcwise connected spaces
of one dimensional representations. In addition, we recall the notion of transmission algebras
on manifolds with corners (Zi)i∈N following an idea of Ali Mehmeti [3]. Thereby, we connect
the underlying C∞-function spaces using point evaluations in the smooth parts of the Zi and
use generalized Laplacians to generate an appropriate scale of Sobolev spaces. Moreover, it
is possible to associate generalized (solving) ideal chains to these algebras, such that to every
n ∈ N there exists an ideal chain of length n within the algebra.

Finally, we discuss the K-theory for algebras of pseudodifferential operators on conformally

compact manifolds X and give an index theorem for these operators. In addition, we prove

that the Dirac-operator associated to the metric of a conformally compact manifold X is not a

Fredholm operator.
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Conventions

• Sections are denoted by pairs of numbers like 3.4 and definitions, theorems, etc. by
triples of numbers, e.g. theorem 3.4.5 in section 3.4.

Equations are denoted by triples of numbers in parentheses like formula (3.4.5) in
section 3.4.

• Unless otherwise indicated, Banach algebras and spaces are always considered over
C.

• Unless otherwise indicated, functions are assumed to be complex valued in this
thesis.

• S (Rn) denotes the Schwartz space on Rn, i.e. the space of rapidly decreasing
functions Rn −→ C.

• Let E and F be Banach or Fréchet spaces. Then L (E ,F) denotes the space of all
continuous linear maps E −→ F endowed with the usual operator norm.

• Let T be a topological space and let ϕ, ψ : T −→ C be two mappings. We write
ϕ ≺ ψ, if ψ ≡ 1 on suppϕ; in particular ϕ(x) = ϕ(x)ψ(x) holds for all x ∈ suppϕ.

• By R+ we denote the positive half axis [0,∞[⊆ R.
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Introduction

The present thesis is a contribution to the theory of pseudodifferential operators on man-
ifolds with corners, conformally compact spaces and transmission spaces in connection
with spectral invariance:

(i) For a manifold with corners Z we show how to construct a Ψ∗-completion Ab(Z, bΩ
1
2 )

of Ψ0
b,cl(Z, bΩ

1
2 ) using abstract construction concepts introduced by Gramsch, Ue-

berberg and Wagner [46]. The algebra Ab(Z, bΩ
1
2 ) will be dense in the corresponding

C∗-closure B(Z, bΩ 1
2 ) of Ψ0

b,cl(Z, bΩ
1
2 ) and localized in the interior of Z the operators

in Ab(Z, bΩ
1
2 ) will be ordinary pseudodifferential operators. The algebra Ab(Z, bΩ

1
2 )

itself will be contained in the space
⋂
s

L (Hs
b(Z, bΩ

1
2 )) of all operators of order 0 with

respect to the scale Hs
b(Z, bΩ

1
2 ) of b-Sobolev spaces.

(ii) We give the definition of solvable Ψ∗-algebras and show that dense Ψ∗-subalgebras A
of C∗-algebras B are solvable, provided they fulfil the operator theoretical condition
that if I E B is a closed ideal in B, then I ∩ A is dense in I (this will be called
property E0).

(iii) We calculate the length of the C∗-closure B(F, bΩ
1
2 ,Rl) of the parameter-dependent

calculus Ψ0
b,cl(F,

bΩ
1
2 ,Rl) of b-pseudodifferential operators on manifolds with corners

F . To achieve this, we embed F into a larger manifold with corners Z and use the
isomorphism B(F, bΩ

1
2 ,RE(F )) ∼= B(Z, bΩ 1

2 )/IF , where IF denotes the kernel of the
indical family associated to F .

(iv) We define the notion of the local length lp in p ∈ Z for certain classes of solvable

C∗-algebras and show how to calculate it for B(Z, bΩ 1
2 ) using the C∗-subalgebra

Bϕ(Z, bΩ
1
2 ), where ϕ is an appropriate cut off function with ϕ ≡ 1 in a neighbour-

hood of p. It turns out that the local length lp recovers the codimension of a fixed
neighbourhood of p and that lp is a upper semi-continuous function from Z to N.

(v) We construct solvable C∗-algebras of b-pseudodifferential operators that admit no

finite solving series. We realize this by using a direct sum of C∗-algebras B(Zi,
bΩ

1
2 )

where the Zi are manifolds with corners of codimension i; the construction gives an
unconnected algebra first, but we also give a definition such that the resulting space
of one-dimensional representations is arcwise connected.

(vi) Following an idea of Ali Mehmeti [3], we define transmission algebras on families of
manifolds with corners Zi (i ∈ N) that admit for each n ∈ N a solving ideal chain of
length n. Thereby the interconnections are realized by an underlying function space

1



2 Introduction

with transmission, i.e. we identify C ∞-functions on appropriate neighbourhoods
of the interior of the manifolds with corners Zi and use constructing methods for
Ψ∗-algebras, cf. [46], to get spectrally invariant algebras.

(vii) We compute the K-groups of B0(X,
0Ω

1
2 ), the closure of the algebra of pseudodif-

ferential operators of order zero Ψ0
0(X,

0Ω
1
2 ) on a conformally compact space X and

give an index theorem for Fredholm elements of this calculus. Moreover, we discuss
the Dirac-operator associated to this setting and prove that it is not a Fredholm
operator.

Spectral invariance

The theory of pseudodifferential operators on manifolds Z with singularities often gives
rise to an algebra Ψ0(Z) of operators of order zero, being almost always a Fréchet algebra
due to its C ∞-structure. However, by passing over to its C∗-closure B(Z) in L (L2(Z))
one looses (local) C ∞-properties such as pseudo- or micro-locality. To control this, it
turned out that it is essential to construct algebras A0(Z) of pseudodifferential opera-
tors of order 0 on the given singular space, which are symmetric Fréchet subalgebras of
the corresponding C∗-closure B(Z) and satisfy the following crucial property of spectral
invariance or invariance under holomorphic functional calculus

A(Z) ∩ L (L2(Z))−1 = A(Z)−1, (1)

where A(Z)−1 resp. L (L2(Z)) denotes the group of invertible elements in A(Z) resp.
L (L2(Z)). Algebras with these properties are called Ψ∗-algebras in the sense of Gram-
sch [39]. These Ψ∗-properties yield a variety of remarkable (and sometimes unexpected)
operator theoretical consequences: a Ψ∗-algebra A always has an open group of invertible
elements (which is not true for an arbitrary Fréchet algebra) and there exists a holo-
morphic functional calculus, cf. Waelbroeck [112], for these algebras. Gramsch [39] also
showed, that (1) plays an important role in the perturbation theory of Fredholm func-
tions related to pseudodifferential analysis and has connections to non-abelian cohomology
and to Oka’s principle (cf. [42] and [44]). Note also, that it is possible to construct the
Green inverse (relative resp. pseudoinverse) within the algebra. A slightly more complete
overview will be given in chapter one; to see more interconnections and for the relevance
of spectral invariance, we refer to [19], [28], [41], [44], [60], [65], [76], [97] and [100].

The proof of spectral invariance is often strongly connected to the characterization of
pseudodifferential operators using commutator methods. Following an approach of Beals
[14], Gramsch, Ueberberg and Wagner described in [46] a construction method for Ψ0-
and Ψ∗-algebras starting from closed derivations or closed operators using commutators.

Nowadays, many algebras of pseudodifferential operators have been shown to be Ψ∗-
algebras; the interested reader is referred, for instance, to [9], [12], [24], [25], [39], [62],
[66], [102], [103] and [110].

It is worth pointing out, that recently spectral invariance is also used in the context of
time frequency analysis [47] and the Novikov-conjecture [71].
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Submultiplicativity

Recall, that a Fréchet algebra A is called submultiplicative if the topology τA on A is
given by a defining system of semi-norms {|| · ||k : k ∈ N} such that

||a · b||k ≤ ||a||k||b||k

holds for all a, b ∈ A.
In the case of a commutative Fréchet algebra A, it is a result by Mitiagin, Rolewicz and

Żelazko [88] that submultiplicativity is equivalent to the property, that for every entire

function g(z) =
∞∑
n=1

anz
n and every x ∈ A the series g(x) is convergent. If A has an

open group of invertible elements the inversion is continuous (cf. [113, p. 115]) and the
holomorphic functional calculus of Waelbroeck is applicable, thus A is submultiplicative.
However, in the non-commutative case it is still an open question whether every Ψ∗-algebra
is submultiplicative or not. Note that there exist non-commutative Fréchet algebras with
an open group of invertible elements which are not submultiplicative (see [115]).

A general approach for constructing submultiplicative Ψ∗-algebras was presented by
Gramsch, Ueberberg and Wagner in [46], and the authors used this method to prove
submultiplicativity for the Hörmander classes Ψ0

%,δ (0 ≤ δ ≤ % ≤ 1, δ < 1). Moreover,
Gramsch and Schrohe proved submultiplicativity for Boutet de Monvel’s algebra and
Baldus proved in [8] submultiplicativity of Ψ(1, g) for all Hörmander metrics g.

Operatoralgebras on manifolds with corners

The calculus of b- or totally characteristic pseudodifferential operators was introduced by
Melrose [83] in 1981; it turned out that the definition of b-pseudodifferential operators on
manifolds with boundary naturally extends to more singular settings, namely to manifolds
with corners.

Roughly speaking, manifolds with corners are locally of the form R
k

+ × Rn−1. This
calculus of b-pseudodifferential operators was considered, for instance, by Melrose and
Piazza [87], Melrose and Nistor [86], and Loya [74]. By taking the norm closure of b-

pseudodifferential operators of order zero Ψ0
b,cl(Z, bΩ

1
2 ) in L (L2(Z, bΩ 1

2 )), we can attach

a C∗-algebra B(Z, bΩ 1
2 ) to the (singular) manifold with corners Z.

Let us remark, that the algebra Ψ0
b,cl(Z, bΩ

1
2 ) can not be endowed with a topology

making Ψ0
b,cl(Z, bΩ

1
2 ) into a topological algebra with an open group of invertible elements

(see [60, Theorem 4.7.2] for the case for manifolds with boundary), although Ψ0
b,cl(Z, bΩ

1
2 )

can be realized as a symmetric subalgebra of L (L2(Z, bΩ 1
2 )). Thus instead of Ψ0

b,cl(Z, bΩ
1
2 )

itself, its C∗-closure B(Z, bΩ 1
2 ) is often used to give a full description of certain aspects

such as the Fredholm property.
Recall that it is a common feature of pseudodifferential calculi B, that the Fredholm

property can be characterized in the following sense: There exists a C∗-algebra Q and a
homomorphism τB : B −→ Q such that an operator a ∈ B is Fredholm if and only if its
symbol τB(a) is invertible in the algebra Q.
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For a b-pseudodifferential operator in Ψ0
b,cl(Z, bΩ

1
2 ) this joint symbol map is realized by

the principal symbol map

bσ
(0)
B : B(Z, bΩ 1

2 ) −→ C (bS∗Z) (2)

and the indical families

IBFZ : B(Z, bΩ 1
2 ) −→ B(F, bΩ

1
2 ,Rl) (3)

where F is a face in Z of codimension l. The Fredholmness of an operator is thus
characterized by the invertibility of the complete symbol τB(a) given by

(bσ
(0)
B (a), (IBFZ(a))F∈F(Z)) ∈ C (bS∗Z) ⊕

⊕

F∈F(Z)

Cb(R
l,L (L2(F, bΩ

1
2 ))).

Following an approach of Lauter [60, Chapter 6], we construct a dense Ψ∗-completion

Ab(Z, bΩ
1
2 ) of Ψ0

b,cl(Z, bΩ
1
2 ), that on the one hand contains all the Fredholm inverses and

on the other hand also respects certain C ∞-properties, for example, each a ∈ Ab(Z, bΩ
1
2 )

extends to a bounded operator

a : Hs
b(Z, bΩ

1
2 ) −→ Hs

b(Z, bΩ
1
2 ),

where (Hs
b(Z, bΩ

1
2 ))s∈R denotes the scale of b-Sobolev spaces, and is an ordinary pseudod-

ifferential operator if one localizes in coordinate charts supported in the smooth interior
of Z.

Operatoralgebras on conformally compact spaces

An open Riemannian manifold (X0, g0) is called conformally compact space if it is isomet-
ric to the interior of a compact manifold X with boundary ∂X, where X is endowed with
the metric g := %−2h. Thereby h is a smooth metric on X and % : X −→ R+ is a bound-
ary defining function. A conformally compact space (X0, g0) is a complete Riemannian
manifold with negative sectional curvature outside a compact set by well known results.

In [65] Lauter developed an elliptic and Fredholm theory for pseudodifferential operators
modelled along the geometry of conformally compact spaces following results of Mazzeo
and Melrose [78]. Moreover, he gave a description of the C∗-completion of the algebra of
operators of order 0. Thereby the analysis on (X0, g0) is in fact performed on X. To see
that this is reasonable, note that the set of all smooth vector fields on X having bounded
length with respect to the metric g is given by

V0(X) :=
{
V ∈ C

∞(X,TX) : V|∂X = 0
}
,

a characterization independent of the singular metric g. The metric g will be called 0-
metric, these vector fields will be called 0-vector fields and their enveloping algebra of
differential operators will be called 0-differential operators on X (cf. [78]) in the sequel.

Following [65] there are two invariants necessary to characterize the Fredholmness resp.
compactness of a given pseudodifferential operator in the conformally compact setting:
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the principal symbol and the reduced normal operator. The reduced normal operator
- reflecting the behaviour of an operator near the boundary ∂X - can be regarded as
an operator with values in C(S∗∂X,Bb,c), where Bb,c denotes the C∗-algebra of b-c-type
operators on the interval [0, 1]1. If P is a 0-differential operator and (x, y) ∈ R+×Rn−1

y are
coordinates near the boundary of X, then P is given by P =

∑
j+|α|≤m

aj,α(x, y)(x∂x)
j(x∂y)

α

with coefficients aj,α smooth up to the boundary. The reduced normal operator of P is
then

N(P )(y, η) =
∑

j+|α|≤m

aj,α(0, y)i
|α|x|α|η|α|(x∂x)

j,

where (y, η) ∈ T ∗∂X|∂X
∼= Rn−1 × Rn−1; this coincides with the definition given in [78]

and [77] after using scale invariance.

K-theory

Following the fundamental work of Atiyah and Singer [7] there has been treatment of
various kinds of index theorems for pseudodifferential operators on singular manifolds.
And in some cases (see, for instance, [67] or [80]) it turned out that one can get an index
formula on a manifold with boundary in terms of classes of full symbols using calculations
on the (closed) double of X. We show that this is also true for the algebra B0(X,

0Ω
1
2 ) of

pseudodifferential operators on conformally compact spaces.
But first, let us stress that another important consequence of spectral invariance is,

that a Ψ0-algebra (resp. a Ψ∗-algebra) has the same K-theory as its norm closure (resp.
C∗-closure). This has first been observed by Connes [22] using Karoubi’s density theorem
[55] (see also [56]), where results of Gramsch [39], [36] have been used and we will present
a slightly generalization of this in the appendix A.1 of this thesis.

The exact sequence of C∗-algebras

0 −→ I/K −→ B0(X,
0Ω

1
2 )/K −→ B0(X,

0Ω
1
2 )/I −→ 0, (4)

where K denotes the ideal of compact operators, I denotes the kernel of the reduced
normal operator, yields that B0(X,

0Ω
1
2 )/I is isomorphic to the range B(S∗∂X) of the

reduced normal operator2. Then the induced six term exact sequence is used to compute
the K-groups of B, if the left and the right quotient in (4) are well understood.

For this, we calculate the K-theory of B(S∗∂X) using the short exact sequence

0 −→ J −→ B(S∗∂X) −→ B(S∗∂X)/J −→ 0, (5)

where the closed two-sided ideal J has a very special structure. Namely, it is isomorphic
to C(S∗∂X, D̂), where D̂, a suitable ideal in the algebra of b-c-operators, has zero K-
groups. Thus the K-groups of B(S∗∂X) are isomorphic to the ones of B(S∗∂X)/J and
the problem reduces to an analytic characterization of this quotient.

1Here b-c-type means, that the operators are of b-behaviour on the one end {0} and of cusp behaviour
on the other end {1} of [0, 1]; note, that we think of [0, 1] as the compactification of the half axis
[0,∞[.

2Which itself is a C∗-subalgebra of C(S∗∂X,Bb,c).
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Note that in [79] Schrohe, Melo and Nest used the same sequence (4) to compute the
K-theory for Boutet de Monvel’s algebra. And in fact, it turns out, that we could have
used the K-theoretic techniques developed in [80] to calculate the K-groups of B(S∗∂X)
(after having done the analysis).

Solvable C∗-algebras and ideal chains

Following the definition of solvable C∗-algebras introduced by Dynin [32], Melrose and

Nistor proved that the C∗-closure B(Z, bΩ 1
2 ) (resp. the parameter depended version

B(F, bΩ
1
2 ,RE(F )), F a face in Z) of Ψ0

b,cl(Z, bΩ
1
2 ) (resp. Ψ0

b,cl(F,
bΩ

1
2 ,RE(F ))) is solvable.

Lauter [63] then used a slightly different approach to calculate the length of this algebra

making use of the full description of the Jacobson topology
̂B(Z, bΩ 1

2 ), which he gave in
[61].

Note, that if Z is a manifold with corners of dimZ = m, then a first measure of
”how singular” the manifold is, is the codimesion of Z, i.e. the largest codimension of a
boundary face of Z. It is then natural to ask, if one can recover this invariant by simply
studying the C∗-algebra B(Z, bΩ 1

2 ). It turns out, that the minimal length of the solving
series is given in terms of this invariant: the length of the series equals m if codimZ = m
and codimZ + 1 in the other cases. The strong connection to the underlying geometry
can also be seen in the definition of (one possibility for) the minimal solving series: it
is given in terms of kernels of the symbol homomorphisms (2) and (3), descending the
”singular hierarchy” of the faces of Z. Let us also point out, that in the context of
conformally compact spaces the solvability of B0(X,

0Ω
1
2 ) with length two has been shown

in [65, Corollary 7.5.3].
One of the main tools used for the calculation of the length of solving ideal chains is

representation theory for C∗-algebras. This topic has been treated in several monographs
and articles, see, for instance, [31] or [90]. In [61] Lauter developed a representation theory
for Ψ∗-algebras. More precisely he used a result of Gramsch [40] on positive functionals
to show that there is (under an additional condition E0 resp. E1) a continuous, bijective

map Φ : Â −→ B̂, where B is the enveloping C∗-algebra of a Ψ∗-algebra A and Â resp.
B̂ denotes the spectrum of A resp. B, i.e. the set of all unitary equivalence classes of
non-zero irreducible representations. Here the additional condition E0 resp. E1 is needed
to provide that the Ψ∗-algebras in some sense behave well while taking intersections with
closed two-sided C∗-ideals.

As spectral invariance generates this strong connection between Ψ∗-algebras and their
C∗-closures, one expects that the notion of solving ideal chains for the C∗-algebra can be
carried over to the dense Ψ∗-subalgebra. And indeed, it turns out, that it is possible to
give a definition of solvable Ψ∗-algebras, such that if one takes a Ψ∗-algebra A, where its
C∗-closure B is solvable with length n (and A has property E0 in B), then A is solvable,
too. Moreover the length of A is less or equal to the length of B.

As we noted before, the length of the ideal chain measures how singular the manifold
Z is. It is thus reasonable to ask, if there are C∗- resp. Ψ∗-algebras on singular settings
such that there is no solving ideal chain of finite length. Using a direct sum construction,
we prove that such algebras exist, where we use the result, that every solvable C∗-algebra
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B induces a solving series for a closed two-sided ideal I of B. Moreover, we construct
algebras, such that the space of one-dimensional representations is arcwise connected.

Transmisson-spaces and -algebras

The concept of interaction or transmission spaces has been introduced by Ali Mehmeti [3,
Chapter 4.3] resp. Ali Mehmeti and Nicaise [4]. To investigate, for instance, vibrations
on cross-shaped networks, Ali Mehmeti used the Friedrichs extension to create ”good”
physically interpretable models. Thereby he considered products of appropriate function
spaces and fixed the mutual influences by the choice of a subspace of this product, the so
called interaction space. In [19, Section 4.7] Caps used this idea to prove well-posedness
of the Cauchy problem for special time-dependent evolution equations of Schrödinger and
(degenerate) diffusion type on networks.

We adept the approach of Ali Mehmeti to the case where the function spaces are given
on families of manifolds with corners Zi, i ∈ N. A suitable closed subspace is yielded by
direct sums of the corresponding smooth function spaces identified over certain domains
in the interior. This enables us to use on the one hand closed derivations to define a
Ψ∗-algebra on the connected singular configuration spaces and gives on the other hand
also the possibility to use generalized Laplacians - defined via the Friedrichs extension for
a suitable positive selfadjoint operator - to get a scale of Sobolev spaces (in the sense of
[23]) on which our operators act.

Moreover, by imposing an additional condition on the operators, we achieve, that there
is a well defined ∗-morphism onto each face of the underlying manifolds with corners Zi.
Thus, it is possible to define ideal chains

A ⊇ In ⊇ In−1 ⊇ . . . ⊇ I1 ⊇ I0 := {0}

of length n - that are slightly generalizations of solving ideal series - i.e. the quotients of
the ideals are isomorphic to C0(Tk,K(Hk) for all quotients except A/In and I1/{0} = I1.

Organisation of the text

CHAPTER 1 is concerned with the general concepts of spectrally invariant Fréchet alge-
bras. In section one we recall the main definitions of Ψ0- and Ψ∗-algebras. Section two
then deals with how one can construct these algebras using (finite) sets of closed deriva-
tions or closed operators. In section three we discuss the special case of Ψ∗-subalgebras
of L (H), where H denotes a Hilbert space and show how to define associated Sobolev
spaces. As already mentioned, the methods of section two and three were first treated
by Gramsch, Ueberberg and Wagner in [46], where they generalize concepts of Beals [14],
Cordes [24], Coifman and Meyer [21] for the characterization of algebras of pseudodiffer-
ential operators to an abstract setting. Finally, in section four we use this construction
method to define a Ψ∗-algebra of operators with order shift on a closed manifold.

Then in CHAPTER 2 we construct a Ψ∗-completion of Ψ0
b,cl(Z, bΩ

1
2 ) in B(Z, bΩ 1

2 ) using
the methods presented in chapter one. In section one we shortly review the main defi-
nitions and properties of the calculus of b-pseudodifferential operators on manifolds with
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corners. Section two is then concerned with the inductive construction of a Ψ∗-completion
of Ψ0

b,cl(Z, bΩ
1
2 ). Hereby we use the construction given by Lauter [60] for manifolds with

boundary as the beginning of the induction. The inductional step then uses the general
principle, that C ∞

b (Rn,A) is a Ψ∗-algebra in Cb(R
n,B), if A is a Ψ∗-algebra in B. However,

the resulting algebra A(Z, bΩ 1
2 ) will still be to large, since K(L2(Z, bΩ 1

2 )) ↪→ A(Z, bΩ 1
2 ).

Thus in section three, we refine this algebra first by defining the following well-behaved
Ψ∗-algebra, that acts on the scale of b-Sobolev spaces induced by the b-Laplacian ∆b:

A1 :=
{
a ∈ L (L2(Z, bΩ 1

2 )) : a(D(Λ∞
b )) ⊆ D(Λ∞

b ),

∀ ν ∈ N ∃ cν ≥ 0 : ||ad(Λb)
ν(a)x|| ≤ cν ||x||

}
.

Then we impose additional commutator conditions to enable a Beals-type characterisation
in the smooth part of the manifold with corners Z, i.e. the operators in the resulting Ψ∗-
algebra Ab(Z, bΩ

1
2 ) are ordinary pseudodifferential operators if we localize in a coordinate

chart that has support only in the the smooth interior Z̊ of Z.
In CHAPTER 3, we first present the main results in representation theory of C∗-

and Ψ∗-algebras in section one. Then in section two we define the notion of solvable
Ψ∗-algebras and prove, that a Ψ∗-algebra A, which is dense and has property E0 in a
solvable C∗-algebra B, is solvable, too. In section three we show how to calculate the
length of B(F, bΩ

1
2 ,Rl). Thereby, we can restrict ourself to the case that F is a face of a

manifold with corners Z of codimension l, i.e. we analyse the algebra B(F, bΩ
1
2 ,RE(F )).

We localise the algebra B(Z, bΩ 1
2 ) along the boundary surface F to calculate the length

of B(F, bΩ
1
2 ,RE(F )) using the well-known characterization of the spectrum of B(Z, bΩ 1

2 ),
cf. [64]. In particular the isomorphism

B(F, bΩ
1
2 ,RE(F )) ∼= B(Z, bΩ 1

2 )/IF

is used, where IF denotes the kernel of the indical family homomorphism

IBFZ : B(Z, bΩ 1
2 ) −→ B(F, bΩ

1
2 ,RE(F ))

corresponding to the face F . We then define the notion of local length for certain types
of C∗-algebras in section four. The definition is given in a way that the underlying geom-
etry of the manifold with corners Z gives rise to local ideal chains of pseudodifferential
operators localized in open sets U ⊆ Z. The length of such a chain is then calculated in
detail, where we use a special solving series for B(Z, bΩ 1

2 ), which is due to Melrose and
Nistor [86], and implicitly also given by Lauter in [62].

In CHAPTER 4 we first consider a C∗-algebra B that is defined by a C∗-direct sum
construction of algebras Bk of pseudodifferential operators on manifolds with corners Zk,
where the Bk (resp. the underlying manifold Zk) are chosen such that length of Bk is k. We
prove, that B cannot be solvable with finite length in section one. In section two we discuss
how one can connect the spaces of one-dimensional representation to get an example of
an algebra with no finite solving series and an arcwise connected space of one-dimensional
representations. Finally in section three we introduce the concept of transmission spaces
and algebras following an idea of Ali Mehmeti [4]. Using the point evaluations in the



Introduction 9

interior of manifolds with corners Zi (i ∈ N), we define a transmission space of smooth
functions. We then use commutator methods and the Friedrichs extension of a suitable
Laplacian to define Ψ∗-algebras, that localized in the smooth interior of a single manifold
Zi behave like ordinary pseudodifferential operators. Moreover, by restricting our algebra
further, i.e. by imposing that localized to a boundary face of a manifold Zi the operators
are b-pseudodifferential operators, we can define suitable replacements of indical families.
The resulting ideals of kernels are then used to define solving ideal chains of arbitrary
length.

Finally in CHAPTER 5 we treat the K-theory for C∗-algebras of pseudodifferential
operators on conformally compact spaces. In section one we review the main properties
of the algebra Ψ0

0(X,
0Ω

1
2 ) of pseudodifferential operators on a conformally compact space

X. In particular, we introduce the main structure elements in 0-geometry and the reduced
normal operator. In section two we discuss the main properties of the b-c-calculus on the
interval M := [0, 1]. Moreover, we compute the K-groups of the associated C∗-algebra

Bb,c(M, b,cΩ
1
2 ) and discuss a certain subalgebra D which we will need in later sections.

Then in section three we first analyse the range of the reduced normal operator using the
sequence (5). Although we then could have used the methods given in [79] resp. [80]

to compute the K-groups of B0(X,
0Ω

1
2 ), we present a self-contained proof for this main

result - a proof that also works in the setting of [79] resp. [80] - using only the following
exact commutative diagram of abelian groups and morphisms:

· · · // A′
i

f ′i // B′
i

g′i // C′
i

h′i // A′
i+1

// · · ·

· · · // Ai
fi //

ai

OO

Bi
gi //

bi

OO

Ci hi //

ci

OO

Ai+1

ai+1

OO

// · · ·

.

TheK-theoretic result for B0(X,
b,Ω

1
2 ) is then used in section four to give an index formula

for Fredholm operators on conformally compact spaces. We prove, that the index of such
an operator is given by the topological index map ind t of the K1 class of the full symbol τ0
projected to K1(C(T ∗X̊)). Then in section five we discuss the Dirac operator associated
to the conformally compact metric g: Using [65], we give the explicit formula for the
reduced normal operator of the Dirac operator associated to g and a condition, when
this family is Fredholm. We use this to show that the Dirac operator on a conformally
compact manifold is not a Fredholm operator on L2 independent on the dimension of X,
extending a result of Lott [73], where he proves this in the case dimX = 4k (k ∈ N).
Finally in section six we prove, that the K-theoretic results for the C∗-algebra B0 also
hold for dense Ψ∗-completions of Ψ0

0(X,
0Ω

1
2 ).

During the final work of this thesis the author learned of a preprint of Albin and Melrose
[2], where they consider families of 0-Fredholm operators on conformally compact spaces
and also obtain an index map given in terms of the double of X.
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Chapter 1

Spectrally invariant Fréchet algebras and

commutator methods

This chapter is concerned with the general concepts that enable us to construct spectrally
invariant Fréchet algebras. We recall the main definitions - in particular we define Ψ0- and
Ψ∗-algebras - and show how one can construct these algebras using (finite) sets of closed
derivations or closed operators. This was first treated in [46] and was slightly generalized
in [60]. Throughout this chapter we closely follow [60].

1.1 Basic results on Ψ∗-algebras

Let A be an algebra. In what follows we denote by A−1 the group of invertible elements
in A.

Definition 1.1.1 (Spectral invariance). Let B be a Banach algebra with unit e and A a
subalgebra of B such that e ∈ A. A is called

(i) locally spectral invariant in B, if there exists ε > 0 such that

{a ∈ A : ||e− a||B < ε} ⊆ A−1

holds;

(ii) spectrally invariant in B, if we have A ∩ B−1 = A−1.

Remark 1.1.2. The notion of spectrally invariant algebras A - sometimes also called full
algebras or algèbre plaine - goes back to the works of [18], [91],[112] and [113]; the pair
(A,B) is often said to be a Wiener-pair (cf. [91, chapt III. pp. 203, 214, 310],[108]).

The following definition is due to Gramsch [39].

Definition 1.1.3 (Ψ∗-algebras). Let B be an unital Banach algebra and A a subalgebra
of B such that e ∈ A. Then A is called

(i) Ψ0-algebra in B, if

(a) A is locally spectral invariant in B and

(b) A is endowed with a topology τA, such that (A, τA) ↪→ B is a continuously
embedded Fréchet algebra;

11



12 Chapter 1 Commutator methods

(ii) Ψ∗-algebra in B, if in addition to (i)

(a) B is a C∗-algebra and

(b) A is a symmetric Ψ0-algebra in B;

(iii) submultiplicative Ψ0-, resp. Ψ∗-algebra, if the topology τA on A is generated by a
submultiplictive family of seminorms (qj)j∈N.

Remark 1.1.4.

(i) It is proven in [39, Lemma 5.3] that a dense locally spectral invariant subalgebra
A of B is actually spectral invariant in B. In particular, every Ψ∗-algebra A of a
C∗-algebra B is spectrally invariant in B. Moreover, it is shown that one can choose
ε = 1 in the definition of Ψ0-algebras.

(ii) If A is a submultiplicative Ψ0-algebra, we can assume without loss of generality, that
the system of seminorms (pj)j∈N0 generating the topology τA on A is increasing: If
the system is not increasing, we can use the equivalent system of seminorms given
by p′n := max

j=0,...,n
pj instead.

(iii) The class of (submultiplicative) Ψ0-, resp. Ψ∗-algebras is stable with respect to
countable intersection (see [60, p. 14] for instance).

(iv) Let A be a Fréchet algebra with an open group A−1 of invertible elements. Then
the inversion A−1 3 a 7−→ a−1 ∈ A is continuous (see [113]).

Example 1.1.5.

(i) Let Y be a m-dimensional (smooth) closed manifold and l ≥ 0. Then the algebra of

classical parameter-dependent zero order pseudodifferential operators Ψ0
cl(Y,Ω

1
2 ,Rl)

is a Ψ∗-algebra in Cb(R
l,L (L2(Y,Ω

1
2 ))) (in particular it is a Ψ∗-algebra in its C∗-

closure B(Y,Ω
1
2 ,Rl), cf. [60, Theorem 4.2.23, Corollary 4.4.24], see also [104, The-

orem 4.3.2]).

(ii) Let A be a Ψ∗-algebra in a C∗-algebra B. Then C ∞
b (Rl,A) is a Ψ∗-algebra in the

C∗-algebra Cb(R
l,B) (l ≥ 0).

(iii) Let P be a compact manifold and A be a Ψ∗-algebra in a C∗-algebra B. Then
C ∞(P,A) is a Ψ∗-algebra in C ∞(P,B).

The following two propositions show that the Ψ∗-property is also stable with respect
to taking preimages.

Proposition 1.1.6. Let B and D be C∗-algebras, (A, (qj)j∈N0) ↪→ B be a (submultiplica-
tive) Ψ∗-algebra in B, (C, (pj))j∈N0 ↪→ D be a (submultiplicative) Ψ∗-algebra in D and
τ : B −→ D be a continuous ∗-homomorphism. We set

AC := {a ∈ A : τ(a) ∈ C}
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and define seminorms p̂j on A by p̂j(a) := pj(τ(a)) for a ∈ AC and j ∈ N0. Then
(AC, (qj)j∈N0 , (p̂j)j∈N0) ↪→ B is a (submultiplicative) Ψ∗-algebra and τ|AC

: AC −→ C is a
continuous ∗-homomorphism.

Proof. Cf. [60, Lemma 2.1.10]: The closed graph theorem immediately yields the conti-
nuity of multiplication, inversion and ∗-operation in AC. So it is left to prove spectral
invariance: Let a ∈ AC ∩ B−1, then a ∈ A−1 using the spectral invariance of A in B, i.e.
b := a−1 ∈ A. Moreover, τ(a) ∈ C ∩ D−1 = C−1 yields τ(b) = τ(a)−1 ∈ C, i.e. b ∈ AC.

Proposition 1.1.7. Let B be a C∗-algebra, and A ↪→ B be a Ψ∗-algebra. Furthermore,
let Γ be an index set, (Dγ)γ∈Γ be a family of unital C∗-algebras, and ϕγ : B −→ Dγ resp.
ψγ : B −→ Dγ (γ ∈ Γ) be homomorphisms of C∗-algebras. Then:

(i) BΓ := {b ∈ B : ϕγ(b) = ψγ(b) for all γ ∈ Γ} ⊆ B is a C∗-subalgebra.

(ii) AΓ := A ∩ Bγ is a Ψ∗-algebra in BΓ.

Proof. Cf. [60, Lemma 2.1.11]: (i) follows from the fact that ϕγ and ψγ are continuous
∗-algebra homomorphisms.
(ii) The continuous embedding A ↪→ B yields that AΓ is a closed, symmetric subalgebra
of A. In particular it is a continuously embedded Fréchet subalgebra of BΓ. Finally

AΓ ∩ B−1
Γ = A ∩ B−1 ∩ BΓ = A−1 ∩ BΓ = A−1

Γ

yields the spectral invariance of AΓ in BΓ.

Remark 1.1.8. The Hörmander classes Ψ0
%,δ(R

n), i.e. the algebras of all zero order pseu-
dodifferential operators with (%, δ)-shift on Rn, are submultiplicative Fréchet operator
algebras with spectral invariance in L (L2(Rn)). This result is well-known nowadays, but
it has been a long way until this result has been completely proven. A lot of mathe-
maticians including Hörmander, Seeley, Caldéron and Vaillancourt, Cordes, Fefferman,
Boney and Chemin, Gramsch, Ueberberg, Schrohe and Wagner contributed to this im-
portant structure result.

Subsequent to the work [39] of Gramsch in 1984, many results for spectrally invariant
algebras have been proven by various authors, and the theory is far from being completed.

Indeed, the Ψ∗-property has remarkable applications for instance in the development
of Fréchet algebras in microlocal analysis, or for non-linear methods in the context of
Banach- or C∗-settings (cf. [39], [53] and [54]).

Another important consequence is that a Ψ0-algebra (resp. a Ψ∗-algebra) has the same
K-theory as its norm closure (resp. C∗-closure), which has been observed in [22] using
Karoubi’s density theorem [55] (see also [56]) in connection with results in [39] and [36]
(see also appendix A.1 of this thesis). Hence the dense embedding A ↪→ B of a Ψ∗-algebra
A in a C∗-algebra B and the induced isomorphism in K-theory shows, that A is on the
one hand large enough to preserve K-theory and on the other hand better related to the
differential structure than the C∗-algebra. This has been used in [57] to prove a vanishing
theorem for higher traces in cyclic cohomology for spectral projections. Furthermore, the
authors of [57] give applications to the quantum hall effect and related spectral gaps of
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operators. The connection between dense Ψ∗-algebras A in C∗-algebras B is also stressed
by representation theory: In [61] Lauter developed a representation theory for Ψ∗-algebras
using a result due to Gramsch on positive functionals. Namely, he proved that there is a
continuous, bijective map φ : Â 7−→ B̂, where Â resp. B̂ denotes the spectrum of A resp.
B.

It is also an essential point in the theory of Ψ∗-algebras, that in Ψ∗-algebras A the
Hilbert space Fredholm inverses are automatically included in A. This gives rise to a rich
perturbation theory in these Fréchet algebras for holomorphic Fredholm functions. As an
example one gets an extension of the Oka-principle for holomorphic maps with values
in complex Fréchet Lie-groups or in Fréchet manifolds of Fredholm and Semi-Fredholm
operators in Ψ∗-algebras of pseudodifferential operators [40].

Since for Fréchet spaces and Ψ∗-algebras an appropriate implicit function theorem is
not available, there had to be developed new explicit rational calculations for some infinite
dimensional Fréchet manifolds which can be applied instead. It was shown in [39] that
the sets of idempotent or relatively regular elements in Ψ∗algebras are analytic locally
rational Fréchet manifolds.

As a contribution to additive, complex analytic cohomology theory, it was shown in
[44] that there exists a decomposition theory for meromorphic Semi-Fredholm resolvents
in Ψ∗-algebras where occurring singular parts have values in small ideals. In addition
the authors gave results on the division problem for real analytic Fredholm functions and
operator distributions in Ψ∗-algebras. Note that there is also a corresponding multiplica-
tive decomposition for holomorphic Fredholm functions with values in A−1 on a Stein
manifold [43].

A holomorphic functional calculus for complete locally convex algebras with continuous
inversion has been introduced by Waelbroeck [112] in 1954 (even for the case of several
variables). The holomorphic functional calculus for Ψ0- and Ψ∗-algebras is a direct con-
sequence of his work and has been used for example in [22], [38] or [57]. Moreover, it was
shown in [59], that for any Hilbert space H the Ψ∗-algebra L (H) contains its holomor-
phic functional calculus in the sense of J. L. Taylor (see also [60] and [101]); thus Ψ∗-type
algebras are also known as smooth algebras or algebras stable under holomorphic calculus.
Moreover, this last result also applies in the setting of Ψ∗-valued (n×n)-matrices. It was
shown in [72] that any Jordan operator A in a Ψ∗-algebra A ⊂ L (H) admits a Jordan
decomposition within A, which gives local similarity cross sections for A in A.

In [10] it was shown, that on appropriate triples (M, g,M), where M denotes a in
general non compact manifold M with metric g and weight function M on T ∗M, there
exists a S(M, g)-pseudodifferential calculus. In particular, it was shown, that the algebra
of order zero operators is a submultiplicative Ψ∗-algebra in L (L2(M)). Using spectral
invariance, the author also gives sufficient conditions for an operator in the S(M, g)-
calculus to extend to a generator of a Feller semi-group (see also [9]).

It is worth pointing out, that development is under way concerning the Lp-theory
based on the notion of Ψ0- as well as algebras of C ∞-elements with respect to the group
representations (cf. [34]).

Following a series of results of Schweitzer, Jolissant and de la Harpe it was pointed out
in [20] that the notion of spectral invariance is an important tool in the work of Connes-
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Moscovici on the Novikov conjecture as well as in Laffourges research on the Baum-Connes
conjecture: For certain discrete groups G with length function l the Schwarz-space Sl

2(G)
with respect to l is a spectral invariant dense subalgebra of the reduced group C∗-algebra
C∗
r (G) (see [20] for more details).
Furthermore, in the most resent research on Ψ∗-algebras, there are approaches to

Toeplitz operators, Ψ∗-algebras on infinite dimensional Hilbert space riggings and to con-
tinuous family groupoids:

As an approach to Ψ∗-algebras of Toeplitz operators on the Segal-Bargmann space
H2(Cn, γ), Bauer determined in [12] a class of vectorfields Y(Cn) supported in cones
C ⊆ Cn such that for any finite subset V ⊆ Y(Cn) the Toeplitz projection is a smooth
element in a Ψ0-algebra constructed by commutator methods with respect to V . Doing
this he obtains localized Ψ0- and Ψ∗-algebras F in the cones C, that contain all Toeplitz
operators Tf , where f is a smooth function that is bounded on Cn and has also bounded
derivatives of all orders in a neighbourhood of C. Moreover, the natural unitary group
action on H2(Cn, γ) induced by weighted shifts and unitary groups on Cn gives raise
to a Ψ∗-algebra A of smooth elements in Toeplitz-C∗-algebras. Sufficient conditions on
the symbol f of Tf to belong to A are given in terms of estimates on the corresponding
Berezin-transform f̃ .

In [66] Lauter, Monthubert and Nistor use commutator methods to construct algebras
of pseudodifferential operators on continuous family groupoids G. These algebras are
closed under holomorphic functional calculus and contain the algebra of pseudodifferential
operators of order zero on G as a dense subalgebra. Moreover, they get results for the
structure of inverses of elliptic pseudodifferential operators on special classes of non-
compact manifolds. They also introduce generalized cusp-calculi cn (n ≥ 2) on manifolds
with boundary resp. corners and embed these calculi in Ψ∗-algebras of operators with
smooth kernels.

Höber defines in [51] Ψ∗-algebras in the context of (infinite dimensional) Hilbert space
riggings H+ ⊂ H0 ⊂ H− equipped with the corresponding Gaussian measure µ. Using the
Ornstein-Uhlenbeck operator as Laplace operator, to generate a scale of Sobolev spaces,
it is proven, that a large class of pseudodifferential operators considered by Albeverio and
Dalecky in [1] is contained in the associated Ψ∗-algebra adapted to this configuration.
Moreover, the author develops a symbolic calculus in the case of Laplacians with negative
definite symbols and gives Fredholm-criteria in this case.

Now we present a theorem, which is due to Gramsch [40, Satz 5.6]; we will use it to
construct ideal chains in Ψ∗-algebras out of ideal chains of the enveloping C∗-algebras.

Theorem 1.1.9. Let B be a Banach algebra, A be a (submultiplicative) Ψ0-algebra in B,
and K ⊆ B be a closed, two-sided ideal in B.

(i) J := A∩K is a two-sided ideal in A, which is closed in the topology τA of A, hence
A/J is a (submultiplicative) Fréchet algebra.

(ii) The map j : A/J −→ B/K : a+ J 7−→ a+ K is continuous and injective.

(iii) If J is dense in K, then j(A/J ) is a Ψ0-algebra in the Banach algebra B/K.
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(iv) If, in addition, A is a Ψ∗-algebra in the C∗-algebra B, and J is dense in K, then
j(A/J ) is a Ψ∗-algebra in the C∗-algebra B/K.

For the convenience of the reader, let us sketch the proof:

Proof. (i) and (ii) are clear.
(iii) Denote by q : B −→ B/K the canonical projection. Choose ε > 0 such that

{a ∈ A : ||e− a||B < ε} ⊆ A−1

holds. Let y := q(a) ∈ j(A/J ) be arbitrary with a ∈ A and

||y − q(e)||B/K < ε.

By definition there exists x ∈ K with q(x+ a) = y and

||a+ x− e|| < ε.

Using the density of J in K we can even find x0 ∈ J such that

||a+ x0 − e||B < ε,

i.e. (a + x0) ∈ A−1. We conclude y−1 = q((a + x0)
−1) ∈ j(A/J ), which completes the

proof.
(iv) Closed two-sided ideals in C∗-algebras are symmetric; thus the algebra j(A/J ) is a
symmetric Ψ0-algebra in B/K.

1.2 Generating Ψ∗-algebras using closed operators

Let us state the main results and definitions concerning closed resp. closable operators.
Hereby we follow [19]. If not stated otherwise, E always denotes a Banach space.

Definition 1.2.1. Let D(A) ≤ E be a subspace of E and A : D(A) −→ E be a linear
operator with domain D(A). Then A is called

(i) densely defined , if D(A) is dense in E ,

(ii) closed , if (xn)n∈N ⊆ D(A) such that xn
n→∞−−−→ x ∈ E and Axn

n→∞−−−→ y ∈ E implies
that x ∈ D(A) and Ax = y,

(iii) closable, if (xn)n∈N ⊆ D(A) such that xn
n→∞−−−→ 0 ∈ E and Axn

n→∞−−−→ y ∈ E implies
that y = 0.

In the case of (iii) there is a minimal closed extension A of A, called the closure of A.

Definition 1.2.2. Let A : E ⊇ D(A) −→ E be a linear operator. To given j ∈ N we
define inductively
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(i) D(A0) := E , D(A1) := D(A) and

D(Aj+1) :=
{
x ∈ D(Aj) : Ax ∈ D(Aj)

}
;

(ii) A0 := Id, A1 := A and Aj+1x := Aj(Ax) for x ∈ D(Aj+1);

(iii) D(A∞) :=
⋂
j∈N0

D(Aj).

Then Aj : D(Aj) −→ E is a well defined linear operator for all j ∈ N0.

Definition 1.2.3. Let Λ : E ⊇ D(Λ) −→ E be a densely defined closed operator. We set

D(δΛ) := {A ∈ L (E) : A(D(Λ)) ⊆ D(Λ),

∃c ≥ 0∀x ∈ D(Λ) : ||ΛAx− AΛx|| ≤ c||x||}.

Then to given A ∈ D(δΛ) there exists an extension δΛ(A) ∈ L (E) of ΛA−AΛ : D(Λ) −→
E . Moreover, we set

D(δk+1
Λ ) :=

{
A ∈ D(δkΛ) : δΛ(A) ∈ D(δkΛ)

}

for k ∈ N and D(δ∞Λ ) :=
⋂
k∈N

D(δkΛ). Finally, we introduce the notation ad 0[Λ] = Id,

ad 1[Λ] := ad [Λ] and ad k[Λ] := δkΛ for k ∈ N.

Proposition 1.2.4. Let Λ : E ⊇ D(Λ) −→ E be a densely defined closed linear operator.
The following conditions are equivalent:

(i) A ∈ D(δ∞Λ ),

(ii) A(D(Λ∞)) ⊆ D(Λ∞) and for all k ∈ N0 exists ak ≥ 0, such that ||ad k[Λ](A)x|| ≤
ak||x|| for all x ∈ D(Λ∞).

Proof. First, suppose that (i) holds. We show, that we have

A ∈ D(δkΛ) =⇒ A(D(Λj)) ⊆ D(Λj) and ||ad j[Λ](A)x|| ≤ ak||x||
for all x ∈ D(Λk), where ak ≥ 0 is suitable

and 1 ≤ j ≤ k

for A ∈ L (E) and k ∈ N. If k = 1 this is obviously true. Now, let A ∈ D(δk+1
Λ )

and x ∈ D(Λk+1) be arbitrary. Then x,Λx ∈ D(Λk) and A, δΛ(A) ∈ D(δkΛ) hold and
therefore Ax,AΛx, δΛ(A)x ∈ D(Λk). This implies ΛAx = δΛ(A)x + AΛx ∈ D(Λk) and
Ax ∈ D(Λk+1). Moreover, we get

||ad k+1[Λ](A)x|| = ||ad k[Λ](δΛ(A))x|| ≤ ak||δΛ(A)x|| ≤ ak||x||,

for all x ∈ D(Λk+1). This gives (ii).
Now we show, that (ii) implies (i). Again, this is done by induction. To fix notation,

let us denote by δ̃k(A) ∈ L (E) the extension of ad k[Λ](A). To given x ∈ D(Λ) exists
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a sequence (xn)n∈N ⊆ D(Λ∞) such that xn
n→∞−−−→ x and Λxn

n→∞−−−→ Λx. This implies
Axn

n→∞−−−→ Ax and

ΛAxn = δ̃1(A)xn + AΛxn
n→∞−−−→ δ̃(A)x+ AΛx.

But then Ax ∈ D(Λ) follows and therefore A ∈ D(δΛ), where δΛ(A) = δ̃1(A). To A ∈
D(δkΛ), δΛ(A) = δ̃(A) for k ∈ N0 and x ∈ D(Λ) there exists a sequence (xn)n∈N ⊆ D(Λ∞)
with xn

n→∞−−−→ x and Λxn
n→∞−−−→ Λx. This gives δkΛ(A)xn

n→∞−−−→ δkΛ(A)x and

ΛδkΛ(A)xn = δkΛ(A)Λxn + Λ(ad k[Λ])(A)xn − (ad k[Λ])(A)Λxn

= δkΛ(A)Λxn + (ad k+1[Λ])(A)xn

= δkΛ(A)Λxn + δ̃k+1(A)xn.

We get
ΛδkΛ(A)xn

n→∞−−−→ δkΛ(A)Λx+ δ̃k+1(A)x,

which proves that δkΛ(A)x ∈ D(Λ) and ΛδkΛ(A)x − δkΛ(A)Λx = δ̃k+1(A)x for x ∈ D(Λ).
Consequently δkΛ(A) ∈ D(δΛ) and A ∈ D(δk+1

Λ ). This finishes the proof.

In [46, Section 2] Gramsch, Ueberberg and Wagner developed methods to construct Ψ∗-
algebras using closed operators and derivations. Lauter then used this in [62] to treat
such constructions in C∗-, resp. Ψ∗-algebras.

Let us recall the definition of a derivation first:

Definition 1.2.5 (Derivation). Let D(δ) and A be algebras. A linear map δ : D(δ) −→ A
is called

(i) derivation, if δ(ab) = δ(a)b+ aδ(b) holds;

(ii) ∗-derivation, if

(a) δ is a derivation,

(b) D(δ) and A are endowed with a ∗-operation and

(c) δ(a∗) = δ(a)∗ holds;

(iii) anti-∗-derivation, if (ii) (a), (b) are fulfilled, but δ(a∗) = −δ(a)∗ holds instead of
(c).

If in addition D(δ) is a subalgebra of a Fréchet algebra A, then δ is called closed derivation,
if δ : D(δ) −→ A defines a closed operator.

Notations 1.2.6. Let B be an unital C∗-algebra and assume that (A, (qj)j∈N0) is a
submultiplicative Ψ∗-algebra in B. Moreover, let ∆ be a finite set of closed derivations
δ : A ⊇ D(δ) −→ A such that e ∈ D(δ) holds. Define:

(i) Ψ∆
0 := A endowed with the seminorms q0,j := qj (j ∈ N0),

(ii) Ψ∆
1 :=

⋂
δ∈∆

D(δ),
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(iii) Ψ∆
n :=

{
a ∈ Ψ∆

n−1 : δ(a) ∈ Ψ∆
n−1 for all δ ∈ ∆

}
(n ≥ 2),

(iv) Ψ∆
∞ :=

⋂
n∈N0

Ψ∆
n ,

where the system of seminorms on Ψ∆
n for n ≥ 1 is given by

qn,j(a) := qn−1,j(a) +
∑

δ∈∆

qn−1,j(δ(a)),

for all a ∈ Ψ∆
n ⊆ Ψ∆

1 and j ∈ N0; Ψ∆
∞ will be endowed with the system (qn,j)n∈N,j∈N0 .

As a direct result of the construction above, we obtain (see [46] and [62, Proposition
2.4.3], [62, Corollary 2.4.4]):

Proposition 1.2.7.

(i) Ψ∆
n is a subalgebra of A and qn,j defines a submultiplicative seminorm on Ψ∆

n ,

(ii) ∆n : Ψ∆
n−1 ⊇ Ψ∆

n 3 a 7−→ δ((a))δ∈∆ ∈ ∏
δ∈∆

Ψ∆
n−1 is a closed derivation (n ≥ 1),

(iii) (Ψ∆
n , (qn,j)j∈N0) ↪→ A is a continuously embedded, submultiplicative Fréchet algebra,

(iv) (Ψ∆
∞, (qn,j)n∈N,j∈N0) ↪→ A is a continuously embedded, submultiplicative Fréchet al-

gebra.

(v) Ψ∆
∞ is a submultiplicative Ψ0-algebra in B and for each δ ∈ ∆ the map δ : Ψ∆

∞ −→
Ψ∆

∞ is continuous.

Now, let each δ ∈ ∆ be (in addition) a closed ∗-derivation with respect to the induced
∗-operation of B. Then:

(vi) Ψ∆
n is a symmetric subalgebra of A with respect to the ∗-operation given on B and

Ψ∆
∞ is a submultiplicative Ψ∗-algebra in B.

Proof. (i) We show, that Ψ∆
n is a subalgebra of A for all n ∈ N: This is obvious for

n = 0, 1, since A and D(δ) with δ ∈ ∆ are algebras by definition. Fix a, b ∈ Ψ∆
n for some

n ≥ 2 and δ ∈ ∆. Then by induction we get

ab ∈ Ψ∆
n−1 and δ(ab) = δ(a)b+ aδ(b) ∈ Ψ∆

n−1,

thus a, b ∈ Ψ∆
n follows. By assumption Ψ∆

0 = A is submultiplicative and the inductional
assumption gives for a, b ∈ Ψ∆

n :

qn,j(ab) = qn−1,j(ab) +
∑

δ∈∆

qn−1,j(δ(ab))

≤ qn−1,j(a)qn−1,j(b)

+
∑

δ∈∆

(
qn−1,j(δ(a))qn−1,j(b) + qn−1,j(a)qn−1,j(δ(b))

)

≤ qn,j(a)qn,j(b).
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Using δ(e) = 0 and qj(e) = 1 for all j ∈ N0 we also get qn,j(e) = 1 for all n, j ∈ N0.
(ii) We only consider the case n = 1; the general case follows then similarly by induction,
hence it will be omitted. Assume

ak
A−→ a and ∆1ak

∏
A−−→ b = (bδ)δ∈∆,

then D(δ) 3 ak
A−→ a and δ(ak)

A−→ bδ for all δ ∈ ∆. Since δ : A ⊇ D(δ) −→ A is closed
by assumption, it immediately follows that a ∈ D(δ) and bδ = δ(a) for all δ ∈ ∆, i.e.
a ∈ Ψ∆

1 and ∆1a = b.
(iii) This is immediate, since it only remains to prove completeness; but (qn,j)j∈N0 induces
the graph topology corresponding to the closed operator ∆n.
(iv) This follows by (iii).
(v) In view of 1.1.1 (i), we have to prove that for each a ∈ Ψ∆

∞ with ||a||B < % < 1 it
holds:

(e− a)−1 =
∞∑

k=0

ak ∈ Ψ∆
∞. (1.2.1)

To prove this, we show, that for all j ∈ N0 there exist constants cn,j(a) > 0 depending
only on a, n and j such that one has for all k ∈ N0:

qn,j(a
k) ≤ cn,j(a)k

2n−1%k−2n+1. (1.2.2)

The case n = 0 follows by [60, Lemma 2.1.8] using the continuous inversion in A. Assume
now, that (1.2.2) has already been proven for n− 1 ≥ 0. Then the well-known formula

δ(ak) =
k∑

l=1

al−1δ(a)ak−l

yields

qn,j(a
k) = qn−1,j(a

k) +
∑

δ∈∆

qn−1,j(δ(a
k))

≤ qn−1,j(a
k) +

∑

δ∈∆

k∑

l=1

qn−1,j(a
l−1)qn−1,j(δ(a))qn−1,j(a

k−l)

≤ cn,j(a)k
2n−1%k−2n−1

using the induction hypothesis. Thus the Neumann series (1.2.1) converges in Ψ∆
n for all

n ∈ N0 and so it converges also in Ψ∆
∞. Finally, δ(a) ∈ Ψ∆

∞ holds by construction and the
continuity of δ : Ψ∆

∞ −→ Ψ∆
∞ is a consequence of the closed graph theorem.

(vi) The algebras Ψ∆
j are symmetric under the ∗-operation for j = 0, 1. Let a ∈ Ψ∆

n be
arbitrary, then one has a∗ ∈ Ψ∆

n−1 and also ∆(a∗) = (δ(a∗)) ∈ Ψ∆
n−1 by the inductional

assumption. Thus it follows a∗ ∈ Ψ∆
n (n ∈ N) and Ψ∆

∞ is also symmetric. The rest follows
now by (i)-(v).
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1.3 Generating Ψ∗-algebras by commutator methods

In what follows, we specialize to the case B = L (H), where H denotes a Hilbert space.

Definition 1.3.1. Let (A, (qj)j∈N0) ↪→ L (H) be a submultiplicative Ψ∗-algebra; without
loss of generality we assume q0 = || · ||L (H). For a closed, densely defined operator
V : H ⊇ D(V ) −→ H we define

(i) I(V ) := {a ∈ A : a(D(V )) ⊆ D(V )},

(ii) ad [V ](a) := V a− aV : D(V ) −→ H,

(iii) B(V ) to be the set of all a ∈ I(V ), such that ad [V ](a) induces a bounded linear
operator δV (a) ∈ A and

(iv) B∗(V ) := {a ∈ B(V ) : a∗ ∈ B(V )}.

Lemma 1.3.2.

(i) The operator δV : A ⊇ B(V ) −→ A; a 7−→ δV (a) defines a closed derivation.

(ii) If in addition V : H ⊇ D(V ) −→ H is symmetric, then iδV : A ⊇ B∗(V ) −→ H is
a closed ∗-derivation, i.e. δV defines a closed anti-∗-derivation.

For the proof of this lemma see also [62, Lemma 2.4.7].

Proof. (i) First we prove, that B(V ) is an algebra: let a, b ∈ B(V ) be arbitrary and
ϕ ∈ D(V ). Then

(ad [V ](ab)) (ϕ) = (V a− aV )b(ϕ) + a(V b− bV )(ϕ)

and thus the commutator ad [V ](ab) extends to a bounded operator δV (ab) = δA(a)b +
aδV (b), i.e. δV is a derivation and ab ∈ B(V ) holds.

In order to show that δV is a closed derivation, let

B(V ) 3 ak
A−→ a ∈ A and A 3 δV ak

A−→ b ∈ A.

Using the continuous embedding A ↪→ L (H) it follows for all ϕ ∈ D(V ) that D(V ) 3
ak(ϕ) −→ a(ϕ) and

V akϕ = (δV ak)ϕ+ akV ϕ
H−→ bϕ+ aV ϕ.

Since V is a closed operator, we conclude aϕ ∈ D(V ) and ad [V ]a(ϕ) = b(ϕ). Thus
a ∈ B(V ) and δV a = b ∈ A, i.e. δV is a closed derivation.
(ii) By definition B∗(V ) is a symmetric subalgebra of A. Let ϕ, ψ ∈ D(V ) and a ∈ B,
then we get

〈δV (a)ϕ |ψ〉 = 〈V aϕ− aV ϕ |ψ〉
= 〈ϕ | a∗V ψ − V a∗ψ〉
= 〈ϕ | − δV (a∗)ψ〉.
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Now D(V ) is dense by assumption, and we conclude that δA(a)∗ = −δA(a∗).

Finally, let us prove, that δV : B∗(V ) −→ A is closed. To this end let B(V ∗) 3 ak
A−→

a ∈ A and A 3 δV (ak)
A−→ b ∈ A. Then our previous discussion shows a ∈ B(V ) and

δV (a) = b. The continuity of the ∗-operation in A now gives a∗k
A−→ a∗ and thus

δV (a∗k) = −δV (ak)
∗ A−→ b∗.

This proves a ∈ B∗(V ) and we have finished the proof.

Definition 1.3.3. Let E be a Banach space and V be a finite set of densely defined closed
operators V : E ⊇ D(V ) −→ E . We define

(i) H0
V := E endowed with norm p0 := || · ||E ,

(ii) H1
V :=

⋂
V ∈V

D(V ),

(iii) Hn
V :=

{
ϕ ∈ Hn−1

V : V (ϕ) ∈ Hn−1
V for all V ∈ V

}
(n ≥ 2),

(iv) H∞
V :=

⋂
n∈N

Hn
V .

Hereby we endow Hn
V with the norm

pn(ϕ) := pn−1(ϕ) +
∑

V ∈V

pn−1(V (ϕ)), (ϕ ∈ Hn
V)

and H∞
V with the system of norms (pn)n∈N0 .

Lemma 1.3.4.

(i) Vn : Hn−1
V ⊇ Hn

V −→ ∏
V ∈V

Hn−1
V ; ξ 7−→ (V (ϕ))V ∈V is a closed operator,

(ii) (Hn
V , pn) is a Banach space,

(iii) (H∞
V , (pn)n∈N0) is a Fréchet space,

(iv) if E is a Hilbert space, there is an equivalent norm p̃n on Hn
V , such that (Hn

V , p̃n) is
a Hilbert space and (H∞

V , (pn)n∈N0) is a Fréchet Hilbert space.

In what follows the spaces Hn
V , resp. H∞

V will be denoted as V-Sobolev spaces.

Proof. This follows using arguments similar to the proof of proposition 1.2.7, hence we
will omit it.

Theorem 1.3.5. Let H be a Hilbert space, (A, (qj)j∈N0) a submultiplicative Ψ∗-algebra
in L (H), B a C∗-algebra in L (H) such that A ⊆ B and V be a finite set of closed
densely defined symmetric operators V : H ⊇ D(V ) −→ H. Moreover, we denote by
∆ := ∆V := {δV : V ∈ V} the set of all closed anti-∗-derivations δV : C ⊇ D(δV ) −→ A
and by ΨV

n := Ψ∆
n resp. ΨV

∞ := Ψ∆
∞ the scale of submultiplicative Fréchet algebras. Then:
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(i) ΨV
∞ ⊆ ΨV

n ⊆ A ⊆ B holds for all n ∈ N,

(ii) (ΨV
∞, (qn,j)n∈N,j∈N0) ↪→ B is a submultiplicative Ψ∗-algebra,

(iii) ΨV
n ×Hn

V −→ Hn
V ; (a, ϕ) −→ a(ϕ) is continuous and bilinear,

(iv) ΨV
∞ ×H∞

V −→ H∞
V ; (a, ϕ) 7−→ a(ϕ) is continuous and bilinear,

(v) δV : ΨV
∞ −→ ΨV

∞ is continuous.

Proof. Cf. [62, Theorem 2.4.13]. It remains to prove (iii): To do this we show that for
n ∈ N0 and for each pair (a, ϕ) ∈ ΨV

n ×Hn
V the following inequality holds:

pn(aϕ) ≤ qn,0(a)pn(ϕ).

If n = 0, then one gets

p0(aϕ) = ||aϕ||H ≤ ||a||L (H)||ϕ||H = q0,0(a)p0(ϕ).

The induction step now is due to the following calculation:

pn(aϕ) = pn−1(aϕ) +
∑

V ∈V

pn−1(V aϕ)

≤ qn−1,0(a)pn−1(ϕ) +
∑

V ∈V

pn−1 (aV ϕ+ (δV a)ϕ)

≤ qn,0(a)pn(ϕ)

This finishes the proof.

Often commutator estimates are well-known for differential operators and the following
proposition shows how to get commutator estimates for the corresponding square roots:

Proposition 1.3.6. Let H be a Hilbert space and Q : D(Q) −→ H be a strictly positive,
selfadjoint operator. Let A : H∞

Q −→ H∞
Q be such that for k, j ∈ N0 there are constants

a2k,j ≥ 0 with

||Q2kad j(Q2)(A)x||H ≤ a2k,j||Q2k+m+jx||H
for x ∈ H∞

Q . Then for k ∈ Z, j ∈ N0 there are ck,j ≥ 0 with

||Qkad j(Q)(A)x||H ≤ ck,j||Qk+mx||H

for x ∈ H∞
Q .

Proof. See [19, Proposition 2.3.8].

Let us close this section with a result of Gramsch and Kalb [45] on abstract hypoellip-
ticity or elliptic regularity. Recall, that the Fredholm inverse exists within the Ψ∗-algebra,
thus they are an adequate substitute for the usual parametrix construction.
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Let C be an unital C∗-algebra with K(H) ⊆ C ⊆ L (H), where H denotes a Hilbert
space. Moreover, let Ψ ⊆ C be a Ψ∗-algebra in C and A ⊆ Ψ be a symmetric subal-
gebra. Suppose that there exists a family (Qγ)γ∈Γ of C∗-algebras together with unital
∗-morphisms

τγ : A −→ Qγ

such that sup
γ∈Γ

||τγ(a)||Qγ <∞ and

π(a) ∈ (C/K(H))−1 ⇐⇒ τγ(a) ∈ Q−1
γ for all γ ∈ Γ

holds for all a ∈ A. Then the map

τ : A −→ Q :=
⊕

γ∈Γ

Qγ; a 7−→ (τγ(a))γ∈Γ

extends to a morphism τB : B := A + K(H)
C −→ QB := r (τ)

Q
of C∗-algebras (see, for

instance, [60, Proposition 2.5.4]). Moreover, AΨ := AΨ
is a Ψ∗-algebra in C and we denote

by τΨ the restriction of τB to AΨ and define J := ker (τΨ) = AΨ ∩ K(H). An algebra A
satisfying all these assumptions is called an algebra with K(H)-symbolic structure. Finally,
we call an operator b elliptic, if its symbol τB(b) is invertible in the C∗-algebra QB.

Theorem 1.3.7. Let V be a finite system of densely defined, symmetric, closed operators
on a Hilbert space H. Furthermore, we assume that H∞

V is dense in H. Let A be a
symmetric subalgebra with K(H)-symbolic structure of L (H) and suppose A ⊆ ΨV

∞. Let
AV be the closure of A in ΨV

∞. Now, if a ∈ AV is elliptic and u ∈ H is arbitrary with
au =: f ∈ Hm

V for some m ∈ N0 ∪ {∞}, then u ∈ Hm
V .

The proof of this theorem will use the following lemma (see e.g. [60]):

Lemma 1.3.8. Let D be a dense subspace of a normed space H, and p ∈ L (H) be with
p(D) ⊆ D and dim r (p) <∞. Then one has r (p) ⊆ D.

Proof of 1.3.7. Since a is elliptic, we know, that it is a Fredholm operator (see, for in-
stance, [60, Theorem 2.5.8]). Thus r (a) ⊆ H is closed and there exists b ∈ AV ⊆ ΨV

∞ such
that p := idH − ba is the orthogonal projection onto ker (a). Moreover, ker (a) is finite
dimensional, thus

u = bau+ pu = bf + pu ∈ Hm
V

since bf ∈ Hm
V and pu ∈ H∞

V , and we have finished the proof.

1.4 Order shift algebras on compact Riemannian

manifolds

Let us give a direct application of the previous sections: Denote by (M, g) a closed
Riemannian manifold and let ∆ := ∆g be the induced Laplace-Beltrami -operator on M .
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We define H0(M) := L2(M) to be the space of square integrable functions on M with
respect to the metric g.

The operator Λ given by Λ := (1 − ∆)
1
2 is then known to be a positive selfadjoint

operator on M . If s ∈ R is arbitrary, we define the Sobolev space Hs(M) of order s to
be the closure of D(Λs) with respect to the norm ||v||s := ||Λsv||0.

This gives raise to continuous embeddings

Hs(M) ↪→ Ht(M)

if s > t, and we get a scale of Sobolev-spaces {Hs(M) : s ∈ R}, i.e.

H−s(M) ⊇ H−k(M) ⊇ . . . ⊇ H0(M) ⊇ . . .Hk(M) ⊇ Hs(M)

if s ≥ k > 0. Finally, we set H∞(M) :=
⋂
s∈R

Hs(M) and H−∞(M) :=
⋃
s∈R

Hs(M). To

shorten notation we will write Hs etc. instead of Hs(M). It follows:

Proposition 1.4.1. H∞ is dense in Hs for all s ∈ R and H∞ = C ∞(M) holds.

Proof. See [23, Page 30; Page 181, Lemma 4.1] or [107, Corollary 7.4].

Moreover, we get a pairing

〈u | v〉 := 〈Λsu |Λ−sv〉 u ∈ Hs, v ∈ H−s,

where 〈· | ·〉 denotes the inner product on H0 = L2(M) with respect to g. Now, an
application of the Riesz-Fréchet-theorem shows, that we can identify (Hs)∗ with H−s. In
what follows, we fix 0 ≤ ε ≤ 1 − δ (δ ≤ 1).

To complete notation, let us denote by [X0,X1]θ (0 < θ < 1) the complex interpolation
space of X0 and X1, where (X0,X1) is an interpolation couple of complex Banach spaces
(see [19, Section 1.5] for more details).

Proposition 1.4.2. Define Aε to be the following algebra:

Aε :=
{
A ∈ L (L2(M))

∣∣A(D(Λ∞)) ⊆ D(Λ∞),

∀ν ∈ N∃aν ≥ 0 : ||ad [Λε]ν(A)x|| ≤ aν ||x||
}
.

Then Aε is a Ψ∗-algebra, and 0 ≤ ε ≤ ε′(≤ 1 − δ) implies Aε′ ⊆ Aε.

Proof. Since Λε is a positive selfadjoint operator, the first part of the proposition follows
by 1.2.7. The proposition is then a consequence of [19, 2.3.11 resp. 2.3.12].

Theorem 1.4.3. We have Aε ⊆
⋂
s∈R

L (Hs).

Proof. Let us first show, that Aε ⊆
⋂
s≥0

L (Hs) holds. Suppose that A ∈ Aε is arbitrary,

then A∗ ∈ Aε, since Aε is a Ψ∗-algebra. The proof of 1.2.4, shows, that A ∈ Aε and
A(D(Λεk)) ⊆ D(Λεk) holds for all k ∈ N0. Therefore, we get A,A∗ ∈ ⋂

k∈N0

L (Hεk).

Now, let s > 0 be arbitrary, then there are k ∈ N and θ ∈ [0, 1] such that s = θεk.
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Moreover, A,A∗ ∈ L (H0) ∩ L (Hεk) and an application of interpolation theory gives
A,A∗ ∈ L ([H0,Hεk]θ) and also

[H0,Hεk]θ = [D(Λ0),D(Λεk)]θ = D(Λs) = Hs.

We get A,A∗ ∈ L (Hs) and thus A,A∗ ∈ ⋂
s≥0

L (Hs) follows.

Now, let p ≥ 0 be arbitrary. Then A∗ ∈ L (Hp) induces a selfadjoint operator (A∗)∗−p ∈
L (H−p), cf. [23, Chapter 1, Proposition 6.4]. If q ≥ 0, we get

〈(A∗)∗−pu | v〉 − 〈(A∗)∗−qu | v〉 = 〈((A∗)∗−p − (A∗)∗−q)u | v〉
= 〈u | (Ap − Aq)v〉
= 0

where v ∈ H∞ and u ∈ H−p ∩H−q = Hmax{−p,−q}, since H∞ is dense in Hr for all r ∈ R.
This shows that (A∗)∗−p = (A∗)∗−q holds for p, q ≥ 0. If we choose q = 0, we see that
(A∗)∗−p = (A∗)∗ = A and therefore A induces a continuous operator on H−p. This proves
the theorem.

Now let M be a family of functions N ∈ C ∞(M,R) and V be a family of differential
operators of order one on M . Then N : Hs(M) −→ Hs(M) and V 3 X : Hs(M) −→
Hs−1(M) are continuous and we define:

Definition 1.4.4. Define Ψ̃ε
ρ,δ(M) to be the set

Ψ̃ε
ρ,δ(M) := {T ∈ Aε : ad [M ]αad [X]β(T ) ∈ L (Hs,Hs+ρ|α|−δ|β|)

∀s ∈ R∀α ∈ N
n
0 ∀β ∈ N

m
0 }.

Here we used the notation

ad [X]β(T ) := ad [X1]
β1ad [X2]

β2 · · · ad [Xn]
βn(T )

for X ∈ Vn and an analogous notation for M ∈ Mm.

Proposition 1.4.5. We have:

(i) Ψ̃ε
ρ,δ(M) is an algebra.

(ii) Ψ̃ε
ρ,δ(M) ∩ (L (L2(M)))−1 = (Ψ̃ε

ρ,δ(M))−1, i.e. Ψ̃ε
ρ,δ(M) is spectrally invariant.

(iii) Moreover, if |V| <∞ and |M| <∞ hold, Ψ̃ε
ρ,δ(M) is a Ψ0-algebra.

(iv) If in addition to (iii) X ∈ V also implies X∗ ∈ V, then Ψ̃ε
ρ,δ(M) gets to be a Ψ∗-

algebra.

Finally, the mapping Ψ̃ε
ρ,δ(M) ×H∞ −→ H∞ (T, u) 7−→ T (u) is continuous and bilinear.

Let us sketch the proof:
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Proof. (i) is clear.

(ii) Let T ∈ Ψ̃ε
ρ,δ(M)∩L (L2(M))−1 be arbitrary. Then we have T ∈ Aε ⊆

⋂
s≥0

L (Hs(M)),

and since this algebra is spectrally invariant T−1 ∈ Aε follows. Now, we are going to show
that T−1 ∈ Ψ̃ε

ρ,δ(M) holds. Using an induction with respect to |α| + |β| we see, that the
following formula holds:

ad [M ]αad [X]β(T−1)

=
∑

α1+...+αn=α
β1+...+βn=β

cα1,...,αn

β1,...,βn

T−1
(
ad [M ]α

1

ad [X]β
1

(T )
)
T−1 · . . .

· cα1,...,αn

β1,...,βn

T−1(ad [M ]α
1

ad [X]) ·
(
ad [M ]α

n

(ad [X]β
n

(T ))
)
T−1,

(1.4.1)

where cα1,...,αn

β1,...,βn

∈ R have to be chosen suitably.

But then (1.4.1) implies

ad [Xj]
βj(T ) ∈ L (Hs(M),Hs−δ|βj |(M))

for T ∈ Ψ̃ε
ρ,δ(M) and all 0 ≤ j ≤ l. Since T−1 ∈ Aε, we have

T−1(ad [Xj](T ))T−1 ∈ L (Hs(M),Hs−δ|βj |(M)),

and therefore ad [X]β(T ) ∈ L (Hs(M),Hs−δ|β|(M)) as desired. An analogous calculation
gives the same result for multiplication operators, which completes (ii).

(iii) We define a topology τ̃ on Ψ̃ε
ρ,δ by

||P ||s,l,l′ := sup
|α|≤l

|β|≤l′

||ad [M ]αad [V ]βP ||L (Hs(M),Hs+ρ|α|−δ|β|(M))

where s ∈ R and P ∈ Ψ̃ε
ρ,δ. To given s ∈ R\N0 exits a θ ∈]0, 1[, such that s = θ+k, k ∈ Z

holds. Using interpolation we get an equivalent norm τ̃ by restricting to s ∈ Z. Now, a
construction analogous to [46, Prop. 3.4, 3.5] gives a countable system of seminorms on

Ψ̃ε
ρ,δ(M), such that the induced topology is finer than the operator topology.

(iii) This follows from

ad [X](T ∗) = XT ∗ − T ∗X = (TX∗ −X∗T )∗ = − (ad [X∗](T ))∗

and induction.





Chapter 2

Ψ∗-algebras on manifolds with corners

In this chapter, we aim to prove the existence of certain Ψ∗-completions for operator
algebras of b-pseudodifferential operators on manifolds with corners. To achieve this,
we will use the methods developed in chapter one, i.e. we will define appropriate Ψ∗-
algebras using commutator methods. Note that in [60] resp. [65] this has been done
for b-pseudodifferential operators resp. 0-pseudodifferential operators on manifolds with
boundary.

2.1 Review of algebras of operators on manifolds with

corners

Throughout this section Z stands for a connected, smooth, compact manifold with corners
of dimension m in the sense of [87, Section 2.3]. Roughly speaking, this means that Z
can be embedded into a smooth, closed manifold Z̃ of the same dimension, such that
C ∞(Z) = C ∞(Z̃)|Z and there exists a finite set %i ∈ C ∞(Z̃) (i = 1, . . . , K) of smooth

functions - called boundary defining functions - with Z =
K⋃
i=1

{
x ∈ Z̃ : %i(x) ≥ 0

}
, such

that (d%i(x))i∈I are linear independent for all x ∈ F and all I ⊆ {1, . . . , K}, where

F := FI :=
⋂

i∈I

{x ∈ Z : %j(x) = 0}

is a boundary face of codimension k := |I| of Z.
The set of boundary faces resp. boundary faces of codimension k of Z is denoted by

F(Z) resp. Fk(Z). Sometimes we also use the notation Fm−k(Z) := Fk(Z) to denote the

boundary faces of dimension m−k of Z. Clearly, F(Z) =
K⋃
k=1

Fk(Z) holds. The elements

of F1(Z) are called boundary hypersurfaces. For F ∈ Fk(Z) let

E(F ) := {H ∈ F1(Z) : F ⊆ H}

and set ME(F ) :=
{
(xF ′)F ′∈E(F ) : xF ′ ∈M

}
, where M is an arbitrary set. Clearly, a fixed

order on F1(Z) gives bijections E(F ) −→ {1, . . . , k} and ME(F ) −→Mk, and we are going
to use this identification in the sequel without further comments. Note that by definition
a boundary face of codimension k itself is a manifold with corners of dimension m− k.

The space of all smooth vector fields on Z tangent to all boundary faces is denoted by
Vb(Z). If p ∈ Z is an arbitrary point, then there is a face F ∈ Fk(Z) with k maximal

29
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such that p ∈ F (note that we allow k to be zero, i.e. p is then an element of the smooth
interior of Z). Then Vb(Z) is locally spanned (at p) by the vectorfields

x1∂x1 , . . . , xk∂xk , ∂xk+1
, . . . , ∂xm ,

i.e. with respect to local coordinates a vectorfield V ∈ Vb(Z) can be written as

V (p) =
k∑

j=1

aj(p)xj∂xj +
n∑

j=k+1

aj(p)∂xj ,

with smooth functions aj.
The associated smooth vector bundle bTZ −→ Z, called the b-tangent bundle, comes

together with a smooth map jb : bTZ −→ TZ between vector bundles, such that Vb(Z) =
jb(C ∞(Z, bTZ)); note that jb is an isomorphism in the interior of Z. Moreover, denote by
bΩ

1
2 = bΩ

1
2 (Z) the bundle of complex-valued half-densities associated to the dual bundle

p : bT ∗Z −→ Z of bTZ and let L2
b(Z, bΩ

1
2 ) be the corresponding Hilbert space of square

integrable b-half-densities.
Let F −→ Z be a smooth vector bundle. Then Ċ ∞(Z, F ) denotes the space of all

smooth section of F vanishing with all derivatives at the boundary faces of Z. We then
define the space of extendible distributions C −∞(Z, bΩ 1

2 ) on Z to be the space

C
−∞(Z, bΩ 1

2 ) := [Ċ ∞(Z, bΩ 1
2 )]′.

Before we give the definition of (parameter-dependent) b-pseudodifferential operators,
let us briefly discuss the used blow up spaces. Let S :=

⋃
H∈F1(Z)

H2 ⊆ Z2; then there

exists a compact manifold Z2
b with corners together with a smooth map

β2
b : Z2

b := [Z2;S] −→ Z2

such that Z̊2
b = Z̊2, β2

b |Z̊2
b

= id and that the lifted diagonal Ξb := (β2
b )

−1(S) ⊆ Z2
b

intersects the b-front face ffb := (β2
b )

−1(S) transversally. Let χ : Z ⊇ U −→ R
k

+ × Rm−k

be a local chart near p ∈ Fk(Z) with χ(F ∩ U) ⊆ {0} × Rm−k and χ(p) = (0, 0). Then
the pull back of (x, y) resp. (x′, y′) of χ to the first resp. second factor of U × U yields
the following local coordinates

(τ, r, y, y′) : Z2
b ⊇ (β2

b )
−1(U × U) −→ [−1, 1]k ×R

k

+ ×R
m−k ×R

m−k

on Z2
b near (β2

b )
−1(p, p), where we set

rj := xj + x′j and τj :=
xj − x′j
xj + x′j

(j = 1, . . . , k).

We now follow the definition given in [64, Definition 2.1] for a b-pseudodifferential
operator depending on an additional parameter λ ∈ Rl. Note, that this is exactly the
definition of [87] in the case l = 0:
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Definition 2.1.1. A family of continuous operators

a(λ) : Ċ
∞(Z, bΩ 1

2 ) −→ C
−∞(Z, bΩ 1

2 ), (λ ∈ R
l),

belongs to the space Ψj
b,cl(Z, bΩ

1
2 ,Rl

λ) of classical, parameter-dependent b-pseudodifferent-
ial operators of order j ∈ R ∪ {−∞} if the following conditions hold:

(i) We have singsuppκa(λ) ⊆ Ξb for the lifted Schwartz kernel κa(λ) of a(λ), κa(λ) van-

ishes with all derivatives at ∂Z2
b \ ffb and for any ω ∈ C ∞(Z2

b ) with ω ≡ 0 in a

neighbourhood of Ξb we have ωκa(·) ∈ S(Rl
λ,C

∞(Z2
b ,
bΩ

1
2 )).

(ii) In a neighbourhood of Ξb \ ffb the lifted Schwartz kernel κa(λ) is given by the oscil-
latory integral

κa(λ)(z, z
′) =

∫

Rn
ζ

ei(z−z
′)ζσa(z, ζ, λ)d̄ ζ|dz dz′| 12

with a classical symbol σa ∈ S
j
cl(R

m
z ,R

m
ζ ×Rm

λ );

(iii) If (τ, r, y, y′) are local coordinates near (β2
b )

−1(p, p) with p ∈ Fk(Z), then the lifted
Schwartz-kernel κa(λ) is given by the oscillatory integral

κa(λ)(τ, r, y, y
′) =

∫

R
n−k
η ×Rk

ξ

(
1 + τ

1 − τ

)iξ
ei(y−y

′)ηβa(r, y, ξ, λ)d̄ ξd̄ η|dµ| 12

with a symbol βa ∈ Sjcl(R
k
r × Rm−k

y ,Rk
ξ × Rm−k

η × Rl
λ) and the density |dµ| 12 :=

∣∣ dτ
1−τ2

dr
r
dy dy′

∣∣ 12 .

Note that we used the obvious abbreviation
(

1 + τ

1 − τ

)iξ
=

(
1 + τ1
1 − τ1

)iξ1
· . . . ·

(
1 + τk
1 − τk

)iξk

for τ = (τ1, . . . , τk) ∈ [−1, 1]k and ξ = (ξ1, . . . , ξk) ∈ Rk
ξ in 2.1.1 (iii) (analogous for

dτ/(1 − τ 2) and dr/r).
Exactly as in the case of b-pseudodifferential operators without parameters the local

symbols σa resp. βa fit together to a well defined parameter-dependent homogeneous
principal symbol

bσ̃(j)(a) : bT ∗Z ×R
l
λ \ {0} −→ C,

homogeneous of degree j in the fibres. The corresponding system of maps

bσ̃(j) : Ψj
b,cl(Z, bΩ

1
2 ,Rl

λ) −→ C
∞(S(bT ∗Z ×R

l
λ)),

where S(bT ∗Z ×Rl
λ) denotes the sphere bundle of bT ∗Z ×Rl

λ −→ Z, then has the usual
multiplication property

bσ̃(j1+j2)(a1a2) = bσ̃(j1)(a1)
bσ̃(j2)(a2)
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for a1 ∈ Ψj1
b,cl(Z, bΩ

1
2 ,Rl

λ), a2 ∈ Ψj2
b,cl(Z, bΩ

1
2 ,Rl

λ), and we get the exact sequence

0 → Ψj−1
b,cl (Z, bΩ

1
2 ,Rl) → Ψj

b,cl(Z, bΩ
1
2 ,Rl) → C

∞(S(bT ∗Z ×R
l)) → 0. (2.1.1)

If l = 0, we will write bσ(j) instead of bσ̃(j) in the sequel. Recall that for given F,G ∈ F(Z)
such that G ⊆ F , we get a defining function for G as a boundary face of the manifold
with corners F via the family

{
%H |F : H ∈ E(G) \ E(F )

}
.

Let a ∈ Ψj
b,cl(Z, bΩ

1
2 ) be a b-pseudodifferential operator. Then the indical family IFZ(a)

of a at F is given by

IFZ(a)(z) = (%−iza%iz)|F ∈ Ψj
b,cl(F,

bΩ
1
2 ), z ∈ C

E(F ),

where we used the notation %z :=
∏

H∈E(F )

%zHH : Z \ ∂Z −→ C for z = (zH)H∈E(F ) ∈ CE(F ).

To give a complete characterisation of the (joint-) symbol space, we need the following
definition:

Definition 2.1.2. Let Mj
b,O(Z, bΩ 1

2 ,Cl) (j ∈ R∪ {−∞}) be the space of all entire maps

a : Cl −→ Ψj
b,cl(Z, bΩ

1
2 ), such that [aµ : Rl 3 λ 7−→ a(λ + iµ)] ∈ Ψj

b,cl(Z, bΩ
1
2 ,Rl

λ) holds

uniformly for µ in compact subsets of Rl.

This enables us to give a full characterisation of the symbol space by means of the joint
symbol map

τΨ : Ψ0
b,cl(Z, bΩ

1
2 ) −→ C (bS∗Z) ⊕

⊕

F∈F(Z)

M0
b,O(F, bΩ

1
2 ,CE(F ))

(cf. [64, Proposition 2.28] and [85, Proposition 3]):

Proposition 2.1.3. Let QΨ(Z) denote the algebra of all

(f, (hF )F∈F(Z)) ∈ C
∞(bS∗Z) ⊕

⊕

F∈F(Z)

M0
b,O(F, bΩ

1
2 ,CE(F ))|RE(F )

satisfying the following compatibility conditions:

bσ̃(0)(hF ) = f|bS∗Z|F
for all F ∈ F(Z), and (2.1.2)

hG(λ) = IGF (hF ((λH)H∈E(F )))((λH)H∈E(G)\E(F )) (2.1.3)

for all λ ∈ RE(G) and all boundary faces F,G ∈ F(Z) with G ⊆ F . Then the sequence

0 → Ψ0
b,cl(Z, bΩ

1
2 ) ∩ K(L2(Z, bΩ 1

2 )) → Ψ0
b,cl(Z, bΩ

1
2 )

τΨ−→ QΨ(Z) → 0

is exact.
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Let B(Z, bΩ 1
2 ) denote the closure of Ψ0

b,cl(Z, bΩ
1
2 ) in the C∗-Algebra L (L2

b(Z, bΩ
1
2 )).

Then the joint symbol map τΨ extends to a homomorphism

τB : B(Z, bΩ 1
2 ) → C (bS∗Z) ⊕

⊕

F∈F(Z)

Cb

(
R

E(F ),L
(
L2
b(F,

bΩ
1
2 )
))

and we will use the abbreviation Qτ for the right hand side of the above formula to shorten
notation.

Since the space of operators with smooth kernel, compactly supported in the interior
of Z2 belongs to Ψ−∞

b (Z, bΩ 1
2 ) and is dense in K(L2

b(Z, bΩ
1
2 )) we get K(L2

b(Z, bΩ
1
2 )) ⊆

B(Z, bΩ 1
2 ). Thus the following sequence of C∗-algebras is exact:

0 −→ K(L2
b(Z, bΩ

1
2 )) −→ B(Z, bΩ 1

2 )
τB−→ QB(Z) −→ 0, (2.1.4)

where the symbol space QB(Z) will be completely characterised in 2.1.4. In what follows

we will denote the closure of Ψ−1
b,cl(Z, bΩ

1
2 ) in B(Z, bΩ 1

2 ) by B−(Z, bΩ 1
2 ). Additionally we

have mappings

bσ
(0)
B : B(Z, bΩ 1

2 ) −→ C (bS∗Z), resp. (2.1.5)

IBFZ : B(Z, bΩ 1
2 ) −→ Cb(R

E(F ),L (L2
b(F,

bΩ
1
2 ))) (2.1.6)

given by the composition of τB with the projection of QB(Z) onto the components

C (bS∗Z) resp. Cb(R
E(F ),L (L2

b(F,
bΩ

1
2 ))).

To treat the parameter-dependent case, first note that the inward pointing normal
bundle N+F ∼= F × [−1, 1]k (F ∈ F(Z)) is a compact manifold with corners of dimension
m, too, and that all above results also apply to the boundary faces of Z. Moreover, we
see that the (parameter-dependent) homogeneous principal symbol map

bσ̃(0) : M0
b,O(F, bΩ

1
2 ,CE(F ))|RE(F ) −→ C

∞(bS∗Z|F )

extends to a homeomorphism

bσ̃
(0)
B : B(F, bΩ

1
2 ,RE(F )) −→ C (bS∗Z|F ).

Here B(F, bΩ
1
2 ,RE(F )) denotes the closure of M0

b,O(F, bΩ
1
2 ,CE(F ))|RE(F ) in the C∗-Algebra

Cb(R
E(F ),B(F, bΩ

1
2 )) ↪→ Cb(R

E(F ),L (L2
b(F,

bΩ
1
2 ))). Again let B−(F, bΩ

1
2 ,RE(F )) be the

closure of Ψ−1
b,cl(F,

bΩ
1
2 ,RE(F )) in B(F, bΩ

1
2 ,RE(F )). Then, by the fact that S−∞ is dense

in S−1 with respect to the topology of S0 (see [52, Proposition 1.1.11]), we get that

Ψ−∞
b (F, bΩ

1
2 ,RE(F )) is dense in B(F, bΩ

1
2 ,RE(F )). Since we also have the dense inclusions

C
∞
c (RE(F )) ⊗ Ψ−∞

b (F, bΩ
1
2 ) ↪→ B−(F, bΩ

1
2 ,RE(F ))

and
C

∞
c (RE(F )) ⊗ Ψ−∞

b (F, bΩ
1
2 ) ↪→ C0(R

E(F ),B−(F, bΩ
1
2 ))

it follows that
B−(F, bΩ

1
2 ,RE(F )) ∼= C0(R

E(F ),B−(F, bΩ
1
2 ))
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holds. This leads to the following exact sequence (cf. [86, Proposition 9, Corollary 3]):

0 → C0(R
E(F ),B−(F, bΩ

1
2 )) → B(F, bΩ

1
2 ,RE(F ))

bσ̃
(0)
B−−−→ C (bS∗Z|F ) → 0, (2.1.7)

and thus we get the following description of the symbol space associated to B(Z, bΩ 1
2 ):

Proposition 2.1.4. The C∗-algebra QB(Z) consists of all

(f, (hF )F∈F(Z)) ∈ C (bS∗Z) ⊕
⊕

F∈F(Z)

B(F, bΩ
1
2 ,RE(F ))

satisfying the following compatibility conditions:

bσ̃
(0)
B (hF ) = f|bS∗Z|F

for all F ∈ F(Z), and (2.1.8)

hG(λ) = IBGF (hF ((λH)H∈E(F )))((λH)H∈E(G)\E(F )) (2.1.9)

for all λ ∈ RE(G) and all boundary faces F,G ∈ F(Z) with G ⊆ F .

Proof. See [86, Proposition 11].

2.2 Ψ∗-completions of Ψ0
b,cl(Z, bΩ

1
2)

Now, that we have collected all relevant material and notation in section one of this chap-
ter, we are finally able to prove the existence of certain Ψ∗-completions of Ψ0

b,cl(Z, bΩ
1
2 ) in

the C∗-algebra B(Z, bΩ 1
2 ). The construction itself will be done by induction with respect

to the codimension of Z; recall that the codimesion of Z is given by

kZ := codimZ := max {j ∈ N : Fj(Z) 6= ∅} .

So let us first discuss the case kZ = 1 in detail. Then all faces of Z are (embedded)
hypersurfaces that do not intersect with each other, i.e.

F(Z) = F1(Z) = {M1, . . . ,Mp}, Mi ∩Mj = ∅ if i 6= j

and the Mj are closed manifolds themselves. We define QA(Z) to be the set of all

(f, (hl)
p
l=1) ∈ C

∞(bS∗Z) ⊕
p⊕

i=1

Ψ0
cl(Mi,Ω

1
2 ;R)

such that
f|bS∗Z|Mi

= bσ̃
(0)
ψ (hi).

Here Ψ0
cl(Mi,Ω

1
2 ;R) denotes the algebra of all classical parameter-dependent pseudod-

ifferential operators on the closed manifold Mi (see for instance [60, Section 4.2] for a
definition). This gives

QΨ(Z) ⊆ QA(Z) ⊆ QB(Z), (2.2.1)
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where QΨ(Z) = τΨ(Ψ0
b,cl(Z, bΩ

1
2 )) is the range of the symbol map and QA(Z) ↪→ QB(Z)

is a dense Ψ∗-algebra by [60, Lemma 6.1.2]. Finally, we set

A(Z, bΩ 1
2 ) :=

{
a ∈ B(Z, bΩ 1

2 ) : τB(a) ∈ QA(Z)
}
,

then A(Z, bΩ 1
2 ) is a Ψ∗-algebra, cf. 1.1.6, and we have an exact sequence

0 → A(Z, bΩ 1
2 ) ∩ K(L2(Z, bΩ 1

2 )) → A(Z, bΩ 1
2 )

τA−→ QA(Z) → 0, (2.2.2)

where τA := τB|A(Z,bΩ
1
2 )

: A(Z, bΩ
1
2 ) −→ QA(Z) denotes the restriction of the joint symbol

map. Moreover, we get the dense inclusions

Ψ0
b,cl(Z, bΩ

1
2 ) ↪→ A(Z, bΩ 1

2 ) ↪→ B(Z, bΩ 1
2 ). (2.2.3)

Now, assume that we have already constructed a Ψ∗-algebra completion for Ψ0
b,cl(F,Ω

1
2 )

for all F with 1 ≤ codimF ≤ n− 1 fulfilling (2.2.1), (2.2.2) and (2.2.3) (where Z has to

be replaced by F ). It is worth pointing out, that one can regard M0
b,O(F, bΩ

1
2 ,CE(F ))|RE(F )

as a subset of C ∞
b (RE(F ),Ψ0

b,cl(F,
bΩ

1
2 )) for F ∈ Fk(Z) and that F is then a manifold with

corners itself. Using the induction hypothesis yields a Ψ∗-algebra completion A(F, bΩ
1
2 )

of Ψ0
b,cl(F,

bΩ
1
2 ) with

QΨ(F ) ↪→ QA(F ) ↪→ QB(F ) (2.2.4)

dense, where QA(F ) = τB(A(F, bΩ
1
2 )) holds. The continuous inclusions

C
∞
b (RE(F ),Ψ0

b,cl(F,
bΩ

1
2 )) ↪→ C

∞
b (RE(F ),A(F, bΩ

1
2 ))

↪→ Cb(R
E(F ),B(F, bΩ

1
2 ))

leads to the following definition

QF := C
∞
b (RE(F ),A(F, bΩ

1
2 )) ∩ B(F, bΩ

1
2 ,RE(F )).

Note, that by definition M0
b,O(F, bΩ

1
2 ,CE(F ))|RE(F ) ⊆ QF . Let QA(Z) be the set of all

(f, (hF )F∈F(Z)) ∈ C
∞(bS∗Z) ⊕

⊕

F∈F(Z)

QF ,

such that

bσ̃
(0)
B (hF ) = f|bS∗Z|F

for all F ∈ F(Z), and (2.2.5)

hG(λ) = IBGF (hF ((λH)H∈E(F )))((λH)H∈E(G)\E(F )) (2.2.6)

for all λ ∈ RE(G) and all boundary faces F,G ∈ F(Z) with G ⊆ F .

Lemma 2.2.1. We have:

(i) QΨ(Z) ⊆ QA(Z) ⊆ QB(Z) where QΨ(Z) = τΨ(Ψ0
b,cl(Z, bΩ

1
2 )) is the range of the

symbol map.



36 Chapter 2 Ψ∗-algebras on manifolds with corners

(ii) QA(Z) ↪→ QB(Z) is a dense Ψ∗-algebra.

Proof. (i) This is clear by definition.

(ii) Since Ψ0
b,cl(Z, bΩ

1
2 ) is dense in B(Z, bΩ 1

2 ) by definition and since τB(Ψ0
b,cl(Z, bΩ

1
2 )) =

QΨ(Z) as well as τ(B(Z, bΩ 1
2 )) = QB(Z), QΨ(Z) is dense in QB(Z). Moreover,

Q∞(Z) := C
∞(bS∗Z) ⊕

⊕

F∈F(Z)

QF

is a Ψ∗-algebra in

Qb(Z) := C (bS∗Z) ⊕
⊕

F∈F(Z)

B(F, bΩ
1
2 ,RE(F ))

(cf. 1.1.5 (ii)), hence 1.1.7 applies to Q∞(Z), Qb(Z) and the systems of C∗-algebra
homomorphisms

Qb(Z) −→ C : (f, (hF )F∈F(Z)) 7−→ f|bS∗Z|H
(η)

Qb(Z) −→ C : (f, (hF )F∈F(Z)) 7−→ bσ̃
(0)
B (hH)(η),

where η ∈ bS∗Z|H and H ∈ F(Z) resp.

Qb(Z) −→ B(G, bΩ
1
2 ) :

(f, (hF )F∈F(Z)) 7−→ hG(λ);

Qb(Z) −→ B(G, bΩ
1
2 ) :

(f, (hF )F∈F(Z)) 7−→ IGF (hF ((λH)H∈E(F )))((λH)H∈E(G)\E(F )),

where λ ∈ E(G), F,G ∈ F(Z) such that G ⊆ F , i.e. QA(Z) = Q∞(Z) ∩ QB(Z) is a
Ψ∗-algebra.

Proposition 2.2.2. The Ψ∗-algebra defined by

A(Z, bΩ 1
2 ) :=

{
a ∈ B(Z, bΩ 1

2 ) : τB(a) ∈ QA(Z)
}

is a Ψ∗-completion of Ψb,cl(Z, bΩ
1
2 ) with τB(A(Z, bΩ 1

2 )) = QA(Z).

Proof. By definition Ψ0
b,cl(Z, bΩ

1
2 ) ⊆ A(Z, bΩ 1

2 ). Since

τB : B(Z, bΩ 1
2 ) −→ QB(Z)

is onto, we also get τB(A(Z, bΩ 1
2 )) = QA(Z).

Remark 2.2.3. Note that we have τB(K(L2(Z, bΩ 1
2 ))) = {0} ⊆ QA(Z), which shows that

the algebra A(Z, bΩ 1
2 ) contains all compact operators on L2

b(Z, bΩ
1
2 ). Thus the algebra

A(Z, bΩ 1
2 ) is too large in order to obtain e.g. also mapping properties for a scale of

Sobolev spaces and the corresponding result on ellipitic regularity. But the next section
shows that it is possible to construct a refined version of the well-behaved completion
A(Z, bΩ 1

2 ) that still respects Sobolov mapping properties (see 2.3.3).
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2.3 Refined Ψ∗-completions acting on Sobolev spaces

generated by the b-Laplacian

First, let us recall some definitions and facts on b-differential operators; hereby we closely
follow [82]. Recall that Vb(Z) denotes the space of all smooth vector fields V ∈ V(Z) on a
manifold with corners Z of dimension m that are tangent to the boundary. Then Vb(Z) is
a Lie-algebra and a C ∞(Z)-module, so it is quite natural to pass to its enveloping algebra,
i.e. we consider the space Diffjb(Z) of j-th order differential operators D : C ∞(Z) −→
C ∞(Z), where

Diffjb(Z) := spanC∞(Z)

j⋃

l=0

{V1 ◦ . . . ◦ Vl : Vl ∈ Vb(Z)} .

Also we can define a second order differential operator ∆b ∈ Diff2
b(Z) called the b-

Laplacian fulfilling bσ(2)(∆b) = |ζ|2, where ζ ∈ bT ∗Z and bσ(2) denotes the principal

symbol map (see [82, Proposition 2.9.2]). Thus the operator Λb := (1 − ∆b)
1
2 is (strictly)

positive and selfadjoint and gives raise to a scale of Sobolev spaces
{
Hs
b(Z, bΩ

1
2 ) : s ∈ R

}

with Hs
b(Z, bΩ

1
2 ) ⊆ Hs′

b (Z, bΩ 1
2 ) (s < s′) in the sense of Cordes [23]. Let a ∈ Ψ0

b,cl(Z, bΩ
1
2 )

be arbitrary, then since Λ2
b ∈ Ψ2

b,cl(Z, bΩ
1
2 ) holds we get Λ2

ba, aΛ
2
b ∈ Ψ2

b,cl(Z, bΩ
1
2 ). The

symbolic calculus now yields

bσ(2)(aΛb) − bσ(2)(Λba) = bσ(0)(a)bσ(2)(Λb) − bσ(2)(Λb)
bσ(0)(a) = 0,

i.e. ad [Λ2
b ](a) ∈ Ψ1

b,cl(Z, bΩ
1
2 )) for all a ∈ Ψ0

b,cl(Z, bΩ
1
2 ). Using 1.3.6, we now get

ad [Λb]
ν(a) ∈ L (Hs

b(Z, bΩ
1
2 ),Hs

b(Z, bΩ
1
2 )) (ν ∈ N, s ∈ R)

for all a ∈ Ψ0
b,cl(Z, bΩ

1
2 ). Consequently, if we set

A1 :=
{
a ∈ L (L2

b(Z, bΩ
1
2 )) : a(D(Λ∞

b )) ⊆ D(Λ∞
b ),

∀ ν ∈ N ∃ cν ≥ 0 : ||ad[Λb]
ν(a)x|| ≤ cν ||x||

}
,

it follows:

Proposition 2.3.1. We have Ψ0
b,cl(Z, bΩ

1
2 ) ⊆ A1.

As a first step, let us now define a refined Ψ∗-algebra completion of Ψ0
b,cl(Z, bΩ

1
2 ), which

will ”act” on the scale of Sobolev spaces and will be a Ψ∗-subalgebra of A(Z, bΩ 1
2 ).

Definition 2.3.2. The closure of Ψ0
b,cl(Z, bΩ

1
2 ) in the Ψ∗-algebra A(Z, bΩ 1

2 ) ∩A1 will be

denoted by A1(Z, bΩ
1
2 ).

Proposition 2.3.3. For each s ∈ R the pairing

A1(Z, bΩ
1
2 ) ×Hs

b(Z, bΩ
1
2 ) −→ Hs

b(Z, bΩ
1
2 ) : (a, u) 7−→ a(u)
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is well defined, bilinear and continuous. In particular, one has

A1(Z, bΩ
1
2 ) ⊆

⋂

s∈R

L (Hs
b(Z, bΩ

1
2 )).

Proof. Since Ψ0
b,cl(Z, bΩ

1
2 ) is a symmetric subalgebra of B(Z, bΩ 1

2 ), we get that A1(Z, bΩ
1
2 )

is a Ψ∗-algebra in the C∗-algebra B(Z, bΩ 1
2 ). Moreover, A1(Z, bΩ

1
2 ) is a subalgebra of the

Ψ∗-algebra A1, so we also get the the Sobolev mapping properties.

Finally, let us show that one can even achieve more: It is possible to define a Ψ∗-
completion of Ψ0

b,cl(Z, bΩ
1
2 ) such that the operators within this completion behave like

ordinary pseudodifferential operators if one localises them to the interior of Z. Namely,
we have:

Theorem 2.3.4. There exists a submultiplicative Ψ∗-algebra completion Ab(Z, bΩ
1
2 ) of

Ψ0
b,cl(Z, bΩ

1
2 ) in the C∗-algebra B(Z, bΩ 1

2 ), such that:

(i) Ab(Z, bΩ
1
2 ) is a dense subalgebra of B(Z, bΩ 1

2 ).

(ii) Any a ∈ Ab(Z, bΩ
1
2 ) extends to a bounded operator

a : Hs
b(Z, bΩ

1
2 ) −→ Hs

b(Z, bΩ
1
2 ) (s ∈ R).

Moreover, the associated blinear map

Ab(Z, bΩ
1
2 ) ×Hs

b(Z, bΩ
1
2 ) −→ Hs

b(Z, bΩ
1
2 ); (a, u) 7−→ a(u)

is jointly continuous.

(iii) Any a ∈ Ab(Z, bΩ
1
2 ) has smooth symbols, i.e.

bσ
(0)
B (a) ∈ C

∞(bS∗Z) and

IBF,Z(a) ∈ C
∞(RE(F ),A(F, bΩ

1
2 )) ∩ B(F, bΩ

1
2 ,RE(F )),

where A(F, bΩ
1
2 ) is a suitable submultiplicative Ψ∗-algebra on the manifold with cor-

ners F , having property (2.2.4).

(iv) Let ω1, ω2 ∈ C∞
c (Z̊) and a ∈ Ab(Z, bΩ

1
2 ). Then ω1aω2 is an ordinary, compactly

supported pseudodifferential operator in the interior Z̊ of Z.

Before we give the proof of this theorem, we have to introduce some more notations
and make some preparations:

Notations 2.3.5. Let p ∈ Z be arbitrary. Then there exists a face F ∈ Fk(p)(Z) with
k(p) maximal, such that p ∈ F (note, that k(p) = 0 is possible if p is in the interior of
Z). We assume, that %1, . . . , %k(p) are the boundary functions that vanish at p. Thus we
get that

d%1(p), . . . , d%k(p)(p)
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are linear independent and we can use %1, . . . , %k(p) to get the following coordinate charts
for a neighbourhood Wp of p:

χp : Wp −→ [0, r[k(p)×R
n−k.

Here [0, r[k(p) means [0, r[%1× . . .× [0, r[%k . Since Z is compact, we can choose r to be the
same for all coordinate patches to get a finite atlas

{
(Wpj , χpj) : j = 1, . . . , l

}

for Z. Let (ϕj)j∈I , I := {1, . . . , l}, be a partition of unity that is subordinated to this
(fixed) covering of coordinate neighbourhoods. Let Jr denote the subset of I such that
Vj∩∂Z = ∅ holds for all j ∈ Jr and choose families of functions (ψj)j∈I , (βj)j∈I , (γj)j∈I ⊆
C ∞
c (Vj) with ϕj ≺ βj ≺ γj ≺ ψj. We define systems D̃int, D̃∂Z and M̃ of b-differential

operators as follows (always modulo the obvious chart diffeomorphisms):

• Let D̃int :=
⋃
j∈J

D̃j
int denote the union of differential operators D̃j

int that are given by

Dj,l := iψj∂zlψj, where j ∈ J and l = 1, . . . ,m.

• Denote by D̃∂Z :=
⋃

j∈I\J

D̃j
∂Z the set of differential operators that are given by

D∂Z
j,l := iψjxl∂xlψj if l = 1, . . . , k0 and D∂Z

j,l := iψj∂xlψj if l = k0 + 1, . . . , n.

• The set of multiplication operators M̃ is given by M̃ :=
⋃
j∈J

Mj, where the operators

in M̃j are given by ψjzlψj for l = 1, . . . ,m.

Then these operators are densely defined and symmetric, hence closable operators and we
denote by Dint, D∂Z and M the corresponding sets of minimal closed extension of them.

Finally, let us introduce the family Ṽ of all operators given by

• Vj,l := βjDj,lβj and Wj,l := (1 − βj)Dj,l(1 − βj) (Dj,l ∈ D̃j
int);

• V ∂Z
j,l := βjD

∂Z
j,l βj and Wj,l := (1 − βj)D

∂Z
j,l (1 − βj) (D∂Z

j,l ∈ D̃j
∂Z).

Again, denote by V the corresponding set of minimal closed extension.

Definition 2.3.6. We define Ãb,r(Z, bΩ
1
2 ) to be the set of all a ∈ A1, such that

ad [M ]αad [D]β(a) ∈ L (Hs(Z, bΩ 1
2 ),Hs−|α|(Z, bΩ 1

2 ))

holds for all D ∈ (Dint ∪ D∂Z ∪ V)|β|, for all M ∈ M|α| and for all s ∈ R, α ∈ Nn
0 and

β ∈ Nm
0 . Here we used the definitions

ad [D]β(a) := ad [D1]
β1ad [D2]

β2 · · · ad [Dn]
βn(a)

resp.
ad [M ]α(a) := ad [M1]

α1ad [M2]
α2 · · · ad [Mn]

αm(a).
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We then get the following proposition:

Proposition 2.3.7. Ãb,r(Z, bΩ
1
2 ) is a Ψ∗-algebra.

Proof. This follows from [110] (see also [46]).

Remark 2.3.8. Recall that r denotes the ”collar” parameter that was chosen for the
coordinate charts that intersect with ∂Z. In particular, setting r := 1/k (k ∈ N) yields
systems of coordinate charts that ”shrink” around the faces.

Let us now give the proof of theorem 2.3.4:

Proof of 2.3.4. In what follows, denote by Ab(Z, bΩ
1
2 ) the closure of Ψ0

b,cl(Z, bΩ
1
2 ) in the

Ψ∗-algebra

A(Z, bΩ 1
2 ) ∩

⋂

k∈N

Ãb, 1
k
(Z, bΩ 1

2 ) ↪→ B(Z, bΩ 1
2 ).

Then property (i) is clear by definition. The Sobolev mapping property (ii) is due to

the fact, that Ab(Z, bΩ
1
2 ) is a subalgebra of A1 by construction. To see (iii), we first

decompose the operator ω1aω2 using a partition of unity according to 2.3.5:

ω1aω2 =
∑

j∈I

γjω1aω2ϕj +
∑

j∈I

(1 − γj)ω1aω2ϕj.

Thus it is enough to treat operators of the form γjω1aω2ϕj resp. of the form (1 −
γj)ω1aω2ϕj. Now, let k ∈ N be such that

suppωi ∩ suppϕj = ∅ (i = 1, 2) (2.3.1)

for all j ∈ I \ J1/k (clearly such an k exists since ωi ∈ C∞
c (Z̊); note, that (2.3.1) then

also holds for all l ≥ k). Then ωiϕj = 0 for all j ∈ I \ J and thus we have to treat only
operators of the form γjω1aω2ϕj resp. of the form (1− γj)ω1aω2ϕj with j ∈ I \ J . Using
[60, Proposition 6.2.49 (c)] we see that γjω1aω2ϕj (see also [60, Proposition 6.2.37 (c)]) is
a pseudodifferential operator with local symbol in S0(Rn,Rn).

To treat (1 − γj)ω1aω2ϕj, we first use the partition of unity again:

(1 − γj)ω1aω2ϕj =
∑

l∈I

ϕl(1 − γj)ω1aω2ϕj

Thus we have to treat only operators ϕl(1 − γj)ω1aω2ϕj with l, j 6∈ J again. So again
by [60, Proposition 6.2.49 (b)] (see also the last appendix of this thesis) we get, that
ϕl(1 − γj)ω1aω2ϕj is an operator with smooth kernel.

Remark 2.3.9. Using a refined construction given by [27], we could also achieve that the
operators in 2.3.4 (iv) can be represented by pseudodifferential operators with classical
symbols.
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Localisation of C∗- and Ψ∗-chains

3.1 Representations of C∗- and Ψ∗-algebras

In this section we want to summarize the main definitions and results of representation
theory of C∗-algebras. Most of the proofs are omitted, but the interested reader can find
them easily in the literature (see [31] or [90] for example).

Definition 3.1.1. Let B be an (unital) algebra with involution and H be a Hilbert space.

(i) Let π : B −→ L (H) be a ∗-algebra homomorphism. Then we call the pair (H, π) a
representation of B. H is called the representation space and the Hilbert dimension
of H is called the dimension (dimπ) of the representation.

(ii) Two representations πj : B −→ L (Hj), j ∈ {0, 1}, of B are said to be (unitarily)
equivalent if there exists a unitary operator U : H0 −→ H1, such that Uπ0(b) =
π1(b)U holds for all b ∈ B.

(iii) A representation (H, π) is called irreducible if H 6= 0 and {0} as well as H are the
only closed subspaces of H that are invariant under π(b) for all b ∈ B.

(iv) We say that x ∈ H is a cyclic vector for (H, π) if one has

LH(π(b)x : b ∈ B) = H.

Here LH(V ) denotes the linear hull of a given set of vectors V .

Proposition 3.1.2. Let B be an involutive algebra, and (H, π) a representation of B.
Then the following conditions are equivalent:

(i) (H, π) is irreducible.

(ii) π(B)′ = C · idH, where

π(B)′ = {a ∈ L (H) : aπ(b) = π(b)a for all b ∈ B}

denotes the commutant of π(B).

(iii) Either every 0 6= ξ ∈ H is cyclic for π, or π is the null representation of dimension
1.

41
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Proof. See [31, Proposition 2.3.1] or [90, Theorem 5.1.5].

Proposition 3.1.3. Let B be a C∗-algebra and a ∈ B. Then there is an irreducible
representation (H, π) of B, such that ||a||B = ||π(a)||H.

Proof. See [90, Theorem 5.1.12]

Lemma 3.1.4. Let B be a C∗-algebra. Then the following properties are equivalent:

(i) B is commutative.

(ii) All irreducible representations of B have dimension one.

Proof. Suppose that B is commutative and let (H, ϕ) be an arbitrary irreducible repre-
sentation of B. Then we get ϕ(B)′ = C · idH by 3.1.2 (ii). Since B is commutative, we
have ϕ(B) ⊆ ϕ(B)′ and therefore ϕ(B) = C · idH. This implies dimH = 1, since ϕ has no
non-trival invariant closed subspaces.

Now suppose that all irreducible representations of B have dimension one. Let a, b ∈ B
be arbitrary. Then there is a representation (H, ϕ) of B with

||ab− ba||B = ||ϕ(ab− ba)||H.
Since ϕ is one-dimensional, it vanishes on commutators, i.e. ϕ(ab− ba) = 0. This implies
||ab− ba||B = 0 and therefore B is commutative.

The Jacobson topology

Definition 3.1.5. Let B be a C∗-algebra. Then a closed, two-sided ideal I ⊆ B is said
to be a primitive ideal if it is the kernel of an irreducible representation.

Let B̂ be the space of all equivalence classes of irreducible representations of a C∗-
algebra B. If (H, ϕ) is a non-zero representation of B, we denote its equivalence class

in B̂ by [H, ϕ] and we set ker [H, ϕ] = kerϕ. Furthermore, let Prim(B) be the set of all
primitive ideals of the C∗-algebra B. If R is a subset of B, we denote by Hull(R) the
set of all primitive ideals of B containing R. If T ⊆ Prim(B) is non empty, we define
Ker(T ) to be the intersection of all elements of T and we set Ker(∅) = B. Then there is
a unique topology on Prim(B), such that for each subset R ⊆ B, the set Hull(ker(R)) is
the closure of R with respect to this topology. This topology is called the Jacobson or
hull kernel topology on Prim(B). The weakest topology making the (surjective) map

θ : B̂ −→ Prim(B) : [H, π] 7−→ kerπ

continuous is called the spectrum of B. This topology on B̂ is also called the Jacobson
topology. If R is a subset of B, let Hull′(R) := θ−1(Hull(R)); see [31, Chapter 3] or [90,
Chapter 5.4] for more details.

Example 3.1.6. Let Ω be a locally compact Hausdorff space. Then the point evaluation

δω : C0(Ω) −→ C : f 7−→ f(ω)

induces a homeomorphism Ω
∼=−→ Ĉ0(Ω) : ω 7−→ δω.
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Suppose that I ⊆ B is a two-sided closed ideal in B. Then we define:

B̂I :=
{
π ∈ B̂ : π(I) 6= {0}

}
and B̂I :=

{
π ∈ B̂ : π(I) = {0}

}
.

Lemma 3.1.7. Let B be a C∗-algebra. Suppose that I ⊆ B is a two-sided closed ideal in
B. Moreover, we endow the spectrum B̂ of B with the Jacobson-topology. Then we have:

(i) The mapping B̂I −→ Î : π 7−→ π|I is a homeomorphism.

(ii) The mapping

B̂I −→ B̂/I : [π : B → L (H)] 7−→ [π̂ : B/I → L (H) : b+ I 7→ π(b)]

is a homeomorphism.

(iii) B̂I is open and B̂I is closed in B̂.

Proof. See [31, Proposition 2.11.2, Proposition 3.2.1].

Lemma 3.1.8. Let B be a C∗-algebra and I ⊆ B a two-sided closed ideal in B. Moreover,
let (H, ϕ) be a representation of I. Then there is a unique representation (H, π) of B,
which extends the representation (H, ϕ).

Proof. See [31, Proposition 2.10.4].

The following theorem is certainly well known (see [65, Proposition 7.4.3] for an applica-
tion of it). But as we could not find any bibliographical reference, we also give a proof of
it.

Theorem 3.1.9. Let B be a C∗-algebra. Let I ⊆ B be a two-sided closed ideal in B.
Then if I and B/I are commutative, we get B to be commutative, too.

Proof. In view of 3.1.4 we only have to show, that all irreducible representations of B
have dimension one. We have B̂ = B̂I ] B̂I , where all representations of B̂I

∼= B̂/I are

one-dimensional. Thus we only have to consider representations π ∈ Î ∼= B̂I , which are
all one-dimensional due to the assumptions of the theorem. By 3.1.8 all these represen-
tations extend uniquely to representations of B. Therefore all representations of B̂I have
dimension one. The theorem follows.

Hereditary C∗-subalgebras

To the end of this section let A always be a non-zero C∗-subalgebra of a C∗-algebra B.
Let us denote by B+ the set of all positive elements of B. Remember that an element
b ∈ B is called positive if b is hermitian and σ(b) ⊆ [0,∞[.

Definition 3.1.10. A is said to be hereditary in B if for b ∈ B+ and a ∈ A+ the inequality
b ≤ a implies b ∈ A.
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Theorem 3.1.11. A is hereditary in B if and only if aba′ ∈ A for all a, a′ ∈ A and
b ∈ B. Especially every closed ideal I of a C∗-algebra is hereditary.

Proof. See [90, Theorem 3.2.2].

Let (H, ϕ) be a representation of B and suppose that K is a closed vector subspace of
H invariant for ϕ(A). Then the map

ϕ : A −→ L (K); b 7−→ ϕ(b)|K

is a ∗-homomorphism. Let (H, ϕ)|A,K denote the representation (K,ψ). In the case that
K = LH {ϕ(a)h : a ∈ A, h ∈ H} we simply write (H, ϕ)|A.

Theorem 3.1.12. Let A be hereditary in B and suppose that (H,ϕ) is an irreducible
representation of B. Then (H, ϕ)|A is an irreducible representation of A. Moreover,
ϕ(A)H is closed.

Proof. See [90, Theorem 5.5.2].

We call the maps

Prim(B) \ Hull(A) −→ Prim(A), I 7−→ I ∩ A,
B̂ \ Hull′(A) −→ Â, [H, ϕ] 7−→ [(H, ϕ)|A],

(3.1.1)

the canonical ones. We then have the following theorem:

Theorem 3.1.13. Let A be hereditary in B. The following diagram is commutative,
where the maps are the canonical ones:

B̂ \ Hull′(A) //

��

Â

��
Prim(B) \ Hull(A) // Prim(A).

Moreover, the horizontal maps are homeomorphisms.

Proof. See [90, Theorem 5.5.5] or appendix D.2.1.

Remark 3.1.14. Clearly, 3.1.7 is a special case of 3.1.13, since closed ideals are always
hereditary.

The following can be found in [61]:

Theorem 3.1.15. Let A ⊆ B be a Ψ∗-algebra, which is dense in the C∗-algebra B. Then
the map

Φ : B̂ −→ Â : [π] 7−→ [π|A]

is a bijection.

Proof. See [61, Theorem 2.10].
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Here [π] resp. [π|A] denotes the equivalence class of the irreducible representation π resp
π|A.

Definition 3.1.16. Let A be a Ψ∗-subalgebra of a C∗-algebra B. Then A is said to
have the property E0 in B provided for each equivalence class [π0] ∈ B̂ and each open set

U ∈ τ(B̂) with [π0] ∈ U there exists an a ∈ A satisfying π0(a) 6= 0 and π(a) = 0 for all
[π] 6∈ U .

Theorem 3.1.17. Let A be a dense Ψ∗-subalgebra of a C∗-algebra B. Then the following
conditions are equivalent.

(i) A has the property E0 in B.

(ii) The bijection Φ : (B̂, τ(B̂)) −→ (Â, τ(Â)) is a homeomorphism.

(iii) If I E B is a closed ideal in B, then I ∩ A is dense in I.

Proof. See [61, Theorem 3.3]

Example 3.1.18. Recall that we stated in 1.1.5, that Ψ0
cl(Y,Ω

1
2 ,Rl) is a Ψ∗-algebra in

Cb(Rl,L (L2(Y,Ω
1
2 ))). Ψ0

cl(Y,Ω
1
2 ,Rl) also has the property E0 in B(Y,Ω

1
2 ,Rl) by [61,

Theorem 4.9 (b)].

3.2 Solvable C∗- and Ψ∗-algebras

Before giving the definition of solvability for Ψ∗-algebras, let us first recall the definition
of solvability for C∗-algebras and discuss some examples.

Definition 3.2.1 (Solvable C∗-algebras). Let B be a C∗-algebra.

(i) A composition series for B is a family (Iβ)β≤α of closed ideals Iβ of A indexed by
the ordinals β less or equal to a fixed ordinal α, such that

(a) I0 = {0}, Iα = B,

(b) Iγ ⊂ Iβ, if γ < β ≤ α,

(c) if β is a limit ordinal, β ≤ α, we have Iβ =
(⋃

γ<β Iγ
)−

.

(ii) B is called solvable if we have

Iβ+1/Iβ ∼= C0(Tβ,K(Hβ)),

where Tβ is a locally compact Hausdorff space and Hβ is a separable Hilbert space.

In the case that the index set is finite, this reduces to:
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Definition 3.2.2 (C∗-case, [32]). Let B be a C∗-algebra. Then B is said to be solvable if
there exists a finite sequence

B := Jl+2 ⊇ Jl+1 ⊇ . . . ⊇ J1 ⊇ J0 := {0} (3.2.1)

of closed ideals, such that Jk+1/Jk ∼= C0(Tk,K(Hk)) for some locally compact Hausdorff
space Tk and some separable Hilbert space Hk. Moreover, the composition series (3.2.1)
is said to be solving of length l, and the smallest length of such a series is called the length
of B, denoted by l(B).

Example 3.2.3. Let Z be a manifold with corners of dimension m. Define Im+1 :=

ker bσ
(0)
B and for l = 1, . . . ,m set

Il :=
{
a ∈ Il+1 : IBFZ(a) = 0, ∀F ∈ Fl(Z)

}
.

Then we get the nested sequence

B(Z, bΩ 1
2 ) ⊇ Im+1 ⊇ Im ⊇ . . . ⊇ I1 ⊇ I0 := {0} (3.2.2)

and this is a solving composition series for B(Z, bΩ 1
2 ) (cf. [86, Theorem 2.2]), which is

solving of minimal length (cf. [60]). The partial quotients are given by the isomorphisms
bσ

(0)
B : B(Z, bΩ 1

2 )/Im+1

∼=−→ C (bS∗Z) and

Il+1/Il ∼=
⊕

F∈Fl(Z)

C0

(
R

E(F ),K(L2
b(F ))

)
, 0 ≤ l ≤ m. (3.2.3)

In particular we have I1 = K(L2
b(Z)). See also 3.4.11 where we discuss this result.

Remark 3.2.4. The notion of solvable C∗-algebras has been introduced by Dynin [32]
in the context of pseudodifferential operators. Upmeier gave in [111] an example of a
solvable Toeplitz C∗-algebra, namely he proved, that for a bounded symmetric domain
D ⊆ Z of rank r, the Toeplitz C∗-algebra T generated by all Toeplitz operators with
continuous symbol functions on the Shilov boundary S of D is solvable of length r. In
this case the partial quotients Ik+1/Ik of the solving series

T = Ir+1 ⊇ Ir ⊇ . . . ⊇ I1 ⊇ I0 := {0}

are given by
Ik+1/Ik

∼= C (Sk) ⊗K(Hk)

where Sk denotes the manifold of all tripotents p ∈ Z (i.e. pp∗p = p holds) of rank k (see
also [50] for the case of Hardy-Toeplitz C∗-algebras).

Remark 3.2.5. Note, that to l ∈ N arbitrary, there exists a manifold Zl with corners
(of dimension l), such that the associated (solvable) C∗-algebra Bl := B(Zl,

bΩ
1
2 ) of b-

pseudodifferential operators has length l (cf. [63]). A simple example is Zl := I l, where
I := [0, 1] denotes the unit interval.
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Definition 3.2.6 (Ψ∗-case). Let A be a Ψ∗-subalgebra of a C∗-algebra C. Then A is said
to be solvable if there exists a finite sequence

A = Il+2 ⊇ Il+1 ⊇ . . . ⊇ I1 = {0} (3.2.4)

of two-sided closed (with respect to the topology on A) ideals Ik E A (k = 1, . . . , l +
2), such that the quotient spaces Ik+1/Ik are isomorphic to a dense Ψ∗-subalgebra of
C0(Tk,K(Hk)), where the Tk are locally compact Hausdorff spaces and the Hk are sepa-
rable Hilbert spaces (k = 1, . . . , l + 2).

Again, we take the same definition for the length of a solvable Ψ∗-algebra as in the C∗-case.
Then we have the following theorem:

Theorem 3.2.7. Let B be a solvable C∗-algebra and A a dense Ψ∗-subalgebra of B with
property E0. Then A is a solvable Ψ∗-algebra. Moreover, l(B) ≥ l(A) holds.

Proof. Let
B = Jn+2 ⊇ Jn+1 ⊇ . . . ⊇ J1 := {0}

be a solving composition series for B with Jk+1/Jk ∼= C0(Tk,K(Hk)) where Tk resp. Hk

is a locally compact Hausdorff resp. separable Hilbert space. By 3.1.17 (iii) Ik := A∩Jk
(k = 1, . . . , n + 2) is a dense Ψ∗-algebra in Jk and as Jk is a closed ideal in B, it is a
C∗-(sub)algebra of B itself (conf. [90, 3.1.3]). Clearly, we have the nested sequence of
two-sided ideals

A = In+2 ⊇ In+1 ⊇ . . . ⊇ I1 = {0}. (3.2.5)

Since Jk+1 ∩ Jk = Jk holds, we get

Ik+1 ∩ Jk = A ∩ Jk+1 ∩ Jk = A ∩ Jk = Ik,

and therefore Ik+1 ∩ Jk is dense in Jk. But then jk+1(Ik+1/Ik) = jk+1(Ik+1/(Ik+1 ∩ Jk))
is a Ψ∗-algebra in the C∗-algebra Jk+1/Jk by 1.1.9 (iv), where jk : Ik+1/(Ik+1 ∩ Jk) ↪→
Jk+1/Jk denotes the embedding 1.1.9 (ii). As jk+1(Ik+1/Ik) is also dense in Jk+1/Jk, we
get the solvability of A.

Obviously the construction leading to (3.2.5) gives l(A) ≤ l(B).

Remark 3.2.8. Let Ck := Ik+1/Ik, with Ik defined as in (3.2.5). Then combining the

isomorphisms in 3.1.15 and in 3.1.6 leads to Ĉk ∼= Tk.

3.3 The length of B(F, bΩ
1
2 ,RE(F ))

Fix F ∈ Fk(Z) and set dimF = m − k := n. Then the following result by Melrose and
Nistor (cf. [86, Theorem 3, Corollary 3]) holds:

Theorem 3.3.1. The algebra B(F, bΩ
1
2 ,RE(F )) has a composition series

B(F, bΩ
1
2 ,RE(F )) ⊇ In+1 ⊇ In ⊇ . . . ⊇ I1 ⊇ I0 := {0},
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where n = dimF . Here In+1 := ker bσ̃
(0)
B and Il denotes the ideal

Il :=
{
a ∈ Il+1 : IBFZ(a) = 0 ∀F ′ ⊆ F, F ′ ∈ Fl(F )

}
.

The partial quotients are given by the isomorphisms

bσ̃
(0)
B : B(F, bΩ

1
2 ,RE(F ))/In+1

∼=−→ C (bS∗Z|F )

and
Il+1/Il ∼=

⊕

F ′∈Fl(F )

C0

(
R

E(F ′),K(L2
b(F

′, bΩ
1
2 ))
)

0 ≤ l ≤ n. (3.3.1)

Proof. See [86, Theorem 3] (see also the proof of 3.4.11).

This theorem enables us to calculate the length of B(F, bΩ
1
2 ,RE(F )). But before we

can do this, we have to present some additional results of Lauter (see [63] and [64]): Let

Q̂B(Z) be the spectrum of the C∗-algebra QB(Z), the algebra of symbols of B(Z, bΩ 1
2 ).

Then there is a canonical bijective mapping

Φ : Q̂B(Z) −→ T := bS∗Z ]
⊎

F∈F(Z)

R
E(F ) : [πt] 7−→ t,

where the irreducible representations for η ∈ bS∗Z, λ ∈ RE(F0) and F0 a face in Z are
given by

πη : QB(Z) −→ C ; (f, (hF )F∈F(Z)) 7−→ f(η)

πF0,λ : QB(Z) −→ L (L2
b(F0,

bΩ
1
2 )) ; (f, (hF )F∈F(Z)) 7−→ hF0(λ).

Let p : bS∗Z −→ Z be the canonical projection. Set

D∧
γ0

(D,Rl) := {γd : γ > γ0, d ∈ D} ,

where ∅ 6= D ⊆ Rl is a bounded set and γ0 ≥ 0 is arbitrary. We define the following
topology T on T :

• Let ζ ∈ bS∗Z with p(ζ) 6∈ ∂Z. We denote with U(ζ) the family of all open sets
U ⊆ bS∗Z with ζ ∈ U and p(U) ∩ ∂Z = ∅.

• Let ζ0 ∈ bS∗Z with p(ζ0) ∈ G ∈ Fk(Z) and k maximal. Choose local coordinates

ζ = (x, (xH)H∈E(G), y, (ξH)H∈E(G), η) near ζ0 with ζ0 = (0, y(0), (ξ
(0)
H )H∈E(G), η

(0)).
Then we denote by U(ζ0) all sets of the form

U ]
⊎

G⊆F∈F(Z)

D∧
γF

(DF ,R
E(F )),

where

(i) U ⊆ bS∗Z is open with ζ0 ∈ U ,
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(ii) p(U) ∩H 6= ∅, H ∈ F1(Z) holds for all H ∈ E(F ),

(iii) γF ≥ 0 and DF ⊆ RE(F ) is open and bounded with (ξ
(0)
H )H∈E(F ) ∈ DF .

• For λ = (λH)H∈E(G) ∈ RE(G) let

U(G, λ) :=





⊎

G⊆F∈F(Z)

∏

H∈E(F )

VH : VH ⊆ R open with λH ∈ VH



 (3.3.2)

We have the following theorem (cf. [64, Theorem 5.4, Theorem 5.5]):

Theorem 3.3.2. Let T0 := T ] {[id]}. Then the canonical bijections Φ : Q̂B(Z) −→ T

resp. Φ0 :
̂B(Z, bΩ 1

2 ) −→ T0 are homeomorphisms provided Q̂B(Z) resp.
̂B(Z, bΩ 1

2 ) are
endowed with the Jacobson topology, and T with the topology T above.

The Jacobson-topology of
̂B(Z,b Ω 1

2 ) is determined by

{∅} ∪
{
{[id]} ∪ {[ρ ◦ τB] : [ρ] ∈ V } : V ⊆ Q̂B(Z) open

}
,

so we get all irreducible representations of
̂B(Z,b Ω 1

2 ):

id : B(Z, bΩ 1
2 ) −→ L (L2

b(Z,b Ω
1
2 )), (3.3.3)

πη ◦ τB : B(Z, bΩ 1
2 ) −→ C, (η ∈ bS∗Z), (3.3.4)

πF0,λ ◦ τB : B(Z, bΩ 1
2 ) −→ L (L2

b(F0,
bΩ

1
2 )), λ ∈ R

E(F0). (3.3.5)

Note, that we have

πη ◦ τB(a) = bσ
(0)
B (a)(η) and

πF0,λ ◦ τB(a) = IBF0Z
(a)(λ).

From now on let F ∈ Fk(Z) be a fixed boundary surface of dimension n = m− k. We

want to study the quotient B/JF , where B(Z, bΩ 1
2 ) =: B and JF denotes the kernel of

the (extended) indical family

IBFZ : B(Z, bΩ 1
2 ) −→ B(F, bΩ

1
2 ,RE(F )).

Recall that the kernel of IFZ is given by %FΨ0
b,cl(Z, 0Ω

1
2 ), where %F denotes the product

of all defining functions %H with H ∈ E(F ) (cf. [85, Lemma 1]) and that we have the
following result (cf. [64, Lemma 3.1]):

Lemma 3.3.3. For each F ∈ F(Z) the extended indical family

IBFZ : B(Z, bΩ 1
2 ) −→ B(F, bΩ

1
2 ,RE(F ))

is onto.
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Consequently, we get the following exact sequence

0 −→ JF −→ B IBFZ−→ B(F, bΩ
1
2 ,RE(F )) −→ 0. (3.3.6)

This in orchestra with 3.1.7 leads to

(
B(F, bΩ

1
2 ,RE(F ))

)̂ ∼= B̂/JF ∼= B̂JF , (3.3.7)

where again B̂JF =
{
π ∈ B̂ : π(JF ) = {0}

}
. It follows that we can give an explicit

description of all irreducible elements of the spectrum of B(F, bΩ
1
2 ,RE(F )):

Theorem 3.3.4. The following representations of B(F, bΩ
1
2 ,RE(F )) are irreducible and

pairwise inequivalent:

πη ◦ τB : B(F, bΩ
1
2 ,RE(F )) −→ C, (3.3.8)

πF0,λ ◦ τB : B(F, bΩ
1
2 ,RE(F )) −→ L (L2

b(F0,
bΩ

1
2 )), (3.3.9)

where F0 ⊆ F is a face with codimF0 ≥ codimF and η ∈ bS∗Z|F . Moreover, any

irreducible representation of B(F, bΩ
1
2 ,RE(F )) is equivalent to one of them.

Proof. According to (3.3.7) we just have to check, which representations of B actually
vanish on JF . First, let η ∈ bS∗Z|F be arbitrary. Then by proposition 2.1.4 we get, that

bσ̃
(0)
B (IBFZ(a)) = bσ

(0)
B (a)|bS∗Z|F

,

i.e. for each η ∈ S∗Z|F it holds πη ◦ τB(a) = bσ
(0)
B (a)(η) = 0 for all a ∈ JF . Now, let F0

be a face with codimF0 ≥ codimF and F0 ⊆ F . Again the compatibility conditions in
2.1.4 yield

IBF0Z
(a)(λ) = IBF0F

(IBFZ(a)((λH)H∈E(F )))((λH)H∈E(F0)\E(F ))

for all λ ∈ E(F0). But this implies

πF0,λ ◦ τB(a) = IBF0Z
(a)(λ) = 0

for all a ∈ JF and finishes the proof.

Lemma 3.3.5. Let k0 := max {k : Fk(F ) 6= ∅}. Then we have:

(i) l
(
B(F, bΩ

1
2 ,RE(F ))

)
≤ n, if k0 = n,

(ii) l
(
B(F, bΩ

1
2 ,RE(F ))

)
≤ k0 + 1 if k < n.

Proof. (i) We take a closer look at the partial quotients in (3.3.1): We have

B(F, bΩ
1
2 ,RE(F ))/In+1

∼= C0(
bS∗Z|F ) and In+1/In ∼=

⊕

F ′∈F0(F )

C0(R
n),



3.3 The length of B(F, bΩ
1
2 ,RE(F )) 51

since K(L2
b(F

′)) = C if F ′ has dimension 0. Thus B(F, bΩ
1
2 ,RE(F ))/In is commutative by

3.1.9 and (3.3.1) is solvable with length n.
(ii) By the definition of k0, we have Fl(F ) = ∅ if l ≥ k0 + 1. We get

In+1 = . . . = Ik0+1 ⊇ Ik0 ⊇ . . . ⊇ I1 ⊇ {0},

which is a solving composition series of length k0 + 1. This proves (ii).

For a C∗-algebra Q we define

(Q̂I2)I1 := Q̂I2 ∩ Q̂I1 ,

where I1 ⊆ I2 are both two-sided closed ideals in Q. The following lemma can be found
in [63, Lemma 3.4] (for the convenience of the reader, we will also present the proof).

Lemma 3.3.6. Let Q be a C∗-algebra and I1, I2 two closed ideals of Q with I1 ⊆ I2.
Then the map

ϕ : (Q̂I2)I1 −→ Î2/I1

[π] 7−→ [x+ I1 7−→ π(x)]

induces a homeomorphism provided (Q̂I2)I1 is endowed with the topology induced by the

inclusion (Q̂I2)I1 ↪→ Q̂.

Proof. By 3.1.7 (i) the restriction map χ : Q̂I2 −→ Î2 is a homeomorphism and we have

χ((Q̂I2)I1) = Î2I1
∼= Î2/I1. Moreover, ϕ = χ|(Q̂I2 )I1

holds; this completes the proof.

Lemma 3.3.7. Let k0 := max {k : Fk(F ) 6= ∅}. Then we have:

(i) l
(
B(F, bΩ

1
2 ,RE(F ))

)
≥ k0, if k0 = n,

(ii) l
(
B(F, bΩ

1
2 ,RE(F ))

)
≥ k0 + 1 if k < n.

The proof of this lemma follows closely the proof of [63, Lemma 3.5]. To shorten

notation, we set BF := B(F, bΩ
1
2 ,RE(F )).

Proof. Let BF =: Il+1 ⊇ Il ⊇ · · · ⊇ I1 ⊇ I0 = {0} be an arbitrary solving composition
series of length l, where the subquotients are given by Ij+1/Ij ∼= C0(Tj,K(Hj)), j =

0, . . . , l. Then we have a canonical bijective map ψ : B̂F −→
l⊎

j=0

Tj. By [31, Proposition

3.2.2] we get the following increasing sequence of open subsets of BF :

∅ = B̂F
I0 ⊆ B̂F

I1 ⊆ · · · ⊆ B̂F
Il+1

= B̂F .

Let G ∈ Fk0(F ) be arbitrary. We have G ∈ Fk0+k(Z) and thus

E(G) = {H1, . . . , Hk0 , Hk0+1, . . . , Hk0+k} = {1, . . . , k0, k0 + 1, . . . , k0 + k}
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is a set of k0 + k elements. Now, fix λ = (λ0, λ1, . . . , λk0) ∈ RE(G), where λi ∈ R,

i = 1, . . . , k0 and λ0 ∈ Rk. By (3.3.2) we get µ0 := λ0 ∈ B̂F , µ1 := (λ0, λ1) ∈ B̂F ,

µ2 := (λ0, λ1, λ2) ∈ B̂F and so on. Moreover, there exist l0, l1 ∈ {1, . . . , l+ 1},m such that

µ0 ∈ (B̂F
Il0 )Il0−1

and µ2 ∈ (B̂F
Il1 )Il1−1

.

Suppose that l1 < l0. We know that B̂F
Il1 is open, thus there exist open sets V0 ⊆ Rk

and V1 ⊆ R with λi ∈ Vi (i = 0, 1), such that

(V0 × V1) ] V0 ] V1 ⊆ B̂F
Il1 ⊆ B̂F

Il0−1

by (3.3.2) which contradicts our choice of l0. Now, we assume that l0 = l1, i.e. µ0, µ1 ∈
(B̂F

Il0 )Il0−1
. By 3.3.6 the space (B̂F

Il0 )Il0−1
is Hausdorff in the relative topology, which is

a contradiction to the fact that we have µ0 ∈ W0∩W1 for any choice of open sets Wi ⊆ B̂F
with µi ∈Wi.

Thus we get an increasing sequence 1 ≤ l0 ≤ . . . ≤ lk0 ≤ l + 1, i.e. l ≥ k0 and this
completes the proof in case of k0 = n.

Now suppose that k0 < n. Then again by 3.3.6 we have

ψ

(
k0⊎

k=0

(
B̂F

Ijk
)
Ijk−1

)
=

k0⊎

k=0

Tjk−1 ⊆
l+1⊎

j=1

Tj,

where each Tjk corresponds to an infinite-dimensional representation µk. Adding the one-

dimensional representations (cf. (3.3.8)) of B̂F we get k0 + 1 < l. The lemma follows.

Combining the two above lemmata yields the following theorem:

Theorem 3.3.8. Let F ∈ Fn(Z) be arbitrary and

k0 := max {k : Fk(F ) 6= ∅} .

Then we have

l(B(F, bΩ
1
2 ,RE(F ))) =

{
n, if k0 = n

k0 + 1, if k0 < n.

Remark 3.3.9. Let F be a manifold with corners of dimension n and k ∈ N be arbi-
trary. Then using an appropriate Cartesian product construction we can embed F into a
manifold with corners Z, such that F is a face of codimension k = E(F ) in Z. Thus we

can also calculate the length of solving series for B(F, bΩ
1
2 ,Rk).

3.4 The local length of B(Z, bΩ1
2)

Preliminaries

We now want to give the notion of local length for certain classes of solvable C∗-algebras.
To this end let Z be a Banach space with measure µ and B be a C∗-subalgebra of
L (L2(Z, µ)) with Mϕ ∈ B for all ϕ ∈ C ∞

c (Z).
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Definition 3.4.1. Let A be a C∗-subalgebra of B. Moreover, let B be solvable. Then
every solving series of ideals (Ik)k for B induces an ideal chain (Ik)k, where Ik := Ik ∩A,
for A. If (Ik)k is not trivial we say that (Ik)k is the associated ideal chain to (Ik)k with
respect to A.

Definition 3.4.2. Let ϕ ∈ C ∞
c (Z) be arbitrary. Let Bϕ be the C∗-closure of the algebra

B := {b ∈ B : b = MϕaMϕ, a ∈ B} ⊆ B

with respect to C∗-norm of B.

Proposition 3.4.3. Let ϕ ∈ C ∞
c (Z). Then we have:

(i) Bϕ is a C∗-subalgebra of B.

(ii) Bϕ is hereditary in B.

(iii) Suppose that I is a closed two-sided ideal of B, then I := I ∩Bϕ is a C∗-subalgebra
of B. Moreover, I is a closed two-sided ideal in Bϕ and therefore a C∗-algebra in
Bϕ itself.

Proof. (i) This follows easily, since B is selfadjoint and ab ∈ B holds for all a, b ∈ B.
(ii) In view of 3.1.11 we have to show that b1bb2 ∈ Bϕ holds for all b1, b2 ∈ Bϕ and b ∈ B.
First of all let c1, c2 ∈ B, then c1 = Mϕa1Mϕ resp. c2 = Mϕa2Mϕ with a1, a2 ∈ B. Since
Mϕ, a1, a2, b ∈ B we have a1MϕbMϕa2 ∈ B, which shows c1bc2 ∈ B, so B has the desired

property. Now if b1, b2 ∈ Bϕ, there are cn1 and cn2 with cni
n→∞−−−→ bi (i = 1, 2) with respect

to the C∗-norm on B. Moreover, we have

||cn1bcn2 − b1bb2||B ≤ ||cn1bcn2 − cn1bb2||B + ||cn1bb2 − b1bb2||B
≤ ||cn1 ||B||b||B||(cn2 − b2)||B

+ ||(cn1 − b1)||B||b||B||b2||B
n→∞−−−→ 0.

This shows b1bb2 ∈ Bϕ, since cn1bc
n
2 ∈ B for all n ∈ N.

(iii) Clearly I is selfadjoint and a C∗-algebra itself. To see that I is closed with respect

to B, let (ak)k∈N ⊆ I be an arbitrary series, with ak
k→∞−−−→ a ∈ B. Since I and Bϕ are

closed with respect to the C∗-norm on B, we get a ∈ I ∩ Bϕ, and I is closed, too. The
rest of (iii) follows by a calculation analogous to (ii).

Definition 3.4.4. Let B be solvable and (Ij)nj=0 for B a solving series for B of minimal
length. Then B has local length l0 in p ∈ Z with respect to (Ij)nj=0, if there exists an
open neighbourhood U ⊆ Z of p, such that for all cut off functions ϕ ∈ C ∞

0 (Z), with
suppϕ ⊂ U and ϕ ≡ 1 in a neighbourhood W ⊂ V of p, the length of the associated
ideal-chain to (Ij)nj=0 with respect to the C∗-subalgebra Bϕ, cf. 3.4.1, is l0. We denote
the local length of B in p with respect to (Ij)nj=0 by lp(B, (Ij)nj=0).

The following theorem is certainly well-known and implicitly given in [63, Lemma 3.1].



54 Chapter 3 Localisation of C∗- and Ψ∗-chains

Theorem 3.4.5. Let H be a Hilbert space, B ⊆ L (H) be a C∗-algebra with K(H) ⊆ B.
Suppose that B is solvable and B := In+1 ⊇ In ⊇ . . . ⊇ I1 ⊇ I0 := {0} is an arbitrary
solving series for B, then In = K(H) holds.

Proof. Let B := In+1 ⊇ In ⊇ . . . ⊇ I1 ⊇ I0 = {0} be an arbitrary solving series for B.
Since K(H) ⊆ B, the representation id of B on H is irreducible. By the definition of the

Jacobson topology the set B̂K(H) = {[id]} is dense in B. This gives B̂K(H) ⊆ B̂I1 ∼= Î1,

since B̂I1 is open. Moreover, Î1 = Î1/I0 is a locally compact Hausdorff space, because

the compositions series is solving. Therefore B̂K(H) is dense and relatively closed in B̂I1 ,
which implies B̂K(H) = B̂I1 . This gives K(H) = I1 by [31, Proposition 3.2.2].

Remark 3.4.6. From 3.4.5 we see, that K(H) ⊆ B implies that the associated ideal chain
to a C∗-subalgebra A of B is non-trivial: Remember that a closed ideal I in a C∗-algebra
B is called essential if aI = 0 ⇒ a = 0. It is well-known from general C∗-theory ([90,
page 82]), that

I is essential ⇐⇒ I ∩ J 6= 0 for all non-zero closed ideals J in B

holds. Especially one can show that the ideal of compact operators K(H) on a Hilbert
space H is an essential ideal in L (H) (see [90, Example 3.1.2] for instance).

Local length for manifolds with corners

Now let Z again be a manifold with corners of dimension m and p ∈ Z be arbitrary.
Recall, that there is F ∈ Fl0(Z) with l0 maximal, such that p ∈ F . We want to calculate

the local length of the C∗-algebra B(Z, bΩ 1
2 ) in p with respect to a solving series given by

Melrose and Nistor [86, Theorem 2].

To simplify notation, let B denote B(Z, bΩ 1
2 ). We choose a neighbourhood U of p ∈ F ,

such that

χ : Z ⊇ U −→ R
E(F )

+ ×R
m−l0

is a diffeomorphism with χ(p) = (0, 0).

•p

U

Z

•
p Z

U

Figure 3.1: Localization at p with different codimensions.
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First of all let us construct certain elements in B and in B−(Z, bΩ 1
2 ). To this end let

ϕ ∈ C ∞
0 (Z) with suppϕ ⊆ U , ϕ ≡ 1 in an open neighbourhood W ⊆ U of p. Fix

G ∈ Fl(Z) with suppϕ ∩ G 6= ∅. Note that this implies F ⊆ G by the choice of l0, i.e.
l0 ≤ l. Set V := G̊ ∩W , then V 6= ∅ and V is open.

Furthermore, let ζ0 ∈ bS∗Z be with π(ζ0) ∈ V , then π−1(V ) is an open neighbourhood

of ζ0 ∈ bS∗Z. Let R
E(G)
+ ×Rm−l×RE(G) ×Rm−l be local coordinates of bT ∗Z near ζ0 with

ζ0 = (0, y(0), (ξ
(0)
H )H∈E(G), η

(0)). Choose V ⊆ π−1(V ) open, and for each K ∈ F(Z) with

G ⊆ K let γK ≥ 0 and DK ⊆ RE(K) be an open and bounded set with (ξ
(0)
H )H∈E(K) ∈ DK .

Proposition 3.4.7. There exists a ∈ B, such that

(i) bσ
(0)
B (ϕaϕ) 6= 0 and supp bσ

(0)
B (a) ⊆ V,

(ii) IBKZ(a) = 0 for all K ∈ F(Z) with G ∩K 6= G and

(iii) IBKZ(a)(λ) = 0 for all K ∈ F(Z) with G ⊆ K and all λ 6∈ D∧
γK

(DK ,R
E(F )).

Proof. Assume that we have already constructed such an operator a and let ζ ∈ V be
arbitrary. Then we would get

bσ
(0)
B (ϕaϕ)(ζ) = bσ

(0)
B (a)(ζ),

since π(ζ) ∈ V and ϕ ≡ 1 on V . Thus it is enough to construct an operator a ∈ B such

that supp bσ
(0)
B (a) ⊆ V and |bσ(0)

B (ζ0)| > 0. But this follows using [64, Proposition 4.4].

Proposition 3.4.8. Let λ = (λH)H∈E(G) ∈ RE(G) be arbitrary and VH ⊆ R be open with

λH ∈ VH for all H ∈ E(G). Then there exists a ∈ B−(Z, bΩ 1
2 ) with

(i) bσ
(0)
B (a) = 0 and 0 6= IBGZ(MϕaMϕ),

(ii) IBKZ(a) = 0 for all K ∈ F(Z) with G ∩K 6= G, and

(iii) supp IBKZ(a) ⊆ ∏
H∈E(F )

VH for all K ∈ F(Z) with G ⊆ K.

Proof. This proposition follows from [64, Proposition 4.6] if we ensure, that (i) can be
achieved by the construction given there. Let

χ̃ : Z ⊇ V −→ R
E(G)

+ ×R
m−l

be a local model for G. Choose L ⊆ Rm−l compact with L ⊂ supp (ϕ|G ◦ χ̃−1) and a
function

hG ∈ C
∞
c (RE(G),C ∞(Rm−l ×R

m−l))

with supphG ⊆ ∏
h∈E(G)

VH and supphG(ξ) ⊆ L× L for all ξ. Now the construction in [64]

of the corresponding kernel resp. the corresponding operator a yields the proposition.
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First let us note that

bσ
(0)
B (MϕaMϕ) = (ϕ ◦ π) bσ

(0)
B (a) (ϕ ◦ π) and (3.4.1)

IBGZ(MϕaMϕ) = ϕ|G I
B
GZ(a)ϕ|G, G ∈ F(Z) (3.4.2)

holds for all a ∈ Ψ0
b,cl(Z,b Ω

1
2 ) and all ϕ ∈ C ∞

c (Z), where π : bS∗Z −→ Z denotes the
canonical projection. This gives

π(η) 6∈ suppϕ⇒ πη ◦ τB(MϕaMϕ) = bσ
(0)
B (MϕaMϕ)(η) = 0, (3.4.3)

and
ϕ|G ≡ 0 ⇒ πG,λ ◦ τB(MϕaMϕ) = IBGZ(MϕaMϕ)(λ) = 0, (3.4.4)

for all λ ∈ RE(G) and all a ∈ Ψ0
b,cl(Z,b Ω

1
2 ). Especially, if we have suppϕ ⊆ U with ϕ ≡ 1

in W ⊆ V open and G ∈ Fl(Z) with l0 + 1 ≤ l, then (3.4.4) holds. Note that by the

density of Ψ0
b,cl(Z,b Ω

1
2 ) in B (3.4.1) and (3.4.2) also hold for B.

Lemma 3.4.9. Let ϕ ∈ C ∞
0 (Z) and G ∈ F(Z) be with G∩ suppϕ = ∅. Then IBGZ(a) = 0

holds for all a ∈ Bϕ.

Proof. Let a ∈ Bϕ be arbitrary. Then there exists ak ∈ B with ak
k→∞−−−→ a. By definition

ak = MϕbkMϕ for a suitable bk ∈ B. Since B is the closure of Ψ0
b,cl(Z, bΩ

1
2 ) there exists

ckj ∈ Ψ0
b,cl(Z, bΩ

1
2 ) with ckj

j→∞−−−→ bk for all k ∈ N. Thus

IBGZ(a) = lim
k→∞

IBGZ(ϕbkϕ) = lim
k→∞

lim
j→∞

IGZ(ϕckjϕ) = 0

holds by (3.4.4). The lemma follows.

By 3.4.7 and 3.4.8 there are operators a, b ∈ Bϕ, such that πη◦τB(a) 6= 0 and πη′◦τB(a) =
0 (η 6= η′) resp. πG,λ ◦ τB(b) 6= 0 and πG′,λ′ ◦ τB(b) = 0 (λ 6= λ′ or G 6= G′). So we can give

a description of all inequivalent irreducible representations of B̂ϕ via the homeomorphism

B̂ \ Hull′(Bϕ) ∼= B̂ϕ:

Proposition 3.4.10. The representations πη ◦ τB, where η ∈ bS∗Z with π(η) ∈ suppϕ,

πG,λ ◦ τB, where G ∈ F(Z) with ϕ|G 6≡ 0, and id of B̂ϕ are irreducible and pairwise

inequivalent. Moreover, any irreducible representation of B̂ϕ is equivalent to one of them.

Now let Im+1 := ker bσ
(0)
B and

Il :=
{
a ∈ Il+1 : IBF,Z(a) = 0, ∀F ∈ Fl(Z)

}
(l = 1, . . . ,m).

We will calculate the local length in p with respect to the following solving series:

Theorem 3.4.11. The nested sequence

B(Z, bΩ 1
2 ) ⊇ Im+1 ⊇ Im ⊇ . . . ⊇ I1 ⊇ I0 := {0}, (3.4.5)
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where m = dimZ, is a solving composition series for B(Z, bΩ 1
2 ), which is solving of

minimal length. The partial quotients are given by the isomorphisms

bσ
(0)
B : B(Z, bΩ 1

2 )/Im+1

∼=−→ C (bS∗Z)

and
Il+1/Il ∼=

⊕

F∈Fl(Z)

C0

(
R

E(F ),K(L2
b(F,

bΩ
1
2 ))
)

0 ≤ l ≤ m. (3.4.6)

In particular we have I1 = K(L2
b(Z)).

The solving result has first been proven by Melrose and Nistor in [86, Theorem 2.2].
The fact, that the series is solving of minimal length has been proven by Lauter in [60].

Proof. That the principal symbol map bσ
(0)
B : B(Z, bΩ 1

2 ) −→ C (bS∗Z) is onto is due to the

facts, that C ∞(bS∗Z) ⊆ r (bσ
(0)
B ) by (2.1.1) and that r (bσ

(0)
B ) is closed. This establishes

the first isomorphism.
Now, let a ∈ Il and F ∈ Fn−l(Z) be arbitrary. By (2.1.6) we have

IBFZ(a) ∈ Cb(R
E(F ),L (L2

b(F,
bΩ

1
2 ))).

The compatibility condition (2.1.8) gives

0 = bσ
(0)
B (a)|bS∗Z|F

= bσ̃
(0)
B (IBFZ(a)),

thus by (2.1.7) we conclude IBFZ(a) ∈ C0(R
E(F ),B−(F, bΩ

1
2 )). The definition of Il together

with the exact sequence (2.1.4) for the manifold with corners F

0 −→ K(L2
b(F,

bΩ
1
2 )) −→ B(F, bΩ

1
2 ) −→ QB(F ) −→ 0

finally yields IBFZ(a) ∈ C0(R
E(F ),K(L2

b(F,
bΩ

1
2 ))). Moreover, the map

Il −→
⊕

F∈Fn−k(Z)

C0(R
E(F ),K(L2

b(F,
bΩ

1
2 )))

is onto with kernel Il+1 and we have finished the proof of the solving result.
The fact, that the series is solving of minimal length is a combination of the arguments

in the proof of 3.3.5 and the proof of 3.3.7 hence we will omit it.

Theorem 3.4.12. Let p ∈ Z be arbitrary. Then we have:

(i) The local length in p with respect to (3.4.5) is given by

lp(B, (Il)ml=0) =

{
m, if l0 = m,

l0 + 1, if l0 < m.

(ii) The function l·(B, (Il)ml=0) : Z −→ N is upper semi-continuous.
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Proof. (i) Let ϕ ∈ C ∞
0 (Z) with suppϕ ⊂ U , ϕ ≡ 1 in a neighbourhood W ⊆ V of p

be arbitrary. Set Ik := Ik ∩ Bϕ. Then we have IBGZ(ϕaϕ) = 0 for all G ∈ Fk(Z) where
k < m− l0 − 1 by 3.4.9. This gives

I0 = I1 = · · · = Im−l0 ⊃ Im−l0+1 ⊃ . . . ⊃ Im,

which is a series of ideals of length m− (m− l0) + 1 = l0 + 1 (by 3.4.7 and 3.4.8 we have
Im−l0 ⊃ Im−l0+1 etc.), which proofs the assertion in the case l0 < m. Now let l0 = m.

Then by the same argument as in the proof of 3.3.5, B(Z, bΩ 1
2 )/I1 is commutative, so

(3.4.5) is solving of length m. Thus the length of the associated series (Ik)k is m, too.
Since ϕ has been arbitrary (i) follows.
(ii) Let α ∈ R be arbitrary. We have to show, that Lα := {p ∈ Z : lp(B, (Il)ml=0) < α}
is open in Z. Since lp(B, (Il)ml=0) ∈ N for all p ∈ Z, we can restrict ourself to the case
α ∈ N.

(a) If α ≥ m+ 1, then there is nothing to prove.
(b) Let α ≤ m. Now, if l0 ≥ α− 1, then

lq(B, (Il)ml=0) = m ≥ α if m = l0 resp.

lq(B, (Il)ml=0) = l0 + 1 ≥ α if l0 < m

holds for all q ∈ H, where H ∈ Fl0(Z). We conclude

lq(B, (Il)ml=0) ≥ α ⇐⇒ q ∈ H, H ∈ Fl(Z) with l ≥ α− 1

and since every H ∈ F(Z) is closed with respect to the topology of Z,

D :=
⋃

H∈Fl(Z)
l≥α−1

H = {q ∈ Z : lq(B, (Il)ml=0 ≥ α}

is closed, too. Consequently Lα = {D is open. The combination of (a) and (b) shows,
that l·(B, (Il)ml=0) : Z −→ N is upper semi-continuous.
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Infinite solving series

4.1 Constructing infinite ideal chains on direct sums of

C∗-algebras

It is clear from our previous discussion, that to given k ∈ N there exists a manifold Zk with
corners (of dimension k), such that the associated (solvable) C∗-algebra Bk := B(Zk,

bΩ
1
2 )

of b-pseudodifferential operators has length k. In the sequel let (Bk)k∈N be such a fixed
family of operator algebras. We will use the following infinite product construction for
C∗-algebras:

Proposition 4.1.1. Let (Aλ)λ∈Λ be a family of C∗-algebras.

(i) The direct sum A =
⊕
λ∈Λ

Aλ of all (aλ) ∈
∏
λ∈Λ

Aλ such that ||(aλ)|| := sup
λ

||aλ|| < ∞
is a C∗-algebra under the pointwise-defined operations and involution, and the norm
given by

(aλ) 7−→ ||(aλ)||.

(ii) The restricted sum Ac0 :=
c0⊕
λ∈Λ

Aλ of all ellements (aλ) ∈ A, such that for each ε > 0

there exits a finite subset Ω of Λ for which ||aλ|| < ε if λ ∈ Λ \ Ω, is a closed self
adjoint ideal in A.

Definition 4.1.2. Set B :=
⊕
k∈N

Bk to be the direct sum of C∗-algebras defined as above.

Then every Bk is a closed two-sided ideal in B (under the usual inclusion).

The following proposition shows, that one can construct a solving series for the infinite
product in the case that all component algebras are solvable:

Proposition 4.1.3. Let (Iki )i∈N be a solving series of length k for Bk (k ∈ N). Then we
define (Jj)j∈N as follows:

(i) J0 :=
⊕
k∈N

{0}.

(ii) Let j ∈ N, then there is l ∈ N, such that
l∑

i=1

i =: h ≤ j <
l+1∑
i=1

i. Set m := j − h and

define Jj :=
⊕
k∈N

Ck, where

Ck :=





Bk if k ≤ l
Ikm if k = l + 1
{0} if k > l + 1

.

59
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Then (Jj)j∈N is a solving series for B.

Proof. Let j ∈ N be arbitrary. Let h and m be chosen as above. Then Jj is given by

Jj = B1 ⊕ B2 ⊕ . . .⊕ Bm ⊕ Ikm ⊕ {0},

where k = j + 1 − h (and we suppress the infinite sum of {0} at the end). This gives:

Jj+1/Jj ∼= Im+1
k /Imk ∼= C0(T

k
m,K(Hk

m)).

Note, that J0 = {0}.

Before we prove that B can not be solvable of finite length, we state some general results
on C∗-algebras (see for instance [90]).

Lemma 4.1.4. Let I1, I2 and J be closed two-sided ideals in a C∗-algebra B with I2 ⊆ I1.
Moreover, let I be a closed ideal in J .

(i) We have Ik ∩ J = IkJ (k = 1, 2).

(ii) (I1 ∩ J )/(I2 ∩ J ) is a closed two sided ideal in I1/I2.

(iii) I is an ideal in B.

Proof. (i) We have to prove Ik ∩ J ⊆ IkJ . Let a be a positive element in Ik ∩ J . In

particular, we have a
1
2 ∈ Ik ∩ J . Choose an approximate unit (µλ)λ∈Λ for Ik, then

a = lim
λ

(µλa
1
2 )a

1
2

holds. Since µλa
1
2 ∈ Ik for all λ, we get a ∈ IkJ , which completes the proof.

(ii) Let us first note how to include (I1 ∩ J )/(I2 ∩ J ) injectively in I1/I2. To shorten
notation we set Jk := Ik ∩ J (i = 1, 2). Then we have the following diagram with exact
rows:

0 // I2
// I1

// I1/I2
// 0

0 // J2
//

?�

id

OO

J1
////

?�

id

OO

J1/J2
//

?�

τ

OO

0,

where τ is defined by

τ : J1/J2 3 j1 + J2 7−→ j1 + I2 ∈ I1/I2

and all inclusions are given with respect to the same topology. Clearly τ is well defined
and a ∗-algebra homomorphism between two C∗-algebras (note that τ is continuous since
||j1 + I2|| ≤ ||j1 + J2||), therefore τ(J1/J2) is a C∗-subalgebra of I1/I2. It remains to
prove the injectivity of τ . Let j1+J2 ∈ J1/J2 be with τ(j1+J2) = 0. Then j1+I2 = 0 by
the definition of τ , and therefore j1 ∈ I2 follows. Since j1 ∈ J , we get j1 ∈ I2 ∩ J = J2.
We conclude that τ is injective and suppress this mapping in the following to shorten
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notation. It is left to prove the ideal property. Let i1 + I2 ∈ I1/I2 and j1 + J2 ∈ J1/J2

be arbitrary. Then we have

(i1 + I2)(j1 + J2) = i1j1 + i1J2 + I2j1 + I2J2 ∈ J1/J2,

since I2j1 ⊆ I2J1 = I2 ∩ J1 = I2 ∩ I1 ∩ J = J2. Using this, the ideal property is now a
straightforward calculation.
(iii) First of all note, that I is linearly spanned by its set of positive elements I+ and J
has an approximate unit (µλ)λ∈Λ. Let a ∈ I be positive and b ∈ B be arbitrary. Then

a
1
2 ∈ I and thus

lim
λ
µλa

1
2 = a

1
2 .

This shows, that
ba = lim

λ
bµλa

1
2a

1
2 ,

i.e. ba ∈ I since I is an ideal in J . We conclude b∗a ∈ I, so ab ∈ I.

The following theorem is certainly well-known, but since we could not find a biblio-
graphical reference, we will prove it here.

Theorem 4.1.5. Let L be a closed two-sided ideal in the C∗-algebra C0(T,K(H)), where
T is a locally compact Hausdorff space and H is a separable Hilbert space. Then L ∼=
C0(T

′,K(H)), where T ′ ⊆ T is locally compact and Hausdorff.

Proof. To shorten notation, let C0 := C0(T,K(H)). First we observe that T ∼= Ĉ0 via
the point evaluation w 7−→ δw (we will use this identification in the sequel without any
comment). Since L is a two-sided ideal in C0, the set

Ĉ0L :=
{
π ∈ Ĉ0 : π(L) = ∅

}

is closed in Ĉ0 by [31, Proposition 2.11.2, Proposition 3.2.1]. By [90, Theorem 5.4.3] we
know, that every (proper) closed two-sided ideal I in a C∗-algebra A is the intersection
of all primitive ideals1 that contain it. Thus we have

L =
⋂

L⊆ker δw

ker δw =
⋂

L⊆ker δw

{f ∈ C0 : 0 = δω(f) = f(ω), ω ∈ T}

and

Ĉ0L =
{
δw ∈ Ĉ0 : δw(L) = {0}

}

= {w ∈ T : δw(L) = {0}}
= {w ∈ T : L ⊆ ker δw} .

Now, we show that L ∼= C0(T
′,K(H)), where T ′ := T \Ĉ0L. Clearly, T ′ is a locally compact

Hausdorff space. Let us first remark, that we can regard C0(T
′,K(H)) as a closed two-

sided ideal in C0(T,K(H)) if we set f(x) = 0 for x ∈ T \ T ′, where f ∈ C0(T
′,K(H)).

1Recall, that an ideal I is called primitive, if it is the kernel of an irreducible representation.
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Thus f ∈ C0(T
′,K(H)) implies, that f ∈ C0(T,K(H)) with f(ω) = 0 for all ω ∈ Ĉ0L.

But then f ∈ ker δω for all ω ∈ Ĉ0L, which shows that f ∈ L. Now, let

R : C0(T,K(H)) −→ C (T ′,K(H)) : f 7−→ f|T ′ ,

be the restriction operator to T ′. Then R : L −→ C0(T
′,K(H)) is a linear ∗-isomorphism:

Let us first show, that R maps L to C0(T
′,K(H)). For this let f ∈ L be arbitrary.

We have to prove that R(f) = f|T ′ ∈ C0(T
′,K(H)), i.e. that for all ε > 0 the set{

ω ∈ T ′ : ||f|T ′(ω)|| ≥ ε
}

is compact. But

{
ω ∈ T ′ : ||f|T ′(ω)|| ≥ ε

}
= {ω ∈ T : ||f(ω)|| ≥ ε}

since f(ω) = 0 for all ω ∈ Ĉ0L = {T ′ and this set is compact by the fact that f ∈
C0(T,K(H)).

Now R is surjective by our previous remark, so it is left to show injectivity: Let f ∈ L
be with R(f) = 0, i.e. f|T ′ = 0. Again by

f ∈ L ⇐⇒ f(ω) = 0 for all ω ∈ T such that L ⊆ ker δω,

⇐⇒ f(ω) = 0 for all ω ∈ Ĉ0L,

and T = T ′ ∪ Ĉ0L, we get f ≡ 0 and R is injective.

Again, the following proposition seems to be well-known:

Proposition 4.1.6. Let A be a closed two-sided ideal in a C∗-algebra C. If C is solvable
then A is solvable, too. In particular, we have l(C) ≥ l(A).

Proof. Let
C := In+1 ⊇ In ⊇ . . . ⊇ I1 ⊇ I0 = {0}

be a solving series for C. Set Jk := Ik ∩ A. Then (Jk)nk=1 is a nested sequence of
two-sided closed ideals in A and by 4.1.4 (ii) Jk/Jk−1 is a two-sided closed ideal in
Ik/Ik−1

∼= C0(Tk,K(Hk)). Therefore Jk/Jk−1
∼= C0(T

′
k,K(Hk)) by 4.1.5 and (Jk)nk=1 is a

solving series for A.

Theorem 4.1.7. B is not solvable of finite length.

Proof. By the definition of B we have that every Bk (k ∈ N) is a closed two-sided ideal
in B. Since l(Bk) = k it follows by 4.1.6 that l(B) ≥ l(Bk) = k for all k ∈ N, which shows
that B can not be solvable of finite length.

Remark 4.1.8. As pointed out by Prof. V. Nistor (January 2007) it is also possible to
construct an algebra of pseudodifferential operators with an infinite long solving series
without using a product construction that leads to an ”infinite dimensional” manifold.
However, the solving series of this example will not be minimal; in fact the algebra has a
minimal solving series that has length two. Nevertheless, let us sketch the construction
of such a manifold here, since it is instructional to see some ”exotic” examples. Let
Z∞ := S1 × [0,∞[ be the infinite cylinder over S1 and Z := S1 × [0, 1] its finite analogue.



4.2 Connecting the product algebra 63

Using a gluing construction, we can attach infinitely many Z’s to Z∞, so that we get a
manifold Z with (infinitely many) multi-cylindrical ends. To fix notation, we will denote
by S1

0 the boundary component of Z given by the boundary of Z and with S1
k the boundary

component of Z that stems from the k-th attached cylinder. On Z we define an algebra
of pseudodifferential operators Ψ0

b,cy(Z) of order zero, such that the operators behave
like b-type operators at the boundaries of the cylinders and we will denote by B(Z) the
corresponding C∗-closure of Ψb,cy(Z) in L2(Z); consequently, each boundary gives rise to
its own indical family

Ik := IS1
k

: B(Z) −→ Cb(R,L (L2(S1))) (k ∈ N0).

Now, we are able to define the following ideals:

J0 :=
{
a ∈ B(Z) : a ∈ ker(σB(Z)), Ik(a) = 0 ∀k ∈ N0

}
,

Jl :=
{
a ∈ B(Z) : a ∈ ker(σB(Z)), Ik(a) = 0 ∀k ∈ N, k ≥ l

}
,

where σB(Z) denotes the extension of the principal symbol map. Then by definition Jl ⊆
Jl+1 and

Jl+1/Jl ∼= C0(R,K(L2(S1))),

so this series is solving. But it is not solving of minimal length: Define I1 := ker(σB(Z)),
I0 := {a ∈ I0 : Ik(a) = 0 ∀k ∈ N0}, then

{0} ⊆ I0 ⊆ I1 ⊆ B(Z)

is also solving.

Let us close this section with the following definition:

Definition 4.1.9 (Solving ideal chain). Let B be a C∗-algebra. A finite sequence of closed
ideals (Jk)lk=1 is said to be a solving ideal chain for B, if

B ⊃ Jl ⊇ Jl−1 ⊇ . . . ⊇ J1 ⊃ J0 := {0}

and Jk+1/Jk ∼= C0(Tk,K(Hk)) (1 < k ≤ l − 1) for some locally compact Hausdorff space
Tk and some separable Hilbert space Hk.

4.2 Connecting the product algebra

Let us first recall again, that for a manifold with corners Z all irreducible representations

of
̂B(Z,b Ω 1

2 ) are given by (cf. [61, Proposition 5.2]):

id : B(Z, bΩ 1
2 ) −→ L (L2

b(Z,b Ω
1
2 )), (4.2.1)

πη ◦ τB : B(Z, bΩ 1
2 ) −→ C, (4.2.2)

πF0,λ ◦ τB : B(Z, bΩ 1
2 ) −→ L (L2

b(F0,
bΩ

1
2 )), (4.2.3)
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where η ∈ bS∗Z, λ ∈ RE(F0) and τB denotes the joint symbol map.
Let Bn := B(Zn,

bΩ
1
2 ) be the C∗-algebra of b-pseudodifferential operators on a manifold

with corners Zn with dimZn = n; moreover, we assume that Fn(Zn) 6= ∅. Let Ωn ⊂ Ωn ⊂
Z̊n be open and choose a continuous section Σn ∈ C (Zn,

bS∗Zn) of the cosphere-bundle
bS∗Zn. We define

An :=
{
a ∈ Bn : bσ

(0)
Bn

(a)(Σn(x)) = 0 ∀x ∈ Ωn

}
. (4.2.4)

Proposition 4.2.1. An is a selfadjoint two-sided closed ideal in the C∗-algebra Bn. There-
fore all irreducible representation of An are unitarily equivalent to one of the following
pairwise inequivalent representations:

id : An −→ L (L2
b(Zn,

bΩ
1
2 )), (4.2.5)

πη ◦ τBn : An −→ C, η ∈ bS∗Zn \ {Σn(x) : x ∈ Ωn} , (4.2.6)

πF,λ ◦ τBn : An −→ L (L2
b(F,

bΩ
1
2 )). (4.2.7)

Proof. The set

L :=
{
f ∈ C (bS∗Zn) : f(Σn(x)) = 0 for all x ∈ Ωn

}

is closed in C (bS∗Zn). Therefore An = (bσ
(0)
Bn

)−1(L) is also closed in Bn, since bσ
(0)
Bn

: Bn −→
C (bS∗Zn) is a continuous ∗-homomorphism that is onto. Moreover the calculation

bσ
(0)
Bn

(abc)(η) = bσ
(0)
Bn

(a)(η)bσ
(0)
Bn

(b)(η)bσ
(0)
Bn

(c)(η) = 0

where η = Σn(x), x ∈ Ωn, a, c ∈ Bn and b ∈ An shows, that An is also an ideal in Bn.
Thus An is a closed two-sided ∗-ideal in Bn.

For the second part of the proposition, we first note, that one has Ân
∼= B̂n

An
, since

An is a two-sided closed ideal in Bn. This shows that

Ân =
{
π ∈ B̂n : π(An) 6= {0}

}

= B̂n \ {πη ◦ τBn : η = Σn(x), x ∈ Ωn} ,

which proves our claim.

Theorem 4.2.2. An is a solvable C∗-algebra and we have l(An) = n.

Proof. Since An is a selfadjoint closed two-sided ideal in Bn, An is solvable and n =
l(Bn) ≥ l(An) holds by 4.1.6. What remains is to prove the reversed inequality. Let

An := Jl+1 ⊇ Jl ⊇ . . . ⊇ J1 ⊇ J0 = {0}

be an arbitrary solving series for An. Since we have

Ân = B̂n \ {πη ◦ τBn : η = Σn(x)} ,

we get l(An) ≥ n by the same argument as in the proof of [63, Lemma 3.5], which shows
that l(An) = n holds.
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Definition 4.2.3. To n ∈ N let Ωn ⊂ Ωn ⊂ Z̊n be arbitrary. Choose continuous sections
Σn ∈ C (Zn,

bS∗Zn) as above. Let A :=
∏
n∈N

An be the direct sum algebra cf. 4.1.1, where

the An are given by (4.2.4) (with respect to Σn).

Since An is a solvable C∗-algebra of length n, we have the following proposition.

Proposition 4.2.4. The algebra A is a solvable C∗-algebra. A solving series can be given
analogously to 4.1.3.

But again, we cannot give a solving series for A that has finite length:

Theorem 4.2.5. A is not solvable with finite length.

Proof. Since An is a two-sided closed ideal in A, we have l(A) ≥ l(An) = n for all
n ∈ N.

Notations 4.2.6. Now we additionally assume that there exist continuous mappings

ιn : Ωn −→ Z̊n+1,

such that ιn(Ωn) ⊆ Z̊n+1 and ιn(Ωn) ∩ Ωn+1 = ∅. Moreover, denote by Σn a continuous
section of bS∗Zn and by ιn,∗(Σn) the push-forward of Σn under the differential ιn,∗ of ιn.
Again we define B as in 4.1.2.

Example 4.2.7. A possible realisation of Zn is the direct product of the unit interval
Zn := [0, 1]n with Ωn localized in the interior ]0, 1[n of Zn.

0 1

0 1

1

� �� �

Ω1

_? � �

ιn(Ω1)
_?

ιn

**

Figure 4.1: Ω1 ⊂ Z1 := [0, 1] mapped to Z2 := [0, 1]2.

Definition 4.2.8. Denote by F the space of all (aj)j∈N ∈ B, such that

σBj(aj)(Σj(x)) − σBj+1
(aj+1)((ιj,∗Σj) (ιj(x))) = 0 (4.2.8)

for all x ∈ Ωj and for all j ∈ N.

Proposition 4.2.9. We have:
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(i) F is a C∗-subalgebra of A.

(ii) To n ∈ N exists a closed two sided ideal Fn ≤ F , such that Fn is solvable with
l(Fn) = n.

Proof. To simplify notation, we set Σ̃j := ιj,∗(Σj). For

x̃ := (xj)j∈N ∈
∏

j∈N

Ωj =: Ω

consider the map

Φx̃ : B −→ C
N,

a = (aj) 7−→
(
bσ

(0)
Bj

(aj)(Σj(xj)) − bσ
(0)
Bj+1

(aj+1)(Σ̃j(ιj(xj)))
)
j∈N

,

where we use 4.1.1 for CN.
(i) It is clear, that Φx̃ is a linear map; let us prove that Φx̃ is continuous. We have

|bσ(0)
Bj

(aj)(Σj(xj)) − bσ
(0)
Bj+1

(aj+1)(Σ̃j(ιj(xj)))|
≤ |bσ(0)

Bj
(aj)(Σj(xj))| + |bσ(0)

Bj+1
(aj+1)(Σ̃j(ιj(xj)))|

≤ C1||aj|| + C2||aj+1||
≤ D sup

j∈N
||aj|| = D||a|| (<∞),

which gives ||Φx̃(a)|| ≤ D||a|| as desired. This implies, that ker Φx̃ is closed and since

F =
⋂

x̃∈Ω

ker Φx̃

holds, F is also closed. What remains to be proven is, that F is actually an algebra.
Let a = (an), b = (bn) ∈ F be arbitrary. To shorten notation set σk := bσ

(0)
Bk

and

σk+1 := bσ
(0)
Bk+1

. Then we have

σk(akbk)(Σk(xk)) − σk+1(ak+1bk+1)(Σ̃k(ιk(xk)))

= σk(ak)(Σk(xk))σk(bk)(Σk(xk))

− σk+1(ak+1)(Σ̃k(ιk(xk)))σk+1(bk+1)(Σ̃k(ιk(xk)))

=
[
σk(ak)(Σk(xk)) − σk+1(ak+1)(Σ̃k(ιk(xk)))

]
σk(bk)(Σk(xk))

+ σk+1(ak+1)(Σ̃k(ιk(xk)))
[
σk(bk)(Σk(xk)) − σk+1(bk+1)(Σ̃k(ιk(xk)))

]

= 0,

for all xk ∈ Ωk, which shows that ab ∈ F .
(ii) To n ∈ N we define Fn := An, where An is given by (4.2.4). Then Fn is a closed
two-sided ideal in F using the usual embedding and l(Fn) = n, cf. 4.2.2.

Remark 4.2.10. It is worth pointing out, that the construction of F yields an algebra
with an arcwise connected space of one-dimensional representations by condition (4.2.2).
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4.3 Transmission algebras with infinitely long ideal chains

Let (Zi)i∈N be a family of manifolds with corners such that dimZi = i. Again, we assume

that each Zi has a face of codimension i. Let Ψ0
b,cl(Zi,

bΩ
1
2 ) denote the corresponding

algebras of b-pseudodifferential operators of order zero on Zi. Moreover, let Wi be a
subset of the (smooth) interior Z̊i of Zi, such that there exists a compact set Ki ⊂ Z̊i

with Wi ⊆ Ki. We also assume that there exist smooth maps ιi : Zi −→ Zi+1, such that

ιi(Wi) =: W̃i+1 is a subset of a compact set K̃ ⊂ Z̊i+1 and that W̃i ∩Wi = ∅ (i > 1).

Remark 4.3.1. To shorten notation, we will suppress all density bundles in what follows.
Note also, that we do not ask Wi (resp. W̃i) to be a submanifold; for example Wi (resp.

W̃i) could be partially a submanifold and partially a fractal set.

4.3.1 Transmission spaces

Since W̃n resp. Wn−1 are subsets of the smooth interior of Zn resp. Zn−1, there exists
d ∈ N to fixed n ∈ N, such that the point evaluation

evp,i : Hm
b (Zi) −→ C : f 7−→ f(p)

is well defined and continuous for all p ∈ Wi ∪ W̃i, if m > d where Hd
b(Zi) denotes the

b-Sobolev space of order d. In particular, this is true for D∞
i := H∞

b (Zi). We denote by

H̃ resp. D̃ the following Hilbert spaces

H̃ :=

{
v = (vi)i∈N ∈

⊕

i∈N

L2
b(Zi) : ||v||

H̃
<∞

}

and

D̃ :=

{
v = (vi)i∈N ∈

⊕

i∈N

D∞
i : ||v||

D̃
<∞

}

where

||f ||
H̃

:= 〈f | f〉1/2
H̃

and 〈f | g〉
H̃

:=
∑

i∈N

〈fi | gi〉L2(Zi)

(analogously for D̃). Moreover, we define D(Z) to be the following function space on
Z :=

⋃
i∈N

Zi:

D(Z) :=
{
f ∈ D̃ : fi(p) = fi+1(ιi(p)) ∀p ∈ Wi, i ∈ N

}
.

Remark 4.3.2. D(Z) is a closed subspace of D̃.

Definition 4.3.3 (Transmission space). The space D := D(Z) is called transmission

space. The closure of D in H̃ will be denoted by H.
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Figure 4.2: The unit interval intersects the unit square: Transmission at one point.

Definition 4.3.4. Let Ã(Z) ⊆ L (H) be the algebra of all continuous linear maps, such

that a(H) ⊆ H and a∗(H) ⊆ H holds for all a ∈ Ã(Z). Denote by A(Z) the corresponding

C∗-closure in L (H̃).

Notations 4.3.5.

(i) Denote by Y ⊆ A(Z) the set of all operators X, such that for all i ∈ N there exist

open neighbourhoods Ṽi ⊆ Ṽ i ⊆ Zi with Wi ∪ W̃i ⊆ Ṽi and X|Zi\Ṽi
is an element of

Diff1
b(Zi) ∪ Diff0

b(Zi).

(ii) Denote by N ⊆ A(Z) the set of all operators M , such that for all i ∈ N there exist

open neighbourhoods Õi ⊆ Õi ⊆ Zi with Wi ∪ W̃i ⊆ Õi and M|Zi\Õi
is given by a

multiplication operator with a smooth function.

Remark 4.3.6. In particular Y includes the following special cases:

(i) Vectorfields X possibly vanishing tangential to
∏
i∈N

Wi whenever this is a submani-

fold.

(ii) Vectorfields X possibly vanishing normal to
∏
i∈N

Wi whenever this is a submanifold.

Let us discuss two examples of operators that are elements of Y resp. N; to this end,
let D(Zi) denote the set of all Di ∈ Diff1

b(Zi) ∪ Diff0
b(Zi), such that there exist closed

subsets Vi ⊆ Zi with Wi ∪ W̃i ⊆ Vi and Di = 0 on Vi. Note, that D(Zi) includes all
operators D that are given by D = MϕXMϕ where X is a vector field and ϕ denotes a

smooth function with suppϕ ⊆ Z̊i \ (Wi ∪ W̃i).

Example 4.3.7.

(i) Let m ∈ N and Di ∈ D(Zi) (i = 1, . . . ,m) be given. Then D := (Di)i∈N, where we
set Di := 0 for i > m, is an element of Y.
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(ii) Let m ∈ N and Mi := Mϕi be the multiplication operator by the function ϕi, where

ϕi ∈ Cc(Z̊i \ (Wi ∪ W̃i)). Then M := (Mi)i∈N, where we set Mi := 0 for i > m, is
an element of N.

Notations 4.3.8. Let Vi be fixed closed subsets of Zi, such that Wi∪W̃i ⊆ Vi and (ϕ
(i)
j )lj=1

be a (finite) partition of unity for the (compact) manifold with corners Zi. If suppϕ
(i)
j ∩

Vi = ∅ is fulfilled, we can choose finitely many differential operators in Diff1(Zi|suppϕ
(i)
j

)∪
Diff0(Zi|suppϕ

(i)
j

) and also finitely many multiplication operators in Diff0(Zi|suppϕ
(i)
j

),

such that they enable us to give a Beals-type characterisation in the sense of 2.3.4 (iv).
We fix these subsets Vi in what follows.

Definition 4.3.9. We define the following sets of operators inductively:

• Let X(2) denote a countable subset of Y, such that D ∈ X(2) can be represented by
D = (D1, D2, 0, . . .) and X(2) includes at least all operators (D1, 0, . . .), (0, D2, 0, . . .)
etc. that are necessary for a Beals-type-characterisation on Z1 resp. Z2 in the sense
of 2.3.4 (iv)2 and 4.3.8.

• Let M(2) denote a countable subset of N, such that M ∈ M(2) can be repre-
sented by M = (M1,M2, 0, . . .) and M(2) includes at least all operators (M1, 0, . . .),
(0,M2, 0, . . .) etc. that are necessary for a Beals-type-characterisation on Z1 resp.
Z2 in the sense of 2.3.4 (iv)3 and 4.3.8.

So let X(m) ⊆ Y and M(m) ⊆ N be already chosen. Then:

• Let X(m+1) be a countable subset of Y, such that X(m) ⊆ X(m+1) and X(m+1) includes
(at least) the (differential-) operators that we have chosen according to 4.3.8 for the
transmission space Zm+1.

• Let M(m) ⊆ N denote a countable subset, such that M(m) includes (at least) the
(multiplication-) operators that we have chosen according to 4.3.8 for the transmis-
sion space Zm+1.

Definition 4.3.10. We define the following Ψ∗-algebras

AM(Z) :=
⋂

k∈N

AM(k)

(Z) and AX(Z) :=
⋂

k∈N

AX(k)

(Z)

according to 1.3.5 where the construction is done within the C∗-algebra A(Z). Finally,
we set A(Z) := AM(Z) ∩ AX(Z) and denote by B(Z) the C∗-closure of A(Z) in L (H).

Definition 4.3.11. Define the following (two-sided) ideals J̃i in A(Z):

J̃i :=
{
a ∈ A(Z) : a =

∑

ν finite

bνMφνcν ,

bν , cν ∈ A(Z), φν ∈ D(Z) , suppφν ⊂ Z̊i

}
.

(4.3.1)

2See also the definition of the differential operators in 2.3.5.
3See also the definition of the multiplication operators in 2.3.5.
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Proposition 4.3.12.

(i) The closure Ji of J̃i in A(Z) is a proper two-sided closed ideal in A(Z).

(ii) The closure of J̃i in B(Z), also denoted by Ji, is a proper two-sided closed ideal in
B(Z).

Proof. (i) Clearly, the closure Ji of J̃i is a closed two-sided ideal in A(Z). So it remains
to prove, that Ji 6= A(Z): Since A(Z) is a Ψ∗-algebra there exists a neighbourhood V of
id, such that a−1 ∈ A(Z) for all a ∈ V . Suppose, that we can approximate the identity

operator id in A(Z) by elements of J̃i, i.e. suppose that there exists an element c ∈ J̃i,
such that c ∈ V holds. It follows that c−1 ∈ A(Z), thus

id = c−1c =
∑

ν finite

c−1aνMφνbν , (4.3.2)

with suitable bν , aν ∈ A(Z) and φν ∈ D(Z) with suppφν ∩ ∂Zi = ∅. Let u ∈ L2(Z)
be such that u ≡ 1 on a neighbourhood Oi where Oi ⊆ Zi \ (suppφν |Zi ∪ ∂Zi) and
u ≡ 0 otherwise. Moreover, it is possible to choose Oi, such that there exists ω ∈ C ∞

c (Z)
with suppω ∩ suppφν |Zi = ∅ and ω ≡ 1 in a neighbourhood of Oi for all ν. Then
Mωc

−1MφνbjMω is a smoothing operator:

We have suppω ∩ suppφν |Zi = ∅ and we choose a function φ̃ν ∈ Cc(Z), such that

supp φ̃ν ⊆ Z \ (Wi ∪ W̃i) and φ̃ν ≡ φν outside a suitable neighbourhood of Wi ∪ W̃i. Let
X be an element of X; then

ad (φ̃νX)(MφνbiMω) = φ̃νXMφνbiMω,

holds and therefore ad (φ̃νX)k(MφνbiMω) = (φ̃νX)kMφνbiMω ∈ L2(Z) for all X ∈ X by
the definition of the algebra A(Z).

This is a contradiction to the corresponding right hand side of (4.3.2).
(ii) The prove is literally the same as the one of (i), if we use elements of A(Z) to
approximate the ones in B(Z), hence we will omit it.

Notations 4.3.13. In what follows, we assume, that Zi has a face Hi of codimension i
and we choose functions φi, θi ∈ Cc(Zi) (i ∈ N), such that suppφi, supp θi ⊂ Z̊i, φi ≡ 1

on a neighbourhood of Wi ∪ W̃i and φi ≺ θi. Then we have for all i ∈ N the following
decomposition for a ∈ A(Z):

a = (1 − φi)a(1 − θi) + (1 − φi)aθi + φia(1 − θi) + φiaθi. (4.3.3)

Definition 4.3.14.

(i) Denote by Ψ̃0(Z) (resp. Ψ̃−(Z)) the set of all operators a ∈ A(Z) such that

(a) (1−φi)a(1−θi) and (1−θi)a∗(1−φi) are elements of Ψ0
b,cl(Zi) (resp. Ψ−1

b,cl(Zi))
for all i ∈ N and for all decompositions like 4.3.13 resp. (4.3.3).

(b) IBFZi
((1 − φi)a(1 − θi)(1 − φi)b(1 − θi)) = IBFZi

((1 − φi)ab(1 − θi)) holds for all
i ∈ N and for all decompositions like 4.3.13 resp. (4.3.3).
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(ii) Denote by Ψ0(Z) the closure of the algebraic span of Ψ̃0(Z) in A(Z) and by Ψ−(Z)

the closure of the algebraic span of Ψ̃−(Z) in Ψ0(Z).

(iii) Denote by Bb(Z) the C∗-closure of the algebraic span of Ψ̃0(Z) in the C∗-algebra

B(Z) and by B−
b (Z) the closure of the algebraic span of Ψ̃−(Z) in Bb(Z).

(iv) Denote by Jb,i the ideal that corresponds to Ji using (ii) and (iii).

Theorem 4.3.15. Let a ∈ Ψ0(Z) be arbitrary.

(i) If ω1 ∈ C ∞
c (Zi) and ω2 ∈ C ∞

c (Zj) are given such that

suppω1 ∩ Vi = ∅ = suppω2 ∩ Vj and

suppω1 ∩ suppω2 = ∅ (if i = j),

then ω1aω2 is a pseudolocal operator.

(ii) If ω1, ω2 ∈ C ∞
c (Zi) are given such that

suppωj ∩ Vi = ∅ (j = 1, 2)

and suppωj are both contained in a chart compatible with the Beals-Type-character-
isation, cf. 4.3.8, then ω1aω2 is an ordinary, compactly supported pseudodifferential
operator in the interior Z̊i of Zi.

Proof. The proof of (i) is exactly the same as part of the proof of 4.3.12, where we show,
that one gets a smoothing operator. (ii) follows by 2.3.4 (iv).

4.3.2 Ideal chains

Definition 4.3.16. Let F ∈ F(Zi) be a face in Zi. Then we define a linear map

IF,Zi : Bb(Z) −→ B(F, bΩ
1
2 )

by IF,Zi(a) = 0 if a ∈ Jb,i and IF,Zi(a) = IBFZi
(M(1−φi)aM(1−θi)) else.

Proposition 4.3.17. IF,Zi is a well-defined continuous ∗-homomorphism that is indepen-
dent of the special choice of the decomposition (4.3.3).

Proof. Let (1 − φ̃i)a(1 − θ̃i) be another decomposition (4.3.3). Then

IBFZi
(M(1−φi)aM(1−θi)) = IBFZi

(M(1−φi)aM(1−θi))

= IBFZi
(M(1−φ̃i)

M(1−φi)aM(1−θi)M(1−θ̃i)
)

= IBFZi
(M(1−φ̃i)

aM(1−θ̃i)
),

thus the ∗-homomorphism IF,Zi is well-defined and independent of the decomposition. To
see continuity, we first note that

||IF,Zi(M(1−φi)aM(1−θi))|| ≤ ||M(1−φi)aM(1−θi)||L (L2(Zi,bΩ
1
2 ))
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holds, since IBF,Zi is continuous. Now M(1−φi)aM(1−θi) can be regarded as an element in
L (H) if we extend it by zero to act on H. Then by definition

||M(1−φi)aM(1−θi)||L (L2(Zi,bΩ
1
2 ))

≤ ||M(1−φi)aM(1−θi)||L (H)

and ||Mϕi||L (H) ≤ C. Thus the continuity follows.

Definition 4.3.18. Let 2 ≤ l ≤ i. Denote by J (i)
l the closure in Bb(Z) of the ideal of all

operators in Ψ̃−(Z) such that IF,Zi vanishes for all F ∈ Fl(Zi).

Proposition 4.3.19. We get the nested sequence

Bb(Z) ⊃ J (i)
i ⊃ J (i)

i−1 ⊃ . . . ⊃ J (i)
2 ⊇ J1 := {0}

and (J (i)
l )il=2 is a solving ideal chain in the sense of 4.1.9.

Proof. The only thing that we have to prove is the special structure of the quotients
J (i)
l+1/J

(i)
l . To see that

J (i)
l+1/J

(i)
l

∼=
⊕

F∈Fk(Zi)

C0(R
E(F ),K(L2

b(F,
bΩ

1
2 )))

holds for l = 1, . . . , i−1, let us first note, that if φ ∈ C∞
c (Z) is a function with suppφ ⊆ Z̊i

and φ ≡ 1 on Wi∪W̃i, we get thatMψaMψ ∈ Bb(Z) for all a ∈ B(Zi,
bΩ

1
2 ) where ψ := 1−φ.

Then we have

IF,Zi(a) = IBFZi
(MψaMψ) = IBFZi

(Mψ)IBFZi
(a)IBFZi

(Mψ) = IBFZi
(a),

since the restriction of ψ to any boundary face F is one. Hence the usual proof (see
for instance [85, Theorem 2]) of the isomorphism is applicable and we have finished the
proof.

Corollary 4.3.20. To each i ∈ N, there exists a solving ideal chain in the sense of 4.1.9
for Bb(Z).

Defining I(i)
l := Ψ0(Z) ∩ J (i)

l , an application of 1.1.9 yields the following theorem for

the Ψ∗-algebra Ψ̃0(Z):

Theorem 4.3.21. For each i ∈ N the ideals (I(i)
l )il=2 yield a nested sequence of closed

two-sided ideals in the Ψ∗-algebra Ψ0(Z) of length i − 1. Moreover, the closures of I(i)
l ,

l = 2, . . . , i, in the C∗-algebra Bb(Z) give a solving ideal chain for Bb(Z).
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4.3.3 A refined transmisson model

We will denote by ∆b,i the b-Laplacian acting on the function space C ∞(Zi) in what
follows. Moreover, we set Λb,i := (1 − ∆b,i)

1/2.
Before we give a construction of a transmission algebra acting on a scale of Sobolev

spaces let us recall the following well-known facts about the Friedrichs extension.
To this end we denote by H a Hilbert space and q : D(q)×D(q) −→ C a quadratic form,

where D(q) ↪→ H should be dense. Recall that a quadratic form is called semibounded
with bound λ ∈ R, if q is symmetric and q(x, x) ≥ λ||x||2H holds for all x ∈ D(q). It is
also well-known, that one can extend a closable semibounded quadratic form q to a closed
quadratic form q : D(q) ×D(q) −→ C. Then we have:

Proposition 4.3.22. Let q : D(q)×D(q) −→ C be a closed semibounded quadratic form.
Then there exists an unique selfadjoint linear operator Q : D(Q) −→ H with D(Q) ⊆ D(q)
and q(x, y) = 〈Qx | y〉 for x ∈ D(Q), y ∈ D(q). Q is called the selfadjoint operator induced
by q.

Proof. See [19, Proposition 1.2.9] for instance.

This leads to the following theorem:

Theorem 4.3.23. Let A : D(A) −→ H be symmetric operator with dense domain D(A) ⊆
H. Suppose, that there exists λ > 0, such that 〈Ax |x〉H ≥ λ||x||H holds for all x ∈ D(A).
Then q(x, y) := 〈Ax | y〉H defines a closable semibounded quadratic form. The operator Q
induced by the closure q of q is a selfadjoint extension of A with 〈Qx |x〉H ≥ λ||x||H for
all x ∈ D(Q). Q is called the Friedrichs extension of A.

Proof. See again [19, Proposition 1.2.10] for instance.

Now, we want to define an interaction operator, that will generate an appropriate scale
of Sobolev spaces:

Definition 4.3.24 (Transmission form). We define qΛ2
D

: D×D −→ R to be the following
quadratic form

qΛ2
D
(f, g) :=

∑

i∈N

〈Λ2
b,ifi | gi〉L2(Zi)

and call it the transmission form corresponding to the transmission space D.

Lemma 4.3.25. The quadratic form qΛ2
D

is continuous and semibounded, i.e. there exists
λ > 0, such that

qΛ2
D
(f, f) ≥ λ||f ||2D

holds for all f ∈ D. Denote by Λ̃2
D : D(Λ̃2

D) −→ H the corresponding (positive) selfadjoint
operator cf. 4.3.22.

Proof. Since Λ2
b,i is a (strictly) positive selfadjoint operator that is bounded from below

(for all i ∈ N) the claim follows.
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Definition 4.3.26. Denote by Hs(Z) the scale of Sobolev spaces generated by Λ̃2
D. In

particular, we have H0(Z) ⊆ H ⊆ H̃.

Definition 4.3.27 (Transmission algebra). Let 0 < ε ≤ 1. We denote by AΛD
ε the

following Ψ∗-algebra:

AΛD

ε :=
{
a ∈ L (H) : a(D(Λ∞

D)) ⊆ D(Λ∞
D),

∀ ν ∈ N ∃ cν ≥ 0 : ||ad(Λε
D)ν(a)x|| ≤ cν ||x||

}
.

In what follows, we set ε = 1. Let us now refine this Ψ∗-algebra by using iterated
commutators of suitable first order differential operators. These operator families will be
a slight modification of 4.3.5:

Notations 4.3.28.

(i) Denote by Y ⊆ ⋂
s∈R

L (Hs(Z),Hs−1(Z)) the set of all operators X, such that there

exist open neighbourhoods Ṽi ⊆ Zi with Wi ∪ W̃i ⊆ Ṽi and X|Zi\Ṽi
is an element of

Diff1
b(Zi) ∪ Diff0

b(Zi) (i ∈ N).

(ii) Denote by N ⊆ ⋂
s∈R

L (Hs(Z),Hs(Z)) the set of all operators M , such that there

exist open neighbourhoods Õi ⊆ Zi with Wi ∪ W̃i ⊆ Õi and M|Zi\Õi
is given by a

multiplication operator with a smooth function.

Again, the operator-families given in 4.3.7 are examples of such possible operators, more
precisely:

Example 4.3.29.

(i) Let m ∈ N and Di ∈ D(Zi) (i = 1, . . . ,m) be given. Then D := (Di)i∈N, where we
set Di := 0 for i > m, acts on the scale of Sobolev spaces Hs(Z) as an operator of
order one, i.e. we have the mapping property

D : Hs(Z) −→ Hs−1(Z)

for all s ∈ R. In particular D is an element of Y.

(ii) Let m ∈ N be fixed. We choose a family (ϕi)
m
i=1 of functions ϕ ∈ C ∞(Zi) with

suppϕi ⊆ Oi, where Oi is a closed subset of Zi with Wi ∪ W̃i ⊂ Oi. We define
Mi := Mϕi if i ≤ m and Mi = 0 if i > 0, then M := (Mi)i∈N acts on the scale
of Sobolev spaces Hs(Z) as an operator of order zero, i.e. we have the mapping
property

D : Hs(Z) −→ Hs(Z)

for all s ∈ R. In particular M is an element of N.

Now, using an analogous definition to 4.3.9 we get families M
(k)
int and X

(k)
int of operators

that are adapted to the scale of Sobolev spaces generated by ΛD.
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Definition 4.3.30 (Refined interaction algebra). We define the refined interaction algebra
Ψ0
int(Z) to be the Ψ∗-algebra given by

Ψ0
int(Z) :=

⋂

k∈N

Ψ0
int,k(Z),

where Ψ0
int,k(Z) consists of all a ∈ AΛD

1 , such that

ad [M ]αad [V ]β(a) ∈
⋂

s∈R

L (Hs(Z),Hs−|α|(Z))

holds for all V ∈ (X
(k)
int)

|β|, for all M ∈ (M
(k)
int)

|α| and for all α ∈ Nn
0 and β ∈ Nm

0 .

Exactly as in 4.3.15 we get:

Theorem 4.3.31. Let a ∈ Ψ0
int(Z) be arbitrary.

(i) If ω1 ∈ C∞
c (Zi) and ω2 ∈ C∞

c (Zj) are given, such that

suppω1 ∩ Vi = ∅ = suppω2 ∩ Vj and

suppω1 ∩ suppω2 = ∅ (if i = j),

then ω1aω2 is a pseudo-local operator.

(ii) If ω1, ω2 ∈ C∞
c (Zi) are given, such that

suppωj ∩ Vi = ∅, (j = 1, 2),

and suppωj are both contained in a chart compatible with the Beals-Type-character-
isation, cf. 4.3.8, then ω1aω2 is an ordinary, compactly supported pseudodifferential
operator in the interior Z̊i of Zi.





Chapter 5

K-theory for conformally compact spaces

An open Riemannian manifold (X0, g0) is called conformally compact space if it is isometric
to the interior of a compact manifold X with boundary ∂X, where X is endowed with
the metric g := %−2h. Thereby h is a (given) smooth metric on X and % : X −→ R+ is a
boundary defining function.

5.1 Review of algebras of operators on conformally

compact spaces

Throughout this chapter, X denotes a smooth, compact, n-dimensional manifold with
boundary ∂X. Moreover, we assume that X and ∂X are connected. Let us give a brief
overview of the basic objects in 0-calculus. Most of the proofs will be omitted, we refer
to [65] for a detailed treatment of the subject.

Let us first introduce the main structure objects: We denote by V0(X) the space of all
vector fields on X, that vanish at the boundary. Elements of V0(X) are called 0-vector
fields and V0(X) is a Lie subalgebra of the Lie algebra of all smooth vector fields on X.
If q ∈ ∂X is arbitrary and

(x, y) : X ⊇ V −→ R+ ×R
n−1
y , where R+ := [0,∞[, (5.1.1)

are local coordinates near q, then V0(X)|V is spanned over C ∞(V ) by the vector fields
x∂x and x∂yj (j = 1, . . . , n − 1). And there is a vector bundle of rankn = dimX over
X together with a natural map j0 : 0TX −→ TX, such that V0(X) = j0(C ∞(X, 0TX));
0TX is called the 0-tangent bundle. Note, that the fibres of 0TX are given by

0TqX = V0(X)/IqV0(X)

for q ∈ ∂X, where IqV0(X) := {f ∈ C ∞(X) : f(q) = 0}. Thus V0(X) is a finitely gener-
ated, projective C ∞(X)-module (cf. [114, Theorem 1.13]). And it is worth pointing out,
that j0 is an isomorphism over the interior X̊ of X.

Since IqV0(X) is an ideal in V0(X), 0TqX has a Lie algebra structure as well. Moreover,
there is a natural vector bundle map 0TX −→ bTX and we denote the restriction of the
kernel of this map to ∂X by 0T∂X. Note, that the choice of a boundary defining function
% : X −→ R+ (i.e. % ≥ 0, ∂X = {% = 0} and d%|∂X 6= 0) and the exact sequence of
Lie-algebras

0 −→ 0T∂X −→ 0TX|∂X −→ 0TX|∂X/
0T∂X −→ 0 (5.1.2)

77
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give rise to the identifications

0T∂X −→ T∂X : [V ] 7−→ [(1/%NV )|∂X ]

and
0TX|∂X/

0T∂X −→ ∂X ×R : [V ] 7−→ (π[V ], (1/%NV %N)|π[V ])

(see [65, page 4]). Moreover, a normal fibration ν to the boundary together with the
boundary defining function % yield a collar neighbourhood of the boundary, such that we
get the splitting

0TX|∂X
∼= 0T∂X ⊕ 0TX|∂X/

0T∂X. (5.1.3)

Let

j% : T ∗∂X ⊕ (∂X ×R) −→ 0T ∗∂X ⊕ (0TX|∂X/
0T∂X)∗ (5.1.4)

∼= 0T ∗X|∂X

denote the identification of the corresponding covector bundles over ∂X.

Before we can give the definition of pseudodifferential operators in this setting, let us
briefly discuss the used blow up spaces. For this, let

β2
b : X2

b := [X2; (∂X)2] −→ X2

be the b-blow up (cf. [83]) and B := (β2
b )

−1(∂∆) the preimage of the boundary of the

diagonal ∆ ⊆ X2. Let ∆b := (β2
b )

−1(∆ \ (∂X)2)
X2
b denote the b-diagonal of the blow up

space1. Then we define the extended 0-double space X2
0,e to be the manifold given by the

extended 0-blow up

β2
0,e : X2

0,e := [X2
b ;B]

β−→ X2
b

β2
b−→ X2.

We call ∆0,e := β−1(∆b \ ∂X2
b )
X2

0,e
the extended 0-diagonal and the new boundary hyper-

surface ff0,e produced by the second blow up the extended 0-front face.

ffb

ff0,e
∆0,e ∆b ∆

�
�

�
�

�
�

�
�

�
�

�
�

�

β // βb //

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

��

Figure 5.1: The extended 0-blow up X2
0,e of X.

1Note, that there is a canonical diffeomorphism B ∼= [−1, 1] × ∂X.
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Let us denote by (x, y) resp. (x′, y′) the lift of local coordinates given by (5.1.1) through
the projection onto the left resp. right factor of X2. Then we get a system of local
(projective) coordinates (τ, U, r, y′) ∈ [−1, 1] ×R

n−1
U ×R+ ×R

n−1
y′ , where

τ =
x− x′

x+ x′
, r = x+ x′ and U =

y − y′

x+ x′
.

With respect to this coordinates we have

∆0,e = {τ = 0, U = 0} and ff0,e = {r = 0}.

Note, that {τ = −1} resp. {τ = 1} correspond to the lift of the left resp. right boundary
of the b-double space X2

b to X2
0,e. The lift of the b-front face to X2

0,e would be given by
{|U | = ∞}, so the projective coordinates are only valid apart from that face.

To complete notation, let us recall the densities adapted to this calculus. If we apply
the smooth density functor Ωα of α-densities to the 0-tangent bundle 0TX we obtain the
smooth bundle of 0-α-densities 0Ωα(X). A non vanishing section is given by | dx

xn
dy|α and

we get a well-defined integral
∫

X

: Ċ
∞(X, 0Ω1(X)) −→ C.

Thus we can define a natural scalar product on Ċ ∞(X, 0Ω
1
2 (X)) given by

〈f, g〉
L2(X,0Ω

1
2 )

:=

∫

X

fg,

where f, g ∈ Ċ ∞(X, 0Ω
1
2 (X)). We denote by L2(X, 0Ω

1
2 ) the closure of Ċ ∞(X, 0Ω

1
2 (X))

with respect to this inner product. Finally let us denote by KD
1
2
0,e the extended 0-kernel

half-density bundle %
−n

2

ff0,eΩ
1
2 (X2

0,e), where %ff0,e denotes a defining function for ff0,e. Now
we are able to give the definition of pseudodifferential operators:

Definition 5.1.1. A bounded linear operator

A : Ċ
∞(X, 0Ω

1
2 ) −→ C

−∞(X, 0Ω
1
2 )

is said to be a classical 0-pseudodifferential operator of order m ∈ C in the small calculus
provided

κA ∈
{
κ ∈ Imcl (X

2
0,e,∆0,e;KD

1
2
0,e) : κ ≡ 0 at ∂X2

0,e \ ff0,e
}
,

where ≡ means vanishing to infinite order. The space of all classical 0-pseudodifferential
operators of order m is denoted by Ψm

0 (X, 0Ω
1
2 ).

Following this definition, one can prove, that there is a well defined homogeneous prin-
cipal symbol map

0σ(m) : Ψm
0 (X, 0Ω

1
2 ) −→ S[m](0T ∗X),
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which has the usual multiplication property

0σ(m1+m2)(A1A2) = 0σ(m1)(A1)
0σ(m2)(A2) ∈ S[m1+m2](0T ∗X),

for Ai ∈ Ψmi
0 (X, 0Ω

1
2 ) (mi ∈ R). Moreover, one has to define two more classes of 0-

operators, namely

• Ψm,k
0 (X, 0Ω

1
2 ) (k,m ∈ C) (k-type operators), which are given by

Ψm,k
0 (X, 0Ω

1
2 ) := %−kΨm

0 (X, 0Ω
1
2 ) (5.1.5)

(see [65, Definition 2.3.4]), and

• Ψm,k,γ
0 (X, 0Ω

1
2 ), which is the space of all mth-order 0-pseudodifferential operators of

type k with bounds γ (see [65, Definition 2.4.3]).

Remark 5.1.2. Note, that (5.1.5) makes sense since Ψm
0 (X, 0Ω

1
2 ) is invariant under con-

jugations by powers of the boundary defining function %, i.e. if z ∈ C is arbitrary then

%−zΨm
0 (X, 0Ω

1
2 )%z = Ψm

0 (X, 0Ω
1
2 ) (5.1.6)

holds, cf. [65, Lemma 2.3.3].

The reduced normal operator

In addition to the principal symbol one has to introduce an operator valued boundary
symbol to give a full description of the Fredholm conditions for pseudodifferential opera-
tors on conformally compact spaces. Since we need this so-called reduced normal operator
for the K-theoretic calculation, we give a short overview of its definition.

To this end let % : X −→ R+ be a (fixed) boundary defining function, then it uniquely
determines a trivialization of the positive normal bundle

Φ : N+∂X := T+X|∂X/T∂X
∼=−→ R+ × ∂X;

[Vq] 7−→ (d%N (q)(Vq), q)

of the boundary. Now, let ν : Γ
∼=−→ ν(Γ) ⊆ X be a normal fibration to the boundary ∂X;

here ∂X ⊆ Γ ⊆ N+∂X is an open neighbourhood of the zero-section ∂X in N+∂X. Thus
local coordinates χ : ∂X ⊇ V −→ R

n−1
Y on the boundary give raise to local coordinates

(x, y) : X ⊇ V := ν(Φ−1(R+ ×W)) −→ R+ ×R
n−1
y

for q ∈ W ⊆ ∂X. We then define the reduced normal operator N ν,χ
% (A) of an element

A ∈ Ψm,k,γ
0 (X, 0Ω

1
2 ) at (0, y) = q ∈ ∂X to be the distributional density

N ν
% (A)(y, η, τ, r) := Fν

% (A)(y, rη, τ)

∣∣∣∣
dr

r
dτ

∣∣∣∣
1
2

∈ C
−∞([−1, 1],Ω

1
2 )⊗̂πC

−∞(R+,
bΩ

1
2 ),

Fν
% (A)(y, η, τ) :=

∫

R
n−1
U

e−iUηκ̂A(τ, U, 0, y) dU ∈ C
−∞([−1, 1]).
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Here κA denotes the lifted Schwartz kernel of the operator A written in coordinates near
the extended 0-front face ff0,e as chosen above, i.e.

κA = κ̂A(τ, U, r, y′)| dτ dU dr

rn
dy′| 12

with
κ̂A ∈ C

−∞([−1, 1])⊗̂πS
′(Rn−1

U )⊗̂πC
−∞(R+)⊗̂πC

−∞(Rn−1
y′ ).

For a detailed treatment of the reduced normal operator we again refer to [65, Chapter 4].

5.2 Review of C∗-algebras of b-c-operators

Throughout this section let M be the closed interval [0, 1]. The reduced normal operator

of a pseudodifferential operator in Ψ0(X,
0Ω

1
2 ) associates to a given operator a family

of b-c-pseudodifferential operators on M . Roughly speaking the algebra of b-c-operators
consists of pseudodifferential operators with different behaviours at the two endpoints of
M : they are of b-type at {0} and of cusp-type at {1}. For a detailed treatment of this
calculus see again [65, Chapter 3].

Preliminaries

Let B ⊆ C (M × {±1}) ⊕ C ([−1, 1]) ⊕ C ([−1, 1]) be the C∗-subalgebra consisting of all
triples (f1, f2, f3) satisfying

f1(0,±1) = f2(±1) and f1(1,±1) = f3(±1). (5.2.1)

Lemma 5.2.1. We have B ∼= C (S1).

−1

1

−1

1

0 1

_

C ([−1,1])

_

{−1}
____________

{+1}
____________

_

C ([−1,1])

_

�

C (M×{−1,1})

�

�� ��

____

Figure 5.2: Gluing C (S1) out of B.

Proof. We define two mappings K : B → C (S1) and M : C (S1) → B via

K : (f1, f2, f3) 7→ f, where f(ϕ) :=





f1(
2ϕ
π
, 1), 0 ≤ ϕ ≤ π

2
,

f3(−4ϕ
π

+ 3), π
2
< ϕ ≤ π,

f1(−2ϕ
π

+ 3,−1), π < ϕ ≤ 3π
2
,

f2(
4ϕ
π
− 7), 3π

2
< ϕ ≤ 2π,
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M : f 7→ (f1, f2, f3), where

f1(x, 1) := f(π
2
x), x ∈M,

f1(x,−1) := f(−π
2
x+ 3

2
π) x ∈M,

f2(t) := f(π
4
t+ 7

4
π), t ∈ [−1, 1],

f3(r) := f(−π
4
r + 3

4
π), r ∈ [−1, 1].

It is easy to check, that K and M are inverse maps, so we get B ∼= C (S1) as desired.

Remark 5.2.2. Let B̂ denote all elements in B, such that (in addition to (5.2.1)) f1(z, 1) =

c and f2(z,−1) = d holds for all z ∈M . Then we have B̂ ∼= C (S1).

b-c-operatoralgebras

Let a1, a2 ∈ R be fixed real numbers. Furthermore we denote by %0 : x 7−→ x resp.
%1 : x 7−→ (1 − x) defining functions for the components {0} resp. {1} of ∂M . Again let
us give a short overview on the main structure elements and blow up spaces.

Definition 5.2.3. A b-c-vector field on M is a smooth vector field V , such that V f ∈
%0%

2
1C

∞(M) for all f ∈ C ∞(M).

The vector bundle corresponding to the b-c-vector fields will be denoted by b,cTM .
Moreover, let

β2
b : M2

b := [M2; {(0, 0)} ∩ {(1, 1)}] −→M2

be the b-blow up of M2 with b-diagonal ∆b := (β2
b )

−1(∆ \ ∂M2)
M1
b . The new boundary

faces obtained by blowing up (j, j) (j = 0, 1) are denoted by ffb(j) and we set B :=
∆b ∩ ffb(1). Then we call the map

β2
b,c : M2

b,c := [M2
b ;B] −→M2

b

β2
b−→M2

the b-c-blow up and M2
b,c the b-c-double space. The new boundary surface produced by

this last blow up will be denoted by ffc and is called the cusp front face.
Moreover, if we apply the smooth density functor Ωα of α-densities to the b-c-tangent

bundle b,cTM we obtain the smooth bundle of b-c-α-densities b,cΩα(X). In this way we

also obtain a natural scalar product on Ċ ∞(X, b,cΩ
1
2 (X)) given by

〈f, g〉
L2(M,b,cΩ

1
2 )

:=

∫

M

f1f2 =

1∫

0

f̂1(z)f̂2(z)
dz

z(1 − z)2
,

where fj = f̂j

∣∣∣ dz
z(1−z)2

∣∣∣
1
2 ∈ Ċ ∞(M, b,cΩ

1
2 ). Let L2(M, b,cΩ

1
2 ) denote the Hilbert space

completion of Ċ ∞(X, b,cΩ
1
2 (X)) with respect to this inner product.

Definition 5.2.4. A bounded linear operator

A : Ċ
∞(M, b,cΩ

1
2 ) −→ C

−∞(M, b,cΩ
1
2 )
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Figure 5.3: The b-c-blow up of M2.

is said to be a classical b-c-pseudodifferential operator of order m ∈ C in the small calculus
provided

κA ∈
{
κ ∈ Imcl (M

2
b,c,∆b,c;KD

1
2
b,c) : κ ≡ 0 at ∂M2

b,c \ (ffb ∪ ffc)
}
,

where ≡ means vanishing to infinite order. The space of all classical b-c-pseudodifferential
operators of order m is denoted by Ψm

b,c(M, b,cΩ
1
2 ).

Here, KD
1
2
b,c denotes the b-c-kernel half density bundle %

− 1
2

ffb
%−1

ffc Ω
1
2 (M2

b,c), where %ffb resp.

%ffc are defining functions for ffb resp. ffc.
The algebra of all b-c-pseudodifferential operators Ψ0

b,c(M, b,cΩ
1
2 ) can be realized as a

symmetric subalgebra of L (%a0
0 %

a1
1 L

2(M, b,cΩ
1
2 )). We have the following symbol morphism:

τb,c : Ψ0
b,c(M, b,cΩ

1
2 ) −→ C (b,cS∗M) ⊕ B(Γa0) ⊕ B(R) :

A 7−→
(
b,cσ(0,0)(A), Ib(A)|Γa0

, Ic(A)
)
,

where Γa0 = {z ∈ C : Im z = −a0} ∼= R. Here B(R) denotes the C∗-closure of S0
cl(R) in

Cb(R) and B(Γa0) the closure of M0
|Γa0

2 in Cb(Γa0). Note, that B(Γa0) and B(R) are both

isomorphic to C [−1, 1] by [75], but we keep the notations B(R) resp. B(Γa0) to enable
comparison to [65]. Especially, we refer to [65, chapter 3] for the exact definition of the
single symbol maps b,cσ(0,0)(A) (the principal symbol), Ib(A)|Γa0

(the b-indical family) and

Ic(A) (the c-indical family) for an operator A ∈ Ψ0
b,c(M, b,cΩ

1
2 ).

Moreover, let B(a0,a1)
b,c be the C∗-algebra generated by all operators of Ψ0

b,c(M, b,cΩ
1
2 ) in

the C∗-algebra L (%a1

0 %
a1
1 L

2(M, b,cΩ
1
2 )) and K(a0,a1)

b,c denote the ideal of compact operators
in this algebra. Then we get the following exact sequence of C∗-algebras:

0 −→ K(a0,a1)
b,c −→ B(a0,a1)

b,c −→ Q
(a0,a1)
b,c −→ 0, (5.2.2)

2M0 denotes the space of all entire maps h, such that [ξ 7−→ h(ξ+iµ)] ∈ S0

cl(Rξ) with uniform estimates
for µ in compact subsets of R.
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where the C∗-algebra of joint b-c-symbols Q
(a0 ,a1)
b,c := R(τb,c) (see also [65, (3.14)] consists

of all triples
(f0, f1, f2) ∈ C (b,cS∗M) ⊕ B(Γa0) ⊕ B(R)

satisfying
σ

(0)
B (f1)(±1) = f0(0,±1) and σ

(0)
B (f2)(±1) = f0(1,±1). (5.2.3)

Here σ
(0)
B : B(R) −→ C ({±1}) denotes the map given by the extension of the homogeneous

principal part σ(0) : S0
cl(R) → C ∞({±1}) = C ⊕ C (cf. [75]); note, that we have the

sequence
0 −→ C0(R) −→ B(R) −→ C⊕ C −→ 0.

By (5.2.1) and lemma 5.2.1, we conclude Q
(a0,a1)
b,c

∼= C (S1).

Remark 5.2.5. By [65, Formula (3.5)]

%z00 %
z1
1 Ψ0

b,c(M, b,cΩ
1
2 )%−z00 %−z11 = Ψ0

b,c(M, b,cΩ
1
2 )

holds for all z0, z1 ∈ C. So C∗-closures of Ψ0
b,c(M, b,cΩ

1
2 ) with respect to different weighted

L2(M, b,cΩ
1
2 ) spaces differ only by a Hilbert space isometry. This shows that - forK-theory

computation - we can restrict ourself to the case a0 = 0 = a1. Using this fact, we also
avoid heavy notation in the sequel of this section: from now on we drop the weight indices,
i.e. we write Bb,c instead of B(a0,a1)

b,c and so on.

Lemma 5.2.6. There exists A ∈ Bb,c, such that ind (A) = 1. Especially the index map is
surjective.

We owe the outline of the proof S. Moroianu.

Proof. First of all note, that we can regard a b-c-operator as a c-operator at both ends if
it behaves like a b-differential operator at the b-end, using the transcendental blow-up

[0,∞[3 x 7−→ t = e−
1
x ∈ [0,∞[

at the b-end {0} of M (see [85, Appendix C]). So we can use [68, Formula (27)]

ind (A) = AS(A) − i
1

2π

(
TrQ{0}

(
I{0}c (A)∂ξ

[
I{0}c (A)−1

])
(5.2.4)

+ TrQ{1}

(
I{1}c (A)∂ξ

[
I{1}c (A)−1

]))

= AS
′
(A) +

1

2
(η{0}(A) + η{1}(A)) (5.2.5)

to find the desired operator within this special class of b-c-operators. Here (5.2.5) uses the
η invariant defined in [84] (see also [68, Page 15] for details). Note, that the 1/2π-factor
arises by the slightly different definitions for the η-invariant in the papers [84] and [68].

Choose an operator R ∈ Ψ−∞
b,c (M, b,cΩ

1
2 ), such that:

• The smooth Schwartz-kernel κR of R vanishes in a neighbourhood of the b-front face
ffb.



5.2 Review of C∗-algebras of b-c-operators 85

• If we define A := Id + R, then Ic(A) should extend to an invertible symbol in
S0
cl(Rξ).

3

Then A is a fully elliptic operator in Bb,c with b,cσ(0,0)(A) ≡ 1 and Ib(A)|Γa0
≡ 1. Note,

that this forces σ
(0)
B (Ic(A))(±1) = 1 by (5.2.3) and we can think of Ic(A) as a function

from S1 to itself, so our last requirement on R is:

• Ic(A), regarded as a function from S1 to itself, should have winding number 1.

Finally let us note, that for any operator B which inverts A up to trace class remainders
we have I

{0}
c (B) = I

{0}
c (A)−1 and I

{1}
c (B) = I

{1}
c (A)−1. Now we apply the index formula

(5.2.5) and get

ind (A) = AS(A) +
1

2πi
TrQ

(
I(1)
c (A)∂ξ

[
I(1)
c (A)−1

])

= AS
′
(A) +

1

2
η{1}(A),

since the c-indical contribution at {0} vanishes. Moreover, we have AS
′
(A) = AS

′
(1) = 0,

because AS
′
is invariant under perturbations of high enough negative order (remember,

that R is of order −∞). Now, by [84, Formula (5.3)] 1
2
η{1}(A) computes the winding

number of Ic(A), so ind (A) = 1 and we have found our desired operator.

Theorem 5.2.7. We have K0(Bb,c) = Z and K1(Bb,c) = 0.

Proof. (5.2.2) induces the following six term exact sequence

Z // K0(Bb,c) // Z

��
Z

ind

OO

K1(Bb,c)oo 0oo

.

Since the index-mapping ind is surjective, cf. lemma 5.2.6, we conclude K0(Bb,c) = Z

and K1(Bb,c) = 0.

Now, let D be the set of all N ∈ Bb,c satisfying the additional condition

b,cσ(0,0)(N)(z, 1) = c, b,cσ(0,0)(N)(z,−1) = d (5.2.6)

for all z ∈ [0, 1] (c, d ∈ R), then we have:

Proposition 5.2.8. D is a C∗-subalgebra of Bb,c. Moreover, we have K0(D) = Z,
K1(D) = 0 and the map π : D −→ D/Kb,c induces an isomorphism K0(D) ∼= K0(C (S1)).

3Note, that if κ̂R(S, x′)
∣∣∣dS dx′

x′

∣∣∣
1/2

is a local representation of κR in coordinates S = 1

x′
− 1

x and x′ near

the c-front face ffc then the c-indical family Ic(R)(ξ) =
∞∫

−∞

e−iSξκ̂(S, 0) dS is a Schwartz-function.

Moreover, the c-indical family Ic(B) of an operator B ∈ Ψm
b,c(M, b,cΩ

1

2 ) is an element of Sm
cl (R

n).
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Proof. To shorten notation, we set b,cσ(0,0) =: σ. Let us first prove, that D is an algebra.
Thus let N1, N2 ∈ D be arbitrary. Then

σ(N1N2)(z, 1) = σ(N1)(z, 1)σ(N2)(z, 1) = c1c2,

which shows that D is an algebra. D includes all adjoints, since σ is a ∗-homomorphism.
So what is left, is to prove, that D is closed: To this end, let (Nn)n∈N ⊆ D be a sequence
with

Nn
n→∞−−−→ N ∈ Bb,c.

Then it follows that (σ(Nn)(z,±1))n∈N are Cauchy-sequences in C for all z ∈ [0, 1], since

σ is continuous. Hence there exist c± ∈ C, such that σ(Nn)(z,±1)
n→∞−−−→ c± (for all

z ∈ [0, 1]). But this implies

|σ(N)(z,±1) − c±| ≤ |σ(N −Nn)(z,±1)| + |σ(Nn)(z,±1) − c±|
≤ C||N −Nn|| + |σ(Nn)(z,±1) − c±|

n→∞−−−→ 0,

which shows that N ∈ D and we have proved that D is a C∗-subalgebra of Bb,c. Moreover,
by 5.2.2 we have

K∗(D/Kb,c) ∼= K∗(C (S1)),

so we can use the same argument as in the proof of the previous theorem to compute the
K-theory of D. Note, that 5.2.6 actually proves that one can find an index one operator
in D.

Let D̂ denote the set
D̂ :=

{
N ∈ D : Ib(N)|Γa0

= 0
}
. (5.2.7)

Then D̂ is a closed two sided ideal in D, since D̂ is given as the kernel of a linear ∗-
homomorphism.

Theorem 5.2.9. We have Ki(D̂) = 0 (i = 0, 1).

Proof. First note, that the map A 7→ Ib(A)|Γa0
induces an isomorphism

D/D̂ ∼= C ([−1, 1]).

And we have the split exact sequence

0 // C0(R) // C (S1) ev
// C //

rr
0,

where ev denotes the point evaluation. Consequently ev∗ induces an isomorphism

K0(C (S1)) ∼= Z

in K0. Now we consider the commutative diagram and its image through the K0-functor

D
π

��

ϕ // C ([−1, 1])

ev

��
C (S1)

ev // C

K0(D)

∼=
��

K0(ϕ) // K0(C ([−1, 1]))

∼=

��
K0(C (S1))

∼= // Z,

� K0 //
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where π is the map from 5.2.8 and ϕ := Ib(·)|Γa0
. We conclude, that K0(ϕ) is also an

isomorphism. Then the short exact sequence

0 −→ D̂ −→ D −→ C ([−1, 1]) −→ 0

induces the following six term exact sequence

K0(D̂) // Z
∼= // Z

��

0

OO

0oo K1(D̂)oo

,

in K-theory. This proves our claim.

Corollary 5.2.10. Let X be a compact manifold with boundary ∂X. Then we have

Ki(C (S∗∂X) ⊗ D̂) = 0.

Proof. S∗∂X is a compact Hausdorff space, thus the Künneth theorem for tensor products
[16, Theorem 23.1.3] (see also [16, 22.3.5 (d)]) yields the assertion.

5.3 K-theory for operators on conformally compact

spaces

By [65, Lemma 5.1.4] Ψ0
0(X,

0Ω
1
2 ) can be realized as a symmetric subalgebra of the C∗-

algebra L (%aL2(X, 0Ω
1
2 )). To shorten notation, let us denote the compact operators in

L (%aL2(X, 0Ω
1
2 )) by K(a)

0 . Then we have a joint-symbol map given by

τ0 := (0σ(0),N ν
% ) : Ψ0

0(X,
0Ω

1
2 ) −→ C (0S∗X) ⊕ C (S∗∂X,B(a)

b,c ) =: Q(a),

where B(a)
b,c := B(a,0)

b,c . Moreover, if we denote by B(a)
0 the C∗-closure of Ψ0

0(X,
0Ω

1
2 ) in

L (%aL2(X, 0Ω
1
2 )), then we get the following exact sequence

0 −→ K(a) −→ B(a)
0 −→ Q(a)

0 −→ 0,

w̧here Q(a)
0 is given as the C∗-closure of τ0(Ψ

0
0(X,

0Ω
1
2 )) in the C∗-algebra Q(a). Finally

let us denote by 0σ(0) resp. by N ν
% the composition of τ0 with the projection onto the first

resp. the second component of Q(a).

Remark 5.3.1. To avoid clumsy notation and since two closures of Ψ0
0(X,

0Ω
1
2 ) with

respect to different weighted L2(X, 0Ω
1
2 ) spaces only differ by a Hilbert space isometry

(cf. (5.1.6)), we will suppress all indices dealing with a, i.e. we will write K0, B0 etc.

instead of K(a)
0 and B(a)

0 .
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Let us give a brief overview of some results concerning the range of the reduced normal
operator. To this end we define

Bb,c(S∗∂X) := R
(
N ν
% : B0 −→ C (S∗∂X,Bb,c)

)
,

i.e. Bb,c(S∗∂X) denotes the range of the reduced normal operator. Note that Bb,c(S∗∂X)
is a C∗-subalgebra of the C∗-algebra C (S∗∂X,Bb,c), since the range of a ∗-morphism
between C∗-algebras is always closed. Moreover, let

·̂ : T ∗∂X \ {0} −→ S∗∂X : η 7−→ η̂

denote the natural projection. Again, the following results can be found in [65]:

Lemma 5.3.2. Let N ∈ Bb,c(S∗∂X) be arbitrary.

(i) b,cσ(0,0)(N(η̂))(z, ξ) depends only on π(η̂) ∈ ∂X and the sign of ξ ∈ R \ {0}.

(ii) The equation

σ
(0)
B (Ic(N(η̂)))(±1) = b,cσ(0,0)(N(η̂))(1,±1)

= b,cσ(0,0)(N(η̂))(0,±1) = σ
(0)
B (Ib(N(η̂)))(±1)

holds for all arbitrary η ∈ T ∗∂X \ {0}.

(iii) The function Ib(N(η̂)) ∈ B(Γa) depends only on π(η̂) ∈ ∂X.

Proof. See [65, Lemma 7.4.1].

This last lemma leads to the following characterization of Q0:

Proposition 5.3.3. The C∗-algebra Q0 of joint 0-symbols consists of all pairs

(f,N) ∈ C (0S∗X) ⊕ Bb,c(S∗∂X)

satisfying for each η ∈ T ∗∂X \ {0} the following compatibility conditions:

b,cσ(0,0)(N(η̂))(z, ξ) = f0(j%(0, (π(η), ξ))) (5.3.1)

Ic(N(η̂))(ξ/|η|s) = f0(j%(η, (π(η), ξ))), (5.3.2)

where (z, ξ) ∈ b,cT ∗M \ {0} and ξ ∈ R. Here f0 ∈ C (0T ∗X \ {0}) is the function
homogeneous of degree 0 in the fibres, that corresponds naturally to f ∈ C (0S∗X), i.e.

f0(ζ) = f(ζ̂) for all ζ ∈ 0T ∗X \ {0}.

Proof. See [65, Proposition 7.5.1].

Lemma 5.3.4. Let J denote the set of all N ∈ C (S∗∂X,Bb,c) satisfying Ib(N(η̂)) = 0 for
all η̂ ∈ S∗∂X, b,cσ(0,0)(N(η̂))(z, 1) = c1 and b,cσ(0,0)(N(η̂))(z,−1) = c2 for all z ∈ [0, 1].
Then J is a closed, two-sided ideal in Bb,c(S∗∂X).



5.3 K-theory for operators on conformally compact spaces 89

Proof. Let N ∈ J be arbitrary. Then by (5.2.3)

c1 = b,cσ(0,0)(N(η̂))(z, 1) = b,cσ(0,0)(N(η̂))(0, 1)

= σ
(0)
B (Ib(N(η̂)))(1) = 0,

which shows that c1 = 0 = c2. Therefore J is a closed selfadjoint ideal and what remains,
is to show that J ⊆ Bb,c(S∗∂X) holds. First note, that by our previous discussion

σ
(0)
B (Ic (N(η̂))) (±1) = 0 ∀ η̂ ∈ S∗∂X,

which shows that Ic (N(η̂)) ∈ C0(Rξ). By [65, Lemma 7.4.2 (b)] the ∗-morphism A 7−→[
(η̂, ξ) 7→ Ic

(
N ν
% (A)(η̂)

)
(ξ)
]

induces a surjective map

Ic ◦ N ν
% : ker(b,cσ(0,0) ◦ N ν

% ) ∩ ker(Ib ◦ N ν,a
% ) −→ C0(S

∗∂X ×Rξ);

therefore we can find A ∈ ker(b,cσ(0,0) ◦ N ν
% ) ∩ ker(Ib ◦ N ν

% ) ⊆ B(a)
0 (X, 0Ω

1
2 ), such that

Ic(N ν
% (A)) = Ic(N). This implies

N −N ν
% (A) ∈ C (S∗∂X,Kb,c),

where Kb,c := K(a,0)
b,c and we get N ∈ Bb,c(S∗∂X), since C (S∗∂X,Kb,c) ⊆ Bb,c(S∗∂X) by

[65, Lemma 7.4.2 (a)].

The following lemma is a reformulation of [65, Proposition 7.4.3]:

Lemma 5.3.5. The map b,cσ(0,0) ◦ N ν
% : B0 −→ C (∂X) ⊕ C (∂X) is onto.

Proof. The lemma follows from [65, Proposition 7.4.3]; notice, that

b,cσ(0,0) ◦ N ν
% = F1 ◦ N ν

%

in the proof of [65, Proposition 7.4.3] and that the desired operator can be found in

Ψ0
0(X,

0Ω
1
2 ).

Proposition 5.3.6.

(i) We have Bb,c(S∗∂X)/J ∼= C (∂X × [−1, 1]).

(ii) For the kernel of N ν
% we have: ker

(
N ν
%

)
/K0

∼= C0(S
∗X̊).

Proof. Consider the mappings

F : Bb,c(S∗∂X) −→ C (∂X × [−1, 1]),

N 7−→ Ib(N);

G : ker
(
N ν
%

)
−→ C0(S

∗X̊),

A 7−→ 0σ(0)(A).



90 Chapter 5 K-theory for conformally compact spaces

(i) The first part of the proposition follows, if we show that F is onto, since it is clear,
that J is the kernel of F . By [65, Proposition 7.3.2] we see, that

∀ A ∈ B0, ∀ η̂ ∈ S∗∂X : Ib(N ν
% (A)(η̂)) ∈ B(Γa) ∼= C ([−1, 1]) and

∀N ∈ Bb,c(S∗∂X), ∀η̂1, η̂2 ∈ S∗∂X : Ib(N(η̂1)) = Ib(N(η̂2)),

which shows, that the map F is well-defined, and it remains to check surjectivity. So let
h ∈ C (∂X × [−1, 1]) be arbitrary. We define

g1(y) := h(y, 1) and g2(y) := h(y,−1) (y ∈ ∂X),

then g := g1 ⊕ g2 ∈ C (∂X) ⊕ C (∂X) and we can find A ∈ B0 with b,cσ(0,0)(N ν
% (A)) = g

using 5.3.5. Now

b,cσ(0,0)(N ν
% (A)(η̂))(0,±1) = σ

(0)
B (Ib(N ν

% (A)(η̂)))(±1),

thus h0 := Ib(N ν
% (A)(η̂)) − h ∈ C0(∂X × Γa), where we used the identification of [−1, 1]

with the two point compactification of the weightline Γa. Now, by [65, Lemma 7.4.2 (c)]
the map

Ib ◦ N ν
% : ker(0σ(0)) −→ C0(∂X × Γa)

is onto. Consequently, we can find an operator B ∈ ker(0σ(0)) ⊆ B0 with Ib(N ν
% (B)) = h0.

But then the operator C := A−B fulfils

Ib(N ν
% (C)) = Ib(N ν

% (A)) − Ib(N ν
% (B)) = h

and we have finished the proof of (i).
(ii) Let A ∈ B0 be with N ν

% (A) = 0 and ζ ∈ 0T ∗X|∂X \ {0} be arbitrary. By (5.1.3) and
(5.1.4) we find η ⊕ (y, ξ) ∈ T ∗∂X ⊕ (∂X × R), such that j%(η, (y, ξ)) = ζ (note, that
π(η) = y). Now, if η 6= 0, we conclude by (5.3.2)

0σ̃(0)(A)(ζ) = 0σ̃(0)(A)(j%(η, (y, ξ)))

= 0σ̃(0)(A)(j%(η, (π(η), ξ)))

= Ic(N ν
% (A)(η̂))(ξ/|η|s) = 0,

where 0σ̃(0) is the function corresponding to 0σ(0) cf. 5.3.3. Conversely, if η = 0 (note that
again π(η) = y holds) we get

0σ̃(0)(A)(ζ) = 0σ̃(0)(A)(j%(0, (y, ξ)))

= 0σ̃(0)(A)(j%(0, (π(η), ξ)))

= b,cσ(0,0)(N ν
% (A))(η̂)(z, ξ) = 0.

This shows, that 0σ(0)(A) vanishes at 0S∗X|∂X , i.e.

0σ̃(0)(A) ∈ C0(
0S∗X̊) ∼= C0(S

∗X̊)

(the last isomorphism holds, since TX̊ ∼= 0TX̊) and G is well-defined. It remains to
show, that G is surjective. Since the range of a ∗-homomorphism is always closed and
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Cc(S
∗X̊) is dense in C0(S

∗X̊) it is enough to show, that for all f ∈ Cc(S
∗X̊) there exists

an operator A ∈ ker(N ν
% ), such that 0σ(0)(A)(0) = f . So let f ∈ Cc(S

∗X̊) be arbitrary.

Since f is only supported in a compact subset K of the interior X̊ of X, we can find an
operator A ∈ B(a)

0 which is zero outside an open neighbourhood V of K with V ∩ ∂X = ∅
and 0σ(0)(A) = f . Clearly A ∈ ker(N ν

% ), since A is zero at the boundary.

Proposition 5.3.7.

(i) Ki(Bb,c(S∗∂X)/J ) ∼= Ki(C (∂X)) holds for i = 0, 1.

(ii) We have Ki(J ) = 0 for i = 0, 1.

(iii) Ki(Bb,c(S∗∂X)) is isomorphic to Ki(C (∂X)) (i = 0, 1).

Proof. (i) This is clear since Bb,c(S∗∂X)/J ∼= C (∂X × [−1, 1]) and ∂X × [−1, 1] 'h ∂X.

(ii) By definition J = C (S∗∂X, D̂), where D̂ is given by (5.2.7). Now, Ki(J ) = 0 follows
by 5.2.10.
(iii) This follows from (ii) and the six term exact sequence in K-theory associated to the
exact sequence

0 −→ J −→ Bb,c(S∗∂X) −→ Bb,c(S∗∂X)/J −→ 0.

The following proposition is certainly well-known and can be found in [109, (8.3)
Lemma] (without proof):

Proposition 5.3.8. Let the following diagram of abelian groups and homomorphisms be
commutative with exact rows:

· · · // A′
i

f ′i // B′
i

g′i // C′
i

h′i // A′
i+1

// · · ·

· · · // Ai
fi //

ai

OO

Bi
gi //

bi

OO

Ci hi //

ci

OO

Ai+1

ai+1

OO

// · · ·

Furthermore suppose, that ci : Ci −→ C′
i is an isomorphism for all i ∈ N. Then the

following sequence is exact:

· · · −→ Ai
(ai,−fi)−−−−→ A′

i ⊕ Bi
〈f ′i ,bi〉−−−→ B′

i

hic
−1
i g′i−−−−→ Ai+1 −→ · · ·

Here, the map 〈f ′
i , bi〉 is given by f ′

i(αi) + bi(βi).

Proof. (i) Let (α′
i, βi) ∈ ker〈f ′

i , bi〉 be arbitrary, i.e. f ′
i(α

′
i) + bi(βi) = 0. Applying g′i to

this, we get g′i (f
′
i(α

′
i) + bi(βi)) = 0 which implies g′i(bi(βi)) = 0, since g′i ◦ f ′

i ≡ 0 by the
exactness of the upper row. This gives c−1

i (g′i(bi(βi))) = 0 and we conclude gi(βi) = 0 by
the commutativity of the diagram. Therefore we can find αi ∈ Ai, such that fi(αi) = βi.
Note, that we have fi(αi+hi−1(γi−1)) = βi for all γi−1 ∈ Ci−1 by the exactness of the lower
row. By commutativity we get bi(fi(αi)) = f ′

i(ai(αi)), which implies f ′
i(ai(αi) + α′

i) = 0.
So again, we can find γ′i−1 ∈ C′

i−1, such that h′i−1(γ
′
i−1) = ai(αi) + α′

i. This gives

ai(hi−1(c
−1
i−1(γ

′
i−1))) = ai(αi) + α′

i,
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since the diagram commutes and ci−1 is an isomorphism. But then ai(hi−1(c
−1
i−1(γ

′
i−1)) −

αi) = α′
i and ker〈f ′

i , bi〉 ⊆ r (ai,−fi). Clearly, r (ai,−fi) ⊆ ker〈f ′
i , bi〉 since the diagram

commutes, which gives exactness at A′
i ⊕ Bi.

(ii) Exactness at B′
i: Let β′

i ∈ ker(hic
−1
i g′i) be arbitrary. Then we have c−1

i g′i(β
′
i) ∈ kerhi

and we find βi ∈ Bi, such that g(βi) = c−1
i g′i(β

′
i) by the exactness of the lower row. We

get
g′i(β

′
i − bi(βi)) = g′i(β

′
i) − g′ibi(βi) = g′i(βi) − cigi(βi) = 0

by commutativity and the fact, that ci is an isomorphism. Again we can find αi ∈ Ai,
such that f ′

i(α
′
i) = β′

i − bi(βi) by the exactness of the upper row. But this implies
〈f ′
i(α

′
i), bi(βi)〉 = f ′

i(α
′
i) + bi(βi) = β′

i, i.e. ker(hic
−1
i g′i) ⊆ r 〈f ′

i , bi〉. On the contrary, if
βi ∈ r 〈f ′

i , bi〉 is given, we find α′
i ∈ A′

i and βi ∈ Bi, such that βi = f ′
i(α

′
i) + bi(βi). We

deduce
hic

−1
i g′i(βi) = hic

−1
i g′if

′
i︸︷︷︸

=0

(α′
i) + hi c

−1
i g′ibi︸ ︷︷ ︸
=gi

(βi) = 0

by exactness and commutativity. The reversed inclusion r 〈f ′
i , bi〉 ⊆ ker(hic

−1
i g′i) follows.

(iii) Exactness at Ai+1: Let αi+1 ∈ ker(ai+1,−fi+1), i.e. ai+1(αi) = 0 = −fi+1(αi+1). By
exactness of the lower row, we find γi ∈ Ci such that hi(γi) = αi+1. This implies

h′ici(γi) = ai+1hi(γi) = ai+1(αi+1) = 0

i.e. there exists an element b′i ∈ B′
i, such that g′i(b

′
i) = ci(γi) by the exactness of the upper

row. Therefore
hic

′−1
i g′i(β

′
i) = hic

−1
i ci(γi) = hi(γi) = αi+1,

and we have proven ker(ai+1,−fi+1) ⊆ r (hic
′−1
i g′i). Finally, let αi+1 ∈ r (hic

−1
i g′i) be

arbitrary; choose β′
i ∈ B′

i, such that hic
−1
i g′i(β

′
i) = αi+1. Since ai+1hic

−1
i = h′i we conclude

ai+1hic
−1
i g′i(β

′
i) = h′ig

′
i(β

′
i) = 0

by exactness of the upper row. Moreover, fi+1hi = 0 which gives −fi+1hic
−1
i g′i(β

′
i) = 0

and shows r (hic
′−1
i g′i) ⊆ ker(ai+1,−fi+1).

Lemma 5.3.9. Let A, B and C be abelian groups, α : A → A⊕B the canonical injection
a 7→ (a, 0) and β : A → C be a group homomorphism. Then

(A⊕ B ⊕ C) /m(A) ∼= B ⊕ C

holds, where m : A → A⊕ B ⊕ C is given by m(a) := (α(a),−β(a)).

Proof. Let ϕ : B ⊕ C −→ (A⊕ B ⊕ C) /m(A) be the map given by

ϕ : B ⊕ C 3 (b, c) 7−→ [0, b, c] ∈ (A⊕ B ⊕ C) /m(A).

Then ϕ is injective, since ϕ(b, c) = 0 implies

(a, b, c− β(a)) = (ã, 0,−β(ã)).
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Thus b = 0, a = ã and therefore c = 0.
To prove surjectivity, let [a, b, c] ∈ (A⊕ B ⊕ C) /m(A) be arbitrary. Then

[a, b, c] = (a+ a1, b, c− β(a1))

= (a+ a1, 0,−β(a+ a1)) + (0, b, c+ β(a)),

i.e. ϕ(b, c + β(a)) = [a, b, c]. This shows that ϕ is a group isomorphism and we have
proved the lemma.

Remark 5.3.10. Let us note, that (5.3.3) enables us to give the inverse of ϕ used in the
last proof, namely

ϕ−1 : [a, b, c] 7−→ (b, c+ β(a)). (5.3.3)

Proposition 5.3.11. The map ϕ : C (∂X) −→ Bb,c(S∗∂X) defined by

ϕ : f 7−→ N (Mg), g ∈ C (X) such that g|∂X = f,

induces isomorphisms ϕ∗ : K∗(∂X) −→ K∗(Bb,c(S∗∂X)). Here Mg ∈ B0 denotes the
multiplication operator given by the multiplication with g.

Proof. By 5.3.7 the canonical projection

π : Bb,c(S∗∂X) −→ Bb,c(S∗∂X)/J

induces isomorphisms

π∗ : K∗(Bb,c(S∗∂X)) −→ K∗(C (∂X))

in K-theory. Since ϕ injects, we get

ϕ : C (∂X) −→ r(ϕ) ⊆ Bb,c(S∗∂X)

to be a C∗-algebra isomorphism. Let f ∈ C (∂X) be arbitrary and g ∈ C (X) be with
g|∂X = f . We choose a local coordinate patch V given by (5.1.2), which yields a trivial-
ization T ∗∂X|∂X∩V

∼= Rn−1
y ×Rn−1

η and get

[N ν
% (Mg)(y, η)]h(x) = g(0, y)h(x) = f(y)h(x) (h ∈ C

∞(M, b,cΩ
1
2 ))

according to [65, Proposition 4.6.1]. This shows r(ϕ) ∼= C (∂X) and we conclude

ϕ∗ : K∗(C (∂X))
∼=−→ K∗(C (∂X)) ∼= K∗(Bb,c(S∗∂X)).

Let m denote the natural identification of elements f ∈ C (X) with their induced

multiplication operator Mf in B0(X,
0Ω

1
2 ). To shorten notation and for systematic reasons

(see 5.3.12) let B0 =: B, K0 =: K and ker(N ν
% ) =: I.

Remark 5.3.12. A careful comparison of the results for this 0-setting and the results in
[80] and [79] shows, that one could use the same arguments as in the case of Boutet de
Monvel calculus to prove the following theorem. Anyway, the proof provided here is very
short and works also for Boutet de Monvel’s algebra.
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Theorem 5.3.13. The commutative diagram

0 // I/K // B/K // B/I // 0

0 // C0(X̊)
l //

m

OO

C (X) //

m

OO

C (∂X) //

ϕ

OO

0

with exact rows induces an isomorphism

K∗(B/K) ∼= K∗(C (X)) ⊕K∗−1(C0(T
∗X̊)). (5.3.4)

Before we give the proof of this theorem let us fix some notation first: Let p : C0(X̊) −→
C0(S

∗X̊) denote the pull-back of functions under the bundle projection S∗X̊ −→ X̊.
Moreover, we denote by B∗X̊ the unit ball bundle of X̊; note, that C0(X̊) is homotopy
equivalent to C0(B

∗X̊). Finally notice, that the composition of the isomorphism I/K ∼=
C0(S

∗X̊) with m corresponds to p and we will use this fact in the following proof without
any comment.

Proof. We have I/K ∼= C0(S
∗X̊) and

K∗(C0(S
∗X̊)) ∼= K∗(C0(X̊)) ⊕K∗−1(C0(T

∗X̊)).

Moreover, p∗ : K∗(C0(X̊)) −→ K∗(C0(S
∗X̊)) corresponds to the canonical injection

ι∗ : K∗(C0(X̊)) ↪→ K∗(C0(X̊)) ⊕K∗−1(C0(T
∗X̊))

under this identification [79, Proposition 11] (note, that this also implies K∗(C (X)) ↪→
K∗(B/K) by the five lemma). Using this and our previous observations, we get the
following commutative diagram with exact rows:

· · · // K∗(C0(S
∗X̊)) // K∗(B/K) // K∗(C (∂X)) // · · ·

· · · // K∗(C0(X̊))
l∗ //

?�

p∗

OO

K∗(C (X)) //

OO

K∗(C (∂X)) // · · ·

which fits into 5.3.8. Consequently, the following sequence

−→ K∗(C0(X̊))
(p∗,−l∗)−−−−→ K∗(C0(S

∗X̊)) ⊕K∗(C (X)) −→ K∗(B/K) −→

is exact. Since p∗ is an injection, it follows that

K∗(C0(X̊)) ↪→ K∗(C0(S
∗X̊)) ⊕K∗(C (X)).

This leads to the short exact sequence

0 −→ K∗(C0(X̊)) −→ K∗(C0(S
∗X̊)) ⊕K∗(C (X)) −→ K∗(B/K) −→ 0.
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If we denote h∗ := (p∗,−l∗), we conclude (using the identifications stated above)

K∗(B/K) ∼=
(
K∗(C0(S

∗X̊)) ⊕K∗(C (X))
)
/h∗

(
K∗(C0(X̊))

)

∼=

(
K∗(C0(X̊)) ⊕K∗−1(C0(T

∗X̊)) ⊕K∗(C (X))
)

h∗

(
K∗(C0(X̊))

) .

By 5.3.9 K∗(B/K) ∼= K∗−1(C0(T
∗X̊)) ⊕K∗(C (X)) follows.

Proposition 5.3.14. We have

K1(B0) ∼= ker (ind : K1 (B0/K0) −→ Z) and

K0(B0) ∼= K0(C (X)) ⊕K1(C0(T
∗X̊)),

where ind denotes the Fredholm index map, which is surjective.

Proof. It suffices to prove that that there exists a B0 valued k-by-k-matrix, such that this
matrix has index one. But this follows similar to the proof in [67, Theorem 5.18].

5.4 The index of a fully elliptic operator on a conformally

compact space

To calculate the index, we have to introduce 0-operators acting between sections of finite
dimensional vector bundles E1, E2 −→ X. First of all note, that we can assume that
our operators act between the same bundles: Since X has a non empty boundary, there
exists a section of 0S∗X. Thus the symbol of an elliptic operator gives an isomorphism
between E1 and E2 and we restrict ourselves to the case E1 = E2 =: E . Now, choose a
complement F of E , such that E ⊕F = Cn for a suitable n ∈ N, where Cn denotes the n-
dimensional trivial bundle. Thus, we consider the algebra Ψm

0 (X;Cn) := Ψm
0 (X;Cn,Cn)

of all operators

Ã =

(
id 0
0 A

)
:
C ∞(X,F)

⊕
C ∞(X, E)

−→
C ∞(X,F)

⊕
C ∞(X, E)

.

Note, that ind Ã = indA and we will write A instead of Ã in what follows to simplify
notation. Let us recall the characterization of Fredholm operators in Ψm

0 (X;Cn) given in
[65]:

Proposition 5.4.1. Let a ∈ R be arbitrary and A ∈ Ψm
0 (X;Cn) be with 0σ(A)(ζ) 6= 0 for

all ζ ∈ 0S∗X. Then the operator

A : %a
NHs

0(X;Cn) −→ %a
NHs−m

0 (X;Cn)

is Fredholm provided the reduced normal operator

N%N (A)(η) : %a
0%

a1
1 Hm

b,c(M ;Cn
π(η)) −→ %a

0%
a1−m
1 L2

b,c(M ;Cn
π(η))

is invertible for all η ∈ T ∗∂X \ {0} and some, hence any a1 ∈ R.
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Therefore an operator is Fredholm, if it is fully elliptic. Before we state an index formula
for Fredholm operators of order 0 let us make some remarks. First of all note, that by
general group theory (5.3.4) induces a short exact split sequence

0 // K1(C (X)) // K1(B0/K0) π
// K0(C0(T

∗X̊)) //
uu

0

of abelian groups. And we see:

Lemma 5.4.2. Every fully elliptic operator in B0 can be (stably) deformed to a direct
sum of an operator which is the identity near the boundary, and a multiplication operator
by a bundle endomorphism on X.

Let 2X denote the double of X, i.e. the manifold that is obtained by gluing X along
the boundary. We will write X1 resp. X2 for X, if we need to distinguish the ”right” and
the ”left” component of 2X. On K0(T ∗2X) we have the topological index map, i.e. the
push forward to a point

ind t : K0(T ∗2X) −→ K0({•}) ∼= Z,

which gives rise to a topological index for K0(C0(T
∗X̊)):

ind t : K0(C0(T
∗X̊)) ∼= K0(T ∗X̊) ↪→ K0(T ∗2X) −→ Z. (5.4.1)

If A ∈ B0 is an operator that is the identity in a collar neighbourhood near the boundary,
there exists an elliptic pseudodifferential operator Â ∈ Ψ0(2X,Cn), such that Âf = Af

whenever f is supported in X, namely Âf := Af|X1 + Aα(f|X̊2
). Here α : 2X −→ 2X

denotes the flip, i.e. the diffeomorphism that interchanges X0 and X1 in 2X. Since Â is
the identity near the boundary and coincides with A on X, we have Âf = 0 if and only
if A(f|X1) = 0 and A(α(f|X2)) = 0, which gives

ind Â = 2indA.

2X is a compact manifold without boundary, thus the Atiyah-Singer index theorem yields

ind Â = ind t ◦ δ [σ(Â)], (5.4.2)

where σ denotes the homogeneous principal symbol map on Ψ0(2X,Cn) (the closure of
the algebra of 0-order pseudodifferential operators with respect to L2(2X,Cn)), [σ(â)] the
K-class of σ(â) in K1(C (S∗2X)) and δ is the index map associated to the six term exact
sequence in K-theory of the short exact sequence

0 −→ C0(T
∗2X) −→ C (B∗2X) −→ C (S∗2X) −→ 0.

Here B∗2X resp. S∗2X is the cobundle of the ball - resp. sphere-bundle of T2X −→ X.
Let γ : C0(T

∗X̊) ⊕ C0(T
∗X̊) −→ C (T ∗2X) be the map given by

γ : f1 ⊕ f2 7−→





f1(ζ), ζ ∈ T ∗2X|X̊1
,

f2(ζ), ζ ∈ T ∗2X|X̊2
,

0, ζ ∈ T ∗2X|∂X .
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Then γ1(f) := γ(f ⊕ 0) resp. γ2(f) := γ(0 ⊕ f) corresponds to the inclusion of C0(T
∗X̊)

in C (T ∗2X) at the ”right” resp. ”left” side of 2X. Note that we have

α∗γ∗(m⊕ 0) = γ∗(0 ⊕m) (m ∈ K0(C0(T
∗X̊)))

by the naturality of the induced maps.

Theorem 5.4.3. Let A ∈ B0 be a Fredholm operator. Then the index of A is given by:

indA = ind t(π([τ0(A)])),

where [τ0(A)] denotes the K1 class of the joint symbol of A in B0/K0.

Proof. We have the following diagram, where the horizontal row is exact:

0 // K1(C (X)) // K1(B0/K0)

ind

��

π // K0(C0(T
∗X̊))

ind t

��

// 0

Z Z

Clearly ind = ind t on K1(C (X)) since K1(C (X)) is on the one hand given by classes
of (invertible) multiplication operators, therefore their index vanishes, and on the other
hand it is mapped to zero by the exactness of the upper row.

So, by 5.4.2 we can assume, that A is given by an operator that is a bundle isomorphism
in a collar neighbourhood of the boundary. Using the map γ1,∗ we get

2γ1,∗(π[τ0(A)]) = γ∗ (π[τ0(A)] ⊕ 0) + α∗γ∗ (0 ⊕ π[τ0(A)]) .

Since the topological index is independent of α, we conclude

2ind t (γ1,∗(π[τ0(A)])) = ind tγ∗ (π[τ0(A)] ⊕ π[τ0(A)]) .

Note, that ind t ◦ γ1,∗ is the definition of the topological index for C0(T
∗X̊) cf. (5.4.1)

and γ∗(π[τ0(A)]⊕ π[τ0(A)]) = δ[σ(Â)] by the very definition of the map γ and that of the

K-classes π[τ0(A)] and δ[σ(Â)]. This in orchestra with (5.4.2) gives

ind t(π[τ0(A)]) = ind t (γ1,∗(π[τ0(A)])) =
ind t ◦ δ [σ(Â)]

2
= indA,

which proves the index theorem.

5.5 The Dirac operator

In the sequel we assume, that X has an additional spin structure and that dimX = n ≥ 2.
Then this spin structure on X canonically induces a spin structure on ∂X. If dimX = n
is odd, then the restriction to ∂X of the spinor bundle ΣX of X is precisely the spinor
bundle on ∂X, i.e. ΣM|N = Σ∂X. If n is even, then ΣX|N

∼= Σ∂X ⊕ Σ∂X holds. Note,
that we will suppress the density bundles in what follows to shorten notation.
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Let us denote by DX the Dirac operator on X (with respect to the smooth metric h),

which is given by DX =
n∑
i=1

c(X i)∇ΣX
Xi

, where

∇ΣX
Xj
ϕ = [b,Xj(σ)] +

1

2

∑

k<l

Γljkc(X
k)c(X l)ϕ

for a spinor field ϕ = [b, σ] and the Γljk are the Christoffel symbols. If ν denotes a unit
normal field with respect to ∂X we get the following decomposition formula for the Dirac
operator (cf. for example [11, formula (3.6)] and the references given there)

DX = −c(ν)D∂X − 1

2
tr(W )c(ν) + c(ν)∇ΣX

ν , (5.5.1)

for sections of ΣX defined in a neighbourhood of ∂X. If we denote by D0 the Dirac
operator with respect to the 0-metric g, then

D0 = %N%
n−1

2
N DX%

−n−1
2

N = %
n+1

2
N DX%

−n−1
2

N

holds by the usual formula for conformal changes (cf. [69, Chapter 2, §5 Theorem 5.24]).
This in connection with (5.5.1) and [69, Chapter 2, §5 Lemma 5.5] gives

D0 = %
n+1

2
N

(
%
−n−1

2
N DX + c(d(%

−n−1
2

N ))
)

= %ND
X − n− 1

2

n∑

i=1

Xi(%N)c(X i)

= %N

(
−c(ν)D∂X − 1

2
tr(W )c(ν) + c(ν)∇ΣX

ν

)

− n− 1

2

n∑

i=1

Xi(%N)c(X i).

Here d denotes the total differential. Before we calculate the reduced normal operator of
the above terms separately, let us fix some notation: To be consistent with the formulas
given by [65, Proposition 4.6.1] let (x, y) : X ⊇ V −→ R+ × Rn−1

y coordinate chart in a
neighbourhood of the boundary of X. Using this chart, we will identify ν = Xn with ∂x
and Xi with ∂yi (i = 1, . . . n− 1) in the following calculations. Moreover note, that by a
Taylor expansion %N(x, y) = xa(x, y) where a(0, y) > 0 for all y ∈ ∂X holds. Let us first



5.5 The Dirac operator 99

treat the term involving the connection on the spinor bundle:

%Nc(ν)D
∂Xϕ = %Nc(ν)

n−1∑

i=0

c(X i)∇Σ∂X
Xi

ϕ

= %Nc(ν)
n−1∑

i=0

c(X i)∇Σ∂X
Xi

ϕ

= %Nc(ν)
n−1∑

i=0

c(X i)[b,Xi(σ)]

+
1

2
%Nc(ν)

n−1∑

i=0

c(X i)
∑

k<l

Γljkc(X
k)c(X l)

︸ ︷︷ ︸
(∗)

ϕ

and

%Nc(ν)∇ΣX
ν ϕ = %Nc(ν)

(
[b,Xn(σ)] +

1

2

∑

k<l

Γlnkc(X
k)c(X l)ϕ

)
.

The term (∗) vanishes for x = 0 and has order zero, therefore its reduced normal operator
vanishes. This gives:

N
(
%Nc(ν)

(
−D∂X + ∇ΣX

ν

))
ψ

= a(0, y)c(ν)

(
n−1∑

j=0

c(Xj)[e,−iηjxω] + [e, x∂xω]

)
.

For a spinor field ψ = [e, ω]. The term −%N tr(W )c(ν) has order zero and vanishes for
x = 0, so again the reduced normal operator also vanishes. Finally we get:

n∑

i=1

Xi(%N)c(X i) =

(
a(x, y)c(Xn) +

n∑

i=1

xXi(a(x, y))c(X
i)

)
.

Here, the reduced normal operator of the second term vanishes, too, while the first term
contributes as a non-vanishing zero order term. Summarized we get:

Proposition 5.5.1. The reduced normal operator of D0 is given by:

N (D0)(y, η)ψ

= a(0, y)c(ν)

(
n−1∑

j=0

c(Xj)[e,−iηjxω] + [e, (x∂x −
n− 1

2
)ω]

)

for ψ = [e, ω].
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Since D0 is (essentially) self adjoint (cf. [69, §5 Theorem 5.7]), N (D0)(y, η) has this
property, too, where (y, η) ∈ Rn−1

y ×Rn−1
η cf. [65, Proposition 4.5.2]. And we have

b,cσ(N (D0)(y, η))(z, ξ) = ia(0, y)c(ν)ξ,

Ib(N (D0)(y, η))(w) = a(0, y)c(ν)

(
−n− 1

2
+ iw

)
, (5.5.2)

I(1)
c (N (D0)(y, η))(ξ) = ia(0, y)c(ν)

(
ξ +

n∑

j=1

c(Xj)ηj

)
,

where b,cσ := b,cσ(1,1). Note that we again used the formulas and coordinates according to
[65, Proposition 4.6.1]. Let a0 ∈ R be arbitrary, then we deduce from (5.5.2):

Ib(N (D0)(y, η))(w − ia0) = a(0, y)c(ν)

(
−n− 1

2
+ iw + a0

)
(5.5.3)

and get (cf. [65, Proposition 4.5.4]):

Proposition 5.5.2. The reduced normal operator of the Dirac operator D0 is a smooth
family

N (D0) : T ∗∂X \ {0} → L (%a0
0 %

a1
1 Hs

b,c(ΣM), %a0
0 %

a1−1
1 Hs−1

b,c (ΣM))

of Fredholm operators for any a1 ∈ R, provided a0 6= n−1
2

.

Proof. We have −n−1
2

+iw+a0 = 0 if and only if w = 0 and a0 = n−1
2

. Moreover, a(0, y) 6=
0 holds for all y ∈ ∂X and c(ν) is invertible. Now, (5.5.3) implies Ib(N (D0)(y, η))(w −
ia0) 6= 0 for all y ∈ ∂X and all w ∈ R if a0 = n−1

2
and we get the desired property by [65,

Proposition 4.5.4].

Remark 5.5.3. Let us make a short remark about the notation ΣM used here: Since
M = [0, 1] is an one dimensional manifold, the corresponding Spin(1)-structure is just two
copies of the interval itself (the double cover of the orthonormal frame bundle), thus the
associated spinor bundle ΣM is the trivial (complex) one line-bundle over M . We kept
the spin notation for systematic reasons here.

But the Dirac operator is not Fredholm for unweighted spaces:

Theorem 5.5.4. There exists 0 6= ζ ∈ T ∗∂X \{0}, such that the reduced normal operator

N (D0)(ζ) : H1
b,c(ΣM) −→ %−1

1 L2
b,c(ΣM)

of the Dirac operator is not injective. Especially,

D0 : Hs
0(ΣX) −→ Hs−1

0 (ΣX)

is not a Fredholm operator.
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Proof. Let 0 6= ϕ = [b, σ] ∈ ker (N (D0)(y, η)) be arbitrary, i.e.

a(0, y)c(ν)

[
b,

(
−i

n−1∑

j=0

c(Xj)ηjx+ x∂x −
n− 1

2

)
σ

]
= 0.

We have the identity

x
n−1

2 x∂x

(
x−

n−1
2 σ
)

= x
n−1

2 x
(
∂x(x

−n−1
2 )σ + x−

n−1
2 ∂xσ

)

=

(
x∂x −

n− 1

2

)
σ,

which gives

(
−i

n−1∑

j=0

c(Xj)ηjx+ x∂x −
n− 1

2

)
σ

= −i
n−1∑

j=0

c(Xj)ηjxσ + x
n+1

2 ∂x

(
x−

n−1
2 σ
)

= x
n+1

2

(
−i

n−1∑

j=0

c(Xj)ηj + ∂x

)
x−

n−1
2 σ

Thus, it is enough to solve the differential equation

(
−i

n−1∑

j=0

c(Xj)ηjx+ ∂x

)
σ̃ = 0,

where σ̃ := x−
n−1

2 σ. We conclude

σ̃(x) = e
−i

n−1∑
j=0

c(Xj)ηjx

v ⇐⇒ σ(x) = x
n−1

2 e
−i

n−1∑
j=0

c(Xj)ηjx

v (5.5.4)

(v ∈ Rn) and we have found an explicit solution. Now let η = (1, 0, . . . , 0), i.e. ηj = 0 for
all j 6= 1. Since c(X1)2 = −1 all eigenvalues of this matrix are ±i and we choose v in the
−1 eigenspace of c(Xi). Then we get

σ(x) = x
n−1

2 e−ic(X
1)xv = x

n−1
2 e−Exv = x

n−1
2

(
e−xv1, . . . , e

−xvn
)
,

so we can calculate:

ε1∫

0

||σ(x)||2dx
x

=

ε1∫

0

xn−2

n∑

i=0

e−2xv2
i dx

=
n∑

i=0

v2
i

ε1∫

0

xn−2e−2x dx <∞ (5.5.5)
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(ε1 > 0) and
∞∫

ε2

||σ(x)||2 dx =
n∑

i=0

v2
i

∞∫

ε2

xn−1e−2x dx <∞ (5.5.6)

(ε2 > 1) which shows, that ϕ is an element in L2
b,c(ΣM, b,cΩ

1
2 ) (see also Appendix C.1).

Moreover, we have

∂xσ(x) =
n− 1

2
x
n−3

2 e−Exv − x
n−1

2 e−Exv

for this special choice of η. Thus x∂xϕ is integrable in a neighbourhood of 0 with respect
to dx/x and ∂xϕ is integrable outside a neighbourhood of zero up to infinity with respect

to dx using an analogous calculation. Therefore ϕ ∈ H1
b,c(ΣM, b,cΩ

1
2 ) (see again Appendix

C.1).

Remark 5.5.5.

(i) Lott proved in [73, Theorem 1] under somewhat similar conditions, that the Dirac
operator D0 has no L2 kernel. However, he needed the condition dimX = 4k to
prove that zero is an element of the essential spectrum of D0 (see [73, Corollary 1]).
Lott also proved that

dim kerD0,+ = dim kerD0,−

(see [73, Corollary 5]) holds, where (cf. [15, Definition 3.4.6])

D0 =

(
0 D0,+

D0,− 0

)
.

(ii) In [89] A. Moroianu and S. Moroianu showed that the Dirac operator (D, g), with
the metric g given by

g :=
h

f
:=

dx2 + hM
f(x)2

, (5.5.7)

does not have any distributional eigenspinors of real eigenvalue inside L2 if X has
a boundary component M (not necessarily compact) that is at infinite distance
with respect to the metric g ([89, Theorem 2.1]). Note, that hereby the function
f depends only on the variable x in a neighbourhood of M and the proof of their
result relies on that fact; our boundary defining function % is not asked to fulfil this.
This assumption on f implies geometrically the existence of a non complete vector
field on X, which is gradient conformal on an open subset of X. They also prove
that the existence of a vector field on a complete manifold X, which is gradient
conformal and non-vanishing outside a compact subset of X implies that there is an
open subset of X, which is isometric to a warped product of an open cylinder and
a complete Riemannian manifold M , such that the metric decomposes like (5.5.7)
(see [89, Theorem 4.1, Proposition 4.2]). Note, that a general 0-metric needs not to
fulfil this (see also the discussion in appendix C.2); however, their function f needs
not to behave like x2 as in the case of a 0-metric.

It is also worth pointing out, that their proof makes use of a system of first order
differential equations induced directly by the Dirac operator - not for its reduced
normal operator as in our case.
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5.6 K-theory for Ψ∗-algebras on conformally compact

spaces

In this section we want to discuss the K-theory for certain Ψ∗-completions of Ψ0
0(X,

0Ω
1
2 ).

Lauter proved in [65, Proposition 8.2.1] that the algebra of operators of order 0 in the 0-
and the b-c-calculus do not admit topologies making them topological algebras with an
open group of invertible elements (see also [60, Theorem 4.7.2] for a similar result on the
b-calculus on a manifold with boundary):

Proposition 5.6.1. Neither on Ψ0
0(X,

0Ω
1
2 ) nor on Ψ0

b,c(M, b,cΩ
1
2 ) there exists a topology

giving them the structure of a topological algebra with an open group of invertible elements.
In particular, neither Ψ0

0(X,
0Ω

1
2 ) nor Ψ0

b,c(M, b,cΩ
1
2 ) can be realized as Ψ∗-algebras.

However, it is possible to construct ”Ψ∗-completions” of Ψ0
0(X,

0Ω
1
2 ) and Ψ0

b,c(M, b,cΩ
1
2 ),

that own much finer properties than the C∗- completions, using methods developed in [46]:

Proposition 5.6.2. For any a0, a1 ∈ R there exists a submultiplicative Ψ∗-algebra
Aa0,a1

b,c (M, b,cΩ
1
2 ) in the C∗-algebra Ba0,a1

b,c (M, b,cΩ
1
2 ), such that

(i) Ψ0
b,c(M, b,cΩ

1
2 ) is a dense subalgebra of Aa0,a1

b,c (M, b,cΩ
1
2 ).

(ii) A ∈ Aa0,a1

b,c (M, b,cΩ
1
2 ) extends from Ċ (M, b,cΩ

1
2 ) to a bounded operator

A : %a0
0 %

a1
1 H

s
b,c(M, b,cΩ

1
2 ) −→ %a0

0 %
a1
1 H

s
b,c(M, b,cΩ

1
2 )

for all s ∈ N0.

(iii) Let ω1, ω2 ∈ C ∞
c (]0, 1[) and a ∈ Aa0,a1

b,c (M, b,cΩ
1
2 ): Then ω1Aω2 is an ordinary com-

pactly supported pseudodifferential operator on the open manifold ]0, 1[.

Proposition 5.6.3. For any a ∈ R there exists a submultiplicative Ψ∗-algebra Aa
0(X,

0Ω
1
2 )

in the C∗-algebra Ba
0(X,

b,cΩ
1
2 ), such that

(i) Ψ0
0(M, 0Ω

1
2 ) is a dense subalgebra of Aa

0(X,
0Ω

1
2 ).

(ii) Any A ∈ Aa
0(X,

0Ω
1
2 ) extends from Ċ (X, 0Ω

1
2 ) to a bounded operator

A : %a
NH

s
0(X,

0Ω
1
2 ) −→ %a

NH
s
0(X,

0Ω
1
2 )

for all s ∈ N0.

(iii) Let ω1, ω2 ∈ C ∞
c (X̊) and A ∈ Aa

0(X,
0Ω

1
2 ): Then ω1Aω2 is an ordinary compactly

supported pseudodifferential operator on the interior X̊ of X.

Proof. See [65, Theorem 8.2.3 and Theorem 8.2.4].
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Theorem 5.6.4. The continuous and dense injection of Aa
0(X,

0Ω
1
2 ) into Ba

0(X,
0Ω

1
2 )

induces an isomorphism

K∗(Aa
0(X,

0Ω
1
2 )) ∼= K∗(Ba

0(X,
0Ω

1
2 )).

Proof. Since Aa
0(X,

0Ω
1
2 ) is a spectrally invariant Fréchet algebra and is also dense in

Ba
0(X,

0Ω
1
2 ), this follows using [17, Section A.2.2].

Remark 5.6.5. Note, that Aa
0(X,

0Ω
1
2 ) depends on various choices (for example, it de-

pends on the choice of sequences of 0-vector fields). Since Ψ∗-algebras are closed under

intersections, we can consider the algebra Ã0(X,
0Ω

1
2 ) given by the intersection over all

possible choices. We obtain a complete topological algebra with jointly continuous multi-
plication and continuous inversion having properties 5.6.3 (a)-(c) and property 1.1.1 (ii).

In particular Ã0(X,
0Ω

1
2 ) is closed under functional calculus. In general Ã0(X,

0Ω
1
2 ) is not

expected to have a Fréchet topology.

Theorem 5.6.6. The continuous and dense injection of Ã0(X,
0Ω

1
2 ) into Ba

0(X,
0Ω

1
2 )

induces an isomorphism

K∗(Ã0(X,
0Ω

1
2 )) ∼= K∗(Ba

0(X,
0Ω

1
2 )).

Proof. As noted before, Ã0(X,
0Ω

1
2 ) is a locally convex, complete topological algebra, with

continuous inversion, jointly continuous multiplication and with a continuous and dense
embedding into B0. Then using A.1.8 the claim follows.



Appendix A

K-Theory

A.1 K-theory for certain spectrally invariant algebras

Let us present a sharpening and generalization of Karoubi’s density theorem in K-theory:

K∗(A) ∼= K∗(B) (A.1.1)

for certain algebras B with suitable (dense) subalgebras A. The result presented here is
also a generalization and simplification of the appendix in [17].

Theorem A.1.1 (Karoubi 1978/79). If B is an unital Banach algebra over C and A a
continuously and dense embedded Banach-subalgebra, such that

A ∩ B−1 = A−1 and (A.1.2)

Mn(A) ∩Mn(B)−1 = Mn(A)−1, n ≥ 2 (A.1.3)

is fulfilled, then (A.1.1) holds.

First of all, let us generalize the fact that (A.1.3) is a consequence of the other assump-
tions (cf. [59], [105], [17] and [39]):

Lemma A.1.2. Let B be an unital algebra over C with a topology τB on B, which makes
B into a separated topological algebra with jointly continuous multiplication, continuous
inversion and an open group of invertible elements. Furthermore let A be an unital dense
subalgebra of B, such that

(i) there is a topology τA on A, which makes (A, τA) into a separated topological algebra
with jointly continuous multiplication,

(ii) the inversion in A−1 is continuous with respect to τA,

(iii) the natural inclusion (A, τA) ↪→ (B, τB) is continuous,

(iv) A is spectrally invariant in B, i.e. A ∩ B−1 = A−1,

Then (A.1.3) holds.

Remark A.1.3. For sequentially complete, locally convex algebras A the assumptions
(ii) of A.1.2 is superfluous if A is metrizable or submultiplicative.

105
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Proof of A.1.2. Let us first note, that the following Gauss decomposition

(
b11 b12
b21 b22

)
=

(
1 0

b21b
−1
11 1

)(
b11 0
0 b22 − b21b

−1
11 b12

)(
1 b−1

11 b12
0 1

)
, (A.1.4)

holds if b11 is invertible, where the bij are matrix elements (or even matrices themselves).
To finish preparation, let us mention that we denote by idn the identity of Mn(B) (resp.
Mn(A)) in what follows.

Now we prove, that
Mn(A) ∩ UB(idn) ⊆Mn(A)−1, (A.1.5)

where UB(idn) denotes an open neighbourhood of idn, such that b ∈ B−1 for all b ∈ UB(idn).
This will be done by induction with respect to n:

If n = 1 this is true, since A is spectrally invariant in B. So let n = 2 and choose
neighbourhoods U(0),V(0) and W(0) of zero in B, such that

B 3 a ∈ e+ U(0), B 3 b ∈ W(0) =⇒ a+ b ∈ e+ V(0) ⊆ B−1.

The map Φ : B × B−1 × B −→ B given by

(b1, b2, b3) 7−→ b1b
−1
2 b3

is continuous, since the inversion and (joint) multiplication are continuous. In particular
Φ is continuous in (0, e, 0) and Φ(0, e, 0) = 0. Thus, Φ−1(W(0)) is open and we can find
open subsets O1(0), O2(0) and O3(0), such that

(b1, b2, b3) ∈ O1(0) × (e+ O2(0)) ×O3(0) =⇒ Φ(b1, b2, b3) ∈ W(0).

We define O(0) :=
3⋂
i=1

Oi(0) and denote by U(0) the open neighbourhood of zero in M2(B)

that corresponds to U(0) ×O(0) ×O(0) × U(0) with respect to the identification

(a11, a12, a21, a22) 7−→
(
a11 a12

a21 a22

)
.

Let a = (aij) ∈M2(A)∩(id2 +U(0)) be arbitrary. Then a11 = a11 +0 ∈ A∩(e+V(0)), i.e.
a11 ∈ B−1 which implies a11 ∈ A−1 since A is spectrally invariant in B. Thus we can use
(A.1.4); note that the outer left and right matrices on the right hand side of (A.1.4) are
always invertible in A. By the choice of U(0), we get a22 ∈ U(0) and a21a

−1
11 a12 ∈ W(0).

This implies a22 − a21a
−1
11 a12 ∈ e+V(0) and we have a22 − a21a

−1
11 a12 ∈ A−1. We conclude

M2(A) ∩ (id2 + U(0)) ⊆M2(A)−1, which proves (A.1.5) in the case n = 2.
Now, suppose that we had already proven (A.1.5) for 0 ≤ k ≤ n − 1: If a = (aij)ij ∈

Mn(A) we set

b11 := a11, b12 := (a12 · · · a1n), b21 :=



a21
...
an1


 , b22 :=



a22 · · · a2n
...

. . .
...

an2 · · · ann
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and get b12, b
t
21 ∈ An−1 and b22 ∈ Mn−1(A). Thus we can use the same argument as in

the case n = 2 (after the obvious changes). Note, that b21b
−1
11 b12 defines an element in

Mn−1(A) (by matrix multiplication).
Now, Mn(A)∩UB(idn) ⊆Mn(A)−1 implies Mn(A)∩Mn(B)−1 = Mn(A)−1, since Mn(A)

is dense in Mn(B) using [39, Lemma 5.3].

Lemma A.1.4. Let B and A be given as in A.1.2. Then:

(i) The spectrum σB(b) of b ∈ B is compact and upper semi continuous with respect to b,
i.e. for all open neighbourhoods U of σB(b) exists an open neighbourhood W(b) ⊆ B,
such that σB(a) ⊆ U holds for all a ∈ W(b).

(ii) For fixed b ∈ B and every closed set K ⊆ C with K ∩ σ(b) = ∅ and for each
neighbourhood V(0) of 0 ∈ B there exists a neighbourhood W(b) of b, such that:

(a) W(b) ∩ A 6= ∅,
(b) (λe− a)−1 ∈ A for all a ∈ W(b) ∩ A and all λ ∈ K,

(c) (λe− b)−1 − (λe− c)−1 ∈ V(0) for all λ ∈ K and all c ∈ W(b).

Proof. (i) Since B−1 is open, there is a neighbourhood V(0), such that e−b is invertible for

all b ∈ V(0). The scalar multiplication with λ ∈ C is continuous, which implies λb
λ→0−−→ 0.

This shows, that we can find N ∈ N, such that b/N ∈ V(0). But then (e − b/λ) ∈ B−1

for all λ ∈ C fulfilling |λ| ≥ N , and (λe− b)−1 = λ−1(e− b/λ)−1 exists in B. Thus σB(b)
is bounded. Now, let λ0 6∈ σ(b), i.e. (λ0e − b)−1 ∈ B. Since B−1 is open, we can find
Uδ(λ0) ⊆ C, such that (λe− b)−1 ∈ B−1 for all λ ∈ Uδ(λ0). Therefore σB(b) is also closed,
hence compact.

Now, let U be an open neighbourhood of σB(b). Since the inversion is continuous, we
can choose a neighbourhood V(0) of zero, such that (e− a) ∈ B−1 holds for all a ∈ V(0).
Let r � 0 be given such that

σ(b) ⊆ U ⊆ Kr and b/λ ∈ V(0) if |λ| > r (λ ∈ C),

where Kr := {z ∈ C : |z| ≤ r}. Again, the continuity of the scalar multiplication yields,
that we can find W0(b) ⊆ B, such that a/λ ∈ V(0) holds for all a ∈ W0(b) and for all
λ ∈ C with |λ| > r. But this implies

(λe− a)−1 = λ−1
(
e− a

λ

)−1

∈ B

for all a ∈ W0(b) and for all λ 6∈ Kr.
Now, set Rε := {λ ∈ C : dist (λ, σ(b) < ε}, where ε > 0 is chosen, such that σB(b) ⊆

Rε ⊆ U . Then D := Kr \Rε is compact in C. Let λ0 ∈ Kr \Rε(⊆ {σB(b)) be arbitrary.
The map

D × B 3 [(λ, a) 7−→ (λe− a)] 7−→ (λe− a)−1

is continuous in (λ0, b) and B−1 is open, thus we can find a neighbourhood U(λ0) of λ0

and a neighbourhood Wλ0(b) of b, such that

λ ∈ U(λ0) and a ∈ Wλ0(b) =⇒ (λe− a)−1 ∈ B.
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Clearly
⋃

λ0∈D

U(λ0) ⊇ Kr \ Rε and we can use Heine-Borel to get
N⋃
j=1

Uj(λj) ⊇ Kr \ Rε.

Now, set W(b) :=
N⋂
j=1

Wλj(b) ∩W0(b), then:

a ∈ W(b) and λ ∈ {Rε =⇒ (λe− a)−1 ∈ B,

and we have finished the proof of (i).
(ii) Let b ∈ B be fixed, K ⊆ {σ(b) be closed and V(0) be an arbitrary open neighbourhood
of zero in B. Since K and σ(b) are closed, we can find an open neighbourhood U of σ(b),
such that K ∩ U = ∅. But then we can apply (i) and find an open neighbourhood W1(b),
such that (λe− c)−1 ∈ B exists for all c ∈ W1(b) and all λ ∈ K. The function

r : K ×W1(b) 3 (λ, c) 7−→ (λe− b)−1 − (λe− a)−1 ∈ B

is well-defined and continuous with r(λ, b) = 0 ∈ V(0) for all λ ∈ K. Thus we can find a
neighbourhood W(b) ⊆ W1(b), such that (λe− c)−1 ∈ B for all c ∈ W(b) and

c ∈ W(b) and λ ∈ K =⇒ r(λ, c) ∈ V(0),

which gives (c). Since A∩B−1 = A−1 and A is dense in B we get also A∩W(b) 6= ∅ and
(λe− a)−1 ∈ A for all a ∈ W(b) ∩ A.

In the following step for the proof of (A.1.1) we apply the functional calculus of Wael-
broeck (see [112], [113]) together with lemma A.1.4.

Lemma A.1.5. Assume that A and B have the same properties as in A.1.2 and are also
locally convex and sequentially complete. Then:

• P (A) is dense in P (B) and

• πn(P (A)) ∼= πn(P (B)) holds for all n ∈ N0.

Remark A.1.6. It is worth pointing out, that under the assumptions of A.1.5 the spec-
trum of a given element b ∈ B resp. a ∈ A is not empty.

Proof of A.1.5. First of all let us show, that P (A) is dense in P (B): Let ε > 0, || · ||η be
a (fixed) seminorm on B and q ∈ P (A) be arbitrary. We have

λe− q = λ(e− q) + (λ− 1)q,

which gives (λe− q)−1 = e−q
λ

+ q
λ−1

, since (e− q)q = 0. Thus σ(q) ⊂ {0, 1} and we get

q =
1

2πi

∫

|z−1|= 1
2

(λe− q)−1 dλ

using the functional calculus of Waelbroeck [112]. Moreover, U given by

U :=

{
z ∈ C : |z| < 1

4

}
∪
{
z ∈ C : |z − 1| < 1

4

}
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is an open neighbourhood of σB(q) and we have Γ ∩ U = ∅ where

Γ :=

{
z ∈ C : |z − 1| =

1

4

}
.

Set V(0) :=
{
b ∈ B : ||b||η < ε

C

}
, where C := L(Γ)/2π and L(Γ) denotes the length of

the compact contour Γ ⊆ C. Then the last lemma together with the density of A in B
implies, that we can find a (small) open neighbourhood W(q) of q such that W(q)∩A 6= ∅
and

a ∈ A, a ∈ W(q), λ ∈ Γ =⇒ (i) (λe− a)−1 ∈ A and

(ii) (λe− b)−1 − (λe− a)−1 ∈ V(0).

Note that σA(a) = σB(a) holds since A ∩ B−1 = A−1. Let a ∈ A ∩W(q) and define

h(z) :=

{
1 if |1 − z| < 1

2
,

0 else.

Then h(z)2 = h(z) holds if |z − 1| = 1/4, thus we get

1

2πi

∫

|z−1|= 1
4

(λe− a)−1 dλ = h(a) ∈ P (A).

We conclude:

||h(a) − q||η =
1

2π

∣∣∣
∣∣∣
∫

|z−1|= 1
4

(
(λe− a)−1 − (λe− q)−1

)
dλ
∣∣∣
∣∣∣
η

≤ 1

2π
L(Γ) sup

λ∈Γ

(
||(λe− a)−1 − (λe− q)−1||η

)
.

By the choice of W(q), we have (λe−a)−1 − (λe− q)−1 ∈ V(0) for all λ ∈ Γ and it follows

||h(a) − q||η ≤
1

2π
L(Γ) sup

λ∈Γ
||(λe− a)−1 − (λe− q)−1||η < ε

and we have proved the density of P (A) in P (B).
Now, let M be a connected component of P (B). Then A ∩ M is a dense connected

component of P (A): The previous discussion shows, that h(a) is also in M if q ∈ M.
Let p : [0, 1] −→ P (B) be a continuous path in P (B) with p(0) ∈ A and p(1) ∈ A.
Then there exists g ∈ B−1

e , such that p(1) = gp(0)g−1, cf. [39, Lemma 2.2], where B−1
e

denotes the connected component of e ∈ B−1. Since A−1 is dense in B−1, we can choose
ã ∈ A−1 fulfilling ã− g ∈ U(0) where U(0) is a suitable neighbourhood of zero in B and
ã ∈ A−1

e (see the proof of [39, Lemma 5.3]). This gives a continuous path from p(0) to
â := ãp(0)ã−1 in P (A). The function

Φ : A 3 c 7−→ −p(1)(e− c) − c(e− p(1)) ∈ A
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is continuous in A and Φ(p(1)) = 0. Let V(0) be a neighbourhood of zero (in A), such
that e− r ∈ A−1

e for all r ∈ V(0). Then we find a neighbourhood U(p(1)) of p(1) (in A)
with Φ(p) ∈ V(0) for all p ∈ V(0). We have

p(1) − â = gp(0)g−1 − ãp(0)ã−1 = (g − ã)p(0)g−1 + ãp(0)(g−1 − ã−1)

and we choose U(0) so small, that

ã− g ∈ U(0) ⇒ â ∈ U(p(1)).

Then −p(1)(e− â) − â(e− p(1)) = Φ(â) ∈ V(0), i.e.

c := (e− p(1))(e− â) + p(1)â ∈ A−1
e

and câc−1 = p(1). Thus, we can again find a path that connects p(1) and â in P (A). This
finishes the proof for π0. If n ≥ 1, note that

C (Ω,A) ⊆ C (Ω,B) (Ω compact)

is a dense spectrally invariant algebra having the same properties as A and B (as stated
in the assumption of A.1.5), hence we can apply π0 to this algebra and get the result for
n ≥ 1. This finishes the proof.

Corollary A.1.7. Combining A.1.2 and A.1.5 (under the assumptions of A.1.5) we get

πk (P (Mn(A))) ∼= πk (P (Mn(B)))

for all n ∈ N and all k ∈ N0.

We have proven:

Theorem A.1.8. Let B be unital algebra over C with a topology τB on B, which makes
B into a locally convex algebra with jointly continuous multiplication, continuous inver-
sion and an open group B−1 of invertible elements and let B be sequentially complete.
Additionally let A be a dense sequentially complete subalgebra of B, such that

(i) e ∈ A,

(ii) there is a topology τA on A, which makes (A, τA) into a locally convex algebra,
with jointly continuous multiplication, an open group A−1 of invertible elements
and continuous inversion,

(iii) the natural inclusion (A, τA) ↪→ (B, τB) is continuous,

(iv) A is spectrally invariant in B, i.e. A ∩ B−1 = A−1.

Then
K∗(A) ∼= K∗(B)

holds.



Appendix B

Boutet de Monvel’s algebra

B.1 Preliminaries

Let X be a n-dimensional compact manifold with boundary ∂X. Moreover, let Y be
a closed manifold of dimension n where X ↪→ Y . Besides some change in the order of
variables, we closely follow [79].

Definition B.1.1.

(i) Let u ∈ C ∞(X) and P be a (classical) pseudodifferential operator on Y . Then we
get a map P+ : C ∞(X) −→ C ∞(X̊), u 7−→ P+u, which is given by the restriction
of P to X̊ applied to the extension by zero of u to Y .

(ii) P has the transmission property if the image of P+ is contained in C ∞(X).

Let us note, that the transmission property of a classical polyhomogeneous pseudod-
ifferential operator can be completely characterized by some sort of symmetry condition
on its symbol:

Proposition B.1.2. A symbol p(x, y, ξ, η) ∈ S0
cl(R+ × Rn−1

y ,Rξ × Rn+1
η ) has the trans-

mission property at x = 0, if and only if

∂βx∂
α
ξ pj(0, y, 1, 0) = (−1)j+|α|∂βx∂

α
ξ pj(0, y,−1, 0)

for all α, β ≥ 0 and j ≤ 0.

Remark B.1.3. Some words about the notation used here. We have changed the notation
of variables used in [49] resp. [79] and [80] slightly. The notation used here is given in a
way, that it fits into the one used in [65] for the 0-calculus.

An operator in Boutet de Monvel’s calculus is a matrix:

A =

(
P+ +G K
T S

)
:

C ∞(X)
⊕

C ∞(∂X)
−→

C ∞(X)
⊕

C ∞(∂X),
(B.1.1)

where P is a pseudodifferential operator satisfying the transmission condition, G is a
singular Green operator, T is a trace operator, K is a potential operator and S is a
pseudodifferential operator on ∂X.

If A is such an operator, then one can define the following two symbol maps:

111
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(i) The principal symbol σ(A), which is given by the principal symbol of P restricted
to S∗X.

(ii) The boundary symbol γ(A), which is an element of C ∞(S∗∂X,L (L2(R+) ⊕ C)).

Moreover, let A be the algebra of all operators of the form (B.1.1); denote by A the
closure of A in H := L2(X)⊕L2(∂X) and by σ and γ the continuous extensions of σ and
γ to A. Finally denote by K the ideal of compact operators in H.

Let us make the notion of the boundary symbol map more explicit. To this end choose
local coordinates

(x, y) : X ⊇ V −→ R+ ×R
n−1
y

near q ∈ ∂X, such that the boundary elements V ∩∂X are given by {x = 0}. Moreover, let
(ξ, η) ∈ Rξ ×Rn−1

η be covariables to (x, y), such that we get a coordinate neighbourhood
(x, y, ξ, η) of an appropriate lift of V to S∗X. Let p(x, y, ξ, η), g(x, y, ξ, η), k(y, ξ, η),
t(y, ξ, η) and s(y, η) be the symbols of P , G, K, T and S with respect to the above
coordinates and denote by p0, g0 etc. the leading terms of the asymptotic expansions of
p, g etc.

Then for fixed (y, η) ∈ S∗∂X we get

γ(A)(y, η) =

(
p0(0, y,Dξ, η)+ + g0(y,Dξ, η) k0(y,Dξ, η)

t0(y,Dξ, η) s0(y, η)

)
. (B.1.2)

If p is a classical pseudodifferential symbol of order zero on Rn, then p0(0, y, ·, η) is a
classical symbol on Rξ for fixed (y, η). If in addition p has the transmission property,
then the values of p in ξ = ±∞ coincide.

Denote by U : L2(S1) −→ L2(R) the unitary mapping

(Ug)(t) :=

√
2

1 + it
g

(
1 − it

1 + it

)
,

and by H−1 the image of C ∞(S1) under U . Set H0 := H−1 ⊕ C, then p ∈ H0 (if p has
the transmission property). Let T be the C∗-algebra of all bounded operators on L2(R+)
generated by

{p(D)+ : p ∈ H0} .
Then we have (cf. [79, page 149, (8)]):

γ(A) ⊆ C (S∗∂X) ⊗
(

T L2(R+)
L2(R+)∗ C

)
. (B.1.3)

But not every element of the above right hand side gives an element in the image of γ.
For this, note, that the map p(D)+ 7→ p(∞) extends to a ∗-homomorphism λ : T −→ C.
The following proposition is due to Melo, Nest and Schrohe [79]:
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Proposition B.1.4.

(i) γ(A) is isomorphic to

(
C (∂X) 0

0 0

)
⊕
(

C (S∗∂X) ⊗
(

T0 L2(R+)
L2(R+)∗ C

))
,

where T0 denotes the kernel of λ : T −→ C.

(ii) ker(γ)/K is isomorphic to C0(S
∗X̊).

B.2 K-theory for Boutet de Monvels algebra

The K-groups of Boutet de Monvels algebra have been calculated by Melo, Nest and
Schrohe in [79] (imposing a torsion condition on K∗(C (∂X))) and by Melo, Schick and
Schrohe in [80] (without the torsion condition). Let us shortly point out, that it is possible
to use 5.3.8 to calculate the K-theory of Boutet de Monvel’s algebra.

First we also introduce the maps defined in [79]:

• Let b : C (∂X) −→ r (γ) be given by g 7−→ γ

((
f 0
0 g

))
, where f is a function with

f|∂X = g.

• Denote by m : C (X) −→ A/K the ∗-homomorphism that maps f ∈ C (X) to the

class of

(
f 0
0 g

)
, where g denotes the restriction of f to ∂X.

Then Boutet de Monvels algebra also fits into the setting of 5.3.8 and we get the following
result (cf. [80, Theorem 1]; the proof is exactly the same as in 5.3.13, hence we will omit
it).

Theorem B.2.1. Let I := ker(γ). Then the commutative diagram

0 // I/K // A/K // A/I // 0

0 // C0(X̊)
ι //

m

OO

C (X) //

m

OO

C (∂X) //

b

OO

0

with exact rows induces an isomorphism

K∗(A/K) ∼= K∗(C (X)) ⊕K∗−1(C0(T
∗X̊)).

B.3 The structure elements of the 0-calculus revisited

In 5.3.14 we implicitly proved the following theorem:
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Theorem B.3.1. The C∗-algebra B(X, 0Ω
1
2 ) of 0-operators and the C∗-closure A of

Boutet de Monvel’s algebra have isomorphic K-groups, i.e. we have

K∗(B(X, 0Ω
1
2 )) ∼= K∗(A).

However, we used a homotopy argument to reduce the joint symbol map in the b-c-
calculus to a symbol that depends somehow only on the c-indical family of the reduced
normal operator. Now, we shortly want to prove that there is a subalgebra in the zero
calculus where we do not need this homotopy argument. Again, we use the definitions
and notations introduced in chapter 5.

Definition B.3.2. Let T be the set of all N ∈ Bb,c, such that there exists c ∈ R with

b,cσ(0,0)(N)(z,±1) = c ∀ z ∈ [0, 1],

Ib(N)(ξ) = c ∀ ξ ∈ R.

Then we have:

Proposition B.3.3. T is a C∗-subalgebra of Bb,c with Kb,c ⊆ T . Moreover, we have
T /Kb,c

∼= C (S1).

Proof. We only have to prove the second part of the proposition. Consider the linear map

T 3 A 7−→ Ic(A) ∈ C ([−1, 1]),

with kernel Kb,c. By the compatibility conditions we then get T /Kb,c
∼= R(Ic|T ) ∼= C (S1),

if we glue −1 and 1 to −1 on S1.

Using the identification stated in the last proposition and the joint symbol map of Bb,c
we get the following ∗-homomorphism

σb,c : T τb,c−−→ C (S1)
ev1−−→ C,

where ev1 denotes the point evaluation at 1 ∈ S1. Note also, that the joint symbol τc,b(A)
of an operator A ∈ T is completely determined by the c-indical family Ic(A) of A.

Denote by T0 the kernel of σb,c. Then we get the exact sequence

0 −→ T0 −→ T −→ C −→ 0.

Proposition B.3.4. Let I denote the set of all N ∈ B(a)
b,c (S

∗∂X) satisfying the conditions

I
(a)
b (N(η̂)) = d1,

b,cσ(0,0)(N(η̂))(z, 1) = d2 and b,cσ(0,0)(N(η̂))(z,−1) = d3 for all z ∈ [0, 1]

and η̂ ∈ S∗∂X. Then I is a C∗-subalgebra of B(a)
b,c (S

∗∂X).

Proof. First of all note, that we have d1 = d2 = d3 =: d due to the compatibility condi-
tions. Let N1, N2 ∈ I be arbitrary and η̂ ∈ S∗∂X fixed. Then

I
(a)
b (N1(η̂)N2(η̂)) = I

(a)
b (N1(η̂))I

(a)
b (N2(η̂)) = c1d1 =: e1 and

I
(a)
b (N(η̂)∗) = I

(a)
b (N(η̂))∗ = c∗1.
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The multiplication property of b,cσ(0,0) gives a similar result for the other two symbol
families, therefore we see, that I is closed by multiplication and by taking adjoints.

Let (Nn)∈N ⊆ I be with Nn
n→∞−−−→ N . Then it remains to show, that N ∈ I. We have

||I(a)
b (Nn(η̂)) − I

(a)
b (N(η̂))|| ≤ C||Nn −N || n→∞−−−→ 0,

by the continuity of the symbol map, which gives I
(a)
b (N(η̂)) = c1 for η̂ ∈ S∗∂X. With a

similar calculation for b,cσ(0,0) we conclude, that I is closed, which finishes the proof.

Remark B.3.5.

(i) Note, that we have C (S∗∂X,K0) ⊆ I ⊆ C (S∗∂X, T ).

(ii) If N ∈ I is arbitrary, then N(η̂) ∈ T for all η̂ ∈ S∗∂X.

Proposition B.3.6. Let I0 denote the set of all N ∈ I satisfying

σb,c(I
(a)
b (N(η̂)))(−1) = 0

for all η̂ ∈ S∗∂X. Then I0 is a closed, two-sided ideal in I.

Proof. Since I0 is given by the kernel of a ∗-homomorphism, this is clear.

Lemma B.3.7.

(i) We have I/I0
∼= C (∂X).

(ii) We have I0
∼= C (S∗∂X, T0).

Proof. (i) We consider the mapping F : I −→ C (∂X) given by

F : I 3 N 7−→ Ib(N) ∈ C (∂X).

Clearly, I0 = ker(F ). Let f ∈ C (∂X) be arbitrary. We choose g ∈ Cc(X) with g|∂X = f ,
then the reduced normal operator of Mg, where Mg denotes the multiplication operator
with g, is given by:

[N%(Mg)(y, η)]h(x) = g(0, y)ĥ(x)

∣∣∣∣
dx

x

∣∣∣∣
1
2

(h ∈ C (M, b,cΩ
1
2 )).

Here we used coordinates given by the compactification M = [0, 1] of R+. So N%(Mg) =
Mf independent of the choice of g and

Ib(N%(Mg)(y, η))(w) = f(y), (B.3.1)
b,cσ(0,0)(N%(Mg)(y, η))(z, ξ) = f(y) and

Ic(N%(Mg)(y, η))(ξ) = f(y).

We conclude N%(Mg) ∈ I and the map F is surjective (by (B.3.1)), which gives (i). Note
that the mapping G : C (∂X) −→ I given by

G : C (∂X) 3 f 7−→ Ng ∈ I
is a well defined injective ∗-homomorphism with F ◦G = idC (∂X).
(ii) This is clear by definition.
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The last lemma gives rise to the following split exact sequence:

0 // C (S∗∂X, T0) // I
F

// C (∂X) //

G
yy

0. (B.3.2)

Denote by BBM the following set:

BBM := {A ∈ B0 : N%(A) ∈ I} .
Proposition B.3.8. BBM is a C∗-subalgebra of B0 and K0 ⊂ BBM.

Proof. That BBM is closed under multiplication and taking adjoints is clear by the proper-
ties of the reduced normal operator. Moreover, if K is an element of K0 then N ν

% vanishes
identically, which gives N ν

% (K) ∈ I.
So what remains to be checked is that BBM is closed: For this, let (An)n∈N ⊆ BBM be

arbitrary with An
n→∞−−−→ A ∈ B0. Then we have to prove that A ∈ BBM holds.

By definition, we have N ν
% (An) ∈ I for all n ∈ N. Since I is a C∗-algebra itself, we

know that the limit of the sequence (N ν
% (An))n∈N (if it exists) will be also an element of

I. By continuity we get

||N ν
% (An) −N ν

% (A)|| ≤ C||An − A|| n→∞−−−→ 0,

which shows, that A ∈ BBM using our previous remark.

We denote by Nν
% the restriction of N ν

% to BBM and by QBM the quotient BBM/K0.

Proposition B.3.9.

(i) We have ker(Nν
%)/K0

∼= C0(S
∗X̊).

(ii) Im (Nν
%)

∼= I and the sequence

0 −→ C (S∗∂X, T0) −→ I −→ C (∂X) −→ 0

is split exact. Especially, we have

Im (Nν
%)

∼= C (∂X) ⊕ C (S∗∂X, T0).

Proof. (i) This part of the theorem will follow if we prove that

ker(N ν
% ) = ker(Nν

%)

holds: By [29, Proposition 4.5 8(ii)] we then conclude

ker(Nν
%)/K0 = ker(N ν

% )/K0
∼= C0(S

∗X̊).

Clearly, ker(Nν
%) ⊆ ker(N ν

% ), so let A ∈ ker(N ν
% ) be arbitrary, i.e. N ν

% (A) = 0. But this

implies Ic(N ν
% (A)) ≡ 0, Ib(N ν

% (A)) ≡ 0 and (0,0)σb,c(N ν
% (A)) ≡ 0, so N ν

% (A) ∈ I, i.e.
A ∈ BBM.
(ii) The first part is clear by definition. The second part is a reformulation of B.3.7 (i)
and (ii). Note, that the end of B.3.7 (i) actually proves that there is a splitting map, see
(B.3.2).
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Now let us give a description of QBM:

Theorem B.3.10. The C∗-algebra QBM consists of all

(f,N) ∈ Q0 such that N ∈ C(S∗∂X, T ).

Proof. Clearly QBM ⊆ Q0. Moreover, we have

r (N%) = C (∂X) ⊕ C (S∗∂X, T0) ⊆ C (S∗∂X, T ),

which gives N ∈ C (S∗∂X, T ). Conversely, let (f,N) ∈ Q0 be with N ∈ C (S∗∂X, T ).
Then we find A ∈ B0, such that

τ0(A) = (0σ(0)(A),N%(A)) = (f,N).

Since N ∈ Bb,c(S∗∂X), we conclude N% ∈ I, i.e. A ∈ BBM.

Corollary B.3.11. Let (f,N) ∈ QBM. Then

f0(j%(0, (π(η), 1))) = f0(j%(0, (π(η),−1))) and (B.3.3)

Ic(N(η))(ξ) = f0(j%(η, (π(η), ξ))) (B.3.4)

for all ξ ∈ R.

Having collected all this information, we are now able to use the computation of chapter
5 to get:

Proposition B.3.12. We have the following isomorphism in K-theory:

K∗(BBM/K0) ∼= K∗(C (X)) ⊕K∗−1(C0(T
∗X̊)).

In particular this induces again the isomorphism:

K∗(BBM) ∼= K∗(A).
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Some remarks on the 0-calculus

C.1 A remark on L2(M, b,cΩ
1
2) and H1

b,c(M, b,cΩ
1
2)

Recall that the inner product on L2(M, b,cΩ
1
2 ) is given by

〈f1, f2〉L2(M,b,cΩ
1
2 )

:=

∫

M

f1f2 =

1∫

0

f̂1(z)f̂2(z)
dz

z(1 − z)2
,

where fj = f̂j

∣∣∣ dz
z(1−z)2

∣∣∣
1
2 ∈ L2(M, b,cΩ

1
2 ).

The map

RC : R+ −→M : x 7−→ 2

π
arctan(x) =: z

identifies the point at infinity with z = 1. If V is a smooth vector field on M , we have the
representation V = a(z)z(1−z)2∂z, where a ∈ C ∞(M). The transformation of z(1−z)2∂z
under RC is then given by

z(1 − z)2∂z = z(1 − z)2∂x

∂z
∂x

=
2

π
arctan(x) (1 − 2

π
arctan(x))2 2

π
(1 + x2)∂x

= f(x)∂x,

where f(x) := 2
π

arctan(x) (1 − 2
π

arctan(x))2 2
π
(1 + x2). Since (1 + x2)

x→0−−→ 1 and (1 −
2
π

arctan(x))
x→0−−→ 1 we have f(x) = xg(x) with a smooth function g fulfiling g(0) 6= 0 if

|x| < 1 using the Taylor expansion of arctan. If |x| > 1 we have

arctan(x) =

(
π

2
+

∞∑

n=0

(−1)n+1 1

(2n+ 1)x2n+1

)
,

thus it follows that

(1 − 2

π
arctan(x))2 2

π
(1 − x2) = C + g(x),

where C > 0 is constant and g(x) vanishes for x → ∞. Consequently the identification
of M with [0,∞[ using RC yields the condition

∞∫

0

|f̂(x)|2 ρ(x)dx <∞

119
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for the space L2(M, b,cΩ
1
2 ); here f = f̂ |ρ dx| 12 and ρ is a smooth positive function, such

that ρ(x) = 1/x in a neighbourhood U ⊆ [0, 1/2[ of x = 0 and ρ(x) = 1 for x ≥ 1.
An analogous calculation shows, that RC : R+ −→ M transforms the Sobolev space

H1
b,c(M, b,cΩ

1
2 ) given by all f ∈ L2(M, b,cΩ

1
2 ), such that

1∫

0

z(1 − z)2|∂zf̂(z)|2 dz =

1∫

0

|z(1 − z)2∂zf̂(z)|2 dz

z(1 − z)2
<∞

to the conditions (c < d)

c∫

0

|x∂xf̂(x)|2dx
x
<∞ and

∞∫

d

|∂xf̂(x)|2dx <∞.

C.2 A conformally compact manifold with 0-metrics that

are not isometric

This appendix treats the question, if a general conformally compact metric can be iso-
metrically changed, such that the metric decomposes like a warped product near the
boundary. For this we will calculate the sectional curvature for a certain manifold M,
namely let M denote the manifold ]0, 1[×S1. Moreover, let f(x, ϑ) : M −→]0,∞[ be an
arbitrary strictly positive function. We will work with the metric

g := x−2
(
dx2 + f(x, ϑ)−2dϑ2

)

in what follows. Note, that in the case f ≡ 1 we have

g0 := g = x−2(dx2 + dϑ2).

Finally, we set X := x∂x and T := xf∂ϑ; then {X,T} is an orthonormal frame with
respect to the metric g. Recall, that g gives rise to an unique connection ∇ that is torsion
free, i.e.

∇TX −∇XT − [T,X] = 0, (C.2.1)

and fulfils

Ug(V,W ) − g(∇UV,W ) − g(V,∇UW ) = 0

for all vectorfields U, V and W . It is also worth pointing out, that the action of ∇UV on
a vectorfield W with respect to g is given by

g(∇UV,W ) =
1

2

(
g([W,U ], V ) + g(U, [W,V ]) − g([V, U ],W )

+Ug(V,W ) + V g(U,W ) −Wg(U, V )
)
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and we will use this in what follows. First of all, a direct computation gives

[T,X] = −∂x[xf ]

f
T.

Let V be an arbitrary vectorfield given with respect to the basis {T,X}, i.e. V = a1X +
a2T where ai(x, ϑ) : M −→ R are suitable functions. Note, that

[V,X] = a2[T,X] − (Xa1)X − (Xa2)T

and

[V, T ] = a1[X,T ] − (Ta1)X − (Ta2)T

holds. Let us now compute the covariant derivatives in the direction of X resp. T : We
have

g(∇XX,V ) =
1

2

(
g([V,X], X) + g(X, [V,X]) − g([X,X], V )

+Xg(X,V ) +Xg(X,V ) − V g(X,X)
)
,

where

g([V,X], X) = −(Xa1) and

Xg(X,V ) = (Xa1),

thus ∇XX = 0. For ∇XT we get

g(∇XT, V ) =
1

2

(
g([V,X], T ) + g(X, [V, T ]) − g([T,X], V )

+Xg(T, V ) + Tg(X,V ) − V g(X,T )
)
,

where

g([V,X], X) = −a2
∂x[xf ]

f
− (Xa2),

g(X, [V, T ]) = −(Ta1) and

g([T,X], V ) = −a2
∂x[xf ]

f
.

Since Xg(T, V ) = (Xa2) and Tg(X,V ) = (Ta1) we again get ∇XT = 0. Now using

(C.2.1) it follows ∇TX = −∂x[xf ]
f

T . For the sake of completeness, let us also compute
∇TT , although we will not need this expression for our purpose to compute the sectional
curvature of g: We have

g(∇TT, V ) =
1

2

(
g([V, T ], T ) + g(T, [V, T ]) − g([T, T ], V )

+Tg(T, V ) + Tg(T, V ) − V g(T, T )
)
,
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where the addends are given by

g([V, T ], T ) = a1
∂x[xf ]

f
− (Ta2) and

Tg(T, V ) = (Ta2),

hence

∇TT =
∂x[xf ]

f
X.

Now, we want to calculate the sectional curvature of g. Recall, that the sectional
curvature Scg with respect to a 2-plane Π of the tangent space spanned by orthonormal
vectors {Xi, Xj} is given by

Scg,Xi,Xj = g(RXiXjXj, Xi),

where R denotes the curvature endomorphism

RVWZ = ∇V∇WZ −∇W∇VZ −∇[V,W ]Z.

With respect to the plane spanned by the orthonormal frame {X,T} this becomes

Scg,T,X = g(RTXX,T ).

Since
RTXX = ∇T∇XX −∇X∇TX −∇[T,X]X = −∇X∇TX −∇[T,X]X

and

∇X∇TX = −∂x
(
∂x[xf ]

f

)
T,

∇[T,X]X =

(
∂x[xf ]

f

)2

T

we get g(RTXX,T ) = ∂x

(
∂x[xf ]
f

)
−
(
∂x[xf ]
f

)2

. Thus we finally have proven:

Scg,T,X = g(RXTT,X) = ∂x

(
∂x[xf ]

f

)
−
(
∂x[xf ]

f

)2

.

Now, if f ≡ 1, then Scg,T,X = −1; however, if f is a positive function that depends non-
trivial on x and ϑ, we get the sectional curvature also to be a non-trivial function in x and
ϑ. Since the sectional curvature is an isometric invariant (see for instance [70, Chapter
7]), there cannot exist an isometric isomorphism between the manifold M equipped with
g0 = x−2(dx2 + dϑ2) and g = x−2(dx2 + f(x, ϑ)−2dϑ2) in such a non-trivial case. In
particular it is not possible to isometrically change the metric g to behave like a warped
product near the boundary.



Appendix D

Representations of hereditary C∗-algebras

This appendix deals with the proof of 3.1.13. In what follows, B denotes a C∗-algebra.
Recall, that A is a hereditary subalgebra of B if and only if aba′ ∈ A holds for all a, a′ ∈ A
and b ∈ B by 3.1.11.

D.1 Preliminaries

A linear map ϕ : B1 −→ B2 between C∗-algebras is said to be positive if ϕ(B+
1 ) ⊆ B+

2 .
Let τ : B −→ C be a positive linear functional. If ||τ || = 1, we say that τ is a state.
Moreover, τ is called a pure state, if for each positive linear functional % with % ≤ tτ there
exists a t ∈ [0, 1] such that % = tτ .

Proposition D.1.1.

(i) Let A be a C∗-subalgebra of B and let τ be a positive linear functional on A. Then
there is a positive linear functional τ ′ on B extending τ , such that ||τ || = ||τ ′||.

(ii) If in addition to (i) A is hereditary in B, the positive functional τ ′ on B extending
τ is unique. Moreover, if (µλ)λ∈Λ is an approximate unit for B, then

τ ′(b) = lim
λ
τ(µλbµλ)

holds for all b ∈ B.

Proof. See [90, Theorem 3.3.8, Theorem 3.3.9].

Proposition D.1.2. Let (H, ϕ) be a representation of B with cyclic vector v. Then the
function

τ : B −→ C, b 7−→ 〈ϕ(b)v | v〉
is a state of B and (Hτ , ϕτ ) is unitarily equivalent to (H, ϕ). If in addition (H, ϕ) is
irreducible, then τ is a pure state.

Proof. See [90, Theorem 5.1.7].

The following is a generalisation of 3.1.8:

Proposition D.1.3. Let A be a C∗-subalgebra of B. Suppose that (K, ψ) is a (non-
degenerate) representation of A. Then there is a (non-degenerate) representation (H, ϕ)
of B and a closed vector subspace K′ of H invariant for ϕ(B), such that (K, ψ) is unitarily
equivalent to (H, ϕ)A,K′. If (K, ψ) is cyclic resp. irreducible, we can choose (H, ϕ) cyclic
resp. irreducible, too.

123
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Proof. See [90, Theorem 5.5.1].

Lemma D.1.4. Suppose, that A is a non-zero hereditary C∗-subalgebra of a C∗-algebra
B, and that I is a primitive ideal of B not containing A. Then I ∩A is a primitive ideal
in A. Moreover, if J is a closed ideal of B, such that J ∩ B ⊆ I, then J ⊆ I.

Proof. See [90, Lemma 5.5.4].

Finally, let us note that an irreducible representation (H, ϕ) of a C∗-algebra B is alge-
braically irreducible, i.e. 0 and H are the only vector subspaces of H that are invariant
for ϕ(B) (cf. [90, Theorem 5.2.3]).

D.2 Hereditary subalgebras and their spectrum

Theorem D.2.1. Let A be hereditary in B. Then the following diagram is commutative,
where the maps are the canonical ones:

B̂ \ Hull′(A) //

��

Â

��
Prim(B) \ Hull(A) // Prim(A).

Moreover, the horizontal maps are homeomorphisms.

For the definition of the canonical maps used in the theorem see (3.1.1). We follow
closely [90, Theorem 5.5.5].

Proof. Writing down the definitions, one immediately sees that the diagram is commuta-
tive. Let us denote by Φ resp. Φ′ the upper resp. lower horizontal map in the diagram.
First, we prove that Φ is injective: Suppose that Φ[H1, ϕ1] = Φ[H2, ϕ2] holds. Then
(Kj, ψj) = (Hj, ϕj)|A (j = 1, 2) are non-zero unitarily equivalent irreducible representa-
tions of A. Thus there is a unitary u : K1 −→ K2, such that ψ2(a) = uψ1(a)u

∗ for a ∈ A.
Moreover, we choose unit vectors v1 ∈ K1 and v2 ∈ K2 with u(v1) = v2. Then we get
ϕ1(B)v1 = H1 and ϕ2(B)v2 = H2 (since the representations are algebraically irreducible).

Moreover, the function

%j : B −→ C, b 7−→ 〈ϕj(b)vj | vj〉

is a pure state of B and (Hj, ϕj) is unitarily equivalent to (H%j , ϕ%j) (j = 1, 2) by D.1.2.
Clearly, %j is an extension of

%′j : A −→ C, a 7−→ 〈ψj(a)vj | vj〉,

which is a pure state of A, since (Kj, ψj) is irreducible. Moreover, for each a ∈ A

%2(a) = 〈Ψ2(a)u(v1) |u(v2)〉 = 〈ψ1(a)(v1) | v2〉 = %′1(a)
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holds, thus %2 = %1 using D.1.1. But this proves, that (H1, ϕ1) and (H2, ϕ2) are unitarily
equivalent, i.e. Φ is injective.

Now, we aim to prove surjectivity of Φ. Let [K, ψ] ∈ Â be arbitrary. Then by D.1.3
there exists an irreducible representation (H, ϕ) of B and a closed subspace K′ of H, such
that K′ is invariant with respect to the action of ϕ(A) and that (K, ψ) and (H, ϕ)A,K′

are unitarily equivalent. Clearly, [H, ϕ] ∈ Â since (H, ϕ) is non-zero. Moreover, we can
choose v ∈ K′ fulfilling ϕ(A)v = K′ using the irreducibility of (H, ϕ)A,K′ . Let a0 ∈ A be
with v = ϕ(a0)(v), then ϕ(B)v = H implies that for each w ∈ H and each a ∈ B there
exists b ∈ B, such that

ϕ(a)w = ϕ(a)ϕ(b)v = ϕ(aba0)v ∈ ϕ(A)v,

and we get that ϕ(A)H = K′. Therefore (H, ϕ)A,K′ = (H, ϕ)B holds and it follows
[H, ϕ] 6∈ Hull′(B) and Φ[H, ϕ] = [K, ψ], i.e. Φ is a bijection.

That Φ′ is surjective now follows directly from the commutativity of the diagram. Let
I1, I2 be with I1 ∩ A = I2 ∩ A. Then by D.1.4 we get that I1 = I2, thus Φ′ is injective.

Now, we will prove, that Φ′ is a homeomorphism (then it follows that Φ is also a
homeomorphism): Let ∅ 6= C be a closed set in Prim(A), i.e. C = HullA(I) for some
closed ideal I of A. We get

(Φ′)−1(C) = {J ∈ Prim(B) : I ⊆ J ∩ A and A 6⊆ J }
= HullB(I) ∩ (Prim(B) \ HullB(A)) .

Thus (Φ′)−1(C) is closed in Prim(B) \ HullB(A) and Φ′ is continuous.
To prove that (Φ′)−1 is also continuous, we prove that Φ′ is a closed map. To this end,

let ∅ 6= C be a closed set in Prim(B) \ HullB(A). Then C = HullB(I) \ HullB(A) for a
proper closed ideal I of B. Let J ∈ HullB(I ∩ B), then J = J ′ ∩ B holds for a suitable
J ′ ∈ Prim(B) \ HullB(A) since Φ′ is surjective. It follows J = Φ′(J ′) ∈ Φ′(C) and thus
HullA(I ∩ A) ⊆ Φ′(C). The reverse inclusion is trivial, so we get HullB(I ∩ B) = Φ′(C),
and Φ′ is a closed map.





Appendix E

The Theorem of Beals, Coifman-Meyer revisited

In what follows, we present a proof of the following theorem given in [21] (see [14] also)
in the context of Ψ∗-algebras and commutator methods:

Theorem (Beals, Coifman-Meyer). Let A : C ∞(M) −→ C ∞(M) be a continuously
linear operator on a compact smooth manifold M without boundary. Then A is a pseu-
dodifferential operator of order 0, if and only if for each sequence V1, V2, . . . of smooth
vector fields on M, each of the operators A1 := [V1, A] and Aj+1 := [Vj+1, Aj] (j ∈ N) has
an extension to a bounded operator on L2(M).

It is worth pointing out, that Lauter gave a similar description for manifolds with
boundary in the setting of b-pseudodifferential operators in [60].

E.1 Notations and prerequisites

Before we give the proof in the case of compact manifold, let us fix some notation first.

Notations E.1.1. Let M be a closed smooth manifold of dimension n. Moreover, we
assume M to be oriented and we choose a fixed open covering of M by coordinate charts

M =
N⋃
j=1

U ′
j with coordinate maps χj : M ⊇ U ′

j −→ Uj ⊆ Rn. Let (ϕ′
j)j=1,...,N be a

smooth partition of unity subordinate to the covering (U ′
j)j and choose ϑ′

j ∈ C ∞
0 (U ′

j),
such that 0 ≤ ϑ′

j ≤ 1 and ϕ′
j ≺ ϑ′

j holds.

Definition E.1.2. A continuous linear operator A : C ∞(M) −→ C ∞(M) is said to
be a pseudodifferential operator in Ψm

1,0(M), provided that for j = 1, . . . , N there exist
symbols σaj ∈ Sm1,0(R

n
x ×Rn

ξ ) and kj,l ∈ C ∞(Uj × Ul), such that

(i) (ϑ′
jAϕ

′
j)f(χ−1

j (x)) = ϑ′
jσaj(X,Dx)(ϕ

′
jf)
(
χ−1
j (x)

)
holds, i.e. an operator is locally

given by

(ϑ′
jAϕ

′
jf)(χ−1

j (x))

= (ϑ′
j)(χ

−1
j (x))

∫

Rn

ei〈x | ξ〉σaj(x, ξ)F
((
ϕ′
jf)(χ−1(ξj)

))
d̄ ξ,

where F denotes the Fourier -transformation on Rn and f ∈ C ∞(M),

127
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(ii) the operator [(1 − ϑ′
j)Aϕ

′
j] has a C ∞-kernel representation, i.e. for each 1 ≤ l ≤ N

we have for all x ∈ Ul

[(1 − ϑ′
j)Aϕ

′
jf ](χ−1

l (x)) =

∫

Uj

kj,l(x, z)f(χ−1
l (z)) dz,

where kj,l ∈ C ∞(Ul × Uj).

Remark E.1.3. It is well-known, that this definition is independent of all choices we
made; see for instance [58, Theorem 7.7.3] for a detailed prove of coordinate invariance.

The local definition of pseudodifferential operators on M shows, that it might be needed
to have a local characterisation that classifies such operators. The following notion turns
out to be helpful.

Definition E.1.4. Let U ⊆ Rn be open and ∅ 6= K ⊆ U compact. Denote by LK(U)
the algebra of operators A ∈ L (L2(U)) such that

(i) A(C ∞
0 (U)) ⊆ C ∞

0 (U),

(ii) supp (Aϕ) ⊆ K for all ϕ ∈ C ∞(U) ∩ L2(U),

(iii) Aϕ = 0 for all ϕ ∈ C ∞(U) ∩ L2(U) fulfilling suppϕ ∩K = ∅.

We call A ∈ L (L2(U)) ported by K if A has the properties E.1.4 (ii) and (iii).

Remark E.1.5. Let A be an element of LK(U), then A induces a bounded linear map

Ã : C
∞(Rn) −→ C

∞(Rn) : f 7−→ A(υf),

where υ ∈ C ∞
0 (U) with υ ≡ 1 on K. Moreover, Ã is independent of the choice of υ.

Proposition E.1.6. Let ϑ, ϕ ∈ C ∞
0 (U) be with ϕ ≺ ϑ. Denote by Ã the operator induced

by A ∈ LK(U), cf. E.1.5. We define σA(x, ξ) := e−i〈x | ξ〉Ã[x′ 7−→ ei〈x
′ | ξ〉](x), where

x ∈ Rn
x and ξ ∈ Rn

ξ . Then we get:

(i) σA ∈ C ∞(Rn
x ×Rn

ξ ) and σA(x, ξ) = 0 for all ξ ∈ Rn
ξ , if x 6∈ K,

(ii)

∫

Rn

|σA(x, ξ)|2 dx ≤ ||υ||2L2(U)||A||2L (L2(U)) for all ξ ∈ Rn
ξ and for all υ ∈ C ∞

0 (U), such

that υ ≡ 1 holds in a neighbourhood of K,

(iii) [ϑAϕf ](x) = ϑ(x)

∫

Rn

ei〈x | ξ〉σA(x, ξ)F(ϕf)(ξ) d̄ ξ for all x ∈ Rn and for all f ∈

C ∞(Rn).
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Proof. (i) We use the tensor decomposition

C
∞(Rn

x ×R
n
ξ ) = C

∞(Rn
x)
⊗̂

π
C

∞(Rn
ξ )

and get:
σA = e−i〈x | ξ〉Ã⊗̂πid[(x

′, ξ) 7−→ ei〈x
′ | ξ〉] ∈ C

∞(Rn
x ×R

n
ξ ).

The second claim is a consequence of E.1.4 (ii).
(ii) We have

∫

Rn

|σA(x, ξ)|2 dx = ||A[x′ 7−→ υ(x′)ei〈x
′ | ξ〉]||2L2(U)

≤ ||A2||2
L (L2(U))||υ||2L2(U).

(iii) Choose υ ∈ C ∞
0 (U), such that ϑ ≺ υ and υ = 1 in a neighbourhood of K. To given

h ∈ S (Rn) we consider the following map

I : Rn
ξ 3 ξ 7−→ h(ξ)[x 7−→ υ(x)ei〈x | ξ〉].

Here the right hand side is an element of C ∞(Rn
x), since

C
∞(Rn

x ×R
n
ξ )

∼= C
∞(Rn

ξ ,C
∞(Rn

x)).

Moreover, I is integrable for h ∈ S (Rn
ξ ). This gives

∫
Ã(I(ξ)) d̄ ξ = Ã

(∫
I(ξ) d̄ ξ

)

by the continuity of Ã. Especially, if we set h := F (ϕf) ∈ S (Rn
ξ ), we get:

ϑ(x)

∫

Rn

ei〈x | ξ〉σA(x, ξ)F (ϕf)(ξ) d̄ ξ

= ϑ(x)

∫

Rn

A[x′ 7−→ υ(x′)e〈x
′ | ξ〉](x)F (ϕf)(ξ) d̄ ξ

= ϑ(x)A[x′ 7−→ υ(x′)ϕ(x′)f(x′)]

= [ϑAϕf ](x).

This proves (iii).

E.2 Local classification

We have seen, that each operator in LK(U) has a representation according to E.1.2
(i). Now, we want to classify all operators in LK(U), whose local symbols are given by
elements in Sm1,0(R

n
x ×Rn

ξ ). Let us fix some notation first:
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Notations E.2.1. Let U ⊆ Rn be open and ϕ, θ, ω, ψ, ρ ∈ C ∞
0 (U), where ϕ ≺ θ ≺ ω ≺

ψ ≺ ρ. We consider the following unbounded operators L2(U) ⊇ C ∞
0 (U) −→ L2(U):

Ṽl := iψ
∂

∂xl
ψ, Ṽ k := ψxkψ,

Ṽ k
l := iψxk

∂

∂xl
ψ if l 6= k and Ṽ k

k := iψxk
∂

∂xk
ψ + i

ψ2

2
otherwise.

Denote this family of operators by Ṽ . Since these operators are symmetric and densely
defined, they are closable. We denote the minimal closed (symmetric) extensions of these
operators by Vl, V

k resp. V k
l and the corresponding family by V .

Lemma E.2.2. Let Uψ := ψ−1(C \ 0) ⊆ U and ω0 ∈ C ∞
0 (Uψ) ⊆ C ∞

0 (U). Then

ω0Hm
V = ω0Hm(Rn)

holds for all m ∈ N0. In particular, we get C ∞
0 (Uψ) ⊆ H∞

V |Uψ ⊆ C ∞(Uψ).

Proof. We divide the proof in two steps:
(i) First, we will show, that ω1Hm

V ⊆ Hm(Rn) and ω1Hm(Rn) ⊆ Hm
V holds for ω1 ∈

C ∞
0 (Uψ) using induction:

The case m = 0 is obvious. Now, let f ∈ Hm
V be with m ≥ 1. The definition implies, that

fj,l ∈ C ∞
0 (U) exists, such that fj,l

j→∞−−−→ f and Ṽl(fj,l)
j→∞−−−→ Vl(f) ∈ Hm−1

V with respect
to L2(U) (l = 1, . . . , n). This gives

Ṽl(ω1fj,l) = iψ
∂

∂xl
(ψω1fj,l)

= ω1Ṽl(fj,l) + iψ2

(
∂

∂xl
ω1

)
fj,l

j→∞−−−→ ω1Vl(f) + iψ2

(
∂

∂xl
ω1

)
f (E.2.1)

in L2(Rn). In addition we also have

Ṽl(ω1fj,l) = iψ2 ∂

∂xl
(ω1fj,l) + iψω1fj,l

∂

∂xl
ψ. (E.2.2)

Let Ω1 be a relative compact neighbourhood of suppω1, such that Ω1 ⊆ Uψ. Denote by

h : x 7−→
{

1
ψ2(x)

, if x ∈ Ω1,

0, else,

the function that is bounded and continuous in a neighbourhood of suppω1. Since

ω1fj,l
j→∞−−−→ ω1f with respect to the topology in L2(Rn), a combination of (E.2.1), (E.2.2)

and the induction hypothesis yields

i
∂

∂xl
(ω1fj,l)

j→∞−−−→ h

[
iψ2

(
∂

∂xl
ω1

)
f + ω1(Vlf) − iψω1f

(
∂

∂xl
ψ

)]
,
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where the right hand side is an element of Hm−1(Rn). Consequently, we get i∂l(ω1f) ∈
Hm−1(Rn) (l = 1, . . . , n). The induction hypothesis ω1f ∈ Hm−1(Rn) implies ω1f ∈
Hm(Rn). The second part of the claim follows by a similar argument.
(ii) We choose ω1 ∈ C ∞

0 (Uψ), such that ω0 ≺ ω1. (i) then implies

ω0Hm
V = ω0ω1Hm

V ⊆ ω0Hm(Rn) = ω0ω1Hm(Rn) ⊆ ω0Hn
V ,

which finishes the proof.

Lemma E.2.3.

(i) Let f ∈ C ∞(U) ∩ L∞(U) be given. Then Mf ∈ ΨV
∞.

(ii) Let ϕ, ψ ∈ C ∞
0 (U) and A ∈ ΨV

∞ be arbitrary. Then MϕAMψ ∈ ΨV
∞ holds, i.e. the

algebra ΨV
∞ is localizable.

Proof. Let Ṽ in Ṽ be arbitrary, i.e.

Ṽ =
n∑

l=1

al
∂

∂xl
+ b : L2(U) ⊇ C

∞
0 (U) −→ L2(U),

where b, al ∈ C ∞
0 (U). Since Mf (C

∞
0 (U)) ⊆ C ∞

0 (U) and [Ṽ ,Mf ] = Mg with g :=
n∑
l=1

al
∂
∂xl
f ∈ C ∞

0 (U) holds, the operator [Ṽ ,Mf ] has a continuous extension. This im-

plies Mf ∈ ΨV
1 , since Ṽ ∈ V was arbitrary. Now, by δVMf = Mg and g ∈ C ∞

0 (U) ⊆
C ∞(U) ∩ L∞(U), we can use the same argument again and get (i) by iteration. (ii)
follows by of (i), since ΨV

∞ is an algebra by construction.

Now, we aim to show that operators in ΨV
∞ are pseudodifferential operators after some

sort of localizing process. In the sequel let K := suppω ⊆ U , where ω is the function
given in E.2.1, and ΨV

∞,K denotes the space of all A ∈ ΨV
∞,K fulfilling E.1.4 (ii) and (iii).

Lemma E.2.4.

(i) We have ΨV
∞,K ⊆ LK(U).

(ii) For A ∈ ΨV
∞,K and V ∈ V we get δVA ∈ ΨV

∞,K.

Proof. (i) It is enough to show A(C ∞
0 (U)) ⊆ C ∞

0 (U) for arbitrary A ∈ ΨV
∞,K . Let

f ∈ C ∞
0 (U) and ω1 ∈ C ∞

0 (U) be chosen, such that ω ≺ ω1 ≺ ψ holds. Then we have
suppAf ⊆ K and ω1 = 1 in a neighbourhood of K. Properties E.1.4 (ii) and (iii) then
give:

Af = ω1A(ω1f) + (1 − ω1)Af︸ ︷︷ ︸
=0

+ω1A((1 − ω1)f︸ ︷︷ ︸
=0 near K

)

= ω1A(ω1f) ∈ ω1A(C ∞
0 (U)) ⊆ ω1A(H∞

V ) ⊆ ω1H∞
V ⊆ C

∞
0 (U),

where we used 1.3.5 (iv) and E.2.2.
(ii) By 1.3.5 (v) we already have δV (A) ∈ ΨV

∞, so what is left is to prove (ii) and (iii) of
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E.1.4. Each V ∈ V is the minimal closed extension of an operator Ṽ = ψṼ1ψ : L2(U) ⊇
C ∞

0 (U) −→ L2(U), where Ṽ1 is differential operator of order one. Let f ∈ C ∞(U)∩L2(U)

be arbitrary. Then there exists a sequence (fk)k∈N, such that C ∞
0 (U) 3 fk

k→∞−−−→ f with

respect to L2(U); this implies δV (A)fk
k→∞−−−→ δV (A)f since δV (A) ∈ ΨV

∞ ⊆ L (L2(U))

is bounded. The same argument gives χKδV (A)fk
k→∞−−−→ χKδV (A)f , where χK is the

characteristic function on K. Moreover,

χKδV (A)fk = χK [ψṼ1ψAfk︸ ︷︷ ︸
supp⊆K

−A(ψṼ1ψfk)︸ ︷︷ ︸
supp⊆K

] = δV (A)fk,

which gives χKδV (A)f = δV (A)f , i.e. supp δV (A)f ⊆ K and (ii) of E.1.4 is fulfilled.
To show (ii), let f ∈ C ∞(U) ∩ L2(U) be with supp f ∩ K = ∅ and ω2 ∈ C ∞

0 (U) be

with ω ≺ ω2 and suppω2 ∩ supp f = ∅. Again, there exists fk ∈ C ∞
0 (U) where fk

k→∞−−−→ f

with respect to L2(U); this gives (1 − ω2)fk
k→∞−−−→ (1 − ω2)f = f , since ω2 = 0 on supp f

holds. Consequently δV (A)((1−ω2)fk)
k→∞−−−→ δV (A)f by the boundedness of δV (A). Since

A ∈ ΨV
∞,K we also get

δV (A)((1 − ω2)fk) = ψṼ1ψA((1 − ω2)fk) − A(ψṼ1ψ(1 − ω2)fk) = 0,

and therefore δV (A)f = 0.

To show that the local symbols of ΨV
∞,K ⊆ LK(U) are elements of Sm1,0(R

n
x × Rn

ξ ), we
define the space

ΣK :=
{
σA : A ∈ ΨV

∞,K

}
.

Proposition E.2.5. Let σ ∈ ΣK be a symbol and γ ∈ C ∞(Rn
x). Then γ · σ, ∂

∂xl
σ, ∂

∂ξk
σ

and ξl
∂
∂ξk
σ are also symbols in ΣK. Here we used the notation γ · σ for the mapping

(x, ξ) 7−→ γ(x)σ(x, ξ).

The proof of this lemma will use the following tensor product decomposition:

C
∞(Rn

x ×R
n
ξ ) = C

∞(Rn
x)
⊗̂

π
C

∞(Rn
ξ ).

For f ∈ C ∞(Rn
x)
⊗̂

πC
∞(Rn

ξ ) and g : C ∞(Rn
x) −→ C ∞(Rn

x) we get

(g⊗̂πid)

(
∂

∂ξj
f

)
= (g⊗̂πid)

(
id⊗̂π

∂

∂ξj

)
f

=

(
id⊗̂π

∂

∂ξj

)
(g⊗̂πid)f

=
∂

∂ξk
(g⊗̂πid)f,

which shows

g⊗̂πid[(x
′, ξ) 7→ ix′ke

〈x′ | ξ〉] =
∂

∂ξk
(g⊗̂πid[(x

′, ξ) 7→ ei〈x
′ | ξ〉]). (E.2.3)



E.2 Local classification 133

Proof. Let A ∈ ΨV
∞,K be with σ = σA. Then γ · σ = σγ|UA and E.2.3 (i) implies γ|UA ∈

ΨV
∞,K . Before we give the proof of the last three implications, it is worth pointing out,

that V ∈ V implies δV (A) ∈ ΨV
∞,K (using the last lemma and ω ≺ ψ). We will show:

(i) σδVlA(x, ξ) = i ∂
∂xl
σA(x, ξ), where l = 1, . . . , n,

(ii) σδ
V k
A(x, ξ) = −i ∂

∂ξk
σA(x, ξ), where k = 1, . . . , n,

(iii) σδ
V k
l
A(x, ξ) = −ixk ∂

∂xl
σA(x, ξ) + iξl

∂
∂ξk
σA(x, ξ), where k, l = 1, . . . , n.

Ad (i): We have

σ[i ∂
∂xl

,A](x, ξ) = e−i〈ξ |x〉
([
i
∂

∂xl
, A

]
ei〈ξ | ·〉

)
(x)

= i2ξle
−i〈ξ |x〉(Aei〈ξ | ·〉)(x)

− ie−i〈ξ |x〉
∂

∂xl

(
Aei〈ξ | ·〉

)
(x)

= i
∂

∂xl

(
e−i〈ξ |x〉(Aei〈ξ | ·〉)

)
(x) = i

∂

∂xl
σ(x, ξ).

Ad (ii): We have

σ[A,Mxk
] = e−i〈ξ |x〉

(
[A,Mxk ]e

i〈ξ | ·〉
)
(x)

= e−i〈ξ |x〉(−i)
(
A(iMxke

i〈ξ | ·〉)
)
(x)

− i

((
∂

∂ξk
e−i〈ξ |x〉Aei〈ξ | ·〉

)
(x)

)

(∗)
= −ie−i〈ξ |x〉A

(
∂

∂ξk
ei〈ξ | ·〉

)
(x)

− i

(
∂

∂ξk
σ(x, ξ) − e−i〈ξ |x〉

∂

∂ξk
Aei〈ξ | ·〉

)
(x)

= −i ∂
∂ξk

σ(x, ξ).

Here (∗) holds by (E.2.3).
Ad (iii): We have

σ[A,ixk
∂
∂xl

](x, ξ) =e−i〈ξ |x〉
([
A, ixk

∂

∂xl

]
ei〈ξ | ·〉

)
(x)

=i
(
e−i〈ξ |x〉

(
Axk

∂

∂xl
ei〈ξ | ·〉

)
(x)

− e−i〈ξ |x〉
(
xk

∂

∂xl
Aei〈ξ | ·〉

)
(x)
)
.
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We treat the summands separately and get for the first summand:

e−i〈ξ |x〉
(
Axk

∂

∂xl
ei〈ξ | ·〉

)
(x)

= iξle
−i〈ξ |x〉(Axke

i〈ξ | ·〉)(x)

= ξle
−i〈ξ |x〉

(
A

(
∂

∂ξk
ei〈ξ | ·〉

))
(x)

= ξle
−i〈ξ |x〉 ∂

∂ξk

(
A(ei〈ξ | ·〉)

)
(x)

= ξl
∂

∂ξk

(
e−i〈ξ |x〉A(ei〈ξ | ·〉)

)
(x)

− ξl

(
∂

∂ξk
e−i〈ξ |x〉

)
(A(ei〈ξ | ·〉))(x)

= ξl
∂

∂ξk
σ(x, ξ) + ξlxke

−i〈ξ |x〉
(
A(ei〈ξ | ·〉)

)
(x)

= ξl
∂

∂ξk
σ(x, ξ) − q(x, ξ),

where q(x, ξ) := −ixkξlσ(x, ξ). The second addend gives:

e−i〈ξ |x〉
(
xk

∂

∂xl
Aei〈ξ | ·〉

)
(x)

= xk

(
∂

∂xl

(
e−i〈ξ |x〉(Aei〈ξ | ·〉)

))
(x)

−
(
∂

∂xl

(
e−i〈ξ |x〉

))
(Aei〈ξ | ·〉)(x)

= xk

(
∂

∂xl
σ(x, ξ) + iξje

−i〈ξ |x〉A(ei〈ξ | ·〉)(x)

)

= xk
∂

∂xl
σ(x, ξ) + ixkξlσ(x, ξ)

= xk
∂

∂xl
σ(x, ξ) − q(x, ξ).

The above calculations show, that

σ[A,ixk
∂
∂xl

](x, ξ) = −ixk
∂

∂xl
σ(x, ξ) + iξl

∂

∂ξk
σ(x, ξ)

and we have proven (iii).

Corollary E.2.6. Let σ ∈ ΣK be arbitrary. Then we have:

(i) ∂β

∂xβ
σ ∈ ΣK for all β ∈ Nn

0 .

(ii) ∂α

∂ξα
σ ∈ ΣK for all α ∈ Nn

0 .
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Proof. This follows by induction using E.2.5.

Corollary E.2.7. Let α, β ∈ Nn
0 be multiindices, p = p(ξ1, . . . , ξn) a polynomial of degree

equal or less than |α| and σ ∈ ΣK. Then the mapping (x, ξ) 7−→ p(ξ)[∂βx∂
α
ξ σ(x, ξ)] is also

an element of ΣK.

Proof. (i) Let σ ∈ Σ, α ∈ Nn
0 and p be a polynomial with grad p ≤ |α|. Then we want to

show, that p∂αξ σ ∈ Σ holds. Since p =
∑

|γ|≤|α|

aγξ
γ , it is enough to show that ξγ∂αξ σ ∈ Σ

holds. We will do this by induction with respect to |α|:
If |α| = 1, then the claim follows by E.2.5. Now suppose the induction hypothesis holds

for all β ∈ Nn
0 , such that |β| < n. Let α ∈ Nn

0 be with |α| − 1 ≤ n and γ ∈ Nn
0 , such that

|γ| ≤ |α|.
In the case that γ = (0, . . . , 0) we again get ∂αξ σ ∈ Σ. So let γ 6= (0, . . . , 0). Then there

exists a minimal j1, j2 ∈ {1, . . . , n}, such that γj1 6= 0 and αj2 6= 0. We conclude

ξγ∂αξ σ(x, ξ) = ξ
γj1
j1

· · · ξγnn ∂
αj2
ξj2

· · · ∂αnξn σ(x, ξ)

= ξj1

(
ξ
γj1−1

j1
ξ
γj1+1

j1+1 · · · ξγnn ∂
αj2
ξj2

· · · ∂αnξn σ(x, ξ)
)

= ξj1
∂

∂ξj2

(
ξ
γj1−1

j1
ξ
γj1+1

j1+1 · · · ξγnn ∂
αj2−1

ξj2
∂
αj2+1

ξj2+1
· · · ∂αnξn σ(x, ξ)

)

−ξj1
∂

∂ξj2

(
ξ
γj1−1

j1
ξ
γj1+1

j1+1 · · · ξγnn
)
∂
αj2−1

ξj2
∂
αj2+1

ξj2+1
· · · ∂αnξn σ(x, ξ).

Using the induction hypothesis we see, that

ξ
γj1−1

j1
ξ
γj1+1

j1+1 · · · ξγnn ∂
αj2−1

ξj2
∂
αj2+1

ξj2+1
· · · ∂αnξn σ(x, ξ) ∈ Σ,

which gives

ξj1
∂

∂ξj2

(
ξ
γj1−1

j1
ξ
γj1+1

j1+1 · · · ξγnn ∂
αj2−1

ξj2
∂
αj2+1

ξj2+1
· · · ∂αnξn σ(x, ξ)

)
∈ Σ

by E.2.6 and induction. The second summand s has to be treated in separated cases:

(I) j1 < j2:
∂

∂ξj2
(ξ
γj1−1

j1
ξ
γj1+1

j1+1 · · · ξγnn ) = 0, which gives

s = ξj1
∂

∂ξj2
(ξ
γj1−1

j1
ξ
γj1+1

j1+1 · · · ξγnn )∂
αj2−1

ξj2
∂
αj2+1

ξj2+1
· · · ∂αnξn σ(x, ξ) = 0

and s ∈ Σ.

(II) j1 = j2 und γj1 = γj2 = 1: Then again s = 0 ∈ Σ.

(III) j1 = j2 und γj1 = γj2 ≥ 2: We get

s(x, ξ) = (γj1 − 1)ξ
γj1−1

j1
ξ
γj1+1

j1+1 · · · ξγnn ∂
αj1−1

ξj1
∂
αj1+1

ξj1+1
· · · ∂αnξn σ(x, ξ) ∈ Σ

by induction.



136 Appendix E Beals and Coifman-Mayer

(IV) j1 > j2: Again we have

s(x, ξ) = γj2

(∏

k 6=j2

ξikk

)
ξ
γj2−1

j2
∂
αj2−1

ξj2
· · · ∂αnξn σ(x, ξ) ∈ Σ

by induction.

(ii) Now, we finally want to prove the lemma. Let p : Rn −→ R be a polynomial with
degree p ≤ |α|, i.e. p =

∑
|γ|≤|α|

aγξ
γ . Then

p(ξ)∂αξ ∂
β
xσ(x, ξ) =

∑

|γ|≤|α|

aγξ
γ∂αξ ∂

β
xσ(x, ξ)

follows. By E.2.6 we get ∂βxσ ∈ Σ, which shows ξγ∂αξ ∂
β
xσ ∈ Σ by (i). This proves the

claim.

Satz E.2.8. We have: ΣK ∈ Sm1,0(R
n
x ×Rn

ξ ).

Proof. Let σ ∈ ΣK be arbitrary. Then p · ∂βx∂αξσ ∈ ΣK holds for all polynomials p in ξ
of degree equal or less |α|. Thus by E.1.6 (ii)

∫

Rn

|p(ξ)∂βx∂αξ σ(x, ξ)|2 dx ≤ Cα,β

follows for all ξ ∈ Rn
ξ . The Sobolev embedding theorem now implies the existence of a

constant C̃α,β <∞, such that

sup
ξ∈Rn

ξ

sup
x∈Rnx

|p(ξ)∂βx∂αξ σ(x, ξ)| ≤ C̃α,β

holds for all α, β ∈ Nn
0 and all polynomial p of degree equal or less |α|, i.e. σ ∈ Sm1,0(R

n
x ×

Rn
ξ ).

E.3 Global classification

We have proven that pseudodifferential operators can locally be characterized by means
of commutators of finitely many symmetric operators. Now, we have to globalize this
approach to a criteria on a closed manifold. In particular we have to show that all
operators satisfying the commutator conditions admit a C ∞-kernel representation.

First of all, we will describe the relationship between operators on M and their local
representation defined on a coordinate chart in Rn.

Notations E.3.1. Let χ : M ⊇ U ′ −→ U ⊆ Rn be a chart and ϕ, ϑ, ψ, υ ∈ C ∞
0 (U),

where ϕ ≺ ϑ ≺ ψ ≺ υ. We define ϕ′, ϑ′, ψ′, υ′ ∈ C ∞
0 (U ′) by ϕ′ := ϕ ◦ χ etc. Moreover, let

Ṽ := ψV1ψ : C ∞
0 (U) −→ L2(U) be a densely defined, symmetric operator, where V1 is a
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partial differential operator of order 1. Let Ṽ ′ : C ∞(M) −→ L2(M) be the differential

operator on C ∞(M) that is locally given by Ṽ , i.e. we have

(Ṽ ′f)(x′) =

{
[Ṽ (f ◦ χ−1)](χ(x′)), x′ ∈ U ′,

0, else,

for f ∈ C ∞(M). Then Ṽ ′ is also densely defined and symmetric. We denote by V :
L2(U) ⊇ D(V ) −→ L2(U) and V ′ : L2(M) ⊇ D(V ′) −→ L2(M) the corresponding

minimal closed extensions of Ṽ resp. Ṽ ′.
A given operator A ∈ L (L2(M)) induces a bounded operator Aυ,χ ∈ L (L2(U))

L2(M)
υ′A // L2(U ′)

(·)◦χ−1

��
L2(U)

(·)◦χ

OO

Aυ,χ
//___ L2(U)

by [Aυ,χf ](x) = (υ′A(f ◦ χ))(χ−1(x)).

Lemma E.3.2. We have:

(i) f ∈ D(V ) implies f ◦ χ ∈ D(V ′) and V ′(f ◦ χ) = (V f) ◦ χ.

(ii) g′ ∈ D(V ′) implies h ∈ D(V ) and V h = (V ′g′) ◦ χ−1, where h := (υ′g′) ◦ χ−1.

(iii) A ∈ D(δV ′) implies Aυ,χ ∈ D(δV ) and δV (Aυ,χ) = (δV ′(A))υ,χ.

(iv) f ∈ L2(M) implies

(ϑ′Aϕ′f)(χ−1(x)) = (ϑAυ,χ(ϕ(f ◦ χ−1)))(x)

for all x ∈ U .

Proof. (i) Let f ∈ D(V ) be arbitrary. Then we can choose a sequence (fk)k ⊆ C ∞
0 (U),

such that fk
k→∞−−−→ f and Ṽ fk

k→∞−−−→ V f ′ with respect to L2(U). This gives fk◦χ k→∞−−−→ f◦χ
and

Ṽ ′(fk ◦ χ) = (Ṽ (fk ◦ χ ◦ χ−1)) ◦ χ = (Ṽ (fk)) ◦ χ k→∞−−−→ V f ◦ χ
with respect to L2(M), i.e. f ◦ χ ∈ D(V ′) and V ′(f ◦ χ) = (V f) ◦ χ.

(ii) Let g′ ∈ D(V ′) be arbitrary. Then there exists g′k ∈ C ∞(M) such that g′k
k→∞−−−→ g

and Ṽ ′gk
k→∞−−−→ V ′g′ with respect to L2(M). This implies υ′gk

k→∞−−−→ υ′g and

hk := (υ′g′k) ◦ χ−1 k→∞−−−→ (υ′g′) ◦ χ−1 = h.

Moreover, an application of (i) shows

Ṽ hk = Ṽ ((υ′g′k) ◦ χ−1) = (Ṽ ′g′k) ◦ χ−1 k→∞−−−→ (V ′g′) ◦ χ−1,
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i.e. h ∈ D(V ) and V h = (V ′g′) ◦ χ−1.
(iii) Let f ∈ D(V ) be arbitrary, then (i) gives f ◦ χ ∈ D(V ′). We conclude A(f ◦ χ) ∈

D(V ′), since A ∈ D(δV ′) and therefore by (ii): Aυ,χf = (υ′A(f ◦ χ) ◦ χ−1) ∈ D(V ). We
calculate:

V Aυ,χf − Aυ,χV f = V
[
(υ′A (f ◦ χ)) ◦ χ−1

]
− [υ′A ((V f) ◦ χ)] ◦ χ−1

= [υ′(V ′A− AV ′)(f ◦ χ)] ◦ χ−1

= [υ′δV ′(A)(f ◦ χ)] ◦ χ−1.

This shows that V Aυ,χ−Aυ,χV : D(V ) −→ L2(U) has the bounded extension (δV ′(A))υ,χ,
and we have proven (iii).
(iv) Let f ∈ L2(M). Then

[
ϑAυ,χ

(
ϕ(f ◦ χ−1)

)]
(x) = ϑ(y)

[
υ′A

(
ϕ(f ◦ χ−1) ◦ χ

)] (
χ−1(x)

)

= ϑA (ϕ′f)
(
χ−1(x)

)

follows, which shows (iv).

Notations E.3.3. Let A := (U ′
j, χj)

N
j=1 be a (fixed) covering of M by coordinate charts

and (ϕj)j=1,...,N a partition of unity subordinated to A. Moreover, we choose ϑ′
j, η

′
j, ψ

′
j ∈

C ∞
0 (U ′

j) to given j = 1, . . . , N , such that 0 ≤ ϑ′
j, η

′
j, ψ

′
j ≤ 1 and ϕ′

j ≺ η′j ≺ ϑ′
j ≺ ψ′

j. We

then define ϕj, ηj, ϑj, ψj ∈ C ∞
0 (Uj) by ϕj := ϕ′

j ◦ χ−1
j etc.

Denote by Ṽj resp. Vj the family of densely defined symmetric, hence closable operators

defined, cf. E.2.1, where we replace U by Uj and ψ by ψj. Let Ṽ ′
j resp. V ′

j be the families
of densely defined symmetric closable resp. closed operators given by E.3.1 with respect
to the charts χj and the local family Ṽj etc.

Finally, we consider the following set of operators

Ṽ l
j := iηj

∂

∂xl
ηj : L2(Uj) ⊇ C

∞
0 (Uj) −→ L2(Uj),

where j = 1, . . . , N , l = 1, . . . , n. Then again Ṽ l
j is densely defined and symmetric, hence

closable, and we denote the minimal closed extension by V l
j : D(V l

j ) −→ L2(Uj) and the

corresponding global operator by V
′l
j : D(V

′l
j ) −→ L2(M).

Let Ṽ
′l
D,j ∈ Ṽ ′

D,j be the operator that is locally given by iψj
∂
∂xl
ψj, and set

Ṽ
′l,m
j := (1 − η′m)Ṽ

′l
D,j(1 − η′m) : L2(M) ⊇ C

∞
0 (M) −→ L2(M).

Then this operator is again symmetric and densely defined and therefore closable. We
denote by V

′l,m
j : C ∞

0 (M) −→ L2(M) the corresponding minimal closed extension of this
operator. Moreover, we define the following family of closable operators

W̃ :=
N⋃

j=1

Ṽ ′
j ∪
{
Ṽ ′l
j : j = 1, . . . , N, l = 1, . . . , n

}

∪
{
Ṽ ′l,m
j : j,m = 1 . . . , N, l = 1, . . . , n

}
,
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resp. W the corresponding family of densely defined symmetric minimal extensions of
elements from W̃ . It is worth pointing out, that all of these operators are local operators.

Lemma E.3.4.

(i) f ∈ C ∞(M) implies Mf ∈ ΨW
∞ .

(ii) We have H∞
W = C ∞(M).

Proof. Using E.3.1, the prove of (i) is given by an analogous calculation as in E.2.3, hence
we omit it.

Let us treat (ii): Since C ∞(M) ⊆ D(W ′) and

W ′(C ∞(M)) = W̃ ′(C ∞(M))) ⊆ C
∞(M)

for all W ′ ∈ W, we conclude C ∞(M) ⊆ H∞
W . It is left to show the reversed implication.

Let f ∈ H∞
W be arbitrary, then an induction and E.3.2 (ii) shows, that (ϕ′

jf) ◦ χ−1
j ∈ H∞

Vj

and therefore by E.2.2 (ϕ′
jf) ◦ χ−1

j ∈ C∞
0 (Uj) holds. Summing up, we see that f =

N∑
j=1

ϕ′
jf ∈ C ∞(M) as desired.

To treat operators given of the form (1 − ϑ′
j)Aϕ

′
j, we use the given partition of unity

to localize, i.e.

(1 − ϑ′
j)Aϕ

′
j =

N∑

m=1

ϕ′
m(1 − ϑ′

j)Aϕ
′
j. (E.3.1)

We define:

Definition E.3.5.

(i) Denote by Ψj,m the space of all A ∈ Ψ̃W
∞(M), such that

(a) suppAf ⊆ suppϕ′
m ∩ supp

(
1 − ϑ′

j

)
and

(b) supp f ∩ suppϕ′
j = ∅ ⇒ Af = 0

holds for all f ∈ C ∞(M).

(ii) Denote by Ψ∗
m,j the space of all A ∈ Ψ̃W

∞(M), such that

(a) suppAf ⊆ suppϕ′
j and

(b) supp f ∩
(
suppϕ′

m ∩ supp (1 − ϑ′
j)
)

= ∅ ⇒ Af = 0

holds for all f ∈ C ∞(M).

Note, that A ∈ Ψj,m induces a bounded operator Aj,m : L2(Uj) −→ L2(Um) by Aj,mf =
A(f ◦ χj) ◦ χ−1

m . Analogously each operator A∗ ∈ Ψ∗
m,j defines a bounded operator A∗

m,j :
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L2(Um) −→ L2(Uj) via A∗
m,jf = A(f ◦ χm) ◦ χ−1

j .

L2(M)
A|
U′
m // L2(U ′

m)

◦χ−1
m

��
L2(Uj)

◦χj

OO

Aj,m //
L2(Um)

A∗
m,j

oo

◦χm

��
L2(U ′

j)

◦χ−1
j

OO

L2(M)
A∗

|
U′
j

oo

The spaces of all local representations of operators from Ψj,m resp. Ψ∗
m,j will be denoted

by Lj,m resp. L∗
m,j. If B̃ ∈ Lj,m ∪ L∗

m,j is a local representation of B ∈ Ψj,m ∪ Ψ∗
j,m, B̃

induces an element of L (L2(Rn)) resp. L (C ∞(Rn)), and we will use this in the sequel
without any comment.

Remark E.3.6. Let A ∈ Ψ̃1,0(M) be arbitrary. Then we have:

(i) ϕ′
m(1 − ϑ′

j)Aϕ
′
j ∈ Ψj,m.

(ii) ϕ′
jA

∗(1 − ϑ′
j)ϕ

′
m ∈ Ψ∗

m,j.

(iii) Let B1 : L2(Rn) −→ L2(Rn) be the local representation of ϕ′
m(1 − ϑ′

j)Aϕ
′
j and

B2 : L2(Rn) −→ L2(Rn) the representation of ϕ′
jA

∗(1 − ϑ′
j)ϕ

′
m ∈ Ψ∗

j,m. Then
B∗

1 = B2.

Lemma E.3.7. We have δW ′(Ψj,m) ⊆ Ψj,m and δW ′(Ψ∗
j,m) ⊆ Ψ∗

j,m.

Proof. By 1.3.5 we have δW ′(Ψj,m) ⊆ ΨW
∞ and δW ′(Ψ∗

m,j) ⊆ ΨW
∞ . So what is left is to prove

(i) and (ii) of E.3.6. For given A ∈ ΨW
∞ and f ∈ C ∞(M) we get

δW ′(A)f = (W ′A− AW ′)f = W̃ ′Af − AW̃ ′f.

Moreover, W̃ ′ ∈ W is a local operator, and (i) and (ii) is due to E.3.6.

Lemma E.3.8. We have:

(i) B ∈ Lj,m ⇒ B : L2(Rn) −→ Hk(Rn) is bounded for all k ∈ N0,

(ii) B ∈ L∗
m,j ⇒ B : L2(Rn) −→ Hk(Rn) is bounded for all k ∈ N0.

Proof. We will prove the lemma by induction with respect to k ∈ N.
(i) Let k = 1 and A ∈ Ψj,m, where B = Aj,m ∈ Lj,m and f ∈ L2(Rn) are arbitrary.

Then we have to show that Bf ∈ H1(Rn). Since C ∞
0 (Rn) is dense in L2(Rn), there

exists a sequence (fk)k ⊆ C ∞
0 (Rn) with fk

k→∞−−−→ f with respect to the topology L2(Rn).

Because of B ∈ Lj,m we get Bfk
k→∞−−−→ Bf ∈ L2(Rn) and Bfk ∈ C ∞

0 (Rn). Moreover,

A(1 − η′j)(Ṽ
′l
D,m)(1 − η′j)(fk ◦ χj) = 0, (E.3.2)
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holds by
suppϕ′

j ∩ supp ((1 − η′j)(Ṽ
′,l
D,j)(1 − η′j)(f ◦ χj)) = ∅

and E.3.5 (i) (b). If δ
V

′l,j
m

(A)(fk ◦ χj) ◦ χ−1
m ∈ L2(Rn) is arbitrary we get:

δ
V

′l,j
m

(A)(fk ◦ χj) ◦ χ−1
m

=
(
(1 − η′j)(Ṽ

′l
D,m)(1 − η′j)A(fk ◦ χj)

− A(1 − η′j)(Ṽ
′l
D,m)(1 − η′j)(fk ◦ χj)︸ ︷︷ ︸

=0 cf. (E.3.2)

)
◦ χ−1

m

= iψm
∂

∂xl
ψm(A(fk ◦ χj)) ◦ χ−1

m = i
∂

∂xl
Aj,mfk

= i
∂

∂xl
Bfk,

since in E.3.5 (i) (a) supp (A(fk ◦ χj)) ⊆ supp (1 − ϑ′
j) ∩ suppϕ′

m holds, where ψm ≡ 1.

We get i ∂
∂xl
Bf = ad [V

′l,j
m ](A)(f ◦ χj) ◦ χ−1

m and i ∂
∂xl
Bf ∈ L2(Rn) for all l ∈ {1, . . . , n}.

Since Bf ∈ L2(Rn) holds, Bf ∈ H1(Rn) follows1. If δ
V

′l,j
m

(A) denotes the operator given
by

δ
V

′l,j
m

(A)g := ad [V
′l,j
m ](A)(g ◦ χj) ◦ χ−1

m , (g ∈ L2(Rn))

then it is the local representation of an operator in Ψj,m by E.3.7, i.e. δ
V

′l,j
m

(A) ∈ Lj,m.

Since i ∂
∂xl
Bf = δ

V
′l,j
m

(A)f , where δ
V

′l,j
m

(A) ∈ Lj,m the inductional step becomes trivial.

(ii) Again, let k = 1 and A ∈ Ψ̃∗
j,m be given with B = A∗

m,j ∈ L (L2(Rn)) and

f ∈ L2(Rn) arbitrary. Then there is (fk)k ⊆ C ∞
0 (Rn), such that fk

k→∞−−−→ f with respect

to L2(Rn). But this again gives Bfk
k→∞−−−→ Bf with respect to the topology of L2(Rn),

where Bfk ∈ C ∞
0 (Rn). In addition we get

A(Ṽ
′l
j )(fk ◦ χm) = 0, (E.3.3)

because Ṽ l′

j (fk ◦ χm) = iηj
∂
∂xl
ηj(fk ◦ χm) and thus

supp (Ṽ
′l
j )(fk ◦ χm) ∩

(
suppϑ′

m ∩ (1 − ϑ′
j)
)

= ∅
holds. Consequently, we get the following equation:

L2(Rn) 3 ad [V
′l
j ](A)(fk ◦ χm) ◦ χ−1

j

=
(
(Ṽ

′l
j )A(fk ◦ χm) − A(Ṽ

′l
j )(fk ◦ χm)︸ ︷︷ ︸

=0 by (E.3.3)

)
◦ χ−1

j

=
(
(Ṽ

′l
j )A(fk ◦ χm)

)
◦ χ−1

j = ηj
∂

∂xl
ηj
(
A(fk ◦ χm) ◦ χ−1

j

)

=
∂

∂xl
Bfk.

1see also [98, Proposition 1.14]
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This implies Bf ∈ L2(Rn), and the inductional step is again trivial.

Theorem E.3.9. We have Ψ0
1,0(M) = ΨW

∞ . In particular Ψ0
1,0(M) is a Ψ∗-algebra.

Proof. On the one hand, we know that Ψ0
1,0(M)∗ = Ψ0

1,0(M) and

[Ψ0
1,0(M),Ψ0

0,1(M)] ⊆ Ψ0
1,0(M) ⊆ L (L2(M))

holds using W̃ ⊆ Ψ0
1,0(M) and by the well-known symbolic calculus for pseudodifferential

operators we get that A ∈ Ψ0
1,0(M) andW ′ ∈ W give δW ′(A) ∈ Ψ0

1,0(M); thus an iteration
process finally yields Ψ0

1,0(M) ⊆ ΨW
∞ .

On the other hand, if A ∈ ΨW
∞ is given, we first use the decomposition

A =
N∑

j=1

ϑ′
jAϕ

′
j +

N∑

j=1

(1 − ϑ′
j)Aϕ

′
j.

Then E.1.6, E.2.8 and E.3.2 imply that E.1.2 (i) is fulfilled.
What is left to show, is that (1 − ϑ′

j)Aϕ
′
j is an integral operator for all j ∈ {1, . . . , N}

having a C ∞-kernel representation. For this we have to treat operators B given by

B = ϕ′
m(1 − ϑ′

j)Aϕ
′
j ∈ Ψj,m

according to (E.3.1). Let B1 ∈ Lj,m be the local representation of B and B∗
1 ∈ L ∗

j,m

be the local representation of ϕ′
jA

∗(1 − ϑ′
j)ϕm ∈ Ψ∗

j,m. Then (B∗
1)

∗ = B1 follows, cf.
E.3.6. This implies B1, B

∗
1 : L2(Rn) −→ Hk(Rn) for all k ∈ N0 by E.3.8. Since both

operators are adjoint to each other, we conclude that B1 extends to a bounded operator
H−k(Rn) −→ L2(Rn) for all k ∈ N0. By interpolation theory (see, for instance, [19,
Theorem 1.5.10])

[L2(Rn),H2k(Rn)] 1
2

= [D(Λ0), D(Λ2k)] 1
2

= D(Λk) = Hk(Rn),

resp.
[H−2k(Rn), L2(Rn)] 1

2
= H−k(Rn)

holds, which implies that B1 can be extended to a bounded operator

B1 : H−k(Rn) −→ Hk(Rn)

for all k ∈ N0 by [19, Theorem 1.5.5]. This shows that B1 has a C ∞-kernel representation
using the classical result by Seeley [106]. Therefore E.1.2 (ii) holds and we have finished
the proof.
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