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Abstract

This thesis is mainly concerned with a model calculation for generalized parton distributions
(GPDs). We calculate vectorial- and axial GPDs for the N → N and N → ∆ transition in
the framework of a light front quark model. This requires the elaboration of a connection
between transition amplitudes and GPDs. We provide the first quark model calculations for
N → ∆ GPDs. The examination of transition amplitudes leads to various model independent
consistency relations. These relations are not exactly obeyed by our model calculation since
the use of the impulse approximation in the light front quark model leads to a violation
of Poincare covariance. We explore the impact of this covariance breaking on the GPDs and
form factors which we determine in our model calculation and find large effects. The reference
frame dependence of our results which originates from the breaking of Poincare covariance
can be eliminated by introducing spurious covariants. We extend this formalism in order to
obtain frame independent results from our transition amplitudes.





Zusammenfassung

Das Thema dieser Arbeit ist eine Modellrechnung für verallgemeinerte Partonverteilungen
(GPDs). Es werden vektorielle- und axiale GPDs für die N → N und N → ∆ Übergänge im
Rahmen eines Quarkmodells im Lichtkegelformalismus berechnet. Hierzu muß zunächst ein
Zusammenhang zwischen Übergangsamplituden und den GPDs hergestellt werden. Die Unter-
suchung der Übergangsamplituden führt zu einer Vielzahl modellunabhängiger Konsistenzre-
lationen. Diese Relationen werden von den im Modell berechneten Übergangsamplituden nicht
exakt erfüllt, da die Verwendung der Impulsnäherung im Quarkmodell auf dem Lichtkegel zu
einer Verletzung der Poincare Kovarianz führt. Der Einfluß dieser Brechung der Kovarianz auf
die Berechnung von GPDs und Formfaktoren wird untersucht. Es ergeben sich große Effekte,
unter anderem die Abhängigkeit der Ergebnisse von der Wahl des Bezugssystems. Letztere
kann durch die Einführung zusätzlicher unphysikalischer Kovarianten eliminiert werden. In
dieser Arbeit wird der entsprechende Formalismus erweitert um für alle hier betrachteten Ob-
servablen Ergebnisse aus den Übergangsamplituden zu erhalten welche unabhängig von der
Wahl des Bezugssystems sind.
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Chapter 1

Introduction

After the first measurement of the proton form factor by Hofstadter in 1955 [1] it was obvious
that hadrons exhibit a substructure. Since then not only a large variety of hadrons has been
discovered but patterns allowing to classify them have arisen. The idea of SUF (3) multiplets
in 1961 [2] lead to the remarkable prediction of the Ω− resonance which was discovered in
1964. The ostensible discrepancy between this idea and the Pauli principle was resolved soon
after [3][4] by the postulation of color. With the realization that quarks not only represented
a successful mathematical construct but could be understood as real partons which make up
the hadrons the time was ripe for QCD. In 1971 t‘Hooft proved the renormalizability [5] of
Yang Mills theories [6] and two years later asymptotic freedom of the latter was announced
[7] [8]. In the same year this theory was applied to describe the interactions between quarks
[9] [10] and has subsequently been referred to as quantum chromo dynamics (QCD).

Since then QCD has experienced several experimental confirmations and is widely accepted as
theory for describing the strong interaction. Three decades have passed with hadronic physics
still being an active research area which provides many open questions and challenges to both
theory and experiment.

QCD is a non abelian gauge theory with quarks which are nearly massless (for u, d and
s quarks) and massless gluons as gauge bosons. In this respect it very much resembles QED
and in fact the bare lagrangian

L =
∑

f

ψ̄f

(
i /D −mf

)
ψf − 1

4
trc F

µνFµν

is identical to the QED lagrangian with the only exception of a different Lie algebra leading
to the appearance of the SU(3) structure constants f abc in the definition of the field strength
tensor:

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν

Dµψf = ∂µψf − ig
λa

2
Aa

µψf .

This additional term gives rise to gluon self interactions. These lead to a running coupling
resulting in asymptotic freedom. On the other hand this implies large values for the strong

1



2 Chapter 1. Introduction

Figure 1.1: The QCD running coupling αS taken from [11]

coupling constant at lower energy scales. Hence the scope of perturbative techniques for QCD
is limited to the small coupling region which can be explored in high energy scattering exper-
iments. However the large and important low energy sector is not covered by pQCD.

The world of the strong interactions consists of hadrons. Their fermionic constituents, the
quarks as described by QCD are never observed alone1. The QCD constituents always form
color neutral objects, moreover so far only three quark and quark- antiquark states have been
confirmed experimentally2. The strong binding effect which forbids free quarks or gluons is
called confinement. Mechanisms for confinement have been suggested [14] and experience
support from lattice QCD; see e.g. [15]. However a rigorous explanation from first principles
has not been found so far.

1For signatures from free quarks see articles on the quark gluon plasma e.g. [12]
2The recent search for exotic baryons (pentaquarks) seems to be futile [13] as many searches before.
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At large distances/ low energies (which is also called the infrared domain) another field the-
oretical approach is possible. With the observation that chiral symmetry dominates the low
energy dynamics the small pion mass can be used as an expansion parameter and an effective
field theory can be constructed which posseses all symmetries of QCD [16]. This most promi-
nent example for a successful effective field theory is called chiral perturbation theory χPT
[17] and has become an active field of research, particularly since baryons could be included
in the formalism [18]. However effective field theories are never renormalizable and hence
require more and more low energy constants with every order. The latter are free parameters
which have to be determined from experiment.

Hence only for very small momenta precise predictions for hadronic physics observables can
be obtained using χPT while it breaks down completely close to its convergence radius of
roughly 1 GeV . Lattice QCD is the only field theoretical access to the intermediate range
between the realms of χPT and pQCD. Despite the progress during the last decade lattice
QCD still experiences manyfold difficulties. For instance the implementation of dynamical
fermions with small masses requires a huge numerical effort. Even though computers become
faster every year lattice calculations are still far away from a successful implementation of the
physical masses for the light quarks. Thus one relies on (chiral) extrapolation towards the
physical quark masses. A second problem is connected to the use of euclidean time which
complicates the exploration of dynamical properties. For example one cannot calculate DIS
structure functions directly but has only access to a couple of moments. Consequently some
observables are easy to obtain, while others are practically unreachable. Finally a general
drawback of lattice QCD is the lack of physical intuition concerning the question which physi-
cal mechanisms contribute to a result which has been “measured” on the lattice. It is of course
often possible to define adequate observables to confirm or reject physical pictures which one
has already developed.

Therefore in the interesting intermediate energy regime model calculations are often nec-
essary to obtain an estimate for physical observables or in order to understand the physical
picture behind an effect that has been measured.

One set of models which are frequently applied in hadronic physics are quark models. These
models start from the success of the quark hypothesis to explain the baryon- and meson
multiplets and proceed towards a description of hadronic physics with (constituent) quarks
being the only degrees of freedom. Their interaction potential is based on phenomenology and
sometimes is “QCD inspired”. The quark model wave function compiles all dynamical model
input. It is obtained from a variational ansatz such that important baryonic properties (i.e.
the mass spectrum) are reproduced. In the seventies the quark model was successfully applied
to describe the baryon spectrum and magnetic moments of the baryons. However it soon be-
came clear that the momenta of the constituent quarks called for a relativistic description.

In 1949 Dirac has given a classification [19] of forms of relativistic dynamics which combine
the restricted principle of relativity with the Hamiltonian formulation of dynamics. He distin-
guished three genuinely different forms of hamiltonian dynamics. They differ in the choice of
the kinematical subgroup (stability group) which leaves a hyperplane on which physical initial
conditions are specified invariant. This choice determines which operators are kinematical,
i.e. interaction independent. The other generators of the Poincare group are called dynamical
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operators.

Dirac discussed 3 different forms. The instant form being most familiar has the 0 compo-
nent of the total momentum P 0 and the Lorentz boosts ~K as dynamical operators. The
point form is determined by the total momentum four vector P µ being dynamical. The light
front form possesses the largest kinematical subgroup and therefore has only three dynamical
generators. They are a combination of four momentum components, P − = P 0 − P 3 and
combinations of boosts K and rotations J , F 1 = k1 − J2 and F 2 = K2 + J1.

All these descriptions have been applied to quark models. The earliest description of a LF
quark model was provided in 1976 [20]. The LF form possessing the largest possible kine-
matical subgroup has proven particularly useful for a relativistic description of quark models
since in a LF formulation the relativistic covariance of the wave functions comes for free. A
drawback of the application of the commonly used impulse approximation in the description
of e.g. elastic scattering within models is the breaking of Poincare covariance. The impulse
approximation neglects many body contributions to the current and is difficult to avoid.

In [21] a fresh look on elastic scattering using the light front form was provided by allowing
the null plane direction to change while spurious effects are absorbed into non physical form
factors. This idea could be applied to restore reference frame independence in a LF model
description of vectorial nucleon form factors despite the use of the impulse approximation [22].

Having provided a short and selective review about theoretical tools which are applied in
hadronic physics we will next focus our attention on different processes in hadronic physics
which give insight into the structure of hadrons. The strong binding due to the large QCD
coupling constant is a major challenge in the description of hadronic physics. A baryon for
example cannot simply be considered as a three quark system which is confined due to the ex-
change of gluons. The situation differs entirely from the atom whose mass can be understood
from the mass of its constituents with a small correction due to the photonic interaction.
Instead the nucleon dynamics determines the nucleon mass entirely. Thus the hadron should
rather be regarded as a dynamic system consisting of valence quarks, and a cloud of fluctuat-
ing quark- antiquark pairs and gluons.

If one wants to learn anything about the hadron structure it is not very useful to study
pure hadronic processes to learn about the properties of hadrons. In this context hadron
physicists sometimes use the metaphor of learning about the structure of swiss clocks by scat-
tering them against each other, observing their traces and thus learn about their structure.
Instead a well understood probe is called for to research hadronic properties. This probe is
the electromagnetic interaction which is well understood and can be successfully described by
QED. In an ideal situation one can also disentangle the hard (perturbative) part of the ex-
amined reaction from the soft (non perturbative) part. In the language of theoretical physics
such a separation is called factorization theorem. Deeply inclusive scattering is an example of
such a process. In a certain kinematical regime (Bjorken limit) factorization can be proven.
Then the leptonic side can be described by QED while the hadronic side factorizes into a hard
and a soft part with the latter being parameterized by universal hadronic observables. In this
case these observables are parton distributions. DIS is an inclusive process where the total
cross section is measured and the final states are not specified.
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On the other hand exclusive processes like elastic scattering single out a specific final state.
Elastic scattering on nucleons can be parameterized by form factors. They provide complimen-
tary information about the hadrons. One can think of them as a Fourier transform of e.g. the
electric charge distribution within the nucleon (in a certain reference system, the Breit frame).

With the advent of high luminosity accelerators and powerful detectors another class of ex-
clusive processes became experimentally accessible. In deeply virtual Compton scattering
(DVCS) a virtual photon hits a nucleon target which then emits a real photon. This process
can be understood as Compton scattering on a quark which is then embedded in the nucleon.
It is parameterized by generalized parton distributions [23][24]. These observables are kine-
matically rich and contain both form factors and parton distributions as special limits. Since
factorization of DVCS can be proven [25] GPDs are universal observables which provide new
insight into the structure of hadrons. These GPDs appear in the parametrization of other
processes as well (deeply virtual meson production, doubly virtual Compton scattering, two
photon exchange,...).

Besides the nucleon itself one can study its excitations. The best explored nucleon resonance
is the ∆(1232). This resonance is the first excited state of the nucleon. The ∆ resonance

possesses the quantum numbers JP = 3
2

+
. The isospin quadruplet consists of ∆++, ∆+, ∆0

and ∆−. It has a mass of 1232 MeV and a decay width of roughly 180 MeV. Its main decay
mode (nearly 100%) is ∆ → Nπ. While it is of course impossible to perform experiments
with a ∆ target one can study the properties of the N → ∆ transition. In fact transition form
factors and even transition GPDs can be studied in a way similar to the N → N transition.

This thesis is organized as follows: In chapter 2 we will introduce DVCS and GPDs and em-
phasize particularly the N → ∆ transition DVCS process.

In chapter 3 the quark model which we use to access these GPDs is introduced. The LF
formalism and the overlap representation for DVCS transition amplitudes from which the
GPDs can be obtained will be presented.

The model independent relations between DVCS transition amplitudes and GPDs will be
provided in chapter 4. Particular emphasis will be put on the derivation of relations among
the DVCS transition amplitudes which follow from Poincare covariance.

In chapter 5 we discuss a possibility to overcome covariance breaking effects of the impulse
approximation by providing spurious covariants for the processes of our interest.

Finally we will discuss our results in chapter 6 and provide an outlook.



Chapter 2

Deeply Virtual Compton Scattering

2.1 N → N DVCS

Virtual Compton Scattering is the (exclusive) process with a virtual photon probing a target
and a real photon being emitted. Since this process (with a hadron as target) is a semileptonic
process and the leptonic part of it is well understood it can serve as a probe for the less well
known hadron structure. The graph which describes VCS is displayed in fig. 2.1. At leading

k k′

q q′

P P ′

Figure 2.1: This graph describes VCS.

order in QED this process is described by the virtual photon exchange between the electron
and the nucleon.

Following Ji [26] we define the kinematics in a symmetric way. We choose qµ and P̄ µ collinear

in z direction. We introduce two light-like vectors p̃µ = P̄+

2 (1, 0, 0, 1) and nµ = 1
P̄+ (1, 0, 0,−1),

so that p̃2 = n2 = 0 and p̃ · n = 1. Before we can express all momenta in terms of p̃µ, nµ and
~∆µ
⊥ we introduce the skewedness variable ξ as momentum fraction of the momentum transfer

6



2.1. N → N DVCS 7

variable ∆ = q − q′ along the p̃µ direction:

∆+ = −2ξP̄+ . (2.1)

Then we find

P̄ µ =p̃µ +
m̄2

2
nµ

∆µ = − 2ξp̃µ + ∆µ
⊥ + ξm̄2nµ

P µ =P̄ µ − ∆µ

2
= (1 + ξ)p̃µ − ∆µ

⊥
2

+
1 − ξ

2
m̄2nµ

P ′µ =P̄ µ +
∆µ

2
= (1 − ξ)p̃µ +

∆µ
⊥

2
+

1 + ξ

2
m̄2nµ

qµ = − 2ξ′p̃µ +
Q2

4ξ′
nµ

q′µ =qµ − ∆µ = −2(ξ′ − ξ)p̃µ − ∆µ
⊥ +

(Q2

4ξ′
− ξm̄2

)
nµ

with

m̄2 =M2
N − ∆2

4

ξ′ =
P̄ · q
m̄2

(
−1 +

√
1 +

Q2m̄2

(P̄ · q)2
)

ξ =ξ′
Q2 − ∆2

Q2 + 4ξ′2m̄2
.

Here ξ and ξ′ are fixed by the conditions q2 = −Q2 and q′2 = 0.

Analogously to DIS one can consider the limit of high photon virtualities, i.e. the Bjorken
limit Q2 = −q2 → ∞, P · q → ∞ and Q2/P · q finite. In this limit the hadronic tensor is
dominated by the so called handbag diagrams:

Then in the Bjorken limit one has

ξ′ = ξ =
xB/2

1 − xB/2
.

As the longitudinal momentum fractions of the nucleons cannot be negative ξ is bounded by

0 < ξ <

√
−t√

4m̄2
< 1 .

It is useful to express ~∆⊥ in terms of ξ and t. One obtains

~∆2
⊥ = −(1 − ξ2)t− 4ξ2M2

N .

The DVCS amplitude can be evaluated by contracting the photon polarization vectors with
the hadronic tensor Hµν

T = εµ(q)ε?ν(q
′)Hµν
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Figure 2.2: The dominant DVCS contributions, the handbag diagrams.

with

Hµν = −i
∫
d4ye−i(q·y)〈P ′ | T

[
Jµ(y), Jν(0)

]
| P 〉 .

Since the DVCS process takes place at zero transverse separation (~y⊥ = 0) and equal LF time
(y+ = 0) it is convenient to introduce the notation yµ = λnµ to simplify the evaluation of the
hadronic tensor. In the Bjorken regime the evaluation of the handbag diagrams yields

Hµν = − 1

4π

∫ 1

−1
dx

[
(p̃µnν + p̃νnµ − gµν) ·

( 1

x− ξ + iε
+

1

x+ ξ − iε

)

·
∫
dλeiλx〈P ′ | ψ̄(−λn

2
)/nτ3ψ(

λn

2
) | P 〉y+=0,~y⊥=~0 − iεµναβ p̃αnβ

( 1

x− ξ + iε
− 1

x+ ξ − iε

)
·
∫
dλeiλx〈P ′ | ψ̄(−λn

2
)/nτ3γ5ψ(

λn

2
) | P 〉y+=0,~y⊥=~0

]
.

(2.2)

We call the objects

G
+(N→N)
V,λ′λ =

∫
dλ

4π
eiλx〈P ′, λ′ | ψ̄q(−

λn

2
)/nτ3ψq(

λn

2
) | P, λ〉y+=0,~y⊥=~0 (2.3)

and

G
+(N→N)
A,λ′λ =

∫
dλ

4π
eiλx〈P ′, λ′ | ψ̄q(−

λn

2
)/nτ3γ5ψq(

λn

2
) | P, λ〉y+=0,~y⊥=~0

vectorial and axial (soft) transition amplitudes respectively. Since the quark fields in the
bilocal operator have a non zero light like separation one should introduce a gauge link

P eig
R

dxµAµ

here to ensure color gauge invariance of the expressions. However one can choose the light
cone gauge A+ = 0 in which this gauge link becomes unity. Therefore it will be suppressed in
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all further expressions. Using all possible covariants one parameterizes these amplitudes by

G
+(N→N)
V,λ′λ =

1

2P̄+
ū(P ′, λ′)

(
/nHq(x, ξ, t) +

iσµνnµ

2MN
∆νE

q(x, ξ, t)

)
u(P, λ)

and

G
+(N→N)
A,λ′λ =

1

2P̄+
ū(P ′, λ′)

(
/nγ5H̃

q(x, ξ, t) +
∆ · n
2MN

γ5Ẽ
q(x, ξ, t)

)
u(P, λ) .

The objects which appear in this parametrization are called generalized parton distributions
(GPDs). They can depend on the kinematical variables ξ and t. Additionally they depend on
the average quark momentum fraction x and a renormalization scale µ which we will suppress
in the following. Here we have defined the momentum transfer variable

t = ∆2 .

The average quark light front momentum fraction x is defined as k̄+ = 1
2(k+ + k′+) = xP̄+

with k and k′ being the momenta of the initial and the final quark momenta in the handbag
diagrams. Thus the support in x of the GPDs is [−1, 1] with a negative momentum fraction
corresponding to the antiquark contribution.

These GPDs parameterize the soft, i.e. the non perturbative part

x + ξ x − ξ

1 + ξ 1 − ξ

Figure 2.3: The soft amplitude which is parameterized by GPDs.

of the hadronic tensor. Since GPDs are kinematically richer than the parton distributions
which parameterize DIS one can gain more physical insight into the nucleon structure from
them. In fact in the limit ∆µ → 0 they reduce to the ordinary parton distributions

Hq(x, 0, 0) =

{
q(x), x > 0

−q̄(−x), x < 0

H̃q(x, 0, 0) =

{
∆q(x), x > 0

∆q̄(−x), x < 0
.

The GPDs E(x, ξ, t) and Ẽ(x, ξ, t) have no analogous limit since the associated tensors in
DIS vanish in the forward limit ∆µ → 0. Hence E(x, ξ, t) and Ẽ(x, ξ, t) are new leading twist
objects which can only be accessed in hard exclusive electroproduction processes.
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The first moment of the GPDs establishes another link to known observables. By integrating
over x one obtains the relations

∫ 1

−1
dxHq(x, ξ, t) =F q

1 (t)

∫ 1

−1
dxEq(x, ξ, t) =F q

2 (t)

∫ 1

−1
dx H̃q(x, ξ, t) =Gq

A(t)

∫ 1

−1
dx Ẽq(x, ξ, t) =Gq

P (t) .

Here e.g F q
1 (t) represents the elastic Dirac form factor for the quark flavor q in the nucleon.

Using isospin symmetry and neglecting the contributions from the strange quark sea one can
express the usual form factors by

F p
1 (t) =

2

3
F u

1 (t) − 1

3
F d

1 (t)

F n
1 (t) =

2

3
F d

1 (t) − 1

3
F u

1 (t)

F p
2 (t) =

2

3
F u

2 (t) − 1

3
F d

2 (t)

F n
2 (t) =

2

3
F d

2 (t) − 1

3
F u

2 (t)

GA(t) =Gu
A(t) −Gd

A(t)
0

GA(t) =Gu
A(t) +Gd

A(t)

GP (t) =Gu
P (t) −Gd

P (t)
0

GP (t) =Gu
P (t) +Gd

P (t)

where GA(t) (
0

GA(t)) are the isovector (isoscalar) axial form factors of the nucleon and simi-

larly GP (t) (
0

GP (t)) are the isovector (isoscalar) pseudo axial form factors of the nucleon.

From equation 2.2 one can see that the GPDs cannot be accessed directly in DVCS. In-
stead one measures a convolution with x.

An interesting sum rule can be obtained by considering the form factors of the energy mo-
mentum tensor

For the convenient expression of the symmetric energy momentum tensor we introduce the
notation

a(µbν) =
1

2
(aµbν + aνbµ) .

Then the transition amplitude for the energy momentum tensor can be expressed in terms of
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µν

∆

P̄ −

∆

2
P̄ +

∆

2

Figure 2.4: The graviton form factor.

graviton form factors:

〈P̄ +
∆

2
| T µν(0) | P̄ − ∆

2
〉 =

1

2P̄+
ū(P̄ +

∆

2
)

(
A(t)γ(µP̄ ν) +B(t)P̄ (µiσν)α ∆α

2MN

+C(t)
1

MN
(∆µ∆ν − tgµν) + C̄(t)MNg

µν

)
u(P̄ − ∆

2
)

=
1

2P̄+
ū(P̄ +

∆

2
)

(
A(t)

P̄ µP̄ ν

MN
+ (A(t) +B(t))P̄ (µiσν)α ∆α

2MN

+C(t)
1

MN
(∆µ∆ν − tgµν) + C̄(t)MNg

µν

)
u(P̄ − ∆

2
) .

In the last line the Gordon identity has been used. Now one can consider the angular mo-
mentum operator

J〈P̄ , ↑| P̄ , ↑〉 =〈P̄ , ↑| Ĵ12 | P̄ , ↑〉

=εij3〈P̄ , ↑|
∫
d3~xxiT 0j(x) | P̄ , ↑〉

=εij3 lim
∆→0

∫
d3~x〈P̄ +

∆

2
, ↑| xie−i~x·~∆T 0j(0) | P̄ − ∆

2
, ↑〉

=εij3 lim
∆→0

([
−i ∂

∂∆i
(2π)3δ(3)(~∆)

][
A(t) +B(t)

]

· 1

2P̄+
ū(P̄ +

∆

2
)P̄ (0iσj)α ∆α

2MN
u(P̄ − ∆

2
)

)

= − εij3(2π)3δ(3)(0)
[
A(0) +B(0)

] 1

2MN

1

2P̄+
ū(P̄ ) · 1

2

[
P̄ 0σji + P̄ jσ0i

]
u(P̄ ) .

Without loss of generality we consider the rest frame P̄ µ = (MN , 0, 0, 0). Then one finds

〈P̄ , ↑| Ĵ12 | P̄ , ↑〉 =2π3δ(3)(0)
[
A(0) +B(0)

]1
2

1

2P̄+
ū(P̄ )σ12u(P̄ )

=
1

2

[
A(0) +B(0)

]
〈P̄ , ↑| P̄ , ↑〉 .
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So one can conclude that the quark angular momentum can be expressed in terms of the
graviton form factors A(t) and B(t) at t = 0.

J =
1

2

[
A(0) +B(0)

]
.

Physically one can interpret J as total spin of the nucleon which can be decomposed into a
quark and a gluonic contribution J q + Jg = 1

2 :

Jq,g =
1

2

(
Aq,g(0) +Bq,g(0)

)
.

We can establish a connection between the tensorial form factors and the GPDs by con-
tracting the tensorial transition amplitude with nµnν . The quark contribution to the energy
momentum tensor reads

T µν
q =

1

2

(
ψ̄qγ

(µi ~Dν)ψq + ψ̄qγ
(µi
←
D ν)ψq

)

= : ψ̄qγ
(µi
↔
D ν)ψq .

Then one finds

〈P̄ +
∆

2
| T µν

q (0) | P̄ − ∆

2
〉nµnν

=〈P̄ +
∆

2
| ψ̄q(0)iγ

(µ
↔
D

ν)ψq(0) | P̄ − ∆

2
〉nµnν

=
1

2P̄+
ū(P̄ +

∆

2
)

(
1

MN

[
A(t) + 4ξ2C(t)

]
+
[
A(t) +B(t)

]
iσνα ∆α

2MN
nν

)
u(P̄ − ∆

2
) .

On the other hand side one has
∫ 1

−1
dx

P̄+

2π

∫
dy−eixP̄+y−〈P̄ +

∆

2
| ψ̄q(−

y

2
)i/n(n·

↔
D)ψq(

y

2
) | P̄ − ∆

2
〉y+=0,~y⊥=0

=

∫ 1

−1
dxx

P̄+

2π

∫
dy−eixP̄+y−〈P̄ +

∆

2
| ψ̄q(−

y

2
)/nψq(

y

2
) | P̄ − ∆

2
〉y+=0,~y⊥=0

=

∫ 1

−1
dx

1

2P̄+
ū(P̄ +

∆

2
)

(
1

MN
xH(x, ξ, t) + x

[
H(x, ξ, t) +E(x, ξ, t)

]
iσνα ∆α

2MN

)
u(P̄ − ∆

2
) .

And finally one has
∫ 1

−1
dxxG

+(N→N)
V,λ′λ

=

∫ 1

−1
dxx

P̄+

2π

∫
dy− eixP̄+y−〈P̄ +

∆

2
| ψ̄q(−

y

2
)/nψq(

y

2
) | P̄ − ∆

2
〉y+=0,~y⊥=~0

=

∫
dy−

P̄+

2π

∫ 1

−1
dx eixP̄+y−〈P̄ +

∆

2
| ψ̄q(−

y

2
)i/n

↔
D νnνψq(

y

2
) | P̄ − ∆

2
〉y+=0,~y⊥=~0

=

∫
dy−δ(y−)〈P̄ +

∆

2
| ψ̄q(−

y

2
)i/n

↔
D

νnνψq(
y

2
) | P̄ − ∆

2
〉y+=0,~y⊥=~0

=〈P̄ +
∆

2
| ψ̄q(0)i/n

↔
D

νnνψq(0) | P̄ − ∆

2
〉

=〈P̄ +
∆

2
| T µν

q (0) | P̄ − ∆

2
〉nµnν .
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Comparing the expressions one can read off

∫ 1

−1
dxx

[
Hq(x, ξ, t) +Eq(x, ξ, t)

]
= Aq(t) +Bq(t)

and hence arrive at Ji‘s sum rule [27]

Jq =
1

2

∫ 1

−1
dxx

[
Hq(x, ξ, 0) +Eq(x, ξ, 0)

]
.

Physically J q is the fraction of the nucleon angular momentum that is carried by a quark of
the flavor q. The quark angular momentum can be decomposed into a sum of intrinsic quark
spin and the orbital contribution.

Jq =
1

2
∆Σ + Lq .

In 1971 Ellis and Jaffe proposed a sum rule [28] based on the assumption that the nucleon
spin is mainly given by the valence quark contributions. However the EMC collaboration [29]
found a significant deviation of the Ellis Jaffe sum rule which revealed that this could not
be correct. Now Ji‘s sum rule provides an additional tool to address the spin structure of
the nucleon experimentally. In fact most of the nucleon spin is carried by the quark angular
momentum [30] in contradiction to the oversimplified picture of the nucleon.

By considering higher spin twist 2 local operators one can derive an other interesting property
of the nucleon GPDs, the so called polynomiality property. Using Lorentz invariance one can
show that the N‘th Mellin moment of the GPDs are polynomials of the maximal order N + 1
[24].

∫ 1

−1
dxxN Hq(x, ξ) =h

q(N)
0 + h

q(N)
2 ξ2 + ...+ h

q(N)
N+1ξ

N+1

∫ 1

−1
dxxN Eq(x, ξ) =e

q(N)
0 + e

q(N)
2 ξ2 + ...+ e

q(N)
N+1ξ

N+1 .

Time reversal invariance dictates that the polynomials only contain even powers of the skewed-
ness parameter ξ. This implies that the highest power of ξ is N +1 for odd N and N for even
N . Additionally the highest power of ξ for H q and Eq are related for odd N :

e
q(N)
N+1 = −hq(N)

N+1 .

One can check whether the polynomiality condition is satisfied by evaluating the integral
constraints

∫ 1

−1

dx

x

(
Hq(x, ξ + xz) −Hq(x, ξ)

)
= −

∫ 1

−1

dx

x

(
Eq(x, ξ + xz) −Eq(x, ξ)

)
= z

∞∑

n=0

h
q(N)
N+1z

N .

A way to model GPDs such that the polynomiality condition is automatically satisfied by
introducing so called double distributions has been proposed [31].
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Besides the soft transition amplitudes which we have discussed in eqs. 2.3 and 2.4 one can
construct four additional twist 2 soft transition amplitudes in QCD [33] and [34], namely

∫
dλ

4π
eiλx〈P ′, λ′ | ψ̄q(−

λn

2
)iσµinµψq(

λn

2
) | P, λ〉

=
1

2P̄+
ū(P ′, λ′)

(
Hq

T (x, ξ, t)iσµinµ + H̃q
T (x, ξ, t)

(P̄ · n)∆i − (∆ · n)P̄ i

M2
N

+Eq
T (x, ξ, t)

(
/n∆i − γi(∆ · n)

)

2MN
+ Ẽq

T (x, ξ, t)
/nP̄ i − (P̄ · n)γi

MN

)
u(P, λ)

∫
dλ

4π
eiλx〈P ′, λ′ | F νi(−λn

2
)nνF

µi(
λn

2
)nµ | P, λ〉y+=0,~y⊥=~0

=
1

2P̄+
ū(P ′, λ′)

(
Hg(x, ξ, t)/n+Eg(x, ξ, t)

iσµαnµ∆α

2MN

)
u(P, λ)

− i

∫
dλ

4π
eiλx〈P ′, λ′ | F νi(−λn

2
)nνF̃

µi(
λn

2
)nµ | P, λ〉y+=0,~y⊥=~0

=
1

2P̄+
ū(P ′, λ′)

(
H̃g(x, ξ, t)/nγ5 + Ẽg(x, ξ, t)

(∆ · n)γ5

2MN

)
u(P, λ)

−
∫
dλ

4π
eiλx〈P ′, λ′ | SF µi(−λn

2
)nµF

νj(
λn

2
)nν | P, λ〉y+=0,~y⊥=~0

=S
(P̄ · n)∆j − (∆ · n)P̄ j

2MN P̄+

1

2P̄+
ū(P ′, λ′)

(
Hg

T (x, ξ, t)iσµinµ + H̃g
T (x, ξ, t)

(P̄ · n)∆i − (∆ · n)P̄ i

M2
N

+Eg
T (x, ξ, t)

/n∆i − (∆ · n)γi

2MN
+ Ẽg

T

/nP̄ i − (P̄ · n)γi

MN

)
u(P, λ) .

Here i and j have to be chosen as transverse indices in order to guarantee non vanishing
transition amplitudes. S denotes symmetrization of the indices i and j and subtraction of
the trace. The dual tensor F̃ µν is defined by F̃ µν = 1

2ε
µνρλFρλ. Again we have suppressed

the gauge link appearing in the bilocal operators by assuming light cone gauge. The corre-
sponding GPDs allow for additional insights into the quark and gluon structure of the nucleon.

While Hq(x, ξ, t), Eq(x, ξ, t), H̃q(x, ξ, t) and Ẽq(x, ξ, t) conserve quark helicity the chiral odd
GPDs Hq

T (x, ξ, t), Eq
T (x, ξ, t), H̃q

T (x, ξ, t) and Ẽq
T (x, ξ, t) flip the quark helicity of the struck

quark. While the chiral even GPDs can be accessed experimentally in various hard exclusive
processes the situation is more difficult for the chiral odd GPDs. While at least one process
has been proposed to study the chiral odd GPDs experimentally [32] the prospects are less
promising for these GPDs. Similarly for the gluons there exist four chiral even (gluon helicity
conserving) and four chiral odd GPDs.

Although Hq
T (x, ξ, t), Eq

T (x, ξ, t), H̃q
T (x, ξ, t) and Ẽq

T (x, ξ, t) are accessible in the framework of
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quark models [35] we will restrict further investigation to the GPDs defined in eqs. 2.3 and
2.4 in the following chapters.

In order to extract GPDs from experimental data it is important to ensure that power correc-
tions to the leading twist parametrization of the soft amplitude are small. In [25] factorization
to all orders at leading twist has been proven for DVCS. This proof involved the operator prod-
uct expansion in which the bilocal operator ψ̄(−λn

2 )Oψ(λn
2 ) is expressed in an infinite series of

higher spin local operators. Thus the DVCS amplitude factorizes into a hard and a soft part
with the latter containing the nonperturbative physics which is parameterized by the GPDs.

DVCS can be considered beyond leading twist. For example in [36] it has been considered to
twist 3 accuracy. The authors give a parametrization for the soft amplitudes including twist
3 GPDs. They find

G
µ(N→N)
V,λ′λ =

∫
dλ

4π
eiλx〈P ′, λ′ | ψ̄q(−

λn

2
)/nτ3ψq(

λn

2
) | P, λ〉y+=0,~y⊥=~0

=
1

2P̄+
ū(P ′, λ′)

(
γµH(x, ξ, t) +

iσµν

2MN
E(x, ξ, t)

+
∆µ
⊥

MN

[
G1(x, ξ, t) +MN /nG2(x, ξ, t)

]
+ γµ
⊥G3(x, ξ, t)

)
u(P, λ)

and

G
µ(N→N)
A,λ′λ =

∫
dλ

4π
eiλx〈P ′, λ′ | ψ̄q(−

λn

2
)/nτ3γ5ψq(

λn

2
) | P, λ〉y+=0,~y⊥=~0

=
1

2P̄+
u(P ′, λ′)

(
γµγ5H̃(x, ξ, t) +

∆µ

2MN
γ5Ẽ(x, ξ, t)

+
∆µ
⊥

MN
γ5G̃1(x, ξ, t) + γµ

⊥γ5G̃2(x, ξ, t) + ∆µ
⊥/nγ5G̃3(x, ξ, t)

)
u(P, λ) .

Actually we claim that only two of the three twist 3 GPDs which they introduce are indepen-
dent. In chapter 4 we provide a counting argument for the soft amplitudes which shows that
there can only be two vectorial and axial twist 3 GPDs each.

We will end the theoretical survey of DVCS by mentioning an intuitive physical interpre-
tation of the GPDs. While form factors can be understood (in the Breit frame) as Fourier
transform of the electric charge distribution and magnetization density and the forward par-
ton distributions can be pictured as parton densities in the longitudinal momentum x (in the
infinite momentum frame) it took some time after the GPDs had been introduced to develop
a similarly intuitive physical picture for the GPDs. In 2002 Burkardt [37] gave an interpre-
tation for GPDs with ξ = 0 in impact parameter space. The impact parameter space GPDs
are defined by

q(x,~b⊥) =

∫
d2~∆⊥
2π2

Hq(x,−~∆2
⊥)e−i~b⊥·~∆⊥

and analogously for the other GPDs. He showed that these GPDs could be interpreted as
parton distributions in the transverse plane for given values of x. This picture was extended
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in [38] to finite values of skewedness. In this work quantum phase space Wigner distributions
were applied which provide a three dimensional picture of the hadron. A drawback of the use
of the Wigner distributions is that a probabilistic interpretation had to be abandoned. In the
following two figures we give the results from the latter interpretation.
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Figure 2.5: The u-quark phase-space charge distribution at different values of x. The
vertical and horizontal axis corresponds to z and | ~r⊥ | respectively, measured in fm. This
figure has been taken from [38]. The GPDs are obtained in a model calculation as specified
in the reference.
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Figure 2.6: The u-quark phase-space charge distribution at different negative values of
x (left panels) and d-quark phase space charge distribution at different values of x. This
figure has been taken from [38].

Next we turn our attention to experimental aspects of DVCS. This process is measured in
lepton production of real photons, i.e.

e+ p→ epγ

µ+ p→ µpγ .

In the deeply virtual regime the lepton masses become irrelevant for the analysis. One main
difficulty in the extraction of GPDs is that apart from Compton scattering the Bethe-Heitler
process contributes to the same final state.

Therefore one measures an interference between the Bethe-Heitler amplitude and the Compton
amplitude. Defining the inelasticity parameter

y =
k · P
q · P
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Figure 2.7: The Bethe-Heitler processes contribute to the amplitude of ep → epγ scat-
tering.

and the azimuthal angle between the hadronic and the leptonic plane φ as in figure 2.8 the

y
x

zq’
φ

q
p

p’

k’

k

Figure 2.8: The kinematics of ep → epγ in the center of mass frame of the final state
proton and photon. This figure has been taken from [39].

differential electroproduction cross section on an unpolarized target reads

dσ(ep→ epγ)

dφ dt dQ2 dxB
=
α3

EM

8π

xBy
2

Q4

1√
1 + 4x2

B
M2

N

Q2

1

e6

′∑

spins

| TV CS + TBH |2

where
∑′

spins denotes the sum over the spins of the final state proton and photon and the

averaging over the initial proton polarization. The condition Q2 � −t in DVCS favors the
Bethe-Heitler contribution over the DVCS contribution. This can be counteracted by choos-
ing a small value for y.

The purpose of the first measurements were to test in a model independent way whether
the Q2 behavior followed the factorization theorem prediction, i.e. whether the deeply virtual
limit is reached in the accessible kinematical regime. This could be verified by considering
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the beam spin asymmetry

A(φ) =
dσ(e↑p) − dσ(e↓p)
dσ(e↑p) + dσ(e↓p)

for which the twist expansion predicts

A(φ) = αsin(φ) + βsin(2φ) (2.4)

with α corresponding to twist 2 contributions and β corresponding to twist 3 contribu-
tions. These measurements were performed at HERMES [40] at a lepton beam energy of
E = 27.6 GeV and at CLAS a similar experiment was performed [41] with E = 4.25 GeV,
Q2 = 1.25 GeV2, xB = 0.19, t = −0.19 GeV2. Both results supported the expectation that
for the given kinematics one has indeed reached the deeply virtual regime. In fact in each
experiment the parameter β was found to be compatible with zero. The results for the beam
spin asymmetries is displayed in fig. 2.9.
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Figure 2.9: The φ dependence of the beam spin asymmetry. The left panel displays the
HERMES result. Here the data correspond to the missing mass region between −1.5 and
+1.7 GeV. The dashed curve represents a sin(φ) dependence with an amplitude of 0.23,
while the solid curve represents the result of a model calculation [42]. The horizontal
error bars represent the bin width, and the error band below represents the systematic
uncertainty.
The right panel shows the CLAS result. The dark shaded region is the range of the
fitted function A(φ) from eq. 2.4 defined by the statistical errors of the parameters α
and β The light shaded region includes systematic uncertainties added linearly to the
statistical uncertainties. The fitted parameters are α = 0.202 ± 0.028stat ± 0.013sys and
β = −0.024± 0.021stat ± 0.009sys. The curves represent three different model calculations.

In both experiments another difficulty in measuring DVCS arose, namely to ensure that one
measure exclusively. At HERMES the scattered proton was not detected. Hence one had to
deal with background contributions from ep→ epπ0. At CLAS the final state photon was not
detected. Thus one had to cope with photon dissociation as background process.
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The results from the first dedicated DVCS measurements from JLAB/Hall A have been pub-
lished [43] in 2006. In fig. 2.10 the differential cross sections for DVCS to order twist-3
are displayed. Here dΣ denotes the helicity dependent cross section and dσ the helicity in-
dependent cross section. From these cross sections the angular harmonics CI and ∆CI can

Figure 2.10: Data and fit to d4Σ/[dQ2dxBjdtdφγγ ] and d4σ/[dQ2dxBjdtdφγγ ] as a func-
tion of φγγ . Both are in the bin 〈Q2, t〉 = (2.3,−0.28)GeV2 at 〈xBj〉 = 0.36. Error bars
show statistical uncertainties. Solid lines show total fits with one-σ statistical error bands.
For discussion of systematic uncertainties we refer to [43]. The dot-dot-dashed line is the
| Bethe-Heitler |2 contribution to d4σ. The short dashed lines in d4Σ and d4σ are the fitted
Im and Re parts of CI(F), respectively. The long-dashed line is the fitted Re[CI+∆CI ](F)
term. The dot-dashed curves are the fitted Im and Re parts of CI(Feff).

be extracted. They depend on the interference of the Bethe-Heitler amplitude with the set
F = {H, E , H̃, Ẽ} of twist 2 Compton form factors or the related set F eff of effective twist-3
Compton form factors, namely

CI(F) =F1H + ξGMH̃ − t

4M2
N

F2E

CI(Feff) =F1Heff + ξGM H̃eff − t

4M2
N

F2Eeff

[CI + ∆CI ](F) =F1H− t

4M2
N

F2E − ξ2GM (H + E) .
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Here the elastic form factors F1(t), F2(t) and GM (t) = F1(t) + F2(t) appear. The Compton
form factors are defined in terms of the GPDs H q, Eq, H̃q and Ẽq, e.g.

H(x, ξ, t) =
∑

q

[eq
e

]2{
iπ
[
Hq(ξ, ξ, t) −Hq(−ξ, ξ, t)

]
+ P

∫ 1

−1
dx

2x

ξ2 − x2
Hq(x, ξ, t)

}
.

In fig. 2.11 the angular harmonics are displayed. The left panel demonstrates the absence
of a Q2 dependence of Im[CI(F)] which supports the dominance of twist-2 in the DVCS
amplitude. The right panel shows the t dependence of real and imaginary parts of the twist-2
angular harmonics. They are compared with a Regge model calculation which is in qualitative
agreement with the experimental findings.

Figure 2.11: Left: Q2 dependence of Im parts of (twist-2) CI(F) and (twist-3) CI(Feff)
angular harmonics, averaged over t. The horizontal line is the fitted average of Im[CI(F)].
Right: Extracted Re and Im parts of the twist-2 angular harmonics as functions of t. The
Regge model (VGG [44]) curves are described extensively in [43]. Superposed points in
both panels are offset for visual clarity. The error bars show statistical uncertainties.

In summary one can state that the existing facilities are able to address the measurement of
DVCS and therefore GPDs can be regarded not only as a theoretical playground but can be
accessed in experiments.
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2.2 N → ∆ DVCS

The study of deeply virtual Compton scattering can be extended towards considering resonant
final states. The most prominent example for this is N → ∆ DVCS. The soft amplitude for
this process can be parameterized in terms of N → ∆ transition GPDs. There exist three
independent leading twist GPDs each. We choose the parametrization for the p → ∆+

transition

G
+,(p→∆+)
V,λ′λ =

∫
dλ

4π
eiλx〈∆;P ′, λ′ | ψ̄(−λn

2
)/nτ3ψ(

λn

2
) | p;N,λ〉y+=0,~y⊥=~0

=

√
1

6

1

2P̄+
ūν(P

′, λ′)
[
κ+ν

M H?
M (x, ξ, t) + κ+ν

E H?
E(x, ξ, t) + κ+ν

C H?
C(x, ξ, t)

]
u(P, λ)

G
+,(p→∆+)
A,λ′λ =

∫
dλ

4π
eiλx〈∆;P ′, λ′ | ψ̄(−λn

2
)/nτ3γ5ψ(

λn

2
) | p;N,λ〉y+=0,~y⊥=~0

=
1

2

1

2P̄+
ūν(P

′, λ′)
[
κ̃+ν

1 C1(x, ξ, t) + κ̃+ν
2 C2(x, ξ, t) + κ̃+ν

3 C3(x, ξ, t)

+ κ̃+ν
4 C4(x, ξ, t)

]
u(P, λ)

which was given in [45] and [46]. The covariants which appear in these expressions read

κµν
M =i

3(M∆ +MN )

2MN

[
(M∆ +MN )2 − t

]εµνρλP̄ρ∆λ

κµν
E = − κµν

M − 6(M∆ +MN )

MN

[
(M∆ −MN )2 − t

][
(M∆ +MN )2 − t

]εµκαβP̄α∆β ε
ν α′β′
κ P̄α′∆β′γ5

κµν
C =

3(M∆ +MN )

MN

[
(M∆ −MN )2 − t

][
(M∆ +MN )2 − t

]
[
(P̄ · ∆)∆µ∆ν − tP̄ µ∆ν

]
γ5

and

κ̃µν
1 =gµν

κ̃µν
2 =

∆µ∆ν

M2
N

κ̃µν
3 =

gµν /∆ − γµ∆ν

MN

κ̃µν
4 =

2((P̄ · ∆)gµν − P̄ µ∆ν)

M2
N

.

In the parametrization the Delta is described by the Rarita Schwinger spinor uν(P ′, λ′) which
is constructed in the appendix. The isospin convention differs by a factor 2 from the definition
used for the respective form factors, hence the sum rules acquire a factor 2. Sum rules and
other properties of these N → ∆ GPDs will be discussed extensively in chapter 4. Actually
the axial soft transition amplitude given above is overparameterized with four covariants. In
chapter 4 we will only use κ1, κ3 and κ4 to parameterize this amplitude.
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The kinematics has to be adapted for the N → ∆ transition. One has

P̄ µ =p̃µ +
M̄2

2
nµ

∆µ = − 2ξp̃µ + ∆µ
⊥ +

[
(1 + ξ)M 2

∆ − (1 − ξ)M 2
N

]
− ξt

2

2
nµ

P µ =P̄ µ − ∆µ

2
= (1 + ξ)p̃µ − ∆µ

⊥
2

+
− ξ

2M
2
∆ + (1 − ξ

2 )M2
N − (1−ξ)t

4

2
nµ

P ′µ =P̄ µ +
∆µ

2
= (1 − ξ)p̃µ +

∆µ
⊥

2
+

(1 + ξ
2 )M2

∆ + ξ
2M

2
N − (1+ξ)t

4

2
nµ

qµ = − 2ξ′p̃µ +
Q2

4ξ′
nµ

q′µ =qµ − ∆µ = −2(ξ′ − ξ)p̃µ − ∆µ
⊥ +

(Q2

4ξ′
− (1 + ξ)M 2

∆ − (1 − ξ)M 2
N − ξt

2

2

)
nµ (2.5)

with

M̄2 =
1

2
(M2

∆ +M2
N ) − ∆2

4

ξ′ =
P̄ · q
M̄2

(
−1 +

√
1 +

Q2M̄2

(P̄ · q)2
)

ξ =
ξ′
[
Q2 − ∆2 − 2(M2

∆ −M2
N )ξ′

]

Q2 − 4ξ′2M̄2
.

In the Bjorken limit we again find

ξ = ξ′ =
xB/2

1 − xB/2
.

The boundary for the skewedness parameter ξ due to the requirement that the longitudinal
momentum fractions must be positive reads

0 < ξ <
−M2

∆ +M2
N +

√
t2 − 2(M2

∆ +M2
N )t+ (M2

∆ −M2
N )2

2(M2
∆ +M2

N ) − t
< 1 .

Finally we have the useful relation

~∆2
⊥ = −(1 − ξ2)t− 2ξ

[
(1 + ξ)M 2

∆ − (1 − ξ)M 2
N

]
.

Contrary to the N → N transition the N → ∆ transition is not so well explored. Among the
known theoretical input for the N → ∆ GPDs are large NC relations which relate them to
the nucleon GPDs. The leading large NC relations were given in [45] and read

H?
M(x, ξ, t) =

2√
3

[
Eu(x, ξ, t) −Ed(x, ξ, t)

]

C1(x, ξ, t) =
√

3
[
H̃u(x, ξ, t) − H̃d(x, ξ, t)

]

C2(x, ξ, t) =

√
3

4

[
Ẽu(x, ξ, t) − Ẽd(x, ξ, t)

]
. (2.6)
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Recently additional large NC inspired relations were given [47]:

H?
E(x, ξ, t) =

1

3
√

2

M2
∆ −M2

N

Q2

[
2Hd(x, ξ, t) −Hu(x, ξ, t) − Q2

4M2
N

(
2Ed(x, ξ, t) −Eu(x, ξ, t)

)]

H?
C(x, ξ, t) =

4M2
∆

M2
∆ −M2

N

HE(x, ξ, t) . (2.7)

The experimental situation for the N → ∆ transition naturally is less explored than the
N → N transition. The magnetic N → ∆ transition form factor is quite well measured. It is
displayed in the figure below.

Figure 2.12: The dominant vector form factor for the N → ∆ transition. This figure
is taken from [48].

For the electric and Coulomb form factors less is known. It is custom to give the ratios

E/M = − G?
E(Q2)

G?
M (Q2)

S/M ∝− G?
C(Q2)

G?
M (Q2)

.

From perturbative QCD the limit of these ratios is known [49] [50] for large values of Q2.

E/M = 1 .

S/M ∝

√√√√
(
M2

∆ +M2
N +Q2

2M∆

)2

−M2
N

log(Q2/Λ2)

Q2
.

For low values of Q2 a good description of experimental data for the ratios E/M and S/M
has been obtained using chiral perturbation theory [51].
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Figure 2.13: The E/M and S/M ratios for the N → ∆ transition. This figure is taken
from [48].

After this short survey of N → ∆ transition form factors which are connected to the GPDs
via sum rules we discuss the experimental aspects of N → ∆ DVCS.

As already mentioned in the last section it is often difficult to measure N → N DVCS
exclusively. For example at HERMES the final state proton could not be detected. Thus the
processes shown in fig. 2.14 can not be distinguished.

For the non resonant contributions estimates have been given [52] by parameterizing the
associated DVCS processes. Model calculations for N → ∆ transition GPDs like we provide
them in this thesis can be used to implement a Monte Carlo simulation for the resonant
contribution and thus giving an estimate for this background process.

Luckily it is possible to perform dedicated experiments to measure N → ∆ DVCS exclusively
thus allowing to access N → ∆ GPDs experimentally. At CLAS@JLAB such a measurement
was performed [53]. The CLAS detector provides sufficient energy and angular resolution to
identify the final states in the reaction ep→ e′n′π+. The kinematics is sketched in the figure
below.

Like for N → N DVCS one has to deal with the concurring Bethe-Heitler process.

The invariant mass spectrum of the (nπ+) final state in the process ep → eγ(π+n) clearly
demonstrates that in this experiment it is possible to distinguish ∆(1232), N ?(1520) and
N?(1680) in the final states.

In conclusion we can state that N → ∆ GPDs not only help in identifying background
contributions to N → N DVCS measurements but provide an interesting experimental issue
in itself.
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γ
?

γ

p p

γ
?

γ

p p

π
0

γ
?

γ

p
p

∆
+

π
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Figure 2.14: Three contributions which cannot be distinguished by the detector at HER-
MES. The upper figure is N → N DVCS. The lower left contribution is the non resonant
contribution to the process ep → e′γπ0p′. The lower right figure gives the resonant con-
tribution to ep→ e′γπ0p′.

2.3 Other related processes

In this section we will provide a short overview for physical processes associated with GPDs.
As one learns from the factorization theorem GPDs are universal quantities. Hence it is no
wonder that they turn up again in the parametrization of similar processes.

One example is hard electroproduction of mesons, eN → e′N ′M . Analogously to DVCS
factorization could be shown for this process if the incoming virtual photon is longitudinally
polarized [54]. The diagram for the factorized meson electroproduction amplitude is given in
fig. 2.17.

The amplitudes for electroproduction of longitudinally polarized vector mesons read

ML
VL

= − ie
4

9

1

Q

[∫ 1

0
dz

ΦVL
(z)

z

]1
2
(4παS)

·
(
AVL N ū(P

′)/nu(P ) +BVL N ū(P
′)iσκλnκ∆λ

2MN
u(P )

)

where ΦVL
(z) is the distribution amplitude for a longitudinally polarized vector meson. The

GPDs enter in the amplitudes A and B. For the different vector mesons they read [55]
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W

Q2

M(π+n)
∆, N?p

Figure 2.15: The kinematics for the process ep→ e′pπ+ measured at CLAS@JLAB.
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)

AωL p =
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−1
dx

1√
2
(euH

u + edH
d)
( 1

x− ξ + iε
+

1

x+ ξ − iε

)

BωL p =

∫ 1

−1
dx

1√
2
(euE

u + edE
d)
( 1

x− ξ + iε
+

1

x+ ξ − iε

)
.

While in DVCS one always gets a convolution of GPDs one obtained them directly if doubly
virtual Compton scattering (VVCS) could be accessed experimentally.

A process where VVCS is involved is the long studied elastic scattering process. In 2003
Guichon and Vanderhaeghen remarked [56] that for high virtualities the leading one photon
exchange process is insufficient to describe the experimental results for elastic scattering. Thus
they considered the two photon exchange process.

In a partonic picture the leading contributions to this two photon exchange process stem from
the box diagrams [57]

Recognizing the soft amplitudes in the box diagrams it comes as no surprise that GPDs ap-
pear in the parametrization of two photon exchange processes.

Finally just like we presented in the last section for N → ∆ transition, DVCS can be ex-
tended towards other resonance transitions. The results from CLAS have already proven that
it is possible to discriminate at least three different resonance regions. Therefore the study of
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Figure 2.16: The invariant mass spectrum of the (nπ+) final state in the process
ep→ eγ(π+n).

other resonance transition processes seems worthwhile.

The framework of quark models provides a possible tool to access such N → resonance tran-
sition GPDs. Like for N → N GPDs the first steps that have to be performed are to write
down the parametrization for the soft amplitudes.

As an example we consider the N → S11 transition. Applying kinematic constraints and the
equation of motion one finds the minimal set of independent Lorentz covariants: γµ, P̄ µ, ∆µ

and γµγ5, P̄
µγ5, ∆µγ5. Since N → S11 is a parity odd transition (Jπ = 1

2

+ → Jπ = 1
2

−
) the

soft amplitudes can be parameterized as following

G
+,(p→S11)
V,λ′λ =

∫
dλ

4π
eiλx〈S11;P

′, λ′ | ψ̄(−λn
2

)/nτ3ψ(
λn

2
) | p;N,λ〉y+=0,~y⊥=~0

=
1

2P̄+
ū(P ′, λ′)

[
B1(x, ξ, t)/nγ5 +B2(x, ξ, t)(P̄ · n)γ5 +B3(x, ξ, t)(∆ · n)γ5

]
u(P, λ)

G
+,(p→S11)
A,λ′λ =

∫
dλ

4π
eiλx〈S11;P

′, λ′ | ψ̄(−λn
2

)/nτ3γ5ψ(
λn

2
) | p;N,λ〉y+=0,~y⊥=~0

=
1

2P̄+
ū(P ′, λ′)

[
B̃1(x, ξ, t)/n+ B̃2(x, ξ, t)(P̄ · n) + B̃3(x, ξ, t)(∆ · n)

]
u(P, λ) .

The kinematics and sum rules can be discussed along the lines of arguments in the last section.
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Figure 2.17: The factorized meson electroproduction amplitude. The lower 4 panels
constitute the leading order diagrams for the hard scattering part TH of the meson elec-
troproduction amplitude. These figures have been taken from [55].

γ
?

γ
?

p p

Figure 2.18: In VVCS both the initial and the final photon are off-shell.
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Figure 2.19: Two photon exchange processes have to be considered to describe elastic
scattering at high virtualities.

Figure 2.20: The box diagrams which are the leading contributions to two photon ex-
change.



Chapter 3

Quark models on the light front

3.1 Introduction

Quark models have been studied already before the advent of QCD when it became clear that
the partons inside the baryons obeyed flavor symmetry. Although it was very early obvious
that the constituent quarks with a high mass about a third of the nucleon mass are different
from the current quarks (which can be probed in DIS) (see e.g. [58]) quark models achieved
to explain many of the observed properties of the baryons, like masses, magnetic moments,
existence of excited states in a qualitative way1.

The idea of quark models can be shortly summarized as following: Three constituent quarks
form a baryon in such a way that they obey flavor, color and spin symmetry. Many predic-
tions (like magnetic moments) can be obtained from the SU(6) symmetry alone. The baryon
spectrum was first calculated using non relativistic interactions [59]. The remarkable success
of this description however also displays the arbitrariness of quark models as the many dis-
crepancies can be absorbed into more and more parameters of the model.

Since the 1960’s quark models have been refined more and more. Various ideas to include
relativistic kinematics have been developed. They include relativistic versions of quark mod-
els (for an overview see [60]), additional interactions like pion dynamics [61] and allowing for
constituent quark substructure (see e.g. [62]).

In this thesis we employ a relativistic quark model using the light front form. In 1941
Dirac discovered that there exist three forms of relativistic dynamics [19]. The light front
has the largest possible kinematical subgroup and allows for an easy implementation of a
fully relativistic wave function. This dynamical form has firstly been introduced to the idea
of quark models by Terent’ev and Berestetsky [63]. Reducing the Fock space to three quark
states and identifying them with constituent quarks allows for an access of not only form fac-
tors but even of generalized parton distributions. This overlap representation has been worked
out by Diehl et al. [64] and has been applied to calculate nucleon GPDs in a quark model [65].

1Roughly speaking the predictions of quark model calculations describe the properties of baryons to an
accuracy of 30% (which includes the prediction of number of baryon states)

30
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Even if the quark model which we use is relativistic in itself the calculation of observables re-
quires an approximation which destroys relativistic covariance. We will discuss this drawback
at the end of this chapter.

3.2 From SU(6) to quark model wave functions

The observation behind the quark model idea is the observation of the approximate symmetry
of SU(6). To be more precise the observation of the remarkable pattern in the masses and
hypercharges of the observed baryon spectrum. The ground state hadrons can be ordered in
the following patterns:

K0(498) Y K+(494)

π−(140) π0(135) η(548) π+(140)

η′(959) I3

K−(494) K̄0(498)

K?0(800) Y K?+(892)

ρ−(776) ρ0(770) ω(782) ρ+(776)

φ(1020) I3

K?−(892) K̄?0(800)

Figure 3.1: Pseudo scalar (left figure) and vector (right figure) meson nonets. The
numbers in brackets are the meson masses in MeV.

n(940) Y p(938)

Σ−(1197) Σ0(1193) Σ+(1189)

Λ(1116) I3

Ξ−(1321) Ξ0(1321)

∆−(1232) ∆0(1232) Y ∆+(1232) ∆++(1232)

Σ?−(1385) Σ?0(1385) Σ?+(1385)

I3

Ξ?−(1530) Ξ?0(1530)

Ω−(1672)

Figure 3.2: Baryon octet (left figure) and baryon decuplet (right figure). The numbers
in brackets are the baryon masses in MeV.
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Here the hyper charge is defined as the sum of baryon number and strangeness

Y = B + S

and the isospin projection I3 can be expressed via the Gell-Mann - Nishijima relation

Q = I3 +
Y

2
.

More often than not it is a symmetry which results in such a pattern. In this case the
symmetry behind this pattern is flavor SU(3). In fact a fundamental triplet consisting of
three quarks exists of which these patterns emerge naturally.

d Y u

I3

s

s̄

Y

I3

ū d̄

Figure 3.3: The fundamental quark triplet and antitriplet.

The properties of the quarks which appear in this fundamental triplet are summarized in the
following table:

flavor Q I3 S B Y

up 2
3

1
2 0 1

3
1
3

down −1
3 −1

2 0 1
3

1
3

strange − 1
3 0 -1 1

3 −2
3

Table 3.1: Properties of the light quarks.

Then the meson nonet can be expressed as quark antiquark states

q̄q ≡ 3 ⊗ 3̄ = 1 ⊕ 8 .

In fact the pseudoscalar meson nonet can be understood as a meson octet (K 0, K+, K− K̄0,
π±0, η8) and a meson singlet η1. The physical mesons η, η′ are then mixtures of the states η1

and η8 which is possible since they possess the same quantum numbers J P = 0−.
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The same argument applies to the vector meson nonet (JP = 1−). A singlet ω1 and an
octet state ω8 mix (in a nearly ideal way2) to produce the physical vector mesons
ω and φ.

In order to understand the baryon octet and decuplet one has to consider a three quark
state

qqq ≡ 3 ⊗ 3 ⊗ 3 = 1 ⊕ 8 ⊕ 8 ⊕ 10 .

It can be decomposed into an antisymmetric singlet, a mixed symmetric and a mixed antisym-
metric octet and a symmetric decuplet. However this only solves the problem partly. While
we can identify the decuplet and one octet there is obviously one octet missing. Further more
possible candidates for the baryon singlet like Λ(1405) have quantum numbers J P which differ
from those of the octet (unlike for the meson nonet).

The question whether all representations can be realized in the ground state is answered by
the Pauli principle. Firstly the existence of the ∆++ requires an additional quantum number,
color. A totally antisymmetric color wave function reconciles the existence of ∆++ ≡ u↑u↑u↑

with the Pauli principle. The latter then obviously requires a symmetric wave function
Ψspace, spin, flavor . The spatial wave function for the ground state is symmetric. Since spin
SU(2) provides no antisymmetric state the singlet baryon is forbidden in the ground state.
In the same spirit one can show that there can only be one ground state octet. The physical
multiplets can in fact be obtained from symmetry arguments alone. One has to consider the
(broken) SU(6) symmetry which is provided by spin and flavor: SU(2) × SU(3). Then one
can decompose

6 ⊗ 6 ⊗ 6 = 56 ⊕ 70 ⊕ 70 ⊕ 20

where the 56 plet contains symmetric spin flavor states and includes the decuplet (10, 4) and
the octet (8, 2). There are 70 plets with mixed (anti)symmetric spin flavor states (MS , MA)
each and a 20 plet with antisymmetric spin flavor states.

From the Pauli principle it follows that the spatial wave functions must be symmetric for
the 56 plet, mixed (anti)symmetric for the 70 plets and antisymmetric for the 20 plet. Conse-
quently the lowest lying 56 plet has the spatial wave function (1s)3, for the lowest lying 70 plet
one has (1s)2(1p) and for the lowest lying 20 plet (1s)(1p)2. This implies a mass ordering for
these multiplets resulting in the 56 plet lying below the 70 plet and the latter lying below the
20 plet. This explains the different behavior of the baryon octet in contrast to the meson nonet.

The baryon mass spectrum gives rise to the idea of constituent quark masses in the order
of a third of the nucleon mass. This symmetry reasoning allowed the prediction of the Ω−

baryon in the decuplet before it was observed.

The quark model consists basically of the explicit construction of wave functions which obey
the above symmetry arguments and identifying the quarks in the fundamental triplet with
constituent quarks of roughly a third of the nucleon mass.

2The ideal mixing angle between the states is such that for the flavor contents one obtains φ = s̄s and
ω = 1√

2
(uū + dd̄).
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In the following we will restrict ourselves to the construction of baryon wave functions. These
wave functions can be written as product of color-, spatial-, flavor- and spin wave function.

Ψ(~pi, τi, λi, ci) = θ(ci) · ψ(pi) · φ(τi) · χ(λi) .

Concerning the color wave function θ(ci) we only need to know that it is antisymmetric. This
can be realized using the Slater determinant. In the following we will omit it.

In SU(2) spin one can construct symmetric, mixed symmetric and mixed antisymmetric states:

χ
3
2
S =↑↑↑ χ

1
2
S =

1√
3

(
↑↑↓ + ↑↓↑ + ↓↑↑

)

χ
− 1

2
S =

1√
3

(
↑↓↓ + ↓↑↓ + ↓↓↑

)
χ
− 3

2
S =↓↓↓

χ↑M,S =
1√
6

(
2 ↑↑↓ −(↑↓ + ↓↑) ↑

)
χ↓M,S =

1√
6

(
(↑↓ + ↓↑) ↓ −2 ↓↓↑

)

χ↑M,A =
1√
2
(↑↓ − ↓↑) ↑ χ↓M,A =

1√
2
(↑↓ − ↓↑) ↓ . (3.1)

In flavor SU(3) symmetric, mixed symmetric, mixed antisymmetric and antisymmetric states
are possible. Since the quantum numbers of the quarks have to match the quantum numbers
of the desired baryon the wave function can be obtained by a Clebsch-Gordon construction.
Identification with the observed baryons explains the labeling of the possible flavor states
given below:

φ∆++

S = uuu φ∆+

S =
1√
3

(
uud+ udu+ duu

)

φ∆0

S =
1√
3

(
udd+ dud+ ddu

)
φ∆−

S = ddd

φΣ?+

S =
1√
3

(
uus+ usu+ suu

)
φΣ?0

S =
1√
6

(
uds+ usd+ dus+ dsu+ sud+ sdu

)

φΣ?−
S =

1√
3

(
dds+ dsd+ sdd

)
φΞ?0

S =
1√
3

(
uss+ sus+ ssu

)

φΞ?−
S =

1√
3

(
dss+ sds+ ssd

)
φΩ−

S = sss

φp
M,S =

1√
6

(
2uud− (ud+ du)u

)
φn

M,S =
1√
6

(
(ud+ du)d − 2ddu

)

φΣ+

M,S =
1√
6

(
2uus− (us+ su)u

)
φΣ0

M,S =
1√
12

(
sdu+ sud+ dsu+ usd− 2(du+ ud)s

)

φΛ
M,S =

1

2

(
dsu− usd+ sdu− sud

)
φΣ−

M,S =
1√
6

(
2dds− (ds+ sd)d

)

φΞ0

M,S =
1√
6

(
(us+ su)s− 2ssu

)
φΞ−

M,S =
1√
6

(
(ds+ sd)s− 2ssd

)
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φp
M,A =

1√
2
(ud− du)u φn

M,A =
1√
2
(ud− du)d

φΣ+

M,A =
1√
2
(us− su)u φΣ0

M,A =
1

2
(dsu+ usd− sud− sdu)

φΛ
M,A =

1√
12

(
sdu− sud+ usd− dsu− 2(du− ud)s

)
φΣ−

M,A =
1√
2
(ds− sd)d

φΞ0

M,A =
1√
2
(us− su)s φΞ−

M,A =
1√
2
(ds− sd)s

φΛ
A =

1√
6

(
s(du− ud) + usd− dsu+ (du− ud)s

)
(3.2)

Then combining spin and flavor in SU(2)spin × SU(3)flavor one finds the spin flavor wave
functions for the multiplets. We give them in the following table:

multiplet symmetry wave function degeneracy

56 S φSχS (10,4)
1√
2
(φM,SχM,S + φM,AχM,A) (8,2)

70 M,S φSχM,S (10,2)

φM,SχS (8,4)
1√
2
(φM,AχM,A − φM,SχM,S) (8,2)

φAχM,A (1,2)

70 M,A φSχM,A (10,2)

φM,AχS (8,4)
1√
2
(φM,SχM,A + φM,AχM,S) (8,2)

φAχM,S (1,2)

20 A φAχS (1,4)
1√
2
(φM,SχM,A − φM,AχM,S) (8,2)

Table 3.2: The spin flavor wave functions for the baryon multiplets.

Before proceeding with the discussion of spatial wave functions let us apply these SU(6) wave
functions to calculate the magnetic moments µp, µn and µ?

p∆+. The required baryon spin
flavor states can be read off from the tables above:

| p, λ〉 =
1√
2

(
φp

M,Sχ
λ
M,S + φp

M,Aχ
λ
M,A

)

| n, λ〉 =
1√
2

(
φn

M,Sχ
λ
M,S + φn

M,Aχ
λ
M,A

)

| ∆+, λ〉 = φ∆+

S χλ
S . (3.3)

We consider the magnetic moment operator

M = µ
(2

3
σu − 1

3
σd −

1

3
σs

)
.
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Exploiting the wave function symmetry one then can write

3∑

i=1

〈p, ↑| M i
z | p, ↑〉 = 3µ〈p, ↑| e(3)σ(3)

z | p, ↑〉 .

The matrix elements can now be calculated using the spin flavor wave functions above. One
finds

〈φp
M,A | e(3) | φp

M,A〉 =
2

3
〈φn

M,A | e(3) | φn
M,A〉 = −1

3

〈φp
M,S | e(3) | φp

M,S〉 = 0 〈φn
M,S | e(3) | φn

M,S〉 =
1

3

〈φ∆+

S | e(3) | φp
M,A〉 = 0 〈φ∆+

S | e(3) | φp
M,S〉 =

√
2

3

〈χ↑M,A | σ(3)
z | χ↑M,A〉 = 1 〈χ↑M,S | σ(3)

z | χ↑M,S〉 = −1

3

〈χ↑S | σ(3)
z | χ↑M,A〉 = 0 〈χ↑S | σ(3)

z | χ↑M,S〉 =
2
√

2

3
.

Combining the above results one obtains

µp = µ µn = −2

3
µµ?

p∆+ =
2
√

2

3
µ .

The experimental value for the ratio of proton and neutron magnetic moment

µp

µn
= −1.46

is remarkably well described. Concerning the magnetic transition moment µ?
p∆+ one has to

emphasize that this pure SU(6) calculation still presumes that the baryon 56 plet is degener-
ate.

Therefore the description of the baryon spectrum requires knowledge about the spatial wave
function. Thus we have to extend our symmetry consideration to the group SU(6) × O(3).
It is custom to develop the spatial wave function in terms of harmonic oscillator wave func-
tions. For the positive parity baryons (which include the ∆ and the nucleon) the resulting
supermultiplets up to N = 2 can be classified by

N multiplet spin flavor symmetry spatial symmetry

0 (56, 0+
0 ) S S

2 (56, 0+
2 ) S S

(70, 0+
2 ) M M

(56, 2+
2 ) S S

(70, 2+
2 ) M M

(20, 1+
2 ) A A

Table 3.3: The lowest lying multiplets of SU(6) ×O(6).
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All the above super multiplets contain the octet (8, 2) and except for (20, 1+
2 ) also contain

the decuplet3 (10, 4). Thus the spatial wave functions 0SS
, 2SS

, 2SM
, 2DS

, 2DM
and 2PA

have

to be combined with the respective spin flavor wave functions to produce the 1
2

+
octet and

the 3
2

+
decuplet. Obviously different excited states of the harmonic oscillator can contribute

to these JP states. Whether only the ground state contributes to the lowest lying physical
positive baryons depends on the interaction which breaks the SU(6) symmetry.

We will shortly review a prominent example of an early quark model, the Isgur-Karl model
[59][66]. They combine a harmonic oscillator with an anharmonic perturbation U and a
hyperfine interaction V hyp.

H =
3∑

i=1

(
mi +

~p2
i

2mi

)
+
K

2

∑

i<j

~r2ij +
∑

i<j

(
U(~rij) + V hyp

ij

)
.

Their hyperfine interaction only contains spin-spin and tensor contributions:

V hyp
ij =

2αS

3mimj

(8π

3
δ(3)(~rij)~si · ~sj +

3(~si · r̂ij)(~sj · r̂ij) − ~si · ~sj

r3ij

)
.

While the notation αS still suggests that the meaning of the hyperfine interaction is described
by one gluon exchange the omission of spin-orbit terms reveals that this interaction is rather
phenomenologically motivated and αS bears no special meaning in the Isgur-Karl model. The
anharmonic perturbation which removes the degeneracy of the N = 2 harmonic oscillator en-
ergies is not specified in the IK model. Instead five parameters are introduced to distinguish
these states.

In order to obtain the spatial wave functions with the respective symmetry NLπ one firstly
must eliminate the spurious center of mass coordinate. In the simple case of equal quark
masses this is done by introducing the coordinates

ρ =
1√
2
(~r1 − ~r2)

λ =
1√
6
(~r1 + ~r2 − 2~r3)

⇒H0 =
p2

λ

2m
+

p2
ρ

2m
+

3K

2
(ρ2 + λ2) .

Then one can identify the harmonic oscillator wave functions with a given symmetry and
combine them with the spin-flavor wave functions with corresponding symmetry.

The tensor force term triggers admixtures between the super multiplets given in tab. 3.3.
As an example we quote the physical state for the nucleon

| N〉 ≈ 0.9 | N, 0SS
〉 − 0.34 | N, 2SS

〉 − 0.27 | N, 2SM
〉 − 0.06 | N, 2DM

〉 .

A similar admixture of d-waves in the ∆ allows for a finite electric N → ∆ transition ampli-
tude, which was forbidden in pure SU(6) by the Moorhouse selection rule [67].

3The angular momentum involved in the d wave allows for the existence of the decuplet (10, 4) even if the
latter does not appear in the 70 plet given in tab. 3.2.
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Once the physical baryon states are constructed one can calculate the matrix elements (us-
ing the interaction hamiltonian and thus obtain the baryon spectrum. To avoid misunder-
standings, the free parameters of the model mu/d, ms, αS , K and the above mentioned five
parameters for the anharmonic distortion are fitted to the baryon spectrum. Nevertheless the
predictive power of this model is quite high concerning the number of baryon states which are
described by it.

Let us conclude this review of the IK model with the presentation of its predictions for
the baryon spectrum. The ground state baryons are described very successfully and even for
the excited baryon states one finds good agreement with the data.

mass (MeV)

Figure 3.4: The positive (upper figure) and negative (lower figure) parity baryons with
S=0 as predicted by the IK model (solid bar) and seen in experiment (shaded region).
These figures have been taken from [59] and [66].
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The quark model which we will employ throughout this thesis is in a sense much simpler than
the Isgur Karl model. We follow the idea of Schlumpf [68] and choose the simplest possible
ansatz for the spatial wave function, i.e. a gaussian. As we are not interested in calculating
the baryon spectrum we do not have to bother with specifying the interaction that describes
the quark model, either. Instead the only two free parameters, the quark mass and the slope
of the gaussian are adjusted such that the form factor Gp

M (Q2) is well described. Obviously
this ansatz implies less predictive power than e.g. the IK model, but it has the merit of
phenomenological simplicity. In another way this model is more elaborate as it treats the
quark model relativistically. We will discuss this in more detail in the next section.

3.3 Quark models on the light front

In a relativistic model treatment Poincare invariance has to be respected. This means that the
generators of the Poincare group (space time translations P µ and pure Lorentz transformations
Mµν) have to satisfy the commutation relations

[P µ, P ν ] = 0

[Mµν , P σ ] = i(P µgνσ − P νgµσ)

[Mµν ,Mρσ ] = i(gνρMµσ − gµρMνσ + gµσMνρ − gνσMµρ) .

The physical interpretation of the Lorentz transformations is apparent if one rewrites them
such that they become the generators of angular momentum and Lorentz boosts

J i =
1

2
εijkM

jk

Ki = M0i

In 1949 Dirac has given a classification [19] of forms of relativistic dynamics which combine
the restricted principle of relativity with the Hamiltonian formulation of dynamics. He distin-
guished three genuinely different forms of hamiltonian dynamics. They differ in the choice of
the kinematical subgroup (stability group) which leaves a hyperplane on which physical initial
conditions are specified (i.e. quantization is done with respect to the coordinate which spans
the hyperplane) invariant. The other generators of the Poincare group are called dynamical
operators (Dirac called them Hamiltonians).

Firstly there is the familiar instant form (IF) where the three vector of total momentum
~P and ~J are kinematical, while the 0 component of total momentum P 0 and the Lorentz
boosts ~K are dynamical operators. In the instant form the invariant hyperplane of the kine-
matical subgroup is given by t = t0.

Secondly the point (PF) form which has M µν as kinematical subgroup while the compo-
nents of the total momentum four vector P µ are the dynamical operators. The quantization
surface for the point form is given by xµx

µ = a2 > 0 with x0 > 0.

Finally there is the (light) front form (LF) which we will use to formulate the quark model
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which we use in this thesis. With the generators

P+ = P 0 + P 3

~P⊥

E1 = M+1 = K1 + J2

E2 = M+2 = K2 − J1

Jz = M12

Kz = M−+

the front form has the largest possible kinematical subgroup. The dynamical generators are

P−

F 1 = M−1 = K1 − J2

F 2 = M−2 = K2 + J1 .

The kinematical operators leave the hyperplane t+ z = 0 invariant.

Figure 3.5: Illustration of the forms of relativistic dynamics.

For the light front coordinates we choose the convention

A± = A0 ±A3

~A⊥ = (A1, A2) .

The light front Hamiltonian

P− =
M2 + ~P⊥2

P+
> 0 .

is bounded hence its sign depends on P+ alone. This property is an advantage of the LF form
which becomes transparent if one considers specific processes. For example if one considers
electromagnetic form factors of the nucleon the fact that P + is always non negative forbids
contributions from diagrams which change the number of partons in the nucleon. One can
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choose the Drell-Yan frame where q+, the + component of the photon is zero. Then it follows
from the positivity constraint on P+ that diagrams like in fig. 3.6 that would contribute to
off-diagonal Fock amplitudes are forbidden.

In the instant form on the contrary one would have to consider amplitudes with different
Fock states, for instance 〈qqqqq̄ | Jµ | qqq〉. In constituent quark models (CQM) one misses
all contributions of amplitudes that contain higher Fock states. But at least it is assuring
that in the LF form the form factors can be evaluated consistently in the sense, that the
model assumption of the CQM concerning the number of partons in the nucleon is compati-
ble with the evaluation of the electromagnetic form factors. The same holds for DVCS in the
kinematical regime ξ ≤ x ≤ 1.

Figure 3.6: This graph is forbidden in the Drell-Yan frame

In the following we will present a convenient derivation of LF boosts and spinors by identifying
the LF form with the infinite momentum frame (IMF). This idea goes back to Susskind [69].

Consider two reference frames. In the reference frame A (A) a baryon is at rest, in the
reference frame B (B), it has the four momentum

P µ =




E
0
0
P


 .

The Lorentz boost 4 Lc(ωP ) which maps A to B is thus expressed using the baryon momen-
tum. Next consider a particle (e.g. a quark) with the momentum kµ in A. If we denote its
momentum in B by pµ the Lorentz boost Lc(ωP ) acts like

pµ = Lc(ωP ) kµ =




k0 cosh(ω) + k3 sinh(ω)
k1

k2

k0 sinh(ω) + kz cosh(ω)


 ,

where

cosh(ωP ) =
E

M
and sinh(ωP ) =

P

M
.

4During the identification of IMF and LF we will denote instant form boosts with Lc and light front boosts
with Lf .
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The IMF is now obtained from B by sending the baryon momentum in z–direction to infinity.
In this limit the z–component of the quark momentum pz does not stay finite either. Instead
one considers the finite fraction

η :=
pz

P
.

With help of this momentum fraction one can expand p0 and E:

p0 =
√
m2 + p2

z + p2
⊥ =

√
η2P 2 + p2

⊥ +m2 = η P +
p2
⊥ +m2

2η P
+O(P−2)

E =
√
P 2 +M2 = P +

M2

2P
+O(P−2) .

Here M denotes the mass of the baryon and m the mass of the (free) quark. Using

kµ = L−1
c (ωP )pµ

one obtains

k0 =

[(
η P +

p2
⊥ +m2

2ηP
+O(P−2)

)
1

M

(
P +

M2

2P
+O(P−2)

)
− η P

P

M

]

=
1

2

(
M η +

p2
⊥ +m2

ηM

)
+O(P−1) and

k3 =

[
−
(
η P +

p2
⊥ +m2

2ηP
+O(P−2)

)
P

M
+ η P

1

M

(
P +

M2

2P
+O(P−2)

)]

=
1

2

(
M η − p2

⊥ +m2

ηM

)
+O(P−1) .

In the infinite momentum limit one can then define

k+ := k0 + k3 = ηM

k− := k0 − k3 =
p2
⊥ +m2

ηM
,

which agrees with our notation for light front coordinates. Note that the quark momentum
fraction is identical with the + component of the light front momentum fraction:

x :=
p+

P+
=
p0 + p3

E + P
=

(
P
M k0 + E

M k3
)

+
(

E
M k0 + P

M k3
)

E + P
=
k+

M
= η .

In the following, LF momenta shall be denoted with k̃ = (k+, k⊥, k−). Formally the IMF
and LF form can be identified in the following way:

k̃ = lim
P→∞

[
L−1

c (ωP )Lc(ωp)
]



m
0
0
0


 =: Lf (ωk)




m
0
0
0


 .

In order to establish an identification of all LF generators of the Poincare group consider a
Lorentz frame C, where the quark has the momentum k ′µ and which is connected to B via a
(canonical) boost in z-direction:

k′µ = Lc(ωz)p
µ
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The LF boost in z-direction can then be identified with the IMF boost in z-direction, via

k̃′ = lim
P→∞

[Lc(ωz)Lc(ωp)]




m
0
0
0




= lim
P→∞

[Lc(ωz)Lc(ωP )] lim
P→∞

[
L−1

c (ωP )Lc(ωp)
]



m
0
0
0




= lim
P→∞

[Lc(ωz)Lc(ωP )] k̃ . Thus

Lf (ωz) := lim
P→∞

[Lc(ωz)Lc(ωP )] .

obviously then the LF–boost in z-direction acts on LF momenta like

k′+ = Lf (ωz)k
+ = exp(ωz)k

+

k′⊥ = Lf (ωz)k
⊥ = k⊥

k′− = Lf (ωz)k
− = exp(−ωz)k

− .

This boost is generated by one of the Poincare group generators, namely Kz.

Next we want to identify the LF boosts in perpendicular direction. Let D be the Lorentz
frame which is obtained from B by a rotation around the x-axis with the angle5 εx =: ωy · M

P .
For the quark momentum in D one finds

k′y = cos(εx)py + sin(εx)pz and

k′z = cos(εx)pz − sin(εx)py .

After taking the limit P → ∞ one can identify this (infinitesimal) IMF rotation around the
x-axis with the so called LF boosts in y-direction by defining

Lf (ωy) := lim
P→∞

[R(εx)Lc(ωP )] .

One finds:

k′+ = Lf (ωy)k
+ = k+

k′x = Lf (ωy)kx = kx

k′y = Lf (ωy)ky = ky + ωyk
+ .

With the particle being on shell it follows

k′− = Lf (ωy)k
− = k− + ωy

(
2ky + ωy k

+
)

.

From these transformation laws one can read off, that this Lorentz transformation is generated
by the sum of the generators for a boost in x-direction and a rotation around the y-axis

E1 = k1 + J2 .

5The labeling of ωy is no misprint but reveals the fact that the LF boost in y-direction relates to an
infinitesimal rotation around the x-axis in the IMF
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The same can be done for a rotation around the y-axis in the IMF. Here one finds

k′− = Lf (ωx)k− = k− + ωx

(
2kx + ωx k

+
)

which is generated by

E2 = k1 − J2 .

The invariance of the hypersphere perpendicular to the LF time t+z under the above defined
LF boosts can be seen from the fact, that the + component is only multiplied with a factor un-
der these transformations. (Additionally one can see easily that the LF boosts form a group).
The other 4 Poincare transformations which belong to the LF kinematical subgroup are the
rotation around the z-axis (only the perpendicular components change, the IMF limit does
not matter), translations in x- and y-direction (with the same argument) and the translation
in - direction (generated by P+). The three remaining Poincare transformations (translation
in LF time generated by the LF Hamiltonian P−, F 1 and F 2 form the dynamical subgroup.

A key issue for the convenient use of the LF form for composite particles is the possibil-
ity to separate the internal momenta of the composite system from the external ones such,
that the internal momenta are invariant under the kinematical subgroup.

Consider for example a baryon consisting of three quarks. Denote the baryon momentum
by P̃ = (P+, ~P⊥) and the quark momenta by p̃i = (p+

i , ~pi⊥). Then one can choose e.g. the
internal coordinates

xi :=
p+

i

P+

k⊥i = pi⊥ − xiP⊥ (3.4)

such that
∑

i

xi = 1

∑

i

ki⊥ = 0 .

From the explicit transformation rules for the kinematical subgroup one can verify the invari-
ance of the above chosen internal momenta. As examples we verify their invariance under LF
boosts.

For a LF boost in z-direction one finds:

xi → x′i =
p′+i
P ′+

=
exp(ωz)p

+
i

exp(ωz)P+
=

p′+i
P ′+

= xi and

~ki⊥ → ~k′i⊥ = ~p′i⊥ − x′i ~P
′
⊥ = ~pi⊥ − xi

~P⊥ = ~ki⊥ .

Under a LF boost in perpendicular direction one verifies:

xi → x′i =
p′+i
P ′+

=
p+

i

P+
= xi and

~ki⊥ → ~k′i⊥ = ~p′i⊥ − x′i ~P
′
⊥ = ~pi⊥ + ~ω⊥p

+
i − xi

(
~P⊥ + ~ω⊥P

+
)

=
(
~pi⊥ − xi

~P⊥
)

+ ~ω⊥
(
p+

i − xiP
+
)

= ~ki⊥ .
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Invariance under the other 4 transformations of the kinematical subgroup can be verified anal-
ogously. This property is one key issue which features the LF form as it guarantees that wave
functions which are expressed in terms of internal coordinates are invariant under Lorentz
boosts.

Next we have to construct LF spinors. The transformation of instant form spinors into LF
spinors is known as Melosh rotation [70]. From the requirement of Lorentz invariance of the
Lagrangian for a free spin 1/2 particle one knows how the representations of the Lorentz–boost
for four vectors and spinors are connected. Infinitesimally this connection can be written as

xµ → x′µ = Λµνxν = (gµν + εµν)xν

ψ(xµ) → ψ′(x′µ) = S(Λ)ψ(xµ) =

(
1 − i

4
εµνσµν

)
ψ(xµ) .

For the boost in z–direction (needed for Lc(ωP )) one has

Λµ
ν =




cosh(ω) 0 0 −sinh(ω)
0 1 0 0
0 0 1 0

−sinh(ω) 0 0 cosh(ω)


→ εµν =




0 0 0 −ω
0 0 0 0
0 0 0 0
ω 0 0 0


 .

Together with

i

4
σ30 = − i

4
σ03 =

1

8

(
γ0γ3 − γ3γ0

)
=

1

4




0 0 + 0
0 0 0 −
+ 0 0 0
0 − 0 0




one finds

S(Lc(ωP )) = exp

(
− i

4
εµνσµν

)
= exp




0 0 ω
2 0

0 0 0 −ω
2

ω
2 0 0 0
0 −ω

2 0 0




=




cosh(ω
2 ) 0 sinh(ω

2 ) 0
0 cosh(ω

2 ) 0 −sinh(ω
2 )

sinh(ω
2 ) 0 cosh(ω

2 ) 0
0 −sinh(ω

2 ) 0 cosh(ω
2 )


 .

With the expressions for the IF spinors (see appendix A) one finds for the LF spinors

uLF (k̃, s) = lim
P→∞

[
S(L−1

c (ωP ))S(Lc(ωp))u(0, s)
]

= lim
P→∞

[
S(L−1

c (ωP ))u(~p, s)
]

= lim
P→∞

√
p0 +m




[
cosh(ω

2 ) − σ3~σ·~p
p0+m sinh(ω

2 )
]
χ(s)[

−σ3sinh(
ω
2 ) + ~σ·~p

p0+m cosh(ω
2 )
]
χ(s)


 .
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To evaluate the infinite momentum limit an expansion of this expression in powers of P −1 is
required. With

cosh(
ω

2
) =

√
E +M

2M
and

sinh(
ω

2
) =

√
E −M

2M
=

√
E +M

2M

P

E +M
=

√
E +M

2M

(
1 − M

P
+O(P−2)

)

one yields

uLF (k̃, s) =
1√
2k+




[
m+ k+ + ~σ⊥~k⊥σ3

]
χ(s)[

−σ3 (m− k+) + ~σ⊥~k⊥
]
χ(s)


 . (3.5)

introducing kL = k1 − ik2 and kR = k1 + ik2 one finds the light front spinors

u↑LF =
1√
2k+




m+ k+

kR

k+ −m
kR


 ; u↓LF =

1√
2k+




−kL

k+ +m
kL

−k+ +m


 .

For later convenience we give here the representation for the Melosh rotation in a two com-
ponent Pauli spinor basis. It can be read off from eq. 3.5 and the normalization condition for
the Pauli spinors in IF and LF:

χ↑,↓LF (k̃) = Rcf (k̃)χ↑,↓(kµ) with Rcf (k̃) =
(m+ k+) + ~σ⊥~k⊥σ3√

(m+ k+)2 + ~k2
⊥

. (3.6)

We should emphasize that the meaning of LF spin is different from the canonical spin (as one
sees already from the fact that the Melosh rotation mixes the “spin states”):

ū(k, λ′)uLF (k̃, λ) 6= 0 for λ 6= λ′ .

In the instant form it denotes the spin projection in z-direction whereas in LF form it is an
eigenvalue of the helicity operator, although only in the ~k⊥ = 0 frame it is the projection of
spin along the direction of motion.

Until now we have shown how the Melosh rotation looks for a free spin 1/2 particle state
and thus how it acts on a spinor. Next we have to consider a composite particle. Let us
construct a hadron state. Again we use a different notation for IF and LF momenta:

k̃ = (k+, ~k⊥) LF

~k = (kx, ky, kz) IF .

Furthermore states will be denoted with [f] (light front) and [c] (canonical=instant) respec-
tively. The meaning of the respective spin variable then follows from the context. The Melosh
transformation does not affect the isospin so in the following we will not display this degree
of freedom explicitly. We will denote the momentum of the composite particle with P̃ , the
momenta of the constituents with p̃i and the internal coordinates of the constituents (eq. 3.4)
with (xi, ~pi⊥).
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First the light front hadron states can be expressed in terms of single particle states:

| P̃ , λ〉[f ] =
∑

β

∫
[
dx√
x

][d2~p⊥]ψ
λ[f ]
β (p̃1, p̃2, p̃3) | β, p̃1, p̃2, p̃3〉 (3.7)

where β is an index for color, helicity and flavor (implying the CG construction for the
respective hadron) and

[
dx√
x

] = δ(1 −
3∑

j=1

xj)
3∏

i=1

dxi√
xi

[d2~p⊥] = 16π3δ(2)(~P⊥ −
3∑

j=1

~pj⊥)

3∏

i=1

d2~pi⊥
16π3

.

These states are normalized according to

[f ]〈P̃ ′, λ′ | P, λ〉[f ] = 16π3P+δ(P+ − P ′+)δ(2)(~P ′⊥ − ~P⊥)δλ′λ .

The normalization of the wave function reads

∑

β

∫
[dx][d~p⊥] | ψλ[f ]

β (p̃1, p̃2, p̃3) |2= 1 .

Bearing in mind that LF spin has a different meaning than the canonical spin the main diffi-

culty in working with the LF form lies in the construction of the wave function ψ
λ[f ]
β (p̃1, p̃2, p̃3).

In order to apply the SU(6) construction of the hadron wave functions it is necessary to es-
tablish a connection between the IF wave function and the LF wave function.

In the instant form one can write the hadron state as

| ~P , λ〉[c] =
∑

β

∫ 3∏

i=1

(
d~pi

)
ψ

λ[c]
β (~p1, ~p2, ~p3) | β, ~p1, ~p2, ~p3〉 . (3.8)

The IF hadron states are normalized according to

[c]〈~P ′, λ′ | ~P , λ〉[c] = δ(3)(~P ′ − ~P )δβ′β .

The wave function normalization reads

∑

β

∫ 3∏

i=1

(
~pi

)
| ψλ[c]

β (~p1, ~p2, ~p3) |2= 1 . (3.9)

Following eq. 3.6 the single quark state transforms according to

| p̃, λ, 〉[f ] =
√

2p0(2π)3
∑

λ′

D
1
2
λ′λ (Rcf (p̃)) | ~p, λ′, 〉[c] . (3.10)

The factor
√

16π3p0 stems from the different normalization of the states in LF and IF and
from the Jacobi determinant | ∂p̃

∂~p |. The connection between instant and light front form



48 Chapter 3. Quark models on the light front

can be established easiest in the rest frame of the composite state. We denote the free mass
operator of the non interacting three body system by M0. It can be written as

M0 =
∑

i

√
~p2

i +m2 .

Then the Fock states are related according to (eq. 3.10)

| 0̃, λ〉[f ] =
√

2M0(2π)3 | ~0, λ〉[c] . (3.11)

Now one can evaluate the Jacobi determinant (note, that P + = M0) in order to find

[dx][d~p⊥] = 16π3δ(1 −
3∑

i=1

xi)δ
(2)(~pi⊥)

3∏

i=1

1

16π3
dxi d~pi⊥

= 16π3δ(1 −
3∑

i=1

p0
i + p3

i

M0
)δ(2)(~pi⊥)d3~p

3∏

i=1

(
1

16π3

dxi

dp3

)

= 16π3M0δ
(3)(

3∑

i=1

~pi)d
3~p

3∏

i=1

1

16π3

dp3 + dp0

M0 dp3

= 16π3M0δ
(3)(

3∑

i=1

~pi)d
3~p

3∏

i=1

(
1

16π3

xi

p0
i

)
.

Using the Melosh rotation eq. 3.10, eq. 3.7 and eq. 3.11 in the rest frame one then obtains

| ~0, λ〉[c] =

√
1

16π3M0
16π3M0

∑

λi

∫
d3~p

[
3∏

i=1

1

16π3√xi

xi

p0
i

]
δ(3)(

∑
~pi)

· ψ[f ]
λ (xi, ~pi⊥, λi)

3∏

i=1



√

16π3p0
i

∑

λ′
i

D
1
2

λ′
iλi

(Rcf (p̃i)) | ~pi, λ
′
i〉[c]




=
√

16π3M0

∑

λi

δ(3)(
∑

~pi)ψ
[f ]
λ (xi, ~pi⊥, λi)

∫
d3~p

·
3∏

i=1

√
xi

16π3p0
i

D
1
2

λ′
iλi

(Rcf (p̃i)) | ~pi, λ
′
i〉[c] . (3.12)

On the other hand the canonical Fock state in the rest frame is given by eq. 3.9:

| ~0, λ〉[c] =
∑

λi

∫
d3p δ(3)(

∑
~pi)ψ

[c]
λ (~pi, λi)

(
3∏

i=1

| ~pi, λi〉[c]

)
.

Using the canonical normalization for the single quark state [c]〈~p′i, λ′i | ~pi, λi〉[c] = δ(~pi−~p′i)δλiλ′
i

one obtains the canonical wave function

ψ
[c]
λ (~pi, λi) =[c] 〈~p1, λ1 | 〈~p2, λ2 | 〈~p3, λ3 | ~0, λ〉[c] .
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With (eq. 3.12) one finds

ψ
[c]
λ (~p1, ~p2, ~p3, λ1, λ2, λ3) =

1

16π3

√
M0x1x2x3

p0
1p

0
2p

0
3

∑

λ′
1,λ′

2,λ′
3

D
1
2

λ′
1λ1

(Rcf (p̃1))

D
1
2

λ′
2λ2

(Rcf(p̃2))D
1
2

λ′
3λ3

(Rcf (p̃3))ψ
[f ]
λ (x1, x2, x3, ~p1⊥, ~p2⊥, ~p3⊥, λ

′
1, λ
′
2, λ
′
3) .

This relation can of course be inverted in order to gain the LF wave function from the instant
form wave function

ψ
[f ]
λ (p̃1, p̃2, p̃3, λ1, λ2, λ3) = 16π3

√
p0
1p

0
2p

0
3

M0x1x2x3

∑

λ′
1,λ′

2,λ′
3

D
1
2
?

λ′
1λ1

(Rcf (p̃1))

D
1
2
?

λ′
2λ2

(Rcf (p̃2))D
1
2
?

λ′
3λ3

(Rcf (p̃3))ψ
[c]
λ (~p1, ~p2, ~p3, λ

′
1, λ
′
2, λ
′
3) . (3.13)

As we have already mentioned the LF wave function is invariant under light front boosts. In
another language this is due to the fact that the Wigner rotation for LF boosts is unity.

Before we are ready to evaluate transition amplitudes we need to specify the spatial part
of the wave function. Following [68] we use

ψ(~p1, ~p2, ~p3) =exp (−M
2
0

2α
)

α =0.56GeV 2

m =0.267GeV 2 . (3.14)

Here m is the constituent quark mass and α a free parameter in the gaussian. α and m are
chosen such that the magnetic proton form factor is well described up to Q2 = 1 GeV2. In
order to reproduce the dipole behavior for high values of Q2 a spatial wave function of the
type ψ(~p1, ~p2, ~p3) = N

(M2
0 +α2)n is better suited [71].

We are nearly ready to evaluate the transition amplitudes Gµ
λ′λ. However we have to introduce

an approximation at this point, the so called spectator quark (or impulse) approximation. In
the impulse approximation we assume that the scattering occurs over such a short time that
the binding forces during the interaction can be neglected. In a partonic interpretation this
implies that the quark which is struck by a photon does not interact with the other partons
in the hadron which therefore remain spectators in the process. In the next section we will
discuss consequences of this approximation.

The calculations which we present in the following were partly done before. Some of the
following results can be found (often in a different notation or with different conventions) in
one of the following papers: [64], [65], [72], [73] and [74].

A heuristic approach to obtain the expressions for Gµ
λ′,λ starts with the observation (see



50 Chapter 3. Quark models on the light front

e.g [68]) that G+
λ′,λ can be expressed by

G+
λ′,λ ∝

∫
[dk̃]ψ?(1′, 2′, 3′) · ψ(1, 2, 3)

∑

spins

CG(spins) 〈1′ |M †(1′)1M(1) | 1〉

· 〈2′ |M †(2′)1M(2) | 2〉 · 〈3′ |M †(3′)
( 1

2
√
k′+k+

ūLF (k′3, λ
′
3)γ

+uLF (k3, λ)
)
M(3) | 3〉 .

Here CG(spins) stands for some Clebsch Gordon coefficients which have to appear in the
construction of the nucleons involved. The [d̃k] sketches the 6 dimensional integral for form
factors (5 dimensional for GPDs). The M(i) denote the Melosh rotations for the single
quarks. The label LF in the spinors emphasizes that light front Dirac spinors are meant
here. In fact the clumsy expression 1

2
√

k′+k+
ūLF (k′3, λ

′
3)γ

+uLF (k3, λ) turns out to be 1. From

this expression one can argue handwavingly that the non plus transition amplitudes can be
obtained in a similar way by substituting e.g.

ūLF (k′3, λ
′
3)γ

+uLF (k3, λ) → ūLF (k′3, λ
′
3)γ
⊥uLF (k3, λ) .

It will turn out that the result of this description agrees with the findings of a rigorous deriva-
tion using LF quantization.

With the LF spinors

uLF (p, ↑) =
1√
2p+




p+ +m
pR

p+ −m
pR


 , uLF (p, ↓) =

1√
2p+




−pL

p+ +m
pL

m− p+




ūLF (p′, ↑) =
1√
2p′+

(
p′+ +m, p′L, m− p′+, −p′L

)

ūLF (p′, ↓) =
1√
2p′+

(
−p′R, p′+ +m, −p′R, p′+ −m

)

and the shorthand notation

Oλ′,λ =
1

2
√
p′+p+

ūLF (p′, λ′)O uLF (p, λ)
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one can work out the table

O 1 γ+ γx

O↑,↑
m
2

(
1

p′+ + 1
p+

)
1 1

2

(
p′x

p′+ + px

p+

)
− i

2

(
p′y

p′+ − py

p+

)

O↓,↑
1
2

(
px

p+ − p′x

p′+

)
+ i

2

(
py

p+ − p′y

p′+

)
0 m

2

(
1

p′+ − 1
p+

)

O↑,↓
1
2

(
p′x

p′+ − px

p+

)
+ i

2

(
py

p+ − p′y

p′+

)
0 −m

2

(
1

p′+ − 1
p+

)

O↓,↓
m
2

(
1

p′+ + 1
p+

)
1 1

2

(
p′x

p′+ + px

p+

)
+ i

2

(
p′y

p′+ − py

p+

)

O γy γ−

O↑,↑
1
2

(
p′y

p′+ + py

p+

)
+ i

2

(
p′x

p′+ − px

p+

)
m2+pxp′x+pyp′y+i(pyp′x−p′ypx)

p+p′+

O↓,↑
im
2

(
1

p′+ − 1
p+

) m

[
(px−p′x)+i(py−p′y)

]

p′+p+

O↑,↓
im
2

(
1

p′+ − 1
p+

) m

[
(p′x−px)+i(py−p′y)

]

p′+p+

O↓,↓
1
2

(
p′y

p′+ + py

p+

)
− i

2

(
p′x

p′+ − px

p+

)
m2+pxp′x+pyp′y−i(pyp′x−p′ypx)

p+p′+

O γ5 γ+γ5 γxγ5

O↑,↑
m
2

(
1

p′+ − 1
p+

)
1 1

2

(
p′x

p′+ + px

p+

)
− i

2

(
p′y

p′+ − py

p+

)

O↓,↑
1
2

(
px

p+ − p′x

p′+

)
+ i

2

(
py

p+ − p′y

p′+

)
0 m

2

(
1

p′+ + 1
p+

)

O↑,↓
1
2

(
px

p+ − p′x

p′+

)
− i

2

(
py

p+ − p′y

p′+

)
0 m

2

(
1

p′+ + 1
p+

)

O↓,↓
m
2

(
1

p+ − 1
p′+

)
−1 −1

2

(
px

p+ + p′x

p′+

)
+ i

2

(
py

p+ − p′y

p′+

)

O γyγ5 γ−γ5

O↑,↑
1
2

(
p′y

p′+ + py

p+

)
+ i

2

(
p′x

p′+ − px

p+

)
−m2+pxp′x+pyp′y+i(pyp′x−p′ypx)

p+p′+

O↓,↑
im
2

(
1

p′+ + 1
p+

) m

[
(px+p′x)+i(py+p′y)

]

p′+p+

O↑,↓ − im
2

(
1

p′+ + 1
p+

) m

[
(px+p′x)−i(py+p′y)

]

p′+p+

O↓,↓ −1
2

(
p′y

p′+ + py

p+

)
+ i

2

(
p′x

p′+ − px

p+

)
m2−pxp′x−pyp′y+i(pyp′x−p′ypx)

p+p′+

(3.15)

Using this table one can represent the one body current operators J µ and Jµ
5 in terms of pauli

matrices. For example one can read off from the table

〈p′, λ′ | J+
5 | p, λ〉 =

1

2
√
p′+p+

ūLF (p′, λ′)γ+γ5u
LF (p, λ) = χ†λ′σzχλ −→ J+

5 → σz .
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To complete this representation one finds

J+ → 1

Jx → 1

2

( p′x
p′+

+
px

p+

)
1 +

m

2

( 1

p+
− 1

p′+

)
iσy +

1

2

( py

p+
− p′y

p′+

)
iσz

Jy → 1

2

( p′y
p′+

+
py

p+

)
1 +

m

2

( 1

p′+
− 1

p+

)
iσx +

1

2

( p′x
p′+

− px

p+

)
iσz

J− → m2 + p′xpx + p′ypy

p+p′+
1 +

m(py − p′y)
p+p′+ iσx +

m(p′x − px)

p+p′+ iσy +
pyp′x − p′ypx

p+p′+
iσz

J+
5 → σz

Jx
5 → 1

2

( py

p+
− p′y

p′+

)
i1 +

m

2

( 1

p+
+

1

p′+

)
σx +

1

2

( px

p+
+
p′x

p′+

)
σz

Jy
5 → 1

2

( p′x
p′+

− px

p+

)
i1 +

m

2

( 1

p′+
+

1

p+

)
σy +

1

2

( p′y
p′+

+
py

p+

)
σz

J−5 → pyp′x − p′ypx

p+p′+
i1 +

m(px + p′x)
p+p′+

σx +
m(p′y + py)

p+p′+
σy +

p′xpx + p′ypy −m2

p+p′+
σz . (3.16)

Finally the Melosh rotation for these operators have to be applied. In a Pauli spinor basis
one needs (eq. 3.6)

Rcf (p′) =
m+ xM ′0 − i~σ(n̂× ~p′⊥)√

(m+ xM ′0)
2 + ~p′2⊥

R?
cf (p) =

m+ xM0 + i~σ(n̂× ~p⊥)√
(m+ xM0)2 + ~p2

⊥

. (3.17)

Using σiσj = δij + iεijkσk and introducing the notation M := m+ xM0 and M ′ := m+ xM ′0
while dropping the common denominator one finds

M(p′) →M ′ + ip′yσx − ip′xσy

M?(p) →M − ipyσx + ipxσy .

Now one can evaluate how the Melosh rotation acts on the pauli matrices which appear in the
one body currents. Starting with the unit matrix which appears already in J+ one computes

M(p′)1M?(p) =(M ′ + ip′yσx − ip′xσy)1(M − ipyσx + ipxσy)

=(MM ′ + pxp′x + pyp′y) + i(Mp′y −M ′py)σx + i(M ′px −Mp′x)σy

+ i(p′xpy − pxp′y)σz

= : A+ i ~B · ~σ .
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Hence one has

M(p′)1M?(p) = χ†(A+ i ~B · ~σ)χ =

(
A+ iBz By + iBx

−By + iBx A− iBz

)

M(p′)i1M?(p) = χ†(iA− ~B · ~σ)χ =

(
−Bz + iA −Bx + iBy

−Bx − iBy Bz + iA

)

with

A = M ′M + p′ypy + p′xpx and ~B =



Mp′y −M ′py

M ′px −Mp′x

p′xpy − pxp′y


 . (3.18)

Similarly we have

M(p′)σzM
?(p) =(M ′ + ip′yσx − ip′xσy)σz(M − ipyσx + ipxσy)

=i(pxp′y − p′xpy) + (Mp′x +M ′px)σx + (M ′py +Mp′y)σy

+ (MM ′ − pxp′x − pyp′y)σz

= : iA+ ~B · ~σ .

Therefore one can express

M(p′)σzM
?(p) = χ†(iA+ ~B · ~σ)χ =

(
Bz + iA Bx − iBy

Bx + iBy −Bz + iA

)

M(p′)iσzM
?(p) = χ†(−A+ i ~B · ~σ)χ =

(
−A+ iBz By + iBx

−By + iBx −A− iBz

)

with

A = pxp′y − p′xpy and ~B =




Mp′x +M ′px

M ′py +Mp′y

MM ′ − p′xpx − p′ypy


 . (3.19)

Note that this notation is different from [72]. The expressions can be related via

Ã = Bz, B̃x = By, B̃y = Bx, B̃z = −A .

Finally we have

M(p′)σxM
?(p) = : iA+ ~B · ~σ

with

A = Mp′y −M ′py and ~B =



MM ′ + p′ypy − p′xpx

−(pxp′y + p′xpy)
−(Mp′x +M ′px)


 . (3.20)
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Likewise

M(p′)σyM
?(p) = : iA+ ~B · ~σ

with

A = M ′px −Mp′x and ~B =




−(p′ypx + p′xpy)
M ′M + p′xpx − p′ypy

−(Mp′y +M ′py)


 . (3.21)

Of course the results given above can be obtained in a more rigorous way by using LF quan-
tization. This is what will be presented in the following.

In LF theory it is convenient to introduce so called “good” and “bad” components of the
fermion field. The reason is that in field theory one can use one of them, the “good” compo-
nent φ as independent field which gets quantized and then express the “bad” component χ in
terms of the independent field φ using the equation of motion, i.e. the Dirac equation.

The “good” and “bad” components φ and χ are obtained from the 4 component fermion
field ψ using projectors:

Λ± =
1

4
γ∓γ± =

1

2
(1 ± γ0γ3) =

1

2
γ0γ±

φ =Λ+ψ χ = Λ−ψ .

Projector properties for Λ± can readily be verified:

Λ±Λ∓ = 0 Λ±Λ± = Λ± Λ+ + Λ− = 1 .

To simplify the following expressions we define

~α⊥ = γ0γ⊥ .

and provide some useful algebraic relations which will be frequently used in the following:

Λ+ = 1
2γ0γ

+ α⊥ = γ0γ⊥ γ⊥Λ± = Λ±γ⊥ {γµ, γ5} = 0
γ0Λ

± = Λ∓γ0 α⊥Λ± = Λ∓α⊥ γ3Λ
± = Λ∓γ3

γ5Λ
± = Λ±γ5 (Λ±)† = Λ± Λ∓ = 2Λ±γ0

. (3.22)

Next the one body currents can be expressed in terms of “good” and “bad” LF field compo-



3.3. Quark models on the light front 55

nents. One finds

j+ = ψ̄γ+ψ

= ψ̄(2Λ−γ0)ψ

= ψ̄(2γ0Λ+)ψ

= ψ̄(2γ0Λ+Λ+)ψ

= ψ̄
(
2γ0(Λ+)†Λ+

)
ψ

= 2ψ†(Λ+)†φ

= 2(Λ+ψ)†φ

= 2φ†φ

j⊥ = ψ̄γ⊥ψ

= ψ†~α⊥ψ

= ψ†~α⊥(Λ+ + Λ−)ψ

= ψ†~α⊥Λ+Λ+ψ + ψ†~α⊥Λ−Λ−ψ

= ψ†Λ−~α⊥Λ+ψ + ψ†Λ+~α⊥Λ−ψ

= χ†α⊥φ+ φ†α⊥χ

j− = ψ̄γ−ψ

= ψ̄(2Λ+γ0)ψ

= ψ̄(2γ0Λ−)ψ

= ψ̄(2γ0Λ−Λ−)ψ

= ψ̄
(
2γ0(Λ−)†Λ−

)
ψ

= 2ψ†(Λ−)†χ

= 2(Λ−ψ)†χ

= 2χ†χ . (3.23)

Similarly one finds

j+5 = ψ̄γ+γ5ψ = 2φ†γ5φ

j⊥5 = ψ̄γ⊥γ5ψ = χ†α⊥γ5φ+ φ†α⊥γ5χ

j−5 = ψ̄γ−γ5ψ = 2χ†γ5χ .

The next task is the afore mentioned quantization of the “good” component φ and the sub-
stitution of the dynamically dependent bad LF component χ.
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The equation of motion is the Dirac equation

(i /D −m)ψ = 0
[
i

(
1

2
γ+D− +

1

2
γ−D+

)
− i~γ⊥ ~D⊥ −m

]
ψ = 0 .

Now we multiply this equation from left with Λ−γ0

[
i

(
1

2
Λ−γ0γ+D− +

1

2
Λ−γ0γ−D+

)
− iΛ−~α⊥ ~D⊥ −mΛ−γ0

]
ψ = 0

[
i
(
Λ−Λ+D− + Λ−Λ−D+

)
− i~α⊥Λ+ ~D⊥ −mγ0Λ+

]
ψ = 0

iD+χ− i~α⊥ ~D⊥φ−mγ0φ = 0 .

In QCD the covariant derivative reads D = ∂ − igA and using LF gauge one ends up with

χ =
1

∂+

[
~α⊥(~∂⊥ − igA⊥)φ− imγ0φ

]
. (3.24)

and thus one has expressed the bad LF component through the only independent fields φ and
~A⊥.

Certainly the constituent quark model is not QCD. It is not even a field theory. The phi-
losophy behind calling the prescription to obtain the transition amplitudes spectator quark
approximation is to understand the constituent quarks as dressed fermions of some underlying
field theory (maybe QCD) where the derivation for the transition amplitudes holds. Then
restricting oneself to the leading Fock component (quark model) is a restriction of the Fock
space of the underlying field theory. We will postpone the discussion of this approximation
and the partonic picture behind it to the next section. The above equations simplify in the
case of the truncated Fock state, the Gluon fields can simply be neglected.

The hadron - hadron transition amplitudes which can be related to GPDs read

Gq,O
λ′λ =

∑

c

∫
dz−

4π
eixP̄+z−〈P̃ ′, λ′ | ψ̄c

q(−
z̃

2
)Oψc

q(
z̃

2
) | P̃ , λ〉 .

This expression can be evaluated step by step. One uses the hadron state and integral measure
of eq. 3.7. Next the one particle states which appear here can be expressed using creation
operators:

| β, p̃1, p̃2, p̃3〉 =
3∏

i=1

b†(ωi) | 0〉 .

The ωi are collective coordinates for momentum, helicity, flavor and color of the i-th quark.

The current operators have been expressed in terms of φ and χ so far. These fields have
to be quantized next:

φq(z̃) =

∫
dk+ d2~k⊥
16π3k+

θ(k+)
∑

µ

(
bq(k̃, µ)u+(k̃, µ)e−ikz + d†q(k̃, µ)v+(k̃, µ)eikz

)
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where u+ = Λ+u, v+ = Λ+v, q stands for the quark flavor (color index is suppressed),
k̃ = (k+, ~k⊥) and the commutation relation for creation/annihilation operators read

{
bq′(k̃

′, µ′), b†q(k̃, µ)
}

=
{
dq′(k̃

′, µ′), d†q(k̃, µ)
}

= 16π3k+δ(k′+ − k+)δ(2)(~k′⊥ − ~k⊥)δµ′µδq′q .

This implies the normalization

〈k̃′, ω′ | k̃, ω〉 = 16π3k+δ(2)(~k′⊥ − ~k⊥)δ(k′+ − k+)δω,ω′ . (3.25)

Using the Dirac equation one obtains a representation for the dynamical dependent field χ:

χq(z̃) =
1

∂+

[
~α⊥ · ∂⊥ − imγ0

]
φq(z̃)

=
1

∂+

[
~α⊥ · ∂⊥ − imγ0

] ∫ dk+ d2~k⊥
16π3k+

θ(k+)
∑

µ

(
bq(k̃, µ)u+(k̃, µ)e−ikz + d†q(k̃, µ)v+(k̃, µ)eikz

)

=

∫
dk+ d2~k⊥
16π3k+

θ(k+)
∑

µ

[(~α⊥ · ~k⊥
k+

+
m

k+
γ0
)
bq(k̃, µ)u+(k̃, µ)e−ikz

+
(~α⊥ · ~k⊥

k+
− m

k+
γ0
)
d†q(k̃, µ)v+(k̃, µ)eikz

]
.

Before the length of the formula diverges let us perform the integral∫
dz−

4π e
ixP̄+z−φ†q(− z−

2 )Oφq(
z−

2 ) after which some of the terms above will disappear:

∫
dz−

4π
eixP̄+z−φ̄q(−

z−

2
)Oφq(

z−

2
)

=

∫
dz−

4π
eixP̄+z−

∫
dk+d~k⊥
16π3k+

dk′+d~k′⊥
16π3k′+

θ(k+)θ(k′+)
∑

µ,µ′

(
b†q(k

′, µ′)u†+(k′, µ′)eik
′+(− z−

2
) + dq(k

′, µ′)v+(k′, µ′)e−ik′+(− z−
2

)
)

O
(
bq(k, µ)u+(k, µ)e−ik+( z−

2
) + d†q(k, µ)v†+(k, µ)eik+( z−

2
)
)

=

∫
dk+d~k⊥
16π3k+

dk′+d~k′⊥
16π3k′+

θ(k+)θ(k′+)
∑

µ,µ′
(
δ(2xP̄+ − k+ + k′+)dq(k

′, µ′)bq(k, µ)v+(k′, µ′)Ou+(k, µ)

+ δ(2xP̄+ − k′+ − k+)b†q(k
′, µ′)bq(k, µ)u†+(k′, µ′)O u+(k, µ)

+ δ(2xP̄+ + k′+ − k+)dq(k
′, µ′)bq(k, µ)v+(k′, µ′)Ou+(k, µ)

+ δ(2xP̄+ + k′+ + k+)dq(k
′, µ′)d†q(k, µ)v+(k′, µ′)O v†+(k, µ)

)
. (3.26)

For transition elements which are diagonal in the Fock space only two of the expressions in the
operator sum can contribute. We only have to consider these contributions in our calculation
since the quark model restricts the Fock space to three quark states only. Restricting oneself
to the kinematic region x > 0 (no information loss due to symmetry) the theta functions
θ(k+) and θ(k′+) leave the term with b†b as only contribution.
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Taking only these contributions into account the operators O which appear in the equation
above can be evaluated as follows:

χ†αi
⊥φ+ φ†αi

⊥χ = φ†
[(~α⊥ · ~k′⊥

k′+
+

m

k′+
γ0
)
αi
⊥ + αi

⊥
(~α⊥ · ~k⊥

k+
+
m

k+
γ0
)]
φ .

Using

(
~A · ~α⊥

)
αx = Ax − iAyγ

0γ3γ5
(
~A · ~α⊥

)
αy = Ay + iAxγ

0γ3γ5

one finds

Ox = 1
(k′x
kx

+
kx

k+

)
+ γx

( m
k′+

− m

k+

)
+ iγ0γ3γ5

( ky

k+
− k′y

k′+

)
.

Similarly one has

Oy = 1
( k′y
k′+

+
ky

k+

)
+ γy

( m
k′+

− m

k+

)
+ iγ0γ3γ5

( k′x
k′+

− kx

k+

)
.

Then using

( ~A⊥ · ~α⊥)( ~B⊥ · ~α⊥) = (AxBx +AyBy) + (AxBy −AyBx)iγ0γ3γ5

( ~A⊥ · ~α⊥)γ0 = −A⊥ · γ⊥

(γ0 ~A⊥ · ~α⊥) = A⊥ · γ⊥

one finds

O− =
2

k+k′+

[
(m2 + k′xkx + k′yky) + i(k′xky − kxk′y)γ0γ3γ5 +m(kx − k′x)γx +m(ky − k′y)γy

]
.

Applying the algebraic relations given in eq. 3.22 one similarly finds

Ox
5 = γ5

(k′x
kx

+
kx

k+

)
+ γxγ5

( m
k+

+
m

k′+

)
+ iγ0γ3

( ky

k+
− k′y

k′+

)

Oy
5 = γ5

( k′y
k′+

+
ky

k+

)
+ γyγ5

( m
k+

+
m

k′+

)
+ iγ0γ3

( k′x
k′+

− kx

k+

)

O−5 =
2

k+k′+

[(
k′xkx + k′yky −m2

)
γ5 + i

(
k′xky − kxk′y

)
γ0γ3 +m

(
kx + k′x

)
γxγ5

+m
(
ky + k′y

)
γyγ5

]
.

As next step the matrix element 〈P̃ ′, λ′ | φc†
q (k̃′)φc

q(k̃) | P̃ , λ〉 has to be evaluated. For
the moment this discussion shall be restricted to the structure of creation and annihilation
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operators. Applying commutator relations iteratively one finds

∑

c

∑

µ,µ′

∑

j1,j2,j3

∑

i1,i2,i3

〈0 | bcj1
qj1

(p̃′j1 , λ
′
j1)b

cj2
qj2

(p̃′j2 , λ
′
j2)b

cj3
qj3

(p̃′j3 , λ
′
j3)

bc†q (k̃′, µ′)bcq(k̃, µ) b
ci1
†

qi1
(p̃i1 , λi1)b

ci2
†

qi2
(p̃i2 , λi2)b

ci3
†

qi3
(p̃i3 , λi3) | 0〉

=
∑

c

∑

µ,µ′

∑

j1,j2,j3

∑

i1,i2,i3

εi1,i2,i3εj1,j2,j3 〈p̃′j1 , λ
′
j1 , qj1 , cj1 | p̃i1 , λi1 , qi1 , ci1〉

· 〈p̃′j2 , λ
′
j2 , qj2 , cj2 | p̃i2 , λi2 , qi2 , ci2〉 · 〈p̃′j3 , λ

′
j3 , qj3 , cj3 | bc†q (k̃′, µ′)bcq(k̃, µ) | p̃i3 , λi3 , qi3 , ci3〉 .

When the color sum is performed including the wave functions only diagonal terms can survive
(ik = jk) since the three quark wave function is antisymmetric in color space while the operator∑

c b
c†bc is color neutral. In this case the operator structure above collapses towards

∑

µ′µ

3∑

i=1

[( 3∏

j=1,j 6=i

〈p̃′j, λ′j , qj | p̃j , λj , qj〉
)
〈p̃′i, λ′i, qi | k̃′, µ′, q〉〈k̃, µ, q | p̃i, λi, qi〉

]
.

Exploiting flavor symmetry for the quarks, choosing the third quark as active quark and using
the one particle state normalization one arrives at

3
(
16π3

)2
k+k′+

∑

µ′µ

δ(2)(~p′3⊥ − ~k′⊥)δ(p′+3 − k′+)δq′3qδλ′
3µ′δ(2)(~p3⊥ − ~k⊥)δ(p+

3 − k+)δq3,qδλ3µ

·
[( 2∏

j=1

〈p̃′j, λ′j , qj | p̃j, λj , qj〉
)]

.

This derivation holds analogously with an arbitrary operator O sandwiched between bc†
q (k̃′, µ′)

and bcq(k̃, µ) as long as it is color blind. Using these simplifications one can evaluate the matrix

element 〈P̃ ′, λ′ | φ†q Oφq | P̃ , λ〉 further:

〈P̃ ′, λ′ | b†q(k̃′, µ′)O bq(k̃, µ) | P̃ , λ〉 = 3k+k′+p+
1 p

+
2

∑

µ′µ

∑

λ′
1,λ′

2,λ′
3

∑

λ1,λ2,λ3

∑

q′1,q′2,q′3

∑

q1,q2,q3

( 3∏

i=1

∫
dx′i√
x′i
d2~p′i⊥

)
δ(1 −

∑

j

xj)δ
(2)(~P ′⊥ −

∑

j

p′j⊥)

( 3∏

i=1

∫
dxi√
xi
d2~pi⊥

)
δ(1 −

∑

j

xj)δ
(2)(~P⊥ −

∑

j

pj⊥)
)

δq′3qδq3qδλ′
3µ′δλ3µδ(p

′+
3 − k′+)δ(2)(~p′3⊥ − ~k′⊥)

δ(p+
3 − k+)δ(2)(p3⊥ − k⊥)δ(p′+1 − p+

1 )δ(2)(~p′1⊥ − ~p1⊥)

δ(p′+2 − p+
2 )δ(2)(~p′2⊥ − ~p2⊥)ψλ′?

q (p̃′1, p̃
′
2, p̃
′
3, λ
′
1, λ
′
2, λ
′
3, q
′
1, q
′
2, q
′
3)

Oψλ
q (p̃1, p̃2, p̃3, λ1, λ2, λ3, q1, q2, q3)
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= 3
∑

µ′µ

∑

λ1λ2

∑

q1q2

( 3∏

i=1

∫
dxid

2~pi⊥
)√

x̃′x̃δ(1 − x1 − x2 − x̃)

δ(2)(~P⊥ − ~p1⊥ − ~p2⊥ − ~k⊥)δ(2)(~P ′⊥ − ~p1⊥ − ~p2⊥ − ~k′⊥)

δ(1 − x1 − x2 − x̃′)ψλ′?
q (p̃1, p̃2, k̃

′, λ1, λ2, µ
′, q1, q2, q)

Oψλ
q (p̃1, p̃2, k̃, λ1, λ2, µ, q1, q2, q) .

Finally the results so far can be summarized in order to obtain an expression for the transition
amplitude Gq,O

λ′λ :

Gq,O
λ′λ = 3

∑

µ′µ

∫
dk+d2~k⊥
8π3

√
2k+

∫
dk′+d2~k′⊥
8π3

√
2k′+

θ(k+)θ(k′+)δ(2xP̄+ − k+ − k′+)

· 〈P ′, λ′ | φq(−
z−

2
)Oφq(

z−

2
) | P, λ〉

=
6

(16π3)2P̄+

∑

µ′µ

∑

λ1λ2

∑

q1q2

∫
dk+d2~k⊥dk

′+d2~k′⊥dx1d
2~p1⊥dx2d

2~p2⊥θ(k
+)θ(k′+)

δ(2xP+ − k+ − k′+)δ(1 − x1 − x2 − x̃)δ(1 − x1 − x2 − x̃′)δ(2)(~P⊥ − ~p1⊥ − ~p2⊥ − ~k⊥)

δ(2)(~P ′⊥ − ~p1⊥ − ~p2⊥ − ~k′⊥)ψλ′?
q (p̃1, p̃2, k̃

′, λ1, λ2, µ
′, q1, q2, q)

Oψλ
q (p̃1, p̃2, k̃, λ1, λ2, µ, q1, q2, q)

=
3

(16π3)2

∑

µ′µ

∑

λ1λ2

∑

q1q2

( 2∏

i=1

∫
dxid

2~pi⊥
)
θ(1 − x1 − x2)

ψλ′?
q (x1, x2, 1 − x1 − x2, ~p1⊥, ~p2⊥, ~P

′
⊥ − ~p1⊥ − ~p2⊥, λ1, λ2, µ

′, q1, q2, q)

Oψλ
q (x1, x2, 1 − x1 − x2, ~p1⊥, ~p2⊥, ~P⊥ − ~p1⊥ − ~p2⊥, λ1, λ2, µ, q1, q2, q) .

The evaluation of the transition amplitudes is now nearly finished. We write the integral
appearing here in a more symmetric way by defining averaged quark momenta

p̄i⊥ =
1

2

(
~pi⊥ + ~p′i⊥

)

x̄i =
1

2

(
xi + x′i

)
.

The invariance of the LF wave function under LF boosts bears a simplification as the wave
function only depends on the inner coordinates yi, κ̃i⊥. For the struck quark they read

y′j =
p̄⊥j + 1

2∆+

P̄+ + 1
2∆+

=
x̄j − ξ

1 − ξ
~κ′⊥j = ~p⊥j +

1

2

1 − x̄j

1 − ξ
~∆⊥

yj =
p̄⊥j − 1

2∆+

P̄+ − 1
2∆+

=
x̄j + ξ

1 + ξ
~κ⊥j = ~p⊥j −

1

2

1 − x̄j

1 + ξ
~∆⊥ .

For the spectator quarks we have

y′i =
x̄i

1 − ξ
~κ′⊥i = ~p⊥i −

1

2

x̄i

1 − ξ
~∆⊥

yi =
x̄i

1 + ξ
~κ′⊥i = ~p⊥i +

1

2

x̄i

1 + ξ
~∆⊥ .
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Consequently we can rewrite the transition amplitudes as

Gq,O
λ′λ =

3√
1 − ξ2

∑

λiτi

∫
[dx̄][dp̄⊥]δ(x̄− x̄3)θ(x̄3)ψ

λ′?
q (~κ′i⊥, y

′
i, λi, τi)Oψ

λ
q (~κi⊥, yi, λi, τi) (3.27)

Here we have returned to the usual notation to denote the quark flavors by τi. It is important
to emphasize that these inner coordinates only appear in the wave function but not in the
kinematical factors obtained from the evaluation of the operators. The determination of the
latter factors will conclude this calculation.

Generally one can sandwich the operators O+, O+
5 , O

⊥, O⊥5 , O
−, O−5 between the projectors in

order to obtain the equivalent operators Õ so that

u†+Ou+ = u†Λ+OΛ+u = ūγ0Λ+OΛ+u =: ūÕu .

In doing so we obtain

O+ = 2 → Õ+ = γ0Λ
+2Λ+ = γ+

O+
5 = 2γ5 → Õ+

5 = γ0Λ
+2γ5Λ

+ = γ+γ5

Ox = 1
(p′x
px

+
px

p+

)
+ γx

( m
p′+

− m

p+

)
+ iγ0γ3γ5

( py

p+
− p′y

p′+

)

→Õx =
1

2

[(p′x
px

+
px

p+

)
γ+ +

(m
p+

− m

p′+

)
γxγ+ + i

( py

p+
− p′y

p′+

)
γ+γ5

]

Oy = 1
( p′y
p′+

+
py

p+

)
+ γy

( m
p′+

− m

p+

)
+ iγ0γ3γ5

( p′x
p′+

− px

p+

)

→Õy =
1

2

[( p′y
p′+

+
py

p+

)
γ+ +

(m
p+

− m

p′+

)
γyγ+ + i

( p′x
p′+

− px

p+

)
γ+γ5

]
.

Applying the algebraic relations given in eq. 3.22 one can evaluate

Ox
5 = γ5

(p′x
px

+
px

p+

)
+ γxγ5

(m
p+

+
m

p′+

)
+ iγ0γ3

( py

p+
− p′y

p′+

)

→Õx
5 =

1

2

[( p′x
p′+

+
px

p+

)
γ+γ5 +

( m
p′+

+
m

p+

)
γxγ5γ

+ + i
( py

p+
− p′y

p′+

)
γ+

]

Oy
5 = γ5

( p′y
p′+

+
py

p+

)
+ γyγ5

(m
p+

+
m

p′+

)
+ iγ0γ3

( p′x
p′+

− px

p+

)

→Õy
5 =

1

2

[( p′y
p′+

+
py

p+

)
γ+γ5 +

(m
p+

+
m

p′+

)
γyγ5γ

+ + i
( p′x
p′+

− px

p+

)
γ+

]
.

Next one finds

O− =
2

p+p′+

[
(m2 + p′xpx + p′ypy) + i(p′xpy − pxp′y)γ0γ3γ5 +m(px − p′x)γx +m(py − p′y)γy

]
.
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Using

γ0Λ+Λ+ =
1

2
γ+

γ0Λ+γ0γ3γ5Λ
+ =

1

2
γ+γ0γ3γ5 =

1

2
(γ3γ5 + γ0γ5) =

1

2
γ+γ5

γ0Λ+γ⊥Λ+ =
1

2
γ+γ⊥ = −1

2
γ⊥γ+ .

we conclude

Õ− =
1

p+p′+

[(
m2 + p′xpx + p′ypy

)
γ+ + i

(
p′xpy − pxp′y

)
γ+γ5 +m

(
p′x − px

)
γxγ+

+m
(
p′y − py

)
γyγ+

]
.

Applying eq. 3.22 provides

O−5 =
2

p+p′+

[(
p′xpx + p′ypy −m2

)
γ5 + i

(
p′xpy − pxp′y

)
γ0γ3 +m

(
px + p′x

)
γxγ5

+m
(
py + p′y

)
γyγ5

]

→ Õ−5 =
1

p+p′+

[(
p′xpx + p′ypy −m2

)
γ+γ5 + i

(
p′xpy − pxp′y

)
γ+

+m
(
p′x + px

)
γxγ5γ

+ +m
(
p′y + py

)
γyγ5γ

+

]
.

For the sake of comparison with the results from the earlier ad hoc calculation one has to
translate the operators Õ into the language of pauli matrices. In order to do so one can use
table 3.15 and add

O γxγ+ γyγ+ γxγ5γ
+ γyγ5γ

+

O↑,↑ 0 0 0 0

O↓,↑ −1 −i 1 i

O↑,↓ 1 −i 1 −i
O↓,↓ 0 0 0 0

.

With these tables at hand one can express the currents in term of pauli matrices. One finds
back the results from the heuristic derivation which were given in eq. 3.16. Additionally
however we have obtained the correct factors for the integrand and reference system to which
the kinematic variables refer.

Having all pieces together we can perform the calculation for the transition amplitudes. The
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transition amplitudes related to the form factors (F q,O
λ′λ ) simply bears an additional integration

over x̄. For the spin flavor wave function we have to combine the formulae given in eqs. 3.1,
3.2 and 3.3. The expressions for the different operators are given in eq. 3.16. Actually we
rather calculate the transition amplitudes G̃q,O

λ′λ which we define as

G̃q,O+

λ′λ =Gq,O+

λ′λ

G̃q,O⊥

λ′λ =2P̄+Gq,O⊥

λ′λ

G̃q,O−

λ′λ =(2P̄+)2Gq,O−

λ′λ .

P̄+ is no intrinsic scale in the model calculation therefore we absorb it in the definition of
the transition amplitudes. In the next chapter it will become clear that redefinition is not
problematic. The expressions from the operators have to be combined with the results from
the Melosh rotation as given in eqs. 3.18, 3.19, 3.20 and 3.21 where now the denominators of
eq. 3.17 have to be taken into account as well. Then we can evaluate eq. 3.27 numerically.
We have written a C++ program to perform this calculation which uses the Monte Carlo
algorithm VEGAS [75] to perform the 5 dimensional (GPDs) or 6 dimensional (form factors)
integral numerically.

3.4 Covariance breaking effects and applicability of LF quark
models

A hamiltonian description of quantum mechanics, like we apply it in a LF description is not
manifestly covariant. Covariance is achieved by summing up the contributions from all pos-
sible Fock state transitions. Thus an expression like in eq. 3.26 satisfies covariance as long as
all Fock states are taken into account.

In order to calculate observables within our LF quark model we identify the quark model
wave function with the leading Fock space light front wave function. This is a questionable
assumption in itself. Usually the quarks which are described in a quark model are thought
of as dressed quarks, i.e. their interaction mimics the gluon dynamics which would describe
hadronic processes in a field theory. If we want to maintain a partonic interpretation in which
the model quarks are identified with the quarks that appear in a field theory we have to
conclude that the kinematical regime which can be successfully described by the model is
restricted to the valence quark domain, i.e

|x |� 0 . (3.28)

For small values of x the results can hardly be expected to describe the physics correctly.

The next consequence of our model calculation follows from the truncation of the Fock space
to three quark states only. An immediate consequence is the impulse approximation. Many
body interactions among the quarks like those in fig. 3.7 are not treated in the restricted Fock
space.

Hence from our introductory remark it is immediately obvious that the impulse approximation
violates relativistic covariance. Not only does the truncation of the Fock space lead to the
impulse approximation, it also neglects the contributions of fig. 3.8.
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Figure 3.7: Many body contributions which are not included due to the restricted Fock
space of our model. The vertex corrections (lower panels) could in principle be included.

Since the Fock state composition of a hadron changes if one applies a dynamical Lorentz
transformation to the system it is clear that this neglect also triggers covariance breaking
effects.

These covariance breaking becomes manifest in the following observations:

• The sum rules
∫
dxGOµ

λ′λ(x, ξ, t) = FOµ

λ′λ(t) are not satisfied for ξ 6= 0. This can be
explained from the fact that a change in the skewedness variable ξ can be understood
as a boost of the reference system. Then if covariance is not satisfied the results for
different values of ξ can differ. Qualitatively one can state that the model calculation
can only be trusted for small values of ξ since the larger the skewedness variable becomes
the more important the neglected off diagonal Fock transition elements become. In the
limit ξ = 0 (Drell-Yan frame) off diagonal Fock transitions cannot occur.

• Consistency relations among the transition amplitudes like the angular condition in the
case of the N → ∆ transition are not satisfied. As we will show in the next chapter
these consistency relations can be derived assuming relativistic covariance alone. Since
the latter is violated it is clear that the consistency relations do not hold.
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Figure 3.8: These graphs imply a Fock state transition qqqq̄q → qqq (left)
or qqq → qqqq̄q (right) and are therefore not included in our model calculation.

• Gauge invariance is broken. This becomes particularly obvious in the case of the N → ∆
transition where due to the kinematics (∆− 6= 0 for ξ = 0) a non trivial gauge condition
can be given which connects F+

λ′λ and F x
λ′λ.

For form factors it has been tried to fix the breaking of covariance by introducing many body
currents [76]. While this ad hoc correction is successful for the description of form factors a
similar description for GPDs is at least questionable as it is not in the spirit of a partonic
picture on which the description to obtain the DVCS transition amplitudes relies.

Another consequence of the Fock space truncation is that the kinematical regime which can
be accessed by a model calculation is restricted to

|x |≥ ξ . (3.29)

since in this (DGLAP) region only diagonal Fock state transitions can contribute.

Next we would like to turn our attention to the severe consequences which the truncated
Fock space has for the bad LF transition amplitudes G⊥λ′λ and G−λ′λ. They suffer exceed-
ingly from the restriction of the Fock space. This can be understood from the expressions
for the one body currents in terms of LF components (eq. 3.23). If we express the bad LF
component χ in terms of the good LF component (eq. 3.24) it is clear that the omission of
gluon contributions affects the results for the transition amplitudes differently. The effects
are strongest for G−λ′λ while for the good transition amplitude G+

λ′λ no direct consequence
from this term follows. A possible way to overcome this kind of covariance breaking effects
would be to include many body current contributions and to introduce an effective potential
in the equation of motion which relates the good and bad LF components and thus to mimic
the gluon contribution. However we think that this ansatz is incompatible with the partonic
picture of the overlap representation. The philosophy which we prefer is to realize covariance
using the spurious covariants formalism (see chapter 5) and maybe to extend the model to-
wards higher Fock states as it was done in [35].

Finally we address the question how severe the covariance breaking effects are. In the kine-
matical domain in which the valence quark picture is a reasonable assumption (eqs. 3.28 and
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3.29) we would expect a typical quark model uncertainty, i.e. 30% accuracy for the ampli-
tude relations (involving only good bf LF component transition amplitudes). The severity of
this model error depends on the interplay of these transition amplitudes with respect to the
extraction of the GPDs and form factors. This will be discussed in the next chapter. For the
sum rule predictions we expect small deviations in the order of ξ. For the bad LF component
transition amplitudes we expect a significant inconsistency.



Chapter 4

Transition amplitudes

4.1 Introduction

In this thesis we want to obtain GPDs from a quark model calculation. As we have seen in the
last chapter however the objects which we obtain from the model are transition amplitudes
between different initial and final hadron states. Therefore we need to establish a connection
between these amplitudes and the GPDs.

This is done by evaluating the representation which parameterizes the transition amplitude
directly in terms of hadronic degrees of freedom, e.g.

G
+ (N→N)
V, λ′λ =

1

2P̄+
ū(P ′, λ′)

[
γ+H(x, ξ, t) +

iσ+ν∆ν

2MN
E(x, ξ, t)

]
u(P, λ) . (4.1)

By evaluating the r.h.s. of eq. 4.1 for different helicities of in- and outgoing hadron in
a given reference frame we obtain an expression for the transition amplitudes in terms of
GPDs. The inversion of such relations provides the desired result, GPDs expressed in terms
of transition amplitudes. The number of independent transition amplitudes should equal the
number of GPDs. Therefore the question of counting the independent transition amplitudes
arises immediately. For the example of the N → N transition in eq. 4.1 we find 2 (twist 2)
GPDs while we can write down 4 amplitudes for vectorial and axial N → N transitions each:
G+
↑↑, G

+
↓↓, G

+
↓↑ and G+

↑↓. These amplitudes are connected via parity which leads to the trivial
relations

G+
V, ↑↑ =

(
G+

V, ↓↓

)?
G+

V, ↑↓ = −
(
G+

V, ↓↑

)?

G+
A, ↑↑ = −

(
G+

A, ↓↓

)?
G+

A, ↑↓ =
(
G+

A, ↓↑

)?
.

Reduction of the number of independent amplitudes is not always as simple as in the example
above. In this chapter we will provide a general way to derive non trivial amplitude relations,
like e.g. the angular condition for the N → ∆ transition.

When we compare the calculation of GPDs and form factors we can remark many simi-
larities. Just as GPDs are obtained from transition amplitudes, form factors are obtained

67
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from similar transition amplitudes. We can stress this analogy by introducing the notation

F µ
λ′λ(t) =

∫ 1

−1
dx

1√
1 − ξ2

Gµ
λ′λ(x, ξ, t) . (4.2)

Moreover since the same covariants turn up in the parametrization of the transition amplitudes
Fλ′λ(t) as in the parametrization of the transition amplitudes Gλ′λ(x, ξ, t), e.g.

F
µ (N→N)
V, λ′λ =

1

2
√
P ′+P+

ū(P ′, λ′)
[
γµF1(t) +

iσµν∆ν

2MN
F2(t)

]
u(P, λ)

it is clear where sum rules like

F1(t) =

∫ 1

−1
dxH(x, ξ, t)

arise from. For this reason we will refer to eq. 4.2 as generic sum rule. In the following we will
drop the indices q, V/A and (N → N) or (N → ∆) whenever the context ensures unambiguity.

At this point we want to emphasize differences between form factors and GPDs which lead
to important consequences: GPDs of a given twist are defined through the parametrization
of transition amplitudes Gµ

λ′λ with a given Lorentz index. For example twist 2 GPDs are
connected to the G+

λ′λ only. On the other hand form factors contain contributions of different
twists. They can be obtained from any (linearly independent) combination of transition am-
plitudes F µ

λ′λ. In the framework of a LF model calculation it is common to derive form factors
from the amplitudes F+

λ′λ only1 but in principle any combination of independent amplitudes
F µ

λ′λ has to lead to the same results.

This difference between form factors and GPDs has interesting consequences:

• For some processes more form factors than GPDs of a given twist exist. This leads to
non trivial sum rules which differ from the form
FF (t) =

∫
dxGPD(x, ξ, t)

• Relativistic covariance requires additional amplitude relations between the F µ
λ′λ with

different Lorentz indices

We would like to emphasize that such relations depend on the reference frame only. They are
entirely independent of the model which is being used as input for the transition amplitudes.

Amplitude relations between transition amplitudes Gµ
λ′λ with different Lorentz indices µ do

not exist2. Instead the amplitudes G⊥λ′λ are related to twist 3 GPDs and the amplitudes G−λ′λ
determine GPDs of twist 4 [77].

If one assumes however, that genuine higher twist effects are small enough compared to
leading twist contributions one can treat the leading twist GPDs H,E, H̃ and Ẽ like the

1For model calculations which suffer from consequences of approximations there exist strong arguments to
prefer these so called good light front components, i.e. “µ = +”.

2Relations between Gx and Gy which determine GPDs of the same twist are an exception.
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form factors in the sense that they can be extracted from any combination of independent
transition amplitudes Gµ

λ′λ. This way one obtains amplitude relations among transition am-
plitudes Gµ

λ′λ with different Lorentz indices µ which hold approximately3 for large values of
Q2. There are two reasons why we derive such relations. Firstly one obtains an estimate of
the size of higher twist contributions in the framework of the considered model calculation.
Secondly the reference to transition amplitudes with µ 6= + allows to extend the “spurious
covariants” formalism towards DVCS. The latter is a useful tool for overcoming bad effects
from covariance violating approximations in model calculations and will be introduced in the
next chapter.

4.2 Leading twist GPDs from good LF transition amplitudes

As easiest example let us calculate the expressions for the nucleon GPDs. These results can
already be found in [65, 72].

With our conventions for DVCS kinematics and spinor normalization (c.f. appendix) we
can evaluate eq. 4.1 in order to obtain

G
q, + (N→N)
V, ↑↑ =

1

2P̄+
ū(P ′, ↑)

[
γ+Hq(x, ξ, t) +

iσ+ν∆ν

2MN
Eq(x, ξ, t)

]
u(P, ↑)

=
√

1 − ξ2Hq(x, ξ, t) − ξ2√
1 − ξ2

Eq(x, ξ, t)

G
q, + (N→N)
V, ↓↑ =

1

2P̄+
ū(P ′, ↓)

[
γ+Hq(x, ξ, t) +

iσ+ν∆ν

2MN
Eq(x, ξ, t)

]
u(P, ↑)

=
∆x

2
√

(1 − ξ2)MN

Eq(x, ξ, t) .

These relations can easily be inverted and yield

Hq(x, ξ, t) =
1√

1 − ξ2
G

q, +(N→N)
V, ↑↑ +

2MN ξ
2

√
1 − ξ2∆x

G
q,+ (N→N)
V, ↓↑

Eq(x, ξ, t) =
2MN

√
1 − ξ2

∆x
G

q,+ (N→N)
V, ↓↑ . (4.3)

For the axial N → N transition one finds

G
q, + (N→N)
A, ↑↑ =

1

2P̄+
ū(P ′, ↑)

[
γ+γ5H̃

q(x, ξ, t) +
∆+γ5

2MN
Ẽq(x, ξ, t)

]
u(P, ↑)

=
√

1 − ξ2H̃q(x, ξ, t) − ξ2√
1 − ξ2

Ẽq(x, ξ, t)

G
q, + (N→N)
A, ↓↑ =

1

2P̄+
ū(P ′, ↓)

[
γ+γ5H̃

q(x, ξ, t) +
∆+γ5

2MN
Ẽq(x, ξ, t)

]
u(P, ↑)

=
ξ∆x

2
√

1 − ξ2MN

Ẽq(x, ξ, t) .

3Since contributions of twist d scale like Q−d.
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The inversion of these relations yields

H̃q(x, ξ, t) =
1√

1 − ξ2
G

q, + (N→N)
A, ↑↑ +

2ξMN√
1 − ξ2∆x

G
q, +(N→N)
A, ↓↑

Ẽq(x, ξ, t) =
2
√

1 − ξ2MN

ξ∆x
G

q, +(N→N)
A, ↓↑ . (4.4)

It is natural to use the same set of covariants as for elastic N → N scattering in order to pa-
rameterize the leading twist DVCS hadronic tensor. In doing so one establishes connections
between H(x, ξ, t) and F1(t), E(x, ξ, t) and F2(t) and between H̃(x, ξ, t) and GA(t), which
allow the development of physically intuitive pictures for these GPDs.

There is however a drawback of this choice of covariants which we do not find expressed
anywhere in the literature. Our criticism concerns the use of the covariant ∆µ

2MN
γ5, which

generates Ẽ(x, ξ, t). As it can be seen from eq. 4.4 Ẽ(x, ξ, t) is ill defined for ξ = 0. We
should remark at this point that

• this is no artefact of the choice of the reference frame

• this problem does not arise for the corresponding form factor GP (t) since the latter can
be obtained from another combination of F µ

A,λ′λ, while twist two GPDs are unambigu-
ously connected to the good LF components

If one would use the covariant iσµν

2MN
γ5 which is traditionally connected with the second class

axial tensor form factor GT (t) such a problem was avoided (at the expense of a less intuitive
meaning of the resulting GPD):

G
q, +(N→N)
A, λ′λ =

1

2P̄+
ū(P ′, λ′)

[
γ+γ5H̃

q(x, ξ, t) +
iσ+ν∆νγ5

2MN
X̃q(x, ξ, t)

]
u(P, λ)

−→

X̃q(x, ξ, t) =
2
√

1 − ξ2MN

∆x
G

q, +(N→N)
A, ↓↑ . (4.5)

Of course the problem with Ẽ(x, ξ, t) mentioned above can easily be circumvented by explain-
ing

Ẽq(x, 0, t) = lim
ξ→0

2
√

1 − ξ2MN

ξ∆x
G

q,+ (N→N)
A, ↓↑ , (4.6)

which is a well defined limit. The reason for our comment concerns the calculation of Ẽ(x, ξ, t)
in [72]. In a model calculation which applies the impulse approximation the error in the tran-
sition amplitudes due to breaking of Lorentz symmetry is of the order ξ. Therefore the
predictions which are obtained in [72] for H̃(x, ξ, t) suffer from a small error (proportional to
ξ) due to the use of the impulse approximation, which is tolerable as long as small values of
skewedness ξ are concerned. From relation eq. 4.4 however it is obvious that the results for
Ẽ obtained in this model calculation have less predictive power.

Next we turn to the N → ∆ transition. Using the parametrization for the p → ∆+ DVCS
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hadronic tensor in terms of nucleon and ∆ degrees of freedom the vectorial transition ampli-
tudes can be written

G
+ (p→∆+)
V, λ′λ =

1

2
√

6P̄+
ūν(P

′, λ′)
[
κ+ν

1 H1(x, ξ, t) + κ+ν
2 H2(x, ξ, t) + κ+ν

3 H3(x, ξ, t)
]
u(P, λ) .

with a convenient set of covariants

κµν
1 = (γµ∆ν − /∆gµν)γ5

κµν
2 = (P ′µ∆ν − (P ′ · ∆)gµν)γ5

κµν
3 = (∆µ∆ν − ∆2gµν)γ5 . (4.7)

At this point we should comment on the isospin convention. The GPDs are defined with a
different isospin factor compared to the form factors. The convention we introduce here refers
to the p → ∆+ transition. The other transitions can simply be related [46] to the above
transitions by:

G
+ (p→∆++)
V, λ′λ =

√
3

2
G

+ (p→∆+)
V, λ′λ

G
+ (p→∆0)
V, λ′λ =

√
1

2
G

+ (p→∆+)
V, λ′λ .

When we evaluate the vectorial N → ∆ transition amplitudes we have to recall that the kine-
matics for this transition differs from the kinematics for the N → N transition. Particularly
the variable ∆x bears the different meaning

∆x =

√
−(1 − ξ2)t− 2ξ

[
(1 + ξ)M 2

∆ − (1 − ξ)M 2
N

]

now. For kinematical details and the construction of the Rarita- Schwinger spinor uµ(P, λ)
which describes the Delta resonance we refer to the appendix. We find the following expres-
sions for the vectorial N → ∆ transition amplitudes:

G
+ (p→∆+)

V, 3
2
↑ =

√
1 + ξ∆x

2
√

3(1 − ξ)
H1(x, ξ, t) +

∆xA

4
√

3(1 − ξ2)
H2(x, ξ, t)

− ξ∆xA

2
√

3(1 − ξ2)(1 − ξ)
H3(x, ξ, t)

G
+ (p→∆+)

V, 1
2
↑ =

2ξM∆A− ∆2
x

6
√

1 − ξ2M∆

H1(x, ξ, t) +
4ξM∆A− ∆2

x

12
√

1 − ξ2
H2(x, ξ, t)

+

([
(1 + ξ)2M∆ − (1 − ξ)MN

]
∆2

x

6(1 − ξ2)
3
2M∆

+
ξ
[
(1 − 3ξ)(1 + ξ)M 2

∆ − (1 − ξ)2M2
N

]
A

6(1 − ξ2)
3
2M∆

)
H3(x, ξ, t)
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G
+ (p→∆+)

V, 1
2
↓ =

[
(1 − ξ)MN − 2ξM∆

]
∆x

6
√

1 − ξ2M∆

H1(x, ξ, t)

−

[
(1 + 5ξ)M∆ − (1 − ξ)MN

]
∆x

12
√

1 − ξ2
H2(x, ξ, t)

−

(
∆2

x − ξ
[
(1 − ξ)2M2

N − (1 − ξ2)MNM∆ + 4ξ(1 + ξ)M 2
∆

])
∆x

6(1 − ξ2)
3
2M∆

H3(x, ξ, t)

G
+ (p→∆+)

V, 3
2
↓ = − ∆2

x

4
√

3(1 − ξ2)
H2(x, ξ, t) +

ξ∆2
x

2
√

3(1 − ξ2)(1 − ξ)
H3(x, ξ, t) . (4.8)

Here we have introduced the shortcut notation

A =(1 + ξ)M∆ − (1 − ξ)MN . (4.9)

There are infinitely many possibilities to obtain the three GPDs H1(x, ξ, t), H2(x, ξ, t) and
H3(x, ξ, t) from these four transition amplitudes. Meaningful extractions avoid kinematical
singularities. In a fully covariant calculation of the transition amplitudes all prescriptions
have to lead to the same results for the GPDs. However we break relativistic covariance in
our model calculation. Therefore we require two different prescriptions in order to check the
consequences of these covariance breaking effects. Two different prescriptions which fulfill
this requirement are:

• Prescription I: Ignore G
+ (p→∆+)

V, 3
2
↓ and determine the three GPDs from the other three

transition amplitudes

• Prescription II: Same principle, this time ignoring G
+ (p→∆+)

V, 1
2
↓

The formulae resulting from these inversions are obtained using Mathematica and will not be
given explicitly here for lack of space. We only provide one example here:

H1(x, ξ, t) =
2
√

3(1 − ξ)√
1 + ξ∆x

(
G

+ (p→∆+)

V, 3
2
↑ +

(1 + ξ)M∆ − (1 − ξ)MN

∆x
G

+ (p→∆+)

V, 3
2
↓

)
. (4.10)

The linear dependence among the 4 transition amplitudes reveals a non trivial relation between
G+

3
2
↑, G

+
1
2
↑, G

+
1
2
↓ and G+

3
2
↓. This amplitude relation which stems from relativistic covariance is

known as the angular condition [78]. It will be discussed in a broader context in section 4.4.

The GPDs H1(x, ξ, t), H2(x, ξ, t) and H3(x, ξ, t) can be related to the physically more mean-
ingful GPDs H?

M(x, ξ, t), H?
E(x, ξ, t) and H?

C(x, ξ, t) by relating the two respective sets of
covariants:

(κ1, κ2, κ3) = M (κM , κE , κC) .

Consequently one finds


H?

M (x, ξ, t)
H?

E(x, ξ, t)
H?

C(x, ξ, t)


 = M



H1(x, ξ, t)
H2(x, ξ, t)
H3(x, ξ, t)


 . (4.11)
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The matrix M has firstly been given in [79] and for our slightly different choice of covariants
can be found in [80]. These relations between sets of covariants can be derived using the
Clifford algebra and the equations of motion for the nucleon and the ∆ resonance. This
construction will be performed in appendix C.

M =
MN

3(M∆ +MN )




σ+2q+

M∆
σ 2t

σ
M∆

σ 2t

4M∆ 4M2
∆ 2σ


 , (4.12)

where σ = M 2
∆ −M2

N + t and q+ = (M∆ +MN )2 − t.

Finally we explore the axial N → ∆ transition amplitudes. They can be parameterized
by

G
+ (p→∆+)
A,λ′λ =

1

4P̄+
ūν(P

′, λ′)
[
κ̃+ν

1 C1(x, ξ, t) + κ̃+ν
3 C3(x, ξ, t) + κ̃+ν

4 C4(x, ξ, t)
]
u(P, λ) (4.13)

with the covariants reading

κ̃µν
1 = gµν

κ̃µν
3 =

gµν /∆ − γµ∆ν

MN
.

κ̃µν
4 =

2
[
(P̄ · ∆)gµν − P̄ µ∆ν

]

M2
N

Since there exist 4 axial N → ∆ form factors, the so called Adler form factors [81] the reader
may wonder why the remaining covariant

κ̃µν
2 =

∆µ∆ν

M2
N

does not have to be considered as well. However at leading twist (i.e. the GPDs are determined
by the good LF components G+

λ′λ only) the fourth covariant is not independent:

κ̃+ν
2 =

∆+∆ν

M2
N

=ξ

(
2
[

M2
∆−M2

N

2 g+ν + ∆+

2ξ ∆ν
]
− (M2

∆ −M2
N )g+ν

M2
N

)

=ξ

(
2
[
(P̄ · ∆)g+ν − P̄+∆ν

]

M2
N

− (M2
∆ −M2

N )g+ν

M2
N

)

=ξ
[
κ̃+ν

4 − M2
∆ −M2

N

M2
N

κ̃+ν
1

]
(4.14)

The reason for preferring the covariant κ̃+ν
4 over κ̃+ν

2 is the singularity for ξ = 0 in the

GPD C2(x, ξ, t) if one chose C1, C2 and C3 to parameterize G
+ (p→∆+)
A,λ′λ . Unlike in the case of
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Ẽ(x, ξ, t) where the apparent singularity at ξ = 0 turned out to be a well defined limit (eq.
4.6) this is not true here. One finds

C2(x, ξ, t) = −2
√

2(1 − ξ2)(1 − ξ)M 2
N

ξ∆2
x

G
+ (p→∆+)

A, 3
2
↓

and at least in our model calculation we find a finite result for G
+ (p→∆+)

A, 3
2
↓ at ξ = 0. Another

reason why κ̃µν
2 is an inconvenient choice will be transparent in the following section: The

corresponding form factor C6(t) requires at least one bad transition amplitude to be evaluated.

By the way a similar argument applies for the use of a possible fourth vectorial N → ∆
GPD. Of course gauge invariance is no longer a constraint which could forbid a covariant like
gµνγ5. But again at leading twist it is not independent of the other three covariants:

g+νγ5 =

[
2ξ(P ′ · ∆) + (1 − ξ)t

]
g+νγ5

2ξ(P ′ · ∆) + (1 − ξ)t

= −
2ξ
[
P ′+∆ν − (P ′ · ∆)g+ν

]
γ5 + (1 − ξ)

[
∆+∆ν − tg+ν

]
γ5

2ξ(P ′ · ∆) + (1 − ξ)t

= −2ξκ+ν
2 + (1 − ξ)κ+ν

3

t+ ξ(M2
∆ −M2

N )
.

After these remarks we are ready to proceed and evaluate the axial transition amplitudes in
order to find

G
+ (p→∆+)

A, 3
2
↑ = −

√
1 + ξ∆x

2
√

2(1 − ξ)MN

C3(x, ξ, t) −
∆xB

2
√

2(1 − ξ2)(1 − ξ)M 2
N

C4(x, ξ, t)

G
+ (p→∆+)

A, 1
2
↑ =

√
1 − ξB

2
√

6(1 + ξ)M∆

C1(x, ξ, t) +
∆2

x − 2ξM∆B

2
√

6(1 − ξ2)
3
2M∆MN

C3(x, ξ, t)

+
∆2

x

[
2(1 + ξ)M∆ + (1 − ξ)

]
− ξ
[
(3 − ξ)(1 + ξ)M 2

∆ + (1 − ξ)2M2
NB
]

2
√

6(1 − ξ2)
3
2M∆M2

N

C4(x, ξ, t)

G
+ (p→∆+)

A, 1
2
↓ =

√
1 − ξ∆x

2
√

6(1 + ξ)M∆

C1(x, ξ, t) −

[
(1 − ξ)MN + 2ξM∆

]
∆x

2
√

6(1 − ξ2)MNM∆

C3(x, ξ, t)

+
∆x

[
∆2

x − ξ(1 − ξ)2M2
N − (ξ + 5ξ2 + 3ξ3 − ξ4)M2

∆ − (1 − ξ2)MNM∆

]

2
√

6(1 − ξ2)
3
2M∆M2

N

C4(x, ξ, t)

G
+ (p→∆+)

A, 3
2
↓ = − ∆2

x

2
√

2(1 − ξ2)(1 − ξ)M 2
N

C4(x, ξ, t) .

Here we have introduced the shortcut notation

B =(1 + ξ)M∆ + (1 − ξ)MN . (4.15)

In order to obtain the axial GPDs C1(x, ξ, t), C2(x, ξ, t) and C3(x, ξ, t) from the axial transition
amplitudes the same remark as for the vectorial GPDs holds. In fact the above mentioned
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prescriptions I and II both avoid kinematical singularities also for the axial transition. As
example we provide the expression for C4(x, ξ, t) resulting from prescription II:

C4(x, ξ, t) = −2
√

2(1 − ξ)(1 − ξ2)
3
2M2

N

∆2
x

G
+ (p→∆+)

A, 3
2
↓ .

4.3 Form factors and sum rules

As mentioned in the introduction the way how we obtain form factors from the transition
amplitudes F µ

λ′λ is identical to the way how we get GPDs from the respective transition am-
plitudes G+

λ′λ. We will give the relations here as well as the resulting sum rules.

For the vectorial N → N transition we have

F
q,+ (N→N)
V, ↑↑ =

1

2
√
P ′+P+

ū(P ′, ↑)
[
γ+F1(t) +

iσ+ν∆ν

2MN
F2(t)

]
u(P, ↑) = F1(t)

F
q,+ (N→N)
V, ↓↑ =

1

2
√
P ′+P+

ū(P ′, ↓)
[
γ+F1(t) +

iσ+ν∆ν

2MN
F2(t)

]
u(P, ↑) =

∆x

2MN
F2(t) . (4.16)

Since we have the same number of twist 2 GPDs and form factors for this transition the
generic sum rule (eq. 4.2) leads to

F1(t) =

∫ 1

−1
dxH(x, ξ, t)

F2(t) =

∫ 1

−1
dxE(x, ξ, t) .

The situation is different for the axial transition form factors. Here we can also include the
second class term iσµν

2MN
γ5. The latter changes its sign under charge conjugation and since the

SU(2) flavor symmetry is almost an exact symmetry the resulting axial tensor form factor
GT (t) is very small and can be neglected. For the moment we will discuss it however since it
provides a fresh perspective on sum rules for axial GPDs. We have

F
q, µ (N→N)
A, λ′λ =

1

2
√
P ′+P+

ū(P ′, λ′)
[
γµγ5GA(t) +

∆µγ5

2MN
GP (t) +

iσµν∆νγ5

2MN
GT (t)

]
u(P, λ)

leading to

GA(t) = F+
↑↑ (4.17)

GP (t) =
2MN

[
2MNF

+
↑↑ − F x

↓↑

]

∆2
x

GT (t) =
2MN

∆x
F+
↓↑ .

The generic sum rule (eq. 4.2) can now be evaluated for its plus components which correspond
to the twist 2 GPDs. Using the equation of motion and the Clifford algebra the covariants
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can now be reexpressed in terms of the convenient set of covariants γµγ5, ∆µγ5 and P̄ µγ5:

ū(P ′)
iσµν∆ν

2MN
γ5u(P ) = ū(P ′)

(
− P ′ν

4MN

[
γµ, γν

]
γ5 +

P ν

4MN

[
γµ, γν

]
γ5

)
u(P )

=
1

2MN
ū(P ′)

(
/P ′γµγ5 + γ5γ

µ /P − 2P̄ µγ5

)
u(P )

= −ū(P ′) P̄
µ

MN
γ5u(P ) .

At leading twist we can use ∆+ = −2ξP̄+ which then leads to

F+
λ′λ =

1

2
√
P ′+P+

ū(P ′, λ′)

(
γ+γ5GA(t) − P̄+

MN

[
GT (t) + ξGP (t)

]
γ5

)
u(P, λ)

and

G+
λ′λ =

1

2P̄+
u(P ′, λ′)

(
γ+γ5H̃(x, ξ, t) − 2ξP̄+

2MN
Ẽ(x, ξ, t)γ5

)
u(P, λ) .

With both F+
↑↑ and F+

↓↑ being non zero4 we evaluate eq. 4.2 for the flip and non flip transitions
and thus find

∫ 1

−1
dx Ẽ(x, ξ, t) = GP (t) +

1

ξ
GT (t) (4.18)

∫ 1

−1
dx H̃(x, ξ, t) = GA(t) .

The sum rule result certainly violates the polynomiality condition [26]. This is not problem-
atic, since this condition requires time reversal invariance, which is broken due to GT (t) 6= 0.

This result looks only slightly different from the sum rules for axial GPDs given by Ji in
[24]:

GP (t) =

∫ 1

−1
dx Ẽ(x, ξ, t) (4.19)

GA(t) =

∫ 1

−1
dx H̃(x, ξ, t) .

However we like to remark about the sum rule in eq. 4.18 that it provides an observable for
the second class form factor GT (t):

GT (t) = ξ

[(∫ 1

−1
dxẼ(x, ξ, t)

)
−GP (t)

]
,

which is an interesting result in itself.

4This is only true because we assume a non zero GT (t).
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The N → ∆ transition form factors can be treated along the same lines. The p → ∆+

transition amplitudes are parameterized via

F
+(p→∆+)
V,λ′λ =

1√
6P ′+P+

ūν(P ′, λ′)
[
κµν

1 G1(t) + κµν
2 G2(t) + κµν

3 G3(t)
]
u(P, λ) .

The covariants are the same as in eq. 4.7. We find

F
+ (p→∆+)

V, 3
2
↑ =

∆x√
3
G1(t) +

∆x(M∆ −MN )

2
√

3
G2(t)

F
+ (p→∆+)

V, 1
2
↑ = − ∆2

x

3M∆
G1(t) −

∆2
x

6
G2(t) +

(M∆ −MN )∆2
x

3M∆
G3(t)

F
+ (p→∆+)

V, 1
2
↓ =

MN∆x

3M∆
G1(t) −

(M∆ −MN )∆x

6
G2(t) −

∆3
x

3M∆
G3(t)

F
+ (p→∆+)

V, 3
2
↓ = − ∆2

x

2
√

3
G2(t) .

The formulae have the same structure as the expressions for the G+
λ′λ in eq. 4.8 with ξ = 0.

Therefore the form factors Gi(t) can be obtained (ambiguously) in the same manner as the
GPDs Hi(x, ξ, t). Again we use the following prescriptions:

• I: Using F+
3
2
↑, F

+
1
2
↑ and F+

1
2
↓ and inverting the relations above we find:

G1(t) =

√
3M∆

[
∆2

x + (M∆ −MN )2
]
F+

3
2
↑ + 3∆xM∆(M∆ −MN )F+

1
2
↑ + 3M∆(M∆ −MN )2F+

1
2
↓

∆x

[
∆2

xMN + (M∆ −MN )2(M∆ +MN )
]

G2(t) =
2
√

3
[
MN (M∆ −MN ) − ∆2

x

]
F+

3
2
↑ − 6∆xM∆F

+
1
2
↑ − 6M∆(M∆ −MN )F+

1
2
↓

∆x

[
∆2

xMN + (M∆ −MN )2(M∆ +MN )
]

G3(t) =

√
3∆xM

2
∆F

+
3
2
↑ + 3M∆(M2

∆ −M2
N )F+

1
2
↑ − 3∆xM∆MNF

+
1
2
↓

∆2
x

[
∆2

xMN + (M∆ −MN )2(M∆ +MN )
] . (4.20)

• II: Using F+
3
2
↑, F

+
1
2
↑ and F+

3
2
↓ we have:

G1(t) =

√
3

∆x
F+

3
2
↑ +

√
3(M∆ −MN )

∆2
x

F+
3
2
↓

G2(t) = −2
√

3

∆2
x

F+
3
2
↓

G3(t) =

√
3

∆x(M∆ −MN )
F+

3
2
↑ +

3M∆

∆2
x(M∆ −MN )

F+
1
2
↑ −

√
3MN

∆2
x(M∆ −MN )

F+
3
2
↓ . (4.21)
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The relations between the Gi(t) are the same5 as for the GPDs with ξ = 0. The physically
intuitive transition form factors G?

M (t), G?
E(t) and G?

C(t) are likewise obtained from the Gi(t)
along the lines of eq. 4.11 and eq. 4.12.

Since for the vectorial transition form factors we have the same covariants as for the respective
GPDs the evaluation of the generic sum rules reveals:

∫ 1

−1
dxH?

M (x, ξ, t) = 2G?
M (t)

∫ 1

−1
dxH?

E(x, ξ, t) = 2G?
E(t)

∫ 1

−1
dxH?

C(x, ξ, t) = 2G?
C(t) .

The factor 2 stems from the different definition of the transition amplitudes F
µ (p→∆+)
A, λ′λ and

G
µ (p→∆+)
A, λ′λ concerning isospin. For details c.f. chapter 2.

For the axial transition the situation is different again. The transition amplitudes are pa-
rameterized by

F
µ(p→∆+)
A,λ′λ =

1

2
√
P ′+P+

ūν(P
′, λ′)

[
κ̃µν

1 C5(t) + κ̃µν
2 C6(t) + κ̃µν

3 C3(t) + κ̃µν
4 C4(t)

]
u(P, λ) .

(4.22)
The form factors are named C5(t), C6(t), C3(t) and C4(t) for historical reasons. Here we have
four form factors in contrast to three leading twist GPDs. With only three independent good
LF transition amplitudes6 a bad transition amplitude is required additionally. We choose7

F̃
x (p→∆+)

A, 3
2
↑ . The evaluation of the transition amplitudes reveals

F
+ (p→∆+)

A, 3
2
↑ = − ∆x√

2MN
C3(t) −

∆x(M∆ +MN )√
2M2

N

C4(t)

F
+ (p→∆+)

A, 1
2
↑ =

M∆ +MN√
6M∆

C5(t) +
∆2

x√
6M∆MN

C3(t) +
(2M∆ +MN )∆2

x√
6M∆M2

N

C4(t)

F
+ (p→∆+)

A, 1
2
↓ =

∆x√
6M∆

C5(t) −
∆x√
6M∆

C3(t) +
∆x

[
∆2

x −M∆(M∆ +MN )
]

√
6M∆M2

N

C4(t)

F
+ (p→∆+)

A, 3
2
↓ = − ∆2

x√
2M2

N

C4(t)

F̃
x (p→∆+)

A, 3
2
↑ = − M∆ +MN√

2
C5(t) +

(M∆ +MN )∆2
x√

2M2
N

C6(t) −
M2

∆ −M2
N√

2MN

C3(t)

− (M∆ −MN )(M∆ +MN )2√
2M2

N

C4(t) .

5up to an overall factor 2.
6The resulting amplitude relation will be dealt with in the following section.
7We define F̃ x = 2P̄+F x in order to suppress kinematical factors of 2P̄+.
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Our aim concerning the application of the relations between form factors and amplitudes is
to evaluate the form factors in a quark model calculation. In order to get an estimate for
covariance breaking effects in this particular model calculation we need two distinct reason-
able prescriptions of how to get form factors from the transition amplitudes. we use the
prescriptions

• I: Using F+
3
2
↑, F

+
1
2
↑, F

+
1
2
↓ and F̃ x

3
2
↑ and inverting the relations above we find

C5(t) =

√
2∆x(∆

2
x −M2

∆ +M∆MN +M2
N )F+

3
2
↑ +

√
6M∆(∆2

x −M2
∆ +M2

N )F+
1
2
↑ −

√
6M2

∆∆xF
+
1
2
↓

∆2
xMN − (M∆ −MN )(M∆ +MN )2

C6(t) =

√
2M2

N

[
∆4

x − ∆2
xM

2
∆ +M4

∆ + 2(∆2
x −M2

∆)M2
N +M4

N

]

∆3
x

[
∆2

xMN − (M∆ −MN )(M∆ +MN )2
] F+

3
2
↑

+

√
6M∆M

2
N (∆2

x −M2
∆ +M2

N )

∆2
x

[
∆2

xMN − (M∆ −MN )(M∆ +MN )2
]F+

1
2
↑

−
√

6M2
∆M

2
N

∆x

[
∆2

xMN − (M∆ −MN )(M∆ +MN )2
]F+

1
2
↓ +

√
2M2

N

∆2
x(M∆ +MN )

F̃ x
3
2
↑

C3(t) =

√
2M∆MN

[
∆2

x + (M∆ +MN )2
]
F+

3
2
↑ +

√
6M∆MN (M∆ +MN )∆xF

+
1
2
↑

∆x

[
∆2

xMN − (M∆ −MN )(M∆ +MN )2
]

−

√
6M∆MN (M∆ +MN )2F+

1
2
↓

∆x

[
∆2

xMN − (M∆ −MN )(M∆ +MN )2
]

C4(t) = −

√
2M2

N

([
∆2

x +MN (M∆ +MN )
]
F+

3
2
↑ +

√
3M∆∆xF

+
1
2
↑ −

√
3M∆(M∆ +MN )F+

1
2
↓

)

∆x

[
∆2

xMN − (M∆ −MN )(M∆ +MN )2
] .

(4.23)

• II: Using F+
3
2
↑, F

+
1
2
↑, F

+
3
2
↓ and F x

3
2
↑ we have

C5(t) =

√
2∆xF

+
3
2
↑ +

√
6M∆F

+
1
2
↑ +

√
2M∆F

+
3
2
↓

M∆ +MN

C6(t) =

√
2M2

N

[
(∆2

x −M2
∆ +M2

N )F+
3
2
↑ +

√
3M∆∆xF

+
1
2
↑ +M∆∆xF

+
3
2
↓ + ∆xF̃

x
3
2
↑

]

∆3
x(M∆ +MN )

C3(t) =

√
2MN

[
−∆xF

+
3
2
↑ + (M∆ +MN )F+

3
2
↓

]

∆2
x

C4(t) = −
√

2M2
N

∆2
x

F+
3
2
↓ . (4.24)
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Now the sum rules for the axial GPDs also look different. We start from the generic sum rule
(eq. 4.2). As for the N → N transition the ξ dependence drops out in this equation due to
Lorentz covariance. Using the parameterizations 4.22 for F̃+

λ′λ and 4.13 for G̃+
λ′λ we obtain

1

4
√

1 − ξ2P̄+

∫ 1

−1
dx ūν(P ′, λ′)

(
C1(x, ξ, t)κ̃

+ν
1 + C3(x, ξ, t)κ̃

+ν
3 + C4(x, ξ, t)κ̃

+ν
4

)
u(P, λ)

=
1

2
√
P ′+P+

ūν(P
′, λ′)

(
C5(t)κ̃

+ν
1 + C6(t)κ̃

+ν
2 + C3(t)κ̃

+ν
3 + C4(t)κ̃

+ν
4

)
u(P, λ)

Using eq. 4.14 we can reexpress κ̃+ν
4 and find

1

2

∫ 1

−1
dx ūν(P ′, λ′)

([
C1(x, ξ, t) +

M2
∆ −M2

N

M2
N

C4(x, ξ, t)
]
κ̃+ν

1 +
1

ξ
C4(x, ξ, t)κ̃

+ν
2

+ C3(x, ξ, t)κ̃
+ν
3

)
u(P, λ)

= ūν(P
′, λ′)

([
C5(t) +

M2
∆ −M2

N

M2
N

C4(t)
]
κ̃+ν

1 +
[
C6(t) +

1

ξ
C4(t)

]
κ̃+ν

2 + C3(t)κ̃
+ν
3

)
u(P, λ)

Since the covariants κ̃+ν
1 , κ̃+ν

2 and κ̃+ν
3 are independent we can compare their contributions

separately. We read off from the above expression:

∫ 1

−1
dxC1(x, ξ, t) = 2C5(t) − 2ξ

M2
∆ −M2

N

M2
N

C6(t)

∫ 1

−1
dxC3(x, ξ, t) = 2C3(t)

∫ 1

−1
dxC4(x, ξ, t) = 2C4(t) + 2ξC6(t) . (4.25)

We like to comment the appearance on ξ on the r.h.s. of the sum rules in 4.25. The ξ
independence due to Lorentz covariance is generally valid for generic sum rules of the type
F µ

λ′λ(t) =
∫
dx 1

1−ξ2 G
µ
λ′λ(x, ξ, t). For H(x, ξ, t) and E(x, ξ, t) this property is inherited as

DVCS and elastic scattering transition amplitudes are parameterized by the same covariants.
The ξ dependence in 4.25 on the other hand roots in the different number of covariants which
parameterize F µ

λ′λ and G+
λ′λ.

Finally for the N → ∆ transition the moments of GPDs do not have to satisfy a polyno-
miality condition. The latter arises for the N → N transition by considering towers of higher
spin twist 2 local operators which allow for an ordering pattern leading to the polynomiality
condition. There exists no analog for the N → ∆ transition.

We remark a similarity to the axial N → N transition. It is possible to obtain GP (t) from
good LF DVCS transition amplitudes only.

GP (t) =

∫ 1

−1
dx Ẽ(x, ξ, t) =

2
√

1 − ξ2MN

ξ∆x

∫ 1

−1
dxG

+(N→N)
A, ↓↑
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The sum rules in eq. 4.25 likewise provide a possibility to extract all Adler form factors from
good LF N → ∆ DVCS transition amplitudes alone. We read off the expressions

C6(t) =

∫ 1
−1 dxC4(x, ξ, t) − C4(t)

ξ

C6(t) =
M2

N

ξ(M2
∆ −M2

N )

(∫ 1

−1
dxC1(x, ξ, t) − C5(t)

)
.

4.4 Amplitude relations

In the last two sections we have given the expressions for the good components of vectorial
and axial N → N and N → ∆ transition amplitudes. Even when we restricted ourselves to
these good components we could observe an ambiguity in case of the N → ∆ transition. This
indicates the existence of a constraint equation among these amplitudes. This holds true the
more as we allow for other transition amplitudes, i.e. F µ

λ′λ with µ ∈ {x, y,−}. The number of
independent amplitudes for a given transition can never exceed the number of physical GPDs
or form factors.

The formalism which we develop here holds for the transition amplitudes F µ
λ′λ as well as

for the DVCS transition amplitudes Gµ
λ′λ. However since DVCS transition amplitudes with

different Lorentz indices µ are parameterized by GPDs with different twists there exist maxi-
mally relations between the amplitudes with the same Lorentz index8 e.g. between the ampli-
tudes G+

λ′λ. In the following we will only speak about transition amplitudes and form factors
in order to be concise - obviously GPDs can be treated similarly in the above mentioned sense.

The resulting constraint equations can be understand as consistency relations which have
to hold if the amplitudes obey relativistic covariance9. In order to simplify the calculation of
these consistency relations we introduce a generalized notation:

Let T i with i ∈ I denote the form factors for a given transition. Further let Gj with j ∈ J
enumerate all possible amplitudes for this transition. The respective coefficients C ij which
relate these form factors shall be defined by

Gj =
∑

i∈I

CijT i

with the shortcut notation

G = CT · T .

As an example consider the elastic vectorial N → N transition. Here we have

T ={T i}i∈I={1,2} with T 1 = F1(t) and T 2 = F2(t)

G ={Gj}j∈J={1,...,8} with G1 = F
+(N→N)
V,↑↑ , G2 = F

+(N→N)
V,↑↓ , G3 = F

x(N→N)
V,↑↑

G4 =F
x(N→N)
V,↑↓ , G5 = F

y(N→N)
V,↑↑ , G6 = F

y(N→N)
V,↑↓ , G7 = F

−(N→N)
V,↑↑ , G8 = F

−(N→N)
V,↑↓ . (4.26)

8There exist relations between Gx
λ′λ and G

y

λ′λ
as well.

9In the physical world they do of course. In model calculations relativistic covariance may be violated
though.
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As an example for the coefficients we mention

C22 = − ∆x

2MN
.

Now for a subset K ⊆ J with #K = #I and

Det{(C ik)}i∈I,k∈K 6= 0

the form factors are expressed by

T i =
∑

k∈K

(C−1)ikGk ∀i ∈ I

Now for any l ∈ J with l /∈ K one obtains

Gl =
∑

i∈I

(Cil)TT i

=
∑

i∈I

∑

k∈K

(Cil)T (C−1)ikGk

≡
∑

k∈K

(C̃)lkGk (4.27)

which is the desired consistency relation between the amplitudes {Gk}k∈K and Gl.

Before applying this prescription to the various processes we like to remind the reader of
the parameterizations for the various transition amplitudes

F
µ (N→N)
V, λ′λ =

1

2
√
P ′+P+

ū(P ′, λ′)
[
γµF1(t) +

iσµν∆ν

2MN
F2(t)

]
u(P, λ)

F
µ (N→N)
A, λ′λ =

1

2
√
P ′+P+

ū(P ′, λ′)
[
γµγ5GA(t) +

∆µγ5

2MN
GP (t) +

iσµν∆ν

2MN
γ5GT (t)

]
u(P, λ)

F
µ (p→∆+)
V, λ′λ =

1√
6P ′+P+

ūν(P
′, λ′)

[
κµν

1 G1(t) + κµν
2 G2(t) + κµν

3 G3(t)
]
u(P, λ)

F
µ (p→∆+)
A, λ′λ =

1

2
√
P ′+P+

ūν(P
′, λ′)

[
κ̃µν

1 C5(t) + κ̃µν
2 C6(t) + κ̃µν

3 C3(t) + κ̃µν
4 C4(t)

]
u(P, λ) .

For convenience we introduce the notation F̃ µ for the transition amplitudes with

F̃+ = F+

F̃ x = 2P̄+F x

F̃ y = 2P̄+F y

F̃− = (2P̄+)2F− .

in order to suppress various factors 2P̄+ in the following relations. From now on we will apply
this convention for the DVCS amplitudes G̃µ as well. Finally we can apply eq. 4.27 in order
to gain amplitude relations.
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For the vectorial N → N transition we choose to express all other amplitudes in terms
of

F̃
q,+ (N→N)
V, ↑↑ and F̃

q, +(N→N)
V, ↓↑ .

The consistency relations then read

F̃ x
↓,↑ = 0

F̃ x
↑,↑ = 0

F̃ y
↓,↑ = 0

F̃ y
↑,↑ = i(2MN F̃

+
↓,↑ + ∆xF̃

+
↑,↑)

F̃−↓,↑ = (∆2
x − 4M2

N )F̃+
↓,↑ − 4MN∆xF̃

+
↑,↑

F̃−↑,↑ = −4MN∆xF̃
+
↓,↑ + (4M2

N − ∆2
x)F̃+
↑,↑ . (4.28)

The same can be done for the axial N → N transition. Here we choose to express the other
amplitudes in terms of

F̃
q, +(N→N)
V, ↑↑

F̃
q, +(N→N)
V, ↓↑

F̃
q, x (N→N)
V, ↓↑ .

Then the consistency relations read

F̃ x
↑↑ = 0

F̃ y
↑,↑ = i∆xF̃

+
↑,↑

F̃ y
↓,↑ = 2iMN F̃

+
↑,↑

F̃−↑,↑ = −(∆2
x + 4M2

N )F̃+
↑,↑

F̃−↓,↑ = (∆2
x + 4M2

N )F̃+
↓,↑ . (4.29)

Finally let us state that with the assumption of vanishing GT (Q2) one can obtain as additional
constraints

F̃+
↓,↑ = 0

F̃−↓,↑ = 0 .

This relation should be approximately fulfilled since as mentioned before GT (Q2) is a second
class form factor and hence suppressed.

In fact since quark masses for different flavors are assumed equal in quark models no quark
model calculation is sensitive to GT (Q2). Consequently we find numerically that F̃−↓,↑ vanishes.

As next process we consider the vectorial N → ∆ transition. Here we can express all other
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amplitudes in terms of F̃+
3
2
↑, F̃

+
1
2
↑ and F̃+

1
2
↓. We find

F̃+
3
2
,↓ =

∆x

[
[
∆2

x +MN (MN −M∆)
]
F̃+

3
2
,↑ +

√
3M∆

(
∆xF̃

+
1
2
,↑ + (M∆ −MN )F̃+

1
2
,↓
)]

∆2
xMN + (M∆ −MN )2(M∆ +MN )

F̃ x
3
2
,↑ =

M2
∆ −M2

N

∆x
F̃+

3
2
,↑

F̃ x
1
2
,↑ =

M2
∆ −M2

N

∆x
F̃+

1
2
,↑

F̃ x
1
2
,↓ =

M2
∆ −M2

N

∆x
F̃+

1
2
,↓

F̃ x
3
2
,↓ =

M2
∆ −M2

N

∆x
F̃+

3
2
,↓

=
(M2

∆ −M2
N )
[[

∆2
x +MN (MN −M∆)

]
F̃+

3
2
,↑ +

√
3M∆

(
∆xF̃

+
1
2
,↑ + (M∆ −MN )F̃+

1
2
,↓
)]

∆2
xMN + (M∆ −MN )2(M∆ +MN )

F̃ y
3
2
,↑ = −i

[
(M∆ −MN )3(M∆ +MN )2 − ∆4

xMN

]
F̃+

3
2
,↑

∆x

[
∆2

xMN + (M∆ −MN )2(M∆ +MN )
]

− i

[
∆2

x(M∆ −MN )(−2M2
∆ +M∆MN + 2M2

N )
]
F̃+

3
2
,↑

∆x

[
∆2

xMN + (M∆ −MN )2(M∆ +MN )
]

− i
−
[√

3M∆(M∆ −MN )2(M∆ +MN )
]
F̃+

1
2
,↑ +

[√
3∆xM∆MN (M∆ −MN )

]
F̃+

1
2
,↓

∆2
xMN + (M∆ −MN )2(M∆ +MN )

F̃ y
1
2
,↑ = i

[
√

3M∆F̃
+
3
2
,↑ + ∆xF̃

+
1
2
,↑ + (2M∆ −MN )F̃+

1
2
,↓

]

F̃ y
1
2
,↓ = i

[√
3∆xM∆

(
∆2

x +MN (MN −M∆)
)]
F̃+

3
2
,↑

∆2
xMN + (M∆ −MN )2(M∆ +MN )

− i

[
MN +M∆

(
2 − 3∆2

xM∆

∆2
xMN + (M∆ −MN )2(M∆ +MN )

)]
F̃+

1
2
,↑

− i

(M∆ −MN )

[
(M2

∆ −M2
N )2 + ∆2

x(M
2
N +M∆MN − 3M2

∆)

]

∆x

[
∆2

xMN + (M∆ −MN )2(M∆ +MN )
] F̃+

1
2
,↓

F̃ y
3
2
,↓ = i

[
(M∆ −MN )2(M∆ +MN )MN + ∆4

x − ∆2
x(2M

2
∆ +M∆MN − 2M2

N )
]
F̃+

3
2
,↑

∆2
xMN + (M∆ −MN )2(M∆ +MN )

+ i

√
3M∆

(
∆x(∆

2
x − 2M2

∆ + 2M2
N )F̃+

1
2
,↑ +

[
∆2

xM∆ − (M∆ −MN )2(M∆ +MN )
]
F̃+

1
2
,↓

)

∆2
xMN + (M∆ −MN )2(M∆ +MN )
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F̃−3
2
,↑ =

[
4M2

∆ − 2M2
N − ∆2

x

(
1 +

6M3
∆

∆2
xMN + (M∆ −MN )2(M∆ +MN )

)]
F̃+

3
2
,↑

+
2
√

3M∆

∆x

[
M2

∆ −M2
N +

3∆2
xM∆(M2

N −M2
∆)

∆2
xMN + (M∆ −MN )2(M∆ +MN )

]
F̃+

1
2
,↑

+ 2
√

3M∆

[
M∆

( 3∆2
xMN

∆2
xMN + (M∆ −MN )2(M∆ +MN )

− 2
)
−MN

]
F̃+

1
2
,↓

F̃−1
2
,↑ =

2
√

3M∆(M2
∆ −M2

N − ∆2
x)
[
∆2

x(MN − 2M∆) + (M∆ −MN )2(M∆ +MN )
]

∆x

[
∆2

xMN + (M∆ −MN )2(M∆ +MN )
] F̃+

3
2
,↑

+
[2(M2

∆ −M2
N )2

∆2
x

− ∆2
x − 12M2

∆ − 8M∆MN +
12∆2

xM
2
∆(M∆ +MN )

∆2
xMN + (M∆ −MN )2(M∆ +MN )

]
F̃+

1
2
,↑

+
[
2∆x(MN − 2M∆) − 2(M2

∆ −M2
N )(2M∆ +MN )

∆x

]
F̃+

1
2
,↓

+
12∆xM

2
∆(M2

∆ −M2
N )

∆2
xMN + (M∆ −MN )2(M∆ +MN )

F̃+
1
2
,↓

F̃−1
2
,↓ = −2

√
3M∆(∆2

x −M2
∆ +M2

N )(∆2
x − 2M2

∆ +M∆MN +M2
N )

∆2
xMN + (M∆ −MN )2(M∆ +MN )

F̃+
3
2
,↑

− 2(M∆ +MN )(∆2
x − 2M2

∆ +M∆MN +M2
N )

·
(
∆2

x(3M∆ −MN ) − (M∆ −MN )2(M∆ +MN )
)

∆x

[
∆2

xMN + (M∆ −MN )2(M∆ +MN )
] F̃+

1
2
,↑

+
[
∆2

x + 6M2
∆ + 8M∆MN − 6∆2

xM
2
∆(M∆ + 2MN )

∆2
xMN + (M∆ −MN )2(M∆ +MN )

]
F̃+

1
2
,↓

F̃−3
2
,↓ =

∆x

[
∆2

x(4M∆ − 3MN )(M∆ +MN ) − ∆4
x

]

∆2
xMN + (M∆ −MN )2(M∆ +MN )

F̃+
3
2
,↑

− 2∆x(M∆ −MN )
(
3M3

∆ + 2M2
∆MN −M3

N

)

∆2
xMN + (M∆ −MN )2(M∆ +MN )

F̃+
3
2
,↑

−
√

3M∆

[
∆4

x + 2(M2
∆ −M2

N )2 − 4∆2
x(M2

∆ +M∆MN −M2
N )
]

∆2
xMN + (M∆ −MN )2(M∆ +MN )

F̃+
1
2
,↑

−
√

3∆xM∆

[
∆2

x(M∆ +MN ) − 2M∆(M∆ −MN )(M∆ + 3MN )
]

∆2
xMN + (M∆ −MN )2(M∆ +MN )

F̃+
1
2
,↓ . (4.30)

Of course the relation for F̃+
3
2
,↓ is the angular condition. The relations for F̃ x

λ′,λ can be un-

derstood as gauge invariance conditions which are (unlike for the nucleon nucleon transition)
non trivial since ∆− 6= 0 for the N → ∆ transition.

For the axial N → ∆ transition we express all other amplitudes through F̃+
3
2
,↑, F̃

+
1
2
,↑,F̃

+
1
2
,↓
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and F̃ x
3
2
,↑. We find

F̃+
3
2
↓ =

∆x

[
∆2

x +MN (M∆ +MN )
]

∆2
xMN − (M∆ −MN )(M∆ +MN )2

F̃+
3
2
↑ +

√
3∆2

xM∆

∆2
xMN − (M∆ −MN )(M∆ +MN )2

F̃+
1
2
↑

−
√

3∆xM∆(M∆ +MN )

∆2
xMN − (M∆ −MN )(M∆ +MN )2

F̃+
1
2
↓

F̃ x
1
2
↑ =

(M∆ −MN )
[
(2M∆ +MN )∆2

x − (M∆ −MN )(M∆ +MN )2
]

√
3∆2

xM∆

F̃+
3
2
↑ +

M2
∆ −M2

N

∆x
F̃+

1
2
↑

−

[
(2M∆ +MN )∆2

x − (M∆ −MN )(M∆ +MN )2
]

√
3∆xM∆(M∆ +MN )

F̃ x
3
2
↑

F̃ x
1
2
↓ =

(M∆ −MN )
[
∆2

x − (M∆ +MN )(2M∆ −MN )
]

√
3∆xM∆

F̃+
3
2
↑ +

M2
∆ −M2

N

∆x
F̃+

1
2
↓

−

[
∆2

x − (M∆ +MN )(2M∆ −MN )
]

√
3M∆(M∆ +MN )

F̃ x
3
2
↑

F̃ x
3
2
↓ = −

(M∆ −MN )M∆

[
∆2

x + (M∆ +MN )2
]

(M∆ −MN )(M∆ +MN )2 − ∆2
xMN

F̃+
3
2
↑ +

√
3∆xM∆(M2

∆ −M2
N )

∆2
xMN − (M∆ −MN )(M∆ +MN )2

F̃+
1
2
↑

−
√

3M∆(M2
∆ −M2

N )(M∆ +MN )

∆2
xMN − (M∆ −MN )(M∆ +MN )2

F̃+
1
2
↓ +

∆x

M∆ +MN
F̃ x

3
2
↑

F̃ y
3
2
↑ =i

[
∆4

xMN + (M∆ −MN )2(M∆ +MN )3 − ∆2
x(M∆ +MN )(2M2

∆ +M∆MN − 2M2
N )
]

∆x

[
∆2

xMN − (M∆ −MN )(M∆ +MN )2
] F̃+

3
2
↑

+ i

√
3M∆(M∆ −MN )(M∆ +MN )2

(M∆ −MN )(M∆ +MN )2 − ∆2
xMN

F̃+
1
2
↑ − i

√
3M∆MN (M∆ +MN )

(M∆ −MN )(M∆ +MN )2 − ∆2
xMN

F̃+
1
2
↓

F̃ y
1
2
↑ =i

[√
3M∆F̃

+
3
2
↑ + ∆xF̃

+
1
2
↑ − (2M∆ +MN )F̃+

1
2
↓

]

F̃ y
1
2
↓ =

i

∆2
xMN − (M∆ −MN )(M∆ +MN )2

[(√
3∆xM∆

[
∆2

x +MN (M∆ +MN )
])
F̃+

3
2
↑

+

(
(2M∆ −MN )

[
∆2

xMN − (M∆ −MN )(M∆ +MN )2
]

+ 3∆2
xM∆

)
F̃+

1
2
↑

+ (M∆ +MN )
[
(M2

∆ −M2
N )2 − (3M2

∆ +M∆MN −M2
N )∆2

x

]
F̃+

1
2
↓

F̃ y
3
2
↓ =i

∆4
x − (2M2

∆ −M∆MN − 2M2
N )∆2

x − (M∆ −MN )(M∆ +MN )2MN

∆2
xMN − (M∆ −MN )(M∆ +MN )2

F̃+
3
2
↑

+ i

√
3∆xM∆(∆2

x − 2M2
∆ + 2M2

N )

∆2
xMN − (M∆ −MN )(M∆ +MN )2

F̃+
1
2
↑

+ i

√
3M∆

[
(M∆ −MN )(M∆ +MN )2 − ∆2

xM∆)
]

∆2
xMN − (M∆ −MN )(M∆ +MN )2

F̃+
1
2
↑
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F̃−3
2
↑ =

(
4M2

∆ − 2M2
N − ∆2

x − 2(M2
∆ −M2

N )2

∆2
x

+
6∆2

xM
3
∆

∆2
xMN − (M2

∆ −M2
N )(M∆ +MN )

)
F̃+

3
2
↑

+
2
√

3M∆

∆x

(
M2

∆ −M2
N +

3M∆(M2
∆ −M2

N )∆2
x

MN∆2
x − (M2

∆ −M2
N )(M∆ +MN )

)
F̃+

1
2
↑

+ 2
√

3M∆

(
(2M∆ −MN ) − 3MNM∆∆2

x

MN∆2
x − (M2

∆ −M2
N )(M∆ +MN )

)
F̃+

1
2
↓

+
2(M2

∆ −M2
N )

∆x
F̃ x

3
2
↑

F̃−1
2
↑ =

2
[
(2M∆ +MN )∆2

x − (M∆ −MN )(M∆ +MN )2
]

√
3∆3

xM∆

[
(M∆ −MN )(M∆ +MN )2 − ∆2

xMN

]
[
(M2

∆ −M2
N )3 + 3∆4

xM
2
∆

− (M2
∆ −M2

N )(3M2
∆ +M∆MN −M2

N )∆2
x

]
F̃+

3
2
↑ +

[
8M∆MN − 12M3

∆

MN
− ∆2

x

+
2(M2

∆ −M2
N )2

∆2
x

− 12M2
∆(M2

∆ −M2
N )2

MN

[
MN∆2

x − (M∆ −MN )(M∆ +MN )2
]
]
F̃+

1
2
↑ +

[
2(2M∆ +MN )∆x

+
2(M2

∆ −M2
N )(2M∆ −MN )

∆x
+

12M2
∆∆x(M

2
∆ −M2

N )

MN∆2
x − (M∆ −MN )(M∆ +MN )2

F̃+
1
2
↓

+
2
[
(M2

∆ −M2
N )2 − (2M2

∆ −M∆MN −M2
N )∆2

x

]

√
3∆2

xM∆

F̃ x
3
2
↑

F̃−1
2
↓ =

2
[
(M∆ +MN )(2M∆ −MN ) − ∆2

x

]

√
3∆2

xM∆

[
∆2

xMN − (M∆ −MN )(M∆ +MN )2
]

·
[
(M2

∆ −M2
N )3 − (M2

∆ −M2
N )(3M2

∆ +M∆MN −M2
N )∆2

x + 3M2
∆∆4

x

]
F̃+

3
2
↑

−
2(M∆ −MN )

[
∆2

x − (2M∆ −MN )(M∆ +MN )
]

∆x

[
∆2

xMN − (M∆ −MN )(M∆ +MN )2
]

·
[
(M∆ +MN )2(MN −M∆) + (3M∆ +MN )∆2

x

]
F̃+

1
2
↑

+
[
∆2

x + 6M2
∆ − 8M∆MN +

6M2
∆(M∆ − 2MN )∆2

x

∆2
xMN − (M∆ −MN )(M∆ +MN )2

]
F̃+

1
2
↓

)

−
2(M∆ −MN )

[
∆2

x − (2M∆ −MN )(M∆ +MN )
]

√
3∆xM∆

F̃ x
3
2
↑
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F̃−3
2
↓ =2(M∆ −MN )F̃ x

3
2
↑ +

1

∆x

[
∆2

xMN − (M∆ −MN )(M∆ +MN )2
]
([

2(M2
∆ −M2

N )3

−2(M∆ +MN )2(3M2
∆ − 4M∆MN + 2M2

N )∆2
x + (4M2

∆ −M∆MN − 3M2
N )∆4

x − ∆6
x

]
F̃+

3
2
↑

−
√

3∆xM∆

[
2(M2

∆ −M2
N )2 − 4(M2

∆ −M∆MN −M2
N )∆2

x + ∆4
x

]
F̃+

1
2
↑

+
√

3∆2
xM∆

[
2M∆(M∆ +MN )(3MN −M∆) + (M∆ −MN )∆2

x

]
F̃+

1
2
↓

)
. (4.31)

Again one might call the relation among the good LF component transition amplitudes an-
gular condition.

For the DVCS amplitudes we can also write down relations among the G+
λ′λ for the p→ ∆+

transition. For the vectorial transition we find

G+
3
2
↓ =

∆x

[(
∆2

x − (1 − ξ)MNA

)
G+

3
2
↑ +

√
3(1 + ξ)M∆∆xG

+
1
2
↑

]

MN (1 − ξ)
[
∆2

x +M2
N (1 − ξ)2

]
− (1 − ξ2)M∆MNB + (1 + ξ)3M3

∆

+

√
3(1 + ξ)M∆∆xAG

+
1
2
↓

MN (1 − ξ)
[
∆2

x +M2
N (1 − ξ)2

]
− (1 − ξ2)M∆MNB + (1 + ξ)3M3

∆

(4.32)

and for the axial transition we find

G+
3
2
↓ =

∆x

[(
∆2

x + (1 − ξ)MNB

)
G+

3
2
↑ +

√
3(1 + ξ)M∆∆xG

+
1
2
↑

]

(1 − ξ)MN

[
∆2

x + (1 − ξ)2M2
N

]
− (1 − ξ2)M∆MNA− (1 + ξ)3M3

∆

−

√
3(1 + ξ)M∆∆xBG

+
1
2
↓

(1 − ξ)MN

[
∆2

x + (1 − ξ)2M2
N

]
− (1 − ξ2)M∆MNA− (1 + ξ)3M3

∆

(4.33)

Again we have made use of the convenient shortcut notations in eqs. 4.9 and 4.15. Both
relations have the same structure for ξ = 0 as the angular conditions for the respective
amplitudes F+

λ′λ.

4.5 Higher Twist GPDs

Higher twists are related to bad LF transition amplitudes. Having much freedom for the choice
of covariant sets to parameterize these transition amplitudes we choose the covariants which
are known from the twist 2 parametrization. Additionally we allow for another covariant,
which is suppressed in leading twist due to either the analog to the gauge condition or the
suppression of second class terms. Of course we would have the freedom to choose them at
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leading twist as well but this is not favorable because of the relation to the form factors. So
when we parameterize e.g. the vectorial N → N transition amplitude we choose to do so by:

G⊥λ′λ =
1

2P̄+
ū(P ′, λ′)

[
γ⊥
(
H(x, ξ, t) +H(3)(x, ξ, t)

)
+
iσ⊥ν∆ν

2MN
E(x, ξ, t)

+
∆⊥

2MN
X(3)(x, ξ, t)

]
u(P, λ)

G−λ′λ =
1

2P̄+
ū(P ′, λ′)

[
γ−
(
H(x, ξ, t) +H(3)(x, ξ, t) +H(4)(x, ξ, t)

)

+
iσ−ν∆ν

2MN

(
E(x, ξ, t) +E(4)(x, ξ, t)

)
+

∆−

2MN
X(3)(x, ξ, t)

]
u(P, λ) .

Then we call H(3) and X(3) the genuine twist 3 GPDs and H(4) and E(4) the genuine twist 4

GPDs. There is no choice about whether the covariant ∆µ

2MN
contributes at twist 3 or at twist

4 level. The reason is that one can express κ⊥1 = κ⊥2 while κ⊥3 is independent.

For the sum rules we have
∫ 1

−1
dxH(x, ξ, t) = F1(t)

∫ 1

−1
dxE(x, ξ, t) = F2(t)

∫ 1

−1
dxH(3)(x, ξ, t) = 0

∫ 1

−1
dxX(3)(x, ξ, t) = 0

∫ 1

−1
dxH(4)(x, ξ, t) = 0

∫ 1

−1
dxE(4)(x, ξ, t) = 0 . (4.34)

We should mention that there exist only 2 twist 3 GPDs, although the number of correspond-
ing transition amplitudes might suggest 4 at first glance. The transition amplitudes Gx

λ′λ in a
given reference frame can be related to the Gy

λ′λ in another reference frame. Since the GPDs
by which the transition amplitudes are parameterized are frame independent they must be
the same objects. So the same twist 3 GPDs which parameterize Gx

λ′λ do the same job for the
Gy

λ′λ. And with the four vectors in the game one cannot build other independent covariants.

Of course this argument relies on the LF rotation Lf (ωz) being a kinematical Lorentz trans-
formation. This explains why the same argument cannot be used to relate e.g. G+

λ′λ and Gx
λ′λ.

With the same kinematics as in the previous section these amplitude relations read

Gy
↑↑ = i

∆x

ξ(∆2
x + 4M2

N )

(
2MNG

x
↓↑ + ∆xG

x
↑↑
)

Gy
↓↑ = i

2MN

∆2
x + 4M2

N

(
2MNG

x
↓↑ + ∆xG

x
↑↑
)

. (4.35)
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We like to remark that these relations are derived without assuming a certain number of twist
3 GPDs. Hence this example illustrates the argument above.

The behavior of these amplitude relations for small values of ξ is obviously in agreement
with the amplitude relations for the form factor related amplitudes. Finally let us provide the
expressions for the different twist GPDs in terms of transition amplitudes

H(x, ξ, t) =
1

1 − ξ2
G̃+
↑↑ +

2ξ2MN√
1 − ξ2∆x

G̃+
↓↑

E(x, ξ, t) =
2
√

1 − ξ2MN

∆x
G̃+
↓↑

X(3)(x, ξ, t) =
4
√

1 − ξ2M2
N G̃

x
↑↑ − 2

√
1 − ξ2MN∆xG̃

x
↓↑

∆x(4M
2
N + ∆2

x)

H(3)(x, ξ, t) = − 1√
1 − ξ2

G̃+
↑↑ −

2MN G̃
+
↓↑√

1 − ξ2∆x

+

√
1 − ξ2

ξ(4M2
N + ∆2

x)

(
2MN G̃

x
↓↑ + ∆xG̃

x
↑↑
)

H(4)(x, ξ, t) =
2
√

1 − ξ2MN

∆x
G̃+
↓↑ −

√
1 − ξ2

[
∆2

x + 4ξ2M2
N

]

ξ∆x(4M2
N + ∆2

x)
G̃x
↑↑ −

2
√

1 − ξ2MN

ξ(4M2
N + ∆2

x)
G̃x
↓↑

+
8(1 − ξ2)

3
2M2

N

(4M2
N + ∆2

x)2
G̃−↑↑ +

2(1 − ξ2)
3
2MN (4M2

N − ∆2
x)

∆x(4M2
N + ∆2

x)2
G̃−↓↑

E(4)(x, ξ, t) = − 2
√

1 − ξ2MN

∆x
G̃+
↓↑ +

4ξ
√

1 − ξ2M2
N

∆x(4M2
N + ∆2

x)
G̃x
↑↑ −

2ξ
√

1 − ξ2MN

4M2
N + ∆2

x

G̃x
↓↑

−
√

1 − ξ2
[
∆2

x + 4(3 − 2ξ2)M2
N

]

(4M2
N + ∆2

x)2
G̃−↑↑

− 2
√

1 − ξ2MN

[
4(2 − ξ2)M2

N + ξ2∆2
x

]

∆x(4M2
N + ∆2

x)2
G̃−↓↑. (4.36)

For the axial N → N transition we find

G⊥λ′λ =
1

2P̄+
ū(P ′, λ′)

[
γ⊥γ5

(
H̃(x, ξ, t) + H̃(3)(x, ξ, t)

)

+
∆⊥

2MN
γ5

(
Ẽ(x, ξ, t) + Ẽ(3)(x, ξ, t)

)]
u(P, λ)

G−λ′λ =
1

2P̄+
ū(P ′, λ′)

[
γ−γ5

(
H̃(x, ξ, t) + H̃(3)(x, ξ, t) + H̃(4)(x, ξ, t)

)

+
∆−

2MN
γ5

(
Ẽ(x, ξ, t) + Ẽ(3)(x, ξ, t)

)
+
iσ−ν∆ν

2MN
γ5

(
X̃(4)(x, ξ, t)

)]
u(P, λ) .

Again there is no choice whether κ̃µ
3 contributes at twist 3 or twist 4 level. Here one finds

κ̃⊥3 = 0 and hence it cannot contribute at twist 3 level. We have the sum rules

∫ 1

−1
dx H̃(x, ξ, t) = GA(t)

∫ 1

−1
dx Ẽ(x, ξ, t) = GP (t) +

1

ξ
GT (t)
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∫ 1

−1
dx H̃(3)(x, ξ, t) = 0

∫ 1

−1
dx Ẽ(3)(x, ξ, t) = −1

ξ
GT (t)

∫ 1

−1
dx H̃(4)(x, ξ, t) = 0

∫ 1

−1
dx X̃(4)(x, ξ, t) = GT (t) . (4.37)

The argument for only 2 independent GPDs at twist 3 is the same as for the vector transition.
In the given kinematics the respective amplitude relations read

Gy
A, ↑↑ = i

∆x

ξ(∆2
x + 4M2

N )

(
2ξMNG

x
A, ↓↑ + ∆xG

x
A, ↑↑

)

Gy
A, ↓↑ = i

2MN

ξ(∆2
x + 4M2

N )

(
2ξMNG

x
A, ↓↑ + ∆xG

x
A, ↑↑

)
. (4.38)

Again the behavior for small values of ξ agrees with the respective amplitude relations for
the form factor related amplitudes. Next let us provide the expressions for the different twist
GPDs in terms of transition amplitudes

H̃(x, ξ, t) =
1√

1 − ξ2
G̃+
↑↑ +

2ξMN√
1 − ξ2∆x

G̃+
↓↑

Ẽ(x, ξ, t) =
2
√

1 − ξ2MN

ξ∆x
G̃+
↓↑

H̃(3)(x, ξ, t) = − 1√
1 − ξ2

G̃+
↑↑ −

2ξMN√
1 − ξ2∆x

G̃+
↓↑ +

√
1 − ξ2∆x

ξ(4M2
N + ∆2

x)
G̃x
↑↑ +

2
√

1 − ξ2MN

4M2
N + ∆2

x

G̃x
↓↑

Ẽ(3)(x, ξ, t) = − 2
√

1 − ξ2MN

ξ∆x
G̃+
↓↑ +

4
√

1 − ξ2M2
N

ξ∆x(4M2
N + ∆2

x)
G̃x
↑↑ −

2
√

1 − ξ2MN

4M2
N + ∆2

x

G̃x
↓↑

H̃(4)(x, ξ, t) = −
√

1 − ξ2∆x

ξ(4M2
N + ∆2

x)
G̃x
↑↑ −

2
√

1 − ξ2MN

4M2
N + ∆2

x

G̃x
↓↑

−
√

1 − ξ2

4M2
N + ∆2

x

G̃−↑↑ −
2
√

1 − ξ2ξMN

∆x(4M2
N + ∆2

x)
G̃−↓↑

X̃(4)(x, ξ, t) =
4
√

1 − ξ2M2
N

∆x(4M2
N + ∆2

x)
G̃x
↑↑ −

2ξ
√

1 − ξ2MN

4M2
N + ∆2

x

G̃x
↓↑ +

2(1 − ξ2)
3
2MN

∆x(4M2
N + ∆2

x)
G̃−↓↑ . (4.39)

For the N → ∆ transition we can parameterize the bad amplitudes as follows:

G
+ (p→∆+)
V, λ′λ =

1

2
√

6P̄+
ūν(P

′, λ′)
[
κ+ν

1 H1(x, ξ, t) + κ+ν
2 H2(x, ξ, t) + κ+ν

3 H3(x, ξ, t)
]
u(P, λ)

G
⊥ (p→∆+)
V, λ′λ =

1

2
√

6P̄+
ūν(P

′, λ′)
[
κ⊥ν

1

(
H1(x, ξ, t) +H

(3)
1 (x, ξ, t)

)
+ κ⊥ν

2

(
H2(x, ξ, t)

+H
(3)
2 (x, ξ, t)

)
+ κ⊥ν

3

(
H3(x, ξ, t) +H

(2)
3 (x, ξ, t)

)]
u(P, λ)

G
− (p→∆+)
V, λ′λ =

1

2
√

6P̄+
ūν(P

′, λ′)
[
κ−ν

1

(
H1(x, ξ, t) +H

(3)
1 (x, ξ, t) +H

(4)
1 (x, ξ, t)

)
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+ κ−ν
2

(
H2(x, ξ, t) +H

(3)
2 (x, ξ, t) +H

(4)
2 (x, ξ, t)

)

+ κ−ν
3

(
H3(x, ξ, t) +H

(3)
3 (x, ξ, t) +H

(4)
3 (x, ξ, t)

)]
u(P, λ) .

One may wonder why we do not use the fourth independent covariant κµν
4 in order to pa-

rameterize at least a higher twist amplitude with. Actually this is just a matter of taste. Of
course one could choose to parameterize e.g.

G
⊥ (p→∆+)
V, λ′λ =

1

2
√

6P̄+
ūν(P

′, λ′)
[
κ⊥ν

1

(
H1(x, ξ, t) +H

(3)
1 (x, ξ, t)

)
+ κ⊥ν

2

(
H2(x, ξ, t)

+H
(3)
2 (x, ξ, t)

)
+ κ⊥ν

3 H3(x, ξ, t) + κ⊥ν
4 H

(4)
4 (x, ξ, t)

]
u(P, λ) .

But then there is nothing gained by doing so. The covariant κµν
4 bears no physical intuition.

There is no fourth form factor to which it could be related (due to current conservation).
Thus we choose not to use it. The arising sum rules for the genuine higher twist vectorial
N → ∆ GPDs are trivial:

∫ 1

−1
dxH1(x, ξ, t) = 2G1(t)

∫ 1

−1
dxH2(x, ξ, t) = 2G2(t)

∫ 1

−1
dxH3(x, ξ, t) = 2G3(t)

∫ 1

−1
dxH

(3)
1 (x, ξ, t) = 0

∫ 1

−1
dxH

(3)
2 (x, ξ, t) = 0

∫ 1

−1
dxH

(3)
3 (x, ξ, t) = 0

∫ 1

−1
dxH

(4)
1 (x, ξ, t) = 0

∫ 1

−1
dxH

(4)
2 (x, ξ, t) = 0

∫ 1

−1
dxH

(4)
3 (x, ξ, t) = 0 . (4.40)

From the perpendicular transition amplitudes we obtain expressions for the sum of twist 2
and twist 3 GPDs. Combining these results with the expressions for the twist 2 GPDs (eq.
4.10) we find the formulae for the genuine twist 3 GPDs in terms of transition amplitudes.
For example we find (using prescription II)

H
(3)
1 (x, ξ, t) =2

√
3(1 − ξ)

1 + ξ

(
− 1

∆x
G̃+

3
2
↑ −

(1 + ξ)M∆ − (1 − ξ)MN

∆2
x

G̃+
3
2
↓

+
1 − ξ2

(1 + ξ)2M2
∆ − (1 − ξ)2M2

N + ξ2∆2
x

[
G̃x

3
2
↑ +

(1 + ξ)M∆ − (1 − ξ)MN

∆x
G̃x

3
2
↓

])
.

(4.41)
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We will not provide the results for H
(3)
2 (x, ξ, t), H

(3)
3 (x, ξ, t), H

(4)
1 (x, ξ, t), H

(4)
2 (x, ξ, t) and

H
(4)
3 (x, ξ, t) here for lack of space10.

The angular conditions for the x and − component11 transition amplitudes read

G̃x
3
2
↓ =

∆x

(
∆2

xG̃
x
3
2
↑ +

√
3(1 + ξ)∆xM∆G̃

x
1
2
↑ +A

[√
3(1 + ξ)M∆G̃

x
1
2
↓ − (1 − ξ)MN G̃

x
3
2
↑
])

(1 − ξ)
[
(1 − ξ)2M2

N + ∆2
x

]
MN − (1 − ξ2)MNM∆B + (1 + ξ)3M3

∆

.

G̃−3
2
↓ =

∆x

(√
3
[
∆2

x − (1 − ξ)MNA
]
G̃−3

2
↑ + 3(1 + ξ)M∆

[
∆xG̃

−
1
2
↑ + ξAG̃−1

2
↓
])

(1 − ξ)
[
(1 − ξ)2M2

N + ∆2
x

]
MN − (1 − ξ2)MNM∆B + (1 + ξ)3M3

∆

. (4.42)

Once more we have used eqs. 4.9 and 4.15. Finally the kinematical Lorentz rotation Lf (ωz)
provides further amplitude relations of the type

G̃y
λ′λ = a G̃x

3
2
↑ + b G̃x

1
2
↑ + c G̃x

1
2
↓ .

As an example we mention

G̃y
1
2
↑ = i

∆x

(√
3(1 + ξ)M∆G̃

x
3
2
↑ + ∆xG̃

x
1
2
↑ +

[
2(1 + ξ)M∆ − (1 − ξ)MN

]
G̃x

1
2
↓

)

(1 + ξ)2M2
∆ + (1 − ξ)2M2

N + ξ∆2
x

. (4.43)

Again the situation changes when we consider the axial N → ∆ GPDs. Here exist four form
factors and we like to reflect this fact in the parametrization of the DVCS amplitudes. Here
they are:

G
+ (p→∆+)
A, λ′λ =

1

4P̄+
ūν(P ′, λ′)

[
κ̃+ν

1 C1(x, ξ, t) + κ̃+ν
3 C3(x, ξ, t) + κ̃+ν

4 C4(x, ξ, t)
]
u(P, λ)

G
⊥ (p→∆+)
A, λ′λ =

1

4P̄+
ūν(P ′, λ′)

[
κ̃⊥ν

1

(
C1(x, ξ, t) + C

(3)
1 (x, ξ, t)

)
+ κ̃⊥ν

2 C
(3)
2 (x, ξ, t)

+κ̃⊥ν
3

(
C3(x, ξ, t) + C

(3)
3 (x, ξ, t)

)
+ κ̃⊥ν

4 C4(x, ξ, t)
]
u(P, λ)

G
− (p→∆+)
A, λ′λ =

1

4P̄+
ūν(P ′, λ′)

[
κ̃−ν

1

(
C1(x, ξ, t) + C

(3)
1 (x, ξ, t) + C

(4)
1 (x, ξ, t)

)

+ κ̃−ν
2 C

(3)
2 (x, ξ, t) + κ̃−ν

3

(
C3(x, ξ, t) + C

(3)
3 (x, ξ, t) +C

(4)
3 (x, ξ, t)

)

+ κ̃−ν
4

(
C4(x, ξ, t) + C

(4)
4 (x, ξ, t)

)]
u(P, λ) .

Again we have no choice whether the covariant κµν
4 contributes at twist 3 or not. The argu-

ment is the same as for the vectorial N → ∆ transition.

10Actually we have chosen H
(3)
1 (x, ξ, t) given in prescription II as example since this result is comparatively

concise. Generally the expressions tend to be rather lengthy.
11The y component is too lengthy to be written down here.
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The sum rules for the axial higher twist GPDs read

∫ 1

−1
dxC1(x, ξ, t) = 2

(
C5(t) −

ξ(M2
∆ −M2

N )

M2
N

C6(t)
)

(4.44)

∫ 1

−1
dxC3(x, ξ, t) = 2C3(t) (4.45)

∫ 1

−1
dxC4(x, ξ, t) = 2

(
C4(t) + ξC6(t)

)
(4.46)

∫ 1

−1
dxC

(3)
1 (x, ξ, t) = 0

∫ 1

−1
dxC

(3)
2 (x, ξ, t) = 2C6(t) (4.47)

∫ 1

−1
dxC

(3)
3 (x, ξ, t) = 0

∫ 1

−1
dxC

(4)
1 (x, ξ, t) = 2

(ξ(M2
∆ −M2

N )

M2
N

C6(t)
)

∫ 1

−1
dxC

(4)
3 (x, ξ, t) = 0

∫ 1

−1
dxC

(4)
4 (x, ξ, t) = −2ξC6(t) .

One remark is in order here. The genuine higher twist GPD C
(3)
2 (x, ξ, t) can not be considered

negligible if C6(t) is finite.

The parametrization for the perpendicular transition amplitudes allows us to express the
genuine twist 3 GPDs in terms of good and perpendicular transition amplitudes just as in the
case of the vectorial N → ∆ transition. In order to access the axial genuine twist 4 GPDs
from +, x and - transition amplitudes we have to make additional use of the relation

κ̃−ν
4 =

M2
∆ −M2

N

M2
N

κ̃−ν
1 − 1

ξ
κ̃−ν

2 .

As an example we provide the result for C
(3)
2 (x, ξ, t):

C
(3)
2 (x, ξ, t) =

2
√

2(1 − ξ2)(1 − ξ)M 2
N

(
∆xG̃

x
3
2
↑ +

√
3(1 + ξ)M∆G̃

x
1
2
↑

)

∆x

[
(1 + ξ)M∆ + (1 − ξ)MN

][
(1 + ξ)2M2

∆ − (1 − ξ)2M2
N + ξ∆2

x

]

+
2
√

2(1 − ξ2)(1 − ξ)M 2
N

[
(1 + ξ)2M∆ + ξ(1 − ξ)MN

]
G̃x

3
2
↓

∆x

[
(1 + ξ)M∆ + (1 − ξ)MN

][
(1 + ξ)2M2

∆ − (1 − ξ)2M2
N + ξ∆2

x

] . (4.48)
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The angular conditions for the x and - component amplitudes read

G̃x
3
2
↓ =

∆x

(
∆2

xG̃
x
3
2
↑ +

√
3(1 + ξ)M∆∆xG̃

x
1
2
↑ +B

[
(1 − ξ)MN G̃

x
3
2
↑ −

√
3(1 + ξ)M∆G̃

x
1
2
↓
])

(1 − ξ)MN

[
(1 − ξ)2M2

N + ∆2
x

]
− (1 − ξ2)MNM∆A− (1 + ξ)3M3

∆

G̃−3
2
↓ =

∆x

([
∆2

x + (1 − ξ)MN

]
BG̃−3

2
↑ +

√
3(1 + ξ)M∆

[
∆xG̃

−
1
2
↑ −BG̃−1

2
↓
])

(1 − ξ)MN

[
(1 − ξ)2M2

N + ∆2
x

]
− (1 − ξ2)MNM∆A− (1 + ξ)3M3

∆

. (4.49)

Finally as an example for an amplitude relation of the type

G̃y
λ′λ = a G̃x

3
2
↑ + b G̃x

1
2
↑ + c G̃x

1
2
↓

we give

G̃y
1
2
↑ = i

∆x

(
∆xG̃

x
1
2
↑ +

√
3(1 + ξ)M∆G̃

x
3
2
↑ −

[
(1 − ξ)MN + 2(1 + ξ)M∆

]
G̃x

1
2
↓

(1 + ξ)2M2
∆ − (1 − ξ)2M2

N + ξ∆2
x

. (4.50)

4.6 “Mixed Twist GPDs”

In this section we try to establish a link between the treatment of form factors and GPDs
concerning non “+” transition amplitudes. This will turn out to be useful in order to apply the
spurious covariants formalism which will be explored for form factors in the following chapter.
Under mixed twists we understand an approximation in which we assume that some “mixed
twist GPDs” can be accessed from any set of DVCS transition amplitudes, independently
of the Lorentz component µ. This means we simply parameterize DVCS amplitudes by the
maximal set of independent covariants, i.e.

G
q, µ (N→N)
V, λ′λ =

1

2P̄+
ū(P ′, λ′)

[
γµHq

(∗)(x, ξ, t) +
iσµν∆ν

2MN
Eq

(∗)(x, ξ, t) +
∆µ

2MN
Xq

(∗)(x, ξ, t)
]
u(P, λ)

(4.51)

G
q, µ (N→N)
A, ↑↑ =

1

2P̄+
ū(P ′, λ′)

[
γµγ5H̃

q
(∗)(x, ξ, t) +

∆µγ5

2MN
Ẽq

(∗)(x, ξ, t) +
iσµν∆ν

2MN
X̃q

(∗)(x, ξ, t)
]
u(P, λ)

(4.52)

G
µ (p→∆+)
V, λ′λ =

1

2
√

6P̄+
ūν(P ′, λ′)

[
κµν

1 H1
(∗)(x, ξ, t) + κµν

2 H2
(∗)(x, ξ, t) + κµν

3 H3
(∗)(x, ξ, t)

+ κµν
4 H4

(∗)(x, ξ, t)
]
u(P, λ)

G
µ (p→∆+)
A, λ′λ =

1

4P̄+
ūν(P

′, λ′)
[
κ̃µν

1 C1
(∗)(x, ξ, t) + κ̃µν

2 C2
(∗)(x, ξ, t) + κ̃µν

3 C3
(∗)(x, ξ, t)

+ κ̃µν
4 C4

(∗)(x, ξ, t)
]
u(P, λ) .

We name these objects GPD(∗)(x, ξ, t) mixed twist GPDs since one needs at least one non
plus component transition amplitude in order to access them. (As for each process there is
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one GPD more than there are independent twist 2 GPDs).

Now we have to address the question what kind of approximation these objects imply, and
whether it is a reasonable approximation. This issue can be discussed by comparing the ex-
pressions above with the properly defined higher twist GPDs from the last section. Starting
with the vectorial N → N transition we firstly remark that the covariant κµ

1 can be expressed
by the others for a given µ. We find

κ+
1 = −1

ξ
κ+

3 + κ+
2

κ⊥1 = κ⊥2

κ−1 =
1

ξ
κ−3 + κ−2 .

This way we can compare the parameterizations of higher twist GPDs with those for mixed
twist GPDs for the transition amplitudes. We get

(
E(∗) +H(∗)

)
κ+

2 +
(
X(∗) −

1

ξ
H(∗)

)
κ+

3 =(E +H)κ+
2 − 1

ξ
Hκ+

3

(
E(∗) +H(∗)

)
κ⊥2 +X(∗)κ

⊥
3 =

(
H +H3 +E

)
κ⊥2 +X3κ

⊥
3

(
E(∗) +H(∗)

)
κ−2 +

(
X(∗) +

1

ξ
H(∗)

)
κ−3 =

(
H +H3 +H4 +E +E4

)
κ−2

+
(
X3 +

1

ξ
(H +H3 +H4)

)
κ−3 .

The implications of comparing all components µ are:

H(∗) = H + ξX3

E(∗) = E − ξX3

X(∗) = X3

H3 = 0

H4 = ξX3

E4 = −ξX3 .

In short, if all genuine higher twist GPDs are very small this approximation is quite ok. There
is no a priori reason why these higher twist GPDs should be small (they are kinematically
suppressed, but not necessarily small quantities in themselves). A little hope for the higher
twist GPDs being small comes from the sum rules (eq. 4.34) which guarantee at least that
their integral over x must vanish.

For the ”mixed” GPDs the sum rules again become very intuitive:
∫ 1

−1
dxH(∗)(x, ξ, t) = F1(t)

∫ 1

−1
dxE(∗)(x, ξ, t) = F2(t)

∫ 1

−1
dxX(∗)(x, ξ, t) = 0 .
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Finally we provide the formulae for the mixed GPDs in terms of the amplitudes G+
↑↑, G

+
↓↑ and

Gx
↑↑:

H(∗)(x, ξ, t) =
√

1 − ξ2G̃+
↑↑ +

ξ
√

1 − ξ2

∆x
G̃x
↑↑

E(∗)(x, ξ, t) =
ξ2√

1 − ξ2
G̃+
↑↑ +

2MN√
1 − ξ2∆x

G̃+
↓↑ −

ξ
√

1 − ξ2

∆x
G̃x
↑↑

X(∗)(x, ξ, t) = − ξ√
1 − ξ2

G̃+
↑↑ −

2ξMN√
1 − ξ2∆x

G̃+
↓↑ +

√
1 − ξ2

∆x
G̃x
↑↑ . (4.53)

For the axial N → N transition we can go through similar steps. We find

H̃(∗) = H̃

Ẽ(∗) = Ẽ + Ẽ3

X̃(∗) = −ξẼ3

H̃3 = 0

H̃4 = 0

X̃4 = −ξẼ3 .

Therefore we find again that the introduction of mixed twist GPDs is reasonable if one can
assume the genuine higher twist GPDs to be small. Likewise the sum rules again become very
intuitive:

∫ 1

−1
dx H̃(∗)(x, ξ, t) = GA(t)

∫ 1

−1
dx Ẽ(∗)(x, ξ, t) = GP (t)

∫ 1

−1
dx X̃(∗)(x, ξ, t) = GT .

Finally the mixed GPDs in terms of the amplitudes G+
↑↑, G

+
↓↑ and Gx

↓↑:

H̃(∗)(x, ξ, t) =
1√

1 − ξ2
G̃+
↑↑ +

2ξMN√
1 − ξ2∆x

G̃+
↓↑

Ẽ(∗)(x, ξ, t) =
4M2

N√
1 − ξ2∆2

x

G̃+
↑↑ +

8ξM3
N√

1 − ξ2∆3
x

G̃+
↓↑ −

2
√

1 − ξ2MN

∆2
x

G̃x
↓↑

X̃(∗)(x, ξ, t) = − 4ξM2
N√

1 − ξ2∆2
x

G̃+
↑↑ +

2MN

[
(1 − ξ2)∆2

x − 4ξ2M2
N

]
√

1 − ξ2∆3
x

G̃+
↓↑ +

2ξ
√

1 − ξ2MN

∆2
x

G̃x
↓↑ .

(4.54)

For the vectorial N → ∆ transition we have to express the covariant κµν
4 by the other three.

We find

κ+ν
4 = A+κ+ν

2 +B+κ+ν
3

κ⊥ν
4 = A⊥κ⊥ν

2 +B⊥κ⊥ν
3

κ−ν
4 = A−κ−ν

2 +B−κ−ν
3 .
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Here we have used the shortcut notations

A+ = − 2ξ

t+ ξ(M2
∆ −M2

N )

B+ = − 1 − ξ

t+ ξ(M2
∆ −M2

N )

A⊥ =
1

M2
∆ −M2

N

B⊥ = − 2

M2
∆ −M2

N

A− =
4(1 − ξ)M 2

N + 2ξt− 4(1 + ξ)M 2
∆

t2 − (2 − ξ)M 2
N t+ 2(1 − ξ)M 4

N + 2(1 + ξ)M 4
∆ −

[
4M2

N + (2 + ξ)t
]
M2

∆

B− =
(4 + 2ξ)M 2

∆ + 2ξM2
N − (1 + ξ)t

t2 − (2 − ξ)M 2
N t+ 2(1 − ξ)M 4

N + 2(1 + ξ)M 4
∆ −

[
4M2

N + (2 + ξ)t
]
M2

∆

.

Comparing the expressions for the amplitudes we find

H
(∗)
1 = H1

H
(∗)
2 = H2 −

A+

A⊥ −A+
H

(3)
2

H
(∗)
3 = H3 −

A+(B⊥ −B+)

A⊥ −A+
H

(3)
3

H
(∗)
4 =

H
(3)
2

A⊥ −A+

H
(3)
1 = 0

H
(4)
1 = 0 .

Again as long as H
(∗)
4 and thus all genuine higher twist GPDs are small this approximation

is ok and in this case the concept of mixed GPDs is sensible.

Finally we consider the axial N → ∆ transition. Here we can express the superfluous co-
variants in terms of others as following:

κ̃+ν
2 = ξ

(
κ̃+ν

4 − M2
∆ −M2

N

M2
N

κ̃+ν
1

)

κ̃⊥ν
4 =

M2
∆ −M2

N

M2
N

κ̃⊥ν
1

κ̃−ν
2 = ξ

(
M2

∆ −M2
N

M2
N

κ̃+ν
1 − κ̃+ν

4

)
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These expressions lead to

C
(∗)
1 = C1 +

ξ(M2
∆ −M2

N )

M2
N

C
(3)
2

C
(∗)
2 = C

(3)
2

C
(∗)
3 = C3

C
(∗)
4 = C4 − ξC

(3)
2

C
(3)
1 = C

(3)
3 = C

(4)
3 = 0

C
(4)
1 =

ξ(M2
∆ −M2

N )

M2
N

C
(3)
2

C
(4)
4 = −ξC(3)

2 .

And again this is a reasonable approximation as long as the genuine higher twist GPDs are
small. As mentioned in the last section however the existence of a finite C6(t) forbids the
genuine higher twist axial GPDs to vanish. Luckily the factors ξ in the above expressions
seem to save the merit of introducing mixed GPDs for the axial N → ∆ transition at least
for small values of ξ.

For all the mixed twist GPDs we can now give consistency relations which have to hold
if the approximations are reasonable. This works along the same lines as the derivation of
the consistency relations among the amplitudes which correspond to the form factors. This
means that we can apply 4.27 in order to gain amplitude relations.

For the vectorial N → N transition we choose to express all other amplitudes in terms
of

G̃
q, +(N→N)
V, ↑↑

G̃
q, +(N→N)
V, ↓↑

G̃
q, x (N→N)
V, ↑↑ .

Then the consistency relations read12

G̃x
↓,↑ =

ξ(4M2
N + ∆2

x)(2MN G̃
+
↓,↑ + ∆xG̃

+
↑,↑) − (1 − ξ2)∆2

xG̃
x
↑,↑

2(1 − ξ2)MN∆x

G̃y
↑,↑ =

i
[
2MN G̃

+
↓,↑ + ∆xG̃

+
↑,↑

]

1 − ξ2

G̃y
↓,↑ =

2iξMN (2MN G̃
+
↓,↑ + ∆xG̃

+
↑↑)

(1 − ξ2)∆x

12Whenever the meaning is clear from the context we will drop the indices q,A or V and N → N or N → ∆.
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G̃−↑,↑ =

[
4(1 − 3ξ2)M2

N∆x − (1 + ξ2)∆3
x

]
G̃+
↑,↑ −

[
4MN∆2

x + 16ξ2M3
N

]
G̃+
↓,↑

(1 − ξ2)2∆x

+
2ξ(∆2

x + 4M2
N )G̃x

↑,↑
(1 − ξ2)∆x

G̃−↓,↑ =

[
ξ2∆3

x − 4(1 − 2ξ2)M2
N∆x

]
G̃+
↑,↑ +

[
(1 + ξ2)MN∆2

x − 4(1 − 3ξ2)M3
N

]
G̃+
↓,↑

(1 − ξ2)2MN

−
ξ(1 − ξ2)(∆2

x + 4M2
N )G̃x

↑,↑
(1 − ξ2)2MN

. (4.55)

One can nicely observe the reduction in case of the form factor corresponding amplitudes F̃ µ
λ′λ

by setting ξ = 0.

For the axial N → N transition we express the other amplitudes in terms of

G̃
q, + (N→N)
A, ↑↑

G̃
q, + (N→N)
A, ↓↑

G̃
q, x (N→N)
A, ↓↑ .

We find the relations

G̃x
↑,↑ =

ξ

[
(4M2

N∆x + ∆3
x)G̃+

↑,↑ + 2ξMN (∆2
x + 4M2

N )G̃+
↓,↑ − 2(1 − ξ2)∆xMN G̃

x
↓,↑

]

(1 − ξ2)∆2
x

G̃y
↑,↑ =

i(∆xG̃
+
↑↑ + 2ξMN G̃

+
↓↑)

1 − ξ2

G̃y
↓,↑ =

2iMN (∆xG̃
+
↑,↑ + 2ξMN G̃

+
↓↑)

(1 − ξ2)∆x

G̃−↑,↑ =
∆2

x + 4M2
N

(1 − ξ2)2∆3
x

([
8ξ2M2

N∆x − (1 − ξ2)∆3
x

]
G̃+
↑↑

+
[
16ξ3M3

N − 4ξ(1 − ξ2)MN∆2
x

]
G̃+
↓↑ −

[
4ξ2(1 − ξ2)∆xMN

]
G̃x
↓↑

)

G̃−↓,↑ = −
(∆2

x + 4M2
N )

[(
8ξ2M2

N − (1 − ξ2)∆2
x

)
G̃+
↓↑ + 2ξ∆x

(
2MN G̃

+
↑↑ − (1 − ξ2)G̃x

↓↑

)]

(1 − ξ2)2∆2
x

.

(4.56)

The consistency relations for both axial and vectorial N → ∆ amplitudes as derived using
the expressions for mixed twist GPDs are lengthy and thus will not be given here for lack of
space. We have derived and implemented them numerically though, so they are evaluated in
the subsequent section numerically. However we provide one example each. For the vectorial
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N → ∆ transition one of the relations reads

G̃x
1
2
↓ =

√
3(1 − ξ2)∆x

[
∆2

x + (1 − ξ2)M2
N − 2(1 + ξ)2M2

∆ + (1 − ξ2)MNM∆

]
G̃x

3
2
↑

3(1 + ξ)(1 − ξ2)∆xM∆A

−
[
(1 + ξ)2M2

∆ − (1 − ξ)2M2
N + ξ∆2

x

]

3(1 + ξ)(1 − ξ2)∆xM∆A

·
[√

3
(
∆2

x + (1 − ξ)2M2
N − 2(1 + ξ)2M2

∆ + (1 − ξ2)MNM∆

)
G̃+

3
2
↑ − 3(1 + ξ)M∆AG̃

+
1
2
↓
]

(4.57)

and for the axial N → ∆ transition one relation is given by

G̃x
1
2
↑ =

(1 − ξ2)∆x

(
AB2 − ∆2

x

[
(1 − ξ)MN + 2(1 + ξ)M∆

])
G̃x

3
2
↑√

3(1 + ξ)(1 − ξ2)∆2
xM∆B

+
(1 + ξ)2M2

∆ − (1 − ξ)2M2
N + ξ∆2

x√
3(1 + ξ)(1 − ξ2)∆2

xM∆B

·
(
√

3(1 + ξ)∆xM∆BG̃
+
1
2
↑ +

(
∆2

x

[
(1 − ξ)MN + 2(1 + ξ)M∆

]
−AB2

)
G̃+

3
2
↑

)
.

(4.58)

4.7 Results

We will conclude this chapter with the application of the formulae derived in the previous
sections to the amplitudes which we have obtained in the model calculation. In the following
4 subsections we will present the plots for the different transitions and discuss the results.

4.7.1 Vectorial N → N transition

In fig. 4.1 we explore how well the form factor related amplitudes satisfy covariance in our
model calculation. Obviously the shape of all curves is very similar between the predicted
results and the direct calculation. The amplitude relations for the perpendicular amplitudes
are satisfied at 30% level. This is a reasonable result. For the − component transition ampli-
tudes the deviations are much higher. We would like to understand them as 30% agreement
between ⊥ and − component transition amplitudes. In fact that is the size of the error for
amplitude relations with − amplitudes in terms of ⊥ amplitudes. (Not displayed here for lack
of space). Particularly for F−↑↑ the error is much smaller. This seems to be coincidence.

In fig. 4.2 we display the DVCS amplitude relations which connect the x and y component am-
plitudes. These amplitude relations therefore provide a measure for the covariance-consistency
of amplitudes which are associated with the same twist. Since for ξ = 0 the amplitudes G̃x

↑↑
and G̃x

↓↑ vanish the amplitude relations can only be verified for finite values of ξ13. We find

13Choosing very small values for ξ requires too much computer time to produce a statistical error which is
small enough for our purpose.
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that the amplitude relations are satisfied at 30% level or better.

The amplitude relations in eq. 4.55 not only require covariance for the model amplitudes.
They also assume that genuine higher twist GPDs are negligible. In fig. 4.3 these predictions
are tested. We have confined ourselves to showing only the p → p amplitude relations here.
The amplitude relations for G̃y

↑↑, G̃
−
↑↑ and G̃−↓↑ are consistent with the findings in fig. 4.1. The

amplitude relations for G̃x
↓↑ and G̃y

↓↑ however look very bad. Since they scale with O(ξ) the
numerical extraction of the amplitudes for very small values of ξ is again impossible. These
amplitudes also enter in the expressions for the twist 3 GPDs.

In fig. 4.4 we show the leading twist GPDs for t = −0.5GeV 2 and different values of skewed-
ness ξ. The value for t which we chose here is small enough and thus within the application
range of quark models. As discussed in chapter 3 the valence quark picture only provides
results in the kinematical range x ≥ ξ. For large values of x the valence quark contribution is
dominant and hence the GPDs which we show here are predictive in this regime.

Twist 3 GPDs are presented in fig. 4.5. The non satisfaction of the amplitude relations
which we showed in fig. 4.55 already casts serious doubts on the predictive power of quark
models for observables that are extracted from bad LF component amplitudes in general (and
higher twist GPDs in particular). In fact the genuine twist 3 GPDs H(3) and X(3) do not
satisfy the sum rules in eq. 4.34. Likewise they are not small which would be the necessary
condition in order to apply the concept of mixed twist GPDs. While we provided a formalism
to extract higher twist GPDs from bad LF amplitudes the quark model is not able to provide
the required covariance consistency in the amplitudes to be predictive for higher twist GPDs.

In fig. 4.6 we give the vectorial N → N form factors. The results look quite reasonable
compared to the experimental data. However we have to emphasize that Gp

M (Q2) was used
to fit the spatial quark model wave function (eq. 3.14). Nevertheless Gp

E(Q2) and Gn
M (Q2)

are quite well described by the model. Although our model calculation only takes s-waves
into account Gn

E(Q2) does not vanish as one should expect from SU(6) arguments. The finite
result stems from the Melosh rotation which mixes different spin states. While the experi-
mental data for Gn

E(Q2) is not described by the model, the order of magnitude and the shape
of this form factor are reproduced correctly even without taking into account d-waves. The
deviation from the sum rules for finite values of ξ stems from covariance breaking effects as
we discussed in chapter 3.
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Amplitude relations for the vectorial N → N transition
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Figure 4.1: Solid lines: Direct model calculation for the respective amplitudes.
Dotted lines: Expected result if the respective amplitude relation (eq. 4.28) holds.
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Amplitude relations for the vectorial N → N transition (eq. 4.35)
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Figure 4.2: Solid lines: Direct model calculation for the respective amplitude.
Dotted lines: Expected result if the respective amplitude relation (eq. 4.35) holds.
Black curve: Results for ξ = 0; Green curve: Results for ξ = 0.1; Red curve: Results for
ξ = 0.2.
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Amplitude relations for the vectorial N → N transition (eq. 4.55)
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Figure 4.3: Solid lines: Direct model calculation for the respective amplitude.
Dotted lines: Expected result if the respective amplitude relation (eq. 4.55) holds.
Black curve: Results for ξ = 0; Green curve: Results for ξ = 0.1; Red curve: Results for
ξ = 0.2.
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Leading twist GPDs for the vectorial N → N transition
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Figure 4.4: Black curve: ξ = 0; Green curve: ξ = 0.1; Red curve: ξ = 0.2.
The GPDs are extracted from the good LF component amplitudes (eq. 4.3).
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Twist 3 GPDs for the vectorial N → N transition
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Figure 4.5: Green curve: ξ = 0.1; Red curve: ξ = 0.2.
The GPDs are extracted using the perpendicular LF component amplitudes (eq. 4.36).
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Vectorial N → N form factors
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Figure 4.6: The vectorial nucleon form factors. Calculated from the good LF amplitudes
directly (black curve), evaluated using the sum rules for ξ = 0 (on top of the black curve),
ξ = 0.1 (red curve) and ξ = 0.2 (green curve). The experimental data are taken from the
following references:
Upper left panel: green star: [82], black square: [83].
Upper right panel: blue triangle: [84], blue circle: [85], green triangle: [86].
Lower left panel: green triangle: [87], green star: [88], black triangle: [89], black square:
[90], red triangle: [91], red square: [92].
Lower right panel: blue square: [93] [94] [95], red circle: [96] [97] [98] [99] [100] [101],
green triangle: [102].
The black star in each panel denotes the experimental value for Q2 = 0GeV2.
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4.7.2 Axial N → N transition

In fig. 4.7 we explore how well the form factor related amplitudes satisfy covariance in our
model calculation. We have confined ourselves to presenting the isovectorial amplitudes only.
Like for the vectorial N → N transition the shape of all curves is very similar between the
predicted results and the direct calculation. The amplitude relations for the perpendicular
amplitudes are satisfied at 30% level and again for the − component transition amplitudes
the deviations are much higher.

In fig. 4.8 we display the DVCS amplitude relations which connect the x and y compo-
nent amplitudes. These amplitude relations therefore provide a measure for the covariance-
consistency of amplitudes which are associated with the same twist. For ξ → 0 the expression
G̃x

↑↑
ξ becomes difficult to access numerically. Therefore the amplitude relations can only be

verified for ξ = 0.1 and ξ = 0.2. We find that the amplitude relations are satisfied at 30%
level or better.

The amplitude relations in eq. 4.56 not only require covariance for the model amplitudes.
They also assume that genuine higher twist GPDs are negligible. In fig. 4.9 these predictions
are tested. The amplitude relations for G̃y

↑↑, G̃
y
↓↑ and G̃−↑↑ are consistent with the findings in

fig. 4.7. Concerning G̃−↑↑ it is remarkable that the strong ξ dependence in the prediction for
the amplitude is not followed by the directly calculated amplitude. The amplitude relations
for G̃x

↑↑ and G̃−↓↑ look quite bad. Since they scale with O(ξ) the numerical extraction of the
amplitudes for very small values of ξ is again impossible. These amplitudes also enter in the
expressions for the twist 3 GPDs.

In fig. 4.10 we show the leading twist GPDs for t = −0.5GeV 2 and different values of
skewedness ξ. The value for t which we chose here is small enough and thus within the ap-
plication range of quark models. As discussed in chapter 3 the valence quark picture only
provides results in the kinematical range x ≥ ξ. For large values of x the valence quark con-
tribution is dominant and hence the GPDs which we show here are predictive in this regime.
As discussed in section 4.2 the GPD Ẽ(x, ξ, t) is obtained directly from the leading ξ behavior
in G̃+

↓↑ and is therefore to be trusted less than the results for H̃(x, ξ, t). Apart from this

covariance breaking effect which casts doubts on the reliability of the prediction for Ẽ(x, ξ, t)
there is a much more serious argument why the results for Ẽ(x, ξ, t) are less predictive. In
fact this GPD is dominated by the pion pole contribution, which is physically not accessible
in a quark model calculation. This will become particularly obvious in the discussion of GP (t).

Twist 3 GPDs are presented in fig. 4.11. These genuine twist 3 GPDs H̃(3) and Ẽ(3) are
not negligible. They do not satisfy the respective sum rules (eq. 4.37). Like for the vectorial
N → N we only provide these twist 3 GPDs to show that we can treat them in our formalism.
The predictive power of the quark model amplitudes for these GPDs is little.

In fig. 4.12 we give the axial N → N form factors. The results for GA(t) are reasonable
compared to the experimental results which we have simply represented in the figure by a
dipole fit. Concerning GP (t) we have a couple of comments to make. Firstly it is not amazing
that the sum rule for ξ = 0 does not lie on top of the directly calculated curve for this form
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factor. The reason is that GP (t) is extracted using G̃x
↓↑ while the sum rules use the good LF

component DVCS amplitudes only. Then the result for GP (t) is negative in our calculation
while data shows a large positive GP (t). In fact the pseudoscalar form factor is dominated by
the pion pole contribution

GP (t) =
4M2

N

M2
π − t

GA(t) .

This physics cannot be described using the valence quark picture. So our result has to be
understood as valence quark contribution which should be added to the pion pole contribution.
The deviation from the sum rules for finite values of ξ stems from covariance breaking effects
as we discussed in chapter 3.

Amplitude relations for the axial N → N transition
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Figure 4.7: Solid lines: Direct model calculation for the respective amplitudes.
Dotted lines: Expected result if the respective amplitude relation (eq. 4.29) holds.
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Amplitude relations for the axial N → N transition (eq. 4.38)
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Figure 4.8: Solid lines: Direct model calculation for the respective amplitude.
Dotted lines: Expected result if the respective amplitude relation (eq. 4.38) holds.
Black curve: Results for ξ = 0; Green curve: Results for ξ = 0.1; Red curve: Results for
ξ = 0.2.
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Amplitude relations for the axial N → N transition (eq. 4.56)
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Figure 4.9: Solid lines: Direct model calculation for the respective amplitude.
Dotted lines: Expected result if the respective amplitude relation (eq. 4.56) holds.
Black curve: Results for ξ = 0; Green curve: Results for ξ = 0.1; Red curve: Results for
ξ = 0.2.
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Leading twist GPDs for the axial N → N transition
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Figure 4.10: Black curve: ξ = 0; Green curve: ξ = 0.1; Red curve: ξ = 0.2.
The GPDs are extracted from the good LF component amplitudes (eq. 4.4).
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Twist 3 GPDs for the axial N → N transition
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Figure 4.11: Green curve: ξ = 0.1; Red curve: ξ = 0.2.
The GPDs are extracted using the perpendicular LF component amplitudes (eq. 4.39).
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Axial N → N form factors
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Figure 4.12: The axial nucleon form factors. Calculated from good and bad LF ampli-
tudes directly (black curve), evaluated using the sum rules for ξ = 0 (blue curve), ξ = 0.1
(green curve) and ξ = 0.2 (red curve). The dotted cyan curve is the dipole fit for GA(Q2)
with the dipole mass MA = 1.03 GeV2.
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4.7.3 Vectorial p → ∆+ transition

In fig. 4.13 the amplitude relations among the F̃ µ
λ′λ are tested. Our first remark concerns the

angular condition (F̃+
3
2
↓) which is broken. Actually the breaking of the angular condition is

within 30% and thus not larger than other typical covariance breaking effects. However this
inconsistency afflicts the predictability for G?

E(t) and G?
C(t) as will be discussed later. Another

interesting feature for the N → ∆ transition is the possibility to check gauge invariance
explicitly within the same kinematics. The consistency relations for F̃ x

λ′λ can be understood
as gauge (invariance) conditions:

∆µF
µ
λ′λ = 0

⇔ 1

2
∆+F−λ′λ +

1

2
∆−F+

λ′λ − ∆xF x
λ′λ − ∆yF y

λ′λ = 0

⇔ 1

2
∆−F+

λ′λ = ∆xF x
λ′λ

⇔ M2
∆ −M2

N

2P̄+
F+

λ′λ = ∆xF x
λ′λ

⇔ F̃ x
λ′λ =

M2
∆ −M2

N

∆x
F̃+

λ′λ

which is the respective amplitude relation (eq. 4.30). The directly calculated amplitudes
are non zero however they are quite small. Unfortunately it turns out that gauge invariance
is very strongly broken. The other two amplitude relations which we chose to present are
satisfied at within 30% error.

In fig. 4.14 we display the DVCS amplitude relations which connect the x and y compo-
nent amplitudes. These amplitude relations therefore provide a measure for the covariance-
consistency of amplitudes which are associated with the same twist. The angular conditions
for DVCS amplitudes (G̃+

3
2
↓ and G̃x

3
2
↓) are satisfied at 30% level. The relation for G̃y

1
2
↑ does

not look very good. After the experience with the amplitudes F̃ x
λ′λ this does not come as a

big surprise. At least for higher values of ξ (where gauge invariance is broken strongly) the
relation approaches the usual error of 30%. Finally the angular condition for the - compo-
nent (G̃−3

2
↓) shows that twist 4 associated DVCS amplitudes are strongly inconsistent in the

quark model. Even the shape of the calculated amplitude differs from the prediction. People
who like reading tea leaves may fancy the fact that for large values of x where valence quark
physics dominates this amplitude relation is roughly satisfied.

The amplitude relation in eq. 4.57 which requires covariance for the model amplitudes and
assumes genuine higher twist GPDs to be negligible is presented in fig. 4.15. The result is
discouraging concerning the possibility to obtain mixed twist GPDs from our model.

In fig. 4.16 we show the leading twist GPDs for t = −0.5GeV 2 and different values of
skewedness ξ. The value for t which we chose here is small enough and thus within the ap-
plication range of quark models. As discussed in chapter 3 the valence quark picture only
provides results in the kinematical range x ≥ ξ. For large values of x the valence quark
contribution is dominant and hence the GPDs which we show here might be predictive in
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this regime. This is the case for H?
M(x, ξ, t) as we see from the fact that the breaking of the

angular condition does not afflict this GPD. This can be understood from the fact that the
different prescriptions to obtain H?

M (x, ξ, t) from the good LF components provide the same
results (within 2-3 % deviation). For H?

E(x, ξ, t) and H?
C(x, ξ, t) the situation is different. The

breaking of covariance destroys the predictive power for these GPDs.

An example for a genuine twist 3 N → ∆ GPD is presented in fig. 4.17. Again we only
provide it to demonstrate that we can treat higher twist GPDs in our formalism. There is
little predictive power in the quark model amplitudes for this GPDs as one can see from the
fact that the sum rule for this GPD (eq. 4.40) is not satisfied.

In fig. 4.18 we give the vectorial N → ∆ form factors. The magnetic form factor G?
M (t)

again is the only predictive result. However the value of G?
M (0) is only 70% of the physical

value. One may wonder how this is possible as simple SU(6) arguments already describe this
value much better. Technically the deviation from the SU(6) result stems from the Melosh
rotation (see chapter 3). The shape of G?

M (t) follows a dipole behavior which is reasonable
in this kinematical regime. The sum rule results for finite skewedness deviate from the direct
calculation. The sign of this deviation is different for the N → N transition. This reveals
that sea quark contributions have opposite sign for the N → ∆ transition as compared to the

N → N transition. In the upper right panel we have displayed REM = −G?
E(Q2)

G?
C(Q2)

. RSM in the

lower left panel is connected to the N → ∆ transition form factors via [103]

RSM = −

√[
Q2 + (M∆ +MN )2

][
Q2 + (M∆ −MN )2

]

4M2
∆

G?
C(Q2)

G?
M (Q2)

.

We remark that our various predictions for REM and RSM are in the correct order of mag-
nitude. Apart from this observation we have to state that the covariance breaking effects
severely afflict the predictive power for these ratios. In fact different prescriptions even lead
to different signs and shapes for these ratios. Unless covariance breaking effects are taken care
of the light front quark model calculation is not predictive for these observables.

Next we like to report on other LF quark model calculations for N → ∆ transition form
factors. The first such calculation was performed in [104]. In this paper only one prescription
to extract G?

M , G?
E and G?

C was applied. Therefore the issue of inconsistent results for G?
E and

G?
C was not addressed. The problem with the low predictions for G?

M (0) has been remarked
of course. The author introduced an additional “free” parameter C∆ in order to orthogonalize
the nucleon and ∆ LF wave functions and thus to enforce the gauge condition. By doing so
he obtained reasonable agreement with the G?

M (Q2) experimental data. On the other hand he
pointed already out in his paper that this parameter C∆ is not really free but the Melosh ro-
tation requires C∆ = 1 which is in strong contrast to the ad hoc tuning C∆ = −0.22355 which
ensures the gauge condition. To our knowledge this ansatz has not been applied subsequently
as it lacks a sound theoretical justification. In [105] the authors apply a more sophisticated
wave function (harmonic oscillator basis truncated such that d-waves are still included, pa-
rameters fitted to baryon spectrum). They consider two different prescriptions and find the
same behavior for G?

E(Q2) and G?
C(Q2) as we do. Additionally they include constituent quark

form factors which allows for a realistic description of the faster than dipole fall - off behavior
of G?

M (Q2) at higher values of Q2. The difficulty to predict G?
E and G?

C however remains.
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Amplitude relations for the vectorial p→ ∆+ transition
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Figure 4.13: Solid lines: Direct model calculation for the respective amplitudes.
Dotted lines: Expected result if the respective amplitude relation (eq. 4.30) holds.
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Amplitude relations for the vectorial p→ ∆+ transition (eqs. 4.32, 4.42 and 4.43)
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Figure 4.14: Solid lines: Direct model calculation for the respective amplitude.
Dotted lines: Expected result if the respective amplitude relations (eqs. 4.32, 4.42 and
4.43) hold.
Black curve: Results for ξ = 0; Green curve: Results for ξ = 0.1; Red curve: Results for
ξ = 0.2.
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Amplitude relation for the vectorial p→ ∆+ transition (eq. 4.57)
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Figure 4.15: Solid lines: Direct model calculation for G̃
x (p→∆+)

V, 1
2
↓ .

Dotted lines: Expected result if the respective amplitude relation (eq. 4.57) holds.
Black curve: Results for ξ = 0; Green curve: Results for ξ = 0.1; Red curve: Results for
ξ = 0.2.
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Leading twist GPDs for the vectorial p→ ∆+ transition
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Figure 4.16: Black curve: ξ = 0; Green curve: ξ = 0.1; Red curve: ξ = 0.2.
The GPDs are extracted from the good LF component amplitudes using prescription I
(dotted lines) and prescription II (solid lines) as described in sec. 4.2.
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Twist 3 GPD for the vectorial p→ ∆+ transition

H
(3)
1 (x, ξ, t = −0.5 GeV 2)

-3

-2

-1

0

1

2

3

0 0.2 0.4 0.6 0.8 1 x

Figure 4.17: Green curve: ξ = 0.1; Red curve: ξ = 0.2.
This GPD is obtained using perpendicular LF component amplitudes (eq. 4.41). The
result has been obtained using prescription II.
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Vectorial p→ ∆+ form factors
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Figure 4.18: The vectorial nucleon form factors calculated from the good LF amplitudes
directly (black curve), evaluated using the sum rules for ξ = 0 (on top of the black curve),
ξ = 0.1 (green curve) and ξ = 0.2 (red curve). The dotted curves are the results obtained
using prescription I; Results from prescription II are given by solid curves. Experimental
data points are extracted from the following references:
Upper left panel: black star (G?

M (Q2 = 0GeV 2): see e.g. [48]), black square: [106].
Upper right panel: black triangle: [106], blue star: [107], blue square: [108], red circle:
[109] [110] [111].
Lower left panel: black triangle: [106], blue star: [107].
The connection between the transition form factors and the ratios E/M and S/M is
explained in the text.
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4.7.4 Axial p → ∆+ transition

In fig. 4.19 the amplitude relations among the F̃ µ
λ′λ are tested. Our first remark concerns the

angular condition (F̃+
3
2
↓). Unlike for the vectorial transition it is already strongly broken for the

good LF component amplitude. Also the other amplitude relations which we show here are not
satisfied. Only F̃ y

1
2
↑ is roughly (shape, 50% error) in agreement with the prediction. Partly one

can understand this behavior since the predicted amplitudes here depend on F̃ x
3
2
↑. Following

the experience with the gauge condition for the vectorial N → ∆ transition which affected
the x component amplitudes one can think along the lines of PCAC here which explains the
large deviations from the predictions. However F̃ x

3
2
↑ does not appear in the relations for F̃+

3
2
↓

and F̃ y
1
2
↑. A physical explanation why the axial N → ∆ amplitudes suffer from much higher

covariance breaking effects than the vectorial N → ∆ amplitudes could be rooted in the fact
that the quark model is not adequate for describing pion pole physics. The latter is important
for the axial N → ∆ transition (see e.g. [112]) since

C6(t) =
M2

N

M2
π − t

C5(t) .

In the language of the light front formalism the missing of important pionic contributions
translates into the expectation of large higher Fock contributions. This again implies large
covariance breaking effects.

In fig. 4.20 we display the DVCS amplitude relations which connect the x and y compo-
nent amplitudes. These amplitude relations therefore provide a measure for the covariance-
consistency of amplitudes which are associated with the same twist. The angular condition
for G̃x

3
2
↓ is satisfied at 30% level. The same can be said about the relation for G̃y

1
2
↑. The

other two amplitude relations are not satisfied (in agreement with the findings from fig. 4.19.
We observe an interesting behavior at ξ = 0.2. For this value of skewedness the amplitude
relations are well satisfied. The reason for this behavior can be found when one looks at the
kinematics. For ξ = 0.2 and t = −0.5GeV 2 the momentum transfer variable ∆x is very small.
This indicates that for vanishing ∆x the covariance breaking effects become very small. In
retrospect we find the same behavior for the vectorial N → ∆ DVCS amplitudes.

The amplitude relation in eq. 4.58 which requires covariance for the model amplitudes and
assumes genuine higher twist GPDs to be negligible is presented in fig. 4.21. Like for the
vectorial N → ∆ transition the result is discouraging concerning the possibility to obtain
mixed twist GPDs from our model. The pole behavior in the predicted amplitude for the
value ξ = 0.2 stems from the factor ∆2

x in the denominator of 4.58.

In fig. 4.22 we show the leading twist GPDs for t = −0.5GeV 2 and different values of
skewedness ξ. The value for t which we chose here is small enough and thus within the ap-
plication range of quark models. As discussed in chapter 3 the valence quark picture only
provides results in the kinematical range x ≥ ξ. For large values of x the valence quark
contribution is dominant and hence the GPDs which we show here might be predictive in
this regime. This is the case for C1(x, ξ, t) as we see from the fact that the breaking of the
angular condition does not afflict this GPD. This can be understood from the fact that the
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different prescriptions to obtain C1(x, ξ, t) from the good LF components provide the same
results (within 2-3 % deviation). For C3(x, ξ, t) and C4(x, ξ, t) the situation is different. The
breaking of covariance destroys the predictive power for these GPDs.

An example for a genuine twist 3 N → ∆ GPD is presented in fig. 4.23. Again we only
provide it to demonstrate that we can treat higher twist GPDs in our formalism. There is
little predictive power in the quark model amplitudes for this GPDs as one can see from the
fact that the sum rule for this GPD is violated (c.f. the three black stars in the middle left
panel of fig. 4.24).

In fig. 4.24 we give the axial N → ∆ form factors. The leading form factor C5(t) is the
only reliable result. For higher values of Q2 the predictive power of our calculation decreases
a little bit. The two different prescriptions produce a slightly different slope in C5(t). The
other axial N → ∆ form factors suffer from a large inconsistency between the different pre-
scriptions. Additionally a similar remark as for GP (t) is in order for C6(t) which is dominated
by pion pole physics.
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Amplitude relations for the axial p→ ∆+ transition
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Figure 4.19: Solid lines: Direct model calculation for the respective amplitudes.
Dotted lines: Expected result if the respective amplitude relation (eq. 4.31) holds.
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Amplitude relations for the axial p→ ∆+ transition (eqs. 4.33, 4.49 and 4.50)
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Figure 4.20: Solid lines: Direct model calculation for the respective amplitude.
Dotted lines: Expected result if the respective amplitude relations (eqs. 4.33, 4.49 and
4.50) hold.
Black curve: Results for ξ = 0; Green curve: Results for ξ = 0.1; Red curve: Results for
ξ = 0.2.
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Amplitude relation for the axial p→ ∆+ transition (eq. 4.58)
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Figure 4.21: Solid lines: Direct model calculation for G̃
x (p→∆+)

A, 1
2
↑ .

Dotted lines: Expected result if the respective amplitude relation (eq. 4.58) holds.
Black curve: Results for ξ = 0; Green curve: Results for ξ = 0.1; Red curve: Results for
ξ = 0.2.



4.7. Results 129

Leading twist GPDs for the axial p→ ∆+ transition
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Figure 4.22: Black curve: ξ = 0; Green curve: ξ = 0.1; Red curve: ξ = 0.2.
The GPDs are extracted from the good LF component amplitudes using prescription I
(dotted lines) and prescription II (solid lines) as described in sec. 4.2.
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Twist 3 GPDs for the axial p→ ∆+ transition
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Figure 4.23: Green curve: ξ = 0.1; Red curve: ξ = 0.2.
This GPD is obtained using perpendicular LF component amplitudes (eq. 4.48). The
result has been obtained using prescription II.
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N → ∆ axial form factors
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Figure 4.24: The axial nucleon form factors. Calculated from the good LF amplitudes
directly (black curve), evaluated using the sum rules (eqs. 4.44, 4.45 and 4.46) for ξ = 0.1
(green) and ξ = 0.2 (red). For the evaluation of C6(t) the sum rule (eq. 4.46) for ξ = 0.1
(green) and ξ = 0.2 (red) have been used. From the sum rule (eq. 4.44) one obtains
curves for ξ = 0.1 (blue) and ξ = 0.2 (magenta). Finally the sum rule (eq. 4.47) provides
three (ξ = 0; 0.1 and 0.2) values for Q2 = 0.5GeV 2. In all panels the dotted curves are
the results obtained using prescription I; Results from prescription II are given by solid
curves.



Chapter 5

Spurious covariants

5.1 Introduction

Whenever one breaks an important physical symmetry in a model calculation the resulting
quantities suffer from an inconsistency. While in a fully covariant calculation the choice of
the reference system for the model calculation does not influence the result this is no longer
true if Lorentz covariance is violated. For instance the brickwall frame in an instant form
model calculation (using the impulse approximation) is not only chosen because of its simple
kinematics but mainly because covariance breaking effects get minimized in this framework.

Using a light front description one might think at first that this problem does not arise here
since Lorentz boosts are kinematical in this Hamiltonian form. But due to the dynamical
nature of Lorentz rotations the dependence on the reference frame gets manifest here.

A very convenient way to parameterize this reference frame dependence is to vary the di-
rection of the so called null vector nµ

nµxµ = 0

n2 = 0

The conventional choice of this null vector is n ∝ (1, 0, 0,−1) which leads to τ = x+z playing
the role of time in this theory, namely light front time. Another choice of the null plane direc-
tion can be achieved via a Lorentz rotation and due to relativistic covariance all observables
must remain invariant under such a transformation. However in models which do not satisfy
Lorentz covariance this is not the case.

In [22] the idea of spurious covariants, which consists of parameterizing the unphysical vi-
olation of Lorentz covariance in terms of new pseudo observables which depend on nµ, was
applied to the calculation of vectorial N → N form factors. This method requires the ex-
tension of the set of covariants which parameterize this process by allowing for an additional
Lorentz vector in the construction of these covariants, the null vector nµ.

To illustrate this argument let us start with the vector form factors for the nucleon-nucleon

132
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elastic scattering. Allowing for spurious form factors the transition amplitude can now be
parameterized as

〈p′ | Jµ(0) | p〉 =
1

2
√
p′+p+

ū(p′)

(
∑

i

κµ
i F

i(Q2, n · p, n · p′) +
∑

j

κ̃µ
jB

j(Q2, n · p, n · p′)
)
u(p)

Here the usual covariants κµ
1 and κµ

2 are the structures for the electric and magnetic form fac-
tor. Additionally three new covariants κ̃µ

j appear with their respective spurious form factors.

They are built using the null plane vector e.g
/n(pµ+p′µ)

p·n . In order to be on the safe side one
must allow for the dependence of all form factors (original ones as well as spurious ones) on
all possible invariants which can be built using the null vector. In this case that would be
n · p and n · p′. Of course if this dependence was a genuine one for the original form factors
the introduction of spurious covariants would not be very useful since this would imply that
the spurious contributions, i.e. the reference frame dependence due to covariance breaking,
could not be separated from the physical ones in a clean way.

Fortunately one can argue without looking into the kinematics that the dependence on these
two invariants must vanish: The direction of the null plane is fixed by the direction of the
null vector only. nµ may be multiplied with a scalar without altering the direction of the null
plane. Thus the form factors can only depend on the ratio n·p

n·p′ . However due to n · q = 0 this
ratio is one.

In order to clarify the relation between the one body current approximation, breaking of
Lorentz covariance, reference frame dependence and restoration of reference frame indepen-
dence in the context of spurious form factors we write the full current as a sum of its con-
tributions each of which can be separated into the physical and the null plane dependent
part.

Jµ =
∑

i

Jµ
i

Jµ
i = F µ

i +Bµ
i (nµ)

〈p′ | F µ
i (0) | p〉 =

1

2
√
p′+p+

ū(p′)
(∑

k

κµ
kF

k
i (Q2)

)
u(p)

〈p′ | Bµ
i (0) | p〉 =

1

2
√
p′+p+

ū(p′)
(∑

k

κ̃µ
kB

k
i (Q2)

)
u(p)

Fi(Q
2) =

∑

k

F k
i (Q2)

Bi(Q
2) =

∑

k

Bk
i (Q2)

So now let Jµ
1 denote the one body current while other Jµ

i stand for various many body
contributions. Thinking of the many body contributions in terms of a Fock space expansion
it is clear that when one considers all contributions to the current one has restored Lorentz
covariance. Consequently the spurious form factors Bk

i (Q2) must add up to zero while they
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will be non zero individually. On the other hand side the one body contribution F 1
i (Q2) is

reference frame independent although it is still obtained from a one body approximation.

This method of introducing spurious covariants as it was presented in [22] in order to ab-
sorb the frame dependence from covariance breaking into spurious covariants can be extended
towards axial N → N transition form factors as well as towards vectorial and axial N → ∆
form factors in a similar fashion by constructing appropriate spurious covariants for these
transitions. We will provide these covariants in the next section.

In [113] the author proposed to apply this formalism to extract GPDs in a similar way.
In order to proceed along these lines we have to discuss three special features of GPDs which
are different from form factors.

Firstly in DVCS gauge invariance does not impose a constraint on the number of possible
covariants. This increases both the number of physical and spurious covariants which are
required to parameterize the soft transition amplitude. Secondly we have to reconsider the
possible dependence of GPDs on the invariants n · p and n · p′ since unlike for the form factors
n · ∆ is different from zero. The scaling argument which we gave for elastic scattering still
holds. Hence the spurious GPDs can only depend on the ratio n·∆

n·P̄ . The null vector n always
projects out the + component of a four vector, even if “+” eventually bears the meaning of
e.g. A+ = A0 +Ax. Hence the ratio above can always be expressed by

n · ∆
n · P̄ =

∆+

P̄+
= −2ξ .

Therefore the spurious GPDs have no additional kinematical- or null plane dependence since
they can depend on x, ξ and t anyway.

Finally the extraction of physical and spurious form factors involves bad LF transition am-
plitudes, e.g. 〈P ′ | Jx(0) | P 〉. If we want to match the number of possible (physical and
spurious) DVCS covariants with transition amplitudes it is obvious that the calculation of
physical GPDs also involves such bad LF transition amplitudes. However in DVCS twist 2
GPDs are related to good LF transition amplitudes; GPDs of twist 3 are connected with per-
pendicular LF transition amplitudes and twist 4 GPDs are obtained from “−” LF transition
amplitudes. Therefore in order to extract GPDs using the spurious covariants formalism we
have to work with mixed twist GPDs. These GPDs have been introduced in 4.6. We have
to emphasize that working with mixed twist GPDs implies the assumption that higher twist
GPDs are small. To put this statement in a different way this implies that using spurious co-
variants for GPDs implies two approximations - the covariance breaking approximation (i.e.
the impulse approximation in our model) and the assumption that higher twist GPDs are
small.

As we have discussed in the last chapter there is no a priori argument why higher twist
GPDs should be small compared to the leading twist GPDs. The only indication that nour-
ishes such a hope is that their respective sum rules (mostly) give 0. Our model calculation
for selected examples of higher twist GPDs (figs. 4.5, 4.11, 4.17 and 4.23) lead to sizable
higher twist GPDs. On the one hand side this casts serious doubts on the applicability of
mixed twist GPDs in the framework of a LF quark model calculation. On the other hand
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side we realized in sec. 4.7 that these higher twist GPDs do not respect their sum rules due
to covariance breaking. Therefore we conclude that the chance of higher twist GPDs being
small is not generally ruled out and the spurious covariants for mixed twist GPDs might be
useful in other model calculations. Thus we pursue the evaluation of mixed twist GPDs for
light front quark model amplitudes in the spirit of a toy model calculation.

This restriction does not concern the spurious form factors which we also discuss in this
chapter as for them we do not have to imply any additional assumptions.

We point out that in [113] the GPDs under consideration are conceptionally identical with
what we have called mixed twist GPDs. The issue of different twists is simply not discussed
there. Also additional spurious covariants which only appear for GPDs are not considered in
that work.

5.2 Construction of spurious covariants

The construction of spurious covariants follows the same procedure as the construction of
any set of covariants. First one has to write down all possible covariants involving momenta,
gamma matrices and the null plane vector nµ which can appear in the transition under con-
sideration. Then one can use symmetries (like time reversal invariance and gauge invariance)
and the equations of motions in order to get rid of superfluous covariants.

It is useful to use symmetry arguments to count the number of possible independent transition
amplitudes beforehand since the number of covariants that parameterize a transition has to
match the number of independent transition amplitudes. Then one only has to ensure that
the chosen covariants form a complete set. We use the notation introduced in 4.4

Gj =
∑

i

CijT j

where this time Gj enumerates both physical and spurious form factors or GPDs, T j denotes

the independent transition amplitudes (e.g. G
+(N→N)
↓↓ or G̃

y(N→N)
↑↑ ) and C ij are the kine-

matical dependent coefficients which connect them. Then considering the matrix (C ij) the
criterium for a complete set of covariants is a non vanishing determinant

det C 6= 0 .

The next subsections provide our results for the different transition amplitudes.

5.2.1 Vectorial N → N transition

Counting the number of independent DVCS transition amplitudes we end up with 8 since

parity relate the amplitudes G
µ(N→N)
V,↑↑ withG

µ(N→N)
V,↓↓ and G

µ(N→N)
V,↓↑ with G

µ(N→N)
V,↑↓ . A possible
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complete set of covariants reads

κµ
1 = γµ

κµ
2 =

iσµν

2MN
∆ν

κµ
3 =

∆µ

2MN

κ̃µ
1 =

/nP̄ µ

n · P̄
κ̃µ

2 =
2MN nµ

n · P̄

κ̃µ
3 =

4M2
N /nnµ

(n · P̄ )2

κ̃µ
4 =

2iMN σµνnν

n · P̄
κ̃µ

5 =
∆µ/n

n · P̄

We have evaluated the respective determinant in eq. 5.1 using Mathematica. Since it does not
vanish we have found a complete set of physical and spurious covariants which parameterizes

the vectorial soft amplitude G
µ(N→N)
V,λ′λ .

The first three covariants are physical. They correspond to the mixed twist GPDs introduced
in eq. 4.51. The other five covariants are spurious. Note that we have chosen to compensate
each appearance of the null vector nµ in the numerator by a factor n · P̄ in the denomina-
tor in order to avoid arbitrary scaling factors from the null plane vector in the coefficients C ij.

For elastic scattering gauge invariance gives two additional constraints so we expect to find
2 physical gauge invariant covariants, one non contributing non gauge invariant covariant
(κµ

3 ), 4 gauge invariant spurious covariants and two non gauge invariant covariants. In fact
although neither κ̃µ

4 nor κ̃µ
5 satisfy current conservation one can construct a current conserving

covariant from κµ
3 , κ̃µ

4 and κ̃µ
5 namely

κ̃µ = κµ
3 − 1

2
κ̃µ

4 − t

8M2
N

κ̃µ
5 .

Since the violation of gauge invariance is a possible consequence of covariance breaking one
should involve all eight covariants in the extraction of the physical form factors. However for
the N → N transition we are in the lucky situation that gauge invariance is satisfied on the
level of amplitude relations

F x
↑↑ = 0

F x
↓↑ = 0 .

Therefore for elastic scattering using only κµ
1 , κµ

2 , κ̃µ
1 , κ̃µ

2 and κ̃µ
3 produces the same result as

using all eight covariants.
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The spurious covariants κ̃µ
1 , κ̃µ

2 and κ̃µ
3 were already given in [22]1. κ̃µ

4 and κ̃µ
5 only appear in

DVCS where we find five spurious GPDs.

5.2.2 Axial N → N transition

Counting the number of independent DVCS transition amplitudes again yields 8 due to parity.
A possible complete set of covariants reads

κµ
1 = γµγ5

κµ
2 =

∆µ

2MN
γ5

κµ
3 =

iσµν

2MN
∆νγ5

κ̃µ
1 =

4M2
N /nnµ

(n · P̄ )2
γ5

κ̃µ
2 =

2iMN σµνnν

n · P̄ γ5

κ̃µ
3 =

/nP̄ µ

n · P̄ γ5

κ̃µ
4 =

2MN nµ

n · P̄ γ5

κ̃µ
5 =

∆µ/n

n · P̄ γ5 .

Completeness of this set follows from the counting argument above. We have verified linear
independence of this covariant set by evaluating the respective determinant in eq. 5.1 using
Mathematica and finding a non zero result.

The first three covariants are physical. They correspond to the mixed twist GPDs introduced
in eq. 4.52. The other five covariants are spurious. Again we have chosen to compensate
each appearance of the null vector nµ in the numerator by a factor n · P̄ in the denomina-
tor in order to avoid arbitrary scaling factors from the null plane vector in the coefficients C ij.

For elastic scattering only κ̃µ
1 , κ̃µ

2 and κ̃µ
3 have to be considered. κ̃µ

4 only contributes to
the second class current while κ̃µ

5 does not have to be considered at all. It is only related to
〈P ′, ↑| Jx | P, ↑〉 which is zero. These statements follow no simple argument like in the case
of the non gauge invariant spurious covariants for the vectorial transition. We refer to the
following section where these statement will be proven.

5.2.3 Vectorial N → ∆ transition

Counting the number of independent DVCS transition amplitudes yields 16 since parity relates

G
µ(N→∆)

V, 3
2
↑ with G

µ(N→∆)

V,− 3
2
↓ , G

µ(N→∆)

V, 1
2
↑ with G

µ(N→∆)

V,− 1
2
↓ , G

µ(N→∆)

V, 1
2
↓ with G

µ(N→∆)

V,− 1
2
↑ and G

µ(N→∆)

V, 3
2
↓

1We have defined κ̃
µ
2 and κ̃

µ
3 such that the corresponding spurious from factors are dimensionless.
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with G
µ(N→∆)

V,− 3
2
↑ . A possible complete set of covariants reads

κµν
1 =

(
γµ∆ν − gµν /∆

)
γ5

κµν
2 =

(
P ′µ∆ν − (P ′ · ∆)gµν

)
γ5

κµν
3 =

(
∆µ∆ν − tgµν

)
γ5

κµν
4 = gµνγ5

κ̃µν
1 =

nµ∆νγ5

n · P̄
κ̃µν

2 =
nµnν /∆γ5

(n · P̄ )2

κ̃µν
3 =

nµnν/nγ5

(n · P̄ )3

κ̃µν
4 =

nµ∆ν/nγ5

(n · P̄ )2

κ̃µν
5 =

(
(P ′ · ∆)∆µ − tP ′µ

)
nνγ5

n · P̄

κ̃µν
6 =

(
tγµ − ∆µ /∆

)
nνγ5

n · P̄

κ̃µν
7 =

(tgµν − ∆µ∆ν
)
/nγ5

n · P̄

κ̃µν
8 =

(
tP ′µ∆ν − (P ′ · ∆)∆µ∆ν

)
/nγ5

n · P̄
κ̃µν

9 =
∆µnνγ5

n · P̄
κ̃µν

10 =
P ′µnν/nγ5

(n · P̄ )2

κ̃µν
11 =

γµnν/nγ5

(n · P̄ )2

κ̃µν
12 =

γµ∆ν/nγ5

n · P̄ .

The first four covariants are physical. They correspond to the mixed twist GPDs H1(x, ξ, t),
H2(x, ξ, t), H3(x, ξ, t) and H4(x, ξ, t). The other 12 covariants are spurious.

For the N → ∆ form factors only the first three covariants are physical. We have chosen
κ̃µν

1 .. κ̃µν
8 such that they are manifestly gauge invariant. Using κµν

4 , κ̃µν
9 , κ̃µν

10 , κ̃µν
11 and

κ̃µν
12 one can construct another gauge invariant covariant. Hence we find a total of 12 gauge

invariant covariants which agrees with the four constraints from gauge invariance

∆µF
µ
λ′λ = 0 .

The first four spurious covariants κ̃µν
1 , κ̃µν

2 , κ̃µν
3 and κ̃µν

4 are chosen such that they only receive
contributions from 〈P ′ | J− | P 〉. This reduces the algebraic effort considerably which is a
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nice feature since even if we use Mathematica the inversion of 16*16 matrices is quite involved.

We point out that unlike in the N → N transition also the non gauge invariant covari-
ants have to be taken into account in the extraction of the physical form factors. This will
become clear in the next section.

5.2.4 Axial N → ∆ transition

Counting of the number of independent DVCS transition amplitudes again yields 16 due to
parity. A possible complete set of covariants reads

κµν
1 = gµν

κµν
2 =

∆µ∆ν

M2
N

κµν
3 =

gµν /∆ − γµ∆ν

MN

κµν
4 =

2
[
(P̄ · ∆)gµν − P̄ µ∆ν

]

M2
N

κ̃µν
1 =

nµ∆ν

n · P̄
κ̃µν

2 =
nµnν /∆

(n · P̄ )2

κ̃µν
3 =

nµnν/n

(n · P̄ )3

κ̃µν
4 =

nµ∆ν/n

(n · P̄ )2

κ̃µν
5 =

(
(P̄ · ∆)∆µ − tP̄ µ

)
nν

n · P̄

κ̃µν
6 =

(
tγµ − ∆µ /∆

)
nν

n · P̄

κ̃µν
7 =

(tgµν − ∆µ∆ν
)
/n

n · P̄

κ̃µν
8 =

(
tP̄ µ∆ν − (P̄ · ∆)∆µ∆ν

)
/n

n · P̄
κ̃µν

9 =
∆µnν

n · P̄
κ̃µν

10 =
P̄ µnν/n

(n · P̄ )2
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κ̃µν
11 =

γµnν/n

(n · P̄ )2

κ̃µν
12 =

γµ∆ν/n

n · P̄ .

The first four covariants are physical. They correspond to the mixed twist GPDs C1(x, ξ, t),
C2(x, ξ, t), C3(x, ξ, t) and C4(x, ξ, t). The other 12 covariants are spurious.

For the N → ∆ form factors no simplifications arise since there is no obvious analogy to
second class currents for the N → ∆ transition.

5.3 Orthogonalization of spurious covariants

Having the goal in mind to disentangle physical GPDs and form factors from spurious ones
it is clear that the spurious covariants have to be orthogonal to the physical ones. First we
have to specify what we mean by orthogonality between covariants. We call two covariants
Aµ and Bµ orthogonal if

∑

λ′λ

〈P ′, λ′ | Aµ | P, λ〉〈P ′, λ′ | Bµ | P, λ〉? = 0 . (5.1)

In [22] orthogonality is defined by

Tr

[
( /P ′ +m)Aµ( /P +m)B̄µ

]
= 0 (5.2)

with B̄µ := γ0(Bµ)†γ0. Our definition in eq. 5.1 has the advantage that it can also be applied
to the N → ∆ transition. In this case we call the covariants Aµν and Bµν orthogonal if

∑

λ′λ

[
ūρ

λ′(P
′)Aµ

ρuλ(P )

][
ūκ

λ′(P ′)Bµκuλ(P )

]?

= 0 .

For the N → N transition we can show equivalence of these two expressions:
∑

λ′,λ

〈P ′, λ′ | Aµ | P, λ〉〈P ′, λ′ | Bµ | P, λ〉? = 0

⇔
∑

λ′,λ

〈P ′, λ′ | Aµ | P, λ〉〈P, λ | B̄µ | P ′, λ′〉 = 0

⇔
∑

λ′

〈P ′, λ′ | Aµ
(
/P +m

)
B̄µ | P ′, λ′〉 = 0

⇔ Tr
(
/P ′ +m

)
Aµ
(
/P +m

)
B̄µ = 0

Here two identities for spin sums have been used:
∑

λ

uλ(P ) ūλ(P ) = /P +m



5.3. Orthogonalization of spurious covariants 141

and ∑

λ

[
ūλ(P )Auλ(P )

]
= Tr

[(
/P +m

)
A
]

with A being an arbitrary 4 × 4 matrix. The latter identity can be proven in a straight for-
ward way by using a complete set of sixteen 4 × 4 matrices for A (e.g. 1, γ5, γ

µ, γ5γ
µ, σµν)

and verifying the identity for these matrices individually.

Now the orthogonalization procedure is as following. With the physical covariants κµ
i and

the spurious covariants κ̃µ
j we choose the ansatz

κ̃′µj := κ̃µ
j +

∑

i

xi · κµ
i .

The requirement that κ̃µ
j is orthogonal to all κµ

i then provides i equations from which the xi

can be determined.

Finally we can calculate the coefficients

Ciµ
λ′λ =〈P ′, λ′ | κµ

i | P, λ〉
Cjµ

λ′λ =〈P ′, λ′ | κ̃′µj | P, λ〉

and inverting the resulting matrix we obtain expressions for physical (and spurious) form
factors and GPDs in terms of transition amplitudes.

Before we proceed with the orthogonalization procedure for the different processes we like
to comment on a statement in [22]:

The authors state that the covariants which we denoted by κ̃µ
2 and κ̃µ

3 require no orthog-
onalization since unlike κ̃µ

1 they have no part that would not depend on the null vector. The
reason why they claim not having to orthogonalize κ̃2 and κ̃3 roots in their procedure to ob-
tain the form factors from the amplitudes. They contract the current operator with the null
vector, in which case the latter covariants drop out. However the impact of these covariants
should appear in another step in their calculations as can be seen from their equations (15-17).

Particularly if one used an orthogonalized form of the covariants κ̃µ
2 and κ̃µ

3 their coefficients
c4 and c5 would change. Similarly the expressions for their equations (22-23) would change.
We claim that although the argument given by the authors about the structure vanishing
after contraction of the current with the null vector is correct they still should orthogonalize
the other two spurious covariants in order to obtain correct results. To put this differently
we claim that although the non orthogonalized covariants κ̃µ

2 and κ̃µ
3 bear no null vector in-

dependent contributions they can still afflict the physical form factors due to mixing effects
with κ̃µ

1 which depends on both.

Just for the records we remark that if we work with only κ̃µ
1 being orthogonalized we find

back the expressions that are given in equation (23) in [22]. But we do not agree with their
neglecting of two spurious covariants in the orthogonalization procedure.

Next we perform the orthogonalization of the spurious covariants for the different transitions.
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5.3.1 Vectorial N → N transition

With the ansatz

κ̃′µ1 =κ̃µ
1 + x1κ

µ
1 + y1κ

µ
2 + z1κ

µ
3

κ̃′µ2 =κ̃µ
2 + x2κ

µ
1 + y2κ

µ
2 + z2κ

µ
3

κ̃′µ3 =κ̃µ
3 + x3κ

µ
1 + y3κ

µ
2 + z3κ

µ
3

κ̃′µ4 =κ̃µ
4 + x4κ

µ
1 + y4κ

µ
2 + z4κ

µ
3

κ̃′µ5 =κ̃µ
5 + x5κ

µ
1 + y5κ

µ
2 + z5κ

µ
3

the above described orthogonalization procedure yields

x1 = − 4m2

4m2 − t

y1 =
4m2

4m2 − t

z1 =0

x2 = − 8m2

4m2 − t

y2 =
8m2

4m2 − t

z2 =
8ξm2

t

x3 = −
8m2

(
4(2 + ξ2)m2 + (1 − ξ2)t

)

(4m2 − t)2

y3 =
32m4

(
4ξ2m2 + (3 − ξ2)t

)

(4m2 − t)2t

z3 =
64ξm4

(4m2 − t)t

x4 =0

y4 =
8ξm2

t

z4 =
8m2

4m2 − t
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x5 =0

y5 =0

z5 = − 8m2

4m2 − t
. (5.3)

Equipped with the orthogonalized set of spurious covariants we can now proceed and express
the form factors in terms of all possible amplitudes. For DVCS these amplitudes can now be
decomposed into

Gµ
λ′,λ =

∑

i

C
(i)µ
λ′,λA

i(x, ξ, t) +
∑

k

C̃
(k)µ
λ′,λ B

k(x, ξ, t)

C
(i)µ
λ′,λ =

1

2P̄+
ū(P ′, λ′)κµ

i u(P, λ)

C̃
(i)µ
λ′,λ =

1

2P̄+
ū(P ′, λ′)κ̃′µi u(P, λ)

{
Ai(x, ξ, t), Bk(x, ξ, t)

}
=
{
H(?)(x, ξ, t), E(?)(x, ξ, t), X(?)(x, ξ, t), B1(x, ξ, t), B2(x, ξ, t),

B3(x, ξ, t), B4(x, ξ, t), B5(x, ξ, t)} .

By inverting this relation one obtains an unambiguous expression for both, physical and
spurious GPDs. They can be expressed in terms of the amplitude relations. We find

H(?)(x, ξ, t) =

√
1 − ξ2(∆2

x + 8M2
N )

4(∆2
x + 4M2

N )
G̃+
↑↑ −

√
1 − ξ2∆xMN

2(∆2
x + 4M2

N )
G̃+
↓↑ +

ξ
√

1 − ξ2∆x

2(∆2
x + 4M2

N )
G̃x
↑↑

+
ξ
√

1 − ξ2MN

∆2
x + 4M2

N

G̃x
↓↑ − i

√
1 − ξ2∆x

2(∆2
x + 4M2

N )
G̃y
↑↑ − i

ξ
√

1 − ξ2MN

∆2
x + 4M2

N

G̃y
↓↑

+
(1 − ξ2)

3
2 (8M2

N − ∆2
x)

4(∆2
x + 4M2

N )2
G̃−↑↑ −

3(1 − ξ2)
3
2 ∆xMN

2(∆2
x + 4M2

N )2
G̃−↓↑

E(?)(x, ξ, t) =

√
1 − ξ2

(∆2
x + 4M2

N )(∆2
x + 4ξ2M2

N )

(
−
[
(1 + ξ2)∆2

x + 8ξ2M2
N

]
M2

N G̃
+
↑↑

+ ∆xMN

[
∆2

x + 2(1 + ξ2)M2
N

]
G̃+
↓↑ + 2ξ(1 − ξ2)∆xM

2
N G̃

x
↑↑

+ 4ξ(1 − ξ2)M3
N G̃

x
↓↑ − 2i(1 − ξ2)∆xM

2
N G̃

y
↑↑ − 4iξ(1 − ξ2)M3

N G̃
y
↓↑

− (1 − ξ2)M2
N

[
(3 − ξ2)∆2

x + 8ξ2M2
N

]

∆2
x + 4M2

N

G̃−↑↑

− (1 − ξ2)∆xMN

[
(2 − 6ξ2)M2

N − ∆2
x

]

∆2
x + 4M2

N

G̃−↓↑

)

X(?)(x, ξ, t) =

√
1 − ξ2

∆2
x + 4ξ2M2

N

(
−2ξM2

N G̃
+
↑↑ + ξ∆xMN G̃

+
↓↑ +

4(1 − ξ2)∆xM
2
N

∆2
x + 4M2

N

G̃x
↑↑

− 2(1 − ξ2)∆2
xMN

∆2
x + 4M2

N

G̃x
↓↑ +

2ξ(1 − ξ2)M2
N

∆2
x + 4M2

N

G̃−↑↑ −
ξ(1 − ξ2)∆xMN

∆2
x + 4M2

N

G̃−↓↑

)
. (5.4)

We note that if we introduce the consistency relations in eq. 4.55 we find back the expressions
from eq. 4.53. This is obvious since if the consistency relations are satisfied there are no
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covariance breaking effects which have to be absorbed into spurious GPDs.

For elastic scattering one can read off from eq. 5.3 that κ̃′µ1 , κ̃′µ2 and κ̃′µ3 are gauge non
invariant covariants. The amplitudes can be decomposed into

F µ
λ′,λ =

∑

i

C
(i)µ
λ′,λF

i(Q2) +
∑

k

C̃
(k)µ
λ′,λ B

k(Q2)

C
(i)µ
λ′,λ =

1

2
√
P ′+P+

ū(P ′, λ′)κµ
i u(P, λ)

C̃
(i)µ
λ′,λ =

1

2
√
P ′+P+

ū(P ′, λ′)κ̃′µi u(P, λ)

{
F i(Q2), Bk(Q2)

}
=
{
F1(Q

2), F2(Q
2), F3(Q

2), B1(Q
2), B2(Q

2), B3(Q
2), B4(Q

2), B5(Q
2)
}

.

For the time being we allow for the unphysical form factors F3(Q
2), B4(Q

2) and B5(Q
2) which

are forbidden by gauge invariance. We will discuss this issue in a moment.

λ′λµ C1µ
λ′λ C2µ

λ′λ C̃1µ
λ′λ C̃2µ

λ′λ C̃3µ
λ′λ C3µ

λ′λ C̃4µ
λ′λ C̃5µ

λ′λ
↑↑ + x x

↓↑ + x

↑↑ y x x

↑↑ − x x x x x

↓↑ − x x x

↑↑ x x x

↓↑ x x x

↓↑ y x

Figure 5.1: The non vanishing coefficients for elastic N → N scattering are denoted by
an x.

From fig. 5.1 we see that κµ
3 , κ̃′µ4 and κ̃′µ5 are not required for the extraction of the physical

form factors. They can be obtained by inverting the corresponding 5*5 matrix. We emphasize
that the reason why κµ

3 , κ̃′µ4 and κ̃′µ5 are not required is neither that these covariants are not
gauge invariant nor that they are orthogonal to the physical covariants. We find for the form
factors expressed in terms of the amplitude relations:

F1(t) =
1

4(∆2
x + 4M2

N )2

(
(∆4

x + 12∆2
xM

2
N + 32M4

N )F̃+
↑↑ − (8∆xM

3
N + 2∆3

xMN )F̃+
↓↑

− i(8∆xM
2
N + 2∆3

x)F̃ y
↑↑ + (8M2

N − ∆2
x)F̃

−
↑↑ − 6∆xMN F̃

−
↓↑

)

F2(t) =
1

(∆3
x + 4∆xM

2
N )2

(
−(∆4

xM
2
N + 4∆2

xM
4
N )F̃+

↑↑ + (∆5
xMN + 6∆3

xM
3
N + 8∆xM

5
N )F̃+

↓↑

− i(2∆3
xM

2
N + 8∆xM

4
N )F̃ y

↑↑ − 3∆2
xM

2
N F̃
−
↑↑ + (∆3

xMN − 2M3
N∆x)F̃−↓↑

)

F3(t) =
4M2

N

∆x(∆2
x + 4M2

N )
F̃ x
↑↑ −

2MN

∆2
x + 4M2

N

F̃ x
↓↑ . (5.5)
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Again we remark that if we introduce the consistency relations in eq. 4.28 we find back the
expressions from eq. 4.16. Additionally the only terms in F3(t) are F̃ x

↑↑ and F̃ x
↓↑ which are

zero for elastic scattering.

5.3.2 Axial N → N transition

With the ansatz

κ̃′µ1 =κ̃µ
1 + x1κ

µ
1 + y1κ

µ
2 + z1κ

µ
3

κ̃′µ2 =κ̃µ
2 + x2κ

µ
1 + y2κ

µ
2 + z2κ

µ
3

κ̃′µ3 =κ̃µ
3 + x3κ

µ
1 + y3κ

µ
2 + z3κ

µ
3

κ̃′µ4 =κ̃µ
4 + x4κ

µ
1 + y4κ

µ
2 + z4κ

µ
3

κ̃′µ5 =κ̃µ
5 + x5κ

µ
1 + y5κ

µ
2 + z5κ

µ
3

the orthogonalization procedure gives

x1 =8m2
[ 1

4m2 − t
+
ξ2

t

]

y1 = −
32m4

[
(1 − 3ξ2)t+ 12ξ2m2

]

(4m2 − t)t2

z1 = − 64ξm4

(4m2 − t)t

x2 = − 8m2

4m2 − t

y2 =
8m2

4m2 − t

z2 =
8ξm2

t

x3 =0

y3 =0

z3 = − 4ξm2

t

x4 =0

y4 =
8ξm2

t

z4 =
8m2

4m2 − t
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x5 =0

y5 =
8ξm2

t
z5 =0 .

Equipped with the orthogonalized set of spurious covariants we can now proceed and express
the form factors in terms of all possible amplitudes. For DVCS these amplitudes can now be
decomposed into

Gµ
λ′,λ =

∑

i

C
(i)µ
λ′,λA

i(x, ξ, t) +
∑

k

C̃
(k)µ
λ′,λ B

k(x, ξ, t)

C
(i)µ
λ′,λ =

1

2P̄+
ū(P ′, λ′)κµ

i u(P, λ)

C̃
(i)µ
λ′,λ =

1

2P̄+
ū(P ′, λ′)κ̃′µi u(P, λ)

{
Ai(x, ξ, t), Bk(x, ξ, t)

}
=
{
H̃(?)(x, ξ, t), Ẽ(?)(x, ξ, t), X̃(?)(x, ξ, t), B1(x, ξ, t), B2(x, ξ, t),

B3(x, ξ, t), B4(x, ξ, t), B5(x, ξ, t)} .

By inverting this relation one obtains an unambiguous expression for both, physical and
spurious GPDs. They can be expressed in terms of the amplitude relations. We find

H̃(?)(x, ξ, t) =

√
1 − ξ2∆2

x

4(∆2
x + 4ξ2M2

N )
G̃+
↑↑ +

ξ
√

1 − ξ2∆xMN

2(∆2
x + 4ξ2M2

N )
G̃+
↓↑ +

ξ
√

1 − ξ2∆x

2(∆2
x + 4ξ2M2

N )
G̃x
↑↑

+
ξ2
√

1 − ξ2MN

∆2
x + 4ξ2M2

N

G̃x
↓↑ − i

√
1 − ξ2∆x

2(∆2
x + 4M2

N )
G̃y
↑↑ − i

√
1 − ξ2MN

∆2
x + 4M2

N

G̃y
↓↑

− (1 − ξ2)
3
2 ∆2

x

4(∆2
x + 4M2

N )(∆2
x + 4ξ2M2

N )
G̃−↑↑ −

ξ(1 − ξ2)
3
2 ∆xMN

2(∆2
x + 4M2

N )(∆2
x + 4ξ2M2

N )
G̃−↓↑

Ẽ(?)(x, ξ, t) =

√
1 − ξ2

(∆2
x + 4ξ2M2

N )

([
(1 − 3ξ2)∆2

x − 8ξ2M2
N

]
M2

N

∆2
x + 4ξ2M2

N

G̃+
↑↑

+
ξ∆xMN

[
∆2

x + (6 − 2ξ2)M2
N

]

∆2
x + 4ξ2M2

N

G̃+
↓↑ +

6ξ(1 − ξ2)∆xM
2
N

∆2
x + 4ξ2M2

N

G̃x
↑↑

− 2(1 − ξ2)MN (∆2
x − 2ξ2M2

N )

∆2
x + 4ξ2M2

N

G̃x
↓↑ − i

2(1 − ξ2)∆xM
2
N

∆2
x + 4M2

N

G̃y
↑↑

− i
4(1 − ξ2)M3

N

∆2
x + 4M2

N

G̃y
↓↑ −

(1 − ξ2)MN

[
(1 − 3ξ2)∆2

x − 8ξ2M2
N

]

(∆2
x + 4M2

N )(∆2
x + 4ξ2M2

N )
G̃−↑↑

− ξ(1 − ξ2)∆xMN

[
∆2

x + (6 − 2ξ2)M2
N

]

(∆2
x + 4M2

N )(∆2
x + 4ξ2M2

N )
G̃−↓↑

)

X̃(?)(x, ξ, t) =

√
1 − ξ2MN

∆2
x + 4ξ2M2

N

(
−2ξMN G̃

+
↑↑ + ∆xG̃

+
↓↑ −

2ξ(1 − ξ2)MN

∆2
x + 4M2

N

G̃−↑↑

+
(1 − ξ2)∆x

∆2
x + 4M2

N

G̃−↓↑

)
. (5.6)
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We note that if we introduce the consistency relations in eq. 4.56 we find back the expressions
from eq. 4.54. This is obvious since if the consistency relations are satisfied there are no
covariance breaking effects which have to be absorbed into spurious GPDs.

For elastic scattering the amplitudes can be decomposed into

F µ
λ′,λ =

∑

i

C
(i)µ
λ′,λF

i(Q2) +
∑

k

C̃
(k)µ
λ′,λ B

k(Q2)

C
(i)µ
λ′,λ =

1

2
√
P ′+P+

ū(P ′, λ′)κµ
i u(P, λ)

C̃
(i)µ
λ′,λ =

1

2
√
P ′+P+

ū(P ′, λ′)κ̃′µi u(P, λ)

{
F i(Q2), Bk(Q2)

}
=
{
GA(Q2), GP (Q2), GT (Q2), B1(Q

2), B2(Q
2), B3(Q

2), B4(Q
2), B5(Q

2)
}

.

λ′λµ C1µ
λ′λ C2µ

λ′λ C̃1µ
λ′λ C̃2µ

λ′λ C̃3µ
λ′λ C3µ

λ′λ C̃4µ
λ′λ C̃5µ

λ′λ

↑↑ + x x

↓↑ x x x x

↑↑ y x

↓↑ y x x

↑↑ − x x x

↓↑ + x

↓↑ − x x

↑↑ x x

Figure 5.2: The non vanishing coefficients for the axial elastic N → N transition are
denoted by an x.

From fig. 5.2 we conclude that we can obtain GA(Q2) and GP (Q2) by inverting a 5*5 matrix
and GT (Q2) from the inversion of a 2*2 matrix. κ̃µ

5 is related to 〈P ′, ↑| Jx | P, ↑〉 which is
zero. The form factors then can be expressed in terms of the amplitude relations. We find

GA(t) =
1

4
F̃+
↑↑ − i

∆x

2∆2
x + 8M2

N

F̃ y
↑↑ − i

MN

∆2
x + 4M2

N

F̃ y
↓↑ −

1

4(∆2
x + 4M2

N )
F̃−↑↑

GP (t) =
M2

N

∆2
x

F̃+
↑↑ −

2MN

∆2
x

F̃ x
↓↑ − i

2M2
N

∆3
x + 4∆xM2

N

F̃ y
↑↑ − i

4M3
N

∆4
x + 4∆2

xM
2
N

F̃ y
↓↑ −

M2
N

∆4
x + 4∆2

xM
2
N

F̃−↑↑

GT (t) =
MN

∆x
F̃+
↓↑ +

MN

∆x(∆2
x + 4M2

N )
F̃−↓↑ . (5.7)

Again we remark that if we introduce the consistency relations in eq. 4.29 we find back the
expressions from eq. 4.17. GT vanishes in our model calculation since F̃+

↓↑ and F̃−↓↑ are zero.

5.3.3 Vectorial N → ∆ transition

With the ansatz

κ̃′µν
i =κ̃µν

i + wiκ
µν
1 + xiκ

µν
2 + yiκ

µν
3 + ziκ

µν
4 for i = 1..12
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and defining

N = ∆4
x + 2∆2

x

[
(1 + ξ)2M2

∆ + (1 − ξ)2M2
N

]
+
[
(1 − ξ)2M2

N − (1 + ξ)2M2
∆

]2

the above described orthogonalization procedure yields

w1 =0

x1 = −
4(1 − ξ2)

(
∆2

x + ξ
[
(1 + ξ)2M2

∆ − (1 − ξ)2M2
N

])

N

y1 =
2(1 − ξ)(1 − ξ2)

[
∆2

x + (1 − ξ)2M2
N − (1 + ξ)2M2

∆

]

N
z1 =2ξ

w2 =0

x2 =
4(1 − ξ)(1 − ξ2)2(M∆ +MN )

N2

(
∆2

x

[
(3 − ξ)(1 − ξ)2M2

N − (3 − 5ξ)(1 + ξ)2M2
∆

]

+ (3 + ξ)∆4
x − 2ξ

[
(1 − ξ)2M2

N − (1 + ξ)2M2
∆

]2
)

y2 = − 4(1 − ξ)4(1 + ξ)2(MN +M∆)

N2

(
∆4

x +
[
(1 − ξ)2M2

N − (1 + ξ)2M2
∆

]2

− 2∆2
x

[
2(1 + ξ)2M2

∆ − (1 − ξ)2M2
N

])

z2 =
4ξ(1 − ξ)(1 − ξ2)(MN +M∆)

[
(1 + ξ)2M2

∆ − (1 − ξ)2M2
N − ∆2

x

]

N

w3 =
4(1 − ξ)(1 − ξ2)3∆2

x

[
(1 + ξ)2M2

∆ − (1 − ξ)2M2
N − ∆2

x

]

N2

x3 = − 16(1 − ξ)(1 − ξ2)3
(

∆2
x +

[
(1 + ξ)M∆ + (1 − ξ)MN

]2
)2(

∆2
x +

[
(1 + ξ)M∆ − (1 − ξ)MN

]2
)3

·
(
ξ
[
(1 + ξ)M∆ + (1 − ξ)MN

]2[
(1 + ξ)M∆ − (1 − ξ)MN

]3

− 2∆2
x

[
(1 − ξ)3M3

N − (1 − ξ)3(1 + ξ)M 2
NM∆ + (1 − ξ2)2MNM

2
∆ − (1 − 2ξ)(1 + ξ)3M3

∆

]

− ∆4
x

[
3(1 + ξ)M∆ − (2 − ξ − ξ2)MN

])
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y3 = − 8(1 − ξ)2(1 − ξ2)3
(

∆2
x +

[
(1 + ξ)M∆ + (1 − ξ)MN

]2
)2(

∆2
x +

[
(1 + ξ)M∆ − (1 − ξ)MN

]2
)3

·
([

(1 + ξ)M∆ + (1 − ξ)MN

]2[
(1 + ξ)M∆ − (1 − ξ)MN

]3

+ ∆4
x

[
3(1 + ξ)M∆ − (1 − ξ)MN

]
− 2∆2

x

[
3(1 + ξ)3M3

∆

− 2(1 − ξ)(1 + ξ)2MNM
2
∆ − 2(1 − ξ)(1 − ξ2)M2

NM∆ + (1 − ξ)3M3
N

])

z3 =
8ξ(1 − ξ)(1 − ξ2)2

(
∆2

x +
[
(1 + ξ)M∆ + (1 − ξ)MN

]2
)(

∆2
x +

[
(1 + ξ)M∆ − (1 − ξ)MN

]2
)2

·
(

∆2
x

[
(1 − ξ)MN − 2(1 + ξ)M∆

]
+
[
(1 + ξ)M∆ + (1 − ξ)MN

]

·
[
(1 + ξ)M∆ − (1 − ξ)MN

]2
)

w4 =
2(1 − ξ2)2∆2

x

N

x4 = − 4(1 − ξ2)2
(

∆2
x +

[
(1 + ξ)M∆ + (1 − ξ)MN

]2
)(

∆2
x +

[
(1 + ξ)M∆ − (1 − ξ)MN

]2
)2

·
(

2ξ
[
(1 + ξ)M∆ + (1 − ξ)MN

][
(1 + ξ)M∆ − (1 − ξ)MN

]2

+ ∆2
x

[
(3 + 2ξ − ξ2)M∆ − (3 − 2ξ − ξ2)MN

])

y4 = − 4(1 − ξ)(1 − ξ2)2
(

∆2
x +

[
(1 + ξ)M∆ + (1 − ξ)MN

]2
)(

∆2
x +

[
(1 + ξ)M∆ − (1 − ξ)MN

]2
)2

·
(

∆2
x

[
(1 − ξ)MN − 2(1 + ξ)M∆

]
+
[
(1 + ξ)M∆ + (1 − ξ)MN

]

·
[
(1 + ξ)M∆ − (1 − ξ)MN

]2
)

z4 =
4ξ(1 − ξ2)

[
(1 + ξ)M∆ − (1 − ξ)MN

]

(
∆2

x +
[
(1 + ξ)M∆ − (1 − ξ)MN

]2
)
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w5 =0

x5 =
2(1 − ξ)

N

(
∆4

x − (1 − ξ)∆2
x

[
(1 + ξ)M 2

∆ − (1 − 3ξ)M 2
N

]

− 2ξ
[
(1 + ξ)3M4

∆ − 2(1 − ξ2)M2
∆M

2
N + (1 − ξ)3M4

N

])

y5 = − (1 − ξ)

N

(
∆4

x + (1 − ξ)4M4
N − 2(1 − ξ)3(1 + ξ)M 2

NM
2
∆ + (1 − ξ)(1 + ξ)3M4

∆

− 2(1 − ξ)∆2
x

[
(1 + ξ)M 2

∆ − (1 − ξ)M 2
N

])

z5 =0

w6 = − 2(1 − ξ)

N

(
∆4

x − (1 − ξ)∆2
x

[
(1 + ξ)M 2

∆ − (1 − 3ξ)M 2
N

]

− 2ξ
[
(1 − ξ)3M4

N + (1 + ξ)3M4
∆ − 2(1 − ξ2)M2

NM
2
∆

])

x6 =0

y6 = −
2(1 − ξ)2(1 + ξ)(M∆ +MN )

[
∆2

x + (1 − ξ)2M2
N − (1 + ξ)2M2

∆

]

N
z6 =0

w7 =0

x7 =0

y7 = −
2(1 − ξ2)

[
(1 + ξ)M∆ − (1 − ξ)MN

]

∆2
x +

[
(1 + ξ)M∆ − (1 − ξ)MN

]2

z7 =0

w8 =0

x8 =

2
[
(1 + ξ)M∆ − (1 − ξ)MN

](
∆2

x + 2ξ
[
(1 + ξ)M 2

∆ − (1 − ξ)M 2
N

])

∆2
x +

[
(1 + ξ)M∆ − (1 − ξ)MN

]2

y8 = −

[
(1 + ξ)M∆ − (1 − ξ)MN

][
∆2

x + (1 − ξ)2M2
N − (1 − 2ξ − 3ξ2)M2

∆

]

∆2
x +

[
(1 + ξ)M∆ − (1 − ξ)MN

]2

z8 =0

w9 =0

x9 =0
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y9 =
2(1 + ξ)(1 − ξ)2

[
∆2

x + (1 − ξ)2M2
N − (1 + ξ)2M2

∆

]

N

z9 = − 2(1 − ξ)

N

(
∆4

x − (1 − ξ)∆2
x

[
(1 + ξ)M 2

∆ − (1 − 3ξ)M 2
N

]

− 2ξ
[
(1 − ξ)3M4

N + (1 + ξ)3M4
∆ − 2(1 − ξ2)MNM

2
∆

])

w10 =0

x10 = − 4(1 − ξ)(1 − ξ2)2
(

∆2
x +

[
(1 + ξ)M∆ + (1 − ξ)MN

]2
)(

∆2
x +

[
(1 + ξ)M∆ − (1 − ξ)MN

]2
)2

·
(

∆2
x

[
(1 − ξ)MN − 2(1 + ξ)M∆

]
+
[
(1 + ξ)M∆ + (1 − ξ)MN

]

·
[
(1 + ξ)M∆ − (1 − ξ)MN

]2
)

y10 =0

z10 = − 2(1 − ξ)(1 − ξ2)
(

∆2
x +

[
(1 + ξ)M∆ + (1 − ξ)MN

]2
)(

∆2
x +

[
(1 + ξ)M∆ − (1 − ξ)MN

]2
)2

·
(

∆4
x

[
2(1 + ξ)M∆ − (1 − ξ)MN

]
+ ∆2

x

[
−2(1 − ξ)3M3

N + 2(1 − ξ)2(1 + ξ)MNM
2
∆

− 3(1 − ξ2)M2
NM∆ − (3 − 5ξ)(1 + ξ)2M3

∆

]
−
[
(1 + ξ)M∆ − (1 − ξ)MN

]2

·
[
(1 − ξ)3M3

N + (1 − ξ2)(1 + ξ)M∆M
2
N − (1 − 3ξ)(1 + ξ)2M3

∆

− (1 − 3ξ − ξ2 + 3ξ3)MNM
2
∆

])

w11 =
4(1 − ξ)(1 − ξ2)2

(
∆2

x +
[
(1 + ξ)M∆ + (1 − ξ)MN

]2
)2(

∆2
x +

[
(1 + ξ)M∆ − (1 − ξ)MN

]2
)

·
([

(1 + ξ)M∆ + (1 − ξ)MN

]2[
(1 + ξ)M∆ − (1 − ξ)MN

]

− ∆2
x

[
(1 − ξ)MN + 2(1 + ξ)M∆

])

x11 =
8(1 − ξ2)3

N2

(
2∆4

x + ∆2
x

[
(1 − ξ)2M2

N + (1 + ξ)2M2
∆

]
−
[
(1 − ξ)2M2

N − (1 + ξ)2M2
∆

]2
)
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y11 =0

z11 = − 4(1 − ξ2)2
(

∆2
x +

[
(1 + ξ)M∆ + (1 − ξ)MN

]2
)(

∆2
x +

[
(1 + ξ)M∆ − (1 − ξ)MN

]2
)2

·
(

∆4
x − 2ξM∆

[
(1 + ξ)M∆ + (1 − ξ)MN

][
(1 + ξ)M∆ − (1 − ξ)MN

]2

− (1 − ξ)∆2
x

[
2(1 + ξ)M 2

∆ − (1 − ξ)M 2
N − (1 − ξ)MNM∆

])

w12 =
2(1 − ξ2)

[
(1 + ξ)M∆ + (1 − ξ)MN

]

∆2
x +

[
(1 + ξ)M∆ + (1 − ξ)MN

]2

x12 = −
4(1 + ξ)(1 − ξ2)

[
∆2

x − (1 − ξ2)M2
N + (1 + ξ)2M2

∆

]

N
y12 =0

z12 =

2(1 + ξ)

(
∆2

x + 2ξM∆

[
(1 + ξ)M∆ − (1 − ξ)MN

])

(
∆2

x +
[
(1 + ξ)M∆ − (1 − ξ)MN

]2
) .

Equipped with the orthogonalized set of spurious covariants we can now proceed and express
the GPDs in terms of all possible amplitudes. For DVCS these amplitudes can now be
decomposed into

Gµ
λ′,λ =

∑

i

C
(i)µ
λ′,λA

i(x, ξ, t) +
∑

k

C̃
(k)µ
λ′,λ B

k(x, ξ, t)

C
(i)µ
λ′,λ =

1

2P̄+
ūν(P ′, λ′)κµν

i u(P, λ)

C̃
(i)µ
λ′,λ =

1

2P̄+
ūν(P ′, λ′)κ̃′µν

i u(P, λ)
{
Ai(x, ξ, t), Bk(x, ξ, t)

}
=
{
H1

(?)(x, ξ, t),H
2
(?)(x, ξ, t),H

3
(?)(x, ξ, t),H

4
(?)(x, ξ, t), B1(x, ξ, t),

B2(x, ξ, t), B3(x, ξ, t), B4(x, ξ, t), B5(x, ξ, t), B6(x, ξ, t), B7(x, ξ, t),

B8(x, ξ, t), B9(x, ξ, t), B10(x, ξ, t), B11(x, ξ, t), B12(x, ξ, t)} .

By inverting this relation one obtains an unambiguous expression for both, physical and spu-
rious GPDs. In principle they can be expressed in terms of the amplitude relations. However
the analytical inversion of the 16*16 matrix is too involved even if we use Mathematica.
Therefore we perform this inversion numerically.
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The amplitudes F µ
λ′,λ can be decomposed into

F µ
λ′,λ =

∑

i

C
(i)µ
λ′,λF

i(Q2) +
∑

k

C̃
(k)µ
λ′,λ B

k(Q2)

C
(i)µ
λ′,λ =

1

2
√
P ′+P+

ūν(P ′, λ′)κµν
i u(P, λ)

C̃
(i)µ
λ′,λ =

1

2
√
P ′+P+

ūν(P ′, λ′)κ̃′µν
i u(P, λ)

{
F i(Q2), Bk(Q2)

}
= {G1(t), G2(t), G3(t), G4(t), B1(t), B2(t), B3(t), B4(t), B5(t),

B6(t), B7(t), B8(t), B9(t), B10(t), B11(t), B12(t)} .

Here no simplification arises from considering the coefficients C
(i)µ
λ′,λ and C̃

(k)µ
λ′,λ . Therefore we

have the interesting situation that the non gauge invariant spurious covariants have to be
included in the extraction of the physical form factors. The form factors can be expressed
analytically in terms of the amplitude relations. We find

G1(t) =
1

2
√

2
[
(∆2

x +M2
∆)2 + 2(∆x −M∆)(∆x +M∆)M2

N +M4
N

]2

·
(

∆xM∆

[
(M2

∆ −M2
N )(M∆ −MN ) + ∆2

x(3M∆ +MN )
][

∆2
x + 2(M2

∆ +M2
N )
]
F̃+

3
2
↑

−
√

3∆2
xM∆(∆2

x −M2
∆ +M2

N )
[
∆2

x + 2(M2
∆ +M2

N )
]
F̃+

1
2
↑

−
√

3∆xM∆(M∆ −MN )(∆2
x −M2

∆ +M2
N )
[
∆2

x + 2(M2
∆ +M2

N )
]
F̃+

1
2
↓

+ ∆2
xM∆(∆2

x + 3M2
∆ − 4M∆MN +M2

N )
[
∆2

x + 2(M2
∆ +M2

N )
]
F̃+

3
2
↓

+ 2M∆(M2
∆ −M2

N )
[
(M∆ −MN )2(M∆ +MN ) + ∆2

x(3M∆ +MN )
]
F̃ x

3
2
↑

− 2
√

3∆xM∆(M2
∆ −M2

N )(∆2
x −M2

∆ +M2
N )F̃ x

1
2
↑

− 2
√

3M∆(M∆ −MN )2(M∆ +MN )(∆2
x −M2

∆ +M2
N )F̃ x

1
2
↓

+ 2∆xM∆(M2
∆ −M2

N )(∆2
x + 3M2

∆ − 4M∆MN +M2
N )F̃ x

3
2
↓

)

+ i
M∆

√
2
[
∆2

x + (M∆ −MN )2
][

∆2
x + (M∆ +MN )2

]2

·
([

(M∆ −MN )(M∆ +MN )2 − ∆2
x(3M∆ +MN )

]
F̃ y

3
2
↑

+
√

3∆x

[
∆2

x − (3M∆ −MN )(M∆ +MN )
]
F̃ y

1
2
↑

+
√

3
[
(M∆ −MN )(M∆ +MN )2 − ∆2

x(3M∆ +MN )
]
F̃ y

1
2
↓

− ∆x

[
∆2

x − (3M∆ −MN )(M∆ +MN )
]
F̃ y

3
2
↓

)
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+
1

2
√

2
[
(∆2

x +M2
∆)2 + 2(∆x −M∆)(∆x +M∆)M2

N +M4
N

]2

·
(
−∆xM∆

[
(M∆ −MN )2(M∆ +MN ) + ∆2

x(3M∆ +MN )
]
F̃−3

2
↑

+
√

3∆2
xM∆(∆2

x −M2
∆ +M2

N )F̃−1
2
↑

+
√

3∆xM∆(M∆ −MN )(∆2
x −M2

∆ +M2
N )F̃−1

2
↓

− ∆2
xM∆(∆2

x + 3M2
∆ − 4M∆MN +M2

N )F̃−3
2
↓

)

G2(t) =
1

√
2
[
(∆2

x + (M∆ −MN )2
]3[

∆2
x + (M∆ +MN )2

]2

·
([

−∆7
xMN + 2∆5

x(M∆ − 2MN )(M2
∆ +M2

N ) + 2∆x(M∆ −MN )3(M∆ +MN )

· (6M3
∆ + 7M2

∆MN +M3
N ) + ∆3

x(M∆ −MN )(4M4
∆ +M3

∆MN + 7M2
∆M

2
N −M∆M

3
N

+ 5M4
N )
]
F̃+

3
2
↑

+ 2
√

3M∆

[
−∆6

xM∆ + 2(M∆ −MN )4(M∆ +MN )3 − 2∆2
x(2M∆ −MN )(M2

∆ −M2
N )2

− 2∆4
xM∆(M2

∆ +M2
N )
]
F̃+

1
2
↑

+
√

3∆xM∆

[
∆6

x + 4∆4
xM

2
N − 2(M∆ −MN )3(M∆ +MN )(5M2

∆ + 6M∆MN + 3M2
N )

− ∆2
x(M2

∆ −M2
N )(M2

∆ − 2M∆MN + 9M2
N )
]
F̃+

1
2
↓

− ∆2
x

[
∆6

x + ∆4
x(8M2

∆ − 2M∆MN + 4M2
N ) + 2(M∆ −MN )2(9M4

∆ + 12M3
∆MN

+ 10M2
∆M

2
N +M4

N ) + ∆2
x(15M

4
∆ − 10M3

∆MN + 20M2
∆M

2
N − 6M∆M

3
N + 5M4

N )
]
F̃+

3
2
↓

− 2(M2
∆ −M2

N )
[
∆4

xMN − (M∆ −MN )3MN (M∆ +MN )

+ 2∆2
x(M∆ −MN )(5M2

∆ −M2
N )
]
F̃ x

3
2
↑

+ 4
√

3∆xM∆(M2
∆ −M2

N )
[
∆2

x(3M∆ − 2MN ) − 2(M∆ −MN )2(M∆ +MN )
]
F̃ x

1
2
↑

− 2
√

3M∆(M2
∆ −M2

N )
[
3∆4

x + (M∆ −MN )3(M∆ +MN )

− 2∆2
x(M∆ −MN )(3M∆ +MN )

]
F̃ x

1
2
↓

− 2∆x(M2
∆ −M2

N )
[
∆4

x − 2∆2
x(3M2

∆ +M∆MN −M2
N )

+ (M∆ −MN )2(3M2
∆ +M2

N )
]
F̃ x

3
2
↓

)
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+ i
1

[
(∆2

x +M2
∆)2 + 2(∆x −M∆)(∆x +M∆)M2

N +M4
N

]2

·
(
√

2
[
∆4

xMN +MN (M2
∆ −M2

N )2 + 2∆2
x(M3

∆ − 2M2
∆MN +M3

N )
]
F̃ y

3
2
↑

+ 2
√

6∆xM∆

[
∆2

xMN + (M∆ −MN )2(M∆ +MN )
]
F̃ y

1
2
↑

−
√

6M∆

[
−∆4

x − 2∆2
xM∆(M∆ −MN ) + (M2

∆ −M2
N )2
]
F̃ y

1
2
↓

+
√

2∆x

[
∆4

x − 3M4
∆ + 2(∆2

x +M2
∆)M2

N +M4
N

]
F̃ y

3
2
↓

)

+
1

√
2
[
(∆2

x + (M∆ −MN )2
]3[

∆2
x + (M∆ +MN )2

]2

·
(

∆x

[
∆4

xMN − (M∆ −MN )3MN (M∆ +MN ) + 2∆2
x(M∆ −MN )(5M2

∆ −M2
N )
]
F̃−3

2
↑

− 2
√

3∆2
xM∆

[
∆2

x(3M∆ − 2MN ) − 2(M∆ −MN )2(M∆ +MN )
]
F̃−1

2
↑

+
√

3∆xM∆

[
3∆4

x + (M∆ −MN )3(M∆ +MN ) − 2∆2
x(M∆ −MN )(3M∆ +MN )

]
F̃−1

2
↓

+ ∆2
x

[
∆4

x − 2∆2
x(3M2

∆ +M∆MN −M2
N ) + (M∆ −MN )2(3M2

∆ +M2
N )
]
F̃−3

2
↓

)

G3(t) =
1

√
2
[
∆2

x + (M∆ −MN )2
]3[

∆2
x + (M∆ +MN )2

]2

·
(

2∆xM
2
∆

[
∆4

xMN − (M∆ −MN )2(M∆ +MN )(7M2
∆ +M2

N )

+ 2∆2
xM∆(−M2

∆ + 2M∆MN +M2
N )
]
F̃+

3
2
↑

−
√

3M∆(M∆ −MN )
[
−∆6

x − 2∆4
x(3M2

∆ +M∆MN +M2
N ) + 4(M3

∆ −M∆M
2
N )2

− ∆2
x(11M4

∆ + 6M3
∆MN + 4M2

∆M
2
N + 2M∆M

3
N +M4

N

]
F̃+

1
2
↑

−
√

3∆xM∆

[
∆6

x + 2∆4
x(2M2

∆ +M2
N ) − 2M∆(M∆ −MN )2(M∆ +MN )

· (5M2
∆ + 2M∆MN +M2

N ) + ∆2
x(3M

4
∆ + 2M3

∆MN + 4M2
∆M

2
N − 2M∆M

3
N +M4

N

]
F̃+

1
2
↓

+ 2∆2
xM

2
∆

[
∆4

x + ∆2
xM∆(5M∆ −MN ) + (M∆ −MN )

· (9M3
∆ + 7M2

∆MN + 3M∆M
2
N +M3

N )
]
F̃+

3
2
↓

− 2(M∆ −MN )M2
∆

[
−3∆4

x + (M2
∆ −M2

N )2 − 2∆2
x(6M2

∆ +M∆MN +M2
N )
]
F̃ x

3
2
↑

− 2
√

3∆xM∆

[
∆4

x(2M∆ −MN ) − (M∆ −MN )2(M∆ +MN )(6M2
∆ +M∆MN +M2

N )

+ 2∆2
x(3M3

∆ −M2
∆MN +M∆M

2
N −M3

N )
]
F̃ x

1
2
↑
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+ 2
√

3M∆

[
∆6

x +M∆(M∆ −MN )3(M∆ +MN )2 + ∆4
x(M2

∆ +M∆MN + 2M2
N )

+ ∆2
x(−9M4

∆ + 4M3
∆MN + 4M2

∆M
2
N +M4

N )
]
F̃ x

1
2
↓

− 2∆xM
2
∆

[
3∆4

x − (M∆ −MN )2(M∆ +MN )(3M∆ +MN ) + 2∆2
x(5M2

∆ +M2
N )
]
F̃ x

3
2
↓

)

+ i
1

[
(∆2

x +M2
∆)2 + 2(∆x −M∆)(∆x +M∆)M2

N +M4
N

]2

·
(
−
√

2M2
∆

[
∆2

x(3M∆ −MN ) + (M∆ −MN )(M∆ +MN )2
]
F̃ y

3
2
↑

+
√

6∆xM
2
∆(∆2

x −M2
∆ +M2

N )F̃ y
1
2
↑

+
√

6M2
∆(M∆ +MN )(−∆2

x +M2
∆ −M2

N )F̃ y
1
2
↓

+
√

2∆xM
2
∆

[
∆2

x + (M∆ +MN )(3M∆ +MN )
]
F̃ y

3
2
↓

)

+
1

√
2
[
∆2

x + (M∆ −MN )2
]3[

∆2
x + (M∆ +MN )2

]2

·
(
−2∆xM

2
∆

[
∆2

x(3M∆ − 2MN ) − 2(M∆ −MN )2(M∆ +MN )
]
F̃−3

2
↑

+
√

3M∆

[
∆4

x(3M∆ −MN ) + (M∆ −MN )3(M∆ +MN )2

− 2∆2
x(M∆ −MN )(3M2

∆ +M∆MN −M2
N )
]
F̃−1

2
↑

−
√

3∆xM∆

[
∆4

x + (M∆ −MN )2(M∆ +MN )(3M∆ +MN )

+ 2∆2
x(−3M2

∆ +M∆MN +M2
N )
]
F̃−1

2
↓

+ 2∆2
xM

2
∆(2∆2

x − 3M2
∆ +M∆MN + 2M2

N )F̃−3
2
↓

)

G4(t) =
1

√
2
[
∆2

x + (M∆ −MN )2
]2
MN

[
∆2

x + (M∆ +MN )2
]

·
(

3∆xM
2
∆(M∆ −MN )

[
(M2

∆ −M2
N )F̃+

3
2
↑ − ∆xF̃

x
3
2
↑

]

−
√

3M∆

[
∆2

x(2M∆ −MN ) − (M∆ −MN )2(M∆ +MN )
][

(M2
∆ −M2

N )F̃+
1
2
↑ − ∆xF̃

x
1
2
↑

]

+
√

3∆xM∆(∆2
x − 2M2

∆ +M∆MN +M2
N )
[
(M2

∆ −M2
N )F̃+

1
2
↓ − ∆xF̃

x
1
2
↓

]

− 3∆2
xM

2
∆

[
(M2

∆ −M2
N )F̃+

3
2
↓ − ∆xF̃

x
3
2
↓

])
. (5.8)

Again we remark that if we introduce the consistency relations in eq. 4.30 we find agreement
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with the expressions in eq. 4.20. From the expression for G4(t) it is clear that if gauge
invariance is satisfied at the level of transition amplitudes G4(t) vanishes. On the other hand
side it is possible to break gauge invariance even if the transition amplitudes are covariantly
consistent. The condition for gauge invariance after removing covariance breaking effects
can be read off from the expression for G4(t). We will discuss the situation for our model
calculation in the next section where we present the numerical results.

5.3.4 Axial N → ∆ transition

With the ansatz

κ̃′µν
i =κ̃µν

i + wiκ
µν
1 + xiκ

µν
2 + yiκ

µν
3 + ziκ

µν
4 for i = 1..12

and defining

N = ∆4
x + 2∆2

x

[
(1 + ξ)2M2

∆ + (1 − ξ)2M2
N

]
+
[
(1 + ξ)2M2

∆ − (1 − ξ)2M2
N

]2

the above described orthogonalization procedure yields

w1 = −
2(1 − ξ2)(M2

∆ −M2
N )

(
∆2

x + ξ
[
(1 + ξ)2M2

∆ − (1 − ξ)2M2
N

])

N

x1 = −
2(1 − ξ2)M2

N

[
(1 + ξ)2M2

∆ − (1 − ξ)2M2
N + ξ∆2

x

]

N
y1 =0

z1 =

2(1 − ξ2)M2
N

(
∆2

x + ξ
[
(1 + ξ)2M2

∆ − (1 − ξ2)M2
N

])

N

w2 =
2(1 − ξ2)2(M∆ −MN )

N2

(
∆6

x − 2ξ(1 − ξ)(M 2
∆ −M2

N )
[
(1 + ξ)2M2

∆ − (1 − ξ)2M2
N

]2

+ ∆4
x

[
(5 + 2ξ + ξ2)M2

∆ − (1 + 2ξ − 3ξ2)M2
N

]
− 2∆2

x

[
(1 − ξ)3M4

N

+ (1 − 5ξ + 2ξ2)(1 + ξ)2M4
∆ − 2(1 − 3ξ + 2ξ2 − ξ3 + ξ4)M2

∆M
2
N

])

x2 = − 2(1 − ξ)(1 − ξ2)2M2
N (M∆ −MN )

N2

(
−(1 + 3ξ)∆4

x + 2
[
(1 + ξ)2M2

∆ − (1 − ξ)2M2
N

]2

+ ∆2
x

[
−(1 + ξ)2(5 − 3ξ)M 2

∆ + (1 − 3ξ)(1 − ξ)2M2
N

]))
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y2 =0

z2 =
2(1 − ξ)(1 − ξ2)2M2

N (M∆ −MN )

N2

(
−(3 + ξ)∆4

x + 2ξ
[
(1 + ξ)2M2

∆ − (1 − ξ)2M2
N

]2

+ ∆2
x

[
(3 − 5ξ)(1 + ξ)2M2

∆ − (3 − ξ)(1 − ξ)2M2
N

])

w3 =
8(1 − ξ2)3

(
∆2

x +
[
(1 + ξ)M∆ + (1 − ξ)MN

]2
)3(

∆2
x +

[
(1 + ξ)M∆ − (1 − ξ)MN

]2
)2

·
(

∆6
x

[
ξM∆ + (1 − ξ)MN

]
− ξ(1 − ξ)(M 2

∆ −M2
N )
[
(1 + ξ)M∆ + (1 − ξ)MN

]3

·
[
(1 + ξ)M∆ − (1 − ξ)MN

]2
+ ∆4

x

[
−3ξ(1 − ξ)2M3

N + (2 − ξ − ξ3)MNM
2
∆

+ (4 + 3ξ + ξ3)M3
∆ − (2 − ξ + 2ξ2 − 3ξ3)M2

NM∆

]
− ∆2

x

[
(1 − ξ)4M4

NM∆

+ (1 + ξ)(1 − ξ)4M5
N + (1 − 3ξ)(1 − ξ2)2MNM

4
∆ − 2(1 − ξ)3(1 + ξ2)M3

NM
2
∆

+ (1 − 7ξ + 4ξ2)(1 + ξ)3M5
∆ − 2(1 − 4ξ + 2ξ3 − ξ4 + 2ξ5)M2

NM
3
∆

])

x3 = − 8(1 − ξ)(1 − ξ2)3M2
N(

∆2
x +

[
(1 + ξ)M∆ + (1 − ξ)MN

]2
)3(

∆2
x +

[
(1 + ξ)M∆ − (1 − ξ)MN

]2
)2

·
([

(1 + ξ)M∆ + (1 − ξ)MN

]3[
(1 + ξ)M∆ − (1 − ξ)MN

]2

+ 2∆2
x

[
−ξ(1 − ξ)3M3

N + (1 − ξ)3(1 + ξ)M 2
NM∆ − (2 − ξ)(1 + ξ)3M3

∆

− (1 − ξ2)2MNM
2
∆

]
+ ∆4

x

[
−3ξ(1 + ξ)M∆ − (1 + ξ − 2ξ2)MN

])

y3 =
4(1 − ξ)(1 − ξ2)3∆2

xMN

[
∆2

x + (1 − ξ)2M2
N − (1 + ξ)2M2

∆

]

N2

z3 =
8(1 − ξ)(1 − ξ2)3M2

N(
∆2

x +
[
(1 + ξ)M∆ + (1 − ξ)MN

]2
)3(

∆2
x +

[
(1 + ξ)M∆ − (1 − ξ)MN

]2
)2

·
(
ξ
[
(1 + ξ)M∆ + (1 − ξ)MN

]3[
(1 + ξ)M∆ − (1 − ξ)MN

]2

− 2∆2
x

[
(1 − ξ)3M3

N + (1 − ξ)3(1 + ξ)M 2
NM∆ − (1 − 2ξ)(1 + ξ)3M3

∆ − (1 − ξ2)2MNM
2
∆

]

+ ∆4
x

[
−3(1 + ξ)M∆ − (2 − ξ − ξ2)MN

])
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w4 = − 2(1 − ξ2)2(M∆ −MN )
(

∆2
x +

[
(1 + ξ)M∆ + (1 − ξ)MN

]2
)2(

∆2
x +

[
(1 + ξ)M∆ − (1 − ξ)MN

])

·
(
−∆4

x + 2ξ(M∆ +MN )
[
(1 + ξ)M∆ + (1 − ξ)MN

]2[
(1 + ξ)M∆ − (1 − ξ)MN

]

+ 2∆2
x

[
2M∆MN + (1 − ξ2)M2

∆ + (1 − ξ2)M2
N

])

x4 = − 2(1 − ξ2)2M2
N(

∆2
x +

[
(1 + ξ)M∆ + (1 − ξ)MN

]2
)2(

∆2
x +

[
(1 + ξ)M∆ − (1 − ξ)MN

])

·
(

2
[
(1 + ξ)M∆ + (1 − ξ)MN

]2[
(1 + ξ)M∆ − (1 − ξ)MN

]

+ ∆2
x

[
(1 + 2ξ − 3ξ2)MN − (1 − 2ξ − 3ξ2)M∆

])

y4 = − 2(1 − ξ2)2MN∆2
x

N

z4 =
2(1 − ξ2)2M2

N(
∆2

x +
[
(1 + ξ)M∆ + (1 − ξ)MN

]2
)2(

∆2
x +

[
(1 + ξ)M∆ − (1 − ξ)MN

])

·
(

2ξ
[
(1 + ξ)M∆ + (1 − ξ)MN

]2[
(1 + ξ)M∆ − (1 − ξ)MN

]

+ ∆2
x

[
(3 + 2ξ − ξ2)M∆ + (3 − 2ξ − ξ2)MN

])

w5 =
(1 − ξ)(1 − ξ2)(M2

∆ −M2
N )
[
∆2

x − (1 + ξ)2M2
∆ + (1 − ξ)2M2

N

]

N
x5 =0

y5 =0

z5 =
(1 − ξ)(1 − ξ2)M2

N

[
(1 + ξ)2M2

∆ − (1 − ξ)2M2
N − ∆2

x

]

N

w6 =
2(1 − ξ)(1 − ξ2)(M∆ −MN )

N

(
∆2

x + (1 − ξ)2M2
N − (1 + ξ)2M2

∆

)

x6 =0

y6 = −
2(1 − ξ)(1 − ξ2)MN

[
∆2

x + (1 − ξ)2M2
N − (1 + ξ)2M2

∆

]

N
z6 =0
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w7 =0

x7 = −
2(1 − ξ2)M2

N

[
(1 + ξ)2M∆ + (1 − ξ)MN

]

∆2
x +

[
(1 + ξ)M∆ + (1 − ξ)MN

]2

y7 =0

z7 =0

w8 = −
(1 − ξ2)(M2

∆ −M2
N )
[
(1 + ξ)M∆ + (1 − ξ)MN

]

∆2
x +

[
(1 + ξ)M∆ + (1 − ξ)MN

]2

x8 =0

y8 =0

z8 =
(1 − ξ2)M2

N

[
(1 + ξ)M∆ + (1 − ξ)MN

]

∆2
x +

[
(1 + ξ)M∆ + (1 − ξ)MN

]2

w9 =0

x9 =
2(1 − ξ)(1 − ξ2)M2

N

[
∆2

x + (1 − ξ)2M2
N − (1 + ξ)2M2

∆

]

N
y9 =0

z9 =0

w10 = − 2(1 − ξ)(1 − ξ2)2(M2
∆ −M2

N )
(

∆2
x +

[
(1 + ξ)M∆ + (1 − ξ)MN

]2
)2(

∆2
x +

[
(1 + ξ)M∆ − (1 − ξ)MN

]2
)

·
([

(1 + ξ)M∆ + (1 − ξ)MN

]2[
(1 + ξ)M∆ − (1 − ξ)MN

]

− ∆2
x

[
(1 − ξ)MN + 2(1 + ξ)M∆

])

x10 =0

y10 =0

z10 =
2(1 − ξ)(1 − ξ2)2M2

N(
∆2

x +
[
(1 + ξ)M∆ + (1 − ξ)MN

]2
)2(

∆2
x +

[
(1 + ξ)M∆ − (1 − ξ)MN

]2
)

·
([

(1 + ξ)M∆ + (1 − ξ)MN

]2[
(1 + ξ)M∆ − (1 − ξ)MN

]

− ∆2
x

[
2(1 + ξ)M∆ + (1 − ξ)MN

])
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w11 =
4(1 − ξ2)2

N2

(
∆6

x − 2ξ(1 − ξ)MN (M∆ −MN )
[
(1 + ξ)2M2

∆ − (1 − ξ)2M2
N

]2

+ ∆4
x

[
2(1 + ξ)2M2

∆ + (3 − 2ξ − ξ2)M∆MN − (1 + 2ξ − 3ξ2)M2
N

]

+ ∆2
x

[
(1 + ξ)4M4

∆ − 2(1 − ξ)3M4
N + (3 − ξ)(1 − ξ)3M∆M

3
N

+ (1 + ξ)2(1 − 4ξ + 3ξ2)M2
NM

2
∆ − (3 − 8ξ + 5ξ2)(1 + ξ)2MNM

3
∆

])

x11 = − 4(1 − ξ2)3M2
N

N2

(
−2∆4

x +
[
(1 − ξ)2M2

N − (1 + ξ)2M2
∆

]2

− ∆2
x

[
(1 + ξ)2M2

∆ + (1 − ξ)2M2
N

])

y11 = − 4(1 − ξ)(1 − ξ2)2MN(
∆2

x +
[
(1 + ξ)M∆ + (1 − ξ)MN

]2
)(

∆2
x +

[
(1 + ξ)M∆ − (1 − ξ)MN

]2
)2

·
(

∆2
x

[
(1 − ξ)MN − 2(1 + ξ)M∆

]

+
[
(1 + ξ)M∆ + (1 − ξ)MN

][
(1 + ξ)M∆ − (1 − ξ)MN

]2
)

z11 =
4(1 − ξ2)3M2

N

N2

(
−2∆4

x +
[
(1 − ξ)2M2

N − (1 + ξ)2M2
∆

]2

− ∆2
x

[
(1 + ξ)2M2

∆ + (1 − ξ)2M2
N

])

w12 = −
4(1 − ξ2)MN (M∆ −MN )

(
∆2

x + ξ
[
(1 + ξ)2M2

∆ − (1 − ξ)2M2
N

])

N

x12 = −
2(1 − ξ2)(1 + ξ)M 2

N

[
∆2

x − (1 − ξ)2M2
N + (1 + ξ)2M2

∆

]

N

y12 = −
2(1 − ξ2)MN

[
(1 + ξ)M∆ − (1 − ξ)MN

]

∆2
x +

[
(1 + ξ)M∆ − (1 − ξ)MN

]2

z12 =
2(1 − ξ2)(1 + ξ)M 2

N

[
∆2

x − (1 − ξ)2M2
N + (1 + ξ)2M2

∆

]

N
.

Equipped with the orthogonalized set of spurious covariants we can now proceed and express
the GPDs in terms of all possible amplitudes. For DVCS these amplitudes can now be
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decomposed into

Gµ
λ′,λ =

∑

i

C
(i)µ
λ′,λA

i(x, ξ, t) +
∑

k

C̃
(k)µ
λ′,λ B

k(x, ξ, t)

C
(i)µ
λ′,λ =

1

2P̄+
ūν(P ′, λ′)κµν

i u(P, λ)

C̃
(i)µ
λ′,λ =

1

2P̄+
ūν(P ′, λ′)κ̃′µν

i u(P, λ)
{
Ai(x, ξ, t), Bk(x, ξ, t)

}
=
{
C1(x, ξ, t), C2(x, ξ, t), C3(x, ξ, t), C4, B1(x, ξ, t),

B2(x, ξ, t), B3(x, ξ, t), B4(x, ξ, t), B5(x, ξ, t), B6(x, ξ, t), B7(x, ξ, t),

B8(x, ξ, t), B9(x, ξ, t), B10(x, ξ, t), B11(x, ξ, t), B12(x, ξ, t)} .

By inverting this relation one obtains an unambiguous expression for both, physical and spu-
rious GPDs. In principle they can be expressed in terms of the amplitude relations. However
the analytical inversion of the 16*16 matrix is too involved even if we use Mathematica.
Therefore we perform this inversion numerically.

The amplitudes F µ
λ′,λ can be decomposed into

F µ
λ′,λ =

∑

i

C
(i)µ
λ′,λF

i(Q2) +
∑

k

C̃
(k)µ
λ′,λ B

k(Q2)

C
(i)µ
λ′,λ =

1

2
√
P ′+P+

ūν(P
′, λ′)κµν

i u(P, λ)

C̃
(i)µ
λ′,λ =

1

2
√
P ′+P+

ūν(P
′, λ′)κ̃′µν

i u(P, λ)

{
F i(Q2), Bk(Q2)

}
= {C5(t), C6(t), C3(t), C4(t), B1(t), B2(t), B3(t), B4(t), B5(t),

B6(t), B7(t), B8(t), B9(t), B10(t), B11(t), B12(t)} .

Again no simplification arises from considering the coefficients C
(i)µ
λ′,λ and C̃

(k)µ
λ′,λ . Therefore

we have to include all 16 covariants in the extraction of the physical form factors. The form
factors can be expressed analytically in terms of the amplitude relations. We find

C5(t) =
1

2
√

2
[
∆2

x + (M∆ −MN )2
]2[

∆2
x + (M∆ +MN )2

]3

([
∆9

xMN + 12∆xM
2
∆(M∆ −MN )3

· (M∆ +MN )4 + 2∆3
x(M∆ −MN )(M∆ +MN )2(4M2

∆ −M∆MN −M2
N )

· (M2
∆ +M2

N ) + 2∆7
x(M3

∆ +M∆M
2
N + 2M3

N ) + ∆5
x(8M5

∆ −M4
∆MN + 2M3

∆M
2
N

− 4M2
∆M

3
N + 6M∆M

4
N + 5M5

N )
]
F̃+

3
2
↑
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+ 2
√

3M∆

[
∆8

xMN − 2∆2
x(M∆ − 2MN )(M∆ −MN )2(M∆ +MN )4 + 2(M∆ −MN )4

· (M∆ +MN )5 + 2∆6
xMN (M2

∆ +M∆MN + 2M2
N ) + ∆4

x(M∆ +MN )

· (M4
∆ + 2M2

∆M
2
N + 5M4

N )
]
F̃+

1
2
↑

+
√

3∆xM∆

[
∆8

x + 4(M∆ −MN )3(2M∆ −MN )(M∆ +MN )4 + 4∆6
x(M2

∆ +M2
N )

+ 2∆2
x(M∆ +MN )2(M4

∆ + 4M2
∆M

2
N − 8M∆M

3
N + 3M4

N ) + ∆4
x(7M4

∆ + 2M3
∆MN

+ 4M2
∆M

2
N − 2M∆M

3
N + 5M4

N )
]
F̃+

1
2
↓

+ ∆2
x

[
∆8

x + 12M2
∆(M2

∆ −M2
N )3 + 2∆6

x(2M2
∆ +M∆MN + 2M2

N ) + 2∆2
x(M∆ +MN )

· (M2
∆ +M2

N )(3M3
∆ −M2

∆MN +M∆M
2
N +M3

N ) + ∆4
x(7M4

∆ + 6M3
∆MN + 8M2

∆M
2
N

+ 6M∆M
3
N + 5M4

N

]
F̃+

3
2
↓

+ 2∆2
x(M2

∆ −M2
N )
[
∆4

xMN − (M∆ −MN )(M∆ +MN )2(8M2
∆ +M∆MN +M2

N )

+ 2∆2
x(M3

∆ −M2
∆MN +M∆M

2
N +M3

N )
]
F̃ x

3
2
↑

+ 4
√

3∆xM∆(M2
∆ −M2

N )
[
∆4

xMN + 2∆2
xM∆(2M∆ −MN )(M∆ +MN )

− (M∆ −MN )2(M∆ +MN )3
]
F̃ x

1
2
↑

+ 2
√

3∆2
xM∆(M2

∆ −M2
N )
[
∆4

x − (5M∆ − 3MN )(M∆ −MN )(M∆ +MN )2

+ ∆2
x(6M2

∆ − 2M2
N )
]
F̃ x

1
2
↓

+ 2∆3
x(M2

∆ −M2
N )
[
∆4

x − 9M4
∆ + 2M3

∆MN + 12M2
∆M

2
N + 2M∆M

3
N +M4

N

+ 2∆2
x(M2

∆ +M∆MN +M2
N )
]
F̃ x

3
2
↓

)

+
i

√
2
[
∆2

x + (M∆ −MN )2
]2[

∆2
x + (M∆ +MN )

]2

(
−∆2

x

[
∆4

xMN + (M∆ −MN )2

· (M∆ +MN )(2M2
∆ +M∆MN +M2

N ) + 2∆2
x(2M3

∆ −M2
∆MN +M3

N )
]
F̃ y

3
2
↑

+ 2
√

3∆3
xM∆(M∆ −MN )

[
∆2

x +MN (M∆ +MN )
]
F̃ y

1
2
↑

−
√

3∆2
xM∆

[
∆4

x + 4∆2
xM∆MN + (M∆ −MN )3(M∆ +MN )

]
F̃ y

1
2
↓

− ∆3
x

[
∆4

x + 3M4
∆ − 8M3

∆MN + 4M2
∆M

2
N +M4

N + 2∆2
x(M2

∆ +M2
N )
]
F̃ y

3
2
↓

)
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+
1

2
√

2
[
∆2

x + (M∆ −MN )2
]2[

∆2
x + (M∆ +MN )2

]3

(
−∆3

x

[
∆4

xMN − (M∆ −MN )

· (M∆ +MN )2(8M2
∆ +M∆MN +M2

N ) + 2∆2
x(M3

∆ −M2
∆MN +M∆M

2
N +M3

N )
]
F̃−3

2
↑

− 2
√

3∆2
xM∆

[
∆4

xMN + 2∆2
xM∆(2M∆ −MN )(M∆ +MN )

− (M∆ −MN )2(M∆ +MN )3
]
F̃−1

2
↑ −

√
3∆3

xM∆

[
∆4

x − (5M∆ − 3MN )(M∆ −MN )

· (M∆ +MN )2 + ∆2
x(6M

2
∆ − 2M2

N )
]
F̃−1

2
↓ − ∆4

x

[
∆4

x − 9M4
∆ + 2M3

∆MN + 12M2
∆M

2
N

+ 2M∆M
3
N +M4

N + 2∆2
x(M2

∆ +M∆MN +M2
N )
]
F̃−3

2
↓

)

C6(t) =
1

2
√

2
[
∆2

x + (M∆ −MN )2
]2[

∆2
x + (M∆ +MN )2

]3

(
∆xM

2
N

[
∆2

x + 2(M2
∆ +M2

N )
]

·
[
∆4

xMN − (M∆ −MN )(M∆ +MN )2(8M2
∆ +M∆MN +M2

N ) + 2∆2
x(M3

∆ −M2
∆MN

+M∆M
2
N +M3

N )
]
F̃+

3
2
↑

+ 2
√

3M∆M
2
N

[
∆4

xMN + 2∆2
xM∆(2M∆ −MN )(M∆ +MN )

− (M∆ −MN )2(M∆ +MN )3
][

∆2
x + 2(M2

∆ +M2
N )
]
F̃+

1
2
↑

+
√

3∆xM∆M
2
N

[
∆4

x − (5M∆ − 3MN )(M∆ −MN )(M∆ +MN )2

+ ∆2
x(6M2

∆ − 2M2
N )
]
F̃+

1
2
↓

+ ∆2
xM

2
N

[
∆2

x + 2(M2
∆ +M2

N )
][

∆4
x − 9M4

∆ + 2M3
∆MN + 12M2

∆M
2
N + 2M∆M

3
N

+M4
N + 2∆2

x(M2
∆ +M∆MN +M2

N )
]
F̃+

3
2
↓

− 2M2
N (M∆ +MN )

[
∆4

x(M2
N − 6M2

∆ −M∆MN ) + (M2
∆ −M2

N )2

· (2M2
∆ +M∆MN +M2

N ) − 2∆2
x(7M4

∆ − 2M3
∆MN + 8M2

∆M
2
N −M4

N )
]
F̃ x

3
2
↑

− 4
√

3∆xM∆M
2
N

[
∆4

x(2M∆ +MN ) − (M∆ −MN )(M∆ +MN )2

· (4M2
∆ −M∆MN + 3M2

N ) + ∆2
x(3M

3
∆ + 5M∆M

2
N + 4M3

N )
]
F̃ x

1
2
↑

− 2
√

3M∆M
2
N

[
2∆6

x − ∆4
x(M2

∆ + 2M∆MN − 7M2
N ) + (M2

∆ −M2
N )3

− 4∆2
x(3M4

∆ +M3
∆MN +M∆M

3
N −M4

N )
]
F̃ x

1
2
↓

− 2∆xM
2
N

[
∆4

x(M
2
N − 7M2

∆) − 2∆2
x(7M4

∆ +M3
∆MN + 6M2

∆M
2
N −M∆M

3
N −M4

N )

+ (M∆ +MN )2(3M4
∆ − 8M3

∆MN + 4M2
∆M

2
N +M4

N )
]
F̃ x

3
2
↓

)
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+
i

√
2
[
∆2

x + (M∆ −MN )2
]2[

∆2
x + (M∆ +MN )2

]2

(
−M2

N

[
∆4

xMN + (M∆ −MN )2

· (M∆ +MN )(2M2
∆ +M∆MN +M2

N ) + 2∆2
x(2M3

∆ −M2
∆MN +M3

N )
]
F̃ y

3
2
↑

−
√

3M∆M
2
N

[
∆4

x + 4∆2
xM∆MN + (M∆ −MN )3(M∆ +MN )

]
F̃ y

1
2
↓

− ∆xM
2
N

[
∆4

x + 3M4
∆ − 8M3

∆MN + 4M2
∆M

2
N +M4

N + 2∆2
x(M2

∆ +M2
N )
]
F̃ y

3
2
↓

)

+
i
√

6∆xM∆(M∆ −MN )M2
N

[
∆2

x +MN (M∆ +MN )
]

[
(∆2

x +M2
∆)2 + 2(∆x −M∆)(∆x +M∆)M2

N +M4
N

]2 F̃
y
1
2
↑

+
1

2
√

2
[
∆2

x + (M∆ −MN )2
]2[

∆2
x + (M∆ +MN )2

]3

(
−∆xM

2
N

[
∆4

xMN − (M∆ −MN )

· (M∆ +MN )2(8M2
∆ +M∆MN +M2

N ) + 2∆2
x(M3

∆ −M2
∆MN +M∆M

2
N +M3

N )
]
F̃−3

2
↑

+ 2
√

3M∆M
2
N

[
−∆4

xMN − 2∆2
xM∆(2M∆ −MN )(M∆ +MN ) + (M∆ −MN )2

· (M∆ +MN )3
]
F̃−1

2
↑

−
√

3∆xM∆M
2
N

[
∆4

x − (5M∆ − 3MN )(M∆ −MN )(M∆ +MN )2

+ ∆2
x(6M

2
∆ − 2M2

N )
]
F̃−1

2
↓

− ∆2
xM

2
N

[
∆4

x − 9M4
∆ + 2M3

∆MN + 12M2
∆M

2
N + 2M∆M

3
N +M4

N

+ 2∆2
x(M2

∆ +M∆MN +M2
N )
]
F̃−3

2
↓

)

C3(t) =
1

2
√

2
[
(∆2

x +M2
∆)2 + 2(∆x −M∆)(∆x +M∆)M2

N +M4
N

]2

(
−∆xM∆MN

·
[
∆2

x(3M∆ −MN ) + (M∆ −MN )(M∆ +MN )2
][

∆2
x + 2(M2

∆ +M2
N )
]
F̃+

3
2
↑

−
√

3∆xM∆MN (M∆ +MN )(∆2
x −M2

∆ +M2
N )
[
∆2

x + 2(M2
∆ +M2

N )
]
F̃+

1
2
↓

+ ∆2
xM∆MN

[
∆2

x + (M∆ +MN )(3M∆ +MN )
][

∆2
x + 2(M2

∆ +M2
N )
]
F̃+

3
2
↓

+ 2
√

3M∆(M∆ −MN )MN (M∆ +MN )2(M2
∆ −M2

N − ∆2
x)F̃ x

1
2
↓

+ 2∆xM∆MN (M2
∆ −M2

N )
[
∆2

x + (M∆ +MN )(3M∆ +MN )
]
F̃ x

3
2
↓

+
√

3∆xM∆MN (M∆ +MN )(∆2
x −M2

∆ +M2
N )F̃−1

2
↓

)
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+
1

2
√

2
[
∆2

x + (M∆ −MN )2
]2[

∆2
x + (M∆ +MN )2

]2

(
√

3∆2
xM∆MN

· (∆2
x −M2

∆ +M2
N )
[
∆2

x + 2(M2
∆ +M2

N )
]
F̃+

1
2
↑

− 2M∆(M2
∆ −M2

N )MN

[
∆2

x(3M∆ −MN ) + (M∆ −MN )(M∆ +MN )2
]
F̃ x

3
2
↑

+ 2
√

3∆xM∆MN (M2
∆ −M2

N )(∆2
x −M2

∆ +M2
N )F̃ x

1
2
↑

+
i

√
2
[
∆2

x + (M∆ −MN )2
]2[

∆2
x + (M∆ +MN )2

]
(
−M∆MN

[
∆2

x(MN − 3M∆)

+ (M∆ −MN )2(M∆ +MN )
]
F̃ y

3
2
↑

−
√

3∆xM∆MN (∆2
x − 3M2

∆ + 2M∆MN +M2
N )F̃ y

1
2
↑

+
√

3M∆MN

[
∆2

x(MN − 3M∆) + (M∆ −MN )2(M∆ +MN )
]
F̃ y

1
2
↓

− ∆xM∆MN (∆2
x − 3M2

∆ + 2M∆MN +M2
N )F̃ y

3
2
↓

)

+
1

2
√

2
[
∆2

x + (M∆ −MN )2
]2[

∆2
x + (M∆ +MN )2

]2

(
∆xM∆MN

[
∆2

x(3M∆ −MN )

+ (M∆ −MN )(M∆ +MN )2
]
F̃−3

2
↑

−
√

3∆2
xM∆MN (∆2

x −M2
∆ +M2

N )F̃−1
2
↑

− ∆2
xM∆MN

[
∆2

x + (M∆ +MN )(3M∆ +MN )
]
F̃−3

2
↓

)

C4(t) =
1

2
√

2
[
∆2

x + (M∆ −MN )2
]2[

∆2
x + (M∆ +MN )2

]3

(
−∆xM

2
N

[
∆6

xMN

+ 2∆4
x(M∆ + 2MN )(M2

∆ +M2
N ) + 2(M∆ −MN )(M∆ +MN )3

· (6M3
∆ − 7M2

∆MN −M3
N ) + ∆2

x(M∆ +MN )(4M4
∆ −M3

∆MN + 7M2
∆M

2
N

+M∆M
3
N + 5M4

N

]
F̃+

3
2
↑

− 2
√

3M∆M
2
N

[
−∆6

xM∆ + 2(M∆ −MN )3(M∆ +MN )4 − 2∆2
x(2M∆ +MN )

· (M2
∆ −M2

N )2 − 2∆4
xM∆(M2

∆ +M2
N )
]
F̃+

1
2
↑
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+
√

3∆xM∆M
2
N

[
∆6

x + 4∆4
xM

2
N − 2(M∆ −MN )(M∆ +MN )3

· (5M2
∆ − 6M∆MN + 3M2

N ) − ∆2
x(M

2
∆ −M2

N )(M2
∆ + 2M∆MN + 9M2

N )
]
F̃+

1
2
↓

− ∆2
xM

2
N

[
∆6

x + 2∆4
x(4M2

∆ +M∆MN + 2M2
N ) + 2(M∆ +MN )2(9M4

∆ − 12M3
∆MN

+ 10M2
∆M

2
N +M4

N ) + ∆2
x(15M4

∆ + 10M3
∆MN + 20M2

∆M
2
N + 6M∆M

3
N + 5M4

N )
]
F̃+

3
2
↓

+ 2M2
N (M2

N −M2
∆)
[
∆4

xMN −MN (M∆ −MN )(M∆ +MN )3 − 2∆2
x(M∆ +MN )

· (5M2
∆ −M2

N )
]
F̃ x

3
2
↑

− 4
√

3∆xM∆M
2
N (M2

∆ −M2
N )
[
−2(M∆ −MN )(M∆ +MN )2 + ∆2

x(3M∆ + 2MN )
]
F̃ x

1
2
↑

− 2
√

3M∆M
2
N (M2

∆ −M2
N )
[
3∆4

x − 2∆2
x(3M∆ −MN )(M∆ +MN ) + (M∆ −MN )

· (M∆ +MN )3
]
F̃ x

1
2
↓

+ 2∆xM
2
N (M2

N −M2
∆)
[
∆4

x + (M∆ +MN )2(3M2
∆ +M2

N )

+ 2∆2
x(M2

N +M∆MN − 3M2
∆)
]
F̃ x

3
2
↓

)

+
i

√
2
[
∆2

x + (M∆ −MN )2
]2[

∆2
x + (M∆ +MN )2

]2

(
M2

N

[
∆4

xMN +MN (M2
∆ −M2

N )2

− 2∆2
x(M3

∆ + 2M2
∆MN −M3

N )
]
F̃ y

3
2
↑

+
√

3M∆M
2
N

[
∆4

x + 2∆2
xM∆(M∆ +MN ) − (M2

∆ −M2
N )2
]
F̃ y

1
2
↓

)

+
i

√
2
[
(∆2

x +M2
∆)2 + 2(∆x −M∆)(∆x +M∆)M2

N +M4
N

]2

(
2
√

3∆xM∆M
2
N

·
[
∆2

xMN − (M∆ −MN )(M∆ +MN )2
]
F̃ y

1
2
↑

+ ∆xM
2
N

[
∆4

x − 3M4
∆ + 2(∆2

x +M2
∆)M2

N +M4
N

]
F̃ y

3
2
↓

)

+
1

2
√

2
[
∆2

x + (M∆ −MN )2
]2[

∆2
x + (M∆ +MN )2

]3

(
∆xM

2
N

[
∆4

xMN − (M∆ −MN )MN

· (M∆ +MN )3 − 2∆2
x(M∆ +MN )(5M2

∆ −M2
N )
]
F̃−3

2
↑
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+ 2
√

3∆2
xM∆M

2
N

[
−2(M∆ −MN )(M∆ +MN )2 + ∆2

x(3M∆ + 2MN )
]
F̃−1

2
↑

+
√

3∆xM∆M
2
N

[
3∆4

x − 2∆2
x(3M∆ −MN )(M∆ +MN ) + (M∆ −MN )

· (M∆ +MN )3
]
F̃−1

2
↓

+ ∆2
xM

2
N

[
∆4

x + (M∆ +MN )2(3M2
∆ +M2

N ) + 2∆2
x(M2

N − 3M2
∆ +M∆MN )

]
F̃−3

2
↓

)
. (5.9)

Again we remark that if we introduce the consistency relations in eq. 4.31 we find back the
expressions in eq. 4.23.

5.4 Results and discussion

In this section we apply the previously explored spurious covariants formalism to calculate the
form factors and mixed GPDs and hence hope to overcome covariance breaking effects from
the impulse approximation. To be more precise using spurious covariants allows us to restore
reference frame independence for form factors and GPDs which was previously violated due
to covariance breaking.

In fig. 5.3 we see that the curves for the N → N form factors which we obtained using
spurious covariants (red) are similar in shape to the curves which we calculated from the good
component of the transition amplitudes alone (black). Actually the black curve is obtained
by evaluating eq. 5.5 where we use the consistency relations to obtain the bad component
transition amplitudes from the good LF component model transition amplitudes. The black
curves coincide with fig. 4.6 which illustrates the consistency of 4.28 and 4.16 with 5.52.

However the red curves are quantitatively different from the black curves and hence differ
considerably from the experimental data.

Consequently we have to address the question why our new results are numerically poorer
than the results from the simple approach. We had rather expected the opposite beforehand
as spurious covariants were introduced in order to deal with frame dependence due to covari-
ance breaking.

Firstly we remark that the free parameters of the spatial wave function (see eq. 3.14) have
been chosen such that Gp

M (Q2) is best described if it is extracted from the good components
of the transition amplitudes alone. By introducing spurious covariants more transition ampli-
tudes get involved and the interplay among them causes trouble. This is particularly the case
as we know that the “⊥” and “−” components of the transition amplitudes suffer from sizable
inconsistencies as we have discussed in sec. 4.7. Unfortunately the obvious consequence of
this observation namely to readjust the free parameters in the quark model wave functions
for the use of spurious covariants does not work. We have scanned the parameter space from
mq = 100 MeV... 500 MeV and α = 0.3 GeV2... 0.7 GeV2 and found that while the use of
spurious covariants leads to good results for Gp

M (Q2) for a wide range of (mq, α), Gp
E(Q2)

2We have also verified this consistency analytically.
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does not even get close to being described successfully. So we perform our calculations with
the given parameters for the sake of comparability.

Secondly we like to remind the reader that a small error in some of the amplitudes can
lead to a sizable error in the form factors due to the interplay among the different amplitudes.
As an example for such a behavior we recall the violation of the angular condition (eq. 4.30).
Here a 30% effect lead to a total loss of predictive power in the extraction of G?

E(Q2) and
G?

C(Q2). In this example G?
M (Q2) proved to be robust against small deviations from the an-

gular condition while G?
E(Q2) and G?

C(Q2) did not. The question now arises which properties
our model amplitudes should have in order to guarantee robust results for the form factors
that are obtained using spurious covariants.

We will address this question by focussing on a discussion about F p
1 (Q2) (upper left panel

in fig. 5.3). In the spurious covariants approach we obtain F p
1 (Q2 = 0) ∼ 2 and thus find

a strong deviation from the physical value F p
1 (Q2 = 0) = 1. Physically this means that the

charge is not conserved. Therefore we now explore where this strong deviation stems from.
The expression for F p

1 (Q2) in eq. 5.5 reduces in the limit Q2 → 0 to

F1(0) =
1

2
F̃+
↑↑ +

1

8M2
N

F̃−↑↑ .

The expression for F1(0) extracted from the good LF component transition amplitudes alone
reads

F1(0) = F̃+
↑↑ .

These expressions agree if

F̃−↑↑ = 4M2
N F̃

+
↑↑ . (5.10)

This is one of the consistency relations for respecting Poincare covariance (c.f. eq. 4.28) in
the limit Q2 → 0.The inconsistency of our model amplitude F̃−↑↑ with eq. 5.10 thus causes

F p
1 (0) to deviate from unity.

Charge non conservation is clearly a major drawback. We emphasize that using spurious co-
variants only the effects of covariance breaking on the frame dependence are resolved. Other
inconsistencies due to covariance breaking are not necessarily removed. Nevertheless it is
still frustrating that using good LF component transition amplitudes alone the proton charge
is conserved while employing a more elaborated approach charge conservation is violated3.
Therefore we take a closer look on how charge conservation comes about in the former case
and what difference appears in the latter. For Q2 = 0 the Melosh rotation becomes unity (c.f.
eq. 3.6). For the relevant current components Q2 = 0 leads to (see eq. 3.16)

〈p′, λ′ | J+ | p, λ〉 =χ†λ′χλ (5.11)

〈p′, λ′ | J− | p, λ〉 =
m2 + ~p2

⊥
(p+)2

χ†λ′χλ . (5.12)

3In [22] the charge of the proton is conserved. However this stems from the authors default to orthogonalize
all spurious covariants. We have already discussed why this is mandatory and where the argument provided
in [22] to not having to orthogonalize κ̃

µ
2 and κ̃

µ
3 fails.
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For the spin flavor portion we find unity in both cases for the non flip amplitude. Thus the

normalization of the spatial wave function enforces F̃
+(p→p)
↑↑ = 1 while the kinematical factor

in the integrand from eq. 5.12 certainly does not enforce F̃
−(p→p)
↑↑ = 4M2

N .

The other three panels in fig. 5.3 show that the reference frame dependence at least is
not for all form factors of the order 100%. We have already mentioned in the previous section
that a possible non physical form factor F3(t) is zero if gauge invariance is satisfied. In fact
eq. 5.5 allows for the weaker condition that

2MN F̃
x
↑↑ = ∆xF̃

x
↓↑ (5.13)

has to be satisfied in order to guarantee vanishing of F3(t) in the spurious covariants formal-
ism. We note that our model satisfies this condition.

In fig. 5.4 the black curves coincide with fig. 4.12 which illustrates the consistency of 4.29 and
4.17 with 5.74. Just as for F p

1 (Q2) we find that the reference frame independent results (red)
for GA(Q2) and GP (Q2) differ strongly from the respective results in chapter 4. For GA(Q2)
the new result moves far away from the experimental data while GP (Q2) switches sign. As
our quark model does not describe pion physics we consider the sign correction as a fortunate
coincidence.

In figs. 5.5 and 5.6 the situation is similar. The black curves agree with the results from
prescription I in figs. 4.18 and 4.24. In the case of the vectorial N → ∆ transition this
result roots in the smallness of G?

4(t) in the spurious covariants formalism. In the lower left
panels the statistical errors from the MC integration add up to an effect that is visible with
the bare eye. This is not the case for most other results. The numerical results for H ?

E(Q2)
and H?

C(Q2) are not impressive. On the other hand the ambiguity due to different possible
prescriptions how to extract the N → ∆ transition form factors from the amplitudes has been
resolved. The uniqueness of the N → ∆ transition form factors is a positive consequence of
the spurious covariants formalism applied to the N → ∆ transition.

Unlike for the N → N transition gauge invariance is not satisfied for the N → ∆ transi-
tion amplitudes in our model. Eq. 5.8 reveals that again a weaker condition than gauge
invariance [

(M2
∆ −M2

N )F̃+
λ′λ − ∆xF̃

x
λ′λ

]
= 0

is sufficient in the spurious covariants formalism to ensure G?
4(Q

2) to vanish:

0 =

(
3∆xM

2
∆(M∆ −MN )

[
(M2

∆ −M2
N )F̃+

3
2
↑ − ∆xF̃

x
3
2
↑

]

−
√

3M∆

[
∆2

x(2M∆ −MN ) − (M∆ −MN )2(M∆ +MN )
][

(M2
∆ −M2

N )F̃+
1
2
↑ − ∆xF̃

x
1
2
↑

]

+
√

3∆xM∆(∆2
x − 2M2

∆ +M∆MN +M2
N )
[
(M2

∆ −M2
N )F̃+

1
2
↓ − ∆xF̃

x
1
2
↓

]

− 3∆2
xM

2
∆

[
(M2

∆ −M2
N )F̃+

3
2
↓ − ∆xF̃

x
3
2
↓

])
. (5.14)

4We have also verified this consistency analytically.
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The result for G?
4(t) shows that our model satisfies this relation to good accuracy while gauge

invariance is strongly violated.

About figs. 5.7, 5.8, 5.9 and 5.10 we have not much to say. However one observation re-
quires a remark. The spurious covariants formalism absorbs reference frame dependence into
non physical form factors and GPDs. The dependence of

∫ 1

−1
dxGPD(x, ξ, t) (5.15)

on ξ obviously does not decrease if the reference dependence is eliminated. The neglect of non
valence contributions seems to be the dominant cause for the sum rule violation. We mention
that for H?

C(Q2) (lower left panel in fig. 5.9) and particularly for C ?
3 (Q2) (lower left panel in

fig. 5.10) numerical uncertainties play a big role which show up as wiggles in the curves.

In conclusion we like to address the reason for the poor numerical findings in this chap-
ter. Firstly we remark that already the amplitude relations which we discussed in the last
chapter were badly satisfied. Certainly this effects are handed down to the form factors and
mixed twist GPDs which we have calculated here. In order to understand why the non plus
LF component transition amplitudes are described so badly in the quark model we recall the
expression for the bad LF component from chapter 3

χ =
1

∂+

[
~α⊥(~∂⊥ − ig ~A⊥)φ− imγ0φ

]
.

In the quark model we have neglected the gluon contribution. This influences the bad LF
component transition amplitudes, but not the + components. We had the hope that the quark
model might be capable of providing at least a good approximation for the bad LF component
transition amplitudes. This is clearly not the case. One needs a better model (that treats
higher Fock states) in order to reasonably access the bad LF component amplitudes.

The spurious covariants which we have discussed in this chapter are model independent.
So the results in this chapter have a use beyond the specific model context discussed here
for illustrative purpose. We have demonstrated in the framework of a LF quark model that
reference frame dependencies can be absorbed into spurious form factors and GPDs. It would
be interesting to employ a more involved model like [115] to exploit this formalism.
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Figure 5.3: The vectorial nucleon form factors calculated using the spurious covariants
formalism (eq. 5.5). The red curve is obtained using all amplitudes from our LF quark
model calculation. The black curve uses F̃+

↑↑ and F̃+
↓↑ from the model while the other

amplitudes that we use are obtained using eq. 4.28.
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Figure 5.4: The axial nucleon form factors calculated using the spurious covariants
formalism (eq. 5.7). The red curve is obtained using all amplitudes from our LF quark
model calculation. The black curve uses F̃+

↑↑ and F̃ x
↓↑ from the model while the other

amplitudes that we use are obtained using eq. 4.29.
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covariants formalism (eq. 5.8). The red curve is obtained using all amplitudes from our
LF quark model calculation. The black curve uses F̃+

3
2
↑, F̃

+
1
2
↑ and F̃+

1
2
↓ from the model while

the other amplitudes that we use are obtained using eq. 4.30.



174 Chapter 5. Spurious covariants

C5(Q
2)

0
0.25
0.5

0.75
1

1.25
1.5

1.75
2

0 0.2 0.4 0.6 0.8 1
Q2

GeV 2

C6(Q
2)

-2

-1.5

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
Q2

GeV 2

C3(Q
2)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0 0.2 0.4 0.6 0.8 1
Q2

GeV 2

C4(Q
2)

-0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 0.2 0.4 0.6 0.8 1
Q2

GeV 2

Figure 5.6: The axial N → ∆ transition form factors calculated using the spurious
covariants formalism (eq. 5.9). The red curve is obtained using all amplitudes from our
LF quark model calculation. The black curve uses F̃+

3
2
↑, F̃

+
1
2
↑, F̃

+
1
2
↓ and F̃ x

3
2
↑ from the model

while the other amplitudes that we use are obtained using eq. 4.31.



5.4. Results and discussion 175

Hu
(?)(x, ξ, t = −0.5 GeV 2)

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1 x

Hd
(?)(x, ξ, t = −0.5 GeV 2)

-0.2
0

0.2
0.4
0.6
0.8

1
1.2
1.4

0 0.2 0.4 0.6 0.8 1 x

Eu
(?)(x, ξ, t = −0.5 GeV 2)

-0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1 x

Ed
(?)(x, ξ, t = −0.5 GeV 2)

-2.5

-2

-1.5

-1

-0.5

0

0 0.2 0.4 0.6 0.8 1 x

Xu
(?)(x, ξ, t = −0.5 GeV 2)

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

0 0.2 0.4 0.6 0.8 1 x

Xd
(?)(x, ξ, t = −0.5 GeV 2)

-1.75
-1.5

-1.25
-1

-0.75
-0.5

-0.25
0

0.25
0.5

0 0.2 0.4 0.6 0.8 1 x

Figure 5.7: The mixed vectorial nucleon GPDs calculated using the spurious covariants
formalism (eq. 5.4). The solid curve is obtained using all amplitudes from our LF quark
model calculation. The dotted curve uses G̃+
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+
↓↑ and G̃x

↑↑ from the model while the other
amplitudes that we use are obtained using eq. 4.55. Results for ξ = 0 are given in black;
ξ = 0.1 corresponds to the green curves and ξ = 0.2 to the red curves.
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Figure 5.8: The mixed axial nucleon GPDs calculated using the spurious covariants
formalism (eq. 5.6). The solid curve is obtained using all amplitudes from our LF quark
model calculation. The dotted curve uses G̃+
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Figure 5.9: The mixed twist vectorial N → ∆ transition GPDs calculated using the
spurious covariants formalism. The results are obtained numerically using all amplitudes
from our LF quark model calculation. Results for ξ = 0 are given in black; ξ = 0.1
corresponds to the green curves and ξ = 0.2 to the red curves.
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Figure 5.10: The mixed twist axial N → ∆ transition GPDs calculated using the spuri-
ous covariants formalism. The results are obtained numerically using all amplitudes from
our LF quark model calculation. Results for ξ = 0 are given in black; ξ = 0.1 corresponds
to the green curves and ξ = 0.2 to the red curves.



Chapter 6

Conclusions

Before concluding this thesis we like to provide some additional results that did not fit in
the flow of the last chapters but which are interesting in themselves. On the one hand side
we apply the large NC relations from eqs. 2.6 and 2.7 to our model results. As can be seen
from fig. 6.1 we find good agreement for the leading GPDs H ?

M (x, ξ, t) and C1(x, ξ, t) for
ξ = 0 and decreasing agreement for higher values of ξ. The reason is that the skewedness
effect for N → N has opposite sign compared to N → ∆ in our model calculation. Since we
get no conclusive results for H?

E(x, ξ, t) and H?
C(x, ξ, t) in the direct model calculation we are

happy to state that the large NC results provide the same order of magnitude as the different
prescriptions for these GPDs.

Another quantity that we like to discuss is the evaluation of Ji’s sum rule (eq. 2.4). From the
nucleon GPDs evaluated from the good LF components for ξ = 0 we get

Ju =0.265 ± 0.001

Jd = − 0.029 ± 0.001

(6.1)

which is in fair agreement with the findings of lattice QCD [114]

Ju =0.37 ± 0.06

Jd = − 0.04 ± 0.04 .

(6.2)

This implies that our model prediction for the quark contribution to the total nucleon spin is
47.2%. The deviation from the SU(6) prediction (100%) originates in relativistic effects which
in the framework of the LF quark model enter via the Melosh rotation.

After this side remark we highlight the results of this thesis. We have applied a LF quark
model using the overlap representation to calculate amplitudes for vectorial and axial N → N
and N → ∆ transitions. So far in the literature the amplitudes in table 6.1 have been cal-
culated in the framework of a LF quark model. In this thesis the missing slots have been filled.
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Figure 6.1: The large NC relations from eqs. 2.6 and 2.7 applied to the results from the
quark model. The solid lines are the large NC predictions using the nucleon GPD results
from the quark model calculation as input. The dashed and dotted curves are the direct
calculation for the N → ∆ GPDs in the two prescriptions which we use. The color of the
curves indicates the value of the skewedness variable: ξ = 0 (black), ξ = 0.1 (green) and
ξ = 0.2 (red).

amplitude V,N → N A,N → N V,N → ∆ A,N → ∆

F̃+
λ′λ x x x

F̃⊥λ′λ x x

F̃−λ′λ x

G̃+
λ′λ x x

G̃⊥λ′λ

G̃−λ′λ

Table 6.1: Amplitudes that have been calculated in a LF model so far.
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We have established the connection between the transition amplitudes and the respective form
factors and GPDs. These conversions are model independent and can be applied for future
model calculations as well. Among the new results in this context are

• N → ∆ GPDs

• Adler form factors

• Sum rules for the N → ∆ GPDs without overparameterization of this DVCS process

• First toy model results for higher twist GPDs

We have presented a way to obtain model independent amplitude relations which have to
be satisfied due to Poincare covariance. Among them we found back the angular condition.
Additionally we presented dozens of new covariance consistency relations. All these relations
are model independent.

We have worked out how bad LF component DVCS soft amplitudes and higher twist GPDs
are related. For the latter we chose convenient sets of covariants and showed completeness.
We have introduced “mixed twist” GPDs and have explored under which assumptions such a
concept is sensible.

We have picked up the spurious covariants formalism which facilitated the reference frame
independent extraction of form factors and (mixed twist) GPDs. In particular this formalism
was extended towards axial transitions, the N → ∆ transition, and GPDs.

Numerically satisfying observables which have not been calculated before in a LF quark
model were

• the magnetic N → ∆ transition GPD H?
M(x, ξ, t)

• the Adler form factor C5(Q
2)

• the corresponding GPD C1(x, ξ, t)

Most of our numerical results however can hardly be considered predictive as they suffer
strongly from the consequences of the impulse approximation and the restrictions of the quark
model. Fortunately the analytical results in the chapters 4 and 5 are model independent and
therefore have a scope beyond the quark model calculation in this thesis.



Appendix A

Conventions and spinors

For the gamma matrices we use the conventions of Bjorken/Drell

γ0 =

(
1 0
0 −1

)
~γ =

(
0 ~σ
−~σ 0

)

γ5 = iγ0γ1γ2γ3 =

(
0 1
1 0

)
σµν =

i

2
[γµ, γν ] .

The normalization of the (canonical) spinors for a particle with mass M is chosen to be

ū(p, s)u(p, s′) = 2Mδs,s′

hence

u(p, s) =
1√

p0 +M

(
(p0 +M)χ(s)
−(~σ · ~p)χ(s)

)
.

For the LF vectors we choose the convention

A± =A0 ±A3 .

Therefore one has

AµBµ =
1

2

(
A+B− +A−B+

)
− ~A⊥ · ~B⊥ .

The LF spinors are normalized by

ūLF (p, λ)uLF (p, λ′) = 2Mδλ′λ .
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and read

uLF (p, ↑) =
1√
2p+




M + p+

pR

p+ −M
pR




uLF (p, ↓) =
1√
2p+




−pL

p+ +M
pL

M − p+




ūLF (p, ↑) =
1√
2p+

(
M + p+, pL, M − p+, −pL

)

ūLF (p, ↓) =
1√
2p+

(
−pR, p+ +M, −pR, p+ −M

)
.

Massive spin 1 particles are described by polarization vectors. On the LF they explicitly read

εµ+1(p) = −
√

2




0
1
0
pR

p+




εµ0 (p) =
1

M




p+

pL

pR

~p2
⊥−M2

p+




εµ−1(p) =
√

2




0
0
1
pL

p+


 .

Now the Rarita-Schwinger spinors which describe spin 3
2 particles can be constructed using a

Clebsch Gordon construction. They read

uµ
3/2(p) =εµ+1(p)u(p, ↑)

uµ
1/2(p) =

√
2

3
εµ0 (p)u(p, ↑) +

√
1

3
εµ+1(p)u(p, ↓)

uµ
−1/2(p) =

√
2

3
εµ0 (p)u(p, ↓) +

√
1

3
εµ−1(p)u(p, ↑)

uµ
−3/2(p) =εµ−1(p)u(p, ↓) .

These spinors have to satisfy the equations of motion

(/p−M)uµ
λ(p) =0

pµ u
µ
λ(p) =0 . (A.1)



Appendix B

Kinematics for the N → ∆ transition

The kinematics for the N → ∆ transition is contained in eq. 2.5. Here we will give useful
invariants which can be built from the respective four vectors. Naturally they do not depend
on ξ. We find

∆2 =t

P̄ 2 =M̄2 =
1

2
(M2

∆ +M2
N ) − t

4
P ′2 =M2

∆

P 2 =M2
N

P̄ · ∆ =
1

2
(M2

∆ −M2
N ) . (B.1)
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Appendix C

Covariant structures for the N → ∆

transition

In this section we provide some useful relations among N → ∆ covariants and then establish
a connection between the sets of covariants which are used to parameterize the vectorial soft
transition amplitude. Relations which we frequently apply in the subsequent calculations are
the eqs. of motion for the RS spinor (eq. A.1) and the Dirac equation, which is the eq. of
motion for the nucleon spinor.

We find the following relations:

〈∆ | γ5 /̄P /∆ | N〉 = 〈∆ | γ5

[1
2
( /P ′2 − /P 2) − 1

2
/P ′/P +

1

2
/P /P ′

]
| N〉

= 〈∆ | γ5

[1
2
(P ′2 − P 2) + P · P ′ − P ′ /P

]
| N〉

= 〈∆ |
[
M2

∆ − t

2
+ /P ′MN

]
γ5 | N〉

= 〈∆ |
[
M∆(M∆ +MN ) − t

2

]
γ5 | N〉 (C.1)

〈∆ | γ5γµ /̄P | N〉 = 〈∆ | 1

2
γ5γµ( /P ′ + /P ) | N〉

= 〈∆ | 1

2
γ5γµMN +

1

2
P ′αγ5γµγα | N〉

= 〈∆ | −1

2
γµγ5MN +

1

2
P ′α
[
2gµα − γαγµ

]
γ5 | N〉

= 〈∆ | −1

2
MNγµγ5 + P ′µγ5 −

1

2
/P ′γµγ5 | N〉

= 〈∆ | −1

2
(MN +M∆)γµγ5 + P ′µγ5 | N〉 (C.2)

〈∆ | γ5γµ /∆ | N〉 = 〈∆ | γ5γµ( /P ′ − /P ) | N〉
= 〈∆ |MNγµγ5 + 2P ′µγ5 −M∆γµγ5 | N〉 (C.3)
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〈∆ | γ5γµγν /̄P · /∆ | N〉 = 〈∆ | γ5γµγν

[
M2

∆ − t

2
− /P ′MN

]
| N〉

= 〈∆ | (M 2
∆ − t

2
)γµγνγ5 + γµγνγαP

′αγ5 | N〉

= 〈∆ | (M 2
∆ − t

2
)γµγνγ5 +

[
2γµP

′
ν − γµγαγνP

′α
]
γ5MN | N〉

= 〈∆ | (M 2
∆ − t

2
)γµγνγ5 +

[
2P ′νγµγ5 − 2P ′µγνγ5 + /P ′γµγνγ5

]
MN | N〉

= 〈∆ |
[
M∆(M∆ +MN ) − t

2

]
γµγνγ5 + 2MN

[
P ′νγµ − P ′µγν

]
γ5 | N〉

(C.4)

〈∆ | /∆γ5 | N〉 = 〈∆ | ( /P ′ − /P )γ5 | N〉
= 〈∆ | (M∆ +MN )γ5 | N〉 (C.5)

Another useful identity is:

εαβγδεα′β′γ′δ′ = −det




gαα′ gαβ′ gαγ′ gαδ′

gβα′ gββ′ gβγ′ gβδ′

gγα′ gγβ′ gγγ′ gγδ′

gδα′ gδβ′ gδγ′ gδδ′


 (C.6)

which can be proven by exploiting the total antisymmetry of the determinant and fixing the
indices to find a possible constant factor. Another identity involving the totally antisymmetric
tensor reads [116]

εµναβ =iγ5

[
γµγνγαγβ − gµνγαγβ − gαβγµγν − gµβγνγα − gναγµγβ

+gµαγνγβ + gνβγµγα + gµνgαβ − gµαgνβ + gµβgνα

]
. (C.7)

With the relations above at hand we can proceed to evaluate the structures which appear in
the covariant sets

κµν
M =i

3(M∆ +MN )

2MN

[
(M∆ +MN )2 − t

]εµνρλP̄ρ∆λ

κµν
E = − κµν

M − 6(M∆ +MN )

MN

[
(M∆ −MN )2 − t

][
(M∆ +MN )2 − t

]εµκαβP̄α∆β ε
ν α′β′
κ P̄α′∆β′γ5

κµν
C =

3(M∆ +MN )

MN

[
(M∆ −MN )2 − t

][
(M∆ +MN )2 − t

]
[
(P̄ · ∆)∆µ∆ν − tP̄ µ∆ν

]
γ5 (C.8)

and

κµν
1 = (γµ∆ν − /∆gµν)γ5

κµν
2 = (P ′µ∆ν − (P ′ · ∆)gµν)γ5

κµν
3 = (∆µ∆ν − ∆2gµν)γ5 . (C.9)

We find
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〈∆ | εµναβP̄
α∆β | N〉 =〈∆ | iγ5

[
γµγνγαγβ − gµνγαγβ − gαβγµγν − gµβγνγα − gναγµγβ

+gµαγνγβ + gνβγµγα + gµνgαβ − gµαgνβ + gµβgνα

]
P̄α∆β | N〉

=〈∆ | iγ5

[
γµγν /̄P /∆ − gµν /̄P /∆ − (P̄ · ∆)γµγν − ∆µγν /̄P − γµP̄ν /∆

+ P̄µγν /∆ + γµ∆ν /̄P + gµν(P̄ · ∆) − P̄µ∆ν + ∆µP̄ν

]
| N〉

=〈∆ | iγ5

[
−gµν /̄P /∆ − ∆µγν /̄P − 1

2
∆µγν /∆ + gµν(P̄ · ∆)

+
1

2
∆µ∆ν + ∆µP̄ν

]
| N〉

=i〈∆ |
([ t

2
−M∆(M∆ +MN )

]
gµν − ∆µ

[
P ′ν − 1

2
(MN +M∆)γν

]

− 1

2
∆µ

[
(MN −M∆)γν + 2P ′ν

]
+

1

2
gµν(M2

∆ −M2
N )

+
1

2
∆µ∆ν + ∆µP̄ν

)
γ5 | N〉

=i〈∆ |
(

1

2

[
t− (M∆ +MN )2

]
gµν +M∆∆µγν

− 1

2
∆µ∆ν − ∆µP̄ν

)
γ5 | N〉 . (C.10)

On the other hand we obtain

〈∆ |M∆κ
1
µν − κ2

µν

]
| N〉

=〈∆ |
[
M∆∆µγν −M∆ /∆gµν − ∆µP̄ν + (P̄ · ∆)gµν − 1

2
∆µ∆ν +

t

2
gµν

]
γ5 | N〉

=〈∆ |
(

1

2

[
t− (M∆ +MN )2

]
gµν +M∆∆µγν − 1

2
∆µ∆ν − ∆µP̄ν

)
γ5 | N〉 . (C.11)

Comparing both expressions we get (µ ↔ ν produces a minus sign in the antisymmetric
tensor)

κµν
M =

3(M∆ +MN )

2MN

[
(M∆ +MN )2 − t

]
(
M∆κ

µν
1 − κµν

2

)
. (C.12)

Next we find
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εµκαβP̄
α∆βε κ

ν α′β′P̄
α′

∆β′
γ5 = −det




gµν gκ
µ gµα′ gµβ′

gκν gκ
κ gκα′ gκβ′

gαν gκ
α gαα′ gαβ′

gβν gκ
β gβα′ gββ′


 P̄α∆βP̄α′

∆β′
γ5

= − det




gµν gκ
µ gµα′ gµβ′

gκν gκ
κ gκα′ gκβ′

P̄ν P̄ κ P̄α′ P̄β′

∆ν ∆κ ∆α′ ∆β′


 P̄α′

∆β′
γ5

= − det




gµν gκ
µ P̄µ ∆µ

gκν 4 P̄κ ∆κ

P̄ν P̄ κ P̄ 2 P̄ · ∆
∆ν ∆κ P̄ · ∆ ∆2


 γ5

=

[
−gµν det




4 P̄ κ ∆κ

P̄κ P̄ 2 P̄ · ∆
∆κ P̄ · ∆ ∆2


+ gκν det



gκ
µ P̄ κ ∆κ

P̄µ P̄ 2 P̄ · ∆
∆µ P̄ · ∆ ∆2




− P̄ν det



gκ
µ 4 ∆κ

P̄µ P̄κ P̄ · ∆
∆µ ∆κ ∆2


+ ∆ν det



gκ
µ 4 P̄ κ

P̄µ P̄κ P̄ · P̄
∆µ ∆κ P̄ · ∆



]
γ5

= − gµν

[
4∆2P̄ 2 + 2(P̄ · ∆)2 − 4(P̄ · ∆)2 − P̄ 2∆2 − P̄ 2∆2

]
γ5

+ det



gµν P̄ν ∆ν

P̄µ P̄ 2 P̄ · ∆
∆µ P̄ · ∆ ∆2


 γ5

− P̄ν

[
P̄µ∆2 + 4(P̄ · ∆)∆µ + P̄µ∆2 − ∆µ(P̄ · ∆) − 4P̄µ∆2 − (P̄ · ∆)∆µ

]
γ5

+ ∆ν

[
P̄µ(P̄ · ∆) + 4∆µP̄

2 + (P̄ · ∆)P̄µ − ∆µP̄
2 − 4(P̄ · ∆)P̄µ − P̄ 2∆µ

]
γ5

=
[
(P̄ · ∆)2 − P̄ 2∆2

]
gµνγ5 + t P̄ µP̄ νγ5 + P̄ 2∆µ∆νγ5 − (P̄ · ∆)∆µP̄ νγ5 − (P̄ · ∆)P̄ µ∆νγ5

Sandwiched between nucleon and ∆ states we can apply eq. A.1 and conclude

〈∆ | εµκαβP̄
α∆βε κ

ν α′β′ P̄α′
∆β′

γ5 | N〉

=〈∆ |
([

(P̄ · ∆)2 − P̄ 2∆2
]
gµν +

[
P̄ 2 +

1

2
(P̄ · ∆)

]
∆µ∆ν −

[
(P̄ · ∆) +

t

2

]
P̄ µ∆ν

)
γ5 | N〉 .

(C.13)
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On the other hand side we find

3(M∆ +MN )

MN

(
1

2
[
(M∆ +MN )2 − t

]
[
−M∆κ

µν
1 + κµν

2

]

+
1[

(M∆ −MN )2 − t
][

(M∆ +MN )2 − t
]
[
(M2

∆ −M2
N + t)κµν

2 − 2M2
∆κ

µν
3

])

= − κµν
M +

3(M∆ +MN )

MN

[
(M∆ −MN )2 − t

][
(M∆ +MN )2 − t

]
(

(M2
∆ −M2

N + t)P̄ µ∆ν

+
[1
2
(M2

∆ −M2
N + t) − 2M 2

∆

]
∆µ∆ν −

[
(M∆ −MN )2 − t

][
(M∆ +MN )2 − t

]

2
gµν

)
γ5 .

(C.14)

Using the kinematical relations in eq. B.1 one ends up with

κµν
E =

3(M∆ +MN )

MN

(
−M∆

2q+
κµν

1 +
[ 1

2q+
+

σ

σ2 − 4M2
∆t

]
κµν

2 − 2M2
∆

σ2 − 4M2
∆t
κµν

3

)
. (C.15)

Here we have adopted the notation from chapter 4 with

σ =M2
∆ −M2

N + t

q+ =(M∆ +MN )2 − t .

Finally we evaluate

κµν
C =

3(M∆ +MN )

MN

[
(M∆ −MN )2 − t

][
(M∆ +MN )2 − t

]
[
(P̄ · ∆)∆µ∆ν − tP̄ µ∆ν

]
γ5

=
3(M∆ +MN )

MN (σ2 − 4M2
∆t)

(
M2

∆ −M2
N

2
∆µ∆ν − tP̄ µ∆ν

)
γ5

=
3(M∆ +MN )

MN (σ2 − 4M2
∆t)

(
σ

2
∆µ∆ν − tP ′µ∆ν

)
γ5

=
3(M∆ +MN )

MN (σ2 − 4M2
∆t)

(
−tκµν

2 +
σ

2
κµν

3

)
. (C.16)

We can resume the results of eqs. C.12, C.15 and C.16 and write



κM

κE

κC


 =

3(M∆ +MN )

MN




M∆
2q+ − 1

2q+ 0

−M∆
2q+

1
2q+ + σ

σ2−4M2
∆t

− 2M2
∆

σ2−4M2
∆t

0 − t
σ2−4M2

∆t
σ

2σ2−8M2
∆t






κ1

κ2

κ3


 (C.17)

Inversion and transposition of this matrix gives the result that was given in 4.12.
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