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Abstract

In this work the numerical coupling between electric and thermal network as
well as electronic and optoelectronic semiconductor device models is treated.
An overview over electric and thermal network modeling as well as the hie-
rarchy of semiconductor models is given.

For electric network modeling the modified nodal approach (MNA) is ap-
plied what results in a system of differential-algebraic equations. Thermally
the network is modeled by an accompanying thermal network resulting in a
system of differential or differential-algebraic equations of parabolic type.

Semiconductor devices are modeled by use of the energy-transport model.
The model allows for the computation of the charge carrier temperature and
thus accounts for local thermal effects in the device. In this work the energy-
transport model is extended to a model for optoelectronic devices like laser
and photo diodes for the first time. Mathematically, the energy-transport
equations constitute a elliptic-parabolic cross-diffusion system. It can be
written in a drift-diffusion-type formulation, which allows for an efficient
numerical approximation. For more detailed thermal consideration of de-
vices non isothermal crystal lattice modeling is included. The temperature
of the crystal lattice is modeled by the heat flow equation. The correspon-
ding energy conserving source term is derived under thermodynamical and
phenomenological considerations of energy fluxes.

The coupling of the different subsystems is described. We follow the
approach to include the energy-transport model into the network equations
directly. The heat flow equation for the lattice temperature is included
into the accompanying thermal network model. The final thermoelectric
network-device model results in a coupled system of partial differential-
algebraic equations (PDAE).

For numerical examples we consider the case of one-dimensional devices.
For space discretization of the device equations a hybridized mixed finite
element scheme is applied that allows to maintain the continuity of the device
current and the positivity of charge carrier densities. Exponential fitting is
applied for good approximation in the convection dominated case. To keep
positivity of charge carriers also for the coupled system and to account
for the differential algebraic character of the system backward difference
formulas are applied for time discretization.

For efficient solution of the coupled system resulting from optoelec-
tronic device modeling and thermoelectric network device coupling, iterative
solvers are presented. Numerical examples are presented for (opto)electronic
network device coupling. A focus is on the numerical results for semicon-
ductor devices including non-isothermal crystal lattice. Finally numerical
results for a complete thermoelectrically simulated circuit are presented.
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Introduction

Introduction

The advance in telecommunications and computer technology within the last
decades is representative for the technological progress of the society. This
highly visible progress is strongly driven by the development of new and
more powerful electronic and optoelectronic devices and integrated circuits.
On nowadays chips millions of network elements are included. The ongo-
ing miniaturization of single elements and integrated circuits, leading from
micro- to nanotechnology, will allow for increasing performance in telecom-
munications in the near future.

Chip design and development strongly depends an reliable circuit si-
mulation, predicting the electrical behavior of circuits before the expensive
production of prototypes. Thus, reliable circuit simulators will serve as
time- and money-saving tool in application and speed up the technological
progress.

In traditional circuit simulators semiconductor devices are replaced by
compact circuits consisting of basic elements (resistances, capacitances, in-
ductances and sources) rebuilding the electrical behavior of the device. This
strategy was advantageous up to now since integrated circuit simulation
was possible without computationally expensive device simulation. Minia-
turization, however, leads to smaller devices driven by higher frequencies.
Parasitic and local thermal effects occur and may become predominant. This
requires to take into account a very large number of basic elements and ad-
just carefully a large number of parameters to achieve required accuracy.
Moreover device heating and localization of hot spots are not covered by
the compact model approach.

This makes it preferable to employ distributed models for the electric
and thermal description of devices. The first approaches to couple circuits
and devices were based on an extension of existing device simulators by more
complex boundary conditions [67, 82] or the combination of device simula-
tors with circuit simulators as a “black box” solver [37]. Both approaches,
however, are not suitable for complex circuits in the high-frequency domain.

The mathematical analysis and numerical approximation of coupled net-
work and device equations were studied only recently. The first mathema-
tical results were obtained in [41, 44] where a semiconductor device was
coupled to a simple circuit in such a way that the currents entering the de-
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VI Introduction

vice can be expressed by a function of the applied voltage. In this case, the
network is treated only as a special boundary condition for the semiconduc-
tor. This approach fails for integrated circuits.

Later, networks containing semiconductor devices described by the drift-
diffusion equations were studied. An existence analysis containing the drift-
diffusion model was developed in [4, 5]. In [97, 98] it is shown that the
index of the coupled network-device system for devices modeled by the drift-
diffusion equations is at most two under weak conditions on the circuit (local
passivity, no shortcuts). The exact index depends on the topology of the
circuit. The same results were obtained in [88] for the discretized drift-
diffusion equations. For detail we refer also to the review paper [48].

For optoelectronic devices the semiconductor model has to be enhanced
in order to capture the optical effects. In [13, 78] models for laser diodes
based on the drift-diffusion model have been proposed. Corresponding mo-
dels for photo diodes have been presented in [59, 31, 55].

The advantages of the coupled system of network and drift-diffusion
equations compared to the compact model approach are numerous. Thermal
effects, however, are not taken into account.

To allow for thermal effects in devices more complex semiconductor mo-
dels including the consideration of the thermal energy can be applied. The
first so-called energy-transport model has been derived in 1962 by Stratton
[92]. Additionally to the drift-diffusion model Stratton considers the tem-
perature of the charge carriers and thus allows for thermal effects. Since
then different energy-transport models have been presented [18, 19]. A
widespread energy-transport model is presented by Chen et. al. in [27].
The model can be derived from the semi-classical Boltzmann equation in
the diffusion limit under the assumption of dominant electron-electron scat-
tering [19]. It consists of the conservation laws for the electron density
and the electron energy density with constitutive relations for the particle
and energy current densities, coupled to the Poisson equation for the elec-
tric potential. Mathematically, the energy-transport equations (without the
Poisson equation) constitute a parabolic cross-diffusion system in the en-
tropic variables [33]. The system can be written in a drift-diffusion-type
formulation, which allows for an efficient numerical approximation [34].

A more accurate thermal description of the device is achieved by ad-
ditionally allowing non-constant temperature of the crystal lattice. Non
isothermal lattice modeling started in the 70s, when the carrier transport
in the devices was modeled by the drift-diffusion equations. Up to now the
widespread approach is to model the lattice temperature by the heat flow
equation. In the past, different source terms for the heat flow equation cou-
pled to the drift-diffusion equations have been proposed [1, 30, 42, 87, 89].
In [101] Wachutka gave the first derivation of a source term for the heat flow
equation coupled to the energy-transport model for the carrier transport.

Thermal effects in circuit simulation has been taken into account only
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recently. Due to miniaturization and increasing packing density of network
elements thermal effects and thermal interaction can no longer be neglected,
as device heating influences material parameters and thus influences the
electrical performance of the entire circuit. The common approach is to
model the heat effects in circuits by providing an accompanying thermal
network consisting of lumped and distributed thermal elements. This ther-
mal network model is established in [20, 36], where the heat exchange of the
network elements with the environment is taken into account. The mutual
thermal interference of the circuit elements is not considered. In [16, 17]
the model has been extended such that thermal interaction between lumped
and distributed thermal elements could be taken into account. Semicon-
ductor devices, however, have been considered as lumped thermal elements
with a constant temperature. This is a proper model only for semiconductor
devices with very high thermal conductivity or devices where local thermal
effects do not have strong influence on the electrical behavior of the devices.

Compendious, the ingredients for complete thermoelectric modeling and
simulation of optoelectronic circuit-device systems are largely given. None-
theless the proper coupling of all mentioned models and effects builds a
cumbersome task.

Outline of the thesis

In this work we will describe the numerical coupling of electric and thermal
network equations with energy-transport and heat flow equations to allow for
a detailed thermoelectric simulation of circuit-device systems. We will follow
and extend the approach of [97, 98] and include the energy-transport model
into the network equations directly. Compared to the coupling with the drift-
diffusion equations, we are able to simulate the electron temperature what
allows for the consideration of (local) thermal effects in the devices. We
will apply (non-standard) boundary conditions of Robin-type and will give
numerical examples clarifying the drawback of Dirichlet boundary conditions
in bipolar devices. We will model the lattice temperature of the devices by
the heat flow equation. The source term for the heat flow equation will
be derived under thermodynamic considerations and differs slightly from
the source term described by Wachutka in [101]. The heat flow equation
will be included into the accompanying thermal network model described in
[16, 17].

As the device model is described by partial differential equations (of
parabolic type) and the network equations are given by differential-algebraic
equations (DAE), this results in a coupled system of partial differential-
algebraic equations (PDAE).

This work is separated into two parts. The first part, consisting of the
chapters 1 to 4, describes the complete modeling of thermoelectric network
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device systems. Chapters 1 and 2 contain the modeling of electric and
thermal networks without inclusion of semiconductor devices. Chapter 3 is
devoted to the modeling of semiconductor devices. We give a short overview
of the hierarchy of semiconductor models and present the energy-transport
and drift-diffusion model. Moreover we extend the energy-transport model
to the application to optoelectronic devices like laser and photo diodes.
Finally we derive under thermodynamic considerations a source term for the
heat flow equation for distributed modeling of the crystal lattice temperature
of the device. As closure of part one, in chapter 4 the complete coupling
of thermal and electric network equations with the energy-transport, drift-
diffusion and heat flow equations is presented.

The second part is concerned with the special numerical treatment and
the numerical examples. In chapter 5 we state the nondimensionalization of
the coupled system. Chapter 6 is devoted to the discretization of the coupled
system. We apply backward difference formulas for time discretization in
order to take into account the differential algebraic character of the system.
Moreover we describe the discretization of the device equations using a hy-
bridized mixed finite element scheme that allows for good approximation of
the current values and the charge carrier densities. In chapter 7 the applied
iterative algorithms for solution of the complete model and the solution of
different subsystems are presented. Finally in chapter 8 we present the nu-
merical examples to clarify the importance of inclusion of thermal effects
into the simulation of single semiconductor devices as well as circuit-device
systems.
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Part I

Thermoelectric modeling
of semiconductor devices
and integrated circuits
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Chapter 1

Electric network
modeling

Simulation of electric circuits requires proper modeling of networks. How-
ever, proper models for electric circuits have to fulfill two properties. On
the one hand the physical behavior of the circuit has to be rebuilt with
highest possible accuracy. On the other hand the model has to be as simple
as possible in order to reduce the numerical effort that is necessary to solve
the model equations.

A well accepted approach as compromise between these two obviously
conflicting properties is to consider the electric network as a directed graph
containing branches and nodes only. Thereafter the node potentials are
defined with respect to one arbitrarily chosen reference node and the branch
currents and branch voltages are introduced.

Each branch thereby corresponds to a network element, whose physical
behavior is given as a direct relation between the branch current i and the
branch voltage v. The characteristic current-voltage relations of the different
types of network elements will be described below. Thereby we distinguish
between two types of branches:

• current-defined branches
The branch current is given in terms of circuit and device parameters.

• voltage-defined branches
The branch voltage is given in terms of circuit and device parameters.

Besides the current-voltage characteristics of the network elements the net-
work topology has to be considered in order to take into account the mutual
interference of the network elements. The network topology will be described
by the Kirchhoff laws, as we will see below.

3
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Figure 1.1: Low level compact models of a pn diode (left) and a MOSFET
(right)

1.1 Network elements

To model electric circuits, it is necessary to approximate the real network
elements by adequate models. The models for circuit elements cover a wide
range of complexity depending on the complexity of the element and the
needed accuracy of the describing model. The models range from simple
algebraic equations for linear resistances, for instance, up to quantum me-
chanical models based on the Schrödinger equation for semiconductor de-
vices like transistors.

As in integrated circuits and on computer chips the number of semicon-
ductor devices is very high and can reach several millions, such a detailed
modeling and simulation for all devices is numerically impracticable. Thus
we have to restrict ourselves to simple models for most of the devices.

The common approach to construct simple models for semiconductor
devices is to replace them by so-called compact models. These are equivalent
circuits of basic network elements rebuilding the electrical behavior of the
complex device. The basic elements are described by simple algebraic or
ordinary differential equations, such that semiconductor devices are modeled
by a system of these simple equations. In figure 1.1 we see a low level
compact model for a pn diode, consisting of a current source, capacitances
and resistances. Additionally, we see a compact model for a MOSFET (metal
oxide semiconductor field effect transistor), consisting of a voltage source,
capacitances, resistances and diodes, which in turn have to be replaced by
the corresponding equivalent circuit. The depicted low level models enforce
a set of five parameters for the diode and 18 parameters for the MOSFET
to be fitted.

The size of the equivalent circuits depends strongly on the complexity of
the device and the needed accuracy of the model. Ongoing miniaturization
of integrated circuits and semiconductor devices leads to parasitic effects in
devices - like thermal effects and increasing signal to noise ratio - which have
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significant impact on the electrical behavior of the devices. They have to
be taken into account what leads to further increase of the size of compact
models.

The development of compact models is far from being trivial and forms
an own field of research. In [61], for instance, it is suggested to determine
compact models and adjust the corresponding parameters from measure-
ment and simulation data by us of neural networks.

Compact models for nowadays transistors can consist of up to 800 pa-
rameters. The adjustment of these parameters is a very time-consuming
work and requires many laboratory tests or detailed numerical simulations
of the device.

This makes it preferable to use distributed models for semiconductor
devices instead, as they can be applied to many devices and the parameter
fitting for a single device can be omitted. As compromise between detailed
and efficient modeling distributed models are applied to devices with crucial
behavior for the entire circuit, only. The remaining ones are model by
compact models. The inclusion of distributed semiconductor models into
the circuit model will be discussed in § 4.

In this section we consider circuits consisting of basic elements. As basic
elements we consider ideal resistors, capacitors, inductors and voltage and
current sources. Current sources have to be considered, as they play a very
important role in compact models for complex devices (see figure 1.1).

The current-voltage characteristic for a resistor is given by

iR(t) = gR(vR(t), t), (1.1)

where vR(t) denotes the voltage applied to the resistor and iR(t) stands
for the current through the resistor. The function gR(v, t) describes the
conductivity of the resistor.

In capacitors the energy is stored in the electric field. The charge of the
capacitor

QC(t) = Q̃C(vC(t), t)

depends on the applied voltage vC . With the definition of electric current
we then get for the current-voltage relation

iC(t) =
dQ̃C(vC(t), t)

dt
, (1.2)

where iC denotes the current through the capacitor.

In inductors the energy is stored in the magnetic field. The corresponding
flux

ΦL(t) = Φ̃L(iL(t), t)
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depends on the current through the inductor iL. Thus the current-voltage
relation for inductors is given by

vL(t) =
dΦ̃L(iL(t), t)

dt
. (1.3)

As voltage and current sources we consider elements, for which the volt-
age or current, respectively, is directly given by

v(t) = vs(t) or i(t) = is(t). (1.4)

If additionally the sources depend on the applied voltage or driving current,
we refer to the sources as voltage or current controlled sources, see [98] for
details.

1.2 Network topology

To complete the network model the network topology has to be considered
in order to model the mutual electrical interference of the network elements.
Neglecting quantum mechanical interaction between the elements the net-
work model has to fulfill the Kirchhoff laws, that are:

• Kirchoff’s current law (KCL)
The sum of all currents entering and leaving one network node has to
be zero

n∑

k=1

ik = 0.

• Kirchhoff’s voltage law (KVL)
The sum of all branch voltages around one loop in the circuit has to
be zero

n∑

k=1

vk = 0.

We remark that we consider the circuit as directed graph and that each
branch gets a direction. We assign one node as reference or mass node.
Then the network topology is described via the following definition.

Definition 1.1. For an electric network consisting of nn nodes and nb bran-
ches the (reduced) incidence matrix A = (aij) ∈ R

(nn−1)×nb describing the
node to branch relation of the entire circuit (without the reference node) is
defined as

aij =





1 if the branch j leaves the node i,
−1 if the branch j enters the node i,

0 else.
(1.5)
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With this matrix the Kirchhoff current law can be easily expressed as

A i = 0, (1.6)

where i denotes the vector containing all branch currents. Moreover the
matrix can be used to express the relation between the node potentials e
and the vector of all branch voltages v as

v = A> e. (1.7)

Applying (1.7) to all branches around one loop leads directly to the Kirchhoff
voltage law.

With the current-voltage characteristics of the basic network elements
(1.1)-(1.3) and the network topology in terms of the Kirchhoff laws (1.6) and
(1.7) we have the necessary ingredients to describe the complete network
model.

1.3 Nodal approach (NA)

The most simple of the described approaches to model electric circuits is the
so called nodal approach (NA). The name of the approach comes from the
choice of variables occurring. The only variables we namely consider are

• the node potentials e,

which have been determined with respect to the reference node. This guar-
antees Kirchhoff’s voltage law. With these variables the KCL is stated for
each node except for the reference node and the resulting system of equations
stands as model for the entire circuit.

For simple circuits containing conductances and current sources only, the
NA leads to a final system of equations with good condition as the resulting
matrix is diagonally dominant. For circuits containing current sources the fi-
nal system however looses this stability property [43]. The big disadvantage
of the nodal approach is, however, that it only allows for current-defined
branches. Voltage-defined branches however can only be included by use of
gyrators as in [91] and [95]. Moreover, ideal voltage sources and current
controlled elements can not be modeled, as for these elements the current
necessarily has to be considered. The effort to include current dependencies
in this approach leads to small or even negative resistances what results in
numerical instabilities, see [90].

1.4 Modified nodal approach (MNA)

In order to overcome the disadvantages of the nodal approach and allow
for an adequate modeling of voltage sources and current controlled elements
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the modified nodal approach has been introduced [54]. It is based on the
same simple idea as the NA, but as additional variables the currents in the
voltage-defined branches are considered (see below). This change, however,
allows for a proper modeling of more complex circuits, as voltage defined
branches can be easily included. This complexity combined with its simplic-
ity is the reason for the large popularity of the MNA. It has been employed in
SPICE, the standard circuit simulator developed at the university of Berke-
ley [76] and the circuit simulator TITAN developed by SIEMENS / Infineon
Technologies / Qimonda, for instance.

The basic tools for the MNA are the Kirchhoff laws in form of the network
equations (1.6) and (1.7)

A i = 0 (1.8)

v = A> e (1.9)

with the incidence matrix A described in (1.5). Moreover we need the
current-voltage characteristics of the basic elements (1.1)-(1.3)

iR(t) = gR(vR(t), t), iC(t) =
dQ̃C(vC(t), t)

dt
, vL(t) =

dΦ̃L(iL(t), t)

dt
,

(1.10)

and the given current and voltage sources (1.4)

v(t) = vs(t) or i(t) = is(t). (1.11)

The classical modified nodal approach

In the classical approach the set of variables is increased (compared to the
NA) by the currents in the voltage-defined branches. Thus we consider as
variables

• the node potentials e,

• the currents through the voltage-defined (or current-controlled) ele-
ments iL and iv.

In the modified nodal approach we replace the branch currents of all current-
defined elements in (1.8) by the corresponding relations in (1.10) and ad-
ditionally replace all branch voltages by the node potentials according to
(1.9).

Further on, the network branches are numbered in such a way that the
incidence matrix forms a block matrix with blocks describing the different
types of the network elements, i.e.

A = (AR,AC ,AL,AI ,AV ),
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where the index indicates the resistive, capacitive, inductive and current and
voltage source branches. With that we finally get the differential algebraic
system of equations

ACC(A>

Ce, t)A
>

C

de

dt
+ AC

∂Q̃C

∂t
(A>

Ce, t)

+ARgR(A>

Re, t) + ALiL + AV iV = −AIis(t), (1.12)

L(iL, t)
diL
dt

+
∂Φ̃L

∂t
(iL, t) −A>

Le = 0, (1.13)

A>

V e = vs(t), (1.14)

with

C(v, t) :=
∂Q̃c

∂v
(v, t), L(i, t) :=

∂Φ̃L

∂i
(i, t). (1.15)

The charge oriented modified nodal approach

In the charge oriented modified nodal approach we additionally consider the
charge of the capacitances and the flux of the inductances as variables. All
in all the set of variables consists of

• the node potentials e,

• the currents through the voltage-defined elements iL and iv,

• the charge of the capacitances QC

• the flux of the inductances ΦL.

With those variables we get the system equivalent to (1.12)-(1.14)

AC
dQC

dt
+ ARgR(A>

Re) + ALiL + Aviv = −Aiis, (1.16)

dΦL

dt
−A>

Le = 0, (1.17)

A>

v e = vs (1.18)

QC = Q̃C(A>

Ce, t), (1.19)

ΦL = Φ̃L(iL, t). (1.20)

As the dimension of this system is larger than the dimension of system
(1.12)-(1.14) it might seem to be disadvantageous. However, it is the main
approach used in industrial circuit simulators, as it has many advantages in
relation to the classical approach. These advantages are based on physical,
modeling as well as numerical considerations.
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In semiconductor physics charges and fluxes are primal variables used to
describe charge- and flux-storing elements in semiconductor devices. Thus
compact models are mainly given in a charge oriented formulation. More-
over in the charge oriented formulation (1.16)-(1.20) charge conservation is
fulfilled exactly. The classical approach (1.12)-(1.14) can be derived from the
charge oriented one by the derivatives given in (1.15). Thus the two systems
are analytically equivalent. By differentiation, however, we loose informa-
tion on the charge and flux, what finally leads to the fact that in numerical
approximation the physically reasonable property of charge conservation is
only fulfilled approximately.

Furthermore the classical approach does not allow for a physical model
of transistors covering charge conservation and the reciprocal flux of charges
[46], at once. The advantages of the charge oriented MNA compared to the
classical MNA are numerous and a detailed description can be found in [45]
and [46].

Moreover due to the simplicity of equations (1.19) and (1.20) only func-
tion evaluations are needed to determine the values for QC and ΦL. Thus
the numerical treatment of the charge oriented system does not enforce more
numerical effort than the evaluation of the classical approach. The system
that has to be treated numerically reads

Electric network equations

AC
dQ̃C

dt
(A>

Ce, t) + ARgR(A>

Re) + ALiL + Aviv = −Aiis, (1.21)

dΦ̃L

dt
(iL, t) −A>

Le = 0, (1.22)

A>

v e = vs. (1.23)

In the final system achieved by the MNA the equations (1.12), (1.21)
state the Kirchhoff current law for the entire circuit, equations (1.13), (1.22)
describe the voltage-current characteristics for inductors and the equations
(1.14), (1.23) determine the node potentials in the nodes adjacent to the
given voltage sources.

Equations (1.21)-(1.23) represent a system of differential-algebraic equa-
tions (DAE) with a properly stated leading term [70, 71] if the matrices
C(v, t) and L(i, t) in (1.15) are positive definite for all arguments v, i, and
t. Under the assumptions that the matrices C, L, and G = ∂gR/∂v are
positive definite and that the circuit does neither contain loops of voltage
sources only nor cutsets of current sources only, it is proved in [97, 99] that
the (tractability) index of the DAE system is at most two. Furthermore, if
the circuit does neither contain LI-cutsets nor CV-loops with at least one
voltage source then the index is at most one.
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Initial conditions The system (1.21)-(1.23) has to be completed by initial
conditions for the variables e, iL and iv , actually also for Q̃C and Φ̃L. We
assume the initial conditions

e(0) = eI , iL(0) = iL,I , iv(0) = iv,I .

The corresponding initial values for Q̃C and Φ̃L can then be determined
from (1.19) and (1.20). We remark that the choice of initial values is not
arbitrary. Since the system of network equations is of differential-algebraic
type, the initial values have to be consistent. For consistent initialization of
DAEs we refer to [39] and [64].





Chapter

Chapter 2

Thermal network
modeling

In this chapter we describe the thermal network model given in [16, 17]
without special consideration of semiconductor devices. A detailed descrip-
tion of thermal effects in semiconductor devices will be given in § 3.4. In
§ 4.2 we then describe the coupling of the detailed thermal semiconductor
model with the thermal network.

2.1 Thermal network topology

For industrial purposes the model of the thermal network has to rebuild the
thermal behavior of the network elements as accurate as possible, but on the
other hand the final model has to be as simple as possible in order to allow for
cheap computations. The widespread compromise is to model all thermally
relevant elements in a circuit by zero- or one-dimensional structures. We
distinguish between:

• Lumped thermal elements,
that are thermally relevant elements with very small spatial extension
or very high thermal conductivity such that the temperature can be
assumed to be constant. These elements are modeled as 0D-elements
and the associated temperature is denoted by T̂ l(t). Lumped elements
can be, for instance, resistors with high thermal conductivity, metal
contacts or any other tiny element in the network. Semiconductor de-
vices with high thermal conductivity can be modeled as lumped ther-
mal element, if local thermal effects are not critical for the electrical
behavior of the considered device and thus for the entire circuit.

• Distributed thermal elements,
that are space distributed elements whose electrical behavior depends

13
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Figure 2.1: Circuit diagram of a frequency multiplier (left) and a schematic
draw of a corresponding thermal network (right).

on the space distributed temperature. They are modeled by one-
dimensional thermal lines characterized by the interval Ith = [0, Lth].
The distributed temperature associated with a thermal line is denoted
by T d(x, t). Thermal lines can be resistors with small thermal con-
ductivity, interconnects or even macrostructures on computer chips or
integrated circuits. Semiconductor devices can be modeled as thermal
lines what allows for a rough consideration of local thermal effects.

Lumped thermal elements are usually elements of the electric network,
the distributed ones do not necessarily belong to the electric network.

In order to characterize the network topology we have to define the
nodes and branches of the thermal network (according to § 1). The sug-
gestive assumption to use the lumped thermal elements as network nodes
and the distributed thermal elements as branches is not a proper choice,
as in the hitherto described model all possible interfaces between lumped
and distributed (e.g. lumped-lumped, distributed-distributed) elements can
occur.

The structure of the different couplings depend on the dimension of the
connected elements. The general concept of coupling, however, is that the
elements are coupled via a flux across the boundary of the distributed ele-
ments and, moreover, adjacent elements are coupled by a common interface.
Thus they have a common temperature at this interface what is assigned
in terms of (Dirichlet) boundary conditions. Accordingly, adjacent lumped
elements have the same temperature and can be considered as a 0D-unit
with one temperature T̂ only. Furthermore, we identify the temperature at
the interfaces of connected distributed elements and assign this temperature
to an artificial lumped element without thermal mass.

This way we end up with a network containing lumped-distributed in-
terfaces only. In this network the nodes are represented by the 0D-units and
the branches by the distributed elements.

We remark, that the resulting thermal network not necessarily has to
be connected. If the electric devices are connected by thermally irrelevant
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or thermally nonconducting elements, the thermal network can consist of
several sub-networks. In Figure 2.1 we see the schematic draw of a thermal
network corresponding to the circuit diagram of a frequency multiplier. If
we model the inductances, capacitances and the voltage source thermally
lumped, the resistances and the semiconductor device thermally distributed,
we get a not connected thermal network including two artificial 0D-units.

To identify the temperature T̂ l of the lumped elements with the tempe-
rature T̂ of the corresponding 0D-units we introduce the following matrix:

Definition 2.1. For a thermal network with ml lumped thermal elements
described by mn thermal nodes, we define the matrix M = (mij) ∈ R

mn×ml

as:

mij =

{
1 if the lumped element j belongs to the thermal node i,
0 else.

Lemma 2.1. Denoting the vector containing the temperatures of all lumped

elements by T̂
l
and the vector containing the temperatures of all 0D-units

by T̂ it holds

T̂ = M T̂
l
,

with the matrix M defined in Definition 2.1.

Having introduced the thermal nodes and the thermal branches, we can
describe the network topology by an incidence matrix. We remark that in
each thermal line we distinguish between the contact at x = 0 and the one
at x = Lth in the spatial model. This corresponds to the consideration of a
directed graph when we defined the incidence matrix for the electric network
(see § 1).

Definition 2.2. For the thermal network with mn thermal nodes and md

thermal lines the thermal incidence matrix Ath
d = (aij) ∈ R

mn×2mb is given
by

aij =





1 if contact at x = 0 of branch j is connected to node i,
1 if contact at x = Lth of branch j −md is connected to node i,
0 else.

(2.1)

In [6, 16] the incidence matrix Ath
d is defined via the incidence matrix

of the electric network. Therefor it is necessary to identify the nodes of
the electric network with the nodes of the thermal network. The resulting
thermal incidence matrix is the same as Ath

d in Definition 2.2. However, if
we follow the definition in [6, 16] electric nodes always have to be thermal
nodes. Thus, for instance, interconnects that have been considered as nodes
in the electric network can not be modeled thermally distributed. The direct
definition of the incidence matrix Ath

d in Definition 2.2 allows for that.
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2.2 Network components

Lumped elements and thermal nodes

We recall that, when considering the lumped thermal elements and the ther-
mal nodes, we have to distinguish three things. We have to differ between
the lumped elements, artificial lumped elements and 0D-units. The lumped
elements correspond to physical thermally relevant devices in the network,
whereas the 0D-units are combinations of eventually several adjacent lumped
elements. The artificial lumped elements are models for the contacts between
distributed elements and do not have a physical extension or mass. Each
artificial lumped element simultaneously builds one 0D-unit.

The lumped elements are thermally modeled by the lumped version of
the heat flow equation for the corresponding temperature T̂ l

M̂dtT̂
l = F̂ d − Ŝ(T̂ l − Tenv) + P̂ . (2.2)

There M̂ = ĉlρ̂lV̂ l denotes the thermal mass of the element, which is given
as the product of the heat capacity ĉl, the material density ρ̂l and the phys-
ical volume V̂ l. Ŝ describes the lumped transmission coefficient that mod-
els the radiation to the environment with temperature Tenv, and is usually
considered to be proportional to the physical surface of the modeled de-
vice. P̂ denotes the electro-thermal source of the lumped element caused
by Joule heat, for instance, and will be described when considering the
electro-thermal coupling in § 4.3. F̂ d describes the heat flux coming from
the distributed elements and is part of the coupling conditions described in
§ 2.3. Equation (2.2) is completed by the initial condition T̂ l(0) = T̂ l

I .

For the artificial 0D-elements the lumped heat flow equation has to be
fulfilled, as well. As for the artificial elements thermal mass, radiation and
electro-thermal source vanish, the equation results in

0 = F̂ d, (2.3)

with the flux from the connected distributed elements F̂ d. Equation (2.3)
simply describes that the complete flux into the artificial element sums up
to zero and the thermal inflow equals the thermal outflow.

With the thermal description of the lumped elements we can proceed to
the thermal description of the thermal nodes. Having ml (artificial) lumped
thermal elements with thermal masses M̂1, . . . , M̂ml

, transmission functions
Ŝ1, . . . , Ŝml

and electro-thermal sources P̂1, . . . , P̂ml
by use of the matrix M

from Definition 2.1 we define the diagonal matrix M̂ containing the thermal
masses of the thermal nodes (0D-units) by

M̂ = Mdiag(M̂1, . . . , M̂ml
)M>,
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where the thermal mass of each unit is given by the sum of the masses of
the elements belonging to this unit.

Analogously we define the transmission function for the thermal nodes
by

Ŝ = Mdiag(Ŝ1, . . . , Ŝml
)M>.

Moreover the electro-thermal sources for the thermal nodes and the heat
flux from the distributed elements into the thermal nodes are collected in
the vectors

P̂ = M




P̂1
...

P̂ml


 , F̂

d
=




F̂ d
1
...

F̂ d
mn


 .

With the vector T̂ containing the temperature values for all thermal nodes
we end up with the final version of the lumped heat flow equation for all
thermal nodes

M̂dtT̂ = F̂
d
− Ŝ(T̂ − TenvI) + P̂ , (2.4)

where I represents the unity matrix.

Distributed components and thermal branches

The branches in the thermal network correspond to the distributed elements
which are modeled as thermal lines. The thermal lines are characterized
by the interval Ith = [0, Lth]. The thermal line with temperature T d is
thermally described by the heat flow equation

M∂tT
d = ∂x(κ∂xT

d) − S(T d − Tenv) + P, (2.5)

for (x, t) ∈ (0, Lth)×[0,∞). TherebyM = cdρdAd denotes the thermal mass,
given as product of the heat capacity cd, the material density ρd and the
area of the cross section Ad of the considered element. κ represents the ther-
mal conductivity and S denotes the transmission function that models the
thermal radiation to the environment and is considered to be proportional
to the physical surface of the modeled device. P denotes a source term,
caused by electro-thermal effects and will be discussed in § 4.3 . Equation
(2.5) is completed by initial and boundary conditions:

T d(x, 0) = T d
I (x), x ∈ [0, Lth], (2.6)

T d(0, t) = T d
0 (t), T d(Lth, t) = T d

1 (t), t ∈ [0,∞). (2.7)

2.3 Coupling between thermal nodes and branches

So far we have described the lumped heat flow equation (2.4) for the thermal
nodes and the heat flow equations for the thermal branches (2.5). We still
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have to clarify the thermal interaction using the thermal network topology
described by the thermal incidence matrix Ath

d . The heat equations for the
lumped and distributed elements are coupled via two effects.

• The boundary conditions (2.7) for the distributed heat equations are
determined by the temperature in the thermal nodes.

• The heat flux from the distributed elements enters the thermal nodes.

The temperature of the thermal lines coincides at the boundary with
the temperature of the adjacent thermal nodes. We collect all temperature
values of the thermal lines in the vector T

d and denote by T
d
0(t) the vector

containing the boundary values for all thermal lines at x = 0 and the vector
T

d
1(t) containing the boundary values at x = Lth

T
d(0, t) = T

d
0(t), T

d(Lth, t) = T
d
1(t).

With the thermal incidence matrix Ath
d and the temperature in the thermal

nodes T̂ the boundary conditions (2.7) are given as
(

T
d
0

T
d
1

)
= Ath>

d T̂ . (2.8)

The second type of coupling is realized via the thermal flux across the
boundary of the thermal lines. For the thermal line the heat flux is given
by Fourier’s law

Jd
th(x, t) = −κ(x)∂xT

d(x, t) (2.9)

with the thermal conductivity κ. The inflow, respectively outflow, across
the boundary is then given by

F0(t) = Ad · κ(0)∂xT
d(0, t),

F1(t) = −Ad · κ(Lth)∂xT
d(Lth, t),

where the area of the cross section of the considered element is given by Ad.
Using the thermal incidence matrix Ath

d , the coupling can be expressed by
the flux vector

F̂
d

= Ath
d

(
Λ(0)∂xT (0, t)

−Λ(Lth)∂xT (Lth, t)

)
(2.10)

with
Λ = diag(Ad

1κ1, . . . , A
d
md
κmd

),

where Ad
i and κi, for i = 1, ...,md, denote the cross section and the thermal

conductivity of the i-th thermal line. F̂
d

then enters the lumped heat flow

equation (2.4) and F̂
d
i stands for the complete heat flux from the distributed

elements into thermal node i.
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2.4 The complete thermal network model

The complete model for a thermal network consisting ofmd thermal branches
and mn thermal nodes consists of the following equations:

Thermal network equations

Mi∂tT
d
i = ∂x(κi∂xT

d
i ) − Si(T

d
i − Tenv) + Pi, i = 1, ...,md. (2.11)

M̂dtT̂ = Ath
d

(
Λ(0)∂xT (0, t)

−Λ(Lth)∂xT (Lth, t)

)
− Ŝ(T̂ − TenvI) + P̂ , (2.12)

(
T

d
0

T
d
1

)
= Ath>

d T̂ . (2.13)

The heat flow equations for the distributed elements (2.11) result in
a system of partial differential equations of parabolic type. The thermal
nodes are described by the lumped version of the heat flow equation (2.12)
what describes a system of ordinary differential equations unless artificial
units occur. For artificial units algebraic equations (2.3) occur. Lastly the
coupling between thermal nodes and thermal branches is given in terms of
the boundary conditions (2.13). The dissipated power of the components
results in heat source terms expressed by the terms Pi and P̂ . They will be
described in detail in § 4.3.

The system (2.11)-(2.13) results in a system of partial differential equa-
tions, if no artificial 0D-unit occurs in the network. If artificial units are
introduced, the final system is of partial differential algebraic type. About
the index of the system no results are known hitherto, however, due to the
simplicity of the algebraic constraints we expect the index not to be higher
than one.

Initial conditions The thermal network equations (2.11)-(2.13) have to
be completed by initial conditions for the temperature variables

T̂ (0) = T̂ I , T d
i (·, 0) = T d

i,I for x ∈ (0, Lth,i), i = 1, ...,md

We notice that the system (2.11)-(2.13) is of differential-algebraic type if the
corresponding thermal network contains artificial lumped elements. In this
case the initial values have to be consistent.
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Chapter 3

Semiconductor device
modeling

The trend of miniaturization and acceleration of computer chips leads to
the development of smaller and more powerful semiconductor devices. For
the development of new devices numerical simulation is indispensable as
it replaces laboratory testing and thus spares the expensive production of
prototypes.

Moreover, in most industrially used circuit simulators semiconductor de-
vices are modeled by use of compact models (see § 1). However, the deter-
mination of a detailed compact model for a single device requires many
numerical tests as partially several hundreds of parameters have to be ex-
tracted. As this parameter fitting is a very cumbersome and time consuming
task it becomes preferable to couple distributed models for a manageable
number of crucial semiconductor devices directly with the circuit equations.

As in all types of industrial application numerous simulations have to
be accomplished detailed but efficient models for the semiconductor devices
are required in order to reduce the numerical effort.

3.1 Hierarchy of semi-classical models

For semiconductor devices in the literature many models with a different
level of detailedness are proposed. The most detailed of them are based
on quantum mechanical considerations and model the movement of single
electrons in the device. Those models are based on the Schrödinger equation
whose solution requires high numerical effort.

Another approach leads to the semi-classical transport models, where
the electrons in the device are considered as continuum. The most detailed
one in the hierarchy of those models is the semi-classical Boltzmann equa-
tion, where the quantum effects of the semiconductor crystal are taken into
account coarsely via special parameters. However, the semi-classical Boltz-

21
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mann equation is a nonlinear integro-differential system and is numerically
treatable with high effort, only (e.g. Monte Carlo simulation). This makes
it preferable to use macroscopic models that are derived as approximation
to the Boltzmann equation.

The drift-diffusion model is the least complex and best understood one
in this hierarchy. It consists of mass conservation equation and the consti-
tutive current relation, only. It has been derived under phenomenological
considerations by van Roosbroeck in [81]. A rigorous derivation has been
performed by Poupaud in [80]. For detailed semiconductor device and cir-
cuit simulation, however, the drift-diffusion model is not detailed enough as
it completely neglects thermal effects.

Bløtekjær in [21] and Baccarani and Wordemann in [12] derived the hy-
drodynamic model as approximations to the Boltzmann equation by means
of the method of moments. However, the model contains hyperbolic modes
and therefore enforces special numerical treatment.

In [92] Stratton derived the first energy-transport model. It is more
complex than the drift-diffusion model as it allows for thermal effects by
considering the electron temperature as additional variable. As it keeps the
parabolic structure of the drift-diffusion model its intermediate complexity
and numerical effort makes it appropriate for detailed semiconductor de-
vice simulation. Moreover, the energy-transport model we consider can be
written in a drift-diffusion-formulation [34]. Therefore, algorithms and dis-
cretization schemes developed for the drift-diffusion model can be employed
or extended to the energy-transport model.

In [19] the energy-transport model is derived from the semi-classical
Boltzmann equation via an intermediate model by means of the Hilbert
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expansion method. Under the assumption of dominant elastic scattering
the diffusion limit leads to the so-called SHE (Spherical Harmonic Expan-
sion) model. Assuming dominant particle-particle scattering compared to
particle-phonon scattering Hilbert expansion leads to the energy-transport
model.

The direct limit from Boltzmann equation to an energy-transport model
was performed in [18]. Extra numerical effort is necessary to get all co-
efficients in this model. More recently in [35] the same model as in [19]
has been derived directly from the semi-classical Boltzmann equation via a
different scaling limit. Under a simple relaxation time limit (τ0 → 0) for
the energy relaxation time τ0 (see below) we derive the drift-diffusion model
from the energy-transport model. Figure 3.1 shows the hierarchy of the
mentioned transport models. Depending on conditions on the microscopic
relaxation times, various energy-transport models can be derived [34].

In this work we consider the energy-transport model proposed in [27]
for the majority charge carriers, the electrons. All devices considered in this
work are assumed to be majority carrier devices, what implies that the ter-
minal current mainly is determined by the current induced by the majority
charge carriers. The minority charge carriers, the holes, are modeled by the
less detailed drift-diffusion model. In § 3.4 we will make an exception and
consider the complete thermal model for the bipolar energy-transport model.

3.2 Energy-transport and drift-diffusion equations

In this work we consider the energy-transport model under the following
simplifying assumptions:

• We use the parabolic band approximation

E(k) =
~

2

2m∗
|k|2,

with the effective mass m∗, the reduced Planck constant ~ and the
pseudo wave vector k.

• We assume non-degenerate semiconductors. This implies, that the
particle distribution f is given by the Maxwell-Boltzmann statistics.

• The elastic collision operator is given as a relaxation time operator,
(see (3.10)).

In [34] it is shown that under these assumptions the model can be written
in a drift-diffusion formulation. This has the advantage that discretization
techniques and iteration schemes developed for the well understood drift-
diffusion model can be applied or extended to the energy-transport model.



24 3. Semiconductor device modeling

More precisely, it will allow for a discretization that guarantees positivity of
the discrete carrier densities (see § 6.2).

In the following the semiconductor device is described by the domain
ΩS . The device boundary is assumed to split into two parts, the union of
ohmic contacts ΓC and the union of insulating boundary segments ΓI , where
∂ΩS = ΓC ∪ ΓI .

The physical model described in [34] consists of the conservation laws
for the electron density n and the energy density w = 3

2kBnTn with electron
temperature Tn and Boltzmann constant kB

∂tn−
1

q
div Jn = −R(n, p, ) (3.1)

∂tw − div Jw = −∇V · Jn +W (n, T ) −
3

2
kBTnR(n, p), (3.2)

together with the constitutive relations for the electron and energy current
density Jn and Jw

Jn = q

[
∇

(
µ

(1)
β (Tn)

kBTn

q
n

)
− µ

(1)
β (Tn)n∇V

]
, (3.3)

Jw =

[
∇

(
µ

(2)
β (Tn)

(kBTn)2

q
n

)
− µ

(2)
β (Tn)nkBTn∇V

]
, (3.4)

where µ
(i)
β (Tn) denote the electron and energy mobility relation, which

depend on hot carrier effects. Moreover the index β refers to the dependence
on inelastic scattering (see (3.11)). The equations are coupled to the Poisson
equation for the electric potential V

εs∆V = q(n− p− C(x)), (3.5)

where q is the elementary charge and εs the permittivity constant. The
space dependent function C(x) models fixed charged background ions in the
semiconductor crystal, the doping profile.

The distribution of the hole density p is modeled by the drift-diffusion equa-
tions

∂tp+
1

q
div Jp = −R(n, p), (3.6)

Jp = −q

[
∇

(
µp(TL)

kBTL

q
p

)
+ µp(TL)p∇V

]
, (3.7)

where TL denotes the lattice temperature of the device and µp(TL) the low
field mobility of holes that depends on the lattice temperature (see below).

The function

R(n, p) = RSRH(n, p) +RAu(n, p)
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models the generation-recombination effects in the device.
The two terms denote the Shockley-Read-Hall and Auger recombination

terms given by

RSRH(n, p) =
np− n2

i

τp(n+ ni) + τn(p+ ni)
, (3.8)

RAu(n, p) = (Cnn+Cpp)(np− n2
i ), (3.9)

with the intrinsic density ni and the material dependent electron and hole
lifetimes τn and τp. The Auger recombination parameters are denoted by
Cn and Cp. For high carrier densities the consideration of Auger processes
is crucial as it exceeds the SRH-recombination. In optoelectronic devices
further generation processes occur. This will be discussed in § 3.3.

The relaxation to the equilibrium energy is given by the Fokker-Planck
approximation

W (n, T ) =
3

2

nkB(TL − Tn)

τβ(Tn)
. (3.10)

The expression τβ stands for the relaxation time where the index β, as

in µ
(i)
β , refers to the dependence on inelastic scattering. These material

dependent parameters will be expressed in terms of the low field mobility
µn and the typical relaxation time τ0. We employ the relations for β = 1

2 ,
what results in (see [34])

µ
(1)
1
2

(T ) = µn
TL

T
, µ

(2)
1
2

(T ) =
3

2
µn
TL

T
, τ 1

2
(T ) = τ0. (3.11)

The resulting model coincides with the model proposed by Chen et. al. in
[27] and therefore is referenced to as Chen-model. Moreover in [43] the same
relation for the carrier mobility as in (3.11) has been presented.

Low field mobility

The values for µn, µp and τ0 can be determined from measurement and
for our examples we will use values from literature [65]. For the exact
determination of these values from microscopic quantities like effective mass
and scattering effects, as well as for the models for different values of β,
we refer to [34]. The low field mobilities strongly depend on the lattice
temperature, what is modeled by the power law (see [43, 87])

µν(TL) = µν,0

(
T0

TL

)αν

, ν = n, p, (3.12)

with the temperature T0 = 300 K. A detailed list of measured values for the
parameters αν and µν,0 can be found in [87, Table 4.1-1]. For silicon the
values are in the range of 2.2 ≤ αν ≤ 2.7.
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In addition, for high doping concentration (in silicon for about 1022m−3),
the low field mobility for electrons and holes are influenced by impurity
scattering. In [68] this is modeled via

µν,0 = µν,min +
µν,max − µν,min

1 + (C/Cref)
,

where the corresponding parameters for silicon are given.

In our simulations, we will incorporate the temperature dependence of
the low field mobilities (3.12), the dependence on the doping level will be
neglected.

3.2.1 Boundary and initial conditions

For the model equations we impose appropriate initial and boundary condi-
tions. We prescribe the initial conditions for the energy-transport equations
for the particle densities and the temperature

n(·, 0) = nI , p(·, 0) = pI , Tn(·, 0) = TI in ΩS. (3.13)

We recall that the device boundary is given as the union of ohmic con-
tacts and the insulating boundary segments by ∂ΩS = ΓC∪ΓI . Although we
will present later one-dimensional simulations, we give the boundary con-
ditions for the multidimensional situation. On the insulating parts, it is
assumed that the normal components of the current densities, of the electric
field and the temperature flux vanish. With the outer normal ν we state the
boundary conditions

Jn · ν = Jp · ν = Jw · ν = ∇V · ν = ∇Tn · ν = 0 on ΓI , t > 0. (3.14)

The semiconductor contacts connecting the device to the surrounding
network are assumed to be ohmic semiconductor-metal contacts. At these
contacts, the electric potential equals the sum of the applied voltage Vap and
the so-called built-in potential Vbi (see [73]),

V = Vap + Vbi on ΓC , t > 0, with Vbi = arcsinh
( C

2ni

)
, (3.15)

where C denotes the doping profile and ni the intrinsic carrier density.

Dirichlet boundary conditions at the contacts

In [34, 52, 53] Dirichlet conditions are assigned to the electron temperature
Tn at the contacts

Tn = Ta on ΓC , t > 0, (3.16)
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with the ambient temperature Ta (usually 300 K). Moreover for ideal ohmic
contacts the particle densities are often assigned to fulfill Dirichlet boundary
conditions

n = na, p = pa on ΓC , t > 0, (3.17)

as in [85], where the values for na and pa can be derived under the as-
sumption of charge neutrality, na −pa −C(x) = 0, and thermal equilibrium,
napa = n2

i . Solving these equations for na and pa gives

na =
1

2

(
C +

√
C2 + 4n2

i

)
, pa =

1

2

(
− C +

√
C2 + 4n2

i

)
. (3.18)

The boundary conditions for the energy w then can be easily computed out
of (3.16) and (3.17) and result in

w = wa on ΓC , t > 0, (3.19)

with wa = 3
2kBnaTa.

Boundary conditions of Robin type at the contacts

In [10] the application of homogeneous Neumann boundary conditions to
the temperature Tn

∇Tn · ν = 0 on ΓC , t > 0, (3.20)

is suggested, motivated by comparison with the solution of the Boltzmann-
equation. Furthermore, in [103] Yamnahakki derived second order boundary
conditions for the drift-diffusion model for semiconductors which result in
boundary conditions of Robin type

n+ (θnµn)−1Jn · ν = na and p− (θpµp)
−1Jp · ν = pa on ΓC , t > 0,

(3.21)

with parameters θn and θp. We apply this type of conditions with the am-
bient particle densities na and pa given in (3.18). The boundary conditions
for the energy density w then are derived from (3.20) and (3.21). Under a
constant approximation of TL they result in

∇w·ν−(kBTL)−1θn(wa−w) =
3

2
T−1

0 θnna(Tn−Ta)+
3

2
qn∇V ·ν on ΓC , t > 0,

(3.22)
with the ambient temperature Ta and the ambient energy density wa.

In § 8.1 we will give a numerical comparison of the different types of
boundary conditions. We will see that the choice of Dirichlet boundary
conditions results in strong boundary layers for bipolar devices like pn and
p-i-n diodes under large forward bias. These boundary layers indicate that
the choice of Dirichlet values is not a physical appropriate one.
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3.2.2 Thermal equilibrium

A distinguished state in semiconductor devices is the state of thermal equi-
librium. The stationary state of thermal equilibrium corresponds to a state
of zero current flow Jn = Jp = 0. Moreover in thermal equilibrium the elec-
tron temperature and lattice temperature coincide with the ambient temper-
ature TL = Tn = T0 = 300 K. Thus, the energy-transport model reduces to
the drift-diffusion model. In addition, no recombination effects occur what
implies np = n2

i . According to [73] the particle densities in ΩS are given by

neq = nie
(qVeq)/kBT0 , peq = nie

−(qVeq)/kBT0 ,

where Veq is the equilibrium potential determined by

εs∆Veq = q(neq − peq − C) = q
(
ni[e

(qVeq)/kBT0 − e−(qVeq)/kBT0 ] − C
)

= q(2ni sinh
qVeq

kBT0
−C) in ΩS.

(3.23)

The corresponding boundary conditions read

Veq =
kBT0

q
arcsinh

( C
2ni

)
on ΓC ,

∇Veq · ν = 0 on ΓI ,

and are chosen in such way that the right hand side of (3.23) vanishes
in order to avoid boundary layers for the potential. For a more detailed
description of the thermal equilibrium we refer to [73, 51].

3.3 Optoelectronic device modeling

Semiconductor lasers are important devices in optoelectronic integrated cir-
cuits for high-speed communication systems. First phenomenological ap-
proaches to model laser diodes consisted in a direct relation between the
driving current and the output power [29]. Increasingly complex device
structures made it necessary to include semiconductor device equations for
better accuracy. In [13] and [78], for instance, the drift-diffusion equations
are employed to model the charge transport in the device, coupled with an
appropriate model for the optical effects.

Thermal effects play an important role in laser diodes and have to be
included in the mathematical models. By considering an equivalent thermal
circuit, a linear second-order equation for the laser temperature has been
derived in [7]. Temperature-dependent models are also included in the com-
mercial laser diode simulators LASTIP and PICS3D which are based on the
drift-diffusion model [32]. A heat flow equation for the lattice temperature
was recently derived in [14] from a thermodynamics-based model.
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In the following we describe some models for optical effects in photonic
devices used in the literature. The optical effects in the laser diode can
be modeled by a rate equation for the number of photons. In [2] (§6.2)
and [102], the intensity of the optical field confined to the active region is
approximated by the so-called confinement factor. However, this does not
allow for a local coupling between the electrical and optical effects. The
model can be improved by replacing the confinement factor by the local
intensity distribution computed from the waveguide equation [13]. Further
improvements are obtained by considering several rate equations for each
laser mode and by including quantum effects [13]. Another possibility to
increase the accuracy of the models is to decompose the optical field inside
the laser into forward and backward propagating waves whose amplitudes
are calculated from the travelling wave equation [15, 60]. Also in this
approach, thermal effects may be included [66].

Photo diodes can be described by equivalent circuit models [94] or drift-
diffusion equations [59], where the optical effects are taken into account by a
generation term [31, 55]. Since the drift-diffusion equations cannot capture
thermal effects in the device, we employ the energy-transport equations for
the electron transport.

3.3.1 Laser diode
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Figure 3.2: Simplified structure of a laser diode including a schematic illus-
tration of the energy bands before assembling the different materials. Here,
Ec denotes the conduction band energy, Ev the valence band energy, and
EG and Eg the energy gaps of the corresponding materials.

As a simplified model of a laser diode we consider a heterostructure
p-i-n diode as displayed in Figure 3.2. It consists of an intrinsic or lowly
doped part of a low band-gap semiconductor material like GaAs sandwiched
by highly doped cladding layers made from a semiconductor material with
a higher band-gap like Al0.7Ga0.3As. The different band gaps of the het-



30 3. Semiconductor device modeling

erostructure result in a bending of the energy bands (see [78], §3.3, and
[31]). Due to the lower band gap the charge carriers tend to move to the
intrinsic region as this corresponds to a state of lower energy, causing carrier
confinement. For a forward biased device the number of free charge carriers
increases and spontaneous and stimulated emission of photons occur due to
recombination effects. Thus, an optical field represented by photons arises in
the intrinsic region and, as the facets of the device are polished, the intrinsic
region works as a laser cavity or a simple Fabry-Perot laser [13].

In the device, we assume that the electron flow is described by the energy-
transport equations (3.1)-(3.4). There the electric potential is replaced by
the effective potential

Vn = V + Un,

given as the sum of the electric potential V , described by the Poisson
equation (3.5), and the band potential Un. The band potential is a simple
model of the carrier confinement caused by the difference of the material
band gaps. It is positive inside the active region and zero outside. The
hole flow is described by the drift-diffusion equations (3.6)-(3.7), where the
effective potential for holes is given by

Vp = V + Up.

The band potential for holes Up is negative within the active region and zero
outside.

Recombination-generation terms

The coupling between optical and electrical effects in the device is taken
into account in terms of recombination-generation processes

R = RSRH +RAu +Rspon +Rstim, (3.24)

where the first two terms denote the Shockley-Read-Hall and Auger recom-
bination terms given in (3.8) and (3.9).

The last two recombination terms in (3.24) model recombination pro-
cesses that account for the generation of photons, the spontaneous and
stimulated emission [2, 31]

Rspon(n, p) = Bnp, Rstim(n) =
∑

m

vggm(n)|Ξm|2Sm, (3.25)

respectively, where B =
∑

mBm is the material-dependent spontaneous
recombination parameter, given as the sum of the parameters of all laser
modes m. In the stimulated emission term, vg = c/µopt denotes the group
velocity of the photons with the speed of light c and the refractive index
of the material µopt. Furthermore, gm(n) denotes the optical gain, which is
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the amplification factor for the number of photons per unit length, |Ξm|2

is the intensity distribution of the optical field, and Sm is the number of
photons in the device. For a one-dimensional and two-dimensional modeling
of the device, the number of photons has to be replaced by the number of
photons in the considered cross-section of the cavity, i.e. Sm/Lcdc in the one-
dimensional and Sm/Lc in the two-dimensional situation, where Lc denotes
the length and dc the width of the laser cavity.

In the following we discuss the modeling of the optical gain and the in-
tensity distribution. The optical gain gm(n) is approximated by the common
approach [2]

gm(n) = g0,m(n− nth), (3.26)

where g0,m is the differential gain of the m-th mode and nth is the threshold
density. Assuming an undoped intrinsic region, we may assume local charge
neutrality n = p such that we can write gm(p) = g0,m(p− nth) in the stim-
ulated recombination term occurring in the hole transport equations (3.6).
This allows for a discretization of the drift-diffusion equations guaranteeing
positivity of the discretized hole density (see Remark 6.2).

The optical field intensity |Ξm|2 for the transverse modes is computed
from the solution of the waveguide equation

(
∆ +

ω2

c2
εopt(n)

)
Ξm = β2

mΞm, (3.27)

where β2
m is the corresponding eigenvalue, ω denotes the angular frequency

of the emitted light, and εopt(n) the complex-valued dielectric function of
the pumped laser averaged over one section in a longitudinal direction. It
is given by εopt(n) = (µopt + ic(gm(n)−αbg)/2ω)2 (see [13]). Here, i2 = −1
and αbg is the background absorption. The solutions of (3.27) describe
the transverse modes for which the corresponding number of photons Sm is
balanced by the rate equation

dtSm = vg(2Im(βm) − αf )Sm +Rspon,m, (3.28)

where the spontaneous emission rate into the mode m is given as

Rspon,m =

∫

Ωc

Bmnp ds,

with the transverse cross-section of the laser cavity Ωc and the total facet
loss by external output αf . The modal gain Im(βm) is the imaginary part
of the eigenvalue corresponding to the solution of (3.27).

Finally, the output power of the mode m is computed according to [14]
by

Pout,m = ~ωvgαf |Ξm|2Sm, (3.29)

where ~ = h/2π is the reduced Planck constant.
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Model simplifications

We make three simplifying assumptions. The first assumption is that the
optical field is dominated by the fundamental mode so that we restrict our-
selves to a single-mode laser. Thus, we only need to consider a single rate
equation (3.28) and the sum in (3.25) reduces to a single term. In the
following, we omit the index m.

Furthermore, the intensity distribution of the fundamental mode can be
computed from the effective index approximation [2]. Here, the dielectric
function is simplified by εopt(n) = µ2

opt such that the waveguide equation
can be solved explicitly in each material, assuming that the total solution
is smooth and vanishes far from the active region. We will present below
a comparison of the solutions obtained from the complete model including
the waveguide equation and from the simplified model.

Finally, if the simplified model is considered, we approximate the modal
gain Im(β), needed in the rate equation (3.28), by

2Im(β) ≈

∫

Ωc

(g(n) − αbg)|Ξ|
2ds. (3.30)

The approximation (3.30) can be derived from a first-order perturbation
analysis (see [2] or [75], Chapter 9) and has been also mentioned in [14].

These simplifications result in a model which is similar to the treatment
of the optical field by the number of photons and the so-called confinement
factor [2, 31]. However, our model allows for a local coupling of the electrical
and optical effects with only slightly higher computational effort.

Boundary and initial conditions

The initial and boundary conditions for the transient transport equations
and the Poisson equation are described in § 3.2.1.

Additionally, the initial number of photons is prescribed by S(0) = SI in
ΩS . For the waveguide equation (3.27), we impose the boundary condition
Ξ = 0 on ∂ΩS . This coincides with the assumption that the intensity of the
optical field decreases to zero at the boundary, what seems reasonable as
the optical field is confined to the active region.

3.3.2 Photo diode

We consider a p-i-n-homostructure (a heterostructure could also be used)
as a simplified model of a vertical photo diode with optical irradiation at
the p-doped contact as shown in Figure 3.3. The supplied light (photons)
generates free charge carriers which cause the photo current.

The transport of charge carriers is modeled by the energy-transport equa-
tions (3.1)-(3.4) for electrons, the Poisson equation (3.5) for the electric
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Figure 3.3: Simplified structure of a silicon photo diode including a
schematic illustration of the energy bands.

potential V , and the drift-diffusion equations (3.6)-(3.7) for holes. The re-
combination term for the photo diode is given by

R = RSRH +RAu −Gopt, (3.31)

where

Gopt(x) = η(1 − r)
Pin

~ωA
αabe

−αabx (3.32)

denotes the generation rate of free charge carriers at depth x of the device
caused by the optical irradiation power Pin with angular frequency ω (see
[31, 55, 59]). The reflectivity of the surface of the diode is given by r,
the optical absorption of the material by αab, the quantum efficiency (the
fraction of photons that generates charge carriers) by η, and the area of the
surface hit by the irradiation by A. Furthermore, Pin/~ω is the injected
number of photons per second. The boundary and initial conditions are the
same as in the previous section.

3.4 Heating of the crystal lattice

Employing the energy-transport model allows for the consideration of the
carrier temperature and thus for thermal effects in the device. However, with
increasing complexity of devices driven by higher frequencies, the heating
of devices (i.e. the crystal lattice) becomes more and more significant. As
additionally many electrical parameters in the hitherto presented models
depend on the lattice temperature, isothermal modeling of the crystal lattice
is no longer appropriate.

To extend the described model, besides the electron and hole subsystems we
now additionally consider the crystal lattice of the device. These three sub-
systems, with optionally three different temperatures are thermally coupled
by mutual energy and heat flux exchange. This is schematically shown in
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Figure 3.4. In the common approach the lattice subsystem is described by
the heat flow equation for the lattice temperature TL

ρLcL∂tTL − div(κL∇TL) = H, (3.33)

where ρL is the material density, cL stands for the heat capacity and κL for
the heat conductivity of the material. For the heat source H different terms,
depending on the employed models for the transport of charge carriers, have
been suggested.

Non-isothermal device modeling started in the 70’s, when the carrier
subsystems have been modeled by the drift-diffusion equations. Thus only
the lattice temperature was considered. In [42] Gaur and Navon suggested

H = J ·E, (3.34)

the product of current J and the electric field E as source term, what solely
takes into account the Joule heating. The same term was suggested by
Sharma and Ramanathan in [89]. More accurate source terms, taking into
account recombination heat as well, have been presented in [1, 30, 87]. In
[1] Adler suggested the source term

H = div

(
Ec

q
Jn +

Ev

q
Jp

)
,

with the conduction and valence band Ec and Ev, respectively. This term
includes recombination effects as well as band gap narrowing. For non-
degenerate semiconductors the Adler-model simplifies to

H = (Jn + Jp) ·E +REg. (3.35)
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In [38] a source term is suggested that even considers the time dependency
of the electric field as heat source (i.e. the displacement current).

One of the most central works on the thermal coupling between carrier
and lattice subsystems has been presented by Wachutka in 1990 [100]. He
did the first rigorous thermodynamic treatment of the heat generation in
semiconductors. In his final model besides Joule and recombination heat also
the Thomson-, Peltier- and Seebeck effects turn up in the source term for
the heat flow equation. The same source term has been derived in [3] from
a general expression for the free energy under consideration of Onsager’s
reciprocal laws and the entropy maximum principle.

However, despite the complexity of this model, it does not take into
account several temperatures and the temperature of the charge carriers are
assumed to coincide with TL.

Models including different lattice and charge carrier temperatures have
been developed in the 90’s. In [58, 43] the unipolar hydrodynamic model
has been coupled to (3.33), where as source term for the heat flow equation
the Fokker-Planck relaxation term (3.10) has been considered.

In [101] Wachutka presented a source term for the heat flow equation
coupled to a bipolar energy-transport model for the carrier subsystems:

H = − q

[
Tp

(
∂φp

∂Tp

)
− Tn

(
∂φn

∂Tn

)
+ φn − φp

]
·R (3.36)

+
3

2
kBn

Tn − TL

τ0
+

3

2
kBp

Tp − TL

τ0,p

where φn and φp denote the quasi fermi-potentials for electrons and holes,
respectively. The first term in (3.36) describes the energy transferred to
the lattice subsystem due to recombination effects and the last two terms
describe the temperature relaxation between carrier and lattice temperature
(comp. (3.10)).

In the following we will derive a similar energy conserving heat source
term for the heat flow equation coupled to our energy-transport model for
bipolar modeling. As the heat source term for the drift-diffusion case has
already been examined intensely, we will derive the heat flow equation for
hole and electron subsystems modeled by the energy-transport model. This
can then be easily adapted to the mixed energy-transport (for electrons) and
drift-diffusion (holes) model suggested in § 3.2. The difference between the
energy-transport and drift-diffusion case will be discussed.

To derive the heat source term for (3.33) we follow the approach pre-
sented recently in [14]. There, from a general expression for the free energy
a source term for (3.33) coupled to the drift-diffusion model for optoelec-
tronic devices has been derived under thermodynamic considerations and
consideration of the entropy maximum principle.

We will adapt the free energy to the case of several temperatures and
under a more phenomenological definition of the energy currents we will
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achieve a heat flow equation coupled to our energy-transport model that
guarantees energy conservation

∂tu+ div Ju = 0, (3.37)

for the total energy u with the corresponding energy flux density Ju. The
radiation that is emitted from the device is neglected for the moment. It
will be taken into account in the final version of the heat flow equation.

3.4.1 Heat equation for the bipolar energy-transport model

The energy-transport model for the carrier densities n and p with the corre-
sponding carrier temperatures Tn and Tp and energy densities w = 3

2kBnTn

and wp = 3
2kBpTp reads

εs∆V =q(n− p− C(x)),

∂tn− q−1 div Jn = −R, ∂tw − div Jw = −Jn∇V +W −
3

2
kBTnR,

∂tp+ q−1 div Jp = −R, ∂twp + div Jwp = −Jp∇V +Wp −
3

2
kBTpR,

with the energy relaxation terms

W =
3

2
kBn

TL − Tn

τ0
Wp =

3

2
kBp

TL − Tp

τ0,p
.

The current density relations for the electron subsystem are given in (3.3)
and (3.4). The corresponding relations for the hole subsystem can be derived
analogously.

Analogous to [14] we define the free energy for the system of Poisson
and energy-transport equations as

f =
εs
2
|∇V |2 + ρLcLTL(1 − logTL) + n

[
kBTn

(
log

n

Nc
− 1

)
+Ec

]
(3.38)

+ p

[
kBTp

(
log

p

Nv
− 1

)
−Ev

]

with material density and heat capacity of the crystal lattice ρL, cL and
band edges Ec, Ev for the conduction and valence band, respectively. The
effective densities of states are given by

Nc = 2

(
m∗

ekBTn

2π~

) 3
2

, Nv = 2

(
m∗

hkBTp

2π~

) 3
2

,

with effective mass of the electrons and holes m∗
e,m

∗

h, the Boltzmann con-
stant kB and the reduced Planck constant ~. The first term in (3.38) denotes
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the energy of the electric field, the second term the energy of the lattice sub-
system and the last two terms stand for the energy of the electron and hole
subsystem, respectively. The particle energy thereby separates into the ther-
mal energy and the energy of the particles due to their presence in the higher
energetic conduction and lower energetic valence band, respectively.

With this we get the total internal energy of the system as

u = f − Tn
∂f

∂Tn
− Tp

∂f

∂Tp
− TL

∂f

∂TL
(3.39)

=
εs
2
|∇V |2

︸ ︷︷ ︸
uE

+ ρLcLTL︸ ︷︷ ︸
uL

+n(Ec − TLE
′

c)︸ ︷︷ ︸
un

+
3

2
kBnTn

︸ ︷︷ ︸
uw=w

+ p(TLE
′

v −Ev)︸ ︷︷ ︸
up

+
3

2
kBpTp

︸ ︷︷ ︸
uwp=wp

where the prime in E ′
c and E′

v denotes the derivative with respect to TL.
The total internal energy is the sum of the energy of the electric field uE ,
the energy of the crystal lattice uL, the thermal energy of the electrons w
and holes wp and the energy of the electrons in the conduction band un and
the holes in the valence band up. Under the assumption of TL = Tn = Tp

the expressions for the free and internal energy coincide with the expressions
suggested in [14] for the drift-diffusion case.

To pose energy conservation we have to consider the corresponding en-
ergy flux densities:

uE =
εs
2
|∇V |2, JE

u = −V εs∇∂tV, (3.40)

uL = ρLcLTL, JL
u = −κL∇TL, (3.41)

un = n(Ec − TLE
′

c), Jn
u = −

[
Ec − TLE

′

c

]
q−1Jn + V Jn, (3.42)

uw =
3

2
kBnTn, Jw

u = −Jw, (3.43)

up = p(TLE
′

v −Ev), Jp
u =

[
TLE

′

v −Ev

]
q−1Jp + V Jp, (3.44)

uwp =
3

2
kBpTp, J

wp
u = Jwp . (3.45)

The flux of the thermal energy for electrons is given by Jw in (3.4) and Jn

denotes the electron current defined in (3.3). The minus signs in (3.42) and
(3.43) result from the definition of Jw and Jn. The expressions for the hole
density and thermal hole energy are defined analogously.

Observe that the second terms in the definition of Jn
u and Jp

u together
with JE

u denote the well accepted expression for the current of the dissipated
power that is given as the product of total current and applied potential. The
term −εs∇∂tV in (3.40) namely denotes the so-called displacement current,
that has to be considered in transient simulations in order to guarantee
charge conservation (see § 4.1).

Using the energies and corresponding fluxes defined in (3.40)-(3.45), en-
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ergy conservation (3.37) leads to

0 =∂t(
εs
2
|∇V |2) − div(V εs∇∂tV ) + ρLcL∂tTL − div(κL∇TL)

+ ∂t(n[Ec − TLE
′

c]) − q−1[Ec − TLE
′

c] div Jn − q−1Jn · ∇[Ec − TLE
′

c]

− ∂t(p[Ev − TLE
′

v]) − q−1[Ev − TLE
′

v] div Jp − q−1Jp · ∇[Ev − TLE
′

v]

+ div(V Jn) + div(V Jp) + ∂tw − div Jw + ∂twp + div Jwp .

As the energy bands do not directly depend on time we get after partial
differentiation

0 =εs∇V∇∂tV − V εs∆∂tV − εs∇V∇∂tV + ρLcL∂tTL − div(κL∇TL)

+ [Ec − TLE
′

c](∂tn− q−1 div Jn) − nE′

c∂tTL − q−1Jn · ∇[Ec − TLE
′

c]

− [Ev − TLE
′

v](∂tp+ q−1 div Jp) + pE′

v∂tTL − q−1Jp · ∇[Ev − TLE
′

v]

+ div(V Jn) + div(V Jp) + ∂tw − div Jw + ∂twp + div Jwp .

Employing the Poisson equation (3.5) and the continuity equations for the
charge carriers (3.1), (3.6) leads to the relation

εs∆∂tV = q(∂tn− ∂tp) = div Jn + div Jp. (3.46)

Inserting (3.46) and using the energy-transport model equations leads to

0 = − V (div Jn + div Jp) + ρLcL∂tTL − div(κL∇TL)

−R(Ec − TLE
′

c) +R(Ev − TLE
′

v) + div(V Jn) + div(V Jp)

− Jn · ∇V +W − Jp · ∇V +Wp −
3

2
kBR(Tn + Tp)

− nE′

c∂tTL − q−1Jn · ∇[Ec − TLE
′

c] + pE′

v∂tTL − q−1Jp · ∇[Ev − TLE
′

v].

This finally leads to the heat flow equation

∂tTL

[
ρLcL − nE′

c + pE′

c

]
− div(κL∇TL) = H (3.47)

with the heat source term given by

H = −W −Wp +R

(
Eg − TLE

′

g +
3

2
kB(Tn + Tp)

)
(3.48)

+ q−1Jn · ∇[Ec − TLE
′

c] + q−1Jp · ∇[Ev − TLE
′

v],

where Eg = Ec −Ev denotes the energy gap.
For non-degenerate homostructure devices we can neglect the space de-

pendency of the energy bands. If we further on neglect the direct dependency
of the energy bands on the lattice temperature (what we can do as it is small
[87]) we end up with a simpler heat source term

H = −W −Wp +R

(
Eg − TLE

′

g +
3

2
kB(Tn + Tp)

)
. (3.49)
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In order to complete the thermal model for the lattice temperature we
have to include the radiation to the environment. The radiation occurs at
the physical boundary of the device, only. It can be assumed to be pro-
portional to the temperature difference between lattice temperature TL and
environmental temperature Tenv. Including this into the heat flow equation
we end up with the complete model for the semiconductor device:

εs∆V =q(n− p− C(x)),

∂tn− q−1 div Jn = −R, ∂tw − div Jw = −Jn∇V +W −
3

2
kBTnR,

∂tp+ q−1 div Jp = −R, ∂twp + div Jwp = −Jp∇V +Wp −
3

2
kBTpR,

ρLcL∂tTL − div(κL∇TL) = −W −Wp +R

(
Eg +

3

2
kB(Tn + Tp)

)
(3.50)

− SL(TL − Tenv),

where SL = SL(x) denotes the transmission function and models the thermal
radiation of the device. If the model is stated in the physical 3 dimensions,
the transmission function SL(x) is zero unless on the boundary. If we employ
a reduced one- or two-dimensional model, the physical boundary of the
device does not coincide with the model boundary what results in the effect
that SL(x) also attains values different from zero inside the domain ΩS .
Analogous to the thermal radiation stated in § 2, the complete radiation
can be considered to be proportional to the physical surface of the modeled
device.

A deeper look to this model shows that the Joule heating term −J∇V
appears as source term for the thermal energy of the charge carriers. As heat
source for the crystal lattice the energy relaxation terms are considered. In
the drift-diffusion case, however, the equation for the carrier energy and
with that the relaxation term disappears.

If we model the hole subsystem by the drift-diffusion model, as stated
in § 3.2, we apply the source term (3.35) suggested by Adler. Thus the
relaxation term Wp is replaced by Jp∇V and moreover the term 3

2kBTpR
vanishes in order to keep the energy balance. We summarize the heat flow
equation for the mixed energy-transport and drift-diffusion model in the
following remark.

Remark 3.1. If we exchange the energy-transport model for the holes by
the drift-diffusion model (as stated in § 3.2) the heat flow equation changes
into

ρLcL∂tTL − div(κL∇TL) = −W − Jp∇V +R

(
Eg +

3

2
kBTn

)

− SL(TL − Tenv). (3.51)
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Obviously the significant difference between these two approaches is,
that the Joule heat affects the crystal lattice directly if the charge carri-
ers subsystems are modeled by the drift-diffusion equations. If we use the
energy-transport model for the carrier subsystems the Joule heat affects the
charge carriers directly.

Boundary and initial conditions

The heat flow equation (3.50) has to be completed by initial and boundary
conditions for the lattice temperature TL. We pose the initial conditions

TL(x, 0) = TL,I for x ∈ ΩS .

We recall that the device boundary ∂ΩS = ΓC ∪ΓI splits into two parts.
The boundary part covered by contacts ΓC =

⋃nS

k=1 Γk and the insulating
boundary ΓI . We provide the following boundary conditions of mixed type

∇TL · ν = 0 on ΓI , (3.52)

−κL∇TL = ν ·
TL − Ta

Rth
on ΓC . (3.53)

The first boundary condition (3.52) assumes perfect insulating boundary ΓI .
This choice is reasonable as besides the radiation no temperature exchange
with the environment occurs. The radiation at the boundary is already
taken into account by the transmission function SL. At the contacts ΓC

we prescribe boundary conditions of mixed type to model the temperature
exchange between the semiconductor device and the connected device (or
interconnect) with the temperature Ta. The occurring proportionality con-
stant Rth models the thermal resistance of the contact. If we, however,
assume an infinite heat flux across the contacts, the lattice temperature
coincides with the ambient temperature. This results in the boundary con-
dition alternatively to (3.53)

TL = Ta on ΓC . (3.54)

Finally we want to compare our result with those presented in literature.

Remark 3.2.

• If we neglect the recombination and radiation terms in the source term
of heat flow equation (3.50) completely, we get the same source term
as used in [74].

• If we further on consider only the unipolar case, the equation coincides
with the heat flow equation Knaipp coupled to the hydrodynamic model
in [58].
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• In the case of Maxwell-Boltzmann statistics our simplified heat source
term (3.50) coincides with Wachutka’s source term (3.36) presented
in [101]. We namely can express the quasi Fermi potential as

φn = V −
kBTn

q
ln

(
n

ni

)
and φp = V +

kBTp

q
ln

(
p

ni

)

with intrinsic carrier density ni. Inserting this to (3.36) leads with
forward computation directly to (3.50).

This shows that our approach is a proper one. Moreover the application
of source term (3.48) allows for the consideration of band gap narrowing and
the extension to heterostructure devices like laser diodes presented in § 3.3.





Chapter

Chapter 4

Thermoelectric
network-device
coupling

4.1 Electric network-device coupling

Electric coupling of network device problems is not a new problem, nei-
ther from the engineering, nor from the mathematical point of view. First
mathematical results for the coupled system have already been obtained in
the late 80’s in [44] and [41]. In both cases simple circuits have been con-
sidered, where, for instance, the current entering the semiconductor device
has been expressed in terms of the applied voltage. This way the circuit was
taken into account in terms of special boundary conditions for the device,
what obviously leads to failure if we consider circuits containing more than
one semiconductor device. In [99] this has been extended to a coupling of
MNA (see § 1) and drift-diffusion equations, such that networks containing
more than one semiconductor device described by the drift-diffusion model
could be modeled. The coupled system of MNA- and drift-diffusion equa-
tions has been studied from the analytical as well as the numerical point
of view in [98, 99, 22, 23, 88]. However, the coupled system of MNA
and drift-diffusion equations does not allow for thermal consideration of the
semiconductor devices. In this work we will apply the coupling described in
[99] to the energy-transport model for semiconductors in order to allow for
the thermal effects in the device.

For notational convenience we will restrict ourselves to the case of net-
works containing one semiconductor device, but it is easy to verify that the
described procedure can be extended to the case of several devices.

43



44 4. Thermoelectric network-device coupling

Coupling via semiconductor current

We remember from § 1 that the network equations in the charge oriented
formulation are described by

AC
dQ̃C

dt
(A>

Ce, t) + ARgR(A>

Re) + ALiL + Aviv = −Aiis, (4.1)

dΦ̃L

dt
(iL, t) −A>

Le = 0, (4.2)

A>

v e = vs (4.3)

with the unknown node potentials e, the current through voltage sources
iV and the current through inductors iL. The incidence matrices thereby
consist of the entries −1, 0, 1 only.

When considering circuits containing semiconductor devices, the semi-
conductor current has to be included in the Kirchhoff current law (4.1). The
total semiconductor current is given by the corresponding density

Jtot = Jn + Jp + Jd. (4.4)

which consists of three parts, the electron current density Jn, the hole cur-
rent density Jp and the displacement current density Jd = −εs∂t∇V caused
by the electric potential. The displacement current appears in transient
models only and guarantees charge conservation. Indeed, differentiating
the Poisson equation (3.5) with respect to time and replacing the time

derivatives of the particle densities by the corresponding conservation laws
(3.1) and (3.6), we obtain

div Jtot = div(Jn + Jp) − ∂t(n− p) = 0.

Using Gauss’ law we then obtain for the complete charge QS of the device

dQS

dt
=

∫

Γ
Jtot · ν dσ =

∫

Ω
div Jtot dx = 0. (4.5)

We finally get for the semiconductor current leaving one terminal of the
device

jkS =

∫

Γk

Jtot · ν dσ (4.6)

if terminal k corresponds to the boundary part Γk.

As the sum of all semiconductor currents is zero we can express the
current through one terminal by the negative sum of the currents leaving
all other terminals. We can choose one terminal (usually the bulk terminal)
as reference terminal and denote by jS the vector containing all terminal
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currents except for the reference terminal. In the one-dimensional case there
remains only one terminal and the current is given by

jS(t) = Jn(0, t) + Jp(0, t) − εs∂tVx(0, t).

In order to include the current into the KCL (4.1) we define the semi-
conductor incidence matrix according to [99]:

Definition 4.1. For an electric network consisting of nn nodes containing
one semiconductor device with nS terminals we define the (reduced) semi-
conductor incidence matrix AS = (aS

ik) ∈ R
(nn−1)×(nS−1) via

aS
ik =





1 if the current jk enters the circuit node i,
−1 if the reference terminal is connected to the node i,

0 else.

With this definition the matrix AS has the same form as the incidence
matrices given in Definition 1.1. Finally, the Kirchhoff current law for the
circuit containing the semiconductor device reads

AC
dQ̃C

dt
(A>

Ce) + ARgR(A>

Re) + ALiL + Aviv + ASjS = −Aiis. (4.7)

Coupling via the node potentials

The second part of the electric coupling between the semiconductor device
and the circuit is realized via the boundary conditions for the potential in the
device. We recall from § 3.2.1 that the electric potential at the boundary of
the device is given as the sum of the applied voltage and the built-in potential
Vbi. If the terminal (and thus the contact) k of the device is connected to
circuit node i, the boundary conditions are given consequently by

V (t) = ei(t) + Vbi on Γk (4.8)

where ei denotes the node potential in node i.

The coupled network-device system

Thus the coupled system of the electric network equations and the energy-
transport equations for the semiconductor device forms a partial differential-
algebraic system of parabolic type. For a reliable and efficient numerical sim-
ulation, it is important to know the index of the PDAE system. It has been
shown in [97] that the coupled system of MNA- and drift-diffusion equations
is of (tractability) index one if and only if the network(s) without the semi-
conductors satisfy some topological conditions, i.e., if they contain neither
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CV-loops nor LI-cutsets. Here, a loop consisting of capacitors and voltage
sources only is called a CV-loop, whereas a cutset containing inductors and
current sources only is called an LI-cutset. In [98] it was proved that the in-
dex of the coupled system is at most two under weak conditions on the circuit
(local passivity, no shortcuts). Moreover, the index of the coupled system
is two if and only if the circuit contains LI-cutsets or CVS-loops (loops of
capacitors, voltage sources, and semiconductors) with at least one voltage
source or one semiconductor device. The same results were obtained in [88]
for the discretized drift-diffusion equations. A sensitivity analysis general-
izing the DAE index for finite systems to infinite ones was presented in [23]
and applied to the coupled PDAE system. It was shown that the system is
of index one if the voltages applied to the semiconductors are low and the
network without the semiconductors is of index one. We also refer to the
review paper [48].

For the coupled system consisting of the MNA- and the energy-transport
equations, no results about the index are known. For the numerical treat-
ment of the coupled system, however, we make the conjecture that the index
is at most two, according to the drift-diffusion case.

4.2 Thermal network-device coupling

In § 2 we described the thermal effects in networks without special consi-
deration of semiconductor devices. Thermal effects in semiconductor devices
are taken into account by the energy-transport model in terms of the electron
temperature as described in § 3.2. A more detailed consideration has been
achieved by additional description of the lattice temperature by the heat
flow equation, see § 3.4. By these models only the thermal effects in a single
device are considered. In order to take into account the thermal influence
of the semiconductor devices onto the other thermal elements the thermal
description of the device has to be coupled to the thermal network described
in § 2.

In [6] the thermal network has been coupled to semiconductor devices
described by the energy-transport model. There, the lattice temperature
has been considered as constant and the thermal interaction with the sur-
rounding network elements was realized via hot electrons. In this work
we will extend the models of [6, 16] and [17] and couple the thermal net-
work to semiconductor devices via hot electrons and the lattice temperature.
Moreover, we will describe a model that allows for the inclusion of possibly
more-dimensional models for the devices into the thermal network. In both
cases the device has to be treated different from thermal lines.

In the following we assume, that the device is only attached to nodes in
the thermal network. If it is directly connected to a thermally distributed el-
ement in the electric circuit, this interface is enlarged by an artificial lumped
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element according to the procedure in § 2. Then we define the thermal semi-
conductor incidence matrix:

Definition 4.2. For the thermal network with mn thermal nodes contai-
ning one semiconductor device with ns terminals, the thermal semiconductor
incidence matrix Ath

S = (as
ij) ∈ R

mn×nS is given by

as
ij =

{
1 if terminal j is connected to thermal node i,
0 else.

(4.9)

Coupling via the semiconductor heat flux

We recall from § 2 that one way of coupling between nodes and branches of

the thermal network is realized via the thermal flux F̂
d

from the branches
into the nodes, occurring in the lumped heat equation (2.4)

M̂dtT̂ = F̂
d
− Ŝ(T̂ − TenvI) + P̂ .

Now besides the heat flux from the thermal lines F̂
d

the semiconductor
heat flux into the nodes has to be taken into account.

Heat flux

As a first approximation of the semiconductor heat flux the Fourier law
(2.9) can be used. Thus, the device can be coupled to the thermal network
analogous to the thermal lines. If we apply the energy-transport model to
model the device, the flow of hot electrons contributes to the heat flux and
has to be taken into account (see [6]). In the following we will motivate a
physically reasonable expression for the semiconductor heat flux.

We first recall that for the energy uE and energy flux JE
u of the electric

field it holds (compare (3.40),(3.46))

∂tuE + div JE
u = −V εs∆∂tV = −V div(Jn + Jp).

Inserting this into the energy conservation (3.37) for the total energy u

∂tu+ div Ju = 0

and considering the stationary case by neglecting all time derivatives gives

div(JL
u + Jn

u + Jw
u + Jp

u + J
wp
u ) = V div(Jn + Jp),

with the notation from § 3.4. This is equivalent to

div(JL
u + Jn

u + Jw
u + Jp

u + J
wp
u − V (Jn + Jp)) = −∇V (Jn + Jp).
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With the current densities, given in (3.41) -(3.45), and again neglecting the
direct dependence of the energy bands on the lattice temperature we get

div JS
th = EJtot (4.10)

with the thermal flux

JS
th =

(
−κL∇TL − q−1 [EcJn +EvJp] − Jw + Jwp

)
. (4.11)

Equation (4.10) clarifies that the flux given in (4.11) is responsible for the
heat production caused by the dissipated power (compare [6]) and therefore
can be regarded as heat flux. We remark that the flux given by (4.11)
denotes the heat flux for the semiconductor device modeled via the bipolar
energy-transport model. If we use the drift-diffusion model for the holes
instead, as suggested in § 3.2 and § 3.3, it simplifies to

JS
th =

(
−κL∇TL − q−1 [EcJn +EvJp] − Jw

)
. (4.12)

If we moreover neglect the heat flux caused by the flux of the holes -
they are the minority charge carriers - the resulting heat flux in the device
modeled by the energy-transport model for the electrons results in

JS
th =

(
−κL∇TL − q−1EcJn − Jw

)
. (4.13)

The first term in (4.13) describes the heat flux according to Fourier’s law
(2.9), as it occurs in thermal lines. The second term determines the en-
ergy flux of the electrons with an energy Ec per electron and the last term
describes the flux of the thermal energy of the electrons.

In [6] a slightly different energy-transport model is applied to the semi-
conductor devices. The presented heat flux coincides with the electron en-
ergy flux Jw in our model. Obviously, our model is an extension of the model
described in [6].

The coupling between the thermal flux of the devices and the thermal
nodes can be expressed by use of the thermal semiconductor incidence matrix
Ath

S as

F̂
S

= Ath
S




F S
1 (t)
...

F S
nS

(t)


 , with F S

k =

∫

Γk

JS
th · ν dσ. (4.14)

where F̂
S
i stands for the complete heat flux from the semiconductor device

into the thermal node i and F S
k is the heat flux across the contact Γk of the

device.
The lumped version of the heat flow equation for the thermal nodes

changes into

M̂dtT̂ = F̂
S

+ F̂
d
− Ŝ(T̂ − TenvI) + P̂ .
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Coupling via the temperature in the thermal nodes

We recall from § 2.3 that for thermal lines the temperature at the boun-
dary coincides with the temperature in the attached thermal nodes and
the coupling can be expressed in terms of Dirichlet boundary conditions.
For semiconductor devices, however, we also employ boundary conditions of
Robin type (see (3.53). These conditions now have to be expressed in terms
of the nodal temperature values T̂ .

We recall that the semiconductor device is thermally described by the
electron and the lattice temperature. The lattice temperature TL is the
primary important value for the coupling to the thermal network. According
to § 3.4 it is described by the heat flow equation (3.50)

ρLcL∂tTL = div(κL∇TL) − S(TL − Tenv) +H, (4.15)

with the material density ρL, the heat capacity cL and heat conductivity
κL. The source term H depends on the employed semiconductor model, for
details see § 3.4. In the thermal network the heat flow equation (4.15) is
completed by initial and boundary conditions

TL(x, 0) = TL,I(x), for x ∈ ΩS,

−κL∇TL(x, t) = ν
TL − Ta,k

Rth
, on Γk, k = 1, . . . , ns, t ∈ [0,∞) (4.16)

∇TL · ν = 0 on ΓI , t ∈ [0,∞).

For one-dimensional semiconductor models, we remark that equation (4.15)
coincides with the heat flow equation for thermal lines (2.5), where the
electro-thermal source term for the semiconductor device is given by the
source term H.

We assume that the boundary ΓC =
⋃ns

k=1 Γk of the device consists of
the contacts. The ambient temperature values Ta,k at device contact k

T L,C :=




Ta,1(t)
...

Ta,ns(t)




are given in terms of the external temperature T̂ . With the thermal semi-
conductor incidence matrix Ath

S defined in (4.9) this is expressed as

T L,C = Ath>

S T̂ (4.17)

analogous to (2.8). If we assume Dirichlet boundary conditions for TL, the
same holds. Solely (4.16) changes into TL = Ta,k.

The presented procedure to include one semiconductor device into the
thermal network can be easily extended to the case of several semiconductor
devices in the network by simply defining a thermal semiconductor incidence
matrix for each device.
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4.3 Electro-thermal coupling

Having described the coupling between the device and the electric as well
as the thermal network we still have to clarify the coupling between the
electric and thermal effects and especially between the electric and ther-
mal networks. In this work we restrict ourselves to semiconductor devices
and resistors as thermally relevant elements as they are the most impor-
tant devices exhibiting this behavior. For a more detailed consideration of
electro-thermal coupling we refer to [16, 47] where also transmission lines
have been considered by use of the telegrapher’s equation.

Thermal to electric coupling

Firstly we consider the thermal to electric coupling, this is the impact of the
thermal effects on the electric behavior. This is taken into account in terms
of the temperature dependency of electrically relevant material parameters.

For resistors we assume a quadratic dependence of the resistance on the
corresponding temperature TR

R ∼ 1 + α1TR + α2T
2
R (4.18)

with αi ≥ 0 (comp. [16, §5.3]). The temperature influences the electric
network equations by adding the temperature dependency to the conductiv-
ity of the resistors gR(A>

Re, TR) in the Kirchhoff current law (4.1) or (4.7)
in the charge oriented MNA-equations.

In order to determine the temperature values TR of the resistors from the
temperature values in the thermal network we have to relate the resistive
branches of the electric network to the nodes and branches of the thermal
network. This is done by the following matrices:

Definition 4.3. For an electric network containing nR resistive branches,
corresponding to a thermal network consisting of mn thermal nodes and md

thermal branches we define the matrices K = (kij) ∈ R
md×nR and K̂ =

(k̂ij) ∈ R
mn×nR via

kij =

{
1 if resitor j corresponds to thermal branch i
0 else,

(4.19)

k̂ij =

{
1 if resitor j corresponds to thermal node i
0 else.

(4.20)

We notice that the resistors are considered as electrically lumped ele-
ments and thus the temperature values TR have to be lumped values. If
a resistor corresponds to a thermally distributed element we determine the

lumped value T̃
d

i out of the distributed values T
d
i by simply taking the mean

value.
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Thus, the temperature of the resistors is related to the temperature
values occurring in the thermal network by

TR = K̂>
T̂ + K>

T̃
d
,

where T̂ denotes the temperature in the thermal nodes.
For semiconductor devices the thermal to electric coupling is taken into

account by the carrier mobilities. The carrier mobilities µn and µp namely
depend on the carrier temperature and lattice temperature, see (3.12), (3.11),
[43]. The temperature dependency of further material parameters is ne-
glected in the examples we will present in this work. However, the model
can be refined by taking into account the temperature dependency of the
relaxation time τ0 presented in [12], for instance.

Electric to thermal coupling

The electric to thermal coupling appears in the thermal consideration via
the electric source terms in the heat equations. For the semiconductor device
this is the heat source term H in the heat flow equation (3.50).

For the resistors the coupling is handled via the source terms Pi and P̂

occurring in the (lumped) heat flow equations (2.11) and (2.12), depend-
ing on whether the resistor is modeled as thermally lumped or distributed.
These terms denote the heat production caused by the dissipated power of
the resistors, which is given as the product of the current through the resistor
and the applied voltage, see [6, 16]. With iR containing the current through
all resistors the power dissipated by all resistors in the electric network is
given by

PR(e) = diag(iR)A>

Re ∈ R
nR , (4.21)

where AR denotes the resistor incidence matrix of the electric network and
e is the vector containing the node potentials in the circuit described in § 1.
Observe that the entries of PR are all lumped quantities. Thus if the i-th
resistor is thermally modeled as lumped element the corresponding electro-
thermal source PR,i enters the lumped heat flow equation (2.12) directly.
If the corresponding resistor is thermally modeled as distributed element,
the lumped quantity has to be transferred into a distributed one. This can
easily be done by use of a space dependent function ζ(x, t)

P̃R,i(x, t) = PR,i
ζ(x, t)

Z(t)
, with Z(t) =

∫ LR

0
ζ(x, t) dx.

The simplest choice thereby is to assume a constant local power dissipation
within the resistor, such that

P̃R,i(x, t) =
1

LR
PR,i, for x ∈ (0, LR),
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Figure 4.1: Schematic draw of the coupling conditions between electric net-
work, thermal network and the semiconductor device.

with the length of the resistor model LR. This simple choice corresponds to
the assumption of a constant electric field inside the resistor. A more detailed
discussion about the proper choice of the local power distribution function
ζ(x, t) can be found in [16], where local thermal effects and passivity of the
elements are taken into account.

With the matrices K and K̂ defined in (4.19) and (4.20) we can express
the electro-thermal source terms as

P̂ = K̂PR(e) and P =




P1
...

Pmn


 = KP̃R(e).

4.4 The complete coupled model

In § 1 we described the electric modeling of electric circuits by use of the
modified nodal approach. In § 2 we described the accompanying thermal
network model. In § 3 we described the electrical and thermal modeling
of semiconductor devices. Finally the coupling conditions for the different
types of coupling have been described in this chapter. They are schemati-
cally collected in Figure 4.1.

For sake of completeness we finally state the complete thermoelectric
model of a circuit containing one semiconductor device, where only resistors
and semiconductor devices are considered as thermally relevant:
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Complete coupled thermoelectric network-device model

the electric network

AC
dQ̃C

dt
(A>

Ce, t) + ARgR(A>

Re, TR) + ALiL + Aviv + ASjS = −Aiis,

dΦ̃L

dt
(iL, t) −A>

Le = 0,

A>

v e = vs,

the thermal network

Mi∂tT
d
i = ∂x(κi∂xT

d
i ) − Si(T

d
i − Tenv) + Pi, i = 1, ...,md

M̂dtT̂ = F̂
S

+ F̂
d
− Ŝ(T̂ − TenvI) + P̂ ,

F̂
d

= Ath
d

(
Λ(0)∂xT (0, t)

−Λ(Lth)∂xT (Lth, t)

)
,

(
T

d
0

T
d
1

)
= Ath>

d T̂ ,

the semiconductor model

εs∆V = q(n− p−C(x)),

∂tn− q−1 div Jn = −R(n, p),

∂tw − div Jw = −Jn · ∇V +W (n, T ) −
3

2
kBTnR(n, p),

∂tp+ q−1Jp = −R(n, p),

ρLcL∂tTL − div(κL∇TL) = −W − Jp∇V +R
(
Eg +

3

2
kBTn

)
− SL(TL − Tenv),

the electric-thermal network interface

TR = K̂>
T̂ + K>

T̃
d
, with T̃ = mean(T d),

P̂ = K̂
[
diag(iR)A>

Re
]
, Pi =

(
KP̃R(e)

)
i
,

(
P̃R(e)

)
i
=

[
diag(iR)A>

Re
]
i
·
ζ(x, t)

Z(t)
, Z(t) =

∫ 1

0
ζ(x, t) dx,

the electric network-semiconductor interface

jS = Jn + Jp − ∂tjd,S with jd,S = εs∂xV,

V (0, t) = ei(t) + Vbi(0, t), V (1, t) = ej(t) + Vbi(1, t),

the thermal network-semiconductor interface

F̂
S

= Ath
S

(
JS

th(0, t)
JS

th(L, t)

)
, TL,C = Ath>

S T̂ ,

with JS
th =

(
−κL∇TL − q−1EcJn − Jw

)
.
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Chapter 5

Nondimensionalization

As the values of parameters and variables occurring in the semiconductor
models cover a wide range, for the numerical treatment it is reasonable to
scale the values to the magnitude of 1 and make the equations dimension-
less. As the scaled semiconductor equations will be coupled to models for
optoelectronic effects as well as network and heat flow equations, we employ
the scaling for these equations as well.

5.1 Transport equations

Firstly, we scale the semiconductor model presented in § 3.2, consisting of
the energy-transport equations for the electrons, the drift-diffusion equations
for the holes and the Poisson equation for the potential.

Let Cm be the maximum value of the doping profile, L the device dia-
meter, µ0 = max(µn,0, µp,0) the maximum value of the low field mobilities
and T0 = 300K. With the thermal voltage UT = kBT0

q we define the time

scaling factor t0 = L2

µ0UT
. Then we employ the following scaling

x→ Lx, t→ t0t, τ0 → t0τ0, τn → t0τn, τp → t0τp.

The electron, hole and intrinsic density as well as the doping profile are
scaled by the maximum value of the doping profile Cm

n→ Cmn, p→ Cmp, ni → Cmni, C → CmC. (5.1)

The temperature values are scaled by T0 = 300K, the mobilities by µ0,
voltages by the thermal voltage and the energy values by kBT0

Tn → T0Tn, TL → T0TL µn → µ0µn, µp → µ0µp,

V → UTV, Vap → UTVap, Vbi → UTVbi, Ec/v → kBT0Ec/v.

This results in the scaling of the current densities

Jn,p →
qµ0UTCm

L
Jn/p, Jw →

qµ0U
2
TCm

L
Jw. (5.2)
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The Auger recombination parameters Cn and Cp finally are scaled by

Cn → (C2
mt0)

−1Cn, Cp → (C2
mt0)

−1Cp.

For notational convenience we will not rename the scaled quantities.

5.1.1 Drift-diffusion formulation of the scaled ET-equations

In the following, we will introduce the drift-diffusion like formulation of
the scaled energy-transport model, since this allows for a good approxima-
tion of the current densities (see 6.2 and, e.g. [11, 25, 26]). In [34] the
drift-diffusion formulation is presented for the energy-transport model with
constant lattice temperature. It can also be applied to the non isothermal
lattice model. For this we define the variables gn = µ̃nn, gw = 3

2 µ̃nnTn and
gp = µ̃pp, where the mobility parameters are given as

µ̃n =
µn

Tαn−1
L

, µ̃p =
µp

T
αp−1
L

, (5.3)

with αn and αp introduced in (3.12). This way the lattice temperature
dependency of the mobilities is given directly in the parameters µ̃n, µ̃p. With
this we write the scaled formulation of (3.1)-(3.7) as

Drift-diffusion formulation of the ET-model

µ̃−1
n ∂tgn − div Jn = R(µ̃−1

n gn, µ̃
−1
p gp, ) (5.4)

µ̃−1
n ∂tgw − div Jw = −Jn∇V +W (gn, gw) −

3

2
TnR(µ̃−1

n gn, µ̃
−1
p gp, ) (5.5)

µ̃−1
p ∂tgp + div Jp = −R(µ̃−1

n gn, µ̃
−1
p gp) (5.6)

with the current densities

Jn = ∇gn −
gn

Tn
∇V, Jw = ∇gw −

gw

Tn
∇V, Jp = −

(
∇gp +

gp

TL
∇V

)
. (5.7)

The electron temperature is now given by Tn = 2gw/3gn. Thus the energy-
transport equations correspond (up to a sign) to the drift-diffusion equa-
tions, where gn or gw is replaced by gp, Tn by TL, and only the right-hand
side is different. The advantage of this formulation is that it “diagonalizes”
the cross-diffusion energy-transport model [34]. Under the assumption of
constant (scaled) lattice temperature TL = 1, the mobility parameters µ̃n, µ̃p

coincide with µn, µp, respectively, and the drift-diffusion formulation (5.4)-
(5.7) coincides with the formulation in [34].

The scaled Poisson equation becomes

λ2∆V = µ̃−1
n gn − µ̃pgp − C(x), with λ2 =

εsUT

qCmL2
(5.8)
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with Debye length λ. The scaled displacement current density is given as

JD = ∂tjS,D, with jS,D = −λ2∇V. (5.9)

The Fokker-Planck relaxation term (3.10) reads in the new variables

W (gn, gw) = cngn − cwgw

with cn = 3
2

TL

τ0eµn
and cw = 1

τ0eµn
, and the recombination terms (3.8) and (3.9)

appear the same in the scaled formulation.

Boundary and initial conditions. The boundary and initial conditions
(3.13)-(3.20) appear the same in the scaled formulation, where the initial
and boundary conditions for gn and gw can be easily determined from (3.13)
and (3.17)-(3.19). Merely the shape of the Robin type boundary conditions
(3.21) and (3.22) on ΓC changes slightly into

gn + θ−1
n Jn · ν = gn,a, gp − θ−1

p Jp · ν = gp,a, (5.10)

∇gw · ν − θn(gw,a − gw) =
3

2
θngn,a(Tn − Ta) +

3

2
gn∇V · ν (5.11)

with gn,a = µ̃nna, gp,a = µ̃ppa and gw,a = µ̃nwa.

5.2 Scaled optoelectronic device equations

When the model equations for the optoelectronic effects in the devices, de-
scribed in § 3.3, are coupled to the scaled transport equations an appropriate
scaling has to be applied. The threshhold density nth is scaled by Cm ac-
cording to (5.1) and the remaining values and parameters in the spontaneous
and stimulated recombination terms (3.25) are scaled as follows

B → (t0Cm)−1B, vg → Lt−1
0 vg, g0 → (LCm)−1g0, S → L3CmS.

For the band potentials, the eigenvalue of the waveguide equation (3.27),
the velocity of light c and the angular frequency of the light ω, we use the
following scaling

Un → UTUn, Up → UTUp, β → L−1β, c→ Lt−1
0 c, ω → t−1

0 ω.

All absorption parameters are scaled by the inverse device diameter and
for the generation term (3.32) we apply the scaling

αf → L−1αf , αab → L−1αab, A→ L2A,
Pin

~
→

L3Cm

t20

Pin

~
.

The equations (3.24)-(3.32) remain the same, where solely the physical
quantities are replaced by the scaled ones. For convenience, we summarize
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the complete scaled model for a single-mode laser diode with constant lattice
temperature TL under the assumption of boundary conditions of Robin type:

Scaled model for laser diode

Poisson equation for the potential

λ2∆V = µ̃−1
n gn − µ̃pgp − C(x),

Energy-transport model with Vn = V + Un

µ̃−1
n ∂tgn − div Jn = −Rg(µ̃

−1
n gn, µ̃

−1
p gp),

µ̃−1
n ∂tgw − div Jw = −Jn · ∇Vn +W (gn, gw) −

3

2
TnRg(µ̃

−1
n gn, µ̃

−1
p gp),

Jn = ∇gn −
gn

Tn
∇Vn, Jw = ∇gw −

gw

Tn
∇Vn,

Drift-diffusion model with Vp = V + Up

µ̃−1
p ∂tgp + div Jp = −Rp(µ̃

−1
n gn, µ̃

−1
p gp), Jp = −∇gp −

gp

TL
∇Vp,

Electric-optical interface

Rν = RSRH +RAu +Bnp+ vgg(ν)|Ξ|
2S for ν = n, p

g(ν) = g0(µ̃
−1
ν gν − nth).

Waveguide equation and Photon rate equation

[
∆ +

ω2

c2
εopt(n)

]
Ξ(x) = β2Ξ(x),

∂tS = vg (2Im(β) − αf )S +Rspont.

Boundary conditions:

Jn · ν = Jp · ν = Jw · ν = ∇V · ν = ∇Tn · ν = 0 on ΓI

V = Vap + Vbi, ∇Tn · ν = 0 on ΓC

Jn · ν = θn(gn,a − gn), Jp · ν = θp(gp − gpa) on ΓC

∇gw · ν − θn(gw,a − gw) =
3

2
θngn,a (Tn − Ta) −

3

2
gn∇V · ν on ΓC .

Initial conditions:

gn = gn,I , gw = gw,I , gp = gp,I , Tn = Tn,I , S = SI , in ΩS, t = 0.



5.3. Scaled heat flow equation 61

5.3 Scaled heat flow equation

According to § 5.1 the recombination terms are scaled by R → (Cm/t0)R,
the energy values by kBT0 and all temperature variables are scaled by the
temperature T0 = 300 K. Further on, we employ the scaling

κL → L2kBCmt
−1
0 κL, ρLcL → kBCmρLcL, SL → kBCmt

−1
0 SL.

Then the scaled heat flow equation for the energy-transport model reads

ρLcL∂tTL − div(κL∇TL) =
3

2
n
Tn − TL

τ0
+

3

2
p
Tp − TL

τp,0
+R

[
Eg +

3

2
(Tn + Tp)

]

− SL(TL − Tenv).

If we employ the drift-diffusion model for the holes instead, we get

ρLcL∂tTL − div(κL∇TL) =
3

2
n
Tn − TL

τ0
− Jp∇V +R

[
Eg +

3

2
Tn

]

− SL(TL − Tenv), (5.12)

with the scaling from § 5.1 for Jp and V . The heat flux JS
th given in (4.11)-

(4.13) reads in the scaled formulation

JS
th =

(
− κL∇TL −EcJn − Jw

)
. (5.13)

5.4 Scaled thermoelectric network-device model

Electric network. The scaling of time in the semiconductor model also
changes the time variable in the network equations, what enforces the scaling

t→ t0t, d/dt → t−1
0 d/dt. (5.14)

The node potential e appearing in the boundary conditions (4.8) for the
Poisson equation are scaled by UT , thus the boundary conditions become

V (t) = U−1
T ei(t) + Vbi, on Γk (5.15)

if network node i is connected with terminal k of the device.
Lastly, the semiconductor current has to be unscaled by qµ0UTCm/L

according to § 5.1 before entering the Kirchhoff current law (4.7).

Thermal network. Also in the thermal network equations the time has to
be scaled according to (5.14). The temperature T̂ in the coupling condition
(4.17) has to be scaled by T0, such that the coupling condition becomes

T L,C = Ath>

S T̂T−1
0 .

Lastly, the heat flux (5.13) has to be unscaled by qµ0U
2
TCm/L before being

coupled to the thermal network equations, according to (5.2).
Finally we present the dimensionless formulation of the complete ther-

moelectric network-device system presented on page 53, where we apply the
drift-diffusion formulation of the energy-transport equations:
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Scaled coupled thermoelectric network-device model

the electric network

t−1
0 AC

dQ̃C

dt
(A>

Ce, t) + ARgR(A>

Re, TR) + ALiL + Aviv + ASjS = −Aiis,

t−1
0

dΦ̃L

dt
(iL, t) −A>

Le = 0,

A>

v e = vs,

the thermal network

t−1
0 Mi∂tT

d
i = ∂x(κi∂xT

d
i ) − Si(T

d
i − Tenv) + Pi, i = 1, ...,md

t−1
0 M̂dtT̂ = F̂

S
+ F̂

d
− Ŝ(T̂ − TenvI) + P̂ ,

F̂
d

= Ath
d

(
Λ(0)∂xT (0, t)

−Λ(Lth)∂xT (Lth, t)

)
,

(
T

d
0

T
d
1

)
= Ath>

d T̂ ,

the semiconductor model

λ2∆V = µ̃−1
n gn − µ̃−1

p gp − C(x),

µ̃−1
n ∂tgn − div Jn = −R(µ̃−1

n gn, µ̃
−1
p gp),

µ̃−1
n ∂tgw − div Jw = −Jn · ∇Vn +W (gn, gw) −

3

2
TnRg(µ̃

−1
n gn, µ̃

−1
p gp),

µ̃−1
p ∂tgp + div Jp = −R(µ̃−1

n gn, µ̃
−1
p gp),

ρLcL∂tTL − div(κL∇TL) = −W − Jp · ∇V +R
(
Eg +

3

2
Tn

)
− SL(TL − Tenv),

the electric-thermal network interface

TR = K̂>
T̂ + K>

T̃
d
, with T̃ = mean(T d),

P̂ = K̂
[
diag(iR)A>

Re
]
, Pi =

(
KP̃R(e)

)
i
,

(
P̃R(e)

)
i
=

[
diag(iR)A>

Re
]
i
·
ζ(x, t)

Z(t)
, Z(t) =

∫ 1

0
ζ(x, t) dx,

the electric network-semiconductor interface

jS = L(qµ0UTCm)−1(Jn + Jp − ∂tjd,S) with jd,S = εs∂xV,

V (0, t) = U−1
T ei(t) + Vbi(0, t), V (1, t) = U−1

T ej(t) + Vbi(1, t),

the thermal network-semiconductor interface

F̂
S

= Ath
S

(
JS

th(0, t)
JS

th(1, t)

)
, TL,C = Ath>

S T̂T−1
0 ,

with JS
th = L(qµ0U

2
TCm)−1 (−κL∇TL −EcJn − Jw) .



Chapter

Chapter 6

Discretization of
coupled network-device
PDAEs

In the following we describe the discretization of the different subsystem
occurring in the complete coupled system, consisting of the differential-
algebraic electric and thermal network equations and the partial differential
equations given by the energy-transport model. The focus thereby is on a
proper choice of the time-discretization scheme, as it has to take into ac-
count the differential-algebraic character of the system. Moreover, we will
apply a discretization scheme to the energy-transport equations that will
allow to keep the positivity of the discrete charge carrier densities and the
continuity of the device current densities.

For the time dependent system we apply Rothe’s method, i.e. we dis-
cretize in time first. Thus we have to solve an elliptic PDAE in each time
step. We notice, that employing the method of lines, instead, what seems
suggestive for the parabolic system, does not allow to guarantee the posi-
tivity of the discrete particle densities, with the applied scheme for space
discretization.

6.1 Time discretization with backward difference

formulas

For the numerical integration of differential-algebraic equations (DAEs) we
can employ Runge-Kutta methods or backward difference formulas (BDF).
For Runge-Kutta methods applied to DAEs we refer to [50], for instance.
Only implicit Runge-Kutta schemes are feasible for DAEs, and stiffly ac-
curate methods provide the best properties. For instance, stiffly accurate
methods for index-1 DAEs have the same convergence order as in the case
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of the numerical integration of explicit ordinary differential equations. For
other Runge-Kutta methods, order reduction in the algebraic part down to
the stage order q occurs. For stiffly accurate methods for index-2 DAEs,
an order reduction in the differential and algebraic part down to the order
q + 1 can be observed. For other methods, even stronger order reduction
may occur.

Concerning BDF methods, k-step BDF (with k < 7) for index-1 DAEs
are feasible for sufficiently small time steps, and they are convergent with
the same order as in the case of explicit ordinary differential equations [69].
The numerical integration of index-2 DAEs with BDF is studied in [24, 50].
In [96], quasilinear index-2 DAEs, as they occur in circuit simulation, were
examined. It has been shown that k-step BDF for k < 7 are feasible and
weakly instable under suitable assumptions. The convergence order is the
same as in the case of explicit ordinary differential equations.

In § 4.1, we made the conjecture, based on coupled drift-diffusion and
network equations, that the index of the partial differential-algebraic system
consisting of the energy-transport and MNA equations is not larger than
two. Moreover we conjecture, that the index of the thermal network equa-
tions derived in § 2 is not larger than two. For the time discretization we
employ BDFs. The simplest of those, the 1-step BDF, coincides with the
implicit Euler method and is given by

∂tg(tm) ≈ (4tm)−1
(
g(m) − g(m−1)

)
,

where g(k) approximates g(·, tk), and 4tm = tm+1 − tm.

As the BDF1 shows strong damping behavior, for certain applications it
is preferable to employ the 2-step BDF, as its stability domain is significantly
larger. For variable step sizes the BDF2 is given by

∂tg(tm+1) ≈ αm+1g
(m+1) − αmg

(m) + αm−1g
(m−1), (6.1)

where

αm+1 =
4tm−1 + 24tm

4tm(4tm−1 + 4tm)
, (6.2)

αm−1 =
4tm

4tm−1(4tm−1 + 4tm)
, αm =

4tm−1 + 4tm
4tm4tm−1

, (6.3)

For constant time step size 4t the coefficients reduce to

αm+1 =
3

24t
, αm =

2

4t
, αm−1 =

1

24t
.

We found that methods like Radau IIa are not suitable since the stiffness
matrix coming from the finite-element discretization of the semiconductor
equations does not provide an M-matrix after static condensation (see below
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for details) and thus does not allow to keep positivity of the discrete car-
rier densities. Using BDF1 or BDF2 allows to keep the M-matrix property
provided by the finite-element scheme, however, with restriction to the step
size for the BDF2. Furthermore, higher-order schemes are not appropriate
here, since the input signals may be discontinuous.

6.2 Space discretization using hybridized mixed fi-
nite elements

In the following we describe the discretization of the energy-transport equa-
tions coupled to the equations for the optoelectronic effects in the laser
diode. The equations for simpler devices like photo diodes or pn diodes are
discretized analogously. Solely the treatment of the recombination terms is
slightly simpler. The discretization is described for time discretization with
BDF1. BDF2 leads to a very similar treatment. We notice, that on from
that point we consider the one-dimensional spatial model, only.

The Poisson equation is discretized in space by linear finite elements.
Thus the discrete electric potential is piecewise linear and the approximation
of the electric field −Vx is piecewise constant. The waveguide equation (3.27)
is discretized in space by standard finite elements, and the corresponding
discretized eigenvalue problem is solved using the eig or eigs routine of
Matlabr.

The energy-transport equations are discretized using the mixed finite-
element method. We employ the drift-diffusion formulation (5.4)-(5.7) and
omit the tilde superscript in the mobility parameters in the following.

After time discretization with the implicit Euler scheme for given V , T ,
p, S, |Ξ|2, g̃n, and J̃n from the previous iteration step, we can express the
continuity equation at time tm+1 = (m+1)∆t for the next iteration step by

−Jj,x + σjgj = fj, Jj = gj,x −
gj

Tn
Vx, j = 1, 2, (6.4)

with g1 = gn and g2 = gw, where the current densities J1 = Jn and J2 = Jw

are given by (5.7) and

σ1 = σ̃ + (µn4t)
−1, (6.5)

σ2 =
3

2
Tnσ̃ + (µn4t)

−1 + (µnτ0)
−1TL, (6.6)

f1 = f̃ + (µn4t)
−1g

(m)
1 , (6.7)

f2 =
3

2
Tnf̃ + (µn4t)

−1g
(m)
2 − J̃nVx +

3

2
Ta(µnτ0)

−1g̃1. (6.8)
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Furthermore, (remark that it holds the relations gn = µnn, gp = µpp)

σ̃ = µ−1
n

(
r(µ−1

n g̃1, p)p+ Cnµ
−1
n g̃1p+ Cpp

2 +Bp+ vgg0|Ξ|
2S

)
, (6.9)

f̃ = r(µ−1
n g̃1, p)ni + Cppn

2
i + Cnµ

−1
n g̃1n

2
i + vgg0nth|Ξ|

2S, (6.10)

where r is given as

r(n, p) =
1

τp(n+ ni) + τn(p+ ni)

and g
(m)
j is the value of gj at time step tm. We notice that for notational

convenience we used the variable p instead of gp. Moreover we notice that the
recombination terms are partially approximated by values from the former
iteration step, such that the continuity equations become linear in each
iteration step.

If the zeroth-order term σi vanishes, the use of Raviart-Thomas finite
elements in (6.4) provides a numerical scheme with a stiffness matrix which
is an M-matrix, thus providing the positivity of the discrete particle density
for positive boundary conditions. This property may not hold if σi > 0.
In [72] Marini and Pietra have developed finite elements which guarantee
the positivity of the particle densities for positive Dirichlet boundary data.
We will show below that this property remains valid even for the Robin
boundary conditions (3.21)-(3.22) with θn/p ≥ 0.

Next, we describe the discretization of (6.4) in the interval (0, 1) with
Robin boundary conditions. For convenience, we omit the index j in (6.4).
We introduce the uniform mesh xi = ih, i = 0, . . . , N , where N ∈ N and
h = 1/N . In order to deal with the convection dominance due to high
electric fields, we use exponential fitting. Assume in the following that the
temperature is given by a piecewise constant function T n (see (6.18) for the
definition of T n) and that the electric potential V is a given piecewise linear
function. Then we define a local Slotboom variable by y = exp(−V/T n)g in
each subinterval Ii = (xi−1, xi). Equation (6.4) can be written as

e−V/T nJ − yx = 0, −Jx + σeV/T ny = f (6.11)

and the boundary conditions (3.21) transform to

yx · ν − θn(ya − y) = 0 at x = 0, 1, (6.12)

where ya = e−V/T nga, and ga = µnna (see § 5.1).
The ansatz space for the current density J consists of piecewise polyno-

mials of the form ψi(x) = ai + biPi(x) on each Ii with constants ai, bi and
second-order polynomials Pi(x) which are defined as follows. Let P (x) be
the unique second-order polynomial satisfying

∫ 1

0
P (x)dx = 0, P (0) = 0 and P (1) = 1.
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Then P (x) = 3x2 − 2x. We define Pi(x) (depending on V ) by

Pi(x) = −P
(xi − x

h

)
for imin = i− 1,

Pi(x) = P
(x− xi−1

h

)
for imin = i,

where imin is the boundary node of Ii at which the potential attains its
minimum. Notice that the minimum is always attained at the boundary
since V is linear on Ii. In the case that V is constant in Ii, we define
Pi(x) = P ((x− xi−1)/h).

Now we introduce as in [34] the finite-dimensional spaces

Vh = {ψ ∈ L2(0, 1) : ψ(x) = ai + biPi(x) in Ii, i = 1, . . . , N},

Wh = {φ ∈ L2(0, 1) : φ is constant in Ii, i = 1, . . . , N},

Γh = {q is defined at the nodes x0, . . . , xN}.

The mixed-hybrid finite-element approximation of (6.11) is as follows: Find
Jh ∈ Vh, yh ∈Wh, and yh ∈ Γh such that

N∑

i=1

( ∫

Ii

QiJhψdx+

∫

Ii

yhψxdx−
[
yhψ

]xi

xi−1

)
= 0, (6.13)

N∑

i=1

(
−

∫

Ii

Jh,xφdx+

∫

Ii

σS−1
i yhφdx

)
=

N∑

i=1

∫

Ii

fφdx, (6.14)

N∑

i=1

[
qJh

]xi

xi−1
+ qθn(Q−1

1 y0 +Q−1
N yN) = qθnya(Q

−1
1 +Q−1

N ), (6.15)

for all ψ ∈ Vh, φ ∈Wh, and q ∈ Γh. The approximations

Qi =
1

h

∫

Ii

e−V (x)/T idx, Si = e−Vmin/T i , i = 1, . . . , N,

are introduced in order to treat accurately large gradients of the potential
[72]. Here, Vmin denotes the minimum value of V on Ii. Equation (6.13)
is the weak formulation of the first equation in (6.11), together with the
Slotboom transformation. Equation (6.14) is the discrete weak version of
the second equation in (6.11). The third equation (6.15) expresses the weak
continuity property of Jh together with the boundary conditions (6.12).

The variables Jh and yh can be eliminated by static condensation. For
this, we write the weak formulation in matrix-vector notation for the vectors
of nodal values similarly as in [52]:



A B> −C>

−B D 0
C 0 E






Jh

yh

yh


 =




0
F
GC


 .
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The matrices A ∈ R
2N×2N , B ∈ R

N×2N , C ∈ R
(N+1)×2N andD ∈ R

N×N are
given by the corresponding elementary matrices associated with the interval
Ii, denoted by the superscript i:

Ai
jk = Qi

∫

Ii

ψjψkdx, Bi
jk =

∫

Ii

φjψk,xdx,

Ci
jk =

[
qjψk

]xi

xi−1
, Di

jk = S−1
i

∫

Ii

σφjφkdx,

where ψk, φk, and qk are the canonical basis functions of the corresponding
spaces. In the matrix E ∈ R

(N+1)×(N+1), only the values

E11 = q1q1θnQ
−1
1 ,

EN+1,N+1 = qN+1qN+1θnQ
−1
N ,

are non-zero. The vectors F and GC represent the corresponding right-hand
sides of (6.14) and (6.15), respectively.

Now, static condensation as in [52] can be applied. As the matrix A has
a diagonal structure, it can be easily inverted, which allows to eliminate Jh.
A similar argument for BA−1B> +D allows to eliminate yh. This leads to
the system

M̃yh = G, (6.16)

where M̃ and G are given by:

M̃ = CA−1C> +E − CA−1B>(BA−1B> +D)−1BA−1C>,

G = GC + CA−1B>(BA−1B> +D)−1F.

If Dirichlet boundary conditions are considered, E = 0 and GC = 0. In this
case, Marini and Pietra proved that M̃ is an M-matrix by showing that the
elementary stiffness matrices are M-matrices. If Robin boundary conditions
are prescribed, we observe that the matrix E does not have any contribution
to internal elements. Thus, the corresponding elementary matrices are, as in
the case of Dirichlet conditions, M-matrices. If θn > 0, the contribution of E
to the boundary elementary matrices consists in nonnegative entries to the
diagonal. Thus, also the boundary elementary matrices have the M-matrix
property. Adding all elementary matrices shows that M̃ is an M-matrix.

In order to go back to the discrete natural unknown gh, we use a discrete
inverse Slotboom transformation. Multiplying M̃ column by column by
e−Vi/T n , the final system for the unknown gh becomes

Mgh = G. (6.17)

Notice that M is an M-matrix since M̃ does so, and thus, the positivity for
the solution of (6.17) is guaranteed for positive right-hand side G. Actually,
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G is positive if the right-hand side f in (6.4) is positive. This is the case
for the electron density equation, since the separation of the recombination
terms was done in such a way that f1 and the zeroth-order term σ1 are
positive. An analogous discretization of the hole equations (5.6) ensures
positivity for the discrete hole density as well. We cannot guarantee gener-
ally nonnegativity of the right-hand side for the energy equation since the
term −JnVx may be negative and large. However, we observed that −JnVx

is negative in few cases only, and by adjusting the step size in space and
time we always obtained positive solutions.

The eliminated variables Jh, yh, or gh can be computed a posteriori from
the solution of (6.16) or (6.17) as in [53] and [72] by

yh =
[
BA−1B> +D

]−1(
BA−1C>yh + F

)

Jh = A−1
(
B>

[
BA−1B> +D

]−1(
− F −BA−1C>yh

)
+ C>yh

)
.

We notice that the constant part of the current approximation coincides
with the current approximation suggested by Scharfetter and Gummel in
[83]. As the applied Marini-Pietra elements can also be applied to a two-
dimensional geometry, this scheme can be considered as an extension of the
widespread Scharfetter-Gummel approximation.

In order to complete the scheme, we still have to specify how the piece-
wise constant temperature Tn is defined. The temperature is implicitly
defined in terms of g1 and g2, Tn = 2g2/3g1. Hence, we set

T n,i =
1

2
(Tn,i + Tn,i−1), where Tn,i =

2gi
2,h

3gi
1,h

. (6.18)

Remark 6.1. For time discretization with BDF1 we observe that the positi-
vity of the discrete particle densities is fulfilled by the described discretization
scheme without any restriction on the time step size 4t. If we employ BDF2
for the time discretization, however, the term f1 in (6.7) changes into

f1 = f̃ + αmµ
−1
n g

(m)
1 − αm−1µ

−1
n g

(m−1)
1 ,

with αm, αm−1 given in (6.3). In order to guarantee nonnegativity of f1 we

have to ensure that αmµ
−1
n g

(m)
1 − αm−1µ

−1
n g

(m−1)
1 ≥ 0 what in the case of

g(m) < g(m−1) implies the restriction on the time step size

4tm ≤
g(m) + (g(m)g(m−1))

1
2

g(m−1) − g(m)
4tm−1. (6.19)

For g(m) ≥ g(m−1) no restriction on 4tm is needed as obviously αm > αm−1.
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Remark 6.2. The time discretized drift-diffusion equations for the holes
(5.6)-(5.7) reads analogous to (6.4)

Jp,x + σpgp = fp, Jp = −gp,x −
gp

TL
Vx, (6.20)

where the zeroth-order term and the right hand side are given by

σp = (µp4t)
−1 + µ−1

p

(
r(n, µ−1

p g̃p)n+ Cnn
2 + Cpnµ

−1
p g̃p +Bn+ vgg0|Ξ|

2S
)
,

fp = (µp4t)
−1g(m)

p + r(n, µ−1
p g̃p)ni + Cnnn

2
i + Cpµ

−1
p g̃pn

2
i + vgg0nth|Ξ|

2S,

where g
(m)
p denotes the solution from the former time step and g̃p the solution

from the former iteration step. For notational convenience we stated the
dependency on the electron density in terms of n instead of gn.

We notice that the modal gain in the stimulated emission term is approx-
imated by g = g0(p − nth) according to (3.26) as this guarantees the non-
negativity of σp and fp. The space discretization of (6.20) is accomplished
analogous to the described procedure for the energy-transport equations.
For details see [72].

Remark 6.3. For non-optoelectronic devices like pn or ballistic diodes the
same discretization technique applies. Solely the values of σ̃ and f̃ in (6.9)
and (6.10) change into

σ̃ = µ−1
n

(
r(µ−1

n g̃1, p)p+ Cnµ
−1
n g̃1p+ Cpp

2
)
, (6.21)

f̃ = r(µ−1
n g̃1, p)ni + Cppn

2
i + Cnµ

−1
n g̃1n

2
i , (6.22)

as we do not have to consider spontaneous and stimulated recombination
effects. The expression σp and fp in Remark 6.2 change analogously.

The described discretization technique applies to the case of isothermal
and non isothermal lattice modeling likewise. We notice that for non isother-
mal lattice modeling the mobility parameters µn and µp have to be replaced
by the values µ̃n and µ̃p given in (5.3).

6.3 Discretization of the heat flow equations

The heat flow equations in the thermal network as well as the heat flow
equation for the semiconductor device are discretized in time by by BDF1
or BDF2, according to § 6.1. After time discretization with the implicit
Euler scheme for given V, Tn, R, g1 and Jp the heat flow equation at time
tm+1 = (m+ 1)4t can be expressed as

−div(κL∇TL) + σLTL = fL, (6.23)
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with

σL =
3

2

g1
µnτ0

−
3

2
R+ SL +

ρLcL
4t

, (6.24)

fL =
3

2

g1
µnτ0

Tn − Jp∇V +R
[
Eg +

3

2
Tn

]
+ SLTenv +

ρLcL
4t

T
(m)
L . (6.25)

Thereby T
(m)
L determines the lattice temperature at the former time step

tm. For time discretization with BDF2 or variable step size the last term in
(6.24) and (6.25) changes according to (6.2) and (6.3), respectively.

The time discretized version of the space distributed heat flow equations
(in the network and for the device) are space-discretized by linear finite
elements. Thus the distributed temperatures in the the thermal network are
assumed to be piecewise linear. This coincides with a simple finite-difference
approximation.





Chapter

Chapter 7

Iterative algorithms

The complete thermoelectric network-device model, presented on page 62,
obviously builds a complex system of equations. The numerical solution
therefore enforces special consideration. The same holds for the models for
the single devices, as for the laser diode presented on page 60. In both
cases the solution can be determined using the Newton-method for the en-
tire system, what either enforces the very expensive and moreover instable
numerical computation of the corresponding Jacobian, or the direct imple-
mentation of the Jacobian. This, in turn, hampers the maintenance of the
code and complicates the extension of the existing code, as simple changes in
the model mostly influence the Jacobian. The numerical simulation of new
and smaller semiconductor devices and integrated circuits enforces the mod-
ification of existing codes in order to allow for dependencies that could be
neglected for bigger devices. Therefore the consideration and development
of iterative solvers is of high interest in industrial application.

In this chapter we will give a description of the iterative solvers we
developed and applied for the simulation of one-dimensionally modeled op-
toelectronic devices and for the thermoelectric simulation of bipolar electric
devices. Moreover, we will state a simple iterative algorithm we applied to
solve the coupled network-device systems presented in this work.

7.1 Computation of thermal equilibrium

As mentioned in § 3.2.2, the state of thermal equilibrium is a distinguished
one in semiconductor devices. For the transient computations presented in
this work we always assume the state of thermal equilibrium as initial state
of the devices. Moreover, for stationary computations, like the determina-
tion of current-voltage characteristics, the thermal equilibrium values are
used as initial guess for the Newton method or Gummel-type iterations as
described below. Here we give a short description of the computation of the
equilibrium values.

73
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In the scaled formulation the equilibrium densities are given as

neq = nie
Veq , peq = nie

−Veq ,

where Veq is the solution of the semilinear elliptic Poisson equation

λ2∆V = 2ni sinh(Veq) − C in ΩS , (7.1)

with the boundary conditions

Veq = arcsinh

(
C

2ni

)
on ΓC , ∇Veq · ν = 0 on ΓI .

Thus the system of energy-transport equations reduces to a semilinear Pois-
son equation and the state of thermal equilibrium can be computed by a
damped Newton algorithm as described in Algorithm 1 (comp. [51]).

Algorithm 1 : Computation of equilibrium values

Initialize V = arcsinh
(

C
2ni

)
in ΩS

repeat

Set n = nie
V and p = nie

−V

Solve

λ2∆Ψ − (p+ n)Ψ = −λ2∆V + n− p− C in ΩS

Ψ = 0 on ΓC ∇Ψ · ν = 0 on ΓI

Set V := V + tΨ wit t ∈ (0, 1]
until convergence;
Veq = V

7.2 Nonequilibrium state for optoelectronic devices

Laser diode

For nonequilibrium states of electric devices several iteration procedures
for the coupled system of drift-diffusion and Poisson equation have been
proposed in literature. The first one was suggested by Gummel in [49]. In
[51, 52] an extended Gummel-type iteration procedure is proposed for the
stationary system of energy-transport, drift-diffusion and Poisson equation
for bipolar devices, where the Chen model is used for the current relations
in the energy-transport model.

We applied a Gummel-type iteration as described in [51, 52] to the
model for the laser diode consisting of the energy-transport, drift-diffusion,
Poisson-, waveguide- and rate equations (see page 60). For the simulation
of the optoelectronic devices we assume the (scaled) lattice temperature
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Algorithm 2 : Iterative solver for the laser model

repeat

(i) Let ` ∈ N0 and g?
p = g

(`)
p , g?

n = g
(`)
n , V = V (`),Tn = T

(`)
n .

(ii) Find S such that

S
(
1 −4tvg(2Im(β(`)) − αf )

)
= S̃ +Bµ−1

n g?
nµ

−1
p g?

p4t.

(iii) repeat

(a) Set Vn = V + Un and find gn in ΩS such that





− div Jn + σ1(g
?
p , g

?
n,Ξ

(`), S,4t)gn = f1(g
?
p , g

?
n,Ξ

(`), S,4t, g̃n),

Jn = ∇gn −∇VnT
−1

n gn,
gn + θ−1

n Jn · ν(x) = g1,a on ΓC ;

(b) Set Vp = V + Up and find gp in ΩS such that





− div Jp + σp(g
?
p , g

?
n,Ξ

(`), S,4t)gn = fp(g
?
p , g

?
n,Ξ

(`), S,∆t, g̃p),
Jp = −∇gp −∇Vpgp,
gp − θ−1

p Jp · ν(x) = gp,a on ΓC ;

(c) Set n = µ−1
n gn, p = µ−1

p gp and V1 = V + δV , where δV solves in ΩS

{
λ2∆(δV ) − (p+ n)δV = −λ2∆V + n− p− C,
δV = 0 on ΓC ;

(d) Set g?
n := gn, g

?
p := gp, and V := V1;

until ‖δV ‖2 < min(tolint, d1(δT )d2), with δT from step (v);

(iv) Set Vn = V + Un and find gw in ΩS such that





− div Jw + σ2(g
?
p , g

?
n,Ξ

(`), S,4t)gw = f2(g
?
p , g

?
n,Ξ

(`), S,∆t, g̃w),

Jw = ∇gw −∇VnT
−1

n gw,
∇gw · ν − θn(gw,a − gw) = 3

2θngn,a(Tn − Ta) + 3
2gn∇V · ν(x) on ΓC

(v) Compute Tn = 2gw/3gn and δT = ‖Tn − TL‖2.

(vi) Define V (`+1) = V + δV , where δV is the solution of (iii.c).

(vii) Find Ξ(`+1) and β(`+1) in ΩS such that

{ (
∆ + ω2

c2 εopt

)
Ξ(`+1) = (β(`+1))2Ξ(`+1),

Ξ(`+1) = 0 on ΓC .

(viii) Set g
(`+1)
n := gn, g

(`+1)
w := gw, g

(`+1)
p := gp, and T

(`+1)
n := Tn.

until convergence;
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to be constant TL = 1. To solve the model equations for the laser diode
at time tm+1 = (m + 1)4t, we take as initial values of the iteration the

solution of the previous time step, g
(0)
n = g̃n, g

(0)
w = g̃w, g

(0)
p = g̃p, V

(0) = Ṽ ,

S(0) = S̃, Ξ(0) = Ξ̃, and β(0) = β̃, here denoted with a tilde. Notice that
in the one-dimensional situation, ∂ΩS = ΓC = {0, 1}. We set gn,a = µnna,
gw,a = 3

2µnnaTa and gp,a = µppa. The iterative procedure for the laser
diode then is given in Algorithm 2. Recall that the value T n is determined
according to (6.18).

We stop the iteration procedure if the relative difference of two con-

secutive iterations of the discrete values (g
(`)
n , g

(`)
w , g

(`)
p , T

(`)
n ), (S(`),Ξ(`)) are

smaller in the Euclidean norm than the tolerances tolel and tolop, respec-
tively. We notice that the values ∂V as well as ∂T in Algorithm 2 are
determined as the Euclidean norm of the corresponding discrete values.

The described scheme performs best for tolint = 10−6, d1 = 10−4, and
d2 = 0.3. Moreover, we have taken tolel = tolop = 10−5. The boundary
layers can be significantly reduced if we take θn = θp = 2500.

The discretization of the rate equation given in Algorithm 2.(ii) makes
it necessary it to impose the restriction 4t < 1/vg(2Im(β(`)) − αf ) on the
time step to ensure the positivity of S. The choice 4t = 10−12 s proved to
be appropriate for all presented simulations.

To achieve convergence if the applied voltage between two time steps
changes abruptly (e.g. digital signal) and for stationary computations, the
iterative scheme in Algorithm 2 is embedded into a continuation method for
the applied bias, given in Algorithm 3. In the simulations, we have taken
4V = 0.1 V.

Algorithm 3 : Continuation of applied bias

repeat

(i) Apply the iterative Algorithm 2 for the applied voltage Ṽa = Va,old+4V
until the tolerance or the maximum number of iterations is reached. As
an initial guess for all variables, the values from the former voltage step
are used;

(ii) If the tolerance is achieved, set Va,old = Ṽa, otherwise decrease voltage
step size 4V := 4V/2;

until Ṽa = Vap;

Photo diode

For the simulation of the photo diode, the iterative Algorithm 2 changes
slightly. The solution of the rate equation (ii) and the solution of the waveg-
uide equation (vii) become obsolete. The remaining algorithm then differs
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only slightly from that one proposed in [52].

For the photo diode we additionally have to take into account, that the
irradiation might change strongly between to time steps. In order to avoid
failure of our algorithm that uses the values from the former time step as
starting values, we embed the version of Algorithm 2 for the photo diode into
a continuation method for the irradiation power analogous to Algorithm 3.
In the simulations the value of 4P = 2mW worked well.

Algorithm 4 : Continuation of irradiation

repeat

(i) Apply the iterative algorithm for the irradiation P̃ = Pold + 4P until
the tolerance or the maximum number of iterations is reached. As an
initial guess for all variables, the values from the former irradiation step
are used;

(ii) If the tolerance is achieved, set Pold = P̃ , otherwise decrease the irradi-
ation step size 4P := 4P/2;

until P̃ = Pin;

7.3 Iterative solver including the heat equation

For non isothermal simulation we have to include the heat flow equation into
the solver. Moreover we have to consider the temperature dependency of
the mobilities (see (3.12), (5.3)). A simple extension of the solver presented
in [52] proved to be successful for all considered examples. We present
the iterative solver for bipolar thermoelectric simulation without consider-
ation of optical effects. Thus, according to Remark 6.3, we only consider
Shockley-Read-Hall and Auger recombination. The global iteration is given
in Algorithm 5. The expressions σ1, σ2, σp, f1, f2 and fp are given in (6.5)-

(6.8) and Remark 6.2. The corresponding values of σ̃ and f̃ are given in
Remark 6.3.

To solve the model equations we take as initial values for the iteration the

solution of the previous time step, g
(0)
n = g̃n, g

(0)
w = g̃w, g

(0)
p = g̃p, V

(0) = Ṽ

and T
(0)
L = T̃L, here denoted with a tilde. We notice that the initial values

for the electron temperature T
(0)
n are determined according to (6.18).

We stop the iteration procedure, if the relative difference of two consecu-

tive iterations of the discrete values (g
(`)
n , g

(`)
w , g

(`)
p , T

(`)
n ), T

(`)
L is smaller in the

Euclidean norm than the tolerance tol. The iterative scheme performs best
for tol = 10−5 with the parameters tolint = 10−3, d1 = 10−2 and d2 = 0.28
(compare [52]).

The instruction to update the mobilities in Algorithm 5.(vii) seems to
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Algorithm 5 : Iterative solver for non isothermal models

repeat

(i) Let ` ∈ N0 and g?
p = g

(`)
p , g?

n = g
(`)
n , V = V (`), Tn = T

(`)
n , TL = T

(`)
L .

(ii) repeat

(a) Set Vn = V + Un and find gn in ΩS such that





− div Jn + σ1(g
?
p , g

?
n,4t)gn = f1(g

?
p , g

?
n,4t, g̃n),

Jn = ∇gn −∇VnT
−1

n gn,
gn + θ−1

n Jn · ν(x) = g1,a on ΓC ;

(b) Set Vp = V + Up and find gp in ΩS such that





− div Jp + σp(g
?
p , g

?
n,4t)gn = fp(g

?
p , g

?
n,∆t, g̃p),

Jp = −∇gp −∇VpT
−1
L gp,

gp − θ−1
p Jp · ν(x) = gp,a on ΓC ;

(c) Set n = µ−1
n gn, p = µ−1

p gp and V1 = V + δV , where δV solves in ΩS

{
λ2∆(δV ) − (p+ n)δV = −λ2∆V + n− p− C,
δV = 0 on ΓC ;

(d) Set g?
n := gn, g

?
p := gp, and V := V1;

until ‖δV ‖2 < min(tolint, d1(δT )d2), with δT from step (iv);

(iii) Set Vn = V + Un and find gw in ΩS such that





− div Jw + σ2(g
?
p , g

?
n,4t)gw = f2(g

?
p , g

?
n,∆t, g̃w),

Jw = ∇gw −∇VnT
−1

n gw,
∇gw · ν − θn(gw,a − gw) = 3

2θngn,a(Tn − Ta) + 3
2gn∇V · ν(x) on ΓC

(iv) Compute Tn = 2gw/3gn and δT = ‖Tn − T̃n‖2.

(v) Define V (`+1) = V + δV , where δV is the solution of (ii.c).

(vi) Find TL in ΩS such that

{
− div(κL∇TL) + σL(gn, gp,4t)TL = fL(gn, gp, V,4t, T̃L),
−κL∇TL = ν · TL−Tenv

Rth

on ΓC

(vii) Set µn = µn,0

(
T0

TL

)αn−1
and µp = µp,0

(
T0

TL

)αp−1

(viii) Set g
(`+1)
n := gn, g

(`+1)
w := gw, g

(`+1)
p := gp, T

(`+1)
n := Tn and T

(`)
L := TL.

until convergence;
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contradict the temperature dependency given in (3.12) (notice that T0 = 1
in the scaled formulation). We remark that the difference between these
expressions is incorporated in the drift-diffusion formulation of the problem,
see (5.3).

7.4 Coupled network-device system

To make use of the iterative algorithms described above, also in the coupled
network-device system, it is necessary to consider iterative algorithms. The
proper iteration of arbitrary circuit-device systems is far from being triv-
ial and the development of proper iterative solvers for large circuit-device
systems builds an own field of research.

Algorithm 6 : Gauß-Seidel iteration for coupled systems
Start with values from former time step

e = ẽ, T̂ =
˜̂
T , T

d = T̃
d
, TL = T̃L, jS = j̃S , Jth = J̃th,

repeat

(i) Solve device equation using iterative scheme from above

[TL, jS , Jth] = solve device equation(e, TL, T̂ ,T
d,4t)

(ii) Solve electric network equations with Newton method

e = solve MNA equations(e, jS, T̂ ,T
d,4t)

(iii) Solve thermal network equations

[T̂ ,T d] = solve thermal network(e, TL, Jth,4t)

until convergence;

For the coupled device-circuit systems considered in this work, we ap-
plied a Gauß-Seidel-type iteration. We alternately solve the electric network,
thermal network and device equations. The scheme is roughly described in
Algorithm 6. We stop the iteration procedure, as in the previous section,
when the relative difference of two consecutive iterations of the discrete cou-
pling values (e, T̂ ,T d, TL, jS , Jth) is smaller than the given tolerance tol. In
all considered simulations we applied a value of tol = 10−6.

For notational convenience, we only mention the values that contribute
to the coupling of the different subsystems. We notice, that the device and
the electric network equations are coupled via the node potentials e and
the semiconductor current jS according to (4.7) and (4.8) (or § 5.4 for the
scaled model). Moreover the device and the thermal network equations are
coupled according to § 4.2 (for the scaled model see also § 5.4) via the lattice
temperature TL and the temperature values in the lumped and distributed
thermal network elements T̂ and T

d, respectively. Finally the thermal and
electric network equations are coupled on the one hand via the Joule heat
production term (4.21) dependent on the current through the resistors, that
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can be expressed in terms of the node potentials e (see (1.1)). On the
other hand the electric and thermal network equations are coupled via the
temperature in the resistors according to (4.18), given as the temperature
in the corresponding lumped or distributed thermal element. We remark
that in our model we only consider semiconductor devices and resistors as
thermally relevant elements of the circuits. In case of considering further
elements as thermally relevant, the coupling between electric and thermal
network extends to those elements as well.

For much larger circuit-device system than the systems considered in
this work a more advanced iteration technique will be required, like damped
iterative schemes, for instance.
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Chapter 8

Numerical examples

In this chapter we will present numerical examples clarifying the importance
of the consideration of thermal effects in semiconductor devices and more-
over in electric circuits. Firstly, we take into account the thermal effects
by means of the energy-transport model what corresponds to taking into
account the thermal energy of charge carriers. We will present examples
showing the magnitude of thermal effects in pn diodes modeled by the en-
ergy transport model. Moreover, we will give a numerical discussion for
the choice of boundary conditions as discussed in § 3.2.1. We will compare
the results for the energy-transport equations with Dirichlet and Robin-type
boundary conditions.

Additionally, we will present an example for the coupling of the energy-
transport equations for devices with the MNA-equations for electric net-
works in order to include thermal effects of charge carriers into the simula-
tion of electric circuits. We will compare our results to those achieved by
the coupling of drift-diffusion equations and MNA-equations for the coupled
network-device system as presented in [99].

In further examples we employ for the first time the energy-transport
model to optoelectronic devices like laser- and photo diodes and show the
influence of the thermal effects onto the signal output of those devices. We
will present an example for an optoelectronic device-network system, show-
ing that the thermal effects of the charge carriers in the device influence the
electric behavior of the entire circuit.

In a second step we will extend the thermal simulation of devices by
including non-isothermal modeling of the lattice temperature as presented
in § 3.4. We will present the influence of lattice heating onto the electrical
behavior of ballistic diodes and pn diodes. We will show the dependency of
the lattice temperature on the choice of boundary conditions by employing
Dirichlet as well as Robin-type boundary conditions.

In a last step we will consider numerical examples for the complete
electro-thermal network-device coupling where besides particle and lattice

81
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heating the thermal interaction between the circuit elements is taken into
account.

8.1 Energy-Transport model with different bound-
ary conditions

A pn diode with time-dependent voltage

Parameter Physical meaning Numerical value

Ly extension of device in y-direction 6 · 10−7 m
Lz extension in z-direction 10−6 m
q elementary charge 1.6 · 10−19 As
εs permittivity constant 10−12 As/Vcm
UT thermal voltage at TL = 300K 0.026 V
µn/µp low-field carrier mobilities 1500/450 cm2/Vs
τn/τp carrier lifetimes 10−6/10−5 s
ni intrinsic density 1016 m−3

τ0 energy relaxation time 4 · 10−13 s

Table 8.1: Physical parameters for a silicon pn diode.

As first example we consider a silicon pn diode with a time-dependent
voltage source. The diode is assumed to be homogeneous in the y- and the
z-direction such that a one-dimensional approach is suitable. The diode is
modeled by the scaled energy-transport equations in drift-diffusion formu-
lation (5.4)-(5.8). In order to unscale the current densities and to obtain
a current (and not a current density), the size of the diode in the y- and
z-direction is specified (see Table 8.1). The quasi one-dimensional diode
consists of a p-doped region with length L/2 and minimum doping profile
−Cm and of a n-doped region with the same length and with a maximum
doping of Cm. We have used the values L = 0.1µm or L = 0.6µm and
Cm = 1022 m−3 or Cm = 5 · 1023 m−3, respectively. The doping profile is
slightly smoothed using the tanh function (see, e.g. [57]). The circuit op-
erates with 1 GHz, i.e., the applied voltage equals v(t) = V0 sin(2πωt) with
maximum voltage V0 = 1.5 V and frequency ω = 109 Hz. The physical pa-
rameters are collected in Table 8.1. We refer to [86] for more details about
carrier life-times

We have used a uniform spatial grid with 101 nodes and a uniform time
step 4t = 10−13 s. The time step is rather small; this can be explained by
the fact that we need careful computations at the switching point when the
voltage changes from forward to backward bias and vice versa. An adaptive
time stepping procedure would certainly allow to choose larger time steps;
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Figure 8.1: Electron (left) and hole (right) concentration in a pn diode with
length L = 0.1µm and maximum doping concentration Cm = 5 · 1023 m−3

for a sinusoidal input signal v(t) = 1.5 sin(2π109Hzt)V.

we plan to implement this in the future.
Initially, the semiconductor device is assumed to be in thermal equi-

librium, i.e., the total current of electrons and holes vanishes. Thus, the
initial current densities are taken to be zero. The initial displacement cur-
rent is then defined by jd,S(·, 0) = λ2(Veq)x, where Veq denotes the thermal
equilibrium potential given by (7.1). The definition of jd,S ensures that
equation (5.9) is fulfilled. Summarizing, the initial conditions read as fol-
lows:

V = Veq, Tn = 1, jS = 0, jd,S = λ2(Veq)x,
gn = µnneq, gw = 3

2µnneq, gp = µppeq,
(8.1)

where neq = nie
Veq and peq = nie

−Veq are the thermal equilibrium particle
densities.

At the contacts ΓC for the first computations we employ Dirichlet bound-
ary conditions for gn, gw, gp, Tn and V . This is

gn = µnna, gw =
3

2
µnna, gp = µppa, Tn = 1, V = Vap + Vbi,

with na, pa given in (3.18) and Vbi = arcsinh
(

C
2ni

)
. We notice that in the

one-dimensional model ΓC = {0, 1} and ΓI = ∅. For more-dimensional
simulation see (3.14) for the boundary conditions on ΓI .

In Figure 8.1 we present the particle densities in the 100 nm pn diode
with a maximum doping of Cm = 5 · 1023 m−3 during one oscillation of the
voltage source. We observe the expected behavior that for forward bias the
device is full of charge carriers. For backward bias we observe a depletion
region that due to the smallness of the device covers almost the entire device.

In Figure 8.2 we present the thermal energy density in pn diodes with
different size L and different maximum doping concentrations Cm. We ob-
serve that a higher doping profile gives a larger energy density as it provides
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Figure 8.2: Energy density in a pn diode with lengths L = 0.1µm (up-
per row), L = 0.6µm (lower row) and maximum doping concentrations
Cm = 1022 m−3 (left column), Cm = 5 · 1023 m−3 (right column) for
the sinusoidal input signal.

more (high-energetic) electrons in the device. The energy density also in-
creases for smaller devices. This coincides with the experience that smaller
devices heat up stronger than larger ones.

The electron temperature can be considered as the average thermal en-
ergy per electron. The corresponding electron temperature for the devices
with Cm = 5·1023m−3 during the oscillation of the voltage source is depicted
in Figure 8.3. In the 600 nm device we observe an increase in the forward
biased diode up to 873 K, in the 100 nm device the electrons heat up in the
forward biased case up to 2509 K. For reverse bias the electron temperature
increases even more. However, as for reverse bias the device is depleted and
only few charge carriers are in the device, the high electron temperature does
not contribute to a high thermal energy in the device (comp. Figure 8.2)
and the thermal effects are not of high interest. Moreover, in Figure 8.3
(left) we observe a strong boundary layer for the temperature for forward
bias at the p-doped contact corresponding to x = 0.

This boundary layer also occurs in the 600 nm device with Cm = 1022

m−3 as we can see in Figure 8.4. There the temperature is depicted at various
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Figure 8.3: Electron temperature in a pn diode with lengths L = 0.1µm
(left), L = 0.6µm (right) and maximum doping concentration Cm = 5 · 1023

m−3 for a sinusoidal input signal.
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Figure 8.4: Left: Electron temperature in a 0.6µm diode with maximum
doping level of 1022 m−3 for different times t and corresponding voltages
v(t). Right: Zoom for the bias v(t) = 1V.

times ti (and corresponding voltages v(ti)). We observe hot electrons in the
n-region and close to the p-doped terminal. At the junction, cooling effects
occur for moderate applied voltages. This thermoelectric effect is well known
in pn diodes and it has important implications for the device design in which
heat management is needed (see, for instance, [77]).

At the left p-doped terminal, we observe the boundary layer which can
be resolved only in very high resolution (see Figure 8.4 (right)). In fact,
there are boundary layers also for the electron density n as well as for the
energy density w = 3

2nTn (Figure 8.5 (left)). This seems to indicate that
the use of Dirichlet boundary conditions for n and w (or, equivalently, for n
and Tn) is not appropriate.

Therefore in a second step we apply the boundary conditions of Robin-
type (3.20)-(3.22). The scaled version of the boundary conditions is given
in (5.10)-(5.11). These Robin-type boundary conditions for gn, gw and gp
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Figure 8.5: Electron and energy density in a pn diode with length L =
0.6µm with maximum doping level of 1022 m−3 for the bias v(t) = 1V. With
Dirichlet boundary conditions for n,w, T (left) and with Robin boundary
conditions with θn = 25 (right).

0 0.1 0.2 0.3 0.4 0.5 0.6
300

350

400

450

500

550

600

position [µm]

el
ec

tr
on

 te
m

pe
ra

tu
re

 [K
]

 

 
θ

n
 = 1

θ
n
 = 10

θ
n
 = 100 

θ
n
 = 1000

Figure 8.6: Electron temperature in a pn diode with length L = 0.6µm
with maximum doping level of Cm = 1022 m−3 for the bias v(t) = 1V with
different boundary condition parameters θn.

interpolate between Dirichlet and Neumann conditions. Clearly, a derivation
of suitable higher-order boundary conditions from the Boltzmann equation
in the energy-transport context would be necessary, but we postpone such
an analysis to a future work. Furthermore, the boundary condition for the
temperature should be compatible with the principle of local energy balance
[100]. We do not analyze this property since we are more interested in the
numerical solution of the coupled system of PDAEs.

Thanks to the new boundary conditions, the boundary layers for n and w
disappear for an appropriate choice of the parameter θn (Figure 8.5 (right)).
The dependency of the electron temperature Tn on this parameter is shown
in Figure 8.6. These results indicate that the choice of the Robin-parameter
is crucial for the temperature profile at the boundary. On the other hand,
it can be observed that the current values are almost independent of the
choice of θn and θp.
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8.2 Electric network-device coupling for a rectifier
circuit

Rectifying circuit

PSfrag replacements

Vin

Vout

Figure 8.7: Rectifying circuit.

The second example is concerned with a rectifying circuit containing four
pn silicon diodes (Figure 8.7). Each of the diodes has the length L = 0.1µm
(and Ly = 0.1µm, Lz = 2µm) or L = 1µm (and Ly = 1µm, Lz = 20µm)
and a maximum doping of 1022 m−3. The remaining physical parameters are
listed in Table 8.1. The resistance in the circuit equals R = 100Ω and the
voltage source is given by v(t) = V0 sin(2πωt) with V0 = 5V and ω = 1GHz
or ω = 10GHz. As initial conditions we assume thermal equilibrium for
each diode as described in the previous section. For the circuit variables
we assume the node potentials e as well as the current through the voltage
source iv to be zero:

e = 0, iv = 0. (8.2)

For the coupled network-device problems we mentioned that the deter-
mination of initial values is not arbitrary as the system is of differential
algebraic character. Thus we have to ensure a consistent initialization. The
determination of consistent initial values is not a trivial task. Lamour pre-
sented a MATLABr source code that allows to compute consistent initial values
from an appropriate initial guess for DAEs with an (tractability) index up
to two (see, e.g.[62, 63]). As guess for the initial values we start with the
semiconductor devices in thermal equilibrium. Moreover, we assume the
node potentials and the current in the circuit to be zero, see (8.2), and
the displacement current to fulfill (5.9), i.e. jS,d(·, 0) = −λ2(Veq)x. Fur-
thermore, the temperature of all thermally relevant devices we assumed to
coincide with the scaled temperature T0 = 1. A computation according to
[63] showed that this choice is already numerically consistent.

For the diodes in the Graetz circuit, we may employ Dirichlet or Robin
boundary conditions as these conditions affect the behavior of the temper-
ature on the boundary but less the current values. Only the profile of the
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h/L RE(n) RE(w) RE(p) RE(V ) RE(Tn) RE(jS) RE(circ)

0.04 8.7 · 10−2 1.3 · 10−1 6.8 · 10−2 2.3 · 10−2 1.0 · 10−1 1.1 · 10−1 1.5 · 10−2

0.02 3.5 · 10−2 5.3 · 10−2 2.7 · 10−2 1.2 · 10−2 7.3 · 10−2 5.0 · 10−2 6.9 · 10−3

0.01 1.1 · 10−2 1.7 · 10−2 8.0 · 10−3 4.1 · 10−3 4.7 · 10−2 1.7 · 10−2 2.3 · 10−3

0.005 2.4 · 10−3 3.9 · 10−3 1.8 · 10−3 1.1 · 10−3 2.3 · 10−2 4.1 · 10−3 5.7 · 10−4

rate 1.73 1.67 1.75 1.47 0.72 1.60 1.59

Table 8.2: Relative error (RE) for different space step sizes. The time step
size is 4t = 10−12s.

4t RE(n) RE(ε) RE(p) RE(V ) RE(Tn) RE(jS) RE(circ)

10 2.0 · 10−3 1.6 · 10−3 1.9 · 10−3 6.0 · 10−4 5.6 · 10−3 2.1 · 10−3 3.6 · 10−4

8 1.5 · 10−3 1.1 · 10−3 1.4 · 10−3 5.2 · 10−4 4.5 · 10−3 1.6 · 10−3 3.0 · 10−4

5 7.3 · 10−4 5.7 · 10−4 6.8 · 10−4 3.5 · 10−4 2.8 · 10−3 1.5 · 10−3 2.2 · 10−4

4 5.5 · 10−4 4.1 · 10−4 5.1 · 10−4 3.1 · 10−4 2.7 · 10−3 1.4 · 10−3 1.8 · 10−4

rate 1.38 1.51 1.41 0.66 0.76 0.56 0.74

Table 8.3: Relative error (RE) for different time step sizes. The space step
size is h = 0.0025L; 4t is measured in units of 10−13 s.

electron density changes slightly. Here, for simplicity, we have employed
Robin conditions with a value of θn = θp = 2500.

The numerical simulations are performed on a uniform grid with 51
nodes for each diode. For simplification, we employed the constant time
step 0.5 ps. This time step is needed for accurate computations for the
diodes at reverse bias and at the switching point. The implementation of
an adaptive time-stepping would generally allow to choose much larger time
steps.

The numerical convergence is tested on a numerical solution on a fine
grid with 401 nodes and time step 4t = 5 · 10−14 s. The reference solution
simulates the circuit during one oscillation in the time interval [0, 10−10 s]. In
Tables 8.2 and 8.3 the relative errors of the discrete values with respect to the
Euclidean norm and the numerical convergence orders are depicted. Recall
that w = 3

2nTn denotes the thermal energy. The relative error RE(circ) of
the circuit is the Euclidean error of the discrete node potentials and branch
current.

The spatial convergence orders for the densities and the temperature are
slightly smaller than those obtained for the energy-transport equations [34]
for single devices which shows that the coupling to the circuit equations
plays an important role. The temperature Tn is obtained from the electron
density n and the energy density w by averaging the quantity Tn = 2w/3n,
which may explain the rather low convergence order of Tn. The temporal
convergence orders are smaller than those with respect to space discretiza-
tion, probably due to the coupling.

In Figure 8.8 the energy density in one of the diodes during one oscillation
of the circuit for two different device sizes and frequencies is presented.
Here, we observe that the energy density for both cases is in the same order
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Figure 8.8: Energy density in a pn diode with size L = 0.1µm and frequency
10GHz (left); L = 1µm and frequency 1GHz (right).The maximum doping
is Cm = 1022 m−3.

of magnitude and is slightly higher in the larger device. The (ten times)
smaller device was driven with a (ten times) shorter signal. Thus we observe
that in smaller devices the charge carriers heat up significantly faster. This
coincides with the observation from the first example, where the thermal
energy density in smaller devices, for devices driven by the same signal, was
significantly higher (comp. Figure 8.2).

Next, we investigate the behavior of the current through one diode and
through the circuit using the transient or stationary energy-transport equa-
tions (ET) and the transient drift-diffusion model (DD). Figure 8.9 shows
the current from simulations of a 1µm diode in a 1GHz circuit. The figure
clearly shows the rectifying behavior of the circuit. The largest current is
obtained from the drift-diffusion model since we have assumed a constant
electron mobility such that the drift is unbounded with respect to the mo-
dulus of the electric field. The stationary energy-transport model is not able
to catch the capacitive effect at the junction. Similar statements hold for
the output signal of the circuit.

Finally, we consider a Graetz circuit with a larger frequency of 10 GHz
and smaller device size of 0.1µm. The current through one of the diodes
of the circuit and the output signal of the circuit is presented in Figure
8.10. Here, the differences between the three models are more pronounced.
Clearly, the capacitive effect is larger for this rather high frequency. As
in the previous example, the stationary model cannot capture this effect.
Moreover, we observe a slight time shift between the stationary and the
transient energy-transport equations.

With the examples in this section we have presented for the first time
the numerical coupling of the transient energy-transport model for semicon-
ductor devices with circuit equations from modified nodal analysis, leading
to a system of partial differential-algebraic equations. The numerical com-
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Figure 8.9: Left: Current through a 1µm diode in a 1GHz circuit. Right:
Output signal of the circuit.
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Figure 8.10: Left: Current through a 100 nm diode in a 10GHz circuit.
Right: Output signal of the circuit.

parison with the coupled system of the drift-diffusion and network equations
shows the strong influence of the carrier heating on the current density. In
some physical situations, the stationary energy-transport model seems to
provide reasonable results, compared to the other two models. However, in
high-frequency circuits, the use of the transient model seems to be necessary.

We have also compared the effect of the boundary conditions for the
device. Boundary layers which appear when standard Dirichlet conditions
for the particle density and energy density are employed disappear if appro-
priate Robin boundary conditions for these variables are used.

8.3 Optoelectronic network-device coupling

In the next example we present the numerical coupling of optoelectronic de-
vice models described in § 3.3 with the electric network equations described
in § 1. As in this work we present the model and simulation of optoelectronic
devices based on the energy-transport equations for the first time, we firstly
present the results of the single device simulation.
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Parameter Physical meaning Numerical value
Ly extension of the device in y-direction 10−6 m
Lz extension in z-direction 10−5 m
q elementary charge 1.6 · 10−19 As
UT thermal voltage at 300K 0.026V
Un,0/Up,0 band potentials in active region 0.1/− 0.1V
Cn/Cp Auger recombination parameters[65] 10−43/10−42 m6s−1

B spontaneous recombination parameter[2] 10−16 m3s−1

τn/τp carrier lifetimes[65] 10−6/10−5 s
τ0 energy relaxation time[34] 4 · 10−13 s
nth threshold density[2] 1024 m−3

αbg optical background loss[2] 4000m−1

αf facet loss[2] 5000m−1

ε0 permittivity constant[65] 8.85 · 10−12 As(Vm)−1

εAs /ε
G
s material permittivity[65] 12.1 · ε0/12.9 · ε0

µA
n /µ

G
n electron mobilities[65] 2300/8300cm2(Vs)−1

µA
p /µ

G
p hole mobilities[65] 145/400cm2(Vs)−1

µA
opt/µ

G
opt refractive index[65] 3.3/3.15

nA
i /n

G
i intrinsic density[65] 2.1 · 109/2.1 · 1012 m−3

gG
0 differential gain in GaAs (see [2, 28]) 3 · 10−21 m2

ω angular frequency (wave length 870nm) 2.17 · 10−15 Hz

Table 8.4: Physical parameters for a laser diode of Al0.7Ga0.3As and GaAs.
The parameters with superscript A denote the values for Al0.7Ga0.3As, and
those with superscript G denote the values for GaAs. The parameters with-
out superscript are valid for both materials.

Laser diode

The complete scaled model for a laser diode is presented on page 60 and con-
sists of the energy-transport equations for the electrons, the drift-diffusion
equations for the holes, the Poisson equation for the electric potential cou-
pled to the waveguide equation for the optical field intensity and the rate
equation for the number of photons in the device to cover the optical effects.

We consider a GaAs/Al0.7Ga0.3As p-i-n laser diode under various bias
conditions. The one-dimensional diode has the length 1µm consisting of a
p-doped part with length 0.45µm, a low-doped (intrinsic) part with length
0.1µm, and an n-doped region with length 0.45µm. The doping concentra-
tions are −1024 m−3 in the p-doped, 1018 m−3 in the low-doped region, and
1024 m−3 in the n-doped part. The doping profile is slightly smoothed by
use of the tanh function [57]. The band potentials, consisting of the con-
stant values Un,0, Up,0, respectively, in the active region and zero elsewhere,
are also slightly smoothed. The values for Un,0 and Up,0 are rough ap-
proximations according to the contact potential computations in [31]. The
remaining physical parameters for the diode are collected in Table 8.4. For
the computations we have employed a uniform spatial grid with 101 nodes
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Figure 8.11: Laser diode biased with a sinusoidal signal V0 sin(2π109 Hz t).
Comparison of the modal gain 2Imag(β) during one oscillation computed
from the complete and the simplified model with applied bias of V0 = 2 V
(left) and V0 = 3 V (right).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

position [µm]

op
tic

al
 fi

el
d 

in
te

ns
ity

 

 

simplified
complete

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

position [µm]

op
tic

al
 fi

el
d 

in
te

ns
ity

 

 

simplified
complete

Figure 8.12: Laser diode biased with a sinusoidal signal V0 sin(2π109 Hz t).
Intensity distribution of the optical field at the maximum bias of V0 = 2 V
(left) and V0 = 3 V (right).

and a time step size of 1 ps.
First we consider the response of the laser diode to various voltage signals

computed with the complete model including the waveguide equation (3.27)
and compare the results to the simplified model in which the effective index
approximation has been applied, see (3.30). For the transient simulations,
we assume that the device is initially in thermal equilibrium without any
optical field. The initial conditions are thus

gn = µnneq, gw =
3

2
µnneq, gp = µppeq, V = Veq, Tn = 1, S = 0

at time t = 0, where neq, peq and Veq represent the thermal equilibrium
values (see § 3.2.2 or § 7.1).

The laser diode is biased with a sinusoidal signal v(t) = V0 sin(2πωt)
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Figure 8.13: Response of the laser diode to the sinusoidal input signal
3 sin(2π109 Hz t) V (left) and to the digital input signal with frequency 5 GHz
and duration 100 ps.

with amplitudes V0 = 2V and V0 = 3V and frequency ω = 1 GHz. In
Figure 8.11 the modal gain 2Im(β) computed from (3.27) is compared with
the approximation (3.30) during one oscillation of the input signal. The
signal exceeds the threshold voltage for about 0.4 ps ≤ t ≤ 0.6 ps. We see
that the simplified model well approximates the modal gain, even for larger
applied voltage. Below the threshold voltage, both modal gains coincide
with the background loss. Figure 8.12 shows the intensity distribution |Ξ|2

of the optical field at time t = 5 · 10−10 s. The approximated intensity
distribution agrees very well with the intensity distribution computed from
the complete model. These results motivate the use of the simplified model
for the following simulations.

In Figure 8.13 the output signal is presented for various applied voltages
and the (transient) drift-diffusion (DD) and energy-transport (ET) models.
The left figure shows the optical output power from a sinusoidal signal with
1 GHz. The overshoot of the energy-transport model at about t = 0.4 ns
is caused by the transient response of the device. The differences between
the drift-diffusion and energy-transport models become more significant at
larger applied voltage as seen in the right figure for a digital signal. This is
expected since the energy-transport equations include thermal effects.

Next, we present the steady characteristics of the laser diode (Figure
8.14). The left figure shows a current saturation in case of the energy-
transport model. This behavior cannot be observed for the drift-diffusion
model as the mobility µn is assumed to be constant and hence, the drift
−µnVx is unbounded in the electric field. When the relaxation time be-
comes smaller, the characteristics seem to converge to the curve of the drift-
diffusion model. This can be understood from the fact that a vanishing
relaxation time forces the particle temperature to relax to the constant lat-
tice temperature. The power-current characteristics are shown in the right
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Figure 8.14: Characteristics of the laser diode using the drift-diffusion and
energy-transport models with different relaxation times. Left: Current-
voltage characteristics. Right: Power-current characteristics.
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Figure 8.15: Electron density (left) and electron temperature (right) in the
laser diode for different forward bias.

figure. For both models we observe the presence of a threshold current of
about 8 mA and an approximate linear behavior for currents between 0.1 A
and 0.3 A. The output power computed from the drift-diffusion model is
linearly increasing even for larger currents. For the energy-transport model,
however, the output power diminishes for large currents. A similar effect has
been observed in [14] using the drift-diffusion model for higher lattice tem-
peratures (also see [2], Chap. 7). This indicates the importance of including
thermal effects even in optoelectronic devices.

Finally, Figure 8.15 shows the stationary electron density and tempera-
ture in the device for two different forward bias. We clearly see the carrier
confinement in the active region. Hot electrons are present mainly in the
p-doped region and the temperature becomes minimal at the p-i heterojunc-
tion. This minimum is a well known thermoelectric effect at p-n junctions,
see [77]. For larger applied bias, the electron temperature becomes large
also in the n-doped region.
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Parameter Physical meaning Numerical value
Ly extension of device in y-direction 10−5 m
Lz extension in z-direction 10−4 m
η quantum efficiency 0.5
r surface reflectivity 0.3
αab absorption 5000 m−1

Table 8.5: Physical parameters for a silicon p-i-n photo diode.

Photo diode

As a model for a photo diode we consider a one-dimensional vertical silicon
p-i-n photo diode with length 6µm consisting of a p-doped part of 2µm
length doped with −5·1022 m−3, an intrinsic region of 2µm length doped with
5 · 1017m−3, and an n-doped region of length 2µm doped with 5 · 1022m−3.
Again, the doping profile is slightly smoothed. The physical parameters of
silicon are listed in Table 8.1 and the optical parameters for the diode are
listed in Table 8.5. The geometry of the device is similar to that of [93].
For the following numerical tests we employ a uniform grid with 101 nodes
and the time step 5 ps.
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Figure 8.16: Dark current and photo current in the photo diode for various
irradiation intensity.

In Figure 8.16 the dark current (no irradiation) and the photo current
(positive irradiation) under backward bias are presented. The current in-
creases significantly with increasing irradiation, proving that our model well
reflects the typical behavior of a photo diode.

In the following numerical tests, the diode is driven by the backward bias
of 0.2 V. The response of the device to a sinusoidal irradiation signal with
amplitude 60 mW and frequency 1 GHz and to a digital signal with dura-
tion 200 ps are shown in Figure 8.17. Thereby the sinusoidal input signal is
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Figure 8.17: Response of the photo diode under backward bias of
0.2V for various irradiation signals. Left: Sinusoidal signal P (t) =
60 sin(2π109 Hz t)mW. Right: Digital signal with amplitude 60 mW and du-
ration 200 ps.
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Figure 8.18: Electron energy density (left) and temperature (right) in the
photo diode under backward bias of 0.2 V for various irradiation power.

used as a rough approximation of a lightpulse as observed in Figure 8.13 for
the drift-diffusion model. We observe that the stationary energy-transport
model does not give satisfactory results. The numerical results of the drift-
diffusion and the energy-transport models are similar since the photo cur-
rents are rather small.

The stationary electron energy density and temperature are presented
in Figure 8.18. The energy density (left figure) strongly increases in the
p-doped and intrinsic regions with increasing irradiation. This is mainly
caused by the increase of photo electrons in these regions since the temper-
ature only increases in the intrinsic part of the device.
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High-pass filter including optoelectronic devices

After the single device simulation of optoelectronic devices, in this section
we consider the laser and photo diode as part of a small electric circuit
(see Figure 8.19). In the considered example the laser diode is biased with
a time-dependent voltage. The transmitted laser signal is received by the
photo diode coupled to a high-pass filter only passing frequencies larger than
the cutoff frequency. The filter consists of the photo diode, a capacitor, and
three resistors. For numerical simulation the model equations for the photo
diode - stationary or transient energy-transport and drift-diffusion in the
following - are coupled to the MNA-equations for the high-pass filter.

PSfrag replacements

Uin

UoutRL

R1

R2

+

−

Figure 8.19: Photo diode with a high-pass filter.

As time-dependent voltage source for the laser diode we apply digital
input signals with a value of 2.5 V and 3 V and frequencies of 1GHz and
5 GHz. The photo diode is backward biased with 0.2 V. as in the previous
section.

For the capacitance in the high-pass filter we assume a value of 10 pF,
for the resistances R1 = 1MΩ and R2 = 100Ω. For the load resistance, we
have chosen a value of RL = 1kΩ.

The output of the laser diode, which in turn is the input for the photo
diode, and the signal output of the high-pass filter for a 2.5 V digital signal
Uin are shown in Figure 8.20 (upper row) for stationary and transient device
simulations. The results for the high-pass output voltage computed with the
stationary and transient energy-transport models differ significantly. This
is expectable as the applied frequency is too large to be resolved by the
stationary model. On the other hand, the differences betweenthe results



98 8. Numerical examples

0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

time [ns]

ou
tp

ut
 p

ow
er

 [W
]

 

 

ET transient
ET stationary
DD transient

0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

1.5

time [ns]

U
ou

t [V
]

 

 

ET transient
ET stationary
DD transient

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

time [ns]

ou
tp

ut
 p

ow
er

 [W
]

 

 

ET transient
ET stationary
DD transient

0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

1.5

2

time [ns]

U
ou

t [V
]

 

 

ET transient
ET stationary
DD transient

Figure 8.20: Output of the laser diode (left) and the high-pass filter (right)
computed from the drift-diffusion and energy-transport models for a 1 GHz
digital input signal with bias 2.5 V (upper row) and 3 V (lower row).

computed with the drift-diffusion and the energy-transport equations are
minor. This behavior, however, changes drastically when the digital signal
becomes larger. Figure 8.20 (lower row) shows the output signals of the laser
diode and the high-pass filter for a digital signal of 3V. There we observe
that the output from the drift-diffusion model is significantly larger than
that from the energy-transport equations.

The effect of a larger frequency is shown in Figure 8.21. We have em-
ployed a digital signal with a five times larger frequency than that of Figure
8.20. Again, the large frequency cannot be resolved by the stationary model.

In order to verify the filter effect, we apply digital signals of 2.5 V with
various frequencies using the stationary energy-transport model (Figure
8.22). The use of the stationary model is justified by the chosen frequencies
and applied voltage. The numerical results show that only high frequencies
provide a significant output signal showing the high-pass behavior.
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Figure 8.21: Output of the laser diode (left) and the high-pass filter (right)
computed from the drift-diffusion and energy-transport models for a 5 GHz
digital input signal with bias 3V.
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Figure 8.22: Output of the high-pass filter for input signals of various fre-
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8.4 Lattice heating in semiconductor devices

So far we have clarified the influence of thermal effects in semiconductor
devices by taking into account the thermal energy of the majority charge
carriers. We have seen, that the influence on the electrical behavior is sig-
nificant and thus even the impact on the electrical behavior of complete
circuits can no longer be neglected.

Besides the heating of the charge carriers we expect also the heating of
the crystal lattice to have significant influence on the electrical behavior of
the devices. We notice that the electron temperature is a measure for the
average thermal energy of the free electrons and does not coincide with the
temperature of the crystal lattice.

In this section we will consider the influence of lattice heating onto the
electrical behavior of single semiconductor devices

8.4.1 Ballistic diodes

As a first numerical example including the lattice heating modeled in § 3.4
we consider the one-dimensional n+-n-n+ ballistic silicon diode. The ballis-
tic diode can be considered as a simple one-dimensional model of a MOS-
transistor. The device domain is given by ΩS = (0, L). The n+ regions with
a size of 100 nm each are characterized by a maximum doping concentration
of 5 · 1023 m−3. The 400 nm long n-channel is characterized by a minimum
doping concentration of 2·1021 m−3. The doping profile is smoothed by use of
the tanh function. The device is modeled by the unipolar energy-transport
model (for electrons only) consisting of the mass- and energy-conservation
together with the constitutive current relations coupled to the unipolar Pois-
son equation. The physical parameters of silicon can be found in Table 8.1.

As boundary conditions in the boundary nodes x = 0 and x = L (remem-
ber that in the scaled 1D-model ∂ΩS = ΓC = {0, 1}) we assume Robin-type
conditions for the electron density n and homogenous Neumann conditions
for the electron temperature Tn, i.e.

Jn · ν = θn(gn,a − gn), ∇Tn · ν = 0 on Γc, t > 0. (8.3)

Here gn,a = µnna with na given in (3.18). The Robin parameter is chosen
as θn = 2500. As initial values we assume the device to be in thermal
equilibrium, i.e.

gn = µnneq, V = Veq, Tn = 1 in ΩS. (8.4)

The described device can be considered as a standard-example for the simu-
lation of semiconductor devices. The device has been considered and sim-
ulated with the energy-transport model in [34, 52, 9] and by use of hy-
drodynamic models in [8, 10]. In [74] the same device has been simulated
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Figure 8.23: Electron density and electric potential in a ballistic diode biased
with 1.5 V started with thermal equilibrium.
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Figure 8.24: Energy density and electron temperature in a ballistic diode
biased with 1.5 V started with thermal equilibrium.

using a simplified energy-transport model coupled to the heat flow equation
for the lattice temperature. There, Dirichlet boundary conditions for the
lattice temperature have been considered.

Due to the presence of that many comparable results we consider this
example partially as a validation of our model. We firstly simulate the
device without consideration of the lattice temperature. We perform the
simulation for an applied bias of 1.5 V and observe the convergence of the
device to a stationary state. The simulations are performed on a grid with
101 nodes using a time step size of 2 · 10−13 s. The results are presented in
Figure 8.23 and Figure 8.24. We observe the expected behavior and see that
the device takes around 3-4 ps to reach the stationary state. This coincides
with the simulation results presented in [56]. Moreover the electron and
energy density as well as the potential and the electron temperature show
the expected behavior. The electron temperature reaches a maximum value
of 2344 K what is in good accordance to the results in [34]. Moreover we
see that the choice of Neumann boundary conditions for Tn does not have
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Parameter Physical meaning Numerical value
κL thermal conductivity 130W/(mK)
cL heat capacity 700J/K/kg
ρL material density 2329kg/m3

αn mobility power law parameter 2
Rth thermal contact resistance 0− 10−7 s m2/W
SL radiation parameter 0− 4 · 1015 W/(m3K)

Table 8.6: Thermal properties of silicon.

significant influence (compared to Dirichlet ones), as the temperature almost
coincides with the ambient temperature at the boundary, anyhow.

In the next step we additionally include lattice heating and thus the
unipolar form of the heat flow equation (5.12) into the model:

ρLcL∂tTL − div(κL∇TL) =
3

2
n
Tn − TL

τ0
− SL(TL − Tenv).

The additionally necessary thermal parameters for silicon are listed in Ta-
ble 8.6. In the following we compare the results we get for different choices
of boundary conditions for the lattice temperature TL, i.e. Dirichlet or
Robin-type boundary condition

TL = T0 = 1, or − κL∇TL = ν ·
TL − T0

Rth
on ΓC , t > 0, (8.5)

with different values for the thermal resistance Rth. The thermal radiation
is neglected for the moment (i.e. SL = 0). Again we assume thermal
equilibrium as initial values for the device as in (8.4). Then the initial
values for the lattice temperature are given (in the scaled form) as

TL(0) = 1 in ΩS. (8.6)

In Figure 8.25 (left) we see the evolution of the lattice temperature in
the device for a bias of 1.5 V, where Dirichlet boundary conditions have
been applied. We observe that the temperature increases by less than 1
K, what coincides with the simulation results presented in [74]. This can
not be considered as a significant increase of temperature. The prescription
of Dirichlet boundary conditions corresponds to the assumption of infinite
heat flux across the boundary. This physically questionable assumption to-
gether with the high thermal conductivity of silicon causes a very rapid
drain of heat, what results in the small temperature increase. This changes,
if we assume the more realistic Robin-type boundary conditions and take
into account the thermal resistance of the contacts instead. For a choice of
Rth = 10−8 m2K/W (compare [43]) the increase of temperature becomes
more obvious as we see from Figure 8.25 (right). Due to the high thermal
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Figure 8.25: Lattice temperature in a ballistic diode biased with 1.5 V
started with thermal equilibrium. Computation for different boundary con-
ditions. Left: Dirichlet, Right: Robin type with Rth = 10−8m2K/W.

0 0.1 0.2 0.3 0.4 0.5 0.6
0

500

1000

1500

2000

2500

position [µm]

el
ec

tr
on

 te
m

pe
ra

tu
re

 [K
]

 

 

Dirichlet bc
R

th
 = 10−7 Km2/W

0 0.1 0.2 0.3 0.4 0.5 0.6
300

305

310

315

320

325

position [µm]

la
tti

ce
 te

m
pe

ra
tu

re
 [K

]

 

 

R
th

 = 1e−7 Km2/W

R
th

 = 1e−8 Km2/W

R
th

 = 1e−9 Km2/W

Dirichlet bc

Figure 8.26: Electron and lattice temperature in a ballistic diode biased with
1.5 V started with thermal equilibrium for different boundary conditions.

conductivity the lattice temperature does not differ strongly within the de-
vice. Furthermore we see in Figure 8.25 that the heat effects of the lattice
take much longer to reach the stationary state than the electrical effects do
(compare Figures 8.23-8.24).

In Figure 8.26 we depict the influence of the boundary conditions for TL

on the electron and lattice temperature within the device. Obviously, we see
that the electron temperature does not change significantly even for a very
high thermal resistance. In contrast, we observe a tremendous increase of
the lattice temperature with increasing thermal resistance. We remark that
the choice of Rth = 10−7 m2W/K might be unrealistically high and that we
neglected radiation in the simulation.

To clarify the impact of the lattice heating onto the electrical behavior
of the considered device we compare the IV-characteristic of the energy-
transport model with constant lattice temperature to the one with variable
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Figure 8.27: IV-characteristic for the ballistic diode modeled with the drift-
diffusion model and the energy-transport model with constant and variable
lattice temperature.

lattice temperature, see Figure 8.27. The simulation was performed under
the assumption of Robin boundary conditions with Rth = 10−8 m2W/K and
radiation was neglected. Nonetheless we observe that the influence onto
the IV-curve is rather small and becomes obvious for very high applied bias
only. This shows that for devices of the chosen size of around 500 nm the
influence of lattice heating seems to be negligible. For comparison the IV-
curve computed with the drift-diffusion model is depicted and again we see
that the thermal effects of the charge carriers can not be neglected even for
big devices.

50 nm-channel ballistic diode

In industrial application it is observed that thermal effects in semiconductor
devices become stronger with decreasing device extension. As a second
example we therefore consider a smaller ballistic diode with a total length
of L = 250 nm. The n-channel has a length of 50 nm and the n+-regions
have a length of 100 nm each. The doping concentrations are the same
as for the previous example. The described device has been modeled and
simulated with an energy-transport model in [9] and with the hydrodynamic
model in [56], in both cases without consideration of the lattice heating. As
in application smaller devices are driven by smaller bias we simulate the 50
nm channel diode with a bias of 1V. Again we apply thermal equilibrium
(8.4) and (8.6) as initial conditions and boundary conditions as in (8.3). For
the lattice temperature TL we assume Robin-type boundary conditions as in
(8.5) with Rth = 10−8 m2K/W. As radiation parameter we apply the value
of SL = 4 · 1015 W/(m3)K. If we assume an extension of the device in y- and
z-direction of 250 nm, as well, this parameter corresponds to a transmission
of approximately 6 · 10−4 W/K for the entire device or 109 W/(m2K), what
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Figure 8.28: Electron density and electric potential in a ballistic diode with
50nm channel biased with 1 V started with thermal equilibrium.
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Figure 8.29: Energy density and electron temperature in a ballistic diode
with 50 nm channel biased with 1 V started with thermal equilibrium.

is significantly too high (compare [16]).

We perform the simulation on a spatial grid with 101 nodes and apply
a time step size of 10−14 s to resolve the transient response of the device to
the abrupt increase of bias.

For sake of completeness in Figures 8.28-8.29 we present the transient
behavior of all considered variables in the model. We observe that the elec-
trical values reach the stationary state considerably faster than in the first
example. Comparing the 400 nm to the 50 nm channel device, we observe
a similar smooth distribution of the electric potential in the devices. For
the small device, however, we observe that the electron density in the chan-
nel increases significantly compared to the predefined doping concentration.
For the ballistic diode of the first example we observed a difference between
electron density in the channel and the electron density in the n+-layers of
two magnitudes, whereas for the smaller device this difference is significantly
smaller. This in turn results in a considerably higher thermal energy in and
around the channel as we clearly see from Figure 8.29 (left). The presence of
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Figure 8.30: Lattice temperature in a ballistic diode with 50nm channel
biased with 1 V started with thermal equilibrium. Computation with con-
sideration of radiation (left) and without (right).

more high energetic charge carriers clarifies the reason for stronger thermal
effects in smaller devices.

Moreover the electron temperature (the average thermal energy per elec-
tron) is depicted in Figure 8.29 (right). It reaches a maximum value of 2860
K for the bias of 1V what again is higher than in the bigger device. Addi-
tionally we observe that the prescription of Neumann boundary conditions
for the electron temperature Tn has influence on the temperature distribu-
tion as the temperature does not relax to ambient or lattice temperature at
the boundary.

In [9, 56] the same device is simulated for a smaller bias. The qualitative
behavior of our results are in good accordance with the results presented
there.

The lattice temperature of the device is shown in Figure 8.30 (left).
Again we observe that the lattice temperature takes much more time to
reach the stationary state. Moreover, we observe an increase of the lattice
temperature of around 5 K under the consideration of very high thermal
radiation to environment. To compare the effect of lattice heating to lat-
tice heating in the 600 nm device, we perform the same simulation without
consideration of radiation. The corresponding result for the lattice temper-
ature is depicted in Figure 8.30 (right). There we get a lattice temperature
of around 325 K compared to 302 K in the 600 nm device. This clearly
shows that smaller devices heat up significantly more.

The results for the stationary computations of the electron and lattice
temperature for 1 V bias are shown in Figure 8.31, where we clearly see that
the electron temperature does not relax to the lattice temperature at the
boundary. Moreover we see that the lattice heating also affects the electron
temperature even though this effect is not very high.

Lastly we want to examine the influence of lattice heating onto the elec-
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Figure 8.31: Stationary computation of electron and lattice temperature in
a ballistic diode with 50nm channel biased with 1 V started with thermal
equilibrium for different boundary conditions.
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Figure 8.32: IV-characteristic for the 50nm channel ballistic diode modeled
with the drift-diffusion model and the energy-transport model with constant
and variable lattice temperature.

trical behavior of the device. In Figure 8.32 we present the current-voltage
characteristic computed with and without consideration of lattice heating.
We observe that for the smaller device the difference between the two curves
becomes more obvious even for smaller applied bias. We see that with de-
creasing radiation the influence onto the electrical performance becomes
even stronger. We notice that we model the thermal radiation by the term
SL(TL − Tenv) with constant environmental temperature. In application,
this is not always given, as the environmental temperature might increase
due to continuous radiation from the considered and the surrounding ele-
ments in electric circuits. An increase of Tenv, in turn, decreases the thermal
radiation what then again would increase lattice heating and influence the
electrical performance of the device. We remark that the considered radia-
tion parameter has been chosen very high and might be unrealistic.
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Figure 8.33: Transient computation of electron and lattice temperature in a
100 nm pn diode with maximum doping concentrations Cm = 5 · 1023 m−3

for the abrupt forward bias of 1.5 V.

In any case the simulation of lattice heating seems to get more important
due to the miniaturization trend in semiconductor development.

8.4.2 Bipolar pn diodes

To examine the lattice heating in bipolar devices we consider the 100 nm sil-
icon pn diode from § 8.1 where the maximum doping concentration is given
as Cm = 5 · 1023 m−3. The device is modeled by the energy-transport equa-
tions for the electrons, the drift-diffusion equations for the holes coupled to
(scaled version of) the heat flow equation (5.12). If not mentioned explicitly
we assume a radiation parameter of SL = 4 · 1015 W/(m3K).

As initial values we again assume the device to be in thermal equilibrium
(8.1). The Robin-type boundary conditions for n and p are given by (3.21)
with θn = θp = 2500, and for Tn we again employ homogenous Neumann
boundary conditions (3.20). For the lattice temperature TL we generally
assume Robin boundary conditions (8.5) with a thermal resistance Rth =
10−8 sm2/W. If we use different boundary conditions this is stated explicitly.

Firstly we apply a forward bias of 1.5 V to the device in thermal equilib-
rium and observe the transient response of the electron and lattice temper-
ature in Figure 8.33. We observe a strong and quick increase of the electron
temperature in the entire device. Moreover we see, in contrast to the unipo-
lar devices we hitherto considered, a kind of temperature overshoot in the
beginning. The temperature increases to a maximum value of around 3300
K in the n-region and then slowly decreases again towards the stationary
state. Furthermore, we observe the minimum of the electron temperature
around the pn junction, what is a well known effect in bipolar devices.

The lattice temperature on the other hand increases significantly slower
than the electron temperature and additionally does not show the mentioned
overshoot. However, we observe a significant increase of around 25 K of the



8.4. Lattice heating in semiconductor devices 109

Figure 8.34: Lattice temperature in a 100 nm pn diode with maximum
doping concentrations Cm = 5 · 1023 m−3 for the sinusoidal input signal.
Left: with Dirichlet boundary conditions; Right: Robin conditions with
Rth = 10−8 m2 K/W.

lattice temperature in the stationary state.

To consider the lattice heating of the device for time dependent bias, we
bias apply the dependent voltage v(t) = 1.5 sin(2π109Hzt)V to the device.
In Figure 8.34 we depict the results for the lattice temperature simulated
for one oscillation of the source for the mentioned Robin-type boundary
conditions (right) compared to the results for Dirichlet boundary conditions
(left). For the choice of Dirichlet boundary conditions we observe an increase
by less than 1 K for forward bias. During the reverse bias alternation the
lattice cools down quickly to the equilibrium temperature again. The effect
of relaxing to the environmental temperature for backward bias is physically
reasonable as the device is depleted of charge carries and thus no heating
can occur. The rather small temperature increase of 0.6 K is expected as the
assumption of Dirichlet boundary conditions corresponds to the assumption
of infinite temperature flux across the boundary, what does not rebuild the
realistic case.

For the prescription of Robin-type boundary conditions we observe a
considerably higher increase of the lattice temperature TL for the forward
bias alternation. As lattice heating happens rather slow, compared to the
electrical effects, we observe that the maximum of the lattice temperature is
considerably smaller than the value for the stationary state under the bias of
1.5 V (compare Figure 8.33). Moreover, Figure 8.34 (right) shows that the
relaxation of the lattice temperature during the backward bias alternation
happens even slower. Thus after a complete oscillation we still observe a
slightly higher lattice temperature than 300 K.

Accordingly, for increasing number of oscillations we expect increasing
lattice temperature as well. This accumulation can be observed in Fig-
ure 8.35 where we depicted the lattice temperature during three oscillations
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Figure 8.35: Lattice temperature in a 100 nm pn diode with maximum
doping concentrations Cm = 5 ·1023 m−3 for a sinusoidal input signal v(t) =
1.5 sin(2π109Hzt)V.

Figure 8.36: Lattice temperature in a 100 nm pn diode with maximum
doping concentrations Cm = 5 · 1023 m−3 for a 1.5 V digital input signal
with a frequency of 5 GHz.

of the sinusoidal voltage source. We see that the maximum values of TL dur-
ing the alternation increases slightly with increasing number of oscillations.

This effect becomes even more obvious if we apply a signal with a higher
frequency. In Figure 8.36 we show the transient behavior of the lattice tem-
perature in the device during 10 oscillations of a digital input signal of 1.5 V
with a frequency of 5 GHz. Due to the higher frequency the maximum bias
of 1.5 V is applied for a shorter duration per oscillation and consequently
the maximum temperature during the first alternation is smaller than we
observed for the 1 GHz signal in Figure 8.35. In turn the backward biased
period is shortened as well an thus the period of temperature relaxation.
Thus the lattice heating due to the mentioned accumulation becomes more
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Figure 8.37: Lattice and electron temperature in a pn diode with maximum
doping concentrations Cm = 5·1023 m−3 for 1.5 V bias for different boundary
parameters with consideration of radiation. Stationary computation.
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Figure 8.38: Lattice and electron temperature in a pn diode with maximum
doping concentrations Cm = 5·1023 m−3 for 1.5 V bias for different boundary
parameters without consideration of radiation. Stationary computation.

obvious for signals with higher frequency. After a few oscillations the maxi-
mum temperature value of around 315 K is reached for the maximum forward
bias of 1.5 V. However, the maximum temperature value reached by the bias
with the digital signal is below the value the stationary computation pre-
dicts, see Figure 8.37. This intensifies the advantages of the transient model
compared to the stationary one.

To clarify the importance of a proper choice of the values for the contact
resistance Rth and the radiation parameter SL for realistic simulations in
Figures 8.37 and 8.38 we show the results for the stationary computations of
the lattice and the electron temperature for different choices of the these pa-
rameters. We see that the choice of a smaller thermal resistance significantly
reduces the lattice heating and moreover Figure 8.38 shows that the results
strongly depend on the consideration of thermal radiation. Furthermore we
see that the influence of the lattice heating onto the electron temperature is
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Figure 8.39: Left: IV-characteristic for the pn diode computed with the drift-
diffusion and the energy-transport model. Right: Averaged lattice tempera-
ture in the pn diode for different applied bias. Stationary computations..

small, but we observe that higher lattice temperature also causes a higher
electron temperature what is expected by the model equations.

Finally, we depict the current-voltage characteristics of the considered
device for our model and compare the result to those achieved be the energy-
transport model with constant lattice temperature and the drift-diffusion
model in Figure 8.39 (left). We see that for the considered device, heating of
the crystal lattice influences the electrical performance. The effect increases
with increasing applied voltage. In Figure 8.39 (right) we show the average
lattice temperature in the device dependent on the applied voltage. For high
applied bias the lattice temperature computed with our model increases even
up to 420 K. We notice that a bias of 2.5 V for the considered device might by
unrealistic. Nonetheless, the graphs in Figure 8.39 show that with increasing
lattice temperature the electrical behavior of the device changes compared
to the model with constant lattice temperature. Thus, if we consider (as for
the previous example) that the radiation might decrease due to increasing
environmental temperature, the lattice heating might influence the electrical
performance of the semiconductor devices even more than depicted here.

8.5 Thermoelectric simulation of a frequency mul-

tiplier

As the final numerical example we consider the frequency multiplier de-
picted in Figure 8.40. The circuit consists of a voltage source inducing an
oscillatory signal with the eigenfrequency of the first oscillator. The signal
is transported to the second oscillator via the pn diode and due to the non-
linear behavior of the device a mixture of overtones occurs. For the second
oscillator it holds C2 = C1/2 and L2 = L1/2 such that it resonates with the
double frequency and other frequencies are damped out.
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Figure 8.40: Frequency multiplier

Parameter Physical meaning Numerical value
R1/R2 resistances 100/1000Ω
C1 capacitance (3.2 · 2π)−1 · 10−10 F
L1 inductance (3.2 · 2π)−1 · 10−6 H
κR heat conductivity of resistors 237W/(mK)
cR heat capacity of resistors 900J/(kgK)
ρR material density of resistors 2700 kg/(m3)
LR length of resistors 10−6m
AR cross section of resistors 10−7m
α1 1st thermal coefficient(see [16]) 1/(273K)
α2 2nd thermal coefficient (see [16]) 1/(273K)2

Table 8.7: Electrical and thermal parameters of the frequency multiplier

The frequency multiplier is stimulated with the time dependent voltage
signal v(t) = 3 · sin(3.2 · 2π · 109Hz t). The parameters are chosen such that
the first oscillator resonates at a frequency of 3.2 GHz.

We only consider the resistors and the device in the circuit to be ther-
mally relevant elements. We thermally model the resistors as thermal lines
and the device according to § 3.4. Thus the only thermally lumped elements
are the artificial nodes modeling the contacts between the resistors and the
device. We notice, that the temperature at the contacts coincides with the
temperature at the boundary of the thermal lines. For the device, however,
the contact temperature are applied in terms of Robin boundary conditions
as described in 3.53. All necessary electrical and thermal parameters of the
circuit elements can be found in Table 8.7.

As pn diode in the circuit we consider a silicon diode of 100 nm with a
maximum doping profile of 3 ·1023 m−3 in the n doped region and minimum
of −3 · 1023 m−3 in the p doped region. As thermal radiation parameter we
assume a value of SL = 4 · 1015 W/(m3K). We assume a thermal contact
resistance of Rth = 10−8 sm2/W. The remaining parameters are listed in
Tables 8.1 and 8.6.
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Figure 8.41: Inductor currents for L1 (left) and L2 (right) in the frequency
multiplier.
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Figure 8.42: Diode current (left) and output signal of the frequency multi-
plier.

In Figure 8.41 the currents through the inductances L1 and L2 are de-
picted for the first 2 nanoseconds of the oscillation. We clearly see the
double frequency in the second oscillator. We observe that the amplitude in
the second oscillator is not constant. This is due to the fact, that we observe
a damped oscillation in the second oscillator between two excitations caused
by the diode signal (see Figure 8.42 (left)). The corresponding output signal
is depicted in the right graph of Figure 8.42, where we again can observe
the double frequency.

Moreover from Figures 8.41 - 8.42 we observe a difference in the maxi-
mum output values between the simulation including and without thermal
considerations. This difference, however, is mainly caused by the thermal
effects in the device, as we namely observe, that the current through the
first inductor (Figure 8.41 (left)) does not differ. Moreover we see that
the excitation signal for the second oscillator, namely the diode current, is
smaller in the case of included thermal considerations. This finally causes
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Figure 8.43: Lattice temperature of the diode in the frequency multiplier.

Figure 8.44: Temperature of the resistors R1 (left) and R2 (right) in the
frequency multiplier.

the difference in the output signals.
Finally the transient behavior of the distributed temperature values is

shown in Figures 8.43 - 8.44. For the diode temperature we see the expected
behavior as observed in the single device simulation in Figures 8.35 and
8.36. The resistor heating however happens significantly slower. After 2
nanoseconds an increase of temperature of less than 0.1 K can be observed.
Thus the influence onto the resistivity according to (4.18) is very small and
the thermal effects in the resistors do not influence the current in the first
oscillator (see Figure 8.41). However, we clearly see that the temperature in
the resistor is higher at the contact connected to the diode, caused by the
heat exchange with the significantly hotter device.
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Summary and outlook

The trend of miniaturization in electrotechnology enforces refined circuit
and device modeling for enhancement of existing circuit simulators. The
hitherto widespread compact model approach meets the new demands with
high effort, only. Moreover, due to decreasing size of devices and increas-
ing packing density on chips and integrated circuits thermal effects become
predominant and affect the signal behavior of circuits significantly. Thus,
device and circuit models without consideration of thermal effects won’t be
suitable in the near future. Moreover, stationary models won’t meet the
demands as higher frequencies are used.

Using the one-dimensional transient energy-transport model for devices
allows for consideration of thermal effects in terms of the charge carrier
temperature or thermal energy, respectively. The model represents a system
of elliptic and parabolic partial differential equations. The electric network is
represented by a system of differential algebraic equations resulting from the
widespread modified nodal approach. The systems are coupled via boundary
conditions.

More accurate thermal device modeling is achieved by non isothermal
modeling of the lattice temperature by the widespread heat flow equation.
The corresponding source term for the parabolic differential equation is de-
rived under thermodynamic as well as phenomenological considerations. The
mutual thermal interaction between network elements is modeled by an ac-
companying thermal network consisting of lumped and distributed versions
of the heat flow equation for thermally relevant elements in the network. De-
pending on the topology of the network, the thermal model is represented
by a system differential or differential algebraic equations.

Thermal and electric systems are coupled via temperature-dependent
material parameters and heat production terms in electric elements. Ther-
mal and electric effects are strongly coupled via source terms of the heat flow
equation and energy conservation law in the device model. The complete
thermoelectric model for circuit-device systems is represented by a system
of elliptic and parabolic partial differential algebraic equations. About the
index of the coupled system no results are known up to now.

For time discretization of the complete system the A-stable BDF2 is
applied to account for the differential algebraic character of the problem.
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The application of the Marini-Pietra hybridized mixed finite element scheme
for space-discretization of the device model equations allows to keep the
positivity of discrete charge carrier densities as well as the continuity of
the device current. The application of exponential fitting allows for a good
approximation of large gradients of the electric potential.

Iterative algorithms for the solution of the discretized device equations
allow for the simulation of electric and optoelectronic devices without the
expensive computation of derivatives.

The presented examples clarify that hot carrier effects affect the signal
behavior of electric and optoelectronic devices. The results for the coupled
system of energy-transport and network equations show, that the consider-
ation of hot carrier effects in devices is imported for detailed circuit simula-
tion. With decreasing size of devices the impact of lattice heating becomes
stronger. The presented examples show that for devices with size or channel
length of around 50 - 100 nm lattice heating influences the electrical perfor-
mance of devices, considerably. This makes it necessary to include lattice
heating into circuit and device simulators for efficient and reliable circuit
simulation in the future.

Finally the question about the index of the complete coupled system or
the system of network and energy-transport equations remains open. The
determination of the index for the coupled system is surely an exiting start-
ing point for future research and will lead to more efficient and reliable
simulation of the system. The presented coupling strategy might be en-
hanced to the case of two- or more dimensional device models to allow for
detailed simulation of circuits containing transistors. Further on, for effi-
cient simulation of arbitrary circuit-device systems the improvement of the
presented iterative algorithms will be an interesting field of research in the
future.
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Appendix A

Notation

Physical constants

Speed of light in vacuum c 2.99792 · 108 m/s
Reduced Planck constant ~ 1.05457 · 10−34 Js
Boltzmann constant kB 1.38066 · 10−23 J/K
Elementary charge q 1.60218 · 10−19 C
Permittivity in vacuum ε0 8.85418 · 10−12 As/(Vm)

Symbols

t,4t time variable, time step size
x, h space variable, spatial step size

αbg, αf , α background/ facet/total loss of photons in laser diode
αab optical absorption of photo diode material
β eigenvalue of Helmholtz equation
cL, c

d, ĉl heat capacity of lattice/distributed/lumped elements
dc width of laser cavity
e node potentials in electric network
εopt dielectric function of laser
ε semiconductor permittivity constant
η quantum efficiency of photo diode material
gR conductivity of resistor
g(n), g0 optical gain, differential gain
i branch currents in electric network; imaginary number
iC , iL, iR current through capacitors/inductors/resistors
is, iv current of current/voltage sources
jS semiconductor current density at all terminals
θn, θp Robin-parameter for electron/hole density
κi, κL heat conductivity of i-th thermal line/semiconductor lattice
mn,md,ml number of thermal nodes/distributed/lumped elements
µn, µp electron/hole mobility
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µopt refractive index
ν outer normal
n, na, ni, nth electron/quasi-equilibrium/intrinsic/threshhold density
nn, nR, nS number of circuit nodes/resistive branches/device terminals
p, pa hole/quasi-equilibrium hole density
q elementary charge
r surface reflectivity
ρL, ρ

d, ρ̂l material density of device lattice/distributed/lumped
thermal elements

τn, τp electron/hole lifetime
τ0, τ0,p energy relaxation time for electrons/holes
v branch voltages in electric network
u total internal energy density
un, up internal energy density of electrons/holes
uw, uwp thermal energy density of electrons/holes
uE , uL internal energy density of electric field/device lattice
v branch voltages in electric network
vC , vL, vR, vs voltage at capacitors/inductors/resistors/voltage sources
vg group velocity of photons
w,wp thermal energy density of electrons/holes
wa quasi-equilibrium thermal energy density of electrons
ω angular frequency of light

A area of irradiation of the photo diode
Ad cross section of distributed thermal element
A,Ath

d incidence matrix of electric/thermal network
Ath

S thermal incidence matrix of semiconductor device
AC ,AL incidence matrix of capacitors/inductors
AR,AS incidence matrix of resistors/devices
AI ,AV incidence matrix of current/voltage source branches
B spontaneous recombination factor
Cn, Cp electron/hole Auger recombination coefficient
C capacitance of capacitors
C doping profile
Γ,ΓI ,ΓC boundary/insulating boundary/contacts of the device
E electric field
Ec, Ev conduction/valence band
Eg, EG energy gap of low/wide gap material

F̂
S
, F̂

d
thermal flux from device/thermal line into thermal nodes

F S
k thermal flux through semiconductor contact k

ΦL, Φ̃L Magnetic flux variable/function through inductors
G Matrix ∂gR/∂v
Gopt generation rate of photons
H heat source
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I unity matrix
Ith Domain [0, Lth] of thermal lines
Jn, Jp, Jd electron/hole/displacement current density
Jtot total current density
Jd

th, J
S
th thermal flux density of thermal lines/devices

Ju total energy flux density
Jn

u , J
p
u internal energy flux density of electrons/holes

Jw, Jwp thermal energy flux density of electrons/holes
JE

u , J
L
u internal energy flux density of electric field/device lattice

L inductivity of inductors
L,Lth, LC length (diameter) of device/thermal line/laser cavity

K, K̂ matrix identifying electric branches with thermal branches/nodes

M, M̂,M̂ thermal mass of distributed/lumped elements/thermal nodes
M matrix to identify lumped thermal elements with nodes
Nc, Nv effective density of states in conduction/valence band
|Ξ|2 optical field intensity

Pi, P̂ electro-thermal source of distributed/lumped element

P̂ ,P electro-thermal source of thermal nodes/lines

PR, P̃R distributed/lumped electro-thermal source of resistor
Pin, Pout optical irradiation power/ optical output power

QC , Q̃C charge variable/function of capacitors
QS total charge of semiconductor device
R,RAu, RSRH complete/Auger/Shockley-Read-Hall recombination
Rth thermal resistance
S number of photons
SL, Si transmission function for device/thermal line

Ŝ, Ŝ transmission function for lumped element/thermal nodes
Ta, TL, Tn, Tp ambient/lattice/electron/hole temperature
Tenv temperature of environment

T̂ ,T d temperature in thermal nodes/thermal lines

T̃
d

average temperatures in the thermal lines as lumped values

T
d
0,T

d
1 left/right boundary values for temperatures in thermal lines

T d
i temperature in i-th distributed thermal element

T̂
l

temperature in all lumped thermal elements
T S semiconductor temperature in thermal network
T S

D Dirichlet boundary values for T S

V electric potential
Vap, Vbi applied/built-in potential
Vn, Vp effective potential for electrons/holes
VB,n, VB,p band potential for electrons/holes

V̂ l physical volume of a lumped thermal element
W,Wp Fokker-Planck relaxation term for electrons/holes
ΩS,Ωc domain of device/transver cross section of cavity
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[33] P. Degond, S. Génieys, and A. Jüngel. A system of parabolic equations
in nonequilibrium thermodynamics including thermal and electrical ef-
fects. J. Math. Pures Appl. 76, 991-1015, 1997.
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